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Theory of phase-conjugate oscillators. I
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We have developed a theory for nondegenerate oscillations in optical resonators containing an intracavity
phase-conjugate element. The phase-conjugate element consists of a nonlinear transparent medium that is
pumped externally by a pair of counterpropagating laser beams of the same frequency and intensity. Phase
conjugation of an input beam of slightly different frequency occurs because of nondegenerate four-wave mixing.
The theory takes into account linear absorption (or gain) in the medium and is applied to study the threshold
behavior of phase-conjugate oscillators. For the special case of no conventional mirrors, the phase-conjugate
oscillator reduces to an ordinary phase-conjugate mirror, and our general formulation yields the results of pre-
vious studies. Our analysis shows that the parametric gain required for oscillation increases (or decreases) as
a result of linear absorption (or gain) in the medium, and oscillation can occur at a frequency different from
that of the pump beams in the presence of large linear gain (or loss). The effects of linear absorption (or gain)
on the filter operation are also examined.

INTRODUCTION

Optical resonators containing a phase-conjugate element
have been a subject of great interest and importance. For
correction of intracavity aberration, the phase-conjugate
element can be employed as an end mirror of the optical
resonator.'-5 In these resonators, the phase-conjugate ele-
ment acts as a unique kind of mirror (often called a phase-
conjugate mirror) that combines reflection with phase
reversal. Sufficiently high reflectivities are necessary
for efficient operation.

In addition to their unique property of correcting wave-
front aberrations, these phase-conjugate elements can also
provide parametric gain and conjugate coupling between
the oscillating beams. As a result of the parametric gain,
oscillation is possible even without the conventional gain
medium. Such oscillations are known as phase-conjugate
oscillations.6 Recent theoretical analysis indicates that
the insertion of a phase-conjugate element inside a ring-
laser cavity results in a reduction of the lock-in threshold
and reduces the imbalance between the amplitudes of the
oppositely directed traveling waves in some ring-laser sys-
tems.7 In the extreme case of phase-conjugate oscillation
without conventional gain media, it is shown that the
lock-in can be completely eliminated.8 9 The study of
these resonators is also important in understanding the
stability of laser oscillation in situations when backscat-

tered laser radiation may enter the resonator and undergo
parametric four-wave mixing with the oscillating beams.

Although a few special cases of phase-conjugate oscilla-
tors have been studied, a general theory that includes non-
degenerate oscillations is not available. In this paper the
authors develop a general theory of phase-conjugate oscil-
lators by studying the problem of wave propagation along
the axis of the resonator. The matrix method introduced
in Ref. 6 is now extended to the case of nondegenerate
four-wave mixing. The approach is general, so that many
of the situations studied previously can be shown to be
special cases in this formalism.

FORMULATION OF THE PROBLEM

Referring to Fig. 1, we consider a linear optical resonator
that consists of two partially reflecting mirrors and a
nonlinear medium that is pumped by a pair of external
laser beams of equal intensity. These two laser beams
are counterpropagating, and their frequency is w. The
nonlinear medium provides linear gain-absorption as well
as parametric gain by means of optical four-wave mixing.
We assume that the bandwidth of the linear gain is suffi-
ciently broad. To investigate the general properties of
such a resonator, we must treat the problem of wave propa-
gation along the axis of the resonator.

Let the electric field of the waves be written as

{Ci exp[-ikl(z + a)] + 4 exp[ikl(z + a)]} exp(iWlt) + %3 exp[-ik2 (z + a)] + 2 exp[ik2(z + a)]}exp(ic&2 t)
forz <-a

E = [s 1(z) exp(-ikiz) + S/14(z) exp(ikiz)] exp(iwJ1t) + [S 3 (z) exp(-ik 2z) + S2 (z) exp(ik2 z)] exp(iw2 t) for 0 < z < 1,
{1 exp[-ikl(z - I - b)] + WN exp[ikl(z - I - b)]} exp(iw1 t) + {'3 exp[-ik2 (z - 1 - b)]
+ %2 exp[ik2 (z - - b)]} exp(iW2t) for z > I + b
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Fig. 1. Basic geometry of linear phase-conjugation oscillation by
means of nearly degenerate four-wave mixing. In this case, the
incident probe wave, whose frequency ) ± is slightly detuned
from that of the pump waves (both at frequency a), will result in
a conjugate wave with an inverted frequency : 8. g is the lin-
ear nonsaturating background (intensity) net gain coefficient.

