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Abstract

This dissertation is intended as an investigation of dynamic range volatility models.
There are three main parts in this study. In the first part, we propose a range-based
DCC model combined by the return-based DCC model and the CARR model. The
substantial gain in efficiency of volatility estimation can boost the accuracy for
estimating time-varying covariances. As to the empirical study, we use the S&P 500
stock index and the 10-year treasury bond futures to examine both in-sample and
out-of-sample results for six models, .including MA100, EWMA, CCC, BEKK,
return-based DCC, and range-hased DCC. .In the second part, the range-based
volatility model is used to examine the economic:value of volatility timing in a
mean-variance framework. We compare its performance with a return-based dynamic
volatility model in both in-sample and out-of-sample volatility timing strategies. For a
risk-averse investor, we examine whether the" predictable ability captured by the
range-based volatility models is economically significant or not. In the last part, we
use ranges to estimate the minimum variance hedge ratios within the framework of the
CCC model and the DCC model. Other alternative methods used for comparison
include the static OLS model, the week-by-week rollover OLS model, the
return-based CCC model, and the return-based DCC model. While the spot price risk
is hedged by their corresponding futures, we compare the out-of-sample performances
of the hedging strategies for the selected commodities, including stock index,
currency, metal, grain, soft, and energy markets. Overall, the range-based volatility
models perform better than the other selected volatility models in the empirical

studies.

Keywords: DCC model, CARR model, Range, Dynamic volatility, Economic value,

\olatility timing, Hedge ratio, Minimum variance hedge.
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Chapter 1. Introduction

With the continual development of new financial instruments, there is a growing
demand for theoretical and empirical knowledge of the financial volatility. It is
well-known that financial volatility has played such a central role in derivative pricing,
asset allocation, and risk management.

Many studies show that financial time series exhibit volatility clustering or
autocorrelation. In incorporating the characteristics into the dynamic process, the
generalized autoregressive conditional heteroskedasticity (GARCH) family of models
proposed by Engle (1982) and Bollerslev (1986) are popular and useful alternatives for
estimating and modeling time-varying financial volatility. However, as pointed by
Alizadeh, Brandt, and Diebold (2002), Brandt and Diebold (2006), Chou (2005) and
other authors, GARCH models arejinaccurate and inefficient, because they are based on
the closing prices, of the reference period, failing to use the information contents inside
the reference. In other words, the path of the price inside the reference period is totally
ignored when volatility is estimated by these models. Especially in turbulent days with
drops and recoveries of the markets, the traditional close-to-close volatility indicates a
low level while the daily price range shows correctly that the volatility is high.

The price range, defined as the difference between the highest and lowest market
prices over a fixed sampling interval, has been known for a long time and recently
experienced renewed interest as an estimator of the latent volatility. This information is
widely used in Japanese candlestick charting techniques and other technical indicators
(Nisson, 1991). Early application of range in the field of finance can be traced to
Mandelbrot (1971), and the academic work on the range-based volatility estimator

started from the early 1980s. Several authors, back to Parkinson (1980), developed



from it several volatility measures far more efficient than the classical return-based
volatility estimators.

Building on the earlier results of Parkinson (1980), many studies' show that one
can use the price range information to improve volatility estimation. Cox and
Rubinstein (1985) stated the puzzle that despite the elegant theory and the support of
simulation results, the range-based volatility estimator has performed poorly in
empirical studies. Chou (2005) argued that the failure of all the range-based models in
the literature is caused by their ignorance of the temporal movements of price range.
Using a proper dynamic structure for the conditional expectation of range, the
conditional autoregressive range (CARR) model, proposed by Chou (2005),
successfully resolves this puzzle and retains its superiority in empirical forecasting
abilities.

There are three parts in=this' essay. Fhey. present three independent papers,
respectively. In the first part of this-dissertation, 'we extend the CARR model to a
multivariate context using the dynamic-conditional correlation (DCC) model proposed
by Engle (2002a). In the empirical studied, we use the S&P 500 stock index and the
10-year treasury bond futures to examine both in-sample and out-of-sample results for
six models, including MA100, EWMA, CCC, BEKK, return-based DCC, and
range-based DCC. Of all the models considered, the range-based DCC model is largely
supported in estimating and forecasting the covariance matrices.

In the second part, we calculate the economic value gained by the range-based
DCC model. Moreover, we also compare its performance with the return-based DCC
model in both in-sample and out-of-sample volatility timing strategies. For a

risk-averse investor, it is shown that the predictable ability captured by the dynamic

! See Garman and Klass (1980), Wiggins (1991), Rogers and Satchell (1991), Kunitomo (1992), Yang
and Zhang (2000), Alizadeh, Brandt and Diebold (2002), Brandt and Diebold (2006), Brandt and Jones
(2006), Chou (2005, 2006), Martens and van Dijk (2007), Chou, Wu and Liu (2007).
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volatility models is economically significant, and that the range-based volatility model
performs better than the return-based one.

In the last part, we use the range-based volatility models to calculate the hedge
ratio and compare their hedging performance with other methods, including the static
OLS model, the week-by-week rollover OLS model, the return-based CCC model, and
the return-based DCC model. Based on minimum-variance hedging criterion, the
out-of-sample comparisons show that the range-based volatility models perform better
than the other hedging models for most of the selected commaodities, including the
stock index, the currency, the metal, the grain, the soft, and the energy markets.
Compared with the static OLS model, on average, the range-based DCC model has
about 30 percent efficiency gain. Furthermore, with the same setting of dynamic
structure of the return-based hedging strategies, the range-based ones can get about 10

percent additional efficiency gain.



Chapter 2. Forecasting Time-varying Covariance with a Range-Based

Dynamic Conditional Correlation Model

2.1 Introduction

It is of primary importance in the practice of portfolio management, asset allocation and
risk management to have an accurate estimate of the covariance matrices for asset
returns. Meanwhile, a useful approach for estimating volatilities and covariances in
valuing derivatives is necessary. Surveying from a bundle of past related literature, the
univariate ARCH/GARCH family of models have provided effective tools in estimating
the volatility of individual asset. Tailored to the needs of different asset classes, these
various models have achieved remarkable success (see Bollerslev, Chou, and Kroner
(1992), and Engle (2004), for a_comprehensive review). However, estimating the
covariance and correlation matrices of multiple variables, especially large sets of asset
prices, is still an active research issue.-Early attempts include the VECH model® of
Bollerslev, Engle, and Wooldridge .(1988), the"BEKK (Baba-Engle-Kraft-Kroner)
model® of Engle and Kroner (1995), and the constant conditional correlation (CCC)
model of Bollerslev (1990), among others. To our knowledge, the constant correlation
model is too restrictive in that it imposes stringent constraints whereby the dynamic
structure of the covariance is completely determined by individual volatilities. VECH
and BEKK are, however, more flexible in that they allow time-varying correlations.
While the BEKK parameterization for a bivariate model involves 11 parameters, for
higher-dimensional systems, the additional parameters in BEKK make estimation very

difficult.

2 The k-dimensional VECH model is written as vech(H)=A+B vech(§_1§;_1)+c vech(H1), where H, is

the conditional covariance matrix at time t and vech(H,) is the vector that stacks all the elements of the
covariance matrix.

% It is a general parameterization that involves the minimum number of parameters while imposing no
cross equation restrictions and ensuring positive definiteness for any parameter value.
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In a series of related papers, Engle and Sheppard (2001), Engle (2002a), and
Cappiello, Engle, and Sheppard (2006) provide another viewpoint to this problem by
using a model referred to the dynamic conditional correlation (DCC) multivariate
GARCH*. Intuitively, the conditional covariance estimation for two variables is
simplified by estimating univariate GARCH models for each asset’s variance process.
Then, the estimation of the time-varying conditional correlation is performed by using
the transformed standardized residuals. A meaningful and excellent performance of this
model is demonstrated in these studies.

The objective of this article is to propose an alternative to the return-based DCC
approach. In this paper, we consider a refinement of the return-based DCC model by
utilizing the high/low range data of asset prices during a fixed time interval. In
estimating the volatility of asset prices, there is a.growing recognition of the fact that
the range data of asset prices can provide sharper estimates and forecasts than the return
data based on close-to-close prices.:Many-insightful studies have provided powerful
evidence including Parkinson (1980),-Garman and Klass (1980), Wiggins (1991),
Rogers and Satchell (1991), Kunitomo (1992) and, more recently, Gallant, Hsu, and
Tauchen (1999), Yang and Zhang (2000), Alizadeh, Brandt, and Diebold (2002), Brandt
and Jones (2006), Chou (2005, 2006), and Martens and van Dijk (2007). Above all,
Chou (2005) proposes the conditional autoregressive range (CARR) model which can
capture the dynamic volatility process and has obtained some insightful evidence in
terms of real trading data. In other words, a range-based volatility model can serve as a
useful substitution for the return-based volatility model in describing the process of
volatility.

Range data intuitively have more information than return data for estimating

* Other econometric methods for estimating the time-varying correlation are proposed by Tsay (2002)
and by Tse and Tsui (2002).



volatility. Again, they are easy to obtain for many financial markets. The previous
studies have proved that range is an efficient volatility estimator". Moreover, Chou
(2005) puts the range into the dynamic process, and verifies that the range model can
also fit time-varying volatility well. In light of the success of the range-based univariate
volatility models, it is natural to inquire whether the efficiency of the range structure
can be extended and incorporated into a multivariate framework® for constructing
covariance process.

The remainder of this chapter is laid out in the following manner. Section 2.2
reviews the bivariate models for estimating the covariance process. Section 2.3
introduces the range-based volatility model and the DCC model. Section 2.4 describes
the properties of data used and discusses the empirical results. Finally, the conclusion is

showed in section 2.5.

2.2 Covariance Estimation
This section provides an overview: of.methods for describing the current level of
covariance. Conventionally, the conditional covariance estimation between two return

series is defined as:
COVy,, =E [(r, — ), — 11,)], (2.1)
where . = E(7;,) . In most applications, asset returns are assumed to have zero means.

This common viewpoint is adopted in our study. Thus, equation (2.1) can be expressed

as CO‘VlZ,I = [—1(’3_,tr2,t) '

It is useful to estimate time-varying covariance parameters between asset returns

> Shu and Zhang (2006) provide relative performance of different range-based volatility estimators, and
find that the range estimators all perform very well when an asset price follows a continuous geometric
Brownian motion.
® Fernandes, Mota, and Rocha (2005) utilize the formula Cov(X,Y)=/V(X+Y)-V(X)-V(Y)] /2 to propose a
kind of multivariate CARR model. However, this method limits the multivariate CARR model to a
bivariate case only.



in many financial applications. For example, they can be used to deal with the hedging
ratio for futures, the optimal weights for the portfolio allocation, the time-varying beta
for the market model, and so on. The information of the conditional covariance is
derived from previous trading data. One commonly used method is to compute the
historical covariance. For capturing the time-varying property of covariances, however,
one approach we use works with a moving average with a 100-week window, namely
MAZ100, which is rich enough to be relevant and yet simple enough to permit a

streamlined exposition:

1 -1
COVYH® = = Ny 1, . (2.2)
12, 100 s:;OOl" 2,

Intuitively, it is reasonable to attach more weight to recent data. Going by this, we
introduce an exponentially weighted moving:.average (EWMA) model where the
weights decrease exponentially as we move back through time. Exponential smoothing
is used to model the unobservable variables for volatility in JP Morgan’s RiskMetrics,
too. EWMA has an attractive feature in that relatively little data need to be stored.
Exponential averages arrange the most weight to the most recent observations, with
weights declining exponentially as observations go back in time. It turns out that

EWMA for covariance estimation can briefly be illustrated as follows.

COVy™ == A7, 1y, (2.3)

s=1
where the smoothing parameter A lies between zero and unity. The value of A
governs how sensitive the estimate of the current variable is to percent changes in the
most recent period. The popular RiskMetrics approach adopts exponential moving

averages’ to estimate future volatility because it believes the method responds rapidly

" The RiskMetrics database uses the exponentially-weighted moving average model with 1 =0.94 for
updating daily volatility estimates. J.P. Morgan found that, across variant market variables, this value

7



to market shocks.

The conditional variance-covariance matrix can build a multivariate ARCH model.
This approach has been extracted by Engle and Kroner (1995), who proposed the
so-called BEKK model. The parameters, however, easily diverge from the acceptable
scope when the type of the full-rank BEKK model is adopted. In the related literature,
the diagonal BEKK (DBEKK) model is adopted more frequently due to its property of
convergence of parameters used in general empirical research. Considering the

DBEKK — [h

bivariate case for DBEKK, its covariance matrix H, ] isshown as below:

it

2
JJ PBEKK _ |:cll 0 }{cn c12:|+|:all 0 } €101 €182, |:all 0 }
t - 2
€, Cp | 0 ¢y 0 ay €112, €4 0 ay

+|:b11 0 :||: hl,tfl hlZ,lfl :”:bll 0 :|' (24)
0 b22 th,t—l h22,t~l 0 b22
where a,, b,, c, are estimated-parameters. &, represents the innovation term of

the mean equation under the assumption &,-|-4,, ~(0,H,).

2.3 The Range-based Volatility Model and the DCC Model

The asset high/low range, R, is defined as the difference between the daily high and

low prices in a logarithm type over a fixed time period. It is readily available for some
assets and can be written as:

R, =In(H,)~In(L,), (2.5)

where H, and L, are the highest and lowest intraday price over a fixed period such

as daily, weekly, or monthly. For weekly data, the highest price of a week is its intraday

highest price that we can observe over the trading time in the week. Unlike the intraday

of A results in forecasts of the volatility that come closest to the realized volatility. Following J.P.
Morgan’s suggestion, the variable A equals 0.94 for the time being in the later empirical discussion.

8



realized volatility, the range therefore does not have a time-aggregation problem.

The previous studies indicated that range has relative efficient, but did not
empirical support. Chou (2005) argues that its poor performance is due to the poor
dynamic fitting, and further, proposes the CARR model to capture its dynamic structure.
The CARR can be expressed as:

R, =Au, u, |1 ~exp(L-)

) (2.6)
A=o+aR,_ + P,

where R, and 4, is the high/low range and the conditional mean of the range during
the time interval ¢, respectively. u, is the innovation assumed to follow the exponential

distribution with a unit mean.

The CARR model is a special case of the multiplicative error model (MEM) of
Engle (2002b)®. The specification of the.exponential distribution for the disturbance
term provides a consistent estimator of the-parameters. For specific discussions, see
Chou (2005) for a review. This paper.extendsthis range model to a multivariate case by
the DCC model.

