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Student : Su-Yung Tsai Advisor : Chung-Yu Wu
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National Chiao-Tung University

Abstract

Humans brains can resolve many complex image tasks such as pattern recognition

and segmentation which are still difficult for digital image processing algorithms to have

a satisfying result. Some researchers believe that the neocortex recalls patterns auto-

associatively. They pointed out the reason for the brain to efficiently resolve these image

tasks is that the brain retrieves the answer from memory.

We propose the ARMCNN (Autonomous Ratio-Memory Cellular Nonlinear Network)

structure to implement the associative memory for pattern recognition. The ARMCNN is

a nonlinear system with each cell locally coupled to its neighbors. This locally connected

structure processes the input real-time analog signals at each cell simultaneously. Human

retinas also have these two characterictics : the locally connected structure and the ability

to process the input real-time analog signal. These two characterictics make ARMCNNs

suitable to implement in analog VLSI.

iii



For pattern recognition, stability analysis is essential to understand the steady state

values and the domain of attraction. The initial image point will converge to its corre-

sponing steady state value depending on which corresponding domain of attraction the

initial point belong. This thesis aims to provide a conservative domain of attraction for

the input image by Lyapunov stability analysis. From this Lyapunov stability analysis, a

graphical method is proposed to construct the domain of attraction.

From the view point of computer simulation and discrete-time circuit implementation,

it is crucial to obtain the maximum time step in the numerical integration algorithm with-

out causing numerical instability. Besides the numerical instability, another issue is the

spurious memory points. Some non-binary equilibrium points may exist. These spurious

memory points lower the recognition rate. This thesis uses the diffusion model and the

eigenspace decomposition method to examine the maximum forward Euler time step for

one-dimensional ARMCNN in three cases: all neurons in linear regions, one end neuron

entering the saturation region, and two end neurons entering the saturation region. Each

case has a distinct boundary condition for its corresponding diffusion model. From the

eigenspace decomposition in these three cases, an analytic neuron gain is derived to lower

the amount of spurious memory points.

In addition, the eigenspace decomposition implied a sufficient condition to guarantee

that the forward Euler ARMCNN has the same steady state output as the continuous time

ARMCNN. Although the eigenspace decomposition for 2-D ARMCNN is not derived,

this thesis suggests a similar design principle exists for 2-D ARMCNN. 1-D and 2-D

examples are given in this thesis to support the ARMCNN design equations.
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Chapter 1

Introduction

1.1 Motivation

Some basic image tasks such as image segementation, recognition and associatvie mem-

ory [1, 2] are difficult to have a satisfying result using digital image processing algo-

rithms, while these basic image tasks are considered easy for huamn beings to perform.

For example, if a cat is hidden partially in a picture, and one is asked to push the button to

answer whether the cat is in the picture, it takes less than half a second to identify this cat.

To quote Jeff Hawkins from [3], “... From the time light enters your eye to the time you

press the button, a chain no longer than one hundred neurons could be involved...”. On

the other hand, it is difficult for a digital computer to excute one hundred steps to identify

which kind of animal is in a picture. Even with many parallel computers, each computer

still need billions of steps to accomplish its own task. According to Jeff Hawkins, this is

because the brain “retrieves the answers from memory” [3]. Therefore this thesis focuses

on biology-inspired circuits such as cellular neural (nonlinear) network (CNN) [4, 5] to

perform the task of associative memory. The locally connected structure in CNN, also

observed in the human retina, reduces the wire connections in analog VLSI.

From the mathematical point of view, CNN are coupled nolinear differential equations.

Given initial conditions and a set of input image data, each trajectory must converge and

propagate to some equilibrium point based on the coupled nolinear differential equations.

To properly perform an image task, such as pattern recognition, CNNs are required to be

1



2 CHAPTER 1. INTRODUCTION

completely stable. A circuit is completely stable if every trajectory tends to some equi-

librium point [6]. Many equilibrium points in a CNN are possible. As Chua stated [7]:

“Patterns are associated with complete stable circuits where each trajectory correspond-

ing to a given initial condition must necessarily converge to some dc equilibrium point,

usually among many others, as in cellular neural networks.” Therefore, understanding

steady state values and the stability property is essential. However, previous studies in

[8, 9, 10, 11, 12] do not guarantee that neuron states will converge to the equilibrium

states. In [13, 14], the analysis of equilibrium points is mainly based on the standard ac-

tivation function [4] and the space-invariant templates whose center element is larger than

1. Hence, this thesis seeks to find a domain of attraction for ARMCNN (Autonomous

Ratio-Memory Cellular Nonlinear Network) solving the tasks of associative memory and

pattern recognition.

Discrete time CNN is equivalent to Euler-integrated CNNs [15, 16]. A key question to

discrete time implementation and computer simulation is numerical stability. Hence, from

the digital emulation and the discrete implememtation view points, it is crucial to know

the maximum time step in the numerical integration algorithm without causing numerical

instability. In literature, locally regular (LR) CNN is well known to have a maximum

forward Euler (FE) time step equal to the internal time constant of the CNN cell [17]. In

addition, the equilibrim point is not changed after this time step. An interesting question

arises as whether other CNNs have this property or not. Hence, this thesis aims to obtain

the maximum time step by linking the ARMCNN dynamic equations into a diffusion

model and using eigenspace decomposition for the ARMCNN functioned as associative

memory. From the eigenspace decomposition, an analytic gain is derived to lower the

amount of spurious memory points. Furthermore, the decomposition implied a sufficient

condition to guarantee that the forward Euler ARMCNN has the same binary output as

the continuous time ARMCNN. Although we do not derive the eigenspace decomposition

for 2-D ARMCNN, this thesis suggests that a similar design principle also exists for 2-D

ARMCNN. 1-D and 2-D examples are given to support the ARMCNN design concepts.
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1.2 Organization

The organization of the thesis is described as follows.

Chapter 2 is the overview of the standard CNN. Relevant definitions are discussed.

Chapter 3 describes the operation, algorithm and dynamic state space equations of

ARMCNNs.

Chapter 4 deals with the Lyapunov stability analysis and the conservative domain of

attraction. From this analysis, the activation function and the ratio weight can vary without

affecting the stability. The amount of the ratio weight variation is also discussed in this

chapter.

Chapter 5 analyzes the maximum time step in the simulation without causing the nu-

merical instability or oscillation. The analysis is based on the eigenspace decomposition

of the initial state vector. From this decomposition, the amount of spurious equilibrium

points can be reduced by enhancing the low frequency component of the initial state vec-

tor. Furthermore, the decomposition implied a sufficient condition to guarantee that the

forward Euler ARMCNN has the same binary output as the continuous time ARMCNN.

Finally, conclusions and recommendations for future works are given in Chapter 6.
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Chapter 2

Standard CNN

2.1 Introduction

Cellular neural/nonlinear networks (CNNs) are nonlinear continuous time operating struc-

tures composed of locally connected cells in an array. Locally connected structures are

also found in the silicon retina which has been modeled as a resistive grid by Mead [18].

Each CNN cell receives the input image simultaneously and processs the image signal

in the continuous time domain. The processed image signal propagates away from the

locally connected cell. The connected weight between each neighboring cell is govered

by simple templates.

Locally connected structures and the continouous time signal processing capability

make CNNs suitable for analog VLSI implementation and image processing tasks. [19].

Among various image processing tasks, linear and nonlinear image filtering applications

were demonstrated using CNNs as resistive grids in [20]. Many other CNN image pro-

cessing examples such as connected component detector are available in [21, 22].

This chapter is organized as follows. Section 2.2 provides the mathematical definitions

for the standard CNN. Image processing examples are illustrated by simple templates in

Section 2.3.

5



6 CHAPTER 2. STANDARD CNN

2.2 Standard CNN State Equations

A standard CNN [4] consists of an M × N rectangular array with the cell or neuron

C(i, j) located at the ith row and jth column. The dynamics of the standard CNN [4] is

governed by

C
dvxij

dt
= −

vxij

Rx

+
∑

C(k,l)∈NRa(i,j)

A(i, j; k, l)vykl +
∑

C(k,l)∈NRa(i,j)

B(i, j; k, l)vukl + z

RxC
dvxij

dt
= −vxij +

∑

C(k,l)∈NRa(i,j)

RxA(i, j; k, l)vykl +
∑

C(k,l)∈NRa(i,j)

RxB(i, j; k, l)vukl + Rxz

τ = RxC (2.1)

where vxij, vyij, vukl, z are the state, output, input, and threshold of cellC(i, j), respectively,

and τ is the cell time constant. The units for vxij, vyij, vukl, z are Volt, Volt, Volt and

Ampere, respectively. RxA(i, j; k, l), RxB(i, j; k, l) are unitless, and Rxz has the unit of

Volt. The constraint conditions are

|vxij(0)| ≤ 1, vuij ≤ 1 (2.2)

where “black” is coded as +1, “white” is coded as −1 and the gray level is between +1

and −1. The image can be applied to the CNN in the form of the state vxij(0) or the input

vuij of the cell C(i, j), or both. Several definitions regarding (2.1) are listed below:

• Output function (also called activation fucntion)

The only nonlinear element in Equation 2.1 is the output function, which is also

called the activation function, and it has the form of

vyij =
1
2

(|vxij + 1| − |vxij − 1|). (2.3)

Figure 2.1 shows the piecewise-linear (PWL) characteristic in (2.3), and the range

for vyij is −1 ≤ vyij ≤ 1.

• Sphere of influence of cell C(i, j)

The sphere of influence NRa(i, j) of cell C(i, j) is defined as

NRa(i, j) = {C(k, l)|1 ≤ k ≤M, 1 ≤ l ≤ N,max(|k − i|, |l − j|) ≤ Ra} (2.4)
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vxij

yijv

1

−1

1

−1

Figure 2.1: The PWL output or activation function.

where Ra is a positive integer. For Ra = 1, C(i, j) is connected to its eight nearest

neighbor cells C(k, l).

• Space invariant

A CNN is space invariant if synaptic operators A(i, j; k, l), B(i, j; k, l) and the

threshold z do not vary with space. In this case, A(i, j; k, l) and B(i, j; k, l) are

written as

A(i, j; k, l) = A(k − i, l − j), B(i, j; k, l) = B(k − i, l − j).

• Virtual cell

Any cell C(k, l), with |k − i| ≤ Ra, |l − j| ≤ Ra, and k, l /∈ {1, 2, . . . ,M} is called

a virtual cell, and the associated xkl, ykl are called virtual state and virtual output.

Virtual values are assigned to these virtual cells.

For example, Figure 2.2 shows a CNN consisting of a two-dimensional (2-D) M ×N

rectangulary array with M = 4,N = 4 and cells C(i, j), i = 1, 2, 3, 4, j = 1, 2, 3, 4. Total

16 cells are in this CNN array. Ra = 1 means only one layer of neighboring neurons is

connected. For simplicity, only the virtual cells connceted to cell C(4, 1) are shown in the

dotted line.
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C(1,1)
1

C(1,2)
2

C(1,3)
3

C(1,4)
4

C(2,2)
6

C(2,3)
7

C(2,1)
5

C(2,4)
8

C(3,1)
9

C(3,2)
10

C(3,3)
11

C(3,4)
12

C(4,3)
15

C(4,1)
13

C(4,2)
14

C(4,4)
16

C(3,0)

C(4,0)

C(5,0) C(5,1) C(5,2)

j

i

Figure 2.2: A 2-D CNN consisting of a 4× 4 rectangular array with 4 rows counted in the
i direction, and 4 columns counted in the j direction. The radius of the sphere of influence
is Ra = 1. Virtual cells connceted to cell C(4, 1) are shown in the dotted line
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(2.1) implies that the input and the output of the activation fuction are voltage sig-

nals. Hence, A(i, j; k, l) and B(i, j; k, l) have the unit of Ω−1. A voltage mode operation

example uses several op amps to implement (2.1) in [4]. However, the voltage mode op-

eration has been challenged recently in [23]. Therefore this thesis modifies the original

CNN equation, and adopts the current mode approach as shown in chapter 3 for ARM-

CNN. Nevertheless, these two approaches have the same normalization form as shown in

chapter 3.

2.3 CNN Image Processing Examples

This section shows several CNN processing examples. Although CNN is locally con-

nected, it can have several global image processing abilities. In this section, the test

images use the bit map files with eight-bit resolution. The transformation between the

read-in byte and the CNN state in (2.1) is detailed in Appendix A. These image pro-

cessing examples include connected component detection (CCD) and global connectivity

detection (GCD). These two tasks can be solved by locally regular (LR) CNNs [17], and

can be numerically integrated with a step size τ [24, 17]. Many binary image tasks can

be processed by LR-CNNs.

Connected component detection (CCD) and global connectivity detection (GCD) are

simulated in this chapter with a forward Euler step size of τ, where τ = RxC. More CNN

templates for various image tasks are available in [25].

2.3.1 Connected Component Detection (CCD)

CCD counts the number of contiguous blocks in the horizontal direction. Each contiguous

block is denoted as a black pixel, and shifted to the right. The A,B and z templates for the

CCD task are shown as,

ARx =









0 0 0

1 2 −1

0 0 0









, BRx =









0 0 0

0 0 0

0 0 0









, zRx = 0, (2.5)
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Figure 2.3: Input image applied as vxij(0) before CCD operation.

and the boundary condition for each vitual cell is the fixed type with ykl = 0. The test

image state vxij(0) for CCD is shown in Figure 2.3. Total simulation time is Tsim = 200τ.

Forward Euler integration method is applied with each time step equal to τ.

The output image after CCD operation is shown in Figure 2.4. In the second row of

Figure 2.3, two blacks are seperated by white pixels. So in the second row of Figure 2.4,

two black pixels are found in the right-hand side.

2.3.2 Global Connectivity Dectection (GCD)

GCD finds the contiguous part. Two static input image patterns applied at the input vuij
and the state vxij(0) are given. The initial state vxij(0) contains almost the same image

as the input vuij except some black pixels in vxij(0) are modified into white ones. These

modified pixels can be thought as the igniters, whereas the other unchanged ones are

considered as ignitable objects [26]. Therefore, at the steady state, or the end of the fire,

only the disconnected part remains. In other words, the global rule is that all connected

black pixels of the modified pixles are changed to white or burned. The local rule is

that if an output black pixle C(i, j) have a neighboring output white pixel Ĉ(i, j), and

the pixel Ĉ(i, j) has a black input, then the original output black pixle C(i, j) turns into



2.3. CNN IMAGE PROCESSING EXAMPLES 11

Figure 2.4: Output image, vyij(200τ), after CCD operation. Tsim = 200τ.

a output white pixel. For example, in Figure 2.6, the state at location (i, j) = (4, 3) is

black. Consequently, the output pixle C(4, 3) is black. The neighboring cell state at (3, 3)

is white. The output is therefore white at (3, 3). From Figure 2.5, the input is black at

(3, 3). According to the local rule, the original output black pixle C(4, 3) turns into a

output white pixel. It is like the original output black pixle C(i, j) = C(4, 3) gets a fire

from the neighboring pixel Ĉ(i, j) = C(3, 3). This is an interesting result because locally

connected CNNs can solve a global connectivity problem [27].

The A,B and z templates for the GCD task are shown as,

ARx =









0 0.5 0

0.5 3 0.5

0 0.5 0









, BRx =









0 −0.5 0

−0.5 3 −0.5

0 −0.5 0









, zRx = −4.5V, (2.6)

and the boundary condition for each vitual cell is the fixed type, yij = −1, uij = −1.

The input image for the GCD example is shown in Figure 2.5. Two black pixels are

modified from Figure 2.5 at location (3,3) and (3,21) and stored as white state values

shown in Figure 2.6.

