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論文摘要 

克雷白氏肺炎桿菌是一株引起伺機性感染的革蘭式陰性細菌，大多於免疫力

不全的病人身上，引起化膿性的潰瘍、菌血症、尿道以及呼吸道的感染。為了探

討克雷白氏肺炎桿菌的致病機制，在本論文中，我們針對在感染初期扮演著重要

角色的線毛的分佈情況及表現調控進行研究。 

我們藉由分析克雷白氏肺炎桿菌 NTUH-K2044 的全基因體序列，共發現了

九組獨立的線毛基因群。除了過去已知的第一型與第三型線毛基因組外，其餘的

七組尚未有文獻報導，我們將其分別命名為 kpa、kpb、kpc、kpd、kpe、kpf、kpg

基因組。我們進一步分析了克雷白氏肺炎桿菌的臨床分離菌株，發現 kpb 與 kpc

基因組在 K1 莢膜血清型的菌株中有顯著較高的存在率。隨後，我們針對 Kpc 線

毛進行了特性分析。在大腸桿菌中表現 Kpc 線毛的生合成基因組 kpcABCD 後，

可以致使細菌製造出 Kpc 線毛並且增強其生物膜的形成能力。我們也發現 Kpc

線毛的表現受到了相變機制（phase variation）的調控，而此相變機制則是由 KpcI

專一性 DNA 重組酶所負責。最後，我們著重於第三型線毛的表現調控進行研究。

我們發現位於第三型線毛基因組下游的 mrkHIJ 操作組可生合成出三個調控蛋白

質來影響第三型線毛的表現。mrkI 基因被預測可生合成出 LuxR 類型的轉錄因

子，而我們將 mrkI 在克雷白氏肺炎桿菌中進行剔除後，發現會破壞第三型線毛

的基因轉錄。同時我們也證明，具有 PilZ 模組的 MrkH 與具有 EAL 模組的 MrkJ，

可分別正向與負向調控第三型線毛的表現。此外，我們發現 Fur 攝鐵調控子會經
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由調控 mrkHIJ 操作組來影響第三型線毛的表現。而二次代謝傳導物 c-di-GMP

也被證明可經由 Fur 與 MrkI 來活化第三型線毛的表現。我們還發現缺氧環境可

能是影響第三型線毛表現的因子。 

在本論文中，我們首度報導了克雷白氏肺炎桿菌線毛的基因體學分析，這個

報導將有助於未來對於此細菌線毛黏附作用的研究（第二章）。我們也分析了

Kpc 線毛的功能性與相變調控表現（第三章），以及探討影響第三型線毛表現的

多重調控因子（第四章）。 
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Thesis Abstract 

Klebsiella pneumoniae is a Gram-negative pathogen which causes suppurative 

lesions, bacteremia and urinary as well as respiratory tract infections mostly in 

patients with underlying diseases. To investigate the pathogenicity of K. pneumoniae, 

we focused on the study of prevalence and expression of fimbriae, which are 

important virulence determinants during the initial infection.  

By analyzing the whole genome sequence of K. pneumoniae NTUH-K2044, nine 

distinct fimbrial gene clusters were identified. Besides type 1 and type 3 fimbrial 

genes, the other seven are novel and designated kpa, kpb, kpc, kpd, kpe, kpf, and kpg. 

The following prevalence analysis among K. pneumoniae clinical isolates indicated 

that the kpb and kpc genes were more prevalent in the strains of capsular serotype K1. 

Subsequently, the Kpc fimbria, encoded by kpcABCD genes, was characterized. 

Induced expression of the recombinant kpcABCD genes in Escherichia coli resulted in 

Kpc fimbriation and increased bacterial biofilm formation. The Kpc fimbriae 

expression was also found to be regulated under phase variation mediated by the 

site-specific recombinase KpcI. Finally, the expressional control of type 3 fimbriae in 

K. pneumoniae CG43 was investigated. We described that the type 3 fimbriae 

expression was mediated by three regulatory proteins encoded by the mrkHIJ operon 

which located downstream to the type 3 fimbrial genes. Deletion of mrkI, which 
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encoded a LuxR-type response regulator, from K. pneumoniae was found to abolish 

the expression of type 3 fimbriae at transcriptional level. Moreover, MrkH, a PilZ 

domain protein, and MrkJ, an EAL domain protein, appeared to act as an activator and 

a repressor, respectively, for the type 3 fimbriae expression. Besides, we showed that 

the ferric uptake regulator Fur could activate the expression of type 3 fimbriae 

through regulation on the mrkHIJ operon. The second messenger c-di-GMP was also 

found to activate the expression of type 3 fimbriae through Fur and MrkI. 

Furthermore, we identified that oxygen-limitation was possibly an environmental 

stimulus for activating the type 3 fimbriae expression. 

In this dissertation, we reported the first genomic analysis of fimbrial gene 

sequences in K. pneumoniae, which pave the way for future study of the bacterial 

adherence (Chapter 2). Subsequently, the functional role and phase-variable 

expression of Kpc fimbriae were characterized (Chapter 3). Moreover, a 

multi-factorial regulation of type 3 fimbriae expression was elucidated (Chapter 4). 
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1.1. Klebsiella pneumoniae  

Klebsiella pneumoniae is a Gram-negative bacterium that belongs to the gamma 

subdivision of the class Proteobacteria and exhibits relatively close genetic 

relatedness to the other genera of Enterobacteriaceae, including Escherichia, 

Salmonella, Shigella, and Yersinia (20). Klebsiella spp. are ubiquitous in nature and 

characterized as rod-shaped, non-motile, usually encapsulated bacteria that can live in 

water, soil, and plants, and infect humans and animals (243, 244). In humans, K. 

pneumoniae behaves like a commensal mainly in the nasopharyngeal and intestinal 

mucosae (244). In this respect, the genus Klebsiella is like Enterobacter and 

Citrobacter but unlike Shigella spp. or E. coli, which are common in humans but not 

in the environment (244).  

1.1.1. K. pneumoniae infections 

K. pneumoniae is an opportunistic pathogen frequently involved in severe 

nosocomial infections in immunocompromised individuals who are hospitalized and 

suffer from severe underlying diseases, such as diabetes mellitus or chronic 

pulmonary obstruction (244). K. pneumoniae is responsible for a variety of diseases 

including suppurative lesions, bacteriemia, urinary tract infections, pneumonia, and 

sometimes life-threatening septic shock (23, 149, 165, 236, 244). The clinical pattern 
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of K. pneumoniae infection in humans has changed since this organism was 

discovered in the 1880s (97, 98). Until the 1960s, K. pneumoniae was an important 

cause of community-acquired pneumonia (42), however, the incidence of this type of 

infection has dropped, and hospital-acquired K. pneumoniae infection now 

predominates (105, 244, 303). Since 1980s, K. pneumoniae is emerging as an 

important pathogen both in the community and the hospital setting (161). In the 

hospital environment with the extensive use of antibiotics, multiple drug resistance 

has been increasingly observed in K. pneumoniae, especially the extended-spectrum 

β-lactamase (ESBL)-producing strains (93, 96, 161, 208, 212). Carbapenems are 

considered to be the preferred agents for the treatment of serious infections caused by 

ESBL-producing K. pneumoniae because of their high stability to β-lactamase 

hydrolysis and observed retained susceptibility of ESBL producers (61). However, K. 

pneumoniae isolates resistant to carbapenems have been reported worldwide since 

2000s (128, 169, 224, 329). The emergence of carbapenem-resistant enterobacteria is 

worrisome because of the option for antimicrobial treatment is further restricted.  

The emergence of an invasive form of the community-acquired K. pneumoniae 

infection, which presents as primary bacteremic liver abscesses, endophthalmitis, and 

meningitis (50, 89, 90, 189, 246, 315), has been reported almost exclusively in Asia 

(100), especially in Taiwan (100, 302, 315). Although these invasive and highly 
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encapsulated K. pneumoniae strains are universally resistant to ampicillin, they are 

unable to produce ESBL and susceptible to most antibiotics (178, 179). In addition, 

approximately 50 to 75% of the patients with K. pneumoniae liver abscess also 

presented with diabetes mellitus (177, 217, 300). Although the preponderance of this 

severe invasive K. pneumoniae infection remains unknown, the involvement of both 

host and microbial factors during pathogenesis could be anticipated.  

1.1.2. K. pneumoniae virulence factors 

A number of bacterial factors that contribute to K. pneumoniae pathogenicity 

have been identified, which include capsular polysaccharide (CPS), 

lipopolysaccharide (LPS), iron acquisition systems, and adherence factors (244). 

Clinically isolated K. pneumoniae usually produced large amount of CPS and 

therefore forms large glistering colonies with viscid consistency. The abundant CPS 

that typically surrounds K. pneumoniae protects against the bactericidal action of 

serum and impairs phagocytosis (11, 63), and may be regarded as the most important 

virulence determinant of K. pneumoniae. Among the 77 described capsular (K) types 

of the serotyping scheme, serotypes K1, K2, K4 and K5 are highly virulent in 

experimental infection in mice and are often associated with severe infections in 

humans and animals (216, 220, 229, 281). Furthermore, the K1 and K2 serotypes 
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were found to be the most prevalent capsular serotypes in liver abscess-causing K. 

pneumoniae (100, 178).  

Genetic determinants for K1 and K2 CPS biosynthesis and regulation have been 

reported (15, 58). In K. pneumoniae NTUH-K2044 of serotype K1, deletion of the 

mucoviscosity associated gene A (magA) abolishes the CPS biosynthesis and thus 

reduces the bacterial virulence (88). The gene magA is only contained in the K1 cps 

gene cluster and hence could be applied to rapidly detect K. pneumoniae strains of 

serotype K1 (328). A PCR analysis for the K2 capsule-associated gene A (k2A) has 

also been used to identify K. pneumoniae strains of serotype K2 (74, 330). The 

presence of rmpA (regulator of the mucoid phenotype A) gene correlated with abscess 

formation in patients with community-acquired K. pneumoniae bacteremia and 

attributed to be a risk factor for metastatic infection in patients with K. pneumoniae 

liver abscess (180, 331). The rmpA together with rmpA2 gene both  located on the 

large virulence plasmid pLVPK (48, 295) are able to enhance the CPS biosynthesis 

thereby confer K. pneumoniae a hypermucoviscosity phenotype (53, 171).  

LPS comprising three parts, lipid A, core, and O antigen, is responsible for the 

resistance to complement-mediated killing as well as antimicrobial peptides attack, 

and the establishment of septic shock (7, 52, 87, 211). Antimicrobial peptides, such as 
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polymyxin B, are bactericidal agents that exert their effects by interacting with the 

LPS of Gram-negative bacteria. The polycationic peptide ring on polymyxin 

competes for and substitutes the calcium and magnesium bridges that stabilized LPS, 

thus disrupting the integrity of the outermembrane leading to cell death (118, 332). In 

our previous study, the genetic determinants for LPS modification and CPS level have 

been shown to involve in polymyxin B resistance of K. pneumoniae CG43 (52).  

Iron starvation is one of the major barriers that virulent bacteria must overcome 

in order to proliferate in the host. Multiple iron-acquisition systems have been 

described in K. pneumoniae (136). Analysis of the genomic sequence of K. 

pneumoniae NTUH-K2044 revealed 10 putative iron-acquisition systems, whereas K. 

pneumoniae strain MGH78578 and CG43 possess only 6 and 8 of these systems, 

respectively (136, 185). Prevalence study and animal experiment have been 

performed to assess the role of iron-acquisition systems in K. pneumoniae 

pathogenicity (136, 220, 295). Adherence factors possessed by K. pnuemoniae 

including type 1 and type 3 fimbriae, which play crucial roles in adhesion to host cells, 

persistence, and biofilm formation, are focused in this thesis and introduced in detail 

below. Other K. pneumoniae virulence determinants involved in acid resistance (135), 

oxidative stress response (123), and allantoin metabolism (195) have also been 

reported.   
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Complete genome sequence of K. pneumoniae strains MGH78578 (230) and 

NTUH-K2044 (325), which are human pathogens respectively isolated from sputum 

and liver abscess, and a nitrogen-fixing endophyte strain 342 (95) have been 

determined. Genomic and phenotypic analyses have also been performed among 235 

K. pneumoniae strains in order to identify the evolutionary emergence of virulent 

clones (37).  

1.2. Fimbriae (Pili)  

Successful establishment of infection by bacterial pathogens requires adhesion to 

host cells, colonization of tissues, and in certain cases cellular invasions, followed by 

intracellular multiplication, dissemination to other tissues, or persistence (242). 

Fimbriae, also called pili, are hair-like appendages that extend out of the bacterial cell 

surface and exert on bacterial attachment and invasion, biofilm formation, cell 

motility and transport of proteins and DNA across membranes. Based on their 

biosynthetic pathway, these non-flagellar appendages of Gram-negative bacteria can 

be categorized into five major classes: chaperone-usher (CU) fimbriae, curli, type 4 

pili, type 3 secretion needle, and type 4 secretion pili (99). Of these five classes, the 

CU fimbriae are the most extensively studied and often constitute important virulence 

factors, responsible for specific host attachment and/or the evasion of host responses 
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(323, 333). CU fimbriae are assembled into linear, unbranched polymers consisting of 

several hundreds to thousands of pilus subunits (also known as pilins) that range in 

size from ~12 kDa to ~20 kDa. Generally, the major pilin constitutes the fimbrial rod 

and an adhesin located at the tip to mediate its specific binding activity. Besides, there 

are minor pilins which incorporate into the fimbrial rod and affect assembly and 

adherence activity for several types of fimbriae (18, 139, 155, 186, 310). The 

machinery of fimbrial assembly is highly conserved, which comprises a periplasmic 

chaperone and an outer-membrane usher proteins (99, 240, 263, 265, 299, 311, 314). 

The fimbrial subunits are secreted by general secretion pathway into the periplasm 

and protected by the fimbrial chaperone from degradation by protease, and then 

transported to the usher for the assembly.  

An early hierarchical classification of CU systems based on conserved structural 

elements in the chaperones identified two distinct subgroups, FGL- and 

FGS-chaperone assembled pili, which correspond with the assembly of thin fibrillar 

and rod-like pili, respectively (147). However, recent phylogenetic analysis in 189 CU 

systems revealed 6 main clades: α-, β-, γ- (which is subdivided into γ1, γ2, γ3, and γ4), 

κ-, π- and σ-fimbriae, based on common usher ancestry, and supported by similarities 

in operon structure and morphology of organelles within the separate clades (226). 

Among these, the rod-like or typical fimbrial organelles are found in the α-, γ- and π- 
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fimbrial clades. These CU fimbrial genes, respectively encode pilins, chaperone, usher, 

and adhesin, generally transcribe in an operon manner, and multiple CU fimbrial gene 

clusters are often presented in a Gram-negative bacterial genome (192, 301, 305).   

Most of K. pneumoniae strains possess two types of CU fimbriae, type 1 and 

type 3 fimbriae (belonged to the γ1 and γ4- fimbriae, respectively), which are 

introduced in detail below. The afimbrial adhesin CF29K (67, 70), KPF-28 fimbriae 

(72), and a capsule-like extracellular afimbrial adhesin (91) have also been reported 

for some K. pneumoniae strains. 

1.2.1. K. pneumoniae type 1 fimbriae  

Type 1 fimbriae are approximately 7 nm wide and 1-2 μm long surface 

organelles found in virtually all members of the family Enterobacteriaceae (119, 163). 

They are well known for the ability to bind to mannose-containing structures on host 

cells and extracellular matrix. Bacteria expressing type 1 fimbriae are able to cause 

mannose-sensitive agglutination of yeast cells or erythrocytes (mannose-sensitive 

haemagglutination, MSHA) from guinea pig. Furthermore, type 1 fimbriae has been 

shown to play a crucial role during urinary tract infections by mediating adhesion to 

mannose-containing receptors on the uroepithelium and promoting the formation of 

intracellular bacterial communities (62, 145, 162, 174, 219, 252, 285, 290, 323).  
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Type 1 fimbriae have been most extensively studied in E. coli, and the 

corresponding structures of K. pneumoniae are highly similar with regard to genetic 

composition and regulation (60, 107, 267, 290). However, there are significant genetic, 

serological, and functional differences between type 1 fimbria variants in the different 

species (60, 80, 108, 197). E. coli type 1 fimbriae are encoded by the fimAICDEFGH 

operon. The fimbrial rod consists of the major subunits FimA and the minor subunits 

FimI, FimF, and FimG. The adhesive properties of type 1 fimbriae are exerted by the 

FimH adhesin which locates at the tips of the fimbriae. FimC and FimD are 

respectively chaperone and usher that are required for the fimbrial assembly. Unique 

to the K. pneumoniae fim gene cluster is the fimK gene, which locates downstream to 

the fimH gene and encodes an EAL domain protein (252). Deletion of fimK has been 

shown to activate the type 1 fimbriae expression in K. pneumoniae (252). In addition,  

fimB and fimE genes located upstream to the fim operon encode DNA recombinases 

that mediate the expression of type 1 fimbriae (4, 29, 267, 290).  

In E. coli, the regulatory network of type 1 fimbriae expression is extensively 

studied. Environmental conditions such as osmolarity and pH are involved in the 

modulation of the type 1 fimbriae expression (101, 276). Second messengers cAMP 

and (p)ppGpp as well as regulatory proteins, including Lrp, IHF, RpoS, NanR, NagC, 

CRP, and H-NS, have also been described to affect the expression of type 1 fimbriae 
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(1, 30, 75, 82, 83, 102, 157, 160, 218, 228, 283). However, whether these regulators 

exert similar effects in K. pneumoniae awaits further investigation. Several reports 

indicated that K. pneumoniae poorly expresses type 1 fimbriae in vitro (252, 267, 290), 

and the expression is phase-variable (267, 290). In addition, the thick capsule of K. 

pneumoniae has been shown to impede the activity of type 1 fimbriae and also to 

retard the assembly of type 1 fimbrial subunits from periplasm to cell surface (204, 

260, 267), suggesting a cross-regulation of the expression of fimbriae and capsule for 

an efficient infection.  

1.2.2. K. pneumoniae type 3 fimbriae  

Type 3 fimbriae are 2-4 nm wide and 0.5-2 μm long surface organelles that are 

originally characterized in Klebsiella strains by their ability to mediate 

mannose-resistant agglutination of tannic acid-treated human erythrocytes (MR/K 

haemagglutination) (78, 106). Several studies have also demonstrated an important 

role for type 3 fimbriae in biofilm formation on biotic and abiotic surfaces (33, 39, 71, 

148, 175, 232, 234, 273, 291). Biofilms are recognized as surface-attached bacteria 

embedded in a self-produced matrix, composed mainly of polysaccharide, but also 

containing proteins and nucleic acids (292). Biofilm formation promotes encrustation 

and protects the bacteria from the hydrodynamic forces of urine flow, host defenses 
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and antibiotics (316). The ability of bacteria to form biofilm on medical devices is 

believed to play a major role in development of nosocomial infections, including the 

catheter-associated urinary tract infections, which is frequently caused by K. 

pneumoniae (200, 244, 251, 316). In addition, type 3 fimbriae mediate adhesion to 

epithelial cells, from the respiratory and urinary tracts, and extracellular matrix 

proteins, such as collagen V, in vitro (133, 140, 148, 277, 296, 297). 

