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摘    要 

    在本文中，我們探討在一簡單短距交互作用流體內瞬間正則模之

局域至非局域轉變。此液體模型提供拓樸性無序系統的原形。在瞬間

正則模頻譜中，分別在正數與負數瞬間正則模頻譜上發現轉變點。我

們使用有限尺度標度法定出轉變點，並且計算關聯長度的臨界指數。

在數值誤差範圍內，所估計的臨界指數與安德森模型是一致的。此結

果驗證了三維的安德森模型與拓樸性無序系統的短距簡單流體屬於同

樣的統計普適性分類。 

   我們也對瞬間正則模做了多重碎形的分析。在局域與非局域轉變的

轉變點附近，瞬間正則模表現出多重碎形的特性。用廣義碎形維度與

波分量強度頻譜可以觀測到在轉變點上隨著系統尺度的不變性。我們

精確計算了波分量強度頻譜，在轉變點上，我們的結果與安德森模型

有高度的一致性，證明了波分量強度頻譜也是一個具有普適性的量。 
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Abstract 

In this thesis, we have investigated the localization-delocalization 

transitions (LDTs) of the instantaneous normal modes (INMs) in a simple fluid 

with short-ranged interactions. The model fluid is a prototype of topologically 

disordered systems. Two LDTs in the INM spectrum are found, and the 

locations are termed as the mobility edges (MEs) with one in the 

positive-eigenvalue branch and the other in the negative-eigenvalue one. The 

MEs and the critical exponents of the two LDTs are estimated by the finite-size 

scaling (FSS) for the second moments of the nearest-neighbor level-spacing (LS) 

distributions. Within numerical errors, the two estimated critical exponents are 

almost coincident with each other and close to that of the Anderson model (AM) 

in three dimensions. The nearest-neighbor LS distribution at each ME is 

examined to be in a good agreement with that of the AM at the critical disorder. 

We conclude that the LDTs in the Hessian matrices of topologically disordered 

systems exhibit the critical behaviors of orthogonal universality class.   

We also investigate the analysis of level-number variance (LNV) and level 

compressibility (LCP), which characterizes the nature of the correlation of 

energy levels beyond the mean LS. Furthermore, in terms of the multifractal 

analysis, the INM eigenvectors exhibit a multifractal nature with the same 

generalized fractal dimensions and the sigularity spectrum. Our results indicate 

that the singularity spectrum of the multifractal INMs agrees with that of the 

AM at the critical disorder. This good agreement provides a numerical evidence 

for the universality of the multifractal at the localization-delocalization 

transition. With the multifractal INMs, we calculate the probability density 

function and the spatial correlation function of the squared vibrational 

amplitudes. With the multifractal INMs, the relation between the probability 

density function and the singularity spectrum is examined, so are the relations 

between the critical exponents of the spatial correlation function and the 

generalized fractal dimensions. 
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Chapter 1

Introduction

In solid state physics, the electronic band structures, which well predict the nature

of crystalline materials such as: metal, insulator or semiconductor, have been well

discribed by the Bloch theory since the periodicity structure of materials. However, in

amorphous materials, the topological disorders a¤ect the mediating waves strongly [1].

Due to the lack of periodicity and the multiple scattering, the electronic or vibrational

waves lose phase coherence in the short wave limit, the vavevector is no longer a good

quntum number, and a well de�ned energy band is absent. Instead of the energy

band, another comprehensive view for such waves are the density of states (DOS).

The transport property such as the electronic conductivity and thermoconductivity

closely relate to the spatial distribution of mediating waves. Generally, in amorphous

materials the tailing states of the DOS which can not contribute to transport are

termd as the localized states.

In 1958, P.W. Anderson introduced the concept of localization for the non-interacting

electronic system at T = 0 K [2][3]. For systems expected to be a metal by the Bloch

theory, there is no energy gap near the Fermi level. But the localization forces the

materials with strong disorder to actually behave like an insulator, due to the trap

of electrons by quantum wave interference in a �nite region [4]. Consequently, in

1968, Mott proposed the connection of localization with the transport properties of

amorphous semiconductors and the concept of the mobility edge (ME), which sepa-

retes the localized states from the extended states energetically, as shown in Fig.1.1

[5][6][7].

One central theme of the localization properties is the scaling behavior. In 1979,



Figure 1.1: The conduction band in a non-crystalline material; Ec indicate the mo-

bility edge and energies for which states are localized are shaded.

Abraham et. al. formulated the one-parameter scaling theory of localization [8]. For

a hypercube of volume Ld, a generalized dimensionless conductance is de�ned as

g(L) =
2~
e2
G(L) =

�E(L)

dE(L)=dN
;

where G(L) is the average DC conductance of the hypercube of size L, dE(L)=dN is

the mean spacing of its energy levels, and �E(L) is a quantity relating to the �uctua-

tion of energy levels caused by boundary conditions. The dimensionless conductance

itself is an explicit description of the system, and provides a relevant scaling variable

to describe the critical behavior of the DC conductivity and localization length. Its

logarithmic derivative � is introduced as

�(g(L)) =
d ln g(L)

d lnL
:

Fig. 1.2 shows the �(g(L)) with respect to ln g(L). For � > 0; the conductance

increases with the size of the sample, re�ecting metallic behavior. On the other

hand, if � < 0, g(L) decreases with L, eventually terminating in the localized regime.

� = 0 corresponds to a disorder-induced metal-insulator transition(MIT). One of the

essential results predicted by the one-parameter scaling theory is that such a MIT

can only exist in systems in three dimensions.

According to the theory of phase transitions and critical phenomena, a phase tran-

sition can be classi�ed into the �rst-order phase transition and the continuous phase

2



Figure 1.2: The �(g) function with respect to log dimensionless conductance. The ab-

scissa indicate log dimensionless conductance. Di¤erent lines are speci�ed by spatial

dimension, and the crossing point gc of the line for d = 3 indicate the metal-insulator

transition.
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transition [9] . The main di¤erence of the two classes is whether or not the latent

heat, which is proportional to the second derivative of free energy, exist. The �rst

order phase transiton is charaterized by the existance of the latend heat, while the

continuous phase transition is not. For the continuous phase transitions, a main char-

acter is the divergence of the correlation length � which describes the spatial extent

of �uctuations in a physical quantity about the average of that quantity. Generally,

the correlation length of a �rst-order phase transtion is �nite [10].

Another concept related to critical phenomena is the universality. Close to a crit-

ical point, the correlation length exhibits power-law dependence on the parameters

specifying the distance away from the critical point. The powers are speci�ed by the

critical exponents which only depend on the universality class of the system. The fact

that two apparently di¤erent physical systems share precisely the same sets of critical

exponents is known as the universality, such as the liquid-gas critical point of a simple

material and the Curie temperature in a ferromagnet. In general, the universality is

classi�ed into categories, which depend on the symmetry group of the Hamiltonian,

the dimensionality and whether or not the interactions are short-ranged [11]. Ac-

cording to the Random Matrix theory (RMT) developed by Wigner and Dyson [12],

Hamiltonians can be classi�ed into three generic ensembles: unitary, orthogonal, and

symplectic, which depend on whether or not the time reversal symmetry and the spin-

rotation symmetry hold. If the time reversal symmetry is broken, the Hamiltonians

are arbitrary Hermitian matrices, H = Hy, which is invariant with respect to the

unitary transformation; hence is classi�ed as "unitary ensemble". If both the time

reversal symmetry and the spin-rotation symmetry are preserved, the Hamiltonians

are real symmetric matrices, H = HT = H�, which is classi�ed as "orthogonal en-

semble". If the time reversal symmetry is preserved but the spin-rotation symmetry

is broken, the corresponding symmetry class is "sympletic ensemble" [13][14].

The Anderson Hamiltonian (AH) for electron transport in disordered lattices is

a well-known model to study its universal properties of the localization-delocalization

transition (LDT). Due to the spinless feature, the AH belongs to the orthogonal

ensemble. In the three-dimensional case, the LDT of the AH is induced by disorder.

4



Under the tight-binding approximation, the AH is written as

H =
X
i=1

"i jii hij+
X
(i;j)

jii hjj ,

where i and j are nearest-lattice sites. The site energy "i of site i is measured in

unit of the overlap integral between adjacent site, and "i are distributed around zero

within the interval �W=2 � "i � W=2, whereW denotes the strength of the disorder.

If the amount of disorder W is smaller than the critical value, the states in the two

ends of the energy spectrum are localized in space, but those in the central region of

the spectrum still delocalized. A sharp boundary between the regions of the localized

and delocalized states is the ME. If we increase the amount of disorder W to the

critical disorder Wc, all states in the energy spectrum are localized in space. In 3D

isotropic Anderson model, it is generally accepted that Wc = 16:5: Many numerical

works in recent decade devoted to calculate the correlation-length exponent � [15][16]

and, so far, it is accepted that the most precise result is � = 1:57� 0:02 [17].
On the other side, a new thinking way emerged in the liquid theory in 1989. Stratt

and Xu proposed a tight-binding model in a liquid to get the band structure in a liquid

[18]. Furthermore, to solve dynamical problem from the static point of view, from the

fundamental aims of nonequilibrium statistical mechanics, Seeley and Keyes proposed

the normal-mode analysis of liquids [19], which is the so-called instantaneous normal

mode (INM) analysis. Consequently, rigorous analytical works for the INM theory are

carried out by solving the master equation [20] (or renormalized mean-�eld theory)

and the diagram method [21]. Generally, the INM theory provides a comprehensive

description for supercooled liquid dynamics in the short-time scale and the optical

experiments related to Raman and IR spectra [22][23].

The localization of INMs has been purposed to explain the glass transitions and

thermal conductivities of amorphous materials. When a liquid is cooled rapidly, the

nucleation of the crystal does not occur and the system becomes a supercooled liquid

and then undergoes a transition to a glass at temperature Tg which is characterized

by large shear viscosity up to 1013 poise [24]. By the INM analysis, some works

predicted that the glass transition is associated with a transition temperature below

which all unstable INMs become localized [25][26][27]. Another long-standing issue

in glasses materials is the physical mechanism for the universal feature of thermal

5



conductivity, which shows a plateau beteween 10 � 50K and further rises [28]. One

of the theories explains that the existance of mobility edge in the phonon spectrum

causes the plateau [29].

Recently, the fractal concept in condensed matter physics is widely applied. Al-

though the fractal dimension provides a measurement to describe complex objects, it

is not enough for a single exponent to characterize the strong �uctuations of the wave

amplitudes at a transition point. A suitable approach was lack until the multifractal

concept, which was originally introduced byMandelbrot to describe the distribution of

energy dissipation in turbulent �ows, is proposed [30][31]. Consequently, the concept

of multifractals was applied in many �elds such as attractor [32][33], the fully devel-

oped turbulence [34][35], the di¤usion-limited aggregation (DLA) [36][37][38][39][40]

and human physiology [41]. It has been suggested that the critical states show mul-

tifractal structures, which also reveal the universality of the critical phenomena [42].

Traditionally, for a normalized eigenvector
X
i

j ij
2 = 1; where i is the index

of particle, the mobility edge is often determined by the inverse participation ratio

(IPR), which is de�ned as a sum over fourth-moment of the eigenvector amplitude

IPR =
X
i

j ij
4 :

Basically, the IPR approaches to one for a localized state and proportional to 1=N

for a uniform extended state. However, due to the �nite-size e¤ect and the lack of

clear distinguishing criteria, the location of the ME can not be precisely identi�ed.

In this thesis, inspired by the metal-insulator transition of disordered systems, we

focus on the LDT of the INMs in a simple atomic �uid. The main questions that I

try to answer in this thesis are: How can we precisely determine the MEs in the INM

spectrum, and whether or not the LDT of the INMs and that of the AM belong to

the same universal class. To clearly understand the strong �uctuations of waves near

the ME, we directly study the eigenvectors of the INMs. By multifractal analysis,

the universality is veri�ed again.

