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摘要 

本論文首先探討高精確度之一位元載波相位估計，我們根據訊雜比(signal-to-noise 

ratio, SNR)選擇合適的相位鑑別器，以達到高精確度的相位檢測。在低及高訊雜比的

環境中，反正切函數相位鑑別器(arctangent phase discriminator)以及雜訊補償數位相位

鑑別器(noise-balanced digital phase discriminator)分別可以精確地估測載波相位，但對

於中等訊雜比的應用，兩者皆有估計偏移(bias)的問題。因此，本論文提出訊雜比輔

助相位鑑別器(SNR-aided phase discriminator)，以解決中等訊雜比的相位檢測問題。

然而，許多實際的應用無法提供訊雜比的資訊，因此我們進一步將訊雜比輔助相位鑑

別器發展成同時估測相位及訊雜比的演算法。另一方面，本論文提出一個高運算效率

的碼相位(code phase)擷取方法，稱為相位同步擷取法(phase coherence acquisition, 

PCA)。我們利用複數相量(complex phasor)擷取虛擬隨機序列(PN sequence)的碼相

位，其中輸入及本地序列會先分群，接著將分群序列映射到複數相量以提升抗雜訊能

力。由於相位同步擷取法主要利用複數相量之間的相位差，所以不需要複數乘法的運

算，因此相位同步擷取法所需的運算量遠低於習知的快速傅立葉轉換方法。最後，本

論文更進一步發展多層相位同步擷取法(multi-layer PCA)，以得到更強的抗雜訊能力。 
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ABSTRACT 

 In the dissertation, we first investigate the high-accuracy one-bit carrier phase 

estimation. Signal-to-noise ratio (SNR) is utilized to select the proper phase discriminator 

to achieve high accuracy. The traditional arctangent phase discriminator (APD) and the 

noise-balanced digital phase discriminator (NB-DPD) can obtain accurate carrier phase for 

low and high SNR, respectively, but both algorithms have estimation bias in moderate 

SNR. Therefore, the SNR-aided phase discriminator (SNRaPD) is proposed to obtain the 

accurate phase. Since the SNR information may be unavailable in many applications, we 

further extend the algorithm of SNRaPD to jointly estimate the phase and SNR. On the 

other hand, we propose a computationally efficient method, termed Phase Coherence 

Acquisition (PCA), for PN sequence acquisition by using complex phasors. In order to 

combat noise, the input and local sequences are partitioned and mapped into complex 

phasors in PCA. The phase differences between pairs of phasors are then utilized for code 

phase acquisition, and thus complex multiplications are avoided. The computation load of 

PCA is much less than that of the conventional fast Fourier Transform (FFT) method. 

Finally, the multi-layer PCA is developed to enhance noise-robustness. 
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Chapter 1 

Introduction 

 

Carrier phase estimation and code phase acquisition are essential in various applications, 

such as the spread-spectrum system and the global navigation satellite system (GNSS) [1-2]. 

In modern applications, carrier phase estimation and code phase acquisition may be 

implemented by means of the software-defined receiver (SDR) so as to obtain more 

capability and flexibility in signal processing [3]. In SDR, more analog-to-digital conversion 

(ADC) bits are generally desired so as to avoid significant quantization error. For example, 

power degradation is at least 2dB for one-bit ADC [4-5]. On the other hand, because of the 

benefits of the one-bit scenario, such as efficient bitwise processing and the avoidance of 

automatic gain control (AGC), the one-bit ADC has still induced wide interest [6-11]. In this 

dissertation, we investigate the high-accuracy one-bit carrier phase estimation for the tracking 

process and propose a multiplication-free code phase acquisition method that uses much less 

computation than the FFT-based method for SDR. 

1.1 Review of Phase Estimation Method 

For the conventional phase estimation of a sinusoidal carrier, the arctangent phase 

discriminator (APD) is widely adopted since it achieves maximum-likelihood estimation 

(MLE) in additive white Gaussian noise (AWGN) [12, page 167]. With infinite ADC bits, the 

APD attains MLE irrespective of what the signal-to-noise ratio (SNR) is. However, this is 

not the case for realistic phase discriminators that have finite precision using a few-bit ADC, 

especially those with one-bit ADC. The problem of parameter estimation for a single sinusoid 

was previously investigated in [13-16]. In [16], Cramér-Rao bound (CRB) of one-bit 

quantization could be derived under the assumption of independence between quantized 
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samples. The effects of one-bit sampling and quantization were also discussed. Unfortunately, 

due to the lack of a closed form of probability mass function of samples [16, Eq. (10)], the 

derivation of MLE of the sinusoidal carrier is intractable. Next, the dithering techniques were 

used to improve the estimation performance. In [17] and [18], the asymptotic bias of one-bit 

quantized mean estimation problems was addressed. Other relevant studies fell in the field of 

the limiter phase detector [19][20, Chap. 10], which utilizes a limiter to prevent overload of 

the received signal. For high SNR, the asymptotic phase estimation bias of APD had been 

mentioned and an improved phase discriminator, called digital phase discriminator (DPD), 

was proposed in [21]. The DPD achieves much higher asymptotic accuracy than that of the 

traditional APD. However, the DPD does not perform well in low SNR environments due to 

its sensitivity to noise. A modified DPD, termed the noise-balanced digital phase 

discriminator (NB-DPD), incorporates the summation of noisy samples in phase estimation 

leading to an improved noise performance [22]. 

1.2 Review of Code Phase Acquisition Method 

Pseudo-random (PN) sequence acquisition is widely used in various applications. For 

example, the acquisition is implemented to search for the correct code phase so as to identify 

the transmitter in spread spectrum communications. Because of the limitations associated 

with the hardware techniques, conventional code acquisition could only be achieved by 

serially examining the possible code phase of the input sequence in the time-domain [23-24]. 

However, the time required for acquisition would be so long that limits the application of 

longer PN sequence in practice. With the improvements in hardware implementation, the 

parallel acquisition scheme, which employs a large amount of correlation circuits to examine 

all the code phases concurrently was then devised to significantly reduce the acquisition time 

[25]. A hybrid scheme had also been proposed to provide a compromise between the 

acquisition speed and hardware complexity for the serial and parallel schemes, respectively 
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[26]. In addition to the hybrid scheme, the acquisition schemes can employ auxiliary 

subsystems, such as an auxiliary signal generator and a phase estimator, to attain reasonable 

speed and complexity as well [27-28]. Owing to the recent development of digital signal 

processing (DSP) for software receivers, the exhaustive computation of the direct serial 

search between two sequences can be mitigated by fast Fourier transform (FFT) to reduce the 

computation by utilizing convolution theorem [29-31], which states that the convolution of 

two sequences can be derived from the pointwise product of corresponding Fourier 

transforms (i. e., [ ] [ ] ( ) ( )Fx n y n X Y    , where   denotes convolution and F  

represents Fourier transform). The theorem that facilitates FFT can be used in the PN 

sequence acquisition to efficiently search the code phase [32-33]. To further reduce the 

computational burden of FFT-based acquisition, the efficient split-radix FFT techniques 

rather than conventional radix-2 FFT could be used for transformation so that the number of 

multiplications, addition and memory access can thus be reduced [34]. In addition, by the fact 

that the more FFT points, the more computations are required, the acquisition with fewer FFT 

points, which is cheaper, was performed on the coarse/acquisition (C/A) codes with 

averaging up several samples of a code chip [35]. Instead of averaging the samples, the FFT 

points could also be reduced by removing the insignificant points. By examining the 

spectrum of input and local C/A sequences, it is found that most of the energy is contained in 

the low-frequency half of the spectrum. Hence the other half of the spectrum, which is 

comprised of very little information could be eliminated and thus the number points for 

FFT-based acquisition were decreased [36]. On the other hand, the multiplication operation in 

the FFT method generally requires many computational resources. Hence, a substitute 

method employing Walsh transform (WT) was implemented to calculate the convolution 

without the need for multiplications [37-38]. Specifically, as compared to the FFT-based 

method, the WT-based method requires fewer additions and no multiplications, but additional 

permutations of the input samples and the output results are needed. 
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1.3 Organization of Dissertation 

  The dissertation is organized as follows. In Chapter 2, we investigate the one-bit 

high-accuracy phase discriminator for three SNR ranges: low SNR, high SNR and moderate 

SNR. Unlike traditional approaches, this approach first distinguishes which SNR range an 

application falls into, and this SNR information is then utilized to select a proper phase 

discriminator for achieving high accuracy. For low-SNR applications, traditional APD is 

adopted. For high-SNR applications, NB-DPD is utilized to improve accuracy. Between 

them, for moderate-SNR applications, a novel SNR-aided phase discriminator (SNRaPD) 

developed using the nonlinear least-square method is proposed.  

   However, since the SNR information may be unavailable in many applications, the SNR 

should also be estimated so as to attain the accurate phase estimation. Hence, a nonlinear 

least-square algorithm for deriving the SNRaPD is further extended to jointly estimate the 

phase and SNR estimation in Chapter 3. Because of the avoidance of AGC by using one-bit 

ADC, the joint phase and SNR estimation method can accommodate signals with high 

dynamic range. Potential applications for the spaceborne measurements are also discussed. 

   Next, we propose a novel method, termed the Phase Coherence Acquisition (PCA), to 

search for the cross-correlation peak for pseudo-random (PN) sequence acquisition by using 

complex phasors in Chapter 4. The PCA requires only complex additions in the order of N , 

the length of the sequence, whereas the conventional method utilizing FFT requires complex 

multiplications and additions, both in the order of 2logN N . Specifically, the phase 

differences between pairs of input and local phasors are utilized for acquisition, and thus 

complex multiplications are avoided. The significant reduction of computational loads makes 

the PCA an attractive method, especially when the sequence length of N  becomes 

extremely large which becomes intractable for the FFT-based acquisition. Finally, the 

conclusion of the dissertation is made in Chapter 5. 
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Chapter 2 

One-Bit Accurate Phase Estimation 

   

   In this chapter, we clarify the accuracy of one-bit phase discriminators regarding SNR, 

such as the accuracy of APD and NB-DPD in low and high SNR, respectively. Moreover, we 

design an SNRaPD that utilizes the SNR information in phase estimation to enhance ultimate 

accuracy in moderate SNR. A high-accuracy phase estimation is critical to the successful 

tracking of carrier signals. In this study, the traditional inphase-quadrature (I-Q) structure 

using one-bit ADC is studied first and the SNR-dependent mean value of the I-Q channel 

output is derived. Note that, because the frequency of the received carrier can be captured by 

the acquisition process or a frequency locked loop [2], the frequency shift between input and 

local carrier can be regarded as a part of phase shift in steady-state tracking. Hence, the 

influence of frequency shift is omitted and the AWGN channel is considered in our analysis. 

