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多變量變幅波動模型的理論與應用 

 

研究生：劉炳麟 指導教授：周雨田 博士 

   李正福 博士 

 

國立交通大學財務金融研究所博士班 

 

摘要 

 本文提出多變量的動態變幅（range）波動模型，並探討其在財務相關議題

的應用，內容主要分成三個部分。第一部份提出以變幅為基礎的動態條件相關係

數（dynamic conditional correlation，DCC）模型，簡稱為 range-based DCC 模型，

其結合 DCC 模型以及條件變幅波動（conditional autoregressive range，CARR）

模型在波動性預測方面的優勢，藉此改善共變異數矩陣估計的準確性，並且以

S&P 500 股價指數和 10 年期的債券期貨做為樣本，進行樣本內和樣本外共變異

數預測能力的比較，實證結果指出，在所建立的已實現變異數（ realized 

covariance）指標下，range-based DCC 模型表現優於文獻上常見之報酬為基礎的

波動模型（包含 MA100、EWMA、CCC、BEKK 和 DCC 模型）。第二部分則是

基於平均數-共變異數的架構下，結合效用函數，驗證 range-based DCC 模型之波

動擇時的經濟價值，實證結果支持此模型具有顯著的經濟價值，並且更勝於以報

酬為基礎的 DCC 模型。第三部分則是以 range-based CCC 和 range-based DCC 模

型計算最小變異數的避險比例（minimum variance hedge ratio），並且應用在商品

期貨的避險，透過所選用 15 種商品（包含股價指數、匯率、金屬、農產品、軟

性商品和能源市場）的驗證，得知變幅為基礎的波動模型可以有效改善避險績

效，並且明顯優於其他以報酬為基礎的波動模型（包含 OLS、rollover OLS、CCC

和 DCC 模型）。 

 

關鍵字：DCC 模型、CARR 模型、變幅、動態波動性、經濟價值、波動擇時、

避險比例和最小變異數避險 
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Three Essays of Range-based Multivariate Volatility Models 
 
Student: Nathan Liu Advisors：Dr. Ray Yeutien Chou 

            Dr. Cheng-Few Lee 
 

Graduate Institute of Finance, National Chiao Tung University 
 

Abstract 

This dissertation is intended as an investigation of dynamic range volatility models. 

There are three main parts in this study. In the first part, we propose a range-based 

DCC model combined by the return-based DCC model and the CARR model. The 

substantial gain in efficiency of volatility estimation can boost the accuracy for 

estimating time-varying covariances. As to the empirical study, we use the S&P 500 

stock index and the 10-year treasury bond futures to examine both in-sample and 

out-of-sample results for six models, including MA100, EWMA, CCC, BEKK, 

return-based DCC, and range-based DCC. In the second part, the range-based 

volatility model is used to examine the economic value of volatility timing in a 

mean-variance framework. We compare its performance with a return-based dynamic 

volatility model in both in-sample and out-of-sample volatility timing strategies. For a 

risk-averse investor, we examine whether the predictable ability captured by the 

range-based volatility models is economically significant or not. In the last part, we 

use ranges to estimate the minimum variance hedge ratios within the framework of the 

CCC model and the DCC model. Other alternative methods used for comparison 

include the static OLS model, the week-by-week rollover OLS model, the 

return-based CCC model, and the return-based DCC model. While the spot price risk 

is hedged by their corresponding futures, we compare the out-of-sample performances 

of the hedging strategies for the selected commodities, including stock index, 

currency, metal, grain, soft, and energy markets. Overall, the range-based volatility 

models perform better than the other selected volatility models in the empirical 

studies. 

 

Keywords: DCC model, CARR model, Range, Dynamic volatility, Economic value, 

Volatility timing, Hedge ratio, Minimum variance hedge. 



III 

誌謝 

 

時光荏苒，生命中重要的一役終於完結，能夠順利完成論文的作業，首先我

最要感謝的是指導教授 周雨田老師及 李正福老師的辛勤教導及殷殷教誨。其中

周雨田老師亦是擔任我碩士班時期的指導教授，多年的學習路途一路走來， 周

老師總是不厭其煩地提醒我在學術研究上應該具備的正確態度及習慣，老師除了

學習上的教導也時常關心我的日常生活，並且幾次在我陷入困境時，他是將我拉

出困境的重要推手； 李正福老師雖然工作繁忙亦必須經常往返異國兩地，即便

如此忙碌，我仍然時常接到 李老師從國外打來的電話，他隨時叮嚀我的論文進

度並且提供我必要的協助。在此同時，我感謝交大財金所諸位老師辛勤的教導，

特別感謝 鍾惠民老師，雖然 鍾老師肩負繁重的所長要務，卻在百忙之中仍撥空

擔任我的論文口試委員。亦感謝清華大學 冼芻蕘老師及 張焯然老師擔任本篇論

文的口試委員並給予我許多寶貴的建議及方向。 

 

另外，特別感謝服務於高科大財管系的巫春洲學長，他經常給予我學術上的

引導與協助並提供我必要的研究支援。感謝博士班期間共同參與研究的老師：中

原國貿 楊奕農老師、海洋航管 周恆志老師及銘傳財管 涂登才老師。謝謝你們

的建議及指導，讓我學習到許多研究上的技能。 

 

 感謝一群多年陪伴在我身邊的「戰友」，你們的鼓勵與陪伴，讓我苦悶的研

究生活添加了許多樂趣及回憶。雖然，我們總是聊著跟學術無關的話題，但這卻

也成為我這幾年研究生活中不可或缺的前進動力。包括，兩位同窗—陳煒朋和吳

志強；交大管科的好友—賴雨聖、徐淑芳、王若蓮；中研院經濟所的同志—張榮

顯、蔡欣珉、孔維新、謝佩吟和李銘席；交大經管的劉志良和同門的學弟妹；工

研院經資中心和中小企業信用保證基金的工作伙伴，感謝你們的適時幫助，當我

在研究生活中陷入苦思時，你們是我那一道道生命的暖流。同時也要感謝財金所

謝佳芸、蘇文淇和沈稚瑩小姐在行政事務上的協助，讓我可以免卻擔心那繁瑣的

業務手續。 

 

 感謝我的家人，由於你們的支持，使得我在求學的路上，少了許多的擔憂。



IV 

老婆珈旻是我這一路上最佳的諮詢者，除了擔起經濟重任之外並身負兩個小孩的

教養重任；岳母這幾年擔任兩位小孩日間的褓母工作，免去我們夫妻倆許多煩

惱；最後將本論文獻給我摯愛的父母親及家人，謝謝您們多年來的支持與鼓勵，

從小到大的求學路上，我要把我所有的驕傲與你們分享。自幼而長，我親愛的爸

媽，您們的為人處事一直是我努力的目標和榜樣，而後，我將更秉持著踏實的態

度努力在研究工作中。由衷感懷之情，溢於言表！ 

 

 劉炳麟  謹誌 

民國九十八年四月 



V 

Contents 

Chinese Abstract ………………………………………………… I 
English Abstract ………………………………………………… II 
Acknowledge …………………………………………………….. III 
Contents …………………………………………………………. V 
List of Tables ……………………………………………………. VII 
List of Figures …………………………………………………… VIII 
  
Chapter 1. Introduction ................................................................ 1 
  
Chapter 2. Forecasting Time-varying Covariance with a 

Range-Based Dynamic Conditional Correlation Model .... 4 
 2.1 Introduction ............................................................................. 4 
 2.2 Covariance Estimation ............................................................ 6 
 2.3 The Range-based Volatility Model and the DCC Model ........ 8 
 2.4 Comparison of Various Methods for Conditional Covariance 

Forecasts .................................................................................. 15 
 2.4.1 Measured Covariances  .................................................... 16 
 2.4.2 In-sample Forecast Comparison ......................................... 17 
 2.4.3 Out-of-sample Forecast Comparison .................................. 19 
 2.5 Conclusion ............................................................................... 20 
  
Chapter 3. The Economic Value of Volatility Timing Using a 

Range-based Volatility Model .............................................. 31 
 3.1 Introduction ............................................................................. 31 
 3.2 Methodologies ......................................................................... 34 
 3.2.1 Optimal Portfolio Weights in a Minimum Variance 

Framework ............................................................................... 34 
 3.2.2 Economic Value of Volatility Timing ................................. 35 
 3.3 Empirical Results .................................................................... 36 
 3.3.1 In-sample Comparison ....................................................... 38 
 3.3.2 Out-of-sample Comparisons ............................................... 40 
 3.4 Conclusion ............................................................................... 42 



VI 

  
Chapter 4. Estimating Time-Varying Hedge Ratios with a 

Range-Based Multivariate Volatility Model ....................... 55 
 4.1 Introduction ............................................................................. 55 
 4.2 Hedging Methodology ............................................................. 58 
 4.3 Empirical Analysis .................................................................. 59 
 4.4 Conclusion ............................................................................... 64 
  
Chapter 5. Conclusions ................................................................. 76 
  
References ...................................................................................... 77 
 

 



VII 

List of Tables 

Table 2.1: Summary Statistics for the Weekly Returns and Ranges .. 22
Table 2.2: Estimation of Bivariate Return-based and Range-based 

DCC Model Using Weekly S&P 500 and Tbond Futures …….. 23
Table 2.3: In-sample Forecast Errors for Covariances between the 

S&P 500 and Tbond Futures …………………………………... 24
Table 2.4: One, Two, and Four Periods Ahead Out-of-sample 

Forecast Errors for Covariances between the S&P 500 and 
Tbond Futures …………………………………………………. 25

Table 2.5: Simple Correlations between MCOVs and FCOVs for 
One, Two, and Four Periods Ahead Out-of-sample Covariance 
Forecasts ………………………………………………………. 26

Table 3.1: Summary Statistics for Weekly S&P 500 and T-bond 
Futures Return and Range Data ……………………………….. 43

Table 3.2: Estimation Results of Return-based and Range-based 
DCC Model Using Weekly S&P500 and T-bond Futures …….. 44

Table 3.3: In-sample Comparison of the Volatility Timing Values in 
the Minimum Volatility Strategy Using Different Target 
Returns ………………………………………………………… 45

Table 3.4: Out-of-sample Comparison for the One Period Ahead 
Volatility Timing Values in the Minimum Volatility Strategy 
with Different Target Returns …………………………………... 46

Table 3.5: Out-of-sample Comparison for One to Thirteen Periods 
Ahead Volatility Timing Values in the Minimum Volatility 
Strategy ………………………………………………………... 47

Table 3.6: The One Period Ahead Performance of the Volatility Timing 
Values for the Asymmetric Range-based Volatility Model ……… 48

Table 4.1: The Source of Spot and Futures Data …………………… 65
Table 4.2: Summary Statistics for Returns and Ranges of Spot and 

Futures ………………………………………………………… 66
Table 4.3: Return-based DCC Model Estimations ………………….. 67
Table 4.4: Range-based DCC Model Estimations ………………….. 69
Table 4.5: Comparisons of Out-of-Sample Hedging Performance …. 71
 

 



VIII 

List of Figures 

Figure 2.1: S&P 500 and Tbond Futures Weekly Closing Prices, 
Returns and Ranges …………………………………………… 27

Figure 2.2: Four Measured Covariances between S&P 500 and 
Tbond Futures …………………………………………………. 28

Figure 2.3: In-sample Forecasting Covariances between S&P 500 
and Tbond Futures for Six Models ……………………………. 29

Figure 2.4: One Period Ahead Out-of-sample Forecasting 
Covariances between S&P 500 and Tbond Futures for Six 
Models ………………………………………………………… 30

Figure 3.1: S&P 500 Index Futures and T-bond Futures Weekly 
Closing Prices, Returns and Ranges …………………………... 49

Figure 3.2: In-sample Volatility Estimates for the GARCH and 
CARR Model ………………………………………………….. 50

Figure 3.3: In-sample Correlation and Covariance Estimates for the 
Return-based and Range-based DCC Model ………………….. 51

Figure 3.4: In-sample Minimum Volatility Portfolio Weight Derived 
by the Dynamic Volatility Model ……………………………... 52

Figure 3.5: Out-of-sample Minimum Volatility Portfolio Weight 
Derived by the Dynamic Volatility Model for One Period 
Ahead Estimates ………………………………………………. 54

Figure 4.1: Comparison of optimal hedge ratios …………………… 75
 

 



1 

Chapter 1. Introduction 

 

With the continual development of new financial instruments, there is a growing 

demand for theoretical and empirical knowledge of the financial volatility. It is 

well-known that financial volatility has played such a central role in derivative pricing, 

asset allocation, and risk management. 

Many studies show that financial time series exhibit volatility clustering or 

autocorrelation. In incorporating the characteristics into the dynamic process, the 

generalized autoregressive conditional heteroskedasticity (GARCH) family of models 

proposed by Engle (1982) and Bollerslev (1986) are popular and useful alternatives for 

estimating and modeling time-varying financial volatility. However, as pointed by 

Alizadeh, Brandt, and Diebold (2002), Brandt and Diebold (2006), Chou (2005) and 

other authors, GARCH models are inaccurate and inefficient, because they are based on 

the closing prices, of the reference period, failing to use the information contents inside 

the reference. In other words, the path of the price inside the reference period is totally 

ignored when volatility is estimated by these models. Especially in turbulent days with 

drops and recoveries of the markets, the traditional close-to-close volatility indicates a 

low level while the daily price range shows correctly that the volatility is high.  

The price range, defined as the difference between the highest and lowest market 

prices over a fixed sampling interval, has been known for a long time and recently 

experienced renewed interest as an estimator of the latent volatility. This information is 

widely used in Japanese candlestick charting techniques and other technical indicators 

(Nisson, 1991). Early application of range in the field of finance can be traced to 

Mandelbrot (1971), and the academic work on the range-based volatility estimator 

started from the early 1980s. Several authors, back to Parkinson (1980), developed 
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from it several volatility measures far more efficient than the classical return-based 

volatility estimators. 

Building on the earlier results of Parkinson (1980), many studies1 show that one 

can use the price range information to improve volatility estimation. Cox and 

Rubinstein (1985) stated the puzzle that despite the elegant theory and the support of 

simulation results, the range-based volatility estimator has performed poorly in 

empirical studies. Chou (2005) argued that the failure of all the range-based models in 

the literature is caused by their ignorance of the temporal movements of price range. 

Using a proper dynamic structure for the conditional expectation of range, the 

conditional autoregressive range (CARR) model, proposed by Chou (2005), 

successfully resolves this puzzle and retains its superiority in empirical forecasting 

abilities.  

There are three parts in this essay. They present three independent papers, 

respectively. In the first part of this dissertation, we extend the CARR model to a 

multivariate context using the dynamic conditional correlation (DCC) model proposed 

by Engle (2002a). In the empirical studied, we use the S&P 500 stock index and the 

10-year treasury bond futures to examine both in-sample and out-of-sample results for 

six models, including MA100, EWMA, CCC, BEKK, return-based DCC, and 

range-based DCC. Of all the models considered, the range-based DCC model is largely 

supported in estimating and forecasting the covariance matrices. 

 In the second part, we calculate the economic value gained by the range-based 

DCC model. Moreover, we also compare its performance with the return-based DCC 

model in both in-sample and out-of-sample volatility timing strategies. For a 

risk-averse investor, it is shown that the predictable ability captured by the dynamic 
   
1 See Garman and Klass (1980), Wiggins (1991), Rogers and Satchell (1991), Kunitomo (1992), Yang 
and Zhang (2000), Alizadeh, Brandt and Diebold (2002), Brandt and Diebold (2006), Brandt and Jones 
(2006), Chou (2005, 2006), Martens and van Dijk (2007), Chou, Wu and Liu (2007). 
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volatility models is economically significant, and that the range-based volatility model 

performs better than the return-based one. 

 In the last part, we use the range-based volatility models to calculate the hedge 

ratio and compare their hedging performance with other methods, including the static 

OLS model, the week-by-week rollover OLS model, the return-based CCC model, and 

the return-based DCC model. Based on minimum-variance hedging criterion, the 

out-of-sample comparisons show that the range-based volatility models perform better 

than the other hedging models for most of the selected commodities, including the 

stock index, the currency, the metal, the grain, the soft, and the energy markets. 