The thesis is organized as following: the INM theory of a simple �uid and the nu-

merical method are introduced in chapter two. In chapter three, the critical exponent

of the correlation length is predicted by the nearest-neighbor level-spacing statistics

and the �nite-size scaling analysis, and the critical level-spacing distribution at LDT

6



of the INM spectrum is determined carefully. In the level statistics, the level-number

variance is present in the chapter four. The multifractal analysis is given in chapter

�ve. Finally, I give conclusions in chapter six.
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Chapter 2

Instantaneous Normal Mode
Theory and Numerical Method

2.1 Instantaneous normal modes of a simple �uid

We consider a �uid of N equal-mass particles whose total potential energy V (R)

in con�guration R is a sum of the pair potential �(r) for all particle pair,

V (R) =
N�1X
i=1

NX
j<i

�(rij):

Through the entire thesis, we investigate the truncated Lennard-Jones (TLJ) �uid,

which the TLJ potential �TLJ(r) is obtained by truncating the Lennard-Jones (LJ)

potential �LJ(r) at the minimum rc = 2
1=6� and then lifting up in energy by �,

�LJ(r) = 4�

���
r

�12
�
��
r

�6�
,

�TLJ(r) =

�
�LJ(r) + �, r < rc
0 , r > rc

where � and � are the length and energy parameters of the LJ potential. So, the TLJ

potential is purely repulsive. We choose the thermodynamic state of the TLJ �uid

at reduced density �� = 0:972 and reduced temperature T � = 0:836 in the units of

the two LJ parameters. With N particles confned in a cube of length L = (N
�� )

1=3

and using the periodic boundary condistions, the �uid con�gurations are generated

by Monte Carlo simulation for six system sized from N = 3000 to 96000:



In a short-time scale, a harmonic approximation can be applied for V (R)[20], and

by expanding V (R) to the second order of particle dispalcements about R0

V (R) = V (R0)� F (R0) � (R�R0) +
1

2
(R�R0) �K(R0) � (R�R0); (2.1)

where R and F (R0) denote 3N -dimensional vectors of position and force. Since R0

may not be a con�guration at local minimum, F (R0) is generally non-zero. K(R0)

is the 3N -dimensional Hessian matrix composed of 3� 3 blocks, which are functions
of relative displacements of particle pairs. Let U = R �R0; the displacement from

R0. For the harmonic potential in Eq.(2.1), the equations of motion are

��
U = F (R0)�K(R0) �U:

By de�ning a shifted coordinate Q;

Q = U �K�1 � F;

this leads to the equation of motion

��
Q = �K(R0) �Q:

The con�guration of interacting particles can be speci�ed as a point in the high-

dimensional potential energy surface(PES). The dynamics of the system can be de-

scribed as moving from point to point through the PES, which is composed of many

mountains, valleys and saddle points. The eigenvalues of the Hessian matrix are the

curvatures of the PES, where a positive eigenvalue corresponds a valley of a degree of

freedom, while a negative one could be the curvature at a mountain top or a saddle

point of another degree of freedom. The square roots of the eigenvalues characterize

the frequencies of the system. It was also proposed that the negative eigenvalues

speci�ed as "true unstable modes" contribute to the self-di¤usion coe¢ cient[54].

For a pairwise-sum total potential, the elements of Hessian matrix K(R0) which

are the second derivatives of V (R) with respect to particle index i, j and coordinate

9



index �; �, are expressed as

Ki;j;�;� =
@2

@ri�@rj�
V (R)jR=R0 ,

=

8<: �t(rij); i 6= j;P
i6=j
t(rij); i = j;

t(r) =
�0(r)

r
I+ [�00(r)� �0(r)

r
]brbr;

where I is the 3-dimensional unit matrix, �0(r) and �00(r) denote the �rst and second

derivatives of �(r) with respect to r, br is the unit vector along �!r , and t(r) is a 3� 3
matrix. Owing to the short-range nature of the TLJ potential, the Hessian matrices

are sparse. The ratio, fopp, of the nonzero o¤-diagonal blocks in a Hessian matrix

is estimated to be Nc=N , where Nc is the average number of neighbors around a

particle within rc. Evaluated by the radial distribution function of the TLJ �uid, Nc

is about 6 and independent of N: Thus, fopp is inversely proportional to N; with

a value about 0:05% for N = 12000: For each Hessian matrix, the trace of the

o¤-diagonal block associated with particless i and j at distance rij is given by the

negative of kij = �00TLJ(rij) + 2�
0
TLJ(rij)=rij, where �

00
TLJ(rij) and �

0
TLJ(rij)=rij are,

respectively, the force constants of the vibrational and rotational binary motions of

the two particles[55]. The trace of the diagonal block associated with particle i, ex-

pressed as
P

j 6=i kij, is the sum of all force constants connected to this particle. For

the TLJ �uid, the traces of the diagonal and o¤-diagonal blocks are positive and

negative values, respectively, and their averages, denoted as ktot and �k, are related
via the equation ktot = Nck.

The elements of each Hessian matrix are subject to constraints[45] , which are

classi�ed into three categories: First, the o¤-diagonal matrix elements represent the

force constant between pairs of atoms and diagonal ones represent the force on a

given atom from all of the other atoms. The balance of these two kinds of force

cause momentum conservation of the system, and subsequently, sum rules between

the diagonal and o¤-diagonal blocks which makes the diagonal blocks determined by

the o¤-diagonal ones as follow;
NX
i=1

Ki;j;�;� =
NX
j=1

Ki;j;�;� = 0.

10



The Second is the triangle rule for the relative positions of any three particles[46] ,

which makes only N � 1 o¤-diagonal blocks independent, with N being the particle

number of the system. The Third is the internal constraints of each o¤-diagonal block,

which reduce the degrees of freedom of an o¤-diagonal block to the three components

of relative displacement of the related particle pair. None of these constraints appear

in the AM. The triangle-rule constraints are not considered in those vibrational models

with a lattice reference frame[49][50] . The third constraints are ignored in the scalar-

vibration models[51]. The Hessian matrix can be recognized as a generalized version

of the Euclidean random matrices[48], with randomness originated from the disorder

of particle positions.

The randomness of the elements in the Hessian matrices can be described by four

distributions: two for characterizing the traces and the o¤-diagonal elements of the

diagonal blocks and the other two for the corresponding quantites of the o¤-diagonal

blocks[56]. The four distributions of the TLJ �uid are shown in Fig. 2.1. Some

features of the four distributions are given in the following: �rst, the distributions

of the traces are asymmetric about their averages. Depending on the pair potential

in the �uid, the distribution for the o¤-diagonal blocks has a sharp cusp, which is a

result of the short-range nature of the TLJ potential[56]. Second, the distributions

of the o¤-diagonal elements are symmetric about their averages, which are zero. The

distribution for the o¤-diagonal blocks can be �t with a Lorentzian, re�ecting the

complete independence of the o¤-diagonal elements in the associated blocks. However,

the distribution for the diagonal blocks can only be �t with a pseudo-Voigt function,

which is a wighted linear combination of a Lorentzian and a Gaussian; the weighted

factors of the Lorentzian and the Gaussian are about 40% and 60%, respectively. The

reason why the pseudo-Voigt function is used is reulted from that the distribution is

caused by a summation of the o¤-diagonal independent elements in the o¤-diagonal

blocks and the number of the independent elements in the summation is about Nc,

which is only a few in our model.
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Figure 2.1: Normalized distributions of the elements in Hessian matrics of the TLJ

�uid at �� = 0:972 and T � = 0:836: (a) for the traces of the diagonal blocks; (b) for

the o¤-diagonal elements in the diagonal blocks; (c) for the traces of the o¤-diagonal

blocks; and (d) for the o¤-diagonal elements in the o¤-diagonal blocks. In all �gures,

the abscissas are force constants in the units of �=�2 and the symbols are the numerical

data. The dashed lines in (a) and (c) indicate the averages of the distributions, which

are ktot and �k, respectively. The solid line in (b) is the �t result with a pseudo-Voigt
function, and the line in (d) is that with a Lorentzian.
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2.2 Numerical method

There are two main parts in our numerical works, one is to generate con�gu-

rations at a thermodynamic state and the other is to diagonalize the Hessian ma-

trice. We wil brief review the algorithm of the Monte Carlo method in section 2.2.1.

Moreover, the time-comsuming part is to solve the eigenvalues problem. The sparse

nature of the Hessian matrices in our problem can be solved by many e¢ cient al-

gorithms. Two di¤erent stratege are used: �rst, for the level-statistics problem in

chapter three and four, no eigenvectors are needed and the eigenvalues are solved

by the Cullum-Willoughby implementation(CWI) Lanczos method[82]. Second, the

multifractal problem in which a few eigenvectors in a selected region are required, so

the JADAMILU package which is a combination of the Jacobi-Davidson (JD) method

and the e¢ cient multilevel incomplete LU (ILU) preconditioning, is usedl[81][83]. In

the JADAMILU package, modest memories are required and robust convergence to

accurate solutions. We introduce brie�y the two algorithms in section 2.2.2 and 2.2.3.

The numerical �tting process is summaried in last section 2.2.4.

2.2.1 The Monte Carlo method

The monte carlo method follows the canonical ensemble and is widely used in

numerical simulations [84]. Here we brie�y introduce the algorithm.

De�ne an initial con�guration R0 and a trial moving R0 +�
�!r1 where a particle

move randomly to nearby region with a distance d away from original position. The

energy di¤erence of the two con�gurations is�V = V (R0+�
�!r1 )�V (R0): The system

follows the Boltzmann distribution, and de�ne the probability of a state �(R0)

�(R0) =
e�V (R0)=kBT

Z
,

where Z =
P
e�V=kBT is the partition funciton. The probability of acceptance for the

trial moving is the transition probability

�(R0 +�
�!r1 )

�(R0)
=
Z�1 � e�V (R0+�

�!r1)=kBT

Z�1 � e�V (R0)=kBT
=
e�V (R0)=kBT � e��V=kBT

e�V (R0)=kBT
= e��V=kBT :

If �V < 0 , the transition probability e��V=kBT > 1, the moving is accepted. If

�V > 0 , a random nuber s will be generated. If e��V=kBT > s , the trial moving is

13



accepted. Otherwiese, if e��V=kBT < s the trial moving is rejected. Consequently, the

trial moving of particle two is performed. A complete monte carlo step is de�ned as

that every single particle of R0 is purturbed.

In a monte carlo step, the trail moving of some particles are accepted while others

are not. The accepted rate of total trial moving in a monte carlo step depends on the

choosing of d and is related with the speed for a system reaching equilibrium. In our

algorithm, about 40000 monte carlo steps system are used to reach the equilibrium.

2.2.2 The CWI Lanczos method

The Lanczos precedure works by generating a Krylov sequence, projecting the

original matrix onto this subspace, producing a tridiagonal matrix, and then �nding

the eigenvalues of this resulting tridiagonal matrix. These eigenvalues converge on

those of the originl matrix with increasing size of the Krylov space. The basic single-

vector Lanczos recursion as follow:

Let A be a n � n real symmetric matrix and generate a unit starting vector v1

randomly. De�ne corresponding Lanczos matrices Tk for k = 1; 2; :::;m using the

following recursion. De�ne �1 = 0, and v0 = 0. Then for i = 1; 2; :::;m, the Lanczos

vectors vi and scalars �i and �i+1 are

�i+1vi+1 = Avi � �ivi � �ivi�1; (2.2)

vTi Avi = �i and �i+1 = vTi+1Avi.

Rewriting Eq.(2.2) in matrix form, for each k we obtain the matrix equation

AVk = VkTk + �k+1vk+1e
T
k ,

where Vk � fv0; v1; :::; vkg is the n� k matrix whose i-th column is the i-th Lanczos

vector, and ek is the coordinate vector whose k-th component is one and whose other

components are zero. The transfomation is written as V T
k AVk = Tk, and Tk is the

14



k � k tridiagonal matrix.

Tk �

2666666664

�1 �1

�1 �2
. . .

. . . . . . . . .
. . . . . . �j

�j �j

3777777775
In principle, the vi are all orthogonal to each other; however, in practice, as the

iteration is continued the arithmetic carried out by the computer causes the �nite

precision. Therefore, the orthogonality among the vectors vi is gradually lost. The

loss of orthogonality results in the appearance of spurious �ghost�eigenvalues, and

also the repetition of real eigenvalues.

The CWI implementation identi�es the ghost eigenvalues by comparing the eigen-

values of Tk and T 0k, where T
0
k is the matrix Tk with its �rst row and column removed.

If an eigenvalue appears in both, it is discarded as being a spurious eigenvalue. The

CWI algorithm also gives error estimates for the eigenvalues, and thus the number of

iterations required can be tuned such that all the interesting eigenvalues are converged

to within some tolerance.

2.2.3 The JADAMILU method

The underlying algorithm of JADAMILU combines the Jacobi-Davidson (JD)

method with e¢ cient multilevel incomplete LU (ILU) preconditioning which has been

used to solve many problem sucessively[81][85]. The detail of JD method is refered

to the original paper[83] and reference therein. The main features of JADAMILU are

modest memory requirements and robust convergence to accurate solutions.

The preconditioning plays a key role in the speed of execution. For a given matrix

C, a good preconditioner is a matrix P that is cheap to contstruct and invert, while

still being a good approximation of the original matrix. This means P�1C is close to

the indentity matrix, whereas cheap to invert means that solving a system Px = y

should not cost more than a few multiplications by C.

The algorithm can calculate a single eigenvalue and the corresponding eigenvector

close to desired value �. When more eigenvectors are sought, the code uses a simple
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de�ation process: the algorithm is restarted but restricted to the subspace orthogo-

nal to converged eigenvectors. Experiments show that the later eigenvectors can be

computed with similar accuracy. In practice, if several eigenvalues are desired, some

eigenvalues close to the boundary of the interval could be missed.

2.2.4 The numerical �tting

The analysis of experimental data often connects with the �tting process. Scientist

should proposed a theoretical model to explain the experimental data. Whether the

model is good should be justi�ed by statistical analysis carefully. The conventional

error function �2 is de�ned as

�2 =
NX
i=1

�
yi � y(xi; a1; :::; aM)

�i

�2
;

where the number of data and parameters correspond to N and M , yi is experiment

data, �i is the error bar of each point and the model y(xi; a1; :::; aM) depend on

�tting parameters aj. Furthermore, it is necessary to have a good algorithm to

minimize the �2 function, a general �tting process. What we use is the amebsa

method from Numerical recipes[47]. Basically, the amebsa method is a simulated

annealing method, which tries to quench the error function in parameter space down

to the global minimum. The core of amebsa method is the downhill simplex method

that requires only function evaluations, not derivatives. It is a good strategy to avoid

falling local minimum that model the �tting process as the system quenching with

appropriate initial temperature and quench rate.