Next, phase estimation with APD and NB-DPD are addressed. The SNRaPD is then 

introduced and the improvement in accuracy is simulated and compared with the average 

Cramér-Rao bound (CRB). In addition, an adequate stop criterion and the range of 

applications regarding the SNR of SNRaPD are also discussed. The high-accuracy phase 

information obtained with the proposed algorithm can potentially be applied to spaceborne 

measurements in GNSS and beacon receivers when the ambient SNR falls within the 

“moderate SNR” range and the multipath effect is mitigated. 

 

2.1 System Model 

 The system model for phase estimation of sinusoidal carrier in the one-bit SDR is shown 

Fig. 2.1. The received signal is denoted by 
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Fig. 2.1. System structure of one-bit SDR. 

 

)()2sin()( ttftr c                            (2.1) 

where cf  is the carrier frequency,   is an unknown phase, and )(t  is the AWGN.  

 

For phase estimation, the output frequency of the numerically controlled oscillator (NCO) is 

assumed equal to the incoming carrier frequency. Let sT  be the sampling period. The 

discrete-time one-bit quantized )(tr  is given by 

 

)]T()T2sgn[sin()]T(sgn[][ sss kkfkrkr c                 (2.2) 

where  

 









.0 if1

0 if1
]sgn[

x

x
x    

 

In addition, let the sampling frequency be sT/1sf . We denote 

 

p

q
h

f

f

s

c                                 (2.3) 

where h  is the greatest integer less than or equal to sc ff / , and p  and q  are mutually 

prime integers. 
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The mixer output of the inphase channel is given by 

 

s ssgn[ ( T )] sgn[sin 2 T ]

sgn[sin( ) ] sgn[sin ]
k c

k k k

a r k f k
 

 
     

                  (2.4) 

 

where sT2 kfck   and )T( skk    is a zero-mean Gaussian random variable with 

variance 2 .  

 

Consider p  samples at 1,,2,1,0,Ts  p kkt  . The normalized I-Q channel outputs are 

denoted by 

 







1

0

]sgn[sin])sgn[sin(
1 p

k
kkkp p

I                  (2.5a) 

 







1

0

]sgn[cos])sgn[sin(
1 p

k
kkkp p

Q  .               (2.5b) 

 

It can be proved that the samples of phases },,,{ 110  p  are uniformly distributed over 

)2,0[   with a separation of p/2  between neighboring i ’s [21]. Note that when we 

mention that p  is “sufficiently” large later, it means that p/2  is significantly smaller 

than the accuracy required for the estimation. According to Appendix A, the mean values and 

variances of the I-Q channel outputs are given by 

 









 

 )2,[),0[

)1P2()P21(
1




kk

p kkI p
                   (2.6a) 

 









 

 )2/3,2/[)2,2/3[)2/,0[

)1P2()P21(          
1




kk

p kkQ p
             (2.6b) 
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





1

0

2
2

22 PP
4 p

k
kkQI ppp

                        (2.7) 

where  

 







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


)sin(
QP k
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dz
z

x
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2

exp  
2

1
)(Q

 

 

2








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





. 

 

Note that the range of summation is defined according to the value of k  in Eq. (2.6), and 

kP  is a function of k . In Eq. (2.7), the variance of the one-bit quantized I-Q outputs 

consists of the effect of channel noise and quantization noise. Since },,,{ 110  p  are 

uniformly distributed over )2,0[  , the mean value of I-channel output in Eq. (2.6a) can be 

further derived by 

 

.
)sin(

Q2
)sin(

Q2
1

 

2

)sin(
Q2

)sin(
Q2

2

1

),0[)2,[

)2,[),0[
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

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 
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






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








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p
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I

p
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p
      (2.8) 

 

From Eq. (2.1), the SNR of the sinusoidal signal is given by 

 

22

1
SNR


 .                            (2.9) 

 

Eq. (2.8) can then be written as 
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







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p kkI p
          (2.10) 

where SNR2 .    

     

Suppose we choose sf  such that p  is sufficiently large in Eq. (2.3). According to 

Appendix B, the mean value of I-channel output of Eq. (2.10) can be represented as a power 

series, which is given by 
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m
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m

m
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l

m
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A

p
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where 
2/32

4


A .  

 

Similarly, the mean value of Q-channel output of Eq. (2.6b) is denoted by 
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By a similar derivation of Eq. (2.11), the power series representation of Q  is given by 
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In addition, according to Appendix B, the power series of the variances of the I-Q channel 

outputs of Eq. (2.7) are represented by 
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The above results are obtained for p samples. When the mean values and variances are 

generalized to N  mp  samples, where m  is an integer, the normalized I-Q channel outputs 

are given by 
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1  .             (2.15b) 

 

The mean values of the I-Q channel outputs are the same as Eq. (2.11) and Eq. (2.13), 

respectively. The variance can be expressed as 
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   The relationship between the mean values of the I-Q channel outputs is shown in Fig. 2.2. 

Here, only the relationship in the 1st quadrant is illustrated because of the symmetry of the 

trigonometric function. As can be seen in Fig. 2.2, the relationship between the I-Q channel 

outputs varies with the SNR.  
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Fig. 2.2. Relationship between the mean values of the I-Q channel outputs (first quadrant). 
 

The relationship approximates a circle when the SNR is low, but deviates from a circle with 

increasing SNR. When SNR , the relationship becomes a straight line. Since the phase 

is estimated from the I-Q channel outputs in Fig. 2.1, the phase estimation should be adjusted 

according to the SNR to achieve high accuracy. In the following sections, accurate phase 

estimations regarding SNR are introduced. Note that, in order to evaluate the achievable 

phase accuracy, the assumption of zero frequency offset is inherently applied to the following 

analyses and simulations. 

 

2.2 Accurate One-Bit Phase Discriminator  

   In this section, we introduce phase discriminators that have been proposed in the 

literature, i.e., DPD [21], NB-DPD [22], and APD, for one-bit quantized data and discuss 

their performance regarding SNR. 
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2.2.1 High-SNR 

 When SNR , k  in Eq. (2.15) can be neglected. Moreover, when the number of 

samples N  is large, by the law of large numbers (LLN), the I-Q channel outputs, denoted as 

(Im ,Qm ), approximate their mean values, i.e., ImI   and QmQ   . The relationship 

between the I-Q channel outputs is then denoted by 

 

1 QI  .                           (2.17) 

 

The relationship is a straight line as shown in Fig. 2.2. In this situation, the phase can be 

estimated by DPD, resulting in higher accuracy than that of APD [21]. Applying the system 

model of Fig. 2.1 in [21], the phase estimation according to ),( mm QI  is given by 

 

)1(
2

)sgn(ˆ
DPD mm IQ 

 .                     (2.18) 

 

The mean-squared error (MSE) of DPD will be negligible with a sufficiently large N . 

 However, in the high SNR environment, small noise variance still exists in the I-Q 

channel outputs, and the relationship between the mean I-Q outputs deviates from a straight 

line as shown in Fig. 2.2. Since DPD is sensitive to noise, the modified DPD, called 

NB-DPD, is provided to improve phase estimation in this situation. The phase estimated by 

NB-DPD is given by [22] 

 











 ||||
1

2
)sgn(ˆ

DPDNB
mm

m
m QI

I
Q

 .                (2.19) 

 

  Let the root mean-squared error (RMSE) of NB-DPD be denoted by 
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])ˆ[(E 2
DBDNBDPDNB    . Using Monte Carlo simulation methods for 100 trials, 

DPDNB  regarding SNR is shown in Fig. 2.3. As expected, DPDNB  decreases with 

increasing SNR. In addition, it decreases slightly with N  in high SNR. Apparently, the 

NB-DPD can achieve high phase estimation accuracy in high SNR. 

2.2.2 Low-SNR 

 When the SNR is low, we have 1  in Eq. (2.11) and Eq. (2.13). Thus, the mean 

values of the I-Q channel outputs are approximated by 

 



 cos

2

4
2/3

I ,                        (2.20a) 

 



 sin

2

4
2/3

Q .                        (2.20b) 

 

 

Fig. 2.3. Simulated results of NB-DPD regarding SNR. 
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This proves the circular relationship of the I-Q channel output in the low SNR environment 

as shown in Fig. 2.2. The result is also consistent with Pouzet’s conclusion, when we consider 

a limiter as a binary quantizer with an infinite number of samples [19][20, Chap. 10]. Since 

the mean I-Q channel outputs have an approximately circular relationship, APD is a good 

choice in low SNR. In addition, the variances of the I-Q channel outputs of Eq. (2.16) are 

approximated by 

 

,
1

1
1 2

22

N

N

QI







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











                          (2.21) 

when the SNR is low. 

 

 The performance of APD in low SNR is analyzed using geometry as shown in Fig. 2.4.  

 

 

Fig. 2.4. Geometric representation of performance of APD on the I-Q plane. 
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First, let point ),(:A QI   denote the mean values of the I-Q outputs on a circle with radius 

R  and polar phase  . According to Eq. (2.20), the radius R  is given by  

 

   .
SNR4

    

2

4
    

2/3

2/3

22












 QIR

                          (2.22) 

 

Next, let ),(:B mm QI  be the measured I-Q channel outputs. The distance between A and B is 

denoted by  

  

22 )()( QmIm QId   .                     (2.23) 

 

The sinusoidal carrier phase estimated from ),( mm QI  with APD is given by 

 

 









m

m

I

Q
atan2ˆ

APD                       (2.24) 

where )atan2(x  denotes the arctangent-2 function and   is the phase estimation error.  

 

Without loss of generality, let 0 . From the law of sines, we have  

 

)sin(sin  



Rd

.                       (2.25) 

 

Assume 1 . Then  sin , and )sin()sin(   . Eq. (2.25) is 

approximated by 
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)sin(  
R

d
.                          (2.26) 

 

Suppose   is uniformly distributed over ),0[  . For a fixed d , the expected value of 2  

with respect to   is denoted by 
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                  (2.27) 

 

Assume d  and   are mutually independent. According to the definition of variance and 

Eq. (2.21), the expected value of 2d  is given by 
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From Eq. (2.27) and Eq. (2.28), the MSE of phase estimation is denoted by 
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                      (2.29) 

 

In addition, the RMSE of APD is given by 
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 From Eq. (2.30), APD  is inversely proportional to the square root of the product of SNR 

and N . The analytical and simulated APD  are shown in Fig. 2.5. The simulated results are 

obtained by Monte Carlo simulation for 100 trials. From Fig. 2.5, the simulated results 

approach the analytical values in low SNR. Note that the analytical APD  is provided in part 

since the result is valid only when low SNR is assumed. From Fig. 2.5, a minimal APD  

exists at the specific SNR in the simulated cases. Below that SNR,  APD  increases with 

decreasing SNR, whereas APD  increases when the SNR is above that SNR.  