Type 3 fimbriae are encoded by the mrkABCDF operon (8, 78, 139). MrkA and 

MrkF are the major and minor subunits, respectively, which constitute the fimbrial 

rod and facilitate biofilm formation (139, 175). MrkD is the adhesin that mediates 

binding specificity and biofilm formation on extracellular matrix-coated surfaces (134, 

139, 148, 275), however its cognate receptor is still unknown. MrkB and MrkC are 

predicted to be chaperone and usher, respectively, which are responsible for the 

fimbrial assembly. A putative regulatory gene, mrkE, located upstream to mrkA has 

also been reported in K. pneumoniae IA565, which harbors a plasmid carrying the 

type 3 fimbrial genes (8). The mrk genes have been shown to reside at multiple 

genomic locations, including the chromosome (291), on conjugative plasmids (39, 

232) and within a composite transposon (225). The spread of the type 3 fimbrial gene 

between Enterobacteriaceae strains by lateral gene transfer has also been described 

(39, 233).  

 12



 

1.3. Cyclic-di-GMP signaling 

Bis-(3’-5’)-cyclic dimeric guanosine monophosphate (Cyclic-di-GMP or 

c-di-GMP), has emerged as a second messenger specific to the domain of Bacteria 

(151, 239, 250, 256, 293). c-di-GMP controls a variety of cellular processes, mainly 

biogenesis and function of extracellular components, flagella and fimbriae, and 

exopolysaccharide synthesis. The intracellular level of c-di-GMP in bacteria is 

modulated through the activity of di-guanylate cyclases (DGCs) that convert two 

molecules of GTP to c-di-GMP, and phosphodiesterases (PDEs) that linearize 

c-di-GMP to pGpG, which is subsequently hydrolyzed to GMP. DGCs are 

characterized by the active site GG[D/E]EF amino acid motif in the enzyme catalytic 

site (127, 201, 237, 259), whereas PDEs contain either the EAL domain or HD-GYP 

domain (45, 57, 255, 271, 294). Formation of c-di-GMP requires dimerization of two 

GGDEF domains, and c-di-GMP degradation can be mediated either by the EAL 

domain or by the less common HD-GYP domain. DGCs and PDEs usually harbor an 

N-terminal signal input domain that regulates the activity of its C-terminal catalytic 

GGDEF or EAL/HD-GYP domain (122, 151, 269). Besides, GGDEF domains are 

often found together with EAL or HD-GYP domains in a single polypeptide. The 

coexistence of opposing enzymatic activities in these ‘hybrid’ proteins has long been 

controversial and only a few reports suggest that bifunctional proteins may exist (92, 
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168, 298). It has also been demonstrated that degenerated GGDEF domain may retain 

substrate-binding capacities and provide GTP-dependent control of the activity of an 

EAL domain in a single peptide (57, 137, 158). The mechanism of the intramolecular 

coordination of GGDEF and EAL/HD-GYP domains in composite protein remains to 

be shown. 

GGDEF and EAL domain proteins are ubiquitous in bacteria but absent from 

archaea (103, 256). A single bacterial genome generally encodes many different 

members of these protein families (e.g. E. coli harbors 19 GGDEF and 17 EAL genes; 

Vibrio cholerae harbors 41 GGDEF, 22 EAL, and 9 HD-GYP genes) (103). Moreover, 

genomes were found to encode several GGDEF and EAL domain proteins with a 

particularly striking expansion in γ-Proteobacteria. This highly redundant and 

complex system are suggested to achieve signaling specificity through different 

modes of sequestration, including microcompartmentalization, temporal regulatory 

sequestration, and co-localization of the DGCs, PDEs, effector, and target molecules 

that constitute functional c-di-GMP signaling modules (151, 156, 238, 239, 256, 286, 

317). A computational analysis of 11248 GGDEF and EAL domain proteins in 867 

prokaryotic genomes also suggests that post-translational regulation and catalytic 

activity of these proteins play important roles in c-di-GMP signaling (278). As shown 

in Fig 1.1, in the genome of K. pneumoniae NTUH-K2044, ORFs encoding 11 
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GGDEF, 10 EAL, and 5 GGDEF-EAL domain proteins were found using a HMMER 

search (24, 81).  

The response to fluctuating cellular levels of c-di-GMP is mediated by a variety 

of specific effector proteins or RNAs that control specific cellular processes (269). 

Four types of c-di-GMP effector proteins are currently known (122), and the most 

prevalent example of such effectors are c-di-GMP-binding proteins harboring a PilZ 

domain (12). The PilZ domain proteins studied so far seem to be activated by 

c-di-GMP and to function by protein-protein interactions (34, 122). In some cases, the 

PilZ domain is directly attached to the C-terminus of the GGDEF, EAL and/or 

HD-GYP domains (12), or is linked to a domain that generates a molecular output (12, 

210, 231). BcsA, the catalytic subunit of cellulose synthase from Gluconacetobacter 

xylinus, is the first identified PilZ domain protein and activated via binding to 

c-di-GMP (205, 253, 319). The interaction of c-di-GMP with PilZ domains is further 

supported by binding and mutagenesis studies of several PilZ domain proteins (34, 56, 

210, 245, 258). These studies demonstrate c-di-GMP binding with sub-micromolar 

affinity dependent on residues in the RxxxR and D/NxSxxG sequence motifs 

conserved in PilZ domains (27). The high-affinity binding of c-di-GMP of PilZ 

domain protein is also supported by NMR studies of PA4608 from Pseudomonas 

aeruginosa (247). Besides cellulose synthesis, PilZ proteins have been demonstrated 
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to regulate flagellar activity (34, 56), twitching motility (9), alginate synthesis (210), 

biofilm formation, and virulence in different bacteria (245). In K. pneumoniae 

NTUH-K2044, three PilZ domain proteins were found (Fig. 1.1); two of them are 

contained in the C-terminus of putative cellulose synthases, and the other one, named 

MrkH (153), is a putative protein of unknown function.  

1.4. Thesis objectives 

Fimbriae are the most well-known adherence factors in Gram-negative bacteria 

and play a crucial role in the initial step of infection, thus we focused on the study of 

K. pneumoniae fimbrial adherence in this thesis. The objectives are to investigate the 

prevalence and expression of fimbriae in K. pneumoniae for a better understanding of 

its pathogenic mechanism. Two highly virulent K. penumoniae strains isolated from 

liver abscess, NTUH-K2044 and CG43 (belonged to K1 and K2 serotypes, 

respectively), are studied in parallel. The study flow is listed as following: 

Chapter 2 reports the identification of putative fimbrial gene clusters in the genome 

of K. pneumoniae NTUH-K2044. Besides type 1 and type 3 fimbrial genes, the others 

are novel and were designated Kpa, Kpb, Kpc, Kpd, Kpd, Kpf, and Kpg fimbriae. 

Prevalence analysis of the nine fimbrial gene clusters among K. pneumoniae clinical 

isolates was performed by PCR detection.    
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Chapter 3 characterizes the Kpc fimbriae which is prevalent in K. pneumoniae strains 

of serotype K1. Expression of Kpc fimbriae was found to increase bacterial 

biofilm-forming activity. A recombinase-mediated phase variation of the Kpc fimbriae 

expression is also elucidated. 

Chapter 4 presents analyses of the regulation of type 3 fimbriae expression. Roles of 

three genes encoding putative regulators, MrkH, MrkI, and MrkJ, on the expression of 

type 3 fimbriae were studied. A global iron uptake regulator, Fur, also appeared to 

affect the type 3 fimbriae expression, and this regulation was found to be mediated by 

the c-di-GMP signaling. Furthermore, environmental stimuli including Fe2+ and 

oxygenation that influence the expression of type 3 fimbriae were analyzed. 

Chapter 5 concludes with a comprehensive view and provides perspectives regarding 

further investigations on the fimbrial adherence of K. pneumoniae.  
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Fig. 1.1. Domain architecture of putative c-di-GMP signaling proteins encoded 

by the K. pneumoniae NTUH-K2044 genome. The locus tag (KP1_number) of the 

genes encoding (A) GGDEF, (B) EAL, (C) GGDEF/EAL, or (D) PilZ domain 

proteins was indicated. Analysis of protein functional domain, as indicated, was 

performed using the Pfam database provided online (http://www.sanger.ac.uk 

/Software/Pfam/). The identities of the proteins are also shown in blue: four EAL 

domain proteins (YjcC, FimK, MrkJ, and BlrP1) that have been described in K. 

pneumoniae (22, 153, 170, 252) and two PilZ domain proteins (putative cellulose 

synthases BcsA and AcsA) (249). Predicted domain with unknown function is shown 

by a twilled box.  
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2.1. Abstract 

Using HMMER search for genes encoding the Pfam fimbrial components in the 

genome of K. pneumoniae NTUH-K2044, nine distinct fimbrial gene clusters were 

identified. In addition to fim and mrk gene clusters, encoding type 1 and type 3 

fimbriae respectively, the other seven are novel and named kpa, kpb, kpc, kpd, kpe, kpf, 

and kpg. The presence of the fimbrial genes among 105 K. pneumoniae strains 

isolated from various infection sites was analyzed by PCR detection, and the kpb and 

kpc genes were found to be more prevalent (P < 0.0001) in the isolates of serotype K1. 

Besides, an RFLP analysis was performed among the 105 K. pneumoniae isolates 

which revealed most of the isolates possess a v1-like mrkD RFLP type.a 

 

 

 

 

 

a A part of this chapter has been published: 

Wu, C. C., Y. J. Huang, C. P. Fung, and H. L. Peng. 2010. Regulation of the 

Klebsiella pneumoniae Kpc fimbriae by the site-specific recombinase KpcI. 

Microbiology 156:1983-92. 
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2.2. Introduction 

A large number of fimbrial gene clusters are commonly present in a bacterial 

genome (192, 301, 305), which are believed to be expressed differentially in order to 

adhere to various host receptors during infection (144). In Salmonella enterica serovar 

Typhi (S. Typhi) CT18, 14 fimbrial gene clusters including a type 4 fimbrial operon, 

an orthologue of the agf (csg) operon, and 12 putative fimbrial operons of the 

chaperone-usher assembly class were identified (301). Prevalence study among 

different Salmonella isolates has revealed that an unique repertoire of fimbrial gene 

clusters is possessed by the strains of serotype Typhi, which is probably resulted in 

specific host adaptation (301).  

Among these Salmonella fimbriae, only two of them, fim and agf (csg), have 

been demonstrated to express on the surfaces of serotype Typhimurium cells by 

electron microscopy (79, 112, 190, 289). The remaining 11 fimbrial operons are 

poorly expressed when bacteria are grown under standard laboratory conditions (143). 

However, expression of some of the fimbriae could be detected by flow cytometry 

while the Typhimurium cells recovered from bovine ligated ileal loops at 8 h after 

infection (143). Seroconversion to 11 types of fimbriae was found indicating that a 

transient expression of each of the fimbriae induced the host immune responses (142).  
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Moreover, the individual deletion of six of the fimbrial operons affected the bacterial  

persistence in intestines of mice (318), and a strain carrying mutations of four of the 

fimbrial operons resulted in a 26-fold increase of LD50 to mice (306). 

Cross-regulation between these fimbrial operons have also been described (130, 131, 

326). Mutation of a fimbrial operon could activate the expression of another type of 

fimbriae (54, 274), further supporting a regulatory network involved in the expression 

of the multiple fimbriae.   

Sequence variation of the fimbrial adhesin affects not only binding specificity 

but also fimbrial activity. We have previously found that the mrkD gene, encoding the 

type 3 fimbrial adhesin, from K. pneumoniae clinical isolates could be classified into 

four restriction fragment length polymorphism (RFLP) types: mrkDv1, mrkDv2, 

mrkDv3, and mrkDv4 (140). The MrkD sequence variation determines the binding 

specificity and the assembly efficiency of type 3 fimbriae (46, 140).  

We initiated the study using bioinformatic tools to identify the fimbrial genes in 

the genome of K. pneumoniae NTUH-K2044, a liver abscess isolate of serotype K1 

(325). Prevalence study of the fimbrial genes was then employed among 105 K. 

pneumoniae clinical isolates from different infection sites. Besides, the mrkD-RFLP 

types of these clinical isolates were also determined. 
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2.3. Results 

2.3.1. Identification of the fimbrial gene clusters in K. pneumoniae NTUH-K2044 

Nine fimbrial gene clusters were identified using the HMMER search of the 

genome of K. pneumoniae NTUH-K2044. Each contained at least four genes, 

encoding a putative major pilin, a chaperone, an usher and an adhesin for the 

biosynthesis of fimbriae belonging to the chaperone-usher assembly class. As shown 

in Fig. 2.1, these include the type 1 and type 3 fimbrial gene clusters fim and mrk, and 

seven novel ones, namely kpa, kpb, kpc, kpd, kpe, kpf, and kpg. Multiple sequence 

alignment by CLUSTAL W showed that the amino acid sequences of these pilins and 

adhesins shared 26.5-36.4% similarity; chaperones and ushers shared a higher 

similarity ranging from 49.3 to 55.4%. The mrk-fim fimbrial genes are clustered and 

transcribed divergently (Fig. 2.1). This gene organization including the pecM, pecS 

and nicO homologues has been found to be conserved in the genomes of K. 

pneumoniae CG43, C3091, MGH78578 and 342 (95, 230, 291). The gene clusters kpf 

and kpg are also linked physically but transcribed convergently.  

BLAST analysis, using the sequences of the nine fimbrial gene clusters identified 

in K. pneumoniae NTUH-K2044 as templates, of the genome of K. pneumoniae 

strains MGH78578 and 342 (95, 230) showed that, except for kpc and kpf, the genes 
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were conserved in the three genomes. No homologue of the kpc genes was found in 

the strains MGH78578 and 342, while homologues of the kpf genes were found in the 

genome of MGH78578 but not of 342. Besides, except for the kpc genes, the other 

eight fimbrial gene clusters were also identified in the contig sequences of CG43 

(unpublished results from Dr. S.-F. Tsai, National Health Research Institutes, Taiwan).  

2.3.2. PCR screening for the presence of the fimbrial genes 

To investigate the prevalence of the nine fimbrial gene clusters among K. 

pneumoniae strains, a total of 105 K. pneumoniae clinical isolates, namely the TVH 

strains, from different infection sites were collected. Two specific primer pairs 

corresponding to the pilin- and adhesin-encoding genes were designed for PCR 

detection. Prevalence was determined on the basis of the presence of the PCR 

amplicons (Fig. 2.2). The analysis revealed the presence of kpa, kpd, kpe, kpg, fim, 

and mrk genes in most of the isolates, and the prevalence percentages were 99, 82, 93, 

97, 84 and 100%, respectively. The prevalence percentages for the kpb, kpc and kpf 

genes were lower at 52, 33 and 70% of the isolates, respectively. No obvious 

correlation between fimbrial type and disease could be identified. However, the kpb 

and kpc genes were shown to be more prevalent in K1 isolates (P<0.0001). As shown 

in Table 2.1, most of the clinical isolates of serotype K1 harbored kpb and kpc genes, 
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while non-K1 isolates carrying the kpb and kpc genes were much less frequent (32 

and 1%, respectively). The close association of Kpc fimbriae with serotype K1 

prompted the selection of the Kpc fimbriae for further study of the K. pneumoniae 

liver abscess pathogenic mechanism (Chapter 3). 

2.3.3. PCR-RFLP analysis of the mrkD genes 

A PCR-RFLP analysis previously described (140) was also employed to 

determine the mrkD type of the K. pneumoniae clinical isolates. The result showed 

that 87 of the 105 isolates possess mrkD gene of v1-like RFLP. The number of isolates 

harbored the v2-, v3-, and v4-like mrkD were respectively four, two, and four, while 

eight carried a novel mrkD RFLP type. The mrkD-RFLP types could not be associated 

with certain diseases. Interestingly, sequence variation was found in mrkD genes of 

same RFLP type. For example, K. pneumoniae NTUH-K2044, CG43, and TVH2 

harbor mrkD gene of v1-RFLP type while frameshift mutations were found in mrkD 

gene of CG43 and TVH2. These sequence variations which resulted in a premature 

termination of the mrkD translation may affect the type 3 fimbrial assembly and 

adherence properties as reported (46, 140).  
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2.4. Discussion 

Unlike some of the fimbrial gene clusters in S. Typhi CT18 and in Escherichia 

coli O157:H7 that contain either premature termination codons or frameshift 

mutations, the nine fimbrial gene clusters identified in K. pneumoniae NTUH-K2044 

appeared to be intact. Although these fimbrial gene clusters identified using 

bioinformatic tools are putative ones, we anticipate that, besides the type 1 and type 3 

fimbriae, the other seven are required for K. pneumoniae NTUH-K2044 infection at 

not yet identified environments.   

A specific repertoire of fimbrial operons has been proposed as a complex 

virulence factor involved in S. Typhi infections (144). Although no obvious 

correlation between the disease and fimbrial type was noted, 28 out of 29 K1 isolates 

possessed an identical repertoire of fimbrial gene clusters suggesting a role of the 

fimbrial repertoire in pathogenicity of K1 isolates (Table 2.2). Consistent with the 

other reports (100, 178), most of the liver abscess isolates (14 out of 18) were 

capsular serotype K1 (Table 2.3). Aside from that, the capsular serotypes of the K. 

pneumoniae isolates appeared no correlation with the infection sites (Table 2.3).  

As shown in Fig. 2.1, three ORFs encoding putative transcriptional factors, 

located upstream to the kpb, kpd, and kpf fimbrial genes, were designated kpbR, kpdR, 
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and kpfR, respectively. Regulator encoding genes are commonly found to be located 

adjacent to fimbrial operons (17, 94, 125, 141), such as papB for the E. coli P fimbrial 

gene cluster. PapB not only regulates the expression of P fimbriae but also affects the 

type 1 fimbriae expression (130, 131, 326). Besides, a mutant with a Tn5 insertion in 

the putative promoter region of kpgA decreased the expression of type 3 fimbriae in K. 

pneumoniae 43816 (33). These findings suggested a cross-talk regulation is generally 

present for the control of the expression of different fimbriae. Nevertheless, functional 

roles of these putative fimbriae and their cognate regulators remain to be studied. 

In many cases, mutation of a fimbrial operon did not affect or only moderately 

altered the bacterial virulence (25, 26, 191, 318). It may be due to a suboptimal 

experimental model or the gene-loss was functionally compensated by other 

adherence factors. It is also believed that multiple fimbriae may act synergistically or 

differentially to adhere to host cells during infection. Besides S. Typhi and 

Typhimurium, to our knowledge, genomic analysis of fimbrial gene clusters has also 

been described in Pseudomonas aeruginosa and E. coli O157:H7 (192, 222, 305). 