where Cl, 3, S41 (z), W3(z), '8k, and '%3 are the complex am-
plitudes of the plane waves traveling in the +z direction
and %2, 4, A2(z), '2, and '94 are those of the plane waves
traveling in the -z direction. k, k2, k3 , and k4 are the
wave numbers that correspond to the frequencies I, 02,

0)3, and (04, respectively, where l = w + , 02 = - 8,
0)3 = o2, and 04 = o1. Ei, Ai, and Gi are the plane waves
corresponding to the complex amplitudes S, si, and 8
(where i = 1, 2, 3, and 4); A5 and A6 are pump laser beams;
1 is the length of the four-wave mixing interaction region;
-a and + b are the positions of the mirrors, and .l, sh,
A3, and SA4 are functions of z because of the linear absorp-
tion-gain and wave coupling owing to four-wave mixing in
the nonlinear medium. The problem at hand is to derive
expressions for all the wave amplitudes for a given set of
boundary conditions.

If the regions between z = -a and z = 0 and between
z = 1 and z = 1 + b are linear dielectric media, then the
following linear relationships between the wave ampli-
tudes exist 0 ,:

Al(0) El G ] [Al(l)]

IA2(0) I E21 G21 A2(1)I
A3(0M) M E 2A3())

A4(0) E4J [G4 A4(l)

where Ml and M2 are 4 x 4 matrices. If we further as-
sume that there is no Fresnel reflection at the surfaces
(z = 0 and z = 1) of the nonlinear medium and lump to-
gether all the reflections at z = -a and z = 1 + b, then
the matrices can be written as

Ml = S(a)F1, (3)

M2 = F2S(b), (4)

with

1 0 0 -rri

Fi = 0 1 -ri 0
ti 0 - r 1 0 

[- ri 0 0 i J
i = 1,2 (5)

S() =
0
0

0
exp(ikW)

0
0

0 
0 

exp(-ikb ° j
0 exp(ikio) 

(6)

where = a, b, ; ri and ti are the amplitude reflection
and transmission coefficients, respectively, of the end
mirrors from the front surfaces (left sides). The matrices
F1 and F2 account for the Fresnel reflection and transmis-
sion at the mirrors, whereas the matrices S(a) and S(b)
account for the propagation through the bulk of the linear
regions.

In the nonlinear medium between z = 0 and z = 1, the
waves Al and A2 and the pump beams are coupled by opti-
cal four-wave mixing. The waves A3 and A4 and the
pump beams are similarly coupled. If we assume no
pump depletion of the waves Ar and A6 to describe oscilla-
tion near threshold, then the amplitudes Al(0), A2(0),
A3(0), A4 (0) and Al(l), A2(l), A3 (l), A4 (l) will be shown to
be related by

I Al(l) Al(O)

L 3 ] = S(l)K[A

AW(l) A(O)LAX() LA4(0)j

(7)

where S(l) and K are 4 x 4 matrices. Using an approach
similar to that used in Ref. 6, we now determine the ma-
trix K.

We derive this matrix by solving the coupled-mode equa-
tions for the four-wave mixing processes. As a result of
four-wave mixing, the input wave sil interacts with two
external pumping laser beams s56 and .S6, and a phase-
conjugate wave S'2 is generated. These two waves are re-
lated by the coupled-mode equation12 ' 5

Cxp* (-9k) 
d = Wiecs2 exp( - i Akz) + 2 f *

dX2 - g Sh,
dz iK2*Sil exp(i Akz) - (8)

where the amplitudes of waves 1 and 2 have been redefined
in order to account for pump-induced phase modulation.
Ki* = (/2) Seg12 is the complex coupling
coefficient, and in deriving Eqs. (8) we have assumed that
the input wave and its conjugate beam are small compared
with the pump beams. Then pump depletion is negligible,
and A6 and Sh may be regarded as constants, so that our
theory describes nondegenerate oscillation near threshold.
Note that, if the two pumps have different intensities,
then K becomes a function of z owing to the additional
phase mismatch introduced by the unequal pumps. 12 13 In
what follows we shall assume that the two pumps have
equal intensities so that Ki is independent of z. Ak =
k1 - k2 is the phase mismatch, and g is the linear, non-
saturable net gain (or loss) coefficient. In order to solve
Eqs. (8) we introduce the new variables al and a2:

so = aleg

s42 = a2e-g/2 (9)

Lee et al.