 

 

Fig. 2.5. Analytical and simulated results of APD regarding SNR. 
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According to Fig. 2.2, since the relationship of the mean values of the I-Q outputs deviates 

from a circle with increasing SNR, the increase in APD  is due to the estimation bias of the 

APD, which will be shown below. 

2.2.3 Moderate-SNR 

 Between the high SNR and the low SNR, the relationship between the mean I-Q outputs 

is complicated, as indicated in Fig. 2.2. The estimation bias of NB-DPD and APD is 

examined by means of the asymptotic performance. Suppose N  is sufficiently large. By 

LLN, the I-Q channel outputs of Eq. (2.15) approach their mean values, i.e., ImI   and 

QmQ  . The asymptotic performance of NB-DPD and APD are defined by 
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










||||
1

2
)sgn(ˆ

DPD-AsNB
QI

I
Q 

 ,                  (2.31) 

 












I

Q




 atan2ˆ
AsAPD .                        (2.32) 

 

The corresponding squared phase errors are given by 2
DPD-AsNBND )ˆ(  e  and 

2
AsAPDA )ˆ(  e , respectively. We further denote the asymptotic estimation error by  

 

2/1
NDDPD-AsNB )(e                         (2.33) 

 

and 

 

2/1
AAsAPD )(e .                         (2.34) 



 19

Note that the averaged values of NDe  and Ae , i.e., NDe  and Ae , are used in Eq. (2.33) and 

Eq. (2.34), since they are functions of  . The DPD-AsNB  and AsAPD  regarding SNR are 

shown in Fig. 2.6. From Fig. 2.6, DPD-AsNB  and AsAPD  are small in high and low SNR, 

respectively. That is, degrees 1.0DPD-AsNB   if dB 12SNR  , and degrees 1.0AsAPD   

when dB 10-SNR  . However, DPD-AsNB  becomes significant when the SNR decreases 

whereas AsAPD  becomes significant when the SNR increases. Here, the range of SNR in 

which both DPD-AsNB  and AsAPD  are not negligible is considered “moderate” SNR. For 

example, SNR between -10 dB and 12 dB in this case (phase accuracy requirement < 0.1 

degrees) is denoted as the moderate SNR. Obviously, for the moderate SNR, the accuracy of 

NB-DPD and APD are degraded and bounded by estimation bias, even though N  is 

sufficiently large.  

 

 

Fig. 2.6. Asymptotic performance of NB-DPD and APD regarding SNR. 
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Note that, even though the estimation error due to noise variance decreases with the square 

root of the SNR in APD, as indicated in Eq. (2.30), the accuracy of APD is degraded because 

of the estimation bias in moderate SNR. This result explains the degradation of APD  in 

moderate SNR as shown in Fig. 2.5. Above all, although NB-DPD and APD perform well in 

high and low SNR, respectively, their performance is degraded by the estimation bias in 

moderate SNR. Focusing on the moderate SNR, we develop an approach for reducing the 

estimation bias and thus improving the accuracy in the following section. 

 

2.3 SNR-Aided Phase Discriminator 

2.3.1 Proposed method 

 Since the mean I-Q outputs vary with the SNR as shown in Fig. 2.2, the SNR should be 

taken into consideration in achieving high-accuracy phase estimation. Therefore, the 

SNRaPD is developed to improve the accuracy by using the SNR information. Let ),( QI   

be the mean values of the I-Q output and ),( mm QI  be the measured I-Q channel output. In 

SNRaPD, we define a measure by 

 

2 2

2 2
1 2

( ) ( ) ( )

   ( ( )) ( ( ))

m I m QL I Q  

   

   

 
                    (2.35) 

where ImI  )(1 , QmQ  )(2 , and   is the unknown phase to be estimated. In 

addition, let T
21 )](),([)(  Λ , where ‘T’ denotes transpose and )()()( T  ΛΛL .  

 

When the SNR information is given,   is known, and the relationship of ),( QI   with 

respect to phase angle can be uniquely determined. When ),( mm QI  are given, suppose the 

most likely phase is what minimizes )(L  as follows: 
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)}(min{ argŜNRaPD  L .                     (2.36) 

 

This is the main idea of SNRaPD. 

 In optimization theory, the foregoing descriptions are known as the nonlinear 

least-square problem. Newton’s method can be used to search )}(min{ argˆ  L  [40]. The 

vector of the first derivatives of )(1   and )(2   is given by 
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In addition, let  
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Then using Newton’s method,   is updated iteratively by 

 

)()())()()(( 1
T

1
1

11
T

11 


  iiiiiii H  ΛJJJ            (2.39) 

where the i  denotes the phase obtained after the i-th iteration.  

 

  In SNRaPD, depending on the available SNR information, the initial phase 0  can be 

estimated by NB-DPD or APD, and accuracy can then be improved iteratively by Eq. (2.39). 

The iteration will stop when    || 1ii , where   is a small number. In the one-bit SDR 
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shown in Fig. 2.1, let the carrier frequency MHz 421111.15cf , the sampling frequency 

MHz 096.4sf , and 510N . In this case, according to Eq. (2.3), we have 4096000p  

and p/2  will be significantly smaller than the estimation accuracy described below. The 

performance of SNRaPD is evaluated by Monte Carlo simulation. In the simulation, the stop 

criterion is 310  degrees, and the estimated phase is given by i SNRaPD
ˆ . The RMSE 

defined by ])ˆ[(E 2
SNRaPDSNRaPD    is the average of 100 trials as shown in Fig. 2.7. 

From Fig. 2.7, the errors by NB-DPD and APD are reduced with SNRaPD. For example, at 

dB0SNR  , the RMSE of NB-DPD is 2.017 degrees and that of SNRaPD is 0.2625 degrees. 

A 7.7 times improvement is achieved. At dB10SNR  , the RMSE of APD is 2.769 degrees 

and that of SNRaPD is 0.119 degrees, resulting in a 23 times improvement. The SNRaPD 

greatly improves the accuracy of phase estimation, especially in moderate SNR. 

 

 
Fig. 2.7. Performance of SNRaPD regarding SNR. 
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Regarding the number of iterations of Newton’s method in SNRaPD, normally less than four 

iterations are required based on our simulation results. In addition, as mentioned in Section 

2.2, NB-DPD and APD perform well in high and low SNR, respectively. Hence, fewer 

iterations are required in SNRaPD when the initial phase is estimated by NB-DPD in high 

SNR and by APD in low SNR. 

2.3.2 Cramér-Rao bound 

 The CRB for one-bit quantized complex-valued signals was derived in [16]. The 

performance of SNRaPD is compared with the CRB of the estimated phase. For simplicity, 

only the real-value case is considered. The probability mass function of ][kr  in Eq. (2.2) is 

given by 
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The Fisher information is then obtained by 
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To investigate the achievable performance of SNRaPD, we assume that the frequency in Eq. 

(2.41) is zero, i.e. 0 k , and the phase is a uniform random variable. We define the 

average Fisher information by averaging Eq. (2.41) over phases, which is denoted by 
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where 
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d )/1 ; (  
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)/1 (
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0  . 

 

Taking the inverse of the average Fisher information, we have the average CRB given by 

 

)(1/SNR
AvCRB






N

                      (2.43) 

where SNR is defined by Eq. (2.9) 

 

 
Fig. 2.8. MSE of SNRaPD (markers) and AvCRB (solid lines). 
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   The MSE of SNRaPD defined by ])ˆ[(E 2
SNRaPD

2
SNRaPD    is compared with the 

AvCRB in Fig. 2.8. The AvCRB is plotted with solid lines, and the 2
SNRaPD  is denoted by 

markers. The performance of SNRaPD is obtained from Monte Carlo simulation using 100 

trials. In Fig. 2.8, 2
SNRaPD  is close to AvCRB and their difference approaches zero with 

increasing SNR. Thus the accuracy of SNRaPD is validated. Note that the difference between 

AvCRB and 2
SNRaPD  is similar for different values of N . 

2.3.3 Stop criterion 

 As mentioned at the end of Section 2.3.1, although estimation bias is reduced by 

SNRaPD, and )}(min{ argŜNRaPD  L  is achieved by Newton’s method, noise variance still 

exists in SNRaPD̂ . As a result, the strict criterion 3
1 10|| 
  ii   (degrees) may result in the 

need for extra iterations, but the performance cannot be improved. From Eq. (2.35), the first 

derivative of )(L  is given by 
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                  (2.44) 

 

Note that the original criterion 3
1 10|| 
  ii   is consistent with 0/)ˆ( SNRaPD  ddL , 

since )}(min{ argŜNRaPD  L . As we consider the noise variance with Eq. (2.44), a new 

stop criterion is defined for SNRaPD as follows. Let cc    in Eq. (2.44), where c  

is the true phase, and c  is the phase error due to noise variance. Since the AvCRB of Eq. 

(2.43) is the theoretical bound of variance, let AvCRB c . The new stop criterion is 

defined by 

 

|)()(2||)()(2| TT
ccccii   ΛJΛJ .                (2.45) 
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Note that the absolute value is used since the same result but with opposite polarity is 

obtained by cc   . In addition, the criterion |)()(2| T
cccc   ΛJ  is a 

function of c , and the minimal value occurs when 2/ kc  . Hence, the criterion is 

further defined by 2/
T |)()(2|  kcccc c

 ΛJ  to guarantee that the criterion is valid 

for all phases. 

 

Example―Determination of the stop criterion: Let dB6SNR  , 510N , and 0c . 

According to Eq. (2.43), 12215.0AvCRB  c . Applying 12215.0 cc   to 

Eq. (2.44), we have 001712.0|)12215.0()12215.0(2| T  ΛJ . Hence, the iteration will stop 

when 001712.0|)()(2| T ii  ΛJ .  

 

A similar RMSE is achieved with the new stop criterion according to the simulation 

results, which confirms our supposition. Moreover, the number of iterations is reduced with 

the new criterion. Recall that the original criterion is consistent with 0/)ˆ( SNRaPD  ddL . 

