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We discuss the existence and multiplicity of positive radial solutions and the non-
radial bifurcation of Au+ Af(#)=0 in Q and u=0 on 99, where Q is an annular
domain of R”, n>2. We prove that if f(u)>0 for >0 and lim, _,  f{u)/u= o0,
then there exists 1* > 0 such that there are at least two positive radial solutions for
each Ae (0, A*), at least one for A=A* and none for A>A* If f(0)=0,
lim, o f(u)/u=1, and uf’(u)> (1 +¢) f(u) for u> 0, £ >0, then there exists a varia-
tional solution for e (0, 4,), where 4, is the least eigenvalue of —4. If f(0)=0,
lim, o f(u)/u=0, and lim, , , f(u)/u= oo, then there exists at least one positive
radial solution for any 4> 0. We obtain some precise multiplicity results for narrow
annulus and show that the non-radial bifurcation occurs if the growth of f(u) is
rapid enough as #— oc.  © 1990 Academic Press, Inc.

1. INTRODUCTION

In this paper we consider the existence and multiplicity of positive
radially symmetric solutions and non-radial bifurcations (symmetry
breaking) of the equation

Au+if(u)=0 in 0, (1.1)
u=0 on 09, (1.2)

where Q= {xeR":4 <|x| < B} is an annular domain of R", n>2, 1>0,
feC? and f(u)>0 for u>0.

Equation (1.1), (1.2) arises from many branches of mathematics and
applied mathematics. It was studied by many authors, for example,
Gelfand [11], Keller and Cohen [13], Amann [1], Crandall and
Rabinowitz [8], Sattinger [22], an Lions [17].

We shall study the problems according to f(0)>0 or f(0)=0.
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If 2 is a bounded, smooth domain in R”, f(0)> 0, f is strictly increasing
and strictly convex, then there exists A* >0 such that for any ie (0, i*),
(1.1), (1.2) has a minimum solution which can be obtained by a monotone
iteration scheme (see, e.g., [13,22]). In [8], Crandall and Rabinowitz
showed that if the growth of f(u) as u — oo is less than the Sobolev critical
exponent then (1.1), (1.2) has at least two positive solutions. Recently,
Suzuki and Nagasaki [25] obtained a similar result for positive radial
solutions of (1.1), (1.2) without assuming the growth conditions of f(u)
when £ is an annulus. In this paper, we shall prove that the similar result
holds if f(u) is superlinear at u= oo, ie., lim,_ ., (f(u)/u)= oo, without
assuming f(u) is convex and increasing.

If Q is an annulus and f(0)=0, f(u)>0 for u>0, and f(u)/u'** is
strictly increasing in u > 0 for some ¢ >0, Nehari [ 18] proved that there is
a variational solution for (1.1), (1.2). In fact, he considered the equations

Y+ yF(y? x)=0, (1.3)
y(a)=0= y(b), (1.4)

where F(z, x) is continuous and positive for >0 and x>0, and F(z, x)/t°
is strictly increasing in 7> 0 for some positive number &, the functional

b
J0)=[ [ =G x)]ds, (L5)
where
7
Gn, x)=| F(t, %) db,
0
and the set
M = { y is absolutely continuous on [a, b] such that
y(a)=0= y(b), y#0, and I(y) =0},
where

10 =[ (= yFy x) (16)

He showed that the minimizer of J over M is achieved which is positive
and also satisfies (1.3), (1.4).
We shall prove that if f satisfies the following conditions
(H-1) f10)=0, f(u)>0 for u>0, lim, _, o (f(u)/u)=1,
(H-2) uf'(u)> f(u) for u>0,
(H-3) uf(u)>2(1+¢) [4f(¢) dt for u large and positive number ¢,

then (1.1), (1.2) has a variational solution for any A€ (0, 4,), where 4, is
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the least eigenvalue of Lapacian —A4 with Dirichlet boundary conditions
on annulus Q.

The existence of positive radial solutions of (1.1), (1.2) under the
assumption lim, _ o+ (f(u)/u)=0 has been studied by Bandle, Coffman,
and Marcus [2], Garaizar [10], and Lin [15]. In [15], it was proved that
(1.1), (1.2) has a positive radial solution on any annulus provided that f
satisfies the following conditions:

(H-1)" Lim, o+ (f(u)/u)=0,
(H-2)" 1im, ., o (f(u)/u)= .

Since the set of positive radially symmetric solutions of (1.1), (1.2) can
be very complicated, it is difficult to study the non-radial bifurcation
problem in such a situation. Therefore, we shall study the problem on the
narrow annulus. In fact, if the aspect ratio B/A< (n—1)Y"~2 for n>3
and B/A<e for n=2, uf'(u)> f(u) for u>0, Ni and Nussbaum [20]
proved that (1.1), (1.2) has at most one positive radially symmetric solu-
tion. For such a domain, if f(0) >0 and f'is strictly increasing and convex
then we can show that there exists an unique non-minimum positive radial
solution for any A€ (0, 1*).

For such an annulus, we shall prove that the non-radial bifurcation
occurs if the growth of f(u) is rapid enough as u —» +o0.

The problems of non-radial bifurcation from radial solutions on balls
were studied by Dancer [9] and Smoller and Wasserman {23, 24], on an
annulus by Suzuki and Nagasaki [26] and Lin [14], and on sectorial
domains by Berestycki and Pacella [4] and Lin [16].

For simplicity, in this paper we only consider the problem of the form
(1.1). With a slight modification of the arguments, we can also obtain
similar results for an equation of the form

Au+ Af(r,u)=0 in Q, (L1y

when f(r, u) satisfies some appropriate conditions.

