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We discuss the existence and multiplicity of positive radial solutions and the non- 
radial bifurcation of Au + Q(u) = 0 in 0 and u = 0 on 1352, where Q is an annular 
domain of LQ”, n 2 2. We prove that if f(u) > 0 for u 3 0 and lim,, ,f(u)/u = co, 
then there exists i* > 0 such that there are at least two positive radial solutions for 
each IE (0, A*), at least one for /I = A’, and none for 1 z/I*. If f(0) =O, 
lim u _ a.f(u)/u = 1, and Q’(u) > (1 + s).f(u) for u > 0, E > 0, then there exists a varia- 
tional solution for I, E (0, A,), where ii is the least eigenvalue of -A. If f(0) = 0, 
lim,,,f(u)/u=O, and lim,,,f(u)/u= cu, then there exists at least one positive 
radial solution for any 1> 0. We obtain some precise multiplicity results for narrow 
annulus and show that the non-radial bifurcation occurs if the growth off(u) is 
rapid enough as U-P co. ~c 1990 Academic Press, Inc. 

1. INTRODUCTION 

In this paper we consider the existence and multiplicity of positive 
radially symmetric solutions and non-radial bifurcations (symmetry 
breaking) of the equation 

du+Af(u)=O in 52, (1.1) 

u=o on X& (1.2) 

where Q= {.xE[W”:A< 1x1 <B} is an annular domain of IR”, n>2, A>O, 
feC2, andf(u)>O for u>O. 

Equation (l.l), (1.2) arises from many branches of mathematics and 
applied mathematics. It was studied by many authors, for example, 
Gelfand [ 111, Keller and Cohen [ 131, Amann [ 11, Crandall and 
Rabinowitz [S], Sattinger [22], an Lions [17]. 

We shall study the problems according to f(0) > 0 or f(O) = 0. 
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If Sz is a bounded, smooth domain in UP, f(0) > 0, fis strictly increasing 
and strictly convex, then there exists A* > 0 such that for any A E (0, A*), 
(l.l), (1.2) has a minimum solution which can be obtained by a monotone 
iteration scheme (see, e.g., [ 13,221). In [S], Crandall and Rabinowitz 
showed that if the growth off(u) as u + co is less than the Sobolev critical 
exponent then (1.1 ), (1.2) has at least two positive solutions. Recently, 
Suzuki and Nagasaki [25] obtained a similar result for positive radial 
solutions of (l.l), (1.2) without assuming the growth conditions of f(u) 
when 52 is an annulus. In this paper, we shall prove that the similar result 
holds if f(u) is superlinear at u = co, i.e., lim,, m (f(u)/u) = co, without 
assuming f(u) is convex and increasing. 

If 52 is an annulus and f(O) = 0, f(u) > 0 for u > 0, and f(u)/u’ +’ is 
strictly increasing in u > 0 for some E > 0, Nehari [ 181 proved that there is 
a variational solution for (l.l), (1.2). In fact, he considered the equations 

y” + yF(y2, x) = 0, (1.3) 

Y(U) = 0 = Y(b), (1.4) 

where F(t, x) is continuous and positive for t > 0 and x > 0, and F(F(~, x)/P 
is strictly increasing in t > 0 for some positive number E, the functional 

J(Y) = I” CY” - WY*, x)1 dx, (1.5) 
a 

where 

WV, x) = j-” F(t, xl dt, 
0 

and the set 

where 

M = ( y is absolutely continuous on [a, b] such that 
y(a) = 0 = y(b), y # 0, and Z(y) = 0}, 

Z(y)=lb (y’*-y2F(y2, x)> dx. (1.6) 
a 

He showed that the minimizer of J over M is achieved which is positive 
and also satisfies (1.3), (1.4). 

We shall prove that if f satisfies the following conditions 

(H-l) j(O)=O,f(u)>O for u>O, lim,,,+ (j(u)/u)=l, 

(H-2) uf’(u)>f(u) for u>O, 
(H-3) z&u) 3 2( 1 + E) J&j(t) dt for u large and positive number E, 

then (l.I), (1.2) has a variational solution for any AE (0, A,), where I, is 
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the least eigenvalue of Lapacian -A with Dirichlet boundary conditions 
on annulus Sz. 

The existence of positive radial solutions of (l.l), (1.2) under the 
assumption lim, _ O+ (f(u)/u) = 0 has been studied by Bandle, Coffman, 
and Marcus [2], Garaizar [lo], and Lin [15]. In [15], it was proved that 
(1.1 ), (1.2) has a positive radial solution on any annulus provided that f 
satisfies the following conditions: 

(H-l)’ lim,,O+ (f(u)/u)=O, 

(H-2)’ lim,, o. (f(u)/u) = co. 

Since the set of positive radially symmetric solutions of (l.l), (1.2) can 
be very complicated, it is difficult to study the non-radial bifurcation 
problem in such a situation. Therefore, we shall study the problem on the 
narrow annulus. In fact, if the aspect ratio B/A < (n - l)l’@‘-*) for n > 3 
and B/A < e for n = 2, uf’(u) > f(u) for u > 0, Ni and Nussbaum [20] 
proved that (l.l), (1.2) has at most one positive radially symmetric solu- 
tion. For such a domain, iff(0) > 0 andf is strictly increasing and convex 
then we can show that there exists an unique non-minimum positive radial 
solution for any J. E (0, A*). 

For such an annulus, we shall prove that the non-radial bifurcation 
occurs if the growth of f(u) is rapid enough as u + +co. 

The problems of non-radial bifurcation from radial solutions on balls 
were studied by Dancer [9] and Smoller and Wasserman [23,24], on an 
annulus by Suzuki and Nagasaki [26] and Lin [14], and on sectorial 
domains by Berestycki and Pacella [4] and Lin [16]. 