Compared with the static OLS model, on average, the range-based DCC model has 

about 30 percent efficiency gain. Furthermore, with the same setting of dynamic 

structure of the return-based hedging strategies, the range-based ones can get about 10 

percent additional efficiency gain. 
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Chapter 2. Forecasting Time-varying Covariance with a Range-Based 

Dynamic Conditional Correlation Model 
 

2.1 Introduction 

It is of primary importance in the practice of portfolio management, asset allocation and 

risk management to have an accurate estimate of the covariance matrices for asset 

returns. Meanwhile, a useful approach for estimating volatilities and covariances in 

valuing derivatives is necessary. Surveying from a bundle of past related literature, the 

univariate ARCH/GARCH family of models have provided effective tools in estimating 

the volatility of individual asset. Tailored to the needs of different asset classes, these 

various models have achieved remarkable success (see Bollerslev, Chou, and Kroner 

(1992), and Engle (2004), for a comprehensive review). However, estimating the 

covariance and correlation matrices of multiple variables, especially large sets of asset 

prices, is still an active research issue. Early attempts include the VECH model2 of 

Bollerslev, Engle, and Wooldridge (1988), the BEKK (Baba-Engle-Kraft-Kroner) 

model3 of Engle and Kroner (1995), and the constant conditional correlation (CCC) 

model of Bollerslev (1990), among others. To our knowledge, the constant correlation 

model is too restrictive in that it imposes stringent constraints whereby the dynamic 

structure of the covariance is completely determined by individual volatilities. VECH 

and BEKK are, however, more flexible in that they allow time-varying correlations. 

While the BEKK parameterization for a bivariate model involves 11 parameters, for 

higher-dimensional systems, the additional parameters in BEKK make estimation very 

difficult. 
   
2 The k-dimensional VECH model is written as vech(Ht)=A+B vech( '

1 1t tξ ξ− − )+C vech(Ht-1), where Ht is 
the conditional covariance matrix at time t and vech(Ht) is the vector that stacks all the elements of the 
covariance matrix.  
3 It is a general parameterization that involves the minimum number of parameters while imposing no 
cross equation restrictions and ensuring positive definiteness for any parameter value.  
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In a series of related papers, Engle and Sheppard (2001), Engle (2002a), and 

Cappiello, Engle, and Sheppard (2006) provide another viewpoint to this problem by 

using a model referred to the dynamic conditional correlation (DCC) multivariate 

GARCH4.  Intuitively, the conditional covariance estimation for two variables is 

simplified by estimating univariate GARCH models for each asset’s variance process. 

Then, the estimation of the time-varying conditional correlation is performed by using 

the transformed standardized residuals. A meaningful and excellent performance of this 

model is demonstrated in these studies. 

The objective of this article is to propose an alternative to the return-based DCC 

approach. In this paper, we consider a refinement of the return-based DCC model by 

utilizing the high/low range data of asset prices during a fixed time interval. In 

estimating the volatility of asset prices, there is a growing recognition of the fact that 

the range data of asset prices can provide sharper estimates and forecasts than the return 

data based on close-to-close prices. Many insightful studies have provided powerful 

evidence including Parkinson (1980), Garman and Klass (1980), Wiggins (1991), 

Rogers and Satchell (1991), Kunitomo (1992) and, more recently, Gallant, Hsu, and 

Tauchen (1999), Yang and Zhang (2000), Alizadeh, Brandt, and Diebold (2002), Brandt 

and Jones (2006), Chou (2005, 2006), and Martens and van Dijk (2007). Above all, 

Chou (2005) proposes the conditional autoregressive range (CARR) model which can 

capture the dynamic volatility process and has obtained some insightful evidence in 

terms of real trading data. In other words, a range-based volatility model can serve as a 

useful substitution for the return-based volatility model in describing the process of 

volatility. 

Range data intuitively have more information than return data for estimating 

   
4 Other econometric methods for estimating the time-varying correlation are proposed by Tsay (2002) 
and by Tse and Tsui (2002). 
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volatility. Again, they are easy to obtain for many financial markets. The previous 

studies have proved that range is an efficient volatility estimator5. Moreover, Chou 

(2005) puts the range into the dynamic process, and verifies that the range model can 

also fit time-varying volatility well. In light of the success of the range-based univariate 

volatility models, it is natural to inquire whether the efficiency of the range structure 

can be extended and incorporated into a multivariate framework6 for constructing 

covariance process. 

The remainder of this chapter is laid out in the following manner. Section 2.2 

reviews the bivariate models for estimating the covariance process. Section 2.3 

introduces the range-based volatility model and the DCC model. Section 2.4 describes 

the properties of data used and discusses the empirical results. Finally, the conclusion is 

showed in section 2.5. 

 

2.2 Covariance Estimation 

This section provides an overview of methods for describing the current level of 

covariance. Conventionally, the conditional covariance estimation between two return 

series is defined as:  

12, 1 1, 1 2, 2[( )( )]t t t tCOV E r rμ μ−= − − ,                                      (2.1) 

where ,( )i i tE rμ = . In most applications, asset returns are assumed to have zero means. 

This common viewpoint is adopted in our study. Thus, equation (2.1) can be expressed 

as 12, 1 1, 2,( )t t t tCOV E r r−= . 

It is useful to estimate time-varying covariance parameters between asset returns 

   
5 Shu and Zhang (2006) provide relative performance of different range-based volatility estimators, and 
find that the range estimators all perform very well when an asset price follows a continuous geometric 
Brownian motion. 
6 Fernandes, Mota, and Rocha (2005) utilize the formula Cov(X,Y)=[V(X+Y)-V(X)-V(Y)] /2 to propose a 
kind of multivariate CARR model. However, this method limits the multivariate CARR model to a 
bivariate case only. 
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in many financial applications. For example, they can be used to deal with the hedging 

ratio for futures, the optimal weights for the portfolio allocation, the time-varying beta 

for the market model, and so on. The information of the conditional covariance is 

derived from previous trading data. One commonly used method is to compute the 

historical covariance. For capturing the time-varying property of covariances, however, 

one approach we use works with a moving average with a 100-week window, namely 

MA100, which is rich enough to be relevant and yet simple enough to permit a 

streamlined exposition:  

∑
−

−=

=
1

100
,2,1

100
,12 100

1 t

ts
ss

MA
t rrCOV .                                          (2.2) 

Intuitively, it is reasonable to attach more weight to recent data. Going by this, we 

introduce an exponentially weighted moving average (EWMA) model where the 

weights decrease exponentially as we move back through time. Exponential smoothing 

is used to model the unobservable variables for volatility in JP Morgan’s RiskMetrics, 

too. EWMA has an attractive feature in that relatively little data need to be stored. 

Exponential averages arrange the most weight to the most recent observations, with 

weights declining exponentially as observations go back in time. It turns out that 

EWMA for covariance estimation can briefly be illustrated as follows.  

1
12, 1, 2,

1
(1 )EWMA s

t t s t s
s

COV r rλ λ
∞

−
− −

=

= − ∑ ,                                     (2.3) 

where the smoothing parameter λ  lies between zero and unity. The value of λ  

governs how sensitive the estimate of the current variable is to percent changes in the 

most recent period. The popular RiskMetrics approach adopts exponential moving 

averages7 to estimate future volatility because it believes the method responds rapidly 

   
7 The RiskMetrics database uses the exponentially-weighted moving average model with λ =0.94 for 

updating daily volatility estimates. J.P. Morgan found that, across variant market variables, this value 
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to market shocks.  

The conditional variance-covariance matrix can build a multivariate ARCH model. 

This approach has been extracted by Engle and Kroner (1995), who proposed the 

so-called BEKK model. The parameters, however, easily diverge from the acceptable 

scope when the type of the full-rank BEKK model is adopted. In the related literature, 

the diagonal BEKK (DBEKK) model is adopted more frequently due to its property of 

convergence of parameters used in general empirical research. Considering the 

bivariate case for DBEKK, its covariance matrix ][ ,tij
DBEKK
t hH =  is shown as below: 
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tt ,                          (2.4) 

where ija , ijb , ijc  are estimated parameters. tε  represents the innovation term of 

the mean equation under the assumption ),0(~| 1 ttt HI −ε . 

 

2.3 The Range-based Volatility Model and the DCC Model 

The asset high/low range, tℜ , is defined as the difference between the daily high and 

low prices in a logarithm type over a fixed time period. It is readily available for some 

assets and can be written as: 

ln( ) ln( )t t tH Lℜ = − ,  (2.5) 

where tH  and tL  are the highest and lowest intraday price over a fixed period such 

as daily, weekly, or monthly. For weekly data, the highest price of a week is its intraday 

highest price that we can observe over the trading time in the week. Unlike the intraday 

     
of λ  results in forecasts of the volatility that come closest to the realized volatility. Following J.P. 
Morgan’s suggestion, the variable λ  equals 0.94 for the time being in the later empirical discussion. 
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realized volatility, the range therefore does not have a time-aggregation problem. 

The previous studies indicated that range has relative efficient, but did not 

empirical support. Chou (2005) argues that its poor performance is due to the poor 

dynamic fitting, and further, proposes the CARR model to capture its dynamic structure. 

The CARR can be expressed as: 

( )1

1 1

,  | ~ exp 1;t t t t t

t t t

u u Iλ
λ ω α βλ

−

− −

ℜ = ⋅

= + ℜ +
,   (2.6) 

where tℜ  and tλ  is the high/low range and the conditional mean of the range during 

the time interval t, respectively. tu  is the innovation assumed to follow the exponential 

distribution with a unit mean. 

The CARR model is a special case of the multiplicative error model (MEM) of 

Engle (2002b)8. The specification of the exponential distribution for the disturbance 

term provides a consistent estimator of the parameters. For specific discussions, see 

Chou (2005) for a review. This paper extends this range model to a multivariate case by 

the DCC model. 

Bollerslev (1990) proposed the CCC model with a constant correlation matrix, 

where univariate GARCH models are estimated for each asset and then the 

corresponding correlation matrix is constructed. An illustration of CCC is shown below. 

The covariance matrix CCC
tΗ  for a vector of k asset returns can be decomposed as 

follows: 

tt
CCC
t RDDH = ,   (2.7) 

where R is the correlation matrix and Dt is the kk ×  diagonal matrix of time-varying 

standard deviations from univariate GARCH models with tih ,  on the ith diagonal. As 

   
8 The MEM model is designed to fit a non-negative series, like duration or realized volatility. 
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for the tih , , it is the square root of the estimated variance for the ith return series. The 

assumption of a constant correlation makes estimating a large model feasible and 

ensures that the estimator is positive definite, simply requiring each univariate 

conditional variance to be non-zero and the correlation matrix to be of full rank. Under 

such a situation, the estimate of the conditional covariance can be obtained, based on 

information regarding the fixed correlation and the product of the two conditional 

standard deviations.  

Although CCC is meaningful, the setting of constant conditional correlations could 

sometimes be too restrictive and the estimators in the constant correlation setting, as 

proposed, do not offer a rule to construct consistent standard errors, using the 

multi-stage estimation process. Another shortcoming for the constant correlation model 

is that the correlation coefficient tends to change over time in real applications. Engle 

(2002a) extended CCC to the more comprehensive DCC type. DCC retains the 

parsimony of the univariate GARCH model of individual assets’ volatilities with a 

simple GARCH-like time varying correlation. Meanwhile, DCC differs from CCC 

mainly in that it allows the correlation matrix to be changed over time. Accordingly, we 

can write DCC as:  

ttt
DCC
t DRDH = ,  (2.8) 

2121 /
tt

/
tt }diag{QQ}diag{QR −−= ,                                     (2.9) 

111 −−− ++−−′= tttt QB'ZZAB)A(SQ ιι ,  (2.10) 

where Dt is defined as in equation (2.7) and tR  is the possibly time-varying 

correlation matrix. ][ ,tijt qQ =  denotes the conditional covariance matrix of the 

standardized residuals. 

In equation (2.10), A and B are parameter matrices and  denotes the Hadamard 
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matrix product operator, i.e. element-wise multiplication. The symbol ι  denotes a 

vector of ones and S denotes the unconditional covariance matrix of the standardized 

residuals. Finally, ][ ,tit zZ =  is the standardized but correlated residual vector, and its 

conditional correlation matrix is given by variable Rt. If A and B are zeros, then the 

DCC model can revert to the structure of CCC. Related literature shows that if A, B, 

and ( ' )A Bιι − −  are positive semi-definite, then Qt will also be positive semi-definite. 

If any one of the matrices is positive definite, then Qt will also be so. For the ijth 

element of Rt, the conditional correlation matrix is given by ,ij tq / , ,ii t jj tq q . In our study, 

we focus on the comparison of forecasting covariances for two assets and equation 

(2.10) has the following structure in a bivariate case, 
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where a and b are parameters. In most cases, they can substitute for complicated 

matrices A and B. 12q  is the unconditional covariance of the two standardized 

residuals.  

The DCC model is constructed to permit for two-stage estimation of the 

conditional covariance matrix tH . Briefly speaking, during the first step, a univariate 

volatility model is fitted for each of the assets and the estimates of ,i th  are obtained. In 

the second step, the asset returns transformed by their estimated standard deviations are 

used to estimate the parameters of the conditional correlation. 

The log-likelihood of this estimator is straightforward. One simply maximizes the 

log-likelihood: 
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  (2.12) 

Following Engle (2002a)’s argument, one can perform the estimation by means of 

qusi-maximum likelihood estimation (QMLE) to yield consistent parameter estimates. 

The advantages of QMLE are its simplicity and consistency. However, its 

disadvantages are that the estimates are inefficient, even asymptotically, and more 

importantly, its small-sample properties are suspect. (also see Hafner and Franses (2003) 

for a review.) Let the parameters in Dt be denoted by 1θ  and the additional parameters 

in Rt be denoted by 2θ . According to Engle (2002a), one can divide the log-likelihood 

function into two parts: 

( ) ( ) ),(, 21121 θθθθθ CorrVol LLL += .  (2.13) 

The former term in the right hand side of equation (2.13) represents the volatility part: 

( ) ( )∑ −++−=
t

ttttVol rDrDkL 22
1 'log)2log(

2
1 πθ , (2.14) 

and the latter term can be viewed as the correlation component: 

( ) ( )∑ −+−= −

t
ttttttCorr ZZZRZRL ''log

2
1, 1

21 θθ . (2.15) 

 Following the recipe for the first stage, we can pick up a suitable 1θ  easily, which 

satisfies equation (2.14) and is maximized after the estimate of 1̂θ  is computed. 

Subsequently, in the second stage, the correlation part in equation (2.15) can be 

maximized with respect to the optimized 1θ  and 2θ  simultaneously. Consequently, 

the formidable task of maximizing equation (2.13) is attainable. Estimates for 1̂θ  and 
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2θ̂  are useful in subsequent analysis. 

It is interesting and important to recognize that although the dynamics of the Dt 

matrix has usually been structured as a standard GARCH model, it can be easily 

extended to many other types of models. For instance, one could adopt the EGARCH or 

GJR-GARCH model to replace the simple GARCH model for describing the 

asymmetric phenomenon in the actual volatility process or use the FIGARCH model to 

allow for the long memory volatility processes. In this paper, the CARR model of Chou 

(2005) will be used as an alternative to verify if the specification selected adequately fit 

the DCC model. 

 When the specific GARCH model is fitted, the term of volatility in the likelihood 

function can be demonstrated as below:  

( ) ∑∑
=
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, )log()2log(
2
1 πθ .  (2.16) 

By the same token, if Dt is determined by a CARR specification, then the likelihood 

function of the volatility term will be modified as: 
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,

2
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, )log(2)2log(
2
1

λ
λπθ , (2.17) 

where *
,tiλ  denotes the conditional standard deviation as computed from a scaled 

expected range, using the CARR model. 

The second part of the likelihood function will be used to estimate the parameters 

for correlations. As the squared residuals are not dependent on these parameters, they 

will not appear in the first-order conditions and can be neglected. A simple 

transformation of the two-stage framework to maximize the likelihood function is 

achieved. Apparently, ( ){ }11 maxargˆ θθ VolL=  and then we extract this value 1̂θ  as 
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given, into the second step, ( ){ }21,ˆmax
2

θθ
θ CorrL . It is shown in Engle and Sheppard 

(2001) that under some regularity conditions, the condition for consistency will be 

satisfied. Maximization of equation (2.15) will be a function of the parameter estimates 

from equation (2.14). These conditions are similar to those given in White (1994), 

where the asymptotic normality and the consistency of the two-step QMLE estimator 

are established. 

