
國 立 交 通 大 學

電 控 工 程 研 究 所

博 士 論 文

具演化式結構學習能力之類神經網路及其預測之應用

Neural Network with Evolutionary Structure Learning and Its Prediction Application

研 究 生：楊世宏

指導教授：陳永平 博士

中華民國一百年十二月

 2

具演化式結構學習能力之類神經網路及其預測之應用

Neural Network with Evolutionary Structure Learning and Its Prediction Application

研 究 生：楊世宏 Student： Shih-Hung Yang
指導教授：陳永平 博士 Advisor： Dr. Yon-Ping Chen

國立交通大學

電控工程研究所

博士論文

A Dissertation

Submitted to Institute of Electrical and Control Engineering

College of Electrical Engineering

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

in

Electrical and Control Engineering

December 2011

Hsinchu, Taiwan, Republic of China

中華民國一百年十二月

 i

誌謝

感謝傅立成老師、徐國鎧老師、林進燈老師、宋開泰老師、楊谷洋老師、高

立人老師撥冗給予口試以及寶貴的建議，讓我從另一個層面來思考如何做研究，

對我將來的工作有莫大的幫助。

感謝我的指導老師陳永平博士，指導我如何組織論文，撰寫論文，釐清我想

表達的意思，也包容我走的比別人慢，提供舒適的研究空間，願意每個禮拜花時

間跟我討論，從討論過程中，可以得到相當多經驗與傳承。我從陳永平老師的討

論當中學習很多，他曾經陪著我改過無數的論文，幫助我突破眾多難關，耐心解

決很多困境，在我艱困時，拉我一把，陳老師用他寬大的氣度、冷靜的思考、積

極的人生觀，帶著我走過許多荊棘之路，也讓我見識以及學習到重要且關鍵的做

人處事態度，我從他身上學到的比從論文上還多，謹以此論文代表我對他的致謝。

 這幾年來是我求學時光最扎實的日子，清大江老師與楊師母常常邀請我至他

們家作客，在他們溫暖的屋子裡，喝著香醇的果汁，吃著美味的餅乾，分享他們

的故事，不斷鼓勵我，也給予我很多寶貴的經驗與知識，在這裡感謝他們的陪伴。

 感謝學長葉天德博士在我低迷、徬徨、無助的時候拉我一把，支持與鼓勵我

向前，認可我的研究成果，提升我的信心，在關鍵的時刻，提供我寶貴的意見，

使我可以放心向前走。

 感謝同袍丁桓展博士在 VSS 實驗室一同打拼，度過漫長的求學生涯，他義氣

相挺的個性，有求必應，只要他知道的，一定不吝回答，他灑脫的個性，減輕我

許多壓力與煩惱，讓人生更順暢。

 感謝 VSS 實驗室學弟振芳、孫齊、咨瑋協助口試的庶務，也感謝實驗室所有

 ii

學弟精神上的支持。

謝謝小啾、孟穎、玉禎老師提供我寶貴的意見，讓我在徬惶時，能夠冷靜下

來，先整理好心情，再來處理事情。感謝手語 91 的支持，記得曾與你們共患難。

感恩好友河志、峻延、宏鈞經常鼓勵我，透過聊天來紓解我的壓力，他們的義氣

相挺，持續地互相關心，讓我安心度過許多難關。

感謝系辦溫嘉雯小姐在行政業務上的幫助，也感謝系辦林滿足小姐、陳英芝

小姐、施德喜先生、曾桂香小姐在計畫業務上的幫助。感謝黃俊德提供博士論文

的格式範本，讓寫作更順利。

感恩承瑄師姑、玫芬師姑、博文師伯帶著我登上各種舞台，也同時照顧我的

心，讓我以他們為榜樣，學習他們的價值觀來看世界，選擇更為正確的人生方向。

 最重要的是感謝我的家人對我的支持，讓我完成學業，體諒我這段時間經濟

上的限制，長時間在外地打拼，感謝我兩位妹妹，感謝我的爸爸與媽媽。

楊世宏

一百年十二月

 iii

具演化式結構學習能力之類神經網路及其預測之應用

研究生：楊世宏 指導教授：陳永平 博士

國立交通大學電控工程研究所博士班

摘 要

本論文提出一以前饋式類神經網路輔助之灰色模型及其相關的線上參數學習

與結構學習演算法，此模型採用一階單變數灰色模型來預測訊號，再使用前饋式

類神經網路補償灰色模型的預測誤差，此外，本論文提出一線上批次訓練法來即

時更新類神經網路的權重值，於是，此模型可以執行預測且持續地適應動態的訊

號變化。為了有效地設計此模型的結構，本論文提出一種以神經元為基礎的結構

學習，稱為共生結構學習演算法，來建立類神經網路的拓墣結構，此演算法首先

建構一神經元族群，再由神經元族群建立類神經網路族群，由於神經元族群裡的

神經元包含雙曲線正切與線性活化函數，此演算法能任意且輕易地發展串聯式網

路與前饋式網路，此演算法進一步根據共生進化的概念，在神經元族群裡執行神

經元交配與突變，其所發展的前饋式類神經網路輔助之灰色模型將執行訊號預測

且持續地以線上批次訓練法調適模型於環境中。另一方面，本論文提出一種以網

路為基礎的結構學習，稱為演化式建構與修剪演算法，用演化的方式結合建構與

修剪的概念，來設計類神經網路的拓墣結構。此演算法從一群具有最簡單結構的

類神經網路開始，即一群只有一顆連接單一輸入單元的隱藏層神經元的類神經網

路，此演算法採用網路交配與突變來增加隱藏層神經元以及鏈結，用以提升類神

 iv

經網路的訊號處理能力，此外，本論文提出一以叢集為基礎之修剪法用隨機的方

式來除去不重要的神經元，也提出一以年齡為基礎之生存者選擇法來移除較老且

可能具有複雜結構的類神經網路，接著引進新的且具有最簡單結構的類神經網

路。數值模擬與實驗結果將展現所提出的方法在預測問題上的有效及可行性。

 v

Neural Network with Evolutionary Structure Learning

and Its Prediction Application

Student：Shih-Hung Yang Advisor：Dr. Yon-Ping Chen

Institute of Electrical and Control Engineering

National Chiao Tung University

Abstract

 This dissertation proposes a feedforward-neural-network-aided grey model

(FNAGM) and its related on-line parameter learning as well as structure learning

algorithms. The FNAGM uses a first-order single variable grey model (GM(1,1)) to

predict signal and adopts a feedforward neural network (NN) to compensate the

prediction error of GM(1,1). Furthermore, an on-line batch training is proposed to

update the weights of NN in real-time. Thus, FNAGM can precisely predict and adapt

itself to the dynamical change of the signal. To design the structure of FNAGM

efficiently, a neuron-based structure learning, called symbiotic structure learning

algorithm (SSLA), is proposed to establish the topology of NN. The SSLA constructs a

neuron population and then builds a network population from the neuron population,

and it can arbitrarily develop cascade NNs and feedforward NNs in an easy way. Further,

SSLA carries out neuron crossover and mutation on the neuron population according to

the idea of symbiotic evolution. The evolved FNAGM is applied to predict the signal

and continuously adapt itself to the environment by the on-line batch training. On the

other hand, a network-based structure learning, called evolutionary constructive and

 vi

pruning algorithm (ECPA), is proposed to design the topology of NN by incorporating

constructive and pruning methods in an evolutionary way. The ECPA starts from a set of

NNs with the simplest possible structures, one hidden neuron connected to an input

node. It then adds hidden neurons and connections by using the network crossover and

mutation to increase the processing capabilities of NNs. Furthermore, a cluster-based

pruning is proposed to prune insignificant neurons in a stochastic way. An age-based

survival selection is proposed to delete old NNs with potentially complex structures and

then introduce new NNs with the simplest possible structures. Numerical and

experimental results of prediction problems show the effectiveness and feasibility of the

proposed methods.

 vii

CONTENTS

摘要 ..i

ABSTRACT .. iii

誌謝 ..i

CONTENTS ... vii

LIST OF FIGURES..ix

LIST OF TABLES..xi

SYMBOLS ... xii

Chapter 1 Introduction..1

1.1 Motivation ..1

1.2 Literature Survey ..3

1.2.1 On-Line Parameter Learning...3

1.2.2 Structure Learning...5

1.3 Organization of Dissertation...10

Chapter 2 On-Line Parameter Learning for Prediction ..12

2.1 Feedforward-Neural-Network-Aided Grey Model.......................................12

2.1.1 Neural Networks ...12

2.1.2 First-Order Single Variable Grey Model...14

2.1.3 Structure of FNAGM ..16

2.2 On-Line Parameter Learning of FNAGM ..17

2.2.1 On-Line Batch Training ..18

2.2.2 Convergence Analysis ...21

2.3 Numerical Results...22

2.3.1 Example 1: Disturbance Prediction...22

2.3.2 Example 2: Chaotic Time Series Prediction..25

2.4 Experimental Results ..27

2.4.1 Trajectory Prediction...28

2.4.2 Tracking Control ...31

2.5 Summary...34

Chapter 3 Neuron-Based Structure Learning for Prediction35

 viii

3.1 Structure Learning Based on Symbiotic Evolution35

3.2 Symbiotic Structure Learning Algorithm ...36

3.2.1 Initialization Phase ..37

3.2.2 Evaluation Phase ...41

3.2.3 Reproduction Phase...43

3.3 Numerical Results...48

3.3.1 Example 1: Chaotic Time Series Prediction..49

3.3.2 Example 2: Object Trajectory Prediction..53

3.4 Summary...56

Chapter 4 Network-Based Structural Learning for Prediction58

4.1 Basic Concept of Evolutionary algorithm ..58

4.2 Evolutionary Constructive and Pruning Algorithm59

4.2.1 Encoding Scheme and Design Mechanism ...61

4.2.2 Network Crossover..62

4.2.3 Network Mutation ...64

4.2.4 Cluster-Based Pruning...65

4.2.5 Age-Based Survival Selection...68

4.3 Numerical Results...69

4.3.1 Example 1: Chaotic Time Series Prediction..71

4.3.2 Example 2: Forecasting the Number of Sunspots76

4.3.3 Example 3: Vehicle Count Prediction ...79

4.3.4 Effect of CBP and ABSS...83

4.3.5 Discussion ...85

4.4 Summary...86

Chapter 5 Conclusion and Future Work ...88

Bibliography ..90

Vita...102

Publication List..103

 ix

LIST OF FIGURES

Fig. 2.1 Feedforward-neural-network-aided grey model. ..17

Fig. 2.2 Absolute prediction errors of GM(1,1), Advanced GM(1,1) and FNAGM

with m = 4 in Example 1...25

Fig. 2.3 Absolute prediction errors of GM(1,1), Advanced GM(1,1) and FNAGM

with m = 4 in Example 2...27

Fig. 2.4 (a) Eye-Robot. (b) Experimental environment where a participant held a red

object. ...28

Fig. 2.5 Trajectory of the object...30

Fig. 2.6 Prediction error of x(k) for GM(1,1), advance GM(1,1), and FNAGM.30

Fig. 2.7 Prediction error of y(k) for GM(1,1), advance GM(1,1), and FNAGM.31

Fig. 2.8 Tracking error of x(k) using GM(1,1)...32

Fig. 2.9 Tracking error of x(k) using Advanced GM(1,1)..33

Fig. 2.10 Tracking error of x(k) using FNAGM...33

Fig. 3.1 Architecture of the proposed forecasting system. ..37

Fig. 3.1 Coding of neuron and three examples. ...38

Fig. 3.2 Graphical representation of neurons for three examples.38

Fig. 3.3 (a) An NN constructed via three neurons. (b) Equivalent cascade NN

model. ...39

Fig. 3.4 Neuron population and network population. ..41

Fig. 3.5 Neuron Crossover. ..45

Fig. 3.6 Neuron Mutation...45

Fig. 3.8 Neuron reproduction...46

Fig. 3.9 Flowchart of SSLA. ..48

Fig. 3.10 Mackey-Glass time series. ..49

Fig. 3.11 Evolved NN of FNAGM-SSLA for Example 1..50

Fig. 3.12 Absolute prediction errors in Example 1. (a) GM(1,1) [3]; (b) Advanced

GM(1,1) [23]; (c) NNon [79]; (d) NNoff [79]; (e) FNAGM; (f)

FNAGM-SSLA...52

Fig. 3.13 Object trajectory captured by Eye-Robot. ..53

Fig. 3.14 Evolved NN of FNAGM-SSLA for Example 2..54

 x

Fig. 3.15 Absolute prediction errors in Example 2. (a) GM(1,1) [3]; (b) Advanced

GM(1,1) [23]; (c) NNon [79]; (d) NNoff [79]; (e) FNAGM; (f)

FNAGM-SSLA...55

Fig. 4.1 Major steps performed in ECPA...60

Fig. 4.2 An example of a network crossover. ..64

Fig. 4.3 An example of a network mutation. ...66

Fig. 4.4 Evolution progress for Example 1. ...73

Fig. 4.5 Evolved NNs for Example 1...73

Fig. 4.6 Prediction error for Example 1. ..75

Fig. 4.7 Multiple-step prediction error for Example 1...75

Fig. 4.8 Evolution progress for Example 2. ...77

Fig. 4.9 Evolved NNs for Example 2...77

Fig. 4.10 Training results for Example 2. ..78

Fig. 4.11 Testing results for Example 2. ..79

Fig. 4.12 Evolution progress for Example 3. ...81

Fig. 4.13 Evolved NNs for Example 3...81

Fig. 4.14 Training results for Example 3. ..82

Fig. 4.15 Testing results for Example 3. ..82

 xi

LIST OF TABLES

Table 2.1 Comparison of different input numbers of NN of FNAGM in Example 1. .23

Table 2.2 Comparison of the prediction errors of GM(1,1), Advanced GM(1,1) and

FNAGM in Example 1. ..24

Table 2.3 Comparison of the prediction errors of GM(1,1), Advanced GM(1,1) and

FNAGM in Example 2. ..26

Table 2.4 Comparison of prediction error and computation time.29

Table 3.1 Comparison of prediction results for Example 1..53

Table 3.2 Comparison of prediction results for Example 2..56

Table 4.1 Prediction results for Example 1. ...74

Table 4.2 Prediction results for Example 2. ...79

Table 4.3 Prediction results for the hourly vehicle count time series...........................83

Table 4.4 Performance of ECPA and ECPA/A in Mackey-Glass, sunspot, and vehicle

count time series. All results are averaged over 10 independent runs, where

* refers to RMSE. ...84

 xii

SYMBOLS

FNAGM

Ns total step size

n input length of GM(1,1)

γ bias of GM(1,1) in (2.15)

m input number of NN

p number of hidden neurons of NN

N maximum size of batch training pattern

v[n+m] initial weight vector of NN

u[k] input vector at time k

g(·) activation function

x[k] discrete data at time k

μ[n+m+1] initially positive scalar for updating the weight vector

β constant to adjust μ[k]

P training pattern

B batch training pattern

G Jacobian matrix

SSLA

w output weight

a activation function type

Np population size

P number of groups

d number of individuals in each group

ϕ number of epochs in backpropagation algorithm

 xiii

f fitness

pc crossover probability

pm mutation probability

r random number with a uniform distribution between [0, 1]

Nh number of hidden neurons

Nc number of connections

Tc computation time of each prediction step

ECPA

σ significance of hidden neuron

S sensitivity of the network output to the output of hidden neuron

Age age of neural network

Rc connection ratio

Tc computation time of evolution

 1

Chapter 1 Introduction

1.1 Motivation

Prediction, computing the trends of time series in the future, is a type of problem

generally encountered in many research fields. Many numerical algorithms that can

accurately predict time series have been proposed, including the autocorrelation method

[1], covariance method [2], grey theory [3], and Kalman filter [4]. However, these

methods require suitable system equation and initial values which are designed

heuristically [5], [6]. Recently, investigators have focused on data-driven approaches

based on neural networks (NNs) due to their learning abilities and powerful prediction

capability so that the implicit nonlinear relationships can be extracted from historical

data without human experience [7]-[10].

NNs were first developed to imitate biological neural systems and are organized

into several interconnected simple processing units called neurons or nodes. NNs learn

from examples and historical data, even when the input-output relationships are

unknown [11]. Thus, NNs can accurately solve problems without prior knowledge when

sufficient observed data are supplied. This property is useful for evaluating numerous

forecasting problems because acquiring data is easier than making good theoretical

guesses about certain systems.

Two important issues are discussed in NN research: parameter learning and

structure learning. The parameter learning basically consists of two classes of learning

strategies, called batch training and on-line training. The batch training adjusts the

 2

network by using a large number of prepared training data and performs weight search

in a fixed error surface. Although the weight search converges, it is easily trapped in a

local minimum. In order to achieve high forecasting accuracy, however, a large amount

of data for successful training is needed and lots of training time is also required. It,

therefore, may not be suitable for some requirements, such as real-time operations,

limited memory size or on-line adaptation necessity [12]−[15]. As opposed to the batch

training, on-line training adjusts NN according to a single training pattern, a pair of

input and target, at a time. It is particularly adequate for the purpose to simultaneously

execute signal prediction and learn to improve the performance [16],[17]. Although the

on-line training usually takes much less computation time to adjust the network than the

batch training does, the former is not easy to achieve accurate solutions as well as the

latter. Therefore, design of an appropriate on-line training algorithm is necessary to

perform on-line prediction and continuous adaptation for real-time application.

Another important issue of NN is structure selection, which involves determining

an appropriate structure to accurately fit the underlying function described by the

training data [18]. A structure that is too large may precisely fit the training data but

may provide poor generalization due to overfitting of the training data. Conversely, an

architecture that is too small saves computational costs but may not possess sufficient

processing ability to accurately approximate the underlying function. Therefore,

structure selection should consider both network complexity and goodness of fit. This

dissertation proposes two structure learning algorithms: symbiotic structure learning

algorithm (SSLA) and evolutionary constructive and pruning algorithm (ECPA). SSLA,

a neuron-based structure learning approach, can automatically determine both the

number of hidden neurons and topology of NN through a symbiotic evolution. ECPA, a

network-based structure learning approach, can evolve NN through evolutionary

 3

constructive and pruning approaches. Results of this dissertation demonstrate the

effectiveness of the proposed methods.

1.2 Literature Survey

This section presents the literature survey of on-line parameter learning and

structure learning.

1.2.1 On-Line Parameter Learning

On-line parameter learning is one of the most useful and popular methods for many

real-world applications. It continuously adapts model parameters to the environment

after each training pattern is presented at each time step. For time series prediction tasks,

NNs are used to predict the next data point according to the last finite number of data

points. The training patterns are presented in their natural order and maintain their

natural dependencies. The on-line parameter learning constructs a stochastic error

surface in nature due to the use of pattern-by-pattern updating of weights. This training

seems to introduce some sort of randomness and help escape from local minimum [19],

[20]. Mathematically, there is no guarantee of its stability or the convergence of the

weight search. In [21], researcher found that if the learning rate is small enough, the

weight search would converge. Basically, on-line gradient descent has been the first

effective approach for training NNs through error backpropagation [22]. However, one

difficulty using on-line learning for prediction applications is the sensitivity to the

selection of training parameters and training patterns. The other difficulty is to

determine the Hessian on-line when only a single training example is available at one

time step [13],[23]. This is especially undesirable when the prediction accuracy is

 4

requirement of using on-line approaches.