This paper is organized as follows: In Section 2, we study the existence
of the second (non-minimum) positive radial solution for (1.1), (1.2) when
f(0)>0. In Section 3, we prove the existence of a variational solution for
(1.1), (1.2) when f(0)=0 and lim,, _, o+ (f(u)/u)=1. In Section 4, we study
the non-radial bifurcation problems on a narrow annulus.

2. THE SECOND SOLUTION

In this section we shall study the existence of the second positive radial
solution of (1.1), (1.2). Since we are interested in the radial solutions, we
write (1.1), (1.2) as
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n—

u'(r)+ 1u’(r)+/lf(u(r))=0, re (4, B), (2.1)

¥
u(A)=0=u(B), 22)

where 1>0 and n> 2.
We assume that f satisfies the following conditions:

(A-1) feC*R") and f(u)>0 for u>0,
(A-2) lim, o, (f(u)/u)= 0.
For n>3, set
s=r*"" and  u(s)=u(r),
then (2.1), (2.2) can be rewritten as
u’(s)+p(s) f(u(s))=0  in (s, 5,) (23)
u(so) =0=u(s,), (2.4)

where p(s)=(n—2)"2s % k=2+42/(n—2), so,=B*"", and 5, = A>"".
For n=2, set

s=—logr and u(s) = u(r),

then equations (2.1), (2.2) can also be rewritten as (2.3), (2.4) with
p(s)=e %, so= —log B, and 5, = —log A.

Using the backward shooting, we consider the family of solutions of the
initial value problem

u"(s)+ Ap(s) f(u(s))=0 for s<s, (2.5)
u(s,)=0, u(s)=—>, (2.6)

where b >0 is the shooting parameter.
For every b>0, problem (2.5), (2.6) has an unique solution

u(-)=u(-, b, A) with the maximal domain of existence (5(b, 1), s,). It is easy
to check that (2.5), (2.6) is equivalent to the following integral equation

u(s) = b(s, — ) — A j (t—5) p(t) f(u(t)) dt,  for s<s,, (27)
and solution u also satisfies

u(s) = () +u (s —5)+4 [ (=) plt) flau(r)) de (2.8)
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for s, 5€(5(b, 4), 5;). From (2.7), if u is positive in some interval (a, s,),
then

u(s)< b(s, —s) in (a,s). (2.9)
If u has a zero in (5(b, A), 5,), denote
so(b, 4)=inf{sq:u(s, b, 1)>01in (s, 5,)}

and (b, 1) € (so(b, A), 5,) such that ¥'(z(b, 1), b, 1) =0.

By standard results in o.d.e., the functions u(s, b, 1) and u'(s, b, ) are
continuously differentiable in (s, b, 4). Since u"(s, b, A) <0 in (s4(b, 1), 5,)
and u'(so(b, 4), b, A)>0, by the implicit function theorem, sy(b, 1) and
(b, A) are also C'in (b, A).

In this section, we only discuss the case # > 3; the case n=2 can also be
treated analogously. We first prove the following lemma.

LEMMA 2.1. Assume conditions (A-1) and (A-2) are satisfied. Then for
any b>0 and A >0, sq(b, 1) > 0. Furthermore, we have

() lim,_ ., so(b, A)=lim,_ . (b, A)='s,.

(ii) lim,_ ¢+ So(b, A) =lim, _ o+ T(b, ) =3s;.

Proof. Set co=lm{f(u):u=20}>0. If u(s)>0 in (a, s;), then by (2.7)
we have

aco f“ (1 —a) p(t) dt < b(s, — ).
Since
(n—2)2 j (t—a) plt) dtm gk 51 ST
. (k—1)(k—2) k-1 k=2
we have
Aco{c o’k —c,} < bs,

for some positive constants ¢, =¢,(n) and ¢, = c,(n, s,). This implies that
5o(b, A)>0 for any >0 and 4> 0.

(i) This can be proved by an argument Similar to proving Lem-
mas 2.1 and 2.2 of [15]; the details are omitted.

(ii) It suffices to show that lim, _, o+ 54(b, ) =s,. Suppose this were
false then there would be a 1>0, a positive number ¢, and a sequence
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b, — 0 such that s, —2e <s; =5¢(by, A) <5, —e. By (2.7) and (2.9), for k
sufficiently large, we have

1 s
261> byl —54) 25 H(0) | (1= 5i) p(t) di > c(a, 2)>0,
sk

a contradiction. This completes the proof.

Set
5§ =s5&(A) =min{sy(b, 1):5>0}.
An immediate consequence of Lemma 2.1 is the following result.

COROLLARY 2.2. If soe(sd(A), s,), then (2.3), (24) has at least two
positive solutions.

The following lemma plays the key role in this section.

LeMMA 2.3. s§(A) is continuous and strictly increasing in 2> 0.

Proof. We first prove that s§(A) is strictly increasing in A> 0. In fact,
if 0< 4, <4, and u, is a solution of (2.3), (2.4) at A= 4, on (s&(4,), s,) and
set

1
v(x) = cuy(1) and z=£+sl<1__>’
4 c

where ¢>1 and close to 1, then it is easy to verify that v(x)>0 in
(s§(2;) —¢€, 5,) and v(sF(4,) —e)=0=v0(s,), where
e—(c—1)(s; —58(42)) >0,
since
v"(x)+ 41p(x) f(v(x))
= 40+ () fleus(t)

= L o (0) fla(1)) = A () fleur())).

4
If ¢ is sufficiently close to 1, then

Ap(2) f(uy(2)) = ch p(x) f(cuy(t))
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for all re (sF(A,, 5,)). Therefore, v is a supersolution of (2.3), (2.4) on the
interval (s&(4,)—e¢, s,), which implies s&(4,) <s§(1,)—e. Hence s§(4) is
strictly increasing in A > 0.