Herein, the genome-wide analysis of fimbrial gene clusters paved the way for further 

studies of K. pneumoniae fimbrial adherence.
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Table 2.1. Prevalence of kpb and kpc genes in K. pneumoniae isolates 
 

 

  

No. of kpb strain/total no. of strain isolated (%) No. of kpc strain/total no. of strain isolated (%) K. pneumoniae 

isolate K1 serotype other serotype K1 serotype other serotype 

LAa 14/14  3/4 14/14  1/4 

Bile   2/7   1/7 

Urine 1/1 3/13 1/1 0/13 

Sputum 3/3 3/11 2/3 1/11 

Wound 6/6 5/15 6/6 1/15 

Blood 5/5 4/17 5/5 2/17 

Ascites   4/9   1/9 

       

Total 29/29 (100)* 24/76 (32)* 28/29 (97)* 7/76 (1)* 

*, P < 0.0001; a, Liver abscess  
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Table 2.2. Repertoire of fimbrial genes among K. pneumoniae isolates with 

different K serotypes 

 
 
 

Presence of the fimbrial genes No. with the repertoire 

kpa kpb kpc kpd kpe kpf kpg fim mrk  
K1 

serotype

K2 

serotype 

Other 

serotype 

+ + + + + + + + + 28   5 

+ – – + + + + + + 0 1 21 

+ – – – + + + + + 0   8 

+ + – + + + + + + 1    6 

+ – – + + – + + + 0   6 

+ – – – – – + – + 0   6 

+ + – + + – + + + 0 5 4 

+ – – + + – + – + 0   1 

+ – – + + – + – + 0   2 

+ – – – + – + + + 0 1 1 

+ + + + + – + + + 0   1 

+ + – – + + + + + 0   1 

+   + – + + – + – + 0   1 

+ + – – + + + – + 0   1 

+ + – + + – – – + 0   1 

+ – + + + – + – + 0   1 

– + – – – – + – + 0   1 

+ – – + + + – – + 0   1 

+ – – + + – – – + 0   1 
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Table 2.3. K serotypes of the K. pneumoniae clinical isolates 

 
K. pneumoniae isolates (No.) 

K serotypes  

(No. of isolates) LAa (18) Bile (7) 
Urine 

(14) 

Sputum 

(14) 

Wound 

(21) 

Blood 

(22) 

Ascites 

(9) 

K1 (29) 14   1 3 6 5   

K2 (7) 2 1 1   3     

K3 (1)           1   

K4 (3)   1     1 1   

K5 (3)     1   1 1   

K6 (4) 1         2 1 

K7 (1)             1 

K8 (2)       2       

K9 (4)   1 2 1       

K12 (1)           1   

K13 (4)     1   1   2 

K14 (2) 1         1   

K15 (2)       1   1   

K16 (5)     1   3 1   

K17 (1)     1         

K20 (7)   2   1 3 1   

K22 (2)     1       1 

K25 (2)     2         

K28 (3)       1 1 1   

K30 (1)             1 

K31 (2)         1 1   

K38 (3)         1 2   

K39 (1)             1 

K42 (1)     1         

K44 (2)       1   1   

K49 (2)   1 1         

K54 (2)           2   

K57 (1)       1       

K62 (1)       1       

K64 (5)   1 1 2     1 

K70 (1)             1 
a Liver abscess 
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Fig. 2.1. Fimbrial gene clusters of the chaperone-usher-dependent assembly class 

in K. pneumoniae NTUH-K2044. The designation of putative fimbrial genes and the 

locus tag (KP1_number) of ORFs annotated in the K. pneumoniae NTUH-K2044 

genome are indicated. A total number of nine fimbrial gene clusters and genes 

encoding putative regulators are as shown. Each of the putative fimbrial operons is 

underlined. The putative functions of the ORFs are also shown. 
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Fig. 2.2. PCR amplicons of the pilin and adhesin encoding genes in K. 

pneumoniae NTUH-K2044. Lane M: Gene Ruler 1-kb DNA molecular size markers 

(Fermentas, Vilnius, Lithuania). The DNA fragments represent pilin (Δ) and adhesin 

(*) encoding genes, lanes 1 to 9, respectively of Kpa, Kpb, Kpc, Kpd, Kpe, Kpf, Kpg, 

type 3, or type 1 fimbriae. 
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CHAPTER 3 

 

Regulation of Kpc Fimbriae by the Site-specific 

Recombinase KpcI 
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3.1. Abstract 

In this study, the Kpc fimbria of Klebsiella pneumoniae NTUH-K2044 was 

characterized. Induced expression of the recombinant kpcABCD genes in Escherichia 

coli resulted in Kpc fimbriation and increased biofilm formation, suggesting that the 

kpc genes are sufficient to encode a functional fimbrial apparatus. A putative 

site-specific recombinase encoding gene kpcI and a 302-bp intergenic DNA flanked 

by 11-bp inverted repeats, namely kpcS, were identified in the upstream region of the 

kpcABCD genes. Using LacZ as the reporter, a dramatic difference in promoter 

activity of kpcS in two different orientations was observed and assigned as ON and 

OFF phase accordingly. Expression of kpcI appeared to be able to invert the kpcS in 

trans from phase OFF to ON and vice versa. Using the two plasmid system, 

expression of kpcA, encoding the major component of the Kpc fimbriae, could be 

observed upon the induced expression of kpcI. These results indicate that KpcI is 

involved in the regulation of Kpc fimbriation in a phase-variable manner.a 

 
a A part of this chapter has been published: 

Wu, C. C., Y. J. Huang, C. P. Fung, and H. L. Peng. 2010. Regulation of the 

Klebsiella pneumoniae Kpc fimbriae by the site-specific recombinase KpcI. 

Microbiology 156:1983-92. 
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3.2. Introduction 

Expression of Escherichia coli type 1 and P fimbriae are regulated by a 

mechanism called phase variation, which referred to a reversible switch between 

“all-or-none” (ON/OFF) expressing phase (116, 121, 307). The phase variation, 

resulted in variation of fimbriae expression between individual cells of a clonal 

population, is a genetic or epigenetic mechanism that allows the variability to be 

heritable. Phase-expression is reversible between generations, and the reversion 

frequency exceeds that of a random mutation (116, 121, 307).  

The phase-variation control of different fimbriae include conservative 

site-specific recombination (CSSR) for type 1 and MR/P fimbriae (4, 29, 181, 334), 

DNA methylation for P and Pef fimbriae (36, 125, 126, 223), and slipped-strand 

mispairing (SSM) for fimbriae of Bordetalla pertusis and Haemophilus influenzae 

(308, 320). The E. coli type 1 fimbriae represent the best-studied module for 

CSSR-mediated fimbriae expression. The oscillating ON-and-OFF expression of type 

1 fimbriae is correlated with the inversion of a 314-bp DNA sequence (fimS) 

immediately upstream of fimA, the major pilin encoding gene. The promoter located 

within fimS that drives the expression of the type 1 fimbriae is flanked by 9-bp 

inverted repeats (IRs). The fim operon is only expressed when the fimS is in the ON 
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orientation, which allows transcription of the fim operon. The two genes located 

upstream to fimS respectively encode FimB and FimE site-specific DNA 

recombinases of the λ integrase family (86, 227). The recombinase FimB inverts fimS 

in the ON-to-OFF and OFF-to-ON directions, whereas FimE determines 

predominantly the ON-to-OFF direction of fimS (31, 101, 206). As a result, 

alternations of the expression ratio of FimB and FimE modulate the phase variation of 

type 1 fimbriae (1, 75, 283, 321). Other types of fimbriae controlled by DNA 

recombinase-mediated phase variation include Proteus mirabilus MR/P fimbriae (181, 

334), enterotoxigenic E. coli CS18 fimbriae (132), and Photorhabdus Mad fimbriae 

(287). Unlike type 1 fimbriae, the phase variation of MR/P and Mad fimbriae is 

controlled by only one site-specific recombinase, MrpI and MadR, respectively, 

which catalyzed the DNA inversion in both directions (181, 287, 334).  

Prevalence study among K. pneumoniae isolates has demonstrated that the 

putative fimbrial genes kpcABCD are highly prevalent in isolates of capsular serotype 

K1 (Table 2.1). In addition, a gene encoding a putative DNA recombinase was 

identified in the upstream region of the kpcABCD genes (Fig. 2.1) and was named 

kpcI. Whether KpcI modulates a phase variable expression of kpcABCD genes is 

investigated. 
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3.3. Results 

3.3.1. Display of the Kpc fimbriae on E. coli surface 

In order to determine whether the kpcABCD genes encode a fimbrial apparatus, 

an E. coli fimbriae display system was used. The kpcABCD genes were 

PCR-amplified and cloned into pET30a, designated pKPC-7, to allow controlled 

expression by IPTG induction. Numerous thin and rigid fimbriae on the surface of E. 

coli Novablue (DE3) harboring pKPC-7 could be observed, while the E. coli 

harboring pET30a was afimbriate (Fig. 3.1). Expression of KpcA, the putative major 

pilin, could also be detected by Western blot analysis (Fig. 3.2). These results 

indicated that the kpcABCD genes are sufficient to produce a fimbrial apparatus. 

However, the growth rate of E. coli harboring pKPC-7, in comparison with that of E. 

coli Novablue (DE3) [pET30a] was obviously decreased even without IPTG induction. 

This could be a result of the overexpression of kpc genes, especially the kpcA (Fig. 3.2, 

lane 3). In case the biased growth rate impeded the characterization of the Kpc 

fimbriae, another expression plasmid pETQ that can be used for protein expression 

under T5lac promoter control in E. coli and K. pneumoniae was used. The pETQ 

plasmid carrying the kpcABCD genes, pKPC-36, was then transformed into E. coli 

HB101 which is an afimbriate bacterium. Expression of the kpcABCD genes was 
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tightly controlled under the T5lac promoter, and no obvious difference in growth rate 

between E. coli HB101 harboring pKPC-36 and E. coli HB101 harboring pETQ was 

noted. Using polyclonal KpcA antiserum, Western blot analysis revealed that KpcA 

was expressed (Fig. 3.3A), and fimbriation on the surface of the recombinant E. coli 

HB101 was also observed by fluorescence microscopy (Fig. 3.3B). E. coli HB101 

[pKPC-36] was thus used for the characterization of the recombinant Kpc fimbriae. 

3.3.2. Expression of Kpc fimbriae increased biofilm-forming activity 

Activity assessment of the recombinant Kpc fimbriae, including 

hemagglutination, cell adherence, and biofilm formation, was subsequently carried 

out. However, no hemagglutination activity against red blood cells from guinea pig, 

rabbit, or human (type A and type B) could be observed for the recombinant bacteria. 

Besides human epithelial cell lines Int407 (intestine), HCT-8 (intestine), Hep-2 

(larynx), and T24 (bladder), two human hepatocellular liver carcinoma cell lines, 

HepG2 and SK-HEP-1, were also used to assess the cell adherence activity of the Kpc 

fimbriae. The cell adherence assay was performed as described by Huang et al. (140). 

Although the recombinant E. coli HB101 exhibited differential adherence to these cell 

lines, Kpc fimbriation did not increase the adherence activity of the bacteria to any of 

the cells. On the other hand, as shown in Fig. 3.4, E. coli HB101 harboring pKPC-36 
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exhibited a higher level of biofilm-forming activity on the abiotic surface than that 

observed for the E. coli HB101 [pETQ], as assessed by direct observation after crystal 

violet staining or by quantitative measurement (P < 0.001). However, E. coli HB101 

harboring the type 1 fimbriae expression plasmid pAW69 or pAW67 (pETQ carrying 

the kpcABC genes) exhibited levels of biofilm-forming activity similar to those of 

bacteria carrying pETQ. This suggested a specific binding of the Kpc fimbriae to 

polystyrene wells and a positive role of Kpc fimbriae in biofilm formation. The 

expression of type 1 fimbriae encoded on pAW69 was also confirmed by yeast 

agglutination analysis (Fig. 3.5). 

3.3.3. The KpcI recombinase is probably the regulator for the Kpc fimbriae 

Multiple sequence alignment of the family of site-specific recombinases, 

including FimB/E of the type 1 fimbriae, MrpI of the MR/P fimbriae, FotS/T of the 

CS18 fimbriae, and KpcI, revealed four conserved residues, R42, H136, R139, and 

Y171, of the tyrosine recombinase family (Fig. 3.6) (5, 117). Between kpcI and kpcA, 

a 302 bp region flanked with a pair of 11-bp inverted repeats (IRs) was identified (Fig. 

3.7). These findings suggested a recombinase-mediated phase variation control of Kpc 

fimbriae. KpcI is thus predicted to be able to invert the DNA segment between the 

two invert repeats to regulate the expression of Kpc fimbriae. The putative invertible 
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DNA segment was designated kpcS (switch region).  

3.3.4. Expression of kpcI leads to the inversion of kpcS 

A PCR-based switch orientation assay (Fig. 3.8A) was subsequently employed 

to detect the kpcS inversions in K. pneumoniae NTUH-K2044 grown in various 

growth conditions, including LB broth, TSB, and M9 minimal medium with or 

without agitation respectively at 25, 30, and 37°C. Since enteropathogenic E. coli 

bundle-forming pilus are expressed when the bacteria are grown in Dulbecco's 

Modified Eagle's Medium (DMEM) (313), several tissue-culture media, including 

DMEM, Roswell Park Memorial Institute (RPMI), Minimum Essential Medium 

(MEM), Basal Medium Eagle (BME), and McCoy’ 5a medium, were also used to 

grow K. pneumoniae NTUH-K2044 (statically incubated at 37°C, in 5% CO2). 

However, the kpcS inversion was not observed under all the above growth conditions. 

The expression of KpcA was also not detected by Western blot analysis, suggesting an 

“OFF” phase of kpcS (kpcSOFF) in K. pneumoniae NTUH-K2044. In the kpcSOFF phase, 

a polypeptide of 196 amino acid residues, KpcI196, could be deduced (Fig. 3.6). To 

determine whether expression of the KpcI recombinase could invert the DNA, 

pKPCI196, an expression plasmid encoding KpcI196 driven by an araBAD promoter, 

was introduced into K. pneumoniae NTUH-K2044. As shown in Fig. 3.8B, the 
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addition of L-arabinose to induce expression of KpcI196 was able to invert the DNA. 

After the inversion, the DNA was isolated, sequenced and named kpcSON (Fig. 3.7). 

To assess the promoter activity of kpcSON or kpcSOFF, each DNA was cloned in front 

of the promoterless lacZ gene in pLacZ15 by transcriptional fusion, and the resulting 

plasmids were named pSY003 and pSY004, respectively. After the introduction of 

pSY003 or pSY004 into K. pneumoniae NTUH-K2044 ∆lacZ strain CCW01, the 

LacZ activity of the transformants was measured. As shown in Fig. 3.9, the kpcSON 

phase activity was much higher than that of kpcSOFF and pLacZ15, implying that the 

orientation of kpcS determines the transcription of the kpc genes. 

3.3.5. Effect of the recombinant KpcI196 on the switching of kpcS  

Unlike FimB/E and MrpI in which the inverted repeat left (IRL) is located in the 

non-coding region between the recombinase-encoding gene and the fimbrial operon 

(16), the IRL of kpcS is located in the coding region of kpcI (Fig. 3.7). The inversion 

of kpcSOFF is predicted to produce a polypeptide of 210 residues, KpcI210 (Fig. 3.6). 

The DNA fragment containing kpcI210 was amplified by PCR from the genomic DNA 

of the L-arabinose-induced K. pneumoniae NTUH-K2044 [pKPCI196] and then 

subcloned into pBAD33 to yield the plasmid pKpcI210. As shown in Fig. 3.10A, the 

induced expression of KpcI210 in K. pneumoniae NTUH-K2044 could invert kpcS in 
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the OFF-to-ON direction. Since the growth condition for K. pneumoniae to switch ON 

kpcS is yet to be identified, a two-plasmid system in E. coli was used to analyze the 

activity of KpcI196 and KpcI210 towards kpcS inversion in both directions. pKpcI196 

and pKpcI210 were respectively introduced into E. coli JM109 harboring either the 

“substrate plasmid” pKPC-ON or pKPC-OFF. As shown in Fig. 3.10B, the induced 

expression of KpcI196 or KpcI210 in the recombinant E. coli was able to invert kpcS in 

both ON-to-OFF and OFF-to-ON directions. These results suggested a similar 

catalytic activity possessed by the recombinant KpcI196 and KpcI210. 

3.3.6. KpcI-mediated expression of KpcA 

Although the recombinant KpcI was able to switch ON kpcS, the induced 

expression of KpcI in K. pneumoniae did not lead to the expression of KpcA (data not 

shown). This result implies the involvement of further regulators in the regulation of 

expression of Kpc fimbriae. To avoid possible factors in K. pneumoniae that impede 

the expression of KpcA, another two-plasmid system was constructed to analyze the 

KpcI-mediated phase variation in E. coli. The DNA fragment containing the 

kpcSOFF-kpcABCD region was PCR amplified and cloned into plasmid yT&A to yield 

pAW73. Subsequently, pKPCI196 and pKPCI210 were respectively introduced into E. 

coli harboring pAW73. Upon induction with L-arabinose, the induced expression of 
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KpcI196 or pKPCI210 was able to switch ON the expression of KpcA as detected by 

KpcA antiserum (Fig. 3.11). This indicated that the KpcI-mediated phase variation 

was able to control the expression of KpcA.  

3.3.7. The transcription of Kpc fimbrial genes is impeded in the kpcSON K. 

pneumoniae cells 

To investigate whether the production of KpcA could only be detected in the E. 

coli system (Fig. 3.11) but not in the phase ON K. pneumoniae cells, which may due 

to no transcription of mRNA, or the instability of kpcA mRNA or KpcA protein, 

plasmid pKPC-36 was introduced into K. pneumoniae NTUH-K2044. KpcA 

production was readily observed upon IPTG induction (Fig. 3.12), which implied that 

transcription of kpcA was low in the ON phase of K. pneumoniae cells.  

The kpcSON carried on pSY003 exerting with a remarkably high promoter 

activity (Fig. 3.9) contains the region between the two inverted repeats. It is possible 

that other factors participate in the transcriptional control of kpcA through binding to 

the 83-bp DNA between the IRR and kpcA start codon. To investigate this possibility, 

the DNA fragment encompassing kpcSON, IRR, and the 83-bp region was PCR 

amplified and then cloned in front of the promoterless lacZ gene in pLacZ15 by 

transcriptional fusion, and the resulting plasmid named pAW126 (Fig. 3.13). After the 
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introduction of pSY003 or pAW126 into the K. pneumoniae NTUH-K2044 ∆lacZ 

strain, the β-galactosidase activity of the transformants was measured. As shown in 

Fig. 3.13, the ΔlacZ strain harboring pAW126 exhibited a significantly lower level of 

β-galactosidase activity than that observed for ΔlacZ [pSY003]. This result suggested 

that in the ON phase, the transcription of kpcA is impeded by the DNA region 

between kpcS and kpcA.  
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3.4. Discussion 

The expression of Kpc fimbriae in K. pneumoniae NTUH-K2044 could not be 

observed with various environmental stimuli, including temperature, starvation, and 

aeration. Furthermore, no Kpc fimbriae expression was found in the 35 K. 

pneumoniae clinical isolates which possessed kpc genes (Table 2.1) grown statically 

overnight in LB broth or M9 medium at 25 or 37°C. The heterologous expression 

system was hence used for functional characterization of the Kpc fimbriae. The 

displayed Kpc fimbriae were shown to confer the recombinant E. coli a higher 

biofilm-forming activity. Bacterial biofilm formation on indwelling devices, such as 

catheters or endotracheal tubes, is a significant medical problem. The Kpc fimbriae 

may play a role in the development of infections in catheterized patients, and the 

possibility awaits further investigation. Besides kpcABCD genes, the putative fimbrial 

genes kpaABCDE and kpbABCD genes have also been heterogeneous expressed on 

the afimbriate E. coli surface and the fimbriation assessed by transmission 

electromicroscopy (138).  

Since a close association between liver abscess and K1 serotype has been 

reported, whether Kpc fimbriae could mediate a tissue-tropism in K. pneumoniae liver 

abscess is worth to study. However, the recombinant Kpc fimbriae on E. coli surface 
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did not increase the bacterial adherence to the human hepatocellular liver carcinoma 

cell lines, HepG2 and SK-HEP-1 (data not shown). The kpcC mutation had no 

apparent effect on K. pneumoniae NTUH-K2044 virulence as assessed using  

intragastrical inoculation to BALB/c mice (193). No anti-KpcA response could be 

identified in the sera of the K. pneumoniae liver abscess infection patients (193). How 

to assess the role of Kpc fimbriae in K. pneumoniae liver abscess pathogenesis 

remains challenging.   

In Pseudomonas aeruginosa, the four types of fimbriae belonged to the 

chaperone-usher assembly class (CupA, CupB, CupC, and CupD fimbriae) do not 

express under laboratory growth conditions (167, 213, 222, 254, 304, 305). 

Transposon mutagenesis was thus employed to select for the mutants expressing 

either of the Cup fimbriae for further studies. A transposon-insertion mutant library 

derived from K. pneumoniae NTUH-K2044 CCW01 strain carrying PkpcA-lacZ was 

also generated, and the mutants with color changes on the X-gal plate isolated. 

