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國立交通大學 

電機工程學系博士班 

摘要 

三節點放大傳遞多輸入多輸出中繼系統之傳收機設計包含兩種通訊鏈結 - 直接

鏈結(direct link)與中繼鏈結(relay link)，及兩種前置編碼器 – 來源端前置編碼

(source precoder)與中繼端前置編碼(relay precoder)。在這種系統中，大部分的傳

收機設計都只設計中繼前置編碼器，有些設計甚至只考量中繼鏈結以簡化最佳化

過程。在本論文中，我們提出新穎的線性與非線性傳收機設計，其中來源端前置

編碼與中繼端前置編碼是根據直接鏈結與中繼鏈結的通道資訊，合併最佳化設

計。在本論文所探討的傳收機中，中繼端前置編碼為線性，傳送端前置編碼與接

收機可為線性或非線性。具體而言，我們考量四種傳收機設計，第一種為線性來

源端前置編碼、線性中繼端前置編碼與最小均方錯誤(minimum mean-squared 

error)接收機。第二種考量非線性來源端前置編碼、線性中繼端前置編碼與最小

均方錯誤接收機之傳收設計，第三種為線性來源端前置編碼、線性中繼端前置編

碼與非線性 QR 干擾消除接收機(successive-interference-cancellation)傳收設計，最
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後一種為線性來源端前置編碼、線性中繼端前置編碼與非線性最小均方錯誤干擾

消除接收機傳收設計。在所有考量的傳收機設計中，不管是線性或非線性，困難

點在於其最佳化的成本函數為來源端前置編碼與中繼端前置編碼的非線性函

數，並且為非凹曲線最佳化(convex optimization)，為了克服這個設計上的困難，

我們提出不同以往的前置編碼結構與設計方法，使得原本的傳收機設計可轉換為

凹曲線最佳化問題，因此可推導出解析解。最後，本論文進一步探討以服務品質

(quality-of-service)觀點的線性來源端前置編碼、線性中繼端前置編碼與線性最小

均方錯誤接收機之傳收設計，並延伸前述所提及之設計方式，提出此問題的解析

解，由模擬結果得知，相較於其他現有方法，所提出的傳收機架構有較好的效能

表現。 
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Abstract 

 
The transceiver design in three-node amplify-and-forward (AF) multiple-input 

multiple-output (MIMO) relay systems involve two links, the direct and relay links, 

and two precoders, the source and relay precoders. Most existing methods only 

consider the design with a relay precoder, and some even ignore the direct link. In this 

dissertation, we propose new linear/nonlinear transceiver design methods taking the 

direct and relay links into account, and jointly optimizing the source and relay 

precoders. In our designs, the relay precoder is linear, and the source precoder and the 

receiver can be linear or nonlinear. Specifically, four scenarios are considered. The 

first is the design with a linear source precoder and a liner 

minimum-mean-square-error (MMSE) receiver, the second a nonlinear 

Tomlinson-Harashima source precoder and a linear MMSE receiver, the third a linear 

source precoder and a nonlinear QR successive-interference-cancelation (QR-SIC) 
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receiver, and the fourth a linear source precoder and a nonlinear MMSE-SIC receiver. 

All the designs, either the linear or nonlinear precoded systems, are difficult since the 

cost functions to be optimized are highly nonlinear functions of the source and relay 

precoders. Yet, the corresponding optimization problems are not convex. To 

overcome the difficulties, we propose new precoder architectures and methods such 

that the design problems can be translated into scalar-valued and convex optimization 

problems. And, the closed-form solutions can be obtained by the corresponding 

Karush-Kuhn Tucker (KKT) conditions. Finally, we consider the precoders design 

with quality-of-service (QoS) constraints. In the scenario, the linear precoder is used 

at the source and the MMSE receiver at the destination. Again, this problem is 

difficult and the optimization problem is not convex. We then extend the method 

proposed for the systems mentioned above to derive a closed-form solution. 

Simulation results show that the performance of the proposed transceiver design 

methods is significantly better than that of existing methods. 
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Chapter 1

Introduction

DIversity is a commonly used technique to overcome the multipath channel fading effect in

wireless communications. Existing diversity schemes include time diversity, frequency

diversity, and spatial diversity. Among these schemes, the spatial diversity is particularly at-

tractive. This is because it can combine with the other two diversity techniques with no time

or bandwidth expansion [1]- [3]. The conventional way to obtain the spatial diversity is the

use of multiple transmit or multiple receive antennas. When both multiple transmit and receive

antennas are used, the system is referred to as a multiple-input multiple-output (MIMO) sys-

tem [1]- [21]. The MIMO system has been widely studied in the literature since it can enhance

the diversity or spectral efficiency in an efficient way, [5]- [21]. However, due to shadowing,

multipath fading, interference, and distance-dependent path losses, the link quality between the

source and the destination in a wireless network may not be always good enough for reliable

communication. The fundamentally linking problem greatly affects the transmission in wireless

systems.

Recently, cooperative communication has been garnered great interest. In cooperative sys-

tems, relays at some strong shadowing areas are deployed such that the signal from the source

can be transmitted to the destination by the source-to-destination link (direct link) and the

source-relay-destination links (relay links). With the additional relay links, the channel qual-

1



ity can be effectively improved, and the spatial diversity is implemented in a distributed way,

referred to as distributed spatial diversity [22]- [49]. Various relay protocols have been proposed

including amplify-and-forward (AF), decode-and-forward (DF), and compress-and-forward (CF)

[22] [37]- [38]. In AF, the relays receive the signal from the source and retransmit it to the desti-

nation with signal amplification only. Such a system is also called a non-regenerate cooperative

system [41]- [43], [45]. In DF, the relays decode the received signals, re-encode the informa-

tion bits, and then retransmit the resultant signals to the destination. The system is also called

a regenerative cooperative system. One problem associated with the DF is that the decision

errors can occur in the relays. The CF is a compromise structure between AF and DF where the

received signals at the relays are estimated and compressed, and then re-transmitted to the des-

tination. It is simple to see that the DF protocol requires a higher computational complexity and

a larger processing delay at the relay nodes. In this dissertation, we only consider the AF-based

cooperative system.

Recently, the MIMO technique was introduced to cooperative systems as a means for fur-

ther performance enhancement. With the multiple antennas equipped at each node, a MIMO

relay system is constructed [39]- [46]. Capacity bounds for a single-relay MIMO channel was

first addressed in [39]. Similar to conventional MIMO systems, the precoding operation can be

conducted in a MIMO relay system. For the MIMO relay systems, the relay precoder with AF

protocol was first designed in [41]- [42] to enhance overall channel capacity. In most of those

approaches, only the relay link is considered. It was shown that the capacity can be further

increased if the direct link is taken into account [42]. Apart from the capacity, the link quality is

another criterion has been considered. As well known, the precoder design is a transceiver de-

sign problem which means a specific precoder is designed for a specific receiver. In [43]- [44], a

relay precoder was designed for a minimum mean-square error (MMSE) receiver. Precoding in

multiple-relay MIMO systems was investigated in [44]. Note that the above works all address

the spatial multiplexing scenario. Recently, the design for the transmission of a single data

stream, referred to as beamforming, was also considered. For example, [46] derived the op-

2



timum source and relay beamformers using a maximum signal-to-noise-ratio (SNR) criterion.

In the work, the optimum solution was derived for the relay-link-only system. In addition to

beamforming, antenna selection in MIMO relay systems was also studied. With the MMSE cri-

terion, an optimum selection scheme was developed in [45]. In this approach, only one antenna

is selected at the source and the relay, respectively, for signal transmission.

As mentioned, in the precoders design for spatial multiplexing AF MIMO relay systems,

the existing works only consider the precoder at the relay. Also, the direct link is frequently

ignored [41]- [44]. In this dissertation, we consider the transceiver designs in three-node AF

MIMO relay systems taking the direct and relay links into consideration, and jointly optimizing

the source and relay precoders. Since the relay only amplifies its receive signal, a linear precoder

is used in our study. We first consider the linear transceiver design where the linear precoder

is used at the source and the MMSE receiver at the destination. The MMSE criterion is also

used in [43]- [44]; however, only the relay precoder at the relay link is considered. With our

formulation, it is found that the MMSE is a complicated function of precoding matrices, and

a direct minimization is almost not possible to conduct. To overcome the difficulty, we pose

some structural constraints on the precoders so as to diagonalize the MSE matrix in the cost

function. With the precoders, we can then derive an MSE upper bound. Minimization with this

upper bound, instead of the original MMSE, then becomes feasible. The proposed precoders

can finally be computed via an iterative water-filling technique. Note that the MSE criterion

to minimize is the total MSE of the multiplexed signal streams. With the specially designed

structure, the proposed precoders can make the individual MSEs of all signal streams equal,

indicating that the bit-error-rate (BER) of the proposed precoded system will be the minimal

among all precoded systems with the same minimum total MSE [8].

To enhance the performance of the precoded system, we then use the nonlinear Tomlinson-

Harashima precoder (THP) at the source and a MMSE receiver at the destination. As that in

the linearly precoded MMSE system, the cost function is a highly nonlinear function of the

source and relay precoders. Since the nonlinear THP is involved, the optimization problem
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becomes more difficult. Even with the numerical method [51], finding the optimum solution

is not a simple task. To overcome the problem, we propose to cascade a unitary precoder with

the THP. The unitary precoder can not only simplify the optimization problem but also improve

the MMSE performance. With the specially designed unitary precoder at the source, the primal

decomposition approach [51], decomposing the original optimization problem into a master

and a subproblem optimization problems, can be applied. The optimum source precoder in

the subproblem can thus be derived as a function of the relay precoder. The problem is then

similar to the precoding design in conventional MIMO systems [16] and the solution is readily

obtained. The focus then becomes how to solve the master problem, in which the cost function

is a function of the relay precoder only. Due to the nonlinear cost function, the relay precoder

in the master optimization cannot be solved. We then propose an relay precoder structure and

translate the relay optimization problem into a standard scalar-valued concave optimization

problem. Using the Karush-Kuhn-Tucker (KKT) conditions, we then obtain a closed-form

solution for the relay and source precoders.

An alternative to enhance system performance is to use a nonlinear receiver at the desti-

nation. We then consider the system with a linear precoder at the source and a nonlinear QR

successive-interference-cancelation (QR-SIC) or the MMSE-SIC receiver at the destination. In

the transceiver design, the most desirable criterion to minimize is the BER. However, it is gen-

erally acknowledged that a design minimizing BER is difficult to obtain. As an alternative, in

this dissertation we propose to use the block-error-rate (BLER) instead of the BER as the de-

sign criterion. For a MIMO system with a QR-SIC receiver, the precoder which can minimize

the BLER has been solved by the geometric mean decomposition (GMD) technique [6],[7].

We then extend its use in AF MIMO relay systems to design the source and relay precoders,

jointly. Although the AF MIMO relay system can be formulated as a general MIMO system

and the GMD criterion can be easily applied, the cost function is a highly nonlinear function

of the source and relay precoders. A direct optimization of such a function turns out to be

infeasible. Fortunately, the GMD method allows us to express the source precoder as the func-
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tion of the relay precoder. As a result, the two-precoder design problem can be reduced to a

single-precoder problem. Similar to the approach used in the THP precoded system, we ap-

ply the primal decomposition to translate the problem to a standard scalar convex optimization

problem. The closed-form solutions for the source and relay precoders can then be obtained. It

is noted here that GMD can also maximize a lower bound of channel’s free distance [12]. As

known, the free distance is the metric used in the maximum likelihood detector (MLD). So, it is

expected that the proposed precoders can also improve the performance of the MLD 1. As well

known, a precoded MIMO system with the MMSE-SIC receiver outperforms that with QR-SIC

receiver. We can assert that the same result can be obtained for MIMO relay systems. For

MIMO systems, the precoder with the MMSE-SIC receiver can be solved by the uniform chan-

nel decomposition (UCD) method. However, the UCD is not directly applicable in AF MIMO

relay systems. We show that if the source precoder is constrained to be unitary, the problem can

be easily overcome. Using the UCD, we can jointly design the source and relay precoders such

that the signal-to-interference-plus-noise ratio (SINR) for each layer is equal and maximized.

As a result, the BLER can be minimized.

So far, all precoded systems we described are designed to improve the link performance

[41]- [46]. The constraints posed on the designs are the source and relay power. In many ap-

plications, however, quality-of-service (QoS) may be more critical. For instance, a multimedia

system providing high quality video service may require constraints on BER and processing

delay. Precoded AF MIMO relay systems with QoS constraints have been investigated in the

literature [48]- [49]. In [48], the precoders were designed to asymptotically satisfy the QoS

constraints. In such a system, the direct link was ignored and only the relay precoders were

considered. Alternatively, [49] addresses the similar problem in the multi-user scenario in

which each user is equipped with one antenna and the direct link was ignored. As far as we

1The GMD method is asymptotically optimal for high SNR [11], in terms of both channel throughput and

BER performance. The optimal design here means that the precoder design does not need tradeoffs between the

throughput and BER
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known, the joint source and relay precoders design in the AF MIMO relay system satisfying

QoS constraints has not been studied before 2. In the last part of this dissertation, we aim to

study the problem. As that in the previous parts, we take the both the source and relay precoders

into consideration. We use a linear precoder at the source and a linear MMSE receiver at the

destination. Since there is a one-to-one mapping between the BER and the MSE, we use the

MSEs of signal streams as our QoS constraints. Similar to previous cases, the optimum solution

here is difficult to derive. To overcome the problem, we first consider the two-hop system and

propose the precoder structures that can simplify the design problem and lead to a closed-form

solution. In general MIMO relay systems, the problem becomes much more involved. The pre-

coder structures, however, enable us to derive an MSE upper bound. Using the upper bound as

the constraint function, we can translate the original matrix-valued optimization problem into a

standard scalar-valued optimization problem. A solution can then be solved by the primal de-

composition [51] and corresponding KKT conditions. From the solution, we further provide a

sufficient condition to determine if the system is proper to be operated in the cooperative mode

or not.

This dissertation is organized as follows. In Chapter 2, we consider the system with a

linear precoder at the source, a liner precoder at the relay, and an MMSE transceiver at the

destination. In Chapter 3, we consider the same system except that the linear precoder at the

source is replaced by the THP. In Chapter 4, we consider the system with a linear precoder at

the source, a linear precoder at the relay, and a nonlinear QR-SIC receiver at the destination. In

Chapter 5, we consider the same system as that in Chapter 4 except that the QR-SIC receiver is

replaced by the MMSE-SIC receiver. In Chapter 6, we consider a precoded system with QoS

constraints. The linear precoders are used at the source and the relay, and the MMSE receiver

is adopted at the destination. Finally, we draw conclusions in Chapter 7.

2Note that the relay precoder in [48] is designed to asymptotically satisfy its QoS constraints. The multi-user

system in [49] only uses one antenna for each user, and thus the equalization is not required at the receiver. The

cooperative systems are basically different from those we consider.
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Chapter 2

Joint MMSE Transceiver Design with

Linear Source and Relay Precoders

In this chapter, we consider a precoded AF MIMO relay system in which linear precoders are

used at the source and the relay, and an MMSE receiver at the destination. In Section 2.1, we

build the system model and derive the MMSE solution. It is found that the design problem is

essentially an optimization problem, and the cost function, the MSE, is a complicated function

of the source and the relay precoders. In Section 2.2, we propose a new method to solve the

problem. The main idea of our method is to pose a structural constraint on the precoders so

as to diagonalize the MSE matrix in the cost function. With the precoders, we can then derive

an MSE upper bound. Minimization with this upper bound, instead of the original MSE, is

much simpler. The proposed precoders can finally be computed via an iterative water-filling

technique. In Section 2.3, we give some application examples demonstrating the effectiveness

of the proposed method.
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§ 2.1 System Model and Problem Formulation

§ 2.1.1 MMSE Receier with Linear Source and Relay Precoders

We consider a typical three-node half-duplex cooperative AF MIMO relay system where mul-

tiple antennas are placed at each node. Under this scenario, signals can be transmitted from the

source to the destination, and from the source to the relay and then to the destination. To avoid

the interference between the direct and relay links, we consider the time-division-duplexing

scheme [41]- [44] used in a typical two-phase transmission mentioned above (See Fig. 2.1).

Let N , R, and M denote the number of antennas at the source, the relay, and the destination,

and assume that all channels are flat-fading. For the first phase, the received signals at the

destination and the relay can be expressed as

yD,1 = HSDFSs + nD,1 (2.1)

and

yR = HSRFSs + nR, (2.2)

respectively, where s ∈ CL×1 is the transmitted signal vector with L being the number of the

substreams, FS ∈ CN×L is the precoding matrix at the source, HSR ∈ CR×N and HSD ∈
CM×N are the channel matrices corresponding to the source-to-relay and source-to-destination

channels, respectively; nD,1 ∈ CM×1 is the first-phase received noise vector at the destination,

and nR ∈ CR×1 is the received noise vector at the relay. Here, we assume that L ≤ min{N,M}
to provide sufficient degrees of freedom for signal detection.

In the second phase of the transmission, the relay retransmits the received signal with an-

other precoding matrix. Thus, the received signals at the destination can be expressed as

yD,2 = HRDFRyR + nD,2 = HRDFRHSRFSs + (HRDFRnR + nD,2) , (2.3)

where FR ∈ CR×R is the precoding matrix at the relay, HRD ∈ CM×R is the channel matrix cor-

responding to the relay-to-destination channel, and nD,2 ∈ CM×1 is the second-phase received
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noise vector at the destination. Here, we assume that each element in nD,1 has a zero-mean

circularly symmetric Gaussian distribution, and all the elements are independent identically

distributed (i.i.d.). The same assumption is applied for nD,2 and nR. As a result, the received

signal vectors yD,1 and yD,2 for the two phases can be combined into a single vector, denoted

as yD ∈ C2M×1. Consequently, we have

yD :=


 yD,1

yD,2


 = HFSs + n, (2.4)

where

H =


 HSD

HRDFRHSR


 , and n =


 nD,1

HRDFRnR + nD,2


 . (2.5)

Here, H is the equivalent channel matrix with rank (H) = N , and n is the equivalent noise

vector at the destination. It is noteworthy that the noise received at the relay is amplified by

the relay precoder and the relay-to-destination channel. Also, the equivalent channel matrix in

(2.4) is a function of the relay precoder FR. This is quite different from the scenario considered

in conventional MIMO systems. The precoders design problem actually is a joint transceiver

design problem. In other words, the optimum precoders not only depends on the channels, but

also the receiver. Similar to previous works, we will consider the linear MMSE receiver in our

design [43], [44].

§ 2.1.2 MMSE Receiver and Related MSE Matrix

Let RnD,1
= E[nD,1n

H
D,1] = σ2

n,dIM , RnD,2
= E[nD,2n

H
D,2] = σ2

n,dIM , and RR = E[nRnH
R ] =

σ2
n,rIR, where σ2

n,d and σ2
n,r are the noise variances at the destination and the relay, respectively.

Also, the elements of the transmitted symbols are i.i.d. with zero-mean and a covariance matrix

Rs = σ2
sIL, where σ2

s is the transmitted symbol power.

Using the setting, we can have the covariance matrix of the equivalent noise vector as

Rn = E
[
nnH

]
=


 σ2

n,dIM 0

0 σ2
n,rHRDFRFH

RHH
RD + σ2

n,dIM


 . (2.6)

9



Let G be the equalization matrix in the receiver. Then, the MSE for recovering s, denoted as J ,

is given by

J = E
{‖GyD − s‖2

}
. (2.7)

Minimization of (2.7) leads to the optimal equalization matrix [7] as

Gopt = σ2
sF

H
S HH

(
σ2

sHFSF
H
S HH + Rn

)−1
, (2.8)

Substituting (2.8) into (2.7) and invoking the matrix inversion lemma [50], we can then have

the MMSE, denoted by Jmin, as

Jmin = tr {E} , (2.9)

where

E =
(
σ−2

s IL + ES + ER

)−1
. (2.10)

In (2.10),

ES = σ−2
n,dF

H
S HH

SDHSDFS (2.11)

and

ER = FH
S HH

SRFH
RHH

RD

(
σ2

n,rHRDFRFH
RHH

RD + σ2
n,dIM

)−1
HRDFRHSRFS. (2.12)

As we can see from (2.10), the MMSE is a function of FS and FR. It is also simple to see that

ES accounts for the MMSE contributed in the direct link and ER for that in the relay link. If we

ignore the direct link and only consider the relay precoder, the problem will be degenerated to

the case considered in [43].

