
EMOTA: an event-driven MOS timing simulator for
VLSl circuits

W.-Z. Shen

Y.-S. Tao
S.-J. JOU

Indexing term: Computer simulation, Algorithms, Very large scale integration

Abstract: A novel new event-driven MOS timing
simulator for VLSI circuits, EMOTA, is present-
ed. The traditional event-driven simulation
scheme used in logic simulation is modified for use
in this circuit level timing simulator. The fast per-
formance is due to the result of mixing the new
derived event-driven algorithm and its associated
time-wheel control mechanism, together with the
unidirectional nonlinear Gauss-Seidel relaxation
technique to decouple the circuit equations.
EMOTA allows both interactive and batch simu-
lation modes and its input format is the same as
SPICE. The simulation speed of EMOTA is
shown to be more than 300 times faster than
SPICE2G.5 for circuits of several hundred tran-
sistors and the simulated waveforms have accept-
able accuracy.

1 Introduction

General purpose circuit simulators, such as SPICE2 [l]
and ASTAP [2], have been widely used for the circuit
analysis of integrated circuits. These simulators can
provide DC, AC and time-domain transient analyses of a
wide range of circuits. Among these, time-domain tran-
sient analysis is the most commonly used analysis per-
formed by circuit simulators, but it is also the most
time-consuming one. Since the formation and solution of
the circuit equations are most expensive in terms of the
computer time, especially when the circuit size exceeds a
certain range. Therefore, it is very inefficient to simulate
large circuits using these tradiational circuit simulators.

To enhance the speed of simulation when large circuits
are simulated, many timing simulators such as MOTIS

[8] and MOTA [9] have been developed based on relax-
ation electrical simulation technology (REST) [lo]. These
are special purpose simulators that deal with MOS
circuit transient analysis and, basically, the relaxation
techniques were used to decouple nodal equations to
avoid solving the large sparse matrix, while still main-
taining acceptable waveform accuracy. Because of the
decoupling of the model equations, for logic gate circuits
the time required at the solving step grows only linear
with the number of nodes.

[3,4], MOTIS-C [SI, SPLICE [SI, RELAX [7], ADEPT

Paper 7248G (ElO), first received 30th May 1989 and in revised form
18th October 1989
The authors are with the Institute of Electronics, National Chiao Tung
University, 45 Po-Ai Street, Hsinchu, Taiwan, Republic of China

IEE PROCEEDINGS, Vol. 137, Pt . G, No. 4, AUGUST 1990

For most circuits, the fraction of nodes that, are
changing their voltage value at a given point in time
decreases as the circuit size increases. For logic or circuit
simulators, many schemes have been used to exploit this
time sparsity or latency to further enhance the simulation
of large electrical circuits [ll-223.

In this paper, we describe EMOTA, an event-driven
MOS timing simulator. The Gauss-Seidel-Newton relax-
ation simulation technique is used in EMOTA because of
its better convergence properties [lo]. Considering the
property of convergence speed and the behaviour of
MOS circuits, we partition the circuit into simple logic
gate blocks and tightly-coupled and/or bidirectional
circuit blocks. Thus, the signal propagation between logic
gate and subcircuit block is unidirectional and, hence, we
call this the unidirectional Gauss-Seidel relaxation simu-
lation technique. For completeness of this paper, the
whole simulation technique will be shortly discussed in
Section 2.

The employment of an event-driven, selective trace
technique that is usually used in logic simulators [13-151
can provide a major time saving in logic simulation. This
technique views a whole state changing as event and pro-
cesses the events dynamically without the need to check
or simulate each node for activity. Because EMOTA uses
the unidirectional Gauss-Seidel relaxation technique, the
signal propagation between circuit blocks is like that of
logic simulation. Thus EMOTA combines the unidirec-
tional Gauss-Seidel relaxation technique and the concept
of an event-driven technique into a novel new timing
event-driven technique. This new method is quite differ-
ent from the traditional one because in a timing simula-
tor, not only the state, but the whole transient waveform,
must be calculated. A special time-wheel control mecha-
nism used to deal with dynamic events can simplify the
control process. The event-driven algorithm and the
time-wheel mechanism will be discussed in Sections 3 and
4, respectively.

Although there has been a need for theoretical and
practical investigation in all of the algorithmic aspects
used in the simulator, there is also a need to concentrate
on the overall software system. So the whole program
structure, data structure, methodology and 1/0 pro-
cessing will be discussed in Section 5 . Finally, the simula-
tion results and comparisons with other simulators will
be discussed.

2 Unidirectional Gauss-Seidel relaxation

To perform the transient analysis of MOS digital inte-
grated circuits, the circuit equations can be written in the

technique

279

following form using the modified nodal analysis [16]
with the assumption that the inductance effect in the
circuit i s ignored and each node has a capacitor con-
nected to reference node:

C(v(r), W)) V(r) = - f(v(t), u(r)) o G t < T

V(0) = v, (1)

where V(r) and p(r) E R" are the vectors of node voltage
and its time derivative, respectively, and U(t) E R" is the
vector of the input voltage source at time t . C(V(t),
U(f)) E R" * R" represents the nodal capacitance matrix.
f: R" * R" + R" can be expressed as

with initial condition,

f(V), W))

wherefi(V(t), U(t)) is the sum of the currents charging the
capacitors connected to node i .

To solve eqn. 1, a simulatable MOS timing model is
derived [12] which uses the following techniques:

(a) A trapezoidal algorithm to discretise the derivative
operators,

(b) The nonlinear Gauss-Seidel relaxation technique to
decouple the circuit equation,

(c) The Newton-Raphson method with one unknown
to linearise the nonlinear elements.