The following GARCH and CARR structures can be performed in the first step of 

the DCC estimation. As to the GARCH volatility structure, the function form can be 

illustrated as below: 

titir ,, ε=  ),0(~| ,1, titti hNI −ε , i=1,2. 

1,
2

1,, −− ++= tiitiiiti hh βεαω ,   (2.18) 

titi
GARCH

ti hrz ,,, /= . 

In addition to the original GARCH model embedded in DCC, one can replace it 

with the CARR framework. CARR is powerful in capturing the volatility process. It is 

intuitive to put CARR into the first stage, which is particularly convenient for complex 

dynamic systems in operation. It means the new standardized residuals can be obtained 

from the CARR model, that is *
,,, / titi

CARR
ti rz λ= , where tiiti adj ,

*
, λλ ×=  and 

i

i
iadj

λ

σ
ˆ

= . 

The rescaled expected range *
,tiλ  is used to replace the conditional standard deviation. 

It is computed by a product of ti ,λ  and the adjusted coefficient iadj  which is the ratio 

of unconditional standard deviations iσ  for the return series to the sample mean iλ̂  

of the estimated conditional range. 

In performing a comparison of the in-sample data during subsequent empirical 

analysis of the covariance matrices, several related and conventional models are 
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included - MA100, EWMA9 with 94.0=λ , CCC, and DBEKK models.  

For robustness of inference, we also perform out-of-sample forecast comparisons. 

The out-of-sample forecast of the DCC model for correlations can be obtained using the 

standard forward iterative approach; given T as the sample size, the T+1th observation 

will be obtained.  

At time T, the out-of-sample forecast for conditional correlation in the period 

(T+1) is presented by: 
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The estimated correlation at time T+1 can be calculated as 

1,221,111,121 / ++++ = TTTT qqqρ . The out-of-sample prediction for correlation for the 

period (T+p), where 2≥p , can be expressed as shown below: 
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In addition to range-based and return-based DCC, MA100, EWMA, CCC and 

DBEKK are introduced for an out-of-sample predictive comparison 10 . For 

distinguishing the forecasting abilities of these models, as in Taylor (2004), we still use 

root mean square error (RMSE) and mean absolute error (MAE) as two criterions for 

comparison. 

 

2.4 Comparison of Various Methods for Conditional Covariance Forecasts 

The data employed for our empirical study comprise 782 weekly observations on the 

S&P 500 stock index (S&P 500) futures, and the 10-year treasury bond (Tbond) futures 

   
9 The estimate of λ  is 0.94 approximately for the returns that we adopted in this study.  
10 It is also intuitively clear that the out-of-sample forecasts for the covariance are all constant in the 
EWMA model. 
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spanning the period from January 6, 1992 to December 29, 2006 (15 years). We retrieve 

range and return data for the entire period from Datastream.  

< Figure 2.1 is inserted about here > 

Figure 2.1 shows the graphs for close prices (Panel A), returns (Panel B) and 

ranges (Panel C) of S&P 500 and Tbond futures over the sample period. The descriptive 

statistics for the returns and ranges of the series are given in Table 2.1. For the weekly 

returns and ranges of the S&P 500 and Tbond futures, they are computed by 

)/log(100 Low
t

High
t pp×  and 1100 log( / )close close

t tp p −× , respectively. Table 2.1 shows that the 

means of two futures returns are positive. Both the standard deviations and the means 

of the ranges indicate that S&P 500 is more volatile than Tbond. For higher moments of 

the return data, each of them has negative skewness and excess kurtosis. As to the range 

data, they also have excess kurtosis values, but positive skewness coefficients. These 

largely contribute to the rejection for the null hypothesis of a normal distribution with 

the Jarque-Bera statistic. 

< Table 2.1 is inserted about here > 

 

2.4.1 Measured Covariances 

Like the specific property of volatilities, the covariance matrices are also unobservable. 

In this work, we use daily data to construct the proxies for the weekly covariances. The 

purpose behind doing this is to extract the values of the measured covariances 

(MCOVs), as one kind of benchmark for determining the relative performance of 

return-based DCC and range-based DCC, for the time being. 

Daily data are used to build four proxies for covariances, including implied 

return-based DCC, implied range-based DCC, implied DBEKK, and realized 

covariances. Initially, the sample period for daily data from 1/6/1992 to 12/29/2006 is 
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extracted. In total, we collect 3779 daily data for model fitting with return-based DCC, 

range-based DCC and DBEKK, respectively. Meanwhile, the implied daily 

covariances are calculated in this stage. Sequentially, it is easy to get the implied 

weekly estimates for covariance series, followed by the computation below:  

∑=
j

j
t

implied
tMCOV cov ,  (2.21) 

where j
tcov  denotes implied daily covariance on the jth trading day during the 

corresponding week t. Ferland and Lalancette (2006) also use this idea to build the 

weekly covariance and correlation. 

As to the realized volatility, its concept has been used productively by French, 

Schwert, and Stambaugh (1987) and Andersen et al. (2001). The realized covariance 

can be expressed as: 

∑ ×=
j

j
t

j
t

realized
t rrMCOV )( 21 ,  (2.22) 

where j
itr  denotes return for the asset i on the jth trading day during the corresponding 

week t.  

< Figure 2.2 is inserted about here > 

Checking Figure 2.2, we depict the different covariance patterns between S&P 500 

and Tbond series for return-based DCC, range-based DCC, DBEKK and the realized 

pattern, respectively. Some useful insights can be obtained from these figures. It seems 

to reflect strong interactions around these MCOVs. Furthermore, the realized 

covariances are more volatile than other implied ones. This shows that the realized 

pattern is not easy to be fitted. The empirical result also demonstrates this conjecture. 

 

2.4.2 In-sample Forecast Comparison 
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In this section, we present the empirical results for the in-sample forecast comparison 

of covariances. Mainly, we exhibit the in-sample forecasting ability of return-based 

DCC, ranged-based DCC and some related models for the purpose of performance 

comparison. As for the parameters fitted for DCC, we estimate and arrange them in 

Table 2.2. Due to the procedure for parameters estimated under the DCC setting, we 

have to cope with two inherent stages. In the first stage, one can utilize GARCH fitted 

by returns, or CARR fitted by ranges, with individual assets, for obtaining standardized 

residuals. Afterwards, we bring these standardized residuals series into the second stage 

for dynamic conditional correlation estimating.  

< Table 2.2 is inserted about here > 

 Table 2.3 illustrates some brief results of covariances estimated for in-sample 

prediction, based on different econometrical models that we have mentioned previously. 

We draw clear inference from Table 2.3 to the effect that they all appeared to be more 

accurate in range-based DCC than in the other five models, regardless of what criterion 

is adopted. This appears to be consistent not only in RMSE but also in MAE. The worst 

performance in predicting the covariance under the in-sample analysis is the MA100. 

< Table 2.3 is inserted about here > 

Generally speaking, there are no significant differences in covariance forecasting 

performance between return-based DCC and DBEKK under the in-sample context. In 

addition, predicting results of CCC perform even worse than EWMA. One reasonable 

conjecture is that the simple correlation between S&P 500 and Tbond is just an average 

and rough value. In contrast to the dynamic correlation process generated by other 

models, the correlations are very volatile in this sample period. For example, see Figure 

2.3 for an illustration. Looking at the forecasted covariances (FCOVs) generated by 

return-based DCC and CCC, the only difference between them is the estimated 
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correlation process. However, we can find that their covariance process have salient 

difference. Accordingly, it seems inappropriate to assume that the correlation parameter 

between different assets is constant over time.  

< Figure 2.3 is inserted about here > 

 

2.4.3 Out-of-sample Forecast Comparison 

For completeness, we assess the out-of-sample forecasting performance for different 

models by using RMSE and MAE, discussed in the previous in-sample comparison. 

Given that the data set contains a total of 782 usable observations, it is possible to use a 

holdback period of observations. This way, there are 521 observations (10 years) in 

each estimated model and 258 out-of-sample forecasting values for comparison. Here, 

the rolling sample approach for out-of-sample measurement is adopted and the first 

forecasted value for one period ahead forecast respectively occurs on the week of 

January 4, 2002. Table 2.4 reports one, two, and four periods ahead of out-of-sample 

forecasting results for covariance.  

< Table 2.4 is inserted about here > 

We obtain a consistent inference for covariance prediction’s performance based on 

different competitive models. All of the inferences demonstrate an overwhelming 

phenomenon, namely, that the range-based DCC approach dominates other methods in 

accuracy from out-of-sample forecasting. Various forecasting results for covariance 

with different periods ahead are presented in Table 2.4. Except for MA100 in the 

forecasting models, the results in Table 2.4 appear to show a trend that the forecasting 

errors are proportionate to the forecasted periods. One period ahead out-of-sample 

forecasting covariances of all compared models are given in Figure 2.4. 

< Figure 2.4 is inserted about here > 
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Exploring other characteristics of out-of-sample forecasting, CCC, among these 

competitive models is the worst one, even inferior than MA100. One possible 

explanation for this is that the relationship between S&P 500 and Tbond in the 

post-sample has structural change. Unlike previous results in the in-sample comparison, 

however, return-based DCC performs significantly better than DBEKK. With the 

exception of range-based DCC, it is surprising that EWMA, holding constant 

post-sample covariance, even has outstanding performance compared to those of the 

other models. 

Moreover, we can take another look at the out-of-sample forecast comparison. 

Table 2.5 shows the simple correlations between MCOVs and FCOVs for one, two, and 

four periods ahead covariance forecasts. The results show a clear and strong 

relationship between the FCOV built by range-based DCC and MCOVs. The 

correlation coefficients in the CCC case are negative and all are lower than -0.4. It is 

clear that the assumption of the constant correlation may cause the serious influence. In 

general, the correlations show a declining trend along with forecasting horizons. 

< Table 2.5 is inserted about here > 

 In view of in-sample and out-of-sample empirical results, we can not clearly put 

all forecasting models in a proper order. However, it is undoubted that the range-based 

DCC model possesses the optimal forecasting power in covariance. 

 

2.5 Conclusion 

In this paper, we propose a new estimator of the time-varying covariance matrices, 

utilizing the range data that combines the CARR model with the framework of the DCC 

model. The advantage of this range-based DCC model, in terms of its forecasting 

ability to outperform the standard return-based DCC model, hinges on the relative 
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efficiency of the range data over the return data in estimating volatilities. Using weekly 

futures data of S&P 500 and Tbond, we find a consistent result that the range-based 

DCC model outperforms the return-based models in estimating and forecasting 

covariance matrices for both in-sample and out-of-sample analysis. 

In addition to using conventional realized covariance for the purpose of 

comparison, we introduce the viewpoint of implied covariance, which is derived from 

return-based DCC, range-based DCC and DBEKK for benchmarking robustness. 

Nonetheless, no matter what realized covariance or implied covariances are adopted for 

comparison, we obtain a consistent conclusion that the range-based DCC approach is 

the best one for predicting covariance process. 

Although we only applied this estimator to the bivariate systems, it can also be 

applied to larger systems in a manner which is similar to the application of the DCC 

model structures, having already been demonstrated in Engle and Sheppard (2001). It 

will be surely useful to utilize more diagnostic statistics or to test based on value-at-risk 

calculations as proposed by Engle and Manganelli (2004) in future research. Other 

applications such as estimating the optimal portfolio weighting matrices and calculating 

the dynamic hedge ratio in the futures market will also bear fruit. 
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Table 2.1: Summary Statistics for the Weekly Returns and Ranges, 1992-2006. 

This table reports the summary statistics for the weekly return and range data on S&P 
500 and Tbond futures in our empirical study. There are 782 weekly sample 
observations ranging from January 6, 1992 to Dec 29, 2006. All data are extracted from 
Datastream. The returns and ranges are computed by 1100 log( / )close close

t tp p −×  and 
)/log(100 lowhigh pp× , respectively. Jarque-Bera is the statistic for normality. All of them 

reject the null hypothesis of a normal distribution. 

 S&P 500 Tbond 
 Return Range Return Range 

Mean 0.158 3.134 0.016 1.306 

Median 0.224 2.607 0.033 1.194 

Maximum 8.124 13.556 2.462 4.552 

Minimum -12.395 0.690 -4.050 0.301 

Std. Dev. 2.112 1.809 0.855 0.560 

Skewness -0.503 1.756 -0.498 1.390 

Kurtosis 6.455 7.232 4.217 6.462 

Jarque-Bera 421.317 985.454 80.441 642.367 
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Table 2.2: Estimation of Bivariate Return-based and Range-based DCC Model 
Using Weekly S&P 500 and Tbond Futures, 1992-2006. 
Step 1 of DCC estimation: 

1,
2

1,, −− ++= tiitiiiti hh βεαω , ),0(~| ,1, titti hNI −ε  
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This table provides the estimation for the bivariate return-based and range-based DCC 
model using weekly S&P 500 and Tbond futures. The three formulas above two steps 
estimation are GARCH, CARR and the conditional correlation equation respectively of 
the standard DCC model with mean reversion. In the first stage, we use the GARCH 
and CARR model to estimate their volatilities ( tĥ  and tλ̂ ) for each assets and 
computes their standardized residuals (Zt). Then, in the second stage, the conditional 
correlation process can be obtained by using their standardized residuals and 

)( ,2,112 tt zzEq = . The conditional correlation matrix is given by ttt qqq ,22,11,12 / . The 
conditional covariance can then be expressed using the product of conditional 
correlation between these two variables and their individual conditional standard 
deviations. The table shows estimations of the three models using the MLE method. 
Numbers in parentheses are t-values. 

Panel A : Step 1 of DCC estimation 
 S&P 500 Tbond 
 GARCH CARR GARCH CARR 
ω̂  0.018 0.103 0.027 0.075 
 (1.170) (2.923) (1.533) (2.809) 
α̂  0.048 0.248 0.059 0.157 
 (3.744) (9.090) (2.046) (5.208) 

β̂  0.949 0.719 0.903 0.785 
 (76.443) (23.167) (18.994) (18.041) 

Panel B: Step 2 of DCC estimation 
 S&P 500 Versus Tbond 
 Return-based DCC Range-based DCC 

â  0.034 0.041 
 (4.323) (4.624) 

b̂  0.960 0.954 
 (96.873) (86.943) 
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Table 2.3: In-sample Forecast Errors for Covariances between the S&P 500 and 
Tbond Futures, 1992-2006. 
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This table reports the in-sample forecast errors for covariances between S&P 500 and 
Tbond Futures. RMSE and MAE are the error functions. MCOV represents the 
covariance proxy derived from the base model. FCOV is the forecast covariance for the 
forecasting model and is used to fit each MCOV. Daily data are used to compute the 
weekly implied MCOVs (Return DCC. Range DCC, and DBEKK), and the realized 
MCOV (Realized). MA100, EWMA, return-based DCC, range-based DCC, CCC and 
DBEKK, are estimated from the weekly data to build FCOVs. 
Forecast Errors Forecasting Model 

 Base Model MA100 EWMA Return 
DCC 

Range 
DCC CCC DBEKK 

RMSE Return DCC 0.741 0.420 0.392 0.296 0.693 0.395 
 Range DCC 0.861 0.467 0.469 0.344 0.807 0.475 
 DBEKK 0.780 0.490 0.469 0.377 0.732 0.457 
 Realized 1.515 1.302 1.301 1.261 1.426 1.300 

MAE Return DCC 0.543 0.305 0.274 0.219 0.502 0.261 
 Range DCC 0.638 0.324 0.316 0.240 0.588 0.302 
 DBEKK 0.566 0.350 0.322 0.270 0.529 0.298 
 Realized 0.897 0.789 0.764 0.753 0.842 0.765 
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Table 2.4: One, Two, and Four Periods Ahead Out-of-sample Forecast Errors for 
Covariances between the S&P 500 and Tbond Futures, 1992-2006. 
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This table reports the one, two and four periods ahead out-of-sample forecast errors for 
covariances between S&P 500 and Tbond futures. RMSE and MAE are the error 
functions. MCOV represents the covariance proxy derived from the base model. FCOV 
is the forecast covariance for the forecasting model and is used to fit each MCOV. Daily 
data are used to compute the weekly implied MCOVs (Return DCC. Range DCC, and 
DBEKK), and the realized MCOV (Realized). MA100, EWMA, Return DCC, Range 
DCC, CCC and DBEKK, are estimated from the weekly data to build FCOVs. There 
are 521 observations (10 years) in each of the estimated models. Additionally, the 
rolling sample method provides 258 forecasting values (n in the criteria above) for 
every out-of-sample comparison. The first forecasted values for one, two, and four 
periods ahead forecasts respectively occur the week of January 4, 11, and 25 in 2002.  
Panel A: One period ahead forecast errors 
 Forecasting Model 