§ 2.1.3 Problem Formulation

As shown in (2.9), the MMSE is a function of the two precoding matrices, FS and FR. Our

task here is to design these two matrices such that the MSE in (2.9) can be minimized. The
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optimization problem can then be formulated as below.

min
FS ,FR

tr{E} =
L∑

i=1

E(i,i)

s.t.

E =


σ−2

s IL + σ−2
n,dF

H
S HH

SDHSDFS︸ ︷︷ ︸
:=ES

+

FH
S HH

SRFH
RHH

RD

(
σ2

n,rHRDFRFH
RHH

RD + σ2
n,dIM

)−1
HRDFRHSRFS︸ ︷︷ ︸

:=ER




−1

tr
{
E

[
FRyRyH

R FH
R

]}
= tr

{
FR

(
σ2

n,rIR + σ2
sHSRFSF

H
S HH

SR

)
FH

R

} ≤ PR,T

tr
{
FSE

[
ssH

]
FH

S

}
= σ2

str
{
FSF

H
S

} ≤ PS,T . (2.13)

The inequalities in (2.13) indicate that the precoders have to satisfy the transmit power con-

straints both at the source and the relay where PS,T and PR,T denote the maximal available

transmit power at the source and the relay, respectively.

From (2.13), we can readily find that (2.13) is not a convex optimization. Also, the cost

function involves a series of matrix multiplications and inversions, it is a complicated and non-

linear function of FS and FR. The cost function may have many local minimums, and the

optimal solution, even with numerical methods [51], is difficult to derive. We will propose a

method, described below, to solve these problems.

§ 2.2 Joint Source/Relay Precoders Design

As mentioned above, the optimum solution for (2.13) is difficult to derive. In this subsection,

we then propose a method to seek for a suboptimum solution. One difficulty in (2.13) is that

the number of unknown parameters in FR and FS can be large. The first idea of our approach

is to use a constrained precoder structure such that the number of unknowns can be effectively

reduced. The other difficulty in (2.13) is that the formulae are too complicated to work with.
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Our second idea is to derive an MMSE upper bound having a simple expression, and conduct

minimization with this upper bound. Even though the cost function can be simplified dramati-

cally with the proposed method, a closed-form solution is still difficult to obtain. We then use

an iterative water-filling method to solve the problem.

§ 2.2.1 Proposed Method

When the direct link is ignored and only a relay precoder is considered, the optimum MMSE

precoder can be analytically obtained through a MSE matrix diagonalization procedure [43].

Motivated by this fact, we propose to conduct a similar matrix diagonalization in our design.

Indeed, if the error matrix E in (2.13) can be diagonalized, the trace operation can be easily

conducted, and the whole problem can be greatly simplified. To do that, we firstly consider the

following singular value decomposition (SVD) for the channel matrices in all links:

HSD = UsdΣsdV
H
sd; (2.14)

HSR = UsrΣsrV
H
sr; (2.15)

HRD = UrdΣrdV
H
rd, (2.16)

where Usd ∈ CM×M , Usr ∈ CR×R, and Urd ∈ CM×M are the left singular matrices of HSD,

HSR, and HRD, respectively; Σsd ∈ RM×N , Σsr ∈ RR×N , and Σrd ∈ RM×R, are diagonal

singular-value matrices of HSD, HSR, and HRD, respectively; VH
sd ∈ CN×N , VH

sr ∈ CN×N ,

and VH
rd ∈ CR×R are the right singular matrices of HSD, HSR, and HRD, respectively.

Observing (2.13), we will readily find that a complete diagonalization of E will be difficult.

We then first consider the diagonalization of
(
σ2

n,rHRDFRFH
R HH

RD + σ2
n,dIM

)−1 using FR so

that the inverse operation can be easily tackled. Such an approach, though suboptimal, will

considerably simplify our derivation. It also allows us to derive an MSE upper bound, and then

obtain a scalar-valued optimization problem. With the SVD in (2.16), an immediate choice for

FR to diagonalize
(
σ2

n,rHRDFRFH
RHH

RD + σ2
n,dIM

)
is

FR = VrdΣrUr, (2.17)
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where Σr ∈ RR×R is a diagonal matrix and Ur ∈ CR×R is a unitary matrix to be determined.

With (2.17), we have

(
σ2

n,rHRDFRFH
RHH

RD + σ2
r,dIM

)−1
= Urd

(
σ2

n,rΣrdΣ
2
rΣ

H
rd + σ2

r,dIM

)−1
UH

rd. (2.18)

To further diagonalize FH
S HH

SRFH
RHH

RD

(
σ2

n,rHRDFRFH
RHH

RD + σ2
n,dIM

)−1
HRDFRHSRFS , we

can select

Ur = UH
sr, (2.19)

and

FS = VsrΣsUs, (2.20)

where Σs ∈ RN×L is a diagonal matrix and Us ∈ CL×L is an unitary matrix yet to be specified.

From (2.17) and (2.19), we have

FR = VrdΣrU
H
sr. (2.21)

After some manipulations, we can obtain the MSE in (2.13) as

tr{E} = tr
{(

σ−2
s IL + UH

s ΣH
s ΣH

srΣ
H
r ΣH

rd

(
σ2

n,rΣrdΣ
2
rΣ

H
rd + σ2

n,dIM

)−1
ΣrdΣrΣsrΣsUs+

σ−2
n,dU

H
s ΣH

s VHΣH
sdΣsdVΣsUs

)−1
}

= tr






σ−2

s IL + ΣH
s ΣH

srΣ
H
r ΣH

rd

(
σ2

n,rΣrdΣ
2
rΣ

H
rd + σ2

n,dIM

)−1
ΣrdΣrΣsrΣs︸ ︷︷ ︸

:=ER

+

σ−2
n,dΣ

H
s VHΣH

sdΣsdVΣs︸ ︷︷ ︸
:=ES




−1


(2.22)

where

V = VH
sdVsr (2.23)

is a constant matrix related to the channels. Note that the inclusion of the unitary matrix Us

in (2.22) will not change the cost function at all. However, by an appropriate design of Us,
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we can make the diagonal components of E equal. It has been shown that under a fixed MSE,

i.e., tr{E} , the receiver that make the MSEs of the MIMO components equal has the lowest

BER performance [8]. From (2.22), we now have some observations in order. First, we see that

(2.22) is obtained with the constrained structure of the precoding matrices specified in (2.21)

and (2.20). The minimum MSE obtained with the precoders can serve as an upper bound of the

true minimum MSE. Second, the unknown matrices become Σr and Σs, which are diagonal and

the whole problem is easier to handle. Finally, the matrix ES cannot be diagonalized. However,

starting from (2.22) and exploiting the diagonal nature of ER, we can further derive an MSE

upper bound and use it to diagonalize ES .

To proceed, let us use the matrix inverse lemma to rewrite (2.22) as:

tr(E) = tr







(
σ−2

s IL + ER

)
︸ ︷︷ ︸

:=A

+ΣH
s

(
σ−2

n,dV
HΣH

sdΣsdV
)

︸ ︷︷ ︸
:=B

Σs




−1


= tr
(
A−1

)− tr
(
A−1ΣH

s

(
B−1 + ΣsA

−1ΣH
s

)−1
ΣsA

−1
)

. (2.24)

It is note here that to make sure the inverse of B exists, B should be positive definite. To achieve

that, we assume N ≤ M . Based on (2.24), the desired MSE upper bound can be obtained by

the aid of the next lemma.

Lemma 2.1: Let D1 and D2 be diagonal matrices, with the diagonal entries of D2 being

positive. Then for any positive definite matrix X, we have

tr
(
DH

1 (X + D2)
−1 D1

) ≥ tr
(
DH

1 (diag(X) + D2)
−1 D1

)
, (2.25)

where diag(X) is obtained from X by setting its off-diagonal entries to zero. The equality in

(2.25) holds if X is diagonal.

Proof: See Appendix A.1.

By the lemma, it follows that

tr
(
A−1ΣH

s

(
B−1 + ΣsA

−1ΣH
s

)−1
ΣsA

−1
)
≥

tr
(
A−1ΣH

s

(
diag

(
B−1

)
+ ΣsA

−1ΣH
s

)−1
ΣsA

−1
)

. (2.26)
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Using (2.24) and (2.26), we can have the following key result.

tr(E) ≤ tr
(
A−1

)− tr
(
A−1ΣH

s

(
diag

(
B−1

)
+ ΣsA

−1ΣH
s

)−1
ΣsA

−1
)

=
L∑

i=1

1

σ−2
s +

σ2
s,iσ

2
r,iσ

2
sr,iσ

2
rd,i

σ2
n,rσ2

r,iσ
2
rd,i+σ2

n,d
+ σ2

s,i (B
−1(i, i))−1

. (2.27)

Compared with the original MSE function (2.13), the upper bound in (2.27) admits a much

simpler form and is analytically tractable. Hence, we propose to design the precoder by mini-

mizing the upper bound in (2.27). For convenience, let ps,i = σ2
s,i and pr,i = σ2

r,i in (2.27). The

optimization can finally be formulated as:

min
ps,i,pr,i,i=1,··· ,L

L∑
i=1

1

σ−2
s +

ps,ipr,iσ2
sr,iσ

2
rd,i

σ2
n,rpr,iσ2

rd,i+σ2
n,d

+ ps,i (B−1(i, i))−1

s.t.

tr
{
Σr

(
σ2

n,rIR + σ2
sΣsrΣsΣ

H
s ΣH

sr

)
ΣH

r

}
=

L∑
i=1

pr,i

(
σ2

n,r + σ2
sps,iσ

2
sr,i

) ≤ PR,T

σ2
str{ΣsΣ

H
s } = σ2

s

L∑
i=1

ps,i ≤ PS,T , ps,i ≥ 0, pr,i ≥ 0, ∀i. (2.28)

It is simple to see that the problem in (2.28) is not a convex optimization problem either, and

the optimum solution is still difficult to find. However, note that if one of pr,i and ps,i is given,

(2.28) will become a convex optimization problem. This suggests a method, referred to as the

iterative water-filling method [17], [52], [53], to find a suboptimum solution. For a given ps,i,

the optimum pr,i can be expressed as (See Appendix A.2):

pr,i =

[
µrσn,d

√
ps,iσsr,iσrd,i

(
σ2

sps,iσ
2
sr,i + σ2

n,r

)−1/2 − σ2
n,d (σ−2

s + ps,i(B
−1(i, i))−1)

σ2
rd,i

(
σ2

n,r (σ−2
s + ps,i(B−1(i, i))−1) + ps,iσ2

sr,i

)
]+

,

(2.29)

where [y]+ = max[0, y], and µr is the water level chosen to satisfy the power constraint at the

relay, i.e.,
∑L

i=1 pr,i

(
σ2

n,r + σ2
sps,iσ

2
sr,i

)
= PR,T . With pr,i = σ2

r,i in (2.29), the relay precoder

can be obtained by (2.21). For a given pr,i, the optimum ps,i can be expressed as

ps,i =

[
µs

√
βi − σ−2

s (σ2
n,d + pr,iσ

2
n,rσ

2
rd,i)(

(B−1(i, i))−1(σ2
n,d + pr,iσ2

n,rσ
2
rd,i) + pr,iσ2

sr,iσ
2
rd,i

)
]+

, (2.30)
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where µs is the water level chosen to meet the power constraint at the source, i.e.,
∑L

i=1 ps,i =

PS,T , and

βi =
(
σ2

n,d + pr,iσ
2
n,rσ

2
rd,i

) (
(B−1(i, i))−1

(
σ2

n,d + pr,iσ
2
n,rσ

2
rd,i

)
+ pr,iσ

2
sr,iσ

2
rd,i

)
. (2.31)

Thus, we can use (2.29) and (2.30) to solve pr,i and ps,i iteratively. To determine the Us, we first

substitute (2.29) and (2.30) into (2.21) and (2.20), respectively, and express the error matrix in

(2.10) as

E =
(
σ−2

s IL + UH
s ẼUs

)−1

(2.32)

where

Ẽ = ΣH
s ΣH

srΣ
H
r ΣH

rd

(
σ2

n,rΣrdΣ
2
rΣ

H
rd + σ2

n,dIM

)−1
ΣrdΣrΣsrΣs +

σ−2
n,dΣ

H
s VHΣH

sdΣsdVΣs. (2.33)

Our task now is to design Us such that (2.32) has equal diagonal MSE values. To do that, we

consider the following eigen-decomposition

Ẽ = VẼDẼVH
Ẽ

(2.34)

where VẼ ∈ CL×L is a matrix with the eigenvectors of Ẽ as its columns, and DẼ ∈ RL×L is a

diagonal matrix with the eigenvalues of Ẽ as its diagonal components. Therefore, if we let

Us = VẼFL, (2.35)

where FL is the L-points DFT matrix, (2.32) can be re-expressed as

E = FH
L

(
σ2

sIL + DẼ

)−1
FL (2.36)

which reveals that E is a circulant matrix with equal diagonal elements. It is simple to check

the unitary property that UsU
H
s = UH

s Us = IL.

The proposed scheme mainly involves the operations of the SVD in (2.14)-(2.16), (2.34)

and the inversion of the matrix B in (2.27). The computational complexity of the proposed

scheme, measured in terms of floating-point operations (FLOPs), is summarized in Table 2.1.
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§ 2.2.2 Special Case: Cooperative Beamforming

In this subsection, we consider the cooperative beamforming in a two-hop cooperative system.

This is a special case of our precoding problem in which L = 1 and the direct link is not consid-

ered (i.e., HSD = 0).

For a given source beamforming vector fS , the optimal relay precoder can be derived by [43]

FR = VrdΣrU
H
sr, (2.37)

where Σr = diag{σr,1, · · · , σr,R} with σr,1 ≥ · · · ≥ σr,R.

Let fS =
√

αsvS ∈ CN×1 where vS is an unit vector and fS satisfies the transmit power

constraint, i.e., σ2
sαs‖vS‖2 ≤ PS,T . Substituting the beamformer and (2.37) into (2.9) with

HSD = 0, we have

Jmin = tr

{(
σ−2

s + fH
S VsrΣ

H
srΣ

H
r ΣH

rd

(
σ2

n,dIM + σ2
n,rΣrdΣrΣ

H
r ΣH

rd

)−1
ΣrdΣrΣsrV

H
srfS

)−1
}

= tr






σ−2

s + αs vH
S Vsr︸ ︷︷ ︸
:=wH

sr

ΣH
srΣ

H
r ΣH

rd

(
σ2

n,dIM + σ2
n,rΣrdΣrΣ

H
r ΣH

rd

)−1

ΣrdΣrΣsr VH
srvS︸ ︷︷ ︸

:=wsr



−1



=
1

σ−2
s + αs

∑min{N,M,R}
i=1 |wsr,i|2 σ2

r,iσ
2
sr,iσ

2
rd,i

σ2
n,d+σ2

n,rσ2
r,iσ

2
rd,i

(2.38)

where wsr = VH
srvS = [wsr,1, · · · , wsr,N ]T and ‖wsr‖2 = 1, Σsr, Σrd, Σr are diagonal matrices

with their diagonal elements arranged in a decreasing order. The beamforming problem can then
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be formulated as

min
αs,wsr,i,σr,i,∀i

1

σ−2
s + αs

∑min{N,M,R}
i=1 |wsr,i|2 σ2

r,iσ
2
sr,iσ

2
rd,i

σ2
n,d+σ2

n,rσ2
r,iσ

2
rd,i

s.t.

σ2
s‖fS‖2 = σ2

sαs‖vS‖2 ≤ PS,T

N∑
i=1

|wsr,i|2 = 1

tr
{
Σr

(
σ2

n,rIR + σ2
sΣsrV

H
srfSf

H
S VsrΣ

H
sr

)
ΣH

r

} ≤ PR,T . (2.39)

Theorem 2.1: The optimal beamforming vector denoted by f∗S and the optimal relay precoder

denoted by F∗R for (2.39) are
√

PS,T

σ2
s

Vsr(:, 1) and
√

PR,T

(σ2
n,r+PS,T σ2

sr,1)
Vrd(:, 1)[Usr(:, 1)]H , where

Vrd(:, i) and Usr(:, i) denote the ith column of Vrd and Usr, respectively.

Proof: We first derive the optimal wsr for given αs and σr,i, i = 1, · · · , R. From (2.39), it

is simple to see that the optimal wsr can be derived by the following equivalent problem

max
wsr

min{N,M,R}∑
i=1

|wsr,i|2
σ2

r,iσ
2
sr,iσ

2
rd,i

σ2
n,d + σ2

n,rσ
2
r,iσ

2
rd,i

N∑
i=1

|wsr,i| = 1. (2.40)

From (2.40), it is obvious that optimum wsr is [1, 0, · · · , 0]T . This can be easily checked by

σ2
r,iσ

2
sr,iσ

2
rd,i

σ2
n,d + σ2

n,rσ
2
r,iσ

2
rd,i

≥ σ2
r,jσ

2
sr,jσ

2
rd,j

σ2
n,d + σ2

n,rσ
2
r,jσ

2
rd,j

, i ≥ j. (2.41)

The solution implies that the optimum vS , denoted by v∗S , is

v∗S = Vsr(:, 1). (2.42)
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As a result, the design problem can therefore be expressed as

max
αs,σr,i,∀i

αs

σ2
r,1σ

2
sr,1σ

2
rd,1

σ2
n,d + σ2

n,rσ
2
r,1σ

2
rd,1

s.t.

0 ≤ αs ≤ PS,T

σ2
s

tr
{
Σr

(
σ2

n,rIR + αsσ
2
sΣsrV

H
srvSv

H
S VsrΣ

H
sr

)
ΣH

r

}
=(

σ2
n,r

R∑
i=1

σ2
r,i

)
+ αsσ

2
sσ

2
r,1σ

2
sr,1 ≤ PR,T . (2.43)

Taking a close look at (2.43), we first find that the cost function is only related to αs and σ2
r,1.

Then, we can have the following observation:

αs

σ2
r,1σ

2
sr,1σ

2
rd,1

σ2
n,d + σ2

n,rσ
2
r,1σ

2
rd,1

is monotonous in σ2
r,1 and αs. (2.44)

From (2.44) and (2.43), we can rewrite the power constraint for the relay as

σ2
r,1

(
σ2

n,r + α2
sσ

2
sσ

2
sr,1

) ≤ PR,T , (2.45)

and consequently have the following relationship

σ2
r,1 ≤

PR,T(
σ2

n,r + α2
sσ

2
sσ

2
sr,1

) . (2.46)

It is noteworthy that (2.45) also implies that the optimal Σr, denoted by Σ∗
r , is

Σ∗
r =




σr,1 0 · · · 0

0 σr,2
. . . ...

... . . . . . . 0

0 · · · 0 σr,R




=




σr,1 0 · · · 0

0 0
. . . ...

... . . . . . . 0

0 · · · 0 0




. (2.47)

Substituting (2.46) into the cost function in (2.43), we have

αs

σ2
r,1σ

2
sr,1σ

2
rd,1

σ2
n,d + σ2

n,rσ
2
r,1σ

2
rd,1

≤ αsσ
2
sr,1σ

2
rd,1

σ2
n,d

(σ2
n,r+αsσ2

sσ2
sr,1)

PR,T
+ σ2

n,rσ
2
rd,1

, (2.48)
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where the upper bound of the cost function can be achieved if

σ2
r,1 =

PR,T(
σ2

n,r + αsσ2
sσ

2
sr,1

) . (2.49)

Therefore, via (2.49), the problem can finally be expressed as the minimization of a function of

αs given by

max
αs

σ2
sr,1σ

2
rd,1αs

σ2
n,dσ2

sσ2
sr,1

PR,T
αs + σ2

n,rσ
2
rd,1 +

σ2
n,dσ2

n,r

PR,T

s.t. 0 ≤ αs ≤ PS,T

σ2
s

. (2.50)

Since the cost function in (2.50) is monotonically increasing in αs, it is clear that the optimum

αs, denoted by α∗s, is

α∗s =
PS,T

σ2
s

. (2.51)

Combining (2.51) and (2.42), we finally obtain the optimum beamforming vector as:

f∗s =

√
PS,T

σ2
s

Vsr(:, 1). (2.52)

Substituting (2.51) into (2.49) and combining (2.47) and (2.37), we have the optimum relay

precoder as √
PR,T(

σ2
n,r + PS,T σ2

sr,1

)Vrd(:, 1)[Usr(:, 1)]H . (2.53)

It is noteworthy that the result of Theorem 2.1 is the same as that in [46], in which the criterion

for the beamformer design is the maximization of the received SNR. Here, we use the MMSE

criterion and obtain the same solution.