After the above techniques are applied, the capacitor is
replaced by its companion model and the MOS device is
replaced by a Norton equivalent model. The interested
reader may refer to Reference 12 for a detailed descrip-
tion of the Gauss-Seidel-Newton properties.

In MOS digital circuits, a commonly used circuit
structure is a complex driver-load logic gate. This con-
sists of a collection of MOS transistors that are con-
nected in series-parallel combinations. For MOS devices,
if the gate-drain and the gate-source capacitances are
assumed to be ignored, the gate can represent an almost
unidirectional node. Thus driver-load logic gates are uni-
directional elements with one output whose voltage is
controlled by several inputs. The behaviour of the output
is a function of the topology of the circuit and the input
voltages that control the transistors in this topology. For
this type of circuit, the convergence speed is fast and
accurate voltage solutions can be obtained by one Gauss-
Seidel-Newton iteration. But, for circuits containing
tightly coupled feedback loops or bidirectional elements,
such as pass transistors, transmission gates and floating
capacitors, strong coupling can cause severe inaccuracy
and even instability during nonlinear relaxation analysis
[9,10]. Thus, from the simulation point of view, for a
circuit containing tightly coupled feedback loops and/or
bidirectional elements, the relaxation method is not a
robust technique.

A subcircuit technique [9] is provided by EMOTA to
simulate circuits containing tightly coupled feedback
loops and bidirectional elements without the occurrence
of severe inaccuracies. The circuit block is treated with a
direct matrix solving technique using the same simulat-
able timing model as above. After the tightly coupled cir-
cuits are all grouped into subcircuit blocks, the whole
circuit is partitioned into sets of logic gates and sub-
circuit blocks only. The combination of the subcircuit
technique and the nonlinear Gauss-Seidel relaxation
technique is referred to as the unidirectional Gauss-Seidel
relaxation technique. In this technique, signal propaga-

280

tion is unidirectional, i.e. from input nodes to output
nodes of logic gates and subcircuit blocks like the
one-way macromodelling concept in Reference 17. This
technique is well suited to the event-driven control
mechanism because the circuit is partitioned into blocks
and thus the signal propagation between blocks in the
circuit simulation is the same as that in the logic simula-
tion. Thus, to enhance the simulation speed, the imple-
mentation and evaluation of these blocks must be simple
and easy to store and move so that the processing over-
head of the event is small and the time saving is large
when simulating large circuits.

3 Time-wheel, event-driven control scheme

3.1 Event and selective trace
For logic simulation, selective trace is a technique based
on the observation that if the output of an element does
not change when the inputs change, then the fanouts of
that element are not affected by the excitation of the
input signals. Hence, the output of the current element is
not evaluated and the signals stop propagating along the
trace. Based on this technique, an event is said to have
occurred when an output line of an element takes on a
new value, or logic value. The new value may or may not
be the same as the value already held on the output line
[13]. Thus an element is triggered only when its inputs
are ready to evaluate the outputs of the element. If the
new value is the same as the value already held by the
output line, the selective trace technique comes into play
and the event is cancelled. However, if the new value is
different from the value already held by the output line,
the event will be propagated to the fanout elements.

Although the time-wheel, event-driven control scheme
has long been used in logic simulators [13], it is not used
in traditional circuit simulators because the whole circuit
is solved in a matrix structure. On the other hand, the
unidirectional Gauss-Seidel relaxation technique has the
potential to use this control scheme because of the
decoupling of circuit equations and because the signal
propagation between blocks is unidirectional. To incor-
porate this scheme into EMOTA, the events at the circuit
level must be carefully defined, and the propagation of
events is much more complex than that in a logic simula-
tor.

In the transient analysis of circuit simulation, we need
to calculate the nodal voltage waveform insteBd of the
logic state only, so the event cannot be defined to the
same as that in logic simulation. In EMOTA, an event is
the change of node voltages between two successive simua-
tion time steps of an element during the transient. So an
event associated with an element can occur not only with
change of voltages on the input nodes, but also with
changes of internal and output nodal voltages of the
element at any transient time step. For each element,
whenever the voltage at any one of the input nodes starts
changing, the effect of this change at the element must be
traced as it propagates to its fanout elements. Only the
elements that are affected directly by this change will be
processed; this technique is selective and, hence, this is
the selective trace technique for EMOTA.

3.2 New event-driven control scheme
SPLICE [6] and SAMSON [18] have proposed the
event-driven technique, but the method proposed in
SAMSON is at the matrix solving level which is different
from the relaxation level used in EMOTA. SPLICE may
be the first relaxation based simulator to propose the

I E E PROCEEDINGS, Vol. 137, Pt. G , No. 4 , AUGUST 1990

event algorithm at relaxation level. This algorithm,
shown in Fig. 1, has the drawback that, the elements are
not only triggered by events created by itself, sew events
(determined by local time step control), but also by
events created by the elements connected to its input
nodes, input events. Therefore the simulation time step is
limited not only by the local truncation error (LTE) of
the element, but also by the LTE of the elements con-
nected to its input nodes. So the events of the element
may be created twice during a simulation time step, or
created more often than is necessary. This drawback can
be eliminated if once the element is initially activated by
the input events, it is then triggered by itself, that is, trig-
gered by the self events and ignores successive input
events. Thus the simulation time step during the transient
is determined only by the LTE of the element. The new
timing event-driven algorithm used in EMOTA is listed
in Fig. 2.

