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Abstract: A novel new event-driven MOS timing 
simulator for VLSI circuits, EMOTA, is present- 
ed. The traditional event-driven simulation 
scheme used in logic simulation is modified for use 
in this circuit level timing simulator. The fast per- 
formance is due to the result of mixing the new 
derived event-driven algorithm and its associated 
time-wheel control mechanism, together with the 
unidirectional nonlinear Gauss-Seidel relaxation 
technique to decouple the circuit equations. 
EMOTA allows both interactive and batch simu- 
lation modes and its input format is the same as 
SPICE. The simulation speed of EMOTA is 
shown to be more than 300 times faster than 
SPICE2G.5 for circuits of several hundred tran- 
sistors and the simulated waveforms have accept- 
able accuracy. 

1 Introduction 

General purpose circuit simulators, such as SPICE2 [l] 
and ASTAP [2], have been widely used for the circuit 
analysis of integrated circuits. These simulators can 
provide DC, AC and time-domain transient analyses of a 
wide range of circuits. Among these, time-domain tran- 
sient analysis is the most commonly used analysis per- 
formed by circuit simulators, but it is also the most 
time-consuming one. Since the formation and solution of 
the circuit equations are most expensive in terms of the 
computer time, especially when the circuit size exceeds a 
certain range. Therefore, it is very inefficient to simulate 
large circuits using these tradiational circuit simulators. 

To enhance the speed of simulation when large circuits 
are simulated, many timing simulators such as MOTIS 

[8] and MOTA [9] have been developed based on relax- 
ation electrical simulation technology (REST) [ lo]. These 
are special purpose simulators that deal with MOS 
circuit transient analysis and, basically, the relaxation 
techniques were used to decouple nodal equations to 
avoid solving the large sparse matrix, while still main- 
taining acceptable waveform accuracy. Because of the 
decoupling of the model equations, for logic gate circuits 
the time required at the solving step grows only linear 
with the number of nodes. 

[3,4], MOTIS-C [SI, SPLICE [SI, RELAX [7], ADEPT 
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For most circuits, the fraction of nodes that, are 
changing their voltage value at a given point in time 
decreases as the circuit size increases. For logic or circuit 
simulators, many schemes have been used to exploit this 
time sparsity or latency to further enhance the simulation 
of large electrical circuits [ll-223. 

In this paper, we describe EMOTA, an event-driven 
MOS timing simulator. The Gauss-Seidel-Newton relax- 
ation simulation technique is used in EMOTA because of 
its better convergence properties [lo]. Considering the 
property of convergence speed and the behaviour of 
MOS circuits, we partition the circuit into simple logic 
gate blocks and tightly-coupled and/or bidirectional 
circuit blocks. Thus, the signal propagation between logic 
gate and subcircuit block is unidirectional and, hence, we 
call this the unidirectional Gauss-Seidel relaxation simu- 
lation technique. For completeness of this paper, the 
whole simulation technique will be shortly discussed in 
Section 2. 

The employment of an event-driven, selective trace 
technique that is usually used in logic simulators [13-151 
can provide a major time saving in logic simulation. This 
technique views a whole state changing as event and pro- 
cesses the events dynamically without the need to check 
or simulate each node for activity. Because EMOTA uses 
the unidirectional Gauss-Seidel relaxation technique, the 
signal propagation between circuit blocks is like that of 
logic simulation. Thus EMOTA combines the unidirec- 
tional Gauss-Seidel relaxation technique and the concept 
of an event-driven technique into a novel new timing 
event-driven technique. This new method is quite differ- 
ent from the traditional one because in a timing simula- 
tor, not only the state, but the whole transient waveform, 
must be calculated. A special time-wheel control mecha- 
nism used to deal with dynamic events can simplify the 
control process. The event-driven algorithm and the 
time-wheel mechanism will be discussed in Sections 3 and 
4, respectively. 

Although there has been a need for theoretical and 
practical investigation in all of the algorithmic aspects 
used in the simulator, there is also a need to concentrate 
on the overall software system. So the whole program 
structure, data structure, methodology and 1/0 pro- 
cessing will be discussed in Section 5 .  Finally, the simula- 
tion results and comparisons with other simulators will 
be discussed. 

2 Unidirectional Gauss-Seidel relaxation 

To perform the transient analysis of MOS digital inte- 
grated circuits, the circuit equations can be written in the 

technique 
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following form using the modified nodal analysis [16] 
with the assumption that the inductance effect in the 
circuit i s  ignored and each node has a capacitor con- 
nected to reference node: 

C( v(r), W)) V(r) = - f( v(t), u(r)) o G t < T 

V(0)  = v, (1) 

where V(r) and p(r) E R" are the vectors of node voltage 
and its time derivative, respectively, and U(t)  E R" is the 
vector of the input voltage source at time t .  C(V(t), 
U(f))  E R" * R" represents the nodal capacitance matrix. 
f: R" * R" + R" can be expressed as 

with initial condition, 

f( V), W)) 

wherefi(V(t), U(t)) is the sum of the currents charging the 
capacitors connected to node i .  