 Base Model MA100 EWMA Return 
DCC

Range 
DCC

CCC DBEKK 

RMSE Return DCC 0.823 0.439 0.439 0.283 0.883 0.596 
 Range DCC 0.935 0.469 0.495 0.301 0.994 0.684 
 DBEKK 0.875 0.519 0.528 0.354 0.935 0.655 
 Realized 1.508 1.254 1.285 1.183 1.556 1.366 

MAE Return DCC 0.495 0.331 0.320 0.219 0.557 0.344 
 Range DCC 0.562 0.323 0.322 0.223 0.622 0.395 
 DBEKK 0.523 0.389 0.384 0.279 0.596 0.385 
 Realized 0.877 0.807 0.800 0.756 0.923 0.805 

Panel B: Two periods ahead forecast errors 
RMSE Return DCC 0.823 0.454 0.456 0.312 0.885 0.638 

 Range DCC 0.935 0.481 0.511 0.344 0.996 0.729 
 DBEKK 0.875 0.537 0.548 0.387 0.938 0.701 
 Realized 1.507 1.263 1.294 1.214 1.557 1.403 

MAE Return DCC 0.495 0.342 0.336 0.237 0.558 0.366 
 Range DCC 0.561 0.336 0.336 0.242 0.622 0.415 
 DBEKK 0.523 0.403 0.403 0.302 0.598 0.408 
 Realized 0.875 0.816 0.813 0.771 0.921 0.843 

Panel C: Four periods ahead forecast errors 
RMSE Return DCC 0.823 0.482 0.487 0.380 0.889 0.656 

 Range DCC 0.935 0.514 0.546 0.432 0.999 0.748 
 DBEKK 0.875 0.567 0.581 0.461 0.942 0.725 
 Realized 1.506 1.281 1.312 1.252 1.558 1.411 

MAE Return DCC 0.494 0.359 0.357 0.285 0.560 0.392 
 Range DCC 0.559 0.360 0.357 0.291 0.623 0.434 
 DBEKK 0.523 0.425 0.428 0.351 0.601 0.441 
 Realized 0.872 0.826 0.822 0.792 0.916 0.846 

In the first column, MA100 has minor changes in comparing one, two, and four  periods ahead forecast 
errors. 
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Table 2.5: Simple Correlations between MCOVs and FCOVs for One, Two, and 
Four Periods Ahead Out-of-sample Covariance Forecasts, 1992-2006. 
This table reports the simple correlations between MCOVs and FCOVs for one, two 
and four periods ahead out-of-sample covariance forecasts. MCOV represents the 
covariance proxy derived from the base model. FCOV is the forecast covariance for the 
forecasting model. Daily data are used to compute the weekly implied MCOVs (Return 
DCC. Range DCC, and DBEKK), and the realized MCOV (Realized). MA100, EWMA, 
Return DCC, Range DCC, CCC and DBEKK, are estimated from the weekly data to 
build FCOVs. There are 521 observations (10 years) in each of the estimated models. 
Additionally, the rolling sample method provides 258 forecasting values for every 
out-of-sample comparison. The first forecasted values for one, two, and four periods 
ahead forecasts respectively occur the week of January 4, 11, and 25 in 2002. 

Panel A: Correlations for one period ahead forecast 
 FCOVs 

  MA100 EWMA Return 
DCC

Range 
DCC

CCC DBEKK 

Return DCC 0.646 0.836 0.815 0.941 -0.543 0.579 

Range DCC 0.660 0.833 0.815 0.940 -0.537 0.578 

DBEKK 0.600 0.803 0.778 0.922 -0.514 0.568 
MCOVs 

Realized 0.340 0.471 0.428 0.557 -0.408 0.310 

Panel B: Correlations for two periods ahead forecast 
Return DCC 0.635 0.821 0.794 0.922 -0.571 0.504 

Range DCC 0.651 0.822 0.799 0.916 -0.563 0.502 

DBEKK 0.588 0.783 0.751 0.898 -0.545 0.485 
MCOVs 

Realized 0.334 0.458 0.411 0.520 -0.430 0.236 

Panel C: Correlations for four periods ahead forecast 
Return DCC 0.616 0.793 0.754 0.867 -0.624 0.469 

Range DCC 0.631 0.791 0.757 0.855 -0.612 0.474 

DBEKK 0.567 0.749 0.703 0.836 -0.604 0.436 
MCOVs 

Realized 0.321 0.433 0.380 0.470 -0.455 0.220 
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Panel A: Close Prices 
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Panel B: Returns 
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Panel C: Ranges 
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Figure 2.1: S&P 500 and Tbond Futures Weekly Closing Prices, Returns and 
Ranges, 1992-2006. This figure shows the weekly close prices, returns, and ranges of 
S&P 500 and Tbond Futures over the sample period. 
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Figure 2.2: Four Measured Covariances between S&P 500 and Tbond Futures, 
1992-2006. This figure plots the four measured weekly covariances between S&P 500 
and Tbond futures. The measured weekly covariances are built from the daily data and 
are used to be the weekly covariance proxies in our empirical comparison. For getting 
the implied and realized weekly covariance series, we sum their daily covariances on 
the trading days of the corresponding week.
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Figure 2.3: In-sample Forecasting Covariances between S&P 500 and Tbond 
Futures for Six Models, 1992-2006. This figure provides the fitted covariances 
between S&P 500 and Tbond futures for six different models. We lost some former 
values in MA100. This is because the first estimated value must be derived by the 
former 100 observation. The covariances of CCC are all negative and quite smaller than 
ones of DCC. The reasonable explanation is its negative and small constant correlation 
(-0.0229). 
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Figure 2.4: One Period Ahead Out-of-sample Forecasting Covariances between 
S&P 500 and Tbond Futures for Six Models, 1992-2006. This figure shows one 
period ahead out-of-sample forecasting result of six different models. The rolling 
sample approach is adopted for each model with 521 observations (10 years). The first 
forecasted value for one period ahead forecast respectively occurs the week of January 
4, 2002. In all, we have 258 out-of-sample forecasting covariances. 
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Chapter 3. The Economic Value of Volatility Timing Using a 

Range-based Volatility Model 
 

3.1 Introduction 

In recent years, there has been considerable interest in volatility. The extensive 

development of volatility modeling has been motivated by the related applications in 

risk management, portfolio allocation, assets pricing, and futures hedging. In 

discussions of econometric methodologies in estimating the volatility of individual 

assets, ARCH [see Engle (1982)] and GARCH [see Bollerslev (1986 )]have been 

emphasized most. Various applications in finance and economics are provided as a 

review in Bollerslev, Chou, and Kroner (1992), Bollerslev, Engle, and Nelson (1994), 

and Engle (2004). 

 Several studies, having noted that the range data based on the difference of high 

and low prices in a fixed interval, can offer a sharper estimate of volatility than the 

return data. A number of studies have investigated this issue started with Parkinson’s 

(1980) research, and more recently, Brandt and Jones (2006), Chou (2005, 2006), and 

Martens and van Dijk (2007)11 . Especially, Chou (2005) proposes a conditional 

autoregressive range (CARR) model which can easily capture the dynamic volatility 

structure and has obtained some insightful empirical evidences. 

However, the literature above just focuses on volatility forecast of a univariate 

asset. It should be noted that there have been some attempts to establish a relationship 

between multiple assets, such as VECH [see Bollerslev, Engle, and Wooldridge (1988)], 

BEKK [see Engle and Kroner (1995)], and a constant conditional correlation model 

(CCC) [see Bollerslev (1990)], among others. VECH and BEKK allowing time-varying 

   
11 See also Garman and Klass (1980), Wiggins (1991), Rogers and Satchell (1991), Kunitomo (1992), 
Yang and Zhang (2000), and Alizadeh, Brandt, and Diebold (2002). 
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covariance process are too flexible to estimate, and CCC with a constant correlation is 

too restrictive to apply on general applications. Seminal work on solving the puzzle is 

carried out by Engle (2002a). A dynamic conditional correlation12 (DCC) model 

proposed by Engle (2002a) provides another viewpoint to this problem. The estimation 

of DCC can be divided into two stages. The first step is to estimate univariate GARCH, 

and the second is to utilize the transformed standardized residuals to estimate 

time-varying correlations [see Engle and Sheppard (2001), Cappiello, Engle, and 

Sheppard (2006)]. 

 A new multivariate volatility, recently proposed by Chou, Wu, and Liu (2007), 

combines the range data of asset prices with the framework of DCC, namely 

range-based DCC13. They conclude that the range-based DCC model performs better 

than other return-based models (MA100, EWMA, CCC, return-based DCC, and 

diagonal BEKK) through the statistical measures, RMSE and MAE based on four 

benchmarks of implied and realized covariance14.  

Because the empirical results in many studies show that the forecast models only 

can explain little part of variations in time-varying volatilities, some studies are 

concentrated on whether volatility timing has economic value [see Busse (1999), 

Fleming, Kirby, and Osdiek (2001, 2003), Marquering and Verbeek (2004), Thorp and 

Milunovich (2007)]. The question we focus on is whether the economic value of 

volatility timing for range-based volatility model still exists and to test whether 

investors are willing to switch from a return-based DCC to a range-based DCC model. 

 For comparing the economic value of the return-based and range-based models, it 

is helpful to use a suitable measure to capture the trade-off between risk and return. 
   
12 See Tsay (2002) and Tse and Tsui (2002) for other related methods for estimating the time-varying 
correlations. 
13 See also footnote 6.  
14 Daily data are used to build four proxies for weekly covariances, i.e. implied return-based DCC, 
implied range-based DCC, implied DBEKK, and realized covariances. 
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Most literatures evaluate volatility models through error statistics and related 

applications, but neglect the influence of asset expected returns. A more precise 

measurement should consider both of them, but only few studies have so far been made 

at this point. However, a utility function can easily connect them and build a 

comparable standard. Before entering into a detailed discussion for the economic value 

of volatility timing, it is necessary to clarify its definition in this paper. In short, the 

economic value of volatility timing is the gain compared with a static strategy. For an 

investor with a mean variance utility, our concern is to estimate his will to pay for a 

new volatility model rather than a static one.  

In light of the success of the range-based volatility model, the purpose of this 

paper is to examine its economic value of volatility timing by using conditional 

mean-variance framework developed by Fleming, Kirby, and Ostdiek (2001). We 

consider an investor with different risk-averse levels uses conditional volatility analysis 

to allocate three assets: stock, bond, and cash. Fleming, Kirby, and Ostdiek (2001) 

extend West, Edison, and Cho (1993) utility criterion to test the economic value of 

volatility timing for the short-horizon investors with different risk tolerance levels15. In 

addition to the short-horizon forecast of selected models, we also examine the 

economic value for longer horizon forecasts and an asymmetric range-based volatility 

model in our empirical study. This study may lead to a better understanding of range 

volatility. 

The reminder is laid out as follows. Section 3.2 introduces the asset allocation 

methodology and economic value measurement. Section 3.3 describes the properties of 

data used and evaluates the performance of the different strategies. Finally, the 

conclusion is showed in section 3.4. 
   
15 They find that volatility-timing strategy based on one-step ahead estimates of the conditional 
covariance matrix [see Foster and Nelson (1996)] significantly outperformed the unconditional efficient 
static portfolios. 
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3.2. Methodologies 

The method to carry out this study is to use a framework of a minimum variance 

strategy, which is conductive to determine the accuracy of the time-varying covariances. 

For a risk-averse investor, we want to find the optimal dynamic weights of the selected 

assets and the implied economic value compared with a static strategy. Before applying 

the volatility timing strategies, we need to build a time-varying covariance matrix. The 

Details of the methodology are as the following. 

 

3.2.1 Optimal Portfolio Weights in a Minimum Variance Framework 

Initially, we consider a minimization problem for the portfolio variance subjected to a 

target return constraint. To derive our strategy, we let tR  is the 1×k  vector of spot 

returns at time t16. Its conditional expected return tμ  and conditional covariance 

matrix tΣ  are calculated by 1[ | ]t tE −ΩR  and 1[( )( ) | ]t t t t tE −′− − ΩR μ R μ , 

respectively. Here tΩ  is assumed as the information set at time t. To minimize 

portfolio volatility subject to a required target return argt etμ , it can be formulated as 

tw
min ttt wΣw′ , 

s.t ( ) arg1t t t f t etR μ′ ′+ − =w μ w 1 ,                                     (3.1) 

where tw  is a 1×k  vector of portfolio weights for time t. fR  is the return for the 

risk-free asset. The optimal solution to the quadratic form (3.1) is:  

1
arg

1

( ) ( )
( ) ( )

t et f t t f
t

t f t t f

R R
R R

μ −

−

− −
=

′− −

Σ μ 1
w

μ 1 Σ μ 1
.                                      (3.2) 

A bivariate case ( 2=k ) can be expressed as: 
   
16 Through out this paper, we use blackened letters to denote vectors or matrices. 
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where fettett R−= argarg μμ , 1, 1,t t fRμ μ= − , and 2, 2,t t fRμ μ= −  are the excess target 

returns and the excess spot returns of S&P 500 index (S&P 500) and 10-year Treasury 

bond (T-bond) in our empirical study. Under the cost of carry model, we can regard the 

excess returns as the futures returns by applying regular no-arbitrage arguments17. It is 

clear that the covariance matrix tΣ  of the spot returns is the same as that of the excess 

returns.  

 The above analysis points that the optimal portfolio weights are time-varying. 

Here we assume the conditional mean tμ  is constant18. Therefore, the dynamics of 

weights only depend on the conditional covariance tΣ . In this study, the optimal 

strategy is obtained based on a minimum variance framework subject to a given return. 

We use return-based and range-based DCC models to estimate the covariance matrix of 

multiple asset returns. 

 

3.2.2 Economic Value of Volatility Timing 

Fleming, Kirby, and Ostdiek (2001) use a generalization of the West, Edison, and Cho 

(1993) criterion which builds the relation between a mean-variance framework and a 

quadratic utility to capture the trade-off between risk and return for ranking the 

performance of forecasting models. According to their work, the investor’s utility can 

be defined as: 

   
17 There is no cost for futures investment. It means the futures return equals the spot return minus the 
risk-free rate. 
18 The changes in expected returns are not easy to be detected. Merton (1980) points out that the 
volatility process is more predictable than return series. 
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where tW  is the investor’s wealth at time t, α is his absolute risk aversion, and the 

portfolio return at period t is ,p t t tR ′= w R . 

For comparisons across portfolios, we assume that the investor has a constant 

relative risk aversion (CRRA), γααγ =−= )1/( ttt WW . This implies tWα  is a 

constant. With this assumption, the average realized utility )(⋅U  can be used in 

estimating the expected utility with a given initial wealth 0W . 
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where 0W  is the initial wealth.  

Therefore, the value of volatility timing by equating the average utilities for two 

alternative portfolios is expressed as:  
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where Δ  is the maximum expense that an investor would be willing to pay to switch 

from the strategy a to the strategy b. taR ,  and tbR ,  here are the returns of the 

portfolios from the strategy a and b19. If the expense Δ  is a positive value, it means 

the strategy b is more valuable than the strategy a. In our empirical study, we report Δ  

as an annualized expense with three risk aversion levels of γ =1, 5, and 10.  

 

3.3. Empirical Results 

The empirical data employed in this paper consist of the stock index futures, bond 

   
19 In our setting, we let the strategy pair (a,b) be (OLS, return-based DCC), (OLS, range-based DCC), 
and (return-based DCC, range-based DCC), respectively. Because the rolling sample method is adopted 
in the out-of-sample comparison, this type of OLS is named by rollover OLS. 
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futures and the risk-free rate. As to the above-mentioned method, we apply the futures 

data to examine the economic value of volatility timing for return-based and 

range-based DCC. Under the cost of carry model, the result in this case can be extended 

to underlying spot assets [see Fleming, Kirby, and Ostdiek (2001)]. In addition to 

avoiding the short sale constraints, this procedure will reduce the complexity of model 

setting. To address this issue, we use the S&P 500 futures (traded at CME), and the 

T-bond futures (traded at CBOT) as the empirical samples. According to Chou et al. 