Bollerslev (1990) proposed the CCC model with a constant correlation matrix,
where univariate GARCH models are estimated for each asset and then the

corresponding correlation matrix is constructed. An illustration of CCC is shown below.
The covariance matrix H °“ for a vector of k asset returns can be decomposed as
follows:

H“ =D,RD,, (2.7)
where R is the correlation matrix and D; is the & xk diagonal matrix of time-varying

standard deviations from univariate GARCH models with /A, on the i diagonal. As

it

® The MEM model is designed to fit a non-negative series, like duration or realized volatility.

9



for the /A, , itis the square root of the estimated variance for the i return series. The

assumption of a constant correlation makes estimating a large model feasible and
ensures that the estimator is positive definite, simply requiring each univariate
conditional variance to be non-zero and the correlation matrix to be of full rank. Under
such a situation, the estimate of the conditional covariance can be obtained, based on
information regarding the fixed correlation and the product of the two conditional
standard deviations.

Although CCC is meaningful, the setting of constant conditional correlations could
sometimes be too restrictive and the estimators in the constant correlation setting, as
proposed, do not offer a rule to construct consistent standard errors, using the
multi-stage estimation process. Another shortcoming for the constant correlation model
is that the correlation coefficient:tends toschange over time in real applications. Engle
(2002a) extended CCC to the 'more comprehensive DCC type. DCC retains the
parsimony of the univariate GARCH:model-of individual assets’ volatilities with a
simple GARCH-like time varying correlation. Meanwhile, DCC differs from CCC
mainly in that it allows the correlation matrix to be changed over time. Accordingly, we

can write DCC as:

HtDCC :DtRth’ (28)
R, =diag{Q,}"*Q,diag{Q,} ", (2.9)
O, =So(t'—A-B)+A°Z 7, /+Bo0, (2.10)

where Dy is defined as in equation (2.7) and R, is the possibly time-varying
correlation matrix. O, =[g,,] denotes the conditional covariance matrix of the

standardized residuals.

In equation (2.10), 4 and B are parameter matrices and o denotes the Hadamard

10



matrix product operator, i.e. element-wise multiplication. The symbol : denotes a
vector of ones and S denotes the unconditional covariance matrix of the standardized
residuals. Finally, Z, =[z,,] is the standardized but correlated residual vector, and its
conditional correlation matrix is given by variable R,. If A and B are zeros, then the
DCC model can revert to the structure of CCC. Related literature shows that if 4, B,

and (zz'- A— B) are positive semi-definite, then O, will also be positive semi-definite.
If any one of the matrices is positive definite, then O, will also be so. For the j;”
element of R, the conditional correlation matrix is given by g,/ ,/qii’tqw . In our study;,

we focus on the comparison of forecasting covariances for two assets and equation

(2.10) has the following structure in a bivariate case,

{‘Im %2,;} —(-a- b)[_l 612} A3 212,171 21,17;22,171 N b|:qll,zl %2,;1} (2.11)
912, 92, G L 21442241 Z341 1201 92241
where a and b are parameters. In-most cases, they can substitute for complicated

matrices 4 and B. ¢, is the<unconditional covariance of the two standardized

residuals.

The DCC model is constructed to permit for two-stage estimation of the

conditional covariance matrix H,. Briefly speaking, during the first step, a univariate
volatility model is fitted for each of the assets and the estimates of 4, are obtained. In

the second step, the asset returns transformed by their estimated standard deviations are
used to estimate the parameters of the conditional correlation.
The log-likelihood of this estimator is straightforward. One simply maximizes the

log-likelihood:
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L= —%Z(klog(Z;r) +log|H, |+ rt'H;lr[)

t

= —% Z(k log(27) +log|D,R,D,| +r,'D;*R;* D, r, ) (2.12)
= —% Z(k log(27) + 2log|D, |+ log|R |+ Z,'R " Z, ) :

Following Engle (2002a)’s argument, one can perform the estimation by means of
qusi-maximum likelihood estimation (QMLE) to yield consistent parameter estimates.
The advantages of QMLE are its simplicity and consistency. However, its
disadvantages are that the estimates are inefficient, even asymptotically, and more
importantly, its small-sample properties are suspect. (also see Hafner and Franses (2003)
for a review.) Let the parameters in D, be denoted by &, and the additional parameters
in R, be denoted by 6, . According to,Engler(2002a), one can divide the log-likelihood
function into two parts:

L6,,6,)=1L,,6)+L.,, 6,,65). (2.13)

The former term in the right hand side of equation(2.13) represents the volatility part:

L, 6)= —%z(k log(27) +log|D,|* +r,' D;?r; ) (2.14)

t

and the latter term can be viewed as the correlation component:

L, (6,.6,)= —% S (loglR |+ 2, 'R*Z, - 2,'2,). (2.15)

t

Following the recipe for the first stage, we can pick up a suitable &, easily, which

satisfies equation (2.14) and is maximized after the estimate of él is computed.
Subsequently, in the second stage, the correlation part in equation (2.15) can be

maximized with respect to the optimized ¢, and &, simultaneously. Consequently,

the formidable task of maximizing equation (2.13) is attainable. Estimates for 671 and

12



éz are useful in subsequent analysis.

It is interesting and important to recognize that although the dynamics of the D,
matrix has usually been structured as a standard GARCH model, it can be easily
extended to many other types of models. For instance, one could adopt the EGARCH or
GJR-GARCH model to replace the simple GARCH model for describing the
asymmetric phenomenon in the actual volatility process or use the FIGARCH model to
allow for the long memory volatility processes. In this paper, the CARR model of Chou
(2005) will be used as an alternative to verify if the specification selected adequately fit
the DCC model.

When the specific GARCH model is fitted, the term of volatility in the likelihood

function can be demonstrated as below:

LI () = —%Zi(log(bf) +log(h. ) +2—J (2.16)

t 0=l i1
By the same token, if D, is determined by arCARR specification, then the likelihood

function of the volatility term will be'modified as:

L% (9) = —%Zi[Iog(27z)+2log(i’;’,)+%j, (2.17)

t =1 it
where ;, denotes the conditional standard deviation as computed from a scaled
expected range, using the CARR model.
The second part of the likelihood function will be used to estimate the parameters
for correlations. As the squared residuals are not dependent on these parameters, they

will not appear in the first-order conditions and can be neglected. A simple

transformation of the two-stage framework to maximize the likelihood function is

achieved. Apparently, 6, =arg max{L,,,(6,)} and then we extract this value 6, as

13



given, into the second step, mgax{LCorr(él,Hz)}. It is shown in Engle and Sheppard

(2001) that under some regularity conditions, the condition for consistency will be
satisfied. Maximization of equation (2.15) will be a function of the parameter estimates
from equation (2.14). These conditions are similar to those given in White (1994),

where the asymptotic normality and the consistency of the two-step QMLE estimator

are established.
The following GARCH and CARR structures can be performed in the first step of

the DCC estimation. As to the GARCH volatility structure, the function form can be

illustrated as below:
81[ |It—1 - N(Ovhi,t)v i:1’2'
(2.18)

i, =€,

_ 2
hi,t - C()l- + aigi,t—l + /Bihi,t—l’

GARCH __ [
Zi,t - rzt/ hi,t '

In addition to the originakGARCH model embedded in DCC, one can replace it

with the CARR framework. CARRis powerful in capturing the volatility process. It is

intuitive to put CARR into the first stage, which is particularly convenient for complex

Q|

S

*

dynamic systems in operation. It means the new standardized residuals can be obtained

.., Where A, =adj,x2,, and adj, ==

from the CARR model, thatis z;"* =7, /4

The rescaled expected range /1; is used to replace the conditional standard deviation.

It is computed by a product of 4,, and the adjusted coefficient adj, which is the ratio

of unconditional standard deviations &, for the return series to the sample mean A

of the estimated conditional range.
In performing a comparison of the in-sample data during subsequent empirical

analysis of the covariance matrices, several related and conventional models are
14



included - MA100, EWMA?® with 1 =0.94, CCC, and DBEKK models.
For robustness of inference, we also perform out-of-sample forecast comparisons.
The out-of-sample forecast of the DCC model for correlations can be obtained using the
standard forward iterative approach; given T as the sample size, the 7+ observation
will be obtained.
At time T, the out-of-sample forecast for conditional correlation in the period

(T+1) is presented by:

{qnm ‘hz,nﬂ —(-a- b){_l q_12:| 4 6{ 212,T Zl,Tzzz,T } + b{‘hl,r ‘hz,r}  (2.19)

9211 4922741 g, 1 ZirZor Zyr Qo7 Y9oor
The estimated correlation at time 7+/ can be calculated as

Pri = Qo7 \Guradmra - The out-of-sample prediction for correlation for the

period (T+p), where p > 2, can be expressed.as shown below:

{q qﬂ*””}:(l—a—b)[_l qf}(aw){"“’”pl q} (2.20)

Qarip  Y22714p dv Qorip1 Y9227+p
In addition to range-based andreturn-based DCC, MA100, EWMA, CCC and
DBEKK are introduced for an out-of-sample predictive comparison . For
distinguishing the forecasting abilities of these models, as in Taylor (2004), we still use
root mean square error (RMSE) and mean absolute error (MAE) as two criterions for

comparison.

2.4 Comparison of Various Methods for Conditional Covariance Forecasts
The data employed for our empirical study comprise 782 weekly observations on the

S&P 500 stock index (S&P 500) futures, and the 10-year treasury bond (Thond) futures

° The estimate of A is 0.94 approximately for the returns that we adopted in this study.
101t is also intuitively clear that the out-of-sample forecasts for the covariance are all constant in the
EWMA model.
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spanning the period from January 6, 1992 to December 29, 2006 (15 years). We retrieve
range and return data for the entire period from Datastream.
< Figure 2.1 is inserted about here >
Figure 2.1 shows the graphs for close prices (Panel A), returns (Panel B) and
ranges (Panel C) of S&P 500 and Thond futures over the sample period. The descriptive
statistics for the returns and ranges of the series are given in Table 2.1. For the weekly
returns and ranges of the S&P 500 and Thond futures, they are computed by

100x log(p/™" | p**) and 100xlog(p:*/ p<+*), respectively. Table 2.1 shows that the

: : i1
means of two futures returns are positive. Both the standard deviations and the means
of the ranges indicate that S&P 500 is more volatile than Thond. For higher moments of
the return data, each of them has negative skewness and excess kurtosis. As to the range
data, they also have excess kurtasis values, but positive skewness coefficients. These
largely contribute to the rejection for the nult-hypothesis of a normal distribution with
the Jarque-Bera statistic.

< Table 2.1'isinserted about here >

2.4.1 Measured Covariances
Like the specific property of volatilities, the covariance matrices are also unobservable.
In this work, we use daily data to construct the proxies for the weekly covariances. The
purpose behind doing this is to extract the values of the measured covariances
(MCOVs), as one kind of benchmark for determining the relative performance of
return-based DCC and range-based DCC, for the time being.
Daily data are used to build four proxies for covariances, including implied
return-based DCC, implied range-based DCC, implied DBEKK, and realized

covariances. Initially, the sample period for daily data from 1/6/1992 to 12/29/2006 is
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extracted. In total, we collect 3779 daily data for model fitting with return-based DCC,
range-based DCC and DBEKK, respectively. Meanwhile, the implied daily
covariances are calculated in this stage. Sequentially, it is easy to get the implied

weekly estimates for covariance series, followed by the computation below:

MCOVtimplied — Zcov,ti ’ (221)
J

where cov/ denotes implied daily covariance on the ;™ trading day during the

corresponding week z. Ferland and Lalancette (2006) also use this idea to build the
weekly covariance and correlation.

As to the realized volatility, its concept has been used productively by French,
Schwert, and Stambaugh (1987) and Andersen et al. (2001). The realized covariance

can be expressed as:

MCO Vvtrealized — Z (rjl_[] % ’,.2/[) ’ (222)
J

where r/ denotes return for the asset.i on the;* trading day during the corresponding

week z.
< Figure 2.2 is inserted about here >
Checking Figure 2.2, we depict the different covariance patterns between S&P 500
and Tbond series for return-based DCC, range-based DCC, DBEKK and the realized
pattern, respectively. Some useful insights can be obtained from these figures. It seems
to reflect strong interactions around these MCOVs. Furthermore, the realized
covariances are more volatile than other implied ones. This shows that the realized

pattern is not easy to be fitted. The empirical result also demonstrates this conjecture.

2.4.2 In-sample Forecast Comparison

17



In this section, we present the empirical results for the in-sample forecast comparison
of covariances. Mainly, we exhibit the in-sample forecasting ability of return-based
DCC, ranged-based DCC and some related models for the purpose of performance
comparison. As for the parameters fitted for DCC, we estimate and arrange them in
Table 2.2. Due to the procedure for parameters estimated under the DCC setting, we
have to cope with two inherent stages. In the first stage, one can utilize GARCH fitted
by returns, or CARR fitted by ranges, with individual assets, for obtaining standardized
residuals. Afterwards, we bring these standardized residuals series into the second stage
for dynamic conditional correlation estimating.
< Table 2.2 is inserted about here >

Table 2.3 illustrates some brief results of covariances estimated for in-sample
prediction, based on different econometrical models that we have mentioned previously.
We draw clear inference from Table 2.3 to the effect that they all appeared to be more
accurate in range-based DCC than inithe-other-five models, regardless of what criterion
is adopted. This appears to be consistent.not.enly'in RMSE but also in MAE. The worst
performance in predicting the covariance under the in-sample analysis is the MA100.

< Table 2.3 is inserted about here >

Generally speaking, there are no significant differences in covariance forecasting
performance between return-based DCC and DBEKK under the in-sample context. In
addition, predicting results of CCC perform even worse than EWMA. One reasonable
conjecture is that the simple correlation between S&P 500 and Thond is just an average
and rough value. In contrast to the dynamic correlation process generated by other
models, the correlations are very volatile in this sample period. For example, see Figure
2.3 for an illustration. Looking at the forecasted covariances (FCOVs) generated by

return-based DCC and CCC, the only difference between them is the estimated
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correlation process. However, we can find that their covariance process have salient
difference. Accordingly, it seems inappropriate to assume that the correlation parameter
between different assets is constant over time.