For simplicity, in this paper we only consider the problem of the form 
(1.1). With a slight modification of the arguments, we can also obtain 
similar results for an equation of the form 

Au + If(r, 24) = 0 in 52, (1.1)’ 

when f(r, U) satisfies some appropriate conditions. 
This paper is organized as follows: In Section 2, we study the existence 

of the second (non-minimum) positive radial solution for (l.l), (1.2) when 
f(0) > 0. In Section 3, we prove the existence of a variational solution for 
(l.l), (1.2) whenf(O)=O and lim,,,+ (f(u)/u)= 1. In Section 4, we study 
the non-radial bifurcation problems on a narrow annulus. 

2. THE SECOND SOLUTION 

In this section we shall study the existence of the second positive radial 
solution of (1.1 ), (1.2). Since we are interested in the radial solutions, we 
write (l.l), (1.2) as 
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d’(r) + y! u’(r) + @-(u(r)) = 0, r E (4 m, (2.1) 

u(A) = 0 = u(B), (2.2) 

where A>0 and n>2. 
We assume that f satisfies the following conditions: 

(A-l) feC2(R’) andf(u)>O for ~20, 

(A-2) lim,, o3 (f(u)/u) = co. 

For n > 3, set 

s=r2-n and 4s) = u(r), 

then (2.1), (2.2) can be rewritten as 

u”(S) + Ip(s)f(u(s)) = 0 in (so, sl) (2.3) 

u(sJ = 0 = u(s,), (2.4) 

where p(s)=(n-2)-‘spk, k=2+2/(n-2), s0=B2-“, and s~=A’-“. 
For n = 2, set 

s= -1ogr and 4s) = 4-h 

then equations (2.1), (2.2) can also be rewritten as (2.3), (2.4) with 
p(s) = e --zs, s,,= -log B, and S, = -log A. 

Using the backward shooting, we consider the family of solutions of the 
initial value problem 

u”(S) + Ap(s)f(u(s)) = 0 for s<s, (2.5) 

u(s,)=O, u’(s,) = - 6, (2.6) 

where b > 0 is the shooting parameter. 
For every b >O, problem (2.5), (2.6) has an unique solution 

u( .) E u( ., b, 2) with the maximal domain of existence (s”(b, A), sl). It is easy 
to check that (2.5), (2.6) is equivalent to the following integral equation 

u(s)=b(s,-s)-A S”(t-s)p(t)j.(u(t))dt, for s<sl, (2.7) 
s 

and solution u also satisfies 

u(s) = U(S) + U’(S)@ -S) + A j’ (t - s) p(t)f(u(t)) dt 
s 

(2.8) 
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for s, SE (S(b, A), si). From (2.7), if u is positive in some interval (rx, si), 
then 

u(s) < b(s, -3) in (a, si). (2.9) 

If u has a zero in (s”(b, A), sr), denote 

and r(b, 1) E (s,(b, A), sr) such that u’(r(b, A), b, 1) = 0. 
By standard results in o.d.e., the functions u(s, b, 2) and u’(s, b, A) are 

continuously differentiable in (s, b, A). Since u”(s, b, 1) < 0 in (s,(b, A), sl) 
and u’(sO(b, A), b, 1) > 0, by the implicit function theorem, s,(b, 1) and 
z(b, 2) are also C’ in (b, ,I). 

In this section, we only discuss the case n 2 3; the case n = 2 can also be 
treated analogously. We first prove the following lemma. 

LEMMA 2.1. Assume conditions (A-l ) and (A-2) are satisfied. Then for 
any b > 0 and 1> 0, s,(b, 1) > 0. Furthermore, we have 

0) lb,+, s,(b, 2) = lim, _ o. z(b, 2) =s,. 

(ii) limb,,+ s,(b, A)=lim,,,+ z(b, L)=s,. 

Proof: Set c,=lim{f(u):u>O) >O. If u(s)>0 in (a, s,), then by (2.7) 
we have 

kl s ‘l(t-~()~(t)dt~b(s~-~1). 
? 

Since 

2-k 

(n-2)2~S’(t-rr)p(t)dt=(k-l~(k-2)x2pk+~u.-L 
a k-2’ 

we have 

for some positive constants c1 = cl(n) and c2 = c2(n, s,). This implies that 
s,(b, 2) > 0 for any b > 0 and 1> 0. 

(i) This can be proved by an argument similar to proving Lem- 
mas 2.1 and 2.2 of [lS]; the details are omitted. 

(ii) It suffkes to show that limb,,+ s,(b, A) =sr. Suppose this were 
false then there would be a il> 0, a positive number E, and a sequence 
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bk+O such that s,-2~~sb~s~(b,,~)~s,-~. By (2.7) and (2.9), for k 
sufficiently large, we have 

2Eb,~b,(s,-s;)9~~~(0) f’(t-s;)p(t)dt>c(~J)>O, 
Sk 

a contradiction. This completes the proof, 

Set 

s,*=s,*(l)=min{s,(b,1):b>O}. 

An immediate consequence of Lemma 2.1 is the following result. 

COROLLARY 2.2. I f  so~(sg*(A),sl), then (2.3), (2.4) has at least two 
positive solutions. 

The following lemma plays the key role in this section. 

LEMMA 2.3. @(,I) is continuous and strictly increasing in A> 0. 

Proof We first prove that s:(A) is strictly increasing in I > 0. In fact, 
if 0 < ,J1 < A2 and u2 is a solution of (2.3), (2.4) at A= & on (s$(l,), si) and 
set 

v(x) = CM,(t) and 

where c> 1 and close to 1, then it is easy to verify that v(x) > 0 in 
(so*(&) - E, si) and v(s$(&) -a) = 0 = v(si), where 

E- (c- l)(s, -sg*(&))>O, 

since 

v”(X) + hP(X)f(V(X)) 

= f u;(t) + &P(X)f(w(t)) 

= - f ih4t)f(u*(t)) - c~,&hf(w(t))~. 

