
國 立 交 通 大 學

電子工程學系電子研究所

博 士 論 文

運用平行架構及無競爭式交錯器之渦輪碼解碼器

設計

Turbo Decoder with Parallel Architecture and

Contention-Free Interleaver

研 究 生 : 翁政吉

指 導 教 授 : 張錫嘉

中 華 民 國 九 十 九 年 八 月

運用平行架構及無競爭式交錯器之渦輪碼解碼器設計

Turbo Decoder with Parallel Architecture and Contention-Free

Interleaver

研 究 生 ： 翁政吉 Student: Cheng-Chi Wong

指 導 教 授 ： 張錫嘉 博士 Advisor: Dr. Hsie-Chia Chang

國 立 交 通 大 學

電子工程學系電子研究所

博 士 論 文

A Dissertation

Submitted to Department of Electronics Engineering & Institute of Electronics

College of Electrical and Computer Engineering

National Chiao Tung University

in Partial Fulfillment of the Requirements

for the Degree of Doctor of Philosophy

in

Electronics Engineering

August 2010

Hsinchu, Taiwan, Republic of China

中華民國九十九年八月

運用平行架構及無競爭式交錯器之渦輪碼解碼器設計

學生： 翁政吉 指導教授： 張錫嘉教授

國立交通大學電子工程學系電子研究所

摘 要

本論文探討使用平行架構及無競爭式交錯器之渦輪碼解碼器來達到高速的資料輸出量。

我們首先分析傳統平行架構的方法，整理各個方法的優缺點，也列出影響資料輸出量的

關鍵因素。文中的討論主要是針對採用多個 soft-in soft-out (SISO) 處理器來對單一個

接收到的字碼進行解碼這種技術所衍生出的議題。除了增加 SISO 處理器的數目之外，

我們也結合了其他平行架構的方法來大幅提昇速度。然而，該方法將會導致相當高的硬

體複雜度及降低處理器的運算效能。為了解決複雜度的問題，本論文介紹了兩種多層

級的網路系統來負責平行解碼器中所有 SISO 處理器與記憶體之間的資料傳輸。這兩個

網路系統分別支援採用 inter-block permutation (IBP) 交錯器及 quadratic permutation

polynomial (QPP) 交錯器之渦輪碼解碼器。此多層級網路連結系統可以有效地降低實

作時平行架構電路的繞線複雜度。至於另一個難題，則須透過調整處理器的執行程序

來解決。我們提出兩套可防止資料相關性造成低運算效能的策略，並制定了各自對應

的處理器執行程序。在這兩種高效能的程序中，其一是針對廣泛應用進行的設計，而另

一則只能在特定的條件下使用。它們縮短了解碼流程中各個功能單元的閒置時間；因

此，SISO 處理器的運算效能得到了改善。

基於上述之各項技術，我們實作了四個平行架構之渦輪碼解碼器。當中有兩個採用

了 IBP 交錯器以及對應的多層級網路系統；它們皆使用了多個 SISO 處理器，且每個

處理器在一個時脈週期中可處理複數筆資料；其中一個還利用了廣泛用途的高效能程

序，讓硬體不會進入閒置的狀態。第三個解碼器則使用 QPP 交錯器和第二種網路連結

系統；藉由這個裝置，再加上適當的控制電路，該解碼器最多可提供八個平行 SISO 處

理器來支援在第三代合作伙伴計劃長期演進技術規格中所函括的全部區塊長度之渦輪

ii

碼解碼。最後一個解碼器亦使用 QPP 交錯器和多層級網路；它比其他三個解碼器有更

高的平行度；另一方面，因為符合另一個高效能程序的限制條件，它也具備最高的處理

器運算效能；這個解碼器的資料輸出量可達到 1.4 Gb/s。實驗結果顯示我們所提的方

法能夠得到預期的成效，也使得平行架構解碼器的速度有顯著的提昇。

iii

Turbo Decoder with Parallel Architecture and Contention-Free

Interleaver

Student: Cheng-Chi Wong Advisor: Hsie-Chia Chang

Department of Electronics Engineering & Institute of Electronics

College of Electrical and Computer Engineering

National Chiao Tung University

ABSTRACT

This dissertation investigates the turbo decoders with parallel architecture and contention-

free interleaver in pursuit of high throughput with reasonable cost. The benefits and dis-

advantages of conventional parallel schemes are examined; then the essential factors for

throughput calculation are determined. Our discussions put emphasis on using multiple

soft-in soft-out (SISO) decoders for single codeword. In addition to increasing the paral-

lelism, the hybrid of parallel schemes is further applied for more speedup. However, the

methodology leads to considerable complexity and inefficiency of processor. To reduce

the complexity, we develop the multi-stage networks for the parallel data transmission in

the turbo decoder. Two different types of apparatus are proposed for the designs using

inter-block permutation (IBP) interleaver and quadratic permutation polynomial (QPP)

interleaver, respectively. They can alleviate the routing congestion in the parallel design.

To overcome the other difficulty, the processing schedule must be modified. We propose

two different strategies to remove the data dependency and set their corresponding high-

efficiency schedules. One of them is aimed for general application, whereas the other

is designed for specific case. The inactive periods within the decoding flow are greatly

shortened in these schedules. Hence, the efficiency of the SISO decoder can increase.

iv

Four implemented works are presented in this dissertation. The multi-stage intercon-

nection for IBP interleavers is applied to the first two parallel turbo decoders. Both the

two designs contain multiple SISO decoders, each of which can process two or more sym-

bols per cycle. One of them operates with the general high-efficiency schedule, and its idle

time is completely removed. The third design exploits another interconnection for QPP

interleavers. With such apparatus and appropriate control flow, it can use at most 8 SISO

decoders to decodes all codeword blocks defined in the 3rd Generation Partnership Project

Long Term Evolution standard. The remaining design also adopts QPP interleavers and

the multi-stage network. It has higher parallelism than the other designs; moreover, its

support of specific high-efficiency schedule results in the best efficiency. This design can

achieve 1.4 Gb/s while decoding size-4096 blocks for 8 iterations. The implementation

results reveal that the proposed methods work successfully in the parallel architecture

and raise the throughput significantly.

v

ᇞ 謝

在博士班的修業過程中，承蒙師長的指導、家人的支持以及夥伴們的協助，讓我能夠順

利地抵達終點。非常感謝張錫嘉老師的提攜與提供的資源，給予我嘗試各式各樣研究

方向的機會，即使當中有些結果不盡理想，依然獲得老師持續的支援；能夠身處於這樣

的研究環境，是做為學生的幸福。接著要感謝的是我的家人，由於你們的伴隨和付出，

我才能擁有堅定的力量邁步向前，去面對這段求學生涯中的一切挑戰。最後，由衷感激

OASIS 實驗室及 OCEAN 團隊的所有成員，在學業上，透過與大家的討論，得到了不

少啟發，研究成果因此更趨完善；在生活中，也因為認識各位，締造了許多歡樂喜悅的

回憶。

vi

Contents

List of Tables . viii

List of Figures . ix

Chapter 1 Introduction . 1

Chapter 2 Turbo Code . 5
2.1 Overview of convolutional codes . 6

2.1.1 Convolutional codes and encoders 6
2.1.2 The maximum a posteriori probability algorithm 10

2.2 Turbo code design . 19
2.2.1 Parallel concatenated convolutional code 19
2.2.2 Iterative decoding flow . 23

2.3 Practical turbo decoder architecture . 27

Chapter 3 Parallel Architecture and Interleaver 37
3.1 Parallel turbo decoder architecture . 37

3.1.1 Turbo decoder level . 37
3.1.2 SISO decoder level . 38
3.1.3 Trellis stage level . 41

3.2 IBP interleaver and interconnection . 45
3.3 QPP interleaver and interconnection . 49

Chapter 4 High-Efficiency Processing Schedule 56
4.1 Interlaced half-iterations . 56
4.2 Overlapping half-iterations . 59

4.2.1 Interleaver constraints of such schedule 60
4.2.2 Performance and process of such schedule 65

Chapter 5 Implementation Results . 70
5.1 Hybrid parallel design using IBP interleaver 70
5.2 Reconfigurable design for 3GPP LTE system 74
5.3 Full-efficiency design using QPP interleaver 81

Chapter 6 Conclusion . 86
6.1 Summary . 86
6.2 Future work . 88

References . 89

vii

List of Tables

3.1 Equivalent gates count of two networks . 54

4.1 Comparison between original and interlaced schedules 58
4.2 Properties of various QPP interleavers . 65

5.1 Specifications of proposed turbo decoders with IBP interleaver 71
5.2 Throughput of selected modes with 275 MHz frequency 79
5.3 Comparison of different parallel designs for wireless application 80
5.4 Area of main components in different radix-2PT SISO decoders 81
5.5 Comparison of different parallel turbo decoders using QPP interleaver . . . 85

viii

List of Figures

1.1 Basic elements of a digital communication system 1

2.1 Basic framework of a turbo encoder . 5
2.2 Block diagram of recursive convolutional encoder 6
2.3 The (2, 1, 2) recursive systematic convolutional encoder 8
2.4 State diagrams of the (2, 1, 2) recursive systematic convolutional code . . . 9
2.5 Trellis diagram of the (2, 1, 2) recursive systematic convolutional encoder . 9
2.6 Forward metric calculation and backward metric calculation 16
2.7 The MAP algorithm with sliding window technique 18
2.8 Trellis diagrams with different termination schemes 20
2.9 The turbo encoder specified in the 3GPP system 23
2.10 Basic framework of a turbo decoder . 24
2.11 The bit error rate performance based on the iterative decoding 26
2.12 Practical architecture of a turbo decoder 27
2.13 Fundamental circuits for path metric and LLR calculations 29
2.14 Conventional SISO decoder and its schedule with three windows 31
2.15 Modified SISO decoder with βd and its schedule with three windows 33
2.16 Modified SISO decoder without βd and its schedule with three windows . . 35

3.1 Architecture with parallel turbo decoder level 38
3.2 Architecture with parallel SISO decoder level 39
3.3 An example of memory access in the parallel SISO decoder level 41
3.4 Architecture with parallel trellis stage level 42
3.5 High-radix ACS unit . 43
3.6 An example of memory access in the parallel trellis stage level 44
3.7 An example of the contention-free interleaver with 4 sub-blocks. 46
3.8 Networks for connecting 4 SISO decoders and 4 memory modules. 47
3.9 Performance of turbo code with 3GPP interleaver and IBP interleaver . . . 49
3.10 Performance of turbo code with 3GPP interleaver and QPP interleaver . . 50
3.11 Fully-connected network for 8 SISO decoders and 8 memory modules . . . 51
3.12 Barrel-shift network for 8 SISO decoders and 8 memory modules 51
3.13 Parallel data transmission via the proposed network 53

4.1 Processes of independent codeword A and codeword B 57
4.2 Performance of turbo codes with various sizes and different QPP interleavers 66
4.3 Overlapping half-iterations for two windows (η = 66.7 % with κ = 2) . . . 67
4.4 Overlapping half-iterations for four windows (η = 100 % with κ = 4) . . . 68

ix

5.1 Performance of the proposed Design-I and Design-II. 73
5.2 Photo of the proposed turbo decoders using IBP interleaver 73
5.3 Modified SISO decoder for the 3GPP LTE turbo decoder 75
5.4 Performance of the proposed 3GPP LTE turbo decoder with N ≤ 128 . . . 76
5.5 Performance of the proposed 3GPP LTE turbo decoder with small blocks . 77
5.6 Performance of the proposed 3GPP LTE turbo decoder with large blocks . 78
5.7 Photo of the proposed turbo decoder for 3GPP LTE application 79
5.8 Power consumption from measurement with 1.0 V and 275 MHz. 80
5.9 Performance of the proposed codes with various parameters 82
5.10 Performance with different formats of data width 83
5.11 Layout graph of the proposed design with 100% efficiency. 85

x

Chapter 1

Introduction

While sending digital information from a source to one or more destinations, several

procedures will be involved to ensure efficient and reliable transmission. The elementary

functional model of a digital communication system can be depicted as Fig. 1.1. In

general, the information data are binary symbol sequences. The source encoder performs

the compression by using a shorter bit sequence to replace the original sequence. The

channel encoder further transforms these compressed data into a longer sequence. Some

redundant symbols, also known as parity check symbols, are added here to minimize

transmission errors. Then the modulator converts the channel coded data into analog

signals which is suitable for transmitting over a channel. The modulated data will suffer

from channel noise such as thermal noise, signal attenuation, distortion, and interference.

In the receiver, the demodulator produces the quantized symbols based on the estimation

of the transmitted data from channel outputs. Some of these received data might be

erroneous due to the influence of channel. To correct the such errors, the channel decoder

works on the coded data with parity check symbols. The outcome of an ideal channel

decoder should be identical with the compressed data sequence. After the source decoder

Information

source

Data

destination

Source

encoder

Source

decoder

Channel

decoder

Channel

encoder
Modulator

Demodulator

Channel

Figure 1.1: Basic elements of a digital communication system

1

decompresses such sequence, the information is transmitted to its destinations successfully.

The channel encoder and decoder are essential to the digital communication system for

protecting the transmitted information against the channel noise. The study in such field

is called channel coding or forward error correction (FEC). It begins with the landmark

paper by C. E. Shannon in 1948 [1, 2]. Shannon’s channel coding theorem indicated

that arbitrary transmission can be asymptotically error-free by appropriate coding if the

information rate is less than the channel capacity. With such theorem, the theoretical

limits on performance can be calculated for various signaling schemes, rates, and channels.

Lots of coding techniques are developed since then, and there are two major classes of

codes: block codes and convolutional codes [3,4]. The ultimate objective is to approach the

Shannon limit by a practical coding techniques. This investigation has lasted for several

decades. In the 1990s, the advent of turbo codes in [5] and the rediscovery of low-density

parity check codes in [6] made major breakthroughs in channel coding. Both of them can

achieve the performance closed to Shannon limit at the expense of reasonable complexity.

The outstanding features make these two codes receive a great deal of attentions.

Every coding technique has its own advantages, and it might meet the requirements in

certain application. On the other hand, it also needs to face its unique design challenge.

There are many researches attempting to solve different problems of each channel code.

In this dissertation, we will only take turbo code into consideration. The basic model of

turbo code is parallel concatenated convolutional codes separated by an interleaver [5].

Numerous publications had discussed various aspects of turbo code, including coding

algorithm and circuit architecture. There is a thorough and comprehensive survey of

turbo code in [4] and [7]. Some papers also give detailed overviews: general introduction of

coding techniques, implementation issues of turbo decoder, applications in communication

systems, and recent discoveries [8–11]. During the development of turbo code, several

problems have been solved. Meanwhile, new design issues have arisen. One of them is

to increase the throughput of decoding process. Turbo codes are adopted as the FEC

techniques in the Third Generation Partnership Project (3GPP) standard and the Third

2

Generation Partnership Project 2 (3GPP2) standard [12,13]. The throughput requirement

in either standard is less than 10 Mb/s. Some modern systems like IEEE 802.16 standard

and 3GPP Long Term Evolution (LTE) standard also choose turbo codes [14, 15], but

they would support much higher throughput. Therefore, the high-speed decoder is of

practical interest nowadays.

In addition to the reliability, it is necessary to recover the erroneous data within a very

short time. The utilization of parallel architecture is an intuitive method to achieve higher

throughput. From [9], there are following levels of parallelism: using multiple decoders

for multiple codewords, using multiple decoders for single codeword, and processing more

data at each clock cycle. For all levels of parallelism, the component circuits of design will

be duplicated so that they can deal with the received data simultaneously. However, the

conventional structure of turbo code might pose obstacles to successful parallel processing.

The extra hardware cost is also a critical issue. Moreover, the influence over error perfor-

mance should be noticed. An improvement in one design factor might lead a degradation

in another factor. To promise substantial quality in all aspects, the architecture design

must connect the code structure, the decoding strategy, and the circuit complexity. This

dissertation will put emphasis on these subjects. Several network topologies and process-

ing flows are presented to support miscellaneous parallel turbo decoders with different

interleavers. Three types of parallel designs are implemented. The first type exploits

more than one parallelism level; the second type is aimed for 3GPP LTE application; and

the third type can derive the maximum benefit of parallel processing. The corresponding

results can prove the feasibility of the proposed designs.

The remainder of the dissertation is organized as follows. Chapter 2 includes a general

introduction of turbo codes. It reviews the conventional code structure and decoding

algorithm. In Chapter 3, it introduces the design issues of parallel turbo decoders at

first. Then the interleavers with contention-free property are presented. We show that

these interleaving methods can facilitate the implementation of parallel architecture. The

major modifications to design are discussed in Chapter 4. To raise further the throughput

3

of parallel turbo decoders, some processing schedules with higher efficiency are proposed.

Based on the approaches mentioned in these chapters, several parallel turbo decoders are

implemented. Chapter 5 presents the implementation results and gives the state of the

art. Finally, we conclude the dissertation in Chapter 6.

4

Chapter 2

Turbo Code

Turbo code, first proposed by Berrou [5] in 1993, is impressive with the near Shannon

limit performance. Fig. 2.1 illustrates the general code structure of turbo code, where

two component codes are separated by an interleaver. The two components are usually

identical recursive convolutional encoders, so turbo code is also known as the parallel

concatenated convolutional codes (PCCC). Besides, the interleaver can permute informa-

tion sequence in a pseudo random way. The original data and the permuted data will

be encoded by the two component encoders respectively. These parity checks and the

original information, or referred to systematic data, form a complete turbo codeword.

Although the permuted data are excluded from the codeword, they can be derived again

at receiver by interleaving the received systematic data. The turbo decoder will deal with

the two component codes alternatively. In [5], the maximum a posteriori probability

(MAP) algorithm [16] is applied to calculate soft values of each component code. The

soft output of one convolutional code will be treated as the a priori probability estimation

Encoder 2

Encoder 1

Interleaver

Information

Systematic data

1st parity check

2nd parity check
Permuted

information

Figure 2.1: Basic framework of a turbo encoder

5

of the other one. Until certain criterion is satisfied, the decoding process will stop. With

the random-like properties of turbo code, such iterative decoding method can be very

efficient.

Such typical structure is widely utilized in research works and applications. Our

discussions take only PCCC into consideration. A basic understanding of the component

code would be helpful in this section. Therefore, a brief overview of convolutional code

will be given at first. It involves the optimal and sub-optimal algorithms for soft output

calculation. Then we focus on the turbo code, including the encoding and decoding flow,

and there is a practical example of turbo encoder. Finally, the decoder architecture and

implementation issues are discussed as well as the important factors in decoding speed.

2.1 Overview of convolutional codes

2.1.1 Convolutional codes and encoders

Convolutional codes were invented by Elias [17] in 1955, and the corresponding alge-

braic description were presented in [18] and [19]. One of its main ideas is the usage of

memory. The encoder can keep previous information symbols in several storage elements,

and it utilizes these data in memory and the current information symbols to generate

convolutional codewords. For an (n, k,m) convolutional code, every k-tuple information

symbol will be encoded into an n-tuple codeword symbol by the encoder with memory

order m. The corresponding code rate R is k/n despite the length of the input sequence.

D D D

a0

ui

vi

b1 b2 bm-1 bm

a1 a2 am-1 am

Figure 2.2: Block diagram of recursive convolutional encoder

6

Fig. 2.2 demonstrates the block diagram of recursive convolutional encoder. The

ui = (u
(0)
i , u

(1)
i , . . . , u

(k−1)
i) is the i-th input symbol, and the vi = (v

(0)
i , v

(1)
i , . . . , v

(n−1)
i)

is the i-th output symbol. In this figure, the delay elements denoted by D construct a

single input shift register. Besides, ax with x = 0 ∼ m and by with y = 1 ∼ m determine

the connections of circuit, and each of them is a k × n matrix that contains either 0 or

1. These binary values could be regarded as the weight of all data in memory during

the encoding process. After the XOR gates perform modulo-2 additions of current input

and weighted previous input, the codeword symbol is generated. We can use a fractional

function G(D) as (2.1) to express this encoder realization.

G(D) =
a0 + a1D + . . .+ amDm

1 + b1D + b2D2 + . . .+ bmDm
(2.1)

This function can transform the stream of k-tuple information into the stream of n-tuple

codeword. We rewrite the transform function and get the generator matrix as (2.2). It

is another well-known expression of the convolutional encoder. Each g
(j)
i (D) adopts the

format like (2.1), but all coefficients are binary number rather than matrix now.

G(D) =



g
(0)
0 (D) g

(2)
0 (D) · · · g

(n−1)
0 (D)

g
(0)
1 (D) g

(2)
1 (D) · · · g

(n−1)
1 (D)

...

g
(0)
k−1(D) g

(2)
k−1(D) · · · g

(n−1)
k−1 (D)


(2.2)

When an informational symbol is fed into the encoder, the data in the memory will be

updated, and the corresponding output symbol will be generated. The state diagram is

one graphical representation to describe such behavior, and its basic elements are states

and branches. The states are the contents of all delay elements. If the entire encoder has

m memory, the total state number is 2m. The branches stand for transitions caused by

the input data. Generally, each state has 2k incoming branches and 2k outgoing branches.

