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Abstract

Orthogonal frequency division multiplexing (OFDM), being a multicarrier modulation tech-
nigue, is well known for its high spectral efficiency and has been adopted in many wireless
systems. The high efficiency of OFDM comes from the fact that the spectrums of its subcar-
riers are overlapped and orthogonal each other. However, when the carrier frequency offset
(CFO) is present, the orthogonality between the subcarriers is lost and inter carrier interference
(ICI) is induced causing performance degradation. As a result, CFO must be estimated and
compensated before the actual transmission can be conducted. In this dissertation, we study
the maximum-likelihood (ML) methods for CFO estimation in OFDM-based systems, assum-
ing that unknown periodic received sequences are available at the receivers. Specifically, we
solve the ML CFO estimation problems in conventional OFDM, orthogonal frequency division
multiple access (OFDMA) uplink, and cooperative amplify-and-forward (AF) OFDM systems.

In conventional OFDM systems, the ML CFO estimator requires the inversion of an correla-
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tion matrix. When the number of subcarriers is large, the computational complexity can become
prohibitively high. We then develop a new ML method that can yield a closed-form solution
without the inversion. The advantage of the proposed method is that the required computational
complexity is low. The proposed method is further extended to a joint CFO and symbol timing
offset (STO) estimation. Theoretical CrarrRao lower bounds (CRBs) are also derived to ver-
ify the optimality of the proposed approaches. We then investigate the CFO estimation problem
in interleaved OFDMA uplink systems. Since the periodicity is inherent in OFDMA systems,
no training sequences are required. As previously, there is an correlation matrix in the likeli-
hood function to be inverted. Since multi-users are involved, the CFOs in the likelihood function
become intractable after the matrix inversion. We propose using a series expansion method to
express the inverted matrix. By properly truncating the expansion, we can obtain a closed-form
expression, solve the optimum CFOs with a root=finding method, and derive the corresponding
CRB. Simulations show that the performance of the proposed method can approach the CRB.
We finally consider the ML CFO estimation andthe power allocation problem in cooperative
AF-OFDM systems. In this scenario, the noise at the destination becomes colored. The colored-
noise problem has not been considered before. Thus, the existing ML methods are not optimal
and the existing CRBs are not valid. Since the likelihood function is a complicated function of
the CFO, we then propose a gradient-descent method to solve the problem. The expression for
the CRB for the CFO estimation in AF-OFDM systems is even more complicated and a simple
solution cannot be obtained. We then propose an approximation method such that a closed-form
solution can also be derived. Simulations show that the approximated CRB is accurate and the
performance of the proposed gradient-descent method can approach the CRB. Minimizing the
approximated CRB, we further propose two power allocation algorithms (PAA), implemented
with constrained gradient-based method, for the source and relays. Simulations show that not
only the performance of the CFO estimation is greatly enhanced, but also the signal-to-noise

ratio (SNR) between source and destination is improved.
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Chapter 1

Introduction

Rthogonal frequency division multiplexing (OFDM) is known to be a promising modula-
O tion technique [1]. It can provide high transmission data rate, resist multi-path channel
fading, achieve high spectrum efficiency, and. have efficient implementation architectures [2].
This technique is suitable for the high-speedwireless communication. As a matter of fact, many
wireless standards such as Wi-Max, IEEE802.11a, DVB, LTE [3], have adopted the OFDM
modulation. The main idea behind OFDM is to split a wide band channel into narrow band
subchannels such that the subcarrier in each subchannel can experience flat-fading channel ef-
fect. The high efficiency of the OFDM system comes from the fact that the spectrums of the
subcarriers are overlapped and orthogonal each other. However, if the carrier frequency offset
(CFO) is present [4], the orthogonality will be destroyed and inter carrier interference(ICl) is
induced [5] [6] [7], degrading the performance of OFDM systems [8]. CFO arises due to the
Doppler shift and the frequency mismatch between the transmitter and the receiver. It has been
shown that the bit error rate (BER) of a OFDM system [9] is proportional to the magnitude
of CFO. In real-world applications, CFO must be estimated and compensated before the ac-
tual transmission can be conducted. CFO estimation has been an important and active research

subject in past decades.

A well-known scheme for CFO estimation is to let the transmitter emit a preamble with
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repeated periods such that the receiver can use a correlator conducting the CFO estimation. The
correlating operation is simple but not optimal. In this dissertation, we investigate the maximum
likelihood (ML) CFO estimation for OFDM-based systems with periodic signals. We assume
that the received signal for CFO estimation is periodic but unknown. Also, the statistical channel
state information (CSlI) is available. In the proposed algorithms, only do the periodicity and CSI
be used. Thus, the proposed algorithms can be applied in the systems with periodic preambles

or those with inherent periodical data structure.

8 1.1 Conventional and Proposed Methods

Many works have considered the CFO estimationin OFDM-based systems, including standard
OFDM systems [10]- [27], orthogonal frequency division multiple access (OFDMA) [28]- [35]
systems, and cooperative OFDM systems [36]- [38]. The estimation methods can be classified
into two categories: methods using or not using training sequences. Methods using training
sequences insert a known preamble in front of each data packet, facilitating CFO estimation at
the receiver [28]- [31]. For this kind of methods, the transmitted data should be known at the
receiver. Methods without using training sequences, also referred to blind methods, manipulate
some priori information such that the CFO can be estimated. For example, the cyclic prefix
(CP) is known to be periodic in an OFDM symbol. In this dissertation, we consider the CFO
estimation with a periodic receive sequence. We will solve the ML CFO estimation problems in
OFDM systems, OFDMA uplink systems, and cooperative amplify-and-forward (AF) OFDM
systems. In the OFDM and AF-OFDM systems, the proposed methods require periodic pream-
bles and they are training-based while in the OFDMA system, the receive signal is inherently

periodic and the proposed method is blind.



§1.1.1 CFO Estimation in OFDM Systems

CFO estimation for OFDM systems has been proposed in [10]- [27]. The methods in [10]- [16]
exploit the periodic structure of CPs to accomplish the estimation task. In [18]- [27], a periodic
preamble or pilot-symbol is inserted in front of each data packet such that it can be easily used
by the receiver to conduct CFO estimation. CFO usually consists of a fractional part and an
integer part. Most researchers focus on how to estimate the fractional part, which is also the
focus of this dissertation. Integer part estimation was specifically considered in [18] and [19].
An ML CFO estimator using a preamble with two identical pilot symbols was first proposed
in [20]. Using the same periodic preamble and taking null subcarriers into consideration, [21]
proposes a method that is able to estimate both fractional and integer CFOs. In order to avoid the
extra overhead required in [21], [22] introduces a preamble composed of two OFDM symbols:
the first one has two identical periods. used to estimate the fractional CFO and symbol timing
offset (STO), and the second one has.a special correlation with the first one used to estimate
the integer CFO. To improve the performance, [23] extends the scenario to treat preambles with
periodicity of greater than two. Using the approach in [23], one can remove the second pilot
symbol required in [22]. As an improved version, [24] proposes a CFO estimation based on the
best linear unbiased estimation (BLUE) principle. Note that [23] and [24] still use the same STO
estimator as that in [22]. When the number of periods is greater than two, the method in [20] is
no longer optimal. An ML CFO estimator for this problem was proposed in [25]. However, the
required computational complexity is high. In order to alleviate this problem, a low complexity
approach was then proposed in [26]. Another simplified algorithm was also proposed in [27].
However, due to excessive approximation in the likelihood function, the performance of the
CFO estimation in [27] does not approach the CfaRRao bound (CRB) [41].

We consider a preamble with more than two periods. The ML CFO estimation for the sys-
tem has been considered in [26]. The method in [26] is essentially a two-step approach; it first

estimates the received preamble with a least-squares (LS) method, and then maximizes the cor-
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responding likelihood function. In addition to regular computations, this method requires an
extra procedure to solve the roots of the derivative of the likelihood function. Thus, its com-
putational complexity is higher, and the cost for real-world implementations is also increased.
We then develop a new ML method that solves the likelihood function directly. Our method
yields a closed-form ML solution, and the root-finding procedure is not required. As a result,
the computational complexity and the implementation cost are lower than those in [26], while
the performance of the proposed method is either equal to or better than that in [26]. The
proposed method is further extended to solve a joint CFO/STO estimation problem. The cor-
responding CRBs for CFO estimations are also derived. Note that the performance bound for

STO estimation has not previously been addressed in the literature.

8§ 1.1.2 CFO Estimation in OFDMA Systems

OFDMA, emerging as a promising technology for, next generation broadband wireless net-
work [3], has received considerable amount of research interest recently [28]- [35]. An ap-
pealing feature of OFDMA is that the transmission signals of different users are orthogonal
and multiple access interference (MAI) can be avoided. However, if carrier frequency offsets
(CFOs) between the transmitters and the receivers are not properly estimated and compensated,
the orthogonality will be destroyed and ICI/MAI will arise. In the OFDMA downlink systems,
the signals for different users are multiplexed by the same transmitter, and the receiver of each
user can estimate and compensate its own CFO easily. In such a scenario, methods for CFO
estimation in single-user OFDM systems [10] can be directly applied. However, in OFDMA
uplink systems, all users’s CFOs have to be simultaneously estimated at the base-station (BS)
receiver, which is considered to be a more challenging problem.

In OFDMA uplink systems, methods without using training sequences, also referred to blind
methods, manipulate the subcarrier assignment scheme such that the CFO for each user can be
individually or jointly estimated [32]- [35] at the receiver. With proper subcarrier assignment,

subband-based or interleaved-based estimators can be applied. The subband-based CFO esti-
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mators ( [32], [33]) require that each user is assigned with some consecutive subcarriers and the
subcarrier sets for different users are well separated in the frequency domain. With the scheme,
a filter bank can be used to extract each user’s signal, and then the conventional CFO estimation
methods can be exploited. In interleave-based OFDMA systems, each user’s time-domain sig-
nal is known to be periodical. With the property, the CFOs for all users can be jointly estimated
by the multiple signal classification (MUSIC) [34] or the estimation of signal parameters via ro-
tational invariance technique (ESPRIT) methods [35]. Although the computational complexity
of these methods is low, the CRB cannot be achieved and the solutions are not optimal.

To solve the problem mentioned above, we then investigate the blind CFO estimation prob-
lem in the interleaved OFDMA uplink system. Our objective is to develop a low complexity ML
CFO estimation method. The main obstacle in the ML method is that there is an inverted corre-
lation matrix in the likelihood function. The CFOs in the likelihood function become intractable
after the matrix inversion. Using the matrix inversion lemma, we first transform the correlation
matrix into a matrix with smaller size. Then, we express the matrix with a series expansion. By
properly truncating the expansion, we can obtain a closed-form expression and solve the opti-
mum CFOs with a root-finding method. Also, the CRB can be derived. Simulations show that
the performance of the proposed method can approach the CRB. The computational complexity

of the proposed algorithm is as low as that of ESPRIT.

§ 1.1.3 CFO Estimation in AF-OFDM Systems

More recently, there is an growing interest in wireless communication systems employing co-
operative relay networks [57]. The cooperative relaying system forms a virtual antenna array
and allows wireless devices to achieve higher transmit diversity. The use of relays can lead to
expanded coverage, system-wide power saving, and better immunity against signal fading. Two
relaying protocol are well known, namely, AF and decode-and-forward (DF). In AF, the relays
only retransmit a linearly amplified version of the received signal (from the source) to the des-

tination. In DF, the relays, on the other hand, demodulate the received signal and remodulate
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and retransmit the resultant signal.

Incorporating the advantages of multicarrier transmission, OFDM-based cooperative sys-
tems have been proposed as an emerging transmit technique for future wireless networks [58]
[59]. Similar to OFDM systems, the orthogonality in OFDM-based cooperative systems is also
critical. How to reduce the impact of CFO remains an important research subject [36]- [38].
In [36], the Alamouti code was employed to mitigate the CFO-induced ICI in AF OFDM-based
cooperative systems (AF-OFDM). CFO estimation in DF OFDM-based cooperative systems
(DF-OFDM) was considered in [37]. In their approach, a training sequence is designed for a
relay and the sequence is transmitted on a set of subcarriers. As a result, the system can be
considered as an OFDMA system in its training phase. In [38], a scheme, allocating the trans-
mitted power on the source and a relay with.thelargest composite channel gain in AF-OFDMA
systems, is proposed. The objective of the power allocation is to minimize the CRB in the CFO
estimation. It has been shown that the-optimum power allocation can effectively reduces the
variance of the CFO estimation [38]. The BER performance of the whole system can then be

improved accordingly [40].

One problem with the approach in [38] is that the CFO estimation and the corresponding
CRB is derived under the assumption of white Gaussian noise. In reality, however, the noise
observed at the destination is colored. The other problem is that multi-relay systems are not
analyzed. To solve the problems, we then consider the ML CFO estimation and the power
allocation problem in multi-relay AF-OFDM systems. The distinct feature of the proposed
method is that the noise at the destination is considered as colored. In the colored scenario,
the inversion operation in the correlation matrix becomes much more complex and a closed-
form solution is very difficult to obtain. Due to this difficulty, we then propose a gradient-
based method to solve the ML problem. For this scenario, the CRB derived for the white
noise environment is not valid anymore. Let the CRB for the CFO estimation in AF-OFDM
systems be denoted by CRBI'he expression of CRB-ontains an expectation operation on the

source-to-relay and rely-to-destination channels [9]. To obtain,C®R8have to conduct Monte
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Carlo simulations which are not efficient for our optimization problem. We then approximate
the correlation matrix with a tri-diagonal matrix and propose an approximation method such
that a closed-form solution can be derived for CRBrhe approximated CRB, denoted as,
CRB,, is a function of the expected CSI. As a result, the value of CR& be evaluated
efficiently and the corresponded power allocation scheme can be derived. When the noise at the
destination is assumed to be white, GR8degenerated to the conventional CRB considered in
the white noise environment which is denoted as GRB/e then consider the power allocation
problem in AF-OFDM systems, allocating power for the source and the relays. As that in
[38], our objective is to minimize the CRB. Using CREnd CRB, we propose two power
allocation algorithms (PAAs), implemented with constrained gradient-descent methods, to solve
the problem. Simulations show that the proposed PAAs not only significantly improves the
performance of the CFO estimation, but also greatly enhance the received SNR improving the

overall system capacity.

§ 1.2 Organization of the Dissertation

This dissertation is organized as follows. In Chapter 2, we propose a new ML method that solves
the likelihood function directly for the CFO estimation problem in OFDM systems. In Chapter
3, we propose a blind ML CFO estimation algorithm in interleaved OFDMA uplink systems.
In Chapter 4, we consider CFO estimation in AF-OFDM systems. We propose a method to
solve the ML solution and two PAAs for minimizing the CRB. Finally, we draw conclusions in
Chapter 5.

For convenience, the notations used in the dissertation are defined lefdvand(-)* de-
note the Hermitian and complex conjugate operation of a matrix respectively,dnd R¢.)
the image-part-taking and the real-part-taking operation respectiv¢ly,the expectation op-
eration,/(-) a dirac delta functior-),, thepth element of a vectof;),, , the (p, ¢)th element of

a matrix, X, , the (p, ¢)th submatrix of a large matriX, 0, an! x 1 column zero vectors the
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convolution operation,, an identity matrix, diag<) a diagonal matrix with diagonal entries of
X, det() the determinant of a matriX, - || the Frobenius norm of a matrix, and-jr(he trace of

a matrix.



Chapter 2

Maximum Likelihood Timing and Carrier
Freqguency Offset Estimation for OFDM

Systems with Periodic Preambles

In this chapter, we consider the CFO problem for OFDM systems. As mentioned, we consider
the system with a periodic preamble placed at the beginning of a data packet. CFO estimation
has been extensively studied for the case of a two-period preamble [20]. In some applica-
tions, however, a preamble with more than two periods is available. A typical example is the
IEEE802.11a/g wireless local area network (LAN) systems, which features a ten-period pream-
ble. Recently, researchers have proposed an ML CFO estimation method for such systems [26].
This approach first estimates the received preamble using a least-squares method, and then
maximizes the corresponding likelihood function. In addition to the standard calculations, this
method requires an extra procedure to solve the roots of a polynomial function, which is dis-
advantageous for real-world implementations. In this chapter, we propose a new ML method
to solve the likelihood function directly. Our method can obtain a closed-form ML solution,
without a need for the root-finding step. We further extend the proposed method to address

the joint CFO/STO estimation problem, and also derive a lower bound on its estimation perfor-
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mance. Section 2.1 briefly reviews the CFO estimation method in [26]. Sections 2.2 and 2.3
detail the proposed CFO and STO estimation algorithm. Section 2.4 derives a lower bound on

STO estimation performance. Section 2.5 reports simulation results and discussions.