/*E(t,): event list at time step f , */

WHILE@, < TSPOP){
t, = 0 ;

k t n .
WHILWevent list Ek(tn) is not empty){

FOREACH(i in E &)) {

where P+' , '= [V:", . . , V j + l , Vf,, ,..., VfIr
IF(1 Vf" - V: I < E ; i.e. convergence is achieved){
use LTE to decide the next time f , for processing node i ;
add node i to event list E&,);

L E {
add node i to even list Et+ , ([,) ;
add the fanout nodes of node i to even list E,(tJ if they
are not already on E&;

}
}
Ek(tJ+Ek+, (t , J ; Ek+At.)+empty;

k + k + l ;
1
f " - f " + 1

}
Fig. 1 SPLICE event-driven algorithm

/*element
/*E(t,) :event list at time step t , ' 1

:single gate block and subcircuit block*/

t , = 0
1

2 solve element i ;

WHILE (event list E(t,) is not empty){
FOREACH (element i in E@,)){

Set element i to inactive;
FOREACH (output node j of i){

IF (1 y k) - K(tn- 1) I > d J {
Set element i to active; 3

4
IF 0' is not active) {

Add each inactive fanout element k
of node j to E(t,J;
Set k and j to active;
I

1
IF (element i is not active) {
Set nodes of element i to inactive;

1

I
5

ELSE {
6
7

Use LTE to determine next time step, t,;
add element i to E(t, + r J ;

}
1
t , = t , + ,

I
Fig. 2
algorithm

IEE PROCEEDINGS, Vol. 137, Pt. G, No . 4 , AUGUST 1990

Unidirectional nonlinear Gauss-Seidel relaxation event-driven

In this algorithm, the event list E@,) is used to sched-
ule the events of the elements that are to he processed in
time t,(step 1) and an element is initially activated only
by the input events (step 4). Once an element is to be
activated, at time t , , the event for this element will be
scheduled into the event list E@,,). Then this element will
be solved at time t , and if any one of the output node
voltages changes after calculation (including the internal
nodes of subcircuit), this element is then activated by
itself (step 3) and the LTE is used to determine the next
time step t,(step 6). The old event is cancelled and a new
event associated with this element will be added into the
event list E(t , + tJ (step 7). Thus events are propagated
and the elements that are already activated will not be
activated again.

If all the output nodes and internal nodes of the active
element stay unchanged, the old event is cancelled and
the element is set to be inactive. Thus, no events propa-
gate through this element and unnecessary computation
and checks are avoided. In EMOTA the voltage change
is recognised if it is greater than a specified value d,, . The
value of d,, must be carefully and properly chosen to
obtain an accurate simulation result and a fast simulation
speed. It has been found experimentally that the value of
0.0005 V ford,, gives the best result.

During a change of logic level, there may be tens of
events occurring depending on the limitation of the LTE
instead of one, as in logic simulation. To successfully use
this new timing event-driven control scheme with the uni-
directional Gauss-Seidel relaxation technique, some criti-
cal points must be investigated.

(i) Before the transient analysis, initial events must be
put into the time-wheel.

Initial events are the events triggered by the excitation
of input voltage sources. For example, a circuit, input
sources and the associated initial events are shown in Fig.
3a. Before simulation, the initial events are all put into the
time wheel to avoid checking the input source for the
initial events at each simulation time step. For logic
simulation, the above arrangement is satisfactory because
each change of logic level needs only one event evalu-
ation, but for circuit simulation, there is one problem.
When the initial event occurs, some input may change
very slowly so after one time step calculation, the output
voltage may not change or the change may he below doc .
In this case, the event will not propagate and the block
will not activate itself while actually this block should
activate itself and the event should propagate after the
input has completely changed. To solve this problem we
use the second scheme.

(ii) For initial events, it is divided into ten events, each
one is separated by one tenth of the duration.

To have a safe simulation, EMOTA does not allow
stepped input voltage sources. For inputs that are con-
nected to the outputs of other blocks, the events will be
missed only when a fast changing stage is driving a slow
changing state. This occurs when the input voltage is
stable and the change of output voltage during the whole
input transient is less than than d,,(0.0005 V). In this
case, the transient time of the second stage is almost
lOOOO(5 V/0.0005 V) times longer than the first stage. In
practical circuit designs, this is not advisable and some
buffer stages are inserted.

(iii) There are three conditions under which a block
may have more than one event associated with it during
a transient:

(a) The ten initial events and the self events activated
by the block,

281

(b) When the input source has been stable after a tran-
sient and then changes its value again, but the block is
still in the activated condition due to previous changes as
illustrated at time 2t in Fig. 3b.

(c) A block has more than one input changing at the
same time, as in Fig. 3c.

Initial events

Time Block

t 1 and 2
2t 2
3t 1 and 2
4t 2

a

b

-
C

Fig. 3 Some special conditions ofevent-driven control

When a block has more than one source of events sched-
uled in the time wheel during a transient, if each one acti-
vates itself then there will be too many events associated
with this block, thus wasting simulation time. For condi-
tions (a) and (b), we use an active flag (active-f) to check
whether there are too many events. For a block that is
inactive, active-f = 0, and if it is activated by the input
sources, active-f = 1; otherwise it is activated by itself
and active-f = 2. Thus, when the program meets an
event with active- f = 1, but the block is already activat-
ed (active- f = 2) the program skips the initial events. For
condition (c), there are two events for the same block in a
single time step. To avoid an erroneous simulation
(calculating the output voltage twice in a time step), we
add a localcount variable to each block and a global
counter is increased by one when the time-wheel grid
advances one step. If a block has been simulated in this
time-wheel grid, the program will set localcount of this

282

block to the value of the global counter. Thus, when
another event in the same time grid is encountered,
because the global counter equals local-count, the
program will skip this event.