Here we use the (2, 1, 2) encoder as an example. The encoder realization with generator

7

matrix

G(D) =

[
1

1 +D2

1 +D +D2

]
(2.3)

is illustrated in Fig. 2.3, and the contents of this shift register structure are represented as

d0 and d1. All combinations of (d0, d1) are further symbolized as S(j). There are 22 = 4

states, and we let S(0) = (0, 0), S(1) = (0, 1), S(2) = (1, 0), and S(3) = (1, 1). Fig. 2.4(a)

shows the state diagram of this example. The directed branches labeled with u
(0)
i /v

(0)
i v

(1)
i

indicate the changes in states and outputs of encoder with respect to input u
(0)
i . The

state diagram can be also depicted as Fig. 2.4(b). This form would give a more clear

illustration of the transitions among all states within one time unit.

Based on the state diagram, we can exploit the trellis diagram to trace all input

sequences, codeword frames, and state transitions. This graphical representation is the

concatenation of state diagrams throughout several successive time units. Fig. 2.5 shows

the trellis diagram associated with the state diagram in Fig. 2.4; the solid branches and

the dash branches indicate the input ui = 1 and ui = 0 respectively. Note that the

binary input u
(0)
i is simplified to ui hereafter. We can observe all possible transitions

within the first five time units (t = 0 ∼ 5) in Fig. 2.5. The initial state is set to S(0)

((d0, d1) = (0, 0)) because the contents of memory is always flushed before encoding

process. If (u0, u1, u2, u3, u4) is (1, 1, 0, 0, 0), then there will be a path going through

S(0), S(2), S(1), S(2), S(3), S(1) from t = 0 to t = 5, and the codeword sequence will be

(11, 10, 00, 01, 01). Every information sequence leads to a unique codeword as well as a

D Dui

vi
(1)

vi
(0)

(0)

d0 d1

Figure 2.3: The (2, 1, 2) recursive systematic convolutional encoder

8

0/00

1/11

0/00

1/10

0/01

1/10

0/01

1/11
S(0)

S(1) S(2)

S(3)

(a) Typical state diagram

0/00

1/11 1/11

1/10

1/10

0/01 0/01

0/00

S(0)

S(1)

S(2)

S(3)

S(0)

S(1)

S(2)

S(3)

(b) State transition diagram

Figure 2.4: State diagrams of the (2, 1, 2) recursive systematic convolutional code

u0

t=0

u1 u2 u3 u4

S(2)

S(1)

S(0)

S(3)

0/00

1/11

1/11

0/00

1/10

0/01

0/01

1/10

0/00

1/11

1/11

0/00

1/10

0/01

0/01

1/10

0/00

1/11

1/11

0/00

1/10

0/01

0/01

1/10

0/00

1/11

1/10

0/01

0/00

1/11

t=1 t=2 t=3 t=4 t=5

S(2)

S(1)

S(0)

S(3)

Figure 2.5: Trellis diagram of the (2, 1, 2) recursive systematic convolutional encoder

unique path of state transitions.

The trellis diagram is the basis of some decoding methods of convolutional codes. For

a binary information sequence with length N , there are 2N possible codewords and 2N

valid paths within the trellis. The Viterbi algorithm [20] is a maximum likelihood (ML)

decoding technique. It uses a recursive approach to compute the difference between the

received data sequence and all codewords, and then find the closest codeword out of 2K

candidates. The frame error probability can be minimized with the optimal ML algo-

rithm for convolutional codes. The MAP algorithm [16] is another trellis-based decoding

method. This technique calculates the probabilities of all state transitions from t = i to

t = i+1. With the labels on branches, the most likely ui can be determined. It minimizes

the error probability of every information bit. In fact, the Viterbi algorithm and the MAP

9

algorithm have similar decoding results of convolutional code, either in frame error rate

(FER) or bit error rate (BER). However, the MAP algorithm can get the soft value of

every information bit. This feature is essential to turbo decoders, so more details about

MAP algorithm are given later.

2.1.2 The maximum a posteriori probability algorithm

The maximum a posteriori probability (MAP) algorithm is a soft-output decoding

algorithm. Since this technique is developed by Bahl, Cocke, Jelinek, and Raviv in 1974

[16], it is also termed BCJR algorithm. We have to make some assumptions about data

transmission in advance. First, the code rate R is 1/n; the input bit ut = (u
(0)
t) will

generate output symbol vt = (v
(0)
t , . . . , v

(n−1)
t). Second, the binary phase shift keying

(BPSK) modulation is applied to map each binary symbol into one of the modulation

signal set. The coded signal v(j)t will be mapped into modulated signal y(j)t as (2.4) for

j = 0 ∼ (n− 1).

y
(j)
t = (−1)v

(j)
t =

 +1 if v(j)t = 0

−1 if v(j)t = 1
(2.4)

Third, the channel is an additive white-Gaussian-noise (AWGN) channel. While receiving

the data rt = (r
(0)
t , . . . , r

(n−1)
t) from channel, each r

(j)
t can be viewed as the summation of

modulated signal y(j)t and the zero-mean white Gaussian noise n
(j)
t .

r
(j)
t = y

(j)
t + n

(j)
t . (2.5)

The variance of n
(j)
t is σ2, which is determined by symbol signal-to-noise ratio (SNR).

The symbol SNR is usually denoted by Es/N0. We can also use the bit SNR, Eb/N0,

to calculate σ2 due to Es = REb. The transition probabilities of a size-N sequence are

defined by

Pr{r0, . . . , rN−1 | y0, . . . , yN−1} ,
N−1∏
t=0

Pr{r(0)t , . . . , r
(n−1)
t | y(0)t , . . . , y

(n−1)
t }, (2.6)

10

where

Pr{r(0)t , . . . , r
(n−1)
t | y(0)t , . . . , y

(n−1)
t } ,

n−1∏
j=0

Pr{r(j)t | y(j)t } (2.7)

and

Pr{r(j)t | y(j)t } , 1

σ
√
2π

exp
(
− 1

2σ2

(
r
(j)
t − y

(j)
t

)2)
. (2.8)

Given the received data sequence from channel, the MAP algorithm can generate the

a posteriori probability (APP) of each transmitted symbol as

Pr{ut | r0, . . . , rN−1} (2.9)

The APP is further used to compute the log-likelihood ratio (LLR)

L(ut) , ln Pr{ut = 0 | r0, . . . , rN−1}
Pr{ut = 1 | r0, . . . , rN−1}

(2.10)

and then make the hard decision.

ût =

 0 if L(ut) ≥ 0

1 if L(ut) < 0
(2.11)

The LLR can be rewritten as (2.12) by utilizing the characteristic of conditional proba-

bility.

L(ut) = ln Pr{ut = 0; r0, . . . , rN−1}/Pr{r0, . . . , rN−1}
Pr{ut = 1; r0, . . . , rN−1}/Pr{r0, . . . , rN−1}

= ln Pr{ut = 0; r0, . . . , rN−1}
Pr{ut = 1; r0, . . . , rN−1}

(2.12)

The ut = 0 and ut = 1 have their respective state transitions in the trellis diagram, so we

have the equivalence as

Pr{ut} =
∑

(St,St+1)

Pr{ut;St, St+1}. (2.13)

11

Note that St is the state at time t of the trellis diagram, and (St, St+1) represents the

state transition from St to St+1. With (2.13), the LLR calculation is modified to

L(ut) = ln

∑
(St,St+1)

Pr{ut = 0;St, St+1; r0, . . . , rN−1}∑
(St,St+1)

Pr{ut = 1;St, St+1; r0, . . . , rN−1}

= ln

∑
(ut=0;St,St+1)

Pr{St, St+1; r0, . . . , rN−1}∑
(ut=1;St,St+1)

Pr{St, St+1; r0, . . . , rN−1}
. (2.14)

The joint probability Pr{St, St+1; r0, . . . , rN−1} is involved in the LLR calculation. If

there is no transition from St to St+1, this probability will be zero. Otherwise, it can be

decomposed as (2.15) with Bayes’s rule.

Pr{St, St+1; r0, . . . , rN−1} = Pr{St; r0, . . . , rt−1}

× Pr{St+1; rt | St; r0, . . . , rt−1}

× Pr{rt+1, . . . , rN−1 | St, St+1; r0, . . . , rt−1, rt} (2.15)

We can simplify the two conditional probabilities in (2.15) by removing the redundant

conditions. Since the St is given, the transition to St+1 with rt is independent of previ-

ous data (r0, . . . , rt−1). Similarly, the condition St+1 is sufficient for the last conditional

probability.

Pr{St+1; rt | St; r0, . . . , rt−1} = Pr{St+1; rt | St} (2.16)

Pr{rt+1, . . . , rN−1 | St, St+1; r0, . . . , rt−1, rt} = Pr{rt+1, . . . , rN−1 | St+1} (2.17)

Then the factorization of Pr{St, St+1; r0, . . . , rN−1} becomes

Pr{St; r0, . . . , rt−1} × Pr{St+1; rt | St} × Pr{rt+1, . . . , rN−1 | St+1}. (2.18)

12

Now we define three functions:

α(St) = ln Pr{St; r0, . . . , rt−1} (2.19)

γ(St, St+1) = ln Pr{St+1; rt | St} (2.20)

β(St) = ln Pr{rt, . . . , rN−1 | St}, (2.21)

where α(St) is named forward metric, γ(St, St+1) is branch metric, and β(St) is backward

metric. Thus (2.18) can be rewritten as

Pr{St, St+1; r0, . . . , rN−1} = exp
(
α(St)

)
× exp

(
γ(St, St+1)

)
× exp

(
β(St+1)

)
. (2.22)

By substituting (2.22) for the APP in (2.14), the LLR will become

L(ut) = ln

 ∑
(ut=0;St,St+1)

exp
(
α(St) + γ(St, St+1) + β(St+1)

)
− ln

 ∑
(ut=1;St,St+1)

exp
(
α(St) + γ(St, St+1) + β(St+1)

) (2.23)

On the other hand, the definition of (2.19) is extended to be

exp
(
α(St)

)
= Pr{St; r0, . . . , rt−1}

=
∑
St−1

Pr{St−1, St; r0, . . . , rt−1}

=
∑
St−1

Pr{St−1; r0, . . . , rt−2}Pr{St; rt−1 | St−1; r0, . . . , rt−2}

=
∑
St−1

Pr{St−1; r0, . . . , rt−2}Pr{St; rt−1 | St−1}

=
∑
St−1

exp
(
α(St−1)

)
× exp

(
γ(St−1, St)

)
. (2.24)

13

Then we compute the natural logarithm of both sides in (2.24).

α(St) = ln
∑
St−1

exp
(
α(St−1) + γ(St−1, St)

)
(2.25)

The above equation just needs α(St−1) and γ(St−1, St) to get α(St). That is, the calcula-

tion of all α(St) with 0 ≤ t ≤ N is a forward recursion. Such recursive method needs an

appropriate initial condition. If the encoder starts from S(0), the condition will be

α(S0) =

 0 if S0 = S(0)

−∞ if S0 ̸= S(0)
(2.26)

We can make the similar deduction about the backward metric β(St). The first step is

exp
(
β(St)

)
= Pr{rt, . . . , rN−1 | St}

=
∑
St+1

Pr{St+1; rt, . . . , rN−1 | St}

=
∑
St+1

Pr{St+1; rt | St}Pr{rt+1, . . . , rN−1 | St, St+1; rt}

=
∑
St+1

Pr{St+1; rt | St}Pr{rt+1, . . . , rN−1 | St+1}

=
∑
St+1

exp
(
γ(St, St+1)

)
× exp

(
β(St+1)

)
. (2.27)

After the computation of natural logarithm, (2.27) changes to

β(St) = ln
∑
St+1

exp
(
γ(St, St+1) + β(St+1)

)
(2.28)

The calculation of β(St) needs β(St+1) and γ(St, St+1), and it is a backward recursion to

find all β(St) with 0 ≤ t ≤ K. If the encoder terminates at S(0), the initial condition is

β(SN) =

 0 if SN = S(0)

−∞ if SN ̸= S(0)
(2.29)

14

Furthermore, the branch metric in (2.20) can be

exp
(
γ(St, St+1)

)
= Pr{St+1; rt | St}

=
Pr{St, St+1; rt}

Pr{St}

=
Pr{St, St+1}

Pr{St}
× Pr{St, St+1; rt}

Pr{St, St+1}
= Pr{St+1 | St}Pr{rt | St, St+1}

= Pr{ut}Pr{rt | y′t}, (2.30)

where ut and y′t are the corresponding information bit and modulated output on the state

transition (St, St+1). To find the Pr{ut}, we need the a priori information represented

by (2.31). For simplicity, we use the modulated signal u′
t = +1 to replace ut = 0 and

u′
t = −1 to replace ut = 1.

La(u
′
t) , ln Pr{u′

t = +1}
Pr{u′

t = −1}
(2.31)

We utilize La(u
′
t) to calculate the a priori probability

Pr{u′
t = ±1} =

e±La(u′
t)

1 + e±La(u′
t)
=

[
e−La(u′

t)/2

1 + e−La(u′
t)

]
eu

′
tLa(u′

t/2) = Ate
u′
tLa(u′

t)/2, (2.32)

where At is independent of the actual value of u′
t. With (2.7) and (2.8), the Pr{rt | y′t}

can be modified to

Pr{rt | y′t} =
n−1∏
j=0

[
1

σ
√
2π

e
− (r

(j)
t −y

(j)
t)2

2σ2

]

=

(
1

σ
√
2π

)n

× e
−

n−1∑
j=0

[(r
(j)
t)2+(y

(j)
t)2]

2σ2 × e

n−1∑
j=0

[r
(j)
t ×y

(j)
t]

σ2

= Bt × e

Lc

n−1∑
j=0

[r
(j)
t ×y

(j)
t]

2 . (2.33)

Because r
(j)
t is the same for all state transitions from time t to (t + 1) and y

(j)
t = ±1,

the Bt is a constant. In addition, the channel reliability value Lc is 2/σ2, and it will be

15

()1−tSα

()1−tSα

()1− ,t t
S Sγ

()1− ,t t
S Sγ

()tSα

(a) Recursive αt(St) computation

()1+tSβ

()1+tSβ()1+,
t t
S Sγ

()1+,
t t
S Sγ

()tSβ

(b) Recursive βt(St) computation

Figure 2.6: Forward metric calculation and backward metric calculation

4Es/N0 for the AWGN channel [21]. The (2.32) and (2.33) change the branch metric to

γ(St, St+1) = lnAt + lnBt +
1

2
u′
tLa(u

′
t) +

1

2
Lc

n−1∑
j=0

[r
(j)
t × y

(j)
t]. (2.34)

In fact, both At and Bt will be canceled out in the LLR of (2.23). We can drop At and

Bt in the expression of γ(St, St+1) and get

γ(St, St+1) =
1

2
u′
tLa(u

′
t) +

1

2
Lc

n−1∑
j=0

[r
(j)
t × y

(j)
t]. (2.35)

Consequently, the MAP algorithm needs the forward metrics, backward metrics, and

branch metrics to get all the LLR. It will initialize α(S0) and β(SN) at first. After

receiving the codeword symbol rt, the decoder can derive γ(St, St+1) of each branch in

the trellis diagram. Then the decoder use these branch metrics to calculate α(St) and

β(St) in a recursive way. The respective computations of forward metrics and backward

metrics are described graphically in Fig. 2.6. Here we let each state at time t have two

incoming branches from different states, S ′
t−1 and S ′′

t−1, and two outgoing branches to

different states, S ′
t+1 and S ′′

t+1. As α(St) and β(St+1) are available, the LLR L(ut) and

16

decision ût can be further determined.

The MAP algorithm is often approximated to Log-MAP or Max-Log-MAP algorithm

in order to reduce implementation complexity [22]. We use the Jacobian function [23]

ln(ex1 + ex2) , max∗(ex1 , ex2) = max(ex1 , ex2) + ln(1 + e−|x1−x2|) (2.36)

and its extension

ln(ex1 + ex2 + ex3 + · · ·+ exq) = max∗(ex1 , ex2 , ex3 , . . . , exq)

= max∗(· · ·max∗(max∗(x1, x2), x3) · · · , xq) (2.37)

to replace original computations in (2.23), (2.25), and (2.28). The value of ln(1+e−|x1−x2|)

can be found via a lookup table in a practical design. If the logarithmic term is very small,

it could be omitted. Then the normal max operations could replace the max∗ operations.

max∗(ex1 , ex2) ≈ max(ex1 , ex2). (2.38)

We express both (2.25) and (2.28) in a simpler form:

α(St) = max
St−1

[α(St−1) + γ(St−1, St)] (2.39)

β(St) = max
St+1

[β(St+1) + γ(St, St+1)] . (2.40)

Thus, the L(ut) alters:

L(ut) = max
(St,St+1):ut=0

[α(St) + γ(St, St+1) + β(St+1)]

− max
(St,St+1):ut=1

[α(St) + γ(St, St+1) + β(St+1)] (2.41)

If the algorithm still uses max∗ operations, it is named Log-MAP algorithm, and its

performance is equivalent to that of MAP algorithm. The approximation in (2.38) leads

17

to the Max-Log-MAP algorithm using max operations. Because the logarithmic term in

(2.36) is discarded, there will be some performance degradation. However, the Max-Log-

MAP algorithm contains only addition, comparison, and selection functions. It is more

suitable for circuit implementation. Moreover, its recursive metric calculations is similar

to the critical add-compare-select (ACS) operation of Viterbi algorithm [20]. As a result,

the decoder with Max-Log-MAP algorithm can adopt many techniques which originally

support Viterbi decoder.

Wj-1

Wj

Wj+1

Wj+2

Wj+3

β
d

α β

α β

β
d

α β

β
d

α β

β

time

t0 t1 t2 t3 t4 t5

LLR

LLR

LLR

LLR

Figure 2.7: The MAP algorithm with sliding window technique

The optimal or suboptimal MAP algorithm will encounter another difficulty in imple-

mentation while the block size N is large. The data (r0, . . . , rN−1) are usually sent to

the decoder in ascending order, and then the forward metrics can be derived soon with

the initial condition α(S0). After the whole sequence has been received, the recursive

calculation of backward metrics can start from its only known state SN . Both α(St) and

β(St+1) are necessary to calculate L(ut) with t = 0 ∼ (N − 1). Hence, all forward metrics

must be kept during such decoding procedure. The memory requirement would be con-

siderable, and the decoder would become impractical. To reduce this hardware overhead,

the sliding window technique [24, 25] exploits a dummy calculation to provide reliable

metric initialization at any time. As shown in Fig. 2.7, the codeword block is divided

into ⌈N/L⌉ windows of length L, and the Wj stands for the j-th window. The dummy

18

backward recursion βd is an operation similar to the β. Except the last window, the initial

βd within each window is unknown. We set the βd of all 2m states in the (j+1)-th window

equally probable:

βd(S(j+2)L) = ln 1
2m

for S(j+2)L ∈ {S(0), S(1), . . . , S(2m − 1)} (2.42)

The βd in the last window is the same as β(SN). As the βd process in the (j + 1)-th

window finishes, the initial metrics β(S(j+1)L) in the j-th window are available for the β

recursion. The exact operations from t0 to t1 in Fig. 2.7 can be expressed as follows:



βd : S(j+2)L → S(j+2)L−1 → · · · → S(j+1)L+1 → S(j+1)L

α : S(j+0)L → S(j+0)L+1 → · · · → S(j+1)L−1 → S(j+1)L

β : S(j+0)L → S(j+0)L−1 → · · · → S(j−1)L+1 → S(j−1)L

LLR : u(j+0)L → u(j+0)L−1 → · · · → u(j−1)L+1 → u(j−1)L

(2.43)

During the βd operation of the (j + 1)-th window, the decoder performs concurrently

the following operations: the α of the j-th window, the β and the L(ut) of the (j − 1)-th

window. The calculation of L(ut) is possible because all α results of the (j−1)-th window

had been completed and stored in the memory. We also use the same memory to store

the α of the j-th window. In the subsequent process between t1 and t2, the L(ut) of

the j-th window can be derived with the α in the memory, the β in computing, and the

corresponding branch metrics. Instead of keeping (N × 2m) α metrics, the decoder with

sliding window technique requires a smaller memory for (L× 2m) α metrics.

2.2 Turbo code design

2.2.1 Parallel concatenated convolutional code

The turbo code can utilize an iterative decoding process to achieve the near Shannon

limit performance [5, 26]. The typical encoder structure, which consists of two recursive

19

0/00

1/11

1/11

0/00

1/10

0/01

0/01

1/10

0/00

1/11

1/10

0/01

0/00

1/11

1/11

0/00

1/10

0/01

0/01

1/10

u0 u1 u2 u4

S(2)

S(1)

S(0)

S(3)

0/00

1/11

1/11

0/00

1/10

0/01

0/01

1/10

0/00

1/11

1/10

0/01

0/00

1/11

0/00

1/11

u
T

u3

S(2)

S(1)

S(0)

0 u
T

1

S(3)

(a) Trellis with tail bits

0/00

1/11

1/11

0/00

1/10

0/01

0/01

1/10

0/00

1/11

1/11

0/00

1/10

0/01

0/01

1/10

0/00

1/11

1/11

0/00

1/10

0/01

0/01

1/10

0/00

1/11

1/11

0/00

1/10

0/01

0/01

1/10

u0 u1 u3u2

0/00

1/11

1/11

0/00

1/10

0/01

0/01

1/10

u4 u0u4

S(2)

S(1)

S(0)

S(3)

S(2)

S(1)

S(0)

S(3)

(b) Trellis with tail-biting technique

Figure 2.8: Trellis diagrams with different termination schemes

convolutional encoders and one interleaver, is given in Fig. 2.1. One of the convolutional

encoders encodes the information in original order, while the other encodes the information

in interleaved order. If the first parity and the second check sequences have N1 and N2

bits respectively, the overall code rate will be

R =
N

N +N1 +N2

. (2.44)

In the encoding process of turbo code, the trellis termination is an important issue.

