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摘摘摘摘  要要要要 

 

近年來以人類為基礎的視訊處裡一直是相當熱門的研究題目，主要原因為人類通

常是影片中的拍攝對象，例如，電影，監視器影片，以及運動影片。因此，如果

可以在視訊影片中針對人類的部分加以處理，對於視訊內容的分析會相當的有幫

助。常見的人類為基礎的視訊處理包含了人類偵測，切割，以及動作辨識等技術。

並且可分為針對儲存影片的 off-line處理以及針對即時環境的 on-line處理。在本

論文中，我們提出以人類為基礎的視訊處理技術並且將其應用在智慧型監控系統

上。在第一項的研究中，我們針對已經錄製完畢的影片，提出了以背景資訊為基

礎的場景分割方法。我們利用Mosaic的技術將屬於前景部分(通常是人物的部分)

的資訊移除並且試著重建被遮蔽的背景。接著根據背景的資訊取出低階的視覺特

徵來估測影片中兩 shot之間的相似程度。並且參考電影製作的法則將 shot群組

化找出影片中不同場景之間的邊界位置。在找尋出場景邊界位置之後，可以簡化

後續的視訊分析工作。在第二項的研究主題中，我們針對即時的監控系統提出我



們的主動式攝影機網路動作規劃技術。主動式攝影機可以拉近來觀測目標，可以

提供較清楚的影像，因此非常符合智慧型監控系統上的需求。因此，我們提出一

個線性生產規劃賽局(Linear Production Game)解法來控制攝影機網路中主動式

Pan Tilt Zoom攝影機的參數。我們提出的非線性函式可以更加有效的攝影機去追

蹤多個觀測目標，並且經由參數的拓展以及加上新的線性限制條件，可以轉換為

一個線性生產規劃賽局(Linear Production Game)。由於線性生產規劃賽局可以在

多項式時間內求得最佳解，因此我們提出的方法相當有效率以及精確。在第三項

的研究主題中，我們針對人類動作辨識問題提出一個以局部特徵為基礎的辨識技

術。我們根據局部特徵的表示法提出一個人類動作辨識的架構。兩種不同的局部

特徵，包含動作的長期趨勢以及短期外型變化分別被抽取出來用來描述人類動作。

最後經由 adaboost的學習方法取出具有鑑別力的局部特徵組合來辨識人類動

作。 
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Abstract 
 

In recent years, human-based video processing has attracted a great deal of attention 

in the field of computer vision. This is because human usually is the major subject in 

a video such as movie, surveillance video, and sport video. Therefore, a video 

processing technique based on human can provide rich information for video content 

analysis. Generally, common human-based video processing includes human 

detection, human segmentation, human motion recognition, and so on. Furthermore, 

according to the real-time requirements of an application, it can be categorized to the 

off-line processing for a video storage and the on-line processing for a real-time 

environment. In this dissertation, we put our emphasis on the human-based video 

processing and apply these techniques to an intelligent surveillance application. In the 

first topic, we propose a scene segmentation approach based on the analysis of 

background information for the off-line processing. The mosaic technique is utilized 

to remove the foreground parts (human) and reconstruct the occluded background. 



According to the background information, several low-level visual features are 

integrated to compute the similarity measure between two shots; moreover, the rules 

of film-making are used to guide the shot grouping process. After the boundaries 

among different scenes are detected, the following video analysis processing can be 

simplified. In the second topic, we proposed an active camera network 

reconfiguration technique for an on-line surveillance system. Since an active camera 

(for example, a pan, tilt, zoom camera) be able to fixate a human subject to obtain a 

large view of people, it is suitable for intelligent surveillance system. Therefore, a 

camera network reconfiguration solution is proposed to adjust pan, tilt, and zoom 

parameters in a PTZ camera network for video surveillance application. The 

non-linear objective function we proposed better utilizes a network's cameras to track 

multiple targets. We also show that, by expanding the unknown parameters and 

imposing new constraints, the non-linear objective function can be converted into a 

linear production game (LPG) problem. Since an LPG yields an optimal solution that 

can be evaluated in polynomial time, the proposed method is efficient and accurate. In 

our third work, a human motion recognition framework based on local feature 

representation is proposed. A clay based feature to describe long-term movement 

trend and a motion history image (MHI) based feature to describe short-term shape 

variation, are extracted respectively. Then, the AdaBoost approach is applied to select 



a best feature set for discriminating the human motions. 
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Chapter 1

Introduction

1.1 Motivation

In recent years, human-based video processing has become a popular research topic in the

field of computer vision. This is because human usually is the major subject in a video

such as a movie, surveillance video, and sport video. Therefore, a video processing tech-

nique based on human can provide rich information to video content analysis. Generally,

common human-based video processing includes human detection, human segmentation,

human motion recognition, and so on. Furthermore, according to the real-time require-

ments of an application, it can be categorized to the off-line processing and the on-line

processing. These techniques can be widely applied for important applications, such as

video surveillance [2, 3], video annotation [4, 5], and human computer interface [6, 7].

However, human-based video processing is difficult due to two reasons. First, because a

conceptual human body movement is combined by complex articulated motions belong-

ing to a huge number of segments, handling for complex motion with high degrees of

freedom is necessary. Second, since processing human video in each frame is limited, a

set of frames, especially spatial-temporal information, utilized to process human video is

an alternative. In this dissertation, we focus on handling these challenging issues of the

1



Chapter 1 Introduction

human-based video processing and its application to surveillance.

1.2 Overview of the Dissertation

In this dissertation, we put our emphasis on the human-based video processing in surveil-

lance application. In a surveillance system, human-based video processing includes the

off-line processing for a video storage and the on-line processing for a real-time surveil-

lance environment. We proposed different human-based video processing techniques for

the both categories. For the off-line processing, we proposed a scene segmentation tech-

nique to appropriately segment video into story units according the video content. We

select a scene as a story unit based on the storyboard used in film-making. After the

boundaries among different scenes are detected, the following video analysis processing

can be simplified. For the on-line processing, we focus on two important issues in a tra-

ditional closed-circuit television (CCTV) surveillance system. The first issue is how to

capture a large enough human view for providing good quality evidences. An active cam-

era (for example, a pan, tilt, zoom (PTZ) camera) is an appropriate selection to deal with

this task. However, a surveillance system usually is integrated by multiple cameras be-

cause a camera network can cover widely areas and reduce the number of blind spots. The

issue therefore is expanded to a PTZ camera network reconfiguration problem. Therefore,

we focus on the problem how to reconfigure the parameters of a PTZ camera network to

capture people in cameras’ field of views. The second issue of a traditional CCTV surveil-

lance system is lack of real-time reaction because it only records all camera contents into

a storage. To make the surveillance system available for detecting and alarming in real-

time, human motion must be recognized. Therefore, we proposed our human motion

recognition approach based on analyzing motion regions and their structure.

2



Chapter 1 Introduction

1.2.1 Scene Segmentation

Scene extraction is the first step toward semantic understanding of a video. It also provides

improved browsing and retrieval facilities to users of video database. This work presents

an effective approach to movie scene extraction based on the analysis of background

images. Our approach exploits the fact that shots belonging to one particular scene often

have similar backgrounds. Although part of the video frame is covered by foreground

objects, the background scene can still be reconstructed by a mosaic technique. The

proposed scene extraction algorithm consists of two main components: determination of

the shot similarity measure and a shot grouping process. In our approach, several low-

level visual features are integrated to compute the similarity measure between two shots.

On the other hand, the rules of film-making are used to guide the shot grouping process.

Experimental results show that our approach is promising and outperforms some existing

techniques.

1.2.2 PTZ Camera Network Reconfiguration

In this work, we propose a non-linear objective function that better utilizes a network’s

cameras to track multiple targets. We also show that, by expanding the unknown parame-

ters and imposing new constraints, the non-linear objective function can be converted into

a linear production game (LPG) problem. Since an LPG yields an optimal solution that

can be evaluated in polynomial time, the proposed method is efficient and accurate. The

results of simulations and a real-world experiment demonstrate the proposed method’s

potential.

1.2.3 Human Motion Recognition

In this work, a local feature-based human motion analysis framework is proposed. Local

features extracted from the motion regions are utilized to construct the relationship among

3



Chapter 1 Introduction

different features, which is used to generate a spatial structural feature set, representing

a human motion. In this work, we propose a clay based feature to describe long-term

movement trend and a motion history image (MHI) based feature to describe short-term

shape variation, respectively. In addition, the AdaBoost approach is applied to select a

best feature set for discriminating the human motions. Our experiments demonstrate that

the proposed approach can achieve high average recognition results with a noise tolerance

capability.

1.3 Dissertation Organization

The remainder of this dissertation is organized as follows. In Chapter 2, a mosaic-based

scene segmentation method is introduced. Then, A linear production game solution for

capturing human motion is proposed in Chapter 3. In Chapter 4, the proposed framework

for human motion recognition is described in detail. Finally, Chapter 5 contains some

concluding remarks and future work.
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Chapter 2

Scene Segmentation

In this chapter, we describe the proposed framework for segmenting scenes from a movie

using background information. First, the scene segmentation problem and the motivation

of this work are first introduced. We then propose our approach based on background

information. Next, the segmented scene are shown in the experimental results section.

Finally, the concluding remarks are described.

2.1 Introduction

The advances in low cost mass storage devices, higher transmission rates, and improved

compression techniques have led to the widespread use and availability of digital video.

Video data offer users of multimedia systems a wealth of information and also serve as

a data source in many applications including digital libraries, publishing, entertainment,

broadcasting and education. However, because of the large amount of data and unstruc-

tured format, efficient access to videos is not an easy task. To make the original video

data in a database available for browsing and retrieval, it must be analyzed, indexed and

reorganized. The suitably organized video data have the right structure for non-linear

browsing and for content-based retrieval through large amount of data. To derive a struc-

tured representation of a video, each video sequence is usually decomposed into a hier-
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archical structure using shots and scenes as construction units. A shot is a sequence of

frames that were continuously captured by the same camera. The definition of a scene

is not as straightforward and usually refers to a common environment that is shared by a

group of consecutive shots [8]. For example, we could see many consecutive shots (taken

by different cameras) share the similar visual content because they are produced in the

same environment such as a meeting room or a sports field. Generally, a video scene is

basically a story unit that shows the same objects and allows one event to be fully pre-

sented. Shots in a video are analogous to words in a language in that they convey little

semantic information in isolation. On the other hand, scenes reflect the dramatic and nar-

rative structure of a video. One scenario is that humans remember different events after

having watched a digital movie. Such an event can be a dialogue, an action scene, or

a group of shots unified by location. Therefore, scene extraction is the first step toward

greater semantic understanding of video content. The objective of video scene extraction

is to cluster video shots into several groups, such that the shots within each group are re-

lated by some common aspects. Nowadays, there exist various types of videos, including

movies, news casts, sitcoms (situation comedies), commercials,sports, and documentary

videos. Some of them have ”story units” such as movies, while others (e.g., sports) do

not. In this work, we concentrate on movies. Usually, there are two steps to extract video

scene structures after shot boundary detection. The first step is to represent visual con-

tent of one shot and to define the similarity measure between two shots. The second is to

group correlated consecutive shots into a scene. The compact representation of video shot

content for shot similarity measure remains one of the most challenging issues. In our ap-

proach, the similarity measure is based on the background information obtained through

a mosaic technique. By aligning all images of a video sequence onto a common reference

frame, the mosaic technique is able to generate the static background of a video scene.

Although the background image alone is not an effective video content representation for

some tasks such as video retrieval, it is sufficient for the task of scene extraction. It is also
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worth noting that the way shots are grouped into a scene generally depends on the type of

scene under analysis as well as on the video genre. The scenes of a TV-news report are

different from the scenes of a basketball game, a documentary, or a movie. Hence, it is

important to aggregate the shots by considering a model for the scene. In our approach,

we exploit cinematic rules to devise a shot grouping algorithm.

2.2 Background and Motivation

Numerous methods for shot boundary detection have been proposed [9]. While shots

are marked by physical boundaries, scenes are marked by semantic boundaries. Hence,

scene boundary detection is far more difficult than shot boundary detection. Current tech-

niques for video scene extraction can be broadly classified into three categories. The first

groups shots that are visually similar and temporally close into a scene [10–19]. In these

approaches, video shots are mostly represented by a set of selected key-frames. Low

level features such as color, texture, motion, and shape are extracted directly from key-

frames. Then, a classic clustering algorithm or simple peak detection is used to detect

scene boundaries. However, the limitation of key-frame-based shot representation is that

a frame taken from a shot often fails to represent the dynamic contents within the shot.