< Figure 2.3 is inserted about here >

2.4.3 Out-of-sample Forecast Comparison
For completeness, we assess the out-of-sample forecasting performance for different
models by using RMSE and MAE, discussed in the previous in-sample comparison.
Given that the data set contains a total of 782 usable observations, it is possible to use a
holdback period of observations. This way, there are 521 observations (10 years) in
each estimated model and 258 out-of-sample forecasting values for comparison. Here,
the rolling sample approach for out-of-sample measurement is adopted and the first
forecasted value for one period ahead forecast respectively occurs on the week of
January 4, 2002. Table 2.4 reports one;-twos-and four periods ahead of out-of-sample
forecasting results for covariance.
< Table 2.4 is inserted about here >

We obtain a consistent inference for covariance prediction’s performance based on
different competitive models. All of the inferences demonstrate an overwhelming
phenomenon, namely, that the range-based DCC approach dominates other methods in
accuracy from out-of-sample forecasting. Various forecasting results for covariance
with different periods ahead are presented in Table 2.4. Except for MA100 in the
forecasting models, the results in Table 2.4 appear to show a trend that the forecasting
errors are proportionate to the forecasted periods. One period ahead out-of-sample
forecasting covariances of all compared models are given in Figure 2.4.

< Figure 2.4 is inserted about here >
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Exploring other characteristics of out-of-sample forecasting, CCC, among these
competitive models is the worst one, even inferior than MA100. One possible
explanation for this is that the relationship between S&P 500 and Tbond in the
post-sample has structural change. Unlike previous results in the in-sample comparison,
however, return-based DCC performs significantly better than DBEKK. With the
exception of range-based DCC, it is surprising that EWMA, holding constant
post-sample covariance, even has outstanding performance compared to those of the
other models.

Moreover, we can take another look at the out-of-sample forecast comparison.
Table 2.5 shows the simple correlations between MCOVs and FCOVs for one, two, and
four periods ahead covariance forecasts. The results show a clear and strong
relationship between the FCOV: built by range-based DCC and MCOVs. The
correlation coefficients in the GCC.case are negative and all are lower than -0.4. It is
clear that the assumption of the constant-correlation may cause the serious influence. In
general, the correlations show a declining.trend along with forecasting horizons.

< Table 2.5 is inserted about here >

In view of in-sample and out-of-sample empirical results, we can not clearly put

all forecasting models in a proper order. However, it is undoubted that the range-based

DCC model possesses the optimal forecasting power in covariance.

2.5 Conclusion

In this paper, we propose a new estimator of the time-varying covariance matrices,
utilizing the range data that combines the CARR model with the framework of the DCC
model. The advantage of this range-based DCC model, in terms of its forecasting

ability to outperform the standard return-based DCC model, hinges on the relative
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efficiency of the range data over the return data in estimating volatilities. Using weekly
futures data of S&P 500 and Tbond, we find a consistent result that the range-based
DCC model outperforms the return-based models in estimating and forecasting
covariance matrices for both in-sample and out-of-sample analysis.

In addition to using conventional realized covariance for the purpose of
comparison, we introduce the viewpoint of implied covariance, which is derived from
return-based DCC, range-based DCC and DBEKK for benchmarking robustness.
Nonetheless, no matter what realized covariance or implied covariances are adopted for
comparison, we obtain a consistent conclusion that the range-based DCC approach is
the best one for predicting covariance process.

Although we only applied this estimator to the bivariate systems, it can also be
applied to larger systems in a manner which is similar to the application of the DCC
model structures, having already been demonstrated-in Engle and Sheppard (2001). It
will be surely useful to utilize more diagnesti¢-statistics or to test based on value-at-risk
calculations as proposed by Engle and.Manganelli (2004) in future research. Other
applications such as estimating the optimal portfolio weighting matrices and calculating

the dynamic hedge ratio in the futures market will also bear fruit.
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Table 2.1: Summary Statistics for the Weekly Returns and Ranges, 1992-2006.

This table reports the summary statistics for the weekly return and range data on S&P
500 and Tbond futures in our empirical study. There are 782 weekly sample
observations ranging from January 6, 1992 to Dec 29, 2006. All data are extracted from
Datastream. The returns and ranges are computed by 100xlog(p<™/p+) and
100x log(p"*" I p"), respectively. Jarque-Bera is the statistic for normality. All of them
reject the null hypothesis of a normal distribution.

S&P 500 Thond
Return Range Return Range
Mean 0.158 3.134 0.016 1.306
Median 0.224 2.607 0.033 1.194
Maximum 8.124 13.556 2.462 4,552
Minimum -12.395 0.690 -4.050 0.301
Std. Dev. 2.112 1.809 0.855 0.560
Skewness -0.503 1.756 -0.498 1.390
Kurtosis 6.455 7.232 4,217 6.462
Jarque-Bera 421.317 985.454 80.441 642.367
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Table 2.2: Estimation of Bivariate Return-based and Range-based DCC Model
Using Weekly S&P 500 and Tbond Futures, 1992-2006.

Step 1 of DCC estimation:

hi,t = a)i +aigi2,t—1 +ﬂihi,t—1’ 8i,t |It—1 - N(O’hi,t)

A=, +aR,  + B A, 4, R, |1 ~exply), i=12
Step 2 of DCC estimation:

{CIM,; %2,1}: (l—a—b) |: _1 (?12} _H{ le,t—l Zl,t—;ZZ,t—l}_i_ b|:q11,t—1 qu,t—1:|.

Qo1 Y9, G, 1 Zy %101 Zy41 D11 92201
This table provides the estimation for the bivariate return-based and range-based DCC
model using weekly S&P 500 and Thond futures. The three formulas above two steps
estimation are GARCH, CARR and the conditional correlation equation respectively of
the standard DCC model with mean reversion. In the first stage, we use the GARCH
and CARR model to estimate their volatilities (};t and it) for each assets and
computes their standardized residuals (Z,). Then, in the second stage, the conditional
correlation process can be obtained by using their standardized residuals and
4, = E(z,,2,,). The conditional correlation matrix is given by g¢,,,/./q.,,9,, - The
conditional covariance can then beyexpressed using the product of conditional
correlation between these two wariables, and their individual conditional standard

deviations. The table shows estimationsof the three models using the MLE method.
Numbers in parentheses are t-values.

Panel A : Step 1 of DCC estimation

S&P 500 Thond
GARCH CARR GARCH CARR
@ 0.018 0.103 0.027 0.075
(1.170) (2.923) (1.533) (2.809)
a 0.048 0.248 0.059 0.157
(3.744) (9.090) (2.046) (5.208)
B 0.949 0.719 0.903 0.785
(76.443) (23.167) (18.994) (18.041)
Panel B: Step 2 of DCC estimation
S&P 500 Versus Thond
Return-based DCC Range-based DCC
a 0.034 0.041
(4.323) (4.624)
b 0.960 0.954
(96.873) (86.943)
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Table 2.3: In-sample Forecast Errors for Covariances between the S&P 500 and
Tbond Futures, 1992-2006.

T 2 T
RMSE = \/%Z(FCOV, —-Mcov,) , MAE =%Z|FCOV, - McCoV, |,

t=1 t=1
This table reports the in-sample forecast errors for covariances between S&P 500 and
Thond Futures. RMSE and MAE are the error functions. MCOV represents the
covariance proxy derived from the base model. FCOV is the forecast covariance for the
forecasting model and is used to fit each MCOV. Daily data are used to compute the
weekly implied MCOVs (Return DCC. Range DCC, and DBEKK), and the realized
MCOV (Realized). MA100, EWMA, return-based DCC, range-based DCC, CCC and
DBEKK, are estimated from the weekly data to build FCOVs.

Forecast Errors Forecasting Model

Return Range
DCC DCC CCC DBEKK

RMSE  RetunDCC  0.741 0420 0.392 029  0.693 0.395
Range DCC 0.861  0.467 0469  0.344  0.807 0.475

DBEKK 0.780 0490 0469 0377 0.732 0.457

Realized 1.515 1.302 1.301 1.261 1.426 1.300

MAE  ReturnDCC  0.543  0:305:1:.0.274 0.219  0.502 0.261
Range DCC 0.638.% 0324 .0316 0.240  0.588 0.302

DBEKK 0.566 10.350 - 10.322 0.270  0.529 0.298

Realized 0.897 ~0.789 0.764:. 0.753  0.842 0.765

Base Model MA100 EWMA
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Table 2.4: One, Two, and Four Periods Ahead Out-of-sample Forecast Errors for
Covariances between the S&P 500 and Tbond Futures, 1992-2006.

1 T+n

RMSE = J— Y (Fcov,-Mcov,)

ni-rn

2

mag =1 Y | FCov, - MCOV, |

n t=T+1

This table reports the one, two and four periods ahead out-of-sample forecast errors for
covariances between S&P 500 and Tbond futures. RMSE and MAE are the error
functions. MCOV represents the covariance proxy derived from the base model. FCOV
Is the forecast covariance for the forecasting model and is used to fit each MCOV. Daily
data are used to compute the weekly implied MCOVs (Return DCC. Range DCC, and
DBEKK), and the realized MCOV (Realized). MA100, EWMA, Return DCC, Range
DCC, CCC and DBEKK, are estimated from the weekly data to build FCOVs. There
are 521 observations (10 years) in each of the estimated models. Additionally, the
rolling sample method provides 258 forecasting values (n in the criteria above) for
every out-of-sample comparison. The first forecasted values for one, two, and four
periods ahead forecasts respectively occur the week of January 4, 11, and 25 in 2002.

Panel A: One period ahead forecast errors

Forecasting Model

Return

Range

Base Model MA100 EWMA DCC DCC CcCC DBEKK
RMSE  Return DCC 0.823 0.439 0.439 0.283 0.883 0.596
Range DCC 0.935 0:469 0:495 0.301 0.994 0.684
DBEKK 0.875 0.519 0.528 0.354 0.935 0.655
Realized 1.508 1.254 1.285 1.183 1.556 1.366
MAE Return DCC 0.495 0.331 0.320 0.219 0.557 0.344
Range DCC 0.562 0.323 0.322 0.223 0.622 0.395
DBEKK 0.523 0.389 0.384 0.279 0.596 0.385
Realized 0.877 0.807 0.800 0.756 0.923 0.805
Panel B: Two periods ahead forecast errors
RMSE  Return DCC 0.823 0.454 0.456 0.312 0.885 0.638
Range DCC 0.935 0.481 0.511 0.344 0.996 0.729
DBEKK 0.875 0.537 0.548 0.387 0.938 0.701
Realized 1.507 1.263 1.294 1.214 1.557 1.403
MAE Return DCC 0.495 0.342 0.336 0.237 0.558 0.366
Range DCC 0.561 0.336 0.336 0.242 0.622 0.415
DBEKK 0.523 0.403 0.403 0.302 0.598 0.408
Realized 0.875 0.816 0.813 0.771 0.921 0.843
Panel C: Four periods ahead forecast errors
RMSE  Return DCC 0.823 0.482 0.487 0.380 0.889 0.656
Range DCC 0.935 0.514 0.546 0.432 0.999 0.748
DBEKK 0.875 0.567 0.581 0.461 0.942 0.725
Realized 1.506 1.281 1.312 1.252 1.558 1.411
MAE Return DCC 0.494 0.359 0.357 0.285 0.560 0.392
Range DCC 0.559 0.360 0.357 0.291 0.623 0.434
DBEKK 0.523 0.425 0.428 0.351 0.601 0.441
Realized 0.872 0.826 0.822 0.792 0.916 0.846

In the first column, MA100 has minor changes in comparing one, two, and four

errors.
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Table 2.5: Simple Correlations between MCOVs and FCOVs for One, Two, and
Four Periods Ahead Out-of-sample Covariance Forecasts, 1992-2006.

This table reports the simple correlations between MCOVs and FCOVs for one, two
and four periods ahead out-of-sample covariance forecasts. MCOV represents the
covariance proxy derived from the base model. FCOV is the forecast covariance for the
forecasting model. Daily data are used to compute the weekly implied MCOVs (Return
DCC. Range DCC, and DBEKK), and the realized MCOV (Realized). MA100, EWMA,
Return DCC, Range DCC, CCC and DBEKK, are estimated from the weekly data to
build FCOVs. There are 521 observations (10 years) in each of the estimated models.
Additionally, the rolling sample method provides 258 forecasting values for every
out-of-sample comparison. The first forecasted values for one, two, and four periods
ahead forecasts respectively occur the week of January 4, 11, and 25 in 2002.

Panel A: Correlations for one period ahead forecast

FCOVs
Return Range
MA100 EWMA DCC DCC CcCC DBEKK

ReturnDCC  0.646 0.836 0.815 0.941 -0.543 0.579

Range DCC 0.660 0.833 0.815 0.940 -0.537 0.578
DBEKK 0.600 0.803 0.778 0.922 -0.514 0.568
Realized 0.340 0.471 0.428 0.557 -0.408 0.310

Panel B: Correlations for two periods ahead:forecast

ReturnDCC  0.635 0.821 0.794 0.922 -0.571 0.504

Range DCC 0.651 0.822 0.799 0.916 -0.563 0.502
DBEKK 0.588 0.783 0.751 0.898 -0.545 0.485
Realized 0.334 0.458 0.411 0.520 -0.430 0.236

Panel C: Correlations for four periods ahead-forecast

ReturnDCC  0.616 0.793 0.754 0.867 -0.624 0.469

Range DCC 0.631 0.791 0.757 0.855 -0.612 0.474
DBEKK 0.567 0.749 0.703 0.836 -0.604 0.436
Realized 0.321 0.433 0.380 0.470 -0.455 0.220

MCOVs

MCOVs

MCOVs
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Panel A: Close Prices

S&P 500 Thond
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Figure 2.1: S&P 500 and Tbond Futures Weekly Closing Prices, Returns and
Ranges, 1992-2006. This figure shows the weekly close prices, returns, and ranges of

S&P 500 and Thond Futures over the sample period.
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Implied return DCC

Implied DBEKK

Figure 2.2: Four Measured Covariances_between S&P 500 and Thond Futures,
1992-2006. This figure plots the“four ‘measured weekly covariances between S&P 500
and Thond futures. The measured weekly covariances are built from the daily data and
are used to be the weekly covariance proxies in our empirical comparison. For getting
the implied and realized weekly covariance series, we sum their daily covariances on

2104
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the trading days of the corresponding week.
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Figure 2.3: In-sample Forecasting Covariances between S&P 500 and Tbond
Futures for Six Models, 1992-2006. This figure provides the fitted covariances
between S&P 500 and Thond futures for six different models. We lost some former
values in MAL100. This is because the first estimated value must be derived by the
former 100 observation. The covariances of CCC are all negative and quite smaller than
ones of DCC. The reasonable explanation is its negative and small constant correlation
(-0.0229).
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Figure 2.4: One Period Ahead Out-of-sample Forecasting Covariances between
S&P 500 and Tbond Futures for Six Models, 1992-2006. This figure shows one
period ahead out-of-sample forecasting result of six different models. The rolling
sample approach is adopted for each model with 521 observations (10 years). The first
forecasted value for one period ahead forecast respectively occurs the week of January
4, 2002. In all, we have 258 out-of-sample forecasting covariances.
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Chapter 3. The Economic Value of Volatility Timing Using a
Range-based Volatility Model

3.1 Introduction

In recent years, there has been considerable interest in volatility. The extensive
development of volatility modeling has been motivated by the related applications in
risk management, portfolio allocation, assets pricing, and futures hedging. In
discussions of econometric methodologies in estimating the volatility of individual
assets, ARCH [see Engle (1982)] and GARCH [see Bollerslev (1986 )]have been
emphasized most. Various applications in finance and economics are provided as a
review in Bollerslev, Chou, and Kroner (1992), Bollerslev, Engle, and Nelson (1994),
and Engle (2004).

