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Optimal Nonlinear Adaptive Prediction and
Modeling of MPEG Video in ATM Networks
Using Pipelined Recurrent Neural Networks
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Abstract—This paper investigates the application of a pipelined
recurrent neural network (PRNN) to the adaptive traffic pre-
diction of MPEG video signal via dynamic ATM networks. The
traffic signal of each picture type (I, P , and B) of MPEG video
is characterized by a general nonlinear autoregressive moving
average (NARMA) process. Moreover, a minimum mean-squared
error predictor based on the NARMA model is developed to
provide the best prediction for the video traffic signal. However,
the explicit functional expression of the best mean-squared error
predictor is actually unknown. To tackle this difficulty, a PRNN
that consists of a number of simpler small-scale recurrent neural
network (RNN) modules with less computational complexity is
conducted to introduce the best nonlinear approximation capa-
bility into the minimun mean-squared error predictor model
in order to accurately predict the future behavior of MPEG
video traffic in a relatively short time period based on adaptive
learning for each module from previous measurement data, in
order to provide faster and more accurate control action to avoid
the effects of excessive load situation. Since those modules of
PRNN can be performed simultanously in a pipelined parallelism
fashion, this would lead to a significant improvement in the
total computational efficiency of PRNN. In order to further
improve the convergence performance of the adaptive algorithm
for PRNN, a learning-rate annealing schedule is proposed to
accelerate the adaptive learning process. Another advantage of
the PRNN-based predictor is its generalization from learning
that is useful for learning a dynamic environment for MPEG
video traffic prediction in ATM networks where observations may
be incomplete, delayed, or partially available. The PRNN-based
predictor presented in this paper is shown to be promising and
practically feasible in obtaining the best adaptive prediction of
real-time MPEG video traffic.

Index Terms—MPEG, nonlinear autoregressive moving aver-
age (NARMA), pipelined recurrent neural network (PRNN).

I. INTRODUCTION

FUTURE broad-band integrated services digital netorks
(B-ISDN’s) based on the asynchronous transfer mode

(ATM) principle are designed to support a wide variety of
multimedia services with diverse statistical characteristics and
quality of service (QOS) requirements at cell and call levels.
Among the various kinds of services, video service is becom-
ing an important component of multimedia communications.
A number of video coding schemes have been proposed
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for the compression of video signals that generate a high
bit-rate stream via the ATM broad-band networks. A well-
known coding scheme called the Motion Picture Expert Group
(MPEG) is emerging as a major international standard for
multimedia applications [1]. The MPEG specification was
developed specifically to allow the transmission of VCR-
quality digital images at a data rate of approximately 1–1.5
Mbits/s. IS01172 is also sometimes referred to as MPEG-1.
Another specification known as MPEG-2 has been developed
to support higher resolution images. The MPEG video com-
pression algorithm relies on two basic techniques: block-based
motion compensation for reduction in temporal redundancy
and discrete cosine transform (DCT) for spatial redundancy.
MPEG is able to reduce the raw image data by 20- to 50-
fold. Because of the conflicting requirements of random access
and highly efficient compression, three main picture types are
defined. Intrapictures (pictures) are coded without reference
to other pictures and points for random access. Predictive
( ) pictures are coded with reference to previousor
frames. Bidirectionally predictive () pictures are coded with
reference to a previous or frame, as well as the future

or frame. As a result, the MPEG encode produces
a variable bit-rate (VBR) compressed video bit stream in
which instantaneous bit rates vary widely with scene content.
Moreover, the correlation between consecutive pictures is very
low since MPEG video generates very bursty traffic that
changes dynamically on a picture-by-picture basis depending
on coding mode. The ATM technology utilizes the nature
of the traffic to effectively allocate the network resources
via statistical multiplexing. Although statistical multiplexing
provides efficient use of the network resource (e.g., bandwidth)
and enough flexibility to support multiple connections with
different bit rates, the effective statistical multiplexing requires
detailed information about the traffic of MPEG video. This
information is used to design traffic smoothing, bandwidth
allocation, and congestion control algorithms [2]–[5]. Thus,
video source modeling for traffic prediction is extremely
important for high-speed packet switching and ATM network
design. Since the channel capacity for each video source
is allocated dynamically in these networks, source models
are especially important for providing the prediction of the
required channel capacity.