Aside from NNs, grey theory is used to cope with the systems with partial

information or dynamic model [24]. Based on the grey theory, the first-order single

variable grey model (GM(1,1)) has been developed and applied to various on-line

prediction problems, such as power demand forecasting [1], electricity demand

forecasting [25] and control of a humanoid robot [26]. GM(1,1) requires only a few

number of historical data to adapt its parameters on-line and is used to predict

exponential signals in real time. However, it is inadequate to predict other types of

signals. In [27], Advanced GM(1,1) adopts the Lagrange polynomial to estimate the

prediction error of GM(1,1) and indeed improves the prediction.

Based on the approach of “mixture of experts”, some researchers have integrated

GM(1,1) and NN to enhance the prediction according to their complementary merits.

Generally, the ways to combine GM(1,1) and NN can be categorized into four classes

[28]: simple combination, serial combination, strengthening grey system with neural

network, building neural network with the aid of grey system. The simple combination

integrated the outputs of both GM(1,1) and NN with the coefficients determined via

least mean square method [29], minimum theory of statistical variance [30], [31], and

Shapley value method [32]. One kind of serial combination made use of the

accumulation generation operation (AGO) to transform the original data into first order

AGO (1-AGO) data with improved regularity and then fed the 1-AGO data to the input

layer of NN [33], [34]. Zhu [35] proposed a kind of serial combination to fed the

prediction output of GM(1,1) to the input layer of NN which was trained by the

momentum algorithm. In addition, Chang and Tsai [36] improved the control and

environment parameters of GM(1,1) by a support vector regression, denoted by

SVRGM and employed a statistical methodology GARCH to fit the time series.

 5

Consequently, a back-propagation neural network was used to tune the

weighted-average between SVRGM and GARCH. In strengthening grey system with

neural network, Hsu and Chen [37] applied NN to estimate the residual sign of GM(1,1)

and the work in [38], [39] forecasted the prediction error of GM(1,1). For the ways

building NN with the aid of grey system, Yeh et al. [40] trained GreyART network

which combines grey relational analysis and adaptive resonant theory network and then

evaluated GreyART network by the testing patterns generated by GM(1,1).

The aforementioned studies show that the fusion scheme of GM(1,1) and NN could

outperform the individual ones. However, these models are trained off-line and only

suitably applied to the prediction problems for hourly [30], daily [29], monthly [33],

and yearly [35] time-series. To carry out continuous adaptation for prediction problem

in real-time, it is required to perform the prediction and training during the sampling

interval. For most of the practical cases in real-time operation, the sampling time is less

than one second, much longer than the training time needed for one training pattern [41].

Thus, it is able to perform more than one pattern learning, such as batch pattern, during

one sampling interval. Therefore, this dissertation proposes a

feedforward-neural-network-aided grey model (FNAGM) based on GM(1,1) and NN to

learn the prediction error of GM(1,1). Furthermore, an on-line batch training is

proposed to continually adapt the network to the dynamical change for real-time

prediction.

1.2.2 Structure Learning

For prediction purposes, it has been shown that a feedforward NN with a single

hidden layer is sufficient to achieve any desired accuracy [42], [43]. In most

applications, NNs are fully connected, i.e., all inputs are fully connected to all hidden

 6

neurons. Numerous studies have shown that partially connected NNs have better storage

capability per connection than fully connected NNs [44]-[46]. Furthermore, partially

connected NNs can yield improved generalization capabilities with reduced cost in

terms of hardware and processing time [47], [48]. However, how to determine the

optimal numbers of hidden neurons and connections remains an open question.

Among several algorithms for designing three-layered NNs, the most frequently

used algorithms are the constructive, pruning, and constructive-pruning algorithms [49],

[50]. A constructive algorithm starts with a minimal NN architecture, a three-layered

NN with one hidden neuron. The algorithm adds hidden neurons to the minimal NN,

one-by-one, during the training phase. The advantage of the constructive algorithm is

that the initial phase can simply set the number of hidden layers and neurons as one

each. However, deciding when to add hidden neurons or connections and when to stop

the addition process is difficult.

A pruning algorithm starts with an oversized architecture and then deletes

unnecessary hidden neurons or connections, either during training or upon convergence

to a local minimum. Each iteration of the pruning algorithm determines which unit, i.e.,

which hidden neuron or connection, to prune via its relevance or significance. Several

pruning criteria have been proposed, for example, sensitivity analysis [51] and

magnitude-based pruning [52]. Sensitivity analysis is based on Taylor expansion and

reflects the ways in which the derivatives of a performance function can be applied to

quantify a system’s response to unit perturbations [53], [54]. Magnitude-based pruning

assumes that small weights are irrelevant [55]. However, no criterion can be used to

determine the initially oversized architecture for a given problem [49].

In the constructive algorithm, the architecture of NN may become oversized if the

addition procedure is not appropriately stopped. A number of algorithms have attempted

 7

to combine constructive and pruning algorithms to solve the aforementioned problem

[56]-[58]. These constructive-pruning algorithms first estimate the number of hidden

neurons and/or connections via a constructive method. A pruning method is then used to

delete the inappropriate hidden neurons and/or connections to find a near-optimal

architecture for a given problem. However, determining when to stop the pruning

procedure is difficult [59].

Several researchers have developed methods for designing NNs using evolutionary

algorithms (EAs). EAs emerged as a biologically plausible approach for adapting

various NN parameters such as weight values and architectures [60]-[63]. Unlike

constructive, pruning, and constructive-pruning algorithms, EAs perform a search

employing a population of NNs rather than a single NN. The population-based

stochastic search technique uses crossover, mutation, and selection operators in each

generation to improve the NN population in the search space. In contrast, the

constructive, pruning, and constructive-pruning algorithms apply predefined and greedy

search strategies to determine near-optimal NN architectures. These strategies are

appropriate for some tasks but may be inappropriate for other tasks because the greedy

search strategies may direct the search process toward architecturally local optima,

which is a problem inherent to any greedy approach [64]. EAs can avoid the

architecturally local optima problem by using non-monotonic search methods. Gutiérrez

et al. [65] adopted an evolutionary programming algorithm and a simulated annealing

method to produce a radial basis function neural network with simplest structure

possible for classification problems. Oong and Isa [66] achieve the global and local

search to evolve NNs via adapting the mutation probability and the step size of the

weight perturbation. Caballero et al. [67] use a Pareto-based multiobjective

optimization methodology based on a memetic evolutionary algorithm for multiclass

 8

problems.

Recently, several studies have been proposed to employ various EAs to prune NNs.

Mantzaris et al. [68] pruned Probabilistic Neural Network by genetic algorithm to

minimize the number of diagnostic factors, and therefore minimized the number of

input nodes and hidden layers. Curry and Morgan [69] proposed a modified feedforward

neural network which is pruned and optimised by means of Differential Evolution for

seasonal data. Huang and Du [70] use particle swarm optimization to prune the radial

basis probabilistic neural networks. Masutti and Castro [71] combined characteristics

from self-organizing networks and artificial immune systems to solve the traveling

salesman problem and pruned neurons which are not related to a city. Furthermore,

numerous works have been done to perform EAs and pruning methods seperately or

simutaneously. Kaylani et al. [72] incorporated prune operator into a genetic algorithm

as a mutation operator to design ARTMAP architecture for classification problems. Goh

et al. [73] developed a hybrid multiobjective evolutionary approach for adaptation of

NNs structures and a geometrical approach in identifying hidden neurons to prune for

classification problems. Hervás-Martínez et al. [74] applied an evolutionary algorithm

to design the structure and weights of a product-unit neural network, and finally used a

backward stepwise procedure to prune variables sequentially until no further pruning

can be made to improve the fit. However, most encoding schemes must predefine the

chromosome length, which is problem-dependent. This user-defined length may affect

the flexibility of problem representation and EA efficiency [75]-[77].

EAs are generally global search algorithms which explore the search space

stochastically by a number of heuristics while gradient descent methods are local search

algorithms which solve the problem with priori known derivatives information. A global

search algorithm can exhibit good exploration ability while a local search algorithm can

 9

show good exploitation performance. With an appropriate coordination of global search

and local search, it has been shown that collaboration between global search and local

search performs better than pure population-based global search algorithms or

stand-alone local search algorithms [78]. In order to maintain a proper balance between

global explorations and local exploitations, it is better to execute exploration and

exploitation operations alternatively during evolution [79]. Nevertheless, to establish a

subtle coordination of global and local search algorithms and determine how long

should local search be run [80] are not easy and under investigation.

According to the aforementioned vantages of constructive, pruning, and

evolutionary algorithms, this dissertation proposes two novel approaches to design NNs:

symbiotic structure learning algorithm (SSLA) and evolutionary constructive and

pruning algorithm (ECPA). SSLA, a neuron-based structure learning, attempts to design

the NN structure of FNAGM according to symbiotic evolution. It evolves neuron

population by fitness-sharing algorithm and constructs cascade NNs via neurons with

different activation functions. Then the evolved FNAGM can accurately predict time

series and further improve prediction error through the on-line batch training. On the

other hand, ECPA, a network-based structure learning, directs the evolution of the NN

topology using constructive and pruning methods in an evolutionary manner. It

increases the complexity of NN by constructive method and prunes insignificant

neurons on a probability basis to avoid the exponential growth of NN structure.

Furthermore, the algorithm deletes old NNs with possibly complex structures and

inserts newborn NNs with simple structures. In brief, ECPA integrates constructive,

pruning, and evolutionary algorithms in an attempt to efficiently evolve compact NNs.

 10

1.3 Organization of Dissertation

The objective of this dissertation is to develop evolutionary structure learning

algorithms of NNs for prediction purpose. Organization and objective of each chapter

are as follows.

In Chapter 2, FNAGM is proposed for real-time prediction. FNAGM integrates an

GM(1,1) and an NN where GM(1,1) is used to predict the signal and NN is adopted to

learn the prediction error of GM(1,1). Furthermore, an on-line batch training, an on-line

parameter learning algorithm, is proposed to adjust the weights of NN in FNAGM

on-line. Thus, FNAGM could simultaneously achieve prediction and on-line parameter

learning.

In Chapter 3, a neuron-based structure learning approach, SSLA, is proposed to

evolve the structure of FNAGM, i.e., the number of hidden neurons and the topology of

NN. The idea behind SSLA is to evolve neuron population and construct NN from the

neuron population where each neuron shares the fitness from the participating NN.

SSLA performs neuron crossover and mutation to the neuron population and finally

evolves appropriate structure of FNAGM. The evolved FNAGM could be applied to

predict the signal and further learn the prediction error by on-line batch training.

In Chapter 4, a network-based structure learning approach, ECPA, is proposed to

design compact structure of NN for prediction. In ECPA, a variable-length chromosome

representation is adopted to describe NNs with different architectures. Thus, it is not

necessary to predefine the length of the chromosome, and this makes the use of memory

more efficient. Furthermore, ECPA introduces the concept of constructive method into

the crossover and mutation operations in a manner that allows the initial structure of the

NN to be simply set as a minimal network containing one hidden neuron with a single

 11

connection to one input. The crossover and mutation operations then enlarge the

architecture by adding hidden neurons and connections. ECPA then prunes the resulting

NNs via a newly developed scheme consisting of cluster-based pruning (CBP) and

age-based survival selection (ABSS).

Chapter 5 concludes this dissertation with discussion and suggestions for future

work.

 12

Chapter 2 On-Line Parameter Learning for

Prediction

In this chapter, a feedforward-neural-network-aided grey model (FNAGM) and its

corresponding on-line parameter learning algorithm, on-line batch training algorithm, is

presented for prediction. FNAGM, which integrates a first-order single variable grey

model (GM(1,1)) and a neural network (NN), is designed to not only predict the signals

but also continually adapts itself to the dynamical change. The system process consists

of three phases: initialization phase, GM(1,1) prediction phase and FNAGM prediction

phase. First, some parameters required in FNAGM are chosen in the initialization phase.

Then, a one-step-ahead predictive value is generated in the GM(1,1) prediction phase.

Finally, an NN is used to learn the prediction error of GM(1,1) and compensate it in the

FNAGM prediction phase. Significantly, an on-line batch training is proposed to adjust

the weights of NN according to Levenberg-Marquardt algorithm in real-time.

2.1 Feedforward-Neural-Network-Aided Grey Model

This section first describes NNs and GM(1,1), and then presents the proposed

FNAGM which combines a GM(1,1) and an NN.

2.1.1 Neural Networks

 A feedforward NN processes input vector with one direction, forward, to hidden

layer and then output layer. For forecasting purposes, the theoretical work shows that a

 13

single hidden layer is sufficient [81]. Thus, a general feedforward NN with m input

neurons, p hidden neurons and one output neuron is applied for one-step-ahead

prediction. Let’s define the input vector and weights first. For time series prediction, the

input vector of the network at time k is u[k] = [u1[k] u2[k] … um[k]]T. Since the on-line

batch training which will be described in Section 2.2 is adopted as the learning strategy,

the time index k of the weights is important and denotes that the weights have been

updated through the learning iteration at time k−1 and are applied for prediction at time

k. In the hidden layer, wj[k] is the weight vector from the input vector to the jth hidden

neuron. In the output layer, wo[k] is the weight vector from the hidden neurons to the

output neuron. The input vector u[k] is linearly combined at the hidden neuron and then

processed by the activation function g(·) which can be one of the continuous neuron

models, e.g., logistic, hyperbolic tangent, linear threshold, exponential and Gaussian

signal function [82]. For the jth hidden neuron, the output is

 [] [] [] []⎟
⎠
⎞

⎜
⎝
⎛ +⋅= ∑

=

m

i
jbijij kwkukwgkh

1

 (2.1)

where wji[k] and wjb[k] are the components of wj[k] and wj[k] = [wj1[k] wj2[k] … wjm[k]

wjb[k]]T. The output of the network is

 [] [] [] []kwkhkwky ob

p

j
joj +⋅= ∑

=1

 (2.2)

where woj[k] and wob[k] are the components of wo[k] and wo[k] = [wo1[k] wo2[k] … wop[k]

wob[k]]T. From (2.1) and (2.2), the input-output relationship of NN could be further

represented as

 [] [] []()kkfky uv ,= (2.3)

where

 14

[] [] [] [] [][]

[] [] [][]T
q

TT
o

T
p

TT

kvkvkv

kkkkk

…

…

21

21

=

= wwwwv
 (2.4)

where q = (m+2)·p+1. To train the network, the proposed on-line batch training

algorithm is adopted to update the weight vector v[k] and will be described in Section

2.2.

2.1.2 First-Order Single Variable Grey Model

 Consider a discrete data sequence of length 4≥n formed as the following

column vector

 () () [] () [] () []0 0 0 01 2
T

x x x n⎡ ⎤= ⎣ ⎦x " (2.5)

where each element has the same numeric sign. In general, GM(1,1) adopts three

fundamental operations, given as

Accumulate Generating Operation (AGO):

 () [] () []1 0

1
 1 2

k

l
x k x l , k , ,...,n

=

= =∑ (2.6)

Mean Generating Operation (MGO):

 () [] () [] () () []1 1 11 1 2 3z k x k x k , k , ,...,nα α= + − − = (2.7)

Inverse Accumulate Generating Operation (IAGO):

 () [] () [] () []0 1 1 1 2 3x k x k x k , k , ,...,n= − − = (2.8)

where α is often set as 0.5. According to GM(1,1) [3], its grey differential equation is

presented as

 () [] () []0 1 1 2x k az k b, k , , ,n+ = = " (2.9)

where a is the development coefficient and b is the grey input. Both a and b are

 15

unknown and have to be determined first by rearranging (2.9) into the following matrix

form

 () ()0 1 a
b

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
x X (2.10)

where

 ()

()[] ()[] ()[] ()[] ()[] T

X
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡ −−
−

−
−−=

111
2

1
2

11
2

1 11111

1

"

" nxnxxxx
 (2.11)

Then a and b could be solved by the least square method as below

 () ()() () ()11 1 1 0T Ta
b

−⎡ ⎤
=⎢ ⎥

⎣ ⎦
X X X x (2.12)

Based on GM(1,1), the solution of the grey first-order differential equation (2.9) is

estimated as

 ()[] ()[]() abeabxnx̂ an +−=+ −11 01 (2.13)

Further applying IAGO in (2.8) to (2.13) yields

 ()[] ()[]() ()aan eeabxnx̂ −−=+ − 111 00 (2.14)

which is the so-called one-step-ahead predictive value after the original data sequence

()0x .

Since GM(1,1) performs the prediction via the data sequence with the same

numeric sign, the preprocess is employed to transform the raw data in (2.5) into

 () [] () [] ()()0 0 0min 1 2x l x l , l , , ,nγ′ = − + =x " (2.15)

where γ is a constant bias to avoid the output to be zero. Then the transformed value is

used to estimate ()[]10 +′ nx̂ by (2.6)–(2.14). As a result, the one-step-ahead predictive

value is determined as

 ()[] ()[] ()() γ−++′=+ 000 min11 xnx̂nx̂ (2.16)

 16

Therefore, GM(1,1) can process the historical data sequence with different numeric

signs.

2.1.3 Structure of FNAGM

 This subsection presents an intelligent forecasting system, FNAGM, which is

constructed by an NN and a GM(1,1). FNAGM consists of three phases: initialization

phase, GM(1,1) prediction phase and FNAGM prediction phase. With FNAGM, the

prediction error of GM(1,1) is further improved by the use of on-line batch training in

the FNAGM prediction phase.

For the initialization phase, some parameters used in FNAGM are first defined as

below:

Ns the total step size

n the input length of GM(1,1)

γ the bias of GM(1,1) in (2.15)

m the input number of NN

p the number of hidden neurons of NN

N the maximum size of batch training pattern

v[n+m] the initial weight vector of NN

μ[n+m+1] the initially positive scalar for updating the weight vector

β the constant to adjust μ[k]

Note that v[n+m] is randomly chosen. Then, obtain ()[] ()[] ()[]{ }nxxx 000 ,,2 ,1 " and get

into the GM(1,1) prediction phase.

The GM(1,1) prediction phase is executed from k = n to k = n+m−1 and generates

the one-step-ahead predictive value ()[]10 +kx̂ . For each step, the prediction error is

 17

obtained as [] ()[] ()[]111 00
GM +−+=+ kx̂kxke . This phase will be repeated to determine

m prediction errors.

Based on these m prediction errors, the FNAGM prediction phase starts to further

improve the prediction error for mnk +≥ . The configuration of the FNAGM

prediction is depicted in Fig. 2.1. GM(1,1) calculates the one-step-ahead predictive

value, ()[]10 +kx̂ , and NN simultaneously adopts the past m prediction errors as the

input vector to learn the prediction error []1GM +ke on-line, estimated as []1GM +kê .

Then, the final one-step-ahead predictive value, []1FNAGM +kx̂ , is set to be the sum of

()[]10 +kx̂ and []1GM +kê , which is better than ()[]10 +kx̂ .