§ 2.1 Existing Approach

In this section, we briefly review the algorithm proposed in [26]. Let the preamble in the OFDM
system be periodic with periof and length)) N. Denote the preamble signal &), where
kE=0,1,...,QN — 1. The preamble is placed at the beginning of a packet and is subsequently
transmitted through a wireless channel. Denote the channel respohsk)and the output
signal asz(k). Then, we have: (k) = s(k) = h(k)'wherex denotes the convolution operation.
Assume that the maximum channel delayNs Then, we can discard the first receivéd
samples and retain the periodic property of the preamtfile). Thus, the received preamble

can be expressed as [10]
y(k) = e~ a(k) + w(k), (2.1)

wherek = NN +1,...,QN — 1, ¢ is CFO andw(k) represents additive white Gaussian
noise (AWGN) with a variance of2. We can perform an index transformation by letting
k =mN + n,wherem =1,--- ;,Qandn =0,--- , N — 1 such that:(k) = x(mN + n). For
notational simplicity, we further let,,(n) = z(mN + n), denoting thexth sample of thenth
period ofz (k). Due to periodicity, we have,(n) = z,(n) forp,q € {1,--- ,Q}. Similarly, we
can defingy,,(n) = y(mN + n) = y(k), andw,,(n) = w(mN +n) = w(k). Let K = Q — 1

and
y(n) = [wn(n) wa(n) yr(n) 1",
X(n) = [@y(n) xa(n) - axn) ]’
w(n) = [wi(n) wy(n) - wg(n) 7. (2.2)



In addition, we define four matrices as follows:

X = [ x(0) x(eF x(N - D H

W= [ w(0) w) -w(v 1) ]
el?m () 0
O 6]‘271-5.2 e 0

A= | o . (2.3)
0 0 ... pi2meK

The received preamble in (2.1) can then be rewritten as
Y =AX + W: (2.4)

The method in [26] uses a two-step approach; it first estiméatesing a LS method, and then
estimates CFO by maximizing the likelihood function. Since the noise is a Gaussian random
variable,y(n) is a Gaussian random vector with a covariance matrix’df wherel denotes the
identity matrix. For a give\, the LS estimate ok can be expressed &5, = %AHY =AY,
where(-) denotes the Hermitian operation. Substitutiigs back into (2.4), we can obtain

the log-likelihood function ad\(A) = i ly(n) — AATy(n)||*> = N - tracd(l — AA1)Ry),

N-1
whereRy = E[YY']. The p,¢)th entry ofRy is & Y y,(n)yi(n), p, ¢ € [1, K] [44]. The
n=0

desired CFO estimation can then be derived as

>
Il

arg{mgin trace(l — AAT)Ry)}

= arg{maxa”Rya}, (2.5)

wherea is a vector consisting of the diagonal elementéoft was shown in [42] that

K-1
a’Rya= ) b(m)e*™, (2.6)

m=—(K-1)

11



N—-1
whereb(m) = > + 3 Yp(n)y,;(n). Taking the derivative of (2.6) with respect ¢cand
g—p=m =0
letting the result be zero, we obtain

K-1

K—1
Z mb(m)z" = Z mb(—m)z""™, (2.7)

m=1

wherez = ¢27¢, Equation (2.7) can be rewritten as

K-1
Im() " mb(m)z") =0, (2.8)

where In{.) is an operator that isolates the imaginary part of a scalar value. Denote the set

containing the roots of (2.8) by. The CFO can then be estimated following [26] as

.1 .
£ = jQWZn(z) (2.9)

wherez = arg{meaé(A(z))} and|z| = 1.

The procedure for CFO estimation in-[26] can now be summarized as

1. Construct the correlation matrRy-.

2. Calculate the coefficient of (2.8) usiiity.

3. Find the nonzero roots of (2.8).

4. Substitute the roots into (2.6), find the maximum root, and calcélagng (2.9).

As we see, (2.8) requires a root-finding operation. Thus, a set of suboptimum algorithms to
address this issue were proposed in [26]. Unfortunately, these suboptimum methods cannot

effectively reduce the computational complexity while still maintaining good performance.

§ 2.2 Proposed ML CFO Estimation

In this section, we develop a new CFO estimation method that solves the likelihood function

directly. The signal model we use is the same as that in (2.4). We assume that each data packet

12



is transmitted through a slow-fading channel with an impulse respongépft = 0,--- | L —

1. Here, theh(k)'s have Rayleigh distributions, and they are statistically independent. Note
that the time-domain preamble signal is obtained from the discrete Fourier transform of the
frequency-domain preamble signal, and the frequency-domain preamble signal is generally a
white sequence. From the central limit theorem, the time-domain preamble signal can then
be approximated as a white Gaussian sequence. Thus, the channel oiitpuhich equals
Lih(l)s(k — 1), and the received preambigk) in (2.1) can be approximated as Gaussian

sequences Let the variance of the tlme domain preamble S|gnah(k§3 beo Then, the
L-1L—

variance ofr(n) equalss? = E{ Z h(j)s(k — j)h()*s(k —1)*} = o2 Z |h(1)]? = o202,
7=0 [=0
and that ofy(k) equalso? + 2. Note thats(k) can be a psuedo noise (PN) sequence. In such

a caseg? indicates the averaged preamble powes (@f).

Let f(.) be a probability density-function. Then, we explicitly write out the log-likelihood

function ofe following [10] as

Ae) = I{]] rty(m))}

nel
H~f (y(n))
me[l,K] neI l melL K] nel
= In{H 7 I T/t (2.10)
me[L,K] nel
It is clear that the last term in (2.10), [] f(ym(n)), isindependent of [10]. As a result,
me[l,K], nel
this term can be dropped. Let
j2men . . T
u(n) = e N xl(n)GJZﬂ'S ce xK(n>6]2ﬂ'€'K . (211)

We then rewrite (2.4) a¥ = U + W whereU = AX = [u(0),u(1),--- ,u(N — 1)]. Then,
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y(n) = u(n) + w(n). DefineR, = F[u(n)u”(n)] andR, = E[y(n)y” (n)]. Then,

1 e—J2me . e—j27r(K—1)5
) eJ2me 1 . 67j27T(K72)6
R, =0, : : . : ’
pi2m(K—1)e  j2m(K—2)e . 1

(2.12)

andR, = R, + o2 | wherel is an identical matrix. Thus, we can expreggg(n)) as [39] [40]

fly(n)) = (r"detR,))~"exp[-y(n) "R, y(n)] .

According to the matrix inversion lemma [17], we derive the inversR pés

-1 _ -2 i Ry
R, =owl Sttty
Note that forn € I, we have
o202 ifqg—p=0
E{y,(n)y,(n)} = ) _
0?67]271'5((1'17) |f q — p 7£ O
wherep, ¢ € [1, K]. AsaresultR, ' = 0,2l — ——R— and
exp- yp;;)yf,;n) )
flp(n)) = —mziss—

wherep € [1, K|. Thus, the exponential term in (2.13) becomes

K

y) RY(n) = 0,2 yp(n)y;(n)

p=1

K K
~Co 303yl m)e o

p=1 ¢=1

= (0" = Co) Y yp(n)y;(n)

K-1 K

—2CHRe{ Z Z yp(n)y; (n)ej%(qip)s}

p=1 ¢>p

14
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(2.14)

(2.15)

(2.16)
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whereCy = o2/(c0l + Ko202), and R€-} denotes the operation that isolates the real part of
the indicated complex variable. Dropping the superfluous terms and substituting (2.13)-(2.17)

into (2.10), we finally express the log-likelihood function as

( 3

N-1 o242 VK —v(n)HR-1y(n
Ae) = 3 In )OIV R, (g (2.18)
det(rey)expgﬂz1

\ /
K-1 K

yp(n)y; (n) é

cr% +712u

= C1+Cop+C3 37 3 ’7pq’ COS(%W)? (2.19)
p=1 g¢>p
where
N-1
Yoo = Y up(n)y;(n) (¢>pandp>1), (2.20)
n=0
77Z}pq = 27T€(q E p) + AW/pqa
K
S = ) ws (2.21)
p=1
_ . (o2%a3)™
C; = N-In (W) ’ (2.22)
2
C, = (1-K 2.23
2CY
2
o
= r . 2.2
P o2+ o2 (2.25)

Note that¢ is the received signal energy and @) is a constant, independent of The
detailed derivation of (2.19) is provided in Appendix A.1. Ignoring unrelated terms, we obtain

the log-likelihood as

K-1 K

A(e) o Z Z V| COS(pq)- (2.26)

p=1 ¢>p
To maximize the function, we first take a derivative/gE) with respect ta and obtain

K-1 K

%A@ == 373" 200(q — ) P (). (2.27)

p=1 ¢>p
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Thus, we have an alternative expression to that in (2.8). Now, the problem is how to solve
(2.27). Since (2.27) involves a nonlinear sine function, a closed-form solution will be difficult
to calculate. Here, we use a simple approximation method to overcome the problem. Using
(2.20) and (2.1), we obtain

Vg = pi2me(p—q) |$1(n)|2+zwp(n)w;(n)
+ €j27re(pN+p) xl(n)w*(n)

+ eI?mePN=q) zi(n)wy(n). (2.28)

3
o

In (2.28), we have used the periodic property thgt:) = z,(n) = z,(n). Now, if the noise

level is low, the noise related terms in (2.28) can be ignored. We then have
Lypg = 21e(p—q). (2.29)
From (2.29), we write
Vpg =~ 2me(q—p)+2me(p —q) = 0. (2.30)

From (2.30), we can then assume thiatv,,) ~ 1,,, and approximate the expression in (2.27)

by

a K-1 K
ag ZZ 7(q = P)[Vpal (Vpq)- (2.31)
p=1 q>p
Setting the result in (2.31) to zero, we can estimate CFO as
K-1 K
2 2 Pwal(a = )
e= - (2.32)
2m > > lg —pl? vaql
p=1g>p

Note that the approximation in (2.30) will become exact if noise is not present argitte true

CFO. In other words, (2.27) and (2.31) will have a same zero-crossing point although the two
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functions are different, indicating that (2.31) and (2.27) will yield the same optimum solution.
If noise is present, however, (2.31) and (2.27) will not have the same optimum solution. The
accuracy of the solution in (2.31) depends on the signal-to-noise ratio in (2.28). We define the
signal-to-noise ratio in (2.28) &N\R.,, and that in (2.1) aSNR. Then,SNR = ¢2/52, as
typically defined. From (2.28), it is simple to see that

B No} N -SNR?
~ Noi +2No202  1+2SNR

SNR, (2.33)

From (2.33), we can see thaNR,, can be much larger than SNR as long/ass reasonably
large and SNR is not very low. Subsequently, the approximation in (2.31) will introduce only a
small error for a wide SNR range. As a simple exampleNet 16 andSNR = 0 dB. From
(2.33), we obtairsNR,, = 7.27 dB, which-is much higher than SNR.

Note that the proposed estimate requires that we extract the phase,frotnis simple to
see that the result is only unambiguous wheém,,| < 7. For a particular combination gfand
g, the estimation range for CFO fis| <'1/{2(¢ = p)]. Since the maximum value far— p is
K —1, the estimation range for CFO[ig < 1/[2(K — 1)]. WhenK is large, the range becomes
small. In the following, we propose a method to remedy this problem. The basic idea is to apply
the phase unwrapping procedure. We first calculate the phase angle for,gabhen, for each
p, we calculate the phase differencef,,, ¢ =p+1,p+2,..., K. Letd, , denote the phase
difference, i.e.d, s = Zv,s — Zyps—1),r =1,2,...,K —2ands =r+2,r+3,..., K. Since
the maximum value ofd, | is 7, wheneveld, ;| > =, the phase need to be unwrapped. This
can be performed with the following operation:

0. = dys—2m ifd.g>m | (2.34)
dys+2m ifd., <—7

For a value of, thed,. , values should have the same signs. We can use this property to further
correct occasional errors. Lebe the sum of all, ; values, i.e.g = Zﬁi}z Zf:rﬁ d,s. Then,

we use the sign of to determine the sign af. ; and to evaluate’~y,;, k = p+1--- K. Finally,
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the unwrapped’~,, can be written (withy > p + 2) as:

q
Lpg = LYooty + ) ps. (2.35)

s=p+2
Substituting (2.35) into (2.32), we can estimate CFO. Using our proposed procedure, the CFO
estimation range can be greatly extended uppftec 1/2.

Now, the procedure for our proposed ML CFO estimation can be summarized as follows:
1. Construct ally,,'s wherep € [1, K — 1], ¢ € [p + 1, K], and calculate their amplitude.

2. Use the phase unwrapping scheme to estimate the phagg of

3. Substitute the results into (2.32) and calculate the ML estimate.

Clearly, the proposed estimate does not require the root-finding procedure, and this, in turn,
effectively reduces the computational complexity.-Step-1) above is similar to the calculation of
R in Section 2.1. However, our method is easier since we only have to compute ¢ > p.

In this paragraph, we compare the computational complexity of the proposed ML estimate
with that of the algorithm in [26]. Three algorithms are proposed in [26], referred to as Al-
gorithm A, A, and B. While Algorithm A is optimal, Algorithms A and B are suboptimal.
Table 2.1 summarizes this result. In Table 2.1, MUL, ADD, LN, ABS, PH, and DIV denote
the operations of multiplication, addition, natural logarithm, absolute value, phase derivation,
and division, respectively. In addition, the algorithm proposed in this section is referred to as
proposed Algorithm I, and the one in the next section is termed proposed Algorithm Il. For the
proposed algorithms, we consider the worst case in which all the phase differéncesed
to be unwrapped. Figure 2.1 shows several examples of(h@amd N affect the complexity.

Note that the computational complexity for the root-finding procedure in [26] is not included
here. For convenience, we treat all operations other than addition as multiplications. As we
can see, the computational complexity for the proposed algorithm is slightly lower than that

for algorithms A and B in [26], and Algorithm A’ in [26] is the lowest. However, algorithm
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A truncates the polynomials with order higher than two in (2.6), idz) = 22: b(m)z".

This impacts the estimation accuracy. Note that we can always truncate :Fl:ei;ummation terms
in (2.32), and thereby reduce the computational complexity of proposed Algorithm I. Since
suboptimum approaches are not our focus, we will not consider the details here. We will now
discuss the computational complexity of the root-finding procedure. As shown in [43], [45], the
root-finding procedure requirg$( K*) multiplications. Table 2.1 shows that the computational
complexity of Algorithm A isO(N K?). Thus, the computational complexity of the root-finding
procedure will be high wheK is large. Also, its implementation cost will also be higher, since

we may need dedicated electronic circuitry to implement this function.

It is well known that the performance of an unbiased estimator is bounded by the CRB [41].
If the variance of an unbiased estimator reaches the CRB, we consider the estimator efficient.
Following the procedure to derive -performance bounds in [41], we can calculate the CRB for
our CFO estimation procedure. L&be an estimate of. The CRB for our CFO estimation is
then

1
E[ZA(e)]
(87%p) "tog, (1 + (K —1)p)

K K )
B . > (q— p)QRe{queﬂm(qim}]
p=1gq

— >p
on(1+ (K —1)p)
K-1 K
8m2pNoZ > > (q—p)?
p=1 ¢>p
1+ K-SNR 1
T 872N -SNR K- K (2.36)
> >.(g—p)?

p=1 ¢>p

CRB(8) = -

where E[-] denotes the expectation and SNR indicates the signal-to-noise ratio. For a special

case K = 2, the CRB is the same as that in [46].
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§ 2.3 Proposed Joint ML STO and CFO Estimation

In this section, we extend the method developed in the previous section to solve the STO estima-
tion problem. The core idea is to apply a sliding data window for the rec¢yed ) N samples;

each window covers the preamble in the context of a particular timing offset. We perform the
ML CFO estimation for data in each window, and store the estimated CFO and the correspond-
ing maximum log-likelihood. Thereafter, the estimated CFO with the largest log-likelihood is
selected as the ML CFO estimate. The corresponding window position is taken as the ML STO
estimate. Let the window size l6&V, and define the séf = {y (i), y(i+1),...,y(i+QN—-1)}

to be the received data in windawSince the maximum delay is shorter th&nit is clear that
0<i< N —1.Ifwe letthe STO bé&, Vj, will cover.the complete preamble. In Appendix A.2,

we show that the log-likelihood function f&f can be expressed by

Q—-2Q-1
Ni(e) = Cf + Cl¢' +C5 Y > iy feos(¢,) (2.37)
p=0 ¢>p

where the superscriptindicates that all the variables are calculated wittiinandC}, C% and
C% can be treated as window-independent. Thus, we can simplify the above log-likelihood

function using

Q-2Q-1
A'(e) m Cod' + Cs Y > [yl cos(ty,), (2.38)
p=0 ¢>p
whereC,; andC} are the same as those in (2.23) and (2.24). Since the received signal power,

¢!, is independent of CFO, we can estimate CFO using (2.32) as
Q=2Q-1 ,
> 2 plla—p) 2,

g . (2.39)

2 >0 >0 la—plP,l

p=0 ¢>p
Note that the upper bound in the summation terms of (2.39) iisstead of . The estimated

STO is then

0= arg{miax(/\i(gi))} = Topt- (2.40)

20



Now, the procedure for the proposed joint ML STO and CFO estimation can be summarized as

follows:
1. Calculatey;,, and its amplitude, wheree [1, N],p € [0,Q — 2], andg € [p+1,Q — 1].
2. Use the phase unwrapping procedure outlined above to caI&UM;j,;e
3. Substitute the results into (2.38) and (2.39), and calculgt&) andé".
4. Find o such that\fert (gfert) > AH(&%), 4 # dgp.
5. The ML STO estimate i,,; and the ML CFO estimate is thefr,

As we can see from the above procedure, the.computational complexity of the algorithm will be

N times higher than that in Section 2.2. Note also that the upper limit®t) — 2 instead of

K — 2. In other words, we have an extra period for CFO estimation. By leveraging the sliding

window structure, we can effectively reduce the computational complexity in calculﬁgng
+HN-1

Similar to the definition ofy,,, we obtaimny,, = >~ y,(n)[y,(n)]*. Then, itis simple to show
that o

Yoy = Yog +Up(i+ N = Dfy(i + N = 1)J*

—yp(i — D[y, (i — 1)]". (2.41)

From (2.41), we can see that exceptfoet 0, the calculation ofy;q requires only two complex
multiplications and two complex additions. This will greatly reduce the required computational
complexity in the scenario of joint STO and CFO estimation. The required computational com-
plexity has been summarized in Table 2.1.