(2007), the futures data are taken from Datastream, sampling from January 6, 1992 to 

December 29, 2006 (15 years, 782 weekly observations). Datastream provides the 

nearest contract and rolls over to the second nearby contract when the nearby contract 

approaches maturity. We also use the 3-month Treasury bill rate to substitute for the 

risk-free rate. The Treasury bill rate is available in the Federal Reserve Board. 

< Figure 3.1 is inserted about here > 

 Figure 3.1 shows the graphs for close prices (Panel A), returns (Panel B) and 

ranges (Panel C) of the S&P 500 and T-bond futures over the sample period. Table 3.1 

shows summary statistics for the return and range data on the S&P 500 and T-bond 

futures. The return is computed as the difference of logarithm close prices on two 

continuous weeks. The range is defined by the difference of the high and low prices in a 

logarithm type. The annualized mean and standard deviation in percentage, (8.210, 

15.232) of the stock futures returns are both larger than those (0.853, 6.168) of the bond 

futures returns. The fact indicates that the more volatile market may have higher risk 

premium. Both futures returns have negative skewness and excess kurtosis, indicating 

violation of the normal distribution. The range mean (3.134) of the stock futures prices 

is larger than that (1.306) of the bond futures prices. It is reasonable because the range 

is a proxy of volatility. The Jarque-Bera statistic is used to test the null of whether the 
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return and range data are normally distributed. Undoubtedly, both of return and range 

data reject the null hypothesis. The simple correlation between stock and bond returns 

is small20 (-0.023), but it does not imply that their relation is very weak. In our latter 

analysis, we show that the dynamic relationship of stock and bond will be more 

realistically revealed by the conditional correlations analysis.  

< Table 3.1 is inserted about here > 

 

3.3.1 In-sample Comparison 

For obtaining an optimal portfolio, we use the dynamic volatility models to estimate the 

covariance matrices. As for the parameters fitted for return-based and range-based DCC, 

they are both estimated and arranged in Table 3.2. We divide the table into two parts 

corresponding to the two steps in the DCC estimation. In Panel A of Table 3.2, one can 

use GARCH (fitted by return) or CARR (fitted by range) with individual assets to 

obtain the standardized residuals. Figure 3.2 provides the volatility estimated of the 

S&P 500 futures and the T-bond futures based on GARCH and CARR. Then, these 

standardized residuals series can be brought into the second stage for dynamic 

conditional correlation estimating. Panel B of Table 3.2 shows the estimated parameters 

of DCC under the quasi-maximum likelihood estimation (QMLE). 

< Table 3.2 is inserted about here > 

< Figure 3.2 is inserted about here > 

The correlation and covariance estimates for return-based and range-based DCC 

are shown in Figure 3.3. It seems that the correlation becomes more negative at the end 

of 1997. A deeper investigation is given in Connolly , Stivers, and Sun. (2005).  

< Figure 3.3 is inserted about here > 
   
20 The result is different from the positive correlation value (sample period 1983-1997) in Fleming, 
Kirby, and Ostdiek (2001). About after 1997, the relationship between S&P 500 and T-bond presents a 
reverse condition. 
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Following the model estimation, we construct the static portfolio (built by OLS) 

using the unconditional mean and covariance matrices for getting the economic value 

of dynamic models. Under the minimum variance framework, the weights of the 

portfolio are computed by the given expected return and the conditional covariance 

matrices estimated by return-based and range-based DCC. Then, we want to compare 

the performance of the volatility models on 11 different target annualized returns (5% - 

15%, 1% in an interval) . 

< Table 3.3 is inserted about here > 

Table 3.3 shows how the performance comparisons vary with the target returns 

and the risk aversions. Panel A of Table 3.3 shows the annualized means ( μ ) and 

volatilities (σ ) of the portfolios estimated from three methods, return-based DCC, 

range-based DCC, and OLS. For a quick look, the annualized Sharpe ratios 21 

calculated from return-based DCC (0.680) and range-based DCC (0.699) are higher 

than the static model (0.560). Panel B of Table 3.3 shows the average switching fees 

( rΔ ) from one strategy to another. The value settings of CRRA γ  are 1, 5, and 10. As 

for the performance fees with different relative risk aversions, in general, an investor 

with a higher risk aversion would be willing to pay more to switch from the static 

portfolio to the dynamic ones. With higher target returns, the performance fees are 

increasing steadily. In addition, Panel B of Table 3.3 also reports the performance fees 

switching from return-based DCC to range-based DCC. Positive values for all cases 

show that the range-based volatility model can give significant economic value in 

forecasting covariance matrices than the return-based ones. Figure 3.4 plots the weights 

of in-sample minimum volatility portfolio derived from two dynamic models. In the 

meanwhile, OLS has constant weights for cash, stock, and bond, i.e. -0.1934, 0.7079, 

   
21 The Sharpe ratio is constant with different target multipliers. For the further details, see Engle and 
Colacito (2006). 



40 

and 0.4855. 

< Figure 3.4 is inserted about here > 

 

3.3.2 Out-of-sample Comparisons 

For robust inference, a similar approach is utilized to estimate the value of volatility 

timing in the out-of-sample analysis. Here the rolling sample approach is adopted for 

all out-of-sample estimations. It means that the rollover OLS method replaces the 

conventional OLS method used in the in-sample analysis. Each forecasting value is 

estimated by 521 observations, about 10 years. Then, the rolling sample method 

provides 261 forecasting values for the one period ahead comparison. The first 

forecasted value occurs the week of January 4, 2002.  

< Table 3.4 is inserted about here > 

 Table 3.4 reports how the performance comparisons vary with the target returns 

and the risk aversions for one period ahead out-of-sample forecast. We obtain a 

consistent conclusion with Table 3.3. The estimated Sharpe ratios calculated from 

return-based DCC, range-based DCC, and rollover OLS are 0.540, 0.586, and 0.326, 

respectively. The performance fees switching from rollover OLS to DCC are all 

positive. In total, the out-of-sample comparison supports the former inference. Figure 

3.5 plots the weights that minimize conditional volatility while setting the expected 

annualized return equal to 10%.  

< Figure 3.5 is inserted about here > 

In addition to examining the performance of short-horizon investors, we further 

report the results of the long-horizon asset allocations. Table 3.5 reports one to thirteen 

periods ahead out-of-sample performance for three methods. Here the rolling sample 

approach provides 249 forecasting values for each out-of-sample comparison. The 
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portfolio weights for all strategies are obtained from the weekly estimates of the 

out-of-sample conditional covariance matrices with a fixed target return (10%). In 

general, the Sharpe ratios got from range-based DCC is the largest, and return-based 

DCC is the next. For each strategy, however, we can not find an obvious trend in the 

Sharpe ratios with forecasting periods ahead. As for the result of the performance fees, 

it seems reasonable to conclude that an investor is still willing to pay to switch from 

rollover OLS to DCC. Moreover, the economic value seems to appear a decreasing 

trend with forecasting periods ahead. For longer forecasting horizon (12-13 weeks), 

however, the results of estimated switching fees are mixed. As to the will switching 

from return-based DCC to range-based DCC, it always keeps positive. 

< Table 3.5 is inserted about here > 

 Thorp and Milunovich (2007) show that a risk-averse investor holding selected 

international equity indices, with γ = 2, 5, and 10, just want to pay little from 

symmetric to asymmetric forecasts. In some cases, the switching fees are even negative. 

In order to further understand this argument, we examine it based on the range-based 

volatility model. Chou (2005) provides an asymmetric range model namely CARRX: 

1 1 1t t t tretλ ω α βλ φ− − −= + ℜ + + . The lagged return in the conditional range equation is 

used to capture the leverage effect. For building an asymmetric range-based volatility 

model, CARR in the first step of range-based DCC can be replaced by CARRX. 

Cappiello, Engle, and Sheppard (2006) introduce asymmetric DCC: 

1 1 1 1 1(1 )t t t t t ta b c a b c− − − − −′ ′= − − − + + +Q Q N Z Z Q n n . tn  is the 1×k  vector calculated 

by I( 0)t t<Z Z  to allow correlation to increase more in both falling returns than in 

both rising returns and ( )t tE ′=N n n , where  denotes the Hadamard matrix product 

operator, i.e. element-wise multiplication. Table 3.6 shows the one period ahead 

performance of the volatility timing values for asymmetric range-based DCC compared 



42 

with rollover OLS. The switching fees from rollover OLS to asymmetric range DCC seem 

to be smaller than the fees from rollover OLS to symmetric range DCC in Table 3.4. One of 

the reasons may result from the poor performance of the bond data. In this case, it is not 

valuable to switch the symmetric strategy to the asymmetric one.  

< Table 3.6 is inserted about here > 

 

3.4. Conclusion 

In this paper, we examine the economic value of volatility timing for the range-based 

volatility model in utilizing the range data which combines CARR with a DCC 

structure. Applying S&P 500 and T-bond futures to a mean-variance framework with a 

no-arbitrage setting, the result can be extended to spot asset analysis. By means of the 

utility of portfolio, the economic value of dynamic models can be obtained from 

comparing with OLS. Both of in-sample and out-of-sample results show that a 

risk-averse investor is willing to switch from OLS to DCC. Moreover, the switching 

fees from return-based DCC to range-based DCC are always positive. We can conclude 

that the range-based volatility model has more significant economic value compared to 

the return-based one. The results give robust inferences for supporting the range-based 

volatility model in forecasting volatility. 
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Table 3.1: Summary Statistics for Weekly S&P 500 and T-bond Futures Return 
and Range Data, 1992-2006 

The table provides summary statistics for the weekly return and range data on S&P 500 
stock index futures and T-bond Futures. The returns and ranges are computed by 

1100 log( / )close close
t tp p −×  and )/log(100 lowhigh pp× , respectively. The Jarque-Bera statistic is 

used to test the null of whether the return and range data are normally distributed. The 
values presented in parentheses are p-values. The annualized values of means (standard 
deviation) for S&P 500 and T-bond futures are 8.210 (15.232) and 0.853 (6.168), 
respectively. The simple correlation between stock and bond returns is -0.023. The 
sample period ranges form January 6, 1992 to December 29, 2006 (15 years, 782 
observations) and all futures data are collected from Datastream. 

 S&P 500 Futures T-Bond Futures 
 Return Range Return Range 

Mean 0.158 3.134 0.016 1.306 

Median 0.224 2.607 0.033 1.194 

Maximum 8.124 13.556 2.462 4.552 

Minimum -12.395 0.690 -4.050 0.301 

Std. Dev. 2.112 1.809 0.855 0.560 

Skewness -0.503 1.756 -0.498 1.390 

Kurtosis 6.455 7.232 4.217 6.462 

Jarque-Bera 421.317 985.454 80.441 642.367 

 (0.000) (0.000) (0.000) (0.000) 
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Table 3.2: Estimation Results of Return-based and Range-based DCC Model 
Using Weekly S&P500 and T-bond Futures, 1992-2006 

titi cr ,, ε+= , 1,
2
,, −− ++= tkkitkkktk hh βεαω , ),0(~| ,1, tkttk hNI −ε , 

titi u ,, =ℜ , 1,1,, −− +ℜ+= tkktkkktk λβαωλ , ),1(~| 1, ⋅ℜ − expI ttk , 2,1=k . 

111)1( −−− +′+−−= tttt baba QZZQQ , and then 
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where tℜ  is the range variable, tZ  is the standard residual vector which is 
standardized by GARCH or CARR volatilities. }{ ,tijt q=Q  and }{ ijq=Q  are the 
conditional and unconditional covariance matrix of tZ . The three formulas above are 
GARCH, CARR and the conditional correlation equations respectively of the standard 
DCC model with mean reversion. The table shows estimations of the three models 
using the MLE method. Panel A is the first step of the DCC model estimation. The 
estimation results of GARCH and CARR models for two futures are presented here. 
Q(12) is the Ljung–Box statistic for the autocorrelation test with 12 lags. Panel B is the 
second step of the DCC model estimation. The values presented in parentheses are 
t-ratios for the model coefficients and p-values for Q(12). 

Panel A: Volatilities Estimation of GARCH and CARR models 
 S&P500 Futures T-bond Futures 
 GARCH CARR GARCH CARR 
c 0.188  0.008  
 (3.256)  (0.242)  
ω̂  0.019 0.103 0.028 0.075 
 (1.149) (2.923) (1.533) (2.810) 
α̂  0.051 0.248 0.060 0.157 
 (3.698) (9.090) (2.031) (5.208) 
β̂  0.946 0.719 0.902 0.785 
 (71.236) (23.167) (18.645) (18.041) 

Q(12) 26.322 5.647 15.872 23.121 
 (0.010) (0.933) (0.197) (0.027) 

Panel B: Correlation Estimation of Return- and Range-based DCC Models 
 S&P500 and T-bond 
 Return-based DCC Range-based DCC 

â  0.037 0.043 
 (4.444) (4.679) 

b̂  0.955 0.951 
 (85.621) (80.411) 
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Table 3.3: In-sample Comparison of the Volatility Timing Values in the Minimum 
Volatility Strategy Using Different Target Returns, 1992-2006 

The table reports the in-sample performance of the volatility timing strategies with 
different target returns. The target returns are from 5% to 15% (annualized). The 
weights for the volatility timing strategies are obtained from the weekly estimates of the 
conditional covariance matrix and the different target return setting. Panel A shows the 
annualized means ( μ ) and volatilities (σ ) for each strategy. The estimated Sharpe 
ratios for the return-based DCC model, the range-based DCC model, and the OLS 
strategy are 0.680, 0.699, and 0.560, respectively. Panel B shows the average switching 
annualized fees ( rΔ ) from one strategy to another. The values of the constant relative 
risk aversionγ are 1, 5, and 10. 

Panel A: Means and Volatilities of Optimal Portfolios 
Return-based DCC Range-based DCC OLS Target 

return(%) μ  σ  μ  σ  μ  σ  
5 5.201 2.100 5.241 2.100 5.000 2.190 

6 6.366 3.814 6.438 3.813 6.000 3.977 

7 7.530 5.527 7.635 5.526 7.000 5.764 

8 8.694 7.241 8.832 7.239 8.000 7.551 

9 9.859 8.954 10.028 8.952 9.000 9.338 

10 11.023 10.668 11.225 10.665 10.000 11.125 

11 12.187 12.381 12.422 12.378 11.000 12.912 

12 13.352 14.095 13.619 14.091 12.000 14.699 

13 14.516 15.808 14.815 15.804 13.000 16.486 

14 15.680 17.521 16.012 17.517 14.000 18.273 

15 16.845 19.235 17.209 19.230 15.000 20.060 

Panel B: Switching Fees with Different Relative Risk Aversions 
OLS to Return DCC OLS to Range DCC Return to Range DCC Target 

return(%) 1Δ  5Δ  10Δ  1Δ  5Δ  10Δ  1Δ  5Δ  10Δ  
5 0.303 0.376 0.393 0.343 0.417 0.434 0.040 0.041 0.041 

6 0.703 0.950 1.008 0.777 1.025 1.084 0.074 0.076 0.076 

7 1.244 1.771 1.897 1.353 1.883 2.009 0.109 0.112 0.112 

8 1.929 2.845 3.063 2.073 2.994 3.213 0.144 0.149 0.151 

9 2.761 4.173 4.507 2.940 4.360 4.696 0.180 0.189 0.191 

10 3.739 5.753 6.224 3.956 5.979 6.453 0.217 0.230 0.233 

11 4.866 7.578 8.206 5.121 7.846 8.477 0.255 0.273 0.277 

12 6.142 9.641 10.441 6.434 9.951 10.754 0.294 0.318 0.324 

13 7.565 11.932 12.914 7.897 12.283 13.270 0.334 0.365 0.373 

14 9.135 14.436 15.609 9.507 14.831 16.009 0.375 0.414 0.424 

15 10.851 17.142 18.509 11.262 17.580 18.952 0.418 0.466 0.479 
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Table 3.4: Out-of-sample Comparison for the One Period Ahead Volatility Timing 
Values in the Minimum Volatility Strategy with Different Target Returns, 1992-2006 
The table reports the one period ahead out-of-sample performance of the volatility 
timing strategies with different target returns. There are 521 observations in each of the 
estimated models and the rolling sample approach provides 261 forecasting values for 
each out-of-sample comparison. The first forecasted value occurs the week of January 4, 
2002. The target returns are from 5% to 15% (annualized). The weights for the 
volatility timing strategies are obtained from the weekly estimates of the one period 
ahead conditional covariance matrix and the different target return setting. Panel A 
shows the annualized means ( μ ) and volatilities (σ ) for each strategy. The estimated 
Sharpe ratios for the return-based DCC model, the range-based DCC model, and the 
rollover OLS strategy are 0.540, 0.586, and 0.326, respectively. Panel B shows the 
average switching annualized fees ( rΔ ) from one strategy to another. The values of the 
constant relative risk aversion are 1, 5, and 10. 

