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Student : Shih-Hung Yang Advisor : Dr. Yon-Ping Chen

Institute of Electrical and Control Engineering

National Chiao Tung University

Abstract

This dissertation proposes a feedforward-neural-network-aided grey model
(FNAGM) and its related on-line parameter. learning as well as structure learning
algorithms. The FNAGM uses a first-order single variable grey model (GM(1,1)) to
predict signal and adopts a feedforward neural network (NN) to compensate the
prediction error of GM(1,1). Furthermore; an on-line batch training is proposed to
update the weights of NN in real-time. Thus, FNAGM can precisely predict and adapt
itself to the dynamical change of the signal. To design the structure of FNAGM
efficiently, a neuron-based structure learning, called symbiotic structure learning
algorithm (SSLA), is proposed to establish the topology of NN. The SSLA constructs a
neuron population and then builds a network population from the neuron population,
and it can arbitrarily develop cascade NNs and feedforward NNs in an easy way. Further,
SSLA carries out neuron crossover and mutation on the neuron population according to
the idea of symbiotic evolution. The evolved FNAGM is applied to predict the signal
and continuously adapt itself to the environment by the on-line batch training. On the

other hand, a network-based structure learning, called evolutionary constructive and



pruning algorithm (ECPA), is proposed to design the topology of NN by incorporating
constructive and pruning methods in an evolutionary way. The ECPA starts from a set of
NNs with the simplest possible structures, one hidden neuron connected to an input
node. It then adds hidden neurons and connections by using the network crossover and
mutation to increase the processing capabilities of NNs. Furthermore, a cluster-based
pruning is proposed to prune insignificant neurons in a stochastic way. An age-based
survival selection is proposed to delete old NNs with potentially complex structures and
then introduce new NNs with the simplest possible structures. Numerical and
experimental results of prediction problems show the effectiveness and feasibility of the

proposed methods.
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Chapter 1  Introduction

1.1 Motivation

Prediction, computing the trends of time series in the future, is a type of problem
generally encountered in many research fields. Many numerical algorithms that can
accurately predict time series have been proposed, including the autocorrelation method
[1], covariance method [2], grey theory [3], and Kalman filter [4]. However, these
methods require suitable system equation and initial values which are designed
heuristically [5], [6]. Recently, investigators-have focused on data-driven approaches
based on neural networks (NNs) due to their learning abilities and powerful prediction
capability so that the implicit nonlinear relationships can be extracted from historical
data without human experience [7]-[10].

NNs were first developed to imitate biological neural systems and are organized
into several interconnected simple processing units called neurons or nodes. NNs learn
from examples and historical data, even when the input-output relationships are
unknown [11]. Thus, NNs can accurately solve problems without prior knowledge when
sufficient observed data are supplied. This property is useful for evaluating numerous
forecasting problems because acquiring data is easier than making good theoretical
guesses about certain systems.

Two important issues are discussed in NN research: parameter learning and
structure learning. The parameter learning basically consists of two classes of learning

strategies, called batch training and on-line training. The batch training adjusts the



network by using a large number of prepared training data and performs weight search
in a fixed error surface. Although the weight search converges, it is easily trapped in a
local minimum. In order to achieve high forecasting accuracy, however, a large amount
of data for successful training is needed and lots of training time is also required. It,
therefore, may not be suitable for some requirements, such as real-time operations,
limited memory size or on-line adaptation necessity [12]-[15]. As opposed to the batch
training, on-line training adjusts NN according to a single training pattern, a pair of
input and target, at a time. It is particularly adequate for the purpose to simultaneously
execute signal prediction and learn to improve the performance [16],[17]. Although the
on-line training usually takes much less computation time to adjust the network than the
batch training does, the former is not easy to achieve accurate solutions as well as the
latter. Therefore, design of an appropriate on-line training algorithm is necessary to
perform on-line prediction and continuous adaptation for real-time application.

Another important issue of NN 1S structure selection, which involves determining
an appropriate structure to accurately fit the underlying function described by the
training data [18]. A structure that is too large may precisely fit the training data but
may provide poor generalization due to overfitting of the training data. Conversely, an
architecture that is too small saves computational costs but may not possess sufficient
processing ability to accurately approximate the underlying function. Therefore,
structure selection should consider both network complexity and goodness of fit. This
dissertation proposes two structure learning algorithms: symbiotic structure learning
algorithm (SSLA) and evolutionary constructive and pruning algorithm (ECPA). SSLA,
a neuron-based structure learning approach, can automatically determine both the
number of hidden neurons and topology of NN through a symbiotic evolution. ECPA, a

network-based structure learning approach, can evolve NN through evolutionary
2



constructive and pruning approaches. Results of this dissertation demonstrate the

effectiveness of the proposed methods.

1.2  Literature Survey

This section presents the literature survey of on-line parameter learning and

structure learning.

1.2.1 On-Line Parameter Learning

On-line parameter learning is one of the most useful and popular methods for many
real-world applications. It continuously adapts model parameters to the environment
after each training pattern is presented at each time step. For time series prediction tasks,
NNs are used to predict the next data point according to the last finite number of data
points. The training patterns are presented in their natural order and maintain their
natural dependencies. The on-line parameter learning constructs a stochastic error
surface in nature due to the use of pattern-by-pattern updating of weights. This training
seems to introduce some sort of randomness and help escape from local minimum [19],
[20]. Mathematically, there is no guarantee of its stability or the convergence of the
weight search. In [21], researcher found that if the learning rate is small enough, the
weight search would converge. Basically, on-line gradient descent has been the first
effective approach for training NNs through error backpropagation [22]. However, one
difficulty using on-line learning for prediction applications is the sensitivity to the
selection of training parameters and training patterns. The other difficulty is to
determine the Hessian on-line when only a single training example is available at one

time step [13],[23]. This is especially undesirable when the prediction accuracy is



requirement of using on-line approaches.

Aside from NNs, grey theory is used to cope with the systems with partial
information or dynamic model [24]. Based on the grey theory, the first-order single
variable grey model (GM(1,1)) has been developed and applied to various on-line
prediction problems, such as power demand forecasting [1], electricity demand
forecasting [25] and control of a humanoid robot [26]. GM(1,1) requires only a few
number of historical data to adapt its parameters on-line and is used to predict
exponential signals in real time. However, it is inadequate to predict other types of
signals. In [27], Advanced GM(1,1) adopts the Lagrange polynomial to estimate the
prediction error of GM(1,1) and indeed improves the prediction.

Based on the approach of “mixture of experts”, some researchers have integrated
GM(1,1) and NN to enhance the prediction.according to their complementary merits.
Generally, the ways to combine GM(1,1) and NN can be categorized into four classes
[28]: simple combination, serial combination, strengthening grey system with neural
network, building neural network with the aid of grey system. The simple combination
integrated the outputs of both GM(1,1) and NN with the coefficients determined via
least mean square method [29], minimum theory of statistical variance [30], [31], and
Shapley value method [32]. One kind of serial combination made use of the
accumulation generation operation (AGO) to transform the original data into first order
AGO (1-AGO) data with improved regularity and then fed the 1-AGO data to the input
layer of NN [33], [34]. Zhu [35] proposed a kind of serial combination to fed the
prediction output of GM(1,1) to the input layer of NN which was trained by the
momentum algorithm. In addition, Chang and Tsai [36] improved the control and
environment parameters of GM(1,1) by a support vector regression, denoted by

SVRGM and employed a statistical methodology GARCH to fit the time series.
4



Consequently, a back-propagation neural network was wused to tune the
weighted-average between SVRGM and GARCH. In strengthening grey system with
neural network, Hsu and Chen [37] applied NN to estimate the residual sign of GM(1,1)
and the work in [38], [39] forecasted the prediction error of GM(1,1). For the ways
building NN with the aid of grey system, Yeh et al. [40] trained GreyART network
which combines grey relational analysis and adaptive resonant theory network and then
evaluated GreyART network by the testing patterns generated by GM(1,1).

The aforementioned studies show that the fusion scheme of GM(1,1) and NN could
outperform the individual ones. However, these models are trained off-line and only
suitably applied to the prediction problems for hourly [30], daily [29], monthly [33],
and yearly [35] time-series. To carry out continuous adaptation for prediction problem
in real-time, it is required to perform the prediction and training during the sampling
interval. For most of the practical cases in real-time-operation, the sampling time is less
than one second, much longer than the training time needed for one training pattern [41].
Thus, it is able to perform more than one pattern learning, such as batch pattern, during
one sampling interval. Therefore, this dissertation  proposes a
feedforward-neural-network-aided grey model (FNAGM) based on GM(1,1) and NN to
learn the prediction error of GM(1,1). Furthermore, an on-line batch training is
proposed to continually adapt the network to the dynamical change for real-time

prediction.

1.2.2 Structure Learning

For prediction purposes, it has been shown that a feedforward NN with a single
hidden layer is sufficient to achieve any desired accuracy [42], [43]. In most

applications, NNs are fully connected, i.e., all inputs are fully connected to all hidden
5



neurons. Numerous studies have shown that partially connected NNs have better storage
capability per connection than fully connected NNs [44]-[46]. Furthermore, partially
connected NNs can yield improved generalization capabilities with reduced cost in
terms of hardware and processing time [47], [48]. However, how to determine the
optimal numbers of hidden neurons and connections remains an open question.

Among several algorithms for designing three-layered NNs, the most frequently
used algorithms are the constructive, pruning, and constructive-pruning algorithms [49],
[50]. A constructive algorithm starts with a minimal NN architecture, a three-layered
NN with one hidden neuron. The algorithm adds hidden neurons to the minimal NN,
one-by-one, during the training phase. The advantage of the constructive algorithm is
that the initial phase can simply set the number of hidden layers and neurons as one
each. However, deciding when to add hidden neurons or connections and when to stop
the addition process is difficult.

A pruning algorithm starts with.an oversized architecture and then deletes
unnecessary hidden neurons or connections, either during training or upon convergence
to a local minimum. Each iteration of the pruning algorithm determines which unit, i.e.,
which hidden neuron or connection, to prune via its relevance or significance. Several
pruning criteria have been proposed, for example, sensitivity analysis [51] and
magnitude-based pruning [52]. Sensitivity analysis is based on Taylor expansion and
reflects the ways in which the derivatives of a performance function can be applied to
quantify a system’s response to unit perturbations [53], [54]. Magnitude-based pruning
assumes that small weights are irrelevant [55]. However, no criterion can be used to
determine the initially oversized architecture for a given problem [49].

In the constructive algorithm, the architecture of NN may become oversized if the

addition procedure is not appropriately stopped. A number of algorithms have attempted

6



to combine constructive and pruning algorithms to solve the aforementioned problem
[56]-[58]. These constructive-pruning algorithms first estimate the number of hidden
neurons and/or connections via a constructive method. A pruning method is then used to
delete the inappropriate hidden neurons and/or connections to find a near-optimal
architecture for a given problem. However, determining when to stop the pruning
procedure is difficult [59].

Several researchers have developed methods for designing NNs using evolutionary
algorithms (EAs). EAs emerged as a biologically plausible approach for adapting
various NN parameters such as weight values and architectures [60]-[63]. Unlike
constructive, pruning, and constructive-pruning algorithms, EAs perform a search
employing a population of NNs rather than a single NN. The population-based
stochastic search technique uses crossover, mutation, and selection operators in each
generation to improve the NN population in' the search space. In contrast, the
constructive, pruning, and constructive-pruning algorithms apply predefined and greedy
search strategies to determine near-optimal NN architectures. These strategies are
appropriate for some tasks but may be inappropriate for other tasks because the greedy
search strategies may direct the search process toward architecturally local optima,
which is a problem inherent to any greedy approach [64]. EAs can avoid the
architecturally local optima problem by using non-monotonic search methods. Gutiérrez
et al. [65] adopted an evolutionary programming algorithm and a simulated annealing
method to produce a radial basis function neural network with simplest structure
possible for classification problems. Oong and Isa [66] achieve the global and local
search to evolve NNs via adapting the mutation probability and the step size of the
weight perturbation. Caballero et al. [67] use a Pareto-based multiobjective

optimization methodology based on a memetic evolutionary algorithm for multiclass
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problems.

Recently, several studies have been proposed to employ various EAs to prune NNs.
Mantzaris et al. [68] pruned Probabilistic Neural Network by genetic algorithm to
minimize the number of diagnostic factors, and therefore minimized the number of
input nodes and hidden layers. Curry and Morgan [69] proposed a modified feedforward
neural network which is pruned and optimised by means of Differential Evolution for
seasonal data. Huang and Du [70] use particle swarm optimization to prune the radial
basis probabilistic neural networks. Masutti and Castro [71] combined characteristics
from self-organizing networks and artificial immune systems to solve the traveling
salesman problem and pruned neurons which are not related to a city. Furthermore,
numerous works have been done to perform EAs and pruning methods seperately or
simutaneously. Kaylani et al. [72] incorporated prune operator into a genetic algorithm
as a mutation operator to design ARTMAP architecture for classification problems. Goh
et al. [73] developed a hybrid multiobjective-evolutionary approach for adaptation of
NNs structures and a geometrical approach in identifying hidden neurons to prune for
classification problems. Hervas-Martinez et al. [74] applied an evolutionary algorithm
to design the structure and weights of a product-unit neural network, and finally used a
backward stepwise procedure to prune variables sequentially until no further pruning
can be made to improve the fit. However, most encoding schemes must predefine the
chromosome length, which is problem-dependent. This user-defined length may affect
the flexibility of problem representation and EA efficiency [75]-[77].