Beside good algorithm, to estimate the goodness-of-�t of the data to the model, the

chi-square probability Q is used in statistics books frequently. De�ning D = N �M

as the number of degrees of freedom, the quantity Q is

Q = gammaq

�
D

2
;
�2

2

�
;

where gammaq returns the value Q(a; x) = 1� P (a; x); and P (a; x) denotes imcom-

plete gamma function

P (a; x) � 
(a; x)

�(a)
� 1

�(a)

xZ
0

e�tta�1dt (a > 0):
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It is an important point that the chi-square probability Q assumes that the mea-

surement errors are normally distributed. It is quite common, and usually not to

wrong, to assume that the chi-square distribution holds even for models that are not

strictly linear in the a�s.

The Q value gives a quantitative measure for the goodness-of-�t of the model,

generally a acceptable �tting for 1 < Q < 0:01: If Q is a very small for some particular

data set, then the apparent discrepancies could be due to following reasons: (i) the

model is wrong: can be statistically rejected, or (ii) the measurement errors �i are

really larger than announcement. (iii) the measurement errors may not be normally

distributed. The possibility (iii) is fairly common, therefore, reasonable experimenters

are often rather tolerant of low probabilites Q > 0:001. On the other side, if Q is too

near to one, that might be due to overestimated measurement errors.

Furthermore, it is important in statistics to estimate error bar of parameters,

such as commonly used the 95 con�dent interval. Our strategy is to generate a set

of synthetic data within the error bar of original data by the random number. The

distribution of �tting parameters can be extracted by �tting those synthetic data.

For the normal distribution of parameters, the 95 con�dent interval refers to 1:96

times standard deviation of the distribution of parameters.
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Chapter 3

The Nearest-Neighbor
Level-Spacing Statistics

Hessian matrices of topologically disordered systems fall into the orthogonal uni-

versality class from the viewpoint of the random matrices theory (RMT)[12]. One

signi�cant measurement of the RMT is the nearest-neighbor level-spacing (LS) distri-

bution P (s), where s is the di¤erence between the nearest-neighbor energy levels. For

the Gaussian orthogonal ensemble (GOE) [12], the strong correlation of two adjacent

fully extened eigenstates shows strong level replusion. The LS distribution of the

extended eigenstates is described by the Wigner surmise,

Pw(s) =
�s

2
exp(��s

2

2
):

On the other hand, for completely localized states, the corresponding levels are in-

dependent and completely uncorrelated, and the LS distribution follows the Poisson

distribution,

Pp(s) = exp(�s).

For weak disorders systems, the eigenstates are expected to be delocalized near the

band center and localized near the band tails. The variation of the LS distributions

from the band center to the tail is continuous from the Wigner surmise to the Poisson

distribution.

Some questions rise here: What is the critical LS distribution Pc(s) at the mobility

edge? Numerical works suggest that Pc(s) at large s is the Poisson-type with a decay



rate above unity[62][15]; however, some analytical theory predicts other asymptotic

behavior[63]. At small s, the behavior of Pc(s) is accepted to be linear with a slope

larger than that of the Wigner surmise and depend on the choice of the boundary

conditions in the AM[61]. Generally, it is accepted that Pc(s) is invariant of sytem

size at the LDT in AM[15][61]. Based on the scale invariance feature of Pc(s), we can

determine the mobility edge, and further compare the Pc(s) in INMs and in AM.

3.1 Density of State and Unfolding Process

The Hessian matrices of the TLJ �uid are diagonalized with Lanczos method[82].

Presented in Fig. 3.1 is the normalized INM-eigenvalue spectrum D(�); which is

an average for the realizations generated for each system size. Quite asymmetric

with respect to the maximum at zero eigenvalue, the spectrum D(�) consists of two

branches, one with positive eigenvalues and the other with negative eigenvalues. One

ME is expected to occur in each branch. With the LS analysis given below for systems

of smaller sizes from N = 375 to N = 1500, the MEs in D(�) are found within the

range � = 1150� 1230 and � = �95 � �80, which are the two shaded regions in Fig.
3.1.

The INM density of states in the shaded region in the positive branch is about

four times smaller than that in the shaded region in the negative branch. For equal

statistical samples in both branches in each system size, the number of diagonalized

matrices for the positive branch is four times of that for the negative branch; this

makes the calculations for the positive branch much more di¢ cult.

To do the LS analysis for eigenvalues from �1 to �2, the conventional unfolding

process is applied in our system

zi =
1

D0

Z �i

�1

D(�)d�; (3.1)

where D0 =
R �2
�1
D(�)d� is the percentage of the eigenvlues within the integral range.

Shown in the insets of Fig.3.1 are the unfolding procedures for the eigenvalues within

the two shaded regions, with the unfolded eigenvalues zp and zn for the positive and

negative branches, respectively. The unfolded eigenvalues spectrum has been checked

to be unifromly one.
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Figure 3.1: Normalized INM-eigenvalue spectrum of the TLJ �uid at �� = 0:972 and

T � = 0:836. � is in unit of "=m�2, where m is the particle mass. The two insets

show the unfolding procedures for the eigenvalues within the two shaded red regions

in the main �gure: (a) for � between 1150 and 1230 and (b) for � between �95 and
�80: �pc and �nc are the locations of the MEs in the positive and negative branches,
respectively.
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� from 1150 to 1230 � from -95 to -80

N L M Ns � 10�6 4� 103 M Ns � 10�6 4� 103

3000 14:56 128000 17:65 7:2 32000 3:020 10:5

6000 18:38 64000 17:65 3:6 16000 3:035 5:2

12000 23:12 32000 17:65 1:8 8000 3:042 2:6

24000 29:12 16000 17:65 0:9 4000 3:037 1:3

48000 36:69 2000 3:052 0:65

Table 3.1: Numerical data of the LS statistics for the eigenvalues in the indicated

ranges. N: number of particles; L: length of the simulated box in the LJ unit; M:

number of samples; Ns: total number of LS; 4: mean LS; 4 = (3ND0)
�1, where D0,

the percentage of the eigenmodes in the range, equals to 1:54� 10�2 and 1:06� 10�2

for the positive and negative eigenvalues, respectively.

For each branch, we select the unfolded eigenvalues in di¤erent sections, which

have a width �z = 0:125 and are centered at M�z=2 with M an integer from 1 to

15. For the unfolded eigenvalues zi in a section, the nearest-neighbor LS is de�ned

as si = (zi+1 � zi)=�0, where �0 is the mean LS of the unfolded eigenvalues zi in this

section. The LS data for the two shaded regions in Fig.3.1 are summarized in Table

3.1. For each section, we calculate the nearest-neighbor LS distribution P (s), which

is normalized and has a mean of unity. The LS number of each section in the positive

branch is about 2:2 � 106, and that of each section in the negative branch is about
3:8� 105.
Figure 3.2 shows P (s) of N = 48; 000 for several unfolded-eigenvalue regions,

where the unfolding eigenvalues z = 0 to 1 correspond to � = �95 to �80 in the
negative branch. P (s) of small z; which is near the localized regime, is closer to the

Poisson distribution. On the other side, P (s) of large z is closer to the Wigner one,

corresponding to the delocalized regime.

With the numerical P (s) distribution of each section, we de�nes a physical mea-

surement, the second moment IN of P (s),

IN =

1Z
0

s2P (s)ds:

The data of IN , including statistical errors, for the four system sizes in the positive
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branch and �ve system sizes in the negative branch are shown in Fig. 3.3. In principle,

the values of IN fall in a range between 4=� and 2, which are the second moments of

the Wigner surmise and the Poisson distribution, respectively. For each system size,

as the selected sectin moves from the delocalized to the localized region, the value

of IN increases monotonically. For each branch, the calculated IN as a function of

the unfolded eigenvalue z generally depends on system size and follows the scaling

behavior: IN increases with N in the localized region but decreases with N in the

delocalized region. At some unfolded eigenvalue zc, IN is expected to be invariant

with N and, therefore, zc is the location of the ME in the branch.

3.2 The Finite-Size Scaling

According to one-parameter scaling hyperthesis X = f(N=�) [8], physical mea-

surement is scaled by the characterized length �. Furthermore, we introduce the

method of �nite-size scaling (FSS) to extract the critical exponent of correlation

length and to determine the ME. The FSS method has been used widely to solve the

critical phenomena in solid state physics for a long time [52][53] and the foundamen-

tal physics of the FSS theory is clearly explained in the framework of RG[11]. In

1999, a correction of the FSS at the Anderson transition was purposed by considering

nonlinear e¤ect and the irrelevant variable [17], which gives the correlation length

exponent of the AM precisely. Following reference [17], X is expanded as a series up

to order ni

X = f(�rL
1=� ; �iL

y) (3.2)

=

niX
n=0

�ni L
ny efn ��rL1=�� ;

where �r is relevant variable and �i is irrelevant variable. Each efn is then expanded
as

efn ��rL1=�� =

nrX
i=0

ani�
i
rL

i=� (3.3)

�r =

mrX
n=1

bnZ
n , �i =

miX
n=0

CnZ
n;
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where Z = (1 � z=zc) and b1 = C0 = 1. Each �tting function can be speci�ed by a

set of four indices (ni;mi; nr;mr) and the �tting parameters include those expansion

coe¤cients, zc, � and y.

We �t the IN data within di¤erent intervals of z with the scaling functions given

in Eqs.(3.2)-(3.3) for the four system sizes in the positive branch and �ve system

sizes in the negative branch. In a �t for Nd data points with a scalng function of

Np parameters, we use the downhill simplex method to minimize the �2 statistics

of the data points, while the goodness of �t is measured by the Q factor, which is

determined by the best-�t value of �2 and Nd�Np, the number of degrees of freedom
in the �tting[47]. The detail of the �tting process is described in chapter 2. In order to

obtain the con�dence intervals of �t parameters, 104 synthetic data sets are generated

by uniformly sampling each new data within the error bar of the data[16]. The error

bars of �t parameters are estimated by those within 95% con�dence intervals of its

original �t. The acceptance of a �t is determined by two criteria. First, the Q

value of an acceptable �t should be larger than 0.01[47]. Second, since the value of

� is determined by the universality class of the random matrices, a large error of �

would make the �tting meaningless. So, we set the error bar of parameter � for an

acceptable �t to be less than 0:2. To keep the number of �t parameters as few as

possible, we set mi = 0 for all �ts and limit nr and mr no more than three. Also,

veri�ed by the results given below, no clear shift of the crossing points of the data

curves in Fig. 3.3(b) is found so that, for the negative branch, the irrelevant scaling

variable is not necessary and ni is , therefore, set to be zero.

With the criterions given above, only several models are accepted for each branch,

and the results are listed in Tables 3.2 and 3.3. The distribution of the �p and �n values

of the accepted models is shown in Fig. 3.4. The average of these models leads us to

�n = 1:60� 0:03 and znc = 0:464� 0:003; which corresponds to �nc = �86:98� 0:08:
However, the accepted models for the positive branch are somewhat diversi�ed. The

two with �p larger than 1.7 have larger �2 values than others, causing their Q values

less than 0:1. The rest four models without the irrelevant scaling variable have Q

values generally more than 0:2 and their �p and zpc are close to one another. For

the two models in which the irrelevant scaling variable is introduced, the goodness

of �t substantially increases and the value of �p is relatively lowered; however, the
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Figure 3.3: The second moment IN of P (s) as a function of unfolded eigenvalue: (a)

for the positive branch and (b) for the negative branch. N is the number of particles

in a system. The symbols are the results of the numerical eigenvalues obtained by

diagonalization. The lines in (a) are the �tting functions of the model (1; 0; 3; 3) for zp
within [0:1875; 0:8125]; the lines in (b) are those of the model (0; 0; 3; 1) for zn within

[0:3125; 0:75]. 25



Positive branch

[zmin; zmax] Nd Np ni nr mr �2 Q zcp �p yp

[0:25; 0:75] 36 6 0 2 2 34:98 0:2 0:433(8) 1:59(8) 0

[0:25; 0:75] 36 7 0 2 3 35:43 0:19 0:434(8) 1:60(9) 0

[0:25; 0:75] 36 7 0 3 2 33:85 0:24 0:428(8) 1:60(9) 0

[0:25; 0:75] 36 8 0 3 3 31:69 0:29 0:422(10) 1:52(10) 0

[0:25; 0:75] 36 6 0 1 3 41:40 0:08 0:435(9) 1:74(7) 0

[0:25; 0:75] 36 6 0 3 1 49:29 0:01 0:438(9) 1:79(10) 0

[0:1875; 0:8125] 44 11 1 3 1 30:39 0:60 0:431(14) 1:45(9) �7:72� 5:32
[0:1875; 0:8125] 44 11 1 3 3 25:92 0:72 0:409(17) 1:54(10) �6:00� 3:48

Table 3.2: Fit parameters and estimates for zc; � and irrelevant exponent yp for the

positive branch. The quoted errors correspond to 95% con�dence interval. zmin and

zmax give the �t interval of z. Nd is the number of data points in the interval. Np
is the number of �tting parameters. The value of �2 is for the best �t. Q is the

goodness of �t. In each model mi = 0:

value of irrelevant exponent y is large and its error is roughly the same order of y,

By averaging the results of the six models with Q generally larger than 0.2, we have

�n = 1:55� 0:09 and zpc = 0:426� 0:011;which gives �pc = 1183:8� 0:8.
In principle, �p and �n should coincide with each other, for the two MEs in the

INM-eigenvalue spectrum belong to the same random matrices. On the other hand,

due to the same universality class, the values of �p and �n should be equal to the

critical exponent of the AM in d = 3[89][88]. Obtained by accurate numerical studies,

the critical exponent of the AM in d = 3 is reported to be 1:57 � 0:02[17]; however,
other numerical studies give smaller values[16]. Within numerical errors, our results

are generally satis�ed with these requirements for �p and �n.