Panel A: Means and Volatilities of Optimal Portfolios 
Return-based DCC Range-based DCC Rollover OLS Target 

return(%) μ  σ  μ  σ  μ  σ  
5 4.691 1.698 4.747 1.661 4.344 1.749 

6 5.438 3.083 5.540 3.016 4.808 3.176 

7 6.186 4.468 6.333 4.370 5.273 4.603 

8 6.933 5.853 7.127 5.725 5.737 6.030 

9 7.681 7.239 7.920 7.080 6.202 7.456 

10 8.428 8.624 8.714 8.435 6.667 8.883 

11 9.176 10.009 9.507 9.790 7.131 10.310 

12 9.923 11.394 10.300 11.145 7.596 11.737 

13 10.671 12.779 11.094 12.500 8.060 13.164 

14 11.418 14.165 11.887 13.854 8.525 14.591 

15 12.166 15.550 12.680 15.209 8.990 16.018 

Panel B: Switching Fees with Different Relative Risk Aversions 
OLS to Return DCC OLS to Range DCC Return to Range DCC Target 

return(%) 1Δ  5Δ  10Δ  1Δ  5Δ  10Δ  1Δ  5Δ  10Δ  
5 0.393 0.425 0.433 0.481 0.537 0.550 0.089 0.112 0.118 

6 0.781 0.890 0.916 0.991 1.176 1.220 0.210 0.289 0.308 

7 1.232 1.463 1.518 1.606 1.998 2.090 0.377 0.545 0.585 

8 1.746 2.144 2.239 2.328 3.001 3.159 0.589 0.882 0.953 

9 2.323 2.935 3.079 3.156 4.185 4.425 0.848 1.303 1.413 

10 2.963 3.834 4.039 4.092 5.545 5.881 1.154 1.810 1.967 

11 3.667 4.842 5.116 5.133 7.077 7.522 1.509 2.402 2.617 

12 4.435 5.956 6.309 6.280 8.774 9.338 1.913 3.083 3.363 

13 5.267 7.174 7.614 7.531 10.629 11.321 2.366 3.851 4.206 

14 6.162 8.495 9.029 8.885 12.634 13.460 2.869 4.707 5.146 

15 7.121 9.914 10.548 10.340 14.781 15.746 3.422 5.651 6.181 
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Table 3.5: Out-of-sample Comparison for One to Thirteen Periods Ahead 
Volatility Timing Values in the Minimum Volatility Strategy, 1992-2006 
The table reports the one to thirteen periods ahead out-of-sample performance of the 
volatility timing strategies with the fixed 10% (annualized) target return. The weights 
for the volatility timing strategies are obtained from the weekly estimates of the one to 
thirteen periods ahead conditional covariance matrix. There are 521 observations in 
each of the estimated models and the rolling sample approach provides 249 forecasting 
values for each out-of-sample comparison. The first forecasted mean value occurs the 
week of January 4, 2002. Panel A shows the annualized means (μ ), volatilities (σ ), 
and Sharpe ratios (SR) for each strategy. Panel B shows the average switching 
annualized fees ( rΔ ) from one strategy to another. The values of the constant relative 
risk aversion are 1, 5, and 10. 

Panel A: Means and Volatilities of Optimal Portfolios 
Return-based DCC Range-based DCC Rollover OLS Periods 

Ahead μ  σ  SR μ  σ  SR μ  σ  SR 
1 7.717 8.724 0.452 8.060 8.540 0.502 6.022 8.956 0.251 

2 7.868 8.830 0.464 8.562 8.556 0.560 6.068 8.933 0.257 

3 7.371 8.807 0.408 8.312 8.572 0.529 6.660 8.931 0.323 

4 8.117 8.838 0.491 8.750 8.604 0.578 7.103 8.928 0.373 

5 8.464 8.860 0.529 9.200 8.653 0.627 6.869 8.989 0.344 

6 9.088 8.903 0.597 9.600 8.637 0.674 7.232 8.973 0.385 

7 9.361 8.840 0.632 10.033 8.629 0.725 7.872 8.945 0.458 

8 8.853 8.897 0.571 9.429 8.683 0.651 7.644 8.975 0.431 

9 9.806 8.878 0.679 10.093 8.664 0.729 8.476 9.023 0.521
10 9.746 8.887 0.672 9.576 8.695 0.667 8.189 8.983 0.491 

11 9.436 8.908 0.636 8.986 8.712 0.598 8.031 8.910 0.478 

12 8.737 9.003 0.551 8.076 8.791 0.489 7.424 8.853 0.412 

13 8.713 9.111 0.542 8.272 8.914 0.505 7.794 8.867 0.453 

Panel B: Switching Fees with Different Relative Risk Aversions 
OLS to Return DCC OLS to Range DCC Return to Range DCC Periods 

Ahead 1Δ  5Δ  10Δ  1Δ  5Δ  10Δ  1Δ  5Δ  10Δ  
1 2.772 3.546 3.727 3.944 5.289 5.599 1.196 1.831 1.983 

2 2.282 2.633 2.716 4.223 5.448 5.731 1.970 2.914 3.137 

3 1.293 1.721 1.823 3.308 4.495 4.772 2.029 2.830 3.019 

4 1.440 1.758 1.834 3.152 4.244 4.499 1.728 2.544 2.738 

5 2.210 2.665 2.773 3.900 5.032 5.297 1.712 2.446 2.622 

6 2.191 2.442 2.503 3.938 5.078 5.345 1.775 2.730 2.958 

7 1.993 2.373 2.464 3.647 4.740 4.997 1.674 2.440 2.625 

8 1.581 1.861 1.928 3.161 4.172 4.410 1.597 2.369 2.555 

9 2.028 2.556 2.683 3.319 4.578 4.875 1.313 2.103 2.295 

10 2.019 2.370 2.455 2.753 3.767 4.007 0.753 1.465 1.638
11 1.416 1.424 1.426 1.891 2.591 2.758 0.489 1.209 1.383 

12 0.593 0.037 -0.100 0.945 1.164 1.217 0.358 1.128 1.313 

13 -0.269 -1.202 -1.436 0.251 0.078 0.035 0.518 1.243 1.417 
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Table 3.6: The One Period Ahead Performance of the Volatility Timing Values for the 
Asymmetric Range-based Volatility Model, 1992-2006 
The table reports the one period ahead out-of-sample performance of the volatility 
timing strategies for the asymmetric range-based volatility model with different target 
returns. There are 521 observations in each of the estimated models and the rolling 
sample approach provides 261 forecasting values for each out-of-sample comparison. 
The first forecasted value occurs the week of January 4, 2002. The target returns are 
from 5% to 15% (annualized). The weights for the volatility timing strategies are 
obtained from the weekly estimates of the one period ahead conditional covariance 
matrix and the different target return setting. The annualized means ( μ ) and volatilities 
(σ ) of the optimal portfolio are shown here. The estimated Sharpe ratio for the 
asymmetric range-based DCC model is 0.521. rΔ  is the average switching annualized 
fee from the rollover OLS model to the asymmetric range-based volatility model. The 
values of the constant relative risk aversion are set as 1, 5, and 10. 

Target 
return(%) 

Means and Volatilities of 
Optimal Portfolios for 

Asymmetric Range-based DCC 

Switching Fees from Rollover OLS to 
Asymmetric Range-based DCC 

 μ  σ  1Δ  5Δ  10Δ  
5 4.643 1.666 0.373 0.425 0.438 

6 5.352 3.025 0.787 0.962 1.003 

7 6.060 4.384 1.301 1.670 1.757 

8 6.769 5.744 1.915 2.550 2.699 

9 7.478 7.103 2.630 3.601 3.827 

10 8.187 8.462 3.445 4.818 5.136 

11 8.895 9.821 4.361 6.199 6.621 

12 9.604 11.180 5.377 7.738 8.274 

13 10.313 12.540 6.491 9.428 10.087 

14 11.022 13.899 7.703 11.262 12.050 

15 11.730 15.258 9.011 13.232 14.155 
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Panel A: Close Prices 
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Panel B: Returns 
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Panel C: Ranges 
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Figure 3.1: S&P 500 Index Futures and T-bond Futures Weekly Closing Prices, 
Returns and Ranges, 1992-2006. This figure shows the weekly close prices, returns, 
and ranges of S&P 500 index futures and 10-year Treasury bond (T-bond) futures over 
the sample period. 
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Panel A: Volatility Estimates for the GARCH Model 
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Panel B: Volatility Estimates for the CARR Model 
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Figure 3.2: In-sample Volatility Estimates for the GARCH and CARR Model 
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Panel A: Correlation Estimates 
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Panel B: Covariance Estimates 
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Figure 3.3: In-sample Correlation and Covariance Estimates for the Return-based 
and Range-based DCC Model 
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Panel A: In-sample Portfolio Weights Derived by the Return-based DCC Model 
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Panel B: In-sample Portfolio Weights Derived by the Range-based DCC Model 
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Figure 3.4: In-sample Minimum Volatility Portfolio Weight Derived by the 
Dynamic Volatility Model. Panels A and B show the weights that minimize conditional 
volatility while setting the expected annualized return equal to 10%. The OLS model 
has constant weights for cash, stock, and bond, i.e. -0.1934, 0.7079, and 0.4855. 
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Panel A: Out-of-sample Portfolio Weight Derived by the Return-based DCC 

Model 
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Panel B: Out-of-sample Portfolio Weight Derived by the Range-based DCC Model 
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Panel C: Out-of-sample Portfolio Weight Derived by the Rollover OLS Model 

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2002 2003 2004 2005 2006

Cash S&P 500 Tbond

 

Figure 3.5: Out-of-sample Minimum Volatility Portfolio Weight Derived by the 
Dynamic Volatility Model for One Period Ahead Estimates. Panels A, B, and C 
show the one period ahead weights that minimize conditional volatility while the 
expected annualized return equal is set to 10%. Different from the in-sample case, the 
rolling sample method is used in the portfolio weights estimation. The portfolio weights 
in the rollover OLS model (Panel C) also vary with time. The first forecasted weights 
occur the week of January 4, 2002. 
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Chapter 4. Estimating Time-Varying Hedge Ratios with a 

Range-Based Multivariate Volatility Model 
 

4.1 Introduction 

Recent research has made significant contributions to theories and applications of 

futures hedging. In previous studies, Johnson (1960) and Stein (1961) introduced the 

concept of portfolio theory through hedging the spot position with futures. Here the 

hedging portfolio has usually been adopted as the returns of holding the spot asset on 

the returns together with the futures contracts. Edrington (1979) applied this concept to 

determine a minimum-variance hedge ratio and then proposed a measure of hedging 

effectiveness. From an academic perspective, an optimal hedging strategy is 

conventionally based on the expected-utility maximization paradigm. A simplification 

of this paradigm leads to the minimum-variance criterion22. In this case, the optimal 

hedge ratio can be defined as the amount of futures position for bearing one unit of spot 

position such that we have minimum variance hedging portfolio. 

On the practical side, the research on futures hedging has benefited tremendously 

from recent developments in the econometrics literature. Many studies have focused on 

improving the estimation of the optimal hedge ratio. Moreover, some sophisticated 

estimation methods have been proposed after the knowledge about the statistical 

properties of financial time series that have been shared in the academic community. 

Various approaches to the optimal hedge ratios with different optimization criterions are 

discussed in Lien and Tse (2002), and Chen, Lee, and Shrestha (2003). 

Past studies assumed the asset prices to follow a random walk with price changes 

   
22 Although the minimum variance hedge neglects the expected return of a hedging portfolio, it still has 
a consistent inference with other hedging criterions. For example, when an investor with higher risk 
averse or the futures prices follow martingale, the optimal hedge ratios derived from the minimum 
variance criterion are consistent with those from a mean-variance framework. The explanation is more 
fully developed in Kroner and Sultan (1993). 
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being identically and independently distributed. However, many commodity price 

changes appeared not to be independent but rather to be characterized by quiet and 

volatile periods as variances change over time, following Mandelbrot (1963) and Fama 

(1965). The unconditional distributions of commodity price changes are also found to 

be fat-tailed, or leptokurtic. Again, the empirical works powerfully support that 

volatility is time-varying in many economic and financial time series. After considering 

the deterministic volatility functions, some investigators adopt the framework of the 

GARCH model developed by Engle (1982) and Bollerslev (1986). The bivariate 

GARCH models, particularly, are widely adopted to explain the behavior of the spot 

and futures prices which produced the dynamic hedging strategy23. 

 However, the results from the performance of the GARCH hedge ratios in 

comparing with the traditional methods are mixed. Most studies have found that the 

dynamic hedging strategies constructed by the GARCH methods outperform those of 

the static methods [Baillie and Myers (1991); Kroner and Sultan (1993)], but some ones 

are mostly in favor of the conventional hedging strategy. Hence, our paper intends to 

provide further evidence in this debate by introducing ranges in the multivariate 

GARCH models. Because most people are interested in knowing how well they can do 

in the future with a different hedging strategy and we would not change our hedging 

portfolio every day, this paper just highlights out-of-sample performance with weekly 

data. 

 In estimating volatility, the range data of asset prices perform better than the return 

data with close-to-close price [Parkinson (1980); Wiggins (1991); Alizadeh, Brandt and 

Diebold (2002); Chou (2005); Brandt and Jones (2006)]. Chou (2005) proposed the 

   
23 See Baillie and Myers (1991), Kroner and Sultan (1993), Lien, Tse, and Tsui (2002), Lien and Yang 
(2006) for a reference. 
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conditional autoregressive range (CARR) model24 to estimate the volatility process. 

Compared with GARCH model, the CARR model obtained superior volatility forecast. 

Moreover, Chou, Wu and Liu (2007) extend it to a multivariate context using the DCC 

model proposed by Engle (2002a). The DCC model is a kind of two steps forecasting 

model which estimates univariate GARCH models for each asset and then calculates its 

time-varying correlation by using the transformed standardized residuals from the first 

step. They find that the range-based DCC model performs better than other 

return-based volatility models in forecasting covariances and correlations. However, 

there is very limited study in the practical financial applications of the range-based 

volatility models. 

In this paper, we will test the range-based volatility model on futures hedging 

performance. Range data intuitively give more information than return data, and have 

low cost. In our empirical study, broad types of commodities are used to examine the 

optimal hedge ratio obtained from the new range-based volatility models. In addition to 

the traditional and rollover OLS25 models, other compared strategies are all based on 

the frameworks of the CCC and DCC models.  

This paper applies new volatility models to exercise the optimal futures hedging. 

The remainder of this paper is organized as follows. Section 4.2 discusses the static and 

dynamic hedging methodologies. Section 4.3 presents the data analysis and 

out-of-sample results of the optimal hedging ratios constructed from different models. 

The conclusion is included in the final section. 

 

   
24 The CARR model and the autoregressive conditional duration (ACD) model of Engle and Russell 
(1998) are both special cases of the multiplicative error models (MEM) of Engle (2002b). 
25 The rollover approach here utilizes week-by-week updating to build the time-varying hedge ratios. It 
means that the rollover OLS models are viewed as dynamic hedging strategies. Lien, Tse, and Tsui (2002) 
used this rollover OLS approach (day-by-day updating) to build their hedge ratios and found this method 
performed better than the CCC model. 
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4.2 Hedging Methodology 

Assume that the variance of the hedging portfolio ( FhSPH Δ−Δ= ) using short hedge 

is )(),(2)()( 2 FVarhFShCovSVarPVar H Δ+ΔΔ−Δ=  = 222 2 FFSS hh σσρσσ +− 2
Sσ , 

where SΔ （ Sr ） and FΔ ( Fr ) are the difference of the logarithm types of the spot 

price S and the futures price F during the hedging period. Sσ  and Fσ  are the 

standard deviations of SΔ  and FΔ . ρ  is the correlation of SΔ  and FΔ . The 

decision variable h  is the hedge ratio. In a structure of minimum variance hedge, we 

can take the fist order differential to )( HPVar  with h  and then get the optimal hedge 

ratio h* = FS σρσ / . In practice, the optimal hedge ratio can be obtained from 

estimating the coefficient ϕ̂  of the simple regression ttFtS rr εϕφ ++= ,, . This method 

has been broadly applied in the literature26. 