This new timing event-driven algorithm is listed in Fig.
2. The three schemes that efficiently and correctly control
the signal propagation in an MOS circuit as the simula-
tion proceeds will be discussed in Section 6. As we have
mentioned, the number of events in a circuit simulation
are greater than in logic simulation. So the scheduling
and controlling of events must be well arranged to reduce
event operations. EMOTA uses a new time-wheel control
mechanism to process the scheduling of the events in an
efficient manner. This time flow mechanism will be dis-
cussed in next Section.

4 Time-wheel mechanism

Three types of event control schemes have been pro-
posed, namely, fixed time increment, next event and
hybrid time flow mechanism [13] . The hybrid time flow
mechanism is adopted in most modern simulators. In this
mechanism, a double-size time queue TQ and one over-
flow event list (sometimes called a macro time event list,
MTEL) are used. A detailed description can be found in
Reference 13. In EMOTA, a multiloop time wheel it uti-
lised instead of the TQ and MTEL to achieve efficiency
in operation and storage.

The time wheel is like a circle with 50 grids in size, as
shown in Fig. 4a. Each grid in the wheel represents a
minimum time unit (TI) used in EMOTA and the wheel
is moved forward by this fixed time increment. TI is
chosen to be 0.02 ns for accurate simulation results. The
variable WI(0 < WI < 50) indicates which grid in the
wheel is currently being processed. Each grid in the time
wheel contains a point to a list of events that occur at
this instant of time. For example, if an event is deter-
mined to occur five time units later by current evaluation,
this event will be linked to the event list in grid WZ + 5.

As for wheel size, a large wheel size will occupy too
much space, but if a small wheel size is used, too many
events will be scheduled to a grid number that is larger
than the wheel size. Because in MOS integrated circuits,

element 3
ewnt loop count element point to next event

Identifuntion
b

Fig. 4 The time wheel
Y Time-wheel mechanism total wheel size = 50; time increment = 0.02 ns
b Data structure of an event

IEE PROCEEDINGS, Vol. 137, Pt . G, No. 4, AUGUST 1990

for simulation technique used (LTE limitation and con-
vergence condition requirement), during the transient, the
time step is usually less than 1 ns. Thus, the wheel size is
chosen to be 50 to save memory space. Since the wheel
size is 50, some events (like initial events, etc.) will be
scheduled to a grid number (NO) which is larger than the
wheel size. Instead of using one overflow event list, to
solve this problem, the number NO + WI is divided by
50, the residue is the grid number where the event is to be
added to. The quotient is recorded in the first entry of the
event data structure as a loop count. The data structure
and the event of this multiloop time wheel is shown in
Fig. 4b. The second term of the data structure indicates
the element associated with this event. The last term is a
link that points to the other events in the same time unit
to form the event list.

Let WLC be a variable denoting the number of cycles
that have been made through the time wheel. When each
grid of the event list is traversed, the events whose loop
count is zero are processed and then deleted. As for
events whose loop count is not zero, the loop count is
decreased by one and the events remain in this time grid.
When the Link points to NULL, it means all the events
in the current time grid have been traversed. Then the
variable WI is increased by one, i.e. the next grid is now

to be processed. Whenever the variable WI equals 50, it
is reset to zero and the variable WLC will be increased
by one. Thus the simulation time is always equal to the
expression ((50*WLC) + WI)*TI.

5

EMOTA is implemented on a SUN workstation and
written in C. The overall program flowchart is shown in
Fig. 5. The input format of EMOTA is the same as for
SPICE, except for two differences. In EMOTA, the user
must define the global nodes, such as the reference node
and power node, by using the *. Global card; numbers
and letters can be used to specify a node while in SPICE,
a node must be specified as a number. As for the MOS
model, the level 1 and 2 models are the same as for
SPICE2G.5 and level 4 is an I&G table lookup model
[21]. The data structure for a logic gate and subcircuit,
and the partitioning scheme, will be discussed in more
detail in the following Section.

5.1 Logic gate data structure and evaluation
In EMOTA, the user can define the driver-load CMOS
gate as shown in Fig. 6 using a .SUBCKT card to define
a logic gate block. Such a transistor structure can be

Overall program and data structure

read input description and I construct the data structure I

I
.

I I
partition the circuil into gate
and lor subcircuit blocks

perform DC analysis

from t Y O to t t stop display the output immediately

yes I n - - cy,
Fig. 5

1EE PROCEEDINGS, Vol. 137, Pi. G, No. 4 , AUGUST I990

Main programflowchari of E M O T A

283

stored as an evaluation tree. This tree structure is suitable
for this series/parallel configuration [19]. The internal
tree data structure, used in EMOTA, for the gate in Fig.
6 is shown in Fig. 7.

