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Abstract

The transceiver design in three-node amplify-and-forward (AF) multiple-input
multiple-output (MIMO) relay systems involve two links, the direct and relay links,
and two precoders, the source and relay precoders. Most existing methods only
consider the design with a relay precoder, and some even ignore the direct link. In this
dissertation, we propose new linear/nonlinear transceiver design methods taking the
direct and relay links into account, and jointly optimizing the source and relay
precoders. In our designs, the relay precoder is linear, and the source precoder and the
receiver can be linear or nonlinear. Specifically, four scenarios are considered. The
first is the design with a linear source precoder and a liner
minimum-mean-square-error  (MMSE) receiver, the second a nonlinear
Tomlinson-Harashima source precoder and a linear MMSE receiver, the third a linear

source precoder and a nonlinear QR successive-interference-cancelation (QR-SIC)



receiver, and the fourth a linear source precoder and a nonlinear MMSE-SIC receiver.
All the designs, either the linear or nonlinear precoded systems, are difficult since the
cost functions to be optimized are highly nonlinear functions of the source and relay
precoders. Yet, the corresponding optimization problems are not convex. To
overcome the difficulties, we propose new precoder architectures and methods such
that the design problems can be translated into scalar-valued and convex optimization
problems. And, the closed-form solutions can be obtained by the corresponding
Karush-Kuhn Tucker (KKT) conditions. Finally, we consider the precoders design
with quality-of-service (QoS) constraints. In the scenario, the linear precoder is used
at the source and the MMSE receiver at the destination. Again, this problem is
difficult and the optimization problem is not convex. We then extend the method
proposed for the systems mentioned above to derive a closed-form solution.
Simulation results show that the performance of the proposed transceiver design

methods is significantly better than that of existing methods.



Acknowledgements

During the Ph.D. program, I would like to show my gratitude to many people. First, I would
like to thank my advisor, Prof. Wen-Rong Wu, for his kindly guidance. He spends a lot of time
in discussing the problems I encounter in my research, providing valuable suggestions, and
teaching me how to write technical papers. In addition to academic research, he provides lots
of resources in improving our English proficiency. Under his enthusiastic instruction, I learned
not only how to do a research but also learned the optimistic study attitude. At this moment, I
have to say Prof. Wu is the key person whom I am most grateful to in my studying life.

Second, I am grateful to all the members in Prof. Wu’s lab. for their valuable discussion and
help in academic research including Chun-Fang Lee, Chao-Yuan Hsu, Hung-Dau Hsieh, Chun-
Tao Lin, and so on. Especially, I would like to thank Chao-Yuan Hsu for his encouragement
and help during the period of the Ph.D. program. Also, I would like to thank all my friends who
ever encourage or help me, especially Shih-Wei Wang and Sin-Syun Li.

Finally, I would like to show my deep gratitude to my family, especially my best-loved
wife, Kai-Wen Liang, and parents, Chien-Li Tseng and Jin-Ping Hung, for their support and

encouragement in the Ph.D. program period.






Contents

Chinese Abstract
Abstract
Acknowledgements
Contents

List of Tables

List of Figures

1 Introduction

2 Joint MMSE Transceiver Design with Linear Source and Relay Precoders

2.1 System Model and Problem Formulation . . . . . ... .. ... ... ....
2.1.1  MMSE Receiver with Linear Source and Relay Precoders . . . . . . .
2.1.2 MMSE Receiver and Related MSE Matrix . . . . . . ... ... ...
2.1.3  Problem Formulation . . . . . . . . ... ... ... ... ...
2.2 Joint Source/Relay Precoders Design . . . . . . .. .. .. ... ... ....
2.2.1 Proposed Method . . . . . . .. ... ... ... ... ... ...,
2.2.2  Special Case: Cooperative Beamforming . . . . . . ... ... ...

2.3 Applications . . . . . ...

Vil

iii

vi

xi

xii

O oo oo



2.3.1 SISO OFDM Relay System . . . . . . . . . . e, 21
2.3.2 Two-Hop MIMO Relay System . . . . . .. ... ... ... ...... 22
2.3.3  General MIMO Relay System . . . . . . . ... . ... .. ...... 22

3 Joint MMSE Transceiver Design with Tomlinson-Harashima Source and Linear
Relay Precoders 33
3.1 System Model and Problem Formulation . . . . . .. ... ... ... ..... 34

3.1.1 MMSE Receiver with Tomlinson-Harashima Source and Linear Relay

Precoders . . . . . . .. . e 34

3.1.2  Problem Formulation . . . . . . . .. . .. . . ... ... 36

3.2 Joint Source/Relay Precoders Design . . . . . . . .. .. ... ... ...... 37
3.3 Simulations . . . ..o oo e 44
4 Joint QR-SIC Transceiver Design with Linear Source and Relay Precoders 49
4.1 System Model and Problem Formulation . . . . . . . .. ... ... ...... 50
4.1.1 QR-SIC Receiver with Linear Source and Relay Precoders . . . . . . . 50

4.1.2  Problem Formulation . . . . . . . . . . . ... 52

4.2 Joint Source/Relay Precoders Design . . . . . . . ... ... ... ... ... 54
4.2.1 Proposed Method . . . . . . . . . . ... .. ... 54

4.2.2 Antenna Selection . . . . . . . . . ... e 57

43 Simulations . . . . ... e e 58

S Joint MMSE-SIC Transceiver Design with Linear Source and Relay Precoders 67

5.1 System Model and Problem Formulation . . . . . .. ... ... ... ..... 68
5.1.1 MMSE-SIC Receiver with Linear Source and Relay Precoders . . . . . 68
5.1.2  Problem Formulation . . . . . . . ... ... .. ... ... ...... 69
5.2 Joint Source/Relay Precoders Design . . . . . . . ... ... ... ....... 70
5.2.1 Proposed Method . . . . . . . . . .. . . . ... ... ... 70
5.2.2  Proposed Subproblem Optimization . . . . . . ... ... ... .... 71

viii



5.2.3  Proposed Master Problem Optimization . . . . . . . ... ... ....

5.3 Simulations . . . . . ... e e e

6 Joint MMSE Transceiver Design with Quality-of-Service (QoS) Constraints
6.1 System Model and Problem Formulation . . . . . . . ... ... ... .....
6.1.1 MMSE Receiver with Linear Source and Relay Precoders . . . . . . . .
6.1.2  Problem Formulation . . . . . . . . . . . . ... ... ... ...,
6.2 Joint Source/Relay Precoders Design for Two-Hop MIMO Relay System . . . .
6.2.1 Proposed Precoder Structures . . . . . . . . . . .. ... ... ..
6.2.2  Optimum Solutions in (6.34) and (6.36) . . . . . .. ... .. .....
6.3 Joint Source/Relay Precoders Design for General MIMO Relay System
6.3.1 Problem Formulation in MIMO Relay System . . . . ... ... ....
6.3.2  Optimum Solution in (6.44) . . . . . . . . . . .. ..
6.4 Simulations . . . . ... . Lo
6.4.1 Two-Hop MIMO Relay System . . . . . . .. ... .. ... ......
6.4.2 General MIMO Relay System . . . . . . . .. .. .. ... ......
7 Conclusions
Appendix

A.1 Proof of (2.25) . . . . . e
A.2 Derivation of (2.29)and (2.30) . . . . . . . ... e
A3 Proofof Lemma3.2 . ... ... ... ...
A4 Optimum Solutionin (3.32) . . . . . . . . . ..
A.5 Water-Filling Algorithm for (3.32) . . . . . . ... .. ... .. ... ...
A.6 Derivationof (6.41) . . . . . . . . . e
A.7 Derivationof (6.43) . . . . . . ... e
A.8 Derivationof (6.48) . . . . . . . ...

1X

87
88
88
89
90
90
95
96
96
98
101
101
102

111



Bibliography 125




List of Tables

2.1

3.1

3.2

4.1

5.1
5.2
5.3

6.1

Complexity of linear source and relay precoders (MMSE receiver). . . . . . . . 23

Computational Complexity of THP source and linear relay precoders (MMSE
TECEIVEL). . . . v v i e e e e e e e e e e e e 43

Proposed water-filling algorithm solving (3.32) . . . . ... ... ... .... 44

Computational Complexity of linear source and relay precoders (QR-SIC re-

CEIVET). . . . o o o i e e e e e 57
Complexity of linear source and relay precoders (MMSE-SIC receiver). . . . . 74
Source and relay precoders in the proposed nonlinear transceivers. . . . . . . . 75

Optimizations of the source and relay precoders in the proposed nonlinear transceivers.

Complexity of linear source and linear relay precoders (QoS constraints). . . . 100

X1

76



Xii



List of Figures

2.1
22

23

24

2.5

2.6

2.7

2.8

3.1

32

Linear source and relay precoded AF MIMO relay system with MMSE receiver.

MSE performance comparison for un-precoded and linear source and relay pre-

coded AF SISO-OFDM cooperative systems. . . . . . . . . . ... ... ...

BER performance comparison for un-precoded and linear source and relay pre-

coded AF SISO-OFDM cooperative systems. . . . . . .. . . ... .. ....

MSE performance comparison for existing un-precoded/precoded and linear

source and relay precoded AF two-hop MIMO relay systems. . . . . . . .. ..

BER performance comparison for existing un-precoded/precoded and linear

source and relay precoded AF two-hop MIMO relay systems. . . . . . . . . ..

BER performance comparison for antenna selection [45] and linear source and

24

25

26

27

28

relay precoded AF two-hop MIMO relay systems (L =1and N = R =M =4). 29

MSE performance comparison for existing un-precoded/precoded and linear

source and relay precoded AF MIMO relay systems. . . . ... .. .. ....

BER performance comparison for existing un-precoded/precoded and linear

source and relay precoded AF MIMO relay systems. . . . . .. .. .. ....

THP source and linear relay precoded AF MIMO relay system with MMSE

FECEIVEL. . . v v v v v e e e e e e e e e e

MSE performance comparison for existing precoded systems and THP source

and linear relay precoded system with MMSE receiver. . . . . .. . ... ...

Xiil

46



33

4.1
4.2

4.3

4.4

4.5

5.1

5.2

53

54

5.5

BER performance comparison for existing precoded systems and THP source

and linear relay precoded system with MMSE receiver. . . . . .. ... .. .. 47

Linear source and relay precoded AF MIMO relay system with QR-SIC receiver. 61
BER performance comparison for linear source and relay precoded system with
QR-SIC receiver and existing precoded systems (L = N = R = M = 4,
SNR,=SNR,; =15dB). . . . . . . .« 62
BER performance comparison for linear source and relay precoded system with
QR-SIC receiver and existing precoded systems (L = N = R = M = 4,
SNR,,=15,SNR,=0dB). . . . .. . 63
BER performance comparison for un-precoded, GMD source precoded, and
linear source and relay precoded systems with ML receiver at the destination
(L=N=R=M =2,SNR;,=SNR,;=10dB). ... ... .......... 64
BER performance comparison for linear source and relay precoded system with
QR-SIC receiver and un-precoded systems (L = N =4, R = M = 2 and 4-
QAM is used for un-precoded systems; N =4, L = R = M = 2 and 16-QAM

is used for linear source and relay precoded system with QR-SIC receiver). . . 65

BLER performance comparison for un-precoded and precoded systems (16QAM,
N =R =M =4,SNR;,=20,SNRy;=5dB). . . . . ... ... ... ..... 79

BER performance comparison for un-precoded and precoded systems (16QAM,
N =R=M =4,SNR;,=20, SNR,;=5dB). . ... ... ... . ....... 80

BLER performance comparison for un-precoded and precoded systems (4-QAM,

N =R =M =4,SNR;,=20, SNR,;=5dB). . ... ... ... . ....... 81

BER performance comparison for un-precoded and precoded systems (4-QAM,

N =R =M =4,SNR;,=20, SNR,;=5dB). . ... ... ... . ....... 82

BLER performance comparison for un-precoded and precoded systems (16QAM,
N =R =M =4,SNR;;=5,SNR,;=20dB). . . ... ... ... ....... 83

X1V



5.6

5.7

5.8

6.1

6.2
6.3

6.4
6.5

6.6

6.7
6.8

BER performance comparison for un-precoded and precoded systems (16QAM,

N =R=M =4,SNRy=5,SNR,;=20dB). . . . ... ... ... ...... 84
BLER performance comparison for un-precoded and precoded systems (16QAM,

N =R=M =2,SNRy=5,SNR,;=20dB). . . . ... ... ... ..... 85
BLER performance comparison for un-precoded and precoded systems with
imperfect CSIs (16QAM, N = R = M = 2, SNRy;=5, SNR,,=25 dB,
SNR,4=20dB). . . . . .« 86

Power consumption for proposed joint precoders method in two-hop MIMO

relay system with 02, = 0.0316 and 02, = 0.3162. . . . . . . .. .. ... ... 103
Resultant MSE versus QoS with o2, = 0.0316 and 02, = 0.3162. . . . . . . .. 104
Power consumption for proposed joint precoders method in two-hop MIMO

relay system with 02, = 0.3162 and 02, = 0.0316. . . . . . . .. .. ... ... 105
Resultant MSE versus QoS with 02, = 0.3162 and 02, = 0.0316. . . . . . . . . 106
Resultant MSE performance of proposed precoders method in two-hop MIMO

relay system with (py, p2, p3, p4) = (0.008,0.009,0.01,0.011). . . . ... ... 107
Power consumption for proposed joint precoders method in MIMO relay system

witho? =1,0% =lando?,=0.1. . . . . ... ... 108
Resultant MSE versus QoS with o2, = 1,02, = land 62, =0.1 ... ... .. 109

Resultant MSE performance of proposed precoders method in MIMO relay sys-
tem with (p1, p2, p3, p4) = (0.008,0.009,0.01,0.011). . . . .. ... ... ... 110

XV



Xvi



Chapter 1
Introduction

Iversity is a commonly used technique to overcome the multipath channel fading effect in
D wireless communications. Existing diversity schemes include time diversity, frequency
diversity, and spatial diversity. Among these schemes, the spatial diversity is particularly at-
tractive. This is because it can combine with the other two diversity techniques with no time
or bandwidth expansion [1]- [3]. The conventional way to obtain the spatial diversity is the
use of multiple transmit or multiple receive antennas. When both multiple transmit and receive
antennas are used, the system is referred to as a multiple-input multiple-output (MIMO) sys-
tem [1]- [21]. The MIMO system has been widely studied in the literature since it can enhance
the diversity or spectral efficiency in an efficient way, [5]- [21]. However, due to shadowing,
multipath fading, interference, and distance-dependent path losses, the link quality between the
source and the destination in a wireless network may not be always good enough for reliable
communication. The fundamentally linking problem greatly affects the transmission in wireless

systems.

Recently, cooperative communication has been garnered great interest. In cooperative sys-
tems, relays at some strong shadowing areas are deployed such that the signal from the source
can be transmitted to the destination by the source-to-destination link (direct link) and the

source-relay-destination links (relay links). With the additional relay links, the channel qual-
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ity can be effectively improved, and the spatial diversity is implemented in a distributed way,
referred to as distributed spatial diversity [22]- [49]. Various relay protocols have been proposed
including amplify-and-forward (AF), decode-and-forward (DF), and compress-and-forward (CF)
[22] [37]- [38]. In AF, the relays receive the signal from the source and retransmit it to the desti-
nation with signal amplification only. Such a system is also called a non-regenerate cooperative
system [41]- [43], [45]. In DF, the relays decode the received signals, re-encode the informa-
tion bits, and then retransmit the resultant signals to the destination. The system is also called
a regenerative cooperative system. One problem associated with the DF is that the decision
errors can occur in the relays. The CF is a compromise structure between AF and DF where the
received signals at the relays are estimated and compressed, and then re-transmitted to the des-
tination. It is simple to see that the DF protocol requires a higher computational complexity and
a larger processing delay at the relay nodes. In this dissertation, we only consider the AF-based

cooperative system.

Recently, the MIMO technique was introduced to cooperative systems as a means for fur-
ther performance enhancement. With the multiple antennas equipped at each node, a MIMO
relay system is constructed [39]- [46]. Capacity bounds for a single-relay MIMO channel was
first addressed in [39]. Similar to conventional MIMO systems, the precoding operation can be
conducted in a MIMO relay system. For the MIMO relay systems, the relay precoder with AF
protocol was first designed in [41]- [42] to enhance overall channel capacity. In most of those
approaches, only the relay link is considered. It was shown that the capacity can be further
increased if the direct link is taken into account [42]. Apart from the capacity, the link quality is
another criterion has been considered. As well known, the precoder design is a transceiver de-
sign problem which means a specific precoder is designed for a specific receiver. In [43]- [44], a
relay precoder was designed for a minimum mean-square error (MMSE) receiver. Precoding in
multiple-relay MIMO systems was investigated in [44]. Note that the above works all address
the spatial multiplexing scenario. Recently, the design for the transmission of a single data

stream, referred to as beamforming, was also considered. For example, [46] derived the op-

2



timum source and relay beamformers using a maximum signal-to-noise-ratio (SNR) criterion.
In the work, the optimum solution was derived for the relay-link-only system. In addition to
beamforming, antenna selection in MIMO relay systems was also studied. With the MMSE cri-
terion, an optimum selection scheme was developed in [45]. In this approach, only one antenna

is selected at the source and the relay, respectively, for signal transmission.

As mentioned, in the precoders design for spatial multiplexing AF MIMO relay systems,
the existing works only consider the precoder at the relay. Also, the direct link is frequently
ignored [41]- [44]. In this dissertation, we consider the transceiver designs in three-node AF
MIMO relay systems taking the direct and relay links into consideration, and jointly optimizing
the source and relay precoders. Since the relay only amplifies its receive signal, a linear precoder
is used in our study. We first consider the linear transceiver design where the linear precoder
is used at the source and the MMSE receiver at the destination. The MMSE criterion is also
used in [43]- [44]; however, only the relay precoder at the relay link is considered. With our
formulation, it is found that the MMSE is a complicated function of precoding matrices, and
a direct minimization is almost not possible to conduct. To overcome the difficulty, we pose
some structural constraints on the precoders so as to diagonalize the MSE matrix in the cost
function. With the precoders, we can then derive an MSE upper bound. Minimization with this
upper bound, instead of the original MMSE, then becomes feasible. The proposed precoders
can finally be computed via an iterative water-filling technique. Note that the MSE criterion
to minimize is the total MSE of the multiplexed signal streams. With the specially designed
structure, the proposed precoders can make the individual MSEs of all signal streams equal,
indicating that the bit-error-rate (BER) of the proposed precoded system will be the minimal

among all precoded systems with the same minimum total MSE [8].

