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具演化式結構學習能力之類神經網路及其預測之應用 
 

研究生：楊世宏  指導教授：陳永平 博士 
 

國立交通大學電控工程研究所博士班 
 

摘  要 

本論文提出一以前饋式類神經網路輔助之灰色模型及其相關的線上參數學習

與結構學習演算法，此模型採用一階單變數灰色模型來預測訊號，再使用前饋式

類神經網路補償灰色模型的預測誤差，此外，本論文提出一線上批次訓練法來即

時更新類神經網路的權重值，於是，此模型可以執行預測且持續地適應動態的訊

號變化。為了有效地設計此模型的結構，本論文提出一種以神經元為基礎的結構

學習，稱為共生結構學習演算法，來建立類神經網路的拓墣結構，此演算法首先

建構一神經元族群，再由神經元族群建立類神經網路族群，由於神經元族群裡的

神經元包含雙曲線正切與線性活化函數，此演算法能任意且輕易地發展串聯式網

路與前饋式網路，此演算法進一步根據共生進化的概念，在神經元族群裡執行神

經元交配與突變，其所發展的前饋式類神經網路輔助之灰色模型將執行訊號預測

且持續地以線上批次訓練法調適模型於環境中。另一方面，本論文提出一種以網

路為基礎的結構學習，稱為演化式建構與修剪演算法，用演化的方式結合建構與

修剪的概念，來設計類神經網路的拓墣結構。此演算法從一群具有最簡單結構的

類神經網路開始，即一群只有一顆連接單一輸入單元的隱藏層神經元的類神經網

路，此演算法採用網路交配與突變來增加隱藏層神經元以及鏈結，用以提升類神
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經網路的訊號處理能力，此外，本論文提出一以叢集為基礎之修剪法用隨機的方

式來除去不重要的神經元，也提出一以年齡為基礎之生存者選擇法來移除較老且

可能具有複雜結構的類神經網路，接著引進新的且具有最簡單結構的類神經網

路。數值模擬與實驗結果將展現所提出的方法在預測問題上的有效及可行性。 
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Abstract 

 This dissertation proposes a feedforward-neural-network-aided grey model 

(FNAGM) and its related on-line parameter learning as well as structure learning 

algorithms. The FNAGM uses a first-order single variable grey model (GM(1,1)) to 

predict signal and adopts a feedforward neural network (NN) to compensate the 

prediction error of GM(1,1). Furthermore, an on-line batch training is proposed to 

update the weights of NN in real-time. Thus, FNAGM can precisely predict and adapt 

itself to the dynamical change of the signal. To design the structure of FNAGM 

efficiently, a neuron-based structure learning, called symbiotic structure learning 

algorithm (SSLA), is proposed to establish the topology of NN. The SSLA constructs a 

neuron population and then builds a network population from the neuron population, 

and it can arbitrarily develop cascade NNs and feedforward NNs in an easy way. Further, 

SSLA carries out neuron crossover and mutation on the neuron population according to 

the idea of symbiotic evolution. The evolved FNAGM is applied to predict the signal 

and continuously adapt itself to the environment by the on-line batch training. On the 

other hand, a network-based structure learning, called evolutionary constructive and 
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pruning algorithm (ECPA), is proposed to design the topology of NN by incorporating 

constructive and pruning methods in an evolutionary way. The ECPA starts from a set of 

NNs with the simplest possible structures, one hidden neuron connected to an input 

node. It then adds hidden neurons and connections by using the network crossover and 

mutation to increase the processing capabilities of NNs. Furthermore, a cluster-based 

pruning is proposed to prune insignificant neurons in a stochastic way. An age-based 

survival selection is proposed to delete old NNs with potentially complex structures and 

then introduce new NNs with the simplest possible structures. Numerical and 

experimental results of prediction problems show the effectiveness and feasibility of the 

proposed methods. 
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Chapter 1 Introduction 

 

1.1 Motivation 

Prediction, computing the trends of time series in the future, is a type of problem 

generally encountered in many research fields. Many numerical algorithms that can 

accurately predict time series have been proposed, including the autocorrelation method 

[1], covariance method [2], grey theory [3], and Kalman filter [4]. However, these 

methods require suitable system equation and initial values which are designed 

heuristically [5], [6]. Recently, investigators have focused on data-driven approaches 

based on neural networks (NNs) due to their learning abilities and powerful prediction 

capability so that the implicit nonlinear relationships can be extracted from historical 

data without human experience [7]-[10]. 

NNs were first developed to imitate biological neural systems and are organized 

into several interconnected simple processing units called neurons or nodes. NNs learn 

from examples and historical data, even when the input-output relationships are 

unknown [11]. Thus, NNs can accurately solve problems without prior knowledge when 

sufficient observed data are supplied. This property is useful for evaluating numerous 

forecasting problems because acquiring data is easier than making good theoretical 

guesses about certain systems. 

Two important issues are discussed in NN research: parameter learning and 

structure learning. The parameter learning basically consists of two classes of learning 

strategies, called batch training and on-line training. The batch training adjusts the 
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network by using a large number of prepared training data and performs weight search 

in a fixed error surface. Although the weight search converges, it is easily trapped in a 

local minimum. In order to achieve high forecasting accuracy, however, a large amount 

of data for successful training is needed and lots of training time is also required. It, 

therefore, may not be suitable for some requirements, such as real-time operations, 

limited memory size or on-line adaptation necessity [12]−[15]. As opposed to the batch 

training, on-line training adjusts NN according to a single training pattern, a pair of 

input and target, at a time. It is particularly adequate for the purpose to simultaneously 

execute signal prediction and learn to improve the performance [16],[17]. Although the 

on-line training usually takes much less computation time to adjust the network than the 

batch training does, the former is not easy to achieve accurate solutions as well as the 

latter. Therefore, design of an appropriate on-line training algorithm is necessary to 

perform on-line prediction and continuous adaptation for real-time application. 

Another important issue of NN is structure selection, which involves determining 

an appropriate structure to accurately fit the underlying function described by the 

training data [18]. A structure that is too large may precisely fit the training data but 

may provide poor generalization due to overfitting of the training data. Conversely, an 

architecture that is too small saves computational costs but may not possess sufficient 

processing ability to accurately approximate the underlying function. Therefore, 

structure selection should consider both network complexity and goodness of fit. This 

dissertation proposes two structure learning algorithms: symbiotic structure learning 

algorithm (SSLA) and evolutionary constructive and pruning algorithm (ECPA). SSLA, 

a neuron-based structure learning approach, can automatically determine both the 

number of hidden neurons and topology of NN through a symbiotic evolution. ECPA, a 

network-based structure learning approach, can evolve NN through evolutionary 
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constructive and pruning approaches. Results of this dissertation demonstrate the 

effectiveness of the proposed methods. 

 

1.2 Literature Survey 

This section presents the literature survey of on-line parameter learning and 

structure learning. 

 

1.2.1 On-Line Parameter Learning 

On-line parameter learning is one of the most useful and popular methods for many 

real-world applications. It continuously adapts model parameters to the environment 

after each training pattern is presented at each time step. For time series prediction tasks, 

NNs are used to predict the next data point according to the last finite number of data 

points. The training patterns are presented in their natural order and maintain their 

natural dependencies. The on-line parameter learning constructs a stochastic error 

surface in nature due to the use of pattern-by-pattern updating of weights. This training 

seems to introduce some sort of randomness and help escape from local minimum [19], 

[20]. Mathematically, there is no guarantee of its stability or the convergence of the 

weight search. In [21], researcher found that if the learning rate is small enough, the 

weight search would converge. Basically, on-line gradient descent has been the first 

effective approach for training NNs through error backpropagation [22]. However, one 

difficulty using on-line learning for prediction applications is the sensitivity to the 

selection of training parameters and training patterns. The other difficulty is to 

determine the Hessian on-line when only a single training example is available at one 

time step [13],[23]. This is especially undesirable when the prediction accuracy is 
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requirement of using on-line approaches. 

Aside from NNs, grey theory is used to cope with the systems with partial 

information or dynamic model [24]. Based on the grey theory, the first-order single 

variable grey model (GM(1,1)) has been developed and applied to various on-line 

prediction problems, such as power demand forecasting [1], electricity demand 

forecasting [25] and control of a humanoid robot [26]. GM(1,1) requires only a few 

number of historical data to adapt its parameters on-line and is used to predict 

exponential signals in real time. However, it is inadequate to predict other types of 

signals. In [27], Advanced GM(1,1) adopts the Lagrange polynomial to estimate the 

prediction error of GM(1,1) and indeed improves the prediction. 

Based on the approach of “mixture of experts”, some researchers have integrated 

GM(1,1) and NN to enhance the prediction according to their complementary merits. 

Generally, the ways to combine GM(1,1) and NN can be categorized into four classes 

[28]: simple combination, serial combination, strengthening grey system with neural 

network, building neural network with the aid of grey system. The simple combination 

integrated the outputs of both GM(1,1) and NN with the coefficients determined via 

least mean square method [29], minimum theory of statistical variance [30], [31], and 

Shapley value method [32]. One kind of serial combination made use of the 

accumulation generation operation (AGO) to transform the original data into first order 

AGO (1-AGO) data with improved regularity and then fed the 1-AGO data to the input 

layer of NN [33], [34]. Zhu [35] proposed a kind of serial combination to fed the 

prediction output of GM(1,1) to the input layer of NN which was trained by the 

momentum algorithm. In addition, Chang and Tsai [36] improved the control and 

environment parameters of GM(1,1) by a support vector regression, denoted by 

SVRGM and employed a statistical methodology GARCH to fit the time series. 
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Consequently, a back-propagation neural network was used to tune the 

weighted-average between SVRGM and GARCH. In strengthening grey system with 

neural network, Hsu and Chen [37] applied NN to estimate the residual sign of GM(1,1) 

and the work in [38], [39] forecasted the prediction error of GM(1,1). For the ways 

building NN with the aid of grey system, Yeh et al. [40] trained GreyART network 

which combines grey relational analysis and adaptive resonant theory network and then 

evaluated GreyART network by the testing patterns generated by GM(1,1). 

The aforementioned studies show that the fusion scheme of GM(1,1) and NN could 

outperform the individual ones. However, these models are trained off-line and only 

suitably applied to the prediction problems for hourly [30], daily [29], monthly [33], 

and yearly [35] time-series. To carry out continuous adaptation for prediction problem 

in real-time, it is required to perform the prediction and training during the sampling 

interval. For most of the practical cases in real-time operation, the sampling time is less 

than one second, much longer than the training time needed for one training pattern [41]. 

Thus, it is able to perform more than one pattern learning, such as batch pattern, during 

one sampling interval. Therefore, this dissertation proposes a 

feedforward-neural-network-aided grey model (FNAGM) based on GM(1,1) and NN to 

learn the prediction error of GM(1,1). Furthermore, an on-line batch training is 

proposed to continually adapt the network to the dynamical change for real-time 

prediction. 

 

1.2.2 Structure Learning 

For prediction purposes, it has been shown that a feedforward NN with a single 

hidden layer is sufficient to achieve any desired accuracy [42], [43]. In most 

applications, NNs are fully connected, i.e., all inputs are fully connected to all hidden 
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neurons. Numerous studies have shown that partially connected NNs have better storage 

capability per connection than fully connected NNs [44]-[46]. Furthermore, partially 

connected NNs can yield improved generalization capabilities with reduced cost in 

terms of hardware and processing time [47], [48]. However, how to determine the 

optimal numbers of hidden neurons and connections remains an open question. 

Among several algorithms for designing three-layered NNs, the most frequently 

used algorithms are the constructive, pruning, and constructive-pruning algorithms [49], 

[50]. A constructive algorithm starts with a minimal NN architecture, a three-layered 

NN with one hidden neuron. The algorithm adds hidden neurons to the minimal NN, 

one-by-one, during the training phase. The advantage of the constructive algorithm is 

that the initial phase can simply set the number of hidden layers and neurons as one 

each. However, deciding when to add hidden neurons or connections and when to stop 

the addition process is difficult. 

A pruning algorithm starts with an oversized architecture and then deletes 

unnecessary hidden neurons or connections, either during training or upon convergence 

to a local minimum. Each iteration of the pruning algorithm determines which unit, i.e., 

which hidden neuron or connection, to prune via its relevance or significance. Several 

pruning criteria have been proposed, for example, sensitivity analysis [51] and 

magnitude-based pruning [52]. Sensitivity analysis is based on Taylor expansion and 

reflects the ways in which the derivatives of a performance function can be applied to 

quantify a system’s response to unit perturbations [53], [54]. Magnitude-based pruning 

assumes that small weights are irrelevant [55]. However, no criterion can be used to 

determine the initially oversized architecture for a given problem [49]. 

In the constructive algorithm, the architecture of NN may become oversized if the 

addition procedure is not appropriately stopped. A number of algorithms have attempted 
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to combine constructive and pruning algorithms to solve the aforementioned problem 

[56]-[58]. These constructive-pruning algorithms first estimate the number of hidden 

neurons and/or connections via a constructive method. A pruning method is then used to 

delete the inappropriate hidden neurons and/or connections to find a near-optimal 

architecture for a given problem. However, determining when to stop the pruning 

procedure is difficult [59]. 

Several researchers have developed methods for designing NNs using evolutionary 

algorithms (EAs). EAs emerged as a biologically plausible approach for adapting 

various NN parameters such as weight values and architectures [60]-[63]. Unlike 

constructive, pruning, and constructive-pruning algorithms, EAs perform a search 

employing a population of NNs rather than a single NN. The population-based 

stochastic search technique uses crossover, mutation, and selection operators in each 

generation to improve the NN population in the search space. In contrast, the 

constructive, pruning, and constructive-pruning algorithms apply predefined and greedy 

search strategies to determine near-optimal NN architectures. These strategies are 

appropriate for some tasks but may be inappropriate for other tasks because the greedy 

search strategies may direct the search process toward architecturally local optima, 

which is a problem inherent to any greedy approach [64]. EAs can avoid the 

architecturally local optima problem by using non-monotonic search methods. Gutiérrez 

et al. [65] adopted an evolutionary programming algorithm and a simulated annealing 

method to produce a radial basis function neural network with simplest structure 

possible for classification problems. Oong and Isa [66] achieve the global and local 

search to evolve NNs via adapting the mutation probability and the step size of the 

weight perturbation. Caballero et al. [67] use a Pareto-based multiobjective 

optimization methodology based on a memetic evolutionary algorithm for multiclass 
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problems. 