After 50τ, the output is shown in Figure 2.7.

After 150τ, the output is shown in Figure 2.8.
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Figure 2.5: The input image vuij for the GCD task.

Figure 2.6: The state vxij(0) for the GCD task. Compared with Figure 2.5, the state at
(3, 3) and (3, 21) are white. The coordinates follow the definition in Figure 2.2.



2.3. CNN IMAGE PROCESSING EXAMPLES 13

Figure 2.7: The output image, vyij(50τ), after 50τ.

Figure 2.8: The output image, vyij(150τ), after 150τ.
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Chapter 3

ARMCNN

3.1 Introduction

Information storage is called associative memory if it has the capability to recall a partial

information [28]. The associative memory can retrieve a stored pattern from the input

noisy messed-up pattern. Some researchers believe that our memories correspond to at-

tractors in the brain’s huge phase space, since the human brain has more than 1012 neurons

[29]. From this viewpoint, convergence to an appropriate attractor is called recognition.

Hopfield proposed a model of a large fully connected network with symmetrical weights

[30] that functions as an associative memory with the capability to recognize patterns.

However, the limitation of Hopfield’s approach is that it requires fully connected symmet-

rical weights, which makes it difficult to connect wires in integrated circuits.

Because of its connectivity, researchers consider the Cellular Nonlinear Network (CNN)

[4] to be a potential architecture in future nano-electronic systems. To implement the

associative memory by CNN, two key aspects of Hebb’s postulate, locality and cooper-

ativity [31], are fully exploited in the Ratio Memory CNN (RMCNN) or Autonomous-

RMCNN (ARMCNN) [8, 9, 10, 11, 12]. Locality means that the change of synaptic

efficacy only depends on local variables, which is the main point of CNN. Cooperativiy

[31] means that the presynaptic and postsynaptic neurons must be active simultaneously

for a synaptic weight to change, which is the learning rule in RMCNNs or ARMCNNs.

This agrees with the correlation property in image data. Pixels located next to each other

15



16 CHAPTER 3. ARMCNN

are more correlated than pixels that are in different regions of the image. The RM weight

(or ratio weight) can be determined either through the elapsed time, as in [10, 11], or can

be determined without the elapsed time, as in [9, 32].

While previous studies have proposed several different CNNs on associative mem-

ory [33, 34, 35, 36, 37], few have actually been implemented in analog VLSI [38],

mainly due to complex mathematics required to make this possible. In literature, [33, 34]

proposed a design method for the realization of associative memories through singu-

lar value decomposition technique (SVD). Another study [35, 36] showed the weights

through solving linear matrix inequality (LMI) and generalized eigenvalue (GE) prob-

lems, whereas the work in [37] computed the CNN parameters by solving a set of linear

equations via pseudoinversion techniques. In particular, the CNNs in [35, 36, 37, 33, 34]

require mathematical operations such as SVD, LMI, and pseudoinversion. These opera-

tions are more complex than the simple methods proposed in this chapter and in [39], and

more difficult to implement in analog VLSI [38].

ARMCNN has two periods of operation: the learning period and the recognition pe-

riod. In the learning period, ratio weights are learned from the learning patterns. In the

subsequent recognition period, the output pattern evolves from the noisy input pattern

based on the learned ratio weights.

3.2 ARMCNN Learning Period

This section discusses the ARMCNN consisting of an M × N rectangular array. Cell

C(i, j) is located in the ith row and jth column. Two types of learning are distinguished

in ARMCNN, learning with an elapsed time and learning without an elapsed time.

3.2.1 Operation with Elapsed Time

In the learning period, assume that ARMCNN must learn m patterns. The learned weight

zijkl from neuron C(k, l) to neuron C(i, j) can be determined by the Hebbian learning rule

[31]

zijkl =
m
∑

p=1

u
p
iju

p

kl (3.1)
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where upij is the learning pixel image at the ith row and jth column of the pth pattern out

of m input patterns, and upkl is the learning pixel image at the kth row and lth column in

the set of N0
Ra(i, j). N

0
Ra(i, j) is the set of a Ra-neighborhood system without the neuron

C(i, j). The Ra-neighborhood system NRa(i, j) of the neuron C(i, j) is defined as the set

of all neurons including C(i, j) and its neighboring neurons. NRa(i, j) = {C(k, l)|1 ≤

k ≤ M, 1 ≤ l ≤ N,max(|k − i|, |l − j|) ≤ Ra} where Ra is an integer called the radius

of the sphere of influence. Besides, the correlation between two neighboring neurons at

C(i, j) and C(k, l) is positively correlative if

u
p
ij = u

p

kl, forp = 1, . . . , m (3.2)

or negatively correlative if

u
p
ij = −u

p

kl, forp = 1, . . . , m. (3.3)

For example, for a ARMCNN without self-feedback, assume four learning patterns with

+1 for a black pixel image and −1 for a white pixel image. All possible learned weights

zijkl are {+4,+2, 0,−2, 0,−4}. The +4 occurs when the input image pair at C(k, l) and

C(i, j) are positively correlative for all four input patterns. The −4 occurs when the input

image pair at C(k, l) and C(i, j) are negatively correlative for all four input patterns. After

learning all input patterns, the learned weight zijkl is transformed into the ratio weight wijkl
[8, 9, 10, 11, 12]

wijkl =
zijkl

∑

C(k,l)∈N0
Ra(i,j) |zijkl|

.

For a ARMCNN with self-feedback (SARMCNN), simply replaceN0
Ra(i, j) withNRa(i, j).

If k = i, l = j, then zijij is the self-feedback weight and wijij is the self-feedback ratio

weight. The sum of the absolute values of the ratio weights for a SARMCNN is also equal

to one.

In the elapsed period, the inevitable leakage current [11, 40] associated with the

stored weight reduces the absolute value of zijkl. However, this leakage enhances the ratio

weights whose absolute values are larger than the average of the absolute values of wijkl
connected to C(i, j) [12]. This feature enhancement effect was shown in [12, 41, 42, 43]

as a result of storing weights as ratios.
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3.2.2 Operation without Elapsed Time

The learning algorithm for determining the ratio weights in ARMCNNs (or SARMC-

NNs), which requires no elapsed time, is summarized as follows: [32, 39]

• Obtain the weights zijkl of (3.1) after m patterns are learned.

• Set

Gmax =
m
∑

p=1

|upij||u
p

kl|,

where upij and upkl are defined in (3.1).

• Compare |zijkl| with Gmax. The weight zijkl with its absolute value equal to Gmax

will be kept. On the contrary, the weight with its absolute value less than Gmax will

be set to zero.

• Transform the connecting weights of neuron C(i, j) as

wijkl =
Sgn(zijkl)
PNN0

Ra
(i, j)

if |zijkl| = Gmax (3.4)

where PNN0
Ra

(ij) is the number of preserved weights in N0
Ra(i, j) with respect to

neuron C(i, j). wijkl = 0 if |zijkl| < Gmax.

For SARMCNNs, simply replace N0
Ra(i, j) with NRa(i, j) and if k = i, l = j, then

zijij is the self-feedback weight.

To simplify wire connections, only those neighboring neurons located on horizontal

and vertical positions are connected, that is, up, down, left, right. Neighboring neurons

located on diagonal sites are not connected. The algorithm without the elapsed time is

used in this thesis. Therefore, all possible ratio weights are ±1/4,±1/3,±1/2,±1 for a

ARMCNN without self-feedback, whereas for a SARMCNN, all possible ratio weights

are ±1/5,±1/4,±1/3,±1/2,±1.

For example, after learning the three Chinese characters in Figure 3.1, the survived

ratio weight connection is shown in Figure 3.2. There are one 2-D 18N subsystem (top

two rows), one 2-D 25N subsystem (indicated with an arrow), six 1-D 2N subsystems,

one 2-D 8N subsystem and two 1-D 9N systems (bottom two rows). The thick bond in
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(a) (b) (c)

Figure 3.1: (a) Chinese character ONE. (b) Chinese character TWO. (c) Chinese character
FOUR.

Figure 3.2 is due to a negatively correlative input image at the two connected neurons and

the thin bond is due to a positively correlative input image at the two connected neurons.

3.3 ARMCNN Recognition Period

3.3.1 ARCMNN State Equations

In the ARMCNN recognition period, the neuron or cell dynamic equation is

dxij(t)
dt

=
−xij(t)
RijCij

+
∑

C(k,l)∈NRa(i,j)

wijklykl(t)
Cij

(3.5)

ykl(t) = σ(xkl(t))
∑

C(k,l)∈NR (i,j)

|wijkl| = 1

as shown in Figure 3.3, where ARMCNN variables, xij, yij, Isat are represented as elec-

trical signals such as voltages and currents [32, 40] for hardware implementation. xij
is the neuron state voltage, yij is the neuron output current, Isat is the output saturation

current, g is the neuron gain, and Rij, Cij are the resistor and capacitor associated with the

neuron C(i, j) respectively. wijkl is the ratio weight from neuron C(k, l) to neuron C(i, j)

and is implemented by current mirrors in integrated circuits [32]. The activation func-

tion, σ(·) is actually a voltage to current converter (V/I). Activation functions of different

types are possible. For example, the piecewise linear (PWL) activation function, having
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2–D
25N

Figure 3.2: The survived ratio weights in the 9×9 ARMCNN after learning the three
Chinese characters ONE, TWO, and FOUR of Figure 3.1
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a transconductance value Gm of g/Rij, is

σp(xkl) =
g

2Rij

(

∣

∣

∣

∣

xkl +
IsatRij

g

∣

∣

∣

∣

−
∣

∣

∣

∣

xkl −
IsatRij

g

∣

∣

∣

∣

)

=
Gm

2

(

∣

∣

∣

∣

xkl +
Isat
Gm

∣

∣

∣

∣

−
∣

∣

∣

∣

xkl −
Isat
Gm

∣

∣

∣

∣

)

=
gIsat

2

(

∣

∣

∣

∣

xkl
IsatRij

+
1
g

∣

∣

∣

∣

−
∣

∣

∣

∣

xkl
IsatRij

−
1
g

∣

∣

∣

∣

)

(3.6)

as illustrated in Figure 3.4. The PWL type is the mostly commonly used one. For PWL

activation function, a state xij is in the linear region if

−IsatRij

g
≤ xij ≤

IsatRij

g
, yij = σp(xij) =

gxij

Rij

. (3.7)

and a state xij is in the saturation region if

xij >
IsatRij

g
, yij = Isat

or xij < −
IsatRij

g
, yij = −Isat.

The input initial states (input image) are defined as

−IsatRij ≤ xij(0) ≤ IsatRij. (3.8)

To perform the ARMCNN stability analysis in chapter 4, an alternative row-wise or-

dering of the state variables instead of (3.5) is as follows,

ẋ = − Cx + Tσ(x)

y =σ(x) (3.9)

where x ∈ Rn is the state vector, y is the output vector, and T = [Tij] ∈ Rn×n is the

connection matrix. C = diag[(R1C1)−1, ..., (RnCn)−1], with Ri, Ci > 0 for i = 1, ..., n,

and σ(x) = [σ(x1), ..., σ(xn)]T represents the activation function. The input image, that

is, the initial state, satisfies |xi(0)| ≤ IsatRi for i = 1, . . . , n. n = M ×N for a M ×N

pattern. For the ratio memory requirement,

n
∑

k=1

|Tik| =
1
Ci
, i = 1, ..., n (3.10)
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wijij

yijxij

CijijR

wijkl

ykl

ratio
weight

ratio
weight

ratio
weight

ratio
weight

Function

Activation

cell or neuron model

Figure 3.3: The neuron model of ARMCNN located at the ith row and jth column. If
without self-feedback, wijij = 0.
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ijy

ijx

ijR−Isat

Isat ijR

Isat

−Isat

g

g

Figure 3.4: The transfer characteristic of the PWL activation function, σp(·).

where Tik is the ratio weight from neuron k to neuron i multipled by 1/Ci.

Many other ordering methods for the neurons are possible such as diagonal ordering

and column-wise ordeing [44]. The row-wise odering in this chapter represents the two

dimensional indices of Cab and Rab by one dimensional Ci and Ri using the following

rule:

i = (a − 1) ×N + b.

For example, row-wise ordering of state variables of a 4 × 4 array is shown in Figure 2.2.

As seen, neuron (2, 1) in Figure 2.2 is ordered as 5, and the corresponding T is 16 × 16.

3.3.2 Equilibrium Point

The equilibrium points of (3.9) can be obtained by solving

Cxeq = Tσ(xeq), xeq ∈ Rn. (3.11)

In general, we can have q equilibrium points, x1
eq, . . . , x

q
eq. The resultant ratio weights

generate many small subsystems. Each subsystem has two binary equilibrium points in

the form of (±IsatR, . . . ,±IsatR). The choice of the sign is determined as follows. Set the
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x1 x2 x3 x4 x5

Figure 3.5: A 1-D five-neuron (5N) system having two binary equilibrium points
(x1(∞), x2(∞), x3(∞), x4(∞), x5(∞)) as ±(IsatR, IsatR, IsatR, IsatR, IsatR).

equilibrium state of the first neuron C(i, j) to IsatR (−IsatR). If a negatively correlative

input image is found between C(k, l) and C(i, j), then set the equilibrium state of the

connected neuron C(k, l) to −IsatR (IsatR). Otherwise, if positively correlative, then

set the equilibrium state of the connected neuron C(k, l) to IsatR (−IsatR). This is true

for any number of neurons [8]. Further, the ratio memory requirement shown in (3.10)

confines the ranges of all possible equilibrium states as:

|xmuleq,i| ≤ IsatRi for i = 1, ..., n, mul = 1, ..., q

where xmuleq,i is the ith equilibrium neuron state for the multh equilibrium point. This is

because, for the ith neuron (i = 1, . . . , n)

1
RiCi

xmuleq,i =
n
∑

k=1

Tikσ(xmuleq,k) ≤ Isat
n
∑

k=1

|Tik| =
Isat
Ci

⇒ |xmuleq,i| ≤IsatRi for mul = 1, . . . , q.

Because q is possible to be greater than 2, some undesired equilibrium points, that is,

spurious memory points, may exist besides the two binary equilibrium points. To show

spurious memory points, consider a 1-D 5N system shown in Figure 3.5. The neuron

resistor (Ri = R, i = 1, 2, . . . , 5), capacitor (Ci = C, i = 1, 2, . . . , 5) and voltage to

current converter (V/I) are as defined in Figure 3.3 and Figure 3.4.

For the 1-D 5N system in Figure 3.5 under Ri = 1, Ci = 1, i = 1, 2, . . . , 5, we see

that

ẋ1 = − x1 + σ(x2)

ẋ2 = − x2 + 0.5σ(x1) + 0.5σ(x3)

ẋ3 = − x3 + 0.5σ(x2) + 0.5σ(x4)

ẋ4 = − x4 + 0.5σ(x3) + 0.5σ(x5)

ẋ5 = − x5 + σ(x4). (3.12)
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The thin bond is due to a positively correlative input learning image pair at the two

connected neurons. For the PWL activation function with g > 1, (1, 1, 1, 1, 1) and

(−1,−1,−1,−1,−1) are two equilibrium points as can be verified by substituting these

equilibrium points into (3.12). If g = 2, then one possible spurious memory point is at

x1
eq = [0.877, 0.4389,−0.0611,−0.5611,−1]T . Another possible spurious memory point

is at x2
eq = [1, 0.5, 0,−0.5,−1]T . In chapter 5, these two spurious memory points are elim-

inated by reducing the neuron gain g. Notice, in this example, |xmuleq,i| ≤ 1 for mul = 1, 2

and i = 1, 2, . . . , 5.