[]1GM +kê

() []10 +kx̂() [] () [] () []{ }kxnkxnkx 000 ,,2 ,1 "+−+−

Feedforward
NN

() []kx̂ 0

[]1FNAGM +kx̂
GM(1,1)

−
Σ

+

 z-1

 z-1

 z-1

+
Σ

+

…

 z-1

…

eGM[k]

eGM[k−1]

eGM[k−m]

Fig. 2.1 Feedforward-neural-network-aided grey model.

2.2 On-Line Parameter Learning of FNAGM

This section presents the on-line parameter learning algorithm, called on-line batch

training, which is used to continuously adapt FNAGM to the dynamical change of the

 18

signal. The idea behind on-line batch training is to perform on-line training by more

than one pattern. When a new data point is observed, FNAGM collects a batch of

recently obtained training patterns and then performs on-line batch training by the batch

training patterns at each time step.

2.2.1 On-Line Batch Training

 The training process in the FNAGM prediction phase employs the on-line batch

training to adjust NN because of its higher accuracy and less computation time. Let the

batch training pattern at step k contain r recently observed training patterns denoted as

 { } mnkkrkrkk +>= +−+− for ,,, 21 PPPB … (2.17)

where r = min{k−(n+m), N}, N > 1 and Pj = {u[j], eGM[j] } is the jth training pattern

related to the input vector u[j] = [eGM[j−m] eGM[j−m+1] … eGM[j−1]]T and the target

eGM[j]. Note that the total number r of the batch training pattern Bk is fixed and equal to

N for Nmnk ++≥ .

The on-line batch training modifies Levenberg-Marquardt algorithm [83] to update

the weight vector v[k] for 1++≥ mnk , which is

 [] [] [] [] [][] [] []kkkkkkk TT εGIGGvv 11 −
+−=+ μ (2.18)

where ε[k] is network error vector, G[k] is the Jacobian matrix and μ[k] is a positive

scalar parameter. The jth component of the network error vector ε[k] is obtained as εj[k]

= eGM[j] − f(v[k], u[j]), j = k−r+1, k−r+2,…, k, corresponding to Pj. After ε[k] is

determined, the Jacobian matrix is calculated as

 19

 [] []
[]

[]
[]

[]
[]

[]
[]

[]
[]

[]
[]

[]
[]

[]
[]

[]
[]

[]
[] ⎥

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

=
∂
∂

=
+−+−+−

+−+−+−

kv
k

kv
k

kv
k

kv
k

kv
k

kv
k

kv
k

kv
k

kv
k

k
kk

q

kkk

q

rkrkrk

q

rkrkrk

εεε

εεε

εεε

"

#%##

"

"

21

2

2

2

1

2

1

2

1

1

1

v
εG (2.19)

Note that the jth row is determined according to Pj and the cth column is related to vc.

The on-line batch training adjusts μ[k] by comparing the previous and current errors

based on εj[k−1] and εj[k], as shown by

 []
[] [] []
[] [] []⎪⎩

⎪
⎨
⎧

−≥⋅

−<
=+

∑∑
∑∑

−

−=

−

−=

−

−=

−

−=
1 21 2

1 21 2

1 if ,

1 if ,
1 k

skj j
k

skj j

k

skj j
k

skj j

kkk

kkk
k

εεβμ

εεβμ
μ (2.20)

where β > 1, s = min{N−1, k−n−m−1} and 2++≥ mnk . Note that εj[k−1] and εj[k] are

calculated via the same training pattern Pj. Clearly, when the current error is decreased

then μ[k] is reduced by β, otherwise μ[k] is increased. As a result, implementation of the

on-line batch training requires past observations with maximum memory size N to

update v[k] in batch mode and obtain more accurate solution at each time step.

 The above intelligent forecasting system, FNAGM, is summarized as the following

stepwise procedure:

Initialization phase:

S1 Choose the total step size: Ns;

 the input length of GM(1,1): n;

 the bias of GM(1,1): γ;

 the input number of NN: m;

 the number of hidden neurons of NN: p;

 the maximum size of batch training pattern: N;

 the initial positive scalar: μ[n+m+1];

 20

 the constant to adjust μ[k]: β;

 the initial weight vector: v[n+m] (randomly);

S2 Obtain ()[] ()[] ()[]{ }nxxx 000 ,,2 ,1 " and set k = n.

GM(1,1) prediction phase for mnkn +<≤ :

S3 Compute ()[]10 +kx̂ by GM(1,1) in (2.6)−(2.16).

S4 Set k = k+1.

S5 Obtain ()[]kx 0 and then eGM[k].

S6 If k < n+m, then go to S3.

FNAGM prediction phase for mnk +≥ :

S7 Compute ()[]10 +kx̂ by GM(1,1) in (2.6)−(2.16).

S8 Calculate []1GM +kê by NN in (2.1), (2.2).

S9 Set the one-step-ahead predictive value of FNAGM as

 [] ()[] []111 GM
0

FNAGM +++=+ kêkx̂kx̂ .

S10 Set 1+= kk .

S11 Obtain ()[]kx 0 and then []keGM .

S12 If 1++< mnk , then [] []kk vv =+ 1 and go to S7.

On-line batch training (from S13 to S17)

S13 Construct { }krkrkk PPPB ,,, 21 …+−+−= in (2.17) where

 (){ }Nmnkr ,min +−= .

S14 Compute the network error based on kB

for 1+−= rkj to k

 [] [] [] []()jkfjekj uv ,GM −=ε ;

 end for

 21

S15 Update []kv by Levenberg-Marquardt algorithm in (2.18), (2.19).

S16 If 2++< mnk , then [] []kk μμ =+ 1 and go to S7.

S17 Update []kμ by (2.20).

S18 If sNk < , then go to S7;

else stop.

With the above procedure, FNAGM can gradually learn to predict signal via the

on-line batch training. The success of the prediction will be demonstrated in the Section

2.3 and 2.4.

2.2.2 Convergence Analysis

To discuss the convergence issue of FNAGM, the error difference could be

approximately represented as [84]

[] [] []

[] []
[]

[]k
k
kk

kkk

v
v
εε

εεε

Δ

Δ1

∂
∂

+≅

+=+

 (2.21)

where Δε[k] and Δv[k] represent the error change and the weight vector change

respectively. Note that (2.21) is the first order Taylor approximation which neglects the

higher order terms. Equations (2.18) and (2.21) yield

 [] [] [] [] [] []() [] []kkkkkkkk TT εGIGGGεε 11 −
+−=+ μ (2.22)

Then,

[] [] [] [] [] []() [] []

[] [] [] []() []() []

[] [] [] []() [] []kkkkkk

kkkkkk

kkkkkkkk

TT

TT

TT

εGIGGGI

εGIGGGI

εGIGGGεε

⋅+−≤

⋅+−=

+−=+

−

−

−

1

1

11

μ

μ

μ

 (2.23)

where ⋅ denotes the Euclidean norm. Moreover, let gj be the jth singular value of G[k]

 22

and assume that G[k] has full row rank, i.e., a Bk with sufficient r is obtained. Thus [85]

[] [] [] []() []

[]
[] []

[]
[] []

1

1

2

2

2
1

=
+

≤

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
−≤+−

−

kkg
kmax

kkg
kg

maxkkkkk TT

μ
μ

μ
μ

j

j

jGIGGGI
 (2.24)

which implies that []kε is monotonically decreasing. That means the output error

between the prediction error of GM(1,1) and the output of the neural network converges

to zero as ∞→k . This fact completes the proof of the convergence.

2.3 Numerical Results

To verify the performance of the proposed FNAGM, two numerical examples are

adopted for demonstration. The first example involves predicting an external

disturbance that has been described in [27] and the second example involves predicting

the Mackey-Glass chaotic time series [86]. The numerical simulations were executed in

an Intel Pentium CPU at 1.5 GHz with 512 MBytes RAM.

2.3.1 Example 1: Disturbance Prediction

The disturbance to be predicted is

 [] () ()kT..kT.kx 29sin0504cos10 ⋅+⋅= (2.25)

where T is the sampling time and set as 0.05 second. In the step S1 of the initialization

phase, the proposed FNAGM chooses Ns = 200, n = 4, γ = 2, p = 4, μ[n+m+1] = 0.001

and β = 4/3. As for the weight vector v[n+m], it was randomly generated according to a

normal distribution with zero mean and unit variance by the program. Note that the

objective of this example is to predict the disturbance in real-time, so it is required to

accomplish the prediction phase with sufficient accuracy during one sampling interval

 23

by selecting an appropriate N, which was set to be 40 in the simulation.

First, let’s determine a suitable input number m of NN of FNAGM by 100

independent runs of m = 2, 3, 4 and 5. The root mean square error (RMSE) calculated

for k > 100 of each run is recorded. Table 2.1 shows the statistical means over these 100

runs of different input numbers. It is clear that the larger m achieved the better

prediction accuracy. For instance, the prediction errors were reduced from 10−3 to 10−4

when m was changed from 2 to 3. However, the prediction errors were only improved a

little from 4.29 × 10−5 of m = 4 to 4.05 × 10−5 of m = 5. Hence, the input number m = 4

was adopted for FNAGM in the following simulations. Several approaches exist in the

literature, however, it is not feasible and necessary to perform an exhaustive comparison

with all algorithms. The aim of our experimental comparison is to realize the advantage

and disadvantage of the aid of NN and on-line batch training. Therefore, GM(1,1) [3]

and Advanced GM(1,1) [27] are mainly considered for comparison.

Table 2.1 Comparison of different input numbers of NN of FNAGM in Example 1.

Model FNAGM
m = 2

FNAGM
m = 3

FNAGM
m = 4

FNAGM
m = 5

Statistical mean of
RMSE
over 100 runs

3.40×10−3 6.16×10−4 4.29×10−5 4.05×10−5

Computation time
per prediction step

4.60×10−3 4.70×10−3 4.80×10−3 4.90×10−3

Based on the on-line batch training, FNAGM was applied to predict the

disturbance (2.25) with N = 40 and m = 4. The statistical mean of RMSE of FNAGM

over 100 runs for k > 100 is shown in Table 2.2, which also includes RMSEs of

GM(1,1), Advanced GM(1,1), and NN for k > 100. The NN was trained by on-line

learning and its number of hidden neurons was designed through a trial-and-error

 24

method. As expected, Advanced GM(1,1) based on the Lagrange polynomial of third

order improved the prediction error of GM(1,1) from 10−2 to 10−3. Most significantly,

the proposed FNAGM can achieve much better result than Advanced GM(1,1), highly

reducing the prediction error from 10−3 to 10−5.

In addition, Table 2.2 shows the computation time required for the prediction phase

of FNAGM and the computation times per prediction step of GM(1,1) and Advanced

GM(1,1). Although FNAGM requires longer computation time than the other two

methods, increased from 10−4 to 10−3 second, FNAGM is still able to complete the

prediction phase during one sampling interval. The proposed intelligent forecasting

system FNAGM is, therefore, applicable for real-time prediction.

Table 2.2 Comparison of the prediction errors of GM(1,1), Advanced GM(1,1), NN and

FNAGM in Example 1.

Model GM(1,1) Advanced
GM(1,1) NN FNAGM

m = 4
Statistical mean of
RMSE
over 100 runs

--- --- 0.9883 4.29×10−5

RMSE for k > 100
in Fig. 2.2

1.27×10−2 1.60×10−3 0.9996 3.59×10−5

Computation time
per prediction step

4.08×10−4 4.15×10−4 4.80×10−4 4.80×10−3

To further demonstrate the performance, Fig. 2.2 shows the prediction results of

FNAGM, GM(1,1) and Advanced GM(1,1). Note that the curve of FNAGM is one of

the 100 runs and it is randomly chosen from them. Evidently, after sufficient training

iterations, i.e., k > 60 in this case, FNAGM learned the prediction error efficiently and

obtains much better result than Advanced GM(1,1).

 25

Fig. 2.2 Absolute prediction errors of GM(1,1), Advanced GM(1,1) and FNAGM with

m = 4 in Example 1.

2.3.2 Example 2: Chaotic Time Series Prediction

The Mackey-Glass time series is generated from the following delay differential

equation

 () ()
()

()tx.
tx

tx.
dt

tdx 10
1

20
10

−
−+

−
=

τ
τ (2.26)

where τ = 17 and x(0) = 1.2 in the simulation. The data points were obtained based on

the fourth-order Runge-Kutta method with sampling interval 0.1 second. In the

initialization phase, all the parameters are the same as Example 1 except N = 80, i.e., r =

min{k−8, 80}, due to the use of sampling interval 0.1 second longer than 0.05 second in

Example 1. The input number of NN of FNAGM was still selected as m = 4 by the same

reason as Example 1.

The on-line batch training of FNAGM was performed for 100 independent runs.

The RMSE for k > 250 of each run is recorded. The statistical mean over these 100 runs

 26

are given in Table 2.3. From the performance comparison, Advanced GM(1,1) indeed

improved the prediction error of GM(1,1) and the proposed intelligent forecasting

system FNAGM achieved better performance than Advanced GM(1,1), where the

prediction error was reduced from 10−3 to 10−4. Furthermore, although FNAGM with N

= 80 takes computation time 9.90 × 10−3 second in the prediction phase, which is longer

than 4.80 × 10−3 second with N = 40, FNAGM is still an effective forecasting system for

real-time prediction.

To demonstrate the performance of FNAGM, Fig. 2.3 shows that FNAGM

outperforms GM(1,1) and Advanced GM(1,1) in prediction accuracy for k > 250.

FNAGM indeed improved the prediction error of the time series which has chaotic,

nonperiodic and nonconvergence natures.

Table 2.3 Comparison of the prediction errors of GM(1,1), Advanced GM(1,1) and

FNAGM in Example 2.

Model GM(1,1) Advanced
GM(1,1) NN FNAGM

m = 4
Statistical mean of
RMSE
over 100 runs

--- --- 1.0269 6.08×10−4

RMSE for k > 250
in Fig. 2.3

1.22×10−2 1.30×10−3 1.0336 5.39×10−4

Computation time
per prediction step

4.08×10−4 4.15×10−4 4.80×10−4 9.90×10−3

 27

Fig. 2.3 Absolute prediction errors of GM(1,1), Advanced GM(1,1) and FNAGM with

m = 4 in Example 2.

2.4 Experimental Results

The following experiment was conducted to verify the performance of the

proposed FNAGM. The experiment involved predicting the trajectory of a moving

object as performed by a binocular robot, called an Eye-Robot [87], [88]. The

Eye-Robot shown in Fig. 2.4(a) was built using a parallel-axis camera with five motors

to emulate the eye movement of humans. We adopted five FAULHABER DC

servomotors to perform the panning movement of the eyes, the conjugated tilt

movement of the eyes, and the pan and tilt movements of the head via an RS-232

interface. The range of panning is ±120 degrees, while the range tilting is ±60 degrees.

The DC servomotors were controlled using a motion control card, MCDC 3006S, at a

positioning resolution of 0.18°. The size of the Eye-Robot is 25× 25× 30 cm3. The

experiment was executed using an Intel Pentium CPU at 1.5 GHz with 512 MBytes

RAM.

 28

(a) (b)

Fig. 2.4 (a) Eye-Robot. (b) Experimental environment where a participant held a red

object.

2.4.1 Trajectory Prediction

The experiment was performed in an indoor environment, as shown in Fig. 2.4(b).

The Eye-Robot captured 30 frames per second, for a sampling time of approximately

0.03 second. Once an image was obtained, Eye-Robot first extracted red object in the

RGB color space, and then determined the center of gravity of the object. The trajectory

of the object was further divided into x and y axes; therefore, one FNAGM was

employed to make predictions for each of the two axes. Note that this experiment only

performed a prediction of the trajectory, without controlling the motors to track the

object.

In step S1 of the initialization phase, the proposed FNAGM selected Ns = 500, n =

4, m = 4, p = 4, μ[n+m+1]=0.001 and β = 4/3 by a preliminary test. Weight vectors

v[n+m] were randomly generated according to normal distribution with zero mean and

unit variance using the program. Note that the objective of this experiment is to predict

the trajectory in real-time; therefore, it is necessary to accomplish the prediction phase

with sufficient accuracy during a single sampling interval by selecting an appropriate N,

 29

which was set at 40 in the experiment.

Fig. 2.5 shows the trajectory of the object obtained by Eye-Robot, and we applied

FNAGM to predict the trajectory of the object. Similar to Section 2.3, GM(1,1) and

Advanced GM(1,1) were performed for comparison. The statistical mean of RMSE of

FNAGM over 100 runs for k > 100 is shown in Table 2.4, together with RMSEs of

GM(1,1) and Advanced GM(1,1) for k > 100 where the unit of RMSE is pixel. As a

result, the proposed intelligent forecasting system FNAGM can achieve much better

result than GM(1,1) and Advanced GM(1,1), highly reducing the prediction error from

3.65 to 1.66 and from 5.01 to 2.13 for x(k) and y(k), respectively.

In addition, Table 2.4 shows the computation time required for the prediction phase

of FNAGM and the computation times per prediction step of GM(1,1) and Advanced

GM(1,1). Although FNAGM requires longer computation time than the other two

methods, increased from 10−4 to 10−3 second, FNAGM is still able to complete the

prediction phase during one sampling interval, i.e., 3.3× 10−2. The proposed intelligent

forecasting system is, therefore, applicable for real-time prediction.

Table 2.4 Comparison of prediction error and computation time.

Model GM(1,1) Advanced
GM(1,1)

FNAGM

RMSE of x(k) 3.7428 3.6512 1.6608

RMSE of y(k) 5.6125 5.0112 2.1343

Computation time
per prediction step

4.08×10−4 4.15×10−4 4.80×10−3

To further demonstrate the performance of FNAGM, Fig. 2.6 and Fig. 2.7 show the

prediction results of x(k) and y(k) for FNAGM, GM(1,1), and Advanced GM(1,1). Note

that the curve of FNAGM is one run randomly selected from 100 runs. It appears that

 30

after a sufficient number of training iterations, FNAGM obtained smaller prediction

error than GM(1,1) and Advanced GM(1,1).

0 50 100 150 200 250 300 350 400 450 500
0

50

100

150

200

Time Step

x(
k)

0 50 100 150 200 250 300 350 400 450 500

0

20

40

60

80

100

Time Step

y(
k)

Fig. 2.5 Trajectory of the object.

0 50 100 150 200 250 300 350 400 450 500
0

5

10

15

20

25

Time Step

A
bs

ol
ut

e
P

re
di

ct
io

n
E

rr
or

 o
f

x
A

xi
s

GM(1,1)

Advanced GM(1,1)
FNAGM

Fig. 2.6 Prediction error of x(k) for GM(1,1), advance GM(1,1), and FNAGM.

 31

0 50 100 150 200 250 300 350 400 450 500
0

5

10

15

20

25

Time Step

A
bs

ol
ut

e
P

re
di

ct
io

n
E

rr
or

 o
f

y
A

xi
s

GM(1,1)

Advanced GM(1,1)
FNAGM

Fig. 2.7 Prediction error of y(k) for GM(1,1), advance GM(1,1), and FNAGM.

2.4.2 Tracking Control

The purpose of this experiment is to control Eye-Robot to track a red object with

the aid of FNAGM. The movement of the target in this experiment was manually

achieved by the participant as shown in Fig. 2.4(b). To carry out fairly comparison, the

movement of the target was performed as similar as possible in each run. The

Eye-Robot employed the proportional-derivative (PD) controller for the tracking control.