Recently, several studies have been proposed to employ various EAs to prune NNs. 

Mantzaris et al. [68] pruned Probabilistic Neural Network by genetic algorithm to 

minimize the number of diagnostic factors, and therefore minimized the number of 

input nodes and hidden layers. Curry and Morgan [69] proposed a modified feedforward 

neural network which is pruned and optimised by means of Differential Evolution for 

seasonal data. Huang and Du [70] use particle swarm optimization to prune the radial 

basis probabilistic neural networks. Masutti and Castro [71] combined characteristics 

from self-organizing networks and artificial immune systems to solve the traveling 

salesman problem and pruned neurons which are not related to a city. Furthermore, 

numerous works have been done to perform EAs and pruning methods seperately or 

simutaneously. Kaylani et al. [72] incorporated prune operator into a genetic algorithm 

as a mutation operator to design ARTMAP architecture for classification problems. Goh 

et al. [73] developed a hybrid multiobjective evolutionary approach for adaptation of 

NNs structures and a geometrical approach in identifying hidden neurons to prune for 

classification problems. Hervás-Martínez et al. [74] applied an evolutionary algorithm 

to design the structure and weights of a product-unit neural network, and finally used a 

backward stepwise procedure to prune variables sequentially until no further pruning 

can be made to improve the fit. However, most encoding schemes must predefine the 

chromosome length, which is problem-dependent. This user-defined length may affect 

the flexibility of problem representation and EA efficiency [75]-[77]. 

EAs are generally global search algorithms which explore the search space 

stochastically by a number of heuristics while gradient descent methods are local search 

algorithms which solve the problem with priori known derivatives information. A global 

search algorithm can exhibit good exploration ability while a local search algorithm can 
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show good exploitation performance. With an appropriate coordination of global search 

and local search, it has been shown that collaboration between global search and local 

search performs better than pure population-based global search algorithms or 

stand-alone local search algorithms [78]. In order to maintain a proper balance between 

global explorations and local exploitations, it is better to execute exploration and 

exploitation operations alternatively during evolution [79]. Nevertheless, to establish a 

subtle coordination of global and local search algorithms and determine how long 

should local search be run [80] are not easy and under investigation. 

According to the aforementioned vantages of constructive, pruning, and 

evolutionary algorithms, this dissertation proposes two novel approaches to design NNs: 

symbiotic structure learning algorithm (SSLA) and evolutionary constructive and 

pruning algorithm (ECPA). SSLA, a neuron-based structure learning, attempts to design 

the NN structure of FNAGM according to symbiotic evolution. It evolves neuron 

population by fitness-sharing algorithm and constructs cascade NNs via neurons with 

different activation functions. Then the evolved FNAGM can accurately predict time 

series and further improve prediction error through the on-line batch training. On the 

other hand, ECPA, a network-based structure learning, directs the evolution of the NN 

topology using constructive and pruning methods in an evolutionary manner. It 

increases the complexity of NN by constructive method and prunes insignificant 

neurons on a probability basis to avoid the exponential growth of NN structure. 

Furthermore, the algorithm deletes old NNs with possibly complex structures and 

inserts newborn NNs with simple structures. In brief, ECPA integrates constructive, 

pruning, and evolutionary algorithms in an attempt to efficiently evolve compact NNs. 
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1.3 Organization of Dissertation 

The objective of this dissertation is to develop evolutionary structure learning 

algorithms of NNs for prediction purpose. Organization and objective of each chapter 

are as follows. 

In Chapter 2, FNAGM is proposed for real-time prediction. FNAGM integrates an 

GM(1,1) and an NN where GM(1,1) is used to predict the signal and NN is adopted to 

learn the prediction error of GM(1,1). Furthermore, an on-line batch training, an on-line 

parameter learning algorithm, is proposed to adjust the weights of NN in FNAGM 

on-line. Thus, FNAGM could simultaneously achieve prediction and on-line parameter 

learning. 

In Chapter 3, a neuron-based structure learning approach, SSLA, is proposed to 

evolve the structure of FNAGM, i.e., the number of hidden neurons and the topology of 

NN. The idea behind SSLA is to evolve neuron population and construct NN from the 

neuron population where each neuron shares the fitness from the participating NN. 

SSLA performs neuron crossover and mutation to the neuron population and finally 

evolves appropriate structure of FNAGM. The evolved FNAGM could be applied to 

predict the signal and further learn the prediction error by on-line batch training. 

In Chapter 4, a network-based structure learning approach, ECPA, is proposed to 

design compact structure of NN for prediction. In ECPA, a variable-length chromosome 

representation is adopted to describe NNs with different architectures. Thus, it is not 

necessary to predefine the length of the chromosome, and this makes the use of memory 

more efficient. Furthermore, ECPA introduces the concept of constructive method into 

the crossover and mutation operations in a manner that allows the initial structure of the 

NN to be simply set as a minimal network containing one hidden neuron with a single 
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connection to one input. The crossover and mutation operations then enlarge the 

architecture by adding hidden neurons and connections. ECPA then prunes the resulting 

NNs via a newly developed scheme consisting of cluster-based pruning (CBP) and 

age-based survival selection (ABSS). 

Chapter 5 concludes this dissertation with discussion and suggestions for future 

work. 
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Chapter 2 On-Line Parameter Learning for 

Prediction 

 

In this chapter, a feedforward-neural-network-aided grey model (FNAGM) and its 

corresponding on-line parameter learning algorithm, on-line batch training algorithm, is 

presented for prediction. FNAGM, which integrates a first-order single variable grey 

model (GM(1,1)) and a neural network (NN), is designed to not only predict the signals 

but also continually adapts itself to the dynamical change. The system process consists 

of three phases: initialization phase, GM(1,1) prediction phase and FNAGM prediction 

phase. First, some parameters required in FNAGM are chosen in the initialization phase. 

Then, a one-step-ahead predictive value is generated in the GM(1,1) prediction phase. 

Finally, an NN is used to learn the prediction error of GM(1,1) and compensate it in the 

FNAGM prediction phase. Significantly, an on-line batch training is proposed to adjust 

the weights of NN according to Levenberg-Marquardt algorithm in real-time. 

 

2.1 Feedforward-Neural-Network-Aided Grey Model 

This section first describes NNs and GM(1,1), and then presents the proposed 

FNAGM which combines a GM(1,1) and an NN. 

 

2.1.1 Neural Networks 

 A feedforward NN processes input vector with one direction, forward, to hidden 

layer and then output layer. For forecasting purposes, the theoretical work shows that a 
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single hidden layer is sufficient [81]. Thus, a general feedforward NN with m input 

neurons, p hidden neurons and one output neuron is applied for one-step-ahead 

prediction. Let’s define the input vector and weights first. For time series prediction, the 

input vector of the network at time k is u[k] = [u1[k] u2[k] … um[k]]T. Since the on-line 

batch training which will be described in Section 2.2 is adopted as the learning strategy, 

the time index k of the weights is important and denotes that the weights have been 

updated through the learning iteration at time k−1 and are applied for prediction at time 

k. In the hidden layer, wj[k] is the weight vector from the input vector to the jth hidden 

neuron. In the output layer, wo[k] is the weight vector from the hidden neurons to the 

output neuron. The input vector u[k] is linearly combined at the hidden neuron and then 

processed by the activation function g(·) which can be one of the continuous neuron 

models, e.g., logistic, hyperbolic tangent, linear threshold, exponential and Gaussian 

signal function [82]. For the jth hidden neuron, the output is 

 [ ] [ ] [ ] [ ]⎟
⎠
⎞

⎜
⎝
⎛ +⋅= ∑

=

m

i
jbijij kwkukwgkh

1

 (2.1) 

where wji[k] and wjb[k] are the components of wj[k] and wj[k] = [wj1[k] wj2[k] … wjm[k] 

wjb[k]]T. The output of the network is 

 [ ] [ ] [ ] [ ]kwkhkwky ob

p

j
joj +⋅= ∑

=1

 (2.2) 

where woj[k] and wob[k] are the components of wo[k] and wo[k] = [wo1[k] wo2[k] … wop[k] 

wob[k]]T. From (2.1) and (2.2), the input-output relationship of NN could be further 

represented as 

 [ ] [ ] [ ]( )kkfky uv ,=  (2.3) 

where 
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where q = (m+2)·p+1. To train the network, the proposed on-line batch training 

algorithm is adopted to update the weight vector v[k] and will be described in Section 

2.2. 

 

2.1.2 First-Order Single Variable Grey Model 

 Consider a discrete data sequence of length 4≥n  formed as the following 

column vector 

 ( ) ( ) [ ] ( ) [ ] ( ) [ ]0 0 0 01 2
T

x x x n⎡ ⎤= ⎣ ⎦x "  (2.5) 

where each element has the same numeric sign. In general, GM(1,1) adopts three 

fundamental operations, given as 

Accumulate Generating Operation (AGO): 

 ( ) [ ] ( ) [ ]1 0

1
   1 2

k

l
x k x l , k , ,...,n

=

= =∑  (2.6) 

Mean Generating Operation (MGO): 

 ( ) [ ] ( ) [ ] ( ) ( ) [ ]1 1 11 1    2 3z k x k x k , k , ,...,nα α= + − − =  (2.7) 

Inverse Accumulate Generating Operation (IAGO): 

 ( ) [ ] ( ) [ ] ( ) [ ]0 1 1 1    2 3x k x k x k , k , ,...,n= − − =  (2.8) 

where α is often set as 0.5. According to GM(1,1) [3], its grey differential equation is 

presented as 

 ( ) [ ] ( ) [ ]0 1    1 2x k az k b, k , , ,n+ = = "  (2.9) 

where a is the development coefficient and b is the grey input. Both a and b are 
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unknown and have to be determined first by rearranging (2.9) into the following matrix 

form 

 ( ) ( )0 1 a
b

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
x X  (2.10) 

where 
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2
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1 11111

1

"

" nxnxxxx
 (2.11) 

Then a and b could be solved by the least square method as below 

 ( ) ( )( ) ( ) ( )11 1 1 0T Ta
b

−⎡ ⎤
=⎢ ⎥

⎣ ⎦
X X X x  (2.12) 

Based on GM(1,1), the solution of the grey first-order differential equation (2.9) is 

estimated as 

 ( )[ ] ( )[ ]( ) abeabxnx̂ an +−=+ −11 01  (2.13) 

Further applying IAGO in (2.8) to (2.13) yields 

 ( )[ ] ( )[ ]( ) ( )aan eeabxnx̂ −−=+ − 111 00  (2.14) 

which is the so-called one-step-ahead predictive value after the original data sequence 

( )0x . 

Since GM(1,1) performs the prediction via the data sequence with the same 

numeric sign, the preprocess is employed to transform the raw data in (2.5) into 

 ( ) [ ] ( ) [ ] ( )( )0 0 0min    1 2x l x l , l , , ,nγ′ = − + =x "  (2.15) 

where γ is a constant bias to avoid the output to be zero. Then the transformed value is 

used to estimate ( )[ ]10 +′ nx̂  by (2.6)–(2.14). As a result, the one-step-ahead predictive 

value is determined as 

 ( )[ ] ( )[ ] ( )( ) γ−++′=+ 000 min11 xnx̂nx̂  (2.16) 
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Therefore, GM(1,1) can process the historical data sequence with different numeric 

signs. 

 

2.1.3 Structure of FNAGM 

 This subsection presents an intelligent forecasting system, FNAGM, which is 

constructed by an NN and a GM(1,1). FNAGM consists of three phases: initialization 

phase, GM(1,1) prediction phase and FNAGM prediction phase. With FNAGM, the 

prediction error of GM(1,1) is further improved by the use of on-line batch training in 

the FNAGM prediction phase. 

For the initialization phase, some parameters used in FNAGM are first defined as 

below: 

Ns  the total step size 

n  the input length of GM(1,1) 

γ  the bias of GM(1,1) in (2.15) 

m the input number of NN 

p  the number of hidden neurons of NN 

N  the maximum size of batch training pattern 

v[n+m]  the initial weight vector of NN 

μ[n+m+1] the initially positive scalar for updating the weight vector 

β  the constant to adjust μ[k] 

Note that v[n+m] is randomly chosen. Then, obtain ( )[ ] ( )[ ] ( )[ ]{ }nxxx 000  ,,2 ,1 "  and get 

into the GM(1,1) prediction phase. 

The GM(1,1) prediction phase is executed from k = n to k = n+m−1 and generates 

the one-step-ahead predictive value ( )[ ]10 +kx̂ . For each step, the prediction error is 
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obtained as [ ] ( )[ ] ( )[ ]111 00
GM +−+=+ kx̂kxke . This phase will be repeated to determine 

m prediction errors. 

Based on these m prediction errors, the FNAGM prediction phase starts to further 

improve the prediction error for mnk +≥ . The configuration of the FNAGM 

prediction is depicted in Fig. 2.1. GM(1,1) calculates the one-step-ahead predictive 

value, ( )[ ]10 +kx̂ , and NN simultaneously adopts the past m prediction errors as the 

input vector to learn the prediction error [ ]1GM +ke  on-line, estimated as [ ]1GM +kê . 

Then, the final one-step-ahead predictive value, [ ]1FNAGM +kx̂ , is set to be the sum of 

( )[ ]10 +kx̂  and [ ]1GM +kê , which is better than ( )[ ]10 +kx̂ . 

 

 

[ ]1GM +kê

( ) [ ]10 +kx̂( ) [ ] ( ) [ ] ( ) [ ]{ }kxnkxnkx 000  ,,2 ,1 "+−+−

 
 

Feedforward
NN 

( ) [ ]kx̂ 0

[ ]1FNAGM +kx̂  
GM(1,1) 

− 
Σ 

+

 z-1

 z-1

 z-1

+
Σ 

+

…

 z-1

…

eGM[k] 

eGM[k−1] 

eGM[k−m]
 

Fig. 2.1 Feedforward-neural-network-aided grey model. 