Several studies, having noted that the range data based on the difference of high
and low prices in a fixed interval, can-offer a sharper estimate of volatility than the
return data. A number of studies have investigated this issue started with Parkinson’s
(1980) research, and more recently, Brandt and Jones (2006), Chou (2005, 2006), and
Martens and van Dijk (2007). Especially, Chou (2005) proposes a conditional
autoregressive range (CARR) model which can easily capture the dynamic volatility
structure and has obtained some insightful empirical evidences.

However, the literature above just focuses on volatility forecast of a univariate
asset. It should be noted that there have been some attempts to establish a relationship
between multiple assets, such as VECH [see Bollerslev, Engle, and Wooldridge (1988)],
BEKK [see Engle and Kroner (1995)], and a constant conditional correlation model

(CCC) [see Bollerslev (1990)], among others. VECH and BEKK allowing time-varying

1 See also Garman and Klass (1980), Wiggins (1991), Rogers and Satchell (1991), Kunitomo (1992),
Yang and Zhang (2000), and Alizadeh, Brandt, and Diebold (2002).

31



covariance process are too flexible to estimate, and CCC with a constant correlation is
too restrictive to apply on general applications. Seminal work on solving the puzzle is
carried out by Engle (2002a). A dynamic conditional correlation'?> (DCC) model
proposed by Engle (2002a) provides another viewpoint to this problem. The estimation
of DCC can be divided into two stages. The first step is to estimate univariate GARCH,
and the second is to utilize the transformed standardized residuals to estimate
time-varying correlations [see Engle and Sheppard (2001), Cappiello, Engle, and
Sheppard (2006)].

A new multivariate volatility, recently proposed by Chou, Wu, and Liu (2007),
combines the range data of asset prices with the framework of DCC, namely
range-based DCC™. They conclude that the range-based DCC model performs better
than other return-based models .(MA100, EWMA, CCC, return-based DCC, and
diagonal BEKK) through the statistical measures, RMSE and MAE based on four
benchmarks of implied and realized covariance™*.

Because the empirical results in many.studies show that the forecast models only
can explain little part of variations in time-varying volatilities, some studies are
concentrated on whether volatility timing has economic value [see Busse (1999),
Fleming, Kirby, and Osdiek (2001, 2003), Marquering and Verbeek (2004), Thorp and
Milunovich (2007)]. The question we focus on is whether the economic value of
volatility timing for range-based volatility model still exists and to test whether
investors are willing to switch from a return-based DCC to a range-based DCC model.

For comparing the economic value of the return-based and range-based models, it

is helpful to use a suitable measure to capture the trade-off between risk and return.

12 See Tsay (2002) and Tse and Tsui (2002) for other related methods for estimating the time-varying
correlations.

13 See also footnote 6.

4 Daily data are used to build four proxies for weekly covariances, i.e. implied return-based DCC,
implied range-based DCC, implied DBEKK, and realized covariances.
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Most literatures evaluate volatility models through error statistics and related
applications, but neglect the influence of asset expected returns. A more precise
measurement should consider both of them, but only few studies have so far been made
at this point. However, a utility function can easily connect them and build a
comparable standard. Before entering into a detailed discussion for the economic value
of volatility timing, it is necessary to clarify its definition in this paper. In short, the
economic value of volatility timing is the gain compared with a static strategy. For an
investor with a mean variance utility, our concern is to estimate his will to pay for a
new volatility model rather than a static one.

In light of the success of the range-based volatility model, the purpose of this
paper is to examine its economic value of volatility timing by using conditional
mean-variance framework developed by Fleming, Kirby, and Ostdiek (2001). We
consider an investor with different.risk-averse-levels uses conditional volatility analysis
to allocate three assets: stock,-bond; and-cash. Fleming, Kirby, and Ostdiek (2001)
extend West, Edison, and Cho (1993).utility criterion to test the economic value of
volatility timing for the short-horizon investors with different risk tolerance levels®. In
addition to the short-horizon forecast of selected models, we also examine the
economic value for longer horizon forecasts and an asymmetric range-based volatility
model in our empirical study. This study may lead to a better understanding of range
volatility.

The reminder is laid out as follows. Section 3.2 introduces the asset allocation
methodology and economic value measurement. Section 3.3 describes the properties of
data used and evaluates the performance of the different strategies. Finally, the

conclusion is showed in section 3.4.

> They find that volatility-timing strategy based on one-step ahead estimates of the conditional
covariance matrix [see Foster and Nelson (1996)] significantly outperformed the unconditional efficient
static portfolios.
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3.2. Methodologies

The method to carry out this study is to use a framework of a minimum variance
strategy, which is conductive to determine the accuracy of the time-varying covariances.
For a risk-averse investor, we want to find the optimal dynamic weights of the selected
assets and the implied economic value compared with a static strategy. Before applying
the volatility timing strategies, we need to build a time-varying covariance matrix. The

Details of the methodology are as the following.

3.2.1 Optimal Portfolio Weights in a Minimum Variance Framework
Initially, we consider a minimization problem for the portfolio variance subjected to a

target return constraint. To derive.our strategy, we let R, isthe kx1 vector of spot
returns at time ¢'°. Its conditional expected return p, and conditional covariance
matrix X, are calculated by E[R {€"] and E[R,-p)R,-pn,) Q]
respectively. Here €, is assumed as the information set at time ¢z. To minimize
portfolio volatility subject to a required target return 4., it can be formulated as

H !
min w, X w,,

st W +(1=w )R, = 1,0, (3.1)
where w, isa kx1 vector of portfolio weights for time z. R, is the return for the

risk-free asset. The optimal solution to the quadratic form (3.1) is:

—— (lutarget _Rf)zz_l(ut _Rfl)

t o1 . 3.2
(p't _Rfl) Zl (llz _Rf 1) ( )

A bivariate case (k = 2) can be expressed as:

' Through out this paper, we use blackened letters to denote vectors or matrices.
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Where .00 = iage — Ry 4, =14, —R,, and f,, =p, —R, are the excess target

I
returns and the excess spot returns of S&P 500 index (S&P 500) and 10-year Treasury
bond (T-bond) in our empirical study. Under the cost of carry model, we can regard the

excess returns as the futures returns by applying regular no-arbitrage arguments®’. It is

clear that the covariance matrix X, of the spot returns is the same as that of the excess

returns.
The above analysis points that the optimal portfolio weights are time-varying.

Here we assume the conditional mean p _is. constant'®. Therefore, the dynamics of
weights only depend on the conditional covariance X, . In this study, the optimal

strategy is obtained based on a minimum variance framework subject to a given return.
We use return-based and range-based DCC 'models to estimate the covariance matrix of

multiple asset returns.

3.2.2 Economic Value of Volatility Timing

Fleming, Kirby, and Ostdiek (2001) use a generalization of the West, Edison, and Cho
(1993) criterion which builds the relation between a mean-variance framework and a
quadratic utility to capture the trade-off between risk and return for ranking the
performance of forecasting models. According to their work, the investor’s utility can

be defined as:

' There is no cost for futures investment. It means the futures return equals the spot return minus the
risk-free rate.

® The changes in expected returns are not easy to be detected. Merton (1980) points out that the
volatility process is more predictable than return series.
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W2
R (3.4)

UM, )=W.R, ~—=Ry,,

where W, is the investor’s wealth at time ¢, « is his absolute risk aversion, and the

portfolio return at period ris R,, = wR,.

For comparisons across portfolios, we assume that the investor has a constant
relative risk aversion (CRRA), y, =aW,/1-aW,)=y . This implies oW, is a
constant. With this assumption, the average realized utility U () can be used in

estimating the expected utility with a given initial wealth 7.

TN o _ /4 2
U(')_W°,Z=1:[R"" 2(1+}/)RM}, (3.5)

where W, is the initial wealth.

Therefore, the value of volatility timing by equating the average utilities for two

alternative portfolios is expressed as:

R > i vl

where A is the maximum expense that an investor would be willing to pay to switch

WM’\}
ML

from the strategy « to the strategy ». R,, and R,, here are the returns of the

bt
portfolios from the strategy a and 5'°. If the expense A is a positive value, it means
the strategy b is more valuable than the strategy a. In our empirical study, we report A

as an annualized expense with three risk aversion levels of » =1, 5, and 10.

3.3. Empirical Results

The empirical data employed in this paper consist of the stock index futures, bond

% In our setting, we let the strategy pair (a,5) be (OLS, return-based DCC), (OLS, range-based DCC),
and (return-based DCC, range-based DCC), respectively. Because the rolling sample method is adopted
in the out-of-sample comparison, this type of OLS is named by rollover OLS.
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futures and the risk-free rate. As to the above-mentioned method, we apply the futures
data to examine the economic value of volatility timing for return-based and
range-based DCC. Under the cost of carry model, the result in this case can be extended
to underlying spot assets [see Fleming, Kirby, and Ostdiek (2001)]. In addition to
avoiding the short sale constraints, this procedure will reduce the complexity of model
setting. To address this issue, we use the S&P 500 futures (traded at CME), and the
T-bond futures (traded at CBOT) as the empirical samples. According to Chou et al.
(2007), the futures data are taken from Datastream, sampling from January 6, 1992 to
December 29, 2006 (15 years, 782 weekly observations). Datastream provides the
nearest contract and rolls over to the second nearby contract when the nearby contract
approaches maturity. We also use the 3-month Treasury bill rate to substitute for the
risk-free rate. The Treasury bill rate is-available in‘the Federal Reserve Board.
< Figure, 3.1 is inserted about here >

Figure 3.1 shows the graphs for‘close-prices (Panel A), returns (Panel B) and
ranges (Panel C) of the S&P 500 and T-bond-futures over the sample period. Table 3.1
shows summary statistics for the return and range data on the S&P 500 and T-bond
futures. The return is computed as the difference of logarithm close prices on two
continuous weeks. The range is defined by the difference of the high and low prices in a
logarithm type. The annualized mean and standard deviation in percentage, (8.210,
15.232) of the stock futures returns are both larger than those (0.853, 6.168) of the bond
futures returns. The fact indicates that the more volatile market may have higher risk
premium. Both futures returns have negative skewness and excess kurtosis, indicating
violation of the normal distribution. The range mean (3.134) of the stock futures prices
is larger than that (1.306) of the bond futures prices. It is reasonable because the range

is a proxy of volatility. The Jarque-Bera statistic is used to test the null of whether the
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return and range data are normally distributed. Undoubtedly, both of return and range
data reject the null hypothesis. The simple correlation between stock and bond returns

is small®

(-0.023), but it does not imply that their relation is very weak. In our latter
analysis, we show that the dynamic relationship of stock and bond will be more
realistically revealed by the conditional correlations analysis.

< Table 3.1 is inserted about here >

3.3.1 In-sample Comparison
For obtaining an optimal portfolio, we use the dynamic volatility models to estimate the
covariance matrices. As for the parameters fitted for return-based and range-based DCC,
they are both estimated and arranged in Table 3.2. We divide the table into two parts
corresponding to the two steps in the DCC estimation. In Panel A of Table 3.2, one can
use GARCH (fitted by return)-or.CARR (fitted. by range) with individual assets to
obtain the standardized residuals. Figure-3:2-provides the volatility estimated of the
S&P 500 futures and the T-bond futures. based on GARCH and CARR. Then, these
standardized residuals series can be brought into the second stage for dynamic
conditional correlation estimating. Panel B of Table 3.2 shows the estimated parameters
of DCC under the quasi-maximum likelihood estimation (QMLE).

< Table 3.2 is inserted about here >

< Figure 3.2 is inserted about here >

The correlation and covariance estimates for return-based and range-based DCC

are shown in Figure 3.3. It seems that the correlation becomes more negative at the end
of 1997. A deeper investigation is given in Connolly , Stivers, and Sun. (2005).

< Figure 3.3 is inserted about here >

% The result is different from the positive correlation value (sample period 1983-1997) in Fleming,
Kirby, and Ostdiek (2001). About after 1997, the relationship between S&P 500 and T-bond presents a
reverse condition.
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Following the model estimation, we construct the static portfolio (built by OLS)
using the unconditional mean and covariance matrices for getting the economic value
of dynamic models. Under the minimum variance framework, the weights of the
portfolio are computed by the given expected return and the conditional covariance
matrices estimated by return-based and range-based DCC. Then, we want to compare
the performance of the volatility models on 11 different target annualized returns (5% -
15%, 1% in an interval) .

< Table 3.3 is inserted about here >
Table 3.3 shows how the performance comparisons vary with the target returns

and the risk aversions. Panel A of Table 3.3 shows the annualized means () and

volatilities (o) of the portfolios estimated from three methods, return-based DCC,
range-based DCC, and OLS. For a quick look, the annualized Sharpe ratios?
calculated from return-based DCC(0.680) and range-based DCC (0.699) are higher
than the static model (0.560). Panel ‘B-ofjTable 3.3 shows the average switching fees

(A, ) from one strategy to another. The value settings of CRRA y are 1, 5, and 10. As

for the performance fees with different relative risk aversions, in general, an investor
with a higher risk aversion would be willing to pay more to switch from the static
portfolio to the dynamic ones. With higher target returns, the performance fees are
increasing steadily. In addition, Panel B of Table 3.3 also reports the performance fees
switching from return-based DCC to range-based DCC. Positive values for all cases
show that the range-based volatility model can give significant economic value in
forecasting covariance matrices than the return-based ones. Figure 3.4 plots the weights
of in-sample minimum volatility portfolio derived from two dynamic models. In the

meanwhile, OLS has constant weights for cash, stock, and bond, i.e. -0.1934, 0.7079,

! The Sharpe ratio is constant with different target multipliers. For the further details, see Engle and
Colacito (2006).
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and 0.4855.

