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A real-valued function f defined on the set of all graphs, %, such that f(G x H) = f(G)f(H)
for all G, H € % is called multiplicative; and f(G) <f(H) whenever G is a subgraph of H is
called increasing. The classification of multiplicative increasing graph functions is still open. Up
to now, there are a lot of known multiplicative increasing graph functions. In this paper, we
introduce a new class of multiplicative increasing graph functions, namely, ¢ ¢ for all Ge ¢
and ## S c V(G), defined to be the number of all possible homomorphic images of S for the
homomorphism from G into H. Several properties of additive multiplicative increasing graph
functions are also discussed in this paper.

1. Introduction and definition

G=(V,E) is called a graph if V is a finite set and E is a subset of
{(a, b) |a#b, (a, b) is an unordered pair of V}. We say V = V(G) is the vertex
set of G, E = E(G) is the edge set of G.

Let G=(X, E), H=(Y, F) be two graphs. The sum of G and H is the graph
G+H=(W,B)with W=X,UY,, B=E,UF, where G, =(X,, E))=G, H,=
(Y}, F)=H and X, NY,=9; the weak product of G and H is the graph
G xH=(Z,K), where Z=X XY, the Cartesian product of X and Y, and
K ={((x1, ), (x2, ¥2)) | (x1, x2) € E and (y,, y,) € F}. We let kG denote G + G +
++++ G (k times) and let G* denote G X G X ---x G (k times). A real-value
function f defined on the set of all graphs, ¥, is increasing if f(G)<f(H)
whenever G is a subgraph of H; f is multiplicative if f(G X H) = f(G) X f(H) for
any G, H € 4; and f is additive if f(G + H)=f(G) + f(H) for any G, H € 4. We
use MI to denote the set of all multiplicative increasing graph functions and use
AMI to denote the set of all additive multiplicative increasing graph functions.
The classification of all multiplicative increasing graph functions is still an
interesting open problem [1, 2, 5, 7]. In this paper, we first review some previous
work, then introduce a class of multiplicative increasing graph functions which
has not been explored before.
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2. Previous work

2.1. Homomorphism functions

Let G=(X, E), H=(Y, F) be two graphs. A map y:X—Y is called a
homomorphism if it satisfies (x,, x,) € E implies (y(x,), ¥(x,)) € F. For a fixed
graph G, we can define h; from % into R such that A;(H) equals the number of
homomorphisms from G into H. It is easy to see that kg is an element of MI for
every G in 4. Since MI is closed under taking the positive power, finite product
and pointwise convergence, the following functions are element in MI:

(1) h& a=0,Ge%

k
@) [1rE a:=0,Ge%
i=1
(3) lim f,, where f,, is of type (1) or (2).

Lovdsz [7] observed these facts and he asked whether nonzero multiplicative
increasing graph functions are of these forms. However, the conjecture is not true
[1,2]. Let S <MI. We use (S) to denote the set of all functions obtained by
taking the positive power, finite product and pointwise convergence from
elements of S. It is easy to see that ({hs |G € G}) = ({h | G is connected}).
Moreover, hg is additive if G is connected, and hg; = hy if and only if G is
isomorphic to H.

2.2. Generalized homomorphism functions

For any graph H and any integer m =1, let H,, be the induced subgraph of H
such that x € V(H,,) if and only if x is in an m-clique of H. For any graph function
f, we can define another graph function f,, by f,,(H) = f(H,,) for any graph H. In
[5], we have the following theorem.

Theorem 2.1. If f is additive (respectively, multiplicative, increasing), then f,, is
also additive (respectively, multiplicative, increasing).

Thus (hg),, e MI for all G € § and m =1, and (hg),, € AMI if G is connected.
In [1], we have ({h;|G € 9}) = ({(hg)m | G is connected and m =1}). (The
notation “A « B” means A is a proper subset of B.) However, not all multiplica-
tive increasing functions are generated by {(hs),, | G € ¢, m =1}. In [1], we have
the following functions.

