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ABSTRACT

In the dissertation, we first-investigate the high=accuracy one-bit carrier phase
estimation. Signal-to-noise ratio (SNR) is utilized to select the proper phase discriminator
to achieve high accuracy. The traditional arctangent phase discriminator (APD) and the
noise-balanced digital phase discriminator (NB-DPD) can obtain accurate carrier phase for
low and high SNR, respectively, but both algorithms _have estimation bias in moderate
SNR. Therefore, the SNR-aided phase discriminator (SNRaPD) is proposed to obtain the
accurate phase. Since the SNR information may be unavailable in many applications, we
further extend the algorithm of SNRaPD to jointly estimate the phase and SNR. On the
other hand, we propose a computationally efficient method, termed Phase Coherence
Acquisition (PCA), for PN sequence acquisition by using complex phasors. In order to
combat noise, the input and local sequences are partitioned and mapped into complex
phasors in PCA. The phase differences between pairs of phasors are then utilized for code
phase acquisition, and thus complex multiplications are avoided. The computation load of
PCA is much less than that of the conventional fast Fourier Transform (FFT) method.

Finally, the multi-layer PCA is developed to enhance noise-robustness.
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Chapter 1

Introduction

Carrier phase estimation and code phase acquisition are essential in various applications,
such as the spread-spectrum system and the global navigation satellite system (GNSS) [1-2].
In modern applications, carrier phase estimation and code phase acquisition may be
implemented by means of the software-defined receiver (SDR) so as to obtain more
capability and flexibility in signal processing [3]. In SDR, more analog-to-digital conversion
(ADC) bits are generally desired so as to avoid significant quantization error. For example,
power degradation is at least 2dB for one-bit ADC [4-5]. On the other hand, because of the
benefits of the one-bit scenario, such-as efficient bitwise processing and the avoidance of
automatic gain control (AGC), the one-bit ADC has still-induced wide interest [6-11]. In this
dissertation, we investigate the high-accuracy one-bit carrier phase estimation for the tracking
process and propose a multiplication-free code phase-acquisition method that uses much less

computation than the FFT-based method for SDR.

1.1 Review of Phase Estimation-Method

For the conventional phase estimation of a sinusoidal carrier, the arctangent phase
discriminator (APD) is widely adopted since it achieves maximum-likelihood estimation
(MLE) in additive white Gaussian noise (AWGN) [12, page 167]. With infinite ADC bits, the
APD attains MLE irrespective of what the signal-to-noise ratio (SNR) is. However, this is
not the case for realistic phase discriminators that have finite precision using a few-bit ADC,
especially those with one-bit ADC. The problem of parameter estimation for a single sinusoid
was previously investigated in [13-16]. In [16], Cramér-Rao bound (CRB) of one-bit

quantization could be derived under the assumption of independence between quantized



samples. The effects of one-bit sampling and quantization were also discussed. Unfortunately,
due to the lack of a closed form of probability mass function of samples [16, Eq. (10)], the
derivation of MLE of the sinusoidal carrier is intractable. Next, the dithering techniques were
used to improve the estimation performance. In [17] and [18], the asymptotic bias of one-bit
quantized mean estimation problems was addressed. Other relevant studies fell in the field of
the limiter phase detector [19][20, Chap. 10], which utilizes a limiter to prevent overload of
the received signal. For high SNR, the asymptotic phase estimation bias of APD had been
mentioned and an improved phase discriminator, called digital phase discriminator (DPD),
was proposed in [21]. The DPD achieves mueh higher asymptotic accuracy than that of the
traditional APD. However, the DPD does not perform -well in.low SNR environments due to
its sensitivity to noise. A modified DPD, termed the noise-balanced digital phase
discriminator (NB-DPD), incorporates the summation of noisy samples in phase estimation

leading to an improved noise performance [22].

1.2 Review of Code Phase Acquisition Method

Pseudo-random (PN) sequence acquisition 1s widely used in various applications. For
example, the acquisition is implemented to search for-the correct code phase so as to identify
the transmitter in spread spectrum communications. Because of the limitations associated
with the hardware techniques, conventional code acquisition could only be achieved by
serially examining the possible code phase of the input sequence in the time-domain [23-24].
However, the time required for acquisition would be so long that limits the application of
longer PN sequence in practice. With the improvements in hardware implementation, the
parallel acquisition scheme, which employs a large amount of correlation circuits to examine
all the code phases concurrently was then devised to significantly reduce the acquisition time
[25]. A hybrid scheme had also been proposed to provide a compromise between the

acquisition speed and hardware complexity for the serial and parallel schemes, respectively



[26]. In addition to the hybrid scheme, the acquisition schemes can employ auxiliary
subsystems, such as an auxiliary signal generator and a phase estimator, to attain reasonable
speed and complexity as well [27-28]. Owing to the recent development of digital signal
processing (DSP) for software receivers, the exhaustive computation of the direct serial
search between two sequences can be mitigated by fast Fourier transform (FFT) to reduce the
computation by utilizing convolution theorem [29-31], which states that the convolution of
two sequences can be derived from the pointwise product of corresponding Fourier
transforms (i. e., x[n]® y[n]—— X(w)-Y(w), where ® denotes convolution and F
represents Fourier transform). The theorem rthat facilitates FFT can be used in the PN
sequence acquisition to efficiently search the code phase [32-33]. To further reduce the
computational burden of FFT-based acquisition, the efficient split-radix FFT techniques
rather than conventional.radix-2 FFT could be used for transformation so that the number of
multiplications, addition'and memory access can thus be reduced [34]. In addition, by the fact
that the more FFT points, the more computations are required, the acquisition with fewer FFT
points, which is cheaper, was performed on ‘the coarse/acquisition (C/A) codes with
averaging up several samples of a.code chip [35]. Instead of averaging the samples, the FFT
points could also be reduced by removing the insignificant points. By examining the
spectrum of input and local C/A sequences, it is found that most of the energy is contained in
the low-frequency half of the spectrum. Hence the other half of the spectrum, which is
comprised of very little information could be eliminated and thus the number points for
FFT-based acquisition were decreased [36]. On the other hand, the multiplication operation in
the FFT method generally requires many computational resources. Hence, a substitute
method employing Walsh transform (WT) was implemented to calculate the convolution
without the need for multiplications [37-38]. Specifically, as compared to the FFT-based
method, the WT-based method requires fewer additions and no multiplications, but additional

permutations of the input samples and the output results are needed.
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1.3 Organization of Dissertation

The dissertation is organized as follows. In Chapter 2, we investigate the one-bit
high-accuracy phase discriminator for three SNR ranges: low SNR, high SNR and moderate
SNR. Unlike traditional approaches, this approach first distinguishes which SNR range an
application falls into, and this SNR information is then utilized to select a proper phase
discriminator for achieving high accuracy. For low-SNR applications, traditional APD is
adopted. For high-SNR applications, NB-DPD is utilized to improve accuracy. Between
them, for moderate-SNR applications, a novel SNR-aided phase discriminator (SNRaPD)
developed using the nonlinear least-square method is proposed.

However, since the SNR_information may be unavailable in many applications, the SNR
should also be estimated'so as to-attain the accurate phase estimation. Hence, a nonlinear
least-square algorithm for deriving the SNRaPD.is further extended. to jointly estimate the
phase and SNR estimation in Chapter 3. Because of the avoidance of AGC by using one-bit
ADC, the joint phase and SNR .estimation method can accommodate signals with high
dynamic range. Potential applications for the spaceborne measurements are also discussed.

Next, we propose a novel- method, termed the Phase Coherence Acquisition (PCA), to
search for the cross-correlation peak for pseudo-random (PN) sequence acquisition by using
complex phasors in Chapter 4. The PCA requires only complex additions in the order of N,
the length of the sequence, whereas the conventional method utilizing FFT requires complex
multiplications and additions, both in the order of Nlog, N . Specifically, the phase
differences between pairs of input and local phasors are utilized for acquisition, and thus
complex multiplications are avoided. The significant reduction of computational loads makes
the PCA an attractive method, especially when the sequence length of N becomes
extremely large which becomes intractable for the FFT-based acquisition. Finally, the

conclusion of the dissertation is made in Chapter 5.



Chapter 2

One-Bit Accurate Phase Estimation

In this chapter, we clarify the accuracy of one-bit phase discriminators regarding SNR,
such as the accuracy of APD and NB-DPD in low and high SNR, respectively. Moreover, we
design an SNRaPD that utilizes the SNR information in phase estimation to enhance ultimate
accuracy in moderate SNR. A high-accuracy phase estimation is critical to the successful
tracking of carrier signals. In this study, the traditional inphase-quadrature (I-Q) structure
using one-bit ADC is studied first and the SNR-dependent mean value of the I-Q channel
output is derived. Note that, because the frequency of the received carrier can be captured by
the acquisition process or.a frequency locked-loop.[2], the frequency shift between input and
local carrier can be regarded as a part of phase shift in steady-state tracking. Hence, the
influence of frequency.shift is omitted and the AWGN channel is considered in our analysis.
Next, phase estimation” with APD and. NB-DPD..are addressed. The SNRaPD is then
introduced and the improyement in<accuracy 1s simulated and compared with the average
Cramér-Rao bound (CRB). In addition, an adequate  stop criterion and the range of
applications regarding the SNR of SNRaPD"are also discussed. The high-accuracy phase
information obtained with the proposed algorithm can potentially be applied to spaceborne
measurements in GNSS and beacon receivers when the ambient SNR falls within the

“moderate SNR” range and the multipath effect is mitigated.

2.1 System Model

The system model for phase estimation of sinusoidal carrier in the one-bit SDR is shown

Fig. 2.1. The received signal is denoted by



‘V(t) ngn[r(kYQ;] a, R ;{—E Im R
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Fig. 2.1. System structure of one-bit SDR.

r(f) = sinQ2af.t + §) + v(t) 2.1)

where f. is the carrier frequency, ¢ is-an unknown phase;and v(z) is the AWGN.

For phase estimation, the output frequency of the.numerically controlled oscillator (NCO) is
assumed equal to the-incoming carrier frequency. Let T, be the sampling period. The

discrete-time one-bit quantized r(¢) 'is given by

rlk]=sgn[r(kT,)] = sgn[sin(27f kT, + @)+ v(kT,)] (2.2)
where
1 ifx>0
sgnlx]= {—1 if x <0

In addition, let the sampling frequency be f, =1/T,. We denote

/e q
Je —pt L 23
7 +p (2.3)

where £ is the greatest integer less than or equal to f,/f,, and p and ¢ are mutually

prime integers.



The mixer output of the inphase channel is given by

a, =sgn[r(kT,)]-sgn[sin2x f kT, ]

) : (2.4)
=sgn[sin(®, +P)+v,]-sgn[sin D, ]

where @, =27/ kT, and v, =v(kT,) is a zero-mean Gaussian random variable with

variance o’.