When a sequence of shots is considered as a scene, it is often because the shots are corre-

lated by the same environment rather than by visual similarity in terms of key-frames. In

the second category, emphasis is put on the integration of audio and visual information.

Various methods have been proposed to determine a shot boundary as a scene boundary if

the visual and audio content change simultaneously [20, 21]. However, how to determine

scene boundary efficiently still remains a difficult issue since the relationship between

audio segments and visual shots is complicated. The third category exploits characteris-

tics embedded in specific video domains, such as sports and news casts [22–25]. Since

this approach is based on specific application models, it normally achieves high accuracy.
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The main drawback is that an a priori model needs to be constructed beforehand for each

application. The modeling process is time consuming and requires good domain knowl-

edge and experience. In this chapter, we present a scheme for automatic video scene

extraction based on visual information only. When a scene is composed of several shots,

there will be at least one aspect in common between these shots. To measure the common

aspects between two shots, we define the shot similarity using background information.

Our approach is based on the following observations: (i) each frame of a video can be

divided into foreground objects and background scenery; (ii) in most cases, while objects

may move, appear and disappear, the background in a scene does not change significantly.

These observations suggest that it would be more effective to focus on the background to

detect a scene, which is a collection of shots unified by a common locale. However, in a

single frame, most of the physical location information is invisible since it is concealed

by the foreground objects. One solution to this problem is to use a mosaic technique. A

mosaic is a panoramic image obtained by aligning all images of a video sequence onto a

common reference frame [26,27]. The resulting mosaic is an efficient and compact repre-

sentation of a collection of frames [28]. In the case of a static mosaic, the moving objects

blur out or disappear. Only the stationary objects and the background are displayed in the

constructed mosaic. Therefore, in our approach, we use a mosaic technique to reconstruct

the background scene of each video frame. Then, we compute the color and texture dis-

tribution of all the background images in a shot to determine the shot similarity. Since our

method does not depend on the content of key-frames only, it is able to fully exploit the

spatiotemporal information contained in video sequences.

2.3 Mosaic Construction

A shot is the basic unit for video indexing. To facilitate subsequent video analysis, in

our system, the original video sequences are segmented into shots [29]. We have also
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proposed an algorithm to align frames from a video shot to build the static mosaic of

the background [30]. Here, we briefly describe the generation of mosaics, and refer the

reader to Ref. [30] for further details. We first need to derive the transformation between

partially overlapping frames. Assuming background motion (due to camera motion) is

the dominant motion in the video, the image motion of the majority of scene points can

be approximated by the following transformation model:

u(x,y) = a1x+a2y+a3, (2.1)

v(x,y) =−a2x+a1y+a4, (2.2)

where (u(x,y),v(x,y)) is the motion vector at image position (x,y). This model is a special

case of an affine model with six parameters. However, experimental results show that our

model is better than the general affine model. This is because we impose more constraints

on the models parameters to avoid some undesirable transformations implied in affine

model such as skewing. In this step, we need to obtain the motion vectors (or displace-

ments) between successive frames. Existing approaches are based on feature matching or

optical flow computation. These techniques are computationally intensive. To reduce the

processing time, we use the motion vectors encoded in the MPEG-1 [31] video stream

directly. Fig. 2.1 shows a frame of a baseball game sequence and its corresponding mo-

tion vectors. Given the motion vector, the image motion parameters can be estimated

by a robust regression technique called least-median-squares [32]. Let the motion vec-

tors of each frame be denoted as {[u1(x1,y1),v1(x1,y1)], ..., [un(xn,yn),vn(xn,yn)]}. The

least-median-squares method can be described as

min
â
{median[(a1xi +a2yi +a3−ui)

2 +(−a2xi +a1yi +a4− vi)
2]} (2.3)
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where â = (a1,a2,a3,a4) is the parameter vector. One distinctive property of the al-

gorithm is that it can tolerate up to 50% of the outliers in the data set, i.e., half of the data

set can be arbitrary without significantly effecting the regression result. Therefore, this

technique can robustly estimate the motion of the majority of scene points (background)

and will not be biased by the minority scene points (moving object). Once the trans-

formations between successive frames have been determined, the transformations can be

composed to obtain the alignment between any two frames of the video sequence, and in

particular, between the current frame and the reference frame. In most cases, we choose

the first frame of the sequence as a reference. After all the frames have been aligned to

a reference frame, the next step is the selection of pixels to be put into the resulting mo-

saic. The gray value of each pixel of the mosaic is computed by applying an appropriate

temporal operator to the aligned frames. The temporal average operator is effective in re-

moving temporal noise, but the moving objects appear blurred, with ”ghost-like” traces in

the resulting mosaic. The temporal median operator can remove the moving objects and

produce a static mosaic of the background, but it is computationally expensive and is an

off-line process. Therefore, we propose a novel scheme that is both effective in deleting

moving objects and feasible for the on-line creation of panoramic images. Our approach

is based on the observation that each overlapping pixel of the aligned frames will fall into

one of the two categories: background or moving object. Since background motion is the

dominant motion of video and we want to build the mosaic of background, we select the

pixel that appears most frequently in the temporal domain. In Fig. 2.2, some sampled

frames of ”Terminator II” sequence are shown. We observe that the camera has large

movement in this sequence. Fig. 2.3 shows the static mosaic where only the background

of the scene is visible. Using the background mosaic, the background scene image of each

video frame is reconstructed. In the subsequent processing, we focus on these background

image sequences.
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Figure 2.1: A frame of a baseball game sequence and its corresponding motion vectors.

Figure 2.2: Sampled frames of a ”Terminator II” sequence.

2.4 Shot Similarity Measure

This section describes the color and texture features used in our work and how these

features are taken into account in the formulation of shot similarity measure. A major

requirement for shot similarity measure is to define a content representation that captures

the common aspects or characteristics of the shot. One common method is to select

one key-frame from the shot and use the image features of that key-frame as an abstract

representation of the shot. For shots with fast changing content, one key-frame per shot

is not adequate. Besides, the content description it provides varies significantly with the

key-frame selection criterion. To avoid these problems, a more feasible approach is to

consider the visual content of all the frames within a shot for shot representation. Color

is one of the most widely used visual features in video content analysis. Most scene

extraction algorithms compare color histograms between key-frames to determine the shot

similarity measure. The histogram-based approach is relatively simple to implement and

provides reasonable results. However, due to its statistical nature, the color histogram

cannot capture the spatial layout information of each color. When the image collection is
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Figure 2.3: The static mosaic of the ”Terminator II” sequence.

large, two different content images are likely to have quite similar histograms. To remedy

this deficiency, in our approach, the distribution state of each color in the spatial (image)

domain is also taken into account. The color histogram of an image is constructed by

counting the number of pixels of each color. The main issues regarding the construction

of color histograms involve the choice of color space and quantization of the color space.

The RGB color space is the most common color format for digital images, but it is not

perceptually uniform. Uniform quantization of RGB space yields perceptually redundant

bins and perceptual holes in the color space. Therefore, non-uniform quantization may

be needed. Alternatively, HSV (hue, saturation, intensity) color space is chosen since it

is nearly perceptually uniform. Thus, the similarity between two colors is determined

by their proximity in the HSV color space. When a perceptually uniform color space

is chosen, uniform quantization may be appropriate. Since the human visual system is

more sensitive to hue than to saturation and intensity [33], H should be quantized finer

than S and V. In our implementation, the hue is quantized into 20 bins. The saturation

and intensity are each quantized into 10 bins. This quantization provides 2000 (= 20×

10× 10) distinct colors (bins), and each bin with non-zero count corresponds to a color

object. Since we are interested in the whole shot rather than single image frame, only one
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histogram is used to count the color distribution of all background images within a shot.

Then, each bin of the resulting histogram is divided by the number of frames in a shot to

obtain the average histogram. Next, several spatial features are calculated to characterize

the distribution state of each color object in each image frame. Assuming a set of pixels

S = {(x1,y1), ...,(xn,yn)} belong to color object ci, k is the image size, and m is the total

number of 4-connected pixels in S. Then, we define

1. the density of distribution as

fi1 =
n
k ,

2. the compactness of distribution as

fi2 =
m
n ,

3. the scatter as

fi3 =
1

n
√

k ∑
n
j=1

√
(x j− xµ)2 +(y j− yµ)2,

where xµ = (1/n)∑
n
i=1 xi and yµ = (1/n)∑

n
i=1 yi.

To define the fourth feature, the image is partitioned equally into p blocks of size

16 × 16. A block is active if it contains some subsets of S Let the number of active

blocks in the image frame be q, we define

4. fi4 =
q
p .

After the spatial features of all images are computed, we take average of these values,

respectively. Let fi1, fi2, fi3, and fi4 be the average feature values of a color object ci in a

shot, for two color objects ci and c j, the difference in the spatial distribution within a shot

is defined as

Ds(ci,c j) =
1
4
(| fi1− f j1|+ | fi2− f j2|+ | fi3− f j3|+ | fi4− f j4|). (2.4)
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Texture refers to the visual patterns that have properties of homogeneity that do not

result from the presence of only a single one color or intensity only. It contains impor-

tant information about the structural arrangement of objects and their relationship to the

surrounding environment. We define the coarseness of an images texture in term of the

distribution density of the edges. The Canny edge detector is used to extract edges from an

image. The edge location indicates sharp intensity variation. Psychophysical experiments

have shown that the human visual system is sensitive to the high-frequency regions of an

image such as edges. The detected edge image is partitioned into a set of 16 × 22 blocks.

A block is textured, if the number of edge points in the block is greater than a threshold

(=30, in our setting). Then, we can compute the ratio of the textured block of each image

and its average value over a shot. The texture similarity between two shots is determined

by the minimum of the two average values. In Fig. 2.4, two images with different level

of texture coarseness are shown. Fig. 2.5 shows the detected edge image partitioned into

a set of 16 × 22 blocks. Histogram intersection is a popular similarity measure used for

color-based image matching [34]. It yields the number of pixels that have same color in

two images. In our work, we extend this idea to shot similarity measure. Let A,B be the

set of all color objects in shot S1 and S2, respectively, for a given u ∈ A, its similar color

object in B is some v ∈ B such that ‖u− v‖ < ε , where ‖u− v‖ denotes the Euclidean

distance between u and v in the HSV color space, and ε is a threshold (=3, in our setting).

Then, (u,v) is called a similar color pair. Let Ω = {(u,v)|(u,v) ∈ A×B,(u,v) is a similar

color pair }, the shot similarity measure between S1 (with the average histogram H1) and

S2 (with the average histogram H2) is defined as

ShotSim(S1,S2) =
1
k ∑
(u,v)∈Ω

{W (Ds(u,v))min(H1(u),H2(v))}+wt×min(t1, t2), (2.5)
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where k is the image size; t1 and t2 are the average ratios of textured block for shot S1 and

S2, respectively; wt is the weight of texture feature; Ds is the difference in spatial features

as defined in Eq. (4); and W is a weight function defined as

W (x) = 1
1+ea×x+b

The weight function W is the general form of the sigmoid function which is frequently

used in neural networks computation [35], where a and b are parameters. In our work, it is

used to fuse the spatial distribution information with a histogram. The construction of this

weight function is motivated by the psychophysical observation that the effect of spatial

distribution on human perception is progressive [36]. Only when the difference in spatial

features is greater than a threshold, humans perceive significant visual variation. The

property of the sigmoid function fulfills this requirement. In our system, we set a = 10

and b = −5. As shown is Fig. 2.6, the functions value becomes significantly small for

x > 0.75.

It is noted that a given color object in shot S1 may have more than one similar color

objects in shot S2 as illustrated in Fig. 2.7. To avoid the overlapping contribution in

calculating shot similarity, after each step of min(H1(u),H2(v)), H1(u) and H2(v) are all

subtracted by min(H1(u),H2(v))

Figure 2.4: Two images with different texture coarseness.

15



Chapter 2 Scene Segmentation

Figure 2.5: The detected edge image is partitioned into a set of 16 × 22 blocks.

Figure 2.6: Sigmoid function with parameters a = 10 and b =-5.

2.5 Scene Extraction

This section describes the details of applying the cinematic model to group correlated

consecutive shots into one scene. Movies directors, while filming scenes, also control

the pace of a film in order to sustain the viewers interest. One important factor known

to influence the pace of a movie is the Montage. Montage usually refers to a model

that defines the usage of editing effects to assemble the shots into a smooth sequence in

physical time and/or space and in the psychological association of ideas [37]. In order to

convey an idea that has a strong resonance with viewers, Montage is widely used as the
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Figure 2.7: Finding similar color object pairs.

basis to model scenes. In most situations, Montage can be simplified as a set of cinematic

rules. Commonly used rules include [38, 39]:

1. Parallel rule: It is used to compose scenes involving multiple themes, where shots

from different themes are shown alternately. This rule is frequently used to model

interactions between two parties such as conversations, hunting, and chasing.