If c is sufficiently close to 1, then 



RADIAL SOLUTIONS ON AN ANNULUS 373 

for all t E (.sd(&, si)). Therefore, o is a supersolution of (2.3) (2.4) on the 
interval (.$(A,) - E, si), which implies $(A,) 6 so*(&) - E. Hence s:(A) is 
strictly increasing in I > 0. 

Since s,(b, Is) is continuous in J and s,*(A) is increasing, 
lim j. _ 10 s,(b*(&), 2) = s,(b*(l,), 2,) = $(A,) implies that lim, _ io+ s:(J) = 
$,*(A,) immediately. On the other hand, if 1 close to 2, > 0, then it is easy 
to check that b*(A) is bounded and bounded away from 0 by an argument 
similar to proving Lemma 2.1(i), (ii). Choosing a sequence 1, + I, and 
A,< & such that b*(&) -+ b* >O as k + co, we have lim,, 3. @(A,)= 
lim k _ v. s,(b*(&), 2,) = s,(b*, 2,) > $(A,). Hence lim, _ io sg*(J.) = so*(&). 
This proves that s,*(l) is continuous in 1. The proof is complete. 

LEMMA 2.4. Assume conditions (A-l ) and (A-2) are satisfied. Then, we 
have 

(i) lim,,, dV)=sl, 
(ii) lim j,+o+ s,*(l) = 0. 

Proof: (i) Let s0 = s,(b, I), by (2.7) we have 

b(s,-s,)=l~~'(rs,)p(t)f(u(t))dt2fic,p(s,)(s 
so 

where c0 = min { f (u) : u > 0} > 0. This implies 

b*(4+dW, -s,*(l)). 

1- %)*5 

(2.10) 

If the result were false, then there would be a number S, < s, and a 
sequence A, -+ co such that lim, _ o. s$(&) = So. By (2.10), we have 

bk - b*(&) > cl,, (2.11) 

for large k, where c= &,p(s,)(s, -So). We shall prove that 

U/c(7k) + 00 as k+oo, (2.12) 

where uk( .) = u( ., b,, 1,) and 7k = z(b,, 1,). 
Set 

W=~j~fW, 

and define 

V(s) = I’(s, b, I) =; uf2(s, b, ,I.) + p(s) F(u(s, b, /I)). 
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Since V’(s) = p’(s) F(u(s)), we have 

where z = r(b, A). Therefore, we have 

; b: = d~,c) Ftud~,J) + j" p'(t) J'tdf)) dt. 
zir 

By (2.11), (2.12) holds. 
By the result of Gidas, Ni, and Nirenberg [ 12];z(b, 1) Q $(sO(b, A) + si). 

Hence, we have 

1 2 
T,<-S,+-S,=S, 

3 3 

for k large. 
Since u is concave, the straight line Zk connecting (si, 0) and (tk, uk(rk)) 

lies below the graph of uk. Therefore, (2.12) implies that the slope mk of Zk 
will tend to -cc as k + co. Hence, u,Js) -+ cc uniformly on [S,, S,] as 
k -+ cc, where S, = 4Z0 + z.r,. Since uk satisfies 

u,~~+A,p(~)~~u,=O in [S,,S,], 

by (A-2) and the Sturm comparison principle, uk has zeros in [S,, S,] for 
large k, a contradiction. This proves (i). 

(ii) If the result were false, then lim j. _ 0+ S:(A) = So > 0. Therefore, 
(2.3), (2.4) has no positive solution in (S,, s, ) for any il > 0, which con- 
tradicts the fact that (2.3), (2.4) has a minimum solution for A>0 and 
sufficiently small. The proof is complete. 

Now, we can prove our main result. 

THEOREM 2.5. Assume conditions (A-l ) and (A-2) are satisfied. Then 
there exists l* = iZ*(A, B) > 0 such that (2.1), (2.2) has at least two positive 
solutions for all 2 E (0, A*) and at least one for II = A* and none for II > II*. 

Proof: By Lemmas 2.3 and 2.4, there exists a unique 1* > 0 such that 
$(A*) = sO. By Corollary 2.2, (2.1), (2.2) has at least two positive solutions 
for any I E (0, A*). It is clear that there exist at least one positive solution 
for il = A* and none for 1> 1*. The proof is complete. 

We give some properties concerning the solution set of (2.1), (2.2) as 
follows. 
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THEOREM 2.6. Assume conditions (A-l) and (A-2) are satisfied. Let 
,I* > 0 be given as in Theorem 2.5. Then there exists a continuous function 
M(A): (0, A*) + Iw+, such that if u(n) is a solution of (2.1), (2.2), then 
Ilu(l m <M(A), where ljull m = sup{ lu(x)l :x E a}. Moreover, if ii(n) is a 
non-minimum solution, then IIh(A)(l 33 -+ cc as ,I -+ O+. 

ProojI The existence of M(A) follows from Lemma 2.1(i). 
To prove the last part of the theorem, we shall show that if solution u(A) 

is not large enough as A -+ O+, then u(1) is the minimum solution g(n). It 
is easy to verify that Ilu(A m + 0 as A + O+. Let w(s, 2) = u(s, A)- ~(s, A). 
Then w  satisfies 

w”+lpgw=O in (sO,sl), 

w(q)) = 0 = W(Sl), 

where 

f(4s n))-f(u(s, A)) 

i 
4% A) - Lb A) 

if u(s, 1) > _u(s, A), 

g(s, A) = 

L f'(_ub, A)) if u(s, 1) = u(s, A), 

which is continuous in [sO,si] for any IE(O, A*). Set G(1)= Ilg( ., n)ll,. 
Let vi > 0 and cpi > 0 in (s,,, sl) be the least eigenvalue and an associated 
eigenfunction of 

qf’+vpcp=O in (so, sl), 

cpcd = 0 = ml). 

If nG(n) < vi, then w  = 0 in (s,,, si). Otherwise, by the Sturm comparison 
principle, cpi has a zero in (so, si), a contradiction. Hence, if u(1) #u(n), 
then G(I) 2 v,J-‘. The proof is complete. 