Since Newton’s method will reach the criterion of |)()(|2/)( T
ccccddL   ΛJ  

before that of 0/)ˆ( SNRaPD  ddL , the number of iterations is reduced accordingly. 

  Finally, most computational loads of SNRaPD fall in computing )(1   and )(2   as 

well as their derivatives, which involve I  and Q  of Eq. (2.11) and Eq. (2.13), 

respectively. In practice, we use M  terms to approximate I  and Q  rather than infinite 

sums. Moreover, we can calculate and store coefficients in a table in order to further mitigate 

the computational burdens. For applications with SNR less than 0 dB, 8M  is sufficient to 

well approximate I  and Q  with RMSE smaller than 610 . In addition, less than four 
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iterations are normally required from our simulation results. Therefore the computational 

burden of SNRaPD is feasible, given today’s fast processors. 

2.3.4 Range of application 

The range of application of SNRaPD is studied by comparing SNRaPD  with DPDNB  and 

APD . The simulated results regarding SNR and N  are illustrated in Fig. 2.9. From Fig. 

2.9(a), compared with NB-DPD, the improvement in the accuracy of SNRaPD is significant 

in moderate SNR. Note that the range of the moderate SNR may vary according to N  and 

the required phase accuracy for different applications. Moreover, in 510 N  and 610 N  

cases, the improvement is negligible when the SNR is above 12 dB and 17 dB, respectively. 

As N  increases to 710 , SNRaPD can consistently improve the accuracy to some degree for 

SNR below 20 dB. Similarly, in comparing SNRaPD with APD, the accuracy is greatly 

improved in moderate to high SNR as shown in Fig. 2.9(b). The improvement is negligible 

when the SNR is below -4 dB, -8 dB, and -12 dB, respectively. The above discussion 

illustrates the superiority of the proposed SNRaPD in “moderate” SNR. As the ambient SNR 

is increased to the “moderate” range, SNRaPD can potentially be used and provide improved 

accuracy in spaceborne measurement techniques, such as the total electron content (TEC) 

measurements on a beacon receiver or the precise orbit determination (POD) on a GNSS 

receiver [41-45]. For example, when 610 N  and dB0 SNR   on the 400 MHz beacon 

signal, the phase error is 08.0  degrees and  94.0  degrees for SNRaPD and APD, 

respectively. The estimation error of SNRaPD is approximately an order better than that of 

APD. If more samples are utilized, the superiority of SNRaPD over APD remains significant 

even when the SNR is lower than 0 dB as shown in Fig. 2.9(b). 
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(b) 

Fig. 2.9. Comparison between RMSE of SNRaPD and that of NB-DPD and APD. 
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2.4 Summary 

   In this chapter, the high-accuracy phase estimation for one-bit SDR is investigated. We 

propose the SNRaPD using the SNR information to reduce the estimation bias and achieve 

the high-accuracy phase estimation. The mean values and variances of the I-Q channel 

outputs in one-bit SDR are given by Eq. (2.11), Eq. (2.13) and Eq. (2.16), and the 

SNR-dependent relationship of the mean I-Q channel outputs is explicitly shown in Fig. 2.2. 

For high-accuracy phase estimation, NB-DPD can be used in high SNR as shown in Fig. 2.3. 

For the low SNR, APD is selected according to Eq. (2.20), and its performance is illustrated 

in Fig. 2.5. However, according to the asymptotic performance of NB-DPD and APD as 

shown in Fig. 2.6, the estimation bias becomes significant and can have a negative impact on 

the accuracy in moderate SNR. Focusing on this SNR range, we proposed SNRaPD using 

Newton’s method to reduce bias and improve the resulting accuracy as shown in Fig. 2.7. The 

accuracy of SNRaPD is certified by comparing the MSE with the AvCRB in Fig. 2.8. In 

order to conserve computation time, an adequate stop criterion for SNRaPD with respect to 

the noise variance is also defined by Eq. (2.45). Finally, the range of the application of 

SNRaPD is investigated by comparing the associated RMSE with that of NB-DPD and APD 

as shown in Fig. 2.9. Potential applications of SNRaPD and the corresponding performance 

on dB0 SNR   are also discussed. Nevertheless, the proposed SNRaPD requires the 

knowledge of SNR which is not available in many applications. Hence the joint phase and 

SNR estimation is proposed and introduced in the next chapter. 
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Chapter 3 

Joint One-Bit Phase and SNR Estimation 

   

   Generally, the SNR information is crucial for the quality control of the observed data 

[2,5]. Moreover, according to the results of chapter 2, the accurate SNR information enables 

the accurate phase estimation. Since the SNR information may be unavailable in many 

applications, we extend the algorithm for SNRaPD to jointly estimate of the phase and SNR. 

Because the signals are one-bit quantized, the designed method can accommodate high 

dynamic range applications.  

  In the following, the signal model of one-bit quantized sinusoidal carrier and the I-Q 

correlation structure are revisited and adopted for joint phase and SNR estimation first. Next, 

the nonlinear least-square algorithm of SNRaPD is extended to iteratively derive the phase 

and SNR estimation. The performance of the proposed method is then verified by Monte 

Carlo simulations. In addition, the feasibility of the proposed method for applications in 

GNSS and beacon receivers is also discussed. 

 

3.1 System Model 

 Consider a carrier with amplitude A , frequency cf  and phase  . When the signal is 

disturbed by AWGN, the observed wave is denoted by 

 

)()2sin()( tntfAtx c                          (3.1) 

where )(tn  is AWGN with zero mean and variance 2 .  

 

The SNR of )(tx  is given by  
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2

2

2
 A
 .                              (3.2) 

 

Note that Eq. (3.1) and Eq. (3.2) are different from their counterparts in chapter 2, i.e. Eq. 

(2.1) and Eq. (2.9), respectively, only on the amplitude A . When )(tx  is one-bit quantized 

and sampled with period sT , we have 

 

])sin(sgn[

)]T()T2sin(sgn[][

kk

ssc

nA

knkfAkx







                 (3.3) 

where sck kf T2   and sampling frequency follows the property of Eq. (2.3). 

 

  For parameter estimation, assume that the frequency cf  is known and the local I-Q 

components are ]sgn[sin k  and ]sgn[cos k , respectively. After one-bit quantization, 

][kx  is then multiplied by local I-Q components, and summed to have the I-Q correlation 

outputs denoted by 

 

 
k

kkxI ]sgn[sin][                         (3.4) 

 

 
k

kkxQ ]sgn[cos][  .                      (3.5) 

 

Similar to Eq. (2.5), we consider p  samples at 1,,2,1,0,Ts  p kkt   in I-Q correlation 

outputs, where p  is specified in Eq. (2.3). The normalized I-Q outputs from these samples 

are expressed by 

 

1

0

1
sgn[ sin( ) ] sgn[sin ]

p

p k k k
k

I A n
p

  




                     (3.6) 
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1

0

1
sgn[ sin( ) ] sgn[cos ]

p

p k k k
k

Q A n
p

  




    .                (3.7) 

 

According to Appendix A, the mean values of Eq. (3.6) and Eq. (3.7) are denoted by 

 

   
[ ,2 ) [0, )

2
Q 2 sin( ) Q 2 sin( )

p

k k

I k kp     

      
 

 
    

 
          (3.8) 
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  

 
    

 
      (3.9) 

where  

 

2 

 

1
Q( )   exp  

22 x

z
x dz


  

  
 

 . 

 

In addition, the variance of I-Q correlation outputs is given by 
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           (3.10) 

 

When the number of samples is generalized to N m p   and m is an integer, the I-Q 

outputs are denoted as mI  and mQ , respectively. Let their mean value be I  and Q , 

respectively. It is easily proved that prove mI  and mQ  have the same mean values as pI  

and pQ , i.e. 
pI I  and 

pQ Q  . In addition, the variance of mI  and mQ  is given by 
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           (3.11) 
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3.2 Nonlinear Least-Square Algorithm 

After deriving the mean value of the I-Q correlation outputs, the nonlinear least-square 

algorithm is utilized to estimate the phase and SNR of the carrier. Let mI  and mQ  be the 

I-Q outputs of one-bit quantized sinusoidal carrier. The phase and SNR of the carrier are 

denoted by T],[ θ , where the superscript ‘T’ denotes the transpose operation. Let 

)(θI  and )(θQ  be the mean values of mI  and mQ  regarding parameter θ , 

respectively.  When the sampling frequency is carefully selected to have a large u , mI  and 

mQ  can be expressed by 

IImI   )(θ                            (3.12) 

 

QQmQ   )(θ                           (3.13) 

where I  and Q  are random variables in I-Q correlation outputs with variance given by 

Eq. (3.11). 

 

To estimate the parameter θ , we construct a cost function as 
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                  (3.14) 

where T
21 )](),([)( θθθy yy . 

 

The estimation of θ  is denoted by 

 

)(min argˆ θθ f .                         (3.15) 
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Equation (3.14) and Eq. (3.15) form a nonlinear least-square problem. According to Eq. 

(3.14), the gradient of )(θf  is given by 

  

)()(2)( T θyθJθ f                         (3.16) 

where )(θJ  is the Jacobian matrix of )(θy . 

 

In addition, the Hessian matrix of  )(θf  is denoted by 

 

))()()((2)( T θHθJθJθF                       (3.17) 

where )(θH  is the matrix whose ),( qp -th element is given by  
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The nonlinear least-square problem of Eq. (3.15) can then be solved, and θ̂  is iteratively 

estimated by [40] 

 

)())(( 1)1()( θθFθθ fii   .                    (3.18) 

 

The iteration of Eq. (3.18) is stopped when   )1()( ii θθ , where   is a small number. 

When the stop criterion is reached after the i-th iteration, the estimated result is given by 

 

)(ˆ iθθ  .                             (3.19) 

 

The initial phase and SNR of )0(θ  for Eq. (3.18) are determined as follows. 
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1) Initial value of phase 

  It is known that APD achieves MLE for discrete-time samples in a multi-bit scenario 

[12]. For one-bit quantized data, although the accuracy may be degraded to some degree, the 

initial phase of our approach can be readily determined by APD, which is denoted by 

 











m

m

I

Q1-
0 tan .                         (3.20) 

 

2) Initial value of SNR 

     After the initial phase is determined, let 0   for )(θI  and )(θQ  in Eq. (3.14). 