The correlation length �(z) of each ME can be given as j�r(Z)j�� , where � is the
estimated value of �p or �n, and the correlation lengths of the two MEs are plotted in

Fig.(3.6). The assymetry of the correlation length show that the divergent properties

from the two sides of the transition point are di¤erent.

One should notice that the IN data shown in Fig.(3.5a) have been corrected by

the equation

IcorrN = IN � Ly ef1(�rL1=�):
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Negative branch

[zmin; zmax] Nd Np nr mr �2 Q zcn �n

[0:3125; 0:6875] 35 6 2 2 41:23 0:066 0:466� 0:004 1:61� 0:06
[0:3125; 0:6875] 35 6 3 1 41:20 0:066 0:466� 0:003 1:57� 0:04
[0:3125; 0:6875] 35 7 2 3 40:22 0:063 0:468� 0:004 1:60� 0:04
[0:3125; 0:6875] 35 7 3 2 40:46 0:060 0:462� 0:008 1:59� 0:04
[0:25; 0:6875] 40 6 2 2 47:24 0:065 0:464� 0:003 1:62� 0:02
[0:25; 0:6875] 40 6 3 1 46:64 0:073 0:461� 0:003 1:62� 0:03
[0:25; 0:6875] 40 6 2 3 47:21 0:052 0:463� 0:004 1:60� 0:03
[0:25; 0:6875] 40 6 3 2 46:60 0:059 0:461� 0:003 1:63� 0:02
[0:3125; 0:75] 40 6 2 2 45:68 0:087 0:464� 0:002 1:56� 0:03
[0:3125; 0:75] 40 6 3 1 45:37 0:092 0:466� 0:003 1:57� 0:04
[0:3125; 0:75] 40 7 2 3 45:06 0:079 0:466� 0:003 1:59� 0:04
[0:3125; 0:75] 40 7 3 2 45:34 0:075 0:466� 0:005 1:58� 0:03
[0:25; 0:75] 45 6 2 2 52:37 0:075 0:463� 0:002 1:62� 0:02
[0:25; 0:75] 45 6 3 1 52:27 0:076 0:462� 0:003 1:62� 0:02
[0:25; 0:75] 45 7 2 3 52:17 0:063 0:462� 0:003 1:60� 0:03
[0:25; 0:75] 45 7 3 2 52:28 0:061 0:461� 0:003 1:62� 0:02
average: 0:464� 0:003 1:60� 0:03

Table 3.3: Fit parameters and estimates for zc; � for the negative branch. The error

corresponds to 95% con�dence intervals. zmin and zmax give the �t interval of z. Nd
is the number of data points in the interval. Np is the number of �tting parameters.

The value of �2 is for the best �t. Q is the goodness of �t. In each model ni = mi = 0:

There is no irrelevant exponent in the negative branch.
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The upper and lower curves of the scaling function correspond to the localized

and extended INMs, respectively. Thus, we have con�rmed the scaling hypothesis for

the INMs near each ME and suggest that the MEs in the INM-eigenvalue spectrum

should follow the universality for the orthogonal random matrices.

3.3 P (s) at each ME

To examine the critical behavior at the two MEs, we select two narrow intervals

� = 1181:8� 1185:8 and � = �88:1��86:1, which contain the MEs in the positive
and negative branches, respectively. For the realizations of each system size, the LSs

within the interval in the positive branch is about 8:9 � 105 and that within the
interval in the negative branch is 4:1 � 105. Calculated for the four system sizes,

the numerical data of the P (s) distributuion within each interval are presented by

symbols with error bars in Fig.3.7. Since the widths of the two selected intervals

are small enough, the two P (s) distributions, within numerical errors, are generally

independent of system size N . We �t the P (s) data of the four system sizes for s less

than three by the critical LS distribution of the AM [15],

Pc(s) =
A2csp

�2 + (Acs)2
exp[��

p
�2 + (Acs)2], (3.4)

where Ac and � are two �tting parameters. The normalized distribution in Eq. (3.4)

has a linear behavior at small s with slope P 0c(0) = A2c=� but changes to a Poisson-type

form at large s with a decay rate Ac. Also, the second moment Ic of the distribution

is given as 2(�+ 1)=A2c .

Our results give Ac = 1:89� 0:02 and � = 1:565� 0:015 with the goodness of �t
Q = 0:69 for the positive branch and Ac = 1:9 � 0:02 and � = 1:568 � 0:020 with
Q close to one for the negative branch, where the errors of the �t parameters are

estimated within 95% con�dence interval. The numerical results and the �t for large

s are shown in the insets of Fig. 3.7. Indicated by the �t data, the P (s) within the

two selected intervals almost coincide with each other and the two values of Ac are

almost the same as that of the AM[60]. Calculated with the values of Ac and �, the

slope P 0c(0) at s = 0 has a value about 2:29, which is comparable with that of the

AM with the periodic boundary conditions [61]. Similarly, the second moments Ic
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of the two �t distributions are close to 1:43, which is once again very close to the

corresponding value of the AM. Thus, we have veri�ed that, within numerical errors,

the nearest-neighbor LS distribution near any ME in the INM spectrum of the TLJ

�uid agrees the critical Pc(s) distribution obtained from the AM, which supports the

universality of the critical nearest-neighbor LS distribution.

3.4 Summary

In this chapter, we have performed the LS analysis for Hessian marices of the

TLJ �uid at a thermodynamic state to investigate the properties of the LDT in topo-

logically disordered systems, which have no reference frame of lattice. The Hessian

matrices evaluated at the �uid con�guations are an ensemble of Euclidean random

matrices with elements subject to several constrants, and the matrices are sparse

due to the short-range nature of the TLJ potential. By referring the eigenmodes of

the matrices as the INMs, the eigenvalue spectrum of the INMs is composed of two

branches corresponding to the positive and negative eigenvalues.

Calculated for several system sizes of the TLJ �uid and averaged for very large

amounts of �uid con�gurations, the second moments of the nearest-neighbor LS dis-

tributions of the INMs within some small intervals in each branch are found to follow

the scaling behavior near a LDT. In terms of the size invarince of the second mo-

ments, two LDTs, refered as the MEs, are con�rmed to exist in the INM-eigenvalue

spectrum, with one in the positive branch and the other in the negative branch. We

have used the �nite-size scaling to estimate the locations and the critical exponents

of the two MEs. In the models to �t the data of the second moments, the nonlinear

dependence of the scaling variable on the eigenvalue has been condisdered and an

irrelevant scaling variable due to the �nite-size e¤ect is introduced in some models

for the positive branch. In principle, the critical exponents of the two MEs should

coincide in value; through the �tting, their values are found to be 1:55 � 0:09 and
1:60 � 0:03 for the positive and negative branches, respectively. Within numerical
errors, the estimated values of the two critical exponents are almost coincident with

each other and compatible with that of the AM in three dimensions [17]. The nearest-

neighbor LS distributions at the two MEs are examined to be almost the same as the
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Figure 3.7: The nearest-neihbor LS distribution near the ME in the positive branch

(a) or in the negative branch (b).
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critical LS distribution obtained from the AM. Thus, we conclude that the MEs in

the eigenvalue spectra of Hessian matrices of topologically disordered systems follow

the universality for the othogonal universality class and have nothing to do with the

topological nature of the disorder in the systems and the constraints imposed on the

Hessian matrices due to structural considerations.
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Chapter 4

The Analysis of Level-Number
Variance

In the previous chapter, we have presented the details of the nearest-neighbor LS

analysis, which characterizes the correlation of the nearest-neighbor energy levels. In

addition to the nearest-neighbor LS distribution, another related quantity called the

level-number variance (LNV), which characterizes the correlation beyond the nearest-

neighbor energy levels, is also widely studied. The LNV is de�ned as

h(�n(�E))2i = h[n(�E)� hn(�E)i]2i; (4.1)

where n(�E) is the number of energy levels within an selected energy interval �E

and h:::i denotes the ensemble average over the INMs. In the localization regime, the
correlation of levels is absent, therefore, the LNV is of the order hni. On the other
hand, Dyson proposed that the LNV for the GOE, in which eigenvectors behave fully

extended nature, follows a logarithmic behavior [58]

h(�n)2i = 2

�2
[lnhni+ C]; 1� hni � ~D=L2; (4.2)

where D is di¤usion constant, and the constant C � 2:8. As a one-dimensional gas,
the levels are compressible in the localized regime but are almost imcompressible in

the delocalized rigime. To quantify such concept, an important parameter is de�ned

as the level compressibility (LCP)

� = lim
hni!1

lim
N!1

d h(�n)2i
dhni ; (4.3)



where the value of � is between 0 and 1, corresponding to the fully extended and the

completely localized regimes, respectively [67]. The LCP characterizes the correlation

of energy levels at the LDT on scales much larger than the mean level spacing[65].

At the LDT of the AM, it is purposed that the LCP is an universal quantity [60][61]

and strongly depends on the dimensionality of the system [64] The value � � 0:27

was reported for the AM of system size up to L = 32 [60]. For di¤erent boundary

conditions, at the large hni limit, hni � 103, the same value � � 0:27 � 0:02 for the
AM was estimated [61]. For anisotropic AM with only 10% coupling constant in z

axis, by the FFS of the LNV, the value � = 0:28� 0:06 was reported [67].
On the other hand, a scaling relation is purposed for the multifractal waves

� =
(d�D2)

2d
; (4.4)

where � is the LCP and d�D2 is the multifractal exponent[65]. The multifractality

has been observed in many ciritcal systems and will be discussed in the next chapter.

Simliar to the second moment of the nearest-neighbor LS distribution, the inte-

grated LNV for a disorder region was proposed

�(N;W ) =
1

L0

Z L0

0

(�n)2dL;

where L = hni , L0 is some cut-o¤value of hni andW is the disorder of the anisotropic

AM [67]. According to the FFS of the integrated LNV, the location of the ME and

the critical exponent of correlation length was determined.

In this chapter, we calculate the LNV for di¤erent eigenvalue regions near in INM

spectrum. Due to the nature of LCP beyond the correlation of nearest-neighbor

energy levels, the calculation of the LCP requires a large amount of levles within

a selected region in the INM spectrum. For a system of �nite size, the number of

levels within a selected energy reigon depends on system size. Therefore, the required

number of calculating levels is much larger than that in the analysis of LS statistics

and our calculation is strongly restricted by the computer power. The restriction

does not appear in the AM, because that the states at the critical have the same

multifractal nature close to the band center. Furthermore, the FFS for the integrated

LNV provides an alternative to locate the ME and to extract the value of correlation

length exponent in INM spectrum. We are going to verify whether the relation of

Eq.(4.4) is valid in the INM spectrum in this chapter.
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4.1 Level compressibility

Similar to the LS analysis, in order to perform the LNV analysis and extract

the value of LCP, the unfolded eigenvalues are divided to several regions, which

characterize di¤erent degrees of localization. Each region should not be too small,

which reduces hni in a �nite system; yet it should not be too large, which cause the
mixing of di¤erent degrees of localization. All of the data sets used in this LNV

analysis is the same as those in the chapter three, which list in the table 3.1 for

� = 1150 � 1180 and � = �95 � �80.
Four sections of unfolded eigenvalues z = 0:2; 0:4; 0:6 and 0:8 with �z = 0:2 are

selected, and the LNV in each section are calculated up to hnicut = 18. Fig. 4.1

shows h(�n)2i=hni with respect to hni, and di¤erent symbols, black circle, red square,
green diamond and blue triangle, correspond to z = 0:2� 0:1 to 0:8� 0:1. The dash
line indicates the Dyson�s result of Eq.(4.2). The symbol size denotes the system

size: the largest ones in (a) and in (b) are N = 24000 for the positive branch and

N = 48000 for the negative branch, respectively, while the smallest ones in both (a)

and (b) is N = 3000. Near the extended regime, for z = 0:2 and z = 0:8 in the

Fig. 4.1(a) and (b), respectively, the larger the system size, the closer to the Dyson�s

results the data show. On the other hand, near the localized regime for Fig. 4.1(a)

z = 0:8�0:1 and (b) z = 0:2�0:1, the data of the larger size are close to the Possion
behavior h(�n)2i=hni ! 1. It can be seen that between z = 0:4 � 0:1 and 0:6 � 0:1
the dependence of h(�n)2i=hni with the system size �ips. Therefore, there should be

a system-size invariance between z = 0:4� 0:1 and 0:6� 0:1.
It has been shown that h(�n)2i=hni at the LDT in AM depends on boundary

conditions at small hni[61], and in the limit of hni ! 1, the LCP is an universal
quantity[60][61]. Fig. 4.2 shows the comparison between three kinds of models at the

ME: isotropic AM, anisotropic AM with only 10% coupling constant in z axis[67] and

INMs in a �uid with short-range interactions. According to the FSS of the nearest-

neighbor LS statistics, the mobility edge of unfolded eigenvalues were selected within

z = 0:425 � 0:05 in the positve branch and z = 0:462 � 0:08 in the negative branch
of the INM spectrum. In our calculation, the largest system size N = 48000 gives �

t 0:35 � 0:08: However, due to the maximum hni of our data is still far away from
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Figure 4.1: The variation of h(�n)2i=hni with respect to hni for several eigenvalue
regions. The data of z = 0:2; 0:4; 0:6 and 0:8 are denoted by black circles, red

squares, green diamonds and blue triangles, respectively. The dash line indicates

Dyson�s result. The symbols with sizes from small to large denote the system sizes

from N = 3; 000 to 24; 000(a) or 48; 000(b). The upper and lower �gures indicate the

results for the postive and negative branches in the INM spectrum, respectively.
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39



hni ! 1 and the large error bars cause the accurate estimation for the trendency of

h(�n)2i=hnimore di¢ cult. From the decreasing tendency of h(�n)2i=hni, the concluson
for the value � at the ME of the INM spectrum should be lower than 0:35� 0:08.