However, no blue colony was found in approximate 20,000 individual colonies of the 

mutant pool grown on X-gal plates.  

As shown in Fig. 3.10, the recombinant KpcI possessed activity to flip kpcS in 

both directions; therefore, the induced expression of KpcI in K. pneumoniae may lead 
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to both ON-to-OFF and OFF-to-ON inversions that occur simultaneously in different 

cells in the bacterial population. However, whether KpcI could invert the kpcS from 

ON-to-OFF direction in K. pneumoniae remains to be investigated. In E. coli type 1 

fimbriae, the fimS inversion which resulted in changes of the 3-untranslated region of 

fimE altered the mRNA stability and hence the FimE-mediated phase variation (284). 

Although the recombinant KpcI196 and KpcI210 possessed similar activities on the 

kpcS switch (Fig. 3.10), the possibility that different stability of the two kpcI 

transcripts in K. pneumoniae cells differentially control the kpcS inversion remains 

investigated.   

Several reports have shown that DNA recombinases other than FimB/E cause 

the fimS switch (38, 327). The BLAST search revealed no fimbrial recombinase gene 

other than fimB, fimE, and kpcI in the K. pneumoniae NTUH-K2044 genome. 

Whether a cross-regulation occurs between type 1 and Kpc fimbriae by the 

recombinases was also analyzed. The expression plasmid carrying fimB, fimE or kpcI 

was individually introduced into K. pneumoniae NTUH-K2044, the orientation of 

fimS and kpcS were then determined under the induced-condition. However, inversion 

of the fimS or kpcS could only be observed by the expression of their cognate 

recombinase (data not shown).  
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Fig. 3.1. Transmission electron micrographs of recombinant Kpc fimbriae. Left 

panel, E. coli Novablue (DE3) [pET30a]; right panel, E. coli Novablue (DE3) 

[pKPC-7]. Bars, 0.5 μm. 
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Fig. 3.2. Specificity of the KpcA antiserum. Proteins from total cell lysates of the 

recombinant bacteria were resolved in 15% (w/v) SDS-polyacrylamide gel and 

stained with Coomassie brilliant blue (left panel). The gel was subjected to Western 

blot analysis using KpcA antiserum (right panel). The recombinant protein 

His6::KpcA (asterisk) and KpcA (arrow) are marked. M, protein marker; Lanes 1, E. 

coli NovaBlue(DE3) [pET30a]; 2, E. coli NovaBlue(DE3) [pKPCA]; 3: E. coli 

NovaBlue(DE3) [pKPC-7]. 
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Fig. 3.3. Expression of Kpc fimbriae on recombinant E. coli. (A) Anti-KpcA 

Western blot analysis of E. coli HB101 harboring pETQ (lane 1) or pKPC-36 (lane 2). 

The expressed KpcA is indicated by an arrow. (B) Bright-field (left panel) and 

anti-KpcA immunofluorescence (right panel) microscopic analysis of E. coli HB101 

harboring pETQ or pKPC-36 (magnification x630). Bar, 10 μm. 
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Fig. 3.4. Biofilm forming activity of E. coli expressing the Kpc fimbriae. The 

development of biofilms of E. coli HB101 harboring pETQ, pKPC-36, pAW67, and 

pAW69 was observed (the lower panel) and quantified (the upper panel) as described 

in Methods. A higher biofilm-forming activity could be observed for E. coli HB101 

[pKPC-36]. The results are shown as the average of the triplicate samples. Error bars 

indicate standard deviations. *, P < 0.001 compared with HB101 [pETQ]. 
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Fig. 3.5. IPTG-induced expression of the fimbrial genes in E. coli HB101. Plasmid 

pETQ (lane 1), pKPC-36 (lane 2), pAW67 (lane 3), or pAW69 (lane 4) was 

introduced into E. coli HB101, respectively. Log-phase grown bacteria were induced 

with 0.5 mM IPTG for 3 h. (A) The expression of KpcA, indicated by an arrow, was 

analyzed by SDS-PAGE and anti-KpcA Western blot analysis. The expression of the 

major pilin FimA (approximately 18.3 kDa) of type 1 fimbriae is marked by an 

asterisk. M, protein marker. (B) Yeast agglutination. Ten microliter bacterial 

suspension (107 CFU/ml) was mixed with ten microliter yeast suspension (10 mg/ml) 

on a glass slide. After gentle shaking on orbital shaker for 5 min, a strong yeast 

agglutinating activity of E. coli HB101 harboring pAW69 could be observed. PBS, 

negative control.  
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Fig. 3.6. Alignment of the amino acid sequences of the fimbrial recombinases. 

Identical residues are shaded, the predicted critical residues involved in the DNA 

recombination are marked by asterisks, and the tyrosine residue which is predicted to 

be directly involved in the phosphoryl transfer reaction is indicated by an arrow. The 

difference in the C-terminal fifteen residues between KpcI196 and KpcI210 is boxed. 
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Fig. 3.7. Sequence analysis of the putative promoter region of the kpc gene cluster. 

The 500 bp upstream and 50 bp downstream regions of the kpcA translation start 

codon ATG (underlined) in the kpcSON phase are shown. The 11 bp inverted repeats 

are outlined by square boxes. The predicted -10 and -35 promoter regions are shaded. 

The kpcI210 translation stop codon TAA is also underlined.   
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Fig. 3.8. KpcI196-mediated inversion of kpcS. (A) Map of the invertible region, kpcS, 

in both OFF and ON orientations. The positions of the primers used in the PCR 

amplification, pcc081 and pcc082, and the sizes of the DNA fragments resulting from 

AflII digestion are as indicated. IRL, inverted repeat left; IRR, inverted repeat right. 

(B) Expression of recombinant KpcI196 resulted in a switch from the OFF to the ON 

phase. K. pneumoniae NTUH-K2044 transformed with pBAD33 or pKPCI196 was 

grown in M9 broth supplemented with 0.4% glucose (lanes 1 and 3) or L-arabinose 

(lanes 2 and 4) for 16 h with agitation at 37oC. The grown bacterial cultures were 

collected and then subjected to the switch orientation assay of kpcS. Lanes: M, DNA 

molecular size markers; 1 and 2, pBAD33 vector as a control; 3 and 4, pKPCI196.  
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Fig. 3.9. Determination of the promoter activities of kpcSON and kpcSOFF. The 

β-galactosidase activities (Miller units) of kpcSON::lacZ and kpcSOFF::lacZ in the K. 

pneumoniae NTUH-K2044 ΔlacZ strain CCW01 (ΔlacZ) carrying each of the reporter 

plasmids pSY003 (kpcSON), pSY004 (kpcSOFF), or pLacZ15 (vector only as a negative 

control) were determined from log-phased cultures grown in LB broth. The results are 

shown as an average of triplicate samples. Error bars indicate standard deviations. *, 

P < 0.0001 compared with ΔlacZ [placZ15] in the same growth phase. The growth 

curve (OD600) of the bacteria is also shown.  
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Fig. 3.10. The recombinant KpcI mediated the kpcS inversions in both directions. 

(A) Expression of recombinant KpcI196 or KpcI210 resulted in a switch from the OFF 

to the ON phase. K. pneumoniae NTUH-K2044 carrying pBAD33, pKPCI196, or 

pKPCI210 was grown in LB broth, supplemented with 0.4% L-arabinose, for 16 h with 

agitation at 37oC. Lanes: M, DNA molecular size markers. (B) E. coli JM109 

transformed with two plasmids was grown in LB broth, supplemented with 0.4% 

L-arabinose, for 16 h with agitation at 37°C. The grown bacterial cultures were 

collected and then subjected to the switch orientation assay of kpcS. The fragment 

sizes corresponding to the position of the switches are shown to the right of the panel.  
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Fig. 3.11. KpcI-mediated expression of KpcA in E. coli. Plasmid pBAD33, 

pKPCI196, or pKPCI210, as marked above the panels, was introduced into E. coli 

JM109 [pAW73]. E. coli carrying the two plasmids was grown in LB broth, and when 

growth reached mid-exponential phase, the expression of KpcI was induced by 

varying concentrations of L-arabinose: lanes 1, 5, and 9, no induction; lanes 2, 6, and 

10, 0.002% ; lanes 3, 7, and 11, 0.02%; lanes 4, 8, and 12, 0.2% L-arabinose induction. 

After 3 h induction, the bacteria were analyzed by anti-KpcA Western blot 

hybridization. The expression of KpcA is marked by an arrow. 
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Fig. 3.12. The T5lac promoter driven expression of kpcABCD genes in K. 

pneumoniae. Plasmid pETQ (lane 1) and pKPC-36 (lane 2) were introduced into K. 

pneumoniae NTUH-K2044, respectively. The IPTG-induced expression of kpcA was 

analyzed by SDS-PAGE (left panel) and anti-KpcA Western blot hybridization (right 

panel). Expression of KpcA is indicated by an arrow. M, protein marker. 
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Fig. 3.13. Determination of the promoter activities of kpcSON and kpcSON
*. The 

β-galactosidase activities (Miller units) of kpcSON::lacZ and kpcSON
*::lacZ in the K. 

pneumoniae NTUH-K2044 ΔlacZ strain CCW01 (ΔlacZ) carrying each of the reporter 

plasmids pSY003 (kpcSON), pAW126 (kpcSON
*), or pLacZ15 (vector only as a 

negative control) were determined from log-phased cultures grown in LB broth. The 

results are shown as an average of triplicate samples. Error bars indicate standard 

deviations. The growth curve (OD600) of the bacteria is also shown. The results are 

shown as the average of the triplicate samples. Error bars indicate standard deviations. 

*, P < 0.0001 compared with ΔlacZ [pSY003] in the same growth phase. 
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CHAPTER 4 

 

 

Regulation of the Expression of Type 3 Fimbriae 

in Klebsiella pneumoniae CG43 
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4.1. Abstract 

Type 3 fimbriae play an important role in Klebsiella pneumoniae biofilm 

formation. Nevertheless, how the type 3 fimbrial operon, mrkABCDF, is regulated is 

largely unknown. Downstream to the mrkF are three putative regulatory genes named 

mrkH, mrkI, and mrkJ. MrkH is a PilZ domain protein of putative binding activity to 

the second messenger c-di-GMP. MrkI is predicted as a LuxR-type transcriptional 

regulator. MrkJ has been reported as a c-di-GMP phosphodiesterase. 

Reverse-transcription PCR analysis showed that mrkH, mrkI, and mrkJ could be 

transcribed in a polycistronic mRNA. Furthermore, deletion of mrkI from K. 

pneumoniae CG43S3 appeared to abolish the production of MrkA, the major pilin of 

type 3 fimbriae, as assessed by Western blot analysis. The following 

promoter-reporter assay of mrkA verified that MrkI regulated the type 3 fimbriae 

expression at transcriptional level. Moreover, mutation of a conserved aspartate 

residue (D56), which is predicted as a putative target site for phosphorylation, of MrkI 

affected the type 3 fimbriae expression. MrkA production was slightly increased by 

the mrkJ-deletion, whereas no obvious effect was found by the mrkH-deletion. 

Nevertheless, an increased expression of type 3 fimbriae could be observed upon the 

induced expression of MrkH.  
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Analysis of the putative promoter sequences of mrkA and mrkHIJ operon 

revealed the ferric uptake regulator Fur binding elements. Western blot analysis 

showed that the deletion of fur from K. pneumoniae CG43S3 abolished the expression 

of MrkA. Moreover, the promoter activity of mrkA and mrkH were reduced in the 

Δfur strain. These suggested that Fur acted as an activator for the type 3 fimbriae 

expression. Interestingly, the overproduction of YdeH, an Escherichia coli c-di-GMP 

cyclase, appeared to activate the MrkA expression, whereas this activation was 

suppressed by deletion of mrkI or fur from K. pneumoniae CG43S3 [pYdeH]. Finally, 

we also found that the availability of oxygen could affect the expression of type 3 

fimbriae. The findings concluded a multi-factorial regulation of the expression of type 

3 fimbriae in K. pneumoniae CG43. 
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4.2. Introduction 

Klebsiella pneumoniae type 3 fimbriae, which are encoded by the mrkABCDF 

operon, play an important role in biofilm formation on biotic and abiotic surfaces (71, 

139, 148). By analyzing the available genome sequences of K. pneumoniae, three 

ORFs (namely mrkH, mrkI, and mrkJ) were found to locate downstream to the mrkF 

gene (Fig. 4.1). MrkH is predicted as a PilZ domain protein which is able to bind to 

c-di-GMP (12, 34, 56, 210, 245, 258), and MrkI is predicted as a LuxR-type 

transcriptional factor (153). MrkJ, an EAL domain protein, has been reported as a 

functional c-di-GMP phosphodiesterase (153). Deletion of mrkJ was found to increase 

the type 3 fimbriae expression and biofilm-forming activity which is speculated to be 

resulted from the accumulation of intracellular c-di-GMP (153). However, how MrkH 

and MrkI exert regulation on the expression of type 3 fimbriae awaits investigation. 

Iron is essential to most bacteria for growth and reproduction by playing as a 

cofactor for electron transport chain and various enzymes (221). Under anaerobic 

conditions, iron is in the ferrous form (Fe2+), which can be taken up by bacteria 

directly using transporter such as EfeUOB, FeoAB, MntH or SitABCD (14, 40, 111). 

Under aerobic conditions, Fe2+ is oxidized to the ferric (Fe3+) state, which forms 

insoluble ferric-hydroxides at neutral pH resulting in poor iron availability (221). 
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Thus, bacteria utilized intricate iron transporting systems, which are able to dissolve 

and transport ferric iron under aerobic conditions. Such systems involve the secretion 

of high-affinity, low-molecular-weight, Fe3+-chelating compounds called siderophores 

to form ferrisiderophore complexes with Fe3+ (166, 221). These complexes are 

subsequently taken up by bacteria through specific transport systems (166). 

Iron-uptake systems are also considered as virulence factors of pathogenic bacteria 

since iron availability is generally restricted in vivo (266). 

Under aerobic conditions, however, excess iron tends to catalyze the generation 

of damaging free radicals which causes toxicity to bacteria (16). A tight regulation of 

iron-uptake systems is thus required. Genes responsible for the uptake and 

metabolism of iron are generally regulated by the ferric uptake regulator (Fur) in 

many bacteria (6, 41, 84, 120). Under iron-repletion conditions, Fur binds iron and 

dimerized, and the Fe2+-Fur dimers bind to a 19-bp consensus DNA sequence, the Fur 

box (GATAATGATwATCATTATC; w=A or T), in target promoters (19, 85, 110). 

Binding of Fur at the promoters impedes the binding of RNA polymerase, thereby 

preventing transcription from these genes. Not only is Fur involved in regulating iron 

homeostasis, it is also participated in bacterial colonization, oxidative stress response, 

toxin secretion and virulence (41). In some cases, Fur functions as an activator and 

even to regulate certain genes in the absence of the iron (41). Recently, we have 
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shown that Fur repressed the expression of the mucoid factor RmpA and then 

decreased the biosynthesis of capsular polysaccharide (CPS) in K. pneumoniae CG43 

(53).  

Bis-(3’-5’)-cyclic dimeric guanosine monophosphate (Cyclic-di-GMP or 

c-di-GMP) is an ubiquitous second messenger which regulates a variety of cellular 

processes, including biogenesis of fimbriae, flagella, and capsule, in bacteria (151, 

239, 250, 256, 293). The elevated level of intracellular c-di-GMP has been reported to 

activate the expression of type 3 fimbriae and fur in K. pneumoniae and in 

Escherichia coli, respectively (153, 209). In this study, deletion effects of mrkH, mrkI, 

mrkJ and fur on the type 3 fimbriae expression were analyzed. The presence of 

Fur-mediated regulation on the transcription of mrk genes was also investigated.  
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4.3. Results 

4.3.1. mrkHIJ is transcribed in a polycistronic mRNA 

As shown in Fig. 4.1, three ORFs designated as mrkH, mrkI, and mrkJ were 

found to locate downstream to the type 3 fimbrial genes. mrkH, mrkI, and mrkJ 

appear to be transcribed in the same direction, and the intergenic regions of 

mrkH-mrkI and mrkI-mrkJ are only 5- and 143-bp, respectively, suggesting that the 

three genes could be transcribed in a transcriptional unit. To demonstrate the operon 

structure, reverse transcription PCR (RT-PCR) reactions were performed with total 

RNA from K. pneumoniae CG43S3 and specific primer pairs. As shown in Fig. 4.2, 

the PCR products b and c, respectively for the junction of mrkH-mrkI, and mrkI-mrkJ, 

were obtained, suggesting the three products derived from a single transcription unit. 

Expression of mrkH, mrkI, and mrkJ were also confirmed (Fig. 4.2- d, e, and f). In 

addition, a putative internal promoter located in the 143-bp intergenic region between 

mrkI and mrkJ could be predicted using the BPROM software (http://www.softberry. 

com/berry.phtml).  

4.3.2. Deletion of mrkI represses the expression of type 3 fimbriae 

To investigate whether MrkH, MrkI, and MrkJ play regulatory roles on the 

expression of type 3 fimbriae, specific gene-deletion mutants in K. pneumoniae 
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CG43S3 was generated individually. As shown in Fig. 4.3, the Western blot 

hybridization using MrkA antiserum revealed that the expression of MrkA was 

abolished in the ΔmrkI strain. A slightly increase of MrkA amount, approximately 

1.67 fold, was found in the ΔmrkJ strain, which is consistent with the previous report 

(153), while the deletion of mrkH had no apparent effect.  

To complement the mrkI-deletion effect, the mrkI gene was cloned into various 

plasmids including pACYC184 (44), pRK415 (159), pETQ and pBAD33 (114, 324), 

and then introduced into the ΔmrkI strain, respectively. However, the expression of 

MrkA could not be complemented by any of the mrkI-expression plasmids (data not 

shown). Thus, the mrkI gene and its approximately 1-kb adjacent regions were cloned 

into the suicide vector pKAS46 (282), and the resulting plasmid pWY45 was 

introduced into the ΔmrkI strain to generate a chromosomal integrated 

mrkI-complemented strain CCW41. The expression of MrkA could be restored in the 

CCW41 strain but not in the control strain CCW40 whose chromosome was 

integrated by pWY28 carrying only the adjacent regions of mrkI (Fig. 4.3). These 

results suggest that MrkI plays a positive role on the type 3 fimbriae expression. 

4.3.3. Identification of the transcription start site of mrkA 

Prior to examining the effect of MrkI on type 3 fimbriae expression, a rapid 
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amplification of 5’ complementary DNA ends (5’-RACE) analysis of mrkA was 

performed to identify its promoter. As shown in Fig. 4.4A, PCR product of single 

DNA band was obtained using either primer pair. Sequence analysis of the PCR 

clones revealed that the transcription starts at the G nucleotide positioned -204 

relative to the translational start site of MrkA (Fig. 4.4B). A conserved -10 and -35 

promoter sequence of σ70 and a conserved ribosomal binding sequence (RBS) could 

be readily identified.  

4.3.4. Deletion of mrkI decreases the transcription of mrkA 

Mapping of mrkA transcription start allowed localization of the promoter region. 

As shown in Fig. 4.5, three promoter-reporter plasmids pmrkA-P1, pmrkA-P2, and 

pmrkA-P3, each carrying a lacZ transcriptional fusion to different promoter regions of 

mrkA, were respectively introduced into K. pneumoniae CG43S3 ΔlacZ and 

ΔmrkIΔlacZ strains. The promoter activity measurements revealed that the deletion of 

mrkI reduced the activity of the P1 and P2. While the P3, of which the 

above-identified -10 and -35 sequences had been removed, had no promoter activity 

(Fig. 4.5). The result indicates that MrkI affects the expression of type 3 fimbriae at 

transcriptional level.  
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4.3.5. Activity of MrkI is probably affected by phosphorylation 

The MrkI protein contains a LuxR-like helix-turn-helix (HTH) DNA binding 

domain. Several members of the LuxR family are response regulators (RR) which act 

as transcriptional activators or repressors. A common post-translational modification 

of RR is phosphorylation at a conserved aspartate residue (D) in the N-terminal 

receiver domain performed by a sensor histidine kinase (HK) or by 

autophosphorylation. A RR and its cognate HK form a “two-component system”, 

which is a widespread signal transduction system in bacteria (104, 129, 203, 288). 