Then Eq. (3.14) is degenerated to be a function of  . Subsequently, the initial SNR can be 

determined by searching the minimum value with respect to   in Eq. (3.14). The 

one-dimensional search technique, the Golden section method [40], is used to find the initial 

SNR, i.e. 0 . Note that the accuracy of 0  is affected by the variance of 0 . Hence a loose 

stop criterion is used in the Golden section method to find the coarse 0 , and the 

computation time can be conserved. 

 

3.3 Simulation and Discussion 

3.3.1 Monte Carlo simulation 

  The Monte Carlo simulations are used to verify the joint phase and SNR estimation 

method, wherein each case of different SNR and N  is tested for 1000 trials. Let 

MHz157.1cf  and MHz096.4sf  in the simulation, then 4096p   according to Eq. 

(2.3). Assume j̂  is the estimated phase of the j-th trial, and   is the true phase. The root 

mean-squared error (RMSE) of phase estimation is defined by 
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For SNR estimation, the RMSE is normalized to clarify the performance, which is denoted by 
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where j̂  is the estimated SNR of the j-th trial, and   is the actual SNR.  

 

In the nonlinear least-square algorithm of Eq. (3.18), the stop criterion is given by 

0001.0 . In addition, for using the Golden section method to determine the initial SNR, a 

coarse resolution of 0.5 dB is used for the stop criterion. The one-bit ADC is commonly used 

in low-power satellite applications. For potential applications on GNSS receivers, the 

proposed method will be simulated for SNR as low as –30 dB. On the other hand, to illustrate 

wide applicable range of our method, SNR up to 15 dB is also considered. 

 The performance of phase and SNR estimation are illustrated in Fig. 3.1 and Fig. 3.2, 

respectively. Note that the RMSE of SNR is normalized and denoted by percentages. In Fig. 

3.1, the RMSE of the phase is improved with increasing SNR and N . The phase RMSE’s 

are below one degree when SNR is higher than –12 dB and –22 dB for 510N  and 

610N  cases, respectively. Moreover, the accuracy of 0.1 degrees phase RMSE is achieved 

when SNR is higher than dB12  and –2dB in each case. According to Fig. 3.2, the SNR 

estimation performs well in moderate SNR. Accurate SNR information can be used to learn 

the achieved accuracy of phase estimation in this range. Specifically, the nRMSE is less than 

10% for dB 13SNRdB 21   when 510N  and for dB 14SNRdB 30   when 

610N . Moreover, the estimation of SNR can be very accurate, i.e.  %1nRMSE  , when 

610N  and dB9SNRdB11  . 
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Fig. 3.1. RMSE of phase estimation. 

 

 

Fig. 3.2. Normalized RMSE of SNR estimation. 
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Note that the nRMSE attains the lower bound when SNR is around 4 dB, and increases in 

higher SNR. This phenomenon is investigated by plotting the mean I-Q outputs for 

dB 15SNRdB 0   as shown in Fig. 3.3. When SNR increases, the distance between 

neighboring curves becomes smaller and the distinction between them is little.  Specifically, 

for dB 4SNR   (dotted lines), the separations between the curves are recognizable. 

However, the distinction between curves becomes closer when dB 4SNR   (solid lines). 

Consequently, when slight variance occurs in the obtained I-Q correlation outputs for SNR 

higher than 4 dB, the obtained mI  and mQ  will be fitted to )(θI  and )(θQ  with 

significant SNR error in the cost function of Eq. (3.14). Therefore, the performance of SNR 

estimation becomes degraded. Especially, when dB 10SNR  , the curves are nearly 

overlapped, and the error in SNR estimation increases rapidly.  

 

 

Fig. 3.3. Mean I-Q correlation outputs for SNR between 0 to 15dB in 1dB step. 
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  Recalling that the variance of I-Q correlation outputs is approximately inversely 

proportional to N , the standard deviation (STD) will decrease with N . Hence, the 

performance of the nonlinear least-square algorithm can be improved with N . This is 

consistent with the simulation results shown in Fig. 3.1 and Fig. 3.2. The results suggest that 

N  can be increased to compensate for the loss of amplitude information due to one-bit 

quantization and the desired accuracy can be achieved. 

3.3.2 Range of applications 

GNSS receiver: For applications using carrier phase in GNSS receivers, the signal bandwidth 

is assumed to be 2 MHz concerning the coarse/acquisition (C/A) code. According to the 

measured results of [46], when the elevation angles between 20° and 90° are of interest, SNR 

from –30dB to –10 dB will be considered for different applications. According to the 

simulation results of 610N , the phase RMSE’s of our method are 2.5545 and 0.25203 

degrees for SNR of –30dB and –10 dB, respectively. For L1 carrier (1575.42 MHz), these 

errors correspond to 1.35 mm and 0.13 mm in length, and 1.73 mm to 0.17 mm for L2 carrier 

(1227.6 MHz). Such performances are close to those of high-quality receivers [44, 46]. Note 

that C/A code synchronization is assumed to be achieved before carrier phase estimation. In 

addition, the nRMSE of SNR is less than 9% when 610N  and SNR is between –30dB and 

–10 dB. Regarding the potential application of POD in low Earth orbit satellites (LEO), the 

accuracy of the orbit will be influenced by the satellite center variation, the attitude error, and 

the antenna phase variation, which are at the centimeter level [47]. Our achieved phase 

RMSE is much smaller than these variations. In addition, the phase RMSE is also 

insignificant with respect to the ultimate accuracy after the orbit determination algorithm 

reported in [47-49]. Hence, even though the proposed one-bit processing method is adopted, 

the reported accuracy of POD in literatures can still be achieved. Furthermore, the quality of 

data can be controlled by the estimated SNR. When the quality of data deteriorates owing to 
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the low elevation angle, the cycle slip or the multipath, the unfavorable low-SNR can be 

detected immediately. These data can be omitted to enhance the accuracy of POD. 

Beacon receiver: For the tri-band radio beacon (150 MHz, 400 MHz and 1067 MHz) signals 

now on board of several LEO’s, the received power on ground is at least –140 dBm [50]. 

Assume the noise floor is –173 dBm/Hz, and the bandwidth is 20 KHz concerning the 

Doppler shift [51]. The minimum input SNR of the beacon receiver is then –10 dB. Suppose 

the LEO is at an altitude of 450 Km above the sea level. The variation in signal strength is 

approximately 15 dB. Hence, SNR’s between –10 dB and 5 dB are considered at the receiver. 

When 510N , the corresponding phase RMSE of the proposed method is from 0.80765 to 

0.16384 degrees for SNR between –10 dB and 5 dB. Meanwhile, the nRMSE of SNR is less 

than 3%. For measuring the TEC of the ionosphere in the beacon receiver, the relationship 

between the accumulated carrier phase and the TEC is given by [51-52] 
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L
f

c
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2   ,                       (3.23) 

where L is the traveling distance, c is the speed of light, TN  is the TEC.  

 

When carrier signals with frequency of MHz 1501 f  and MHz 4002 f are used in 

beacon receiver, letting MHz 50rf , 31 q  and 82 q , we have rfqf 11   and 

rfqf 22  . The term related to travelling distance in Eq. (3.23) can be eliminated by means of 

a differential phase technique. The phase difference measured on the frequency rf  is then 

denoted by 
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When the proposed method with  510N  and dB  10SNR   is applied to TEC 

measurements, according to Eq. (3.24), the resulting measurement error is 41075.8   

TECU (TECU: 216 melectrons/ 10 ). The achieved accuracy is sufficient for science 

requirement, i.e. 0.003 TECU [53]. 

From the above discussion, the use of one-bit ADC cooperated with the proposed joint phase 

and SNR estimation can achieve high accuracy comparable to conventional approaches. 

Since one-bit signal processing is simple, fast and without AGC, the proposed approach is 

feasible for various high precision applications. 

 

3.4 Summary 

In this chapter, the method utilizing the nonlinear least-square algorithm to accurately 

estimate both the phase and SNR of sinusoidal carriers is proposed. From simulation results, 

the phase RMSE decreases with SNR, as shown in Fig. 3.1. The phase RMSE is less than 0.1 

degrees when SNR is higher than dB12  and –2dB in the cases of 510N  and 610N , 

respectively. In addition, SNR estimation performs well in the middle range, as shown in Fig. 

3.2. In particular, the nRMSE is less than 1% for 610N  and SNR between –11dB and 

9dB. The nRMSE increases in high SNR region because of the tiny distinction between I-Q 

correlation outputs as shown in Fig. 3.3. Furthermore, since the STD of the I-Q correlation 

outputs decreases with N , the accuracy of the estimated phase and SNR can be improved 

by increasing the number of samples, as verified in Fig. 3.1 and Fig. 3.2. Finally, potential 

applications for the proposed efficient one-bit processing method in GNSS and beacon 

receivers have been illustrated with respect to the high accuracy of the phase estimation.  
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Chapter 4 

Code Phase Coherence Acquisition Method  

 

In this chapter, a computationally-efficient code phase acquisition method, termed the 

Phase Coherence Acquisition (PCA), is proposed. The method requires much less 

computation than the FFT-based acquisition to search for the cross-correlation peak between 

two PN sequences. This superiority becomes evident when the sequence length N  is very 

large such that the FFT-based approach is difficult to be implemented. For instance, the 

acquisition of precision code (P code) with extremely long length in the GNSS system would 

be one of the potential applications. We describe the motivation behind our work first. We 

then develop our approach in the noiseless case and provide the essential idea in our 

development. To achieve noise-robustness, we incorporate a novel segmentation scheme and 

propose the PCA method. Simulation results are provided to verify the analysis and 

demonstrate the performance of the proposed method. Finally, the computations involved in 

PCA and the FFT-based method are discussed. Note that the PN sequence with length of 

202 1  is used to demonstrate the two-layer PCA, which is a good compromise between the 

simulation burden and performance illustration. 

 

4.1 Motivation 

The convolution theorem states that under general conditions the Fourier transform of a 

convolution between two sequences is the pointwise product of the Fourier transforms of 

these two sequences. The theorem can be represented by  

 

     [ ] [ ] [ ] [ ]F x n y n F x n F y n                     (4.1) 

where F  denotes Fourier transform. 
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By applying the inverse Fourier transform 1F , we have 

 

    1[ ] [ ] [ ] [ ]x n y n F F x n F y n   .                 (4.2) 

 

In many applications, the code phase search between two sequences is usually implemented 

by FFT and its inverse due to the efficient computation compared with the exhaustive direct 

serial search method. The computation of FFT of N  points involves complex 

multiplications and additions of order 2logN N . Due to the diverse need for applications and 

the increasing complexity of modern algorithms, a more computationally efficient method is 

needed when the length of a processed sequence becomes so large that implementation using 

the FFT method becomes difficult. Our proposal for the code phase acquisition that involves 

much less computation is developed as follows. 

