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摘要 

在這個論文裡，介紹了視網膜功能在積體電路上的實現與應用。論文的主體

分為四個部分：(1) 對哺乳類動物視網膜完整的介紹；(2)回顧以雙載子接面電晶

體為基礎之仿視網膜影像偵測器；(3) 回顧以雙載子接面電晶體為基礎之仿視網

膜運動偵測器；(4) 新的神經型態晶片設計方法，以及模仿兔子視網膜內開暫態

神經節細胞組的實驗晶片設計與結果。 

哺乳類動物視網膜由五種不同的細胞構成，而每一種細胞又各自有不同的分

類。除了將影像世界的訊息轉變為神經訊號外，視網膜還負責 0.3%的大腦視覺

處理功能。在本研究之初，我們嘗試以工程的角度去瞭解視網膜的功能，而這樣

的瞭解也啟發了本論文的研究。 

在以雙載子接面電晶體為基礎之仿視網膜影像偵測器的部分，首先提出了

一個新型態的矽視網膜晶片，該矽視網膜晶片實現了脊椎動物視網膜的部分功

能。在這個矽視網膜晶片裡，每個基礎單元都只包含兩個分開的感光雙載子接面

電晶體。脊椎動物視網膜內水平細胞的平滑功能，由感光雙載子接面電晶體共用

基極處，光線引發過量載子的分佈與再分佈動作有效實現。因此，這個矽視網膜

晶片架構非常簡單而緊密，可以用金氧半場效電晶體場效電晶體製程技術將它做

得很小。實驗結果也顯示這個矽視網膜晶片能夠萃取出影像的邊緣與偵測運動影

像。接著介紹一個改良過的簡單而緊密的矽視網膜晶片架構。在這個架構中，被

採用 n 通道金氧半場效電晶體場效電晶體連結不同基礎單元中的雙載子接面電

晶體基極，來取代原來雙載子接面電晶體共用基極的平滑網路，形成獨特而緊密
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的架構，因此平滑網路的特性變得具有廣泛地可調性。此外，每個雙載子接面電

晶體也包含一個額外的射極作為列開關，以此大幅降低基礎單元的面積並增加解

析度。平滑網路的可調性與此晶片偵測動態影像的能力都經實驗證實，相信這個

改良後的結構將非常適合用來實現超大型積體電路智慧型影像偵測器。在本章最

後提出了一個低光電流金氧半場校電晶體視網膜焦平面感測器結構，該結構採用

擬雙載子接面電晶體平滑網路與適應性施密特電流觸發器。這個結構非常簡單而

緊密，而且可以工作在極低的電流範圍，而施密特電流觸發器的滯後作用可以根

據產生的光電流適應性調整。量測結果顯示此視網膜焦平面感測器可以成功地應

用在字元辨識掃描器的相關產品上。 

在以雙載子接面電晶體為基礎之仿視網膜運動偵測器的部分，首先提出的

是採用雙載子接面電晶體矽視網膜與跨越零點偵測器設計的二維速度與方向選

擇性視覺感測晶片。在這個感測器當中，採用了以標記為基礎延遲與關連的演算

法來偵測運動中影像的速度與方向。此外，此架構更採用二元的脈衝訊號作為關

連訊號來增加速度與方向的選擇性。在此感測器中的每個偵測基本單元都有緊密

的架構，其中包含了一個雙載子接面電晶體為基礎之仿視網膜單元、一個電流輸

入的邊緣萃取器、兩個延遲路徑、跟四個關連器，經由實驗證明製作的感測器晶

片運作無誤。接著提出一個可偵測任意運動的金氧半場效電晶體場效電晶體即時

焦平面運動偵測器，此偵測器採用以關連器為基礎的新型演算法。在此設計當

中，採用以雙載子接面電晶體為基礎之仿視網膜感光細胞與平滑網路來擷取影

像，並提高影像的對比，同時採用以關連器為基礎的新型演算法來做訊號處理，

以決定入射影像的速度與方向。運動速度與方向的計算誤差經由平均累積十六個

取樣畫面後已大幅降低。實驗結果已成功證明此運動偵測器藉由調整影像擷取頻

率，能偵測每秒一畫素到每秒 140,000 畫素的運動影像，而最小的可偵測位移為

每採樣時間內移動 5 微米。也就是說，這個高性能新型運動偵測器能被應用在許

多即時的運動偵測系統上。再下來提出了一個具有仿視網膜處理電路的角速度與

方向選擇性的圓形運動偵測器的設計與分析，這個圓形運動偵測器採極性結構，

並且對圓形運動的角速度與運動方向（順時針與逆時針）具有選擇性。這個感測

器的設計依然採用以關連器為基礎的新型演算法，而每個相關的畫素都相隔 45o 

角。在關連畫素當中插入更多畫素有助於提高角速度的選擇性。角速度選擇性同

時與影像邊緣的數目與位置有關，角速度與邊緣的關係在論文當中有詳細的分
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析 ，實驗的結果也與角速度與方向選擇性的分析結果互相印證。最後提出一個

金氧半場效電晶體場效電晶體即時焦平面切變運動偵測器，採用以關連器為基礎

的新型演算法來偵測局部運動向量，並採用以偽雙載子接面電晶體為基礎之仿視

網膜處理電路來偵測並前處理影像。為了要偵測切變運動，偵測畫素安置在切變

運動軌跡上，這個架構對選定的切變運動速度與方向具選擇性。切變運動選擇性

以三種圖樣不同的運動速度加以驗證。 

在本論文的最後部分，提出了一個新的設計方法用以設計金氧半場效電晶

體場效電晶體神經型態晶片，並模擬了兔子視網膜的開暫態神經結細胞組。量測

結果顯示，該 金氧半場效電晶體場效電晶體神經型態晶片的運作方式與生物量

測結果相符，因此成功地驗證了該晶片的仿生功能。經由實驗驗證，這個設計方

法所設計的神經型態晶片能協助解尚未揭露的視網膜細胞行為與視覺語言，而且

也可用以設計所有的視網膜神經結細胞組。此外，該研究結果也使得許多極具潛

力的視網膜晶片應用，諸如運動偵測、電腦視覺、人工視網膜跟生醫元件方面變

得更有可行性。 
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ABSTRACT 
In this thesis, implementations and applications of the retinal functions on 

integrated circuits are introduced. The main parts of this thesis include: (1) a complete 

introduction of the mammalian retina; (2) review of the BJT-based silicon retina 

image sensors; (3) review of the BJT-based silicon retina motion sensors; (4) a new 

design methodology used to implement CMOS neuromorphic chips and an 

experimental chip that imitates the ON brisk transient ganglion cell set of rabbits’ 

retinas. 

The mammalian retina is comprised of five different kinds of cells, for each kind 

can be divided into more types. Besides transducing the visual world into neural 

signals, these cells are in charge of 0.3% of the visual function of the brain. In the 

beginning of this research, we try to understand the retinal functions from the 

engineering point of view, thus inspiring the following research of the thesis. 

For the BJT-based silicon retina image sensors, firstly a new silicon retina is 
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proposed to realize the functions of the vertebrate retina. In the proposed silicon retina, 

each basic cell consists of two separated bipolar phototransistors only. The smooth 

function of the horizontal cell in the vertebrate retina is efficiently achieved by the 

diffusion and redistribution of the photogenerated excess carriers in the common base 

region of the phototransistors. Thus, the structure of the new silicon retina is very 

simple and compact. It can be easily implemented in CMOS technologies with a small 

chip area. Experimental results show that the new silicon retina is capable of 

extracting the edge of the image and detecting the moving object. Then an improved 

BJT-based silicon retina with simple and compact structure is proposed and analyzed. 

In the proposed structure, the BJT smoothing network is implemented by placing 

enhancement n-channel MOSFET’s among the bases of parasitic BJT’s existing in a 

CMOS process to form a unique and compact structure. Thus, the smoothing 

characteristics can be tuned in a wide range. Moreover, an extra emitter is 

incorporated with each BJT at the pixel to act as the row switch. This reduces the cell 

area of the silicon retina and increases the resolution. The measurement results on the 

tunability of the smooth area in the smoothing network as well as the dynamic 

characteristics of the proposed silicon retina in detecting moving objects have been 

presented. It is believed that the improved structure is very suitable for the very large 

scale integration implementation of the retina and its application systems for CMOS 

smart sensors. Finally, a new structure of low-photocurrent CMOS retinal focal-plane 

sensor with pseudo-BJT smoothing network and adaptive current Schmitt trigger is 

proposed. The proposed structure is very simple and compact. Moreover, the 

proposed circuit could be operated for low-induced current levels (pA), and the 

current hysteresis of the proposed current Schmitt trigger could be adjusted adaptively 

according to the value of induced photocurrents. Measurement results show that the 

proposed new retinal focal-plane sensor has successfully been used in character 

recognition of scanner systems, such as pen scanners, etc. 

For the BJT-based silicon retina motion sensors, firstly a 2-D velocity- and 

direction-selective visual motion sensor with BJT-based silicon retina and temporal 

zero-crossing detector is proposed and implemented. In the proposed sensor, a 

token-based delay-and-correlate computational algorithm is adopted to detect the 

selected speed and direction of moving object images.  Moreover, binary pulsed 

signals are used as correlative signals to increase the velocity and direction 

selectivities. Each basic detection cell in the sensor has a compact architecture which 
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consists of one BJT-based silicon retina cell, one current-input edge extractor, two 

delay paths, and four correlators. The correct operations of the fabricated sensor chip 

have been verified through measurements. Then a CMOS real-time focal-plane 

motion sensor intended to detect the global motion, using BJT-based retinal 

smoothing network and the modified correlation-based algorithm, is proposed. In the 

proposed design, the BJT-based retinal photoreceptor and smoothing network are 

adopted to acquire image and enhance the contrast of an image while the modified 

correlation-based algorithm is used in signal processing to determine the velocity and 

direction of the incident image. The deviations of the calculated velocity and direction 

for different image patterns are greatly reduced by averaging the correlated output 

over 16 frame sampling periods. Experimental results have successfully confirmed 

that the proposed motion sensor can work with different incident images and detect a 

velocity between 1 pixel/sec and 140,000 pixels/sec via controlling the frame 

sampling period. The minimum detectable displacement in a frame sampling period is 

5μm. Consequently, the proposed high-performance new motion sensor can be 

applied to many real-time motion detection systems. Later a CMOS angular velocity- 

and direction-selective rotation sensor with a retinal processing circuit is implemented 

and analyzed. The proposed rotation sensor has a polar structure and is selective of 

the angular velocity and direction (clockwise and counterclockwise) of the rotation of 

images. The correlation-based algorithm is adopted and each pixel in the rotation 

sensor is correlated with the pixel that is 45o apart. The angular velocity-selectivity is 

enhanced by placing more than one pixel between two correlated pixels. The angular 

velocity-selectivity is related to both the number and the positions of the edges in an 

image. Detailed analysis characterizes angular velocity-selectivity for different edges. 

The experimental results successfully verified the analyzed characteristics of angular 

velocity- and direction-selectivity. Finally, a CMOS focal-plane shear motion sensor 

is designed and implemented. The adopted motion computation method is based on 

the modified correlation-based algorithms to detect the local motion vectors. The 

adopted pseudo BJT-based retinal processing circuit is to sense and preprocess the 

incident image. In order to detect shear motion, the arrangement of pixels is along the 

path of shear motion in the chip of shear motion sensor. This structure is selective to 

the preferred shear direction and velocity of the images. The shear motion selectivity 

is verified after tested by three patterns translating at different velocities.  

In the last part of this thesis, a new design methodology is proposed to 
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implement CMOS neuromorphic chips which imitate the ON brisk transient ganglion 

cell set of rabbits’ retinas. The measurement results on the fabricated CMOS 

neuromorphic chip are consistent with the biological measurement results. Thus the 

biological functions of the chip have been successfully verified. It can be used to 

understand more biological behaviors and visual language of retinas under different 

input optical images which have not yet been tested in biological experiments. Based 

on the results, the full ganglion cell sets of retina can be designed. Thus many 

potential applications of retinal chips on motion sensors, computer vision, retinal 

prosthesis, and biomedical devices are feasible. 
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CHAPTER 1 

INTRODUCTION 

1.1 THE NEUROMORPHIC VISION CHIPS 
The neuromorphic vision chips have been studied for several decades since the 

first work was presented [1]. Biological information-processing systems operate on 

completely different principles from conventional image-processing systems. For 

many problems, particularly those in which the input data are ill-conditioned and the 

computation can be specified in a relative manner, biological solutions are many 

orders of magnitude more effective than those we have been able to implement using 

digital methods [1]. From a science perspective [4], analog VLSI technology can be 

viewed as a modeling tool [1] aimed at capturing the behavior of neurons, networks of 

neurons, or the complex mechanical-electrical-chemical information processing in 

biological systems. Computationally, analog VLSI models can be more effective 

compared to software simulations. More important, they are further constrained by 

fundamental physical limitations and scaling laws; this may direct the development of 

more realistic models. The constraints imposed by the technology are: power 

dissipation, physical extent of computing hardware, density of interconnects, gain, 

precision and noise limitations in the characteristics of the basic elements, signal 

dynamic range, and robust behavior and stability. Space limitations do not permit a 

discussion of this relationship between physics/technology and computation. Thus the 

neuromorphic vision chip design attracts the most attention and gives rise to the 

researches on silicon retinas.  

The models for implementing silicon retinas are based on functions of cells 

located in the outer-plexiform layer of the retina. Moreover, the models are further 

simplified to facilitate hardware implementation. Even though the models are quite 

simplified, many successful works have been proposed [3], [5]-[7]. Various kinds of 

applications have also been developed using the designed chips, such as motion 

detection sensors [8]-[19], and high-performance image sensors [20]-[24]. The 

proposed silicon retinas are classified as following: 

1.1.1 Mead’s Silicon Retina [3] 

Mead’s silicon retina chip is among the first chip, which implemented the 

functions of biological cells on silicon. The model used by Mead’s silicon retina 
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contains the following three functions: 

(1) The photoreceptor cells transduce light into electrical signals and take the 

logarithm of light intensity. 

(2) The horizontal cells form a resistive network that spatially and temporally 

averages the photoreceptor output. 

(3) The bipolar cell’s output is proportional to the difference between the 

photoreceptor signal and the horizontal signal. 

The schematic of a single pixel of the Mead’s retina is shown in Fig. 1. 1. A single 

bias circuit associated with each node controls the strength of the six associated 

resistive connections. Each photoreceptor acts as a voltage input that drives the 

corresponding node of the resistive network through a conductance. A 

transconductance amplifier is used to implement a unidirectional conductance so the 

photoreceptor acts an effective voltage source. The resistive network computes a 

spatially weighted average of photoreceptor inputs. The spatial scale of the weighting 

function is determined by the product of the lateral resistance and the conductance 

coupling the photoreceptors into the network [1]. 

1.1.2 Ruedi’s Motion Detection Silicon Retina [5] 

Ruedi’s silicon retina detects edges of image, which is used for the subsequent 

stage of motion detection. The edge detection is performed by the circuits illustrated 

in Fig. 1. 2. A copy of the current flowing from an N-well to P-substrate photodiode is 

injected in a hexagonal resistive network performing a low-pass spatial and temporal 

filtering of the image. The space constant is controlled by the voltages Vr and Vg. The 

photocurrent is amplified 1.2 times and compared to the output current of the 

diffusion network to define an edge. A Schmitt trigger is used to avoid that the edge 

signal oscillates for a contrast near the threshold. The output goes high when a 

defined spatial gradient is present. 

1.1.3  Andreou and Boahen’s Silicon Retina [6] 

Andreou and Boahen proposed a model of retina that is different from Mead’s 

retina model. Their model of retina is used to model the outer-plexiform as illustrated 

in Fig. 1. 3. The photoreceptors are activated by light and produce activity in the 

horizontal cells through excitatory chemical synapses. The horizontal cells suppress 

the activity of the photoreceptors through inhibitory chemical synapses. The 

photoreceptor and horizontal cells are electrically coupled to their neighbors by 

electrical synapses. These allow ionic currents to flow from one cell to another, and 
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are characterized by a certain conductance per unit area. This is a simplified model of 

the complex ion-channel dynamics. The advantage of performing this complex 

operation at the focal plane is that the dynamic range is extended. Actually, this 

advantage comes from the local automatic gain control. 

Based on the model, a current-mode circuit implementation of outer-plexiform 

retina is proposed as shown in Fig. 1. 5. The gap junctions are realized using 

resistance while the chemical synapses are implemented using nonlinear 

transconductance. Nodes in the top layer of resistive network correspond to 

photoreceptor R while those in the lower layer represent the horizontal cell H. The 

two layers are coupled vertically using the two transistor current controlled current 

conveyor circuit and laterally using resistive networks. A parasitic photo-BJT is used 

to transduce light into current. It sources current to the receptor nodes while M2 sinks 

current from those nodes; these opposing effects correspond to excitation and 

inhibition. M1 sources current (excites) the horizontal cells nodes. The bias current Ix 

at the source of device M1 set its transconductance. For subthreshold operation, the 

voltages encode photocurrents logarithmically, allowing a large optical dynamic 

range. 

1.1.4 BJT-based Silicon Retina [7] 

In the BJT-based silicon retina architecture, the Mead’s silicon retina model is 

implemented in an advanced way. The structure of a BJT based 2D silicon retina is 

shown in Fig. 1. 5. Each cell consists of two PNP photo-BJTs in N-well CMOS 

technology. One isolated photo-BJT with open bases is used as a phototransistor to 

transduce light into photocurrent, which mimics the photoreceptor. Another PNP 

photo-BJT with its base connected with other similar BJTs through nMOSFETs 

mimics the smoothing function of horizontal cells. The nMOSFETs acting as 

adjustable resistors are used to form the smoothing network. This proposed silicon 

retina structure is compact and fully compatible with CMOS technology. Thus, it can 

be easily integrated with other integrated circuits to form a VLSI microsystem.  

In many applications, input images often have wide-ranging variations of intensity 

or contrast. This requires an adjustable smoothing range. To achieve adjustable 

smoothing, the gate voltage of the nMOSFET in the smoothing network of Fig. 1. 5 

are controllable. When the gate voltage is high, the nMOSFET device is operated in 

the strong-inversion region and has a small drain-source resistance. On the other hand, 

when the gate voltage is low, the nMOSFET device is operated in the subthreshold 
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region and the drain-source resistance is large. Therefore, the nMOSFETs provide a 

wide range of resistance values to achieve the wide-range adjustment of the 

smoothing range. 

1.2 THE RETINOMORPHIC CHIPS 
With increasing discoveries in neuroscience, it was found that the retina is much 

more than the outer-plexiform layer. It is constructed by 5 different cells, and each 

cell has several sub-types. These cells work together with complicated circuitries, and 

achieve 0.3% of the visual function of the brain [25]. Through decades of research on 

the simplified models of the retina, scientists have harvests fruitful results. Now we 

wonder what more the retina can do. The wondering leads to the research on the 

retinomorphic chips [26]-[30]. The retinomorphic chips are chips that imitate the 

function of biological retinas. Since the retina is the most powerful image sensor with 

preprocessor, finding the operating principles of the retina most likely inspires 

important breakthrough in nowadays’ image sensor design. 

In Yagi‘s model [30], the retinal responses are divided into two types. One is a 

sustained-type response in which cells respond continuously during illuminations, and 

the other is a transient-type response in which cells respond transiently when 

illumination is turned on or off [31], [32]. The sustained response is thought to be 

relevant to the perception of static images, and the transient response is thought to be 

relevant to the perception of moving objects. The design retinomorphic chip has a 

multi-chip structure. The output of the chip emulating the sustained response has a 

Laplacian–Gaussian-like receptive field and, therefore, carries out a smoothing and a 

contrast-enhancement on the input images. The output of the chip emulating the 

transient response is obtained by subtracting consecutive image frames that are 

smoothed in advance by a resistive network. 

In Boahen’s model [26]-[29], the visual pathways range from small and sustained 

in the fovea, where fine details of an object stabilized by tracking are resolved, to 

large and transient in the periphery, where sudden motion in time surroundings is 

captured. Activity in each pathway is encoded by a pair of complementary channels, 

served by ON- and OFF- sustained or by ON- and OFF- transient channels. The ON 

channel signals increases in amplitude by increasing vesicle-release or 

spike-discharge rates; the OFF channel signals decreases in amplitude in a similar 

fashion [33]. The design retinomorphic chip is divided into two parts: the inner and 
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the outer retina. The outer retina is the same as  

Fig. 1. 4, while the model of the inner retina is shown in Fig. 1. 6. Briefly, BC 

inputs to the inner retina excite GCs, an electrically coupled network of wide-field 

amacrine cells (WAs), and narrow-field amacrine cells (NAs) that provide feedback 

inhibition on to the bipolar terminals (BTs) [34]. WA, which receives excitation from 

both ON and OFF BT and inhibition from both ON and OFF NA, modulates 

presynaptic feedback inhibition from NA to BT. A large membrane capacitance is 

used to model the NA’s slow, sustained response, which leads to a less sustained 

response at the BT through presynaptic inhibition [35]. Push-pull inhibition is realized 

by a third set of amacrine cells in the model and is implemented by the ON-OFF BC 

circuit. These BT signals excite both sustained and transient GCs, hut transient cells 

receive feedforward inhibition from NAs as well [36]. 

However, our detailed view of the operation of the mammalian retina changed 

dramatically by the discovery of the operation of the inner plexiform layer [36]-[42]. 

The mammalian retina extracts a set of 12 different “movies” from the visual scene 

and sends each movie to higher visual centers. These movies exist in physically 

distinct strata of the inner retina, embodied in the dendritic arborizations of a dozen 

different ganglion cell types. The dendritic arbors are stacked in discrete layers 

throughout the inner retina where they are synaptically contacted by excitatory and 

inhibitory connections from a variety of different cell types [40]. This led to the 

understanding of the roles of different amacrine cells, as well as the dual path in each 

channel. These channels have different responses to light input patterns from the 

visual world, which comprise the necessary visual information needed for the brain to 

analyze the visual world, thus they constitute visual language for the brain [39], [43]. 

This visual language is very complicated and much of it is still unknown or not 

understood by neuroscientists. Therefore, both the morphological and 

electrophysiological characteristics of the retina should be considered before 

designing a retinal chip. 

1.3 RESEARCH MOTIVATION AND ORGANIZATION OF THIS 

THESIS 

1.3.1 Research Motivation 
The retina is a unique organ common to all organisms with the faculty of sight and 

is used to communicate with the visual world. It has superior performance in such 
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areas as visual perception image detection and preprocessing: for example, in 

covering a wide range (1010) of light intensities; in responding to very low levels of 

contrast (~1%); and in integrating for short periods of times (~0.04 second) [25]. It is 

also a sophisticated feature preprocessor with continuous input and several parallel 

output channels. These interacting channels represent the visual scene. With decades 

of research on the BJT-based silicon retina, we have obtained fruitful results in 

intelligent visual sensors [7], [23], [46] and motion sensors [17]-[19], [47]. When go 

deep into the research of image processing systems, many bottlenecks are still left 

unsolved, such as real-time motion detection and classification, real-time image 

analysis and recognition, etc. With substantial progress on the discovery of biological 

visual system, we are likely to be inspired by nature.  

The motivation of this thesis is to propose a new design methodology to mimic the 

retinal circuitries and functions on semiconductor integrated circuits. It is important to 

duplicate successfully the retinal functions, channels, and visual language on silicon 

chips because of the key advantages this might provide. First, it could help 

neuroscientists to understand retinal functions and visual language. Since biological 

experiments can only be performed on a very limited number of cells, it is very 

difficult to see the global spatiotemporal features of retinal cells using this method 

alone. Second, it could provide valuable clues concerning neural activities in the 

visual cortex and thus move a few more steps toward the discovery of the visual 

processing of the brain. Third and finally, duplication could enable important 

applications in the areas of intelligent visual sensor systems and retinal prostheses. 

Since the neuromorphic multilayer CNN model [43]-[45] shed light to understand the 

role of different circuits and layer parameters. It is feasible to implement the complete 

retinal circuitry with nowadays VLSI technology. 

1.3.2 Thesis Organization 
This thesis contains six chapters. Chapter 1 introduces the neuromorphic visual 

systems. Several successful vision chips are reviewed as a milestone of the research 

on silicon retinas. Moreover, going along with revealing the secrets of the retina, a 

new research trend on the retinomorphic chips are carried out. Since present 

retinomorphic chips don’t imitate the detail functions and structures of the real retina, 

a new design methodology is proposed to fulfill complete imitation. Chapter 2 

presents the mammalian retina from the engineering point of view. The cell type 
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classification, circuitry, and functions of retinal cells are described in detail. In this 

chapter, we try to analyze why the retinal cells are designed in this way to inspire new 

directions in vision processing systems design. Chapter 3 reviewed three BJT-based 

silicon retinas, from the dawn of our research on the neuromorphic vision chip design 

to the commercial application. Thus exhibits the potential of research on 

neuromorphic vision chips. Chapter 4 reviewed four motion sensors with BJT-based 

silicon retinas, such that further exhibits the advantages of neuromorphic vision chips 

in various kinds of applications. In Chapter 5, a new CMOS design is proposed to 

implement CMOS neuromorphic chips which imitate the ON brisk transient ganglion 

cell set of rabbits’ retinas. The measurement results on the fabricated CMOS 

neuromorphic chip are consistent with the biological measurement results. Thus the 

biological functions of the chip have been successfully verified. It can be used to 

understand more biological behaviors and visual language of retinas under different 

input optical images which have not yet been tested in biological experiments. Based 

on the results, the full ganglion cell sets of retina can be designed. Thus many 

potential applications of retinal chips on motion sensors, computer vision, retinal 

prosthesis, and biomedical devices are feasible. Finally, the conclusion of this thesis is 

given in Chapter 6. Some suggestions for the future works are also addressed in this 

chapter. 
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Fig. 1. 2. Ruedi’s motion detection silicon retina [5]. 
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Fig. 1. 3.The model the outer-plexiform layer of retina. Reprinted from [6]. 

 

 

Iout,2Iout,1 Iout,n

VDD VDD VDD

VcVcVc

Vr Vr Vr

VbVb VbVDDVDDVDD

GND GND GND
 

Fig. 1. 4. Andreou and Boahen’s silicon retina [6]. 
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Fig. 1. 5. BJT-based silicon retina [7]. 

  
Fig. 1. 6. Inner retina synaptic interactions. ON and OFF BCs relay cone signals to 

GCs. and excite NAs and WAs. NAs inhibit BCs. WAs, and transient GCs; their 

inhibition onto Ws is shunting. WAs modulate NA presynaptic inhibition and spread 

their signals laterally through gap junctions. BCs also excite local interneurons that 

inhibit complementary BCs and NAs. Reprinted from [28].  
 

BC: Bipolar cells 
NA: Narrow-field amacrine cells 
WA: Wide-field amacrine cells 
GC: Ganglion cells 
OnS: ON Sustained 
OnT: ON Transient 
OffT: OFF Transient 
OffS: OFF Sustained 
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CHAPTER 2 

THE MAMMALIAN RETINA 

2.1  FUNDAMENTAL KNOWLEDGE OF THE MAMMALIAN 

RETINA 
The retina is a thin sheet of brain tissue (100 to 250μm thick) that grows out into 

the eye to provide neural processing for photoreceptor signals. It includes both 

photoreceptor and the first twp to four stages of neural processing. Its output projects 

centrally over many axons, and analysis of these information channels occupies about 

half of the cerebral cortex [48], [49]. Moreover, it comprises about 75 discrete neuron 

types connected in specific, highly stereotyped patterns [25]. It sends different 

‘images’ of the outside world to the brain — an image of contours (line drawing), a 

color image (watercolor painting) or an image of moving objects (movie). This is 

commonly referred to as parallel processing and starts as early as the first synapse of 

the retina, the cone pedicle. The schematic of the mammalian retina is shown in Fig. 2. 

1 [41]. There are six classes of neuron in the mammalian retina: rods (1), cones (2), 

horizontal cells (3), bipolar cells (4), amacrine cells (5) and retinal ganglion cells 

(RGCs) (6). They have a laminar distribution (OS/IS, outer and inner segments of 

rods and cones; ONL, outer nuclear layer; OPL, outer plexiform layer; INL, inner 

nuclear layer; IPL, inner plexiform layer; GCL, ganglion cell layer; NFL, optic nerve 

fiber layer). Rods and cones together are labeled as photoreceptors.  

At the synaptic terminals of rods and cones, the light-evoked signals are 

transferred onto bipolar and horizontal cells. Horizontal cells, of which there are 

between one and three types in mammalian retinas, provide lateral interactions in the 

outer plexiform layer. One type of rod bipolar cell and at least nine types of cone 

bipolar cell transfer the light signals into the inner plexiform layer (IPL), onto the 

dendrites of amacrine and ganglion cells. Cone bipolar cells fall into two main groups: 

ON and OFF bipolar cells. Amacrine cells are inhibitory interneurons, and there are as 

many as 50 morphological types [50]. Ganglion cell dendrites collect the signals of 

bipolar and amacrine cells and their axons transmit these signals to the visual center 

of the brain. At least 10–15 morphological types of ganglion cell are found in any 

mammalian retina [51]. The major cell types of a typical mammalian retina are shown 

in Fig. 2. 2 [60]. The cells are introduced below: 
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2.1.1 Photoreceptor 

The photoreceptor mosaic is optimized to cover the full range of environmental 

light intensity (1010) [25]. This design specification requires two types of detector 

with different sensitivities, the rod and the cone. The rod serves under starlight where 

photons are so sparse that over 0.2 second (the rod integration time), they cause only 

~1 photoisomerization (R*)/10,000 rods. Consequently, under starlight and for 3 log 

units brighter, a rod must give a binary response reporting over each integration time 

the occurrence of either 0 or 1R*. The rod continues to server at dawn as photons 

arrive more densely, providing more than one R*/integration time. The rod sums these 

linearly up to 20R*/integration time and then gradually saturates, with 100 R* 

evoking a maximal photocurrent of ~20pA [53].  

 The cone serves under full daylight, beginning when photon density reaches 

~100 photons/receptor/integration time. The cone actually absorbs and transduces 

single photons, but because its gain is 50-fold lower than the rod’s, it requires 100 R* 

for the signal to rise above the continuous dark noise. By 1000R*/integration time, 

when rods are nearly saturated, the cone responds strongly. The cone photocurrent 

saturates at ~30pA (similar to the rod), but this occurs at much higher intensities up to 

106R*/cone/integration time [54], [55]. Consequently, whereas the rod signal is at first 

binary and then graded, but always corrupted by photon noise, the cone signal is 

always graded and far less noisy. Thus, the so-called photoreceptors in silicon retinas 

are actually cones. 

2.1.2 Horizontal Cell  

Horizontal cell dendrites are inserted as lateral elements into the invaginating 

contacts of cone pedicles, and horizontal cell axon terminals form the lateral elements 

within rod spherules. It is assumed that horizontal cells release the inhibitory 

transmitter and provide feedback inhibition at the photoreceptor synaptic terminal. As 

horizontal cells summate light signals from several cones, such feedback would cause 

lateral inhibition, through which a cone’s light response is reduced by the illumination 

of neighboring cones. This mechanism is thought to enhance the response to the edges 

of visual stimuli and to reduce the response to areas of uniform brightness. There is 

also evidence that light-dependent release of GABA from horizontal cells provides 

feed-forward inhibition of bipolar cell dendrites. Irrespective of their precise mode of 

action, horizontal cells sum light responses across a broad region, and subtract it from 

the local signal. Because horizontal cells are coupled through gap junctions, their 
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receptive fields can be much wider than their dendritic fields[41], [52]. 

2.1.3 Bipolar Cells  

Bipolar cell types of the primate retina are shown in Fig. 2. 3 [42]. Their axons 

terminate at different levels in the IPL; those terminating in the outer half are putative 

OFF cone bipolar cells, and those terminating in the inner half are ON bipolar cells. 

The axons of OFF and ON cone bipolar cells terminate at different levels (strata) 

within the IPL: OFF in the outer half, ON in the inner half. However, superimposed 

on this ON/OFF dichotomy, further bipolar cell types have been described in Fig. 2. 3 

and every mammalian retina that has been studied contains at least four types of OFF 

and four types of ON cone bipolar cell [56], [57]. We are just beginning to understand 

their functional roles28. Axons that carry more transient OFF light signals terminate 

in the middle of the IPL; those that carry sustained OFF light signals are found in a 

more peripheral position [58], [59]. 