§ 2.3 Applications

The proposed linear source and relay precoded scheme can be used in many scenarios. In this

subsection, we conduct simulations to evaluate the performance of the linear source and relay

precoded scheme in three different applications, namely a single-input-single-output (SISO)
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orthogonal-frequency-division-multiplexing (OFDM), a two-hop MIMO relay system (where

only the relay link is considered), and a general MIMO relay system. Assume that all channel

state information (CSI) of all the links are available at all nodes, and perfect synchronization

can be achieved. For the first case, the channel is assumed to be frequency-selective-fading, and

for the rest of the cases, the channel is assumed to be flat fading. Also, the modulation scheme

is QPSK.

§ 2.3.1 SISO OFDM Relay System

Assume that the cyclic prefix (CP) length is longer than the overall channel delay spread such

that inter-symbol interference will not occur. Also, the channel is assumed to be quasi-static,

meaning that its response remains constant during each OFDM symbol. Note that each node

only has one antenna. As a result, the equivalent frequency domain channel matrices of all links

are diagonal. The linear source and relay precoders in (2.20) and (2.21), therefore, become

FS = FH
L ΣsFL and FR = Σr where the relay precoder becomes a subcarrier power allocation

(PA) problem. Let hsr(l), hrd(l), and hsd(l) be the channel impulse responses for the source-to-

relay, relay-to-destination, and source-to-destination channels, respectively. The channel taps,

hsr(l), hrd(l), and hsd(l), 0 ≤ l ≤ 5, are generated from i.i.d. complex Gaussian random

variables with zero mean and variance 1/6, such that E
{∑5

l=0 |hsr(l)|2
}

= E
{∑5

l=0 |hsd(l)|2
}

= E
{∑5

l=0 |hrd(l)|2
}

= 1. Also, let N = 64 and the total available powers at the source and

the relay be equal, and SNRsr, SNRrd and SNRsd be defined as the received SNR at the source-

to-relay, relay-to-destination, and source-to-destination links. Here, we let SNRsr = SNRrd =

SNRsd = SNR. Fig. 2.2 and Fig. 2.3 show the MSE and BER comparisons for the un-precoded

and linear source and relay precoded systems, respectively. As shown in the figures, the linear

source and relay precoded system significantly outperforms the un-precoded system. This is

because the linear source and relay system considers all the link resources and allocates the

power properly.
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§ 2.3.2 Two-Hop MIMO Relay System

In this scenario, the channel condition in the direct link is poor such that the destination only

receives the signal from the relay link. Here, we first consider the case that N = R = M = L =

4. Let the elements of each channel matrix be i.i.d. complex Gaussian random variables with

zero mean and unity variance. Let SNRsr and SNRrd denote, respectively, the SNR per receive

antenna of the source-to-relay and relay-to-destination links. Here, we set SNRsr = 20 dB and

vary SNRrd. Fig. 2.4 and Fig. 2.5 show the MSE and the BER comparisons, respectively for

(a) an un-precoded system with ZF receiver, (b) an un-precoded system with MMSE receiver,

(c) the optimal relay precoder with MMSE receiver [43], and (d) the linear source and relay

precoded system. From those figures we can see that the linear source and relay precoded

system outperforms not only the un-precoded system, but also the relay precoded system in [43].

This is because the linear source and relay precoded system incorporates the additional source

precoder such that the performance can be enhanced even the direct link is not considered.

We also report the simulation result for cooperative beamforming, i.e., L = 1. As discussed

in Theorem 2.1, our design for this case is optimal. We let N = R = M = 4 and SNRsr = 5

dB. Fig. 2.6 shows the BER comparison for the antennas selection method in [45] and the

linear source and relay precoded method. From the figure, we can see that the linear source and

relay precoded method is superior to the antenna selection. This is expected since our design

here is optimal.

§ 2.3.3 General MIMO Relay Channel

In this scenario, we consider a symmetric MIMO relay system, i.e., N = M = R = L = 4.

As the previous case, each element of the channel matrices is assumed to be i.i.d. complex

Gaussian random variables with zero mean and same variance. We let SNRsr, SNRrd be the

same as those defined in Section 2.3.2, and SNRsd as the SNR per receive antenna for the

source-to-destination link. Here, we set SNRsr = 15 dB, SNRrd = 10 dB and vary SNRsd. Fig.
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Table 2.1: Complexity of linear source and relay precoders (MMSE receiver).

Operation FLOPs

SVD, (2.14)-(2.16) (14MN2 + 8N3) + (14RN2 + 8N3) + (14MR2 + 8R3)

B−1, (2.24) 2MN2 + 2MN + 2N3 + 13/4N2 + N2

ps,i and pr,i, (2.29)-(2.30) (21LIr + 14LIs)Ii

Ẽ, (2.33) 14L + 10M + 4NL + 2L2N

SVD of Ẽ, (2.34) 22L3

US , (2.35) 2L3

FS and FR, (2.20)-(2.21) (2NL + 2NL2) + (2R2 + 2R3)

N : number of transmit antennas

R: number of relay antennas

M : number of receive antennas

L: number of transmitted symbol streams

Ir: number of iteration for computing pr,i

Is: number of iteration for computing ps,i

Ii: number of iteration of the water-filling process

2.7 and Fig. 2.8 show the MSE and BER comparisons, respectively, for the linear source and

relay precoded system and other systems described in Section 2.3.2. Note that the optimal relay

precoder in [43] only considers the two-hop relay system. For fair comparison, we include the

direct link at the destination when implementing the MMSE receiver. As expected, the linear

source and relay precoded method outperforms all other systems.
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Figure 2.1: Linear source and relay precoded AF MIMO relay system with MMSE receiver.
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Figure 2.2: MSE performance comparison for un-precoded and linear source and relay precoded

AF SISO-OFDM cooperative systems.
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Figure 2.3: BER performance comparison for un-precoded and linear source and relay precoded

AF SISO-OFDM cooperative systems.
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Figure 2.4: MSE performance comparison for existing un-precoded/precoded and linear source

and relay precoded AF two-hop MIMO relay systems.
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Figure 2.5: BER performance comparison for existing un-precoded/precoded and linear source

and relay precoded AF two-hop MIMO relay systems.
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Figure 2.6: BER performance comparison for antenna selection [45] and linear source and relay

precoded AF two-hop MIMO relay systems (L = 1 and N = R = M = 4).
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Figure 2.7: MSE performance comparison for existing un-precoded/precoded and linear source

and relay precoded AF MIMO relay systems.
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Figure 2.8: BER performance comparison for existing un-precoded/precoded and linear source

and relay precoded AF MIMO relay systems.
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Chapter 3

Joint MMSE Transceiver Design with

Tomlinson-Harashima Source and Linear

Relay Precoders

In this chapter, we address the problem of the MMSE transceiver design with a nonlinear THP.

In Section 3.1, we first formulate the precoded system model in which a THP cascaded with a

linear precoder are used at the source, a linear precoder at the relay, and the MMSE receiver

at the destination. As that in the previous section, we found that the MSE is a complicated

function of the source and the relay precoders, and the corresponding optimization is difficult to

conduct. In Section 3.2, we then propose a new method to overcome the problem. The main idea

is to use the primal decomposition such that the two-precoder design problem can be translated

into a single-relay precoder problem. With the proposed method, the optimization problem can

be further expressed as a convex optimization problem, and the closed-form solution can be

obtained by KKT conditions. Finally, we evaluate the performance of the proposed method in

Section 3.3.
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§ 3.1 System Model and Problem Formulation

§ 3.1.1 MMSE Receiver with Tomlinson-Harashima Source and Linear Relay

Precoders

We consider the precoded three-node AF MIMO relay precoding system as shown in Fig. 3.1,

where we include two precoders - a THP source precoder and a linear relay precoder FR, and a

linear MMSE receiver, G, is applied at the destination. Here, we also consider the general two-

phase transmission protocol [41]- [45]. In the first phase, the source signal s ∈ CN×1 is fed into

the nonlinear THP in which a successive cancellation operation characterized by a backward

squared matrix B and a modulo operation MODm(·). The source signals s = [s1, · · · , sN ]T are

modulated by m-QAM where the real and image parts of sk as the set {±1, · · · ,±(
√

m− 1)}.

The feedback matrix B has a lower triangular structure and the diagonal elements are all zeros.

The modulo operation acts over the real and image parts of the inputs, respectively, is expressed

as follows:

MODm(x) = x− 2
√

mbx +
√

m

2
√

m
c. (3.1)

It is clear that the transmitted signal x is bounded between −√m and
√

m. With B and the

operation in (3.1), the elements of x can be recursively expressed as [16]

xk = sk −
k−1∑

l=1

B(k, l)xl + ek (3.2)

where xk is the kth elements of vector x and B(k, l) is the (k, l) element of matrix B; e =

[e1, . . . , eN ]T denotes the errors of the modulo operation (the difference of the input and the

output). From (3.2), we can reformulate the transmitted signal x after THP with the following

matrix form

x = C−1v (3.3)

where C = B + IN is a lower triangular with ones in its diagonal, and v = s + e. The THP

precoded x is then passed through a unitary precoder matrix FS and subsequently sent to the
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relay and the destination simultaneously. The unitary precoder, as we will see, can greatly

facilitate the joint precoders design and improve the BER performance.

In the second phase, the received signal at the relay is multiplied the relay precoder and

then is transmitted to the destination. Therefore, the signal received at the destination in the two

consecutive phases can be expressed as a vector form as

yD :=


 HSD

HRDFRHSR




︸ ︷︷ ︸
:=H

FSx +


 nD,1

HRDFRnR + nD,2




︸ ︷︷ ︸
:=n

(3.4)

where H and n denote the equivalent channel matrix and the equivalent noise vector, respec-

tively, as the same definition in (2.4). In (3.4), x ∈ CN×1 is the THP precoded signal vector

(3.3); yD ∈ C2M×1 is the received signal vector at the destination. Note that if v can be esti-

mated at the destination, s can then be recovered by the modulo operation in (3.1). Thus, the

optimum G ∈ C2M×N can be found by minimizing the MSE defined as

J = E
{‖GyD − v‖2

}
. (3.5)

To solve the problem in (3.5), we assume that the precoded signal xk’s are statistically indepen-

dent and they have the zero-mean and the same variance. Let the variance of each element in

s be denoted as σ2
s . We then have E

[
xxH

]
= σ2

sIN and E
[
vvH

]
= σ2

sCCH . It is noted that

the assumption is valid when the QAM size is large (m ≥ 16) [15], [16]. Then, the optimum

solution of (3.5) can be obtained as [16]

Gopt = σ2
sCFH

S HH
(
σ2

sHFSF
H
S HH + Rn

)−1
, (3.6)

where Gopt is the optimum G; Rn = E[nnH ] is the covariance matrix of the equivalent noise

vector n, as also defined in (2.6). Considering the noise components σ2
n,d and σ2

n,r in (3.6) and

substituting (3.6) in (3.5), we can have the MSE matrix

E = C
(
σ2

sIN + FH
S HHR−1

n HFS

)−1
CH

= C
(
σ2

sIN + FH
S H̃HH̃FS

)−1

CH (3.7)
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and

Jmin = tr{E} (3.8)

where

H̃ = R
− 1

2
n H

=


 σ−1

n,dHSD

(
σ2

n,rHRDFRFH
RHH

RD + σ2
n,dIM

)− 1
2 HRDFRHSR


 (3.9)

is defined as the equivalent channel matrix after noise whitening. Note that the MSE is con-

tributed by both the direct and relay links. By ignoring the direct link and adopting a single

precoder at the relay, the problem is reduced those considered in [43] and [44]. Here, we incor-

porate the THP as the source precoder and take the direct link into consideration. A significant

performance enhancement can then be expected.

§ 3.1.2 Problem Formulation

From the MMSE criterion in (3.5)-(3.9), we now can formulate our joint design problem as:

min
C,FS ,FR

tr





C
(
σ−2

s IN + FH
S H̃HH̃FS

)−1

CH

︸ ︷︷ ︸
:=E





s.t.

H̃HH̃ = σ−2
n,dH

H
SDHSD +

HH
SRFH

RHH
RD

(
σ2

n,rHRDFRFH
RHH

RD + σ2
n,dIM

)−1
HRDFRHSR

FS = αUS

tr
{
E

[
FSxxHFH

S

]}
= σ2

str
{
FSF

H
S

} ≤ PS,T

tr
{
FR

(
σ2

n,rIR + σ2
sHSRFSF

H
S HH

SR

)
FH

R

} ≤ PR,T , (3.10)

where the inequalities in (3.10) indicate the transmitted power constraints at source and relay

(the maximal available power is PS,T and PR,T , respectively). Here, we force FS = αUS
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in which α is a scalar and US is an unitary matrix. Taking a close look at (3.10), we can

observe that the cost function and the power constraints are nonlinear functions of FS and FR.

Moreover, (3.10) is not a convex optimization problem. As a result, it is difficult to solve the

problem, directly. In the next subsection, we propose a new approach to seek for a solution.

§ 3.2 Joint Source/Relay Precoders Design

We resort to the primal decomposition approach [51] translating (3.10) into a subproblem and

a master problem. The subproblem is first optimized for the source precoder, and subsequently

the master problem is optimized for the relay precoder. To proceed, we reformulate (3.10) as

min
C,FS ,FR

tr {E} = min
FR

min
C,FS

tr {E}
s.t.

E = C
(
σ−2

s IN + α2FH
S H̃HH̃FS

)−1

CH

H̃HH̃ in (3.10),

FS = αUS

σ2
str

{
FSF

H
S

} ≤ PS,T

tr
{
FR

(
σ2

n,rIR + α2σ2
sHSRHH

SR

)
FH

R

} ≤ PR,T . (3.11)

In the subproblem, the relay precoder FR is assumed to be given. Then, the optimum C and FS

can first be derived as a function of FR. Therefore, the joint precoders design is reduced to the

master optimization problem in which the optimum relay precoder remains to be determined.

Since the unitary FS = αUS , the subproblem thus becomes optimizing α, US and C, given
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as

min
C(FR),α,US(FR)

tr {E}
s.t.

E = C
(
σ−2

s IN + α2UH
S H̃HH̃US

)−1

CH

Nσ2
sα

2 ≤ PS,T

tr
{
FR

(
σ2

n,rIR + α2σ2
sHSRHH

SR

)
FH

R

} ≤ PR,T . (3.12)

To find the solutions in (3.12), we first fixed US and C, finding optimum α, denoted αopt. The

solution can be easily obtain as

αopt =

√
PS,T

Nσ2
s

. (3.13)

This is because the cost function is a strictly decreasing function in α, we enlarge α with sat-

isfying the source power constraint. In this manner, αopt can also maximize the SINR at the

relay, reducing the noise enhancement at the relay node and thus minimizing the MSE value.

The subproblem thus becomes

min
C(FR),US(FR)

tr

(
C

(
σ−2

s IN +
PS,T

Nσ2
s

UH
S H̃HH̃US

)−1

CH

)
. (3.14)

The resultant relay power constraint tr
{
FR

(
σ2

n,rIR +
PS,T

N
HSRHH

SR

)
FH

R

}
≤ PR,T , is re-

moved to the master problem since it is only the function of the relay precoder.

Fortunately, without considering the relay precoder, the problem in (3.14) has been ad-

dressed in non-cooperative MIMO system [15], [16], and the optimum solutions can be ex-

pressed as

Copt = DL−1, (3.15)

FS,opt =

√
PS,T

Nσ2
s

VH̃U′
S, (3.16)

where

LLH =

(
σ−2

s IN +
PS,T

Nσ2
s

(
VH̃U′

S

)H
H̃HH̃VH̃U′

S

)−1

(3.17)
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is the Cholesky factorization of
(
σ−2

s IN +
PS,T

Nσ2
s

(
VH̃U′

S

)H
H̃HH̃VH̃U′

S

)−1

; D is a diagonal

matrix that scales the elements on the diagonal of C to unity; VH̃ ∈ CN×N is the left singular

matrices of H̃; U′
S ∈ CN×N is an unitary matrix that needs to be further specified. Substituting

(3.16) into (3.17), we have

LLH = U′H
S

(
σ−2

s IN +
PS,T

Nσ2
s

Λ

)−1

︸ ︷︷ ︸
:=D̃

U′
S (3.18)

where Λ = diag
{

λH̃,1, . . . , λH̃,N

}
is the eigenvalues of H̃HH̃. It is simple to see that that D̃

is diagonal matrix here. Applying GMD on D̃, we can express D̃ as

D̃1/2 = QRPH , (3.19)

where Q, P are unitary matrix and R is upper triangular matrix with equal diagonal elements.

Letting U′
S = P and substituting (3.15), (3.16) in (3.8), we then have the resultant MSE as

Jmin =
N∑

k=1

L(k, k)2 = N

N∏

k=1

(
1

λH̃,k
PS,T

Nσ2
s

+ σ−2
s

)1/N

. (3.20)

Now, the problem becomes the minimization of (3.20) in the master problem. From (3.15)-

(3.19), we note that the original THP precoding does not include the unitary FS [15]. Here the

including unitary FS has two main concerns: (i) The additional unitary precoder can facilitate

the relay power constraint, as described in (3.14), in solving the optimization. (ii) By adequately

designing US , we can make L(i, i) = L(j, j),∀i 6= j in (3.20). In this manner, the minimum

MSE can be expressed as (3.20) and, most importantly, as we will see, optimizations with (3.20)

are more tractable for optimization.

Now, our residual problem is to solve the master problem. To proceed, let us first see the

following equivalence:

min
FR

N

N∏

k=1

(
1

λH̃,k
PS,T

Nσ2
s

+ σ−2
s

)1/N

= max
FR

(
σ−2

s

PS,T

N

)N

det

((
N

PS,T

IN + H̃HH̃

))
. (3.21)
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proof: The result can be easily obtained since

det

(
σ−2

s IN +
PS,T

Nσ2
s

H̃HH̃

)
=

N∏

k=1

(
PS,T

Nσ2
s

λH̃,k + σ−2
s

)
. (3.22)

Considering (3.21) and ignoring
(
σ−2

s
PS,T

N

)N

in the master problem, we then reformulate the

optimizations as

max
FR

det

((
N

PS,T

IN + H̃HH̃

))

s.t

H̃HH̃ in (3.10)

tr

{
FR

(
σ2

n,rIR +
PS,T

N
HSRHH

SR

)
FH

R

}
≤ PR,T . (3.23)

To solve (3.23), we use the Hardamard inequality, described in the following Lemma.

Lemma 3.1 [50]: Let M ∈ CN×N be a positive definite matrix, then

det(M) ≤
N∏

i=1

M(i, i), (3.24)

where M(i, i) denotes the ith diagonal element of M. The equality in (3.24) holds when M

is a diagonal matrix. If we let M = H̃HH̃, it turns out that when M is diagonalized, the cost

function in (3.23) is maximized. Unfortunately, from (3.10) we can see that H̃HH̃ is a summa-

tion of two separated matrices and one of them dose not depend on FR, and the diagonalization

cannot be directly conducted. The following lemma suggests a feasible way to overcome the

problem.

Lemma 3.2: Let A ∈ CN×N be a positive matrix and B ∈ CN×N , then

det (A + B) = det (A) det
(
IN + A−1/2BA−1/2

)
. (3.25)

Proof: See Appendix A.3.

Form (3.25), we let B = HH
SRFH

RHH
RD

(
σ2

n,rHRDFRFH
RHH

RD + σ2
n,dIM

)−1
HRDFRHSR
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and A = N
PS,T

IN + σ−2
n,dH

H
SDHSD, we have the following equivalence

arg max
FR

det

(
N

PS,T

IN + H̃HH̃

)

= arg max
FR

det
(
IN + H′H

SRFH
RHH

RD

(
σ2

n,rHRDFRFH
RHH

RD + σ2
n,dIM

)−1
HRDFRH′

SR

)
(3.26)

where H′
SR = HSR

(
N/PS,T IN + σ−2

n,dH
H
SDHSD

)− 1
2 and detA are ignored since they are not

functions of FR. Equation (3.26) provides a feasible way to diagonalize the cost function. The

optimization problem in (3.23) can now be reformulated as

max
FR

det (M)

s.t.