Consider p samples at ¢t =kT,, k=0,1,2,...,p—1. The normalized I-Q channel outputs are

denoted by

1,= / i sgnfsin(®, + @) +v, ] sgn[sin D, ] (2.52)
P =0
0, :lfsgn[sin((l)k +@)+v,] sgn[cosD, ]. (2.5b)

It can be proved that the samples of phases {®,,®,,---,®, ,} are uniformly distributed over

[0,27) with a separation of 27/ p between neighboring ®.’s [21]. Note that when we
mention that p 1is “sufficiently” large later, it means that 2z /p is significantly smaller
than the accuracy required for the estimation. According to Appendix A, the mean values and

variances of the I-Q channel outputs are given by

1
Hy, =—{ D (1-2P)+ Z(2Pk—1)} (2.6a)
D, €[0,7) O, e[r,2m)
1
Ho, = —[ > (1-2P)+ D (2P, —1)} (2.6b)
p ®,€[0,7/2)[37/2,27) @, e[7/2,37/2)



P, —P? (2.7)

where

Note that the range of summationis defined according to'the value of ®, in Eq. (2.6), and

P, is a function of ®,. In Eq. (2.7), the variance of the one-bit quantized I-Q outputs
consists of the effect of channel noise and quantization noise. Since {®,,D,---, D ,} are

uniformly distributed over [0,27), the mean value of I-channel output in Eq. (2.6a) can be

further derived by

lp sin(®, + @) sin(®, +¢)) p
=2 ZzQ( o j+ ZzQ( - jz}

D, €[0,7) D, [7,27)
- (2.8)
:l Z 2Q(sm(<bk+¢)j_ z 2Q(sm(®k+¢)j '
P | oen2n) o ®,<[0,7) o
From Eq. (2.1), the SNR of the sinusoidal signal is given by
SNR = ! (2.9)
557 :

Eq. (2.8) can then be written as



=~ Y 2Qsin@, +$)- Y 2Q(sin(@, +¢) (2.10)

O, e[r,27) D, €0,7)

where y =+/2SNR .

Suppose we choose f, such that p is sufficiently large in Eq. (2.3). According to

Appendix B, the mean value of I-channel output of Eq. (2.10) can be represented as a power

series, which is given by

e e 2m+1)cos(2m+1-21)¢
R e e e B

4

\/572_3/2 :

where A4 =

Similarly, the mean value of Q-channel output of Eq. (2.6b) is denoted by

to = Y R2QUsin(@, g+ Z2Q(7sin(<1>k+¢))] (2.12)

P
P | o,q0.7/2)3712.27) O, z/23712)

By a similar derivation of Eq. (2.11), the power series representation of z, is given by

o Y P | IS 2m A1 sin(2m +1-21)¢

e

In addition, according to Appendix B, the power series of the variances of the I-Q channel

outputs of Eq. (2.7) are represented by



s

1 2 4m + 2 74m+2
= (2.14)
p pr|SZ\ 2m+1 ) (m2>" (2m +1))*

0 * 2x+2y+2 (_1)x+y 2(x+y)+2
P e

S50 x+y+1 )y Qx+ D2y +1) |

+

The above results are obtained for p samples. When the mean values and variances are
generalized to N =mp samples, where m is an integer, the normalized I-Q channel outputs

are given by
1, = TS, +) v, }seulsin®d, ] (2.152)
k
0, = % > sgafsin(®, +4)+1;]-sgn[cos @, ] (2.15b)
k

The mean values of the 1-Q channel outputs are the same as Eq. (2.11) and Eq. (2.13),

respectively. The variance can be expressed as

1 2 o0 4m + 2 74m+2
N N z 3m+l 2 (2.16)
N Nrz| &2 2m+1)m2" " 2m+1))

2x + 2y + 2 (_1)x+y7/2(x+y)+2
x+y+1 )y ox D)2y +1) |

\
NgE
”MS

The relationship between the mean values of the [-Q channel outputs is shown in Fig. 2.2.
Here, only the relationship in the 1st quadrant is illustrated because of the symmetry of the
trigonometric function. As can be seen in Fig. 2.2, the relationship between the I-Q channel

outputs varies with the SNR.
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S 0.4
< 03 _
0‘2 .................. o‘.'.'a 1 |
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Fig. 2.2. Relationship between the mean values of the I-Q channel outputs (first quadrant).

The relationship approximates a circle‘'when the SNR is-low, but deviates from a circle with
increasing SNR. When SNR — «o, the relationship becomes a straight line. Since the phase
is estimated from the I-Q channel outputs.in Fig. 2.1; the phase estimation should be adjusted
according to the SNR to achieve high accuracy. In the following sections, accurate phase
estimations regarding SNR are introduced. Note that, in order to evaluate the achievable
phase accuracy, the assumption of zero frequency offset is inherently applied to the following

analyses and simulations.

2.2 Accurate One-Bit Phase Discriminator

In this section, we introduce phase discriminators that have been proposed in the
literature, i.e., DPD [21], NB-DPD [22], and APD, for one-bit quantized data and discuss

their performance regarding SNR.
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2.2.1 High-SNR

When SNR — o, v, in Eq. (2.15) can be neglected. Moreover, when the number of

samples N is large, by the law of large numbers (LLN), the I-Q channel outputs, denoted as

(,,0,), approximate their mean values, ie., I, — 4 and Q, — u, . The relationship

between the I-Q channel outputs is then denoted by
Mty =1. (2.17)

The relationship is a straight line as shown in Fig. 2.2. In this situation, the phase can be
estimated by DPD, resulting.in higher accuracy than that.of APD [21]. Applying the system

model of Fig. 2.1 in [21],'the phase estimation according to (/,,,Q,) 1is given by

Bor = Sgn(Qm)%(l—Im)- (2.18)

The mean-squared error (MSE) of DPD will be negligible with a sufficiently large N .
However, in the high SNR environment, small noise variance still exists in the [-Q
channel outputs, and the relationship between the mean I-Q outputs deviates from a straight
line as shown in Fig. 2.2. Since DPD is sensitive to noise, the modified DPD, called
NB-DPD, is provided to improve phase estimation in this situation. The phase estimated by

NB-DPD is given by [22]
~ 72- ]
A S A 2.19
¢NB—DPD g (Qm) 2 [ ’ Im ’ + ‘ Qm |J ( )

Let the root mean-squared error (RMSE) of NB-DPD be denoted by
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ENB_DPD =\/E[((ﬁNB_DBD —$)’]. Using Monte Carlo simulation methods for 100 trials,
Expppp Tegarding SNR is shown in Fig. 2.3. As expected, &\z ppp decreases with
increasing SNR. In addition, it decreases slightly with N in high SNR. Apparently, the
NB-DPD can achieve high phase estimation accuracy in high SNR.
2.2.2 Low-SNR
When the SNR is low, we have y <<1 in Eq. (2.11) and Eq. (2.13). Thus, the mean

values of the I-Q channel outputs are approximated by

Mp = \/5477;/3/2 cos @, (2202)
4y .
b=y WETEE Sing. (220
2.5 ' ' ' |
""" 8- &ug.ppp (V=1 0)
_4n6
2“‘*:1: ------ - SNB-DPD (N—10 ) _
3
5 1.5¢ _
)
Z
8
7]
= 1r -
Cd a"z,‘“tg“‘%
0.5} .. _
%'g:a::::::@
-‘::::::::@;;::: 5 :@: ________
0 | | | ? ........ L7 — —
; 3 5 9 12 15
SNR (dB)

Fig. 2.3. Simulated results of NB-DPD regarding SNR.
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This proves the circular relationship of the I-Q channel output in the low SNR environment
as shown in Fig. 2.2. The result is also consistent with Pouzet’s conclusion, when we consider
a limiter as a binary quantizer with an infinite number of samples [19][20, Chap. 10]. Since
the mean I-Q channel outputs have an approximately circular relationship, APD is a good
choice in low SNR. In addition, the variances of the I-Q channel outputs of Eq. (2.16) are

approximated by

( —7—2J 2.21)
T

when the SNR is low.

The performance of APD in low SNR is analyzed using geometry as shown in Fig. 2.4.

A
Quadrature
phase B: (fm s Qm)
\
\d
A
. (,nuf ] ‘L[Q)
A R

>
Inphase

Fig. 2.4. Geometric representation of performance of APD on the I-Q plane.
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First, let point A : (4, 4,) denote the mean values of the [-Q outputs on a circle with radius

R and polar phase ¢. According to Eq. (2.20), the radius R is given by

2

R= zu12+,uQ

47 (2.22)

- \/57[3/2
4+/SNR

3/2
T

Next, let B:(Z,,,0,) be the measured I-Q channel outputs. The distance between A and B is

m?2

denoted by

d == 1) (0, — )’ (2.23)

The sinusoidal carrier phase estimated from (Z,,0,) with APD is given by

¢?APD = atan2(%

m

j=¢+A¢ (2.24)

where atan2(x) denotes the arctangent-2 function and A¢ is the phase estimation error.

Without loss of generality, let A¢ > 0. From the law of sines, we have

d R
sinAg  sin(z—@—Agp)

(2.25)

Assume A¢<<1l. Then sinAg=A¢, and sin(r—@p—-A@)=sin(r—¢) . Eq. (2.25) is

approximated by

15



Ag = %sin(ﬂ -Q). (2.26)

Suppose ¢ is uniformly distributed over [0,7). For a fixed d, the expected value of Ag’

with respect to ¢ is denoted by

2 _1 ”dz )
B [Ag°]=— [ ssin’(z - g)dp

dZ
TR

(2.27)

Assume d and ¢ are mutually independent. According to.the definition of variance and

Eq. (2.21), the expected value of d” is given by

B,[d*]1=E[(,~,) +(0,~1,)"]

=o; +0, (2.28)
2
v

From Eq. (2.27) and Eq. (2.28), the MSE of phase estimation is denoted by

E,[d’]
2R?

1

~ NR?

E,[E,[A¢°]]=

(2.29)

3
T

~ 16N -SNR '

In addition, the RMSE of APD is given by
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Eapp = \[Ed[E(,;[A(ﬁz]]

3/2
T

=— = (radian) (2.30)

44/ N -SNR

80"
= m (degree)

From Eq. (2.30), ¢,,p 1s inversely proportional to the square root of the product of SNR
and N . The analytical and simulated &,,, are shown in Fig. 2.5. The simulated results are
obtained by Monte Carlo simulation for 100 trials. From Fig. 2.5, the simulated results
approach the analytical values in low SNR. Note that the analytical ¢,,, is provided in part
since the result is valid only whendow SNR is assumed. From Fig. 2.5, a minimal ¢,

exists at the specific SNR in the simulated cases. Below that'SNR, ¢,,, Increases with

decreasing SNR, whereas ¢,;, increases when the SNR is above that SNR.

2.5 T T T T T T J : '
. PPN
.................. Analytical &, (N=107)
, 45
A -G Simulated A (N=10%) fg;
. _ 46 .
Analytical ¢, (N=10") /d
. —_4n6 #
- ¢ Simulated &, . (N=10°) g
5 1.5) / ]
o g, g
2 w,
CL}JJ ‘E.. ,'g
§ 1r \B g -
g g
“‘G-:::;ﬁ;t::.ﬂ _____ o Mf%
05<5 0 ----- “:.,-.'....-.,‘Q 0 _
00 00 0 0 O 1

0 I
-5 13 -1 9 -7 -5 -3 -1 1 3 5
SNR (dB)

Fig. 2.5. Analytical and simulated results of APD regarding SNR.
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According to Fig. 2.2, since the relationship of the mean values of the I-Q outputs deviates
from a circle with increasing SNR, the increase in ¢,,, is due to the estimation bias of the
APD, which will be shown below.