To enhance the performance of the precoded system, we then use the nonlinear Tomlinson-
Harashima precoder (THP) at the source and a MMSE receiver at the destination. As that in
the linearly precoded MMSE system, the cost function is a highly nonlinear function of the

source and relay precoders. Since the nonlinear THP is involved, the optimization problem

3



becomes more difficult. Even with the numerical method [51], finding the optimum solution
is not a simple task. To overcome the problem, we propose to cascade a unitary precoder with
the THP. The unitary precoder can not only simplify the optimization problem but also improve
the MMSE performance. With the specially designed unitary precoder at the source, the primal
decomposition approach [51], decomposing the original optimization problem into a master
and a subproblem optimization problems, can be applied. The optimum source precoder in
the subproblem can thus be derived as a function of the relay precoder. The problem is then
similar to the precoding design in conventional MIMO systems [16] and the solution is readily
obtained. The focus then becomes how to solve the master problem, in which the cost function
is a function of the relay precoder only. Due to the nonlinear cost function, the relay precoder
in the master optimization cannot be solved. We then propose an relay precoder structure and
translate the relay optimization problem into a standard scalar-valued concave optimization
problem. Using the Karush-Kuhn-Tucker (KKT) conditions, we then obtain a closed-form

solution for the relay and source precoders.

An alternative to enhance system performance is to use a nonlinear receiver at the desti-
nation. We then consider the system with a linear precoder at the source and a nonlinear QR
successive-interference-cancelation (QR-SIC) or the MMSE-SIC receiver at the destination. In
the transceiver design, the most desirable criterion to minimize is the BER. However, it is gen-
erally acknowledged that a design minimizing BER is difficult to obtain. As an alternative, in
this dissertation we propose to use the block-error-rate (BLER) instead of the BER as the de-
sign criterion. For a MIMO system with a QR-SIC receiver, the precoder which can minimize
the BLER has been solved by the geometric mean decomposition (GMD) technique [6],[7].
We then extend its use in AF MIMO relay systems to design the source and relay precoders,
jointly. Although the AF MIMO relay system can be formulated as a general MIMO system
and the GMD criterion can be easily applied, the cost function is a highly nonlinear function
of the source and relay precoders. A direct optimization of such a function turns out to be

infeasible. Fortunately, the GMD method allows us to express the source precoder as the func-

4



tion of the relay precoder. As a result, the two-precoder design problem can be reduced to a
single-precoder problem. Similar to the approach used in the THP precoded system, we ap-
ply the primal decomposition to translate the problem to a standard scalar convex optimization
problem. The closed-form solutions for the source and relay precoders can then be obtained. It
is noted here that GMD can also maximize a lower bound of channel’s free distance [12]. As
known, the free distance is the metric used in the maximum likelihood detector (MLD). So, it is
expected that the proposed precoders can also improve the performance of the MLD !. As well
known, a precoded MIMO system with the MMSE-SIC receiver outperforms that with QR-SIC
receiver. We can assert that the same result can be obtained for MIMO relay systems. For
MIMO systems, the precoder with the MMSE-SIC receiver can be solved by the uniform chan-
nel decomposition (UCD) method. However, the UCD is not directly applicable in AF MIMO
relay systems. We show that if the source precoder is constrained to be unitary, the problem can
be easily overcome. Using the UCD, we can jointly design the source and relay precoders such
that the signal-to-interference-plus-noise ratio (SINR) for each layer is equal and maximized.

As a result, the BLER can be minimized.

So far, all precoded systems we described are designed to improve the link performance
[41]- [46]. The constraints posed on the designs are the source and relay power. In many ap-
plications, however, quality-of-service (QoS) may be more critical. For instance, a multimedia
system providing high quality video service may require constraints on BER and processing
delay. Precoded AF MIMO relay systems with QoS constraints have been investigated in the
literature [48]- [49]. In [48], the precoders were designed to asymptotically satisfy the QoS
constraints. In such a system, the direct link was ignored and only the relay precoders were
considered. Alternatively, [49] addresses the similar problem in the multi-user scenario in

which each user is equipped with one antenna and the direct link was ignored. As far as we

'The GMD method is asymptotically optimal for high SNR [11], in terms of both channel throughput and
BER performance. The optimal design here means that the precoder design does not need tradeoffs between the

throughput and BER



known, the joint source and relay precoders design in the AF MIMO relay system satisfying
QoS constraints has not been studied before 2. In the last part of this dissertation, we aim to
study the problem. As that in the previous parts, we take the both the source and relay precoders
into consideration. We use a linear precoder at the source and a linear MMSE receiver at the
destination. Since there is a one-to-one mapping between the BER and the MSE, we use the
MSE:s of signal streams as our QoS constraints. Similar to previous cases, the optimum solution
here is difficult to derive. To overcome the problem, we first consider the two-hop system and
propose the precoder structures that can simplify the design problem and lead to a closed-form
solution. In general MIMO relay systems, the problem becomes much more involved. The pre-
coder structures, however, enable us to derive an MSE upper bound. Using the upper bound as
the constraint function, we can translate the original matrix-valued optimization problem into a
standard scalar-valued optimization problem. A solution can then be solved by the primal de-
composition [51] and corresponding KKT conditions. From the solution, we further provide a
sufficient condition to determine if the system is proper to be operated in the cooperative mode
or not.

This dissertation is organized as follows. In Chapter 2, we consider the system with a
linear precoder at the source, a liner precoder at the relay, and an MMSE transceiver at the
destination. In Chapter 3, we consider the same system except that the linear precoder at the
source is replaced by the THP. In Chapter 4, we consider the system with a linear precoder at
the source, a linear precoder at the relay, and a nonlinear QR-SIC receiver at the destination. In
Chapter 5, we consider the same system as that in Chapter 4 except that the QR-SIC receiver is
replaced by the MMSE-SIC receiver. In Chapter 6, we consider a precoded system with QoS
constraints. The linear precoders are used at the source and the relay, and the MMSE receiver

is adopted at the destination. Finally, we draw conclusions in Chapter 7.

ZNote that the relay precoder in [48] is designed to asymptotically satisfy its QoS constraints. The multi-user
system in [49] only uses one antenna for each user, and thus the equalization is not required at the receiver. The

cooperative systems are basically different from those we consider.
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Chapter 2

Joint MMSE Transceiver Design with

Linear Source and Relay Precoders

In this chapter, we consider a precoded AF MIMO relay system in which linear precoders are
used at the source and the relay, and an MMSE receiver at the destination. In Section 2.1, we
build the system model and derive the MMSE solution. It is found that the design problem is
essentially an optimization problem, and the cost function, the MSE, is a complicated function
of the source and the relay precoders. In Section 2.2, we propose a new method to solve the
problem. The main idea of our method is to pose a structural constraint on the precoders so
as to diagonalize the MSE matrix in the cost function. With the precoders, we can then derive
an MSE upper bound. Minimization with this upper bound, instead of the original MSE, is
much simpler. The proposed precoders can finally be computed via an iterative water-filling
technique. In Section 2.3, we give some application examples demonstrating the effectiveness

of the proposed method.



§ 2.1 System Model and Problem Formulation

§ 2.1.1 MMSE Receier with Linear Source and Relay Precoders

We consider a typical three-node half-duplex cooperative AF MIMO relay system where mul-
tiple antennas are placed at each node. Under this scenario, signals can be transmitted from the
source to the destination, and from the source to the relay and then to the destination. To avoid
the interference between the direct and relay links, we consider the time-division-duplexing
scheme [41]- [44] used in a typical two-phase transmission mentioned above (See Fig. 2.1).
Let N, R, and M denote the number of antennas at the source, the relay, and the destination,
and assume that all channels are flat-fading. For the first phase, the received signals at the

destination and the relay can be expressed as
yp1=HspFss+np, 2.1)

and

Yr = HgrFgs +np, (2.2)

respectively, where s € CL*! is the transmitted signal vector with L being the number of the

substreams, Fg € CV*F is the precoding matrix at the source, Hgp € C**" and Hgp €

CM>N are the channel matrices corresponding to the source-to-relay and source-to-destination

channels, respectively; np; € CcMx1

is the first-phase received noise vector at the destination,
and ng € C*1 is the received noise vector at the relay. Here, we assume that L < min{N, M}
to provide sufficient degrees of freedom for signal detection.

In the second phase of the transmission, the relay retransmits the received signal with an-

other precoding matrix. Thus, the received signals at the destination can be expressed as

yp2=HrpFryr +nps = HppFrHgpFss + (HppFrng +np ), (2.3)

CMXR

where Fp € C**% is the precoding matrix at the relay, Hzp € is the channel matrix cor-

(CM><1

responding to the relay-to-destination channel, and np > € is the second-phase received
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noise vector at the destination. Here, we assume that each element in np ; has a zero-mean
circularly symmetric Gaussian distribution, and all the elements are independent identically
distributed (i.i.d.). The same assumption is applied for np > and ng. As a result, the received
signal vectors yp ; and yp o for the two phases can be combined into a single vector, denoted

as yp € C?**! Consequently, we have

vpo= | 7P | = HFgs +n, 2.4)
YbD,2
where
H n
H= 5t  and n= Pl . 2.5)
HrpFrHgsr HrpFrngp +npo

Here, H is the equivalent channel matrix with rank (H) = N, and n is the equivalent noise
vector at the destination. It is noteworthy that the noise received at the relay is amplified by
the relay precoder and the relay-to-destination channel. Also, the equivalent channel matrix in
(2.4) is a function of the relay precoder F . This is quite different from the scenario considered
in conventional MIMO systems. The precoders design problem actually is a joint transceiver
design problem. In other words, the optimum precoders not only depends on the channels, but
also the receiver. Similar to previous works, we will consider the linear MMSE receiver in our

design [43], [44].

§ 2.1.2 MMSE Receiver and Related MSE Matrix

Let Ry, = E[nD,lng’l] = aidIM, Ru,, = E[np,gngg] = O'ZydIM, and Rr = F[ngnfl] =
oy I, where o7, ; and o7, , are the noise variances at the destination and the relay, respectively.
Also, the elements of the transmitted symbols are i.i.d. with zero-mean and a covariance matrix
R, = 021, where o2 is the transmitted symbol power.

Using the setting, we can have the covariance matrix of the equivalent noise vector as

2

H
R,=F [nn } = ) [ ,
0 On,rHRDFRFRHRD +0-n,dIM

(2.6)
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Let G be the equalization matrix in the receiver. Then, the MSE for recovering s, denoted as ./,
is given by

J=E{|Gyp—s|*}. (2.7)
Minimization of (2.7) leads to the optimal equalization matrix [7] as
Gop = o’FIH (?HFsFIHY +R,) (2.8)

Substituting (2.8) into (2.7) and invoking the matrix inversion lemma [50], we can then have

the MMSE, denoted by J,,;,, as

Jimin = tr {E}, (2.9)
where
E= (0,2, +Es+Eg) . (2.10)
In (2.10),
Es =0, 2FgH{,HspF s (2.11)
and
Er =F{H{,FIH], (0o HppFrFiHI, + ofl,dIM)_l HppFrHsrFs. (2.12)

As we can see from (2.10), the MMSE is a function of Fg and Fz. It is also simple to see that
Es accounts for the MMSE contributed in the direct link and Ey for that in the relay link. If we
ignore the direct link and only consider the relay precoder, the problem will be degenerated to

the case considered in [43].

§ 2.1.3 Problem Formulation

As shown in (2.9), the MMSE is a function of the two precoding matrices, Fg and F . Our

task here is to design these two matrices such that the MSE in (2.9) can be minimized. The
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optimization problem can then be formulated as below.
L
FoFr triB} = 2_; Ei)
s.t.

E= |01, +0,;F{H{ , HspFs +

=Eg

-1

—1
F{H{.FIHL, (02 HrpFrFiHL, + 00 Ly)  HppFrHspFs

=Epgr
tr {E [FryrynFp]} =tr{Fg (0o, Iz + 0c;HsgFsF{HIL) FIL L < Pry

tr {FsE [ss" | F{} = o2tr {FsF§} < Psr. (2.13)

The inequalities in (2.13) indicate that the precoders have to satisfy the transmit power con-
straints both at the source and the relay where Ps7 and P denote the maximal available
transmit power at the source and the relay, respectively.

From (2.13), we can readily find that (2.13) is not a convex optimization. Also, the cost
function involves a series of matrix multiplications and inversions, it is a complicated and non-
linear function of Fg and Fz. The cost function may have many local minimums, and the
optimal solution, even with numerical methods [51], is difficult to derive. We will propose a

method, described below, to solve these problems.

§ 2.2 Joint Source/Relay Precoders Design

As mentioned above, the optimum solution for (2.13) is difficult to derive. In this subsection,
we then propose a method to seek for a suboptimum solution. One difficulty in (2.13) is that
the number of unknown parameters in Fz and Fg can be large. The first idea of our approach
is to use a constrained precoder structure such that the number of unknowns can be effectively

reduced. The other difficulty in (2.13) is that the formulae are too complicated to work with.
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Our second idea is to derive an MMSE upper bound having a simple expression, and conduct
minimization with this upper bound. Even though the cost function can be simplified dramati-
cally with the proposed method, a closed-form solution is still difficult to obtain. We then use

an iterative water-filling method to solve the problem.

§ 2.2.1 Proposed Method

When the direct link is ignored and only a relay precoder is considered, the optimum MMSE
precoder can be analytically obtained through a MSE matrix diagonalization procedure [43].
Motivated by this fact, we propose to conduct a similar matrix diagonalization in our design.
Indeed, if the error matrix E in (2.13) can be diagonalized, the trace operation can be easily
conducted, and the whole problem can be greatly simplified. To do that, we firstly consider the

following singular value decomposition (SVD) for the channel matrices in all links:

Hgp = U, X, VE; (2.14)
HSR 3 Usrzsrvg; (215)
Hpp = U3, VE, (2.16)

where U,y € CM>*M U, € CP*E and U,; € CM*M are the left singular matrices of Hgp,
Hgr, and Hpp, respectively; X5 € RN 3 ¢ RPN and X,; € RM*E are diagonal
singular-value matrices of Hgp, Hgr, and Hgp, respectively; VE € CV*NV VI ¢ CV*N,
and VI € CP*% are the right singular matrices of Hsp, Hgsg, and Hgp, respectively.
Observing (2.13), we will readily find that a complete diagonalization of E will be difficult.
We then first consider the diagonalization of (o2 ,HrpFrFfi H;, + 02 L) ! using Fg, so
that the inverse operation can be easily tackled. Such an approach, though suboptimal, will
considerably simplify our derivation. It also allows us to derive an MSE upper bound, and then
obtain a scalar-valued optimization problem. With the SVD in (2.16), an immediate choice for

F i to diagonalize (02 HppFrFHHI, + 02 1)) is
Fr=V,3,U, (2.17)
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where 3, € R is a diagonal matrix and U, € C*% is a unitary matrix to be determined.

With (2.17), we have
(02 HppFpFiHE, + 02 13) " = Uy (02, 5,,2287 + 02,Ly) " UL (2.18)

To further diagonalize F{ HY . FiHY ) (02 HppFrFIHE, + 02 Ty) T HppFpHgsFs, we
can select

U, =U4 (2.19)

ST
and

Fs= VersUsa (220)

where 3, € RV*L is a diagonal matrix and U, € C%*% is an unitary matrix yet to be specified.
From (2.17) and (2.19), we have
Fr= V2. UZ (2.21)

After some manipulations, we can obtain the MSE in (2.13) as

tr{E} = tr { (0;2IL + UISISESIS! (62 3,575 + 02 1)) ' £,,5,3,3,U,+
o 2uls! VHzggzsdvz:sUs)‘l}

—tr{ | 0.2, + SISISIS (52 3,525 1 02 1) 5,055, %, +
Z:‘]E‘;R

-1

o—,;flzf VASES VI,

=Eg

(2.22)

where

V=Vviv, (2.23)

is a constant matrix related to the channels. Note that the inclusion of the unitary matrix Uy

in (2.22) will not change the cost function at all. However, by an appropriate design of Uy,
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we can make the diagonal components of E equal. It has been shown that under a fixed MSE,
i.e., tr{E} , the receiver that make the MSEs of the MIMO components equal has the lowest
BER performance [8]. From (2.22), we now have some observations in order. First, we see that
(2.22) is obtained with the constrained structure of the precoding matrices specified in (2.21)
and (2.20). The minimum MSE obtained with the precoders can serve as an upper bound of the
true minimum MSE. Second, the unknown matrices become ¥, and 32, which are diagonal and
the whole problem is easier to handle. Finally, the matrix Eg cannot be diagonalized. However,
starting from (2.22) and exploiting the diagonal nature of Eg, we can further derive an MSE
upper bound and use it to diagonalize Eg.
To proceed, let us use the matrix inverse lemma to rewrite (2.22) as:

-1

tr(B) =tr | | (0,1, + Eg) +21 (0, 5VIEI3,V) =,
N——

(. J

::A ;;;3

—tr (A7) ~tr (AT'SE (BT + B ATISH) T DA, (2.24)

It is note here that to make sure the inverse of B exists, B should be positive definite. To achieve
that, we assume N < M. Based on (2.24), the desired MSE upper bound can be obtained by
the aid of the next lemma.

Lemma 2.1: Let Dy and D, be diagonal matrices, with the diagonal entries of D, being

positive. Then for any positive definite matrix X, we have
tr (DI (X + D) "' Dy) > tr (DY (diag(X) + D2) ' Dy), (2.25)

where diag(X) is obtained from X by setting its off-diagonal entries to zero. The equality in
(2.25) holds if X is diagonal.
Proof: See Appendix A.1.

By the lemma, it follows that
(A7 (B +2,A7 S T RAT) >
tr (A7'S (diag (B™') + ZA 'S T mA ). (2.26)
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Using (2.24) and (2.26), we can have the following key result.

= 1
Z o2 .02 .02 1’ (2.27)
i=1 —2 + s, rz srz 'rdz + 0.372' (B—l(i)i))f

2
(o TO‘T 10 +U

tr(E) < tr (A7) = tr (A5 (diag (B™') + ZA 'S0 T 547

Compared with the original MSE functlon (2.13), the upper bound in (2.27) admits a much
simpler form and is analytically tractable. Hence, we propose to design the precoder by mini-
mizing the upper bound in (2.27). For convenience, let p; = a ;and p,; = O’ ;,in (2.27). The

optimization can finally be formulated as:
L
. 1
min o o7
Ps,irPr,i =1, ,L =) 5,iPr,i0 5y i rd i —1/: N\ 1
’ ’ 0- — ; B 7.1
=4 + n'rp'rzo'rdz‘i’o'nd +p8,l( ( ’ ))

s.t.