SUBCKT GEXAMPLE A B C D OUTPUT 1
MP, 2 C 1 1 PMOS
MP, 2 B 1 1 PMOS
MP, 2 A 1 1 PMOS
MP, 3 A 2 1 PMOS
MP, 4 B 3 1 PMOS
MP, 5 C 4 1 PMOS
Mp, OUTPUT D 2 1 PMOS
Mn, OUTPUT A 6 0 nMOS
Mn, 6 B 7 0 nMOS
Mn, 7 C 0 0 nMOS
Mn, 8 A 0 0 nMOS
Mn, 8 B 0 0 nMOS
Mn, 8 C 0 0 nMOS
Mn, 5 D 8 0 nMOS
.ENDS GEXAMPLE

a

output
-v
A -

B -

r"
b

Fig. 6
LI Circuit description

Defining a driuer-load gate
b Circuit diagram

a

t
IMN, H M N 5 W M N 6

b
Fig. 7
a Basic node structure

284

Representation of data in EMOTA
b Tree data stmciure

As shown in Fig. 7, each node structure consists of
three parts: the function of the node, the left node pointer
and the right node pointer. All the nodes are linked to
form the tree structure according to the circuit connec-
tions. The root node, indicated by ' = ', consolidates the
results from both the driver and the load subtrees. Each
subtree can be further broken down into series/parallel
connections. The function of the parent node shows that
the child nodes linked to the left pointer are in parallel or
in series by the '+' and '*' operators, respectively. The
MOS transistors are always at the leaf node indicated by
'M'. For example, Mn,, Mn, and Mn, are in series; Mp,,
Mp, , and Mp, are in parallel. Using this data structure,
once an event occurs at the input nodes of the logic gate,
only the pointer of '=' needs to be scheduled and pro-
cessed.

The logic gates are simulated using macromodels for
those sections of the circuit whose connectivity is well
understood in the tree data structure. The macromodel,
which is based on a large-signal linear approximation of
the transistors in the driver-load gate [20], enables us to
compute the output voltage of the gate in an efficient
manner. For example, in EMOTA, to evaluate the output
voltage waveform of a driver-load gate, first, the equiva-
lent models are applied to each MOS device and output
capacitor. According to the macromodel, as the driver or
load subtree is traversed, the current (conductance) for a
parallel transistor section is computed as the sum of its
constitutent currents (conductances); for a series section,
the reciprocal of the current (conductance) is obtained as
the sum of the reciprocal of the constituent currents
(conductances) [20]. To traverse the tree data structure, a
depth-first traversal algorithm is used, as shown in Fig. 8.
Each node in the tree data structure will be traversed to
yield the equivalent current and conductance via the
technique described previously. Finally, the driver (or
load) transistor of the final equivalent circuit is viewed as
the only transistor between the output node and V,, (or

GLOBAL VARIABLE :leuel ,stack
LOCAL VARIABLE :t-leuel ,p

I* at initial, level = 0, p = root node ' J

TRAVERSE @)

t-level = leuel;
while @ + left! = NULL){

PUSH p - stack-B;
leuel = level + 1 ;
p = p - left;

{

}
CALCULATE current I and conductance G ;
PUSH I and G - stackrleuell;

while (p - right! = NULL){
REPEAT:

p = p -right;
if @ +function = = "M"){

CALCULATE current I and conductance G ;
PUSH I and G -t stack[leueQ;

i
else

CALL TRAVERSE@);
}
POP stack-b - p ;

leuel = leuel - 1 ;
PERFORM p - function;
PUSH the resultant I and G - stackrleueg;
if(leue1 = = t-leueo

else
return;

goto REPEAT;
I
Fig. 8 Depthfirst trauersal algorithm

1EE PROCEEDINGS, Vol. 137, Pt. G, No. 4, AUGUST 1990

GND) node. The complexity of this algorithm is O(L),
where L is the depth of the tree (the number of series and
parallel operations). Although the example used here is a
full CMOS logic gate, domino or other dynamic logic
gates can also use. this data structure and traversal
method.

5 2 The subcircuit scheme
The subcircuit block is a group of elements that have
their nodes connected by the source and drain nodes of
pass transistors, and/or the two terminal nodes of
resistors or capacitors. So the boundaries of the sub-
circuit are the primary input nodes, primary output
nodes, gate nodes of MOS devices, and power supply
rails (i.e., V,, and GND). All the element models for sub-
circuit blocks are listed in Fig. 9. In the subcircuit, the
direct matrix solving technique is used to solve this
tightly coupled block [9].

symbol

-
R

L a
D S

model

I,

gc

PO

lo@go

I- -

Fig. 9 Element models of subcircuit used in EMOTA

5.3 The strategies for pattitioning
The objective of partitioning in EMOTA is to decouple
the input circuit into a set of loosely coupled blocks. The
drain-source path of pass transistors and RC elements
are recognised as strongly coupled paths. Therefore, the
strategies adopted by EMOTA are, first, connect all ele-
ments passing along the strongly coupled path to form a
block, and secondly, stop only at the gates of pass tran-
sistors or inputs to logic gates. If there is only one logic
gate in the block, it is viewed as a single logic gate block
and is separated from the subcircuit block. This is due to
the fact that the single logic gate block can be solved
easily by using the method discussed in Section 2.1.

In the partitioning stage of EMOTA, all the parasitic
capacitances connected to one node are lumped as one

I E E PROCEEDINGS. Vol. 137, Pt. G, No. 4 , AUGUST 1990

capacitance and it is lumped from the node to ground.
The parasitic capacitance is calculated approximately by
averaging the values through all the working voltage
regions, and a good coetlicient for the Miller effect is cal-
culated. Therefore, the loading effect of each node has
already been included in the block so the coupling effect
is avoided. In addition, since each node has a capacitance
to ground, the resultant matrix has the characteristics of
diagonal dominance. In this condition, there is no pivot
problem during the matrix solving process.

A detailed flowchart of the partitioning algorithm is
shown in Fig. 10. First, a node is selected as the current
node, then, a search is made of all its connectivity to see
whether strongly coupled paths exist or not. If so, the
element in each path is included in this block and the
other nodes of the elements are pushed into the stack.
After doing this, the current node is flagged, the nodes in
the stack are popped as current nodes and the above
process is repeated. Block formation is continuous until
the stack is empty. Block attributes, such as input lists,
output list, matrix ordering, etc. can now be constructed
well. EMOTA then continues to search for an unflagged
node as a current node to continue forming the second
block. When all nodes are flagged, the job of partitioning
comes to an end. EMOTA goes to the subsequent
module.