To solve eqn. 1, a simulatable MOS timing model is 
derived [12] which uses the following techniques: 

(a) A trapezoidal algorithm to discretise the derivative 
operators, 

(b) The nonlinear Gauss-Seidel relaxation technique to 
decouple the circuit equation, 

(c)  The Newton-Raphson method with one unknown 
to linearise the nonlinear elements. 

After the above techniques are applied, the capacitor is 
replaced by its companion model and the MOS device is 
replaced by a Norton equivalent model. The interested 
reader may refer to Reference 12 for a detailed descrip- 
tion of the Gauss-Seidel-Newton properties. 

In MOS digital circuits, a commonly used circuit 
structure is a complex driver-load logic gate. This con- 
sists of a collection of MOS transistors that are con- 
nected in series-parallel combinations. For MOS devices, 
if the gate-drain and the gate-source capacitances are 
assumed to be ignored, the gate can represent an almost 
unidirectional node. Thus driver-load logic gates are uni- 
directional elements with one output whose voltage is 
controlled by several inputs. The behaviour of the output 
is a function of the topology of the circuit and the input 
voltages that control the transistors in this topology. For 
this type of circuit, the convergence speed is fast and 
accurate voltage solutions can be obtained by one Gauss- 
Seidel-Newton iteration. But, for circuits containing 
tightly coupled feedback loops or bidirectional elements, 
such as pass transistors, transmission gates and floating 
capacitors, strong coupling can cause severe inaccuracy 
and even instability during nonlinear relaxation analysis 
[9,10]. Thus, from the simulation point of view, for a 
circuit containing tightly coupled feedback loops and/or 
bidirectional elements, the relaxation method is not a 
robust technique. 

A subcircuit technique [9] is provided by EMOTA to 
simulate circuits containing tightly coupled feedback 
loops and bidirectional elements without the occurrence 
of severe inaccuracies. The circuit block is treated with a 
direct matrix solving technique using the same simulat- 
able timing model as above. After the tightly coupled cir- 
cuits are all grouped into subcircuit blocks, the whole 
circuit is partitioned into sets of logic gates and sub- 
circuit blocks only. The combination of the subcircuit 
technique and the nonlinear Gauss-Seidel relaxation 
technique is referred to as the unidirectional Gauss-Seidel 
relaxation technique. In this technique, signal propaga- 
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tion is unidirectional, i.e. from input nodes to output 
nodes of logic gates and subcircuit blocks like the 
one-way macromodelling concept in Reference 17. This 
technique is well suited to the event-driven control 
mechanism because the circuit is partitioned into blocks 
and thus the signal propagation between blocks in the 
circuit simulation is the same as that in the logic simula- 
tion. Thus, to enhance the simulation speed, the imple- 
mentation and evaluation of these blocks must be simple 
and easy to store and move so that the processing over- 
head of the event is small and the time saving is large 
when simulating large circuits. 

3 Time-wheel, event-driven control scheme 

3.1 Event and selective trace 
For logic simulation, selective trace is a technique based 
on the observation that if the output of an element does 
not change when the inputs change, then the fanouts of 
that element are not affected by the excitation of the 
input signals. Hence, the output of the current element is 
not evaluated and the signals stop propagating along the 
trace. Based on this technique, an event is said to have 
occurred when an output line of an element takes on a 
new value, or logic value. The new value may or may not 
be the same as the value already held on the output line 
[13]. Thus an element is triggered only when its inputs 
are ready to evaluate the outputs of the element. If the 
new value is the same as the value already held by the 
output line, the selective trace technique comes into play 
and the event is cancelled. However, if the new value is 
different from the value already held by the output line, 
the event will be propagated to the fanout elements. 

Although the time-wheel, event-driven control scheme 
has long been used in logic simulators [13], it is not used 
in traditional circuit simulators because the whole circuit 
is solved in a matrix structure. On the other hand, the 
unidirectional Gauss-Seidel relaxation technique has the 
potential to use this control scheme because of the 
decoupling of circuit equations and because the signal 
propagation between blocks is unidirectional. To incor- 
porate this scheme into EMOTA, the events at the circuit 
level must be carefully defined, and the propagation of 
events is much more complex than that in a logic simula- 
tor. 