In the remaining part of the section, in addition to conditions (A- 1) and 
(A-2), we also assume that f is strictly increasing and convex; i.e., f satisfies 

(A-3) f’(u)>0 andf”(u)>O for all UBO. 

Instead of using backward shooting, as in [20], we shall use forward 
shooting to study (2.3), (2.4); i.e., consider the family of solutions of the 
initial value problem 

dys) + Ap(s) f(u(s)) = 0 for s>sO, (2.13) 

4scl) = 0, u’(s,) = d > 0. (2.14) 
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If u has a zero in (so, co), let s,(d, 2) be the first zero of it. If u is positive 
in (so, co), let s,(d, A)= co. Then, it is easy to see that s,(d, ,X) is C’ 
in (d,A) in the set {(d,~)~(W+xiW+:~~(d,/2)<or,). Set yl(s,d,R)= 
(&@i)(s, d, A), then cp satisfies 

cp” +&f’(u) cp = 0 in (so, s,(d, A)), (2.15) 

cpbo) = 0 and cp’(sg) = 1. (2.16) 

DEFINITION 2.7. u( ., d, 1) is called minimum if q( ., d, 2) is positive in 
(so, s,(d, 1)) and is called non-minimum if q( ., d, 1) changes signs in 
(so, s,(d> A)). 

LEMMA 2.8. Assume /hat s,(d, ,I) < GO. Let p, =,uI(d, ,I) be the least 
eigenvalue of the linearized eigenvalue problem 

w” + @f’(u) w = -ppw in (so, s,(d, A)), (2.17) 

Wo) = 0 = w(s,(d, A)), (2.18) 

of (2.3), (2.4) at u( ., d, A). Then u(., d, 1) is minimum if and only if 
fi,(d, A) 2 0. 

ProoJ Let w1 > 0 in (so, (., d, A)) be an associated eigenfunction; i.e., 
wi satisfies 

w; + (q-‘(u) + p1) pw, = 0 in (so, s,(d, A)), 

w,(s,) = 0 = w,(s,(d, A)). 

If p1 < 0, then by the Sturm comparison principle, cp has a zero in 
(so, si(d, A)); i.e., u( -, d, A) is non-minimum. If ,u~ =0, then q = cwl >O 
in (so, s,(d, 1)); i.e., u( ., d, 2) is minimum. If pi > 0, then q is positive in 
(so, s,(d, A)]. Otherwise, by the Sturm comparison principle again, w1 has 
a zero in (so, s,(d, J.)), a contradiction. The proof is complete. 

We need the following result which is a special case of Lemma 2.17 of 
Crandall and Rabinowitz [B]. 

PROPOSITION 2.9. Assume conditions (A-I)-(A-3) are satisfied. If 
s,(d,, A)=sl(d,, l)=sl, then if pl(dl, 2) >O we have u( ., d,, ;i) > 
u(.,dI,l) in (sO,sI), while ifpl(d,,~)=O, then dz=d,. 

Note that, by Lemma 2.8 and Proposition 2.9, u( ., d, A) is minimum if 
and only if u( ., d, A) is the minimum solution of (2.3), (2.4) on 
($02 s,(d, 2)). 
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LEMMA 2.10. Assume conditions (A-l t(A-3) are satisfied. Then there 
exists do(n) > 0 such that u( ., d, ,I) is minimum ifde (0, d,(l)) and non-mini- 
mum ifdE (do(l), co) with s,(d, 2) < co. 

Proof: By an argument similar to proving Lemma 2.1, we can prove 

lim s,(d, I) = s,,, 
d+m 

(2.19) 

and 
lim s,(d, A) = sO. 

d-O+ 
(2.20) 

Using (2.20), (A-3), and the Sturm comparison principle, we can also 
prove that u( ., d, n) is minimum if d is sufficiently small; i.e., the set 

D={d>O:cp(~,d,~~)>Oin(so,s,(d,~)]c(so,co)}~(O,~) 

for some 2 > 0. It is easy to see that D is an open set and pl(d, A) > 0 for 
all dED. For s,(d, 2)~ 00, we have 

2 (4 n) = -cp(s,(d, A), 4 ~)lu’b,(d, A), 4 1). (2.21) 

By (2.19) and (2.20), there are dE D and d>O such that s,(d, I)=s,(d, A). 
Since pI(d, 1)>0 by Lemma 2.8 and pi(d, 1) ~0 by Proposition 2.9, we 
have D # (0, co). 

We shall prove that 

D = (0, do@)), 

where d,(l) = sup{dE D} < co. 

(2.22) 

Set s:(,?)=sup{s,(d, I):d>O}, then there are two cases to be discussed 
according to s:(n) < co or s:(n) = co. 

Case 1. sl*(n)< co. 
Let d, >O such that (0, d,) c D and d, $ D. Then s:(A) < co implies 

s,(d,,L)<co. It is clear that cp(.,d,,I)>O in (so,s,(dl,L)) and 
cp(s,(d,, A), d,, l)=O. By Lemma 2.8, pl(d,, L)=O. Since (as,/ad)(d, ,I)>0 
for all dE(O, d,), s,(d,, i)>s,(d, 2) for all de(O, d,). If there were 
d,> dl such that d,E D, then by Proposition 2.9 we must have 
s,(d,, I)>s,(d,, 1). Now u(., d2, A) is a supersolution and u(., dl, 2) 
is the minimum solution of (2.3), (2.4) on [so, s,(d, A)], zind we 
have u(s, d2, 1)>u(s, d,, 2) on (so, s,(d, A)]. By (A-3), we have 
f’(u(s, &,A)) >f’(u(s, 4, A)) on (so, s,(d, 1)). By the Sturm comparison 
principle, cp(( ., d2, A) has a zero in (so, s,(d, A)), a contradiction to d2E D. 
This proves that D = (0, d,). 
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Case 2. sl*(%)= co. 
Let d, >O such that (0, d,) c D and d, $ D. Then we claim that 

s,(d,, A) = co. Otherwise, if si(d,, 1) < co, then the argument in Case 1 
implies that D = (0, d,). Since for any s1 >s,(d,, A), (2.3), (2.4) has the 
minimum solution u1 on [s,,, s,] with zli = u( ., d2, %) and s,(d,, A) =sl for 
some d2 > d,. By the result of Sattinger [22] we have pl(d2, 1) 2 0, which 
implies 9( ., d2, 2) > 0 in (so, sl) c (so, s,(d,, 2) J, i.e., d, E D, a contradic- 
tion. This proves s,(d,, A)= co. Hence, for all d> d, with sl(d, 1)~ co, 
by Proposition 2.9, we have d$ D. This proves D = (0, d,). The proof is 
complete. 