To illustrate the partitioning algorithm, a simple
circuit example is shown in Fig. l l a . Initially, node 2 is
chosen as the current node, all the elements enclosed by
the broken line are connected by a strongly coupled path,
hence one block is formed. The input list of this block is
nodes 3, 4, 5 and 6 and the output list is nodes 2 and 7.
EMOTA continues to search for an unflagged node, that
is node 4, as the current node. It is found that only one
strongly coupled path, gate A, is connected to it. So, gate
A is grouped by itself as a single gate. The only unflagged
node now is node 8 and, similarly, only gate B is con-
nected to it, so gate B itself is also grouped as a single
gate. Hence, the circuit has been partitioned and grouped
into one subcircuit block and two single gate blocks, as
shown in Fig. llb. For convenience of application of the
event-driven algorithm, the data structure of the circuit is
arranged as shown in Fig. l l c where the left column
array denotes the total node number. All the subcircuit
and single gate blocks are linked to the array by their
input node numbers.

6 Simulation results and discussions

In this Section, several circuits and their simulation
results are discussed. These circuits are simulated by
using a SUN-3/160C (68020) workstation with a floating
point coprocessor.

To illustrate that EMOTA can provide accurate
timing waveforms similar to the traditional circuit simu-
lator, a 11-stage cascade inverter is used as an example
circuit. In this circuit, each node has an interconnection
line capacitance as shown in Fig. 12a. This inverter chain
is simulated by EMOTA, and the output waveforms of
each odd stage are shown in Fig. 12b. For this case, the
interconnection line capacitances are 0.2pf. Fig. 12c
shows the comparison of the simulation waveform
between EMOTA and SPICE2G.5. It is seen that these
two waveforms are in excellent agreement. Table la is a
summary for the pair delay between EMOTA waveforms
and SPICE2G.5 waveforms with various interconnection
line capacitances. The difference between these two wave-

285

link to block

nnrl 1

yes source process
and

I/O store

element process

-
7-

flag current node

kTA-1 , n r ,

form I/O list

U0 store form matrix

link to block
and I I pushnode I I

end

Fig. 10 Partitioningflawchart

0

gateA

block Y1 gate B
3

6
C

b

286

1

block#l

+-(7 gate A

Fig. 11 Example of partitioning algorithm

IEE PROCEEDINGS, Vol. 137, Pt. G, No. 4 , AUGUST I990

forms is less than 3%. For the delay of the total 11-stage
inverter as shown in Table lb, the errors are all within
4%. These results are fairly good.

4 0 -
>
s
- 5

20.
P

0 0

a

O r

... _ _
i , --
: ,
/ I
/ I
i t

: I
i I
! I
/ I
: I
: I !, I

/ I I
: I I
: I I

I I

--; - :
i l

. I
: I : I

j l
: ,

: I
/ I

8

\'. - 1.. I

>

0 0

b

40

t1rne.s x l d
C

Fig. 12
a Circuit diagram
b Simulation result of odd stage of inverter
c Output waveform
__ EMOTA for V(2);

Simulation of l l - s tage cascade inverter

SPICE2G.5 for V(2)
EMOTA for V(I2);

-~~

_ ~ ~ _ SPICEZG.5 for V(12)

Table 1 : Accuracy comparison between EMOTA and
SPICE2G.5

Node EMOTA, SPICE2G.5, Error, %
capacitance ns ns

OPf 0.396 0.388 2.06
0.1 pf 1.583 1.557 1.67
0.2pf 2.754 2.722 1.17
0.5pf 6.333 6.218 1.85

a

Node EMOTA, SPICE2G.5, Error, %
capacitance ns ns

OPf 1.929 1.871 3.09

0.2pf 13.73 13.54 1.40
O.lpf 7.788 7.704 1.09

0.5pf 31.35 31.16 0.61

b

a Pair delay
b Delay between first and 11 th stages

IEE PROCEEDINGS, Vol. 137, Pt. G, No. 4, AUGUST 1990

The second example illustrates the logic gate and DC
analysis ability. This is a 2-bit ripple counter composed
of T flip-flops. The T flip-flop is implemented by using
the master-slave J-K flip-flop, as shown in Fig. 13a. This
circuit is partitioned into single logic gate blocks. The
input clock waveform and the simulation results are illus-
trated in Fig. 13b which shows that the DC analysis sets
up the correct DC state and the event-driven control
scheme can correctly simulate the sequential circuits.

set p

r 5v 1- 5v

CLOCK

a

tlm,sXm"

b

Fig. 13 Simulation ofa 2-bit ripple counter
(I Arrangement of gates in Biptlop and circuit diagram of counter
b Output waveform of counter simulated by EMOTA
~ V(CL0CK)