4.2 FSS for integrated LNV

The size dependence of the LNV also servers a condition to locate the ME and to

determine the critical exponent � by the FSS. We follow reference [67] to de�ne the

integrated LNV

�(N; z) =
1

L0

Z L0

0

(�n)2dL; (4.5)

where L = hni : The maximum hni is chosen to be L0 = 3, and all unfolded eigenvalues
are divided to nine regions from z = 0:05 to 0:85 with �z = 1:0. Fig 4.3 shows that

the integrated LNV with respect to z in both positive and negative branches of the

INM spectrum.

In addition to previous chapter, the data of system size N = 1; 500 is included,

which shows strongly the �nite size e¤ect. It can be seen that the cross points shift

systematically with the system size and, therefore, the irrelevant variable is necessary

in our FSS analysis. As shown in table 4.1, for the positive branch the ME is at

zc = 0:44�0:07 and the critical exponent is �p = 1:43�0:21 . On the other hand, for
the negative branch the ME is at zc = 0:54� 0:03 and �n = 1:48� 0:17. Comparing
with the LS results [79], the ME zc determined by � is slightly higher. Due to the

small system sizes and the irrelevant scaling variable, the critical exponent � is smaller

than the LS results yet within acceptable errors. The FSS gives the irrelevant variable

y = �2:39�1:67 for the positive branch and y = �2:45�0:58 for the negative branch
that agrees with the suggestion that the irrelevant variable y should be an universal

variable[17]. As the previous chapter, we can rescale the horizontal axis of Fig 4.3 by

diveding �(z) and subtracting the corrections due to the irrelevant scaling variable.

The rescaling function is corrected as

�corr = � � Ly � ef1 ��rL1=�� : (4.6)

Fig 4.4 reveals that the data collapse onto a single scaling function �corr:
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4.3 Summary

Because the number of discrete levels within a selected eigenvalue range is �nite,

the maximum hni in our system is the order of 10, which is still far away from 1.
The realistic situation suppresses the accuracy for the estimation of �. If we extend

the selected eigenvalue range to get more discrete levels, the data su¤ers the mixing

of di¤erent nature of energy levels and we get ambiguous results. The only way to

solve the problem is to calculate with large system sizes as large as possible. For the

Anderson model, at critical disorder W = 16:5; the examination can be done much

easily by getting more levels up to the number of 103; since the eigenfunctions have

the same critical properties.

We have calculated the LNV for eigenvalues near the LDT with respect to di¤erent

system sizes. Quantitatively, the LCP should be lower than � t 0:35�0:08. Su¤ering
from not enough levels in the selected regime and the mixing of eigenstates with

di¤erent natures, it is di¢ cult to determine the LCP and verify the scaling relation

of Eq.(4.4) by our model. On the other hand, the FSS gives the positions of the MEs

and the correlation length exponents �p = 1:43 � 0:21 and �n = 1:48 � 0:17; which
generally agree with the previous results.

41



Table 4.1: The �tting results of � with the integral range up to L0 = 3. For all

models, the irrelevant variable is included. Nd is the number of data points, Np is

number of parameters, and Q is the goodness of �tting. The estimated errors in the

parentheses correspond to 95 con�dent interval.

Positive branch

[zmin; zmax] Nd Np nr mr zc �p ys Q

[0.15,0.75] 35 9 1 3 0.44(7) 1.43(14) -2.39(1.46) 0.13

[0.05,0.85] 45 9 1 3 0.44(5) 1.43(32) -2.39(1.83) 0.56

[0.05,0.85] 45 10 2 2 0.45(4) 1.42(20) -2.55(1.66) 0.39

[0.05,0.85] 45 11 2 3 0.43(4) 1.36(13) -1.84(1.77) 0.38

[0.05,0.85] 45 11 3 1 0.45(6) 1.48(27) -2.68(1.63) 0.38

average 0.44(5) 1.43(21) -2.37(1.67)

Negative branch

[zmin; zmax] Nd Np nr mr zc �n ys Q

[0.25,0.65] 30 11 3 1 0.53(7) 1.48(37) -2.42(1.00) 0.02

[0.25,0.65] 30 13 3 3 0.54(2) 1.53(16) -2.26(66) 0.02

[0.25,0.65] 30 12 3 2 0.55(2) 1.46(25) -2.25(98) 0.02

[0.05,0.85] 54 12 3 2 0.54(1) 1.47(5) -2.70(53) 0.04

[0.05,0.85] 54 13 3 3 0.53(1) 1.47(4) -2.64(70) 0.03

average: 0.54(3) 1.48(17) -2.45(58)
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Figure 4.3: Integrated level-number variance of postive branch � from 1150 to 1230

(a) and negative branch � from �95 to �80 (b). The abscissas axis denote unfolded
eigenvalue z. The symbols are numerical data and the solid lines are the �tting

of function with (1,0,3,1) model in the positive branch and (1,0,3,2) model in the

negative branch.
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branch (b). The data have been corrected according to Eq.(4.6).
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Chapter 5

The Multifractal Analysis

One of the representations of the multifractal analysis (MFA) reveal as a set of

general dimensions Dq,which describe the scaling relation between the summation

of the q-th moment squared vibrational amplitudes j ij
2 with the size of system

(or the size of measuring box). Beyond a single fractal dimension, such general

fractal dimensions show non-linear behavior with respect to q which characterize

di¤erent orders of the squared vibrational amplitudes. Moreover, it was purposed

that the general dimensions are related with a hierarchy of exponents � by a Legendre

transform[36][37][38].

Focus on the exponents �, supposing that the squared vibrational amplitudes j ij
2

scale with system size as

j ij
2 � L��: (5.1)

De�ne the singularity strength � = � ln j ij
2 = lnL , which characterizes the magni-

tudes of squared vibrational amplitudes. The number of particles belong to [�; �+ d�]

is �N�, which scales as

�N� � Lf(�); (5.2)

where f(�) denotes the fractal dimensions of the set of points belonging to [�; �+ d�] :

The function f(�) is called the singularity spectrum (SSP). Generally, f(�) is a convex

function with the maximum at � = �0 equal to the space dimension of the system

and the values of SSP depends on system size and the magnitude of disorder (or

frequencies). Another feature point in f(�) is the one where f(�1) = �1, so that the

slope of f(�) at �1 is one[95]. Near the completely localized region, because that



the eigenvector is characterized by a few compoents of the zero order of L and all

other compoents of the order of L�1, the SSP approaches f(0) = 0 and f(1) = 3.
On the other hand, near the fully extended region, the uniform eigenvectors with

j ij
2 = L�3 reveal that the spectrum reaches f(3) = 3 . Due to the �nite-size e¤ect,

for extended region the larger size rsults in a narrower f(�) curve, while a widening

one for localized state[96]. The SSP at ME turns out to be invariant with respect

to system size in 3D Anderson model[42][96]. Suppose that this is also true in 3D

vibrational system, then this property can be used to determine the mobility edge.

Since 1991, the SSP has been used to characterize the MIT in the Anderson model

[69]. Using di¤erent disorder distribution, the SSP at ME is invarint for system

size, therefore, it was argued that the critical SSP is universal and not dependent

on energy or disorder [42]. This property serves as a condition to locate the LDT

in the AM [96] and vibraional systems [95]. Despite the results support that the

universality of SSP exist, there are still some problems: First, to claim the universality

of the SSP, the precision of previous numerical work is not convincing. Second, the

�uctuation of waves near the ME is strong, how to deal with the �uctuations between

di¤erent waves? Recently, the roles of typical average and ensemble average were

carefully compared by Römer and coworkers[86][87], and accompany with easier access

computer power and more e¢ cient algorithm, the precision of the SSP at the LDT of

the AM was highly improved. Building on these milestons, we try to locate the LDT

in the INMs by the MFA, and further verify the universality of the SSP at LDT in

the INMs and in the AM.

By mean of the LS statistics, the ME were determined in both branches of the

INM spectrum, where the eigenvalue interval is �pc = 1183:8 � 0:8 for the positive
branch. By the multifractal analysis given later, the MEs in the negative branch is

found at �nc = �86:6� 0:5, which, within numerical errors, almost agrees with that
obtained by the LS statistics[79][80]. Near these regions, the INMs have been calcu-

lated by diagonalizing Hessian matrices with the JADAMILU package. Generally, the

geometric structure of an INM eigenvector can be represented by the spatial distrib-

ution of the vibrational amplitudes. Figure 5.1(a) and (b) shows a 3-D visulization

of the vibrational amplitudes of two INMs at the ME for N = 96000, and only the

components for j ij
2 > N�1=2 (corresponding to � < 3) are shown.
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Figure 5.1: Geometric structures of the INMs with � = 1183:25 (a) and �86:78 (b) for
the TLJ �uid of 96000 particles in a box of length L = 46:22. In each panel, particles

with vibrational amplitudes j ij larger than the average value N�1=2 are shown by

spheres with diameter of one and centered at the particle position. The color of each

sphere speci�es the j ij value of the corresponding particle in the INM. The total
numbers of spheres shown in (a) and (b) are about 5700 and 7000, respectively.
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5.1 Fractal Dimension and Singularity Spectrum

Here we introduce the general dimensions of the multifractal structure. Suppose

there are N particles and the corresponding components j ii of a INM j i in a system
with box size L, is denoted as

j i =
NX
i=1

j ii =
NX
i=1

"
3X
�=1

jei�i
#
;

where i and � are the index of particle and the Cartesian coordinate, respectively,

j ii is the vibrational amplitude on the particles i of a INM and the vector j ii
consists of three basis vector jei�i along the Cartesian coordinate. The �uctuations of
eigenvectors can be characterized by a set of inverse participation ratio (IPR) de�ned

as sum over the q-th moment of squared vibrational amplitudes j ij
2,

Pq =
NX
i=1

�
j ij

2�q = NX
i=1

"
3X
�=1

hei� jei�i
#q
. (5.3)

Underlying the assumption of multifractality, which, in principle, has no relevant

length scale, Pq is assumed to follow the power-law behavior

Pq / L��q , (5.4)

where the mass exponent � q is a quantity characterizing the nature of the INMs

under investigation. Furthermore, one should carefully distinguish the q-th moment

dependence from � q. Provided that measures are uniformly distributed with space

dimenison d, the q-th moment of j ij
2 should distribute with dimension d independent

of q. Using the normalization condition
NP
i=1

j ij
2 = 1, we have j ij

2 = L�d and the

NP
i=1

� Ld. Therefore,

Pq / Ld �
�
L�d

�q
= L�d(q�1):

The mass exponent � q is d(q�1) for the fully delocalized INMs, and � q equals to zero
for the completely localized INMs. From this argument, the appropriate de�nition
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of the fractal dimension of the q-th moment of the squared vibrational amplitudes

should be

Dq =
� q
q � 1 ;

where Dq is so-called generalized fractal dimensions[31]. The value of Dq is less or

larger than d for positive or negative q, respectively. Also, Dq depends only on the

universality class so that Dq should be the same for the two MEs in INM spectrum.

There are two scenarios to extract the mass exponent � q and corresponding fractal

dimensions Dq: the system-size scaling and the box-size scaling. For the system-size

scaling, it needs to calculate the q-th moment of squared vibrational amplitudes

for di¤erent system size, and the calculations are more expansive. For the box-size

scaling, it is a coarse-grain procedure intrinsicly. Here we consider the box-size scaling

by the box-counting method. All j ii are divided intoN� small boxes with size l, where
N� = (

L
l
)3 = ( 1

�
)3 with � � l

L
. The coarse-gained squared vibrational amplitudes are

de�ned as the local probability density �k (LPD), which is the sum over all components

j ij
2 within box k,

�k =
X
i2box k

j ij
2 . (5.5)

Consequently, we de�ne the general Inverse Participation Ratio (gIPR) Pq as sum-

mation over the q-th moment of LPD �k,

Pq(�) =

N�X
k=1

(�k)
q . (5.6)

Because the strongly �uctuation of individual INM at ME, a proper average for

the scaling-law of gIPR must be taken[86][87]. Generally, there are two kinds of the

average of Pq(�): the ensemble average and the typical average, which are de�ned as

hPq(�)i� _ ��
ens
q ; (5.7)

e<lnPq(�)>� _ ��
typ
q , (5.8)

where h:::i� denotes the arithmetic average over all the INMs with eigenvalues within
a small window of width �� and centered at �; and � ensq and � typq denote the mass

exponents with ensemble average and typical average, respectively. For a very broad

distribution, the typical average of Pq(�), which is the geometric mean, provides more
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intrinsic information about the distribution than the arithmetic mean. Here, we take

the typical average, from the scaling relation of Eq.(5.8), the mass exponents � typq is

given as

� typq = lim
�!0

hlnPq (�)i�
ln �

. (5.9)

Another representation of the multifractality is the singularity spectrum f(�).