Since s,(b, A) is continuous in A and s&(A) is increasing,
lim, _, ;, 50(b*(40), 4) = 56(b*(Ao), A9) = 5§(4o) implies that limi_,lg sF(A)=
s&*(4,) immediately. On the other hand, if 4 close to 4,> 0, then it is easy
to check that b*(1) is bounded and bounded away from 0 by an argument
similar to proving Lemma 2.1(i), (ii). Choosing a sequence 4, — 4, and
A< Ao such that b*(1,) - b*>0 as k— oo, we have lim, , . sf(4;)=
lim, , o, 5o(b*(Ac)s i) = 50(b*, 40) 2 55 (A). Hence lim, _ ;- s§(4) = s§(4o).
This proves that s¢(4) is continuous in A. The proof is complete.

LeMMA 2.4. Assume conditions (A-1) and (A-2) are satisfied. Then, we
have

(i) lim,_ , s§(d)=sy,
(i) lim,_ o+ s&(4)=0.

Proof. (i) Let so=s,(b, 1), by (2.7) we have

51 1
b(sy—so)=4 J (t=s0) p(1) f(u(1)) dt > = Aeop(s, (s, ~S0)%

S0

where ¢, =min{ f(u):u >0} > 0. This implies
%k l %
b (/1)>§Cop(sl)(sl —s3(4)). (2.10)

If the result were false, then there would be a number §,<s, and a
sequence A, — oo such that lim, _, . s§(4,) =35,. By (2.10), we have
b =b*(A) = cAy, (2.11)
for large k, where ¢ = tcop(s,)(s, — 5,). We shall prove that
u(t,) = o as k— oo, (2.12)

Where uk(‘)= u( ‘Y bk’ 2"() al’ld T = T(bk, j‘k)‘
Set

Fu)=1[ f(s)ds,
0
and define

V(s)y=V(s, b, 1) E%u’z(s, b, L)+ p(s) F(u(s, b, A)).
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Since V'(s) = p'(s) F(u(s)), we have

51
T

Vis)=V@)+ | o0 F) ds

where 7 =1(b, A). Therefore, we have

1 st
5 b3 =p(t) Flus(t) + | p'(1) Fluy() d.
By (2.11), (2.12) holds.
By the result of Gidas, Ni, and Nirenberg [12],7(5, 1) < $(so(b, 1) + 5,).
Hence, we have

for k large.

Since u is concave, the straight line /, connecting (s, 0) and (z,, u,(t,))
lies below the graph of u,. Therefore, (2.12) implies that the slope m, of I,
will tend to —oo as k— co. Hence, u,(s) — oo uniformly on [§,,5,] as
k — oo, where 5, =45, + 25,. Since u, satisfies

Slui)

Uy

Uy + Ay p(s)

uk=0 in [§I7§2]s

by (A-2) and the Sturm comparison principle, u, has zeros in [§,, §,] for
large k, a contradiction. This proves (i).

(ii) If the result were false, then lim, _ 4+ s&(1) =5,>0. Therefore,
(2.3), (2.4) has no positive solution in (§,, s;) for any 4>0, which con-
tradicts the fact that (2.3), (2.4) has a minimum solution for A>0 and
sufficiently small. The proof is complete.

Now, we can prove our main result.

THEOREM 2.5. Assume conditions {A-1) and (A-2) are satisfied. Then
there exists A* = A*(A, B) >0 such that (2.1), (2.2) has at least two positive
solutions for all 2€(0, A*) and at least one for 1 = A* and none for A > A*.

Proof. By Lemmas 2.3 and 2.4, there exists a unique A* >0 such that
s¥(A¥)=s,. By Corollary 2.2, (2.1), (2.2) has at least two positive solutions
- for any 1€ (0, A*). It is clear that there exist at least one positive solution
for A= A* and none for 4> A* The proof is complete.

We give some properties concerning the solution set of (2.1), (2.2} as
follows.
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THEOREM 2.6. Assume conditions (A-1) and (A-2) are satisfied. Let
A* >0 be given as in Theorem 2.5. Then there exists a continuous function
M(A): (0, A*¥) > R™, such that if w(A) is a solution of (2.1), (2.2), then
lu(A)] o < M(R), where |u| =sup{lu(x)|:xeQ}. Moreover, if #(4) is a
non-minimum solution, then |a(A)|| . — o0 as i —-07".

Proof. The existence of M(A) follows from Lemma 2.1(i).

To prove the last part of the theorem, we shall show that if solution u(4)
is not large enough as A — 0™, then (1) is the minimum solution u(4). It
is easy to verify that ||u(A)|| , =0 as A —0%. Let w(s, 1) =u(s, 1) —u(s, 1).
Then w satisfies

w" + Apgw =0 i (s, 51,
w(so) =0=w(s,),

where

Slu(s, 1)) — f(u(s, 1))
u(s, A)—u(s, 4)

if u(s, 1) > u(s, 1),
g(s, '1) =
S (u(s, 4)) if u(s, 2)=u(s, 1),

which is continuous in [so, s,] for any A€ (0, 1*). Set G(4)=|g(-, A)|l -
Let vi>0 and ¢, >0 in (s¢, 5,) be the least eigenvalue and an associated
eigenfunction of
" +vpe=0 in (s0,51)
@(s0) =0=0(s,).
If AG(A)<v,, then w=0 in (so, 5;). Otherwise, by the Sturm comparison

principle, ¢, has a zero in (sq, s,), a contradiction. Hence, if u(1)# u(4),
then G(4) = v, 41~ ". The proof is complete.