Source models based on the queueing theory under the
assumption of random packet arrival were effective for earlier
packet networks carrying data generated by computers. The
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random arrival assumption of MPEG video signals, however,
may no longer be valid. In addition, another shortcoming of the
queueing models is that only steady-state results are tractable.
Therefore, two classes of video models have been proposed.
A model based on discrete-state continuous-time Markov
processes was proposed by Maglariset al. [6] for analytical
use in video sources with relatively uniform activity level (no
scene changes). This model was extended by Senet al. [7] to
encompass scene changes. However, the parameters to fit the
model to general video sources is difficult. Another model
based on autoregressive (AR) processes was proposed by
Nomuraet al. [8] and Ohta [9] to simulate the characteristics of
a single video source, which can capture the autocorrelation
property of the video signal. A number of researchers [10],
[11] have shown that the AR model closely matches an actual
video signal because coefficients of the AR model can easily be
derived from the characteristics of real video data. However,
the AR model is not suitable for the video signal with a very
bursty traffic like MPEG video and is also not appropriate for
the statistical multiplexing of VBR video signals via an ATM
network. To tackle this difficulty, Wuet al. [12] have proposed
a model for the simulation of MPEG video signals, which is
based on the AR model compensated by a projection function.
Another method of characterizing the VBR video signals via
ATM networks was proposed by Grunenfelderet al. [13]. This
model is based on an autoregressive moving average (ARMA)
process followed by a zero-memory nonlinearity and provides
satisfactory modeling accuracy for the VBR video signals.

The above-mentioned modeling methods for characterizing
the VBR video signals are used for off-line applications
to both the simulation and analysis. However, many flow
control mechanisms that dynamically regulate traffic flows
according to changing network conditions require the capa-
bility of predicting future behavior of the video traffic in
a relatively short time period (sampling period) in order to
provide faster and more accurate control actions to avoid
the effects of excessive load situation. Jung and Meditch
[2] have applied the AR model to the prediction for each
picture type of real MPEG video signals. An alternative
method based on neural networks has been proposed to further
improve the prediction accuracy of the traffic statistics of
the VBR video. Several examples of using neural network
approaches for on-line traffic prediction of VBR video signals
can be found in the literature [5], [14], [15]. Neveset al.
[4], [5] and Tarraf and Habib [14] applied the multilayered
perceptron neural networks with backpropagation training to
the traffic prediction in the flow control and traffic enforcement
mechanism for ATM networks, respectively. Recently, Chong
et al. [16] used the high-order pi–sigma neural network for the
bandwidth prediction of VBR video over an ATM network. All
of them have shown that satisfactory traffic prediction accuracy
can be achieved by those neural networks. However, those
neural networks suffer from drawbacks of slow convergence
and unpredictable solutions during learning. To overcome this
difficulty, an alternative architecture to the traffic prediction of
MPEG video with the flexibility to adapt to a changing ATM
network environment is based on recurrent neural networks
(RNN’s). An RNN is well suited for the adaptive prediction

of a nonstationary time series [17]. Several algorithms have
been proposed for the training of the RNN’s. The most widely
known algorithm is the real-time recurrent learning (RTRL)
algorithm, proposed by Williams and Zipser [18], that can be
used to update the synaptic weights of the RNN in real time.

In Section II, we will show the traffic for each picture
type of MPEG video signal can be characterized by a general
nonlinear autoregressive moving average (NARMA) process.
According to the theroy of prediction [19], [20], the minimum
mean-squared error traffic predictor is the conditional mean
which can be expressed in terms of the functional expression
of the NARMA process. However, the explicit functional
expression of the NARMA model is actually unknown. Conner
et al. [21] have introduced a recurrent neural network (RNN)
implementation to approximate the NARMA-based condi-
tional mean predictor, and have shown the superior accuracy
of its prediction. Section III describes the procedure for the
approximation of a NARMA-based optimal traffic predictor
using the recurrent network. However, it is impossible to
achieve the RNN-based prediction within an acceptably small
measurement time interval for the purpose of adapting to
the dynamic environment since a sufficiently large number
of neurons are required to maintain the prediction accuracy,
but also increase its computational complexity. To tackle this
difficulty, in Section IV, a pipelined recurrent neural network
(PRNN), proposed by Haykin and Li [22], is introduced
to implement the NARMA-based optimal traffic predictor
with low complexity. Moreover, we would like to apply the
learning-rate annealing schedules [23] to the PRNN in order
to improve its convergence performance further. Finallly, in
Section V, we present an experimental study of the PRNN
applied to the traffic prediction of a typical MPEG video
signal.

