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摘要 

正交分頻多工（orthogonal frequency division multiplexing ; OFDM）是一多載波調

變技術，以其高頻譜效率而廣為人知，目前此技術已被使用於許多無線通訊系統中。

OFDM之所以有高的頻譜使用效率是因為將頻譜切成多個子載波，且子載波間相互重疊

且正交。然而當載波頻率偏移(carrier frequency offset; CFO)存在時，正交性會遭到破壞，

造成子載波間的相互干擾而降低通訊的品質。因此在真正的數據傳輸前，我們必須先估

計並補償 CFO。本論文旨在研究 OFDM相關系統之 CFO最大似然(Maximum likelihood; 

ML)估計，我們的系統假設在接收端可以接收到未知的週期性訊號。本論文分別就

OFDM、正交多頻分工存取(orthogonal frequency division multiple access; OFDMA)上行

(uplink)和合作式放大傳輸(amplify-and-forward; AF) OFDM系統，提出其對應之ML解。 

在傳統的正交分頻多工系統中，ML 解需計算相關矩陣(correlation matrix)的反矩

陣，但隨著子載波數的增加，其複雜度將大到無法實現。為避免直接計算該反矩陣，本
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論文提出一個新的 ML法來直接求得 CFO的閉合解(closed-form solution)，此法的優點

是計算複雜度極低，該ML法亦可延伸至同時估計 CFO和符元時間偏移(symbol timing 

offset)。為評估在 CFO 的估計效能，我們導出該系統之 CFO 的理論下限也就是 CRB 

(Cram r rao bound)。本論文接著探討交錯型(interleaved) OFDMA系統上行中的 CFO估

計問題。由於系統特性使然，此系統接收的訊號一定是週期性的，因此無需額外的訓練

訊號。跟 OFDM 系統一樣我們需計算一相關矩陣的反矩陣，但 OFDMA系統因牽涉到

多使用者的 CFO 估計，所以此反矩陣很難計算。我們因此提出使用級數展開法(series 

expansion) 將此反矩陣展開，並保留適當的低階項後，我們可以得到一個閉合解，然後

以解根的方式解得 CFO。最後我們推導出相對應的 CRB，實驗發現無論是在傳統的

OFDM系統或 OFDMA系統中，本論文所提的ML解皆可逼近 CRB。 

最後，本論文探討 AF-OFDM系統中的 CFO估計和功率分配問題，在此系統中雜

訊為有色雜訊(color noise)，然而此特性並未在之前的研究中被討論，因此現有的ML解

皆非最佳，現有的 CRB也不適用。因為 CFO的ML解變的相當複雜無法導出閉合解，

本論文提出使用梯度下降法(gradient descent method)來求得 CFO的ML解。此外，有色

雜訊使得此系統中的 CRB 過於複雜以致於無法得到一簡單的閉合解。本論文做了一些

近似來推導出 CRB的閉合解。實驗發現此近似的 CRB是準確的且我們所提出的ML解

可以逼近此 CRB。我們接者提出兩個功率分配法將 CRB最小化，並利用梯度下降法求

得其解。模擬發現，本論文提出的功率分配法不但可以大幅改善 CFO 估計的準確性，

也可提升了系統的訊雜比(signal-to-noise ratio)。 
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Abstract

Orthogonal frequency division multiplexing (OFDM), being a multicarrier modulation tech-

nique, is well known for its high spectral efficiency and has been adopted in many wireless

systems. The high efficiency of OFDM comes from the fact that the spectrums of its subcar-

riers are overlapped and orthogonal each other. However, when the carrier frequency offset

(CFO) is present, the orthogonality between the subcarriers is lost and inter carrier interference

(ICI) is induced causing performance degradation. As a result, CFO must be estimated and

compensated before the actual transmission can be conducted. In this dissertation, we study

the maximum-likelihood (ML) methods for CFO estimation in OFDM-based systems, assum-

ing that unknown periodic received sequences are available at the receivers. Specifically, we

solve the ML CFO estimation problems in conventional OFDM, orthogonal frequency division

multiple access (OFDMA) uplink, and cooperative amplify-and-forward (AF) OFDM systems.

In conventional OFDM systems, the ML CFO estimator requires the inversion of an correla-
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tion matrix. When the number of subcarriers is large, the computational complexity can become

prohibitively high. We then develop a new ML method that can yield a closed-form solution

without the inversion. The advantage of the proposed method is that the required computational

complexity is low. The proposed method is further extended to a joint CFO and symbol timing

offset (STO) estimation. Theoretical Cramér-Rao lower bounds (CRBs) are also derived to ver-

ify the optimality of the proposed approaches. We then investigate the CFO estimation problem

in interleaved OFDMA uplink systems. Since the periodicity is inherent in OFDMA systems,

no training sequences are required. As previously, there is an correlation matrix in the likeli-

hood function to be inverted. Since multi-users are involved, the CFOs in the likelihood function

become intractable after the matrix inversion. We propose using a series expansion method to

express the inverted matrix. By properly truncating the expansion, we can obtain a closed-form

expression, solve the optimum CFOs with a root-finding method, and derive the corresponding

CRB. Simulations show that the performance of the proposed method can approach the CRB.

We finally consider the ML CFO estimation and the power allocation problem in cooperative

AF-OFDM systems. In this scenario, the noise at the destination becomes colored. The colored-

noise problem has not been considered before. Thus, the existing ML methods are not optimal

and the existing CRBs are not valid. Since the likelihood function is a complicated function of

the CFO, we then propose a gradient-descent method to solve the problem. The expression for

the CRB for the CFO estimation in AF-OFDM systems is even more complicated and a simple

solution cannot be obtained. We then propose an approximation method such that a closed-form

solution can also be derived. Simulations show that the approximated CRB is accurate and the

performance of the proposed gradient-descent method can approach the CRB. Minimizing the

approximated CRB, we further propose two power allocation algorithms (PAA), implemented

with constrained gradient-based method, for the source and relays. Simulations show that not

only the performance of the CFO estimation is greatly enhanced, but also the signal-to-noise

ratio (SNR) between source and destination is improved.
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Chapter 1

Introduction

ORthogonal frequency division multiplexing (OFDM) is known to be a promising modula-

tion technique [1]. It can provide high transmission data rate, resist multi-path channel

fading, achieve high spectrum efficiency, and have efficient implementation architectures [2].

This technique is suitable for the high-speed wireless communication. As a matter of fact, many

wireless standards such as Wi-Max, IEEE802.11a, DVB, LTE [3], have adopted the OFDM

modulation. The main idea behind OFDM is to split a wide band channel into narrow band

subchannels such that the subcarrier in each subchannel can experience flat-fading channel ef-

fect. The high efficiency of the OFDM system comes from the fact that the spectrums of the

subcarriers are overlapped and orthogonal each other. However, if the carrier frequency offset

(CFO) is present [4], the orthogonality will be destroyed and inter carrier interference(ICI) is

induced [5] [6] [7], degrading the performance of OFDM systems [8]. CFO arises due to the

Doppler shift and the frequency mismatch between the transmitter and the receiver. It has been

shown that the bit error rate (BER) of a OFDM system [9] is proportional to the magnitude

of CFO. In real-world applications, CFO must be estimated and compensated before the ac-

tual transmission can be conducted. CFO estimation has been an important and active research

subject in past decades.

A well-known scheme for CFO estimation is to let the transmitter emit a preamble with
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repeated periods such that the receiver can use a correlator conducting the CFO estimation. The

correlating operation is simple but not optimal. In this dissertation, we investigate the maximum

likelihood (ML) CFO estimation for OFDM-based systems with periodic signals. We assume

that the received signal for CFO estimation is periodic but unknown. Also, the statistical channel

state information (CSI) is available. In the proposed algorithms, only do the periodicity and CSI

be used. Thus, the proposed algorithms can be applied in the systems with periodic preambles

or those with inherent periodical data structure.

§ 1.1 Conventional and Proposed Methods

Many works have considered the CFO estimation in OFDM-based systems, including standard

OFDM systems [10]- [27], orthogonal frequency division multiple access (OFDMA) [28]- [35]

systems, and cooperative OFDM systems [36]- [38]. The estimation methods can be classified

into two categories: methods using or not using training sequences. Methods using training

sequences insert a known preamble in front of each data packet, facilitating CFO estimation at

the receiver [28]- [31]. For this kind of methods, the transmitted data should be known at the

receiver. Methods without using training sequences, also referred to blind methods, manipulate

some priori information such that the CFO can be estimated. For example, the cyclic prefix

(CP) is known to be periodic in an OFDM symbol. In this dissertation, we consider the CFO

estimation with a periodic receive sequence. We will solve the ML CFO estimation problems in

OFDM systems, OFDMA uplink systems, and cooperative amplify-and-forward (AF) OFDM

systems. In the OFDM and AF-OFDM systems, the proposed methods require periodic pream-

bles and they are training-based while in the OFDMA system, the receive signal is inherently

periodic and the proposed method is blind.
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§ 1.1.1 CFO Estimation in OFDM Systems

CFO estimation for OFDM systems has been proposed in [10]- [27]. The methods in [10]- [16]

exploit the periodic structure of CPs to accomplish the estimation task. In [18]- [27], a periodic

preamble or pilot-symbol is inserted in front of each data packet such that it can be easily used

by the receiver to conduct CFO estimation. CFO usually consists of a fractional part and an

integer part. Most researchers focus on how to estimate the fractional part, which is also the

focus of this dissertation. Integer part estimation was specifically considered in [18] and [19].

An ML CFO estimator using a preamble with two identical pilot symbols was first proposed

in [20]. Using the same periodic preamble and taking null subcarriers into consideration, [21]

proposes a method that is able to estimate both fractional and integer CFOs. In order to avoid the

extra overhead required in [21], [22] introduces a preamble composed of two OFDM symbols:

the first one has two identical periods used to estimate the fractional CFO and symbol timing

offset (STO), and the second one has a special correlation with the first one used to estimate

the integer CFO. To improve the performance, [23] extends the scenario to treat preambles with

periodicity of greater than two. Using the approach in [23], one can remove the second pilot

symbol required in [22]. As an improved version, [24] proposes a CFO estimation based on the

best linear unbiased estimation (BLUE) principle. Note that [23] and [24] still use the same STO

estimator as that in [22]. When the number of periods is greater than two, the method in [20] is

no longer optimal. An ML CFO estimator for this problem was proposed in [25]. However, the

required computational complexity is high. In order to alleviate this problem, a low complexity

approach was then proposed in [26]. Another simplified algorithm was also proposed in [27].

However, due to excessive approximation in the likelihood function, the performance of the

CFO estimation in [27] does not approach the Cramér-Rao bound (CRB) [41].

We consider a preamble with more than two periods. The ML CFO estimation for the sys-

tem has been considered in [26]. The method in [26] is essentially a two-step approach; it first

estimates the received preamble with a least-squares (LS) method, and then maximizes the cor-

3



responding likelihood function. In addition to regular computations, this method requires an

extra procedure to solve the roots of the derivative of the likelihood function. Thus, its com-

putational complexity is higher, and the cost for real-world implementations is also increased.

We then develop a new ML method that solves the likelihood function directly. Our method

yields a closed-form ML solution, and the root-finding procedure is not required. As a result,

the computational complexity and the implementation cost are lower than those in [26], while

the performance of the proposed method is either equal to or better than that in [26]. The

proposed method is further extended to solve a joint CFO/STO estimation problem. The cor-

responding CRBs for CFO estimations are also derived. Note that the performance bound for

STO estimation has not previously been addressed in the literature.

§ 1.1.2 CFO Estimation in OFDMA Systems

OFDMA, emerging as a promising technology for next generation broadband wireless net-

work [3], has received considerable amount of research interest recently [28]- [35]. An ap-

pealing feature of OFDMA is that the transmission signals of different users are orthogonal

and multiple access interference (MAI) can be avoided. However, if carrier frequency offsets

(CFOs) between the transmitters and the receivers are not properly estimated and compensated,

the orthogonality will be destroyed and ICI/MAI will arise. In the OFDMA downlink systems,

the signals for different users are multiplexed by the same transmitter, and the receiver of each

user can estimate and compensate its own CFO easily. In such a scenario, methods for CFO

estimation in single-user OFDM systems [10] can be directly applied. However, in OFDMA

uplink systems, all users’s CFOs have to be simultaneously estimated at the base-station (BS)

receiver, which is considered to be a more challenging problem.

In OFDMA uplink systems, methods without using training sequences, also referred to blind

methods, manipulate the subcarrier assignment scheme such that the CFO for each user can be

individually or jointly estimated [32]- [35] at the receiver. With proper subcarrier assignment,

subband-based or interleaved-based estimators can be applied. The subband-based CFO esti-
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mators ( [32], [33]) require that each user is assigned with some consecutive subcarriers and the

subcarrier sets for different users are well separated in the frequency domain. With the scheme,

a filter bank can be used to extract each user’s signal, and then the conventional CFO estimation

methods can be exploited. In interleave-based OFDMA systems, each user’s time-domain sig-

nal is known to be periodical. With the property, the CFOs for all users can be jointly estimated

by the multiple signal classification (MUSIC) [34] or the estimation of signal parameters via ro-

tational invariance technique (ESPRIT) methods [35]. Although the computational complexity

of these methods is low, the CRB cannot be achieved and the solutions are not optimal.

To solve the problem mentioned above, we then investigate the blind CFO estimation prob-

lem in the interleaved OFDMA uplink system. Our objective is to develop a low complexity ML

CFO estimation method. The main obstacle in the ML method is that there is an inverted corre-

lation matrix in the likelihood function. The CFOs in the likelihood function become intractable

after the matrix inversion. Using the matrix inversion lemma, we first transform the correlation

matrix into a matrix with smaller size. Then, we express the matrix with a series expansion. By

properly truncating the expansion, we can obtain a closed-form expression and solve the opti-

mum CFOs with a root-finding method. Also, the CRB can be derived. Simulations show that

the performance of the proposed method can approach the CRB. The computational complexity

of the proposed algorithm is as low as that of ESPRIT.

§ 1.1.3 CFO Estimation in AF-OFDM Systems

More recently, there is an growing interest in wireless communication systems employing co-

operative relay networks [57]. The cooperative relaying system forms a virtual antenna array

and allows wireless devices to achieve higher transmit diversity. The use of relays can lead to

expanded coverage, system-wide power saving, and better immunity against signal fading. Two

relaying protocol are well known, namely, AF and decode-and-forward (DF). In AF, the relays

only retransmit a linearly amplified version of the received signal (from the source) to the des-

tination. In DF, the relays, on the other hand, demodulate the received signal and remodulate
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and retransmit the resultant signal.

Incorporating the advantages of multicarrier transmission, OFDM-based cooperative sys-

tems have been proposed as an emerging transmit technique for future wireless networks [58]

[59]. Similar to OFDM systems, the orthogonality in OFDM-based cooperative systems is also

critical. How to reduce the impact of CFO remains an important research subject [36]- [38].

In [36], the Alamouti code was employed to mitigate the CFO-induced ICI in AF OFDM-based

cooperative systems (AF-OFDM). CFO estimation in DF OFDM-based cooperative systems

(DF-OFDM) was considered in [37]. In their approach, a training sequence is designed for a

relay and the sequence is transmitted on a set of subcarriers. As a result, the system can be

considered as an OFDMA system in its training phase. In [38], a scheme, allocating the trans-

mitted power on the source and a relay with the largest composite channel gain in AF-OFDMA

systems, is proposed. The objective of the power allocation is to minimize the CRB in the CFO

estimation. It has been shown that the optimum power allocation can effectively reduces the

variance of the CFO estimation [38]. The BER performance of the whole system can then be

improved accordingly [40].

One problem with the approach in [38] is that the CFO estimation and the corresponding

CRB is derived under the assumption of white Gaussian noise. In reality, however, the noise

observed at the destination is colored. The other problem is that multi-relay systems are not

analyzed. To solve the problems, we then consider the ML CFO estimation and the power

allocation problem in multi-relay AF-OFDM systems. The distinct feature of the proposed

method is that the noise at the destination is considered as colored. In the colored scenario,

the inversion operation in the correlation matrix becomes much more complex and a closed-

form solution is very difficult to obtain. Due to this difficulty, we then propose a gradient-

based method to solve the ML problem. For this scenario, the CRB derived for the white

noise environment is not valid anymore. Let the CRB for the CFO estimation in AF-OFDM

systems be denoted by CRBr. The expression of CRBr contains an expectation operation on the

source-to-relay and rely-to-destination channels [9]. To obtain CRBr, we have to conduct Monte
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Carlo simulations which are not efficient for our optimization problem. We then approximate

the correlation matrix with a tri-diagonal matrix and propose an approximation method such

that a closed-form solution can be derived for CRBr. The approximated CRB, denoted as,

CRBa, is a function of the expected CSI. As a result, the value of CRBa can be evaluated

efficiently and the corresponded power allocation scheme can be derived. When the noise at the

destination is assumed to be white, CRBa is degenerated to the conventional CRB considered in

the white noise environment which is denoted as CRBw. We then consider the power allocation

problem in AF-OFDM systems, allocating power for the source and the relays. As that in

[38], our objective is to minimize the CRB. Using CRBw and CRBa, we propose two power

allocation algorithms (PAAs), implemented with constrained gradient-descent methods, to solve

the problem. Simulations show that the proposed PAAs not only significantly improves the

performance of the CFO estimation, but also greatly enhance the received SNR improving the

overall system capacity.

§ 1.2 Organization of the Dissertation

This dissertation is organized as follows. In Chapter 2, we propose a new ML method that solves

the likelihood function directly for the CFO estimation problem in OFDM systems. In Chapter

3, we propose a blind ML CFO estimation algorithm in interleaved OFDMA uplink systems.

In Chapter 4, we consider CFO estimation in AF-OFDM systems. We propose a method to

solve the ML solution and two PAAs for minimizing the CRB. Finally, we draw conclusions in

Chapter 5.

For convenience, the notations used in the dissertation are defined below:(·)H and(·)∗ de-

note the Hermitian and complex conjugate operation of a matrix respectively, Im(.) and Re(.)

the image-part-taking and the real-part-taking operation respectively,E{·} the expectation op-

eration,δ(·) a dirac delta function(·)p, thepth element of a vector,(·)p,q the(p, q)th element of

a matrix,Xp,q the(p, q)th submatrix of a large matrixX, 0l an l × 1 column zero vector,∗ the

7



convolution operation,I an identity matrix, diag(x) a diagonal matrix with diagonal entries of

x, det(·) the determinant of a matrix,‖ · ‖ the Frobenius norm of a matrix, and tr(·) the trace of

a matrix.
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Chapter 2

Maximum Likelihood Timing and Carrier

Frequency Offset Estimation for OFDM

Systems with Periodic Preambles

In this chapter, we consider the CFO problem for OFDM systems. As mentioned, we consider

the system with a periodic preamble placed at the beginning of a data packet. CFO estimation

has been extensively studied for the case of a two-period preamble [20]. In some applica-

tions, however, a preamble with more than two periods is available. A typical example is the

IEEE802.11a/g wireless local area network (LAN) systems, which features a ten-period pream-

ble. Recently, researchers have proposed an ML CFO estimation method for such systems [26].

This approach first estimates the received preamble using a least-squares method, and then

maximizes the corresponding likelihood function. In addition to the standard calculations, this

method requires an extra procedure to solve the roots of a polynomial function, which is dis-

advantageous for real-world implementations. In this chapter, we propose a new ML method

to solve the likelihood function directly. Our method can obtain a closed-form ML solution,

without a need for the root-finding step. We further extend the proposed method to address

the joint CFO/STO estimation problem, and also derive a lower bound on its estimation perfor-
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mance. Section 2.1 briefly reviews the CFO estimation method in [26]. Sections 2.2 and 2.3

detail the proposed CFO and STO estimation algorithm. Section 2.4 derives a lower bound on

STO estimation performance. Section 2.5 reports simulation results and discussions.

§ 2.1 Existing Approach

In this section, we briefly review the algorithm proposed in [26]. Let the preamble in the OFDM

system be periodic with periodN and lengthQN . Denote the preamble signal ass(k), where

k = 0, 1, ..., QN − 1. The preamble is placed at the beginning of a packet and is subsequently

transmitted through a wireless channel. Denote the channel response ash(k) and the output

signal asx(k). Then, we havex(k) = s(k) ∗ h(k) where∗ denotes the convolution operation.