2.3. The 0 function

A bipartite graph is a graph whose vertex set V/(G) can be partitioned into two
subsets A and B such that every edge of G joins A with B and vice versa. If G is
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connected bipartite, such a partition is unique; we say G is of (r, s) type if |[A|=7r
and |B|=s. For an arbitrary bipartite graph G with connected components
Cy, Cs, . .., C,, where each C, is bipartite, we say G is 11—, (r;, 5;) type if C; is of
(r:, 5;) type for every i. Let 0 be a function defined on the set of bipartite graph
which is defined as 8(G) =2 (L7, (r;, 5;)?) where G is of £, (r;, s;) type. Then
we can define 6: 94— R by 6(G)=3 0(G xK,,). In [1], we know & € AMI.
Hence §,,€ 6 =6,= 6, and 9,, = (hg,),, for every m =2. Thus, only one AMI
function added. However, in the following, we can find more AMI functions.

2.4. The capacity functions

For a fixed graph G, we can define the capacity function for G, P;, from % into
R as Pg(H)=lim,_,. [yc(H")]'"" where yg(H) is the maximum number of
disjoint G’s in H. Not all capacity functions are AMI [3, 4, 5]. In {5], Hsu et al.
proved that the capacity function for a primary uniform graph is AMI. The term
of primary and uniform is defined below.

Definition. We say G is primary if for any homomorphic image G’ of G we have
Ps<Pg. Let D={(ay, a3,...,a,)|0<a;<1,%"  a,=1}. Let #:D—>Rbe a
function defined by

v
#@)=][a7* wherez=(a,, a,,...,a,)eD.
i=1

Let G, H be graphs with V(G)={x,, x5, ...,x,} and V(H)=
{»,¥2 ..., %} Let m be a positive integer and Z = (z,, z,, . . ., z,,) be a vertex
in H”. We call 3= (ay, a,,...,a,) €D with a,=|{j| z;=y, 1<j<m}|/m the
distribution of Z. For any graph H, we can define a u-ary relation R;(H) on D
such that (@, a,,...,3,) € Rg(H) with &, €D if and only if either (i) there
exists a positive integer m such that in H™ we can find G5 G2 -+« Fu€
V(H,) with the distribution % to be &; for every i and the induced
subgraph of {%,%,,...,%.,} in H™ containing a subgraph isomorphic to
G with g, corresponding to x; for every i, or (ii) there exists a
sequence  {(Zi1,@i2, ... ,%u)}ic1 In Rg(H) of type (i) such that
B0ee (i1, B2 e s Bi0) = @1y B2y - - - @)

We say ¢ € I(G) is of type (i) if its corresponding vector in Rg(H) is of type
(i). A graph G with u vertices is called uniform if for any graph H, Y7, 3/u is of

type (i) in Ig(H) whenever (¢,, @,, . . . , @,) is of type (i) in Rg(H).
In [4, 5], it was proved that P;(H)= max %(3) for primary uniform graphs.
aelg(H)

thus we can calculate such capacity functions using the Lagrange multiplier. We
note that Px, = hg, and the capacity function for primary uniform graphs can be
viewed as a lower bound for AMI graph functions.
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3. The @ ¢ functions

In this section, we are going to present a class of MI functions which is in fact a
generalization of the functions introduced in Sections 2.1 and 2.2.
Let G be a graph and @#S={sy, 55, ...,5)cV(G). We can define

@c.s: 9— R by @ s(H) =|{(f(s1), f(52), - . ., f(s¢)) | f is a homomorphism from
G into H}|. It is easy to get the following theorem.