Phosphorylation of the conserved aspartate in the N-terminal receiver domain of the 

RR activates the protein by inducing conformational changes which facilitate 

interaction of the RR with the target DNA (202, 288). Furthermore, some RRs have 

been shown to autophosphorylate in vitro in the presence of acetyl-phosphate (51, 194, 

272), which has been proposed to be a global signal in bacteria (207). As shown in Fig. 

4.6A, a conserved aspartate residue (D56) which is the putative site for 

phosphorylation could be found in the N-terminal region of MrkI, suggesting MrkI is 

a RR activated by phosphorylation. 

To determine the role of the conserved D56 on MrkI-mediated type 3 fimbriae 

expression, the site-directed mutants with single amino acid substitution of the 
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aspartate D56 to alanine (D→A) to prevent from phosphorylation (66, 196), or to 

glutamate (D→E) to mimic the phosphorylated state (113, 164, 172, 176) were 

created. As shown in Fig. 4.6B, introduction of the mrkI allele encoding MrkID56E did 

not affect the expression of MrkA. By contrast, the MrkA production was 

dramatically reduced upon introduction into the chromosome with the mutant allele 

encoding MrkID56A. This result suggests that MrkI is a response regulator that is 

activated via phosphorylation of the D56 residue by an un-identified kinase.  

4.3.6. Overproduction of MrkH increases the expression of type 3 fimbriae  

The PilZ family of proteins have been reported as c-di-GMP effectors (122). In K. 

pneumoniae NTUH-K2044, three PilZ domain proteins could be found (Fig. 1.1). In 

addition to mrkH, the other two ORFs (locus tag: KP1_5225 and KP1_5237) were 

predicted to encode cellulose synthase subunits. In many bacteria, deletion or 

overexpression of pilZ genes have been reported to affect bacterial motility, 

biosynthesis of fimbriae and exopolysaccharide, biofilm formation, and virulence (9, 

34, 56, 210, 245). As shown in Fig. 4.7, the conserved motifs RxxxR and D/NxSxGG, 

which play critical roles in c-di-GMP binding in many PilZ domain proteins (27), 

could also be found in MrkH. 

Although deletion of mrkH did not affect the MrkA production (Fig. 4.3), the 
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introduction of a plasmid pMrkH carrying mrkH into K. pneumoniae CG43S3 was 

found to activate the expression of type 3 fimbriae (Fig. 4.8). Furthermore, the 

induced-expression of mrkH in K. pneumoniae NTUH-K2044, which generally 

carrying no detectable MrkA expression, also activated the MrkA production (data not 

shown), suggesting an involvement of MrkH in the regulation of type 3 fimbriae 

expression. 

In addition to the C-terminal PilZ domain, MrkH contains an N-terminal 

sequence of unknown function. To further analyze its function, DNA fragments 

encoding the N-terminus (MrkHN, residues 1 to 105) and the PilZ domain (PilZ, 

residues 82 to 234) of MrkH were isolated and cloned into pETQ to generate pMrkHN 

and pPilZ, respectively. A R111D mutation, predicted to abolish the c-di-GMP binding 

ability (27, 258), was also introduced into MrkH and PilZMrkH (MrkH* and PilZ*) and 

the DNAs were cloned into pETQ to generate pMrkH* and pPilZ*, respectively. As 

shown in Fig. 4.8, the induced-expression of MrkH*, PilZ, PilZ*, or MrkHN in K. 

pneumoniae CG43S3 had no apparent effect on the expression of type 3 fimbriae, 

These results suggest that the N-terminus, the PilZ domain, and the R111 residue of 

MrkH are required for the MrkH-mediated activation of type 3 fimbriae expression. 

Whether MrkH could interact with c-di-GMP and how MrkH regulates gene 

expression await further investigation.  
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4.3.7. Deletion of fur represses the expression of type 3 fimbriae 

Sequence analysis of the promoter regions of mrkA and mrkHIJ operon revealed  

putative 19-bp Fur-binding sequences (19, 85, 110), respectively located at -206 to 

-188 relative to the MrkA start codon and -119 to -101 relative to the MrkH start 

codon. As shown in Fig. 4.9A, both the Fur box-like sequences harbor 12/19 identity. 

To investigate if Fur plays a regulatory role on the expression of type 3 fimbriae, K. 

pneumoniae CG43S3 and its isogenic Δfur strain were analyzed by Western blot 

analysis using MrkA antiserum. As shown in Fig. 4.9B, the deletion of fur abolished 

the expression of MrkA, and introduction of a fur-carrying plasmid, pfur, into Δfur 

strain could resotre MrkA expression. Moreover, the promoter-reporter assay of PmrkA 

showed that the deletion of fur reduced the activity of the mrkA promoter, and the 

reduction level was similar to the deletion effect of mrkI (Fig. 4.9C). These results 

suggest that Fur positively regulates the expression of type 3 fimbriae at 

transcriptional level.  

4.3.8. Deletion of fur and mrkI represses the activity of PmrkH 

To investigate if Fur could also regulate the expression of mrkHIJ operon, the 

promoter reporter assay of PmrkH was performed. The DNA fragment encompassing 

the putative promoter region of mrkH was cloned in front of the promoter-less lacZ of 
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placZ15 to generate pAW175. Since a putative RcsAB-binding sequences could also 

be identified in the upstream region of mrkH (Fig 4.2), the reporter plasmid pAW175 

were introduced individually into K. pneumoniae CG43S3 ΔlacZ and its isogenic Δfur, 

ΔrcsA, and ΔrcsB strains for promoter activity measurements. As shown in Fig. 4.10, 

the activity of the putative promoter of mrkH was decreased by the fur-deletion, while 

deletion of rcsA or rcsB did not cause apparent effect. The promoter activity of mrkH 

was also decreased in the ΔmrkI strain, suggesting an auto-regulation of MrkI on the 

mrkHIJ operon; while no obvious effect was found by the mrkH-deletion. Our results 

suggest that Fur and MrkI activate the promoter activity of mrkH. Since MrkI acted as 

an activator of the type 3 fimbriae (Fig. 4.3), it is likely that Fur indirectly regulates 

the type 3 fimbriae expression via MrkI.  

4.3.9. Extracellular iron availability affects the expression of type 3 fimbriae  

Since Fur has been reported to regulate gene expressions both in Fe2+-dependent 

and -independent manners (41), we analyzed effects of iron-depletion and 

iron-repletion on the expression of type 3 fimbriae in K. pneumoniae CG43S3. As 

shown in Fig. 4.11, addition of 200 μM of the iron chelator 2, 2-dipyridyl (Dip) in LB 

medium (containing approximately 18 μM of iron) decreased the MrkA production. 

Moreover, the addition of 60 μM FeSO4 in M9 medium (containing approximately 2 
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μM of iron) caused an apparent increase in the MrkA production. Besides, no obvious 

MrkA production was found in the Δfur strains grown in all the above assay 

conditions. These results support the conclusion that Fur activates the expression of 

type 3 fimbriae in a Fe2+-dependent manner.    

4.3.10. Fur and MrkI are required for the c-di-GMP-activated expression of type 

3 fimbriae 

The second messenger c-di-GMP has been demonstrated to activate the 

expression of fur and type 3 fimbriae (153, 209). As shown in Fig. 4.12, the induced 

expression of the E. coli GGDEF domain protein YdeH (154), a c-di-GMP cyclase, in 

K. pneumoniae CG43S3 could increase the expression of type 3 fimbriae assessed by 

anti-MrkA Western blot hybridization. In the Δfur or ΔmrkI strains, the increase of 

MrkA production by YdeH expression was no longer observed (Fig. 4.12). Expression 

of the AADEF mutant of YdeH (YdeHAADEF), which has been reported to cause an 

impaired cyclase activity (280), had also eliminated the effect on the elevation of 

MrkA production (Fig. 4.12). These results indicated that the elevated cellular level of 

c-di-GMP by inducing expression of YdeH activates the expression of type 3 fimbriae; 

moreover, Fur and MrkI are likely involved in this c-di-GMP-mediated activation. 

As shown in Fig. 4.13, the induced-expression of YdeH in ΔmrkH strain still 
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increased MrkA amount, implying that MrkH is not required for this activation. In 

addition to PilZ domain proteins, other protein effectors or RNA effectors for 

c-di-GMP signaling have been described in many bacteria (122). It is possible that 

effectors other than MrkH could bind to c-di-GMP and regulate the type 3 fimbriae 

expression in K. pneumoniae. The MrkH-activated expression of the type 3 fimbriae 

could still be observed in the Δfur, ΔmrkI, or ΔfurΔmrkI strain (Fig. 4.13), suggesting 

Fur or MrkI is not required for the MrkH-mediated activation. 

4.3.11. Knockout of fur and mrkI decreases K. pneumoniae biofilm formation 

Expression of type 3 fimbirae has been associated with K. pneumoniae biofilm 

formation (71, 139, 148). As shown in Fig. 4.14, the deletion of mrkI decreased the 

bacterial biofilm-forming activity to a similar level as that of the ΔmrkA strain, and 

the deleting effect of mrkI could be restored in the CCW41 strain. On the other hand, 

the deletion of fur only caused a slight reduction of K. pnuemoniae biofilm-forming 

activity. We have previously described that the deletion of fur causes an 

overproduction of CPS (53), another important determinant in biofilm formation, 

which may impede the assessment of the type 3 fimbriae-mediated biofilm-forming 

activity. Intriguingly, deletion of mrkJ resulted in a decrease of biofilm amount, which 

is opposite to the previous report (153). This discrepancy may be due to different K. 
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pneumoniae strains (CG43 and IApc35) and/or culturing conditions used in the 

experiments. Besides, the mrkH-deletion did not affect the bacterial biofilm-forming 

activity in the assay condition. These results suggested that both Fur and MrkI could 

regulate the type 3 fimbriae-mediated biofilm formation.  

4.3.12. The expression of type 3 fimbriae under the oxygen-limiting conditions 

Environmental stimulus that regulates the expression of type 3 fimbriae is yet to 

be identified. A previous study has demonstrated that K. pneumoniae grown in 

glycerol minimal medium possess stronger type 3 fimbrial activity than that grown in 

glucose minimal medium (275). It suggests that carbon sources may affect the 

expression of type 3 fimbriae. Thus, analysis of the type 3 fimbriae expression was 

performed while K. pneumoniae CG43S3 grown in M9 minimal medium 

supplemented with 0.4% glucose, glycerol, mannose, galactose, arabinose, or lactose. 

The bacteria were grown at 37oC with agitation for 16 h and then subjected to Western 

blot analysis using MrkA antiserum. However, no apparent difference in MrkA 

production was noted (Fig. 4.15A).  

Both the expression of type 1 and MR/P fimbriae have been reported to be 

increased during reduced oxygenation (173). The MR/P fimbriae do not express when 

P. mirabilis is grown in highly aerated broth culture, while increases in broth volume 
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results activation of the fimbriation (173). It is known that culturing condition with 

poor aeration results in a reduction of oxygen (173), and good aeration results from 

constant agitation and a large surface-to-volume ratio of the culture medium to the air; 

while poor aeration results from culturing a large volume in a small tube. To 

determine if oxygen level could affect the expression of type 3 fimbriae, we cultured 

bacteria in upright (rather than tilted) culture tubes or added a mineral oil overlay, 

which prevents direct oxygen exchange between broth and air. Overnight K. 

pneumoniae CG43S3 culture was 1:100 in volume subcultured into 1-, 3-, or 5-ml 

fresh LB broth and then subjected to incubation for another 20 h. As shown in Fig. 

4.15B, the type 3 fimbriae expression was relatively low in the 1- and 3-ml cultures. 

In upright tube with 5-ml culture, the MrkA amount was obviously increased, and 

overlay with a mineral oil further increase the MrkA production. Although the oxygen 

level of the cultures remains to be determined, this result implies that the availability 

of oxygen affects the expression of type 3 fimbriae.   

The reduced oxygenation effect on type 3 fimbriae expression was also analyzed 

in K. pneumoniae NTUH-K2044, and the CG43S3 mutant lacking fur or mrkI (Fig 

4.15C). Compared to CG43S3, the expression level of MrkA in NTUH-K2044 was 

relatively low, suggesting the two clinical isolates regulate the type 3 fimbriae 

expression in different manners. The reduced oxygenation also caused a slight 
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increase of the MrkA production in NTUH-K2044. In the highly aerated culturing 

condition, either mrkI- or fur- deletion abolished the type 3 fimbriae expression; 

however the fur-deletion effect was partially restored upon reducing the aeration (Fig. 

4.15C). These results suggest that the availability of oxygen affects type 3 fimbriae 

expression and also plays a role in the Fur-MrkI regulatory pathway. 
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4.4. Discussion 

The expression of fimbrial genes are usually controlled by their adjacent genes 

encoding transcriptional regulators, such as PapB/I for P fimbriae (17, 94, 125, 141), 

FimW/Y/Z for Salmonella type 1 fimbriae (261), and MrpJ for MR/P fimbriae (173, 

182). In K. pneumoniae CG43, deletion of mrkI, located downstream to the type 3 

fimbrial genes mrkABCDF, resulted in a significant decrease of MrkA production (Fig. 

4.3). The promoter-reporter assay also showed that the mrkA promoter activity was 

decreased by the mrkI-deletion (Fig. 4.5), suggesting that MrkI positively regulates 

the expression of type 3 fimbriae at transcriptional level.  

Interestingly, a slight increase of type 1 fimbriae expression was also found in 

the ΔmrkI strain, which is assessed by mannose-sensitive yeast agglutination, Western 

blot analysis against FimA antiserum, and orientation analysis of the fim switch 

(Wei-Yun, Cheng, unpublished data). In addition, the deletion of mrkA caused an 

increase of type 1 fimbriae expression by an unknown mechanism (273). Whether 

MrkI plays a regulatory role in this counter-expression remains to be investigated. 

Besides, a Western blot analysis using FimA antiserum revealed that the deletion of 

fur from K. pneumoniae CG43S3 has no apparent effect on type 1 fimbriae 

expression. 

 81



 

Sequence analysis of MrkI revealed a LuxR-type transcriptional factor with an 

N-terminal regulatory domain and a C-terminal DNA-binding domain. Activation of 

the LuxR type regulator could be achieved by one of four mechanisms: (i) 

two-component system regulators that activated by phosphorylation on an aspartate 

residue (28, 202); (ii) regulators which are activated, or in very rare cases repressed, 

when bound to quorum-sensing molecules such as N-acyl homoserine lactones (235); 

(iii) autonomous effecter domain regulators, without a regulatory domain (77); (iiii) 

Multiple ligand-binding regulators (270). The sequence alignment and point mutation 

study showed that MrkI may be activated via phosphorylation at its D56 residue for 

the expression of the type 3 fimbriae (Fig. 4.6). In order to carry out an 

electrophoresis mobility shift assay (EMSA), the recombinant MrkI fused with 

MBP-tag has been constructed to resolve the problem of the aggregates resulted from 

the recombinant MrkI proteins fused with 6xHis-tag or GST-tag. The current data 

provided by Dr. Ching-Ting Lin (School of Chinese Medicine, China Medical 

University) indicated that this recombinant protein was able to bind PmrkA only after 

the addition of the phosphodonor acetyl-phosphate in the reaction mixture. These 

results suggest that the phosphorylated MrkI directly regulates the expression of type 

3 fimbriae. MrkI appeared to be an orphan regulator since no sensor kinase encoding 

gene could be found in the adjacent region. The MrkI cognate sensor remains to be 
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identified. 

As shown in Fig. 4.2, the RT-PCR analysis revealed that mrkHIJ could be 

transcribed in a polycistronic mRNA. However, the deletion of mrkI or mrkJ resulted 

in an opposite effect on MrkA production (Fig. 4.3). This may result from additionally 

different regulation of mrkJ transcription by another promoter located in the 143-bp 

intergenic region between mrkI and mrkJ. The deletion of mrkH did not affect the type 

3 fimbriae expression (Fig. 4.3); however, the overproduction of MrkH increased the 

amount of MrkA (Fig. 4.8). This suggested that, in particular growth conditions, 

MrkH also plays a role in the regulation of expression of type 3 fimbriae. An optimal 

growth condition for assessing the mrkH-deletion effect remains to be shown. As 

shown in Fig. 4.7 and Fig. 4.8, the R111 residue, the N-terminus of MrkH, and the 

C-terminal PilZ domain are all required for the MrkH-activated type 3 fimbriae 

expression.  

The quantitative real-time-PCR (qRT-PCR) analysis indicated that the induced 

expression of MrkH significantly activated the mRNA level of mrkA (Dr. Ching-Ting 

Lin, unpublished data), suggesting that MrkH activates the expression at 

transcriptional level. The PilZ domain proteins have been reported to bind to 

c-di-GMP and then exert their function by protein-protein interaction (34, 122). In 
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Xanthomonas, the binding between PilZ domain proteins to an ATPase (PilB) and an 

EAL domain protein (FimX) regulate the type IV pilus biosynthesis (115). If 

protein-protein interactions occur between MrkH, MrkI, and MrkJ for the regulation 

of type 3 fimbriae expression awaits to be studied. 

As shown in Fig. 4.9C and Fig. 4.10, the promoter activity of mrkA and mrkH 

were decreased by the fur-deletion. To ascertain if Fur could directly interact with the 

promoter regions of mrkA and mrkH, an EMSA has been performed by Dr. 

Ching-Ting Lin. The purified recombinant Fur protein was found to be able to bind to 

PmrkH but not to PmrkA, suggesting a direct Fur regulation on the mrkHIJ operon. 

Besides, the qRT-PCR analysis showed the expression of mrkA, mrkH, and mrkI, but 

not mrkJ, were reduced by the fur-deletion, and the deletion effects could be 

complemented by introducing a fur-expressing plasmid into the Δfur strain (Dr. 

Ching-Ting Lin, unpublished data). These findings suggest that Fur indirectly 

regulates the type 3 fimbriae expression via MrkI. 

We have previously demonstrated that the CPS biosynthesis of K. pneumoniae 

CG43S3 is regulated in coordination by multiple regulators RcsB, RcsA, RmpA, 

RmpA2, and Fur (53, 171, 183-185). Since Fur is also an activator for the expression 

of type 3 fimbriae, a cross-regulation by Fur on the expression of CPS and type 3 
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fimbriae could be predicted. To further indentify regulators involved in this 

cross-regulation, Western blot analysis using MrkA antiserum was performed among 

the individual strains lacking CPS regulatory genes including rcsB, rcsA, kvhA, kvgA, 

rmpA, rmpA2, or rpoS. However, only a slight decrease (approximate 43%) of MrkA 

production was found in the ΔrcsB strain (Fig. 4.16). Whether RcsB is involved in the 

regulation of type 3 fimbriae expression remains to be studied. Besides, the CPS 

biosynthesis was not affected by the mrkI-deletion (data not shown).  

Fur has been implicated in iron uptake and metabolism, oxidative stress response, 

colonization, and virulence in many bacteria (41). Although Fur is predicted to exert 

similar function in K. pneumoniae, we have shown that, besides iron-uptake systems 

(185), Fur also participates in the regulation of CPS biosynthesis (53, 185) and type 3 

fimbriae expression. Since iron-uptake systems, CPS, and type 3 fimbriae are 

well-known bacterial virulence factors, our findings suggest that Fur plays an 

important role in K. pneumoniae pathogenicity.  