Assume that the maximum channel delay isN . Then, we can discard the first receivedN

samples and retain the periodic property of the preamble,x(k). Thus, the received preamble

can be expressed as [10]

y(k) = e
j2πεk

N x(k) + w(k), (2.1)

wherek = N,N + 1, . . . , QN − 1, ε is CFO andw(k) represents additive white Gaussian

noise (AWGN) with a variance ofσ2
w. We can perform an index transformation by letting

k = mN + n, wherem = 1, · · · , Q andn = 0, · · · , N − 1 such thatx(k) = x(mN + n). For

notational simplicity, we further letxm(n) = x(mN + n), denoting thenth sample of themth

period ofx(k). Due to periodicity, we havexp(n) = xq(n) for p, q ∈ {1, · · · , Q}. Similarly, we

can defineym(n) = y(mN + n) = y(k), andwm(n) = w(mN + n) = w(k). Let K = Q− 1

and

y(n) = [ y1(n) y2(n) · · · yK(n) ]T ,

x(n) = [ x1(n) x2(n) · · · xK(n) ]T ,

w(n) = [ w1(n) w2(n) · · · wK(n) ]T . (2.2)
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In addition, we define four matrices as follows:

Y =
[

y(0) y(1) · · · y(N − 1)
]
,

X =
[

x(0) x(1)e
j2πε

N · · · x(N − 1)e
j2πε(N−1)

N

]
,

W =
[

w(0) w(1) · · ·w(N − 1)
]
,

A =




ej2πε 0 · · · 0

0 ej2πε·2 · · · 0
...

...
. ..

...

0 0 · · · ej2πε·K




. (2.3)

The received preamble in (2.1) can then be rewritten as

Y = AX + W. (2.4)

The method in [26] uses a two-step approach; it first estimatesX using a LS method, and then

estimates CFO by maximizing the likelihood function. Since the noise is a Gaussian random

variable,y(n) is a Gaussian random vector with a covariance matrix ofσ2
wI , whereI denotes the

identity matrix. For a givenA, the LS estimate ofX can be expressed asXLS = 1
K

AHY ≡ A+Y,

where(·)H denotes the Hermitian operation. SubstitutingXLS back into (2.4), we can obtain

the log-likelihood function asΛ(A) =
N∑

n=1

‖y(n) − AA+y(n)‖2 = N · trace((I − AA+)RY ),

whereRY = E[YYH ]. The (p, q)th entry ofRY is 1
N

N−1∑
n=0

yp(n)y∗q (n), p, q ∈ [1, K] [44]. The

desired CFO estimation can then be derived as

ε̂ = arg{min
ε

trace((I − AA+)RY )}
= arg{max

ε
aHRY a}, (2.5)

wherea is a vector consisting of the diagonal elements ofA. It was shown in [42] that

aHRY a =
K−1∑

m=−(K−1)

b(m)ej2πmε, (2.6)
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whereb(m) =
∑

q−p=m

1
N

N−1∑
n=0

yp(n)y∗q (n). Taking the derivative of (2.6) with respect toε and

letting the result be zero, we obtain

K−1∑
m=1

mb(m)zm =
K−1∑
m=1

mb(−m)z−m, (2.7)

wherez = ej2πε. Equation (2.7) can be rewritten as

Im(
K−1∑
m=1

mb(m)zm) = 0, (2.8)

where Im(.) is an operator that isolates the imaginary part of a scalar value. Denote the set

containing the roots of (2.8) byΩ. The CFO can then be estimated following [26] as

ε̂ =
1

j2π
ln(ẑ) (2.9)

whereẑ = arg{max
z∈Ω

(Λ(z))} and|ẑ| = 1.

The procedure for CFO estimation in [26] can now be summarized as

1. Construct the correlation matrixRY .

2. Calculate the coefficient of (2.8) usingRY .

3. Find the nonzero roots of (2.8).

4. Substitute the roots into (2.6), find the maximum root, and calculateε̂ using (2.9).

As we see, (2.8) requires a root-finding operation. Thus, a set of suboptimum algorithms to

address this issue were proposed in [26]. Unfortunately, these suboptimum methods cannot

effectively reduce the computational complexity while still maintaining good performance.

§ 2.2 Proposed ML CFO Estimation

In this section, we develop a new CFO estimation method that solves the likelihood function

directly. The signal model we use is the same as that in (2.4). We assume that each data packet
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is transmitted through a slow-fading channel with an impulse response ofh(k), k = 0, · · · , L−
1. Here, theh(k)’s have Rayleigh distributions, and they are statistically independent. Note

that the time-domain preamble signal is obtained from the discrete Fourier transform of the

frequency-domain preamble signal, and the frequency-domain preamble signal is generally a

white sequence. From the central limit theorem, the time-domain preamble signal can then

be approximated as a white Gaussian sequence. Thus, the channel output,x(k), which equals
L−1∑
l=0

h(l)s(k − l), and the received preambley(k) in (2.1) can be approximated as Gaussian

sequences. Let the variance of the time-domain preamble signal, i.e.,s(k) be σ2
s . Then, the

variance ofx(n) equalsσ2
x = E{

L−1∑
j=0

L−1∑
l=0

h(j)s(k − j)h(l)∗s(k − l)∗} = σ2
s

L−1∑
l=0

|h(l)|2 = σ2
sσ

2
h,

and that ofy(k) equalsσ2
x + σ2

w. Note thats(k) can be a psuedo noise (PN) sequence. In such

a case,σ2
s indicates the averaged preamble power ofs(k).

Let f(.) be a probability density function. Then, we explicitly write out the log-likelihood

function ofε following [10] as

Λ(ε) = ln{
∏

n∈Ĩ

f(y(n))}

= ln{

∏
n∈Ĩ

f(y(n))

∏
m∈[1,K]

∏
n∈Ĩ

f(ym(n))
·

∏

m∈[1,K]

∏

n∈Ĩ

f(ym(n))}

= ln{
∏

n∈Ĩ

f(y(n))

f(y1(n)) · · · f(yK(n))
·

∏

m∈[1,K]

∏

n∈Ĩ

f(ym(n))}. (2.10)

It is clear that the last term in (2.10),
∏

m∈[1,K], n∈Ĩ

f(ym(n)), is independent ofε [10]. As a result,

this term can be dropped. Let

u(n) = e
j2πεn

N

[
x1(n)ej2πε · · · xK(n)ej2πε·K

]T

. (2.11)

We then rewrite (2.4) asY = U + W whereU = AX = [u(0), u(1), · · · , u(N − 1)]. Then,
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y(n) = u(n) + w(n). DefineRu = E[u(n)uH(n)] andRy = E[y(n)yH(n)]. Then,

Ru = σ2
x




1 e−j2πε · · · e−j2π(K−1)ε

ej2πε 1 · · · e−j2π(K−2)ε

...
...

. . .
...

ej2π(K−1)ε ej2π(K−2)ε · · · 1




, (2.12)

andRy = Ru + σ2
wI whereI is an identical matrix. Thus, we can expressf(y(n)) as [39] [40]

f(y(n)) = (πKdet(Ry))
−1exp

[−y(n)HR−1
y y(n)

]
. (2.13)

According to the matrix inversion lemma [17], we derive the inverse ofRy as

R−1
y = σ−2

w I − σ−4
w Ru

1+σ−2
w E{uHu} . (2.14)

Note that forn ∈ Ĩ, we have

E{yp(n)y∗q (n)} =





σ2
x + σ2

w if q − p = 0

σ2
xe
−j2πε(q−p) if q − p 6= 0

(2.15)

wherep, q ∈ [1, K]. As a result,R−1
y = σ−2

w I − Ru

σ4
w+Kσ2

wσ2
x

and

f(yp(n)) =
exp(− yp(n)y∗p(n)

σ2
x+σ2

w
)

π(σ2
x+σ2

w)
, (2.16)

wherep ∈ [1, K]. Thus, the exponential term in (2.13) becomes

y(n)HR−1
y y(n) = σ−2

w

K∑
p=1

yp(n)y∗p(n)

−C0

K∑
p=1

K∑
q=1

yp(n)y∗q (n)ej2π(q−p)ε

= (σ−2
w − C0)

K∑
p=1

yp(n)y∗p(n)

−2C0Re{
K−1∑
p=1

K∑
q>p

yp(n)y∗q (n)ej2π(q−p)ε} (2.17)
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whereC0 = σ2
x/(σ

4
w + Kσ2

wσ2
x), and Re{·} denotes the operation that isolates the real part of

the indicated complex variable. Dropping the superfluous terms and substituting (2.13)-(2.17)

into (2.10), we finally express the log-likelihood function as

Λ(ε) =
N−1∑
n=0

ln





(σ2
x+σ2

w)Kexp[−y(n)HR−1
y y(n)]

det(Ry)exp

2
664−

KP
p=1

yp(n)y∗p(n)

σ2
x+σ2

w

3
775





(2.18)

= C1 + C2φ + C3

K−1∑
p=1

K∑
q>p

|γpq| cos(ψpq), (2.19)

where

γpq =
N−1∑
n=0

yp(n)y∗q (n) (q ≥ p and p ≥ 1), (2.20)

ψpq = 2πε(q − p) + ∠γpq,

φ =
K∑

p=1

γpp, (2.21)

C1 = N · ln
(

(σ2
x+σ2

w)K

det(Ry)

)
, (2.22)

C2 = (1−K)
ρ2

σ2
w(1 + (K − 1)ρ)

, (2.23)

C3 =
2C2

(1−K)ρ
, (2.24)

ρ =
σ2

x

σ2
x + σ2

w

. (2.25)

Note thatφ is the received signal energy and det(Ry) is a constant, independent ofε. The

detailed derivation of (2.19) is provided in Appendix A.1. Ignoring unrelated terms, we obtain

the log-likelihood as

Λ(ε) ∝
K−1∑
p=1

K∑
q>p

|γpq| cos(ψpq). (2.26)

To maximize the function, we first take a derivative ofΛ(ε) with respect toε and obtain

∂

∂ε
Λ(ε) = −

K−1∑
p=1

K∑
q>p

2π(q − p)|γpq| sin(ψpq). (2.27)
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Thus, we have an alternative expression to that in (2.8). Now, the problem is how to solve

(2.27). Since (2.27) involves a nonlinear sine function, a closed-form solution will be difficult

to calculate. Here, we use a simple approximation method to overcome the problem. Using

(2.20) and (2.1), we obtain

γpq = ej2πε(p−q)

N−1∑
n=0

|x1(n)|2 +
N−1∑
n=0

wp(n)w∗
q(n)

+ ej2πε(pN+p)

N−1∑
n=0

x1(n)w∗
p(n)

+ ej2πε(pN−q)

N−1∑
n=0

x∗1(n)wq(n). (2.28)

In (2.28), we have used the periodic property thatx1(n) = xp(n) = xq(n). Now, if the noise

level is low, the noise related terms in (2.28) can be ignored. We then have

∠γpq ≈ 2πε(p− q). (2.29)

From (2.29), we write

ψpq ≈ 2πε(q − p) + 2πε(p− q) = 0. (2.30)

From (2.30), we can then assume thatsin(ψpq) ≈ ψpq, and approximate the expression in (2.27)

by

∂

∂ε
Λ(ε) ' −

K−1∑
p=1

K∑
q>p

2π(q − p)|γpq|(ψpq). (2.31)

Setting the result in (2.31) to zero, we can estimate CFO as

ε̂ = −

K−1∑
p=1

K∑
q>p

|γpq|(q − p)∠γpq

2π
K−1∑
p=1

K∑
q>p

|q − p|2|γpq|
. (2.32)

Note that the approximation in (2.30) will become exact if noise is not present and ifε is the true

CFO. In other words, (2.27) and (2.31) will have a same zero-crossing point although the two
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functions are different, indicating that (2.31) and (2.27) will yield the same optimum solution.

If noise is present, however, (2.31) and (2.27) will not have the same optimum solution. The

accuracy of the solution in (2.31) depends on the signal-to-noise ratio in (2.28). We define the

signal-to-noise ratio in (2.28) asSNRγ, and that in (2.1) asSNR. Then,SNR = σ2
x/σ

2
w, as

typically defined. From (2.28), it is simple to see that

SNRγ =
N2σ4

x

Nσ4
w + 2Nσ2

xσ
2
w

=
N · SNR2

1 + 2SNR
(2.33)

From (2.33), we can see thatSNRγ can be much larger than SNR as long asN is reasonably

large and SNR is not very low. Subsequently, the approximation in (2.31) will introduce only a

small error for a wide SNR range. As a simple example, letN = 16 andSNR = 0 dB. From

(2.33), we obtainSNRγ = 7.27 dB, which is much higher than SNR.

Note that the proposed estimate requires that we extract the phase fromγpq. It is simple to

see that the result is only unambiguous when|∠γpq| < π. For a particular combination ofp and

q, the estimation range for CFO is|ε| ≤ 1/[2(q − p)]. Since the maximum value forq − p is

K−1, the estimation range for CFO is|ε| ≤ 1/[2(K − 1)]. WhenK is large, the range becomes

small. In the following, we propose a method to remedy this problem. The basic idea is to apply

the phase unwrapping procedure. We first calculate the phase angle for eachγpq. Then, for each

p, we calculate the phase difference of∠γpq, q = p + 1, p + 2, . . . , K. Let dr,s denote the phase

difference, i.e.,dr,s = ∠γrs−∠γr(s−1), r = 1, 2, . . . , K − 2 ands = r + 2, r + 3, . . . , K. Since

the maximum value of|dr,s| is π, whenever|dr,s| > π, the phase need to be unwrapped. This

can be performed with the following operation:

dr,s =





dr,s − 2π if dr,s > π

dr,s + 2π if dr,s < −π
. (2.34)

For a value ofr, thedr,s values should have the same signs. We can use this property to further

correct occasional errors. Letg be the sum of alldr,s values, i.e.,g =
∑K−2

r=1

∑K
s=r+2 dr,s. Then,

we use the sign ofg to determine the sign ofdr,s and to evaluate∠γpk, k = p+1 · · ·K. Finally,
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the unwrapped∠γpq can be written (withq ≥ p + 2) as:

∠γpq = ∠γp(p+1) +

q∑
s=p+2

dp,s. (2.35)

Substituting (2.35) into (2.32), we can estimate CFO. Using our proposed procedure, the CFO

estimation range can be greatly extended up to|ε| < 1/2.

Now, the procedure for our proposed ML CFO estimation can be summarized as follows:

1. Construct allγpq’s wherep ∈ [1, K − 1], q ∈ [p + 1, K], and calculate their amplitude.

2. Use the phase unwrapping scheme to estimate the phase ofγpq.

3. Substitute the results into (2.32) and calculate the ML estimate.

Clearly, the proposed estimate does not require the root-finding procedure, and this, in turn,

effectively reduces the computational complexity. Step 1) above is similar to the calculation of

R in Section 2.1. However, our method is easier since we only have to computeγpq for q > p.

In this paragraph, we compare the computational complexity of the proposed ML estimate

with that of the algorithm in [26]. Three algorithms are proposed in [26], referred to as Al-

gorithm A, A’, and B. While Algorithm A is optimal, Algorithms A’ and B are suboptimal.

Table 2.1 summarizes this result. In Table 2.1, MUL, ADD, LN, ABS, PH, and DIV denote

the operations of multiplication, addition, natural logarithm, absolute value, phase derivation,

and division, respectively. In addition, the algorithm proposed in this section is referred to as

proposed Algorithm I, and the one in the next section is termed proposed Algorithm II. For the

proposed algorithms, we consider the worst case in which all the phase differences,dr,s, need

to be unwrapped. Figure 2.1 shows several examples of howQ andN affect the complexity.

Note that the computational complexity for the root-finding procedure in [26] is not included

here. For convenience, we treat all operations other than addition as multiplications. As we

can see, the computational complexity for the proposed algorithm is slightly lower than that

for algorithms A and B in [26], and Algorithm A’ in [26] is the lowest. However, algorithm
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A’ truncates the polynomials with order higher than two in (2.6), i.e.,Λ(z) =
2∑

m=−2

b(m)zm.

This impacts the estimation accuracy. Note that we can always truncate the summation terms

in (2.32), and thereby reduce the computational complexity of proposed Algorithm I. Since

suboptimum approaches are not our focus, we will not consider the details here. We will now

discuss the computational complexity of the root-finding procedure. As shown in [43], [45], the

root-finding procedure requiresO(K3) multiplications. Table 2.1 shows that the computational

complexity of Algorithm A isO(NK2). Thus, the computational complexity of the root-finding

procedure will be high whenK is large. Also, its implementation cost will also be higher, since

we may need dedicated electronic circuitry to implement this function.

It is well known that the performance of an unbiased estimator is bounded by the CRB [41].

If the variance of an unbiased estimator reaches the CRB, we consider the estimator efficient.

Following the procedure to derive performance bounds in [41], we can calculate the CRB for

our CFO estimation procedure. Letε̂ be an estimate ofε. The CRB for our CFO estimation is

then

CRB(ε̂) = − 1

E[ ∂2

∂ε2 Λ(ε)]

=
(8π2ρ)−1σ2

w(1 + (K − 1)ρ)

E[
K−1∑
p=1

K∑
q>p

(q − p)2Re{γpqej2πε(q−p)}]

=
σ2

w(1 + (K − 1)ρ)

8π2ρNσ2
x

K−1∑
p=1

K∑
q>p

(q − p)2

=
1 + K · SNR

8π2N · SNR2

1
K−1∑
p=1

K∑
q>p

(q − p)2

(2.36)

whereE[·] denotes the expectation and SNR indicates the signal-to-noise ratio. For a special

case,K = 2, the CRB is the same as that in [46].

19



§ 2.3 Proposed Joint ML STO and CFO Estimation

In this section, we extend the method developed in the previous section to solve the STO estima-

tion problem. The core idea is to apply a sliding data window for the received(Q+1)N samples;

each window covers the preamble in the context of a particular timing offset. We perform the

ML CFO estimation for data in each window, and store the estimated CFO and the correspond-

ing maximum log-likelihood. Thereafter, the estimated CFO with the largest log-likelihood is

selected as the ML CFO estimate. The corresponding window position is taken as the ML STO

estimate. Let the window size beQN , and define the setVi = {y(i), y(i+1), . . . , y(i+QN−1)}
to be the received data in windowi. Since the maximum delay is shorter thanN , it is clear that

0 ≤ i ≤ N − 1. If we let the STO beθ, Vθ will cover the complete preamble. In Appendix A.2,

we show that the log-likelihood function forVi can be expressed by

Λi(ε) = Ci
1 + Ci

2φ
i + Ci

3

Q−2∑
p=0

Q−1∑
q>p

|γi
pq| cos(ψi

pq) (2.37)

where the superscripti indicates that all the variables are calculated withinVi, andCi
1, Ci

2 and

Ci
3 can be treated as window-independent. Thus, we can simplify the above log-likelihood

function using

Λi(ε) ≈ C2φ
i + C3

Q−2∑
p=0

Q−1∑
q>p

|γi
pq| cos(ψi

pq), (2.38)

whereC2 andC3 are the same as those in (2.23) and (2.24). Since the received signal power,

φi, is independent of CFO, we can estimate CFO using (2.32) as

ε̂i = −

Q−2∑
p=0

Q−1∑
q>p

|γi
pq|(q − p)∠γi

pq

2π
Q−2∑
p=0

Q−1∑
q>p

|q − p|2|γi
pq|

. (2.39)

Note that the upper bound in the summation terms of (2.39) isQ instead ofK. The estimated

STO is then

θ̂ = arg{max
i

(Λi(ε̂i))} = iopt. (2.40)
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Now, the procedure for the proposed joint ML STO and CFO estimation can be summarized as

follows:

1. Calculateγi
pq and its amplitude, wherei ∈ [1, N ], p ∈ [0, Q− 2], andq ∈ [p + 1, Q− 1].

2. Use the phase unwrapping procedure outlined above to calculate∠γi
pq.

3. Substitute the results into (2.38) and (2.39), and calculateΛi(ε̂i) andε̂i.

4. Find iopt such thatΛiopt(ε̂iopt) > Λi(ε̂i), i 6= iopt.

5. The ML STO estimate isiopt and the ML CFO estimate is then̂εiopt.

As we can see from the above procedure, the computational complexity of the algorithm will be

N times higher than that in Section 2.2. Note also that the upper limit ofp is Q − 2 instead of

K − 2. In other words, we have an extra period for CFO estimation. By leveraging the sliding

window structure, we can effectively reduce the computational complexity in calculatingγi
pq.

Similar to the definition ofγpq, we obtainγi
pq =

i+N−1∑
n=i

yp(n)[yq(n)]∗. Then, it is simple to show

that

γi
pq = γi−1

pq + yp(i + N − 1)[yq(i + N − 1)]∗

−yp(i− 1)[yq(i− 1)]∗. (2.41)

From (2.41), we can see that except fori = 0, the calculation ofγi
pq requires only two complex

multiplications and two complex additions. This will greatly reduce the required computational

complexity in the scenario of joint STO and CFO estimation. The required computational com-

plexity has been summarized in Table 2.1.