3.3.3 Relationship to Standard CNN

(3.5) is suitable for the current mode approach with the wijkl implemented using replicas

of current mirrors. In addition, if xij is normalized with respect to IsatRij and yij is

normalized with respect to Isat, then (3.5) is expressed as,

Cij
d

dt
xij = −

xij

Rij

+
∑

C(k,l)∈NR (i,j)

wijklσp(xkl)

⇒ Cij
d

dt
xij = −

xij

Rij

+
∑

C(k,l)∈NR (i,j)

wijkl

(

gIsat
2

(|
xkl(t)
IsatRij

+
1
g
| − |

xkl(t)
IsatRij

−
1
g
|)
)

⇒ τ
d

dt
(
xij(t)
IsatRij

) = −
xij(t)
IsatRij

+
∑

C(k,l)∈NR (i,j)

wijkl

(

g

2
(|
xkl(t)
IsatRij

+
1
g
| − |

xkl(t)
IsatRij

−
1
g
|)
)

⇒ τ
dx̃ij(t)
dt

= −x̃ij(t) +
∑

C(k,l)∈NR (i,j)

wijklσ̃p(x̃kl) (3.13)

where

x̃ij(t) =
xij(t)
IsatRij

, τ = RijCij

σ̃p(x̃kl) =
g

2
(|x̃kl +

1
g
| − |x̃kl −

1
g
|) =

σp(xkl)
Isat

−1 ≤x̃ij(0) ≤ 1. (3.14)

σp(xkl) is defined in (3.6). Obviously, x̃ij and wijkl play the same role as the vxij and

RxA(i, j; k, l) of (2.1) do respectively. The constraint condition on the initial state is also

equivalent as seen from (2.2) and (3.14). Hence, it is convinent to use the normalized vari-

ables as xij
IsatRij

and σp(xij )
Isat

in the simulation. Table 3.1 compares the equivalence between
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Table 3.1: Equivalent representations between the N-ARMCNN and the S-CNN
N-ARMCNN S-CNN

state xij (t)
IsatRij

vxij(t)

output yij (t)
Isat

vyij(t)
weight wij RxA(i, j; k, l)

the normalized ARMCNN (N-ARMCNN) in (3.13) and the standard CNN (S-CNN) in

(2.1).



Chapter 4

Lyapunov Stability Analysis

4.1 Introduction

For pattern recognition, stability analysis is important to understand the behavior near

the steady state values. Whether or not initial states can successfully converge to the

desired equilibrium point determines recognition performance. However, previous studies

in [8, 9, 10, 11, 12] do not guarantee that neuron states will converge to the equilibrium

states.

Usually, obtaining the range in which the state converges or obtainging the conver-

gence rate is more meaningful than knowing the stability type of the equilibrium point.

Hence, this chapter aims to exploit a Lyapunov theory to obtain the domain of attraction

(DOA).

4.2 Stability Definitions

For linear systems, there is no ambiguous definition about stablity. The eigenvalues of the

linear system are required to be negative to ensure that the trajectory asymptotically con-

veges to the equilibrium point. However, when the system is nonlinear, various definitions

are available such as stability, unform stability, exponential stability [45].

27
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We consider a nonlinear autonomous system

ẋ = f (x), where f : Rn → Rn, f (x) =















f1(x)

f2(x)
...

fn(x)















, x =















x1

x2
...

xn















, ẋ =















ẋ1

ẋ2
...

ẋn















(4.1)

where xi is the state variable, and ẋi denotes the derivative of xi with respect to the time

variable t. Because f does not depend explicitly on time, the system defined by (4.1)

is called autonomous. A point or state vector xe ∈ Rn is an equilibrium point or an

equilibrium state vector of the system if f (xe) = 0. Several relevant definitions of stability

in this thesis are as follows [46].

The equilibrium point xe is

• stable (stability in the sense of Lyapunov)

if for each ε, there is δ = δ(ε) > 0, such that ‖x(0) − xe‖ ≤ δ ⇒ ‖x(t) − xe‖ <

ε,∀t ≥ 0

• unstable

if it is not stable

• locally asymptotically stable (LAS) at xe

if it is stable and an δ > 0 exists such that ‖x(0) − xe‖ ≤ δ ⇒ x(t) → xe as t→ ∞

The above definition of stability implies that the trajectory can be kept arbitrarily close

to the equilibrium point by starting sufficiently close to the equilibrium point. This kind

of stability is also called stability in the sense of Lyapunov.

For locally asymptotically stability, we need two conditions to hold. The equilibrium

point is stable and the trajectories approach to the equilibrium point. When the equilib-

rium poin is locally asymptotically stable, the next interesting question is how far from

the equilibrium point the initial state vector can be and the trajectory from that inital state

vector still converges to the same equilibrium point. A domain of attraction of the equi-

librium point is the set such that if the initial state vector is located within this set, then

the trajectory converges to the equilibrium point. The proof process of the stability about

the equilibrium point usually implies a conservative DOA as in Section 4.4.
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4.3 Lyapunov Theory

Without actually solving (4.1), Lyapunov theory can be used to decide the stability of the

equilibrium point. For (4.1), a typical Lyapunov theorem has the following expression

[47],

• if there exists a function V : Rn → R that satisfies some condition on V and V̇ ,

where

V̇ (x) =
dV (x)
dt

=
n
∑

j=1

∂V

∂xj
ẋj =

n
∑

j=1

∂V

∂xj
fj(x) = ∇V (x)Tf (x) (4.2)

• then conclusions can be made about the trajectories of (4.1).

Such a function V is called a Lyapunov function, and V̇ (x) is a rate of decrease or

increase of V (x) along the trajectory.

4.3.1 A Lyapunov Local Asymptotic Theorem

Suppose x = 0 is an equilibrium point for (4.1). If a function V satisfies the following,

• V (0) = 0, V (x) > 0 in D − 0

• V̇ (0) = 0, V̇ (x) < 0 in D − 0,

and if Ωc = {x ∈ Rn|V (x) ≤ c} is bounded and contained in D, then every point starting

in Ωc remains in Ωc and approaches the origin. Hence, Ωc is invariant and is a conserva-

tive domain of attraction (DOA) [48]. For example, Figure 4.1 shows an ellipsoid surface

to represent V (x) = xTPx = c, where c is a constant. D is assumed to be a sphere as

‖x‖ ≤ r. To maximize the DOA, c is chosen as,

c = min
‖x‖=r

V (x) = min
‖x‖=r

xTPx.
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xT P x=c

r

0

D

Figure 4.1: Ωc = {x ∈ Rn|V (x) = xTPx ≤ c} is bounded and contained in D.

4.4 ARMCNN Stability Analysis

Without loss of generality, Ri, Ci and Isat in (3.9) are normalized to unities. This is be-

cause these parameters only affect the convergent time which is proportional to 1/(RiCi),

and the state values and output currents can be normalized as xi/(IsatRi) and yi/Isat. The

normalizations of state values and output currents are shown in (3.13). The normalized

binary equilibrium point is expressed as:

Eqp =
(

eq1 eq2 · · · eqn

)

where eqi is in the form of ±1.

Consider the behavior around one normalized binary equilibrium point using new state

variable zi. The new state variable zi with respect to the normalized binary equilibrium

point is defined as

zi = xi − eqi for i = 1, ..., n. (4.3)

For instance, if the normalized equilibrium state in the ith neuron is ±1, then

zi = xi ∓ 1.

After this transformation from x to z, the new system has an equilibrium point at the

origin and is represented as

ż = −z + g(z) (4.4)
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zi

zi

zi

zi
zi

zi
zi

(σ +1)

| |

(σ +1)

1
(σ +1)−1||

| |=−1

Figure 4.2: The shifted PWL activation function, σ(zi + 1).

where

g(z) = [g1(z) · · · gn(z)]T

gi(z) =

[

n
∑

k=1

Tikσ(zk + eqk)

]

− eqi. (4.5)

Figure 4.2 shows the shifted PWL activation function of σ(zi + 1), and Figure 4.3

shows the shifted PWL activation function of σ(zi−1). For the PWL activation, (4.6) and

(4.7) must be satisfied in the following stability analysis.

|σ(zi + 1) − 1| ≤ |zi | for |zi| < 1, σ(1) = 1

and lim
zi→0

|σ(zi+1)−1|
|zi|

= 0 for i = 1, . . . , n
(4.6)

|σ(zi − 1) + 1| ≤ |zi | for |zi| < 1, σ(−1) = −1

and lim
zi→0

|σ(zi−1)+1|
|zi|

= 0 for i = 1, . . . , n.
(4.7)

Theorem 1 For the PWL activation function defined in Figure 3.4, (4.6) and (4.7) are

satisfied if and only if the slope g is greater than 1.

Proof: From Figure 3.4, it is obvious that σ(1/g) = 1 for the normalized ARMCNN. The

fact that g must be greater than 1 can be argued from the following analysis.
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Figure 4.3: The shifted PWL activation function, σ(zi − 1).

1. If g < 1, then 1/g > 1. The PWL activation function in Figure 3.4 is monotonically

increasing from x = 0 to x = 1/g >1. Therefore,

σ(0) = 0 < σ(1) < σ(1/g) = 1

which does not meet (4.6), that is, σ(1) = 1.

2. If g = 1, then

|σ(zi + 1) − 1| = |zi + 1 − 1| = |zi| for − 1 ≤ zi ≤ 0

therefore,

lim
zi→0−

|σ(zi + 1) − 1|
|zi|

= lim
zi→0−

|zi|
|zi|

= 1, for i = 1, . . . , n,

which does not meet (4.6), that is,

lim
zi→0

|σ(zi + 1) − 1|
|zi|

= 0 , for i = 1, ..., n.

3. If g > 1, then |zi| < 1 is divided into the following two ranges to show the PWL

activation function defined in Figure 3.4 satisfies (4.6).
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Range 1: if −1 < zi < −1 + 1/g < 0, then

−g < gzi < −g + 1

|σ(zi + 1) − 1| = |g × (zi + 1) − 1|

= 1 − gzi − g > 0

|zi| = −zi

|zi| − |σ(zi + 1) − 1| = −zi − 1 + gzi + g

= (g − 1) + zi(g − 1)

= (g − 1)(zi + 1) > 0

⇒ |σ(zi + 1) − 1| < |zi| for −1 < zi < −1 + 1/g < 0.

Range 2: if −1 + 1/g ≤ zi < 1, then

⇒ 1/g ≤ zi + 1 < 2

⇒ σ(zi + 1) = 1

⇒ |σ(zi + 1) − 1| = 0 ≤ |zi|

⇒ lim
zi→0

|σ(zi + 1) − 1|
|zi|

= lim
zi→0

0
|zi|

= 0

In a similar way, |zi| < 1 is divided into the following two ranges to show that the

PWL activation function defined in Figure 3.4 satisfies (4.7).

Range 3: if 0 < 1 − 1/g < zi < 1, then

g − 1 < gzi < g

|σ(zi − 1) + 1| = |g × (zi − 1) + 1|

= gzi − g + 1 > 0

|zi| = zi

|zi| − |σ(zi − 1) + 1| = zi − 1 − gzi + g

= zi(1 − g) + (g − 1)

= (g − 1)(1 − zi) > 0

⇒ |σ(zi − 1) + 1| < |zi| for 0 < 1 − 1/g < zi < 1.
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Range 4: if −1 < zi ≤ 1 − 1/g, then

⇒ −2 < zi − 1 ≤ −1/g

⇒ σ(zi − 1) = −1

⇒ |σ(zi − 1) + 1| = 0 ≤ |zi|

⇒ lim
zi→0

|σ(zi − 1) + 1|
|zi|

= lim
zi→0

0
|zi|

= 0

For the PWL activation function, the above case (3) shows that if g > 1 then (4.6)

and (4.7) are satisfied. And the above case (1) and case (2) show that for the PWL

activation function, if (4.6) and (4.7) are satisfied, then g < 1 and g = 1 are not

possible. Therefore, for the PWL activation function defined in Figure 3.4, (4.6)

and (4.7) are satisfied if and only if the slope g is greater than 1.

The ARMCNN defined in (3.9) is generated after performing the algorithm in Section

3.2 without elapsed time. The ratio weights of this ARMCNN satisfy (3.10), and the

activation functions of each neuron are required to satisfy (4.6) and (4.7). Theorem 2

shows that the resultant ARMCNN converges to one of the binary equilibrium points.

Theorem 2 ARMCNN stability analysis with a conservative Domain of Attraction (DOA).

For the normalized ARMCNN (Ri = R = 1, Ci = C = 1, Isat = 1) defined in (4.4) with

the activation function satisfying (4.6) and (4.7), there exists a conservative domain

of attraction (DOA), i.e., ‖z‖ < r, so that the ARMCNN will converge to one of the

normalized binary equilibrium points for ‖z‖ < r.

Proof: We need to first prove the asymptotic stability of (4.4), that is,

ż = −z + g(z).

Define a positive quadratic Lyapunov function

V (z) = zTPz.
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Choosing P = 0.51n, where 1n is the n × n identity matrix, we have from (4.2),

V̇ (z) = ∇V (z)T (−z + g(z))

= 2zTP (−z + g(z))

= −2zTPz + 2zTPg(z) = −zTz + zTg(z)

= −‖z‖2 + zTg(z) ≤ −‖z‖2 + ‖z‖‖g(z)‖.

It is obvious that ‖g(z)‖ determines the sign of the derivative of V (z). To find ‖g(z)‖, the

range of gi(z) is analyzed first from (4.5) as

gi(z) =

[

n
∑

k=1

Tikσ(zk + eqk)

]

− eqi

=
n
∑

k=1

Tik [σ(zk + eqk) − eqk]

=
n
∑

k=1

TikIk (4.8)

where

Ik ≡ σ(zk + eqk) − eqk.

The reason for the validity of (4.8) is as follows. Denoting these two opposite equi-

librium states as S1 and S−1: the index set of all neurons with the normalized equilibrium

states equal to 1 is S1 and the index set of all neurons with the normalized equilibrium

states equal to −1 is S−1, then
n
∑

k=1

Tik [σ(zk + eqk) − eqk]

=
∑

k∈S1

Tik [σ(zk + 1) − 1] +
∑

k∈S−1

Tik [σ(zk − 1) + 1]

=
∑

k∈S1

Tikσ(zk + 1) −
∑

k∈S1

Tik

+
∑

k∈S−1

Tikσ(zk − 1) +
∑

k∈S−1

Tik. (4.9)

If the equilibrium state in the ith neuron is 1, then

Tik > 0, for k ∈ S1 (positivelycorrelative)

Tik < 0, for k ∈ S−1 (negativelycorrelative)
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and from (3.10), we have
∑

k∈S1

−Tik +
∑

k∈S−1

Tik = −1,

so (4.9) is expressed as

n
∑

k=1

Tik [σ(zk + eqk) − eqk]

=
∑

k∈S1

Tikσ(zk + 1) +
∑

k∈S−1

Tikσ(zk − 1) − 1

which is (4.5).

If the equilibrium state in the ith neuron is −1, then

Tik < 0, for k ∈ S1 (positively correlative)

Tik > 0, for k ∈ S−1 (negatively correlative)

and from (3.10), we have
∑

k∈S1

−Tik +
∑

k∈S−1

Tik = 1,

so (4.9) is expressed as

n
∑

k=1

Tik [σ(zk + eqk) − eqk]

=
∑

k∈S1

Tikσ(zk + 1) +
∑

k∈S−1

Tikσ(zk − 1) + 1

which is (4.5).

Therefore, (4.8) is proved. From (4.8) and equations of (4.6) and (4.7), we have

gi(z) =
n
∑

k=1

TikIk, with lim
zk→0

|Ik|
|zk|

= 0 for k = 1, . . . , n. (4.10)

This implies that for any ε (0 < ε < 1), there exists an rk, such that

|Ik| < ε|zk| for |zk| < rk, k = 1, ..., n.