The classical regression method, as mentioned above, is assumed that its hedge 

ratio is time-invariant. In fact, the distribution of spot and futures prices may be 

time-varying. In the presence of an environment with changing conditional second 

moments, this method may not provide an effective hedge using the futures instruments. 

Recent studies suggest that the time-varying volatility prevails in many time series. The 

risk of assets changes because new information is continuously received by the markets 

[Bollerslev (1990); Kroner and Sultan (1993)]. Therefore, the hedge ratio should be 

time-varying because it depends on the conditional moments of the spot and futures 

returns. The conditional volatility literature has provided many models that capture the 

time-varying variance and covariance. Hence, the optimal hedge ratio for time t can be 

written as tFtStth ,,
* /σσρ= , where the conditional estimates ( tρ , tS ,σ , and tF ,σ ) are 

   
26 Some studies use the error correction (EC) model proposed by Engle and Granger (1987) to calculate 
the optimal hedge ratio. However, there is just small difference between OLS and EC [Kroner and Sultan 
(1993)]. 
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obtained from different models conditional on information set at time t-1. 

 

4.3 Empirical Analysis 

In this study, 887 weekly observations on the spot and futures for six classes (fifteen 

commodities), i.e., stock indices (FTSE 100, Nikkei 225 and S&P500 (SP)), currencies 

(British Pond (BP), Japanese Yen and Swiss Franc (SF)), metals (gold and silver), 

grains (corn, soybeans (Soy) and soybean oil (SO)), softs (coffee, cotton and sugar), 

and energy (crude oil (CL)), are obtained from Datastream. The detail of these data is 

described in Table 4.1. The time period of commodities is from January, 1, 1990 to 

December, 29, 2006. The futures data provided by Datastream are the nearest contract 

to deliver but rolled it over to the next nearest contract on the first day of the delivery 

month in order to avoid thin trading and expiration effects. 

<Table 4.1 is inserted about here> 

Table 4.2 gives summary statistics for returns and ranges of each spot and futures 

commodity. The returns are computed by )/(100 1−× tt PPlog , where tP  is the close 

price in each week. The ranges are computed by )/log(100 Low
t

High
t PP× , where High

tP  

and Low
tP  are the maximum and minimum price respectively among the daily close 

prices in the tht  week and the last trading day close price in the tht 1−  week27. The 

means of the returns are almost close to zero. As is noted by Fama (1965), this 

martingale behavior is often interpreted as being consistent with a weak form efficient 

market. Except soybeans, soybean oil and crude oil, the volatilities of all futures returns 

are somewhat higher than the volatilities of spot returns. The order of the magnitudes 

for the means of the range is roughly the same as that for the standard deviations of the 

   
27 Unlike financial assets, the high-low price data of most commodities in a trading day are unavailable 
but close price data. In this study, however, the weekly data are used to examine the hedging performance. 
Therefore, it is reasonable to use the measure as its proxy. 
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returns with the only two exceptions of corn and cotton. This reflects the fact that both 

range and standard deviations are measures of volatilities. Given that the range data are 

non-negative is present for all commodities. 

< Table 4.2 is inserted about here > 

In order to clarify the relative hedging performance, several models are used for 

comparison, including three buy-and-hold strategies (no hedge, naïve28, and OLS) with 

fixed weights in the hedging period and five dynamic strategies (rollover OLS, 

return-based CCC, return-based DCC, range-based CCC, and range-based DCC) with 

time-varying weights in a framework of rolling sample.  

The rolling sample approach here utilizes week-by-week updating to build the 

time-varying hedge ratios. There are 522 weekly observations (about ten years) in each 

of estimated period of the others. In addition, all cases provide 365 one period ahead 

out-of-sample forecasting values for comparison. The first forecasted value occurs on 

the week of January 3, 2000. Assume that there is one unit underlying asset in the 

beginning. No hedge means that the variance of its hedging portfolio is only decided by 

the underlying asset. Naïve here is the short hedge with selling one unit futures.  

 In order to formally compare the performances of each kind of hedging method, 

the hedging portfolios are applied by the estimated hedge ratios of each week. The 

variance of these portfolio returns can be written as )( ,
*

, tFttS rhrVar − , where *
th  are 

estimated optimal hedge ratios from different hedging methods. In this study, we focus 

on the out-of-sample forecasting results with one period ahead. Table 4.3 and Table 4.4 

report the maximum likelihood estimations of the return-based and range-based DCC 

   
28 The naïve hedging strategy is the simplest way to hedge the spot price risk. This strategy suggests that 
an investor who has a long position in the spot market should sell a unit of futures today and buy it back 
when he sells the spot. If the spot and futures prices both change by the same amount at all times, this 
will be a perfect hedge. 
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models respectively. Here the first out-of-sample parameter estimates29 are provided. 

In Table 4.3, Panel A and Panel B are the first step of the DCC model estimation, which 

are the GARCH model fittings of spot and futures returns respectively. In Table 4.4, 

they are for the CARR model fittings of ranges. Panel C is the second step of the DCC 

model estimation for both tables. 

< Table 4.3 is inserted about here > 

< Table 4.4 is inserted about here > 

 From the tables, the values of ˆˆ( )α β+  are close to one except for soybean oil, 

indicating high persistence in volatility. As for correlation persistence, however, the 

values of ˆˆ( )a b+  exhibit inconsistent results. Some cases have high persistence in 

correlation, but the others don’t. In addition, for the cases of gold and silver, the 

range-based DCC model shows stronger correlation persistence than the return-based 

one. 

The comparisons of out-of-sample hedging performance are reported in Table 4.5. 

Panel A of Table 4.5 shows the variances of the hedging portfolios. To further gauge the 

hedging efficiency among various methods, Panel B also reports the efficiency gain of 

each alternative method compared to no hedge. Furthermore, Panel C shows the 

percentage variance improvement compared with the range-based DCC model.  

< Table 4.5 is inserted about here > 

Several observations can be made from the reading of Table 4.5. First, the 

portfolio variances in stock indices, currencies, and metals are much smaller than those 

in grains, softs, and energy. It seems that the financial market30 has active trade and 

visible information to reduce the price change between spot and futures. It is obvious 

that trading noises lead to worse hedging performance for the agriculture and energy 
   
29 In total, we have 365 estimations. The first parameter estimates are provided in Table 3 and Table 4. 
30 In general, gold and silver are viewed as financial assets. 
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markets. In respect of no hedge, all portfolio variances, with the single exception of 

currency, are very large, especially in silver and non-financial commodities. 

As for the comparison of the seven hedging methods, the naïve method generally 

is the worst of all. This is not surprising as the assumption of perfect correlation 

between the spot and the futures returns underlying this method is clearly not supported 

empirically. In the cases of stock indices, however, naïve performs better than the other 

static and rollover OLS models31. Next, the fact that the dynamic strategies with 

time-varying hedge ratios outperform the buy-and-hold ones indicates that the 

traditional method assuming a constant hedge ratio through the hedging period has a lot 

of room for improvements. 

Among the dynamic hedging methods, how do the range-based methods compare 

with the return-based methods? The results suggest that the range-based ones are better 

than their corresponding opponents with the return-based ones. Specifically, the 

variances of the hedging portfolio derived from the range-based volatility models are 

smaller than the return-based volatility ones in thirteen out of fifteen commodities. The 

finding has its exception only in the soybean and coffee cases. 

Panel B of Table 4.5 shows the hedging effectiveness of all strategies. The simple 

naïve hedge for all commodities can reduce over about 75% variation of spot. In 

addition, there are over 90% high values of hedging effectiveness for all hedging 

strategies in silver and two classes, stock index and currency. Again, the difference of 

the hedging effectiveness between the static and dynamic models for these cases is 

small. However, the results in the other commodities still support the superiority of the 

dynamic hedging strategies over the static ones. It is noteworthy that the poor 

   
31 Because the 10-year period might have some structural changes which would reduce the hedging 
efficiency of the OLS model, the 5-year OLS and rollover OLS models were considered as other 
comparison models. However, our empirical results indicated that the difference between two different 
estimated periods was very small. 
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effectiveness in crude oil seems to point out it is difficult to hedge by futures. 

In order to more intuitively compare the performance of these hedging strategies, 

Panel C of Table 4.5 lists the hedging improvement ratio by the range-based DCC 

model. From the average percentage variance improvement reported in the last column, 

range-based DCC is the clear winner of all methods, with an improvement of about 

30% over OLS, 27% over rollover OLS, 16% over return-based CCC, 10% over 

return-based DCC, and 5% over range-based CCC. It is valuable to take a more look at 

these values. In the same model setting, there are about 5% improvements by using the 

time-varying correlation strategies over the constant ones, and about 10% 

improvements by using the range-based strategies over the return-based ones32. From 

the hedging point of view, the range is indeed a more efficient measure of volatility 

than the return. Furthermore, the additional effort in modeling the time-varying pattern 

of the conditional correlation is with rewards. 

<Figure 4.1 is inserted about here> 

For illustration, Figure 4.1 plots the estimated hedge ratios using different methods 

for six cases, S&P 500, British Pond, gold, soybean oil, cotton, and crude oil, 

respectively. In addition to rollover OLS, the optimal return-based and range-based 

CCC or DCC models are put together for comparison. The rollover OLS model has the 

smoothest pattern in all cases, but still varies over time with a rolling-sample of ten 

years is used in the out-of-sample comparisons. To take cotton for example, there is an 

obvious jump in the middle of 2005. With the single exception of gold, the figures 

indicate that the hedge ratios from range are more volatile than those from return. To 

conclude, the dynamic methods provide wide variations of the hedge ratios around the 

   
32 In fact, we need to redo the work of Panel C of Table 5 for our target model to get the accuracy value. 
For simplicity, the related results are not listed in this study. Return-based (range-based) DCC has a 
7.02% (4.96%) gain over return-based (range-based) CCC. Then, range-based DCC (CCC) has a 9.71% 
(11.76%) gain over return-based DCC (CCC). 
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OLS estimates. A more flexible hedge ratio seems to be necessary in order to obtain a 

more effective hedging strategy. 

 

4.4 Conclusion 

Range is a more efficient estimator than return in forecasting volatility. However, few 

researches utilize its superiority in financial applications. This paper uses range-based 

hedging models for calculating optimal hedge ratios in six classes of commodity futures, 

totally fifteen commodities, and compares with hedging performance of other models.  

For a one-period forecasting horizon, empirical findings indicate that hedging 

performances of range-based volatility models are significantly better than the other 

volatility models for most commodities. Based on minimum-variance hedge criterion, 

the hedging portfolio variances calculated from the range-based volatility models are 

smaller than the return-based ones in thirteen out of fifteen commodities.  

In conclusion, the results mainly indicate the following three points: (1) static 

hedging strategies are not suitable for most futures hedging, especially for non-financial 

ones; (2) assuming constant correlation generally has an approximate 5 percent loss in 

hedging achievement; (3) in the same dynamic structure, hedging improvement for the 

range data compared with the return data is about 10 percent on average.
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Table 4.1: The Source of Spot and Futures Data 
The table reports the related information for the fifteen futures and spots in this paper. The exchanges for futures, Datastream names for spots 
and their codes are included in this table. 

  Futures  Spot  
Type Name Exchange Code Datastream Name Code 
Stock Index FTSE 100 LIFFE LSXCS00 FTSE 100 - PRICE INDEX FTSE100 
 Nikkei 225 OSX ONACS00 NIKKEI 225 STOCK AVERAGE - PRICE INDEX JAPDOWA 
 S&P 500 CME ISPCS00 S&P 500 COMPOSITE S&PCOMP 
Currency British Pond CME IBPCS00 US $ TO UK (GTIS) BRITPUS 
 Japanese Yen CME IJYCS00 US $ TO JAPANESE YEN (GTIS) JAPYNUS 
 Swiss Franc CME ISFCS00 US $ TO SWISS FRANC (GTIS) SWISFUS 
Metal Gold CMX NGCCS00 Gold, Handy & Harman Base $/Troy Oz GOLDHAR 
 Silver CMX NSLCS00 Silver, Handy & Harman (NY) cts/Troy OZ SILVERH 
Grain Corn CBOT CC.CS00 Corn No.2 Yellow Cents/Bushel CORNUS2 

 Soybeans CBOT CS.CS00 Soyabeans, No.1 Yellow C/Bushel SOYBEAN 
 Soybean Oil CBOT CBOCS00 Soya Oil, Crude Decatur Cents/lb SOYAOIL 
Soft Coffee NYBOT NKCCS00 Coffee-ICO Composite Daily ICA c/lb COFDICA 

 Cotton No. 2 NYBOT NCTCS00 Cotton,1 1/16Str Low -Midl, Memph C/Lb COTTONM 
 Sugar No. 11 NYBOT NSBCS00 Raw Cane Sugar, World FOB Cents/lb SUGCNRW 
Energy Crude Oil NYMEX NCLCS00 Crude Oil-Brent Cur. Month FOB U$/BBL OILBREN 
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Table 4.2: Summary Statistics for Returns and Ranges of Spot and Futures 

The table provides summary statistics for the weekly return and range data of the spot 
and futures samples in this study. The returns are computed by )/(100 1−× tt PPlog , 
where tP  is the close price in each week. The ranges are computed by 

)/log(100 Low
t

High
t PP× , where High

tP  and Low
tP  are the maximum and minimum price 

respectively among the daily close prices in the tht  week and the last trading day close 
price in the tht 1−  week. The sample period ranges from Jan 1, 1990 to Dec 29, 2006 
(887 weekly observations).  
 Spot Futures 
 Return Range Return Range 
 Mean Std Dev Mean Std Dev Mean Std Dev Mean Std Dev 
FTSE 0.105 2.084 2.304 1.418 0.103 2.186 2.469 1.483 
Nikkei -0.090 2.955 3.297 1.870 -0.091 3.020 3.365 1.896 
SP 0.157 2.073 2.239 1.410 0.157 2.117 2.309 1.474 
BP 0.020 1.290 1.373 0.824 0.022 1.322 1.405 0.847 
Yen 0.022 1.565 1.612 1.030 0.023 1.603 1.660 1.056 
SF 0.026 1.579 1.734 0.904 0.027 1.605 1.760 0.920 
Gold 0.050 1.879 1.863 1.377 0.050 1.967 1.968 1.388 
Silver 0.101 3.295 3.257 2.326 0.098 3.412 3.422 2.447 
Corn 0.053 3.367 3.485 2.272 0.056 3.373 3.345 2.283 
Soy 0.018 3.150 3.173 2.161 0.019 3.078 3.135 2.024 
SO 0.046 3.158 3.465 1.890 0.049 3.079 3.360 1.837 
Coffee 0.059 4.479 3.909 3.325 0.050 5.527 5.704 3.905 
Cotton -0.015 3.487 3.858 2.137 -0.019 3.750 3.775 2.515 
Sugar -0.011 4.166 4.569 2.744 -0.021 4.462 4.762 3.015 
CL 0.107 5.229 5.395 3.640 0.110 4.930 5.281 3.540 

Note: BP (British Pond), SF (Swiss Franc), Soy (soybeans), SO (soybean oil), and CL (crude oil). 
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Table 4.3: Return-based DCC Model Estimations 

This table shows the first estimation (totally 365 estimations) of the range-based DCC models using the MLE method for the out-of-sample 
forecast. The estimated period here is ranging from Jan 1, 1990 to Dec 31, 1999 (522 weekly observations). Panel A and Panel B are the first step 
of the DCC model estimation for spot and futures returns of commodities respectively. Panel C is the second step of the DCC model estimation. 
LLF is the abbreviation for log likelihood function value. The values presented in parentheses are standard errors for the estimated coefficients. 
The return-based DCC model is shown as follows: 

, ,k t k k tr c ε= + , ),0(~| ,1, tkttk hNI −ε , 2,1=k . 

1,
2
,, −− ++= tkkitkkktk hh βεαω , 

111)1( −−− +′+−−= tttt baba QZZQQ , 
where tZ  is the standard residual vector which is standardized by GARCH volatilities. tQ  and Q  are the conditional and unconditional 
covariance matrix of tZ .  