II. SOURCE CHARACTERISTICS AND TRAFFIC

PREDICTION MODEL OF MPEG VIDEO SIGNALS

The MPEG video international standard [1] specifies the
coded representation of the video data. The video source
coding is based on motion-compensated hybrid DCT coding
which employs two basic techniques: motion compensation
for the reduction of temporal redundancy and DCT transform
compression for the reduction of spatial redundancy. In order
to achieve the highly efficient compression and to meet the
conflicting requirements of random acess, the input video is di-
vided into units of group-of-pictures (GOP’s) consisting of an
intra ( ) picture, coded without reference to other pictures, an
arrangement of predictive () pictures, coded with reference to
previous ( or ) pictures, and bidirectionally predictive ()
pictures, coded with reference to an immediate previous (or

) picture, as well as an immediate future (or ) picture.
The picture at the beginning of a GOP serves as a basic
entry point to facilitate random seek or channel switching,
and also provides coding robustness to transmission error, but
is coded with only moderate compression to reduce the spatial
redundancies. pictures are coded more efficiently using
motion-compensated prediction from a pastor picture,
and are generally used as a reference for further prediction.
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Fig. 1. Example of MPEG GOP.

pictures provide the highest degree of compression, but
require both past and future reference pictures for motion
compensation. It should be mentioned that pictures are
never used as references for prediction. A GOP is defined by
its length which is the distance between pictures.
An example of a GOP in MPEG is presented in Fig. 1,
where , , and denote picture encoding in the intrapicture
mode, predicted mode, and bidirectionally predicted mode,
respectively. The GOP sequence of Fig. 1 with 6
is .

The macroblocks of 16 16 pixels are the basic coding
units for the MPEG algorithm. Each macroblock is divided
into four blocks, where each block contains 8 8 pixels.
The main extension from monochrome video to color is the
addition of two 8 8 chrominace blocks to the macroblock.
A row of macroblocks that makes up a horizontal strip in the
image is called a slice, and a number of slices are combined to
form a picture. The coding mode of each macroblock within a
specific picture depends on its picture type. Forpictures, a
discrete cosine transform (DCT) is performed on each block.
The resulting two-dimensional block of DCT coefficients is
quantized and scanned in a zig-zag order to convert it into a
one-dimensional string of quantized DCT coefficients. Run-
length coding is used for the quantized coefficient data.
The predicted pictures ( and ) use motion-compensated
prediction of the contents of the macroblock based on past or
future reference pictures. This prediction is subtracted from the
actual data in the current macroblock to form an error signal.
The prediction error is coded like the intracoded macroblocks.

None of the analytical models available today can ade-
quately represent VBR MPEG video traffic. Here, we choose
a 5-s (150 picture) video traffic signal from a “Bike” scene of
352 240 pixels as a testbed for our study. It is coded by
an MPEG compression technique. Usually, the main unit of
measure for video traffic has been the number of bits generated
per picture. In ATM network application, the bits generated
by the VBR MPEG encoder are packetized into 53-byte ATM
cells with a user payload size of 44 bytes plus 9 bytes of
protocol overhead. Fig. 2 shows the MPEG coded Bike video
traffic sequence measured in cells per picture, denoted by
at time instant Observing this figure, the MPEG video
encoder generates very bursty traffic dynamically on a picture-
by-picture basis. As one can see, a periodic peak is from

pictures, the medium traffic is from pictures, and the
lowest traffic is from pictures. The dynamic behavior of
Fig. 2 is a general characteristic of the MPEG video traffic
sequence, which is independent of the GOP sequence because
the traffic depends only on the coding mode or picture type,
not on the sequence. Jung and Meditch [2] have shown that
MPEG video sequences of different GOP sequences have

Fig. 2. Traffic signal of MPEG video: “Bike” Scene.

similar characteristics. In this paper, we develop an adaptive
prediction scheme which is able to fully characterize the
general feature and behavior of MPEG video sequences.

A. Optimal Traffic Prediction Model for MPEG Video
Signals Based on Nonlinear ARMA Models

The main purpose of constructing the traffic models for the
bit-rate variability of video is to create an aid for design-
ing the future ATM communication networks that will carry
multiplexed video signals. The autoregressive (AR) process
is one of the simplest models which has proven to be very
effective in predicting video signals with high correlation
[8], [9]. However, this model is suitable for less bursty
traffic like teleconferencing video, but not for very bursty
traffic like MPEG video. Additionally, it is not particularly
appropriate for evaluating statistical multiplexing. To tackle
this difficulty, Grunenfelderet al. [13] describe a method of
characterizing VBR video sources in ATM networks as an
ARMA followed by a zero-memory nonlinearity (ZMNL).
They have demonstrated that the ARMA process is suited to
VBR video codes and ATM traffic. Actually, their model is a
NARMA process. In this section, we would like to investigate
the general NARMA models of MPEG video signals. Since
each picture type has its own traffic characteristics, it is
suggested that each picture type (, , or ) is modeled
individually and can be expressed as

(1)

where is the traffic variable for picture type ofat time
instant is an unknown smooth nonlinear function, and

is the unmodeled system error at time instantIt is
assumed that and that
the variance of is In addition, the nonlinear function

has a nonzero constant term if is not a zero-mean
process. Equation (1) is called a where
and are positive integers [20].
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For simplified analysis, we neglect the index “” of (1) in
the remainder of this paper. From the model
of (1), the minimum mean-squared error predictor based on the
infinite past of observations is the conditional mean [19], [20]

(2)