 

2.2 On-Line Parameter Learning of FNAGM 

This section presents the on-line parameter learning algorithm, called on-line batch 

training, which is used to continuously adapt FNAGM to the dynamical change of the 



 18

signal. The idea behind on-line batch training is to perform on-line training by more 

than one pattern. When a new data point is observed, FNAGM collects a batch of 

recently obtained training patterns and then performs on-line batch training by the batch 

training patterns at each time step. 

 

2.2.1 On-Line Batch Training 

 The training process in the FNAGM prediction phase employs the on-line batch 

training to adjust NN because of its higher accuracy and less computation time. Let the 

batch training pattern at step k contain r recently observed training patterns denoted as 

 { } mnkkrkrkk +>= +−+− for     ,,, 21 PPPB …  (2.17) 

where r = min{k−(n+m), N}, N > 1 and Pj = {u[j], eGM[j] } is the jth training pattern 

related to the input vector u[j] = [eGM[j−m] eGM[j−m+1] … eGM[j−1]]T and the target 

eGM[j]. Note that the total number r of the batch training pattern Bk is fixed and equal to 

N for Nmnk ++≥ . 

The on-line batch training modifies Levenberg-Marquardt algorithm [83] to update 

the weight vector v[k] for 1++≥ mnk , which is 

 [ ] [ ] [ ] [ ] [ ][ ] [ ] [ ]kkkkkkk TT εGIGGvv 11 −
+−=+ μ  (2.18) 

where ε[k] is network error vector, G[k] is the Jacobian matrix and μ[k] is a positive 

scalar parameter. The jth component of the network error vector ε[k] is obtained as εj[k] 

= eGM[j] − f(v[k], u[j]), j = k−r+1, k−r+2,…, k, corresponding to Pj. After ε[k] is 

determined, the Jacobian matrix is calculated as 



 19

 [ ] [ ]
[ ]

[ ]
[ ]

[ ]
[ ]

[ ]
[ ]

[ ]
[ ]

[ ]
[ ]

[ ]
[ ]

[ ]
[ ]

[ ]
[ ]

[ ]
[ ] ⎥

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

=
∂
∂

=
+−+−+−

+−+−+−

kv
k

kv
k

kv
k

kv
k

kv
k

kv
k

kv
k

kv
k

kv
k

k
kk

q

kkk

q

rkrkrk

q

rkrkrk

εεε

εεε

εεε

"

#%##

"

"

21

2

2

2

1

2

1

2

1

1

1

v
εG  (2.19) 

Note that the jth row is determined according to Pj and the cth column is related to vc. 

The on-line batch training adjusts μ[k] by comparing the previous and current errors 

based on εj[k−1] and εj[k], as shown by 
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where β > 1, s = min{N−1, k−n−m−1} and 2++≥ mnk . Note that εj[k−1] and εj[k] are 

calculated via the same training pattern Pj. Clearly, when the current error is decreased 

then μ[k] is reduced by β, otherwise μ[k] is increased. As a result, implementation of the 

on-line batch training requires past observations with maximum memory size N to 

update v[k] in batch mode and obtain more accurate solution at each time step. 

 The above intelligent forecasting system, FNAGM, is summarized as the following 

stepwise procedure: 

Initialization phase: 

S1 Choose the total step size: Ns; 

          the input length of GM(1,1): n; 

     the bias of GM(1,1): γ; 

         the input number of NN: m; 

     the number of hidden neurons of NN: p; 

         the maximum size of batch training pattern: N; 

         the initial positive scalar: μ[n+m+1]; 
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     the constant to adjust μ[k]: β; 

      the initial weight vector: v[n+m] (randomly); 

S2 Obtain ( )[ ] ( )[ ] ( )[ ]{ }nxxx 000  ,,2 ,1 "  and set k = n. 

GM(1,1) prediction phase for mnkn +<≤ : 

S3 Compute ( )[ ]10 +kx̂  by GM(1,1) in (2.6)−(2.16). 

S4 Set k = k+1. 

S5 Obtain ( )[ ]kx 0  and then eGM[k]. 

S6 If k < n+m, then go to S3. 

FNAGM prediction phase for mnk +≥ : 

S7 Compute ( )[ ]10 +kx̂  by GM(1,1) in (2.6)−(2.16). 

S8 Calculate [ ]1GM +kê  by NN in (2.1), (2.2). 

S9 Set the one-step-ahead predictive value of FNAGM as 

  [ ] ( )[ ] [ ]111 GM
0

FNAGM +++=+ kêkx̂kx̂ . 

S10 Set 1+= kk . 

S11 Obtain ( )[ ]kx 0  and then [ ]keGM . 

S12 If 1++< mnk , then [ ] [ ]kk vv =+ 1  and go to S7. 

On-line batch training (from S13 to S17)  

S13 Construct { }krkrkk PPPB ,,, 21 …+−+−=  in (2.17) where 

  ( ){ }Nmnkr ,min +−= . 

S14 Compute the network error based on kB  

for 1+−= rkj  to k 

   [ ] [ ] [ ] [ ]( )jkfjekj uv ,GM −=ε ; 

  end for 
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S15 Update [ ]kv  by Levenberg-Marquardt algorithm in (2.18), (2.19). 

S16 If 2++< mnk , then [ ] [ ]kk μμ =+ 1  and go to S7. 

S17 Update [ ]kμ  by (2.20). 

S18 If sNk < , then go to S7; 

else stop. 

With the above procedure, FNAGM can gradually learn to predict signal via the 

on-line batch training. The success of the prediction will be demonstrated in the Section 

2.3 and 2.4. 

 

2.2.2 Convergence Analysis 

To discuss the convergence issue of FNAGM, the error difference could be 

approximately represented as [84] 
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where Δε[k] and Δv[k] represent the error change and the weight vector change 

respectively. Note that (2.21) is the first order Taylor approximation which neglects the 

higher order terms. Equations (2.18) and (2.21) yield 

 [ ] [ ] [ ] [ ] [ ] [ ]( ) [ ] [ ]kkkkkkkk TT εGIGGGεε 11 −
+−=+ μ  (2.22) 

Then, 
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where ⋅  denotes the Euclidean norm. Moreover, let gj be the jth singular value of G[k] 
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and assume that G[k] has full row rank, i.e., a Bk with sufficient r is obtained. Thus [85] 
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which implies that [ ]kε  is monotonically decreasing. That means the output error 

between the prediction error of GM(1,1) and the output of the neural network converges 

to zero as ∞→k . This fact completes the proof of the convergence. 

 

2.3 Numerical Results 

To verify the performance of the proposed FNAGM, two numerical examples are 

adopted for demonstration. The first example involves predicting an external 

disturbance that has been described in [27] and the second example involves predicting 

the Mackey-Glass chaotic time series [86]. The numerical simulations were executed in 

an Intel Pentium CPU at 1.5 GHz with 512 MBytes RAM. 

 

2.3.1 Example 1: Disturbance Prediction 

The disturbance to be predicted is 

 [ ] ( ) ( )kT..kT.kx 29sin0504cos10 ⋅+⋅=   (2.25) 

where T is the sampling time and set as 0.05 second. In the step S1 of the initialization 

phase, the proposed FNAGM chooses Ns = 200, n = 4, γ = 2, p = 4, μ[n+m+1] = 0.001 

and β = 4/3. As for the weight vector v[n+m], it was randomly generated according to a 

normal distribution with zero mean and unit variance by the program. Note that the 

objective of this example is to predict the disturbance in real-time, so it is required to 

accomplish the prediction phase with sufficient accuracy during one sampling interval 
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by selecting an appropriate N, which was set to be 40 in the simulation. 

First, let’s determine a suitable input number m of NN of FNAGM by 100 

independent runs of m = 2, 3, 4 and 5. The root mean square error (RMSE) calculated 

for k > 100 of each run is recorded. Table 2.1 shows the statistical means over these 100 

runs of different input numbers. It is clear that the larger m achieved the better 

prediction accuracy. For instance, the prediction errors were reduced from 10−3 to 10−4 

when m was changed from 2 to 3. However, the prediction errors were only improved a 

little from 4.29 × 10−5 of m = 4 to 4.05 × 10−5 of m = 5. Hence, the input number m = 4 

was adopted for FNAGM in the following simulations. Several approaches exist in the 

literature, however, it is not feasible and necessary to perform an exhaustive comparison 

with all algorithms. The aim of our experimental comparison is to realize the advantage 

and disadvantage of the aid of NN and on-line batch training. Therefore, GM(1,1) [3] 

and Advanced GM(1,1) [27] are mainly considered for comparison. 

 

Table 2.1 Comparison of different input numbers of NN of FNAGM in Example 1. 

Model FNAGM  
m = 2 

FNAGM 
m = 3 

FNAGM  
m = 4 

FNAGM 
m = 5 

Statistical mean of 
RMSE 
over 100 runs 

3.40×10−3 6.16×10−4 4.29×10−5 4.05×10−5 

Computation time 
per prediction step 

4.60×10−3 4.70×10−3 4.80×10−3 4.90×10−3 

 

Based on the on-line batch training, FNAGM was applied to predict the 

disturbance (2.25) with N = 40 and m = 4. The statistical mean of RMSE of FNAGM 

over 100 runs for k > 100 is shown in Table 2.2, which also includes RMSEs of 

GM(1,1), Advanced GM(1,1), and NN for k > 100. The NN was trained by on-line 

learning and its number of hidden neurons was designed through a trial-and-error 



 24

method. As expected, Advanced GM(1,1) based on the Lagrange polynomial of third 

order improved the prediction error of GM(1,1) from 10−2 to 10−3. Most significantly, 

the proposed FNAGM can achieve much better result than Advanced GM(1,1), highly 

reducing the prediction error from 10−3 to 10−5. 

In addition, Table 2.2 shows the computation time required for the prediction phase 

of FNAGM and the computation times per prediction step of GM(1,1) and Advanced 

GM(1,1). Although FNAGM requires longer computation time than the other two 

methods, increased from 10−4 to 10−3 second, FNAGM is still able to complete the 

prediction phase during one sampling interval. The proposed intelligent forecasting 

system FNAGM is, therefore, applicable for real-time prediction. 

 

Table 2.2 Comparison of the prediction errors of GM(1,1), Advanced GM(1,1), NN and 

FNAGM in Example 1. 

Model GM(1,1) Advanced 
GM(1,1) NN FNAGM  

m = 4 
Statistical mean of 
RMSE 
over 100 runs 

--- --- 0.9883 4.29×10−5 

RMSE for k > 100 
in Fig. 2.2 

1.27×10−2 1.60×10−3 0.9996 3.59×10−5 

Computation time 
per prediction step 

4.08×10−4 4.15×10−4 4.80×10−4 4.80×10−3 

 

To further demonstrate the performance, Fig. 2.2 shows the prediction results of 

FNAGM, GM(1,1) and Advanced GM(1,1). Note that the curve of FNAGM is one of 

the 100 runs and it is randomly chosen from them. Evidently, after sufficient training 

iterations, i.e., k > 60 in this case, FNAGM learned the prediction error efficiently and 

obtains much better result than Advanced GM(1,1). 
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Fig. 2.2 Absolute prediction errors of GM(1,1), Advanced GM(1,1) and FNAGM with 

m = 4 in Example 1. 

 

2.3.2 Example 2: Chaotic Time Series Prediction 

The Mackey-Glass time series is generated from the following delay differential 

equation 

 ( ) ( )
( )

( )tx.
tx

tx.
dt

tdx 10
1

20
10

−
−+

−
=

τ
τ   (2.26) 

where τ = 17 and x(0) = 1.2 in the simulation. The data points were obtained based on 

the fourth-order Runge-Kutta method with sampling interval 0.1 second. In the 

initialization phase, all the parameters are the same as Example 1 except N = 80, i.e., r = 

min{k−8, 80}, due to the use of sampling interval 0.1 second longer than 0.05 second in 

Example 1. The input number of NN of FNAGM was still selected as m = 4 by the same 

reason as Example 1. 

The on-line batch training of FNAGM was performed for 100 independent runs. 

The RMSE for k > 250 of each run is recorded. The statistical mean over these 100 runs 
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are given in Table 2.3. From the performance comparison, Advanced GM(1,1) indeed 

improved the prediction error of GM(1,1) and the proposed intelligent forecasting 

system FNAGM achieved better performance than Advanced GM(1,1), where the 

prediction error was reduced from 10−3 to 10−4. Furthermore, although FNAGM with N 

= 80 takes computation time 9.90 × 10−3 second in the prediction phase, which is longer 

than 4.80 × 10−3 second with N = 40, FNAGM is still an effective forecasting system for 

real-time prediction. 

To demonstrate the performance of FNAGM, Fig. 2.3 shows that FNAGM 

outperforms GM(1,1) and Advanced GM(1,1) in prediction accuracy for k > 250. 

FNAGM indeed improved the prediction error of the time series which has chaotic, 

nonperiodic and nonconvergence natures. 

 

Table 2.3 Comparison of the prediction errors of GM(1,1), Advanced GM(1,1) and 

FNAGM in Example 2. 

Model GM(1,1) Advanced 
GM(1,1) NN FNAGM  

m = 4 
Statistical mean of 
RMSE 
over 100 runs 

--- --- 1.0269 6.08×10−4 

RMSE for k > 250 
in Fig. 2.3 

1.22×10−2 1.30×10−3 1.0336 5.39×10−4 

Computation time 
per prediction step 

4.08×10−4 4.15×10−4 4.80×10−4 9.90×10−3 
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Fig. 2.3 Absolute prediction errors of GM(1,1), Advanced GM(1,1) and FNAGM with 

m = 4 in Example 2. 

 

2.4 Experimental Results 

The following experiment was conducted to verify the performance of the 

proposed FNAGM. The experiment involved predicting the trajectory of a moving 

object as performed by a binocular robot, called an Eye-Robot [87], [88]. The 

Eye-Robot shown in Fig. 2.4(a) was built using a parallel-axis camera with five motors 

to emulate the eye movement of humans. We adopted five FAULHABER DC 

servomotors to perform the panning movement of the eyes, the conjugated tilt 

movement of the eyes, and the pan and tilt movements of the head via an RS-232 

interface. The range of panning is ±120 degrees, while the range tilting is ±60 degrees. 