In the transient analysis of circuit simulation, we need 
to calculate the nodal voltage waveform insteBd of the 
logic state only, so the event cannot be defined to the 
same as that in logic simulation. In EMOTA, an event is 
the change of node voltages between two successive simua- 
tion time steps of an element during the transient. So an 
event associated with an element can occur not only with 
change of voltages on the input nodes, but also with 
changes of internal and output nodal voltages of the 
element at any transient time step. For each element, 
whenever the voltage at any one of the input nodes starts 
changing, the effect of this change at the element must be 
traced as it propagates to its fanout elements. Only the 
elements that are affected directly by this change will be 
processed; this technique is selective and, hence, this is 
the selective trace technique for EMOTA. 

3.2 New event-driven control scheme 
SPLICE [6] and SAMSON [18] have proposed the 
event-driven technique, but the method proposed in 
SAMSON is at the matrix solving level which is different 
from the relaxation level used in EMOTA. SPLICE may 
be the first relaxation based simulator to propose the 
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event algorithm at relaxation level. This algorithm, 
shown in Fig. 1, has the drawback that, the elements are 
not only triggered by events created by itself, sew events 
(determined by local time step control), but also by 
events created by the elements connected to its input 
nodes, input events. Therefore the simulation time step is 
limited not only by the local truncation error (LTE) of 
the element, but also by the LTE of the elements con- 
nected to its input nodes. So the events of the element 
may be created twice during a simulation time step, or 
created more often than is necessary. This drawback can 
be eliminated if once the element is initially activated by 
the input events, it is then triggered by itself, that is, trig- 
gered by the self events and ignores successive input 
events. Thus the simulation time step during the transient 
is determined only by the LTE of the element. The new 
timing event-driven algorithm used in EMOTA is listed 
in Fig. 2. 

/*E(t,): event list at time step f ,  */ 

WHILE@, < TSPOP){  
t,  = 0 ;  

k t n .  
WHILWevent list Ek(tn) is not empty){ 

FOREACH(i in E & ) ) {  

where P+' , '= [V:", . .  , V j + l ,  Vf,, ,..., VfIr 
IF( 1 Vf" - V: I < E ;  i.e. convergence is achieved){ 
use LTE to decide the next time f ,  for processing node i ;  
add node i to event list E&,); 

L E {  
add node i to even list Et+ , ( [ , ) ;  
add the fanout nodes of node i to even list E,(tJ if they 
are not already on E&; 

} 
} 
Ek( tJ+Ek+, ( t , J ;  Ek+At.)+empty;  

k + k + l ;  
1 
f "  - f " +  1 

} 
Fig. 1 SPLICE event-driven algorithm 

/*element 
/*E(t,)  :event list at time step t ,  ' 1  

:single gate block and subcircuit block*/ 

t ,  = 0 
1 

2 solve element i ;  

WHILE (event list E(t,) is not empty){ 
FOREACH (element i in E@,)){ 

Set element i to inactive; 
FOREACH (output node j of i){ 

IF ( 1  y k )  - K(tn- 1) I > d J {  
Set element i to active; 3 

4 
IF 0' is not active) { 

Add each inactive fanout element k 
of node j to E(t,J; 
Set k and j to active; 
I 

1 
IF (element i is not active) { 
Set nodes of element i to inactive; 

1 

I 
5 

ELSE { 
6 
7 

Use LTE to determine next time step, t,; 
add element i to E(t, + r J ;  

} 
1 
t , = t , + ,  

I 
Fig. 2 
algorithm 
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Unidirectional nonlinear Gauss-Seidel relaxation event-driven 

In this algorithm, the event list E@,) is used to sched- 
ule the events of the elements that are to he processed in 
time t,(step 1) and an element is initially activated only 
by the input events (step 4). Once an element is to be 
activated, at time t , ,  the event for this element will be 
scheduled into the event list E@,,). Then this element will 
be solved at time t ,  and if any one of the output node 
voltages changes after calculation (including the internal 
nodes of subcircuit), this element is then activated by 
itself (step 3) and the LTE is used to determine the next 
time step t,(step 6). The old event is cancelled and a new 
event associated with this element will be added into the 
event list E(t ,  + tJ (step 7). Thus events are propagated 
and the elements that are already activated will not be 
activated again. 

If all the output nodes and internal nodes of the active 
element stay unchanged, the old event is cancelled and 
the element is set to be inactive. Thus, no events propa- 
gate through this element and unnecessary computation 
and checks are avoided. In EMOTA the voltage change 
is recognised if it is greater than a specified value d,, . The 
value of d,, must be carefully and properly chosen to 
obtain an accurate simulation result and a fast simulation 
speed. It has been found experimentally that the value of 
0.0005 V ford,, gives the best result. 

During a change of logic level, there may be tens of 
events occurring depending on the limitation of the LTE 
instead of one, as in logic simulation. To successfully use 
this new timing event-driven control scheme with the uni- 
directional Gauss-Seidel relaxation technique, some criti- 
cal points must be investigated. 

(i) Before the transient analysis, initial events must be 
put into the time-wheel. 