We can also obtain the CRB for the CFO estimate. All we have to do is to replagigh
Q@ in (2.36). Since) = K + 1, the CRB is lower than that in (2.36). Note that the STO is a
discrete value. No performance lower bounds have been reported to date in the literature. In the

next section, we will derive a lower bound to address this omission.
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8§ 2.4 Performance Analysis of STO Estimation

In this section, we analyze the performance of the proposed STO estimation method. We first
redefine (2.38) ad’(c) = Cy¢' + Cs5&* where

K i+N-1

¢ = D> ynyn)
p=0 n=:
K N-1
= Z zp(n)zp(n) + wy(n)wy(n)
p=0 n=0
+2Re{xp(n)w;(n)exp(j27rspN N+ oy, (2.42)
and
K-1 K
§ = > gl cos(ih,)
K-1 K N-1 N—|—’)’I,
— pZO;nZ:Oxp exp(ﬂmq I )
—i—wp(n)x;( n)exp(— j27r€pN]\j—n>
+wy(n)wg (n)exp(j2mre(q — p))
+xp(n)ay(n). (2.43)

Note here thay' and¢’ are random variables. The mean value\dfs), denoted by, is

equal toCy i, + Capi, wherey?, andy; are the mean o and¢?, respectively. The variance of

A’ can be expressed by, = C3v,, + C5v{ + 2C,Cskly, wherev andug denote the variance

of ¢' and¢’, respectively, and:}, the covariance betweept and¢'. The whole set ofl,

0 <i< N —1,has(Q+ 1)N samples and it may cover three regions. The first region consists

of the noise samples, the second region the periodic preamble samples, and the third region the
data samples. We denote these regionshy p, andlp. Thus, the signal variance iy is 2,

thatin/p iso2+ 02 and thatin/ is o2+ o2, wheres? represents the variance of data samples.

Recall that is the actual STO in the system. Usia@s a reference, we can have three cases
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for the value ofi: i = 0,1 < #, andi > 6 (0 < i < N — 1). The statistics ofy’ and¢® are
different across these three cases. In Appendix A.3, we provide a detailed derivatjggr}@f
z/é, 1/2, andlﬂfbg.

For the proposed STO estimation algorithm, an error occurs e 6. Thus, we can
define the error probability of STO estimation B$U; ;.o{A? < A'}), where P(.) denotes
the probability of a certain event. Note that the evaluatio®f’ < A?) only requires one-
dimensional integration. If the log-likelihood functions for éff are independent and identi-
cally distributed (i.i.d.), we hav® (U; .o {A? < A'}) = 37, ., P(A? < AY). Unfortunately, the
log-likelihood functions are not independent. As a result, we have to conduct multi-dimensional
integration, which is both complex and difficult. Therefore, we propose a simple alternative to
overcome the problem. Instead of the exact error probability, we attempt to derive a lower
bound.

As shown in [22], the likelihood function'is approximately Gaussian. We denote the distri-
bution of A® usingG (114,, V4 ), whereG(+) denotes the Gaussian distribution. Consider the joint
density function ofA* andA’. Using the Gaussian assumption, we write the bivariate Gaussian

distribution as

) (2.44)

wherel <i,7 < N,

, (2.45)

and

_ B{N(N)} — gy

J

Ce(i, j) (2.46)

i
Up UV
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Note thatC.(i, 5) is the corresponding correlation coefficient. The numeratof'@f, j) is

expressed as

E{N(N)*} = phph + O3k, + C3kg

+0203I€gf + CQCgFL?(;, (247)

wherex”, denotes the covariance @f andd’™ (a', b/ € {¢', ¢7, &, €7}). The main idea here is
only to calculateP(A? > A?) for all i’s (except fori = ), and then use the result to derive a

lower bound. Thus, we only have to considéx:, 0) as

Ky = 20205(QN — |i =.6)), (2.48)
| N,
W = QQ- eSO - i 4]
FSQNQR s (2.49)
and
/{fff = /{?d) =(Q —1)>No252
+(Q — 1)(N — |i — 8|)o252. (2.50)

Substituting (2.45)-(2.50) into (2.44), we can then evaluaté’ > A?). Given this defini-
tion, we haveP(A? > Af) = [ ff; P(A?, A%)dA'dA®. Simulations have been conducted to
evaluate the validity of our theoretical results. Using the scenario depicted in Section 2.5, we
compare the theoretical and simulate@\’ > A?) in Figure 2.2. From the figure, we see that
the theoreticalP(A? > A?) is close to the simulated result. If we 1Bf,;,, = Igéigl P(AY > AY),
we can then treab,,;, as an upper bound for the correct probability of STO estimation (i.e.,
iopt = 0). Thus, we can then have a lower bound for the error probability of STO estimation

(LBSTO) asl — P,in-
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8§ 2.5 Simulations and Discussions

In this section, we report our simulation results, where these evaluate the performance of the
proposed algorithms. We adopt a Rayleigh multipath channel with an exponential power decay
and five channel taps. The preamble, generated from a frequency-domain BPSK modulated
signal, has 10 periods and each period has 16 samples. The data following the preamble are
transmitted using a 16-QAM scheme. The mean square error (MSE) of the estimated CFO is
used as a performance measure. We first consider the CFO-only estimation problem. In this
case, the first receiveld samples are discarded. As previously mentioned, we term the pro-
posed approach for this scenario as Algorithm | (as described in Section 2.2). We compare
the proposed ML estimator with that.in{26].-One optimum algorithm (Algorithm A) and two
suboptimum algorithms (Algorithm A and B) in [26] are simulated. Figure 2.3 shows the sim-
ulation result for SNR at 10dB. From the figure, we can see that the performance of Algorithms
A and B are poorer. Algorithm A and the proposed algorithm offer a similar level of perfor-
mance that is very close to the CRB. To evaluate the impact of CFO on system performance,
we conduct simulations for systems with and without CFO. For the system with CFO, we first
use the proposed method to estimate CFO, and then conduct CFO compensation. Figure 2.4
shows the BER comparison fer= 0.2. As we can see from the figure, the BER performance

degrades slightly when CFO is present.

We then consider the case of the joint STO and CFO estimation process. In this case, dis-
carding the first received’ samples is not necessary. As a result, one additional preamble is
available. This means that the proposed method may offer better performance compared to the
previous scenario. However, the price we pay for the additional STO estimation is the increase
in computational complexity. As mentioned, we name this approach proposed Algorithm 1l (as
explained in Section 2.3). Using a similar approach, the method in [26] can also be used to
estimate STO. However, its computational complexity increases much more than our method.

Figure 2.5 shows the simulation result for the CFO estimate. The proposed method offers good
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performance. Only when CFO is very closeti0.5, does the performance of the proposed algo-
rithms degrade. Figure 2.6 shows the CFO estimation result for various SNRs. From the figure,
we see that the proposed method still works well for SNRs as low as -5 dB. The algorithms
in [26] perform well until SNR reaches -7 dB, somewhat better than the proposed algorithms.
However, when SNR falls below -8 dB, the proposed algorithms again outperform those in [26].
This may be because the correlation matrix in (2.6) is very noisy, and the roots therefore cannot
be solved reliably. Figure 2.7 shows the error probability for the STO estimation. We observe
that the derived lower bound for the STO estimation is tight when the SNR is high. Note that
the error probability we defined is only relevant to performance evaluation. If the channel re-
sponse is shorter than the CP (which is the typical case), we can always has some tolerance for
the STO estimation. Thus, there is no need to.calculate the exact channel delay. In real-world
applications, it is a common practice to reduce the estimated STO by a couple of samples when
conducting STO compensation. Another property iIs that STO estimation performance is not
particularly impacted when CFO is closed to-0.5./In the literature, there exist a number of STO
estimation methods. We select the two algorithms proposed in [22] and [27], for comparison.
Figure 2.8 shows the MSE curves for these approaches and for the proposed algdérithf)s (

The figure confirms that the proposed method offers the best performance.
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Table 2.1: Computational complexity comparison for the algorithm in [26] and for the proposed

algorithms.
Algorithm A | Algorithm Algorithm B | Proposed Proposed
in [26] A'in [26] in [26] algorithm | | algorithm Il
No. of MUL | 2NK?  + | 2N(5E = [ 2K(NK + | GNK+5+ | NQ2N  +
7K — 10 6) +11 3)—6 NK-1)-2| 2 +1)—4
No. of ADD | K(2NK + | 2N(BK = [ 2NK? + | K(K — | QN(2N +
3) -5 6) + 4 9K - 3 DEN+E— | £ +4Q -
K =5 16) - (@ -
Q+8)+5N
No. of LN 1 1 1 0 0
No. of ABS 0 0 0 K(Kz_ D) NQ(C; —
No. of PH 0 0 0 K<K2_ D) NQ(C; —
No. of DIV 1 1 2 1 N
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Chapter 3

Blind Maximume-Likelihood
Carrier-Frequency-Offset Estimation for

Interleaved OFDMA Uplink Systems

In this chapter, we will study the CFO estimation problem in interleaved OFDMA systems [34].
Blind ML CFO estimation is considered to be difficult in interleaved OFDMA uplink systems.
This is because multiple CFOs have to be simultaneously estimated (each corresponding to a
user’s carrier), and an exhaustive multi-dimensional search is often required. The computa-
tional complexity of the search may be prohibitively high. Methods such as MUSIC [42] and
ESPRIT [35] have been proposed as alternatives. However, these methods cannot maximize
the likelihood function and the performance is not optimal. In this chapter, we propose a new
method to solve the problem. With our formulation, the likelihood function can be maximized
and the optimum solution can be obtained by solving a polynomial function. Compared to
the exhausted search, the computational complexity of the proposed algorithm can be reduced
dramatically. Section 3.1 briefly describes the system model and derives the proposed CFO
estimation method. Section 3.2 shows the performance analysis for the proposed method. Fi-

nally, Section 3.3 evaluates the performance of the proposed method and analyze computational
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complexity.

§ 3.1 The Propposed CFO Estimation Method

§ 3.1.1 Signal Model for Interleaved OFDMA Uplink System

In an OFDMA system, lef\/ users share th&/, subcarriers of an OFDM symbol and ti¢

users simultaneously transmit their data streams. The subcarriers are divid@gutiohannels

and each subchannel hds = N,/@Q subcarriers. Each user occupies a specific subchannel,
and the subcarriers assigned to useare denoted as','s wherek € T,,. Here,T,, denotes

a subset of subcarrier indices. For an interleaved OFDMA system [34] [35], the subset for the
mth user is defined asY,, = {¢n, Q@ + ¢n, ++, ¢ + (N — 1)Q} whereg,, is the subchannel

index andg,,, € {0,1,---,Q — 1}. In the System, itis assumed thf, (| Tr = ¢ for m # k

where¢ denotes the empty set. In our system, we assume that the sequence each user transmits
is unknown to the BS anfl/ < Q.

Consider a specific OFDMA symbol and denote the frequency domain signal that.user
transmits as aiV, x 1 vector,u,,. Note that the elements af, are nonzero only in designated
subcarriers, i.eY,,. Taking the inverse discrete Fourier transform (IDFTugf we can obtain
the time domain signal for usen, denoting as,, = [5,,(0), -+ ,5,(N, — 1)]7. Inserting a
cyclic prefix (CP) of length. at the beginning of the symbol, usercan then serially transmit
the resultant signal through a wireless channel. Let the channel response framtogée BS
receiver be denoted &s,(/),/ =0,..., L,, — 1, whereL,, is the channel length ant,, < L.

Also, let the normalized CFO for uset be denoted as,,. Then, the CP-removed received

OFDMA symbol at the BS can be expressed as

y(k) = > exp(j2me,k/N,)

Lpy—1

> b5k = 1)+ n(k), (3.1)
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wherek = 0,--- , Ny — 1 andn(k) represents additive white Gaussian noise (AWGN) with a
variance of;.

As mentioned, subchanng), is assigned to user in the interleaved OFDMA system. It
is equivalent to say that user is assigned to subchannel zero and an CF@,as introduced.

So the received noiseless symbol from usetan be re-written as
Lpm—1

Tn(k) = exp(j2menk/No) > ho(D)sm(k — 1)

Lpy—1

= exp(j2m(em + gn)k/No) D h(l)sp(k — 1)
=0

= woern ke, (k), (3.2)

wherew = exp(j2m/Na)s com = em + Gus (k) = 5 hon(l)sm(k — 1), andsm(k) is

the transmitted signal of usen if subchannel zero is altgosigned. The term, denotes the
effective CFO for usem. It includes the virtual CFO caused by the subchampelNote that

the periodicity of the transmitted sequence still remains after it is passed through the channel.
Since the time domain signal has a period\gfwe can make an index transformation by letting
k= (p—1)N+mn,wherep=1,--- ,Qandn =0,--- , N — 1. With the transformation, we

can convert théth sample of a signal into theth sample in theith period. Thenth sample in

each period, corresponding to a signal, can then be extracted to form a vector. Then, we have
y(n) = UD(n)x(n) + n(n), (3.3)

wherey(n) = [y(n),y(n + N),...,y(n + (Q — )N)|* = [1(n),y2(n),...,yo(n)]*, Uis
a Q-by-M matrix and(U),, = wis«®=UNF D(n) = diag[w™1, ..., w*M]T), x(n) =

[z1(n), ...,z (n)]", andn(n) = [n(n),n(n+N), ... n(n+(Q-1)N)|" = [m(n),n2(n), ...,
no(n)])*. We will use (3.3) as our signal model in the derivation of the ML CFO estimate.

§ 3.1.2 Proposed Method

To the best of our knowledge, blind ML CFO estimation has not been studied before in OFDMA

uplink systems. Here, we propose a method to solve the problem. For interleaved OFDMA
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uplink systems, the transmitted time-domain signal is obtained from the IDFT of its frequency-
domain signal. From the central limit theorem, we know that if the number of subcarriers is
reasonably large, the corresponding time-domain signal can be approximated as a white Gaus-
sian sequence. Similar to [28], we assume that each users is under perfect power control, so
signals arrive at the BS with equal average power. If we further assume that each channel tap
experiences independently Rayleigh fading, and all users’s signals are white and independent of
each other, the received sequep(e) in (3.1) can also be approximated as a Gaussian sequence
(see Chapter 2) with a variance bfo? + o7, wheres? = E{|z,,(n)|*}. Let—0.5 < &,, < 0.5

and f(.) be a probability density function. Then, we can explicitly write out the log-likelihood

function, shown in Chapter 2, as

Ale) = |n{]ﬁ: f(y(w)}- (3.4)
DefineR, — E{y(n)y”(n)} and _
(Ry)pq = 020(p — @) F02L(p, q), (3.5)
where
I(p,q) = i wEemINE-a) (3.6)

Thus, we can expresqy(n)) as [39] [40]

fly(n)) = (v%detR,))"'exp[~y(n) "Ry (n)] . (3.7)

The log-likelihood function can be expressed as

N

Ae) = ) {~Q-In(r) —In(de(R,)) - y(n)"R;'y(n)}. (3.8)

n=0
Letu(n) = UD(n)x(n). Then,y(n) = u(n) +w(n). As assumed, the transmitted sequences
are independent of each other, iR, = o2UU" + afll. Note thatU is aQ-by-M matrix. In

order to use (3.8) and solve thiid unknown CFOsJ must be a full-rank tall matrix. From
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(3.3), we see thadtl is a Vandermonde matrix{,, # c., if m # n) [52]. Since we assume
M < @, the full-rank property then holds. As a result, (3.8) can be applied.
In order to find the maximum of the log-likelihood function fh user, we take a derivative

with respect ta. ; [51]:

B 9
age,iA<€) = —N-. tr[R; @Ry]
al )
— IR, () 39)
n=>0 €t

We use the matrix inversion lemma [17] to write the invers®pfs

—1 _ — — 211 Hy =11 1H
R," =o0,% —0,'U(c,% +0,°U"U)""'U

=0, b= U(R,) U, (3.10)

n

whereR, = o2l + a;QUHU. With (3.10), we only need the inverse of afrby-AM matrix R
rather than &)-by-Q) matrixR,,.