2.1.4 Amacrine Cells  

There are twenty-nine types of amacrine cells. All retinal ganglion cells receive 

input from cone bipolar cells, but most direct synapses on the ganglion cells are from 

amacrine cells. The exact fraction varies among different functional types of ganglion 

cells, ranging from roughly 70% for alpha cells (large, movement-sensitive ganglion 

cells found in most mammals) to 50% for the midget ganglion cells located in the 

monkey central fovea. Amacrine cells also make inhibitory synapses on the axon 

terminals of bipolar cells, thus controlling their output to ganglion cells. In contrast to 

horizontal cells, which have a single broad role, amacrine cells have dedicated 

functions—they carry out narrow tasks concerned with shaping and control of 

ganglion cell responses. The different amacrine cells have distinct pre- and 

postsynaptic partners, contain a variety of neurotransmitters. Amacrine cells seem to 

account for correlated firing among ganglion cells. Shared input from a common 

amacrine cell will tend to make ganglion cells fire together [60].  

2.1.5 Ganglion Cells 

The retinal ganglion cells summarized signals of previous retinal cells, and then 

send neural spiking to the brain. They have been found to diverse in both stratification 

and physiological properties. There are at least 10–15 different morphological types 

of ganglion cell in any mammalian retina [42], [51]. The underlying belief is that cells 

with distinct morphologies have distinct physiological functions. It was thought that 

they represented feature detectors that react to specific light stimuli. Among them 



14 

were direction selective ganglion cells, which respond to light spots that move in a 

certain direction across their receptive field. In the primate retina, two types of 

concentrically organized receptive field have been found. One type showed no 

chromatic receptive field organization, whereas in the other type the centre and 

surround were chromatically selective [61]. The detailed classification of ganglion 

cells is described in section 2.2. 
2.2  THE CLASSIFICATION OF GANGLION CELLS OF THE 

RABBITS’ RETINA 
The physiological classification of ganglion cells has been the most detailed in 

rabbit of any mammalian species. So the classification of ganglion cells of the rabbit 

is introduced here. Many neuroscientists have made classifications of ganglion cells. 

Although there are areas of disagreement all neuroscientists confirm this diversity. 

Morphologically, the retinal ganglion cells are divided into two types of 

concentrically organized receptive fields, one with a small, linearly summing 

receptive field center (X cell) and another with a large, non-linear responsive area (Y 

cell). In the cat, the correspondence between X-cells and β, and Y-cells and α was 

established long ago, as was the analogous match between P and M, midget and 

parasol cells in the monkey [60]. Physiologically, the retinal ganglion cells are divided 

into ON centre/OFF surround and OFF centre/ON surround cells [41].  

In this thesis, the classification of [62], [63] is adopted. Here the ganglion cells 

are divided into with concentric receptive fields and with complex receptive fields. 

Concentric ganglion cells were those that had ON or OFF centers with antagonistic 

surrounds and were classified into different groups by extracellular recordings of their 

ON- or OFF-center response sign, excitatory receptive field center size, linearity of 

spatial summation, and brisk vs. sluggish and transient vs. sustained responses to step 

changes in light intensity [62]. Ganglion cells that had complex receptive field 

properties are ON-OFF and ON direction-selective cells, orientation-selective cells, 

local edge detectors, and uniformity detectors. Cells were first classified by their 

characteristic extracellular responses to manually controlled stimuli similar to those 

which have been used in previous in vivo studies [63]. The recorded cell types are 

presented in Table 2. 1 [38]. In [38], space-time patterns of concentric ganglion cells 

are reported. Spiking patterns of five different classes of ganglion cells are shown in 

Fig. 2. 4. We can see in Fig. 2. 4 that even for the same cell, the space-time patterns 
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vary in every record.  

Based on the results of [38], a simple multi-layer cellular neural/non-linear 

network (CNN) model was built [44]. Fig. 2. 5 is a sketch of the processing structure 

of the CNN model of the mammalian rabbit retina. Each layer of a neuron-type is 

represented by a horizontal line. The vertical lines represent the connections between 

cell types. The third row contains the retina output cells, where the names are the 

neurobiologic names and their positive input is the bipolar layer, and their negative 

inputs are the amacrine FF layers. In chapter 5, the ON Brisk Transient ganglion cell 

is chosen to verify the design methodology proposed in this thesis. 

2.3  OPERATING PRINCIPLE – FROM THE ENGINEERING 

POINTS OF VIEW 
 The instantaneous dynamic range of the photoreceptors spans only about 1000:1, 

but the mean level around which this instantaneous range operates can move, 

facilitated by gain adjustments in the photoreceptors themselves, over a range of 106 

to 1 or more, from twilight to bright sunlight. There is a range of intensities of about 

103 :1 near twilight where the cone photoreceptors do not operate. In this range the 

visual message is conveyed through the rod system that hijacks the cone circuitry 

within the retina. Above this intensity range the cones predominate. The switch is 

obvious to us: it is the intensity at which we begin to see color.  

Photoreceptor activity is passed to the next processing layer, the horizontal cells. 

These cells are strongly interconnected so they form a broad diffusion layer. Each 

horizontal cell receives input from a local population of photoreceptors, and because 

of the interconnections, the horizontal cell layer acts to diffuse the image, so the 

visual image appears to be quite blurred with a space constant of a few degrees. 

Diffusion within this layer generates some important qualities for the visual image. 

Horizontal cell activity at any point represents a local spatial (and temporal) average 

of neural activity.  

The horizontal cells “feed back” with a sign-inverting phase to the cone 

photoreceptors to modify the representation generated by the transduction component 

of the photoreceptors. The range of neural activity in the feedback-enhanced image is 

reduced so that small incremental changes around the mean are well-represented, 

while changes far from the mean level are suppressed. The feedback of a blurred 

image has an effect similar to that used by early photographers to enhance the edges 
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of an image. They developed a positive transparency on top of a slightly blurred 

negative transparency. The negative feedback from horizontal cells to cones 

accomplishes a similar effect, edge-enhancing the resulting visual representation.  

This interaction is “read out” by the bipolar cells. These representations have 

been enhanced in a variety of ways. They are gain adjusted to fit the ambient level of 

the original scene, and then mean adjusted by the horizontal cell network, and the 

features of the scene are edge-enhanced as a result of the interaction of the sharp and 

blurred images. Bipolar cells exist in two main varieties: those that represent (by 

activity coming out of the plane) the brightness of the image, and those that represent 

(by activity moving back into the plane) the darkness of the image. These two 

representations are useful because the visual system is best at identifying small 

changes in intensity above and below the mean level, and having two separate 

systems, each tuned to one of these representations appears to be an effective 

implementation of this phenomenon. 

The nature of synaptic connections in the nervous system is such that it favors 

transmission of increases in activity (out of the plane) over decreases in activity (into 

the plane). Consequently, the signals leaving the two bipolar cell arrays are “rectified” 

in that the (out of the plane) activity is accentuated and the activity into the plane is 

lost. These two representations of the visual world are now presented to the next layer 

of processing for further enhancement of the visual representation. This is the region 

where the dozen movies of the visual world are generated. Each of the representations 

is “filtered” in space and time so that numerous representations, each with a different 

space or time constant, are generated. 

Then different space-time components interact with each other to generate a 

further enhanced representation. These interrelationships between different space-time 

representations are implemented by a second set of interneurons, the amacrine cells in 

the inner retina. Unlike the horizontal cells discussed above that form a highly 

uniform interconnected system, there is great diversity in the amacrine cell population, 

and they are not strongly interconnected. Each seems to receive input from one or 

more space-time representations, delivered by the bipolar cells, and communicate by 

inhibiting one or more of the other space-time representations.  

If we think of each space-time representation as an extracted “visual feature”, 

then the amacrine cells form a set of interactions between features. One way to think 

about this would be to imagine that each feature is broadcasting, via the amacrine 
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cells, to turn down its representation in other feature detectors, and simultaneously, all 

other feature detectors, via the amacrine cells are turning down their specific feature 

quality in adjacent features. This interaction represents a form of lateral inhibition, not 

in physical space but in the abstract space of the features themselves [40]. 
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Table 2. 1. Ganglion cell types, defined by response to spot sizes and level of 

dendritic stratification [38] 

Cell 

type1 

Previous 

classification 

[62] 

Response 

Polarity 

Spiking response 

to small spots 

(100-200μm) 

Spiking response to 

larger spots 

(600-1000μm) 

Morphology 

1 

(22) 

OFF Brisk 

Linear 1 
OFF Sustained2 Sustained Monostratified 

2 

(7) 

OFF Brisk 

Linear 2 
OFF Sustained Sustained 

Monostratified, 

dye-coupled to 

amacrine cells3

3 

(36) 

OFF Local 

Edge Detector 

ON OFF 

for 

50-200μm 

OFF for 

>200μm 

spots 

Sustained No response Monostratified

4 

(25) 

OFF Brisk 

Transient 
OFF Transient Transient Monostratified

5 

(16) 

ON Brisk 

Transient 

Nonlinear 

ON Transient Transient Monostratified

6 

(20) 

ON Brisk 

Transient 

Linear 

ON Transient 
Very small response 

or no response 
Monostratified

7 

(28) 

ON Brisk 

Sustained 

Linear 

ON Sustained Transient 
Diffusively 

stratified 

8 

(6) 
ON Sluggish ON Sustained Sustained monostratified

9 

(10) 
? ON Sustained Sustained Bi-stratified 

10 

(4) 

ON Local Edge 

Detector 
ON Sustained No response ? 

 

                                                 
1 Numbers in brackets refer to the number of measured cells. (16 ON cells and 13 OFF cells were not 

classified.) 
2 The Response was defined Transient if at the end of a 1-s flash there was no response. Otherwise it 

was defined as Sustained. ON cells were tested with white spots; OFF cells with black spots. 
3 This cell type had a little wider ramification than the other monostratified cell classes. 
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Fig. 2. 1. Schematic of the mammalian retina. Reprinted from [41]. 
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Fig. 2. 2. The major cell types of a typical mammalian retina. From the top row to the 

bottom, photoreceptors, horizontal cells, bipolar cells, amacrine cells and 

ganglion cells. Reprinted from [60]. 

 

 

 
Fig. 2. 3. Bipolar cell types of the primate retina. Reprinted from [41]. 
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Fig. 2. 4. Spiking patterns in each row (measured from four different members of the 

same cell class) for five different classes of ganglion cells. The numbers at 

the beginning of each row refer to the classification shown in Table 2. 1. The 

arrows in row 5 (cell type 7) point to the enhanced activity at the stimulus 

edge, a feature that is characteristic of this class [38]. 
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Fig. 2. 5. A sketch of the processing structure of the CNN model of the mammalian 

rabbit retina [44].  
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CHAPTER 3 

THE BJT-BASED SILICON RETINA CHIPS (I) – 

THE IMAGE SENSORS 

In digital image processing system, the inputs from a 2-D image sensor array are 

first scanned, quantized, and subsequently processed by the pipelined parallel 

algorithms or multiprocessors [64], [65] to obtain a fast throughput rate. In this 

processing system, the computational cost for machine vision implementation by 

large-scale digital processors is quite high, and the processing speed is still not fast 

enough for real-time applications. 

The retina is the early processing element in the visual nervous system of the 

vertebrate [1], [66], [67]. It performs the early visual processing in a parallel manner 

to provide real-time information for the brain to perceive the images of the 

surrounding world [76]-[78].  Due to the superior processing capability of the retina, 

many efforts have been devoted to implement the functions of retina in the silicon 

integrated circuits (IC’s) [2][3][20][21][24][68]. To implement the functions of the 

retina, analog circuits are superior to digital circuits because analog circuits have the 

advantages of compact structure to perform useful operations, small chip size, and 

low-power consumption [70], [79]-[83]. 

In this chaper, three retinal image sensors are presented. In section 3.1, a new 

structure of the 2-D silicon retina is introduced. This is the first BJT-based silicon 

retina, which is the pioneer of following research. In section 3.2, an improved 

BJT-based silicon retina with tunable image smoothing capability is proposed. This 

design improved the smoothing mechanism of the design of section 3.1. Thus the 

smoothing range can be tunable. In section 3.3, a low-photocurrent CMOS retinal 

focal-plane sensor with a pseudo-BJT smoothing network and an adaptive current 

schmitt trigger for scanner applications is presented. This is a technical application of 

the BJT silicon retina design. Summary of these three works are shown in Table 3. 1. 

3.1  A NEW STRUCTURE OF THE 2-D SILICON RETINA 
3.1.1 Introduction 

To take advantages of the retina in image processing, the two retinal functions of 

edge extraction and moving object detection should be incorporated into the 

photosensing system. An interesting hardware implementation of retinal processing on 



24 

a physical semiconductor substrate has been presented by Mead et al. [67]. The main 

architecture of this implementation is a resistive network or mesh that receives the 

inputs from a set of photoreceptors and performs the smooth function. This resistive 

network is equivalent to the horizontal cell in the vertebrate retina. Recently, some 

important image processing architectures using the resistive mesh have been 

presented [68]-[72], [10]. To realize a large resistive mesh on a chip, several structures 

have been proposed [68]-[72], [10] to minimize the size of the resistive elements. 

However, the resistive network still requires large chip area and complicated wiring. 

This makes the VLSI implementation of the retina quite difficult.  

A new concept is developed to implement the smooth function in a compact and 

efficient semiconductor structure that is fully compatible with both CMOS and 

B1CMOS technologies and can be easily integrated with other integrated circuits to 

form a VLSI image processing system. The new structure consists of a phototransistor 

array with a common base region. When the light is incident upon the common 

open-base region, excess carriers are generated and diffused out. The result of the 

carrier diffusion and distribution makes the output emitter currents decay 

logarithmically with distance, just like that in the resistive network. This phenomenon, 

which has bothered the operation of the photosensing arrays in the CCD design [73], 

can be used to implement the smooth function of the vertebrate retina. Thus, the 

silicon retina can be realized in a compact structure without complex resistive 

network. 

In each basic cell of the proposed silicon retina structure, one parasitic PNP (NPN) 

bipolar phototransistor in the common N- (P-) base region is used to sense the light 

and generate the smoothing photocurrent. The other parasitic bipolar phototransistor 

in a separate base region is used to sense the light and generate the instantaneous 

photocurrent. The new silicon retina structure has been analyzed and experimentally 

verified in both 1-D linear array [74] and 2-D array. 

In Section 3.1.2, the structure and the operation of the new silicon retina are 

described. The important characteristics of edge detection and moving object 

detection are also discussed. The 2-D array design of the new silicon retina is 

described in Section 3.1.3, where the experimental results are also analyzed and 

discussed in detail. In Section 3.1.4, the conclusion is given. 

3.1.2 Cell Architecture and Operational Principle 

The proposed new CMOS retina structure contains many basic cells. Each basic 



25 

cell consists of an inner open-base parasitic PNP (NPN) phototransistor as the 

photoreceptor and an outer open-base parasitic PNP (NPN) phototransistor in the 

common N- (P-) well as the smooth unit. The cross-sectional view of the CMOS 

N-well retina cell is shown in Fig. 3.1. 1(a), and the layout diagram is shown in Fig. 

3.1. 1(b). As shown in Fig. 3.1. 1(b), the inner open-base parasitic PNP transistor is 

surrounded by the VSS-biased P-substrate so that it is isolated from the outer 

open-base parasitic PNP transistors. The outer PNP phototransistor shares the same 

base region (N-well) with all other outer PNP phototransistors in other cells. It is seen 

that a metal-defined light window is located in the open-base regions of the two PNP 

phototransistors. When an image light is incident upon the chip, only the 

semiconductor region under the window receives the light. The light generates 

carriers in the open-base region. This results in the photocurrent at the emitter. The 

depletion region of the collector junction has a greater efficiency in generating the 

carriers when the light is incident upon the silicon. Thus, the metal-defined window is 

put across the collector junctions of the two PNP phototransistors. 

To make the phototransistors operated in the active region, the common 

P-substrate collector must be biased by a negative VSS voltage, and their emitters are 

kept at the virtual ground. When the light is incident upon the cell, excess earners are 

generated in both isolated inner N-well and surrounded outer N-well. These 

photogenerated carriers in the floating base region act as those injected by the external 

base current and generate an emitter current Ie,inner in the inner cell. On the other hand, 

the smooth network consisting of many phototransistors in the surrounding common 

outer N-well also receives a nearly equal input photocurrent in the common N- well 

base region and produces a smooth current Ie,outer at each emitter, which is one of the 

output nodes in the network. Ie,outer is then subtracted by Ie,inner with suitable weighting 

factors, and the difference is further converted into voltage for further processing. 

This output voltage has the similar response as the output of a vertebrate retina. 

The smooth function of the new silicon retina cell is performed by the outer 

phototransistor array in the surrounding common N-well. Fig. 3.1. 2 shows the 

conceptual cross-sectional view of the outer phototransistor array. As shown in Fig. 

3.1. 2, the outer phototransistor array acts as a multi-emitter PNP phototransistor. 

Because the collector is biased by the negative VSS, and the emitters are kept at virtual 

ground, there is a reverse bias on the collector junction, and a large electric field is 

produced across the depletion region. When the light is incident upon the 
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phototransistor, the electron-hole pairs are photogenerated in the base region 

(common N-well) or the depletion region of the collector junction. Most 

photogenerated minority carriers (holes) diffuse toward the collector junction and are 

swept to the collector. On the other hand, the photogenerated electrons act as the 

injected electrons, similar to those injected by an external base current Ib They diffuse 

out in the common base region and could reach the emitter junctions and make the 

junctions forward biased. Along the diffusion path, parts of them are recombined by 

the excess holes in the active base regions underneath the emitter junctions. 

To explain the phenomenon more clearly, the 1-D linear phototransistor array as 

shown in Fig. 3.1. 2 is considered. If the light is incident upon the phototransistor no.0 

only, the photogenerated electrons diffuse out to other dark phototransistors. Due to 

the effect of carrier recombination, the number of these diffused electrons reaching 

the base regions of the dark phototransistors located farther away from the no.0 

phototransistor becomes smaller and so does the effective base current. Due to the 

smaller base current and the voltage drop on the series base spreading resistance, the 

resultant base-emitter voltages Vbe in the dark phototransistors become smaller. Thus, 

the emitter currents of these phototransistors are smaller as their locations are farther 

away from the illuminated phototransistor. Generally, if the dark phototransistors are 

located not too far away from the illuminated phototransistor, the excess carrier 

density is high, and both spreading resistance and recombination effects are important. 

However, if the distance is comparable with the carrier diffusion length, the excess 

carrier density is low, and only the spreading resistance effect dominates. 

To characterize the above mentioned phenomena and effects in the equivalent 

circuit, the 2-D smooth unit with the photo- transistors array in the outer common 

N-well region as shown in Fig. 3.1. 2 may be represented by the equivalent network 

as shown in Fig. 3.1. 3. In Fig. 3.1. 3, the effective series resistors RN are connected 

into the 2-D structure. They are nearly independent of the cell location if only the 

spreading resistance effect is considered. Generally, the distance among the cells 

affects the RN value and thus the smooth function. If the cell distance is scaled down, 

RN is smaller, and the smooth function is enhanced. The resultant smoothing curve is 

less sharp, and more cells are involved in the smoothing. The other effect of cell 

scaling is to increase the resolution and the settling time of the smooth network. 

If the surface recombination effect is considered, extra current sources connected 

between the base of the phototransistor and the ground may be used. These currents 
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are slightly larger for those dark cells close to the light incident area and very small 

for those dark cells far away from the light incident area. 

From the equivalent circuit shown in Fig. 3.1. 3, the base current Ib of the 

phototransistor can be expressed as 

( ) ( )kTqVIII bescb /exp// ββ ≈≈          (1) 

where Is is the reverse saturation current of the phototransistor. Vbe is the base-emitter 

voltage, β is the dc current gain, q is the electronic charge, k is the Boltzmann 

constant, and T is the absolute temperature. Taking the voltage drop on RN into 

consideration, the ratio of the base currents at the node N and the adjacent node N + 1 

can be written from (1) as 
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where I is the current flowing through RN, and the current gain β is assumed to be 

constant. From the above equation, the base currents of the two adjacent nodes have 

the exponential relationship and so do their corresponding emitter currents. This 

verifies the smooth function in the new silicon retina. 

In the retina, the edge of an object is detected by the high contrast between surface 

of the object and background. The general principle of the edge detection can be 

understood by using the curves in Fig. 3.1. 4. In Fig. 3.1. 4, the original signal has a 

very large edge contrast. After smoothing, the smooth signal is obtained with a 

smooth edge. By subtracting both signals, an abrupt difference from negative to 

positive at the edge can be obtained. This difference signal can be easily detected. 

In the proposed structure, the smooth signal of the input image can be obtained 

from the emitter current Ie,outer of the outer phototransistor. At the same time, the 

emitter current Ie,inner of the inner phototransistor represents the signal of the original 

image. The subtraction of these two current Ie,outer and Ie,inner results in a difference 

signal with a sharp change from negative to positive at the edge of the image. Thus, 

the edge signal of the image can be detected definitely. 

When a moving object appears, the relationship of the object image and the silicon 

retina cell is shown in Fig. 3.1. 5. As the image of the moving object passes by one of 

the retina cells during the fixed period of time, the cell senses a light pulse with the 
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same period of time. Thus, the moving object detection of the silicon retina can be 

tested by measuring the cell pulse responses with a moving input image. 

The large base-collector junction and multi-emitter junctions in the outer 

phototransistor array form a large distributed RC network where R is the spreading 

resistance of the base region, and C is either collector or emitter junction capacitance. 

This can also be understood from the lumped equivalent circuit of Fig. 3.1. 3. When 

the light is incident upon the outer area, the photogenerated base current diffuses out 

to reach a certain number of outer phototransistors. In these phototransistors, the 

emitter junction should be charged from its original bias Vbe,dark in the dark to a new 

value Vbe, whereas, the collector junction should be charged from│Vss│-│Vbe,dark│ to 

│Vss│- │Vbe│. Thus, it takes time for the outer phototransistor network to reach the 

new steady state when the light is incident upon it. This time is called the settling time 

or the integration time of the smooth network. On the other hand, the isolated inner 

phototransistor has a quick response to the light. This means that at the instant when 

the light is incident upon the retina cell, Ie,outer is still kept at the original value in the 

dark, but Ie,inner is raised up to the new value. Thus, Ie,inner -Ie,outer has a positive value. 

Since Ie,outer gradually increases to its final stable value, which is close to Ie,inner, Ie,inner 

-Ie,outer becomes less and less positive. Similarly, when the light is suddenly off, Ie,outer 

is kept at its stable value while Ie,outer is suddenly reduced to its dark value. Thus, 

Ie,inner -Ie,outer is negative and gradually increases to its stable value in the dark. 

Measuring the positive and negative pulses of Ie,inner -Ie,outer can easily sense the 

moving object passing by the measured cell. In this way, the moving object can be 

detected by the proposed silicon retina. 

In the detection of a moving object using the proposed silicon retina, the sensitivity 

can be increased by using a high- gain output amplifier. The detection speed can be 

improved by decreasing the settling time or the integration time. As in the edge 

extraction, the resolution can be improved by using a scaled cell array. 

3.1.3 2-D Silicon Retina Array Design and Experimental Results 

The overall architecture of the 2-D silicon retina array is shown in Fig. 3.1. 6(a), 

and the structure of the basic cell circuitry in the 2-D array is shown in Fig. 3.1. 6(b). 

In Fig. 3.1. 6(a), two decoders and a multiplexer are used to control the output of the 

cell. The row decoder decodes the m row address bits and activates one of 2m row 

control signals row and row’. The column decoder decodes the n column address bits 

to activate one of 2n output channels in the multiplexer. Through the multiplexer, the 
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selected output channel sends out the inner and the outer emitter currents of the 

selected cell to the two tunable Rm amplifiers, and the input cell currents are 

converted into the voltages. Then, the two voltages are sent to the output differential 

amplifier with the gain Av. The output voltage Vout of the differential amplifier can be 

expressed as 

)( ,, innereouterevmout IIARV −−=           (3) 

where 
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As shown in Fig. 3.1. 6(b), the basic cell contains a PNP phototransistor pair and 

four NMOS switches. In the chip layout, each cell has equal distance to its four 

nearest neighbors. The four switches in the cell are controlled by the row control 

signal row and its complement signal row’. When one row of the silicon retina cells is 

selected by the row address bits, the control signal row of this row is activated to high, 

whereas, row’ is low. Thus, SW1 and SW2 are closed to connect the two emitters to 

the multiplexer. Through the multiplexer, they are further connected to the inputs of 

the Rm amplifiers, which are kept at virtual ground. Thus, the emitters are nearly 

grounded to send out Ie,outer and Ie,inner. At the same time, SW3 and SW4 are open to 

prevent the emitter currents from flowing into the ground. Oppositely, when the row 

of the silicon retina cells isn’t selected, the control signal row of this row is low, and 

row’ is high. Then, SWI and SW2 are open to prevent the emitter currents from 

reaching the multiplexer and the output amplifier. Meanwhile, SW3 and SW4 are 

closed to connect both emitters to ground so that the deselected emitter currents are 

bypassed to ground. 

The circuit diagrams of the Rm amplifier and the output buffer are shown in Fig. 

3.1. 7(a) and (b), respectively. The Rm amplifier in Fig. 3.1. 7(a) with the shunt-shunt 

feedback configuration offers a very low input impedance, a good linearity, and a high 

frequency bandwidth [75]. In Fig. 3.1. 7(a), the basic I-V conversion is achieved by 

the common-gate transistor MN1(MP1) and the current source device MP2(MN2). 

The transistors MN4 and MP4 form a source-follower output buffer to enhance the 

driving capability and decrease the output impedance. The transistors MN3 and MP3, 
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which offer a feedback path from the output stage, are used to reduce both input and 

output impedances. The transistors MNR and MPR are used to adjust the gain of the 

Rm amplifier. The output buffer in Fig. 3.1. 7(b) consists of a basic differential 

amplifier and a source-follower. The differential amplifier produces an output voltage 

that is proportional with Ie,inner -Ie,outer whereas, the source-follower offers a large 

driving capability to drive the output pads. The typical measured characteristics of the 

fabricated Rm amplifier are listed in Table 3.1. 1. 

In the structure of Fig. 3.1. 6(a), the output signal of each cell can be accessed by 

sending a set of address bits. The whole image frame can be obtained pixel-by-pixel 

by sending a sequence of address bits. If parallel outputs are preferred, the column 

decoder and the multiplexer can be omitted, and the ii outputs can be obtained 

through n-output amplifiers. In this way, the whole image frame can be obtained 

row-by-row by sending a sequence of row address bits. 

In this research, two experimental 32x32 silicon retina array chips have been 

designed and fabricated by using 0.8μm double-poly double-metal N-well CMOS 

process. One of the chips is designed with both Rm amplifier and output buffer as 

shown in Fig. 3.1. 6(a) to measure the full function of the silicon retina. The other is 

designed without Rm amplifiers and output buffer to measure the cell current directly. 

Both cell arrays have a fill factor of 0.33. 

In the proposed silicon retina, there are four NMOS switches, two phototransistors, 

and five interconnection lines as shown in Fig. 3.1. 6(b). Generally, the NMOS 

switches are uncritical devices, and the minimum device dimension can be used. The 

phototransistor area can be reduced to the limit where the generated minimum 

photocurrent can be detected. The two major limitations on cell compaction are 1) the 

layout design rules, especially those for the N-well spacings and 2) the number of 

available interconnection levels to route the five cell signal lines compactly. In this 

experimental work, the cell is designed by using a relaxed design rule, and the cell 

area is 60μmx60μm. Further cell area reduction can he done by pushing the cell 

layout to the minimum design rules. 

To measure the performance of the new silicon retina cell array, a low-power 
He-Ne laser and several lens are used to generate a definite input image for test. 
Because of the serious scattering of the regular light source [74], it cannot be used to 
generate the input image. However, since the retina is made of semiconductor silicon, 
it will function well under regular light. In the test setup, the lens focuses the 
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low-power laser beam to a small light spot that is incident upon the silicon retina cells. 
In the measurement of the smooth characteristic of the outer phototransistor array, the 
laser light spot is incident upon the corner of the silicon retina array. Fig. 3.1. 9(a) 
shows the measured Ie,inner of the inner phototransistor array in the 2-D plot, whereas. 
Fig. 3.1. 9(b) shows the measured Ie,outer of the outer phototransistor array in the 2-D 
plot. As discussed above, Ie,inner represents the local intensity of the input image, 
whereas, Ie,outer represents the smoothed input image. Comparing Fig. 3.1. 9(a) with 
(b), it can be seen that the outer phototransistor array really smoothes the whole input 
image. To see the detail, the contents on the line y=5 in Fig. 3.1. 9(a) and (b) are 
selected to display in Fig. 3.1. 10 where the measured Ie,inner is scaled down by a factor 
of 0.25 for easy comparison with Ie,outer. Since the light spot has some diffraction 
effects, its effective incident area covers twelve pixels of cells so that Ie,inner in these 
cells is not zero as may be seen in. Comparing the curves of Ie,inner and Ie,outer, the 
smooth effect of the outer phototransistor array can be verified. To analyze the 
function of the outer phototransistor array using the proposed equivalent circuit in Fig. 
3, the device parameters of the PNP bipolar transistors are measured first.  
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Table 3.1. 2 shows the measured device parameters of the PNP transistor. Ideally, 

both inner and outer phototransistors have the same photogenerated current. Thus, the 

emitter current Ie,inner of the inner phototransistor is used as the input current of the 

light-incident outer phototransistors in the simulation. Fig. 11 shows the 2-D graph for 

the SPICE simulated Ie,outer of the outer phototransistor array with RN in Fig. 3 equal 

to 2.8 kΩ To further investigate the measured data and the simulated data, the 

contents on the line y=5 in Fig. 11 for the simulated Ie,outer are also plotted in Fig. 10 

Fig. 3.1. 10 for comparison. The consistence between the simulated Ie,outer curve and 

the measured Ie,outer is good, which proves the suitability of the proposed equivalent 

circuit in Fig. 3.1. 3 in simulating the behavior of the outer phototransistor array as the 

smooth network. 

In Fig. 3.1. 10, the simulated Ie,outer curve is slightly sharper than the measured 

Ie,outer. The deviation near the corner may be caused by the edge effect of the 

smoothing array. On the other hand, the deviations for x>3 could be caused by the 

surface recombination effect mentioned in Section 3.1.2, which is not considered in 

the equivalent circuit of Fig. 3.1. 3. Due to the surface recombination effect, the 

measured Ie,outer is smaller in those dark cells close to the light-incident cells. The 

surface recombination effect can be characterized by connecting suitable current 

sources between the base of the phototransistors and the ground. The use of these 

current sources decreases Ie,outer so that it is more consistent with the measured values 

as shown in Fig. 3.1. 10. 

To measure the edge-detection effect of the proposed silicon retina, the laser light 

spot is incident upon the chip. Fig. 3.1. 12(a) shows the 2-D plot of the measured 

output voltages Vout of each cell through the on-chip Rm amplifier and output buffer. 

As shown in Fig. 3.1. 12(a), a voltage change from positive to negative is obtained 

around the edge of the incident light spot. To observe the response clearly, the curves 

of y = 8 is shown in Fig. 3.1. 12 (b). In Fig. 3.1. 12 (b), a voltage change from 

positive to negative around the edge of the spot located at the vicinity of x = 6, can be 

seen clearly. By detecting the change, the edge-detection of the proposed silicon retina 

can be performed in the image processing system. 

According to the measurement, the smooth network of the experimental chip takes 

about 3ms to settle down. To reading out the pixel signal, it takes about 1μs to settle 

down the decode switch introduced transients. Thus, the maximum readout operation 
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frequency is about 1MHz, and the equivalent frame rate is about 1kHz. The measured 

results of the fabricated CMOS retina chip are summarized in Table 3.1. 3. Generally, 

the scaled down cells could decrease the settling times in both smooth network and 

readout operation. Thus, the maximum operational frequency and the frame rate could 

be improved. 

To further evaluate the performance of the proposed silicon retina, a simple image 

is used as the input to the fabricated retina, and the output characteristics are 

measured. Fig. 3.1. 13(a)-(c) show the inner image, the outer image, and the 

difference image, respectively, when a character “T” pattern is incident upon the 

silicon retina. In this test pattern, the light intensity decreases gradually from the 

left-up to right- bottom as showed in Fig. 3.1. 13(a). Under such nonuniform light 

intensity, the silicon retina still functions well in this measurement. In Fig. 3.1. 13(c), 

the edge of the pattern “T” stands out from the bright light. In Fig. 3.1. 13(d), only the 

positive pulses of the response in Fig. 3.1. 13(c) are chosen, and the resulting image 

becomes clearer. From the above results, it has been verified that the proposed silicon 

retina can perform the function of edge-detection. 

The most important characteristic of the retina is to detect a moving image. As 

discussed in Section 3.1.2, the moving target detection can be performed by applying 

a moving image passing across the silicon retina. Fig. 3.1. 14 shows the measured 

output voltages of the cell (24, 18) and the cell (24. 26). At the moment when the front 

edge of the moving pattern passes across the measured cells, two successive positive 

voltage pulses, which are proportional to Ie,inner -Ie,outer can be recorded on the scope 

trace as shown in Fig. 3.1. 14. Similarly, two negative voltage pulses, which are 

proportional to Ie,inner -Ie,outer, can be obtained when the back edge of the moving 

pattern leaves the measured cells. By detecting the pulses, the moving object can be 

detected. At the same time, some information about the moving object can also be 

obtained from the characteristics of the output voltage pulses. 