Moreover, assume that the model is invert-
ible so that there is a function such that

(3)

In other words, the current traffic variable may be
expressed as a function in terms of the infinite past of traffic
variables Thus, the in (1)
becomes a function of

(4)

Since are specified by (4) in terms of present and
past (relative to time traffic variables, the conditional
mean predictor of (2) becomes

(5)

Note that the predictor has a mean-squared error
However, one cannot compute both (4) and (5) directly

because there are, in practice, only the finite past observations
available in the calculation. Therefore, Connoret al. [21] have
shown that it is reasonable to approximate the conditional
mean predictor of (5) by the following recursive algorithm:

(6)

where the prediction errors are defined by

(7)

with appropriate initial conditions discussed in [20].
Unfortunately, the main problem of performing the recursive

algorithm (6) and (7) is that the explicit form of the nonlinear
function is actually unknown. Connoret al. [21] have
shown that the recursive formulation of the conditional mean
predictor can be approximated by a class of recurrent neural
networks within an acceptable accuracy. In the next section,
we will investigate the applications of recurrent networks to
the determination of the optimal NARMA predictor.

III. D ETERMINATION OF OPTIMAL NARMA
PREDICTOR USING RECURRENT NEURAL NETWORKS

RNN’s are neural networks that have feedback. RNN’s are
highly nonlinear dynamical systems which exhibit a rich and
complex dynamical behavior. Moreover, the RNN allows any
neuron in the network to be connected to any other neuron in
the network. They have been proven better than traditional sig-
nal processing methods in modeling and predicting nonlinear

Fig. 3. Architectural graph of a fully connected recurent network forp = 2

and N = 4:

and chaotic time series [17]. Connoret al. [21] have indicated
that RNN’s are well suited for the nonlinear prediction of
NARMA process. There are a number of types of recurrent
networks that have been proposed by several researchers
[24], [25]. In this paper, we apply the most widely known
architecture, proposed by Williams and Zipser [18], to time
series prediction. A network with this particular architecture
is also called the fully connected recurrent network. Consider
a Williams–Zipser RNN consisting of a total of neurons
with external input connections. Let denote the
external input applied to the network at discrete timeand
let denote the corresponding vector of neuron
outputs produced one step later at time The input vector

and one-step delayed output vector are concatenated
to form the vector whose th element is
denoted by Let denote the set of indexesfor which

is an external input, and let denote the set of indexes
for which is the output of a neuron. The indexes on

and are chosen to correspond to those ofso that

if
if

(8)

Generally, the RNN has two distinct layers, i.e., a con-
catenated input–output layer and a processing layer. This is
illustrated in Fig. 3 for and The network is
fully interconnected in that there are a total of forward
connections and feedback connections. Let denote the

synaptic weight matrix. An element of this
matrix represents the weight of the connection from theth
node to the th neuron. The net internal activity of neuron
at time for is computed by

(9)

where is the set union of sets and At time
the output of neuron is computed by passing through
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Fig. 4. Recurrent neural network implementation forNARMA (p; q) prediction model with prediction error input andN neurons.

a sigmoidal function to obtain

(10)

To implement the prediction model by re-
current neural networks, additional input nodes should
be added to the network. The RNN implementation a of

predictor is illustrated in Fig. 4. Let the first
neuron output be equal to the conditional mean predictor

The prediction error at time is obtained by
subtracting from the external input By inputting

into a tapped-delay-line filter with delay elements, it
yields input nodes at time

where
are the additional input nodes. Note that the indexes in the
network inputs are arranged according to Fig. 4. Similarly,
external inputs to the network can be
created by inputting into a tapped-delay-line filter with

delay elements. Thus, In
addition, the remaining neuron outputs

are fed back to its input. Finally, to accommodate a bias
for each neuron, besides the inputs, we have
included one other input whose value is always maintained
at 1. Based on the above discussion, the explicit form of
network input at time can be expressed as
follows:

(11)

Hence, the recurrent neural network with prediction error
input provides a nonlinear approximation to of (6)

given by

(12)

The synaptic weights ’s are estimated from a set of
training samples thereby obtaining an es-
timate of where denotes the number of training
samples. Estimates are obtained by minimizing the sum of
the squared prediction errors However,
the formulation of the RNN with prediction error inputs of
(12) cannot apply the well-known RTRL algorithm [18] to
determine the appropriate synaptic weights directly. Therefore,
we would like to reformulate the recursive formulation of
(6) and (7) as a new function in terms of the delayed
traffic variables and the past approximate
conditional mean prediction values as
follows:

(13)
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Fig. 5. Recurrent neural network implementation forNARMA(p; q) prediction model with normal input andN neurons.