EAs are generally global search algorithms which explore the search space
stochastically by a number of heuristics while gradient descent methods are local search
algorithms which solve the problem with priori known derivatives information. A global

search algorithm can exhibit good exploration ability while a local search algorithm can
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show good exploitation performance. With an appropriate coordination of global search
and local search, it has been shown that collaboration between global search and local
search performs better than pure population-based global search algorithms or
stand-alone local search algorithms [78]. In order to maintain a proper balance between
global explorations and local exploitations, it is better to execute exploration and
exploitation operations alternatively during evolution [79]. Nevertheless, to establish a
subtle coordination of global and local search algorithms and determine how long
should local search be run [80] are not easy and under investigation.

According to the aforementioned vantages of constructive, pruning, and
evolutionary algorithms, this dissertation proposes two novel approaches to design NNs:
symbiotic structure learning algorithm (SSLA) and evolutionary constructive and
pruning algorithm (ECPA). SSLA, a neuron-based structure learning, attempts to design
the NN structure of FNAGM according to symbiotic evolution. It evolves neuron
population by fitness-sharing algorithm and constructs cascade NNs via neurons with
different activation functions. Then the evolved FNAGM can accurately predict time
series and further improve prediction error through the on-line batch training. On the
other hand, ECPA, a network-based structure learning, directs the evolution of the NN
topology using constructive and pruning methods in an evolutionary manner. It
increases the complexity of NN by constructive method and prunes insignificant
neurons on a probability basis to avoid the exponential growth of NN structure.
Furthermore, the algorithm deletes old NNs with possibly complex structures and
inserts newborn NNs with simple structures. In brief, ECPA integrates constructive,

pruning, and evolutionary algorithms in an attempt to efficiently evolve compact NNs.



1.3  Organization of Dissertation

The objective of this dissertation is to develop evolutionary structure learning
algorithms of NNs for prediction purpose. Organization and objective of each chapter
are as follows.

In Chapter 2, FNAGM is proposed for real-time prediction. FNAGM integrates an
GM(1,1) and an NN where GM(1,1) is used to predict the signal and NN is adopted to
learn the prediction error of GM(1,1). Furthermore, an on-line batch training, an on-line
parameter learning algorithm, is proposed to adjust the weights of NN in FNAGM
on-line. Thus, FNAGM could simultaneously achieve prediction and on-line parameter
learning.

In Chapter 3, a neuron-based structure learning approach, SSLA, is proposed to
evolve the structure of FNAGM, i.e., the number of hidden neurons and the topology of
NN. The idea behind SSLA is to evolve neuron population and construct NN from the
neuron population where each neuron ‘shares the fitness from the participating NN.
SSLA performs neuron crossover and mutation to the neuron population and finally
evolves appropriate structure of FNAGM. The evolved FNAGM could be applied to
predict the signal and further learn the prediction error by on-line batch training.

In Chapter 4, a network-based structure learning approach, ECPA, is proposed to
design compact structure of NN for prediction. In ECPA, a variable-length chromosome
representation is adopted to describe NNs with different architectures. Thus, it is not
necessary to predefine the length of the chromosome, and this makes the use of memory
more efficient. Furthermore, ECPA introduces the concept of constructive method into
the crossover and mutation operations in a manner that allows the initial structure of the

NN to be simply set as a minimal network containing one hidden neuron with a single
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connection to one input. The crossover and mutation operations then enlarge the
architecture by adding hidden neurons and connections. ECPA then prunes the resulting
NNs via a newly developed scheme consisting of cluster-based pruning (CBP) and
age-based survival selection (ABSS).

Chapter 5 concludes this dissertation with discussion and suggestions for future

work.
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Chapter 2 On-Line  Parameter Learning for

Prediction

In this chapter, a feedforward-neural-network-aided grey model (FNAGM) and its
corresponding on-line parameter learning algorithm, on-line batch training algorithm, is
presented for prediction. FNAGM, which integrates a first-order single variable grey
model (GM(1,1)) and a neural network (NN), is designed to not only predict the signals
but also continually adapts itself to the dynamical change. The system process consists
of three phases: initialization phase, GM(1,1) prediction phase and FNAGM prediction
phase. First, some parameters required in FNAGM are chosen in the initialization phase.
Then, a one-step-ahead predictive value'is generated in the GM(1,1) prediction phase.
Finally, an NN is used to learn the prediction error of GM(1,1) and compensate it in the
FNAGM prediction phase. Significantly, an on-line batch training is proposed to adjust

the weights of NN according to Levenberg-Marquardt algorithm in real-time.

2.1 Feedforward-Neural-Network-Aided Grey Model

This section first describes NNs and GM(1,1), and then presents the proposed

FNAGM which combines a GM(1,1) and an NN.

2.1.1 Neural Networks

A feedforward NN processes input vector with one direction, forward, to hidden

layer and then output layer. For forecasting purposes, the theoretical work shows that a
12



single hidden layer is sufficient [81]. Thus, a general feedforward NN with m input
neurons, P hidden neurons and one output neuron is applied for one-step-ahead
prediction. Let’s define the input vector and weights first. For time series prediction, the
input vector of the network at time k is u[k] = [u;[k] Uz[K] ... un[K]]". Since the on-line
batch training which will be described in Section 2.2 is adopted as the learning strategy,
the time index k of the weights is important and denotes that the weights have been
updated through the learning iteration at time k—1 and are applied for prediction at time
k. In the hidden layer, wj[K] is the weight vector from the input vector to the jth hidden
neuron. In the output layer, wo[K] is the weight vector from the hidden neurons to the
output neuron. The input vector u[K] is linearly combined at the hidden neuron and then

processed by the activation function g(-) which can be one of the continuous neuron

models, e.g., logistic, hyperbolic tangent, linear threshold, exponential and Gaussian

signal function [82]. For the jth hidden neuron, the output is

[Zw ]+wy, [k]j (2.1

where w;i[k] and wjy[K] are the components of wj[K] and w;[K] = [wji[K] Wja[K] ... Wjm[K]

ij[k]]T. The output of the network is
p

ylk]=>"wy[k]-h; [k]+wy, [k] (2.2)
j=1

where W;[K] and Wop[K] are the components of wo[K] and wo[K] = [Woi[K] Woa[K] ... Woep[K]
Wop[K]]". From (2.1) and (2.2), the input-output relationship of NN could be further

represented as
ylk]= f(v[k] ulk]) (2.3)

where
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v[k]=[w] [k] w][K] ... wi[k] w] [K]] o
= [V, [K] v, K] .. v [KTT

where = (m+2)-p+1. To train the network, the proposed on-line batch training

algorithm is adopted to update the weight vector v[k] and will be described in Section

2.2.

2.1.2 First-Order Single Variable Grey Model

Consider a discrete data sequence of length n>4 formed as the following

column vector

T

x(O):[X(O)[l] X(O)[z] X(O)[n]] 2.5)

where each element has the same numeric sign. In general, GM(1,1) adopts three
fundamental operations, given as

Accumulate Generating Operation (AGO):

k
xUk]=Yx1], k=12,..n (2.6)
1=1
Mean Generating Operation (MGO):
2 [k]=ax" [k]+(1-a)x" [k-1], k=23,..,n (2.7)

Inverse Accumulate Generating Operation (IAGO):
O T=xOTkT= xO Tk — —
XV [k]=xV[k]-x"[k-1], k=23,..,n (2.8)

where « is often set as 0.5. According to GM(1,1) [3], its grey differential equation is

presented as
x(o)[k]+az(l)[k]:b, k=1,2,---,n (2.9)

where a is the development coefficient and b is the grey input. Both a and b are
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unknown and have to be determined first by rearranging (2.9) into the following matrix

form
a
X = x0 M (2.10)

where

xXV xOn-xPn  xOn]-x"n-1]
xV=""5 5 ) (2.11)
1 1 1

Then a and b could be solved by the least square method as below

m = (x0rx® )f1 X0 () (2.12)

Based on GM(1,1), the solution of the grey first-order differential equation (2.9) is
estimated as
XO[n+1]= (x”[]=b/a)e *+b/a (2.13)
Further applying IAGO in (2.8) to (2.13).yields
%On+1] = (x1]-b/a)e*"(1—e?) (2.14)
which is the so-called one-step-ahead predictive value after the original data sequence

x(o) .

Since GM(1,1) performs the prediction via the data sequence with the same

numeric sign, the preprocess is employed to transform the raw data in (2.5) into
X!(O) [l] = X(O) [|]—1’Ili1’l(x(0))+ 7, 1=1,2,---,n (2.15)

where yis a constant bias to avoid the output to be zero. Then the transformed value is
used to estimate X'”[n+1] by (2.6)~(2.14). As a result, the one-step-ahead predictive
value is determined as

XO[n+1] = ¥ [n+1]+ min(x*) - » (2.16)
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Therefore, GM(1,1) can process the historical data sequence with different numeric

signs.

2.1.3 Structure of FNAGM

This subsection presents an intelligent forecasting system, FNAGM, which is
constructed by an NN and a GM(1,1). FNAGM consists of three phases: initialization
phase, GM(1,1) prediction phase and FNAGM prediction phase. With FNAGM, the
prediction error of GM(1,1) is further improved by the use of on-line batch training in
the FNAGM prediction phase.

For the initialization phase, some parameters used in FNAGM are first defined as

below:
Ns the total step size
n the input length of GM(1,1)
4 the bias of GM(1,1) in (2.15)
m the input number of NN
p the number of hidden neurons of NN
N the maximum size of batch training pattern

v[n+m]  the initial weight vector of NN
u[n+m+1] the initially positive scalar for updating the weight vector
p the constant to adjust z[k]
Note that v[n+m] is randomly chosen. Then, obtain {X(O)[l], xV[2],---, X(O)[n]} and get
into the GM(1,1) prediction phase.
The GM(1,1) prediction phase is executed from k = n to k = n+m-1 and generates
the one-step-ahead predictive value X”[k+1]. For each step, the prediction error is

16



obtained as ey, [k+1]= x[k+1]—X“[k+1]. This phase will be repeated to determine

m prediction errors.

Based on these m prediction errors, the FNAGM prediction phase starts to further
improve the prediction error for k>n+m . The configuration of the FNAGM
prediction is depicted in Fig. 2.1. GM(1,1) calculates the one-step-ahead predictive

value, X”[k+1], and NN simultaneously adopts the past m prediction errors as the
input vector to learn the prediction error e, [k+1] on-line, estimated as &g, [k+1].
Then, the final one-step-ahead predictive value, X oulK+1], is set to be the sum of

XO[k+1] and &,[k+1], which is better than X“[k+1].

{X(O) [k _n +1]’ X(O)[k —n+ 2]’. - x(© [k]} GM(1,1)
O[] _i
eGM[k] i
e, k=1
amlk—1] Feedforward
NN

B [K+1]

egulk—m]

Fig. 2.1 Feedforward-neural-network-aided grey model.

2.2  On-Line Parameter Learning of FNAGM

This section presents the on-line parameter learning algorithm, called on-line batch

training, which is used to continuously adapt FNAGM to the dynamical change of the
17



signal. The idea behind on-line batch training is to perform on-line training by more
than one pattern. When a new data point is observed, FNAGM collects a batch of
recently obtained training patterns and then performs on-line batch training by the batch

training patterns at each time step.

2.2.1 On-Line Batch Training

The training process in the FNAGM prediction phase employs the on-line batch
training to adjust NN because of its higher accuracy and less computation time. Let the
batch training pattern at step K contain r recently observed training patterns denoted as

B, ={P,_,.,,P._,.,,--, P} fork>n+m (2.17)

4>
where r = min{k—(n+m), N}, N > 1 and. Py =. {u[j], egul]] } is the jth training pattern
related to the input vector u[j] = [€;ull=m] egull=m+1] ... eGM[j—l]]T and the target
esml]- Note that the total number r of the batch training pattern By is fixed and equal to
N for k>n+m+N.
The on-line batch training modifies Levenberg-Marquardt algorithm [83] to update
the weight vector v[K] for k >n+m+1, which is
vk+1] = v[k] - [¢" [K]G[K] + k]I G [k]e[K] (2.18)
where gK] is network error vector, G[K] is the Jacobian matrix and g[K] is a positive
scalar parameter. The jth component of the network error vector £K] is obtained as g[K]
= egull] — fOV[K], u[j]), ] = k-r+1, k-r+2,..., k, corresponding to P;. After gKk] is

determined, the Jacobian matrix is calculated as
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a‘9k rl [k] 08y _r . [k] 08y _r [k]_
ovkl  ov[kl  ov,[K]
oe[k] 8gk r+2[k] 08y, [K] 08y, [K]
G[k]=av[k]= ALY IECIATY BEA LY (2.19)
agk'[k] e k] e [K]
ovik]  av,[k]  av k] |

Note that the jth row is determined according to Pj and the cth column is related to Ve.
The on-line batch training adjusts #[K] by comparing the previous and current errors

based on g[k—1] and g[k], as shown by

Ak 1]= e /ﬂ 1fz kng [k]< thk_sgjz[k—l]
dk-p. Y =Y e

where > 1, s = min{N-1, k-n—-m-1} and k >n+m+2. Note that g[k—1] and g[K] are

(2.20)

calculated via the same training pattern Pj: Clearly, when the current error is decreased
then £[K] is reduced by S, otherwise y[K] is'increased. As a result, implementation of the
on-line batch training requires past observations with maximum memory size N to
update v[Kk] in batch mode and obtain more accurate solution at each time step.