In the remaining part of the section, in addition to conditions (A-1) and
(A-2), we also assume that f is strictly increasing and convex; i.e., f satisfies

(A-3) f'(u)>0and f"(u)>0 for all u=0.

Instead of using backward shooting, as in [20], we shall use forward
shooting to study (2.3), (2.4); i.e,, consider the family of solutions of the
initial value problem

u"(s) + Ap(s) f(u(s))=0 for s>s,, (2.13)
u(se) =0,  u'(sy)=d>0. (2.14)
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If u has a zero in (s, 00), let 5,(d, A) be the first zero of it. If u is positive
in (sy, ©), let s,(d, A)=oo. Then, it is easy to see that s,(d, 1) is C*
in (d,A) in the set {(d, A)eR* xR*:s,(d, A)<oo}. Set ¢(s, d )=
(Ou/od)(s, d, 1), then ¢ satisfies

" +ipf' (W) @=0  in (s, 5:(d, ), (2.15)
@(s0)=0 and Q'(sg)=1. (2.16)

DEFINITION 2.7. u(-, d, A) is called minimum if ¢(-, d, 1) is positive in
(8¢, 81{d, A)) and is called non-minimum if ¢(-, d, ) changes signs in
(SOs Sl(d’ /1))

LEMMA 2.8. Assume that s(d,A)<oo. Let p,=u,d, ) be the least
eigenvalue of the linearized eigenvalue problem

w4+ Apf (W) w= —pupw in (sq,5,(d, 2)), (2.17)
w(so) =0=w(s,(d, 1)), (2.18)

of (2.3), (24) at u(-,d,1). Then u(-,d, A) is minimum if and only if
pi(d, 4) 2 0.

Proof. Let w; >0 in (5o, (-, d, A)) be an associated eigenfunction; i.e.,
w; satisfies

wi+ (4 (u) + p ) pw,; =0 in (so, 5,(d, 4)),
wi(sg) =0=w(s,(d, 1)).

If u,<0, then by the Sturm comparison principle, ¢ has a zero in
(50, 5:(d, 4)); ie., u(-, d, A) is non-minimum. If u, =0, then ¢ =cw;>0
in (sq, 84(d, 4)); e, u(-,d, A) is minimum. If g, >0, then ¢ is positive in
(S0, 51(d, 1)]. Otherwise, by the Sturm comparison principle again, w, has
a zero in (sq, 5,(d, 1)), a contradiction. The proof is complete.

We need the following result which is a special case of Lemma 2.17 of
Crandall and Rabinowitz [8].

PROPOSITION 2.9. Assume conditions (A-1)-(A-3) are satisfied. If
si(dy, A)=s,(d\, A)=s,, then if p(d;,2)>0 we have u(-,d,,1)>
u(-, dy, ) in (sg, s5,), while if u,(d,, 1)=0, then d,=d,.

Note that, by Lemma 2.8 and Proposition 2.9, u(-, d, 1) is minimum if
and only if u(.,d, A) is the minimum solution of (2.3), (2.4) on
(SO’ Sl(d’ )“))
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LEMMA 2.10. Assume conditions (A-1)-(A-3) are satisfied. Then there
exists do(A) >0 such that u(-, d, 1) is minimum if de (0, d(A)) and non-mini-
mum if de (dy(A), 00) with s(d, 1) < 0.

Proof. By an argument similar to proving Lemma 2.1, we can prove

im s,(d, A)=so, (2.19)
d— ¢

and
lim s,(d, 2) = s,. (2.20)
d—>0t

Using (2.20), (A-3), and the Sturm comparison principle, we can also
prove that u(-, d, 1) is minimum if d is sufficiently small; i.e., the set

D={d>0:¢(-,d A)>0in (sq, 5,(d, )] = (50, ©)} 2 (0, d)

for some d> 0. It is easy to see that D is an open set and u,(d, A)> 0 for
all de D. For s,(d, 2) < o0, we have

% (d, 2)=—o(s,(d, A), d, )u'(s\(d, A), d, }). (2.21)

By (2.19) and (2.20), there are de D and d> 0 such that s,(d, 1) =s,(d, A).
Since pu,(d, A)>0 by Lemma 2.8 and u,(d, 1) <0 by Proposition 2.9, we
have D # (0, ).

We shall prove that

D =(0, dy(1)), (2.22)

where do(4) =sup{de D} < .
Set s¥(4)=sup{s,(d, 1):d>0}, then there are two cases to be discussed
according to sF(1) < oo or s¥(1)= 0.

Case 1. s¥(A)< co.

Let d,>0 such that (0,d,)cD and d,¢ D. Then s¥(1)< oo implies
si(dy,A)<oo. It is clear that ¢(-,d;,A)>0 in (sq,s,(d;,A)) and
¢(s,(d,, A), dy, A)=0. By Lemma 2.8, u,(d,, 1)=0. Since (s,/0d)(d, 1) >0
for all de(0,d,), s(dy,1)>s,(d 2) for all de(0,d,). If there were
d,>d; such that d,eD, then by Proposition 29 we must have
s,(dy, A)>s,(dy, A). Now u(-,d,, 1) is a supersolution and u(-,d,, 1)
is the minimum solution of (2.3), (2.4) on [s4,5,(d,4)], and we
have u(s, d,, A)>u(s,d\, 1) on (s¢,s,(d,4)]. By (A-3), we have
S (uls, dy, A)) > f'(u(s, dy, A)) on (sq, 5,(d, )). By the Sturm comparison
principle, ¢((-, d», 1) has a zero in (s, s,(d, 1)), a contradiction to d, e D.
This proves that D = (0, d,).