Indeed, the expression of (13) is an alternative formulation of
the conditional mean predictor for the process.
For the RNN implementation of the predictor
model of (13), the recurrent network topology is shown in
Fig. 5, and its inputs are given by

(14)

The resulting network topology is well suited to the RTRL
algorithm. Similarly, an RNN nonlinear approximation
to of (13) is written as

(15)

Li [26] has shown that a recurrent neural network of (15)
with a sufficiently large number of neurons and appropriate
weights can be found by performing the RTRL algorithm
such that the sum of the squared prediction errors for
an arbitrary In other words, where

denotes the norm with respect to the training
set Moreover, the RNN has the ability to generalize
learning to what has never been seen [18]. This is called

the generalization from learning. This is particularly useful
for learning a dynamic environment for traffic prediction of
a VBR video signal via ATM networks where observations
may be incomplete, delayed, or partially available. Thus,

where denotes the set union of and
a set of data that does not belong to and The
RTRL algorithm is capable of nonlinear adaptive prediction of
nonstationary signals, and does not requirea priori knowledge
of time dependence among the input data. However, a major
limitation of the RTRL algorithm is that its computational
complexity is proportional to where is the total
number of neurons in the network. Since a sufficiently large
number of neurons are required to maintain the prediction
accuracy of the RNN-based NARMA predictor, it seems
infeasible to achieve the RNN-based prediction within an
acceptably small time interval. To tackle this difficulty, Haykin
and Li [22] proposed a new RNN structure called the PRNN
that is an extension of the conventional RTRL algorithm. The
design of such a network is based on the principle of divide
and conquer, that is, a complex RNN with a large number
of neurons can be divided into a number of simpler small-
scale RNN modules with less computational complexity. In the
following section, we apply the PRNN structure to improve the
computational performance of the NARMA conditional mean
predictor. It should be mentioned that this section provides the
fundamentals of generalization from learning for PRNN since,
from Figs. 5 and 6, PRNN is an extended pipeline structure
of RNN-based NARMA predictor with normal input.

IV. L OW-COMPLEXITY PIPELINED RECURRENT NEURAL

NETWORKS FOROPTIMAL ADAPTIVE NARMA PREDICTORS

WITH LEARNING-RATE ANNEALING SCHEDULES

The PRNN shown in Fig. 6 is composed of identical
modules, each of which is designed as a fully connected
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Fig. 6. Pipelined recurrent neural network withq modulus.

recurrent network with neurons. Each module has
neuron outputs fed back to its input, and the remaining neuron
output (the first neuron output) is applied directly to the next
module. In the case of module a one-unit delayed version
of the module’s output is assumed to be fed back to the input.
Information flow into and out of the modules proceeds in a
synchronized fashion. Fig. 7 shows the detailed structure of
module with neurons and external inputs. All of the
modules have exactly the same number of external inputs
and internal feedback signals. Note that for moduleits
module output acts as an external feedback signal to itself.
In addition, all of the modules of PRNN are designed to
have exactly the same synaptic weight
matrix The updated value of the synaptic weight matrix

is computed using the RTRL algorithm [18]. Haykin and
Li [22] have demonstrated that the PRNN is able to provide
satisfactory accuracy of the nonlinear adaptive prediction of
a nonstationary signal and time series process. An important
feature of the PRNN is its high computational efficiency.
Specifically, the total computational requirement of processing
a single sample on a PRNN is arithmetic operations.
However, this is to be contrasted with the computational
requirement of a corresponding structure involving the use
of a conventional RNN with neurons, that is,
arithmetic operations. Thus, the computational savings made
possible by the use of PRNN can indeed be enormous for large

In order to further improve the convergence performance of
the RTRL algorithm for PRNN, we would like to redesign the
RTRL algorithm using the learning-rate annealing schedules
[23]. First, an overview of PRNN is summarized as follows.

For the th module, its external input at theth time instant
is described by the vector

(16)

where is the nonlinear prediction order according to the
process. The other input vector applied to

module is the feedback vector

(17)

where is the first neuron’s output in the adjacent
module and denotes the internal feedback signal

Fig. 7. Detailed architecture of modulei of the PRNN.

consisting of the one-step delayed output signals of neurons
in module and can be written as

(18)

Note that denotes feedback signals that originate from
module itself. The last module of the PRNN operates as a
standard fully connected recurrent neural network. Thus,
is written as

(19)

Additionally, the fixed input 1 is included for the provision
of a threshold applied to each neuron in moduleBased on the
above discussion, an input vector consisting of total
input signals applied to moduleis represented by

(20)
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Thus, the th element of is represented by

(21)

Thus the output of neuron in module is given by

(22)

where the net internal activity is calculated by

(23)

Finally, the PRNN prediction at time instantis defined by
the output of the first neuron of the first module as shown by

(24)

Note that
The pipeline recurrent network is characterized by a nested

nonlinearity. Since all of the neurons have a common nonlinear
activation function the functional dependence of the
output of the network can be expressed as
follows:

(25)

where we have omitted the dependence on the synaptic weight
matrix that is common to all of the modules, and

The expression of (25) is indeed the nested
nonlinearity that gives the PRNN its enhanced computing
power compared to the conventional recurrent network. More-
over, the scheme of nested nonlinear functions described in
(25) is unusual in the classical approximation theory. Indeed,
it is a universal approximator in the sense that a PRNN with
appropriate training can approximate any nonlinear ARMA
process to any desired degree of accuracy, provided that
sufficiently many hidden neurons are available [26].