The above intelligent forecasting system, FNAGM, is summarized as the following
stepwise procedure:

Initialization phase:

S1 Choose the total step size: Ng;
the input length of GM(1,1): n;
the bias of GM(1,1):
the input number of NN: m;
the number of hidden neurons of NN: p;
the maximum size of batch training pattern: N;

the initial positive scalar: g[n+m+1];
19



the constant to adjust #[K]: S,
the initial weight vector: v[n+m] (randomly);
S2 Obtain {X(O)[l], x[2],---, X(O)[n]} and set k =n.

GM(1,1) prediction phase for n<k <n+m:

S3  Compute X[k+1] by GM(1,1) in (2.6)—(2.16).
S4  Setk=k+1.
S5 Obtain x“’[k] and then egm[K].

S6 If k <n+m, then go to S3.

FNAGM prediction phase for kK >n+m:

S7 Compute X”[k+1] by GM(1,1) in (2.6)—(2.16).
S8 Calculate &,,[k+1] by NNin(2.1),(2.2).
S9  Set the one-step-ahead predictive value of FNAGM as
Xenacu [K+ 1] = XOTk+ 1]+ &Gy Tk +1].
S10 Set k =k+1.
S11 Obtain x“[k] and then e[k].
S12 If k<n+m+1,then v[k+1]=v[k] and go to S7.

On-line batch training (from S13 to S17)

S13  Construct B, ={P,_,,;, P, ,.,,..., P} in(2.17) where
r = min{k— (n+m),N}.

S14 Compute the network error based on B,
for j=k—r+1 tok

&lk] = equli]- f(vIk] al]);

end for
20



S15 Update v[k] by Levenberg-Marquardt algorithm in (2.18), (2.19).
S16 If k<n+m+2,then w[k+1]= u[k] and go to S7.
S17 Update u[k] by (2.20).
S18 If k < N, then go to S7;
else stop.
With the above procedure, FNAGM can gradually learn to predict signal via the

on-line batch training. The success of the prediction will be demonstrated in the Section

2.3 and 2.4.

2.2.2 Convergence Analysis
To discuss the convergence issue of FNAGM, the error difference could be
approximately represented as [84]
g[k+1]=¢elk]+Ae

k]
~ ofk]+ %k}A vIK] 221)

where Agk] and Av[K] represent the error change and the weight vector change
respectively. Note that (2.21) is the first order Taylor approximation which neglects the

higher order terms. Equations (2.18) and (2.21) yield

e[k+1] = e[k] - GK(G™ [KIG[K] + w[k]T) " G [k]e[k] (2.22)
Then,
Jelke+ 1] = [lk]- GIKNG" [KIGIK]+ lk 1) 6" [Klelk]
H 1 - GK|(G" [KIGK] + k]1)" 6" [K])- £[K] K] (2.23)
< H’ — GIKJ(GT [KIGIK] + w[K]I) ' G [k H Jle[K]|
where ||| denotes the Euclidean norm. Moreover, let gj be the jth singular value of G[k]
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and assume that G[K] has full row rank, i.e., a By with sufficient r is obtained. Thus [85]

H I - G[K|(GT [KIG[K]+ u[k]1 )71 G’ [k]H < max[l - %) (2.24)
<max— Akl _
g; [k]+ ulk]

which implies that [¢[k]| is monotonically decreasing. That means the output error

between the prediction error of GM(1,1) and the output of the neural network converges

to zero as K — oo. This fact completes the proof of the convergence.

2.3 Numerical Results

To verify the performance of the proposed FNAGM, two numerical examples are
adopted for demonstration. The first example involves predicting an external
disturbance that has been described in [27] and the second example involves predicting
the Mackey-Glass chaotic time series [86]. The numerical simulations were executed in

an Intel Pentium CPU at 1.5 GHz with 512 MBytes RAM.

2.3.1 Example 1: Disturbance Prediction
The disturbance to be predicted is
x[k]=0.1-cos(4KT )+ 0.05-sin(9.2KT) (2.25)
where T is the sampling time and set as 0.05 second. In the step S1 of the initialization
phase, the proposed FNAGM chooses Ns = 200, n =4, y=2, p =4, yn+m+1] = 0.001
and S = 4/3. As for the weight vector v[n+m], it was randomly generated according to a
normal distribution with zero mean and unit variance by the program. Note that the

objective of this example is to predict the disturbance in real-time, so it is required to

accomplish the prediction phase with sufficient accuracy during one sampling interval
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by selecting an appropriate N, which was set to be 40 in the simulation.

First, let’s determine a suitable input number m of NN of FNAGM by 100
independent runs of m = 2, 3, 4 and 5. The root mean square error (RMSE) calculated
for k > 100 of each run is recorded. Table 2.1 shows the statistical means over these 100
runs of different input numbers. It is clear that the larger m achieved the better
prediction accuracy. For instance, the prediction errors were reduced from 107 to 107
when m was changed from 2 to 3. However, the prediction errors were only improved a
little from 4.29 x 10~ of m =4 to 4.05 x 10~ of m = 5. Hence, the input number m = 4
was adopted for FNAGM in the following simulations. Several approaches exist in the
literature, however, it is not feasible and necessary to perform an exhaustive comparison
with all algorithms. The aim of our experimental comparison is to realize the advantage
and disadvantage of the aid of NN and on-line batch training. Therefore, GM(1,1) [3]

and Advanced GM(1,1) [27] are mainly considered for comparison.

Table 2.1 Comparison of different input numbers of NN of FNAGM in Example 1.

FNAGM FNAGM FNAGM FNAGM

Model m=2 m=3 m=4 m=35

Statistical mean of
RMSE
over 100 runs

3.40x107° 6.16x107% 4.29x107° 4.05x107°

Computation time 4.60x107 4.70x107° 4.80x107 4.90x107
per prediction step

Based on the on-line batch training, FNAGM was applied to predict the
disturbance (2.25) with N = 40 and m = 4. The statistical mean of RMSE of FNAGM
over 100 runs for k > 100 is shown in Table 2.2, which also includes RMSEs of
GM(1,1), Advanced GM(1,1), and NN for k > 100. The NN was trained by on-line

learning and its number of hidden neurons was designed through a trial-and-error
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method. As expected, Advanced GM(1,1) based on the Lagrange polynomial of third
order improved the prediction error of GM(1,1) from 107 to 107>, Most significantly,
the proposed FNAGM can achieve much better result than Advanced GM(1,1), highly
reducing the prediction error from 107 to 107

In addition, Table 2.2 shows the computation time required for the prediction phase
of FNAGM and the computation times per prediction step of GM(1,1) and Advanced
GM(1,1). Although FNAGM requires longer computation time than the other two
methods, increased from 107 to 10~ second, FNAGM is still able to complete the
prediction phase during one sampling interval. The proposed intelligent forecasting

system FNAGM is, therefore, applicable for real-time prediction.

Table 2.2 Comparison of the prediction errors of GM(1,1), Advanced GM(1,1), NN and
FNAGM in Example 1.

Model GM(1.1) %dl\v/;rllcff NN T Ir\ln/’iM

Statistical mean of
RMSE
over 100 runs

RMSE for k> 100 1.27x107> 1.60x10°>  0.9996  3.59x107°
in Fig. 2.2

0.9883  4.29x107°

Computation time 4.08x10™* 4.15x10™* 4.80x10™* 4.80x107
per prediction step

To further demonstrate the performance, Fig. 2.2 shows the prediction results of
FNAGM, GM(1,1) and Advanced GM(1,1). Note that the curve of FNAGM is one of
the 100 runs and it is randomly chosen from them. Evidently, after sufficient training
iterations, i.e., K > 60 in this case, FNAGM learned the prediction error efficiently and

obtains much better result than Advanced GM(1,1).
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Fig. 2.2 Absolute prediction errors of GM(1,1), Advanced GM(1,1) and FNAGM with

m =4 in Example 1.

2.3.2 Example 2: Chaotic Time Series Prediction

The Mackey-Glass time series 1s generated from the following delay differential

equation

dx(t)  0.2x(t—7)
dt 1+ x°(t-7r)

—0.1x(t) (2.26)

where 7= 17 and x(0) = 1.2 in the simulation. The data points were obtained based on
the fourth-order Runge-Kutta method with sampling interval 0.1 second. In the
initialization phase, all the parameters are the same as Example 1 except N =80, i.e., I =
min{k—_8, 80}, due to the use of sampling interval 0.1 second longer than 0.05 second in
Example 1. The input number of NN of FNAGM was still selected as m = 4 by the same
reason as Example 1.

The on-line batch training of FNAGM was performed for 100 independent runs.

The RMSE for k > 250 of each run is recorded. The statistical mean over these 100 runs
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are given in Table 2.3. From the performance comparison, Advanced GM(1,1) indeed
improved the prediction error of GM(1,1) and the proposed intelligent forecasting
system FNAGM achieved better performance than Advanced GM(1,1), where the
prediction error was reduced from 10~ to 10™*. Furthermore, although FNAGM with N
= 80 takes computation time 9.90 x 10~ second in the prediction phase, which is longer
than 4.80 x 10~ second with N = 40, FNAGM is still an effective forecasting system for
real-time prediction.

To demonstrate the performance of FNAGM, Fig. 2.3 shows that FNAGM
outperforms GM(1,1) and Advanced GM(1,1) in prediction accuracy for k > 250.
FNAGM indeed improved the prediction error of the time series which has chaotic,

nonperiodic and nonconvergence natures.

Table 2.3 Comparison of the prediction errors of GM(1,1), Advanced GM(1,1) and
FNAGM in Example 2.

Model GM(L1) A(:Jdl\v/["z?cle)d NN FI;InA:iM

Statistical mean of
RMSE
over 100 runs

RMSE for k>250 1.22x107% 1.30x107°  1.0336 5.39x107*
in Fig. 2.3

1.0269  6.08x107*

Computation time 4.08x10™* 4.15x10™* 4.80x10™* 9.90x107>
per prediction step
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Fig. 2.3 Absolute prediction errors of GM(1,1), Advanced GM(1,1) and FNAGM with

m =4 in Example 2.

2.4  Experimental Results

The following experiment was’ conducted to verify the performance of the
proposed FNAGM. The experiment involved predicting the trajectory of a moving
object as performed by a binocular robot, called an Eye-Robot [87], [88]. The
Eye-Robot shown in Fig. 2.4(a) was built using a parallel-axis camera with five motors
to emulate the eye movement of humans. We adopted five FAULHABER DC
servomotors to perform the panning movement of the eyes, the conjugated tilt
movement of the eyes, and the pan and tilt movements of the head via an RS-232
interface. The range of panning is +120 degrees, while the range tilting is £60 degrees.
The DC servomotors were controlled using a motion control card, MCDC 30068, at a
positioning resolution of 0.18°. The size of the Eye-Robot is 25x25x30 cm’. The
experiment was executed using an Intel Pentium CPU at 1.5 GHz with 512 MBytes

RAM.
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(b)
Fig. 2.4 (a) Eye-Robot. (b) Experimental environment where a participant held a red

object.

2.4.1 Trajectory Prediction

The experiment was performed in-an indoor environment, as shown in Fig. 2.4(b).
The Eye-Robot captured 30 frames per second, for a sampling time of approximately
0.03 second. Once an image was obtained, Eye-Robot first extracted red object in the
RGB color space, and then determined the center of gravity of the object. The trajectory
of the object was further divided into X and y axes; therefore, one FNAGM was
employed to make predictions for each of the two axes. Note that this experiment only
performed a prediction of the trajectory, without controlling the motors to track the
object.

In step S1 of the initialization phase, the proposed FNAGM selected Ns = 500, n =
4, m=4,p=4, yntm+1]=0.001 and g = 4/3 by a preliminary test. Weight vectors
v[n+m] were randomly generated according to normal distribution with zero mean and
unit variance using the program. Note that the objective of this experiment is to predict
the trajectory in real-time; therefore, it is necessary to accomplish the prediction phase

with sufficient accuracy during a single sampling interval by selecting an appropriate N,
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which was set at 40 in the experiment.

Fig. 2.5 shows the trajectory of the object obtained by Eye-Robot, and we applied
FNAGM to predict the trajectory of the object. Similar to Section 2.3, GM(1,1) and
Advanced GM(1,1) were performed for comparison. The statistical mean of RMSE of
FNAGM over 100 runs for k > 100 is shown in Table 2.4, together with RMSEs of
GM(1,1) and Advanced GM(1,1) for k > 100 where the unit of RMSE is pixel. As a
result, the proposed intelligent forecasting system FNAGM can achieve much better
result than GM(1,1) and Advanced GM(1,1), highly reducing the prediction error from
3.65 to 1.66 and from 5.01 to 2.13 for x(K) and y(k), respectively.