Vol. 7, No. 8/August 1990/J. Opt. Soc. Am. B 1413

In terms of the new variables, the coupled equations (8)
reduce to

d al* = iKla 2 exp[-i(Ak - ig)z],
dz

d a2 = iK2*al* exp[i(Ak - ig)z]. (10)

Solving the differential equations (10) in terms of al*(0)
and a2 (l), which are specified by boundary conditions, we
obtain

al(l) = 1 {al(O)s* exp[i(Ak + ig)l] - 2iKl*a2 *(l)

x exp[i(Ak + ig)l]} sinh[s*1/2],

a2 (0) = D {-2iK 2 *al*(O) sinh[sl/2] + a2(1)s

Similarly, we obtain the following matrix equation for
the waves 9{3 and si4:

[sh3(l)1 _ F M' P'XiS13 (0)
Sid4(l)J LQ'X N' Si4(0) 

(17)

where

M' = -exp(-i Akl/2) [(a)2 - K1K2*(/3)
2 ],

a

N' = * exp(-iAkl/2),

Pt = -exp(-iAkl/2)K 2 */3,
a

Q,= -~ exp(- i Akl/2)Kl*p6*.
a* (18)

x exp[-i(A&k - ig)l]},

where

s = [-(A&k _ ig)2 - 4KlK2*]11
2
,

D = (-g - iAk)sinh[sl/2] + s cosh[sl/2].

In arriving at Eqs. (17) and (18), we assumed exactly
the same pumping, so that K3 = K2 and K4 = Ki. By using
Eqs. (15) and (17), we can now write the matrix K in
Eq. (7):

(12)

From Eqs. (9) and (11) we obtain the solutions in terms of
the original variables:

sil(l) = * exp(iAkl/2)

x {[(a* )2 - Kl*K 2 (f3*)
2]S5l(0) - iK2*J6*S 2 *(°)},

S 2(I) = -exp(i Akl/2) [iK2*/3.il*(O) + .S2(0)], (13)
a

where

1
a= S,

D

= 2 sinh[ ] .

Equations (13) can be rewritten in matrix notation as

[ .s(l)][M PX] [Si(0)1,

Si 2(l) LQX N J~S2(0)J

where

M PX

K QX N

0 0

0 o
0 0

M' P'X 
Q'X N']

(19)

By using Eqs. (2)-(4) and (7), we can write the complex
amplitudes G1, G2, G3, G4, E1 , E2, E3, and E4:

2 IE2lL: =F2S(l + b)KS(a)F1[J
(20)

Equation (20) may now be used to study the reflec-
tion and transmission properties of such a resonator. We
consider the most general case, where rl r2 • 0, g • 0,

(14) IK1K2* • 0, and Ak • 0. Using Eqs. (5), (6), and (19) and
carrying out the multiplication in Eq. (20), we obtain

(15)

-G1 [ F11 F12X
G2 1 F21X F22

G3 t2tltl* F31X F32

_G4_ L F41 F42X

F1 3X

F23
F33

F43X

F14 E1
F2 4 X E2

F34 X E3 '

F44 ILE4J

(21)

M = * exp(i Akl/2) [(a*)2 - K1*K2(1 *)
2
],

a*

N = - exp(i Akl/2),
a

P =- - exp(i Akl/2)Kl*f3*,

iQ = - exp(iAkl/2)K2*f,
a

Fll = t*M exp[-iki(l + b + a)]

+ t*rlr2N'exp[iki(l + b + a)],

F1 2 = tP exp[-iki(l + b) - ik2a]

+ tlrl*r2 *Q'exp[ikl(l + b) + ik2 a],

F13 = -tlri*P exp[-iki(l + b) - ik 2a]