In fact rk can be found from Figure 4.2 and Figure 4.3 given the ε value. Let

r = min (r1, r2, ..., rn) (4.11)
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then

if |zk| < r ⇒ |Ik| < ε|zk| for k = 1, ..., n.

Or,

if ‖z‖ < r ⇒ |zk| < r ⇒ |Ik| < ε|zk| for k = 1, ..., n.

From (3.10), we can see that
n
∑

k=1

|Tikzk| ≤
√

|z1|2 + |z2|2 + . . . + |zn|2 = ‖z‖. (4.12)

From (4.10), (4.11) and (4.12) and let

I∗i ≡
n
∑

k=1

|TikIk|,

the upper bound of the norm of g(z) can be found as

‖g(z)‖ =
√

g1(z)2 + · · · + gn(z)2

≤
√

(I∗1 )2 + · · · + (I∗n )2

=

√

√

√

√(
n
∑

k=1

|T1kIk|)2 + · · · + (
n
∑

k=1

|TnkIk|)2

<

√

√

√

√(
n
∑

k=1

|T1kεzk|)2 + · · · + (
n
∑

k=1

|Tnkεzk|)2

=

√

√

√

√ε2(
n
∑

k=1

|T1kzk|)2 + · · · + ε2(
n
∑

k=1

|Tnkzk|)2

≤
√

ε2‖z‖2n = ε
√
n‖z‖ = γ‖z‖ for ‖z‖ < r (4.13)

where γ ≡ ε
√
n. Using (4.13), we have

V̇ (z) ≤ −‖z‖2 + ‖z‖‖g(z)‖

≤ (ε
√
n − 1)‖z‖2 = (γ − 1)‖z‖2 for ‖z‖ < r.

If γ < 1, then V̇ (z) < 0, which yields an asymptotic stable ARMCNN defined in (4.4).

Since

γ ≡ ε
√
n,
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we have

0 < γ = ε
√
n < 1⇒ ε <

1
√
n
. (4.14)

Therefore, by choosing a proper ε from the above (4.14), we can find r from (4.11) such

that

‖z‖ < r ⇒ V̇ (z) ≤ (γ − 1)‖z‖2

‖z‖ < r, ‖z‖ 6= 0⇒ V̇ (z) < 0

‖z‖ = 0⇒ V̇ (z) = 0

Finally, apply the Lyapunov local asymptotic theorem in Section 4.3.1, we have

V (z) = zTPz = 0.5‖z‖2 < 0.5r2 ⇒ ‖z‖ < r ⇒ V̇ (z) < 0, V̇ (0) = 0 (4.15)

that is, ‖z‖ < r is the conservative DOA.

The above derivation is applicable to any activation function satisfying (4.6) and (4.7)

that includes the PWL function of gain greater than unity, as Theorem 1 shows. Further-

more, only the unity sum of the absolute values of the ratio weights is required. The ratio

weights can vary a lot as long as the signs of the corresponding ratio weights in the above

proof are kept. Therefore, the ARMCNN can converge to the correct equilibrium states

even when there are deviations in the ratio weights due to different VLSI processes.

4.5 Examples

Example 1. Ratio weight variations do not change the equilibrium points. For the 1-D 3N

system in (4.16) of Figure 4.4 under Ri = 1, Ci = 1, Isat = 1, i = 1, 2, 3, we have

ẋ1 = − x1 + σ(x2)

ẋ2 = − x2 + 0.5σ(x1) − 0.5σ(x3)

ẋ3 = − x3 − σ(x2) (4.16)

where the activaion function σ(·) satisfies (4.6) and (4.7). Hence, σ(1) = 1, σ(−1) = −1.

The thick bond in Figure 4.4 is due to a negatively correlative input image at the two
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x1 x2 x3

Figure 4.4: A 1-D three-neuron (3N) subsystem with two binary equilibrium
points of black-black-white and white-white-black, or (x1(∞), x2(∞), x3(∞)) =
±(IsatR, IsatR,−IsatR).

connected neurons and the thin bond is due to a positively correlative input image at the

two connected neurons.

(1, 1,−1) is an equilibrium point as can be verified by substituting (1, 1,−1) into

(4.16). If the process variation perturbs the system into

ẋ1 = −x1 + σ(x2)

ẋ2 = −x2 + 0.7σ(x1) − 0.3σ(x3)

ẋ3 = −x3 − σ(x2), (4.17)

then after substitution of the original equilibrium point of (1, 1,−1) into the right hand

side of (4.17), we have

−1 + 1 = 0

−1 + 0.7 − 0.3(−1) = 0

−(−1) − 1 = 0.

Therefore (1, 1,−1) is still an equilibrium point.

Example 2. Finding a DOA for a three-neuron system in Figure 4.4. The new state

variable zi with respect to the normalized equilibrium point (1, 1,−1) is defined as

z1 =x1 − 1

z2 =x2 − 1

z3 =x3 + 1.

After this transformation from x to z, the new system exhibits equilibrium at the origin

and is described as

ż = −z + g(z) (4.18)
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z1

z1

1

1

0.42

0.420.79

σ( +1)

1

Figure 4.5: The shifted sinusoidal activation function of σ(z1 + 1). The sinusoidal activa-
tion function is defined in (4.19).

where

g(z) = [g1(z) g2(z) g3(z)]T

g1(z) = σ(z2 + 1) − 1 = I2

g2(z) = 0.5σ(z1 + 1) − 0.5σ(z3 − 1) − 1

= 0.5 (σ(z1 + 1) − 1) − 0.5(σ(z3 − 1) + 1)

= 0.5I1 − 0.5I3

g3(z) = −(σ(z2 + 1) − 1) = −I2.

Assume that the activation function is the sinusoidal type defined as

σ(zi) = sin(
π

2
zi) if |zi| ≤ 1

σ(zi) = 1 if zi ≥ 1

σ(zi) = −1 if zi ≤ −1. (4.19)

Also assume that each neuron has the same activation function of (4.19). Figure 4.5

shows the shifted sinusoidal activation function of σ(z1+1). (4.19) satisfies the activation

function requirement in (4.6) and (4.7). To show this, consider first 0 < z1 < 1. It follows
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that,

⇒z1 + 1 > 1

⇒σ(z1 + 1) = 1

⇒|σ(z1 + 1) − 1| = |I1| = 0 ≤ |z1| (4.20)

⇒ lim
z1→0+

|σ(z1 + 1) − 1|
|z1|

= lim
z1→0+

0
|z1|

= 0. (4.21)

Next consider −1 < z1 ≤ 0. It follows that,

⇒σ(z1) = sin(
π

2
z1)and0 <

z1 + 1
2

≤
1
2

⇒0 < σ(z1 + 1) = sin(π
z1 + 1

2
) ≤ 1.

The sinc function of sinc(z) ≡ sinπz
πz

is monotonically decreasing from z = 0 to z = 1

[49]. So we have the following,

⇒sinc(
1
2

) ≤
sin(π z1+1

2 )

π z1+1
2

= sinc(
z1 + 1

2
) < sinc(0)

⇒
2
π
≤

sin(π z1+1
2 )

π z1+1
2

< 1

⇒z1 + 1 ≤ sin(π
z1 + 1

2
) = σ(z1 + 1)

⇒z1 ≤ σ(z1 + 1) − 1 = I1

⇒|z1| = −z1 ≥ 1 − σ(z1 + 1) = |σ(z1 + 1) − 1| ≥ 0 (4.22)

Hence the limit as z1 approaches from 0− is

lim
z1→0−

|σ(z1 + 1) − 1|
|z1|

= lim
z1→0−

1 − σ(z1 + 1)
−z1

= lim
z1→0−

1 − sin(π z1+1
2 )

−z1
=
−(π/2) cos(π z1+1

2 )

−1
|z1=0 = 0. (4.23)

(4.23) is from L’Hospital’s rule. From (4.20), (4.21), (4.22) and (4.23), we have shown

that (4.19) satisfies the activation function requirement in (4.6). In a similar way, (4.19)

can be shown to satisfy (4.7).

From Theorem 2, the finding of the conservative DOA is to find the r such that

if |zk| < r ⇒ |Ik| < ε|zk| for k = 1, 2, 3 (4.24)
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where

ε < 1/
√

3 = 0.577

for a three-neuron system. Because of the odd symmetry property of (4.19), it suffices to

use z1 and I1 to find the r. Figure 4.5 illustrates this process in finding the r such that if

|z1| < r, then |I1| ≤ 0.5|z1| < 0.577|z1|, which can be solved iteratively in the following:

1. Try r = 0.5, we have

sin(
π

2
(−0.5 + 1)) = 0.707, z1 = −0.5

|I1/z1| = (1 − 0.707)/(0.5) = 0.586 > 0.5.

2. Then select r = 0.45, we have

sin(
π

2
(−0.45 + 1)) = 0.76, z1 = −0.45

|I1/z1| = (1 − 0.76)/(0.45) = 0.53 > 0.5.

3. Finally, the following converged solution is

sin(
π

2
(−0.42 + 1)) = 0.79, z1 = −0.42

|I1/z1| = (1 − 0.79)/(0.42) = 0.5.

(4.19) has the property that
∣

∣

∣

∣

I1

z1

∣

∣

∣

∣

z1=z1a

<

∣

∣

∣

∣

I1

z1

∣

∣

∣

∣

z1=z1b

, for − 1 < z1b < z1a < 0,

or
d

dz1

∣

∣

∣

∣

I1

z1

∣

∣

∣

∣

=
d

dz1

(

sin(π z1+1
2 ) − 1

z1

)

< 0, for − 1 < z1 < 0.

So it follows that ‖z‖ < r = 0.42 is a conservative DOA for this three-neuron system.

The trajectories at three different initial points are shown in Figure 4.6. These three

initial points x(0) are (0, 1, 0), (0.5, 0,−1), (1.2, 0.9,−1.5). The projection onto the plane

x3 = −1 is also shown. Clearly, these three points converge to the equilibrium point of

(1, 1,−1), even these three initial points have the initial norm ‖z(0)‖ > 0.42. This implies

that ‖z‖ < r = 0.42 is a conservative DOA for this three-neuron system.
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Figure 4.6: The trajectories in thick lines at three different initial states converge to the
(1, 1,−1). The projection onto the plane x3 = −1 is shown in the thin dotted lines.

Figure 4.7 shows that the simulated norm of the trajectory ‖z(t)‖ satisfies

‖z(t)‖ ≤ e−0.2t‖z(0)‖,

where

‖z(t)‖ =
√

z2
1 + z

2
2 + z

2
3 =
√

(x1 − 1)2 + (x1 − 1)2 + (x1 + 1)2.
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Figure 4.7: The normalized trajectories ‖z(t)‖
‖z(0)‖ at three different initial points converge

faster than e−0.2t towards the (0, 0, 0). e−0.2t is plotted in the solid line.



Chapter 5

Numerical Stability Analysis

5.1 Introduction

In recent years, there has been an increasing concern to the choice of integration methods

and time steps for the discrete time CNN application and the simulation [50, 51, 52]. To

efficiently solve CNNs consisted of coupled nonlinear equations, several one-step numer-

ical integration methods are available. Among them, the Runge-Kutta method is noted for

its higher accuracy compared to the Forward Euler (FE) method because several weighted

derivatives are used in the RK method [53]. On the other hand, the Forward Euler method,

using single derivative, has a higher computation speed than the Runge-Kutta method.

Hence, in a large CNN array emulation such as the emulation of a multi-layer retina

model in [54, 55], the FE method is usually adopted. However, choosing an optimum

time step for the FE method is usually difficult because trade-off exists among the time

step, accuracy, and stability [17, 56]. A large time step enhances the computation speed.

However, the FE method becomes unstable as a threshold time step is exceeded. There-

fore, the time step is chosen as large as possible under the constraints of the accuracy

and the numerical stability. Press, Teukolsky, Vetterling, and Flannery even considered

obtaining a stable and efficient finite difference method is “an art as much as a science”

[57].

Hanggi (2001) provided in-depth analysis for the important locally regular (LR) CNN,

showing the optimum FE time step exists for the LR CNN [17]. In addition, the correct

45
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equilibrium state is not changed using the optimum FE time step. This raises an interesting

question as to whether other binary CNNs such as ARMCNN have this property or not.

If not, what is the maximum FE time step to avoid numerical instability?

This chapter aims at deriving a maximum time step for the ARMCNN simulated via

the forward Euler method without inducing the numerical instability problem. To do

this, this chapter associated ARMCNNs with the heat diffusion equation and used the

eigenspace decomposition for the ARMCNN initial states. From the eigenspace decom-

position, an analytic neuron gain is derived to lower the amount of spurious memory

points. Further, because only binary equilibrium point is concerned instead of the com-

plete transient trajectory, this chapter focuses on deriving a sufficient condition such that

the FE simulated ARMCNNs (FE-ARMCNN) have the same binary equilibrium point as

the continuous time ARMCNN (CT-ARMCNN).

5.2 Diffusion Model

The ARMCNN diffusion model is easily understood through a one-dimensional (1-D)

network. Consider a one-dimensional ARMCNN having P = 5 neuron states xi, i =

0, 1, . . . , P − 1. Figure 5.1 shows the circuit implementation. Neuron states x1, x2, x3

are interior neurons, each with two neighboring neurons. However, x0 is only connected

to x1, and x4 is only connected to x3. To approximate a 1-D heat diffusion on a finite

interval using ARMCNN, boundary conditions are required for x0 and x4 [58]. Hence,

we rewrite the 1-D ARMCNN dynamic equation into a diffusion form to obtain the the

boundary conditions for x0 and x4.

Assume neuron states x0, x1, x2, x3, x4 are in the linear region. The numering for the

state xi goes from 0 to P − 1, P = 5. From the definition in (3.9) and (3.7), the set of
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Figure 5.1: A circuit implementation for a 1-D 5N ARMCNN. For each synapse connec-
tion, two voltage to current converters (V/I) and two current mirrors are required.

dynamic equations is rewritten as

τẋ0 = −x0 + gx1 = −x0 + 0.5gx1 + 0.5gx−1, x−1 = x1

= 0.5g(x−1 + x1 − 2x0) + x0(g − 1)

τẋ1 = −x1 + 0.5gx0 + 0.5gx2

= 0.5g(x0 + x2 − 2x1) + x1(g − 1)

τẋ2 = −x2 + 0.5gx1 + 0.5gx3

= 0.5g(x1 + x3 − 2x2) + x2(g − 1)

τẋ3 = −x3 + 0.5gx2 + 0.5gx4

= 0.5g(x2 + x4 − 2x3) + x3(g − 1)

τẋ4 = −x4 + gx3 = −x4 + 0.5gx3 + 0.5gx5, x5 = x3(xP = xP−2)

= 0.5g(x3 + x5 − 2x4) + x4(g − 1) (5.1)

where τ = RC. x−1 has the symmetry at the j = 0 in that x−1 = x1, while x5 has the

symmetry at the j = 4 in that x5 = x3. The voltage at x−1 is required to be equal to the

voltage at x1, and the voltage at x5 is required to be equal to the voltage at x3. The symme-

try property is consistent with the boundary condition assignment of the Discrete Cosine

Transform type 1 (DCT-1) [59]. Figure 5.2 illustrates the diffusion circuit representing

(5.1) [58]. The connecting resistor between xi and xi+1 (i = −1, . . . , 4) has a conduction

value of 0.5g/R. Each state (x0, . . . , x4) also connects to ground through a conduction

value of (1 − g)/R. Voltage controlled voltage sources (VCVS) are at the two ends with

x−1 = x1, x5 = x3.
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Figure 5.2: An equivalent diffusion circuit for (5.1).