Generally, there are two methods to calculate the SSP. First, the SSP can be obtained

from the mass exponents � q via a Legendre transformation [33][38],

fq = f(�q) = �qq � � q, (5.10)

where

�q =
d� q
dq

and q =
df(�)

d�
(5.11)

The underline physics of the Legendre tranform can be understood by the probality

density function of singularity strength �, and the detail derivation can be seen in

Appendix A.2. Second, the SSP can be directly obtaind from the probability density

funciton (PDF) of singularity strength �, which will be discussed in the Sec. 5.3.

Now we take the �rst approach. Because the decrete numerical points of q in-

troduce numerical errors for the derivative of � q with respect to q. To avoid such

numerical errors, the Legendre transformation is translated into the scaling form.

Substitute Eq.(5.9) to Eq.(5.11-5.10), after carefully derivative on q, we have

�typq = lim
�!0

1

ln �

*
N�X
k=1

�k(q; �) ln �k(1; �)

+
�

= lim
�!0

lnAq(�; �)

ln �
; (5.12)

f typq = lim
�!0

1

ln �

*
N�X
k=1

�k(q; �) ln �k(q; �)

+
�

= lim
�!0

lnFq(�; �)

ln �
; (5.13)

where �k(q; �) � �qk(�)=Pq(�):With the Eq.(5.12) and (5.13), the �q and fq of certain q

can be calculated directly through the scaling formula without introducing numerical

errors from decrete q points. The brackets in the right hand side of Eq.(5.12) and

(5.13) are de�ned for the lnAq(�; �) and lnFq(�; �).

The thermodynamic limit in Eq.(5.9) is achieved by either L!1 or l ! 0 but,

practically, these two limits can not be obtained in the numerical method. Instead of

50



taking the limit, the value of � typq is the slope of a linear �t of hlnPq (�)i� versus ln �
within a �nite interval of �. Similarly, the values of �q and fq in Eqs.(5.12) and (5.13)

are obtained by the slope of a linear �t for the lnAq(�; �) and lnFq(�; �) versus ln �,

respectively.

Because the scaling behavior will breakdown for small box l near lattice constant

a, the choice of small box size should be l� a. By averaging 5�103 INM eigenvectors

of N = 96000 at the ME in the negative branch and taking the ratio L=l = 1=� in the

box-counting method as an integer varied from 2 to 10, we have calculated hlnPq (�)i� ;
the lnAq(�; �) and lnF (�; �) for q between �5 and 5. The numerical results of integer
q are presented in Fig. 5.2, including the linear �t for the data of each q. Generally,

the linear �t is good for the three sets of hlnPq (�)i� ; the lnAq(�; �) and lnFq(�; �)
data. We have performed the same calculations at the positive-eigenvalue ME and

the results are almost the same as those shown in Fig. 5.2.

The mass exponent � q and the generalized fractal dimension Dq = � q=(q � 1)
at two MEs are plotted in Fig. 5.3 for �5 � q � 5. The data in Fig. 5.3 are

accurate enough to indicate that � q and Dq at the two MEs are identical. At q = 0,

� q = �d and Dq = 0 as expectation. For q = 2, D2 is the correlation dimension of

the inverse participation ratio P2 [46] and our results give D2 = 1:38 � 0:05, which
is generally consistent with the D2 value of the AM estimated with several di¤erent

methods[70][71][73][74]. In principle, as q varies from �1 to1, � q is a monotonically
increase function, but the slope of the function, which gives the value of �q, decreases

from the limiting value �+ to ��. The two limiting values, �+ and ��, con�ne the

range of the singularity spectrum f(�) under the typical average[86]. Estimated by

our data at jqj = 5 in Fig. (5.3a), our calculated f(�) is within the range of � from
0:87 to 6:7.

Presented in the insets of Fig.(5.4) are the values of �q and fq generated from the

slope of the linear �t for the lnAq(�; �) and lnFq(�; �) versus ln � for �5 � q � 5,

respectively. With the data sets of �q and fq, the singularity spectra f(�) at two

MEs are shown in Fig.(5.4). Within numerical errors, the singularity spectra at

the two MEs are generally identical and also agree with the one of the AM[86].

This agreement of f(�) gives another con�rmation for the locations of the two MEs

in the INM specrum. Obtained by our results, the maximun of f(�) is found at
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�0 = 4:034 � 0:006 for the positivel branch and �0 = 4:049 � 0:016 for the negative
branch; within their errors, the two values of �0 agree with each other.

Around the maximum at �0, where f(�0) = d, the singularity spectrum can be

described by the Wegner�s parabolic approximation (PA) [92]

fPA(�) = d� (�� �0)
2

4(�0 � d)
, (5.14)

which is ensured to go through the maximum of f(�) and to be tangential to the line

f(�) = �: As shown in Fig.(5.4), f(�) deviates from the PA as � is close to either �+

or ��, and overall shape of f(�) becomes asymmetric about the maximum of f(�).

By substituting f(�) in Eqs. (5.10) and (5.11) with fPA(�), � q and Dq under the

PA are given as

�PAq = �(�0 � d)q2 + q�0 � d; (5.15)

DPA
q =

�PAq
q � 1 = �((�0 � d)q � d); (5.16)

where �0 is the only parameter. By setting �0 = 4:04, �PAq and DPA
q , shown in

Fig.(5.3), are good for small q:

Relative to the delocalized states, the anomalous dimension of the multifractals is

de�ned as �q � � q � d(q � 1). Recently, a further step goes in the multifractal the-
ory. Based on the nonlinear � model [76], an exact-symmetric relation of anomalous

exponent is proposed as

�q = �1�q: (5.17)

With the symmetric relation of �q, it can be proved that the f(�) value for � < d

and that for � > d are transformed with each other via the relation [76]

f(2d� �) = f(�) + d� �, (5.18)

where � is only de�ned between 0 and 2d. The symmetric relation of �q has been

con�rmed numerically by the power-law random banded matrix model in 1D [76],

the symplectic Anderson model in 2D [77] and the orthogonal Anderson model in 3D

[86][87], and evidenced experimentally by the ultrasound waves in 2D [98].

We show in Fig.(5.4) the singularity spectrum generated via the symmetric relation

in Eq.(5.18). Similar as the AM, f(�) obtained by the INMs is generally satis�ed

52



0

20

40

60

80

〈l
n 

P
q(η

) 〉
λ

q=­5
q=­4
q=­3
q=­2
q=­1
q=0
q=1
q=2
q=3
q=4
q=5

Fig. 3

­12

­8

­4

0

ln
 A

q(λ
, η

)

­2.5 ­2 ­1.5 ­1 ­0.5

ln η

­6

­4

­2

0

ln
 F

q(λ
, η

)
(a)

(b)

(c)

Figure 5.2: Scaling of hlnPq (�)i�(a), lnAq(�; �) (b), lnFq(�; �) (c) versus ln � for the
INMs with � = �86:6� 0:5: The system size is N = 96000 and the values of 1=� are
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with the symmetric relation for 2 � � � 4. To example the symmetric relation

of �q in Eq.(5.17), we plot in Fig.5.5 the anomalus dimension �q at the ME of

both branches and compare �q with �1�q, which is obtained by the mirror image of

�q with respective to q = 1=2. Our data of �q at each ME are satis�ed with the

symmetric relation for q between �0:5 to 1:5. Shown in the inset in Fig.5.5 is the
reduced anomalous dimension �q = �q=q(1� q). The overall shape of our numerical

�q versus q is similar as that measured by the multifractal ultrasounds on the surface

of an elastic network[98].

According to our numerical results, we conclude that the multifractals at the MEs

in the INM spectrum behave in the same features as those obtained by the lattice

AM at the critical disorder. The numerical agreement between our results and those

of the AM indicates the universality of the multifractality at the LDT.

5.2 To determine mobility edge of negative branch

by MFA

Based on the system size dependence of SSP, the strength of squared vibrational

amplitudes �q can serve as a quantity to locate the mobility edge. Recently, it

is suggested that �1 directly correlates with the von Neumann entroy of quantum

entanglement[93], and the entanglement entropy also serves as a quantity to deter-

mine the localization-delocalization transition[94].

Serving as a alternative analysis to locate the ME, we calculate the �0 and �1 for

the imaginary branch with seven di¤erent system sizes from N = 3000 to N = 96000

and di¤erent eigenvalue regimes. Fig. 5.6 shows �0 and �1, in which more than

1:5 � 103 states are averaged. Each line denotes �0 of di¤erent frequency from � =

�83:1 at the bottom to � = �90:1 at the top and �1 in reverse term. Note that
the dash and dot-dash lines, shown with approximately zero gradient, correspond to

the regime at � = �87:1 � �86:1: It could be seen that near the ME both �0 and
�1 reveal the system-size invariance. Following reference [95], we de�ne the slope

g = d�q=d(lnL)
�1. Fig. 5.7 shows g with respect to �, because that �0 and �1 are

almost independent of system size withinin the interval �87:1 < � < �86:1, the zero-
crossing g value locate the mobility edge. The results of our data, within numerical
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errors, almost agrees with that obtained by the LS statistics[79][80]

In the following, we investigate the vibrational amplitudes in the multifractal

INMs and only present the results at the ME in the negative branch.

5.3 Probability Density Function of Vibrational Am-

plitudes

Another approach to characterize the multifractal INMs is the statistics of the

squared vibrational amplitudes in a INM eigenvector. By the box-counting method

de�ned in previous section, the LPD, � in N� =
�
L
l

�3
boxes with size L0 = L

l
= ��1

is de�ned as Eq.(5.5). For the non coarse-grain case, l = 1, the � corresponds to

squared vibrational amplitude j ij
2. Averaged for the multifractal INMs of LPD

�, the probability density function (PDF) epL(�) of the LPD � is de�ned such thatepL(�)d� is the ratio �N�=N�, where �N� is the averaged number of particles with

lying between � and �+d� in an INM. By changing variable to the singularity strength

� � ln�= ln �, the corresponding PDF PL(�) is given as PL(�) = epL(�)d�=d�. The
probability of �nding a singular strength correspond to [�; �+ d�] is PL(�)d� =

�N�=N�. Based on the de�nition �N� � Lf(�), therefore

PL(�) � Lf(�)�d:

Due to the recent numerical results of the AM in 3D [97], it is suggested that the pro-

portionality of the scaling is the value of the PDF at �0, where f(�0) = d. Therefore,

PL(�) can be expressed as

PL(�) = PL(�0)L
f(�)�d;

and the PDF-based SSP read as

f(�) =
ln( PL(�)

PL(�0)
)

lnL
+ d: (5.19)

Since the scale invariance of �0 with system size, the position of the maximum PDF

is expected to be independent of L.
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By using the PA of f(�) in Eq.(5.14), we obtain a Gaussian approximation (GA)

of PL(�) as

PGAL (�) = PL(�0) exp

(
� (�� �0)

2

4 (�0 � d)
lnL

)
: (5.20)

Under the GA, the distribution width of PL(�) decreases with (lnL)1=2, while, due

to the normalization of the PDF, the maximum PL(�0) increases with (lnL)1=2. On

the orther hand, in terms of the symmetric relation of f(�) in Eq.(5.18), PL(�) for

large enough L is expected to be equivalent with the one generated via the symmetric

transformation (ST)

P STL (�) = L��dPL(�); (5.21)

where 0 � � � 2d. The equivalence of PL(�) and P STL (�) implies that the values of

PL(� � d) and PL(� � d) are correlated with each other. Therefore, the investigation

of PL(�) alternatively provides an insight on the properties of f(�).

Calculated with more than 7000 INM eigenvectors for N from 3000 to 96000, the

variation of the numerical PL(�) distribution with system size is shown in Fig. (5.8).

Located at � = 4:1 � 0:02, the position of the PL(�) maximum is almost invariant

with the system size. Within our numerical resolution, this position is consistent

with �0 obtained from the maximum of f(�) at the negative-� ME in Fig.(5.4). At

�0 = 4:1, the scaling of PL(�0) with lnL generally follows the prediction of the GA.

Fig.(5.9) shows coarse-grain PDF of �, where L0 = ��1 is arranged from 5 to

25: Comparing with the coarse-grain procedure of the Anderson model in 3D simple

cube, the simple �uid is characterized by the variation of number particle within a

small box, which induces another kind of �uctuations except for the �uctuations of

the squared vibrational amplitudes. In the inset(b) of Fig.(5.9) shows the distribution

of number particles n within a small box diveded by average number particle hni :
It can be seen that for large L0 the �uctuation of n is larger while for small L0 the

�uctuation of n is smaller.