In addition, Table 2.4 shows the computation time required for the prediction phase
of FNAGM and the computation times per prediction step of GM(1,1) and Advanced
GM(1,1). Although FNAGM requires longer computation time than the other two
methods, increased from 107 to 10~ second, FNAGM is still able to complete the
prediction phase during one sampling interval i.c., 3.3x 107> The proposed intelligent

forecasting system is, therefore, applicable for real-time prediction.

Table 2.4 Comparison of prediction error and computation time.

Model GM(1,1) Advanced FNAGM
GM(1,1)
RMSE of x(k) 3.7428 3.6512 1.6608

RMSE ofy(k)  5.6125 50112  2.1343

Computation time 4.08x10™* 4.15x10™* 4.80x107°
per prediction step

To further demonstrate the performance of FNAGM, Fig. 2.6 and Fig. 2.7 show the
prediction results of x(k) and y(k) for FNAGM, GM(1,1), and Advanced GM(1,1). Note

that the curve of FNAGM is one run randomly selected from 100 runs. It appears that
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after a sufficient number of training iterations, FNAGM obtained smaller prediction

error than GM(1,1) and Advanced GM(1,1).

200
150 + B
= 100
x
50 - B
O I I I I I I I I I ]
0 50 100 150 200 250 300 350 400 450 500
Time Step
100
80+ B
60 - B
=
= 40 B
20¢p H
07 | | | | | | | | | ]
0 50 100 150 200 250-°+300 350 400 450 500
Time Step
Fig. 2.5 - Trajectory of the object.
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Fig. 2.6 Prediction error of X(k) for GM(1,1), advance GM(1,1), and FNAGM.
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2.4.2 Tracking Control

The purpose of this experiment 15to- control Eye-Robot to track a red object with
the aid of FNAGM. The movement of the target in this experiment was manually
achieved by the participant as shown in Fig. 2.4(b). To carry out fairly comparison, the
movement of the target was performed as similar as possible in each run. The
Eye-Robot employed the proportional-derivative (PD) controller for the tracking control.
The PD controller first receives the tracking error which is the difference between the
center of the image and the position of the object, and then controls the cameras to track
the object such that the object could be located at the center of the image. In most
control applications, the control signal is a function of the current and previous tracking
errors. In this experiment, the predicted tracking error is used instead of current tracking
error [89] to reduce tracking error. The setup of this experiment is precisely the same as

that described in Section 2.4.1. Note that the purpose of this experiment is not to design
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the PD controller, but to observe how FNAGM benefits the target tracking. For
comparison, GM(1,1) and Advanced GM(1,1) were carried out to predict the tracking
error of Eye-Robot.

Fig. 2.8-Fig. 2.10 show the tracking errors corresponding to GM(1,1), Advanced
GM(1,1), and FNAGM, respectively. Note that the tracking error is equivalent to X(k)
whose unit is pixel in this case. From Fig. 2.8 and Fig. 2.9, it can be observed that
GM(1,1) achieved a smooth tracking error while Advanced GM(1,1) did not always
obtain smaller tracking error than GM(1,1). From Fig. 2.10, it can be seen that FNAGM
achieved high tracking error for k < 50 and gradually obtained small tracking error for k
> 100 through on-line batch learning. It shows the merit of FNAGM that the learning
ability can adapt the intelligent forecasting system to dynamical changes and improve
the prediction performance when comparing - with GM(1,1) and Advanced GM(1,1).
Most significantly, the proposed intelligent forecasting system FNAGM can carry out

the on-line batch learning on the robotic application in real-time.
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Fig. 2.8 Tracking error of X(k) using GM(1,1).
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Fig. 2.9 Tracking error of X(k) using Advanced GM(1,1).
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Fig. 2.10 Tracking error of x(K) using FNAGM.

33

250



2.5 Summary

This chapter presents an FNAGM to predict signals in three phases, initialization
phase, GM(1,1) prediction phase and FNAGM prediction phase. FNAGM adopts the
on-line batch training to learn and then estimate the prediction error of GM(1,1) by the
feedforward NN. Most importantly, the on-line batch training is applicable in real-time
to accurately update the weight vector of NN and continually adapt FNAGM to the
dynamical change. The simulation results demonstrate that the proposed intelligent
forecasting system based on FNAGM is superior to the other existing methods.
Experimental results demonstrate that FNAGM could achieve both trajectory prediction

and target tracking in high accuracy for robotic application.
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Chapter 3 Neuron-Based Structure Learning for

Prediction

In Chapter 2, FNAGM has been developed to deal with prediction problem.
However, the topology of NN used in FNAGM should be fully connected and the
number of hidden neurons is determined through a trial-and-error method. Therefore,
this chapter presents a neuron-based structure learning algorithm, called symbiotic
structure learning algorithm (SSLA), to determine the topology of FNAGM. SSLA
consists of three phases: initialization.phase, evaluation phase, and reproduction phase.
The initialization phase establishes-a neuron population and a network population. The
evaluation phase calculates the fitness of NN and then shares the fitness to the
participating neurons. The reproduction phase performs neuron crossover and mutation
on the neuron population based on their fitness. Finally, an FNAGM with appropriate
topology is evolved by the neuron-based structure learning. Accordingly, a novel
forecasting system, FNAGM-SSLA, is presented in this chapter where SSLA performs
structure learning of FNAGM and the evolved FNAGM then predicts the signal and
continuously learns to compensate the prediction error by NN with the on-line batch

training.

3.1  Structure Learning Based on Symbiotic Evolution

Symbiotic evolution is an implicit fitness-sharing algorithm used in an immune

system model [90], [91]. In general evolution algorithm, each individual represents a
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complete solution of a problem. In symbiotic evolution, each individual in the
population represents a partial solution to a given problem, and complete solutions are
constructed from several individuals. The partial solutions can be considered
specializations that ensure diversity and prevent a population from converging into
suboptimal solutions. Furthermore, the fitness of an individual depends on other
cooperated individuals. The work of [91] proposed symbiotic adaptive neuron evolution
to develop NNs according to a population of neurons. The performance of a neuron is
determined by how well it cooperates with the other neurons which it combines. This
process shows that a neuron that cooperates well with one set of neurons may cooperate
poorly with other sets of neurons. However, the number of hidden neurons must be
assigned prior to the evolution process. Therefore, this algorithm is applicable for NN
where the number of hidden neurons is known. Aside from NNs, many studies have
applied symbiotic evolution to design fuzzy controller and neuro-fuzzy systems
[92]-[98]. The results of these studies have demonstrated the efficiency and feasibility

of symbiotic evolution in structure learning.

3.2  Symbiotic Structure Learning Algorithm

Section 2.1 provides a constraint that the topology of NN used in an FNAGM
should be fully connected. Furthermore, the number of neurons is determined through a
trial-and-error method [99]. This section presents a novel forecasting system which is
composed of structure learning and on-line parameter learning as shown in Fig. 3.1.
Briefly, the proposed forecasting system first evolves the structure of FNAGM by a
proposed SSLA and then performs prediction and on-line batch training by the evolved

FNAGM. Before the forecasting system starts, a small number of time series data is
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acquired for the structure learning. The proposed SSLA determines the number of
hidden neurons and the connected topology of FNAGM based on the training data.
Once the structure learning is completed, the signal is continuously acquired for on-line
prediction and parameter learning. Then the evolved FNAGM predicts the signal and
continuously adapts itself to the dynamical change of the signal by on-line batch
training. SSLA consists of three phases: initialization phase, evaluation phase, and

reproduction phase which are described in the following subsections.

| Initialization phase | E(Off-line)

i 1 =
i | Evaluation phase | i
| ! i

| Reproduction phase |

________________________

FNAGM

| Initialization phase | (On-line)

FNAGM prediction phase]
(On-line batch training)

|GM( 1,1) prediction phase| i

Fig. 3.1 Architecture of the proposed forecasting system.

3.2.1 Initialization Phase

A. Coding Step
Each neuron, the individual in the neuron population, consists of seven genes for
four inputs problem as shown in Fig. 3.2. The seven genes are Wy, @, Whp, Whi, Wh2, Wh3,

and Whs which represent output weight, activation function type, and weights connected

37



from bias and four inputs to the neuron, respectively. The activation function type
indicates which activation function the neuron uses where 1 represents hyperbolic
tangent function and 0 represents linear function. Note that some weights of the neurons
in Fig. 3.2 are zero which means that the weights are not connected to the neurons and
the neurons are partially connected. Fig. 3.3 shows the graphical representation of

neurons for three examples of Fig. 3.2.

Neuron | Wo | a | Whb | Whi | Wh2 | Wh3 | Why |

NewronA [ 15] 1 [09]13]21]02]0.1]

NewronB  [07] 0 [0 ] o | 0 [25]-02]

NeuronC  [03] 0 |04/ 0 [0 [ o] 0|

Fig. 3.2 Coding of neuron and three examples.

Neuronj& Neuron B % Neuron ?
« OO CHONONG®;
b u u u uy b u u u u b u u u u

Fig. 3.3 Graphical representation of neurons for three examples.

The next step is to construct an NN from the three neurons and Fig. 3.4(a) shows
the resulted NN whose output is the summation of the three neurons. It can be seen that
NN has a partially connected topology and consists of different activation functions.
Since the output of the neuron with linear activation function is the linear combination
of the inputs, NN in Fig. 3.4(a) can be simplified as an equivalent cascade NN model in
Fig. 3.4(b). Note that Neuron C can be simplified as the output bias and Neuron B
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allows U3 and Uy4 to directly connect to the output neuron. Therefore, SSLA can result in

not only feedforward NN but cascade NN without additional output weight coding step.

b u u u; u

(b)

Fig. 3.4 (a) An NN constructed via three neurons. (b) Equivalent cascade NN model.

B. Create Network Population

SSLA creates neuron population by randomly generating N, neurons where the
weights and activation function type are randomly assigned. Note that some weights are
randomly selected to be zero as the disconnected weights. Then, SSLA creates network
population in four steps.

Step 1)  This step constructs P groups where each group consists of d empty
individuals and thus the network population consists of Pxd empty
individuals.

Step2)  Randomly select Group p where the reason of this step is further
illustrated in Section 3.2.2.

Step3)  Select one empty individual in Group p and build an NN by randomly
selecting p neurons from the neuron population as shown in Fig. 3.5. For
example, NN in Group 1 has one neuron and its length of chromosome is

7 while NN in Group P has P neurons and its length of chromosome is
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7P. Note that the evaluation operator is performed on the chromosomes
of network population while the reproduction operator is performed on
the chromosomes of neuron population.

Step4)  Train the built NN via the approach in Section 3.2.2 so that the
chromosome of NN would be updated expected for the activation
function type. Go to Step 2) until the network population has no empty
individual.

Each neuron can be selected at most one time for an NN and thus the neurons of an
NN are different. It is expected that all neurons can be selected at least one time to
construct all NNs in the network population so that the performance of all neurons can
be evaluated. However, this mechanism can not be guaranteed according to the random
selection in Step 3). Therefore, some¢ neurons may not be selected in one generation.
Nevertheless, this would not affectthe evolution harmfully because a very few neurons
are not selected via the observation of the experiment. Through the network population
creation, SSLA generate numerous NNs with different number of hidden neurons and

connection topology so that an NN with appropriate structure can be evolved.
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Fig. 3.5 Neuron population and network population.

3.2.2 Evaluation Phase

The evaluation phase mainly “consists of two steps: weight training and fitness
calculation of NN and neuron.
A. Weight Training

As mentioned in Section 1.2.2, collaboration between global search and local
search could outperform individual ones. Furthermore, it is better to execute exploration
and exploitation operations alternatively during evolution. Thus, SSLA performs local
search to refine the weights after constructing an NN via symbiotic evolution which is a
global search. SSLA then performs symbiotic evolution on the trained NNs for global
search of NN structure. The global search and local search execute in a recurring
fashion, one after another repeatedly. SSLA employs backpropagation algorithm (BP)
[100] as local search method to train NN for ¢epochs where ¢ is a user specified

parameter. Note that BP is only performed on the connected weights, not on
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disconnected weights. Once NN is trained, each trained neuron would replace the
corresponding neuron in the neuron population. That means the weights of each neuron
in the neuron population would be updated as participating an NN. For example,
Neuron A and Neuron B are selected to construct an NN and then trained by BP for ¢
epochs. The two trained neurons, Neuron A’ and Neuron B’, would replace Neuron A
and Neuron B in the neuron population, respectively. When Neuron A’ and Neuron B’
are selected again to construct another NN and trained by BP in the same generation, the
two trained neurons, Neuron A” and Neuron B”’, replace Neuron A’ and Neuron B’ in
the neuron population, respectively. It is expected that the latter constructed NNs might
have better trained weights because the selected neurons may have been trained several
times when participating in the former constructed NNs. Therefore, the latter
constructed NNs possibly have better fitness than the former constructed NNs in one
generation. If the NNs of Group 1 are trained earlier than the NNs of Group P, the NNs
of Group P probably have better fitness than-the NNs of Group 1. This may guide the
evolution toward the solution with large number of hidden neurons which is not
expected in SSLA. In order to achieve reasonable training process of the neuron
population and network population, the Step 2) in Section 3.2.1.B, create network
population, is performed by randomly selecting Group p and then constructing an NN in
Group p.
B. Fitness Calculation of NN and Neuron

Once an NN is constructed and trained by BP, the inverse of RMSE is regarded as
the fitness of NN, i.e., the smaller RMSE the larger fitness and vice versa. Since the
purpose of SSLA is to evolve neurons in the neuron population, the fitness of the neuron
should be determined. SSLA calculates the fitness of the neuron by sharing the fitness

of NN to each participating neuron. For NN in the Group p, each participating neuron
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can share fitness as % where f is the fitness of NN. When all NNs in the network

population are evaluated, the fitness of the neuron which participates in T NNs can be

determined as
l <1 ¢
fo==>f 3.1)

where fnt 1s the shared fitness in tth NN andt=1,2,...,T.