To create finite difference equations for (5.1), we use a forward Euler (FE) difference

with step ∆t:

xj,n − xj,n−1

∆t
= (

1
h2

)(xj−1,n−1 + xj+1,n−1 − 2xj,n−1) +
g − 1
τ

xj,n−1, j = 0, 1, 2, 3, 4

xj,n =
0.5g∆t
τ

(xj−1,n−1 + xj+1,n−1) + xj,n−1(1 −
∆t

τ
) (5.2)

where xj,n is a discrete approximation of xj(n∆t) and

x−1 = x1, x5 = x3 (5.3)

1
h2

=
0.5g
τ
.

The first index j = 0 involves x−1, and the last index j = 4 involves x5. The initial

conditon is

xj,0 = xj(0).

The equation set of (5.2) corresponds to a numerical approximation of a modified heating

rod equation

∂x

∂t
=
∂2x

∂z2
+
g − 1
τ

x (5.4)

where x(z, t) is the state at location z and time t and xj,n is the discrete approximation of

x(jh, n∆t) on the space-time grid with ∆z = xj,n − xj−1,n = h. From (5.3), the two ends

are the Neumann type boundary condition. Physically, this means no heat flows in or out

at the boundary.

(5.2) also implies that if at t = (n− 1)∆t all states are positive (negative) and the time

step ∆t
τ

is less than unity, then all states remain to be positive (negative) at the next time

step of t = n∆t.
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5.2.1 Exact Solution of the Diffusion Model

To obtain the exact solution of this 1-D 5N ARMCNN in Figure 5.2, express (5.1) in

matrix notation as

τẋ = Ax, ẋ =
1
τ
Ax

where the state vector x, the A matrix and the ẋ are

x =



















x0

x1

x2

x3

x4



















, A =



















−1 g 0 0 0

0.5g −1 0.5g 0 0

0 0.5g −1 0.5g 0

0 0 0.5g −1 0.5g

0 0 0 g −1



















, ẋ =



















ẋ0

ẋ1

ẋ2

ẋ3

ẋ4



















(5.5)

and the initial condition is given as

x(0) =



















x0(0)

x1(0)

x2(0)

x3(0)

x4(0)



















.

ẋ0 and ẋ4 are determined by the boundary rows (rows 0 and P − 1) of the A matrix. The

interior rows (rows 1, . . . , P − 2) of the A matrix in (5.5) have the nonzero entries of

0.5g,−1, 0.5g. The jth component of Ax is 0.5gxj−1 − xj + 0.5gxj+1 for j = 1, . . . , P −

2. From Appendix B, A is diagonalizable, and r0, . . . , r4 is a linearly independent set

of eigenvectors of A satisfying Ark = λkrk, k = 0, . . . , 4 with λ0 ≥ λ1 ≥ · · · ≥ λ4.

Therefore, we can write the diagonalization of A as

AR = RΛ, A = RΛR−1, Λ = R−1AR, Λ = diag(λ0, . . . , λ4), R−1 =









wT0
...

wT4









,

where the eigenvectors are put into the columns of R as

R = [r0 · · · r4].
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To simplify the cross coupled complexity in the differential equations of (5.1), let x̃ =

R−1x [60],

x̃ =









x̃0
...

x̃4









= R−1x =









wT0
...

wT4









x.

Hence,

x̃k = wTk x, k = 0, . . . , 4

˙̃x = R−1ẋ = R−1(
1
τ
Ax) = R−1 1

τ
ARR−1x =

1
τ
Λ(R−1x) =

1
τ
Λx̃. (5.6)

The kth component of ˙̃x in (5.6) is

˙̃xk =
1
τ
λkx̃k, x̃k(0) = wTk x(0) (5.7)

and the exact solution for (5.7) is

x̃k = e
λk
τ twTk x(0). (5.8)

Transform back to the x variable using x = Rx̃ to obtain the exact trajectory solution as

x = [r0 · · · r4]x̃ = [r0 · · · r4]









x̃0
...

x̃4









= x̃0r0 + · · · + x̃4r4

=
4
∑

k=0

(

eλk
t
τwTk x(0)

)

rk. (5.9)

We summarize three steps to obtain the exact trajectory:

• Expand x(0) = Ra = a0r0 + a1r1 + · · · + aP−1rP−1, where

a =



















a0

a1

a2
...

aP−1



















= R−1x(0) =









wT0
...

wT4









x(0), ak = wTk x(0), k = 0, · · · , P − 1.



5.2. DIFFUSION MODEL 51

• Multiply each ak by eλk
t
τ .

• Recombine x =
∑4

k=0

(

eλk
t
τwTk x(0)

)

rk.

5.2.2 Computational Method

The dynamic behavior can be analyzed from the exact solution in (5.9). To compute

the trajectory, we begin with equal time steps ∆t and consider the forward Euler’s (FE)

method due to its high computational speed and simplicity. Apply the FE method to (5.7),

we obtain

x̃k,1 = x̃k,0 +
λk
τ
∆tx̃k,0 = (1 +

λk
τ
∆t)x̃k,0

x̃k,n = (1 +
λk
τ
∆t)nx̃k,0 = (1 +

λk
τ
∆t)nwTk x(0) (5.10)

where x̃k,n is the discrete approximation of x̃k(n∆t).

Using (5.10) and x = Rx̃, the FE discrete trajectory is

4
∑

k=0

(1 +
λk
τ
∆t)t/∆t

(

wTk x(0)
)

rk, t = n∆t (5.11)

This discrete trajectory of (5.11) is consistent with the exact solution in (5.9) in that:

(1 +
λk
τ
∆t)t/∆t approaches e

λk
τ t as ∆t→ 0. (5.12)

Numerical instability for (5.11) occurs if

1 +
λk
τ
∆t < −1. (5.13)

The above convergence requirement in (5.12) and (5.13) have been proved in [61, 62].

The jth state of (5.11) at time n∆t, xj,n, is a discrete approximation of xj(n∆t). By

defining

G(
∆t

τ
, k) = 1 +

λk
τ
∆t, (5.14)
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xj,n can be written from (5.11) as

xj,n =
4
∑

k=0

(1 +
∆t

τ
λk)n

(

wTk x(0)
)

rk,j, n =
t

∆t
, j = 0, . . . , 4

=
4
∑

k=0

G(
∆t

τ
, k)nakrk,j

= G(
∆t

τ
, 0)n

(

wT0 x(0)
)

+
4
∑

k=1

G(
∆t

τ
, k)n

(

wTk x(0)
)

rk,j (5.15)

where the jth component of the kth eigenvector rk is rk,j and r0,j = 1 for j = 0, 1, . . . , 4.

Appendix B shows the derivation of the eigenvalues λk and the eigenvectors rk. The DC

amplitude for all xj, j = 0, . . . , P − 1 at t = n∆t is defined as
∣

∣

∣

∣

G(
∆t

τ
, 0)n

(

wT0 x(0)
)

∣

∣

∣

∣

, (5.16)

and the AC amplitude at xj,n is defined as
∣

∣

∣

∣

∣

4
∑

k=1

G(
∆t

τ
, k)n

(

wTk x(0)
)

rk,j

∣

∣

∣

∣

∣

.

(5.11) has a physical meaning: the input initial state vector is represented as a combi-

nation of various eigenvector rk. Each eigenvector rk has a corresponding coefficient

akG(∆t
τ
, k)n. The akG(∆t

τ
, k)n grows by a growth factor G(∆t

τ
, k) at each time step. In the

following sections, we derive the maximum time step to avoid the numerical instability

through this decomposition. Furthermore, by enhancing the low frequency part of the in-

put initial state vecor, we obtain the neuron gain range to decrease the amount of spurious

equilibrium points.

5.2.3 Maximum Time Step

Consider the eigenspace decomposition of initial states xj,0 in (5.15)

n = 0, xj,0 = xj(0) =
P−1
∑

k=0

akrk,j =
(

wT0 x(0)
)

+
4
∑

k=1

(

wTk x(0)
)

rk,j. (5.17)

rk are from the eigenvectors of the A matrix in (5.5). At each time step, the coefficient

ak grows by a growth facotr G(∆t
τ
, k) = 1 + ∆t

τ
λk from (5.15). Hence, it is essential to
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obtain the eigenvalues and eigenvectors of the Amatrix in (5.5). Figure 5.3 illustrates the

decomposition where r0 is the zero frequency all-ones DC eigenvector and from (5.16),

the DC amplitude of (5.17) is

|a0 = wT0 x(0)|. (5.18)

Figure 5.3 also illustrates the AC amplitude at x1.

The eigenvalues of the A matrix in (5.5) are derived in Appendix B as

λk = g cos(
kπ

P − 1
) − 1, k = 0, . . . , P − 1

λ0 = g − 1 > λ1 > λ2 > λP−1 = −g − 1 (5.19)

and the jth component of the kth eigenvector rk is

rk,j = cos(j
kπ

P − 1
) = cos(jθk), j = 0, . . . , P − 1, k = 0, . . . , P − 1. (5.20)

Hence (5.17) can be expressed as

x(0) =



















x0(0)

x1(0)

x2(0)
...

xP−1(0)



















= Ra =
[

r0 r1 r2 · · · rP−1

]



















a0

a1

a2
...

aP−1



















=



















1 1 1 · · · 1

1 cos θ cos 2θ · · · cos((P − 1)θ)

1 cos 2θ cos 4θ · · · cos(2(P − 1)θ)
...

...
...

...

1 cos(P − 1)θ cos 2(P − 1)θ · · · cos((P − 1)2θ)





































a0

a1

a2
...

aP−1



















(5.21)

where

θ =
π

P − 1
, a = R−1x(0) =



















wT0

wT1

wT2
...

wTP−1



















x(0).
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Figure 5.3: Decompostion of the initial state vector. Each rk is multiplied by a corre-
sponding coefficient ak.
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Figure 5.4: Eigenvectors rk fall on the continuous cosine functions. As k increases, the
corresponding eigenvector sequence (j = 0, . . . , P − 1) oscillates more rapidly.

The kth column of R, rk, is the kth eigenvector of A matrix in (5.5). (5.21) is the matrix

representation of the type 1 discrete cosine transform (DCT-1). Efficient computation

algorithms and the analytic inverse matrix forR exist for DCT-1 [63]. Notice that r0 gives

the zero frequency all-ones DC eigenvector. The rk (k = 0, . . . , P − 1) are illustrated in

Figure 5.4. Because |rk,j| ≤ 1, the maximum AC amplitude of (5.17) is bounded above

as:

Max AC amplitude ≤
P−1
∑

k=1

|ak| =
P−1
∑

k=1

∣

∣wTk x(0)
∣

∣ . (5.22)

Because each frequency component of the initial state vector is amplified by the

growth factor as in (5.15), it is essential to analyze the growth factor. From (5.14) and

(5.19), the growth factor is

G(
∆t

τ
, k) = 1 +

∆t

τ
λk = 1 +

∆t

τ

(

g cos(
kπ

P − 1
) − 1

)

(5.23)

with

G(
∆t

τ
, 0) > G(

∆t

τ
, 1) > · · · > G(

∆t

τ
, P − 1). (5.24)

From (5.12) and (5.13), numerical instability occurs if G(∆t
τ
, k) < −1. So we require
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G(∆t
τ
, P − 1) > −1, or

G(
∆t

τ
, P − 1) = 1 − (g + 1)

∆t

τ
> −1 (5.25)

⇒
∆t

τ
<

2
g + 1

. (5.26)

This sets the upper bound of the FE time step to avoid numerical instability.

5.2.4 Single Mode Operation

The binary ouput is only dominated by the zeroth term, k = 0, in (5.11) if we filter

out high-frequency components (k = 1, 2, . . . , P − 1) and enhance the zero frequency

component (k=0). To achieve this goal, we notice from (5.23) that

G(
∆t

τ
, 0) = 1 +

∆t

τ
(g − 1) > 1

and require that

−1 < G(
∆t

τ
, k) = 1 +

∆t

τ

(

g cos(
kπ

P − 1
) − 1

)

< 1, for k = 1, 2, . . . , P − 1.

We already have from (5.26) that if

∆t

τ
<

2
g + 1

,

then

−1 < 1 +
∆t

τ

(

g cos(
kπ

P − 1
) − 1

)

, k = P − 1.

From (5.24), we only need to choose g such that

1 +
∆t

τ

(

g cos(
kπ

P − 1
) − 1

)

< 1, k = 1

which implies

g cos(
π

P − 1
) − 1 < 0, or 1 < g <

1
cos( π

P−1 )
, P ≥ 4.

Note if P = 2, 3, then for all g > 1, g cos( π
P−1 ) − 1 < 0.
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Consequently, we have shown that if

1 < g < gth =
1

cos( π
P−1 )

, for P ≥ 4

g > 1 for P = 2, 3 (5.27)

and

∆t

τ
<

2
g + 1

(5.28)

then no numerical instability occurs and only the DC term G(∆t
τ
, 0)nwT0 x(0)r0 in (5.15)

grows because G(∆t
τ
, 0) > 1 and |G(∆t

τ
, k)| < 1, k = 1, . . . , P − 1. Appendix C derives

wT0 as:

wT0 = [
1
8

1
4

1
4

1
4

1
8

].

Therefore, the coefficient wT0 x(0) = a0 is

wT0 x(0) = a0 =
1
8

(x0(0) + 2x1(0) + 2x2(0) + 2x3(0) + x4(0)) .

Hence, one possible condition to generate spurious equlibrium points is

wT0 x(0) = a0 = x0(0) + 2x1(0) + 2x2(0) + 2x3(0) + x4(0) = 0. (5.29)

However, in a practical circuit implementation, any thermal noise perturbs (5.29). Equa-

tion (5.29) can only hold in a noiseless case. Therefore, the growth factor G(∆t
τ
, 0) ampli-

fies the low frequency part of the initial states if both (5.27) and (5.28) hold.

5.2.5 One End Neuron Enters the Saturation Region

If one end neuron enters the sarutation region, say x4 in (5.1), then we consider four (N =

4) neurons, x0, x1, x2, x3. The numbering for the state xi goes from 0 to N − 1, N = 4.
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x0 x1 x2 x3x−1

x1x−1

1−g
R

C 1−g
R

C 1−g
R

C 1−g
R

C

0.5g
R

0.5g
R

0.5g
R

0.5g
R

0.5g
R

VCVS

=

IsatR
g

Figure 5.5: An equivalent diffusion circuit for (5.30)

The set of dynamic equations is expressed as

τẋ0 = −x0 + gx1 = −x0 + 0.5gx1 + 0.5gx−1, x−1 = x1

= 0.5g(x−1 + x1 − 2x0) + x0(g − 1)

τẋ1 = −x1 + 0.5gx0 + 0.5gx2

= 0.5g(x0 + x2 − 2x1) + x1(g − 1)

τẋ2 = −x2 + 0.5gx1 + 0.5gx3

= 0.5g(x1 + x3 − 2x2) + x2(g − 1)

τẋ3 = −x3 + 0.5gx2 + 0.5IsatR

= 0.5g(x2 +
IsatR

g
− 2x3) + x3(g − 1). (5.30)

where τ = RC. Figure 5.5 illustrates the diffusion circuit representing (5.30). The

connecting resistor between xi and xi+1 (i = −1, . . . , 2) has a conduction value of 0.5g/R.

Each state (x0, . . . , x3) also connects to ground through a conduction value of (1 − g)/R.

The left end boundary is a VCVS with x−1 = x1, while the right end boundary is a fixed

voltage source with a value of IsatR
g

.