3.1.4 Conclusion 

A new structure of the silicon retina cell that contains only two isolated PNP 

phototransistors is proposed and analyzed. In this structure, the smooth network is 

implemented by the phototransistors in a common open-base region. Experimental 

results verify the retinal functions of both edge detection and moving image detection. 

The new structure has very simple interconnection and wiring. The layout is compact, 

and the resultant chip area is small. Thus, it is feasible to realize the new silicon retina 
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with the associated image processing neural network in VLSI. Further research on this 

new structure will focus on device characterizations and applications. 
3.2  AN IMPROVED BJT-BASED SILICON RETINA WITH 

TUNABLE IMAGE SMOOTHING CAPABILITY 
3.2.1 Introduction 

Recently, a new silicon retina structure called the bipolar junction transistor (BJT) 

based silicon retina is proposed [74], [84]. In the BJT-based silicon retina, the 

function of the horizontal cells is realized by the BJT smoothing network. The BJT’s 

in the BJT smoothing network are used not only as photoreceptors, but as the 

smoothing devices. The spatial smoothing function on the images is realized by both 

carrier transport effect and base resistance bias effect [85]-[87] of the BJT’s in the 

same base region. The structure of the BJT smoothing network is simple and compact. 

Moreover, it is suitable for the very large scale integration (VLSI) implementation. As 

indicated in [88]-[92], the smoothing range of those images with wide-range 

variations on intensity or contrast is required to be adjustable. In the BJT smoothing 

network of [74] and [84], the extrinsic base resistance among the active bases of the 

BJT’s can be designed to obtain different image smoothing ranges. However, it 

cannot be adjusted after fabrication. This limits the applications of the BJT-based 

silicon retina in smart sensors. 

The BJT smoothing network with an enhancement-mode n-channel MOSFET 

inserted between the bases of two parasitic p-n-p BJT’s existing in an n-well CMOS 

process is proposed here to increase the tunability of image smoothing ranges. It is 

shown that the inserted nMOSFET can be operated either in the strong-inversion 

region or subthreshold region to provide a wide range of resistance values to achieve 

the wide-range adjustment of smoothing ranges. As compared to the original BJT 

smoothing network [74], [84], the proposed BJT smoothing network has smaller chip 

area in realizing the same base resistance and higher tunability of image smoothing 

ranges. 

In the focal-plane array (FPA) of the proposed BJT-based silicon retina, the access 

circuit of silicon retina cells is realized by using the multiemitter BJT’s. Thus, the 

pixel area can be kept small. A 64x64 experimental chip has been designed and 

fabricated by using 0.5- m n-well CMOS technology. The measurement results on 

both static and dynamic characteristics have verified the correct functions of the 
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proposed BJT-based silicon retina. In Section 3.2.2, the structure of the proposed 

BJT-based silicon retina is described and both static and dynamic operations are also 

analyzed. In Section 3.2.3, the FPA architecture of the silicon retina is presented. The 

experimental results of the 64x64 experimental chip are presented in Section 3.2.4. 

Finally, the conclusion is given. 

3.2.2 Analyses of the Proposed BJT-Based Silicon Retina 

The equivalent circuit of the proposed BJT-based silicon retina is shown in Fig. 

3.2. 1 where IES is the emitter currents of the smoothing pnp BJT in the BJT 

smoothing network, IEI is the emitter currents of accompanying isolated pnp BJT’s, 

and VEB is the emitter-base junction voltage of the BJT’s. In this structure, each pixel 

has two parasitic vertical pnp BJT’s existing in the CMOS process. The two BJT’s 

(called isolated BJT and smoothing BJT) have an open base to serve as 

phototransistors. Moreover, an enhancement-mode nchannel MOSFET is inserted 

between the active bases of two smoothing BJT’s to form the BJT smoothing network. 

Thus, the smoothing BJT can serve as phototransistor and smoothing device. The 

cross-sectional view of the two smoothing BJT’s and one nMOSFET in the BJT 

smoothing network is shown in Fig. 3.2. 2. The tunable conjunction resistance in the 

BJT smoothing network is efficiently realized by the channel resistance of the inserted 

nMOSFET’s with adjustable common gate bias. As shown in Fig. 3.2. 2, the n 

source/drain of the nMOSFET is placed on the boundary of the n-wells, which are 

base regions of the parasitic pnp BJT’s in n-well CMOS technology. This makes the 

proposed BJT smoothing network quite compact.  

The BJT smoothing network is used to realize the smoothing function of the 

horizontal cells in the retina, whereas the accompanied isolated BJT at each pixel is 

used to realize the photoreceptor cell in the retina. The role of the BJT smoothing 

network is to compute the spatially and temporally weighted average of images. 

When the light is incident upon one pixel, it is simultaneously incident upon the two 

floating bases of both smoothing BJT and isolated BJT. Thus, electron-hole pairs are 

generated in and nearby the depletion region of the two base-collector junctions. Due 

to the electric field in the depletion region, the generated electrons are swept into the 

base region, whereas the holes are swept into the collector. The electrons swept into 

the base region form a transversely flowing photocurrent in the BJT smoothing 

network. This gives rise to the forward bias of each base-emitter junction and the 

current on each emitter. Due to the nMOSFET channel resistance, there are voltage 
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drops in the base region of the BJT smoothing network when the photoinduced 

electron currents flow. This effect makes the forward bias voltages of base-emitter 

junctions different from one another and, thus, the magnitudes of emitter currents in 

the BJT smoothing network become a weighted distribution function of distance. The 

BJT smoothing network, therefore, can perform the required spatial smoothing. 

The excitatory synapse between the photoreceptor and horizontal cell in the retina 

is implemented by letting photons simultaneously stimulate the floating bases of both 

BJT’s at each pixel. According to the analog model [68] of the retina, the response of 

the bipolar cell in the retina is realized by subtracting the emitter current of the BJT in 

the smoothing network from that of the isolated BJT at the same pixel. Thus, the 

output current of the silicon retina in Fig. 3.2. 1 is IEI-IES. 

A. Static Characteristics 

To model the static characteristics of the BJT smoothing network in Fig. 3.2. 1, where 

the bipolar phototransistors are operated in the active region, the Ebers-Moll 

equivalent circuit of the BJT is used. The resultant large-signal equivalent circuit of 

the BJT smoothing network is shown in Fig. 3.2. 3, where the diode DP (DQ) 

represents the emitter-base junction of the BJT, IP (IQ) represents its emitter current, 

αF is the common-base forward short-circuit current gain, Ihv represents the 

photocurrent induced by photons, CBE (CBC) is the base-emitter (collector) capacitance 

of the BJT, is the CG gate-source (drain) capacitance of the nMOSFET, and VG (VP, 

VQ) is the gate (drain, source)-substrate voltage of the nMOSFET. If the nMOSFET in 

Fig. 3.2. 3 is operated in the subtreshold region, the current IPQ flowing through the 

nMOSFET is the diffusion current. IPQ can be expressed as [93] 
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where W/L is the channel width-to-length ratio of the nMOSFET, ID0 and n are 

process-dependant parameters, and VT is the thermal voltage. The emitter currents IP 

and IQ flowing through DP and DQ in Fig. 3.2. 2(a), respectively, can be expressed as 
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where IE0 is the emitter-base reverse saturation current of the BJT and VE is the 

emitter voltage.  Substituting (2) and (3) into (1) to cancel the terms of VP and VQ, 

we have 
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It can be seen from (4) that IPQ is linearly proportional to (IQ-IP) with a constant 

coefficient determined by VG and VE. 

From the above analyses, it can be seen that the linear resistive network used to 

model the horizontal cells can be implemented by the proposed compact BJT 

smoothing network with subthreshold operated nMOSFET’s. This is because the 

emitter-base junction of the BJT provides the nonlinear conductance to cancel the 

nonlinear conductance of the nMOSFET so that a linear resistive network is formed. 

This unique combination of the BJT and MOSFET makes the proposed BJT 

smoothing network simpler than those proposed in [20], [21], [24]. 

When VG-VQ of the nMOSFET’s in Fig. 3.2. 3 is greater than the threshold 

voltage, the current flowing through the nMOSFET is the drift current and the 

improved BJT smoothing network acts as a nonlinear network. It performs the 

spatially smoothing function through the base resistance bias effect of the BJT’s [87]. 

As derived in [87], the emitter current IE(n) of the smoothing BJT at the nth pixel in 

the one-dimensional (1-D) smoothing network under the single-point stimulus can be 

expressed as 
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Where R is the sum of base resistance and effective channel resistance of the 

nMOSFET among the active bases of BJT’s, N is the total BJT number in the 1-D 

network, IE(0) is the output emitter current at the stimulated pixel, and Ihv(0) is the 

incident photocurrent. As seen from (5) and (6), the emitter current ratio in (5) and the 

smoothing function are adjustable if R is adjustable. Since the channel resistance of 

the nMOSFET is dominant in R, the inserted nMOSFET can be used to adjust R 
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through VG in order to obtain different smoothing ranges.  

Since the base potential difference between two adjacent BJT’s in the BJT 

smoothing network is quite small, the inserted nMOSFET is operated in the linear 

region when VG is large. Its channel resistance RDS can be expressed as 

( )R W
L

C V V V VDS n OX G E EB th= − + −⎡
⎣⎢

⎤
⎦⎥

−
μ

1
        (7) 

where W/L is the geometric ratio of the nMOSFET, μn is the effective electron 

mobility, Cox is the gate oxide capacitance per unit area, and Vth is the threshold 

voltage under the reverse substrate bias VE-VEB. As may be seen from (7), RDS is 

tunable by VG. Thus, the smoothing characteristics of the BJT smoothing network can 

be adjusted by [87].  

It can be seen from the above analyses that the proposed BJT smoothing network 

can meet the requirement of adjustable image smoothing from local to global, as 

indicated in [88]-[92]. Moreover, the proposed BJT smoothing network can perform 

wide-range smoothing functions with small chip area.  

When the incident light intensity is increased, the emitter-base junction voltage 

VEB of the BJT in the proposed BJT smoothing network is increased. If the MOSFET 

is in the subthreshold region, the effective channel resistance is decreased with the 

increasing light intensity. However, the effect of decreasing channel resistance can be 

completely compensated by the increasing base-emitter junction conductance. Thus, 

IPQ in (4) remains unchanged, and so does the smoothing characteristics. 

If the nMOSFET in the smoothing network is operated in the linear region, RDS in 

(7) is decreased with light intensity increasing. The reduced RDS in the proposed BJT 

smoothing network leads to more global smoothing and the low-contrast image 

becomes less visible. This problem also arises in the MOSFET resistive smoothing 

networks [20], [21], [24]. However, in the proposed BJT smoothing network, the 

above-mentioned effect can be compensated.  

In the BJT smoothing network of [74] and [84] with an invariant intercell 

resistance, the smoothing is adaptive. Under brighter background or higher contrast, 

the BJT smoothing network can be automatically adjusted to achieve a more local 

smoothing range [87]. This unique performance, which is due to the nonlinear base 

resistance bias effect, also exists in the proposed BJT smoothing network. When the 

intensity of light incident on the proposed BJT smoothing network with the 
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nMOSFET’s in the linear region is increased, the increase of the smoothing range due 

to the decreased RDS can be compensated by the reduced smoothing range due to the 

base resistance bias effect. The resultant smooth area is still decreased due to the 

stronger base resistance bias effect. 

B. Dynamic Characteristics 

To characterize the temporally average function of the proposed BJT smoothing 

network, its large-signal equivalent circuit with device capacitances, as shown in Fig. 

3.2. 3, is considered. This circuit structure is similar to the organization of the 

horizontal cells in the vertebrate retina, where the node capacitance CBE+CBC+4CG is 

equivalent to the membrane capacitance of horizontal cells, whereas the channel 

resistance RDS of the nMOSFET is equivalent to the resistance of the gap junction 

between two horizontal cells. 

When a flashlight is incident upon the silicon retina, it takes certain delay time to 

build up the emitter currents of both the isolated BJT and smoothing BJT due to BJT 

intrinsic turn-on delay and RC components at the base node. In the proposed BJT 

smoothing network, the delay time tS is dominated by the RC effect in the equivalent 

circuit of Fig. 3.2. 3. Assume that under light illumination, the base node voltage VQ 

at the incident pixel is decreased from VQS to VQS-ΔVQS. The delay time tS can be 

approximately expressed as 
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where both capacitances and currents are nonlinear function of node voltages and 4IPQ 

is the total current flowing into the base node from the four neighboring nodes, as 

shown in Fig. 3.2. 3. For the dark pixel in the smoothing network, ΔVQS is smaller and 

IhvQ = 0. Thus, its tS is nearly the same as that at the incident pixel. Similarly, the 

delay time ti to build up the emitter current of the isolated BJT incident by light can be 

approximately expressed as 
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            (9) 

where IEi is the transient emitter current, ΔVi is the change of base node voltage, and 

both capacitances and currents are nonlinear functions of node voltages. Comparing 

(9) to (8), it can be found that the isolated BJT has a smaller capacitance and a larger 

current. Thus, ti is much smaller than tS. Therefore, the output current IEI-IES of the 
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BJTbased silicon retina has a significant positive pulse when light is incident. Both 

peak value and pulsewidth are dependent on the size of flashlight. When the size of 

flashlight is larger, the current IPQ in (8) is smaller due to the spatial smoothing 

function of the smoothing network. Thus, tS is smaller, leading to a smaller 

pulsewidth.  

When the light is turned off, the base node voltage is increased to the value in the 

off state. It is found that the charging current is mainly provided by the BJT itself. 

Thus, the turn-off times of both smoothing BJT and isolated BJT are nearly the same. 

Since the base node of the BJT in the BJT smoothing network has an extra 

capacitance 4CGQ as in (8), the turn-off time is slightly larger. Thus, a smaller 

negative pulse is resulted when the flashlight is turned off. 

3.2.3 The 2-D Architecture of Silicon Retina 

In the design of the FPA of the proposed BJT-based silicon retina, compact 

row/column selection circuits are required to achieve small pixel area. Fig. 3.2. 4 

shows the basic cell structure of the FPA of BJT-based silicon retina. Both isolated 

and smoothing BJT’s at each pixel have extra emitters directly connected to the row 

line. Two pMOS devices are connected in series with the active emitters of BJT’s to 

serve as the row switches SW1 and SW2 controlled by the row line. Through the 

switches, the emitter currents can be sent to smoothing and isolated column lines 

biased at VE. In each cell, four nMOSFET’s are connected from the smoothing BJT to 

the four neighbors to form the proposed 2-D BJT smoothing network. Equivalently, 

each cell has two nMOSFET’s, as shown in Fig. 3.2. 4. All the gates of nMOSFET’s 

are connected to the common gate line with the adjustable voltage VG. 

When the row line is selected through the row decoder, its voltage is set at GND. 

The extra emitters act as collectors of pnp BJT’s and SW1 and SW2 are closed. Thus, 

the two emitter currents IEI and IES of isolated and smoothing pnp BJT’s at the 

selected pixel can be sent to the isolated and smoothing column lines, respectively. 

When the row line is deselected, its voltage is raised to the emitter voltage VE. In this 

case, SW1 and SW2 are open and the normal emitters of pnp BJT’s are disconnected 

from the column lines and become floating. However, the extra emitters connected to 

the row selection line are connected to VE. With all the deselected emitters of BJT’s 

connected to VE, the BJT’s in the smoothing network can be kept in the normal state 

so that the normal smoothing operation can be performed. 

The complete FPA architecture of the proposed BJT-based silicon retina is shown 
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in Fig. 3.2. 5. As may be seen from Fig. 3.2. 5, each column line has two pMOS 

devices as the column switches controlled by the column decoder. When the column 

is selected, one pair of switches is closed to connect both isolated and smoothing 

column lines to the readout circuit. When the column is deselected, the other pair of 

switches is closed to connect both column lines to VE. Thus, all emitters in the 

deselected columns can be biased at VE. 

As shown in Fig. 3.2. 5, the readout circuit is used at the output to sense both emitter 

currents IEI and IES and convert them into voltages. The subtraction of the two 

voltages is then performed to obtain the output voltage VO, which represents the 

response of the bipolar cell in the retina. 

3.2.4 Experimental Results 

An experimental chip of the proposed BJT-based silicon retina is designed and 

fabricated by using 0.5- m n-well double-poly double-metal CMOS technology. Fig. 

3.2. 6 shows the chip photograph of the fabricated 64x64 FPA of the BJT-based 

silicon retina. In the quiescent state without image inputs, the power dissipation of the 

sensor array in the silicon retina is very small, being that of 64x64 open-base BJT’s. 

Thus, the total quiescent power dissipation is determined by the peripheral circuit, 

which is about 45mW. In the illuminated state, the power dissipation of the sensor 

array is caused by the photocurrents of the BJT’s, which depends on the image light 

intensity. The typical total active power dissipation of the silicon retina FPA in the 

illuminated state is about 3-30mW. The characteristics of the fabricated FPA chip of 

BJT-based silicon retina are summarized in Table 3.2. 1. 

To verify the tunable smoothing function of the proposed BJT smoothing network, 

an image is projected on the experimental chip with the gate bias VG of nMOSFET’s 

tuned at different values. Fig. 3.2. 7 (a) shows the measured output responses of the 

isolated BJT’s. These responses represent those of the photoreceptors in the retina. 

Fig. 3.2. 7(b) and (c) shows the measured output responses of the BJT’s in the BJT 

smoothing network with VG at 3.75 and 4.0 V, respectively. These responses 

represent those of the horizontal cells in the retina. Fig. 3.2. 7(d) and (e) shows the 

mathematically found zero crossing positions of the outputs of the BJT-based silicon 

retina. The zero-crossing points of the measured output signals of the BJT-based 

silicon retina can be used to identify the edges of objects[91], [92], and [94]. As 

shown in Fig. 3.2. 7(d) and (e), when the smooth area is smaller, the smaller variation 

of light intensity can be identified. In other words, the edges with smaller contrast can 
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be identified. 

Fig. 3.2. 8 shows the measurement results on the unique adaptive characteristics 

of the proposed BJT-silicon retina, as mentioned in Section 3.2.2-A. It can be seen 

that the smooth area of the BJT smoothing network under brighter background, as 

shown in Fig. 3.2. 8(c), is smaller than that under darker background, as shown in Fig. 

3.2. 8(b). Moreover, the effect of the decreasing channel resistance of nMOSFET’s on 

the increase of smooth area does not appear in the measurement results, as predicted 

in Section 3.2.2-A. 

Fig. 3.2. 9(a) and (b) shows the measured output temporal responses of a single 

pixel in the fabricated FPA chip of the BJT-based silicon retina under three flashlight 

spot patterns with nearly the same intensity, but different spot diameters. It can be 

seen in Fig. 3.2. 9(a) that the positive pulse is generated when the flashlight is incident. 

The pulse has higher peak for a smaller flash spot. This is consistent with the analyses 

in Section 3.2.2-B. 

When the light is turned off, the measured output temporal responses of the 

fabricated silicon retina decays to the off state, as shown in Fig. 3.2. 9(b). The small 

negative pulse is not observed because the large off transition time of the flashlight 

allows both isolated and smoothing BJT turned off simultaneously. The peaks in Fig. 

3.2. 9(b) are induced by the closing time of the mechanical shutter used in this 

measurement. 

Fig. 3.2. 10 shows the measured output responses of a single pixel in the 

fabricated FPA chip of the BJT-based silicon retina with a moving light bar projected 

upon the chip. During the periods of T1 and T2, indicated in Fig. 3.2. 10, the light bar 

is not incident on the readout pixel. Therefore, there are very small output responses 

in the isolated BJT due to the diffracted light. However, the response of the BJT in the 

smoothing network is gradually increased as the light bar is approaching and 

decreased as the light bar is leaving. This is caused by the spatial smoothing function 

of the BJT smoothing network. When the light bar is projected upon the readout pixel, 

the isolated BJT has a larger response than the smoothing BJT. The difference of 

these two responses, as generated by the silicon retina shown in Fig. 3.2. 10, involve 

negative and positive pulses as the light bar is approaching and positive and negative 

pulses as the light bar is leaving. The zero-crossing points occus at t1 and t2. These 

zero-crossing characteristics caused by the passing of the edge of object can be 

applied to the detection of velocity and direction of moving objects [95]. 
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In the FPA chip of the BJT-based silicon retina, the current Gain β of BJT’s is not 

completely matched due to process variations. One of the dominant factors for β 

mismatch is the base width. Since the parasitic p-n-p BJT’s in n-well CMOS process 

has a wide base width, this leads to a low β of 4.8 and a low β mismatch. The 

measured global variations are 6% on the same wafer, 4% in the same chip, and 0.1% 

at the same pixel. In the FPA of BJT-based silicon retina, the current difference of 

two bipolar phototransistors is taken as the output signal. Using the output current 

difference to perform edge detection or moving object detection, only the pixels near 

the edge are involved. Under good local matching error of 0.1%, it is found that the 

detection capability is not affected by this small β variation. Moreover, under uniform 

light illumination, the 4% β variation across the chip in the BJT smoothing network 

can be smoothed so that the resultant zero-crossing error signals are quite small. They 

can be cleared out by zero-crossing detectors [96]. Thus, the β variation has negligible 

effects on the performance of the proposed BJT-based silicon retina. 

3.2.5 Conclusion 

A CMOS 64x64 FPA of BJT-based silicon retina with simple structure and 

tunable smoothing characteristics has been designed, analyzed, and fabricated by 

using 0.5μm n-well double-poly double-metal CMOS technology. In the proposed 

BJT-based silicon retina structure, nMOSFET’s are merged among the BJT’s in the 

BJT smoothing network to make the smooth area tunable through the adjustable 

channel resistance controlled by the gate voltage. Moreover, the multiemitter structure 

is used to simplify the row selection circuit. Both simulation results and experimental 

results of static and dynamic performance of the proposed structure have been 

presented. Further research will be conducted in the applications of the proposed 

BJT-based silicon retina to the detection of velocity and direction of moving objects 

[95]. 

3.3  A LOW-PHOTOCURRENT CMOS RETINAL FOCAL-PLANE 

SENSOR WITH A PSEUDO-BJT SMOOTHING NETWORK 

AND AN ADAPTIVE CURRENT SCHMITT TRIGGER FOR 

SCANNER APPLICATIONS 
3.3.1 Introduction 

Traditionally, real-time vision proceeds by acquiring images with CCD cameras 

or CMOS imagers by processing them in digital platforms. The traditional approach 
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to deal with vision tasks is to proceed according to two main steps: 1) acquisition of 

the image on a low-cost CCD camera and 2) software processing on digital platforms 

(DSP or PC). While the computational capabilities of digital platforms improve each 

year, they do not necessarily comply with low cost and portability. An attractive 

solution to this problem is to shift part of the computation into the sensor by 

dedicating some circuitry around photo-captor accomplished pixel-level processing. 

In this way, the CCD cameras or CMOS imagers are replaced with a more 

sophisticated device which is able to preprocess the acquired images and provide the 

next processing stages with limited requirements (computational power, low cost, 

portability, and low power consumption) [100]. Consequently, bio-inspired smart 

vision systems and applications become more and more attractive in research and 

development. The general approach in the design of these systems is to realize some 

processing as functions of neural vision systems of mammalians in the photo-sensor 

array [7], [17], [84], [97], [98] so that they can perform major functions in image 

processing, such as photo-input sensing, edge detection, moving object detection, etc. 

As proposed in [7], [17], [84], the BJT-based retinal sensor chip mimics parts of 

functions of the cells in the outer plexiform layer of the real retina. As in the real 

retina, the retinal sensor chip similar advantageous features, such as high noise 

immunity, edge enhancement, and high dynamic range. Therefore, the BJT-based 

retinal structure [7], [17], [84] has been proven that it is very compact and suitable for 

VLSI implementation. 

However, the parasitic p+-n-well-p-substrate BJTs used in the BJT-based retinal 

sensor have a smaller current gain as the n-well CMOS technology scaling down to 

0.25 m or below [99]. Besides, the chip area of the parasitic BJT is large. To solve the 

problems mentioned above, a new circuit structure is developed and called the 

pseudo-BJT (PBJT) [99]. By incorporating a photodiode with the PBJT to form a 

photo-PBJT, the new PBJT-based retinal sensor with an adaptive current Schmitt 

trigger for noise removal is proposed. It has three advantages. First, the 

process-independent current gain could be precisely controlled by the geometric 

parameters of MOSFETs. Second, the chip area is less than that of the BJT-based 

retinal sensor. Third, the proposed circuit structure is compatible completely with 

advanced CMOS technology. Besides, the additional advantages of low operational 

photocurrent levels (pA) and robust noise immunity are proposed. This new 

PBJT-based retinal circuit is different from previous papers [7], [17], [84], [99], 
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[100]-[104]. Particularly, optical noise problems are more notable in recognition 

applied to characters, as mentioned in [105]. A new structure, the adaptive current 

Schmitt trigger, could be adjusted adaptively according to the value of induced 

photocurrents, which enhances noise immunity and eliminates disturbances. Since all 

MOS devices in the proposed retinal sensor circuit are operated in the subthreshold 

region, the power dissipation is very low. Thus, it is suitable for the front-end sensor 

applications of portable optical scanner systems like pen scanners [107]. Table 3.3. 1 

shows the feature comparisons between PBJT-based retinal sensor and typical CMOS 

sensor. Proven by Table 3.3. 1, these superior features of retinal processing circuits to 

the conventional CMOS and CCD images are the same as mentioned in [26]. This 

new PBJT-based retinal sensor has excellent photosensitivity per photodiode area, 

optical dynamic range, noise immunity, continuous sensing, edge enhancement, and 

intelligent characteristic. 

The detection of static and moving objects, such as a moving white bar, are tested 

and proved through HSPICE simulation. The area of this chip is 3000x3030μm2 and 

that of a single pixel is 70x70μm2 with a fill factor of 75%. It is with fully functional 

32x32 implementations consuming less than 8.8μW per pixel at 3.3 V. Measurement 

results successfully verified the correct functions and performance of the proposed 

new retinal sensor circuits in character recognition of scanner systems. This proposed 

retinal chip could recognize the size of characters capable of scanning, which is 8–14 

points. The screen size is 32x32 pixels, and the scanner resolution is 169 dpi (14 

pixels/mm). The illumination for all the following measurements is set at 0.87 

normalized with fluorescent light at a wavelength of 550μm (13.8 lux). 

In Section 3.3.2, it describes the architecture and the proposed circuit. Section 

3.3.3 presents simulation results of the proposed circuit. Section 3.3.4 displays 

measurement results. Section 3.3.5 gives conclusions and feature works. 

3.3.2 Architecture and Circuit 

Fig. 3.3. 1 shows the architecture of the proposed retinal focal-plane sensor, which 

consists of the 32x32 pixel array and the peripheral circuits. First, the pixel array is to 

detect the image with noise and function for noise removal. Next, the row and column 

decoder could select the desired pixel randomly. Finally, the data buffer is to convert 

the parallel data to serial data in order to reduce the output pins of the chip. 

Fig. 3.3. 2 shows the conceptual dc output characteristics of the adaptive current 

Schmitt trigger. Current hysteresis (ΔI) is the quality of the current Schmitt trigger in 
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which the input threshold changes as a function of the input current level. Adding 

current hysteresis in the retinal sensor circuit could enhance the function of noise 

immunity. As the input starts positive and goes negative, the output does not change 

until it reaches the negative trip point. In the same way, the input starts negative and 

goes positive in direction, the output does not switch until it reaches the positive trip 

point. In the proposed pixel structure of a retinal focal-plane sensor, as shown in Fig. 

3.3. 3, an isolated PNP pseudo-BJT is used as photoreceptor, a smoothing NPN 

pseudo-BJT with adjustable N-channel MOSFET resistors is used to form the retinal 

smoothing network, an adaptive current Schmitt trigger, and an inverter are included. 

The transistors Mp1, Mp2, and photodiode D0 are as the PNP pseudo-BJT. The 

transistors Mn1, Mn2, and a photodiode D0 are as the NPN pseudo-BJT with four 

adjustable N-channel MOS resistors Ms1-Ms4 as the smoothing network. The 

smoothing network is connected to its four neighbors, and the resistance of four MOS 

resistors is controlled by the gate voltage Vsmooth (VF). The adaptive current 

Schmitt trigger comprises of Mp1, Mp2, Mn1, and Mn2, and hysteresis level 

adjustment Mpf1, Mpf2, Mnf1, and Mnf2. The current Iiso is the generated current of 

PNP pseudo-BJT whereas the current Ismt is that of NPN pseudo-BJT. In this 

proposed retinal sensor, it operates in the subthreshold region. Therefore, the circuit 

just consumes little power during in nonlighting mode. If the current Ismt is bigger 

than the current Iiso, at first, the Vout (Retina_out) goes too high and it turns on the 

MOS Mnf2 to draw the current ΔI/2. By the same token, the current Ismt is smaller 

than the current Iiso initially, the Vout (Retina_out) stays low level and it turns on the 

MOS Mpf2 to sink the current ΔI/2. The positive and negative trip points can be 

expressed as 

2
IIsmtIiso Δ

±=−             (1) 

where ΔI is the current hysteresis. If the induced photocurrent is larger, the current of 

transistors Mn1 and Mp1 becomes also larger. Due to the function of current mirror 

Mn1-Mnf1 and Mp1-Mpf1, the current of Mnf1 and Mpf1 could be adjusted by the 

induced photocurrent. Hence, this proposed circuit could adjust the current ΔI 

adaptively without external controlling voltage. The transistors Mp and Mn are 

composed of an inverter to amplify the output of the adaptive current Schmitt trigger 

to VDD or GND so that the signal is converted from analog to binary. All the 

simulations of the proposed circuit are analyzed in Section 3.3.3. 
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3.3.3 Simulation Results 

All simulation results are based upon the device parameters of 0.35μm 1P4M 

CMOS technology with 3.3-V power supply. The designed device dimensions and the 

controlling voltage of the pixel circuit in Fig. 3.3. 3 are listed in Table 3.3. 2. Fist, we 

simulate the current gain of NPN pseudo-BJT and PNP pseudo-BJT in the 

low-induced current level, respectively. The drain current equation in the subthreshold 

region can be expressed as [105] 
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Where Kx depends on process parameter, W/L is the geometric ratio of the MOS, Vth 

is the threshold voltage of MOS, vt is the thermal voltage and is given by Kt/q, and n 

is the subthreshold swing parameter. Based on (2), the current gain of pseudo-BJT can 

be written as 
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By using (3), in Fig. 3.3. 4, it shows the beta value of NPN pseudo-BJT and PNP 

pseudo-BJT. Due to the parameter of VDS for master and slave MOSFETs, in 

low-induced current levels, the current gain is bigger than the designed value. When 

the induced current becomes bigger, the parameter VDS for master and slave 

MOSFETs are close to each other. Therefore, the current gain approaches to desired 

value as shown in Fig. 3.3. 4. In order to reduce the affect of subthreshold swing 

parameters, the slave MOSFETs must be structured by making parallel copies of the 

master MOSFET. Hence, the current gain would be independent of the subthreshold 

swing parameter. Next, it is applied in a one-dimensional (1-D) array to verify the 

function of smoothing, as shown in Fig. 3.3. 5(a) and (b), with 50 pixels is considered. 

The light is incident on the 20th to the 30th pixels. Finally, to verify the performance 

of circuits for low induced current levels, the induced photocurrent is simulated in 100 

pA, and 10 pA, respectively. Compared to Fig. 3.3. 5(a) and (b), the main difference 

between them is the VF. If the incident lighting were larger, the photodiode of the 

retinal sensor would induce bigger currents. Therefore, the resistance of smoothing 

networks could be smaller because of the suitable scale of voltage variations in the 
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smoothing network. In other words, if it is in the dimming-illumination environment, 

the induced photocurrent is smaller. Therefore, it needs bigger resistance to function 

as expected. The MOS resistance in the subthreshold 

region can be expressed as 

( ) 1

exp
−

⎥
⎦

⎤
⎢
⎣

⎡
⎥⎦
⎤

⎢⎣
⎡ −

=
nvt

VthVF
L

WKxRds          (4) 

As seen from (4), Rds is tunable by VF. Thus, the smoothing characteristics of 

retinal sensors can be adjusted by VF. In these simulation results, as mentioned above, 

this proposed circuit could be operated in the dimming-illumination environment for 

low induced current levels (pA). In Fig. 3.3. 6, the dc output characteristics (a)–(d) of 

the adaptive current Schmitt trigger with fixed Ismt current is shown. This dc 

characteristic is to verify the function of adaptive current Schmitt trigger, which is to 

fix the Ismt current and to sweep the Iiso current. For the fixed smoothing current 

(a)–(d) in Fig. 3.3. 6, they are 10 pA, 20 pA, 30 pA, and 40 pA, respectively. Based 

on (1), the center point is the position of the smoothing current Ismt and the dc current 

output is symmetric, as shown in Fig. 3.3. 2. The values of ΔI are 2 pA, 3.5 pA, 5.5 

pA, and 8.7 pA, respectively. Therefore, the simulation results show that current 

hysteresis could be adjusted adaptively according to the value of induced 

photocurrent. 