378 SONG-SUN LIN

Case 2. s¥(A)=o0.

Let d,>0 such that (0,d,)cD and d;¢D. Then we claim that
si(dy, 1) = c0. Otherwise, if s,(d;, 1) < oo, then the argument in Case 1
implies that D= (0, d,). Since for any s,>s,(d;, A), (2.3), (2.4) has the
minimum solution u, on [so, s,] with u; =u(-, d,, 1) and s,(d,, A)=s, for
some d, >d,. By the result of Sattinger [227] we have pu,(d,, 1) =0, which
implies ¢(-, d,, A)>0 in (sq, s,) < (59, 5,(d}, 4)], i€, d,€ D, a contradic-
tion. This proves s,(d;, 1)=co. Hence, for all d>d,; with s,(d, )< 0,
by Proposition 2.9, we have d¢ D. This proves D= (0, d,). The proof is
complete.

Now, by modifying an argument of Ni and Nussbaum [20], we can
prove that if the annuli are narrow enough' then there are exactly two
positive solutions for (2.1), (2.2) for all 4¢(0, i*).

THEOREM 2.11. Assume conditions (A-1)-(A-3) are satisfied If
B/A<(n—1)"""? for n>3 and B/A<e for n=2, then (2.1), (2.2) has
exactly two positive solutions for any i€ (0, A*), exactly one at 1= A*, and
none for 4> A*,

Proof. Set g(s,u)y=2Aip(s)f(u), X(s)=(s—s,)t'(s,d, 2), and Y(s)=
u'(s,d, 1) as in [20]. Then

d

;(qu— Y'o)=g,0, (2.23)
AY

d ? ’

a(Xw—th)=—w[(s—so)gs+2g]- (2.24)

We first prove that if de{(d(4), o) with s5,{d A)<o and
(s—s0) g, +2g =0 on (s, 5,(d, A)) then

% (d, 1) <0. (2.25)

By Lemma 2.10, ¢(-, d, A) has a zero in (sq, 5,(d, 1)). Let &(d, ) be the
zero of ¢ such that ¢ >0 in (sq, &(d, 1)). Since (s—s5)g,+2g>0 on
(S0, $1(d, 4)), (2.24) implies that &(d, 4) > 1(d, A) where «'(z(d, A), d, 1) =0.
Since p’(s) <0, dg/0s <0. Therefore (2.23) implies ¢(s,(d, ), d, A)<0. By
(2.21), (8s,/0d)(d, A) <O.

It is clear that condition (s —s,) g, + 2¢ >0 is equivalent to

(s—s0) p'(5)+2p(s) =0, (2.26)
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which only depends on s. It is easy to verify that (2.26) holds if
B/A<(n—1)"""2 for n>3 and B/A<eifn=2.

Now, for A€ (0, A*), by Theorem 2.5 there are d,e D and d,¢ D such
that s,(d,, A)=s,(d,, A)=s,. By (2.25) and (2.26), we have s,(d, A)<s,
for all de(d,, o). This proves that there exists a unique non-minimum
solution for (2.3), (2.4) on [s,, s, ]. The proof is complete.

COROLLARY 2.12. Let the conditions of Theorem 2.11 be satisfied. Then
the family of non-minimum solutions u() is smooth in i€ (0, A*) with
Us(1)>0 for all Ae (0, A*), where u,(1) is the second eigenvalue of (2.17),
(2.18) with u=u(2).

Proof. Set H(d, 1)=s,(d, \)—s,, where de (d(4), o) with 5,(d, 1) < o0,
and Ae(0,A*). If H(d, 1)=0, then (0H/dd)(d, A)=(0s,/dd)(d, L)< O by
(2.25). Hence, by the implicit function theorem d = d(1) is smooth in 1 with
H(d(4), A)=0. Therefore, the family of non-minimum solutions u(1) is
smooth in A.

To prove u,(4)>0 for all Ae(0, A*), it is easy to see u,(4)#0 since
¢(-,d,A)<01in ({(d, 4), s,] (as in the proof of the last theorem). If u, <0,
then by the Sturm comparison principle, ¢ must have at least two zeros in
{50, $1), a contradiction. The proof is complete.

Remark 2.13. 1f the annuli are wide enough, i.e., the aspect ratio B/4
is large enough, then (2.1), (2.2) may have many solutions for certain
A€ (0, 4%*), e.g., f(u)=e" and 3 <n <9, the details will appear elsewhere.

3. MINIMIZING SOLUTIONS

In this section we shall prove that there exists a variational solution for
(2.1), (2.2) provided that f satisfies the following conditions:

(H-1) f(u)>0 for u>0, f(0)=0, and lim, _, (f(u)/u)=1,
(H-2) uf'(u)> f(u) for u>0,
(H-3) uf(u)=2(1+¢) [§f(r) dt for u large and ¢ >0,

and 1e(0, A;), where 1, is the least eigenvalue of —4 with the Dirichlet
boundary condition. ‘

By the result of Crandall and Rabinowitz [7], there is a family of
positive radial solutions of (1.1), (1.2) which bifurcates from the trivial
solution ¥ =0 at 1= 4,; however, we would like to have some more infor-
mation about these solutions.

We first prove the following lemma.
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Lemma 3.1, Assume (H-1), (H-2). If (1.1), (1.2) has a positive solution
then Ae(0, 4,).

Proof. 1t is clear that (H-1), (H-2) implies that f(u)>u for u>0.

Let u be a positive solution of (1.1), (1.2) and », >0 be an associated
eigenfunction of A;. Then 0=, uv,(A(f(u)/u)—1,). Hence A< 4i,. The
proof is complete.

