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Optimal Nonlinear Adaptive Prediction and
Modeling of MPEG Video in ATM Networks
Using Pipelined Recurrent Neural Networks

Po-Rong ChangMember,

Abstract—This paper investigates the application of a pipelined
recurrent neural network (PRNN) to the adaptive traffic pre-
diction of MPEG video signal via dynamic ATM networks. The
traffic signal of each picture type (I, P, and B) of MPEG video
is characterized by a general nonlinear autoregressive moving
average (NARMA) process. Moreover, a minimum mean-squared
error predictor based on the NARMA model is developed to
provide the best prediction for the video traffic signal. However,
the explicit functional expression of the best mean-squared error
predictor is actually unknown. To tackle this difficulty, a PRNN
that consists of a number of simpler small-scale recurrent neural
network (RNN) modules with less computational complexity is
conducted to introduce the best nonlinear approximation capa-
bility into the minimun mean-squared error predictor model
in order to accurately predict the future behavior of MPEG
video traffic in a relatively short time period based on adaptive
learning for each module from previous measurement data, in
order to provide faster and more accurate control action to avoid

IEEE and Jen-Tsung Hu

for the compression of video signals that generate a high
bit-rate stream via the ATM broad-band networks. A well-

known coding scheme called the Motion Picture Expert Group
(MPEG) is emerging as a major international standard for
multimedia applications [1]. The MPEG specification was

developed specifically to allow the transmission of VCR-

quality digital images at a data rate of approximately 1-1.5
Mbits/s. 1S01172 is also sometimes referred to as MPEG-1.
Another specification known as MPEG-2 has been developed
to support higher resolution images. The MPEG video com-
pression algorithm relies on two basic techniques: block-based
motion compensation for reduction in temporal redundancy
and discrete cosine transform (DCT) for spatial redundancy.
MPEG is able to reduce the raw image data by 20- to 50-
fold. Because of the conflicting requirements of random access

the effects of excessive load situation. Since those modules ofind highly efficient compression, three main picture types are

PRNN can be performed simultanously in a pipelined parallelism
fashion, this would lead to a significant improvement in the
total computational efficiency of PRNN. In order to further

improve the convergence performance of the adaptive algorithm
for PRNN, a learning-rate annealing schedule is proposed to

defined. Intrapicturesi(pictures) are coded without reference
to other pictures and points for random access. Predictive
(P) pictures are coded with reference to previadlor P
frames. Bidirectionally predictiveR) pictures are coded with

accelerate the adaptive learning process. Another advantage of reference to a previous or P frame, as well as the future

the PRNN-based predictor is its generalization from learning
that is useful for learning a dynamic environment for MPEG
video traffic prediction in ATM networks where observations may
be incomplete, delayed, or partially available. The PRNN-based
predictor presented in this paper is shown to be promising and
practically feasible in obtaining the best adaptive prediction of
real-time MPEG video traffic.

Index Terms—MPEG, nonlinear autoregressive moving aver-
age (NARMA), pipelined recurrent neural network (PRNN).

I. INTRODUCTION

F

I or P frame. As a result, the MPEG encode produces
a variable bit-rate (VBR) compressed video bit stream in
which instantaneous bit rates vary widely with scene content.
Moreover, the correlation between consecutive pictures is very
low since MPEG video generates very bursty traffic that
changes dynamically on a picture-by-picture basis depending
on coding mode. The ATM technology utilizes the nature
of the traffic to effectively allocate the network resources
via statistical multiplexing. Although statistical multiplexing
provides efficient use of the network resource (e.g., bandwidth)
and enough flexibility to support multiple connections with

UTURE broad-band integrated services digital netorkgifferent bit rates, the effective statistical multiplexing requires
(B-ISDN's) based on the asynchronous transfer mod@gtailed information about the traffic of MPEG video. This

