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Chinese Abstract 

中文摘要 

 

於行車中的駕駛者之分心發生已經被證實是造成車禍發生的重大原因之

一。因此，本論文建立虛擬實境技術之動態駕車裝置，來模擬真實之駕車環境，

透過分心場景的設計，結合腦電波(Electroencephalogram, EEG)分析來探討駕車行

為下人類分心效應的腦部認知功能與反應變化。在此實驗中，我們建立雙重任務

促使駕駛者造成分心效應，此雙重任務分別為非預期性的車子偏移與數學問題的

出現。為了研究車子偏移與數學任務的交互作用與影響，我們建立了五個不同時

間間隔(Stimulus Onset Asynchrony, SOA)的雙重任務實驗，並分析此雙重任務於

不同五個時間間隔所反應出的行為表現與腦電波動態變化。腦電波訊號分析採用

獨立成份分析演算法(Independent Component Analysis, ICA)來分離出不同獨立成

份為獨立之訊號源，再將特定獨立訊號源套用事件相關頻譜擾動分析(Event 

Related Spectral Perturbation, ERSP)來觀察時域與頻域響應，藉此了解並比較不同

時間上腦電波的頻譜差異。從我們的研究成果發現，額葉區(Frontal Lobe)之 Theta

頻帶與 Beta 頻帶的能量增強與駕駛者分心效應有正向關係，另外在運動皮質區

(Motor Area)也觀察到 alpha 頻帶與 beta 頻帶能量抑制的發生，此上述成果是由
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整合 15 位受測者的腦電波資料，也進行統計檢定分析。於行為表現上，我們觀

察到不同時間間隔下反應時間的趨勢，與腦電波能量變化的趨勢是一致的，這說

明了我們所發現的額葉區腦電波的能量增強現象，與行車中駕駛者分心效應發生

有高度相關，而且能量增強越高，分心效應越強。 

 

關鍵字：分心、認知、虛擬實境、不同時間間隔、獨立成份分析演算法、額

葉區、theta 能量增強 
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English Abstract 

Abstract 
 

Driver distraction is a significant cause of traffic accidents. The aim of this study 

is to investigate Electroencephalography (EEG) dynamics in relation to distraction 

during driving. To study human cognition under a specific driving task, simulated real 

driving using virtual reality (VR) -based simulation and designed dual-task events are 

built, which include unexpected car deviations and mathematics questions. We 

designed five cases with different stimulus onset asynchrony (SOA) to investigate the 

distraction effects between the deviations and equations. The EEG channel signals are 

first converted into separated brain sources by independent component analysis (ICA). 

Then, event-related spectral perturbation (ERSP) changes of the EEG power spectrum 

are used to evaluate brain dynamics in time-frequency domains. Power increases in 

the theta and beta bands are observed in relation with distraction effects in the frontal 

cortex. In the motor area, alpha and beta power suppressions are also observed. All of 

the above results are consistently observed across 15 subjects. Additionally, further 

analysis demonstrates that response time and multiple cortical EEG power both 
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changed significantly with different SOA. This study suggests that theta power 

increases in the frontal area is related to driver distraction and represents the strength 

of distraction in real-life situations. 

 

Keyword: distraction, cognition, virtual reality (VR), stimulus onset asynchrony 

(SOA), independent component analysis (ICA), frontal cortex, theta 
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1 Chapter 1 
Introduction 
 

1.1 Motivation 

 Driver distraction has been identified as the leading cause of car accidents. The U.S. 

National Highway Traffic Safety Administration had reported driver distraction as a high 

priority area about 20-30% of car accidents (Thomas, 2008). Distraction during driving by 

any cause is a significant contributor to road traffic accidents (Horberry et al., 2006; Patten et 

al., 2004). Driving is a complex task in which several skills and abilities are simultaneously 

involved. Distractions found during driving are quite widespread, including eating, drinking, 

talking with passengers, using cell phones, reading, feeling fatigue, solving problems, and 

using in-car equipment. Commercial vehicle operators with complex in-car technologies also 

cause an increased risk as they may become increasingly distracting in the years to come 

(Dukic et al., 2006; Lee et al., 2001). Some literature studied the behavioral effect of driver’s 

distraction in car. Tijerina et al. (2000) showed driver distraction from measurements of the 

static completion time of an in-vehicle task. Similarly, distraction effects caused by talking on 

cellular phones during driving have been a focal point of recent in-car studies (Hancock et al., 

2003; Strayer et al., 2003; Hahn et al., 2000). Experimental studies have been conducted to 

assess the impact of specific types of driver distraction on driving performance. Though these 

studies generally reported significant driving impairment (Crundall et al., 2006; Amado and 

Ulupinar, 2005), simulator studies cannot provide information about accidents due to 

impairment resulting in hospitalization of the driver. To provide information before the 

occurrence of crashes, the drivers’ physiological responses are investigated in this dissertation. 

However, monitoring drivers’ attention-related brain resources is still a challenge for 
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researchers and practitioners in the field of cognitive brain research and human–machine 

interaction. 

 

1.2 Relevant Literatures 

 Regarding neural physiological investigation, some literature focused on the brain 

activities of “divided attention,” referring to attention divided between two or more sources of 

information, such as visual, auditory, shape, and color stimuli. Positron emission tomography 

(PET) measurements were taken while subjects discriminated among shape, color, and speed 

of a visual stimulus under conditions of selective and divided attention. The divided attention 

condition activated the anterior cingulated and prefrontal cortex in the right hemisphere 

(Corbetta et al., 1991). In another study, functional magnetic resonance imaging (fMRI) was 

used to investigate brain activity during a dual-task (visual stimulus) experiment. Findings 

revealed activation in the posterior dorsolateral prefrontal cortex (middle frontal gyrus) and 

lateral parietal cortex (Koechlin et al., 1999). In addition, several neuroimaging studies 

showed the importance of the prefrontal network in dual-task management (Szameitat et al., 

2006; Stelzel et al., 2005). Some studies investigated traffic scenarios recorded the EEG to 

compare P300 amplitudes (Baldwin and Coyne, 2003). During simulated traffic scenarios, 

resource allocation was assessed as an event-related potential (ERP) novelty oddball paradigm 

(Rakauskas et al., 2005). In these EEG studies, however, only the time course was analyzed. 

Deiber et al. (2007) took one more step to analyze the relation between time and frequency 

courses. Their study used EEG to investigate mental arithmetic-induced workload and found 

theta band power increases in areas of the frontal cortex. Despite so much research on brain 

activities, the above-mentioned studies only investigated brain activities during dual-task 

interactions without considering the SOA problem during driving, which is with the temporal 

gap between presentations of two stimuli. When dual tasks are presented within a short SOA, 
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the response time of each task is typically lower than that presented within a longer SOA 

(Levy and Pashler, 2001). Therefore, the current study investigates the effects of the different 

temporal relationships of stimuli. 

 

 Clinical practices as well as basic scientific studies have been using the EEG for 80 years. 

Presently, EEG measurement is widely used as a standard procedure in research such as sleep 

studies (Lin et al., 2005b; Lin et al., 2008), epileptic abnormalities, and other disorder 

diagnoses. Compared to another widely used neuroimaging modality, fMRI, the EEG is much 

less expensive and has superior temporal resolution in investigating SOA problems. To avoid 

interference and decrease risks while operating a vehicle on the road, researchers adopted 

driving simulations for vehicle design. Studies of driver’s behavior and cognitive states are 

also expanding rapidly (Eoh et al., 2005). However, static driving simulation cannot fully 

create real-life driving conditions, such as the vibrations experienced when driving an actual 

vehicle on the road. Therefore, the VR-based simulation with a motion platform was 

developed (Lin et al., 2005a; Kemeny and Panerai, 2003). This VR technique allows subjects 

to interact directly with a virtual environment rather than only monotonic auditory or visual 

stimuli. Integrating realistic VR scenes with visual stimuli makes it easy to study the brain 

response to attention during driving. Therefore, in recent years, VR-based simulation 

combined with EEG monitoring is a recent and beneficial innovation in cognitive engineering 

research. 

 

 The main goal of this study is to investigate the brain dynamics related to distraction by 

using EEG and a VR-based realistic driving environment. Unlike previous studies, the 

experiment design has three main characteristics. First, the SOA experimental design, with 

different appearance times of two tasks, has the benefit of investigating the driver’s behavioral 

and physiological response under multiple conditions and multiple distraction levels. Second, 
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ICA-based advanced analysis methods are used to extract brain responses and the cortical 

location related to distraction. Third, this study investigates the interaction and effects of 

dual-task-related brain activities, in contrast to a single task. 