Set a=B*""and b=A>""if n>3 and a= —log B and b= —log 4 if
n=2. Since we are only interested in the positive solution, we may assume
that f is an odd function defined on R'.

Set
H(w)= [ f(e)d, (3.1)
and consider the functionals
Jw)=J,(u)= jb {% w2 — AH(u) p} ds, (32)
and
10=1)= [ (w?~ipfu) ds (33)
Let

D = {u is an absolutely continuous function on [a, b] with u(a)=0=u(b)}
and
M=M,={ueD:u#0and I,(u)=0}. 34)

Note that if ue M, then
(1
Jl(u)=i'[ {5 uf(u)-H(u)} p ds. (3.5)

The variational problem referred to above is the problem of minimizing J,
over M,. It can be shown that a variational solution must satisfy (2.3),
(2.4) (see, e.g., [18,19]).

LemMA 3.2, Assume (H-1}-(H-3). If ue D with uz0 and u#0, and
A€ (0, A,), then there exists a t = t(u, 1) >0 such that tue M ;.
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Proof. For Ae(0, 4,),
b b
I(zu)=t2f u’z—lj pf(tu) tu

b b
=17, J pu? —}tf pf (tu) tu

=t2/llfbpu2{l—ijw}>(),

A tu

for >0 and is sufficiently small, here the Poincaré inequality has been
used.
It is easy to see that (H-1)-(H-3) imply

tim £ o (3.6)

u—-oo U

Hence, for ¢ sufficiently large, we have

Ke) =12 {jbu'z—,{fbp’@uz}w.

a a tu

Therefore, there exists ¢>0 such that I(ru) =0, ie., tue M,. The proof is
complete.

Remark 33. At A,, we have I, (tv,) <0 for all 1>0. In fact,

_f(tvl)
tv

1

2 [° 2
L (t,)=1 /11.[ Pvl<1

a

)<0 forali ¢>0.

LemMA 34. Assume (H-1)-(H-3). Then, for any A€ (0, A,),

my=inf{J(u):ueM,} > —c0.

Furthermore, if u, is a sequence in M, such that

Ji(u) > m; as k— oo, (3.7)

then there exists a constant C, < oo such that

b
f W2<C,. (3.8)

a
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Proof. By (H-3) and (3.5), it is easy to see m, > —oco. Suppose that
(3.8) were false, i.e.,

b
.[ U — oo as k- oo,

a

then (3.7) implies that A [% H(u,) p » o0 as k - co. By (H-3) and (3.5)
again, we have

b
Tz de [ pH(w) —C,

for some constant C, a contradiction to (3.7). The proof is complete.

After these preparations, we can now prove the following theorem.

THEOREM 3.5. Assume conditions (H-1)}-(H-3) are satisfied. Then for
any A€ (0, A,), there exists a minimizer of J,(u) over M, which is also a
solution of (2.1), (2.2).

Proof. Pick up a sequence {i, } = M, which satisfies (3.7). Without loss
of generality, we may assume that i, > 0. By (3.8), {#,} is equicontinuous
on [a, b]. Hence, there is a subsequence {u,} of {#i,} satisfying (3.7) and
u; - u, uniformly on [aq, b].

Let w, € C*([a, b]) solve the problem

Wi+ Apf(u)=0  in (a,b),
We(a) =0=w(b).

It is clear that w, >0 in (q, b). Since 1€ (0, 4,), by Lemma 3.2, there exists
a t, >0 such that w, =1, W, e M;; ie., w, satisfies

wi=—4Apf(w)  in (a,b), (39)
wi(a)=0=w,(b). (3.10)

Then by the result of Nehari [18, (27) of p. 112], we have
Ji(we) <J(uy). (3.11)

In fact, if we let f(u)=u(1+h(u?)) and F(u, s) = Ap(s)(1 + h(u)), then
uF(u?, s) = Ap(s) f(u), and Eq. (2.3), (2.4) is equivalent to

u’ +uF(u? s)=0 in (a,b),
u(a)=0=u(b),
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which was studied by Nehari in [18]. Therefore, we have
Jiwi) o m; as k- oo, (3.12)

We shall prove ¢, is bounded. Since

2 {f Aof (i) uk}z - { I wiuk}z - {jb w’ku'k}z

<[ w [ wr=]" dofmoy e [ Aof(ue)

a a a a

we have\

b b
2 doft) we< [ apftw) wi. (3.13)

a a

By (3.12), (3.13), and (3.8), we have

b
2| dpfu) ue<C, (3.14)

for some constant C;. If ¢, were unbounded, then

b
lim inf [ 2oty w=o0,

which implies liminf, _ , [54,>=0 and so u, — 0 uniformly on [a,5].
Hence, by (H-1), we have

b b
J pf(uk)uk/f pui—1 as k- oo.
But

b b b
W e[ wi=1] eftw)
we have 1, <4, a contradiction. Therefore, ¢, is bounded. Note that we
have proved lim inf, _, ., [%#;*> 0, which implies u, #0.

Since ¢, is bounded, we may assume it tends to a limit 75 >0. Since
u, — u, uniformly on [a, b1, by (3.9), (3.10), there exists a woe C*([a, b])
such that w, » w, in C?([a, b]). It can be verified that 7,>0 and so
wo Z0. In fact, if 1,=0 then w, —» 0 uniformly on [a, b] and so

b b
f pf(wk)wk/J. pwi 1 as k- o0.

505/86/2-13
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Therefore, by the Poincaré inequality, for k sufficiently large we have
1 ¢t
Lw) >3 | pwili,=4)>0,

a contradiction. Hence, wye M; and J,(w,) — J,(w,) implies J,(wy)=m,.
This proves wy is a minimizer of J, over M. It can be shown that any
minimizer is also a solution of (2.3), (2.4) (see, e.g., [18, 19].). The proof
is complete.