We can also obtain the CRB for the CFO estimate. All we have to do is to replaceK with

Q in (2.36). SinceQ = K + 1, the CRB is lower than that in (2.36). Note that the STO is a

discrete value. No performance lower bounds have been reported to date in the literature. In the

next section, we will derive a lower bound to address this omission.
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§ 2.4 Performance Analysis of STO Estimation

In this section, we analyze the performance of the proposed STO estimation method. We first

redefine (2.38) asΛi(ε) = C2φ
i + C3ξ

i where

φi =
K∑

p=0

i+N−1∑
n=i

yp(n)y∗p(n)

=
K∑

p=0

N−1∑
n=0

xp(n)x∗p(n) + wp(n)w∗
p(n)

+2Re{xp(n)w∗
p(n)exp(j2πε

pN + n

N
)}, (2.42)

and

ξi =
K−1∑
p=0

K∑
q>p

|γi
pq| cos(ψi

pq)

=
K−1∑
p=0

K∑
q>p

N−1∑
n=0

xp(n)w∗
q(n)exp(j2πε

qN + n

N
)

+wp(n)x∗q(n)exp(−j2πε
pN + n

N
)

+wp(n)w∗
q(n)exp(j2πε(q − p))

+xp(n)x∗q(n). (2.43)

Note here thatφi andξi are random variables. The mean value ofΛi(ε), denoted byµi
Λ, is

equal toC2µ
i
φ +C3µ

i
ξ, whereµi

φ andµi
ξ are the mean ofφi andξi, respectively. The variance of

Λi can be expressed byνi
Λ = C2

2ν
i
φ + C2

3ν
i
ξ + 2C2C3κ

i
φξ, whereνi

φ andνi
ξ denote the variance

of φi and ξi, respectively, andκi
φξ the covariance betweenφi and ξi. The whole set ofVi,

0 ≤ i ≤ N − 1, has(Q + 1)N samples and it may cover three regions. The first region consists

of the noise samples, the second region the periodic preamble samples, and the third region the

data samples. We denote these regions byIN , IP , andID. Thus, the signal variance inIN is σ2
w,

that inIP is σ2
x +σ2

w and that inID is σ2
d +σ2

w, whereσ2
d represents the variance of data samples.

Recall thatθ is the actual STO in the system. Usingθ as a reference, we can have three cases
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for the value ofi: i = θ, i < θ, andi > θ (0 ≤ i ≤ N − 1). The statistics ofφi andξi are

different across these three cases. In Appendix A.3, we provide a detailed derivation ofµi
φ, µi

ξ,

νi
φ, νi

ξ, andκi
φξ.

For the proposed STO estimation algorithm, an error occurs wheniopt 6= θ. Thus, we can

define the error probability of STO estimation asP (∪i,i6=θ{Λθ < Λi}), whereP (.) denotes

the probability of a certain event. Note that the evaluation ofP (Λθ < Λi) only requires one-

dimensional integration. If the log-likelihood functions for alli’s are independent and identi-

cally distributed (i.i.d.), we haveP (∪i,i6=θ{Λθ < Λi}) =
∑

i,i 6=θ P (Λθ < Λi). Unfortunately, the

log-likelihood functions are not independent. As a result, we have to conduct multi-dimensional

integration, which is both complex and difficult. Therefore, we propose a simple alternative to

overcome the problem. Instead of the exact error probability, we attempt to derive a lower

bound.

As shown in [22], the likelihood function is approximately Gaussian. We denote the distri-

bution ofΛi usingG(µi
Λ, νi

Λ), whereG(·) denotes the Gaussian distribution. Consider the joint

density function ofΛi andΛj. Using the Gaussian assumption, we write the bivariate Gaussian

distribution as

P (Λi, Λj) =
1

2π · νi
Λ · νj

Λ ·
√

1− Cc(i, j)

·exp(− zij

2(1− Cc(i, j))
) (2.44)

where1 ≤ i, j ≤ N ,

zij =
(Λi − µi

Λ)2

νi
Λ

+
(Λj − µj

Λ)2

νj
Λ

−2Cc(i, j)(Λ
i − µi

Λ)(Λj − µj
Λ)√

νi
Λ · νj

Λ

, (2.45)

and

Cc(i, j) =
E{Λi(Λj)∗} − µi

Λµj∗
Λ√

νi
Λ · νj

Λ

. (2.46)
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Note thatCc(i, j) is the corresponding correlation coefficient. The numerator ofCc(i, j) is

expressed as

E{Λi(Λj)∗} = µi
Λµj∗

Λ + C2
2κ

ij
φφ + C2

3κ
ij
ξξ

+C2C3κ
ij
φξ + C2C3κ

ij
ξφ, (2.47)

whereκij
ab denotes the covariance ofai andbj∗ (ai, bj ∈ {φi, φj, ξi, ξj}). The main idea here is

only to calculateP (Λθ > Λi) for all i’s (except fori = θ), and then use the result to derive a

lower bound. Thus, we only have to considerCc(i, θ) as

κiθ
φφ = 2σ2

xσ
2
w(QN − |i− θ|), (2.48)

κiθ
ξξ = Q(Q− 1)σ2

xσ
2
w[

N

3
(2Q− 1)− 1

2
|i− θ|]

+
1

2
QN(Q− 1)σ4

w, (2.49)

and

κiθ
φξ = κiθ

ξφ = (Q− 1)2Nσ2
xσ

2
w

+(Q− 1)(N − |i− θ|)σ2
xσ

2
w. (2.50)

Substituting (2.45)-(2.50) into (2.44), we can then evaluateP (Λθ > Λi). Given this defini-

tion, we haveP (Λθ > Λi) =
∫∞
−∞

∫ Λθ

−∞ P (Λi, Λθ)dΛidΛθ. Simulations have been conducted to

evaluate the validity of our theoretical results. Using the scenario depicted in Section 2.5, we

compare the theoretical and simulatedP (Λθ > Λi) in Figure 2.2. From the figure, we see that

the theoreticalP (Λθ > Λi) is close to the simulated result. If we letPmin = min
i6=θ

P (Λθ > Λi),

we can then treatPmin as an upper bound for the correct probability of STO estimation (i.e.,

iopt = θ). Thus, we can then have a lower bound for the error probability of STO estimation

(LBSTO) as1− Pmin.
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§ 2.5 Simulations and Discussions

In this section, we report our simulation results, where these evaluate the performance of the

proposed algorithms. We adopt a Rayleigh multipath channel with an exponential power decay

and five channel taps. The preamble, generated from a frequency-domain BPSK modulated

signal, has 10 periods and each period has 16 samples. The data following the preamble are

transmitted using a 16-QAM scheme. The mean square error (MSE) of the estimated CFO is

used as a performance measure. We first consider the CFO-only estimation problem. In this

case, the first receivedN samples are discarded. As previously mentioned, we term the pro-

posed approach for this scenario as Algorithm I (as described in Section 2.2). We compare

the proposed ML estimator with that in [26]. One optimum algorithm (Algorithm A) and two

suboptimum algorithms (Algorithm A’ and B) in [26] are simulated. Figure 2.3 shows the sim-

ulation result for SNR at 10dB. From the figure, we can see that the performance of Algorithms

A’ and B are poorer. Algorithm A and the proposed algorithm offer a similar level of perfor-

mance that is very close to the CRB. To evaluate the impact of CFO on system performance,

we conduct simulations for systems with and without CFO. For the system with CFO, we first

use the proposed method to estimate CFO, and then conduct CFO compensation. Figure 2.4

shows the BER comparison forε = 0.2. As we can see from the figure, the BER performance

degrades slightly when CFO is present.

We then consider the case of the joint STO and CFO estimation process. In this case, dis-

carding the first receivedN samples is not necessary. As a result, one additional preamble is

available. This means that the proposed method may offer better performance compared to the

previous scenario. However, the price we pay for the additional STO estimation is the increase

in computational complexity. As mentioned, we name this approach proposed Algorithm II (as

explained in Section 2.3). Using a similar approach, the method in [26] can also be used to

estimate STO. However, its computational complexity increases much more than our method.

Figure 2.5 shows the simulation result for the CFO estimate. The proposed method offers good
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performance. Only when CFO is very close to±0.5, does the performance of the proposed algo-

rithms degrade. Figure 2.6 shows the CFO estimation result for various SNRs. From the figure,

we see that the proposed method still works well for SNRs as low as -5 dB. The algorithms

in [26] perform well until SNR reaches -7 dB, somewhat better than the proposed algorithms.

However, when SNR falls below -8 dB, the proposed algorithms again outperform those in [26].

This may be because the correlation matrix in (2.6) is very noisy, and the roots therefore cannot

be solved reliably. Figure 2.7 shows the error probability for the STO estimation. We observe

that the derived lower bound for the STO estimation is tight when the SNR is high. Note that

the error probability we defined is only relevant to performance evaluation. If the channel re-

sponse is shorter than the CP (which is the typical case), we can always has some tolerance for

the STO estimation. Thus, there is no need to calculate the exact channel delay. In real-world

applications, it is a common practice to reduce the estimated STO by a couple of samples when

conducting STO compensation. Another property is that STO estimation performance is not

particularly impacted when CFO is closed to 0.5. In the literature, there exist a number of STO

estimation methods. We select the two algorithms proposed in [22] and [27], for comparison.

Figure 2.8 shows the MSE curves for these approaches and for the proposed algorithms (θ = 8).

The figure confirms that the proposed method offers the best performance.
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0 2 4 6 8 10 12 14 16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

j

P
(Λ

θ >
Λ

j )

 

 

Theoretical P(Λθ > Λj)

Numerical P(Λθ > Λj)

Figure 2.2: Comparison of simulated and theoreticalP (Λθ > Λj).

27



−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−60

−55

−50

−45

−40

−35

−30

frequency offset

M
S

E
 in

 fr
eq

ue
nc

y 
of

fs
et

 e
st

im
at

io
n(

dB
)

 

 
Proposed Algorithm I
CRB
Algorithm A in [27]
Algorithm A’ in [27]
Algorithm B in [27]

Figure 2.3: Performance comparison of CFO estimation, the algorithm in [26] and proposed

algorithm I; SNR = 10dB.

0 2 4 6 8 10 12 14 16 18 20
10

−4

10
−3

10
−2

10
−1

10
0

SNR (dB)

B
it 

er
ro

r 
ra

te

 

 
Proposed Algorithm I Compensated
Without CFO

Figure 2.4: BER comparison for systems with and without CFO.

28



−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−65

−60

−55

−50

−45

−40

−35

frequency offset

M
S

E
 in

 fr
eq

ue
nc

y 
of

fs
et

 e
st

im
at

io
n(

dB
)

 

 
Proposed Algorithm II
CRB
Algorithm A in [27]
Algorithm A’ in [27]
Algorithm B in [27]

Figure 2.5: Performance comparison for CFO estimation; SNR = 10dB.
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Table 2.1: Computational complexity comparison for the algorithm in [26] and for the proposed

algorithms.

Algorithm A

in [26]

Algorithm

A’ in [26]

Algorithm B

in [26]

Proposed

algorithm I

Proposed

algorithm II

No. of MUL 2NK2 +

7K − 10

2N(5K −
6) + 11

2K(NK +

3)− 6

(2NK+ K
2

+

3)(K−1)−2

NQ(2N +

7Q
2

+ 1
2
)− 4

No. of ADD K(2NK +

3)− 5

2N(5K −
6) + 4

2NK2 +

2K − 3

K(K −
1)(2N + K

6
−

1
3
) + K − 5

QN(2N +

Q2

6
+ 4Q −

6) − (Q2 −
Q + 8) + 5N

No. of LN 1 1 1 0 0

No. of ABS 0 0 0
K(K − 1)

2

NQ(Q− 1)

2

No. of PH 0 0 0
K(K − 1)

2

NQ(Q− 1)

2

No. of DIV 1 1 2 1 N
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Chapter 3

Blind Maximum-Likelihood

Carrier-Frequency-Offset Estimation for

Interleaved OFDMA Uplink Systems

In this chapter, we will study the CFO estimation problem in interleaved OFDMA systems [34].

Blind ML CFO estimation is considered to be difficult in interleaved OFDMA uplink systems.

This is because multiple CFOs have to be simultaneously estimated (each corresponding to a

user’s carrier), and an exhaustive multi-dimensional search is often required. The computa-

tional complexity of the search may be prohibitively high. Methods such as MUSIC [42] and

ESPRIT [35] have been proposed as alternatives. However, these methods cannot maximize

the likelihood function and the performance is not optimal. In this chapter, we propose a new

method to solve the problem. With our formulation, the likelihood function can be maximized

and the optimum solution can be obtained by solving a polynomial function. Compared to

the exhausted search, the computational complexity of the proposed algorithm can be reduced

dramatically. Section 3.1 briefly describes the system model and derives the proposed CFO

estimation method. Section 3.2 shows the performance analysis for the proposed method. Fi-

nally, Section 3.3 evaluates the performance of the proposed method and analyze computational
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complexity.

§ 3.1 The Propposed CFO Estimation Method

§ 3.1.1 Signal Model for Interleaved OFDMA Uplink System

In an OFDMA system, letM users share theNs subcarriers of an OFDM symbol and theM

users simultaneously transmit their data streams. The subcarriers are divided intoQ subchannels

and each subchannel hasN = Ns/Q subcarriers. Each user occupies a specific subchannel,

and the subcarriers assigned to userm are denoted assk
m’s wherek ∈ Υm. Here,Υm denotes

a subset of subcarrier indices. For an interleaved OFDMA system [34] [35], the subset for the

mth user is defined as :Υm = {qm, Q + qm, · · · , qm + (N − 1)Q} whereqm is the subchannel

index andqm ∈ {0, 1, · · · , Q − 1}. In the system, it is assumed thatΥm

⋂
Υk = φ for m 6= k

whereφ denotes the empty set. In our system, we assume that the sequence each user transmits

is unknown to the BS andM < Q.

Consider a specific OFDMA symbol and denote the frequency domain signal that userm

transmits as anNs × 1 vector,um. Note that the elements ofum are nonzero only in designated

subcarriers, i.e.,Υm. Taking the inverse discrete Fourier transform (IDFT) ofum, we can obtain

the time domain signal for userm, denoting as̄sm = [s̄m(0), · · · , s̄m(Ns − 1)]T . Inserting a

cyclic prefix (CP) of lengthL at the beginning of the symbol, userm can then serially transmit

the resultant signal through a wireless channel. Let the channel response from userm to the BS

receiver be denoted ashm(l), l = 0, . . . , Lm − 1, whereLm is the channel length andLm ≤ L.

Also, let the normalized CFO for userm be denoted asεm. Then, the CP-removed received

OFDMA symbol at the BS can be expressed as

y(k) =
M∑

m=1

exp(j2πεmk/Ns)

Lm−1∑

l=0

hm(l)s̄m(k − l) + η(k), (3.1)
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wherek = 0, · · · , Ns − 1 andη(k) represents additive white Gaussian noise (AWGN) with a

variance ofσ2
η.

As mentioned, subchannelqm is assigned to userm in the interleaved OFDMA system. It

is equivalent to say that userm is assigned to subchannel zero and an CFO ofqm is introduced.

So the received noiseless symbol from userm can be re-written as

x̄m(k) = exp(j2πεmk/Ns)
Lm−1∑

l=0

hm(l)s̄m(k − l)

= exp(j2π(εm + qm)k/Ns)
Lm−1∑

l=0

hm(l)sm(k − l)

= wεe,m·kxm(k), (3.2)

wherew = exp(j2π/Ns), εe,m = εm + qm, xm(k) =
Lm−1∑
l=0

hm(l)sm(k − l), andsm(k) is

the transmitted signal of userm if subchannel zero is assigned. The termεe,m denotes the

effective CFO for userm. It includes the virtual CFO caused by the subchannelqm. Note that

the periodicity of the transmitted sequence still remains after it is passed through the channel.

Since the time domain signal has a period ofN , we can make an index transformation by letting

k = (p − 1)N + n, wherep = 1, · · · , Q andn = 0, · · · , N − 1. With the transformation, we

can convert thekth sample of a signal into thenth sample in thepth period. Thenth sample in

each period, corresponding to a signal, can then be extracted to form a vector. Then, we have

y(n) = UD(n)x(n) + η(n), (3.3)

wherey(n) = [y(n), y(n + N), . . . , y(n + (Q − 1)N)]T = [y1(n), y2(n), . . . , yQ(n)]T , U is

a Q-by-M matrix and(U)p,q = w{εe,q·(p−1)N}, D(n) = diag([wn·εe,1 , . . . , wn·εe,M ]T ), x(n) =

[x1(n), . . . , xM(n)]T , andη(n) = [η(n), η(n+N), . . . , η(n+(Q−1)N)]T = [η1(n), η2(n), . . . ,

ηQ(n)]T . We will use (3.3) as our signal model in the derivation of the ML CFO estimate.

§ 3.1.2 Proposed Method

To the best of our knowledge, blind ML CFO estimation has not been studied before in OFDMA

uplink systems. Here, we propose a method to solve the problem. For interleaved OFDMA
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uplink systems, the transmitted time-domain signal is obtained from the IDFT of its frequency-

domain signal. From the central limit theorem, we know that if the number of subcarriers is

reasonably large, the corresponding time-domain signal can be approximated as a white Gaus-

sian sequence. Similar to [28], we assume that each users is under perfect power control, so

signals arrive at the BS with equal average power. If we further assume that each channel tap

experiences independently Rayleigh fading, and all users’s signals are white and independent of

each other, the received sequencey(k) in (3.1) can also be approximated as a Gaussian sequence

(see Chapter 2) with a variance ofMσ2
x + σ2

η, whereσ2
x = E{|xm(n)|2}. Let−0.5 < εm < 0.5

andf(.) be a probability density function. Then, we can explicitly write out the log-likelihood

function, shown in Chapter 2, as

Λ(ε) = ln{
N−1∏
n=0

f(y(n))}. (3.4)

DefineRy = E{y(n)yH(n)} and

(Ry)p,q = σ2
ηδ(p− q) + σ2

xΓ(p, q), (3.5)

where

Γ(p, q) =
M∑

m=1

w(εe,m)N(p−q). (3.6)

Thus, we can expressf(y(n)) as [39] [40]

f(y(n)) = (πQdet(Ry))
−1exp

[−y(n)HR−1
y y(n)

]
. (3.7)

The log-likelihood function can be expressed as

Λ(ε) =
N∑

n=0

{−Q · ln(π)− ln(det(Ry))− y(n)HR−1
y y(n)}. (3.8)

Let u(n) = UD(n)x(n). Then,y(n) = u(n) + w(n). As assumed, the transmitted sequences

are independent of each other, i.e.,Ry = σ2
xUUH + σ2

ηI . Note thatU is aQ-by-M matrix. In

order to use (3.8) and solve theM unknown CFOs,U must be a full-rank tall matrix. From
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(3.3), we see thatU is a Vandermonde matrix (εe,m 6= εe,n if m 6= n) [52]. Since we assume

M < Q, the full-rank property then holds. As a result, (3.8) can be applied.

In order to find the maximum of the log-likelihood function forith user, we take a derivative

with respect toεe,i [51]:

∂

∂εe,i

Λ(ε) = −N · tr[R−1
y

∂

∂εe,i

Ry]

−
N∑

n=0

{y(n)H [(
∂

∂εe,i

R−1
y )y(n)}. (3.9)

We use the matrix inversion lemma [17] to write the inverse ofRy as

R−1
y = σ−2

η I − σ−4
η U(σ−2

x I + σ−2
η UHU)−1UH

= σ−2
η I − σ−4

η U(Rs)
−1UH , (3.10)

whereRs = σ−2
x I + σ−2

η UHU. With (3.10), we only need the inverse of anM -by-M matrixRs

rather than aQ-by-Q matrix Ry.