It will provide the information of the beginning state S0 and the ending state SN , so

the trellis-based decoding algorithm can get reliable initial conditions: α(S0) and β(SN).

There is one common termination method whose trellis is starting from all-zero state and

ending at all-zero state. The encoder can get S0 = S(0) by flushing the memory contents,

but the SN is undetermined due to various input sequences. To force the ending state

to S(0), several tail bits are attached after encoding the size-N information block. In a

recursive convolutional encoder, the input is replaced with the duplicated feedback path

20

during the termination flow. Then we can make certain that the content of the first delay

element will be 0. This 0 will further propagate to the succeeding delay elements, and it

takes m additional input bits to reset all m delay elements. Since these redundant bits and

their corresponding parity check bits must be sent to decoder, it will cause the rate loss,

especially for short block sizes. The tail-biting technique is another trellis termination

method [27]. It let the trellis begin and end at the same state, that is, S0 = SN . The

information block has to be encoded twice to achieve this target. In the first encoding

process, the trellis diagram starts from S(0) and stops at one of the 2m states, symbolized

by S ′
N . According to the last state S ′

N , the block size N , and the code generator matrix

G(D), we can compute an appropriate state S ′′
0 for the second encoding process. As the S0

of the trellis is set to S ′′
0 , encoding the same information will make the SN equal S ′′

0 , too.

The trellis with tail-biting technique can be viewed as a loop. Although the decoder lacks

the exact S0 and SN , it can get reliable α(S0) from the final received data and get reliable

β(S0) from the initial received data. Here the encoder in Fig. 2.3 with N = 5 is used to

illustrate these methods. Fig. 2.8 depicts the two different trellis diagrams. We assume

that the information (u0, u1, u2, u3, u4) is (1, 0, 0, 1, 1). In Fig. 2.8(a), this input sequence

can generate a path stopping at S(2). The tail bits (uT
0 , u

T
1), derived from d0 ⊗ d1, force

the path back to S(0) and decrease the code rate to 5/14. In Fig. 2.8(b), the initial state

in the second encoding process will be set as



S ′′
0 = 0 if S ′

N = 0

S ′′
0 = 3 if S ′

N = 1

S ′′
0 = 1 if S ′

N = 2

S ′′
0 = 2 if S ′

N = 3

While starting from S(1), the above input sequence causes the trellis also end at S(1).

No extra bits are introduced, so the code rate is still 1/2.

The consistent code structure and the interleaving method are critical to the turbo code

performance. We can evaluate the performance bound with some fundamental properties

21

of turbo code. The first property is the Hamming weight; it is the number of nonzero

components of each codeword. The second property, Hamming distance, is the number

of locations in which any two codewords differ. Among all Hamming distances of the

code, the smallest one is called free distance, also denoted by dfree. Due to the linearity

of this code, dfree is equivalent to the minimum weight of all non-zero codewords. The

third property is the weight distribution or the distance spectrum. For a turbo code with

information block size N and code rate R over the AWGN channel, its codeword error

probability P (E) and bit error probability Pb(E) are bounded by [7, 28]

P (E) ≤
∑

d≥dfree

AdQ

(√
2dREb

N0

)
(2.45)

Pb(E) ≤
∑

d≥dfree

Bd

N
Q

(√
2dREb

N0

)
, (2.46)

where Ad is the total number of codewords of weight d, and Bd is the total information

weight of all codewords of weight d. The function Q(x) is the Gaussian error integral:

Q(x) , 1√
2π

∫ ∞

x

exp
(
−x2

2

)
dx. (2.47)

When the SNR is high, these bounds become very tight, and they are usually dominated

by the first few terms of (2.45) and (2.46). Therefore, we prefer the constituent codes and

interleavers that can lead to large dfree and good distance spectrum.

To meet various requirements, every turbo code specification contains specific com-

ponent code, block sizes, trellis termination scheme, and interleaving method. Here we

introduce the turbo encoder specified both in the 3GPP standard [12], and Fig. 2.9 demon-

strates its architecture. Its constituent code has the following generator matrix:

G(D) =

[
1

1 +D +D3

1 +D2 +D3

]
. (2.48)

The block sizes range from 40 to 5144. A modified block interleaver is used to permuted the

22

ut D D D

D D D

Interleaver

ut~

uj
Ta

C

H

A

N

N

E

L

vj
Tavt

(0)()

uj
Tc

vj
Tbvt

(1)()

vj
Tc()

vj
Tdvt

(2)()

rj
Tart

(0)()

rj
Tbrt

(1)()

rj
Tc()

rj
Tdrt

(2)()

Figure 2.9: The turbo encoder specified in the 3GPP system

input sequence (u0, . . . , uN−1), and the permuted sequence is symbolized as (ũ0, . . . , ũN−1).

The transmitted codeword includes the systematic data v
(0)
t , the first parity check v

(1)
t , and

the second parity check v
(2)
t for t = 0 ∼ (N−1). Besides, some bits from feedback path, uTa

j

and uTc
j , are used for trellis termination. There are 12 additional bits, (vTa

j , vTb
j , vTc

j , vTd
j)

with 0 ≤ j ≤ 2, attaching to the codeword, so the overall code rate is N/(3N + 12). All

codewords are distorted by channel noise before arriving the receiver. From these received

data (r
(0)
t , r

(1)
t , r

(2)
t) and (rTa

j , rTb
j , rTc

j , rTd
j), the turbo decoder can get an estimate of each

information bit.

2.2.2 Iterative decoding flow

For a turbo code with two rate-1/2 constituent codes, the decoding flow involves the

process for the first component, {r(0)t , r
(1)
t }, and the process for the second component,

{r̃(0)t , r
(2)
t }. Note that (r̃

(0)
0 , . . . , r̃

(0)
N−1) is the interleaved version of (r(0)0 , . . . , r

(0)
N−1). If the

trellis is terminated with tail bits, these extra bits should be considered. The soft-in

soft-out (SISO) decoder is used to calculate the soft values of each component code [21].

23

La1(ut) Le1(ut)

L1(ut)

La2(ut)
~

Le2(ut)
~

L2(ut)
~rt

(0)

rt
(1)

rt
(2)

Interleaver

Interleaver

Deinterleaver

SISO

Decoder
2

SISO

Decoder
1 rt

(0)~

Figure 2.10: Basic framework of a turbo decoder

By substituting (2.35) for the γ(St, St+1) of (2.23), we have another general expression of

LLR:

L(ut) = ln

∑
(ut=0;St,St+1)

[
e

(
α(St)+γ(St,St+1)+β(St+1)

)]
∑

(ut=1;St,St+1)

[
e

(
α(St)+γ(St,St+1)+β(St+1)

)]

= ln

∑
(ut=0;St,St+1)

[
e

1
2

(
(+1)La(ut)+(+1)Lcr

(0)
t

)] [
e

(
α(St)+

1
2
Lc
∑n−1

j=1 r
(j)
t ×y

(j)
t +β(St+1)

)]
∑

(ut=1;St,St+1)

[
e

1
2

(
(−1)La(ut)+(−1)Lcr

(0)
t

)] [
e

(
α(St)+

1
2
Lc
∑n−1

j=1 r
(j)
t ×y

(j)
t +β(St+1)

)]

= La(ut) + Lcr
(0)
t + ln

∑
(ut=0;St,St+1)

[
e

(
α(St)+

1
2
Lc
∑n−1

j=1 r
(j)
t ×y

(j)
t +β(St+1)

)]
∑

(ut=1;St,St+1)

[
e

(
α(St)+

1
2
Lc
∑n−1

j=1 r
(j)
t ×y

(j)
t +β(St+1)

)]
= La(ut) + Lcr

(0)
t + Le(ut). (2.49)

The term Le(ut) is the extrinsic information corresponding to the information bit ut [5,26].

In above equation, the systematic part r
(0)
t is extracted from the original branch metric.

During the decoding flow, the sequence (r
(0)
0 , . . . , r

(0)
N−1) is shared by both component

codes. There is a weak correlation between Le(ut) and r
(0)
t , so Le(ut) is helpful for the

other component code to estimate its a priori information.

Fig. 2.10 shows the iterative decoding flow of turbo code. There are two SISO decoder

24

for the two constituent convolutional codes. The initial a priori information La1(ut) for

the first SISO decoder is set to zero. Based the corresponding trellis diagram, the SISO

decoder performs the BCJR algorithm to compute γ, α, and β metrics. It can further get

the a posteriori information L1(ut). From (2.49), the extrinsic information Le1(ut) can be

obtained

Le1(ut) = L1(ut)− Lcr
(0)
t − La1(ut), (2.50)

where we assume La1(ut) = 0 initially. The Le1(ut) is regarded as the a priori informa-

tion La2(ũt) in the second SISO decoder. This SISO decoder also does the trellis-based

decoding procedure with the following inputs: r̃
(0)
t , r(2)t , and La2(ũt). Then it evaluates

the a posteriori La2(ũt) and the extrinsic information Le2(ũt) of the second component

code by

Le2(ũt) = L2(ũt)− Lcr̃
(0)
t − La2(ũt). (2.51)

The Le2(ũt) is passed back to the first SISO decoder. A de-interleaver rearranges the

sequence order so that Le2(ũt) can be the a priori information La1(ut) for the first com-

ponent code. When all La1(ut) for t = 0 ∼ (N − 1) are updated, the first SISO decoder

performs BJCR algorithm again. Such soft value calculation of each component code

is named as a half-iteration, and two successive processes form one complete iteration.

The decoding flow alternates between these components until the stopping criteria are

reached. These criteria may be the maximum iteration number or a correctly decoded

codeword. Finally, the hard decisions are made from the LLR at the last half-iteration

by (2.11).

In Fig. 2.11, the BER performance versus SNR diagram of 3GPP turbo code with

N = 4096 is presented [12]. The simulation results based on Max-Log-MAP algorithm

include the performance with different iteration numbers. The error performance will

improve as the iteration number increases. At the first few iterations, the improvement is

considerable. However, the correlation between the APP estimates and the received data

will become stronger after the first half-iteration. The benefit of the extrinsic information

25

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

B
it
 E

rr
o

r
R

a
te

10
-8

-1.0 -0.5 0.0 0.5 1.5 2.0
Eb/N0 (dB)

2.5 3.0 3.5 4.0
10

-9

1.0

Nonconvergence Waterfall Error Floor

1 iteration

2 iterations

4 iterations

6 iterations

8 iterations

10 iterations

Figure 2.11: The bit error rate performance based on the iterative decoding

diminishes gradually during the succeeding decoding process. In this example, there is

little improvement if the iteration number exceeds 6. Actually, each result with more than

6 iterations is similar to the typical BER curve of turbo code. As shown in Fig. 2.11,

the BER curve can be divided into three regions [29]. The initial region where error rate

remains high and almost constant is the non-convergence region; the middle region where

error rate sharply drops to a lower value is the waterfall region; the last region where the

decrease of error probability slows down is the error floor region. The interleaver design

is closely related to the waterfall region and the error floor region. The random-like

properties of interleaver determines the efficiency of APP information exchange. If the

interleaver can promise the decorrelation between the constituent codes, there will be a

more rapid decline of error probability. Moreover, the distance spectrum, also affected by

the interleaver, determines the performance bound at high SNR’s [26]. The reason why

error floor region occurs is that the BER curve approaches the performance bound. To

26

0: codeword from original sequence

1: codeword from interleaved sequence

Extrinsic

Information

Le1 memory

Le2 memory

0

1

0

1

0

10

1

SISO

Decoder

Decision

rsmemoryrs

rp1

rp2

Le1

Le2 La1

La2
Interleaver

Deinterleaver

Interleaver

rp1memory

rp2memory

rp1

rp2

~rs

rs

Figure 2.12: Practical architecture of a turbo decoder

achieve further improvement, both the distance spectrum optimization of the code and

the randomness of the interleaving rule are two main design criteria [30]. Generally, the

convergence rate can be enhanced by increasing the block size N .

2.3 Practical turbo decoder architecture

Due to the permutation by interleaver and de-interleaver, the last few extrinsic infor-

mation of one constituent code may be the first few probability estimate for the other

code. Every half-iteration cannot start until the required a priori information is available.

For conventional turbo decoders like Fig. 2.10, one SISO decoders is always idle as the

other is in execution. Practical decoder architecture takes advantage of such property,

and the two component codes will share the same SISO decoder. Fig. 2.12 shows the

corresponding architecture, which consists mainly of one SISO decoder and memories.

Here rs is the received systematic sequence (r
(0)
0 , . . . , r

(0)
N−1); rp1 is the received first par-

ity sequence (r
(1)
0 , . . . , r

(1)
N−1); and rp2 is the received second sequence (r

(2)
0 , . . . , r

(2)
N−1). All

received codewords and temporary decoding results are stored in these memories. Both

27

interleaver and de-interleaver are implemented as the address generators for the memory

module. In fact, we can merge the memories for Le1 and Le2 into a smaller one with

elaborate controls on memory access. The multiplexers determine which component code

will be processed in each half-iteration. The SISO decoder usually utilizes Log-MAP or

Max-Log-MAP algorithm [22] rather than the MAP algorithm [16] for less complexity. In

the Log-MAP algorithm, the calculation of branch metric in (2.35) includes the channel

reliability value Lc = 4Es/N0. To guarantee high performance, the precise SNR esti-

mation for the AWGN channel is required [31]. Nevertheless, it is difficult to get the

real channel information. Besides, the range of the logarithmic term ln(1 + e−|x1−x2|) in

(2.36) is very huge. A large lookup table is necessary for such nonlinear function. While

the Max-Log-MAP algorithm is applied, the mentioned overhead can be avoided. After

simplifying max∗ to max in (2.38), the logarithmic term is removed, and the lookup table

is needless. The value Lc also becomes ineffective because of the maximum function [32].

Although it will lead to performance degradation, the problem can be alleviated by scaling

the extrinsic information [33, 34].

The bit number of quantization, also called data width, is another design issue during

the fixed-point implementation. It affects the performance and the design area. Both

α and β will accumulate vast branch metrics γ over a period of time. It is impossible

to represent their values with infinite bit number. On the other hand, too few data

width might cause the overflow. We must minimize the necessary data width without

performance loss. The works in [35, 36] prove that the quantities of the SISO decoder

can be limited. According to the width of received data, the difference between any two

γ(St, St+1) at the same time instant is bounded; the maximal differences of α(St) and of

β(St) can be further determined; then the sufficient width for L(ut) can be obtained [35].

The modulo normalization [37, 38], which makes use of the bounded differences, can

be applied to prevent overflow. As a result, we can implement a turbo decoder with

reasonable overhead and good performance.

The major computation of an SISO decoder with Max-Log-MAP algorithm includes

28

γ in (2.35), α in (2.39), β in (2.40), and LLR in (2.41). Because the value of y
(j)
t is

±1, the corresponding circuits for γ calculation are common adders. The α, β, and LLR

calculations have to find the maximal one among several summations. Such maximum

function can be achieve by add-compare-select (ACS) units. Fig. 2.13(a) demonstrates

the basic ACS unit for the forward path metric calculation in Fig. 2.6(a). The comparator

performs the subtraction so that the sign of difference can indicate the larger input and

choose it by the multiplexer. With appropriate substitution of inputs, this functional unit

can perform the backward path metric calculation. The practical SISO decoder usually

adopts the sliding window method for less overhead [24]. This method does the dummy

backward path metric βd to provide reliable initialization for β in each window, and the

typical process has been introduced in Fig. 2.7. We let α-ACS mean the circuits for

forward path metrics of all states. Obviously, there are also β-ACS and βd-ACS in the

SISO decoder. In Fig. 2.13(b), another ACS unit for the APP value is presented. Its

addition function involves α, γ, and β. There will be at least 2m summations with respect

to the same ut. The comparator and multiplexer will choose the maximal one out of all

candidates. When the maximal APP with ut = 0 and the maximal APP with ut = 1

are available, the LLR and the extrinsic information can be computed soon. The total

circuits for LLR calculation are called LLR unit here. Since the design computes βd of

Wj+1, α of Wj, and β of Wj−1 in the same time, the received data of three windows must

comparator

()1−tSα

()1−tSα

()1− ,t t
S Sγ

()1− ,t t
S Sγ

()tSα

(a) ACS unit for path metrics

comparator

()tSα

()1+,
t t
S Sγ

()1+tSβ

()tSα

()1+,
t t
S Sγ ()1+tSβ

(b) ACS unit for log-likelihood value

Figure 2.13: Fundamental circuits for path metric and LLR calculations

29

be kept until all their relevant executions are finished. The input cache within the SISO

decoder can facilitate the access to data. Moreover, it needs an interior buffer to store

α temporarily. Therefore, the complete SISO decoder comprises input buffers, branch

metric units, βd-ACS, α-ACS, β-ACS, α buffer, and LLR unit.

Among all component circuits, the ACS units for recursive path metric calculation lead

to the speed bottleneck of the trellis-based decoding process. The data dependency of suc-

cessive trellis stages makes the pipelining technique difficult to insert registers within these

ACS units. Although the LLR calculation also needs the ACS unit, the corresponding

data path can be shorten with the pipelining technique. Many researches improve the crit-

ical path delay by modifying the ACS circuit. The design in [39] shifts the normalization

circuit, and the design in [40] applies the double state technique. With the modifications,

the turbo decoder can operate at higher frequency. Besides frequency, the total iteration

number is essential for throughput. Fig. 2.11 indicates that the performance improvement

is small as the iteration exceeds a certain number. For some erroneous blocks, there is

faster convergence in their performance during the iterative process, so we can exploit an

efficient stopping criterion to reduce the average iteration number [21,41,42]. Most early

stopping rules examine the difference between the temporary results of two consecutive

iterations or half-iterations. If the difference is less than a given threshold, the decoding

process of current data block terminates. The choice of temporary result affects the it-

eration number, the circuit complexity, and the performance loss. These methods work

well at high SNR, and the decoder could achieve the similar performance while costing

half or less iterations.

Fig. 2.14(a) shows the traditional SISO decoder architecture with three separate input

buffers [43], and Fig. 2.14(b) illustrates its processing schedule. The SISO decoder acquires

the received data in ascending order. As the data of entire window are ready, they will be

sent from the input buffers to the βd-ACS, α-ACS, and β-ACS; so these functional units

are inactive in the first TW cycles. Each half-iteration can be divided as follows: both δa

and δb are pipeline delay time and memory access time; τa is the interval for initial metric

30

branch

metric

unit

branch

metric

unit

α

β
d

β

α

input

buffer

input

buffer

input

buffer

branch

metric

unit

(a) SISO decoder architecture

W0

W1

W2

βd α LLRβ

βd α LLRβ

βd α LLRβ βd α

βd

half-iteration for original sequence

read required data

from memories

wirte decoding

result to memories

calculate path

metrics or LLR

half-iteration for permuted sequence

a b
ba

(b) Processing schedule

β

α

LLR

W0 W1β
d

W2 W0 W1

W0 W1 W2 W0

W0 W1 W2

W0 W1 W2

(c) Corresponding active periods

Figure 2.14: Conventional SISO decoder and its schedule with three windows

31

calculation between receiving the first input and producing the first output; and τb is the

time to output all LLR and decisions. Fig. 2.14(c) shows when the major operations of

every window are executed. After all extrinsic information are written back to memory,

the following half-iteration will start. These component functional units stay idle for

(δa + δb + τa) across two successive half-iterations. It takes τb out of total execution time

to generate decoding results, and the ratio is viewed as the operating efficiency, symbolized

as η, in (2.52) during the throughput calculation.

η =
τb

δa + δb + τa + τb
(2.52)

The value of δa, δb, τa, and τb are affected by window length and decoder architecture.

From Fig. 2.14(b), the necessary cycles of these execution periods can be expressed as


0 ≤ δa, δb ≤ TW

3TW ≤ τa ≤ 4TW

τb = 3TW ,

(2.53)

where TW is the cycle number that each functional unit takes to process one window.

In general, δa, δb, and τa are constant for any block size, but τb will be in proportion to

the window number. When the SISO decoder has to process κ (= N/L) windows, only

τb becomes (κ × TW) cycles. We assume that the summation of δa, δb, and τa is 4TW ,

causing the η equal to κ/(κ + 4) with the traditional schedule. If the block size is large,

the influence of η will be slight; otherwise, the decoding process will be inefficient. The η

of the conventional design is merely 42.9% with κ = 3.