VQ,)
(Q O)

~~~~ 

. . . ... 

The third example is a 4-bit ALU converted from a 
TTL 74LS181. The logic gate diagram of the 74LS181 is 
shown in Fig. 14a and this circuit is implemented using a 
driver-load CMOS circuit instead of TTL. This circuit 
contains 290 MOSFET transistors. If S, S,S,S, = OOO1 
and M = 0, the ALU performs addition and the simula- 
tion results are shown in Fig. 14b. If S,S,S,S, = 0110 
and M = 1, the ALU performs an exclusive OR and the 
simulation results are shown in Fig. 14c. 

Several circuit examples have been used to demon- 
strate the time saved by using an event-driven scheme. 
These examples are simulated with and without an event- 
driven scheme for comparison. The simulation times of 

287 



53 
52 
51 so 

82 or02 

3i2 orA2 

SI or BI 

AlorAl 

3iO or A0 

C ,  or?,, 

a 

Gory 

C n . 4  or 
C n . 4  
P W X  

5 
B 
3 

I I 

00 20 40 
t,me,sx1e 

b 

Fig. 14 Cbit ALU simulation 
a Circuit diagram 
b Output waveforms simulated by EMOTA 
__ 

V(9) 
V(10) 
W1) 
VU3) 
V(16) 

~ _ _ ~  

_ ~ _  
....... 
V(1) = V(22) = V(20) = V(18) = 5 V; V(2)  = V(23) = V(21) = V(19) = 0 V 

288 

3 FOorFO 

IEE PROCEEDINGS, Vol. 137, Pi. G, No. 4, AUGUST 1990 

T 



these examples are listed in Table 2. We can see from the 
table that the event-driven scheme indeed saves simula- 
tion time, and for large circuits and slow clock rate cir- 
cuits, the time saving is more significant. The data in 
Table 2 indicate that the event-driven scheme can 
increase the simulation speed by almost an order of mag- 
nitude. 

Table 2: Comparisons  of t h e  s imulat ion s p e e d  w i t h  and 
w i t h o u t  an event-driven s c h e m e  

Event control 

Circuits 

Two inverters 

11 inverters 
(r, = 22) 
20 inverters 
(r. = 40, CP = 20 sn) 
(Time = 40 ns) 
20 inverters 
(T,  = 20, CP = 20 sn) 
(Time = 80 ns) 
4 bit full adder 
( r ,=io4) 
741 81 4-bit ALU 
(r. = 290) 

v, = 4) 

With event-driven 
scheme 

1.88 s 

8.92 s 

13.37 s 

30.45 s 

70.58 s 

200.33 s 

Without 
event-driven 
scheme 

9.07 s 

47.35 s 

84.07 s 

258.87 s 

691.37 s 

2221.75 s 

T, =Transistor number; CP = input clock period; time =total time 

If circuit size grows, the latency may be increased, i.e. 
the event-driven scheme will save more simulation time. 
To illustrate this, the ripple counter of the second 
example is simulated using EMOTA and SPICE2G.5. 
This counter circuit is simulated for various sizes (from 
2-bit to 32-bit) and the simulation times are listed in 
Table 3. SPICEZG.5 cannot simulate counters larger 
than 16 bits due to convergence. and memory limitation. 
The simulation time of a 32-bit counter using 
SPICE2G.S is estimated by using extrapolation. The 
relationship between circuit size and simulation time is 
shown in Fig. 15. The simulation time for EMOTA is 

40Mx) 

2oooo t 

/ 

’oooy 
EMOTA 

200 

I 1 1 1 1 , I I  

0 4 8 12 16 20 24 28 32 
bits 

Fig. 15 
circuit size 

Simulation time of EMOTA and SPCE2G.S for increasing 

approximately linear with node activity, which is typi- 
cally less than linear with circuit size. At 32-bits, the 
EMOTA is 300 times faster than SPICEZG.5 
(extrapolated). These time savings are the result of using 
the unidirectional Gauss-Seidel relaxation technique, an 
I&G table lookup model and an event-driven simulation 
technique. SPLICE [6]  simulates a counter-decoder- 
encoder circuit with 553 MOSFETs about 66 times faster 
than SPICEZG. Compared with this example, EMOTA 
is more efficient then SPLICE. 

Table 3: Comparison of simulation s p e e d  b e t w e e n  EMOTA 
and SPICEZG.5 

Bit SPICE2G.5, EMOTA, SPICE2G.5/EMOTA 
number s s 

2 bit 5276.02 101.38 52.04 
4 bit 10309.02 134.02 76.92 
8 b i t  19610.75 153.00 128.17 

16 bit 37403.75 180.15 207.63 
32 bit *71000.00 219.97 322.77 

* Estimated value 

7 Conclusion 

In this paper, a relaxation-based event-driven timing 
simulator for VLSI circuits is presented. Because the 
input format is very similar to SPICE, users can describe 
the circuit very easily. According to the circuit connec- 
tivity described in an input file, the circuit will be parti- 
tioned and grouped into single logic gate blocks and 
subcircuit blocks automatically. To increase the simula- 
tion speed, tree data structures, simulatable timing 
models, relaxation technique and macromodels are used 
to solve the driver-load logic gate. Each subcircuit block 
is solved using the direct matrix solving method and 
node ordering to overcome the drawback of using relax- 
ation technique. 

The analytical models of SPICE2G.5 level 1 and 2 and 
table models are all implemented in EMOTA to calculate 
current and conductance. Instead of the bypass scheme, a 