The comparision of PL(�) with PGAL (�) and P STL (�) is shown in Fig.(5.10a) for

N = 96000. Our results indicate that PL(�) obtained numerically is neither identical

with the GA in Eq.(5.20) nor with the ST in Eq.(5.21), especially for large �, which

corresponds to small vibrational amplitudes. To examine the deviation of PL(�)

under the GA and the ST, we de�ne the deviation �POL (�) = PL(�)� POL (�), where
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O is either GA or ST, and the integrated deviation �POL =

Z �c

0

���POL (�)�� d�, where
�c = 2d for O =ST and �c = 7 for O =GA. The numerical results of �POL (�)

are presented in Fig.(5.10b) for N varied from 3000 and 96000, and the system-size

dependences of �P STL and �PGAL are in the inset of the �gure. For the system sizes

we investigate, the GA generally has a smaller integrated deviation than the ST

does. The integrated deviation under the ST is found to decrease with increasing

system size; this is consistent with the result obtained by the AM [97]. However, the

integrated deviation under the GA �uctuates with the system size and the �uctuation

does not decay with increasing the system size, which implies the non-Gaussian nature

of PL(�) even for a large system size. Thus, our results indicate that by increasing the

system size, the singularity spectrum f(�) gets satis�ed with the symmetric relation

in Eq.(5.18) but not with the GA in Eq.(5.14).

Fig.5.11 shows comparison of singularity spectrum at the MEs in negative branch

by the box-counting method for INMs, AM, and the PDF-based SSP by Eq.(5.19).

Generally, the PDF-base SSP agrees with the box-counting results. Furthermore, the

PDF-base SSP is an ensemble average quantity intrinsiclly, which lead to the nega-

tive f(�) correspond to small and large �: The�N� for a given L, gives the number of

points in the wave function with amplitudes in the range j ij
2 2

�
L�����=2; L��+��=2

�
:

It scales with the system size as �N� � Lf(�): The negative values of f(�) correspond

to those �N� decreasing with L for large enough L. Physically, the negative fractal

dimensions at small � are caused by the so-called rare events containing localizedlike

regions of anomalously high j ij
2 at criticality. The probability of �nding them like-

wise decreases with L: The estimated value for the threshold ��, where f(�� ) = 0,

is �� 2 [0:641; 0:675] :

5.4 Spatial Correlations

To characterize the spatial structures of the multifractal INMs, we de�ne the

spatial correlation function for the q-th moment of the squared vibrational amplitudes
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Figure 5.8: System-size dependence of PL(�) for INMs at the ME of � = �86:6�0:5,
with � = � ln j ij

2 = lnL. The symbols denote numerical data with the resolution

�� = 0:04. Solid lines denote the Gaussian as eq.(5.20). The inset shows PL(�0)

with �0 = 4:10 versus lnL and the �t A � (lnL)B (Solid line) with A = 0:30 and

B = 0:458:
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Figure 5.9: Box-size dependence of PL0(�) for INMs at the ME of � = �86:6 �
0:5, with � = � ln�k= lnL0. More than 7; 000 modes of N = 96; 000 are averaged.

Symbols denote numerical data of di¤erent coarse-grain ratio � with �� = 0:02 .

Solid lines denote the GA as Eq.(5.20). The inset (a) shows PL0(�0) with respect

to lnL0 and the power law �tting is PL(�0) = A � (lnL)B with A = 0:30745 and

B = 0:48268: The inset (b) shows probability distribution of the particle number n
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in the INMs in a system of size L as

Cq(r; L) =

*
1

N

NX
i=1

NX
j 6=i

j ij
2q
�� j��2q �(r � rij)

+
�

; (5.22)

where rij is the distance between particle i and j and the brackets denote an ensemble

average for the mutifractal INMs at a ME. In the de�nition of Cq(r; L), r is the

distance between two particles in the �uid and is assumed to be smaller than L.

Since the distribution of squared vibrational amplitudes depends on L, Cq(r; L) is

not only a function of distance r between two particles but also dependent on L [31].

In terms of �Nr, which is the particle number within a spherical shell between r and

r + �r and centered at a chosen particle, due to the absence of characteristic lengths

in the multifractal system, Cq(r; L) is changed to

Cq(r; L) =

*
1

N�Nr

NX
i=1

�NrX
j=1

j ij
2q
�� j��2q

+
�

; (5.23)

where the second summation is subject to those particles within the shell.

Based on the multifractal nature at Anderson transition, a scaling argument for

the spatial correlation function has been proposed and calculated for the critical states

in quantum Hall systems [99] [100]. With a similar scaling argument for the squared

vibrational amplitudes in a multifractal INM given in Appendix A.3, the behavior of

Cq(r; L) is predicted as

Cq(r; L) _ L�yq � r�zq ; (5.24)

where yq and zq are the correlation exponents with respect to the system size and the

spatial distance, respectively, and they are given as

yq = d+ � 2q; (5.25)

zq = d+ 2� q � � 2q: (5.26)

By using the PA of � q in Eq.(5.15), yq and zq in the PA are expressed as

yPAq = 2�0q � 4(�0 � d)q2; (5.27)

zPAq = 2(�0 � d)q2: (5.28)
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To examine whether the correlation exponents of the multifractal INMs follow the

predictions of the scaling argument, we calculate Cq(r; L) at a ME in the negative

branch for di¤erent system sizes. Present in Fig.(5.12a) are the Cq(r; L) ofN = 48; 000

with 0 < q < 2 for the distances r less than the half of L = 36:69. To extract the

data of zq, we make a linear �t for the data of each q in Fig.(5.12a), characterizing

the power law decay of Cq(r; L) with respect to r. The slope of the linear �t gives the

numerical result of zq presented in Fig.(5.12b), with the error of zq estimated within

the 95% con�dent interval. For large q , the original data of Cq(r; L) su¤er from

strong �uctuations, which cause larger errors in zq: The predictions by the scaling

theory and the PA for zq are also shown in Fig.(5.12b) for comparison. Our results

indicate that the numerical data of zq are generally consistent with scaling theory for

q < 1 and the PA in Eq.(5.28) is only good for q < 0:7, which is consistent with the

result for the PA of � q shown in Fig.(5.3a).

The Eq.(5.25) is also veri�ed in our numerical work. Fig.(5.13a) shows the cor-

relation function lnCq(L)with respect to system size lnL of di¤erent q , where the

system size arrange from N = 3; 000 to 48; 000: The results of four selected distances

r = 4:0; 4:5; 5:0 and 5:5 are averaged, where the error bars denote the standard devia-

tion of four corresponding Cq(L; r). The slope indicates the numerical scaling result of

yq plotted in Fig.(5.13b), which characterizes the power law dependence of Cq(L) with

respect to L at speci�ed r. The black line denotes the scaling theory from Eq.(5.25)

and the blue dash line denote the scaling theory with the parabolic approximation,

where � qis replaced by �PAq in Eq.(5.25). The numerical results agree with analytic

prediction from Eq.(5.25) for q < 1:2:

5.5 The distribution of inverse-participation ratio

The �uctuation of individual INM revels in the distribution of IPR. At q = 2, the

distribution of lnP2 has extensively studied in the AM and the power-law random

band model[75]. It has been veri�ed that the value of maximum distribution of

lnP2 at the ME of AM decreases with increasing system size and is saturated to a

constant[73][74].

Fig. 5.14 shows the lnP2 distribution at the ME in the positive branch for di¤erent
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Figure 5.12: (a) Spatial dependence of Cq(r; L) in a log-log plot. The symbols are

the averaged results of INMs with � = �86:6� 0:5 in the system of N = 48000. The

data from top to bottom are q from 0:2 to 1:8 with a step of �q = 0:2. The solid

lines are a linear �t for each q.(b) Correlation exponent zq versus q. The red squares

are obtained by the �t result of each q in (a). The open circles are the prediction of

Eq.(5.26). The blue dot-dash line is the PA in eq.(5.28).
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data are calculated at r = 5 for INMs with � = �86:6�0:5 in �ve system sizes. From
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each q. (b) Correlation exponent yq versus q. The �lled squared are th �t results of

each q in (a). The open circles are the prediction of Eq. (5.25). The dot-dash line is

the PA in Eq.(5.27). 70
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system sizes, from right to left corresponding to small to large system sizes. For all

system sizes, the number of states in average are more than 3� 105, except that for
N = 96000 the number is 2� 105. Generally, the distributions are assymetry with a
long tail in the side of large value lnP2. For small sizes the distributions are narrower

and sharp due to the size e¤ect. For larger sizes, it seems that the value of maximum

distribution of lnP2 closes to some constant.

On the left hand side of the distributions corresponding to small lnP2, the behavior

of the eigenvectors is more extended-like, and a sharp cuto¤ the lnP2 value presents,

which is far away from the value lnP2 = � lnN corresponding to the completely

extended eigenvector. For a completely extended eigenvector, the values lnP2 give

�11:47 and �7:31 corresponding to N = 96000 and 1500, respectively. On the

other hand, for large values of lnP2, the behavior of the eigenvectors is more like the

localized wave, in which a few particles dominate the amplitutes of a wave. An INM

at the ME with extremely large or small values of lnP2 still exist, yet the probability

is extremely low. Such INMs often refer to the rare realizations, which correspond to

the negative value of the ensemble average f(�) near the two edges �+ and ��. The

negative value of f(�) means that the rare realizations vanish eventually when the

system size increases. Generally, the results agree with the Anderson model[74][73].

5.6 Summary

We have performd the multifractal analysis at the ME in the both positve and

negative branches of the INM spectrum. A set of general dimensions charaterize the

strong �uctuations of the multifractal INMs and at the ME the general dimensions for

both branches are consistent. By means of box-size scaling and based on the Legendre

transform of the mass exponent, we have calculated the singularity spectrum (SSP),

which shows excellent agreement with the AM. We con�rm that the SSP is a universal

quantity. According to the invariance of the SSP with respect to system size, the

location of the ME with the value � = �86:6 � 0:5 is determined in the negative
branch, and the value generally agrees with the results of the LS analysis.

The symmetry relation of the multifractal INMs is veri�ed. Our data of�q at each

ME are satis�ed with the symmetric relation for q between �0:5 to 1:5. Similarly,
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f(�) obtained by the INMs is generally satis�ed with the symmetric relation for

2 � � � 4:Our results suggest that the symmetric relation is obeied only for our

model in a very large system size; this conclusion is similar as the one obtained

by the AM. In principle, the multifractals at the LDT exhibit the self-similarity for

all length scales, indicating the absence of a length scale in the system. However,

our model and the AM are numerically discrete models with a unit length, which is

the lattice constant in the AM or the particle size in our model. In a length scale

comparable with the unit length of a discrete model, the basic assumption of the

multifractality breaks down for the discrete model. We think that this is the reason

why the system sizes of our model and the AM should be extremely large in order to

ful�ll the proposed symmetric relation for the singularity spectrum.

For the multifractal INMs, the PDF of the logarithm of the squared vibrational

amplitudes is calculated for several system sizeds. The PDF is related to the sin-

gularity spectrum. The calculated PDFs are examined for the singularity spectrum

under the PA or subject to the symmetric relatoin. Under the PA, the PDF should be

Gaussian, indicating that the the squared vibrational amplitudes follow a log-normal

distribution. At small vibrational amplitudes, the calculated PDFs of all systems

sizes are apparently deviated from the Gaussian and the one with the singularity

spectrum subject to the symmetric relation. However, our results indicate that, as

the system size of our model becomes larger and larger, the deviation in the latter

case gets smaller and smaller but the deviation in the former case does not.

Moreover, the correlation function of the q-moments of components of INMs also

be calculated. The power-law decay of the correlation function is veri�ed to connect

with the mass exponents. Finally, we present the distribution of lnP2, which has the

same nature with the AM.
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Chapter 6

Conclusions

The localization-delocalization transition has been a general concept in condensed

matter physics and a¤ects the the transport properties in materials fundamentally.

The universal properties at the localization-delocalization transition among di¤erent

physical systems have been widely studied since the three universal ensemble in the

RMT was purposed : the unitary, orthogonal and symplectic. We have investigated

the critical properties at the LDT in the INM spectrum of a TLJ �uid at a ther-

modynamic state; the TLJ �uid is a topologically disordered system, which has no

reference frame of lattice.

In chapter three, we have performed LS analysis for Hessian marices of the TLJ

�uid. The Hessian matrices evaluated at the �uid con�guations are an ensemble

of Euclidean random matrices with elements subject to several constrants, and the

matrices are sparse due to the short-range nature of the TLJ potential. By referring

the eigenmodes of the matrices as the INMs, the eigenvalue spectrum of the INMs is

composed to two branches corresponding to the positive and negative eigenvalues. We

have used the �nite-size scaling to estimate the locations and the critical exponents

of the two MEs. In the models to �t the data of the second moments, the nonlinear

dependence of the scaling variable on the eigenvalue has been condisdered and an

irrelevant scaling variable due to the �nite-size e¤ect is introduced in some models

for the positive branch. In principle, the critical exponents of the two MEs should

coincide in value; through the �tting, their values are found to be 1:55 � 0:09 and
1:60 � 0:03 for the positive and negative branches, respectively. Within numerical
errors, the estimated values of the two critical exponents are almost coincident with



each other and compatible with that of the AM in three dimensions [17]. The nearest-

neighbor LS distributions at the two MEs are examined to be almost the same as the

critical LS distribution obtained from the AM. Thus, we conclude that the MEs in

the eigenvalue spectra of Hessian matrices of topologically disordered systems follow

the universality for the othogonal universality class and have nothing to do with the

topological nature of the disorder in the systems and the constraints imposed on the

Hessian matrices due to structural considerations.