3.2.3 Reproduction Phase

This subsection presents the reproduction phase of SSLA which is performed only
on the neuron population. The objective of this phase is to reproduce new neuron
population from current neuron population'so that various NNs can be constructed from
new neuron population. The reproduction phase includes neuron crossover, neuron
mutation, and survival selection. The neuron crossover exchanges the structure of two
parent neurons to produce two offspring neurons and the neuron mutation modifies the
structure of one offspring neuron. The survival selection attempts to probabilistically
promote better solutions for the next generation from the parents and offspring of the
current generation. According to the three operations, the reproduction phase mainly
uses the current neuron population to evolve new neuron population for next generation
and then guides the evolution to achieve near optimal solution, i.e., appropriate structure
and weights of NN. Note that each parent neuron has the same length of chromosome,
thus the offspring neuron also has the same length with the parent neuron. The detail
concepts of the three operations are described as follows.

A. Neuron Crossover

The neuron crossover simultaneously exchanges the structure and weights of the
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neurons and performs in three steps. First, select two parents according to the
binary-tournament selection via their fitness. Second, randomly select the crossover
point as shown in Fig. 3.6. Third, exchange the components starting from the crossover
point to the end of the parents. Then two offspring, Neuron A’ and Neuron B’, are
generated.
B. Neuron Mutation

The neuron mutation mainly attempts to modify the activation function and
disconnect or connect the input for global searching of NN structure. It uses a mutation
probability pm to decide whether to perform neuron mutation on a gene, where pp is a
user specified parameter. For each gene excepted for wW,, a random number r with a
uniform distribution between [0, 1] is generated. If r < py, then the neuron mutation is
performed on the gene. As shown-in Fig..3.7, three kinds of neuron mutation are
presented. The first one shows the modification- of activation function where the
activation function type is modified from “0” to “l1,” i.e., from linear function to
hyperbolic tangent function. The second one shows the disconnection of input where
Whp 1s modified from “—0.4” to “0,” i.e., the bias is accordingly disconnected. The third
one shows the connection of input where Wy, is modified from “0” to “2.9,” i.e., the
input is consequently connected. Note that the value of “2.9” is randomly assigned via a

normal distribution with zero mean and unit variance after the input is connected.
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Crossover point
Parents

NewronA [ 15[ 1 | 09 13 |21 ]02]0.1]

NewronB [07] 0 [ 0o | 0o [ 0 [25]-02]

Offspring ﬂ

NewronA  [15] 1 [09] 0 | o [25]-02]

NeuronB> |07] 0 | 0 [13]21]02]0.1]

Fig. 3.6 Neuron crossover.

Mutation point

by

NeuronC  [03] 0 |04 0 [0 [ o] 0|

U

NewonC* (03] 1 [ o f29] 0] 0] 0]

Fig. 3.7 . Neuron mutation.

C. Survival Selection

The offspring neurons are generated in two ways as shown in Fig. 3.8. The parents
are first rearranged in descending order of their fitness and then the best Np/2 parents are
copied as Np/2 offspring. The rest Ny/2 offspring are generated via the neuron crossover
and neuron mutation based on the whole parents. In Fig. 3.8, Neuron 7’ is not
necessarily generated from Neuron 7 and is indexed for convenience. In SSLA, the
generational replacement is adopted as the survival selection, i.e., the offspring

immediately replace all parents and become the parents in the next generation.
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. . >~ crossover and
v ’ : neuron mutation
Neuron 6 Neuron 6’ )

Fig. 3.8 Neuron reproduction.

Based on the three phases described above, SSLA is summarized in Fig. 3.9 as
follows.

Initialization phase:

Step 1)  Create a neuron population which consists of Ny neurons whose lengths
of the chromosome are the same.

Step2)  Create a network population which consists of Pxd empty individuals
whose lengths of the chromosome are different.

Step 3)  Randomly select one group, Group p, and randomly select p neurons to
construct an NN for an empty individual.

Evaluation phase:

Step4)  Train the built NN by BP for ¢ epochs so that the chromosome of NN
would be updated expected for the activation function type. Calculate the
fitness of the NN to evaluate the chromosome of the network population.

Step5)  Share the fitness to each participated neuron. Go to Step 3) until the

network population has no empty individual.
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Step 6)  Determine the fitness of all neurons in the neuron population via (3.1).

Step 7)  Preserve the NN with the best fitness.

Step 8)  If the maximum generation is achieved, then stop the algorithm;
otherwise, go to Step 9).

Reproduction phase:

Step 9)  Copy the best Np/2 parents as the offspring in the neuron population.

Step 10)  Generate the rest Ny/2 offspring by the neuron crossover based on the
whole neuron population.

Step 11)  Perform the neuron mutation on the rest Ny/2 offspring.

Step 12) Perform the generational replacement and go to Step 2).
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Fig. 3.9 Flowchart of SSLA.

3.3  Numerical Results

This section provides two examples to verify the performance of the proposed
FNAGM-SSLA, where the structure of FNAGM is evolved by SSLA. The first example
is to predict the chaotic time series and the second example is to predict the object
trajectory acquired from Eye-Robot. The numerical simulations were executed by

MATLAB software in an Intel Pentium CPU at 1.5 GHz with 512 MBytes RAM.
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3.3.1 Example 1: Chaotic Time Series Prediction

The Mackey-Glass time series shown in Fig. 3.10 is generated from the following

delay differential equation

dx(t) _ 0.2x(t-17) _0.1x(1)
d  1+x"(t-7) (3.2)

where 7= 25 and x(0) = 1.2 in the simulation. The objective involves using [X(t-3) x(t-2)
X(t—1) x(t)] to predict X(t+1). Thus, the input of NN of FNAGM is [egm(t—3) eam(t-2)
ecm(t—1) egm(t)] and the output is egm(t+1). The first 250 pairs are used as the training
data. The parameter of FNAGM was set as ¥ = 2 in (2.15). The parameters of SSLA
were set as follows: probability of mutation pn = 0.1, neuron population size Ny = 50,

number of groups P = 5, number of group members d = 3, and maximum number of

generations G, = 250.

0.6 R

0.4

0.2F R

D 1 1 1 1 1 1 1 1 1
0 100 200 300 400 500 610 V00 200 00 1000
t

Fig. 3.10 Mackey-Glass time series.
Fig. 3.11 shows the evolved NN of FNAGM where the blue lines represent
positive-valued weights and the red lines represent negative-valued weights. The input
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Uj, Uy, Us, and Ug represents egm(t), eom(t—1), eam(t—2), and egm(t—3), respectively. The
evolved NN consists of two hidden neurons with hyperbolic tangent activation function
and ten connections. Note that the bias does not connect to both two hidden neurons and
output neuron. Furthermore, U3 does not connect to the left hidden neuron and u;, U,
and U4 do not connect to the right hidden neuron. Furthermore, u;, U3, and Uy directly
connect to the output neuron. Clearly, the evolved NN is a partially connected cascade

NN.

Fig. 3.11 Evolved NN of FNAGM-SSLA for Example 1.

Many approaches exist in the literature; however, it is not feasible and necessary to
perform an exhaustive comparison with all algorithms. The purpose of our experimental
comparison is to realize the advantages of FNAGM-SSLA. Because FNAGM-SSLA
uses GM(1,1), NN, and SSLA, GM(1,1) [3], Advanced GM(1,1) [27], NN [8], and
FNAGM [99] are primarily considered here for comparison. Advanced GM(1,1) is a
former research work by us that is described in Section 1.2.1. NN is carried out in two
ways: on-line and off-line parameter learning which are regarded as NNon and NNoff,
respectively. NNoff uses the first 500 and last 500 data points as the training data and
the testing data, respectively. FNAGM is the work without structure learning which has

been described earlier in Chapter 2. The number of hidden neurons of NNon, NNoff,
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and FNAGM were selected by the preliminary tests which evaluate the performance of
systems with different number of hidden neurons, from 1 to 20. As a result, the number
of hidden neurons of NNon, NNoff, and FNAGM with 8, 7, and 4 hidden neurons
behave the highest performance, respectively. Note that NNon, NNoff, and FNAGM
have fully connected topologies.

Fig. 3.12 shows the absolute prediction errors of GM(1,1), Advanced GM(1,1),
NNon, NNoff, FNAGM, and FNAGM-SSLA. It can be seen that FNAGM performs
better than GM(1,1), Advanced GM(1,1), NNon, and NNoff. FNAGM-SSLA further
improves FNAGM and has smaller prediction error. Although FNAGM-SSLA has
larger prediction error in the beginning time steps, it can continuously perform learning
and improve the prediction error.

To better illustrate the efficiency of the proposed FNAGM-SSLA, Table 3.1 shows
the mean RMSE, number of hidden neurons (Nj), number of connections (N¢), and
computation time of each prediction step-(T;)-over 10 independent runs. It can be seen
that FNAGM-SSLA has a better RMSE 6.92x107* than GM(1,1), Advanced GM(1,1),
NNon, NNoff, and FNAGM. Furthermore, FNAGM-SSLA has a more compact
structure than NNon, NNoff, and FNAGM in terms of N, and N; due to the use of SSLA.
This implies that more connections do not necessarily result in superior fitness. In other
words, appropriate connected topology is the key to improving fitness, not the number
of connections. Since FNAGM-SSLA has averagely 2.9 hidden neurons and 13.6
weights (parameters) where the standard deviations are 1.34 and 3.75 respectively, it
requires less computation time 1.90x 10~ second than FNAGM for both prediction and
on-line batch training. Thus, it can be employed to real-time prediction application

where the sampling time is larger than 2 ms.
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Table 3.1 Comparison of prediction results for Example 1.

GM(1,1)  Advanced NNon NNoff FNAGM FNAGM-

[3] GM(1,D[27]  [8] [8] [99] SSLA
fyzsfof"r 1.09x1072  1.10x107°  2.65x107" 1.41x107° 9.39x10™* 6.92x10™*
Ny 8 7 4 2.9(1.34)
N, 49 43 25 13.6(3.75)
Te 4.08x107* 41510 2.40x107* 1.81x10™* 4.80x107 1.90x107

3.3.2 Example 2: Object Trajectory Prediction

The purpose of this example is to predict object trajectory during one sampling
interval, 3.3x107 second, so that Eye-Robot can make decision in real-time according
to the information. Fig. 3.13 shows the object trajectory where the data acquisition
process is described in Section 2.4.1. The prediction goal of FNAGM is to predict x(t+1)
using the input [X(t-3) x(t-2) x(t=1) x()]. In this way, [eom[Kk—3] ecm[k—2] eam[Kk—1]
eam[K]] is chosen as the input of NN of FNAGM and egm[k+1] is the target value. The
setup of FNAGM-SSLA is the same as Example 1 in Section 3.3.1. Furthermore, the

training data were normalized to the range [-1, 1].

180 T T T T T T T T T

Trajectary
[}

oo b g

_1 aj 1 1 1 1 1 1 1 1 1
0 100 200 300 400 S00 00 YOO 800 900 1000
Time Step

Fig. 3.13 Object trajectory captured by Eye-Robot.
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Fig. 3.14 shows the evolved NN of FNAGM-SSLA. The evolved NN consists of
one hidden neuron with hyperbolic tangent activation function and 9 connections. Note
that the bias does not connect to the hidden neuron. Furthermore, U, does not connect to
the hidden neuron. Moreover, the four inputs directly connect to the output neuron.

Clearly, the evolved NN is a partially connected cascade NN.

b Uy Uy U3 Uy
Fig. 3.14 Evolved NN of FNAGM-SSLA for Example 2.