new selective trace event-driven schme is employed to 
exploit the circuit latency. Once the element is activated 
by the elements connected to its inputs, it is then only 
triggered by itself. Therefore, the local variable time step 
is only limited by its own LTE. A special time-wheel 
mechanism is used to control the time flow and event 
scheduling. 

The results for simulation examdes using EMOTA 
have shown that it can be two or tiree orders of magni- 
tude faster than SPICE2G.5 when the circuit size 
becomes large. The errors between EMOTA and 
SPICE2G.5 are within 5% for the simulation examples. 
These errors are mainly due to the fact that drain-gate 
and source-gate capacitances are ignored. Finally, a 
special purpose hardware simulation engine for EMOTA 
is currently under investigation. 

8 References 

1 NAGEL, L.W.: ‘SPICEZ, a computer program to simulate semicon- 
ductor circuits’. University of California, Berkeley, USA, Memoran- 
dem ERLM520, May 1975 

2 WEEKS, W.T., JIMENEZ, A.J., MAHONEY, G.W., METHTA, D., 
QUASSEMZADEH, H., and SCOTT, T.R.: ‘Algorithm for 
ASTAP-a network analysis program’, IEEE Tram., 1973, CT-20, 
pp. 6 2 W 3  

3 CHAWLA, B.R., GUMMEL, H.K., and KOZAK, P.: ‘MOTIS - 
An MOS timing simulator’, IEEE Tram., 1975, CAS-22, pp. 
90-909 

IEE PROCEEDINGS, Vol. 137, Pt. G, No. 4, AUGUST 1990 289 



4 CHEN, C.F., and SUBRAMANIAM, P.: The second generation 
MOTIS timing simulator - an eflicient and accurate approach for 
general MOS circuits’. Proceedings of International Symposium on 
Circuits and Systems, Montreal, Canada, May 1984, pp. 53&542 

5 FAN, S.P., HSUEH, M.Y., NEWTON, A.R., and PEDERSON, 
D.O.: ‘MOTIS-C: a new circuit simulator for MOS LSI circuit’. 
Proceedings IEEE International Symposium on Circuits Systems, 
1977, pp. 7W703  

6 SALEH, R.A., KLECKNER, J.E., and NEWTON, A.R.: ‘Iterated 
timing analysis in SPLICEl’. IEEE International Conference on 
Computer-Aided Design, Santa Clara, California, USA, Nov. 1983, 
pp. 139-140 

7 LELARASMEE, E., and SANGIOVANNI-VINCENTELLI, A.: 
‘RELAX: a new circuit simulator for large scale MOS integrated 
circuits’. Proceedings 19th Design Automation Conference, Las 
Vegas, Nevada, USA, June 1982, pp. 682490  

8 ODRYNA, P., and NASSIF, S.: ‘The ADEPT timing simulation 
algorithm‘, VLSI Syst. Des., 1986,7, (3), pp. 24-34 

9 JOU, S.-J., SHEN, W.-Z., JEN, C.-W., and LEE, C.-L.: ‘MOTA: a 
MOSFET timing simulator’, IEE Proc. I ,  Solid-state & Electron 
Dar., 1986, 133, (5). pp. 193-199 

10 NEWTON, A.R., and SANGIOVANNI-VINCENTELLI, A.: 
‘Relaxation-based electrical simulation’, IEEE Trans., 1983, ED-30, 
(9), pp. 11841207 

1 1  VLADIMIRESCU, A., and PEDERSON, D.O.: ‘Performance limits 
of the CLASSIE circuit simulation program’, in Proceedings of 
International Symposium on Circuits and Systems, Rome, Italy, 
May 1982 

12 JOU, S.-J., SHEN, W.-Z., JEN, C.-W., and LEE, C.-L.: ‘Simulatable 
timing model or MOS logic circuit’, IEE Proc. Pt. G ,  Electron Cir- 
cuits & Sysr., 1987,134, (6), pp. 193-199 

290 

- 

13 SZYGENDA, S.A., and THOMPSON, E.W.: ‘Digital logic simula- 
tion in a time-bad, tabledriven environment. Part 1. Design vcrifi- 
cation’, Computer, 1975,18, pp. 2 4 3 6  

14 BRYANT, R.E.: ‘An algorithm for MOS logic simulation’, Lambda, 
1980, (4), pp. 46-53 

15 BAKER, C.M., and TERMAN, C.: ‘Tools for verifying integrated 
circuit designs’, ibid., 1980, pp. 22-30 

16 HO, C.-W., RUEHLI, A.E., and BRENNAN, P.A.: ‘The modified 
nodal approach to network analysis’, IEEE Trans., 1975, CAS-22, 

17 RUEHLI, A.E., SANIOVANNI-VINCENTELLI, A.L., and 
RABBAT, G.: ‘Timing analysis of large scale circuits containing 
one-way macromodels’, IEEE Trans., 1982, C S D ,  (3), pp. 
185-189 

18 SAKALLAH, K.A., and DIRECTOR, S.W.: ‘SAMSON2: an event 
driven VLSI circuit simulator’, IEEE Trans., 1985, C A D 4  (4), pp. 
668-684 

19 LO, C.-Y., ”AM, H.N., and BOSE, A.K.: ‘A data structure for 
mos circuits’. Proceedings 20th Design Automation Conference, 
Miami Beach, Florida, USA, June 1983, pp. 619-624 

20 SUBRAMANIAM, P.: ‘Modelling MOS VLSI circuits for transient 
analysis’, IEEE J., 1986, SC-21, (2), pp. 276285 

21 JOU, S.-J., SHEN, W.-Z., JEN, C.W., CHANG, C.-C., and TAO, 
Y.-S.: Table lookup MOSFET model and the automatic measure 
system’. EDMS, Taipei, Taiwan, Repulic of China, Sept. 1986, pp. 
1%195 

22 RABBAT, N.G., SANGIOVANNI-VINCENTELLI, A.L., and 
HSIEH, H.Y.: ‘A multilevel network algorithm with macromodeling 
and latency for the analysis of large scale nonlinear circuits in the 
time domain’, IEEE Trow. ,  1979, CSM9, pp. 733-741 

(6), PP. 504-509 

IEE PROCEEDINGS, Vol. 137, Pt.  G, No.  4, AUGUST 1990 

~~ 