Certainly, is interpreted as the one-step prediction
of computed by theth module whose functional de-
pendence can be described by a complete dependence form
shown as follows:

(26)

where is the synaptic weight matrix of
module and is the input vector defined in (17) and

(19). The desired response for moduleat time instant is
Hence, the prediction error for

module is given by

(27)

Thus, an overall cost function for the PRNN is defined by

(28)

where is an exponential forgetting factor that lies in the range
of The inverse of is a measure of the memory
of the PRNN. Adjustments to the synaptic weight matrixof
each module is made to minimize in accordance with the
RTRL algorithm. In order to further speed up the convergence
rate, in the next section, a RTRL algorithm incorporated with
learning-rate annealing schedules is presented to achieve the
goal.

A. Real-Time Recurrent Learning (RTRL) Algorithm
with Learning-Rate Annealing Schedules

For the case of a particular weight its incremental
change made at time according to the method of
steepest descent is given by

(29)

where is the learning-rate parameter. From (27)–(29), we
note that

(30)

In (30), the partial derivative is calculated
using a modification of the RTRL algorithm [18]. A quadruply
indexed set of variables is introduced to characterize
the RTRL algorithm, and each element of the set is given by

(31)

Note that The RTRL algorithm is used
to recursively compute the values of for every time step
and all appropriate and as follows:

(32)

with initial conditions

(33)

where is a Kronecker delta equal to one when
and zero otherwise; and are defined in (21) and (23),
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Fig. 8. Traffic signals of the decomposed three pictures (I, P , and B)
resulting from MPEG video “Bike” scene.

respectively. From (10), we find that the derivative is
given by

(34)

Hence, it is possible to determine the value of at time
instant by the recursion of (32) and (33). As a result, from
(29)–(31), the change applied to the th element of the
synaptic weight matrix is calculated by the following equation:

(35)

The weight is updated in accordance with

(36)

The difficulties encountered with the RTRL algorithm may
be attributed to the fact that the learning-rate parameter
is maintained constant throughout the computation, that is,

for all To overcome this difficulty, we would like
to use the learning-rate annealing schedule commonly used in
the LMS algorithm [23] to accelerate the learning process of
the RTRL algorithm. The most well-known annealing schedule
is the search-then-converge schedule [23], defined by

(37)

where denotes the search time constant. In the early stages of
adaptation involving time step small compared to the search
time constant the learning-rate parameter is approxi-
mately equal to and the algorithm operates essentially as
the standard constant learning-rate RTRL algorithm. For time
step large compared to the learning-rate parameter
approximates as where The algorithm now op-
erates as a traditional stochastic approximation algorithm [23],

(a)

(b)

(c)

Fig. 9. Comparison of actual traffic signal and the prediction obtained by
the PRNN-based optimal prediction for three picture types: (a)I pictures, (b)
P pictures, and (c)B pictures.

and the synaptic weights converge to their optimum values.
It thus appears that the search-then-converge scheme com-
bines the desirable features of the standard RTRL algorithm
in an LMS manner and traditional stochastic approximation
algorithms.

B. Initialization of the PRNN

For the initialization of the synaptic weight matrix
a traditional epochwise training method [22] is applied to
one module of a recurrent neural network operating with

samples of the input signal. A set of training pairs
is constructed to perform the initialization,

where the desired signal is equal to
and the input vector is defined by

(38)

A cost function of the initialization, obtained by summing
over a time interval is defined by

(39)

where and denotes the first
neuron output of the module. Similarly, the change applied
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(a) (b)

(c)

Fig. 10. Comparison of autocorrelation function for actualI, P , and B picture sequences (solid line) and their corresponding PRNN-based predic-
tions (dashed line).

to is

(40)

where

(41)

where and
The values of the

triply indexed variables can be computed by the RTRL
algorithm with a learning-rate annealing scheme by inputting
repeatedly the training pairs to the RNN module until
is less than a permitted value Usually, the permitted error

is chosen as a value which is about 1% of the mean-square
error of the input signal Note that this module operates
as a fully connected RNN with