< Figure 3.4 is inserted about here >

3.3.2 Out-of-sample Comparisons
For robust inference, a similar approach is utilized to estimate the value of volatility
timing in the out-of-sample analysis. Here the rolling sample approach is adopted for
all out-of-sample estimations. It means that the rollover OLS method replaces the
conventional OLS method used in the in-sample analysis. Each forecasting value is
estimated by 521 observations, about 10 years. Then, the rolling sample method
provides 261 forecasting values for the one period ahead comparison. The first
forecasted value occurs the week of January 4, 2002.
< Table 3.4 is inserted about here >

Table 3.4 reports how the-performance. .comparisons vary with the target returns
and the risk aversions for one petiod-—-ahead, out-of-sample forecast. We obtain a
consistent conclusion with Table "3.3:.The.estimated Sharpe ratios calculated from
return-based DCC, range-based DCC, and rollover OLS are 0.540, 0.586, and 0.326,
respectively. The performance fees switching from rollover OLS to DCC are all
positive. In total, the out-of-sample comparison supports the former inference. Figure
3.5 plots the weights that minimize conditional volatility while setting the expected
annualized return equal to 10%.

< Figure 3.5 is inserted about here >

In addition to examining the performance of short-horizon investors, we further
report the results of the long-horizon asset allocations. Table 3.5 reports one to thirteen
periods ahead out-of-sample performance for three methods. Here the rolling sample

approach provides 249 forecasting values for each out-of-sample comparison. The
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portfolio weights for all strategies are obtained from the weekly estimates of the
out-of-sample conditional covariance matrices with a fixed target return (10%). In
general, the Sharpe ratios got from range-based DCC is the largest, and return-based
DCC is the next. For each strategy, however, we can not find an obvious trend in the
Sharpe ratios with forecasting periods ahead. As for the result of the performance fees,
it seems reasonable to conclude that an investor is still willing to pay to switch from
rollover OLS to DCC. Moreover, the economic value seems to appear a decreasing
trend with forecasting periods ahead. For longer forecasting horizon (12-13 weeks),
however, the results of estimated switching fees are mixed. As to the will switching
from return-based DCC to range-based DCC, it always keeps positive.
< Table 3.5 is inserted about here >

Thorp and Milunovich (2007) show that a risk-averse investor holding selected
international equity indices, with..»= 2, 5 and' 10, just want to pay little from
symmetric to asymmetric forecasts. In'Some-cases, the switching fees are even negative.
In order to further understand this argument, we examine it based on the range-based
volatility model. Chou (2005) provides an asymmetric range model namely CARRX:

A =w+aR,  + P4 +¢ret . The lagged return in the conditional range equation is

used to capture the leverage effect. For building an asymmetric range-based volatility
model, CARR in the first step of range-based DCC can be replaced by CARRX.

Cappiello, Engle, and Sheppard (2006) introduce asymmetric DCC:

Q,=(1-a-b)Q-cN+aZ, Z ,+bQ,  +cn_n' . n, is the kx1 vector calculated

t

by 1(Z, <0)-Z, to allow correlation to increase more in both falling returns than in

both rising returns and N = E(n,n’), where o denotes the Hadamard matrix product

operator, i.e. element-wise multiplication. Table 3.6 shows the one period ahead

performance of the volatility timing values for asymmetric range-based DCC compared
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with rollover OLS. The switching fees from rollover OLS to asymmetric range DCC seem
to be smaller than the fees from rollover OLS to symmetric range DCC in Table 3.4. One of
the reasons may result from the poor performance of the bond data. In this case, it is not
valuable to switch the symmetric strategy to the asymmetric one.

< Table 3.6 is inserted about here >

3.4. Conclusion

In this paper, we examine the economic value of volatility timing for the range-based
volatility model in utilizing the range data which combines CARR with a DCC
structure. Applying S&P 500 and T-bond futures to a mean-variance framework with a
no-arbitrage setting, the result can be extended to spot asset analysis. By means of the
utility of portfolio, the economictvalue of dynamic models can be obtained from
comparing with OLS. Both of in-sample .and. out-of-sample results show that a
risk-averse investor is willing to switch-from-OLS to DCC. Moreover, the switching
fees from return-based DCC to range-based DCC are always positive. We can conclude
that the range-based volatility model has more significant economic value compared to
the return-based one. The results give robust inferences for supporting the range-based

volatility model in forecasting volatility.
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Table 3.1: Summary Statistics for Weekly S&P 500 and T-bond Futures Return
and Range Data, 1992-2006

The table provides summary statistics for the weekly return and range data on S&P 500
stock index futures and T-bond Futures. The returns and ranges are computed by
100xlog(p / pa*) and 100xlog(p"*"/ p"*), respectively. The Jarque-Bera statistic is
used to test the null of whether the return and range data are normally distributed. The
values presented in parentheses are p-values. The annualized values of means (standard
deviation) for S&P 500 and T-bond futures are 8.210 (15.232) and 0.853 (6.168),
respectively. The simple correlation between stock and bond returns is -0.023. The
sample period ranges form January 6, 1992 to December 29, 2006 (15 years, 782
observations) and all futures data are collected from Datastream.

S&P 500 Futures T-Bond Futures
Return Range Return Range
Mean 0.158 3.134 0.016 1.306
Median 0.224 2.607 0.033 1.194
Maximum 8.124 13.556 2.462 4,552
Minimum -12.395 0.690 -4.050 0.301
Std. Dev. 2.112 1.809 0.855 0.560
Skewness -0.503 1.756 -0.498 1.390
Kurtosis 6.455 282 4.217 6.462
Jarque-Bera 421.317 985.454 80.441 642.367
(0.000) (0.000) (0.000) (0.000)
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Table 3.2: Estimation Results of Return-based and Range-based DCC Model
Using Weekly S&P500 and T-bond Futures, 1992-2006

r,o=cte,, b, =0, +ak8,€2’,_i +Bh 4y € 11, ~NQOR,),
R, =u,, L,=o,+aR,  +PB A1, R, |1, ~exply), k=12.
Q,=(1-a-h)Q+aZ, 7 ,+bQ,,,and then
P (1-a-b)g, +az,, ,z,, . +bqy,,

\/[(1_ a—>b)qy, + azlz,t—l +bq,,,][(A—a—b)q,, + azg,z—l +bq,4]

where R, is the range variable, Z, is the standard residual vector which is
standardized by GARCH or CARR volatilities. Q, ={q¢,,} and 6:{@.} are the
conditional and unconditional covariance matrix of Z,. The three formulas above are
GARCH, CARR and the conditional correlation equations respectively of the standard
DCC model with mean reversion. The table shows estimations of the three models
using the MLE method. Panel A is the first step of the DCC model estimation. The
estimation results of GARCH and CARR models for two futures are presented here.
0(12) is the Ljung—Box statistic for the autocorrelation test with 12 lags. Panel B is the
second step of the DCC model estimation. The-values presented in parentheses are
t-ratios for the model coefficients and p-values far Q(12).

Panel A: Volatilities Estimation of GARCH and CARR models

S&P500 Futures T-bond Futures
GARCH CARR GARCH CARR
c 0.188 0.008
(3.256) (0.242)
@ 0.019 0.103 0.028 0.075
(1.149) (2.923) (1.533) (2.810)
a 0.051 0.248 0.060 0.157
(3.698) (9.090) (2.031) (5.208)
,é 0.946 0.719 0.902 0.785
(71.236) (23.167) (18.645) (18.041)
Q(12) 26.322 5.647 15.872 23.121
(0.010) (0.933) (0.197) (0.027)
Panel B: Correlation Estimation of Return- and Range-based DCC Models
S&P500 and T-bond
Return-based DCC Range-based DCC
a 0.037 0.043
(4.444) (4.679)
b 0.955 0.951
(85.621) (80.411)
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Table 3.3: In-sample Comparison of the Volatility Timing Values in the Minimum
Volatility Strategy Using Different Target Returns, 1992-2006

The table reports the in-sample performance of the volatility timing strategies with
different target returns. The target returns are from 5% to 15% (annualized). The
weights for the volatility timing strategies are obtained from the weekly estimates of the
conditional covariance matrix and the different target return setting. Panel A shows the
annualized means () and volatilities (o) for each strategy. The estimated Sharpe
ratios for the return-based DCC model, the range-based DCC model, and the OLS
strategy are 0.680, 0.699, and 0.560, respectively. Panel B shows the average switching
annualized fees (A, ) from one strategy to another. The values of the constant relative
risk aversion yare 1, 5, and 10.

Panel A: Means and Volatilities of Optimal Portfolios

Target Return-based DCC Range-based DCC OLS
return(%) 7, o u o yZ o
5 5.201 2.100 5.241 2.100 5.000 2.190
6 6.366 3.814 6.438 3.813 6.000 3.977
7 7.530 5.527 7.635 5.526 7.000 5.764
8 8.694 7.241 8.832 7.239 8.000 7.551
9 9.859 8.954 10.028 8.952 9.000 9.338
10 11.023 10.668 11.225 10.665 10.000 11.125
11 12.187 12.381 12.422 12.378 11.000 12.912
12 13.352 14.095 13.619 14.091 12.000 14.699
13 14.516 15.808 14.815 15.804 13.000 16.486
14 15.680 17.521 16.012 17.517 14.000 18.273
15 16.845 19.235 17.209 19.230 15.000 20.060

Panel B: Switching Fees with Different Relative Risk Aversions
Target OLS to Return DCC

OLS to Range DCC

Return to Range DCC

reun(%) A, Ag Ay A Ag Ay A As Ay
5 0.303 0.376 0.393 0.343 0.417 0434 0.040 0.041 0.041
6 0.703 0.950 1.008 0.777 1.025 1.084 0.074 0.076 0.076
7 1244 1771 1897 1353 1883 2.009 0.109 0.112 0.112
8 1929 2845 3.063 2073 2994 3.213 0.144 0.149 0.151
9 2,761 4.173 4507 2940 4360 4.696 0.180 0.189 0.191
10 3.739 5753 6.224 395 5979 6.453 0.217 0.230 0.233
11 4866 7578 8.206 5.121 7.846 8.477 0.255 0.273 0.277
12 6.142 9.641 10.441 6.434 9.951 10.754 0.294 0.318 0.324
13 7.565 11932 12914 7.897 12.283 13.270 0.334 0.365 0.373
14 9.135 14.436 15609 9.507 14.831 16.009 0.375 0.414 0.424
15 10.851 17.142 18.509 11.262 17.580 18.952 0.418 0.466 0.479
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Table 3.4: Out-of-sample Comparison for the One Period Ahead Volatility Timing
Values in the Minimum Volatility Strategy with Different Target Returns, 1992-2006
The table reports the one period ahead out-of-sample performance of the volatility
timing strategies with different target returns. There are 521 observations in each of the
estimated models and the rolling sample approach provides 261 forecasting values for
each out-of-sample comparison. The first forecasted value occurs the week of January 4,
2002. The target returns are from 5% to 15% (annualized). The weights for the
volatility timing strategies are obtained from the weekly estimates of the one period
ahead conditional covariance matrix and the different target return setting. Panel A
shows the annualized means () and volatilities (o) for each strategy. The estimated
Sharpe ratios for the return-based DCC model, the range-based DCC model, and the
rollover OLS strategy are 0.540, 0.586, and 0.326, respectively. Panel B shows the
average switching annualized fees (A, ) from one strategy to another. The values of the
constant relative risk aversion are 1, 5, and 10.

Panel A: Means and Volatilities of Optimal Portfolios

Target Return-based DCC Range-based DCC Rollover OLS
return(%) 7 o u o yZ o
5 4.691 1.698 4.747 1.661 4.344 1.749
6 5.438 3.083 5.540 3.016 4.808 3.176
7 6.186 4.468 6.333 4.370 5.273 4.603
8 6.933 5.853 En2y 5.725 5.737 6.030
9 7.681 7.239 7.920 7.080 6.202 7.456
10 8.428 8.624 8.714 8.435 6.667 8.883
11 9.176 10.009 9.507 9.790 7.131 10.310
12 9.923 11.394 10.300 11.145 7.596 11.737
13 10.671 12.779 117094 12.500 8.060 13.164
14 11.418 14.165 11.887 13.854 8.525 14.591
15 12.166 15.550 12.680 15.209 8.990 16.018

Panel B: Switching Fees with Different Relative Risk Aversions
Target OLS to Return DCC OLS to Range DCC  Return to Range DCC
return(%) A Ag Aj Ay Ag Ag A As Ay
5 0.393 0.425 0433 0481 0537 0550 0.089 0.112 0.118
6 0.781 0.890 0.916 0.991 1.176 1.220 0.210 0.289 0.308
7 1232 1463 1518 1606 1.998 2.090 0.377 0.545 0.585
8 1746 2144 2239 2328 3.001 3.159 0.589 0.882 0.953
9 2323 2935 3.079 3.156 4.185 4.425 0.848 1.303 1.413
10 2.963 3.834 4.039 4.092 5545 5881 1.154 1.810 1.967
11 3.667 4.842 5116 5.133 7.077 7.522 1509 2.402 2.617
12 4435 5956 6.309 6.280 8.774 9.338 1913 3.083 3.363
13 5267 7.174 7.614 7.531 10.629 11.321 2.366 3.851 4.206
14 6.162 8.495 9.029 8.885 12.634 13.460 2.869 4.707 5.146
15 7.121 9.914 10.548 10.340 14.781 15.746 3.422 5.651 6.181
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Table 3.5: Out-of-sample Comparison for One to Thirteen Periods Ahead
Volatility Timing Values in the Minimum Volatility Strategy, 1992-2006

The table reports the one to thirteen periods ahead out-of-sample performance of the
volatility timing strategies with the fixed 10% (annualized) target return. The weights
for the volatility timing strategies are obtained from the weekly estimates of the one to
thirteen periods ahead conditional covariance matrix. There are 521 observations in
each of the estimated models and the rolling sample approach provides 249 forecasting
values for each out-of-sample comparison. The first forecasted mean value occurs the
week of January 4, 2002. Panel A shows the annualized means (), volatilities (o),
and Sharpe ratios (SR) for each strategy. Panel B shows the average switching
annualized fees (A, ) from one strategy to another. The values of the constant relative
risk aversion are 1, 5, and 10.