Initial events are the events triggered by the excitation 
of input voltage sources. For example, a circuit, input 
sources and the associated initial events are shown in Fig. 
3a. Before simulation, the initial events are all put into the 
time wheel to avoid checking the input source for the 
initial events at each simulation time step. For logic 
simulation, the above arrangement is satisfactory because 
each change of logic level needs only one event evalu- 
ation, but for circuit simulation, there is one problem. 
When the initial event occurs, some input may change 
very slowly so after one time step calculation, the output 
voltage may not change or the change may he below doc . 
In this case, the event will not propagate and the block 
will not activate itself while actually this block should 
activate itself and the event should propagate after the 
input has completely changed. To solve this problem we 
use the second scheme. 

(ii) For initial events, it is divided into ten events, each 
one is separated by one tenth of the duration. 

To have a safe simulation, EMOTA does not allow 
stepped input voltage sources. For inputs that are con- 
nected to the outputs of other blocks, the events will be 
missed only when a fast changing stage is driving a slow 
changing state. This occurs when the input voltage is 
stable and the change of output voltage during the whole 
input transient is less than than d,,(0.0005 V). In this 
case, the transient time of the second stage is almost 
lOOOO(5 V/0.0005 V) times longer than the first stage. In 
practical circuit designs, this is not advisable and some 
buffer stages are inserted. 

(iii) There are three conditions under which a block 
may have more than one event associated with it during 
a transient: 

(a) The ten initial events and the self events activated 
by the block, 
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(b) When the input source has been stable after a tran- 
sient and then changes its value again, but the block is 
still in the activated condition due to previous changes as 
illustrated at time 2t in Fig. 3b. 

(c)  A block has more than one input changing at the 
same time, as in Fig. 3c. 

Initial events 

Time Block 

t 1 and 2 
2t 2 
3t 1 and 2 
4t 2 

a 

b 

- 
C 

Fig. 3 Some special conditions ofevent-driven control 

When a block has more than one source of events sched- 
uled in the time wheel during a transient, if each one acti- 
vates itself then there will be too many events associated 
with this block, thus wasting simulation time. For condi- 
tions (a) and (b), we use an active flag (active-f) to check 
whether there are too many events. For a block that is 
inactive, active-f = 0, and if it is activated by the input 
sources, active-f = 1; otherwise it is activated by itself 
and active-f = 2. Thus, when the program meets an 
event with active- f = 1, but the block is already activat- 
ed (active- f = 2)  the program skips the initial events. For 
condition (c), there are two events for the same block in a 
single time step. To avoid an erroneous simulation 
(calculating the output voltage twice in a time step), we 
add a localcount variable to each block and a global 
counter is increased by one when the time-wheel grid 
advances one step. If a block has been simulated in this 
time-wheel grid, the program will set localcount of this 
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block to the value of the global counter. Thus, when 
another event in the same time grid is encountered, 
because the global counter equals local-count, the 
program will skip this event. 

This new timing event-driven algorithm is listed in Fig. 
2. The three schemes that efficiently and correctly control 
the signal propagation in an MOS circuit as the simula- 
tion proceeds will be discussed in Section 6. As we have 
mentioned, the number of events in a circuit simulation 
are greater than in logic simulation. So the scheduling 
and controlling of events must be well arranged to reduce 
event operations. EMOTA uses a new time-wheel control 
mechanism to process the scheduling of the events in an 
efficient manner. This time flow mechanism will be dis- 
cussed in next Section. 

4 Time-wheel mechanism 

Three types of event control schemes have been pro- 
posed, namely, fixed time increment, next event and 
hybrid time flow mechanism [13] .  The hybrid time flow 
mechanism is adopted in most modern simulators. In this 
mechanism, a double-size time queue TQ and one over- 
flow event list (sometimes called a macro time event list, 
MTEL) are used. A detailed description can be found in 
Reference 13. In EMOTA, a multiloop time wheel it uti- 
lised instead of the TQ and MTEL to achieve efficiency 
in operation and storage. 

The time wheel is like a circle with 50 grids in size, as 
shown in Fig. 4a. Each grid in the wheel represents a 
minimum time unit (TI) used in EMOTA and the wheel 
is moved forward by this fixed time increment. TI is 
chosen to be 0.02 ns for accurate simulation results. The 
variable WI(0 < WI < 50) indicates which grid in the 
wheel is currently being processed. Each grid in the time 
wheel contains a point to a list of events that occur at 
this instant of time. For example, if an event is deter- 
mined to occur five time units later by current evaluation, 
this event will be linked to the event list in grid WZ + 5. 