L
tr {2 (O'n TIR -+ O'QZSTE EHEH) 27{{} = ani (0-721,7“ + U?ps,l-agm) < PR,T

=1

L
otr{S,5} = 02> pei < Psg, pei 20, pri >0, Vi (2.28)
=1

It is simple to see that the problem in (2.28) is not a convex optimization problem either, and
the optimum solution is still difficult to find. However, note that if one of p,; and p, ; is given,
(2.28) will become a convex optimization problem. This suggests a method, referred to as the
iterative water-filling method [17], [52], [53], to find a suboptimum solution. For a given p; ;,
the optimum p,; can be expressed as (See Appendix A.2):

—1/2 _ ©a\ ) — +
Dyi = KrOn dr/Ps,i0sr,iOrd,i (O-gp&io-gr,i + 0-721,7‘) 2 0121 d ( + Ds, Z(B 1(27 Z)) 1>
0% (02, (052 + poi(B71(1,0) ™) + paio, ) |

(2.29)

where [y]T = max[0,y|, and p, is the water level chosen to satisfy the power constraint at the
relay, i.e., Y1 pri (02, + 02psi02,;) = Prr . With p,; = 02, in (2.29), the relay precoder
can be obtained by (2.21). For a given p, ;, the optimum p, ; can be expressed as

+
Ms\/E_U ( nd+p7’lgn'r 3dz) ]

((B_l(ZJZ» ( nd+pT20nr rdz)+pTZUsr1 zdz

Psi = (2.30)
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where 11, is the water level chosen to meet the power constraint at the source, i.e., Zle Dsi =

Ps 7, and

ﬁz:( "d+p7zan7“ 7%(11) ((B_l(i’i))_l( nd+prlo-nr rd1)+pTZUsr1 72’dz)' (231)

Thus, we can use (2.29) and (2.30) to solve p,.; and p; ; iteratively. To determine the U, we first
substitute (2.29) and (2.30) into (2.21) and (2.20), respectively, and express the error matrix in
(2.10) as

E— (a;2IL +ul EUS> - (2.32)

where
E=3IsIs0s (62 3,325 + 02 1) 2,:5,%,5, +
0, EIVISIS, VS, (2.33)

Our task now is to design U, such that (2.32) has equal diagonal MSE values. To do that, we

consider the following eigen-decomposition
E=V;D;VZ (2.34)

where V; € CL*L is a matrix with the eigenvectors of E as its columns, and Dg, € RX*F is a

diagonal matrix with the eigenvalues of E as its diagonal components. Therefore, if we let
U, = ViFy, (2.35)

where F is the L-points DFT matrix, (2.32) can be re-expressed as

1

E=F] (21, +Dg) F, (2.36)

which reveals that E is a circulant matrix with equal diagonal elements. It is simple to check
the unitary property that U,U¥ = UZU, =1;.

The proposed scheme mainly involves the operations of the SVD in (2.14)-(2.16), (2.34)
and the inversion of the matrix B in (2.27). The computational complexity of the proposed

scheme, measured in terms of floating-point operations (FLOPs), is summarized in Table 2.1.
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§ 2.2.2 Special Case: Cooperative Beamforming

In this subsection, we consider the cooperative beamforming in a two-hop cooperative system.
This is a special case of our precoding problem in which L =1 and the direct link is not consid-

ered (i.e., Hgp = 0).
For a given source beamforming vector fg, the optimal relay precoder can be derived by [43]
Fr = V.2, U7 (2.37)

where 3, = diag{c,1,-- ,0,. g} Witho,1 > -+ > 0, p.

Let f5 = /a,vg € CV*! where vg is an unit vector and fg satisfies the transmit power
constraint, i.e., o2ag||vg||? < Psp. Substituting the beamformer and (2.37) into (2.9) with

Hgsp = 0, we have

-1

-1
Join = 1r { <0;2 + £V, ISl (02 Ly + 02,505,320 5) zrdzrzsrvgfs> }

_ -1
=tr{ | o? + a,viV, SESIS (02 Ly + o), 5,05, 30 5]

=wh
-1
3,02, 2, VE
rd2dr2dsr V . Vg
~——
=W
1
- min{N,M,R} 0?02, 0% (2.38)
—2 s VL, 12 7,07 81,4 rd,i
a7t Zi:l |w8r’1| T gt OR O Ty
T . .
where w,, = Vivg = [we.1, - ,wen]| and ||w,.||? = 1, ,,, X,4, 3, are diagonal matrices

with their diagonal elements arranged in a decreasing order. The beamforming problem can then
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be formulated as

. 1
min {N o R}
asywsr,iygr,i7Vi -2 min M,
o724 sy

2 2
i=1 |wsr,i

2
|2 Jr,iasr,i rd,i

2 2 2 2
Un,d+an7TUr,iav'd,i

s.t.

i |fs]1® = olas|[vs|® < Psr

N
Z |wsm‘|2 =1
i=1

tr {3, (o2 I+ 08, VIV, S B < Proy. (2.39)

Theorem 2.1: The optimal beamforming vector denoted by ¢ and the optimal relay precoder
denoted by F, for (2.39) are PUL?VST(:, 1) and M#MVM(:, 1)[U,(:,1)]7, where
V.,q(:,4) and Ug,(:, i) denote the ith column of V., and Uy, respectively.

Proof: We first derive the optimal wy, for given o; and 0, ;, 7 = 1,--- | R. From (2.39), it

is simple to see that the optimal w, can be derived by the following equivalent problem

min{N,M,R} 2 9 2
M 2 : |U) ) |2 Ur,iosr,iard,i
ST,1 2 2 2 2
W ) On,d + gn,rgr,iard,i
N
> [weri] = 1. (2.40)
i=1
From (2.40), it is obvious that optimum wy, is [1,0,--- ,0]" . This can be easily checked by
2 2 2 2 2 2
Ur,iasr,iard,i Ur,jasr,jard,j . .
2 > 2 3 2= 3 s 2.3 0 L2 (2.41)
Un,d + Un,TUr,iard,i Un,d + O-n,ro-r,jo-rd,j

The solution implies that the optimum vg, denoted by v, is

vi=Va.(,1). (2.42)
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As a result, the design problem can therefore be expressed as

2 2 2
Ur lgsr lard 1

max ozs

. 2
Ots,0ryi, Vi On d + Un ror, 1Urd 1
s.t.
Psr
0<a, <2

S

tr {3, (02 Ip + 0.8, Vivevi vV, =T B =

Ufw« Zaf,z- ta 020?1%1 < Prr. (2.43)
=1

Taking a close look at (2.43), we first find that the cost function is only related to oy and aﬁl

Then, we can have the following observation:

0202407,
105r10rd1 . :
Q=" ; ~— is monotonous in o7, and a. (2.44)
d + Un rr, 1er 1

From (2.44) and (2.43), we can rewrite the power constraint for the relay as
o’ (072177, + o200’ ) < Prr, (2.45)
and consequently have the following relationship

P,
2 R.T , 2.46
O-T'»l . ( + 0420'5 gr 1) ( )

It is noteworthy that (2.45) also implies that the optimal 32,, denoted by X7, is

Or1 0 0 Or1 0 ]
0 Or2 0 0

¥ = = . (2.47)
0 0 ong 0 0 0

Substituting (2.46) into the cost function in (2.43), we have

2 2 2 2 2
o O-r lo-sr lgrd 1 < aso_sr,lard,l (2 48)
s = ’ .
nd+0nr 31‘7%1 2 M_F
On,d Pr,T Un r rd 1
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where the upper bound of the cost function can be achieved if

2 PR,T

o = .
r,1 2 2 2
(Un,r + aSUs Usr,l)

(2.49)

Therefore, via (2.49), the problem can finally be expressed as the minimization of a function of
as given by

2 2
Jsr,l O-T‘d,l Xs

max —

242 2 2
as  95,d95%r,1 Qa + 0_2 0_2 + 9n,d%n,r
Prr s n,r rd,1 Pr T

Pg 1

st. 0<a,< (2.50)

S
Since the cost function in (2.50) is monotonically increasing in «, it is clear that the optimum

o, denoted by o}, 1s
| Ps 1
S 0_?

(2.51)

Combining (2.51) and (2.42), we finally obtain the optimum beamforming vector as:

. | Psr ‘
fs = 0—3V37~<., ].) (252)

Substituting (2.51) into (2.49) and combining (2.47) and (2.37), we have the optimum relay

precoder as

PRT H
: V., 1)U, (:, 1) 2.53
\/(U%7T+PS,TUET71) d( )[ ( )] ( )

It is noteworthy that the result of Theorem 2.1 is the same as that in [46], in which the criterion
for the beamformer design is the maximization of the received SNR. Here, we use the MMSE

criterion and obtain the same solution.

§ 2.3 Applications

The proposed linear source and relay precoded scheme can be used in many scenarios. In this
subsection, we conduct simulations to evaluate the performance of the linear source and relay

precoded scheme in three different applications, namely a single-input-single-output (SISO)
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orthogonal-frequency-division-multiplexing (OFDM), a two-hop MIMO relay system (where
only the relay link is considered), and a general MIMO relay system. Assume that all channel
state information (CSI) of all the links are available at all nodes, and perfect synchronization
can be achieved. For the first case, the channel is assumed to be frequency-selective-fading, and

for the rest of the cases, the channel is assumed to be flat fading. Also, the modulation scheme

is QPSK.

§ 2.3.1 SISO OFDM Relay System

Assume that the cyclic prefix (CP) length is longer than the overall channel delay spread such
that inter-symbol interference will not occur. Also, the channel is assumed to be quasi-static,
meaning that its response remains constant during each OFDM symbol. Note that each node
only has one antenna. As a result, the equivalent frequency domain channel matrices of all links
are diagonal. The linear source and relay precoders in (2.20) and (2.21), therefore, become
Fq= Ff 3 .F; and Fp = 3, where the relay precoder becomes a subcarrier power allocation
(PA) problem. Let hy,(1), h.q(l), and hs4(l) be the channel impulse responses for the source-to-
relay, relay-to-destination, and source-to-destination channels, respectively. The channel taps,
hg(1), hrq(l), and hge(l), 0 < [ < 5, are generated from i.i.d. complex Gaussian random
variables with zero mean and variance 1/6, such that F {Z?:o lhe(D)|*} =E {Z?:o \hsa(1)]?}
= E{> o |ha()]*} = 1. Also, let N = 64 and the total available powers at the source and
the relay be equal, and SNR;,., SNR,.; and SNR,; be defined as the received SNR at the source-
to-relay, relay-to-destination, and source-to-destination links. Here, we let SNR,,. = SNR,; =
SNR;s = SNR. Fig. 2.2 and Fig. 2.3 show the MSE and BER comparisons for the un-precoded
and linear source and relay precoded systems, respectively. As shown in the figures, the linear
source and relay precoded system significantly outperforms the un-precoded system. This is
because the linear source and relay system considers all the link resources and allocates the

power properly.
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§ 2.3.2 Two-Hop MIMO Relay System

In this scenario, the channel condition in the direct link is poor such that the destination only
receives the signal from the relay link. Here, we first consider the case that N = R =M = L =
4. Let the elements of each channel matrix be i.i.d. complex Gaussian random variables with
zero mean and unity variance. Let SNR,. and SNR,.; denote, respectively, the SNR per receive
antenna of the source-to-relay and relay-to-destination links. Here, we set SNR, = 20 dB and
vary SNR,;. Fig. 2.4 and Fig. 2.5 show the MSE and the BER comparisons, respectively for
(a) an un-precoded system with ZF receiver, (b) an un-precoded system with MMSE receiver,
(c) the optimal relay precoder with MMSE receiver [43], and (d) the linear source and relay
precoded system. From those figures we can see that the linear source and relay precoded
system outperforms not only the un-precoded system, but also the relay precoded system in [43].
This is because the linear source and relay precoded system incorporates the additional source
precoder such that the performance can be enhanced even the direct link is not considered.

We also report the simulation result for cooperative beamforming, i.e., L = 1. As discussed
in Theorem 2.1, our design for this case is optimal. Welet N = R = M = 4 and SNR,,, = 5
dB. Fig. 2.6 shows the BER comparison for the antennas selection method in [45] and the
linear source and relay precoded method. From the figure, we can see that the linear source and
relay precoded method is superior to the antenna selection. This is expected since our design

here is optimal.

§ 2.3.3 General MIMO Relay Channel

In this scenario, we consider a symmetric MIMO relay system, i.e., N = M = R =L = 4.
As the previous case, each element of the channel matrices is assumed to be i.i.d. complex
Gaussian random variables with zero mean and same variance. We let SNR,,, SNR,; be the
same as those defined in Section 2.3.2, and SNR,,; as the SNR per receive antenna for the

source-to-destination link. Here, we set SNR;,. = 15 d B, SNR,; = 10 dB and vary SNR,. Fig.
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Table 2.1: Complexity of linear source and relay precoders (MMSE receiver).

Operation FLOPs
SVD, (2.14)-(2.16) (14M N? + 8N?) + (14RN? + 8N?) + (14M R* + 8 R?)
B, (2.24) OMN? +2MN +2N3 +13/4N? + N?
ps.i and p,.;, (2.29)-(2.30) (21LI, + 14L1,) 1
E, (2.33) 14L + 10M +4NL + 2L>N
SVD of E, (2.34) 223
Usg, (2.35) 2L3
Fg and Fp, (2.20)-(2.21) (2NL +2NL?) + (2R? + 2R?)

N: number of transmit antennas

R: number of relay antennas

M: number of receive antennas

L: number of transmitted symbol streams
I,.: number of iteration for computing p, ;
I;: number of iteration for computing p; ;

I;: number of iteration of the water-filling process

2.7 and Fig. 2.8 show the MSE and BER comparisons, respectively, for the linear source and
relay precoded system and other systems described in Section 2.3.2. Note that the optimal relay
precoder in [43] only considers the two-hop relay system. For fair comparison, we include the
direct link at the destination when implementing the MMSE receiver. As expected, the linear

source and relay precoded method outperforms all other systems.
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Destination: M antennas

N substreams Source: N antennas ¢ First phase

— — —» & Second phase

Figure 2.1: Linear source and relay precoded AF MIMO relay system with MMSE receiver.
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Figure 2.2: MSE performance comparison for un-precoded and linear source and relay precoded

AF SISO-OFDM cooperative systems.
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Figure 2.3: BER performance comparison for un-precoded and linear source and relay precoded

AF SISO-OFDM cooperative systems.
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Figure 2.4: MSE performance comparison for existing un-precoded/precoded and linear source

and relay precoded AF two-hop MIMO relay systems.
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Figure 2.5: BER performance comparison for existing un-precoded/precoded and linear source

and relay precoded AF two-hop MIMO relay systems.
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Figure 2.6: BER performance comparison for antenna selection [45] and linear source and relay

precoded AF two-hop MIMO relay systems (L = 1land N = R = M = 4).
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Figure 2.7: MSE performance comparison for existing un-precoded/precoded and linear source

and relay precoded AF MIMO relay systems.
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Figure 2.8: BER performance comparison for existing un-precoded/precoded and linear source

and relay precoded AF MIMO relay systems.
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Chapter 3

Joint MMSE Transceiver Design with
Tomlinson-Harashima Source and Linear

Relay Precoders

In this chapter, we address the problem of the MMSE transceiver design with a nonlinear THP.
In Section 3.1, we first formulate the precoded system model in which a THP cascaded with a
linear precoder are used at the source, a linear precoder at the relay, and the MMSE receiver
at the destination. As that in the previous section, we found that the MSE is a complicated
function of the source and the relay precoders, and the corresponding optimization is difficult to
conduct. In Section 3.2, we then propose a new method to overcome the problem. The main idea
is to use the primal decomposition such that the two-precoder design problem can be translated
into a single-relay precoder problem. With the proposed method, the optimization problem can
be further expressed as a convex optimization problem, and the closed-form solution can be
obtained by KKT conditions. Finally, we evaluate the performance of the proposed method in

Section 3.3.
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§ 3.1 System Model and Problem Formulation

§ 3.1.1 MMSE Receiver with Tomlinson-Harashima Source and Linear Relay

Precoders

We consider the precoded three-node AF MIMO relay precoding system as shown in Fig. 3.1,
where we include two precoders - a THP source precoder and a linear relay precoder Fg, and a
linear MMSE receiver, G, is applied at the destination. Here, we also consider the general two-
phase transmission protocol [41]- [45]. In the first phase, the source signal s € CY*! is fed into
the nonlinear THP in which a successive cancellation operation characterized by a backward
squared matrix B and a modulo operation MOD,,,(-). The source signals s = [sy, -+, sy]|T are
modulated by m-QAM where the real and image parts of s, as the set {£1,--- , +(y/m — 1)}.
The feedback matrix B has a lower triangular structure and the diagonal elements are all zeros.
The modulo operation acts over the real and image parts of the inputs, respectively, is expressed
as follows:

MOD,, () — & — 2/m| 2EYT | (3.1)

2ym

It is clear that the transmitted signal x is bounded between —y/m and y/m. With B and the

operation in (3.1), the elements of x can be recursively expressed as [16]

k—1

T = Sk — Z B(k‘, l)l’l + e (32)

=1
where zy, is the kth elements of vector x and B(k, 1) is the (k,[) element of matrix B; e =
le1,...,en]T denotes the errors of the modulo operation (the difference of the input and the
output). From (3.2), we can reformulate the transmitted signal x after THP with the following

matrix form

x=Clv (3.3)

where C = B + Iy is a lower triangular with ones in its diagonal, and v = s + e. The THP

precoded x is then passed through a unitary precoder matrix Fg and subsequently sent to the
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relay and the destination simultaneously. The unitary precoder, as we will see, can greatly
facilitate the joint precoders design and improve the BER performance.

In the second phase, the received signal at the relay is multiplied the relay precoder and
then is transmitted to the destination. Therefore, the signal received at the destination in the two

consecutive phases can be expressed as a vector form as

HSD nD,l
Yp = Fsx + (3.4)
HrpFrHgsr HrpFrngr +npo
:;,H :;rn

where H and n denote the equivalent channel matrix and the equivalent noise vector, respec-
tively, as the same definition in (2.4). In (3.4), x € CV*! is the THP precoded signal vector
(3.3); yp € C?M*1 is the received signal vector at the destination. Note that if v can be esti-
mated at the destination, s can then be recovered by the modulo operation in (3.1). Thus, the

optimum G € C?***¥ can be found by minimizing the MSE defined as
J = E{|Gyp —v|*}. (3.5)

To solve the problem in (3.5), we assume that the precoded signal x;’s are statistically indepen-
dent and they have the zero-mean and the same variance. Let the variance of each element in
s be denoted as o2. We then have B [xx"] = 62y and E [vv#] = 62CC¥. It is noted that
the assumption is valid when the QAM size is large (m > 16) [15], [16]. Then, the optimum

solution of (3.5) can be obtained as [16]
Gy = o’CFIHY (6’ HFsFEHY +R,) (3.6)

where G, is the optimum G; R,, = E[nnH | is the covariance matrix of the equivalent noise
vector n, as also defined in (2.6). Considering the noise components o7, , and o7, , in (3.6) and

substituting (3.6) in (3.5), we can have the MSE matrix

E = C(o’Iy+F{H'R,'HFs) ' C”

~ o~ —1
- C (ale +FH HHHFS> ch (3.7)
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and

Imin = tr{E} (3.8)

where

-1
o -H
— AP (3.9)
(on HrpFpF R HE, + o2 ) ? HrpFrHgp
is defined as the equivalent channel matrix after noise whitening. Note that the MSE is con-
tributed by both the direct and relay links. By ignoring the direct link and adopting a single
precoder at the relay, the problem is reduced those considered in [43] and [44]. Here, we incor-

porate the THP as the source precoder and take the direct link into consideration. A significant

performance enhancement can then be expected.