 

1.3 Dissertation Organization 

The dissertation was organized in 6 chapters. Chapter 1 briefly introduced current state 

in the drivers’ distraction and the goal of the study. Chapter 2 detailed the experimental 

approach and materials of the study. Chapter 2 also described the details of experimental setup, 

including different conditions under the time course of event onset asynchrony setup. In 

chapter 3, we explored the EEG with innovative methods by combining Independent 

Component Analysis (ICA), time-frequency spectral analysis, and component clustering. The 

behavioral performance analysis was also shown in Chapter 3. Chapter 4 showed discussions 

about what the EEG results mean and the correlation between physiological and behavioral 

data. Chapter 5 described a possible implementation of EEG application by using CNN 

features and architectures. Finally we concluded in Chapter 6. 
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2 Chapter 2 
Experimental Approach 
 

2.1 Dynamic Driving Environment 

A virtual-reality (VR) based highway-driving environment was used to investigate the 

changes on drivers’ distraction effect. The VR driving environment includes 3D surround 

scenes projected by seven projectors and a real car mounted on a 6-degree-of-freedom (as 

showed in Fig. 2-1) Stewart platform to provide the kinesthetic stimuli. The dynamic driving 

environment provided a safe, time saving and low cost approach to study human cognition 

under realistic driving events. The subjects could interact directly with the environment and 

receive the most realistic driving conditions during the experiments. 

 

Fig. 2-1: Pictures showed the dynamic VR driving environment, in the Brain Research 

Center of National Chiao Tung University, Taiwan, and ROC. A real car in the 3D VR 

environment was showed in the left picture. The experimental setup around the steering 

wheel was showed in the right picture. 

 

 The VR scene was generated by the Virtual- Reality technology with a World Tool Kit 
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(WTK) library. The C program including the WTK library was used and its library function 

was called up to move the three-dimensional models. The 3D view was composed of seven 

identical PCs running the same VR program. Seven PCs were synchronized by LAN so all 

scenes were going at exactly same pace. The VR scenes of different viewpoints were 

projected on corresponding locations. Fig. 2-2(a) showed the layout of our simulator. The 

front screen marked 1 and 2 was overlapped by two polarized frames to reach the binocular 

parallax. The frames for the left and right eyes were projected onto the frontal screen with two 

projectors, respectively. By wearing special glasses with a polarized filter, the configuration 

provided a stereoscopic VR scene for a 3D visualization. In our VR scene, the surrounded 

screens covered 206° frontal FOV and 40° back FOV, as shown in Fig. 2-2(b). Frames 

projected from 7 projectors were connected side by side to construct a surrounded VR scene. 

The size of each screen had diagonal measuring 2.6-3.75 meters. The vehicle was placed at 

the center of the surrounded screens.  

 

a 

 
b 

 
Fig. 2-2: (a) The picture showed the configuration of the 3D surrounded scene. The 3D 
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VR scene consisted of 7 projectors, creating a surrounded view. The frontal screen was 

overlapped by 2 projector frames in different polarizations, providing a stereoscopic 

VR scene for 3D visualization. (b) The 3D VR scene. 

 

2.2 EEG Signal Acquisition 

 An electrode cap was mounted on the subject’s head for signal acquisition as shown in 

Fig. 2-5. A standard for the placement of EEG electrodes proposed by Jasper in 1958, which 

is known as the 10-20 International System of Electrode Placement (URL: 

http://faculty.washington.edu/chudler/1020.html) is used in the electrode cap. An illustration 

of the 10-20 system is shown in Fig. 2-5, the electrodes are named according to the location 

of an electrode and the underlying area of cerebral cortex. 

 

a b 

Fig. 2-3: Schematic pictures showed the lateral (A) and top view (B) of international 

10-20 system of electrode placement 

 

 The letters F, C, T, P, and O were refer to the frontal, central, temporal, parietal, and 

occipital cortical regions on the scalp, respectively. The term “10-20” means 10% and 20% of 

the total distance between specified skull locations. The percentage-based system allowed 
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differences in skull locations. The physiological data acquisition used 30 sintered Ag/AgCl 

EEG/EOG electrodes with a unipolar reference at right earlobe and 2 ECG channels in bipolar 

connection placed on the chest. 

 Thirty scalp electrodes (Ag/AgCl electrodes with a unipolar reference at the right earlobe) 

by the NuAmp system (Compumedics Ltd., VIC, Australia) were mounted on the subject's 

head to record the physiological EEG (Lin et al., 2010). The EEG electrodes were placed 

based on a modified international 10-20 system. The contact impedance between EEG 

electrodes and the cortex was calibrated to be less than 10 kΩ. 

 

2.3 Experimental Design 

2.3.1 Subject 

 Fifteen healthy subjects (all males), between 20 and 28 years of age, were recruited from 

the university population. They have normal or corrected-to-normal vision, are right handed, 

have a driver’s license, and are reported being free from psychiatric or neurological disorders. 

Written informed consent was obtained prior to the study. 

 Each subject participated in four simulated sessions inside a car with hands on the 

steering wheel to keep the car in the center of the third lane, which was numbered from the 

left lane, in a VR surround scene on a four-lane freeway (Lin et al., 2005a). Before beginning 

first session, each subject took a 15~30 minute for practice session. In each session, subjects 

proceeded to a freeway simulated driving lasting fifteen minutes with the corresponding EEG 

signals synchronously recorded. For these four-session experiments, subjects were required to 

rest for ten minutes between every two sessions to avoid fatigue. 
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2.3.2 VR Scenario 

 We developed a VR highway environment with a monotonic scene as shown in Fig. 

2-4(a) and eliminated all unnecessary visual stimuli. The four lanes from left to right were 

separated by a median strip in the VR-based scene. The distance from the left side to the right 

side of the road was equally divided into 256 points for outputting digital signal from WTK 

program, and the width of each lane and the car was 60 units and 30 units, respectively (as 

showed in Fig. 2-4(b). In the VR scene, the simulated driving speed was controlled by a 

scheduled program, thus subjects need not to step on paddles, to prevent large muscle activity 

on the throttle or brake. 

 

a 

 

b 

 

Fig. 2-4: (a) The photomicrograph showed the simulated high way scene. The 

monotonous scene was designed to reduce the visual disturbance. (b) The illustration 

of the high way scene. The width of highway from the left to right side was equally 
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divided into 256 units and the width of the car was 32 units. 

 

2.3.3 Task Descriptions 

 Since the main purpose of this dissertation is to investigate distraction effects in 

dual-task conditions, two tasks involving unexpected car deviations and mathematical 

questions were designed. In the driving task, the car frequently and randomly drifted from the 

center of the third lane. Subjects were required to steer the car back to the center of the third 

lane. This task mimicked the effects of driving on a non-ideal road surface. In the 

mathematical task, two-digit addition equations were presented to the subjects. The answers 

were designed to be either valid or invalid. Subjects were asked to press the right or left 

button on the steering wheel corresponding to on correct or incorrect equations, respectively. 

The allotment ratio of correct-incorrect equations was 50-50. The choice of mathematic task 

was motivated by the desire for control in the task demands (Geary and Wiley, 1991). All 

drivers could perform this mathematic task well without training. 

 To investigate the effects of SOA between two tasks, the combinations of these two tasks 

were designed to provide different distracting conditions to the subjects as shown in Fig. 2-5. 

Five cases were developed to study the interaction of the two tasks. The bottom insets show 

the onset sequences of two tasks. Therefore, this study investigated the relationship of math 

task and driving task and how two tasks affected each other in the SOA conditions. 
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Fig. 2-5: The illustration shows the relationship of occurrences between the deviation 

and math tasks. D: deviation task onset. M: math task onset. (a) Case 1: math task 

presents 400ms before the deviation task onset. (b) Case 2: math and deviation tasks 

occur at the same time. (c) Case 3: math task presents 400ms after the deviation task 

onset. (d) Case 4: only math task presents. (e) Case 5: only deviation task occurs. The 

bottom insets show the onset sequences of the two tasks. 

 

2.4 Data Analysis 

2.4.1 Behavioral Performance 

 After recording the behavioral data, statistical package for the social science (SPSS) 

Version 13.0 for Windows software is applied to estimate the significance testing of 

behavioral data. The response time of these two tasks (the driving deviation and the math 

equation) is analyzed to study the behavior of subjects in the experiments. 