Finally, we apply this retinal focal-plane sensor into two-dimensional (2-D) 

32x32 pixel array, and simulate the incident static image to verify the detecting 

function of 2-D retinal focal-plane sensor. In Fig. 3.3. 7(a), the input pattern A with 

noise, which is a zero-mean random noise with a standard deviation of 60% of 

induced photocurrent, is shown. Fig. 3.3. 7(b) presents the 32x32 pixels output 

(Retina_out) of the 2-D retinal focal-plane sensor. Thus, good performance for 

detection on the 2-D retinal sensor is illustrated. Moreover, due to the pseudo-BJT 

smoothing network and adaptive current Schmitt trigger, these simulation results 

show robust noise immunity in this proposed circuit. In Fig. 3.3. 8, the SPICE 

simulated output voltages under input current waveforms corresponding to the 

photocurrents generated by moving image patterns of white bars with a minimum 

width of 500 m where the scanning speed is 100 mm/s, which is larger than the 

maximum specified speed of 40 mm/s for pen scanners. These simulation results have 

successfully confirmed the correct functions and performance of the proposed new 
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retinal sensor circuits in the character recognition of scanner systems. 

3.3.4 Measurement Results 

Fig. 3.3. 9(a) presents a photograph of the layout of the fabricated chip and Fig. 

3.3. 9(b) displays the photograph of a single pixel. The area of this chip is 

3000x3030μm2 and that of a single pixel is 70x70μm2 with a fill factor of 75% and 

with fully functional 32x32 implementations consuming less than 8.8μW per pixel at 

3.3 V. Fig. 3.3. 10 shows the oscilloscope traces of frame rates for fully serial 

readouts and serial output via the data buffer. The frame rate for character 

reorganization is 97.1 frames/s. Fig. 3.3. 11(a)–(f) display measurement results 

normalized with fluorescent lights at a wavelength of 550 μm (13.8 lux) of different 

illuminations for character “B,” which is in the range of 0.02–5.3. Fig. 3.3. 12(a) is 

the static graded image pattern with different contrasts (%) fully incident upon the 

retinal sensor. The contrast for whole black and complete white is 100%. In Fig. 3.3. 

12(b), the contrast of image is enhanced and columns 6 and 26 are located in the 

contrast of 20%, as shown in Fig. 3.3. 12(a). Therefore, the minimum acceptable 

contrast is 20%. Fig. 3.3. 13(a)–(h) successfully show the smoothing function for 

noise removal at different control voltages, which range from VF = 0.85–1.5 V. Fig. 

3.3. 14(a) presents the incident image with random distributed noise with a standard 

deviation of 50% and Fig. 3.3. 14(b) is the measurement result at VF = 1.5 V. Fig. 3.3. 

15(a) shows the incident image blurred and Fig. 3.3. 15(b) is the measurement result 

at VF = 1.5 V. The measurement results of Fig. 3.3. 14(b) and Fig. 3.3. 15(b) show 

that the proposed new retinal sensor circuits could restore unclear characters, as show 

in Fig. 3.3. 14(a) and Fig. 3.3. 15(a), into clear characters. Fig. 3.3. 16 shows the 

minimum black space versus the scanning speed for character patterns in 169 dpi. The 

minimum adjacent distance is expected to be increased with scanner speed, and this is 

observed. The measurement results for this proposed retinal chip could recognize the 

size of characters capable of scanning, which is 8–14 points. The screen size is 32x32 

pixels, and the scanner resolution is 169 dpi (14 pixels/mm). The illumination for all 

of the following measurements is set at 0.87 normalized with fluorescent light at a 

wavelength of 550μm (13.8lux). These measurement results have successfully 

verified the correct functions and performance of the proposed new retinal sensor 

circuits in the character recognition of scanner systems. The characteristics of the 

fabricated PBJT-based retinal sensor for scanner applications are summarized in Table 

3.3. 3. 
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3.3.5 Conclusion 

This work presents a low-photocurrent CMOS retinal focal-plane sensor with a 

pseudo-BJT smoothing network and adaptive current Schmitt trigger. In this proposed 

architecture, the pixel structure is very simple and compact compared to the 

BJT-based retinal sensor. Due to the pseudo-BJT smoothing network and adaptive 

current Schmitt trigger, these measurement results show robust noise immunity in this 

proposed circuit. The minimum acceptable contrast is 20%. The screen size is 32x32 

pixels and the scanner resolution is 169 dpi (14 pixels/mm). The area of this chip is 

3000x3030μm2 and that of a single pixel is 70x70μm2 with a fill factor of 75% and 

with fully functional 32x32 implementations consuming less than 8.8 μW per pixel at 

3.3 V. According to the measurement results above, this work has successfully 

verified the correct functions and performance of the proposed new retinal sensor 

circuits in character recognition of scanner systems. In future research, this fabricated 

chip will be adaptively adjusted according to desired applications, for example, 

applied in surveillance sensor systems or intelligent transportation systems, etc. 
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Table 3. 1 Summary of the results of CHAPTER 3 
Section 3.1 [46] 3.2 [7] 3.3 [23]  

Published year 1995 1999 2004 
Technology 0.8μm 2P2M 0.5μm 2P2M 0.35μm 1P4M 
Resolution 32 x 32 64 x 64 32 x 32 
Pixel size 60μm x 60μm 45μm x 45μm 70μm x 70μm 
Fill factor 0.33 0.49 0.75 
Chip size  4mm x 4mm 3mm x 3.03mm 

Power supply  3V, 5V 3.3V 
Power dissipation  3mW ~ 30mW 9mW 

Current gain of BJTs  4.8 20 
Readout time of one pixel 1μs 16μs 10.4μs 

Frame rate 1KHz 9.6 kHz 97.1Hz 
 

Table 3.1. 1. The Experimental Results of the Fabricated Rm Amplifier 

Control Voltage (VCN=VCP) +2.5V ~ -0.9V

Transresistance (rm) 919 Ohm ~ 1914 Ohm

Input Impedance (rin) 44.6 Ohm ~ 88.2 Ohm

Output Impedance (ro) 2.34 Ohm ~ 44.6 Ohm

-3dB Frequency (f-3db) 246.3 MHz ~ 97.4 MHz
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Table 3.1. 2. The Device Parameters of the Parasitic PNP Transistor in 0.8μm 

DPDM CMOS Process 

Parameters parasitic PNP transistor 

BF 

BR 

IS 

NF 

NR 

VAF 

VAR 

ISC 

ISE 

NC 

NE 

IKF 

IKR 

RB 

RBM 

RE 

RC 

IKB 

CJC 

CJE 

MJC 

MJE 

VJC 

V3E 

23.6

0.0024

9.23E-18

1.03

1.03

145

15.82

4.70E-12

4.56E-12

2.89

4.46

2.00E-04

3.00E-04

469.5

50

34

37.5

1.04E-05

2.13E-14

6.50E-14

0.749

0.525

0.85

0.93

 

A

V

V

A

A

A

A

Ohm

Ohm

Ohm

Ohm

A

F

F

V

V
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Table 3.1. 3. The Summary of the Measured Characteristics of the Proposed 2-D 

32x32 Silicon Retina 

Process 0.8 DPDM CMOS 

Resolution 32x32 

Cell Area 60μmx60μm 

Fill Factor 0.33 

Integration Time or Settling 

Time of the Smooth Network

 

3ms 

Settling Time of the Pixel 

Readout Operation 

1μs 

Pixel Readout Speed 1MHz 

Frame Rate 1KHz 

Table 3.2. 1. The summary on the characteristics of the fabricated FPA chip of 

BJT-based silicon retina 

Technology 0.5μm N-well CMOS Double Poly 
Double Metal 

Resolution 64x64 

Sampling geometry Rectangular 

Pixel size 45μm × 45μm 

Size of the bipolar phototransistors 3.3μm × 2.2μm (emitter), 
15μm × 34μm (base) 

W/L of the inserted nMOSFET among 
smoothing BJTs 

3μm/6μm 

Fill factor (size of the light window) 0.49 (29.5μm × 34μm) 

Chip size 4mm × 4mm 

Power supply 3V, 5V 

Total quiescent power dissipation 45mW 

Active power dissipation of the sensor array in 
the illuminated state 

3mW ~ 30mW (Depending on 
image light intensity) 

Current gain of BJTs 4.8 

Settling time of the BJT smoothing network 1ms 

Readout time of one pixel 16μs 

Frame rate for column parallel readout 9.6 kHz 
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Table 3.3. 1. Feature Comparisons Between PBJT-Based Silicon Retina and 

Typical CMOS Sensor 

Feature Comparisons PBJT-based Silicon Retina CMOS Sensor 

Technology TSMC 0.35μm 1P4M TSMC 0.35μm 1P4M

Pixel size 70μmx70μm 

(fill factor 75%) 

7μmx7μm 

(fill factor 30%) 

Photosensitivity per 

photodiode area 

120μA/cm2-lux 6μA/cm2-lux 

Standby dark power 

consumption 

~0 10mW 

Operational pixel power 

consumption 

8.8μW/pixel 

(Array size 32x32) 

0.32μW/pixel 

(Array size 352x288) 

Post processor Simple 

(without noise removal 

operation) 

Complex 

Optical dynamic range 120dB 70dB 

Noise immunity Yes None 

Processing time Real-time Need integration time 

about 30ms 

Timing diagram The same The same 

Power supply 2.2V 3.3V 

Scalable Yes Yes 

Image output Digital Analog 

Sensor characteristics Intelligent Regular 
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Table 3.3. 2. Designed Device Dimensions and the Controlling Voltages of the 

Pixel Circuit in Fig. 3.3. 3 

Technology 0.35μm SILICIDE CMOS (SPQM) 

Mp1(W/L) 1μm/1μm 

Mp2(W/L) 20μm/1μm 

Mpf1(W/L) 2μm/1μm 

Mpf2(W/L) 2μm/1μm 

Mn1(W/L) 1μm/1μm 

Mn2(W/L) 20μm/1μm 

Mnf1(W/L) 10μm/1μm 

Mnf2(W/L) 10μm/1μm 

Ms1=Ms2=Ms3=Ms4(W/L) 1μm/1μm 

Mp(W/L) 0.4μm/0.35μm 

Mn(W/L) 0.4μm/0.35μm 

Vsmooth(VF) Adjustable 

Table 3.3. 3. Summary on the Characteristics of the Fabricated PBJT-Based 

Retinal Sensor for Scanner Applications 

Technology 0.35μm SILICIDE CMOS (SPQM) 

Resolution 32x32 

Sampling geometry Rectangular 

Pixel size 70μmx70μm 

Fill factor (size of light window) 75% 

Chip size 3000μmx3030μm 

Power supply 3.3V 

Total DC power consumption 9mW 

Current gain of PBJTs 20 

Readout time of one pixel 10.4μs 

Frame rate for total serial readout 97.1frames/s 

Scanner resolution 169 dpi 

Size of characters capable of scanning 8-14 
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Fig. 3.1. 1. (a) The top view of the proposed silicon retina cell. (b) The cross-sectional 

view of the proposed silicon retina cell. 
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Fig. 3.1. 2. The conceptual cross-sectional view of the outer PNP phototransistor array 

showing the photogenerated carriers. 
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Fig. 3.1. 3. The equivalent circuit of the smooth network in the proposed silicon retina 

structure. In the equivalent circuit, RN represents the N-well base spreading resistance. 

 

 
 

Fig. 3.1. 4. The normalized signal intensity versus position of the original signal, the 

smooth signal, and their difference. 

 
Fig. 3.1. 5. The conceptual diagram showing that when a moving object passes 

through the silicon retina cell on the dashed line, the cell senses a pulsed light image. 
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Fig. 3.1. 6. (a) The 2-D structure of the proposed silicon retina where two decoders 

are used to decode the input address and then activate the control Lines of the cells, 

two Rm amplifiers are used to convert the cell currents into the voltages, and the 

output buffer amplifies the voltage difference to obtain the output voltage. (b) The 

basic cell of the 2-D silicon retina where two control lines row and row’ are generated 

from the row decoder, and four switches are used to control the current flow. 
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(a) 

 
(b) 

Fig. 3.1. 7. The circuit diagrams of (a) the CMOS wideband Rm amplifier and (b) the 

CMOS output buffer used in the silicon retina chip. 
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(a) 

 
(b) 

Fig. 3.1. 8. (a) The chip photograph of the 2-D silicon retina and (b) the cell 

photograph of the 2-D silicon retina. 
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(a) 

 
(b) 

Fig. 3.1. 9. (a) The measured emitter current Ie,inner of the inner PNP phototransistors 

plotted in the 2-D diagram and (b) the measured emitter current Ie,outer of the outer 

phototransistor array in the silicon retina chip. 

 
Fig. 3.1. 10. The curves of y=5 in Fig. 3.1. 9(a) and (b) for the measured Ie,inner and the 

measured Ie,outer, respectively. The corresponding Ie,outer from simulation is also plotted 

together for comparison. 
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Fig. 3.1. 11. The simulated emitter current Ie,outer of the 2-D silicon retina. 

 
(a) 

 
(b) 

Fig. 3.1. 12. (a) The measured output voltages of the 2-D silicon retina with a large 

light spot incident upon it, which are plotted in the 2-D diagram to show the edge 

detection characteristics. (b) The curves of y=8 in (a) are plotted to observe the edge 

detection capability clearly. 
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(a) (b) 

  

(c) (d) 

Fig. 3.1. 13. The measured output images when a character image “T” is incident on 

the chip. (a) The output image of the inner array, (b) the output image of the outer 

array. (c) the output image of the retina chip, (d) the output image of (c) with only 

positive pulses only. 

 
Fig. 3.1. 14. The measured response of Vout in two of the 2-D silicon retina cells with 

a moving pattern passing across the chip. 
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Fig. 3.2. 1. The equivalent circuit of the proposed two-dimensional (2-D) BJT-based 

silicon retina. 

 
Fig. 3.2. 2. The cross-sectional view of the BJT smoothing network, which contains 

one BJT and one enhancement nMOSFET in each pixel. 

 

 
Fig. 3.2. 3. The large-signal equivalent circuit of the BJT smoothing network in Fig. 1 

with device capacitances. 
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Fig. 3.2. 4. The basic cell circuit of the FPA of the proposed 2-D BJT-based silicon 

retina. 

 

 

 
Fig. 3.2. 5. The complete architecture of the FPA chip of the proposed 2-D BJT-based 

silicon retina. 
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Fig. 3.2. 6. The chip photograph of the fabricated 64x64 FPA of BJT-based silicon 

retina. 

 

 

 
(a) (b) (c) 

 
(d) (e) 

Fig. 3.2. 7. The measured output responses of (a) isolated BJT array, (b) BJT 

smoothing network with VG = 3.75 V, and (c) BJT smoothing network with VG = 4.0 

V in the fabricated FPA chip of BJT-based silicon retina exposed to an image. The 

mathematically found zero-crossing positions of the measured output responses of the 

BJT-based silicon retina are shown in (d) for (b), and (e) for (c). In (a), (b), and (c), 

the 256 gray levels are used to divide the current range of (a) 0-0.2 μA, (b) 0-0.165 

μA, and (c) 0-0.12 μA, respectively. 
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(a) The original image 

 
(b) Darker background 

 
(c) Brighter background 

Fig. 3.2. 8. The normalized contour plots of the measurement emitter currents of the 

BJT smoothing network for an (a) original image under (b) darker background and (c) 

brighter background, where the contrast of input pattern is kept the same and the gate 

bias of nMOSFET’s is 3.9 V. 

 

(a) (b) 

Fig. 3.2. 9. The measured output (a) turn-on and (b) turn-off temporal responses of a 

single pixel in the improved 2-D BJT-based silicon retina under different incident 

flashlight patterns with the same intensity and different sizes. 
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Fig. 3.2. 10. The measured output responses of a single pixel in the 2-D BJT-based 

silicon retina under a moving light bar incident upon the chip. 

 
Fig. 3.3. 1. Architecture of the proposed retinal focal-plane sensor. 

 
Fig. 3.3. 2. Concept of adaptive current Schmitt trigger of proposed retinal focal-plane 

sensor. 
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Fig. 3.3. 3.Pixel structure of the proposed retinal focal-plane sensor circuit. 

 
(a) 

 
(b) 

Fig. 3.3. 4. (a) Current gain of NPN pseudo-BJT. (b) Current gain of PNP 

pseudo-BJT. 
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(a) 

 
(b) 

Fig. 3.3. 5. (a) Smoothing function for induced photocurrent 100 pA. (b) Smoothing 

function for induced photocurrent 10 pA. 

 

 
(a) (b) (c) (d) 

Fig. 3.3. 6. DC output characteristics (a)–(d) of adaptive current Schmitt trigger with 

fixed Ismt current 10 pA, 20 pA, 30 pA, and 40 pA, respectively. 
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(a) 

 
(b) 

Fig. 3.3. 7. (a) Input pattern A with a zero mean random noise that is with a standard 

deviation of 60% of induced current and the induced photocurrent 10pA. (b) 32x32 

pixels output (Retina_out) of 2-D retinal focal-plane sensor for input pattern A. 

 
Fig. 3.3. 8. Output voltages under input current waveforms corresponding to the 

photocurrents generated by moving image patterns of white bars with minimum width 

of 500μm. 
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(a) 

 
(b) 

Fig. 3.3. 9. Photographs of the proposed retinal sensor for (a) the whole fabricated 

chip and (b) a single pixel. 

 
Fig. 3.3. 10. Measured waveforms for frame rate (97.1 frames/s) and serial output via 

data buffer. 
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(a) (b) (c) 

 

(d) (e) (f) 

Fig. 3.3. 11. Measurement results normalized with fluorescent light at wavelength of 

550 μm (13.8 lux) of different illuminations for character “B” at (a) 0.02, at (b) 0.04, 

at (c) 0.54, at (d) 0.87, at (e) 2.65, and at (f) 5.3. 
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(a) 

 
(b) 

Fig. 3.3. 12. (a) Static-graded image pattern with different contrasts (%) incident upon 

the retinal sensor. (b) The measurement results for enhanced edges with the minimum 

acceptable contrast of 20%. 
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(a) (b) (c) 

  
(d) (e) (f) 

  

 

(g) (h)  

Fig. 3.3. 13. Measurement results of the smoothing function for noise removal at 

different control voltage for character “B” at (a) VF = 0.85 V, at (b) VF = 0.9 V, at (c) 

VF = 0.95 V, at (d) VF = 1 V, at (e) VF = 1.1 V, at (f) VF = 1.2 V, at (g) VF = 1.4 V, 

at (h) VF = 1.5 V. 
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(a) (b) 

Fig. 3.3. 14. (a) Incident image with random distributed noise with a standard 

deviation of 50%. (b) The measurement result at VF = 1.5 V. 

  
(a) (b) 

Fig. 3.3. 15. (a) Incident image blurred. (b) The measurement result at VF = 1.5 V. 

 

 

 
Fig. 3.3. 16. Scanner speed and minimum adjacent distance. 
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CHAPTER 4 

THE BJT-BASED SILICON RETINA CHIPS 

(II) –THE MOTION SENSORS 
Motion provides rich cues in understanding the environment, and is therefore 

crucial for many applications including robot control, vehicle navigation and 

surveillance systems. Much effort has been devoted to realizing detection functions 

through hardware or software implementation. Typically, hardware implementation is 

more feasible than software implementation in achieving real-time processing under a 

critical speed requirement. Parallel and pixel-level computation is required to detect 

motion in real-time [127]. Many hardware-implemented motion detectors have 

recently been elucidated [9], [10], [12]-[14], [17], [108], [113], [115], [128]-[132]. 

Their adopted algorithms for motion detection can be separated into three categories - 

gradient-based [108], energy-based [9], [129], and correlation-based algorithms [10], 

[12]-[14], [17], [113], [115], [130]-[132]. The intensity-based algorithm, which is 

based upon the mapping of mathematical techniques, usually requires high-precision 

temporal and spatial derivatives. Therefore, it is not suitable for an analog hardware 

implementation. The correlation-based algorithm, which is inspired by a biological 

model [123], has the benefits of robustness and compactness, and it is thus the most 

practical algorithm for VLSI implementation. Comprehensive comparisons of these 

two algorithms and their implementations can be found in [119]-[122]. 

Besides, appropriate image acquisition and preprocessing is needed to locate 

accurately the edges of a moving object in the presence of noise and under varying 

illumination, to ensure the robustness of the motion detector. Recently, much research 

effort has been devoted to focal-plane motion sensors, which integrate photo sensing 

and signal processing into a single chip [133]. Focal-plane motion sensors are 

superior in size, processing time, cost and power consumption than conventional 

image processing systems, which includes cameras and processors. Many focal-plane 

motion sensors adopt the correlation-based algorithm to detect motion [10], [12]-[14], 

[17], [18], [131]. 

The required function of image acquisition and preprocessing in a motion sensor 

can be performed by using the retinal processing circuit. The retinal processing 

circuit mimics parts of functions of the cells in the outer plexiform layer of the real 



78 

retina. As in the real retina, the retinal processing circuit has similar advantages of 

high dynamic range, edge enhancement, and noise immunity. Of the proposed 

structures for retinal function [1], [7], [13], [14], [17], [46], the BJT-based retinal 

structure [7], [17], [46] is very compact and suitable for VLSI implementation. 

In this chaper, four retinal motion sensors are presented. In section 4.1, a 2-D 

velocity- and direction-selective sensor with BJT-based silicon retina and temporal 

zero-crossing detector was introduced. This is the first motion sensor designed with 

the BJT-based silicon retina. In section 4.2, a CMOS focal-plane motion sensor with 

BJT-based retinal smoothing network and modified correlation-based algorithm is 

proposed. This design improved the correlation mechanism of the design of section 

4.1. Thus precise motion direction and velocity can be calculated. In section 4.3, the 

design of a CMOS angular velocity- and direction-selective rotation sensor with 

retinal processing circuit is presented. In this design, the motion detection algorithm 

and architecture are the same with those of section 4.2 while the sensor array is 

arranged radially. Thus the direction (clockwise/counterclockwise) and angular 

velocity can be precisely detected. Morover, special charaterisitcs of circular motion 

detection are analyzed in this chapter. Finally in section 4.4, a CMOS focal-plane 

retinal sensor designed for shear motion detection is proposed. The motion detection 

algorithm and architecture are used to detect shear motion. Summary of these four 

works are shown in Table 4. 1. 

4.1  A 2-D VELOCITY- AND DIRECTION-SELECTIVE SENSOR 

WITH BJT-BASED SILICON RETINA AND TEMPORAL 

ZERO-CROSSING DETECTOR 
4.1.1 Introduction 

A BJT-based silicon-retina sensory system for velocity- and direction-selective 

sensing is proposed.  In this system, a token-based delay-and-correlate motion 

computation algorithm inspired by biological retinal processing is adopted, which 

uses edges as image tokens and correlates them with binary pulses.  One of the two 

significant features of the proposed sensory system is that the circuitry of 

current-input edge extractor is simple and robust, which makes VLSI implementation 

feasible.  The other is that the binary pulse correlation [113]-[115] is used to increase 

the accuracy of velocity- and direction-selective sensing.  Using the proposed 

architecture, an experimental 32×32 motion measurement chip has been fabricated by 
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using a 0.6μm CMOS technology.  The operations are also verified through 

measurements. 

4.1.2 Motion Computation Algorithm 

The token-based delay-and-correlate motion computation algorithm which is 

similar to the Reichardt algorithm [123], is adopted in the sensor design.  The 

conceptual structure of the algorithm is shown in Fig. 4.1. 1.  The elements R 

perform the functions of photoreceptors and horizontal cells in the retinas.  The 

photoreceptors transduce light into electrical signals, whereas the horizontal cells 

perform the spatial smoothing on signals from photoreceptors.  The edge extractors 

E perform the functions of the bipolar cells in the retinas, which process the signals 

from both photoreceptor and horizontal cell to generate a signal that contains spatial 

edge information of the incident image.  Meanwhile, the edge extractors E identify 

both turn-ON and turn-OFF edges of the moving image from the signals generated by 

bipolar cells and generate edge pulses to perform a similar function as the action 

potential responses observed in transient amacrine cells of the retinas.  The elements 

M are the correlators that correlate the edge pulse from E with the delayed edge pulse 

generated from the previous cell using the delay elements D.  The correlator fires a 

pulse only when the object moves in the preferred direction and the difference 

between the traveling time of the object edge crossing the two cells and the selected 

delay time of the elements D is smaller than the width of edge pulse.  The 

combination of M and D is used to mimic the direction-sensitive responses of 

ganglion cells in the retinas. 

4.1.3 Hardware Implementation 

A. The BJT-Based Silicon Retina 

Fig. 4.1. 2 (a) shows the structure of BJT-based silicon retina [7], [124] which is 

used to realize the function of the elements R in Fig. 4.1. 1.  In this BJT-based silicon 

retina, each cell has two BJTs, called smoothing BJT and isolated BJT, which are 

implemented using the parasitic BJT structure in a standard CMOS process.  The 

base region of one smoothing BJT is connected with the base regions of the 

smoothing BJTs in its four neighbor cells via nMOSFETs to form a BJT smoothing 

network which is used to implement the equivalent function of the horizontal cells in 

the retina.  The isolated BJT is used to realize the photoreceptor in the retina.  The 

outputs are the emitter currents of the BJTs. 

The response of the bipolar cell in the retina is realized by subtracting the emitter 
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current of the BJT in the smoothing network from that of the isolated BJT in the same 

cell.  Fig. 4.1. 2(b) shows the measured responses [7] of a single cell in the 

BJT-based silicon retina with a moving light bar projected upon it.  When the 

turn-ON edge and the turn-OFF edge of the moving light bar pass over the readout 

cell at t1 and t2, respectively, the temporal averaging functions of the BJT smoothing 

network lead to the temporal zero-crossings in the emitter current difference of the 

photo-transistors.  The appearance of temporal zero-crossings can be used to identify 

whether an edge of a moving object passes over the readout cell. 

B. The Edge Extractor 

To simultaneously realize the response of the bipolar cell and detect the temporal 

zero-crossings of the response as the edges of object image passing over the 

BJT-based silicon retina cell, an edge extractor is proposed as shown in Fig. 4.1. 3(a).  

In Fig. 4.1. 3(a), the transistors Mlpi, Mini, Mni, and Mlps, Mins, Mns are used to virtually 

bias the emitters of isolated BJT Qiso and smoothing BJT Qsmt in the BJT-based silicon 

retina cell at the fixed voltage VP and read out emitter currents Iiso and Ismt, 

respectively.  This readout scheme, which has a common part as shown on the left, is 

proposed in [125] as the readout circuit for the infrared detector. 

To detect the zero-crossing point without ambiguity even under noise and 

disturbance, a current-input Schmitt trigger [126] (Ms, Msr, Mir, Mi, MF and MF1) is 

used.  The input current Ismt is applied to the drain of the Ms whereas the other input 

current Iiso is applied to the drain of Mi via a cascoded current mirror Mp1-Mp4.  If the 

current through MF and MF1 is ΔI, the edge signal at the output of the Schmitt trigger 

has a sudden change from VDD to GND when Iiso becomes greater than ΔI+Ismt.  

This corresponds to the temporal zero-crossing point of the turn-ON edge at t1 in Fig. 

4.1. 2(b).  In this case, the GND level of the edge signal turns off the NMOS MF and 

ΔI is cut off from the drain of Mi.  Only if Iiso is decreased to a value smaller than Ismt, 

will the edge signal at the output of the edge extractor change from GND to VDD.  

This corresponds to the temporal zero-crossing point of the turn-OFF edge at t2. 

A temporal transition at the Edge-Signal output is further converted into an edge 

pulse by using the pulse conversion circuit also shown in Fig. 4.1. 3(a).  It consists of 

two inverters used to shape the signal at the Edge-Signal node, a simple transient 

detection circuit used to perform the temporal differentiation, and an inverter used to 

produce a narrow pulse.  The capacitor in the circuit is implemented using the 

PMOS transistor with its source and drain tied together as one plate and the gate as 



81 

the other plate of the capacitor.  The discharge in the circuit is implemented by an 

NMOS transistor with an adjustable bias voltage Vpulse. 

At the falling temporal transition of the input to the transient detector, the negative 

voltage due to the capacitance coupling makes the drain junction of the nMOSFET 

forward biased, which inhibits the generation of a large negative voltage pulse.  

Hence, another set of transient detector and inverter is used with an extra inverter at 

the input to invert the falling temporal transition and generate a positive voltage pulse.  

Then the outputs of two pulse-conversion circuits are connected to a NAND gate to 

form a single output.  The circuit of Fig. 4.1. 3(a) realizes the function of the element 

E in Fig. 4.1. 1. 

C. The Delay Element 

Fig. 4.1. 3 (b) shows the circuit architecture used to realize the element D in Fig. 

4.1. 1 for the generation of delayed edge pulse.  There are four signal paths in this 

circuit architecture.  The first two paths are used to generate delayed binary narrow 

pulses at the temporal transitions of signals from the edge extractor along the X 

direction whereas the last two paths to generate those along the Y direction.  In each 

signal path, there are two transient detectors with the adjustable voltages VdX, VdY, 

and Vpulse.  The first one with VdX (VdY) is used to generate specified delay time 

whereas the second one with Vpulse to generate narrow pulses. 

D. The Correlator 

Since the signals to be correlated are binary pulses, the correlators can easily, 

compactly, and robustly be implemented by simple NAND gates as shown in Fig. 4.1. 

3(c).  Motion is selectively detected by correlating the edge pulse at a pixel with the 

delayed edge pulse from a neighboring pixel.  Only the preferred moving direction 

and velocity can enable the correlator to fire a pulse out.  Four such correlators are 

used in each pixel to correlate the edge pulse with the delayed edge pulse from which 

four neighbors in four directions ±X and ±Y to extract 2-D velocity and direction. The 

outputs of all the correlators in the pixels along each direction are combined into one 

output terminal via a simple wired OR gate.  Therefore, when the object moves with 

preferred velocity and direction, there are serial pulses to appear at the output 

terminal. 

The detection of a particular velocity and direction can be realized by controlling 

the delay times of the delay paths along the X-axis and Y-axis with the tuning voltages 
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VdX and VdY.  For example, if the selected direction of object motion is θ and the 

velocity is υ, the selected delay times tdx and tdy along X-axis and Y-axis, respectively, 

can be written as 

t d vdx = cosθ            (1) 

t d vdy = sinθ            (2) 

where d is the space between two adjacent BJT-based silicon retina cells.  If 0˚ ≤ θ < 

90˚ (90˚ ≤ θ < 180˚), the outputs +X (-X) and +Y in Fig. 4.1. 3(c) have pulse outputs.  

If 180˚ ≤ θ < 270˚ (270˚ ≤ θ < 360˚), -X (+X) and -Y have pulse outputs. 

4.1.4 Measurement Results 

An experimental chip was designed and fabricated in a 0.6μm N-well CMOS 

technology, which consists of a 32×32 array of the proposed motion detection cells.  

Fig. 4.1. 4(a) shows the layout diagram of the basic cell whereas Fig. 4.1. 4(b) shows 

the photography of the whole chip.  Since both image acquisition elements and 

computation elements are integrated into one pixel, the wiring will not increase as the 

size of array increases.  Thus if the die size can be freely increased, the size of array 

can be freely increased as well. 

Fig. 4.1. 5shows the measured waveforms in the various computational stages of 

one motion detection cell in the fabricated 2-D sensor array.  The top traces show the 

measured emitter currents of isolated BJT and smoothing BJT in the fabricated 

BJT-based silicon retina cell, where the currents are measured by linearly converting 

them into voltages via the external circuits.  The third trace shows the response at the 

Edge-Signal node in the current-mode edge extractor shown in Fig. 4.1. 3(a).  As 

predicted, the response has sharp transitions when Iiso is greater than Ismt+ΔI or Iiso is 

smaller than Ismt.  The fourth trace shows the edge pulse response of the 

current-input edge extractor shown in Fig. 4.1. 3(a).  The last two traces show the X 

and Y delayed edge pulses from the delay element shown in Fig. 4.1. 3(b).  In Fig. 