Now, by modifying an argument of Ni and Nussbaum [20], we can 
prove that if the annuli are narrow enough’ then there are exactly two 
positive solutions for (2.1), (2.2) for all A E (0, n*). 

THEOREM 2.11. Assume conditions (A-l )-(A-3) are satisfied. Zf 
B/A < (n - 1)“‘“-” for n 2 3 and B/A < e for n = 2, then (2.1), (2.2) has 
exactly two positive solutions for any L E (0, I*), exactly one at Iz = A*, and 
none for I > I*. 

Proo$ Set g(s, U) = ;Ip(s)f(u), X(s) = (s-so) u’(s, d, A), and Y(s) = 
u’(s, d, A) as in [20]. Then 

$w9-9w= -cp[(s-s,)g,+2g]. (2.24) 

We first prove that if de(d(k), co) with s,fd, A) < ~0 and 
(s-s,)g,+2gaO on (sO,sl(d,A)) then 

$dJ)<O. (2.25) 

By Lemma 2.10, 9( ., d, 1) has a zero in (so, s,(d, A)). Let ((d, 1) be the 
zero of 9 such that 9 > 0 in (so, {(d, A)). Since (s - s,)g, + 2g 20 on 
(s,,, s,(d, A)), (2.24) implies that c(d, J.) > z(d, 1) where u’(z(d, A), d, 1) = 0. 
Since p’(s) < 0, ag/as < 0. Therefore (2.23) implies rp(s,(d, A), d, 2) c 0. By 
(2.21), (as,/ad)(d, 1) < 0. 

It is clear that condition (s - sO) g, + 2g > 0 is equivalent to 

(s-d P’(S) + &a) 2 0, (2.26) 
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which only depends on s. It is easy to verify that (2.26) holds if 
B/A<@-1) 1’(n-2) for n>3 and B/A<e if n=2. 

Now, for 1 E (0, A*), by Theorem 2.5 there are d, ED and d2 $ D such 
that s,(d,,I)=s,(d,, A)=s,. By (2.25) and (2.26), we have s,(d, A)<s, 
for all d E (d2, co). This proves that there exists a unique non-minimum 
solution for (2.3), (2.4) on [s,, s,]. The proof is complete. 

COROLLARY 2.12. Let the conditions of Theorem 2.11 be satisfied. Then 
the family of non-minimum solutions u(A) is smooth in 1~ (0, I*) with 
~~(2) > 0 for all I E (0, A*), where ~~(2) is the second eigenualue of (2.17), 
(2.18) with u=u(n). 

Proof: Set H(d, J.) = s,(d, A) - sl, where dE (d(A), co) with s,(d, 2) < 00, 
and 1 E (0, A*). If H(d, A) = 0, then (c?H/ad)(d, 1) = (&,/ad)(d, 1) < 0 by 
(2.25). Hence, by the implicit function theorem d = d(1) is smooth in I with 
H(d(l), A) = 0. Therefore, the family of non-minimum solutions u(A) is 
smooth in 1. 

To prove p2(A) > 0 for all A E (0, A*), it is easy to see p,(A) # 0 since 
cp( ., d, A) < 0 in (<(d, A), s,] (as in the proof of the last theorem). If p2 < 0, 
then by the Sturm comparison principle, cp must have at least two zeros in 
(s,,, sr ), a contradiction. The proof is complete. 

Remark 2.13. If the annuli are wide enough, i.e., the aspect ratio B/A 
is large enough, then (2.1), (2.2) may have many solutions for certain 
1 E (0, A*), e.g., f(u) = eU and 3 <n < 9, the details will appear elsewhere. 

3. MINIMIZING SOLUTIONS 

In this section we shall prove that there exists a variational solution for 
(2.1), (2.2) provided that f satisfies the following conditions: 

(H-l) f(u)>0 for u>O, f(O)=O, and lim,,, (f(u)/u)= 1, 

(H-2) #f’(u) > f(u) for u > 0, 

(H-3) uf(u)>2(1 +~)j;f(t)dt for u large and s>O, 
and A E (0, A,), where A1 is the least eigenvalue of --A with the Dirichlet 
boundary condition. 

By the result of Crandall and Rabinowitz [7], there is a family of 
positive radial solutions of (1.1 ), (1.2) which bifurcates from the trivial 
solution u E 0 at A= 1, ; however, we would like to have some more infor- 
mation about these solutions. 

We first prove the following lemma. 
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LEMMA 3.1. Assume (H-l), (H-2). Zf (l.l), (1.2) has a positive solution 
then 1 E (0, I,). 

Proof: It is clear that (H-l), (H-2) implies that f(u) > u for u > 0. 
Let u be a positive solution of (1.1 ), (1.2) and vi > 0 be an associated 

eigenfunction of Ai. Then 0 = in uu,(A(f(u)/u) - Ai). Hence I < A,. The 
proof is complete. 

Set a=B’-” and 6=A*-” if n>3 and a= -1ogB and b= -1ogA if 
n = 2. Since we are only interested in the positive solution, we may assume 
that f is an odd function defined on R’. 