 Using ANOVA (analysis of variance), the significances of the response time of these two 

tasks are tested for every subject. A non-parametric test is also utilized to study the trends of 
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the behavioral data. Firstly, this study excluded outliers, comprising around 6.57 % of all 

trials, based on the criteria that response time was distributed outside the mean response time 

plus three times the standard deviation of each single session. Secondly, the number of trials 

in one of five cases which is minimal is chosen to make a benchmark to randomly select the 

same number of trials in other cases. Thirdly, a single task is taken for the baseline to 

normalize the behavioral data to be Xi
Xmean

 (Xi: mean of response time in case i, Xmean: 

mean of response time in single case). For example, in order to compare the distraction effects 

from the math equation, case 4 (the single math task) is the baseline. 

 

2.4.2 Distraction Effects of Dual-task 

 EEG epochs are extracted from the recorded EEG signals with 16-bit quantization, at the 

sampling rate of 500Hz. The data are then preprocessed using a simple low pass filter with a 

cut-off frequency of 50 Hz to remove line noise and other high frequency noise. One more 

high-pass filter with a cut-off frequency of 0.5 Hz is utilized to remove DC drift. This study 

adopts ICA to separate independent brain sources (Jung et al., 2000; Lee et al., 1999; Makeig 

et al., 1995). ERSP technology is then applied to these independent component (IC) signals 

(separated independent brain sources) to transfer the signal into the time-frequency domain 

for the event-related frequency study. Finally, the stability of component activations and scalp 

topographies of meaningful components are investigated with component clustering 

technology. Because different cases with various combinations of driving and the math tasks 

are designed, EEG responses from five different cases are extracted separately. 
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Fig. 2-6: The flow chart ofEEG data analysis 

 

 EEG source segregation, identification, and localization are very difficult because EEG 

data collected from the human scalp induce brain activities within a large brain area. Although 

the conductivity between the skull and brain is different, the spatial “smearing” of EEG data 

caused by volume conduction does not cause a significant time delay. This suggests that ICA 

algorithm is suitable for performing blind source separation on EEG data. The first 

applications of ICA to biomedical time series analysis were presented by Makeig and Inlow 

(1993). Their report shows segregation of eye movements from brain EEG phenomena, and 

separates EEG data into constituent components defined by spatial stability and temporal 

independence. Subsequent technical experiments demonstrated that ICA could also be used to 

remove artifacts from both continuous and event-related (single-trial) EEG data (Jung et al., 

2000; Lee et al., 1999). Presumably, multi-channel EEG recordings are mixtures of 

underlying brain sources and artificial signals. By assuming that (a) mixing medium is linear 
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and propagation delays are negligible, (b) the time courses of the sources are independent, and 

(c) the number of sources is the same as the number of sensors; that is, if there are N sensors, 

the ICA algorithm can separate N sources (Jung et al., 2000). 

 

Independent Component Analysis (ICA)

EEGEEGEEG

Source 
localization  

Fig. 2-7: How ICA work for source localization 

 

 
Fig. 2-8: ICA algorithm can separate 30 sources 
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 The time sequences of ICA component signals are subjected to Fast Fourier Transform 

with overlapped moving windows (in Fig. 2-9). In addition, the spectrum in each epoch is 

smoothed by 3-window (768 points) moving-average to reduce random errors. The spectrum 

prior to event onsets is considered as the baseline spectrum for every epoch. The mean of the 

baseline spectrum is subtracted from the power spectral after stimulus onsets so spectral 

“perturbation” can be visualized. This procedure is then applied repeatedly to every epoch. 

The results are averaged to yield ERSP images (Makeig, 1993). These measures can evaluate 

averaged dynamic changes in amplitudes of the broad band EEG spectrum as a function of 

time following cognitive events. The ERSP images mainly show spectral differences after an 

event since the baseline spectrum prior to event onsets had been removed. After performing a 

bootstrap analysis (usually 0.01 or 0.03 or 0.05; here 0.01 was applied) on ERSP, only 

statistically significant (p<0.01) spectral changes are shown in the ERSP images. 

Non-significant time/frequency points are masked (replaced with zero). Consequently, any 

perturbations in the frequency domain become relatively prominent. 

 

 

Fig. 2-9: The illustration of procedures in ERSP analysis. FFT was applied in each 
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window with 256 samples, and there was 244-sample overlap of two adjacent 

windows. The time-dependent ERSP image was composed of the spectra of each 

window, and smoothed by 3-window moving average. In the final step, the significant 

parts of ERSP image were extracted by using bootstrap method. The pink dashed 

lines: the first event onset. The blue dashed lines: the averaged reaction time to the 

deviation. The red dashed lines: the averaged response time to math. The black 

dashed lines: averaged response time for the car returning to the third lane. Color bars 

showed the magnitude of ERSPs. 

 

 To study the cross-subject component stability of ICA decomposition, components from 

multiple subjects are clustered, based on their spatial distributions and EEG characteristics. 

However, components from different subjects differ in many ways such as scalp maps, power 

spectrum, ERPs and ERSPs. Some studies attempted to solve this problem by calculating 

similarities among different ICs (Makeig et al., 2002; Makeig et al., 2004; Onton et al., 2005). 

Based on these studies, ICs of interest are selected and clustered semi-automatically based on 

their scalp maps, dipole source locations, and within-subject consistency (in Fig. 2-10). To 

match scalp maps of ICs within and across subjects in this dissertation, the gradients of the IC 

scalp maps from different sessions of the same subject are computed and grouped together 

based on the highest correlations of gradients of the common electrodes retained in all 

sessions. For dipole source locations, DIPFIT2 routines from EEGLAB are used to fit single 

dipole source models to the remaining IC scalp topographies using a four-shell spherical head 

model (Oostenveld and Oostendorp, 2002). In the DIPFIT software, the spherical head model 

is co-registered with an average brain model (Montreal Neurological Institute) and returns 

approximate Talairach coordinates for each equivalent dipole source. 
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Fig. 2-10: The flowchart of component clustering. Components from all subjects were 

classified into several significant clusters. 
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3 Chapter 3 
Experimental Results 
 

3.1 Behavioral Performance 

 To investigate the overall behavioral index, this study uses nonparametric tests because 

several extremely large scores are significantly skewed. Firstly, the trials of data are randomly 

selected to have the same number of the trials in all cases. Then, the response time of the 

deviation and math tasks in the five cases are normalized to correspond to single-deviation 

and single-math cases, respectively. SPSS software is used for the Friedman test, and the 

results of which are shown in Fig. 3-1. Dual-task cases are marked for easy discrimination 

from single-task cases. 
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Fig. 3-1: This figure shows the bar charts of normalized response times. (a) for the 

math task and (b) for deviation task across 15 subjects. The filled black bar: case 1; 

dark gray bar: case 2; light gray bar: case 3; the open bar: single case. The response 

time for math task in dual-task cases (case 1, case 2, and case 3) is significantly 

longer than that for in single task (case 4). The shortest response time for the math 
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onset is in case 4. The response time for deviation task in case 1 is significantly 

shorter than those in other cases. The longest response time to the deviation onset is 

in case 5. The bottom insets show the onset sequences of the two tasks. 

 

 To know how the cases make the differences, the Student-Newman-Keuls test is used for 

the post hoc test (in Table 3-1). The test statistic on response time of math tasks in cases 1-4, 

is χ2(3)=903.926 from the Friedman’s ANOVA test, and p<0.01. The Student-Newman-Keuls 

test show three significant groups: case 1 with case 2, case 3, and case 4 in which the response 

time for math task in case 1 is the longest. Statistical test results of the response time for 

deviation tasks in cases 1-3, and case 5, is χ2(3)=493.98 from the Friedman’s ANOVA test, 

and p<0.01. Using the Student-Newman-Keuls test, there are two significant groups: case 1, 

and the other cases in which the response time for deviation task in case 1 is the shortest. 

 

Table 3-1: The normalized response time to deviation and math 

 

 

 

 

 

 

 

 
 

3.2 Independent Component Clustering 

 EEG epochs are extracted from the recorded EEG signals. Then, ICA is utilized to 

Response time to deviation Response time to math 
Case 

Mean 
Standard 
deviation 

Difference 
(dual-single)

Mean 
Standard 
deviation 

Difference 
(dual-single) 

Case 1 0.9480 0.1314 p<0.01 
 

1.1479 0.3061 p<0.01 

Case 2 0.9856 0.1269 p>0.01 
 

1.1277 0.2724 p<0.01 

Case 3 0.9865 0.1231 p>0.01 
 

1.0975 0.2727 p<0.01 

Single 
(baseline) 

1 0.1553  1 0.2168  
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decompose independent brain sources from the EEG epochs. Based on distraction effects in 

this study, many brain resources are involved in this experiment. Especially, the motor 

component is active when subjects are steering the car. At the same time, activations related to 

attention in the frontal component appear. Therefore, ICA components, including frontal and 

motor, are selected for IC clustering to analyze cross-subject data based on their EEG 

characteristics, such as baseline spectrum, Scalp map and Dipole plot. 