Theorem 3.1. (1) @5 s is M1
(2) @g.sis AMLif G is connected.
3) If8#S,cV(G) and 9+ S, c V(H), then

Pc+H, 508 = PG5, X Pu,s,-

4) @6,vi)=he-

Let G be a graph with V(G) = {x,, x5, ..., x,}. Let m be a positive integer.
Construct a graph G(m) with V(G(m))={y1, ¥ .Y Z12, 21,35 -+ - » ZLm>
2225 2235+ -+ » Zams -+ > Zu2> Zu3s -+ - » Zum) SUch that the induced subgraph of
S ={y,¥,.-.,Y.} Iis isomorphic to G and the induced subgraph of
{¥i, Zi2s - - - » Zim} 1 isomorphic to K,, for every i. See Fig. 1 for the case m =3.
Then Qgmy.s' = (Pc,s)m- Applying Theorem 3.1 (4), we hve {(hg) |G €4 me
NYc{gpss|Ge¥9 8+S cV(G)}. Therefore the @g s functions are a generali-
zation of (hy),.. However, ({(hy).|He 4 meN})# ({@cs|Ge%4 B+Sc
V(G)}). We will prove this fact in the following section.

4. Properties of AMI functions

In order to prove {{(hy). |He 4, meN})c{({@cs|Ge ¥4 8+ScV(G)}),
we need the following results.
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Lemma 4.1. If i, f>, .. ., fi are nonzero AMI and if f =f3f52--- 2 is AMI,
then Yk, a; = 1.

Proof. Since
X(G)=fQ2G)=fVf7*- - - f42G)
= (2 (G))™=,

we have 3%, a0, =1. O

Lemma 4.2. Let f, and f, be nonzero AMI and f =f{'f$* with o, + a, =1 and
a; =0. Then f cannot be AMI except f =f, or f = f,.

Proof. Let G and H be any two graphs such that f;(G)#0 and f£,(H) #0. Let
f(G)=u, fi(H)=v, £,(G)=x and f,(H)=y. We have

122G + H)=f"f3%(G) + fIf2*(H) = u*v* + x*1y™.
But
132G + H)=f(G + H)f3(G + H)

= (A(G) + H(H)*(£(G) + L(H))* = (u + v)"(x + y)*.
By Holder’s inequality, we have
uMv?+ My < (u+v)*(x +y)*,

with the equality only for ¥ =x and v =1y.
Hence fis AMIonlyforf=fiorf=f. 0O

We can generalize Lemma 4.2 to the following theorem.

Theorem 4.3. Let f,,f,...,fi be nonzero AMI and f=f3f52--f& with
Y, a;=1and o;=0. Then f cannot be AMI except f = f, for some i.

Let f be an AMI function expressible as f=lim,, ,.g, with g,=
fa'm.lf;'m,z .. f:’rn(;_n)(f) Then 2f(G) =f(2G) = lil'nm_mo gm(ZG) = limm_,mf‘lxm,lfgm,z .
f3p72G) = QF(G))mmTe o,

Hence lim,, ,., Y &,, » = 1. Thus we have the following theorem.

Theorem 4.4. Let {f, f,,f,,...} be a set of nonzero AMI functions and f be
expressed as [ =lim,,_.» g, With g, =f{fsm2.- - f mip?. Then f can be expressed
as f =lim,,_,. k,, with k,, = ffniffnz...f f:,’?;')(’) such that ¥y B, . =1 for every m.

Corollary 4.5. Let F={f, f,, .. ., fi} be a set of nonzero AMI functions. Then f
cannot generate any other AMI functions except fi, f, . . ., fi.
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Proof. Let f € (F) be an AMI function other than f;, £, . . ., fi. By Theorem
4.3, we know that f cannot be the form f{'f3?- - - fg*. Thus f must be of the form
f=lim,_,.g, with g, =fffs"2... fF* and ¥; a,,; = 1. Since a,,; € [0, 1] for
every m, i, we have an accumulation point g; for {a,,;},,—; for every i. Then
f=fff8 ... fB which contradicts to Theorem 4.3. O

Thus it is impossible to generate other AMI functions by a finite number of
AMI functions. However, it is possible to generate another AMI function by an
infinite number of AMI functions. We have the following example.