However,(Rs)
−1 is difficult to obtain. Even it can, the relationship between the likelihood

function and the CFOs may not be tractable after the inversion. To solve the problem, we

propose using the Neumann series to expand(Rs)
−1 [49]. Let S be a nonsingular matrix and

β(S) be its maximum absolute eigenvalue. Then, the series
∑∞

k=0 Sk will converge to(I −
S)−1 [52] if β(S) < 1 [50]. However, the condition ofβ(S) < 1 is not always satisfied for

a nonsingularS. This problem can be overcome by dividingS by a real parameterλ > 0

and expanding the resultant matrix. It is simple to show that there always exist aλ such that

β(Rs/λ) < 1. Now, we can rewriteRs as

Rs = σ−2
x I + σ−2

η UHU

= λ(I + B), (3.11)

whereB is obtained as(1/λ)Rs − I , and its (p,q)th element is

(B)p,q = (
1

λσ2
x

− 1)δ(p− q) +
1

λσ2
η

Q∑

k=1

w(−εe,p+εe,q)N(k−1). (3.12)
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From the Neumann series shown above, the inverse ofRs can be expanded as

(
1

λ
Rs)

−1 = (I + B)−1

=
∞∑

k=0

(−1)kBk (3.13)

For simplicity, we can retain the first three and truncate high order terms, i.e.,

R−1
s ≈ 1

λ

2∑
k=0

(−1)kBk. (3.14)

The determination of the optimumλ and the analysis of the truncation error will be discussed

in the next section. From (3.12), we can find the (p,q)th element ofB2 as

(B2)p,q = (
1

λσ2
x

− 1)2δ(p− q)

+
2

λσ2
η

(
1

λσ2
x

− 1)Γ0(p, q)

+ (
1

λσ2
η

)2

M∑

k=1

Γ0(p, k)Γ0(k, q), (3.15)

whereΓ0(p, q) =
∑Q

n=1 w(−εe,p+εe,q)N(n−1). Substituting (3.12) and (3.15) into (3.14), we then

obtain

(R−1
s )p,q =

1

λ
[(2− 1

σ2
xλ

+ (
1

σ2
xλ
− 1)2)δ(p− q)

+
1

σ2
ηλ

(
2

σ2
xλ
− 3)Γ0(p, q)

+ (
1

σ2
ηλ

)2

M∑

k=1

Γ0(p, k)Γ0(k, q)]. (3.16)
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Using (3.16) in (3.10), we can approximate the inverse ofRy as

(R−1
y )p,q = σ−2

η δ(p− q)− C0Γ(p, q)

− C1

M∑
a=1

w(εe,a)N(p−1)

·
M∑

b=1

Γ0(a, b)w(−εe,b)N(q−1)

− C2

M∑
a=1

w−(εe,a)N(q−1)

M∑

b=1

w(εe,b)N(p−1)

·
M∑

k=1

Γ0(b, k)Γ0(k, a), (3.17)

where

C0 =
1

σ4
ηλ

(2− 1

σ2
xλ

+ (
1

σ2
xλ
− 1)2)

C1 =
1

σ6
ηλ

2
(

2

σ2
xλ
− 3)

C2 =
1

σ8
ηλ

3
. (3.18)

Note thatΓ0(., .) can not be directly estimated. However, it can be combined with some vari-

ables in (3.17) and converted toΓ(., .) as defined in (3.6). The value ofΓ(p, q) can be estimated

from that of the(p− q)th diagonal term ofRy as:

Γ(p, q) =





Q−mP
p=1

[Ry ]p,p+m

(Q−m)σ2
x

, if m = q − p ≥ 0
Q−mP
q=1

[Ry ]q+m,q

(Q−m)σ2
x

, if m = p− q > 0.

. (3.19)
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The second and third terms in (3.17) can be re-written as

M∑
a=1

M∑

b=1

Γ0(a, b)w(εe,a)N(p−1)w(−εe,b)N(q−1)

=

Q∑
n=1

M∑
a=1

M∑

b=1

w(−εe,a+εe,b)N(n−1)

· w(εe,a)N(p−1)w(−εe,b)N(q−1)

=

Q∑
n=1

Γ(p, n)Γ(n, q) (3.20)

and

M∑
a=1

w−(εe,a)N(q−1)
M∑

b=1

w(εe,b)N(p−1)
M∑

k=1

Γ0(b, k)Γ0(k, a)

=
Q∑

m=1

Q∑
n=1

Γ(p,m)Γ(m, n)Γ(n, q). (3.21)

Substituting (3.17)-(3.21) into (3.9), we can obtain

∂

∂εe,i

Λ(ε) =
j2πN

Ns

{
Q∑

p=1

Q∑
q=1

{Nσ2
x(q − p)xq−p

[C0Γ(p, q) + C1

Q∑
n=1

Γ(p, n)Γ(n, q)

+C2

Q∑
m=1

Q∑
n=1

Γ(p,m)Γ(m,n)Γ(n, q)]

+γ(p, q)[C0(p− q)xp−q

+C1

Q∑
n=1

((n− q)xn−qΓ(p, n)

+(p− n)xp−nΓ(n, q))

+C2

Q∑
m=1

Γ(p, m)

Q∑
n=1

Γ(n, q)

((m− n)xm−n

+(n− q)xn−qΓ(p,m)Γ(m,n)

+(p−m)xp−mΓ(m,n)Γ(n, q))]}} (3.22)
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where

γ(p, q) =
N−1∑
n=0

y∗(n + (p− 1)N)y(n + (q − 1)N) (3.23)

and

x = exp(j2π
Nεe,i

Ns

). (3.24)

The detailed derivation of (3.22) is provided in Appendix B.1. Setting (3.22) to zero , we can

solve all the possible2(Q− 1) roots,x̂’s. The effective CFO can then be obtained by

ε̂e,i =
Ns

N
(
ln(x̂)

j2π
). (3.25)

As defined in (3.2), the true CFO forith user is then given by

ε̂i = −qi +
Ns

N
(
ln(x̂)

j2π
), (3.26)

whereqi is the subchannel index for useri. It is apparent that after adding−qi, there will be

only one root falling into the range of subchannel 0, and the root is the estimated CFO for user

i.

A direct method for solving the roots in (3.22) is via an exhaustive grid search over the

interval spanned byεe,i. However, the computational complexity is high. Taking a closer look

at (3.22), we find that (3.22) is a polynomial function ofx, i.e.,

∂

∂εe,i

Λ(ε) =

Q−1∑

k=1

αp(k)xk +

Q−1∑

k=1

αn(k)x−k = 0. (3.27)

The detailed derivation forαp(k) andαn(k) is provided in Appendix B.2. Using (3.27), we can

then use a more efficient root-finding method to obtain the roots.

§ 3.2 Performance Analysis

§ 3.2.1 Truncation Error in (3.14)

As we can see, the series in (3.13) is infinite and truncation has to be conducted. In the previous

section, we retain the first three terms in the series. One may be curious about how large the
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error will be. In this subsection, we analyze the truncation error in (3.14).

For a positive-definite Hermitian matrixR with rankK, we can have its eigen-decomposition

as

R = VGVH , (3.28)

whereG = diag[g1, · · · , gK ] is a diagonal matrix,gi’s being positive are the eigenvalues of

R with descending order, i.e.,g1 > · · · > gK , andV is an unitary matrix consisting of the

eigenvectors. As shown in section 3.1,R also can be expressed as

(
R
λ

)−1 = (I − A)−1 =
∞∑

k=0

Ak, (3.29)

whereλ is a real number ensuring that the maximum absolute eigenvalue ofR/λ is smaller than

one, andA is a matrix to be determined. Substitute (3.28) andVVH = I into (3.29), we can

obtain thatA = V(I −G/λ)VH and

Ak = V(I − G
λ

)kVH . (3.30)

From (3.30), it is simple to see that for the convergence of (3.29),|1 − gi/λ|, i = 1, 2, . . . , K,

has to be smaller than one. Also, the smaller the value of|1− gi/λ|, the faster the convergence

we can have. Since the values ofgi’s may be different, the convergent rate of each|1 − gi/λ|
(referred to as a mode) may be different. As a result, the overall convergence is dominated by

the mode with the maximum|1 − gi/λ|. To have the fastest convergence, we then want to find

a λ minimizing the maximum|1 − gi/λ| (1 ≤ i ≤ K). This yields a min-max optimization

problem as:

min
λ

max
i=1,··· ,K

|1− gi/λ| (3.31)

subject to the constraints

|1− gi/λ| < 1, (3.32)

wherei = 1, 2, . . . , K. The optimum value ofλ has been shown to be [54]

λ =
g1 + gK

2
. (3.33)
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Substituting (3.33) into|1 − gi/λ|, we find that there is a same maximum value yielded byg1

andgK . Denote the value as the slowest convergence rate (SCR) ofR, i.e.,

M(R) = |1− g1/λ| = |1− gK/λ| = g1 − gK

g1 + gK

=
S(R)− 1

S(R) + 1
, (3.34)

whereS(R) = g1/gK is the eigenvalue spread (EVS) ofR. It is obviously that a smaller EVS

yields a smaller SCR. Furthermore, if the SCR is smaller, the convergence of the series of (3.29)

will be faster and the truncation error will be smaller. However, a closed-form expression for

the truncation error is difficult to obtain. Instead of the exact value of the error, we will try to

derive an upper bound. Let the number of the terms retained in (3.29) beL and power of the

truncation error beE . Then, we have

E = ‖
∞∑

k=0

Ak −
L−1∑

k=0

Ak‖ = ‖
∞∑

k=L
Ak‖

≤
∞∑

k=L
‖Ak‖ ≤

∞∑

k=L
‖A‖k

≤
∞∑

k=L
Mk(R) (3.35)

whereM(R) is the maximum diagonal value ofI − G
λ

in (3.30). IfM(R) 6= 0, then

E ≤ M(R)L

1−M(R)
=

(S(R)− 1)L

2(S(R) + 1)L−1
. (3.36)

It is simple to see that whenS(R) = 1 andM(R) = 0, E = 0 giving the fastest convergence of

(3.29). In this case,R is diagonal and only one term is required in (3.29).

We now compare the EVSs ofRy andRs in (3.10), and show thatS(Rs) < S(Ry). As

shown in Section 3.1,Ry = σ2
xUUH + σ2

ηI andRs = σ−2
x I + σ−2

η UHU = σ−2
x I + σ−2

η Ru. Let

{gu,1, . . . , gu,Q} be the eigenvalues ofUUH andgu,1 ≥ . . . ≥ gu,Q. Since the rank ofU, aQ-by-

M matrix, isM , the smallestQ−M eigenvalues ofUUH are zero, i.e.gu,M+1 = · · · = gu,Q = 0.

And, the non-zero eigenvalues ofUUH andUHU are the same. This indicates that we can obtain
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the eigenvalues ofRs from Ry as:

eig(Rs) = σ−2
x + σ−2

η eig(Ru), (3.37)

where eig(Ru) denotes the firstM eigenvalues ofRu. So, the EVSs ofRy andRs can be easily

obtained as:

S(Ry) = (σ2
xgu,1 + σ2

η)/(σ
2
η)

= ρ · gu,1 + 1, (3.38)

and

S(Rs) = (σ−2
x + σ−2

η gu,1)/(σ
−2
x + σ−2

η gu,M)

= (ρ · gu,1 + 1)/(ρ · gu,M + 1), (3.39)

whereρ = σ2
x/σ

2
η. Note that the received SNR is defined as SNR= Mσ2

x/σ
2
η= Mρ. It is easy

to see that the EVS ofRs is smaller than that ofRy. Therefore, the SCR ofRs is smaller than

that ofRy. Thus, the matrix inversion lemma used in (3.10) not only reduces the computational

complexity, but also reduces the truncation error in (3.14).

From (3.39), it is also simple to see that for low SNR, the EVS ofRs approaches one, so the

truncation error in (3.14) can be ignored. For high SNR, the EVS ofRs approaches to that of

Ru. The EVS ofRu = UHU depends on the subchannel assignment since the(a, b)th entry ofU

is w{εe,b·(a−1)N} andεe,b = εb + qb. To analyze the truncation error, we first have to analyze the

EVS ofUHU. Unfortunately, a general closed-form for the EVS is difficult to obtain. Here, we

study two special cases to show that the EVS ofUHU is low and the truncation error in (3.14)

can be small in our applications.

Define aMmax-user system as a system which can simultaneously handleMmax users at

most. The first case we consider is a2-user system. For the system, the EVS ofUHU can be

solved from (3.3) in a closed-form as:

S(UHU) =
Q + ϑ1,2

Q− ϑ1,2

, (3.40)
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where

ϑ1,2 = {[1− cos(2πδε)− cos(2πδε/Q)

+ cos(2πδε(Q− 1)/Q)]0.5

· [1− cos(2πδε/Q)]−0.5.

As we can see, the EVS varies withδε = |εe,1−εe,2| = |q1−q2+ε1−ε2|. Therefore,S(UHU) is

dependent on∆ε = |ε1− ε2| and∆q = |q1− q2|. Note that∆q is the difference of the neighbor

subchannel indices. We now use an example to exam the EVS of(UHU). Let Ns = 128 and

N = 8. Then, there areNs/N = 16 subchannels and1 ≤ ∆q ≤ 15. Figure 3.1 shows the

result. From the figure, we can see that the EVSs for∆q = 1 and∆q = 15 are much larger

than those for2 ≤ ∆q ≤ 14. Figure 3.2 shows the EVSs for2 ≤ ∆q ≤ 14. It is clear that all

the values are smaller than 1.5. This indicates that the truncation error will be small as long as

adjacent subchannels are not used simultaneously, i.e.,|mod(∆q − i ·Q,Q)| 6= 1 wherei is an

integer.

The second case we consider is a4-user system. For the system, the closed-form solution

of the EVS is not obtainable. Simulations are then conducted to obtain numerical results. Note

that in this case, the EVS is a function of{q1, . . . , q4, ε1, . . . , ε4}. It is difficult to exam the

behavior of the EVS in terms of these variables. For convenience, we still define two variables:

∆q = |q1− q2| = |q2− q3| = |q3− q4| and∆ε =
∑M−1

i=1 |εi+1− εi|. Note that the definition and

the implication of∆ε are different from those in the 2-user case. Using the same simulation

setting as that in the 2-user system, we obtain the EVS versus∆ε in Figure 3.3. Here, we

assume that adjacent subchannels are not used. From the figure, we can find that all the EVSs

are smaller than1.7. We can expect the truncation error in (3.14) will be small. From Figure

3.2 and 3.3, we can also find that the smallest truncation error can be obtained when∆q = 8

and∆q = 4 for the 2-user and4-user systems, respectively. However, a large∆q will result

in a smallerMmax, the maximum number of the users. Thus, the selection of∆q is a tradeoff

betweenMmax and the SCR ofRu. In this study, we let the smallest∆q be two.
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Using (3.33) and (3.37), we can see that the optimumλ in (3.11) is equal toσ−2
x +σ−2

η (gu,1+

gu,M)/2. Note that the eigenvalues ofRu can be estimated as eig(σ−2
x (Ry − σ2

ηI)) andRy can

be estimated as
∑N−1

n=0 y(n)yH(n). So, the optimumλ can then be calculated. To evaluate the

performance of the proposed expansion, we define a normalized truncation error as (with the

optimumλ):

En = E"{‖Rs/λ · [(Rs/λ)−1 −
2∑

k=0

(−1)kBk]‖}, (3.41)

whereε is the set for all possibleεe,m (m = 1, · · · ,M ). Using the result in (3.36), we can also

define a normalized upper bound as

En ≤ E"{‖Rs/λ‖ · ‖(Rs/λ)−1 −
2∑

k=0

(−1)kBk‖}

≤ E"{‖Rs/λ‖ (S(Rs/λ)− 1)3

2(S(Rs/λ) + 1)2
}. (3.42)

We now use some examples to evaluate the normalized truncation error and its upper bound in

(3.42). The result is shown in Table 3.1. It is simple to see that the normalized truncation error

increases with the decrease of∆q and with the increase of SNR. Also, the deviation of the upper

bound from the actual error is small; the upper bound overestimates the error by one to two dB.

From Table 3.1, we can also see that even with∆q = 2, the truncation error is still quite small,

i.e.,−20dB. Section 3.3 gives more results to show the property.

§ 3.2.2 CRB Analysis

For the training-based method, only the AWGN is considered as a random variable, and the

CRB for the CFO estimation can then be derived [29]. In the blind method, the transmit symbol

is treated as an additional random variable, and the CRB for the blind CFO estimation can also

be derived in Chapter 2. Here, we generalize the result in Chapter 2 (for single-user OFDM

systems) to derive the CRB in OFDMA systems. From (3.4), the(p, q)th entry of the Fisher

information matrixF is given by

(F)p,q = −E{∂2ln(Λ(ε))

∂εp∂εq

} = −E{∂2ln(Λ(ε))

∂εe,p∂εe,q

}, (3.43)
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where1 ≤ p, q ≤ M . Substituting (3.8) into (3.43) yields

(F)p,q = N · tr(−R−1
y

∂Ry

∂εp

R−1
y

∂Ry

∂εq

+ R−1
y

∂2Ry

∂εp∂εq

)

−E{
N−1∑
n=0

yH(n)Jy(n)}

= N · tr(R−1
y

∂Ry

∂εp

R−1
y

∂Ry

∂εq

), (3.44)

where

J = −R−1
y

∂Ry

∂εp

R−1
y

∂Ry

∂εq

R−1
y

+R−1
y (

∂2Ry

∂εp∂εq

)R−1
y

−R−1
y

∂Ry

∂εp

R−1
y

∂Ry

∂εq

R−1
y . (3.45)

From [51], we see that

E{
N−1∑
n=0

yH(n)Jy(n)} =
N−1∑
n=0

E{yH(n)Jy(n)}

=
N−1∑
n=0

E{tr(Jy(n)yH(n))}

= N · tr(JRy). (3.46)

Finally, the CRB for theεi estimate is obtained as

CRB(εi) = (F−1)i,i. (3.47)

We average the diagonal terms of (3.47) to have a single index for performance comparison.

§ 3.2.3 Computational Complexity

Here, the computational complexity of the proposed method is assessed and compared with

that of the existing schemes. For the proposed method, there are three operation steps. In the
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first step, we need to calculate the correlation matrix in (3.5) and its eigen-decomposition to

obtain (3.37). The computational complexity for this step isO(Q3 + Q2N). In the second

step, we need to calculate the coefficients in (3.27). From the received signal and the known

correlation matrix, we can obtainγ(p, q) in (3.23) andΓ(p, q) in (3.19). LetΓ(p, q) andγ(p, q)

be the(p, q)th entries of two matricesΓ andγ, respectively. The computational complexity

for constructing these matrices isO(Q2N). Note that not all coefficients in (3.27) (please

see (5.45) and (5.46) in Appendix B.2) are required to calculate. Some coefficient pairs in

(5.45) and in (5.46) are complex conjugate each other. Also, some terms in (5.45) and (5.46)

appear repeatedly. For example,F1(p, q) in (5.45), the6th term of (5.45), and the7th term of

(5.45) all include
∑

m Γ(p, m)Γ(m,n). Without the redundant computations, the complexity for

calculating the coefficients in (5.45) or (5.46) is found to beO(6Q3). Then, we have evaluated

the computational complexity for calculating all the coefficients in the polynomial (3.27). The

last step is the root-searching process in (3.27) and the CFOs sorting for each user in (3.26).

Since there are2Q− 1 terms in (3.27), the roots can be solved with the complexity ofO(8Q3)

(see Section 2.2). Compared with the root-searching process, the complexity in calculating

(3.26) is small and can be ignored. Adding all together and taking only dominant terms, we

can have the entire complexity for the proposed method isO(15Q3 + 2Q2N). For the ESPRIT

frequency estimator, the complexity has shown to beO(5Q3 + Q2N) [35]. Therefore, the

computational complexity of the proposed method is on the same complexity order as that of

ESPRIT.

Next, we evaluate the computational complexity of the training-based schemes. For APFE,

the total complexity has shown to beO(MNcNw(L3 + LN2
s )) [28] [29], whereNc denotes the

number of iterations andNw the number of grid points used for each iteration. For simplified

AAPFE, the computational complexity isO(MNcNwN2
s K) [29] [30]. Since the computational

complexity of APFE algorithm is high, suboptimum training-based schemes were then pro-

posed [28] [30] [31]. For the method in [28], the computational complexity isO(2MTN2
s +

TNs(MN)2) whereT is the number of the Monte Carlo runs finding a mean likelihood [48].
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The computational complexity for the method in [30] isO(Nc(M
2N2 + 1/2Nslog2(Ns) +

3/2M3N3 + 3/8M2N2Ns)) while that in [31] isO(Nc(Ns(MN)2 + M3)) for L = 1. Here,L
is the number of terms retained in an infinite series [31]. Note that forL = 1, the method has

the worse performance but the lowest computational complexity. Also note that the simulation

results in [31] indicates thatL should be at least three for acceptable performance. However, as

shown in [31], the computational complexity order forL = 3 is difficult to evaluate.

§ 3.3 Simulations

In this section, we report simulation results demonstrating the effectiveness of the proposed

method. In the first set of simulations, we compare the performance of the proposed method

with existing blind methods. Note that ESPRIT is known to be better than the MUSIC algorithm

[35]. Thus, we only conduct simulations for ESPRIT [35]. In the second set of simulations, we

compare the performance of the proposed method with existing ML methods such as APFE and

AAPFE. Note that existing ML schemes require training sequences. Finally, we compare the

computational complexity of all schemes.