- tr 2 Q'exp[ik1(l + b) + ik2a],

F1 4 = -tl*rMexp[-iki(l + b + a)]

- t*r 2N'exp[ikI(1 + b + a)],

(16)

and X is the complex-conjugated operator, defined as
XH = H*, where H is an arbitrary number.

where
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F21 = t Q exp[ik2(l + b) + ik la]

+ tr 2 r,*P'exp[-ik2 (l + b) - ikia],

F22 = t*N exp[ik2 (l + b + a)]

+ t*rlr2 M'exp[-ik2 (l + b + a)],

F23 = -tl*rNexp[ik 2 (l + b + a)]

- t*r 2M'exp[-ik2 (l + b + a)],

F24 = -tlri*Q exp[ik2 (l + b) + ikia]

- tr 2P'exp[-ik2 (l + b) - ikia],

F31 = -tir2 Q exp[ik2 (l + b) + ikla]

- tlri*P'exp[-ik2( + b) - ikia],

F32 = -tl*r 2 Nexp[ik2 (l + b + a)]

- t*riM'exp[-ik2 (l + b + a)],

F33 = t*rlr2 N exp[ik 2(l + b + a)]

+ t*M'exp[-ik2 (l + b + a)],

F34 = tlrl*r2 Q exp[ik2( + b) + ika]

+ tP'exp[-ik2 (l + b) - ikia],

F41 = -tl*r 2Mexp[-iki(l + b + a)]

- t*riN'exp[iki(l + b + a)],

F42 = -tlr2 P exp[-ikl(l + b) - ik2 a]

- tlri*Q'exp[iki(l + b) + ik2 a],

F43 = tr 2 ri*P exp[-iki(l + b) - ik2 a]

+ tQ'exp[iki(l + b) + ik2 a],

F44 = t*r 2 rMexp[-iki(l + b + a)]

+ t*N'exp[ikl(l + b + a)], (22)
and we recall that X is the complex-conjugate operator.

If we view El, E3, G2, and G4 as the input waves at the
two mirrors, then the output waves E2, E4 , Gl, and G3 can
be solved from Eqs. (21) in terms of El, E3, G2, and G4.

At oscillation, a finite solution for output waves E2, E4,
Gl, and G3 at the two mirrors may exist even if there are
no input waves. By setting El = E3 = G2 = G4 = 0 in
Eqs. (21), we obtain

G2 = 0 = [F22E2 + F24E4*],
titi*t 2

G4 = 0 = t [F4 2E2* + F44 E4]- (23)
tltl*t2

For a nontrivial solution for the output waves E2 and E4,
the determinant of the coefficients in Eq. (23) must van-
ish, i.e., F24*F24 - F22*F44 = 0. From Eqs. (22), this con-
dition can be written as

{rlQ* exp[-ik 2(l + b) - ikla]

+ r2 *P*'exp[ik2(l + b) + ikla]}

x {r2 P exp[-iki(l + b) - ik2 a]

+ rl*Q' exp[ik1(1 + b) + ik2a]}
= {N* exp[-ik2 (l + b + a)]

+ rl*r2 *M*' exp[ik2 (1 + b + a)]}

x {r2 rlM exp[-ikl(l + b + a)]

+ N' exp[iki(l + b + a)]}, (24)

where P, Q, P', Q', M, N, M', and N' are given by Eqs. (16)
and (18).

The above oscillation condition depends on Ak, g, Ki, K2,

a, b, 1, rl, and r2. In what follows, we investigate the oscil-
lation condition by adjusting these parameters.

We now consider the case when there is only one input
wave. For the case of incidence from the left on the mir-
ror at z = -a, El may be considered the incident wave,
with a frequency of ) + . If this is the only incident
wave, then E3 = 0 at this mirror, while G2 and G4 are zero
at the second mirror. The wave E2 at w - a is generated
as a result of the optical four-wave mixing. The wave E4
is produced by reflections off the second mirror at z =
1 + b. The problem at hand is to derive expressions for
all the ouput waves E2, E4 , Gl, and G3, given an incident
wave E1 at o + . Using Eqs. (21), we obtain

G2 = 0 = F21El* + F22E2 + F24E4*,

G4 = 0 = F41El + F42E2 * + F44E4. (25)

By eliminating E4 we obtain the following expression for
the phase-conjugate reflection coefficient:

E2 F2 1 F4 4 * - F24F41*

= El* F22F4*- F24F42*
(26)

while the phase-conjugate power reflectivity is given by
Rp = Irp 2. Similarly, we may obtain the coherent reflec-
tion coefficient at o + 8 as

E4* F21F42* - F22F41*

8 El* F24 F42* - F22F44*
(27)

and the coherent power reflectivity is given by R8 = r81 2.