(ATM) principle are designed to support a wide variety Ofnformation is used to design traffic smoothing, bandwidth
multimedia services with diverse statistical characteristics agflocation, and congestion control algorithms [2]—[5]. Thus,
quality of service (QOS) requirements at cell and call levelgideo source modeling for traffic prediction is extremely
Among the various kinds of services, video service is becofiinportant for high-speed packet switching and ATM network
ing an important component of multimedia communicationgesign. Since the channel capacity for each video source
A number of video coding schemes have been proposgdallocated dynamically in these networks, source models
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random arrival assumption of MPEG video signals, howevesf a nonstationary time series [17]. Several algorithms have
may no longer be valid. In addition, another shortcoming of tHeeen proposed for the training of the RNN'’s. The most widely
gueueing models is that only steady-state results are tractakl®wn algorithm is the real-time recurrent learning (RTRL)
Therefore, two classes of video models have been proposelgiorithm, proposed by Williams and Zipser [18], that can be
A model based on discrete-state continuous-time Markoged to update the synaptic weights of the RNN in real time.
processes was proposed by Maglatsal. [6] for analytical In Section I, we will show the traffic for each picture
use in video sources with relatively uniform activity level (ndype of MPEG video signal can be characterized by a general
scene changes). This model was extended byeBah [7] to nonlinear autoregressive moving average (NARMA) process.
encompass scene changes. However, the parameters to fitAteording to the theroy of prediction [19], [20], the minimum
model to general video sources is difficult. Another modehean-squared error traffic predictor is the conditional mean
based on autoregressive (AR) processes was proposedwhjch can be expressed in terms of the functional expression
Nomuraet al. [8] and Ohta [9] to simulate the characteristics off the NARMA process. However, the explicit functional
a single video source, which can capture the autocorrelatiexpression of the NARMA model is actually unknown. Conner
property of the video signal. A number of researchers [103f al [21] have introduced a recurrent neural network (RNN)
[11] have shown that the AR model closely matches an actusiplementation to approximate the NARMA-based condi-
video signal because coefficients of the AR model can easily ttenal mean predictor, and have shown the superior accuracy
derived from the characteristics of real video data. Howevef its prediction. Section Ill describes the procedure for the
the AR model is not suitable for the video signal with a vergpproximation of a NARMA-based optimal traffic predictor
bursty traffic like MPEG video and is also not appropriate fassing the recurrent network. However, it is impossible to
the statistical multiplexing of VBR video signals via an ATMachieve the RNN-based prediction within an acceptably small
network. To tackle this difficulty, Wet al. [12] have proposed measurement time interval for the purpose of adapting to
a model for the simulation of MPEG video signals, which ighe dynamic environment since a sufficiently large number
based on the AR model compensated by a projection functi®i.neurons are required to maintain the prediction accuracy,
Another method of characterizing the VBR video signals viBut also increase its computational complexity. To tackle this
ATM networks was proposed by Grunenfeldgral. [13]. This difficulty, in Section 1V, a pipelined recurrent neural network
model is based on an autoregressive moving average (ARM#&®RNN), proposed by Haykin and Li [22], is introduced
process followed by a zero-memory nonlinearity and providég implement the NARMA-based optimal traffic predictor
satisfactory modeling accuracy for the VBR video signals. with low complexity. Moreover, we would like to apply the
The above-mentioned modeling methods for characterizitgarning-rate annealing schedules [23] to the PRNN in order
the VBR video signals are used for off-line applicationt improve its convergence performance further. Finallly, in
to both the simulation and analysis. However, many flowection V, we present an experimental study of the PRNN
control mechanisms that dynamically regulate traffic flongpplied to the traffic prediction of a typical MPEG video
according to changing network conditions require the capgignal.
bility of predicting future behavior of the video traffic in
a relatively short time period (sampling period) in order to
provide faster and more accurate control actions to avoid Il. SOURCE CHARACTERISTICS AND TRAFFIC
the effects of excessive load situation. Jung and Meditch  PREDICTION MODEL OF MPEG VIDEO SIGNALS
[2] have applied the AR model to the prediction for each The MPEG video international standard [1] specifies the
picture type of real MPEG video signals. An alternativeoded representation of the video data. The video source
method based on neural networks has been proposed to furfsting is based on motion-compensated hybrid DCT coding
improve the prediction accuracy of the traffic statistics afhich employs two basic techniques: motion compensation
the VBR video. Several examples of using neural netwoflr the reduction of temporal redundancy and DCT transform
approaches for on-line traffic prediction of VBR video signalsompression for the reduction of spatial redundancy. In order
can be found in the literature [5], [14], [15]. Neved al. to achieve the highly efficient compression and to meet the
[4], [5] and Tarraf and Habib [14] applied the multilayeredonflicting requirements of random acess, the input video is di-
perceptron neural networks with backpropagation training tdded into units of group-of-pictures (GOP’s) consisting of an
the traffic prediction in the flow control and traffic enforcemernihtra (I) picture, coded without reference to other pictures, an
mechanism for ATM networks, respectively. Recently, Chorgrrangement of predictive?) pictures, coded with reference to
et al. [16] used the high-order pi—sigma neural network for therevious ¢ or P) pictures, and bidirectionally predictive3]j
bandwidth prediction of VBR video over an ATM network. Allpictures, coded with reference to an immediate previdusr (
of them have shown that satisfactory traffic prediction accurag3) picture, as well as an immediate futur® er I) picture.
can be achieved by those neural networks. However, thoBee I picture at the beginning of a GOP serves as a basic
neural networks suffer from drawbacks of slow convergenemtry point to facilitate random seek or channel switching,
and unpredictable solutions during learning. To overcome ttdad also provides coding robustness to transmission error, but
difficulty, an alternative architecture to the traffic prediction o coded with only moderate compression to reduce the spatial
MPEG video with the flexibility to adapt to a changing ATMredundancies.P pictures are coded more efficiently using
network environment is based on recurrent neural netwonkstion-compensated prediction from a pdsbr P picture,
(RNN’s). An RNN is well suited for the adaptive predictionand are generally used as a reference for further prediction.
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Fig. 1. Example of MPEG GOP. S2n
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B pictures provide the highest degree of compression, but 3%

require both past and future reference pictures for motion o0 u
compensation. It should be mentioned thatpictures are

never used as references for prediction. A GOP is defined by
its length Ngop, Which is the distance betweeh pictures.

An example of a GOP in MPEG is presented in Fig. 1, . ! )
wherel, P, and B denote picture encoding in the intrapicture 0 % Frame 100 150

mode, predicted mode, and bidirectionally predicted mode, . o

respectively. The GOP sequence of Fig. 1 wit,or = 6 Fig. 2. Traffic signal of MPEG video: “Bike” Scene.

is IBBPBBI.

The macroblocks of 16< 16 pixels are the basic codingsimilar characteristics. In this paper, we develop an adaptive
units for the MPEG algorithm. Each macroblock is dividegrediction scheme which is able to fully characterize the
into four blocks, where each block containsx8 8 pixels. general feature and behavior of MPEG video sequences.
The main extension from monochrome video to color is the
addition of two 8x 8 chrominace blocks to the macroblocka Optimal Traffic Prediction Model for MPEG Video
A row of macroblocks that makes up a horizontal strip in th?signals Based on Nonlinear ARMA Models
image is called a slice, and a number of slices are combined tq

form a picture. The coding mode of each macroblock within g ' "€ Main purpose of constructing the traffic models for the
bit-rate variability of video is to create an aid for design-

specific picture depends on its picture type. Equictures, a | he f ATM oo ks th i
discrete cosine transform (DCT) is performed on each blodRY the future communication networks that will carry

The resulting two-dimensional block of DCT coefficients ignultiplexed vid«_ao signals. The au_toregressive (AR) process
quantized and scanned in a zig-zag order to convert it intd50n€ of_the 5|m_pl_est mOdeIS .Wh'Ch h&.ls proven o be very
one-dimensional string of quantized DCT coefficients. Ruffiiective in predicting video signals with high correlation
length coding is used for the quantized coefficient datfl: [9]. However, this model is suitable for less bursty
The predicted picturesH and B) use motion-compensatedtr"’lﬁ!C I'|ke teleconfgrencmg V,"?'eo’ bUI, r,]Ot for very bursty
prediction of the contents of the macroblock based on pasttfﬁﬁ'c I|I§e MfPEG v:deq. Add|t|.or!all?/, It IIS POt_ part_:_cularlykl
future reference pictures. This prediction is subtracted from t Q_prg%r_latle o(r3 eva u?t:(r;g stat||st|1c3a dmutlpbexmg. ﬁ tdacfe
actual data in the current macroblock to form an error signél.IS meu t-y, runen% eetal | ]. escribe a melt( od o
The prediction error is coded like the intracoded macrobloc@gl\r/l?t?r'uzmg (;/iR Video sources 1n ATlM ne.tworzimfl\i an
None of the analytical models available today can adg ollowed by a zero-memory nonlinearity ( ) )-
quately represent VBR MPEG video traffic. Here, we choog@ey have demonstrated that the ARMA process is suited to