Iron availability influences the activity of the Fur protein as well as the 

transcription of fur. Fe2+-Fur is an autorepressor, reducing fur expression in response 

to iron (68, 69, 124, 262). In E. coli, the expression of fur has been demonstrated to be 

modulated by many regulators including OxyR (309), SoxS (335), CRP (68), RstAB 
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(152), and ArcA (35). Transcription of fur is also activated in response to an elevated 

cellular c-di-GMP level (209). Since Fur acts as an activator for type 3 fimbriae in K. 

pneumoniae, regulators that modulate the expression of fur may subsequently affect 

the type 3 fimbriae expression. However, no obvious effect on the type 3 fimbriae 

expression was found for the K. pneumoniae strains lacking rstA, rstB, or soxRS.  

Artificial manipulation of the cellular c-di-GMP content by the overproduction 

of GGDEF domain proteins has been reported to strongly stimulated the synthesis of 

adhesins and biofilm matrix components, whereas overproduction of EAL domain 

proteins produced the opposite phenotypes (64, 76, 122, 151, 250, 256, 257, 293, 322). 

We have also found that the induced-expression of YdeH c-di-GMP cyclase in K. 

pneumoniae CG43S3 activated the expression of type 3 fimbriae (Fig. 4.12). The 

qRT-PCR analyses also showed that the mRNA level of fur, mrkA, mrkH, mrkI, and 

mrkJ were significantly increased upon the induced expression of YdeH (Dr. 

Ching-Ting Lin, unpublished data). In addition, overexpression of MrkH, the PilZ 

domain protein, affects the type 3 fimbriae expression. These suggest c-di-GMP is 

involved in the regulation of type 3 fimbriae expression. Nevertheless, the exact 

mechanism awaits investigation. 

By analyzing the genome sequence of K. pneumoniae NTUH-K2044, ORFs 
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encoding 11 GGDEF, 10 EAL, and 5 GGDEF-EAL domain proteins were found (Fig. 

1.1). To our knowledge, most of these proteins have not been studied in K. 

pneumoniae yet, except MrkJ (153), FimK (290), YjcC (170), and BlrP1 (22), which 

are EAL domain proteins. A slight increase of MrkA production was found in the 

ΔmrkJ strain (Fig. 4.3), and the deletion of fimK has been shown to activate the 

expression of type 1 fimbriae but not type 3 fimbriae (290). The MrkA amount was 

obviously increased in the K. pneumoniae CG43S3 ΔyjcC strain which is highly 

susceptible to oxidative stress (Jing-Rou Hwang, unpublished data). BlrP1 is a 

light-regulated PDE, and its crystal structure complexed with c-di-GMP has been 

determined (22); however its biological role is unknown. Although the PDE activities 

of FimK and YjcC have not been determined yet, these EAL domain proteins seem to 

play differential roles in fimbriae expressions in K. pneumoniae.  

Since oxidative stress has been shown to affect the expression of yjcC and fur 

(41, 170, 309), the type 3 fimbriae expression may also be regulated. This is 

supported by the study that K. pneumoniae OxyR, a central regulator for oxidative 

stress response, affected the bacterial colonization (123). As shown in Fig 4.11 and 

4.15B, availability of iron and oxygen were found to activate the expression of type 3 

fimbriae. To our knowledge, this is the first study to show environmental stimuli for 

type 3 fimbriae expression. Deletion of fur abolished the MrkA production regardless 
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of the iron availability (Fig 4.11). However, the fur-deletion effect on MrkA 

production was restored in an oxygen-limiting condition (Fig. 4.15C). Expression of 

fur has been shown to be controlled by ArcA (35), the primary regulator for the 

transition to anaerobiosis (109). Whether ArcA involves in the regulation of type 3 

fimbriae expression remains to be studied. qRT-PCR analysis showed that, under 

highly aerated culturing condition, the mRNA level of mrkI was dramatically reduced 

in fur-deletion mutant; however this deletion effect was no longer observed in 

oxygen-limiting conditions (Dr. Ching-Ting Lin, unpublished data). This result 

suggested that anaerobic regulator such as ArcA and FNR may activate the expression 

of mrkI in oxygen-limiting conditions, and the possibility remains to be studied.  

In summary, a model depicted as shown in Fig 4.17 is concluded. In K. 

pneumoniae CG43, the response regulator MrkI directly activates the expression of 

type 3 fimbriae upon phosphorylation of its D56 residue and auto-activates the 

expression of the mrkHIJ opeorn. Expression of MrkH increases the type 3 fimbriae 

expression through unknown mechanism, while MrkJ decreases the cellular level of 

c-di-GMP to repress the expression of type 3 fimbriae. The ferric uptake regulator Fur 

acts as an activator for the type 3 fimbriae expression through indirect activation of 

the expression of mrkI. The second messenger c-di-GMP activates the expression of 

fur, the mrkHIJ operon, and the type 3 fimbrial genes. The expression of type 3 
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fimbriae is activated in oxygen-limiting conditions, and an unknown regulator may 

activate the expression of mrkI to modulate the type 3 fimbriae expression during 

reduced oxygenation. 
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Fig. 4.1. Schematic gene organization of a chromosomal region encoding K. 

pneumoniae type 3 and type 1 fimbriae. The designation and the locus tag 

(KP1_number) of the ORFs are indicated. The three ORFs encoding putative 

regulatory proteins are shown in black.  
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Fig. 4.2. The transcription units of mrkH, mrkI, and mrkJ defined by RT-PCR. 

The genetic organization of the downstream genes of the type 3 fimbrial gene cluster 

(mrkABCDF, and only mrkD and mrkF are shown as gray arrows) in K. pneumoniae 

is shown. The designation and the locus tag (KP1_number) of the ORFs are indicated. 

The three ORFs encoding putative regulatory proteins are shown in black. The upper 

panel of the figure shows the DNA sequence upstream of the mrkH gene. The start 

codon of mrkH and the stop codon of KP4550 are shown in bold. The predicted -10, 

-35, and transcriptional factor binding boxes are indicated. Primers pcc319 and 

pcc320 used for the promoter-reporter construct are indicated by vertical arrows. The 

lower part of the figure shows the RT-PCR results by ethidium bromide–stained 

agarose gel. Panels a–f show the corresponding PCR products for primers located at 

ORF or the junction between ORFs. Lanes 1, RT-PCR products; 2, RT-PCR without 

reverse transcriptase, as a negative control; 3, PCR with genomic DNA as a template, 

as a positive control. Arrowheads indicate the expected sizes of RT-PCR products. 
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Fig. 4.3. Deletion of mrkI decreases the expressions of type 3 fimbriae. K. 

pnuemoniae CG43S3 (WT, wild-type), its isogenic gene-deletion strains (ΔmrkH, 

ΔmrkI, and ΔmrkJ), and the mrkI-complement strain CCW41 as well as the control 

strain CCW40 were grown overnight at 37oC with agitation in LB broth. Bacterial 

total protein, approximately five micrograms per lane, was separated by SDS-PAGE 

and then subjected to Western blot analysis using MrkA antiserum. The MrkA protein 

is indicated by an arrow. The fold change of MrkA amount calculated by ImageJ 

software is also shown. ND, not determined. 
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Fig. 4.4. Identification of mrkA transcription start site by 5’-RACE. (A) 

Electrophoresis of the 5’-RACE PCR products. M, DNA molecular size markers. The 

templates used in each PCR reaction include the cDNA from K. pneumoniae CG43S3 

(Primary PCR) (lane 1), reverse transcription reaction mixture without transcriptase as 

a negative control (lane 2), or one hundred-fold diluted primary PCR mixture (Nested 

PCR) (lane 3). The arrows indicate the expected sizes of the PCR products. (B) 

Schematic representation of the mrkA loci and the 5’-RACE experimental design. The 

large arrow represents MrkA open reading frame. Relative position of the primers and 

expected sizes of the products in Primary and Nested PCR are indicated. The mrkA 

transcriptional start site is marked as +1. The potential -10, -35, ribosomal binding site, 

and the translational start site are underlined. 
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Fig. 4.5. Deletion of mrkI decreased the transcription of mrkA. The 

β-galactosidase activities of K. pneumoniae CG43S3ΔlacZ (ΔlacZ) and its isogenic 

mrkI deletion mutant (ΔlacZ ΔmrkI) carrying each of the reporter plasmids pmrkA-P1, 

pmrkA-P2, or pmrkA-P3 were determined from log-phased cultures grown in LB 

broth. The results are shown as average of the triplicate samples. Error bars indicate 

standard deviations. *, P < 0.0001 compared with ΔlacZ [placZ15]. 
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Fig. 4.6. MrkI is probably a response regulator activated by phosphorylation. (A) 

Sequences of MrkI and LuxR-type transcriptional regulators NarL, BvgA, and RcsB 

were aligned by Vector NTI software. The conserved aspartate (D56) residue of MrkI 

as a putative target site for phosphorylation is indicated by an arrow. (B) D56 is 

important for MrkI functionality. K. pneumoniae CG43S3 (WT, wild-type), the ΔmrkI 

strain, and the mutant strains expressing MrkID56E (D56E) or MrkID56A (D56A) were 

grown overnight at 37oC with agitation in LB broth. Bacterial total protein, 

approximately five micrograms per lane, was separated by SDS-PAGE and then 

subjected to Western blot analysis using MrkA antiserum. The MrkA protein is 

indicated by an arrow.  
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Fig. 4.7. Amino acid sequence alignment of PilZ domain proteins. Sequences of 

the PilZ domain proteins, including MrkH, PA3353, PP4397, and YcgR (27, 258), 

were aligned by the Vector NTI software. The conserved RxxxR motif and the 

D/NxSxGG motif are underlined (x, any residue). The critical lysine residue involving 

in c-di-GMP binding activity of YcgR (258) is indicated by an arrow. 
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Fig. 4.8. MrkH-mediated activation of type 3 fimbriae expression. K. pneumoniae 

CG43S3 carrying expression plasmids, as shown in the upper panel, were grown in 

LB broth at 37oC with agitation. When the bacterial growth reached mid-log phase, 

expression of the recombinant protein was induced by addition of 0.5 mM IPTG, and 

then subject to additional 3 h incubation. Bacterial total protein, approximately five 

micrograms per lane, was separated by SDS-PAGE and then subjected to Western blot 

analysis using MrkA antiserum. The MrkA protein is indicated by an arrow. pETQ, 

the vector only control. 
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Fig. 4.9. Deletion of fur repressed the expression of type 3 fimbriae. (A) The 

predicted Fur-binding sequences on the promoter regions of mrkA and mrkH. The 

alignment with the 19-bp Fur box (w = A or T) is shown. (B) Anti-MrkA Western blot 

analysis of the total protein, approximately five micrograms per lane, isolated from K. 

pneumoniae CG43S3 strains. WT, wild-type. M, protein molecular size markers. The 

MrkA protein is indicated by an arrow. (C) Assessment of mrkA transcription using a 

promoter-reporter system. The β-galactosidase activities of K. pneumoniae 

CG43S3ΔlacZ and its isogenic deletion mutants (ΔmrkI and Δfur) respectively 

carrying the reporter plasmid pmrkA-P2 were determined from log-phased cultures 

grown in LB broth. The results are shown as average of the triplicate samples. Error 

bars indicate standard deviations. *, P < 0.0001 compared with ΔlacZ [pmrkA-P2].
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Fig. 4.10. The promoter activity of the upstream region of mrkH was regulated 

by Fur and MrkI. The β-galactosidase activities of K. pneumoniae CG43S3 ΔlacZ or 

its isogenic deletion strains respectively lacking fur, rcsA, rcsB, mrkH, and mrkI 

carrying pAW175 (PmrkH::lacZ), were determined from log-phased cultures grown in 

LB broth. The results are shown as average of the triplicate samples. Error bars 

indicate standard deviations. *, P < 0.0001 compared with ΔlacZ [PmrkH::lacZ].  
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Fig. 4.11. Extracellular iron availability affected the expression of type 3 fimbriae. 

Fifty-microliter of overnight-grown K. pneumoniae CG43S3 wild-type and Δfur 

cultures were added into 4-ml fresh LB (A) or M9 medium (B) supplemented with 

200 μM 2, 2’- dipyridyl (Dip) or 60 mM FeSO4 as indicated in the l panel. Then, the 

sub-cultured bacteria were grown overnight at 37oC with agitation, and the bacterial 

total protein, approximately five micrograms per lane, was separated by SDS-PAGE 

and then subjected to anti-MrkA Western blot analysis. The MrkA protein is indicated 

by an arrow. 
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Fig. 4.12. Fur and MrkI were required for the c-di-GMP-activated type 3 

fimbriae expression upon YdeH overproduction. Expression plasmids pETQ, 

pYdeH, or pYdeH* (the YdeH-AADEF mutant) were respectively introduced into K. 

pneumoniae CG43S3 (WT) and its isogenic mutant strains lacking fur or mrkI, as 

shown in the upper panel. The bacteria were grown in LB broth at 37oC with agitation. 

When the bacterial growth reached mid-log phase, expression of the recombinant 

protein was induced by addition of 0.5 mM IPTG, and then subject to additional 3 h 

incubation. Bacterail total protein, approximately five micrograms per lane, was 

separated by SDS-PAGE and then subjected to Western blot analysis using MrkA 

antiserum. The MrkA protein is indicated by an arrow. 
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Fig. 4.13. Effects of mrkH deletion and overexpression on type 3 fimbriae 

expression. K. pneumoniae CG43S3 (WT) and its isogenic mutant strains lacking 

mrkH, fur, or mrkI were respectively transformed by expression plasmids pETQ, 

pYdeH, or pMrkH, as shown in the upper panel. The bacteria were grown in LB broth 

at 37oC with agitation. When the bacterial growth reached mid-log phase, expression 

of the recombinant protein was induced by addition of 0.5 mM IPTG, and then subject 

to additional 3 h incubation. Bacterial total protein, approximately five micrograms 

per lane, were separated by SDS-PAGE and then subjected to Western blot analysis 

using MrkA antiserum. The MrkA protein is indicated by an arrow. 
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Fig. 4.14. Knockout of fur, mrkI, and mrkJ decreases K. pneumoniae biofilm 

formation. Overnight cultured K. pneumoniae strains, as shown in the lower panel 

(WT, the wild-type strain), were 100-fold diluted and inoculated into a 96-well 

microtiter dish. After 48 h static incubation at 37oC, the bacterial biofilm formation 

was quantified by crystal violet staining. The results are shown as average of the 

triplicate samples. Error bars indicate standard deviations. *, P < 0.0001 compared 

with the WT strain. #, P < 0.005 compared with the WT strain. &, P < 0.005 

compared with the CCW40 strain. $, P < 0.0001 compared with the Δfur [pRK415] 

strain.  
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Fig. 4.15. Correlation between type 3 fimbriae expression and oxygenation. 

Bacteria were incubated for 20 h at 37°C with constant agitation (200 rpm), and the 

bacterial total protein, approximately five micrograms per lane, was then subject to 

Western blot analysis using MrkA antiserum. (A) Carbon sources did not cause 

apparent effect on MrkA production. K. pneumoniae CG43S3 was grown in M9 

minimal medium supplemented with 0.4% glucose (Glc), glycerol (GLY), mannose 

(Man), galactose (Gal), arabinose (Ara), or lactose (Lac). (B) K. pneumoniae CG43S3 

was incubated as 1-ml, 3-ml, or 5-ml cultures in 10-ml tubes as depicted in the 

diagram. Tubes were placed either tilted (45°) or upright in the incubator. As indicated, 

1-ml cultures may overlay with 3-ml mineral oil to further reduce oxygen in the broth. 

The fold change of MrkA amount calculated by ImageJ software is shown in the 

lower panel. (C) Four K. pneumoniae strains including NTUH-K2044 (K2044), 

CG43S3 (S3), and CG43S3 isogenic mutants (Δfur and ΔmrkI) were grown, as 

described above, and the two growth conditions used are depicted in the diagram.
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Fig. 4.16. Deletion of rcsB slightly decreased the expression of type 3 fimbriae. K. 

pnuemoniae CG43S3 (WT, wild-type) and its isogenic gene-deletion strains (ΔrcsB, 

ΔrcsA, and ΔrmpA and ΔrmpA2) were grown overnight at 37oC with agitation in LB 

broth. Bacterial total protein, approximately five micrograms per lane, were separated 

by SDS-PAGE and then subjected to Western blot analysis using MrkA antiserum. 

The MrkA protein is indicated by an arrow. The fold change of MrkA amount 

calculated by ImageJ software is also shown. 
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Fig. 4.17. A model illustrating the regulation of the expression of type 3 fimbriae 

mediated by Fur, MrkH, MrkI, and MrkJ in K. pneumoniae CG43. Increased 

cellular level of the second messenger c-di-GMP activates the expression of fur 

through an unknown mechanism. Fur binds Fe2+ and then interacts with PmrkH to 

activate the expression of mrkH and mrkI, but not mrkJ. The production of MrkH 

activates the type 3 fimbriae expression at the transcriptional level, however the 

mechanism remains unclear. Expression of the response regulator MrkI, which is 

subsequently phosphorylated, directly activates the expression of the type 3 fimbrial 

genes, and MrkI probably auto-activates the expression of the mrkHIJ operon. 

Expression of MrkJ has been reported to decrease the cellular level of c-di-GMP to 

repress the type 3 fimbriae expression. In addition, an unknown regulator may 

increase the mrkI expression to activate the type 3 fimbriae expression during reduced 

oxygenation. 
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CHAPTER 5 

 

Conclusion and Perspectives 
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Fimbriae are well-known adherence factors that play a crucial role in the 

attachment of pathogenic bacteria to host cells during infection. In this thesis, we have 

identified nine fimbrial gene clusters present in a K. pneumoniae genome through 

bioinformatic analysis (Chapter 2). Besides type 1 and type 3 fimbriae that have been 

respectively correlated with urinary tract infection and biofilm-related infection (252, 

273, 290), the other seven types of fimbriae remain uncharacterized. It is speculated 

that these fimbriae play synergistic or differential roles in the bacterial pathogenicity 

and their expression are cross-regulated by a complex network. The three ORFs 

encoding putative transcriptional factors (KpbR, KpdR, and KpfR) are very likely 

involved in the regulation of Kpb, Kpd, and Kpf fimbriae expression, respectively. 

The PCR analysis showed that the kpb and kpc fimbrial genes were more 

prevalent in the isolates of serotype K1, which regarded as a risk factor of K. 

pneumoniae liver abscess. We also demonstrated that the expression of kpc fimbrial 

genes, which resulted in fimbriation on the recombinant E. coli, could increase the 

biofilm formation. If Kpc fimbriae play a role in the pathogenic mechanism of K. 

pneumoniae liver abscess awaits investigation. Moreover, if the KpcI-mediated phase 

variation control of the expression of Kpc fimbriae (Chapter 3) acts as a switch under 

a specific liver environment would be much interest to be studied. The strain of K. 

pneumoniae which could readily express Kpc fimbriae and specific cell culture 
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system should allow solving the questions.  

The nine fimbrial gene clusters possessed by K. pneumoniae NTUH-K2044 were 

classified into the chaperone-usher class. The ubiquitous chaperone-usher pathway 

fimbriae (CU fimbriae) often constitute important virulence factors in Gram-negative 

bacteria (323, 333), and the molecular mechanism of the assembly pathway has been 

extensively studied (21, 73, 146, 248, 264, 312). Based on these studies, compounds 

(namely pilicides), which target to CU fimbriae by interfering the interaction of 

chaperone/subunit complexes with usher, have been synthesized to block virulence of 

the fimbriate bacteria (2, 55, 241). The drugs that specifically target bacterial 

virulence factors, such as fimbriae, may exert less selective pressure on bacteria and 

hence minimize the risk for horizontal spread of drug-resistant genes (43, 59, 65).  