 

4.2 Acquisition by Phasor 

Let },,,{ 110  NIN xxxS   and },,,{ 110  NLO yyyS   be the input and local PN 

sequence of length N , respectively, where }1,1{, nn yx . In noiseless condition, the 

cross-correlation between { }nx  and { }ny  is denoted by  

 

1

0

( )
N

k m k
k

C m x y





                            (4.3) 

where 0,1, 1m N  . 

 

Let the code phase shift between INS  and LOS  be q , where {0,1, , 1}q N  . We first 

map the input and local sequences into phasors as given by 

 

1

0

N
n

n
n

X x 






                             (4.4) 
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1

0

N
n

n
n

Y y 






                             (4.5) 

where 
2

j
Ne


   and 1j . 

 

We then calculate 
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 





                  (4.6) 

 

In order to present our concept in a direct and effective manner, the maximal-length sequence 

(MLS) is considered for sequence acquisition. The correlation between { }nx  and { }ny  is 

given by  

 









.  if,1

,  if,
)(

qm

qmN
mC                       (4.7) 

 

Hence, Eq. (4.6) becomes 
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where the equality 
1

0

0
N

m

m






  is applied in the above derivation. 

 

Let the phase of  be   as denoted by  

 

2
q

N


  .                             (4.9) 

 

The acquisition of the sequence can then be achieved by 

 

2

N
q


  .                            (4.10) 

 

Since the input sequence consists of 1  and 1 , the complex phasor of Eq. (4.4) is 

obtained by simply N  additions (subtractions). Note that the computations of the phasor 

regarding the local sequence can be omitted by calculating Eq. (4.5) in advance.  

 

 

Fig. 4.1. Schematic plot of the phase resolution for phasors on the complex domain. 
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In the above derivation, when the phasor of the input sequence is obtained by Eq. (4.4), 

very few computations are needed to determine the shift q , much fewer than those required 

in the FFT-based approach. However, the phase accuracy of the complex phasor is sensitive 

to noise. The phase resolution is 2 / N  according to Eq. (4.9). As shown in Fig. 4.1, when 

N  is large, the distance between adjacent phases is rather small which can easily lead to 

errors in phase estimation under a noisy environment. Hence, it becomes necessary to design 

an algorithm that permits the distance between adjacent phases to be increased, so as to resist 

the affect of noise. 

 

4.3 Phase Coherence Acquisition Algorithm 

4.3.1 Segmentation 

Suppose the input sequence INS  has the length of N K M  . In the PCA, INS  is first 

partitioned into K  disjointed segments of length M  as denoted by 
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                  (4.11) 

 

Similarly, the local sequence LOS  is also partitioned into K disjointed segments as below: 
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Suppose the code phase shift between the input and the local sequences is q cK d  , where 

0 c M   and 0 d K  . We then have dcKiqii xxy    and the following relationships:  
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          (4.13) 

where ( )cdA  denotes the circular shift of dA  with c  chips to left.  

 

Note that the remaining , , ,K-d K-d K-1B B B  can be derived by using the same logics but 

with adjustments as given by 
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           (4.14) 

 

From Eq. (4.13) and Eq. (4.14), the relationships between iA  and iB  can be generalized as 

follows:    

 

( )mod

( ),               0 1

( 1), 1.K

c i K d

c K d i K

    
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B A

A
             (4.15) 
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4.3.2 Acquisition by phase 

In each segment of Eq. (4.11) and Eq. (4.12), we map the sequences into the complex 

phasors by 
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                           (4.17) 

where 
2

j
Me


   and 0,1,2, 1i K  . 

 

Let ( )miA  be the segment iA  with m circular shifts to left, denoted by  

 

( 1) ( 1)( ) { , , , , , }mK i m K i i m K im x x x x    iA   .            (4.18) 

 

Accordingly, the complex phasor pertaining to ( )miA  is given by  
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According to Eq. (4.19) and Eq. (4.15), the complex phasors iY  are derived by 
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1
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               (4.21) 

 

Furthermore, the complex phasors iX  and iY  can be expressed by 

 

| | ij
i iX X e                              (4.22) 

 

| | ij
i iY Y e                               (4.23) 

where i  and i  denote the phases of  iX  and iY , respectively.  

 

From Eq. (4.20) to Eq. (4.23), we have the following phase relationship: 
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Let mG  be the sum of the K  complex phasors, defined as 
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where 0,1,2, 1m K  .  

 

According to the relationship in Eq. (4.24), when m d , we have 
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Apparently,  

 

| |dG K .                             (4.27) 

 

Note that we have a peak magnitude given by Eq. (4.27) when the K  complex phasors are 

coherently added for dG . On the other hand, when m d , mG  is the sum of the K  

phasors of non-coherent phases, and the resultant magnitude would be expected to be much 

smaller than K . Hence, the value of d  can be obtained by finding the peak magnitude 

among {| |mG }. In addition, let   be the phase of dG . From Eq. (4.26), we have 
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   .                           (4.28) 

 

Thus c  is given by 

 

2
c M




  .                           (4.29) 

 

Let the estimates of ( , )c d  be ˆˆ( , )c d . Practically, when d̂ d  and ĉ  is equal to c , the 

shift ˆˆq cK d   can be determined correctly. 

In PCA, the input sequence is one-bit quantized, partitioned and transformed into phasors as 

given by Eq. (4.16). The phase differences between phasors of the input and local sequences 

are then utilized for the acquisition as given by Eq. (4.25). When the phase differences 

between phasors are coherently added, we can have a large peak ( | |dG ) to determine the 

correct segment for code phase acquisition. These processes simply require complex 

additions and eliminate the need for complex multiplications which are the major advantages 
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of the PCA method. The segmentation process confers noise-robustness in the PCA method 

since the distance between adjacent phases is enlarged from 2 / N  to 2 / M  as 

compared to Eq. (4.9) with Eq. (4.28). The acquisition by phase thus becomes more robust to 

noise. However, the estimated ˆˆ( , )c d  could be erroneous when the SNR is very low, 

especially ĉ . In such situations, the multi-layer scheme can be applied to enhance noise 

resistance in the PCA method. 

4.3.3 Multi-layer PCA 

In the multi-layer PCA, the 1st-layer process is identical to the method described above. First, 

the input and local sequences of length N  are partitioned into 1K  segments of length 1M , 

where 1 1N K M . Assume the shift is denoted as 1 1 1q c K d  . In the 1st-layer, only 1d  is 

estimated by finding the peak of (1)| |mG  in Eq. (4.25), and 1c  is left undetermined owing to 

the sensitivity to the effect of noise. Note that the superscripts “(1)” and “(2)” in mG  

indicate the 1st-layer and the 2nd-layer, respectively. After completion of the 1st-layer, we 

assume 11 dd̂   and  
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where 1c  is still undetermined. 

 

We rewrite Eq. (4.30) by 
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From Eq. (4.31), all of the pairs of ˆ( , )
1

id +i
A' B  have the same shift of 1c  chips between 

them, which is the key for the following derivation in the 2nd-layer. 

The process of the 2nd-layer is next introduced. For simplicity, the pair ˆ( , )
1

0d
A' B  is taken as 

an example, where each ˆ
1d

A'  and 0B  contains 1M  elements and their relative shift is 1c , 

i.e. ˆ 1( )c
1

0 d
B A' . Let 1 2 2M K M   and assume 1 2 2 2c c K d  , where 2 20 c M   and 

2 20 d K  . First, ˆ
1d

A'  and 0B  are partitioned into 2K  disjointed segments of length 

2M  as before. The two-layer segmentation scheme in PCA is illustrated in Fig 4.2. Note that 

the elements of Segment 0A  are further denoted by iu , 10,1, 1i M   in Fig 4.2(b). 

Each of the 1st-layer segments will be further partitioned like that in Fig. 4.2(b) in the 

2nd-layer. Following the same calculation as Eq. (4.25), the sum of the 2K  complex phasors 

is obtained for ˆ( , )
1

0d
A' B , given as 
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where 20,1, , 1r K   and ( ' , ' )s s   are the corresponding phases involved in the 

calculation. When 2r d , we have 
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j c
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dH K e


    under the noiseless condition, which 

has the maximum magnitude among ,0{ }rH .  

 

When the similar calculation is applied to the other pairs ˆ( , )ii1d +
A' B , 11,2, , 1i K  , their 

associated ,r iH  can then be obtained. Afterwards, all of the ,r iH ’s are used to calculate 
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where 20,1, , 1r K  .   
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(b) 

Fig. 4.2. Schematic plot of two-layer segmentation: (a) segmentation in the 1st-layer; (b) 

segmentation of segment 0A  in the 2nd-layer. 

 

Since all the pairs ˆ( , )ii1d +
A' B  have the same shift of 1c  chips in between and 

1 2 2 2c c K d  , 
2

(2)
dG  will have a peak magnitude among { (2)

rG }. Specifically, in noiseless 

condition, we have  
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where the peak magnitude is 1 2K K . 

 

Similar to the 1st-layer, by finding the peak magnitude among { (2)| |rG }, we can estimate 2d , 

which is denoted by 2d̂ . Let   be the phase of 
2

(2)

d̂
G  as given by 
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Similar to Eq. (4.29), the estimate of 2c , denoted by 2ĉ , is obtained by  

 

2 2ˆ
2

c M



  .                           (4.36) 

 

Note that the separation between adjacent phases is further enlarged from 12 / M  to 

22 / M  according to Eq. (4.35), which results in the significant increase in noise resistance. 

Note that 2c  can also be left undetermined after the 2nd-layer and determined by the 

3rd-layer, if necessary. Nevertheless, from our simulation results, two layers appear to be 

sufficient for most applications. Finally, the estimate of q , denoted as q̂ , is calculated as  

 

1 1 1

2 2 2 1 1

ˆˆ ˆ

ˆ ˆˆ ( ) .

q c K d

c K d K d

 

  
                       (4.37) 

 

4.3.4 Error detection capability 

  When the segment of the 1st-layer is correctly estimated, i.e. 1 1d̂ d , we obtain a much 
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larger peak in the 2nd-layer for 2 2d̂ d . Taking the noiseless case for example, we have the 

peak of 1K  in 
1

(1)
dG  according to Eq. (4.26). In contrast, a much larger peak of 1 2K K  is 

obtained from 
2

(2)
dG  using Eq. (4.34). As a result, the existence of a significant peak in 

(2)| |rG  of the 2nd-layer can be used to verify the correctness of 1̂d , which shows the inherent 

error detection capability of PCA. Accordingly, the correct 1̂d  can be obtained with some 

recursive algorithms by utilizing such error detection properties and the performance of the 

multi-layer PCA can be further improved. This special feature has been verified in our 

simulations. The processes of two-layer PCA are illustrated in Fig. 4.3. 