    Based on the baseline spectrum of their EEG characteristics, the baseline spectrums of 

the same components of different subjects are listed in the Fig. 3-2. The outlier can be 

observed and removed. In this case (frontal component), green subject is the outlier. 

 

Fig. 3-2: Baseline spectrum of the same components 

 

 Then, IC clustering groups massive components from multiple sessions and subjects into 

several significant clusters. Cluster analysis, k-means, is applied to the normalized scalp 

topographies and power spectra of all 450 (30 channels x 15 subjects) components from the 

15 subjects. Cluster analysis identifies at least 7 component clusters having similar power 

spectra and scalp projections. These 7 distinct component clusters consisted of frontal, central 
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midline, parietal, left/right motor and left/right occipital. Table 3-2 gives the number of 

components in different clusters. This investigation uses the frontal and left motor 

components to analyze distraction effects. Fig. 3-3 shows the scalp maps and equivalent 

dipole source locations for fontal and left motor clusters. Based on this finding, the EEG 

sources of different subjects in the same cluster are from the same physiological component. 

 

 

Fig. 3-3: The scalp maps and equivalent dipole source locations after IC clustering 

across 15 subjects. (a) the frontal components and (b) the left motor components are 

shown in the figure. There are 14 subjects in the frontal cluster and 11 subjects in the 

left motor cluster. The grand scalp map is the mean of the total component maps in 

each cluster. The smaller maps are the individual scalp maps. The right panels (c) and 

(d) show the 3-D dipole source locations (colored spheres) and their projections onto 

average brain images. The colored source locations correspond to their own scalp 

maps by the same color of the text above. 
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Table 3-2: The Number of Components in Different Clusters 

 

3.3 Cluster Analysis 

3.3.1 Frontal Cluster 

 Fig. 3-4a shows the cross-subject averaged ERSP in the frontal cluster corresponding to 

the five cases. This figure also reveals significant (p<0.01) power increases related to the 

math task, demonstrating that the power increases in the frontal cluster are related to the math 

task. The theta power increases in three dual-task cases including cases 1-3 are slightly 

different from each other. Compared to the single math task (case 4), the power in dual-task 

cases is stronger. Especially, the power increase in case 1 is the strongest. On the beta band, it 

also shows power increases, which appear only in the math-task and time-locked to 

mathematics onsets. 

 

 Frontal 
Central 
Midline

Parietal
Left 

Motor
Right 
Motor

Left 
Occipital 

Right 
Occipital

Number  of 
components 

14 7 6 11 6 7 5 
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Fig. 3-4: The ERSP images of frontal cluster with five cases. (a) The ERSP images of 

frontal cluster with five cases. The right column show the onset sequences of the two 

tasks. Color bars indicate the magnitude of ERSPs. Red solid lines show the onset of 

the math task. Red dashed lines show the mean response time for the math task. Blue 

solid lines show the onset of the deviation task. Blue dashed lines show the mean 

response time for the deviation task. The red circle pointed out by the red arrow in 

case 2 means the red solid line and blue solid line are on the same position. Latencies 

calculated from (a) are shown in (b) by calculating time form the math task onset to 

the first occurrence of power increases. The open bars represent the latencies in the 

theta (4.5~9 Hz) band . The gray bars represent these latencies in the beta (11~15 Hz) 

band. The comparison of total power in cross-subject (14 subjects) averaged ERSP 

images in the frontal cluster between cases is shown in (c). The amount of total power 
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is calculated by adding all the power increases in the same temporal period and the 

same frequency band. The open bars represent the total power in the theta band. The 

gray bars represent the total power in the beta band. 

 

    In order to find out the suitable and reasonable range of EEG power in Fig. 3-4a, the 

ranges of frequency are firstly calculated in Fig. 3-5. Then the ranges of the frequency band 

are defined as “theta band: 4.5 ~ 9Hz” and “beta band: 11 ~ 15Hz”. After defining the ranges 

of frequency, the ranges of time interval are calculated in Fig. 3-6. Then the ranges of time 

interval are defined as “theta band: 300~3500 ms” and “beta band: 500~2600 ms”. 
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Fig. 3-5: Cross-subject ERSP plots for frequency (x-axis) 

 

Time (ms) Time (ms)

B
et

a 
ba

nd
 m

ea
n 

po
w

er
 (d

B
)

T
he

ta
 b

an
d 

m
ea

n 
po

w
er

 (d
B

)

 

Fig. 3-6: Cross-subject ERSP plots for time interval (x-axis) 



 25

 

 Fig. 3-4b and c give comparisons of the latency and total power in four cases from Fig. 

3-4a. It demonstrates that the latencies of power increases in two frequency bands are 

different with the different SOA time. The shortest latencies in both bands occur in case 1 and 

the longest power increase latency in the theta band occurs in case 4. It also demonstrates that 

the amount of power increases in the theta band is different with the different SOA time. The 

most significant power increase occurs in case 1. 

 

3.3.2 Motor Cluster 

 Fig. 3-7a shows the cross-subject average ERSP in the left motor cluster corresponding 

to five cases. Significant (p<0.01) power suppressions appear around the event onsets (at 0ms) 

and stop at different time axes by cases. In case 4, the alpha and beta power suppressions 

appear continuously until the red dashed lines, which indicates the mean of the response time 

for the math task. Compared with case 4, the alpha and beta power suppressions in case 5 are 

stronger and also last longer. In other cases, the alpha and beta power suppressions continue 

after the blue dashed lines. This phenomenon is suggested to be related to steering the car 

back to the center of the third lane. 
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Fig. 3-7: The ERSP images of the left motor cluster with five cases. (a) The ERSP 

images of the left motor cluster with five cases. The right column shows the onset 

sequences of the two tasks. Color bars indicate the magnitude of the ERSPs. Red 

solid lines show the onset of math. Red dashed lines show the mean response time for 

math task. Blue solid lines show the onset of deviation task. Blue dashed lines show 

the mean response time for deviation task. The red circle pointed out by a red arrow 

in case 2 means the red solid line and blue solid line are on the same position. 

Latencies calculated from (a) are shown in (b) by calculating from the deviation task 

onset to the first occurrence of power suppressions. The open bars represent the 

latencies in the alpha (8~14 Hz) band. The gray blue bars represent these latencies in 

the beta band (16~20 Hz). (c) shows the comparison of total power in cross-subject 

(11 subjects) averaged ERSP images in the left motor cluster between cases. The 
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amount of total power is calculated by adding all the power suppressions in the same 

temporal period and the same frequency band. The open bars represent the total 

power in the alpha band. The gray bars represent the total power in the beta band. 

 

    In order to find out the suitable and reasonable range of EEG power in Fig. 3-7a, the 

ranges of frequency are firstly calculated in Fig. 3-8. Then the ranges of the frequency band 

are defined as “mu suppression: 8 ~ 14Hz” and “beta band: 16 ~ 20Hz”. After defining the 

ranges of frequency, the ranges of time interval are calculated in Fig. 3-9. Then the ranges of 

time interval are defined as “mu suppression: 400~3700 ms” and “beta band: 200~3400 ms”. 
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Fig. 3-8: Cross-subject ERSP plots for frequency (x-axis) 
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Fig. 3-9: Cross-subject ERSP plots for time interval (x-axis) 
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 Fig. 3-7b and c shows comparisons of the latency and total power between the four cases 

in Fig. 3-7a. It demonstrates that power suppression latencies in the beta band are different 

with the different SOA time. The shortest power suppression latency occurs in case 1 and the 

longest power increase latency occurs in case 5. It also demonstrates that the amount of power 

suppression in the alpha band is different with the different SOA time. The most significant 

power suppression occurs in case 5 (the single driving task) and the smallest power 

suppression occurs in case 4 (the single math task). 