The PD controller first receives the tracking error which is the difference between the

center of the image and the position of the object, and then controls the cameras to track

the object such that the object could be located at the center of the image. In most

control applications, the control signal is a function of the current and previous tracking

errors. In this experiment, the predicted tracking error is used instead of current tracking

error [89] to reduce tracking error. The setup of this experiment is precisely the same as

that described in Section 2.4.1. Note that the purpose of this experiment is not to design

 32

the PD controller, but to observe how FNAGM benefits the target tracking. For

comparison, GM(1,1) and Advanced GM(1,1) were carried out to predict the tracking

error of Eye-Robot.

Fig. 2.8-Fig. 2.10 show the tracking errors corresponding to GM(1,1), Advanced

GM(1,1), and FNAGM, respectively. Note that the tracking error is equivalent to x(k)

whose unit is pixel in this case. From Fig. 2.8 and Fig. 2.9, it can be observed that

GM(1,1) achieved a smooth tracking error while Advanced GM(1,1) did not always

obtain smaller tracking error than GM(1,1). From Fig. 2.10, it can be seen that FNAGM

achieved high tracking error for k < 50 and gradually obtained small tracking error for k

> 100 through on-line batch learning. It shows the merit of FNAGM that the learning

ability can adapt the intelligent forecasting system to dynamical changes and improve

the prediction performance when comparing with GM(1,1) and Advanced GM(1,1).

Most significantly, the proposed intelligent forecasting system FNAGM can carry out

the on-line batch learning on the robotic application in real-time.

0 50 100 150 200 250
-200

-150

-100

-50

0

50

100

150

200

Time Step

x(
k)

Fig. 2.8 Tracking error of x(k) using GM(1,1).

 33

0 50 100 150 200 250
-200

-150

-100

-50

0

50

100

150

200

Time Step

x(
k)

Fig. 2.9 Tracking error of x(k) using Advanced GM(1,1).

0 50 100 150 200 250
-200

-150

-100

-50

0

50

100

150

200

Time Step

x(
k)

Fig. 2.10 Tracking error of x(k) using FNAGM.

 34

2.5 Summary

This chapter presents an FNAGM to predict signals in three phases, initialization

phase, GM(1,1) prediction phase and FNAGM prediction phase. FNAGM adopts the

on-line batch training to learn and then estimate the prediction error of GM(1,1) by the

feedforward NN. Most importantly, the on-line batch training is applicable in real-time

to accurately update the weight vector of NN and continually adapt FNAGM to the

dynamical change. The simulation results demonstrate that the proposed intelligent

forecasting system based on FNAGM is superior to the other existing methods.

Experimental results demonstrate that FNAGM could achieve both trajectory prediction

and target tracking in high accuracy for robotic application.

 35

Chapter 3 Neuron-Based Structure Learning for

Prediction

In Chapter 2, FNAGM has been developed to deal with prediction problem.

However, the topology of NN used in FNAGM should be fully connected and the

number of hidden neurons is determined through a trial-and-error method. Therefore,

this chapter presents a neuron-based structure learning algorithm, called symbiotic

structure learning algorithm (SSLA), to determine the topology of FNAGM. SSLA

consists of three phases: initialization phase, evaluation phase, and reproduction phase.

The initialization phase establishes a neuron population and a network population. The

evaluation phase calculates the fitness of NN and then shares the fitness to the

participating neurons. The reproduction phase performs neuron crossover and mutation

on the neuron population based on their fitness. Finally, an FNAGM with appropriate

topology is evolved by the neuron-based structure learning. Accordingly, a novel

forecasting system, FNAGM-SSLA, is presented in this chapter where SSLA performs

structure learning of FNAGM and the evolved FNAGM then predicts the signal and

continuously learns to compensate the prediction error by NN with the on-line batch

training.

3.1 Structure Learning Based on Symbiotic Evolution

Symbiotic evolution is an implicit fitness-sharing algorithm used in an immune

system model [90], [91]. In general evolution algorithm, each individual represents a

 36

complete solution of a problem. In symbiotic evolution, each individual in the

population represents a partial solution to a given problem, and complete solutions are

constructed from several individuals. The partial solutions can be considered

specializations that ensure diversity and prevent a population from converging into

suboptimal solutions. Furthermore, the fitness of an individual depends on other

cooperated individuals. The work of [91] proposed symbiotic adaptive neuron evolution

to develop NNs according to a population of neurons. The performance of a neuron is

determined by how well it cooperates with the other neurons which it combines. This

process shows that a neuron that cooperates well with one set of neurons may cooperate

poorly with other sets of neurons. However, the number of hidden neurons must be

assigned prior to the evolution process. Therefore, this algorithm is applicable for NN

where the number of hidden neurons is known. Aside from NNs, many studies have

applied symbiotic evolution to design fuzzy controller and neuro-fuzzy systems

[92]-[98]. The results of these studies have demonstrated the efficiency and feasibility

of symbiotic evolution in structure learning.

3.2 Symbiotic Structure Learning Algorithm

 Section 2.1 provides a constraint that the topology of NN used in an FNAGM

should be fully connected. Furthermore, the number of neurons is determined through a

trial-and-error method [99]. This section presents a novel forecasting system which is

composed of structure learning and on-line parameter learning as shown in Fig. 3.1.

Briefly, the proposed forecasting system first evolves the structure of FNAGM by a

proposed SSLA and then performs prediction and on-line batch training by the evolved

FNAGM. Before the forecasting system starts, a small number of time series data is

 37

acquired for the structure learning. The proposed SSLA determines the number of

hidden neurons and the connected topology of FNAGM based on the training data.

Once the structure learning is completed, the signal is continuously acquired for on-line

prediction and parameter learning. Then the evolved FNAGM predicts the signal and

continuously adapts itself to the dynamical change of the signal by on-line batch

training. SSLA consists of three phases: initialization phase, evaluation phase, and

reproduction phase which are described in the following subsections.

Initialization phase

Reproduction phase

End

Start

Evaluation phase

Initialization phase

FNAGM prediction phase
(On-line batch training)

GM(1,1) prediction phase

SSLA
(Off-line)

FNAGM
(On-line)

Fig. 3.1 Architecture of the proposed forecasting system.

3.2.1 Initialization Phase

A. Coding Step

Each neuron, the individual in the neuron population, consists of seven genes for

four inputs problem as shown in Fig. 3.2. The seven genes are wo, a, whb, wh1, wh2, wh3,

and wh4 which represent output weight, activation function type, and weights connected

 38

from bias and four inputs to the neuron, respectively. The activation function type

indicates which activation function the neuron uses where 1 represents hyperbolic

tangent function and 0 represents linear function. Note that some weights of the neurons

in Fig. 3.2 are zero which means that the weights are not connected to the neurons and

the neurons are partially connected. Fig. 3.3 shows the graphical representation of

neurons for three examples of Fig. 3.2.

1.5 1 0.9 1.3 2.1 0.2 0.1Neuron A

0.7 0 0 0 0 2.5 −0.2Neuron B

0.3 0 −0.4 0 0 0 0 Neuron C

wo a whb wh1 wh2 wh3 wh4Neuron

Fig. 3.2 Coding of neuron and three examples.

Neuron A

b u1 u2 u3 u4

Neuron B Neuron C

b u1 u2 u3 u4 b u1 u2 u3 u4

Fig. 3.3 Graphical representation of neurons for three examples.

The next step is to construct an NN from the three neurons and Fig. 3.4(a) shows

the resulted NN whose output is the summation of the three neurons. It can be seen that

NN has a partially connected topology and consists of different activation functions.

Since the output of the neuron with linear activation function is the linear combination

of the inputs, NN in Fig. 3.4(a) can be simplified as an equivalent cascade NN model in

Fig. 3.4(b). Note that Neuron C can be simplified as the output bias and Neuron B

 39

allows u3 and u4 to directly connect to the output neuron. Therefore, SSLA can result in

not only feedforward NN but cascade NN without additional output weight coding step.

b u1 u2 u3 u4 b u1 u2 u3 u4
(a) (b)

Fig. 3.4 (a) An NN constructed via three neurons. (b) Equivalent cascade NN model.

B. Create Network Population

 SSLA creates neuron population by randomly generating Np neurons where the

weights and activation function type are randomly assigned. Note that some weights are

randomly selected to be zero as the disconnected weights. Then, SSLA creates network

population in four steps.

Step 1) This step constructs P groups where each group consists of d empty

individuals and thus the network population consists of P× d empty

individuals.

Step 2) Randomly select Group p where the reason of this step is further

illustrated in Section 3.2.2.

Step 3) Select one empty individual in Group p and build an NN by randomly

selecting p neurons from the neuron population as shown in Fig. 3.5. For

example, NN in Group 1 has one neuron and its length of chromosome is

7 while NN in Group P has P neurons and its length of chromosome is

 40

7P. Note that the evaluation operator is performed on the chromosomes

of network population while the reproduction operator is performed on

the chromosomes of neuron population.

Step 4) Train the built NN via the approach in Section 3.2.2 so that the

chromosome of NN would be updated expected for the activation

function type. Go to Step 2) until the network population has no empty

individual.

Each neuron can be selected at most one time for an NN and thus the neurons of an

NN are different. It is expected that all neurons can be selected at least one time to

construct all NNs in the network population so that the performance of all neurons can

be evaluated. However, this mechanism can not be guaranteed according to the random

selection in Step 3). Therefore, some neurons may not be selected in one generation.

Nevertheless, this would not affect the evolution harmfully because a very few neurons

are not selected via the observation of the experiment. Through the network population

creation, SSLA generate numerous NNs with different number of hidden neurons and

connection topology so that an NN with appropriate structure can be evolved.

 41

Neuron 1

##

Neuron 2

Neuron 3

Neuron 4

Neuron Np

Neuron 8

Neuron 3

NN11

NN1d

Group 1

##
Neuron 2

Neuron 15

NN21

NN2d

Group 2

Neuron 1

Neuron 4

Group P

#

#
Neuron 3

Neuron 14

NNP1

NNPd

Neuron 2

Neuron Np

Neuron 19

Neuron 1

…

…

Neuron population Network population

Fig. 3.5 Neuron population and network population.

3.2.2 Evaluation Phase

The evaluation phase mainly consists of two steps: weight training and fitness

calculation of NN and neuron.

A. Weight Training

As mentioned in Section 1.2.2, collaboration between global search and local

search could outperform individual ones. Furthermore, it is better to execute exploration

and exploitation operations alternatively during evolution. Thus, SSLA performs local

search to refine the weights after constructing an NN via symbiotic evolution which is a

global search. SSLA then performs symbiotic evolution on the trained NNs for global

search of NN structure. The global search and local search execute in a recurring

fashion, one after another repeatedly. SSLA employs backpropagation algorithm (BP)

[100] as local search method to train NN for ϕ epochs where ϕ is a user specified

parameter. Note that BP is only performed on the connected weights, not on

 42

disconnected weights. Once NN is trained, each trained neuron would replace the

corresponding neuron in the neuron population. That means the weights of each neuron

in the neuron population would be updated as participating an NN. For example,

Neuron A and Neuron B are selected to construct an NN and then trained by BP for ϕ

epochs. The two trained neurons, Neuron A’ and Neuron B’, would replace Neuron A

and Neuron B in the neuron population, respectively. When Neuron A’ and Neuron B’

are selected again to construct another NN and trained by BP in the same generation, the

two trained neurons, Neuron A’’ and Neuron B’’, replace Neuron A’ and Neuron B’ in

the neuron population, respectively. It is expected that the latter constructed NNs might

have better trained weights because the selected neurons may have been trained several

times when participating in the former constructed NNs. Therefore, the latter

constructed NNs possibly have better fitness than the former constructed NNs in one

generation. If the NNs of Group 1 are trained earlier than the NNs of Group P, the NNs

of Group P probably have better fitness than the NNs of Group 1. This may guide the

evolution toward the solution with large number of hidden neurons which is not

expected in SSLA. In order to achieve reasonable training process of the neuron

population and network population, the Step 2) in Section 3.2.1.B, create network

population, is performed by randomly selecting Group p and then constructing an NN in

Group p.

B. Fitness Calculation of NN and Neuron

Once an NN is constructed and trained by BP, the inverse of RMSE is regarded as

the fitness of NN, i.e., the smaller RMSE the larger fitness and vice versa. Since the

purpose of SSLA is to evolve neurons in the neuron population, the fitness of the neuron

should be determined. SSLA calculates the fitness of the neuron by sharing the fitness

of NN to each participating neuron. For NN in the Group p, each participating neuron

 43

can share fitness as p
f where f is the fitness of NN. When all NNs in the network

population are evaluated, the fitness of the neuron which participates in T NNs can be

determined as

 ∑ =
=

T

t
t

nn f
T

f
1

1 (3.1)

where t
nf is the shared fitness in tth NN and t = 1,2,…,T.

3.2.3 Reproduction Phase

This subsection presents the reproduction phase of SSLA which is performed only

on the neuron population. The objective of this phase is to reproduce new neuron

population from current neuron population so that various NNs can be constructed from

new neuron population. The reproduction phase includes neuron crossover, neuron

mutation, and survival selection. The neuron crossover exchanges the structure of two

parent neurons to produce two offspring neurons and the neuron mutation modifies the

structure of one offspring neuron. The survival selection attempts to probabilistically

promote better solutions for the next generation from the parents and offspring of the

current generation. According to the three operations, the reproduction phase mainly

uses the current neuron population to evolve new neuron population for next generation

and then guides the evolution to achieve near optimal solution, i.e., appropriate structure

and weights of NN. Note that each parent neuron has the same length of chromosome,

thus the offspring neuron also has the same length with the parent neuron. The detail

concepts of the three operations are described as follows.

A. Neuron Crossover

The neuron crossover simultaneously exchanges the structure and weights of the

 44

neurons and performs in three steps. First, select two parents according to the

binary-tournament selection via their fitness. Second, randomly select the crossover

point as shown in Fig. 3.6. Third, exchange the components starting from the crossover

point to the end of the parents. Then two offspring, Neuron A’ and Neuron B’, are

generated.

B. Neuron Mutation

The neuron mutation mainly attempts to modify the activation function and

disconnect or connect the input for global searching of NN structure. It uses a mutation

probability pm to decide whether to perform neuron mutation on a gene, where pm is a

user specified parameter. For each gene excepted for wo, a random number r with a

uniform distribution between [0, 1] is generated. If r < pm, then the neuron mutation is

performed on the gene. As shown in Fig. 3.7, three kinds of neuron mutation are

presented. The first one shows the modification of activation function where the

activation function type is modified from “0” to “1,” i.e., from linear function to

hyperbolic tangent function. The second one shows the disconnection of input where

whb is modified from “−0.4” to “0,” i.e., the bias is accordingly disconnected. The third

one shows the connection of input where wh1 is modified from “0” to “2.9,” i.e., the

input is consequently connected. Note that the value of “2.9” is randomly assigned via a

normal distribution with zero mean and unit variance after the input is connected.

 45

1.5 1 0.9 1.3 2.1 0.2 0.1Neuron A

0.7 0 0 0 0 2.5 −0.2Neuron B

Crossover point

1.5 1 0.9

1.3 2.1 0.2 0.1

Neuron A’

0.7 0 0

0 0 2.5 −0.2

Neuron B’

Parents

Offspring

Fig. 3.6 Neuron crossover.

 Mutation point

0.3 0 −0.4 0 0 0 0 Neuron C

0.3 1 0 2.9 0 0 0 Neuron C’

Fig. 3.7 Neuron mutation.

C. Survival Selection

The offspring neurons are generated in two ways as shown in Fig. 3.8. The parents

are first rearranged in descending order of their fitness and then the best Np/2 parents are

copied as Np/2 offspring. The rest Np/2 offspring are generated via the neuron crossover

and neuron mutation based on the whole parents. In Fig. 3.8, Neuron 7’ is not

necessarily generated from Neuron 7 and is indexed for convenience. In SSLA, the

generational replacement is adopted as the survival selection, i.e., the offspring

immediately replace all parents and become the parents in the next generation.

 46

Neuron 19

Neuron 12

Neuron 7

Neuron 5

Neuron 6

Parents

Neuron 2

Np/2

Neuron 19

Neuron 12

Neuron 5

#

Offspring

#

Neuron 7’

Neuron 6’

Neuron 2’

Copy Np/2 best
neurons

By neuron
crossover and
neuron mutation

Fitness

Fig. 3.8 Neuron reproduction.

Based on the three phases described above, SSLA is summarized in Fig. 3.9 as

follows.

Initialization phase:

Step 1) Create a neuron population which consists of Np neurons whose lengths

of the chromosome are the same.

Step 2) Create a network population which consists of P× d empty individuals

whose lengths of the chromosome are different.

Step 3) Randomly select one group, Group p, and randomly select p neurons to

construct an NN for an empty individual.

Evaluation phase:

Step 4) Train the built NN by BP for ϕ epochs so that the chromosome of NN

would be updated expected for the activation function type. Calculate the

fitness of the NN to evaluate the chromosome of the network population.

Step 5) Share the fitness to each participated neuron. Go to Step 3) until the

network population has no empty individual.

 47

Step 6) Determine the fitness of all neurons in the neuron population via (3.1).

Step 7) Preserve the NN with the best fitness.

Step 8) If the maximum generation is achieved, then stop the algorithm;

otherwise, go to Step 9).

Reproduction phase:

Step 9) Copy the best Np/2 parents as the offspring in the neuron population.

Step 10) Generate the rest Np/2 offspring by the neuron crossover based on the

whole neuron population.

Step 11) Perform the neuron mutation on the rest Np/2 offspring.

Step 12) Perform the generational replacement and go to Step 2).

 48

Create neuron population

Construct an NN for a
randomly selected group

Train the NN and
calculate its fitness

Share fitness to the
participate neurons

Determine fitness of all
neurons in the neuron
population

No

End

Start

Copy the best Np/2
parents

Generational replacement

Yes

No Reach maximum
generations?

Yes

Create network population

No empty individual?

Preserve the best NN

Generate Np/2 offspring
by neuron crossover

Perform neuron mutation
on the generated Np/2
offspring

Reproduction
phase

Evaluation
phase

Initialization
phase

Fig. 3.9 Flowchart of SSLA.

3.3 Numerical Results

This section provides two examples to verify the performance of the proposed

FNAGM-SSLA, where the structure of FNAGM is evolved by SSLA. The first example

is to predict the chaotic time series and the second example is to predict the object

trajectory acquired from Eye-Robot. The numerical simulations were executed by

MATLAB software in an Intel Pentium CPU at 1.5 GHz with 512 MBytes RAM.

 49

3.3.1 Example 1: Chaotic Time Series Prediction

The Mackey-Glass time series shown in Fig. 3.10 is generated from the following

delay differential equation

() ()
()

()tx.
tx

tx.
dt

tdx 10
1

20
10 −

−+
−

=
τ

τ

 (3.2)

where τ = 25 and x(0) = 1.2 in the simulation. The objective involves using [x(t−3) x(t−2)

x(t−1) x(t)] to predict x(t+1). Thus, the input of NN of FNAGM is [eGM(t−3) eGM(t−2)

eGM(t−1) eGM(t)] and the output is eGM(t+1). The first 250 pairs are used as the training

data. The parameter of FNAGM was set as γ = 2 in (2.15). The parameters of SSLA

were set as follows: probability of mutation pm = 0.1, neuron population size Np = 50,

number of groups P = 5, number of group members d = 3, and maximum number of

generations Gmax = 250.