The δa, δb, and τa dominate the operating efficiency η. A trivial solution for raising η

is to shorten any of them. The work in [44] modifies the way how the data are input to

the SISO decoder. For each window, the received symbols are sent in descending order.

The corresponding architecture and schedule are given in Fig. 2.15. There are two input

buffers connecting to α-ACS and β-ACS. Rather than waiting for the input buffers, the

32

branch

metric

unit

input

buffer
α

β
d

β

α

branch

metric

unit

branch

metric

unit

input

buffer

(a) SISO decoder architecture

half-iteration for original sequence

read required data

from memories

wirte decoding

result to memories

calculate path

metrics or LLR

half-iteration for permuted sequence

W0

W1

W2 βd α

βd α LLRβ

βd α β

βd α LLRβ

βd α LLRβ

βd α LLRβ

a b
ba

(b) Processing schedule

β

α

LLR

W0 W1β
d

W2 W0 W1 W2

W0 W1 W2 W0 W1 W2

W0 W1 W2 W0 W1

W0 W1 W2 W0 W1

(c) Corresponding active periods

Figure 2.15: Modified SISO decoder with βd and its schedule with three windows

33

βd-ACS can get its required data sequence immediately and start the backward recursive

operations. Compared to the conventional SISO decoder, it costs fewer storage elements

and less processing time. This architecture avoids the initial redundant time, and τa

becomes

2TW ≤ τa ≤ 3TW . (2.54)

The η changes to κ/(κ+ 3). For this schedule with κ = 3, its η is improved to 50%.

In [45] and [46], an initialization approach is proposed to reduce TW cycles from τa.

Instead of the dummy calculation, the boundary α and β from previous iteration are

utilized to initialize the α and β in current iteration. Fig. 2.16 depicts the modified

SISO decoder without βd operations. The branch metric units and ACS units for βd

are removed, and only one input buffer module is exploited to support β-ACS. However,

there are extra buffers for previous boundary path metrics in this SISO decoder. Such

additional overhead is in proportion to the window number κ, so this architecture is

suitable for processing small blocks. Its major advantage is the shortened range of τa:

TW ≤ τa ≤ 2TW . (2.55)

The general expression of η is κ/(κ + 2) now. When κ is 3, the η is 60%. This method

achieves the best operating efficiency.

The turbo decoder will choose the architecture and schedule that lead to the greatest

benefits in specific application. If the decoder only deals with large blocks, the SISO

decoder in Fig. 2.15 is preferred due to reasonable area and tolerable η. Conversely, the

SISO decoder in Fig. 2.16 has superior η, and it may also bring about less overhead. While

the application involves both small κ and large κ, we have to make a trade-off between

the cost and the efficiency. The cycle number of one half-iteration is

δI =
κ× TW

η
=

N

η
. (2.56)

34

boundary path

metric buffer boundary path

metric buffer

input

buffer

αα

β
branch

metric

unit

branch

metric

unit

(a) SISO decoder architecture

half-iteration for original sequence

read required data

from memories

wirte decoding

result to memories

calculate path

metrics or LLR

half-iteration for permuted sequence

W0

W1

W2

α LLRβ

α LLRβ

α LLRβ α LLRβ

α LLRβ

α LLRβ

a b
ba

(b) Processing schedule

β

α

LLR

W0 W1 W2 W0 W1 W2

W0 W1 W2 W0 W1 W2

W0 W1 W2 W0 W1 W2

(c) Corresponding active periods

Figure 2.16: Modified SISO decoder without βd and its schedule with three windows

35

From [47], all of the critical path delay, iteration number, and operating efficiency are

essential for decoding speed. The throughput of a normal turbo decoder can be calculated

via
N

2× I × (N/η)× (1/F)
=

F × η

2× I
. (2.57)

where F is the clock frequency, and I is the iteration number. Based on these basic

architectures introduced above, many designs are developed to pursue higher throughput

and less decoding time [9]. Most of the previous works concerns the process of large

blocks [48, 49]. The corresponding η usually approaches 100%, and the I is relatively

larger than that of small blocks. For these cases, the F will be the principal factor in

throughput. However, it is impossible to increase F infinitely. There will be an upper

bound of the maximal throughput in traditional turbo decoders. With a growing interest

in higher throughput, several techniques are developed, including architecture, algorithm,

and decoding flow. These methodologies bring better speedup to turbo decoders, but

they also pose new challenges.

36

Chapter 3

Parallel Architecture and Interleaver

For conventional turbo decoders, both F and I are important to throughput calcu-

lation. The two factors can be improved by modified ACS circuits and early stopping

rules respectively. However, it is a challenge to provide a stable clock signal with high

frequency, and the iteration number is unchanged at worst case. We need other methods

to raise the decoding speed further even with slow clock or low SNR. Exploiting paral-

lel architecture is an intuitive solution. There are three levels of parallelism: the turbo

decoder level, the SISO decoder level, and the trellis stage level [9, 50]. In the turbo

decoder level, multiple dedicated turbo decoders are used to decode different codeword

blocks independently. In the SISO decoder level, multiple SISO decoders are responsible

for the decoding process of single codeword block simultaneously. In the trellis stage

level, the computation units inside the trellis-based decoder would process more than one

trellis stage every clock cycle. To lessen the implementation complexity of the parallel

turbo decoders, appropriate interleaver designs are necessary. In the following descrip-

tions, we give more detailed features of each parallel level; and we also introduce the

inter-block permutation (IBP) interleaver [51] and the quadratic permutation polynomial

(QPP) interleaver [52] as well as their corresponding circuits.

3.1 Parallel turbo decoder architecture

3.1.1 Turbo decoder level

The parallel turbo decoder level is achieved by simply duplicating the circuits in

Fig. 2.12. Fig. 3.1 shows the design with this parallel level, which contains several individ-

37

Memory

module

SISO

decoder

Memory

module

SISO

decoder

Memory

module

SISO

decoder

Figure 3.1: Architecture with parallel turbo decoder level

ual pairs of memory module and SISO decoder. While receiving an erroneous codeword,

the whole data block are sent to one memory module via the de-multiplexer; then this

memory module and its corresponding SISO decoder will start their executions. During

the above decoding process, the design can also decode newer received blocks by assigning

them to other unoccupied turbo decoders. The parallel design with PC turbo decoders

can process at most PC codewords concurrently, so its throughput increases from (2.57)

to
PC ×F × η

2× I
, (3.1)

but the decoding latency for each codeword remains as (2.56). This level is the simplest

parallelization, and it can support any turbo decoder with arbitrary interleavers. Never-

theless, it results in considerable overhead due to extra memories and SISO decoders for

multiple codewords. Besides, the unchanging decoding time is a drawback. The parallel

turbo decoder level is seldom applied to practical designs [9].

3.1.2 SISO decoder level

In the parallel SISO decoder level, PS SISO decoders are utilized to process one erro-

neous codeword. Fig. 3.2 depicts the architecture. Unlike the parallel turbo decoder level,

38

SISO

decoder

SISO

decoder
Sub‐block
memory

Sub‐block
memory

SISO

decoder
Sub‐block
memory

In
te

rco
n

n
e

ctio
n

 n
e

tw
o

rk

Figure 3.2: Architecture with parallel SISO decoder level

only the SISO decoders are duplicated here. Every received size-N block will be divided

into PS sub-blocks, and each sub-block has M (M = ⌈N/PS⌉) successive data. These

sub-blocks are stored in separate smaller memory modules. We represent the M symbols

of one sub-block as (riM , riM+1, . . . , r(i+1)M−1). During the half-iteration for original se-

quence, each SISO decoder continues accessing the same sub-block memory. At the other

half-iteration, the interleaved sequence, (r̃iM , r̃iM+1, . . . , r̃(i+1)M−1), is required. The data

belong to different sub-blocks, so the SISO decoder will access various sub-block mem-

ories. This design requires an interconnection network to handle the data transmission

between multiple memories and multiple SISO decoders.

The SISO decoder level gets the most attention for its profits in recent years. In this

parallel level, one memory module might be accessed by several SISO decoders at the

same time, and such collision problem is the major design issue [9]. Fig. 3.3 gives an

example of size-16 block. According to the mapping rule in Fig. 3.3(a), the sequence

(r0, . . . , r15) is reordered and then labeled as (r̃0, . . . , r̃15). For the design with PS = 4,

four sub-blocks are stored in separate memory modules in the nature order. Fig. 3.3(b)

illustrates a successful parallel data access. As the SISO decoders acquire their first data

of the permuted sequence, the {r̃0, r̃4, r̃8, r̃12} come from four different sub-block memory

modules. Unfortunately, these memory modules will encounter collision problem while

accessing {r̃1, r̃5, r̃9, r̃13}. Fig. 3.3(c) shows that the last sub-block memory module has

39

trouble with the simultaneous requests for r̃1 and r̃9. Spreading concurrent requests over

several cycles [53] and storing data by specific rules [54] are two solutions. Both tech-

niques can be compatible with conventional interleavers, but they require some hardware

to deal with complicated data flow. For large blocks or high parallelism, the correspond-

ing cost is very high. Current studies solve the problem by designing the contention-free

interleavers that allow instant access and trivial mapping for all sub-blocks [51,52,55–59].

These interleavers result in relatively lower overhead, and they also possess outstand-

ing error-correcting capability. Furthermore, some contention-free interleavers relieve the

complexity of interconnection between SISO decoders and memory modules [60, 61].

Each SISO decoder in this parallel architecture processes shorter sub-block, so the

decoding time per half-iteration can be reduced, and the throughput can be increased.

However, the operating efficiency is sensitive to the block size. The throughput calculation

must take the variation of η into account. We assume that window number κ is divisible

by PS , and one sub-block has κ/PS windows. If the parallel design uses the SISO decoder

in Fig. 2.16, its operating efficiency will equal

ηS ≈ τb/PS

δa + δb + τa + τb/PS
≈ κ/PS

κ/PS + 2
. (3.2)

Thus, its throughput is improved to

PS ×F × ηS
2× I

, (3.3)

and the execution cycles per half-iteration are reduced to

δI =
κ× TW

PS × ηS
=

N

PS × ηS
. (3.4)

The actual speedup is (PS × ηS/η), which is smaller than PS . The lower operating

efficiency is a side effect of parallel SISO decoder level, and it makes high parallelism

ineffective [47, 62, 63].

40

r0 r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11 r12 r13 r14 r15

r9 r14 r4 r0 r2 r5 r7 r12 r13 r15 r3 r1 r6 r11 r8 r10

r0
~

r3
~

r2
~

r1
~

r4
~

r7
~

r6
~

r5
~

r8
~

r11
~

r10
~

r9
~

r12
~

r15
~

r14
~

r13
~

(a) Interleaving rules

r0
~

r4
~

r8
~

r12
~

r15
~

r11
~

r7
~

r3
~

r2
~

r6
~

r10
~

r14
~

r1
~

r5
~

r9
~

r13
~

r0 r1 r2 r3

r4

r8

r12

r5

r9

r13

r6

r10

r14

r7

r11

r15

(b) Successful access

r0
~

r4
~

r8
~

r12
~

r15
~

r11
~

r7
~

r3
~

r2
~

r6
~

r10
~

r14
~

r1
~

r5
~

r9
~

r13
~

r0 r1 r2 r3

r4

r8

r12

r5

r9

r13

r6

r10

r14

r7

r11

r15

(c) Collision problem

Figure 3.3: An example of memory access in the parallel SISO decoder level

3.1.3 Trellis stage level

In this parallel level, we primarily modify the circuits of the SISO decoder so that the

design can process PT consecutive data per clock cycle. Based on the path metrics at St,

this design uses the received symbols to compute {γ(St, St+1), . . . , γ(St+PT −1, St+PT)} and

get the path metrics at St+PT in one cycle. As shown in Fig. 3.4, there is a chain of ACS

units associated to a series of trellis stages. Apparently, the trivial architecture has a very

long data path: PT additions, PT 2-to-1 comparisons, and PT 2-to-1 selections. It needs

larger clock period and diminishes the benefit of parallelization. This design costs extra

41

overhead, but the overall throughput might remain the same. To make this parallel level

profitable, the trellis compacting technique is usually applied. More than two consecutive

trellis stages are merged into a single one. The calculation of distinct branch metrics can

be combined as

γ(St, St+PT) =

PT −1∑
i=0

[
1

2
u′
t+iLa(u

′
t+i) +

1

2
Lc

n−1∑
j=0

(r
(j)
t+i × y

(j)
t+i)

]
, (3.5)

and it can be computed in advance. Then, α and β can be derived by

α(St) = max
St−PT

[α(St−PT) + γ(St−PT , St)] (3.6)

β(St) = max
St+PT

[β(St+PT) + γ(St, St+PT)] . (3.7)

If each state has 2 incoming branches in the original trellis, it will have 2PT in the compact

trellis. Therefore, we need a radix-2PT ACS unit as Fig. 3.5 to choose the maximal

summation among 2PT candidates. The data path includes one addition, one 2PT -to-1

comparison, and one 2PT -to-1 selection. In general, the execution time of comparison and

selection circuits in Fig. 3.5 is similar to that in Fig. 3.4. Since all additions are operated

in parallel, the radix-2PT ACS unit has shorter path delay and gains more benefits from

the parallel trellis stage level. Many trellis-based decoders adopt such parallelization to

increase throughput [48, 64–68].

comparator comparator

comparatorcomparator

comparator

comparator

Figure 3.4: Architecture with parallel trellis stage level

42

This parallel design needs simultaneous access to (rt, . . . , rt+PT −1) or (r̃t, . . . , r̃t+PT −1).

For this purpose, the received block is partitioned into multiple groups depending on their

indexes modulo PT . There are PT separate memory modules for these groups, and each

one stores {rt, rt+PT , . . . , rt+N−PT } if PT is a factor of N . The collision problem also exists

in the parallel trellis stage level. We take the interleaver in Fig. 3.3(a) for example again.

Fig. 3.6(a) illustrates a successful data access with PT = 4, the high-radix SISO decoder

can get {r̃4, r̃5, r̃6, r̃7} from the four memory modules without hazard. In Fig. 3.6(b),

the collision problems occur at the second and the last memory modules while accessing

{r̃8, r̃9, r̃10, r̃11}. With appropriate adjustments, the solutions to the collision problem in

parallel SISO decoder level can be effective here.

The execution time of component circuits will be scaled by a factor of (1/PT), but the

pipeline delay and memory access time are unaffected. Compared to (2.52), the operating

efficiency in Fig. 2.16 with the parallel trellis stage level becomes

ηT ≈ τb/PT

δa + δb + τa/PT + τb/PT
≈ κ/PT

(κ+ 1)/PT + 1
, (3.8)

where we let the summation of δa and δb be TW . As PT is larger than 1, the corresponding

operating efficiency degrades. The critical path lengthens, so the maximal frequency

decreases to FT (FT < F). Consequently, the throughput changes to

PT ×FT × ηT
2× I

, (3.9)

comparator

Figure 3.5: High-radix ACS unit

43

r0
~

r2
~

r4
~
r8
~
r12
~

r6
~
r10
~
r14
~

r3
~

r1
~

r15
~

r11
~

r7
~

r5
~
r9
~
r13
~

r0

r3

r4 r8 r12

r7 r11 r15

r9r1 r5 r13

r2 r6 r10 r14

(a) Successful access

r0
~

r2
~

r4
~
r8
~
r12
~

r6
~
r10
~
r14
~

r3
~

r1
~

r15
~

r11
~

r7
~

r5
~
r9
~
r13
~

r0

r3

r4 r8 r12

r7 r11 r15

r9r1 r5 r13

r2 r6 r10 r14

(b) Collision problem

Figure 3.6: An example of memory access in the parallel trellis stage level

and the cycle number of one half-iteration changes to

δI =
κ× TW

PT × ηT
=

N

PT × ηT
. (3.10)

The overall speedup is (PT ×FT ×ηT /F×η). In fact, the PT is always small because this

approach causes exponential growth in overhead. The original radix-2 structure has 2m×2

branches between two trellis stages; there are 2m × 2 adders, 2m 2-to-1 comparators, and

2m 2-to-1 multiplexers. After parallelization with PT , the compact radix-2PT structure

has 2m × 2PT branches between St and St+PT ; there are 2m × 2PT adders, 2m 2PT -to-

1 comparators, and 2m 2PT -to-1 multiplexers in total. Hence, most designs choose the

parallel architecture with PT = 2 for reasonable cost [48,64]. For PT > 2, we can exploit

the two-dimensional technique to reach a compromise between overhead and enhancement

[69–71].

44

3.2 IBP interleaver and interconnection

The design may utilize a hybrid parallelism rather than single parallel level to achieve

higher throughput. Considering the advantages of each level, the combination of parallel

SISO decoder level and parallel trellis stage level can get better speedup and shorter de-

coding latency. However, the collision problem will become more serious. It is inefficient

to solve it by enlarging the storage bandwidth or using sophisticated control system. The

contention-free interleavers are preferable to such hybrid parallelism since all data are

stored in nature order. Undoubtedly, the interleaving rules must avoid all collision pat-

terns with respect to the given PS and PT . Another issue is the parallel data transmission

between memory modules and SISO decoders. In order to make the parallelization easier,

the design should consider architecture and algorithm jointly.

This interleaver design originates from the IBP interleaver in [51], and now it takes

both the hybrid parallelism and implementation issue into account. Actually, many

contention-free interleaver can be regarded as a combination of the interleaving operation

within one sub-block and the interchange operation among all sub-blocks. The practical

design needs an address generator for each memory module to perform the intra-block per-

mutation and an interconnection network to complete the parallel data transmission. If

the original PT successive data could be one-to-one mapped onto the PT distinct groups

after interleaving, the design can support parallel trellis stage level. The intra-block

permutation is the key to achieve this objective. For parallel SISO decoder level, the

interconnection could be either the hierarchical memory structures [47,62] or the network

topologies suitable for connecting multiple sources to multiple destinations [60, 61]. The

inter-block permutation plays an important role in reducing the storage for buffering data

and lessening cycles for transmitting data.

Before introducing the methodologies for the intra-block and inter-block permutations,

the following example illustrates the interleaving steps. In the design with PS size-(N/PS)

sub-blocks, the y-th symbol in the x-th sub-block is labeled as rxy . An example with one

size-16 block and PS = 4 is given in Fig. 3.7. Fig. 3.7(a) demonstrates that the first step is

45

r0 r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11 r12 r13 r14 r15

r0 r1 r2 r3
0 0 0 0

r0 r1 r2 r3
1 1 1 1

r0 r1 r2 r3
2 2 2 2

r0 r1 r2 r3
3 3 3 3

r2 r3
0 0

r0 r1
0 0

r2 r3
1 1

r0 r1
1 1

r2 r3
2 2

r0 r1
2 2

r0 r1
3 3

r2 r3
3 3

(a) Intra-block permutation.

r2 r3
0 0

r0 r1
0 0

r2 r3
1 1

r0 r1
1 1

r2 r3
2 2

r0 r1
2 2

r0 r1
3 3

r2 r3
3 3

r3
1

r2
0

r0
2
r1
3

r2
1
r3
0
r0
3
r1
2

r2
2
r3
3
r0
0
r1
1

r2
3
r3
2
r0
1
r1
0

r0 r1 r2 r3
0 0 0 0

r0 r1 r2 r3
1 1 1 1

r0 r1 r2 r3
2 2 2 2

r0 r1 r2 r3
3 3 3 3~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~ ~ ~ ~

r0
~

r3
~

r2
~

r1
~

r4
~

r7
~

r6
~

r5
~

r8
~

r11
~

r10
~

r9
~

r12
~

r15
~

r14
~

r13
~

(b) Inter-block permutation.

Figure 3.7: An example of the contention-free interleaver with 4 sub-blocks.

reordering the data in each sub-block from (rx0 , r
x
1 , r

x
2 , r

x
3) to (rx2 , r

x
3 , r

x
0 , r

x
1) for x = 0 ∼ 3.

The intra-block permutation must be constrained to make r̃xy and its nearby data from

different banks so that the collision problem for PT ≥ 2 can be prevented. Fig 3.7(b)

shows that the second step is swapping the symbols with the same index y with each

other. Thus, it establishes a mapping between the original rxy ’s and the interleaved r̃xy ’s.

Both the {r0y, r1y, r2y, r3y} and {r̃0y, r̃1y, r̃2y, r̃3y} can be accessed by four parallel SISO decoders

concurrently without contention.

In intra-block permutation, only the sequence index y inside each sub-block is con-

cerned. The prime interleaver π(·) in (3.11) whose factor ϵ must be relatively prime to

(N/PS) is one possible solution for parallel trellis stage level [72].

π(y) = (y × ϵ+ ϑ) (mod N/PS). (3.11)

The offset ϑ is another essential factor in randomness. By assigning appropriate param-

46

MEM 0

MEM 1

MEM 2

MEM 3

SISO 0

SISO 1

SISO 2

SISO 3

(a) Fully-connected network.

MEM 0

MEM 1

MEM 2

MEM 3

SISO 0

SISO 1

SISO 2

SISO 3

STAGE 1 STAGE 2

(b) Butterfly network.