§ 3.3.1 System Setup

In our simulations, the channel response used for each user is generated according to the HIPER-

LAN/2 channel model [47]. The channel response, having 6 taps, follows an exponential power

decay profile. Each tap coefficient is modeled as an independent complex Gaussian random

variable with zero mean. The CFO of each user is generated with a uniform distribution in the

interval(−0.5, 0.5). The symbols used for CFO estimation are modulated with a binary phase-

shift keying (BPSK) scheme while those for data transmission with a 16-QAM scheme. The

interleaved OFDMA system used in our simulations hasNs = 128 subcarriers. Since there are

multiple CFOs to be estimated, the mean square error (MSE) is used as the performance index
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defined as

MSE =
M∑

m=1

(ε̂m − εm)2. (3.48)

All the simulation results are obtained by averaging1000 Monte Carlo runs.

As shown in Section 3.2,∆q, the difference of the neighbor subchannel indices, influences

the truncation error in (3.14) andMmax, the maximum number of the users. As shown in Section

3.2, the larger the∆q, the smaller the truncation error and the smaller theMmax. We compare

the results for∆q = 2 and∆q = 4 in the following.

§ 3.3.2 Performance Assessment for∆q = 2

Firstly, we let∆q = 2, the smallest∆q we use. In this case, the SCR will be maximal andMmax

is also maximal. It corresponds to the worst case in the proposed method. An important design

parameter for the proposed method is the number of subcarriers for each user,N . The number

of subchannels is thenQ = Ns/N . Observing (3.27) and (3.47), we see that a higherQ gives

better performance, but requires higher complexity. To see the impact ofN , we letM = 4 and

observe the CRB for differentN . The result is shown in Figure 3.4. We can see that the CRB

is almost the same forN = 4 andN = 8. To reduce computations, we chooseN = 8 for the

simulations we conducted. Without loss of generality, we assume that the CP length isN which

is larger than the channel length. For the first set of simulations, we compare the performance

of the proposed algorithm with that of ESPRIT. Figure 3.5 shows the result forM = 2, while

Figure 3.6 forM = 4. As expected, the performance of the proposed algorithm is significantly

better than that of ESPRIT since the proposed method conducts the ML estimation. We can also

see that the proposed method can approach the CRB. At high SNR regions, the performance of

the proposed algorithm slightly deviates from the CRB. This is due to our approximation used

in (3.14). When the number of users is larger, the deviation is also larger.

In the second set of simulations, we compare the performance of the proposed algorithm

with that of other ML algorithms. The simulation setup is the same as that of the first set of

simulations. The ML problem can be directly solved by using an exhaustive grid-search over the
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multi-dimensional space spanning{εe,1, · · · , εe,M}. To reduce the computational complexity,

we use the APFE and AAPFE schemes. The AAPFE is a suboptimum solution of APFE and it

also truncates the Neumann series to approximate an inverse matrix (with an orderK) [53]. In

each iteration, only one user’s CFO is updated while other users’ CFOs remain unchanged. The

CFO update is conducted by a grid-search method. Note that the purpose of the expansion is

different from ours. Also, AAPFE does not use the optimumλ to achieve the best result. In our

simulations, we letNc = 2 andNw = 100. We have triedK = 1 andK = 2. Figure 3.7 shows

the result forM = 2 and Figure 3.8 forM = 4. We can see that the APFE performs the best

and the AAPFE withK = 1 performs the worst. Note that the conventional APFE and AAPFE

have to use training sequences. From the figure, we see that the performance gaps between the

APFE, the AAPFE withK = 2, and the proposed blind algorithm are very small. Also note

that all these algorithms tend to deviate from the CRB when SNR is high.

§ 3.3.3 Performance Assessment for∆q = 4

Figure 3.10 shows the computational complexity of the schemes we consider. Figure 3.10(a)

shows the complexity versus the number of subcarriers for the 2-user case. Figure 3.10(b) shows

the complexity versus the number of users for a fixed total number of subcarriers,NS = 128 and

Q = 8. From the figures, we find that the computational complexity of the proposed method is

similar to that of the conventional blind methods. However, the proposed method outperforms

the conventional methods by10dB (see Figure 3.5 and Figure 3.6). Compared to the training-

based methods, the proposed blind method can have similar performance (see Figure 3.7 and

Figure 3.8), but much lower computational complexity (see Figure 3.10).
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Table 3.1: Normalized truncation error versus SNR
SNR 0dB 3dB 6dB 9dB 20dB 30dB

M= 2, ∆q = 2 (dB) -26.6867 -26.2986 -26.0997 -25.9989 -25.9049 -25.8976

Upper bound in (3.42) -25.2057 -24.7714 -24.5481 -24.4348 -24.3291 -24.3209

M= 2, ∆q = 3 (dB) -32.4019 -32.0139 -31.8150 -31.7141 -31.6202 -31.6128

Upper bound in (3.42) -31.5097 -31.0943 -30.8811 -30.7729 -30.6720 -30.6642

M= 2, ∆q = 4 (dB) -35.8326 -35.4446 -35.2457 -35.1449 -35.0509 -35.0436

Upper bound in (3.42) -35.1642 -34.7558 -34.5462 -34.4399 -34.3408 -34.3331

M= 4, ∆q = 2 (dB) -20.0507 -19.6616 -19.4621 -19.3610 -19.2667 -19.2594

Upper bound in (3.42) -18.0176 -17.5638 -17.3303 -17.2117 -17.1010 -17.0924

M= 4, ∆q = 3 (dB) -25.1858 -24.7970 -24.5978 -24.4967 -24.4026 -24.3952

Upper bound in (3.42) -23.8575 -23.4277 -23.2068 -23.0947 -22.9901 -22.9820

M= 4, ∆q = 4 (dB) -27.2568 -26.8681 -26.6689 -26.5679 -26.4737 -26.4664

Upper bound in (3.42) -26.1414 -25.7185 -25.5013 -25.3910 -25.2882 -25.2802
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Figure 3.1: Eigenvalue spread ofRu for Mmax = 2 (1 ≤ ∆q ≤ 15).
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Figure 3.3: Eigenvalue spread ofRu for Mmax = 4 (2 ≤ ∆q ≤ 4).
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Figure 3.4: CRB comparison for variousN .
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Figure 3.5: Performance comparison for ESPRIT and proposed algorithm (M = 2).
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Figure 3.6: Performance comparison for ESPRIT and proposed algorithm (M = 4).
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Figure 3.7: Performance comparison for training-based and proposed algorithm (M = 2).
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Figure 3.8: Performance comparison for training-based and proposed algorithm (M = 4).
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Figure 3.9: Performance comparison for all algorithms with∆q = 2 and∆q = 4 (M = 4).
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Chapter 4

CFO Estimation and Power Allocation in

Amplify-and-Forward Cooperative OFDM

Systems

In previous chapters, we focus on the non-cooperative OFDM/OFDMA systems. Recently,

there is an growing interest in wireless communication systems employing cooperative relay

networks [57]. The cooperative relaying system allows wireless devices to achieve higher

transmit diversity, expand coverage, yield system-wide power saving, or have better immu-

nity against channel fading. As mentioned, two relaying protocol are well known, namely, AF

and DF. In this chapter, we consider the AF-OFDM systems. One major impact of the system is

that the noise at the destination is colored. To obtain the ML CFO estimation in AF-OFDM sys-

tems, the inverse of the correlation matrix has to be conducted. Unlike the correlation matrices

in previous two chapters, the off-diagonal sub-matrices in the correlation matrix are not zero

due to the correlation existing in the adjacent received symbols. The closed-form expression

of the ML solution is much more difficult to obtain. We then propose using a gradient-descent

method to solve the problem. To evaluate the performance of the proposed method, the CRB

for the CFO estimation in AF-OFDM systems has to be derived. Since the expression of the
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CRB is highly nonlinear and contains an expectation operation on the source-to-relay and rely-

to-destination channels [9]. Again, a closed-form expression cannot be derived. To solve the

problem, we then propose an approximation method to derive a closed-form solution for the

CRB. The approximated CRB is a function of the expected channel state information (CSI) and

it can be evaluated efficiently. Finally, we consider the power allocation problem in the AF-

OFDM system. As that in [38], our objective is to minimize the CRB. Using the approximated

CRB, we propose two constrained gradient-based methods achieving the optimum power allo-

cation. The rest of the chapter is organized as follows. Section 4.1 briefly describes the system

model we consider. Section 4.2 derives the ML CFO estimation and Section 4.3 derives CRB

bounds for AF-OFDM systems. Section 4.4 describes the power allocation schemes minimizing

the various CRBs. Section 4.5 shows the simulation results.

§ 4.1 System Model

An AF cooperative wireless communication system, shown in Figure 4.1, consists ofM + 2

nodes, one source node (S),M relay nodes (R1, R2,· · · , RM ), and one destination node (D).

All nodes are equipped with a single antenna. In the system, the source transmits signal to the

destination with the assistance ofM relays. The transmission from the source to the destination

takes place over two phases, i.e., broadcasting phase (BP) and relaying phase (RP). In BP, we

assume that the signal-to-noise ration (SNR) between S and D is low and D cannot received

the signal broadcasted from S. In RP, each relay normalizes the received signal, amplifies the

received signals, and then re-transmit the resultant signal to the destination. We assume that the

statistical CSIs between S and Rm, and those between Rm and D are known at the destination

(but the instantaneous CSIs between S and D are unknown). Also, the preamble sequence of an

OFDM frame is periodical and is unknown to the relays and the destination.
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§ 4.1.1 Channel Model

The channel impulse responses for S-Rm and Rm-D links are denoted byhSRm = [hSRm(0)

, · · · , hSRm(LSRm − 1)]T , andhRmD = [hRmD(0), · · · , hRmD(LRmD − 1)]T , whereLSRm and

LRmD are the length of the channels. The channels are modeled as quasi-static frequency-

selective Rayleigh fading with an exponential power decay profile. Without loss of generality,

we assume that all the channels are independent each other. Also, the channel taphSRm(l),

1 ≤ m ≤ M and0 ≤ l ≤ LSRm − 1, is modeled as a complex Gaussian random variable with

zero mean and a variance of

E{|hSRm(l)|2} = λSRm · e−2αSRm l (4.1)

whereαSRm is the decaying factor of the exponential profile andλSRm a power scaling factor.

The gain forhSRm, denoted asGSRm, is thenGSRm = λSRm

∑LSRm−1
l=0 e−2αSRm l. Similar def-

inition can be applied forhRmD(l), i.e., E{|hRmD(l)|2} = λRmD · e−2αRmDl and the gain for

hRmD, denoted asGRmD, is thenGRmD = λRmD

∑LRmD−1
l=0 e−2αRmDl.

§ 4.1.2 Signal Model

Let the preamble signal in an OFDM frame be periodic with a period ofN and a length of

Ns = QN . Also, let the cyclic prefix (CP) length beLcp andLcp ≥ max{LSRm + LRmD} (for

all m). We assume that the preamble signal transmitted from S, denoted ass(k), is unknown to

Rm and D. Thus, We can treats(k) as a Gaussian random variable (k = 0, 1, ..., Ns − 1) with

varianceσ2
s . Without loss of generality, we also assume thatσ2

s = 1. In the BP, information

bits are first modulated into complex symbols, and blocks of modulated symbols are fed to an

OFDM modulator withNs subcarriers and then transmitted. The received signal atmth relay

can be expressed as

yRm(k) = ωεSRmk√g0

LSRm−1∑
v=0

hSRm(v)s(k − v) + ηm(k), (4.2)
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whereηm(k) is the additive white Gaussian noise (AWGN) with varianceσ2
ηm

, ω = exp(j2π/Ns),

k = [0, · · · , Ns − 1],
√

g0 the gain factor of the transmitted amplifier at S, andεSRm the nor-

malized CFO between S and Rm.

Since an automatic gain control (AGC) device is usually equipped at the receiver front end,

the received signal for each relay is first normalized with a factor ofNm = GSRmg0+σ2
ηm

. Each

relay then amplifies the received signal with a gain of
√

gm (1 ≤ m ≤ M ), and forwards the

resultant signal to the destination.

After the reception of the preamble signals transmitted from the relays, D discards the CP

to restore its periodicity. The received signal at D during the RP is given by

yD(k) =
M∑

m=1

ωεRmDk

√
gm

Nm

LRmD−1∑
u=0

hRmD(u)yRm(k − u) + η(k), (4.3)

whereη(k) is the AWGN with a variance ofσ2
η andεRmD the normalized CFO between Rm and

D. Substituting (4.2) into (4.3), we can have

yD(k) =
M∑

m=1

ωεRmDk
√

gm/Nm

LRmD−1∑
u=0

hRmD(u){ωεSRm (k−u) ·

√
g0

LSRm−1∑
v=0

hSRm(v)s(k − u− v) + ηm(k − u)}+ η(k)

=
M∑

m=1

ω(εRmD+εSRm )k
√

gm/Nm

LRmD−1∑
u=0

{hRmD(u)

ωεSRm (−u)√g0

LSRm−1∑
v=0

[hSRm(v)s(k − u− v)]}

+ωεRmDk
√

gm/Nm

LRmD−1∑
u=0

[hRmD(u)ηm(k − u)] + η(k)

=
M∑

m=1

ω(εSRm+εRmD)k
√

gm/NmĥRmD(k) ∗ ŝm(k) + ξ(k) + η(k), (4.4)
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where

ŝm(k) =
√

g0hSRm(k) ∗ s(k),

ĥRmD(k) = hRmD(k)ω−εSRmk,

ξ(k) =
M∑

m=1

ωεRmDk
√

gm/NmhRmD(k) ∗ ηm(k). (4.5)

Apparently, the noise at the destination,ξ(k) plusη(k), is colored. The power allocation method

proposed in [38] ignores this effect and the derived result is then not optimal. It is interesting to

note that the CFO betweenS andD is the same as the summation of the CFO betweenS and

R and that betweenR andD, i.e.,εSD = εSRm + εRmD [38]. Then, the received signal at D can

be rewritten as

yD(k) = ωεSDkx(k) + ξ(k) + η(k), (4.6)

where

x(k) =
M∑

m=1

√
gm/NmĥRmD(k) ∗ ŝm(k).

Rewriting the above equation with a vector form, we can obtain the following result:

yD = Φx + ξ + η, (4.7)

where

yD = [ yD(0) yD(1) · · · yD(Ns − 1) ]T ,

x = [ x(0) x(1) · · · x(Ns − 1) ]T ,

ξ = [ ξ(0) ξ(1) · · · ξ(Ns − 1) ]T ,

η = [ η(0) η(1) · · · η(Ns − 1) ]T ,

Φ =




ωεSD·0 0 · · · 0

0 ωεSD·1 · · · 0
...

...
. ..

...

0 0 · · · ωεSD·(Ns−1)




.
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From above equations, we can find thatx(k) is the output of an effective channel,heff,m(k) =

ĥRmD(k) ∗ hSRm(k). As mentioned, the received signal is colored and the conventional ap-

proaches for estimating CFO is not valid.

§ 4.2 ML CFO Estimation

SincehSRm(k) is unknown at D, the effective channel,heff,m(k) is a random variable at D.

As defined, the preamble signal in frequency domain is unknown at the relays and the destina-

tion. For OFDM-based systems, the time-domain noiseless signal is obtained from the inverse

discrete-Fourier-transform (IDFT) of its frequency-domain signal. From the central limit theo-

rem, we know that if the number of subcarriers is reasonably large, the time-domain transmitted

signal and the output of the unknown effective channels can then be approximated as a white

Gaussian sequence (see Section 2.2). So, the received signal,yD(k) is composed with a white

Gaussian signalx(k), a colored noiseξ(k) and AWGNη(k).

Note thatx(k), ξ(k), andη(k) are independent each other since the transmitted signal at S

and the noise atRm and D are independent each other. LethRmD(l)’s be given and fixed. Also,

let the received signal power at D be denoted asσ2
y andσ2

y = σ2
x + σ2

n where

σ2
x =

M∑
m=1

g0GSRm

gm

Nm

LRmD−1∑

l=0

hRmD(l)h∗RmD(l)

=
M∑

m=1

g0GSRm

gm

Nm

γm(0) (4.8)

σ2
n = σ2

ξ + σ2
η, (4.9)

σ2
ξ =

M∑
m=1

σ2
ηm

gm

Nm

γm(0) (4.10)

γm(k) = ω−εRmDk

LRmD−k−1∑

l=0

hRmD(l)h∗RmD(l + k),

= ω−εSDkωεSRmk

LRmD−k−1∑

l=0

hRmD(l)h∗RmD(l + k), (4.11)
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andk = 0, · · · , LRmD − 1. Note thatσ2
y, σ2

x, andσ2
n are functions ofhRmD(l)’s.

The log-likelihood function (LLF) for the received signal at D can then be expressed as

Λ(εSD|hRD) = ln[f(yD|hRD)]

= −ln[π]− ln[det(R̃y|h)]− yH
DR̃

−1

y|hyD, (4.12)

where(.|hRD) denotes the event conditioning onhRmD(l)’s, f(.) is a probability density func-

tion, andR̃y|h = E{yDyH
D |hRD} is a Ns × Ns correlation matrix. The correlation matrix in

(4.12) can be decomposed asQ2 N ×N submatrices as:

R̃y|h =




R̃1 R̃2 R̃3 · · · R̃Q

R̃
H

2 R̃1 R̃2 · · · R̃Q−1

R̃
H

3 R̃
H

2 R̃1 · · · R̃Q−2

...
...

...
. ..

...

R̃
H

Q R̃
H

Q−1 R̃
H

Q−2 · · · R̃1




, (4.13)

where

(R̃1)p,q =





σ2
x + σ2

ξ + σ2
η , if p = q

γ(k) , if q − p = k, 0 < k < max(LRmD)

γ(k)∗ , if p− q = k, 0 < k < max(LRmD)

(R̃2)p,q =





σ2
xω

−εSDN , if p = q

γ(N + q − p) , if N − (p− q) ≤ LRmD − 1

(R̃k)p,q|k≥3 =





σ2
xω

−εSDN(k−1) , if p = q

0 , otherwise

and

γ(k) =
M∑

m=1

σ2
ηm

gm

Nm

γm(k). (4.14)

As we can see, the LLF in (4.12) is very complicated and a closed-form solution for the CFO

estimation is difficult to derive. To solve the problem, we propose using the gradient-descent
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method in the ML estimation problem. Note thatγm(k) is the autocorrelation function of the

received signal when the relays transmit white sequences, and it is required in the estimation.

There are a couple of scenarios thatγm(k) can be estimated. For example, the relays can

transmit white sequences to D in the BP and the destination can use the received signal to

estimateγm(k). It is important to see that the receiver does not have to know the transmit

sequences since only the autocorrelation function is needed not the channel responses. For

other scenarios, D may have priori information aboutγm(k). For example, if the relays are base

stations [58] communicating with D, hRmD andεRmD can be known at D, so isγm(k). When a

new user joins the network (treated as S),γm(k) is then known as a priori for the user. For these

reasons, we then assume thatγm(k) is available as a priori.

Taking a derivative with respect toεSD, we have

∂Λ(εSD|hRD)

εSD

= tr(R̃
−1

y|h
∂R̃y|h
∂εSD

)− yH
DR̃

−1

y|h
∂R̃y|h
∂εSD

R̃
−1

y|hyD. (4.15)

For the gradient-descent method, the update equation is given by

ε̂SD(k + 1) = ε̂SD(k) + µ
∂Λ(εSD|hRD)

∂εSD

, (4.16)

whereµ is a step size. Here, we only focus on the estimation of the fractional CFO, i.e.,

|εSD(k)| < 0.5. The operations of the gradient-descent method are summarized as follows:

1. Initialization : Setk = 0 and initialize thêεSD(k) as zero.

2. Use (4.16) to obtainεSD(k + 1).

3. If |εSD(k + 1)| > 0.5, let |εSD(k + 1)| = 0.5.

4. Check ifµ(∂Λ(εSD|hRD)/∂εSD) is small than a presetε. If yes, the algorithm stops and

outputε̂(r)
SD. Otherwise, setk ask + 1 and go to Step 2.

To evaluate the performance of the estimation, we define a mean square error (MSE), denoted

by MSEr, as

MSEr =
1

Ne

Nt∑
i=1

(ε̂
(r)
SD,i − εSD)2, (4.17)
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whereε̂
(r)
SD,i indicates theith estimation of CFO andNe the total number of estimations.