In addition to the two reflected waves, there are also
two transmitted waves, as illustrated in Fig. 1. These
are the straight-through part of the incident beam G, at
w + 8. Reflection off the second mirror generates an-
other incident beam at w + 8. Phase conjugation with
frequency flipping at the nonlinear medium generate the
beam G3 at wD - 8. Using Eq. (21), we obtain

G = t [F1lEl + F12E2* + F14E4],

G3 = 1 [F3 1El* + F32E2 + E34 E4 *].
t2tltl*

(28)

Substituting Eqs. (26) and (27) for E2 and E4 , respec-
tively, into Eqs. (28), we obtain the expressions for the two
transmission coefficients:

4 -G, - 1[F 1l + Fi2rp* + F14rs*],

G3 1
= = = [F 31 + F32r, + F34r.], (29)

while the power-transmission coefficients are given by
T8 = t.12 and Tp = ItPJ2.

The four reflection and transmission coefficients de-
rived above for one input wave El and cw + 8 are useful for
studying the oscillation conditions for various types of
phase-conjugate oscillator. The analysis for a single input
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wave at w - 8 is similar and may be obtained from our
general formulation by taking E3 as the input wave and
El = G2 = G4 = 0.

We are now ready to investigate three special cases of
great interest. These are the following:

(i) No conventional mirrors (ri = r2 = 0), so that the
phase-conjugate oscillator reduces to a phase-conjugate
mirror.

(ii) Only one conventional mirror (r, = 0), so that the
phase-conjugate oscillator reduces to a phase-conjugate
resonator, i.e., a resonator bounded by a conventional mir-
ror and a phase-conjugate mirror.

(iii) Both conventional mirrors present (rl, r2 X 0),
which is the phase-conjugate oscillator.

In each of the cases, we will consider four different opera-
tion conditions: (1) Ak = 0, g = 0, K11 = K21 = IKI 0,
i.e., degenerate four-wave mixing without linear absorp-
tion/gain in the medium. (2) Ak = 0, g X 0, K11 =

|K2 = IKI • 0, i.e., degenerate four-wave mixing with lin-
ear absorption/gain in the medium. (3) Ak E 0, g = 0,
IK1*K21 > 0, i.e., nondegenerate four-wave mixing in the ab-
sence of linear absorption/gain in the medium. (4) Ak 
0, g • 0, K1*K 21 > 0, i.e., nondegenerate four-wave mixing
with linear absorption/gain in the medium. In this paper
we discuss only case (i). Cases (ii) and (iii) will be dis-
cussed in a subsequent paper.

PHASE-CONJUGATE OSCILLATORS
WITHOUT CONVENTIONAL MIRRORS
In this section we set rl = r2 = 0. The frequency of the
input wave El is w + . In this case the problem then
reduces to the standard nondegenerate four-wave mixing
in a transparent medium,12 '14 which is characterized by a
linear gain or absorption in addition to the parametric
gain. We will show that the general theory developed in
this paper yields the results of previous studies.12 '14

From Eqs. (26), (22), (16), (18), and (12), the amplitudes
of the reflected wave at the input plane (z = 0) can be
written as

2ik2 * sinh -1
2

rp S 
(-g - iAk) sinh 2 1 + s cosh 1

2 2

r = 0. (30)

Thus, in the absence of the conventional mirrors, there is
no coherently reflected wave at + , only the phase-
conjugated beam at - is reflected by he nonlin-
ear medium. The transmitted waves at output plane
(z = ) are

tp= 0,

ts = --

(31)

Thus, in the absence of the conventional mirrors, there
is only one transmitted beam at + . We note that
when r = r2 = 0 and a = b = 0, then Ei = Ai(0) and
Gi = A(l), where i = 1, 2,3,4. If we define complex am-
plitude transmission as t = s(l)/sil(0), then by Eq. (1)
Al(l) = sA(l)exp(-ikl1) and Al(0) = .si(0); hence by
Eqs. (29) we obtain t = t exp(ikil), and when this equa-
tion is substituted into Eqs. (31) we get

ts? =
s*

*g+iA)sn21+ *cs2
(- g + i Ak) sinh s l + s* cosh l

2 2

exp(i Akl/2).