 

Received
sequence

Segmentation

Derive      

: the maximum among
1d̂

1 1ˆ
2

c M



 

Relevant segment order shift by 
according to Eq. (4.30)

Partitioning each segment
into        subsegments:                   

1d̂

If                     is 
significantly large?

(2)max | |rG

Determine                from Eq. (4.33) and Eq. (4.36) ,ˆ
2d 2ĉ

.

. More layers if necessary

1st layer

2nd layer

yes

no

Error correction 
algorithm

1 1N K M

(1)
mG

(1)| |mG

2K 1 2 2M K M

Phasors of local
sequence

 
Fig. 4.3. Flow chart of the process of two-layer PCA. 
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4.4 Performance of PCA 

Let the input PN sequence be { }nx . Assume the sequence is distorted by zero-mean 

Gaussian noise  n  with variance 2
 , and is one-bit quantized as denoted by 

 

sign( )n n nw x                             (4.38) 

where 0,1, , 1n N  , sign( ) 1z   if  0z   and sign( ) 1z    if 0z  .  

 

In the 1st-layer, the input and local sequences, { }nw  and { }ny , are partitioned into 1K  

segments of length 1M , as denoted by 

 

1 1 12 ( 1){ , , , }i K i K i M K iw w w w   iA                     (4.39) 

 

1 1 12 ( 1){ , , , }i K i K i M K iy y y y   iB                     (4.40) 

where 10,1, , 1i K  . 

 

Similar to Eq. (4.16) and Eq. (4.17), the complex phasors are defined by 

 

1

1

1

0

| | i

M
i

i nK i
n

j
i

W w

W e 














                          (4.41) 
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
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






                          (4.42) 

 

Moreover, according to Eq. (4.25), the sum of complex phasors is given by 
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where ,i m  denotes the phase difference between the complex phasors i mW   and iY , 

,i m      and 10,1, ,m K  . 

 

Let the shift between { }nw  and { }ny  be 1 1 1q c K d  . As derived in the Appendix C, the 

magnitude of (1)| |mG  with 1m d , i.e. the sidelobe, is a random variable with the Rayleigh 

distribution given by 

 

2
1/

1

( )
/ 2

sr Ks
s

r
f r e

K
                          (4.44) 

where ( )sf r  is the probability density function of (1)| |mG  and 0sr  . 

 

In addition, (1)| |mG  with 1m d , i.e. 
1

(1)| |dG , has the Rice distribution given by 

 

2 2 2
Re1 1( ) / 2 Re1

02 2
1 1

( ) p prp p
p

p p

r r
f r e I  

 
   

    
 

                 (4.45) 

where 0pr  . 

 

For a given pr , the probability of  p sr r  is denoted by 
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Because there are 1 1K   sidelobes in the (1)
mG , the correct 1d  is obtained when 

1

(1)| |dG is 

greater than all of the other 1 1K   sidelobes. Hence, for a given pr , the correct probability 

of detecting 1d  is given by 

 

1 1
2

d
1

P ( ) 1 exp

K

p
p

r
r

K


  

        
.                   (4.47) 

  

When the distribution of pr  is considered, the correct probability of 1d , i.e. 1 1d̂ d , is 

denoted by 

 

D1 d0
P P ( ) ( )p p pr f r dr


  .                      (4.48) 

 

Furthermore, the probability of correct 1c  shall be considered for the correct acquisition 

in the one-layer PCA. According to Eq. (4.29), 1c  is obtained from the phase of 
1

(1)
dG  and, 

thus, the probability of detecting 1c  can be derived in light of the phase distribution of 
1

(1)
dG . 

Specifically, let the phase of 
1

(1)
dG  be  . For simplicity, assume 1 0c  . According to the 

schematic concept shown in Fig. 4.1, 1c  is correct if 
1

| |
M

  . Utilizing the joint 

magnitude and phase distribution of 
1

(1)
dG  derived in the Appendix C, we have 
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            (4.49) 

where      . 

 

The joint probability of the correct 1d  and 1c  is then denoted by 

 

1

C1 1 1
1

d0 0

ˆP Pr , | |

     P ( ) ( , ) .M
p p p

d d
M

r f r dr d

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 


 
   

 

  
                  (4.50) 

 

We use the MLS of length 202 1N    to verify the analysis. Let 10
1 2 1K    and 

10
1 2 1M   . The mentioned correct probabilities above are simulated by the Monte Carlo 

method with 10000 trials. The correct probabilities of D1P  and C1P  are shown in Fig. 4.4 

and Fig. 4.5, respectively.  

 

 
Fig. 4.4. Correct probability of 1d  in the 1st-layer of PCA. 
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Fig. 4.5. Joint correct probability of 1d  and 1c  in the 1st-layer of PCA. 

 

In both figures, the analytical and simulated results well agree with each other, which justifies 

the validity of our analysis. The correct probability of 1d  approaches one when 

SNR 15dB   and begins to degrade with decreasing SNR. Note that the probability of 1d  

is critical to the PCA performance. The acquisition process will fail if 1d , i.e. the correct 

segment, cannot be correctly detected. On the other hand, the correct probability of C1P  is 

worse than D1P , which approaches one when SNR 10dB  but drops to below 0.1 if 

SNR 0dB . Besides the correct probability, the standard deviation (STD) of 1̂c  is also 

derived in order to study the deviation in code phase shift. We consider the STD of 1̂c  with 

the condition that 1 1d̂ d , which is denoted by 
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2
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P ( ) ( , )

P p p pr f r dr d


 
   





 
  
 

  .               (4.51) 
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Fig. 4.6. STD of 1̂c  in the 1st-layer of PCA when 1 1d̂ d . 

 

In Fig. 4.6, the STD decreases with SNR. Specifically, the STD of 1̂c  is about 4 chips when  

SNR 0dB  and decreases to within one chip for SNR 6dB . According to the STD of 1̂c , 

the one-layer PCA performs well only in the case of the high SNR. For applications in low 

SNR, the 2nd-layer is needed to improve the performance of PCA. 

Let 1 2 2M K M  and 1 2 2 2c c K d   in the 2nd-layer of PCA. According to Eq. (4.32) and 

Eq. (4.33), the sum of complex phasors is given by 
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where 20,1, ,n K  . 
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For simplicity, we assume 1 1d̂ d  for the analysis of the 2nd-layer. According to Appendix 

C, the magnitude distribution of the sidelobe of (2)| |nG  with 2n d  is given by  

 

2
1 2/

1 2

( )
/ 2

sl K Ks
s

l
f l e

K K
                       (4.53) 

where 0sl  . 

 

On the other hand, the magnitude distribution of (2)| |nG  with 2n d  is denoted by 
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 

                 (4.54) 

where 0pl  . 

 

Similarly, for a given pl , the correct probability of 2d  is the probability that pl  is greater 

than all the other 2 1K   sidelobes, which is denoted by 

 

2 1
2

d
1 2

P ( ) 1 exp

K

p
p

l
l

K K


  

        
.                   (4.55) 

 

Considering the distribution of pl , the correct probability of 2d , i.e. 2 2d̂ d , is given by 

 

D2 d0
P P ( ) ( )p p pl f l dl


  .                        (4.56) 

 

Furthermore, the joint distribution of the magnitude and phase of 
2

(2)
dG  is given by 
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where      . 

 

Hence, the joint probability of the correct 2d  and 2c  is denoted by 

 

2
C2 d0 0

P P ( ) ( , )

   

M
p p pl f l dl d



 


   .                   (4.58) 

 

The correct probabilities of D2P  and C2P  are shown in Fig. 4.7 and Fig. 4.8, respectively. 

We use the same parameters for the 1st-layer and take 5
2 2 1K    and 5

2 2 1M    in the 

2nd-layer. Still, the analytical results are consistent with the simulated values in both figures. 

The improvement brought by the 2nd-layer is significant, since the correct probability of 2d  

approaches one for SNR from –20 to 20 dB in Fig. 4.7. Moreover, the joint correct 

probability of of 2d  and 2c  is greater than 0.9 when SNR 20dB   in Fig. 4.8. 

Similarly, the STD of 2ĉ  with the condition that 2 2d̂ d  is derived by 
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2
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D2

1
P ( ) ( , )

P p p pl f l dl d


 
   





 
  
 

  .              (4.59) 

 

In Fig.4.9, the STD is much less than one chip for SNR 20dB   and approaches zero when 

SNR 5dB . The noise-robustness of the multi-layer PCA is thus verified, especially in the 

case of low SNR, comparing Fig. 4.6 with Fig. 4.9. Note that the performance of PCA is 

actually related to the chip error probability. Hence, the varying SNR due to fading in the 

long PN sequence will not significantly degrade the performance of PCA. The non-uniform 

SNR can be approximated by a nominal SNR, which is associated with the actual chip error 

probability of the sequence, such that our analysis is still applicable. 
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Fig. 4.7. Correct probability of 2d  in the 2nd-layer of PCA. 

 

 
Fig. 4.8. Joint correct probability of 2d  and 2c  in the 2nd-layer of PCA. 
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Fig. 4.9. STD of 2ĉ  in the 2nd-layer of PCA when 2 2d̂ d . 

 

4.5 Computation of PCA 

  The computation of PCA is studied and compared with that of FFT-based acquisition. Here 

we assume that the computations regarding the local sequence are omitted, since it can be 

calculated in advance. For the 1st-layer process of PCA, the derivation of the phasors of the 

input sequence as shown in Eq. (4.16) requires 1 1( 1)K M   additions. In addition, the 

calculation of (1)
mG  in Eq. (4.25) requires 1 1K K  additions (subtractions) for phase 

difference and 1 1( 1)K K   additions for the sum of phasors. Regarding the computation of 

the complex phase in Eq. (4.22), CORDIC computing using shifts and additions can be 

utilized [54]. In CORDIC, let 1P  denote the parameter associated with the required phase 

resolution in the 1st-layer, i.e. 
1

1

1

1 2
tan

2P M

   for Eq. (4.28). For example, when 1 8P  , the 

phase resolution is sufficient for 10
1 2 1M   . As a result, 1 13K P  additions are needed for 
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computing the complex phases in Eq. (4.22). Hence, the overall addition in the 1st-layer is 

1 1 1 1( 2 2 3 )K M K P    . For the 2nd-layer process, 1 2 2( 1)K K M   additions are needed for 

the input phasor, and 2
1 2 1 2 2( 1)K K K K K    additions for computing Eq. (4.32) and Eq. 