In chapter four, we have calculate the LNV in eigenvalue regions near the ME for

several system sizes. On the energy scales large compared to the mean level spacing,

the level compressibility characterize the critical behavior at the LDT. Quantitatively,

the LCP should be lower than � t 0:35� 0:08 in our calculation. Su¤ering from not

enough levels in selected regimes and mixing of eigenvalues range, it is di¢ cult to

determine the LCP and verify the scaling relation of Eq.(4.4) by our model. On the

other hand, the FSS gives results with larger errors for the position of MEs and the

correlation length exponents �p = 1:43� 0:21 and �n = 1:48� 0:17; which generally
agree with the previous results.

In chapter �ve, we have performd the multifractal analysis at the ME in the

both positve and negative branch of INM spectrum. A set of general dimensions

charaterizes the strong �uctuations of the amplitude of the critical INMs, and at

the ME the general dimensions for both branches are consisted. By means of box-

size scaling and based on the Legendre transform of the mass exponent, we have

calculated the singularity spectrum (SSP), which shows an excellent agreement with

the most accuracy results of the AM so far. We con�rm that the SSP is a universal

quantity. According to the invariance of the SSP with respect to system size, the

location of the ME with the value � = �86:6 � 0:5 is determined in the negative
branch, which agrees with the LS analysis. Furthermore, based on the probability-

density-function analysis, the SSP at the ME is veri�ed again. The symmetry relation

of the multifractal INMs is veri�ed, for the small q region, the symmetric relation is

satis�ed, however, deviates strongly for jq � 0:5j > 1. The larger the system size,

the better the symmetric relation holds. Moreover, the correlation function of the

q-moments of components of INMs is also calculated. The power-law decay of the

correlation function is veri�ed to connect with the mass exponents. Finally, we present
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the distribution of the inverse participation ratio, which has the same nature with

the AM.
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Appendix A

Appendix

A.1 Renormalization Group and Finite-Size Scal-

ing

To study the critical phenomena, one of the powerful tools is the renormalization

group(RG) analysis. One can extract various exponents from RG analysis. With the

information, it is relatively easy to pin down the critical point and thus the type of

phase transition.

Instead of direct performing RG caluculation, we do the �nite-size scaling which

has been extensively used to solve the problem of critical phenomena [52][53]. Strictly

speaking, there are no phase transitions in a �nite system. How to exhibit a phase

transition in a �nite system? The answer forms the topic of �nite-size scaling. Al-

though the �rst hypothesis was proposed before the RG, �nite size scaling is concep-

tually clearer within the framework of the RG. Summarizing from Nigel Goldenfeld�s

excellent introducton book[11], we brief illustrate three topics: �rst, what is the RG

transformation? second, how RG accounts for scaling behavior and the critical expo-

nent, �nally, derive the formula of the �nite-size scaling from RG.

First, consider a system with N particles, linear dimension L and volume V = Ld.

The free energy density is a function of temperature t, external �eld h and interaction

or coupling constant K. After the coarse-grain process that particles within a small

box with length l > 1 coarse grain to one new particle, the arguments of the function



change and the free energy density scales with

Nfs(t; h;K:::) = Nl�dfs(tl; hl; Kl:::): (A.1)

The coarse-grain process also denotes as the RG transformation Rl, which describes

how the coupling constants and external �eld change with the length scale, and over

which the local operators of Rl are de�ned as

[tl] = Rl [t] ; [hl] = Rl [h] and [Kl] = Rl [K] :

The Rl is a very complicated, non-linear transformation, and at the �xed pointK� the

RG transformation satis�es [K�] = Rl [K
�]. Succesive transformations with l = l1 and

l = l2 should be equivalent to a combined scale change of l1l2:

[K 0] = Rl1 [K]

[K 00] = Rl2 [K
0]

= Rl2 �Rl1 [K]

and thus

Rl1l2 [K] = Rl2 �Rl1 [K] (A.2)

Second, we illustrate how RG quantitatively accounts for scaling behavior. Sup-

pose only one coupling constant K in the vicinity of the �xed point K�, we have

K 0 �K� = Rl(K)�Rl(K
�)

' �l(K �K�) +O((K �K�)2)

where

�l �
@Rl
@K

����
K=K�

(A.3)

is the linearised RG transformation in the vicinity of the �xed point. Because

the RG transformation satis�es Eq.(A.2),

�l�l0 = �ll0 :

The only solution of �l should be

�l = lyk : (A.4)
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With the RG transform, we can make contact with the critical exponents quanti-

tatively. Consider a simple system with only one coupling constant, the temperature

T . Under an RG transformation, T is transformed to T 0 = Rl(T ). At a �xed point,

T � = Rl(T
�). Linearising in the vicinity of the �xed point, we have

T 0 � T � = Rl(T )�Rl(T
�) (A.5)

' �l(T � T �) +O((T � T �)2)

where

�l �
@Rl
@T

����
T=T �

: (A.6)

As argued before, we have �l = lyt. Consider the case where the system is origi-

nally at a temperature above the critical temperature. De�ning t = (T �T �)=T �, the
recursion relation Eq.(A.5) becomes

t0 = tlyt. (A.7)

The correlation length under one RG transformation is �0 = �=l, and thus, after

n transformations

�(t) = ln�(tlnyt):

We can arbitrary choose

ln = (
b

t
)1=yt ;

with b being some arbitrary positive number much larger than unity. Thus

�(t) = (b�1t)�1=yt�(b) as t! 0: (A.8)

Note that �(b) is the correlation length for temperatures well above Tc, where �uctu-

ations are small, and standard approximation methods, such as perturbation theory

work well. Comparing Eq.(A.8) with the de�nition of the critical exponent � : � � t�� ,

we read o¤

� =
1

yt
:

The exponent yt is simply given by Eq.(A.4) and Eq.(A.6)

yt =
ln�l
ln l

=
1

ln l
ln

�
@Rl
@T

jT=T �
�

(A.9)
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Thus, knowlege of Rl, or a good approximation to it, enables us to calculate �l, yt and

hence �. In the language of RG, the positive y value corresponds to the relevant scaling

variable, while negative one corresponds to the irrelevant scaling variable which can

be ignored for large enough L.

Finally, to derive the �nite-size scaling formula, the free energy density close to a

�xed point of RG is writen as

fs(t; h;K; :::; L
�1) = l�dfs(tl

yt ; hlyh ; KlyK ; :::; lL�1): (A.10)

Here comes a new argument the inverse size of the system, L�1, and the lL�1 on the

right hand side of Eq.(A.10) comes from the fact that lengths are reduced by a factor

l during a RG transformation Rl. The RG transformation is a local transformation,

and, therefore, it does not matter if it is performed on an in�nite system or a �nite

system. We see that L�1 behaves like a relevant eigenvector with eigenvalue �L = l,

and thus yL = 1: A corollary is that crossover e¤ects become important for �nite L.

Suppose all parameters set to be zero except t; choose l = jtj�1=yt the singular part
of the free energy density is

fs(t; L
�1) = jtjd=yt fs(1; jtj�1=yt L�1)

= jtjd� F�f (jtj
�� L�1):

For the bulk correlation length of the in�nite system with L = 1, which we denote
now by �1(t) = jtj

�� , therefore

fs(t; L
�1) = jtjd� F�f (�1(t)L�1):

When jtj�� L�1 << 1, or equivalently L >> �1(t), the correlation length is not

a¤ected by the boundaries of the sytem, and the thermodynamic properties are those

of the in�nite system. In the opposite limit, encountered su¢ ciently close to t = 0,

L << �1(t), or equivalently jtj
�� L�1 >> 1, and the system is no longer governed by

the critical �xed point. In this case, the actual correlation length can not grow beyond

L as t ! 0, and the transition appears rounded. We can exploit these phenomena

in practice to obtain estimates of the true critical behavior. As an example, consider
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the scaling of the correlation length itself,

�(t; L�1) = l�(tlyt ; lL�1)

= t��F�(L
�1t��)

= t��(Lt�) eF (Lt�)
= L eF (Lt�) (A.11)

In Eq.(A.11), we have de�ned a new scaling function eF (x), which must have the
following limiting behavior. For L ! 1 at �xed t << 1, we expect �(t; 0) � t�� .

Thus eF (x)! x�1 as x!1. For L �nite and t! 0, eF (x) tends towars a constant.
It is perfectly analytic in this limit and � � L. Thus, at �nite L we can expand about

t = 0 :
L

�(t; L�1)
= A+BtL1=� +O(t2); (A.12)

where A and B are constants. The beauty of this form is that if we plot L=� versus

the coupling constant, K or t, for di¤erent values of L, all curves will pass through

the same point when K = K� or t = 0: Thus we can determine K�.

A.2 Derivation for Legendre Transform of SSP from

The Mass Exponents

Generally, the general inverse participation ratio scales with system size as

Pq (�) � ��q ; (A.13)

where � q is the mass exponent. Here, we derive the Legendre transform � q = �q �
f(�):

Consider the LPD �k de�ned in Eq.(5.5), in the discrete system satis�es the

normalized condition
N�P
k=1

�k = 1, where N� =
�
L
l

�3
= ��3. The probability density

function of the LPD epL(�) is de�ned such that
epL(�)d� = �N�

N�
,
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where�N� is the number of boxes with �k within [�; �+ d�]. The epL(�) is normalized
as, Z epL(�)d� = 1.
By changing variable to the singularity strength

� = ln�= ln �;

the corresponding PDF PL(�) is given as epL(�)d�=d�. The PDF of � should also
satisfy the nomalization conditionZ

PL(�)d� =

Z epL(�)d� = 1:
After changing variable to the singularity strength, the de�nition of the gIPR become

Pq(�) =

N�X
k=1

(�k)
q = N�

Z epL(�) � �q � d�
= N�

Z
PL(�) � ��q � d�

Based on the de�nition of fractal dimension �N� � ��f(�), where �N� is the num-

ber of boxes belong to [�; �+ d�], and the probability of � within [�; �+ d�] is

PL(�)d� = �N�=N�. Therefore, we have

N� � PL(�) � d� � ��f(�):

Consequently,

Pq(�) �
Z
�[�q�f(�)] � d� (A.14)

Evaluation of the integral by the saddle-point method gives

Pq(�) � ��q�f(�) (A.15)

which reproduce Eq.(A.13), with the mass exponent � q relate to the singularity spec-

trum via the Legendre transform

� q = �q � f(�);

�q =
d� q
dq

; and q =
df(�)

d�
:

82



A.3 The Relation between The Correlation Expo-

nents and The Mass Exponents

The spatial correlation function for the q-th moment of the squared vibrational

amplitudes in the INMs in a system of size L as

Cq(r; L) =

*
1

N�Nr

NX
i=1

�NrX
j=1

j ij
2q
�� j��2q

+
�

. (A.16)

In a general version, as a coarse-grain formC 0q(l; r; L) is the spatial correlation function

of boxes

C 0q(l; r; L) =

*
1

N��N�r

N�X
k=1

�N�rX
kr=1

�qk�
q
kr

+
�

,

where �k is the LPD in the k-th box with length l, N� and �N�r are the number of

boxes, k and kr are index of box and another box with a distance r away from k,

respectively. As l = 1, C 0q(l; r; L) ! Cq(r; L). Due to the absence of characteristic

lengths in the multifractal system, C 0q(l; r; L) should behave as

C 0q(l; r; L) _ lxq � L�yq � r�zq . (A.17)

Our task is to relate the new exponent xq, yq and zq to previously introduced expo-

nents � q.

Suppose r = l and l is small, because that the correlation is strong , we could

assume �qk � �qkr. In this case, the Eq.(5.22) with N� = (L
l
)d and �N�r � 1 and

Eq.(5.7) give

C 0q(l; r = l; L) �
*
(
l

L
)d
X
k

�q+qk

+
� ( l

L
)d+�2q ,

where d is the spatial dimension. Since we have C 0q(l; r = l; L) _ lxq�zq � L�yq from
Eq.(A.17), the exponents are related by

yq = d+ � 2q;

and

xq � zq = d+ � 2q: (A.18)
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In order to determine the exponent xq, we consider r = L, where �N�r �
�
L
l

�d
. Since

the measurements are almost uncorrelate in this region, we could assume*X
k

X
kr

�qk � �
q
kr

+
�
*X

k

�qk

+
�
*X

kr

�qkr

+
.

Therefore, in this case Eq.(5.22) becomes

C 0q(l; r = L;L) � ( l
L
)2d

*X
k

�qk

+
�
*X

kr

�qkr

+
� ( l

L
)2d+�q+�q .

Since we have

C 0q(l; r = L;L) _ lxq � L�yq�zq

from Eq.(A.17), the exponents are relate by

xq = 2d+ 2� q;

yq + zq = 2d+ 2� q:

By Eq.(A.18),

zq = d+ 2� q � � 2q: (A.19)

Therefore, as l = 1

C 0q(l; r; L) � Cq(r; L) � L�yq � r�zq .

with yq and zq given in (A.18) and (A.19). The three new exponents xq, yq and

zq characterize the scaling with box-size, system size and the correlation distance

between measurements.
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