2.2.3 Moderate-SNR

Between the high SNR and the low SNR, the relationship between the mean I-Q outputs
is complicated, as indicated in Fig. 2.2. The estimation bias of NB-DPD and APD is
examined by means of the asymptotic performance. Suppose N is sufficiently large. By

LLN, the I-Q channel outputs of Eq. (2.15) approach their mean values, i.e., I, — x4, and

0, = H,- The asymptotic performance of NB-DPD and APD are defined by

~ A T
Pasnmoen =520, ) —| 1= . QN 5 (2.31)
2\ e+ g |
~ A
Pasarp = atan2(@j : (2.32)
Hp

The corresponding squared phase errors are given by ey, =(¢3A5NB_DPD —-¢)* and

e, = ((,13 app — @), respectively. We further denote the asymptotic estimation error by

€ ASNB-DPD — (END)I/Z (2-33)

and

Epoarp = (€4)"7. (2.34)
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Note that the averaged values of ey, and e,,i.e., ey, and e,, are used in Eq. (2.33) and
Eq. (2.34), since they are functions of ¢. The &, pppp aNd &,4pp regarding SNR are
shown in Fig. 2.6. From Fig. 2.6, €,,pppp aNd &,pp are small in high and low SNR,
respectively. That is, &,,.ppep <0.1degrees if SNR >12dB, and ¢, ,,, <O0.1degrees
when SNR <-10dB. However, &,,pppp becomes significant when the SNR decreases
whereas ¢,.,,, becomes significant when the SNR increases. Here, the range of SNR in
which both &, ,5ppp and &,,pp, are not negligible is considered “moderate” SNR. For
example, SNR between -10 dB and 12 dB in this case (phase accuracy requirement < 0.1
degrees) is denoted as the moderate SNR. Qbviously, for the moderate SNR, the accuracy of

NB-DPD and APD are degraded and bounded by estimation bias, even though N is

sufficiently large.
NB-DPD
-~ 3 T T T T T T T T T T T T T T
(]
O
—
&
S 2
()
o
21}
m
Z
w< 0 1 1 1
-15 13 -1 9 -7 -5 -3 -1 1 3 5 7 9 11 13 15
SNR(C]B)
APD
3 T g
(]
O
&h
o 27
]
S
()
e 1F
5
<€
w 1 1 1 1 | | ] ] 1 1 1

0
%5131 9 7 5 3 1 1 3 5 7 9 11 13 15
SNR (dB)

Fig. 2.6. Asymptotic performance of NB-DPD and APD regarding SNR.
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Note that, even though the estimation error due to noise variance decreases with the square
root of the SNR in APD, as indicated in Eq. (2.30), the accuracy of APD is degraded because
of the estimation bias in moderate SNR. This result explains the degradation of ¢,,, in
moderate SNR as shown in Fig. 2.5. Above all, although NB-DPD and APD perform well in
high and low SNR, respectively, their performance is degraded by the estimation bias in
moderate SNR. Focusing on the moderate SNR, we develop an approach for reducing the

estimation bias and thus improving the accuracy in the following section.

2.3 SNR-Aided Phase Discriminator

2.3.1 Proposed method

Since the mean I-Q outputs vary-with-the SNR as shown in Fig. 2.2, the SNR should be

taken into consideration in achieving high-accuracy phase estimation. Therefore, the

SNRaPD is developed:to improve the accuracy by using the SNR information. Let (x;, £,,)

be the mean values of the I-Q outputand (/,,0,) be the measured I-Q channel output. In

SNRaPD, we define a measure by

L($) =L, = )"+ (0, — 1y)°

(2.35)
=(4(®)* +(4,(9))

where A,(#) =1, —py,, 4(#) =0, —4,,and ¢ is the unknown phase to be estimated. In

addition, let A(¢) =[4,(¢),1,(#)]", where ‘T’ denotes transpose and L(¢) = A(¢)" A(¢) .

When the SNR information is given, y is known, and the relationship of (4, 4,) with

respect to phase angle can be uniquely determined. When (/,,,0, ) are given, suppose the

most likely phase is what minimizes L(¢) as follows:
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Ponrar = arg min{L(g)} . (2.36)

This is the main idea of SNRaPD.

In optimization theory, the foregoing descriptions are known as the nonlinear
least-square problem. Newton’s method can be used to search ¢? =arg min{L(4)} [40]. The

vector of the first derivatives of 4,(¢) and A4,(¢#) is given by

J(9p) = {d/i;;@ dﬂ;;@} ) (2.37)
In addition, let
H(@)=4(@)h (9)+ 4 (#)h, (9) (2.38)

where

h(g) = L9 j;§¢)
(@)= j;f’) ~

Then using Newton’s method, ¢ is updated iteratively by

¢i = ¢i—1 - (J(¢i—l )T J(¢i—1) + H(¢i—l ))_1 J(¢i—1 )T A(¢i—1) (2.39)

where the ¢ denotes the phase obtained after the i-th iteration.

In SNRaPD, depending on the available SNR information, the initial phase ¢, can be

estimated by NB-DPD or APD, and accuracy can then be improved iteratively by Eq. (2.39).

The iteration will stop when |@ —¢@.,|<J, where J is a small number. In the one-bit SDR
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shown in Fig. 2.1, let the carrier frequency f, =15.421111MHz, the sampling frequency
f. =4.096MHz, and N =10’ In this case, according to Eq. (2.3), we have p = 4096000

and 27/ p will be significantly smaller than the estimation accuracy described below. The

performance of SNRaPD is evaluated by Monte Carlo simulation. In the simulation, the stop

criterion is & =107 degrees, and the estimated phase is given by @g.pp = 4. The RMSE

defined by &gwapp = \/ E[(éSNRaPD —$)°] is the average of 100 trials as shown in Fig. 2.7.

From Fig. 2.7, the errors by NB-DPD and APD are reduced with SNRaPD. For example, at
SNR =0dB, the RMSE of NB-DPD is 2.017 degrees and that of SNRaPD is 0.2625 degrees.
A 7.7 times improvement is achieved. At SNR =10dB , the RMSE of APD is 2.769 degrees
and that of SNRaPD is 0.119 degrees, resulting in @ 23 times improvement. The SNRaPD

greatly improves the aceuracy of phase estimation; especially in moderate SNR.

35— BA T T T :
- g,
§ Bbp a | & E\g.opD " “sNRaPD
5 o) A AT 1
) AL
B &..&_
7) 1[5 TA. i
..... a. A
e S oy
. . . A . s =
-10 -8 -6 -4 -2 0 2 4 6 8 10
SNR (dB)
3 T T T T T
— .\
ST & Eppp B E5NRaPD ot
& A
oo)n 2t ,ﬁi""A i
s A
Sa) _..3”"3
P! 1 d A...--é‘” ]
5 o "’&‘"“é::é:::&:::ﬁfﬁ o
1 1 1 | - ‘T : ? : $ E $ D $ E r]
-10 -8 -6 -4 -2 0 2 4 6 8 10
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Fig. 2.7. Performance of SNRaPD regarding SNR.
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Regarding the number of iterations of Newton’s method in SNRaPD, normally less than four
iterations are required based on our simulation results. In addition, as mentioned in Section
2.2, NB-DPD and APD perform well in high and low SNR, respectively. Hence, fewer
iterations are required in SNRaPD when the initial phase is estimated by NB-DPD in high
SNR and by APD in low SNR.

2.3.2 Cramér-Rao bound

The CRB for one-bit quantized complex-valued signals was derived in [16]. The
performance of SNRaPD is compared with the CRB of the estimated phase. For simplicity,

only the real-value case is considered. The probability mass function of r[k] in Eq. (2.2) is

given by

fAq:9) = Prob(q ~k]>0:9)

2.40
f exp| (r=q- sm(g) O, (2.40)
\/ o 20
The Fisher information is'then obtained by

%,

n 8 0
k=0 g= 1f( ¢) ¢ ¢ (241)

; 1/0)

where

4cos’ (D, +¢)- exp(— %sinz(d)k + ¢)j
o

l//(q)k+¢;l/0'): 1_erf((1/\/50)'Sin(CDk+¢))2

erf(x) = % [ exp(—t*)dt.
T 0
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To investigate the achievable performance of SNRaPD, we assume that the frequency in Eq.

(2.41) is zero, i.e. @, =0, and the phase is a uniform random variable. We define the

average Fisher information by averaging Eq. (2.41) over phases, which is denoted by

— 1 27
[=—[, Upde
N

2
o

(2.42)

y(1/o)

where 17(1/0)=L.[2” v(p;l/o)de.
2790

Taking the inverse of the average Fisher information, we have the average CRB given by

VA
N-SNR -i7(1/0)

AvCRB =

(2.43)

where SNR is defined by Eq. (2.9)

AvCRB

€SNRaPD ’

2

N=10’

1 1 1

-20 -15 -10 -5 0 5 10 15
SNR (dB)
Fig. 2.8. MSE of SNRaPD (markers) and AvCRB (solid lines).

10_ L L
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The MSE of SNRaPD defined by &2.n = El(dopapp — @)1 is compared with the

AVCRB in Fig. 2.8. The AvCRB is plotted with solid lines, and the &3 i denoted by
markers. The performance of SNRaPD is obtained from Monte Carlo simulation using 100
trials. In Fig. 2.8, &Xupp 18 close to AVCRB and their difference approaches zero with
increasing SNR. Thus the accuracy of SNRaPD is validated. Note that the difference between

AVCRB and &gy, 1S similar for different values of N .
2.3.3 Stop criterion
As mentioned at the end of Section 2.3.1, although estimation bias is reduced by

SNRaPD, and ¢?SNR&PD =arg min{L(¢)} is achieved by Newton’s method, noise variance still

exists in &SNRapD . As a result, the strictcriterion | @ =g |<10~ (degrees) may result in the

need for extra iterations, but the performance cannot be improved: From Eq. (2.35), the first

derivative of L(¢) is given by

dL(¢) _ dA(9) d,(9)
e 2{ﬂl(¢)—d ) +/12(¢)—d y } (.44
=21 () A().

Note that the original criterion | @ — ¢, |< 107 s consistent with dL(éSNRaPD)/d(ﬁ:O,

since q;SNRaPD =argmin{L(¢)}. As we consider the noise variance with Eq. (2.44), a new

stop criterion is defined for SNRaPD as follows. Let ¢ =4, + Agd. in Eq. (2.44), where 4,

is the true phase, and A¢, is the phase error due to noise variance. Since the AvCRB of Eq.

(2.43) 1s the theoretical bound of variance, let A¢. =+ AvCRB. The new stop criterion is

defined by

123(8)" A($)I<|2(¢. + Ad.) A(g. +Ad) . (2.45)
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Note that the absolute value is used since the same result but with opposite polarity is
obtained by ¢=¢, —Ag . In addition, the criterion |2J(4, +Ad) A(g +Ad)| is a
function of ¢ , and the minimal value occurs when ¢, =kz/2. Hence, the criterion is

further defined by |2J(d, + Ad.)" A(, + A.) | 4—kr/2 to guarantee that the criterion is valid

for all phases.

Example—Determination of the stop criterion: Let SNR =6dB, N=10", and ¢, =0".

According to Eq. (2.43), Ad. =+ AvCRB =0.12215": Applying ¢=¢ +Ag, =0.12215" to
Eq. (2.44), we have |2J(0.12215°)"A(0.12215%) |= 0.001712 . Hence, the iteration will stop

when |2J(4)"A(4,) |< 0.001712.