The DC servomotors were controlled using a motion control card, MCDC 3006S, at a 

positioning resolution of 0.18°. The size of the Eye-Robot is 25× 25× 30 cm3. The 

experiment was executed using an Intel Pentium CPU at 1.5 GHz with 512 MBytes 

RAM. 
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(a)         (b) 

Fig. 2.4 (a) Eye-Robot. (b) Experimental environment where a participant held a red 

object. 

 

2.4.1 Trajectory Prediction 

The experiment was performed in an indoor environment, as shown in Fig. 2.4(b). 

The Eye-Robot captured 30 frames per second, for a sampling time of approximately 

0.03 second. Once an image was obtained, Eye-Robot first extracted red object in the 

RGB color space, and then determined the center of gravity of the object. The trajectory 

of the object was further divided into x and y axes; therefore, one FNAGM was 

employed to make predictions for each of the two axes. Note that this experiment only 

performed a prediction of the trajectory, without controlling the motors to track the 

object. 

In step S1 of the initialization phase, the proposed FNAGM selected Ns = 500, n = 

4, m = 4, p = 4, μ[n+m+1]=0.001 and β = 4/3 by a preliminary test. Weight vectors 

v[n+m] were randomly generated according to normal distribution with zero mean and 

unit variance using the program. Note that the objective of this experiment is to predict 

the trajectory in real-time; therefore, it is necessary to accomplish the prediction phase 

with sufficient accuracy during a single sampling interval by selecting an appropriate N, 
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which was set at 40 in the experiment. 

Fig. 2.5 shows the trajectory of the object obtained by Eye-Robot, and we applied 

FNAGM to predict the trajectory of the object. Similar to Section 2.3, GM(1,1) and 

Advanced GM(1,1) were performed for comparison. The statistical mean of RMSE of 

FNAGM over 100 runs for k > 100 is shown in Table 2.4, together with RMSEs of 

GM(1,1) and Advanced GM(1,1) for k > 100 where the unit of RMSE is pixel. As a 

result, the proposed intelligent forecasting system FNAGM can achieve much better 

result than GM(1,1) and Advanced GM(1,1), highly reducing the prediction error from 

3.65 to 1.66 and from 5.01 to 2.13 for x(k) and y(k), respectively. 

In addition, Table 2.4 shows the computation time required for the prediction phase 

of FNAGM and the computation times per prediction step of GM(1,1) and Advanced 

GM(1,1). Although FNAGM requires longer computation time than the other two 

methods, increased from 10−4 to 10−3 second, FNAGM is still able to complete the 

prediction phase during one sampling interval, i.e., 3.3× 10−2. The proposed intelligent 

forecasting system is, therefore, applicable for real-time prediction. 

 

Table 2.4 Comparison of prediction error and computation time. 

Model GM(1,1) Advanced 
GM(1,1) 

FNAGM  

RMSE of x(k) 3.7428 3.6512 1.6608 

RMSE of y(k) 5.6125 5.0112 2.1343 

Computation time 
per prediction step

4.08×10−4 4.15×10−4 4.80×10−3 

 

To further demonstrate the performance of FNAGM, Fig. 2.6 and Fig. 2.7 show the 

prediction results of x(k) and y(k) for FNAGM, GM(1,1), and Advanced GM(1,1). Note 

that the curve of FNAGM is one run randomly selected from 100 runs. It appears that 
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after a sufficient number of training iterations, FNAGM obtained smaller prediction 

error than GM(1,1) and Advanced GM(1,1). 
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Fig. 2.5 Trajectory of the object. 
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Fig. 2.6 Prediction error of x(k) for GM(1,1), advance GM(1,1), and FNAGM. 
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Fig. 2.7 Prediction error of y(k) for GM(1,1), advance GM(1,1), and FNAGM. 

 

2.4.2 Tracking Control 

The purpose of this experiment is to control Eye-Robot to track a red object with 

the aid of FNAGM. The movement of the target in this experiment was manually 

achieved by the participant as shown in Fig. 2.4(b). To carry out fairly comparison, the 

movement of the target was performed as similar as possible in each run. The 

Eye-Robot employed the proportional-derivative (PD) controller for the tracking control. 

The PD controller first receives the tracking error which is the difference between the 

center of the image and the position of the object, and then controls the cameras to track 

the object such that the object could be located at the center of the image. In most 

control applications, the control signal is a function of the current and previous tracking 

errors. In this experiment, the predicted tracking error is used instead of current tracking 

error [89] to reduce tracking error. The setup of this experiment is precisely the same as 

that described in Section 2.4.1. Note that the purpose of this experiment is not to design 



 32

the PD controller, but to observe how FNAGM benefits the target tracking. For 

comparison, GM(1,1) and Advanced GM(1,1) were carried out to predict the tracking 

error of Eye-Robot. 

Fig. 2.8-Fig. 2.10 show the tracking errors corresponding to GM(1,1), Advanced 

GM(1,1), and FNAGM, respectively. Note that the tracking error is equivalent to x(k) 

whose unit is pixel in this case. From Fig. 2.8 and Fig. 2.9, it can be observed that 

GM(1,1) achieved a smooth tracking error while Advanced GM(1,1) did not always 

obtain smaller tracking error than GM(1,1). From Fig. 2.10, it can be seen that FNAGM 

achieved high tracking error for k < 50 and gradually obtained small tracking error for k 

> 100 through on-line batch learning. It shows the merit of FNAGM that the learning 

ability can adapt the intelligent forecasting system to dynamical changes and improve 

the prediction performance when comparing with GM(1,1) and Advanced GM(1,1). 

Most significantly, the proposed intelligent forecasting system FNAGM can carry out 

the on-line batch learning on the robotic application in real-time. 
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Fig. 2.8 Tracking error of x(k) using GM(1,1). 
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Fig. 2.9 Tracking error of x(k) using Advanced GM(1,1). 
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Fig. 2.10 Tracking error of x(k) using FNAGM. 
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2.5 Summary 

This chapter presents an FNAGM to predict signals in three phases, initialization 

phase, GM(1,1) prediction phase and FNAGM prediction phase. FNAGM adopts the 

on-line batch training to learn and then estimate the prediction error of GM(1,1) by the 

feedforward NN. Most importantly, the on-line batch training is applicable in real-time 

to accurately update the weight vector of NN and continually adapt FNAGM to the 

dynamical change. The simulation results demonstrate that the proposed intelligent 

forecasting system based on FNAGM is superior to the other existing methods. 

Experimental results demonstrate that FNAGM could achieve both trajectory prediction 

and target tracking in high accuracy for robotic application. 
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Chapter 3 Neuron-Based Structure Learning for 

Prediction 

 

In Chapter 2, FNAGM has been developed to deal with prediction problem. 

However, the topology of NN used in FNAGM should be fully connected and the 

number of hidden neurons is determined through a trial-and-error method. Therefore, 

this chapter presents a neuron-based structure learning algorithm, called symbiotic 

structure learning algorithm (SSLA), to determine the topology of FNAGM. SSLA 

consists of three phases: initialization phase, evaluation phase, and reproduction phase. 

The initialization phase establishes a neuron population and a network population. The 

evaluation phase calculates the fitness of NN and then shares the fitness to the 

participating neurons. The reproduction phase performs neuron crossover and mutation 

on the neuron population based on their fitness. Finally, an FNAGM with appropriate 

topology is evolved by the neuron-based structure learning. Accordingly, a novel 

forecasting system, FNAGM-SSLA, is presented in this chapter where SSLA performs 

structure learning of FNAGM and the evolved FNAGM then predicts the signal and 

continuously learns to compensate the prediction error by NN with the on-line batch 

training. 

 

3.1 Structure Learning Based on Symbiotic Evolution 

Symbiotic evolution is an implicit fitness-sharing algorithm used in an immune 

system model [90], [91]. In general evolution algorithm, each individual represents a 
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complete solution of a problem. In symbiotic evolution, each individual in the 

population represents a partial solution to a given problem, and complete solutions are 

constructed from several individuals. The partial solutions can be considered 

specializations that ensure diversity and prevent a population from converging into 

suboptimal solutions. Furthermore, the fitness of an individual depends on other 

cooperated individuals. The work of [91] proposed symbiotic adaptive neuron evolution 

to develop NNs according to a population of neurons. The performance of a neuron is 

determined by how well it cooperates with the other neurons which it combines. This 

process shows that a neuron that cooperates well with one set of neurons may cooperate 

poorly with other sets of neurons. However, the number of hidden neurons must be 

assigned prior to the evolution process. Therefore, this algorithm is applicable for NN 

where the number of hidden neurons is known. Aside from NNs, many studies have 

applied symbiotic evolution to design fuzzy controller and neuro-fuzzy systems 

[92]-[98]. The results of these studies have demonstrated the efficiency and feasibility 

of symbiotic evolution in structure learning. 

 

3.2 Symbiotic Structure Learning Algorithm 

 Section 2.1 provides a constraint that the topology of NN used in an FNAGM 

should be fully connected. Furthermore, the number of neurons is determined through a 

trial-and-error method [99]. This section presents a novel forecasting system which is 

composed of structure learning and on-line parameter learning as shown in Fig. 3.1. 

Briefly, the proposed forecasting system first evolves the structure of FNAGM by a 

proposed SSLA and then performs prediction and on-line batch training by the evolved 

FNAGM. Before the forecasting system starts, a small number of time series data is 
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acquired for the structure learning. The proposed SSLA determines the number of 

hidden neurons and the connected topology of FNAGM based on the training data. 

Once the structure learning is completed, the signal is continuously acquired for on-line 

prediction and parameter learning. Then the evolved FNAGM predicts the signal and 

continuously adapts itself to the dynamical change of the signal by on-line batch 

training. SSLA consists of three phases: initialization phase, evaluation phase, and 

reproduction phase which are described in the following subsections. 

 

Initialization phase 

Reproduction phase 

End 

Start 

Evaluation phase 

Initialization phase 

FNAGM prediction phase
(On-line batch training)

GM(1,1) prediction phase

SSLA 
(Off-line)

FNAGM
(On-line)

 

Fig. 3.1 Architecture of the proposed forecasting system. 

 

3.2.1 Initialization Phase 

A. Coding Step 

Each neuron, the individual in the neuron population, consists of seven genes for 

four inputs problem as shown in Fig. 3.2. The seven genes are wo, a, whb, wh1, wh2, wh3, 

and wh4 which represent output weight, activation function type, and weights connected 
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from bias and four inputs to the neuron, respectively. The activation function type 

indicates which activation function the neuron uses where 1 represents hyperbolic 

tangent function and 0 represents linear function. Note that some weights of the neurons 

in Fig. 3.2 are zero which means that the weights are not connected to the neurons and 

the neurons are partially connected. Fig. 3.3 shows the graphical representation of 

neurons for three examples of Fig. 3.2. 

 

 

1.5 1 0.9 1.3 2.1 0.2 0.1Neuron A 

0.7 0 0 0 0 2.5 −0.2Neuron B 

0.3 0 −0.4 0 0 0 0 Neuron C 

wo a whb wh1 wh2 wh3 wh4Neuron 

 

Fig. 3.2 Coding of neuron and three examples. 

 

 

Neuron A 

b  u1    u2  u3 u4 

Neuron B Neuron C 

b  u1    u2  u3 u4 b  u1    u2  u3 u4  

Fig. 3.3 Graphical representation of neurons for three examples. 

 

The next step is to construct an NN from the three neurons and Fig. 3.4(a) shows 

the resulted NN whose output is the summation of the three neurons. It can be seen that 

NN has a partially connected topology and consists of different activation functions. 

Since the output of the neuron with linear activation function is the linear combination 

of the inputs, NN in Fig. 3.4(a) can be simplified as an equivalent cascade NN model in 

Fig. 3.4(b). Note that Neuron C can be simplified as the output bias and Neuron B 
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allows u3 and u4 to directly connect to the output neuron. Therefore, SSLA can result in 

not only feedforward NN but cascade NN without additional output weight coding step. 

 

b  u1    u2  u3 u4 b  u1    u2  u3 u4  
(a)      (b) 

Fig. 3.4 (a) An NN constructed via three neurons.  (b) Equivalent cascade NN model. 

 

B. Create Network Population 

 SSLA creates neuron population by randomly generating Np neurons where the 

weights and activation function type are randomly assigned. Note that some weights are 

randomly selected to be zero as the disconnected weights. Then, SSLA creates network 

population in four steps. 

Step 1) This step constructs P groups where each group consists of d empty 

individuals and thus the network population consists of P× d empty 

individuals. 

Step 2) Randomly select Group p where the reason of this step is further 

illustrated in Section 3.2.2. 

Step 3) Select one empty individual in Group p and build an NN by randomly 

selecting p neurons from the neuron population as shown in Fig. 3.5. For 

example, NN in Group 1 has one neuron and its length of chromosome is 

7 while NN in Group P has P neurons and its length of chromosome is 
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7P. Note that the evaluation operator is performed on the chromosomes 

of network population while the reproduction operator is performed on 

the chromosomes of neuron population. 

Step 4) Train the built NN via the approach in Section 3.2.2 so that the 

chromosome of NN would be updated expected for the activation 

function type. Go to Step 2) until the network population has no empty 

individual. 

Each neuron can be selected at most one time for an NN and thus the neurons of an 

NN are different. It is expected that all neurons can be selected at least one time to 

construct all NNs in the network population so that the performance of all neurons can 

be evaluated. However, this mechanism can not be guaranteed according to the random 

selection in Step 3). Therefore, some neurons may not be selected in one generation. 

Nevertheless, this would not affect the evolution harmfully because a very few neurons 

are not selected via the observation of the experiment. Through the network population 

creation, SSLA generate numerous NNs with different number of hidden neurons and 

connection topology so that an NN with appropriate structure can be evolved. 
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Fig. 3.5 Neuron population and network population. 

 

3.2.2 Evaluation Phase 

The evaluation phase mainly consists of two steps: weight training and fitness 

calculation of NN and neuron. 