(32)

With rl = r2 = 0, the oscillation condition [Eq. (24)] be-
comes N'N* = 0. Substituting Eqs. (16), (18), and (12)
into Eq. (24), we obtain the following oscillation condition:

D = (-g - iAk)sinhS 1 + s cosh-1 = 0.
2 2

(33)

Note that, at oscillation, rp and t approach infinity ac-
cording to Eqs. (30), (31), and (33). We now consider the
four different operation situations and compare our re-
sults with previous studies.

Ak = 0, g = 0, Kl = K2 = K This is the case of degener-
ate four-wave mixing in a transparent medium without
linear gain or absorption.14

Under these conditions the oscillation is provided by the
parametric gain. From Eqs. (13), (30), and (31) we obtain
the phase-conjugate complex reflection coefficient and co-
herent transmission coefficient. They are

rp = -i|tanKlIKI K1

t = exp(-ikl).
COSIK1l

(34)

The oscillation condition will now be K = 7r/2,
37r/2,..., etc. Similar results have been obtained by
others. 4

Ak = 0, g 0, K = K2 = K This corresponds to degen-
erate four-wave mixing in a transparent medium that also
exhibits linear gain or absorption.12

From Eqs. (13) and (32), the phase-conjugate complex
reflection coefficient can be written as

iK* tan[IKI2 _ (g
= [1K12 _ (g/2)2 ]2 _ (g/2) tan[K12

- (g/2)2]

According to Eq. (35), oscillation occurs when the fol-
lowing condition is satisfied:

(36)tan{[K12
- (g/2)2 ]" 2 1} - 2[K - (g/2)2]1/2

g

where K = (2)\/_1s X(3)A,*A 6*egl/2 = Ke g12. Equations
(35) and (40) agree formally with the results derived in
Ref. 12, except that they have considered linear absorp-
tion only. Thus, if we replace g with -a, we will obtain
exactly the same result as in Ref. 12.

Using Eq. (36), in Fig. 2 we plot the parametric gain K'I

versus linear gain gl at the oscillation conditions to show

(- g + i k) sinh 1 + s* cosh 21
2 2

x expll-i(k, + k2)1/2].
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3.5

3.0+ Ak=O

l oss (-g 6) ga i n(g,)
Fig. 2. Parametric gain IK'lI versus linear gain gl at the oscilla-

= K g112tion condition K = K e

the effect of gain (or loss) on the coupling constant IK11 for
degenerate four-wave mixing. The figure shows that the
parametric gain required for oscillation is considerably in-
creased (decreased) owing to linear absorption (gain) in
the medium.

Ak X 0, g = 0, KIK2* > 0 This is the case of degener-
ate four-wave mixing in a transparent medium without
linear absorption or gain.' 5

Substituting g = 0 into Eqs. (30), we obtain the phase-
conjugate reflection coefficient:

rp=
iK2 * tan{[KlK2 * + (Ak/2)2 ] 21}

[KlK2* + (k/2) 2 ]/ 2 - i(Ak/2) tan{[KlK2* + (Ak/2)]/21}
(37)

which is identical to the result of Ref. 15. According to
Eq. (37), oscillation occurs only when Ak = 0 and VKlK2*
1 = 7r/2, 3r/2,..., etc., so that nondegenerate oscillation
due to four-wave mixing is not possible in a transparent
Kerr medium. Oscillation with no input wave will occur
only at the pump frequency.

Ak X 0, g • 0, KlK2*1 > 0 This is the case of degener-
ate four-wave mixing in a transparent medium that ex-
hibits linear absorption-gain and a parametric gain.
This is the first time to our knowledge that the effects of
nonsaturable background losses or gain in the transpar-
ent medium on phase conjugation by degenerate four-wave
mixing have been studied.