However,(R,)~! is difficult to obtain.;Even'it can, the relationship between the likelihood

function and the CFOs may not be tractable after the inversion. To solve the problem, we

propose using the Neumann series to expd@d ! [49]. Let S be a nonsingular matrix and
B(S) be its maximum absolute eigenvalue. Then, the serigs, S* will converge to(l —
S)~! [62] if 3(S) < 1[50]. However, the condition ofi(S) < 1 is not always satisfied for
a nonsingularS. This problem can be overcome by dividigby a real parametek > 0
and expanding the resultant matrix. It is simple to show that there always ekistieh that

B(Rs/A\) < 1. Now, we can rewritdR; as
R, =o0.% +0,2U"U
= \(I +B), (3.11)
whereB is obtained a$l/\)R; — |, and its ,q)th element is

Q
1 1 —& 13 —
(B)qu fry ()\0-2 — 1)(5(}) — q) + - w( E,P‘F e,lZ)N(k 1)_ (312)

o2
M k=1
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From the Neumann series shown above, the invergg ain be expanded as

_ S (—1)B (3.13)

k=0

For simplicity, we can retain the first three and truncate high order terms, i.e.,

~ + i( 1)kB". (3.14)

k=0

The determination of the optimumand the analysis of the truncation error will be discussed

in the next section. From (3.12), we can-find thg)th element oB? as

1

(B)g = (3~ D% —q)
1 M
+ (3) 2y “To(p, k)To(k, q), (3.15)
77 k=1

wherely(p, ¢) = 3.9, w(-certeca =1 Supstituting (3.12) and (3.15) into (3.14), we then

obtain

b ) Y Tolp Mok ) (3.16)



Using (3.16) in (3.10), we can approximate the inversR pas

(R;1>p7q = 07725@ —q) — Col'(p, )

M
— 0w N e
a=1

M
Z To(a, b>w(—6e,b)N(q—1)

b=1

M
(Eea q 1 56b
- Cz w w

where

(3.17)

(3.18)

Note thatl'y(., .) can not be directly estimated. However, it can be combined with some vari-

ables in (3.17) and convertedfdq., .) as defined in (3.6). The value bfp, ¢) can be estimated

from that of the(p — ¢)th diagonal term oR,, as:

_— [R ]P,P+m f
IJ__T ITm = q p > O
L(p,q) = { apme ™
B [Ry]q-O—mq
q_(lQ_m)g2 fm=p—qg>0

(3.19)



The second and third terms in (3.17) can be re-written as

M M
Z Z FO(G, b)’w(se‘“)N(pfl)w(*fe,b)N(qfl)

a=1 b=1

Q M M
_ Z Z Z w(—Eeateep)N(n—1)

1
w(se,a)N(pfl)w(fse,b)N(qfl)

and

M M M
Z wi(se’a)N(qil) Z w(EE’b)N(pil) Z FO(b7 k)FO(kv Cl)

, c)1;:1 k=1
= > > T(pym)(m,n)F(n,q).

Substituting (3.17)-(3.21) into (3.9), we can obtain

. Q. Q
A = B S par

856,1' 1 g1

Q
[CoT(p.q) + C1 > _T(p,n)(n,q)

n=1

Q @
+C2 Y > Tlp,m)L(m,n)l(n, q)]

m=1 n=1

+7(p, ¢)[Co(p — q)aP™*
Q

+C1 > ((n—q)z"T(p,n)

(p— n)a?"T(n,q))
Q

Q
"‘02 Z F<p7 m) Z F(”v Q)

n=1
m—n

((m = n)a
+(n — q)a" T (p,m)T(m, n)
(p — m)a? T (m, )L (n, )]} }
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where

N—-1
Y, q) =) y'(n+(p—-1)N)yn+(g—1)N) (3.23)
n=0
and
r = exp(jQWN]\i:’i). (3.24)

The detailed derivation of (3.22) is provided in Appendix B.1. Setting (3.22) to zero , we can

solve all the possible(@) — 1) roots,z’s. The effective CFO can then be obtained by

. Ng In(z)
o STy 2
As defined in (3.2), the true CFO fath user is then given by
. N In(z)

whereg; is the subchannel index for uséerlt is apparent that after addingg;, there will be
only one root falling into the range-of subchannel 0, and the root is the estimated CFO for user
1.

A direct method for solving the roots in (3.22) is via an exhaustive grid search over the
interval spanned by. ;. However, the computational complexity is high. Taking a closer look

at (3.22), we find that (3.22) is a polynomial functionagfi.e.,

9 Q-1 Q-1
5% Ae) = Z ap(k)x® + Z an(k)x™" = 0. (3.27)
&t k=1 k=1

The detailed derivation fat, (k) anda,, (k) is provided in Appendix B.2. Using (3.27), we can

then use a more efficient root-finding method to obtain the roots.

§ 3.2 Performance Analysis

§ 3.2.1 Truncation Error in (3.14)

As we can see, the series in (3.13) is infinite and truncation has to be conducted. In the previous

section, we retain the first three terms in the series. One may be curious about how large the
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error will be. In this subsection, we analyze the truncation error in (3.14).
For a positive-definite Hermitian matriX with rank /', we can have its eigen-decomposition
as
R=VGV?, (3.28)

whereG = diadg, -, gk| is a diagonal matrixg;'s being positive are the eigenvalues of
R with descending order, i.eg; > --- > gx, andV is an unitary matrix consisting of the

eigenvectors. As shown in section 3RLalso can be expressed as

R -1 -1 = k
()7 =0-AT =) A% (3.29)

k=0
where) is a real number ensuring that the maximum absolute eigenvaiRg)of smaller than
one, andA is a matrix to be determined. Substitute (3.28) &\’ = | into (3.29), we can
obtain thatA = V(I — G/\)V¥ and

A" = V(.= X) A (3.30)

From (3.30), it is simple to see that for the convergence of (329},¢;/)\|, i = 1,2,..., K,

has to be smaller than one. Also, the smaller the valdé efg; /A

, the faster the convergence

we can have. Since the valuesg@® may be different, the convergent rate of eath- g;/\|
(referred to as a mode) may be different. As a result, the overall convergence is dominated by
the mode with the maximuni — g;/\|. To have the fastest convergence, we then want to find

a A minimizing the maximum1 — ¢;/\| (1 < i < K). This yields a min-max optimization

problem as:
min max 11— gi/A| (3.31)
subject to the constraints
11— gi/N <1, (3.32)
wherei = 1,2,..., K. The optimum value oA has been shown to be [54]
A= WTQK. (3.33)
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Substituting (3.33) intgl — ¢;/\|, we find that there is a same maximum value yielded;by

andgy. Denote the value as the slowest convergence rate (SOR)id.,

91 — gk
MR = 1T—g/ N =11- A =
(R) 11— g1/A =11 —gx /) o
_ S(R)—1
= SRTT (3.34)

whereS(R) = ¢1/gxk is the eigenvalue spread (EVS)Rf It is obviously that a smaller EVS
yields a smaller SCR. Furthermore, if the SCR is smaller, the convergence of the series of (3.29)
will be faster and the truncation error will be smaller. However, a closed-form expression for
the truncation error is difficult to obtain. Instead of the exact value of the error, we will try to
derive an upper bound. Let the number of the terms retained in (3.29)dvel power of the

truncation error b&€. Then, we have
(') L—1 0o
E = | ZA’“ 7 ZA’“H =D A
k=0 k=0 k=L
< Z |AMI< Z IA]*
k=L k=L

< Y MHR) (3.35)
k=L
where M (R) is the maximum diagonal value bf- £ in (3.30). If M(R) # 0, then

e MRS (SR) - 1F
“1-MR)  2(S(R)+ 1)Lt

(3.36)

It is simple to see that whefi(R) = 1 and M(R) = 0, £ = 0 giving the fastest convergence of
(3.29). In this caseR is diagonal and only one term is required in (3.29).

We now compare the EVSs &, andR; in (3.10), and show thaf(R;) < S(R,). As
shown in Section 3.1R, = 02UU" + o2l andR, = 0%l + 0,°U"U = 0,2 + 0, °R,. Let
{gu1,---,9uq} be the eigenvalues afu?? andg,1 > ... > guq-. Since the rank o), aQ)-by-
M matrix, isM, the smallesf)— M eigenvalues oJU” are zero, Legym+1 =" = gug = 0.

And, the non-zero eigenvaluesdt” andU” U are the same. This indicates that we can obtain
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the eigenvalues &R, from R, as:
eigR,) = 0, + 0, eig(Ry), (3.37)

where eigR,) denotes the first/ eigenvalues oR,,. So, the EVSs oR, andR, can be easily

obtained as:

S(Ry) = (029u1+0,)/(07)
= P Gua + 17 (338)

and

S(Ry) = (0,2 +0,°9u1)/ (0,7 + 0, gun)
= (P Gur+1)/(psGurs+ 1), (3.39)

wherep = o2 /o7 Note that the received SNR is defined as SNR o7 /o= Mp. Itis easy

to see that the EVS &R, is smaller than that dR,. Therefore, the SCR dR; is smaller than

that ofR,. Thus, the matrix inversion lemma used in (3.10) not only reduces the computational
complexity, but also reduces the truncation error in (3.14).

From (3.39), itis also simple to see that for low SNR, the EV® ppproaches one, so the
truncation error in (3.14) can be ignored. For high SNR, the EVR oipproaches to that of
R.. The EVS ofR, = U”U depends on the subchannel assignment sincgithéth entry ofU
is wices (@=1)N} ande.;, = ¢, + ¢. To analyze the truncation error, we first have to analyze the
EVS of U”U. Unfortunately, a general closed-form for the EVS is difficult to obtain. Here, we
study two special cases to show that the EV®6U is low and the truncation error in (3.14)
can be small in our applications.

Define aM,,..-user system as a system which can simultaneously havgle users at
most. The first case we consider ig-aiser system. For the system, the EVIUWfU can be

solved from (3.3) in a closed-form as:

S(UHU) = %, (3.40)
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where

Yo = {[1—cos(2md.) — cos(2md./Q)

+cos(276.(Q — 1)/Q)]*°
[1 — cos(27m6./Q)]%°.

As we can see, the EVS varies With= |s..; —¢.2| = |q1 —q2+¢1 —&2|. ThereforeS(U”U) is
dependent ot\e = |¢; — &3] andAg = |¢1 — ¢o|. Note thatA\q is the difference of the neighbor
subchannel indices. We now use an example to exam the EVS"af). Let N, = 128 and
N = 8. Then, there aréV,/N = 16 subchannels antl < Aq < 15. Figure 3.1 shows the
result. From the figure, we can see that the EVSsXgr= 1 and A¢ = 15 are much larger
than those fo2 < Aq < 14. Figure 3.2 shows the EVSs far< Aq < 14. ltis clear that all
the values are smaller than 1.5. This.indicates that the truncation error will be small as long as
adjacent subchannels are not used simultaneouslymed Aq — i - Q, Q)| # 1 wherei is an
integer.

The second case we consider i¢-aser system. For the system, the closed-form solution
of the EVS is not obtainable. Simulations are then conducted to obtain numerical results. Note
that in this case, the EVS is a function ffy, ..., q4,e1,...,e4}. It is difficult to exam the
behavior of the EVS in terms of these variables. For convenience, we still define two variables:
Aq =g — @] = |g2 — @3] = |gs — qu| andAe = 3" ;41 — &4]. Note that the definition and
the implication ofAe are different from those in the 2-user case. Using the same simulation
setting as that in the 2-user system, we obtain the EVS veksum Figure 3.3. Here, we
assume that adjacent subchannels are not used. From the figure, we can find that all the EVSs
are smaller than.7. We can expect the truncation error in (3.14) will be small. From Figure
3.2 and 3.3, we can also find that the smallest truncation error can be obtained\wherg
and Ag = 4 for the 2-user andi-user systems, respectively. However, a lafgewill result
in a smallerM,,,..., the maximum number of the users. Thus, the selectiafis a tradeoff

between\/,, ., and the SCR oR,,. In this study, we let the smallegtq be two.
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Using (3.33) and (3.37), we can see that the optimim(3.11) is equal ta, >+ 0, * (g1 +
g9u,m)/2. Note that the eigenvalues Bf, can be estimated as ¢ig.*>(R, — 071)) andR,, can
be estimated aEn — y(n)y*(n). So, the optimum\ can then be calculated. To evaluate the
performance of the proposed expansion, we define a normalized truncation error as (with the

optimum\):
2

En = E-{[IRs/X - [ Z DB}, (3.41)

wheree is the set for all possible, ,,, (m =1, - -, M). Usmg the result in (3.36), we can also

??‘

define a normalized upper bound as
2

En < E{IR/AI- IR/ = (~1)*B*|}

k=0

< BRI g, 3.42)

We now use some examples to evaluate the normalized truncation error and its upper bound in

(3.42). The result is shown in Table 3.1.71t.is simple to see that the normalized truncation error
increases with the decrease/f and with the increase of SNR. Also, the deviation of the upper
bound from the actual error is small; the upper bound overestimates the error by one to two dB.
From Table 3.1, we can also see that even with= 2, the truncation error is still quite small,

i.e.,—20dB. Section 3.3 gives more results to show the property.

§ 3.2.2 CRB Analysis

For the training-based method, only the AWGN is considered as a random variable, and the
CRB for the CFO estimation can then be derived [29]. In the blind method, the transmit symbol
is treated as an additional random variable, and the CRB for the blind CFO estimation can also
be derived in Chapter 2. Here, we generalize the result in Chapter 2 (for single-user OFDM
systems) to derive the CRB in OFDMA systems. From (3.4),(the)th entry of the Fisher
information matrixF is given by

Flpa =5 g

Oepleq

9%n(A(e))

=K 3.43
} { age’pageyq }7 ( )
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wherel < p,q < M. Substituting (3.8) into (3.43) yields

oR, __,0R, ., °R,
—R, R
de, Y gy Y (%p(%q)

—E{i v (n)dy(n)}

L 0R, 1 OR,
= N-tr(R;" 5 R 5

(F)pq = N-tr(-R, !

Y, (3.44)

where

—R (3.45)

From [51], we see that

By mdym)} = 3 B (n)dy(n)}
— S B{trQy(n)y" (n)}
_ N-t(R,) (3.46)

Finally, the CRB for the:; estimate is obtained as
CRB(g;) = (F ). (3.47)

We average the diagonal terms of (3.47) to have a single index for performance comparison.

§ 3.2.3 Computational Complexity

Here, the computational complexity of the proposed method is assessed and compared with

that of the existing schemes. For the proposed method, there are three operation steps. In the
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first step, we need to calculate the correlation matrix in (3.5) and its eigen-decomposition to
obtain (3.37). The computational complexity for this stefig)?® + Q*N). In the second

step, we need to calculate the coefficients in (3.27). From the received signal and the known
correlation matrix, we can obtaif(p, ¢) in (3.23) andl'(p, ¢) in (3.19). Letl'(p, q) andvy(p, q)

be the(p, q)th entries of two matrice¥ and~, respectively. The computational complexity

for constructing these matrices @3(Q*N). Note that not all coefficients in (3.27) (please
see (5.45) and (5.46) in Appendix B.2) are required to calculate. Some coefficient pairs in
(5.45) and in (5.46) are complex conjugate each other. Also, some terms in (5.45) and (5.46)
appear repeatedly. For examplg,p, ¢) in (5.45), the6th term of (5.45), and th&th term of

(5.45) allincludey, I'(p, m)I'(m,n). Without the redundant computations, the complexity for
calculating the coefficients in (5.45) or (5.46) is found ta@Q?). Then, we have evaluated

the computational complexity for calculating-all the coefficients in the polynomial (3.27). The
last step is the root-searching process:in (3.27) and the CFOs sorting for each user in (3.26).
Since there are@ — 1 terms in (3.27), the'roots canbe solved with the complexit® (fQ?)

(see Section 2.2). Compared with the root-searching process, the complexity in calculating
(3.26) is small and can be ignored. Adding all together and taking only dominant terms, we
can have the entire complexity for the proposed metha@d i$SQ? + 2Q*N). For the ESPRIT
frequency estimator, the complexity has shown tol&Q* + Q?N) [35]. Therefore, the
computational complexity of the proposed method is on the same complexity order as that of
ESPRIT.