We have the following stability results for minimizing solutions of J,
over M;.

ProOPOSITION 3.6. Assume conditions (H-1)-(H-3) are satisfied. Let u; be
a minimizer of J, over M, A€ (0, A;). Then uy(A)=0> u,(1), where p,(1)
is the [th eigenvalue of the linearized eigenvalue problem

"+ Apf(u;) o= —ppp  in (a, b),
@(a)=0=o(b).
Proof. It is easy to see that (H-2) implies u,(1) <0 (see, e.g., [20]).
Let v,(4) be the /th eigenvalue of the linear eigenvalue problem
Y’ +vipf (w)y=0 in (ab),
Y(a)=0=y(b).

By an argument similar to proving Lemma 6.3 of [2], we can prove
v,(4)=>1 and omit the details here. Now the result follows from the
following lemma.

LEMMA 3.7. Assume g(x)e C(Q) and g(x)>c>0 on Q, where Q is a
bounded smooth domain in R". Let u, be the Ith eigenvalue of the linear
eigenvalue problem

dp+gp=—pp in L,
=0 on 09,

and let v, be the Ith eigenvalue of the linear eigenvalue problem

A +vep =0 in £,
¥=0 on 09Q.

Then p, <0 if and only if v,< L.
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Proof. The lemma can be proved by using the mini-max principle of
eigenvalues (see, e.g., [6]); the detail is omitted.

Finally, we also have a unique positive radial solution of (1.1), (1.2) if
the annuli are narrow.

THEOREM 3.8. Assume conditions (H-1)}-(H-3) are satisfied. If B/A<
(n—1)Y"=2 for n>3 and B/A<e for n=2, then there exists an unique
positive radial solution u; of (1.1), (1.2) for 1€(0, ,), which is also the
minimizer of J, over M ;. Furthermore,

lu;)lo—>00  as A—0%. (3.15)

Proof. The existence of the minimizer of J, over M, was proved in
Theorem 3.5 and the uniqueness of the positive radial solution was proved
in Theorem 1.7 of [20].

Since

[ <] Vu =] fw)u,
we have

AfA<sup{ fuy(x))fu,(x):xe Q},
5o (3.15) follows. The proof is complete.

Remark 3.9. If the annuli are wide enough, then (2.1), (2.2) also
may have many solutions for certain Ae(0,4,), eg, f(u)=u+u?,
p>(n+2)/(n—2), and 3<n<9 (see, eg, [5]).

4. NON-RADIAL BIFURCATION

In this section we shall study the problem of non-radial bifurcation
(symmetry breaking) from a certain family of positive radial solutions of
(1.1), (1.2).

We first study the linearized eigenvalue problem of (1.1), (1.2) at the
positive radial solution u;:

Aw+ A (u;) w= —puw in Q, (4.1)
w=0 on 0Q. (4.2)

In spherical coordinates, (4.1), (4.2) can be reduced to

1
o)+ )+ {if )= 2 o) =~ o) re(a,B)

»(4)=0=¢p(B), (4.3)
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where o, =k(k+n—-2),k=0,1,2,..,7=1,2,... Note that a, is the eigen-
value of Laplacian —4 on $”~, the unit sphere, and the dimension of the
eigenspace S, of associated eigenfunctions is [, =(**7~2)((n+2k—2)/
(n+k—2)). Let x=(xy, .., x,_,); a function v defined on S"~! or Q is
called O(n—1) invariant if v(T%, x,)=v(X, x,) for all Te O(n—1). Then,
for any positive’ integer k, the dimension of V, = {veS,|vis O(n—1)
invariant} is one, for details see [24].

Denoted by C;*7(Q2) the set of continuously differentiable functions on
Q which vanish on 8Q and whose first order derivatives are Holder con-
tinuous on £ with exponent ye (0,1). C}*?(2) is a Banach space under
the usual norm || =|-|,,.

Let u; be a family of positive radial solutions of (1.1), (1.2) which is
smooth in A€ (4, 4;) < (0, ). Note that u, is called smooth in 1 if u, is
C' in A for some positive integer /. A€ (A4, 4,) is called a (non-radial)
bifurcation point if every neighborhood of (4, u;,) in R~ x C+?(@2) con-
tains a (non-radial) positive solution other than u(4). [4y, 4o] = (4,, 4,) is
called a (non-radial) bifurcation interval if every neighborhood of
{(A,u;):A€[Ag, 4g]} contains a (non-radial) positive solution other
than u(A).

The following theorem is a variant of bifurcation theorems of
Krasnosel’skii, and Rabinowitz [21].

THEOREM 4.1. Let u, be a family of positive radial solutions of (1.1),
(1.2) which is smooth in Ae(A,, A,). If Age (A, A,) and € >0 such that

() i 1(A0)=0, pei(A) pe (A) <0 for Le(lg—e,4o) and ANe
(Ao, Ag + £), for some positive integer k,

(i) p;2(A)>0 for Ae(Ay—¢, Ao+ ¢€) and all non-negative integers |j,

then Ay is a non-radial bifurcation point.
Similarly, if (i) is replaced by

(i) Hi1(A) =0 on [Ao, Ao, and p ((A) pe (X)) <0 for Ae(Ao—e, Ao)
and X' € (Ay, Ao+ &),

then [Ay, o] is a non-radial bifurcation interval.
Proof. Let w=u—u,. Then (1.1), (1.2) can be written as
Aw+ A{ f(u; +w)— f(u;)} =0 in Q, (4.4)
w=0 on 0%, (4.5)
which can also be written as an operator equation

w— @, (w)=0 (4.6)
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on C1+7(Q), where @,(w)=AG{f(u,+w)—~f(u;)} and G=(—4)"" It is
clear that & ,(w) is a compact operator for each 4> 0. We shall work (4.6)
on the O(n—1) invariant subspace X={weC *"(Q):w is O(n—1)
invariant }.