2. Concentration rule: It starts with long distance shot, and progressively zooms into

close-up shots of the main objects. It is used to introduce the main objects and their

context.

3. Enlargement rule: It is the reverse of the concentration rule. It is used to introduce

the context of the current main object before switching to other objects that possibly

share a similar context. Thus, it typically signals the transition to a new scene.

4. Serial Content rule: It is used to model scenes that preserve the continuity of loca-
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tion, time, space, and topic.

Together, these rules can be used to model most types of scenes. We use this knowl-

edge to develop a two-pass algorithm for scene boundary detection suitable for feature

movies. The first pass of the algorithm deals with the detection of potential scene bound-

aries. This is achieved by computing the shot similarity between two consecutive shots

(see Fig. 2.8). Given a sequence of shots S1, ...,Sn, if ShotSim(Si+1,Si) < Tµ then a po-

tential scene boundary is detected. The threshold Tµ is empirically set to be the mean of

all shot similarities, i.e.,

Tµ =
1

n−1

n−1

∑
i=1

ShotSim(Si+1,Si). (2.6)

Any two adjacent potential scene boundaries delineate a candidate scene. Thus, all

shots are grouped into a set of candidate scenes (see Fig. 2.9). The above algorithm

assumes that all shots in a scene take place in the same location and share many com-

mon backgrounds. This is true for most of the scenes composed using the serial con-

tent rule and parallel rule (such as a conversation in a studio). However, the algorithm

tends to oversegment the more complex scenes composed using parallel or concentra-

tion/enlargement rules. In the outdoor chasing scene (also modeled by parallel rule), the

escapee and pursuer shots are shown alternatively. But the background of both types of

shots may be different. One important component of a scene defined by the concentra-

tion/enlargement rule is the close-up shot where more than half of the frame is occupied

by the foreground object. Because of the limitations of the mosaic technique, the back-

ground information can not be recovered completely. Thus, the close-up shot will be

identified as belonging to another scene. To handle such scenes, we need to merge the

candidate scenes further. Let G1 = S11, ...,S1m and G2 = S21, ...,S2n be two candidate

scenes consisting of m and n shots, respectively. The scene similarity between G1 and G2

is
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SceneSim(G1,G2) =
1

m×n

m

∑
i=1

n

∑
j=1

ShotSim(S1i,S2 j) (2.7)

Two scenes G1 and G2 are visually similar, if SceneSim(G1,G2) > Tµ −σ/2 where

Tµ (defined in Eq. (6)) and σ are, respectively, the mean and variance of all similarity

measures between every two adjacent shots. Because several simple scenes are merged

into one complex scene, this threshold should be smaller than that of the first pass. Given

a sequence of candidate scenes, the second pass of the scene extraction algorithm mainly

consists of the following merging process:

Step 1: Set the expanding scene to be the first scene.

Step 2: Compare the expanding scene with two subsequent scenes B and C (see Fig. 2.10).

Step 3: If the expanding scene and scene C are visually similar, then

1. merge the expanding scene, scene B and scene C into one scene;

2. set the expanding scene to be the merged scene;

3. go to Step 2.

Step 4: If the expanding scene and scene B are visually similar, then

1. merge the expanding scene and scene B into one scene;

2. set the expanding scene to be the merged scene;

3. go to Step 2.

Step 5: Set the expanding scene to be scene B and go to Step 2.

This process is repeated until no more scenes can be merged. It is noted that B and C

always refer to the two scenes immediately following the current expanding scene and

they are always updated in Step 2.
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Figure 2.8: Computing the similarity between every two adjacent shots.

Figure 2.9: Shots are grouped into several candidate scenes.

2.6 Experimental Results

Six test videos in MPEG-1 format were used to evaluate our scene extraction algorithm:

one home video and five full-length movies. The home video ”Lgerca lisa 1” is an MPEG

standard test video with ground truth from original video provider. The genres of movies

include action, drama, comedy, thriller, and music. The testing with five different genres

of movies would ensure that the overall performance of the algorithm is not biased to-

ward a specific movie kind. To get the ground truth of other videos, two graduate students

were invited to watch the movies and then asked to give their own scene boundaries. The

intersection of their segmentation was used as the ground truth for the experiments. In

movies, there is usually not a concrete or clear boundary between two adjacent scenes

due to editing effects. Therefore, we follow Hanjalics evaluation criterion [12]: if the

detected scene boundary is within four shots from the boundary detected manually, this

boundary is counted as a correct boundary. Basic information about the test videos and

the experimental results are shown in Table 2.1. As shown in Table 2.1, our algorithm

correctly extracts all the six scenes of the first video (Lgerca lisa 1) without any missed

Figure 2.10: An expanding scene and the two subsequent scenes.
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or false detection. Fig. 2.11 shows the shot grouping result of the first video, where the

first frame of each shot is displayed. Fig. 2.12 shows one extracted scene (consisting of

4 shots) from another video ”LittleVoice”. This scene is composed by the parallel rule

and has different backgrounds in the first and second shot. Our shot group algorithm is

able to identify both shots as belonging to the same scene. However, our algorithm has

some false and missed detections in the other test videos. The false detection is due to the

significant change of lighting such as explosions and flashing lights. This could perhaps

be improved by a more sophisticated visual similarity measure. The missed detection is

mainly caused by inappropriate setting of the merging threshold. As the threshold de-

pends on the variance (σ) of all similarity measures between every two adjacent shots, a

too large σ results in under-segmentation of the video. This type of error occurs in some

video scenes with very inconsistent pace. For performance comparison, we implement the

well-known scene extraction algorithm proposed by Yeung et al. [10]. In their approach,

a video sequence is first segmented into shots. Then, a time-constrained clustering algo-

rithm is used to group visually similar and temporally adjacent shots into clusters. The

visual similarity between two shots is measured by comparing color histograms of the re-

spective key-frames. Finally, a scene transition graph is constructed based on the clusters,

and cutting edges are identified to construct the scene structure. For fair comparison, the

parameters of Yeung’s algorithm are tuned to achieve the best performance. To measure

the performance quantitatively, two metrics are used:

recall = D
D+MD , precision = D

D+FD

where D is the number of scene boundaries detected correctly, MD is the number of

missed detection and FD is the number of false detection. Table 2.2 shows the perfor-

mance comparison. As ”Lgerca lisa 1” is an MPEG standard test video, some related

works have also used it as test video. According to the reports of Lin [14] and Ngo [15],

their approaches have three and two false detections, respectively.
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Table 2.1: Accuracy measures for six test videos.

Video Genre Duration No. of Scenes Correct Missed False
Title (in minutes) (ground truth) Detection Detection Detection

Lgerca lisa 1 Home Video 15 6 6 0 0
Dungeons & Dragons Action 107 66 54 12 6

Little Voice Drama 96 141 110 31 24
Hot Chick Comedy 104 104 71 33 52

Bugs Thriller 82 76 58 18 26
Walk the Line Music 136 118 70 48 35

Table 2.2: Performance comparison for scene extraction.

Video Our Approach Yeung’s Approach
Title Recall Precision Recall Precision

Lgerca lisa 1 100% 100% 100% 85.7%
Dungeons & Dragons 81.8% 90.0% 74.2% 81.6%

Little Voice 78.0% 82.1% 72.3% 72.3%
Hot Chick 68.3% 57.7% 54.8% 50.9%

Bugs 76.3% 69.0% 59.2% 64.3%
Walk the Line 59.3% 66.7% 47.5% 56.0%

2.7 Concluding Remarks

In this chapter, we have proposed a mosaic-based algorithm for extracting scene struc-

tures from digital movies. Our approach is based on the idea that shots belonging to one

particular scene often have similar backgrounds. Using a mosaic technique, the back-

ground of each video frame can be recovered. The color feature and texture feature of

each background image are integrated to compute shot similarities. Based on the movie

making model, our algorithm is able to group correlated shots into one scene. The compu-

tation is costly, but the spatiotemporal information of videos is fully exploited to achieve

scene extraction. Experimental results show that the proposed approach works reason-

ably well in detecting most of the scene boundaries. Compared with some existing tech-

niques [10, 14, 15], our approach is promising. Our approach can be applied directly to

organize videos and can be utilized to provide browsing/retrieval facilities to the users.
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As scene is a subject concept to reflect human perception, our future work will focus on

investigating an adaptive technique to perform user-oriented scene extraction. The pro-

posed shot similarity measure does not use motion feature to capture temporal variation in

a video. Thus, another future research issue will be the integration of motion information

into the proposed shot similarity measure for other tasks such as video retrieval.
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Figure 2.11: Shot grouping result of ”Lgerca lisa 1”.
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Figure 2.12: A scene extracted from ”Little Voice”.
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Chapter 3

PTZ Camera Network Reconfiguration

In this chapter, we propose a linear production game solution for a pan, tilt, and zoom

(PTZ) camera network to reconfigure cameras’ parameters. First, we give an introduction

about this research topic. The proposed approach is then presented. Next, simulations

and a real world experiment are detailed. Finally, the conclusion is given.

3.1 Introduction

Intelligent video surveillance systems have been used for several years, and they are now

widely deployed in important places, such as airports, all over the world. A single cam-

era can provide useful information for event detection and target tracking [2,3]; however,

a surveillance system based on a camera network can reduce the number of blind spots

and improve the system’s reliability [40–46]. Camera networks are usually comprised of

a heterogeneous collection of cameras, including panoramic cameras, fixed cameras, in-

frared cameras, and pan-tilt-zoom (PTZ) cameras. Among the different types of imaging

devices, PTZ cameras are the most important components of an intelligent surveillance

system because their field of view (FOV) can be changed in response to different task

requirements. However, incorporating PTZ cameras into a surveillance system raises a

challenging issue: How can the cameras be controlled and coordinated to accomplish a
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given task? Most surveillance tasks performed by PTZ cameras are related to three func-

tions: tracking multiple targets, improving evidential quality and maximizing surveillance

coverage.

Target tracking involves target detection as well as temporal and/or inter-view tar-

get correspondence matching. For example, Lim et al.’s approach [40] tracks the targets

observed in FOVs and constructs a dynamic scene model containing the position, veloc-

ity, and view-dependent visibility of each target. The system tries to accomplish three

objectives, namely, initial detection of moving objects, tracking of moving objects, and

scheduling cameras to monitor activities. Cameras are assigned to tasks by solving a bi-

partite matching problem so that tasks are accomplished in order of priority. In the PTZ

camera network developed by Ukita and Matsuyama [41], when the system detects a new

target, nearby cameras that are idle are assigned to track the target. The system is simple

and effective provided that the number of cameras is greater than the number of targets.

Qureshi and Terzopoulos [42] introduced a multi-camera tracking system in which cali-

brated wide-FOV cameras are used to locate targets, and PTZ cameras are used to fixate

on the located targets. The PTZ network operates according to heuristic rules designed

to track targets cooperatively. Their method was further improved so that it can be ap-

plied to an uncalibrated multi-camera surveillance system connected with wireless com-

munication network [47]. Since the wireless communication range is limited, Qureshi

and Terzopoulos assumed that each camera can only communicate with its neighbors.

Therefore, cameras within a communication range can share information of targets to

be tracked. Adding/removing camera nodes can be accomplished very easily with their

method. However, the flexibility is exchanged for security because, in general, a cam-

era network sufficiently sharing information with a centralized server can outperform a

camera network sharing information locally. In summary, a cooperative target tracking

approach can utilize the camera resources efficiently and enable the cameras to support

each other to recover the tracking when a tracking task fails.
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While a solution to the target tracking problem can provide each target’s trajectory, a

surveillance system usually requires more information. For example, it is often necessary

to capture the face of a human target or the license plate of a vehicle at a high resolution.

These applications are related to improving evidential quality [44, 45]. In addition, PTZ

cameras are frequently used to extend the coverage of the surveillance area by pan-tilt

scanning. Piciarelli et al. [46] proposed an approach that reconfigures the pan-tilt-zoom

parameters of all PTZ cameras based on the probability of observing an event in a specific

location. Song et al. [43] applied game theory to maximize the surveillance coverage in

their decentralized system, and adopted a sequential optimization strategy to achieve the

Nash equilibrium [48]. Under this method, one PTZ camera is selected at random each

time and its parameters are tuned, while those of the other cameras remain unchanged.