Rewrite (5.30) in matrix notation as τẋ = Ax + u, ẋ = 1
τ
Ax + 1

τ
u where

x =















x0

x1

x2

x3















, u =















0

0

0

0.5IsatR















, A =















−1 g 0 0

0.5g −1 0.5g 0

0 0.5g −1 0.5g

0 0 0.5g −1















. (5.31)

The interior rows of the A matrix in (5.31) are the same as the interior rows of the A

matrix in (5.5). Only the boundary rows are different. The jth component of Ax is
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0.5gxj−1 − xj + 0.5gxj+1 for j = 1, . . . ,N − 2. The eigenvalues and eigenvectors of A in

(5.31) are derived in Appendix B as

λk = g cos
(

(k +
1
2

)
π

N

)

− 1, k = 0, . . . ,N − 1

λ0 = g cos
π

2N
− 1 > λ1 > λ2 > λN−1 = g cos(

2N − 1
2N

π) − 1 (5.32)

and the jth component of the kth eigenvector rk is

rk,j = cos
(

j(k +
1
2

)
π

N

)

= cos(jθk), j = 0, . . . ,N − 1, k = 0, . . . ,N − 1.

Therefore, we assume that Ark = λkrk, k = 0, . . . ,N − 1, and have

AR = RΛ, A = RΛR−1, Λ = R−1AR,

where for N = 4,

R = [r0 · · · r3] =















cos 0 cos 0 cos 0 cos 0

cos θ0 cos θ1 cos θ2 cos θ3

cos 2θ0 cos 2θ1 cos 2θ2 cos 2θ3

cos 3θ0 cos 3θ1 cos 3θ2 cos 3θ3















(5.33)

Λ = diag(λ0, . . . , λ3), R−1 =









wT0
...

wT3









, θ0 =
π

2N
, θ1 =

3π
2N

, θ2 =
5π
2N

, θ3 =
7π
2N

.

The inverse matrix of (5.33) is derived in Appendix C. Let

x̃ = R−1x =









wT0
...

wT3









x, x̃ =









x̃0
...

x̃3









,

we have

x̃k = wTk x, k = 0, . . . , 3

˙̃x = R−1ẋ = R−1(
1
τ
Ax +

1
τ
u) = R−1 1

τ
ARR−1x +

1
τ
R−1u =

1
τ
Λx̃ +

1
τ
R−1u.
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The kth component of ˙̃x is

˙̃xk =
1
τ
λkx̃k +

1
τ
wTk u = αx̃k + β, x̃k(0) = wTk x(0), α =

1
τ
λk, β =

1
τ
wTk u (5.34)

and the exact solution for (5.34) is

x̃k = eαt
(

wTk x(0) +
β

α

)

−
β

α
= e

λk
τ t

(

wTk x(0) +
wTk u

λk

)

−
wTk u

λk
. (5.35)

Transform back to the x variable using x = Rx̃ to obtain the exact trajectory solution as

x = [r0 · · · r3]x̃

= x̃0r0 + · · · + x̃3r3

=
3
∑

k=0

[

e
λk
τ t

(

wTk x(0) +
wTk u

λk

)

−
wTk u

λk

]

rk. (5.36)

The normalization condition of Isat = 1, R = 1, C = 1 yields

u =















0

0

0

0.5















, τ = RC = 1, wTk u = 0.5wk,3. (5.37)

So

x(t) =
3
∑

k=0

[

eλkt
(

wTk x(0) +
0.5wk,3
λk

)

−
0.5wk,3
λk

]

rk. (5.38)

The numerical FE method for (5.34) under the above normalization condition yields

x̃k,n = x̃k,0(1 + λk∆t)n +
0.5wk,3
λk

(1 + λk∆t)n −
0.5wk,3
λk

where x̃k,n is the discrete approximation of x̃k(n∆t). Using x = Rx̃, the FE discrete

trajectory is

3
∑

k=0

[

(1 +
λk
τ
∆t)t/∆t

(

wTk x(0) +
0.5wk,3
λk

)

−
0.5wk,3
λk

]

rk,

=
3
∑

k=0

[

G(
∆t

τ
, k)t/∆t

(

wTk x(0) +
0.5wk,3
λk

)

−
0.5wk,3
λk

]

rk, t = n∆t. (5.39)
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From (5.32), the growth factor G(∆t
τ
, k) is

G(
∆t

τ
, k) = 1 +

λk
τ
∆t = 1 +

∆t

τ

[

g cos
(

(k +
1
2

)
π

N

)

− 1
]

, k = 0, . . . ,N − 1

with

G(
∆t

τ
, 0) = 1 +

∆t

τ

[

g cos(
π

2N
) − 1

]

> G(
∆t

τ
, 1) > · · · > G(

∆t

τ
,N − 1).

To avoid numerical instability, require

G(
∆t

τ
,N − 1) = 1 +

∆t

τ

[

g cos(
(2N − 1)π

2N
) − 1

]

> −1.

This sets the constraint on the maximum time step as

∆t

τ
<

2

1 − g cos( (2N−1)π
2N )

, N ≥ 2. (5.40)

Note if ∆t
τ

satisfies (5.28), then (5.40) holds.

The growth factor is largest at k = 0 with the value:

G(
∆t

τ
, 0) = 1 +

∆t

τ

[

g cos(
π

2N
) − 1

]

.

If

1 < g <
1

cos( π
2N )

, for N ≥ 2 (5.41)

then

G(
∆t

τ
, 0) < 1.

Hence, if (5.40) and (5.41) hold, then no numerical instability occurs and the magnitudes

of all growth factors are less than 1,

−1 < G(
∆t

τ
, k) < 1, k = 0, . . . ,N − 1.
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Consequently, the discrete trajectory converges to

3
∑

k=0

(

−
0.5wk,3
λk

)

rk

=

(

−
0.5 cos 3θ0

2

g cos π
2N − 1

)















cos 0

cos θ0

cos 2θ0

cos 3θ0















+

(

−
0.5 cos 3θ1

2

g cos 3π
2N − 1

)















cos 0

cos θ1

cos 2θ1

cos 3θ1















+

(

−
0.5 cos 3θ2

2

g cos 5π
2N − 1

)















cos 0

cos θ2

cos 2θ2

cos 3θ2















+

(

−
0.5 cos 3θ3

2

g cos 7π
2N − 1

)















cos 0

cos θ3

cos 2θ3

cos 3θ3















(5.42)

(5.42) implies the discrete trajectory converges to all ones independent of the initial state

values.

On the other hand, if

1
cos( π

2N )
< g < gth =

1
cos( π

N
)
=

1
cos( 2π

2N )
, N ≥ 3

g >
1

cos( π
2N )

, N = 2 (5.43)

then

G(
∆t

τ
, 0) = 1 +

∆t

τ

[

g cos(
π

2N
) − 1

]

> 1,

G(
∆t

τ
, 1) = 1 +

∆t

τ

[

g cos(
3π
2N

) − 1
]

< 1.

Hence, if (5.40) and (5.43) hold, then no numerical instability occurs and

G(
∆t

τ
, 0) > 1, −1 < G(

∆t

τ
, k) < 1, k = 1, . . . ,N − 1.
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Consequently, for N = 4, the discrete trajectory converges to

G(
∆t

τ
, 0)n

(

wT0 x(0) +
0.5w0,3

λ0

)

r0, n =
t

∆t

= G(
∆t

τ
, 0)n

(

1
4
x0(0) +

cos θ0

2
x1(0) +

cos 2θ0

2
x2(0) +

cos 3θ0

2
x3(0) +

0.5 cos 3θ0
2

λ0

)

r0

= G(
∆t

τ
, 0)n

(

1
4
x0(0) +

cos θ0

2
x1(0) +

cos 2θ0

2
x2(0) +

cos 3θ0

2
x3(0) +

0.5 cos 3θ0
2

g cos π
2N − 1

)

r0,

= G(
∆t

τ
, 0)n

(

0.25x0(0) + 0.46x1(0) + 0.35x2(0) + 0.19x3(0) +
0.5 × 0.19
g cos π

2N − 1

)

r0,

(5.44)

where from Appendix C, the r0 and wT0 are

r0 =















cos 0

cos θ0

cos 2θ0

cos 3θ0















=















1

0.92

0.70

0.38















wT0 = [
1
4

cos θ0

2
cos 2θ0

2
cos 3θ0

2
] = [0.25 0.46 0.35 0.19]

θ0 =
π

2N
=
π

8
.

(5.44) also implies if all initial states are positive, then the discrete trajectory converges

to all ones.

5.2.6 Both End Neurons Enter the Saturation Regions with the Same

Sign

If both end neuron enter the sarutation region, say x0, x4 in (5.1), then we consider the

three (Q = P − 2 = 3) neurons, x1, x2, x3. The numbering for the states xi goes from 1 to
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Q. The set of dynamic equations in this case is expressed as

τẋ1 = −x1 + 0.5IsatR + 0.5gx2

= 0.5g(
IsatR

g
+ x2 − 2x1) + x1(g − 1)

τẋ2 = −x2 + 0.5gx1 + 0.5gx3

= 0.5g(x1 + x3 − 2x2) + x2(g − 1)

τẋ3 = −x3 + 0.5gx2 + 0.5IsatR

= 0.5g(x2 +
IsatR

g
− 2x3) + x3(g − 1). (5.45)

Express (5.45) as τẋ = Ax + u, ẋ = 1
τ
Ax + 1

τ
u where

x =









x1

x2

x3









, u =









0.5IsatR

0

0.5IsatR









, A =









−1 .5g 0

0.5g −1 0.5g

0 0.5g −1









. (5.46)

The eigenvalues and eigenvectors of A in (5.46) are derived in Appendix B as

λk = g cos
(

kπ

Q + 1

)

− 1, k = 1, . . . , Q

λ1 = g cos
π

Q + 1
− 1 > λ2 > λQ = g cos(

Qπ

Q + 1
) − 1 (5.47)

and the jth component of the kth eigenvector rk is

rk,j = sin
(

j
kπ

Q + 1

)

= sin(jθk), j = 1, . . . , Q, k = 1, . . . , Q.

Because A is symmetric, an orthogonal set of eigenvectors is available. Therefore, we

assume that Ark = λkrk, k = 1, . . . , Q, Q = 3, and have

AR = RΛ, A = RΛR−1, Λ = R−1AR,

where for Q = 3

R = [r1 r2 r3] =









sin π
4 sin 2π

4 sin 3π
4

sin 2π
4 sin 4π

4 sin 6π
4

sin 3π
4 sin 6π

4 sin 9π
4









, RTR =
Q + 1

2
I

Λ = diag(λ1, λ2, λ3), R−1 =









wT1

wT2

wT3









=
2

Q + 1
RT =

2
Q + 1

R.
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Using the same approaches as in (5.34), (5.35), (5.36), and the normalization condition

of Isat = 1, R = 1, C = 1, we have

u =









0.5

0

0.5









, τ = RC = 1,

and the FE discrete trajectory is

3
∑

k=1

[

(1 +
λk
τ
∆t)t/∆t

(

wTk x(0) +
0.5wk,1 + 0.5wk,3

λk

)

−
0.5wk,1 + 0.5wk,3

λk

]

rk

=
3
∑

k=1

[

G(
∆t

τ
, k)t/∆t

(

wTk x(0) +
0.5wk,1 + 0.5wk,3

λk

)

−
0.5wk,1 + 0.5wk,3

λk

]

rk. (5.48)

From (5.47), the growth factor G(∆t
τ
, k) is

G(
∆t

τ
, k) = 1 +

λk
τ
∆t = 1 +

∆t

τ

[

g cos
(

k
π

Q + 1

)

− 1
]

, k = 1, . . . , Q

with

G(
∆t

τ
, 1) = 1 +

∆t

τ

[

g cos(
π

Q + 1
) − 1

]

> G(
∆t

τ
, 2) > · · · > G(

∆t

τ
,Q).

To avoid numerical instability, require

G(
∆t

τ
,Q) = 1 +

∆t

τ

[

g cos(
Qπ

Q + 1
) − 1

]

> −1.

This sets the constraint on the maximum time step as

∆t

τ
<

2

1 − g cos( Qπ
Q+1 )

, Q ≥ 2. (5.49)

Note if ∆t
τ

satisfies (5.28), then (5.49) holds.

To analyze the growth factor at k = 1, consider

G(
∆t

τ
, 1) = 1 +

∆t

τ

[

g cos(
π

Q + 1
) − 1

]

.

If

1 < g <
1

cos( π
Q+1 )

, for Q ≥ 2 (5.50)
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then

G(
∆t

τ
, 1) < 1.

Note from (5.27) and N = P − 1, Q = N − 1

gth =
1

cos π
N

=
1

cos π
P−1

=
1

cos π
Q+1

.

Hence, if (5.49) and (5.50) hold, then no numerical instability occurs and the maginitude

of all growth factors are less than 1,

−1 < G(
∆t

τ
, k) < 1, k = 1, . . . , Q.

Consequently, the discrete trajectory converges to

3
∑

k=1

(

−
0.5wk,1 + 0.5wk,3

λk

)

rk

= 0.5
(

−
w1,1 + w1,3

λ1

)

r1 + 0.5
(

−
w2,1 + w2,3

λ2

)

r2 + 0.5
(

−
w3,1 + w3,3

λ3

)

r3

=
−1
Q + 1

(

sin π
4 + sin 3π

4

g cos π
4 − 1

)

r1 +
−1
Q + 1

(

sin 2π
4 + sin 6π

4

g cos 2π
4 − 1

)

r2 +
−1
Q + 1

(

sin 3π
4 + sin 9π

4

g cos 3π
4 − 1

)

r3

=
−1
4

(

sin π
4 + sin 3π

4

g cos π
4 − 1

)









sin π
4

sin 2π
4

sin 3π
4









+
−1
4

(

sin 2π
4 + sin 6π

4

g cos 2π
4 − 1

)









sin 2π
4

sin 4π
4

sin 6π
4






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+
−1
4

(

sin 3π
4 + sin 9π

4

g cos 3π
4 − 1

)


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



sin 3π
4

sin 6π
4

sin 9π
4









(5.51)

(5.51) implies the discrete trajectory converges to all ones independent of the initial state

values.

5.3 ARMCNN Convergence Analysis

Even the time step and the neuron gain are designed using (5.27) and (5.28) such that

the single mode operation (k = 0) holds without numerical instability, the output of

FE-ARMCNN may not be equal to the output of CT-ARMCNN. The purpose of this
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section is to derive a sufficient condition to ensure that the convergent binary output of

FE-ARMCNN is equal to the output of the continuous time ARMCNN (CT-ARMCNN).