A similar RMSE is-achieved with the new stop criterion according to the simulation

results, which confirms our supposition. Moreover, the number of iterations is reduced with

the new criterion. Recall that the original criterion is consistent with dL(éSNRaPD)/ dg=0.
Since Newton’s method will reach the criterion of dL(#)/dg =2 |I" (4, + A )A(J, +Ad,) |

before that of aVL(¢3SNRaPD )/d¢ =0, the number of iterations is reduced accordingly.
Finally, most computational loads of SNRaPD fall in computing A,(¢) and A,(4) as

well as their derivatives, which involve g, and u, of Eq. (2.11) and Eq. (2.13),

respectively. In practice, we use M terms to approximate 4, and g, rather than infinite

sums. Moreover, we can calculate and store coefficients in a table in order to further mitigate

the computational burdens. For applications with SNR less than 0 dB, M =8 is sufficient to

well approximate 4z, and g, with RMSE smaller than 10°°. In addition, less than four
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iterations are normally required from our simulation results. Therefore the computational
burden of SNRaPD is feasible, given today’s fast processors.
2.3.4 Range of application

The range of application of SNRaPD is studied by comparing &qg.pp With &y ppp and
&.pp- The simulated results regarding SNR and N are illustrated in Fig. 2.9. From Fig.
2.9(a), compared with NB-DPD, the improvement in the accuracy of SNRaPD is significant
in moderate SNR. Note that the range of the moderate SNR may vary according to N and
the required phase accuracy for different applications. Moreover, in N =10’ and N =10°
cases, the improvement is negligible when the SNR is above 12 dB and 17 dB, respectively.
As N increases to 10’7, SNRaPD can consistently improve the accuracy to some degree for
SNR below 20 dB. Similarly, in-comparing SNRaPD with APD, the accuracy is greatly
improved in moderate to high SNR-as-shown in Fig. 2.9(b). The improvement is negligible
when the SNR is below -4 dB, -8 dB, and -12 dB, respectively. The above discussion
illustrates the superiority of the proposed SNRaPD in “moderate’> SNR. As the ambient SNR
is increased to the “moderate” range, SNRaPD can potentially be used and provide improved
accuracy in spaceborne measurement techniques, such as the total electron content (TEC)
measurements on a beacon receiver or the precise orbit determination (POD) on a GNSS
receiver [41-45]. For example, when N =10° and SNR =0dB on the 400 MHz beacon
signal, the phase error is 0.08 degrees and 0.94 degrees for SNRaPD and APD,
respectively. The estimation error of SNRaPD is approximately an order better than that of
APD. If more samples are utilized, the superiority of SNRaPD over APD remains significant

even when the SNR is lower than 0 dB as shown in Fig. 2.9(b).
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Fig. 2.9. Comparison between RMSE of SNRaPD and that of NB-DPD and APD.
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2.4 Summary

In this chapter, the high-accuracy phase estimation for one-bit SDR is investigated. We
propose the SNRaPD using the SNR information to reduce the estimation bias and achieve
the high-accuracy phase estimation. The mean values and variances of the I-Q channel
outputs in one-bit SDR are given by Eq. (2.11), Eq. (2.13) and Eq. (2.16), and the
SNR-dependent relationship of the mean I-Q channel outputs is explicitly shown in Fig. 2.2.
For high-accuracy phase estimation, NB-DPD can be used in high SNR as shown in Fig. 2.3.
For the low SNR, APD is selected according to Eq. (2.20), and its performance is illustrated
in Fig. 2.5. However, according to_the ‘asymptotic performance of NB-DPD and APD as
shown in Fig. 2.6, the estimation bias becomes significant and can have a negative impact on
the accuracy in moderate SNR. Focusing on this SNR range, we proposed SNRaPD using
Newton’s method to reduce bias and-improve the resulting accuracy as shown in Fig. 2.7. The
accuracy of SNRaPDis certified by comparing the MSE with thec:AvCRB in Fig. 2.8. In
order to conserve computation time, an adequate stop criterion for SNRaPD with respect to
the noise variance is also defined by Eq. (2.45). Finally, the range of the application of
SNRaPD is investigated by comparing the associated RMSE with that of NB-DPD and APD
as shown in Fig. 2.9. Potential applications of SNRaPD and the corresponding performance
on SNR =0dB are also discussed. Nevertheless, the proposed SNRaPD requires the
knowledge of SNR which is not available in many applications. Hence the joint phase and

SNR estimation is proposed and introduced in the next chapter.
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Chapter 3

Joint One-Bit Phase and SNR Estimation

Generally, the SNR information is crucial for the quality control of the observed data
[2,5]. Moreover, according to the results of chapter 2, the accurate SNR information enables
the accurate phase estimation. Since the SNR information may be unavailable in many
applications, we extend the algorithm for SNRaPD to jointly estimate of the phase and SNR.
Because the signals are one-bit quantized, the designed method can accommodate high
dynamic range applications.

In the following, the signal model of one-bit quantized sinusoidal carrier and the I-Q
correlation structure are revisited and adopted forjoint phase and SNR estimation first. Next,
the nonlinear least-square algorithm of SNRaPD is extended to iteratively derive the phase
and SNR estimation. The performance of the proposed method is then verified by Monte
Carlo simulations. In addition, the feasibility of the proposed method for applications in

GNSS and beacon receivers s also discussed.

3.1 System Model

Consider a carrier with amplitude 4, frequency f, and phase ¢. When the signal is

disturbed by AWGN, the observed wave is denoted by

x(t) = AsinQ27f £ + §) + n(t) 3.1)

where n(¢) is AWGN with zero mean and variance o”.

The SNR of x(¢) is given by
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(3.2)

Note that Eq. (3.1) and Eq. (3.2) are different from their counterparts in chapter 2, i.e. Eq.
(2.1) and Eq. (2.9), respectively, only on the amplitude 4. When x(¢) is one-bit quantized

and sampled with period T,, we have

x[k]=sgn[AsinQ27akf, T, + @) + n(kT,)]
=sgn[A4sin(y, +¢) +n;]
where y, =27kf. T, and sampling frequency follows the property of Eq. (2.3).

(3.3)

For parameter estimation, assume that the frequency. f. is known and the local I-Q
components are sgn[siny, ] and sgnfcosy, | ,«respectively. After one-bit quantization,
x[k] is then multiplied by local I-Q components, and summed to have the I-Q correlation

outputs denoted by

I= Z x[k]-sgn[siny, ] 3.4

k

0= Zx[k]-sgn[cos v, 1. (3.5)

k

Similar to Eq. (2.5), we consider p samplesat t=kT, k=0,1,2,...,p—1 inI-Q correlation
outputs, where p is specified in Eq. (2.3). The normalized I-Q outputs from these samples

are expressed by

1 &2 . .
I,= ;ngn[A sin(y, + @) +n,]-sgn[siny, | (3.6)
k=0
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1 & ,
0, =—ngn[A sin(y, +@)+n,]-sgn[cosy, ]. (3.7

k=0

According to Appendix A, the mean values of Eq. (3.6) and Eq. (3.7) are denoted by

u,,,%{ >, QV2psin, +9))- 3. Q(\/ﬁsin(t//ﬁcﬁ))} (3.8)

vieln,2r) v, €[0,7)

ug,%LqZ Q(\2psin, +9))- > Q(x/ﬁsin('//ﬁ@)} (39

712,37/2) v, €[0,7/2)0[37/2,27)

Gfp = 0';[)
p-l ) 3.10
:pi[ : Q2o sin(y, +4))-Q(y2p i, +9)) } e

When the number of samples is generalized to N=m-p and m is an integer, the 1-Q

outputs are denoted as 7, and Q,, respectively. Let their mean value be x4, and g,,

m

respectively. It is easily proved that prove [, and (), have the same mean values as /,

m

and Q,,ie. p =p, and u, = p, .Inaddition, the variance of 7, and O, is given by
o, =0,
4 [y . . 2 (3.11)
=F{ZQ(\/2P sin(y +¢))-Q(\2p sin(y, +¢)) }
k=0

33



3.2 Nonlinear Least-Square Algorithm

After deriving the mean value of the I-Q correlation outputs, the nonlinear least-square

algorithm is utilized to estimate the phase and SNR of the carrier. Let /, and O, be the
I-Q outputs of one-bit quantized sinusoidal carrier. The phase and SNR of the carrier are

denoted by 0 =[¢, p]", where the superscript ‘T’ denotes the transpose operation. Let

4;(0) and p,(0) be the mean values of [/, and (O, regarding parameter 6 ,

respectively. When the sampling frequency is carefully selected to have a large u, I, and

Q, can be expressed by
L, =4:(0)+¢; (3.12)

O, = 1y(0)+ S, (3.13)
where &, and ¢, are random variables in 1-Q correlation outputs with variance given by

Eq. (3.11).

To estimate the parameter 0, we construct a cost function as

J©)=(1,, — 1,(8))" +(Q, — 11,(9))’

=(1(8)* +(»,(0))’ (3.14)
=y(0)"y(6)
where y(0) =[,(8),,(8)]".
The estimation of 0 is denoted by
0 = arg min £(0). (3.15)
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Equation (3.14) and Eq. (3.15) form a nonlinear least-square problem. According to Eq.

(3.14), the gradient of f(0) is given by

V£(0)=2J(0)"y(0) (3.16)

where J(0) is the Jacobian matrix of y(0).
In addition, the Hessian matrix of  f(0) is denoted by

F(0) = 2(J(0)” J(0) + H(0)) (3.17)

where H(0) is the matrix whose (p,q)-th elementis given by

2 a2yj
=L '
00,00,

=

The nonlinear least-square problem of Eq. (3.15) can then be solved, and 0 is iteratively

estimated by [40]

0" =0"" —(F(0))'Vf(0). (3.18)

The iteration of Eq. (3.18) is stopped when HBm —0“"”” <¢, where & is a small number.

When the stop criterion is reached after the i-th iteration, the estimated result is given by

=07, (3.19)

The initial phase and SNR of 0 for Eq. (3.18) are determined as follows.
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1) Initial value of phase
It is known that APD achieves MLE for discrete-time samples in a multi-bit scenario
[12]. For one-bit quantized data, although the accuracy may be degraded to some degree, the

initial phase of our approach can be readily determined by APD, which is denoted by
¢, = tan” (—] (3.20)

2) Initial value of SNR
After the initial phase is:determined, let ¢ = ¢, forz4(0) and 1,(0) in Eq. (3.14).
Then Eq. (3.14) is degenerated to be-a-function of o . Subsequently, the initial SNR can be

determined by searching ‘the minimum value with  respect to p in Eq. (3.14). The

one-dimensional search technique, the Golden section method [40], is‘used to find the initial

SNR, i.e. p,. Note that the accuracy of p;1s affected by the variance of ¢, . Hence a loose
stop criterion is used in the Golden section method to find the coarse p,, and the

computation time can be conserved.

3.3 Simulation and Discussion
3.3.1 Monte Carlo simulation

The Monte Carlo simulations are used to verify the joint phase and SNR estimation
method, wherein each case of different SNR and N is tested for 1000 trials. Let

f.=1.15TMHz and f, =4.096MHz in the simulation, then p=4096 according to Eq.
(2.3). Assume ¢?j is the estimated phase of the j-th trial, and ¢ is the true phase. The root

mean-squared error (RMSE) of phase estimation is defined by
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rvsEG) =| —= 6 -7 | (3.21)
1000 <

For SNR estimation, the RMSE is normalized to clarify the performance, which is denoted by

1000

1/2
1] 1
nRMSE(p) = —| —— . — o) | . 3.22
(p) p[moo;(n, p)} (3.22)

where p, is the estimated SNR of the j-th trial, and p is the actual SNR.

In the nonlinear least-square algorithm of Egq. (3.18), the stop criterion is given by
£ =0.0001. In addition, for using the Golden section method to determine the initial SNR, a
coarse resolution of 0.5 dB is used for the stop criterion. The one-bit ADC is commonly used
in low-power satellitc applications. For potential applications on GNSS receivers, the
proposed method will be simulated for SNR-as low as —30 dB. On the other hand, to illustrate
wide applicable range of our method; SNR up to 15 dB is-also considered.

The performance of phase and SNR estimation are illustrated in Fig. 3.1 and Fig. 3.2,
respectively. Note that the RMSE of SNR.is normalized ‘and denoted by percentages. In Fig.
3.1, the RMSE of the phase is improved with increasing SNR and N . The phase RMSE’s
are below one degree when SNR is higher than —12 dB and —22 dB for N =10’ and
N =10° cases, respectively. Moreover, the accuracy of 0.1 degrees phase RMSE is achieved
when SNR is higher than 12dB and —-2dB in each case. According to Fig. 3.2, the SNR
estimation performs well in moderate SNR. Accurate SNR information can be used to learn
the achieved accuracy of phase estimation in this range. Specifically, the nRMSE is less than
10% for —21dB<SNR <13dB when N =10 and for —30dB<SNR <14dB when
N =10°. Moreover, the estimation of SNR can be very accurate, i.e. nRMSE <1%, when

N=10° and —11dB<SNR <9dB.
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Fig. 3.1. RMSE of phase estimation.
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------ @ N=10°
------ 0 N=10°

0.1

-30 -20 -10 0 10
Fig. 3.2. Normalized RMSE of SNR estimation.
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Note that the nRMSE attains the lower bound when SNR is around 4 dB, and increases in
higher SNR. This phenomenon is investigated by plotting the mean I-Q outputs for
0dB <SNR <15dB as shown in Fig. 3.3. When SNR increases, the distance between
neighboring curves becomes smaller and the distinction between them is little. Specifically,
for SNR <4dB (dotted lines), the separations between the curves are recognizable.
However, the distinction between curves becomes closer when SNR >4 dB (solid lines).