 

3.3.3 Condition Comparison 

    In order to compare two ERSP in different case, we apply a compared ERSP method 

with a statistic test in Fig. 3-10. The results will have some black circles with the original 

ERSP. The areas inside the black circles mean the area with significant power. 
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Fig. 3-10: Compared ERSP 

 

    Fig. 3-11a and d show the ERSP in the frontal and left motor clusters without a 
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significance test. Columns (b) and (e) show the differences among three single-task cases; 

columns (c) and (f) show the differences between single- and dual- task cases. In columns (b), 

(c), (e), and (f), a Wilcoxon signed-rank test is used to retain the regions with significant 

power inside the black circles. Columns (b) and (c) show the comparison of power increases 

between cases. The remained regions show greater power increases in the single-task case 

than in the dual-task case. Columns (e) and (f) show compared power suppressions between 

cases. The remained regions show greater power suppressions in the dual-task cases than in 

the single-task case. 

 

 

Fig. 3-11: ERSP without a significance test and the differences between cases. 

Column (a) shows the ERSP in the frontal cluster without a significance test which 



 30

contains all the details of case 1, case 2, case 3, and case 4. Column (b) shows the 

differences among three single-task cases in column (a). Column (c) shows the 

differences between single- and dual- task cases in column (a). Column (d) shows the 

ERSP in the left motor cluster without a significance test which contains all the 

details of case 1, case 2, case 3, and case 5. Column (e) shows the differences among 

three single-task cases in column (d). Column (f) shows the differences between 

single- and dual- task cases in column (d). A Wilcoxon signed-rank test (p<0.01) is 

used for the statistical test in (b), (c), (e), and (f). 
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4 Chapter 4 
Discussion 
 The brain dynamics related to distracted effects of stimulus onset asynchrony (SOA) by 

using EEG and VR-based realistic driving environment was investigated. The SOA 

experimental design was to investigate the distracted level. In this Chapter, the results after 

cross-subject analysis would be discussed. Cross-subject analysis was able to prove that the 

appeared features were not restricted to specific subject or experiment, that was, it could 

ensure the stability and consistency of pour findings. 

 

4.1 Frontal Cluster 

 The frontal lobe is an area in the brain, located at the front of each cerebral hemisphere 

(in Fig. 4-1). The frontal area deals with impulse control, judgment, language production, 

working memory, motor function, and problem solving (Burgess, 2000; Sarnthein et al., 1998). 

In Fig. 3-4a, the greater frontal power increases in cases 1-4 appear due to the solving of the 

math questions. The power increases in the theta (4.5~9 Hz) and beta bands (11~15Hz) appear 

briefly after the math onset. Fig. 3-4b and c show the quantified frontal power latencies and 

power increases in four conditions for the purpose of discussing the EEG dynamics made by 

solving the math question. In the theta power, the shortest latency is revealed in case 1. Power 

increases in three dual-task cases are higher than that in single-task case with the greatest 

power occurring in case 1. These phenomena suggest that dual tasks induce more 

event-related theta activities as well as subjects need more brain resources to accomplish dual 

tasks. The theta increase is associated with numerous processes such as mental work load, 

problem solving, encoding, or self monitoring (Onton et al., 2005). Based on this evidence, 

the study demonstrates that the subjects were distracted under dual-task conditions in the 



 32

experiment. 

 

 

Fig. 4-1: Picture showed the principle fissures and lobes cerebrum (Kandel et al.) The 

blue part is the frontal lobe and the white area is the location of parietal lobe. 

 

 Since human visual sensors need about 300 ms to induce event-related potential (P300 

activity, Jensen et al., 2001), we have also tested several kind of intervals between first and 

second task, 400 ms between twso tasks is sufficient for a subject to perceive stimulus. In case 

1, a processing task is already in the brain and subjects need more brain resources to manage 

the high priority task presented 400 ms after the processing task. Therefore, the total power in 

the theta band in case 1 is the highest as shown in Fig. 3-4c. Clearly the theta power increase 

appears the earliest in case 1 as shown in Fig. 3-4b. The early theta response in the frontal 

area primarily reflects the activation of neural networks involved in allocating attention 

related to the target stimulus (Missonnier et al., 2006). 

 The trends of response time for the math task (in Fig. 3-1a) and EEG theta increases in 

the frontal cluster (in Fig. 3-4c) are consistent with one another (in Fig. 4-2). In the case of the 

single math task, the response time is the shortest and the theta power increase is the weakest. 

Among the dual-task cases, the longest response time and the greatest theta power increase 
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are in case 1. This evidence suggests that the theta activity of the EEG in the frontal area 

during dual tasks is related to distraction effects and represents the strength of distraction. In 

addition, power increases in the beta band appear in all cases. From the ERSP images, the 

patterns are time-locked to the onset of the math task. Fernández et al. (1995) suggested that 

significant EEG beta band differences in the frontal area are due to a specific component of 

mental calculation. 
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Fig. 4-2: The trends of response time for the math task and EEG theta increases in the 

frontal cluster are consistent with one another. 
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4.2 Motor Cluster 

 Mu rhythm (μ rhythm) is an EEG rhythm usually recorded from the motor cortex of the 

dominant hemisphere. It can be suppressed by simple motor activities such as clenching the 

fist of the contra lateral side, or passively moved (Kuhlman, 1978a; Kuhlman, 1978b; 

Schoppenhorst et al., 1980). Mu suppression is believed to be the electrical output of the 

synchronization on large portions of pyramidal neurons in the motor cortex that controls hand 

and arm movements. 

 In this study, the mu suppressions (8~14 Hz) and beta power suppression (16~20Hz) are 

mostly caused by subjects steering the wheel and pressing buttons as shown in Fig. 3-7a. The 

mu suppressions caused by steering the wheel are almost time-locked to the response onset of 

driving task in cases 1-3 and case 5. However, the mu suppressions caused by pressing the 

buttons have no effects in case 4. As for in the dual-task cases, the mu suppressions are 

weaker than those in single-task case. This may due to the competition of brain resources 

required by wheel steering and button pressing. 

 Thus, Fig. 3-7b and Fig. 3-7c show motor power latencies and power increases in 4 cases 

for the purposes of discussing the EEG dynamics caused by the driving task. In (b), the 

longest latency of beta power suppression is observed in case 5 and the shortest latency 

appears in case 1. Perhaps motor planning is involved in preparing for steering the wheel and 

answering the math questions (Hayhoe et al., 2003). In (c), the three dual-task power 

suppressions are weaker than those in single task. Based on above evidences, it suggests that 

math processing occupies more brain resources in the frontal area during dual-task cases so 

less activation is induced in the motor area. 
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4.3 Other Clusters 

 To study the cross-subject component stability of ICA decomposition, components from 

multiple sessions and subjects were clustered based on their spatial distributions and EEG 

characteristics. Component clustering grouped massive components from multiple sessions 

and subjects into several significant clusters. Cluster analysis, k-means, applied to the 

normalized scalp topographies and power spectra of all 450 (30 channels x 15 subjects) 

components from the 15 subjects, and identified at least 7 clusters of components having 

similar power spectra and scalp projections. 

 These component clusters also showed functionally distinct activity patterns. Five other 

distinct component clusters (as shown in Fig. 4-3) accounted for central midline, parietal, 

right motor and left/right occipital, respectively. These were effectively removed from the 

activity of the other component clusters by the ICA decomposition and are not further 

considered here. The numbers of components in different clusters were given in Table 3-2.  

 

 

Fig. 4-3: The scalp maps for the central midline (A), parietal (B), right motor (C), left 
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occipital (D) and the right occipital (E) clusters across 15 subjects. Upper panels: the 

grand mean of the component map. Lower panels: individual scalp maps for the 

corresponded IC cluster. 

 

4.4 More Behavioral Experiment 

 In order to have more powerful result, the number of subject should be more. Due to the 

original number is 15 and the behavioral results don’t have enough significant difference, we 

invited more subjects to participate this experiment with only behavioral response recorded. 

 

4.4.1 Subjects 

    The total number of volunteer subjects was 25 in this study. The mean age of 

subjects was 26.2 years, and the standard deviation of age was 2.9 years. All subjects 

owned a valid driving license and had a mean reported driving experience of 5 years. 

All subjects were free of neurological and psychological disorders, as well as drug and 

alcohol abuse. Experimental procedures were approved by the Institutional Review 

Board of Taipei Veterans General Hospital. 

 

4.4.2 Experiment Results 

 The mean and the standard deviation of RT in the four different conditions were 

listed in Table 4-1. In responding the car deviation task, the mean RT of single-task 

condition was the longest (656.2 ms). In answering the math equation task, the mean 

RT of single-task condition was 1700.9 ms and was clearly shorter than other 

conditions. In comparison with RTs of responding the car deviation and answering the 
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math equation in single-task conditions, subjects used more resources and took more 

time on answering the math equation which showed that answering the math equation 

task could be as a distracting factor because its difficulty was harder than responding 

the car deviation task.  