Panel A: Estimates of GARCH(1,1) model for spot returns 
 FTSE Nikkei SP BP Yen SF Gold Silver Corn Soy SO Coffee Cotton Sugar CL 

1c  0.238 -0.060  0.261  0.026 0.085 -0.014 -0.074 -0.085 0.191 0.098 -0.047 -0.131 -0.067 -0.057 -0.114  
 (0.086) (0.118) (0.068) (0.055) (0.0690 (0.071) (0.048) (0.129) (0.121) (0.108) (0.118) (0.167) (0.133) (0.170) (0.208) 
1ω̂  0.069 1.046  0.052  0.096 0.066 0.283 0.083 0.434 0.413 0.712 5.467 2.505 1.791 0.583 1.202  
 (0.050) (0.473) (0.036) (0.074) (0.056) (0.218) (0.042) (0.264) (0.224) (0.232) (1.627) (1.728) (1.197) (0.344) (0.472) 
1α̂  0.054 0.132  0.089  0.121 0.087 0.048 0.205 0.071 0.175 0.218 0.197 0.138 0.085 0.095 0.152  
 (0.020) (0.055) (0.025) (0.109) (0.032) (0.038) (0.098) (0.038) (0.039) (0.059) (0.074) (0.070) (0.035) (0.035) (0.053) 

1̂β  0.930 0.757  0.897  0.831 0.896 0.848 0.787 0.889 0.799 0.709 0.137 0.755 0.723 0.876 0.811  
 (0.028) (0.086) (0.028) (0.121) (0.026) (0.100) (0.081) (0.050) (0.049) (0.061) (0.194) (0.095) (0.142) (0.047) (0.041) 
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Panel B: Estimates of GARCH(1,1) model for futures returns 
 FTSE Nikkei SP BP Yen SF Gold Silver Corn Soy SO Coffee Cotton Sugar CL 

2c  0.236 -0.075  0.257  0.003 0.086 -0.014 -0.106 -0.096 0.184 0.111 -0.035 -0.173 -0.132 -0.162 -0.071  
 (0.093) (0.124) (0.069) (0.060) (0.070) (0.072) (0.055) (0.135) (0.124) (0.114) (0.119) (0.218) (0.141) (0.202) (0.196) 
2ω̂  0.096 1.200  0.048  0.024 0.080 0.138 0.187 0.413 1.132 0.703 4.558 0.750 0.162 1.430 1.059  
 (0.064) (0.597) (0.034) (0.019) (0.058) (0.121) (0.081) (0.236) (0.500) (0.316) (1.420) (0.414) (0.177) (0.671) (0.547) 
2α̂  0.054 0.120  0.084  0.055 0.092 0.044 0.274 0.066 0.204 0.186 0.200 0.151 0.105 0.119 0.111  
 (0.021) (0.054) (0.022) (0.034) (0.039) (0.028) (0.118) (0.031) (0.091) (0.074) (0.075) (0.050) (0.032) (0.044) (0.035) 

2β̂  0.925 0.761  0.903  0.932 0.887 0.908 0.696 0.900 0.687 0.740 0.233 0.851 0.897 0.816 0.847  
 (0.030) (0.093) (0.024) (0.032) (0.028) (0.059) (0.098) (0.041) (0.096) (0.088) (0.184) (0.036) (0.022) (0.061) (0.035) 

  
Panel C: Estimates of return-based DCC model 

 FTSE Nikkei SP BP Yen SF Gold Silver Corn Soy SO Coffee Cotton Sugar CL 
â  0.021 0.054  0.024  0.043 0.019 0.096 0.119 0.039 0.215 0.247 0.328 0.046 0.218 0.388 0.151  
 (0.007) (0.008) (0.009) (0.005) (0.002) (0.014) (0.026) (0.016) (0.026) (0.024) (0.025) (0.010) (0.021) (0.026) (0.013) 

b̂  0.976 0.942  -0.930  0.933 0.975 -0.142 -0.011 0.697 0.649 0.549 0.318 0.876 0.369 0.022 0.685  
 (0.010) (0.009) (0.043) (0.008) (0.004) (0.173) (0.232) (0.163) (0.045) (0.055) (0.037) (0.032) (0.125) (0.044) (0.038) 

LLF 809.399 914.249 850.669 818.568 898.616 901.638 395.667 522.703 353.391 577.613 535.826 194.930 186.348 375.383 376.728 
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Table 4.4: Range-based DCC Model Estimations 

This table shows the first estimation (totally 365 estimations) of the range-based DCC models using the MLE method for the out-of-sample 
forecast. The estimated period here is ranging from Jan 1, 1990 to Dec 31, 1999 (522 weekly observations). Panel A and Panel B are the first step 
of the DCC model estimation for spot and futures ranges of commodities respectively. Panel C is the second step of the DCC model estimation. 
LLF is the abbreviation for log likelihood function value. The values presented in parentheses are standard errors for the estimated coefficients. 
The range-based DCC model is shown as follows: 

titi u ,, =ℜ , , 1| ~ (1, )k t tI f−ℜ ⋅ , 2,1=k . 

1,1,, −− +ℜ+= tkktkkktk λβαωλ , 

111)1( −−− +′+−−= tttt baba QZZQQ , 

where tℜ  is the range variable, tZ  is the standard residual vector which is standardized by CARR volatilities. tQ  and Q  are the conditional 
and unconditional covariance matrix of tZ .  

Panel A: Estimates of CARR(1,1) model for spot ranges 
 FTSE Nikkei SP BP Yen SF Gold Silver Corn Soy SO Coffee Cotton Sugar CL 

1ω̂  0.045 0.359  0.029  0.044 0.070 0.126 0.054 0.109 0.219 0.290 1.195 0.117 0.303 0.223 0.224  

 (0.024) (0.122) (0.018) (0.023) (0.038) (0.065) (0.028) (0.057) (0.073) (0.081) (0.362) (0.065) (0.125) (0.100) (0.098) 
1α̂  0.092 0.212  0.109  0.110 0.105 0.076 0.177 0.093 0.208 0.233 0.213 0.107 0.140 0.151 0.185  

 (0.022) (0.041) (0.024) (0.032) (0.024) (0.028) (0.045) (0.028) (0.037) (0.045) (0.051) (0.036) (0.032) (0.032) (0.030) 

1̂β  0.888 0.680  0.876  0.858 0.855 0.852 0.789 0.872 0.724 0.667 0.418 0.865 0.770 0.799 0.772  

 (0.027) (0.063) (0.027) (0.041) (0.037) (0.054) (0.054) (0.039) (0.050) (0.059) (0.137) (0.039) (0.059) (0.045) (0.037) 
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Panel B: Estimates of CARR(1,1) model for futures ranges 
 FTSE Nikkei SP BP Yen SF Gold Silver Corn Soy SO Coffee Cotton Sugar CL 

2ω̂  0.063 0.335  0.039  0.028 0.087 0.083 0.064 0.109 0.278 0.318 0.835 0.234 0.115 0.262 0.174  

 (0.031) (0.115) (0.021) (0.017) (0.045) (0.048) (0.031) (0.063) (0.106) (0.099) (0.261) (0.107) (0.084) (0.114) (0.084) 
2α̂  0.106 0.201  0.123  0.087 0.123 0.071 0.165 0.088 0.180 0.220 0.202 0.153 0.099 0.137 0.161  

 (0.025) (0.039) (0.025) (0.026) (0.027) (0.025) (0.043) (0.027) (0.040) (0.047) (0.052) (0.032) (0.023) (0.031) (0.027) 

2β̂  0.869 0.701  0.859  0.893 0.829 0.882 0.797 0.880 0.728 0.669 0.533 0.810 0.866 0.805 0.804  

 (0.031) (0.057) (0.029) (0.032) (0.041) (0.044) (0.051) (0.039) (0.059) (0.067) (0.113) (0.042) (0.043) (0.046) (0.034) 
  
Panel C: Estimates of range-based DCC model 

 FTSE Nikkei SP BP Yen SF Gold Silver Corn Soy SO Coffee Cotton Sugar CL 
â  0.027 0.061  -0.026  0.051 0.005 0.092 0.046 0.032 0.243 0.289 0.337 0.110 0.241 0.439 0.142  

 (0.007) (0.009) (0.014) (0.005) (0.000) (0.013) (0.016) (0.011) (0.021) (0.023) (0.027) (0.009) (0.025) (0.029) (0.014) 
b̂  0.978 0.933  0.818  0.930 0.996 -0.130 0.878 0.922 0.657 0.549 0.339 0.835 0.364 0.008 0.648  

 (0.008) (0.010) (0.153) (0.007) (0.000) (0.153) (0.040) (0.040) (0.032) (0.044) (0.041) (0.020) (0.133) (0.037) (0.051) 
LLF 804.909 914.491 849.783 859.567 876.946 898.055 412.295 516.787 336.278 577.734 532.714 180.451 188.785 377.413 369.952 
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Table 4.5: Comparisons of Out-of-Sample Hedging Performance 

There are three parts in this table. Panel A shows the post-sample portfolio variances. Panel B shows the hedging effectiveness. Panel C shows 

hedging improvement ratio by range-based DCC for other methods. The models used for comparison include three buy-and-hold strategies (no 

hedging, naïve, and OLS) with fixed weights in the hedging period and five dynamic strategies (rollover OLS, return-based CCC, return-based 

DCC, range-based CCC, and range-based DCC) with time-varying weights in a framework of rolling sample. The rolling sample approach here 

utilizes week-by-week updating to build the time-varying hedge ratios. Assume that there is one unit underlying asset in the beginning. No 

hedging means that the variance of its hedging portfolio is only decided from the underlying asset. Naïve is the short hedge with selling one unit 

futures. There are 522 observations (ten years) in each of estimated period of the others. There are 365 one period ahead out-of-sample 

forecasting values provided for comparison. The first forecasted value occurs on the week of January 3, 2000. 

  

Panel A: Portfolio variances for all strategies 
 FTSE Nikkei SP BP Yen SF Gold Silver Corn Soy SO Coffee Cotton Sugar CL  
no hedging 4.6695 7.8949 5.4291 1.4032 1.6720 2.1171 4.8753 12.1656 13.2761 12.4454 12.1466 15.7210 16.3349 17.7476 25.5334  

naïve 0.0826 0.2366 0.1133 0.0643 0.1038 0.1293 1.1745 0.9274 2.6654 2.1024 1.2375 7.8405 5.8008 8.2354 6.5475  

OLS 0.1110 0.2560 0.1262 0.0653 0.0979 0.1258 1.0777 1.0014 2.7249 2.1149 1.2713 5.8112 5.8424 6.8299 6.2694  

rollover OLS 0.0901 0.2444 0.1179 0.0638 0.0971 0.1253 1.0616 0.9312 2.6168 2.0649 1.2475 5.7835 5.5008 6.8467 6.0101  

return-based CCC 0.0705 0.2306 0.1252 0.0613 0.0829 0.1209 0.8342 0.7806 2.1103 1.2998 1.0443 4.3736 5.1678 6.3694 5.9494  

return-based DCC 0.0704 0.2286 0.1258 0.0600 0.0824 0.1179 0.7644 0.7560 1.7623 1.1903 0.9536 4.1437 3.9894 5.0676 5.5862  

range-based CCC 0.0575 0.2126 0.1022 0.0567 0.0709 0.1028 0.8654 0.5659 1.6215 1.6779 0.9557 4.7769 2.9810 5.2619 4.8775  

range-based DCC 0.0570 0.2112 0.1052 0.0555 0.0711 0.0987 0.7538 0.5816 1.7809 1.7554 0.8273 4.4907 2.3862 3.7297 4.5918  

Note: The number with an underline stands for the smallest hedging portfolio variance in each commodity column. 
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Panel B: Hedging effectiveness ( hedgingnoHedgie VarVar  /1− )  

 FTSE Nikkei SP BP Yen SF Gold Silver Corn Soy SO Coffee Cotton Sugar CL  
naive 0.9823 0.9700 0.9791 0.9542 0.9379 0.9389 0.7591 0.9238 0.7992 0.8311 0.8981 0.5013 0.6449 0.5360 0.7436  

OLS 0.9762 0.9676 0.9767 0.9535 0.9414 0.9406 0.7789 0.9177 0.7948 0.8301 0.8953 0.6304 0.6423 0.6152 0.7545  

rollover OLS 0.9807 0.9690 0.9783 0.9545 0.9419 0.9408 0.7822 0.9235 0.8029 0.8341 0.8973 0.6321 0.6632 0.6142 0.7646  

return-based CCC 0.9849 0.9708 0.9769 0.9563 0.9504 0.9429 0.8289 0.9358 0.8410 0.8956 0.9140 0.7218 0.6836 0.6411 0.7670  

return-based DCC 0.9849 0.9710 0.9768 0.9572 0.9507 0.9443 0.8432 0.9379 0.8673 0.9044 0.9215 0.7364 0.7558 0.7145 0.7812  

range-based CCC 0.9877 0.9731 0.9812 0.9596 0.9576 0.9514 0.8225 0.9535 0.8779 0.8652 0.9213 0.6961 0.8175 0.7035 0.8090  

range-based DCC 0.9878 0.9732 0.9806 0.9605 0.9575 0.9534 0.8454 0.9522 0.8659 0.8589 0.9319 0.7143 0.8539 0.7899 0.8202  

Note: The number with an underline stands for the largest hedging effectiveness in each commodity column. 

Panel C: Hedging improvement ratio by range-based DCC ( model DCC /1 otherrange VarVar− ) 

 FTSE Nikkei SP BP Yen SF Gold Silver Corn Soy SO Coffee Cotton Sugar CL Averag

naive 0.3098 0.1073 0.0715 0.1376 0.3148 0.2366 0.3582 0.3729 0.3318 0.1651 0.3315 0.4272 0.5886 0.5471 0.2987 0.3066 
OLS 0.4868 0.1749 0.1664 0.1502 0.2736 0.2152 0.3006 0.4192 0.3464 0.1700 0.3493 0.2272 0.5916 0.4539 0.2676 0.3062 
rollover OLS 0.3679 0.1357 0.1072 0.1307 0.2678 0.2122 0.2900 0.3754 0.3194 0.1499 0.3368 0.2235 0.5662 0.4553 0.2360 0.2783 
return-based CCC 0.1916 0.0840 0.1593 0.0946 0.1417 0.1834 0.0964 0.2549 0.1561 -0.3505 0.2078 -0.0268 0.5383 0.4144 0.2282 0.1582 
return-based DCC 0.1903 0.0760 0.1637 0.0754 0.1372 0.1625 0.0139 0.2307 -0.0106 -0.4748 0.1325 -0.0838 0.4019 0.2640 0.1780 0.0971 
range-based CCC 0.0083 0.0067 -0.0300 0.0207 -0.0027 0.0399 0.1290 -0.0277 -0.0983 -0.0462 0.1343 0.0599 0.1995 0.2912 0.0586 0.0496 
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Panel C: Gold 
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Panel D: Soybean Oil 
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Panel E: Cotton 
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Panel F: Crude Oil 
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Figure 4.1: Comparison of optimal hedge ratios. There are six panels in this figure, 
including S&P 500, British Pond, gold, soybean oil, cotton, and crude oil. In addition 
to rollover OLS, we put optimal return-based and range-based CCC or DCC for 
comparison. For convenience in distinguishing, we reserve the last three years. 
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Chapter 5. Conclusions 
 

Volatility plays a central role in many areas of finance. In view of the theoretical and 

practical studies, the price range provides an intuitive and efficient estimator of 

volatility. In this paper, we propose a new range model, which incorporates the 

superiority of range in forecasting volatility and of range and the elasticity of the DCC 

model. It contributes to the multivariate applications and can be led into broad 

applications in finance. 

 This dissertation provides three empirical methods to strengthen the suitability of 

the new range-based volatility model. To begin with a statistical test, the range-based 

DCC model performs better than other selected models for the four covariance 

benchmarks. Then, we test its economic value and compare its performance with the 

return-based DCC model. We conclude that the range-based DCC model obtains 

higher economic value than the return-based one. Finally, we apply the range model to 

calculate hedge ratios. Based on minimum-variance hedge criterion, range-based 

volatility models have better performance in most commodities. 

Undoubtedly, the range is sensitive to outliers in statistics, and however only few 

researches mention this problem. It’s useful and meaningful to utilize the quantile 

range to replace the standard range to get a robust measure of range. Moreover, the 

multivariate works for range are still in its infancy. Future research is obviously 

required for this topic. 
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