Consequently, when slight variance occurs in the obtained I-Q correlation outputs for SNR
higher than 4 dB, the obtained /, and O, will be fitted to x,(0) and x,(0) with
significant SNR error in the cost function of Eq. (3.14). Therefore, the performance of SNR

estimation becomes degraded. Especially, when SNR >10dB , the curves are nearly

overlapped, and the error in SNR estimation increases rapidly.

s s = =
> = o oo

Correlation output ( 7 )
Correlation output ( )

L L L 1 1 -1 L L L 1 1

1
0 60 N 0 N 60 % 0 40 N 0 N 60 %
Phase (degree) Phase (degree)

Fig. 3.3. Mean I-Q correlation outputs for SNR between 0 to 15dB in 1dB step.
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Recalling that the variance of I-Q correlation outputs is approximately inversely
proportional to N, the standard deviation (STD) will decrease with VN . Hence, the
performance of the nonlinear least-square algorithm can be improved with JN . This is
consistent with the simulation results shown in Fig. 3.1 and Fig. 3.2. The results suggest that
N can be increased to compensate for the loss of amplitude information due to one-bit
quantization and the desired accuracy can be achieved.

3.3.2 Range of applications

GNSS receiver: For applications using carrier phase in GNSS receivers, the signal bandwidth
is assumed to be 2 MHz concerning .the coarse/acquisition (C/A) code. According to the
measured results of [46], when the elevation angles between 20° and 90° are of interest, SNR
from —30dB to —10 dB.will be considered for different applications. According to the
simulation results of N'=10°, the phase RMSE’s of our method are 2.5545 and 0.25203
degrees for SNR of —30dB and —10 dB, respectively. For L1 carrier (1575.42 MHz), these
errors correspond to 1.35 mm and 0.13 mm in length, and 1.73 mm to:0.17 mm for L2 carrier
(1227.6 MHz). Such performances are close to those-of high-quality receivers [44, 46]. Note
that C/A code synchronization is assumed to be achieved before carrier phase estimation. In
addition, the nRMSE of SNR is less than 9% when N =10° and SNR is between —30dB and
—10 dB. Regarding the potential application of POD in low Earth orbit satellites (LEO), the
accuracy of the orbit will be influenced by the satellite center variation, the attitude error, and
the antenna phase variation, which are at the centimeter level [47]. Our achieved phase
RMSE is much smaller than these variations. In addition, the phase RMSE is also
insignificant with respect to the ultimate accuracy after the orbit determination algorithm
reported in [47-49]. Hence, even though the proposed one-bit processing method is adopted,
the reported accuracy of POD in literatures can still be achieved. Furthermore, the quality of

data can be controlled by the estimated SNR. When the quality of data deteriorates owing to
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the low elevation angle, the cycle slip or the multipath, the unfavorable low-SNR can be
detected immediately. These data can be omitted to enhance the accuracy of POD.

Beacon receiver: For the tri-band radio beacon (150 MHz, 400 MHz and 1067 MHz) signals
now on board of several LEO’s, the received power on ground is at least —140 dBm [50].
Assume the noise floor is —173 dBm/Hz, and the bandwidth is 20 KHz concerning the
Doppler shift [51]. The minimum input SNR of the beacon receiver is then —10 dB. Suppose
the LEO is at an altitude of 450 Km above the sea level. The variation in signal strength is
approximately 15 dB. Hence, SNR’s between —10 dB and 5 dB are considered at the receiver.
When N =10, the corresponding phase. RMSE-of the proposed method is from 0.80765 to
0.16384 degrees for SNR between —10-dB and 5 dB:"Meanwhile, the nRMSE of SNR is less
than 3%. For measuring the TEC of the ionosphere in the beacon receiver, the relationship

between the accumulated carrier phase and the TEC is given by [51-52]

b= i (BT (3.23)
c cf

where L is the traveling distance, ¢ 1s the speed of light, "V, isthe TEC.

When carrier signals with frequency..of f =150MHz and f, =400 MHz are used in
beacon receiver, letting f =50MHz", "¢,=3 "and ¢,=8, we have f =¢q,f and
f> =q,f,. The term related to travelling distance in Eq. (3.23) can be eliminated by means of
a differential phase technique. The phase difference measured on the frequency f, is then

denoted by

apt_
4 49
ZL[ELJFSO.&r NTJ_L(ﬁL_SO.&r NTJ (3.24)
@\ C of; 4\ € ¢/,
80.67 (1 1
= N{—z——z]-
of, I
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When the proposed method with N =10 and SNR =-10 dB is applied to TEC
measurements, according to Eq. (3.24), the resulting measurement error is 8.75x107*
TECU (TECU: 10" electrons/m” ). The achieved accuracy is sufficient for science
requirement, i.e. 0.003 TECU [53].

From the above discussion, the use of one-bit ADC cooperated with the proposed joint phase
and SNR estimation can achieve high accuracy comparable to conventional approaches.
Since one-bit signal processing is simple, fast and without AGC, the proposed approach is

feasible for various high precision applications.

3.4 Summary

In this chapter, the method utilizing-the nonlinear least-square algorithm to accurately
estimate both the phase and SNR of sinusoidal carriers is proposed. From simulation results,
the phase RMSE decreases with SNR, as shown in Fig. 3.1. The phase RMSE is less than 0.1
degrees when SNR is higher than' 12dB and —2dB in the cases of N =10 and N =10°,
respectively. In addition, SNR estimation performs well in the middle range, as shown in Fig.
3.2. In particular, the nRMSE is less than 1% for N.=10° and SNR between —11dB and
9dB. The nRMSE increases in high"SNR region because of the tiny distinction between 1-Q
correlation outputs as shown in Fig. 3.3. Furthermore, since the STD of the I-Q correlation
outputs decreases with JN , the accuracy of the estimated phase and SNR can be improved
by increasing the number of samples, as verified in Fig. 3.1 and Fig. 3.2. Finally, potential
applications for the proposed efficient one-bit processing method in GNSS and beacon

receivers have been illustrated with respect to the high accuracy of the phase estimation.

42



Chapter 4
Code Phase Coherence Acquisition Method

In this chapter, a computationally-efficient code phase acquisition method, termed the
Phase Coherence Acquisition (PCA), is proposed. The method requires much less
computation than the FFT-based acquisition to search for the cross-correlation peak between
two PN sequences. This superiority becomes evident when the sequence length N is very
large such that the FFT-based approach is difficult to be implemented. For instance, the
acquisition of precision code (P code) with extremely long length in the GNSS system would
be one of the potential applications. We describe the motivation behind our work first. We
then develop our approach in the noiseless case and provide the essential idea in our
development. To achieve noise-robustness, we incorporate a novel segmentation scheme and
propose the PCA method. Simulation results are provided to wverify the analysis and
demonstrate the performance of the proposed method. Finally, the computations involved in
PCA and the FFT-based method are discussed. Note that the' PN sequence with length of
2°° —1 is used to demonstrate the two-layer PCA, which is a good compromise between the

simulation burden and performance illustration.

4.1 Motivation

The convolution theorem states that under general conditions the Fourier transform of a
convolution between two sequences is the pointwise product of the Fourier transforms of

these two sequences. The theorem can be represented by

F{x[n]® y[n]} = F{x[n]}-F {y[n]} 4.1)
where F denotes Fourier transform.
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By applying the inverse Fourier transform F~', we have
x{n]®y[n]=F " {F{x[n]}-F {y{n]}}. (4.2)

In many applications, the code phase search between two sequences is usually implemented
by FFT and its inverse due to the efficient computation compared with the exhaustive direct
serial search method. The computation of FFT of N points involves complex
multiplications and additions of order N log, N . Due to the diverse need for applications and
the increasing complexity of modern algorithms, a more computationally efficient method is
needed when the length of a processed sequence becomes so large that implementation using
the FFT method becomes difficult. Our proposal for the code phase acquisition that involves

much less computation is developed as-follows.

4.2 Acquisition by Phasor

Let S, ={x,,x,,-yxy,p and S,, ={y,,V;.-% Vy,s be the input and local PN
sequence of length N, respectively, where x ,y €{li=1} . In noiseless condition, the

cross-correlation between {x, } and' {y }is.denoted by

Cm)=Y x,., 7 (4.3)

where m=0,1,---N—-1.

Let the code phase shift between S,, and S§,, be g, where g<{0,1,---,N—1}. We first

map the input and local sequences into phasors as given by

N-1
X:Z%f” (4.4)
n=0
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27

where yzejW and j=+/-1.

We then calculate

(4.5)

N-— . N-1 .
:( xk+1717 +mj[zyk7/ J (46)
k=0

In order to present our.concept in a direct and effective manner, the maximal-length sequence

(MLS) is considered for sequence acquisition. The correlation between {x,} and {y } is

given by

Hence, Eq. (4.6) becomes

N-1
=) y"C(m)
m=0
N-1
=C(Qr'+
m=0,m#q

N-1

=(N+1)y? -
= (N -+

27
=(N+1)e V"
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N, if m=gq,
-1, if m#gq.

4.7)

y"C(m)

(4.8)



N-1
where the equality z y™ =0 1is applied in the above derivation.

m=0

Let the phase of IIbe W as denoted by

p=""4. (4.9)

The acquisition of the sequence can then be achieved by

g=—V"Y. (4.10)

2
Since the input sequence consists-of-+1 and .—1, the complex  phasor of Eq. (4.4) is
obtained by simply N additions (subtractions). Note that the computations of the phasor

regarding the local sequence can be omitted by calculating Eq.(4.5) in advance.

Fig. 4.1. Schematic plot of the phase resolution for phasors on the complex domain.
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In the above derivation, when the phasor of the input sequence is obtained by Eq. (4.4),
very few computations are needed to determine the shift g, much fewer than those required
in the FFT-based approach. However, the phase accuracy of the complex phasor is sensitive
to noise. The phase resolution is 27/ N according to Eq. (4.9). As shown in Fig. 4.1, when
N s large, the distance between adjacent phases is rather small which can easily lead to
errors in phase estimation under a noisy environment. Hence, it becomes necessary to design
an algorithm that permits the distance between adjacent phases to be increased, so as to resist

the affect of noise.

4.3 Phase Coherence Acquisition Algorithm

4.3.1 Segmentation
Suppose the input sequence S,—has the length of N =K M .1In the PCA, S, is first

partitioned into K disjointed segments of length M as denoted by

Ao N {xoaxKasza"'x(M—l)K}

A =10, X5 X s 'x(M—l)K+1}

: 4.11)
A =& Tk 5%k B Xk 1}

= {Xg 1> Xok 15 Xag 15" Xy} -

Similarly, the local sequence §,, is also partitioned into K disjointed segments as below:

B, = {yoaJ’KayzKa"'y(M—l)K}
1= {ylayk+1:y21<+1='"y(M—l)K+1}

=

: (4.12)
By, =WksVaks Vak1s Y1)
={Vk_1>Yak1>Vak 10" Yy -
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Suppose the code phase shift between the input and the local sequences is ¢ =cK +d , where

0<c<M and 0<d <K.Wethenhave y =x,, =x.,, and the following relationships:

By ={Vo, Vi> Yok Yowoni )

={X ok ras Xeayk+do> " s X -k +d>Xa>' "> x(c—l)K+d}
=A,(0)

4.13
B, =A,,(c) ( )

Byai = AK-l (©)

where A,(c) denotes the circular shift of A, with ¢ chips to left.