Figure 3.8: Networks for connecting 4 SISO decoders and 4 memory modules.

eters, the indexes y and (y + j) can satisfy (3.12) after interleaving.

π(y) ̸≡ π(y + j) (mod PT), 0 ≤ j < PT . (3.12)

We could use padding bits to let the sub-block length be a multiple of PT , and the

desired parameters for (3.12) could be determined easily. For example, the ϵ will be an

odd number with PT = 2, and the π(y) and π(y + 1) are not congruent modulo 2. Based

on the prime interleaver, an alternative method that supports higher PT but has fewer

constraints is given in (3.13).

π(y) =

 2(⌊y/2⌋ × ϵ)) + 1 (mod N/2PS), y is odd

2(⌊y/2⌋ × ϵ+ ϑ)) (mod N/2PS), y is even
(3.13)

After partitioning each sub-block into two groups by the index x modulo 2, the odd-

indexed data and the even-indexed data are permuted separately. The idea can be gen-

eralized to more partitions for various PT ’s. The basic double prime method is suitable

for our designs with PT = 2 and PT = 4. Both the interleaver and de-interleaver can be

expressed in (3.13) with different parameters.

Since the fully-connected network can provide any arbitrary interconnection, it is a

trivial solution for parallel architectures. Fig. 3.8(a) shows the fully-connected network

with PS = 4. Such network can support various contention-free interleavers by assigning

proper control signals to these PS-to-1 multiplexers. However, it has some difficulties

in implementing the network in high parallelism. As PS increases, the area overhead

47

of multiplexers increases rapidly, and the routing congestion becomes more severe. The

network complexity depends on both the parallelism and the characteristic of interleaver.

If we can design the inter-block permutation based on a simpler network, interconnecting

patterns can be constrained so that the network complexity can be alleviated.

Our design exploits the multi-stage network that consists primarily of 2-to-1 multiplex-

ers to transmit concurrent PS sub-blocks. The multi-stage network must be constructed

according to the following principle. The output port of every multiplexer or every mem-

ory module must connect to the first input port of one multiplexer and to the second

input port of another multiplexer in next stage. We let the multiplexers with common

input source share the same 1-bit control signal. Thus, each of the PS data can be

sent to next stage via exactly one of the two paths. The inter-block permutation will

follow the behavior of the network, and a systematic interconnection will facilitate the

implementation.

Fig. 3.8(b) demonstrates the multi-stage structure with PS = 4, where the butterfly

network topology is utilized. This network can swap x-th sub-block data with the (x +

2((log2 PS)−i))-th sub-block data in the i-th stage for i = 1 ∼ log2PS . For example, the x-th

and the (x + 20)-th sub-block data can be exchanged in the second stage of the PS = 4

network. It gives a low-complexity solution without performance degradation [73]. The

external control signals can be determined in advance and stored in a small look-up table.

Using periodic assignment on these control signals can reduce the table size. With the

help of this approach, the parallel design not only takes lower routing effort but also

avoids complex control circuits.

Although the proposed interleaver seems regular, its randomness can promise good

decoding performance. Fig. 3.9 shows the floating point simulation results of turbo codes

with the same generator matrix (2.48) but different interleavers. The processing schedule

in Fig. 2.15 with L = 32 and Max-Log-MAP algorithm is applied. The bit error rate with

the modified IBP interleaver with well-searched parameters is similar to the 3GPP turbo

code in these block sizes. When N is 4096, our strategy can outperform the specification

48

0 0.5 1 1.5 2 2.5
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 (dB)

B
it

E
rr

or
 R

at
e

3GPP interleaver, N=0256
3GPP interleaver, N=1024
3GPP interleaver, N=4096
IBP interleaver, N=0256
IBP interleaver, N=1024
IBP interleaver, N=4096

Figure 3.9: Performance of turbo code with 3GPP interleaver and IBP interleaver

interleaver around Eb/N0 = 1.

3.3 QPP interleaver and interconnection

Besides developing a novel interleaver with simple network, we can also design an

interconnection with low complexity for famous interleavers. The 3GPP LTE standard

adopts QPP interleaver, whose contention-free property allows multiple SISO decoders

to decode one codeword for higher throughput and lower latency [15, 52]. The QPP

interleaver of a size-N block is expressed as

F (t) = f1t+ f2t
2 (mod N). (3.14)

49

0 0.5 1 1.5 2 2.5
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 (dB)

B
it

E
rr

or
 R

at
e

3GPP interleaver, N=0256
3GPP interleaver, N=1024
3GPP interleaver, N=4096
QPP interleaver, N=0256
QPP interleaver, N=1024
QPP interleaver, N=4096

Figure 3.10: Performance of turbo code with 3GPP interleaver and QPP interleaver

The t stands for the original address, whereas F (t) is the interleaved address. The deter-

mination of f1 and f2 is related to the block size [52]. The quadratic inverse polynomial,

F−1(t), can be derived to obtain the corresponding de-interleaving address [74]. From

Fig. 3.10, the performance of turbo code in 3GPP LTE standard is comparable to that in

3GPP standard; and it is even better with N = 4096.

There are PS size-M (M = N/PS) sub-blocks. For a proper address expression in the

parallel architecture, we replace the t in (3.14) with (xM + y), indicating the y-th data

in the x-th sub-block. After the substitution, the interleaving address is rewritten as the

index qy in the Qx-th sub-block:

F (xM + y) = f1xM + f2x
2M2 + 2f2xMy + f1y + f2y

2

= QxM + qy (mod N). (3.15)

50

MEM 1

MEM 2

MEM 3

MEM 4

MEM 5

MEM 6

MEM 7

SISO 0

SISO 1

SISO 2

SISO 3

SISO 4

SISO 5

SISO 6

SISO 7

MEM 0

Figure 3.11: Fully-connected network for 8 SISO decoders and 8 memory modules

MEM 1

MEM 2

MEM 3

MEM 4

MEM 5

MEM 6

MEM 7

SISO 0

SISO 1

SISO 2

SISO 3

SISO 4

SISO 5

SISO 6

SISO 7

MEM 0

STAGE 1 STAGE 2 STAGE 3

Figure 3.12: Barrel-shift network for 8 SISO decoders and 8 memory modules

Note that 0 ≤ x,Qx < PS and 0 ≤ y, qy < M .

Each sub-block will be stored in one individual memory. In the parallel architecture,

the data will be transmitted from x-th memory to the Qx-th SISO decoder. In [75], a

recursive approach for generating interleaving addresses F (t) on the fly is illustrated. The

computation of y and qy can be realized with a small address generator rather than a large

look-up table. The fully-connected network, which supports arbitrary interconnections,

is a trivial solution for parallel data transmission. However, its area overhead grows

rapidly as PS increases, and the routing congestion would be another critical design issue.

Fig. 3.11 shows the fully-connected network with PS = 8, where each SISO decoder uses

one 8-to-1 multiplexers to access the quantized signal from 8 memory modules.

51

According to the interleaving parameters and parallelism, we can determine how to

transmit parallel data simultaneously through the interconnection. The concept of such

approach is similar to the work in [76], but the parameter conditions and interconnecting

mechanism are different. From the characteristics of QPP interleaver, a multi-stage net-

work based on the barrel shifter is developed for parallel data transmission [77]. Fig. 3.12

shows the network structure with PS = 8. For i = 0 ∼ 2, the proposed network can shift

data 2i locations in stage (3 − i) and accomplish the transmission by using appropriate

selection signals upon these 2-to-1 multiplexers. The behavior of linking each memory

module to its corresponding SISO decoder can be regarded as shifting each sub-block by

a certain offset. The following theorem demonstrates the relationship among the offset of

all PS sub-blocks, and it implies that the network can support parallel design using QPP

interleaver. We will use the notation a | b if a divides b and use a ̸ | b otherwise.

Proposition 3.1. If the QPP interleaver parameters satisfy PS = 2ℓ with positive integer

ℓ, PS | N , 2 ̸ | f1, and 2 | f2, then the offset of the x-th sub-block, which is from x to Qx,

is congruent to the offset of the (x+ 2i)-th sub-block modulo 2i+1.

Proof:

a) From (3.15), the interleaved index qy can be expressed as

qy = f1y + f2y
2 (mod M)

= f1y + f2y
2 − λM (3.16)

where λ is independent of x.

b) We can find QxM by substituting (3.16) for the qy in (3.15). Then Qx can be derived

by following steps:

QxM = f1xM + f2x
2M2 + 2f2xMy + λM (mod N). (3.17)

Qx = f1x+ f2x
2M + 2f2xy + λ (mod PS). (3.18)

52

c) Let ∆x be the difference between x and Qx.

∆x = Qx − x (mod PS)

= (f1 − 1)x+ f2x
2M + 2f2xy + λ (mod PS). (3.19)

d) Similarly, the ∆(x+ 2i) is further calculated as

∆(x+ 2i) = (f1 − 1)(x+ 2i) + f2(x+ 2i)2M + 2f2(x+ 2i)y + λ (mod PS)

= ∆x+ (f1 − 1)2i + f2(2
2i + 2i+1x)M + 2f22

iy (mod PS).

e) Because (f1 − 1) and f2 are even numbers in the standard, and 2i+1 is a factor of

PS ,

∆x ≡ ∆(x+ 2i) (mod 2i+1). (3.20)

The ∆x (mod PS) is the shift amount after passing these log2PS stages, and its

binary expression determines whether the data of the x-th sub-block are rotated in every

stage or not. The congruence in (3.20) indicates that the last (i + 1) bits of ∆x and

∆(x + 2i) are equivalent, so the two sub-blocks can share the same selection signal in

SISO 0

SISO 1

SISO 2

SISO 3

SISO 4

SISO 5

SISO 6

SISO 7

STAGE 1 STAGE 2 STAGE 3

MEM 1

MEM 0

MEM 2

MEM 3

MEM 4

MEM 5

MEM 6

MEM 7

Figure 3.13: Parallel data transmission via the proposed network

53

Table 3.1: Equivalent gates count of two net-
works

Parallelism Fully-connected The proposed
network network

PS = 8 0.57k (100%) 0.38k (66.7%)
PS = 16 2.43k (100%) 1.07k (44.0%)
PS = 32 9.63k (100%) 2.58k (26.8%)
Synthesis result with 90 nm technology: parallel 6-bit
data transmission and path delay ≤ 1 ns.

stage (log2PS − i). Fig. 3.13 illustrates an example of parallel data transmission with

N = 64, f1 = 7, f2 = 16, PS = 8, and y = 2. Data from these eight memories {0 ∼ 7}

are sent to SISO decoders {1, 0, 7, 6, 5, 4, 3, 2} via the proposed network. The ∆x’s of

eight sub-blocks are {1, 7, 5, 3, 1, 7, 5, 3}, and these values satisfy (3.20). The multiplexers

with common input sources are controlled by the same 1-bit signal, so there are 4, 2, 1

controlling bits for the three stages respectively.

Our multi-stage network leads to lower complexity in the parallel turbo decoder with

QPP interleaver. TABLE 3.1 shows the overhead of two interconnecting networks as

PS is 8, 16, and 32. Both mechanisms have short path delay so that the data can

be transmitted immediately. The proposed network can get a significant area saving,

especially in higher parallelism. In addition, less routing effort can be achieved for all

necessary interconnections as well.

The QPP interleaver can support PT = 4 with the following constraints: 4 | N , 2 ̸ | f1,

and 2 | f2. This feature is verified by interleaving four successive indexes as



F (t+ 0) ≡ f1t+ f2t
2 ≡ φ (mod 4)

F (t+ 1) ≡ f1t+ f2t
2 + f1 + 2f2t+ f2 ≡ φ+ f1 + f2 (mod 4)

F (t+ 2) ≡ f1t+ f2t
2 + 2f1 + 4f2t+ 4f2 ≡ φ+ 2 (mod 4)

F (t+ 3) ≡ f1t+ f2t
2 + 3f1 + 6f2t+ 9f2 ≡ φ+ f1 + f2 + 2 (mod 4),

(3.21)

where the φ is congruent to F (t) modulo 4; 2f1 is congruent to 2 modulo 4; and 2f2 is

divisible by 4. Since (f1+f2) is congruent to 1 or 3 modulo 4, the four indexes can satisfy

54

(3.12). If the constraint 4 | N is replaced by 4 | M , the hybrid parallelization can be

applied to the turbo decoder using QPP interleaver, too.

55

Chapter 4

High-Efficiency Processing Schedule

The impacts over operating efficiency in the parallel architecture are (3.2) and (3.8),

which are caused by parallel SISO decoder level and parallel trellis stage level respectively.

In fact, the PT is usually small to avoid too much extension of the critical path delay.

Current designs usually prefer large PS , but they also suffer from the declining operating

efficiency as (3.2). For example, a size-4096 block with L = 32 and κ = 128 has 97.7%

operating efficiency while the SISO decoder in Fig. 2.16 is applied. After using parallel

32 SISO decoders, the ηS of each size-128 sub-block decreases down to 66.7% (κ/PS = 4).

The actual speedup is about 18 times rather than expected 32 times; almost half benefits

of PS are lost. In order to overcome such drawback, two processing schedules whose

operating efficiency are superior to conventional designs are presented. For simplicity, we

consider using one SISO decoder for small blocks and use η rather than ηS . The first

proposed schedule is compatible with all traditional schedules (Fig. 2.14, Fig. 2.15, and

Fig. 2.16) and any interleaver at the expense of additional storage elements. The second

proposed schedule is used in conjunction with the schedule in Fig. 2.16 and specific QPP

interleavers only, but it requires less overhead than the first one. These high-efficiency

schedules can be effortlessly employed in the parallel architecture.

4.1 Interlaced half-iterations

Because of the randomness of interleaver, the decoding process of one constituent code

has to wait for a priori probability estimation of the whole block. The waiting time is

(δa + δb + τa), and it is also the idle period of all component circuits. If the functional

56

WA0

WA1

WA2 β
d

α LLRβ

β
d

α LLRβ

β
d

α LLRβ

WA3 β
d

α LLRβ

β
d

β
d

α β

β
d

α

β
d

α LLRβ

β
d

α LLRβ

β
d

α LLRβ

β
d

α LLRβα LLRβ

LLRβ

LLR

WB0

WB1

WB2

WB3

(a) Partial processing schedule of one SISO decoder.

β

α

LLR

β
d

WA0 WA1 WA2 WA0 WA1WA3 WB0 WB1 WB2 WB3 WA2

WA0 WA1 WA2 WA0 WA1WA3 WB0 WB1 WB2 WB3WB3

WA0 WA1 WA2 WA0WA3 WB0 WB1 WB2 WB3WB3WB2

WA0 WA1 WA2 WA3 WB0 WB1 WB2 WB3WB3WB2WB1 WA0

(b) Corresponding active periods of main components.

Figure 4.1: Processes of independent codeword A and codeword B

units could be reactivated during their originally idle period, the decoder will become more

efficient. Considering the dependency of constituent codes, we let the SISO decoder decode

several codewords concurrently by utilizing the idle time of each independent codeword.

When any functional unit finish its executions at any half-iteration of one codeword, the

unit can be used for the process of other codeword. The method interlaces the decoding

processes among two or more codewords, so it is called the interlaced half-iterations here.

The interlaced half-iterations can increase the η and is harmless to performance, and such

concept can be regarded as the pseudo parallel turbo decoder level. Its overhead is the

57

Table 4.1: Comparison between original and interlaced schedules
Original schedule Interlaced schedule

(Single Codeword) (Double Codewords)
κ η δI η δI

1 25.0% 4TW 50.0% 4TW

2 40.0% 5TW 80.0% 5TW

3 50.0% 6TW 100% 6TW

4 57.1% 7TW 100% 8TW

5 62.5% 8TW 100% 10TW

6 66.7% 9TW 100% 12TW

7 70.0% 10TW 100% 14TW

8 72.7% 11TW 100% 16TW

storage for extra received codeword, extrinsic information, and decisions.

Fig. 4.1(a) illustrates the partial procedure based on the schedule in Fig. 2.15 and the

interlaced half-iterations. Here one SISO decoder deals with codeword A and codeword

B, each of which comprises 4 windows. Fig. 4.1(b) gives the corresponding active periods

of main functional units. After any functional unit is released by the process of codeword

A, it is soon occupied by the process of codeword B. All functional units are fully utilized

so that η is 100%. Nevertheless, the interlaced schedule may extend the execution time of

one half-iteration. As shown in Fig. 4.1(a), the permuted round of codeword A is delayed

because the required components are occupied by codeword B. The interlaced schedule

for double codewords makes the δI extend to 8TW cycles. For κ = 4, the throughput is

increased due to higher η, but the overall latency 2I × δI also increases.

TABLE 4.1 compares the original schedule and the interlaced schedule with double

codewords, and both schedules originate from the Fig. 2.15. The interlaced half-iterations

is applied to improve η of small sub-blocks in parallel architecture, so this comparison

includes window number κ = 1 ∼ 8 only. This table reveals that the data block size

is an significant factor for η and δI in the interlaced schedule. For κ < 3, the η’s grow

greatly, and the δI remain the same. Since the η’s are still less than 100%, interlacing

more than two blocks with the same κ is a possible solution for this condition. For κ = 3,

58

it has a excellent trade-off between the 100% efficiency and unchanged δI . For κ > 3, the

η’s in this proposed schedule are raised to 100% with growing δI . Interlacing one block

whose κ > 3 and one block whose κ < 3 can achieve high η with fewer increment of δI .

In fact, the choice of fundamental processing schedules dominates the improvement on η

and increment of δI . The best window number, which can achieve 100% efficiency with

least increasing latency, is κ = 4 for the schedule in Fig. 2.14; while it is κ = 2 for the

schedule in Fig. 2.16.

4.2 Overlapping half-iterations

The operating efficiency in small blocks is still far from 100 % even though there is

shorter τa in the modified schedule like Fig. 2.16. It is difficult to reduce the necessary

execution time (δa, δb, and τa) to zero within each individual half-iteration. However,

starting the succeeding half-iteration in advance would achieve the same effect and more

improvement. The design could compute the LLR of one component code and the path

metric of another component code at the same time [63]. For simplicity, this method

is named as overlapping half-iterations. Its corresponding interleaver must guarantee no

mapping between the processed data of different constituents involved in the overlapping

region; otherwise, several problems would happen. First, the a priori probability estima-

tion for the new half-iteration might be unavailable, and it would cause a catastrophic

performance loss. Second, writing outputs of unfinished half-iteration to memory and

reading inputs for new half-iterations from memory are performed simultaneously. The

design would encounter a hazard if the memory addresses for these two accesses coincide.

To avoid above problems, the turbo decoder needs appropriate interleaving rules and

processing schedules. In our approach, the initial step is classifying all original data into

two groups according to their window index, and the permuted data are also divided into

a couple of window groups. Then the interleaver lets one group in original sequence be

exactly mapped onto one group in permuted sequence. The last step takes the advantage

59

of processing schedule in [45] and [46], where all windows can be processed in arbitrary

order by utilizing previous α’s and β’s. After arranging the execution order of all windows

properly, one window group in original sequence and its uncorrelated group in permuted

sequence can be decoded at the same time. Thus, the decoding process with overlapping

half-iterations can be accomplished. In this section, two types of interleaver constraints

will be introduced. As the parameters meet either of them, the interleaver can possess

the mentioned characteristic. Besides, the turbo code with such restricted interleaving

rule could also get comparable performance as conventional turbo code.

4.2.1 Interleaver constraints of such schedule

First of all, a proper address expression is necessary in the proposed window-based

strategy. The (3.18) is rewritten as (4.1) by replacing sub-block size M with window

length L.

Qx = f1x+ f2x
2L+ 2f2xy +

⌊
f1y + f2y

2

L

⌋
(mod N

L
) (4.1)

From (3.16), the qy is the remainder of this division.

qy = f1y + f2y
2 (mod L) (4.2)

The interleaver design involves classification methods and mapping rules, and only x and

Qx are under consideration. All windows are categorized according to x and Qx modulo 2;

then even x’s and odd x’s must be mapped onto different groups of Qx’s after interleaving.

Three basic restrictions are set in this dissertation: 2L | N , 2 ̸ | f1, and 2 | f2. The first

restriction, 2L | N , promises that κ is an even number. Because of 2 ̸ | f1 and 2 | f2, it

is trivial that f1x ≡ x (mod 2), f2x2L ≡ 0 (mod 2), and 2f2xy ≡ 0 (mod 2). With these

properties, the (4.1) can be simplified to

Qx ≡ x+

⌊
f1y + f2y

2

L

⌋
(mod 2) (4.3)

60

The term within the floor function determines the relation between x and Qx. It is

essential that, for all possible y’s, the floor function will produce only even numbers or

only odd numbers; then either of Qx ≡ x (mod 2) or Qx ̸≡ x (mod 2) can hold. The

following constraints on f1 and f2 are used for Qx ≡ x (mod 2).

Proposition 4.1. If the f1, f2, and L can satisfy (4.4a), (4.4b), and (4.4c), then Qx and

x can be congruent modulo 2.