C. Description of the PRNN Algorithm for Optimal Adaptive
NARMA Prediction Based on Satisfaction-or-Pass Strategy

Suppose now that a set of observation samples
is generated by a process. These

observation samples are referred to as an input signal
to the PRNN. The sampling time interval should be
selected such that the input signal captures the correlation
properties of the traffic variable for each picture type of the
MPEG video signal. The PRNN is developed to predict the
value of the traffic variable for each picture type based upon
sampled values taken from the previous measurement period.
To further improve the prediction accuracy of the PRNN-based
predictor, we will apply the strategy of satisfaction-or-pass
to modify the above-mentioned PRNN learning algorithm.
For example, the adjustment of the synaptic weight matrix
is repeatedly evaluated by performing (32) and (34)–(36)
within a limited sampling time interval until the overall
cost function for the PRNN of (28) is less than
(satisfaction) which is a permitted error tolerance for the
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(a) (b)

(c)

Fig. 11. Comparison of probability density distribution for actualI, P , and B picture sequences (solid line) and their corresponding PRNN-based
predictions (dashed line).

network prediction. However, sometimes, may not fall
within the prescribed value of in the limited short time
period. Thus, when the number of adjustments exceeds a
permitted number the adjustment is terminated (pass) even

is still larger than For this case, the permitted number
of adjustments within the sampling time interval is equal to

where and denotes the computation
time of processing a weight adjustment on the PRNN.
is also called the permitted number for a single sample. Thus,
a one-step traffic prediction based on the updated value of the
synaptic weight matrix is performed. The adjustments will be
started again when the next new traffic sample is applied to the
network. Here, it is suggested that the value ofis set to about
1–10% of the amplitude of the traffic signal Note that
the computational requirement of processing a single weight

adjustment on the PRNN is Thus, the maximum
total computational requirement of processing a single sample
becomes when the “pass” occurs for the sample.
In order to reduce the computational complexity, we can apply
the very-large-scale integration (VLSI) circuit and parallel
computer techniques [27] to implement the training algorithm
of PRNN in order to significantly reduce the computation
time For instance, the computational complexity of an
adjustment on the PRNN using a parallel computer consisting
of processors can be reduced to since each module
is performed independently using its corresponding processor.

V. SIMULATION RESULTS

To verify the effectiveness of the PRNN-based optimal
traffic predictor, a typical MPEG video source “Bike” is
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adopted in this section as an example. A PVRG-MPEG
software codec developed at Stanford University was used
for simulation. The “Bike,” which lasts for about 5 s, is
composed of frames, frames, and frames. The source
characteristics of the “Bike” MPEG video may be found in
[2]. Fig. 8 presents the decomposed traffic signals from the
“Bike” scene which clearly shows that the original signal can
be readily decomposed into three (, , and ) components.
The traffic of or pictures changes rapidly as shown from
frame 100–frame 120 in the figure because the correlation
is low during a motion or scene change period. Although
pictures exhibit the lowest traffic, the traffic of pictures
changes very frequently, and generates a very complicated
traffic curve. The optimal traffic predictor for each picture
type ( , or ) is performed by the PRNN individually
because each picture type has its own traffic characteristics.
The parameters of the proposed PRNN-based optimal traffic
predictor for each picture type were assumed to be identical
in the calculations: the nonlinear predictor order or

is selected as four, and the number of modules or
is chosen as five. The forgetting factorof (28) is set to

0.9. The initial learning rate and the search time constant
of (37) are set to 0.9 and respectively, where

denotes the permitted number of synaptic weight adjustments
per sample and is set to 1000. It should be mentioned that
the choice of value assigned to the number of neurons per
module or is dependent on the degree of
variation in the traffic curve for each picture type. According
to the above suggestion and observing Fig. 8, and

are chosen as 3, 3, and 4, respectively. Hence, the total
number of neurons in the PRNN is 15 (or 15 or 20) for
(or or ) pictures. For example, for or pictures, the
computational complexity of an adjustment on the PRNN is
on the order of 5 3 (= 405),whereas the computational
complexity of an adjustment on the conventional recurrent
network is on the order of 5 3 5 10 ).Thus, the PRNN
reduces the computational complexity by more than two orders
of magnitude. Moreover, by using a five-processor parallel
computer, computational complexity per adjustment of PRNN
is reduced to One other design parameter that
needs to be specified is the number of pretraining samples

in the initialization of the PRNN. The main purpose of
pretraining is merely to determine an adequate set of initial
synaptic weights. To economize on pretraining time, the size
of pretraining samples is limited to a specified small value.
Here, is set to 25.

Fig. 9(a) shows a plot of 150 samples of the traffic signal
of pictures versus the number of frames. The continuous
curve is the actual traffic signal of pictures, and the dashed
curve is the one-step prediction performed by the nonlinear
adaptive PRNN-based predictor with Similarly, a
comparsion of the prediction and the actual traffic signal is
shown in Fig. 9(b) for pictures or Fig. 9(c) for pictures.
The predictions are very close to their corresponding actual
traffic signals. In addition, the prediction errors for the traffic
signal of or or pictures are still maintained within a
specific small value, even though the scene changes occurs
during a time interval between frame 100 and frame 120.