a 5-s (150 picture) video traffic signal from a “Bike” scene Oyiﬁl\\/llfeo codes Ian(;l]_ATM t_raffic. Actua:g/,l_tkheir '_“Ode'.is a
352 x 240 pixels as a testbed for our study. It is coded process. In this section, we would like to investigate

an MPEG compression technique. Usually, the main unit e general NARMA models of MPEG video signals. Since

measure for video traffic has been the number of bits genera?@d:h picture type has its own traffic characteristics, it is

per picture. In ATM network application, the bits generateaugg_ESted that each picture typs @, or B) is modeled
by the VBR MPEG encoder are packetized into 53-byte ATIWd'\”dua"y and can be expressed as

cells with a user payload size of 44 bytes plus 9 bytes of
protocol overhead. Fig. 2 shows the MPEG coded Bike video s:(n) =ha(s:(n = 1), 5:(n = 2), -+, 5:(n — p2),

traffic sequence measured in cells per picture, denotedsby ex(n—1),ex(n—2), -, ex(n—q)) +en)

at time instantn. Observing this figure, the MPEG video z e {L,P,B} Q)
encoder generates very bursty traffic dynamically on a picture-

by-picture basis. As one can see, a periodic peak is framheres_.(n) is the traffic variable for picture type afat time

I pictures, the medium traffic is fronP pictures, and the instantn, h.(-) is an unknown smooth nonlinear function, and
lowest traffic is from B pictures. The dynamic behavior ofe.(n) is the unmodeled system error at time instantit is
Fig. 2 is a general characteristic of the MPEG video traffiassumed thaf(e.(n)|s.(n—1),s.(n—2),---) = 0, and that
sequence, which is independent of the GOP sequence becdhsevariance ot (n) is o2. In addition, the nonlinear function
the traffic depends only on the coding mode or picture typk,(-) has a nonzero constant termsif(n) is not a zero-mean
not on the sequence. Jung and Meditch [2] have shown tipabcess. Equation (1) is calledNMARMA (p., ¢.), wherep,
MPEG video sequences of different GOP sequences haral g, are positive integers [20].

g
—
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For simplified analysis, we neglect the index ‘of (1) in outputs
the remainder of this paper. From theARMA (p, ¢) model
of (1), the minimum mean-squared error predictor based on the
infinite past of observations is the conditional mean [19], [20]

5(n) = E(s(n)|s(n — 1), s(n = 2),- )
=Eh(s(n—1),---,8(n —p),e(n —1),e(n — 2),
e — st — st —2), ] @)

Moreover, assume that tieARMA (p, ¢) model is invert-
ible so that there is a functiog(-) such that

s(n) = g(s(n—1),s8(n —2),---) + e(n). (3) () x,(n)

In other words, the current traffic variablgn) may be inputs
expressed as a function in terms of the infinite past of traffic

variabless(n — 1), s(n — 2),---. Thus, thee(n — j) in (1)

becomes a function of(i), —oo <i < (n — j)

. . . X Fig. 3. Architectural graph of a fully connected recurent networkpfet 2
e(n = j) = pn—j(s(1), —00 <i < (n — j)), and N = 4.

j:1727"'7Q' (4)
Sincee(n — j) are specified by (4) in terms of present an

past (relative to timex — j) traffic variables, the conditional
mean predictor of (2) becomes

nd chaotic time series [17]. Connefral. [21] have indicated
ﬁmt RNN's are well suited for the nonlinear prediction of
NARMA process. There are a number of types of recurrent
networks that have been proposed by several researchers

$(n) =h(s(n —1),s(n —2),---,s(n —p), [24], [25]. In this paper, we apply the most widely known
e(n—1),---,e(n—q)). (5) architecture, proposed by Williams and Zipser [18], to time

series prediction. A network with this particular architecture
Note that the predictor has a mean-squared erfor is also called the fully connected recurrent network. Consider

However, one cannot compute both (4) and (5) directly Williams—Zipser RNN consisting of a total df neurons
because there are, in practice, only the finite past observatiigh p external input connections. Let{n) denote thep x 1
available in the calculation. Therefore, Conmbal. [21] have external input applied to the network at discrete timeand
shown that it is reasonable to approximate the conditionak y(n + 1) denote the correspondiny x 1 vector of neuron
mean predictor of (5) by the following recursive algorithm: outputs produced one step later at timé 1. The input vector

ar N xz(n) and one-step delayed output ve are concatenated

5(n) =h(stn = 1), 5(n = 2), -, s(n = p), to( f())rm the(p + N) x 1 vectoru(n),@vﬁ?gseith element is
én—=1),-- en-q)) (6)  denoted byu;(n). Let X denote the set of indexégor which
u;(n) is an external input, and |&f denote the set of indexes
¢ for which ;(n) is the output of a neuron. The indexes gn
e(y) = s(y) — 8(4), j=n—-1n-2-.-,n—¢q (7) andz are chosen to correspond to thoseupfso that

where the prediction error&j) are defined by

Unfortunately, the main problem of performing the recursive vi(n), ifieY. (8)
algorithm (6) and (7) is that the explicit form of the nonlinear B '
function A(-) is actually unknown. Connoet al [21] have
shown that the recursive formulation of the conditional me enated input—output layer and a processing layer. This is
predictor can be approximated by a class of recurrent neuflos ted in Fig. 3 forp = 2 and N = 4. The networ.k is
networks within an acceptable accuracy. In the next sectiql]”y interconnected in that there are a t'otal oV forward
we will investigate the applications of recurrent networks t80

the determination of the optimal NARMA predictor.

with appropriate initial conditions discussed in [20]. zi(n), fieX
U,Z(TL) :{ ) ’

Generally, the RNN has two distinct layers, i.e., a con-

nnections anav? feedback connections. L& denote the
N x (p+ N) synaptic weight matrix. An elemeng;; of this
matrix represents the weight of the connection from ithe

I1l. D ETERMINATION OF OPTIMAL NARMA node to thejth neuron. The net internal activity of neurgn
PREDICTOR USING RECURRENT NEURAL NETWORKS at time n, for j € Y, is computed by
RNN's are neural networks that have feedback. RNN's are
highly nonlinear dynamical systems which exhibit a rich and vi(n) = Z wji(n)ui(n) 9)
complex dynamical behavior. Moreover, the RNN allows any iEXUY

neuron in the network to be connected to any other neuron in
the network. They have been proven better than traditional sighere X UY is the set union of setX andY. At time n+ 1,
nal processing methods in modeling and predicting nonlinetiie output of neuror is computed by passing;(n) through
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Fig. 4. Recurrent neural network implementation o ARMA (p, ¢) prediction model with prediction error input and neurons.