§ 3.1.2 Problem Formulation

From the MMSE criterion in (3.5)-(3.9), we now can formulate our joint design problem as:

~ o~ —1
min tr{ C <a;21N L FH HHHFS> cH
C,Fs,Fr

J

'

=E
s.t.

H"H = ¢, 2HY Hgp +

HIFIHY, (02 HppFpFIHE) + 02 1y) " HepFrHsg
Fg=aUg

tr {E [Fsxx"F{|} = o2tr {FsF§ } < Psr

tr {Fg (o7, Iz + o:HsgFsF{H{,) Fi } < Pryr, (3.10)

where the inequalities in (3.10) indicate the transmitted power constraints at source and relay

(the maximal available power is Psr and P, respectively). Here, we force Fg = aUg
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in which « is a scalar and Ug is an unitary matrix. Taking a close look at (3.10), we can
observe that the cost function and the power constraints are nonlinear functions of Fg and F.
Moreover, (3.10) is not a convex optimization problem. As a result, it is difficult to solve the

problem, directly. In the next subsection, we propose a new approach to seek for a solution.

§ 3.2 Joint Source/Relay Precoders Design

We resort to the primal decomposition approach [51] translating (3.10) into a subproblem and
a master problem. The subproblem is first optimized for the source precoder, and subsequently

the master problem is optimized for the relay precoder. To proceed, we reformulate (3.10) as

OBk, TAB =g 5
S.t.

E=C (U;QIN + o?FH ﬁHﬁFS> e
HH in (3.10),

Fq=aUg

o2tr {FsF§} < Psy

tr {Fg (o2, Ig + o’0-HsgHR) FIL } < Pro. (3.11)

In the subproblem, the relay precoder F' is assumed to be given. Then, the optimum C and Fg
can first be derived as a function of F . Therefore, the joint precoders design is reduced to the

master optimization problem in which the optimum relay precoder remains to be determined.
Since the unitary F g = aUg, the subproblem thus becomes optimizing o, Ug and C, given
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as

min tr {E}
C(Fr),a,Us(Fr)
s.t.

o -1
E=C <a;21N +a?ul HHHUS> cH
NU?O&Q < Psr

tr{Fp (o7 Ip + o’o2HsgHL) F1L } < Pror. (3.12)

To find the solutions in (3.12), we first fixed Ug and C, finding optimum «, denoted «,,;. The

| P,
Qopt = % (3.13)

This is because the cost function is a strictly decreasing function in «, we enlarge « with sat-

solution can be easily obtain as

isfying the source power constraint. In this manner, a,,; can also maximize the SINR at the
relay, reducing the noise enhancement at the relay node and thus minimizing the MSE value.

The subproblem thus becomes

. _ Psr ~ pr~ A
tr | C 1 ~UYHPHU cy . 3.14
C(FRI)I%I;(FR) T ( <Us N+ No2 o8 s) (3.14)

s

The resultant relay power constraint ¢r {F R <0'72L,7~IR - 4 HSRHQIR> F } < Pgr, is re-
moved to the master problem since it is only the function of the relay precoder.
Fortunately, without considering the relay precoder, the problem in (3.14) has been ad-

dressed in non-cooperative MIMO system [15], [16], and the optimum solutions can be ex-

pressed as
Cop = DL, (3.15)
Psr
Fsop = N_JEVﬁU,S, (3.16)
where |
. o _
LLY — (0;21N + % (VaUs)" HHHVﬁU’S) (3.17)
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o 1
is the Cholesky factorization of (o} *Ty + 55 (VUs)" HYHVzUS) D is a diagonal
matrix that scales the elements on the diagonal of C to unity; Vi € CYV*¥ is the left singular
matrices of H; U’ € CY*¥ is an unitary matrix that needs to be further specified. Substituting

(3.16) into (3.17), we have

P —1
LLY = U¥ (a;2IN + NS; A) Uy (3.18)

J/

'

=D

where A = diag {Aﬁ D M| N} is the eigenvalues of HYH. It is simple to see that that D

is diagonal matrix here. Applying GMD on D, we can express D as
D'/? = QRP”, (3.19)

where QQ, P are unitary matrix and R is upper triangular matrix with equal diagonal elements.

Letting U’y = P and substituting (3.15), (3.16) in (3.8), we then have the resultant MSE as

Jmin &

N N 1 1/N
L(k k) =N]] ( - > : (3.20)
k= i1l \ ez 057

1 Jk No2

Now, the problem becomes the minimization of (3.20) in the master problem. From (3.15)-
(3.19), we note that the original THP precoding does not include the unitary Fg [15]. Here the
including unitary F'g has two main concerns: (i) The additional unitary precoder can facilitate
the relay power constraint, as described in (3.14), in solving the optimization. (ii) By adequately
designing Ug, we can make L(7,7) = L(j, ), Vi # j in (3.20). In this manner, the minimum
MSE can be expressed as (3.20) and, most importantly, as we will see, optimizations with (3.20)
are more tractable for optimization.

Now, our residual problem is to solve the master problem. To proceed, let us first see the

following equivalence:

N 1/N N
) 1 o Psr N ~ e~
N = 2222 ) det | | —Iy+HPH) ). 3.21
Fr (Aﬁ PS’T+0';2> T <08 N) ‘ <(P5,T v )) 62D

k=1 k No2
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proof: The result can be easily obtained since

N
_ Psp 1~ Psr _
det <08 Iy + Voo H) =11 (WAM +o0,7). (3.22)
S k=1 S
. . ) Psr\ .
Considering (3.21) and ignoring (0;2%) in the master problem, we then reformulate the

optimizations as

max det ((iIN + ﬁHﬁ>)
Fr Pg 1

s.t
H”H in (3.10)

P
tr {FR (O—EMIR + %HSRH§R> Fi } < Pnr. (3.23)

To solve (3.23), we use the Hardamard inequality, described in the following Lemma.

Lemma 3.1 [50]: Let M € CN*¥ be a positive definite matrix, then
N
det(M) < [ ™(i,4), (3.24)
=1

where M(i, ) denotes the ith diagonal element of M. The equality in (3.24) holds when M
is a diagonal matrix. If we let M = HH, it turns out that when M is diagonalized, the cost
function in (3.23) is maximized. Unfortunately, from (3.10) we can see that HH is a summa-
tion of two separated matrices and one of them dose not depend on F' i, and the diagonalization
cannot be directly conducted. The following lemma suggests a feasible way to overcome the
problem.

Lemma 3.2: Let A € CV*¥ be a positive matrix and B € CV*¥ then
det (A + B) = det (A) det (Iy + A"Y2BA™/?). (3.25)

Proof: See Appendix A.3.
Form (325), we let B = HélRFI]:‘.{IHgD (0_7217THRDFRFgH§ID + O'TQL’dIM)il HRDFRHSR
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and A = 5Ty + 0, 7H{,Hgp, we have the following equivalence

N o
arg max det (P—IN + HHH>

Fr S, T
= argmax det (Iy + HER,F R HE

—1
(02 HppFpFHY, + 0% Ty)” HRDFRHgR) (3.26)

where Hy, = Hgg (N/Psrly + 0, 7H{,Hsp) * and det A are ignored since they are not
functions of F . Equation (3.26) provides a feasible way to diagonalize the cost function. The

optimization problem in (3.23) can now be reformulated as

max det (M)

Fr
s.t.

M = (IN + HAFIHE, (02 HppFpFEHE, + 02 1) HRDFRH’SR)

M’ is diagonal

PST

n7‘||FR||2+ ||FRHSR||2 < PRT (327)

There exists certain structure for the relay precoder such that the diagonalization can be achieved.
Consider following SVD:
Hpp = UaSaVig (3.28)

Hsp =U, %, V', (3.29)

where U,; € CM*M and U’ € C*2 are left singular matrices of Hrp and Hs 5, respectively;
¥, € RM*E and 3/ € RN are the diagonal singular value matrices of Hzp and HYyp,
respectively; VH, € C**f and VT € CV*N are the right singular matrices of Hzp and HYp,,
respectively; We found that if the optimal F i have the following structure, a full diagonalization
of M’ can be achieved:

Fropt = Vpa3, U (3.30)

where 3, is a diagonal matrix with ith diagonal element o,;, © = 1,--- | K, yet to be deter-

mined. Here, k = min{N, R}. Let 0,4, and 0%, ; be the ith diagonal element of 3,; and 3,
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respectively. Substituting (3.28), (3.29) and (3.30) into (3.27) and taking the [n operation to the

cost function, we can then rewrite (3.27) as:

K 2 2 /2
Pri0y a9rd,i0sri
max In (1 + : =

pr,171§i<”i i p?",io-q?b7ro-3d7i + O-TQL,d
s.t.
= P
ST ..
Zpr’i <Tagﬂ,iD;r(sz) + Uiﬂ”) = PR7T7pT,i >0, (3.3D)
=1

where p,; = 07, and D}, = VI (N/Ps Ly + 0, 7H{, Hsp) V., with D, (i, 7) being the ith
diagonal element of D, . The cost function now is simplified to a function of scalar parameters.
Since the cost function and the inequalities are all concave for p,.; > 0 [51], (3.31) is a standard
concave optimization problem. As a result, the optimal solutions p,.;, = = 1,...,k, can be

solved by means of KKT conditions given by

n,d
1% 40’4’
Pri = ' j - 2
7 o2, (B2 1y (i,1) + o2 (02 o 20 L+ 1) 4 i
rdi \ N 9 sri? sr b n n,r9n,d0 sri Opgi\ oz g7+ 1
’ n,d” sr,i
+
2 /
o-n,’do- ST,
1+ 202 ,
_ . ~ - ‘ (3.32)
mn,r /
er,i <g‘id +o sr,i)

where (4 1s chosen to satisfy the power constraint in (3.31). We have also proposed a water-filling
algorithm to solve (3.32). The detailed derivations of (3.32) and the water-filling algorithm
are given in Appendix A.4 and A.5. Substituting (3.32) into (3.30), we can finally obtain the
optimum relay precoder. With the relay precoder, H in (3.9) can be obtained. Subsequently, the
unitary source prefilter can be derived by substituting (3.19) into (3.16) and C can be obtained
by (3.15). The computations of the THP source and linear relay precoders mainly involve SVD,
GMD, and matrix inversion operations. The overall computational complexity, measured in

terms of FLOPs, is summarized in Table 3.1.
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Table 3.1: Computational Complexity of THP source and linear relay precoders (MMSE re-

ceiver).

Step Operation FLOPs
1 H'sp (3.27) O(N? 4 RN?)
2 SVD Hpzp = U,2,,VH (3.28) O(MR? + R3)
3 SVD H'gp = U, Y, V' (329 O(RN? + N?)
4 ¥, (3.32) O(kI,)
5 Fr (3.30) O(R)
6 SVD H O(MN? 4 N?)
7 GMD DY2 = QRP" (3.19) O(N?)
8 L (3.18) O(N?)
9 Copt (3.15) O(N?)
10 Fsop (3.16) O(N?)

I, is denoted as the iteration number of the water-filling process in (3.32).
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§ 3.3 Simulations

We consider an AF MIMO relay system with N=R=M=4. The elements of each channel matrix
are assumed to be 1.i.d. complex Gaussian random variables with zero-mean and unity variance.
Here, we let SNR,.=15 dB, SNR,. ;=15 dB and vary SNR;=15. Also, we use 16-QAM for each
transmitted symbols. Fig. 3.2 and Fig. 3.3 show the MSE and BER performances comparison,
respectively, for (a) an un-precoded system with the MMSE receiver, (b) the optimum relay pre-
coded system with MMSE receiver [43], (c) the linear source and relay precoded with MMSE
receiver in Chapter 2, and (d) the THP source and linear relay precoded with MMSE receiver
in Chapter 3. Note that optimum relay precoder in [43] only considers the relay link. For better
performance, we further include the direct link when implementing the MMSE receiver. As we
can see, the proposed THP precoded system significantly outperforms other methods. Although
two precoders are used in Chapter 2, the performance is limited. This is because both precoders

are linear.

Table 3.2: Proposed water-filling algorithm solving (3.32)

Har = B0 UL = HML,0s 5u
while §,, > €

_ pmtpr
="

+
if Zj:l |: a; (,u -+ %) — Ci‘| dz S PR,T

KL = p
else

My =
end

I BMtRL N
p= B 6, = |u — pf

end
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Figure 3.1: THP source and linear relay precoded AF MIMO relay system with MMSE receiver.
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Figure 3.2: MSE performance comparison for existing precoded systems and THP source and

linear relay precoded system with MMSE receiver.
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Figure 3.3: BER performance comparison for existing precoded systems and THP source and

linear relay precoded system with MMSE receiver.
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Chapter 4

Joint QR-SIC Transceiver Design with

Linear Source and Relay Precoders

We have addressed the precoded AF MIMO relay system with the linear MMSE receiver in
the previous two chapters. In this chapter, we study the precoded system with a nonlinear re-
ceiver. In general, nonlinear receivers require higher computational complexity. One exception
is the QR-SIC receiver. It is known that the QR-SIC receiver has good performance while its
computational complexity is low. Therefore, we consider the precoded system with the linear
precoders at the source and the relay, and the QR-SIC receiver at the destination. In Section 4.1,
we give the system model accommodating the QR-SIC receiver. In Section 4.2, we propose a
GMD related method to derive the source and relay precoders. Finally, we report simulation

results in Section 4.3 to evaluate the performance of the proposed method.
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§ 4.1 System Model and Problem Formulation

§4.1.1 QR-SIC Receiver with Linear Source and Relay Precoders

Recall that the received signals with linear source and relay precoders are expressed as (2.4)
yp = HFgs + n, 4.1)

where
H-— Hsp . n— D! . 4.2)
HrpFrHgsr HrpFrngr +npo
Here, particularly, we assume that . = N < M. This assumption can guarantee the existence
of the solution of the proposed method (see Lemma 3.1). For the case of L < N, we can apply
the antenna selection technique, to be discussed in Section 4.2.2. As previous mentioned, the
equivalent channel matrix H does not include the source precoder.
By the same statistical assumptions in (2.6), we can also find that the equivalent noise vector
is not white. To facilitate later analysis of the QR-SIC receiver, we first apply a whitening
operation to the equivalent receive vector. Let W be a whitening matrix. Multiplying (4.1) with

W, we can have

¥o:= Wy, = HFgs +n, (4.3)

where = WH and i = Wn. By the whitening, we have E [An”] = E [Wnn" W] =

I5,,. From (2.6) and (4.3), we can then obtain the whitening matrix as

W — Un,dIM 0 (4 4)
N 2 HYrH 2 —-1/2 | ’
0 (o2, HprpFrFiHE, + 02 Ly)

The equivalent channel matrix after the whitening process can then be written as

-1
~ O',LdHSD

fl=WH-= i “.5)
(02 HrpFrFIH, + 07 i) HrpFrHsr
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From (4.3), we can see that an AF MIMO relay system can be regarded as a MIMO system with
the channel matrix shown in (4.5). However, note that the channel in (4.5) is a function of the
relay precoder, and this is quite different from the scenario considered in conventional MIMO
systems. Since F'i is unknown, existing design methods in MIMO systems cannot directly be
applied.

It is well-known that nonlinear MIMO receivers perform better than linear receivers though
their complexity may be higher. In this chapter, we consider a computationally efficient non-
linear receiver, the QR-SIC receiver. In the receiver, the equivalent channel of the precoded
system is first factorized by the QR method, i.e. HF s = QR, where Q is a 2M x 2M orthog-
onal matrix, and R is a 2M x N upper triangular matrix. Equation (4.3) can then be rewritten

as

yp = Q"yp=Q"QRs +Q"a=Rs +1n

ma T2 - TN ni
0 T22 +++ T2N r T o
S1
S92
= 0 P O TN,N . + nN 9 (4'6)
0 0 AN+1
SN
0 0 Noy
L g 4 B i
=R =i

where i = Qn and F [ﬁﬁH } = Iyy. Note that the equivalent channel for QR factorization
here includes the source precoder. Thus, signal detection of a QR-SIC receiver can then be

conducted as:

end 4.7)

51



where Dec[-] denotes the decision operation, g; the ith element of ¥, and $; the estimation of

the jth transmitted symbol.

§ 4.1.2 Problem Formulation

In the transceiver design, the most desirable criterion we want to use is the minimum BER.
However, for the QR-SIC receiver, the precoders which can minimize the BER is very difficult
to design. Fortunately, for a MIMO system with CSI available at the transmitter, [11] and [12]
propose a well-known precoder design method, called GMD. In this approach, the precoded
MIMO channel, is first QR factorized. Then, the precoding matrix is designed such that the
diagonal elements of R in (4.6) are made equal and maximized. It has been proven that GMD
can minimize the BLER, and maximize the lower bound of channel’s free distance [12]. As
known, the free distance is the metric used in the MLD. This implies the GMD method can also
improve the performance of the MLD.

So, in this section, we adopt the GMD design criterion to solve the precoding problem in
AF MIMO relay systems. By this manner, we have the following advantages: (i) The BLER
is minimized. (ii) As we will see, the GMD can facilitate the optimizations. Specifically,
we can transfer the joint source and relay precoders optimization to the relay-only optimization
problem where the source recoder becomes the function of the relay precoder. We can then pose
the similar optimization processes described in Section 3.2 to seek the closed-form solutions.
We give the following demonstration for detailed.

With GMD, the source and relay precoders are derived such that the diagonal elements of
R in (4.6) is equal and maximized. Note that the problem is much more involved than that
in conventional MIMO systems, where only a source precoder is considered. Let the channel
matrix H in (4.5) have a rank of N. Treating the channel matrix H in (4.5) as a conventional
MIMO channel matrix, we can apply the GMD method and obtain the following factorization
[11], [12]:

H = QRP”, (4.8)
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where Q € C2Mx2M and P € CN*V are unitary matrices, and R € C2*Y is an upper

triangular matrix having identical diagonal elements given by

N 1/N N 1/N
Tii = (H \ﬁ:k!) = (H aﬂk) , foralle =1,--- , N. 4.9)
k=1

k=1

Here, 7; ; is the 7th diagonal element in ﬁ, and oz, > 01is the kth nonzero singular value of H.