As for wheel size, a large wheel size will occupy too 
much space, but if a small wheel size is used, too many 
events will be scheduled to a grid number that is larger 
than the wheel size. Because in MOS integrated circuits, 

element 3 
ewnt loop count element point to next event 

Identifuntion 
b 

Fig. 4 The time wheel 
Y Time-wheel mechanism total wheel size = 50; time increment = 0.02 ns 
b Data structure of an event 
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for simulation technique used (LTE limitation and con- 
vergence condition requirement), during the transient, the 
time step is usually less than 1 ns. Thus, the wheel size is 
chosen to be 50 to save memory space. Since the wheel 
size is 50, some events (like initial events, etc.) will be 
scheduled to a grid number (NO) which is larger than the 
wheel size. Instead of using one overflow event list, to 
solve this problem, the number NO + WI is divided by 
50, the residue is the grid number where the event is to be 
added to. The quotient is recorded in the first entry of the 
event data structure as a loop count. The data structure 
and the event of this multiloop time wheel is shown in 
Fig. 4b. The second term of the data structure indicates 
the element associated with this event. The last term is a 
link that points to the other events in the same time unit 
to form the event list. 

Let WLC be a variable denoting the number of cycles 
that have been made through the time wheel. When each 
grid of the event list is traversed, the events whose loop 
count is zero are processed and then deleted. As for 
events whose loop count is not zero, the loop count is 
decreased by one and the events remain in this time grid. 
When the Link points to NULL, it means all the events 
in the current time grid have been traversed. Then the 
variable WI is increased by one, i.e. the next grid is now 

to be processed. Whenever the variable WI equals 50, it 
is reset to zero and the variable WLC will be increased 
by one. Thus the simulation time is always equal to the 
expression ((50*WLC) + WI)*TI. 

5 

EMOTA is implemented on a SUN workstation and 
written in C. The overall program flowchart is shown in 
Fig. 5. The input format of EMOTA is the same as for 
SPICE, except for two differences. In EMOTA, the user 
must define the global nodes, such as the reference node 
and power node, by using the *. Global card; numbers 
and letters can be used to specify a node while in SPICE, 
a node must be specified as a number. As for the MOS 
model, the level 1 and 2 models are the same as for 
SPICE2G.5 and level 4 is an I&G table lookup model 
[21]. The data structure for a logic gate and subcircuit, 
and the partitioning scheme, will be discussed in more 
detail in the following Section. 

5.1 Logic gate data structure and evaluation 
In EMOTA, the user can define the driver-load CMOS 
gate as shown in Fig. 6 using a .SUBCKT card to define 
a logic gate block. Such a transistor structure can be 

Overall program and data structure 

read input description and I construct the data structure I 

I 
. 

I I 
partition the circuil into gate 
and lor subcircuit blocks 

perform DC analysis 

from t Y O  to t t stop display the output immediately 

yes I n -  - cy, 
Fig. 5 
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stored as an evaluation tree. This tree structure is suitable 
for this series/parallel configuration [19]. The internal 
tree data structure, used in EMOTA, for the gate in Fig. 
6 is shown in Fig. 7. 

SUBCKT GEXAMPLE A B C D OUTPUT 1 
MP, 2 C 1 1 PMOS 
MP, 2 B 1 1 PMOS 
MP, 2 A 1 1 PMOS 
MP, 3 A 2 1 PMOS 
MP, 4 B 3 1 PMOS 
MP, 5 C 4 1 PMOS 
Mp, OUTPUT D 2 1 PMOS 
Mn, OUTPUT A 6 0 nMOS 
Mn, 6 B 7 0 nMOS 
Mn, 7 C 0 0 nMOS 
Mn, 8 A 0 0 nMOS 
Mn, 8 B 0 0 nMOS 
Mn, 8 C 0 0 nMOS 
Mn, 5 D 8 0 nMOS 
.ENDS GEXAMPLE 

a 

output 
-v 
A - 

B - 

r" 
b 

Fig. 6 
LI Circuit description 

Defining a driuer-load gate 
b Circuit diagram 

a 

t 
IMN, H M N 5  W M N 6  

b 
Fig. 7 
a Basic node structure 
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Representation of data in EMOTA 
b Tree data stmciure 

As shown in Fig. 7, each node structure consists of 
three parts: the function of the node, the left node pointer 
and the right node pointer. All the nodes are linked to 
form the tree structure according to the circuit connec- 
tions. The root node, indicated by ' = ', consolidates the 
results from both the driver and the load subtrees. Each 
subtree can be further broken down into series/parallel 
connections. The function of the parent node shows that 
the child nodes linked to the left pointer are in parallel or 
in series by the '+' and '*' operators, respectively. The 
MOS transistors are always at the leaf node indicated by 
'M'. For example, Mn,, Mn, and Mn, are in series; Mp,, 
Mp, , and Mp, are in parallel. Using this data structure, 
once an event occurs at the input nodes of the logic gate, 
only the pointer of '=' needs to be scheduled and pro- 
cessed. 