Note that the ML CFO estimation in AWGN environment has been solved in Section 2.2,

and the result is given by

ε̂
(w)
SD = −

Q−1∑
p=1

Q∑
q>p

|Υpq|(q − p)∠Υpq

2π
Q−1∑
p=1

Q∑
q>p

|q − p|2|Υpq|
, (4.18)

where

Υpq =
N−1∑
n=0

yD((p− 1)N + n)y∗D((q − 1)N + n)

and∠Υpq is the phase ofΥpq. One can ignore the color property of the receive noise and use

(4.18) to conduct the CFO estimation. To evaluate the performance, we define the MSE for this

approach, denoted byMSEw, as

MSEw =
1

Ne

Nt∑
i=1

(ε̂
(w)
SD,i − εSD)2, (4.19)

whereε̂
(w)
SD,i means theith CFO estimation. In simulations, we will use MSEr and MSEw for

performance comparison.

§ 4.3 CRB Analysis

In this section, we will derive the CRB for the ML estimation of the CFO. Since the channel is

fading, we then take an expectation on the LLF in (4.12) and obtain the expected LLF as

Λ(εSD) = Eh{Λ(εSD|hRD)} (4.20)

where the expectation is conducted onhRD. Using the LLF, we can have the CRB as [51]

CRBr ≥ 1

F
, (4.21)
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where

F = −E{ ∂2

∂ε2
SD

Λ(εSD)}

= Eh{tr(R̃−1

y|h
∂R̃y|h
∂εSD

R̃
−1

y|h
∂R̃y|h
∂εSD

)}. (4.22)

From (4.22), we can see that a simple closed-form expression for the LLF is difficult to obtain

since matrix multiplications/inversions and the expectation operations are involved. To solve

the problem, we propose using some approximations. Define a Rayleigh exponential decay

channel ashRmD(l) = ȟRmD(l)exp(−αRmDl), wherěhRmD(l)’s are independent and identically

distributed random variables with zero mean and a variance ofλRmD. Then we can rewrite

(4.14) as

γ(k) =
M∑

m=1

ω−εRmDkσ2
ηm

gm/Nm

LRmD−k−1∑

l=0

ȟRmD(l)ȟ∗RmD(l + k)e−αRmD(2l+k)

=
M∑

m=1

ω−εRmDkσ2
ηm

gm/Nme−αRmDk ·

LRmD−k−1∑

l=0

ȟRmD(l)ȟ∗RmD(l + k)e−2αRmDl. (4.23)

From (4.23), we see thatγ(k) is a summation of independent random variables,γm(k) for

differentm’s. To facilitate the derivation, we assume thatγ(k) is a complex Gaussian random

variable. From the central limit theorem, the approximation error will be smaller whenM is

larger. It is simple to see that the expectation ofγ(k) is zero whenk ≥ 1 and that ofγ(0) is
∑M

m=1 σ2
ηm

gm/NmGRmD. The variance ofγ(k) for k ≥ 1 can be derived as

σ̄2
γ(k) = Eh{γ(k)γ(k)∗} =

M∑
m=1

σ4
ηm

(gm/Nm)2λ2
RmD

e−2αRmDk(1− e−4αRmD(LRmD−k))

1− e−4αRmD
.

(4.24)
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The variance ofγ(0) (as defined in (4.10) and (4.14),γ(0) = σ2
ξ ) is

Eh{γ(0)γ(0)∗} = Eh{|γ(0)|2} = Eh{
M∑

a=1

M∑

b=1

σ2
ηa

ga

Na

γa(0)σ2
ηb

gb

Nb

γb(0)}

=
M∑

a=1

M∑

b=1

σ2
ηa

ga

Na

σ2
ηb

gb

Nb

LRaD−1∑
u=0

LRaD−1∑
v=0

Eh{ȟRaD(u)ȟ∗RaD(u)ȟRbD(v)ȟ∗RbD
(v)}e−2αRaDue−2αRbDv

≥
M∑

a=1

M∑

b=1

σ2
ηa

ga

Na

σ2
ηb

gb

Nb

LRaD−1∑
u=0

Eh{ȟRaD(u)ȟ∗RaD(u)}

LRaD−1∑
v=0

Eh{ȟRbD(v)ȟ∗RbD
(v)}e−2(αRaDu+αRbDv)

=
M∑

a=1

M∑

b=1

σ2
ηa

ga

Na

σ2
ηb

gb

Nb

λRaDλRbD

LRaD−1∑
u=0

LRaD−1∑
v=0

e−2(αRaDu+αRbDv)

=
M∑

a=1

M∑

b=1

σ2
ηa

ga

Na

σ2
ηb

gb

Nb

GRaDGRbD = σ̄4
ξ

>

M∑

a=b=1

(σ2
ηa

ga

Na

)2λ2
RaD

LRaD−1∑
u=v=0

e−4αRaDu = σ̄2
γ(0), (4.25)

where

σ̄2
ξ = Eh{σ2

ξ} =
M∑

m=1

gm

Nm

σ2
ηm

GRmD. (4.26)

So, σ̄2
ξ >

√
σ̄2

γ(0) >
√

σ̄2
γ(1) > · · · >

√
σ̄2

γ(LRmD − 1) for all m sinceσ̄2
γ(0) > σ̄2

γ(1) >

· · · > σ̄2
γ(LRmD − 1) for all m (which can be observed in (4.24)). Note thatγ(k)’s (k > 0)

appear in the off-diagonal terms of the sub-matrices in (4.13) andσ2
ξ the diagonal terms of̃R1

in (4.13). Comparing withσ2
ξ , the variance of the off-diagonal terms of the sub-matrices is

small, especially for largek. Thus, some off-diagonal terms of the sub-matrices in (4.13) can

be ignored whenk is large.

We now use the HIPERLAN/2 channel model [47] [60] to evaluate the magnitude ofσ̄2
γ(k).

Assume thatαRmD = α = 0.5 andLRmD = 8 for all m. Define the terms depending onk in
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(4.24) asκm(k) = e−2αk(1 − e−4α(LRmD−k)) and divideκm(k) with κm(0) (the minimum of

(4.25)). We then have

fm(α, k) =
e−2αk(1− e−4α(LRmD−k))

(1− e−4α(LRmD))
.

It can be treated as the ratio betweenγ(k) and σ̄2
ξ in (4.13) sinceσ̄2

γ(0) < σ̄4
ξ . Figure 4.2

shows the simulation results forfm(α, k). From the figure, we see thatfm(α, k) descends

almost90% whenk ≥ 2. In other words, the random variableγ(k) approaches its zero mean

whenk ≥ 2. To simplify the problem, we then assume thatγ(k) is zero fork ≥ 2. With

the assumption,̃R1 becomes a tri-diagonal matrix and the off-diagonal entries ofR̃2 are zero

except for(R̃2)N,1 = γ(1). To obtain a closed-form Fisher information, we then assume that

R̃2 is a diagonal matrix andγ(1) only appears iñR1. Note that the assumption is more valid

whenα is larger, an environment for large open space [64]. As a result, all the sub-matrices in

(4.13) are diagonal except for those in the main diagonal. However, the inverse ofR̃y|h and the

expectation operation in (4.22) are still difficult to derive since all the submatrices in (4.22) are

non-zero. To solve the problem, we re-arrange the elements of the received signal vectoryD as

yD = [yD(0), yD(N), · · · , yD((Q− 1)N), · · · , yD(N − 1), · · · , yD(QN − 1)]T . (4.27)

Then, its correlation matrix can be re-expressed as a matrix composed ofN2 Q × Q sub-

matrices:

Ry|h = E{yDyH
D |hRD}

=




R1 R2 0 · · · 0

RH
2 R1 R2 · · · 0

0 RH
2 R1 · · · 0

...
...

...
.. .

...

0 0 0 · · · R1




, (4.28)

where0 indicates aQ×Q matrix composed of all zeros elements,

R1 = σ2
nIQ + σ2

xuuH , (4.29)

R2 = γ(1)IQ,
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and

u = [1, ωεSDN , · · · , ωεSDN(Q−1)]T . (4.30)

The correlation matrix of (4.28) has a better structure than that in (4.13) since most submatrices

are zero andR2 is a diagonal matrix. As a result,Ry|h is a tri-diagonal matrix. Note that the

inverse of a tri-diagonal matrix has been derived in [61] [62]. Using the results in [61] [62], we

can obtain the inverse of a tri-diagonal matrix as follows. DefineT = R−1
y|h. Then, the(p, q)th

submatrix (Q×Q) of Tp,q can then be expressed as

Tp,q =





(−1)p+q(γ(1))q−pPp−1Qq+1(PN)−1 , if 1 ≤ p ≤ q ≤ N

(−1)p+q(γ(1)∗)p−qPq−1Qp+1(PN)−1 , if 1 ≤ q < p ≤ N
(4.31)

where

Pi = R1Pi−1 − |γ(1)|2Pi−2, for i = 2, · · · , N (4.32)

whereCi(a) denotes the coefficients of the polynomial,bbc the nearest integer less than or equal

to b, andbbc ≥ 0. Here,P0 = I andP1 = R1 and

Qi = PN+1−i, for i = 2, · · · , N + 1. (4.33)

Taking a derivative with respect toεSD , we can have (4.28)

R′
y|h =

∂Ry|h
∂εSD

=




R′
1 R′

2 0 · · · 0

R′H
2 R′

1 R′
2 · · · 0

0 R′H2 R′
1 · · · 0

...
...

...
. . .

...

0 0 0 · · · R′
1




, (4.34)

where

(R′
1)p,q =





0 , if p = q

j 2π(p−q)
Q

σ2
xω

εSD(p−q)N , otherwise
, (4.35)

R′
2 = γ′(1)IQ,
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and

γ′(1) =
∂γ(1)

∂εSD

= −j
2π

Ns

M∑
m=1

σ2
ηm

γm(1). (4.36)

Since the subcarrier lengthNs is usually much larger than2π, we can further assume that

γ′(1) = 0. Thus, (4.34) is reduced to be diagonal. From (4.28) and (4.34), we can rewrite the

Fisher information in (4.22) as

F = Eh{tr(R−1
y|h

∂Ry|h
∂εSD

R−1
y|h

∂Ry|h
∂εSD

)}

= Eh{tr(2
N−1∑
p=1

N∑
q>p

Wp,q +
N∑

p=1

Wp,p)}, (4.37)

where

Wp,q = (|γ(1)|2)q−p(Pp−1Qq+1P
−1
N R′

1)
2. (4.38)

The detailed derivations of (4.37) is given in Appendix C.1. Substituting (4.33) into (4.38), we

can have

Eh{tr(Wp,q)} = Eh{(|γ(1)|2)q−ptr(Eh({Pp−1PN−qP−1
N R′

1})2)} (4.39)

As we can see the expectation operation on the right hand side of (4.39) is difficult to conduct.

To continue the derivation, we then use the following approximation:

Eh{tr(Wp,q)} ≈ tr((Eh{|γ(1)|2})q−p(Eh{Pp−1}Eh{PN−q}Eh{P−1
N }Eh{R′

1})2).(4.40)

Let W̄p,q be the matrix inside the trace operator in the right hand side of (4.40), i.e.,W̄p,q =

Eh(Wp,q) = (Eh{|γ(1)|2})q−p(Eh{Pp−1}Eh{PN−q}Eh{P−1
N }Eh{R′

1})2. We can then have

W̄p,q = (σ̄2
γ(1))q−p(P̄p−1Q̄q+1P̄

−1
N R̄′

1)
2, (4.41)

where

R̄1 = Eh{R1} = σ̄2
xuuH + σ̄2

nIQ (4.42)

(R̄′
1)p,q = Eh{(R′

1)p,q} =





0 , if p = q

j 2π(p−q)
Q

σ̄2
xω

εSD(p−q)N , otherwise

P̄i = Eh{Pi} = R̄1P̄i−1 − σ̄2
γ(1)P̄i−2, for i = 2, · · · , N (4.43)
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and

σ̄2
x = Eh{σ2

x} =
M∑

m=1

gm/Nmg0GRmDGSRm (4.44)

σ̄2
n = σ̄2

ξ + σ2
η (4.45)

with P̄0 = I , P̄1 = R̄1, andQ̄i = P̄N+1−i for i = 2, · · · , N + 1. Substituting (4.41) into (4.37),

we can obtain an approximated Fisher information, denoted byFa, as

Fa = tr(2
N−1∑
p=1

N∑
q>p

W̄p,q +
N∑

p=1

W̄p,p) (4.46)

and a closed-form solution for the CRB, denoted by CRBa, as

CRBa =
1

Fa

. (4.47)

If the noise forwarded from relays is treated as white, we can letγ(k) be equal to zero in

CRBa and CRBr. In this case, CRBa and CRBr become identical and the CRB is reduced to

CRBw =
1

F
|γ(k)=0=

1

Fa

|γ(k)=0

=
Q2σ̄2

n(σ̄2
n + Q · σ̄2

x)

8π2N · σ̄4
x

Q−1∑
p=1

Q∑
q>p

(q − p)2

(4.48)

which is the same as the CRB in Chapter 2. Note that the approximation error will become zero

if the colored noise is not present. This also indicates that the CRBa approaches CRBr when

the colored noise is small.

§ 4.4 Power Allocation Algorithms

In this section, we consider the power allocation problem in AF-OFDM systems. Our approach

is to minimize the CRB of the CFO estimation. As we have seen from (4.21), (4.47), and (4.48),

the CRBs are functions of the transmitted power of S and that of Rm, denoted asg0 andgm. The
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optimization problem can then be formulated as

min
g0

min
g

CRBr (4.49)

s.t.E = g0 +
M∑

m=1

gm = P,

whereg = [g1, · · · , gM ]T andP is the total transmission power. Since a closed-form expres-

sion for CRBr is not available, we then use CRBa and CRBw as approximations. It is clear

that (4.49) is a constrained optimization problem, and many methods can be used to obtain

the solution. However, since the functions in CRBa and CRBw are highly nonlinear and not

convex, advanced methods may not be efficient to apply. For simplicity, we propose using the

conventional gradient-descent method to solve the problem. From (4.47) and (4.48), we can

see that matrix operations are involved in CRBa while scalar operations in CRBw. Thus, the

computational complexity with CRBa will be higher than that with CRBw. As we will see in

the next section, however, power allocation designed with CRBa will have better performance.

In a relay network, the roles of the source and the relays are different in a relay system.

For this reason, we denote the power allocated to the source asβP and that for the relays as

(1 − β)P where0 < β < 1. In other words,g0 = βP andgm = wm(1 − β)P wherewm

corresponds to a normalization factor such that
M∑

m=1

wm = 1. To simplify the expression, we

define

Am = GRmDGSRm

Bm = σ2
ηm

GRmD

and substitute them into (4.44) and (4.45). Then the variance ofx(k) andξ(k) + η(k) can then

express as

σ̄2
x =

M∑
m=1

Amwmβ(1− β)P 2

Nm

(4.50)

σ̄2
n = σ̄2

η +
M∑

m=1

Bmwm(1− β)P

Nm

(4.51)
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where

Nm = GSRmβP + σ2
ηm

. (4.52)

First, we solve the power allocation problem by minimizing CRBw. The optimization prob-

lem can now be formulated as

min
β

min
w

CRBw (4.53)

s.t. 0 < β < 1,
M∑

m=1

wm = 1,

wherew = [w1, · · · , wM ]. To facilitate the derivation of the solution, we split the parameters

into two groups,β andwm’s, and solve the minimization problem alternatively. The alternative

optimization method [68] is an iterative method approximating a multidimensional optimization

with a series of one-dimensional optimizations. This technique is now exploited to simplify the

multi-dimensional minimization in (4.53).

We first optimizeβ for the source, and thenwm’s for the relays. The first optimization

problem can be expressed as

min
β(w)

CRBw (4.54)

s.t.0 < β < 1.

Denote the value ofw atkth iteration asw(k) andw(k) = [w1(k), · · · , wM(k)]T . Lettingw(k)

be a constant vector and taking a derivative of (4.54) with respect toβ, we can have

D1,b =
∂

∂β
CRBw =

Q2

8π2N
Q∑

p=1

Q∑
q>p

(q − p)2

Qσ̄2
x + 2σ̄2

n

σ̄6
x

[σ̄2
x

∂

∂β
σ̄2

n − σ̄2
n

∂

∂β
σ̄2

x], (4.55)

where

∂

∂β
σ̄2

x =
M∑

m=1

wm(k)P 2Am(
1− 2β

Nm

− β(1− β)GSRmP

N2
m

) (4.56)

∂

∂β
σ̄2

n =
∂

∂β
σ̄2

ξ = −
M∑

m=1

wm(k)PBm(
1

Nm

+
(1− β)GSRmP

N2
m

). (4.57)
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SettingD1,b = 0, we can the solve the problem, i.e.,

β(k + 1) = R(D1,b = 0) (4.58)

whereR(·) indicates the root of a polynomial andβ(k + 1) is the β value obtained at the

(k + 1)th iteration. Note that by definitionβ must be greater than zero and smaller than one.

From (4.55), we can see thatD1,b < 0 whenβ = 0 sinceσ̄2
x = 0 and∂σ̄2

x/∂β > 0. When

β = 1, D1,b > 0 since∂σ̄2
n/∂β = 0 (σ̄2

n = σ̄2
η) and∂σ̄2

x/∂β < 0. We then conclude that the root

in (4.58) must be in the range of(0, 1), and the constraint ofβ is automatically satisfied.

After β(k + 1) is solved, we substitute the solution into (4.53) and we obtain the second

optimization problem as

min
w(β(k+1))

CRBw (4.59)

s.t.
M∑

m=1

wm = 1.

Taking the gradient with respect towm in (4.53), we obtain

D1,wm =
∂

∂wm

CRBw =
Q2

8π2N
Q∑

p=1

Q∑
q>p

(q − p)2

[
(σ̄2

n + Qσ̄2
x)

∂
∂wm

σ̄2
n

σ̄4
x

+
σ̄2

n( ∂
∂wm

σ̄2
n + Q ∂

∂wm
σ̄2

x)

σ̄4
x

− 2
σ̄2

n(σ̄2
n + Qσ̄2

x)
∂

∂wm
σ̄2

x

σ̄6
x

], (4.60)

where

∂

∂wm

σ̄2
x =

P 2Amβ(1− β(k + 1))

Nm

, (4.61)

∂

∂wm

σ̄2
n =

(1− β(k + 1))PBm

Nm

. (4.62)

To solve the optimization problem in (4.59), we use a gradient descent method in conjunction

with a constrained projection [17]:

w(k + 1) = [w(k) + µwD1,w]+Ew=1, (4.63)
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whereµw is the step size,D1,w = [D1,w1 , · · · ,D1,wM
]T , Ew =

∑M
m=1 wm, and[·]+Ew=1 indicates

the projection ofw(k + 1) (with power ofEw) onto a feasible solution. As shown in [63], the

projection can be easily implemented by an normalization operation (normalizing the sum of

wm(k + 1)’s). Based on the projectedwm(k + 1)’s, the total transmitted power is normalized

to satisfy the power constraint. Here, we summarize the operation of the gradient method as

follows:

1. Initialization : Setk = 0 and initialize thew by a uniform power allocation method :

β(0) = 1/(M + 1) andwm(0) = 1/M for all m.

2. Substituteβ(k) andw(k) into (4.55), set the result as zero, and obtainβ(k + 1).

3. Use (4.60) to updatew(k): w(k + 1) = w(k) + µD1,w.

4. If
∑M

m=1 wm(k + 1) 6= 1 , conduct the projection as:

w(k + 1) = w(k + 1)/Ew, whereEw =
∑M

m=1 wm(k + 1).

5. Check ifk reach the maximum number of iteration. If yes, the algorithm stops. Other-

wise, setk ask + 1 and go to Step 2.

For convenience, we refer to this algorithm as proposed power allocation Algorithm I (PPAA-I).

Using the similar approach, we can obtain the power allocation scheme minimizing CRBa.

Invoking the alternative optimization method, we can have the first problem for minimizing

CRBa as

min
β(w)

CRBa (4.64)

s.t.0 < β < 1

and then the second problem as

min
w(β)

CRBa (4.65)
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s.t.
M∑

m=1

wm = 1.

As that in PPAA-I, we solveβ first. Taking derivative of CRBa with respect toβ, we have [from

(4.47)]

D2,b =
∂

∂β
CRBa = − 1

F 2
a

∂Fa

∂β
. (4.66)

From (4.46), the approximated Fisher information can be rewritten asFa = tr(R̄yR̄′
yR̄yR̄′

y),

where

R̄y =




R̄1 R̄2 0 · · · 0

R̄H
2 R̄1 R̄2 · · · 0

0 R̄H
2 R1 · · · 0

...
...

...
. . .

...

0 0 0 · · · R̄1




, (4.67)

R̄2 =
√

σ̄2
γ(1)IQ

R̄′
y =

∂R̄y

∂εSD

=




R̄′
1 0 0 · · · 0

0 R̄′
1 0 · · · 0

0 0 R̄′
1 · · · 0

...
...