4.1. 5, the delay time of the first X delayed edge pulse and that of the second X 

delayed edge pulse are respectively generated via the first two delay paths shown in 

Fig. 4.1. 3(b).  The component mismatches between these two delay paths induce the 

mismatch between these two delay times even under the same Vdx.  Fig. 4.1. 6 shows 

the measured output waveforms at the four output terminals of the fabricated chip 

when a bright spot moves in the 45˚ direction with the preferred speed 1m/sec, where 

only the outputs +X and +Y have serial pulses as expected. 
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The inter-pixel variance of the delay times is one of important factors that 

determine the selectivity of the sensor chip.  Generally, the inter-pixel variance of the 

pulse width and the delay time which caused by process variations has a Gaussian 

distribution with mean value and standard deviation.  Through the adjustment of VdX 

(VdY) and Vpulse, the mean value of the delay time can be set to the desired delay time 

whereas the mean value of the pulse width is equal to the standard deviation of the 

delay time.  Then one can obtain around 61% of the overall output pulses with some 

pulses missing.  In this case, the velocity and the direction of the moving objects still 

can be detected with good selectivity.  However, the minimum pulse width has a 

lower limit equal to the standard deviation of the delay-time.  Fig. 4.1. 7 shows the 

measured maximum variance of the delay time of one pixel among 8 fabricated chips 

where the variance percentage is around 16%.  The variance is dependent on the 

mean value of the delay time.  Using half of the delay time variances as the pulse 

widths to detect the preferred speeds respectively, the measured selectivity tolerance 

is around 8 % for all preferred speeds with some output pulses missing. 

To verify the direction-selective function, a bright spot moving in different 

directions with same speed is projected on the chip and the inter-pulse delay time of 

the serial pulses at the four output terminals is measured.  The required delay times 

along the X-axis and Y-axis for the preferred direction are set according to (1) and (2), 

which are equal to the inter-pulse delay times of the same direction.  Fig. 4.1. 8 

shows the measured inter-pulse delay times where the negative delay times represent 

those along the -X or -Y direction.  As may be seen from Fig. 4.1. 8, the motion 

directions with any angles from 0˚ to 360˚ at a fixed speed of 0.5 m/sec can be 

detected by specifying the suitable delay times from 100 μs to 300 μs in the four 

directions via the tuning voltages VdX and VdY.  If the specified delay time is infinity, 

the tuning voltage is set to zero to turn off the nMOSFET. 

Table I shows the summary on the characteristics of the fabricated motion-selective 

detection chip.  From the measurement results, the correct operations of the proposed 

visual motion detection system which is realized in CMOS technology, have been 

successfully verified. 

4.1.5 Conclusion 

A 2-D velocity- and direction-selective visual motion sensor with BJT-based 

silicon-retina and temporal zero-crossing detector has been proposed, analyzed, and 

experimentally verified.  In this sensor, a token-based delay-and-correlated 
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computational algorithm is adopted and the motion-selective detection is achieved by 

correlating two binary edge pulses.  Both image acquisition elements and 

computation elements are integrated into one cell and complicated inter-cell wiring is 

avoided.  Moreover, the robust edge detection in the basic detection cell of the 

sensor is achieved using the compact structure of the BJT-based silicon retina with the 

current-input edge extractor which identifies the temporal zero-crossing points.  The 

operations of the proposed motion sensor have been verified by the measurements on 

a 32×32 CMOS experimental chip.  It has been shown that the proposed hardware 

architecture of the visual motion sensor provides an efficient solution for 

implementing a dense and robust 2-D visual chip with little power consumption and 

real-time processing capability. 
4.2 A CMOS FOCAL-PLANE MOTION SENSOR WITH 

BJT-BASED RETINAL SMOOTHING NETWORK AND 

MODIFIED CORRELATION-BASED ALGORITHM 
4.2.1 Introduction 

In the previous designs [10], [12], [17], the delay element is realized by RC 

circuits. The resistor is typically implemented by a MOSFET resistor or a 

transconductance amplifier, to control the time constant. In such designs, the delay 

time cannot be accurately controlled. Moreover, the tunable range of the delay time 

is also somewhat limited. Furthermore, in conventional correlation-based 

computation of motion, either the temporal or the spatial edge detector is adopted for 

computing motion [12], [17], [113], [115], [130], [132]. However, both spatial and 

temporal edge detectors may occupy a large area of silicon, so that the pixel area is 

large. 

 

The adopted motion computation method here is based on the correlation-based 

algorithm, with some modifications. It should be noted that the proposed motion 

sensor is intended to calculate the global velocity and direction and the terms, 

“velocity” and “direction” hereafter mean the global velocity and the global direction. 

The motion computation method is firstly to sample two image frames at a frame 

sampling period of 100 clock cycles. Subsequently, the previously sampled image 

frame is shifted to four positions along ±x and ±y directions. Then, correlation 

between the shifted previous frame and the current frame is computed. The 
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correlation results are averaged over 16 frame sampling periods. The averaged 

correlation results are used to calculate displacement and direction. Notably, the 

motion computation method is digital, and thus robust. 

The delay time of the proposed motion sensor is governed by the sampling 

period. Consequently, the delay time is accurately controlled via adjusting the clock 

rate. The tunable range of the clock rate is thus high. The proposed design greatly 

reduces the pattern-related deviations in calculating the displacement and direction 

by averaging the correlation results. Averaging over longer time generally 

corresponds to more accurately calculated velocity and direction. 

In the proposed motion sensor, the BJT-based retinal smoothing network is used 

to obtain the smooth signal [46], which is subtracted from the photoreceptor signal. 

The difference after subtraction is amplified by the current-input Schmitt trigger 

[126], which enhances noise immunity and eliminates ambiguity [17]. The outputs 

are further amplified to digital levels by two inverters. The image contrast is thereby 

enhanced. This structure is very suitable for motion detection applications. 

The experimental chip of the proposed motion sensor is designed and fabricated 

by the 0.5μm double-ploy-triple-metal (2P3M) CMOS process. Experimental results 

confirmed the correct functioning of this chip. This 2-D motion sensor is suitable for 

the applications of image stabilization, ego motion detection and optical mouse. 

Section 4.2.2 discusses the motion computation method. Section 4.2.3 describes the 

architecture and circuit. Section 4.2.4 gives experimental results. A concluding section 

ends the paper. 

4.2.2 Motion Computation Method 

The modified correlation-based algorithm is adopted in the proposed motion 

sensor. Fig. 4.2. 1 depicts the conceptual structure of the adopted motion computation 

method. The incident image is acquired and processed by the retinal processing circuit, 

R. The retinal processing circuit includes the retinal smoothing network, 

photoreceptor, current-input Schmitt trigger and two inverters. The incident image is 

processed by R to yield a contrast-enhanced, bi-level black-and-white image. The 

outputs of R are binary signals which are sampled and stored in two registers CF and 

PF, which store the current and previous sampled outputs of R, respectively. The 

output of PF is then shifted to the nearest neighbors, along the preferred direction, to 

correlate with the output of CF. All the outputs of the correlator, C, along the 

preferred direction, are accumulated by the accumulator throughout the array, to 
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determine the correlation output. The correlation output is used to calculate the 

displacement in a sampling period. The term, "displacement" hereafter refers to the 

displacement in a sampling period, except where specified. In the proposed motion 

sensor, the output of PF is shifted to the four nearest neighbors in +x, -x, +y and –y 

directions so that the displacement along these four directions can be determined. The 

corresponding correlation outputs are C(+x), C(-x), C(+y) and C(-y), respectively. The 

correlation output between the output of PF without shift and the output of CF as 

defined by C(no), is also determined and is used to calculate the displacement. 

The five kinds of correlation outputs are averaged over 16 sampling periods and 

are defined as Ca(+x), Ca(-x), Ca(+y), Ca(-y) and Ca(no), corresponding to C(+x), 

C(-x), C(+y), C(-y) and C(no), respectively. The calculated displacement, Δx, in the 

+x or –x direction normalized to the distance between two adjacent photo sensors, P, 

can be expressed by the averaged correlation outputs as  
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The introduction of A and B is used to obtain the absolute value of the difference 

between Ca(+x) and Ca(-x) and to decide whether the image is moving along +x or –x. 

Similarly, the displacement, Δy, in the +y or –y direction can be expressed as, 
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The physical interpretation is discussed later. The direction of motion can be 

determined by comparing the amplitude of Ca(+x) with that of Ca(-x) as well as Ca(+y) 

with that of Ca(-y). For example, if Ca(+x) exceeds Ca(-x) and Ca(+y) exceeds Ca(-y), 

then the image is moving in the (+x, +y) direction. The directional angle, θ, is given 

by, 
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If the displacement and direction of motion is calculated without using the 
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averaged correlation outputs, the pattern-related deviations are significant. A variable, 

d, is defined as the distance from the edge of the incident image patterns to the center 

of the front pixel, in the direction of motion, as shown in Fig. 4.2. 2. The value of d is 

between 0 and P. Assume that the edges must move over the center of a pixel, to be 

detected by that pixel. The influence of the pattern on the deviation of the calculated 

displacement is illustrated by the example presented in Fig. 4.2. 2, in which the image 

pattern of a vertical stripe with a width of 4P is used. If the displacement within a 

sampling period equals P, then the detected image will move to the right by exact one 

pixel. If the displacement of motion is calculated without using the averaged 

correlation outputs, the calculated displacement will become P, according to (1) with 

Ca(+x), Ca(-x) and Ca(no) replaced by C(+x), C(-x) and C(no), respectively. If the 

displacement within a sampling period is less than P, d will gradually decline over 

successive sampling periods since the edge is approaching the center of the front pixel 

in the direction of motion. The calculated displacement is 0 in these sampling periods. 

Finally, the edge will cross the center of the front pixel in the direction of motion and 

the calculated displacement will become P in that sampling period. In the example of 

Fig. 4.2. 2, it is found that the calculated displacement is either 0 or P. Neither value, 

however, is the actual displacement. As can be found in the example of Fig. 4.2. 2, the 

calculated displacement depends on the number pixels crossed by the edge within a 

sampling period. The number of pixels crossed by the edge within a sampling period 

is determined by the distribution of the value of d for all edges, which is a property 

related with the pattern of the incident image. The phenomena discussed above, 

indicates that the deviation in the displacement and direction calculation is large and 

dependent on input patterns. This problem can be solved by using the averaged 

correlation outputs in the proposed design.  

To illustrate why it is advantageous to average the correlation outputs, an example 

is analyzed below. Assume that the displacement is 0.2P and d is P, so the calculated 

displacements, without using the average correlation outputs, in the five subsequent 

sampling periods are {0,0,0,0,P} according to (1), with Ca(+x), Ca(-x) and Ca(no) 

replaced by C(+x), C(-x) and C(no), respectively, in each sampling period. An average 

of correlation outputs is taken to calculate the displacement so that the deviation 

between calculated and actual displacement can be eliminated. Using (1) with an 

average over five sampling periods, yields a calculated displacement of 0.2, which is 

exactly the displacement normalized to P. A more generally analysis on how accuracy 
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is improved by averaging the correlation results is discussed below. 

Assume that a rectangular pattern moves in the +x direction. C(+x)-C(-x) equals 

the number of pixels crossed by the edges as they move to the right. C(no)-C(-x) 

equals half the number of the pixels at the vertical edges. For example, in Fig. 4.2. 2, 

when the edges do not cross any pixels, then C(+x)-C(-x) is zero. When the edges 

cross the pixels, C(+x)-C(-x) is ten, which is exactly the number of pixels crossed by 

the edges. C(no)-C(-x) is fixed at five in every sampling period, which is half the 

number of the pixels at the vertical edges. The ratio of C(+x)-C(-x) to twice 

C(no)-C(-x) is equal to the number of pixels crossed by edges divided by the total 

number of pixels at the vertical edges, which is the displacement normalized to P in 

the +x direction [132]. 

Assume that Ca(+x), Ca(-x), Ca(+y), Ca(-y) and Ca(no) are the average correlation 

outputs over N sampling periods and Et is defined as the total number of the pixels at 

the vertical edges, which is equal to 2*[C(no)-C(-x)]. If the boundary condition is 

ignored, then (1) can be rewritten as, 
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where C(+x)i, C(-x)i and C(no)i are the correlation outputs at the ith sampling period. 

If the velocity is P/m, the number of pixels that are crossed by the edges in every 

m sampling periods will equal to Et. It is because that the vertical edges move to the 

right by exact one pixel in every m sampling periods so that the number of the pixels 

at the vertical edges will equal to the total number of pixels that are crossed by the 

edges in every m sampling periods. Thus, the number of pixels that are crossed by the 

edges within N sampling periods can be expressed by, 
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where q is the quotient of N/m and r is the residue of N/m. Substituting (5) into (4) 

yields,  
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1/m is the displacement normalized to the P, and the other terms in (6) are deviations. 

From the above derivation, it is shown that the accuracy is improved by using the 

averaged the correlation results and a larger N corresponds to more accurately 

calculated displacement. The above analysis is more complex for arbitrary patterns. 

However, C(+x)-C(-x) remains a function of the number of pixels crossed by the 

edges and C(no)-C(-x) remains a function of half the number of the pixels at the 

vertical edges. Hence, the conclusion that the deviation can be reduced by averaging 

the correlation outputs still holds.  

Notably, determining the correlation is complicated by the boundary condition 

because of the shifting of the previous image frame. This boundary is fixed at zero for 

simplicity. Therefore, the correlation at the boundary yields errors in calculating 

C(+x), C(-x), C(+y) and C(-y). However, the boundary condition does not influence 

the calculation of C(no) because the previous image frame is not shifted when C(no) 

is calculated. Two boundary factors are added in (1) and (2) to calibrate the effect due 

to boundary conditions and thus solve this problem in calculating displacement. 

Equations (1) and (2) are modified to,  
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where b1 and b2 are the calibrating factors. The value of b1 is chosen as half of the 

numbers of the pixels at one side of the boundary while b2 is the half of b1. Since the 

size of the pixel array is 32x32, b1 and b2 are chosen as 16 and 8, respectively.  

The maximum detectable displacement is P because the output of PF is shifted only 

to the nearest neighbors. The minimum detectable displacement depends on the 

accuracy of the calculation. The sampling period can be adjusted to fit the desired 

range of velocity, according to the detectable range of displacement. In practice, the 

sampling period may be fixed or automatically adjusted according to application. 

4.2.3 Architecture and Circuit 

Fig. 4.2. 3 illustrates the architecture of the proposed focal-plane motion sensor, 

which includes the 32×32 pixel array and the peripheral circuits, including five sets of 

6-bit accumulators for each row, and five sets of 11-bit accumulators. The data in the 

five 11-bit accumulators are read out as C(+x), C(-x), C(+y), C(-y) and C(no), 

respectively. The average, displacement, and direction are calculated off-chip by 

software. 

Each pixel of the 32×32 array includes the BJT-based retinal processing circuit, 

two registers, five correlators, and five shift registers, as depicted in Fig. 4.2. 4. 

In the implementation of the BJT-based retinal processing circuit, as shown in Fig. 

4.2. 5, an isolated photo-BJT is used as the photoreceptor, a smoothing photo-BJT 

with adjustable N-channel MOSFET resistors is used to form the retinal smoothing 

network, and a current-input CMOS Schmitt trigger [17], [126] and two inverters are 

included. The base of the smoothing photo-BJT Q1 is connected to the photo-BJT Q1's 

four nearest neighbors, via the N-channel MOSFET resistors, Msrd and Msrr, whose 

resistance is controlled by the gate voltage, Vsmooth, forming the smoothing network. 

The transistors, Mins, Mips, Mn and Mipi, Mini, Mp, are used to virtually bias the emitters 

of Q1 and Q2 at Vbias1. Mip, Min and Mc are common to all pixels. The current-input 

CMOS Schmitt trigger comprises of Ms, Msr, Mi, Mir, Mf1 and Mf2 transistors. The 

voltage, Vf is used to adjust the threshold level. The transistors, Mp1, Mp2, Mp3 and 

Mp4 are used to mirror the emitter current of Q2 to the current-input CMOS Schmitt 

trigger. The inverters, A and B, amplify the output of the current-input CMOS Schmitt 

trigger to VDD or VSS so that the signal is converted from analog to binary.  
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The output of the retinal processing circuit is then sent to CF, which memorizes 

the current frame, as depicted in Fig. 4.2. 4. The PF in Fig. 4.2. 4stores the previous 

frame, and sends its output to the four nearest neighboring pixels in the +x, -x, -y and 

+y directions. The sample signal in Fig. 4.2. 4 causes CF and PF to sample their 

inputs every 100 clock cycles. The output of CF is then correlated with the output of 

PF and the outputs of PF from its neighbors. The outputs of the correlators are stored 

in five shift registers and then shifted to the 6-bit accumulators in each row. The 

motion computation method precisely controls the sampling period by controlling 

the clock rate and the velocity can be calculated as the displacement divided by the 

frame sampling period. Moreover, the tunable range of the clock rate exceeds that of 

the RC delay circuits, so the detectable range of the velocity is greatly increased. 

NAND rather than XOR is used in the correlator because the former is less likely 

to have errors. If a noise exists in the signal path, then the inputs of the correlator have 

a probability, g, of error. The probability of error in the output of the correlator is 

2*(g-g2) for XOR and g-g2 for NAND. The probability of error for XOR is clearly 

double that for NAND.  

The outputs of the correlator stored in five shift registers are shifted to the 6-bit 

accumulators in each row to be accumulated. This chip includes five sets of 11-bit 

accumulators. The outputs of the 6-bit accumulators are shifted to the 11-bit 

accumulators, which accumulate the outputs of the 6-bit accumulators. The data in the 

11-bit accumulators are sent out of chip serially as the correlation outputs, C(+x), 

C(-x), C(+y), C(-y) and C(no). It takes totally 100 clock cycles to sample the image, 

shift the outputs of the correlators to the 6-bit accumulators, shift the data in the 6-bit 

accumulators to 11-bit accumulators, send the data out of chip and wait for the next 

sampling period. The software calculates the average of the correlation outputs, 

displacement and direction. 

Fig. 4.2. 6 presents the results of the HSPICE simulation. As shown in Fig. 4.2. 6, 

a pattern, “H”, is incident on the motion chip under various conditions, to confirm the 

advantages of high dynamic range, contrast enhancement and noise immunity. In Fig. 

4.2. 6(a), the photocurrents of the dark and bright regions are 0.66Ib and Ib, 

respectively, where Ib is defined as the photocurrent generated by the light source. 

Assuming that the illumination of the light source varies, the simulation result of 

HSPICE indicates that the outputs of retinal processing circuit are constant as Ib varies 

from 0.1 μA to 1 nA. As can be calculated from Fig. 4.2. 6(a), the minimum 
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acceptable contrast of input image is about 20%. Fig. 4.2. 6(b) offers another example 

of contrast enhancement. The pattern is the same but the image is blurred. The 

simulation result shows that the contrast can be enhanced. The location of the edge is 

governed by the resistance of the MOSFETs in the smoothing network. Fig. 4.2. 6(c) 

depicts a situation in which the pattern is disturbed by noise. The noise immunity is 

enhanced by the current-input CMOS Schmitt trigger, which is controlled by Vf. A 

normally distributed noise is added to the original image with a standard deviation of 

0.04 nA and Vf is set at 0.4 V. The simulation result indicates that the outputs of 

retinal processing circuit are not affected by this noise level. The retinal processing 

circuit can work with the standard deviation of noise greater than 0.04 nA, if Vf is 

greater than 0.4 V. The simulation results confirm the advantages of the retinal 

processing circuit. Firstly, the output of the retinal processing circuit can adapt to the 

background illumination, so that a high dynamic range can be obtained. Secondly, the 

error in the computation of motion can be reduced since the contrast of image is 

enhanced with the minimum acceptable contrast of 20%. Finally, the retinal 

processing circuit is immune to noise and the noise immunity is enhanced by the 

current-input CMOS Schmitt trigger. 

4.2.4 Experimental Results 

An experimental focal-plane motion sensor chip is designed and fabricated by the 

0.5 μm single-poly-triple-metal CMOS process. Fig. 4.2. 7(a) presents a photograph 

of the fabricated chip and Fig. 4.2. 7(b) displays the photograph of a single pixel. The 

area of this chip is 4200×4000 μm2 and that of a single pixel is 100×100 μm2 with a 

fill factor of 11.6%. The dc power dissipation is 120 mW at 5 V in the dark. 

The emitter and the collector were biased at 3.5 V and 0 V, respectively, and the 

base was floating, to investigate the photo response of a photo-BJT. The intensity of 

the incident light on the photo-BJT was then varied and the collector current, 

corresponding to various illuminations, was recorded. The generated photo current is 

expressed as, Iph=Ic/(β+1), where β is the current gain of BJT and Ic is the collector 

current. The current gain is measured as 48 and the photo current is evaluated as in 

Fig. 4.2. 8. The illumination for all the following experiments is set at 36 lux at 

wavelength of 550 μm. 

Fig. 4.2. 9 shows four patterns used to test the motion sensor, to show that the 

proposed design can work on the different patterns. The four patterns are chosen for 
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their different characteristics. Fig. 4.2. 9(a) shows a striped pattern. The stripes are 

equally spaced so that d is a constant, as in the example inFig. 4.2. 2. Fig. 4.2. 9(b) 

depicts the pattern formed by the circles. This pattern has a more uniform distribution 

of d than does the stripes because the edge of the circles is round. Both the stripes and 

the circles are spatially periodic. The third pattern presented in Fig. 4.2. 9(c) is, 

"soccer". The third pattern involves a rather random distribution of d and is spatially 

aperiodic, unlike the stripes and the circles. The fourth pattern is Lena and is used to 

test the motion sensor to determine whether the displacement can be calculated for a 

gray-scale image with a randomly distributed d. The contrast is 80% for all test 

patterns except Lena. Only a part of image pattern is incident on the chip since the 

size of the four patterns exceeds that of the motion sensor chip. 

Fig. 4.2. 10 shows the calculated velocity and the deviation ratio. The 

displacement is calculated from (7) and (8) and the velocity is the ratio of the 

displacement to the frame sampling period. The deviation ratio is defined, 

deviation ratio (%) = 100)(
∗

−

a

ae

V
VV          (9) 

where Ve is the calculated velocity and Va is the actual velocity. The sampling rate 

is 10 Hz. The correlation results are averaged over 16 frame sampling periods in all 

experiments. The image moves in the –x direction with the velocity varying from 1 

pixel/sec to 10 pixels/sec; only the calculated result for the x direction is shown, since 

the calculated displacement in the y direction is zero. According to Fig. 4.2. 10, the 

four curves rather closely resemble each other and the deviation is within ±20%. 

Experimental results confirm that the proposed design can work for different patterns. 

Only the striped pattern is used in the following experiment because the choice of 

pattern will not affect accuracy. 

Fig. 4.2. 11 shows the detectable range of the velocity. The velocity of the 

moving image decreases one decade from 140,000 pixels/sec and 1 pixel/sec along 

the –y direction, and the sampling rate is 140K Hz and 1 Hz, respectively. As shown 

in Fig. 4.2. 11, the proposed design could work with a sampling rate that varied by six 

decades and a velocity deviation within ±20%. 

The minimum detectable velocity depends on the number of the frame sampling 

periods over which the correlation results are averaged. The correlation outputs are 

averaged over 16 sampling periods in the proposed motion sensor. In commercial 

optical mouse systems, the maximum detectable velocity is around 12 inch/sec (304.8 
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mm/sec). If the effect of the lens is ignored, then the on-chip velocity will be 304.8 

mm/sec. According to this velocity, the sampling rate is set to 3,050 Hz. As shown in 

Fig. 4.2. 12, the proposed design can calculate a velocity of 152.5 pixels/sec, that is, a 

displacement of 5 μm within a sampling period.  

Fig. 4.2. 13 illustrates the accuracy of the calculation of direction. The sampling rate 

is 75kHz. Two velocities are tested. The selected test velocity is fixed and the 

direction of motion is varied from 0 to 360 degrees. Since the striped pattern is used, 

the stripes are rotated to be perpendicular to the direction of motion so that the 

aperture problem is avoided. Experimental results indicate that the proposed design 

can determine the direction of motion with an angular deviation less than 4 degrees 

while the velocity varies. 

4.2.5 Conclusion 

This work presents a real-time CMOS focal-plane motion sensor that uses the 

BJT-based retinal processing circuit and a modified correlation-based algorithm. The 

correlation-based algorithm is modified and applied to calculate the velocity and 

direction and the BJT-based retinal processing circuit is used to acquire images and 

enhance contrast. The presented motion sensor greatly reduces the deviation of the 

calculated displacement and direction for different image pattern by averaging 

correlation results over 16 frame sampling periods. Consequently, the proposed design 

can work for different incident images. Furthermore, the velocity ranging from 1 

pixel/sec to 140,000 pixels/sec can be calculated by the proposed design via adjusting 

the clock signal, without reducing accuracy. The smallest displacement that can be 

calculated within a sampling period is 5 μm. The direction can be calculated correctly 

between 0 and 360 degrees with an angular deviation less than 4 degrees. The 

proposed motion sensor is comprised of a 32×32 pixel array and peripheral circuits. 

The area of a pixel is 100×100 μm2 with a fill factor of 11.6%, and the total chip area 

is 4200×4000 μm2. The supply voltage is 5 V and the dc power consumption is 120 

mW. The average, velocity, and direction are calculated off-chip by software. In the 

future, the functionality of the software will be further integrated into the chip and the 

sampling rate will be adaptively adjusted according to desired applications. 
4.3 ANALYSIS AND DESIGN OF A CMOS ANGULAR 

VELOCITY- AND DIRECTION-SELECTIVE ROTATION 

SENSOR WITH RETINAL PROCESSING CIRCUIT 
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4.3.1 Introduction 

The correlation-based algorithm is adopted by the proposed rotation sensor to 

detect the local motion vectors, whereas the retinal processing circuit [7][18][46], 

which mimics some of the functions of the cells in the outer plexiform layer of the 

real retina, is used to sense and preprocess the incident images. The output of the 

retinal processing circuit can adapt to the background illumination so that a high 

optical dynamic range can be obtained.  

In previously proposed focal-plane motion sensors, the spatial distribution of the 

pixels is typically regular and periodic because these sensors are intended to detect 

invariants in Cartesian coordinates. For these sensors, a mapping from Cartesian to 

polar coordinates is required to detect rotation. However, if the pixels are placed in a 

polar arrangement, rotation can be detected by shifting the images in the θ direction 

so complex mapping can be avoided.  

The pixels of the proposed rotation sensor here are placed in a circular 

arrangement to detect the global rotation direction and velocity of the rotating images. 

There are totally 104 pixels, which form five concentric circles. The numbers of 

pixels in the circles are 8, 16, 16, 32 and 32 in order from the center. Every pixel is 

correlated with clockwise and counterclockwise pixels that are 45o apart. Local 

motion vectors are detected by the correlators in each pixel. The outputs of all 

correlators in a single circle are aggregated to determine the velocity and direction of 

the global rotation. The proposed rotation sensor is selective to the angular direction 

and velocity of rotating images. The selected angular velocity is controlled by the 

frequency of an external clock signal. The angular velocity-selectivity is enhanced by 

placing more than one pixel between two correlated pixels and correlating with the 

pixel that is 45o apart. The angular velocity-selectivity is analyzed and equations are 

derived to describe the angular velocity-selectivity. If the incident image has multiple 

edges, then the angular velocity-selectivity is related to both the number and the 

positions of the edges and the angular velocity-selectivity is expressed by a set of 

inequalities. 

The advantageous characteristics of the proposed rotation sensor include a high 

optical dynamic range, real-time image processing, and a wide range of detectable 

angular velocity. The proposed rotation sensor is appropriate for applications like the 

real-time and remote detection of the rotation of automobile engines and wheels, 
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motors, microscopic rotating images, etc. 

An experimental chip was designed and fabricated by a 0.6μm 

single-poly-triple-metal CMOS process. The total chip area was 1812×1825 μm2. The 

area of a single pixel was 91×84 μm2 with a fill factor of 20%. The dc power 

consumption was 10 mW at 5 V in the dark. The experimental results of the fabricated 

chip confirmed that both the clockwise and counterclockwise directions can be 

accurately detected. The angular velocity-selectivity was also verified at angular 

velocities from 2.5×10-3 π/sec to 40 π/sec. By sweeping the clock rate, the proposed 

rotation sensor can be used to detect a range of angular velocities from 2×10-2 π/sec to 

206 π/sec. The optical dynamic range at a contrast of 80% was 52 dB, from 0.91 lux 

to 366 lux.  

Section 4.3.2 analyzes the method of detecting rotation. Section 4.3.3 shows the 

architecture of the proposed rotation sensor. Section 4.3.4 presents the experimental 

results and, finally, conclusion is presented. 

4.3.2 Rotation Detection Method 

In most correlation-based motion sensors, the pixels are regularly distributed in a 

rectangular pattern and each pixel is correlated with the delayed photo-inputs of the 

adjacent pixels to determine the local motion vectors. However, if the incident image 

is rotated, the tangential velocity is proportional to the radius. For the motion sensors 

with regularly and rectangularly distributed pixels, the delay time, which determines 

the local velocity to be detected, must be adjusted according to the radius in order to 

detect the tangential velocity. A motion sensor cannot easily adjust all the local delay 

times of each pixel to detect rotation. Moreover, even if all the local delay times could 

be generated, mapping must be performed from Cartesian coordinates to polar 

coordinates to detect angular velocities and directions. The pixels in the proposed 

rotation sensor are arranged in a polar structure to detect the rotation, and thus resolve 

these problems. Instead of generating the desired delay times for each pixel, the pixels 

are placed on a circle, with an equal angular spacing, so that the distance between two 

adjacent pixels is proportional to the radius of rotation, and the delay time is thus the 

same for all pixels.  

The conceptual structure of the adopted correlation-based algorithm for detecting 

rotation is shown in Fig. 4.3. 1, where there are K pixels in a circle. A single pixel 

consists of both photo sensing and signal processing units, to form a focal-plane 
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motion sensor. The retinal processing circuit PH includes the retinal smoothing 

network [7], [18], [46], a photoreceptor, a current-input Schmitt trigger [126] and an 

inverter. The retinal smoothing network is used to extract the local spatial and 

temporal averages of the input images. The photoreceptor senses the input images. 

The output currents of the retinal smoothing network and the photoreceptor are sent to 

the current-input Schmitt trigger, which amplifies the difference between the two 

input currents with hysteresis. The output of the current-input Schmitt trigger is a 

voltage signal and is further amplified to VDD and VSS by the inverter. The output 

image of PH is a black-and-white image. In the black region, the output voltage of the 

retinal processing circuit will be VSS, which is logic zero, whereas in the white region, 

the output voltage will be VDD, which is logic one. The output voltage of PH is 

sampled at the rising edge of the clock signal and is stored in the register CF. The data 

in CF is shifted to the register PF after a clock period. The two registers CF and PF 

are used to store current and previous image frames. The output of PF is then sent to 

the correlator C of the pixel in the preferred direction. The delay time is determined 

by the period of the clock signal, which can be precisely adjusted to detect wide range 

of angular velocities, independent of the process variation [18]. If the clock period 

equals the time for which the incident image moves from one pixel to the next pixel, 

then the two inputs of the correlator will be the same and the output of the correlator 

will be at logic one. The appearance of logic one indicates that a selected local motion 

vector is detected. MLE is used to aggregate the outputs of all correlators in a single 

circle, to determine the velocity and direction of the global rotation. MLE is 

implemented using a NAND gate, so the output of MLE is logical zero if the outputs 

of all correlators are at logic one. 

A. Analysis of Angular Velocity-selectivity for a Single-edged Image 

The angular velocity-selectivity of a single-edged image is initially analyzed and 

generalized to the image with more than one edge. A single edge is rotated clockwise 

from the (i-1)th pixel Pi-1 to the ith pixel Pi within n0 clock cycles, as shown in Fig. 4.3. 

2(a), where Pi-1 and Pi are the two adjacent and correlated pixels in the same circle 

and θs is the angle between the two correlated pixels. The region behind the edge is 

black as shown in Fig. 4.3. 2(a). In Fig. 4.3. 2(a), the edge is rotated clockwise by an 

angle of ωT in a clock cycle, where ω is the angular velocity and T is the clock period. 

In computing the output of MLE at any clock cycle, only the two correlated pixels that 
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are next to the edge, i.e. Pi-1 and Pi in Fig. 4.3. 2(a), are significant in determining the 

output of MLE during any clock cycle because the pixels that are not next to the edge 

are either in the black or the white region, so the data stored in CF and PF of these 

pixels are the same, and the correlation results for these pixels are always at logic one. 

Thus, the correlation results for these pixels do not influence the output of MLE. 

If ωT does not exceed θs, this edge is approaching to Pi by an angle of ωT in a 

clock cycle. During these clock cycles, the output of the correlator of Pi-1 is 

maintained at logic one while the output of the correlator of Pi is at logic zero. The 

output of the correlator of Pi becomes logic one at t=n0T when the edge moves over Pi. 

The output of MLE becomes logic zero at t=n0T. Since the angle between Pi-1 and Pi is 

θs and the edge approaches Pi by an angle ωT in a clock cycle, the period for which 

the MLE outputs logic zero is n0=θs/ωT clock cycles. For example, if the edge moves 

from Pi-1 with an angular velocity of θs/5T, the outputs of the correlators of Pi-1 and Pi 

in five successive clock clocks are {1,1,1,1,1} and {0,0,0,0,1}. The output of MLE is 

{1,1,1,1,0} and the period n0 is five.  