To evaluate the effectiveness of the proposed FNAGM-SSLA, Fig. 3.15 shows the
prediction results of GM(1,1), Advanced GM(1,1), NN, FNAGM, and FNAGM-SSLA.
The number of neurons of NNon, NNoff, and FNAGM is chosen by the same procedure
shown in Section 3.3.1. Consequently, NNon, NNoff, and FNAGM with 6, 4, and 5
neurons have the best performance. Note that NNon, NNoff, and FNAGM have fully
connected topologies. It can be observed that GM(1,1) performs better than Advanced
GM(1,1), NNon, and NNoff in this example, while Advanced GM(1,1) and NNoff
perform better than GM(1,1) in Example 1. FNAGM has better performance than

GM(1,1) and FNAGM-SSLA further improves the prediction error of FNAGM.
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Fig. 3.15 Absolute prediction errors in Example 2. (a) GM(1,1) [3]; (b) Advanced
GM(1,1) [27]; (¢) NNon [8]; (d) NNoff [8]; (¢) FNAGM; (f) FNAGM-SSLA.
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Table 3.2 Comparison of prediction results for Example 2.

GM(1,1) Advanced NNon NNoff FNAGM FNAGM-

3]  GM(,1)[27] 8] [8] [99] SSLA
lk{I;/I;SEOfor 66491 295957 725432 79706  6.0348  5.3806
Ny 6 4 5 1.3(1.28)
N, 37 25 31 8.7(4.37)
Te 4.08x107" 41510 2.40x10* 1.81x10™* 8.00x10° 1.80x10°°

Table 3.2 presents mean RMSE, Ny, N¢, and T¢ of NNon, NNoff, FNAGM, and
FNAGM-SSLA over 10 independent runs. FNAGM-SSLA achieves a better RMSE
5.5642 than GM(1,1), Advanced GM(1,1), NNon, NNoff, and FNAGM. In case of
FNAGM-SSLA, the average Np and N, 1.3 and 8.7 where the standard deviations are
1.28 and 4.37 respectively, are less than those of NNon, NNoff, and FNAGM. It can be
seen that a better exploration in the structure search space is realized due to the use of
SSLA which achieves compact “structure of cascade NN and high prediction
performance. Since FNAGM-SSLA has: fewer hidden neurons and weights than
FNAGM, it requires less computation time 1.80x10° second than FNAGM for both
prediction and on-line batch training. The experiments show the same evidence as
numerous studies [44]-[46] that partially connected NNs have better storage capability
per connection than fully connected NNs. Furthermore, the results show that the
evolved FNAGM can be used to real-time prediction application due to the less

computation time.

3.4 Summary

This chapter presents a novel forecasting system, FNAGM-SSLA, which first

facilitates structure learning of FNAGM by SSLA and then achieves prediction and

56



on-line batch training by the evolved FNAGM. The idea behind SSLA is to achieve
neuron-based structure learning and develope neurons to construct NNs through
symbiotic evolution. SSLA can construct cascade NNs and feedforward NNs by
evolving the neurons with different activation functions including hyperbolic tangent
and linear functions. It determines not only the number of hidden neurons, but also the
connected topology between input and hidden layers. The experiments show that
FNAGM-SSLA can obtain an appropriate FNAGM structure, with fewer neurons and
connections, and a smaller prediction error than FNAGM designed in an empirical way.
This implies that more connections do not necessarily result in superior fitness. In other
words, appropriate connected topology is the key to improving fitness, not the number
of connections. Furthermore, the experiments show that FNAGM-SSLA requires less

computation time and can be used for real-time prediction application.
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Chapter 4 Network-Based Structural Learning for

Prediction

This chapter presents a method of designing NNs for prediction problems based on
an evolutionary constructive and pruning algorithm (ECPA). The proposed ECPA begins
with a set of NNs with the simplest possible structure, one hidden neuron connected to
an input node, and employs crossover and mutation operators to increase the complexity
of an NN population. Additionally, cluster-based pruning (CBP) and age-based survival
selection (ABSS) are proposed as two-new operators for NN pruning. The CBP operator
retains significant neurons and prunes insignificant neurons on a probability basis and
therefore prevents the exponential growth of an NN. The ABSS operator can delete old
NNs with potentially complex structures and then introduce new NNs with simple
structures; thus, NNs are less likely to be trapped in a fully connected topology. The
ECPA framework incorporates constructive and pruning approaches in an attempt to
efficiently evolve compact NNs. As a demonstration of the method, ECPA is applied to
three prediction problems: the Mackey-Glass time series, the number of sunspots, and
traffic flow. The numerical results show that ECPA makes the design of NNs more

feasible and practical for real-world applications.

4.1 Basic Concept of Evolutionary algorithm

EA, which simulates Darwinian evolution, is a parameter optimization algorithm

[101] that works through a simple cycle of stages. The EA begins with a randomly
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generated population consisting of a number of feasible solutions for the problem. This
population is referred to as the parents, and each solution is known as an individual. The
next stage evaluates the fitness of each individual of the population. To improve the
individuals of the current generation, the crossover operator is adopted to perform
essential recombination of two or more individuals. Furthermore, to sample unknown
regions, the mutation operator is employed to make a change or perturbation in a
parameter with a random element. In other words, the crossover is considered to be an
exploration operator, whereas the mutation is considered to be an exploitation operator.
Therefore, EA creates a new population, known as the offspring, using the crossover
and mutation operators. To maintain a constant population size over subsequent
generations, the next stage performs a selection to determine whether the individuals in
both the parent and offspring populations survive-to the next generation. Ranking and
tournament selections are frequently employed as selection strategies [102]. The EA

stops when the maximum number of generations is reached.

4.2  Evolutionary Constructive and Pruning Algorithm

Based on the characteristics of EA, constructive, and pruning algorithms
mentioned in Section 1.2.2, we propose ECPA to develop NNs in an attempt to balance
the constructive and pruning manners in an evolutionary way. This approach starts from
a group of NNs with the simplest possible structure, one hidden neuron connected to an
input node. It then employs network crossover and network mutation to make NNs
more complex, and adopts CBP and ABSS to prune NNs. As discussed in [81],
theoretical work has shown that a single hidden layer is sufficient for forecasting

purposes. Therefore, in this work, we designed a three-layer feedforward NN with an
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input layer, a hidden layer, and an output layer. The major steps of ECPA are

summarized in Fig. 4.1 and explained below.

Create NNs with one
neuron and single
connection

Y

» Network crossover |

A 4

[Network mutation |

Cluster-based
prunning

A 4

Age-based survival
selection

Satisfy stop
criterion?

Fig. 4.1 Major steps performed in ECPA.

Initialization phase:

Step 1)  Generate an initial population with N, NNs, where N, is the population
size. The initial NN structure starts with a simplest possible network with
one neuron and a single connection from one of the inputs, which is
randomly selected.

Step2)  Train all NNs using BP for ¢ epochs, where ¢ is specified by the user,
and determine their fitness.

Reproduction phase:
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Step 3)  Select two parents by tournament selection. Produce one offspring from
the two parents using network crossover.

Step4)  Apply network mutation to the offspring.

Step 5)  Train the offspring NN using BP for ¢ epochs and determine its fitness.

Step 6)  Perform CBP on the offspring. Go to Step 3 until N, offspring are
generated.

Step 7)  Apply ABSS to the parents and their offspring to select the parents of the
next generation. Go to Step 3 until the maximum number of generations
is reached.

Step 8)  Select a single best NN among the final population.

4.2.1 Encoding Scheme and-Design Mechanism

In order to encode an NN into'a chromosome, NN is represented as a vector whose
length depends on the size of NN such that the memory can be used efficiently. Fig. 4.2
shows the chromosome representation of two NNs and their corresponding graphical
representations. The chromosome consists of the network connections and weights
where Wi, Wy, and Wi, indicate the output weight of the first hidden neuron, the weight
connected from bias, and weight connected between first hidden neuron and second
input node, respectively. Note that the weight with nonzero value represents the
connected weight while that with zero value represents the disconnected weight. The
initial population is a set of simplest possible networks whose initial weights are
randomly generated by a uniform distribution in the range [-1.0, 1.0] via the suggestion

in [104].
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Fig. 4.2 Coding of NN and two examples.

The data set used in ECPA is partitioned into.two sets: training set and testing set.
In Step 2 and 5, the training set is used to train the weights of NN by local search
operator and evaluate the fitness of NN..As mentioned in major steps, ECPA uses both
global and local search to design NNs. The global operators in reproduction phase are
used to explore the NN structures, and the local operator, BP, is used to enable a precise
local search of weights. As shown in Section 1.2.2, it is better to carry out global search
and local search alternatively during evolution. Therefore, ECPA performs weight
training by BP after structure search by evolutionary operators, again and again.
Basically, ECPA directs the evolution of NNs via four essential components: network
crossover, network mutation, CBP, and ABSS. Details regarding each component of

ECPA are provided in the following sections.

4.2.2 Network Crossover

The ECPA starts from a population of NNs with the simplest possible structures so
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that the initialization phase can easily set the topology of NNs as one hidden neuron and
a single connection from one input. However, these NNs may not be able to achieve
enough and desired accuracy. In order to increase the processing capabilities of NN, it
1s necessary to facilitate the exploration of the wider regions of a structural search space.
For the sake of this objective, this stage executes constructive manner to add hidden
neurons to each NN. To decide how many hidden neurons should be add to each NN,
network crossover simply selects two NNs and combines them together. Hence, this
operator does not necessarily use many heuristics and user-defined parameters, and
require rich prior knowledge. The network crossover operation in ECPA produces an
offspring NN by combining the substructures of two parent NNs. To clearly illustrate
the network crossover, an example is shown in Fig. 4.3 for two parent NNs, NN, and

NNy, and their offspring NN¢. The input-output relationship of NNj is as follows:
ya :ng'h(wf?ll'xl+wr?12'xz) (4.1)
where h is the hidden neuron activation function, w;, is the output weight, and w,,

is the weight connected from X, to the hidden neuron. The hidden neuron activation
function can be a linear, logistic or hyperbolic tangent function. The superscript of each
weight represents its network index, and the subscript indicates the relationship between

hidden and input neurons. For NNj, the input-output relationship is as follows:

yb = ng' h(WEn' X1)+ W32' h(wrl:zz' X, + Wr?24' X4) (4'2)

where WP, is the output weight of the first hidden neurons and W;,, is the weight

from X4 to the second hidden neuron.
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1 X1 % X3 X4
NN,

Fig. 4.3 An example of a network crossover.

The network crossover directly combines the substructures of NN, and NNj, and

the offspring NN is subsequently obtained as:

ye =1/2(y*+y")
=0.5Wg;- h(Wt?n'Xl'*'Wt?n'Xz) (4.3)

+0.5WE,- h(We < )+ 0502, h(WE, - X, + Whyy - X,)

This result is shown in Fig. 4.3. The output weights of the offspring NN are half
those of the parent NNs, and the hidden weights of the offspring retain the same weights
as those of the parent NNs. As shown in Fig. 4.3, it is clear that the network crossover
operator directs the evolution of NNs in a constructive manner. Furthermore, a
crossover probability is chosen to determine whether or not to perform network
crossover on two parent NNs. If the crossover probability is smaller than a random
number, network crossover is performed on the two parent NNs; otherwise, the two

parent NNs are copied as two offspring.

4.2.3 Network Mutation

When the network crossover is applied to parent NNs, some offspring NNs are

likely to have more hidden neurons and thus possess much processing ability. However,
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it may be inefficient to increase NN’s performance by only adding hidden neuron with
single connection generated by the initialization phase. It is possible to introduce more
inputs into each hidden neuron to increase the prediction accuracy. EAs usually adopt
mutation operator to achieve the perturbation and thus have a better exploitation
capability. Hence, a small perturbation of structure is suitable for structural leaning.
Since the initialization phase generates NNs with single connection, a small
perturbation can be achieved via adding more connections to NNs and its capability is
distinct from adding hidden neurons. For the sake of simple and small perturbation,
network mutation is developed in ECPA and introduces a new connection into NN
where the connection is built between randomly selected one input and one hidden
neuron, and initializes its weight according to a normal distribution with mean = 0 and
standard deviation = 0.01, by the program: A graphical representation of this operation,
in which a new connection is added between X, and the first hidden neuron, is shown in

Fig. 4.4. The input-output relationship of the mutated NNy, NNy, is written as follows:

b b b b b b b
y =Wy h(Whn' Xj+ Wy X2)+W02- h(thz' Xyt Whos X4) (4'4)

where W’,, =0 and thus, NNy retains the performance of NNp,.

4.2.4 Cluster-Based Pruning

ECPA employs network crossover and network mutation to design NNs in a
constructive manner. However, it is well known that the constructive algorithms
difficultly decide when to stop the addition process and may design an excessively large
and complex NN with poor generalization performance. Thus, a pruning algorithm can
be used to determine the relevance or significance of hidden neurons and delete

insignificant ones. Nevertheless, it is not easy to determine the threshold value for
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distinguishing insignificant hidden neurons from significant ones. Therefore, ECPA uses
a different pruning scheme, called CBP, which simply separates the hidden neurons into
two classes, good and worse, according to the best hidden neuron and the worst one
without any user specified parameter. Then the hidden neurons in worse class are
pruned in a stochastic way to avoid deleting excessive hidden neurons. Unlike

conventional pruning algorithms, CBP proceeds in three steps.

|

Wi [Wpy [Wip [Wiz [Wis [Wig| Wo | W [Wop | Wo | Wa3 | Wag

Wi |Wpp [Wip Wiz (W3 |Wig| Wo [ Wi [Wap [ Wao | Wa3 [Way

NNy 07| 0 251001 0] 0 03] 0O |-04f 0 |-0.2

Fig. 4.4 An example of a network mutation.