(4.33). In addition, assume that the required phase resolution in the 2nd-layer is 

2

1

2

1 2
tan

2P M

  , we then need 1 2 23K K P  additions for the complex phase using the CORDIC 

computing. Therefore, 1 2 2 2 2( 2 2 3 )K K M K P     additions are required in the 2nd-layer. 

When N  is very large, 1K  and 2K  are correspondingly large. The computations for the 

phase then become relatively insignificant in PCA. In addition, as we consider the case with 

1 1K M N   and 2 2 1K M M  , approximately 3N  additions are required for both 

the 1st- and the 2nd-layer. Note that the number of computations is almost the same in each 

layer, which is an inherent advantage of the multi-layer PCA. The comparison of the 

computational load between the two-layer PCA and the FFT-based method is shown in Table 

4.1. The computational burden is significantly reduced in PCA, and the efficiency of PCA is 

thus clarified. 

 

Table 4.1. Computations of the two-layer PCA and the FFT-based method 

 Multiplications Additions 

PCA 0 6N  

FFT-base method 22 logN N  22 logN N  

 

4.6 Summary 

  In this chapter, the PCA utilizing complex phasors for the PN sequence acquisition is 

proposed. Particularly, the PCA requires only complex additions but no complex 

multiplications. In addition, the acquisition performance can be improved via the use of the 

multi-layer scheme that also provides an inherent error detection capability. In the 

Operation
Method 
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demonstrated case using MLS of length 202 1N    in the two-layer PCA, the correct 

segment of the 1st-layer is obtained with probability approaching one when SNR 15dB   

as shown in Fig. 4.4. In addition, with the correct segment, the acquisition performance with 

correct probability greater than 0.9 can be attained for SNR 20dB   after the 2nd-layer as 

shown in Fig. 4.8. Note that, because the performance of PCA is determined by the chip error 

probability, the fading effect as well as the varying SNR can be represented by a nominal 

SNR that is associated with the actual chip error probability of the sequence, and the analysis 

results can thus be used appropriately. It is noteworthy that the PCA requires much less 

computation than the FFT-based approach as discussed in Section 4.5 and Table 4.1. 
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Chapter 5 

Conclusions and Future Work 

 

In this dissertation, the one-bit high-accuracy phase estimation for the tracking process is 

investigated. The traditional APD and the NB-DPD accurately estimate carrier phase in low 

and high SNR, respectively. However, the estimation bias becomes significant and their 

accuracy deteriorates in moderate SNR. Focusing on this SNR range, we propose the 

SNRaPD using the nonlinear least-square algorithm with the aid of SNR information to 

improve the accuracy. Because SNR information is critical to the phase accuracy and may be 

unavailable in many applications, the nonlinear least-square algorithm of SNRaPD is further 

developed to jointly estimate the accurate phase and SNR. Potential applications for the 

one-bit estimation method in GNSS and beacon receivers are illustrated regarding the 

attainable phase and SNR accuracy. It is worthwhile to mention that, owing to the efficient 

one-bit processing, the range of applications of the proposed method can be easily expanded 

by increasing the number of data and can accommodate signals with a high dynamic range. 

On the other hand, we also propose the PCA method that applies the coherence phase of 

complex phasors to the PN sequence acquisition. Since the PCA simply utilizes the phase 

differences rather than the amplitude, the PCA requires only complex additions but no 

complex multiplications. Segmentation, phasor acquisition and the multi-layer scheme are 

designed in the PCA to enhance the noise-robustness capability. In particular, the multi-layer 

scheme also provides an inherent error detection capability. For applications having extra 

SNR margin, such as the high-SNR applications or the processing of de-noised signals, the 

use of PCA will require much less computation than the FFT-based method. The superior 

performance on the computation grants the PCA an efficient method when the length of a 
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sequence is so large that the FFT-based acquisition is infeasible. 

Future works related to this dissertation involve two parts. First, concerning the carrier 

phase estimation, we assume that frequencies of the input and local carriers are identical 

throughout the work of one-bit phase and SNR estimation, which may not be the case in 

realistic applications. In practice, the Doppler shift may increase the error associated with the 

carrier phase estimation and the receiver may thus lose track of the incoming carrier signal. In 

order to broaden the scope of this work, the effect of Doppler shift should be considered and 

the tolerance of the frequency shift in the phase estimation algorithm needs additional study. 

Consequently, the associated influence on accuracy requires further investigation and 

clarification. Second, although the computational burden is significantly reduced in the PCA 

comparing with the FFT-based method, the performance of the FFT method is superior to that 

of PCA, i.e. D1P , when the SNR is low. Therefore, new algorithms should be designed to 

enhance its noise-robustness of the method, such that D1P  could approach one in lower SNR. 

Once the 1st-layer detection is correct, it is almost assured that the detection of the further 

layer will also be correct. 
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Appendix 

A. Derivation of mean and variance of I-Q channel outputs 

 According to Eq. (2.4), for ),0[  k , we have 0sin  k . In inphase (I) channel, the 

conditional probabilities are denoted as 

 

kkkkkka P1)|0)(sin(Prob)|1(Prob             (A1) 

 

kkkkkka P)|0)(sin(Prob)|1(Prob   .           (A2) 

 

Thus the mean and variance of ka  are given by 
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Similarly, for )2,[  k , we have 0sin  k . The conditional probabilities are denoted 

as 

 

kkkkkka P)|0)(sin(Prob)|1(Prob               (A5) 

 

kkkkkka P1)|0)(sin(Prob)|1(Prob   .          (A6) 

 

The associated mean and variance are given by 
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1P2  kak
                              (A7) 
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Assume the noise component in each sample is independent. Since k ’s are uniformly 

distributed over )2,0[  , we have  
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Similarly, by the same calculation, the mean and variance for the quadrature (Q) channel are 

obtained by 
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B. Power series representation of mean and variance of I-Q 

channel outputs 

  The power series representation of the Q-function is given by [39] 
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Hence Eq. (2.10) is rewritten by 
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Suppose we choose sf  such that p  is sufficiently large in Eq. (2.3), Eq. (B2) is 

approximated by 
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where d  2 / p  0.  

 

By the power series representation of the integrand involving the odd power of )sin(x  [39, 

Sec. 9.2.1], Eq. (B3) can be further written as 
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The derivation of the mean value of the Q-channel output is omitted because of similarity. In 

addition, using Eq. (B1), the variances of the I-Q channel outputs of Eq. (2.7) are derived by 
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By the power series representation of the integrand involving the even power of )sin(x  [39, 
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Sec. 9.2.1], Eq. (B5) can be further written as 
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C. Magnitude and phase distribution of mG  

The distribution of mG  in the 1st-layer, (1)
mG , is derived first. We rewrite Eq. (4.38) as 

 

n n n nw x x                              (C1) 

where {0,2}n   and nx  denotes the inverse of nx . 

 

In Eq. (C1), when 2n  , we have n nw x , indicating that an error occurs because of  

noise n . The corresponding error probability is given by 
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We can represent Eq. (4.41) as 
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where 
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Let { }E z  denote the expected value of z . The mean value of iW  is obtained by 
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Furthermore, to obtain the variance of iW , we calculate 
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where 
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By using Eq. (C4) and Eq. (C5), the variance of iW  is derived by 
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       (C6) 

 

It is reasonable to assume that {
1nK ix  } involved in iX  is a PN sequence of length 1M . 

Similar to Eq. (4.8), we have 

 

2
1| | 1iX M  .                            (C7) 

 

Let the code phase shift between input and local MLS be 1 1 1q c K d  . Considering the 

sidelobe of  (1)| |mG , i.e. 1m d , in Eq. (4.43), the phases ,i m  can be considered to be 

uniformly distributed between   and  . According to [55], the magnitude distribution of 

(1)| |mG , denoted by sr , can be modeled using Rayleigh distribution, given as 

 

2
1/

1

( )
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sr Ks
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r
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K
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where 0sr  . 

 

On the other hand, for the (1)| |mG  with 1m d , Eq. (4.43) is represented by 
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where i  denotes the phase error induced by noise.  

 

Without loss of generality, we assume 1 0c  . Then Eq. (C9) becomes 
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The i  denotes the phase difference between the input phasor iW  and local phasor iY  

caused by noise. Since we have the mean and variance of iW  in Eq. (C4) and Eq. (C6), 

according to [55, Sec. 4.4], the distribution of i  can be approximated by 
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where 
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Moreover, in order to obtain the magnitude distribution of 
1

(1)
dG , Eq. (C10) is reformulated by 
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where 
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We assume that each cos( )i  and sin( )i  are independent and identically distributed 
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(i.i.d.) random variables. Let 2( , ) N  denote the normal distribution function with mean 

  and variance 2 . By the central limit theorem, Re  and Im  can be approximated by 

two normal distributions  2
Re1 Re1, N  and  2

Im1 Im1, N , respectively, and the parameters 

are obtained by 
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where { }Var   denotes the variance. 

 

Numerically, we find Re1 0  , Im1 0   and 2 2
Re1 Im1  . For simplicity, let 

2 2 2
1 Re1 Im1( ) / 2p    . According to [55], the magnitude of 

1

(1)
dG , denoted by pr , can be 

modeled by Rice distribution given as 
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where 0pr   and )(0 I  is the modified Bessel function of the first kind with order zero. 

 

In addition, the joint magnitude of phase distribution of 
1

(1)
dG  is given by 
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              (C18) 

where      . 

 

The derivation of magnitude and phase distribution of mG  can be applied to other layers. 

We take the 2nd-layer for example.  For the sidelobe of (2)| |nG  with 2n d  in Eq. (4.52), 

the phases ,i t n   can be considered to be uniformly distributed between   and  . The 

distribution of sidelobe of (2)| |nG , denoted by sl , can then be modeled by 
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where 0sl  . 

 

Moreover, let  
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The magnitude of (2)
nG  with 2n d , denoted by pl , is modeled by  
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where 0pl   and 2 2 2
2 Re2 Im2( ) / 2p    . 

 

In addition, the joint magnitude of phase distribution of 
2

(2)
dG  is denoted by 
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where      . 