If the angular velocity of the rotating image exceeds θs/T, the edge will move 

over Pi in every clock cycle. However, this edge approaches Pi+1 by an angle of ωT-θs 

in every clock cycle. Once this edge reaches Pi+1, a correlation result of logic zero is 

generated at Pi+1 and the output of MLE is at logic one. The period during which the 

MLE outputs logic one is n1=θs/(ωT-θs) clock cycles. For example, if ωT is 6θs/5, then 

the correlation outputs of Pi-1, Pi, and Pi+1 in five successive clock cycles are 

{1,1,1,1,1}, {1,1,1,1,1} and {1,1,1,1,0}, respectively. The output of MLE is {0,0,0,0,1} 

so n1 is five.  

The ratio R is defined as the ratio of the number of times for which the output of 

MLE is at logic zero during N clock cycles to N. If ωT does not exceed θs, since the 

period for which the MLE outputs logic zero is n0=θs/ωT clock cycles, q0 MLE outputs 

of logic zero occur within N clock cycles, where q0 is the quotient N/n0. If r0 is the 

remainder of N/n0, N=q0n0+r0. According to the definition of R, R can be expressed by 
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If ωTis greater than θs, then the period for which the MLE output is logic one is 

n1=θs/(ωT-θs) clock cycles. Thus, q1 MLE outputs of logic one occur within N clock 

cycles, where q1 is the quotient of N/n1. If r1 is the remainder of N/n1, N=q1n1+r1. 

According to the definition, R can be expressed by, 
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Fig. 4.3. 2 (b) plots the relationship between R and angular velocity. R is 

maximum at θs/T, which can be controlled by the period, T, of the clock signal. 

Notably, R is also maximum at ω=θs/T+b(2π/T), where b is a arbitrary integer, due to 

the aliasing effect. 

B. Analysis of Angular Velocity-selectivity for Multiple-edged Image  

The above analysis concerns a single edge. In practice, the incident image 

always has more than one edge. Angular velocity-selectivity is influenced by the 

number and positions of the edges. The following analysis is based on the assumption 

that there is no more than one edge existing between two adjacent pixels. If the image 

has several edges, every edge has to move across the pixel that lies in front of the 

edge, for example Pi in Fig. 4.3. 2(a), in a single clock cycle to yield a logic zero at 

the MLE output. If the angular velocity is θs/T, then R equals 100%. However, if the 

edges are not exactly rotated by θs in a clock cycle, the time taken by an edge to move 

across its own front pixel is different for different edge since the initial positions of 

the edges are different.  

Fig. 4.3. 3 illustrates how the initial positions of the edges affect the time taken 

by an edge to move across its own front pixel. There are eight pixels, P0 to P7, in a 

circle. The image has four edges E1, E2, E3 and E4 and the initial angles θep between 

these edges and their own front pixels are θs, 3θs/4, θs/2 and θs/4, respectively. If the 

angular velocity is 3θs/4T, the front pixel of E1 is P1, P1, P2 and P3 for the first, second, 

third and forth clock cycles, respectively. Thus, the pattern of correlation outputs at 

the front pixels of E1 in the first four clock cycles is {0,1,1,1}. For E2, E3, and E4, the 

patterns of correlation outputs at their front pixels during the first four clock cycles 

are {1,0,1,1}, {1,1,0,1} and {1,1,1,0}, respectively. Each set of correlation output 
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patterns periodically repeats. This example indicates that the different values of θep 

result in a time difference between the occurrences of logic zero in the correlation 

output patterns of the front pixels. The resultant MLE outputs during the first four 

clock cycles are {1,1,1,1} and R is zero. If θep is the same for every edge, then the 

time taken by every edge to move across its own front pixel is the same, so it is 

similar with the single-edged case. Thus, the correlation output patterns are the same 

for every edge and are one of {0,1,1,1}, {1,0,1,1}, {1,1,0,1} and {1,1,1,0}. The output 

of MLE is {1,0,0,0}, {0,1,0,0}, {0,0,1,0} or {0,0,0,1} and R is 75%, which is the 

value derived from Eq. (2) with ω=3θs/4T.  

If we consider a single edge, the number of times for which correlation output is 

at logic one during N clock cycles is the same as that for which the MLE output is at 

logic zero during N clock cycles, which can be calculated from Eq. (2) as NωT/θs, if ω 

is less than θs/T. In the multiple-edged case, every edge generates NωT/θs times of 

logic one at the correlation output of its front pixels within N clock cycles. For 

example, if N=4, E1 generates logic one at the output of correlator 4(3θs/4T)T/θs=3 

times. The same number can be also calculated from the correlation output pattern of 

E1 {0,1,1,1} as three. Thus, for each edge, there are N-NωT/θs times of logic zero at 

the correlation output of its front pixels during N clock cycles. The above example of 

Fig. 4.3. 3 shows that the different values of θep cause the logic zero of correlation 

output of the front pixels to occur at different time. If the image has L edges and the 

values θep for all of the edges are equally distributed within θs, as in the above 

example of Fig. 4.3. 3, logic zero appears at the correlation outputs of the front pixel 

for L edges in turn. The output of MLE is logic one if one of the outputs of the 

correlators is at logic zero. Thus, the number of times for which the output of MLE is 

logic one during N clock cycles is L(N-NωT/θs). According to the definition of R, R is 

given by, 
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According to Eq. (5), R is decreased to zero at ω=θs(L-1)/LT and increased to 100% at 

ω=θs/T. If ω exceeds θs/T, a similar analysis can be performed to obtain the 

relationship between R and ω as 
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R falls to zero at ω=θs(L+1)/LT and increases to 100% at ω=θs/T. 

If θep is the same for every edge, the time when every edge moves across its own 

front pixel is the same, so the relationship between R and ω is the same as in the 

single-edged case. The relationship between R and ω is given by Eqs. (2) and (4). 

The above two extreme cases of θep set the maximum and minimum values of R 

at every ω. Fig. 4.3. 4(a) presents the relationship between R and ω for arbitrary 

position of the edges. R is confined to the shaded region, defined by Eqs. (2), (4), (5), 

and (6). 

MATLAB simulations were performed by rotating the image clockwise, and the 

outputs of MLE were recorded over 100 successive clock cycles, such that N=100, to 

compute R. ω was swept from 0 to 2θs/T to obtain the curve of R versus ω. 

Simulations were performed with various numbers of edges in various positions. Fig. 

4.3. 4(b) and 4(c) show the simulation results for L=2 and L=4, respectively, where L 

is the number of edges. The angles θep for every edge are the same for curve 1 in Fig. 

4.3. 4(b) and (c). As can be seen from Fig. 4.3. 4(b) and (c), the relationship between 

R and ω depicted by curve 1 is consistent with Eqs. (2) and (4). For curve 2 in Fig. 4.3. 

4(b), θep is set to θs and θs/2 and for curve 2 in Fig. 4.3. 4(c), it is set to θs, 3θs/4, θs/2 

and θs/4. The relationship between R and ω represented by curves 2 in Fig. 4.3. 4(b) 

and (c) are consistent with Eqs. (5) and (6) with L=2 and L=4, respectively. Curves 3 

and 4 in Fig. 4.3. 4(b) and (c) plot the simulation results with random θep for every 

edge. These figures show that curves 3 and 4 are confined by curves 1 and 2, while 

there are some peaks in curves 3 and 4, because R is not linearly proportional to ω for 

certain θep values. The nonlinearity arises because the operation of MLE, which is the 

logical operation of NAND, is not linear. However, in the above two extreme cases, 

the corresponding θep does not cause peaks. The simulation was performed 160,000 

kinds of θep values and all 160,000 curves were verified to be confined within curves 

1 and 2. 

C. Analysis of Angular Velocity-selectivity with a Modified Structure 

Equations (2) and (4) imply that MLE output of logic zero is generated only if 

the images are rotated with the angular velocities ranging between 0 and 2θs/T. To 
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further enhance the angular velocity-selectivity, the range of angular velocities that 

generate the logic zero at MLE outputs should be confined to be narrower than 2θs/T. 

Fig. 4.3. 5(a) shows a modified structure intended to enhance the angular 

velocity-selectivity. The modified structure includes a pixels rather than one pixel 

within θs while the correlation is still performed on the two pixels that are θs apart. 

The number of pixels in a circle is thus increased by a factor of a. In the original 

structure in Fig. 4.3. 2(a), the correlation result of Pi has to be at logic one in order to 

obtain an MLE output of logic zero. In the modified structure, the correlation results 

of all the a pixels from P1 to Pa within θs must be at logic one to yield an MLE output 

of logic zero, where P0 is defined as the pixel that is just behind the edge at the 

beginning of every clock cycle. Consequently, the edge has to move across a pixels 

from P1 to Pa in a clock cycle to ensure all a pixels have a correlation result of logic 

zero. If ωT is less than (a-1)θs/aπω, then the number of pixels crossed by the edge 

during a clock cycle is always less than a, so the output of MLE is always logic one. If 

ωT is greater than (a-1)θs/a, then MLE begins to output logic zero.  

Fig. 4.3. 5 (b) presents an example in which the angular velocity-selectivity is 

analyzed. Since ωT is greater than (a-1)θs/a, then the edge can cross a-1 pixels from 

P1 to Pa-1 in each clock cycle and exceed Pa-1 by an angle of ωT-(a-1) θs/a in every 

clock cycle. The exceeding angle is accumulated during successive clock cycles until 

the edge crosses Pa. An MLE output of logic zero is generated whenever the edge 

crosses a pixels from P1 to Pa in a clock cycle. Since the angle between Pa-1 and Pa is 

θs/a, the period for which an MLE output of logic zero appears is 

n0=(θs/a)/( ωT-(a-1) θs/a) clock cycles. As in the derivations of Eqs. (1) and (2), R can 

be approximated by 100/n0=100(ωT-(a-1)θs/a)/(θs/a) if N is large. A similar analysis 

can be also performed for the case in which ωT is greater than θs and less than 

(a+1)θs/a. In such a case, R can be derived as 100(1-a(ωT-θs)/θs) if N is large. The 

relationship between R and angular velocity for the modified structure can be 

summarized as,  
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Fig. 4.3. 5 (c) plots R versus ω from Eq. (7). Fig. 4.3. 5(c) indicates that the range of 

the angular velocities that generate logic zero at MLE output is confined to only 

2θs/aT so the angular velocity-selectivity is enhanced.  

If the images have more than one edge, an analysis similar to that in Section 

4.3.2-B can be performed. The relationship between R and ω is given by, 
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Fig. 4.3. 6(a) plots R against ω, according to Eq. (8). R is confined to the shaded 

region. Equation (8) implies that a alone determines the maximum value of R at every 

ω whereas both a and L determine the minimum value of R at every ω. Fig. 4.3. 6(b) 

shows the MATLAB simulation results with a=2 and L=16. The angles θep for every 

edge are the same for curve 1 in Fig. 4.3. 6(b). As can be seen from Fig. 4.3. 6(b), the 

relationship between R and ω depicted by curve 1 is given by Eqs. (2) and (4). The θep 

values are mθs/32T, m=1,2…16, for curve 2, which describes the extreme case in 

which R is set to a minimum value at every ω. Curves 3 and 4 plot the simulation 

results with random θep values for every edge. Fig. 4.3. 6(b) indicates that curves 3 

and 4 are confined within curves 1 and 2.  

D. Analysis of Misalignment Effect 

The angular velocity-selectivity is degraded if the center of the rotating image is 

not precisely aligned to the center of the circle of the pixels. Fig. 4.3. 7 shows the 
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angular velocity under the condition that the center of rotation is shifted in the 0o 

direction with rn values of 0, 0.4 and 0.8, where rn is the ratio of the shifted distance, 

rs, to the radius of the circle of the pixels, r. The angular velocity of rotation is fixed at 

62.8 deg/sec. As can be seen inFig. 4.3. 7, the deviation in angular velocity from 62.8 

deg/sec increases with rn. This misalignment degrades the angular velocity-selectivity. 

When the image is rotated with an angular velocity of θs/T, the theoretical maximum 

R is 100%. However, due to the misalignment effect, the angular velocity deviates 

from θs/T so that the maximum R falls as rn increases. On the other hand, if the 

angular velocity is greater than (a+1) θs/(aT), then the theoretical value of R should be 

zero, as shown in Fig. 4.3. 6(a). However, since the angular velocity is decreased at 

part of the circle of the pixels, the MLE output may be logic zero when the edges 

move across this part. The angular velocity-selectivity is thus degraded. If rs is fixed, 

then the misalignment effect can be reduced by increasing r. 

4.3.3 Architecture and Circuit 

The pixels are placed in a circular arrangement to detect rotation. Fig. 4.3. 8 

presents the architecture of the proposed rotation sensor, which is comprised of 104 

pixels, which form five concentric circles. The radii of the circles are 127.4 μm, 

254.55 μm, 387.55 μm, 523.5 μm and 671.9 μm in order from the center. The 

numbers of pixels in the five circles are 8, 16, 16, 32, and 32 and the angles between 

the adjacent pixels are fixed at 45o, 22.5o, 22.5o, 11.25o and 11.25o, respectively. 

Every pixel is correlated with the clockwise and counterclockwise pixels that are 45o 

apart; that is, θs=45o. The clockwise or the counterclockwise correlation results of all 

the pixels in the same circle are sent to MLE. MLE is implemented using a NAND 

gate. Two sets of MLEs are involved, corresponding to clockwise and 

counterclockwise rotation, for a single circle. CW1, CW2, CW3, CW4, and CW5 in 

Fig. 4.3. 8are the clockwise outputs of the MLEs of the first, second, third, fourth, and 

fifth circles while CCW1, CCW2, CCW3, CCW4, and CCW5 are the 

counterclockwise outputs of the MLEs of the first, second, third, fourth, and fifth 

circles, respectively. The proposed rotation sensor includes a total of ten sets of MLEs.  

Fig. 4.3. 9 shows the structure of a single pixel. Each pixel consists of a retinal 

processing circuit, two registers, two correlators and two P-channel MOSFETs, which 

are parts of the NAND gates that form MLE. The dimensions of the transistor Mnxcc, 

Mnxc, Mpxcc, Mpxc, Mmlecc, and Mmlec are W/L=1.5/0.6 (μm). Fig. 4.3. 10 depicts the 
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retinal processing circuit, which includes an isolated photo-BJT Q2 used as a 

photoreceptor, a smoothing photo-BJT Q1 with adjustable N-channel MOSFET 

resistors used as the retinal smoothing network, a current-input CMOS Schmitt trigger 

and an inverter. The base of the smoothing photo-BJT Q1 is connected to the bases of 

the smoothing photo-BJT in the four nearest neighbors, in both θ and r directions, via 

the N-channel MOSFET resistors Msc and Msi, whose resistance is controlled by the 

gate voltage Vsmooth. The transistors Mins, Mips, Mini, Mipi, Mn, Mp, Mip, Min, and Mc are 

used to virtually bias the emitters of Q1 and Q2 at Vbias1. The current-input CMOS 

Schmitt trigger comprises of Ms, Msr, Mi, Mir, Mf1, and Mf2 transistors. The voltage Vf 

is used to adjust the threshold level of the current-input CMOS Schmitt trigger. The 

transistors Mp1, Mp2, Mp3, and Mp4 are used to mirror the emitter current of Q2 to the 

current-input CMOS Schmitt trigger. The inverter A amplifies the output of the 

current-input CMOS Schmitt trigger to VDD or VSS. The size of the transistors of the 

retinal processing circuit is summarized in Table 4.3. 1. 

As shown in Fig. 4.3. 9, two registers are used to store the output of the retinal 

processing circuit at the current and the previous clock cycles. The register CF 

samples and stores the output of the retinal processing circuit at the rising edge of 

every clock cycle. The data stored in the register CF is shifted to the register PF after 

a clock cycle. The output of register CF is sent to the correlators of the pixel itself, 

whereas the output of register PF is sent to the correlators of the two correlated pixels, 

which are 45o apart in clockwise and the counterclockwise directions. The output of 

register CF is correlated with the outputs of register PF of the two pixels, which are 

45o apart in the clockwise and counterclockwise directions. The two correlators 

correspond to detect clockwise and counterclockwise rotations, respectively. The 

correlators are implemented using XNOR gates. If the two inputs of the correlators 

are the same, then the correlation output is at logic one. 

Fig. 4.3. 11shows the structure of MLE, which is implemented by a NAND gate 

with a fan-in number equal to the number of pixels in a circle. The P-channel 

MOSFETs of the NAND gate are located inside each pixel, which are the MOSFETs 

Mmlecc and Mmlec inFig. 4.3. 9. The outputs of the correlators in each pixel are sent to 

the gates of Mmlecc and Mmlec, as shown inFig. 4.3. 9. The drains of Mmlecc (Mmlec) of 

every pixel in a single circle are connected together to the diode-connected N-channel 

MOSFET Mnload, which acts as the load to generate the counterclockwise (clockwise) 
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MLE output. The dimension of the transistor Mnload is W/L=1/15 (μm). If one of the 

outputs of the correlators is at logic zero, then the output of MLE is at logic one. If the 

outputs of the correlators of every pixel in a single circle are at logic one, the output 

of MLE is at logic zero. 

4.3.4 Experimental Results 

An experimental focal-plane rotation sensor chip was fabricated in a 0.6 μm 

single-ploy-triple-metal CMOS process. The resultant chip area was 1812×1825 μm2 

and the area of a single pixel was 91×84 μm2, with a fill factor of 20%. The dc power 

consumption was 10 mW at 5V in the dark. Fig. 4.3. 12 shows photographs of the 

whole chip and a single pixel.  

A pattern shown in Fig. 4.3. 13(a) was used to verify the direction-selectivity. The 

contrast of the pattern was 99% and the light source was a 5-mW LASER, which was 

used in all of the following experiments, except where specified. The contrast is 

computed as (Iwhite-Iblack)/(Iwhite+Iblack), where Iblack and Iwhite are the induced 

photocurrents at the black and white regions, respectively. A lens was used to focus 

the image on the area that covers the three inner circles for good alignment. The clock 

frequency was 10 Hz and the angular velocity was 2.5 π/sec. Fig. 4.3. 13(b) and (c) 

show the output waveforms, measured by a logic analyzer. The image was rotated 

clockwise in Fig. 4.3. 13(b) and counterclockwise in Fig. 4.3. 13(c). The waveforms 

at the nodes CW2, CW3, CW4, CW5, CCW2, CCW3, CCW4 and CCW5 in Fig. 4.3. 

8 were recorded. Since the image was focused on the area of the three inner circles, 

the MLE outputs of the fourth and fifth circles were kept at logic one. As can be seen 

in Fig. 4.3. 13(b) (Fig. 4.3. 13(c)), when the image was rotated clockwise 

(counterclockwise), CCW2 and CCW3 (CW2 and CW3) was kept at logic one and 

logic zero appear at CW2 and CW3 (CCW2 and CCW3). Thus, the direction of 

rotation was correctly detected. 

Although the angular velocity was tuned to maximize R to 100%, CW2 and CW3 

in Fig. 4.3. 13(b) as well as CCW2 and CCW3 in Fig. 4.3. 13(c) were not always at 

logic zero in each clock cycle. R measured with N=80 was 50% and 66% for CW2 

and CW3 in Fig. 4.3. 13(b) and 52% and 70% for CCW2 and CCW3 in Fig. 4.3. 13(c). 

The lowered R is caused by the misalignment effect described in Section 4.3.2-D. As 

discussed in Section 4.3.2-D, the maximum R decreases as rn increases. Since the 

radius r of the third circle is larger than that of the second circle while rs is the same 
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for both circles, the number of times for which MLE outputs logic zero at the second 

circle was less than that for which MLE outputs logic zero at the third circle, as can be 

seen in Fig. 4.3. 13(b) and (c).  

Fig. 4.3. 14 (d) plots the measured values of R versus angular velocity at CCW3 

for the four patterns of Fig. 4.3. 13(a), and Fig. 4.3. 14(a), (b) and (c). For the pattern 

in Fig. 4.3. 14(a), θep are 11.25o and 22.5o. For the pattern in Fig. 4.3. 14(b), θep for 

each edge are 0o, 5.125 o, 11.25 o, and 16.375 o. The test image was rotated 

counterclockwise and the output at CCW3 was recorded to calculate R. The clock rate 

was 8 Hz so the theoretical ω at which R was 100% was 2 π/sec. As can be seen in Fig. 

4.3. 14(d), all four curves had a maximum R at an angular velocity equal to 2 π/sec. 

However, due to the imperfection of alignment, R did not reach 100% at that angular 

velocity. The imperfect alignment also degraded the angular velocity-selectivity. 

According to the analysis in Section 4.3.2-C, the theoretical angular velocities at 

which R goes to 0 are 1 and 3 π/sec for the pattern in Fig. 4.3. 13(a), 1.5 and 2.5 π/sec 

for the pattern in Fig. 4.3. 14(a), and 1.75 and 2.25 π/sec for the pattern in Fig. 4.3. 

14(b). The pattern in Fig. 4.3. 14(c) has many edges but the number and positions of 

the edges are too complicated to be analyzed. However, the maximum R at every ω is 

determined for the pattern in Fig. 4.3. 14(c) since a equals two for the third circles. 

Thus, for this pattern, the theoretical values of angular velocity at which R is 0 should 

be greater than 1 π/sec and less than 3 π/sec, according to the analysis in Section 

4.3.2-C with a=2. The measured angular velocities at which R goes to 0 were 1 and 

3.2 π/sec for the pattern in Fig. 4.3. 13(a), 1.3 and 2.7 π/sec for the pattern in Fig. 4.3. 

14(a), 1.5 and 2.4 π/sec for the pattern in Fig. 4.3. 14(b), and 1.2 and 2.7 π/sec for the 

pattern in Fig. 4.3. 14(c). Although the angular velocities at which R goes to 0 were 

disturbed by the misalignment effect, the effect of θep on the angular 

velocity-selectivity were consistent with the analysis in Section 4.3.2. The angular 

velocity-selectivity for the pattern in Fig. 4.3. 14(b) is the best while the angular 

velocity-selectivity for the pattern in Fig. 4.3. 13(a) is the worst. 

Fig. 4.3. 15 presents the angular velocity-selectivity at different clock rates. The 

angular velocity with maximum R can be controlled by the clock rate. The pattern in 

Fig. 4.3. 13(a) was rotated counterclockwise and CCW3 was recorded to compute R. 

The CW3 was kept at logic one and was therefore not shown in Fig. 4.3. 15. The 

clock rate was set to 0.01, 0.1, 1, 10, and 160 Hz. The angular velocities with 
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maximum R were correctly the theoretical values, 0.0025, 0.025, 0.25, 2.5 and 40 

π/sec, respectively. The imperfection of the alignment prevented R from being 100%. 

As shown in Fig. 4.3. 15, the angular velocity-selectivity was verified at the clock rate 

that changed through four orders of magnitude from 0.01 to 160 Hz. Furthermore, the 

delay time can be as large as 100 seconds, which is impossible to be realized in a 

conventional RC circuit in integrated circuits technology.  

On the other hand, if the image is rotated with a constant angular velocity, this 

rotation sensor can be used to measure the angular velocity by sweeping the clock rate 

and checking the occurrence of the maximum R as shown in Fig. 4.3. 16. The pattern 

in Fig. 4.3. 13(a) was rotated counterclockwise and CCW3 was recorded. The CW3 

was kept at logic one and was therefore not shown in Fig. 4.3. 16. The angular 

velocity of the rotating image was set to 0.02, 0.2, 2, 50, and 206 π/sec. The clock 

rates that maximize R were correctly the theoretical values, 0.08, 0.8, 8, 200 and 824 

Hz, respectively. The misalignment caused R to be less than 100%. The detectable 

range of angular velocity was at least four orders of magnitude, as shown in Fig. 4.3. 

16. The upper limit comes from the limited angular velocity of the motor in the 

measurement equipment. The lowest available clock rate of the clock signal generator 

imposes the lower limit on the detectable range.  

Fig. 4.3. 17 plots the angular velocity-selectivity at the illumination of 0.91 and 

366 lux at a wavelength of 550 nm. The pattern in Fig. 4.3. 13(a) with a contrast of 

80% was used. The image was rotated counterclockwise and CCW3 was recorded. 

The light source was a white light source. The clock rate was set to 10 Hz. Fig. 4.3. 17 

indicates that the angular velocity-selectivity is only slightly degraded by the low 

illumination. The power dissipation at the illumination of 366 lux is 95 mW. 

4.3.5 Conclusion 

A CMOS focal-plane rotation sensor, which uses a retinal processing circuit and a 

correlation-based algorithm, is implemented and analyzed. The proposed rotation 

sensor has a polar structure and is selective to the angular velocity and direction 

(clockwise and counterclockwise) of rotating images. The selected angular velocity is 

controlled by the period of a clock signal. The relationship between R and ω is 

derived to describe the angular velocity-selectivity. The maximum R is 100% when 

the image is rotated by ω=θs/T. R is decreased if the angular velocity deviates from 

θs/T.  
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More than one pixel is placed between two correlated pixels, 45o apart, to 

enhance the angular velocity-selectivity. The structure with more than one pixel 

between two correlated pixels is analyzed. The angular velocity at which R is 

decreased to zero is given by θs/T±θs/aT. Thus, the angular velocity-selectivity is 

enhanced by increasing a. 

If the incident image has multiple edges, then the angular velocity-selectivity is 

related to both the number and positions of the edges and the value of R is confined in 

a range described by a set of inequalities. The upper bound of the range is reached if 

θep are the same for every edge. The lower bound of the range is reached when θep for 

every edge are equally distributed between 0 and θs/a. 

An experimental rotation sensor chip was fabricated using the 0.6 μm 

single-poly-triple-metal CMOS process. The rotation sensor is comprised 104 pixels, 

which form five concentric circles. The numbers of pixels in the circles are 8, 16, 16, 

32 and 32 in order from the center. The area of a single pixel is 91×84 μm2, with a fill 

factor of 20%. The chip area is 1812×1825 μm2. The dc power consumption was 10 

mW at 5 V in the dark while that at the illumination of 366 lux is 95 mW. The 

experimental results concerning the fabricated chip verified that both the clockwise 

and the counterclockwise directions could be correctly detected. The angular 

velocity-selectivity was also verified at a clock rate from 0.01 to 160 Hz. The 

proposed rotation sensor can be used to detect the angular velocity ranging from 

2×10-2 to 206 π/sec by sweeping the clock rate. The optical dynamic range at a 

contrast of 80% was 52 dB from 0.91 lux to 366 lux. It is found from the experimental 

results that the angular velocity selectivity is degraded by the misalignment effect. A 

practical method to solve this problem is to read out the sensed image and find the 

center of the rotating image. Then, precise motors can be used to adjust the position of 

the chip and align the center of the rotating image to the center of the circle of the 

pixels so that the error caused by misalignment effect can be reduced. 

4.4 A CMOS FOCAL-PLANE RETINAL SENSOR DESIGNED 

FOR SHEAR MOTION DETECTION 
4.4.1 Introduction 

Mathematically, optical flows can be decomposed locally into div (or 

contraction/expansion), curl (or rotation), and def (or shear), up to a translation  　

[132]. Rotation, expansion (or contraction) and shear (or deformation) are called 
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Elementary Flow Components (EFCs) as shown in Fig. 4.4. 1. These invariants can be 

used to describe the relative motion between an observer and his surroundings, and 

also the 3D structure of the surroundings. On the other hand, some 

electrophysiological recordings of the cortical neuron of the monkey have revealed 

that some neurons in Medial Superior Temporal (MST) area of the visual cortex are 

selective to rotation, expansion/contraction, combinations of these stimuli, and 

translation in a given direction. It has been observed that another group of neurons in 

the fundus of superior temporal sulcus visual area (FST) of visual cortex is sensitive 

to shear. While rotation and expansion determine the relative motion between the 

observer and his surroundings, shear depends only on 3D structure of the 

environment. 

In conventional focal-plane motion sensors, the arrangement of the pixels is 

regular and forms a rectangular pattern. Also, the correlation is performed between the 

four immediate neighbors to obtain the local motion vectors. These sensors are 

designed for translation [18] but not suitable for EFCs detection because of their 

special motion model. In [19], the pixels are placed in a polar structure to overcome 

the difficulty of extracting the information of rotation in conventional sensors. In 

order to fit shear motion model, the pixels of this proposed shear sensor are placed in 

a shear-motion-like structure to ensure the detection of shear-motion. Every pixel is 

correlated with the shear and reversed-shear pixels that are neighbored apart in the 

same path. Based on the proposed computation method, shear motion can be detected 

and other motions can be dismissed. Displacement and velocity are determined by 

off-chip computation of summations of all correlation outputs. 

In the proposed shear sensor, the function of image acquisition and preprocessing 

can be performed by using the pseudo-BJT-based retinal processing circuit with an 

adaptive current-input Schmitt trigger [107]. It has the advantages of pseudo-BJT as 

well as the robust noise immunity, high dynamic range and contrast-enhanced. The 

proposed shear motion sensor are designed and fabricated by 0.35 µm 2P4M CMOS 

process. The sensor contains 92 pixels and form four shear-motion detection pairs. 

Each pair is composed of four sets of pixels placed in symmetric manner to 

correspond to the shear motion. The area of a single pixel is 52.96 x 55.07 µm2 with a 

fill factor of 16% whereas the chip area is 1100 x 1100 µm2.  

This paper is organized as follows. In Section 4.4.2, the architecture and circuit of 

the proposed shear sensor is presented. Section 4.4.3 shows the experimental results. 
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Finally conclusions are drawn in Section 4.4.4. 

4.4.2 Circuit Implementation 

To detect shear motion, it is necessary to arrange the positions of pixel along the 

shear-motion paths. First of all, find several primary paths according to the optical 

flow of shear motion. In this design, four symmetry pairs of path are found and 

furthermore each pixel is placed along these selected primary paths. It is also 

important to keep the tangential distance between two pixels in the same path equal. If 

not, it is difficult to extract the information of displacement or velocity of shear 

motion. Fig. 4.4. 2 shows the architecture of the proposed shear sensor, which consists 

of 92 pixels and form four shear-motion detection pairs. The arrangement of pixels is 

depicted from this figure. Every pixel is correlated with itself and the shear and 

reversed-shear pixels that are neighbored apart. The shear, reversed-shear and self 

correlation results of all the pixels are serially read out. The three primary outputs, 

ashear, arshear, and aself, of the sensor are thus accumulated to obtain three 

correlation outputs which are used to determine the displacement per frame. Followed 

the motion computation method of [134], the displacement of shear motion can be 

obtained by  
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where ΣC(shear), ΣC(rshear) and ΣC(self) represent the sum of ashear, arshear and 

aslef which are generated sequentially by the whole pixel array. During shifting of the 

previous image frame to compute ΣC(shear) and ΣC(rshear), the boundary pixels are 

fixed at zero for simplicity. The boundary condition, however, does not influence 

ΣC(self) because of no shifting needed in the calculation of ΣC(self). 

To calibrate this boundary condition, two factors b1 and b2 are added to calculate 

displacement during measurement. The value of b1 is chosen to be half the number of 

pixels at one side of the boundary while b2 is half of b1. In this design, b1 is 8 and b2 is 

4. If the motion under detection is shear, for example, ΣC(shear) is greater than 

ΣC(rshear), ΣC(shear), and ΣC(rshear) are equal when the motion is neither shear 

nor reversed shear.  Therefore, the formula gives both the information of direction 

and displacement. 
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Fig. 4.4. 3 shows the structure of a single pixel. Each pixel consists of a retinal 

processing circuit, two registers, three correlators, three shift registers. The register 

CF samples and stores the output of the retinal processing circuit and shift the stored 

data to the register PF after a clock cycle. The output of register CF is then sent to the 

correlators of the same pixel to be correlated with the output of PF and the outputs of 

PF from its adjacent pixels, which are belong to the same set along shear and the 

reversed-shear direction. Two of the correlators are corresponding to the detection of 

shear and reversed-shear motions and the other is used to adjuvant the computation of 

displacement. These outputs of the correlators are sent out for further computation 

mentioned above.  

The retinal processing circuit is detailed in Fig. 4.4. 4 [107], in which an isolated 

PNP pseudo-BJT is used as a photoreceptor, a smoothing NPN pseudo-BJT with 

adjustable N-channel MOS resistors is used as the retinal smoothing network, an 

adaptive current-input CMOS Schmitt trigger and an inverter are included. It mimics 

parts of functions of the cells in the outer plexiform layer of the real retina. The retinal 

processing circuit converts incident images to bi-level images and therefore has 

properties of high dynamic range and contrast-enhanced. With aid of adaptive current 

Schmitt trigger, the ability of noise immunity is adjustable adaptively according to the 

value of induced photocurrent. The purpose of additional output, image_out, is used 

to monitor the image captured. 