M′ =
(
IN + H′H

SRFH
RHH

RD

(
σ2

n,rHRDFRFH
RHH

RD + σ2
n,dIM

)−1
HRDFRH′

SR

)

M′ is diagonal

σ2
n,r ‖FR‖2

2 +
PS,T

N
‖FRHSR‖2

2 ≤ PR,T . (3.27)

There exists certain structure for the relay precoder such that the diagonalization can be achieved.

Consider following SVD:

HRD = UrdΣrdV
H
rd (3.28)

H′
SR = U′

srΣ
′
srV

′H
sr (3.29)

where Urd ∈ CM×M and U′
sr ∈ CR×R are left singular matrices of HRD and H′

SR, respectively;

Σrd ∈ RM×R and Σ′
sr ∈ RR×N are the diagonal singular value matrices of HRD and H′

SR,

respectively; VH
rd ∈ CR×R and V′H

sr ∈ CN×N are the right singular matrices of HRD and H′
SR,

respectively; We found that if the optimal FR have the following structure, a full diagonalization

of M′ can be achieved:

FR,opt = VrdΣrU
′H
sr , (3.30)

where Σr is a diagonal matrix with ith diagonal element σr,i, i = 1, · · · , κ, yet to be deter-

mined. Here, κ = min{N,R}. Let σrd,i and σ′sr,i be the ith diagonal element of Σrd and Σ′
sr ,
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respectively. Substituting (3.28), (3.29) and (3.30) into (3.27) and taking the ln operation to the

cost function, we can then rewrite (3.27) as:

max
pr,i,1≤i≤κ

κ∑
i=1

ln

(
1 +

pr,iσ
2
n,dσ

2
rd,iσ

′2
sr,i

pr,iσ2
n,rσ

2
rd,i + σ2

n,d

)

s.t.
κ∑

i=1

pr,i

(
PS,T

N
σ′2sr,iD

′
sr(i, i) + σ2

n,r

)
≤ PR,T , pr,i ≥ 0, (3.31)

where pr,i = σ2
r,i and D′

sr = V′H
sr

(
N/PS,T IN + σ−2

n,dH
H
SDHSD

)
V′

sr with D′
sr(i, i) being the ith

diagonal element of D′
sr. The cost function now is simplified to a function of scalar parameters.

Since the cost function and the inequalities are all concave for pr,i ≥ 0 [51], (3.31) is a standard

concave optimization problem. As a result, the optimal solutions pr,i, i = 1, . . . , κ, can be

solved by means of KKT conditions given by

pr,i =




√√√√√√
µ

σ2
rd,i

(
PS,T

N
σ′2sr,iD′

sr (i, i) + σ2
n

) (
σ2

n,rσ
−2
n,dσ

′−2
sr,i + 1

) +

σ4
n,d

4σ4
n,r

σ4
rd,i

(
σ2

n,r

σ2
n,dσ′2sr,i

+ 1
)2

−
1 +

σ2
n,dσ′2sr,i

2σ2
n,r

σ2
rd,i

(
σ2

n,r

σ2
n,d

+ σ′2sr,i
)




+

, (3.32)

where µ is chosen to satisfy the power constraint in (3.31). We have also proposed a water-filling

algorithm to solve (3.32). The detailed derivations of (3.32) and the water-filling algorithm

are given in Appendix A.4 and A.5. Substituting (3.32) into (3.30), we can finally obtain the

optimum relay precoder. With the relay precoder, H̃ in (3.9) can be obtained. Subsequently, the

unitary source prefilter can be derived by substituting (3.19) into (3.16) and C can be obtained

by (3.15). The computations of the THP source and linear relay precoders mainly involve SVD,

GMD, and matrix inversion operations. The overall computational complexity, measured in

terms of FLOPs, is summarized in Table 3.1.
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Table 3.1: Computational Complexity of THP source and linear relay precoders (MMSE re-

ceiver).

Step Operation FLOPs

1 H′
SR (3.27) O(N3 + RN2)

2 SVD HRD = UrdΣrdV
H
rd (3.28) O(MR2 + R3)

3 SVD H′
SR = U′

srΣ
′
srV

′H
sr (3.29) O(RN2 + N3)

4 Σr (3.32) O(κIr)

5 FR (3.30) O(R3)

6 SVD H̃ O(MN2 + N3)

7 GMD D̃1/2 = QRPH (3.19) O(N3)

8 L (3.18) O(N3)

9 Copt (3.15) O(N3)

10 FS,opt (3.16) O(N3)

Ir is denoted as the iteration number of the water-filling process in (3.32).
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§ 3.3 Simulations

We consider an AF MIMO relay system with N=R=M=4. The elements of each channel matrix

are assumed to be i.i.d. complex Gaussian random variables with zero-mean and unity variance.

Here, we let SNRsr=15 dB, SNRrd=15 dB and vary SNRsd=15. Also, we use 16-QAM for each

transmitted symbols. Fig. 3.2 and Fig. 3.3 show the MSE and BER performances comparison,

respectively, for (a) an un-precoded system with the MMSE receiver, (b) the optimum relay pre-

coded system with MMSE receiver [43], (c) the linear source and relay precoded with MMSE

receiver in Chapter 2, and (d) the THP source and linear relay precoded with MMSE receiver

in Chapter 3. Note that optimum relay precoder in [43] only considers the relay link. For better

performance, we further include the direct link when implementing the MMSE receiver. As we

can see, the proposed THP precoded system significantly outperforms other methods. Although

two precoders are used in Chapter 2, the performance is limited. This is because both precoders

are linear.

Table 3.2: Proposed water-filling algorithm solving (3.32)

µM = µM,0, µL = µL,0, δµ

while δµ > ε

µ = µM+µL

2

if
∑κ

i=1

[√
ai

(
µ + bi

ai

)
− ci

]+

di ≤ PR,T

µL = µ

else

µM = µ

end

µ′ = µM+µL

2
, δµ = |µ′ − µ|

end
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Figure 3.1: THP source and linear relay precoded AF MIMO relay system with MMSE receiver.
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Figure 3.2: MSE performance comparison for existing precoded systems and THP source and

linear relay precoded system with MMSE receiver.
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Figure 3.3: BER performance comparison for existing precoded systems and THP source and

linear relay precoded system with MMSE receiver.
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Chapter 4

Joint QR-SIC Transceiver Design with

Linear Source and Relay Precoders

We have addressed the precoded AF MIMO relay system with the linear MMSE receiver in

the previous two chapters. In this chapter, we study the precoded system with a nonlinear re-

ceiver. In general, nonlinear receivers require higher computational complexity. One exception

is the QR-SIC receiver. It is known that the QR-SIC receiver has good performance while its

computational complexity is low. Therefore, we consider the precoded system with the linear

precoders at the source and the relay, and the QR-SIC receiver at the destination. In Section 4.1,

we give the system model accommodating the QR-SIC receiver. In Section 4.2, we propose a

GMD related method to derive the source and relay precoders. Finally, we report simulation

results in Section 4.3 to evaluate the performance of the proposed method.
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§ 4.1 System Model and Problem Formulation

§ 4.1.1 QR-SIC Receiver with Linear Source and Relay Precoders

Recall that the received signals with linear source and relay precoders are expressed as (2.4)

yD = HFSs + n, (4.1)

where

H =


 HSD

HRDFRHSR


 , n =


 nD,1

HRDFRnR + nD,2


 . (4.2)

Here, particularly, we assume that L = N ≤ M . This assumption can guarantee the existence

of the solution of the proposed method (see Lemma 3.1). For the case of L < N , we can apply

the antenna selection technique, to be discussed in Section 4.2.2. As previous mentioned, the

equivalent channel matrix H does not include the source precoder.

By the same statistical assumptions in (2.6), we can also find that the equivalent noise vector

is not white. To facilitate later analysis of the QR-SIC receiver, we first apply a whitening

operation to the equivalent receive vector. Let W be a whitening matrix. Multiplying (4.1) with

W, we can have

ỹD := WyD = H̃FSs + ñ, (4.3)

where H̃ = WH and ñ = Wn. By the whitening, we have E
[
ññH

]
= E

[
WnnHWH

]
=

I2M . From (2.6) and (4.3), we can then obtain the whitening matrix as

W =


 σ−1

n,dIM 0

0
(
σ2

n,rHRDFRFH
RHH

RD + σ2
n,dIM

)−1/2


 . (4.4)

The equivalent channel matrix after the whitening process can then be written as

H̃ = WH =


 σ−1

n,dHSD

(
σ2

n,rHRDFRFH
RHH

RD + σ2
n,dIM

)−1/2
HRDFRHSR


 . (4.5)
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From (4.3), we can see that an AF MIMO relay system can be regarded as a MIMO system with

the channel matrix shown in (4.5). However, note that the channel in (4.5) is a function of the

relay precoder, and this is quite different from the scenario considered in conventional MIMO

systems. Since FR is unknown, existing design methods in MIMO systems cannot directly be

applied.

It is well-known that nonlinear MIMO receivers perform better than linear receivers though

their complexity may be higher. In this chapter, we consider a computationally efficient non-

linear receiver, the QR-SIC receiver. In the receiver, the equivalent channel of the precoded

system is first factorized by the QR method, i.e. H̃FS = QR, where Q is a 2M × 2M orthog-

onal matrix, and R is a 2M ×N upper triangular matrix. Equation (4.3) can then be rewritten

as

ŷD = QH ỹD = QHQRs + QHñ = Rs + n̂

=




r1,1 r1,2 · · · r1,N

0 r2,2 · · · r2,N

... . . . . . . ...

0 · · · 0 rN,N

0 · · · · · · 0
... . . . . . . ...

0 · · · · · · 0




︸ ︷︷ ︸
:=R




s1

s2

...

sN




+




n̂1

n̂2

...

n̂N

n̂N+1

...

n̂2M




︸ ︷︷ ︸
:=n̂

, (4.6)

where n̂ = QHñ and E
[
n̂n̂H

]
= I2M . Note that the equivalent channel for QR factorization

here includes the source precoder. Thus, signal detection of a QR-SIC receiver can then be

conducted as:

for i = N : −1 : 1

ŝi = Dec

[(
ŷi −

N∑
j=i+1

ri,j ŝj

)
/ri,i

]
,

end (4.7)
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where Dec[·] denotes the decision operation, ŷi the ith element of ŷD, and ŝj the estimation of

the jth transmitted symbol.

§ 4.1.2 Problem Formulation

In the transceiver design, the most desirable criterion we want to use is the minimum BER.

However, for the QR-SIC receiver, the precoders which can minimize the BER is very difficult

to design. Fortunately, for a MIMO system with CSI available at the transmitter, [11] and [12]

propose a well-known precoder design method, called GMD. In this approach, the precoded

MIMO channel, is first QR factorized. Then, the precoding matrix is designed such that the

diagonal elements of R in (4.6) are made equal and maximized. It has been proven that GMD

can minimize the BLER, and maximize the lower bound of channel’s free distance [12]. As

known, the free distance is the metric used in the MLD. This implies the GMD method can also

improve the performance of the MLD.

So, in this section, we adopt the GMD design criterion to solve the precoding problem in

AF MIMO relay systems. By this manner, we have the following advantages: (i) The BLER

is minimized. (ii) As we will see, the GMD can facilitate the optimizations. Specifically,

we can transfer the joint source and relay precoders optimization to the relay-only optimization

problem where the source recoder becomes the function of the relay precoder. We can then pose

the similar optimization processes described in Section 3.2 to seek the closed-form solutions.

We give the following demonstration for detailed.

With GMD, the source and relay precoders are derived such that the diagonal elements of

R in (4.6) is equal and maximized. Note that the problem is much more involved than that

in conventional MIMO systems, where only a source precoder is considered. Let the channel

matrix H̃ in (4.5) have a rank of N . Treating the channel matrix H̃ in (4.5) as a conventional

MIMO channel matrix, we can apply the GMD method and obtain the following factorization

[11], [12]:

H̃ = Q̃R̃P̃H , (4.8)
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where Q̃ ∈ C2M×2M and P̃ ∈ CN×N are unitary matrices, and R̃ ∈ C2M×N is an upper

triangular matrix having identical diagonal elements given by

r̃i,i =

(
N∏

k=1

|rk,k|
)1/N

=

(
N∏

k=1

σH̃,k

)1/N

, for all i = 1, · · · , N. (4.9)

Here, r̃i,i is the ith diagonal element in R̃, and σH̃,k > 0 is the kth nonzero singular value of H̃.

The source precoder can then be determined as

FS = αP̃, (4.10)

where α is a scalar chosen to satisfy the power constraint at the source, i.e., tr
(
FSE

[
ssH

]
FH

S

)

= σ2
sNα2 ≤ PS,T or equivalently α ≤ √

PS,T /(Nσ2
s). Here, PS,T is the maximal available

power at the source. From (4.6) and (4.9), we can see that the equivalent channel of the precoded

system is then αQ̃R̃, and that the larger the r̃i,i, the larger SNR in the receiver we can obtain.

Based on the GMD approach and the above observation, we can then formulate our design

problem as

max
FS , FR

αr̃i,i = α

(
N∏

k=1

σH̃,k

)1/N

s.t. FS = αP̃,

tr
(
σ2

sFSF
H
S

) ≤ PS,T ,

tr
(
FR

(
σ2

sHSRFSF
H
S HH

SR + σ2
n,rIR

)
FH

R

) ≤ PR,T . (4.11)

As will be shown later, the optimum FS is simple to obtain (in terms of FR). However, the cost

function in (4.11) involves the singular values of the channel matrix H̃, which is a complicated

nonlinear function of the relay precoder FR, as shown in (4.5). A direct maximization of (4.11)

to solve FR is then difficult. In the next subsection, we will propose the same method described

in Section 3.2 to overcome the problem.
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§ 4.2 Joint Source/Relay Precoders Design

§ 4.2.1 Proposed Method

Taking a close look into (4.11), we readily see that the optimum α is easy to obtain. From the

first two constraints, we can obtain the optimum source precoder, denoted by FS,opt, as

FS,opt =

√
PS,T

σ2
sN

P̃. (4.12)

From P̃ in (4.8) and H̃ in (4.5), we see that P̃ is a function of FR; therefore, FS,opt is a function

of FR. Substituting (4.12) into (4.11), we can simplify the joint precoders optimization problem

as a relay precoder design problem, as shown below:

max
FR

√
PS,T

σ2
sN

(
N∏

k=1

σH̃,k

)1/N

s.t.

tr

(
FR

(
PS,T

N
HSRHH

SR + σ2
n,rIR

)
FH

R

)
≤ PR,T . (4.13)

As mentioned, the singular values of H̃ are involved in (4.13), a direct maximization in (4.13)

is difficult. To overcome the problem, we first propose to maximize an alternative cost function,

having the same optimum precoder FR,opt as (4.13), as

FR,opt = arg max
FR

√
PS,T

σ2
sN

(
N∏

k=1

σH̃,k

)1/N

(4.14)

= arg max
FR

(
N∏

k=1

σH̃,k

)2

(4.15)

= arg max
FR

det
(
H̃HH̃

)
, (4.16)

where

H̃HH̃ =
[
σ−2

n,dH
H
SDHSD + HH

SRFH
RHH

RD

(
σ2

n,rHRDFRFH
RHH

RD + σ2
n,dIM

)−1
HRDFRHSR

]
.

(4.17)
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The equality in (4.15) is due to the fact that
(∏N

k=1 σH̃,k

)
> 0, and the cost function is mono-

tonically increasing functions of
(∏N

k=1 σH̃,k

)
. The equality in (4.16) is due to the following

property.
(

N∏

k=1

σH̃,k

)2

=
N∏

k=1

λH̃HH̃,k = det
(
H̃HH̃

)
, (4.18)

where λH̃HH̃,i is the ith eigenvalue of H̃HH̃. With the cost function in (4.16), the solution

becomes much easier to work with. To solve the maximization of the determinate problem

in (4.16), we can resort to the techniques proposed in Section 3.2 where the optimization

process mainly follows the Hardamard inequality and Lemma 3.2. As a result, by setting

A = σ−2
n,dH

H
SDHSD and B = HH

SR FH
RHH

RD

(
σ2

n,rHRDFRFH
RHH

RD + σ2
n,dIM

)−1
HRDFRHSR

in Lemma 3.2, we have the following equivalences

FR,opt = arg max
FR

det
(
H̃HH̃

)

= arg max
FR

det (A) det
(
IN + A−1/2BA−1/2

)

= arg max
FR

det
(
IN + A−1/2BA−1/2

)
, (4.19)

where det(A) in (4.19) is ignored since it is not a function of FR. To make sure the existence

of A−1, we assume that N ≤ M . As a result, the rank of A is N and that of B is min{N, R}.

Using the result, similar to the optimization addressed in Section 3.2, the relay precoder opti-

mization can be expressed as

max
FR

det(M)

s.t.

M = IN + σ2
n,d

(
HH

SDHSD

)−1/2
HH

SRFH
RHH

RD

(
σ2

n,rHRDFRFH
RHH

RD + σ2
n,dIM

)−1
HRDFRHSR

(
HH

SDHSD

)−1/2

M is diagonal, and

tr

(
FR

(
PS,T

N
HSRHH

SR + σ2
n,rIR

)
FH

R

)
≤ PR,T . (4.20)
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So, we can let H′′
SR = σn,dHSR

(
HH

SDHSD

)−1/2 and consider the following SVD:

H′′
SR = U′′

srΣ
′′
srV

′′H
sr, (4.21)

where U′′
sr ∈ CR×R are left singular matrices of H′′

SR; Σ′′
sr ∈ RR×N are the diagonal

singular-value matrices of H′′
SR; V′′

sr ∈ CN×N are the right singular matrices of H′′
SR. To

have a full diagonalization of M, we let the precoder FR have the following structure:

FR = VrdΣrU
′′H
sr, (4.22)

where Σr is a diagonal matrix with its ith diagonal element defined as σr,i, i = 1, · · · , κ, yet to

be determined. Here, κ = min{N,R}. Let σrd,i and σ′′sr,i be the ith diagonal element of Σrd

and Σ′′
sr, respectively. Substituting (3.28), (4.21) and (4.22) into (4.20) and taking the natural

log operation to the cost function, we can rewrite (4.20) as

max
pr,i,1≤i≤κ

κ∑
i=1

ln

(
1 +

pr,iσ
2
n,dσ

2
rd,iσ

′′2
sr,i

pr,iσ2
n,rσ

2
rd,i + σ2

n,d

)

s.t.
κ∑

i=1

pr,i

(
PS,T

N
σ′′2sr,iD

′′
sr(i, i) + σ2

n,r

)
≤ PR,T , pr,i ≥ 0, for all i, (4.23)

where pr,i = σ2
r,i and D′′

sr = σ−2
n,dV

′H
sr

(
HH

SDHSD

)
V′

sr with D′′
sr(i, i) is the ith diagonal ele-

ment of D′′
sr. The cost function now is reduced to a function of scalars. As wee can see, the op-

timization in (4.23) is the same with (3.31) except the definitions of D′
sr and H′

sr where D′
sr =

V′H
sr

(
N/PS,T IN + σ−2

n,dH
H
SDHSD

)
V′

sr and H′
SR = HSR

(
N/PS,T IN + σ−2

n,dH
H
SDHSD

)− 1
2 in

Section 3.2. As a result, the optimal solutions pr,i, i = 1, · · · , κ, can be solved as

pr,i =




√√√√√√
µ

σ2
rd,i

(
PS,T

N
σ′′2sr,iD′′

sr (i, i) + σ2
n,r

) (
σ2

n,rσ
−2
n,dσ

′′−2
sr,i + 1

) +

σ4
n,d

4σ4
n,r

σ4
rd,i

(
σ2

n,r

σ2
n,dσ′′2sr,i

+ 1
)2

−
1 +

σ2
n,dσ′′2sr,i

2σ2
n,r

σ2
rd,i

(
σ2

n,r

σ2
n,d

+ σ′′2sr,i
)




+

, (4.24)
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Table 4.1: Computational Complexity of linear source and relay precoders (QR-SIC receiver).