Example. The function 2: $— R is defined by 2(G) = |{v € V(G) | v is incident
with a homomorphic image of an odd cycle of G}|. Obviously, 2 is an AMI. Let
X»,+1 be any vertex in the odd cycle C,,,;. Then it is easy to check that

2= llm"—*‘” Dt (x2n1}

Now, we are going to prove that ({(hy),|He 94 meN})+* {{pss|Ge
% 0+ScV(G)}. Let Ws be the 5-wheel graph with its center vertex o. Since
Aut(Ws) = Ds, we have either hy(Ws) =0, hy(Ws) =6 (if H = K,) or hy(Ws) =10
for other cases. Let f be any AMI function in ({(hg),. | H€ 9 meN}). By
Theorem 4.3 and Theorem 4.4, we have either f(Ws) = 0 or f(W;) = 6. But @y,
is an AMI function with @y, (o,(Ws)=1. Hence @w, (o) ¢ {{(hu)m |HeE G, me
N}).

Note that G < G? for any graph G. Any multiplicative increasing function f
such that f(G)#0 must satisfy f(G)=f(G*)=f(G). Hence f(G)=1. Thus
@w,, (o) Meets this bound.

It would be interesting to know whether @y, (,, can be generated by all
functions introduced in Section 2. However, it is a difficult job. We do not have
the property of “change base” as in matroid theory. It is interesting to point out
that 8(Ws) =6 and Py (Ws) = 1. But Py, is not AMI [3].

Since @¢ (K1 ) is either 0 or greater than 3, any AMI function f generated by
{@c.s| Ge% 0#S cV(G)}, either f(K,,)=3 or f(K;,)=0. Since 6(K;,)=
Py(K1,) =2V2, we still need & and P,

5. The strong product

There is another product defined on the set of all graphs. Let G = (X, E),
H= (Y, F) be two graphs. The strong product of G and H is the graph
G-H=(Z,K) where Z=X XY, the Cartesian product of X and Y and
K ={((x1, »1), (x2, 2)) | (1, X2) € E and (yy, y;) € F) or ((x, =x; and (y1, y,) € F)
or (x;=x,)€E and y,=y,)}. With this strong product, the terminology of
strongly multiplicative increasing graph function (SMI) and strongly additive
multiplicative increasing graph function (SAMI) can be similarly defined.
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Let G=(X,E), H=(Y, F) be two graphs. A map ¢:X—7Y is called a
strongly homomorphism from G into H if (x,, x,) € E implies (¢(x,), ¢(x,)) e F
or ¢(x,) = ¢(x,). For a fixed graph, we can define /4 as a function from ¥4 into R
such that 4;(H) equals the number of strongly homomorphisms from G into H. It
is easy to see that /. is SMI for any G € 9§ and that /4 is SAMI if G is connected.

Similar to the weak product, Lovdsz asked whether nonzero strongly multi-
plicative increasing functions are generated by 4. Again, the conjecture is false.
In [2], we showed that the function 2: 9— R defined, for any G € %, as the size
of the largest connected component in G is a counterexample.

Let G be a graph and §# S c V(G). We can similarly define &g 5: 4— R by
D s(H) = [{(f(s1), f(s2), - - . , f(s&)) | f is a strongly homomorphism from G into
H}|. Let T, be the graph obtained from the star graph S, (=K, ,) by replacing
each edge with a path of length n. Let P, denote the set of pendant vertices of 7,,.

Theorem 5.1. 2 =lim, .. (P p)"". Thus ({4;| G € G}) is a proper subset of
({@gs € Ge% %S cV(G))).

Proof. Let G be a graph with its connected component C,, C,, ..., C; assume
|Cil=r, for all i and rn=rn=---=r. Thus 2(G)=r,. For all n=r, we
have @, p(G)=LE,r.. But lim,_.(L5,r)"=r. We have 2=
lim,_..(®; )" O

We note that Lemma 4.1, Lemma 4.2, Theorem 4.3, Theorem 4.4 and
Corollary 4.5 also hold for the strong product version.

6. Conjecture

We would like to pose the following conjectures:

(1) The set of multiplicative increasing graph functions (for both weak product
and strong product version) is generated by additive multiplicative increasing
graph functions.

(2) The set of strongly additive multiplicative increasing graph functions is
{Dis|Ge% 0#ScV(G) G is connected}.
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