Assume all initial states are in the linear regions. From (5.27) and (5.28), we have shown

that if the neuron gain and the normalized time step satisfy

1 < g < gth =
1

cos( π
P−1 )

, for P ≥ 4

g > 1 for P = 2, 3

and
∆t

τ
<

2
g + 1

,

then no numerical instability occurs and the single mode operation holds in that

G(
∆t

τ
, 0) > 1, and |G(

∆t

τ
, k)| < 1, k ≥ 1. (5.52)

Furthermore, if we constrain the initial states such that

∣

∣wT0 x(0)
∣

∣ >

P−1
∑

k=1

∣

∣wTk x(0)
∣

∣ (5.53)

then from (5.52),
∣

∣

∣

∣

G(
∆t

τ
, 0)nwT0 x(0)

∣

∣

∣

∣

>

P−1
∑

k=1

∣

∣

∣

∣

G(
∆t

τ
, k)nwTk x(0)

∣

∣

∣

∣

n ≥ 0. (5.54)

(5.54) implies that the maximum AC amplitude at each jth state is less than the DC

amplitude. The reason is as follows. The discrete trajectory from (5.11) and (5.15) is

P−1
∑

k=0

G(
∆t

τ
, k)t/∆t

(

wTk x(0)
)

rk, t = n∆t (5.55)

with the jth state of the discrete trajectory at t = n∆t as

xj,n =
P−1
∑

k=0

G(
∆t

τ
, k)n

(

wTk x(0)
)

rk,j, j = 0, . . . , P − 1

= G(
∆t

τ
, 0)n

(

wT0 x(0)
)

r0,j +
P−1
∑

k=1

G(
∆t

τ
, k)n

(

wTk x(0)
)

rk,j

= G(
∆t

τ
, 0)n

(

wT0 x(0)
)

+
P−1
∑

k=1

G(
∆t

τ
, k)n

(

wTk x(0)
)

rk,j, |rk,j| ≤ 1, r0,j = 1
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From (5.54), we have

∣

∣

∣

∣

G(
∆t

τ
, 0)nwT0 x(0)

∣

∣

∣

∣

>

P−1
∑

k=1

∣

∣

∣

∣

G(
∆t

τ
, k)nwTk x(0)

∣

∣

∣

∣

>

∣

∣

∣

∣

∣

P−1
∑

k=1

G(
∆t

τ
, k)nwTk x(0)rk,j

∣

∣

∣

∣

∣

.

Therefore, the DC amplitude,
∣

∣

∣

∣

G(
∆t

τ
, 0)n

(

wT0 x(0)
)

∣

∣

∣

∣

is larger than the maximum AC amplitude and

xj,n
(

wT0 x(0)
)

> 0, j = 0, . . . , P − 1

which means xj,n has the same sign as wT0 x(0). As n gets larger, xj,n approaches to

G(
∆t

τ
, 0)n

(

wT0 x(0)
)

.

If a particular xj enters the saturation region, for example, xj′ >
IsatR
g

, then replace xj′

with IsatR
g

for the FE computation of other linear state values in the next time instant as

shown in Section 5.2.5. All states keep the same sign as wT0 x(0). Hence all states grow to

the binary outputs as shown in Section 5.2.5 and Section 5.2.6.

We have thus shown that if (5.27), (5.28), and (5.53) hold, then the FE ARMCNN

has the convergent binary outputs determined by the sign of wT0 x(0) for all time steps

satisfying
∆t

τ
<

2
g + 1

.

In this case, the convergent binary outputs of the FE ARMCNN are the same as the con-

vergent binary outputs of the continuous time ARMCNN.

5.3.1 Simulation Verification

For example, consider the same 1-D 5N ARMCNN, P = 5, with the dynamic equations

of (5.1). Applying (5.27) to filter out high frequency components, the neuron gain range

is:

g < gth =
1

cos π
P−1

= 1.41.



5.3. ARMCNN CONVERGENCE ANALYSIS 69

We choose g = 1.4. To avoid the numerical instability, the maximum time step from

(5.28) is
∆t

τ
<

2
g + 1

=
2

1.4 + 1
= 0.833.

Therefore, we choose the normalized time step ∆t
τ
= 0.83. Based on the designed g = 1.4

and the ∆t
τ
= 0.83, the corresponding growth factors from (5.23) are

G(
∆t

τ
, 0) = 1.33, G(

∆t

τ
, 1) = 0.9917, G(

∆t

τ
, 2) = 0.17

G(
∆t

τ
, 3) = −0.65, G(

∆t

τ
, 4) = −0.9920.

As observed, only G(∆t
τ
, 0) is greater than 1, and −1 < G(∆t

τ
, k) < 1, k = 1, . . . , P − 1.

To check whether (5.53) holds or not, the row vectors of the matrix R−1 are required.

The R−1 with P = 5 is derived in Appendix C as

R−1 =



















0.125 0.25 0.25 0.25 0.125

0.25 0.3536 0 −0.3536 −0.25

0.25 0 −0.5 0 0.25

0.25 −0.3536 0 0.3536 −0.25

0.125 −0.25 0.25 −0.25 0.125



















=



















wT0

wT1

wT2

wT3

wT4



















. (5.56)

For an initial point x(0)

x(0) =



















x0(0)

x1(0)

x2(0)

x3(0)

x4(0)



















=



















0.05

−0.67

0.14

0.31

0.37



















,

we have
∣

∣wT0 x(0)
∣

∣ = 0.0025 <
∣

∣wT1 x(0)
∣

∣ = 0.4265,

which imples (5.53) is not satisfied. Hence, if simulated at a smaller time step, the con-

vergent output with this initial point may change. The time domain simulations of the 1-D

5N FE-ARMCNN at two different time steps ∆t
τ
= 0.83 and ∆t

τ
= 0.02 for the same initial

point are shown in Figure 5.6 and Figure 5.7, respectively. The larger time step generates

all normalized neuron states converged at (1, 1, 1, 1, 1) in Figure 5.6, while the smaller
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Figure 5.6: The initial point is (0.05,−0.67, 0.14, 0.31, 0.37). g = 1.4 and ∆t
τ
= 0.83. The

x-axis variable is t
τ

with t = n∆t, n = 0, 1, 2, . . ..

time step generates all normalized neuron states converged at (−1,−1,−1,−1,−1) in

Figure 5.7.

To illustrate the effect of the time step and the neuron gain to the spurious points

and numerical instability, five thousand Gaussian noisy input patterns are applied to the

1-D ARMCNN in Figure 5.1 at two different neuron gains with one smaller than gth,

g = 1.4 < gth, and the other larger than than gth, g = 2.0 > gth. Each state xi is

IsatR added with IniR where Ini is a Gaussian noise with a standard deviation (STD) of
√

20 × Isat. Hence, the input pattern consists of five states as a state vector and is written

as:

xi(0) = (Isat + Ini) × R, i = 0, . . . , 4 (5.57)

where

if (Isat + Ini) × R > IsatRi then xi(0) = IsatRi

if (Isat + Ini) × R < −IsatRi then xi(0) = −IsatRi.
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Figure 5.7: The initial point is (0.05,−0.67, 0.14, 0.31, 0.37). g = 1.4 and ∆t
τ
= 0.02. The

x-axis variable is t
τ

with t = n∆t, n = 0, 1, 2, . . ..

LetEq1 = (IsatR, IsatR, IsatR, IsatR, IsatR), andEq2 = −(IsatR, IsatR, IsatR, IsatR, IsatR).

Six different sets of initial state vectors are classified in Figure 5.8 as

• set A: these state vectors are closer to Eq1 than Eq2 and converge to point Eq1

• set B: these state vectors are closer to Eq2 than Eq1 and converge to Eq2

• set C: these state vectors are closer to Eq1 than Eq2 and converge to Eq2

• set D: these state vectors are closer to Eq2 than Eq1 and converge to Eq1

• set E: these state vectors cause the numerical instability, and can not converge

• set F: these state vectors converge to non-binary points, or spurious points.

Figure 5.9 shows the number of state vectors in set A,B,C,D as the normalized FE

time step, ∆t
τ

, varies from 0.1 to 2.0 under a fixed neuron gain of 1.4 and a fixed noise

STD of
√

20 × Isat in (5.57). This noise STD of
√

20 × Isat is based on the nor-

malize distance between Eq1 and Eq2. The state vectors in set A,B,C,D converge to
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Figure 5.8: Different sets of initial states are shown. The optimal decision boundary line
is shown in the dotted line.

one of the two binary points, Eq1 or Eq2. Because the mean of the input pattern is

Eq1 = (IsatR, IsatR, IsatR, IsatR, IsatR), Figure 5.9 shows that set A has a larger amount

of points than set B. As ∆t
τ

increases over 0.83, the numbers of state vectors in set A,B,C,D

decreases significantly. This is because the amount of points in set E starts to increase, or

numerical instability kicks in as shown in Figure 5.10. In addition, only a spurious point

(0, 0, 0, 0, 0) was observed from our simulation results. This is consistent with (5.29).

If the neuron gain is 2.0, then the single mode operation is not valid. Figure 5.11 shows

the number of state vectors in set A,B,C,D as the normalized FE time step, ∆t
τ

, varies

under a fixed neuron gain of 2.0 and a fixed noise variance of 20 in (5.57). Compared

with Figure 5.9, the number of points in set A,B,C,D decrease, and more spurious points

were observed. Numerical instability kicks in as the normalized time step increases over
2
g+1 = 2

3 as shown in Figure 5.12.

We summarize key results for 1-D ARMCNN as

• For the matrice in (5.5), eigenvectors are not not dependent on the neuron gain,

whereas eigenvalues depend on the neuron gain. Each eigenvector sequence repres-

nts different frequency component as shown in Figure 5.4. The eigenvector se-

quence of k = 0 is the all-ones DC component.

• Normally, it is hard to compute the eigenvector in (5.5) and obtain the frequency

components. Interestingly, these eigenvectors are exactly the columns of DCT-1

matrix. Fast FFT algorithm can be applied to compute matrix multiplication in
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Figure 5.9: The numbers of initial state vectors in set A,B,C,D are plotted at various time
steps. The neuron gain is 1.4. The simulation time is 200τ.

(5.21).

• To reduce the amount of spurious points, filter out high frequency components of the

initial state vector by making the corresponding growth factor maginitudes smaller

than 1. This low pass filtering is done by (5.27). To avoid numerical instability,

choose ∆t
τ

to satisfy (5.28).

Recognition Rate of a 2-D 9 × 9 ARMCNN

This example performs behavior simulations for 9 × 9 ARMCNNs with PWL activa-

tion functions at different neuron gains. The input patterns to be learned and recognized

are three Chinese characters of ONE, TWO, and FOUR, as Figure 3.1 shows. Figure 3.2

shows the survived ratio weights. One hundred noisy patterns for each Chinese character
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Figure 5.10: The number of state vectors in set E increases as ∆t

τ
is larger than 0.83.
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Figure 5.11: The numbers of initial state vectors in set A,B,C,D are plotted at various time
steps. The neuron gain is 2.0. The simulation time is 200τ.
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Figure 5.12: The number of state vectors in set E increases as ∆t

τ
is larger than 0.66.
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were generated as

xij(0) = (Isat + In,1) × Rij for a black pixel

xij(0) = (−Isat + In,2) × Rij for a white pixel

where Ini is a Gaussian noise and

if (Isat + In,1) × Rij > IsatRij then xij(0) = IsatRij

if (−Isat + In,1) × Rij < −IsatRij then xij(0) = −IsatRij.

The RR of a group of m patterns is the number of successful recognitions divided by

100×m. The output variable y/Isat was compared with the correct one. All the 81 pixels

must be correct to produce a successful recognition. The simulations used the forward

Euler method at different neuron gains with the simulation time of 100τ. Figure 5.13

shows that when the standard deviation of the input noise level is smaller than 0.4 × Isat,

the RR is almost unity. No numerical instability was found using these time steps. In

addition, as the neuron gain increases, more spurious points are generated to deteriorate

the RR. In the optimal case of no spurious points, the RR has a upper bound constrained

by the six 1-D 2N system in Figure 3.2. The six 1-D 2N system has a recognition rate of

RR6
2N [8]. Similar results were also found in SARMCNNs [39].
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Chapter 6

Conclusions and Future Works

6.1 Conclusions

This thesis examines the stability analysis of the ARMCNN via the Lyapunov theorem.

Results show that the ARMCNN can tolerate large ratio weight variations and the ac-

tivation function can vary as long as (4.6) and (4.7) are satisfied. In addition to the

robustness of ARMCNNs, the learning rule is simple and therefore is suitable for analog

VLSI implementation. Further, a conservative DOA can easily be determined from the

stability proof using a simple graphical method. Table 6.1 shows the comparison between

ARMCNNs and other CNNs on associative memory. The signal range ratio (SR ratio) is

defined as x/(IsatR) divided by y/IIsat. As shown in Table 6.1, for ARMCNNs, the gen-

eration of weights is from Hebbian learning. This biology-like Hebbian learning depends

on the correlation between neighboring neurons. If after learning, many isolated neu-

rons are generated, then the RR is dominated by these isolated neurons. For other CNNs,

the generations of weights are from SVD, LMI, GEVM, and pseudoinverse operations.

Integrating these operations into each CNN cell as analog VLSI is more difficult.

The primary problem for ARMCNNs without self-feedback is the occurrence of iso-

lated neurons due to low correlation between neighboring neurons. SARMCNN solves

the problem of isolated neurons by self-feedback. Further, for each subsystem, spurious

memory points may exist besides the two binary equilibrium points. The occurence of

spurious memory points will reduce the RR. To reduce the amount of spurious memory

79
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Table 6.1: Comparison of various CNN works on associative memory.
This work [36, 35] [33, 34] [37]

σ(•) Theorem 1 PWL PWL PWL
DOA Theorem 2 LMI, GEVM - -

Analog VLSI [32] - - -
Synapse Circuit V/Is,current mirrors - - -

SR Ratio ≤ 1 yes no no no
Weight Hebbian learning LMI, GEVM SVD pseudoinverse

points, this thesis suggests to lower the neuron gain so that only low frequency compo-

nents of initial state vectors dominate. An analytical neuron gain range is developed for

1-D ARMCNN.

From the computer simulation and discrete implementation view poins, this thesis

obtains the maximum forward Euler (FE) time step to avoid numerical instability. In

addition, a sufficent condition is found to ensure that the output from the FE method is the

same as the output from the continuous time CNN.

6.2 Recommendations for Future Investigation

This section presents several suggestions for future investigations in circuit design and

computer simulation for ARMCNNs.

• The proposed domain of attraction of ARMCNN ensures that the ARMCNN is sta-

ble. However the DOA is conservative. Future investigation are needed to enlarge

the DOA.

• ARMCNN can only store and recall static patterns. However, the human neocortex

can process sequences of dynamic patterns. Future research should be undertaken

to modify the simple CNN cell to store dynamic patterns.

• For the continuous time current mode CNN, the synapse weight circuit between

neighboring neurons is composed of two V/Is and two current mirrors. The layout

area is still too large for a high density CNN array. It would be interesting to assess

the discrete-time ARMCNN or the FPGA ARMCNN.
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• We expand the initial state vector of 1-D ARMCNN with an analytic form to obtain

the corresponding growth factor. However, for SARMCNNs and 2-D ARMCNNs,

boundary conditions of the corrsponding diffusion models are not known. It is still

difficult to have the analytic eigenvector decomposition for SARMCNNs and 2-D

ARMCNNs.
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Appendix A

Bitmap File format

This thesis assumes an eight-bit grey levels per pixel in the image BMP file format. An

all zero byte (00H) corrsponds to a black pixel, meaning no light at all. An all one byte

(FFH) corresponds to a white pixel. In the CNN state representation in (2.1), x state

value of 1 means a black pixel, whereas x state value of -1 means a white pixel. Therefore

the transforamtion formula between the BMP file format and the read-in CNN state value

is as,

x(0) =
255 − 2Bt

255
(A.1)

whereBt is the read-in byte from the BMP file from 00h to FFh. From this formula, a byte

of 00h (a black pixel) from the BMP transforms to CNN state value of 1. A byte of FFh

(255, a wite pixel) from the BMP transforms to CNN state value of −1. Similarly, a byte

of 7Fh (127) transforms to a CNN state value of 1
255 , and a byte of 7Eh (126) transforms

to a CNN state value of 3
255 . The transformation result is illustrated in Figure A.1.
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128

127

255

0

126

1

Bt

x(0)

black

3/255

1/255

−1white

−1/255

Figure A.1: Transformation between the read-in byte from the BMP file and the CNN
state value. Bt denotes the read-in byte.