The source precoder can then be determined as

where « is a scalar chosen to satisfy the power constraint at the source, i.e., tr (FSE [SSH } F4 )
= 02Na? < Psy or equivalently a < /Psr/(No2). Here, Psr is the maximal available
power at the source. From (4.6) and (4.9), we can see that the equivalent channel of the precoded
system is then aQR, and that the larger the 7;;, the larger SNR in the receiver we can obtain.
Based on the GMD approach and the above observation, we can then formulate our design

problem as

N 1/N
k=1

S.t. FS ~ QP,

tr (U?FsF?) < PS,T;

tr (Fg (o?HspFsF{H{, + 07 15) F11) < Pry. (4.11)

As will be shown later, the optimum F'g is simple to obtain (in terms of F'z). However, the cost
function in (4.11) involves the singular values of the channel matrix H, which is a complicated
nonlinear function of the relay precoder F g, as shown in (4.5). A direct maximization of (4.11)
to solve F is then difficult. In the next subsection, we will propose the same method described

in Section 3.2 to overcome the problem.
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§ 4.2 Joint Source/Relay Precoders Design

§4.2.1 Proposed Method

Taking a close look into (4.11), we readily see that the optimum « is easy to obtain. From the

first two constraints, we can obtain the optimum source precoder, denoted by Fg ,,;, as

Por ~
Fsopt = | /05—*]@9 (4.12)

From P in (4.8) and H in (4.5), we see that P is a function of F r; therefore, F 5, 1s a function
of F . Substituting (4.12) into (4.11), we can simplify the joint precoders optimization problem

as a relay precoder design problem, as shown below:

N 1/N
max PS’T H Of
Fr O'?N i eLE

S.t.

P
tr (FR (%HSRH{;’R + afmlR> Fﬁ) < P (4.13)

As mentioned, the singular values of H are involved in (4.13), a direct maximization in (4.13)
is difficult. To overcome the problem, we first propose to maximize an alternative cost function,

having the same optimum precoder F i ., as (4.13), as

N 1/N

Fropr = argn%ix Zgjipf <,£[10ﬁ’k> (4.14)
N 2

= argmax (gam> (4.15)

= argmaxdet (f{ﬁ”{) (4.16)

where

~ o~ _ -1
H"H = |0, ’H{ Hsp + H{FEHE, (07 HrpFrFEHEL 4+ 00 Iy)  HrpFrHgg| .

(4.17)
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The equality in (4.15) is due to the fact that <H£]:1 O'I:Lk> > 0, and the cost function is mono-
tonically increasing functions of (Hfle Jﬁ’k>. The equality in (4.16) is due to the following
property.

N 2 N o

(H Uﬁ,k) = H )‘ﬁHﬁ,k = det (HHH> , (4.18)

k=1 k=1
where Agng , is the ith eigenvalue of H”H. With the cost function in (4.16), the solution
becomes much easier to work with. To solve the maximization of the determinate problem
in (4.16), we can resort to the techniques proposed in Section 3.2 where the optimization
process mainly follows the Hardamard inequality and Lemma 3.2. As a result, by setting
A = 0;2HY Hyp and B = HY, FEHYE (02 HppFpFEHY, + 02 1) HppFrHgp

in Lemma 3.2, we have the following equivalences

Frox = arg max det (fIHICI>
R
= argmax det (A) det (Iy + A_I/QBA_1/2)
R

= argmaxdet (Ly + A7/’ BA™?) (4.19)
R

where det(A) in (4.19) is ignored since it is not a function of F. To make sure the existence
of A~!, we assume that N < M. As a result, the rank of A is N and that of B is min{N, R}.
Using the result, similar to the optimization addressed in Section 3.2, the relay precoder opti-

mization can be expressed as

max det(M)
Fr
S.t.
~1/2
M =1y + 0., (HipHsp) P HEFIHE,

-1 —-1/2
(O_imHRDFRFgHgD + Ji,dIM) HRDFRHSR (HgDHS'D) /

M is diagonal, and

P
tr <FR <%H5RH§R + afL,TIR) Fﬁ) < Pgr. (4.20)
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So, we can let H" s = 0, /Hgsr (HgDHSD) ~/2 and consider the following SVD:

" " " nH
H SR — U srz er

ST

4.21)

where U”,. € C™* are left singular matrices of H"gp; X", € R are the diagonal

(CN><N

singular-value matrices of H"gz; V", € are the right singular matrices of H” gz. To

have a full diagonalization of M, we let the precoder F i have the following structure:
Fr=V,%, U”ST, (4.22)

where X, is a diagonal matrix with its ith diagonal element defined as 0,.;,7 = 1,--- | K, yet to
be determined. Here, x = min{N, R}. Let 0,4; and o, ; be the ith diagonal element of 3,
and X", respectively. Substituting (3.28), (4.21) and (4.22) into (4.20) and taking the natural

log operation to the cost function, we can rewrite (4.20) as

K 2 2 "2
Pri0 n,d rd i sryi
max In|1+ 5

Py 1<i<h PriOh Ora; + On
S.t.
u P
Zpr,i < ;TT //2 D//sr(l Z) + U ) < PR7T7 Prii > O’ for all i’ (423)
i=1

where p,; = O' ;and D = _2V'H (H HSD) V', with D”,,.(7,7) is the ith diagonal ele-
ment of D”,.. The cost function now is reduced to a function of scalars. As wee can see, the op-
timization in (4.23) is the same with (3.31) except the definitions of D', and H',, where D', =

V! (N/Psrly + 0, HE Hsp) V/i, and H'sg = Hgg (N/Psrly + 0, sHEHgp) * in

Section 3.2. As a result, the optimal solutions p, ;, ¢ = 1, - - - , K, can be solved as
‘Ti,d
% 404‘
pT,Z - 5 PS - 5 ) ) 9 + 2” L 2
l/ " Y = g
Ord,i ( N sr, 1D sr (Z7 Z) + Jn,r) (U ran do- ST% + 1) O-;Id’i <# + 1)
n, ST,%
2 "2 +
o'nyda' ST,%
1+ 202 ,.

— , (4.24)
U?d,i (g’n =+ O-ng z)
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Table 4.1: Computational Complexity of linear source and relay precoders (QR-SIC receiver).

Step Operation FLOPs
1 H'sp (4.21) O(N3 + RN?)
2 SVD Hgp = U, X%, VE O(MR? + R?)
3 SVD H'gz =U",3", V"7 (4.21) O(RN? + N3)
4 ¥, (4.24) O(kI,)
5 Frp (4.22) O(R?)
6 GMD H = QRP” (4.8) O(MN?+ N?)
7 Foopr (4.12) O(N)

I, is denoted as the iteration number of the water-filling process in (4.24).

where 1 is chosen to satisfy the power constraint in (4.20). Finally, substituting (4.22) into (4.5)
and conducting the decomposition in (4.8), we then obtain the optimum source precoder via
(4.12). The computational complexity of the proposed source and relay precoders in terms of

FLOPs is summarized in Table 4.1.

§ 4.2.2 Antenna Selection

The algorithm developed above assumes that L = N < M. If L < N < M, the precoder
matrix is not square and the GMD method cannot be applied. A simple remedy to this problem
is to use the antenna selection method. Using the method, we can select L antennas from the

N antennas (L < N, R, M) such that the geometric mean of the equivalent channel in (4.13) is
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maximized. Thus, the problem can be formulated as

1/L
L

max max PS’T Ha-

P,eP Fgr O'EL el HP; k

S.t.

P
tr (FR (%HSRR-P? HY, + JEWIR) Fﬁ) < Prr, (4.25)

where ogp, . denotes the kth singular value of HP,, P, the ith N x L antenna selection matrix,
and P the set of all possible P;. It is simple to see that the size of P is N!/L!(N — L)!. Note
that each column of P; contain only one nonzero element (with the value of one) indicating the

antenna selected. For example, for a 3 x 2 system, we have

10 1 0 0 O
7) - P1 = O 1 5 P2 - 0 0 y P3 > 1 0 . (426)
0 0 0 1 01

After the optimum antenna selection matrix is determined, the optimum source precoder can

then obtained by (4.12) and the proposed method can be applied accordingly.

§ 4.3 Simulations

We consider a single relay AF MIMO relay system, and assume that CSI of all links are known
at all nodes. Furthermore, the elements of each channel matrix are i.i.d. complex Gaussian
random variables with zero-mean and same variance. Without of loss generality, we let the
modulation scheme be 4-QAM and use the BER as the performance measure. For the first
set of simulations, we let N = L = R = M = 4, SNR,,=SNR,;, = 15 dB, and SNR,,
be varied. Seven systems are compared, namely (a) the un-precoded system with the zero
forcing (ZF) receiver, (b) the un-precoded system with the MMSE receiver, (c) the un-precoded
system with the QR-SIC receiver, (d) the un-precoded system with the MMSE-ordered SIC
(OSIC) receiver [13], (e) the linear relay precoded system with MMSE receiver [43], (f) the
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precoded system with the GMD source precoder [11], [12], and (g) the linear source and relay
precoded system with QR-SIC receiver. It is noteworthy that the simulation conducted in [43]
does not consider the signal received from the direct link. For better performance, we further
take the signal into consideration when implementing the MMSE receiver. Fig. 4.2 shows the
BER performance comparison. As we can see, the performance of the un-precoded systems is
limited. The best un-precoded system is the one with the MMSE-OSIC receiver. Although it
is better than the linear relay precoded system in the high SNR region, it is much worse than
the GMD source and the linear source and relay precoded systems. The linear source and relay
precoded system significantly outperforms the GMD source precoded system; SNR is improved
by 4 dB when BER is 1073, This is because the linear source and relay precoded system
takes two precoders into consideration, yielding a higher received SNR at the destination. We
then consider another scenario where SNR,,, = 15 dB and SNR,; = 0 dB. Now, the link
between the relay and the destination becomes poorer. Theoretically, the relay precoder will
become less critical in this scenario. Fig. 4.3 shows the performance comparison for all systems.
As expected, the performance of the relay-only precoded system is seriously degraded. The
linear source and relay precoded system, however, still has the superior performance. The
performance gap between the linear source and relay precoded and the GMD source precoded
system becomes somewhat smaller. This is also expected since the role of the relay precoder is

less critical, as mentioned.

As discussed, the GMD criterion can maximize the lower bound of the channel free distance
[12], and the performance of an ML detector is directly related to the free distance. We can
expect that the linear source and relay precoders can also improve the system performance if
an ML receiver is used at the destination. Fig. 4.4 shows the performance comparison for the
uncoded, the GMD source precoded, and the linear source and relay precoded systems with
the ML receiver applied at the destination. Here, SNR,, = SNR,; = 10 dB and L = N =
R = M = 2. As shown in this figure, the performance of the linear source and relay precoded

system is better than that of the the un-precoded and the GMD source precoded systems. The
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GMD source precoder has better performance than un-precoded system since the channel’s free
distance is improved by the source precoder. The performance gap between the linear source
and relay precoded method and GMD source precoder is due to the additional relay precoder,
further enlarging the lower bound of the channel’s free distance.

In conventional (non-cooperative) MIMO systems, spatial multiplexing cannot be applied
when L = N > M. However, in a cooperative system, with the aid of the relay, the degree of
freedom of the overall system is increased. In other words, even when L = N > M, spatial
multiplexing can still be used in cooperative systems. The final set of simulations is to compare
the performance of the un-precoded and the linear source and relay precoded systems in this
scenario. For the un-precoded schemes, we let L = N = 4, R = M = 2 and the modulation
scheme be 4-QAM. Since L = N > M, the proposed system has to conduct antenna selection.
Here, welet L = 2, N = 4, R = M = 2 and the modulation scheme be 16-QAM. With
the setting, the transmission rates of the un-precoded and precoded systems are the same (8
bits/channel usage). Let SNR,,=SNR,; = 15 dB and SNR,; be varied. Fig. 4.5 shows the
performance of the un-precoded and linear source and relay precoded systems. As we can see,
the linear source and relay precoded system significantly outperforms the un-precoded systems.
There exists error floors for the un-precoded systems since the noise at the relay link tends to
dominate the overall performance when SNR, is high. Due to the precoding operation, we do

not observe the error floor phenomenon in the linear source and relay precoded system.
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Destination: M antennas

N substreams Source: N antennas . o
————  First phase

— — —» @ Second phase

Figure 4.1: Linear source and relay precoded AF MIMO relay system with QR-SIC receiver.
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—%— Un-precoded (MMSE)
10 "f| —6— Linear relay precoded (MMSE)
i Un-precoded (QR-SIC)
—7| | —*— Un-precoded (MMSE-OSIC)
—— GMD source precoded (QR-SIC)
—<— Linear source and relay precoded (QR-SIC)

10_ 1 1 1 1 1 1 1 1
-4 -2 0 2 4 6 8 10 12 14 16

SNR (dB)

Figure 4.2: BER performance comparison for linear source and relay precoded system with
QR-SIC receiver and existing precoded systems (L = N = R = M = 4, SNR,,=SNR,; = 15
dB).
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—<O— Linear relay precoded (MMSE)
Un-precoded (QR-SIC)
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—<— Linear source and relay precoded (QR-SIC)
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-4 -2 0 2 4 6 8 10 12 14 16

SNR (dB)

Figure 4.3: BER performance comparison for linear source and relay precoded system with
QR-SIC receiver and existing precoded systems (L = N = R = M = 4, SNR,,=15, SNR,.;=0
dB).
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Figure 4.4: BER performance comparison for un-precoded, GMD source precoded, and linear
source and relay precoded systems with ML receiver at the destination (L = N = R = M = 2,

SNR,,=SNR, ;=10 dB).
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Figure 4.5: BER performance comparison for linear source and relay precoded system with
QR-SIC receiver and un-precoded systems (L = N =4, R = M = 2 and 4-QAM is used for
un-precoded systems; N = 4, L = R = M = 2 and 16-QAM is used for linear source and

relay precoded system with QR-SIC receiver).
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Chapter 5

Joint MMSE-SIC Transceiver Design with

Linear Source and Relay Precoders

As well known in the precoded MIMO systems, the MMSE-SIC receiver outperforms the QR-
SIC receiver. It is reasonable to assert that the same result can be obtained for MIMO relay
systems. For MIMO systems, the precoder with the MMSE-SIC receiver can be solved by
the UCD method. In this chapter, we consider the system where linear precoders are used
at the source and the relay, and an MMSE-SIC receiver at the destination. We show that the
UCD is not directly applicable in AF MIMO relay systems. However, if the source precoder is
constrained to be unitary, the problem can be solved. In Section 5.1, we give the system model
for the MMSE-SIC receiver. In Section 5.2, we propose a modified UCD method to derive the
source and relay precoders. Finally, we report simulation results in Section 5.3 to conform the

effectiveness of the proposed method.
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§ 5.1 System Model and Problem Formulation

§ 5.1.1 MMSE-SIC Receiver with Linear Source and Relay Precoders

We consider the same received signal model as that in (4.3) and rewrite it as
vp = HFgs + 1 = Hs + 1. (5.1)

With the MMSE-SIC applied at the receiver, the symbol streams can be detected by the suc-
cessive vector suppression process. Specifically, the ith layer symbol is detected after an inner
product operation is conducted with the suppression vector v;. And, its signal component is
then subtracted from the received signal. By (5.1), the suppressing vector v; for ith layer can be

expressed as [13],
; LB
j=1

where H := ﬁFS = [Hl, - ,HN] . In [13], the suppression vector is alternatively found via
QR-decomposition,
Qu
=QRi = | ' |Ry. (53)

J;IIN Q;

where R; € CCMFTN)XN js an upper triangular matrix with positive diagonal elements, and
Q, € CEM+N)X2M+N) 5 an unitary matrix. Note that QY € C?M*(M+N) apd Qu € CN*EM+N)

are not unitary matrices. The suppression vector in (5.2) can be then expressed as
vi =RY(6,9)Qv(,4), i=1,...,N, (5.4)

where R, (7, 7) denotes the ith diagonal element of R, and QY (:, ) the ith column of QY. If the

error propagation effect is ignored, the following equivalence holds for each i:

0,2 (1 +SINR;) = R3(i,i), i=1,...,N, (5.5)
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where

i—1 -1
SINR; = h¥/ <Z h;h! 4 aSQIQM) h,, i=1,...,N, (5.6)
j=1

denotes the SINR of the ith layer recovered signal in the MMSE-SIC receiver.

§ 5.1.2 Problem Formulation

In MIMO systems, the relationship between the received SINR and the averaged BER is com-
plicated, and the precoders design minimizing the averaged BER is difficult to obtain. The
UCD method, developed for conventional MIMO systems [13], can derive the precoder such
that the SINR of each layer is the same and the BLER in the MMSE-SIC receiver is minimized.

Motivated by the idea, we formulate our problem as

max SINR;

Fs,Fr

s.t.

0.2 (1 + SINR;) = R3(4, 1)
SINR; are equal, Vi,
Oth {FSFg} § PS,T

tr{Fp (oo Ip+ o HspgFsF{HIL) FL} < Pry. (5.7)

The inequalities in (5.7) indicate that the transmit power at the source and at the relay has to
satisfy the maximal power constraints Psr and P 7, respectively. As we can see from (5.7),
the SINR; is a complicated function of F g and F'g, and the optimum solution for this problem
is very difficult to obtain. In the next subsection, we propose a new approach to solve the

problem.
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§ 5.2 Joint Source/Relay Precoders Design

§ 5.2.1 Proposed Method

In (5.7), we have seen that SINR; is a complicated function of Fg and F . To facilitate the
optimization, we first seek for an alternative cost function for maximization.

Proposition: The following optimizations are equivalent.

max SINR;
Fs,Fr, SINR, are equal, vi
max In det (08_21]\; Rl ﬁHﬁFS> . (5.8)

Fs,Fr, SINR; are equal, vi

Proof: The derivation can be directly obtained from [13].

The cost function with the determinate operation in (5.8) is easier to work with than the
original cost function. Similar to previous approaches, we propose to use the primal decom-
position [51] to decompose our problem into a subproblem and a master problem. The sub-
problem is first optimized for the source precoder only, and subsequently the master problem
is optimized for the relay precoder. From (5.8), we see that two precoders are involved and
the UCD method, developed for MIMO systems, cannot be applied. Here, we pose a unitary

constraint for the source precoder. As a result, (5.7) can be reformulated as

max max Indet (0'8_2]:]\[ + FIS{ﬁHﬁFS)
Fr Fs(Fg)

s.t.

0,2 (1 + SINR;) = R3(i, 1)

SINR; are equal, Vi

FS = OéUS

O'th’ {Fng} S PS,T

tr{Fr (o) Iz + o-HsgFsF{HI) FL} < Pry, (5.9)
where Ug is an unitary matrix and « is a scalar, and both are to be further determined. The
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unitary constraint for Fg, as we will see, can greatly facilitate the optimization in the sub-
problem and the master problem. Note that the original UCD precoder in the MIMO system is

not restricted to have the unitary structure.