By Eqs. (12), (30), and (31), the phase-conjugate complex
reflection and coherent transmission coefficients are

rp =

t. =

D = [-sinh l(g os-1 + v sin )

+ cosh1 (Ak sin-1 + U cos )]

+ i-cosh.1(g sin- - V cos-1)

+ sinh.2(u sin v - Ak cos ) = 0. (39)

By setting the real and the imaginary parts of the
denominator separately equal to zero, we obtain two
simultaneous nonlinear equations involving three dimen-
sionless variables: g, K'l, and Ak, where K' = a .
If we set Ak as the independent variable, then, by using
Brown's method to solve the two nonlinear equations, we
obtain multiple-valued solutions for gl and K'l. Note that
when Aki = 0, the imaginary part of D is equal to zero,
and the real part of D reduces to Eq. (36). Using Eq. (36),
we find that for oscillation at the pump frequency the
parametric gain required is K'I = 3.13824,1.57080,
0.76250 for a linear absorption-gain of gl = -1,0,1, re-
spectively. Nondegenerate oscillation is not possible for
these sets of parameter values. Figures 3 and 4 show the
phase-conjugate power reflectivity R, and the coherent
power transmissivity T, respectively, versus normalized
wavelength detuning 'I for three values of gl = 0, +1 at
oscillation condition. By definition, P = (AA/2) (2n/A 2),
which is also equal to the phase mismatch Ak divided by
2r. The wavelength-detuning parameter AA/2 corre-
sponds to the difference in wavelengths of the probe field
El relative to the pump fields A, 6. These two figures
show that linear absorption losses in the medium substan-
tially increase the threshold value of K'l for which oscilla-
tion will occur at the pump frequency. If the medium
were somehow to exhibit linear gain instead of absorption,
then the threshold value of the coupling strength would be
correspondingly lowered owing to the additional gain then
available from medium.

Using Eqs. (38), we plot in Fig. 5 the power-reflection
coefficient R, versus a normalized wavelength-detuning
parameter P for IK'11 = 7r/2 and several values of the lin-
ear gain gl. For finite g, oscillation ceases to occur at
IK11 = 7r/2, but it occurs at higher (lower) values for linear
absorption (gain) in the medium.

Figures 6 and 7 are the- normalized phase-conjugate
power reflectivity and normalized coherent power trans-
missivity, respectively, versus normalized wavelength
detuning T. They show the effects of linear gain or ab-

-iK2* tan{[KlK2 * + (Ak - ig)2 /4]1/21}

[KlK2* + (Ak _ ig)2/4]1/2 i(Ak - ig) tan[KIK2* + (Ak _ ig)2
/4]1/

2
1}

2

[Kl*K2 + (Ak + ig) 2
/4]1/

2 sec{[Kl*K2 + (Ak + ig)2 /4]12 1} exp[-i(k, + k2)1/2]. (38)

[Kl*K2 + (Ak + ig)2/4]/ 2 +i(Ak + ig) tan{[Kl*K2 + (Ak + ig)2/4]| 21}
2

The oscillation condition can be obtained by either set-
ting the denominators to zero in Eqs. (38) or simply using
Eq. (33). With s = u + i Eq. (33) can be written as

sorption on the wavelength response for the filter applica-
tion. Several prominent features should be noted. First,