Step Operation FLOPs

1 H′′
SR (4.21) O(N3 + RN2)

2 SVD HRD = UrdΣrdV
H
rd O(MR2 + R3)

3 SVD H′′
SR = U′′

srΣ
′′
srV

′′H
sr (4.21) O(RN2 + N3)

4 Σr (4.24) O(κIr)

5 FR (4.22) O(R3)

6 GMD H̃ = Q̃R̃P̃H (4.8) O(MN2 + N3)

7 FS,opt (4.12) O(N)

Ir is denoted as the iteration number of the water-filling process in (4.24).

where µ is chosen to satisfy the power constraint in (4.20). Finally, substituting (4.22) into (4.5)

and conducting the decomposition in (4.8), we then obtain the optimum source precoder via

(4.12). The computational complexity of the proposed source and relay precoders in terms of

FLOPs is summarized in Table 4.1.

§ 4.2.2 Antenna Selection

The algorithm developed above assumes that L = N ≤ M . If L < N ≤ M , the precoder

matrix is not square and the GMD method cannot be applied. A simple remedy to this problem

is to use the antenna selection method. Using the method, we can select L antennas from the

N antennas (L ≤ N, R,M ) such that the geometric mean of the equivalent channel in (4.13) is
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maximized. Thus, the problem can be formulated as

max
Pi∈P

max
FR

√
PS,T

σ2
sL

(
L∏

k=1

σH̃Pi,k

)1/L

s.t.

tr

(
FR

(
PS,T

L
HSRPiP

H
i HH

SR + σ2
n,rIR

)
FH

R

)
≤ PR,T , (4.25)

where σH̃Pi,k
denotes the kth singular value of H̃Pi, Pi the ith N ×L antenna selection matrix,

and P the set of all possible Pi. It is simple to see that the size of P is N !/L!(N − L)!. Note

that each column of Pi contain only one nonzero element (with the value of one) indicating the

antenna selected. For example, for a 3× 2 system, we have

P =





P1 =




1 0

0 1

0 0


 , P2 =




1 0

0 0

0 1


 , P3 =




0 0

1 0

0 1








. (4.26)

After the optimum antenna selection matrix is determined, the optimum source precoder can

then obtained by (4.12) and the proposed method can be applied accordingly.

§ 4.3 Simulations

We consider a single relay AF MIMO relay system, and assume that CSI of all links are known

at all nodes. Furthermore, the elements of each channel matrix are i.i.d. complex Gaussian

random variables with zero-mean and same variance. Without of loss generality, we let the

modulation scheme be 4-QAM and use the BER as the performance measure. For the first

set of simulations, we let N = L = R = M = 4, SNRsr=SNRrd = 15 dB, and SNRsd

be varied. Seven systems are compared, namely (a) the un-precoded system with the zero

forcing (ZF) receiver, (b) the un-precoded system with the MMSE receiver, (c) the un-precoded

system with the QR-SIC receiver, (d) the un-precoded system with the MMSE-ordered SIC

(OSIC) receiver [13], (e) the linear relay precoded system with MMSE receiver [43], (f) the
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precoded system with the GMD source precoder [11], [12], and (g) the linear source and relay

precoded system with QR-SIC receiver. It is noteworthy that the simulation conducted in [43]

does not consider the signal received from the direct link. For better performance, we further

take the signal into consideration when implementing the MMSE receiver. Fig. 4.2 shows the

BER performance comparison. As we can see, the performance of the un-precoded systems is

limited. The best un-precoded system is the one with the MMSE-OSIC receiver. Although it

is better than the linear relay precoded system in the high SNR region, it is much worse than

the GMD source and the linear source and relay precoded systems. The linear source and relay

precoded system significantly outperforms the GMD source precoded system; SNR is improved

by 4 dB when BER is 10−3. This is because the linear source and relay precoded system

takes two precoders into consideration, yielding a higher received SNR at the destination. We

then consider another scenario where SNRsr = 15 dB and SNRrd = 0 dB. Now, the link

between the relay and the destination becomes poorer. Theoretically, the relay precoder will

become less critical in this scenario. Fig. 4.3 shows the performance comparison for all systems.

As expected, the performance of the relay-only precoded system is seriously degraded. The

linear source and relay precoded system, however, still has the superior performance. The

performance gap between the linear source and relay precoded and the GMD source precoded

system becomes somewhat smaller. This is also expected since the role of the relay precoder is

less critical, as mentioned.

As discussed, the GMD criterion can maximize the lower bound of the channel free distance

[12], and the performance of an ML detector is directly related to the free distance. We can

expect that the linear source and relay precoders can also improve the system performance if

an ML receiver is used at the destination. Fig. 4.4 shows the performance comparison for the

uncoded, the GMD source precoded, and the linear source and relay precoded systems with

the ML receiver applied at the destination. Here, SNRsr = SNRrd = 10 dB and L = N =

R = M = 2. As shown in this figure, the performance of the linear source and relay precoded

system is better than that of the the un-precoded and the GMD source precoded systems. The
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GMD source precoder has better performance than un-precoded system since the channel’s free

distance is improved by the source precoder. The performance gap between the linear source

and relay precoded method and GMD source precoder is due to the additional relay precoder,

further enlarging the lower bound of the channel’s free distance.

In conventional (non-cooperative) MIMO systems, spatial multiplexing cannot be applied

when L = N > M . However, in a cooperative system, with the aid of the relay, the degree of

freedom of the overall system is increased. In other words, even when L = N > M , spatial

multiplexing can still be used in cooperative systems. The final set of simulations is to compare

the performance of the un-precoded and the linear source and relay precoded systems in this

scenario. For the un-precoded schemes, we let L = N = 4, R = M = 2 and the modulation

scheme be 4-QAM. Since L = N > M , the proposed system has to conduct antenna selection.

Here, we let L = 2, N = 4, R = M = 2 and the modulation scheme be 16-QAM. With

the setting, the transmission rates of the un-precoded and precoded systems are the same (8

bits/channel usage). Let SNRsr=SNRrd = 15 dB and SNRsd be varied. Fig. 4.5 shows the

performance of the un-precoded and linear source and relay precoded systems. As we can see,

the linear source and relay precoded system significantly outperforms the un-precoded systems.

There exists error floors for the un-precoded systems since the noise at the relay link tends to

dominate the overall performance when SNRsd is high. Due to the precoding operation, we do

not observe the error floor phenomenon in the linear source and relay precoded system.
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Figure 4.1: Linear source and relay precoded AF MIMO relay system with QR-SIC receiver.
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Figure 4.2: BER performance comparison for linear source and relay precoded system with

QR-SIC receiver and existing precoded systems (L = N = R = M = 4, SNRsr=SNRrd = 15

dB).
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Figure 4.3: BER performance comparison for linear source and relay precoded system with

QR-SIC receiver and existing precoded systems (L = N = R = M = 4, SNRsr=15, SNRrd=0
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Figure 4.4: BER performance comparison for un-precoded, GMD source precoded, and linear

source and relay precoded systems with ML receiver at the destination (L = N = R = M = 2,
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Chapter 5

Joint MMSE-SIC Transceiver Design with

Linear Source and Relay Precoders

As well known in the precoded MIMO systems, the MMSE-SIC receiver outperforms the QR-

SIC receiver. It is reasonable to assert that the same result can be obtained for MIMO relay

systems. For MIMO systems, the precoder with the MMSE-SIC receiver can be solved by

the UCD method. In this chapter, we consider the system where linear precoders are used

at the source and the relay, and an MMSE-SIC receiver at the destination. We show that the

UCD is not directly applicable in AF MIMO relay systems. However, if the source precoder is

constrained to be unitary, the problem can be solved. In Section 5.1, we give the system model

for the MMSE-SIC receiver. In Section 5.2, we propose a modified UCD method to derive the

source and relay precoders. Finally, we report simulation results in Section 5.3 to conform the

effectiveness of the proposed method.
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§ 5.1 System Model and Problem Formulation

§ 5.1.1 MMSE-SIC Receiver with Linear Source and Relay Precoders

We consider the same received signal model as that in (4.3) and rewrite it as

ỹD := H̃FSs + ñ = Ĥs + ñ. (5.1)

With the MMSE-SIC applied at the receiver, the symbol streams can be detected by the suc-

cessive vector suppression process. Specifically, the ith layer symbol is detected after an inner

product operation is conducted with the suppression vector νi. And, its signal component is

then subtracted from the received signal. By (5.1), the suppressing vector νi for ith layer can be

expressed as [13],

νi =

(
i∑

j=1

ĥjĥ
H
j + σ−2

s I

)−1

, i = 1, . . . , N, (5.2)

where Ĥ := H̃FS =
[
ĥ1, . . . , ĥN

]
. In [13], the suppression vector is alternatively found via

QR-decomposition, 
 Ĥ

σ−1
s IN


 = Q1R1 =


 Qu

1

Ql
1


R1, (5.3)

where R1 ∈ C(2M+N)×N is an upper triangular matrix with positive diagonal elements, and

Q1 ∈ C(2M+N)×(2M+N) is an unitary matrix. Note that Qu
1 ∈ C2M×(2M+N) and Qu

1 ∈ CN×(2M+N)

are not unitary matrices. The suppression vector in (5.2) can be then expressed as

νi = R−1
1 (i, i)Qu

1(:, i), i = 1, . . . , N, (5.4)

where R1(i, i) denotes the ith diagonal element of R1 and Qu
1(:, i) the ith column of Qu

1 . If the

error propagation effect is ignored, the following equivalence holds for each i:

σ−2
s (1 + SINRi) = R2

1(i, i), i = 1, . . . , N, (5.5)
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where

SINRi = ĥH
i

(
i−1∑
j=1

ĥjĥ
H
j + σ−2

s I2M

)−1

ĥi, i = 1, . . . , N, (5.6)

denotes the SINR of the ith layer recovered signal in the MMSE-SIC receiver.

§ 5.1.2 Problem Formulation

In MIMO systems, the relationship between the received SINR and the averaged BER is com-

plicated, and the precoders design minimizing the averaged BER is difficult to obtain. The

UCD method, developed for conventional MIMO systems [13], can derive the precoder such

that the SINR of each layer is the same and the BLER in the MMSE-SIC receiver is minimized.

Motivated by the idea, we formulate our problem as

max
FS ,FR

SINRi

s.t.

σ−2
s (1 + SINRi) = R2

1(i, i)

SINRi are equal, ∀i,
σ2

str
{
FSF

H
S

} ≤ PS,T

tr
{
FR

(
σ2

n,rIR + σ2
sHSRFSF

H
S HH

SR

)
FH

R

} ≤ PR,T . (5.7)

The inequalities in (5.7) indicate that the transmit power at the source and at the relay has to

satisfy the maximal power constraints PS,T and PR,T , respectively. As we can see from (5.7),

the SINRi is a complicated function of FS and FR, and the optimum solution for this problem

is very difficult to obtain. In the next subsection, we propose a new approach to solve the

problem.
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§ 5.2 Joint Source/Relay Precoders Design

§ 5.2.1 Proposed Method

In (5.7), we have seen that SINRi is a complicated function of FS and FR. To facilitate the

optimization, we first seek for an alternative cost function for maximization.

Proposition: The following optimizations are equivalent.

max
FS ,FR, SINRi are equal, ∀i

SINRi

max
FS ,FR, SINRi are equal, ∀i

ln det
(
σ−2

s IN + FH
S H̃HH̃FS

)
. (5.8)

Proof: The derivation can be directly obtained from [13].

The cost function with the determinate operation in (5.8) is easier to work with than the

original cost function. Similar to previous approaches, we propose to use the primal decom-

position [51] to decompose our problem into a subproblem and a master problem. The sub-

problem is first optimized for the source precoder only, and subsequently the master problem

is optimized for the relay precoder. From (5.8), we see that two precoders are involved and

the UCD method, developed for MIMO systems, cannot be applied. Here, we pose a unitary

constraint for the source precoder. As a result, (5.7) can be reformulated as

max
FR

max
FS(FR)

ln det
(
σ−2

s IN + FH
S H̃HH̃FS

)

s.t.

σ−2
s (1 + SINRi) = R2

1(i, i)

SINRi are equal, ∀i
FS = αUS

σ2
str

{
FSF

H
S

} ≤ PS,T

tr
{
FR

(
σ2

n,rIR + σ2
sHSRFSF

H
S HH

SR

)
FH

R

} ≤ PR,T , (5.9)

where US is an unitary matrix and α is a scalar, and both are to be further determined. The
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unitary constraint for FS , as we will see, can greatly facilitate the optimization in the sub-

problem and the master problem. Note that the original UCD precoder in the MIMO system is

not restricted to have the unitary structure.

§ 5.2.2 Proposed Subproblem Optimization

Let FR be given. From (5.9), the subproblem can be expressed (FS is unitary):

max
FS(FR)

ln det
(
σ−2

s IN + α2H̃HH̃
)

σ−2
s (1 + SINRi) = R2

1(i,i)

SINRi are equal, ∀i
α2σ2

sN ≤ PS,T , (5.10)

where FS(FR) denotes that FS is a function of FR. With the unitary source precoder structure,

the relay power constraint is not a function of the source precoder and then it is not necessary

to include it here. Also, US does not affect the cost function in (5.9), and the cost function

becomes the function of α only. It is clear that to maximize the cost function, we can select the

optimum α, denoted as α∗, as

α∗ =

√
PS,T

σ2
sN

. (5.11)

To achieve the equal SINRi constraint, US can be designed using the method proposed in [13].

By the SVD, we can have H̃ = UH̃ΣH̃VH
H̃

. Let FS = α∗US = α∗VH̃U′
S , where U′

S is also

an unitary matrix to be determined. Substituting the results into (5.10), we can rewrite it as

 H̃FS

σ−1
s IN


 =


 UH̃ΣH̃α∗U′

S

σ−1
s IN


 =


 UH̃ 0

0 U′H
S





 α∗ΣH̃

σ−1
s IN


U′

S. (5.12)

Applying the GMD, [11], [12], on


 α∗ΣH̃

σ−1
s IN


 , we have


 α∗ΣH̃

σ−1
s IN


 = Q2R2P

H
2 , (5.13)
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where Q2 ∈ C(2M+N)×(2M+N), P2 ∈ CN×N are unitary matrices, and R2 ∈ C(2M+N)×N is the

upper triangular matrix with equal diagonal elements. Substituting (5.13) into (5.12) and using

(5.3), we then have

 Ĥ

σ−1
s IN


 =


 UH̃α∗ΣH̃U′

S

σ−1
s IN


 =


 UH̃ 0

0 U′H
S


Q2

︸ ︷︷ ︸
:=Q1

R2P
H
2 U′

S︸ ︷︷ ︸
:=R1

. (5.14)

So, if we let U′
S = P2, R1 will be equal to R2. In this way, the diagonal elements in R1

become equal. This makes the SINR of each layer the same, which can be checked with (5.5).

The optimum source precoder can be expressed as

FS =

√
PS,T

σ2
sN

VH̃P2. (5.15)

Substituting (5.15) in (5.9), we can then solve the master problem, as shown in the next.

§ 5.2.3 Proposed Master Problem Optimization

With (5.15), the master problem thus becomes

max
FR

ln

((
PS,T

σ2
sN

)N

· det

(
N

PS,T

IN + H̃HH̃

))

s.t.

H̃HH̃ = σ−2
n,dH

H
SDHSD +

HH
SRFH

RHH
RD

(
σ2

n,rHRDFRFH
RHH

RD + σ2
n,dIM

)−1
HRDFRHSR

tr

{
FR

(
σ2

n,rIR +
PS,T

N
HSRHH

SR

)
FH

R

}
≤ PR,T . (5.16)

As we can see from (5.16), H̃HH̃ is also a complicated function of FR, so the relay pre-

coder is difficult to solve. However, we can resort to the same diagonalization in Chapter

3 and 4 to find the optimum relay precoder. Let A = N
PS,T

IN + σ−2
n,dH

H
SDHSD and B =

HH
SRFH

RHH
RD

(
σ2

n,rHRDFRFH
RHH

RD + σ2
n,dIM

)−1
HRDFRHSR. We then have the same opti-

mization in (3.26). The details are then omitted here. As a result, the optimum relay precoder
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can be found by substituting (3.32) into (3.30). After the optimum relay precoder is determined,

the source precoder can then be obtained via (5.15).

We summarize the computational complexity of the linear source and relay precoders in

Table 5.1. Comparing to Table 4.1, we can find that the procedures to compute the precoders

proposed in this chapter and Chapter 4 are similar except for the GMD in (5.13) and (4.8). Since

the THP and unitary precoders are involved in (3.15) and (3.16), the computational complexity

of the precoders proposed in Chapter 3 is higher, as shown in the additional steps 7-9 of Table

3.1.

Finally, we summarize and compare the nonlinear transceivers proposed in this dissertation

in Table 5.2. As shown in this table, FS of each structure is expressed as an unitary matrix. It is

seen that the relay precoders for the THP source precoded system and the linear source precoded

system (with MMSE-SIC receiver) are the same. We also summarize physical implications of

the precoders optimization in Table 5.3. From the table, we see that the unitary FS is designed to

equalize either the MSE or the SNR/SINR of each data substream in the subproblem problem.

The relay precoders decouple the effective channels and allocate the power for each parallel

channel to either maximize SNR/SINR or to minimize the MSE.

§ 5.3 Simulations

In this section, we evaluate the performance of the proposed precoded systems studied in this

dissertation. As previously, we assume that the CSIs of all links are known at all nodes. The

elements of each channel matrix are i.i.d. complex Gaussian random variables with zero-mean

and same variance. For the first set of simulations, we let N = R = M = 4, SNRsr = 20

dB, SNRsd = 5 dB, and vary SNRrd. Eight systems are compared, namely (a) un-precoded

system with MMSE receiver, (b) linear relay precoded system with MMSE receiver [43], [44],

(c) un-precoded system with QR-SIC receiver, (d) linear source and relay precoded system

with MMSE receiver (Chapter 2), (e) un-precoded system with MMSE-OSIC receiver, (f) THP
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Table 5.1: Complexity of linear source and relay precoders (MMSE-SIC receiver).

Step Operation FLOPs

1 H′
SR (3.27) O(N3 + RN2)

2 SVD HRD = UrdΣrdV
H
rd (3.28) O(MR2 + R3)

3 SVD H′
SR = U′

srΣ
′
srV

′H
sr (3.29) O(RN2 + N3)

4 Σr (3.32) O(κIr)

5 FR (3.30) O(R3)

6 SVD H̃ = UH̃ΣH̃VH
H̃

O(MN2 + N3)

7 GMD




√
PS,T

σ2
sN

ΣH̃

σ−1
s IN


 (5.13) O ((2M + N)N2 + N3)

8 FS,opt (5.15) O(N3)

Ir is denoted as the iteration number of the water-filling process (3.32).

source and linear relay precoded system with MMSE receiver (Chapter 3), (g) linear source

and relay precoded system with QR-SIC receiver (Chapter 4), and (h) linear source and relay

precoded system with MMSE-SIC receiver (Chapter 5). Since the THP source and linear relay

precoded system is considered, we adopt the 16-QAM modulation scheme. Fig, 5.1 and Fig. 5.2

show the simulated BLER and BER for the systems mentioned above, respectively. From Fig.

5.1, we can observe that the performance of the linear receivers are limited. The performance of

un-precoded system can be improved by the linear relay precoder and can be further enhanced

by the linear source and relay precoders. When the SNR of the relay-to-destination link is

sufficiently high, the significance of the relay precoder is reduced. This indicates that the relay

precoder is not critical. So, the performance of un-precoded and the relay precoded systems is

close. Also, since nonlinear receivers can provide higher diversity gain [13], they perform well
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Table 5.2: Source and relay precoders in the proposed nonlinear transceivers.

1
optC DL

Structure

Source Precoder

Relay Precoder

THP source and

linear relay precoded

(MMSE)

Linear source and 

relay precoded

(MMSE-SIC)

Linear source and 

relay precoded

(QR-SIC)

,

22

S T

s

P

N H
V P

H
rd r srV U 3.30

,

2

S T
S

s

P

N H
F V P

4.125.15

,

2

S T

s

P

N
P

3.16

3.15

H
rd r srV U

4.22
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Table 5.3: Optimizations of the source and relay precoders in the proposed nonlinear

transceivers.