§ 5.2.2 Proposed Subproblem Optimization

Let F'i be given. From (5.9), the subproblem can be expressed (Fg is unitary):

max Indet (05_211\7 + aQﬁHﬁ>
Fs(Fr)

0. % (1+SINR;) = R},

SINR; are equal, Vi

a?0?N < Psyr, (5.10)

where Fg(Fr) denotes that F is a function of F. With the unitary source precoder structure,
the relay power constraint is not a function of the source precoder and then it is not necessary
to include it here. Also, Ug does not affect the cost function in (5.9), and the cost function

becomes the function of « only. It is clear that to maximize the cost function, we can select the

| Psr
= —, A1
o 72N (5.11)

To achieve the equal SINR; constraint, Ug can be designed using the method proposed in [13].
By the SVD, we can have H = UﬁEﬁVg. Let Fg = a*Ug = a*Vz U, where U is also

optimum «, denoted as o, as

an unitary matrix to be determined. Substituting the results into (5.10), we can rewrite it as

HF UsS=aU Uz O '
S HZHT &5 | _ H H | U, (5.12)
0';11]\[ O';IIN 0 UISH 0';1:[]\7
. Oé*Eﬁ
Applying the GMD, [11], [12], on , we have
O'S_IIN
I
" = QR.PY, (5.13)
0';11]\[
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where Q, € CCM+N)XEM+N) P, ¢ CN*N are ynitary matrices, and Ry € CCM+N)*N g the
upper triangular matrix with equal diagonal elements. Substituting (5.13) into (5.12) and using

(5.3), we then have

~

H LOS% P o Uz O
_ H™ “H™S | _ H Q. R,PHUY. (5.14)
oy oIy 0 U —
R =R,
=Q1

So, if we let Uy = P,, Ry will be equal to R,. In this way, the diagonal elements in R;
become equal. This makes the SINR of each layer the same, which can be checked with (5.5).

The optimum source precoder can be expressed as

VPs. (5.15)

Substituting (5.15) in (5.9), we can then solve the master problem, as shown in the next.

§ 5.2.3 Proposed Master Problem Optimization

With (5.15), the master problem thus becomes

P\ N S
r%ixln <(03N) - det (?,TIN—FH H

s.t.

ﬁHﬁ = U;ZH?DHSD +
HYFIHE, (02, HrpFpFIHE, + 02 1)) HppFrHgp

P
tr {FR <JEL¢IR + %HSRHgR) Fg} < Prr. (5.16)

As we can see from (5.16), H'H is also a complicated function of Fpg, so the relay pre-
coder is difficult to solve. However, we can resort to the same diagonalization in Chapter
3 and 4 to find the optimum relay precoder. Let A = %IN -+ a;fngDHSD and B =
HI.FIHT, (02 HrpFrFIHE, + aflydIM)_l HrpFrHsr. We then have the same opti-

mization in (3.26). The details are then omitted here. As a result, the optimum relay precoder
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can be found by substituting (3.32) into (3.30). After the optimum relay precoder is determined,
the source precoder can then be obtained via (5.15).

We summarize the computational complexity of the linear source and relay precoders in
Table 5.1. Comparing to Table 4.1, we can find that the procedures to compute the precoders
proposed in this chapter and Chapter 4 are similar except for the GMD in (5.13) and (4.8). Since
the THP and unitary precoders are involved in (3.15) and (3.16), the computational complexity
of the precoders proposed in Chapter 3 is higher, as shown in the additional steps 7-9 of Table
3.1.

Finally, we summarize and compare the nonlinear transceivers proposed in this dissertation
in Table 5.2. As shown in this table, F' g of each structure is expressed as an unitary matrix. It is
seen that the relay precoders for the THP source precoded system and the linear source precoded
system (with MMSE-SIC receiver) are the same. We also summarize physical implications of
the precoders optimization in Table 5.3. From the table, we see that the unitary F'g is designed to
equalize either the MSE or the SNR/SINR of each data substream in the subproblem problem.
The relay precoders decouple the effective channels and allocate the power for each parallel

channel to either maximize SNR/SINR or to minimize the MSE.

§ 5.3 Simulations

In this section, we evaluate the performance of the proposed precoded systems studied in this
dissertation. As previously, we assume that the CSIs of all links are known at all nodes. The
elements of each channel matrix are i.i.d. complex Gaussian random variables with zero-mean
and same variance. For the first set of simulations, we let N = R = M = 4, SNR,, =20
dB, SNRy; = 5 dB, and vary SNR,;. Eight systems are compared, namely (a) un-precoded
system with MMSE receiver, (b) linear relay precoded system with MMSE receiver [43], [44],
(c) un-precoded system with QR-SIC receiver, (d) linear source and relay precoded system

with MMSE receiver (Chapter 2), (e) un-precoded system with MMSE-OSIC receiver, (f) THP
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Table 5.1: Complexity of linear source and relay precoders (MMSE-SIC receiver).

Step Operation FLOPs

1 H'sg (3.27) O(N?3 + RN?)

2 SVD Hpp =U,%,,VE (3.28) O(MR?* + R?)

3 SVD H'gp = U, Y, V'™ (329 O(RN? + N3)

4 ¥, (3.32) O(klI,)

5 Fr (3.30) O(R?)

6 SVD H = UﬁEﬁVg O(MN?* + N3)
Psr 51

\/ oINS :

7 GMD s (5.13) O ((2M + N)N? + N3)
0'3_1]:]\[

8 Fgope (5.15) O(N?)

I, is denoted as the iteration number of the water-filling process (3.32).

source and linear relay precoded system with MMSE receiver (Chapter 3), (g) linear source
and relay precoded system with QR-SIC receiver (Chapter 4), and (h) linear source and relay
precoded system with MMSE-SIC receiver (Chapter 5). Since the THP source and linear relay
precoded system is considered, we adopt the 16-QAM modulation scheme. Fig, 5.1 and Fig. 5.2
show the simulated BLER and BER for the systems mentioned above, respectively. From Fig.
5.1, we can observe that the performance of the linear receivers are limited. The performance of
un-precoded system can be improved by the linear relay precoder and can be further enhanced
by the linear source and relay precoders. When the SNR of the relay-to-destination link is
sufficiently high, the significance of the relay precoder is reduced. This indicates that the relay
precoder is not critical. So, the performance of un-precoded and the relay precoded systems is

close. Also, since nonlinear receivers can provide higher diversity gain [13], they perform well
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Table 5.2: Source and relay precoders in the proposed nonlinear transceivers.

THP source and | Linear source and | Linear source and
Structure linear relay precoded| relay precoded relay precoded
(MMSE) (MMSE-SIC) (QR-SIC)
~1
C,,, = DL
(3.15) Fs.r Fsr 5
2 VﬁP2 2
Source Precoder P o, N o, N
F, = —V.P
A\ Ng2 H (5.15) (4.12)
(3.16)
v,2,unt
Relay Precoder VrdErUgfj (3.30) EZ 52)5r
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Table 5.3: Optimizations of the source and relay precoders in the proposed nonlinear

transceivers.

Joint source/relay precoders optimizations

Structure Subproblem Master problem

relay-to-destination link
THP source and C+ FS

linear relay precoded (3.15)-(3.16) y, (1) _.

(MMSE) to equalize MSE, . - )
i Usr : Urd

Linear source and F. (5.15) y, (R _’

relay precoded ° i
(MMSE-SIC) to equalize SINR,

relay-to-destination link

| y, (1) _.
Linear source and F, (4.12)

relay precoded : U’ : U

(QR-SIC) to equalize SNR, ST . -
¥ (P _,»_,b b
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in the high SNR regions, even for the un-precoded systems. As expected, the linear source and
relay precoded system with the nonlinear receivers are better than the un-precoded systems. Due
to the fact that the MMSE-SIC receiver has larger diversity gain, the precoded system with the
MMSE-SIC receiver outperforms the precoded system with the QR-SIC receiver. Although the
THP source and linear relay precoded system is also a nonlinear system, its BLER performance
is inferior to that of the precoded systems with the QR-SIC and MMSE-SIC receivers. This
is because the former system is designed by the MMSE criterion, while the latter system by
the BLER criterion. However, in terms of the BER, the THP source and linear relay precoded
system performs slightly better than the linear source and relay precoded system with the QR-

SIC/MMSE-SIC receivers, as shown in Fig. 5.2.

Fig. 5.3 and 5.4 show the BLER and BER performances of the aforementioned transceivers
with using 4-QAM modulation for each substream. As we can see, the THP source and linear
relay precoded system with MMSE receiver is much worse. This is because it only workable

for higher order modulation (m > 16), as Section 3.1.1 described.

For the second set of simulations, we still compare the performance of aforementioned
precoded systems. However, we let SNRy; = 5 dB, SNR,; = 20 dB, and vary SNRy,. Fig
5.5 and Fig. 5.6 show the simulation results for the BLER and the BER, respectively. As
we can see, the relay precoded system with the MMSE receiver outperforms the un-precoded
systems with the linear and nonlinear QR-SIC receivers along the increase of the SNR. This is
because the performance is dominated by the links of the source-to-destination and the relay-
to-destination when SNRy, is high. As a result, the additional relay precoder can improve the
overall link quality. Unlike the previous case, the performance of the un-precoded system with
the MMSE-OSIC receiver is inferior to the source and relay precoded system with the MMSE
receiver. This is because when the SNR of the source-to-relay link is sufficiently high, the
MIMO relay system is degenerated to the MIMO system. As a result, the significance of the
relay precoder is increased. Also, as expected, the precoded systems with the nonlinear source

precoder or with the nonlinear receivers outperform the un-precoded systems and the precoded
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systems with linear precoders and linear receivers.

The MLD receiver is known to be optimal. It is then interesting to know its performance in
MIMO relay sytsems. For the third set of simulations, we compare the performance of the un-
precoded system with the ML receiver and that of precoded systems. Since the computational
complexity of the ML receiver is high, we only consider the system with N = R = M = 2.
Let SNR,; =5 dB, SNR,.; =20 dB, and vary SNR,.. Fig. 5.7 shows the BLER comparison. As
shown in this figure, the un-precoded system with ML receiver outperforms other un-precoded
systems. However, it is poorer than all the precoded systems we proposed.

In real-world applications, CSIs have to be transmitted to the location where the precoders
are calculated. Thus, quantization and transmission errors may arise. We refer this phe-
nomenon as imperfect CSI. In the final set of simulations, we compares the performance of
all un-precoded/precoded systems when CSIs are not perfect. As that in the previous works
[54], the imperfect channel H is related to the true channel H via the equation of H =
v1—pH + /pAH, where AH models the channel error and the coefficient p characterizes
the magnitude of the error. The elements of AH are modeled as i.i.d. Gaussian distributions
with zero mean and same variance. Fig. 5.8, shows the simulation results. Here, we let SNR 4
=5 dB, SNRy, =25 dB, SNR,; =20 dB, and p be varied. As we can see, the performance of
the precoded systems degrades as p increases, especially for the THP source precoded system
with MMSE receiver, and the linear source precoded system with MMSE-SIC receiver. The
linear source precoded system with QR-SIC is less affected. Note that the CSIs are assumed
perfectly known at the destination for un-precoded systems, and their BLERs are not affected

by the value of p.
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Figure 5.1: BLER performance comparison for un-precoded and precoded systems (16QAM,
N = R =M = 4, SNR,=20, SNR,;=5 dB).