In the first step, the significance of each hidden neuron is determined. For the ith

hidden neuron, the significance is defined as

o =S, (4.5)

(4.6)
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Thus, S; is the root-mean-square of SP, which is the sensitivity of the network
output 0" to the output h” of the ith hidden neuron for the pth pattern, expressed as
S 00"

' ohP
=W, 4.7)

Here, w; is the weight of the connection from the ith hidden neuron to the output
neuron; this weight is constant because it is irrelevant to the patterns. Hence, the

significance in (4.5) can be rewritten as

o, =+l (4.8)

Thus, a hidden neuron with low significance has little influence on the network
output and can be removed [51]. However, to avoid excessive pruning of the hidden
neurons, the significance in (4.5) is purposely chosen as the square root of S;, following
the concept of the rootogram [108].

In the second step, the hidden neurons are categorized into two classes: good and
worse. The prototypes of the good and worse classes are the hidden neurons with
maximum and minimum significance, respectively. The remaining hidden neurons are
categorized according to the difference between the good and worse prototypes with
respect to their significance. If the significance of one hidden neuron is close to the
good prototype, the hidden neuron is then categorized in the good class; otherwise, the
hidden neuron is categorized in the worse class. The neurons in the good class are
retained, whereas those in the worse class are deleted in a stochastic manner. For each
neuron in the worse class, a random number r with a uniform distribution between [0, 1]
is generated. If r is smaller than 0.5, the neuron is deleted; otherwise, the neuron is

retained.
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4.2.5 Age-Based Survival Selection

After the network crossover, network mutation and CBP are completed, the
individuals in the next generation are chosen through survival selection. If a general
survival selection is adopted, the evolved NNs tend to have fully connected topologies
due to network mutation, which add more inputs to the hidden neurons. As a result,
hardware implementation costs are increased, and the generalization capabilities of the
evolved NNs are reduced. To avoid this problem, we propose a different survival
selection method, ABSS, to select younger NNs with partial connections, rather than
full connections, for the next generation.

ABSS is performed in two steps. The first step involves traditional tournament
selection to choose Ny candidates for the next stage. If the age of an NN is defined as
the number of generations it survives in the population, then the N, candidates may have
different ages. For example, the age of a newborn NN is one, and its age increases by
one if it survives to the next generation.: The second step continues to delete the elder

NNs from the Np candidates according to the aging index, defined as follows:

1 2
A, _(1_@]} (4.9)

where Agej is the age of the jth NN. Selection proceeds by generating a uniform random
number r in the range [0, 1]. If A; > r, the jth NN is deleted and replaced by a newborn
NN produced by Step 1; otherwise, the jth NN is retained in the population. As a result,
the population size Np is unchanged after ABSS, and the average age of the NNs is
potentially lower, which prevents the evolved NNs from adopting a fully connected
topology.

In summary, the network crossover operator constructs an NN by adding hidden

neurons so that the NN possesses more processing ability to accurately approximate the
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target function. The network mutation operator adds one connection from the input to
the hidden neuron so that the hidden neuron can process more input information. CBP
prunes the worse hidden neurons from an NN to prevent overfitting of the training data.
ABSS deletes elder NNs that are potentially fully connected. Thus, network crossover
and mutation operations direct the evolution of NNs in a constructive manner that can
improve their processing ability to accurately approximate the true function, whereas
CBP and ABSS direct the evolution of NNs in a destructive way that can improve their

generalization capabilities while reducing their hardware requirements.

4.3 Numerical Results

In this section, we demonstrate the performance of the proposed algorithm using
three time series prediction problems: Mackey-Glass, sunspots, and vehicle count. The
first time series is generated from the Mackey-Glass differential equation, the second
series is recorded from the sunspots, and the third series is obtained from the hourly
vehicle count for the Monash Freeway outside Melbourne in Victoria, Australia,
beginning in August, 1995. In order to make a fair comparison with previous works, the

first problem adopts RMSE as the fitness, which is calculated as follows:

RMSE = \/ﬁi(x(t) _X(t))? (4.10)

where X(t) is the predicted value at time t and N is the number of data points. The

second and third problems compare with previous works by normalized mean squared
error (NMSE) and mean absolute percentage error (MAPE). The NMSE is defined as

the ratio of the mean squared error to the variance of the time-series as follows:

NMSE = N;aztzil(x(t) —X(1)) (4.11)
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where o is the standard deviation of the time-series. The MAPE is determined as

follows:

XO=XO! ;500 (4.12)

1 N
MAPE =—>" ©

t=1

Furthermore, the number of hidden neurons N, and the number of connections N are
recorded to observe the evolutionary progress. The following parameters are used in
each problem.

1)  The population size N is 30.

2)  The crossover probability is 0.8.

3)  The mutation probability is 0.6.

4)  The value of ¢ for training NN by BP is 15.

5)  The maximum number of generations is500.
As described in Section 3.5, the Np, -G, and ¢ would affect the computational complexity
of ECPA. The larger N, the less effect of genetic drift, the larger G the more chances to
find better ANNs, and the larger ¢ the more prediction accuracy. However, the larger Np,
G, and ¢ lead to the longer computation time. To select suitable values, Np is set as 30
according to the suggestion in [109]. In order to select appropriate ¢ and G, the values
of ¢ were chosen as 5, 10, 15, 20, 25, and 30, and the values of G were chosen as 300,
400, 500, and 600 in the preliminary runs. As a result, G = 500 and ¢ = 15 were adopted
in the following experiments due to the sufficient prediction accuracy and acceptable
computation time. Because the parameters were chosen after some preliminary runs, the
value was not meant to be optimal. The setting of p. = 0.8 and p, = 0.6 is to enhance the
chance of increasing the number of hidden neurons than the chance of increasing the

number of connections. It was expected that structures with more hidden neurons would
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be found first, and these structure would then be pruned. We evaluate the performance

of ECPA on the three examples over 10 independent runs.

4.3.1 Example 1: Chaotic Time Series Prediction

The Mackey-Glass time series prediction is recognized as a benchmark problem in
the area of NNs. This chaotic time series prediction was considered to be a suitable way
to evaluate the performance of the proposed ECPA. The Mackey-Glass time series is
generated from the following delay differential equation:

dx(t)  0.2x(t—7)
dt 1+ x"(t-7)

—0.1x(t) (4.13)

where 7= 17 and X(0) = 1.2 in the simulation. The fourth-order Runge-Kutta method is
used to generate 1,000 data points ranging from't = 118 to 1,117. The task involves
predicting the value of x(t+6) from'the input vector [X(t—18) x(t—12) x(t—6) x(t)] for any
t. Therefore, the input-output data pairs for prediction are

[X(t—18), x(t—12), x(t—6), X(t); X(t+ 6)]
where the first 500 data pairs are used as training set and the later 500 data pairs are
testing set.

The evolutionary progress of NNs for the Mackey-Glass time series prediction
problem is illustrated in Fig. 4.5. The top panel of Fig. 4.5 shows the decrease in RMSE
resulting from the evolution of NNs. The middle and bottom panels of Fig. 4.5 present
Nnh and N; and demonstrate the structural evolution of NNs, respectively. Fig. 4.6
graphically illustrates how the topologies of NNs evolve in selected generations. The
input vector [u(4) u(3) u(2) u(1)] represents [X(t—18) x(t—12) x(t—6) x(t)], and the output
y represents X(t+6). The blue lines represent positive-valued weights, and the red lines

represent negative-valued weights. The widths of the lines indicate the relative strengths
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of the weights. The NN structure produced in the 1st generation starts with a network of
two neurons and a few connections from the inputs and thus has limited information
processing ability for the task. As its evolution progresses, Ny gradually increases to 38
by the 25th generation, is reduced to 28 by the 30th generation, and then increases to 40
by the 490th generation. The NNs were observed to grow rapidly, but the growth did not
always occur due to the use of CBP and ABSS. Note that the resulting NN structure
does not have a fully connected topology; less than 85% of the synapses are connected.
Many approaches have been developed to design both the architecture and weights
of NNs to address the same prediction problem. Table 4.1 presents the experimental
results obtained using the proposed algorithm compared with other algorithms. The best
(i.e., lowest) RMSE, Np, and N; values among the various approaches are shown in
boldface type, and the RMSE, N, and Ng¢.of ECPA are the average values over 10
independent runs. As shown here, although ECPA achieved a larger RMSE than that of
Du and Zhang [110] with the training set, it-obtained a lower RMSE than the other
methods for the testing data. It is interesting that ECPA obtained a lower RMSE for the
testing data than for the training data in this experiment, but this phenomenon has been
observed previously [111]. In terms of the average number of hidden neurons over 10
independent runs, ECPA obtained a lower Ny than those of Du and Zhang [110] and
Harpham and Dawson [112]. Although ECPA obtained a higher Ny than those of Rojas
et al. [113], Chen et al. [114], and Cho and Wang [115], it achieved a lower RMSE.
ECPA resulted in the evolution of an NN with training data RMSE, testing data RMSE,
Np, and N. values of 6.76x107*, 6.30x107*, 40.5, and 203.2, respectively. Clearly, the
evolved NN possessed a partially connected topology; our observations showed that
ECPA can evolve NNs with a lower RMSE and more compact structure than the other

methods.
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Table 4.1 Prediction results for Example 1.

t=6 t=84

Method Train Test  First500 Last500 o Ne
points points

][)llig]nthang 2.87x10™* 7.67x107* 1.93x102 2.07x102 294  ---

Harpham and 3

Dawson [112] 1.50x10 116 -

Rojas et al. [113] 2.87x107> 2.63x107* 12 -

Chen et al. [114] 3.30x107 3.60x107 10 110

Choand Wang o ¢ 103 | 14x1072 23 -

[115]

ECPA 6.76x10™ 6.30x10™* 6.20x107° 3.10x107° 40.5 203.2

The prediction result for the one-step prediction of X(t+6) is shown in Fig. 4.7. In
addition to the one-step prediction of X(t+6), the evolved NN was applied to another
general testing case: the multiple-step prediction of x(t+84) [111]. To perform a
multiple-step prediction, the proposed algorithm iteratively predicts x(t+6), x(t+12), etc.
until it reaches X(t+84) after 14 such iterations. The prediction result for multiple-step
prediction of X(t+84) is shown in Fig. 4.8 where the NN was evolved based on the
training data for the one-step prediction of X(t+6). When compared with Fig. 4.7, the
prediction error in Fig. 4.8 indicates an increase from 6.30x10™* to 3.10x10™ because
multiple-step prediction is more complex than one-step prediction. As shown in Table
4.1, the prediction errors for multiple-step prediction of X(t+84) for the first and last 500
points were 6.20x107 and 3.10x107, respectively. Therefore, ECPA was superior to the

other methods in the multiple-step prediction.
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4.3.2 Example 2: Forecasting the Number of Sunspots

The number of sunspots varies nonlinearly in nonstationary and non-Gaussian
cycles that are difficult to predict [116]. In this experiment, ECPA was used to predict
the number of sunspots. The objective of this test involves using [X(t—10) X(t-9) ... X(1)]
to predict X(t+1), where t represents the year and X(t) represents the number of sunspots
in year t. For a fair comparison with the other methods, the data from 1700 to 1920 were
the training set and the data from 1921 to 1955 were the testing set. The parameters
used in this experiment are the same as those in Example 1.

The learning curves for ECPA in this example are shown in Fig. 4.9. The top panel
shows that the training error gradually decreased as the evolution process progressed.
The middle and bottom panels of Fig. 4.9 present the evolution of Nj and N,
respectively. To illustrate the structural evolution of NNs in detail, Fig. 4.10 shows the
topologies of NNs in selected generations. The input vector [u(11) u(10) ... u(1)]
represents [X(t—10) x(t-9) ... X(t)], and the output y represents x(t+1). We observed that
Np was always less than and equal to 5 during the evolutionary process and only a few
inputs were connected to the hidden neurons. During the 1st and 40th generations, the
structures of the evolved NNs grew rapidly, and more inputs were processed. The Ny
increased to 4 in the 40th generation and N; increased to 11. Finally, N, and N
converged to 5 and 24, respectively, at the end of the evolution process. Notably, all of
the evolved NNs lack connections from the bias of the hidden layer to the output layer.
The final evolved NN connected half of the inputs including Xx(t), X(t-2), X(t—4), X(t-8),
X(t-9), and x(t—10), and each neuron connected an average of 3.8 inputs. Thus, the final

evolved NN clearly has a partially connected topology.
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The prediction result of the training data from the years 1700—-1920 is shown in Fig.
4.11. The prediction result for the testing data for the years 1921-1955 is shown in Fig.
4.12. ECPA performance was further compared to those of an adaptive neural network
(ADNN) [117], an artificial neural network (NN) [8], a hybrid methodology that
combines an autoregressive integrated moving average with an artificial neural network
(Hybrid) [118], and an adaptive k-nearest neighbors (AKN) [119]. In terms of average
performance over 10 independent runs, Table 4.2 presents that ECPA obtained an NN
with mean absolute percentage error (MAPE), normalized mean squared error (NMSE),
Nh, and N; values of 24.66, 0.0573, 5.0, and 46.9, respectively. These results indicate
that the proposed ECPA can design an NN with a compact structure and a smaller

prediction error than other methods.
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Fig. 4.12 Testing results for Example 2.