L | (f1 − 1) (4.4a)

L | f2 (4.4b)

(f1 − 1)/L ≡ f2/L (mod 2) (4.4c)

Proof:

a) The floor function in (4.3) can be rewritten as

⌊
f1y + f2y

2

L

⌋
=

⌊
(f1 − 1)y

L
+

f2y
2

L
+

y

L

⌋
. (4.5)

b) With (4.4a) and (4.4b), both (f1 − 1)y/L and f2y
2/L are integers. If y is an odd

number, (f1 − 1)y/L and f2y
2/L are congruent modulo 2 after applying (4.4c);

otherwise, they are both even integers. In either case, these constraints make their

summation always be an even integer. Then they could be moved out of the floor

function:
(f1 − 1)y

L
+

f2y
2

L
+
⌊ y
L

⌋
. (4.6)

c) Due to 0 ≤ y < L, the range of y/L is 0 ≤ y/L < 1, and ⌊y/L⌋ will be eliminated

by floor function.

d) As a result, the last term in (4.3) is divisible by 2 and can be removed; and Qx ≡ x

(mod 2) holds true for x = 0 ∼ (N/L− 1) and y = 0 ∼ (L− 1).

61

In the proof, decomposing (4.3), checking summation of (f1 − 1)y/L and f2y
2/L, and

removing ⌊y/L⌋ are critical steps. If we replace (4.4a) by (f1− i)y/L with another integer

i, the decomposition will generate ⌊i× y/L⌋, and the elimination will fail. Without (4.4c),

an odd number y might result in an odd summation of (f1 − 1)y/L and f2y
2/L, and it

would destroy the consistency of Qx ≡ x (mod 2) for all y’s. This set of constraints lets

all even x’s map to even Qx’s and odd x’s map to odd Qx’s. The window length L is an

important factor in finding the suitable interleaver parameters. This search process can

start with setting (f1, f2) = (L+ 1, L) or (f1, f2) = (2L+ 1, 2L). By adding multiples of

2L to f1 and f2, we could get many usable (f1, f2): (L + 1 + 2L × i1, L + 2L × i2) and

(2L+ 1 + 2L× i1, 2L+ 2L× i2), where i1 and i2 are arbitrary integers. The final step is

to verify the corresponding performance of the turbo code with these parameters.

If the tail-biting technique is applied [27], we can have more choices of interleav-

ing parameters for overlapping half-iterations. Another constraint set that promises

Qx ̸≡ x (mod 2) in an alternative way will be used for this object. Since the ini-

tial state and the ending state are the same, the whole trellis can be regarded as a

loop. The decoding procedure for original sequence, (r0, r1, . . . , rN−1), could be rotated as

(rρ, . . . , rN−1, r0, . . . , rρ−1). Similarly, the permuted sequence also could be changed from

(r̃0, r̃1, . . . , r̃N−1) to (r̃ρ, . . . , r̃N−1, r̃0, . . . , r̃ρ−1). The cyclic shift with offset ρ reorganizes

the window classification and allows for different constraints.

To comply with the following discussion, ρ is set to 1. New expressions, (x′L+y′) and

(Q′
xL+q′y), are defined for rotated normal sequence and interleaved sequence, respectively.

We can further find the relation between the modified indexes and the original indexes as

follows:

y′ = y − 1 (mod L), (4.7)

q′y = qy − 1 (mod L), (4.8)

x′ = x+

⌊
y − 1

L

⌋
=


x− 1 (mod N

L
) if y = 0

x+ 0 (mod N
L
) if y ̸= 0,

(4.9)

62

and

Q′
x = Qx +

⌊
qy − 1

L

⌋
=


Qx − 1 (mod N

L
) if qy = 0

Qx + 0 (mod N
L
) if qy ̸= 0.

(4.10)

Each of the ⌊(qy − 1)/L⌋ and ⌊(y − 1)/L⌋ has two possible values: −1 and 0. Besides, in

(4.2), y = 0 implies

qy|y=0 = 0. (4.11)

Hence, the two terms are equivalent to each other.

⌊
qy − 1

L

⌋
=

⌊
y − 1

L

⌋
=

 −1 if y = 0 (qy = 0)

0 if y ̸= 0 (qy ̸= 0).
(4.12)

With the modified indexes, the interleaving parameters for Q′
x ̸≡ x (mod 2) can be proven

as well as for Qx ̸≡ x′ (mod 2).

Proposition 4.2. If the f1, f2, and L can satisfy (4.13a), (4.13b), and (4.13c), then

Q′
x ̸≡ x (mod 2) and Qx ̸≡ x′ (mod 2) are true.


L | (f1 + 1) (4.13a)

L | f2 (4.13b)

(f1 + 1)/L ≡ f2/L (mod 2) (4.13c)

Proof:

a) By substituting Q′
x for Qx in (4.3), we get

Q′
x ≡ x+

⌊
qy − 1

L

⌋
+

⌊
f1y + f2y

2

L

⌋
(mod 2). (4.14)

b) The second floor function in (4.14) can be rewritten as

⌊
(f1 + 1)y

L
+

f2y
2

L
− y

L

⌋
. (4.15)

Due to (4.13a), (4.13b) and (4.13c), the summation of the first two terms is an even

63

integer and can be moved out of the floor function. Such outcome lets (4.14) change

to

Q′
x ≡ x+

⌊
qy − 1

L

⌋
+

(f1 + 1)y

L
+

f2y
2

L
+
⌊
− y

L

⌋
≡ x+

⌊
qy − 1

L

⌋
+
⌊
− y

L

⌋
(mod 2). (4.16)

c) The ⌊(qy − 1)/L⌋ is given in (4.12). If y is 0, ⌊−y/L⌋ is 0; otherwise, its value is

−1. Therefore, (4.16) can be further expressed as Q′
x ≡ (x− 1) (mod 2) in (4.17).

Q′
x ≡

 x− 1 + 0 (mod 2) if y = 0

x+ 0− 1 (mod 2) if y ̸= 0
(4.17)

d) The relation of Qx and x′ can be found by substituting x′ for x in (4.3) and simpli-

fying the equation with the proposed constraints and mentioned properties.

Qx ≡ x′ −
⌊
y − 1

L

⌋
+

⌊
f1y + f2y

2

L

⌋
≡ x′ −

⌊
y − 1

L

⌋
+
⌊
− y

L

⌋
(mod 2) (4.18)

Then, the value of ⌊(y − 1)/L⌋ and ⌊−y/L⌋ are assigned.

Qx ≡

 x′ + 1 + 0 (mod 2) if y = 0

x′ − 0− 1 (mod 2) if y ̸= 0
(4.19)

e) Finally, (4.17) and (4.19) indicate that both Q′
x ̸≡ x (mod 2) and Qx ̸≡ x′ (mod 2)

hold true.

The constraints set is close to the preceding one, but (f1−1) is used to replace (f1+1).

It will generate ⌊−y/L⌋ by the decomposition as (4.16) or (4.18). Although this term has

two possible values, the substitution of x′ or Q′
x can offer a complementary number and get

64

Table 4.2: Properties of various QPP interleavers

(f1, f2)
Spread Factor ∥ Minimum Distance
(449, 384) (191, 128) (31, 64)

N = 0512 16 ∥ 31 16 ∥ 36 32 ∥ 33

N = 1024 32 ∥ 38 32 ∥ 38 32 ∥ 43

N = 2048 64 ∥ 44 64 ∥ 44 32 ∥ 44

N = 4096 64 ∥ 44 64 ∥ 44 32 ∥ 44

a steady result. With (4.13a), (4.13b), and (4.13c), the required property for overlapping

process in the circular trellis structure is allowed. Here we take the example of size-16

blocks with L = 4, and we represent the original and permuted sequence as (r0, · · · , r15)

and (r̃1, · · · , r̃15, r̃0), respectively. As the interleaver meets


4 | (f1 + 1)

4 | f2

(f1 + 1)/4 ≡ f2/4 (mod 2),

these two windows, {r0, r1, r2, r3} and {r8, r9, r10, r11} (x = 0, 2), will be mapped to

{r̃5, r̃6, r̃7, r̃8} and {r̃13, r̃14, r̃15, r̃0} (Q′
x = 1, 3). On the other hand, the other win-

dows in original sequence, {r4, r5, r6, r7} and {r12, r13, r14, r15} (x = 1, 3), are mapped

to {r̃1, r̃2, r̃3, r̃4} and {r̃9, r̃10, r̃11, r̃12} (Q′
x = 0, 2). During the search for proper parame-

ters, (f1, f2) could be (L−1, L) or (2L−1, 2L) at first. The subsequent flow is examining

the performance of turbo code while the (f1, f2) equals (L− 1 + 2L× i1, L+ 2L× i2) or

(2L− 1 + 2L× i1, 2L+ 2L× i2) with any integers i1 and i2.

4.2.2 Performance and process of such schedule

Fig. 4.2 shows the floating point simulation with Max-Log MAP algorithm, 8 itera-

tions, and three sets of (f1, f2) in N = 512, 1024, 2048, and 4096. The simulation utilizes

the turbo code generator polynomial in 3GPP LTE standard and the tail-biting method

[15, 27]. Here we apply the typical processing schedule with L = 32 in Fig. 2.15 [44].

65

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 (dB)

B
it

E
rr

or
 R

at
e

N=0512,(f

1
,f

2
)=(449,384)

N=0512,(f
1
,f

2
)=(191,128)

N=0512,(f
1
,f

2
)=(031,064)

N=1024,(f
1
,f

2
)=(449,384)

N=1024,(f
1
,f

2
)=(191,128)

N=1024,(f
1
,f

2
)=(031,064)

N=2048,(f
1
,f

2
)=(449,384)

N=2048,(f
1
,f

2
)=(191,128)

N=2048,(f
1
,f

2
)=(031,064)

N=4096,(f
1
,f

2
)=(449,384)

N=4096,(f
1
,f

2
)=(191,128)

N=4096,(f
1
,f

2
)=(031,064)

Figure 4.2: Performance of turbo codes with various sizes and different QPP interleavers

For each block size, the (f1, f2) = (449, 384) can meet (4.4a), (4.4b), and (4.4c); the

(f1, f2) = (191, 128) can meet (4.13a), (4.13b), and (4.13c); and the (f1, f2) = (31, 64)

is the parameters defined in [15]. The selection of these parameters mainly depends

on their spread factors, which can filter inferior interleavers quickly [52, 78, 79]. Both

(f1, f2) = (449, 384) and (f1, f2) = (191, 128) have higher spread factors than most in-

terleavers under their respective constraints. TABLE 4.2 shows the properties of these

interleavers, including spread factor and minimum distance [80]. Note that these data are

helpful to remove the interleavers that result in very poor performance, and an accurate

estimation of performance must consider their spectra. At 10−5 error rate, the perfor-

mance loss caused by both restricted interleavers is about 0.3 dB in N = 512 and 0.1 dB

in N = 1024, while the loss becomes insignificant as N is 2048 or 4096. Actually, if the

window length is 16, the specification parameters (f1, f2) = (31, 64) can also satisfy the

66

W1

W0

LLRβα

LLRβα LLRβα

LLRβαLLR

α

(a) Decoding flow with overlapping half-iterations.

β

α

LLR

W0 W1 W0 W1 W0

W0 W1 W0 W1

W1 W0 W1 W0 W1

(b) Corresponding active periods of main components.

Figure 4.3: Overlapping half-iterations for two windows (η = 66.7 % with κ = 2)

second proposition. The corresponding decoder could support overlapping half-iterations

and get better operating efficiency. However, the short window might damage error-

correcting capability. Compared to L = 32 in N = 4096, the code with L = 16 has 0.1

dB loss at 10−5 error rate. To get both benefits of performance and operating efficiency,

sufficient window length plays a key role in the search of parameters.

Here we only take (4.4a), (4.4b), and (4.4c), which promise Qx ≡ x (mod 2), into

account while introducing the overlapping process. The schedule for another situation

can be derived from the same statements after rotating either the original sequence or

the permuted sequence. The inactive time of main component circuits is (δb + δa + τa)

cycles, and it is also the maximal period which two successive half-iterations can overlap.

In fact, the number and order of processed windows dominate the exact overlapping

duration. These two issues influence the time when the data in the subsequent half-

iteration can access reliable extrinsic information. According to the restricted mapping

between x and Qx, the processed windows within the overlapping region should avoid

mapping correlation. Hence, we let those windows whose indexes are identical in modulo-

2 calculation be executed before this region. Assuming that the group that contains even-

indexed windows is processed first in current half-iteration, then only the odd-indexed

windows are involved in the overlapping duration. The interleaving property, Qx ≡ x

67

W1

W0

W3

W2

LLRβ

LLR βα

α

LLRβα

LLRβαLLRβα

LLRβα

LLRβα

LLRβα

LLRβα

LLRβα

LLRβα

LLRβα

(a) Decoding flow with overlapping half-iterations.

β

α

LLR

W0 W2

W1

W1 W3 W0 W2 W1 W3 W0 W2 W1 W3

W3 W0 W2 W1 W3 W0 W2 W1 W3 W0 W2 W1

W3 W0 W2 W1 W3 W0 W2 W1 W3 W0 W2 W1

(b) Corresponding active periods of main components.

Figure 4.4: Overlapping half-iterations for four windows (η = 100 % with κ = 4)

(mod 2), implies that initial processed windows in subsequent half-iteration must have

even indexes.

Two fundamental cases of the proposed schedule are demonstrated here. In Fig. 4.3,

the decoder decodes only two windows. It is the smallest window number κ (or κ/P) in

our discussion because of 2L | N . If the data of W0 in original sequence are mapped to

W0 in permuted sequence only, the executions of the permuted-ordered W0 can start L

cycles in advance. The LLR of original-ordered W1 and the α of permuted-ordered W0

are computed simultaneously. In comparison to the modified schedule in Fig. 2.16(b), the

equivalent η with κ = 2 increases from 50 % to 66.7 %. As there are at least four windows

in every data block, the SISO decoder can achieve 100 % efficiency. Fig. 4.4 shows the

schedule with κ = 4 and activities of the main component circuits. The execution order

of windows in either half-iteration is W0, W2, W1, and W3. After deriving the LLR of W0

and W2, the SISO decoder continues the unfinished process of W1 and W3. Meanwhile, the

executions of W0 and W2 in different-ordered sequence begin immediately. All component

circuits are fully utilized now. With the help of overlapping half-iterations, the η for the

68

case with κ = 4 grows rapidly from 66.7 % to 100 %.

69

Chapter 5

Implementation Results

The implementation works may exploit more than one parallel level, so we use a general

expression for the throughput as

PH ×FH × ηH
2× I

, (5.1)

where PH, FH, and ηH are the factors affected by the hybrid parallel levels. Their values

are

PH = PC × PS ×PT , (5.2)

FH = FT , (5.3)

and

ηH ≈ τb/(PS × PT)

δa + δb + τa/PT + τb/(PS ×PT)
. (5.4)

The parameters are determined according to the application target of each design as

well as the corresponding performance. Our implementation includes two highly parallel

turbo decoders using IBP interleaver [73, 81], one parallel turbo decoders for 3GPP LTE

application [77, 82], and one highly parallel turbo decoder using QPP interleaver.

5.1 Hybrid parallel design using IBP interleaver

TABLE 5.1 lists the specifications of our proposed parallel turbo decoders using IBP

interleaver. Design-II is a modified version from Design-I, so they have many charac-

70

Table 5.1: Specifications of proposed turbo decoders with IBP interleaver
Design-I Design-II

Code Polynomial
[
1

1 +D +D3

1 +D2 +D3

]
Code Rate 1/2 1/3

Block Size 128, 256, 512, 256, 512,

1024, 2048, 4096 1024, 2048, 4096

Window Length 32

Iterations 8 (16 half-iterations)
Received Symbol: 6(3.3)

Data Width Extrinsic Information: 6(4.2)

Path Metric: 8(6.2)

Double Prime Method (ϵ, ϑ) = (15, 23)

08, 19, 12, 18, 17, 14, 29, 05,

Inter-Block Permutation 10, 21, 06, 23, 03, 26, 20, 22,

(32 Periodic Sequences) 30, 04, 25, 15, 00, 02, 11, 09,

28, 24, 31, 27, 01, 13, 16, 07.

PS 32 16

PT 2 4

ηH 50% 100%

teristics in common. Both designs use the code polynomial in the 3GPP standard [12]

with tail-biting method [27], and they support up to 4096 block size. The sliding win-

dow length is set to 32, and the iteration number is fixed at 8. These data widths and

interleaver parameters are determined via fixed point simulation. By translating the dec-

imal inter-block permutation parameters into binary expressions, the control signals for

the multi-stage butterfly network can be derived. All multiplexers in the same stage are

controlled by the same 1-bit signal for less storage requirement. Moreover, we apply the

Max-Log MAP algorithm with 0.75 scaling factor for extrinsic information [22, 33, 34].

Due to their distinct methods and individual area constraints, other design factors of the

two designs are different, including code rate, supportable block size, PS , PT , and ηH.

Design-I combines the parallel SISO decoder level and the parallel trellis stage level.

This design is implemented with 130 nm technology, and it consists of 2.67M logic gates.

To reduce the memory size for received codeword and I/O pin number, it is made into a

71

rate-1/2 code by puncturing. There are 32 radix-22 SISO decoders in this design, and each

SISO decoder is responsible for one 128-bit sub-block. By forcing the most significant

bits of inter-block permutation parameters to zero, it can support the following block

sizes: 128, 256, 512, 1024, 2048, and 4096. This design utilizes the relocated radix-2× 2

ACS units, and the clock rate is 265MHz according to the post-layout simulation. The

operating efficiency is 50% because of the conventional processing schedule. In the SISO

decoder with PT = 2, each main component spends 16 cycles processing one window, so

each half-iteration takes 8× 16 cycles.

Design-II involves the hybrid of the SISO decoder level, the trellis stage level, and the

pseudo turbo decoder level. This design consists of 2.66M gates count while implemented

with 90 nm technology. There are 16 radix-24 SISO decoders in this design, and each SISO

decoder is responsible for one 256-bit sub-block. It can support the following block sizes:

256, 512, 1024, 2048, and 4096. All ACS units are modified to the radix-4 × 4 structure

by two-stage technique. Due to the advanced technology, this design can operate at 250

MHz even without relocation technique. The interlaced schedule is applied so that the

operating efficiency achieves 100%. The total memory modules for double codewords cost

about 920k gates count. If the design uses original schedule for single codeword, the

storage is 520k gates count. In the SISO decoder with PT = 4, each main component

spends 8 cycles processing one window, so each half-iteration takes 8× 8 cycles.

Fig. 5.1 presents the corresponding BER performance of the two proposed designs

in AWGN channel. For the 4096-bit block, the performance loss caused by puncture is

about 0.7 dB when BER is 10−5. From (5.1) and the parameters in TABLE 5.1, the

throughput of the two designs is 2FH and 4FH respectively. After post-layout simulation,

Design-I is expected to achieve 530 Mb/s, and Design-II is expected to achieve 1000 Mb/

s. Fig. 5.2(a) shows the die photo of Design-I, and Fig. 5.2(b) shows the layout photo of

Design-II. The parallel SISO decoders occupy the major area of both designs. A delay

lock loop (DLL) circuit is used to generate internal clock source as four times the external

frequency. However, we bypass the DLL mode of Design-I because of its malfunction.

72

0 0.5 1 1.5 2 2.5 3 3.5 4
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 (dB)

B
it

E
rr

or
 R

at
e

Rate: 1/3, Size: 4096
Rate: 1/3, Size: 2048
Rate: 1/3, Size: 1024
Rate: 1/3, Size: 0512
Rate: 1/3, Size: 0256
Rate: 1/3, Size: 0128
Rate: 1/2, Size: 4096
Rate: 1/2, Size: 2048
Rate: 1/2, Size: 1024
Rate: 1/2, Size: 0512
Rate: 1/2, Size: 0256
Rate: 1/2, Size: 0128

Figure 5.1: Performance of the proposed Design-I and Design-II.

(a) Chip photo of the Design-I

Memory

M
e
m
o
ry

M
e
m
o
ry

Memory

16 Radix-2
4

SISO

Decoders

Output

Memory

DLL

(b) Layout plot of the Design-II

Figure 5.2: Photo of the proposed turbo decoders using IBP interleaver

The measurement result indicates that the power consumption of Design-I is 275 mW

with 1.32 V supply at 160 Mb/s, and the energy efficiency is 0.22 nJ/(bit·iteration).

73

From the simulation results of Design-II, its power is 1158 mW with 1.0 V supply at 1000

Mb/s, and the energy efficiency is 0.15 nJ/(bit·iteration).

5.2 Reconfigurable design for 3GPP LTE system

In 3GPP LTE standard, there are 188 different sizes ranging from 40 to 6144, and

each size has its respective interleaver parameters, f1 and f2. Since 8 is the common

factor of all block sizes, any codeword can be processed concurrently by 1, 2, 4, or 8 SISO

decoders. We introduce some characteristics of this parallel turbo decoder and discuss

its performance issue at first. The Max-Log-MAP algorithm is exploited [22], and only

rate-1/3 code is considered. The window length is fixed at 16 for less area overhead and

tolerable performance loss around 10−5 bit error rate. As sub-block size M (= N/PS)

is not divisible by 16, each sub-block has ⌊M/16⌋ length-16 windows along with one

smaller window. The quantized data include 6-bit received codewords, 9-bit metrics, 10-

bit LLR, and 6-bit extrinsic information. A 0.75 scaling factor is applied for extrinsic

information [33, 34]. Our design can execute all block sizes for at most 8 iterations, and

we use fewer iterations for smaller blocks due to the similar performance as compared

with further iterations.