Besides being useful as potential antibacterial agents, pilicides have been used as 

chemical tools to study details of pilus assembly and their role in disease processes (3, 

241). Advanced techniques including atomic force microbiology (AFM) and optical 

tweezers have also been applied in studies including the interaction between fimbrial 

adhesin and its receptor, the measurement of adhesive force of adhesin, and the 

physical properties of fimbrial rod (10, 13, 150, 198, 199, 214, 268). We have also 

used AFM, optical tweezers, and in situ TEM techniques in the analyses of fimbrial 
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adherence (46), fimbriae-mediated DNA transfer (279), and bacterial surface changes 

(49, 188). 

In Chapter 4, multi-factorial control of the expression of K. pneumoniae type 3 

fimbriae was studied. We showed that MrkI acted as a transcriptional activator for the 

expression of type 3 fimbriae. The induced expression of the PilZ domain protein 

MrkH also increased the expression of type 3 fimbriae. By contrast, expression of the 

EAL domain protein MrkJ repressed the fimbriae expression possibly due to the 

accumulation of cellular c-di-GMP since the induced expression of c-di-GMP cyclase 

YdeH led to activation of the expression of type 3 fimbriae. Moreover, we showed 

that the c-di-GMP-mediated activation probably went through the expression of the 

ferric uptake regulator Fur to increase the expression of mrkI. Although c-di-GMP has 

been reported to exert regulation through RNA or protein effecters such as PilZ 

domain proteins, the exact mechanism of c-di-GMP-mediated expression of fur or 

type 3 fimbriae is yet to be characterized. Besides cellulose synthases, MrkH is the 

only PilZ domain protein found in K. pneumoniae NTUH-K2044 (Fig. 1.1). This 

suggests MrkH plays an important role in c-di-GMP signaling in K. pneumoniae. 

Intriguingly, MrkH was not required for the YdeH-activated type 3 fimbriae 

expression. If MrkH acts as a c-di-GMP effecter awaits further investigation. As 

shown in Fig. 1.1, numerous GGDEF and EAL domain proteins encoded by K. 
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pneumoniae were found. Nevertheless, most of them remain uncharacterized. If they 

also play a role in affecting the expression of type 3 fimbriae, type 1 fimbriae or CPS 

biosynthesis in K. pneumoniae is worth studying.  

Finally, we have found that reduced oxygenation and Fe2+ level are probably the 

environmental stimuli that could activate the expression of type 3 fimbriae. To 

investigate the molecular mechanism for the type 3 fimbriae expression under reduced 

oxygenation is important since specific niches within the host can be oxygen limited. 

Apparently, the increasing knowledge of bacterial pathogenesis holds promise for 

future identification of the intervening targets. 
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CHAPTER 6 

 

Experimental Section 
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6.1. Materials 

6.1.1. Plasmids, primers, bacterial strains and growth conditions  

Bacterial strains and plasmids used in this study are listed in Table 6.1 and Table 

6.2, and the primers used are listed in Table 6.3. K. pneumoniae NTUH-K2044, a 

highly invasive and hypermucous strain of serotype K1 (88), was provided by Dr. 

Jin-Town Wang, National Taiwan University Hospital. The 105 K. pneumoniae 

clinical isolates, provided by Dr. Chang-Phone Fung, were recovered from different 

tissue specimens of patients with a variety of infections at the Veterans General 

Hospital, Taipei, Taiwan, from 1991 to 1998. These strains have been identified and 

their serotypes determined, as previously described (100). K. pneumoniae CG43, a 

clinical isolate of serotype K2, is high virulent to mice (47). E. coli and K. 

pneumoniae strains were generally propagated at 37°C in Luria-Bertani (LB) broth. 

M9 minimal medium and tryptic soy broth (TSB) were also used. Bacterial growth 

was assessed by measuring the absorbance of optical density at 600 nm (OD600). The 

antibiotics used include ampicillin (100 μg/ml), chloramphenicol (20 μg/ml), 

kanamycin (25 μg/ml), tetracycline (12.5 μg/ml), chlorhexidine (15 μg/ml) and 

streptomycin (500 μg/ml). Mineral oil (M5310) was purchased from Sigma. 
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6.2 General Experimental Procedures 

6.2.1. Bioinformatics 

The 5.5 Mb K. pneumoniae NTUH-K2044 genome sequence (GenBank 

accession no. AP006725.1) has been determined and annotated (325). The fimbriae 

proteins were identified using the Pfam database (accession no. PF00419) and 

HMMER on the basis of a hidden Markov model (24, 81). The fimbrial gene clusters 

and the neighboring genes were analyzed by homology search using the BLAST 

program provided online by the National Center for Biotechnology Information. 

6.2.2. PCR detection of fimbrial genes  

The PCR mixture contained 20 mM Tris/HCl (pH 8.4), 50 mM KCl, 1.5 mM 

MgCl2, 200 mM of each deoxynucleoside triphosphate (dATP, dCTP, dGTP and 

dTTP) and 1 U recombinant Taq DNA polymerase (Violet Bioscience Inc.), along 

with K. pneumoniae genomic DNA and specific primers. The amplification cycle 

consisted of an initial 5 min hold at 95oC, followed by 35 cycles of denaturation at 

95oC for 1 min, annealing at 50oC for 1 min, and extension at 72oC for 1.5 min, and 

finally an elongation step for 10 min at 72oC. The amplified PCR product was then 

analysed by electrophoresis on a 1% agarose gel. 
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6.2.3. KpcA antiserum preparation  

The coding region of kpcA was PCR amplified using primers pcc023 and pcc024 

and cloned into pET30 to yield pKPCA. Plasmid pKPCA was then introduced into E. 

coli Novablue (DE3) for overexpression of the His6::KpcA recombinant protein. The 

recombinant protein was expressed and purified according to the protocol in the pET 

manual (Novagen). KpcA antiserum was prepared by immunizing a New Zealand 

white rabbit with 0.5 mg of the purified His6::KpcA recombinant protein and the 

immunized rabbit was exsanguinated on day 45.  

6.2.4. Construction of the expression plasmid pETQ  

The DNA fragment containing the T5lac promoter, multiple cloning sites and the 

rrnB T1 transcription terminator from pQE30 (Qiagen) was inserted into pET30a 

(Novagen) using restriction enzymes XbaI and XhoI. The 6 His-tag-coding sequence 

was subsequently removed by inverse PCR to yield plasmid pETQ. 

6.2.5. Construction of fimbriae expression plasmids  

The kpcABCD genes were PCR-amplified using primers pcc053 and pcc056, and 

the PCR product was cloned into the expression plasmids pET30a and pETQ to yield 

pKPC-7 and pKPC-36, respectively. The kpcABC genes were PCR-amplified using 

primers pcc202 and pcc223 and cloned into pETQ to yield pAW67. Genes encoding 
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type 1 fimbriae (fimAICDEFGH) were PCR-amplified using primers pcc167 and 

pcc169 and cloned into pETQ to yield pAW69. The DNA containing 

kpcSOFF-kpcABCD was PCR-amplified by primers pcc081 and pcc056 and then 

cloned into yT&A (Yeastern Biotech Co.) to yield pAW73. 

6.2.6. Transmission electron microscopy (TEM)  

After IPTG (0.5 mM) induction of exponential-phase E. coli Novablue (DE3) 

harboring the expression plasmids pKPC-7 or pET30a for 3 h, the bacteria were 

collected by centrifugation and washed once with PBS. Twenty microliters of 

bacterial suspension (~108 CFU/ml) were added to formvar-coated copper grids (300 

meshes) and negatively stained by 2% (w/v) phosphotungstic acid, pH 7.2. The grids 

were examined under a JEOL JEM 2000EXII transmission electron microscope at an 

operating voltage of 100 kV. 

6.2.7. Immunofluorescence microscopy analysis 

Induction of the kpc genes was carried out by adding 0.5 mM IPTG to an 

exponential-phase E. coli HB101 [pKPC-36] culture and incubating for an additional 

3 h. Bacteria were collected and suspended in PBS (108 CFU/ml) and 10 μl of the 

suspension was applied to glass slide. After air-drying, 40 μl of the 1:100-diluted 

KpcA antiserum was added and the slide incubated at 25oC for 1 h. After washing 
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with PBS, the slide was incubated with 40 μl 1:100 dilution of a fluorescein 

isothiocyanate (FITC)-conjugated goat anti-rabbit antibody (Molecular Probes) in 

PBS for 1 h at 25oC. Finally, the slide was washed and examined by fluorescence 

microscopy. 

6.2.8. Biofilm formation assay  

Overnight grown bacteria were diluted 1:100 in LB broth supplemented with 

appropriate antibiotic and then inoculated into each well of a 96-well microtiter dish 

(Orange Scientific) for statically incubation at 37oC for 48 h. After removal of the 

bacteria, the plate was washed by deionized water once, and 150 μl of 1% (w/v) 

crystal violet was added to each well. The plate was incubated at room temperature on 

an orbital shaker for 30 min, and then washed three times. The dye was solubilized in 

1% (w/v) SDS, and absorbance at 595 nm was determined. 

6.2.9. Yeast-cell agglutination (YA)  

Agglutination of yeast Saccharomyces cerevisiae AH109 was carried out as described 

(32). Briefly, bacteria (~108 c.f.u./ml) were suspended in PBS with or without 2% 

mannose and then mixed with 10 mg/ml of yeast (Sigma, YSC2) on a glass slide. 

After 5 min incubation at room temperature on an orbital shaker, agglutination of 

yeast caused by bacteria could be assessed. 
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6.2.10. Switch orientation assay  

The kpcS (switch region) was PCR-amplified from the tested strain using the 

primers pcc081 and pcc082. The amplified product was then purified and digested 

with AflII. The restricted fragments were separated on 2% agarose gels and the pattern 

was visualized for the determination of orientation by staining with ethidium bromide. 

The DNA fragments containing kpcSON and kpcSOFF were PCR-amplified from 

L-arabinose-induced K. pneumoniae NTUH-K2044 [pKPCI196] using primers pcc081 

and pcc082, and subsequently cloned into yT&A to yield the pKPC-ON and 

pKPC-OFF plasmids, respectively. 

6.2.11. Construction of specific gene-deletion in K. pneumoniae NTUH-K2044 

Specific gene deletion was individually introduced into the chromosome of K. 

pneumoniae NTUH-K2044 by allelic exchange strategy, as described above, using the 

suicide vector pKOV (187), which is a temperature-sensitive vector. The pKOV 

vector carrying two approximately 1000-bp DNA fragments flanking both sides of the 

deleted region was introduced into K. pneumoniae NTUH-K2044 by electroporation. 

The electroporated cells were plated on a LB plate containing 20 μg/ml 

chloramphenicol and then incubated at 30oC. The grown bacterial colony was 

inoculated into LB broth containing 20 μg/ml chloramphenicol and subjected to 

overnight incubation at 30oC with agitation. Overnight-grown bacteria was diluted 
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and plated onto a LB plate containing 20 μg/ml chloramphenicol and then incubated 

at 42oC. From the 42oC plate, bacterial colonies were picked for the confirmation of 

integration of the suicide vector using PCR. Overnight-grown bacteria with the 

integrated suicide vector were 1:100 diluted in LB broth supplemented with 5% 

sucrose (filter sterilized) for additional 12 h incubation at 30°C. The bacterial 

suspension was then diluted (~ 10-6), and 100 μl of the suspension was spread onto an 

LB agar plate containing 5% sucrose. The chloramphenicol-sensitive colonies were 

selected, and the deletion was verified by PCR.  

6.2.12. Construction of specific gene-deletion in K. pneumoniae CG43 

Specific gene deletion was individually introduced into the chromosome of K. 

pneumoniae CG43S3 by allelic exchange strategy (171). In brief, two approximately 

1000-bp DNA fragments flanking both sides of the deleted region were cloned into 

the suicide vector pKAS46 (282), a suicide vector containing rpsL, which allows 

positive selection with streptomycin for vector loss. The resulting plasmid was then 

mobilized from E. coli S17-1 λpir to K. pneumoniae CG43S3 or its derived strains by 

conjugation. The transconjugants, with the plasmid integrated into the chromosome 

via homologous recombination, were selected with kanamycin on M9 agar plates or 

LB agar plates containing 15 μg/ml of chlorhexidine. Overnight-grown 

transconjugant was collected, washed by saline once, and then 1:100 diluted in LB 
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broth supplemented with 500 μg/ml of streptomycin for additional 8-12 h incubation 

at 37°C. The bacterial suspension was then diluted (~ 10-6), and 100 μl of the 

suspension was spread onto an LB agar plate containing 500 μg/ml of streptomycin. 

The streptomycin-resistant and kanamycin-sensitive colonies were selected, and the 

deletion was verified by PCR. The resulting K. pneumoniae mutants are listed Table 

6.1.  

To obtain the complementation plasmids, the DNA fragment containing mrkI 

and its flanking region was PCR amplified from the K. pneumoniae CG43 genomic 

DNA by primer wc07 and wc08, and the amplicon was cloned into yT&A (Yeastern 

Biotech). The mrkI coding region carried on the resulting plasmid was then removed 

by inverse PCR using primers wc09 and wc10. Subsequently, the DNA fragment 

containing the mrkI region or only the mrkI-flanking regions were subcloned into 

pKAS46 to yield pWY28 and pWY45, respectively. The plasmids were then 

individually introduced into K. pneumoniae CG43S3 ΔmrkI by conjugation. The 

resulting transconjugants, with pWY28 and pWY45 integrated into the chromosome 

via homologous recombination, were designated CCW40 and CCW41, respectively. 
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6.2.13. Construction of the reporter fusion plasmids and measurement of 

promoter activity 

kpcS DNA was PCR-amplified from K. pneumoniae NTUH-K2044 by primers 

YCY001 and YCY002, and cloned in front of a promoter-less lacZ gene of the 

reporter plasmid placZ15 (156) to yield plasmids pSY003 and pSY004, containing 

kpcS without the two inverted repeats in opposite orientations. The approximately 

375-bp DNA fragment containing the upstream region of kpcA was PCR-amplified 

with primers YCY001 and pcc264, from kpcSON K. pneumoniae cells, and cloned into 

placZ15 to yield pAW126. The approximately 230 or 400-bp DNA fragments 

containing the upstream region of the K. pneumoniae mrkABCDF or mrkHIJ gene 

clusters were PCR-amplified with primers pcc273/pcc324 or pcc320/pcc321, 

respectively and cloned into placZ15 to yield pmrkA-P3 (pAW146) and pAW175. 

The resulting plasmids were mobilized from E. coli S17-1 λpir to K. pneumoniae 

strains lacking lacZ by conjugation.  

β-galactosidase activity was determined as previously described (156). In brief, 

overnight culture was 1:100 sub-cultured in LB broth to mid-log phase (OD600 of 

0.7). Then 100 μl of the culture was mixed with 900 μl of Z buffer (60 mM Na2HPO4, 

40 mM NaH2PO4, 10 mM KCl, 1 mM MgSO4, 50 mM β-mercaptoethanol), 17 μl of 

0.1% SDS, and 35 μl of chloroform and the mixture was shaken vigorously. After 
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incubation at 30°C for 10 min, the reaction was initiated by adding 200 μl of 4 

mg/mL ONPG (ο-nitrophenyl-β-D-galactopyranoside) (Sigma-Aldrich). Upon the 

appearance of yellow color, the reaction was stopped by adding 500 μl 1 M Na2CO3. 

OD420 was recorded and the β-galactosidase activity was expressed as Miller units 

(215). Each sample was assayed in triplicate, and at least three independent 

experiments were carried out, and the data shown were calculated from one 

representative experiment. 

6.2.14. Identification of the operon structure by reverse-transcription PCR 

(RT-PCR)  

Total RNAs were isolated from early-exponential-phase grown K. pneumoniae 

CG43 cells by use of the RNeasy midi-column (QIAGEN) according to the 

manufacturer’s instructions. RNA was DNase-treated with RNase-free DNase I 

(MoBioPlus) to eliminate DNA contamination. RNA of 1-μg was reverse-transcribed 

with the Transcriptor First Strand cDNA Synthesis Kit (Roche) using random primers 

in a reaction mixture of 20 μl. Reaction mixtures without reverse transcriptase were 

included as negative controls. The reaction mixtures were 1/50 diluted, and one-μl of 

each mixture was used as template for the PCR detections. PCR was carried out with 

initial denaturation at 95°C for 5 min, 25 cycles of denaturation at 95°C for 30 sec, 
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annealing at 52°C for 30 sec and elongation at 72°C for 45 sec, and a final 5 min of 

elongation at 72°C. The amplified products were resolved on 1% (w/v) agarose gels. 

6.2.15. Identification of mrkA transcriptional start site 

For the determination of mrkA 5’-mRNA ends, a 5’-RACE PCR was performed 

using 5’-RACE kit (Clontech) according to the manufacturer’s instruction. In brief, 

total RNA was isolated from log-phased K. pneumoniae CG43S3 grown in LB 

medium using High Pure RNA Isolation Kit (Roche). One microgram of total RNA 

was treated with RNase-free DNase I (Roche) and recovered by phenol-chloroform 

extraction. For the first-strand cDNA synthesis, a 3.75-μl reaction mixture containing 

1 μg of DNase-treated RNA and Random Primer Mix (N-15) was incubated at 72°C 

for 3 min and then transfered to room temperature for 5 min before the addition of 5X 

First-Strand buffer, deionized water, DTT, dNTP mix, RNase inhibitor, SMARTer II 

A oligonucleotide and SMARTScribeTM reverse transcriptase to a final volume of 10 

μl. The reaction mixture was incubated at room temperature for 10 min, 42°C for 90 

min and 72°C for 10 min to terminate the reaction, diluted with 20 μl Tricine-EDTA 

buffer and then stored at -20°C. For the primary PCR, a 50-μl reaction mixture 

containing diluted cDNA templates, gene-specific primer, Universal Primer Mix, 

dNTP mix, PCR buffer, deionized water and DNA polymerase was prepared. The 
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reaction mixture without reverse transcriptase served as a negative control template. 

The PCR program was 5 cycles of 30 s at 94°C, 3 min at 72°C, 5 cycles of 30 s at 

94°C, 30 s at 70°C, 3 min at 72°C, and 25 cycles of 30 s at 94°C, 30 s at 68°C, 3 min 

at 72°C. For the nested PCR, the reaction mixture was essentially the same as the 

primary PCR mixture except 100-fold diluted primary PCR product as the template, 

gene-specific primer, and Nested Universal Primer were used. The PCR program was 

25 cycles of 30 s at 94°C, 30 s at 60°C, 3 min at 72°C. The PCR products were 

resolved on an agarose gel by electrophoresis, and the DNA fragments were 

recovered and cloned into the PCR cloning vector yT&A. A total of seven clones 

were subjected to sequence analysis, and the sequencing results indicated the same 

residue as the transcriptional site of mrkA. 