Lee et al.
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9 =-; ' =3.13824

9 =O ; , =1 .57080

--------- n II 4 * v - --a=I I K A =U: ./ tlod

/
I 

If we increase the absolute value of gil above 2, then
nondegenerate oscillation at a frequency different from
that of the pumps becomes possible. Figure 10 shows the
solution of D = 0 for gl and K'l versus normalized wave-
length detuning T Because the solution is multiple val-
ued, it is possible to have many pairs of gl and K'1 values
for a particular value of T In this figure, the curve pair 3
(shown as a dashed curve) for K'l is not shown because it
is greater than 1.8. The curve pair 1 (shown the solid
curve) shows that, for example, if linear gain gl is in-
creased to 4.32152, then one can decrease the parametric
gain K'1 to 0.13281 in order to observe nondegenerate
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Fig. 3. Phase-conjugate power reflectivity R, versus normalized
wavelength detuning 'P for several values of linear gain gl = 0,
+1 when IK'1I satisfies the oscillation condition. For the example
given in the text, unity along the abscissa corresponds to AA/2 =
0.0772 A, or Av = 9.29 GHz.
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Fig. 5. Power-reflection coefficient R, versus a normalized
wavelength-detuning parameter 'P for K'11 = 7r/2 and several val-
ues of the linear gain gl. For the example given in the text, unity
along the abscissa corresponds to AA/2 = 0.0772 A, or Av =
9.26 GHz.
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Fig. 4. Coherent power transmissivity R8 versus normalized
wavelength detuning 'P for several values of linear gain gl = 0,
±1 when IK'Il satisfies the oscillation condition. For the example
given in the text, unity along the abscissa corresponds to AA/2 =
0.0772 A, or Av = 9.26 GHz.

when Jgll is less than 0.1, the effect on the filter of gain

(gl > 0) or loss (gl < 0) on the filter characteristic is neg-

ligible. Second, larger linear gain (or loss) degrades the

filter characteristics. Third, the filter characteristics of

the phase-conjugate reflection are better than those of

transmission for finite gain (or loss).

In practice, linear gain of the nonlinear medium depends

on the pumping source. Using Eqs. (38), we plot in Figs. 8

and 9 the linear gain (or loss) gl versus normalized wave-

length detuning 'P for constant reflectances and trans-

mittances, respectively, when IK'11 = /2. We recall that

K = (o/2)\7 X(3) A5*A6*eglIO = K'e h12. In these figures,

we plot only the minimum absolute linear gain gJl ver-

sus normalized wavelength detuning a, because gl is a

multiple-valued function of Ak for constant reflectances

or transmittances in Eqs. (38).
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Fig. 6. Normalized phase-conjugate power reflectivity versus
normalized wavelength detuning 'P for parametric gain IK11 = 7r/2
and several values of linear gain gl. All curves are normalized to
unity power reflectivity to emphasize the frequency bandpass of
the interaction.
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CONCLUSION
In conclusion, we have treated the generalized theory of
the propagation of electromagnetic radiation in phase-
conjugate oscillators. Wavelength detuning and linear

g G and parametric gain are all taken into account. Phase-
0.5 conjugate power reflectivity and transmissivity, coherent

power reflectivity and transmissivity, and the oscillation
condition are derived. We have studied the special case of
no conventional mirrors by using this general theory and

-n a; compared our results with those of previous studies. Our
U.J
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0o
-3 -2.0 -1.0 0 1.0 2.0 3.0

NORMALIZED WAVELENGTH DETUNING 
Fig. 7. Normalized coherent power transmissivity versus nor-
malized wavelength detuning T for parametric gain Kl = r/2
and several values of linear gain gl. All curves are normalized to
unity power transmission to emphasize the frequency bandpass
of the interaction.
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Fig. 8. Contours of equal reflectance for IK'Il = -7r/2 on the linear
gain (or loss) versus normalized wavelength-detuning plane. For
the example given in the text, unity along the abscissa corre-
sponds to AA/2 = 0.0772 A, or Av = 9.26 GHz.

oscillation at AII = 1.31. Figure 11 is a plot of R, and T,
versus the normalized wavelength detuning for gl =

4.32152; K'1 = 0.13281, showing the possibility of observ-
ing oscillation at a frequency different from that of the
pump beam for this set of parameter values.
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Fig. 9. Contours of equal transmittance for IK'I = r/2 on the
linear gain (or loss) versus normalized wavelength-detuning
plane. For the example given in the text, unity along the ab-
scissa corresponds to AA/2 = 0.0772 A, or Av = 9.26 GHz.
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Fig. 11. Phase-conjugate power reflectivity R, (solid curve) and
coherent-power transmissivity T, (dashed curve) versus normal-
ized wavelength detuning I for gl = 4.32152, K'l = 0.13281.

results indicate that in the presence of large linear gain
(or loss), oscillation can occur at a frequency different
from that of the pump beams.
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