Set 

Wd=~'f(t) & 
0 

and consider the functionals 

J(u)=Ji(u)=j; {+Z-Z(u)p} ds, 

and 

z(u) z z,(u) = j; {u'* - ipf(u) u} ds. 

(3.1) 

(3.2) 

(3.3) 

Let 

D = {U is an absolutely continuous function on [a, b] with u(u) = 0 = u(b)} 

and 

M-=&f,= (u~D:ufO and ZJr))=O). 

Note that if u E MA, then 

(3.4) 

JA(u)=( {;uf(u)-H(u)] p ds. (3.5) 

The variational problem referred to above is the problem of minimizing J* 
over M,. It can be shown that a variational solution must satisfy (2.3), 
(2.4) (see, e.g., [18, 191). 

LEMMA 3.2. Assume (H-l )-(H-3). If u E D with u > 0 and u $0, and 
1 E (0, A,), then there exists a t = t(u, 2) > 0 such that tu E M,. 
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Proof: For 1~ (0, A,), 

z(tu)=t2~bu’2-A~bpf(tu)rU 
a (I 

I 

b 

s 

b 

> t2i, pu2-2. Pf( tu) tu 
a r? 

= t2A, 

for t > 0 and is sufficiently small, here the Poincark inequality has been 
used. 

It is easy to see that (H-l )-(H-3) imply 

lim f(u)= *. 

u-m u 
(3.6) 

Hence, for t sufficiently large, we have 

Therefore, there exists t > 0 such that I( tu) = 0, i.e., ru E M,. The proof is 
complete. 

Remark 3.3. At ;1,, we have I,,( tul) < 0 for all t > 0. In fact, 

zi,(r”,)=t2i,f~bpV:(l-f~)<0 for all t > 0. 

LEMMA 3.4. Assume (H-l )-(H-3). Then, for any A E (0, L,), 

m,=inf(J,(u):uEM,,f > --co. 

Furthermore, if uk is a sequence in M, such that 

then there exists a constant C, < 00 such that 

(3.7) 

(3.8) 
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ProoJ: By (H-3) and (3.5), it is easy to see m,> -co. Suppose that 
(3.8) were false, i.e., 

then (3.7) implies 
again, we have 

s b 

u;’ + cc as k-+co, 
a 

that ljiH(ak)p + cc as k+ co. By (H-3) and (3.5) 

Jj,(",)2Ale bPH(Uk)-Cy I (I 

for some constant C, a contradiction to (3.7). The proof is complete. 

After these preparations, we can now prove the following theorem. 

THEOREM 3.5. Assume conditions (H-l)-(H-3) are satisfied. Then for 
any L E (0, A,), there exists a minimizer of J).(u) over Mi, which is also a 
solution of (2.1), (2.2). 

Proof: Pick up a sequence {ilk) c M, which satisfies (3.7). Without loss 
of generality, we may assume that iik B 0. By (3.8), {iik} is equicontinuous 
on [a, 61. Hence, there is a subsequence {uk} of {iik} satisfying (3.7) and 
uk + u0 uniformly on [a, 61. 

Let fik E C’( [a, b]) solve the problem 

G;+lpf(u,)=o in (a, b), 

E,(a) = 0 = B,(b). 

It is clear that Gk > 0 in (a, b). Since A E (0, A,), by Lemma 3.2, there exists 
a t, > 0 such that wk = t, i5(k E M, ; i.e., uxli satisfies 

wp = - tkAp!f’(U~) in (a, b), (3.9) 

wk(a) = 0 = wk(b). (3.10) 

Then by the result of Nehari [ 18, (27) of p. 1121, we have 

Jz(W/c) G J,(u, ). (3.11) 

In fact, if we let f(u)= ~(1 + h(u’)) and F’(;(u, s) =Ilp(s)(l + h(u)), then 
uF(u’, s)=lp(s)f(u), and Eq. (2.3), (2.4) is equivalent to 

f.f + z4F(u2, s) = 0 in (a, 61, 

u(a) = 0 = u(b), 
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which was studied by Nehari in [ 181. Therefore, we have 

Jj,(wk) --) m2. as k-+co. (3.12) 

We shall prove tk is bounded. Since 

2 
tk 

< jb w;2 j” u;’ = jb &$twk) wk ib ‘@ft”k) uk, 
a a a a 

we have \ 

t; j” h?f(%) uk6 j” h?f(wk) wk. 
a a 

By (3.12), (3.13), and (3.8), we have 

(3.13) 

2 
tk 

s 
b ‘b?f(uk) uk G c,, 

I) 
(3.14) 

for some constant CA. If tk were unbounded, then 

ll*m_$fjb &?f(uk)u&=o, 
" 

which implies lim inf, _ o. 1: ub2 = 0 and so uk + 0 uniformly on [a, b]. 
Hence, by (H-l ), we have 

pft”k) uk pu: -+ 1 as k-co. 

But 

we have 1, < A, a contradiction. Therefore, tk is bounded. Note that we 
have proved lim infk --t o. Ii ub2 > 0, which implies u,, f 0. 

Since tk is bounded, we may assume it tends to a limit t, B 0. Since 
uk -P u,, uniformly on [a, 61, by (3.9), (3.10), there exists a w0 E C2( [a, b]) 
such that wk + w0 in C2( [a, b]). It can be verified that to>0 and so 
w0 f 0. In fact, if to = 0 then wk + 0 uniformly on [a, b] and so 

job dtwk) wk I” pw: -+ ’ as k-rco. 
cl 

505/86/2-l 3 
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Therefore, by the Poincare inequality, for k sufficiently large we have 

a contradiction. Hence, w0 E M, and Jj,( wk) -+ JA( w,,) implies JA( wO) = m,. 
This proves w0 is a minimizer of J, over MA. It can be shown that any 
minimizer is also a solution of (2.3), (2.4) (see, e.g., [lS, 191.). The proof 
is complete. 