A. Weight Training 

As mentioned in Section 1.2.2, collaboration between global search and local 

search could outperform individual ones. Furthermore, it is better to execute exploration 

and exploitation operations alternatively during evolution. Thus, SSLA performs local 

search to refine the weights after constructing an NN via symbiotic evolution which is a 

global search. SSLA then performs symbiotic evolution on the trained NNs for global 

search of NN structure. The global search and local search execute in a recurring 

fashion, one after another repeatedly. SSLA employs backpropagation algorithm (BP) 

[100] as local search method to train NN for ϕ epochs where ϕ is a user specified 

parameter. Note that BP is only performed on the connected weights, not on 
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disconnected weights. Once NN is trained, each trained neuron would replace the 

corresponding neuron in the neuron population. That means the weights of each neuron 

in the neuron population would be updated as participating an NN. For example, 

Neuron A and Neuron B are selected to construct an NN and then trained by BP for ϕ 

epochs. The two trained neurons, Neuron A’ and Neuron B’, would replace Neuron A 

and Neuron B in the neuron population, respectively. When Neuron A’ and Neuron B’ 

are selected again to construct another NN and trained by BP in the same generation, the 

two trained neurons, Neuron A’’ and Neuron B’’, replace Neuron A’ and Neuron B’ in 

the neuron population, respectively. It is expected that the latter constructed NNs might 

have better trained weights because the selected neurons may have been trained several 

times when participating in the former constructed NNs. Therefore, the latter 

constructed NNs possibly have better fitness than the former constructed NNs in one 

generation. If the NNs of Group 1 are trained earlier than the NNs of Group P, the NNs 

of Group P probably have better fitness than the NNs of Group 1. This may guide the 

evolution toward the solution with large number of hidden neurons which is not 

expected in SSLA. In order to achieve reasonable training process of the neuron 

population and network population, the Step 2) in Section 3.2.1.B, create network 

population, is performed by randomly selecting Group p and then constructing an NN in 

Group p. 

B. Fitness Calculation of NN and Neuron 

Once an NN is constructed and trained by BP, the inverse of RMSE is regarded as 

the fitness of NN, i.e., the smaller RMSE the larger fitness and vice versa. Since the 

purpose of SSLA is to evolve neurons in the neuron population, the fitness of the neuron 

should be determined. SSLA calculates the fitness of the neuron by sharing the fitness 

of NN to each participating neuron. For NN in the Group p, each participating neuron 
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can share fitness as p
f  where f is the fitness of NN. When all NNs in the network 

population are evaluated, the fitness of the neuron which participates in T NNs can be 

determined as 

 ∑ =
=

T

t
t

nn f
T

f
1

1  (3.1) 

where t
nf  is the shared fitness in tth NN and t = 1,2,…,T. 

 

3.2.3 Reproduction Phase 

This subsection presents the reproduction phase of SSLA which is performed only 

on the neuron population. The objective of this phase is to reproduce new neuron 

population from current neuron population so that various NNs can be constructed from 

new neuron population. The reproduction phase includes neuron crossover, neuron 

mutation, and survival selection. The neuron crossover exchanges the structure of two 

parent neurons to produce two offspring neurons and the neuron mutation modifies the 

structure of one offspring neuron. The survival selection attempts to probabilistically 

promote better solutions for the next generation from the parents and offspring of the 

current generation. According to the three operations, the reproduction phase mainly 

uses the current neuron population to evolve new neuron population for next generation 

and then guides the evolution to achieve near optimal solution, i.e., appropriate structure 

and weights of NN. Note that each parent neuron has the same length of chromosome, 

thus the offspring neuron also has the same length with the parent neuron. The detail 

concepts of the three operations are described as follows. 

A. Neuron Crossover 

The neuron crossover simultaneously exchanges the structure and weights of the 
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neurons and performs in three steps. First, select two parents according to the 

binary-tournament selection via their fitness. Second, randomly select the crossover 

point as shown in Fig. 3.6. Third, exchange the components starting from the crossover 

point to the end of the parents. Then two offspring, Neuron A’ and Neuron B’, are 

generated. 

B. Neuron Mutation 

The neuron mutation mainly attempts to modify the activation function and 

disconnect or connect the input for global searching of NN structure. It uses a mutation 

probability pm to decide whether to perform neuron mutation on a gene, where pm is a 

user specified parameter. For each gene excepted for wo, a random number r with a 

uniform distribution between [0, 1] is generated. If r < pm, then the neuron mutation is 

performed on the gene. As shown in Fig. 3.7, three kinds of neuron mutation are 

presented. The first one shows the modification of activation function where the 

activation function type is modified from “0” to “1,” i.e., from linear function to 

hyperbolic tangent function. The second one shows the disconnection of input where 

whb is modified from “−0.4” to “0,” i.e., the bias is accordingly disconnected. The third 

one shows the connection of input where wh1 is modified from “0” to “2.9,” i.e., the 

input is consequently connected. Note that the value of “2.9” is randomly assigned via a 

normal distribution with zero mean and unit variance after the input is connected. 
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1.5 1 0.9 1.3 2.1 0.2 0.1Neuron A 

0.7 0 0 0 0 2.5 −0.2Neuron B 

Crossover point

1.5 1 0.9

1.3 2.1 0.2 0.1

Neuron A’ 

0.7 0 0 

0 0 2.5 −0.2

Neuron B’ 

Parents 

Offspring 

 

Fig. 3.6 Neuron crossover. 

 

 
 Mutation point

0.3 0 −0.4 0 0 0 0 Neuron C 

0.3 1 0 2.9 0 0 0 Neuron C’  

Fig. 3.7 Neuron mutation. 

 

 

C. Survival Selection 

The offspring neurons are generated in two ways as shown in Fig. 3.8. The parents 

are first rearranged in descending order of their fitness and then the best Np/2 parents are 

copied as Np/2 offspring. The rest Np/2 offspring are generated via the neuron crossover 

and neuron mutation based on the whole parents. In Fig. 3.8, Neuron 7’ is not 

necessarily generated from Neuron 7 and is indexed for convenience. In SSLA, the 

generational replacement is adopted as the survival selection, i.e., the offspring 

immediately replace all parents and become the parents in the next generation. 
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Fig. 3.8 Neuron reproduction. 

 

Based on the three phases described above, SSLA is summarized in Fig. 3.9 as 

follows. 

Initialization phase: 

Step 1) Create a neuron population which consists of Np neurons whose lengths 

of the chromosome are the same. 

Step 2) Create a network population which consists of P× d empty individuals 

whose lengths of the chromosome are different. 

Step 3) Randomly select one group, Group p, and randomly select p neurons to 

construct an NN for an empty individual. 

Evaluation phase: 

Step 4) Train the built NN by BP for ϕ epochs so that the chromosome of NN 

would be updated expected for the activation function type. Calculate the 

fitness of the NN to evaluate the chromosome of the network population. 

Step 5) Share the fitness to each participated neuron. Go to Step 3) until the 

network population has no empty individual. 
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Step 6) Determine the fitness of all neurons in the neuron population via (3.1). 

Step 7) Preserve the NN with the best fitness. 

Step 8) If the maximum generation is achieved, then stop the algorithm; 

otherwise, go to Step 9). 

Reproduction phase: 

Step 9) Copy the best Np/2 parents as the offspring in the neuron population. 

Step 10) Generate the rest Np/2 offspring by the neuron crossover based on the 

whole neuron population. 

Step 11) Perform the neuron mutation on the rest Np/2 offspring. 

Step 12) Perform the generational replacement and go to Step 2). 
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phase 
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Fig. 3.9 Flowchart of SSLA. 

 

3.3 Numerical Results 

This section provides two examples to verify the performance of the proposed 

FNAGM-SSLA, where the structure of FNAGM is evolved by SSLA. The first example 

is to predict the chaotic time series and the second example is to predict the object 

trajectory acquired from Eye-Robot. The numerical simulations were executed by 

MATLAB software in an Intel Pentium CPU at 1.5 GHz with 512 MBytes RAM. 
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3.3.1 Example 1: Chaotic Time Series Prediction 

The Mackey-Glass time series shown in Fig. 3.10 is generated from the following 

delay differential equation 

 

( ) ( )
( )

( )tx.
tx

tx.
dt

tdx 10
1

20
10 −

−+
−

=
τ

τ

 (3.2) 

where τ = 25 and x(0) = 1.2 in the simulation. The objective involves using [x(t−3) x(t−2) 

x(t−1) x(t)] to predict x(t+1). Thus, the input of NN of FNAGM is [eGM(t−3) eGM(t−2) 

eGM(t−1) eGM(t)] and the output is eGM(t+1). The first 250 pairs are used as the training 

data. The parameter of FNAGM was set as γ = 2 in (2.15). The parameters of SSLA 

were set as follows: probability of mutation pm = 0.1, neuron population size Np = 50, 

number of groups P = 5, number of group members d = 3, and maximum number of 

generations Gmax = 250. 

 
Fig. 3.10 Mackey-Glass time series. 

 
Fig. 3.11 shows the evolved NN of FNAGM where the blue lines represent 

positive-valued weights and the red lines represent negative-valued weights. The input 
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u1, u2, u3, and u4 represents eGM(t), eGM(t−1), eGM(t−2), and eGM(t−3), respectively. The 

evolved NN consists of two hidden neurons with hyperbolic tangent activation function 

and ten connections. Note that the bias does not connect to both two hidden neurons and 

output neuron. Furthermore, u3 does not connect to the left hidden neuron and u1, u2, 

and u4 do not connect to the right hidden neuron. Furthermore, u1, u3, and u4 directly 

connect to the output neuron. Clearly, the evolved NN is a partially connected cascade 

NN. 

 

 

b  u1    u2  u3 u4  
Fig. 3.11 Evolved NN of FNAGM-SSLA for Example 1. 

 

Many approaches exist in the literature; however, it is not feasible and necessary to 

perform an exhaustive comparison with all algorithms. The purpose of our experimental 

comparison is to realize the advantages of FNAGM-SSLA. Because FNAGM-SSLA 

uses GM(1,1), NN, and SSLA, GM(1,1) [3], Advanced GM(1,1) [27], NN [8], and 

FNAGM [99] are primarily considered here for comparison. Advanced GM(1,1) is a 

former research work by us that is described in Section 1.2.1. NN is carried out in two 

ways: on-line and off-line parameter learning which are regarded as NNon and NNoff, 

respectively. NNoff uses the first 500 and last 500 data points as the training data and 

the testing data, respectively. FNAGM is the work without structure learning which has 

been described earlier in Chapter 2. The number of hidden neurons of NNon, NNoff, 
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and FNAGM were selected by the preliminary tests which evaluate the performance of 

systems with different number of hidden neurons, from 1 to 20. As a result, the number 

of hidden neurons of NNon, NNoff, and FNAGM with 8, 7, and 4 hidden neurons 

behave the highest performance, respectively. Note that NNon, NNoff, and FNAGM 

have fully connected topologies. 

Fig. 3.12 shows the absolute prediction errors of GM(1,1), Advanced GM(1,1), 

NNon, NNoff, FNAGM, and FNAGM-SSLA. It can be seen that FNAGM performs 

better than GM(1,1), Advanced GM(1,1), NNon, and NNoff. FNAGM-SSLA further 

improves FNAGM and has smaller prediction error. Although FNAGM-SSLA has 

larger prediction error in the beginning time steps, it can continuously perform learning 

and improve the prediction error. 

To better illustrate the efficiency of the proposed FNAGM-SSLA, Table 3.1 shows 

the mean RMSE, number of hidden neurons (Nh), number of connections (Nc), and 

computation time of each prediction step (Tc) over 10 independent runs. It can be seen 

that FNAGM-SSLA has a better RMSE 6.92×10−4 than GM(1,1), Advanced GM(1,1), 

NNon, NNoff, and FNAGM. Furthermore, FNAGM-SSLA has a more compact 

structure than NNon, NNoff, and FNAGM in terms of Nh and Nc due to the use of SSLA. 

This implies that more connections do not necessarily result in superior fitness. In other 

words, appropriate connected topology is the key to improving fitness, not the number 

of connections. Since FNAGM-SSLA has averagely 2.9 hidden neurons and 13.6 

weights (parameters) where the standard deviations are 1.34 and 3.75 respectively, it 

requires less computation time 1.90×10−3 second than FNAGM for both prediction and 

on-line batch training. Thus, it can be employed to real-time prediction application 

where the sampling time is larger than 2 ms. 
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(a)         (b) 

 
(c)         (d) 

 
(e)         (f) 

Fig. 3.12 Absolute prediction errors in Example 1. (a) GM(1,1) [3]; (b) Advanced 

GM(1,1) [27]; (c) NNon [8]; (d) NNoff [8]; (e) FNAGM; (f) FNAGM-SSLA. 
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Table 3.1 Comparison of prediction results for Example 1. 

 GM(1,1) 
[3] 

Advanced 
GM(1,1) [27]

NNon 
[8] 

NNoff 
[8] 

FNAGM 
[99] 

FNAGM-
SSLA 

RMSE for 
k > 250 1.09×10−2 1.10×10−3 2.65×10−1 1.41×10−3 9.39×10−4 6.92×10−4

Nh --- --- 8 7 4 2.9(1.34)

Nc --- --- 49 43 25 13.6(3.75)

Tc 4.08×10−4 4.15×10−4 2.40×10−4 1.81×10−4 4.80×10−3 1.90×10−3

 

3.3.2 Example 2: Object Trajectory Prediction 

The purpose of this example is to predict object trajectory during one sampling 

interval, 3.3×10−2 second, so that Eye-Robot can make decision in real-time according 

to the information. Fig. 3.13 shows the object trajectory where the data acquisition 

process is described in Section 2.4.1. The prediction goal of FNAGM is to predict x(t+1) 

using the input [x(t−3) x(t−2) x(t−1) x(t)]. In this way, [eGM[k−3] eGM[k−2] eGM[k−1] 

eGM[k]] is chosen as the input of NN of FNAGM and eGM[k+1] is the target value. The 

setup of FNAGM-SSLA is the same as Example 1 in Section 3.3.1. Furthermore, the 

training data were normalized to the range [−1, 1]. 

 

 
Fig. 3.13 Object trajectory captured by Eye-Robot. 
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Fig. 3.14 shows the evolved NN of FNAGM-SSLA. The evolved NN consists of 

one hidden neuron with hyperbolic tangent activation function and 9 connections. Note 

that the bias does not connect to the hidden neuron. Furthermore, u2 does not connect to 

the hidden neuron. Moreover, the four inputs directly connect to the output neuron. 

Clearly, the evolved NN is a partially connected cascade NN. 

 

 

b  u1    u2  u3 u4  
Fig. 3.14 Evolved NN of FNAGM-SSLA for Example 2. 