Panel A: Means and Volatilities of Optimal Portfolios

Periods Return-based DCC Range-based DCC Rollover OLS

Ahead yz o SR H o SR H o SR
1 7.717 8.724 0.452 8.060 8.540 0.502 6.022 8.956 0.251
2 7.868 8.830 0.464 8.562 8.556 0.560 6.068 8.933 0.257
3 7.371 8.807 0.408 8.312 8572 0529 6.660 8.931 0.323
4 8.117 8.838 0.491 8.750 8.604 0.578 7.103 8.928 0.373
5 8.464 8.860 0.529 9.200 8.653 0.627 6.869 8.989 0.344
6 9.088 8.903 0.597 .9.6001:8.637 0.674 7.232 8.973 0.385
7 9.361 8.840 0.632 10.033..8.629 0.725 7.872 8.945 0.458
8 8.853 8.897 0571 9429 '8.683 0.651 7.644 8.975 0.431
9 9.806 8.878 0.679 10.093 8.664 - 0.729 8.476 9.023 0.521
10 9.746 8.887 0.672 19:576.-8.695" 0.667 8.189 8.983 0.491
11 9.436 8.908 0.636 8.986 8.712 0.598 8.031 8.910 0.478
12 8.737 9.003 0.551 “8.076" '8.791 0.489 7.424 8.853 0.412
13 8.713 9.111 0.542 8.272 8.914 0.505 7.794 8.867 0.453

Panel B: Switching Fees with Different Relative Risk Aversions
Periods OLS to Return DCC OLS to Range DCC  Return to Range DCC
Ahead A, A Ay A, A Al A, A Ay,
1 2772 3546 3.727 3944 5289 5599 1196 1.831 1.983
2,282 2.633 2716 4.223 5.448 5731 1970 2914 3.137
3 1.293 1721 1.823 3.308 4495 4772 2029 2.830 3.019
4 1.440 1.758 1.834 3.152 4.244 4499 1728 2544 2738
5 2210 2665 2773 3.900 5.032 5297 1.712 2446 2.622
6 2191 2442 2503 3.938 5.078 5.345 1.775 2.730 2.958
7
8
9

1993 2373 2464 3.647 4.740 4.997 1.674 2.440 2.625
1581 1.861 1928 3.161 4.17/2 4410 1.597 2.369 2.555
2.028 2556 2.683 3.319 4578 4.875 1313 2103 2.295
10 2019 2370 2455 2.753 3.767 4.007 0.753 1.465 1.638
11 1416 1424 1426 1891 2591 2.758 0.489 1.209 1.383
12 0.593 0.037 -0.100 0.945 1.164 1.217 0.358 1.128 1.313
13 -0.269 -1.202 -1.436 0.251 0.078 0.035 0.518 1.243 1.417
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Table 3.6: The One Period Ahead Performance of the Volatility Timing Values for the

Asymmetric Range-based Volatility Model, 1992-2006

The table reports the one period ahead out-of-sample performance of the volatility
timing strategies for the asymmetric range-based volatility model with different target
returns. There are 521 observations in each of the estimated models and the rolling
sample approach provides 261 forecasting values for each out-of-sample comparison.
The first forecasted value occurs the week of January 4, 2002. The target returns are
from 5% to 15% (annualized). The weights for the volatility timing strategies are
obtained from the weekly estimates of the one period ahead conditional covariance
matrix and the different target return setting. The annualized means ( ) and volatilities
(o) of the optimal portfolio are shown here. The estimated Sharpe ratio for the
asymmetric range-based DCC model is 0.521. A, is the average switching annualized
fee from the rollover OLS model to the asymmetric range-based volatility model. The
values of the constant relative risk aversion are set as 1, 5, and 10.

Means and Volatilities of

Target Optimal Portfolios for Switching Fee_s from Rollover OLS to

return(%) Asymmetric Range-based DCC Asymmetric Range-based DCC
H o A, Ag Ay

5 4.643 1.666 0.373 0.425 0.438

6 5.352 3.025 0.787 0.962 1.003

7 6.060 4.384 1.301 1.670 1.757

8 6.769 5.744 1.915 2.550 2.699

9 7.478 7.103 2.630 3.601 3.827

10 8.187 8.462 3.445 4.818 5.136

11 8.895 9.821 4.361 6.199 6.621

12 9.604 11.180 5.377 7.738 8.274

13 10.313 12.540 6.491 9.428 10.087

14 11.022 13.899 7.703 11.262 12.050

15 11.730 15.258 9.011 13.232 14.155
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Panel A: Close Prices
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Figure 3.1: S&P 500 Index Futures and T-bond Futures Weekly Closing Prices,
Returns and Ranges, 1992-2006. This figure shows the weekly close prices, returns,
and ranges of S&P 500 index futures and 10-year Treasury bond (T-bond) futures over
the sample period.
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Panel A: Volatility Estimates for the GARCH Model
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Panel B: Volatility Estimates for the CARR Model
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Figure 3.2: In-sample Volatility Estimates for the GARCH and CARR Model
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Panel A: Correlation Estimates
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Figure 3.3: In-sample Correlation and Covariance Estimates for the Return-based
and Range-based DCC Model
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Panel A: In-sample Portfolio Weights Derived by the Return-based DCC Model
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Panel B: In-sample Portfolio Weights Derived by the Range-based DCC Model
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Figure 3.4: In-sample Minimum Volatility Portfolio Weight Derived by the
Dynamic Volatility Model. Panels A and B show the weights that minimize conditional
volatility while setting the expected annualized return equal to 10%. The OLS model
has constant weights for cash, stock, and bond, i.e. -0.1934, 0.7079, and 0.4855.

52



Panel A: Out-of-sample Portfolio Weight Derived by the Return-based DCC
Model
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Panel B: Out-of-sample Portfolio Weight-Derived by the Range-based DCC Model
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Panel C: Out-of-sample Portfolio Weight Derived by the Rollover OLS Model
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Figure 3.5: Out-of-sample Minimum Volatility Portfolio Weight Derived by the
Dynamic Volatility Model for One Period Ahead Estimates. Panels A, B, and C
show the one period ahead weights that" minimize conditional volatility while the
expected annualized return equal is set t0.20%. Different from the in-sample case, the
rolling sample method is used in the pertfolio weights estimation. The portfolio weights
in the rollover OLS model (Panel C) also"vary with time. The first forecasted weights
occur the week of January 4, 2002.
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Chapter 4. Estimating Time-Varying Hedge Ratios with a
Range-Based Multivariate Volatility Model

4.1 Introduction

Recent research has made significant contributions to theories and applications of
futures hedging. In previous studies, Johnson (1960) and Stein (1961) introduced the
concept of portfolio theory through hedging the spot position with futures. Here the
hedging portfolio has usually been adopted as the returns of holding the spot asset on
the returns together with the futures contracts. Edrington (1979) applied this concept to
determine a minimum-variance hedge ratio and then proposed a measure of hedging
effectiveness. From an academic perspective, an optimal hedging strategy is
conventionally based on the expected-utility:maximization paradigm. A simplification
of this paradigm leads to the minimum-variance criterion?’. In this case, the optimal
hedge ratio can be defined as the amount of futures position for bearing one unit of spot
position such that we have minimum variance hedging portfolio.

On the practical side, the research on futures hedging has benefited tremendously
from recent developments in the econometrics literature. Many studies have focused on
improving the estimation of the optimal hedge ratio. Moreover, some sophisticated
estimation methods have been proposed after the knowledge about the statistical
properties of financial time series that have been shared in the academic community.
Various approaches to the optimal hedge ratios with different optimization criterions are
discussed in Lien and Tse (2002), and Chen, Lee, and Shrestha (2003).

Past studies assumed the asset prices to follow a random walk with price changes

22 Although the minimum variance hedge neglects the expected return of a hedging portfolio, it still has
a consistent inference with other hedging criterions. For example, when an investor with higher risk
averse or the futures prices follow martingale, the optimal hedge ratios derived from the minimum
variance criterion are consistent with those from a mean-variance framework. The explanation is more
fully developed in Kroner and Sultan (1993).
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being identically and independently distributed. However, many commodity price
changes appeared not to be independent but rather to be characterized by quiet and
volatile periods as variances change over time, following Mandelbrot (1963) and Fama
(1965). The unconditional distributions of commaodity price changes are also found to
be fat-tailed, or leptokurtic. Again, the empirical works powerfully support that
volatility is time-varying in many economic and financial time series. After considering
the deterministic volatility functions, some investigators adopt the framework of the
GARCH model developed by Engle (1982) and Bollerslev (1986). The bivariate
GARCH models, particularly, are widely adopted to explain the behavior of the spot
and futures prices which produced the dynamic hedging strategy®.

However, the results from the performance of the GARCH hedge ratios in
comparing with the traditional methods are mixed. Most studies have found that the
dynamic hedging strategies constructed by the GARCH methods outperform those of
the static methods [Baillie and Myers:(1991);-Kroner-and Sultan (1993)], but some ones
are mostly in favor of the conventional.hedging strategy. Hence, our paper intends to
provide further evidence in this debate by introducing ranges in the multivariate
GARCH models. Because most people are interested in knowing how well they can do
in the future with a different hedging strategy and we would not change our hedging
portfolio every day, this paper just highlights out-of-sample performance with weekly
data.

In estimating volatility, the range data of asset prices perform better than the return
data with close-to-close price [Parkinson (1980); Wiggins (1991); Alizadeh, Brandt and

Diebold (2002); Chou (2005); Brandt and Jones (2006)]. Chou (2005) proposed the

2% See Baillie and Myers (1991), Kroner and Sultan (1993), Lien, Tse, and Tsui (2002), Lien and Yang
(2006) for a reference.
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conditional autoregressive range (CARR) model®* to estimate the volatility process.
Compared with GARCH model, the CARR model obtained superior volatility forecast.
Moreover, Chou, Wu and Liu (2007) extend it to a multivariate context using the DCC
model proposed by Engle (2002a). The DCC model is a kind of two steps forecasting
model which estimates univariate GARCH models for each asset and then calculates its
time-varying correlation by using the transformed standardized residuals from the first
step. They find that the range-based DCC model performs better than other
return-based volatility models in forecasting covariances and correlations. However,
there is very limited study in the practical financial applications of the range-based
volatility models.

In this paper, we will test the range-based volatility model on futures hedging
performance. Range data intuitively give more information than return data, and have
low cost. In our empirical study, broad types-of commodities are used to examine the
optimal hedge ratio obtained from the new-range-based volatility models. In addition to
the traditional and rollover OLS* “models, other compared strategies are all based on
the frameworks of the CCC and DCC models.

This paper applies new volatility models to exercise the optimal futures hedging.
The remainder of this paper is organized as follows. Section 4.2 discusses the static and
dynamic hedging methodologies. Section 4.3 presents the data analysis and
out-of-sample results of the optimal hedging ratios constructed from different models.

The conclusion is included in the final section.

* The CARR model and the autoregressive conditional duration (ACD) model of Engle and Russell
(1998) are hoth special cases of the multiplicative error models (MEM) of Engle (2002b).

% The rollover approach here utilizes week-by-week updating to build the time-varying hedge ratios. It
means that the rollover OLS models are viewed as dynamic hedging strategies. Lien, Tse, and Tsui (2002)
used this rollover OLS approach (day-by-day updating) to build their hedge ratios and found this method
performed better than the CCC model.
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4.2 Hedging Methodology

Assume that the variance of the hedging portfolio (P, = AS — hAF") using short hedge
is Var(P,) =Var(AS) — 2hCov(AS,AF) + h*’Var(AF) = oi-2hposo, +h’c’ o,
where AS (r;) and AF (r.) are the difference of the logarithm types of the spot

price S and the futures price F during the hedging period. o; and o, are the
standard deviations of AS and AF . p is the correlation of AS and AF _ The

decision variable % is the hedge ratio. In a structure of minimum variance hedge, we

can take the fist order differential to Var(P,) with & and then get the optimal hedge
ratio /" = poglo, . In practice, the optimal hedge ratio can be obtained from
estimating the coefficient ¢ of the simple regression ry, =@+ @r,, +&,. This method

has been broadly applied in the litérature?;

The classical regression method, as mentioned-above, is assumed that its hedge
ratio is time-invariant. In fact; the-distribution of spot and futures prices may be
time-varying. In the presence of an‘environment with changing conditional second
moments, this method may not provide an effective hedge using the futures instruments.
Recent studies suggest that the time-varying volatility prevails in many time series. The
risk of assets changes because new information is continuously received by the markets
[Bollerslev (1990); Kroner and Sultan (1993)]. Therefore, the hedge ratio should be
time-varying because it depends on the conditional moments of the spot and futures
returns. The conditional volatility literature has provided many models that capture the

time-varying variance and covariance. Hence, the optimal hedge ratio for time 7 can be

written as h, = p,o,, /o, where the conditional estimates (p,, o,,and o) are

%6 Some studies use the error correction (EC) model proposed by Engle and Granger (1987) to calculate
the optimal hedge ratio. However, there is just small difference between OLS and EC [Kroner and Sultan
(1993)].
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obtained from different models conditional on information set at time ¢-1.

4.3 Empirical Analysis
In this study, 887 weekly observations on the spot and futures for six classes (fifteen
commodities), i.e., stock indices (FTSE 100, Nikkei 225 and S&P500 (SP)), currencies
(British Pond (BP), Japanese Yen and Swiss Franc (SF)), metals (gold and silver),
grains (corn, soybeans (Soy) and soybean oil (SO)), softs (coffee, cotton and sugar),
and energy (crude oil (CL)), are obtained from Datastream. The detail of these data is
described in Table 4.1. The time period of commodities is from January, 1, 1990 to
December, 29, 2006. The futures data provided by Datastream are the nearest contract
to deliver but rolled it over to the next nearest contract on the first day of the delivery
month in order to avoid thin trading-and expiration.effects.
<Table 4.1 is inserted about here>
Table 4.2 gives summary statistics for-returns and ranges of each spot and futures

commodity. The returns are computed by--100x /log(P, / P_,), where P is the close
price in each week. The ranges are computed by 100x log(P"*" / P***), where P"*"

and P are the maximum and minimum price respectively among the daily close

th

prices in the +* week and the last trading day close price in the 7—1" week®’. The
means of the returns are almost close to zero. As is noted by Fama (1965), this
martingale behavior is often interpreted as being consistent with a weak form efficient
market. Except soybeans, soybean oil and crude oil, the volatilities of all futures returns

are somewhat higher than the volatilities of spot returns. The order of the magnitudes

for the means of the range is roughly the same as that for the standard deviations of the

2" Unlike financial assets, the high-low price data of most commodities in a trading day are unavailable
but close price data. In this study, however, the weekly data are used to examine the hedging performance.
Therefore, it is reasonable to use the measure as its proxy.
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returns with the only two exceptions of corn and cotton. This reflects the fact that both
range and standard deviations are measures of volatilities. Given that the range data are
non-negative is present for all commodities.