Next, we evaluate the computational complexity of the training-based schemes. For APFE,
the total complexity has shown to B§ M N.N,,(L? + LN?)) [28] [29], whereN, denotes the
number of iterations and/,, the number of grid points used for each iteration. For simplified
AAPFE, the computational complexity i3( M N.N,, N2 K) [29] [30]. Since the computational
complexity of APFE algorithm is high, suboptimum training-based schemes were then pro-
posed [28] [30] [31]. For the method in [28], the computational complexit (8)M T N? +
TN,(MN)?) whereT is the number of the Monte Carlo runs finding a mean likelihood [48].
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The computational complexity for the method in [30]G8 N.(M?N? + 1/2N,log,(Ns) +
3/2M3N? + 3/8M*N?N;,)) while that in [31] isSO(N.(N,(MN)? + M?)) for L = 1. Here,L

is the number of terms retained in an infinite series [31]. Note thaffer 1, the method has

the worse performance but the lowest computational complexity. Also note that the simulation
results in [31] indicates thal should be at least three for acceptable performance. However, as

shown in [31], the computational complexity order #be= 3 is difficult to evaluate.

8§ 3.3 Simulations

In this section, we report simulation results demonstrating the effectiveness of the proposed
method. In the first set of simulations, we compare the performance of the proposed method
with existing blind methods. Note that ESPRIT is known to be better than the MUSIC algorithm
[35]. Thus, we only conduct simulations for ESPRIT [35]. In the second set of simulations, we
compare the performance of the proposed method with existing ML methods such as APFE and
AAPFE. Note that existing ML schemes require training sequences. Finally, we compare the

computational complexity of all schemes.

§ 3.3.1 System Setup

In our simulations, the channel response used for each user is generated according to the HIPER-
LAN/2 channel model [47]. The channel response, having 6 taps, follows an exponential power
decay profile. Each tap coefficient is modeled as an independent complex Gaussian random
variable with zero mean. The CFO of each user is generated with a uniform distribution in the
interval (—0.5,0.5). The symbols used for CFO estimation are modulated with a binary phase-
shift keying (BPSK) scheme while those for data transmission with a 16-QAM scheme. The
interleaved OFDMA system used in our simulations has= 128 subcarriers. Since there are

multiple CFOs to be estimated, the mean square error (MSE) is used as the performance index
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defined as
M

MSE =) (ém —em)”. (3.48)

All the simulation results are obtained by averaging0 Monte Carlo runs.

As shown in Section 3.2)\¢, the difference of the neighbor subchannel indices, influences
the truncation error in (3.14) and,,,.., the maximum number of the users. As shown in Section
3.2, the larger thé\q, the smaller the truncation error and the smallerthg,.. We compare

the results forhg = 2 andAq = 4 in the following.

§ 3.3.2 Performance Assessment fay = 2

Firstly, we letAq = 2, the smallesf\q we use. In this case, the SCR will be maximal adg,,..
is also maximal. It corresponds to the worst case inthe proposed method. An important design
parameter for the proposed method is the.number of subcarriers for eachuddre number
of subchannels is the@ = N,/N. Observing (3:27) and (3.47), we see that a higheyives
better performance, but requires higher complexity. To see the impa¢twe letM = 4 and
observe the CRB for differenV. The result is shown in Figure 3.4. We can see that the CRB
is almost the same faN = 4 and N = 8. To reduce computations, we choaSe= 8 for the
simulations we conducted. Without loss of generality, we assume that the CP lengthieh
is larger than the channel length. For the first set of simulations, we compare the performance
of the proposed algorithm with that of ESPRIT. Figure 3.5 shows the resul/fes 2, while
Figure 3.6 forM = 4. As expected, the performance of the proposed algorithm is significantly
better than that of ESPRIT since the proposed method conducts the ML estimation. We can also
see that the proposed method can approach the CRB. At high SNR regions, the performance of
the proposed algorithm slightly deviates from the CRB. This is due to our approximation used
in (3.14). When the number of users is larger, the deviation is also larger.

In the second set of simulations, we compare the performance of the proposed algorithm
with that of other ML algorithms. The simulation setup is the same as that of the first set of

simulations. The ML problem can be directly solved by using an exhaustive grid-search over the
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multi-dimensional space spannifg.1,--- , . }. To reduce the computational complexity,

we use the APFE and AAPFE schemes. The AAPFE is a suboptimum solution of APFE and it
also truncates the Neumann series to approximate an inverse matrix (with akQrida]. In

each iteration, only one user’s CFO is updated while other users’ CFOs remain unchanged. The
CFO update is conducted by a grid-search method. Note that the purpose of the expansion is
different from ours. Also, AAPFE does not use the optimhito achieve the best result. In our
simulations, we letV. = 2 andN,, = 100. We have tried<’ = 1 and K’ = 2. Figure 3.7 shows

the result forM = 2 and Figure 3.8 fol/ = 4. We can see that the APFE performs the best
and the AAPFE withiK' = 1 performs the worst. Note that the conventional APFE and AAPFE
have to use training sequences. From the figure, we see that the performance gaps between the
APFE, the AAPFE withK' = 2, and the proposed blind algorithm are very small. Also note
that all these algorithms tend to deviate fromthe CRB when SNR is high.

§ 3.3.3 Performance Assessment i = 4

Figure 3.10 shows the computational complexity of the schemes we consider. Figure 3.10(a)
shows the complexity versus the number of subcarriers for the 2-user case. Figure 3.10(b) shows
the complexity versus the number of users for a fixed total number of subcaNiets,128 and

@ = 8. From the figures, we find that the computational complexity of the proposed method is
similar to that of the conventional blind methods. However, the proposed method outperforms
the conventional methods AydB (see Figure 3.5 and Figure 3.6). Compared to the training-
based methods, the proposed blind method can have similar performance (see Figure 3.7 and

Figure 3.8), but much lower computational complexity (see Figure 3.10).
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Table 3.1: Normalized truncation error versus SNR

SNR 0dB 3dB 6dB 9dB 20dB 30dB
M=2,Aq¢=2(dB) | -26.6867 -26.2986 -26.0997 -25.9989 -25.9049 -25.8976
Upper bound in (3.42) -25.2057 -24.7714 -24.5481 -24.4348 -24.3291 -24.3209
M=2,A¢=3(dB) |-32.4019 -32.0139 -31.8150 -31.7141 -31.6202 -31.6128
Upper bound in (3.42) -31.5097 -31.0943 -30.8811 -30.7729 -30.6720 -30.6642
M=2,Aqg=4(dB) |-35.8326 -35.4446 -35.2457 -35.1449 -35.0509 -35.0436
Upper bound in (3.42) -35.1642 -34.7558 -34.5462 -34.4399 -34.3408 -34.3331
M=4, Aqg=2(dB) |-20.0507 -19.6616 -19.4621 -19.3610 -19.2667 -19.2594
Upper bound in (3.42) -18.0176 -17.5638 -17.3303 -17.2117 -17.1010 -17.0924
M= 4, Aq=3(dB) | -25.1858 -24.7970,:1:24,5978 -24.4967 -24.4026 -24.3952
Upper bound in (3.42) -23.8575 -23.4277: -23.2068 -23.0947 -22.9901 -22.9820
M=4,Aq=4(dB) | -27.2568 -26:8681 -26.6689 -26.5679 -26.4737 -26.4664
Upper bound in (3.42) -26.1414 -25.7185 -25.5013 -25.3910 -25.2882 -25.2802
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Chapter 4

CFO Estimation and Power Allocation in
Amplify-and-Forward Cooperative OFDM

Systems

In previous chapters, we focus on the non-cooperative OFDM/OFDMA systems. Recently,
there is an growing interest in wireless communication systems employing cooperative relay
networks [57]. The cooperative relaying system allows wireless devices to achieve higher
transmit diversity, expand coverage, yield system-wide power saving, or have better immu-
nity against channel fading. As mentioned, two relaying protocol are well known, namely, AF
and DF. In this chapter, we consider the AF-OFDM systems. One major impact of the system is
that the noise at the destination is colored. To obtain the ML CFO estimation in AF-OFDM sys-
tems, the inverse of the correlation matrix has to be conducted. Unlike the correlation matrices
in previous two chapters, the off-diagonal sub-matrices in the correlation matrix are not zero
due to the correlation existing in the adjacent received symbols. The closed-form expression
of the ML solution is much more difficult to obtain. We then propose using a gradient-descent
method to solve the problem. To evaluate the performance of the proposed method, the CRB

for the CFO estimation in AF-OFDM systems has to be derived. Since the expression of the
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CRB is highly nonlinear and contains an expectation operation on the source-to-relay and rely-
to-destination channels [9]. Again, a closed-form expression cannot be derived. To solve the
problem, we then propose an approximation method to derive a closed-form solution for the
CRB. The approximated CRB is a function of the expected channel state information (CSI) and
it can be evaluated efficiently. Finally, we consider the power allocation problem in the AF-
OFDM system. As that in [38], our objective is to minimize the CRB. Using the approximated
CRB, we propose two constrained gradient-based methods achieving the optimum power allo-
cation. The rest of the chapter is organized as follows. Section 4.1 briefly describes the system
model we consider. Section 4.2 derives the ML CFO estimation and Section 4.3 derives CRB
bounds for AF-OFDM systems. Section 4.4 describes the power allocation schemes minimizing

the various CRBs. Section 4.5 shows the simulation results.

§4.1 System Model

An AF cooperative wireless communication system, shown in Figure 4.1, consisfsjof

nodes, one source node (3), relay nodes (R R, -+, Ry/), and one destination node (D).

All nodes are equipped with a single antenna. In the system, the source transmits signal to the
destination with the assistancefrelays. The transmission from the source to the destination
takes place over two phases, i.e., broadcasting phase (BP) and relaying phase (RP). In BP, we
assume that the signal-to-noise ration (SNR) between S and D is low and D cannot received
the signal broadcasted from S. In RP, each relay normalizes the received signal, amplifies the
received signals, and then re-transmit the resultant signal to the destination. We assume that the
statistical CSls between S ang,Rand those between,Rand D are known at the destination

(but the instantaneous CSls between S and D are unknown). Also, the preamble sequence of an

OFDM frame is periodical and is unknown to the relays and the destination.
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84.1.1 Channel Model

The channel impulse responses for S-Bnd R,,-D links are denoted b¥gg,, = [hsr,,(0)

-+ hsr, (Lsg,, — 1)]*, andhg, p = [hg,, p(0), -, hr,p(Lg,p — 1)]*, whereLsz, and

Lg, p are the length of the channels. The channels are modeled as quasi-static frequency-
selective Rayleigh fading with an exponential power decay profile. Without loss of generality,
we assume that all the channels are independent each other. Also, the charingl tdp,

1 <m< Mand0 <1< Lgg, — 1, is modeled as a complex Gaussian random variable with

zero mean and a variance of
E{|hsr,, ()]} = Asg,, - €725k (4.1)

whereagg, . is the decaying factor of the exponential profile ang, a power scaling factor.
The gain forhgy, , denoted a&: sy, ISthenGgsr,, = A\sr,, fjé*m_l e 2srm!l - Similar def-
inition can be applied fohy, p(1), i.€y E{|hr. p)?} = g, p - e 22rn0! and the gain for

. L —1
hRmDa denoted angD, IS thenGRmD = /\RmD Zl:}%mD e 2Rm DL,

§84.1.2 Signal Model

Let the preamble signal in an OFDM frame be periodic with a perio&adnd a length of

N, = QN. Also, let the cyclic prefix (CP) length bk, and L., > max{Lsgr, + Lr, p} (for

all m). We assume that the preamble signal transmitted from S, denotét)as unknown to

R,. and D. Thus, We can treatk) as a Gaussian random variabke=€ 0,1, ..., N, — 1) with
variances?. Without loss of generality, we also assume that= 1. In the BP, information

bits are first modulated into complex symbols, and blocks of modulated symbols are fed to an
OFDM modulator withN, subcarriers and then transmitted. The received signaltltrelay

can be expressed as

Lsr,,—1

Uk, (k) = wmn b /g0 > hsp,, (0)s(k = v) + 1 (k), (4.2)
v=0
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wheren,, (k) is the additive white Gaussian noise (AWGN) with variange, w = exp(j27 /N,),
k =10,---, Ny — 1], /g0 the gain factor of the transmitted amplifier at S, ang,, the nor-
malized CFO between S and,R

Since an automatic gain control (AGC) device is usually equipped at the receiver front end,
the received signal for each relay is first normalized with a facto¥,pf= Gsg,. go +o—3]m. Each
relay then amplifies the received signal with a gain 4f,, (1 < m < M), and forwards the

resultant signal to the destination.

After the reception of the preamble signals transmitted from the relays, D discards the CP

to restore its periodicity. The received signal at D during the RP is given by

Lryp=1

M
yp(k) = ;wmm ng_n; Z ha, 5w yr, (k —w) + k), (4.3)

wheren (k) is the AWGN with a variance cn?7 andes g, p the normalized CFO between,fand
D. Substituting (4.2) into (4.3), we can have

LRmD 1
un(k) = Zweﬁmegm/N Y (s
LSRm_l
N Z hsr, (V)s(k —u—v) + nu(k —u)} + n(k)
LRmD 1
_ Zw(meD+€SRm)k, /gm/N Z {hRm
Lsgr,,—1
w0 fgo N [hsr,, (v)s(k —u—v)]}
v=0
LRmD_l

NG [N D [P (@) (K — )] + (k)

u=0

_ Z wEstmternDl [ N hp b(k) % S (k) + E(k) + k), (4.4)
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where

Sm(k) = Vgohsr, (k) * s(k),
hr, p(k) = hg, plk)w =srmk,

M
Ek) = Y w PN [Ny, (k) % 1 (k). (4.5)

Apparently, the noise at the destinatig(¥%) plusn(k), is colored. The power allocation method
proposed in [38] ignores this effect and the derived result is then not optimal. It is interesting to
note that the CFO betweéhand D is the same as the summation of the CFO betweand

R and that betweeR andD, i.e.,csp = csr,, +€r,,p [38]. Then, the received signal at D can

be rewritten as
yp(k) = WP (k) +&(k) + n(k), (4.6)
where
M A
z(k) = Z mhRmD(k) * 5 (K).
m=1

Rewriting the above equation with a vector form, we can obtain the following result:

Yp =®xX+ &+, (4.7)
where

Yo = [yp(0) yp(1) -+ yp(N,—1) 1",
x = [20) z(1) - z(N,—1)],
€ = [¢0) ¢) - V-1 1"
n = [n0) n) - npN,-1) 1",

-wst'O 0 .o 0 |

0 wespl
d —

0 0 cen EsD(Ns—1)
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From above equations, we can find thét) is the output of an effective channél, (k) =
hr. p(k) = hsg. (k). As mentioned, the received signal is colored and the conventional ap-

proaches for estimating CFO is not valid.

84.2 ML CFO Estimation

Sincehgg,, (k) is unknown at D, the effective channél, ., (k) is a random variable at D.
As defined, the preamble signal in frequency domain is unknown at the relays and the destina-
tion. For OFDM-based systems, the time-domain noiseless signal is obtained from the inverse
discrete-Fourier-transform (IDFT) of its frequency-domain signal. From the central limit theo-
rem, we know that if the number of subcarriers is reasonably large, the time-domain transmitted
signal and the output of the unknown effective.channels can then be approximated as a white
Gaussian sequence (see Section 2.2). :So, the received gig(tal,is composed with a white
Gaussian signat(k), a colored noisé€ (k) and AWGN» (k).

Note thatz(k), £(k), andn(k) are independent'each other since the transmitted signal at S
and the noise a,, and D are independent each other. kgt »({)’s be given and fixed. Also,

let the received signal power at D be denotedhando? = o2 + o7 where

LRmpfl

M
2 Im *
o, = mX::lgoGSRm N IZ; hr,o(1)h%, p(l)

M
9m
_ Gm. 4.8
mZZI gOGSRm N, Vm(o) (4.8)
7 = oitay )
< g
g = ) .5 m0) (4.10)
m=1 m
Lg,,p—k—1
Ym(k) = w ok N b p(Dh, (14 ),
=0
Lp,p—k—1
_ w*ESDkwESRmk Z hRmD<Z)h*RmD(l+k)’ (411)

=0
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andk =0,---,Lg, p — 1. Note thats?, o2, ands? are functions ofip, p(1)’s.