After the Nash equilibrium is achieved, the cameras should cover the entire surveillance

area at an acceptable resolution. When a human operator decides to track a specific target

at a higher resolution, the target will be assigned to the most appropriate PTZ camera,

which will then be excluded from the game. As a result, the remaining cameras have to

adjust their parameters and try to maintain the maximum surveillance coverage. Based on

the result of [43], they introduce a distributed consensus algorithm to solve target tracking

and activity recognition problems [49] [50]. They modified the utility function in the game

theoretic control framework [43] and then applied the method to control the cameras to

cover the entire surveillance area. They also proposed to use a decentralized Kalman filter

algorithm to track the position and velocity of each target. The game theoretic framework

has two advantages: 1) it can be implemented easily; and 2) only a small amount of

information needs to be exchanged. However, we remark that the Nash equilibrium is not

necessarily an optimal solution. Moreover, tracking a specific target at a higher resolution

is treated as an exceptional task that cannot be optimized by using the same game theory

framework. Another potential problem of their method is that there is no mechanism to

suppress investing too many resources (i.e., cameras) in tracking a single target.
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Reconfiguring PTZ cameras to achieve any of the three objectives is intrinsically a

combinatorial optimization problem. Computing the optimal solution is very time con-

suming and, therefore, existing methods usually reduce the problem into a bipartite match-

ing problem, which assigns tasks to cameras. However, the task assignment formulation

does not fully utilize the camera network. For example, when the number of tasks is

greater than the number of cameras, some tasks will have to be abandoned despite that a

camera may accomplish multi-tasks at the same time.

In this chapter, we propose an optimal and flexible solution to the PTZ network co-

ordination problem. We show that the problem can be formulated as a linear production

game (LPG). The LPG is about how a group of collaborative players utilizing their lim-

ited resources to create various products yielding the maximum payoff given that the price

of each product is known. Players in the LPG of a PTZ network are the cameras. Each

camera can control its FOV by selecting the PTZ parameters. Although the number of all

PTZ combinations is very large, due to the limited speed of PTZ actuators, only a small

set of new PTZ settings has to be considered. The new FOV corresponding to each new

PTZ setting is the product of the game. Resources owned by each player (i.e., camera)

are the targets which are observable to the camera. The observability of a target to a cam-

era is determined by checking whether the camera can select a feasible PTZ settings to

observe the target. The price of a product (i.e., the new FOV of a camera) is evaluated by

examining the video quality of each target in the FOV. The goal of this cooperative game

is to select a set of FOVs for the cameras to maximize the total payoff (video quality of

the targets). The LPG is a special case of a linear programming problem. While a lin-

ear programming problem may be infeasible or unbounded [51], the LPG always has an

optimal solution that can be evaluated in polynomial time. Therefore, many techniques,

such as branch-and-bound and cutting-plane techniques [52], can be applied to solve the

camera network reconfiguration problem.
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Table 3.1: Symbol table used in Section 3.2
n camera number
m detected target number
gk

t status vector of target k at time t
bk

t 3D bounding box of target k at time t
vk

t velocity of target k at time t
Ut the status of m targets at time t

Ût+1 the predicted status of m targets at time t +1
φ

i
j the j-th feasible FOV in i-th camera

Φi the feasible FOVs in i-th camera
wi number of feasible FOV in i-th camera

Q(.) the quality function of an FOV combination
Qk (.) the quality function by observing k-th target

3.2 Problem Formulation

Suppose a surveillance system contains n calibrated PTZ cameras, each of which is con-

trolled by a network-connected processor. In addition, a fixed (non-PTZ) camera in our

system is seen as a PTZ camera with only one available FOV. Furthermore, let m be

the number of targets detected in the surveillance area. Each detected target is repre-

sented by a status vector denoted by gk
t =

[
bk

t ,vk
t
]
, where bk

t and vk
t are, respectively,

the 3-D bounding box and the velocity of target k estimated at time t. The target’s sta-

tus Ut =
{

gk
t
∣∣k = 1,2, ...,m

}
and the static background constitute a dynamic scene model

(targets history positions and a top-view scene model) that can be used to predict the status

of all the targets m at time t +1, expressed as Ût+1 =
{

ĝk
t+1

∣∣k = 1,2, ...,m
}

. The model

is maintained by a central information processing node (a central server) that gathers in-

formation about the detected targets and the camera parameters from each camera node.

It is assumed that the camera network has been calibrated and the homography (a point to

point mapping matrix) between any two of the cameras is known so that the information

about the detected target can be integrated. The central information processing node is

also responsible for determining the optimal camera parameters.
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3.2.1 Parameters to be Determined

Let φ
i denote the i-th camera’s FOV, which is controlled by the pan-tilt-zoom parameters

of the camera. We assume that the relationship between the FOV and the parameters is

known. Therefore, the problem of determining the optimal camera parameters is trans-

formed into a problem of selecting the optimal FOV for each camera. Because of the

limitation of the lens motor speed, a camera can only change its parameters locally in a

short time. Hence, given each camera’s current parameters, a set of feasible FOVs can be

constructed and expressed as follows:

Φ
i =
{

φ
i
j

∣∣∣ j = 1,2, ...,wi

}
, (3.1)

for i = 1, 2, ..., n, where wi is the number of feasible FOVs of the i-th camera. The PTZ

camera coordination problem is formulated as the following combinatorial optimization

problem: (
φ

1∗, ...,φ n∗)= arg max
φ

i∈Φi,i=1,...,n
Q
(
φ

1, ...,φ n) , (3.2)

where Q(.) : Φ1× ·· · ×Φn 7−→ R is a function mapping
(
φ

1, ...,φ n) to a real quality

value.

In the next subsection, we explain how to assess the quality of a set of FOVs for

different goals.

3.2.2 Quality Function of A Camera’s FOV

Under the dynamic scene model, the locations of predicted targets can be computed for

each camera’s FOV. The predicted bounding box is defined as a region of interest (ROI).

In a visual surveillance system, assessing the quality of an FOV usually involves the

following two steps.

1. Determine whether the FOV includes some ROIs. An FOV without any ROIs
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should be evaluated as having the lowest quality.

2. Evaluate the dimensions (width and height) of each ROI. The resolution of the ROI

should be sufficient to accomplish the given task. Aldrige and Gilbert [1] suggested

different resolution requirements for different tasks. If a resolution is lower than

the suggested value, a low quality value should be assigned to it. Conversely, if

the resolution is higher than the suggested value, the quality value should be upper

bounded or reduced to induce camera zoom out for monitoring a larger area.

For most surveillance tasks, the quality of each camera’s FOV can be evaluated indi-

vidually and the total quality function, Q
(
φ

1, ...,φ n), can be simplified as follows:

Q
(
φ

1, ...,φ n)= f (q1,q2, ...,qn) , (3.3)

where qi = Q
(
φ

i) for i = 1, 2, ..., n, and f (·) : Rn 7−→ R is a function that maps the n

individual quality values to a total quality value. We discuss possible choices of f (·) later

in this section. Furthermore, the quality function of each FOV, say φ
i, can be expressed

as a function of the qualities of individual ROIs. Since the quality of each ROI can be

evaluated independently, it is reasonable to compute the quality of an FOV as follows:

Q
(
φ

i)= m

∑
k=1

Qk
(
φ

i) , (3.4)

where Qk
(
φ

i), Q
(
b̂k

t+1;φ
i, T̂t+1−

{
ĝk

t+1
})

is the non-negative quality of observing the

k-th target with FOV φ
i. The value is zero when b̂k

t+1 is not observable in FOV φ
i or it is

completely occluded by other targets at T̂t+1. The simplest form of f (·) in Equation (3.3)

is a linear summation function given by

QL
(
φ

1, ...,φ n)= n

∑
i=1

Q
(
φ

i) . (3.5)
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However, since the qualities of a target in all views count toward the total quality function,

maximizing (3.5) makes all the cameras pursue high video quality targets and ignore low

quality ones.

To resolve the problem, we adopt the following non-linear quality function in this

work:

QNL
(
φ

1, ...,φ n)= m

∑
k=1

max
i

Qk
(
φ

i) , (3.6)

where only the maximum ROI quality of each target counts toward the total quality. Thus,

the quality of a solution that favors a specific target will be lower than that of a solution

that assigns the cameras to monitor different targets.

3.3 The Proposed Approach

In this section, we show that the non-linear objective function (3.6) can be converted into

a linear function by expanding the set of feasible solutions and imposing new constraints.

Let T i
j and

∣∣∣T i
j

∣∣∣ denote the set of targets covered by FOV φ
i
j, i.e., the j-th feasible FOV

of the i-th camera (refer to equation (3.1)), and the number of targets in T i
j respectively.

The total number of subsets of T i
j is 2|T

i
j |, and h is an index of the subset. For each subset

Si
j,h ⊂ T i

j , 1≤ h≤ 2|T
i
j |, we can construct a virtual FOV that ignores any target not in Si

j,h,

i.e., Qk

(
φ

i
j,h

)
= 0, for all k /∈ Si

j,h (see Figure 3.1).

Notably, introducing virtual FOVs into the system increases the number of expanded

feasible FOVs to ∑
n
i=1 ∑

wi
j=1 2|T

i
j | ≤ nwmax 2|Tmax|, where wmax and |Tmax| are the maximum

number of feasible FOVs of a camera and the maximum number of targets in an FOV,

respectively. From the complexity analysis, it is obvious that the computation load is lin-

early proportional to the number cameras and is exponentially proportional to the number

of targets in an FOV. The exponential growth of the variables may lead to the scalability

problem. However, since a PTZ camera is mainly used to acquire high definition images

of targets by choosing a proper zoom setting, the number of targets observed by a PTZ
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Figure 3.1: The decomposition of an FOV containing
∣∣∣T i

j

∣∣∣ targets into 2|T
i
j | − 1 virtual

FOVs.

camera is very limited. To give an impression about the typical number of targets covered

by the FOV of an camera in different surveillance applications, we tabulate in Table 3.3

the suggested target sizes with respect to four different applications described by Aldrige

and Gilbert [1]. According to the data shown in Table 3.3, the maximum number of targets

in an FOV of a camera is less than 15 for the recognition and identification applications.

In practice, the maximum target number will be much smaller than this value and the

solution can be computed very efficiently. The scalability problem emerges only when

one uses too few PTZ cameras to observe too many targets. In that case, PTZ cameras

are operating at the wide-angle (low resolution) mode, and the video content is less in-

formative. To acquire useful surveillance videos, one should consider introducing more

PTZ cameras into the network. Hence, although from the algorithmic point of view, the

proposed method might suffer from scalability issues, in practice, the scalability issues

can be ignored.

By replacing φ
i
j with the virtual FOVs, φ

i
j,h, h = 1, ...,2|T

i
j |, the number of feasible

FOVs to be assigned to the i-th camera becomes ∑
wi
j=1 2|T

i
j |. To select the optimal FOVs,
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Table 3.2: Symbol table used in Section 3.3
T i

j targets covered by the FOV φ
i
j∣∣∣T i

j

∣∣∣ number of targets covered by the FOV φ
i
j

Si
j,h subset of T i

j
wmax the maximum number of feasible FOVs of a camera
|Tmax| the maximum number of targets in an FOV
φ

i
j,h virtual FOV expanded from φ

i
j

xi
j,h binary variables to indicate φ

i
j,h is selected

oi jhk binary coefficient to indicate whether the k-th target is observable in φ
i
j,h

q∗k the quality of the k-th target evaluated by one of the optimal FOVs

Table 3.3: The required target size of different surveillance applications suggests in [1].

Applications Suggesting target Suggesting target size in Maximum suggesting
height(%) in a a 640×480 FOV(average human target number in an FOV
CCTV FOV width-height ratio 0.3442 [53])

Monitor and control > 5% 9×24 1422
Detection > 10% 17×48 376

Recognition > 50% 83×240 15
Identification > 120% 199×576 2
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we define the binary variables xi
j,h ∈B (B, {0,1}) to indicate whether the ( j,h)-th virtual

FOV of the i-th camera, i.e., φ
i
j,h, is selected. Therefore, the optimization problem in FOV

selection can be rewritten as follows:

max
x

n

∑
i=1

wi

∑
j=1

xi
j,h

m

∑
k=1

Qk

(
φ

i
j,h

)
, (3.7)

subject to
wi

∑
j=1

2|T i
j|

∑
h=1

xi
j,h ≤ 1, (3.8)

for i = 1,2, ...,n, and
n

∑
i=1

wi

∑
j=1

2|T i
j|

∑
h=1

xi
j,h oi jhk ≤ 1, (3.9)

for k = 1,2, ...,m, where x =

[
x1

1,1,x
1
1,2, · · · ,xn

wn,2|T
n
wn |

]
and the binary coefficient oi jhk ∈ B

indicates whether the k-th target is observable in the virtual FOV φ
i
j,h. The constraint

specified in (3.8) ensures that each camera can only be assigned one FOV at a time, and

(3.9) guarantees that the quality of a target can only be evaluated by a single FOV because

the repeated target selection violates the constraint in equation (3.9) (the summation value

is larger than 1.)