Fig. 3.10 Mackey-Glass time series.

Fig. 3.11 shows the evolved NN of FNAGM where the blue lines represent

positive-valued weights and the red lines represent negative-valued weights. The input

 50

u1, u2, u3, and u4 represents eGM(t), eGM(t−1), eGM(t−2), and eGM(t−3), respectively. The

evolved NN consists of two hidden neurons with hyperbolic tangent activation function

and ten connections. Note that the bias does not connect to both two hidden neurons and

output neuron. Furthermore, u3 does not connect to the left hidden neuron and u1, u2,

and u4 do not connect to the right hidden neuron. Furthermore, u1, u3, and u4 directly

connect to the output neuron. Clearly, the evolved NN is a partially connected cascade

NN.

b u1 u2 u3 u4
Fig. 3.11 Evolved NN of FNAGM-SSLA for Example 1.

Many approaches exist in the literature; however, it is not feasible and necessary to

perform an exhaustive comparison with all algorithms. The purpose of our experimental

comparison is to realize the advantages of FNAGM-SSLA. Because FNAGM-SSLA

uses GM(1,1), NN, and SSLA, GM(1,1) [3], Advanced GM(1,1) [27], NN [8], and

FNAGM [99] are primarily considered here for comparison. Advanced GM(1,1) is a

former research work by us that is described in Section 1.2.1. NN is carried out in two

ways: on-line and off-line parameter learning which are regarded as NNon and NNoff,

respectively. NNoff uses the first 500 and last 500 data points as the training data and

the testing data, respectively. FNAGM is the work without structure learning which has

been described earlier in Chapter 2. The number of hidden neurons of NNon, NNoff,

 51

and FNAGM were selected by the preliminary tests which evaluate the performance of

systems with different number of hidden neurons, from 1 to 20. As a result, the number

of hidden neurons of NNon, NNoff, and FNAGM with 8, 7, and 4 hidden neurons

behave the highest performance, respectively. Note that NNon, NNoff, and FNAGM

have fully connected topologies.

Fig. 3.12 shows the absolute prediction errors of GM(1,1), Advanced GM(1,1),

NNon, NNoff, FNAGM, and FNAGM-SSLA. It can be seen that FNAGM performs

better than GM(1,1), Advanced GM(1,1), NNon, and NNoff. FNAGM-SSLA further

improves FNAGM and has smaller prediction error. Although FNAGM-SSLA has

larger prediction error in the beginning time steps, it can continuously perform learning

and improve the prediction error.

To better illustrate the efficiency of the proposed FNAGM-SSLA, Table 3.1 shows

the mean RMSE, number of hidden neurons (Nh), number of connections (Nc), and

computation time of each prediction step (Tc) over 10 independent runs. It can be seen

that FNAGM-SSLA has a better RMSE 6.92×10−4 than GM(1,1), Advanced GM(1,1),

NNon, NNoff, and FNAGM. Furthermore, FNAGM-SSLA has a more compact

structure than NNon, NNoff, and FNAGM in terms of Nh and Nc due to the use of SSLA.

This implies that more connections do not necessarily result in superior fitness. In other

words, appropriate connected topology is the key to improving fitness, not the number

of connections. Since FNAGM-SSLA has averagely 2.9 hidden neurons and 13.6

weights (parameters) where the standard deviations are 1.34 and 3.75 respectively, it

requires less computation time 1.90×10−3 second than FNAGM for both prediction and

on-line batch training. Thus, it can be employed to real-time prediction application

where the sampling time is larger than 2 ms.

 52

(a) (b)

(c) (d)

(e) (f)

Fig. 3.12 Absolute prediction errors in Example 1. (a) GM(1,1) [3]; (b) Advanced

GM(1,1) [27]; (c) NNon [8]; (d) NNoff [8]; (e) FNAGM; (f) FNAGM-SSLA.

 53

Table 3.1 Comparison of prediction results for Example 1.

 GM(1,1)
[3]

Advanced
GM(1,1) [27]

NNon
[8]

NNoff
[8]

FNAGM
[99]

FNAGM-
SSLA

RMSE for
k > 250 1.09×10−2 1.10×10−3 2.65×10−1 1.41×10−3 9.39×10−4 6.92×10−4

Nh --- --- 8 7 4 2.9(1.34)

Nc --- --- 49 43 25 13.6(3.75)

Tc 4.08×10−4 4.15×10−4 2.40×10−4 1.81×10−4 4.80×10−3 1.90×10−3

3.3.2 Example 2: Object Trajectory Prediction

The purpose of this example is to predict object trajectory during one sampling

interval, 3.3×10−2 second, so that Eye-Robot can make decision in real-time according

to the information. Fig. 3.13 shows the object trajectory where the data acquisition

process is described in Section 2.4.1. The prediction goal of FNAGM is to predict x(t+1)

using the input [x(t−3) x(t−2) x(t−1) x(t)]. In this way, [eGM[k−3] eGM[k−2] eGM[k−1]

eGM[k]] is chosen as the input of NN of FNAGM and eGM[k+1] is the target value. The

setup of FNAGM-SSLA is the same as Example 1 in Section 3.3.1. Furthermore, the

training data were normalized to the range [−1, 1].

Fig. 3.13 Object trajectory captured by Eye-Robot.

 54

Fig. 3.14 shows the evolved NN of FNAGM-SSLA. The evolved NN consists of

one hidden neuron with hyperbolic tangent activation function and 9 connections. Note

that the bias does not connect to the hidden neuron. Furthermore, u2 does not connect to

the hidden neuron. Moreover, the four inputs directly connect to the output neuron.

Clearly, the evolved NN is a partially connected cascade NN.

b u1 u2 u3 u4
Fig. 3.14 Evolved NN of FNAGM-SSLA for Example 2.

To evaluate the effectiveness of the proposed FNAGM-SSLA, Fig. 3.15 shows the

prediction results of GM(1,1), Advanced GM(1,1), NN, FNAGM, and FNAGM-SSLA.

The number of neurons of NNon, NNoff, and FNAGM is chosen by the same procedure

shown in Section 3.3.1. Consequently, NNon, NNoff, and FNAGM with 6, 4, and 5

neurons have the best performance. Note that NNon, NNoff, and FNAGM have fully

connected topologies. It can be observed that GM(1,1) performs better than Advanced

GM(1,1), NNon, and NNoff in this example, while Advanced GM(1,1) and NNoff

perform better than GM(1,1) in Example 1. FNAGM has better performance than

GM(1,1) and FNAGM-SSLA further improves the prediction error of FNAGM.

 55

(a) (b)

(c) (d)

(e) (f)

Fig. 3.15 Absolute prediction errors in Example 2. (a) GM(1,1) [3]; (b) Advanced

GM(1,1) [27]; (c) NNon [8]; (d) NNoff [8]; (e) FNAGM; (f) FNAGM-SSLA.

 56

Table 3.2 Comparison of prediction results for Example 2.

 GM(1,1)
[3]

Advanced
GM(1,1) [27]

NNon
[8]

NNoff
[8]

FNAGM
[99]

FNAGM-
SSLA

RMSE for
k > 250 6.6491 29.5957 72.5432 7.9706 6.0348 5.3806

Nh --- --- 6 4 5 1.3(1.28)

Nc --- --- 37 25 31 8.7(4.37)

Tc 4.08×10−4 4.15×10−4 2.40×10−4 1.81×10−4 8.00×10−3 1.80×10−3

Table 3.2 presents mean RMSE, Nh, Nc, and Tc of NNon, NNoff, FNAGM, and

FNAGM-SSLA over 10 independent runs. FNAGM-SSLA achieves a better RMSE

5.5642 than GM(1,1), Advanced GM(1,1), NNon, NNoff, and FNAGM. In case of

FNAGM-SSLA, the average Nh and Nc, 1.3 and 8.7 where the standard deviations are

1.28 and 4.37 respectively, are less than those of NNon, NNoff, and FNAGM. It can be

seen that a better exploration in the structure search space is realized due to the use of

SSLA which achieves compact structure of cascade NN and high prediction

performance. Since FNAGM-SSLA has fewer hidden neurons and weights than

FNAGM, it requires less computation time 1.80×10−3 second than FNAGM for both

prediction and on-line batch training. The experiments show the same evidence as

numerous studies [44]-[46] that partially connected NNs have better storage capability

per connection than fully connected NNs. Furthermore, the results show that the

evolved FNAGM can be used to real-time prediction application due to the less

computation time.

3.4 Summary

This chapter presents a novel forecasting system, FNAGM-SSLA, which first

facilitates structure learning of FNAGM by SSLA and then achieves prediction and

 57

on-line batch training by the evolved FNAGM. The idea behind SSLA is to achieve

neuron-based structure learning and develope neurons to construct NNs through

symbiotic evolution. SSLA can construct cascade NNs and feedforward NNs by

evolving the neurons with different activation functions including hyperbolic tangent

and linear functions. It determines not only the number of hidden neurons, but also the

connected topology between input and hidden layers. The experiments show that

FNAGM-SSLA can obtain an appropriate FNAGM structure, with fewer neurons and

connections, and a smaller prediction error than FNAGM designed in an empirical way.

This implies that more connections do not necessarily result in superior fitness. In other

words, appropriate connected topology is the key to improving fitness, not the number

of connections. Furthermore, the experiments show that FNAGM-SSLA requires less

computation time and can be used for real-time prediction application.

 58

Chapter 4 Network-Based Structural Learning for

Prediction

This chapter presents a method of designing NNs for prediction problems based on

an evolutionary constructive and pruning algorithm (ECPA). The proposed ECPA begins

with a set of NNs with the simplest possible structure, one hidden neuron connected to

an input node, and employs crossover and mutation operators to increase the complexity

of an NN population. Additionally, cluster-based pruning (CBP) and age-based survival

selection (ABSS) are proposed as two new operators for NN pruning. The CBP operator

retains significant neurons and prunes insignificant neurons on a probability basis and

therefore prevents the exponential growth of an NN. The ABSS operator can delete old

NNs with potentially complex structures and then introduce new NNs with simple

structures; thus, NNs are less likely to be trapped in a fully connected topology. The

ECPA framework incorporates constructive and pruning approaches in an attempt to

efficiently evolve compact NNs. As a demonstration of the method, ECPA is applied to

three prediction problems: the Mackey-Glass time series, the number of sunspots, and

traffic flow. The numerical results show that ECPA makes the design of NNs more

feasible and practical for real-world applications.

4.1 Basic Concept of Evolutionary algorithm

 EA, which simulates Darwinian evolution, is a parameter optimization algorithm

[101] that works through a simple cycle of stages. The EA begins with a randomly

 59

generated population consisting of a number of feasible solutions for the problem. This

population is referred to as the parents, and each solution is known as an individual. The

next stage evaluates the fitness of each individual of the population. To improve the

individuals of the current generation, the crossover operator is adopted to perform

essential recombination of two or more individuals. Furthermore, to sample unknown

regions, the mutation operator is employed to make a change or perturbation in a

parameter with a random element. In other words, the crossover is considered to be an

exploration operator, whereas the mutation is considered to be an exploitation operator.

Therefore, EA creates a new population, known as the offspring, using the crossover

and mutation operators. To maintain a constant population size over subsequent

generations, the next stage performs a selection to determine whether the individuals in

both the parent and offspring populations survive to the next generation. Ranking and

tournament selections are frequently employed as selection strategies [102]. The EA

stops when the maximum number of generations is reached.

4.2 Evolutionary Constructive and Pruning Algorithm

 Based on the characteristics of EA, constructive, and pruning algorithms

mentioned in Section 1.2.2, we propose ECPA to develop NNs in an attempt to balance

the constructive and pruning manners in an evolutionary way. This approach starts from

a group of NNs with the simplest possible structure, one hidden neuron connected to an

input node. It then employs network crossover and network mutation to make NNs

more complex, and adopts CBP and ABSS to prune NNs. As discussed in [81],

theoretical work has shown that a single hidden layer is sufficient for forecasting

purposes. Therefore, in this work, we designed a three-layer feedforward NN with an

 60

input layer, a hidden layer, and an output layer. The major steps of ECPA are

summarized in Fig. 4.1 and explained below.

Create NNs with one
neuron and single
connection

Network crossover

Network mutation

Cluster-based
prunning

Age-based survival
selection

End

Start

Satisfy stop
criterion?

yes

no

Fig. 4.1 Major steps performed in ECPA.

Initialization phase:

Step 1) Generate an initial population with Np NNs, where Np is the population

size. The initial NN structure starts with a simplest possible network with

one neuron and a single connection from one of the inputs, which is

randomly selected.

Step 2) Train all NNs using BP for ϕ epochs, where ϕ is specified by the user,

and determine their fitness.

Reproduction phase:

 61

Step 3) Select two parents by tournament selection. Produce one offspring from

the two parents using network crossover.

Step 4) Apply network mutation to the offspring.

Step 5) Train the offspring NN using BP for ϕ epochs and determine its fitness.

Step 6) Perform CBP on the offspring. Go to Step 3 until Np offspring are

generated.

Step 7) Apply ABSS to the parents and their offspring to select the parents of the

next generation. Go to Step 3 until the maximum number of generations

is reached.

Step 8) Select a single best NN among the final population.

4.2.1 Encoding Scheme and Design Mechanism

In order to encode an NN into a chromosome, NN is represented as a vector whose

length depends on the size of NN such that the memory can be used efficiently. Fig. 4.2

shows the chromosome representation of two NNs and their corresponding graphical

representations. The chromosome consists of the network connections and weights

where w1, wb1, and w12 indicate the output weight of the first hidden neuron, the weight

connected from bias, and weight connected between first hidden neuron and second

input node, respectively. Note that the weight with nonzero value represents the

connected weight while that with zero value represents the disconnected weight. The

initial population is a set of simplest possible networks whose initial weights are

randomly generated by a uniform distribution in the range [−1.0, 1.0] via the suggestion

in [104].

 62

w1 wb1 w11 w12 w13 w14

NN1 0.7 0 0 0 2.5 −0.2

w1 wb1 w11 w12 w13 w14

0.7 0 0 0 2.5 −0.2

w2 wb2 w21 w22 w23 w24

0.3 0 −0.4 0 0 0 NN2

NN1

1 x1 x2 x3 x4
NN2

1 x1 x2 x3 x4

w1

w13
w14 w14w13w21

w1w2

Fig. 4.2 Coding of NN and two examples.

The data set used in ECPA is partitioned into two sets: training set and testing set.

In Step 2 and 5, the training set is used to train the weights of NN by local search

operator and evaluate the fitness of NN. As mentioned in major steps, ECPA uses both

global and local search to design NNs. The global operators in reproduction phase are

used to explore the NN structures, and the local operator, BP, is used to enable a precise

local search of weights. As shown in Section 1.2.2, it is better to carry out global search

and local search alternatively during evolution. Therefore, ECPA performs weight

training by BP after structure search by evolutionary operators, again and again.

Basically, ECPA directs the evolution of NNs via four essential components: network

crossover, network mutation, CBP, and ABSS. Details regarding each component of

ECPA are provided in the following sections.

4.2.2 Network Crossover

The ECPA starts from a population of NNs with the simplest possible structures so

 63

that the initialization phase can easily set the topology of NNs as one hidden neuron and

a single connection from one input. However, these NNs may not be able to achieve

enough and desired accuracy. In order to increase the processing capabilities of NNs, it

is necessary to facilitate the exploration of the wider regions of a structural search space.

For the sake of this objective, this stage executes constructive manner to add hidden

neurons to each NN. To decide how many hidden neurons should be add to each NN,

network crossover simply selects two NNs and combines them together. Hence, this

operator does not necessarily use many heuristics and user-defined parameters, and

require rich prior knowledge. The network crossover operation in ECPA produces an

offspring NN by combining the substructures of two parent NNs. To clearly illustrate

the network crossover, an example is shown in Fig. 4.3 for two parent NNs, NNa and

NNb, and their offspring NNc. The input-output relationship of NNa is as follows:

 ()2121111 xwxwhwy a
h

a
h

a
o

a ⋅+⋅⋅= (4.1)

where h is the hidden neuron activation function, a
ow 1 is the output weight, and a

hw 12

is the weight connected from x2 to the hidden neuron. The hidden neuron activation

function can be a linear, logistic or hyperbolic tangent function. The superscript of each

weight represents its network index, and the subscript indicates the relationship between

hidden and input neurons. For NNb, the input-output relationship is as follows:

 () ()42422221111 xwxwhwxwhwy b
h

b
h

b
o

b
h

b
o

b ⋅+⋅⋅+⋅⋅= (4.2)

where b
ow 1 is the output weight of the first hidden neurons and b

hw 24 is the weight

from x4 to the second hidden neuron.

 64

NNa NNc

1 x1 x2 x3 x4

a
ow 1

a
hw 11

b
ow 1

b
ow 2

b
hw 11

b
hw 24

a
ow. 150 b

ow. 250
b
ow. 150

ay by cy

NNb

1 x1 x2 x3 x4 1 x1 x2 x3 x4

b
hw 22

a
hw 12

Fig. 4.3 An example of a network crossover.

The network crossover directly combines the substructures of NNa and NNb, and

the offspring NNc is subsequently obtained as:

()

()
() ()42422221111

2121111

5050

50
21

xwxwhw.xwhw.

xwxwhw.
yy/y

b
h

b
h

b
o

b
h

b
o

a
h

a
h

a
o

bac

⋅+⋅⋅+⋅⋅+

⋅+⋅⋅=

+=

 (4.3)

This result is shown in Fig. 4.3. The output weights of the offspring NN are half

those of the parent NNs, and the hidden weights of the offspring retain the same weights

as those of the parent NNs. As shown in Fig. 4.3, it is clear that the network crossover

operator directs the evolution of NNs in a constructive manner. Furthermore, a

crossover probability is chosen to determine whether or not to perform network

crossover on two parent NNs. If the crossover probability is smaller than a random

number, network crossover is performed on the two parent NNs; otherwise, the two

parent NNs are copied as two offspring.

4.2.3 Network Mutation

When the network crossover is applied to parent NNs, some offspring NNs are

likely to have more hidden neurons and thus possess much processing ability. However,

 65

it may be inefficient to increase NN’s performance by only adding hidden neuron with

single connection generated by the initialization phase. It is possible to introduce more

inputs into each hidden neuron to increase the prediction accuracy. EAs usually adopt

mutation operator to achieve the perturbation and thus have a better exploitation

capability. Hence, a small perturbation of structure is suitable for structural leaning.

Since the initialization phase generates NNs with single connection, a small

perturbation can be achieved via adding more connections to NNs and its capability is

distinct from adding hidden neurons. For the sake of simple and small perturbation,

network mutation is developed in ECPA and introduces a new connection into NN

where the connection is built between randomly selected one input and one hidden

neuron, and initializes its weight according to a normal distribution with mean = 0 and

standard deviation = 0.01, by the program. A graphical representation of this operation,

in which a new connection is added between x2 and the first hidden neuron, is shown in

Fig. 4.4. The input-output relationship of the mutated NNb, NNb’, is written as follows:

 () ()42422222121111 xwxwhwxwxwhwy b
h

b
h

b
o

b
h

b
h

b
o

b ⋅+⋅⋅+⋅+⋅⋅= (4.4)

where 012 =b
hw and thus, NNb’ retains the performance of NNb.