4.4.3 Experimental Results 

The area of the experimental shear motion sensor is 1100 μm x 1100 μm as 

shown in Fig. 4.4. 5 (a) where the area of a single pixel is 52.96 μm x 55.07 μm with a 

fill factor of 16%. Fig. 4.4. 5 (b) is a single pixel. The pixel arrangement of the core 

circuit is along shear motion paths as seen in Fig. 4.4. 5 (a). In Fig. 4.4. 5 (b), the left 

upper corner of the pixel is photodiode and metal four covers the other pixel circuits 

in order to prevent leakage current when light is incident. The DC power dissipation 

of the sensor, except the off-chip counter used to control the decoder in the core 

circuit, is 3mW at 3V in the dark. 

The testing chip is attached on a holder and placed behind the lens. The test 

patterns are controlled by the software in a computer and projected on the chip by a 

projector. The outputs of chip are recorded by a logic analyzer for further analysis. 

Lens is used in the setup of measurement to focus the test patterns onto the chip. The 

velocity of test pattern is controlled by the software in the computer but it is not the 
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actual velocity on the chip. The ratio of the object velocity to the image velocity is 

obviously equal to the ratio of the object height to the image height. According to the 

theory of geometric optics [136], the lateral magnification of a thin lens is defined as 

the ratio of image height to object height and can be obtained by the image distance 

over the object distance. In the case of measurement, the object distance is about 83 

cm and the image distance is 16 cm. The magnification is approximately 5.1. 

Fig. 4.4. 6 and Fig. 4.4. 7 illustrates calculated velocities when shear and 

reversed-shear motion pattern is incident to the sensor, respectively. The testing 

velocities are 0.06 mm/sec, 0.09 mm/sec and 0.18 mm/sec. From the measurement 

results, it shows the deviations between calculated and actual velocities are within 

±10%. The deviations are obtained from 

(%) 100cal act

act

V Vdeviation
V
−

= ×          (2) 

,where Vcal and Vact represents calculated and actual velocities, respectively. The shear 

and reversed-shear patterns are 0.25 cm2 and each includes 11×11 pixels. Fig. 4.4. 8 (a) 

to (k) depicts successive 11 frames of shear motion test patterns. Reverse the order of 

the 11 frames shown in Fig. 4.4. 8, that is, (k) to (a) is reversed-shear patterns. 

 Fig. 4.4. 9 shows three patterns used to test the proposed shear motion sensor can 

dismiss translation. Fig. 4.4. 10 (a) is measurement results when the test pattern, an 

edge, which is shown in Fig. 4.4. 9 (a) translates at different velocities. The calculated 

velocities are obtained after the image sampled 11 frames. In this figure, it is the fact 

that each calculated velocity is much smaller than the actual velocity image translates. 

In other words, this means the sensor did not detect the shear motion. Fig. 4.4. 10 (b) 

displays the trend that the calculated velocity decrease as the image sampled frames 

increase. The calculated velocity does not have much difference from the actual 

velocity at initial frames since translation is similar with shear motion in the first 

instance. When the sampled images increase, the difference between shear motion and 

translation enlarges and thus the calculated velocity decreases. In the same way, Fig. 

4.4. 11 and Fig. 4.4. 12 show how the proposed shear motion sensor dismisses 

translation of test patterns in Fig. 4.4. 9 (b) and (c). Each test pattern is 0.35 cm2 and 

includes 11×11 pixels. Calculated velocity is obtained from correlation outputs 

accumulated over 11 frames. This is because patterns make positive contributions to 

shear motion when they translate from the left side of chip to the center, and make 

negative contributions when translating from center to the right side. The chip is 11 
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pixels wide from the left side to the right and thus every computation and simulation 

is done over 11 frames. Measurement results of Fig. 4.4. 9 (b) to Fig. 4.4. 11 (b) 

ensure this idea. A summary of the fabricated chip is given in Table 4.4. 1. 

4.4.4 Conclusion 

A first shear motion sensor has been proposed, designed and tested successfully. 

In the proposed shear sensor, it uses the pseudo-BJT-based retinal processing circuit 

with adaptive current Schmitt trigger to achieve image acquisition and thus has 

advantages of high dynamic range, edge enhancement, and robust noise immunity. 

The correlation-based algorithm with modification which is inspired by a biological 

model has the benefits of robustness and compactness and is adopted to calculate the 

velocity. With the specific pixel arrangement along with the modified 

correlation-based algorithm, the shear motion can be detected and other motions are 

dismissed. The experimental shear motion sensor was fabricated in a 0.35 μm 

double-poly-quadruple-metal CMOS process. The chip area is 1100 x 1100 μm2 

where the area of a single pixel is 52.96 x 55.07 μm2 with a fill factor of 16%. Using 

this chip along with off-chip computation, shear motion is tested under 0.06 mm/sec, 

0.09 mm/sec and 0.18 mm/sec and the velocity deviations are less than ±10%. The 

shear motion sensor is also tested by three translating patterns and the shear motion 

selectivity is thus verified. The DC power dissipation is 3mW at 3V in the dark. 

To make the shear motion sensor more completely, the off-chip computation has 

to be combined with the proposed circuits on the next chip. Moreover, the detection of 

translation, rotation, and expansion may be integrated with this shear motion sensor to 

moreover analyze the 3D motion in the future. 

 



115 

Table 4. 1 Summary of the results of CHAPTER 4 
Section 4.1 [17] 4.2 [18]  4.3 [19] 4.4 [47] 

Published year 1999 2002 2004 2004 
Technology 0.6μm 1P3M 0.5μm 1P3M 0.6μm 1P3M 0.35μm 2P4M

Sampling geometry linear linear circular shear 
Resolution 32 x 32 32 x 32 104 pixels 

5 circles 
92 pixels 
5 paths 

Pixel size 100μm×100μm 100μm×100μm 91μm×84μm 53μm×55μm
Chip size 3.6mm x 3.6mm 4.2mm x 4mm 1.812mm x 

1.825mm 

1.1 mm x 1.1mm

Power supply 5V 5V 5V 3.3V 
DC Power dissipation 

in dark 
20mW 120 mW 10mW 3 mW 

The measured range of 
selectively detected 

speed 

56 mm/sec ~ 
5 m/sec 

1 pixel/sec ~ 

1.4×105pixels/sec

2×10-2 π/sec ~ 
206 π/sec 

 

 

Table 4.1. 1. The summary on the characteristics of the fabricated 

motion-selective detection chip 

Technology 0.6 μm N-well CMOS 
Resolution 32 × 32 
Chip size 3.6mm × 3.6mm 
Cell size 100μm × 100μm 
Fill factor 20 % 
Space between two adjacent silicon 
retina cells 

50 μm 

Power supply 5 V 
The measured power dissipation 20 mW 
The measured capacitance of PMOS 
in the transient detector  
(W/L=6μm/6μm) 

0.072 pF 

The measured range of selectively 
detected speed (on-chip speed) 

56 mm/sec  ~  5 m/sec 
(Pulse width: 195 μsec ~ 1.2 μsec) 

The measured range of selectively 
detected direction (On-chip direction)

0o ~ 360o 
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Table 4.3. 1. The size of the transistors of the retinal processing circuits 

 W (μm) L (μm) 

Mc  1.5 1.2 

Mip=Mips=Mipi  1.5 1.2 

Min=Mins=Mini  3 1.2 

Mp=Mn  1.5 0.6 

Ms=Msr=Mi=Mir  4.5 2.4 

Mf1=Mf2  1.5 0.6 

Mp1=Mp2=Mp3=Mp4 9 3 

Msc=Msi  1.5 0.6 

Minvp  1.5 0.6 

Minvn  1.5 0.6 

 
Table 4.4. 1 The summary on the characteristics of the fabricated chip of shear 

motion sensor 

Technology 0.35μm CMOS 2P4M 

Sampling geometry Shear motion 

Pixel number 92 pixels 

Pixel size 52.96 μm x 55.07 μm 

Fill factor 16% 

Chip size 1100 μm × 1100 μm 

Clock rate 490Hz 

Frame rate 3Hz 

Testing velocities 0.06 mm/sec, 0.09 mm/sec 

and 0.18 mm/sec 

Deviation of testing velocity <±10% 

Power dissipation @ 3V ~    3 mW in dark 

(except the off-chip counter used 

to control the decoder) 
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Fig. 4.1. 1. The adopted token-based delay-and-correlate motion computation 

algorithm. 

 
(a) 

 
(b) 

Fig. 4.1. 2. (a) The structure of BJT-based silicon retina with tunable image smoothing 

capability which is proposed in [7], [124].  (b) The measured responses of the 

emitter current difference of a single cell in the BJT-based silicon retina [7] with a 

moving light bar incident upon the chip. 
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(a) 

 
(b) 

 
(c) 

Fig. 4.1. 3. (a) The edge extractor which detects the temporal zero-crossings from the 

edge signals given by the BJT-based silicon retina and generate the edge pulse.  (b) 

The circuit architecture which is used to realize the element D in Fig. 4.1. 1 for the 

generation of delayed edge pulse signals.  (c) The circuit architecture of the 

correlators. 
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(a) 

 
(b) 

Fig. 4.1. 4. (a) The layout diagram of the basic detection cell, and (b) the photography 

of the 32×32 2-D velocity- and direction-selective sensing chip which is fabricated by 

using 0.6 μm N-well CMOS technology. 
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Fig. 4.1. 5. The oscilloscope traces of the various computational stages of one motion 

detection cell in the 2-D array.  The emitter currents of the BJTs are read out by 

using off-array OP AMPs circuits with negative-feedback resistors to linearly convert 

them into voltages.  The bias voltages are: VG=3V, VB=1.2V, VP=2V, VF=0V, 

Vpulse=0.9V, and VdX= VdY=0.7V. 

 
Fig. 4.1. 6. The measured output waveforms at the four output terminals of the 

fabricated sensor chip when a bright spot moves in the 45˚ direction with the preferred 

speed.  The bias voltages are: VG=3V, VB=1.2V, VP=2V, VF=0.3V, pulse width=10μs, 

and delay time=71μs. 
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Fig. 4.1. 7. The measured maximum variance of the delay time of one pixel among 8 

fabricated chips. 

 
Fig. 4.1. 8. The measurement of the direction-selective function of the fabricated 

sensor chip where the inter-pulse delay time at the four terminals are measured and 

plotted for different directional angles.  The bias voltages in the measurement are 

VG=3V, VB=1.2V, VP=2V, VF=0.3V, and pulse width=25μs. 
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Fig. 4.2. 1. Conceptual structure of the motion computation method. R is the retinal 

processing circuit; CF and PF are registers used to store the current and previous 

sampled outputs of R, and C is the correlator. All the outputs of C are summed by the 

accumulator to obtain the correlation output. 

 

 
Fig. 4.2. 2. The pattern of a stripe with a width of 4P, moving to the right. d is the 

distance from an edge to the center of the nearest pixel in the direction of motion. P is 

the distance between two adjacent photo sensors in two adjacent pixels, or the length 

of each pixel. 
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Fig. 4.2. 3. Architecture of the proposed focal-plane motion sensor. 

 
Fig. 4.2. 4. Structure of a single pixel. 
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Fig. 4.2. 5. Structure of the BJT-based retinal processing circuit. 
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(a) 

(b) 

(c) 

Fig. 4.2. 6. HSPICE simulation results, illustrating the output of the retinal processing 

circuit (a) with the background photocurrent's varying from 1 nA to 0.1 μA; (b) with 

the image blurred, and (c) with normally distributed noise, with a standard deviation 

of 0.04 nA. 
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(a) (b) 

 

Fig. 4.2. 7. Photographs of the proposed motion sensor for (a) the whole fabricated 

chip and (b) a single pixel. 

 

 
Fig. 4.2. 8. Photo response of the photo-BJT. 
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(a) (b) 

 
(c) (d) 

 

Fig. 4.2. 9. Four test patterns; (a) stripes (b) circles (c) soccer (d) Lena. 

 

(a) (b) 

Fig. 4.2. 10. Calculated velocity for the four kinds of patterns; (a) calculated velocity; 

(b) velocity deviation ratio. The velocity of the moving image varies from 1 pixel/sec 

to 10 pixels/sec in the –x direction; the sampling rate is 10 Hz. 
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(a) (b) 

Fig. 4.2. 11. Calculated velocity at different sampling rates; (a) calculated velocity; (b) 

velocity deviation ratio. The sampling rate is 140K Hz for Vm=140,000 pixels/sec and 

1 Hz for Vm=1 pixel/sec. Motion is in the –y direction. 

 

(a) (b) 

Fig. 4.2. 12. Minimum detectable velocity; (a) calculated velocity; (b) velocity 

deviation ratio. The velocity of the moving image varies from 274.5 to 122 pixels/sec 

in the –x direction; the sampling rate is 3.05K Hz. 
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(a) (b) 

Fig. 4.2. 13. Calculated direction as the image moves at two different velocities; (a) 

calculated direction; (b) direction deviation. The velocities of the moving image are 

3,750 and 7,500 pixels/sec, respectively. The sampling rate is 75K Hz for both curves. 
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Fig. 4.3. 1. Conceptual structure of the adopted correlation-based algorithm for 

rotation detection. Each pixel is comprised of a retinal processing circuit PH, registers 

CF and PF, and correlator C. MLE aggregates the output of all correlators in a single 

circle to determine the global rotation. 

 
(a) 

 
(b) 

Fig. 4.3. 2. (a) An edge, rotating from the (i-1)th pixel Pi-1 to the ith Pi pixels within n0 

clock cycles. θs is the angle between two correlated pixels. ω is the angular velocity 

and T is the clock period. (b) The relationship between R and ω, where R is defined as 

the ratio of the number of times when the output of MLE is at logic 0 in N clock 

cycles, to N. 
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Fig. 4.3. 3. Example of an image with four edges located in various positions, rotating 

clockwise. There are eight pixels, P0 to P7. The image has four edges E1, E2, E3, and 

E4 and the initial angles between these edges and their own front pixels are θs, 3θs/4, 

θs/2 and θs/4, respectively. 
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(a) 

 
(b) 

 
(c) 

Fig. 4.3. 4. (a) Relationship between R and ω for an image with L edges located at 

various positions. (b) MATLAB simulation results with L=2. (c) MATLAB simulation 

results with L=4. Curves 1 and 2 refer to the extreme cases in which R is maximum 

and minimum at every ω, respectively. Curves 3 and 4 refer to the simulation results 

with random θep for every edge. 
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(a) 

 
(b) 

 
(c) 

Fig. 4.3. 5. (a) Structure modified to enhance the angular velocity-selectivity. A total 

of a pixels are placed within θs while the two pixels separated by θs are correlated. (b) 

Example of an edge’s approaching the ath pixel Pa. The edge crosses Pa at the n0
th 

clock cycle. (c) Relationship between ω and R for the modified structure. 
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(a) 

 
(b) 

Fig. 4.3. 6. (a) Relationship between R and ωfor the modified structure when the 

image has L edges at arbitrary positions. (b) MATLAB simulation results with a=2 

and L=16. Curves 1 and 2 are the extreme cases in which R is maximum and 

minimum at every ω, respectively. Curves 3 and 4 are the simulation results with 

random θep for every edge. 
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Fig. 4.3. 7. Angular velocity versus angle with the center of rotation shifted in the 0o 

direction by 0, 0.4r, and 0.8r, where r is the radius of the circle of pixels.  

 

 
Fig. 4.3. 8. Architecture of the proposed rotation sensor, which includes104 pixels in 

five concentric circles. The clockwise and the counterclockwise correlation results of 

all the pixels in a single circle are sent to MLE.  
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Fig. 4.3. 9. Pixel structure of the rotation sensor. Each pixel consists of a retinal 

processing circuit, two registers CF and PF, two correlators, and two P-channel 

MOSFETs Mmlecc and Mmlec, which are parts of MLE, implemented by NAND gates. 

 

 
Fig. 4.3. 10. Structure of the retinal processing circuit. The retinal processing circuit 

includes an isolated photo-BJT Q2, a smoothing photo-BJT Q1, a current-input CMOS 

Schmitt trigger and an inverter. 
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Fig. 4.3. 11. Structure of MLE, which is implemented by a NAND gate with a fan-in 

number equal to the number of pixels in a circle. 

 

     
(a)        (b) 

Fig. 4.3. 12. Photograph of (a) the whole chip and (b) a single pixel, of the rotation 

sensor. 
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(a) 

 
(b) 

 
(c) 

Fig. 4.3. 13. (a) Pattern used to test rotation direction-selectivity. (b) Waveforms 

measured by the logic analyzer with the image rotated clockwise. (c) Waveforms 

measured by the logic analyzer with the image rotated counterclockwise. The 

waveforms, CW2 (CCW2), CW3 (CCW3), CW4 (CCW4) and CW5 (CCW5) are the 

clockwise (counterclockwise) outputs of MLE of second, third, fourth and fifth circles. 

The contrast of the pattern is 99% and the light source is a 5mW LASER. The clock 

rate is 10 Hz and the angular velocity is 2.5 π/sec. 
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(a)                    (b)                    (c) 

 
(d) 

Fig. 4.3. 14. (a) Test pattern with θep of 11.25o and 22.5o. (b) Test pattern with θep of 

0o, 5.125o, 11.25o and 16.375o (c) Test pattern, Lena. (d) Angular velocity-selectivity 

with the four patterns in Figs. 13(a), 14(a), 14(b) and 14(c). 

 

Fig. 4.3. 15. Relationship between R and ω at clock rates of 0.01, 0.1, 1, 10, and 160 

Hz. Angular velocities when R is maximum are at 0.0025, 0.025, 0.25, 2.5 and 40 

π/sec. 
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Fig. 4.3. 16. Relationship between R and clock rate at angular velocities of 0.02, 0.2, 2, 

50 and 206 π/sec. Clock rates when R is maximum at are 0.08, 0.8, 8, 200 and 824 

Hz. 

 

 
Fig. 4.3. 17. Angular velocity-selectivity under an illumination of 0.91 and 366 lux at 

a wavelength of 550 nm.  
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Fig. 4.4. 1. Elementary flow components (EFCs). 

 
Fig. 4.4. 2. The architecture of the proposed shear sensor. 

 
Fig. 4.4. 3. The pixel structure of the shear sensor. 
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Fig. 4.4. 4. The schematic of the retinal processing circuit. 

    
                  (a)                             (b)  

Fig. 4.4. 5. Photograph of (a) the whole chip, and (b) a single pixel, of the shear 

motion sensor. 

a pixel 

photodiode 
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(a) (b) 

 

Fig. 4.4. 6. (a) Calculated velocities over 11 frames when the shear pattern moves at 

0.06 mm/sec, 0.09 mm/sec and 0.18 mm/sec; (b) Deviations between calculated and 

actual velocities. The sampling rate is 3 Hz. 

 

(a) (b) 

 

Fig. 4.4. 7. (a) Calculated velocities over 11 frames when the reversed-shear pattern 

moves at 0.06 mm/sec, 0.09 mm/sec and 0.18 mm/sec; (b) Deviations between 

calculated and actual velocities. The sampling rate is 3 Hz. 
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(a)      (b)    (c)    (d) 

    
(e)      (f)    (g)    (h) 

   
(i)      (j)     (k) 

 

Fig. 4.4. 8. From (a) to (k) represents eleven frames of shear motion test patterns, 

while (k) to (a) represents reversed-shear test patterns. 

 

  
(a) (b) (c) 

Fig. 4.4. 9.Three patterns used to test if the translation is dismissed: (a) an edge (b) a 

car and (c) Lenna 
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(a) (b) 

Fig. 4.4. 10 (a) Calculated velocities when the test pattern shown in Fig. 4.4. 8 (a), an 

edge, moving to the right at different velocities; (b) Calculated velocity decrease to 

nearly zero as sampling frames increase. The image translates to the right at 0.27 

mm/sec. The sampling rate is 3 Hz.  

(a) (b) 

Fig. 4.4. 11. (a) Calculated velocities when the test pattern shown in Fig. 4.4. 8 (b), a 

car, moving to the right at different velocities; (b) Calculated velocity decrease to 

nearly zero as sampling frames increase. The image translates to the right at 0.27 

mm/sec. The sampling rate is 3 Hz. 

(a) (b) 

Fig. 4.4. 12. (a) Calculated velocities when the test pattern shown in Fig. 4.4. 8 (c), 

Lenna, moving to the right at different velocities; (b) Calculated velocity decrease to 

nearly zero as sampling frames increase. The image translates to the right at 0.27 

mm/sec. The sampling rate is 3 Hz. 
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CHAPTER 5 

A NEUROMORPHIC CHIP THAT IMITATES THE 

ON BRISK TRANSIENT GANGLION CELL SET 

IN THE RETINAS OF RABBITS 

5.1 INTRODUCTION 
The retina is a unique organ common to all organisms with the faculty of sight and 

is used to communicate with the visual world. It has superior performance in such 

areas as visual perception image detection and preprocessing: for example, in 

covering a wide range (1010) of light intensities; in responding to very low levels of 

contrast (~1%); and in integrating for short periods of times (~0.04 second) [25]. As a 

consequence, much research has been devoted to implementations of retinal functions 

on silicon chips, such as the partial functions of photoreceptors and horizontal cells 

with part of knowledge of bipolar cells [7][46][68][74]. Various kinds of applications 

have also been developed using the designed chips, such as motion detection sensors 

[8]-[19], and high-performance image sensors [20]-[24]. Neuroscientists see the retina 

as a part of the brain that develops within the eye to provide neural processing for 

photoreceptor signals [25]. With the latest advances in neuroscience, it has been found 

that the mammalian visual system analyses the world through a set of separate 

spatio-temporal channels [25], [38]. These channels are constructed by different 

retinal cells, later by different cells of the lateral geniculate nucleus (LGN), and also 

the 36 retinotopic cortical channels. In the retina, the output ganglion cells can 

translate photoreceptor signals into neural spikes and send the spikes to the brain. 

Each channel extracts a unique spatiotemporal feature of the visual world. About half 

of the cerebral cortex is used to analyze the data from these channels [25], [49]. These 

features comprise the necessary visual information needed for the brain to analyze the 

visual world, thus they constitute visual language for the brain [39], [43]. This visual 

language is very complicated and much of it is still unknown or not understood by 

neuroscientists. 

Our detailed view of the operation of the mammalian retina, however, changed 

dramatically by the discovery of the operation of the inner plexiform layer [38], [39]. 

This led to the understanding of the roles of different amacrine cells, as well as the 
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dual path in each channel. These channels have different responses to light input 

patterns from the visual world. Therefore, both the morphological and 

electrophysiological characteristics of the retina should be considered before 

designing a retinal chip in seeking to understand visual language. Moreover, the 

neuromorphic multilayer CNN model [44], [43] shed light to understand the role of 

different circuits and layer parameters.  

It is important to duplicate successfully the retinal functions, channels, and visual 

language on silicon chips because of the key advantages this might provide. First, it 

could help neuroscientists to understand retinal functions and visual language. Since 

biological experiments can only be performed on a very limited number of cells, it is 

very difficult to see the global spatiotemporal features of retinal cells using this 

method alone. Second, it could provide valuable clues concerning neural activities in 

the visual cortex and thus move a few more steps toward the discovery of the visual 

processing of the brain. Third and finally, duplication could enable important 

applications in the areas of intelligent visual sensor systems and retinal prostheses. 

To date some CMOS neuromorphic chips have been designed to imitate the retinal 

channels [26]-[30]. In these chips the retinal channels are simply divided into 

ON/OFF and transient/sustained channels. To implement these channels, a general 

circuit is used to generate the channel signals that are similar to the measurement 

results of retinal cells. Some of the functionalities have been implemented using 

programmable cellular visual microprocessors. After the major discovery in retinal 

operation mentioned above [38], the first real-time, programmable, multi-channel, 

neuromorphic physical implementation was constructed using the Bi-i camera 

computer [138]. 

In our research, a design methodology has been developed to implement specific 

retinal channel in CMOS technology. Since each retinal channel is represented by an 

array of the corresponding ganglion cell types, it is suitable to define the channel with 

the corresponding ganglion cell. In the proposed methodology, each kind of ganglion 

cell set is implemented in a compact CMOS circuit. Different kinds of ganglion cell 

sets can be implemented similarly and integrated together. 

In this thesis, the ON brisk transient ganglion cell set of rabbits’ retinas is adopted 

and implemented on a CMOS neuromorphic chip. The circuitry and cellular responses 

of this ganglion cell set has been completely revealed. Therefore, the design 

methodology can be verified well with the chosen ganglion cell set. The 
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neuromorphic model of the ON brisk transient ganglion cell set, which is directly 

derived from the biological measurements, is considered. The model-building 

approach is to incorporate the available knowledge concerning morphology, 

electro-physiology, and pharmacology and by only using elementary building blocks 

[44]. Then the model is transformed into a RC equivalent circuit which consists of 

gain blocks, resistors, and capacitors. Based on the RC equivalent circuit, a suitable 

macromodel is developed for CMOS circuit implementation. The resultant chip has 

been fabricated and measured, and its retinal functions have been verified 

successfully. 

In Section II of this paper, the retinal model of the ON brisk transient ganglion 

cell set is presented. In Section III, the detailed CMOS circuits and the chip 

architecture are described. The experimental results are presented in Section IV, where 

the various spatial, temporal, and spatiotemporal characteristics of the neuromorphic 

model and the implemented chip are shown. Finally, the summary is given in Section 

V. 
5.2 RETINA MODEL 
5.2.1 Neuromorphic Model of the Retinal Cell Set 

The block diagram of the neuromorphic model of the ON brisk transient ganglion 

cell set is shown in Fig. 5. 1(a), where each block has a specific name and is defined 

as the abstract neuron in [44]. An abstract neuron is a lowpass filter (LPF) with 

laterally diffusive capability. The parameter τ denotes the time constant in millisecond 

of the LPF. The parameter D denotes the space constant, which is defined by the 

laterally diffusing range in cell number in a 180-cell array. Its physical meaning is 

defined by the spatial range where the signals decrease to 10% of its highest value. 

The small block with the parameter G is the gain factor of each interconnection 

between two blocks. The black block denoted as R means the signals are positively 

rectified through it. Since biological cells don’t work very precisely, relationships 

between both time and space constants affect the spatiotemporal features more than 

their absolute values. Even if scaling down these parameters by similar factors, 

similar spatiotemporal features are still obtained after normalization. 

The space constants are obtained from morphological and electrophysiological 

data derived from living neural tissue, which may contain information concerning 

both cell sizes and lateral coupling between cells. However, it has been found that 
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there are only three levels of lateral inhibition mediated by the horizontal cell, the 

OFF bipolar cell, and the amacrine cell [37]. The lateral inhibitions compress the 

spatial representation of the stimulus, thus they have some key effects on the 

spatiotemporal characteristics of the ganglion cell channels. Therefore, only the space 

constants of the horizontal cell, the OFF bipolar cell, and the amacrine cell contain the 

information of lateral coupling between cells and, as a consequence, they play more 

important roles than the other space constants. 

Corresponding to biological cells, the blocks PH1 and PH2 together comprise the 

photoreceptor, where PH1 performs the sensing function of a photoreceptor and PH2 

performs the temporal function of the photoreceptor feedback. The photoreceptor 

receives photo stimuli and transduces them into electrical signals. The block H 

provides functions of a horizontal cell, which performs lateral wide-range diffusion 

operation on signals of the photoreceptor and sends inhibitory feedback to the 

photoreceptor. The feedbacks from both PH2 and H are subtracted from the 

photo-stimuli at the block PH1 and then sent to the bipolar cells. The PH1 signals are 

amplified to four times their existing level before they enter the bipolar cells. 

There are two bipolar cells, namely the ON and OFF bipolar cells, in the proposed 

cell set and both the ON and OFF bipolar cells are of a transient type. The 

transient-type bipolar cell acts like a bandpass filter (BPF). Since the neuromorphic 

model is built by using LPF blocks, two LPF blocks are needed to realize the function 

of a bipolar cell. As can be seen in Fig. 5. 1(a), blocks HELP1 and ONBIP comprise 

the ON bipolar cell, whereas HELP2 and OFFBIP together comprise the OFF bipolar 

cell. Blocks HELP1 and HELP2 are not real neurons, but are assistant blocks to 

achieve the BPF function of the ON and OFF bipolar cells, respectively. Since the 

block ONBIP has a smaller time constant (τ=30ms) than that of the block HELP1 

(τ=250ms), subtracting the output of HELP1 from that of ONBIP can generate BPF 

signals with the up 3dB frequency at 4Hz and the down 3dB frequency at 33.33Hz in 

the ON bipolar cell. The same principle can be applied to blocks HELP2 (τ=80ms) 

and OFFBIP (τ=20ms). The up and down 3dB frequencies of the BPF are 5Hz and 

12.5Hz respectively in the OFF bipolar cell. Moreover, the OFF bipolar cell performs 

a very narrow lateral diffusion while the ON bipolar cell lacks this function. 

Subsequently, the ON and OFF bipolar cell signals are positively rectified before they 

enter the amacrine and ganglion cells. 

The block named Ama provides the functions of an amacrine cell in the proposed 
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cell set. The amacrine cell receives positively rectified signals from the ON and OFF 

bipolar cells with different gain factors: 0.2 and 1 respectively. It performs a lateral 

diffusion in a small range and then sends inhibitory signals to the ganglion cell. The 

block named GC performs the functions of the ganglion cell. It receives the positively 

rectified signal from the ON bipolar cell with a gain factor of 2 and the signal from 

the amacrine cell with a gain factor of -2.2. Finally, the GC signal is positively 

rectified to achieve the complete function of the ganglion cell before generating 

spikes. This signal can be used to generate neural spikes necessary to communicate 

with the brain. 

The actual RC equivalent circuit of the electrical model is shown in Fig. 5. 1(b), 

where τ is realized by a RC LPF and D is realized by a 2-D laterally resistive network. 

To understand the behavior and spatiotemporal pattern of every cell, the RC 

equivalent circuit is simulated and analyzed. The simulated results are presented in 

Section 5.4. Since the neuromorphic model is based on the available neuroscientic 

knowledge of the retina, the simulated spatiotemporal patterns of the RC equivalent 

circuit are similar to the biologically measured results. 

5.2.2 Macromodel for Chip Implementation 

To facilitate the integrated circuit implementation, the neuromorphic model in Fig. 

5. 1(a) is transformed into the macromodel in Fig. 5.2. This macromodel is used to 

integrate the cell set into a single pixel. A sensory chip containing 32x32 pixels is 

employed to verify the function of the macromodel. The macromodel consists of a 

photoreceptor (PH1 and PH2), a horizontal cell (H), an ON and OFF bipolar cells 

(ONBIP and OFFBIP), an amacrine cell (Ama), and a ganglion cell (GC). Block R 

ensures that the signals are positively rectified as they pass through it. The + and – 

signs within a circle indicate the signals which are added and subtracted, respectively, 

at that node. Due to the variations of biological cells, the constants in space and time 

for each cell have their varying degrees of tolerance. This allows inevitable process 

variations in CMOS circuit realization of these space and time constants. 

There were some modifications when constructing the macromodel from the 

neuromorphic model of Fig. 5. 1(a). First, a gain stage with a value -8 was added in 

front of the pixel circuit. This is used to enlarge the input photocurrent to facilitate the 

tracking of the circuit operations. Second, space constants of PH1, ONBIP, and GC 

were removed. Only the space constants of the horizontal cell, the OFF bipolar cell, 

and the amacrine cell are considered in order to simplify the complex interconnection 
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while retaining the functions of the three levels of lateral inhibition. Furthermore, 

since the pixel array shrinks from 180x180 to 32x32, the space constants of the 

horizontal cell, OFF bipolar cell, and amacrine cell are proportionally scaled down to 

27, 2, and 6, respectively. Third, there are better methods to implement a BPF with 

CMOS circuit rather than subtracting a LPF from the other LPF. Therefore, at the ON 

bipolar cell, the two blocks HELP1 and ONBIP are merged into the one block ONBIP 

in the macromodel, as can be seen in Fig. 5.2. The time constants of HELP1 and 

ONBIP are also merged into a single time constant, τBPF. The two values in τBPF 

denote the up and down 3dB time constants. Similarly, the blocks HELP2 and 

OFFBIP are merged into the block OFFBIP. Fourth, the time constants of the blocks 

PH1 and H are modified to τL and that of block PH2 is modified to 4τL to facilitate 

chip implementation. For the same reason, the down 3dB time constants of blocks 

ONBIP and OFFBIP are changed to 4τL, and the up 3dB time constants of blocks 

ONBIP and OFFBIP are changed to 3.2τH and τH, respectively. Finally, since the time 

constants of the amacrine cell and the ganglion cell are smaller than those of the ON 

and OFF bipolar cells, their neglect had no effect on the signal flow. Therefore, the 

time constants of the blocks Ama and GC were removed in the macromodel. 
5.3 CIRCUIT AND CHIP ARCHITECTURE 

Fig. 5.3 is the block diagram corresponding to the macromodel in Fig. 5.2. A 

vertically parasitic p+-n-well-p-substrate BJT QPHO with a floating base is used as a 

photo-BJT. The photo-BJT traduces light stimuli into electrical currents. Then the 

photocurrent is read out, inversed, amplified by eight times, and sent to the block PH1. 