Note that the remaining By ;B ,.---,B,, can be derived by using the same logics but

with adjustments as given by

By o =k aoPrkcis Vak-ar " Vux-a}
R {x(de)JrcKer s XK -dyrckd>" " MK dcK +d ¥

= {x(c+1)K7x(c+2)K>'"axoa'"ach}

=A(c+1) (4.14)
By s = At

By, =A,, (c+]).

From Eq. (4.13) and Eq. (4.14), the relationships between A, and B, can be generalized as

follows:

B, =A,. (), 0<i<K-d-1

4.15
=A(d+i)modK(c+1)a K—-d<i<K-I. ( )

48



4.3.2 Acquisition by phase

In each segment of Eq. (4.11) and Eq. (4.12), we map the sequences into the complex

phasors by
M-1
X, =2 xpaa” (4.16)
n=0
M-1
V=Y v (.17)

n=

27

where a=¢ M and i=0,1,2,---K—1.

Let A;(m) be the segment <A, ‘with m circular shifts to'left, denoted by

A;(m)= {xmK+iax(m+1)K+ia"'axia""x(m—l)mi} . (4.18)

Accordingly, the complex phasor pertaining to A;(m) is given by

M-
Xi(m) = Z x(m+n)K+ia_n
n=0

M-1
Z —(m+n) m
= X a 24
(m+n)K+i
oo (4.19)
M-1
_m —u
= quﬂ‘“
u=0
=a"X

According to Eq. (4.19) and Eq. (4.15), the complex phasors Y, are derived by

Yi :at’ 'Xdﬂ'
o, (4.20)

v X, .  0<i<K-d-1
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Y=ac+l_X

i d+i

2
i—(c+1
/M( ) )
d+i>

Furthermore, the complex phasors X, and Y, can be expressed by

X, = X, |€j6i

Y =|Y|€j¢“

1 1

where 6 and ¢ denote the phases of X, and Y, respectively.

From Eq. (4.20) to Eq. (4.23), we have the following phase relationship:

$=0,+°%c  0%i<K-d-1
M

2 .
= i+d+ﬁ‘(c+1)’ K—-d<i<K=l.

Let G, bethe sumofthe K complex phasors, defined as

K—m—-1 K-1 . 2

i — ](¢i_9i+m_ )

G,= Y 401y e M
i=0 i=K-m

where m=0,1,2,---K—1.

According to the relationship in Eq. (4.24), when m =d , we have

K 1

Z’": S0 Z‘: e«f(qﬁ,—aﬂ,—%)
i=0 i=K-m
K-—m-1 ” K- Zi
= s Z v

i=0 i=K-

50

(4.21)

(4.22)

(4.23)
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Apparently,

|G, =K. (4.27)

Note that we have a peak magnitude given by Eq. (4.27) when the K complex phasors are
coherently added for G,. On the other hand, when m#d, G, is the sum of the K
phasors of non-coherent phases, and the resultant magnitude would be expected to be much
smaller than K. Hence, the value of d can be obtained by finding the peak magnitude

among {|G, |}. In addition, let ® be the phase of G,.From Eq. (4.26), we have

0=2% . (4.28)
M
Thus ¢ is given by
c=m-2 (4.29)
2z

Let the estimates of (c,d) be (é,a?). Practically, when d=d and ¢ is equal to ¢, the

shift ¢ =¢cK + d can be determined correctly.

In PCA, the input sequence is one-bit quantized, partitioned and transformed into phasors as
given by Eq. (4.16). The phase differences between phasors of the input and local sequences
are then utilized for the acquisition as given by Eq. (4.25). When the phase differences
between phasors are coherently added, we can have a large peak (|G, |) to determine the
correct segment for code phase acquisition. These processes simply require complex

additions and eliminate the need for complex multiplications which are the major advantages
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of the PCA method. The segmentation process confers noise-robustness in the PCA method
since the distance between adjacent phases is enlarged from 27/N to 2z/M as

compared to Eq. (4.9) with Eq. (4.28). The acquisition by phase thus becomes more robust to
noise. However, the estimated (é,c;’ ) could be erroncous when the SNR is very low,

especially ¢. In such situations, the multi-layer scheme can be applied to enhance noise

resistance in the PCA method.

4.3.3 Multi-layer PCA
In the multi-layer PCA, the 1¥-layer process is identical to the method described above. First,
the input and local sequences of length N -arepartitioned into K, segments of length M,

where N = K,M,. Assume the shift is denoted as ¢ =c,K; +d,: In the 1°-layer, only d, is
estimated by finding the'peak of |G| in Bq. (4:25), and .c, is left undetermined owing to

the sensitivity to thereffect of noise. Note that the superscripts “(1)” and “(2)” in G

m

indicate the 1¥-layer and the 2"-layer, respectively. After completion of the 1%-layer, we

assume d,=d, and

B, = A, () 0<isK, =d, =1
A (4.30)
A, (44D | K —d <i<K -1

d,+i

where ¢, is still undetermined.
We rewrite Eq. (4.30) by

B,=A" (c),  0<i<K -l (4.31)

where
A, (),  0<i<K -d -1

A’ (¢)=
d;+i 1 A .
A; e+, K —d <i<K -1.
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From Eq. (4.31), all of the pairs of (A', .,B;) have the same shift of ¢, chips between

them, which is the key for the following derivation in the Z"d-layer.

The process of the 2"-layer is next introduced. For simplicity, the pair (A" i, ,B,) s taken as

an example, where each A', and B, contains M, elements and their relative shift is ¢,

ie. B, = Ay (¢)). Let M, =K,-M, and assume c, =c,K,+d,, where 0<c, <M, and
0<d,<K,. First, Ay and B, are partitioned into K, disjointed segments of length
M, as before. The two-layer segmentation scheme in PCA is illustrated in Fig 4.2. Note that

the elements of Segment A, are furtheri denoted by u,, i=0,1,---M, -1 in Fig 4.2(b).

Each of the 1®-layer segments will-be further partitioned like that in Fig. 4.2(b) in the

2" layer. Following the same calculation as Eq. (4.25), the sum of the K, complex phasors

is obtained for (A'{11 ,B,), given as

Kol EREIN g-0 )
= K s+r 2
H.,= e + E e (4.32)

=0 s=K,—r

where r=0,1,---,K, -1 and_ (¢",0' ) are the corresponding phases involved in the

2z
. ]762 . .o, . .
calculation. When r=d,, we have H, ;=K e M2 “under the noiseless condition, which

has the maximum magnitude among {H, } .

When the similar calculation is applied to the other pairs (A'.  ,B,), i=1,2,---,K, -1, their

d,+i’

associated H,, can then be obtained. Afterwards, all of the H,;’s are used to calculate

14

K-l
G? = z H, (4.33)
i=0
where r=0,1,---,K, 1.
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Received
N samples

Xy_1

M, samples
in Segment

Uy

Fig. 4.2. Schematic plot of two-layer segmentation: (a) segmentation in the 1*-layer; (b)

Since all the pairs (A',

9
d;+i

¢ =c,K,+d,, G will have a peak magnitude among {G'*}. Specifically, in noiseless

condition, we have

Uy i Uy Upng-1
Xo | Xk, X2k, XM, 1)K,
X | X | X2k XM, -1k, +1
Xy | Xxe2 | X2k, 42 XM, -1k, +2
X1 Yok, -1 | X3k, -1 Xn-1
(a)
Ug | My tok, Ua,nk,
U | Ug o | Uk, U, -k, 1
Uy | Uk, o Uk 12 U, -1k, 2
Ug, | Uygyar f Yk, 1 Uy
(b)

segmentation of segment A, in the 2“d-layer.
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=Y K,-e™ (4.34)

where the peak magnitude is KX, .

Similar to the 1%-layer, by finding the peak magnitude among {| G* |}, we can estimate d,,

which is denoted by d,.Let ® be the phase of G as given by
o=" ... (4.35)

Similar to Eq. (4.29), the estimate of ¢,, denoted by ¢, , is obtained by

&= My (4.36)

Note that the separation between adjacent phases is_further enlarged from 27/M, to
27 /M, according to Eq. (4.35), which results in.the significant increase in noise resistance.
Note that ¢, can also be left undetermined after the 2nd-1ayer and determined by the

3" layer, if necessary. Nevertheless, from our simulation results, two layers appear to be

sufficient for most applications. Finally, the estimate of ¢, denoted as ¢, is calculated as

qA = 61K1 +C§1

R R (4.37)
=(¢,K,+d,)K, +d,.

4.3.4 Error detection capability
When the segment of the 1¥-layer is correctly estimated, i.e. c?l =d,, we obtain a much
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larger peak in the 2"%-layer for c;?z =d,. Taking the noiseless case for example, we have the
peak of K, in ‘Gfill)‘ according to Eq. (4.26). In contrast, a much larger peak of K K, is

obtained from ‘Gf,f)‘ using Eq. (4.34). As a result, the existence of a significant peak in
|G| of the 2" layer can be used to verify the correctness of aA’1 , which shows the inherent

error detection capability of PCA. Accordingly, the correct 42’1 can be obtained with some

recursive algorithms by utilizing such error detection properties and the performance of the
multi-layer PCA can be further improved. This special feature has been verified in our

simulations. The processes of two-layer PCA are illustrated in Fig. 4.3.

Received
sequence

Segmentation
N =K M,

— Phasors of local
Derive G, sequernce

|
|
|
|
1 |
|
|
|
|

A

- d, : the maximum among |G |
Error correction
. > A )
algorithm =M  —
7Y 27

-
"—————————————

Relevant segment order shift by
d, according to Eq. (4.30)

l

|

|

|

Partitioning each segment |
into K, subsegments: M, =K, M, I
|

|

|

|

|

l

no If max|G? | is
significantly large?

l yes
Determine d,, ¢, from Eq. (4.33) and Eq. (4.36)

2nd layerI

More layers if necessary

Fig. 4.3. Flow chart of the process of two-layer PCA.
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4.4 Performance of PCA

Let the input PN sequence be {x,}. Assume the sequence is distorted by zero-mean

Gaussian noise ¢, with variance aé , and is one-bit quantized as denoted by

w, =sign(x, +¢,) (4.38)

where n=0,1,---,N—1, sign(z)=1 if z>0 and sign(z)=-1 if z<0.

In the 1°-layer, the input and local sequences, {w,} and {y,}, are partitioned into K,

segments of length A, as denoted by

A = W We i Waki " Wk, i) (4.39)

B, =0 Viuis Var s Yiv-nyk, i (4.40)

where i=0,L---, K, -1«

Similar to Eq. (4.16) and Eq. (4.17), the complex phasors‘are defined by

M, -1 )
W=>w,. o'
i ; nkK, +i (441)

="

M -1
_ -n
Yz’ - Z ynK1+ia
n=0

_ Jé;
=| ¥, |e".

(4.42)

Moreover, according to Eq. (4.25), the sum of complex phasors is given by
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=K (4.43)

where ,, denotes the phase difference between the complex phasors W, and Y,

1

-7y, <7 and m=0,1,---,K,.

Let the shift between {w,} and {y,} be ¢=cK,+d,. As derived in the Appendix C, the
magnitude of |G| with m#d,, i.e.the sidelobe, is a random variable with the Rayleigh
distribution given by

A )—K/2 G (4.44)

where f(r,) is the probability density functionof |G\’ | and r, >0.

In addition, |G, | with m&dj,ie. |Gy |, has the Ricedistribution given by

r —(r;+ %cl)/20'[2,1 s ILl e
f(rp):a—ge “ ~IO[ L 2‘”} (4.45)

pl O-pl

where r,2 0.