Joint source/relay precoders optimizations

Subproblem Master problem

THP source and 

linear relay precoded

(MMSE)

Linear source and 

relay precoded

(MMSE-SIC)

Linear source and 

relay precoded

(QR-SIC)

S
C F

to equalize MSE
i

S
F

S
F

to equalize SINR
i

to equalize SNR
i

(3.15)-(3.16)

(5.15)

(4.12)

H

sr
U

(1)

( )

R

R
R

y

y

, 1r

,r

, 1rd

,rd

rd
U

H

sr
U

(1)

( )

R

R
R

y

y

, 1r

,r

, 1rd

,rd

rd
U

relay-to-destination link

relay-to-destination link

Structure
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in the high SNR regions, even for the un-precoded systems. As expected, the linear source and

relay precoded system with the nonlinear receivers are better than the un-precoded systems. Due

to the fact that the MMSE-SIC receiver has larger diversity gain, the precoded system with the

MMSE-SIC receiver outperforms the precoded system with the QR-SIC receiver. Although the

THP source and linear relay precoded system is also a nonlinear system, its BLER performance

is inferior to that of the precoded systems with the QR-SIC and MMSE-SIC receivers. This

is because the former system is designed by the MMSE criterion, while the latter system by

the BLER criterion. However, in terms of the BER, the THP source and linear relay precoded

system performs slightly better than the linear source and relay precoded system with the QR-

SIC/MMSE-SIC receivers, as shown in Fig. 5.2.

Fig. 5.3 and 5.4 show the BLER and BER performances of the aforementioned transceivers

with using 4-QAM modulation for each substream. As we can see, the THP source and linear

relay precoded system with MMSE receiver is much worse. This is because it only workable

for higher order modulation (m ≥ 16), as Section 3.1.1 described.

For the second set of simulations, we still compare the performance of aforementioned

precoded systems. However, we let SNRsd = 5 dB, SNRrd = 20 dB, and vary SNRsr. Fig

5.5 and Fig. 5.6 show the simulation results for the BLER and the BER, respectively. As

we can see, the relay precoded system with the MMSE receiver outperforms the un-precoded

systems with the linear and nonlinear QR-SIC receivers along the increase of the SNR. This is

because the performance is dominated by the links of the source-to-destination and the relay-

to-destination when SNRsr is high. As a result, the additional relay precoder can improve the

overall link quality. Unlike the previous case, the performance of the un-precoded system with

the MMSE-OSIC receiver is inferior to the source and relay precoded system with the MMSE

receiver. This is because when the SNR of the source-to-relay link is sufficiently high, the

MIMO relay system is degenerated to the MIMO system. As a result, the significance of the

relay precoder is increased. Also, as expected, the precoded systems with the nonlinear source

precoder or with the nonlinear receivers outperform the un-precoded systems and the precoded
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systems with linear precoders and linear receivers.

The MLD receiver is known to be optimal. It is then interesting to know its performance in

MIMO relay sytsems. For the third set of simulations, we compare the performance of the un-

precoded system with the ML receiver and that of precoded systems. Since the computational

complexity of the ML receiver is high, we only consider the system with N = R = M = 2.

Let SNRsd = 5 dB, SNRrd = 20 dB, and vary SNRsr. Fig. 5.7 shows the BLER comparison. As

shown in this figure, the un-precoded system with ML receiver outperforms other un-precoded

systems. However, it is poorer than all the precoded systems we proposed.

In real-world applications, CSIs have to be transmitted to the location where the precoders

are calculated. Thus, quantization and transmission errors may arise. We refer this phe-

nomenon as imperfect CSI. In the final set of simulations, we compares the performance of

all un-precoded/precoded systems when CSIs are not perfect. As that in the previous works

[54], the imperfect channel Ĥ is related to the true channel H via the equation of Ĥ =
√

1− ρH +
√

ρ∆H, where ∆H models the channel error and the coefficient ρ characterizes

the magnitude of the error. The elements of ∆H are modeled as i.i.d. Gaussian distributions

with zero mean and same variance. Fig. 5.8, shows the simulation results. Here, we let SNRsd

= 5 dB, SNRsr = 25 dB, SNRrd = 20 dB, and ρ be varied. As we can see, the performance of

the precoded systems degrades as ρ increases, especially for the THP source precoded system

with MMSE receiver, and the linear source precoded system with MMSE-SIC receiver. The

linear source precoded system with QR-SIC is less affected. Note that the CSIs are assumed

perfectly known at the destination for un-precoded systems, and their BLERs are not affected

by the value of ρ.
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Figure 5.1: BLER performance comparison for un-precoded and precoded systems (16QAM,

N = R = M = 4, SNRsr=20, SNRsd=5 dB).
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Figure 5.2: BER performance comparison for un-precoded and precoded systems (16QAM,

N = R = M = 4, SNRsr=20, SNRsd=5 dB).
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Figure 5.3: BLER performance comparison for un-precoded and precoded systems (4-QAM,

N = R = M = 4, SNRsr=20, SNRsd=5 dB).
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Figure 5.4: BER performance comparison for un-precoded and precoded systems (4-QAM,

N = R = M = 4, SNRsr=20, SNRsd=5 dB).
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Figure 5.5: BLER performance comparison for un-precoded and precoded systems (16QAM,

N = R = M = 4, SNRsd=5, SNRrd=20 dB).
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Figure 5.6: BER performance comparison for un-precoded and precoded systems (16QAM,

N = R = M = 4, SNRsd=5, SNRrd=20 dB).
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Figure 5.7: BLER performance comparison for un-precoded and precoded systems (16QAM,

N = R = M = 2, SNRsd=5, SNRrd=20 dB).
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Figure 5.8: BLER performance comparison for un-precoded and precoded systems with imper-

fect CSIs (16QAM, N = R = M = 2, SNRsd=5, SNRsr=25 dB, SNRrd=20 dB).
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Chapter 6

Joint MMSE Transceiver Design with

Quality-of-Service (QoS) Constraints

In previous chapters, we address the transceiver designs in MIMO relay systems maximizing the

system performance under the power constraints. In this chapter, we consider the transceiver

design minimizing the transmission power under QoS constraints. The transceiver structure

considered here is the same as that proposed in Chapter 2, in which the linear precoder is used

at the source (and the relay), and the linear MMSE receiver at the destination. Since there is a

one-to-one mapping between the BER and the MSE, we use the MSEs of signal streams as our

QoS constraints. We first consider the precoders design in two-hop systems and then general

MIMO relay systems. Our formulation leads to an optimization problem that the constraint

function is a highly nonlinear function of the precoders, either in the two-hop or general MIMO

relay systems. To overcome the problem, we first propose new precoder structures which can

simplify the optimization in the two-hop system. The proposed structures can translate the

matrix-valued optimization problem into a scalar-valued one, facilitating the derivation of the

optimum solution. For general MIMO relay systems, the problem becomes more involved since

the direct link is included. Based on the proposed precoder structure, however, we can derive an

MSE upper bound. Using the upper bound as the constraint function, the original optimization
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problem can be greatly simplified, and the solution can be obtained by the primal decomposition

approach. In Section 6.1, we first give the system model and the related optimization problem.

After that, we derive the source and relay precoders in the two-hop MIMO relay and then the

general MIMO relay systems, respectively, in Section 6.2 and 6.3. Finally, we evaluate the

performance of the proposed precoders in Section 6.4.

§ 6.1 System Model and Problem Formulation

§ 6.1.1 MMSE Receiver with Linear Source and Relay Precoders

We consider the same transceiver in Chapter 2. Recall (2.4), the received signal can thus be

expressed as

yD :=


 yD,1

yD,2


 = HFSs + n, (6.1)

where

H =


 HSD

HRDFRHSR


 , and n =


 nD,1

HRDFRnR + nD,2


 . (6.2)

Based on (6.1), the MMSE equalization matrix Gopt, as shown in (2.8), can be expressed as

Gopt = σ2
sF

H
S HH

(
σ2

sHFSF
H
S HH + Rn

)−1
. (6.3)

The resultant minimal MSE and MSE matrix can then be expressed as

Jmin = tr
{(

σ−2
s IL + ED + ER

)−1
}

, (6.4)

and

E =
(
σ−2

s IL + ED + ER

)−1
, (6.5)

respectively, where

ED = σ−2
n,dF

H
S HH

SDHSDFS (6.6)
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and

ER = FH
S HH

SRFH
RHH

RD

(
σ2

n,rHRDFRFH
RHH

RD + σ2
n,dIM

)−1
HRDFRHSRFS. (6.7)

As we can see from (6.4)-(6.5), the MMSE and MSE matrix are the functions of FS and FR.

Also, ED denotes the MSE component due to the direct link and ER is contributed by the relay

link. If only the relay link is considered (which is also known as the two-hop MIMO relay

system), we can set ED = 0 [43]- [44].

§ 6.1.2 Problem Formulation

To start with, we first let the QoS constraints be defined in terms of the MSEs at the receiver,

i.e.,

E(i, i) := E
[|si − ŝi|2

] ≤ ρi, 1 ≤ i ≤ L, (6.8)

where E(i, i) is the ith component of E and ρi is the MSE constraint for the ith data stream.

Here we note that 0 ≤ ρi < σ2
s since E [|si − ŝi|2] <= E [|si|2] = σ2

s .

Our task is to design the source and relay precoders such that the transmission power is

minimized and designated MSE constraints are satisfied. To proceed, let us define the power

consumption at the source and the relay, respectively, as

PS,T = tr
(
E

[
FSss

HFH
S

])
(6.9)

and

PR,T = tr
(
E

[
FR (HSRFSs + nR) (HSRFSs + nR)H FH

R

])

= tr
(
FR

(
σ2

sHSRFSF
H
S HH

SR + σ2
n,rIR

)
FH

R

)
. (6.10)
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With (6.5)-(6.10), the joint source/relay precoders design problem can be formulated as

min
FS ,FR

tr
{
FR

(
σ2

sHSRFSF
H
S HH

SR + σ2
n,rIR

)
FH

R

}
+ σ2

str
{
FSF

H
S

}

s.t.

E(i, i) ≤ ρi

E =
(
σ−2

s IL + σ−2
n,dF

H
S HH

SDHSDFS+

FH
S HH

SRFH
RHH

RD

(
σ2

n,rHRDFRFH
RHH

RD + σ2
n,dIM

)−1
HRDFRHSRFS

)−1

. (6.11)

Taking a closer look at (6.11), we readily find that the MSE matrix E involves a series of matrix

multiplications and inversions and is a complicated function of FS and FR. Also, the problem is

not a convex optimization problem. Therefore, the exact solution to (6.11) is almost impossible

to derive. In the next section, we propose a new method to solve the problem

§ 6.2 Joint Source/Relay Precoders Design for Two-Hop MIMO

Relay System

§ 6.2.1 Proposed Precoder Structures

In the two-hop MIMO relay system, the optimization problem in (6.11) can be reformulated as

min
FS ,FR

tr
{
FR

(
σ2

sHSRFSF
H
S HH

SR + σ2
n,rIR

)
FH

R

}
+ σ2

str
{
FSF

H
S

}

s.t.

E(i, i) ≤ ρi

E =
(
σ−2

s IL+

FH
S HH

SRFH
RHH

RD

(
σ2

n,rHRDFRFH
RHH

RD + σ2
n,dIM

)−1
HRDFRHSRFS

)−1

. (6.12)

It is simple to check that the problem in (6.12) is not a convex optimization problem and the

optimum solution is still difficult to derive. For simplicity, we first study the scenario that all
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the MSE constraints are the same. In this case, the problem can be reformulated the following

equivalent optimization, similar to that in the conventional MIMO system [9]:

min
FS ,FR

tr
{
FR

(
σ2

sHSRFSF
H
S HH

SR + σ2
n,rIR

)
FH

R

}
+ σ2

str
{
FSF

H
S

}

s.t.

E with equal diagonal elements,

tr{E} ≤ Lρ. (6.13)

Equation (6.13) is difficult to solve though it is simplified. In what follows, we will propose a

source and a relay precoder structures that can diagonalize the cost function in (6.13) facilitating

the derivation of the optimum solution. To proceed, we consider the following SVD:

HSR = UsrΣsrV
H
sr, (6.14)

HRD = UrdΣrdV
H
rd, (6.15)

where Vsr ∈ CN×N and Vrd ∈ CR×R are the right singular matrices of HSR and HRD, re-

spectively; Usr ∈ CR×R and Urd ∈ CM×M are the left singular matrices of HSR and HRD,

respectively; Σsr and Σrd are the diagonal matrices where σsr,i and σrd,i are the ith diagonal

element of Σsr and Σrd, respectively. Now, for given any FS and FR, we can always express

FS and FR as

FS = VsrΦsUS, (6.16)

FR = VrdΦrU
H
sr, (6.17)

where US ∈ CL×L is an unitary matrix to be further decided; Φs ∈ CN×L and Φr ∈ CR×R are

matrices not restricted to be diagonal here 1. Substituting (6.16) and (6.17) into (6.13), we then

have

E = UH
S

(
σ−2

s IL + ΦH
s ΣH

srΦ
H
r ΣH

rd

(
σ2

n,rΣrdΦrΦ
H
r σH

rd + σ2
n,dIM

)−1
ΣrdΦrΣsrΦs

)−1

US.

(6.18)

1The Φs and Φr are equivalently as VH
srFSUH

S and VH
rdFRUsr, respectively.
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Using the eigenvalue-decomposition (EVD), we can have an expression of

ΣH
srΦ

H
r ΣH

rd

(
σ2

n,rΣrdΦrΦ
H
r σH

rd + σ2
n,dIM

)−1
ΣrdΦrΣsr = UHDHUH

H , (6.19)

where UH ∈ CN×N and DH ∈ RN×N are a unitary and a diagonal matrices, respectively; both

are functions of FR. We can then re-express E in (6.18) as

E = UH
S

(
σ−2

s IL + ΦH
s UHDHUH

HΦs

)−1
US. (6.20)

We can further conduct EVD of ΦH
s UHDHUH

HΦs and have

ΦH
s UHDHUH

HΦs = UDUH , (6.21)

where U ∈ CL×L and D ∈ RL×L are a unitary and a diagonal matrices, respectively. Similarly,

both U and D are functions of FS and FR. From (6.21), we then have

UHΦH
s UHDHUH

HΦsU = D := D1/2QQHD1/2, (6.22)

where D1/2D1/2 = D and Q ∈ CL×L is an arbitrary unitary matrix. From (6.21) and (6.22),

we have

Φs = UHD
−1/2
H QHD1/2UH . (6.23)

From (6.16) we see that the power consumption at the source can be expressed as

σ2
str{FSF

H
S } = σ2

str{ΦsΦ
H
s } = σ2

str
{
D1/2D1/2QD−1

H QH
}

. (6.24)

For any semi-definite Hermitian matrices A ∈ CL×L and B ∈ CL×L matrices [50], the follow-

ing property holds.

tr (AB) =
L∑

i=1

λA,iλB,L−i+1, (6.25)

where λA,i and λB,i is the ith eigenvalue of A and B, respectively (with decreasing order).

Letting A = B and B = QD−1
H QH and denote the ith diagonal element of D and DH as σ2

D,i

and σ2
H,i, respectively, we can have a lower bound of (6.24) as

σ2
str{FSF

H
S } = σ2

str
{
DQD−1

H QH
} ≥

L∑
i=1

σ2
D,i

σ2
H,i

, (6.26)
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where the equality holds when Q = IL. Similarly, from (6.16) and (6.17), we can have the

power consumption at the relay as

tr
{
FR

(
σ2

sHSRFSF
H
S HH

SR + σ2
n,rIR

)
FH

R

}

= tr
{
Φr

(
σ2

sΣsrΦsΦ
H
s ΣH

sr + σ2
n,rIR

)
ΦH

r

}

= tr
{
Σ−1

rd ΣrdΦr

(
σ2

sΣsrΦsΦ
H
s ΣH

sr + σ2
n,rIR

)
ΦH

r ΣH
rdΣ

−H
rd

}

= tr
{
Σ−1

rd U′D′U′HΣ−H
rd

}
(6.27)

where

ΣrdΦr

(
σ2

sΣsrΦsΦ
H
s ΣH

sr + σ2
n,rIR

)
ΦH

r ΣH
rd := U′D′U′H . (6.28)

Here, U′ ∈ CL×L and D′ ∈ RL×L are a unitary and a diagonal matrices, respectively. Also, D′

= diag{σ′2D,1, · · · , σ′2D,M} denoting the collection of the eigenvalues (σ′2D,1 ≥ · · · σ′2D,M ). By

(6.27), we can have a lower bound of the relay power consumption as

{
FR

(
σ2

sHSRFSF
H
S HH

SR + σ2
n,rIR

)
FH

R

}
= tr

{
Σ−1

rd U′D′U′HΣ−H
rd

}
≥

L∑
i=1

σ′2D,i

σ2
rd,i

, (6.29)

where the equality holds when U′ = IR.

From (6.26) and (6.29), we have a lower bound of the total power consumption for each

feasible set of (FS,FR) as

σ2
str{FSF

H
S }+ tr

{
FR

(
σ2

sHSRFSF
H
S HH

SR + σ2
n,rIR

)
FH

R

} ≥
L∑

i=1

σ2
D,i

σ2
H,i

+
L∑

i=1

σ′2D,i

σ2
rd,i

. (6.30)

The lower bound can be achieved when Q = IL and U′ = IR. Note that Q is a matrix that we

can choose, and the condition that Q = IL can be easily satisfied. However, as we can see from

(6.22) and (6.28), σ2
D,i and σ′2D,i are complicated functions of Φs and Φr. It is then difficult to

find a general set of (Φs,Φr) such that the condition U′ = IR can be met (see (6.28)). One

possible solution is to let Φs and Φr be diagonal matrices and then U′ = IR. Denote the

diagonal Φs and Φr matrices as Σs and Σr, respectively, and the ith diagonal element of Σs
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and Σr as σs,i and σr,i, respectively. We then can reformulate (6.16) and (6.17) as

FS = VsrΣsUS, (6.31)

FR = VrdΣrUsr. (6.32)

The MSE in (6.13) thus becomes

tr(E) = tr
(
UH

S

(
σ−2

s IL + ΣH
s ΣH

srΣ
H
r ΣH

rd

(
σ2

n,rΣrdΣrΣ
H
r ΣH

rd + σ2
n,dIM

)−1
ΣrdΣrΣsrΣs

)−1

US

)

=
L∑

i=1

(
σ−2

s +
σ2

s,iσ
2
r,iσ

2
sr,iσ

2
rd,i

σ2
n,rσ

2
r,iσ

2
rd,i + σ2

n,d

)−1

. (6.33)

Note that the requirement of equal diagonal elements in (6.13) can be easily achieved by letting

US = FL which is an L-point DFT matrix. Therefore, substituting (6.31)-(6.33) in (6.13), we

can have the optimization problem as

min
ps,i,pr,i

L∑
i=1

pr,iσ
2
n,r +

L∑
i=1

σ2
sps,ipr,iσ

2
sr,i + σ2

s

L∑
i=1

p2
s,i

s.t.
L∑

i=1

(
σ−2

s +
ps,ipr,iσ

2
sr,iσ

2
rd,i

σ2
n,rpr,iσ2

rd,i + σ2
n,d

)−1

≤ Lρ,

ps,i = σ2
s,i ≥ 0, pr,i = σ2

r,i ≥ 0, ∀i. (6.34)

Here, we define pr,i = 0 if i > R. As we can see, the matrix-valued optimization problem in

(6.13) becomes a scalar-valued optimization problem which is much easier to work with.

For the case of different MSE constraints, it will more difficult to find the optimum precoder

structure. However, we can still use the precoder structures described in (6.31) and (6.32) to

solve the problem. This method, though suboptimal, can also transfer the matrix operations to

a series of scalar-valued operations in (6.12). In this case, however, we have to let US = IL in

(6.31). From (6.31) and (6.32), we can rewrite the MSE matrix in (6.12) as

E =
(
σ−2

s IL + ΣH
s ΣH

srΣ
H
r ΣH

rd

(
σ2

n,rΣrdΣrΣ
H
r ΣH

rd + σ2
n,dIM

)−1
ΣrdΣrΣsrΣs

)−1

.

(6.35)
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As a result, the optimization problem is translated into

min
ps,i,pr,i

L∑
i=1

pr,iσ
2
n,r +

L∑
i=1

σ2
sps,ipr,iσ

2
sr,i + σ2

s

L∑
i=1

ps,i

s.t.(
σ−2

s +
ps,ipr,iσ

2
sr,iσ

2
rd,i

σ2
n,rpr,iσ2

rd,i + σ2
n,d

)−1

≤ ρi,

ps,i = σ2
s,i ≥ 0, pr,i = σ2

r,i ≥ 0, ∀i. (6.36)

§ 6.2.2 Optimum Solutions in (6.34) and (6.36)

From (6.34) and (6.36), it is simple to find that the optimization problems are both not convex.