The PH1 signal is sent to PH2 and H to perform temporal delay and spatial diffusion, 

respectively. Then the signals from PH2 and H are again sent to PH1. Since the input 

of this circuit is a photocurrent, all signals in PH1, PH2, and H are in current-mode.  

The output current IOPL of PH1 directly enters the OFF bipolar cell (OFFBIP). 

On the other hand, an additional cascode current mirror (denoted by sub-block CM) is 

used to inverse it and send it to the ON bipolar cell (ONBIP) in order to achieve the 

inverse band-pass-filtering function. Since very low frequency BPFs (denoted by 

sub-block BPF) operating in voltage-mode are needed for the bipolar cells, the 

current-mode signals from PH1 and CM are converted into voltage-mode signals by 

Rm amplifiers (denoted by the sub-block Rm Amp.) before entering the BPF 

sub-blocks. The output signals of the sub-blocks BPF are converted to current-mode 
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signals again using the sub-blocks named V-I converter.  

The absolute-value circuits (denoted by the sub-block ABS) are used to rectify 

the bipolar cell signals. At the amacrine cell (Ama), the positively rectified signals of 

both ONBIP and OFFBIP are summed with different gain factors. The ganglion cell 

(GC) subtracts the Ama signal from the positively rectified ONBIP signal. Another 

sub-block ABS is used to rectify the GC signal to realize the function of the ON brisk 

transient ganglion cell set.  

There are three space constants in blocks H, OFFBIP, and Ama. The space 

constants are realized by using tunable NMOSFET smoothing networks [7]. Such a 

technique can adjust the space constants by controlling the gate biases of the 

NMOSFETs, thus allowing greater flexibility in designing the space constants. 

Moreover, since the horizontal cell has a relatively large space constant compared 

with the other cells, the NMOSFETs used in its smoothing network have a larger W/L 

ratio than the other two cells. The detailed transistor-level circuit of a pixel is shown 

in Fig. 5.4(a)-(c), and the transistor sizes are listed in Table 5. 1. 

5.3.1 Photoreceptor and Horizontal Cell 

Fig. 5.4(a) represents the circuit of the photoreceptor (PH1 and PH2) and 

horizontal cell (H). Because the light-induced photocurrent is around one hundred-pA 

to several hundred-nA, it can benefit from the good linearity of cascode current 

mirrors. Moreover, since the photocurrent might flow in or out of the circuit, 

complementary current mirrors are used to enable both current directions. The 

transistors M1-M6 are used to bias the emitter of QPHO at VB1 and to direct the 

photocurrent into the circuit. The transistors M7 - M18 provide a current gain of -8, as 

described in Fig. 5.3. 

The CMOS transmission gates composed of transistors MLP1-MLP8 and 

MLP9-MLP16 in Fig. 5.4(a) and (b) are used as resistors. Their resistances are controlled 

by VNLP and VPLP for NMOSFET and PMOSFET, respectively. The resistances and 

the gate capacitances compose the LPF time constants of the blocks PH1, PH2, H, 

ONBIP, and OFFBIP. The unit LPF time constant τL can be controlled by VNLP and 

VPLP simultaneously. On the other hand, the ratios of time constants can be set by 

designing the MOSFET’s sizes to get the suitable gate capacitances. 
The current mirror composed of transistors MPH11-MPH14 and MH1-MH4 is 

designed to have a current gain of four times. Thus the current of block PH1 is 

enlarged to enter block H. The enlarged current is spread by a diffusion network 
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controlled by VcH, and then it is sent to the block PH1 by transistors MH5-MH12. On 

the other hand, the current of the block PH1 is directly repeated to enter the block 

PH2 via transistors MPH11-MPH14 and MPH21-MPH24. Transistors MPH25-MPH212 are used 

to perform the temporal delay and to send feedback to the block PH1. Therefore, the 

channel length and width of transistors MPH26, MPH28, MPH210, and MPH212, are both 

twice as large as those of MPH25, MPH27, MPH29, and MPH211. Thus, the current gain is 

kept as unity because the W/L ratio doesn’t change. However, the time constant of the 

block PH2 is four times larger than that of the block PH1 because the gate 

capacitances of MPH26 and MPH210 are four times larger than those of MH1 and MH3. 

The output current of block PH1 is enlarged four times by two current mirror 

slaves composed of transistors MPH15-MPH18 and MPH19-MPH112 while transistors 

MPH11-MPH14 serving as the current mirror master. Transistors MPH19-MPH112 generate 

IOPL, which is sent to the block OFFBIP. The drain current of transistors MPH110 and 

MPH112 is inversed using a complementary current mirror (CM) to generate IOPLB, 

which is sent to the block ONBIP.  

At the output stage, the transistors MO1 and MO2, MO3 and MO4, and MO5 and 

MO6 are used to repeat the output currents of the blocks PH1, H, and PH2, 

respectively, to enable chip measurement. Since there are external biases applied to 

measure the chip, simple structure instead of the cascode type slaves are used to save 

the pixel area. 

5.3.2 ON and OFF Bipolar Cells 

The circuit of the bipolar cell stage is shown in Fig. 5.4(b). The circuit can be 

divided into two parallel paths including blocks ONBIP and OFFBIP, separately. At 

the OFFBIP path, an Rm amplifier composed of transistors MRM5-MRM8 is used to 

transduce the current IOPL into voltage-mode. Afterward, a poly capacitor COFF and a 

CMOS transmission gate, including transistors MHP3 and MHP4, are used to form a 

highpass filter (HPF). This HPF and the LPF composed of MLP6, MLP8, and MVI10 

form the sub-block BPF. The bandwidth of the HPF, which is also the up 3dB time 

constant of the BPF τH, can be tuned by the biases VNHP and VPHP at gates of MHP3 and 

MHP4, respectively. The transmission gate is connected to the reference bias Vref, 

which is set to a half of the supply voltage to balance both upward and downward 

signal swings. 

 The voltage-mode signal of the sub-block BPF is transduced into the 

current-mode signal again by using a V-I converter composed of transistors MVI8 - 
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MVI14 [137]. The V-I converter is a differential amplifier. Its positive input node 

connects to the output of the sub-block BPF, and its negative input node connects to 

the reference bias Vref. Its output current is passed to a modified absolute value circuit 

(ABS) composed of the transistors MOFF1-MOFF6.Transistors MOFF1-MOFF4 form a 

simple current mirror, and transistors MOFF5 and MOFF6 play the roles of adjustable 

switches that are controlled by VabsN and VabsP, respectively. When MON5 MON6 are 

biased suitably, the output of sub-block BPF, which is smaller than Vref, will be 

converted into current-mode and mirrored only by MOFF1, MOFF2; and MOFF7, while 

that larger than Vref will be converted and mirrored only by MOFF3 and MOFF4. The 

transistors MOFF2 and MOFF4 repeat the complete signal of the block OFFBIP and send 

it out of the chip as IOFFBIP. In the mean time, the transistor MOFF7 sends the positively 

rectified signal of the block OFFBIP to the block Ama as IOFF_A. 

At the ONBIP path, the circuit operations are mostly the same as at the OFFBIP 

path. The main differences of the ONBIP path from the OFFBIP path are as follows: 

First, the ONBIP path receives the inversed signal from the block PH1 as IOPLB [Fig. 

5.4(a) and (b)]. Second, CON is designed to be 1pF and COFF is designed to be 312.5fF 

in order to achieve the ratio of time constants of the blocks ONBIP and OFFBIP. 

Third, there is a smoothing network at the output node of the V-I converter of the 

OFFBIP path to perform the lateral diffusion, but this is lack at the ONBIP path. 

Finally, the transistors MON7 and MON8 repeat the signal of the block ONBIP when the 

output of the sub-block BPF is smaller than Vref, and send it to blocks Ama and GC as 

ION_A and ION_GC, respectively. 

5.3.3 Amacrine and Ganglion Cells 

The circuit of the amacrine and the ganglion cell is shown in Fig. 5.4(c). The 

block Ama is constructed using transistors MA1-MA10. The transistor MA3 receives the 

summation of ION_A and IOFF_A, shown in Fig. 5.4(b), and transistors MA1-MA4 repeat 

the summed current. The repeated current is laterally diffused by a smoothing network 

at the drain node of transistors MA4 and MA7. Then this diffused current is inversely 

repeated by transistors MA5-MA8 and is sent out of the chip via MA11 as IAma. At the 

same time, this current is inversely repeated again to enter the block GC by the 

cascode current mirror composed of transistors MA9, MA10, MG1, and MG2. This 

current mirror is also designed to implement the gain block after the block Ama, as 

shown in Fig. 5.2. The block GC receives ION_G as shown in Fig. 5.4(b) and subtracts 

it from the current mirrored using transistors MA9, MA10, MG1, and MG2. The 
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subtracted current is sent to the sub-block ABS composed of the transistors MG3-MG9 

to be positively rectified. Thus, only the signal on the positive side is repeated and 

sent out of the chip by MG9 as IGC. 

5.3.4 Whole Chip Architecture  

The architecture of the fabricated chip is shown in Fig. 5.5(a). The pixel circuit 

mentioned above is arranged in a 32x32 array. A row decoder and a column decoder 

are used to select the pixel that is to be observed. Every time there is only one pixel 

that can be observed with seven observable signals:  IPH1, IPH2, IH, IONBIP, IOFFBIP, IAma, 

and IGC as shown in Fig. 5.4(a)-(c). Using this method, the behavior of each pixel, as 

well as that of the whole array, can be observed by setting different controlling 

strategies using the row and column decoders. 

The technique to implement the smoothing networks should be mentioned next. 

Since there are three lateral diffusion layers at the horizontal cell, the OFF bipolar cell, 

and the amacrine cell, three diffusion networks are needed in the designed chip. As 

can be seen in Fig. 5.5(b), there are three NMOSFETs which connect two neighboring 

pixels. These NMOSFETs correspond to the smoothing networks in Fig. 5.3 and Fig. 

5.4. On average, each pixel has six NMOSFETs to perform the lateral diffusion. Thus 

three two-dimensional smoothing networks are achieved. 
5.4 EXPERIMENTAL RESULTS 
5.4.1 Neuromorphic Model Simulation 

The RC equivalent circuit in Fig. 5. 1(b) is used to construct a 32x32 array which 

is simulated by HSPICE. Since the array size differs from the original definition of 

the space constants D, all the space constants in the simulation are shrunk with the 

same factor, 32/180. The simulation results are shown in Fig. 5.6. In this simulation, a 

voltage pulse is applied to the 6x6 cells in the center of the array to imitate the 1Hz 

flashing light stimulus and the spatiotemporal patterns of the 17th row are observed. In 

Fig. 5.6, the x-axis is time and the y-axis is the pixel location which denotes space. 

The black and white bars denote the spatial and temporal region of the input stimulus. 

The stimulus is applied to the 15th to the 20th pixel from 1001 msec to 2000 msec. The 

waveform at the right of each pattern is the spatial domain waveform(s) obtained at 

the time marked by the vertical arrow(s). The waveform at the bottom of each pattern 

is the temporal domain waveform obtained at the location marked by the horizontal 

arrow.  
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Fig. 5.6(a) and (b) represent the spatiotemporal patterns of the photoreceptor and 

horizontal cell, respectively. It can be seen from Fig. 5.6(a) that the photoreceptor‘s 

signal level drops when there is a stimulus, and it returns to its original level when the 

stimulus disappears. Slight undershooting and overshooting in temporal domain can 

be expected in the periphery as it reacts to the stimulus directly. In the spatial domain, 

there is strong contrast at the edge of the stimulus. At the edge pixels inside the 

stimulus, the signal level is higher than the other stimulated pixels. Contrarily, at the 

edge pixels where the stimulus is just absent, the signal level is higher than the other 

silent pixels. Therefore, the spatial range of the stimulus can be well defined. In the 

temporal domain, the horizontal cell has a similar reaction to the photoreceptor, as can 

be seen in Fig. 5.6(b). However, since the horizontal cell performs lateral diffusion in 

space, its spatial domain waveform spreads wider than that of the photoreceptor. 

Fig. 5.6(c) and (d) represent the spatiotemporal patterns of the ON and OFF 

bipolar cells, respectively. The OFF bipolar cell performs bandpass-filtering on the 

signals from the photoreceptor, whereas the ON bipolar cell performs 

bandpass-filtering on the same signals but with an opposite polarization. In the 

amacrine cell, the rectified signals from both bipolar cells are added with different 

gain factors, as shown in Fig. 5.6(e). Moreover, the response to the appearance of the 

stimulus is weaker than the response to the disappearance of the stimulus. Thus the 

amacrine cell provides a strong inhibition to the ganglion cell when the stimulus 

disappears in time. Therefore, the ganglion cell exhibits clear turned-ON reaction, as 

can be seen in Fig. 5.6 (f). 

5.4.2 The Experimental Chip and Setup 

The chip is designed using the TSMC 0.35μm double-poly-quadruple-metal 

standard CMOS technology. The photograph of the whole chip is shown in Fig. 5.7(a) 

and that of a single cell is shown in Fig. 5.7(b). The whole chip area is 4.3mm x 

4.41mm, and the cell pitch is 105μm. There is a photo-BJT in the center to transduce 

light stimuli into photocurrents as shown in Fig. 5.7(b). The fill factor of the 

photo-BJT is 7.44%. It can be seen from Fig. 5.7(a) that the pixel array occupies most 

of the chip area. The row decoder and column decoder are on the left and top of the 

chip. The ESD pads are used to protect the chip from electrostatic damages.  

Since the designed chip sends pixel signals in current format, external 

current-to-voltage converters are needed to facilitate measurements. The read-out 

circuit of each output is shown in Fig. 5.8. Since there are seven output signals 
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generated by this chip, as shown in Fig. 5.5(a), there are seven similar read-out 

circuits. The circuit contains one operational amplifier (OP), a resistor, and a LPF 

composed of a resistor and a capacitor. The operational amplifier with a negative 

feedback provides a virtual bias at the negative input node, which is connected to the 

chip’s output node. The value of the virtual bias is determined by VB. The resistor 

ROUT converts the current into voltage. Therefore, the current flowing out from the 

chip IOUT will be transduced into VOUT through the readout circuit. Assuming the 

voltage gain of the operational amplifier A is infinite. The relationship between IOUT 

and VOUT is: 
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The voltage-mode signal VOUT is actually observed and recorded.  

The measured data are presented and analyzed below. Considering the different 

signal swings of the output currents, the ROUT for IPH1, IPH2, IAma, and IGC are set as 

3MΩ, while the ROUT for IH, IONBIP, and IOFFBIP are set as 1MΩ to optimize 

experimental conditions. The optimization of the experimental condition will yield the 

largest but unsaturated signal levels. 

 A white light LED is used to generate flashing light to stimulate the test chip. 

The LED is controlled by a function generator, so that the amplitude and frequency of 

the incidental light can be monitored. However, the input stimuli are always repetitive 

because of the inherent nature of the function generator. An optical lens is used to 

concentrate the light from the LED onto the test chip, thus only a small part (around 

5x5 pixels) of the chip is stimulated while the other part remains relatively dark. The 

biases are controlled by a group of regulators adjusted with precisely variable 

resistors. 

5.4.3 The Measured Spatiotemporal Patterns 

The bias condition for measuring the spatiotemporal patterns is listed in Table 5. 

2(a). The normalized spatiotemporal patterns are shown in Fig. 5.9. The light 

stimulated region is from the 19th pixel to the 23rd pixel in space, and from the 1001 

point to the 2000 point in time. At the bottom of each pattern is the temporal domain 

waveform recorded at the 21st pixel, and at the right is the spatial domain waveform(s) 

recorded at the time point(s) marked by the vertical arrow(s). In Fig. 5.9(a) and (b), 

the spatial domain waveforms are recorded at the time point 1500. In Fig. 5.9(c), (d) 

and (e), the spatial domain waveforms are recorded at the time points 1020 and 2020. 
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In Fig. 5.9(f), the spatial domain waveforms are recorded at the time point 1020. The 

effects of the spatial diffusions can be seen in Fig. 5.9(b), (d) and (e). 

Fig. 5.9(a) illustrates the spatiotemporal pattern of the photoreceptor. The pattern 

is not as perfect as that in Fig. 5.6(a) because of the inter-pixel variation and 

imperfection of the light stimulus. However, the spatial edge of light stimulus still can 

be recognized by the contrast between grey and white rows. The spatiotemporal 

pattern of the horizontal cell in Fig. 5.9(b) covers a wide area of space. The 

phenomenon can be seen clearly from its spatial waveform represented at the right of 

Fig. 5.9(b). Because of this phenomenon, the effects of inter-pixel variation and 

imperfection of the light stimulus are not as strong as those presented in Fig. 5.9(a). 

The spatiotemporal patterns of the ON and OFF bipolar cells are shown in Fig. 

5.9(c) and (d). The two patterns are roughly complementary, except that the pattern of 

the OFF bipolar cells is narrower in time but wider in space than the pattern of the ON 

bipolar cells. The pattern of the ON bipolar cell is noisier than the pattern of the OFF 

bipolar cell. Both cells are affected by the photoreceptor, but the lateral diffusion of 

the OFF bipolar cell reduces the effects of inter-pixel variation and imperfection of 

the light stimulus. The pattern of the amacrine cell, as shown in Fig. 5.9(e), also 

covers a wide area of space. It responds to both appearance and disappearance of the 

light stimulus in time, as can be seen at the bottom of Fig. 5.9(e). It can be seen from 

Fig. 5.9(b) and (e) that their temporal domain waveforms are noisier that the other 

cells because the wide-range lateral diffusion introduces noise into the cells. This 

phenomenon is not very obvious in Fig. 5.9(d) because the range of lateral diffusion 

of the OFF bipolar cell is very narrow. The spatiotemporal pattern of the ganglion cell 

in Fig. 5.9(f) only responds to the appearance of the light stimulus in time, and has a 

sharp edge in space. 

Through this experiment, it is found that the cells without lateral diffusion have 

good immunity to temporal noise, but have bad immunity to spatial noise. Contrarily, 

the cells with lateral diffusion have bad immunity to temporal noise, but have good 

immunity to spatial noise. Thus a good spatiotemporal filter can be implemented 

through combining two kinds of cells described above. 

5.4.4 Temporal Domain Analyses 

In order to demonstrate the degree of coincidence between the neuromorphic 

model and the measured results, the normalized waveforms of the neuromorphic 

model and measurements are grouped together and represented in Fig. 5.10. Since the 
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ON bipolar cell, OFF bipolar cell, amacrine cell, and ganglion cell are the key 

components of the cell set, only the waveforms of the four cells are shown in Fig. 

5.10 (a)-(d), respectively. The temporal domain waveforms of the neuromorphic 

model (dissected line) are obtained by setting the bias condition as listed in Table 5. 

2(b). The waveforms of measurements (solid line) are the temporal domain 

waveforms of Fig. 5.9(c)–(f). The light stimulus starts at the time point 1001, and 

ends at the time point 2000. It can be seen from Fig. 5.10 (a)-(d) that the shape of 

each waveform in the same comparison is similar. The slight deviations are caused by 

process and inter-pixel variations. However, this level of variation is acceptable 

because biological cells also have inter-cell variations. 

The variation of time constants is shown in Fig. 5.11. In Fig. 5.11(a), the 

relationship between τH and VPHP and VNHP is presented, and Fig. 5.11(b) is the 

relationship between τL and VPLP and VNLP. In this experiment, a parameter ΔV is used 

to represent the x-axis. In Fig. 5.11(a), the bias voltage VPHP is equal to ΔV, and bias 

voltage VNHP is equal to Vdd-ΔV. Thus, while increasing ΔV, VPHP is increased while 

VNHP is decreased. An assumption is applied that the two biases VPHP and VNHP affect 

the equivalent resistance of the transmission gate symmetrically. Similarly, the bias 

voltage VPLP is set to ΔV, and bias voltage VNLP is set to Vdd-ΔV for finding the 

relationship between τL and VPLP and VNLP. The maximum value of ΔV is 0.85V in 

Fig. 5.11 (a), and is 0.9V in Fig. 5.11 (b). The functions of the corresponding HPF and 

LPF are completely distorted if ΔV exceeding these values. This experiment provides 

the available range of time constants of the HPF, LPF, and BPF used in the circuit. 
5.5 SUMMARY 

A neuromorphic chip that imitates the ON brisk transient ganglion cell set of 

rabbits’ retinas was implemented and observed. Most parts of the chip deal with 

current-mode signals. The chip contains 32x32 pixels where each pixel imitates one 

cell set of the ON brisk transient ganglion cell. The total power consumption is 

1.675W under 0.45mW light stimuli. The power consumption can be further reduced 

by simplifying the cell circuit according to specific applications. The measured results 

under flashing lights have the same spatiotemporal characteristics as those from 

biological measurements obtained using similar stimuli. Such consistency strongly 

suggests that the chip, in extracting the features of the visual world, behaves in a way 

which is similar to that of real retinal cells. Therefore, this study provides the 
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experimental evidence needed by neuroscientists to understand the performance of all 

other retinal cells. 

Furthermore, the verifications of the implemented chip establish the success of the 

proposed design methodology. Thus, every kind of ganglion cell sets can be 

implemented and integrated in the same way. With the development of biological 

circuitries and spatiotemporal features, the implementation of this design 

methodology should make possible the realization and analysis of complete visual 

language. Moreover, since some of the spatial and temporal parameters can be altered, 

part of the circuit can be shared to save chip area when integrating multi cell sets. By 

revealing and understanding the image processing technique of the retina, various 

applications in the areas of intelligent sensors and retinal prostheses are possible. 
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Table 5. 1 The transistors’ sizes of circuits in Fig. 5.4(a)-(c) 

Transistor numbers W/L 

(μm/μm)

Transistor numbers W/L 

(μm/μm)

M1, M2 1.5/0.8 MHP2, MHP4 2.25/10

M3, M4, M5 2/0.8 MLP1~MLP8 0.4/10 

M8, M10, M12, M14, M15~M18 4/0.4 MLP9~MLP16 1.2/10 

M11, M13 1/0.4 MVI1, MVI2, MVI8, MVI9 4/2 

M7, M9 2/0.4 MVI3, MVI4, MVI10, MVI11 0.8/4 

MPH11~MPH14, MH5~MH12, 

MPH21~MPH24, MPH25, MPH27, 

MPH29, MPH211, MO1~MO4, 

MCM1~MCM8 

1/0.8 MON1, MON2, MON8, MOFF1, 

MOFF2, MOFF7, MA1~MA4, 

MA5, MA7, MA9, MA10, 

MG1~MG3, MG8, MG9 

2/2 

MH1~MH4, MPH15~MPH112 4/0.8 MVI7, MVI14 3/2 

MPH26, MPH28, MPH210, MPH212, 

MO5, MO6 

2/1.6 MON3, MON4, MOFF3, MOFF4, 

MG6, MG7 

2/4 

MRM1, MRM5, 3/0.4 MON5, MOFF5, MG4 3/1 

MRM2, MRM6 1/0.4 MON6, MOFF6, MG5 6/1 

MRM3, MRM7 2.25/1 MVI5, MVI6, MVI12, MVI13 0.8/3 

MRM4, MRM8 0.7/1 MON7 0.6/2 

MHP1, MHP3 0.7/10 MA6, MA8 4.4/2 

MsH 1/1 CON 1pF 

MsOFF, MsA 1/4 COFF 312.5fF
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Table 5. 2 

(a) The bias condition to measure the spatiotemporal patterns of Fig. 5.9 

Vdd Vref VB1 VB2 VabsP VabsN 

2.5V 1.255V 0.326V 0.244V 0.5V 2.13V 

VcH VcOFF VcAma Vprm Vnrm VPHP 

2.502V 2.33V 2.17V 0.27V 1.91V 0.67V 

VNHP VPLP VNLP Flashing Frequency LED Power 

1.67V 0V 2.5V 20Hz 0.45mW 

(b) The bias condition to measure the temporal domain waveforms of Fig. 5.10 

Vdd Vref VB1 VB2 VabsP VabsN 

2.5V 1.255V 0.326V 0.244V 0.973V 0.202V 

VcH VcOFF VcAma Vprm Vnrm VPHP 

2.502V 2.468V 1.082V 0.27V 1.91V 0.67V 

VNHP VPLP VNLP Flashing Frequency LED Power 

1.67V 0V 2.5V 20Hz 0.45mW 
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(a) 

 
(b) 

Fig. 5. 1. (a) The neuromorphic model and (b) the RC equivalent circuit of the ON 

brisk transient ganglion cell set of rabbits’ retinas. The parameter τ denotes the time 

constant in millisecond of the LPF. The parameter D denotes the space constant, 

which is defined by the laterally diffusing range in cell number in a 180-cell array.  
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Fig. 5.2. The macromodel of a single pixel of the implemented chip. 

 

 

 
Fig. 5.3. The block diagram of a single pixel. 
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(a) 
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(b) 

 
(c) 

Fig. 5.4. (a) The circuit of the photoreceptor and horizontal cell (PH1, PH2, H); (b) 

The circuit of ON and OFF bipolar cells (ONBIP, OFFBIP); (c) The circuit of 

amacrine and ganglion cells (Ama, GC). 
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(a) 

 
(b) 

Fig. 5.5. (a) The whole chip architecture of the implemented chip, and (b) the 

implementation of smoothing networks. 



168 

 
(a) (b) 

(c) (d) 

(e) (f) 
Fig. 5.6. The HSPICE simulated spatiotemporal patterns of the neuromorphic model 

of the ON brisk transient cell set in a 32x32 array for (a) photoreceptor, (b) horizontal 

cell, (c) ON bipolar cell, (d) OFF bipolar cell, (e) amacrine cell, and (f) ganglion cell. 

These patterns are recorded from the 17th row of the array. The x-axis is normalized 

time and the y-axis is the pixel location which denotes space. The stimulus is applied 

to the 15th to the 20th pixel at time point 1001 to 2000. The waveform at the right of 

each pattern is the spatial domain waveform(s) obtained at the time marked by the 

vertical arrow(s). The waveform at the bottom of each pattern is the temporal domain 

waveform obtained at the location marked by the horizontal arrow. 
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(a) 

 
(b) 

Fig. 5.7. Photographs of (a) the whole chip and (b) a single cell. 
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Fig. 5.8. The read-out circuit to translate the output current into voltage.  
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Fig. 5.9. The measured spatiotemporal patterns for (a) photoreceptor, (b) horizontal cell, (c) 

ON bipolar cell, (d) OFF bipolar cell, (e) amacrine cell, and (f) ganglion cell. These patterns 

are recorded from the 17th row of the array. The x-axis is normalized time and the y-axis is the 

pixel location which denotes space. The stimulus is applied to the 19th to the 23rd pixel at time 

point 1001 to 2000. The waveform at the right of each pattern is the spatial domain 

waveform(s) obtained at the time marked by the vertical arrow(s). The waveform at the 

bottom of each pattern is the temporal domain waveform obtained at the location marked by 

the horizontal arrow. 

(a) (b) 

(c) (d) 

(e) (f) 
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(a) (b)  

(c) (d) 

Fig. 5.10. The normalized waveforms of the electrical model and chip measurements 

of (a) the ON bipolar cell, (b)the OFF bipolar cell, (c) the amacrine cell, and (d) the 

ganglion cell. The light stimulus starts at time point 1001, and ends at time point 

2000. 
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(a) 

 
(b) 

Fig. 5.11. (a) The relationship between the time constant τH and the controlling biases. 

The bias VNHP is set as Vdd-ΔV and VPHP is set as ΔV. (b) The relationship between 

the time constant τL and the controlling biases. The bias VNLP is set as Vdd-ΔV and 

VPLP is set as ΔV. The relationships are obtained by varying the value of ΔV. 
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CHAPTER 6 
CONCLUSIONS AND FUTURE WORKS 

6.1 MAIN RESULTS OF THIS THESIS 
In this thesis, the BJT-based silicon retinas and their applications are reviewed 

as a milestone of the research on neuromorphic vision chips. Then a new design 

methodology to design retial ganglion cell sets to realize the visual language is 

proposed to start a new direction on retinomorphic chip design. 

In the past several years, the BJT-based silicon retina was first proposed using 

the parasitic BJT of the standard CMOS techonology served as the phototransisitor. 

The smoothing function of the horizontal cell in the retina is efficiently achieved by 

the diffusion and redistribution of the photogenerated excess carriers in the 

common base region of the phototransistors. Thus, the structure of the new silicon 

retina is very simple and compact. Then the smoothing function is further 

implemented by placing enhancement n-channel MOSFET’s among the bases of 

parasitic BJT’s such that the smoothing range became tunable. Based on the 

BJT-based silicon retina with tunable smoothing capability, many applications are 

proposed: 

(1) A new structure of low-photocurrent CMOS retinal focal-plane sensor 

adaptive current Schmitt trigger is proposed to be applied in scanner 

systems. 

(2) A 2-D velocity- and direction-selective visual motion sensor temporal 

zero-crossing detector is proposed to detect straight-line motion. 

(3) A CMOS real-time focal-plane motion sensor with modified 

correlation-based algorithm is proposed to detect the global motion. 

(4) A CMOS angular velocity- and direction-selective rotation sensor is 

proposed to detect the rotation motion. 

(5) A CMOS focal-plane shear motion sensor is proposed to detect 

deformation-like motion. 

Now in this theis, a new design methodology is proposed to implement CMOS 

neuromorphic chips. The model-building approach of the design methodology is to 

incorporate the available knowledge concerning morphology, electro-physiology, and 

pharmacology and by only using elementary building blocks. By designing the 
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parameters and circuitries of the building blocks, which are directly derived from the 

biological measurements, all kinds of ganglion cell sets can be implemented. An 

experimental chip which imitate the ON brisk transient ganglion cell set of rabbits’ 

retinas is fabricated and measured to verify the design methodology. Most parts of the 

chip deal with current-mode signals. The chip contains 32x32 pixels where each pixel 

imitates one cell set of the ON brisk transient ganglion cell. The total power 

consumption is 1.675W under 0.45mW light stimuli. The measured results under flashing 

lights have the same spatiotemporal characteristics as those from biological 

measurements obtained using similar stimuli. Such consistency strongly suggests that 

the chip, in extracting the features of the visual world, behaves in a way which is 

similar to that of real retinal cells. Therefore, the verifications of the implemented 

chip establish the success of the proposed design methodology. Thus, every kind of 

ganglion cell sets can be implemented and integrated in the same way. 
6.2 FUTURE WORKS 
 The design methodology proposed in this thesis has been successfully proved. 

Thus the research on retinomorphic chips can progress with neuroscientic 

developments on the retina. At the same time, learning from the nature does inspire 

new ideas for engineering design. The research on several aspects of advanced sensor 

design can be investigated in the future, including 

(1) Improvement of the experimental chip:  

The desgined chip provides neuroscientists clues to understand group 

behaviors of the ON brsit transient ganglion cells. Its responses to various kinds of 

images such as complex images, moving images, low-contrast images, etc. should 

be observed. The resulsts help neuroscients to design test pattens and experimental 

flows while discovering rest parts of retinal cells. On the other hand, the 

experimental chip can be applied to precisely detect light-ON. Thus further 

reducing the chip size and power consumption of the designed chip leads to an 

applicatable chip using on flashing light detection.  

(2) The directionally selective cell: While researching the ganglion cell types of the 

retina, the ON-OFF and ON directionally selective ganglion cells (DSGC) attracts 

our eyes. The DSGCs are special GCs that send the directional imformation to the 

brain. Many assumptions of the DSGC circuitry have been proposed, and the 

model proposed in [139] is especially attractive. In this model, the synaptic 
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connections are simple, but the resultant outputs reflect optical flows faithfully. 

Even though the circuitry of DSGC is not finalized, its operational principle has 

been very inspirational for technical applications. 

(3) The retinal prostheses: Researh on retinal protheses is like wildfire. Many 

researchers devoted into the problem how to help the blind to restore vision. There 

are mainly two methods considered: intraocular and extraocular. For the 

extraocular method, the ganglion cells are stimulated by neural spiking to provide 

visual information for the brain. However, the actual ganglion cell activities have 

never been taken into account. The design methodology proposed in this thesis 

can faithfully implement the actual ganglion cell activities. Then it is only a 

simple step to translate the ganglion cell activities into neural spikings. Thus the 

design methodology should be a good candidate to realize retinal prostheses. 

(4) The neuroscientic research: Nowadays neurophysiological research to find retinal 

cell behaviors can observe very limited cells. The chips implemented with the 

design methodology provide a reusable, widely-observable, and programmable 

platform for neuroscientists to understand the group behaviors of specific ganglion 

cell tyres. With the iteration between chip programming and cell measurements, 

the discovery of retnal cells can be sped up enormously.  
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