The proposed design combines the dummy calculation with previous path metric to

support various block sizes with high parallelism. Fig. 5.3(a) shows the processing schedule

of two adjacent sub-blocks during two successive iterations, and some special initializations

are imposed on the parallel architecture. The β′
d operation indicates that each SISO

decoder will pass the boundary βd to its backward SISO decoder. Therefore, the βd

of the first window in x-th sub-block can update the β of the last window in (x − 1)-

th sub-block in the same iteration. Similarly, the α′ and β′ operations refer to the

transmission of path metrics between two iterations. The α′ operation can avoid the

latency for dummy calculation in every half-iteration. In each sub-block, the initial βd

at the last window will be the previous β from the neighboring SISO decoder, whereas

74

β
d

β
d

α

β
d

β
d

α
(x-1)-th

sub-block

x-th

sub-block

′α
′β

d
′β

β
d

α LLRβ

β
d

α LLRβ

β
d

α LLRβ

β
d

α LLRβ

(a) Processing schedule of parallel sub-blocks

x-th SISO decoder

(x+1)-th

SISO

decoder

(x-1)-th

SISO

decoder

α

β
d

α

β

input

buffer

branch

metric

unit

branch

metric

unit

branch

metric

unit

input

buffer

′α

′β

d
′β

′α

′β

d
′β

(b) Architecture of the x-th SISO decoder in parallel design

Figure 5.3: Modified SISO decoder for the 3GPP LTE turbo decoder

the initial βd’s at other windows are zero. The β′ operation are used in conjunction with

the dummy βd computation so that it can get more robust β initialization from a very

75

0 1 2 3 4 5 6
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 (dB)

B
it

E
rr

or
 R

at
e

(0040,1,4)
(0040,8,4)
(0040,8,4)+β’
(0064,1,4)
(0064,8,4)
(0064,8,4)+β’
(0096,1,4)
(0096,8,4)
(0096,8,4)+β’
(0128,1,4)
(0128,8,4)
(0128,8,4)+β’

Figure 5.4: Performance of the proposed 3GPP LTE turbo decoder with N ≤ 128

short trellis. Fig. 5.3(b) demonstrates the corresponding SISO decoder. Extra buffers and

multiplexers for β′
d, β′, and α′ are added to the conventional architecture in Fig. 2.15

(a) [44]. Compared to the SISO decoder in Fig. 2.16(a) [46], the previous β’s are fed into

the βd-ACS rather than β-ACS.

Fig. 5.4 and Fig. 5.5 present the fixed-point simulation results of small blocks with

PS = 1 and PS = 8, where the legend format is {block size, parallelism, iteration}, and

those legends with β′ stands for the use of previous β. The modes with PS = 8 apply

both α′ and β′
d operations. When the parallel processing makes the whole sub-block or

the last window of each sub-block too small, the shortened trellis structure lowers the

reliability of path metrics. In these cases, the β′ operation is used to compensate the

initial β and improve the performance degradation significantly. As shown in Fig. 5.4,

the loss of size-40 block at 10−5 error rate is reduced from 1.0 dB to 0.3 dB, while the

76

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 (dB)

B
it

E
rr

or
 R

at
e

(0136,1,4)
(0136,8,4)
(0136,8,4)+β’
(0160,1,4)
(0160,8,4)
(0160,8,4)+β’
(0256,1,4)
(0256,8,4)
(0256,8,4)+β’
(0416,1,4)
(0416,8,4)
(0416,8,4)+β’

Figure 5.5: Performance of the proposed 3GPP LTE turbo decoder with small blocks

loss of size-64 block is reduced from 0.5 dB to 0.2 dB. In Fig. 5.5, the size-136, size-160,

and size-416 blocks with β′ achieve superior performance improvement in PS = 8. On

the other hand, both initialization schemes can achieve similar performance for the modes

with 16PS | N such as N = 128 and N = 256. Fig. 5.6 demonstrates the performance

of large blocks. From the results whose window lengths are 16, the performance degrades

slightly after using multiple SISO decoders. The loss in size-512 block is about 0.1 dB,

and the losses in the others can be negligible. However, the error floor regions of size-4096

and size-6144 blocks appear before 10−6 error rate. Extending the window can enhance

the performance of these blocks, but it would also introduce more area overhead.

The selection of processing schedule and window length are influenced by performance

and hardware cost. When L is 16, one SISO decoder without β′ needs 34.6k gates

count. The utilization of β′ would increase the equivalent gates count to 36.9k. It

77

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 (dB)

B
it

E
rr

or
 R

at
e

(0512,1,4,16)
(0512,8,4,16)
(0512,8,4,32)
(1024,1,6,16)
(1024,8,6,16)
(1024,8,6,32)
(2048,1,6,16)
(2048,8,6,16)
(2048,8,6,32)
(4096,1,8,16)
(4096,8,8,16)
(4096,8,8,32)
(6144,1,8,16)
(6144,8,8,16)
(6144,8,8,32)

Figure 5.6: Performance of the proposed 3GPP LTE turbo decoder with large blocks

costs low overhead to guarantee the error correction capability of small blocks in the

parallel architecture. If the window length L is extended to 32, the SISO decoder requires

additional 10k gates count to store more temporary data. Since this growth is substantial,

we have to make a trade-off between the area and performance.

The proposed design consists of 8 SISO decoders and 8 separate memory modules.

The block sizes and interleaving parameters must satisfy 40 ≤ N ≤ 6144, 8 | N , 2 ̸ | f1,

and 2 | f2 due to available memory and network constraints, and it can support the 188

block sizes in 3GPP LTE standard. In addition to the configurable iteration number I,

the parallelism can be 1, 2, 4, or 8 at each block size. After determining the N , f1, f2, I,

and PS , this decoder would initialize the address generator and network controller within

16 cycles; then it starts to decoding received blocks. Our design is fabricated with 90 nm

process and operated successfully at 275 MHz from measurement results. TABLE 5.2 lists

78

Table 5.2: Throughput of selected modes with 275 MHz frequency
Size Throughput (Mb/s) / Operating Efficiency ηH (%)

(Iteration) PS = 1 PS = 2 PS = 4 PS = 8

40 (4) 16 / 46.5 21 / 30.3 31 / 22.7 47 / 17.2

128 (4) 25 / 73.6 40 / 58.2 56 / 41.0 71 / 25.8

256 (4) 29 / 84.8 51 / 73.6 80 / 58.2 113 / 41.0

512 (4) 32 / 91.8 58 / 84.8 101 / 73.6 160 / 58.2

1024 (6) 21 / 95.7 42 / 91.8 78 / 84.8 135 / 73.6

2048 (6) 22 / 97.8 44 / 95.7 84 / 91.8 155 / 84.8

4096 (8) 16 / 98.9 34 / 97.8 66 / 95.7 126 / 91.8

6144 (8) 17 / 99.3 34 / 98.5 67 / 97.1 130 / 94.4

MEMORY

MEMORYMEMORY

MEMORY

Figure 5.7: Photo of the proposed turbo decoder for 3GPP LTE application

the operating efficiency ηH and the throughput derived from (5.1) in various modes. For

small blocks, there is a noticeable decline in ηH, leading to less throughput improvement

than large blocks in higher parallelism. When PS is 8, the blocks with N ≥ 256 can

achieve 100 Mb/s. By setting I to 6, the proposed decoder can approximate such target

at the expense of 0.1 dB performance loss at 10−5 error rate.

Fig. 5.7 shows the chip micro-photo, where the 2.10 mm2 core area includes 0.634 mm2

memory. The total gates count is 602k with 81.02% core utilization. Fig. 5.8 illustrates

the measured power consumption of various sizes in four parallel modes. The power of

size-4096 block is 111 mW, 128 mW, 162 mW, and 213 mW; as well as the power of size-

6144 is 111 mW, 128 mW, 164 mW, and 219 mW for different parallel modes (i.e. 1, 2,

4, and 8, respectively). As PS increases from 1 to 8, both size-4096 and size-6144 blocks

have around 7.6 times speedup while costing double power. The power growth is mainly

79

Block Size

P
o
w
e
r
(m
W
)

Parallelism: 1

Parallelism: 2

Parallelism: 4

Parallelism: 8

Figure 5.8: Power consumption from measurement with 1.0 V and 275 MHz.

caused by the increasing switching activity of more utilized SISO decoders, and there is

certain common power dissipation in all modes. In addition, the ηH, affected by block size

deeply, is also an important factor to switching activity. When PS is fixed, more power

is required in larger blocks, and the increment is in proportion to the change in ηH.

Table 5.3: Comparison of different parallel designs for wireless application
Proposed [83] [84] [85] [86]

Max. Block Size 6144 6144 480 6144 6144

Max. PS 8 32 10 8 8

Max. PT 1 2 2 2 2

Max. Iteration 8 6 4 8 5.5

Technology 90 nm 65 nm 130 nm 130 nm 130 nm
Supply Voltage (V) 1.0 N/A 1.2 1.2 1.2 V

Area (mm2) 2.10 N/A 6.66 10.7
3.57

(3.20†) (3.20†)
Frequency (MHz) 275 200 100 250 302

Throughput (Mb/s) 130 711 115 186 391

Power (mW) 219 N/A 197 N/A 789

Energy Efficiency
0.21 N/A 0.43 0.61 0.37

(nJ/(bit·iteration)) (0.14‡) (0.20‡) (0.12‡)
† The normalized factor for area is 0.48 (= (90 nm/130 nm)2).
‡ The normalized factor for energy efficiency is 0.33 (= (1.0 V/1.2 V)2 × (90 nm/130 nm)2).

80

The throughput is 130 Mb/s while using 8 SISO decoders to process the size-6144 block

for 8 iterations. The power consumption is 219 mW with 1 V supply in this mode, and the

energy efficiency is 0.21 nJ/(bit·iteration). TABLE 5.3 lists the chip summary and the

comparison with simulation results in [83,84] and measurement results in [85,86]. Except

the decoder in [84], the others can support the 3GPP LTE standard. All these works

are parallel turbo decoders with contention-free interleavers, and the last four designs

utilize radix-4 structure. The results of each design are derived with its largest block size,

iteration, and parallelism. The technology scaling of area and energy efficiency is given

for reference.

5.3 Full-efficiency design using QPP interleaver

This design adopts the processing schedule and architecture in Fig. 2.16. Instead

of βd calculation, the previous boundary metrics are used to initial the path metric of

each window. The actual hardware cost depends on the radix factor PT and window

number κ. After exploiting the high-radix structure, the area of combinational circuits

grows rapidly, but the boundary metric storage is unaffected. If the processed blocks

are small, the hardware cost of the modified SISO decoder might be less than that of

conventional design. This advantage will become noticeable in the high-radix SISO de-

coder. TABLE 5.4 gives the synthesis results of the SISO decoder with architectures in

Table 5.4: Area of main components in different radix-2PT SISO decoders
Equivalent gates count

(L = 32, κ = 4, 5-bit input, and 8-bit metric)

Architecture Fig. 2.15(a) (α,β,βd) Fig. 2.16(a) (α,β)
Radix-21 Radix-24 Radix-21 Radix-24

Branch metric units 0.25k×3 2.45k×3 0.25k×2 2.45k×2

ACS circuits 2.67k×3 9.32k×3 2.83k×2 9.97k×2

Input buffers 8.35k 4.41k
Boundary storage 2.57k 7.48k

Summation 19.7k 46.2k 18.1k 36.7k

81

0 0.2 0.4 0.6 0.8 1 1.2 1.4
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 (dB)

B
it

E
rr

or
 R

at
e

P=01,IN:6bits,(f

1
,f

2
)=(0031,0064)

P=01,IN:6bits,(f
1
,f

2
)=(2113,0128)

P=32,IN:6bits,(f
1
,f

2
)=(0031,0064)

P=32,IN:6bits,(f
1
,f

2
)=(2113,0128)

P=01,IN:5bits,(f
1
,f

2
)=(0031,0064)

P=01,IN:5bits,(f
1
,f

2
)=(2113,0128)

P=32,IN:5bits,(f
1
,f

2
)=(0031,0064)

P=32,IN:5bits,(f
1
,f

2
)=(2113,0128)

Figure 5.9: Performance of the proposed codes with various parameters

Fig. 2.15(a) and Fig. 2.16(a). Only the components greatly affected by different schedules

are listed here. The conventional SISO decoder also requires some boundary storage for

appropriate initialization in the parallel architecture. When the SISO decoder is designed

for N/PS = 128 and L = 32, the circuits with the modified schedule save about 1.5k

and 9.5k gates count in radix-21 and radix-24 structures, respectively. Consequently, the

parallel architecture using such radix-24 SISO decoder for size-128 sub-block can benefit

both operating efficiency and area overhead.

Fig. 5.9 shows the fixed-point simulation results of size-4096 blocks and length-32

windows with various combinations of (f1, f2), parallelism, and data width. The tail-

biting method in [27] is exploited in the constituent convolutional code with generator

matrix (2.48). The data width of path metrics is 9 bits for 6-bit input and 8 bits for

5-bit input. In both cases, the last 3 bits of quantized input are used for the fraction

82

0 0.2 0.4 0.6 0.8 1 1.2 1.4
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 (dB)

B
it

E
rr

or
 R

at
e

P=01,IN:(2,3),(f

1
,f

2
)=(0031,0064)

P=01,IN:(2,3),(f
1
,f

2
)=(2113,0128)

P=32,IN:(2,3),(f
1
,f

2
)=(0031,0064)

P=32,IN:(2,3),(f
1
,f

2
)=(2113,0128)

P=01,IN:(3,2),(f
1
,f

2
)=(0031,0064)

P=01,IN:(3,2),(f
1
,f

2
)=(2113,0128)

P=32,IN:(3,2),(f
1
,f

2
)=(0031,0064)

P=32,IN:(3,2),(f
1
,f

2
)=(2113,0128)

Figure 5.10: Performance with different formats of data width

part, while the others are for the integer part. Under the same parallelism and data

width, the performance with (f1, f2) = (2113, 128), which can meet Proposition 4.1, is

similar to 3GPP LTE standard with (f1, f2) = (31, 64) [15]. In contrast to the design

with single SISO decoder, using 32 parallel SISO decoders will cause less than 0.1 dB

performance loss. On the other hand, shorter data width leads to slight loss in low

Eb/N0 region, but it gives rise to error floor after the error rate reaching 10−6. The

reason is that the quantization of internal data fails to correctly represent the maximal

or minimal value. One possible solution to the above problem is adjusting the expression

of input data. Fig. 5.10 illustrates the results with different formats of data width, where

the new format involves 2-bit fraction part and 3-bit integer part. Although the loss in

precision makes performance degrade about 0.2 dB in low Eb/N0 region, its extension of

expression range prevents error floor occurring too early. If there is sufficient design area,

83

the employment of 6-bit input is preferred; otherwise, we choose another quantization

with moderate performance and less overhead.

Our design with 32 radix-24 SISO decoders utilizes barrel-shift network for lower rout-

ing effort [82] and two-stage technique for less area overhead [71]. The design can config-

ure the (f1, f2) and choose the suitable schedule. If the (f1, f2) could satisfy Propo-

sition 4.1 or Proposition 4.2, the turbo decoder can operate with either overlapping

process (ηH = 100%) or normal process (ηH = 66.7%); otherwise, only normal process

(ηH = 66.7%) is permitted. From synthesis results, the data with 6-bit codewords (9-

bit metrics) requires 3304k gates count, while that with 5-bit codewords (8-bit metrics)

requires 2787k. Considering the available area, the proposed design adopts the latter

quantization. Fig. 5.11 shows the layout graph implemented with 90 nm technology. The

post-layout simulation results indicate that the core area is 9.61 mm2 with 85.75% uti-

lization. Its equivalent gates count is 2833k. The maximal operating frequency is 175

MHz; so this design can reach 1.4 Gb/s with ηH = 100% and 933 Mb/s with ηH = 66.7%

while executing for 8 iterations. The power consumption of these two modes is 1.356 W

and 0.994 W respectively. TABLE 5.5 lists the design summary and compares parallel

turbo decoders with QPP interleaver [82, 83, 85, 86]. The simulation results in [83] and

the measurement results in [77, 85, 86] are given. We calculate the operating efficiency of

these works via

ηH =
Throughput × 2× I

PH ×FH

Their area and energy efficiency are also normalized for reference. With specific parame-

ters and overlapping half-iterations, the proposed design avoids the decreasing operating

efficiency and achieves significant speedup in the parallel architecture.

84

Figure 5.11: Layout graph of the proposed design with 100% efficiency.

Table 5.5: Comparison of different parallel turbo decoders using QPP interleaver
Proposed [83] [82] [85] [86]

Technology 90 nm 65 nm 90 nm 130 nm 130 nm
Voltage (V) 0.9 N/A 1.0 1.2 1.2

Max. Block Size 4096 6144 6144 6144 6144

Max. PS 32 32 8 8 8

Max. PT 4 2 1 2 2

Max. Iteration 8 6 8 8 5.5

Operating
100% 66.7% 94.4% 74.4% 89.0%

Efficiency

Area (mm2) 9.61 N/A 2.10
10.7 3.57

(5.12♯) (1.71♯)
Frequency (MHz) 175 200 275 250 302

Throughput (Mb/s) 1400 711 130 186 391

Power (mW) 1356 N/A 219 N/A 789

Energy Efficiency
0.12 N/A 0.21 0.61 0.37

(nJ/(bit·iteration)) (0.17†) (0.16‡) (0.10‡)
♯ The normalized factor for this area is 0.48 (= (90 nm/130 nm)2).
† The normalized factor for this energy metric is 0.81 (= (0.9 V/1.0 V)2).
‡ The normalized factor for this energy metric is 0.27 (= (90 nm/130 nm)2 × (0.9 V/1.2 V)2).

85

Chapter 6

Conclusion

6.1 Summary

The research on the turbo decoder design and implementation is reported in this

dissertation. Among various design issues, our discussions focus on the throughput, com-

plexity, and performance. Exploiting parallel architecture is a common method to get

high throughput, and it is usually classified into three levels: parallel turbo decoder level,

parallel SISO decoder level, and parallel trellis stage level. The throughput enhancement

and extra circuit overhead of these parallel levels are quite different. Although the first

level can be applied to any turbo decoder, it needs extra memories for multiple code-

words and does not shorten the decoding latency. The other two levels have lower cost

and less processing time for single codeword, yet they have difficulties in parallel data

transmission and lower operating efficiency. Most practical designs choose parallel SISO

decoder level for its benefits, and some of them also combines the parallel trellis stage

level for more speedup. Our proposed turbo decoders are also based on such hybrid lev-

els. However, it will encounter severe collision problems, complex data transmission, and

considerable efficiency loss, especially in high parallelism. To overcome these difficulties,

the contention-free interleavers is utilized to avoid collision during memory access. We

further investigate multi-stage networks to connect multiple SISO decoders and multiple

memory modules in the parallel turbo decoders using two different contention-free inter-

leavers. For IBP interleaver, the interleaving rules based on butterfly network and double

prime method are introduced. For QPP interleaver, a barrel-shift network is developed.

Both networks can provide the necessary interconnections in their respective designs, and

86

they will take lower routing effort than the fully-connected network. The implementation

of highly parallel turbo decoders becomes much simpler.

The decreasing operating efficiency is another drawback in the parallel architecture.

When decoding small blocks or sub-blocks, the data dependency between constituent

codes makes the executions of component circuits inefficient. We need to resolve such de-

pendency and modify the processing schedule; then the functional units will have shorter

inactive periods across two successive half-iterations. Our solution is using the inactive

period of original schedule for processing independent data. The interlaced schedule is

proposed for the design with arbitrary interleaver. Its decoding flow alternates between

the half-iterations of two of more individual codewords. We can treat it as a variation

of parallel turbo decoder level. Although the interlaced schedule requires more mem-

ory for additional codewords and might extend decoding time, the flexible method can

compensate the low efficiency in many applications. If the turbo decoder adopts the

QPP interleaver that can meet certain constraints, the overlapping half-iterations can be

applied to it. Unlike the interlaced schedule, such decoding process deals with single code-

word. With the constrained interleaving rules, the decoder can carry out partial processes

of current half-iteration and partial processes of following half-iteration concurrently. In

the schedule with overlapping half-iterations, we must utilize the modified SISO decoder

that initialize the path metric by previous results. Moreover, the execution order of all

sliding windows should be arranged. The second method has more restrictions, but it

avoids extra overhead and remains outstanding performance.

Based on the proposed methodologies, several parallel turbo decoders are implemented.