 

To evaluate the effectiveness of the proposed FNAGM-SSLA, Fig. 3.15 shows the 

prediction results of GM(1,1), Advanced GM(1,1), NN, FNAGM, and FNAGM-SSLA. 

The number of neurons of NNon, NNoff, and FNAGM is chosen by the same procedure 

shown in Section 3.3.1. Consequently, NNon, NNoff, and FNAGM with 6, 4, and 5 

neurons have the best performance. Note that NNon, NNoff, and FNAGM have fully 

connected topologies. It can be observed that GM(1,1) performs better than Advanced 

GM(1,1), NNon, and NNoff in this example, while Advanced GM(1,1) and NNoff 

perform better than GM(1,1) in Example 1. FNAGM has better performance than 

GM(1,1) and FNAGM-SSLA further improves the prediction error of FNAGM. 
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(a)         (b) 

 
(c)         (d) 

 
(e)         (f) 

Fig. 3.15 Absolute prediction errors in Example 2. (a) GM(1,1) [3]; (b) Advanced 

GM(1,1) [27]; (c) NNon [8]; (d) NNoff [8]; (e) FNAGM; (f) FNAGM-SSLA. 
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Table 3.2 Comparison of prediction results for Example 2. 

 GM(1,1) 
[3] 

Advanced 
GM(1,1) [27]

NNon 
[8] 

NNoff 
[8] 

FNAGM 
[99] 

FNAGM-
SSLA 

RMSE for 
k > 250 6.6491 29.5957 72.5432 7.9706 6.0348 5.3806 

Nh --- --- 6 4 5 1.3(1.28)

Nc --- --- 37 25 31 8.7(4.37)

Tc 4.08×10−4 4.15×10−4 2.40×10−4 1.81×10−4 8.00×10−3 1.80×10−3

 

Table 3.2 presents mean RMSE, Nh, Nc, and Tc of NNon, NNoff, FNAGM, and 

FNAGM-SSLA over 10 independent runs. FNAGM-SSLA achieves a better RMSE 

5.5642 than GM(1,1), Advanced GM(1,1), NNon, NNoff, and FNAGM. In case of 

FNAGM-SSLA, the average Nh and Nc, 1.3 and 8.7 where the standard deviations are 

1.28 and 4.37 respectively, are less than those of NNon, NNoff, and FNAGM. It can be 

seen that a better exploration in the structure search space is realized due to the use of 

SSLA which achieves compact structure of cascade NN and high prediction 

performance. Since FNAGM-SSLA has fewer hidden neurons and weights than 

FNAGM, it requires less computation time 1.80×10−3 second than FNAGM for both 

prediction and on-line batch training. The experiments show the same evidence as 

numerous studies [44]-[46] that partially connected NNs have better storage capability 

per connection than fully connected NNs. Furthermore, the results show that the 

evolved FNAGM can be used to real-time prediction application due to the less 

computation time. 

 

3.4 Summary 

This chapter presents a novel forecasting system, FNAGM-SSLA, which first 

facilitates structure learning of FNAGM by SSLA and then achieves prediction and 
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on-line batch training by the evolved FNAGM. The idea behind SSLA is to achieve 

neuron-based structure learning and develope neurons to construct NNs through 

symbiotic evolution. SSLA can construct cascade NNs and feedforward NNs by 

evolving the neurons with different activation functions including hyperbolic tangent 

and linear functions. It determines not only the number of hidden neurons, but also the 

connected topology between input and hidden layers. The experiments show that 

FNAGM-SSLA can obtain an appropriate FNAGM structure, with fewer neurons and 

connections, and a smaller prediction error than FNAGM designed in an empirical way. 

This implies that more connections do not necessarily result in superior fitness. In other 

words, appropriate connected topology is the key to improving fitness, not the number 

of connections. Furthermore, the experiments show that FNAGM-SSLA requires less 

computation time and can be used for real-time prediction application. 
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Chapter 4 Network-Based Structural Learning for 

Prediction 

 

This chapter presents a method of designing NNs for prediction problems based on 

an evolutionary constructive and pruning algorithm (ECPA). The proposed ECPA begins 

with a set of NNs with the simplest possible structure, one hidden neuron connected to 

an input node, and employs crossover and mutation operators to increase the complexity 

of an NN population. Additionally, cluster-based pruning (CBP) and age-based survival 

selection (ABSS) are proposed as two new operators for NN pruning. The CBP operator 

retains significant neurons and prunes insignificant neurons on a probability basis and 

therefore prevents the exponential growth of an NN. The ABSS operator can delete old 

NNs with potentially complex structures and then introduce new NNs with simple 

structures; thus, NNs are less likely to be trapped in a fully connected topology. The 

ECPA framework incorporates constructive and pruning approaches in an attempt to 

efficiently evolve compact NNs. As a demonstration of the method, ECPA is applied to 

three prediction problems: the Mackey-Glass time series, the number of sunspots, and 

traffic flow. The numerical results show that ECPA makes the design of NNs more 

feasible and practical for real-world applications. 

 

4.1 Basic Concept of Evolutionary algorithm 

 EA, which simulates Darwinian evolution, is a parameter optimization algorithm 

[101] that works through a simple cycle of stages. The EA begins with a randomly 
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generated population consisting of a number of feasible solutions for the problem. This 

population is referred to as the parents, and each solution is known as an individual. The 

next stage evaluates the fitness of each individual of the population. To improve the 

individuals of the current generation, the crossover operator is adopted to perform 

essential recombination of two or more individuals. Furthermore, to sample unknown 

regions, the mutation operator is employed to make a change or perturbation in a 

parameter with a random element. In other words, the crossover is considered to be an 

exploration operator, whereas the mutation is considered to be an exploitation operator. 

Therefore, EA creates a new population, known as the offspring, using the crossover 

and mutation operators. To maintain a constant population size over subsequent 

generations, the next stage performs a selection to determine whether the individuals in 

both the parent and offspring populations survive to the next generation. Ranking and 

tournament selections are frequently employed as selection strategies [102]. The EA 

stops when the maximum number of generations is reached. 

 

4.2 Evolutionary Constructive and Pruning Algorithm 

 Based on the characteristics of EA, constructive, and pruning algorithms 

mentioned in Section 1.2.2, we propose ECPA to develop NNs in an attempt to balance 

the constructive and pruning manners in an evolutionary way. This approach starts from 

a group of NNs with the simplest possible structure, one hidden neuron connected to an 

input node. It then employs network crossover and network mutation to make NNs 

more complex, and adopts CBP and ABSS to prune NNs. As discussed in [81], 

theoretical work has shown that a single hidden layer is sufficient for forecasting 

purposes. Therefore, in this work, we designed a three-layer feedforward NN with an 
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input layer, a hidden layer, and an output layer. The major steps of ECPA are 

summarized in Fig. 4.1 and explained below. 

 

 

Create NNs with one 
neuron and single 
connection 

Network crossover 

Network mutation 

Cluster-based 
prunning 

Age-based survival 
selection 

End 

Start

Satisfy stop 
criterion? 

yes 

no 

 

Fig. 4.1 Major steps performed in ECPA. 

 
Initialization phase: 

Step 1) Generate an initial population with Np NNs, where Np is the population 

size. The initial NN structure starts with a simplest possible network with 

one neuron and a single connection from one of the inputs, which is 

randomly selected. 

Step 2) Train all NNs using BP for ϕ epochs, where ϕ is specified by the user, 

and determine their fitness. 

Reproduction phase: 
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Step 3) Select two parents by tournament selection. Produce one offspring from 

the two parents using network crossover. 

Step 4) Apply network mutation to the offspring. 

Step 5) Train the offspring NN using BP for ϕ epochs and determine its fitness. 

Step 6) Perform CBP on the offspring. Go to Step 3 until Np offspring are 

generated. 

Step 7) Apply ABSS to the parents and their offspring to select the parents of the 

next generation. Go to Step 3 until the maximum number of generations 

is reached. 

Step 8) Select a single best NN among the final population. 

 

4.2.1 Encoding Scheme and Design Mechanism 

In order to encode an NN into a chromosome, NN is represented as a vector whose 

length depends on the size of NN such that the memory can be used efficiently. Fig. 4.2 

shows the chromosome representation of two NNs and their corresponding graphical 

representations. The chromosome consists of the network connections and weights 

where w1, wb1, and w12 indicate the output weight of the first hidden neuron, the weight 

connected from bias, and weight connected between first hidden neuron and second 

input node, respectively. Note that the weight with nonzero value represents the 

connected weight while that with zero value represents the disconnected weight. The 

initial population is a set of simplest possible networks whose initial weights are 

randomly generated by a uniform distribution in the range [−1.0, 1.0] via the suggestion 

in [104]. 
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w1 wb1 w11 w12 w13 w14

NN1 0.7 0 0 0 2.5 −0.2

w1 wb1 w11 w12 w13 w14

0.7 0 0 0 2.5 −0.2

w2 wb2 w21 w22 w23 w24 

0.3 0 −0.4 0 0 0 NN2  

 

NN1

1  x1 x2 x3 x4 
NN2 

1  x1 x2 x3 x4 

w1 

w13
w14 w14w13w21

w1w2

 

Fig. 4.2 Coding of NN and two examples. 

 

The data set used in ECPA is partitioned into two sets: training set and testing set. 

In Step 2 and 5, the training set is used to train the weights of NN by local search 

operator and evaluate the fitness of NN. As mentioned in major steps, ECPA uses both 

global and local search to design NNs. The global operators in reproduction phase are 

used to explore the NN structures, and the local operator, BP, is used to enable a precise 

local search of weights. As shown in Section 1.2.2, it is better to carry out global search 

and local search alternatively during evolution. Therefore, ECPA performs weight 

training by BP after structure search by evolutionary operators, again and again. 

Basically, ECPA directs the evolution of NNs via four essential components: network 

crossover, network mutation, CBP, and ABSS. Details regarding each component of 

ECPA are provided in the following sections. 

 

4.2.2 Network Crossover 

The ECPA starts from a population of NNs with the simplest possible structures so 



 63

that the initialization phase can easily set the topology of NNs as one hidden neuron and 

a single connection from one input. However, these NNs may not be able to achieve 

enough and desired accuracy. In order to increase the processing capabilities of NNs, it 

is necessary to facilitate the exploration of the wider regions of a structural search space. 

For the sake of this objective, this stage executes constructive manner to add hidden 

neurons to each NN. To decide how many hidden neurons should be add to each NN, 

network crossover simply selects two NNs and combines them together. Hence, this 

operator does not necessarily use many heuristics and user-defined parameters, and 

require rich prior knowledge. The network crossover operation in ECPA produces an 

offspring NN by combining the substructures of two parent NNs. To clearly illustrate 

the network crossover, an example is shown in Fig. 4.3 for two parent NNs, NNa and 

NNb, and their offspring NNc. The input-output relationship of NNa is as follows:  

 ( )2121111 xwxwhwy a
h

a
h

a
o

a ⋅+⋅⋅=  (4.1) 

where h is the hidden neuron activation function, a
ow 1  is the output weight, and a

hw 12  

is the weight connected from x2 to the hidden neuron. The hidden neuron activation 

function can be a linear, logistic or hyperbolic tangent function. The superscript of each 

weight represents its network index, and the subscript indicates the relationship between 

hidden and input neurons. For NNb, the input-output relationship is as follows: 
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where b
ow 1  is the output weight of the first hidden neurons and b

hw 24  is the weight 

from x4 to the second hidden neuron. 
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Fig. 4.3 An example of a network crossover. 

 

The network crossover directly combines the substructures of NNa and NNb, and 

the offspring NNc is subsequently obtained as: 
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 (4.3) 

This result is shown in Fig. 4.3. The output weights of the offspring NN are half 

those of the parent NNs, and the hidden weights of the offspring retain the same weights 

as those of the parent NNs. As shown in Fig. 4.3, it is clear that the network crossover 

operator directs the evolution of NNs in a constructive manner. Furthermore, a 

crossover probability is chosen to determine whether or not to perform network 

crossover on two parent NNs. If the crossover probability is smaller than a random 

number, network crossover is performed on the two parent NNs; otherwise, the two 

parent NNs are copied as two offspring. 

 

4.2.3 Network Mutation 

When the network crossover is applied to parent NNs, some offspring NNs are 

likely to have more hidden neurons and thus possess much processing ability. However, 
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it may be inefficient to increase NN’s performance by only adding hidden neuron with 

single connection generated by the initialization phase. It is possible to introduce more 

inputs into each hidden neuron to increase the prediction accuracy. EAs usually adopt 

mutation operator to achieve the perturbation and thus have a better exploitation 

capability. Hence, a small perturbation of structure is suitable for structural leaning. 

Since the initialization phase generates NNs with single connection, a small 

perturbation can be achieved via adding more connections to NNs and its capability is 

distinct from adding hidden neurons. For the sake of simple and small perturbation, 

network mutation is developed in ECPA and introduces a new connection into NN 

where the connection is built between randomly selected one input and one hidden 

neuron, and initializes its weight according to a normal distribution with mean = 0 and 

standard deviation = 0.01, by the program. A graphical representation of this operation, 

in which a new connection is added between x2 and the first hidden neuron, is shown in 

Fig. 4.4. The input-output relationship of the mutated NNb, NNb’, is written as follows: 

 ( ) ( )42422222121111 xwxwhwxwxwhwy b
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b
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where 012 =b
hw  and thus, NNb’ retains the performance of NNb.  

 

4.2.4 Cluster-Based Pruning 

ECPA employs network crossover and network mutation to design NNs in a 

constructive manner. However, it is well known that the constructive algorithms 

difficultly decide when to stop the addition process and may design an excessively large 

and complex NN with poor generalization performance. Thus, a pruning algorithm can 

be used to determine the relevance or significance of hidden neurons and delete 

insignificant ones. Nevertheless, it is not easy to determine the threshold value for 
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distinguishing insignificant hidden neurons from significant ones. Therefore, ECPA uses 

a different pruning scheme, called CBP, which simply separates the hidden neurons into 

two classes, good and worse, according to the best hidden neuron and the worst one 

without any user specified parameter. Then the hidden neurons in worse class are 

pruned in a stochastic way to avoid deleting excessive hidden neurons. Unlike 

conventional pruning algorithms, CBP proceeds in three steps. 