The logic gates are simulated using macromodels for 
those sections of the circuit whose connectivity is well 
understood in the tree data structure. The macromodel, 
which is based on a large-signal linear approximation of 
the transistors in the driver-load gate [20], enables us to 
compute the output voltage of the gate in an efficient 
manner. For example, in EMOTA, to evaluate the output 
voltage waveform of a driver-load gate, first, the equiva- 
lent models are applied to each MOS device and output 
capacitor. According to the macromodel, as the driver or 
load subtree is traversed, the current (conductance) for a 
parallel transistor section is computed as the sum of its 
constitutent currents (conductances); for a series section, 
the reciprocal of the current (conductance) is obtained as 
the sum of the reciprocal of the constituent currents 
(conductances) [20]. To traverse the tree data structure, a 
depth-first traversal algorithm is used, as shown in Fig. 8. 
Each node in the tree data structure will be traversed to 
yield the equivalent current and conductance via the 
technique described previously. Finally, the driver (or 
load) transistor of the final equivalent circuit is viewed as 
the only transistor between the output node and V,, (or 

GLOBAL VARIABLE :leuel ,stack 
LOCAL VARIABLE :t-leuel ,p 

I* at initial, level = 0, p = root node ' J  

TRAVERSE @) 

t-level = leuel; 
while @ + left! = NULL){ 

PUSH p - stack-B; 
leuel = level + 1 ; 
p = p - left; 

{ 

} 
CALCULATE current I and conductance G ;  
PUSH I and G - stackrleuell; 

while (p - right! = NULL){ 
REPEAT: 

p = p -right; 
if @ +function = = "M"){ 

CALCULATE current I and conductance G ;  
PUSH I and G -t stack[leueQ; 

i 
else 

CALL TRAVERSE@); 
} 
POP stack-b - p ;  

leuel = leuel - 1 ; 
PERFORM p - function; 
PUSH the resultant I and G - stackrleueg; 
if(leue1 = = t-leueo 

else 
return; 

goto REPEAT; 
I 
Fig. 8 Depthfirst trauersal algorithm 
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GND) node. The complexity of this algorithm is O(L), 
where L is the depth of the tree (the number of series and 
parallel operations). Although the example used here is a 
full CMOS logic gate, domino or other dynamic logic 
gates can also use. this data structure and traversal 
method. 

5 2  The subcircuit scheme 
The subcircuit block is a group of elements that have 
their nodes connected by the source and drain nodes of 
pass transistors, and/or the two terminal nodes of 
resistors or capacitors. So the boundaries of the sub- 
circuit are the primary input nodes, primary output 
nodes, gate nodes of MOS devices, and power supply 
rails (i.e., V,, and GND). All the element models for sub- 
circuit blocks are listed in Fig. 9. In the subcircuit, the 
direct matrix solving technique is used to solve this 
tightly coupled block [9]. 

symbol 

- 
R 

L a 
D S 

model 

I, 

gc 

PO 

lo@go 

I-  - 

Fig. 9 Element models of subcircuit used in EMOTA 

5.3 The strategies for pattitioning 
The objective of partitioning in EMOTA is to decouple 
the input circuit into a set of loosely coupled blocks. The 
drain-source path of pass transistors and RC elements 
are recognised as strongly coupled paths. Therefore, the 
strategies adopted by EMOTA are, first, connect all ele- 
ments passing along the strongly coupled path to form a 
block, and secondly, stop only at the gates of pass tran- 
sistors or inputs to logic gates. If there is only one logic 
gate in the block, it is viewed as a single logic gate block 
and is separated from the subcircuit block. This is due to 
the fact that the single logic gate block can be solved 
easily by using the method discussed in Section 2.1. 

In the partitioning stage of EMOTA, all the parasitic 
capacitances connected to one node are lumped as one 
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capacitance and it is lumped from the node to ground. 
The parasitic capacitance is calculated approximately by 
averaging the values through all the working voltage 
regions, and a good coetlicient for the Miller effect is cal- 
culated. Therefore, the loading effect of each node has 
already been included in the block so the coupling effect 
is avoided. In addition, since each node has a capacitance 
to ground, the resultant matrix has the characteristics of 
diagonal dominance. In this condition, there is no pivot 
problem during the matrix solving process. 

A detailed flowchart of the partitioning algorithm is 
shown in Fig. 10. First, a node is selected as the current 
node, then, a search is made of all its connectivity to see 
whether strongly coupled paths exist or not. If so, the 
element in each path is included in this block and the 
other nodes of the elements are pushed into the stack. 
After doing this, the current node is flagged, the nodes in 
the stack are popped as current nodes and the above 
process is repeated. Block formation is continuous until 
the stack is empty. Block attributes, such as input lists, 
output list, matrix ordering, etc. can now be constructed 
well. EMOTA then continues to search for an unflagged 
node as a current node to continue forming the second 
block. When all nodes are flagged, the job of partitioning 
comes to an end. EMOTA goes to the subsequent 
module. 