a sigmoidal functiony(-) to obtain given by

B 1
~ 1texp(-vi(n))’

(10)  3(n)

yi(n+1) = ¢(v;(n))

iL(S(n—1),---,8(71—1)),@(71—1),---,é(n—q))
Y

1(n) = p(vi(n — 1))
To implement theNARMA (p, ¢) prediction model by re- <p+q+N )
¥

current neural networks, additiongl — 1) input nodes should Z witi(n — 1)
be added to the network. The RNN implementation a of i=1
NARMA (p, q) predictor is illustrated in Fig. 4. Let the first

neuron outpuy; (n) be equal to the conditional mean predictor =¥ wiis(n — ) + w1 p41

3(n). The prediction error at timen,é(n) is obtained by =1

subtractings(n) from the external inputs(n). By inputting prafl .

&(n) into a tapped-delay-line filter witly delay elements, it - Z wiié(n +i+2-p=q)

yields ¢ input nodes at timey — 1, up4g12—i(n — 1) = é(n — =p2

i) =s(n—i)—8(n—1),1 <i < g, whereu,q12_;,2 <1< g pHa+N

are the additional input nodes. Note that the indexes in the + > wiipga(n—1)|. (12)
network inputs are arranged according to Fig. 4. Similgpsly, i=p+q+2

external inputs to the network;(n — 1),1 < ¢ < p can be

created by inputtings(n) into a tapped-delay-line filter with ~ The synaptic weightsy;;'s are estimated from a set of
p delay elements. Thus;(n — 1) = s(n —4),1 <i < p. In  training samplesD = {s(n)})7,, thereby obtaining an es-
addition, the remainingN — 1) neuron outputg;(n),2 < ¢ < timateh(-) of A(-), where Ny denotes the number of training
N are fed back to its input. Finally, to accommodate a bi@amples. Estimates are obtained by minimizing the sum of
for each neuron, besides thet ¢ + N — 1 inputs, we have the squared prediction errols = Efgl ¢2(n). However,
included one other input whose value is always maintainéioe formulation of the RNN with prediction error inputs of
at +1. Based on the above discussion, the explicit form ¢12) cannot apply the well-known RTRL algorithm [18] to

network input at timen — 1,u%;(n — 1) can be expressed asdetermine the appropriate synaptic weights directly. Therefore,

follows: we would like to reformulate the recursive formulation of
(6) and (7) as a new functiold in terms of the delayed
ui(n — 1) traffic variabless(n —¢),1 < ¢ < p and the past approximate
zi(n—1)=s(n—1), 1<i<p conditional mean prediction valug§n — j),1 < j < ¢, as
_JtL i=p+1 follows:
én+i+2-p—q), p+2<i<p+q+1
Yip—g—1(n — 1), p+q+2<i<p+q+ N, 8(n) =h[stn —1),---,s(n—p),(s(n— 1) = §(n — 1)),
(11) <, (s(n = @) = $(n = 9))]
Hence, the recurrent neural network with prediction error =H(s(n —1),s(n—2),---,s(n —p),3(n - 1),

input provides a nonlinear approximatidif-) to &(-) of (6) -y 8(n = ). (13)
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Fig. 5. Recurrent neural network implementation MARMA (p, ¢) prediction model with normal input an®/ neurons.

Indeed, the expression of (13) is an alternative formulation tife generalization from learning. This is particularly useful
the conditional mean predictor for ttleARMA (p, ¢) process. for learning a dynamic environment for traffic prediction of
For the RNN implementation of thNARMA (p, ¢) predictor a VBR video signal via ATM networks where observations
model of (13), the recurrent network topology is shown imay be incomplete, delayed, or partially available. Thus,
Fig. 5, and its inputs are given by [|H — fI||D <€, where D denotes the set union dP and

a set of data that does not belong fa and D C D. The

ui(n —1) RTRL algorithm is capable of nonlinear adaptive prediction of
s(n — i), 1<i<p nonstationary signals, and does not reqaipgiori knowledge
_ +1, i=p+1 of time dependence among the input data. However, a major
S(n+i+2-p—q), p+2<i<p+q+l limitation of the RTRL algorithm is that its computational
Yimp—q—1(n — 1), p+ra+2<i<p+q+ N complexity is proportional taD(N*), where N is the total

(14) number of neurons in the network. Since a sufficiently large

number of neurons are required to maintain the prediction

Th‘.a result_ing network topology i_s well suited_to thg RTRI'accuracy of the RNN-based NARMA predictor, it seems
algorithm. Similarly, an RNN nonlinear approximatid(:) infeasible to achieve the RNN-based prediction within an

to H(:) of (13) is written as acceptably small time interval. To tackle this difficulty, Haykin
3(n) =H(s(n —1),---,s(n—p),8(n—1),---,8(n—¢q))  and Li[22] proposed a new RNN structure called the PRNN
that is an extension of the conventional RTRL algorithm. The

P

=y Zqu(n — )+ w1 p1 design of such a network is based on the principle of divide
=1 and conquer, that is, a complex RNN with a large number
ptg+l of neurons can be divided into a nhumber of simpler small-

+ Z wpd(n+i+2—p—q) scale RNN modules with less computational complexity. In the

i=p+2 following section, we apply the PRNN structure to improve the

P+ N computational performance of the NARMA conditional mean
+ Z WyiYi—pq1(n— 1) . (15) predictor. It should be mentioned that this section provides the

fundamentals of generalization from learning for PRNN since,

from Figs. 5 and 6, PRNN is an extended pipeline structure
Li [26] has shown that a recurrent neural network of (13f RNN-based NARMA predictor with normal input.

with a sufficiently large number of neurons and appropriate

weights can be found by performing the RTRL algorithm

such that the sum of the squared prediction ergdgse for

an arbitrarye> 0. In other words,||H — H||p <¢, where

|| - ||p denotes theL, norm with respect to the training

set D. Moreover, the RNN has the ability to generalize The PRNN shown in Fig. 6 is composed gfidentical

learning to what has never been seen [18]. This is callesbdules, each of which is designed as a fully connected

i=p+q+2

IV. Low-COMPLEXITY PIPELINED RECURRENT NEURAL
NETWORKS FOROPTIMAL ADAPTIVE NARMA PREDICTORS
WITH LEARNING-RATE ANNEALING SCHEDULES
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of the module’s output is assumed to be fed back to the input. o
Informatlc_)n flow into anq out of the modules_ proceeds in a . - - ia(n) —
synchronized fashion. Fig. 7 shows the detailed structure of >