We have the following stability results for minimizing solutions of Ji, 
over M),. 

PROPOSITION 3.6. Assume conditions (H-l k(H-3) are satisfied. Let ui be 
a minimizer of J, ouer M,, ,I E (0, A,). Then p*(n) 2 0 > pi(A), where ~~(11) 
is the lth eigenvalue of the linearized eigenvalue problem 

40” + bf(uJ rp = - PP(P in (a, b), 

q(a) = 0 = q(b). 

ProoJ It is easy to see that (H-2) implies p,(A) < 0 (see, e.g., [20]). 
Let v,(l) be the lth eigenvalue of the linear eigenvalue problem 

*” + vlpf’(uJ $ = 0 in (a, b), 

$(a) = 0 = $(b). 

By an argument similar to proving Lemma 6.3 of [2], we can prove 
~~(1) > 1 and omit the details here. Now the result follows from the 
following lemma. 

LEMMA 3.7. Assume g(x) E C*(Q) and g(x) 2 c > 0 on Q, where fz is a 
bounded smooth domain in R”. Let p, be the lth eigenvalue of the linear 
eigenvalue problem 

Av+w=-w in Q, 

cp=o on asz, 

and let v, be the Ith eigenvalue of the linear eigenvalue problem 

A++v&=O in f2, 

*=o on asz. 

Then ,u( < 0 zf and only ~;f vI < 1. 
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Proof The lemma can be proved by using the mini-max principle of 
eigenvalues (see, e.g., [6]); the detail is omitted. 

Finally, we also have a unique positive radial solution of (l.l), (1.2) if 
the annuli are narrow. 

THEOREM 3.8. Assume conditions (H-lk(H-3) are satisfied. If B/A< 
(n _ 1)W-2’ for n B 3 and BjA <e for n = 2, then there exists an unique 
positive radial solution ui, of (l.l), (1.2) for 2 E (0, A,), which is also the 
minimizer of Jn over M,. Furthermore, 

lb2 II cc --) a as A+O+. (3.15) 

Proof: The existence of the minimizer of Jn over MA was proved in 
Theorem 3.5 and the uniqueness of the positive radial solution was proved 
in Theorem 1.7 of [20]. 

Since 

4 s,4q-a IVU, I2 = 1, !*Idf(u;) UA, 

we have 

so (3.15) follows. The proof is complete. 

Remark 3.9. If the annuli are wide enough, then (2.1), (2.2) also 
may have many solutions for certain A E (0, Ai), e.g., f(u) = u + up, 
p> (n+2)/(n-2), and 3 <n<9 (see, e.g., [S]). 

4. NON-RADIAL BIFURCATION 

In this section we shall study the problem of non-radial bifurcation 
(symmetry breaking) from a certain family of positive radial solutions of 
(l.l), (1.2). 

We first study the linearized eigenvalue problem of (l.l), (1.2) at the 
positive radial solution uA: 

dw+Af’(u,) w= -pw in ,R, (4.1) 

w=o on aa. (4.2) 

In spherical coordinates, (4.1), (4.2) can be reduced to 

v”(r) + ~~‘(r)+{~f’(ui)-~}dr)=--px,,(~)rp(r), rE(A,B), 

rp(A I= 0 = cp(B), (4.3) 
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where xk = k(k + n - 2), k = 0, 1, 2, . . . . I= 1, 2, . . . . Note that ak is the eigen- 
value of Laplacian -A on S”- ‘, the unit sphere, and the dimension of the 
eigenspace Sk of associated eigenfunctions is 1, = (k +;-‘)( (n + 2k - 2)/ 
(n+k-2)). Let X=(x1, . . . . x, _, ); a function v defined on S”- ’ or Q is 
called O(n - 1) invariant if u( E, x,) = v(X, x,) for all TE O(n - 1). Then, 
for any positive integer k, the dimension of vk = {v E Sk 1 v is O(n - 1) 
invariant} is one, for details see [24]. 

Denoted by C, ( ) ’ +? fi the set of continuously differentiable functions on 
d which vanish on 852 and whose first order derivatives are Holder con- 
tinuous on fi with exponent y E (0, 1). C~+y(fi) is a Banach space under 
the usual norm jl.11 = 11.1) r,?. 

Let ui. be a family of positive radial solutions of (Ll), (1.2) which is 
smooth in I E (n,, A,) c (0, co). Note that ui. is called smooth in A if uA is 
C’ in 1 for some positive integer 1. A0 E (A r, A,) is called a (non-radial) 
bifurcation point if every neighborhood of (A,, ~~0) in W x CA + ‘(0) con- 
tains a (non-radial) positive solution other than u(A). [A,, A,] c (A,, A2) is 
called a (non-radial) bifurcation interval if every neighborhood of 
((4 uJ:Ae C&>~Ol> contains a (non-radial) positive solution other 
than u(A). 

The following theorem is a variant of bifurcation theorems of 
Krasnosel’skii, and Rabinowitz [2 11. 

THEOREM 4.1. Let u* be a family of positive radial solutions of (1.1) 
(1,2)whichissmoothin~~(A,,A,). Zf&~(,4,,A,)and~>Osuch that 

(i) ~k,l(&)=op ~k,ItA)flk,I(~‘)<o for AE(&-&&) and A’E 
(A,, 2, + E), for some positive integer k, 

(ii) pj,,(n) > 0 for 1 E (& - E, 1, + E) and all non-negative integers j, 

then ,I0 is a non-radial bifurcation point. 
Similarly, if (i) is replaced by 

0) fik,l(A)=o on CL &I, and Ilk.l(A)pP.l(A’)<Ofor J.E(&-E, 1,) 
and ,I’ E (X0, X, + E), 

then [A,,, &,I is a non-radial bifurcation interval. 