The relation between the solutions to (3.6) and (3.7) can be derived by changing the

summation order of (3.7) as follows:

m

∑
k=1

[
max

x

n

∑
i=1

wi

∑
j=1

xi
j,h Qk

(
φ

i
j,h

)]
=

m

∑
k=1

q∗k , (3.10)

where q∗k is the quality of the k-th target evaluated by one of the optimal FOVs.

The objective function and the constraints given in Equations (3.10), (3.8) and (3.9)

form a linear programming problem. Since a linear programming problem may be in-

feasible or unbounded [51], it is important to show that the above formulation yields an

optimal solution that can be solved efficiently. In the following subsection, we show that
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Table 3.4: Symbol table used in Section 3.3.1
N n player set
v a payoff function of the game
S a coalition, subset of N

bk(.) total number of the k-th resources of a coalition
p number of products
A a resource-product matrix
c obtained price by selling a product
C the core of a game

our formulation can be regarded as an LPG [54]. The LPG is a special case of linear

programming problems which has the following nice properties

1. The optimal solution of an LPG always exists, and

2. The solution can be computed in polynomial time by solving its dual problem [54,

55].

3.3.1 Linear Production Game (LPG) Problem

An LPG is a special case of a cooperative game that is usually denoted as (N,v), where N

is a set of n players, namely {1,2, ...,n}, and v : 2N → R is a payoff function that maps a

coalition to a payoff value [56]. Specifically, the payoff of an empty set is zero. A coali-

tion, say S, is a subset of all players, i.e., S⊆N. The LPG described in [54] involves max-

imizing the payoff of n cooperative players who own m different types of resources. The

total number of the resources type k in a coalition S are denoted as bk(S), k = 1,2, ...,m,

and those resources can produce p different products. A resource-product matrix A is

used to specify the relationships between the amounts of the different types of resources

required to produce each product. The (i, j)-th entry of the resource-product matrix, de-

noted by ai j, describes the amount of the i-th resource required to produce the j-th prod-

uct, which is non-negative. Then, each product can be sold at a different price given by

c = (c1,c2, ...,cp). In this game, the maximum payoff can be obtained by solving the
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following linear programming problem

v(S) = max
x

c>x, (3.11)

subject to Ax≤ bk(S) and xi ≥ 0 for all i.

The above optimization problem indicates that all players in the coalition S should

combine their resources to produce a set of products that maximize the revenue v(S).

Let y = [y1 · · ·yn]
> denote the payoff vector, where yi = cixi, i = 1,2, ...,n. In cooper-

ative game theory, an imputation describing a payoff vector is defined as follows:

{
y|y = [y1,y2, ...,yn]

>, ∑
i∈N

yi = v(N),yi ≥ v({i})∀i ∈ N

}
(3.12)

Equation (3.12) indicates that each player benefits by cooperating in a game because

the resulting payoff, i.e., yi, of the i-th player is not less than the payoff derived by playing

alone, i.e., v({i}). v({i}) means the maximum payoff value obtained by the i-th players

resource only. Moreover, in the cooperative game v(N), the sum of the payoffs to all the

players is equal to the total payoff. The solution concept of a cooperative game is called

the core. It consists of one or more imputations that satisfy the following condition: all

the payoffs of a subset in the imputation must be maximized. In the payoff vector, none

of the players has a motive to leave the coalition because doing so would reduce his/her

payoff. The core is defined as follows:

C =

{
y|y = [y1,y2, ...,yn]

>, ∑
i∈N

yi = v(N),∑
i∈S

yi ≥ v(S)∀S⊆ N

}
(3.13)

Notably, the coefficients in the LPG equations are all positive. As the coefficients in

the objective function (3.7) and in the constraints (3.8) and (3.9) are also all non-negative,

the optimization problem can be easily mapped to an LPG problem. The role mapping

between the camera network reconfiguration problem and the LPG is listed as follows:
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1. The players are the cameras.

2. The resources of a player are the targets covered by a camera at the next time in-

stance.

3. The products are the selected FOVs for the cameras.

4. The price of each product (i.e., an FOV) is the quality of each selected FOV.

This formulation is similar to a bounty hunter game in which the cameras act as hunters

who use FOVs to “hunt” targets. Different hunters will receive different rewards (i.e.,

video quality) when obtaining a target. This is a cooperative game because all the hunters

tend to let the hunter who may receive the greatest reward to catch a target. The existence

of a core of the game ensures that all players will obtain the maximum payoff.

In this work, we adopt the branch-and-cut algorithm [57] to compute an optimal inte-

ger solution. Since an optimal solution guarantees that (3.10) is an upper bound of (3.6),

the LPG solution is equivalent to the optimal solution of the non-linear objective function

(3.6).

3.4 Simulations and A Real World Experiment

To compare the performances of different approaches, we conducted three computer sim-

ulations and a real experiment. Throughout the four experiments, the following simple

quality function is adopted.

Qk

(
φ

i
j,h

)
=


1+λ zi

j,h, if target k is covered by φ
i
j,h

0, otherwise,
(3.14)

where λ = 0.01 in the experiments and zi
j,h ∈ [0,1] is the zoom level of the FOV φ

i
j,h.

When the lens is fully zoomed out, zi
j,h = 0. Conversely, zi

j,h = 1 indicates that the lens is
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fully zoomed in. Therefore, λ zi
j,h ≤ 0.01. The quality function defined in (3.14) indicates

that our goal is to control the PTZ cameras to capture as many as possible the targets

appearing at the area under surveillance while favoring high zoom level camera settings.

The goal can be applied to real-world applications. For example, the most common ap-

plication is to record all targets’ trajectories in the scene. Then, when an event occurred,

the recorded trajectories can be utilized to trace a target (for example, a criminal) and to

reconstruct his escaping route. For simplicity, we assume that the image resolution of

any static camera included in the surveillance network is too low that the image quality

function always returns zero. Hence, the optimal solution will be a control strategy that

uses the PTZ cameras to capture the highest number of targets.

In the first two experiments, we simulated a surveillance system containing three vir-

tual PTZ cameras, a virtual static camera covering the entire area under surveillance, and

several virtual pedestrians with different paths and movement speeds. In total, we pro-

duced five pedestrian sets each containing 15 moving objects. Figure 3.2 shows the sim-

ulation environment in which the total coverage of each PTZ is depicted as a fan-shaped

region and a moving target is represented as a trajectory with time ordering.

We compared the performance of the proposed non-linear objective function LPG

(NOF-LPG) method with that of the following four methods: the linear sum method, i.e.,

the linear objective function LPG (LOF-LPG), which maximizes Equation (3.5); Song

et al.’s method (SONG) [43]; Lim et al.’s method (LIM) [40]; and the exhaustive search

(ES) method. To find an optimal solution, the ES algorithm tests all possible combinations

∏
n
i=1 wi of the feasible FOVs (refer to Equation 3.1)) of all the cameras. The small-scale

tests enable us computing an ES solution as a reference to compare different approaches.

The simulated system was implemented in C++ on a PC with an Intel Core 2 DUO E8400

3.00Ghz CPU.

The first simulation compares the efficiency and accuracy of the five algorithms on

the five pedestrian sets. The average computation times using NOF-LPG, LOF-LPG,
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2
3

1

Figure 3.2: The simulated surveillance environment with three PTZ cameras and fifteen
moving targets in Pedestrian set 1

SONG, LIM, and ES are shown in Table 3.5. The computational load of NOF-LPG is

exponentially proportional to the maximum number of targets in an FOV, i.e.,
∣∣∣T i

j

∣∣∣ (refer

to Section 3.3) but the number of targets in an FOV is normally small. Therefore, the

efficiency of NOF-LPG is acceptable. In the simulation, the maximum number of targets

in an FOV is five, so the computation time of the proposed method is satisfactory.

Figure 3.3(a) shows the true number of moving objects in pedestrian set 1 and the

number observed by ES. Note that the cameras may not be able to observe all the moving

objects simultaneously because of the limitations of their FOVs. Therefore, the numbers

of observed targets derived by the ES algorithm are used as a benchmark. In the sim-

ulation, the positions of all pedestrians are provided by the global-view static camera.

Figure 3.3(b) shows the performances of the four compared methods using pedestrian set
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Table 3.5: The average computation time required for one iteration by the NOF-LPG,
LOG-LPG, SONG, LIM, and ES methods

Average computation time Average computation time
in the first simulation in third simulation

NOF-LPG 334.14 ms 1115.72 ms
LOF-LPG 247.76 ms 1112.89 ms
LIM 236.33 ms 1073.44 ms
SONG 245.01 ms 1086.99 ms
ES 2330.37 ms O(4530)

Table 3.6: The percentages of targets observed by the compared methods

Pedestrian set 1 Pedestrian set 2 Pedestrian set 3 Pedestrian set 4 Pedestrian set 5
NOF-LPG 100.0% 100.0% 100.0% 100.0% 100.0%
LOF-LPG 96.4% 93.7% 93.9% 93.6% 93.2%
LIM 75.6% 71.7% 84.6% 77.9% 77.0%
SONG 73.4% 76.0% 66.3% 72.4% 68.4%

1, where all data are normalized by the corresponding reference values (the result of ES);

and Table 3.6 details their performances on the five pedestrian sets. The NOF-LPG and

LOF-LPG methods outperform the other two methods. The results show that the number

of targets observed using NOF-LPG is equal to that of the ES algorithm. Furthermore,

the LOF-LPG method outperforms the SONG and LIM methods because it utilizes a cen-

tralized optimization technique. The proposed NOF-LPG method outperforms the other

three methods because it adopts a better objective function.

As mentioned in Section 3.2.2 that the linear summation function (3.5) encourages all

cameras to pursue high video quality targets without a mechanism to suppress too many

cameras focusing on the same group of targets. Therefore, the LOF-LPG method may

lose track of some targets. Figure 3.4 shows an example of this effect found in the first

simulation at time instance 21. This figure shows that target 4 is ignored by the LOF-LPG

algorithm because the sum of the quality values of targets 2 and 6 is greater than that of

target 4. Conversely, the NOF-LPG appropriately controls cameras’ FOVs to obtained

more targets.
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(a)

(b)
Figure 3.3: (a) The true number of moving objects in Pedestrian set 1 and the number
observed by the exhaustive search (ES) method; (b) the normalized numbers of targets
observed by the compared methods (Pedestrian set 1).

In the second simulation, we assess the effects of two types of noise that are inevitable

in a real environment. The first type of noise is caused by target detection errors, which

yield an incorrect number of targets; and the second type is target location errors caused

by target tracking and/or prediction errors. The miss detection rate is set at 10% in this

simulation, and the target position is perturbed by zero mean white Gaussian noise with a

standard deviation of 0.5 meters. In addition, a 20% gross location error is generated by

a random walk whose step size and orientation angle are uniformly distributed within

[2,5] meters and [0,2π] respectively. The number of moving targets and the method
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Figure 3.4: The snapshot of NOF-LPG and LOF-LPG at time instance 21.

Table 3.7: The percentages of targets observed by the compared methods in noisy pedes-
trian sets

Pedestrian set 1 Pedestrian set 2 Pedestrian set 3 Pedestrian set 4 Pedestrian set 5
NOF-LPG 92.5% 88.8% 91.0% 87.0% 89.9%
LOF-LPG 91.0% 87.1% 85.8% 86.1% 85.4%
LIM 72.9% 64.0% 75.1% 69.0% 71.5%
SONG 68.5% 66.5% 67.1% 61.3% 65.1%

used to compute the reference values are the same as those in the first simulation. The

results of the second simulation, shown in Table 3.7, demonstrate that incorrect target

information does degrade the decision quality. Even so, NOF-LPG still outperforms the

other methods.

In the third experiment, we simulated a large scale surveillance system with 30 virtual

PTZ cameras and 45 virtual pedestrians. Figure 3.5 shows the simulation environment.