79



10 T |

[ | %= Un-precoded (MMSE)
~~~~~~~~~~~ ©ooo | —@=—Linear relay precoded (MMSE)
“““““““““““““ —«&— Un-precoded (QR-SIC)

—&A— Linear source and relay precoded (MMSE)
; .| ==— Un-precoded (MMSE-OSIC)
"""""""""""""" —©— THP source and linear precoded (MMSE)
: —— Linear source and relay precoded (QR-SIC)

—+8— Linear source and relay precoded (MMSE-SIC)

BER

107 ; ; ; ; ; ;
5 10 15 20 25 30 35 40
SNR (dB)

Figure 5.2: BER performance comparison for un-precoded and precoded systems (16QAM,
N = R = M = 4, SNR,,=20, SNR,;=5 dB).
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Figure 5.3: BLER performance comparison for un-precoded and precoded systems (4-QAM,
N = R = M = 4, SNR,,=20, SNR,,=5 dB).
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Figure 5.4: BER performance comparison for un-precoded and precoded systems (4-QAM,
N = R = M = 4, SNR,,=20, SNR,,;=5 dB).
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Figure 5.5: BLER performance comparison for un-precoded and precoded systems (16QAM,
N = R =M =4, SNR,;=5, SNR, ;=20 dB).
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Figure 5.6: BER performance comparison for un-precoded and precoded systems (16QAM,
N = R =M =4, SNR,;=5, SNR, ;=20 dB).
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Figure 5.7: BLER performance comparison for un-precoded and precoded systems (16QAM,
N = R = M = 2, SNR;=5, SNR, ;=20 dB).
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Figure 5.8: BLER performance comparison for un-precoded and precoded systems with imper-

fect CSIs (16QAM, N = R = M = 2, SNR,;=5, SNR,,=25 dB, SNR, ;=20 dB).
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Chapter 6

Joint MMSE Transceiver Design with

Quality-of-Service (QoS) Constraints

In previous chapters, we address the transceiver designs in MIMO relay systems maximizing the
system performance under the power constraints. In this chapter, we consider the transceiver
design minimizing the transmission power under QoS constraints. The transceiver structure
considered here is the same as that proposed in Chapter 2, in which the linear precoder is used
at the source (and the relay), and the linear MMSE receiver at the destination. Since there is a
one-to-one mapping between the BER and the MSE, we use the MSEs of signal streams as our
QoS constraints. We first consider the precoders design in two-hop systems and then general
MIMO relay systems. Our formulation leads to an optimization problem that the constraint
function is a highly nonlinear function of the precoders, either in the two-hop or general MIMO
relay systems. To overcome the problem, we first propose new precoder structures which can
simplify the optimization in the two-hop system. The proposed structures can translate the
matrix-valued optimization problem into a scalar-valued one, facilitating the derivation of the
optimum solution. For general MIMO relay systems, the problem becomes more involved since
the direct link is included. Based on the proposed precoder structure, however, we can derive an

MSE upper bound. Using the upper bound as the constraint function, the original optimization
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problem can be greatly simplified, and the solution can be obtained by the primal decomposition
approach. In Section 6.1, we first give the system model and the related optimization problem.
After that, we derive the source and relay precoders in the two-hop MIMO relay and then the
general MIMO relay systems, respectively, in Section 6.2 and 6.3. Finally, we evaluate the

performance of the proposed precoders in Section 6.4.

§ 6.1 System Model and Problem Formulation

§ 6.1.1 MMSE Receiver with Linear Source and Relay Precoders

We consider the same transceiver in Chapter 2. Recall (2.4), the received signal can thus be

expressed as

| i L. NS 6.1)
YD2
where
H n
H= "\ . and n= Y / . (6.2)
HrpFrHgsr HrpFrng +npo

Based on (6.1), the MMSE equalization matrix G, as shown in (2.8), can be expressed as
Gop = o’ FIHY (:?HFsFIH" +R,) " (6.3)

The resultant minimal MSE and MSE matrix can then be expressed as

 Ap— {(a;m Y Ep+ ER)*} , 6.4)
and
E=(0;2,+Ep+Eg) ", 6.5)
respectively, where
Ep =0, ;F{H{,HspFs (6.6)
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and
ER = FgHgRFgHgD (O}ZL,THRDFRFgHgD + O'?L,dIM)_l HRDFRHSRFS' (67)

As we can see from (6.4)-(6.5), the MMSE and MSE matrix are the functions of Fg and Fi.
Also, Ep denotes the MSE component due to the direct link and Ey, is contributed by the relay
link. If only the relay link is considered (which is also known as the two-hop MIMO relay
system), we can set Eip = 0 [43]- [44].

§ 6.1.2 Problem Formulation
To start with, we first let the QoS constraints be defined in terms of the MSEs at the receiver,
1.e.,

E(i,i) :=E[|s; = 8|*] <pi, 1<i<L, (6.8)

where E(i, 1) is the ith component of E and p; is the MSE constraint for the ith data stream.

Here we note that 0 < p; < o2 since F [|s; — 8;)] <= E||s;|*] = o2.

S
Our task is to design the source and relay precoders such that the transmission power is
minimized and designated MSE constraints are satisfied. To proceed, let us define the power

consumption at the source and the relay, respectively, as
Psr =tr (E [Fgss"F{]) (6.9)
and

Ppr = tr (E [FR (HsgFss + ng) (HsgFgs + ng)” FgD

= tr (Fr (c2HsgFsF{HY, + o2 Iz) FJ). (6.10)
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With (6.5)-(6.10), the joint source/relay precoders design problem can be formulated as

Juin fr {Fr (0?HsgFsF{HS, + 02 1p) FiL} + oltr {FsF{ }
s.t.
E = (0,1, + 0, JF{H{ HepF s+

-1

—1
F{H{.FIHL, (o) HrpFrFRHE, + 0o L) HRDFRHSRFS> . (6.11)

Taking a closer look at (6.11), we readily find that the MSE matrix E involves a series of matrix
multiplications and inversions and is a complicated function of F's and F' . Also, the problem is
not a convex optimization problem. Therefore, the exact solution to (6.11) is almost impossible

to derive. In the next section, we propose a new method to solve the problem

§ 6.2 Joint Source/Relay Precoders Design for Two-Hop MIMO

Relay System

§ 6.2.1 Proposed Precoder Structures

In the two-hop MIMO relay system, the optimization problem in (6.11) can be reformulated as

FrgiFnR tr {Fg (c:HsgFsF{H, + 00 Ig) Fii } + oltr {FsF{ }
s.t.
E = (0';2IL—|—

-1 -1
F{H{FIHL, (02 HrpFrFRHE, 4 0o L) HRDFRHSRFS> . (6.12)

It 1s simple to check that the problem in (6.12) is not a convex optimization problem and the

optimum solution is still difficult to derive. For simplicity, we first study the scenario that all
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the MSE constraints are the same. In this case, the problem can be reformulated the following

equivalent optimization, similar to that in the conventional MIMO system [9]:

Juin i {Fr (cHsgFsF{H, + 0o 1g) FiL} + oltr {FsF§ }

s.t.
E with equal diagonal elements,

tr{E} < Lp. (6.13)

Equation (6.13) is difficult to solve though it is simplified. In what follows, we will propose a
source and a relay precoder structures that can diagonalize the cost function in (6.13) facilitating

the derivation of the optimum solution. To proceed, we consider the following SVD:

HSR = UST‘ESTVH (614)

Hpp = U, 2,qVE, (6.15)

where V,, €¢ CV*N and V,,; € CF*E are the right singular matrices of Hgr and Hpp, re-
spectively; U, € CF*® and U,y € CM*M are the left singular matrices of Hgp and Hgp,
respectively; X, and 3,4 are the diagonal matrices where o, ; and 0,4, are the ith diagonal
element of Y. and 3,4, respectively. Now, for given any F g and F i, we can always express
Fgqand Fy as

Fs= VST(I)SUS; (616)
Fr=V,.®,.UZ (6.17)

where Ug € CY*1 is an unitary matrix to be further decided; ®, € CV*L and ®, € CF*¥ are
matrices not restricted to be diagonal here !. Substituting (6.16) and (6.17) into (6.13), we then

have

-1
E = UY <o—;21L + RUSHBHSH, (02, 5,,8,8 0! 1 02 T,,) " ET@TEST@) Us.
(6.18)

IThe ®, and ®,. are equivalently as V{{F SU? and VEZF rUg,, respectively.
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Using the eigenvalue-decomposition (EVD), we can have an expression of
STIS (02 3,08,8 01 + 02 1y) " 2,48,%,, = UyD, UL, (6.19)

where Uy € CV*Y and Dy; € RY*Y are a unitary and a diagonal matrices, respectively; both

are functions of F . We can then re-express E in (6.18) as
E = U¥ (0,21, + ®"U,D,UL®,) ' Us. (6.20)
We can further conduct EVD of Uy, D U ®, and have
7 ULDyULP, = UDU”, (6.21)

where U € C*F and D € RY* are a unitary and a diagonal matrices, respectively. Similarly,

both U and D are functions of Fg and F . From (6.21), we then have
Ufe4U,D,yU%L®, U = D .= D/2QQ"D!/2, (6.22)

where D/?D'/?2 = D and Q € C"*' is an arbitrary unitary matrix. From (6.21) and (6.22),
we have

®, = UyD,/*Q"D'2U". (6.23)
From (6.16) we see that the power consumption at the source can be expressed as
o2tr{FsFi} = oltr{® @} = o2tr {D'*D'2QD,'Q"} . (6.24)

For any semi-definite Hermitian matrices A € C** and B € C/** matrices [50], the follow-

ing property holds.
L
tr(AB) =) Aaidpr-it1, (6.25)
i=1

where A\ ; and A, is the ¢th eigenvalue of A and B, respectively (with decreasing order).
Letting A = B and B = QD},'Q* and denote the ith diagonal element of D and Dy as 0D

and o7 ;, respectively, we can have a lower bound of (6.24) as

L 2
o5 .
o2tr{FsF{} = o2tr {DQD,'Q"} > > -3, (6.26)

—1 Hi

1=
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where the equality holds when Q = I,. Similarly, from (6.16) and (6.17), we can have the

power consumption at the relay as

tr {Fgr (c:HspFsF{H{, + 07 1) Fi }

=tr{®, (022, ®,27%! + 02 1) @/}

=tr {5,,5,4®, (022, 8,821 + 02 1) @IEI® [

= tr {z;dlu’D/U’Hz:;dH} (6.27)

where
2@, (028, @871 + 02 1) @lsl .= uD'U". (6.28)

Here, U’ € C¥*L and D' € RY*~ are a unitary and a diagonal matrices, respectively. Also, D’
= diag{a%’l, e ,a’f)’M} denoting the collection of the eigenvalues (0%’1 > - 0/2D7M). By
(6.27), we can have a lower bound of the relay power consumption as

L 72
g .
{Fr (o HsnFsFERL, + 02 1) P} — o {Z1UDU s [ > 5 =20 (629)

2 Y
i=1 Urd,i

where the equality holds when U’ = Ij.
From (6.26) and (6.29), we have a lower bound of the total power consumption for each

feasible set of (Fg,Fg) as

12

L L
o2tr{FsFl} +tr {Fp (c?HspFsFIHE, + 02 1) FiL > ) Di > 7 Di (6.30)

2
2 2
im1 Hi 51 Prdgi

The lower bound can be achieved when Q = I, and U’ = I. Note that Q is a matrix that we
can choose, and the condition that Q = I can be easily satisfied. However, as we can see from
(6.22) and (6.28), O'2D7i and o’ %A are complicated functions of ®, and ®,. It is then difficult to
find a general set of (®,, ®,.) such that the condition U’ = I can be met (see (6.28)). One
possible solution is to let ®, and ®, be diagonal matrices and then U’ = Ig. Denote the

diagonal @, and ®, matrices as Y, and X, respectively, and the ith diagonal element of 3
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and X, as o, and o, ;, respectively. We then can reformulate (6.16) and (6.17) as

Fg=V,%,Ug, (6.31)

Frp= V2, U,. (6.32)
The MSE in (6.13) thus becomes
tr(E) = tr(Uf (0,71, + 2=l I®
(02,3, 52088 4 62 1) zrdzrzsrzg) - US)

-1
L 2 2 2 2
—92 O-s,io-v“,io-sr,io-rd,i
= > o2+ 252 : . (6.33)
O5v0riOrg; + 00 4

i=1 n,r- e rd,

Note that the requirement of equal diagonal elements in (6.13) can be easily achieved by letting
Ugs = F which is an L-point DFT matrix. Therefore, substituting (6.31)-(6.33) in (6.13), we
can have the optimization problem as

L L L
. 2 2 2 2 2
I'Illll‘ E :pT,io-n,r + E :aspsyip’hio-sr,i + 0y § :ps,i
=1 i=1 =1

DPs,iPr,i <
i —

s.t
- T
s,ilr,i
Z 0_8_2 + . 23r,z 7 ,; S ij
i=1 On T‘p"'vio-Td,i + O-n,d
2 2 .
Psi=05;2>20, pi=0,,>0, Vi (6.34)

Here, we define p,; = 0if ¢ > R. As we can see, the matrix-valued optimization problem in
(6.13) becomes a scalar-valued optimization problem which is much easier to work with.

For the case of different MSE constraints, it will more difficult to find the optimum precoder
structure. However, we can still use the precoder structures described in (6.31) and (6.32) to
solve the problem. This method, though suboptimal, can also transfer the matrix operations to
a series of scalar-valued operations in (6.12). In this case, however, we have to let Ug = I in

(6.31). From (6.31) and (6.32), we can rewrite the MSE matrix in (6.12) as

—1
E— (0;21L +BISISISE (52 8,555 4 02 1)) 2rdzrzsrzs) .

(6.35)
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As aresult, the optimization problem is translated into

L L L
: 2 2 2 2
I'Illn. pr,io-nﬂn + O-sps,ipr,io'sryi + Us ps,i
=1 =1 =1

Ps,isPryi
=

s.t.

2 2 -1

-2 Ds,iPri0gri0rd

o, + 2 2 2 < i,
O-n,rpﬁio-rd,i + Un,d

ps,i = O'ii Z 07 pr,i = Ufﬂ' 2 07 VZ (636)

§ 6.2.2 Optimum Solutions in (6.34) and (6.36)

From (6.34) and (6.36), it 1s simple to find that the optimization problems are both not convex.
However, resorting to the primal decomposition approach [51], we can transfer the original
optimization problem into two optimization problems, which are referred to as a subproblem
and a master problem. Using the method, we can re-formulate the cost function in (6.34) and

(6.36) as

L

L L

: E 2 E 2 2 2 E

min pr,io—nﬂn + O—sps,ipr,io—sr7i + Us ps,i

Ps,isPr,i < - -
=1 =1 =1

L L L
: : 2 2 2 2 2
= min mln) E PriOpn, + E OPs,iPriOg; T O E Ps.i- (6.37)
i=1 i=1 i—1

Pr,i Ps,i (p'r','i
As we will see, both the master problem and the subproblem are scalar-valued convex optimiza-

tion problems and closed-form solutions can be easily derived. Given p,;, ¢ = 1,---, L, the

subproblem in (6.36) is given by

L L L
: § 2 E 2 2 2 E
min ) pT,iO-n’r + UspS,Z‘pT,io-srﬂ; + Us pS,i
=1 =1 =1

ps,i(pr,i

s.t.

~1
S,i ri02r ‘02 i
("52+ Pobri%nirdi ) < pi>0, for =1+, L (638)

2 2 2
O-n,rprﬂo-rd,i + Un,d
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It is simple to see that the subproblem (6.38) is a convex optimization problem. From the KKT

conditions [9], the optimum p, ; can be derived as

Th PriOrg; + O
ps,i—(p;l—a;2)< o e (6.39)

2
pTle-sr,iO-rd,i

Substituting (6.39) into (6.37), we can have the master problem as

L 2 2 2
. 2 2 9 1 —2 OnrPriOrq + On.d
mln E Pri | Op + OsO0gr (pz — Oy ) 2 2

Pri i=1 DPriOgri0rq,

L 2 2 2
2 -1 _9 On,rPriOrqg i + On,d
+Us (pz — Oy ) 2 2
=1

Pri0s ;04

s.t.

prs >0, for i=1--- L. (6.40)

The optimization in (6.40) is also a convex optimization problem. The optimum p, ; can there-

fore be derived by the corresponding KKT conditions as (See Appendix A.6 for the detailed

2 2(,~1_ -2
v Un,das (pz Us )
pr,i $ 2 2

Jg,ro-sr,io-rd,i (1 + 0-3 (pl—l - 05_2)) .

Using (6.39) and (6.41) in (6.31) and (6.32), we can obtain the closed-form solution for the

derivation):

(6.41)

precoders in the two-hop MIMO relay system. Interestingly, the solution in (6.34) is the same

with that of (6.36) by simply setting p; = py = -+ = p.

§ 6.3 Joint Source/Relay Precoders Design for General MIMO

Relay System

§ 6.3.1 Problem Formulation in MIMO Relay System

As we can see, the optimization problem in (6.11) is not a convex problem and the constraint

function is a highly nonlinear function of the source and relay precoders. Even with numerical
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methods [51], it is difficult to obtain the optimum solution. To overcome the problem, we
propose to use the precoder structures in (6.31) and (6.32). As that in previous case, we let
Ug = I,. Invoking the SVD of Hgp, we have Hgp = UsdEstgi where 0,4 1s a diagonal
matrix with the ith diagonal element of 0,4; and 0541 > -+ > 0, 4Min{N, M} From (6.11), the

optimization problem can then be reformulated as

L L
: 2 2 2 2 2
min E :pT‘,i (Un,r + Uspsyio-sr,i) + 0y E :ps,i
Ps,iPr,i < .
=1 =1
s.t.
ID(sz> < Pi

E=|0"I,+0, ;20 VIZIZ ,VE, +

=Eg

SHRISHR (02 3,,5,2058 62 1) 5,25, %,

J

-~

=Eg
Psi=0320, pry=07,20, Vi (6.42)

where V. = VIV, . As we can see, E in (6.42) is not fully diagonalized and solving the

problem is still difficult. To provide a feasible solution, we apply the following lemma.

Lemma 6.1: For E in (6.42), we have the following MSE upper bound.

-1 -1\ 1

2 Ds,ilri0 oy iOeas et
E(i,i) < |07+ porimiidi | | e2VEISERL V| Gl
(1,i) < s U%,rp’“’iazdrf‘(ffbd Ds.i In,d vsd sd V. (1,1)
) Pl ::B
= E(i,i), o

where the equality holds when V = I or 3,; = O (i.e. the two-hop system).

Proof: See Appendix A.7.

Let E be a diagonal matrix and its diagonal components be equal to the upper bounds in
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(6.43). We can substitute E with E in (6.42) and have

L
: 2 2 2 2 2

min E DPrii (Un,r + o-spsyio-sr,i) + oy E :ps,i
Ps,isPr,i < -

=1 =1
s.t.

—1
Ps iP ‘02 0.2

Sl -9 ST Y sri rd,i 2v7H
E(i,i))=|o,"+ + Psi ndV S5V

2 2 2
o-n,'rprazo-rd,i + Un,d

._B
ps = sz—o pm—UiiZO, Vi.

(i, 1)

-1

-1

< pi,

(6.44)

Comparing (6.42) and (6.44), we see that the constraints in (6.44) are more stringent. In other

words, if the precoders satisfy (6.44), they will also satisfy (6.42). Similar to the problems

we have in the two-hop scenario, the optimization in (6.44) cannot be conducted since it is

not a convex problem. As Section 6.2 described, this problem can be solved by the primal

decomposition method.

§ 6.3.2 Optimum Solution in (6.44)

Given p,;,1 =1,--- | L, the subproblem in (6.44) can be expressed as

min Zp” nr+05p5105m + o5 Zpsz

Ps,i(Pr,i) P —=
s.t.
-1
~ _ psiprigzriazdi 2x7H .
E(i,i)= | o;% + 5 5 T Dsi ndV »i Est (i,1)
O-n,rpﬁ’io-rd,i + Un,d ~~

=B
2 2 .
Psi = O0s; > 0, Pri = 045 >0, Vi.

S Pis

(6.45)

It is straightforward to check that this optimization is a convex optimization problem. So,

similar to (6.39), the solution can be easily derived as

g2 g2 -1
psji _ (pz_l - 0_8_2) ( pTzO-sT’L rd,i + ((B_1>(2,Z>)_1> .

pTlOnT rdz+a
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Substituting (6.46) into (6.44), the master problem can then be expressed as

L D0 2d ) -1
min —|—0202 R ri9sriTrd; + (B™H(i,4)) +
. s srz(pz s ) przonr le_'_o_nd (( )( ))

prlo-nr rdz+a

> (o =) ( gy <<B1><z',z'>>‘1>

pri >0, for i=1,--- L. (6.47)

Comparing (6.47) and (6.40), we can find that the two problems are very similar. The only
difference lies in the additional term ((B=) (i,4)) " in (6.47). The solution can be also obtained
by the KKT conditions. After some tedious manipulations (see Appendix A.8 for details), we

can obtain the result as

—Bj++/B?—4A;C; .
I S if Cl <0

Pri = S (6.48)
0, ift C; >0.
where
105 ) 2 o =, SN
A — 0_4 '0,2 (B 1(272)) +20nrasrz(B 1(7’72)) _I_Ugr,i +
l i 81”7, (U pz 1)
o2, (B(i,i)) " + 02) >0, (6.49)
. 202 o2 o2 _
B, = (B7'(i,) ' ( 5 72; ;d szl) (U?w (B7'(i,1)) L4 azm-) + 207 0, dafdl)
>0, (6.50)
and
(B~'(i,i)) "2, R
C;=opy <02 ot 1’) + (B7(i,4)) " — 0,500 |- (6.51)

Substituting (6.48) into (6.46), we then have a closed-form solution for p; ;. Finally, substituting
(6.46) and (6.48) into (6.31) and (6.32), we obtain a solution for the precoders. The solution in
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Table 6.1: Complexity of linear source and linear relay precoders (QoS constraints).

Step Operation FLOPs
I Hgp=U,%,V, | O(N?+ RN?)
2 Hpp=U,%,,VE | OMR*+ R?)
3 Hsp=UyuX,VE | O(MN? + N3)
4 B! O(N?)
5 3, (6.48) O(L)
6 Fr (6.17) O(R?)
7 ¥, (6.46) O(L)
8 Fs (6.16) O(NL?)

(6.48) also implies that the cooperative operation may not always be advantageous. One may
ask when is the right time for cooperative communication, and the variable C; in (6.48) gives

the answer. From (6.48), we can observe that if

1/ A\ —2
O-i,do-i,r (B 1<Z72))

gr,i (ngz_l - 1)

+ (B7(0,0) 7 > 02 02, forall i, (6.52)
0— I’ k)

the relay link is off since p,; = 0 for all <. In other words, the condition (6.52) provides a
“sufficient condition” that can be used to determine if the system should be operated in the

cooperative mode or not.

The complexity of the linear source and relay precoders mainly involves the SVD and matrix
inversion operations. The overall complexity of producing the precoders can be summarized in
Table 6.1. As we can see, compared to Tables 2.1-5.1, 3, proposed in this chapter has the lower
computational complexity. This is because the closed-form expression is expressed as a simpler