However, resorting to the primal decomposition approach [51], we can transfer the original

optimization problem into two optimization problems, which are referred to as a subproblem

and a master problem. Using the method, we can re-formulate the cost function in (6.34) and

(6.36) as

min
ps,i,pr,i

L∑
i=1

pr,iσ
2
n,r +

L∑
i=1

σ2
sps,ipr,iσ

2
sr,i + σ2

s

L∑
i=1

ps,i

= min
pr,i

min
ps,i(pr,i)

L∑
i=1

pr,iσ
2
n,r +

L∑
i=1

σ2
sps,ipr,iσ

2
sr,i + σ2

s

L∑
i=1

p2
s,i. (6.37)

As we will see, both the master problem and the subproblem are scalar-valued convex optimiza-

tion problems and closed-form solutions can be easily derived. Given pr,i, i = 1, · · · , L, the

subproblem in (6.36) is given by

min
ps,i(pr,i)

L∑
i=1

pr,iσ
2
n,r +

L∑
i=1

σ2
sps,ipr,iσ

2
sr,i + σ2

s

L∑
i=1

ps,i

s.t.(
σ−2

s +
ps,ipr,iσ

2
sr,iσ

2
rd,i

σ2
n,rpr,iσ2

rd,i + σ2
n,d

)−1

≤ ρi, ps,i ≥ 0, for i = 1, · · · , L. (6.38)
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It is simple to see that the subproblem (6.38) is a convex optimization problem. From the KKT

conditions [9], the optimum ps,i can be derived as

ps,i =
(
ρ−1

i − σ−2
s

)
(

σ2
n,rpr,iσ

2
rd,i + σ2

n,d

pr,iσ2
sr,iσ

2
rd,i

)
. (6.39)

Substituting (6.39) into (6.37), we can have the master problem as

min
pr,i

L∑
i=1

pr,i

(
σ2

n,r + σ2
sσ

2
sr,i

(
ρ−1

i − σ−2
s

)
(

σ2
n,rpr,iσ

2
rd,i + σ2

n,d

pr,iσ2
sr,iσ

2
rd,i

))

+σ2
s

L∑
i=1

(
ρ−1

i − σ−2
s

)
(

σ2
n,rpr,iσ

2
rd,i + σ2

n,d

pr,iσ2
sr,iσ

2
rd,i

)

s.t.

pr,i ≥ 0, for i = 1, · · · , L. (6.40)

The optimization in (6.40) is also a convex optimization problem. The optimum pr,i can there-

fore be derived by the corresponding KKT conditions as (See Appendix A.6 for the detailed

derivation):

pr,i =

√
σ2

n,dσ
2
s

(
ρ−1

i − σ−2
s

)

σ2
n,rσ

2
sr,iσ

2
rd,i

(
1 + σ2

s

(
ρ−1

i − σ−2
s

)) . (6.41)

Using (6.39) and (6.41) in (6.31) and (6.32), we can obtain the closed-form solution for the

precoders in the two-hop MIMO relay system. Interestingly, the solution in (6.34) is the same

with that of (6.36) by simply setting ρ1 = ρ2 = · · · = ρ.

§ 6.3 Joint Source/Relay Precoders Design for General MIMO

Relay System

§ 6.3.1 Problem Formulation in MIMO Relay System

As we can see, the optimization problem in (6.11) is not a convex problem and the constraint

function is a highly nonlinear function of the source and relay precoders. Even with numerical
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methods [51], it is difficult to obtain the optimum solution. To overcome the problem, we

propose to use the precoder structures in (6.31) and (6.32). As that in previous case, we let

US = IL. Invoking the SVD of HSD, we have HSD = UsdΣsdV
H
sd where σsd is a diagonal

matrix with the ith diagonal element of σsd,i and σsd,1 ≥ · · · ≥ σ
sd,min{N,M}. From (6.11), the

optimization problem can then be reformulated as

min
ps,i,pr,i

L∑
i=1

pr,i

(
σ2

n,r + σ2
sps,iσ

2
sr,i

)
+ σ2

s

L∑
i=1

p2
s,i

s.t.

E(i, i) ≤ ρi

E =


σ−2

s IL + σ−2
n,dΣ

H
s VHΣH

sdΣsdVΣs︸ ︷︷ ︸
=ES

+

ΣH
s ΣH

srΣ
H
r ΣH

rd

(
σ2

n,rΣrdΣrΣ
H
r ΣH

rd + σ2
n,dIM

)−1
ΣrdΣrΣsrΣs︸ ︷︷ ︸

=ER




−1

ps,i = σ2
s,i ≥ 0, pr,i = σ2

r,i ≥ 0, ∀i, (6.42)

where V = VH
sdVsr. As we can see, E in (6.42) is not fully diagonalized and solving the

problem is still difficult. To provide a feasible solution, we apply the following lemma.

Lemma 6.1: For E in (6.42), we have the following MSE upper bound.

E(i, i) ≤


σ−2

s +
ps,ipr,iσ

2
sr,iσ

2
rd,i

σ2
n,rpr,iσ2

rd,i + σ2
n,d

+ ps,i





σ−2

n,dV
HΣH

sdΣsdV︸ ︷︷ ︸
:=B




−1

(i, i)




−1



−1

:= Ẽ(i, i), (6.43)

where the equality holds when V = I or Σsd = 0 (i.e. the two-hop system).

Proof: See Appendix A.7.

Let Ẽ be a diagonal matrix and its diagonal components be equal to the upper bounds in
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(6.43). We can substitute E with Ẽ in (6.42) and have

min
ps,i,pr,i

L∑
i=1

pr,i

(
σ2

n,r + σ2
sps,iσ

2
sr,i

)
+ σ2

s

L∑
i=1

p2
s,i

s.t.

Ẽ(i, i) =


σ−2

s +
ps,ipr,iσ

2
sr,iσ

2
rd,i

σ2
n,rpr,iσ2

rd,i + σ2
n,d

+ ps,i





σ−2

n,dV
HΣH

sdΣsdV︸ ︷︷ ︸
:=B




−1

(i, i)




−1



−1

≤ ρi,

ps,i = σ2
s,i ≥ 0, pr,i = σ2

r,i ≥ 0, ∀i. (6.44)

Comparing (6.42) and (6.44), we see that the constraints in (6.44) are more stringent. In other

words, if the precoders satisfy (6.44), they will also satisfy (6.42). Similar to the problems

we have in the two-hop scenario, the optimization in (6.44) cannot be conducted since it is

not a convex problem. As Section 6.2 described, this problem can be solved by the primal

decomposition method.

§ 6.3.2 Optimum Solution in (6.44)

Given pr,i, i = 1, · · · , L, the subproblem in (6.44) can be expressed as

min
ps,i(pr,i)

L∑
i=1

pr,i

(
σ2

n,r + σ2
sps,iσ

2
sr,i

)
+ σ2

s

L∑
i=1

p2
s,i

s.t.

Ẽ(i, i) =


σ−2

s +
ps,ipr,iσ

2
sr,iσ

2
rd,i

σ2
n,rpr,iσ2

rd,i + σ2
n,d

+ ps,i





σ−2

n,dV
HΣH

sdΣsdV︸ ︷︷ ︸
:=B




−1

(i, i)




−1



−1

≤ ρi,

ps,i = σ2
s,i ≥ 0, pr,i = σ2

r,i ≥ 0, ∀i. (6.45)

It is straightforward to check that this optimization is a convex optimization problem. So,

similar to (6.39), the solution can be easily derived as

ps,i =
(
ρ−1

i − σ−2
s

)
(

pr,iσ
2
sr,iσ

2
rd,i

pr,iσ2
n,rσ

2
rd,i + σ2

n,d

+
(
(B−1)(i, i)

)−1

)−1

. (6.46)
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Substituting (6.46) into (6.44), the master problem can then be expressed as

min
ps,i,∀i

L∑
i=1


σ2

n,r + σ2
sσ

2
sr,i

(
ρ−1

i − σ−2
s

)
(

pr,iσ
2
sr,iσ

2
rd,i

pr,iσ2
n,rσ

2
rd,i + σ2

n,d

+
(
(B−1)(i, i)

)−1

)−1

 +

L∑
i=1

(
ρ−1

i − σ−2
s

)
(

pr,iσ
2
sr,iσ

2
rd,i

pr,iσ2
n,rσ

2
rd,i + σ2

n,d

+
(
(B−1)(i, i)

)−1

)−1

s.t.

pr,i ≥ 0, for i = 1, · · · , L. (6.47)

Comparing (6.47) and (6.40), we can find that the two problems are very similar. The only

difference lies in the additional term ((B−1) (i, i))
−1 in (6.47). The solution can be also obtained

by the KKT conditions. After some tedious manipulations (see Appendix A.8 for details), we

can obtain the result as

pr,i =





−Bi+
√

B2
i−4AiCi

2Ai
, if Ci < 0

0, if Ci ≥ 0.
(6.48)

where

Ai = σ4
rd,iσ

2
n,r

(
(B−1(i, i))

−2
σ4

n,r + 2σ2
n,rσ

2
sr,i (B

−1(i, i))
−1

+ σ4
sr,i

σ2
sr,i

(
σ2

sρ
−1
i − 1

) +

σ2
n,r

(
B−1(i, i)

)−1
+ σ2

sr,i

)
> 0, (6.49)

Bi =
(
B−1(i, i)

)−1

(
2σ2

n,rσ
2
n,dσ

2
rd,i

σ2
sr,i

(
σ2

sρ
−1
i − 1

)
(
σ2

n,r

(
B−1(i, i)

)−1
+ σ2

sr,i

)
+ 2σ2

n,rσ
2
n,dσ

2
rd,i

)

> 0, (6.50)

and

Ci = σ4
n,d

(
(B−1(i, i))

−2
σ2

n,r

σ2
sr,i

(
σ2

sρ
−1
i − 1

) +
(
B−1(i, i)

)−1 − σ−2
n,dσ

2
rd,i

)
. (6.51)

Substituting (6.48) into (6.46), we then have a closed-form solution for ps,i. Finally, substituting

(6.46) and (6.48) into (6.31) and (6.32), we obtain a solution for the precoders. The solution in
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Table 6.1: Complexity of linear source and linear relay precoders (QoS constraints).

Step Operation FLOPs

1 HSR = UsrΣsrVsr O(N3 + RN2)

2 HRD = UrdΣrdV
H
rd O(MR2 + R3)

3 HSD = UsdΣsdV
H
sd O(MN2 + N3)

4 B−1 O(N3)

5 Σr (6.48) O(L)

6 FR (6.17) O(R3)

7 Σs (6.46) O(L)

8 FS (6.16) O(NL2)

(6.48) also implies that the cooperative operation may not always be advantageous. One may

ask when is the right time for cooperative communication, and the variable Ci in (6.48) gives

the answer. From (6.48), we can observe that if

σ4
n,dσ

2
n,r (B−1(i, i))

−2

σ2
sr,i

(
σ2

sρ
−1
i − 1

) +
(
B−1(i, i)

)−1 ≥ σ2
n,dσ

2
rd,i, for all i, (6.52)

the relay link is off since pr,i = 0 for all i. In other words, the condition (6.52) provides a

“sufficient condition” that can be used to determine if the system should be operated in the

cooperative mode or not.

The complexity of the linear source and relay precoders mainly involves the SVD and matrix

inversion operations. The overall complexity of producing the precoders can be summarized in

Table 6.1. As we can see, compared to Tables 2.1-5.1, Σr proposed in this chapter has the lower

computational complexity. This is because the closed-form expression is expressed as a simpler

formulation.
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§ 6.4 Simulations

In this subsection, we conduct simulations to evaluate the performance of the proposed pre-

coding schemes. We assume that perfect synchronization is achieved, and the exact CSIs are

available at all nodes. Also, we assume that L = N = R = M = 4, the elements of each

channel matrix be i.i.d. complex Gaussian random variable with zero mean and same variance,

and σ2
n,r = σ2

n,d = 0.01. Also, let σ2
sr, σ2

rd, and σ2
sd denote, respectively, the variance of each

channel element for the source-to-relay, the relay-to-destination, and the source-to-destination

links.

§ 6.4.1 Two-hop MIMO Relay System

In this subsection, we evaluate the performance of the proposed precoding scheme for two-hop

MIMO relay systems. We first consider the scenario of equal MSE constraints, i.e., ρ1 = · · · =
ρ4 = ρ , and simulate two cases. In Case 1, σ2

sr = 0.0316 and σ2
rd = 0.3162. In this case,

10log10

(
σ2

sr/σ
2
n,r

)
= 5 dB and 10log10

(
σ2

rd/σ
2
n,r

)
= 15 dB. In Case 2, σ2

sr = 0.3162 and

σ2
rd = 0.0316. Figs. 6.1 and 6.2 show the simulation result for Case 1 and Figs 6.3 and 6.4 for

Case 2. Figs 6.1 and 6.3 give the source power consumption (Ps) , the relay power consumption

(Pr), and the total power consumption (Pt) , while Figs 6.2 and 6.4 show the resultant MSEs.

As we can see, the resultant MSEs are equal to the required MSEs and thus it indeed satisfy

the MSE constraints. Comparing these two figures, we can observe that when the source-to-

relay link is poor (Case 1), the system allocates more power to the source than to the relay. On

the contrary, when the relay-to-destination link is poor, the system allocates more power at the

relay. We then consider the scenario of different MSE constraints in which (ρ1, ρ2, ρ3, ρ4) =

(0.008, 0.009, 0.01, 0.011), σ2
rd = 1, and σ2

sd is varied. In this case, 10log10

(
σ2

rd/σ
2
n,r

)
= 20

dB. Fig. 6.5 shows the simulation result. In the figure, the solid lines denote the required MSE

constraints and the dash lines the resultant MSEs for each data stream. As the figure shows, the

solid and dash lines are overlapped indicating that the proposed precoding scheme can precisely
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satisfy the MSE constraints.

§ 6.4.2 General MIMO Relay System

In this subsection, we evaluate the performance of the proposed precoding scheme for general

MIMO relay systems. We first consider the scenario of equal MSE constraints where ρ1 =

· · · = ρ4 = ρ, σ2
sr = 1, σ2

rd = 1 and σ2
sd = 0.1. In this case, 10log10

(
σ2

sr/σ
2
n,r

)
= 20

dB. Fig. 6.6 shows the total required transmission power, and Fig. 6.7 the resultant MSE.

As shown in this figure, there is a gap between the resultant and the required MSEs and the

resultant MSE is lower. This is because the proposed precoders are designed based on the MSE

upper bounds in (6.44). We then consider the scenario of different MSE constraints where

(ρ1, ρ2, ρ3, ρ4) = (0.008, 0.009, 0.01, 0.011), σ2
rd = 1, σ2

sd = 0.0316 and σ2
sr is varied. Here,

10log10

(
σ2

rd/σ
2
n,r

)
= 20 dB, and 10log10

(
σ2

sd/σ
2
n,r

)
= 20 dB. Fig. 6.8 shows the resultant

MSEs. In the figures, the dash lines denote the resultant MSEs while the solid lines the required

MSEs. From the figure, we observe that the behavior of the proposed precoders is similar to that

in the previous case, i.e. the resultant MSEs are lower than the required MSEs. However, the

gap between the resultant and required MSEs is smaller when the SNR of the source-to-relay

relay link is higher. This is because in this case the resultant MSE will be closer to the upper

bound (see Lemma 6.1 in (6.43)).
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Figure 6.1: Power consumption for proposed joint precoders method in two-hop MIMO relay

system with σ2
sr = 0.0316 and σ2

rd = 0.3162.
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Figure 6.2: Resultant MSE versus QoS with σ2
sr = 0.0316 and σ2

rd = 0.3162.

104



−20 −18 −16 −14 −12 −10 −8 −6 −4
−5

0

5

10

15

20

25

MSE (ρ) (dB)

T
ot

al
 p

ow
er

 (
dB

)

 

 
P

s

P
r

P
t

Figure 6.3: Power consumption for proposed joint precoders method in two-hop MIMO relay

system with σ2
sr = 0.3162 and σ2

rd = 0.0316.
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Figure 6.4: Resultant MSE versus QoS with σ2
sr = 0.3162 and σ2

rd = 0.0316.
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Figure 6.5: Resultant MSE performance of proposed precoders method in two-hop MIMO relay

system with (ρ1, ρ2, ρ3, ρ4) = (0.008, 0.009, 0.01, 0.011).
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with σ2
sr = 1, σ2

rd = 1 and σ2
sd = 0.1.
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Figure 6.8: Resultant MSE performance of proposed precoders method in MIMO relay system

with (ρ1, ρ2, ρ3, ρ4) = (0.008, 0.009, 0.01, 0.011).
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Chapter 7

Conclusions

Conventional transceiver designs in three-node MIMO relay systems only consider the relay

precoder and some even ignore the direct link, and the system resource is not fully explored.

This motivates us to develop new designs taking the direct and relay links into account, and

jointly optimizing the source and relay precoders. In our designs, the relay precoder is linear

and the source precoder and the receiver can be linear or nonlinear. We study four transceiver

structures and propose new methods for the precoders design. The transceivers we considered

are: the MMSE receiver with the linear source precoder, the MMSE receiver with the THP

source precoder, the QR-SIC receiver with the linear source precoder, and the MMSE-SIC re-

ceiver with the linear source precoder. Although these design problems can be easily formulated

as some optimization problems, the cost functions are inherent to be highly nonlinear functions

of the precoding matrices, and the optimum solutions are very difficult to derive. To overcome

the problem, we seek for suboptimum solutions by constraining the precoders to have some spe-

cific structures. With the primal decomposition approach, we can then transfer the optimization

problems into convex optimization problems, and the closed-form solutions can then be derived

by the KKT conditions. In addition to the designs mentioned above for the enhancement of

link quality, we also consider the design satisfying QoS constraints. Simulations show that the

proposed source and relay precoded MIMO relay systems significantly outperform the existing
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precoded systems. In concluding the dissertation, we suggest some possible topics for future

research.

1. In MIMO relay systems, the estimation of CSI is less addressed. As known, CSI is

required in all the designs. It is then important to design training sequences or pilots

for effective channel estimation. Note that the estimation problem here is fundamentally

different to that in MIMO systems. For example, the destination may have to estimate the

source-to-relay channel which is not directly observable.

2. In this dissertation, the precoders are designed based on the assumption that perfect CSIs

are available at all nodes. In practical systems, however, this may not be always possi-

ble. How to design robust transceivers is an important issue in real-world applications.

Moreover, how to design efficient feedback systems such that CSIs can be fed back to the

transmitters also deserves further studies.

3. In practical cooperative system, implementation of an AF linear precoder at the relay

node essentially encounters several problems such as analog/digital conversion (ADC),

lack of symbol timing/frequency synchronization, physical layer waveform design, and

automatic gain control, etc. Especially, unlike the analog waveform repeater, the signals

sampled by the relay’s ADC are first sampled at buffer in the FPGA. Then the stored

signals multiply a linear precoder before sending them to the DAC. The ADC and DAC

increase the RF transceiver’s setting load. How to solve these practical problems and/or

reduce the complexity of implementation at the relay are also the interesting research

topics.

4. In this dissertation, we only study a typical three-node MIMO relay system. In the system,

there are only one source node, one relay node, and one destination node. In a general

relay system, there may be multiple source nodes, multiple relay nodes and multiple des-

tination nodes. In addition, the system may be a multi-hop relay system. The precoders

design in such a system is challenging and deserves for further study.
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5. The relay precoder we considered is a linear precoder. However, the relay precoder can be

nonlinear. How to design a nonlinear source and a nonlinear relay precoders associated

with a nonlinear receiver is still an open problem.

6. To the best of our knowledge, the existing transceiver designs in MIMO relay system all

assume the AF protocol. The design with the DF protocol is also an open and interesting

problem.

7. The OFDM modulation scheme is widely used in real-world communication systems. It

is then desirable to consider the precoders design in MIMO-OFDM relay systems. The

design problem is obviously much complicated since one extra dimension, the subcarrier

power allocation, is added.
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Appendix

§ A.1 Proof of (2.25)

Let us first rewrite

tr
(
DH

1 (X + D2)
−1 D1

)
=

L∑
i=1

|D1(i, i)|2(X + D2)
−1(i, i), (1)

where D1 ∈ RN×L and D2 ∈ RN×N , N ≥ L, are diagonal matrices with the positive elements;

X ∈ CN×N is a Hermitian matrix. So, (X + D2) is a positive definite matrix.