In the simulation, we tested the performance of different approaches under two different

conditions: 1) the positions of the pedestrians are provided by a global-view static camera

and 2) the positions of the pedestrians are estimated by the PTZ cameras. In the latter case,

the positions of those pedestrians which are located outside the FOVs of all the cameras

will be not available. Therefore, the control strategy is made with insufficient information
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and a degradation of tracking accuracy should be expected. Since the exhaustive search

of this large-scale simulation is impractical due to the high computational complexity

O(4530), the number of tracked targets compute by NOF-LPG with a global-view static

camera is used to replace the ES result as a benchmark. Table 3.8 shows the results of

computer simulation. In this large-scale surveillance simulation, NOF-LPG achieved the

best performance. Furthermore, when a global-view static camera is not available, 10%

drop of the tracking performance is observed for every method tested in this experiment.

Moreover, since the SONG method adjusts one camera at a time, each camera is adjusted

every 30 iterations in this simulation. Hence, its performance is further degraded. The

average computation time of the third simulation is shown in Table 3.5. The computation

time of each method is approximately of the same order. In this simulation, the maximum

targets appeared in any of the camera FOVs is only five. Therefore, the computation time

of the proposed NOF-LPG method is slightly longer than that of the other methods.

Figure 3.5: The scene involved with 30 virtual PTZ cameras in the third simulation.

We also conducted an experiment using real-world data to evaluate the performance of

the four methods. A camera network comprised of two PTZ cameras (AXIS AX-215) and
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Table 3.8: The percentages of targets observed by the compared methods in a large scale
scene.

Performance with a global fixed camera Performance without any fixed camera
(normalized by the result of (normalized by the result of

NOF-LPG with a global fixed camera) NOF-LPG with a global fixed camera)
NOF-LPG 100.0% 90.0%
LOF-LPG 98.1% 87.5%
LIM 96.8% 73.0%
SONG 45.5% 35.6%

one fixed camera (D-link DCS-3220G) was deployed in an outdoor environment. There

are quite a few automatic methods to estimate the image homographies, such as [58] and

[59]. However, since estimating a homography only requires four pairs of correspondence

points, it is not difficult to manually construct the correspondence points. Therefore,

in the experiment, all cameras were calibrated by selecting landmarks manually and the

homography map was computed by using functions in OpenCV [60]. The video resolution

of each FOV was 352× 240. At the system setup stage, 24 predetermined FOVs were

assigned to each PTZ camera. To calibrate the homographies of the predetermined FOVs,

the images corresponding to the 24 FOVs were acquired and used to build a panoramic

image of the PTZ camera with Autostitch [61]. Therefore, the homography between any

of the 24 FOVs and the corresponding panoramic image is known. At present, the 24

FOVs only contain two zoom levels because, if the FOV is too narrow, the image features

would be insufficient (feature points < 4) to estimate the image homography reliably. The

panoramic images of the two PTZ cameras and the images of the fixed camera are related

by registering them to a top-view aerial image. Figure 3.6(a) shows the set of 24 acquired

images and the registered panoramic image; and Figure 3.6(b) shows the visual coverage

regions of the three cameras overlaid on a top-view image. Therefore, the homography

between any two cameras is known.

The video from the fixed camera is used for target detection and prediction; and Yoo

and Park’s difference-based approach [62] is utilized to detect moving targets. Although

the approach in [62] may fail to detect semi-stationary targets, it is efficient and robust
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(a)

(b)
Figure 3.6: (a) A panoramic image derived by integrating 24 images; (b) the coverage
regions of the three cameras overlaid on a top view image and the panoramic image of the
three cameras.

to lighting variations; thus, it is very suitable for an outdoor real time system. A simple

constant-velocity motion model is used to predict the locations of targets. Figure 3.7

shows a snapshot of the targets detected in the video stream of the fixed camera.

Since it is impossible to control the PTZ cameras by using the four compared methods

simultaneously, we tested them one by one. For comparison, each algorithm was tested for

20 minutes (about 5400 frames) on a cloudy and windy day. At each iteration, the system

required about 0.8 seconds to estimate the parameters of the constant-velocity model of

each moving target in order to predict its next position. Then, new parameters were

determined and sent to the PTZ cameras. Usually, the cameras took 0.6 seconds to move
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Figure 3.7: Detected targets (a single person, a group of people, a car, and noise)

to the assigned FOV. Finally, the targets observed by the FOVs were counted to evaluate

the performance. Figure 3.8 shows the NOF-LPG results at three time instances. In video

frame 1470, several groups of people are detected and the two PTZ cameras are instructed

to observe different groups of targets for maximizing the observed target number. Video

frames 3358 and 3444 exemplify a target hand-over between cameras, where the group

observed by camera 2 in frame 3358 is passed to camera 3 in frame 3444. As in the

simulations, the exhaustive search method is applied to obtain reference data. However,

since it is impractical to test all combinations of the cameras’ FOVs when determining

the optimal solution in a real environment, the exhaustive search is based on the video

recorded by the fixed camera. Each feasible FOV of the PTZ cameras is mapped to a

region in the image of the fixed camera. Then, all combinations of the mapped regions are

utilized to search for the maximum number of observed targets as reference data. Figure

3.9 shows the corresponding reference data of the four video sequences used to test the

NOF-LPG, LOF-LPG, LIM and SONG methods; and Table 3.9 details the performances

of the four algorithms in the real-world experiment.

Although the performance of each algorithm is affected by shadows, wind, calibration

errors, target detection errors, and prediction errors, the results demonstrate that NOF-

LPG and LOF-LPG still outperform LIM and SONG.
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Figure 3.8: The tracking results of frames 1470, 3358, and 3444 using NOF-LPG.

Table 3.9: The percentages of targets observed by the compared methods in a real envi-
ronment

Performance (normalized by the result of
exhaustive search in the fixed camera)

NOF-LPG 71.0%
LOF-LPG 67.3%
LIM 60.2%
SONG 62.3%

3.5 Concluding Remarks

In this chapter, we have considered the process used to assess the quality of a set of FOVs

and proposed a non-linear objective function to reduce the number of unattended targets

in a surveillance region. When the quality of each FOV is evaluated individually, it is

easy to derive the objective functions of different PTZ network problems. The proposed

approach provides an optimal solution for the PTZ network coordination problem. We

have also shown that the non-linear optimization problem can be transformed into a lin-

ear production game problem that is guaranteed to yield an optimal solution. The optimal

solution of LPG can be computed in polynomial time so our approach is efficient. The
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Figure 3.9: The average number of targets identified by the ES algorithm in the video
sequences used to test the NOF-LPG (video sequence 1), LOF-LPG (video sequence 2),
LIM (video sequence 3) and SONG (video sequence 4) methods.

branch-and-cut method is adopted to solve the PTZ parameters selection problem. Com-

puter simulations and a real-world experiment were performed to evaluate the proposed

method in a multi-target surveillance environment. The results show that the method

achieved the highest tracking rate among the compared methods.
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Chapter 4

Human Motion Recognition

In this chapter, a local feature-based human motion analysis framework is described. First,

we introduce the human motion recognition problem and review the related works. The

proposed approach about feature extraction and training process is then detailed. Next,

the experiment results are shown. Finally, we present our conclusion.

4.1 Introduction

In the past ten years, human motion recognition has attracted a great deal of attention

in video surveillance field [63–68] due to its broad applications. Human motion analy-

sis based on video is a vivid research topic, and it is known to be a difficult task due to

two reasons: Firstly, human body movement involves complex articulated motions be-

longing to a large set of segments, thus the developed recognition algorithm must have

the capability to handle a complex motion with high degrees of freedom. Secondly, it is

not practical to analyze human behavior in frame-by-frame base; an alternative approach

would be utilizing the spatial-temporal information, which greatly increases the amount

of data to be processed. The existing works dealing with the above addressed two issues

can be divided into two categories. The first category is called the statistical-based meth-

ods. The basic idea associated with this category is analyzing the low-level features to
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discriminate different human motions. Haritaoglu et al. [63] proposed the W4 system,

which computes the vertical and horizontal projections of a silhouette to determine the

global posture of a human subject. Bobick and Davis [64] constructed two temporal tem-

plates called motion energy images (MEI) and motion history images (MHI) by stacking

a set of consecutive frames. Moment-based features are then extracted from MEI and

MHI and used to perform template matching. Ke et al. [69] aligned video frames to gen-

erate a spatial-temporal volume. Classifiers of local features are trained by observing the

variations of vertical and horizontal optical flows in the volume. Subsequently, a feature

selection process is applied to find the best features for recognizing a motion. However,

it is hard to obtain a complete posture by statistical-based methods, because image seg-

mentation is still an ill-posed problem. The second category is called the trajectory-based

methods. Methods belonging to this category utilize the trajectories of body parts to de-

scribe human motions. Trajectories have higher tolerance for environmental noise than

low-level features, thus they have a better discriminating capability. For example, Min

and Kasturi [65] extracted limbs’ trajectories by tracking the maximum magnitude points

of the optical flows and used them as landmark points to train the descriptors. Hidden

Markov Model (HMM) is adopted and trained to recognize the human motion trajectory.

A view invariant representation based on trajectories of human body parts was proposed

by Yilmaz and Shah [70]. Their system recognizes and retrieves human actions from mul-

tiple videos captured from different views or from a single moving camera. Although the

trajectory-based methods do not reply on assumptions pertinent to the completeness of

posture detection, the robustness of landmark detection is still another challenging issue.

Moreover, the challenging research issues in field of object recognition and categorization

also include that the developed method is expected to be able to tolerate situations, such

as when objects belong to the same category but differ in appearance (for example, chairs

with different numbers of legs, as shown on the bottom left of 4.1 ) and when an object

is viewed from different viewing directions. These issues might be overcome by local
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feature-based representation methods. The essential idea of such methods is to determine

reliable object parts and use them to represent and recognize the specified object. Dur-

ing the partial features matching process, the object’s structure is better to be taken into

consideration to enhance the robustness, which also provides clues for identifying outlier

features. For example, Leibe et al. [71] learned a codebook of local appearance and then

proposed the Implicit Shape Model (ISM) to indicate the appearance location of an ob-

ject. Opelt et al. [72] trained the fragment features by Adaboost to obtain a feature set

that provides the best recognition result. The concept of those approaches is illustrated in

Fig. 4.1.

The above-mentioned challenging issues also exist in research on human motion recog-

nition. First, the same category of objects with different appearances is analogue to a

motion composed of different movement styles, such as waving at different speed or arm

positions. Second, a motion may be captured from different viewing angles, which is sim-

ilar to the case of an object being viewed from different viewing directions. Therefore,

we propose to adopt the idea of the local feature-based representation methods and apply

it in motion recognition tasks.

Extracting a set of suitable local features is an important step in the local feature-based

representation method. However, it is not suitable to directly applying the method in [71]

or [72] (designed for static object recognition) to human motion recognition, because

the spatio-temporal relationship provides rich information for describing a human motion

which was not taken into account in [71] and [72]. Therefore, a motion-fitted feature

extraction approach taking into account the spatio-temporal relationship is proposed in

this chapter.

Utilizing whole body posture information [63, 64, 68] is a common approach for hu-

man motion recognition. In Fig. 4.2, the source images, whole body postures, static

regions, and moving regions are shown from the top to the bottom row, respectively. The

moving regions have higher discriminating power than the static regions but constitute
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only small parts of the whole body postures. In contrast, the static regions occupy the

dominant parts of the whole body postures. Hence, it would be easily biased if whole

body postures are used for human motion recognition. We proposed to apply frame dif-

ference technique to extract the moving regions, and use only those regions having higher

discrimination capability for the recognition tasks. In this chapter, a human motion recog-

nition framework adopting local feature-based representation is proposed. This approach

manages to handle the missing information problem, a key issue for both the statistical-

and trajectory-based methods, which often arises due to the imperfect image processing

results and the noisy environments. The experimental results show that the proposed ap-

proach yields high average recognition accuracy all above 86%. Even when the extracted

information is incomplete and noisy, the method still provides a reliable recognition re-

sults.

Figure 4.1: A concept of local feature-based representation and object detection.
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Figure 4.2: An example includes two different human motions, their posture, static re-
gions, and moving regions.

4.2 Local Feature-based Human Motion Recognition Frame-

work

To overcome the drawbacks and limitations of the existing methods mentioned in the last

section, a local feature-based human motion recognition framework is proposed. The

flow chart of the framework is depicted in Fig. 4.3. In the learning phase, the system

first determines whether the input human motion is a whole-body motion. If it is, then

an alignment process is performed and followed by the limb motion extraction. Other-

wise, the limb motion extraction can be directly applied to the source images. Next, the

motion features are extracted from the resulting limb motions and are categorized into
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two types according to the motion durations, namely the long-term and the short-term

features. Different mathematical models are used for representing the long-term and the

short-term features. The relations among those local limb features are constructed and

used for training the human motion recognition. Finally, in the learning phase, a human

motion detector is built based on the analysis results of the local limb features. In the

recognition phase, the same feature extraction process is performed to extract the local

limb features from the input testing video data. The extracted features are then compared

with the stored ones in the human motion detector. If a match is identified, the system

returns the type and the position of the motions.