For a given r,, the probability of r, >r, is denoted by
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Pr(r, >1,) = j " f (),

)drs (4.46)

Because there are K, —1 sidelobes in the G.’, the correct d, is obtained when |G}’ |is

greater than all of the other K, —1 sidelobes. Hence, for a given r,, the correct probability

of detecting d, is given by

Py(r) = [1 _exp (—%J] \ (4.47)

,=d,, 1s

>

When the distribution”of 7, is considered, the correct probability of d,, i.e

denoted by

P = L:O Py(r,)f (r,)dr, . (4.48)

Furthermore, the probability of correct ¢, shall be considered for the correct acquisition

M

in the one-layer PCA. According to Eq. (4.29), ¢, is obtained from the phase of G,’ and,

thus, the probability of detecting ¢, can be derived in light of the phase distribution of G;I) .
Specifically, let the phase of G;I) be ¢. For simplicity, assume ¢, =0. According to the

schematic concept shown in Fig. 4.1, ¢ is correct if |¢|§V. Utilizing the joint
1

magnitude and phase distribution of Gg(,}) derived in the Appendix C, we have
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r P = 2r cOs
() =—2 —exp| - » T Hgel 2p,uRel o (4.49)
g 2707, 20,
where -7 <p<r.
The joint probability of the correct d, and ¢, 1is then denoted by
A V4
Pe, = Pr[dl =d,, |p|< V]
! (4.50)

- IOAZI:Pd(”p)f(Vp,qﬂ)dl’pdgp_

We use the MLS of length -N =2% —] to-verify the analysis. Let K, =2""+1 and

M, =2""~1. The mentioned correct-probabilities above are simulated by the Monte Carlo

method with 10000 trials. The correct probabilities of P, and P are shown in Fig. 4.4

and Fig. 4.5, respectively.

0.2}
— Analytical
¢ Simulated
0 1 L 1 L 1 1 1
20 -15 -10 -5 0 5 10 15 20

SNR (dB)
Fig. 4.4. Correct probability of d, in the 1¥-layer of PCA.
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Fig. 4.5. Jointcorrect probability of d,” and ¢, «in the I®“layer of PCA.

In both figures, the analytical and simulated results well agree with each other, which justifies
the wvalidity of our analysis. The <correct probability of  d, approaches one when
SNR >—-15dB and begins to degrade with decreasing SNR. Note that the probability of d,
is critical to the PCA performance. The acquisition process will fail if d,, i.e. the correct
segment, cannot be correctly detected. On the other hand, the correct probability of P, is
worse than P, , which approaches one when SNR >10dB but drops to below 0.1 if
SNR <0dB. Besides the correct probability, the standard deviation (STD) of ¢, is also

derived in order to study the deviation in code phase shift. We consider the STD of ¢, with

the condition that cz’l =d,, which is denoted by

1/2
1 ¢~ o
o,= P_J._;;¢2..[0 Pd(rp)f(rp,(p)drpd(p} ) (4.51)
D1
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Fig. 4:6. STD.of ¢ in the 1*“layer of PCA when d| =d, .

In Fig. 4.6, the STD decreases with SNR. Specifically, the STD of ¢, is about 4 chips when
SNR =0dB and decreasesto within'one chip for SNR = 6dB : According to the STD of ¢,

the one-layer PCA performs well only in.the case.of the high SNR. For applications in low
SNR, the 2™-layer is needed to improve the performance of PCA.
Let M,=K,M, and ¢, =c,K,+d, inthe 2""layer of PCA. According to Eq. (4.32) and

Eq. (4.33), the sum of complex phasors is given by

Kl Kot Kol gt
G = Z ef(tﬁ,,z Oren) 4 Z e M,
‘ (4.52)

where n=0,1,---,K, .
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For simplicity, we assume érl =d, for the analysis of the 2"Jayer. According to Appendix

C, the magnitude distribution of the sidelobe of |G | with n#d, is given by

/ 2
[)=——t ¢ Ik 4.53
T =k 2 (353

where [ >0.

On the other hand, the magnitude distribution of |G'* | with n=d, is denoted by

o, O

[ —(P 4 o [ e
f(lp)z 1; e (p+HRe2)/ 20, IO[ PIUZR 2) (4.54)

where lp >0.

Similarly, for a given /,, the correct probability of d, is the probability that /, is greater

than all the other K, —1 sidelobes, which is denoted by

P,(,) =(l—exp(— Kl;( j] : (4.55)

Considering the distribution of / , the correct probability of d,, i.e. ‘;12 =d,, is given by

Py = [ P(,)f(,)dl, . (4.56)

Furthermore, the joint distribution of the magnitude and phase of G;zz) is given by
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l P+ oy, =21 cos 9
£(0,.9)= —— Hrer 2p,URez (4.57)
270, 20,
where —7<9<r.
Hence, the joint probability of the correct d, and c, is denoted by
P = [ ], Pul,) 1 o 9l dop. (4.58)

The correct probabilities of Py, and P, are shown in Fig. 4.7 and Fig. 4.8, respectively.
We use the same parameters. for the 1¥-layer and take K, =2>+1 and M, =2’-1 in the

2" layer. Still, the analytical results-are consistent with the simulated values in both figures.

The improvement brought by the 2™ layer is significant, since the correct probability of d,

approaches one for SNR' from —-20 to 20 dB in Fig. 4.7. Moreover, the joint correct

probability of of d, and ¢, is greater than 0.9 when SNR >-20dB: in Fig. 4.8.

Similarly, the STD of ¢, with the condition that 6?2 =d, 1s derived by
1/2
R R XAV YT 4.59
o, = P—mj” w0, 9d,a9| . (4.59)

In Fig.4.9, the STD is much less than one chip for SNR >-20dB and approaches zero when
SNR > 5dB. The noise-robustness of the multi-layer PCA is thus verified, especially in the
case of low SNR, comparing Fig. 4.6 with Fig. 4.9. Note that the performance of PCA is
actually related to the chip error probability. Hence, the varying SNR due to fading in the
long PN sequence will not significantly degrade the performance of PCA. The non-uniform
SNR can be approximated by a nominal SNR, which is associated with the actual chip error
probability of the sequence, such that our analysis is still applicable.
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Fig. 4.7. Correct probability of d, inthe 2" layer of PCA.

1w

0.8}
~ 0.6}
&)

0.4}

0.2

Analytical
¢ Simulated
0 1 1 1 1 1 1 1
20 15 -10 -5 0 5 10 15 20
SNR (dB)
Fig. 4.8. Joint correct probability of &, and ¢, inthe 2" layer of PCA.
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Fig. 49: STD of &, in the 2""layer of PCA when d; = d, .

4.5 Computation of PCA

The computation of PCAis studied and compared with that of FFT-based acquisition. Here
we assume that the computations regarding the local sequence are omitted, since it can be

calculated in advance. For the 1¥-layer process of PCA, the derivation of the phasors of the
input sequence as shown in Eq. (4.16) requires K, -(M,—1) additions. In addition, the

calculation of G’ in Eq. (4.25) requires K,-K, additions (subtractions) for phase

difference and K, (K, —1) additions for the sum of phasors. Regarding the computation of

the complex phase in Eq. (4.22), CORDIC computing using shifts and additions can be
utilized [54]. In CORDIC, let B denote the parameter associated with the required phase

resolution in the 1*-layer, i.e. tan™' LI < ]2‘4—7[ for Eq. (4.28). For example, when FB =8, the

2f .

phase resolution is sufficient for M, =2'"—1. As a result, 3K,P, additions are needed for
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computing the complex phases in Eq. (4.22). Hence, the overall addition in the 1*-layer is

K,-(M,+2K,—2+3P). For the 2"-layer process, K,K,-(M,—1) additions are needed for

the input phasor, and K, -K; +K,K,(K,—1) additions for computing Eq. (4.32) and Eq.

(4.33). In addition, assume that the required phase resolution in the 2"-layer is

tan”' LP < 2—7[, we then need 3K K,P, additions for the complex phase using the CORDIC
2% M,

computing. Therefore, K,K,-(M,+2K,—-2+3P,) additions are required in the 2"-layer.

When N is very large, K, and K, are correspondingly large. The computations for the

phase then become relatively insignificant in PCA. In addition, as we consider the case with
K =M, = JN and K, =~ M, =M, , approximately 34V cadditions are required for both

the 1°- and the 2"-layer. Note that the number of computations is almost the same in each
layer, which is an inherent advantage of the multi-layer PCA. The comparison of the
computational load between the two-layer PCA and the FFT-based method is shown in Table
4.1. The computational burden is significantly reduced in PCA, and the efficiency of PCA is

thus clarified.

Table 4.1. Computations of the two-layer PCA and the FFT-based method

Operation

Method Multiplications Additions
PCA 0 6N
FFT-base method 2Nlog, N 2Nlog, N

4.6 Summary

In this chapter, the PCA utilizing complex phasors for the PN sequence acquisition is
proposed. Particularly, the PCA requires only complex additions but no complex
multiplications. In addition, the acquisition performance can be improved via the use of the

multi-layer scheme that also provides an inherent error detection capability. In the
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demonstrated case using MLS of length N =2 -1 in the two-layer PCA, the correct
segment of the 1%-layer is obtained with probability approaching one when SNR >-15dB
as shown in Fig. 4.4. In addition, with the correct segment, the acquisition performance with
correct probability greater than 0.9 can be attained for SNR >—-20dB after the 2"%-layer as
shown in Fig. 4.8. Note that, because the performance of PCA is determined by the chip error
probability, the fading effect as well as the varying SNR can be represented by a nominal
SNR that is associated with the actual chip error probability of the sequence, and the analysis
results can thus be used appropriately. It is noteworthy that the PCA requires much less

computation than the FFT-based approach as discussed in Section 4.5 and Table 4.1.
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Chapter 5

Conclusions and Future Work

In this dissertation, the one-bit high-accuracy phase estimation for the tracking process is
investigated. The traditional APD and the NB-DPD accurately estimate carrier phase in low
and high SNR, respectively. However, the estimation bias becomes significant and their
accuracy deteriorates in moderate SNR. Focusing on this SNR range, we propose the
SNRaPD using the nonlinear least-square-algorithm:with the aid of SNR information to
improve the accuracy. Because SNR information is critical to the phase accuracy and may be
unavailable in many applications, the-nonlin¢ar least-square algorithm of SNRaPD is further
developed to jointly estimate the accurate phase and SNR. Potential applications for the
one-bit estimation method in GNSS and beacon receivers are illustrated regarding the
attainable phase and SNR accuracy. It is worthwhile to mention that, owing to the efficient
one-bit processing, the range of applications of the proposed method can be easily expanded
by increasing the number of data and can-accommodate signals with a high dynamic range.

On the other hand, we also propose the PCA method that applies the coherence phase of
complex phasors to the PN sequence acquisition. Since the PCA simply utilizes the phase
differences rather than the amplitude, the PCA requires only complex additions but no
complex multiplications. Segmentation, phasor acquisition and the multi-layer scheme are
designed in the PCA to enhance the noise-robustness capability. In particular, the multi-layer
scheme also provides an inherent error detection capability. For applications having extra
SNR margin, such as the high-SNR applications or the processing of de-noised signals, the
use of PCA will require much less computation than the FFT-based method. The superior

performance on the computation grants the PCA an efficient method when the length of a
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sequence is so large that the FFT-based acquisition is infeasible.

Future works related to this dissertation involve two parts. First, concerning the carrier
phase estimation, we assume that frequencies of the input and local carriers are identical
throughout the work of one-bit phase and SNR estimation, which may not be the case in
realistic applications. In practice, the Doppler shift may increase the error associated with the
carrier phase estimation and the receiver may thus lose track of the incoming carrier signal. In
order to broaden the scope of this work, the effect of Doppler shift should be considered and
the tolerance of the frequency shift in the phase estimation algorithm needs additional study.
Consequently, the associated influence. on racecuracy requires further investigation and
clarification. Second, although. the computational burden is significantly reduced in the PCA
comparing with the FFT-based method, the performance of the FFT method is superior to that

of PCA, ie. P

1 » When the SNR 1s-low. Therefore, new algorithms should be designed to

enhance its noise-robustness of the method, such that P, could approach one in lower SNR.