NNb’ 
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Fig. 4.4 An example of a network mutation. 

 

In the first step, the significance of each hidden neuron is determined. For the ith 

hidden neuron, the significance is defined as 

 ii S=σ  (4.5) 

where Si is obtained as follows [105]-[107]: 
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Thus, Si is the root-mean-square of p
iS , which is the sensitivity of the network 

output po  to the output p
ih  of the ith hidden neuron for the pth pattern, expressed as 

 i

p
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p
p

i

w
h
oS

=
∂
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=

 (4.7) 

Here, wi is the weight of the connection from the ith hidden neuron to the output 

neuron; this weight is constant because it is irrelevant to the patterns. Hence, the 

significance in (4.5) can be rewritten as 

 ii w=σ  (4.8) 

Thus, a hidden neuron with low significance has little influence on the network 

output and can be removed [51]. However, to avoid excessive pruning of the hidden 

neurons, the significance in (4.5) is purposely chosen as the square root of Si, following 

the concept of the rootogram [108]. 

In the second step, the hidden neurons are categorized into two classes: good and 

worse. The prototypes of the good and worse classes are the hidden neurons with 

maximum and minimum significance, respectively. The remaining hidden neurons are 

categorized according to the difference between the good and worse prototypes with 

respect to their significance. If the significance of one hidden neuron is close to the 

good prototype, the hidden neuron is then categorized in the good class; otherwise, the 

hidden neuron is categorized in the worse class. The neurons in the good class are 

retained, whereas those in the worse class are deleted in a stochastic manner. For each 

neuron in the worse class, a random number r with a uniform distribution between [0, 1] 

is generated. If r is smaller than 0.5, the neuron is deleted; otherwise, the neuron is 

retained. 
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4.2.5 Age-Based Survival Selection 

After the network crossover, network mutation and CBP are completed, the 

individuals in the next generation are chosen through survival selection. If a general 

survival selection is adopted, the evolved NNs tend to have fully connected topologies 

due to network mutation, which add more inputs to the hidden neurons. As a result, 

hardware implementation costs are increased, and the generalization capabilities of the 

evolved NNs are reduced. To avoid this problem, we propose a different survival 

selection method, ABSS, to select younger NNs with partial connections, rather than 

full connections, for the next generation. 

ABSS is performed in two steps. The first step involves traditional tournament 

selection to choose Np candidates for the next stage. If the age of an NN is defined as 

the number of generations it survives in the population, then the Np candidates may have 

different ages. For example, the age of a newborn NN is one, and its age increases by 

one if it survives to the next generation. The second step continues to delete the elder 

NNs from the Np candidates according to the aging index, defined as follows: 
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where Agej is the age of the jth NN. Selection proceeds by generating a uniform random 

number r in the range [0, 1]. If Aj > r, the jth NN is deleted and replaced by a newborn 

NN produced by Step 1; otherwise, the jth NN is retained in the population. As a result, 

the population size Np is unchanged after ABSS, and the average age of the NNs is 

potentially lower, which prevents the evolved NNs from adopting a fully connected 

topology. 

In summary, the network crossover operator constructs an NN by adding hidden 

neurons so that the NN possesses more processing ability to accurately approximate the 
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target function. The network mutation operator adds one connection from the input to 

the hidden neuron so that the hidden neuron can process more input information. CBP 

prunes the worse hidden neurons from an NN to prevent overfitting of the training data. 

ABSS deletes elder NNs that are potentially fully connected. Thus, network crossover 

and mutation operations direct the evolution of NNs in a constructive manner that can 

improve their processing ability to accurately approximate the true function, whereas 

CBP and ABSS direct the evolution of NNs in a destructive way that can improve their 

generalization capabilities while reducing their hardware requirements. 

 

4.3 Numerical Results 

In this section, we demonstrate the performance of the proposed algorithm using 

three time series prediction problems: Mackey-Glass, sunspots, and vehicle count. The 

first time series is generated from the Mackey-Glass differential equation, the second 

series is recorded from the sunspots, and the third series is obtained from the hourly 

vehicle count for the Monash Freeway outside Melbourne in Victoria, Australia, 

beginning in August, 1995. In order to make a fair comparison with previous works, the 

first problem adopts RMSE as the fitness, which is calculated as follows: 

 ( ) ( )( )∑
=

−=
N

t
tx̂tx

N 1

21RMSE   (4.10) 

where ( )tx̂  is the predicted value at time t and N is the number of data points. The 

second and third problems compare with previous works by normalized mean squared 

error (NMSE) and mean absolute percentage error (MAPE). The NMSE is defined as 

the ratio of the mean squared error to the variance of the time-series as follows: 
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where σ is the standard deviation of the time-series. The MAPE is determined as 

follows: 

 ( ) ( )
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N 1
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Furthermore, the number of hidden neurons Nh and the number of connections Nc are 

recorded to observe the evolutionary progress. The following parameters are used in 

each problem. 

1) The population size Np is 30. 

2) The crossover probability is 0.8. 

3) The mutation probability is 0.6. 

4) The value of ϕ for training NN by BP is 15. 

5) The maximum number of generations is 500. 

As described in Section 3.5, the Np, G, and ϕ would affect the computational complexity 

of ECPA. The larger Np the less effect of genetic drift, the larger G the more chances to 

find better ANNs, and the larger ϕ the more prediction accuracy. However, the larger Np, 

G, and ϕ lead to the longer computation time. To select suitable values, Np is set as 30 

according to the suggestion in [109]. In order to select appropriate ϕ and G, the values 

of ϕ were chosen as 5, 10, 15, 20, 25, and 30, and the values of G were chosen as 300, 

400, 500, and 600 in the preliminary runs. As a result, G = 500 and ϕ = 15 were adopted 

in the following experiments due to the sufficient prediction accuracy and acceptable 

computation time. Because the parameters were chosen after some preliminary runs, the 

value was not meant to be optimal. The setting of pc = 0.8 and pm = 0.6 is to enhance the 

chance of increasing the number of hidden neurons than the chance of increasing the 

number of connections. It was expected that structures with more hidden neurons would 
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be found first, and these structure would then be pruned. We evaluate the performance 

of ECPA on the three examples over 10 independent runs. 

 

4.3.1 Example 1: Chaotic Time Series Prediction 

The Mackey-Glass time series prediction is recognized as a benchmark problem in 

the area of NNs. This chaotic time series prediction was considered to be a suitable way 

to evaluate the performance of the proposed ECPA. The Mackey-Glass time series is 

generated from the following delay differential equation: 

 ( ) ( )
( )

( )tx.
tx

tx.
dt

tdx 10
1

20
10

−
−+

−
=

τ
τ   (4.13) 

where τ = 17 and x(0) = 1.2 in the simulation. The fourth-order Runge-Kutta method is 

used to generate 1,000 data points ranging from t = 118 to 1,117. The task involves 

predicting the value of x(t+6) from the input vector [x(t−18) x(t−12) x(t−6) x(t)] for any 

t. Therefore, the input-output data pairs for prediction are 

( ) ( ) ( ) ( ) ( )[ ]6;,6,12,18 +−−− txtxtxtxtx  

where the first 500 data pairs are used as training set and the later 500 data pairs are 

testing set. 

The evolutionary progress of NNs for the Mackey-Glass time series prediction 

problem is illustrated in Fig. 4.5. The top panel of Fig. 4.5 shows the decrease in RMSE 

resulting from the evolution of NNs. The middle and bottom panels of Fig. 4.5 present 

Nh and Nc and demonstrate the structural evolution of NNs, respectively. Fig. 4.6 

graphically illustrates how the topologies of NNs evolve in selected generations. The 

input vector [u(4) u(3) u(2) u(1)] represents [x(t−18) x(t−12) x(t−6) x(t)], and the output 

y represents x(t+6). The blue lines represent positive-valued weights, and the red lines 

represent negative-valued weights. The widths of the lines indicate the relative strengths 
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of the weights. The NN structure produced in the 1st generation starts with a network of 

two neurons and a few connections from the inputs and thus has limited information 

processing ability for the task. As its evolution progresses, Nh gradually increases to 38 

by the 25th generation, is reduced to 28 by the 30th generation, and then increases to 40 

by the 490th generation. The NNs were observed to grow rapidly, but the growth did not 

always occur due to the use of CBP and ABSS. Note that the resulting NN structure 

does not have a fully connected topology; less than 85% of the synapses are connected. 

Many approaches have been developed to design both the architecture and weights 

of NNs to address the same prediction problem. Table 4.1 presents the experimental 

results obtained using the proposed algorithm compared with other algorithms. The best 

(i.e., lowest) RMSE, Nh, and Nc values among the various approaches are shown in 

boldface type, and the RMSE, Nh, and Nc of ECPA are the average values over 10 

independent runs. As shown here, although ECPA achieved a larger RMSE than that of 

Du and Zhang [110] with the training set, it obtained a lower RMSE than the other 

methods for the testing data. It is interesting that ECPA obtained a lower RMSE for the 

testing data than for the training data in this experiment, but this phenomenon has been 

observed previously [111]. In terms of the average number of hidden neurons over 10 

independent runs, ECPA obtained a lower Nh than those of Du and Zhang [110] and 

Harpham and Dawson [112]. Although ECPA obtained a higher Nh than those of Rojas 

et al. [113], Chen et al. [114], and Cho and Wang [115], it achieved a lower RMSE. 

ECPA resulted in the evolution of an NN with training data RMSE, testing data RMSE, 

Nh, and Nc values of 6.76×10−4, 6.30×10−4, 40.5, and 203.2, respectively. Clearly, the 

evolved NN possessed a partially connected topology; our observations showed that 

ECPA can evolve NNs with a lower RMSE and more compact structure than the other 

methods. 
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Fig. 4.5 Evolution progress for Example 1. 

 

   
1st        5th          10th 

   
25th       30th         40th 

   
50th           350th         490th 

Fig. 4.6 Evolved NNs for Example 1.. 
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Table 4.1 Prediction results for Example 1. 

t = 6　  t = 84　  
Method Train Test First 500 

points 
Last 500 

points 

Nh Nc 

Du and Zhang 
[110] 2.87×10−4 7.67×10−4 1.93×10−2 2.07×10−2 294 --- 

Harpham and 
Dawson [112] --- 1.50×10−3 --- --- 116 --- 

Rojas et al. [113] 2.87×10−3 --- 2.63×10−2 --- 12 --- 

Chen et al. [114] 3.30×10−3 3.60×10−3 --- --- 10 110 
Cho and Wang 
[115] 9.60×10−3 1.14×10−2 --- --- 23 --- 

ECPA 6.76×10−4 6.30×10−4 6.20×10−3 3.10×10−3 40.5 203.2 
 

The prediction result for the one-step prediction of x(t+6) is shown in Fig. 4.7. In 

addition to the one-step prediction of x(t+6), the evolved NN was applied to another 

general testing case: the multiple-step prediction of x(t+84) [111]. To perform a 

multiple-step prediction, the proposed algorithm iteratively predicts x(t+6), x(t+12), etc. 

until it reaches x(t+84) after 14 such iterations. The prediction result for multiple-step 

prediction of x(t+84) is shown in Fig. 4.8 where the NN was evolved based on the 

training data for the one-step prediction of x(t+6). When compared with Fig. 4.7, the 

prediction error in Fig. 4.8 indicates an increase from 6.30×10−4 to 3.10×10−3 because 

multiple-step prediction is more complex than one-step prediction. As shown in Table 

4.1, the prediction errors for multiple-step prediction of x(t+84) for the first and last 500 

points were 6.20×10−3 and 3.10×10−3, respectively. Therefore, ECPA was superior to the 

other methods in the multiple-step prediction.  
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Fig. 4.7 Prediction error for Example 1. 

 

 
Fig. 4.8 Multiple-step prediction error for Example 1. 
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4.3.2 Example 2: Forecasting the Number of Sunspots 

The number of sunspots varies nonlinearly in nonstationary and non-Gaussian 

cycles that are difficult to predict [116]. In this experiment, ECPA was used to predict 

the number of sunspots. The objective of this test involves using [x(t−10) x(t−9) … x(t)] 

to predict x(t+1), where t represents the year and x(t) represents the number of sunspots 

in year t. For a fair comparison with the other methods, the data from 1700 to 1920 were 

the training set and the data from 1921 to 1955 were the testing set. The parameters 

used in this experiment are the same as those in Example 1. 

The learning curves for ECPA in this example are shown in Fig. 4.9. The top panel 

shows that the training error gradually decreased as the evolution process progressed. 

The middle and bottom panels of Fig. 4.9 present the evolution of Nh and Nc, 

respectively. To illustrate the structural evolution of NNs in detail, Fig. 4.10 shows the 

topologies of NNs in selected generations. The input vector [u(11) u(10) … u(1)] 

represents [x(t−10) x(t−9) … x(t)], and the output y represents x(t+1). We observed that 

Nh was always less than and equal to 5 during the evolutionary process and only a few 

inputs were connected to the hidden neurons. During the 1st and 40th generations, the 

structures of the evolved NNs grew rapidly, and more inputs were processed. The Nh 

increased to 4 in the 40th generation and Nc increased to 11. Finally, Nh and Nc 

converged to 5 and 24, respectively, at the end of the evolution process. Notably, all of 

the evolved NNs lack connections from the bias of the hidden layer to the output layer. 

The final evolved NN connected half of the inputs including x(t), x(t−2), x(t−4), x(t−8), 

x(t−9), and x(t−10), and each neuron connected an average of 3.8 inputs. Thus, the final 

evolved NN clearly has a partially connected topology. 
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Fig. 4.9 Evolution progress for Example 2. 

 

   
1st       10th          28th 

   
35th       40th         55th 

   
100th       150th         200th 

Fig. 4.10 Evolved NNs for Example 2. 
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The prediction result of the training data from the years 1700–1920 is shown in Fig. 