...
. ..

...

0 0 0 · · · R̄1.




, (4.68)

The matrixR̄′
1 is shown in (4.42). LetZ = R̄−1

y R̄′
y and we haveFa = tr(ZZ). Taking a

derivative ofFa with respect toβ, we have [51] [65]

∂Fa

∂β
= tr([

∂tr(ZZ)

∂Z
]T

∂Z
∂β

)

= 2 · tr(Z ∂Z
∂β

)

= −2 · tr(R̄−1
y R̄y

′R̄−1
y

∂R̄y

∂β
R̄−1

y R̄y
′
) + 2 · tr(R̄−1

y R̄y
′R̄−1

y

∂R̄y
′

∂β
) (4.69)
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where

(
∂R̄1

∂β
)p,q =





∂σ̄2
x

∂β
+ ∂σ̄2

n

∂β
, if p = q

∂σ̄2
x

∂β
ωεSD(p−q)N , otherwise

,

∂R̄2

∂β
=

∂
√

σ̄2
γ(1)

∂β
IQ,

(
∂R̄′

1

∂β
)p,q =





0 , if p = q

j 2π(p−q)
Q

∂σ̄2
x

∂β
ωεSD(p−q)N , otherwise

,

and

∂
√

σ̄2
γ(1)

∂β
=

M∑
m=1

−w2
m(1− β)P 2σ4

ηm
λ2

RmD√
σ̄2

γ(1)
e−2α 1− e−4α(L−1)

1− e−4α
(
Nm + (1− β)GSRmP

N3
m

).

Unlike PPAA-I, theβ solved inR(D2,b = 0) cannot be guaranteed to meet the constraint

(0 < β < 1). When the constraint is not met, we then take the minimumβ value in the

admissible interval, i.e.,

β(k + 1) = min
0<β<1

|D2,b|. (4.70)

To solve the second problem in (4.65), we take a derivative of CRBa with respect tow:

D2,wm =
∂

∂wm

CRBa = − 1

F 2
a

∂Fa

∂wm

. (4.71)

Note that the result is similar to that in (4.69) except thatβ in (4.69) is replaced withwm. Thus,

we have

(
∂R̄1

∂wm

)p,q =





∂σ̄2
x

∂wm
+ ∂σ̄2

n

∂wm
, if p = q

∂σ̄2
x

∂wm
ωεSD(p−q)N , otherwise

,

∂R̄2

∂wm

=
∂
√

σ̄2
γ(1)

∂wm

IQ,

(
∂R̄′

1

∂wm

)p,q =





0 , if p = q

j 2π(p−q)
Q

∂σ̄2
x

∂wm
ωεSD(p−q)N , otherwise

,
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and

∂
√

σ̄2
γ(1)

∂wm

=
σ4

ηm
λ2

RmDβ(1− β)2P 2wm

N2
m

√
σ̄2

γ(1)
e−2α 1− e−4α(L−1)

1− e−4α
.

LetD2,w = [D2,w1 , · · · ,D2,wM
] and we can obtain the update ofw as:

w(k + 1) = [w(k) + µwD2,w]+Ew=1 (4.72)

The gradient method can be summarized as follows :

1. Initialization : setk = 0 and initialize thew by a uniform power allocation method:

β(0) = 1/(M + 1) andwm(0) = 1/M for all m.

2. Substituteβ(k) andw(k) into (4.70) and obtainβ(k + 1).

3. Use (4.72) to obtainw(k + 1).

4. If
∑M

m=1 wm(k + 1) 6= 1 , let w(k + 1) = w(k + 1)/E , whereE =
∑M

m=1 wm(k + 1).

5. Check ifk reach the maximum number of iteration. If yes, the algorithm stops. Other-

wise, setk ← k + 1 and go to Step 2.

For convenience, we refer to this algorithm as the proposed power allocation algorithm II

(PPAA-II).

§ 4.5 Simulation Results

In this section, we report simulation results demonstrating the effectiveness of the proposed

ML CFO estimator and the proposed power allocation algorithms. Here, we consider an AF-

OFDM system with the symbol size of 128 and the preamble period of 64. The AF-OFDM

system has two relays and the total transmitted power is 10 (P = 10). The channel model of

the HIPERLAN/2 is used and the number of the taps is8. To simply the scenario, we let the

80



decay factors for S-Rm and Rm-D links are the same, i.e.αSRm = αRmD = α = 0.5 for all m.

The noise variance at each relay and that at the destination are set as one.

In the first set of simulations, we compare the performance of CFO estimation for the cases

when the colored property of the noise is taken into account or not. The step size for the

proposed gradient-descent method is set as0.01. We consider a scenario that SNRSRm =SNRSR

and SNRRmD =SNRRD for all m, where

SNRSRm = GSRmg0/σ
2
ηm

and

SNRRmD = gm
GRmD

σ̄2
η

.

We also assume thatγm(k)’s in (4.11) are perfectly known. Figure 4.3 and Figure 4.4 show the

simulation results forSNRRD is 10 and 20 dB, respectively. There are a couple of observations

we can derive from the figures. First, the proposed ML estimate taking the effect of colored

noise into account outperforms the conventional algorithm ignoring the effect. Second, the MSE

of the proposed gradient-descent method is close to CRBr, indicating its optimum performance.

Third, we see that the proposed CRBa is close to CRBr. This is to say that the approximation

error of (4.40) is small. As defined, SNRRD in Figure 4.4 is higher than that in Figure 4.3. Thus,

the colored-noise effect in Figure 4.4 is more severe than that in Figure 4.3, especially when

SNRSR is low. This is the reason why the gap between MSEw and CRBr is larger than that

in Figure 4.4 when SNRSR is low. Finally, we can see that the gap between CRBa and CRBr

becomes smaller when SNRSR is higher. This is because in higher SNRSR, the colored-noise

effect becomes smaller. The observations match the analysis derived in Section 4.3.

In the previous set of simulations, we assume thatγm(k)’s are perfectly known and use

MSEr to evaluate the estimation performance. One may wander how the estimation errors of

γm(k)’s will affect the CFO estimation. We then consider the scenario that the relays transmit

white sequences in the BP and the receiver at D conducts estimation ofγm(k)’s with the received

signal. Let the number of OFDM symbols transmitted beK. Denote MSEc as the estimation
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performance by using the estimatedγm(k)’s, instead of perfectly knownγm(k)’s. Figure 4.5

and Figure 4.6 show the simulation results. It is seen that with only two training symbols, the

performance of the proposed algorithm with estimatedγm(k)’s is very close to that with known

γm(k)’s. WhenSNRRD is high, the proposed algorithm can provide good performance even

with one training symbol.

We then investigate the convergence behavior of proposed PAAs. Note that the SNR is not

an appropriate measure in evaluating the performance of a PAA since the transmitted power

for each transmitter will be different for different PAAs. For this reason, we use the channel

gain to reflect the channel quality. Here, we let the channel gains for the S-Rm link and the

R1-D link be set as:λSR1 = 0.1, λSR2 = λR1D = 5, andλR2D = 5. Since the proposed

algorithms are gradient-based, the choice of the step size is critical. The larger the step size,

the faster the algorithm will converge. However, if the step size is too large, the algorithm may

become unstable. The fastest convergence rate a gradient-descent method can achieve depends

on the characteristic of the optimization problem. In our simulations, we let the step size be

100, obtained by trial-and-errors. Figure 4.7 shows the learning curves of the proposed PAAs.

As we can see, PPAA-I converges around 20 iterations while PPAA-II around 25. This indicates

both PPAA-I and PPAA-II converge fast.

In the third set of simulations, we evaluate the performance of proposed PAAs. To see the

effect of the colored noise, we letλR2D be varied. Figure 4.8 shows the achieved CRB for

proposed and uniform power allocation algorithms. As we can see, the proposed PPAs have

much lower CRBs. Also, PPAA-II is always outperform PPAA-I. It is clear that ifλR2D is

large, the colored-noise effect in the destination will be more severe. From the figure, we also

find that the difference between the all PAAs is smaller whenλR2D is small since the S-R1 and

R2-D links are too week to transmit data. When the level ofλR2D is increased, the performance

gap is increased. WhenλR1D = λR2D = 5, all the relay diversity can be exploited since the

Rm-D channel gain is the same for allm and the performance gap between PPAA-I and PPAA-

II is largest. WhenλR2D À λR1D, the PAA between relays will be reduced to a relay selection
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problem and the performance gap between PPAA-I and PPAA-II becomes small again.

As shown, the proposed PAAs are designed to minimize the CRB of the CFO estimation. We

are curious that if the PAAs are also helpful for signal detection. It is simple to see that if SNRSD

is high, the signal recovery will be easier. To evaluate the SNR performance of the proposed

PAAs, we use the PAA proposed in [67] as a reference. Figure 4.9 shows SNRSD for various

PAAs. From the figure, we find that proposed PAAs provide much higher SNRSD than the

uniform power allocation. Also, the performance of proposed PAAs is very close to that of the

PAA in [67], especially when SNRSD is high. Note that the PAA in [67] is designed to maximize

the overall capacity of a relay system and that in the proposed algorithm is to minimize the CRB

of the CFO estimate. In the following, we explain why these two different criteria lead to the

same result. The capacity of the source-to-destination channel can be expressed as

R = W log2(1 + SNRSD), (4.73)

whereW is the bandwidth and SNRSD = σ̄2
x/σ̄

2
n. Using SNRSD in CRBw, we can rewrite

(4.48) as

CRBw =
Q2

8π2N ·
Q−1∑
p=1

Q∑
q>p

(q − p)2

(1 + Q · SNRSD)

SNR2
SD

. (4.74)

When SNRSD is high, the constant 1 in (4.73) and (4.74) can be ignored. Thus, (4.73) and

(4.74) can be rewritten as

R ∝ log2(SNRSD), (4.75)

and

CRBw ∝ 1

SNRSD

. (4.76)

From (4.75) and (4.76), we can see that maximizingR is equivalent to maximizing SNRSD

and then minimizing CRBw. A direct link between SNRSD and CRBa is difficult to derive.

However, as shown in (4.48), CRBa and CRBw are similar when the colored noise is small. We
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can then conjecture that maximizing SNRSD is also equivalent to minimizing CRBa. Similar to

Figure 4.8, PPAA-II outperforms PPAA-I. The result in Figure 4.9 suggests that the proposed

PAAs can not only use for CFO estimation, but also for signal detection. In other words, using

proposed PAAs, it is not necessary to re-conduct power allocation when signal transmission is

initiated. This will be a great advantage for real-world applications.

1

S

R1

R2

RM

D

Broadcasting 
phase

Relaying 
phase

Figure 4.1: Cooperative system with one source-destination pair andM relay nodes. The noise

for relay nodes and destination node are AWGN.
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Figure 4.5: Performance evaluation with estimatedγ̄(l) for low SNRRD case.
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Chapter 5

Conclusions

In this dissertation, we focus on the ML CFO estimation in OFDM, OFDMA uplink, and AF-

OFDM systems. For OFDM systems, some conventional CFO estimations are not ML-based

and the performance cannot approach the CRB. The others are ML-based requiring the inversion

of a large correlation matrix, and the computational complexity is usually very high, precluding

the real-world applications of these methods. This motivates us to study the low-complexity

ML CFO estimation algorithm. To the best of our knowledge, there are no blind ML algorithms

for estimating CFO in OFDMA uplink systems. To fill the gap, we then further study blind

ML CFO estimations for OFDMA uplink systems. Simulation results show that while the com-

putational complexity of the proposed algorithms are low, the performance can approach the

CRBs. Finally, we consider the ML CFO estimation problem in cooperative AF-OFDM sys-

tems. For the systems, all conventional ML CFO estimations are not optimal. This is because

the receive noise at the destination is colored, a case not considered before. The colored prop-

erty complicates the calculation of the correlation-matrix inverse, making the closed-form ML

solution and the corresponding CRB difficult to derive. To solve the problem, we then propose

using a gradient-descent method to obtain the ML solution and a new method to derive two

closed-form expression for the CRBs. We also propose two PAAs to minimize the CRBs of the

CFO estimation. From simulations, we see that the proposed PAAs not only improve the CFO
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estimation, but also improve the received SNR. The distinct feature of the algorithms proposed

in this dissertation is that only the periodicity of the preamble is assumed. The exact values

of the preamble sequence are not required. It turns of that two random variables result in the

likelihood functions, i.e. noise and the received signal. This is different from the conventional

ML CFO estimation in which only the noise is considered as the random variable.

In concluding the dissertation, we suggest some possible topics for future research.

1. In this dissertation, we only consider a single-antenna scenario. Nowadays, multi-input-

multi-output (MIMO) OFDMs are widely used. The ML CFO estimation in MIMO-

OFDM can then serve an interesting problem for further study. Note that there may be

correlations between antennas in the transmitters or receivers.

2. Although the proposed method in OFDMA uplink systems is simple, it cannot be used in

a full-loaded scenario (the number of users is the same as the number of subchannels in

OFDMA systems). How to extend the proposed method to such a scenario deserve fur-

ther study. An possible approach is to use an expectation-maximization (EM) algorithm

referred to as iterative space alternating generalized EM (SAGE) [55], [56]. However, the

complexity of the SAGE algorithm can be very high for largeNs. Note that in real-world

applications, only a number of users will be activated at a specific time [56]. Thus, only

the CFOs of the newly activated users have to be estimated, and the knowledge of the

previously estimated CFOs can be exploited in each new estimation. It is interesting to

incorporate the SAGE algorithm into the proposed method, which may serve as a topic

for further research.

3. In AF-OFDM systems, we solve the ML CFO estimation with the gradient-descent method.

Though difficult, it may be worth pursuing the closed-form expression for the ML solu-

tion. Similarly, the closed-form solution for the PAAs minimizing CRB in AF-OFDM

system can also be investigated.

4. The OFDM modulation scheme is widely used in real-world communication systems. It
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is then desirable to consider the subcarrier power allocation in AF-OFDM or MIMO-

AF-OFDM relay systems. The design problem is obviously much complicated since one

extra dimension, the subcarrier, is added. Note that the number of subcarriers is often

large in real-world applications..

5. In this dissertation, we only study AF-OFDM systems with one source node, multiple re-

lay nodes, and one destination node. In cooperative systems, other scenarios are possible.

For example, there may be multiple source or destination nodes. In such case, the number

of CFO is more than one and the estimation problem will becomes more challenging and

also deserve for further study. Also, we have not considered the direct link between the

source node and the destination node, which is another scenario can be investigated.
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Appendix A

§ A.1 Derivation of (2.19)

The likelihood function in (2.18) can be rewritten as

Λ(ε) =
N−1∑
n=0

ln





(σ2
x + σ2

w)Kexp
[−y(n)HR−1

y y(n)
]

det(Ry)exp


−

KP
p=1

yp(n)y∗p(n)

σ2
x+σ2

w








=
N−1∑
n=0

{ln[(σ2
x + σ2

w)K(det(Ry))
−1] + (

K∑
p=1

yp(n)y∗p(n))/(σ2
x + σ2

w)

−y(n)HR−1
y y(n)}. (5.1)

Then, substituting (2.17) into (5.1), we derive the log-likelihood function as

Λ(ε) =
N−1∑
n=0

{ln[
(σ2

x + σ2
w)K

det(Ry)
] +

K∑
p=1

yp(n)y∗p(n)

σ2
x + σ2

w

− (σ−2
w − C0)

K∑
p=1

yp(n)y∗p(n)

+2C0Re{
K−1∑
p=1

K∑
q>p

yp(n)y∗q (n)ej2π(q−p)ε}}
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=
N−1∑
n=0

{ln[(σ2
x + σ2

w)K(det(Ry))
−1] + [

1

σ2
x + σ2

w

− (σ−2
w − C0)]

K∑
p=1

yp(n)y∗p(n)

+2C0Re{
K−1∑
p=1

K∑
q>p

yp(n)y∗q (n)ej2π(q−p)ε}}

=
(1−K)σ4

x

σ2
w(σ2

x + σ2
w)(Kσ2

x + σ2
w)

K∑
p=1

N−1∑
n=0

yp(n)y∗p(n)

+2C0Re{
K−1∑
p=1

K∑
q>p

N−1∑
n=0

yp(n)y∗q (n)ej2π(q−p)ε}

+N{ln[(σ2
x + σ2

w)K(det(Ry))
−1]} (5.2)

whereC0 = σ2
x/(σ

4
w + Kσ2

wσ2
x). Substituting (2.21) and (2.25) into (5.2), we can express (5.2)

as

Λ(ε) = C1 + C2

K∑
p=1

γpp + C3Re{
K−1∑
p=1

K∑
q>p

γpqe
j2π(q−p)ε}

= C1 + C2

K∑
p=1

γpp + C3Re{
K−1∑
p=1

K∑
q>p

(|γpq|ej\γpq)ej2π(q−p)ε}

= C1 + C2φ + C3

K−1∑
p=1

K∑
q>p

|γpq| cos(ψpq) (5.3)

, whereψpq, φ, C1, C2, C3 are defined as (2.22)-(2.24).

§ A.2 Derivation of (2.38)

We assume that the channel noise, the received preamble, and the received data are statistically

uncorrelated one another. We define three column vectorsy1(n) = [y0(n), · · · , yQ−1(n)]T ,

y2(n) = [y1(n), · · · , yQ−1(n)]T , andy3(n) = [y0(n), · · · , yQ−2(n)]T and their correlation ma-

trix asRyk for k = 1, 2 and 3. Note thati is the window index of (2.37) andθ is the real STO.

So (2.19) can be derived for two cases,i ≤ θ andi > θ. Using the approach taken to derive
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(2.18), we obtain the log-likelihood function for the first case as

Λi≤θ(ε) = ln{
n=i+N−1∏

n=i

f(y(n))
Q∏

k=1

f(yk−1(n))

}

=
θ−1∑
n=i

ln

{
f(y2(n))

f(y1(n)) · · · f(yQ−1(n))

}

+
i+N−1∑

n=θ

ln

{
f(y1(n))

f(y0(n)) · · · f(yQ−1(n))

}
(5.4)

=
θ − i

N
C12 +

i + N − θ

N
C ′

1

+
θ−1∑
n=i

C2

Q−1∑
p=1

yp(n)y∗p(n)

+
θ−1∑
n=i

C3Re{
Q−2∑
p=1

Q−1∑
q>p

yp(n)y∗q (n)ej2π(q−p)ε}

+
i+N−1∑

n=θ

C ′
3Re{

Q−2∑
p=0

Q−1∑
q>p

yp(n)y∗q (n)ej2π(q−p)ε}

+
i+N−1∑

n=θ

C ′
2

Q−1∑
p=0

yp(n)y∗p(n), (5.5)

where

C12 = N · ln
(

(σ2
x+σ2

w)K

det(Ry2)

)
, (5.6)

C ′
1 = N · ln

(
(σ2

x+σ2
w)Q

det(Ry1)

)
, (5.7)

C ′
2 = (1−Q)

ρ2

σ2
w(1 + (Q− 1)ρ)

, (5.8)

C ′
3 =

2C ′
2

(1−Q)ρ
. (5.9)
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Similarly, we can derive the log-likelihood function fori > θ as

Λi>θ(ε) =
i+N−1∑

n=θ+N

ln

{
f(y3(n))

f(y0(n)) · · · f(yQ−2(n))

}

+
θ+N−1∑

n=i

ln

{
f(y1(n))

f(y0(n)) · · · f(yQ−1(n))

}
(5.10)

=
i− θ

N
C13 +

θ + N − i

N
C ′

1

+
i+N−1∑

n=θ+N

C2

Q−2∑
p=0

yp(n)y∗p(n) +

i+N−1∑

n=θ+N

C3Re{
Q−3∑
p=0

Q−2∑
q>p

yp(n)y∗q (n)ej2π(q−p)ε}

+
θ+N−1∑

n=i

C ′
2

Q−1∑
p=0

yp(n)y∗p(n) +

θ+N−1∑
n=i

C ′
3Re{

Q−2∑
p=0

Q−1∑
q>p

yp(n)y∗q (n)ej2π(q−p)ε}

(5.11)

where

C13 = N · ln
(

(σ2
x+σ2

w)K

det(Ry3)

)
.

Sincey2(n), i ≤ n ≤ θ − 1, in (5.4) andy3(n), θ + N ≤ n ≤ i + N − 1, in (5.10) contain

Q− 1 periods of the preamble, det(Ry2) and det(Ry3), will be the same as det(Ry) (in (2.22)).