The first decoder chip, implemented with 130 nm technology, uses IBP interleaver and

contains 32 radix-22 SISO decoders; it has 160 Mb/s and 0.22 nJ/(bit·iteration) after

measurement. The second design also chooses IBP interleaver; it uses 16 radix-24 SISO

decoders and achieves 100% efficiency with interlaced half-iterations, leading to 1000 Mb/

s and 0.15 nJ/(bit·iteration) in post-layout simulation with 90 nm technology. The third

design employs QPP interleaver and supports the 3GPP LTE standard; it can allow

87

one, two, four, or eight SISO decoders to decode each block with configurable iteration.

A robust path metric initialization is given to improve the performance loss in small

blocks and high parallelism. After fabrication in the 90 nm process, the chip can achieve

130 Mb/s with 219 mW and 0.21 nJ/(bit·iteration) for the size-6144 block and eight

iterations. The last design using QPP interleaver consists of 32 radix-24 SISO decoders.

It provides the processing mode with overlapping half-iterations and 100% efficiency when

the parameters satisfy the constraints. Our post-layout simulation 90 nm technology

indicates that the maximal throughput is 1.4 Gb/s with 1356 mW power consumption

and 0.12 nJ/(bit·iteration) energy efficiency.

6.2 Future work

The throughput of a parallel turbo decoder is dominated by the parallelism, frequency,

operating efficiency, and iteration number. There are still many design challenges with

respect to these factors. In the parallel architecture, the component circuits are dupli-

cated to process multiple data every cycle. The maximal parallelism might be restricted

due to the available area. If we could use shorter data width for all quantized symbols

without performance loss, higher parallelism is possible, and the critical path delay can

be decreased. For operating efficiency, the schedule with overlapping half-iterations is

preferred due to less overhead. As this method can support other interleavers than QPP

interleaver, it can be exploited in more applications. In order to maintain the error-

correcting capability, it always takes 8 or more iterations for large blocks. Using early

stopping criterion can lower the average iteration. We would like to further shorten the

maximal iteration even though the transmitted data suffer from large noise. As a conse-

quence, more significant speedup will be feasible by optimizing the four factors.

88

References

[1] C. E. Shannon, “A mathematical theory of communication,” Bell Syst. Tech. J.,
vol. 27, pp. 379–428(Part I), Jul. 1948.

[2] ——, “A mathematical theory of communication,” Bell Syst. Tech. J., vol. 27, pp.
623–656(Part II), July 1948.

[3] R. J. McEliece, The theory of information and coding, 2nd ed. Cambridge, UK:
Cambridge University Press, 2004.

[4] S. Lin and D. J. Costello, Jr., Error control coding: fundamentals and applications,
2nd ed. Englewood Cliffs, NJ: Pearson-Hall, 2004.

[5] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon limit error-correcting
coding and decoding: turbo-codes,” in IEEE Proc. Int. Conf. Communications, May
1993, pp. 1064–1070.

[6] D. J. C. MacKay and R. M. Neal, “Near Shannon limit performance of low density
parity check codes,” Electronics Letters, vol. 33, no. 6, pp. 457–458, Mar. 1997.

[7] B. Vucetic and J. Yuan, Turbo codes: principles and applications. Boston, MA:
Kluwer Academic, 2000.

[8] D. J. Costello, Jr. and G. D. Forney, Jr., “Channel coding: The road to channel
capacity,” Proc. IEEE, vol. 95, no. 6, pp. 1150–1177, Jun. 2007.

[9] E. Boutillon, C. Douillard, and G. Montorsi, “Iterative decoding of concatenated
convolutional codes: Implementation issues,” Proc. IEEE, vol. 95, no. 6, pp. 1201–
1227, Jun. 2007.

[10] K. Gracie and M.-H. Hamon, “Turbo and turbo-like codes: Principles and applica-
tions in telecommunications,” Proc. IEEE, vol. 95, no. 6, pp. 1228–1254, Jun. 2007.

[11] B. Vucetic, Y. Li, L. C. Pérez, and F. Jiang, “Recent advances in turbo code design
and theory,” Proc. IEEE, vol. 95, no. 6, pp. 1323–1344, Jun. 2007.

[12] Technical Specification Group Radio (3GPP) Access Network; Multiplexing and chan-
nel coding (FDD), 3GPP Std. TS 25.212, Rev. 8.0.0, 2007.

[13] Physical Layer Standard for CDMA2000 Spread Spectrum Systems, 3GPP2 Std.
C.S0002-C, 2002.

89

[14] Local and Metropolitan Area Network Part 16: Air Interface for Fixed Broadband
Wireless Access Systems, IEEE Std. 802.16e/D11, 2005.

[15] Technical Specification Group Radio Access Network; Evolved Universal Terrestrial
Radio Access; Multiplexing and channel coding (Release 8), 3GPP Std. TS 36.212,
Rev. 8.5.0, Dec. 2008.

[16] L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of linear codes for
minimizing symbol error rate,” IEEE Trans. Inf. Theory, vol. IT-20, pp. 284–287,
Mar. 1974.

[17] P. Elias, “Coding for noisy channels,” IRE Conv. Rec., vol. pt.4, pp. 37–47, 1955.

[18] G. D. Forney, Jr., “Convolutional codes I: algebraic structure,” IEEE Trans. Inf.
Theory, vol. IT-16, pp. 720–738, Nov. 1970.

[19] R. Johannesson and Z. X. Wan, “A linear algebra approach to minimum convolutional
encoders,” IEEE Trans. Inf. Theory, vol. 39, no. 4, pp. 37–47, Jul. 1993.

[20] A. J. Viterbi, “Error bounds for convolutional codes and asymptotically optimum
decoding algorithm,” IEEE Trans. Inf. Theory, vol. IT-13, no. 2, pp. 260–269, Apr.
1967.

[21] J. Hagenauer, E. Offer, and L. Papke, “Iterative decoding of binary block and con-
volutional codes,” IEEE Trans. Inf. Theory, vol. 42, no. 2, pp. 429–445, Mar. 1996.

[22] P. Robertson, E. Villebrun, and P. Hoeher, “A comparison of optimal and sub-
optimal decoding algorithm,” in IEEE Proc. Int. Conf. Communications, Jun. 1995,
pp. 1009–1013.

[23] J. A. Erfanian, S. Pasupathy, and G. Gulak, “Reduced complexity symbol detectors
with parallel structures for ISI channels,” IEEE Trans. Commun., vol. 42, no. 2/3/4,
pp. 1261–1271, Feb./Mar./Apr. 1994.

[24] S. A. Barbulescu, “Iterative decoding of turbo codes and other concatenated codes,”
Ph.D. dissertation, Univ. South Australia, 1996.

[25] A. J. Viterbi, “An intuitive justification and a simplified implementation of the MAP
decoder for convolutional codes,” IEEE J. Sel. Areas Commun., vol. 16, no. 2, pp.
260–264, Feb. 1998.

[26] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near optimum error correcting
coding and decoding: turbo-codes,” IEEE Trans. Commun., vol. 44, no. 10, pp.
1261–1271, Oct. 1996.

[27] C. Weiß, C. Bettstetter, S. Riedel, and D. J. Costello, “Turbo decoding with tail-
biting trellises,” in IEEE Proc. URSI Int. Symp. Signals, Systems, and Electronics,
Oct. 1998, pp. 343–348.

[28] S. Benedetto and G. Montorsi, “Unveiling turbo codes: Some results on parallel
concatenated coding schemes,” IEEE Trans. Inf. Theory, vol. 42, no. 2, pp. 409–428,
Mar. 1996.

90

[29] S. Benedetto, G. Montorsi, and D. Divsalar, “Concatenated convolutional codes with
interleavers,” IEEE Commun. Mag., vol. 41, no. 8, pp. 102–109, Aug. 2003.

[30] H. R. Sadjadpour, N. J. A. Sloane, M. Salehi, and G. Nebe, “Interleaver design for
turbo codes,” IEEE J. Sel. Areas Commun., vol. 19, no. 5, pp. 831–837, May 2001.

[31] T. A. Summers and S. G. Wilson, “SNR mismatch and online estimation in turbo
decoding,” IEEE Trans. Commun., vol. 46, no. 4, pp. 421–423, Apr. 1998.

[32] A. Worm, P. Hoeher, and N. Wehn, “Turbo-decoding without SNR estimation,”
IEEE Commun. Lett., vol. 4, no. 6, pp. 193–195, Jun. 2000.

[33] J. Vogt and A. Finger, “Improving the Max-Log-MAP turbo decoder,” IET Elec-
tronics Letters, vol. 36, no. 23, pp. 1937–1937, Nov. 2000.

[34] P. H. Y. Wu and S. M. Pisuk, “Implementation of a low complexity, low power,
integer-based turbo decoder,” in IEEE Global Telecommunications Conf., Nov. 2001,
pp. 946–951.

[35] Y. Wu, B. D. Woener, and T. K. Blankenship, “Data width requirements in SISO
decoding with modulo normalization,” IEEE Trans. Commun., vol. 49, no. 11, pp.
1861–1868, Nov. 2001.

[36] T. K. Blankenship and B. Classon, “Fixed-point performance of low-complexity turbo
decoding algorithms,” in IEEE Vehic. Tech. Conf., May 2001, pp. 1483–1487.

[37] A. P. Hekstra, “An alternative to metric rescaling in Viterbi decoders,” IEEE Trans.
Commun., vol. 37, no. 11, pp. 1220–1222, Nov. 1989.

[38] C. B. Shung, P. H. Siegel, G. Ungerboeck, and H. K. Thapar, “VLSI architectures
for metric normalization in the Viterbi algorithm,” in IEEE Proc. Int. Conf. Com-
munications, vol. 4, Atlanta, CA, Apr. 1990, pp. 1723–1728.

[39] J. H. Han, A. T. Erdogan, and T. Arslan, “High speed Max-Log-MAP turbo SISO
decoder implementation using branch metric normalization,” in IEEE Computer So-
ciety Annual Symp. VLSI, 2005, pp. 173–178.

[40] I. Lee and J. L. Sonntag, “A new architecture for the fast Viterbi algorithm,” IEEE
Trans. Commun., vol. 51, no. 10, pp. 1624–1628, Oct. 2003.

[41] R. Y. Shao, S. Lin, and P. C. Fossorier, “Two simple stopping criteria for turbo
decoding,” IEEE Trans. Commun., vol. 47, no. 8, pp. 1117–1120, Aug. 1999.

[42] Y. Wu, B. D. Woener, and W. J. Ebel, “A simple stopping criteria for turbo decod-
ing,” IEEE Commun. Lett., vol. 4, no. 8, pp. 258–260, Aug. 2000.

[43] G. Masra, G. Piccinini, M. R. Roch, and M. Zamboni, “VLSI architecture for turbo
codes,” IEEE Trans. VLSI Syst., vol. 7, no. 3, pp. 369–379, Sep. 1999.

[44] G. Masera, M. Mazza, G. Piccinini, F. Viglione, and M. Zamboni, “Architectural
strategies for low-power VLSI turbo decoders,” IEEE Trans. VLSI Syst., vol. 10,
no. 3, pp. 279–285, Jun. 2002.

91

[45] S. Yoon and Y. Bar-Ness, “A parallel MAP algorithm for low latency turbo decoding,”
IEEE Commun. Lett., vol. 6, no. 7, pp. 288–290, Jul. 2002.

[46] Z. He, P. Fortier, and S. Roy, “Highly-parallel decoding architecture for convolutional
turbo codes,” IEEE Trans. VLSI Syst., vol. 14, no. 10, pp. 1147–1151, Oct. 2006.

[47] R. Dobkin, M. Peleg, and R. Ginosar, “Parallel VLSI architecure for MAP turbo
decoder,” in IEEE Int. Symp. Personal, Indoor and Mobile Radio Communications,
Sep. 2002, pp. 15–18.

[48] M. Bickerstaff, L. Davis, C. Thomas, D. Garrett, and C. Nicol, “A 24Mb/s radix-4
LogMAP turbo decoder for 3GPP-HSDPA mobile wireless,” in IEEE Int. Solid-State
Circuit Conf., Feb. 2003, pp. 151–484.

[49] C. Benkeser, A. Burg, T. Cupaiuolo, and Q. Huang, “A 58mw 1.22mm2 HSDPA
turbo decoder ASIC in 0.13µm cmos,” in IEEE Int. Solid-State Circuit Conf., Feb.
2008, pp. 264–266.

[50] O. Muller, A. Baghdadi, and M. Jézéquel, “Exploring parallel processing levels for
convolutional turbo decoding,” in 2nd Information and Communication Technologies,
Apr. 2006, pp. 2353–2358.

[51] Y.-X. Zheng and Y.-T. Su, “A new interleaver design and its application to turbo
codes,” in Proc. IEEE Vehicular Technology Conf., vol. 3, Sep. 2002, pp. 1437–1441.

[52] O. Y. Takeshita, “On maximum contention-free interleavers and permutation poly-
nomials over integer rings,” IEEE Trans. Inf. Theory, vol. 52, no. 3, pp. 1249–1253,
Mar. 2006.

[53] M. J. Thul, N. Wehn, and L. P. Rao, “Enabling high-speed turbo decoding through
concurrent interleaving,” in IEEE Proc. Int. Symp. Circuits and Systems, May 2002,
pp. 26–29.

[54] A. Tarable, S. Benedetto, and G. Montorsi, “Mapping interleaving laws to parallel
turbo and LDPC decoder architecture,” IEEE Trans. Inf. Theory, vol. 50, no. 9, pp.
2002–2009, Sep. 2004.

[55] A. Giulietti, L. V. der Perre, and M. Strum, “Parallel turbo coding interleavers:
Avoiding collisions in accesses to storage elements,” Elec. Lett., vol. 38, no. 5, pp.
232–234, Feb. 2002.

[56] D. Gnaedig, E. Boutillon, M. Jezequel, V. C. Gaudet, and P. G. Gulak, “On multiple
slice turbo code,” in Proc. 3rd Int. Symp. Turbo Codes and Related Topics, Sep. 2003,
pp. 343–346.

[57] A. Abbasfar and K. Yao, “Interleaver design for high speed turbo decoders,” in IEEE
Wireless Communications and Networking Conf., Mar. 2004, pp. 1611–1615.

[58] L. Dinoi and S. Benedetto, “Variable-size interleaver design for parallel turbo decoder
architectures,” in IEEE Global Telecommunications Conf., Nov. 2004, pp. 3108–3112.

92

[59] Z. He, S. Roy, and P. Fortier, “High speed and low power design of parallel turbo
decoder,” in IEEE Proc. Int. Symp. Circuits and Systems, 2005, pp. 6018–6021.

[60] G. Prescher, T. Gemmeke, and T. Noll, “A parameterizable low-power high-
throughput turbo decoder,” in IEEE Int. Acoustics, Speech, and Signal Processing
Conf., Mar. 2005, pp. V/25–V/28.

[61] H. Moussa, O. Muller, A. Baghdadi, and M. Jezequel, “Butterfly and bene-based
on-chip communication networks for multiprocessor turbo decoding,” in Design, Au-
tomation and Test in Europe Conference and Exhibition, Apr. 2007, pp. 1–6.

[62] R. Dobkin, M. Peleg, and R. Ginosar, “Parallel interleaver design and VLSI architec-
ture for low-latency MAP turbo decoders,” IEEE Trans. VLSI Syst., vol. 13, no. 4,
pp. 427–438, Apr. 2005.

[63] D. Gnaedig, E. Boutillon, J. Tousch, and M. Jézéquel, “Towards an optimal parallel
decoding of turbo codes,” in Proc. 4th Int Symp. Turbo Codes Related Topics, Apr.
2006.

[64] P. J. Black and T. H. Meng, “A 140 Mb/s, 32-state, radix-4 Viterbi decoder,” IEEE
Commun. Lett., vol. 27, no. 12, pp. 1877–1885, Dec. 1992.

[65] H. Dawid, G. Fettweis, and H. Meyr, “A CMOS IC for Gb/s Viterbi decoding: system
design and VLSI implementation,” IEEE Trans. VLSI Syst., vol. 4, no. 1, pp. 17–31,
Mar. 1996.

[66] C. C. Lin, C. C. Wu, and C. Y. Lee, “A low power and high speed Viterbi decoder
chip for WLAN applications,” in Proc. 29th Europe Solid State Circuits Conf., Sep.
2003, pp. 723–726.

[67] M. Anders, S. Mathew, R. Krishnamurthy, and S. Borkar, “A 64-state 2GHz 500Mbps
40mW Viterbi accelerator in 90nm CMOS,” in Symop. VLSI Circuits Dig. Tech.
Papers, 2004, pp. 174–175.

[68] S. W. Choi and S. S. Choi, “200Mbps Viterbi decoder for UWB,” in Int. Conf.
Advanced Communication Tech., vol. 2, 2005, pp. 904–907.

[69] C.-L. Chen, “High-speed Viterbi decoder based on the two-dimensional ACS struc-
ture,” Master’s thesis, National Chiao-Tung University, 2005.

[70] C.-C. Lin, “Channel decoder design and implementation,” Ph.D. dissertation, Na-
tional Chiao-Tung University, 2006.

[71] C.-H. Tang, C.-C. Wong, C.-L. Chen, C.-C. Lin, and H.-C. Chang, “A 952Mb/
s Max-Log MAP decoder chip using radix-4×4 ACS architecture,” in IEEE Asian
Solid-State Circuits Conf., Nov. 2006, pp. 79–82.

[72] S. Crozier, J. Lodge, P. Guinand, and A. Hunt, “Performance of turbo codes with
relative prime and golden interleaving strategies,” in 6th Int. Mobile Satellite Conf.,
Jun. 1999, pp. 268–275.

93

[73] C.-C. Wong, C.-H. Tang, M.-W. Lai, Y.-X. Zheng, C.-C. Lin, H.-C. Chang, C.-Y.
Lee, and Y. T. Su, “A 0.22nJ/b/iter 0.13µm turbo decoder chip using inter-block
permutation interleaver,” in IEEE Custom Integrated Circuits Conf., Sep. 2007, pp.
273–276.

[74] J. Ryu and O. Y. Takeshita, “On quadratic inverse for quadratic permutation poly-
nomials over integer rings,” IEEE Trans. Inf. Theory, vol. 52, no. 3, pp. 1254–1260,
Mar. 2006.

[75] R. Asghar, D. Wu, J. Eilert, and D. Liu, “Memory conflict analysis and implemen-
tation of a re-configurable interleaver architecture supporting unified parallel turbo
decoding,” Journal of Signal Processing Systems, vol. 60, no. 1, pp. 15–29, Jul. 2010.

[76] I. Ahmed and C. Vithanage, “Dynamic reconfiguration approach for high speed turbo
decoding using circular rings,” in Proceedings of the 19th ACM Great Lakes sympo-
sium on VLSI, May 2009, pp. 475–480.

[77] C.-C. Wong, Y.-Y. Lee, and H.-C. Chang, “A 188-size 2.1mm2 reconfigurable turbo
decoder chip with parallel architecture for 3GPP LTE system,” in Symposium on
VLSI Circuits, Jun. 2009, pp. 288–289.

[78] S. Dolinar and D. Divsalar, “Weight distribution of turbo codes using random and
nonrandom permutations,” Jet Propulsion Lab., TDA Progress Report 42-122, Aug.
1995.

[79] S. Crozier, “New high-spread high-distance interleavers for turbo-codes,” in Proc.
20th Bienn. Symp. Communications, May 2000, pp. 3–7.

[80] S. Crozier, P. Guinand, and A. Hunt, “Estimating the minimum distance of turbo-
codes using double and triple impulse methods,” IEEE Commun. Lett., vol. 9, no. 7,
pp. 631–633, Jul. 2005.

[81] C.-C. Wong, M.-W. Lai, C.-C. Lin, H.-C. Chang, and C.-Y. Lee, “Turbo decoder
using contention-free interleaver and parallel architecture,” IEEE J. Solid-State Cir-
cuits, vol. 45, no. 2, pp. 422–432, Feb. 2010.

[82] C.-C. Wong and H.-C. Chang, “Reconfigurable turbo decoder with parallel architec-
ture for 3GPP LTE system,” IEEE Trans. Circuits Syst. II, vol. 57, no. 7, pp. 566–
570, Jul. 2010.

[83] Y. Sun, Y. Zhu, M. Goel, and J. R. Cavallaro, “Configurable and scalable high
throughput turbo decoder architecture for multiple 4G wireless standard,” in IEEE
Int. Conf. on Application-Specific Systems, Architectures and Processors, Jul. 2008,
pp. 209–214.

[84] C.-H. Lin, C.-Y. Chen, A.-Y. Wu, and T.-H. Tsai, “Low-power memory reduced trace-
back MAP decoding for double-binary convolutional turbo decoder,” IEEE Trans.
Circuits Syst. I, vol. 56, no. 5, pp. 1005–1016, May 2009.

94

[85] J.-H. Kim and I.-C. Park, “A unified parallel radix-4 turbo decoder for mobile
WiMAX and 3GPP-LTE,” in IEEE Custom Integrated Circuits Conference, Sep.
2009, pp. 487–490.

[86] C. Studer, C. Benkeser, S. Belfanti, and Q. Huang, “A 380Mb/s 3.57mm2 3GPP-LTE
turbo decoder ASIC in 0.13µm CMOS,” in IEEE Int. Solid-State Circuit Conf., Feb.
2010, pp. 274–276.

95