Table 4.2 Prediction results for Example 2.

Method MAPE  NMSE ' RMSE Ny Nc
ADNN [117] 2845 | 10.068 .9.233 6 --

NN [8] 30.8 0078 9.888 6 -
Hybrid[118] 31.2  0.0852 10334  -- -
AKN [119] 503  0.1833 15.158  -- -
ECPA 2466 0.0573 8475 5.0 469

4.3.3 Example 3: Vehicle Count Prediction

The vehicle count data set was obtained from the hourly vehicle count for the
Monash Freeway outside Melbourne in Victoria, Australia, beginning in August 1995.
The objective of this example involves using [X(t—15) X(t—14) ... X(t)] to predict X(t+1).
The setup of this experiment was identical to that described in Example 1.

The evolutionary progress of NNs is shown in Fig. 4.13. The top panel of Fig. 4.13

shows the NMSE of the evolved NNs in each generation. The NMSE was observed to
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decrease rapidly in the first 50 generations and converged in the later generations. The
middle panel of Fig. 4.13 shows the number of hidden neurons, N, of the evolved NNs.
The bottom panel of Fig. 4.13 shows the total number of connections in the evolved NN
N. each generation. The structural evolution of NNs is presented in more detail in Fig.
4.14, which graphically illustrates the topologies of NNs in selected generations. The 16
inputs [u(16) u(15) ... u(l)] represent [X(t—15) x(t—14) ... x(t)], and the output y
represents X(t+1). We observed that Ny increased to 4 in the 4th generation and further
increased to 9 in the 8th generation. After the 9th generation, Ny varied from 7 to 13.
Finally, Ny converged to 7 in the 373rd generation. With respect to Nc, NNs have few
connections in the early generations due to the single-connection topology presented in
the initial population, and N does not always increase. N¢ drops from 37 to 22 in the
20th generation and from 40 to 37 .in the 240th generation, implying that more
connections do not necessarily result in superior fitness. In other words, appropriate
topology, not the number of connections; is-the key to improving fitness. However, we
observed that each neuron attempted to connect to more inputs as the number of
generations was increased. The evolution of NNs almost converges, and no further
improvement in NNs was observed after the 373rd generation. As a result, the
highest-quality NN with well-trained weights has 7 hidden neurons and connects most
of the inputs, except for x(t-5) and x(t—10). Thus, NN can automatically select the
necessary inputs via ECPA. Clearly, the evolved NN is a partially connected network.
The prediction results of the training data and testing data are shown in Fig. 4.15
and Fig. 4.16, respectively. Table 4.3 summarizes the average performance of the
evolved NNs for the testing set over 10 independent runs and compares these results to
other methods, including ADNN [117], NN [8], Hybrid [118], and AKN [119]. The

average NMSE using ECPA was 0.0182, which is less than that obtained using the other
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methods. Furthermore, the evolved NNs obtained using ECPA have an average of 7.7

hidden neurons, which is less than the other methods.
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Table 4.3 Prediction results for the hourly vehicle count time series.

Method MAPE NMSE RMSE N; Nh N
ADNN [117] 1431 0.0193 186.096 180 12 --

NN [8] 17.97  0.0267 218.884 180 12 --
Hybrid [118] 2698 0.0818 383.120 180  -- --
AKN [119] 17.39  0.0206 192.261 180  -- --
ECPA 11.35 0.0182 180.715 16 7.7 77.6

4.3.4 Effect of CBP and ABSS

The previous section discusses the performance of ECPA for different prediction
problems. However, the effect of CBP and ABSS on evolution of NNs is unclear. To
evaluate how CAP and ABSS affect NN evolution, two variants of ECPA which do not
use CBP and ABSS, respectively, were used . in repetitions of the above experiments.
The variant of ECPA without CBP s referred to as ECPA/C and that without ABSS is
referred to as ECPA/A. The setup of these experiments was identical to those in
previous experiments.

In order to gain the deeper understanding of the performance difference between
ECPA, ECPA/C, and ECPA/A in these three experiments, the three algorithms are
compared in terms of NMSE, N, N¢, connection ratio, R¢, and computation time, T,
whose unit is second. The R; is determined as follows:

R, =N, /N, -100% (4.14)

where N is the number of connections in an NN with a fully connected topology. An
NN with Nj hidden nodes with a fully connected topology leads to the following
relation:

N, =(N;+1)-N,+ N, +1

=(N;+2)-N,+1 (4.15)
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where N is the number of input nodes. When R; < 100%, NN has a partially connected
topology, and when R, = 100%, NN has a fully connected topology. The computational
environment is Windows XP with Intel Core 17 870 2.93G CPU and 4GB RAM. These
algorithms are implemented in MATLAB.

The results in Table 4.4 present that ECPA and ECPA/A produce different NNs in
some aspects. For the three examples, the average Ny, and N values over 10 independent
runs returned by ECPA/A are much larger than those of ECPA which applies both CBP
and ABSS. As comparing their prediction performance, ECPA/A yielded slightly
smaller NMSE values than ECPA in the Mackey-Glass and vehicle count time series.
This improvement may be yielded due to the great processing capability of a large
number of hidden neurons. However, the NNs developed via ECPA/A for the sunspot
time series have larger NMSE valu¢ than those via ECPA. This may be due to the
overfitting property caused by too many hidden neurons. The results indicate that ECPA

facilitates NNs with more generalization ability than ECPA/A.

Table 4.4 Performance of ECPA and ECPA/A in Mackey-Glass, sunspot, and vehicle
count time series. All results are averaged over 10 independent runs, where * refers to

RMSE.

Method Experiment NMSE Nh N Rc(%) Te
Mackey-Glass *6.3027x10™* 40.5 2032 8328  1112.7

ECPA Sunspot 0.0573 50 469  71.06  375.1
Vehicle count 0.0182 7.7 77.6 55.59 693.3
Mackey-Glass *1.3535x107 860.6 2357.7 45.65 60531.7

ECPA/C Sunspot 0.5741 419.3 1145.6 21.01 58413

Vehicle count 0.0358 2243 605.1 1498  5939.6
Mackey-Glass *6.3147x10™ 5753 2173.9 62.96 12958.9
ECPA/A Sunspot 0.7547 173.7 603.1 2670  2237.1
Vehicle count 0.0176 70.8 653.6 5125 33583
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In addition to NMSE, Ny, and N, Table 4.4 presents that R; obtained by ECPA/C is
lower than ECPA/A due to the use of ABSS. More specifically, elder NNs which are
much likely to have more connections from inputs conducted by network mutation
would be deleted by ABSS in ECPA/C. Although ECPA/C can produce sparsely
connected topology of NN by the aid of ABSS, it would result in NNs with huge Np.
Thus, the NNs in ECPA/C face overfitting problem and have bad generalization ability,
i.e., larger NMSE for testing set. When comparing ECPA, ECPA/C, and ECPA/A,
ECPA/A can produce NNs with less hidden neurons than ECPA/C due to the use of CBP.
ECPA further yields NNs with more compact structures and better generalization ability
than ECPA/A due to the use of ABSS.

Furthermore, the computation time of ECPA, ECPA/C, and ECPA/A is compared.
The computation time required by ECPA was less than that required by ECPA/C and
ECPA/A since ECPA needs less computation time to process less hidden neurons while
ECPA/C and ECPA/A require longer time to-train and evaluate the NNs with large
number of hidden neurons. According to the observation, both CBP and ABSS are

beneficial for producing NNs with a compact structure and reducing computation time.

4.3.5 Discussion

In this section, we summarize the observations in the three experiments described
above, and discuss the experimental results. Fig. 4.5, Fig. 4.9, and Fig. 4.13 show that
the NN structures developed using ECPA are simple in the first generations due to the
use of initial NNs with one hidden neuron and a single connection to one of the inputs.
As their evolution progresses, the NN structures grew rapidly in the beginning due to
the addition of neurons via crossover and the addition of connections via mutation.

However, the results show that NNs did not grow continuously in the later generations
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due to the use of CBP and ABSS. CBP primarily preserves the significant neurons and
prunes the insignificant neurons using a probability criterion. Pruning prevents the
exponential growth of NNs and avoids long-term training for complex NNs. In addition,
ABSS first deletes the old individuals likely to have complex structures and then
provides an opportunity to introduce new individuals with simple structures generated
via Step 1). Section 4.3.4 demonstrates that ABSS is useful for developing a compact
NN architecture and avoiding the design of complex NNs. The highest-quality NN with
well-trained weights is then attained using construction via crossover and mutation
operations and destruction via CBP and ABSS. The resulting NNs do not have fully
connected topologies; less than 80% of the synapses are connected in the Mackey-Glass
time series, 50% are connected in the sunspot time series, and 40% are connected in the
vehicle count time series. Furthermore, the evolved NNs do not connect to all the inputs,
e.g., the evolved NN does not connect to X(t—7) in the sunspot time series, and the
evolved NN does not connect to x(t—5) and X(t-10) in the vehicle count time series.
Thus, ECPA has the ability to select suitable inputs required to accurately perform
predictions. These results imply that more connections do not necessarily result in
superior fitness. In other words, an appropriately connected topology is the key to

improving fitness, not the number of connections.

4.4  Summary

A novel structure learning algorithm, called ECPA, is proposed for the design of
NNs based on an evolutionary constructive and pruning algorithm. ECPA evolves NNs
starting with a minimal structure: one hidden neuron connected to an input node. The

crossover and mutation operations make the NN structures more complex, whereas CBP
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and ABSS make the NN structures more compact. The results of the numerical
simulations show that the use of CBP and ABSS operations indeed generates compact
NNs. Moreover, ECPA adopts variable-length chromosomes to represent the NNs so
that memory is used efficiently. In the time series prediction problems, ECPA not only
evolved partially connected NNs with sufficient prediction accuracy but also
demonstrated the ability to select the proper inputs, i.e., input selection. The numerical
results demonstrate that an appropriately connected topology, rather than the number of

connections, is the key to improving NN performance.
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Chapter 5 Conclusion and Future Work

This dissertation proposes an FNAGM based on GM(1,1) and NN for real-time
prediction application. FNAGM uses GM(1,1) to predict signals and employs NN to
compensate the prediction error of GM(1,1). Based on Levenberg-Marquardt algorithm,
NN is adjusted in real-time by the proposed on-line batch training whose convergence
property has been proven in this dissertation. Numerical results are also included to
demonstrate that FNAGM has higher prediction accuracy than other methods and is
applicable for real-time prediction. Furthermore, experimental results of a robotic
application show that FNAGM can be successfully used for the trajectory prediction
and object tracking.

In order to design the structure of FNAGM in an efficient way, a neuron-based
structure learning algorithm, called SSLA; is" proposed to construct the topology of
FNAGM. The SSLA can flexibly construct cascade NNs and feedforward NNs by using
the neuron population including neurons with hyperbolic tangent and linear activation
functions. Therefore, a complex coding to represent these two classes of NNs is
unnecessary. The neurons in the neuron population share the fitness from their
participating NNs and then evolve according to neuron crossover, neuron mutation, and
BP. Consequently, FNAGM with compact structure is obtained and applied to predict
signal and further learn to compensate the prediction error by the on-line batch training.
When comparing to the FNAGM designed by trial-and-error, numerical results show
that FNAGM-SSLA can automatically determine the topology of FNAGM with more
compact structure, higher prediction accuracy, and less computation time.

In addition to the neuron-based structure learning algorithm, ECPA, a
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network-based structure learning algorithm, is proposed to determine the topology of
NN by evolving network population. Different from SSLLA which needs to define the
minimum and maximum numbers of hidden neurons, ECPA simply starts from a
minimum structure with one hidden neuron connected from one input node. ECPA
incorporates the idea of constructive algorithm into the network crossover and mutation,
and enables NNs to have more processing capabilities. Furthermore, CBP and ABSS,
based on pruning algorithm, are adopted to make the structure of NN more compact.
Numerical results show that ECPA can gradually evolve NNs from a minimum structure
to an appropriate structure with suitable inputs. Moreover, the evolved NNs obtain
higher prediction accuracy and more compact structures than other methods for
prediction problems. Therefore, ECPA could be applied to extract the inputs which
essentially have rare relationship to the original data, and thus reduce the problem
dimensionality and eventually decrease the complexity of the generated NNs.

Future work will focus on developing-cascade NNs with different activation
functions, such as logistic, hyperbolic tangent, linear threshold, exponential and
Gaussian signal function. Moreover, a large amount of computation time is required for
the use of SSLA and ECPA. Approaches concerning the time reduction should be
further investigated. In addition to prediction application, it would be of great interest to
use reinforcement learning to develop both parameter and structure learning algorithms
for nonlinear control problems. This dissertation adopts BP as the parameter learning
algorithm; however, BP may be not applicable in certain control problems when
gradient information of the plants is not available. In the future research, EAs will be
considered as a substitute of BP to perform both parameter and structure learning by

global searching techniques.
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