< Table 4.2 is inserted about here >

In order to clarify the relative hedging performance, several models are used for
comparison, including three buy-and-hold strategies (no hedge, naive?, and OLS) with
fixed weights in the hedging period and five dynamic strategies (rollover OLS,
return-based CCC, return-based DCC, range-based CCC, and range-based DCC) with
time-varying weights in a framework of rolling sample.

The rolling sample approach here utilizes week-by-week updating to build the
time-varying hedge ratios. There are 522 weekly observations (about ten years) in each
of estimated period of the others..in addition, all.cases provide 365 one period ahead
out-of-sample forecasting values for comparison.. The first forecasted value occurs on
the week of January 3, 2000. Assume-that-there is one unit underlying asset in the
beginning. No hedge means that the‘variance.of its hedging portfolio is only decided by
the underlying asset. Naive here is the short hedge with selling one unit futures.

In order to formally compare the performances of each kind of hedging method,

the hedging portfolios are applied by the estimated hedge ratios of each week. The
variance of these portfolio returns can be written as Var(rs, —h, r.,), where h, are
estimated optimal hedge ratios from different hedging methods. In this study, we focus

on the out-of-sample forecasting results with one period ahead. Table 4.3 and Table 4.4

report the maximum likelihood estimations of the return-based and range-based DCC

%8 The naive hedging strategy is the simplest way to hedge the spot price risk. This strategy suggests that
an investor who has a long position in the spot market should sell a unit of futures today and buy it back
when he sells the spot. If the spot and futures prices both change by the same amount at all times, this
will be a perfect hedge.
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models respectively. Here the first out-of-sample parameter estimates®® are provided.
In Table 4.3, Panel A and Panel B are the first step of the DCC model estimation, which
are the GARCH model fittings of spot and futures returns respectively. In Table 4.4,
they are for the CARR model fittings of ranges. Panel C is the second step of the DCC
model estimation for both tables.
< Table 4.3 is inserted about here >
< Table 4.4 is inserted about here >
From the tables, the values of (0?+,3) are close to one except for soybean oil,
indicating high persistence in volatility. As for correlation persistence, however, the
values of (&+I§) exhibit inconsistent results. Some cases have high persistence in
correlation, but the others don’t. In addition, for the cases of gold and silver, the
range-based DCC model shows stronger carrelation persistence than the return-based
one.

The comparisons of out-of-sample hedging performance are reported in Table 4.5.
Panel A of Table 4.5 shows the variances ‘of the hedging portfolios. To further gauge the
hedging efficiency among various methods, Panel B also reports the efficiency gain of
each alternative method compared to no hedge. Furthermore, Panel C shows the
percentage variance improvement compared with the range-based DCC model.

< Table 4.5 is inserted about here >

Several observations can be made from the reading of Table 4.5. First, the
portfolio variances in stock indices, currencies, and metals are much smaller than those
in grains, softs, and energy. It seems that the financial market®* has active trade and
visible information to reduce the price change between spot and futures. It is obvious

that trading noises lead to worse hedging performance for the agriculture and energy

% In total, we have 365 estimations. The first parameter estimates are provided in Table 3 and Table 4.
% 1n general, gold and silver are viewed as financial assets.

61



markets. In respect of no hedge, all portfolio variances, with the single exception of
currency, are very large, especially in silver and non-financial commaodities.

As for the comparison of the seven hedging methods, the naive method generally
is the worst of all. This is not surprising as the assumption of perfect correlation
between the spot and the futures returns underlying this method is clearly not supported
empirically. In the cases of stock indices, however, naive performs better than the other
static and rollover OLS models®. Next, the fact that the dynamic strategies with
time-varying hedge ratios outperform the buy-and-hold ones indicates that the
traditional method assuming a constant hedge ratio through the hedging period has a lot
of room for improvements.

Among the dynamic hedging methods, how do the range-based methods compare
with the return-based methods? The results suggest that the range-based ones are better
than their corresponding oppenents with- the return-based ones. Specifically, the
variances of the hedging portfolio derived-from the range-based volatility models are
smaller than the return-based volatility-enes.in thirteen out of fifteen commodities. The
finding has its exception only in the soybean and coffee cases.

Panel B of Table 4.5 shows the hedging effectiveness of all strategies. The simple
naive hedge for all commodities can reduce over about 75% variation of spot. In
addition, there are over 90% high values of hedging effectiveness for all hedging
strategies in silver and two classes, stock index and currency. Again, the difference of
the hedging effectiveness between the static and dynamic models for these cases is
small. However, the results in the other commodities still support the superiority of the

dynamic hedging strategies over the static ones. It is noteworthy that the poor

31 Because the 10-year period might have some structural changes which would reduce the hedging
efficiency of the OLS model, the 5-year OLS and rollover OLS models were considered as other
comparison models. However, our empirical results indicated that the difference between two different
estimated periods was very small.
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effectiveness in crude oil seems to point out it is difficult to hedge by futures.

In order to more intuitively compare the performance of these hedging strategies,
Panel C of Table 4.5 lists the hedging improvement ratio by the range-based DCC
model. From the average percentage variance improvement reported in the last column,
range-based DCC is the clear winner of all methods, with an improvement of about
30% over OLS, 27% over rollover OLS, 16% over return-based CCC, 10% over
return-based DCC, and 5% over range-based CCC. It is valuable to take a more look at
these values. In the same model setting, there are about 5% improvements by using the
time-varying correlation strategies over the constant ones, and about 10%
improvements by using the range-based strategies over the return-based ones®2. From
the hedging point of view, the range is indeed a more efficient measure of volatility
than the return. Furthermore, the additional effort.in modeling the time-varying pattern
of the conditional correlation iswith.rewards,

<Figure 4.1.iS-inserted about here>

For illustration, Figure 4.1 plots the estimated hedge ratios using different methods
for six cases, S&P 500, British Pond, gold, soybean oil, cotton, and crude oil,
respectively. In addition to rollover OLS, the optimal return-based and range-based
CCC or DCC models are put together for comparison. The rollover OLS model has the
smoothest pattern in all cases, but still varies over time with a rolling-sample of ten
years is used in the out-of-sample comparisons. To take cotton for example, there is an
obvious jump in the middle of 2005. With the single exception of gold, the figures
indicate that the hedge ratios from range are more volatile than those from return. To

conclude, the dynamic methods provide wide variations of the hedge ratios around the

%2 In fact, we need to redo the work of Panel C of Table 5 for our target model to get the accuracy value.
For simplicity, the related results are not listed in this study. Return-based (range-based) DCC has a
7.02% (4.96%) gain over return-based (range-based) CCC. Then, range-based DCC (CCC) has a 9.71%
(11.76%) gain over return-based DCC (CCC).
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OLS estimates. A more flexible hedge ratio seems to be necessary in order to obtain a

more effective hedging strategy.

4.4 Conclusion

Range is a more efficient estimator than return in forecasting volatility. However, few
researches utilize its superiority in financial applications. This paper uses range-based
hedging models for calculating optimal hedge ratios in six classes of commodity futures,
totally fifteen commodities, and compares with hedging performance of other models.

For a one-period forecasting horizon, empirical findings indicate that hedging
performances of range-based volatility models are significantly better than the other
volatility models for most commaodities. Based on minimum-variance hedge criterion,
the hedging portfolio variances calculated from the range-based volatility models are
smaller than the return-based ones.in thirteen out of fifteen commodities.

In conclusion, the results ‘mainly-indicate the following three points: (1) static
hedging strategies are not suitable for most futures hedging, especially for non-financial
ones; (2) assuming constant correlation generally has an approximate 5 percent loss in
hedging achievement; (3) in the same dynamic structure, hedging improvement for the

range data compared with the return data is about 10 percent on average.
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Table 4.1: The Source of Spot and Futures Data

The table reports the related information for the fifteen futures and spots in this paper. The exchanges for futures, Datastream names for spots

and their codes are included in this table.

Futures Spot
Type Name Exchange Code Datastream Name Code
Stock Index  FTSE 100 LIFFE LSXCS00 FTSE 100 - PRICE INDEX FTSE100
Nikkei 225 0OSX ONACS00 NIKKEI 225 STOCK AVERAGE - PRICE INDEX JAPDOWA
S&P 500 CME ISPCS00 S&P 500 COMPOSITE S&PCOMP
Currency British Pond CME IBPCSO00 US$TO UK (GTIS) BRITPUS
Japanese Yen CME 1JYCS00 US $ TOJAPANESE YEN (GTIS) JAPYNUS
Swiss Franc CME ISFCS00 US $ TO.SWISS FRANC (GTIS) SWISFUS
Metal Gold CMX NGCCS00 Gold; Handy & Harman Base $/Troy Oz GOLDHAR
Silver CMX NSLCSO00 Silver, Handy & Harman (NY) cts/Troy OZ SILVERH
Grain Corn CBOT CC.CS00 CornsNo:2rYellow Cents/Bushel CORNUS2
Soybeans CBOT CS.CS00 Soyabeans, No.1 Yellow C/Bushel SOYBEAN
Soybean Oil CBOT CBOCS00 Soya Qil, 'Crude Decatur Cents/Ib SOYAOIL
Soft Coffee NYBOT NKCCS00 Coffee-ICO Composite Daily ICA c/lb COFDICA
Cotton No.2  NYBOT NCTCS00 Cotton,1 1/16Str Low -Midl, Memph C/Lb COTTONM
Sugar No. 11  NYBOT NSBCS00 Raw Cane Sugar, World FOB Cents/Ib SUGCNRW
Energy Crude Oil NYMEX NCLCS00 Crude Oil-Brent Cur. Month FOB U$/BBL OILBREN
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Table 4.2: Summary Statistics for Returns and Ranges of Spot and Futures

The table provides summary statistics for the weekly return and range data of the spot
and futures samples in this study. The returns are computed by 100x/og(P./P._,),
is the close price in each week. The ranges are computed by
100 log(P"™" | P**), where P"™" and P are the maximum and minimum price
respectively among the daily close prices in the ¢” week and the last trading day close
price in the #—-1" week. The sample period ranges from Jan 1, 1990 to Dec 29, 2006
(887 weekly observations).

where P,

Spot Futures

Return Range Return Range

Mean Std Dev  Mean Std Dev  Mean Std Dev  Mean Std Dev
FTSE 0.105 2.084 2.304 1.418 0.103 2.186 2.469 1.483
Nikkei -0.090 2.955 3.297 1.870 -0.091 3.020 3.365 1.896
SP 0.157 2.073 2.239 1.410 0.157 2.117 2.309 1.474
BP 0.020 1.290 1.373 0.824 0.022 1.322 1.405 0.847
Yen 0.022 1.565 1.612 1.030 0.023 1.603 1.660 1.056
SF 0.026 1.579 1.734 0.904 0.027 1.605 1.760 0.920
Gold 0.050 1.879 1.863 1.377 0.050 1.967 1.968 1.388
Silver  0.101 3.295 3.257 2.326 0.098 3.412 3.422 2.447
Corn 0.053 3.367 3.485 2212 0.056 3.373 3.345 2.283
Soy 0.018 3.150 3.173 2.161 0,019 3.078 3.135 2.024
SO 0.046 3.158 3.465 1.890 0.049 3.079 3.360 1.837
Coffee  0.059 4.479 3.909 3.325 0.050 5.527 5.704 3.905
Cotton -0.015 3.487 3:858 2.137 -0.019 3.750 3.775 2.515
Sugar -0.011 4.166 4.569 2.744 -0.021 4.462 4,762 3.015
CL 0.107 5.229 5.395 3.640 0.110 4.930 5.281 3.540

Note: BP (British Pond), SF (Swiss Franc),:Soy.(soybeans),-SO (soybean oil), and CL (crude oil).
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Table 4.3: Return-based DCC Model Estimations

This table shows the first estimation (totally 365 estimations) of the range-based DCC models using the MLE method for the out-of-sample
forecast. The estimated period here is ranging from Jan 1, 1990 to Dec 31, 1999 (522 weekly observations). Panel A and Panel B are the first step
of the DCC model estimation for spot and futures returns of commodities respectively. Panel C is the second step of the DCC model estimation.
LLF is the abbreviation for log likelihood function value. The values presented in parentheses are standard errors for the estimated coefficients.
The return-based DCC model is shown as follows:
teo=c+&,, &,114~NOh,) k=12,
h, = o, + akglf,tfi + Bl
Q, =(1-a-b)Q+aZ;;Z , +bQ, ,,

where Z, is the standard residual vector which is standardized by’/GARCH Volatilities. Q, and Q are the conditional and unconditional
covariance matrix of Z,.