Figure 4.3: An overview of the proposed human motion recognition framework.
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4.3 Local Feature-based Representation

In order to extract only the local motion features, it is essential to analyze the position of

the moving human object within each image. If the motion was performed at the same

location, the variance of the positions over a period of time is small, it is considered as

a limb motion sequence. In a contrast to that, the motion is considered as a whole-body

motion sequence, such as walking or running, and an alignment process is necessary

before the local motion feature extraction takes place. Clay representation [73] is used

for long-term feature to represent trajectories, and a method for accumulating the moving

edge patches is introduced for the case of short-term feature. All these methods will be

described in detail in this section.

4.3.1 Whole Body Motion Alignment

When dealing with the whole-body motion sequences, the body motion alignment is an

important step towards the accuracy of the whole recognition system. The aim is to ex-

tract only the local limb motions as precisely as possible, and use them as the features to

train the motion detector. First, the moving edge maps of a torso across different frames

are traced to measure the whole body displacement vector. The moving edge map can

be obtained by frame difference technique and Canny edge detector. Next, the Chamfer-

matching [74] method is applied to estimate the nearest distance from the pixels in the

current moving edge map to the next time instant. The Chamfer-matching extracts the

displacement with lowest distance within a search area and then assigned as a displace-

ment vector to align whole body motion between two frames. The search area of the

whole body displacement can be bounded in a small region, because the time interval

between adjacent frames is short. As a result, the estimated vector is applied to align the

edge maps.
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4.3.2 Clay Representation of Trajectories (Long-term Feature)

In [73], we proposed a grouping-based trajectory extraction approach that utilizes a clay

model to represent the trend of a limb’s trajectory, which is robust against noisy envi-

ronment. In this chapter, we adopt the clay representation of trajectories in [73] as the

long-term feature by considering its spatio-temporal characteristic. The details about the

trajectory extraction and clay representation are stated as follows.

Based on the assumption that all points belong to the same moving articulated part

have homogeneous movement trends during a period of time, as shown in Fig. 4.4(a),

the trajectory of a moving articulated part can be determined. We should notice that

no landmark points should be selected, providing better noise tolerance capability than

a single landmark point tracking approach, which would possibly rely on a noisy point

tracking result.

First, the edges of adjacent frames are extracted by frame differencing the two frames,

adopting the Canny edge detector. Then, a uniform sampling is utilized for generating

the moving edges. The corresponding point pairs are obtained by Shape Context [75],

forming the motion flows with the continuative linkage to form rough trajectories, as

shown in Fig. 4.4(b). The short trajectories with too few intersecting points are considered

as noises, a conventional nearest-neighborhood (NN) clustering is adopted to assign all

trajectories to different clusters. Figure 4.4(c) shows a clustering result. The detail about

the NN clustering for the trajectories can be obtained in [73]. Next, a voting processing

based on the neighboring region within a certain radius r is achieved according to the

points belong to the same cluster at each timestamp, as shown in Fig. 4.4(d), yellow

points belong to one cluster, and purple points belong to another cluster. In addition, the

voting process concept is shown in Fig. 4.4(e). High overlapping regions are assigned as

the candidate for the moving articulated parts as shown in Fig. 4.4(f) (the yellow region

and the purple region). Then, the trajectories of articulated parts are extracted by linking

the centroids of the candidate regions across the time axis. Finally, the Gaussian-filtered
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trajectories can be generated, as shown in Fig. 4.4(g).

After trajectory extraction, a suitable trajectory representation is required for recogni-

tion, being able to work efficiently and handle translation, scaling, and noisy trajectories.

The clay representation we proposed in [73] fulfils above-mentioned criteria well. Based

on the clay representation, a trajectory can be thought as the force that pushes the limb.

When the force is applied to a clay-like material, the deformed clay material is utilized

to represent the trajectories. To build our clay model, we adopt the approach proposed

in [76], which builds a real-time 3D virtual clay model and a move tool to simulate the

clay deformation. Our model is modified from the original 3D model to fit our 2D ex-

tracted trajectories. In addition, our model is manipulated to allow performing an inner

force. In our proposed clay model for representing trajectories, at first, the location of

the clay is assigned by the bounding box of the trajectories. Next, the sequential motion

vectors of a trajectory are applied to the clay, according to its time ordering, as shown

in Fig. 4.5(a), from left to right and top to bottom. As a result, the bounding box (the

blue rectangle in the left part of Fig. 4.5(b)) of non-zero density regions is extracted and

normalized to a fixed size feature array (the right part of Fig. 4.5(b)) as a clay pattern for

further matching.

After the clay pattern constructed, a normalized vector
−−→
pi

c p j
r , directing from pi

c =

(xi
c,y

i
c), the centroid of i-th clay pattern, to the j-th reference point p j

r which is obtained

by the mean centroid of all clay pattern in the j-th video. The vector is attached to be the

clay feature for the following training process. Although the proposed clay representation

of trajectories can reveal the movement trend of a moving limb, it still lacks the shape in-

formation. On the other hand, since the trajectory only consider about the long-term trend

of a moving limb, the short-term property and the isolated movement are still unconsid-

ered. To achieve the above-mentioned requirements, we propose a so-called accumulated

moving edge patches as the short-term feature to compensate for the shortage of only

adopting the clay representation of trajectories as the long-term feature. The details about
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accumulated moving edge patches are described in the following subsection.

Figure 4.4: (a) Trajectories generated by the sampling points of the same moving artic-
ulated part; (b) generating trajectories in a real case; (c) trajectories after clustering; (d)
sampling points clustered at a timestamp; (e) voting neighboring regions based on sam-
pling points; (f) generated candidate regions at a timestamp; (g) extracted trajectories.

4.3.3 Accumulated Moving Edge Patches (Short-term Feature)

First, a moving edge map at timestamp t, E(x,y, t) , is extracted with the shapes’ infor-

mation of the moving limbs (the same process in the Section 4.3.2). Next, these edge

maps are accumulated based on the MHI [64] to determine the causality of moving edges

along the temporal axis. According to the concept of MHI, the MHI value decreases with

the magnitude proportional to the duration from the current timestamp to the beginning

timestamp. The MHI is calculated as follows:
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Figure 4.5: (a) A piece of clay deformed by a sequential motion vectors according to the
time orders; (b) a 2D clay pattern produced from a trajectory (red line in the left part).

Hτ(x,y, t) =

 τ ,ME (x,y, t)> 0

max(0,Hτ (x,y, t−1)−1), otherwise
(4.1)

ME (x,y, t) = E (x,y, t)∗G(x,y) (4.2)

where E(x,y, t) is the moving edge map at timestamp t, G(x,y) is a 2D Gaussian filter,

and ME(x,y, t) is a blurred version (Gaussian filtered E(x,y, t)) of the moving edge map

E(x,y, t). The Gaussian filter process to the moving edge map E(x,y, t) in each frame

can suppress the noisy edge detection result due to the variation of lighting condition,

shadow, and texture on the foreground subject. Furthermore, based on the Gaussian fil-

tered moving edge map, the accumulated MHI result in a period of time is more reliable.
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In MHI, a time axis sliding window size should be determined as the signal observing

time duration. In our proposed method, an adaptive time axis sliding window size, s, is

automatically determined according to the video content property. The number of moving

edge pixels in each frame are counted frame by frame and accumulated across the time-

axis. If the accumulated number is greater than an adaptive threshold θ w, the current

pattern will be saved as an MHI. The adaptive threshold θ w is set by multiple of the aver-

age moving pixel number θ w = mNavg,m > 1, Navg is the average moving pixel number.

Moreover, to solve the human body size scaling problem and increase available features,

adaptive thresholds(θ 1
w,θ

2
w,θ

3
w, . . .) are set automatically based on the different average

moving pixel number. After generating the MHIs, each MHI is broken into pieces of a

local feature. An example of the proposed accumulated moving edge patches generation

is shown in Fig. 4.6. First, a biggest yellow circle in the left-most figure in Fig. 4.6 is

set to bound a MHI pattern, meanwhile, the circle is uniformly divided along the radius

(the rest yellow circles in the left-most part in Fig. 4.6) and the angle direction (the green

line segments). Each intersecting point (yellow circles and green lines) is set as a center

point (blue rectangles in the second figure in Fig. 4.6 from the left) of a feature patch.

At each center point, the neighboring square rectangle regions (the square rectangles with

different colors in the third part from the left in Fig. 4.6) are copied to be a square feature

patch, and the length lpatch is determined by a fixed ratio of a bounding circle’s radius

br as: lpatch = f br, f = [0,1]. Here, several different patch size ratios are set for han-

dling scaling and noise problems. Finally, each extracted patch is normalized to a fixed

size patch. A reference point p j
r is set automatically by the centroid of all patterns in

the j-th time axis sliding window. Finally, the normalized vectors
−−→
pi

c p j
r , directing from

pi
c = (xi

c,y
i
c) , the centroid point of the i-th patch, to a reference point p j

r , as shown in the

right-most part in Fig. 4.6,
−−→
pi

c p j
r , is attached to be the accumulated moving edge patch for

the following training process.
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Figure 4.6: The sampling and the accumulated moving edge patch extraction process
[right-most: red dots: reference points; patch center point-¿patch ’centroid’ point].

4.4 Learning and Recognition

In the previous section, a large number of potential features are extracted to ensure that

long-term and short-term features can be kept for further training and recognition. How-

ever, because the features may contain redundant information, we apply Viola and Jones’

[77] Adaboost learning approach to select key features for representing a limb’s motion.

In addition, the Classification and Regression Trees (CART) scheme [78] is adopted to

build the weak learner for learning the limb’s motions. By using the CART scheme, the

high discriminating feature bins are selected for identifying a motion. After all weak

learners have been constructed by CART, the AdaBoost algorithm [77] apply weak the

learners to the training data set, as a result, the best weak learners can be generated. The

best weak learner is combined into a strong learner in each iteration. In our framework,

two features (clay representation of trajectories and accumulated moving edge patches)

are trained separately. When the above two features are trained, the features are fused by

the adaptive weights describing later. For a testing video clip in Fig. 4.3, the two features

in the proposed method are extracted separately. The extracted features will be compared

with the trained features sets. For a patch satisfying the rules in the strong learner, the 2D

Gaussian voting [79] approach is utilized for voting. As shown in Fig. 4.7(a), the con-
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cept of Gaussian voting is illustrated. The rectangle patches are the matched patches by

checking the strong learner. The 2D Gaussian voting is applied to the location of patches’

reference points (the red arrows and blue circles) based on the attached vectors
−−→
pi

c p j
r of

each matched patches. Therefore, the response map is generated after all matched patches

voted, as shown in Fig. 4.7(b). The response map is calculated as:

R(x,y) =
nm

∑
i=1

1
2πσ2 · exp

−Dist(Li,x,y)
2σ2 ·α(Li) (4.3)

Dist(Li,x,y) =
√
(x− x′Li

)2 +(y− y′Li
)2 (4.4)

where Dist(Li,x,y) is the Euclidean distance from (x,y) to (xLi,yLi), (xLi,yLi) is the

location pointed by the reference vector
−−→
pi

c p j
r in the matched weak learner Li, and α(Li)

is the weighting value of the associated weak learner Li to represent the importance of the

matched patch:

α(Li) =

 α
′
(Li)×waccu, IF Li ∈ fa

α
′
(Li)×wtra j , IF Li ∈ ft

(4.5)

Where fa and ft represent the accumulated pattern and the trajectory feature set, re-

spectively. The weight waccu is the ratio between total alpha value of the moving edge

patches (short-term feature) and all alpha values, i.e., waccu = ∑
na
i=1 α i

accu/(∑
na
i=1 α i

accu +

∑
nt
j=1 α

j
tra j), where na and nt represent the patch number belonging to the set fa and ft , re-

spectively. Similarly, wtra j represents the ratio between total alpha value of the trajectory

patches (long-term feature) and all alpha values, i.e., wtra j = ∑
nt
j=1 α

j
tra j/(∑

na
i=1 α i

accu +

∑
nt
j=1 α

j
tra j). Therefore, the proposed method can automatically select the weight of waccu

and wtra j, according to the video content property. After constructing the response map,

a rectangle window is slid in the response map to find the best match according to the

searching the region with the maximum voting value, as shown in Fig. 4.7(b). The posi-

tion with the maximum value identifies location belongs to a motion. The locating for the
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position with a maximum value is achieved by the calculation:

(x,y) = argmax
x,y

W (x,y) (4.6)

W (x,y) =
x+(ε/2)

∑
i=x−(ε/2)

y+(ε/2)

∑
j=y−(ε/2)

R(i, j) (4.7)

where ε is search window size, and R(x,y) s the voting value at the location (i, j) in the

response map. An example of a response map and the motion locating process is shown

in Figure 4.7(b). The center of the yellow square rectangle in Figure 4.7(b) shows the

detected position with the maximum value in the response map.