4.11. The prediction result for the testing data for the years 1921–1955 is shown in Fig. 

4.12. ECPA performance was further compared to those of an adaptive neural network 

(ADNN) [117], an artificial neural network (NN) [8], a hybrid methodology that 

combines an autoregressive integrated moving average with an artificial neural network 

(Hybrid) [118], and an adaptive k-nearest neighbors (AKN) [119]. In terms of average 

performance over 10 independent runs, Table 4.2 presents that ECPA obtained an NN 

with mean absolute percentage error (MAPE), normalized mean squared error (NMSE), 

Nh, and Nc values of 24.66, 0.0573, 5.0, and 46.9, respectively. These results indicate 

that the proposed ECPA can design an NN with a compact structure and a smaller 

prediction error than other methods. 

 

 
Fig. 4.11 Training results for Example 2. 
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Fig. 4.12 Testing results for Example 2. 

 

Table 4.2 Prediction results for Example 2. 

Method MAPE NMSE RMSE Nh Nc 
ADNN [117] 28.45 0.068 9.233 6 -- 

NN [8] 30.8 0.078 9.888 6 -- 

Hybrid [118] 31.2 0.0852 10.334 -- -- 

AKN [119] 50.3 0.1833 15.158 -- -- 

ECPA 24.66 0.0573 8.475 5.0 46.9 

 

4.3.3 Example 3: Vehicle Count Prediction 

The vehicle count data set was obtained from the hourly vehicle count for the 

Monash Freeway outside Melbourne in Victoria, Australia, beginning in August 1995. 

The objective of this example involves using [x(t−15) x(t−14) … x(t)] to predict x(t+1). 

The setup of this experiment was identical to that described in Example 1. 

The evolutionary progress of NNs is shown in Fig. 4.13. The top panel of Fig. 4.13 

shows the NMSE of the evolved NNs in each generation. The NMSE was observed to 
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decrease rapidly in the first 50 generations and converged in the later generations. The 

middle panel of Fig. 4.13 shows the number of hidden neurons, Nh, of the evolved NNs. 

The bottom panel of Fig. 4.13 shows the total number of connections in the evolved NN 

Nc each generation. The structural evolution of NNs is presented in more detail in Fig. 

4.14, which graphically illustrates the topologies of NNs in selected generations. The 16 

inputs [u(16) u(15) … u(1)] represent [x(t−15) x(t−14) … x(t)], and the output y 

represents x(t+1). We observed that Nh increased to 4 in the 4th generation and further 

increased to 9 in the 8th generation. After the 9th generation, Nh varied from 7 to 13. 

Finally, Nh converged to 7 in the 373rd generation. With respect to Nc, NNs have few 

connections in the early generations due to the single-connection topology presented in 

the initial population, and Nc does not always increase. Nc drops from 37 to 22 in the 

20th generation and from 40 to 37 in the 240th generation, implying that more 

connections do not necessarily result in superior fitness. In other words, appropriate 

topology, not the number of connections, is the key to improving fitness. However, we 

observed that each neuron attempted to connect to more inputs as the number of 

generations was increased. The evolution of NNs almost converges, and no further 

improvement in NNs was observed after the 373rd generation. As a result, the 

highest-quality NN with well-trained weights has 7 hidden neurons and connects most 

of the inputs, except for x(t−5) and x(t−10). Thus, NN can automatically select the 

necessary inputs via ECPA. Clearly, the evolved NN is a partially connected network. 

The prediction results of the training data and testing data are shown in Fig. 4.15 

and Fig. 4.16, respectively. Table 4.3 summarizes the average performance of the 

evolved NNs for the testing set over 10 independent runs and compares these results to 

other methods, including ADNN [117], NN [8], Hybrid [118], and AKN [119]. The 

average NMSE using ECPA was 0.0182, which is less than that obtained using the other 
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methods. Furthermore, the evolved NNs obtained using ECPA have an average of 7.7 

hidden neurons, which is less than the other methods. 

 
Fig. 4.13 Evolution progress for Example 3. 

 

    
1st       2nd       4th 

    
 8th      20th       50th 

    
240th      290th       373rd 

Fig. 4.14 Evolved NNs for Example 3. 
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Fig. 4.15 Training results for Example 3. 

 

 
Fig. 4.16 Testing results for Example 3. 
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Table 4.3 Prediction results for the hourly vehicle count time series. 

Method MAPE NMSE RMSE Ni Nh Nc 
ADNN [117] 14.31 0.0193 186.096 180 12 -- 

NN [8] 17.97 0.0267 218.884 180 12 -- 

Hybrid [118] 26.98 0.0818 383.120 180 -- -- 

AKN [119] 17.39 0.0206 192.261 180 -- -- 

ECPA 11.35 0.0182 180.715 16 7.7 77.6 
 

4.3.4 Effect of CBP and ABSS 

The previous section discusses the performance of ECPA for different prediction 

problems. However, the effect of CBP and ABSS on evolution of NNs is unclear. To 

evaluate how CAP and ABSS affect NN evolution, two variants of ECPA which do not 

use CBP and ABSS, respectively, were used in repetitions of the above experiments. 

The variant of ECPA without CBP is referred to as ECPA/C and that without ABSS is 

referred to as ECPA/A. The setup of these experiments was identical to those in 

previous experiments. 

In order to gain the deeper understanding of the performance difference between 

ECPA, ECPA/C, and ECPA/A in these three experiments, the three algorithms are 

compared in terms of NMSE, Nh, Nc, connection ratio, Rc, and computation time, Tc, 

whose unit is second. The Rc is determined as follows: 

 %NNR fcc 100⋅=   (4.14) 

where Nf is the number of connections in an NN with a fully connected topology. An 

NN with Nh hidden nodes with a fully connected topology leads to the following 

relation: 
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where Ni is the number of input nodes. When Rc < 100%, NN has a partially connected 

topology, and when Rc = 100%, NN has a fully connected topology. The computational 

environment is Windows XP with Intel Core i7 870 2.93G CPU and 4GB RAM. These 

algorithms are implemented in MATLAB. 

The results in Table 4.4 present that ECPA and ECPA/A produce different NNs in 

some aspects. For the three examples, the average Nh and Nc values over 10 independent 

runs returned by ECPA/A are much larger than those of ECPA which applies both CBP 

and ABSS. As comparing their prediction performance, ECPA/A yielded slightly 

smaller NMSE values than ECPA in the Mackey-Glass and vehicle count time series. 

This improvement may be yielded due to the great processing capability of a large 

number of hidden neurons. However, the NNs developed via ECPA/A for the sunspot 

time series have larger NMSE value than those via ECPA. This may be due to the 

overfitting property caused by too many hidden neurons. The results indicate that ECPA 

facilitates NNs with more generalization ability than ECPA/A. 

 

Table 4.4 Performance of ECPA and ECPA/A in Mackey-Glass, sunspot, and vehicle 

count time series. All results are averaged over 10 independent runs, where * refers to 

RMSE. 

Method Experiment NMSE Nh Nc Rc(%) Tc 
Mackey-Glass *6.3027×10−4 40.5 203.2 83.28 1112.7 

Sunspot 0.0573 5.0 46.9 71.06 375.1 ECPA 

Vehicle count 0.0182 7.7 77.6 55.59 693.3 
 Mackey-Glass *1.3535×10−3 860.6 2357.7 45.65 60531.7 

ECPA/C Sunspot 0.5741 419.3 1145.6 21.01 5841.3 
 Vehicle count 0.0358 224.3 605.1 14.98 5939.6 
 Mackey-Glass *6.3147×10−4 575.3 2173.9 62.96 12958.9 

ECPA/A Sunspot 0.7547 173.7 603.1 26.70 2237.1 
 Vehicle count 0.0176 70.8 653.6 51.25 3358.3 
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In addition to NMSE, Nh, and Nc, Table 4.4 presents that Rc obtained by ECPA/C is 

lower than ECPA/A due to the use of ABSS. More specifically, elder NNs which are 

much likely to have more connections from inputs conducted by network mutation 

would be deleted by ABSS in ECPA/C. Although ECPA/C can produce sparsely 

connected topology of NN by the aid of ABSS, it would result in NNs with huge Nh. 

Thus, the NNs in ECPA/C face overfitting problem and have bad generalization ability, 

i.e., larger NMSE for testing set. When comparing ECPA, ECPA/C, and ECPA/A, 

ECPA/A can produce NNs with less hidden neurons than ECPA/C due to the use of CBP. 

ECPA further yields NNs with more compact structures and better generalization ability 

than ECPA/A due to the use of ABSS. 

Furthermore, the computation time of ECPA, ECPA/C, and ECPA/A is compared. 

The computation time required by ECPA was less than that required by ECPA/C and 

ECPA/A since ECPA needs less computation time to process less hidden neurons while 

ECPA/C and ECPA/A require longer time to train and evaluate the NNs with large 

number of hidden neurons. According to the observation, both CBP and ABSS are 

beneficial for producing NNs with a compact structure and reducing computation time. 

 

4.3.5 Discussion 

In this section, we summarize the observations in the three experiments described 

above, and discuss the experimental results. Fig. 4.5, Fig. 4.9, and Fig. 4.13 show that 

the NN structures developed using ECPA are simple in the first generations due to the 

use of initial NNs with one hidden neuron and a single connection to one of the inputs. 

As their evolution progresses, the NN structures grew rapidly in the beginning due to 

the addition of neurons via crossover and the addition of connections via mutation. 

However, the results show that NNs did not grow continuously in the later generations 
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due to the use of CBP and ABSS. CBP primarily preserves the significant neurons and 

prunes the insignificant neurons using a probability criterion. Pruning prevents the 

exponential growth of NNs and avoids long-term training for complex NNs. In addition, 

ABSS first deletes the old individuals likely to have complex structures and then 

provides an opportunity to introduce new individuals with simple structures generated 

via Step 1). Section 4.3.4 demonstrates that ABSS is useful for developing a compact 

NN architecture and avoiding the design of complex NNs. The highest-quality NN with 

well-trained weights is then attained using construction via crossover and mutation 

operations and destruction via CBP and ABSS. The resulting NNs do not have fully 

connected topologies; less than 80% of the synapses are connected in the Mackey-Glass 

time series, 50% are connected in the sunspot time series, and 40% are connected in the 

vehicle count time series. Furthermore, the evolved NNs do not connect to all the inputs, 

e.g., the evolved NN does not connect to x(t−7) in the sunspot time series, and the 

evolved NN does not connect to x(t−5) and x(t−10) in the vehicle count time series. 

Thus, ECPA has the ability to select suitable inputs required to accurately perform 

predictions. These results imply that more connections do not necessarily result in 

superior fitness. In other words, an appropriately connected topology is the key to 

improving fitness, not the number of connections. 

 

4.4 Summary 

A novel structure learning algorithm, called ECPA, is proposed for the design of 

NNs based on an evolutionary constructive and pruning algorithm. ECPA evolves NNs 

starting with a minimal structure: one hidden neuron connected to an input node. The 

crossover and mutation operations make the NN structures more complex, whereas CBP 
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and ABSS make the NN structures more compact. The results of the numerical 

simulations show that the use of CBP and ABSS operations indeed generates compact 

NNs. Moreover, ECPA adopts variable-length chromosomes to represent the NNs so 

that memory is used efficiently. In the time series prediction problems, ECPA not only 

evolved partially connected NNs with sufficient prediction accuracy but also 

demonstrated the ability to select the proper inputs, i.e., input selection. The numerical 

results demonstrate that an appropriately connected topology, rather than the number of 

connections, is the key to improving NN performance. 
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Chapter 5 Conclusion and Future Work 

This dissertation proposes an FNAGM based on GM(1,1) and NN for real-time 

prediction application. FNAGM uses GM(1,1) to predict signals and employs NN to 

compensate the prediction error of GM(1,1). Based on Levenberg-Marquardt algorithm, 

NN is adjusted in real-time by the proposed on-line batch training whose convergence 

property has been proven in this dissertation. Numerical results are also included to 

demonstrate that FNAGM has higher prediction accuracy than other methods and is 

applicable for real-time prediction. Furthermore, experimental results of a robotic 

application show that FNAGM can be successfully used for the trajectory prediction 

and object tracking. 

In order to design the structure of FNAGM in an efficient way, a neuron-based 

structure learning algorithm, called SSLA, is proposed to construct the topology of 

FNAGM. The SSLA can flexibly construct cascade NNs and feedforward NNs by using 

the neuron population including neurons with hyperbolic tangent and linear activation 

functions. Therefore, a complex coding to represent these two classes of NNs is 

unnecessary. The neurons in the neuron population share the fitness from their 

participating NNs and then evolve according to neuron crossover, neuron mutation, and 

BP. Consequently, FNAGM with compact structure is obtained and applied to predict 

signal and further learn to compensate the prediction error by the on-line batch training. 

When comparing to the FNAGM designed by trial-and-error, numerical results show 

that FNAGM-SSLA can automatically determine the topology of FNAGM with more 

compact structure, higher prediction accuracy, and less computation time. 

In addition to the neuron-based structure learning algorithm, ECPA, a 
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network-based structure learning algorithm, is proposed to determine the topology of 

NN by evolving network population. Different from SSLA which needs to define the 

minimum and maximum numbers of hidden neurons, ECPA simply starts from a 

minimum structure with one hidden neuron connected from one input node. ECPA 

incorporates the idea of constructive algorithm into the network crossover and mutation, 

and enables NNs to have more processing capabilities. Furthermore, CBP and ABSS, 

based on pruning algorithm, are adopted to make the structure of NN more compact. 

Numerical results show that ECPA can gradually evolve NNs from a minimum structure 

to an appropriate structure with suitable inputs. Moreover, the evolved NNs obtain 

higher prediction accuracy and more compact structures than other methods for 

prediction problems. Therefore, ECPA could be applied to extract the inputs which 

essentially have rare relationship to the original data, and thus reduce the problem 

dimensionality and eventually decrease the complexity of the generated NNs. 

Future work will focus on developing cascade NNs with different activation 

functions, such as logistic, hyperbolic tangent, linear threshold, exponential and 

Gaussian signal function. Moreover, a large amount of computation time is required for 

the use of SSLA and ECPA. Approaches concerning the time reduction should be 

further investigated. In addition to prediction application, it would be of great interest to 

use reinforcement learning to develop both parameter and structure learning algorithms 

for nonlinear control problems. This dissertation adopts BP as the parameter learning 

algorithm; however, BP may be not applicable in certain control problems when 

gradient information of the plants is not available. In the future research, EAs will be 

considered as a substitute of BP to perform both parameter and structure learning by 

global searching techniques. 
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