6.2.16. Construction and expression of the recombinant proteins  

The DNA fragments containing the coding sequences of MrkH, PilZMrkH, MrkHN 

or YdeH were individually PCR-amplified with primer pair pcc212/pcc213, 

pcc335/pcc213, pcc212/pcc336 or pcc216/pcc217, and cloned into the expression 

vector pETQ to generate pMrkH, pPilZ, pMrkHN and pYdeH, respectively. The 

plasmids with site-directed mutations were constructed by either quick change or by 

inverse-PCR method. In quick change strategy, pYdeH was used as the template for 
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PCR-amplification with the complementary primer sets pcc224/pcc225 encompassing 

the mutation site by using Phusion DNA polymerase (Finnzymes). The PCR product 

was resolved on agarose gel, recovered, treated with DpnI for 2 h to remove the 

template plasmid and transformed into E. coli JM109. The plasmid, pYdeH*, carrying 

the mutation allele encoding YdeHAADEF (YdeH*, G206A and G207A mutations) was 

then prepared from the transformant colony and confirmed by sequence analysis. For 

the inverse-PCR method, pMrkH was used as the PCR template to generate the 

mutant allele encoding MrkHR111D (MrkH*) recombinant proteins with primer pairs 

pcc335/pcc213. The PCR product was resolved on agarose gel, recovered, treated 

with DpnI for 2 h, and subjected to T4 PNK treatment and self-ligation. The ligation 

product was transformed into E. coli JM109. The plasmid, pMrkH*, carrying the 

mutant allele encoding MrkH with the R111D mutation (MrkH*) was prepared from 

the transformant colony and confirmed by sequence analysis. The DNA fragment 

encoding PilZMrkH with the R111D mutation (PilZ*) was PCR-amplified with primer 

pairs pcc335/pcc213, using pMrkH* as template, and then cloned into pETQ to yield 

pPilZ*. 
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6.2.17. Construction of the site-directed mutants derived from K. pneumoniae 

CG43S3 

The DNA fragment carrying mrkI and its approximately 1-kb adjacent regions 

was PCR-amplified by primer pairs wc07/wc08 and cloned into yT&A. The resulting 

plasmid was used as template for the inverse-PCR with primer pair pcc337/pcc338 or 

pcc337/pcc339 to generate mutant alleles of mrkI with D56E or E56A mutations. The 

inverse-PCR strategy was performed as described above. Subsequently, the DNA 

fragments containing the D56E and D56A mutant alleles of mrkI were subcloned into 

pKAS46 to yield pAW197 and pAW198, respectively. pAW197 and pAW198 were 

then individually mobilized from E. coli S17-1 λpir to the K. pneumoniae CG43S3 

DmrkI strain by conjugation, and the subsequent selection was performed as 

described above. Each site-directed mutation in K. pneumoniae was confirmed by 

DNA sequencing.  

6.2.18. Statistical methods 

The results of the biofilm-forming activity and β-galactosidase activity assays 

were derived from a single experiment that was representative of three independent 

experiments. Each sample was assayed in triplicate and the data were presented as the 

mean ± standard deviation (SD). Differences between groups were evaluated by a 
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two-tailed Student’s t-test. P-values less than 0.01 were considered statistically 

significant difference.



 

Table 6.1. Bacterial strains used in this study 

Strain Description Reference or Source 

K. pneumoniae   

NTUH-K2044 Clinical isolate of K1 serotype (88, 325) 

CCW01 NTUH-K2044 ΔlacZ This study 

CG43 Clinical isolate of K2 serotype (47) 

CG43S3 CG43, Smr (171) 

ΔmrkH CG43S3 ΔmrkH , Smr This study 

ΔmrkI CG43S3 ΔmrkI, Smr This study 

ΔmrkJ CG43S3 ΔmrkJ, Smr This study 

  CCW40 CG43S3 ΔmrkI [pWY28], Kmr This study 

  CCW41 CG43S3 ΔmrkI [pWY45], Kmr This study 

ΔlacZ  CG43S3 ΔlacZ, Smr  

ΔlacZ ΔmrkI CG43S3 ΔlacZ ΔmrkI, Smr This study 

  CCW51 (MrkID56E) CG43S3 mrkID56E, Smr This study 

  CCW54 (MrkID56A) CG43S3 mrkID56A, Smr This study 

Δfur  CG43S3 Δfur, Smr (53) 

ΔlacZ Δfur  CG43S3 ΔlacZ Δfur, Smr (53) 
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Table 6.1. (continued) 

Strain Description Reference or Source 

ΔlacZ ΔrcsA CG43S3 ΔlacZ ΔrcsA, Smr (185) 

ΔlacZ ΔrcsB  CG43S3 ΔlacZ ΔrcsB , Smr (185) 

ΔlacZ ΔmrkH CG43S3 ΔlacZ ΔmrkH, Smr This study 

ΔrcsA CG43S3 ΔrcsA, Smr (185) 

ΔrcsB CG43S3 ΔrcsB, Smr (171) 

ΔrmpA CG43S3 ΔrmpA, Smr (53) 

ΔrmpA2 CG43S3 ΔrmpA2, Smr (171) 

   

E. coli   

JM109 
endA1 glnV44 thi-1 relA1 gyrA96 recA1 mcrB+ Δ(lac-proAB) e14- [F' traD36 proAB+ lacIq lacZ ΔM15] hsdR17 

(rK
-mK

+) 
New England Biolabs 

S17-1 λpir hsdR recA pro RP4-2 (Tc::Mu; Km::Tn7)(λpir) (282) 

Novablue (DE3) F- ompT hsdSB (rB
-mB

-) gal dcm (DE3), Tcr Novagen 

BL21 (DE3) F- ompT hsdSB (rB
-mB

-) gal dcm trxB15::kan (DE3) Novagen 

HB101 F- thi-1 hsdS20 (rB
-mB

-) supE44 recA13 ara-14 leuB6 proA2 lacY1 galK2 rpsL20 (strr) xyl-5 mtl-1 Promega 
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Table 6.2. Plasmids used in this study 

Plasmid Description Reference or Source 

yT&A Apr, T/A-type PCR cloning vector Yeastern 

pET30a-c Kmr, His-tagged protein expression vector Novagen 

pKAS46 Apr, Kmr, suicide vector, rpsL (282) 

pBAD33 Cmr, expression vector  (114) 

placZ15 Cmr, promoter selection vector, lacZ+ (183) 

pRK415 Tcr, shuttle vector, mob+ This study 

pETQ (pETQ33) Kmr, expression vector This study 

pKPCA (pETP3) Kmr, 513-bp fragment encoding full length KpcA cloned into pET30a This study 

pKPC-7 Kmr, ~ 4.9-kb fragment containing the kpcABCD genes cloned into pET30a This study 

pKPC-36 Kmr, ~ 4.9-kb fragment containing the kpcABCD genes cloned into pETQ This study 

pAW67 Kmr, ~ 3.8-kb fragment containing the kpcABC genes cloned into pETQ This study 

pAW69 Kmr, ~ 8.1-kb fragment containing the fimAICDEFGHK genes cloned into pETQ This study 

pKPCI196 (pSY008) Cmr, 591-bp fragment encoding full length KpcI196 cloned into pBAD33 This study 

pKPCI210 (pAW142) Cmr, 633-bp fragment encoding full length KpcI210 cloned into pBAD33 This study 

pKPC-ON (pKPC-22) Apr, 1087-bp fragment containing the kpcSON region cloned into yT&A This study 

pKPC-OFF (pKPC-20) Apr, 1087-bp fragment containing the kpcSOFF region cloned into yT&A This study 

pSY003 Cmr, 280-bp fragment of the kpcSON region cloned into placZ15 This study 

pSY004 Cmr, 280-bp fragment of the kpcSOFF region cloned into placZ15 This study 
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Table 6.2. (continued) 

Plasmid Description Reference or Source 

pAW126 Cmr, 374-bp fragment of the upstream region of kpcA in the kpcSON phase cloned into placZ15 This study 

pAW73 Apr , ~ 5.5-kb fragment containing the kpcSOFF-kpcABCD region cloned into yT&A This study 

pWY28 Kmr Apr, 1953-bp fragment containing the adjacent regions beside mrkI cloned into pKAS46 This study 

pWY45 Kmr Apr, 2597-bp fragment containing the mrkI and its adjacent regions cloned into pKAS46 This study 

pmrkA-P1 (PL-mrkA) Cmr, 551-bp fragment of the upstream region of mrkA cloned into placZ15 Ying-Jung Huang 

pmrkA-P2 (PS-mrkA) Cmr, 402-bp fragment of the upstream region of mrkA cloned into placZ15 Ying-Jung Huang 

pmrkA-P3 (pAW146) Cmr, 232-bp fragment of the upstream region of mrkA cloned into placZ15 This study 

pAW197 Kmr Apr, 2597-bp fragment containing the mrkID56E mutant allele cloned into pKAS46 This study 

pAW198 Kmr Apr, 2597-bp fragment containing the mrkID56A mutant allele cloned into pKAS46 This study 

pMrkH (pAW45) Kmr, 711-bp fragment encoding full length MrkH cloned into pETQ This study 

pMrkH* (pAW182) Kmr, 711-bp fragment encoding full length MrkHR111D cloned into pETQ This study 

pPilZ (pAW190) Kmr, ~ 480-bp fragment encoding the PilZ domain of MrkH cloned into pETQ This study 

pPilZ* (pAW191) Kmr, ~ 480-bp fragment encoding the PilZ domain of MrkHR111D cloned into pETQ This study 

pMrkHN (pAW194) Kmr, ~ 330-bp fragment encoding the N-terminal domain of MrkH cloned into pETQ This study 

pfur Tcr, 0.8-kb fragment containing a fur allele cloned into pRK415 (53) 

pAW175 Cmr, 407-bp fragment of the upstream region of mrkH cloned into placZ15 This study 

pYdeH (pAW47) Kmr, 894-bp fragment encoding YdeH, from E. coli W3110, cloned into pETQ This study 

pYdeH* (pAW71) Kmr, 894-bp fragment encoding YdeHAADEF cloned into pETQ This study 
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Table 6.3. Oligonucleotide primers used in this study 

Primer Sequence (5’--- 3’) a Enzyme cleaved Complementary position (5’ end) 

prevalence analysis    

kpa-1 (pcc047) CACGTATGTATTCGCCCT none +31 relative to the kpaE start codon 

kpa-2 (pcc004) TCAGTTATAAGTAAAGGTGATCACCCC none -24 relative to the kpaE stop codon 

kpa-3 (dk001) TTGTCGTTTCATATGGATATGGGAA NdeI -12 relative to the kpaA start codon 

kpa-4 (dk002) GATTCCCCTTTCTCCATTCAACA none +33 relative to the kpaA stop codon 

kpb-1 (pcc005) CACCGTGGGGCAAAAGC none -4 relative to the kpbD start codon 

kpb-2 (pcc006) TTAATCTTCCTGAATAACGACTTCCA none on the kpbD stop codon 

kpb-3 (pcc021) ATGAAAAAGACAATCGTAGCTGTA none on the kpbA start codon 

kpb-4 (pcc022) CGGGACCCTCGAGGGAAA none +20 relative to the kpbA stop codon 

kpc-1 (pcc007) CACCATGAAGGTGTTATTAAAATCCG none -4 relative to the kpcD start codon 

kpc-2 (pcc008) CTATTTATATGTCAACGTAAACGTCGC none on the kpcD stop codon 

kpc-3 (pcc023) ATGAAAAAAACGATAACAATCGTG none on the kpcA start codon 

kpc-4 (pcc024) CCCCTCGAGGGCACAGTGT XhoI +18 relative to the kpcA stop codon 

kpd-1 (pcc009) CACCATGAAAAAAATCATCGCA none -4 relative to the kpdD start codon 

kpd-2 (pcc010) TCAGTTATAAGTCACCACGAAGGTC none on the kpdD stop codon 

kpd-3 (pcc025) TAAGCGTGGTGATGAGGAGTG none -24 relative to the kpdA start codon 

kpd-4 (pcc050) GCCAGAAGCTTACGCCGC HindIII +78 relative to the kpdA stop codon 

kpe-1 (pcc011) CACCATGTCCTTTTTAACTCTCCTG none -4 relative to the kpeD start codon 

kpe-2 (pcc012) CTAGTCATAATGCAAGGTATAGGTCGC none on the kpeD stop codon 
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Table 6.3. (continued) 

Primer Sequence (5’--- 3’) a Enzyme cleaved Complementary position 

Prevalence analysis    

kpe-3 (pcc027) TTGAGTATGAAAGAAAAAGGCACC  -6 relative to the kpeA start codon 

kpe-4 (pcc028) GGATCCGGTCTCGAGGAAGAG BamHI, XhoI +70 relative to the kpeA stop codon 

kpf-1 (pcc013) CACCATGCGCCGACTTAGC  -4 relative to the kpfD start codon 

kpf-2 (pcc014) TTATTCAAAGGTCACGGTGATTTTG  on the kpfD stop codon 

kpf-3 (pcc029) TTGGCTATGAAAATGAAATCACTT  -6 relative to the kpfA start codon 

kpf-4 (pcc030) TTATCCGCCTCGAGCCGTC  +31 relative to the kpfA stop codon 

kpg-1 (pcc015) CACCATGAAATCTGTTTTTCGTCTAC  -4 relative to the kpgD start codon 

kpg-2 (pcc016) CTAGTTATACTCCAGGGCGAAAGTCA  on the kpgD stop codon 

kpg-3 (pcc031) ATGAAAAAACAACCTCGCTTTA  on the kpgA start codon 

kpg-4 (pcc032) TGACAATTAACACATAAGCTTTCTG HindIII +73 relative to the kpgA stop codon 

mrk-1 (mrkD-N) GGGACAGCAAACAACAAA  -27 relative to the mrkD start codon 

mrk-2 (SL0080) CGCATTAATCGTACGTCA  +4 relative to the mrkD stop codon 

mrk-3 (mrkA-RTF) GGTAAGTAATTTCGTAAGTCGCGT  -26 relative to the mrkA stop codon 

mrk-4 (mrkA-RTR) CTCTGACAAGGAAATGGCAATG  -19 relative to the mrkA start codon 

fim-1 (pcc074) TCGCTTCCCGCTGCAGGCC  -111 relative to the fimH start codon 

fim-2 (SL0078) GAACGCCTATCCCCTGCGCC  -168 relative to the fimH stop codon 

fim-3 (pcc051) GAAGGCACAACGGATCCCAA BamHI -59 relative to the fimA start codon 

fim-4 (pcc052) CTTCCTTGCCTGACTCGGGT  +21 relative to the fimA stop codon 
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Table 6.3. (continued) 

Primer Sequence (5’--- 3’) a Enzyme cleaved Complementary position 

pcc053 CAAGGAGAAACATATGAAAAAAACGA NdeI -13 relative to the kpcA start codon 

pcc056 CGATCAAACAGATCTTTCCACCA BglII +93 relative to the kpcD stop codon 

pcc081 GGCGGGAGGCAGACAGCGAC  +281 relative to the kpcI start codon 

pcc082 TGCGGCGAGGGTGTAGTCAGGAG  -103 relative to the kpcA stop codon 

pcc149 ATGCCAGTAAAACGAAAACACC  on the kpcA start codon 

pcc150 CTTTACATTCTGGCACTAATTGTGTG  +2 relative to the kpcI196 stop codon 

YCY001 GGATCCGTGGTGAGTTCAGGAGAAAATTTGG BamHI -83 relative to the kpcA start codon 

YCY002 AGATCTATGTAAAGTAGTATCAGAAAAATTTAGCAAAG BglII -374 relative to the kpcA start codon 

pcc167 CAATCCGGTTCGTTATTTCGACATCGTTCAAAGG  -42 relative to the fimA start codon 

pcc169 GCCAAACATGAATTCGATAACACCCGCGAATAC  +93 relative to the fimK stop codon 

pcc202 GAATTCAAGGAGAAAGGTATGAAAAAAACGA EcoRI -12 relative to the kpcA start codon 

pcc223 AGATCTCCAGCCAGCCGGATTTTAATAAC BglII +31 relative to the kpcC stop codon  

pcc183 TTAAGGAGCAAGGCTTATGCCAGTAAAACGAAAAC  -16 relative to the kpcI start codon 

wc07 AGATCCTACAAATGGGGCGTGA  -306 relative to the mrkH start codon 

wc08 GGCCTGTTCACCTATTACGTTG  +136 relative to the mrkJ stop codon 

wc09 CTCTTTTTGCGCTTGGCTTCTA  -5 relative to the mrkH stop codon 

wc10 TTCTCCCGGTAAATCAGTAGCG  +4 relative to the mrkI stop codon 
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Table 6.3. (continued) 

Primer Sequence (5’--- 3’) a Enzyme cleaved Complementary position 

pcc212 GGATCCAAGGGATGCATATGACAGAGGG BamHI -5 relative to the mrkH start codon 

pcc213 AAGCTTACTGTCCAAGGTTGTCAGATTCTC HindIII +14 relative to the mrkH stop codon 

pcc335 GGATCCATGCATGACAATAGCGGTGTCGATAAAGG BamHI +244 relative to the mrkH start codon 

pcc336 AAGCTTGCTGCACTACCTGCAGGCATTC HindIII +316 relative to the mrkH start codon 

pcc216 GGATCCATGATCAAGAAGACAACGGAAATTG BamHI on the ydeH start codon 

pcc217 AAGCTTAAACTCGGTTAATCACATTTTGTTC HindIII +4 relative to the ydeH stop codon  

pcc224 GAAACGGTTTATCGCTACGCGGCCGAAGAATTTATCATTATTG  +598 relative to the ydeH start codon 

pcc225 CAATAATGATAAATTCTTCGGCCGCGTAGCGATAAACCGTTTC  +640 relative to the ydeH start codon 

pcc337 CTTATTAATTAAATTGAAAATAATCGTCTGGGCC  +165 relative to the mrkI start codon 

pcc338 GAGATTTCTGCCATCAGAATCGTCGATCTG  +165 relative to the mrkI start codon 

pcc339 GCGATTTCTGCCATCAGAATCGTCGATCTG  +165 relative to the mrkI start codon 

pcc281 CCGGAGACAGGTAAACGTTCGCATCGCT  +181 relative to the mrkA strat codon 

pcc282 AGCAGCCTGGCAGTTAGAGACGTCAATGGTG  +270 relative to the mrkA strat codon 

pcc273 AGATCTTTGACGCCGATAGCACCAG HindIII -188 relative to the mrkA start codon 

pcc324 GGATCCGCGGTTGCCATTGCTGCAGAG BamHI +38 relative to the mrkA start codon 

pcc319 GGATCCAGACAAAATGGAGGGAACCCTATC BamHI -376 relative to the mrkH start codon 

pcc320 GGATCCTTACTGGTCTTTATCGTTCCCTCTG BamHI +29 relative to the mrkH start codon 
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Primer Sequence (5’--- 3’) a Enzyme cleaved Complementary position 

    

RT-PCR    

a1 (wc05) GGATCCGCCTGGGTGCCCTTTTTCC BamHI -640 relative to the mrkH start codon   

a2 (wc03) CCCTCTGTCATATGCATCCCTTG  +11 relative to the mrkH start codon 

b1 (pcc275) CACCCTGGATAACGCTAATGAAGAGAG  -150 relative to the mrkI start codon 

b2 (pcc276) CATAACTCAGACGGGTGGCATTTTC  +100 relative to the mrkI start codon 

c1 (pcc277) GAATCAGCGTATTGCCGCTCTCC  -177 relative to the mrkJ start codon 

c2 (pcc256) CATTCCACCGCGACCAGAGTAC  +110 relative to the mrkJ start codo  

d1 (wc13) ATGACCAAAACGCCGAATCTTA  +439 relative to the mrkH start codon 

d2 (wc09) CTCTTTTTGCGCTTGGCTTCTA  -5 relative to the mrkH stop codon 

e1 (wc17) GGATCCGGGCTGTGCAGAGAGTTGATAAA BamHI +265 relative to the mrkI start codon 

e2 (pcc280) AACCGTTTTATGAGCAATGCCGAG  +495 relative to the mrkI start codon 

f1 (pcc278) CCATATCCTGAACCTGTTGCGCC  +273 relative to the mrkJ start codon 

f2 (pcc279) CGGACTCTTTGCGCATCAGGTG  +532 relative to the mrkJ start codon 

    

a The nucleotide sequence recognized by each restriction enzyme listed are underlined. 

Table 6.3. (continued) 
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