S, ,1(71
~141 9 _ _ _ s(n)
z 1 211—--- ZII zllh
sq(n) s5(n) s1(m
Module g |y, (n)"| Moduleg—1: Module 2: ya1(n) Module 1: maln)
weight matrix W weight matrix W T weight matrix W weight matrix W)|
27l P | z 21
Zfl
Fig. 6. Pipelined recurrent neural network with modulus.
recurrent network withV neurons. Each module hdé — 1
neuron outputs fed back to its input, and the remaining neuron  s(» —#) ‘
output (the first neuron output) is applied directly to the next ) :
module. In the case of modulg a one-unit delayed version 57 (’“))*{ /\/ Vi)

module: with N neurons and external inputs. All of the Gl — - (-Jr-/—
modules have exactly the same number of external inputs 1 —1 * o :

and internal feedback signals. Note that for moduyleits - M .

module output acts as an external feedback signal to itself. % 11(m) A\ yin (n)

In addition, all of the modules of PRNN are designed to (1) } e; (n)
have exactly the samé + N + 1) x N synaptic weight !
matrix W. The updated value of the synaptic weight matrix . .

W is computed using the RTRL algorithm [18]. Haykin and o el

Li [22] have demonstrated that the PRNN is able to provide - “D )

satisfactory accuracy of the nonlinear adaptive prediction of s module?

a nonstationary signal and time series process. An important ;

feature of the PRNN is its high computational efficiency. O I

Specifically, the total computational requirement of processing e z

a single sample on a PRNN @&(¢g/N*) arithmetic operations.

However, this is to be contrasted with the computation&lg- 7- Detailed architecture of moduleof the PRNN.

requirement of a corresponding structure involving the use

of a conventional RNN withyV' neurons, that isO(q*N*) conS|st|ng of the one-step delayed output signals of neurons

arithmetic operations. Thus, the computational savings mag% . N in modulei and can be written as

possible by the use of PRNN can indeed be enormous for large’

g. In order to further improve the convergence performance of ri(n) =[yialn = 1), -,y ny(n = D7,

the RTRL algorithm for PRNN, we would like to redesign the i=1,2,,(q=1) (18)

RTRL algorithm using the learning-rate annealing schedules e '

[23]. First, an overview of PRNN is summarized as follows. ‘Note thatr’
For theith module, its external input at theth time instant

is described by the x 1 vector

“(n) denotes feedback signals that originate from
module: itself. The last module of the PRNN operates as a
standard fully connected recurrent neural network. ThyS;)

SZ(TL) = [S(TL—'L)7 3(71—(@'4-1))7 e S(H—(i—i-p—l))]T (16) is written as

where p is the nonlinear prediction order according to the 7q(n) = [yg1(n = 1),yg2(n = 1), -+ yg,n(n = DT (19)
NARMA (p,q) process. The other input vector applied to " o o o
modulei is the N x 1 feedback vector Additionally, the fixed input-1 is included for the provision

of a threshold applied to each neuron in moduBased on the
7:(n) = [Yir1,1(n), i ()]%, i=1,2,---,(¢g—1) (17) above discussion, an input vector consisting of tgiat.N +1)
input signals applied to moduleis represented by
where ;41 1(n) is the first neuron’s output in the adjacent
modulei + 1 and+}(n) denotes the internal feedback signal u; = [s7 (n), 1,77 (n)]*, t=1,2,---,q. (20)
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Thus, thelth element ofu; is represented by (19). The desired response for modtlat time instantn is
stn—(i+1-1)), 1<I<pl<i<g si(n + 1').: §(n — 1+ 1). Hence, the prediction error for
module ¢ is given by

L, 1<I<pl<i<q
iy = yi+l,l—(p-|—(l)§n)7 5 =p i 371 Li<g-1 é(n)=sin+1)—8n+1)=sin+1)—yi1(n)
Yi,i—(p+1)\), =P t=dq _ — i+ 1) = . 27
yi,l—(p-l—l)(n)v p+3 <l <p+ 1+N7 3(” o ) ?Jz,l(”) ( )
1<i<yq Thus, an overall cost function for the PRNN is defined by
(21) q
1—142
Thus the outpuy;(n) of neuronk in module: is given by E(n) = Z AT (n) (28)
=1
yir(n) = ¢(vir) (22)

where) is an exponential forgetting factor that lies in the range
where the net internal activity,;, is calculated by of 0 <A < 1. The inverse ofl — X is a measure of the memory
of the PRNN. Adjustments to the synaptic weight mai#ixof
each module is made to minimiZ&n) in accordance with the

ik = Z Wkitik RTRL algorithm. In order to further speed up the convergence
pz=1 rate, in the next section, a RTRL algorithm incorporated with
_ Zwkw(n — (41— 1)) + wppy1 learning-rate annealing schedules is presented to achieve the
Py ’ goal.
p+N+1
+ Z Wt 1= (p41) (1) (23) A. Real-Time Recurrent Learning (RTRL) Algorithm
I=pt2 with Learning-Rate Annealing Schedules

Finally, the PRNN prediction at time instantis defined by ~ For the case of a particular weighiy;, its incremental
the output of the first neuron of the first module as shown angeAw,(n) made at timen according to the method of
X X steepest descent is given by
5(n)=51(n+1)=y11(n). (24)

_ 0&(n)
Note thaté;(n) = 3(n — 1). Aw(n) = =175 - (29)
The pipeline recurrent network is characterized by a neste%eren is the learning-rate parameter. From (27)—(29), we
nonlinearity. Since all of the neurons have a common nonllnear
ote that

activation function¢(-), the functional dependence of the"
output y1 1(n)(= 5(n)) of the network can be expressed as QZAZ Ls( 8@1( )
follows: awu B p 8wkl

3(n) =y11(n) = (s1(n), y2,1(n ;

(n) =y11(n) = @(s1(n), y2,1(n)) :_22)‘Z Loyl 8y yi,1(n) (30)