To illustrate the partitioning algorithm, a simple 
circuit example is shown in Fig. l l a .  Initially, node 2 is 
chosen as the current node, all the elements enclosed by 
the broken line are connected by a strongly coupled path, 
hence one block is formed. The input list of this block is 
nodes 3, 4, 5 and 6 and the output list is nodes 2 and 7. 
EMOTA continues to search for an unflagged node, that 
is node 4, as the current node. It is found that only one 
strongly coupled path, gate A, is connected to it. So, gate 
A is grouped by itself as a single gate. The only unflagged 
node now is node 8 and, similarly, only gate B is con- 
nected to it, so gate B itself is also grouped as a single 
gate. Hence, the circuit has been partitioned and grouped 
into one subcircuit block and two single gate blocks, as 
shown in Fig. llb. For convenience of application of the 
event-driven algorithm, the data structure of the circuit is 
arranged as shown in Fig. l l c  where the left column 
array denotes the total node number. All the subcircuit 
and single gate blocks are linked to the array by their 
input node numbers. 

6 Simulation results and discussions 

In this Section, several circuits and their simulation 
results are discussed. These circuits are simulated by 
using a SUN-3/160C (68020) workstation with a floating 
point coprocessor. 

To illustrate that EMOTA can provide accurate 
timing waveforms similar to the traditional circuit simu- 
lator, a 11-stage cascade inverter is used as an example 
circuit. In this circuit, each node has an interconnection 
line capacitance as shown in Fig. 12a. This inverter chain 
is simulated by EMOTA, and the output waveforms of 
each odd stage are shown in Fig. 12b. For this case, the 
interconnection line capacitances are 0.2pf. Fig. 12c 
shows the comparison of the simulation waveform 
between EMOTA and SPICE2G.5. It is seen that these 
two waveforms are in excellent agreement. Table la is a 
summary for the pair delay between EMOTA waveforms 
and SPICE2G.5 waveforms with various interconnection 
line capacitances. The difference between these two wave- 
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forms is less than 3%. For the delay of the total 11-stage 
inverter as shown in Table lb, the errors are all within 
4%. These results are fairly good. 
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Fig. 12 
a Circuit diagram 
b Simulation result of odd stage of inverter 
c Output waveform 
__ EMOTA for V(2);  

Simulation of l l - s tage  cascade inverter 

SPICE2G.5 for V(2)  
EMOTA for V(I2); 

-~~ 

_ ~ ~ _  SPICEZG.5 for V(12) 

Table 1 :  Accuracy comparison between EMOTA and 
SPICE2G.5 

Node EMOTA, SPICE2G.5, Error, % 
capacitance ns ns 

OPf 0.396 0.388 2.06 
0.1 pf 1.583 1.557 1.67 
0.2pf 2.754 2.722 1.17 
0.5pf 6.333 6.218 1.85 

a 

Node EMOTA, SPICE2G.5, Error, % 
capacitance ns ns 

OPf 1.929 1.871 3.09 

0.2pf 13.73 13.54 1.40 
O.lpf 7.788 7.704 1.09 

0.5pf 31.35 31.16 0.61 

b 

a Pair delay 
b Delay between first and 11 th stages 
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The second example illustrates the logic gate and DC 
analysis ability. This is a 2-bit ripple counter composed 
of T flip-flops. The T flip-flop is implemented by using 
the master-slave J-K flip-flop, as shown in Fig. 13a. This 
circuit is partitioned into single logic gate blocks. The 
input clock waveform and the simulation results are illus- 
trated in Fig. 13b which shows that the DC analysis sets 
up the correct DC state and the event-driven control 
scheme can correctly simulate the sequential circuits. 

set p 

r 5v 1- 5v 

CLOCK 

a 

tlm,sXm" 

b 

Fig. 13  Simulation ofa 2-bit ripple counter 
(I Arrangement of gates in Biptlop and circuit diagram of counter 
b Output waveform of counter simulated by EMOTA 
~ V(CL0CK) 