Consequently,C12 = C13 = C1. From (2.22)-(2.24), we see thatC1, C2, andC3 can be

calculated by replacingQ and Ry1 with K and Ry, respectively, in (5.7)-(5.9). WhenQ is

reasonably large, we obtainC ′
1 ≈ C1, C ′

2 ≈ C2, andC ′
3 ≈ C3. Thus, we rewrite (5.5) and
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(5.11) as

Λi≤θ(ε) '
θ−1∑
n=i

C3Re{
Q−2∑
p=1

Q−1∑
q>p

yp(n)y∗q (n)ej2π(q−p)ε}

+
i+N−1∑

n=θ

C3Re{
Q−2∑
p=0

Q−1∑
q>p

yp(n)y∗q (n)ej2π(q−p)ε}

+ C1 +
θ−1∑
n=i

C2

Q−1∑
p=1

yp(n)y∗p(n)

+
i+N−1∑

n=θ

C2

Q−1∑
p=0

yp(n)y∗p(n), (5.12)

and

Λi>θ(ε) '
θ+N−1∑

n=i

C3Re{
Q−2∑
p=0

Q−1∑
q>p

yp(n)y∗q (n)ej2π(q−p)ε}

+
i+N−1∑
n=θ+N

C3Re{
Q−3∑
p=0

Q−2∑
q>p

yp(n)y∗q (n)ej2π(q−p)ε}

+ C1 +
i+N−1∑
n=θ+N

C2

Q−2∑
p=0

yp(n)y∗p(n)

+
θ+N−1∑

n=i

C2

Q−1∑
p=0

yp(n)y∗p(n). (5.13)

We now approximate
Q−1∑
p=1

yp(n)y∗p(n) and
Q−2∑
p=1

Q−1∑
q>p

yp(n)y∗q (n)ej2π(q−p)ε in (5.12) with
Q−1∑
p=0

yp(n)

y∗p(n) and
Q−2∑
p=0

Q−1∑
q>p

yp(n)y∗q (n)ej2π(q−p)ε, respectively. Similarly, we also approximate
Q−2∑
p=0

yp(n)

y∗p(n) and
Q−3∑
p=0

Q−2∑
q>p

yp(n)y∗q (n)ej2π(q−p)ε in (5.13) with
Q−1∑
p=0

yp(n)y∗p(n), and
Q−2∑
p=0

Q−1∑
q>p

yp(n)y∗q (n)

ej2π(q−p)ε, respectively. Given these approximations,Λi≤θ(ε) andΛi>θ(ε) can be identically

written as

Λi(ε) ' C1 + C2

i+N−1∑
n=i

Q−1∑
p=0

yp(n)y∗p(n) (5.14)

+ C3

i+N−1∑
n=i

Re{
Q−2∑
p=0

Q−1∑
q>p

yp(n)y∗q (n)ej2π(q−p)ε}.
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Using the approach that similar to that in Appendix A.1, we finally obtain

Λi(ε) ' C1 + C2φ
i + C3Re{

Q−2∑
p=0

Q−1∑
q>p

|γi
pq| cos(ψi

pq)} (5.15)

whereγi
pq =

i+N−1∑
n=i

yp(n)y∗q (n), φi =
Q−1∑
p=0

γi
pp, andψi

pq = 2πε(q − p) + ∠γi
pq. Note that the

approximations we made are equivalent to adding|θ − i| samples (noise or data) in calculating

the likelihood functions. Since the number of samples in theith sliding data window,QN ,

is usually much larger than the number of added samples,|θ − i|, the added samples will not

change the likelihood functions too much. The approximation errors also depend on the distance

between the window position and the actual STO, i.e.,|θ − i|. When the distance is larger, the

error is larger. However, if the distance is larger, the likelihood function tends to be smaller and

a larger error is then tolerable. Finally, we note that the added samples, whether noise or data,

are uncorrelated with the preamble samples.

§ A.3 Derivations of µi
φ, µi

ξ, νi
φ, νi

ξ, and κi
φξ

We first note thatθ is the real STO in the system. Usingθ as a reference, we have three cases

for the value ofi: i = θ, i < θ, andi > θ (0 ≤ i ≤ N − 1). For the first case, the window

covers the preamble data only (IP ). Thus, (2.42) and (2.43) can be simplified to

φθ =

Q−1∑
p=0

θ+N−1∑

n=θ

xp(n)x∗p(n) + wp(n)w∗
p(n)

+2Re{xp(n)w∗
p(n)exp(j2πε

pN + n

N
)}, (5.16)
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and

ξθ =

Q−2∑
p=0

Q−1∑
q>p

θ+N−1∑

n=θ

xp(n)x∗q(n)

+xp(n)w∗
q(n)exp(j2πε

qN + n

N
)

+wp(n)x∗q(n)exp(−j2πε
pN + n

N
)

+wp(n)w∗
q(n)exp(j2πε(q − p)). (5.17)

The mean values ofφi andξi for the first case are then

µθ
φ,1 = QN(σ2

x + σ2
w), (5.18)

µθ
ξ,1 =

QN(Q− 1)

2
σ2

x. (5.19)

The corresponding variance values are

νθ
φ,1 = 2QN(σ2

xσ
2
w), (5.20)

νθ
ξ,1 =

QN(Q− 1)

2
σ4

w

+σ2
xσ

2
w

QN(Q− 1)(2Q− 1)

3
. (5.21)

The corresponding covariance value is

κθ
φξ,1 = QN(Q− 1)(σ2

xσ
2
w). (5.22)

99



Here,κi
φξ,j denotesκi

φξ in the jth case discussed. For the second case, the window covers the

setsIN andIP . Thus,φi andξi can be expressed as

φi =
θ−1∑
n=i

w0(n)w∗
0(n)

+
i+N−1∑

n=θ

x0(n)x∗0(n) + w0(n)w∗
0(n)

+2Re{x0(n)w∗
0(n)exp(j2πε

n

N
)}

+

Q−1∑
p=1

i+N−1∑
n=i

xp(n)x∗p(n) + wp(n)w∗
p(n)

+2Re{xp(n)w∗
p(n)exp(j2πε

pN + n

N
)} (5.23)

and

ξi =

Q−1∑
q>0

θ−1∑
n=i

w0(n)x∗q(n)exp(−j2πε
n

N
) + w0(n)w∗

q(n)exp(j2πεq)

+

Q−1∑
q>0

N+i−1∑

n=θ

x0(n)x∗q(n) + x0(n)w∗
q(n)exp(j2πε

qN + n

N
)

+w0(n)x∗q(n)exp(−j2πε
n

N
) + w0(n)w∗

q(n)exp(j2πεq)

+

Q−2∑
p=1

Q−1∑
q>p

i+N−1∑
n=i

xp(n)x∗q(n) + xp(n)w∗
q(n)exp(j2πε

qN + n

N
)

+wp(n)x∗q(n)exp(−j2πε
pN + n

N
) + wp(n)w∗

q(n)exp(j2πε(q − p)). (5.24)

Their mean values are

µi
φ,2 = (QN + i− θ)(σ2

x + σ2
w) + (i− θ)σ2

x, (5.25)

µi
ξ,2 = (Q− 1)(N + i− θ)σ2

x +
(Q− 1)(Q− 2)

2
Nσ2

x, (5.26)
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the corresponding variance values are

νi
φ,2 = 2σ2

xσ
2
w[QN + i− θ], (5.27)

νi
ξ,2 =

QN(Q− 1)

2
σ4

w + σ2
xσ

2
wN(Q− 1)

·[(Q− 1)(2 +
i− θ

N
) +

(Q− 2)(2Q− 3)

3
], (5.28)

and the covariance value is

κi
φξ,2 = (QN + i− θ)(Q− 1)(σ2

xσ
2
w). (5.29)

For the third case, the window covers setsIP andID, and we writeφi andξi as

φi =
Q−2∑
p=0

i+N−1∑
n=i

{xp(n)x∗p(n) + wp(n)w∗
p(n)

+ 2Re[xp(n)w∗
p(n)exp(j2πεpN+n

N
)]}

+
θ+N−1∑

n=i

{xQ−1(n)x∗Q−1(n) + wQ−1(n)w∗
Q−1(n)

+ 2Re[xQ−1(n)w∗
Q−1(n)exp(j2πε (Q−1)N+n

N
)]}

+
i+N−1∑
n=θ+N

{xQ−1(n)x∗Q−1(n) + wQ−1(n)w∗
Q−1(n)

+ 2Re[xQ−1(n)w∗
Q−1(n)exp(j2πε (Q−1)N+n

N
)]} (5.30)
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and

ξi =

Q−3∑
p=0

Q−2∑
q>p

i+N−1∑
n=i

xp(n)x∗q(n) + xp(n)w∗
q(n)exp(j2πε

qN + n

N
)

+wp(n)x∗q(n)exp(−j2πε
pN + n

N
) + wp(n)w∗

q(n)exp(j2πε(q − p))

+

Q−2∑
p=0

θ+N−1∑
n=i

xp(n)x∗Q−1(n)

+xp(n)w∗
Q−1(n)exp(j2πε

(Q− 1)N + n

N
)

+wp(n)x∗Q−1(n)exp(−j2πε
pN + n

N
)

+wp(n)w∗
Q−1(n)exp(j2πε(Q− p− 1))

+

Q−2∑
p=0

i+N−1∑

n=θ+N

xp(n)x∗Q−1(n)

+xp(n)w∗
Q−1(n)exp(j2πε

(Q− 1)N + n

N
)

+wp(n)x∗Q−1(n)exp(−j2πε
pN + n

N
)

+wp(n)w∗
Q−1(n)exp(j2πε(Q− p− 1)). (5.31)

Thus, the mean values are

µi
φ,3 = (QN + θ − i)(σ2

x + σ2
w)

+(i− θ)(σ2
d + σ2

w), (5.32)

µi
ξ,3 = (Q− 1)(N − i + θ)σ2

x

+
(Q− 1)(Q− 2)

2
Nσ2

x, (5.33)

the variance values are

νi
φ,3 = 2σ2

xσ
2
w(QN − i + θ) + 2(i− θ)σ2

dσ
2
w, (5.34)

νi
ξ,3 = σ2

xσ
2
wN(Q− 1)[(2Q− 3)(1 +

θ − i

N
)

+
(Q− 2)(2Q− 3)

3
+ 1] +

QN(Q− 1)

2
σ4

w

+(Q− 1)2(i− θ)(σ2
d + σ2

w), (5.35)
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and the covariance value is

κi
φξ,3 = (Q− 1)σ2

xσ
2
w[QN + 2(θ − i)]. (5.36)
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Appendix B

§ B.1 Derivation of (3.22)

Taking the derivative of(Ry)p,q with respect toεe,i, we have the result as

(
∂

∂εe,i

Ry)p,q =
j2πNσ2

x

Ns

(p− q)w(εe,i)N(p−q). (5.37)

Then the first term in the right-hand-side of (3.9) can be derived as

(R−1
y

∂

∂εe,i

Ry)p,q =

Q∑

k=1

(R−1
y )p,k

j2πNσ2
x

Ns

(k − q)w(εe,i)N(k−q)

=
j2πNσ2

x

Ns

{σ−2
η w(εe,i)N(p−q) − C0

Q∑

k=1

(k − q)xk−qΓ(p, k)

−C1

Q∑

k=1

Q∑

b=1

(k − q)xk−qΓ(p, b)Γ(b, k)− C2

Q∑

k=1

(k − q)xk−q

·
Q∑

a=1

Q∑

b=1

Γ(p, a)Γ(a, b)Γ(b, k)}, (5.38)

where

x = exp(j2π
Nεe,i

Ns

). (5.39)

In order to obtain the second term in (3.9), the derivative of the third and fourth terms in the

right-hand-side of (3.17) can be first found as

∂

∂εe,i

{
Q∑

n=1

Γ(n, q)Γ(p, n)} =
j2πN

Ns

[

Q∑
n=1

(n− q)Γ(p, n)w(εe,i)N(n−q)

+(p− n)Γ(n, q)w(εe,i)N(p−n)] (5.40)
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and

∂

∂εe,i

{
Q∑

m=1

Q∑
n=1

Γ(m,n)Γ(n, q)Γ(p,m)}

=
j2πN

Ns

[

Q∑
m=1

Γ(p,m)

Q∑
n=1

Γ(n, q)

·(m− n)w(εe,i)N(m−n)

+(n− q)Γ(p,m)Γ(m,n)w(εe,i)N(n−q)

+(p−m)Γ(m,n)Γ(n, q)w(εe,i)N(p−m)]. (5.41)

Thus, we can have the second term in (3.9) as

∂

∂εe,i

(R−1
y )p,q =

j2πN

Ns

{−C0(p− q)w(εe,i)N(p−q)

−C1

Q∑
n=1

(n− q)w(εe,i)N(n−q)Γ(p, n)− C1

Q∑
n=1

(p− n)w(εe,i)N(p−n)Γ(n, q)

−C2

Q∑
m=1

Q∑
n=1

[(m− n)w(εe,i)N(m−n)Γ(p,m)Γ(n, q)

+(n− q)w(εe,i)N(n−q)Γ(p,m)Γ(m,n)

+(p−m)w(εe,i)N(p−m)Γ(m,n)Γ(n, q)]}. (5.42)

Substituting (3.3), (3.5), (5.38), and (5.42) into (3.9), we can rewrite the log-likelihood function

as

∂

∂εe,i

Λ(ε) =
j2πN

Ns

{Nσ2
x

Q∑
p=1

Q∑
q=1

(q − p)xq−p[C0Γ(p, q)

+C1

Q∑
n=1

Γ(p, n)Γ(n, q)

+C2

Q∑
m=1

Q∑
n=1

Γ(p,m)Γ(m,n)Γ(n, q)]
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+γ(p, q)[C0(p− q)xp−q

+C1

Q∑
n=1

((n− q)xn−qΓ(p, n)

+(p− n)xp−nΓ(n, q))

+C2

Q∑
m=1

Q∑
n=1

((m− n)xm−nΓ(p,m)Γ(n, q)

+(n− q)xn−qΓ(p,m)Γ(m, n)

+(p−m)xp−mΓ(m,n)Γ(n, q))]}. (5.43)
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§ B.2 Derivation of (3.27)

Rewrite (3.22) as

∂

∂εe,i

Λ(ε) =

Q∑
p=1

Q∑
q=1

{Nσ2
x(q − p)xq−p[C0Γ(p, q) + C1

Q∑
n=1

Γ(p, n)Γ(n, q)

+C2

Q∑
m=1

Q∑
n=1

Γ(p,m)Γ(m, n)Γ(n, q)] + γ(p, q)[C0(p− q)xp−q

+C1

Q∑
n=1

((n− q)xn−qΓ(p, n) + (p− n)xp−nΓ(n, q))

+C2

Q∑
m=1

Q∑
n=1

((m− n)xm−nΓ(p,m)Γ(n, q)

+(n− q)xn−qΓ(p,m)Γ(m,n)

+(p−m)xp−mΓ(m,n)Γ(n, q))]}

=

Q∑
p=1

Q∑
q=1

F1(p, q)x
q−p +

Q∑
p=1

Q∑
q=1

F2(p, q)x
p−q

+

Q∑
p=1

Q∑
q=1

{γ(p, q)[C1

Q∑
n=1

((n− q)xn−qΓ(p, n)

+(p− n)xp−nΓ(n, q))

+C2

Q∑
m=1

Q∑
n=1

((m− n)xm−nΓ(p,m)Γ(n, q)

+(n− q)xn−qΓ(p,m)Γ(m,n)

+(p−m)xp−mΓ(m,n)Γ(n, q))]}
= 0, (5.44)

whereF1(p, q) = Nσ2
x(q − p)[C0Γ(p, q) +C1

Q∑
n=1

Γ(p, n)Γ(n, q)+ C2

Q∑
m=1

Q∑
n=1

Γ(p,m) Γ(m,n)

Γ(n, q)] andF2(p, 1) = C0(p − q)γ(p, q). Conducting some variable transformation, we can

express the power ofx as a single variable ofk. We can then collect all the items with positive
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k into one expression and have

{ ∂

∂εe,i

Λ(ε)}+ =

Q−1∑

k=1

{
Q−k∑

p=1,q=p+k

F1(p, q)x
k +

Q−k∑

q=1,p=q+k

F2(p, q)x
k

+C1

Q∑
p=1

Q−k∑

q=1,n=q+k

γ(p, q)Γ(p, n)kxk

+C1

Q∑
q=1

Q−k∑

n=1,p=n+k

γ(p, q)Γ(n, q)kxk

+C2

Q∑
p=1

Q∑
q=1

Q−k∑

n=1,m=n+k

γ(p, q)Γ(p, m)Γ(n, q)kxk

+C2

Q∑
p=1

Q∑
m=1

Q−k∑

q=1,n=q+k

γ(p, q)Γ(p,m)Γ(m,n)kxk

+C2

Q∑
n=1

Q∑
q=1

Q−k∑

m=1,p=m+k

γ(p, q)Γ(m,n)Γ(n, q)kxk}

=

Q−1∑

k=1

αp(k)xk, (5.45)

Similarly, we can collect all the items with negativek into another expression and have

{ ∂

∂εe,i

Λ(ε)}− =

1−Q∑

k=−1

{
Q∑

p=1−k,q=p+k

F1(p, q)x
k +

Q∑

q=1−k,p=q+k

F2(p, q)x
k

+C1

Q∑
p=1

Q∑

q=1−k,n=q+k

γ(p, q)Γ(p, n)kxk

+C1

Q∑
q=1

Q∑

n=1−k,p=n+k

γ(p, q)Γ(n, q)kxk

+C2

Q∑
p=1

Q∑
q=1

Q∑

n=1−k,m=n+k

γ(p, q)Γ(p,m)Γ(n, q)kxk

+C2

Q∑
p=1

Q∑
m=1

Q∑

q=1−k,n=q+k

γ(p, q)Γ(p,m)Γ(m,n)kxk

+C2

Q∑
n=1

Q∑
q=1

Q∑

m=1−k,p=m+k

γ(p, q)Γ(m,n)Γ(n, q)kxk}.
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Using some variable transformations, we can obtain a similar result with (5.45) :

{ ∂

∂εe,i

Λ(ε)}− =

Q−1∑

k=1

{
Q−k∑

q=1,p=q+k

F1(p, q)x
−k +

Q−k∑

p=1,q=p+k

F2(p, q)x
−k

−C1

Q∑
p=1

Q−k∑

n=1,q=n+k

γ(p, q)Γ(p, n)kx−k

−C1

Q∑
q=1

Q−k∑

p=1,n=p+k

γ(p, q)Γ(n, q)kx−k

−C2

Q∑
p=1

Q∑
q=1

Q−k∑

m=1,n=m+k

γ(p, q)Γ(p,m)Γ(n, q)kx−k

−C2

Q∑
p=1

Q∑
m=1

Q−k∑

n=1,q=n+k

γ(p, q)Γ(p,m)Γ(m,n)kx−k

−C2

Q∑
n=1

Q∑
q=1

Q−k∑

p=1,m=p+k

γ(p, q)Γ(m,n)Γ(n, q)kx−k}

=

Q−1∑

k=1

αn(k)x−k. (5.46)

So, the derivative of the logarithm likelihood function (3.22) can then be re-expressed as

∂

∂εe,i

Λ(ε) =

Q−1∑

k=1

αp(k)xk +

Q−1∑

k=1

αn(k)x−k. (5.47)
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Appendix C

§ C.1 Detailed Derivation of (4.37)

The conditional Fisher information in (4.37) is a product of fourNs × Ns matrices, i.e.V =

R−1
y|h

∂Ry|h
∂εSD

R−1
y|h

∂Ry|h
∂εSD

. From (4.36),γ′(1) ≈ 0 whenNs is large. Using the property, we can see

that the off-diagonal terms ofR′
y|h in (4.34) are zeroes, simplifying the derivation ofV. Note

thatV containsN2 Q × Q submatrices. Denoting the(p, q)th submatrix ofV asVp,q, we can

have

Vp,q =
N∑

k=1

Tp,kR′
1Tk,qR′

1, (5.48)

whereTp,q is the(p, q)th submatrix ofR−1
y|h as defined in (4.31). The trace ofV can then be

expressed as

tr(V) = tr(
N∑

p=1

N∑
q=1

Tp,qR′
1Tq,pR′

1)

= tr(
N∑

p=q=1

Tp,pR′
1Tp,pR′

1 +
N∑

p=1

N∑
q>p

Tp,qR′
1Tq,pR′

1 +
N∑

q=1

N∑
p>q

Tp,qR′
1Tq,pR′

1).(5.49)

Substituting (4.31) into (5.49), we can have

tr(V) = tr(2
N−1∑
p=1

N∑
q>p

Wp,q +
N∑

p=1

Wp,p) (5.50)

whereWp,q = (|γ(1)|2)q−p(Pp−1Qq+1P
−1
N R′

1)
2 and (4.37) results.
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