4.2.4 Cluster-Based Pruning

ECPA employs network crossover and network mutation to design NNs in a

constructive manner. However, it is well known that the constructive algorithms

difficultly decide when to stop the addition process and may design an excessively large

and complex NN with poor generalization performance. Thus, a pruning algorithm can

be used to determine the relevance or significance of hidden neurons and delete

insignificant ones. Nevertheless, it is not easy to determine the threshold value for

 66

distinguishing insignificant hidden neurons from significant ones. Therefore, ECPA uses

a different pruning scheme, called CBP, which simply separates the hidden neurons into

two classes, good and worse, according to the best hidden neuron and the worst one

without any user specified parameter. Then the hidden neurons in worse class are

pruned in a stochastic way to avoid deleting excessive hidden neurons. Unlike

conventional pruning algorithms, CBP proceeds in three steps.

NNb’

w1 wb1 w11 w12 w13 w14

0.7 0 2.5 0 0 0

w2 wb2 w21 w22 w23 w24

0.3 0 0 −0.4 0 −0.2 NNb

w1 wb1 w11 w12 w13 w14

0.7 0 2.5 0.01 0 0

w2 wb2 w21 w22 w23 w24

0.3 0 0 −0.4 0 −0.2

b
ow 1

b
ow 2

b
hw 11

b
hw 24

by ′

NNb’

1 x1 x2 x3 x4

b
h

b
h ww 2212

b
ow 1
 b

ow 2

b
hw 11

 b
hw 24

by

NNb

1 x1 x2 x3 x4

b
hw 22

Fig. 4.4 An example of a network mutation.

In the first step, the significance of each hidden neuron is determined. For the ith

hidden neuron, the significance is defined as

 ii S=σ (4.5)

where Si is obtained as follows [105]-[107]:

()

P

S
S

P

p
p

i
i

∑ == 1

2

 (4.6)

 67

Thus, Si is the root-mean-square of p
iS , which is the sensitivity of the network

output po to the output p
ih of the ith hidden neuron for the pth pattern, expressed as

 i

p
i

p
p

i

w
h
oS

=
∂
∂

=

 (4.7)

Here, wi is the weight of the connection from the ith hidden neuron to the output

neuron; this weight is constant because it is irrelevant to the patterns. Hence, the

significance in (4.5) can be rewritten as

 ii w=σ (4.8)

Thus, a hidden neuron with low significance has little influence on the network

output and can be removed [51]. However, to avoid excessive pruning of the hidden

neurons, the significance in (4.5) is purposely chosen as the square root of Si, following

the concept of the rootogram [108].

In the second step, the hidden neurons are categorized into two classes: good and

worse. The prototypes of the good and worse classes are the hidden neurons with

maximum and minimum significance, respectively. The remaining hidden neurons are

categorized according to the difference between the good and worse prototypes with

respect to their significance. If the significance of one hidden neuron is close to the

good prototype, the hidden neuron is then categorized in the good class; otherwise, the

hidden neuron is categorized in the worse class. The neurons in the good class are

retained, whereas those in the worse class are deleted in a stochastic manner. For each

neuron in the worse class, a random number r with a uniform distribution between [0, 1]

is generated. If r is smaller than 0.5, the neuron is deleted; otherwise, the neuron is

retained.

 68

4.2.5 Age-Based Survival Selection

After the network crossover, network mutation and CBP are completed, the

individuals in the next generation are chosen through survival selection. If a general

survival selection is adopted, the evolved NNs tend to have fully connected topologies

due to network mutation, which add more inputs to the hidden neurons. As a result,

hardware implementation costs are increased, and the generalization capabilities of the

evolved NNs are reduced. To avoid this problem, we propose a different survival

selection method, ABSS, to select younger NNs with partial connections, rather than

full connections, for the next generation.

ABSS is performed in two steps. The first step involves traditional tournament

selection to choose Np candidates for the next stage. If the age of an NN is defined as

the number of generations it survives in the population, then the Np candidates may have

different ages. For example, the age of a newborn NN is one, and its age increases by

one if it survives to the next generation. The second step continues to delete the elder

NNs from the Np candidates according to the aging index, defined as follows:

2

11 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=

jAge
A j (4.9)

where Agej is the age of the jth NN. Selection proceeds by generating a uniform random

number r in the range [0, 1]. If Aj > r, the jth NN is deleted and replaced by a newborn

NN produced by Step 1; otherwise, the jth NN is retained in the population. As a result,

the population size Np is unchanged after ABSS, and the average age of the NNs is

potentially lower, which prevents the evolved NNs from adopting a fully connected

topology.

In summary, the network crossover operator constructs an NN by adding hidden

neurons so that the NN possesses more processing ability to accurately approximate the

 69

target function. The network mutation operator adds one connection from the input to

the hidden neuron so that the hidden neuron can process more input information. CBP

prunes the worse hidden neurons from an NN to prevent overfitting of the training data.

ABSS deletes elder NNs that are potentially fully connected. Thus, network crossover

and mutation operations direct the evolution of NNs in a constructive manner that can

improve their processing ability to accurately approximate the true function, whereas

CBP and ABSS direct the evolution of NNs in a destructive way that can improve their

generalization capabilities while reducing their hardware requirements.

4.3 Numerical Results

In this section, we demonstrate the performance of the proposed algorithm using

three time series prediction problems: Mackey-Glass, sunspots, and vehicle count. The

first time series is generated from the Mackey-Glass differential equation, the second

series is recorded from the sunspots, and the third series is obtained from the hourly

vehicle count for the Monash Freeway outside Melbourne in Victoria, Australia,

beginning in August, 1995. In order to make a fair comparison with previous works, the

first problem adopts RMSE as the fitness, which is calculated as follows:

 () ()()∑
=

−=
N

t
tx̂tx

N 1

21RMSE (4.10)

where ()tx̂ is the predicted value at time t and N is the number of data points. The

second and third problems compare with previous works by normalized mean squared

error (NMSE) and mean absolute percentage error (MAPE). The NMSE is defined as

the ratio of the mean squared error to the variance of the time-series as follows:

 () ()()∑
=

−=
N

t

tx̂tx
N 1

2
2

1NMSE
σ

 (4.11)

 70

where σ is the standard deviation of the time-series. The MAPE is determined as

follows:

 () ()
()∑

=

⋅
−

=
N

t
%

tx
tx̂tx

N 1
1001MAPE . (4.12)

Furthermore, the number of hidden neurons Nh and the number of connections Nc are

recorded to observe the evolutionary progress. The following parameters are used in

each problem.

1) The population size Np is 30.

2) The crossover probability is 0.8.

3) The mutation probability is 0.6.

4) The value of ϕ for training NN by BP is 15.

5) The maximum number of generations is 500.

As described in Section 3.5, the Np, G, and ϕ would affect the computational complexity

of ECPA. The larger Np the less effect of genetic drift, the larger G the more chances to

find better ANNs, and the larger ϕ the more prediction accuracy. However, the larger Np,

G, and ϕ lead to the longer computation time. To select suitable values, Np is set as 30

according to the suggestion in [109]. In order to select appropriate ϕ and G, the values

of ϕ were chosen as 5, 10, 15, 20, 25, and 30, and the values of G were chosen as 300,

400, 500, and 600 in the preliminary runs. As a result, G = 500 and ϕ = 15 were adopted

in the following experiments due to the sufficient prediction accuracy and acceptable

computation time. Because the parameters were chosen after some preliminary runs, the

value was not meant to be optimal. The setting of pc = 0.8 and pm = 0.6 is to enhance the

chance of increasing the number of hidden neurons than the chance of increasing the

number of connections. It was expected that structures with more hidden neurons would

 71

be found first, and these structure would then be pruned. We evaluate the performance

of ECPA on the three examples over 10 independent runs.

4.3.1 Example 1: Chaotic Time Series Prediction

The Mackey-Glass time series prediction is recognized as a benchmark problem in

the area of NNs. This chaotic time series prediction was considered to be a suitable way

to evaluate the performance of the proposed ECPA. The Mackey-Glass time series is

generated from the following delay differential equation:

 () ()
()

()tx.
tx

tx.
dt

tdx 10
1

20
10

−
−+

−
=

τ
τ (4.13)

where τ = 17 and x(0) = 1.2 in the simulation. The fourth-order Runge-Kutta method is

used to generate 1,000 data points ranging from t = 118 to 1,117. The task involves

predicting the value of x(t+6) from the input vector [x(t−18) x(t−12) x(t−6) x(t)] for any

t. Therefore, the input-output data pairs for prediction are

() () () () ()[]6;,6,12,18 +−−− txtxtxtxtx

where the first 500 data pairs are used as training set and the later 500 data pairs are

testing set.

The evolutionary progress of NNs for the Mackey-Glass time series prediction

problem is illustrated in Fig. 4.5. The top panel of Fig. 4.5 shows the decrease in RMSE

resulting from the evolution of NNs. The middle and bottom panels of Fig. 4.5 present

Nh and Nc and demonstrate the structural evolution of NNs, respectively. Fig. 4.6

graphically illustrates how the topologies of NNs evolve in selected generations. The

input vector [u(4) u(3) u(2) u(1)] represents [x(t−18) x(t−12) x(t−6) x(t)], and the output

y represents x(t+6). The blue lines represent positive-valued weights, and the red lines

represent negative-valued weights. The widths of the lines indicate the relative strengths

 72

of the weights. The NN structure produced in the 1st generation starts with a network of

two neurons and a few connections from the inputs and thus has limited information

processing ability for the task. As its evolution progresses, Nh gradually increases to 38

by the 25th generation, is reduced to 28 by the 30th generation, and then increases to 40

by the 490th generation. The NNs were observed to grow rapidly, but the growth did not

always occur due to the use of CBP and ABSS. Note that the resulting NN structure

does not have a fully connected topology; less than 85% of the synapses are connected.

Many approaches have been developed to design both the architecture and weights

of NNs to address the same prediction problem. Table 4.1 presents the experimental

results obtained using the proposed algorithm compared with other algorithms. The best

(i.e., lowest) RMSE, Nh, and Nc values among the various approaches are shown in

boldface type, and the RMSE, Nh, and Nc of ECPA are the average values over 10

independent runs. As shown here, although ECPA achieved a larger RMSE than that of

Du and Zhang [110] with the training set, it obtained a lower RMSE than the other

methods for the testing data. It is interesting that ECPA obtained a lower RMSE for the

testing data than for the training data in this experiment, but this phenomenon has been

observed previously [111]. In terms of the average number of hidden neurons over 10

independent runs, ECPA obtained a lower Nh than those of Du and Zhang [110] and

Harpham and Dawson [112]. Although ECPA obtained a higher Nh than those of Rojas

et al. [113], Chen et al. [114], and Cho and Wang [115], it achieved a lower RMSE.

ECPA resulted in the evolution of an NN with training data RMSE, testing data RMSE,

Nh, and Nc values of 6.76×10−4, 6.30×10−4, 40.5, and 203.2, respectively. Clearly, the

evolved NN possessed a partially connected topology; our observations showed that

ECPA can evolve NNs with a lower RMSE and more compact structure than the other

methods.

 73

Fig. 4.5 Evolution progress for Example 1.

1st 5th 10th

25th 30th 40th

50th 350th 490th

Fig. 4.6 Evolved NNs for Example 1..

 74

Table 4.1 Prediction results for Example 1.

t = 6　 t = 84　
Method Train Test First 500

points
Last 500

points

Nh Nc

Du and Zhang
[110] 2.87×10−4 7.67×10−4 1.93×10−2 2.07×10−2 294 ---

Harpham and
Dawson [112] --- 1.50×10−3 --- --- 116 ---

Rojas et al. [113] 2.87×10−3 --- 2.63×10−2 --- 12 ---

Chen et al. [114] 3.30×10−3 3.60×10−3 --- --- 10 110
Cho and Wang
[115] 9.60×10−3 1.14×10−2 --- --- 23 ---

ECPA 6.76×10−4 6.30×10−4 6.20×10−3 3.10×10−3 40.5 203.2

The prediction result for the one-step prediction of x(t+6) is shown in Fig. 4.7. In

addition to the one-step prediction of x(t+6), the evolved NN was applied to another

general testing case: the multiple-step prediction of x(t+84) [111]. To perform a

multiple-step prediction, the proposed algorithm iteratively predicts x(t+6), x(t+12), etc.

until it reaches x(t+84) after 14 such iterations. The prediction result for multiple-step

prediction of x(t+84) is shown in Fig. 4.8 where the NN was evolved based on the

training data for the one-step prediction of x(t+6). When compared with Fig. 4.7, the

prediction error in Fig. 4.8 indicates an increase from 6.30×10−4 to 3.10×10−3 because

multiple-step prediction is more complex than one-step prediction. As shown in Table

4.1, the prediction errors for multiple-step prediction of x(t+84) for the first and last 500

points were 6.20×10−3 and 3.10×10−3, respectively. Therefore, ECPA was superior to the

other methods in the multiple-step prediction.

 75

Fig. 4.7 Prediction error for Example 1.

Fig. 4.8 Multiple-step prediction error for Example 1.

 76

4.3.2 Example 2: Forecasting the Number of Sunspots

The number of sunspots varies nonlinearly in nonstationary and non-Gaussian

cycles that are difficult to predict [116]. In this experiment, ECPA was used to predict

the number of sunspots. The objective of this test involves using [x(t−10) x(t−9) … x(t)]

to predict x(t+1), where t represents the year and x(t) represents the number of sunspots

in year t. For a fair comparison with the other methods, the data from 1700 to 1920 were

the training set and the data from 1921 to 1955 were the testing set. The parameters

used in this experiment are the same as those in Example 1.

The learning curves for ECPA in this example are shown in Fig. 4.9. The top panel

shows that the training error gradually decreased as the evolution process progressed.

The middle and bottom panels of Fig. 4.9 present the evolution of Nh and Nc,

respectively. To illustrate the structural evolution of NNs in detail, Fig. 4.10 shows the

topologies of NNs in selected generations. The input vector [u(11) u(10) … u(1)]

represents [x(t−10) x(t−9) … x(t)], and the output y represents x(t+1). We observed that

Nh was always less than and equal to 5 during the evolutionary process and only a few

inputs were connected to the hidden neurons. During the 1st and 40th generations, the

structures of the evolved NNs grew rapidly, and more inputs were processed. The Nh

increased to 4 in the 40th generation and Nc increased to 11. Finally, Nh and Nc

converged to 5 and 24, respectively, at the end of the evolution process. Notably, all of

the evolved NNs lack connections from the bias of the hidden layer to the output layer.

The final evolved NN connected half of the inputs including x(t), x(t−2), x(t−4), x(t−8),

x(t−9), and x(t−10), and each neuron connected an average of 3.8 inputs. Thus, the final

evolved NN clearly has a partially connected topology.

 77

Fig. 4.9 Evolution progress for Example 2.

1st 10th 28th

35th 40th 55th

100th 150th 200th

Fig. 4.10 Evolved NNs for Example 2.

 78

The prediction result of the training data from the years 1700–1920 is shown in Fig.

4.11. The prediction result for the testing data for the years 1921–1955 is shown in Fig.

4.12. ECPA performance was further compared to those of an adaptive neural network

(ADNN) [117], an artificial neural network (NN) [8], a hybrid methodology that

combines an autoregressive integrated moving average with an artificial neural network

(Hybrid) [118], and an adaptive k-nearest neighbors (AKN) [119]. In terms of average

performance over 10 independent runs, Table 4.2 presents that ECPA obtained an NN

with mean absolute percentage error (MAPE), normalized mean squared error (NMSE),

Nh, and Nc values of 24.66, 0.0573, 5.0, and 46.9, respectively. These results indicate

that the proposed ECPA can design an NN with a compact structure and a smaller

prediction error than other methods.

Fig. 4.11 Training results for Example 2.

 79

Fig. 4.12 Testing results for Example 2.

Table 4.2 Prediction results for Example 2.

Method MAPE NMSE RMSE Nh Nc
ADNN [117] 28.45 0.068 9.233 6 --

NN [8] 30.8 0.078 9.888 6 --

Hybrid [118] 31.2 0.0852 10.334 -- --

AKN [119] 50.3 0.1833 15.158 -- --

ECPA 24.66 0.0573 8.475 5.0 46.9

4.3.3 Example 3: Vehicle Count Prediction

The vehicle count data set was obtained from the hourly vehicle count for the

Monash Freeway outside Melbourne in Victoria, Australia, beginning in August 1995.

The objective of this example involves using [x(t−15) x(t−14) … x(t)] to predict x(t+1).

The setup of this experiment was identical to that described in Example 1.

The evolutionary progress of NNs is shown in Fig. 4.13. The top panel of Fig. 4.13

shows the NMSE of the evolved NNs in each generation. The NMSE was observed to

 80

decrease rapidly in the first 50 generations and converged in the later generations. The

middle panel of Fig. 4.13 shows the number of hidden neurons, Nh, of the evolved NNs.

The bottom panel of Fig. 4.13 shows the total number of connections in the evolved NN

Nc each generation. The structural evolution of NNs is presented in more detail in Fig.

4.14, which graphically illustrates the topologies of NNs in selected generations. The 16

inputs [u(16) u(15) … u(1)] represent [x(t−15) x(t−14) … x(t)], and the output y

represents x(t+1). We observed that Nh increased to 4 in the 4th generation and further

increased to 9 in the 8th generation. After the 9th generation, Nh varied from 7 to 13.

Finally, Nh converged to 7 in the 373rd generation. With respect to Nc, NNs have few

connections in the early generations due to the single-connection topology presented in

the initial population, and Nc does not always increase. Nc drops from 37 to 22 in the

20th generation and from 40 to 37 in the 240th generation, implying that more

connections do not necessarily result in superior fitness. In other words, appropriate

topology, not the number of connections, is the key to improving fitness. However, we

observed that each neuron attempted to connect to more inputs as the number of

generations was increased. The evolution of NNs almost converges, and no further

improvement in NNs was observed after the 373rd generation. As a result, the

highest-quality NN with well-trained weights has 7 hidden neurons and connects most

of the inputs, except for x(t−5) and x(t−10). Thus, NN can automatically select the

necessary inputs via ECPA. Clearly, the evolved NN is a partially connected network.

The prediction results of the training data and testing data are shown in Fig. 4.15

and Fig. 4.16, respectively. Table 4.3 summarizes the average performance of the

evolved NNs for the testing set over 10 independent runs and compares these results to

other methods, including ADNN [117], NN [8], Hybrid [118], and AKN [119]. The

average NMSE using ECPA was 0.0182, which is less than that obtained using the other

 81

methods. Furthermore, the evolved NNs obtained using ECPA have an average of 7.7

hidden neurons, which is less than the other methods.

Fig. 4.13 Evolution progress for Example 3.

1st 2nd 4th

 8th 20th 50th

240th 290th 373rd

Fig. 4.14 Evolved NNs for Example 3.

 82

Fig. 4.15 Training results for Example 3.