The log-likelihood function (LLF) for the received signal at D can then be expressed as

A(esplhrp) = In[f(ypl|hrp)]
= —In[r] - In[detR, )] — YR, .yp. (4.12)

where(.|hrp) denotes the event conditioning én,, p(1)’s, f(.) is a probability density func-

tion, andR,, = E{ypy3|hrp} is a N, x N, correlation matrix. The correlation matrix in

(4.12) can be decomposed@$ N x N submatrices as:

R Re Ry - Rg
~H ~ ~ ~
R, R, R, - Rg.
Ryn = |Ry7 Ry - Ry - Rool (4.13)
~H <H ~ H ~
[Ro RolitiRgey + Ri |
where
oy +oi+or ,ifp=gq
(Ri)pg = ¢ 7(k) ifg—p="k 0<k<maxLg,p)
v(k)* Jfp—q=1Fk 0<k<maxLg,p)
~ o2w—espN Jifp=gq
(R2)pq = ]
YN+q—p) ,fN—(p—q)<Lgp,p—1
~ o2wespNE=1) - if p = ¢
(Rk)p,q’kZS = _
0 , otherwise
and
M g
Yk) =Y on - m(R). (4.14)
m=1 m

As we can see, the LLF in (4.12) is very complicated and a closed-form solution for the CFO

estimation is difficult to derive. To solve the problem, we propose using the gradient-descent
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method in the ML estimation problem. Note that(k) is the autocorrelation function of the
received signal when the relays transmit white sequences, and it is required in the estimation.
There are a couple of scenarios that(k) can be estimated. For example, the relays can
transmit white sequences to D in the BP and the destination can use the received signal to
estimatey,, (k). It is important to see that the receiver does not have to know the transmit
sequences since only the autocorrelation function is needed not the channel responses. For
other scenarios, D may have priori information abgtk). For example, if the relays are base
stations [58] communicating with D) p andey,, p can be known at D, so ig,, (k). When a
new user joins the network (treated as-5)(k) is then known as a priori for the user. For these
reasons, we then assume that k) is available as a priori.

Taking a derivative with respect tg, we have

(9A(5SD]hRD) _ tr(li_l 8liy|h
€SD v desp

~1 8|iy|h ~ 1

) VER g L RunYo: (4.15)

For the gradient-descent method, the update equation is given by

aA(65D|hRD)

e (4.16)

éSD(kZ + 1) = ésp(/{?) +u
where is a step size. Here, we only focus on the estimation of the fractional CFO, i.e.,

lesp(k)| < 0.5. The operations of the gradient-descent method are summarized as follows:

1. Initialization : Setk = 0 and initialize theZs, (k) as zero.
2. Use (4.16) to obtaiagp(k + 1).
3. If ‘gsp(k‘ + 1)| > 0.5, let |5SD(k5 + 1)| = 0.5.

4. Check if u(OA(esplhrp)/Oesp) is small than a preset If yes, the algorithm stops and
outputég)j. Otherwise, set ask + 1 and go to Step 2.

To evaluate the performance of the estimation, we define a mean square error (MSE), denoted
by MSE,., as

N

1 A(r
MSE, = 5= > (6h,; —esn)*, (4.17)

€ =1
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whereéggi indicates theth estimation of CFO and/. the total number of estimations.

Note that the ML CFO estimation in AWGN environment has been solved in Section 2.2,

and the result is given by

Q-1 Q
Z Z |qu|(q —p)équ

A(w) . p=lg>p
27 Z Z ]q —p|2|qu\
p=1 g¢>p
where
N-1
Ty = yp((p — 1N +n)yp((¢ — 1)N +n)
n=0

and/7,, is the phase of’,,. One can ignore the color property of the receive noise and use
(4.18) to conduct the CFO estimation. To evaluate the performance, we define the MSE for this

approach, denoted BMSE,,, as

Ny

1 o
MSE, = 7 ;@gg,i —esp)?, (4.19)

Whereé(;g’i means theth CFO estimation. In simulations, we will use MS&nd MSE, for

performance comparison.

§4.3 CRB Analysis

In this section, we will derive the CRB for the ML estimation of the CFO. Since the channel is

fading, we then take an expectation on the LLF in (4.12) and obtain the expected LLF as

A(esp) = En{A(esplhrp)} (4.20)

where the expectation is conducted/ofy. Using the LLF, we can have the CRB as [51]

1
CRB, > I (4.21)
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where
82
Ae
oez, o)

_10R ~10R
= Eu{tr(R "R,

F = —Bf

Desr M D )} (4.22)

From (4.22), we can see that a simple closed-form expression for the LLF is difficult to obtain
since matrix multiplications/inversions and the expectation operations are involved. To solve
the problem, we propose using some approximations. Define a Rayleigh exponential decay
channelagy, (1) = hg, p(l)exp(—ag, pl), wherehg, p(l)’s are independent and identically
distributed random variables with zero mean and a variance;0f,. Then we can rewrite

(4.14) as

LR,, p—k=1

M
v(k) = ZW_ERkaaimgm/Nm Z Ry (1 + k)e~rmp @40

m=1 =0
M

_ E —€R, Dk 2 —QR,, Dk
= w m O'nmgm/Nme m .

m=1

VR D b + e OéRmD‘ .
hr, oDy, p(l+ k)e 2@Rmp! (4.23)

From (4.23), we see that(k) is a summation of independent random variabtgsk) for
differentm’s. To facilitate the derivation, we assume thét) is a complex Gaussian random
variable. From the central limit theorem, the approximation error will be smaller wiies
larger. It is simple to see that the expectationy¢f) is zero whenk > 1 and that ofy(0) is

M 07 9m/NmGr, p. The variance of/(k) for k > 1 can be derived as

e—QaRkaJ 1 _ e—4aRmD(LRmD_k)
4 gm/N )\2 D ( )
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Pﬂs

a2 (k) = Ep{y(k

1 — e~4@RmD
m=1

(4.24)
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The variance ofy(0) (as defined in (4.10) and (4.14)(0) = 07) is

By (010} = E{(O)F) = Eh{zzaza]i—z% o 10}

nbNb
a=1 b=1

9 9b
= 2D TNy
b=1 “ b

LRapfl LRapfl

Eh{iLRGD (U)iL*RaD('LL) thD(v)BEbD (U)}e*QOZRaD“e*QQRbDv

u=0 v=0
M M Lr,p—1
> Y32 g2 En{hp,p(uw)hs p(u)}
= Na N(z m’N h1U/''Ro D Ro.D
a=1 b=1 u=0

Eh{thD (U)BEbD (U) }G_Q(QRGDU""O‘RbDU)

Lr,p—1Lgr,p—-1

M M
- Z Z Tna nbN AR“DARbD Z Z e Hmapiran, oY)

M Lgr,p—1
> Y (aga%)%w Y ettt = 52(0), (4.25)
a=b=1 a u=v=0
where y ,
5'? = Eh{O'g} == N_mo-?]mGRmD' (426)
m=1 m

So,5? > \/53(0) > \/53(1) > .o >\ /62(Lg, p — 1) for all m sincea?(0) > 52(1) >
- > 2(Lg,,p — 1) for all m (which can be observed in (4.24)). Note thak)'s (k > 0)
appear in the off-diagonal terms of the sub-matrices in (4.13)o§rtde diagonal terms d®,
in (4.13). Comparing Withfg, the variance of the off-diagonal terms of the sub-matrices is
small, especially for largé. Thus, some off-diagonal terms of the sub-matrices in (4.13) can
be ignored whetk is large.
We now use the HIPERLAN/2 channel model [47] [60] to evaluate the magnitu(zl@(b)‘.

Assume thatvg, p = o = 0.5 andLg, p = 8 for all m. Define the terms depending énn
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(4.24) ask,, (k) = e 2% (1 — e~*(Lrnp=k)) and divides,, (k) with x,,(0) (the minimum of

(4.25)). We then have
e—Qak’(l - e—4a(LRmD—k’))

fm(a k) = (1— 6_4a(LRmD))

It can be treated as the ratio betwegfk) and 57 in (4.13) sinces?(0) < ;. Figure 4.2
shows the simulation results fdf,(«, k). From the figure, we see thd},(«, k) descends
almost90% whenk > 2. In other words, the random variabjék) approaches its zero mean
whenk > 2. To simplify the problem, we then assume that) is zero fork > 2. With

the assumptionR; becomes a tri-diagonal matrix and the off-diagonal entrieR.0fire zero
except for(Ry)y1 = 7(1). To obtain a closed-form Fisher information, we then assume that
R, is a diagonal matrix and(1) only appears irR,. Note that the assumption is more valid
whenq is larger, an environment for large open'space [64]. As a result, all the sub-matrices in
(4.13) are diagonal except for those in the main diagonal. However, the inveﬁ@g @ind the
expectation operation in (4.22) are still difficult to derive since all the submatrices in (4.22) are

non-zero. To solve the problem, we re-arrange the elements of the received signay yestor

Yp = [?JD(())vyD(N)v"' ;yp((Q@ —1)N), -+ ,yp(N — 1)7"' ,Yyp(QN — 1)]T- (4.27)

Then, its correlation matrix can be re-expressed as a matrix compos®d 6f x ) sub-

matrices:

Ryn = E{ypYplhro}

RL, R, 0 --- 0
RY Ri Ry, -+ 0

= 0 Réf R, --- 0], (4.28)
0O 0 0 -+ R

where0 indicates &) x () matrix composed of all zeros elements,
R, = o2lg + o2uu?, (4.29)
R2 = 7(1)| Q>
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and

u=[1,wsoN ... esoN@-DIT (4.30)
The correlation matrix of (4.28) has a better structure than that in (4.13) since most submatrices
are zero andR, is a diagonal matrix. As a resul,, is a tri-diagonal matrix. Note that the
inverse of a tri-diagonal matrix has been derived in [61] [62]. Using the results in [61] [62], we
can obtain the inverse of a tri-diagonal matrix as follows. Deline R;ﬁz- Then, the(p, ¢)th

submatrix () x @) of T,, , can then be expressed as

B B e e e AL A

(=P (1)*)P~ 9P, _1Q, 1 (Py) ™" ,if1<g<p< N

where
P,L' = Rlpifl ™4 |’7(1)|2Pi72; forZ = 2, s 7]\/v (432)

whereC;(a) denotes the coefficients of the polynomidi| the nearest integer less than or equal

tob, and|b| > 0. Here,P, = | andP;'= R, and
Qi - PN+171'7 fOI‘Z - 2, e ,N + 1 (433)

Taking a derivative with respect tg, , we can have (4.28)

! — %
ylh Oesp
—Ri R, 0 .- 0_
ng R& Ré ... 0
_ 0 RI R, ... 0], (4.34)
(0 0 0 - Ry
where
s = 1 tone -
j @ o2wesp (=N otherwise
R, = +(1lg,
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and

V(1) = (1) _ NZ (4.36)

agSD
Since the subcarrier lengtN, is usually much larger thadr, we can further assume that
7'(1) = 0. Thus, (4.34) is reduced to be diagonal. From (4.28) and (4.34), we can rewrite the

Fisher information in (4.22) as

1 ORI OR,1,
F = Eyftr 4 4
h{ ( y|h855D y|h855D)}
N-1 N
= Ep{tr(2 ZZqu+prp (4.37)
p=1 ¢>p
where
W,y = (‘7(1)’2)q_p(Pp—1Qq+1P]_VlR/1>2~ (4.38)

The detailed derivations of (4.37) is given in‘Appendix C.1. Substituting (4.33) into (4.38), we

can have

Eh{tr(wp,q)} = Eh{(h/(l) |2)q_ptr(Eh({Pp—1PN—qP17Vl R/l})Q)} (4-39)

As we can see the expectation operation on the right hand side of (4.39) is difficult to conduct.

To continue the derivation, we then use the following approximation:

E{tr(Wyo)} =~ tr((Bn{ly (D)D" (En{Pp-1} En{Pr—q} En{Py' } Er{R}})?).(4.40)

Let W,,, be the matrix inside the trace operator in the right hand side of (4.40)W.g,,=
Ep(Whpg) = (En{ly(D)PH* P (En{Pp—s} En{Px—o} En{Py' } Er{R}})?. We can then have

W,, = (52(1))""(P,m1Q, 1Py R, (4.41)
where
R, = Ep{R:} =a%uu + 52, (4.42)
_ 0 Jfp=gq
R’ = E{(R =
( 1)p,q h{( l)p,q} { j%(gw) 5g2cw65p(p—q)N ’ otherwise
lsi - Eh{Pl} - ﬁllsi_l - 5,3(1)'51_2, forZ — 2, ce ,N (443)
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and

M
o; = E{ol} =) 9n/NugoGr,0Gsn,, (4.44)

m=1

g, = a;+o, (4.45)

with Py =1, P, = Ry, andQ, = Py,,_; fori = 2,--- | N + 1. Substituting (4.41) into (4.37),

we can obtain an approximated Fisher information, denotefl,bgs

N N B
Z Y W) (4.46)

and a closed-form solution for the CRB, denoted by CRB

=

-1

HM

1
CRB, = — 4.47
X (4.47)

If the noise forwarded from relays is treated as white, we can(let be equal to zero in

CRB, and CRB. In this case, CRBand.CRB become identical and the CRB is reduced to

CRB, = — |,w=0= 7 hw=o
B Q*a (5, +Q - 77)
= n (4.48)
8m2N -G8 > > (q—p)?

p=1 ¢>p

which is the same as the CRB in Chapter 2. Note that the approximation error will become zero
if the colored noise is not present. This also indicates that the,GiRBroaches CRBwhen

the colored noise is small.

8 4.4 Power Allocation Algorithms

In this section, we consider the power allocation problem in AF-OFDM systems. Our approach
is to minimize the CRB of the CFO estimation. As we have seen from (4.21), (4.47), and (4.48),
the CRBs are functions of the transmitted power of S and thaf,otdenoted ag, andg,,. The
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optimization problem can then be formulated as

min min CRB, (4.49)

9o 9

M
S.t.g’:go+2gm:P,

m=1

whereg = [g1,- -, ga]7 and P is the total transmission power. Since a closed-form expres-
sion for CRB. is not available, we then use CRBnd CRB, as approximations. It is clear
that (4.49) is a constrained optimization problem, and many methods can be used to obtain
the solution. However, since the functions in CR&d CRB, are highly nonlinear and not
convex, advanced methods may not be efficient to apply. For simplicity, we propose using the
conventional gradient-descent method to solve the problem. From (4.47) and (4.48), we can
see that matrix operations are involved in GRBhile scalar operations in CRB Thus, the
computational complexity with CRBwill be higher than that with CRB. As we will see in
the next section, however, power allocation designed with ORIB have better performance.

In a relay network, the roles of the source and the relays are different in a relay system.
For this reason, we denote the power allocated to the sourg® asd that for the relays as
(1 — B)P where0 < g < 1. In other wordsg, = P andg,, = w,(1 — )P wherew,,
corresponds to a normalization factor such tl%.t w,, = 1. To simplify the expression, we

m=1

define
Am = GRm D GSRm
Bm = 0 727m G RmD

and substitute them into (4.44) and (4.45). Then the variane¢iofand{(k) + n(k) can then

express as
M
_ Amwmﬁ(l _B)P2
2 = 4.50
o2 mZ " (4.50)
M
_ _ Bpwy, (1 — ()P
2 2 mW%m
5 = 077—|—w; N (4.51)



where
Ny, = Gsg,, 0P + 0, . (4.52)

First, we solve the power allocation problem by minimizing GRBhe optimization prob-

lem can now be formulated as

mﬁin min CRB,, (4.53)
w
st. 0<pB<1,
M
Z W = 17
m=1
wherew = [wy, -+ ,wy|. To facilitate the derivation of the solution, we split the parameters

into two groups,5 andw,,’s, and solve the minimization problem alternatively. The alternative
optimization method [68] is an iterative:method-approximating a multidimensional optimization
with a series of one-dimensional optimizations. This technique is now exploited to simplify the
multi-dimensional minimization in (4.53).

We first optimizes for the source, and.-them,,’s for the relays. The first optimization

problem can be expressed as

min CRB,, (4.54)
B(w)

st.0<pB<l.