(a)

(b)

(c)

Fig. 12. Comparison of actual traffic signal and its autocorrelation and prob-
ability density forB pictures (solid line) and their corresponding PRNN-based
predictions (dashed line) withNB = 6:

The performance of the predictor can be characterized by a
performance index called the relative rms prediction error.
The relative rms prediction error is obtained by averaging the
squared prediction error relative to the squared value of its
actual traffic over a time window from the initial time point to
150 where denotes the frame (sampling) time interval.
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The expression of the relative rms prediction error is given by

(42)

Moreover, in order to achieve the best prediction, the permitted
error is chosen to be a smaller value which is equal to 3%
of As a result, the relative (absolute) rms prediction
errors for , and pictures are 0.963% (2.38 cells), 2.34%
(3.11 cells), and 6.73% (3.77 cells), respectively. From the
above results, it turns out that the number of satisfactions is
greater than the number of passes in an rms sense forpictures
because However, for pictures, the
number of passes is greater than the number of satisfactions.
In contrast to of 3%, if may be selected to be a larger value,
for example, 10% of this would result in fast prediction
action, but less prediction accuracy. In addition, from the
universal approximation property of PRNN, the value of
of pictures will become an extremely small number when
the number of neurons per module is sufficiently large. But
it also increases the computational complexity. For example,
the value of of pictures is reduced to 1.632% when

is increased to six. Thus, the computational complexity per
adjustment of PRNN is on the order of 5 6 6 10 )
using a single-processor computer or 6 1.3 10 ) using a
five-processor parallel computer. For this case, it is seen that
the number of satisfactions is greater than the number of passes
for pictures with since In
summary, it should be noted that the tradeoff between the
prediction accuracy and computational efficiency is dependent
on a proper selection of and In our case, we choose

for the purpose of achieving the real-time traffic
prediction, even though this would sacrifice more in prediction
accuracy. Furthermore, we choose to ensure its relative
rms prediction error within an acceptably small range. Nomura
et al. [8] and Ohta [9] have indicated that the autocorrelation
function is one of the simplest measures used to characterize
the temporal variation behavior of the video sequence. Fig. 10
depicts the autocorrelation obtained from real MPEG video
data and the prediction that is generated by PRNN. The
PRNN-based optimal prediction model demonstrates a better
performance in curve fitting for and pictures, as shown
in Fig. 10(a) and (b), respectively. It is clear from Fig. 10(a)
and (b) that the autocorrelation decreases monotonically, and
its shape is similar for and pictures. In constrast to

and pictures, Fig. 10(c) shows that the autocorrelation
decreases monotonically for the first three frames, but that
the correlations increase slightly again at the fourth frame.
More precisely, the autocorrelation has a ripple effect in
its curve after the fourth frame. This is probably because
bike motion has a natural period of four frames during the
motion. Meanwhile, the PRNN produces a prediction which
is able to capture the autocorrelation property ofpictures
and demonstrates an acceptable approximation accuracy. The
most basic measures for characterizing bit-rate variations are
measures that characterize the statistical distribution. Fig. 11
shows the probability density distribution of bit-rate variation
for each of the three picture types of MPEG video. The span

for the distribution is between the minimum frame size or
number of cells per frame and the maximum frame size (
320 cells). These distributions are bell shaped, and they may be
modeled as a normal distribution. The shape of the distribution
is similar for all three picture types with different means and
variances. As a goodness-of-fit test, the probability distribution
function (pdf) of the predicted traffic signal for each picture
type is very close to that of the original one.

Finally, we would like to show that the best approximation
property of PRNN-based prediction can be achieved when
the number of neurons per module of the PRNN is suffi-
ciently large. As an example mentioned above, the prediction
performance of a PRNN-based predictor forpictures has
been significantly improved when is larger than 6. Fig. 12
demonstrates better performance in curve fitting for the traffic
curve, autocorrelation, and probability density distribution
when is equal to six.

VI. CONCLUSION

This paper has presented a new optimal prediction model
based on a pipelined recurrent neural network which is capable
of predicting the MPEG video traffic by using a modification
of the RTRL algorithm. The modified RTRL algorithm with
learning-rate annealing schedules is well suited for the PRNN
to learn highly dynamic situations such as the status of MPEG
video traffic. This algorithm enhances the flexibility of the
PRNN-based prediction model to adapt to the traffic bit-rate
fluctuations via the dynamic network environment. Simulation
results have shown that the PRNN approach provides accurate
real-time prediction for MPEG video traffic. This verifies
the effectiveness of the best approximation capability of the
PRNN.
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