Panel A: Estimates of GARCH(1,1) model for spot returns
FTSE Nikkei SP BP Yen SF Gold™ Silver. ~ Corn Soy SO  Coffee Cotton Sugar CL

¢, 0238 -0060 0261 0026 0085 -0.014 -0.074+-0.085 0.191 0098 -0.047 -0.131 -0.067 -0.057 -0.114
(0.086) (0.118) (0.068) (0.055) (0.0690 (0.071) (0.048) (0.129) (0.121) (0.108) (0.118) (0.167) (0.133) (0.170) (0.208)
@ 0069 1046 0052 0096 0066 0283 0083 0434 0413 0712 5467 2505 1791 0583 1.202
(0.050) (0.473) (0.036) (0.074) (0.056) (0.218) (0.042) (0.264) (0.224) (0.232) (1.627) (1.728) (1.197) (0.344) (0.472)
4, 0054 0132 0089 0121 0087 0048 0205 0071 0.175 0218 0.197 0.138 0085 0.095 0.152
(0.020) (0.055) (0.025) (0.109) (0.032) (0.038) (0.098) (0.038) (0.039) (0.059) (0.074) (0.070) (0.035) (0.035) (0.053)
B 0930 0757 0897 0831 089 0848 0787 0889 0799 0709 0137 0755 0723 0876 0.811
(0.028) (0.086) (0.028) (0.121) (0.026) (0.100) (0.081) (0.050) (0.049) (0.061) (0.194) (0.095) (0.142) (0.047) (0.041)
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Panel B: Estimates of GARCH(1,1) model for futures returns
FTSE Nikkei SP BP Yen SF Gold  Silver Corn Soy SO  Coffee Cotton Sugar CL

¢, 0236 -0075 0257 0003 0086 -0014 -0106 -0.096 0.184 0.111 -0.035 -0.173 -0.132 -0.162 -0.071
(0.093) (0.124) (0.069) (0.060) (0.070) (0.072) (0.055) (0.135) (0.124) (0.114) (0.119) (0.218) (0.141) (0.202) (0.196)
@, 0096 1200 0048 0.024 0080 0138 0.187 0413 1132 0703 4558 0750 0.162 1.430 1.059
(0.064) (0.597) (0.034) (0.019) (0.058) (0.121) (0.081) (0.236) (0.500) (0.316) (1.420) (0.414) (0.177) (0.671) (0.547)
4, 0054 0120 0084 0055 0092 0044 0274 0066 0204 0.186 0200 0.151 0105 0119 0.111
(0.021) (0.054) (0.022) (0.034) (0.039) (0.028) (0.118) (0.031) (0.091) (0.074) (0.075) (0.050) (0.032) (0.044) (0.035)
B, 0925 0761 0903 0932 0887 0908 0696 0900 0.687 0740 0233 0.851 0.897 0816 0.847
(0.030) (0.093) (0.024) (0.032) (0.028) (0.059) (0:098) (0.04%). (0.096) (0.088) (0.184) (0.036) (0.022) (0.061) (0.035)

Panel C: Estimates of return-based DCC model
FTSE Nikkei SP BP Yen SF Gold .~ Silver Corn Soy SO  Coffee Cotton Sugar CL

& 0021 0054 0024 0043 0019 0096 - 0.119710.039 0215 0247 0328 0046 0218 0388 0.151
(0.007) (0.008) (0.009) (0.005) (0.002) (0.014) (0,026) (0.016)" (0.026) (0.024) (0.025) (0.010) (0.021) (0.026) (0.013)
5 0976 00942 -0930 0933 0975 -0.142 -0.011 '0.697 0649 0549 0318 0876 0369 0.022 0.685
(0.010) (0.009) (0.043) (0.008) (0.004) (0.173) (0.232) (0.163) (0.045) (0.055) (0.037) (0.032) (0.125) (0.044) (0.038)
LLF 809.399 914.249 850.669 818.568 898.616 901.638 395.667 522.703 353.391 577.613 535.826 194.930 186.348 375.383 376.728
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Table 4.4: Range-based DCC Model Estimations

This table shows the first estimation (totally 365 estimations) of the range-based DCC models using the MLE method for the out-of-sample
forecast. The estimated period here is ranging from Jan 1, 1990 to Dec 31, 1999 (522 weekly observations). Panel A and Panel B are the first step
of the DCC model estimation for spot and futures ranges of commodities respectively. Panel C is the second step of the DCC model estimation.
LLF is the abbreviation for log likelihood function value. The values presented in parentheses are standard errors for the estimated coefficients.
The range-based DCC model is shown as follows:

ERI'J = ui,t’ SRk,z |1t71 - f(ll ) ) k =1|2-

A =0 + R+ By
Q, =(1-a-bh)Q+aZ, Z., +bQ,,,

where R, is the range variable, Z, is the standard residual:vector which.is standardized by CARR volatilities. Q, and Q are the conditional
and unconditional covariance matrix of Z,.

Panel A: Estimates of CARR(1,1) model for spot ranges
FTSE Nikkei SP BP Yen SF Gold+Silver Corn Soy SO  Coffee Cotton Sugar CL
@ 0045 0359 0.029 0.044 0.070 0.126 0.054 0.109 0219 0.290 1.195 0.117 0.303 0.223 0.224
(0.024) (0.122) (0.018) (0.023) (0.038) (0.065) (0.028) (0.057) (0.073) (0.081) (0.362) (0.065) (0.125) (0.100) (0.098)
, 0.092 0212 0109 0.110 0.105 0.076 0.177 0.093 0.208 0233 0.213 0.107 0.140 0.151 0.185
(0.022) (0.041) (0.024) (0.032) (0.024) (0.028) (0.045) (0.028) (0.037) (0.045) (0.051) (0.036) (0.032) (0.032) (0.030)
,31 0.888 0.680 0.876 0.858 0.855 0.852 0.789 0.872 0.724 0.667 0.418 0.865 0.770 0.799 0.772
(0.027) (0.063) (0.027) (0.041) (0.037) (0.054) (0.054) (0.039) (0.050) (0.059) (0.137) (0.039) (0.059) (0.045) (0.037)
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Panel B: Estimates of CARR(1,1) model for futures ranges
FTSE Nikkei SP BP Yen SF Gold  Silver Corn Soy SO  Coffee

Cotton  Sugar CL

@ 0063 0335 0039 0028 0087 0083 0064 0109 0278 0318 0835 0.234
(0.031) (0.115) (0.021) (0.017) (0.045) (0.048) (0.031) (0.063) (0.106) (0.099) (0.261) (0.107)
@, 0106 0201 0123 0087 0123 0071 0165 0088 0180 0220 0202 0.153
(0.025) (0.039) (0.025) (0.026) (0.027) (0.025) (0.043) (0.027) (0.040) (0.047) (0.052) (0.032)
f, 0869 0701 0859 0893 0829 0882 0797 0880 0728 0669 0533 0.810
(0.031) (0.057) (0.029) (0.032) (0.041) (0.044) (0.051) (0.039) (0.059) (0.067) (0.113) (0.042)

0115 0262 0.174
(0.084) (0.114) (0.084)
0.099 0137 0.161
(0.023) (0.031) (0.027)
0.866 0.805 0.804
(0.043) (0.046) (0.034)

Panel C: Estimates of range-based DCC model
FTSE Nikkei SP BP Yen SF Gold, = Silver  *. Corn Soy SO  Coffee

Cotton  Sugar CL

& 0027 0061 -0026 0051 0.005 0.092- 0.046 0.032". 0.243 0289 0337 0.110
(0.007) (0.009) (0.014) (0.005) (0.000) (0.013)- (0.016) (0.011) (6.021) (0.023) (0.027) (0.009)
5 0978 0933 0818 00930 0996 -0.130~ 0.8787 10922 /0.657 0549 0.339 0.835
(0.008) (0.010) (0.153) (0.007) (0.000) (0.153) (0,040) (0.040)" (0.032) (0.044) (0.041) (0.020)
LLF 804.909 914.491 849.783 859.567 876.946 898.055 412.295 516.787 336.278 577.734 532.714 180.451

0241 0439 0.142
(0.025) (0.029) (0.014)
0.364 0.008 0.648
(0.133) (0.037) (0.051)
188.785 377.413 369.952
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Table 4.5: Comparisons of Out-of-Sample Hedging Performance

There are three parts in this table. Panel A shows the post-sample portfolio variances. Panel B shows the hedging effectiveness. Panel C shows
hedging improvement ratio by range-based DCC for other methods. The models used for comparison include three buy-and-hold strategies (no
hedging, naive, and OLS) with fixed weights in the hedging period and five dynamic strategies (rollover OLS, return-based CCC, return-based
DCC, range-based CCC, and range-based DCC) with time-varying weights in a framework of rolling sample. The rolling sample approach here
utilizes week-by-week updating to build the time-varying hedge ratios. Assume that there is one unit underlying asset in the beginning. No
hedging means that the variance of its hedging portfolio is only decided from the underlying asset. Naive is the short hedge with selling one unit
futures. There are 522 observations (ten years) in each of estimated period of the others. There are 365 one period ahead out-of-sample

forecasting values provided for comparison. The first forecasted:value occurs onrthe week of January 3, 2000.

Panel A: Portfolio variances for all strategies

FTSE Nikkei SP BP Yen SF Gold*=*Silver Corn  Soy SO Coffee Cotton Sugar CL
no hedging 4.6695 7.8949 54291 1.4032 1.6720 2.11714.875312.1656 13.2761 12.4454 12.1466 15.7210 16.3349 17.7476 25.5334
naive 0.0826 0.2366 0.1133 0.0643 0.1038 0.1293 1.1745 0.9274 2.6654 2.1024 1.2375 7.8405 5.8008 8.2354 6.5475
OLS 0.1110 0.2560 0.1262 0.0653 0.0979 0.1258 1.0777 1.0014 2.7249 2.1149 1.2713 5.8112 5.8424 6.8299 6.2694
rollover OLS 0.0901 0.2444 0.1179 0.0638 0.0971 0.1253 1.0616 0.9312 2.6168 2.0649 1.2475 5.7835 5.5008 6.8467 6.0101
return-based CCC ~ 0.0705 0.2306 0.1252 0.0613 0.0829 0.1209 0.8342 0.7806 2.1103 1.2998 1.0443 4.3736 5.1678 6.3694 5.9494
return-based DCC ~ 0.0704 0.2286 0.1258 0.0600 0.0824 0.1179 0.7644 0.7560 1.7623 1.1903 0.9536 4.1437 3.9894 5.0676 5.5862
range-based CCC ~ 0.0575 0.2126 0.1022 0.0567 0.0709 0.1028 0.8654 0.5659 1.6215 1.6779 0.9557 4.7769 2.9810 5.2619 4.8775
range-based DCC  0.0570 0.2112 0.1052 0.0555 0.0711 0.0987 0.7538 0.5816 1.7809 1.7554 0.8273 4.4907 2.3862 3.7297 4.5918

Note: The number with an underline stands for the smallest hedging portfolio variance in each commodity column.
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Panel B: Hedging effectiveness (1—Vary, .. [ Var,, i )

FTSE Nikkei SP BP Yen SF Gold Silver Corn  Soy SO Coffee Cotton Sugar CL
naive 0.9823 0.9700 0.9791 0.9542 0.9379 0.9389 0.7591 0.9238 0.7992 0.8311 0.8981 0.5013 0.6449 0.5360 0.7436
OoLS 0.9762 0.9676 0.9767 0.9535 0.9414 0.9406 0.7789 0.9177 0.7948 0.8301 0.8953 0.6304 0.6423 0.6152 0.7545
rollover OLS 0.9807 0.9690 0.9783 0.9545 0.9419 0.9408 0.7822 0.9235 0.8029 0.8341 0.8973 0.6321 0.6632 0.6142 0.7646
return-based CCC  0.9849 0.9708 0.9769 0.9563 0.9504 0.9429 0.8289 0.9358 0.8410 0.8956 0.9140 0.7218 0.6836 0.6411 0.7670
return-based DCC  0.9849 0.9710 0.9768 0.9572 0.9507 0.9443 0.8432 0.9379 0.8673 0.9044 0.9215 0.7364 0.7558 0.7145 0.7812
range-based CCC ~ 0.9877 0.9731 0.9812 0.9596 0.9576 0.9514 0.8225 0.9535 0.8779 0.8652 0.9213 0.6961 0.8175 0.7035 0.8090
range-based DCC  0.9878 0.9732 0.9806 0.9605 0.9575 0.9534.+0.84540.9522 0.8659 0.8589 0.9319 0.7143 0.8539 0.7899 0.8202
Note: The number with an underline stands for the largest hedging effectiveness in each-commodity column.
Panel C: Hedging improvement ratio by range-based DCC (1—Vaz,,wwoce I Var, i mosei )

FTSE Nikkei SP BP Yen SF Gold  Silver. ~Corn  Soy SO Coffee Cotton Sugar CL Averag
naive 0.3098 0.1073 0.0715 0.1376 0.3148 0.2366 0:358270.3729" 0.3318 0.1651 0.3315 0.4272 0.5886 0.5471 0.2987 0.3066
OLS 0.4868 0.1749 0.1664 0.1502 0.2736 0.21520,3006:70.4192 0.3464 0.1700 0.3493 0.2272 0.5916 0.4539 0.2676 0.3062
rollover OLS 0.3679 0.1357 0.1072 0.1307 0.2678 0.2122 0.2900 0.3754 0.3194 0.1499 0.3368 0.2235 0.5662 0.4553 0.2360 0.2783
return-based CCC  0.1916 0.0840 0.1593 0.0946 0.1417 0.1834 0.0964 0.2549 0.1561 -0.3505 0.2078 -0.0268 0.5383 0.4144 0.2282 0.1582
return-based DCC  0.1903 0.0760 0.1637 0.0754 0.1372 0.1625 0.0139 0.2307 -0.0106 -0.4748 0.1325 -0.0838 0.4019 0.2640 0.1780 0.0971
range-based CCC ~ 0.0083 0.0067 -0.0300 0.0207 -0.0027 0.0399 0.1290 -0.0277 -0.0983 -0.0462 0.1343 0.0599 0.1995 0.2912 0.0586 0.0496
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Panel E: Cotton
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II ——— 10-year rollover OLS
ﬁ ————— return-based DCC
———range-based DCC

0-0||||||||||||||||||||||||||||||||||||
2004 2005 2006

Panel F: Crude Oil

2.4
I —— 10-year rollover OLS
| e e return-based DCC
50 ———range-based DCC

0.4
2004 2005 2006

Figure 4.1: Comparison of optimal hedge ratios. There are six panels in this figure,
including S&P 500, British Pond, gold, soybean oil, cotton, and crude oil. In addition
to rollover OLS, we put optimal return-based and range-based CCC or DCC for
comparison. For convenience in distinguishing, we reserve the last three years.
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Chapter 5. Conclusions

\olatility plays a central role in many areas of finance. In view of the theoretical and
practical studies, the price range provides an intuitive and efficient estimator of
volatility. In this paper, we propose a new range model, which incorporates the
superiority of range in forecasting volatility and of range and the elasticity of the DCC
model. It contributes to the multivariate applications and can be led into broad
applications in finance.

This dissertation provides three empirical methods to strengthen the suitability of
the new range-based volatility model. To begin with a statistical test, the range-based
DCC model performs better than other selected models for the four covariance
benchmarks. Then, we test its economic value and compare its performance with the
return-based DCC model. We :conclude: that'the ‘range-based DCC model obtains
higher economic value than the Teturn-based one. Finally, we apply the range model to
calculate hedge ratios. Based on‘minimum-variance hedge criterion, range-based
volatility models have better performance in most commodities.

Undoubtedly, the range is sensitive to outliers in statistics, and however only few
researches mention this problem. It’s useful and meaningful to utilize the quantile
range to replace the standard range to get a robust measure of range. Moreover, the
multivariate works for range are still in its infancy. Future research is obviously

required for this topic.
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