Once the 1*-layer detection is correct, it‘is almost assured that the detection of the further

layer will also be correct.
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Appendix

A. Derivation of mean and variance of I-Q channel outputs
According to Eq. (2.4), for @, €[0,7), we have sin®, >0. In inphase (I) channel, the

conditional probabilities are denoted as

Prob(a, =1|®,) = Prob(sin(®, +p)+v, 20| D, )=1-P, (A1)

Prob(a, =—1|®,) =Prob(sin(®, +@)+v, <0|D,)=P,. (A2)
k k k k k k

Thus the mean and variance of '@, are given by

ty,=1-Prob(a, =1|®,)+(=1)Prob(a, =-1|D,)

A3
=1-2p, (A9

o, =Ela1- 1.
=1-(1-2P,)’ (A4)
=4(P.=P;).

Similarly, for ®, €[7,27), we have sin®, <0. The conditional probabilities are denoted

as
Prob(a, =1|®,) = Prob(sin(®, + @) +v, <0|D,)=P, (AS)

Prob(a, =-1|®,)=Prob(sin(®, +@)+v, 20|D,)=1-P, . (A6)

The associated mean and variance are given by
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H, =2P, —1 (A7)

o, =4(P, —P)). (A8)

Assume the noise component in each sample is independent. Since ®,’s are uniformly

distributed over [0,27), we have

> (1-2P)+ D.(2P, -1 (A9)
D€[0,7) DO e[7,27)
4 2=
o, =—22 (A10)
k=0

Similarly, by the same calculation, the mean and variance for the quadrature (Q) channel are

obtained by

1
o == > (1-2PH+" > (2P, -1 (Al1)
P | opelox/2)03z/2,27) O, e[7/2,37/2)
4 L=
= —ZZ (A12)
k=0

B. Power series representation of mean and variance of I-Q

channel outputs

The power series representation of the Q-function is given by [39]

l_ 1 ( l)m 2m+1
Q=7 Zm'2’”(2m+1) B1)
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Hence Eq. (2.10) is rewritten by

1 2 & (ED"(rsin(@, +¢)! 2 & (D" (rsin(@, + )™
=— 1- _ 1—
ol p{@g[z,;‘z,,[ 2z Z; m2" (2m+1) } @AEZ[;{,,[ 2z Z; m2" (2m+1) }} (B2)

( 1)”72”“ 2m+l : 2m+1
\fz m2" (2m+l){ Lkez[o:f:n(@ o %E[Zﬂ;;l)n(@k +9) }}

Suppose we choose f. such that p is sufficiently large in Eq. (2.3), Eq. (B2) is

N

approximated by

~ ( l)m 2l 1 2m+l 2m+1
= \f >l W2 oD 12 { [ j sin®"! (@ # ¢)d D — j (@ + ¢)d®}} (B3)

m=0

where dO=27/p—0.

By the power series representation of the integrand involving the odd power of sin(x) [39

Sec. 9.2.1], Eq. (B3) can be further written as

4 e et 2m=+1) cos(2m=+1-20)¢
\/_3/2,;)7%’23’"(2 +1)[Z( )( ! j oy +1-21 } >

The derivation of the mean value of the Q-channel output is omitted because of similarity. In

addition, using Eq. (B1), the variances of the I-Q channel outputs of Eq. (2.7) are derived by

9
[
q

o)

2 27w m2" (2m +1)

LS sin@, +9)™ ] [1 1 D" Grsin®, )™ :
F =0 m2" (2m+1) (BS)

I

"BN‘ N
= [~

i l
=3 L
—
|—|

[\) —

12 Gl sn@, )" & (D (sing@, + )" T

B p p'm ;{z (m2" 2m +1))* Z;}Z;, Xy 2x+ D)2y +1) }

212 L {Z (sin@ )™ & 5 (D™ (y§1n<d>+¢))2<X*~‘>*2} .
p pr 27w = (mR2"(2m+1))? =50 (GyRTT2x+DR2y+1)

By the power series representation of the integrand involving the even power of sin(x) [39,
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Sec. 9.2.1], Eq. (B5) can be further written as

12 i 4m+2 yi
p pr|& 2m+1 (m'23m+l(2m+1))

22.01 Zoo: 2x+ 2y + 2 (_1)x+y 7/2(x+y)+2
S5 x+y+l )Xy x+ D2y +1) |

(B6)

+

C. Magnitude and phase distribution of G,

The distribution of G, in the 1¥-layer, G’ ,is derived first. We rewrite Eq. (4.38) as

w =x, +B%, (CD)

where [ €{0,2} and,x, denotestheinverse of x, .

In Eq. (C1), when S =2, wehave w, =X, indicating that an‘error-occurs because of

noise ¢, . The corresponding error probability is given by

P =Pr(f =2
e (ﬂn ) (Cz)
=0(l/o,)
where  O(z) = j “e Py
We can represent Eq. (4.41) as
W z nKl-H
- z an +la "+ Z ﬂnKIH nK|+1 - (C3)

n=0

_ = -n
- Xi + Z ﬁnKlJrianl +
n=0
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M,-1
where X, = Z X, is assumed to be fixed.
n=0

Let E{z} denote the expected value of z.The mean value of W, is obtained by

M1
EW,} = E{Xi + Z ﬂnKlJr[anlJria_n}
n=0

M1
= Xi + E{ﬂn +i}fn +iain
,Z:(; K, K, (C4)
M,-1
=X, + 2Pe ) Z )?nK]ﬂ'a_n
n=0

=(1-2P)-X,

M, =1

where E{f,, .. }=2F, and ZEAKIHa_”:—Xi.
n=0

Furthermore, to obtain the variance of W, we calculate

M -1 M- *
E{WW*} = E{(Xz + Z ﬁnKlJrianlJria_nJ.(Xi + Z ﬂmKIH'melﬂ‘a_mj }
n=0 m=0
M1 M1
= )(i‘)(:< + Xi ) Z E{ﬁmKﬁi}melﬂ‘am + Xi* ’ z E{ﬂnKlﬂ' anlﬂ'a_n
m=0 n=0
M1 My-1
+ E{[ Z ﬁnK1+ian1+ia7n \J ( Z ﬂmKﬁ—imeﬁ—iam]
n=0 m=0
2 * * Ml_l — — (Cs)
=X, [ 2P, - X, X] -2F, - X/ X, + z E{ﬂnKl +iﬂmK1+i}an| +i%XmK, aat
n=0

M -1 M, -1
— -n = m
+ E Z ﬂﬂK1+ixﬂKl+ia Z ﬂmKlﬂxmKlHa
n=0 m=0

m#n
M1
2 2 - = -
~| Xi | _4Pe | Xi | +4Pe z an1+ixmKl+iam !

n=0
m=n

=] X, |2 _4Pe ‘ X, ‘2 +4PeM1
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M1 M1
- —-n - m _
where  E z ﬂn[(] +i%nk, +i % z leKlJrixmKlﬂ‘a ~0 and E {lgnKlH‘ﬂmK] . =4F,  when
m=0

n=0
m#n

By using Eq. (C4) and Eq. (C5), the variance of W, is derived by

Var(W,y = E{W, P}~ ( EQ,} |
= EVW;}—EQW- (B} .

. (Co)
=| X, [ 4P| X, [ +4PM,-((1-2P)X))-(1-2R)X))
=4PM, -4P?| X,[ .
It is reasonable to assume that { X", } involved in X, is'a PN-sequence of length M, .
Similar to Eq. (4.8), we have
| X, P~ M, +1. (C7)

Let the code phase shift between input and local MLS be ¢ = ¢,K, +d,. Considering the
sidelobe of |G|, i.e. m=d,, in Bq. (4.:43), the phases ¥, can be considered to be

uniformly distributed between —7z and 7. According to [55], the magnitude distribution of

|G |, denoted by 7., can be modeled using Rayleigh distribution, given as

rooo
f(r)= K—Y/ze H (C8)
1

where 7,>0.
On the other hand, for the |G'”| with m=d,, Eq. (4.43) is represented by
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Kl 20 (€9)
= Z e M'
i=0
where Ag. denotes the phase error induced by noise.
Without loss of generality, we assume ¢, =0. Then Eq. (C9) becomes
K-l
Gy =D e (C10)
i=0

The A¢ denotes the phase difference between the input phasor W, and local phasor Y
caused by noise. Since we have the mean and variance of W, in Eq. (C4) and Eq. (C6),

according to [55, Sec. 4.4], the distribution of A¢ can be approximated by

T(Ag) =7 [1 + G exp(GY)(1+ erf(G)] (C11)
2z

(EWY o

where p= Vargy

pcos(Ag) and -7 <Ag <7.

Moreover, in order to obtain the magnitude distribution of Gg(,ll) , Eq. (C10) is reformulated by

K-
M _ JAd
G, = Z(): e
p

K- K -1
=Y cos(Ag)+j D sin(Ad) (C12)
i=0 i=0
::IﬂRe_+.jIﬂIm
K, -1 K,-1
where 'y, = z cos(Ag) and I', = Z sin(Ag,) .
i=0 i=0

We assume that each cos(A¢g) and sin(A¢) are independent and identically distributed
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(i.i.d.) random variables. Let N (u,0°) denote the normal distribution function with mean

u and variance o’. By the central limit theorem, 'y, and T, can be approximated by

two normal distributions N ( ,uRel,aéel) and N ( Mo afml) , respectively, and the parameters

are obtained by

Hrer = E{[f COS(Aﬁé)}

. (C13)
= z E{cos(Ag}
i=0
K-l
Oper = Var{z cos(A¢l.)}
i=0
= (C14)
=Y Var{cos(Ag)}
i=0
K -1
M =D E{sin(Ag)} (C15)
i=0
K=l
O = Y. Var{sin(Ag)} (C16)
i=0
where Var{e} denotes the variance.
Numerically, we find g, #0 , u,=0 and o, =0,, . For simplicity, let

0;1 = (o4, +07.,)/2. According to [55], the magnitude of Gflll), denoted by r,, can be

modeled by Rice distribution given as

r (P o2 r e
flr)=—e T 'fo[ = J (€17)

rl O-p]
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where 7,20 and /,(-) is the modified Bessel function of the first kind with order zero.

In addition, the joint magnitude of phase distribution of Gf,]” is given by

r Pl =2r cos
f(rp,(0)= pz exp| -2 Hrel 2p,uRel 4 (C18)
270, 20,

where -7 <p<rx.

The derivation of magnitude and phase distribution of /G, can be applied to other layers.

We take the 2"%-layer for example. For thesidelobe of |G® |“with n#d, in Eq. (4.52),

the phases y,, ., can be considered-to-be uniformly distributed between —z and 7. The

distribution of sidelobe of | G'” |, denoted by /., can then be modeled by

] )
/)= s e_l“' KK, C19
F() XK.12 (C19)
where ls >0.
Moreover, let
K-1K,-1
Hrer = 2, O Efcos(y,,..)} (C20)
i=0 t=0
K, -1K,-1
Orer = . 2 Var{cos(y, ., )} (C21)
i=0 t=0
K-1K,-1
iy = 2, D Efsin(v, ., )} (C22)
i=0 ¢=0
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K -1 K,—1

Oy = 2, D Var{sin(y,,,, )} (C23)

i=0 =0

The magnitude of G\ with n=d,, denoted by [ , is modeled by

l 2,2 2 l
S,y = .10{ :J (C24)
p2 p2

where [, 20 and o, =(0g,, +0p,,)/2.

(C25)

where —7<9<r.
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