We claim that

(X + D2)
−1 (i, i) ≥ 1

(X + D2) (i, i)
, (2)

which will be proved in the next paragraph. From (1) and (2) we immediately have

tr
(
DH

1 (X + D2)
−1 D1

) ≥
L∑

i=1

|D1(i, i)|2
(X + D2)(i, i)

=
L∑

i=1

|D1(i, i)|2
(diag(X) + D2)(i, i)

= tr
(
DH

1 (diag(X) + D2)
−1 D1

)
(3)

which proves the lemma.

[ Proof of (2)]: Let Z := (X + D2) = UΣUH be the eigen-decomposition of the positive-

definite matrix Z. Since 1 = eT
i Iei = eT

i Z1/2Z−1/2ei, where ei is the ith unit standard vector,

we then have

1 = ‖eT
i Z1/2Z−1/2ei‖2

2 ≤ ‖eT
i Z1/2‖2

2‖Z−1/2ei‖2
2, (4)
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where the inequality in (4) follows from the sub-multiplicative property of the matrix norm

[50]. Since ‖eT
i Z1/2‖2

2 =
(
eT

i Z1/2Z1/2ei

)
= Z(i, i) and ‖eT

i Z−1/2‖2
2 =

(
eT

i Z−1/2Z−1/2ei

)
=

Z−1(i, i), the inequality (4) thus leads to 1 ≤ Z(i, i)Z−1(i, i), or equivalenty Z−1(i, i) ≥ 1
Z(i,i)

.

§ A.2 Derivation of (2.29) and (2.30)

The Lagrangian function with respect to (2.28) can be written as

L =
L∑

i=1

1

σ−2
s +

ps,ipr,iσ2
sr,iσ

2
rd,i

σ2
n,rpr,iσ2

rd,i+σ2
n,d

+ ps,i (B−1(i, i))−1
+ λs

(
σ2

s

L∑
i=1

ps,i − PS,T

)
+

λr

(
L∑

i=1

pr,i

(
σ2

n,r + σ2
sps,iσ

2
sr,i

)− PR,T

)
−

L∑
i=1

µs,ips,i −
L∑

i=1

µr,ipr,i. (5)

As mentioned, if ps,i is given, (2.28) is a convex optimization problem (for pr,i). Thus, we can

obtain the optimum pr,i using the KKT conditions [51]. The KKT optimality conditions for

solving pr,i, 1 ≤ i ≤ L, are given as follows:

−ps,iσ
2
n,dσ

2
sr,iσ

2
rd,i

c(ps,i, pr,i)
+ λr

(
σ2

n,r + σ2
sps,iσ

2
sr,i

)− µr,i = 0, (6)

where

c (ps,i, pr,i) =
[(

σ−2
s + ps,i

(
B−1(i, i)

)−1
) (

pr,iσ
2
n,rσ

2
rd,i + σ2

n,d

)
+ ps,ipr,iσ

2
sr,iσ

2
rd,i

]2

(7)

µr,i ≥ 0. (8)

λr ≥ 0. (9)

µr,ipr,i = 0. (10)

λr

(
L∑

i=1

pr,i

(
σ2

n,r + σ2
sps,iσ

2
sr,i

)− PR,T

)
= 0 (11)

Combining (6) and (8), we have

λr

(
σ2

n,r + σ2
sps,iσ

2
sr,i

) ≥ ps,iσ
2
n,dσ

2
sr,iσ

2
rd,i

c(ps,i, pr,i)
. (12)
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Substituting (6) into (10) leads to

pr,i

(
λr

(
σ2

n,r + σ2
sps,iσ

2
sr,i

)− ps,iσ
2
n,dσ

2
sr,iσ

2
rd,i

c(ps,i, pr,i)

)
= 0. (13)

To satisfy (13), we then have

1. If

λr

(
σ2

n,r + σ2
sps,iσ

2
sr,i

)
>

ps,iσ
2
n,dσ

2
sr,iσ

2
rd,i

c (ps,i, pr,i)
,

then pr,i = 0.

2. If

λr

(
σ2

n,r + σ2
sps,iσ

2
sr,i

)
=

ps,iσ
2
n,dσ

2
sr,iσ

2
rd,i

c (ps,i, pr,i)
,

then

pr,i =

√
ps,iσn,dσsr,iσrd,i

λ
1/2
r (σ2

n,r+σ2
sps,iσ2

sr,i)
1/2 − σ2

n,d (σ−2
s + ps,i(B

−1(i, i))−1)

σ2
rd,i

(
σ2

n,r (σ−2
s + ps,i(B−1(i, i))−1) + ps,iσ2

sr,i

) .

Considering 1), 2) and pr,i ≥ 0, we then find the solution of pr,i as:

pr,i =

[
µrσn,d

√
ps,iσsr,iσrd,i

(
σ2

sps,iσ
2
sr,i + σ2

n,r

)−1/2 − σ2
n,d (σ−2

s + ps,i(B
−1(i, i))−1)

σ2
rd,i

(
σ2

n,r (σ−2
s + ps,i(B−1(i, i))−1) + ps,iσ2

sr,i

)
]+

,

(14)

where [y]+ = max[0, y], and µr = λ
−1/2
r is the water level which should be chosen to satisfy

the power constraint at the relay. Similarly, we can obtain the optimum ps,i for a given pr,i as

shown in (2.30). The details, however, are omitted.

§ A.3 Proof of Lemma 3.2

Since A is a positive definite matrix, the related eigenvalue decomposition can be expressed

A = UAΣAUH
A = A1/2A1/2, (15)
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where ΣA is a diagonal matrix with the positive eigenvalues, UA is the related eigenvector

matrix, and A1/2 = UAΣ
1/2
A UH

A . From (15), we can have the following equation:

(A + B) = A1/2
(
IN + A−1/2BA−1/2

)
A1/2. (16)

From [50], we see that

det (CD) = det (DC) = det (C) det (D) . (17)

Using this property in (16), we then have

det (AB) = det
(
A1/2

(
IN + A−1/2BA−1/2

)
A1/2

)
= det (A) det

(
IN + A−1/2BA−1/2

)
.

(18)

Q.E.D.

§ A.4 Optimum Solution in (3.32)

The Lagrangian function in (3.31) can be expressed as

L =
κ∑

i=1

ln

(
1 +

pr,iσ
2
n,dσ

2
rd,iσ

′2
sr,i

pr,iσ2
n,rσ

2
rd,i + σ2

n,d

)
+

λ

[
κ∑

i=1

pr,i

(
PS,T

N
σ′2sr,iD

′
sr(i, i) + σ2

n,r

)
− PR,T

]
−

κ∑
i=1

vr,ipr,i, (19)

where λ ≥ 0. vr,i ≥ 0 with i = 1, · · · , κ. By the KKT conditions for all i, we have

∂L

∂pr,i

= −
σ2

n,dσ2
n,rσ2

rd,iσ
′2
sr,i

(pr,iσ2
n,rσ2

rd,i+σ2
n,d)

2

1 +
pr,iσ2

n,dσ2
rd,iσ

′2
sr,i

pr,iσ2
n,rσ2

rd,i+σ2
n,d

+ λ

(
PS,T

N
σ′2sr,iD

′
sr(i, i) + σ2

n,r

)
− vr,i = 0; (20)

λ, vr,i, pr,i ≥ 0; (21)

vr,ipr,i = 0; (22)

λ

[
κ∑

i=1

pr,i

(
PS,T

N
σ′2sr,iD

′
sr(i, i) + σ2

n,r

)
− PR,T

]
= 0. (23)
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Substituting (20) into (22) and noting the fact that pr,i > 0, we have

1

p2
r,i σ

2
rd,i

(
σ2

n,r

σ2
n,dσ

′2
sr,i

+ 1

)

︸ ︷︷ ︸
:=Ai

+2pr,i

(
σ′−2

sr,i +
σ2

n,d

2σ2
n,r

)

︸ ︷︷ ︸
:=Bi

+
σ2

n,d

σ2
n,rσ

2
rd,iσ

′2
sr,i︸ ︷︷ ︸

:=Ci

= λ

(
PS,T

N
σ′2sr,iD

′
sr(i, i) + σ2

n,r

)
, (24)

Pr,i =

√√√√ 1

λ
(

PS,T

N
σ′2sr,iD′

sr(i, i) + σ2
n,r

)
Ai

+
B2

i

A2
i

− Ci

Ai

− Bi

Ai

, (25)

B2
i − AiCi

A2
i

=

σ4
n,d

4σ4
n,r

σ4
rd,i

(
σ2

n,r

σ2
n,dσ′2sr,i

+ 1
)2 , (26)

Bi

Ai

=
1 +

σ2
n,dσ′2sr,i

2σ2
n,r

σ2
rd,i

(
σ2

n,r

σ2
n,d

+ σ′2sr,i
) . (27)

After some straightforward manipulations and the use of (21), we can have the optimum pr,i as

pr,i =




√√√√√√
µ

σ2
rd,i

(
PS,T

N
σ′2sr,iD′

sr (i, i) + σ2
n

) (
σ2

n,rσ
−2
n,dσ

′−2
sr,i + 1

) +

σ4
n,d

4σ4
n,r

σ4
rd,i

(
σ2

n,r

σ2
n,dσ′2sr,i

+ 1
)2

−
1 +

σ2
n,dσ′2sr,i

2σ2
n,r

σ2
rd,i

(
σ2

n,r

σ2
n,d

+ σ′2sr,i
)




+

, (28)

where µ = 1/λ should be chosen to satisfy the power constraint in (3.31).
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§ A.5 Water-Filling Algorithm for (3.32)

For convenience, we let

ai =
1

σ2
rd,i

(
PS,T

N
σ′2sr,iD′

sr (i, i) + σ2
n

) (
σ2

n,rσ
−2
n,dσ

′−2
sr,i + 1

) , (29)

bi =

σ4
n,d

4σ4
n,r

σ4
rd,i

(
σ2

n,r

σ2
n,dσ′2sr,i

+ 1
)2 , (30)

ci =
1 +

σ2
n,dσ′2sr,i

2σ2
n,r

σ2
rd,i

(
σ2

n,r

σ2
n,d

+ σ′2sr,i
) , (31)

di =

(
PS,T

N
σ′2sr,iD

′
sr(i, i) + σ2

n,r

)
. (32)

We can rewrite (3.32) as a general water-filling form

pr,i =

[√
ai

(
µ +

bi

ai

)
− ci

]+

. (33)

An easy way to solve (33) and at the same time satisfy the power constraint in (3.31) is the

bisection method sumarrized in Table 3.2. In the table, µM,0 and µL,0 denotes the maximal

and minimal initial µ, respectively; ε is the tolerate error determining the numbers of iterations.

We use a simple method to determine µM,0 and µL,0. Let Di = min{bi/ai}, i = 1, 2, · · · , κ.

We ignore the operation of [.]+ in (33), replace (bi/ai) with Di in (33), and solve pr,i for i =

1, 2, · · · , κ. Using the power constraint, we can then obtain a upper bound of µ which can serve

as as µM,0, and a mathematical expression as

(√
µ + Di

) (
κ∑

i=1

√
ai

)
−

κ∑
i=1

ci ≤ PR,T . (34)

From (34), we have

µ ≤
([∑κ

i=1 ci + PR,T∑κ
i=1

√
ai

]2

−Di

)
:= µM,0. (35)

120



For µL,0, we can simply use the minimum µ such that pr,i is nonnegative in (33). For pr,i being

nonnegative, we must have

µ ≥ c2
i − bi

ai

≥ 0, ∀i. (36)

From (29), (30), and (31), we can see that c2i−bi

ai
≥ 0. Thus, we let µL,0 = min

{
c2i−bi

ai
, ∀i

}
.

§ A.6 Derivation of (6.41)

Considering (6.40), we can observe that the optimization problem is a convex. The Lagrangian

function corresponding to (6.40)

L = σ2
s

L∑
i=1

(
ρ−1

i − σ−2
s

) (
pr,iσ

2
n,rσ

2
rd,i + σ2

n,d

)

pr,iσ2
sr,iσ

2
rd,i

+

L∑
i=1

pr,i

(
σ2

n,r + σ2
s

(
ρ−1

i − σ−2
s

) (
pr,iσ

2
n,rσ

2
rd,i + σ2

n,d

)

pr,iσ2
rd,i

)
−

L∑
i=1

µr,ipr,i, (37)

where pr,i ≥ 0 with i = 1, · · · , L. By the KKT conditions, for all i, we have,

∂L

∂pr,i

= −σ2
s

(
ρ−1

i − σ−2
s

) (
σ2

n,dσ
2
sr,iσ

2
rd,i

)
(
pr,iσ2

sr,iσ
2
rd,i

)2 +
(
σ2

n,r + σ2
sσ

2
n,r

(
ρ−1

i − σ−2
s

))− µr,i = 0. (38)

µr,ipr,i = 0. (39)

µr,i ≥ 0. (40)

From (38), we have

µr,i = −σ2
s

(
ρ−1

i − σ−2
s

) (
σ2

n,dσ
2
sr,iσ

2
rd,i

)
(
pr,iσ2

sr,iσ
2
rd,i

)2 + σ2
n,r + σ2

sσ
2
n,r

(
ρ−1

i − σ−2
s

)
. (41)

With the condition (39) and the assumption of pr,i > 0, we have µr,i = 0 and

σ2
sσ

2
n,d

(
ρ−1

i − σ−2
s

)

σ2
n,rσ

2
sr,iσ

2
rd,i

(
1 + σ2

s

(
ρ−1

i − σ−2
s

)) = p2
r,i. (42)

Following (42) and the condition pr,i ≥ 0, we have

pr,i =

√
σ2

sσ
2
n,d

(
ρ−1

i − σ−2
s

)

σ2
n,rσ

2
sr,iσ

2
rd,i

(
1 + σ2

s

(
ρ−1

i − σ−2
s

)) (43)

Q.E.D.
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§ A.7 Derivation of (6.43)

We first rewrite MSE matrix by the matrix inversion lemma as

E =




(
σ−2

s IL + ER

)
︸ ︷︷ ︸

:=A

+ΣH
s

(
σ−2

n,dV
H
srVsdΣ

H
sdΣsdV

H
sdVsr

)
︸ ︷︷ ︸

:=B

Σs




−1

= A−1 −A−1ΣH
s

(
B−1 + ΣsA

−1ΣH
s

)−1
ΣsA

−1, (44)

where A and B are defined as diagonal and non-diagonal matrices, respectively.

Now, we let Z :=
(
B−1 + ΣsA

−1ΣH
s

)
= UzΣzU

H
z be the eigen-decomposition of the

positive-definite matrix Z where ER ∈ RL×L is the diagonal matrix and ES ∈ CL×L is a Her-

mitian matrix defined in (6.42); Uz and Σz are the corresponding eigenvectors and eigenvalues,

respectively. Let ei be the ith unit standard vector. Since 1 = eT
i ILei = eT

i Z1/2Z−1/2ei, we

then have

1 = ‖eT
i Z1/2Z−1/2ei‖2

2 ≤ ‖eT
i Z1/2‖2

2‖Z−1/2ei‖2
2, (45)

where the inequality in (45) follows from the sub-multiplicative property of the matrix norm

[50]. Since ‖eT
i Z1/2‖2

2 =
(
eT

i Z1/2Z1/2ei

)
= Z(i, i) and ‖eT

i Z−1/2‖2
2 =

(
eT

i Z−1/2Z−1/2ei

)
=

Z−1(i, i), the equality (45) thus leads to 1 ≤ Z(i, i)Z−1(i, i), or equivalently Z−1(i, i) ≥ 1
Z(i,i)

.

Therefore, taking Z in (44), we then have the result in (6.43).
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§ A.8 Derivation of (6.48)

Similar to the derivation in Section 6.5.1, we conduct the solutions by the KKT conditions. The

Lagrangian respect to (6.47) is

L = σ2
s

L∑
i=1

ρ−1
i − σ−2

s(
σ2

sr,iσ
2
rd,i

σ2
n,rσ2

rd,i+σ2
n,dp−1

r,i

+ 1
(B−1)(i,i)

) +

L∑
i=1

pr,i


σ2

n,r +
σ2

sσ
2
sr,i

(
ρ−1

i − σ−2
s

)
(

σ2
sr,iσ

2
rd,i

σ2
n,rσ2

rd,i+σ2
n,dp−1

r,i

+ 1
(B−1)(i,i)

)


−

L∑
i=1

µr,ipr,i, (46)

where pr,i ≥ 0 with i = 1, · · · , L. By the KKT conditions. We have

∂L

∂pr,i

= σ2
n,r +

σ2
sr,i

(
σ2

sρ
−1
i − 1

)
(

σ2
sr,iσ

2
rd,i

σ2
n,rσ2

rd,i+σ2
n,dp−1

r,i

+ 1
(B−1)(i,i)

) −

(
pr,iσ

2
sr,i + 1

) σ2
n,dσ

2
sr,iσ

2
rd,ip

−2
r,i

(
σ2

sρ
−1
i − 1

)
(

σ2
sr,iσ

2
rd,i

σ2
n,rσ2

rd,i+σ2
n,dp−1

r,i

+ 1
(B−1)(i,i)

)2 (
σ2

n,rσ
2
rd,i + σ2

n,dp
−1
r,i

)2

− µr,i = 0.

(47)

µr,ipr,i = 0. (48)

µr,i ≥ 0. (49)

With the condition (46), (48) and the assumption of pr,i > 0, then µr,i = 0 and thus

σ2
n,r

(
σ2

sr,iσ
2
rd,i

σ2
n,rσ

2
rd,i + σ2

n,dp
−1
r,i

+
1

(B−1) (i, i)

)2 (
σ2

n,rσ
2
rd,i + σ2

n,dp
−1
r,i

)2
+

σ2
sr,i

(
σ2

sρ
−1
i − 1

)
(

σ2
sr,iσ

2
rd,i

σ2
n,rσ

2
rd,i + σ2

n,dp
−1
r,i

+
1

(B−1) (i, i)

)
(
σ2

n,rσ
2
rd,i + σ2

n,dp
−1
r,i

)2

= σ2
n,dσ

2
sr,iσ

2
rd,ip

−2
r,i

(
pr,iσ

2
sr,i + 1

) (
σ2

sρ
−1
i − 1

)
. (50)
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Let α = σ2
sr,iσ

2
rd,i, β =

(
σ2

sρ
−1
i − 1

)
, γ =

(
σ2

n,rσ
2
rd,i + σ2

n,dp
−1
r,i

)
, δ = (B−1(i, i))

−1, we rewrite

(50) as

γ2

(
δ2σ2

n,r

βσ2
sr,i

+ δ − σ−2
n,dσ

2
rd,i

)
+ γ


2αδσ2

n,r

βσ2
sr,i

+ α− σ2
rd,iσ

2
sr,i︸ ︷︷ ︸

=0

+2σ−2
n,dσ

2
n,rσ

4
rd,i


 +

(
α2σ2

n,r

βσ2
sr,i

+ σ2
n,rσ

2
sr,iσ

4
rd,i − σ−2

n,dσ
4
n,rσ

6
rd,i

)
= 0. (51)

After some manipulations, (51) can be reformulated as
(

σ4
n,rσ

4
rd,i

(
δ2σ2

n,r

βσ2
sr,i

+ δ

)
+ σ2

n,rσ
2
rd,i

(
2αδσ2

n,r

βσ2
sr,i

)
+

α2σ2
n,r

βσ2
sr,i

+ σ2
n,rσ

2
sr,iσ

4
rd,i

)

︸ ︷︷ ︸
:=Ai

p2
r,i

+

(
2σ2

n,rσ
2
n,dσ

2
rd,i

(
δ2σ2

n,r

βσ2
sr,i

+ δ − σ−2
n,dσ

2
rd,i

)
+

2αδσ2
n,rσ

2
n,d

βσ2
sr,i

+ 2σ2
n,rσ

4
rd,i

)

︸ ︷︷ ︸
:=Bi

pr,i

+ σ4
n,d

(
δ2σ2

n,r

βσ2
sr,i

+ δ − σ−2
n,dσ

2
rd,i

)

︸ ︷︷ ︸
:=Ci

= 0 (52)

Ai, Bi and Ci can be further expressed as (6.49), (6.50) and (6.51), respectively. Since Ai, Bi >

0 and pr,i ≥ 0, the solution is found to be

pr,i =





−Bi+
√

B2
i−4AiCi

2Ai
, if Ci < 0

0, if Ci ≥ 0.
(53)

Q.E.D.
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