VQ,) 
( Q O )  

~~~~ 

. . . ... 

The third example is a 4-bit ALU converted from a 
TTL 74LS181. The logic gate diagram of the 74LS181 is 
shown in Fig. 14a and this circuit is implemented using a 
driver-load CMOS circuit instead of TTL. This circuit 
contains 290 MOSFET transistors. If S, S,S,S, = OOO1 
and M = 0, the ALU performs addition and the simula- 
tion results are shown in Fig. 14b. If S,S,S,S, = 0110 
and M = 1, the ALU performs an exclusive OR and the 
simulation results are shown in Fig. 14c. 

Several circuit examples have been used to demon- 
strate the time saved by using an event-driven scheme. 
These examples are simulated with and without an event- 
driven scheme for comparison. The simulation times of 
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these examples are listed in Table 2. We can see from the 
table that the event-driven scheme indeed saves simula- 
tion time, and for large circuits and slow clock rate cir- 
cuits, the time saving is more significant. The data in 
Table 2 indicate that the event-driven scheme can 
increase the simulation speed by almost an order of mag- 
nitude. 

Table 2: Comparisons  of t h e  s imulat ion s p e e d  w i t h  and 
w i t h o u t  an event-driven s c h e m e  

Event control 

Circuits 

Two inverters 

11 inverters 
(r, = 22) 
20 inverters 
(r. = 40, CP = 20 sn) 
(Time = 40 ns) 
20 inverters 
(T,  = 20, CP = 20 sn) 
(Time = 80 ns) 
4 bit full adder 
( r ,=io4) 
741 81 4-bit ALU 
(r. = 290) 

v, = 4) 

With event-driven 
scheme 

1.88 s 

8.92 s 

13.37 s 

30.45 s 

70.58 s 

200.33 s 

Without 
event-driven 
scheme 

9.07 s 

47.35 s 

84.07 s 

258.87 s 

691.37 s 

2221.75 s 

T, =Transistor number; CP = input clock period; time =total time 

If circuit size grows, the latency may be increased, i.e. 
the event-driven scheme will save more simulation time. 
To illustrate this, the ripple counter of the second 
example is simulated using EMOTA and SPICE2G.5. 
This counter circuit is simulated for various sizes (from 
2-bit to 32-bit) and the simulation times are listed in 
Table 3. SPICEZG.5 cannot simulate counters larger 
than 16 bits due to convergence. and memory limitation. 
The simulation time of a 32-bit counter using 
SPICE2G.S is estimated by using extrapolation. The 
relationship between circuit size and simulation time is 
shown in Fig. 15. The simulation time for EMOTA is 

40Mx) 

2oooo t 

/ 

’oooy 
EMOTA 

200 

I 1 1 1 1 , I I  

0 4 8 12 16 20 24 28 32 
bits 

Fig. 15 
circuit size 

Simulation time of EMOTA and SPCE2G.S for increasing 

approximately linear with node activity, which is typi- 
cally less than linear with circuit size. At 32-bits, the 
EMOTA is 300 times faster than SPICEZG.5 
(extrapolated). These time savings are the result of using 
the unidirectional Gauss-Seidel relaxation technique, an 
I&G table lookup model and an event-driven simulation 
technique. SPLICE [6]  simulates a counter-decoder- 
encoder circuit with 553 MOSFETs about 66 times faster 
than SPICEZG. Compared with this example, EMOTA 
is more efficient then SPLICE. 

Table 3: Comparison of simulation s p e e d  b e t w e e n  EMOTA 
and SPICEZG.5 

Bit SPICE2G.5, EMOTA, SPICE2G.5/EMOTA 
number s s 

2 bit 5276.02 101.38 52.04 
4 bit 10309.02 134.02 76.92 
8 b i t  19610.75 153.00 128.17 

16 bit 37403.75 180.15 207.63 
32 bit *71000.00 219.97 322.77 

* Estimated value 

7 Conclusion 

In this paper, a relaxation-based event-driven timing 
simulator for VLSI circuits is presented. Because the 
input format is very similar to SPICE, users can describe 
the circuit very easily. According to the circuit connec- 
tivity described in an input file, the circuit will be parti- 
tioned and grouped into single logic gate blocks and 
subcircuit blocks automatically. To increase the simula- 
tion speed, tree data structures, simulatable timing 
models, relaxation technique and macromodels are used 
to solve the driver-load logic gate. Each subcircuit block 
is solved using the direct matrix solving method and 
node ordering to overcome the drawback of using relax- 
ation technique. 

The analytical models of SPICE2G.5 level 1 and 2 and 
table models are all implemented in EMOTA to calculate 
current and conductance. Instead of the bypass scheme, a 
new selective trace event-driven schme is employed to 
exploit the circuit latency. Once the element is activated 
by the elements connected to its inputs, it is then only 
triggered by itself. Therefore, the local variable time step 
is only limited by its own LTE. A special time-wheel 
mechanism is used to control the time flow and event 
scheduling. 

The results for simulation examdes using EMOTA 
have shown that it can be two or tiree orders of magni- 
tude faster than SPICE2G.5 when the circuit size 
becomes large. The errors between EMOTA and 
SPICE2G.5 are within 5% for the simulation examples. 
These errors are mainly due to the fact that drain-gate 
and source-gate capacitances are ignored. Finally, a 
special purpose hardware simulation engine for EMOTA 
is currently under investigation. 
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