=p(s1(n), p(s2(n), y3,1(n))) Wi

:(p(S(TL—1),(p(8(71—2),(p(8(71—3),---, . . . .
2 In (30), the partial derivativédy; 1 (n)/dwy) is calculated
(s(n = q)yg,1(n = @), -)) (25 using a modification of the RTRL algorithm [18]. A quadruply

where we have omitted the dependence on the synaptic weitjidiexed set of variablegr;;(n)} is introduced to characterize

s;(n) = s(n —i). The expression of (25) is indeed the nested i Oyi(n) . .
nonlinearity that gives the PRNN its enhanced computing T B 1<1<¢,1<5,k<N
power compared to the conventional recurrent network. More- 1<I<p+1+N. (31)

over, the scheme of nested nonlinear functions described in

(25) is unusual in the classical approximation theory. Indeelpte thatrj; = (dy;1/dwy). The RTRL algorithm is used
it is a universal approximator in the sense that a PRNN witb recursively compute the values of) for every time step
appropriate training can approximate any nonlinear ARMANd all appropriate, j, k, and! as follows:

process to any desired degree of accuracy, provided that

sufficiently many hidden neurons are available [26]. 1) Seons
Certainly, y; 1(n) is interpreted as the one-step prediction mia(n + (vig) g_: wim(n)mf! () + S jua(n)
of s;(n) computed by theth module whose functional de- (32)
pendence can be described by a complete dependence form
shown as follows: with initial conditions
$i(n+1) = yi1(n) = (W, si(n),1:(n)) (26) m(0) =0 (33)

whereW is the N x (p + N + 1) synaptic weight matrix of where ¢;; is a Kronecker delta equal to one whgn= k&
module4, andr;(n) is the input vector defined in (17) andand zero otherwisey;; andv;; are defined in (21) and (23),



CHANG AND HU: PREDICTION AND MODELING OF MPEG VIDEO

1095

400 400
o
| picturas i 300 =
350 f " Ppictures -
e B o 200 y
_QD, original
————— prediction
300 = E 100}
c
0 1 1 L | . | L
w 250 F 0 20 40 60 80 100 120 140
> frame number
o
5 ol @)
-é 200
3 (2]
S 150t @ 5L
(8]
‘s /
5 150
100 - a
E s}
, i f =
50 / ” ’,‘H Yaon ) 100 : 1 A ] . 1 .
. N | A N AL MR U R R 0 20 40 60 80 100 120 140
RV A AT A A R frame number
0 1 | 1 | 1 1
0 20 40 60 80 100 120 140 ()
frame number
80
Fig. 8. Traffic signals of the decomposed three pictures R, and B) ot
resulting from MPEG video “Bike” scene. T 60f . prediction
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@
respectively. From (10), we find that the derivatiy&(-) is €
given by 2
’ 0 1 1 L 1 e 1 i
@ (Uij) = yz,(n)(l - yzj(ﬂ)) (34) 0 20 40 60 80 100 120 140

) frame number
Hence, it is possible to determine the valuergf(n) at time ©

Instantn by the recursion of (32) and (33)' As a result, fro ig. 9. Comparison of actual traffic signal and the prediction obtained by

(29)-(31), the change applied to tiie, /)th element of the the PRNN-based optimal prediction for three picture types? (aictures, (b)
synaptic weight matrix is calculated by the following equatiorn? pictures, and (c)B pictures.

q
Awg(n) = 2772)\2_1@(”)7%(”)- (35) and the synaptic weights converge to their optimum values.
i=1 It thus appears that the search-then-converge scheme com-
bines the desirable features of the standard RTRL algorithm
in an LMS manner and traditional stochastic approximation

(36) algorithms.

The difficulties encountered with the RTRL algorithm may

be attributed to the fact that the learning-rate parameterB: Initialization of the PRNN

is maintained constant throughout the computation, that is,For the initialization of the synaptic weight matrii,

n(n) = no for all n. To overcome this difficulty, we would like a traditional epochwise training method [22] is applied to

to use the learning-rate annealing schedule commonly usedie module of a recurrent neural network operating with

the LMS algorithm [23] to accelerate the learning process of, samples of the input signal. A set of training pairs

the RTRL algorithm. The most well-known annealing schedulgs(n), d(n)}.”, is constructed to perform the initialization,

is the search-then-converge schedule [23], defined by where Ny = Ny — p, the desired signall(n) is equal to

(n) M0 s(n + p), and the input vectos(n) is defined by

n) =

! 142
-

s(n) = [s(n+(p = 1)), s(n)]".

wherer denotes the search time constant. In the early stagespoost function€; of the initialization, obtained by summing
adaptation involving time step small compared to the searche?(n) over a time intervall, N;], is defined by

time constantr, the learning-rate paramete(n) is approxi-

mately equal ta, and the algorithm operates essentially as £ 1
the standard constant learning-rate RTRL algorithm. For time = Ny
stepn large compared ta, the learning-rate parametg(n)

approximates a&:/n), wherec = 7. The algorithm now op- whereé&(n) = s(n + p) — 11 (n) and y1(n) denotes the first
erates as a traditional stochastic approximation algorithm [28kuron output of the module. Similarly, the change applied

The weightwy; is updated in accordance with

wkl(n + 1) = wkl(n) + Awu(n)

37)
(38)

]\‘rI

S m)

n=1

(39)
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Fig. 10. Comparison of autocorrelation function for actdal ?, and B picture sequences (solid line) and their corresponding PRNN-based predic-
tions (dashed line).

to wy; IS C. Description of the PRNN Algorithm for Optimal Adaptive
A aE; 20 NARMA Prediction Based on Satisfaction-or-Pass Strategy
Wikt = _”awkl (40) Suppose now that a set of observation samples—=
where {s(n)}27 is generated by &IARMA (p, q) process. These
Ny observation samples are referred to as an input sigfa)
0fr __ 2 Ze n Ay (n) to the PRNN. The sampling time interval; should be
dwpy Ny o dwpy selected such that the input signal captures the correlation
9 M properties of the traffic variable for each picture type of the
== Zé(n)w,ﬁl(n) (41) MPEG video signal. The PRNN is developed to predict the
I . . .
n=1 value of the traffic variable for each picture type based upon

where 7t,(n) = (9yi(n)/0ws) and - (n) = (dy;(n)/ sampled values taken from the previous measurement period.
Owr) 1kl< k< N,1<I<p+N+ fThe valuesjof the To further improve the prediction accuracy of the PRNN-based

triply indexed variables:?,(n) can be computed by the RTRLpredictqr, we will apply th(_:: strategy of satisfgction—or—_pass
algorithm with a learning-rate annealing scheme by inputtif§ modify the above-mentioned PRNN learning algorithm.
repeatedly theV; training pairs to the RNN module unifl; For example, the adjustment of the synaptic weight matrix
is less than a permitted valug. Usually, the permitted error is repeatedly evaluated by performing (32) and (34)—(36)
€7 is chosen as a value which is about 1% of the mean-squavihin a limited sampling time interval until the overall
error of the input signak(n). Note that this module operatescost function for the PRNNE(n) of (28) is less thane

as a fully connected RNN with(n) = y(n — 1). (satisfaction) which is a permitted error tolerance for the
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Fig. 11. Comparison of probability density distribution for actdal P, and B picture sequences (solid line) and their corresponding PRNN-based
predictions (dashed line).