Fig. 4.16 Testing results for Example 3.

 83

Table 4.3 Prediction results for the hourly vehicle count time series.

Method MAPE NMSE RMSE Ni Nh Nc
ADNN [117] 14.31 0.0193 186.096 180 12 --

NN [8] 17.97 0.0267 218.884 180 12 --

Hybrid [118] 26.98 0.0818 383.120 180 -- --

AKN [119] 17.39 0.0206 192.261 180 -- --

ECPA 11.35 0.0182 180.715 16 7.7 77.6

4.3.4 Effect of CBP and ABSS

The previous section discusses the performance of ECPA for different prediction

problems. However, the effect of CBP and ABSS on evolution of NNs is unclear. To

evaluate how CAP and ABSS affect NN evolution, two variants of ECPA which do not

use CBP and ABSS, respectively, were used in repetitions of the above experiments.

The variant of ECPA without CBP is referred to as ECPA/C and that without ABSS is

referred to as ECPA/A. The setup of these experiments was identical to those in

previous experiments.

In order to gain the deeper understanding of the performance difference between

ECPA, ECPA/C, and ECPA/A in these three experiments, the three algorithms are

compared in terms of NMSE, Nh, Nc, connection ratio, Rc, and computation time, Tc,

whose unit is second. The Rc is determined as follows:

 %NNR fcc 100⋅= (4.14)

where Nf is the number of connections in an NN with a fully connected topology. An

NN with Nh hidden nodes with a fully connected topology leads to the following

relation:

()
() 12

11

+⋅+=

++⋅+=

hi

hhif

NN

NNNN

 (4.15)

 84

where Ni is the number of input nodes. When Rc < 100%, NN has a partially connected

topology, and when Rc = 100%, NN has a fully connected topology. The computational

environment is Windows XP with Intel Core i7 870 2.93G CPU and 4GB RAM. These

algorithms are implemented in MATLAB.

The results in Table 4.4 present that ECPA and ECPA/A produce different NNs in

some aspects. For the three examples, the average Nh and Nc values over 10 independent

runs returned by ECPA/A are much larger than those of ECPA which applies both CBP

and ABSS. As comparing their prediction performance, ECPA/A yielded slightly

smaller NMSE values than ECPA in the Mackey-Glass and vehicle count time series.

This improvement may be yielded due to the great processing capability of a large

number of hidden neurons. However, the NNs developed via ECPA/A for the sunspot

time series have larger NMSE value than those via ECPA. This may be due to the

overfitting property caused by too many hidden neurons. The results indicate that ECPA

facilitates NNs with more generalization ability than ECPA/A.

Table 4.4 Performance of ECPA and ECPA/A in Mackey-Glass, sunspot, and vehicle

count time series. All results are averaged over 10 independent runs, where * refers to

RMSE.

Method Experiment NMSE Nh Nc Rc(%) Tc
Mackey-Glass *6.3027×10−4 40.5 203.2 83.28 1112.7

Sunspot 0.0573 5.0 46.9 71.06 375.1 ECPA

Vehicle count 0.0182 7.7 77.6 55.59 693.3
 Mackey-Glass *1.3535×10−3 860.6 2357.7 45.65 60531.7

ECPA/C Sunspot 0.5741 419.3 1145.6 21.01 5841.3
 Vehicle count 0.0358 224.3 605.1 14.98 5939.6
 Mackey-Glass *6.3147×10−4 575.3 2173.9 62.96 12958.9

ECPA/A Sunspot 0.7547 173.7 603.1 26.70 2237.1
 Vehicle count 0.0176 70.8 653.6 51.25 3358.3

 85

In addition to NMSE, Nh, and Nc, Table 4.4 presents that Rc obtained by ECPA/C is

lower than ECPA/A due to the use of ABSS. More specifically, elder NNs which are

much likely to have more connections from inputs conducted by network mutation

would be deleted by ABSS in ECPA/C. Although ECPA/C can produce sparsely

connected topology of NN by the aid of ABSS, it would result in NNs with huge Nh.

Thus, the NNs in ECPA/C face overfitting problem and have bad generalization ability,

i.e., larger NMSE for testing set. When comparing ECPA, ECPA/C, and ECPA/A,

ECPA/A can produce NNs with less hidden neurons than ECPA/C due to the use of CBP.

ECPA further yields NNs with more compact structures and better generalization ability

than ECPA/A due to the use of ABSS.

Furthermore, the computation time of ECPA, ECPA/C, and ECPA/A is compared.

The computation time required by ECPA was less than that required by ECPA/C and

ECPA/A since ECPA needs less computation time to process less hidden neurons while

ECPA/C and ECPA/A require longer time to train and evaluate the NNs with large

number of hidden neurons. According to the observation, both CBP and ABSS are

beneficial for producing NNs with a compact structure and reducing computation time.

4.3.5 Discussion

In this section, we summarize the observations in the three experiments described

above, and discuss the experimental results. Fig. 4.5, Fig. 4.9, and Fig. 4.13 show that

the NN structures developed using ECPA are simple in the first generations due to the

use of initial NNs with one hidden neuron and a single connection to one of the inputs.

As their evolution progresses, the NN structures grew rapidly in the beginning due to

the addition of neurons via crossover and the addition of connections via mutation.

However, the results show that NNs did not grow continuously in the later generations

 86

due to the use of CBP and ABSS. CBP primarily preserves the significant neurons and

prunes the insignificant neurons using a probability criterion. Pruning prevents the

exponential growth of NNs and avoids long-term training for complex NNs. In addition,

ABSS first deletes the old individuals likely to have complex structures and then

provides an opportunity to introduce new individuals with simple structures generated

via Step 1). Section 4.3.4 demonstrates that ABSS is useful for developing a compact

NN architecture and avoiding the design of complex NNs. The highest-quality NN with

well-trained weights is then attained using construction via crossover and mutation

operations and destruction via CBP and ABSS. The resulting NNs do not have fully

connected topologies; less than 80% of the synapses are connected in the Mackey-Glass

time series, 50% are connected in the sunspot time series, and 40% are connected in the

vehicle count time series. Furthermore, the evolved NNs do not connect to all the inputs,

e.g., the evolved NN does not connect to x(t−7) in the sunspot time series, and the

evolved NN does not connect to x(t−5) and x(t−10) in the vehicle count time series.

Thus, ECPA has the ability to select suitable inputs required to accurately perform

predictions. These results imply that more connections do not necessarily result in

superior fitness. In other words, an appropriately connected topology is the key to

improving fitness, not the number of connections.

4.4 Summary

A novel structure learning algorithm, called ECPA, is proposed for the design of

NNs based on an evolutionary constructive and pruning algorithm. ECPA evolves NNs

starting with a minimal structure: one hidden neuron connected to an input node. The

crossover and mutation operations make the NN structures more complex, whereas CBP

 87

and ABSS make the NN structures more compact. The results of the numerical

simulations show that the use of CBP and ABSS operations indeed generates compact

NNs. Moreover, ECPA adopts variable-length chromosomes to represent the NNs so

that memory is used efficiently. In the time series prediction problems, ECPA not only

evolved partially connected NNs with sufficient prediction accuracy but also

demonstrated the ability to select the proper inputs, i.e., input selection. The numerical

results demonstrate that an appropriately connected topology, rather than the number of

connections, is the key to improving NN performance.

 88

Chapter 5 Conclusion and Future Work

This dissertation proposes an FNAGM based on GM(1,1) and NN for real-time

prediction application. FNAGM uses GM(1,1) to predict signals and employs NN to

compensate the prediction error of GM(1,1). Based on Levenberg-Marquardt algorithm,

NN is adjusted in real-time by the proposed on-line batch training whose convergence

property has been proven in this dissertation. Numerical results are also included to

demonstrate that FNAGM has higher prediction accuracy than other methods and is

applicable for real-time prediction. Furthermore, experimental results of a robotic

application show that FNAGM can be successfully used for the trajectory prediction

and object tracking.

In order to design the structure of FNAGM in an efficient way, a neuron-based

structure learning algorithm, called SSLA, is proposed to construct the topology of

FNAGM. The SSLA can flexibly construct cascade NNs and feedforward NNs by using

the neuron population including neurons with hyperbolic tangent and linear activation

functions. Therefore, a complex coding to represent these two classes of NNs is

unnecessary. The neurons in the neuron population share the fitness from their

participating NNs and then evolve according to neuron crossover, neuron mutation, and

BP. Consequently, FNAGM with compact structure is obtained and applied to predict

signal and further learn to compensate the prediction error by the on-line batch training.

When comparing to the FNAGM designed by trial-and-error, numerical results show

that FNAGM-SSLA can automatically determine the topology of FNAGM with more

compact structure, higher prediction accuracy, and less computation time.

In addition to the neuron-based structure learning algorithm, ECPA, a

 89

network-based structure learning algorithm, is proposed to determine the topology of

NN by evolving network population. Different from SSLA which needs to define the

minimum and maximum numbers of hidden neurons, ECPA simply starts from a

minimum structure with one hidden neuron connected from one input node. ECPA

incorporates the idea of constructive algorithm into the network crossover and mutation,

and enables NNs to have more processing capabilities. Furthermore, CBP and ABSS,

based on pruning algorithm, are adopted to make the structure of NN more compact.

Numerical results show that ECPA can gradually evolve NNs from a minimum structure

to an appropriate structure with suitable inputs. Moreover, the evolved NNs obtain

higher prediction accuracy and more compact structures than other methods for

prediction problems. Therefore, ECPA could be applied to extract the inputs which

essentially have rare relationship to the original data, and thus reduce the problem

dimensionality and eventually decrease the complexity of the generated NNs.

Future work will focus on developing cascade NNs with different activation

functions, such as logistic, hyperbolic tangent, linear threshold, exponential and

Gaussian signal function. Moreover, a large amount of computation time is required for

the use of SSLA and ECPA. Approaches concerning the time reduction should be

further investigated. In addition to prediction application, it would be of great interest to

use reinforcement learning to develop both parameter and structure learning algorithms

for nonlinear control problems. This dissertation adopts BP as the parameter learning

algorithm; however, BP may be not applicable in certain control problems when

gradient information of the plants is not available. In the future research, EAs will be

considered as a substitute of BP to perform both parameter and structure learning by

global searching techniques.

 90

Bibliography

[1] J. D. Markel and A. H. Gray, Linear Prediction of Speech. New York: Springer

Verlag, 1976.

[2] J. Makhoul, “Linear prediction: A tutorial review,” Proceedings of the IEEE, vol.

63, pp. 561-580, Apr. 1975.

[3] J. L. Deng, “Introduction to grey system theory,” The Journal of Grey System, vol.

1, no. 1, pp. 1–24, 1989.

[4] K. Jinno, S. Xu, R. Berndtsson, A. Kawamura, and M. Matsumoto, “Prediction of

sunspots using reconstructed chaotic system equations,” J. Geophys. Res., vol. 100,

pp. 14 773–14 781, 1995.

[5] M. Han, J. Xi, S. Xu, and F.-L. Yin, “Prediction of chaotic time series based on the

recurrent predictor neural network,” IEEE Trans. Signal Processing, vol. 52, no. 12,

pp. 3409-3416, 2004.

[6] D. Massicotte, R. Morawski, and A. Barwicz, “Incorporation of a positivity

constraint into a Kalman-filter-based algorithm for correction of spectrometric

data,” IEEE Trans. Instrumentation and Measurement, vol. 44, no. 1, pp. 2-7,

1995.

[7] H. Yoo and R. L. Pimmel, “Short term load forecasting using a self-supervised

adaptive neural network,” IEEE Trans. Power Systems, vol. 14, no. 2, pp. 779-784,

1999.

[8] M. Adya and F. Collopy, “How effective are neural networks at forecasting and

prediction? A review and evaluation,” Journal of Forecasting, vol. 17, pp. 481–495,

1998.

[9] C. M. Zealand, D. H. Burn, and S. P. Simonovic, “Short term streamflow

forecasting using artificial neural networks,” Journal of Hydrology, vol. 214, pp.

32-48, 1999.

 91

[10] S. H. Yang and Y. P. Chen, “Intelligent forecasting system using grey model

combined with neural network,” International Journal of Fuzzy Systems, vol. 13,

no. 1, pp. 8-15, 2011.

[11] B. Kosko, Neural Networks and Fuzzy Systems: A Dynamical Systems Approach to

Machine Intelligence. Prentice-Hall, Upper Saddle River, NJ, USA, 1992, ch2.

[12] S. Haykin, Neural Network—A Comprehensive Foundation. Prentice Hall PTR,

1994, ch. 6.

[13] D. Saad, On-Line Learning in Neural Networks. Cambridge University Press, 1998,

ch. 1.

[14] A. Browne, Neural Network Analysis, Architectures, and Applications. CRC Press,

1997, ch6.

[15] K. J. Hunt, G. W. Irwin, and K. Warwick, Neural Network Engineering in Dynamic

Control Systems. Springer-Verlag, London, 1995, ch12.

[16] R. Hoptroff, “The principles and practive of time series forecasting and business

modelling using neural nets,” Neural Computing and Applications, vol. 1, pp.

59-66, 1993.

[17] F. Wong, “Time series forecasting using backpropagation networks,”

Neurocomputing, vol. 2, no. 4, pp. 147-159, 1991.

[18] S. Kang and C. Isik, “Partially connected feedforward neural networks structured

by input types,” IEEE Trans. Neural Netw., vol. 16, no. 1, pp. 175-184, 2005.

[19] F. Kamran, R. G. Harley, B. Burton, T. G. Habetler, and M. A. Brooke, “A fast

on-line neural-network training algorithm for a rectifier regulator,” IEEE Trans. on

Power Electronics, vol. 13, no. 2, pp. 366–371, 1998.

[20] L. Grippo, “Convergent on-line algorithms for supervised learning in neural

networks,” IEEE Trans. on Neural Netw., vol. 11, no. 6, pp. 1284–1299, 2000.

[21] G. L. Plett, “Adaptive inverse control of linear and nonlinear systems using

dynamic neural networks,” IEEE Trans. on Neural Netw., vol. 14, no. 2, pp.

360–376, 2003.

 92

[22] D. Saad and S. A. Solla, “Dynamics of on-line gradient descent learning for

multilayer neural networks,” In Touretzky, D. S., Mozer, M. C., and Hasselmo, M.

E., editors, Advances in Neural Information Processing Systems, vol. 8, pp.

302-308, Cambridge, MA. MIT Press, 1996.

[23] D. Saad and M. Rattray, “Globally optimal parameters for on-line learning in

multilayer neural networks,” Phys. Rev. Lett., vol. 79, pp. 2578-2581, 1997.

[24] J. L. Deng, “Control problems of grey systems,” System & Control Letters, vol. 1,

no. 5, pp. 288–294, 1982.

[25] W. L. Yao, S. C. Chi, and J. H. Chen, “An improved grey-based approach for

electricity demand forecasting,” Electric Power Systems Research, vol. 67, no. 3,

pp. 217–224, 2003.

[26] B. Ulutas, E. Erdemir, and K. Kawamura, “Application of a hybrid controller with

non-contact impedance to a humanoid robot,” in International Workshop on

Variable Structure Systems, pp. 378–383, 2008.

[27] H. C. Ting, J. L. Chang, C. H. Yeh, and Y. P. Chen, “Discrete time sliding-mode

control design with grey predictor,” International Journal of Fuzzy Systems, vol. 9,

no. 3, pp. 179–185, 2007.

[28] S. Fan, Y. Fang, W. Li, Y. Ma, and T. Xiao, “The combination of grey system and

BP neural network,” in International Conference on Mechatronics and Automation,

pp. 1267–1271, 2007.

[29] C. C. Chiang, M. C. Ho, and J. A. Chen, “A hybrid approach of neural networks

and grey modeling for adaptive electricity load forecasting,” Neural Computing &

Applications, vol. 15, no. 3, pp. 328–338, 2006.

[30] F. Wang and H. Xia, “Network traffic prediction based on grey neural network

integrated model,” in International Conference on Computer Science and Software

Engineering, pp. 915–918, 2008.

[31] C. Zhu and Q. Ju, “United grey system-neural network model and its application in

prediction of groundwater level,” in International Conference on Industrial

Mechatronics and Automation, pp. 434–437, 2009.

 93

[32] P. Fu and Y. Li, “Application of combined model in forecasting logistic volume of

a port,” in Intelligent Computation Technology and Automation, pp. 742–745,

2010.

[33] D. Zhang, Z. Ren, Y. Bi, D. Zhou, and Y. Bi, “Power load forecasting based on

grey neural network,” in IEEE International Symposium on Industrial Electronics,

pp. 1885–1889, 2008.

[34] S. H. Wang, R. L. Hao, Y. J. Chang, and Y. Zhao, “Research of short-term load

forecasting based on combined grey neural network and phase space

reconstruction,” in International Conference on Machine Learning and

Cybernetics, pp. 1194–1199, 2009.

[35] X. Zhu, “Application of composite grey BP neural network forecasting model to

motor vehicle fatality risk,” in International Conference on Computer Modeling

and Simulation, pp. 236–240, 2010.

[36] B. R. Chang and H. F. Tsai, “Forecast approach using neural network adaptation to

support vector regression grey model and generalized auto-regressive conditional

heteroscedasticity,” Expert Systems with Applications, vol. 34, no. 2, pp. 925–934,

2008.

[37] C. C. Hsu and C. Y. Chen, “Applications of improved grey prediction model for

power demand forecasting,” Energy Conversion and Management, vol. 44, no. 14,

pp. 2241–2249, 2003.

[38] H. Liu, L. Cai, and X. Wu, “Grey-RBF neural network prediction model for city

electricity demand forecasting,” in International Conference on Wireless

Communications, Networking and Mobile Computing, pp.1–5, 2008.

[39] S. H. Yang and Y. P. Chen, “Intelligent forecasting system based on grey model and

neural network,” in IEEE/ASME International Conf. on Advanced Intelligent

Mechatronics, pp. 699–704, 2009.

[40] M. F. Yeh, C. T. Chang, and M. S. Leu, “Financial distress prediction model via

GreyART network and grey model,” Advances in Neural Network Research and

Applications, vol. 67, no. 1, pp. 91–100, 2010.

 94

[41] J. Tanomaru and S. Omatu, “Process control by on-line trained neural controller,”

IEEE Trans. on Industrial Electronics, vol. 39, no. 6, pp. 511–521, 1992.

[42] G. Cybenko, “Approximation by superpositions of a sigmoidal function,” Math.

Contr., Signals, Syst., vol. 2, no. 4, pp. 303-314, 1989.

[43] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks are

universal approximators,” Neural Networks, vol. 2, pp. 359–366, 1989.

[44] S. T. Chen, D. C. Yu, and A. R. Moghaddamjo, “Weather sensitive short-term load

forecasting using nonfully connected artificial neural network,” IEEE Trans. on

Power Systems, vo1. 7, no. 3, pp. 1098–1105, 1991.

[45] A. Canning and E. Gardner, “Partially connected models of neural networks,” J.

Phys. A, vol. 21, pp. 3275–3284, 1988.

[46] S. H. Yang and Y. P. Chen, “Symbiotic neuron evolution of a neural-network-aided

grey model for time series prediction,” IEEE International Conference on Fuzzy

Systems, pp. 195-201, 2011.