Proof Let W=U-uul. Then (l.l), (1.2) can be written as 

Aw+d{f(u,+w)-f(u,)}=O in Q, 

w=o on aa, 

which can also be written as an operator equation 

w-@,(w)=0 

(4.4) 

(4.5) 

(4.6) 
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on CA”(a), where ~1(W) = ~G{f(u, + W)-f(U,)} and G = (-A)-‘. It is 
clear that on(w) is a compact operator for each A > 0. We shall work (4.6) 
on the G(n--1) invariant subspace X= (w~C:+~(@:w is O(n-1) 
invariant }. 

Assume conditions (i) and (ii) are satisfied. If & is not a bifurcation 
point, then there exists 6 > 0 (6 < E) such that there is no solution of (4.6) 
in X for 12 - & ( < 6 and /Ju - i.O II < 6 except Us. Here 6 can also be chosen 
small enough such that 

Pj,ltA)#O for IE(&-6, &+6) andjfk. (4.7) 

Let B,(O) be a &ball in X. Then 

deg(Z- QA, B,(O), 0) is constant on [A, - 6, & + S]. (4.8) 

By (ii) and (4.7), 

degU- @A9 B,(O), 0) = deg(Z- @j(O), B,(O), 0), (4.9) 

for all IE [&-a, &+s]\{&). 
By Lemma 3.7, it is easy to verify that 

dW- @X0), BJO), 0) = (- 1 lk and deg(l- @J(O), B6(0), 0) = ( - l)kf ’ 

when ,&r(l)>0 and &i(A’)<O, and 

deg(l- Q>,(O), B,(O), 0) = (- l)k+l and deg(Z- @i,(O), Bd(0), 0) = (- l)k 

when fik,i(l) < 0 and &i(jL’) > 0. Which leads to a contradiction in view of 
(4.8) and (4.9). This proves & is a bifurcation point. 

By a similar argument, if conditions (i)’ and (ii) are satisfied, then (1.1) 
(1.2) bifurcates on interval [A,, X0]. The proof is complete. 

Remark 4.2. The problem of bifurcation on an interval for certain non- 
linear differential equations has been studied by Berestycki [3]. Although 
(i)’ seems unlikely in our problem, we cannot rule out this possibility for 
the time being. In the case n = 2 and f(u) = e”, only (i) is possible, see 
Lin [14]. 

Let ii, be the least eigenvalue of 

Aw = -iW2w in 52, 

w=o on ai2 

(4.10) 

(4.11) 
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Then, by the Poincare inequality, we have 

A r i -‘w2 dx < IVw12 dx 
R s R 

(4.12) 

for all WE Ch+y(Q). 
The following lemma indicates that there is a great possibility to have a 

non-radial bifurcation of (l.l), (1.2) when the growth of f(u) is rapid 
enough as u + co. 

LEMMA 4.3. Let u1 be a family of positive radial solutions of (l.l), (1.2) 
which is smooth in 1~ (0, A). Assume f(u) satisfies the following growth 
condition: 

(G) uf’(u)>pf(u)for u large, 

where p > 1 + aJfil and k is a positive integer. If llua 11 m --) CO as ;i --t O+, 
then ,L+~(,I) < 0 for 1 sufficiently small. 

Proof: It is easy to verify that 11~~. JI a3 + cc as A-+ 0 + implies that 

s IVu,12+ cg as A-O+. (4.13) 
R 

In fact, for any r E (A, B), 

un(r) = ji u;(s) ds 

1, 

112 
< (B- A)“2 ,z lW)l 2 ds} 

where o, is the area of unit sphere S”-‘. Hence,(4.13) follows. 
The eigenvalue pk,I can be characterized as 

A,~ =infPW:ICI~C~(CA~ W), 

where 

R($) = &(lC/) = Q($,lI($)v 

Q($l=Qd$)=[~rndl (f2(r) - V’(u,dr)) $2(r) + a,r-‘$‘(r)> dr, 
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and 

I($) = j; r”-y2(r) dr. 

Since uI. is a solution of (1.1 ), (1.2), we have 

(4.14) 

Then, by (G), (4.12), (4.13) and (4.14) we have 

=(l+a,//i-/I)/ IVuJ2+M 
R 

for some constant M > 0 which is independent of A. Hence, Q(u~) < 0 if 2 
is sufftciently small. The proof is complete. 

DEFINITION 4.4. 1, is called a non-radial bifurcation point with mode k 
if ~k,l(&) = 0 where k is a positive integer. A similar definition can also be 
given to non-radial bifurcation interval [A,, X,]. 

Now, we can apply the above results to the problems which have been 
studied in the previous sections. 

THEOREM 4.5. Assume BJA< (n- l)‘i(np2’ for n > 3 and B/A de for 
n = 2. 

(i) If conditions (A-l )-(A-3) and (G) are satisfied, then for each 
positive integer j, 1 < j< k, (1.1 ), (1.2) has a non-radial bifurcation with 
mode j along the upper (non-minimum) branch of the positive radial solution. 

(ii) Zf conditions (H-1)(H-3) and (G) are satisfied, then for each 
positive integer j, 1 d j< k, (l.l), (1.2) has a non-radial bifurcation with 
mode j along the positive radial solution. 

Proof (i) Since ~~,r(il*) = am = 0, by Theorem 2.6 and Lemma 4.3, 
for any 1 < j d k, there exists a 2,~ (0, /2*) such that pj,r(,Ij) = 0 and satisfies 
either (i) or (i)’ of Theorem 4.1. Condition (ii) of Theorem 4.1 follows 
from Corollary 2.12. Hence, there is a non-radial bifureation at ;ij or on 
[&, 51. Similarly, (ii) can be proved by using Proposition 3.6, 
Theorem 3.8, Lemma 4.3, and Theorem 4.1. The proof is complete. 
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Remark 4.6. For f(u) = eU, n = 2, (G) holds for all positive integers k. 
It has been proved in [ 143 that there exists a sequence Aj + 0 as j -+ CC 
such that (l.l), (1.2) has a non-radial bifurcation at each Aj with mode j. 
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