 

Table 4-1: Summary data for responding car deviation and answering math equations 

variable across all trials (2187 trials for each condition), mean response time (Mean, 

in milliseconds), standard deviation (SD) and accuracy rate (AR). 

Types  Mean SD 
AR 
(%) 

ponding the car deviation    

Dual-task condition    

 ?400 ms SOA (math first and then deviation onset) 627.9 108.0 － 

 0 ms SOA (math and deviation occurred simultaneously) 650.5 115.3 － 

 400 ms SOA (deviation onset first then math) 648.0 114.1 － 

Single-task condition    

 Only car deviation 656.2 130.5 － 

     

wering the math equation    

Dual-task condition    

 ?400 ms SOA (math first and then deviation onset) 1972.2 673.9 94.6 

 0 ms SOA (math and deviation occurred simultaneously) 1943.5 633.4 94.1 

 400 ms SOA (deviation onset first then math) 1852.4 592.0 93.9 

Single-task condition    

  Only the math equation 1700.9 468.5 94.6 

  

 

    Fig. 4-4a and Fig. 4-4b how the bar chart of the mean and the standard deviation of RT in 

responding the car deviation task and answering the math equation task, respectively. In 

responding the car deviation task, the mean RT under the −400ms SOA condition (mean RT 

equals 627.9ms) was significantly shorter than the other three conditions (mean RT range was 
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from 648.0 to 656.2 ms) according to the repeated measures ANOVA (F3,2186 = 75.64, p < 

0.01) statistics test. Specifically, the mean RT in the single-task condition was longer than that 

in dual-task conditions. In answering the math equation task, the mean RT in the −400ms 

SOA condition (mean RT = 1972.2ms) were longer than the other three conditions (mean RT 

range, 1943.5 to 1700.9ms) according to the repeated measures ANOVA (F3,2186 = 257.63, p 

< 0.01) statistics test. Specifically, the mean RT in the single-task condition was significantly 

shorter than that in dual-task conditions.  

    In addition, overall accuracy of answering math equations was over 94%. There were no 

significant effects within three dual-task conditions (χ2(3) = 1.837, p > 0.01). 

 

ba

 

Fig. 4-4: Statistical significance of the dual tasks in each condition was analyzed by 

repeated measures ANOVA followed by pair wise comparisons. Error bar indicates ± 

1．SE. Panel (a) shows mean response time for responding car deviation. The repeated 

measures ANOVA test reveals RT of －400ms SOA condition was significantly 

lower than those in other conditions. Panel (b) shows mean response time for 

answering math questions. The repeated measures ANOVA test results show that RT 

in the － 400ms SOA condition was significantly higher than those in other 

conditions except in the 0ms SOA condition. 
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    To eliminate the individual differences, normalized mean RTs were computed for every 

subject in all conditions. Friedman ANOVA statistic test was used to assess the driving 

performance and interference effects (as shown in Fig. 4-5). 

 

a b

 

Fig. 4-5: Statistical significance of the dual tasks in each condition was analyzed by 

Friedman ANOVA followed by pair case comparisons using the Dunnett T3 method. 

Error bar indicates ± 1．SE. Panel (a) shows normalized mean response score for 

responding car deviation. The Friedman ANOVA test reveals RT of －400ms SOA 

condition and single deviation task were significantly different. The test also reveals no 

significant differences existed among 0ms SOA, 400ms SOA and single deviation task 

conditions. Panel (b) shows the normalized mean response score for answering math 

equations. The Friedman ANOVA test results show that RT in the －400ms SOA 

condition was significantly higher than those in other conditions except in the 0ms SOA 

condition. 

 

In Fig. 4-5a, the statistic results of Friedman ANOVA test shows a significant effect in 

responding the car deviation task (p < 0.01). Moreover, the Dunnett T3 test demonstrates that 

a significant difference existed between the −400ms SOA condition and the single task; that is, 

the −400ms SOA condition had a lower normalized mean response score than all other 
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conditions. In Fig. 4-5b, the experimental results show that answering the math equation task 

had a significant effect on responding dual tasks. The Friedman ANOVA test indicates a 

significant effect in answering math equations task (p < 0.01). The Dunnett T3 test shows that 

a significant difference existed between the single-task and three dual-task conditions. 

 

4.5 Dual-task Distraction Effects 

    In the first condition (−400ms SOA) which the math equation task appeared before the 

driving task 400 ms, the performance was dominated in solving complex arithmetic problems 

because the subjects needed to use more workload and exploit the limited-capacity resources 

in solving math equations based on their mental calculation level. In addition, this study also 

found that the subjects were likely to solve the math equations later than responding the car 

deviation because the difficulty of responding the car deviation task was easier than that of 

answering math equation task. So the subjects were likely responding the car deviation based 

on their subconscious reflection. Hence, the RT of responding the math equation tasks was the 

slowest under the first condition. Furthermore, according to the RT of the first condition, 

answering the math equation task did not increase the difficulty of responding driving task. 

That was also the reason why the perceptual bottleneck in answering the math equation task 

had no effect on responding the car deviation task. Moreover, when the subjects faced the 

math equations first and then the car suddenly deviated, they converted to focus on 

responding the car deviation instantly, and answering the math equations later. In this situation, 

subjects did not know when the math equations would appear in advance. This scenario was 

similar to perform the distracting task while driving in real environment such as answering the 

cell phone call or talking to the passenger. The driver stopped performing the distracting task 

immediately until finishing the driving task. Therefore, this study found the evidence that the 

RT of answering the math equation task in the first condition was the slowest. 
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    In the second condition (0ms SOA), both the math equation and the car deviation tasks 

were appeared simultaneously. According to the response-selection bottleneck for responding 

simultaneous tasks of driving and math addition, subjects would reflect three possible 

underlying sequences: driving response was selected first; answering math equations was the 

first response; or responses were selected in series. Therefore, subjects might use the trade-off 

strategy to response in the second condition. In this study, however, they decided to stop 

performing the math equation task due to their more attention to perform the driving task. To 

interpret why RT increased when performing dual tasks within a short SOA condition, there 

were several reasons. First, the strategies of manipulations, which were thought to affect 

response selection or performance, always affected the RT of answering the math equation 

task. Second, because the appearance order of tasks was unknown, subjects would perform in 

series rather than in parallel. Third, due to the high difficulty of answering the math equation 

task, the more cognitive resources were allocated to answering the math equation task. 

Furthermore, it suggested that 0ms SOA condition required capacity sharing or involved 

multiple resources. For example, the central execution could coordinate the performance of 

multiple simultaneous tasks. Several reasons can be used to interpret the reason why RT will 

be increasing when performing dual tasks within a short SOA condition.  

    In the third condition (400ms SOA), which the car deviation was appeared before the 

math equation 400ms, answering math equation task was easier than that in above two 

conditions but still more difficult than that in single-task condition. The results showed that 

responding the car deviation task caused the slight distraction effect on answering the math 

equation task because the duration of temporal overlap in this condition was lower than RT1 

which was the duration of temporal overlap in －400ms and 0ms SOA conditions (as shown 

in Fig. 4-6). On the other hand, subjects would respond the car deviation task first based on 

their subconscious reflection and then process the math equation task. The results showed that 

the math equation task did not cause distraction effects to the subjects to respond the car 
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deviation task. 
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Fig. 4-6: An illustrative time diagram for the SOAs and a single task conditions. (a) In 

the −400ms SOA condition, overlap time of Task 1 and Task 2 is RT1 (high task 

overlap). (b) In the 0ms SOA condition, overlap time of Task 1 and Task 2 is also RT1 

(high task overlap). (c) In the 400ms SOA condition, Task 1 and Task 2 overlap time 

is RT1-SOA (less than RT1, low task overlap). (d) Only math equation presented. (e) 
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Only deviation occurred. M: Math equation appeared; MR: Response math equations; 

D: Deviation appeared; DR: Response car deviation. 

 

4.6 Brain Dynamics Related to Behavioral Performance 

 Posner et al. (1989) postulated that two tasks performed simultaneously did not interfere 

with each other’s performance when different brain areas were used for these two tasks. 

However, this study uses two visual-stimuli tasks that compete within the frontal and motor 

areas for taking action. From the results, these two visual-stimuli tasks interfere with each 

other in both behavioral performance (in Fig. 3-1) and brain dynamics (in Fig. 3-11).   