Assume conditions (i) and (ii) are satisfied. If 2, is not a bifurcation
point, then there exists 6 >0 (6 < ¢) such that there is no solution of (4.6)
in X for |A—4,| <6 and ||u— ;|| <J except u;. Here & can also be chosen
small enough such that

w1 (A)#0 for Ae(l,—9, A+ 4) and j#k. 4.7)

Let B4(0) be a §-ball in X. Then
deg(I—&;, B;(0), 0) is constant on [, —~ 4, g+ 6] (4.8)

By (ii) and (4.7),
deg(I—@;, B;(0), 0) = deg(I — @,(0), B;(0), 0), (49)

for all Ae [A4g—3, Ao+ 01\ {4¢}.
By Lemma 3.7, it is easy to verify that

deg(I—@}(0), B5(0),0)=(—1)* and deg(I—©:(0), B;(0),0)=(—1)**'

when ;. ,(4) >0 and p, (1) <0, and
deg(7— ®3(0), Bs(0),0)=(—1)*"! and deg(/— @;/(0), B5(0),0)=(—1)*

when p, ,(4) <0 and g, ;(4') > 0. Which leads to a contradiction in view of
(4.8) and (4.9). This proves A, is a bifurcation point.

By a similar argument, if conditions (i)’ and (ii) are satisfied, then (1.1),
(1.2) bifurcates on interval [4,, 1,]. The proof is complete.

Remark 4.2. The problem of bifurcation on an interval for certain non-
linear differential equations has been studied by Berestycki [3]. Although
(i)’ seems unlikely in our problem, we cannot rule out this possibility for
the time being. In the case n=2 and f(u)=e" only (i) is possible, see
Lin [14].

Let ii; be the least eigenvalue of

Aw=—iir 2w  in Q, (4.10)
w=0 on 0%. (4.11)
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Then, by the Poincaré inequality, we have
ﬁlj =22 dxgj (Vw|? dx (4.12)
Q o

for all we C{*7(2).

The following lemma indicates that there is a great possibility to have a
non-radial bifurcation of (1.1), (1.2) when the growth of f(u) is rapid
enough as u — oo.

LeMMA 4.3. Let u, be a family of positive radial solutions of (1.1), (1.2)
which is smooth in A€(0, A). Assume f(u) satisfies the following growth
condition:

(G) uf'(u)= pf(u) for u large,

where p>1+a,/fi, and k is a positive integer. If |u,||, -0 as A—-07,
then p, (1) <0 for A sufficiently small.

Proof. 1t is easy to verify that |Ju, ], — o0 as 4 —» 0% implies that

[ Vu om0 as a-0%. (4.13)
2
In fact, for any re (4, B),
u(r)=| ui(s)ds
A
B 12
<—ar2{ [ o oo}
A
172
S(B—A)l/zA_("“”/zwn_m{f |Vu,1|2} ,
2

where w, is the area of unit sphere $"~!. Hence,(4.13) follows.
The eigenvalue yu, ; can be characterized as

Hi =inf{R(Y):y € Co([4, BD},

where

R(Y)= R (¥) = QW VIW),
QW)= Q) =] 1= {W0) = ) W) + our )} i,
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and

B
)= R

A

Since u; is a solution of (1.1), (1.2), we have
[ Va2 =1 ] s, (4.14)
2 Q2
Then, by (G), (4.12), (4.13), and (4.14), we have

Q)= [ 1S f )y uitay | 1
<A1 =p) | Sl ust i | Ve, + M

= (o —p) | VP +M

for some constant M >0 which is independent of A. Hence, Ofx,}) <0 if 4
is sufficiently small. The proof is complete.

DEerFINITION 4.4. A, is called a non-radial bifurcation point with mode &
if p1z 1(40) =0 where k is a positive integer. A similar definition can also be
given to non-radial bifurcation interval [4,, 4,].

Now, we can apply the above results to the problems which have been
studied in the previous sections.

THEOREM 4.5. Assume B/A<(n—1)"""2 for n>3 and B/A<e for
n=2.

(i) If conditions (A-1)-(A-3) and (G) are satisfied, then for each
positive integer j, 1 <j<k, (1.1), (1.2) has a non-radial bifurcation with
mode | along the upper (non-minimum) branch of the positive radial solution.

(i) If conditions (H-1)-(H-3) and (G) are satisfied, then for each
positive integer j, 1 <j<k, (1.1), (1.2) has a non-radial bifurcation with
mode j along the positive radial solution.

Proof. (i) Since pq (4*)=pu,;(A1*¥)=0, by Theorem 2.6 and Lemma 4.3,
for any 1 < j<k, there exists a 4, (0, A*) such that y; ,(4;) =0 and satisfies
either (i) or (i) of Theorem 4.1. Condition (ii) of Theorem 4.1 follows
from Corollary 2.12. Hence, there is a non-radial bifureation at 4; or on
[4,4]. Similarly, (ii) can be proved by using Proposition 3.6,
Theorem 3.8, Lemma 4.3, and Theorem 4.1. The proof is complete.
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Remark 4.6. For f(u)=¢e", n=2, (G) holds for all positive integers k.
It has been proved in [14] that there exists a sequence A, -0 as j—
such that (1.1), (1.2) has a non-radial bifurcation at each 4, with mode j.
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