Denote the value ol at kth iteration asv(k) andw(k) = [wy(k), - -+ ,wy (k)]T. Lettingw(k)

be a constant vector and taking a derivative of (4.54) with respettwe can have

2 —~2 —2
Dyy— 2 CRB, — Q Q“’”,”U”[a-ii&i—&iiﬁ], (4.55)
Y98 NCRNC) , 08 op op
82N > > (¢ —p)
p=1g>p
where

0,  « ., 1-28 B(1—B)Gsr, P
350 = mz:lwm(k:)P An( = - e ) (4.56)
d ., 0, & 1 (1-03)Gsg, P



SettingD;, , = 0, we can the solve the problem, i.e.,
B(k+1) =R(Dyy =0) (4.58)

whereR(-) indicates the root of a polynomial ané{k + 1) is the 5 value obtained at the
(k + 1)th iteration. Note that by definitiof must be greater than zero and smaller than one.
From (4.55), we can see thBt ;, < 0 wheng = 0 sinces? = 0 andds2/93 > 0. When
B =1,Dyy, > 0sinceds /0B = 0 (5, = 6;) andda; /0 < 0. We then conclude that the root
in (4.58) must be in the range @, 1), and the constraint of is automatically satisfied.
After 5(k + 1) is solved, we substitute the solution into (4.53) and we obtain the second

optimization problem as

min CR 459
w(B(k+1)) B0 ( )
M
st w =1
m=1

b~ 9 cre _ Q2 {(63 +Q07) 500, . o550 + Q7%-52)
T w,, N Q Q o4 o
‘ 8m2N 3- > (¢ —p)? & &
p=1g>p
G707 + Q07) 50—
_ .- wm "2, (4.60)
where
o _ P2A,,B3(1 —B(k+1
e ol = ( ~ ( )), (4.61)
o 1—p(k+1))PB,y,
S oL = ( ( N ) : (4.62)

To solve the optimization problem in (4.59), we use a gradient descent method in conjunction

with a constrained projection [17]:

W(k 4 1) = [W(k) + puDiwls _, (4.63)
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wherey,, is the step sizeD; y = [Di.wy, s D1y, )’y Ew = fozl wm, and[-]Z _, indicates

the projection ofw(k + 1) (with power ofé;,) onto a feasible solution. As shown in [63], the
projection can be easily implemented by an normalization operation (normalizing the sum of
wn,(k + 1)'s). Based on the projected,,(k + 1)'s, the total transmitted power is normalized

to satisfy the power constraint. Here, we summarize the operation of the gradient method as

follows:

1. Initialization : Setk = 0 and initialize thew by a uniform power allocation method :

B(0) =1/(M + 1) andw,,(0) = 1/M for all m.
2. Substitute3(k) andw(k) into (4.55), set the result as zero, and obtaih + 1).
3. Use (4.60) to updater(k): w(k + 1)=w(k) + pD1 .

4. If foil wn(k + 1) # 1, conduct the projection as:
Wik + 1) = w(k + 1)/&,, wheredy, =S {w,, (k + 1).

5. Check ifk reach the maximum number of iteration. If yes, the algorithm stops. Other-

wise, sett ask + 1 and go to Step 2.

For convenience, we refer to this algorithm as proposed power allocation Algorithm | (PPAA-I).
Using the similar approach, we can obtain the power allocation scheme minimizing. CRB
Invoking the alternative optimization method, we can have the first problem for minimizing

CRB, as

min CRB, (4.64)
B(w)
sto<p<1
and then the second problem as
min CRB, (4.65)
w(B)
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M
Sty wy, =1
m=1
As that in PPAA-I, we solve first. Taking derivative of CRBwith respect tg3, we have [from

(4.47)]

d 1 OF,
D2 = 55CRB: = ~75 55

(4.66)

where
R, R, 0 0
R R R, 0
R, = |0 R/ Ry 0|, (4.67)
0-0 0 R:
, 0R,
v desp
R, 0 0 0
0 R, O 0
- o 0O R, .- 0], (4.68)
0 0 0 --- Ry

The matrixR is shown in (4.42). LeZ = R,'R) and we haveF, = tr(ZZ). Taking a
derivative ofF, with respect tg3, we have [51] [65]

oF, . . 0tr(ZZ),,0Z
oz
= 2-tr(2%)
= 2. tr(Rylﬁy,RyI%—I}'Rylﬁy/) +2- tr(Rylﬁy'Ryla;é’ ) (4.69)
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where

OR;
(%)pvq

oR,
op
R,

(55 e

and

WA A WA= AP0 Np al = e Nyt (1 )G, P

52
0G%

8071 1 p—
a3 +8_ﬁ pr—q

%%%waw(p—qw _otherwise

) 6—3(1)|
98 @
0 Jifp=gq
j27r(g—q) %WESDQ’_Q)N , otherwise 7

).

T:;_ m

(1 b

(e

Unlike PPAA-I, the solved inR(Ds, = :0) cannot be guaranteed to meet the constraint

(0 < B < 1). When the constraint is not met, we then take the minimtivalue in the

admissible interval, i.e.,

1) = min [Dyy/. 4.7
Bk +1) = min |Dy| (4.70)

To solve the second problem in (4.65), we take a derivative of ORiB respect tow:

]D)vam -

0 CRB, — 1 0F,

S ~F o (4.71)

Note that the result is similar to that in (4.69) except that (4.69) is replaced withv,,,. Thus,

we have

OR,

ow,,

(

)p,q

OR,
Ow,,

IR
oWy,

(

)pa

2 .
st ows o ifp=4q

-2 M ’
99, espe=aN  otherwise

Owm

Y

04/72(1)
—
ow,, <
0 Jfp=gq

. 27m(p—q) 052 —q)N i 7
j w(Q )ﬁwasp(]? ON  otherwise
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and

94/ 52(1) B ot N pB(1— B)*P?w,, o 1 — e—da(L-1)

@wm N72n 5_2/<1) 1 — ¢ 4o
LetDyyw = [Dowy, - -+, D2, | and we can obtain the updatewefas:
W(k 4+ 1) = (w(k) + pwDawli (4.72)

The gradient method can be summarized as follows :

1. Initialization : setk = 0 and initialize thew by a uniform power allocation method:

B(0) =1/(M + 1) andw,,(0) = 1/M for all m.
2. Substitute3(k) andw(k) into (4.70) and obtaim(k-+ 1).
3. Use (4.72) to obtaim(k + 1).
4,18 M (b +1) £ 1, letw(k + 1) =w{k+1)/&, where& = M w,,, (k +1).

5. Check ifk reach the maximum number of iteration. If yes, the algorithm stops. Other-

wise, sett — k + 1 and go to Step 2.

For convenience, we refer to this algorithm as the proposed power allocation algorithm I

(PPAA-II).

8§ 4.5 Simulation Results

In this section, we report simulation results demonstrating the effectiveness of the proposed
ML CFO estimator and the proposed power allocation algorithms. Here, we consider an AF-
OFDM system with the symbol size of 128 and the preamble period of 64. The AF-OFDM
system has two relays and the total transmitted power is°16-(10). The channel model of

the HIPERLAN/2 is used and the number of the tap8.i§o simply the scenario, we let the
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decay factors for S-R and R,,-D links are the same, i.evsg,, = agr,p = a = 0.5 for all m.
The noise variance at each relay and that at the destination are set as one.

In the first set of simulations, we compare the performance of CFO estimation for the cases
when the colored property of the noise is taken into account or not. The step size for the
proposed gradient-descent method is sét@s We consider a scenario that SNR =SNRgr
and SNR;, p =SNRgp, for all m, where

S N RS’Rm = GSRm gO /0-72]m

and

SNRe,.p = gn Gig”.

n
We also assume that,(k)’s in (4.11) are perfectly known. Figure 4.3 and Figure 4.4 show the
simulation results foSNRgp is 10 and.20 dB, respectively. There are a couple of observations
we can derive from the figures. First, the proposed ML estimate taking the effect of colored
noise into account outperforms the conventional algorithm ignoring the effect. Second, the MSE
of the proposed gradient-descent method is close to,CiR8icating its optimum performance.
Third, we see that the proposed CRiB close to CRB. This is to say that the approximation
error of (4.40) is small. As defined, SNR in Figure 4.4 is higher than that in Figure 4.3. Thus,
the colored-noise effect in Figure 4.4 is more severe than that in Figure 4.3, especially when
SNRgy is low. This is the reason why the gap between MSd CRB is larger than that
in Figure 4.4 when SNE; is low. Finally, we can see that the gap between ¢aBd CRB
becomes smaller when SNRis higher. This is because in higher SNR the colored-noise
effect becomes smaller. The observations match the analysis derived in Section 4.3.

In the previous set of simulations, we assume thatk)'s are perfectly known and use
MSE. to evaluate the estimation performance. One may wander how the estimation errors of
~vm(k)'s will affect the CFO estimation. We then consider the scenario that the relays transmit
white sequences in the BP and the receiver at D conducts estimatjgi/ofs with the received

signal. Let the number of OFDM symbols transmittede Denote MSE as the estimation
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performance by using the estimated(k)’s, instead of perfectly known,,,(k)’s. Figure 4.5
and Figure 4.6 show the simulation results. It is seen that with only two training symbols, the
performance of the proposed algorithm with estimatedk)’s is very close to that with known
vm(k)'s. WhenSNRgp is high, the proposed algorithm can provide good performance even

with one training symbol.

We then investigate the convergence behavior of proposed PAAs. Note that the SNR is not
an appropriate measure in evaluating the performance of a PAA since the transmitted power
for each transmitter will be different for different PAAs. For this reason, we use the channel
gain to reflect the channel quality. Here, we let the channel gains for thg BiRand the
R;-D link be set as:A\sg, = 0.1, Asgr, = Agr,p = 5, and\gr,p = 5. Since the proposed
algorithms are gradient-based, the choice.of the step size is critical. The larger the step size,
the faster the algorithm will converge. However, if the step size is too large, the algorithm may
become unstable. The fastest convergence rate a gradient-descent method can achieve depends
on the characteristic of the optimization problem. In our simulations, we let the step size be
100, obtained by trial-and-errors. Figure 4.7 shows the learning curves of the proposed PAAs.
As we can see, PPAA-I converges around 20 iterations while PPAA-Il around 25. This indicates
both PPAA-I and PPAA-II converge fast.

In the third set of simulations, we evaluate the performance of proposed PAAs. To see the
effect of the colored noise, we letz,, be varied. Figure 4.8 shows the achieved CRB for
proposed and uniform power allocation algorithms. As we can see, the proposed PPAs have
much lower CRBs. Also, PPAA-II is always outperform PPAA-I. It is clear thakif, is
large, the colored-noise effect in the destination will be more severe. From the figure, we also
find that the difference between the all PAAs is smaller whgyy, is small since the S-Rand
R,-D links are too week to transmit data. When the levelgf, is increased, the performance
gap is increased. WheXxy,p, = Agr,p = 5, all the relay diversity can be exploited since the
R,.-D channel gain is the same for all and the performance gap between PPAA-I and PPAA-

Il is largest. Whem\g,p > Ag, p, the PAA between relays will be reduced to a relay selection
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problem and the performance gap between PPAA-I and PPAA-II becomes small again.

As shown, the proposed PAAs are designed to minimize the CRB of the CFO estimation. We
are curious that if the PAAs are also helpful for signal detection. Itis simple to see that if;SNR
is high, the signal recovery will be easier. To evaluate the SNR performance of the proposed
PAAs, we use the PAA proposed in [67] as a reference. Figure 4.9 showsStdRvarious
PAAs. From the figure, we find that proposed PAAs provide much higherspNRan the
uniform power allocation. Also, the performance of proposed PAAs is very close to that of the
PAAn [67], especially when SN, is high. Note that the PAA in [67] is designed to maximize
the overall capacity of a relay system and that in the proposed algorithm is to minimize the CRB
of the CFO estimate. In the following, we explain why these two different criteria lead to the

same result. The capacity of the source-to-destination channel can be expressed as
Z = Wlog,(1l+ SNRsp), (4.73)

whereW is the bandwidth and SNR = ¢2/52. Using SNRp in CRB,, we can rewrite
(4.48) as

2 - SN
CRB, = Q?Q “+§L%D&D) (4.74)
SN 2. 2 (= p)

When SNR is high, the constant 1 in (4.73) and (4.74) can be ignored. Thus, (4.73) and

(4.74) can be rewritten as

Z x 109,(SNRsp), (4.75)
and
CRB, ! (4.76)

From (4.75) and (4.76), we can see that maximiz#ids equivalent to maximizing SN§&,
and then minimizing CRB. A direct link between SNR, and CRRB is difficult to derive.

However, as shown in (4.48), CRBnd CRB, are similar when the colored noise is small. We

83



can then conje Ir to

Figure 4.8, PF proposed

PAAs can not rds, using

proposed PAA smission is
initiated. This
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v

D Broadcasting Relaying
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Figure 4.1: Cooperative system with one source-destination paitarelay nodes. The noise

for relay nodes and destination node are AWGN.
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Chapter 5

Conclusions

In this dissertation, we focus on the.ML CFO estimation in OFDM, OFDMA uplink, and AF-
OFDM systems. For OFDM systems, some conventional CFO estimations are not ML-based
and the performance cannot approach the CRB. The others are ML-based requiring the inversion
of a large correlation matrix, and the computational complexity is usually very high, precluding
the real-world applications of these methods. This motivates us to study the low-complexity
ML CFO estimation algorithm. To the best of our knowledge, there are no blind ML algorithms
for estimating CFO in OFDMA uplink systems. To fill the gap, we then further study blind
ML CFO estimations for OFDMA uplink systems. Simulation results show that while the com-
putational complexity of the proposed algorithms are low, the performance can approach the
CRBs. Finally, we consider the ML CFO estimation problem in cooperative AF-OFDM sys-
tems. For the systems, all conventional ML CFO estimations are not optimal. This is because
the receive noise at the destination is colored, a case not considered before. The colored prop-
erty complicates the calculation of the correlation-matrix inverse, making the closed-form ML
solution and the corresponding CRB difficult to derive. To solve the problem, we then propose
using a gradient-descent method to obtain the ML solution and a new method to derive two
closed-form expression for the CRBs. We also propose two PAAs to minimize the CRBs of the

CFO estimation. From simulations, we see that the proposed PAAs not only improve the CFO
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estimation, but also improve the received SNR. The distinct feature of the algorithms proposed
in this dissertation is that only the periodicity of the preamble is assumed. The exact values
of the preamble sequence are not required. It turns of that two random variables result in the
likelihood functions, i.e. noise and the received signal. This is different from the conventional
ML CFO estimation in which only the noise is considered as the random variable.

In concluding the dissertation, we suggest some possible topics for future research.

1. In this dissertation, we only consider a single-antenna scenario. Nowadays, multi-input-
multi-output (MIMO) OFDMs are widely used. The ML CFO estimation in MIMO-
OFDM can then serve an interesting problem for further study. Note that there may be

correlations between antennas in the transmitters or receivers.

2. Although the proposed method in OEDMA uplink systems is simple, it cannot be used in
a full-loaded scenario (the number of users is the same as the number of subchannels in
OFDMA systems). How to extendthe proposed method to such a scenario deserve fur-
ther study. An possible approach is to'use an expectation-maximization (EM) algorithm
referred to as iterative space alternating generalized EM (SAGE) [55], [56]. However, the
complexity of the SAGE algorithm can be very high for laf§e Note that in real-world
applications, only a number of users will be activated at a specific time [56]. Thus, only
the CFOs of the newly activated users have to be estimated, and the knowledge of the
previously estimated CFOs can be exploited in each new estimation. It is interesting to
incorporate the SAGE algorithm into the proposed method, which may serve as a topic

for further research.

3. In AF-OFDM systems, we solve the ML CFO estimation with the gradient-descent method.
Though difficult, it may be worth pursuing the closed-form expression for the ML solu-
tion. Similarly, the closed-form solution for the PAAs minimizing CRB in AF-OFDM

system can also be investigated.
4. The OFDM modulation scheme is widely used in real-world communication systems. It
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is then desirable to consider the subcarrier power allocation in AF-OFDM or MIMO-
AF-OFDM relay systems. The design problem is obviously much complicated since one
extra dimension, the subcarrier, is added. Note that the number of subcarriers is often

large in real-world applications..

. In this dissertation, we only study AF-OFDM systems with one source node, multiple re-
lay nodes, and one destination node. In cooperative systems, other scenarios are possible.
For example, there may be multiple source or destination nodes. In such case, the number
of CFO is more than one and the estimation problem will becomes more challenging and
also deserve for further study. Also, we have not considered the direct link between the

source node and the destination node, which is another scenario can be investigated.

91






Appendix A

8 A.1 Derivation of (2.19)

The likelihood function in (2.18) can be rewritten as

N-1 2 2 — Hp-1
A(€) _ Z In (Ux + Uw)Kexp[ Iyin) Ry y(nﬂ
n=0 yp(n)yp(n)
detR,)exp [MUTU?U]
Vo1 \ J
= ) A{In[(o2 + 02)"(detR,)) Zyp (02 4 02)
n=0
—y(n)"R,y(n)}. (5.1)

Then, substituting (2.17) into (5.1), we derive the log-likelihood function as

o) f ,(m)y(n) .
Mo = DI R e (00 = o) Y (o)
L 9CuRef ZZ nyeapey)
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= 3 tinllo? +02) (detR,) ) + [y — (02— Co)l 3 )y
+2(]0Re{z Z yp(n)y; (n)es?™aPY)

N-1

_ (1 - K)o? i ol

02 (02 +02)(Ko?+ 02)

p:l n=0
K-1 K N-1

£200Re( " 30 g (n)yy ()P

p=1 g>p n=0

+N{In[(o7 + 07,)" (detR,)) ']} (5.2)

whereCy = 02 /(02 + Ko202). Substituting (2.21) and (2.25) into (5.2), we can express (5.2)

as
K—1"K
Ale) = Ci+ CQZVW +HO3RY D e}
p=1"¢>p
K=1 K
= Cl + CZ Z ’Ypp + CSRQ{Z Z h/ ‘ej\qu)eﬂﬂ-(q p)g}
p=1 p=1 ¢>p
K-1 K
= C1+Cy9+Cs Z Z [Ypal €OS(1pq) (5.3)
p=1 ¢>p

, wherey,,, ¢, Cy, Cs, Cs are defined as (2.22)-(2.24).