Appendix B

Eigenvalues of 1-D ARMCNN

B.1 All Neuros in Linear Regions

It is well known that all the eigenvalues of a symmetric matrix are real. The A matrix in

(5.5) is almost symmetric. To obtain the eigvalues of the A matrix in (5.5), first consider

the interior rows. The coefficients are 0.5g,−1, 0.5g. From the interior components (j =

1, . . . , P − 2) of Ark = λkrk, we have

0.5g cos ((j + 1)θk) − cos(jθk) + 0.5g cos ((j − 1)θk)

= 2 × 0.5g (cos(jθk) cos(θk)) − cos(jθk)

= (g cos(θk) − 1) cos(jθk)

= λk cos(jθk)

where θk = kπ
P−1 , rk,j = cos(jθk).

It remains to show the first (j = 0) and last (j = P − 1) components of Ark = λkrk.
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Using trigonometric identity of cos(α − β) = cos α cos β + sin α sin β, we have

j = 0 : − cos 0 + g cos θk = (g cos(θk) − 1) cos(0θk) = λk cos(0θk) = λkrk,j

j = P − 1 : − cos ((P − 1)θk) + g cos ((P − 2)θk)

= − cos(kπ) + g cos(
(P − 2)kπ
P − 1

)

= − cos(kπ) + g cos(kπ −
kπ

P − 1
)

= − cos(kπ) + g cos(kπ) cos(
kπ

P − 1
)

= (−1 + g cos(
kπ

P − 1
)) cos(kπ)

= (g cos(θk) − 1) cos ((P − 1)θk) = λk cos ((P − 1)θk) = λkrk,j

Therefore, we have obtained the eigenvalues and eigenvectors of the A matrix in (5.5).

The eigenvalues and eigenvectors are shown in (5.19) and (5.20), respectively.

B.2 One End Neuron in Saturation Region

To show the eigenvalues of the A matrix in (5.31), first consider the interior rows. The

coefficients are 0.5g,−1, 0.5g. From the interior components (j = 1, . . . ,N − 2) of

Ark = λkrk, we have

0.5g cos ((j + 1)θk) − cos(jθk) + 0.5g cos ((j − 1)θk)

= 2 × 0.5g (cos(jθk) cos(θk)) − cos(jθk)

= (g cos(θk) − 1) cos(jθk)

= λk cos(jθk)

where θk = (k + 1
2 ) π

N
, Nθk = π(k + 1

2 ).

It remains to show the first (j = 0) and last (j = N − 1) components of Ark = λkrk.

Using trigonometric identity of cos(α − β) = cos α cos β + sin α sin β and cos(Nθk) = 0,
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we have

j = 0 : − cos 0 + g cos θk = (g cos(θk) − 1) cos(0θk) = λk cos(0θk)

j = N − 1 : − cos ((N − 1)θk) + 0.5g cos ((N − 2)θk)

= − cos ((N − 1)θk) + 0.5g(cos(Nθk) cos(2θk) + sin(Nθk) sin(2θk))

= − cos ((N − 1)θk) + 0.5g sin(Nθk) sin(2θk)

= − cos ((N − 1)θk) + g sin(Nθk) sin(θk) cos(θk) (B.1)

On the other hand,

λkrk,N−1 = λk cos ((N − 1)θk)

= (g cos(θk) − 1) cos ((N − 1)θk)

= g cos(θk) cos ((N − 1)θk) − cos ((N − 1)θk)

= g cos(θk)(cos(Nθk) cos(θk) + sin(Nθk) sin(θk)) − cos ((N − 1)θk)

= g cos(θk) sin(Nθk) sin(θk) − cos ((N − 1)θk) (B.2)

(B.1) is equal to (B.2), hence, we have obtained the eigenvalues and eigenvectors of the

A matrix in (5.31). Hnce, the eigenvalues and eigenvectors of A in (5.31) are

λk = g cos
(

(k +
1
2

)
π

N

)

− 1, k = 0, . . . ,N − 1

λ0 = g cos
π

2N
− 1 > λ1 > λ2 > λN−1 = g cos(

2N − 1
2N

π) − 1

and the jth component of the kth eigenvector rk is

rk,j = cos
(

j(k +
1
2

)
π

N

)

= cos(jθk), j = 0, . . . ,N − 1, k = 0, . . . ,N − 1.

B.3 Both End Neurons Enter the Saturation Region

To show the eigvalues of the A matrix in (5.46), first consider the interior rows. The

coefficients are 0.5g,−1, 0.5g. From the interior components (j = 2, . . . , Q−1) of Ark =
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λkrk, we have

0.5g sin ((j − 1)θk) − sin(jθk) + 0.5g sin ((j + 1)θk)

= 2 × 0.5g (sin(jθk) cos(θk)) − sin(jθk)

= (g cos(θk) − 1) sin(jθk)

= λk sin(jθk)

where θk = kπ
Q+1 , (Q + 1)θk = kπ.

It remains to show the first (j = 1) and last (j = Q) components of Ark = λkrk. Using

trigonometric identity of sin(α+ β) = sin α cos β + cos α sin β and sin((Q+ 1)θk) = 0, we

have

j = 1 : − sin θk + 0.5g sin(2θk) = − sin θk + g sin θk cos θk

= (g cos(θk) − 1) sin θk

= λk sin θk = λkrk,j

j = Q : 0.5g sin((Q − 1)θk) − sin(Qθk) = 0.5g(sin(Qθk) cos θk − cos(Qθk) sin θk) − sin(Qθk)

= g(sin(Qθk) cos θk) − sin(Qθk)

= (g cos(θk) − 1) sin(Qθk)

= λk sin(Qθk) = λkrk,j

Hence, the eigenvalues and eigenvectors of A in (5.46) are

λk = g cos
(

kπ

Q + 1

)

− 1, k = 1, . . . , Q

λ1 = g cos
π

Q + 1
− 1 > λ2 > λQ = g cos(

Qπ

Q + 1
) − 1

and the jth component of the kth eigenvector rk is

rk,j = sin
(

j
kπ

Q + 1

)

= sin(jθk), j = 1, . . . , Q, k = 1, . . . , Q.



Appendix C

Discrete cosine transform

C.1 All Neurons in the Linear Regions

Appendix C.1 examines the decomposition of the initial states if all neurons are in the

linear regions. From (5.21), the decomposition of the initial states are as follows.

x(0) =



















x0(0)

x1(0)

x2(0)
...

xP−1(0)



















=



















1 1 1 · · · 1

1 cos θ cos 2θ · · · cos((P − 1)θ)

1 cos 2θ cos 4θ · · · cos(2(P − 1)θ)
...

...
...

...
...

1 cos(P − 1)θ cos 2(P − 1)θ · · · cos((P − 1)2θ)





































a0

a1

a2
...

aP−1



















=
[

r0 r1 r2 · · · rP−1

]



















a0

a1

a2
...

aP−1



















= Ra, a = R−1x(0) =



















wT0

wT1

wT2
...

wTP−1



















x(0), θ =
π

P − 1
.

(C.1)

As already proved in Apendix B.1, the kth column of the matrix R is the kth eigenvector

of the A matrix in (5.5), k = 0, . . . , P − 1. Here, we show how to derive the inverse of the

matrix R based on Strang’s approach [59]. Applying the similarity transformation

Â = D−1
1 AD1,
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with D1 = diag(
√

2, 1, . . . , 1,
√

2), and D−1
1 = diag(1/

√
2, 1, . . . , 1, 1/

√
2), we obtain a

symmetric Â as follows:

Â = D−1
1 AD1

=



















1/
√

2 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1/
√

2





































−1 g 0 0 0

0.5g −1 0.5g 0 0

0 0.5g −1 0.5g 0

0 0 0.5g −1 0.5g

0 0 0 g −1



















D1

=



















−1/
√

2 g/
√

2 0 0 0

0.5g −1 0.5g 0 0

0 0.5g −1 0.5g 0

0 0 0.5g −1 0.5g

0 0 0 g/
√

2 −1/
√

2





































√
2 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0
√

2



















=



















−1 g/
√

2 0 0 0

0.5g
√

2 −1 0.5g 0 0

0 0.5g −1 0.5g 0

0 0 0.5g −1 0.5g
√

2

0 0 0 g/
√

2 −1



















=



















−1 g/
√

2 0 0 0

g/
√

2 −1 0.5g 0 0

0 0.5g −1 0.5g 0

0 0 0.5g −1 g/
√

2

0 0 0 g/
√

2 −1



















.

The eigenvalues of Â are not changed because from Ax = λx, we have

Â(D−1
1 x) = (D−1

1 AD)D−1
1 x = D−1

1 Ax = λD−1
1 x,

meaning that the eigenvalue is λ and the eigenvector is D−1
1 x. Hence, the diagonalization

of Â is

Â = R̂ΛR̂−1
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where

R̂ =
[

r̂0 r̂1 . . . r̂P−1

]

=

























1√
2

1√
2

1√
2

· · · 1√
2

1 cos θ cos 2θ · · · cos((P − 1)θ)

1 cos 2θ cos 4θ · · · cos(2(P − 1)θ)
...

...
...

...
...

1 cos(P − 2)θ cos 2(P − 2)θ · · · cos((P − 2)2θ)
1√
2

cos(P−1)θ√
2

cos 2(P−1)θ√
2

· · · cos((P−1)2θ)√
2

























= D−1
1 R.

The orthogonal eigenvectors of Â do not have equal length. r̂0 and r̂P−1 have length
√
P − 1, while r̂k, k = 1, . . . , P − 2, have length

√

(P − 1)/2. From the orthogonality of

r̂k, we have

DcR̂
T R̂ = Dc(D−1

1 R)T (D−1
1 R) = DcR

T (D−1
1 )TD−1

1 R = I, (C.2)

where the Dc compensate the length of r̂k and is

Dc = diag(
1

P − 1
,

2
P − 1

, . . . ,
2

P − 1
,

1
P − 1

).

Finally, from (C.2) and RT = R, (D−1
1 )T = D−1

1 , we obtain

R−1 =DcR
T (D−1

1 )TD−1
1 = DcRD

−1
1 D

−1
1

=



















1
2(P−1)

1
P−1

1
P−1 · · · 1

2(P−1)
1

(P−1)
2 cos θ
P−1

2 cos 2θ
P−1 · · · cos((P−1)θ)

P−1
1

(P−1)
2 cos 2θ
P−1

2 cos 4θ
P−1 · · · cos(2(P−1)θ)

P−1
...

...
...

...
1

2(P−1)
cos(P−1)θ
P−1

cos 2(P−1)θ
P−1 · · · cos((P−1)2θ)

2(P−1)



















, (C.3)

where θ = π
P−1 . For example, in the case of 1-D 5N ARMCNN, P = 5, the R−1 is

R−1 =



















0.125 0.25 0.25 0.25 0.125

0.25 0.3536 0 −0.3536 −0.25

0.25 0 −0.5 0 0.25

0.25 −0.3536 0 0.3536 −0.25

0.125 −0.25 0.25 −0.25 0.125



















=



















wT0

wT1

wT2

wT3

wT4



















. (C.4)
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C.2 One End Neuron Enters the Saturation Region

Appendix C.2 examines the decomposition of states if one end neuron enters the saturation

region. From (5.39), the FE discrete trajectory is

3
∑

k=0

[

(1 +
λk
τ
∆t)t/∆t

(

wTk x(0) +
0.5wk,3
λk

)

−
0.5wk,3
λk

]

rk, (C.5)

where rk is the eigenvector of the A matrix in (5.31). As shown in Appendix B.2 and

section 5.2.5, the diagonalization of the A matrix in (5.31) is written as

AR = RΛ, A = RΛR−1, Λ = R−1AR,

where for N = 4,

R = [r0 · · · r3] =















cos 0 cos 0 cos 0 cos 0

cos θ0 cos θ1 cos θ2 cos θ3

cos 2θ0 cos 2θ1 cos 2θ2 cos 2θ3

cos 3θ0 cos 3θ1 cos 3θ2 cos 3θ3















(C.6)

Λ = diag(λ0, . . . , λ3), R−1 =









wT0
...

wT3









, θ0 =
π

2N
, θ1 =

3π
2N

, θ2 =
5π
2N

, θ3 =
7π
2N

.

The goal of this section is to derive the inverse matrix of the R matrix in (C.6). Applying

the similarity transformation

Â = D−1
1 AD1,
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with D1 = diag(
√

2, 1, 1, 1), and D−1
1 = diag(1/

√
2, 1, 1, 1), we obtain a symmetric Â as

follows:

Â = D−1
1 AD1

=















1/
√

2 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1





























−1 g 0 0

0.5g −1 0.5g 0

0 0.5g −1 0.5g

0 0 0.5g −1















D1

=















−1/
√

2 g/
√

2 0 0

0.5g −1 0.5g 0

0 0.5g −1 0.5g

0 0 0.5g −1





























√
2 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1















=















−1 g/
√

2 0 0

0.5g
√

2 −1 0.5g 0

0 0.5g −1 0.5g

0 0 0.5g −1















=















−1 g/
√

2 0 0

g/
√

2 −1 0.5g 0

0 0.5g −1 0.5g

0 0 0.5g −1















. (C.7)

Hence, the diagonalization of the symmetric Â is

Â = R̂ΛR̂−1

where

R̂ =
[

r̂0 r̂1 r̂2 r̂3

]

=















1√
2

1√
2

1√
2

1√
2

cos θ0 cos θ1 cos θ2 cos θ3

cos 2θ0 cos 2θ1 cos 2θ2 cos 2θ3

cos 3θ0 cos 3θ1 cos 3θ2 cos 3θ3















= D−1
1 R

θ0 =
π

2N
, θ1 =

3π
2N

, θ2 =
5π
2N

, θ3 =
7π
2N

. (C.8)

The orthogonal eigenvectors of Â have equal length of
√

N/2 =
√

2. From the orthogo-

nality of r̂k, we have

DcR̂
T R̂ = Dc(D−1

1 R)T (D−1
1 R) = DcR

T (D−1
1 )TD−1

1 R = I, (C.9)
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where the Dc compensate the length of r̂k and is

Dc = diag(
2
N
,

2
N
,

2
N
,

2
N

).

Finally, from (C.9) and (D−1
1 )T = D−1

1 , we obtain

R−1 =DcR
T (D−1

1 )TD−1
1 = DcR

TD−1
1 D

−1
1

=















1
4

cos θ0
2

cos 2θ0
2

cos 3θ0
2

1
4

cos θ1
2

cos 2θ1
2

cos 3θ1
2

1
4

cos θ2
2

cos 2θ2
2

cos 3θ2
2

1
4

cos θ3
2

cos 2θ3
2

cos 3θ3
2















(C.10)

where θ0 = π
2N , θ1 = 3π

2N , θ2 = 5π
2N , θ3 = 7π

2N .

For example, in Section 5.2.5, N = 4, the R and R−1 are:

R = [r0 · · · r3] =















cos 0 cos 0 cos 0 cos 0

cos θ0 cos θ1 cos θ2 cos θ3

cos 2θ0 cos 2θ1 cos 2θ2 cos 2θ3

cos 3θ0 cos 3θ1 cos 3θ2 cos 3θ3















=















1 1 1 1

0.92 0.38 −0.38 −0.92

0.70 −0.70 −0.70 0.70

0.38 −0.92 0.92 −0.38















R−1 =















wT0

wT1

wT2

wT3















=















1
4

cos θ0
2

cos 2θ0
2

cos 3θ0
2

1
4

cos θ1
2

cos 2θ1
2

cos 3θ1
2

1
4

cos θ2
2

cos 2θ2
2

cos 3θ2
2

1
4

cos θ3
2

cos 2θ3
2

cos 3θ3
2















=















0.25 0.46 0.35 0.19

0.25 0.19 −0.35 −0.46

0.25 −0.19 −0.35 0.46

0.25 −0.46 0.35 −0.19















(C.11)
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