[47] D. Elizondo and E. Fiesler, “A survey of partially connected neural networks,” Int.

J. Neural Syst., vol. 8, no. 5 and 6, pp. 535-558, 1997.

[48] F. H. F. Leung, H. K. Lam, S. H. Ling, and P. K. S. Tam, “Tuning of the structure

and parameters of a neural network using an improved genetic algorithm,” IEEE

Trans. Neural Netw., vol. 14, no. 1, pp. 79- 88, Jan 2003.

[49] T. Y. Kwok and D. Y. Yeung, “Constructive algorithms for structure learning in

feedforward neural networks for regression problems,” IEEE Trans. Neural Netw.,

vol. 8, no. 3, pp. 630–645, May 1997.

[50] R. Reed, “Pruning algorithms—A survey,” IEEE Trans. Neural Netw., vol. 4, no. 5,

pp. 740–747, Sep. 1993.

[51] A. P. Engelbrecht, “A new pruning heuristic based on variance analysis of

sensitivity information,” IEEE Trans. Neural Netw., vol.12, no.6, pp.1386–1399,

Nov. 2001.

[52] Jocelyn Sietsma, Robert J.F. Dow, “Creating artificial neural networks that

generalize,” Neural Networks, vol. 4, no. 1, pp. 67–79, 1991.

 95

[53] Y.-C. Ho, “Perturbation analysis explained,” IEEE Trans. Automat. Contr., vol. 33,

pp. 761–763, 1988.

[54] J. M. Holtzman, “On using perturbation analysis to do sensitivity analysis:

Derivatives versus differences,” IEEE Trans. Automat. Contr., vol. 37, pp. 243–247,

1992.

[55] M. Hagiwara, “Removal of hidden units and weights for back propagation

networks,” International Joint Conference on Neural Networks, pp. 351–354, Oct.

1993.

[56] Y. Hirose, K. Yamashita, and S. Hijiya, “Back-propagation algorithm which varies

the number of hidden units,” Neural Netw., vol. 4, no. 1, pp. 61–66, 1991.

[57] Md. M. Islam and K. Murase, “A new algorithm to design compact

twohidden-layer artificial neural networks,” Neural Netw., vol. 14, no. 9, pp.

1265–1278, 2001.

[58] I. Rivals and L. Personnaz, “Neural-network construction and selection in

nonlinear modeling,” IEEE Trans. Neural Netw., vol. 14, no. 4, pp. 804–819, 2003.

[59] M. M. Islam, M. A. Sattar, M. F. Amin, X. Yao, and K. Murase, “A new adaptive

merging and growing algorithm for designing artificial neural networks,” IEEE

Trans. Syst., Man, Cybern. B, vol. 39, no. 3, pp. 705–722, 2009.

[60] D. B. Fogel, Evolutionary Computation: Toward a New Philosophy of Machine

Intelligence. New York: IEEE Press, 1995.

[61] D. Whitley and C. Bogart, “The evolution of connectivity: Pruning neural networks

using genetic algorithms,” International Joint Conference on Neural Networks, pp.

134–137, 1990.

[62] D. White and P. Ligomenides, “GANNet: A genetic algorithm for optimizing

topology and weights in neural network design ,” in International Workshop on

Artificial Neural Networks, in New Trends in Neural Computation, J. Mira, J.

Cabestany, and A. Prieto, Eds. Berlin, Germany: Springer-Verlag, pp. 332–327,

1993.

 96

[63] C. Zanchettin, T. B. Ludermir, and L. M. Almeida, “Hybrid Training Method for

MLP: Optimization of Architecture and Training,” IEEE Trans. Syst., Man, Cybern.

B, vol. 41, no. 4, pp. 1097-1109, 2011.

[64] S. J. Russell and P. Norvig, Artificial Intelligence: A Modern Approach.

Englewood Cliffs, NJ: Prentice-Hall, 1995.

[65] P. A. Gutiérrez, C. Hervás-Martínez, F. J. Martínez-Estudillo, “Logistic Regression

by Means of Evolutionary Radial Basis Function Neural Networks,” IEEE Trans.

Neural Netw., vol.22, no.2, pp.246-263, Feb. 2011.

[66] T. H. Oong and N. A. M. Isa, “Adaptive Evolutionary Artificial Neural Networks

for Pattern Classification,” IEEE Trans. Neural Netw., vol.22, no.11, pp.1823-1836,

Nov. 2011.

[67] J. C. F. Caballero, F. J. Martinez, C. Hervas, and P. A. Gutierrez, “Sensitivity

versus accuracy in multiclass problems using memetic Pareto evolutionary neural

networks,” IEEE Trans. Neural Netw., vol. 21, no. 5, pp. 750–770, May 2010.

[68] D. Mantzaris, G. Anastassopoulos, and A. Adamopoulos, “Genetic algorithm

pruning of probabilistic neural networks in medical disease estimation,” Neural

Netw., vol. 24, no. 8, pp. 831-835, October 2011.

[69] B. Curry and P. H. Morgan, “Seasonality and neural networks: a new approach,”

International Journal of Metaheuristics, vol. 1, no. 2, pp. 181 - 197, 2010.

[70] D.-S. Huang and J.-X. Du, “A Constructive Hybrid Structure Optimization

Methodology for Radial Basis Probabilistic Neural Networks,” IEEE Trans. Neural

Netw., vol.19, no.12, pp.2099-2115, Dec. 2008.

[71] T. A.S. Masutti and L. N. de Castro, “Neuro-immune approach to solve routing

problems,” Neurocomputing, vol. 72, no. 10-12, pp. 2189-2197, June 2009.

[72] A. Kaylani, M. Georgiopoulos, M. Mollaghasemi, and G.C. Anagnostopoulos,

“AG-ART: An adaptive approach to evolving ART architectures,” Neurocomputing,

vol. 72, no. 10-12, pp. 2079-2092, June 2009.

[73] C.-K. Goh, E.-J. Teoh, and K. C. Tan, “Hybrid Multiobjective Evolutionary Design

for Artificial Neural Networks,” IEEE Trans. Neural Netw., vol.19, no.9,

pp.1531-1548, Sept. 2008.

 97

[74] C. Hervás-Martínez, F. J. Martínez-Estudillo, and M. Carbonero-Ruz,

“Multilogistic regression by means of evolutionary product-unit neural networks,”

Neural Netw., vol. 21, no. 7, pp. 951-961, September 2008.

[75] P. J. Angeline, G. M. Saunders, and J. B. Pollack, “An evolutionary algorithm that

constructs recurrent neural networks,” IEEE Trans. Neural Netw., vol. 5, no. 1, pp.

54–65, Jan. 1994.

[76] P. P. Palmes, T. Hayasaka, and S. Usui, “Mutation-based genetic neural network,”

IEEE Trans. Neural Netw., vol. 16, no. 3, pp. 587–600, 2005.

[77] T. B. Ludermir, A. Yamazaki, and C. Zanchettin, “An optimization methodology

for neural network weights and architectures,” IEEE Trans. Neural Netw., vol.17,

no.6, pp.1452-1459, 2006.

[78] J.-Y. Lin and Y.-P. Chen, “Analysis on the Collaboration Between Global Search

and Local Search in Memetic Computation,” IEEE Trans. Evol. Comput., vol.15,

no.5, pp.608-623, 2011.

[79] M. S. Alam, M. M. Islam, X. Yao, and K. Murase, “Recurring Two-Stage

Evolutionary Programming: A Novel Approach for Numeric Optimization,” IEEE

Trans. Syst., Man, Cybern. B, vol.41, no.5, pp.1352-1365, 2011.

[80] W. E. Hart, “Adaptive global optimization with local search,” Ph.D. dissertation,

Dept. Comput. Sci. Eng., Univ. California, San Diego, 1994.

[81] G. Zhang, B. E. Patuwo, and M. Y. Hu, “Forecasting with artificial neural networks:

The state of the art,” International Journal of Forecasting, vol. 14, no. 1, pp.

35–62, 1998.

[82] B. Kosko, Neural Networks and Fuzzy Systems: A Dynamical Systems Approach to

Machine Intelligence. Prentice-Hall, Upper Saddle River, NJ, USA, 1992, ch2.

[83] M. T. Hagan and M. B. Menhaj, “Training feedforward networks with the

Marquardt algorithm,” IEEE Trans. Neural Netw., vol. 5, no. 6, pp.989–993, 1994.

[84] Y. H. Pao, Adaptive Pattern Recognition and Neural Networks. Addison-Wesley

Publishing Co., Reading, MA, USA, 1989.

 98

[85] D. Gorinevsky, “An approach to parametric nonlinear least square optimization and

application to task-level learning control,” IEEE Trans. on Automatic Control, vol.

42, no. 7, pp.912–927, 1997.

[86] M. C. Mackey and L. Glass, “Oscillation and chaos in physiological control

systems,” Science, vol. 197, no. 4300, pp. 287–289, 1977.

[87] S. H. Yang, C. Y. Ho, and Y. P. Chen, “Neural network based stereo matching

algorithm utilizing vertical disparity,” in IECON 2010, pp.1155-1160, 2010.

[88] S. H. Yang, C. Y. Ho and Y. P. Chen, “Intelligent stereo matching algorithm based

on Hopfield neural network and genetic algorithm,” Far East Journal of

Experimental and Theoretical Artificial Intelligence, vol. 6, no. 1-2, pp. 1-23, 2011.

[89] E. Kayacan and O. Kaynak, “An adaptive grey PID-type fuzzy controller design

for a non-linear liquid level system,” Trans. Inst. Meas. Control, vol. 31, no. 1, pp.

33-49, 2009.

[90] R.E. Smith, S. Forrest and A.S. Perelson, “Searching for diverse, cooperative

populations with genetic algorithms,” Evol. Comput., vol. 1, no. 2, pp. 127–149,

1993.

[91] D. E. Moriarty and R. Miikkulainen, “Efficient reinforcement learning through

symbiotic evolution,” Mach. Learn., vol. 22, pp. 11–32, 1996.

[92] C. F. Juang, J. Y. Lin, and C. T. Lin, “Genetic reinforcement learning through

symbiotic evolution for fuzzy controller design,” IEEE Trans. Syst., Man, Cybern.

B, Cybern., vol. 30, no. 2, pp. 290–302, 2000.

[93] C. J. Lin and Y. J. Xu, “A self-adaptive neural fuzzy network with groupbased

symbiotic evolution and its prediction applications,” Fuzzy Sets Syst., vol. 157, no.

8, pp. 1036–1056, 2006.

[94] C. J. Lin, C. H. Chen, and C. T. Lin, “Efficient self-evolving evolutionary learning

for neurofuzzy inference systems,” IEEE Trans. Fuzzy Syst., vol. 16, no. 6, pp.

1476–1490, 2008.

[95] J.-J. Hu and T.-H. S. Li, “Genetic regulatory network-based symbiotic evolution,”

Expert Systems with Applications, vol. 38, no. 5, pp. 4756-4773, 2011.

 99

[96] J.-J. Hu, T.-H. S. Li, and Y.-T. Su, “A novel particle swarm-based symbiotic

evolutionary algorithm for a class of multi-modal functions,” International Journal

of Innovative Computing, Information and Control, vol. 7, no. 4, pp. 1905-1920,

2011.

[97] Y.-C. Hsu and S.-F. Lin, “Reinforcement group cooperation-based symbiotic

evolution for recurrent wavelet-based neuro-fuzzy systems,” Neurocomputing, vol.

72, no. 10-12, pp. 2418-2432, 2009.

[98] Y.-C. Hsu, S.-F. Lin, and Y.-C. Cheng, “Multi groups cooperation based symbiotic

evolution for TSK-type neuro-fuzzy systems design,” Expert Systems with

Applications, vol. 37, no. 7, pp. 5320-5330, 2010.

[99] S. H. Yang and Y. P. Chen, “Intelligent forecasting system using grey model

combined with neural network,” International Journal of Fuzzy Systems, vol. 13,

no. 1, pp. 8-15, 2011.

[100] D. E. Rumelhart, G. E. Hinton, and R. J. Wiliams, ‘‘Learning representations

by back-propagating errors,’’ Nature, vol. 323, pp. 533–536, Oct. 9, 1986.

[101] D. Dumitrescu, B. Lazzerini, L. C. Jain, and A. Dumitrescu, Evolutionary

Computation. Boca Raton, FL: CRC Press, 2000, ch4.

[102] K. Deb and R. B. Agrawal, Simulated binary crossover for continuous search

space, in Complex Syst., vol. 9, pp. 115–148, 1995.

[103] G. Zhang, B. E. Patuwo, and M. Y. Hu, “Forecasting with artificial neural

networks: The state of the art,” International Journal of Forecasting, vol. 14, no. 1,

pp. 35–62, 1998.

[104] C. Zanchettin, T. B. Ludermir, and L. M. Almeida, “Hybrid Training Method

for MLP: Optimization of Architecture and Training,” IEEE Trans. Syst., Man,

Cybern. B, vol. 41, no. 4, pp. 1097-1109, 2011.

[105] J. M. Zurada, A. Malinowski, and I. Cloete, “Sensitivity analysis for

minimization of input data dimension for feedforward neural network,”

International Symposium on Circuits and Systems, pp. 447–450, 1994.

 100

[106] J. M. Zurada, A. Malinowski, and S. Usui, “Perturbation method for deleting

redundant inputs of perceptron networks,” Neurocomputing, vol. 14, no. 2, pp.

177–193, 1997.

[107] A. P. Engelbrecht and I. Cloete, “A sensitivity analysis algorithm for pruning

feedforward neural networks,” International Conference on Neural Networks, pp.

1274–1278, 1996.

[108] Tukey, J. W. Exploratory Data Analysis. Addison Wesley, Reading, MA,

1977.

[109] A. D. Cioppa, C. D. Stefano, and A. Marcelli, “On the role of population size

and niche radius in fitness sharing,” IEEE Trans. Evol. Comput., vol.8, no.6, pp.

580- 592, 2004.

[110] H. Du and N. Zhang, “Time series prediction using evolving radial basis

function networks with new encoding scheme,” Neurocomputing, vol. 71, no. 7-9,

pp. 1388-1400, 2008.

[111] J.-S. R. Jang, “ANFIS: Adaptive-network-based fuzzy inference system,”

IEEE Trans. Syst., Man, Cybern., vol. 23, no. 3, pp. 665–685, 1993.

[112] C. Harpham and C.W. Dawson, “The effect of different basis functions on a

radial basis function network for time series prediction: a comparative study,”

Neurocomputing, vol. 69, no. 16-18, pp. 2161-2170, 2006.

[113] I. Rojas, H. Pomares, J.L. Bernier, J. Ortega, B. Pino, F.J. Pelayo and A. Prieto,

“Time series analysis using normalized PG-RBF network with regression weights,”

Neurocomputing, vol. 42, no. 1-4, pp. 267-285, 2002.

[114] Y. Chen, B. Yang and J. Dong, “Time-series prediction using a local linear

wavelet neural network,” Neurocomputing, vol. 69, no. 4-6, pp. 449-465, 2006.

[115] K. B. Cho and B. H. Wang, “Radial basis function based adaptive fuzzy

systems and their applications to system identification and prediction,” Fuzzy Sets

Syst., vol. 83, no. 3, pp. 325-339, 1996.

[116] S. H. Ling, F. H. F. Leung, H. K. Lam, Y. S. Lee and P. K. S. Tam, “A novel

genetic-algorithm-based neural network for short-term load forecasting,” IEEE

Transactions on Industrial Electronics, vol. 50, no. 4, pp. 793–799, 2003.

 101

[117] W. K. Wong, M. Xia, W. C. Chu, “Adaptive neural network model for

time-series forecasting,” European Journal of Operational Research, vol. 207, no.

2, pp. 807–816, 2010.

[118] G. P. Zhang, “Time series forecasting using a hybrid ARIMA and neural

network model,” Neurocomputing, vol. 50, pp. 159–175, 2003.

[119] M. Kulesh, M. Holschneider, and K. Kurennaya, “Adaptive metrics in the

nearest neighbours method,” Physics D, vol. 237, pp. 283–291, 2008.

 102

Vita

博士候選人學經歷資料

姓名：楊世宏 (Shih-Hung Yang)

性別：男

生日：民國 69 年 9 月 21 日

出生地：台北市

論文題目

中文： 具演化式結構學習能力之類神經網路及其預測之應用

英文： Neural Network with Evolutionary Structure Learning and Its Prediction

Application

學歷：

․ 民國 91 年 6 月，國立交通大學機械工程學系畢業

․ 民國 93 年 6 月，國立交通大學電機與控制工程研究所畢業

․ 民國 100 年 10 月，國立交通大學電控工程研究所，提博士論文口試

 103

Publication List

著作目錄
姓名：楊世宏 (Shih-Hung Yang)

Journal Paper

[1] S. H. Yang and Y. P. Chen, “Intelligent forecasting system using grey model

combined with neural network,” International Journal of Fuzzy Systems, vol. 13,

no. 1, pp. 8-15, 2011. (2 點)

[2] S. H. Yang, C. Y. Ho and Y. P. Chen, “Intelligent stereo matching algorithm based

on Hopfield neural network and genetic algorithm,” Far East Journal of

Experimental and Theoretical Artificial Intelligence, vol. 6, no. 1-2, pp. 1-23, 2011.

(1.4 點)

[3] S. H. Yang and Y. P. Chen, “An evolutionary constructive and pruning algorithm

for artificial neural networks and its prediction applications,” Neurocomputing,

revised.

[4] S. H. Yang and Y. P. Chen, “Symbiotic structure learning algorithm for

feedforward-neural-network-aided grey model and its prediction application,”

submitted to IEEE Trans. Neural Netw.

Conference Paper

[1] S. H. Yang and Y. P. Chen, “Evolution strategies-based learning control system,” in

Proc. of 2007 CACS Int. Automatic Control Conf., pp. 230-235, 2007.

[2] S. H. Yang and Y. P. Chen, “Intelligent forecasting system based on grey model

and neural network,” in IEEE/ASME Int. Conf. on Advanced Intelligent

Mechatronics, pp. 699-704, 2009.

[3] S. H. Yang, C. Y. Ho and Y. P. Chen, “Neural network based stereo matching

algorithm utilizing vertical disparity,” in Proc. of the 36th Annual Conf. of the

IEEE Industrial Electronics Society, IECON’10, pp.1149-1154, 2010. (0.7 點)

 104

[4] S. H. Yang and Y. P. Chen, “Symbiotic neuron evolution of a neural-network-aided

grey model for time series prediction,” in Fuzzy Systems (FUZZ), 2011 IEEE

International Conference on, pp. 195-201, 2011.

[5] S. H. Yang, C. H. Chou, W. P. Pai, T. H. Liu, Y. S. Chang, J. C. Li, H. C. Ting, and

Y. P. Chen, “Grey neural network-based forecasting system for vision-guided robot

trajectory tracking,” in Int. Conf. on Control, Automation and Systems, pp.

1512-1517, 2011.

[6] S. H. Yang, J. C. Li and Y. P. Chen, “Integration of grey model and neural network

for robotic application,” in Proc. of the 37th Annual Conf. of the IEEE Industrial

Electronics Society, IECON’11, pp. 2307-2312, 2011. (0.7 點)