8 A.2 Derivation of (2.38)

We assume that the channel noise, the received preamble, and the received data are statistically
uncorrelated one another. We define three column vestdrs) = [yo(n), - ,yg-1(n)]7,

Yo(n) = [yi(n), -+ ,yg-1(n)]*, andy;(n) = [yo(n), - ,yg—2(n)]* and their correlation ma-

trix asR,;, for £ = 1, 2 and 3. Note thatis the window index of (2.37) andis the real STO.

So (2.19) can be derived for two caséss 6 and: > 6. Using the approach taken to derive
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(2.18), we obtain the log-likelihood function for the first case as

where

AS(e) =

n=i+N-1 ))

n{ [ ————
n=i kl;llf(yk 1(n))

F55(n)
20  F oo )

}

i+ N—
25 { HAQ) }
— fo(n)) -+ f(yg-1(n))
o —i i+N—0
Cm N Cy
-1
—i—ZCQZyp
Q=2Q-1
+ Z CsRef Yy~ tp(n)y; (n)e?* 1P}
p=1 ¢>p
i+N-=1 Q-2Q-1
-+ Z C"Re{ZZyp n)es2ra—rle}
p=0 ¢>p
i+N—1

+ Z C'/Zyp
Cr= N -In ((03+03U)K) 7

aetRzﬂ)

I AT (ai+oi>@>
¢/ =N-In (rm) ,

(5.4)

(5.5)

(5.6)

(5.7)

(5.8)

(5.9)



Similarly, we can derive the log-likelihood function for- 6 as

) = 5 f<y3(n))
Ao = ) '”{ ))~~f(sz(n))}

n=6+N
0+N—1
[y (n))
I .
+_2; n{f@dn»”gﬂ%%ﬂn»} (5.10)
- - 0013 + #Ci
H—N 1

+ Z C’QZyp

n=0+N p=0

i+N-1 Q-3Q-2
Z C’gR@{ZZyp n)el?ma-pey
n=0+N p=0"¢>p
6+N—1
p C’Zyp
6+N—1 Q 20Q-1
Z ! Re{zzyp 6327”1 p)e 1
p=0 ¢>p

(5.11)
where

_ , w%me>
013 N -In <aietRy3) .

Sincey,(n),i < n < 6 —1,in (5.4) andy;(n), 0 + N <n < i+ N — 1, in (5.10) contain
() — 1 periods of the preamble, d&,,) and detR,;3), will be the same as d&,) (in (2.22)).
ConsequentlyCi, = Ci3 = C;. From (2.22)-(2.24), we see that,, C;, and C3 can be
calculated by replacing) andR,; with K andR,,, respectively, in (5.7)-(5.9). Whef) is

reasonably large, we obtaiti, ~ C), C} ~ C,, andC} ~ C3. Thus, we rewrite (5.5) and
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(5.11) as

R-2Q-1

A=) =~ ZCgRe{Z Z Yp(n)y; (n)em@P)}
p=1 ¢>p
i+N-1 QR-2Q-1 ,
+ Z CsRe{ 3= X2 yp(n)y;(n)e>r17P}
p= 0q>p
Q-1
+ 01+ZCzZyp() H (1)
i+N—1
+ Ze Cy Z yp(n)yy (1), (5.12)
and
, O+N—1 —2Q-1 '
AZe) = Z CsRe{Z > Yp(n)y;(n)e?m@ P}
p=0 ¢>p
i+N—-1 Q—-3Q—-2
+ X GyRe{ X X yy(n)y;(n)er*mr}
n=0+N p=0 g>p
i+N—1 Q=2
+ Cr ¥ G2y yp(n)y,(n)
n=0+N p—O
0+N-1  Q—
+ Z Co Z yp(n)y, (n). (5.13)
—1 —2Q-1 Q-1
We nowapprommatez yp(n)ys(n )andz > yp(n)y; (n)e??@P)< in (5.12) Wlthz Yyp(n)
— 1 —
. p= | p=1 q>p g )
ys(n )andz > yp(n)y;(n)e?*™@P)<, respectively. Similarly, we also approximale y,(n)
0 0
2—32;2 Q-20Q-1 -
yp(n) and 3= 37 yp(n)y; (n)e?7@ 7= in (5.13) Wlch yp(n)yy(n), andZ Z yp(n)ygy (1)
_ p=0 ¢>p p=0 p=0 ¢>p
e??ma-p) respectively. Given these approximations$s?(s) and A™>?(¢) can be identically
written as
' i+N-1Q-1
A(e) =~ C1+Cy Z Zyp(n)y;(n) (5.14)
n=i p=0

i+N—1 Q-2Q-1

+ G5 > Re{d > yp(n)y;(n)e” "},

n=i p=0 g>p
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Using the approach that similar to that in Appendix A.1, we finally obtain

Q-2Q-1
Ni(e) = Cr+Cad’ + CsRe{) > |vi,lcos(¢r,)} (5.15)

p=0 ¢>p

. i+N-1 ol 4 .
wherey;, = nZ:Z Yp(n)ys(n), ¢' = p;o%p’ andy,,, = 2me(q — p) + £,,- Note that the

approximations we made are equivalent to addéhg ;| samples (noise or data) in calculating

the likelihood functions. Since the number of samples inithesliding data windowQ N,

is usually much larger than the number of added samffles,:|, the added samples will not
change the likelihood functions too much. The approximation errors also depend on the distance
between the window position and the actual STO,jé i|. When the distance is larger, the
error is larger. However, if the distance is larger, the likelihood function tends to be smaller and
a larger error is then tolerable. Finally, we note that the added samples, whether noise or data,

are uncorrelated with the preamble samples.

§ A.3 Derivations of 1}, g, v}, v, and xj;

We first note that is the real STO in the system. UsiAdas a reference, we have three cases
for the value ofi: i = 0,7 < 0, andi > 6 (0 < i < N — 1). For the first case, the window

covers the preamble data onlip). Thus, (2.42) and (2.43) can be simplified to

o =Y Y mpn)ap(n) + wy(n)wy(n)

pN +n
N

+2Re{x(n)wy (n)exp(j2re )} (5.16)
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and

N
ey (m)w (n)exp(j2me Lo

)

+w,(n)z; (n)exp(—j2re I

+wy(n)wy (n)exp(j2me(q — p))-

The mean values af’ and¢? for the first case are then

o = @N(o? +0o7),
) L ONQE D)

/’l’f,l 2 0.33'
The corresponding variance values are
VZJ = 2@]\[(0‘305})’
NQ -1
R <622 ) gt
L2 QNQ - 1)(2Q 1)
T~ w 3

The corresponding covariance value is

Kher = QN(Q—1)(0202).
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pN +n

)

(5.17)

(5.18)
(5.19)

(5.20)

(5.21)

(5.22)



Here,mfﬁw denotesffng in the jth case discussed. For the second case, the window covers the

setsIy and/p. Thus,¢’ and¢? can be expressed as

0—1
¢ = Zwo<n>wo<n>
+ Z zo(n)zg(n) + wo(n)ws(n)
+2Re{x0(n)w0(n)exp(j2775%)}
Q—1i+N—1
£33 wlmayn) + wy(n)up(n)
LRe{a, (n)w: (nexpj2rel ) (5.23)
and
. Q-16-1 v
& = ZZwo(n)xZ(n)eXp(—j%raN)—i—wo(n)w;’;(n)exp(j%raq)
Q-1 N+i—1
#3030 ol + o) wj(m)exp(jzme T

g (n)(n)exp(— j27r8%) + wo(n)w? (n)exp(j2meq)
Q-2Q-1i+N-1

ST ) (g (e LT

p=1 ¢>p n=t

N +n

twy (n)a (n)exp(—j2meL )+ wy(n)w? (n)exp(j2re(g — p)).  (5.24)

Their mean values are

phy = (QN+i—0)(02+0)+ (i — )02, (5.25)
pey = (Q—1)(N+i—0)o2+ (@- 1)2@ — 2)Na§, (5.26)
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the corresponding variance values are

Viy = 20.04[QN +i— 0], (5.27)
o = 22001 4 o2 - )
fQ -+ L 923 (5.28)

and the covariance value is

I{fﬁfﬂ = (QN +1—0)(Q —1)(0707). (5.29)

For the third case, the window covers sgisandl, and we writep’ and¢? as

o =T e + o)

2Relz,(n)w;(n)exp(j2re 25 )]}

S froa () 1 (n) + woi () (n)

n=1

el (n)usy ,(n)exp(j2re @41y
S {roa (n)ty 1 (n) + wos(n)why_ (n)
n=0+N

+  2Re[zg_1 (n)wh_,(n)exp(j2me L= (5.30)

+ 4+ + o+
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and
Q-3Q—-2i+N—-1 4N +n

¢ = > () (n) + wp(n)wy (n)expl(j2me——)

p=0 ¢>p n=1i

() (n)expl—2m= =) + wy (n)wy (n)exp(j2n(a — p)
Q—-20+N-1

DD IO

—l—xp(n)wQ 1(n)exp(‘727r5(Q _ 1]\)[N + n)

uwy(n)ly  (n)exp(—j2mel N* iy

+wp(n)wg_ (n)exp(j2re(Q —p — 1))

Q-2 i+N-1
+2 D w)rg(n
p=0 n=0+N
) —1)N-+n
—i—xp(n)w’le(n)exp(jth(QT))
PN +n

+wy(n)zy (n)eXp(—j2me )
+wp(n)wg_ (n)exp(j2re(Q —p —1)). (5.31)
Thus, the mean values are

phs = (QN+6—i)(o2+05)

+(i — 0) (05 + 02), (5.32)
pes = (Q—1)(N —i+0)o;
9= 1>2(Q “I N2, (5.33)

the variance values are

Vg = 20200(QN —i+0)+2(i — 3, (5.34)
viy = 020 N(Q - D[(2Q - 3)(1+ )

+(62—2)2262—3) L1+ QN(Q - )031

+(Q — 1)2(i — 0) (03 + 02), (5.35)
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and the covariance value is

Khes = (Q—1)0200[QN +2(0 —i)]. (5.36)
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Appendix B

§ B.1 Derivation of (3.22)

Taking the derivative ofR,), , with respect te. ;, we have the result as

0 j2rNo? . AN(p—
((95 Ry)pq = N (pe gV, (5.37)

Then the first term in the right-hand-side of (3.9) can be derived as

Q 4
1 0 _ 2 No? N
(R ' Rypa = E (Ry 1)p7kj (ki — q)w( e,i)N(k—q)

Y 85671‘ 1 Ns
J27NOT o NG ? k-
= P (g 2N Gy S ()T, )
s k=1
Q Q Q
—C1 Y ) (k= )" T (p,b)I'(b, k) — Cy Y (k — q)a* ™
k=1 b=1 k=1
Q Q
> T(p,a)T(a,b)T(b, k)}, (5.38)
a=1 b=1
where
Ne. .
r = exp(j2w ]\ie’l). (5.39)

In order to obtain the second term in (3.9), the derivative of the third and fourth terms in the

right-hand-side of (3.17) can be first found as

O (ST arem) = S 0 i muevo
Fe., 2 Tl em) = == (e =gl (e
+(p — n)T(n, q)wE=INE=m)] (5.40)

105



and

q)T'(p,m)}

P Q
88671‘ ZZ
= ZF n,q)

( ) getN(m n)

+(n —q)L'(p,
+(p —m)L'(m,n)(n, q)w(EEvi)N(p’m)].

1\5

m)L(m, n)wEeINn=0

(5.41)

Thus, we can have the second term in (3.9) as

0 _
@(Ryl)p,q =

J2n N
N

{—Co(p — q)wEe V=9

Q Q
—C Z(n — @ wEINE=DP () Loy Z(p — n)wEINE=D(n q)

n=1 n=1

Q. Q

~C2) > [m~

m=1 n=1

n)w(EE*i)N(m’”)F(p, m)I'(n, q)

+(n —
(5.42)

Substituting (3.3), (3.5), (5.38), and (5.42) into (3.9), we can rewrite the log-likelihood function

as

0 A j27TN

Q Q
Noz) > la-
p=1 ¢g=1

e an, n)(n,q
+Cs Z Z I'(p,m

m=1n=1

pquC()< )

n)'(n, q)]
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+7(p, ¢)[Colp — q)xP™*
Q

+C1 Y ((n—q)2"T(p,n)

n=1

+(p — n)xp "T'(n,q))

+C; Z Z 2™ "L (p,m)I(n, q)
m=1n=1

+(n — q)z" T (p,m)['(m, n)

+(p —m)z?""T(m,n)T(n,q))]}. (5.43)
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8§ B.2 Derivation of (3.27)

Rewrite (3.22) as

0 Q 9 Q
5 Ae) = YD {Noi(g—p)a" "Gl (p.q +012r ;)T (n,q)
+Cy > Y T(p,m)0(m, n)0(n, )] +v(p, @) [Co(p — )"

m=1n=1

Q
+C1 Y ((n—q)z"T(p,n) + (p — n)a" "T(n, q))

+Cy Z Z((m — )2 " T(pym)T(n, q)

+(p —n)z""I(n,q))
Q Q
+C2 Y Y ((m=n)a™"T(p,m)I'(n,q)

= 0, (5.44)

whereFy(p,q) = No2(q — p)[Col'(p, q) +C ilF(p, n)'(n,q)+ Cy 2_1 ; I'(p,m) I'(m,n)

I'(n,q)] and Fx(p, 1) = Co(p — q¢)v(p, q)- Coﬁducting some variable transformation, we can

express the power af as a single variable df. We can then collect all the items with positive
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k into one expression and have

8 Q-1 Q—k Q—k
{5 A} = YLD R+ D Blpga
&t k=1 p=1,q=p+k q=1,p=q+k
Q  Q-k

+C1> Y Ap T (p,n)ka®

p=1 g=1,n=q+k

Q Q—k
+C1Y Y AP al(n, gk

q=1 n=1,p=n+k

Q Q Q—k
+C > > > APl (p,m)C(n, g)ka"

p=1 g¢=1 n=1,m=n+k

Q-1
_ ap(k)xk, (5.45)
k=1
Similarly, we can collect all the items with negatikento another expression and have
9 1-Q Q Q
{5 A} = Y D). Reod+ D FRlpga
&t k=—1 p=1-k,q=p+k q=1—k,p=q+k
Q Q

+C1) D>, e ol ket

p=1 g=1—k,n=q+k

e Q
+CY > AT (n, )kt

qg=1 n=1—k,p=n+k

Q @ Q
+Cy > > AT, m)T(n, q)ka*

p=1 g=1 n=1—k,m=n-+k

Q Q Q
+C > > Y AT (p,m)C(m, n)ka*

p=1 m=1q=1-k,n=q+k

Q Q Q
+C ) Y > A aT(m,n)(n, g)kz"}.

n=1 g=1 m=1—k,p=m+k
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Using some variable transformations, we can obtain a similar result with (5.45) :

8 Q-1 Q—k Q—k
{5-Al)}- = LY Rpgrt+ > Bpgat
&t k=1 g¢=1,p=q+k p=1,qg=p+k
Q  Q-k

—C1 Y Y AT )k

p=1 n=1,g=n+k
Q

Q—k
- Y ) Ap T,k

q=1 p=1,n=p+k

856,1»]\(6) = k)t + > (k)" (5.47)
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Appendix C

§ C.1 Detailed Derivation of (4.37)

The conditional Fisher information in (4.37) is a product of fédr x N, matrices, i.eV =

—1 8Ry‘h R 1 8Ry‘h
ylh desp ' “ylh Desp

that the off-diagonal terms ‘R;m in(4.34) are zeroes, simplifying the derivation\éf Note

From (4.36),y'(1) ~:0-whenN; is large. Using the property, we can see

thatV containsN? @ x @ submatrices, Denoting the, ¢)th submatrix ofV asV,,,, we can

have
N
Vig = ToRITi R), (5.48)
k=1

whereT, , is the (p, ¢)th submatrix ofRy“}l as defined in (4.31). The trace Wfcan then be

expressed as

tr(V) ZZTMR T,,R))
p=1 ¢=1
N N N
tr( Y TR R+ DD T RITLR + ZZTMR’T R!)(5.49)

p=q=1 p=1 ¢>p q=1 p>q
Substituting (4.31) into (5.49), we can have

N-1 N

=tr(2) YW, q+ZWp,, (5.50)

p=1 ¢>p

whereW,, , = (]7(1)]*)7?(P,_1Q,.,1Py'R})? and (4.37) resullts.
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