network prediction. However, sometime&(n) may not fall adjustment on the PRNN i®(gN*). Thus, the maximum
within the prescribed value of in the limited short time total computational requirement of processing a single sample
period. Thus, when the number of adjustments exceedsecomesO(m,gN*) when the “pass” occurs for the sample.
permitted numbern,,, the adjustment is terminated (pass) evel order to reduce the computational complexity, we can apply
&(n) is still larger thare. For this case, the permitted numbethe very-large-scale integration (VLSI) circuit and parallel
of adjustments within the sampling time interval is equal teomputer techniques [27] to implement the training algorithm
m,,, where m, < (T./T.) and T. denotes the Computaﬂoan PRNN in prder to significantly rgduce the computation
time of processing a weight adjustment on the PR, time T.. For instance, the (_:omputatlonal complexity of_ an
is also called the permitted number for a single sample. Th@iustment on the PRNN using a parallel computer consisting

o
a one-step traffic prediction based on the updated value of fHe? Processors can be reduced@N") since each module

synaptic weight matrix is performed. The adjustments will b performed independently using its corresponding processor.

started again when the next new traffic sample is applied to the

network. Here, it is suggested that the value &f set to about V. SIMULATION RESULTS

1-10% of the amplitude of the traffic signafn). Note that  To verify the effectiveness of the PRNN-based optimal
the computational requirement of processing a single weighaffic predictor, a typical MPEG video source “Bike” is
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adopted in this section as an example. A PVRG-MPEG so
software codec developed at Stanford University was used
for simulation. The “Bike,” which lasts for about 5 s, is8 °
composed ofl frames, P frames, andB frames. The source g
characteristics of the “Bike” MPEG video may be found ing
[2]. Fig. 8 presents the decomposed traffic signals from the
“Bike” scene which clearly shows that the original signal can o : ! . L . l ;
be readily decomposed into threg (P, and B) components. 0 20 A e e
The traffic of I or P pictures changes rapidly as shown from @

frame 100-frame 120 in the figure because the correlation

is low during a motion or scene change period. Although 1.00
pictures exhibit the lowest traffic, the traffic @8 pictures
changes very frequently, and generates a very complicated
traffic curve. The optimal traffic predictor for each picture
type (, P, or B) is performed by the PRNN individually
because each picture type has its own traffic characteristics. (g0}
The parameters of the proposed PRNN-based optimal traffic ¢
predictor for each picture type were assumed to be identical:
in the calculations: the nonlinear predictor ordef,pp, Or
pp) Is selected as four, and the number of modylgsqp, or
ggp) is chosen as five. The forgetting factorof (28) is set to
0.9. The initial learning ratey, and the search time constant
7 of (37) are set to 0.9 anfin,/3), respectively, wheren,
denotes the permitted number of synaptic weight adjustments o0 |-
per sample and is set to 1000. It should be mentioned that
the choice of value assigned to the number of neurons per

101

040 +

autocorrelat

mo.dulle (N[,Np, or Np) is dependept on the degree .Of o0 3 s s w0 1 e m
variation in the traffic curve for each picture type. According lag in frame
to the above suggestion and observing FigA\g, Np, and (b)

Npg are chosen as 3, 3, and 4, respectively. Hence, the total

number of neurons in the PRNN is 15 (or 15 or 20) for 008

(or P or B) pictures. For example, faf or B pictures, the 007 s
computational complexity of an adjustment on the PRNN is ' ! 7 e
on the order of 5x 3* (= 405),whereas the computational 006 1

complexity of an adjustment on the conventional recurrent
network is on the order of5« 3* (x5 x 10%).Thus, the PRNN 005l |i
reduces the computational complexity by more than two orders

of magnitude. Moreover, by using a five-processor parallel % oo

computer, computational complexity per adjustment of PRNN

is reduced taD(3* (= 81)). One other design parameter that 0.03

needs to be specified is the number of pretraining samples

Ny in the initialization of the PRNN. The main purpose of 002

pretraining is merely to determine an adequate set of initial

synaptic weights. To economize on pretraining time, the size 001

of pretraining sampled/ is limited to a specified small value.

Here, Ny is set to 25. 00 T s mo w0 me me o
Fig. 9(a) shows a plot of 150 samples of the traffic signal ’ number of cells per frame

of I pictures versus the number of frames. The continuous (c)

curve is the actual traffic signal df pictures, and the dashedrig. 12. Comparison of actual traffic signal and its autocorrelation and prob-
curve is the one-step prediction performed by the nonlineayility density forB pictures (solid line) and their corresponding PRNN-based
adaptive PRNN-based predictor with; = 3. Similarly, a Predictions (dashed line) with’s = 6.

comparsion of the prediction and the actual traffic signal is

shown in Fig. 9(b) forP pictures or Fig. 9(c) forB pictures. The performance of the predictor can be characterized by a
The predictions are very close to their corresponding actysrformance index called the relative rms prediction error.
traffic signals. In addition, the prediction errors for the traffi@he relative rms prediction error is obtained by averaging the
signal of I or P or B pictures are still maintained within asquared prediction error relative to the squared value of its
specific small value, even though the scene changes occagtual traffic over a time window from the initial time point to
during a time interval between frame 100 and frame 120507, where7; denotes the frame (sampling) time interval.
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The expression of the relative rms prediction error is given Bgr the distribution is between the minimum frame size or
number of cells per frame and the maximum frame size (

1 XR/en)\? 320 cells). These distributions are bell shaped, and they may be
Erme = 150 Z s(n) ( modeled as a normal distribution. The shape of the distribution
n=l is similar for all three picture types with different means and

Moreover, in order to achieve the best prediction, the permitt¥@riances. As a goodness-of-fit test, the probability distribution
error ¢ is chosen to be a smaller value which is equal to 3§gnction (pdf) of the predicted traffic signal for each picture
of s(n). As a result, the relative (absolute) rms predictiofyPe is very close to that of the original one.