Figure 4.7: (a) The concept of 2D Gaussian voting process [17]; (b) a sliding window
used to locate a motion’s position.

4.5 Experimental Results

In our experiments, a large number of test video clips were used to evaluate the per-

formance, including 10 different actions performed by 5 actors. The video clips were

encoded in the standard MPEG-1 format with the resolution of 352×240. The actors in

the test videos occupied from 11% to 15% of a frame’s area. The actions are shown in

Fig. 4.8, which includes eight limb motions (labeled as actions 1-8) and two whole body

motions (walking and running, labeled as actions 9 and 10). The limbs motions were
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repeated five times, and the whole body motions were repeated four times in each video

clips. Totally, the dataset contained 240 video clips.

Figure 4.8: The ten actions in our test database.

4.5.1 Leave-One-Out Cross-Validation Strategy

In the first experiment, the leave-one-out cross-validation strategy was applied to test our

approach. In each iteration, one actor was chosen for test and the other actors were used

to train all motion detectors. In our experiments, we adopted the adaboost and the CART

structure weak learner implementation provide by GML AdaBoost Matlab Toolbox [80].

Furthermore, each feature patch (long-term features and short-term features) was normal-

ized to 16x16 bins histogram. The recognition results are listed in Table 4.1. In this

experiment, the average recognition rate, 95.8%, can be calculated from Table 4.1.

66



Chapter 4 Human Motion Recognition

Table 4.1: The confusion matrix illustrates the performance of our approach.
Action 1 Action 2 Action 3 Action 4 Action 5 Action 6 Action 7 Action 8 Action 9 Action 10

Action 1 1 0 0 0 0 0 0 0 0 0
Action 2 0 1 0 0 0 0 0 0 0 0
Action 3 0 0 0.96 0 0.04 0 0 0 0 0
Action 4 0 0 0 1 0 0 0 0 0 0
Action 5 0.04 0 0.08 0 0.88 0 0 0 0 0
Action 6 0.04 0 0 0 0 0.96 0 0 0 0
Action 7 0 0 0 0 0 0 1 0 0 0
Action 8 0 0 0.04 0 0 0 0.08 0.88 0 0
Action 9 0 0 0 0 0 0 0 0 0.9 0.1
Action 10 0 0 0 0 0 0 0 0 0 1

Table 4.2: The recognition rates achieved when different percentages of the extracted
features were dropped.

Dropped percentage 10% 30% 50% 70% 90%
Best 95.8% 95.4% 93.7% 91.2% 88.3%
Worst 94.5% 92.5% 92.9% 88.3% 82.5%
Average 95.1% 94.3% 93.3% 89.7% 86.0%

4.5.2 Noisy Environment Testing: Random Discarding Features

Recall that the advantage of our local feature-based approach was robust on incomplete

data. To verify this aspect, the extracted features were discarded randomly to simulate a

noisy matching process. Therefore, in this experiment, the recognition process repeated

five times to ensure the consistency; meanwhile, the best, worst, and average results are

recorded. The results of the noisy matching process are shown in Table 4.2. In this

experiment, our approach still achieved the average recognition rate about 86% when

90% of the features were dropped. It shows that our approach is able to use only a few

features to recognize a motion by preserving the key local variations and structures. Even

under severe feature dropping situations, the key information can be kept to provide high

discriminate capability.
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4.5.3 Noisy Environment Testing: Long-term Stationary Discarding

To test how our method can handle the long-term stationary noise, a discarded pat-tern

situation is utilized to simulate that some parts of a frame is occluded and the human be-

havior cannot be captured by a camera. All moving edges occurred in these regions were

dropped to simulate long-term noise. Similarly, the discarded patterns were generated

repeatedly five times, and the best, worst, and average cases are recorded. Fig. 4.9(a) and

(b) show a discarded pattern (red areas) and the remaining moving edges (white areas),

respectively. In Fig. 4.9(a), 30% features are dropped, and In Fig. 4.9(b), the trajectory

and the moving edge patches are seriously damaged caused by spatial discontinuity situ-

ations. However, the recognition results, shown in Table 4.3, indicate that our approach

can still work well even under the severe noisy situation. When 10% of the spatial in-

formation was dropped, the average recognition rate was very close to the original data

without dropping anything. When 30% and 50% of the spatial information were dropped,

the average recognition rates still achieved 84.99% and 74.56%, respectively.

Figure 4.9: (a) A randomly discarded pattern (30% of the features dropped); (b) an exam-
ple of the remaining information (50% dropped) .
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Table 4.3: The recognition rates when different percentages of spatial information are
dropped.

Drop 10% Drop 30% Drop 50%
spatial information spatial information spatial information

Best 95.8% 89.1% 79.5
Worst 93.3% 81.2% 72.5%
Average 94.8% 84.9% 74.5

4.5.4 Weizmann Dataset Testing

Finally, the Weizmann dataset [81] was used for comparison. The dataset included ten

actions performed by 9 actors. Five of the actions were local limb motions and the rest

were whole body motions. Table 4.4 shows the leave-one-out cross-validation (the same

strategy as our first experiment) recognition results. In the experiment, the total recog-

nition rate of the ten actions is 87.4% because of obscure local variations caused by the

low resolution dataset (180×144). For example, the ”skip (single leg jump)” motion was

often confused with ”jump” or ”walk” motions because its local variation was not signif-

icant enough to differentiate it in low resolutions. On the other hand, Table 4.5 lists the

reported results of other state-of-the-art approaches. Table 4.5 shows that our approach

is better than Niebles and Li [66] and Scovanner et al. [67]. In the last row, it shows

that Weinland and Boyer’s approach [68] yields higher recognition rates than our method,

which mainly because their method relies on two assumptions: First, the authors assume

that the training silhouette set is reliable. Second, the authors assume that the center of

a human subject can be located easily. In both of the assumptions, a reliable background

model or a manual selection for the foreground human subject is required. Therefore,

although their approach has higher recognition rates, our approach is more practical to be

implemented in the real-world environment, because our proposed approach is not based

on the abovementioned assumptions.
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Table 4.4: The resultant confusion matrix using the Weizmann dataset.
bend jack jump pjum run side skip walk wave1 wave2

bend 0.88 0 0 0 0 0 0 0 0 0.11
jack 0 1 0 0 0 0 0 0 0 0
jump 0 0 0.88 0 0 0 0 0.11 0 0
pjum 0 0 0 1 0 0 0 0 0 0
run 0 0 0 0 0.88 0 0 0.11 0 0
side 0 0 0 0 0 1 0 0 0 0
skip 0 0 0.44 0 0 0.11 0.22 0.22 0 0
walk 0 0 0 0 0 0 0 1 0 0
wave1 0 0 0 0 0 0 0 0 0.88 0.11
wave2 0 0 0 0 0 0 0 0 0 1

Table 4.5: The recognition results derived by non-background modeling approaches
Approach Recognition rate on Weizmann dataset
Niebles and Li [66] 72.8%
Scovanner et al. [67] 82.6%
Our approach 87.4%
Weinland and Boyer [68] 93.6%

4.5.5 Limitations and Discussion

However, our approach has the following limitations: First, the motion detection result

greatly depends on the accuracies of the body motion alignment. If the alignment is

inaccurate due to the missing edges in the torso part, then small portion of the main

body would be included in the limb’s motion and cause false training. Second, in order

to classify human motion by local motion features, the system would work well only if

videos with reasonably high resolutions are provided for training and testing. In addition,

based on our observation from the adaboost learning results, the clay representation of

trajectories (long-term feature) usually provides higher weighting (higher alpha values)

than accumulated moving edge patches (short-term feature), because the former provides

richer information. But, in general the number of long-term features is usually less than

the short-term features. Due to this fact, the developed system can automatically adjust

the weightings according to the number of each type of features.
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4.6 Concluding Remarks

In this chapter, a local feature-based human motion analysis framework was proposed. In

our approach, a human motion is described by a spatial structural feature set. The features

are directly extracted from the moving regions, and thus the background modeling process

usually included in a conventional system is not required. Two types of local feature-based

representations for human motions were proposed, they are: 1) a clay representation of

a trajectory which describes the long-term movement trend of the motion; 2) moving

edge patches derived by multi-scale MHIs which stores short-term variation and shape

information. All the extracted features are selected by an adaboost approach to achieve the

best discrimination capability form the training data. Finally, the trained detector is used

to recognize an unknown human motion. The experiments showed that our approach is

robust even on lack-of-information and noisy situations. Therefore, our approach provides

a suitable alternative way to recognize a human motion in real-world applications.
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Conclusion and Future Work

5.1 Conclusion

In this dissertation, we have presented human-based video processing and its applica-

tion to surveillance. First, an off-line processing to segment the scenes in a video was

discussed in Chapter 2. Second, we proposed an PTZ camera network reconfiguration

approach for a real-time environment in Chapter 3. Finally, a local feature-based human

motion analysis framework was described in Chapter 4.

In Chapter 2, we have proposed a mosaic-based algorithm for extracting scene struc-

tures from digital movies. Our approach is based on the idea that shots belonging to one

particular scene often have similar backgrounds. Using a mosaic technique, the back-

ground of each video frame can be recovered. The color feature and texture feature of

each background image are integrated to compute shot similarities. Based on the movie

making model, our algorithm is able to group correlated shots into one scene. The compu-

tation is costly, but the spatiotemporal information of videos is fully exploited to achieve

scene extraction. Experimental results show that the proposed approach works reason-

ably well in detecting most of the scene boundaries. Compared with some existing tech-

niques [10, 14, 15], our approach is promising. Our approach can be applied directly to
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organize videos and can be utilized to provide browsing/retrieval facilities to the users.

As scene is a subject concept to reflect human perception, our future work will focus on

investigating an adaptive technique to perform user-oriented scene extraction. The pro-

posed shot similarity measure does not use motion feature to capture temporal variation in

a video. Thus, another future research issue will be the integration of motion information

into the proposed shot similarity measure for other tasks such as video retrieval.

In Chapter 3, we have considered the process used to assess the quality of a set of

FOVs and proposed a non-linear objective function to reduce the number of unattended

targets in a surveillance region. When the quality of each FOV is evaluated individu-

ally, it is easy to derive the objective functions of different PTZ network problems. The

proposed approach provides an optimal solution for the PTZ network coordination prob-

lem. We have also shown that the non-linear optimization problem can be transformed

into a linear production game problem that is guaranteed to yield an optimal solution.

The optimal solution of LPG can be computed in polynomial time so our approach is

efficient. The branch-and-cut method is adopted to solve the PTZ parameters selection

problem. Computer simulations and a real-world experiment were performed to evaluate

the proposed method in a multi-target surveillance environment. The results show that the

method achieved the highest tracking rate among the compared methods.

In Chapter 4, we proposed a local feature-based human motion analysis framework.

In our approach, a human motion is described by a spatial structural feature set. The fea-

tures are directly extracted from the moving regions, so the background modeling process

in a conventional system is not required. A local feature-based representation for a mo-

tion is proposed, based on two features: 1) a clay representation of a trajectory describes

long-term movement trend; 2) moving edge patches derived by multi-scale MHIs pro-

vides short-term variation and shape information. All the extracted features are selected

by an adaboost approach to achieve the best discrimination capability form the training

data. Finally, the trained detector is used to recognize an unknown human motion. The
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experiments showed that our approach is robust even on lack-of-information and noisy

situations. Therefore, our approach provides a suitable alternative way to recognize a

human motion in real-world applications.

5.2 Future Work

In our motion recognition approach, the trained human motions are segmented as atomic

motions. However, the videos captured from a surveillance system and the videos ob-

tained from scene segmentation usually contain more than one atomic motions. There-

fore, the atomic motion segmentation problem should be handled in the future. Moreover,

our local feature-based representation is not a view invariant representation; therefore, the

atomic motions with different views should be handled to improve our system usability

in the future.
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