 In order to compare brain dynamics among different cases (in Fig. 3-11), a statistical 

analysis was also conducted to assess the significance of the ERSP differences of the 

independent clusters under different cases. Since the true sample distribution of the cluster 

ERSP was unknown and the sample size (N=14 as 1 of 15 subjects and N=11 as 4 of 15 

subjects were exclude in frontal and left motor clusters, respectively) was small, a 

nonparametric statistical analysis, a paired-sample Wilcoxon signed-rank test, was employed 

to access the statistically significant ERSP differences under different cases. The level of 

significance was set to p<0.01. 

 In Fig. 3-11c, the significant differences between dual-task cases and case 4 are due to 

that subjects’ reaction to a math question is impaired when they are also facing a car deviation. 

Lavie et al. (2004) demonstrated that dual-task load increases distraction effects. Because of 

the distraction effects, the behavioral response time are significantly higher in dual-task cases 

than that in single-task case. In order to study the comparisons of these dual-task cases, the 

differences of them are shown in Fig. 3-11b. From the behavioral performance in Fig. 3-1, 

response time in case 1 and case 2 are the longest which means that the most distraction 

effects occurred in these two cases. It is also shown in Fig. 3-11b. Especially, distraction 
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effects in case 1 are slightly higher than those in case 2. Therefore, it is suggested that some 

kinds of two sequent tasks make the same distraction effects as two simultaneous tasks, or 

even higher. 

 Jong (1995) investigated how performance of two overlapping discrete tasks was 

organized and controlled. The sequential performance of overlapping tasks can be scheduled 

in advance and regulated by initially allocating brain resources to one task and subsequently 

switching to the other task. Thus in case 1, when the math task is presented to the subject, it 

occupies the brain resources. Then because the driving task appears, the brain resources are 

immediately switched to the driving task and the math task is temporally dropped. 

Subsequently, the brain resources are then switched back to the math task. This processing 

consumes the most brain resources and makes the longest response time for the math question 

The response time in case 1 is significantly higher than that in case 3 and case 4. The 

occurrence of distraction effects is due in large part to the switching of brain resources. 

 The fact, which no significant differences occur on behavioral performance for the 

driving tasks between the simultaneous-task case 2 and single-task case 5 (in Fig. 3-1), 

suggests that the driving task is too simple to require much brain resources. These results are 

also due to the first priority on the driving task. No differences of behavioral performance, 

which appear among case 2, case 3 and case5, also prove this fact. Thus, the subjects always 

chose to respond to the driving task when the driving task occurs even if they are handling a 

math task. In case 1, however, the math question is took as a cue to let the subjects rapidly 

respond to the driving task to avoid hitting the wall. This situation makes the response time 

short for the driving task in case 1 due to the subjects under a high perceptual load. 

Consistently, Lavie et al. (2004) demonstrated that a high perceptual load reduced response 

time. This also causes case 1 and case 3, which are formed as a symmetrical paradigm, be 

much different from each other (in Fig. 3-1). 

 In Fig. 3-11, the most power suppression occurs in case 5 (in Fig. 3-11f) with only 
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driving task. Three dual-task cases have the same level of power suppression. The reason why 

less power suppression occurs on dual-task cases in motor area is suggested that most brain 

resources are occupied in frontal area to deal with two tasks instead of those in motor area. It 

is proposed that motor area is not related to distraction effects. This is proved by one more 

result that the correlation is low between EEG dynamics in motor area and its corresponding 

response time. 

 In summary, this study observes several differences between dual-task and single-task 

cases. We investigate the relationship between brain dynamics associated with dual-task 

management and the behavioral performance of response modalities. It is suggested that EEG 

dynamics in the beta band of the frontal area can be indices of distraction effects. In addition, 

the appearing order of the two tasks with different difficulties is an important factor in 

dual-task performance. 
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5 Chapter 5 
CNN Implementation 
 

 Some studies demonstrated their work in analyzing electroencephalographic (EEG) 

signals by utilizing Cellular Nonlinear Networks (CNN) which was considered for a 

multidimensional signal analysis called the feature extraction problem (Tetzlaff�et al., 2006). 

In this chapter, I present a CNN-based Hybrid-order Texture Segregation as Early Vision 

Processing. In the future, I will like to implement EEG hardware by CNN features and 

architecture. 

 

5.1 Cellular Neural Networks (CNN) 

 The Cellular Neural Network (CNN), also known as the Cellular Nonlinear Network, 

first introduced by Chua and Yang (1988), as an able to implement alternative to fully 

connected neural networks, has evolved into a paradigm for those types of array (Chua and 

Roska, 1993). The CNN paradigm provides the framework for the computation of an 

algorithmically programmable array computer on a chip: named the CNN Universal Machine 

(CNN-UM). Its powerfully computing characteristic enables the realization of complex image 

processing tasks. However, it is not necessary to construct complex analog-logical circuits, 

such as the CNN-UM for a special CNN application. Thus, we aim at the property of the 

proposed algorithm to design a suitable CNN-based circuit. 

 

5.2 CNN-based Hybrid-order Texture Segregation 

 In this chapter, a new boundary detection algorithm is proposed (in Fig. 5-1). This 
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algorithm combines the first and the second order features for modeling the pre-attentive stage 

of human visual system.  

 

Fig. 5-1: The diagram of proposed algorithm 

 

 Fig. 5-1 shows the flow chart of the proposed approach: first, the first order features have 

been extracted by the Gaussian low-pass filters and the second order features have been 
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extracted by the Gabor filters, respectively. Assume that each pixel of the output is defined by 

a N+1 dimensional vector. After the first order features extraction, the vector contains N 

Gabor filters and 1 Gaussian filter. Next, we measure the difference of each pixel with its 

neighbor. Since the pixels, which belong to the same region have similar features, the level of 

difference among those pixels should be smaller than the difference to pixels existing in other 

regions of the image. Third, we keep these pixels with values larger than a specific threshold, 

and set the others to zero. We would get coarse boundaries which are look like Bell-shaped 

distribution. Consequently, we may go to thin these boundaries by a local peak detection. 

Finally, we can obtain boundaries similar to human visual system. Followed sections are 

going to introduce each block of the proposed algorithm. 

 

5.2.1 Functions of Blocks 

 First order Feature Extraction: As we have introduced in the previous section, the 

ganglion is accomplished by the so-called “center-surround” organization of the receptive 

field, in which it’s excitatory and inhibitory subfields are organized into circularly symmetric 

regions. This fact implies the receptive field of the ganglion is similar to the Difference of two 

Gaussians (DoG). Subsequently we describe how the DoG function detects boundaries: first, 

two Gaussian filters with different values of σ  are applied in parallel to the images. 

Afterwards the difference of the two smoothed instances is computed. It can be shown that the 

DoG operator approximates the LoG one which has been widely used in boundary detection. 

 Second order Feature Extraction: The receptive fields of V1 cells are orientation 

selective, and it can be modeled by the Gabor function (Chen, 1999; Hawkins, 1969). The 

Gabor function is an adaptive band-pass filtering method which constructs a complete but 

non-orthogonal basis set. On the other hand, the Gabor function consists of a Gaussian 

function which is modulated by a sinusoidal function.  
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 Gabor Filtering Bank Set: Besides the orientation selectivity, the Gabor filters are also 

frequency selective. With these two properties, Daugman extended the original Gabor filter to 

a two-dimensional (2D) representation (Daugman et al., 1985). There are many researches 

which focus on the Gabor filter bank. Jain and Farrokhnia (1981) suggested a bank of Gabor 

filters, i.e., Gaussian shaped band-pass filters, with dyadic coverage of the radial spatial 

frequency range and multiple orientations . Fig. 5-2 shows an example of the Gabor filtering 

bank set. Since the goal of this chapter is designing an algorithm which can be implemented 

on the CNN-UM, the structure could not be complex-valued. In this chapter, we use four 

Gabor filters for extracting the second order features in the experiments. All of these Gabor 

filters have the same Gaussian shape in the frequency domain and scatter uniformly in four 

orientations.  

 

 

a 

 

b 

Fig. 5-2: An example of Gabor filter dictionary. (a) represents the Gabor-type filter 

bank set, and (b) is the Feature space of Gabor filter dictionary. 

 

 Full-wave Rectification: Just like the other filter-rectify-filter model, the rectifying 

operation is taken after the operation of the Gabor filters. It has been generally acknowledged 
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that V1 cells have a property which looks like the half wave rectification. The intervening 

rectification ensures that the fine-grain positive and negative portions of the carrier will not 

disable another when the smoothing operation is performed.  