formulation.
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§ 6.4 Simulations

In this subsection, we conduct simulations to evaluate the performance of the proposed pre-
coding schemes. We assume that perfect synchronization is achieved, and the exact CSIs are
available at all nodes. Also, we assume that L = N = R = M = 4, the elements of each

channel matrix be i.i.d. complex Gaussian random variable with zero mean and same variance,

2

sr?

and o, = 02 ;= 0.01. Also, let 02, 07, and o2, denote, respectively, the variance of each
channel element for the source-to-relay, the relay-to-destination, and the source-to-destination

links.

§ 6.4.1 Two-hop MIMO Relay System

In this subsection, we evaluate the performance of the proposed precoding scheme for two-hop
MIMO relay systems. We first consider the scenario of equal MSE constraints, i.e., p; = - - - =
ps = p , and simulate two cases. In Case 1, 0%, = 0.0316 and 02, = 0.3162. In this case,
10log,, (¢2,/02,) = 5 dB and 10log,, (07;/02,) = 15 dB. In Case 2, 02, = 0.3162 and
o2, = 0.0316. Figs. 6.1 and 6.2 show the simulation result for Case 1 and Figs 6.3 and 6.4 for
Case 2. Figs 6.1 and 6.3 give the source power consumption (Fs) , the relay power consumption
(P,), and the total power consumption (/;) , while Figs 6.2 and 6.4 show the resultant MSEs.
As we can see, the resultant MSEs are equal to the required MSEs and thus it indeed satisfy
the MSE constraints. Comparing these two figures, we can observe that when the source-to-
relay link is poor (Case 1), the system allocates more power to the source than to the relay. On
the contrary, when the relay-to-destination link is poor, the system allocates more power at the
relay. We then consider the scenario of different MSE constraints in which (p1, p2, p3, p4) =
(0.008,0.009,0.01,0.011), 02, = 1, and o, is varied. In this case, 10log,, (02,/072,) = 20
dB. Fig. 6.5 shows the simulation result. In the figure, the solid lines denote the required MSE
constraints and the dash lines the resultant MSEs for each data stream. As the figure shows, the

solid and dash lines are overlapped indicating that the proposed precoding scheme can precisely

101



satisfy the MSE constraints.

§ 6.4.2 General MIMO Relay System

In this subsection, we evaluate the performance of the proposed precoding scheme for general
MIMO relay systems. We first consider the scenario of equal MSE constraints where p; =
oo = pg = p, o = 1,02 = 1and 02, = 0.1. In this case, 10logy, (02 /02,) = 20
dB. Fig. 6.6 shows the total required transmission power, and Fig. 6.7 the resultant MSE.
As shown in this figure, there is a gap between the resultant and the required MSEs and the
resultant MSE is lower. This is because the proposed precoders are designed based on the MSE
upper bounds in (6.44). We then consider the scenario of different MSE constraints where
(p1, pa, p3, pa) = (0.008,0.009,0.01,0.011), 62, = 1, 02, = 0.0316 and o2, is varied. Here,
10log,, (02,/02,) = 20 dB, and 10log,, (¢2,/07.,) = 20 dB. Fig. 6.8 shows the resultant
MSE:s. In the figures, the dash lines denote the resultant MSEs while the solid lines the required
MSEs. From the figure, we observe that the behavior of the proposed precoders is similar to that
in the previous case, i.e. the resultant MSEs are lower than the required MSEs. However, the
gap between the resultant and required MSEs is smaller when the SNR of the source-to-relay
relay link is higher. This is because in this case the resultant MSE will be closer to the upper

bound (see Lemma 6.1 in (6.43)).
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Figure 6.1: Power consumption for proposed joint precoders method in two-hop MIMO relay

system with 02, = 0.0316 and 02, = 0.3162.
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Resultant MSE

Resultant MSE = MSE (QoS)
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Figure 6.2: Resultant MSE versus QoS with o2, = 0.0316 and ¢%; = 0.3162.
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Total power (dB)
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Figure 6.3: Power consumption for proposed joint precoders method in two-hop MIMO relay

system with 02, = 0.3162 and 02, = 0.0316.
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Resultant MSE

Resultant MSE = MSE (Qo0S)
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Figure 6.4: Resultant MSE versus QoS with o2, = 0.3162 and ¢%; = 0.0316.
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Figure 6.5: Resultant MSE performance of proposed precoders method in two-hop MIMO relay
system with (p1, pa, p3, p4) = (0.008,0.009,0.01,0.011).
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—©— Proposed MIMO relay
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Figure 6.6: Power consumption for proposed joint precoders method in MIMO relay system

with o2 = 1,02, =1and 02, = 0.1.

108



Resultant MSE

MSE = MSE (QoS)
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Figure 6.7: Resultant MSE versus QoS with 02, = 1,02, = 1 and 02, = 0.1
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Figure 6.8: Resultant MSE performance of proposed precoders method in MIMO relay system
with (p1, p2, p3, pa) = (0.008,0.009,0.01,0.011).
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Chapter 7

Conclusions

Conventional transceiver designs in three-node MIMO relay systems only consider the relay
precoder and some even ignore the direct link, and the system resource is not fully explored.
This motivates us to develop new designs taking the direct and relay links into account, and
jointly optimizing the source and relay precoders. In our designs, the relay precoder is linear
and the source precoder and the receiver can be linear or nonlinear. We study four transceiver
structures and propose new methods for the precoders design. The transceivers we considered
are: the MMSE receiver with the linear source precoder, the MMSE receiver with the THP
source precoder, the QR-SIC receiver with the linear source precoder, and the MMSE-SIC re-
ceiver with the linear source precoder. Although these design problems can be easily formulated
as some optimization problems, the cost functions are inherent to be highly nonlinear functions
of the precoding matrices, and the optimum solutions are very difficult to derive. To overcome
the problem, we seek for suboptimum solutions by constraining the precoders to have some spe-
cific structures. With the primal decomposition approach, we can then transfer the optimization
problems into convex optimization problems, and the closed-form solutions can then be derived
by the KKT conditions. In addition to the designs mentioned above for the enhancement of
link quality, we also consider the design satisfying QoS constraints. Simulations show that the

proposed source and relay precoded MIMO relay systems significantly outperform the existing
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precoded systems. In concluding the dissertation, we suggest some possible topics for future

research.

1. In MIMO relay systems, the estimation of CSI is less addressed. As known, CSI is
required in all the designs. It is then important to design training sequences or pilots
for effective channel estimation. Note that the estimation problem here is fundamentally
different to that in MIMO systems. For example, the destination may have to estimate the

source-to-relay channel which is not directly observable.

2. In this dissertation, the precoders are designed based on the assumption that perfect CSIs
are available at all nodes. In practical systems, however, this may not be always possi-
ble. How to design robust transceivers is an important issue in real-world applications.
Moreover, how to design efficient feedback systems such that CSIs can be fed back to the

transmitters also deserves further studies.

3. In practical cooperative system, implementation of an AF linear precoder at the relay
node essentially encounters several problems such as analog/digital conversion (ADC),
lack of symbol timing/frequency synchronization, physical layer waveform design, and
automatic gain control, etc. Especially, unlike the analog waveform repeater, the signals
sampled by the relay’s ADC are first sampled at buffer in the FPGA. Then the stored
signals multiply a linear precoder before sending them to the DAC. The ADC and DAC
increase the RF transceiver’s setting load. How to solve these practical problems and/or
reduce the complexity of implementation at the relay are also the interesting research

topics.

4. In this dissertation, we only study a typical three-node MIMO relay system. In the system,
there are only one source node, one relay node, and one destination node. In a general
relay system, there may be multiple source nodes, multiple relay nodes and multiple des-
tination nodes. In addition, the system may be a multi-hop relay system. The precoders

design in such a system is challenging and deserves for further study.
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5. The relay precoder we considered is a linear precoder. However, the relay precoder can be
nonlinear. How to design a nonlinear source and a nonlinear relay precoders associated

with a nonlinear receiver is still an open problem.

6. To the best of our knowledge, the existing transceiver designs in MIMO relay system all
assume the AF protocol. The design with the DF protocol is also an open and interesting

problem.

7. The OFDM modulation scheme is widely used in real-world communication systems. It
is then desirable to consider the precoders design in MIMO-OFDM relay systems. The
design problem is obviously much complicated since one extra dimension, the subcarrier

power allocation, is added.
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Appendix

§ A.1 Proof of (2.25)

Let us first rewrite

tr (D' (X + Dy) ' Dy) = > |Dy(i,4)| (X + D) (4, 1), (1)

i—1
where D; € RV*L and D, € RY*N, N > L, are diagonal matrices with the positive elements;

X € CN*¥ is a Hermitian matrix. So, (X + D) is a positive definite matrix.

‘We claim that

1
X +Dy) ' (i,4) > 2
which will be proved in the next paragraph. From (1) and (2) we immediately have
~ D i)P
tr (DE(X+Dy)'Dy) >y —— 22
T( i (X+ Do) 1)_;(X+D2)(i,i)
L o

D (4,1)? : -

- D (O (DY (diag(X) + Dy) ' D)) 3)

(diag(X) + Dy) (i, 1)

=1

which proves the lemma.

[ Proof of (2)]: Let Z := (X + D) = UX U be the eigen-decomposition of the positive-
definite matrix Z. Since 1 = e/ Ie; = e! Z'/?Z~'/2e;, where e; is the ith unit standard vector,
we then have

L= |lef 222713 < [lef Z'2|311Z72es]3, )
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where the inequality in (4) follows from the sub-multiplicative property of the matrix norm
[50]. Since |el Z'/%|3 = (el Z'/?Z'%e;) = Z(i,i) and | €] Z7V2|3 = (el Z7'/?Z7"/%¢;) =
Z~'(i,1), the inequality (4) thus leads to 1 < Z(4,7)Z'(4,1), or equivalenty Z~*(i,7) > ﬁ

§ A.2 Derivation of (2.29) and (2.30)

The Lagrangian function with respect to (2.28) can be written as

L
L= Z psmm S” ml 1 + A <U§;ps7i _PS,T> +

=1 2 + +psz (Bil(zaz))

n rPr, 10' rd, Z+O’

L
)\r <Z pr,i (0-721’7 + O-gps,io-sr 7, PR T) Z /JJs zps 1 Z ,U/r zpr i (5)
i=1

As mentioned, if p, ; is given, (2.28) is a convex optimization problem (for p, ;). Thus, we can
obtain the optimum p, ; using the KKT conditions [51]. The KKT optimality conditions for
solving p,;, 1 <1 < L, are given as follows:

2

502 4020
_PoiTndTsriOvds + X (02, 4 02psi023) — i =0, (6)
(Ps.is Prii) ’ ’

where

_ A 2
¢ (Dsir Pri) = [(05 >+ Dy (B 1(27@)) > (pr,i027r03d,i + Ui,d) +ps,ipr,i03r,z‘03d,i (7

fini > 0. (8)
A > 0. )
HriPri = 0. (10)
L
Ar (Z Pri (02, + 02psi02;) — PR,T> =0 (11)
=1
Combining (6) and (8), we have
57LU2 02 02
M (02, + 02py 02 ) > Diondlorilrdi (12)
’ ' C(ps,mp’r,z)
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Substituting (6) into (10) leads to

2 2 2
ps’io- 7d0' ,‘0- d,'
P (Ar (02, +02psios.;) — C(;sms;;; ) =0 (13)
To satisfy (13), we then have
1. If
2 2 2
pS’iO- 7d0' "O- d,’
)\r (O'i,r + ngs,iagr,i) C (;L)s’i’s;;;i)r :
then p,; = 0.
2. If
2 2 2
p57i0- 7d0' "0- d,‘
3 (03, + 0lpaiod) = s
then
5,i0n,d0sr,i0rd,i — — o\ —
R = 02 (07% + (B 0) )
Pri = e —
o O-zd,i (UT2L,T (O-.;2 + ps,i<B71(7’7 2))71) =+ ps,iagr,i)
Considering 1), 2) and p,; > 0, we then find the solution of p, ; as:
2 2 2 \—1/2 2 -2 “1 -1y
Dry = HrOn,dr/PsiOsriOrd,i (Usps,io-sni + O-n,r) —Opnd (Us + ps,i(B (Z, Z)) )
" U?d,i (072L,r (0-8_2 + ps,i(B_l(iv 7’))_1) + ps,io-gr,i) ’
(14)

where [y|t = max[0,y], and p, = Ay /2 is the water level which should be chosen to satisfy
the power constraint at the relay. Similarly, we can obtain the optimum p, ; for a given p,; as

shown in (2.30). The details, however, are omitted.

§ A.3 Proof of Lemma 3.2

Since A is a positive definite matrix, the related eigenvalue decomposition can be expressed

A =U, X, Ul = AVZAY2 (15)
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where 34 is a diagonal matrix with the positive eigenvalues, U4 is the related eigenvector

matrix, and A2 = U AEZMUQI . From (15), we can have the following equation:
(A+B)=AY2(Iy + AP BAY2) A2, (16)
From [50], we see that
det (CD) = det (DC) = det (C) det (D). (17)
Using this property in (16), we then have

det (AB) = det (A'? (Iy + A7V/2BATY2) AY?) = det (A) det (Iy + A7/*BA'?).
(18)
Q.E.D.

§ A4 Optimum Solution in (3.32)

The Lagrangian function in (3.31) can be expressed as

K 2 2 12

pTi n, 0:d40 sri
> in (1 + d2 R ) +
Py + 054

prlo-nr rd,i

P,
[ZPM (ﬂ D or(i50) + 0-721,7") — Prr

= vripris (19)
=1

where A > 0. v,; > Owithi =1,---, k. By the KKT conditions for all 7, we have
0_2 0_2 0_2 0_/2
n,d” N, rd,i 37"12
8L “Jnr T 1O P
_ (p 2d12 n(i2> +A ST /iTZD/ST(Z Z)+O' —UM:O; (20)
ap’r‘,i 1 + Pr, ZUn dord zalsrz N ’

DPr, 10—721 TUTd ’L+O-’VL d

/\7 Ur,iv pr,i Z 07 (21)

UriPri = 07 (22)
[Zp” (_ srzD,ST’(Z Z) =+ U ) - PR,T
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Substituting (20) into (22) and noting the fact that p,; > 0, we have

1
2 2 5
g, o o
2 g2 | T +1|4+2p,; 0/—2' + n,d i n,d
pT’l " Ug’dalgr’i Y ’ o 20721,r O-'rzz,ro-zd,io-lgr,i
h ;41 g :‘,BZ :‘,C(z
_ PS7T 12 / . . 2
= A UsriD sr(ZJ)‘f—O'nr , (24)
N ’ b
1 B2 C; B
Pr,i: P +A_12_Z_X’ (25)
)\ (%Olgr,iD/sr (@7 Z) + 0-72“7”) Az ) 7 i
ot d
B2 —A,C, i
YT -t 7 (26)
i Orai (W + 1>
0.2 do_/2 )
BZ' 1 _|_ n2,o-2 ST,
= n,T ) 27
A (27)

2
; 2 9n,r 12
i nr
Ord,i (gid to sr,i)

After some straightforward manipulations and the use of (21), we can have the optimum p, ; as

n,d

u Toh,
Pra = 2 Psr 42 2 2 2 2 + 2 2
254 5/ / ) - /1— 4 On,
Urd,i < N o sr,iD ST (27 Z) + Un) (O-n,ro-n,da- STy + 1) eri (# -+ 1)
’ n,d® sr,
2 +
1 + U?L,dg/~9T,i
- 25 (28)

2 Y
2 On,r 12
Urd,i (gfld +o sr,i)

where ;1 = 1/ should be chosen to satisfy the power constraint in (3.31).
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§ A.5 Water-Filling Algorithm for (3.32)

For convenience, we let

1

a; =

2 Bs,r 12 / 2 2
O-rd,i ( N srzD sr (Z 7’) +o > (Un ran da ElX) + 1)

@ = 2 (77 2\’
n,r /
U’rd,i <g~i h to sr,i)

P
d; = (ﬂ 'imD’sr(z i) + o2 )

(29)

(30)

(D

(32)

(33)

An easy way to solve (33) and at the same time satisfy the power constraint in (3.31) is the

bisection method sumarrized in Table 3.2. In the table, 1570 and 17, o denotes the maximal

and minimal initial y, respectively; € is the tolerate error determining the numbers of iterations.

We use a simple method to determine 570 and pipo. Let D; = min{b;/a;}, i = 1,2,---

, K.

We ignore the operation of [.|* in (33), replace (b;/a;) with D; in (33), and solve p,.; for i =

1,2, -, k. Using the power constraint, we can then obtain a upper bound of ;¢ which can serve

as as [iy7,0, and a mathematical expression as

( u+D> (Zﬁ) —gciSPR,T-

From (34), we have

> i1 Vi
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* i+ Prrl?
< ([211’5 ki RVT} _Di) = Uao-

(34)

(35)



For 11, o, we can simply use the minimum £ such that p, ; is nonnegative in (33). For p, ; being

nonnegative, we must have
2
a;
c?—bi

From (29), (30), and (31), we can see that =— > 0. Thus, we let ji; o = min{@, ‘v’i}.

3 (3

= >0, Vi. (36)

§ A.6 Derivation of (6.41)

Considering (6.40), we can observe that the optimization problem is a convex. The Lagrangian

function corresponding to (6.40)

2

L —1 -2 2 2 2
2 (pz — Oy ) (pr,io'n,ro'rd,i + Jn,d)
L = o} 5 +
i=1 Dri0gi0rq

L -1 _ -2 L2 2 2 L
3 (mir = (o' —0.2) (prion, 020 + o—n,d)> =S pipes G
=1

i=1 Pri0ra;
where p,; > 0 withe = 1,--- | L. By the KKT conditions, for all ¢, we have,
oL ‘7721 o grio-g i
e —o? (pi_l = W % + (0,%7T + J?U?M (pi_l — 05_2)) — pr; = 0. (38)
Pri (pr,io-sr,io-rd,i)
HriPri = 0. (39)
) (40)
From (38), we have
o? o’ o2, .
pr; = —o2 (p;i' —0.7) (”ds—””“)z ol +oion, (pit—0.?). (41)
(pma fm.o 7?d,i)

With the condition (39) and the assumption of p,; > 0, we have p,; = 0 and

olona (it — 0%

2 2 2 2(,~1 _ -2
O-n,ro-sr,io-rd,i (1 + Os (pz Os

e o (42)

Following (42) and the condition p,; > 0, we have

ona o = 0)
Pri = \/0_2 o2 o2 (1 + 0'3 (p;l _ 0'8_2)) (43)

n,r sri rd,g

Q.E.D.
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§ A.7 Derivation of (6.43)

We first rewrite MSE matrix by the matrix inversion lemma as

E = | (0.1, +Egr) +3! (0,5VIVEZ.VIV.) 2,
— N ~- 4
=A =B
= A -ATSI (BB AE) IS A (44)

where A and B are defined as diagonal and non-diagonal matrices, respectively.

Now, we let Z := (B™! + £,A'2) = U.X.U¥ be the eigen-decomposition of the
positive-definite matrix Z where Ep € RF* is the diagonal matrix and Eg € CF*F is a Her-
mitian matrix defined in (6.42); U, and 32, are the corresponding eigenvectors and eigenvalues,
respectively. Let e; be the ith unit standard vector. Since 1 = eI e; = el Z'/2Z~'/%e;, we

then have

L= ||ef Z'7Z71%ei||3 < |lef Z'?| 31 27" %eil 3, (45)

where the inequality in (45) follows from the sub-multiplicative property of the matrix norm
[50]. Since ||e] Z'/?|3 = (el Z'/?Z'?e;) = Z(i,i) and ||e] Z7'/2|3 = (el Z7/?Z7'/%¢;) =
Z7'(i,1), the equality (45) thus leads to 1 < Z(i,4)Z (i, 1), or equivalently Z~*(i,7) > ﬁ
Therefore, taking Z in (44), we then have the result in (6.43).
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§ A.8 Derivation of (6.48)

Similar to the derivation in Section 6.5.1, we conduct the solutions by the KKT conditions. The

Lagrangian respect to (6.47) is

-1 _ -2

L
2 pz Us
Ts Z 2 2 +
( (B 1)(2 Z))

i=1 Usr zard i +
o2 to2 —1
n,r rd 7 n, dpr 7

2 2

i(pit =0 .
me 0%, + ( Hwafe — % ) > fripri; (46)
=1

Us'r zgrd 7 + 1
0-7%» ard 7,+o.n dp':zl ( )(Zﬂ/)

where p,; > 0 with¢ = 1,--- | L. By the KKT conditions. We have

aL grz (U pz 1)
ap?”,i B O-Z’T + ( o—gr zo-gdz

G%T‘ rdz+gn dp'rzl + (B 1)(11')

~__
|

2 2 2 - 2 —1
00,d%5r,i9rd,iPri \TsP;  — 1
(phiagr,i + 1) = STy (2 ) — i =0
037 zo.r 7 —1 2
(a% R -11>(i,i>) (031070 + T0.aPri)
47)
HriPri = 0. (48)
s > 0. (49)
With the condition (46), (48) and the assumption of p,; > 0, then y,.; = 0 and thus
2
o2 o2 1
2 sri” rd,i 2 2 2 —1\2
Gn,r + _ .. O-n,ro-'rd,i + Un,dpri +
(Ur%r rdz+0 dprz (B 1) (172) ( ' )
2
2 Usr iOrd 4 1 2 2 2, —1\2
ri \TsP; —1 + . OnrOr , T o T8
07 ) G ) o)
= 0 dOeriOrdiPri (pr,z-asr,i +1) (o2p — 1) (50)
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Let o = 02, 0%, B = (020" — 1), v = (02,02, + 02 p;}), 0§ = (B~'(i,4))”", we rewrite

(50) as

, (007, 20602 ) .
v ﬂO‘Q +0 — ndardz + 2 -+ o — Urdz srz+2an dan rardz +
sT,1 \q,—/

STy
=0

Ck U
2 4 -2 4 6 _
< + Un 7"0-57" zard i Un dan rOrd z) =0. (51)

/BO-ST"L

After some manipulations, (51) can be reformulated as

5202 20002 a’o?
4 4 n,r 2 2 n,r 2
<O-n,r0-rd,i ( 0_2 + 0 + O-n,ro-rd,i 0_2 + + Un ro-sr zo-rd i prz

STy STy sr 7
7

=A;
6202 2a602 02
2 2 2 -2 2 n,r= n,d 2 4
+ <20n,r0n,dard,i ( + 0 — ndo-'r’dz + ﬂ 2 + 20_n,ro-rd,i DPrii
Usrz Usr,i
=B,
52 2
4 72 2
+ Un,d ( + 0 — g, dard z) =0 (52)
srz

A;, B; and C; can be further expressed as (6.49), (6.50) and (6.51), respectively. Since A;, B; >
0 and p,; > 0, the solution is found to be
TBAVBIAAG e o

Pri = F ’ (53)
0, if C;>0.

Q.E.D.
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