errors forl, P, and B pictures are 0.963% (2.38 cells), 2.34% Finally, we would like to show that the best approximation
(3.11 cells), and 6.73% (3.77 cells), respectively. From ttigoperty of PRNN-based prediction can be achieved when
above results, it turns out that the number of satisfactionsti® number of neurons per module of the PRNN is suffi-
greater than the number of passes inan rms Sengmiotures Ciently Iarge. As an example mentioned above, the prediction
becausel, ... = 0.953% < 3%. However, forB pictures, the performance of a PRNN-based predictor fBrpictures has
number of passes is greater than the number of satisfactidpen significantly improved wheN; is larger than 6. Fig. 12

In contrast to: of 3%, if e may be selected to be a larger valuedemonstrates better performance in curve fitting for the traffic
for example, 10% of(n), this would result in fast prediction curve, autocorrelation, and probability density distribution
action, but less prediction accuracy. In addition, from th&hen Np is equal to six.

universal approximation property of PRNN, the valuerf,s

of B pictures will become an extremely small number when VI. CONCLUSION

the number of neurons per moduig; is sufficiently large. But

it also increases the computational complexity. For exampl)e This paper has presented a new optimal prediction model
the value ofE,,,. of B pictures is reduced to 1.632% when ased on a pipelined recurrent neural network which is capable

Np isincreased to six. Thus, the computational complexity pgf predicting the MPEG video traffic by using a modification

adjustment of PRNN is on the order ofs6 6* (<6 x 10%) of thg RTRL algorlthm. The mod|f!ed RTRL' algorithm with
! . , learning-rate annealing schedules is well suited for the PRNN
using a single-processor computer dr(6:1.3 x 10°) using a

five-processor parallel computer. For this case, it is seen tﬁ%learn highly dynamic situations such as the status of MPEG
P P puter. ' video traffic. This algorithm enhances the flexibility of the

the number of satisfactions is greater than the number of pas N-based prediction model to adapt to the traffic bit-rate

for B pictures withNg = 6 since B, = 1.632% < 3%. In ) i . . . |
. luctuations via the dynamic network environment. Simulation
summary, it should be noted that the tradeoff between the .
. . - . results have shown that the PRNN approach provides accurate
prediction accuracy and computational efficiency is dependen

k real-time prediction for MPEG video traffic. This verifies
on a proper selection ef IV, andm,,. In our case, we choose . s .
pr . - the effectiveness of the best approximation capability of the
Ng = 4 for the purpose of achieving the real-time traffi

prediction, even though this would sacrifice more in prediction
accuracy. Furthermore, we choase 3% to ensure its relative
rms prediction error within an acceptably small range. Nomura
et al. [8] and Ohta [9] have indicated that the autocorrelatiorj1] D. Le Gall, “MPEG: A video compression standard for multimedia
i i i i applications,"Commun. ACMvol. 34, pp. 46-58, Apr. 1991.

function is one (?f t.he Slmple.St measur.es used to Chara(.:te”%? S.Jung and J. S. Meditch, “Adaptive prediction and smoothing of MPEG
the fcemporal variation be_hawor O_f the video sequence. Flg. 10" yideo in ATM networks,” inProc. IEEE Int. Conf. Commun. (ICC'95)
depicts the autocorrelation obtained from real MPEG video Washington, DC, June 1995, pp. 832-836.

s ; ] P. Pancha and M. ElZarki, “Bandwidth-allocation schemes for variable
data and the prgdlctmn t,ha_t is generated by PRNN. ThE” bit-rate MPEG sources in ATM networks|EEE Trans. Circuits Syst.
PRNN-based optimal prediction model demonstrates a better video Technoj.vol. 3, pp. 190-198, June 1993. _
performance in curve fitting fof and P pictures, as shown [4] J. E. Neves, L. B. Aimeida, and M. J. Leitco, “B-ISDN connection ad-

: : : ; ; mission and routing strategy with traffic prediction by neural networks,”
in Fig. 10(a) and (b), respectively. It is clear from Fig. 10(a) 3" SUPERCgM—ICg&NeW Orle;’nS’ LA Ma{, loo4.

and (b) that the autocorrelation decreases monotonically, ansl J. E. Neves, M. J. Leitco, and L. B. Almeida, “Neural networks in B-
its shape is similar for/ and P pictures. In constrast to ISDN flow control: ATM traffic prediction or network modelinglEEE

. . . Commun. Mag.vol. 33, pp. 50-56, Oct. 1995.
I and P pictures, Fig. 10(c) shows that the autocorrelationg) g maglaris et al, “Performance models of statistical multiplexing in

decreases monotonically for the first three frames, but that packet video communications/EEE Trans. Commun.vol. 36, pp.
the correlations increase slightly again at the fourth framﬁn 834-843, July 1988.

. . . . P. Senet al., “Models for packet switching of variable bit rate video
More precisely, the autocorrelation has a ripple effect in " sources"IEEE J. Select. Areas Communol. 7, pp. 865-869, June

its curve after the fourth frame. This is probably because 1989.

; ; ; ; 8] N. Nomura, T. Fuijii, and N. Ohta, “Basic characteristics of variable rate
bike motion has a natural penOd of four frames durmg thé video coding in ATM environment,IEEE J. Select. Areas Commun.

motion. Meanwhile, the PRNN produces a prediction which ol 7, pp. 752-760, June 1989. _ ,
is able to capture the autocorrelation propertyBfpictures [9] l’:lA-AORta, Phaﬂ(et \ﬁdelcéigi\l/lodelmg and Signal ProcessingNorwood,
: : . Artecl ouse, .

and dem(_)nStrateS an acceptable aPPrOX'”_‘at'O” acgur_acy. H&F D. P. Heyman, A. Tabatabai, and T. V. Lakshman, “Statistical analysis
most basic measures for characterizing bit-rate variations are and simulation study of video teleconference traffic in ATM networks,”
measures that characterize the statistical distribution. Fig. 11 IEEE Trans. Circuits Syst. Video Technalol. 2, pp. 49-59, Mar. 1992.

h th robability density distribution of bit-rate variatio 11] F. Yegenoglu, B. Jabbari, and Y. Q. Zhang, “Motion-classified auto-
shows the pro y . Yy i gressive modeling of variable bit rate videdZEE Trans. Circuit Syst.
for each of the three picture types of MPEG video. The span Video Techno).vol. 3, pp. 42-53, Feb. 1993.
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