 Gaussian Post Filtering: After the cells were stimulated by a specific signal, for 

example, a bar with specific orientations, the output of the V1 cells responding to same 

direction will aggregate together. The region of cells which contain the same properties will 

respond stronger than the other regions. It is consistent with the “localization” properties of 

the textures. This effect can be simulated by a Gaussian post filters. It looks like the averaging 

with different weighting which is inverse proportional to the distance from the center of the 

post filter. 

 Difference Measure: The features which have been extracted by Gaussian post filtering 

can be described by an N-dimensional vector. Each feature vector can be regard as a point in 

N-dimensional space. According to Chen (1994), the difference is represented by the distance 

in N-dimensional space (Chen, 1994). There is an important property of the textures. That is 

the pixels which are aggregated together usually contain similar features. Based on this 

property, some algorithms use gradient for extracting the features (Tan, 1995). In this chapter, 

we only calculate the difference between features of each pixel to pixels right behind and 

below to it. 

 Saturation: In proposed algorithm, when there are more than two kinds of textures in 

the test patterns, there will be more than one boundary. Because these boundaries usually do 

not have similar intensity, choosing threshold becomes an important problem. For the sake of 

finding the threshold, we use the mean of the difference of the total pixels as the threshold. 

Usually, some boundaries with relative lower magnitude are eliminated. This is because of 

follows: first, a relative huge region be considered for measuring the local feature. Next, the 

scale of difference between different patterns varies enormously. Obvious boundaries and 

cause relatively larger difference and raise the mean of difference. The boundaries which are 
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not so obvious causing relative lower difference will be eliminated. For attacking this problem, 

a natural-log transform can be used for simulating the saturation effect. It can suppress 

stronger responses which may affect the threshold too much. Meanwhile, it still keeps the 

location of maximum difference where we assume boundaries lying. The strength of the 

responses reflects the level of differences between two local regions, but it may be not so 

linearly consistent to our perceptional feeling. According to some biological theories, in the 

human vision system, the dynamic range of response is limited, and the range of response is 

not linearly proportional to stimulate (Treisman, 1986). Natural log transform is an ordinary 

and important operation and it stretch the range of lower responses where we need to judge 

whether there are boundaries or not. 

 Local Maximum Detection: The coarse boundaries detected after taking threshold 

generates a range where the boundaries are probably located on. Thus, local maximum 

detection is used to detect the best assumption of the location of the boundaries. It assumes 

that the difference among different patterns should be maximal at their boundary. For the 

implement of the Local Maximum Detection in CNN, the template can be defined as follows: 

 

0 0 0
0 3 0 , 0 , 3.5
0 0 0

b b b
A B b b z

b b b

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

, (1) 

where 

 

0.5 if - 0

0 otherwise
ij klu uv v

b
≥⎧⎪= ⎨

⎪⎩ . (2) 

Eq.(1) and Eq.(2) perform what we need. 
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5.3 Experimental Results 

 We applied our algorithm to the images which consist of a number of different test 

patterns. Most of those test patterns are synthesized by textures from Brodatz album, 1966 

and it also has become a standard for evaluating texture algorithms. Each texture pattern we 

used here are 640*640 pixel 8-bit gray-scale images respectively. In the experiments, the 

proposed algorithm has been simulated on CNN-UM.  

 The proposed algorithm has been implemented on ACE4K Chip. Because of the 

limitation of current technology, the size of cell array has been limited.  That becomes to the 

major problem in the implementation of proposed algorithm on CNN-UM. For example, the 

chip we used for implementing proposed algorithm contains cell array 64 by 64. It is too 

small to analyze the texture. For the sake of higher resolution for obtaining better performance, 

some necessary operations have been performed before proposed approach: first, each input 

image has been divided into several sub-images. Next, we process each sub-image 

respectively with same parameters. Fig. 5-3 shows how we divide the input images. Note that 

there are overlapped areas between sub-images because we have to avoid the boundary effects 

of the cell array. 

 

Fig. 5-3: The example of dividing of the input images. 
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 Another issue in the implementation of proposed algorithm on CNN-UM is that we are 

not able to implement non-linear templates on the chip. Thus, several proposed operation is 

not able to be implemented directly. For those operations, we choose another operation which 

is able to be implemented on the chip and the result is similar to what we expected. Even 

more, we have to disable some operations in proposed algorithm and take the trade-off. For 

example, Local Maximum Detection operation contains nonlinear template and thus, it can 

not be implemented on ACK4K Chip. Hence, we choose 

BLACK_AND_WHITE_SKELETONIZATION to replace it. Fig. 5-4 shows the results of 

implementation of proposed algorithm on ACE4K Chip. 

 

 

Fig. 5-4: The simulation results of proposed algorithm. 
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5.4 Discussion  

 In this section, we discuss some properties of the proposed approach. The way we 

estimate the error is as follows: 

 Only the case that synthesizes two texture patterns in Brodatz texture is considered. In 

the algorithm, every boundary is independently. It is hard to judge the accuracy if we consider 

multi-boundaries simultaneously. Especially when some boundaries are detected and the 

others are not. 

 The distance between the answer and the result detected by the algorithm is measured in 

the condition of boundary which is detectable. We define the error by dividing measured 

distance into the number of total pixels. 

 Fig. 5-5 is a histogram of error estimation in our experiment, and the results with error 

less than 5% is account for 85% for test images. The average of the error is less than 5%. The 

smallest error is 0.76%. Note that the images with bigger estimated errors are reasonable. In 

these examples, the boundaries between different textures (middle line) exist, but they are 

weaker than local boundaries caused by non-uniform regions. For the sake of simplicity, only 

the largest peaks are kept during error estimation, so the boundaries in the middle are not kept 

in the results. Although in these examples, the outputs are consistent to human visual 

perception. Their errors are quite big. We have found that it is hard to define a generally 

“correct answer” for all test images in human vision system, and the method we measure the 

error is probably not suited for those kind of test images. For this reason, the measurement is 

not necessary for the input images synthesized by the rest 42 textures in Brodatz textures. 
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Fig. 5-5: Histogram of error estimation 

 

 In summary, a simple framework for hybrid-order boundary detection is proposed. It 

mimics the mechanism of the early stage of the human vision, and experimental results are 

generally consistent to the human visual sensation. After post processing, the detected 

boundaries also have adequate accuracy for the other image processing applications such as 

stereo, and pattern recognition. By implementing the proposed algorithm on the Cellular 

Neural Networks (CNN), the computational time will greatly decrease. The real-time 

processing capability is critical in some applications, such as the object tracking. As same as 

the other algorithms for textures analysis which is also based on the Gabor filters, there are 

too many parameters need to be determined. Determining the parameters will much more 

complex when the synthesized texture patterns increased. For the sake of keeping the 

structure simple and combining the hybrid-order features easily without the clustering 

methods, we use same resolution for all of the Gabor filters in the approach. In this approach, 
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we only consider the first and the second order features. According to some research results, 

there are still some higher-order features that can be utilized. For example, color is one of 

them. We do believe proposed approach can be extended to color textures by integrating color 

information. 
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6 Chapter 6 
Conclusion 
 

 This study investigates behavioral and EEG responses under multiple cases and multiple 

distraction levels. Firstly, the response time for mathematical problem solving in dual-task 

condition is significantly higher than that in single-task condition. Therefore, distraction 

effects occur while processing two tasks during driving. Comparing to the mathematical 

problems, however, the response time for driving tasks under multiple cases is almost the 

same without differences. This is due to the order of task appearance and the relative 

difficulty of the two tasks, which suggesting these factors are important considerations in 

dual-task performance. Secondly, theta power increases in the frontal area are higher with 

higher response time. The phasic changes around the theta band in the case, in which the 

mathematic task is presented before the deviation task, show the strongest increase as the 

same as that in the simultaneous-task case. This is because subjects already process a task in 

the brain and need more brain resources to manage the second task presented after the first 

task. In conclusions, this study suggests that the power increases of the 4~7.8 Hz frequency 

band in the frontal area is related to driver distraction and represents the strength of distraction 

in real-life driving. 

    For the future work, we will still work hard on EEG research for keeping safety during 

driving. Can we detect the mistake happened by watching the EEG power before it happens? 

How long can we detect it before it happens?  

 Based on the good properties of CNN, on the other hand, we are working on 

implementing the EEG analysis on CNN which was considered for a multidimensional signal 

analysis. In the future, I will like to implement EEG hardware by CNN features and 

architecture. 
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