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摘                 要 

 

本論文針對存活資料，考慮“不受感染體質＂(nonsusceptibility)者之存在，

在混合模式架構下提出半母數迴歸分析方法。我們採用邏輯斯模式分析解釋變數與

“發病與否＂的關係。針對受感染體質者之“潛在發病時間＂，我們探討兩類迴歸

模式之推論問題。第一類模式包含常見的加速失敗模式和位移模式，我們利用計數

程序之機率性質以建構估計函數，並進一步提出模式選取方法。第二類為線性轉換

模式，包含等比風險模式與等比勝負比模式。我們採用概似函數法做為參數估計的

原則，除了分析獨立設限的情況外，並進一步提出當存在競爭風險時，如何修正模

式假設與推論方法。兩個研究方向都利用 EM 的技巧，以補插法處理感染體質不確

定之觀測值。我們透過模擬實驗評估所提出方法在有限樣本下之表現。 

 

 

 

 

關鍵字: 混合模式，不受感染體質，補插法，半母數線性迴歸，線性轉換模式，

鞅估計函數，對數秩統計量，競爭風險。 
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Abstract 

In this thesis, we consider semiparametric regression analysis for survival data in 

presence of non-susceptibility or cure. The mixture framework is adopted in analysis of 

such data. The incidence rate is assumed to follow the logistic regression model and the 

latency distribution is studied under two types of semiparametric regression models. One 

class refers to the semi-parametric linear regression model which includes the AFT and 

location-shift models as special cases. We propose estimating functions and also a model 

checking procedure based on properties of counting processes. The other class is known as 

transformation models which contain the proportional hazards model and proportional 

odds model. The likelihood principle is adopted for parameter estimation. We examine two 

situations of independent and dependent censoring respectively. In both research 

directions, the principle of EM is applied to handle uncertain susceptibility status. 

Simulation results are provided to examine the finite-sample properties of the proposed 

methods.  

Keywords: Competing risk; EM, Logistic regression; Linear regression model; Latency 

distribution; Log-rank statistic; Transformation model; Martingale; Mixture model; 

Non-susceptibiblity.
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Chapter 1 

Introduction 

1.1 Literature background 

Traditional survival models assume that every subject in the study will eventually experience 

the event of interest. However, Kaplan-Meier curves based on empirical data often level off at the 

right tail and exhibit a stable plateau. Survival analysis which accounts for the possibility of cure 

or non-susceptibility has received increasing attentions in the literature since it provides reasonable 

explanations for some scientific phenomenon. The most popular approach to analyzing survival 

data in presence of cure is to represent the population as a mixture of susceptible and cured 

subjects. Define   as the indicator of susceptibility. The population is divided into two groups: 

the susceptible with 1   and the cure with 0  . For 1 , define T  as the time to the 

failure event. When 0  , T  is undefined or conventionally set to be infinity. Accordingly one 

can write   

      Pr( ) Pr( | 1) Pr( 1) Pr( 0)T t T t          .  

In presence of covariates denoted by Z , the mixture model can be written as  

      Pr( | ) Pr( | 1, ) Pr( 1| ) Pr( 0 | )T t Z T t Z Z Z         .      (1.1) 

 Under the above mixture framework, most literature assumes that the incidence function 

follows the logistic regression model which can be written as  

0Pr( 1| ) ( | )Z Z     0

0

exp( )

1 exp( )

T

T

Z

Z







.        (1.2) 

Different proposals for modeling the latency variable | 1T    have appeared in the literature. 

Parametric models including the Weibull, generalized Gamma and generzlized F have been 

proposed by Farewell (1982), Yamaguchi (1992) and Peng et al. (1998) respectively. 

Semi-parametric models are more popular choices due to their flexibility and robustness. Most 

popular semi-parametric models, after some transformation, can be written as a linear regression 

form. For modeling | 1T   , one can write  
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0( ) Th T Z    ,           (1.3) 

where 0 : 1p   is the unknown regression parameter of interest, ( )h   is a monotone functions 

and   is the error term whose distribution does not depend on Z .  

Now we discuss two general classes of model (1.3). One type of models, which refers to 

semi-parametric linear models, assumes that ( )h   is given but the error distribution is unknown. 

For example if ( ) log( )h t t , the model becomes an accelerated failure time model. If ( )h t t , it 

comes a location-shift model. Hence unknown parameters become 0  and 0 ( ) Pr( )F t t   . The 

other class, known as transformation models, assumes that ( )h   is unknown but the distribution of 

  is specified. For the Cox proportional hazards (PH) model,   follows the extreme value 

distribution with 0 ( ) exp{ exp( )}S t t    and 0 ( ) exp( )t t  . For the proportional odds model,   

follows the logistic distribution with 0 ( ) exp( ) /{1 exp( )}S t t t   . Unknown parameters contain 

0  and ( )h  . 

 Nonparametric analysis for cure models with right censored observations may suffer from 

the inherent non-identifiability problem. A censored observation indicates two possible situations: 

the subject may be susceptible but the event has not occurred by the end of study; or he/she is 

cured. To distinguish the two different cases, the follow-up period has to be long enough to 

observe the susceptible ones as much as possible. The book of Maller and Zhou (1996) discusses 

the issue of identifiability and presents nonparametric tests to verify the condition of sufficient 

follow-up. Despite the theoretical contribution, these tests are not practical due to their low power. 

Therefore for practical applications, expert opinions about whether cure exists or not are important 

for choosing an appropriate model (Farewell, 1986).  

1.2 Outline of the thesis  

 This thesis considers semi-parametric inference based on models in (1.2) and (1.3). The 

problem of non-identifiability is not as serious as in the nonparametric setting since additional 
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model assumptions will be imposed. For the latency distribution, we consider both classes of 

models. We review the literature for semi-parametric linear models and present our proposal in 

Chapter 2 and 3 respectively. Then we consider transformation models in Chapters 4, 5 and 6. 

Chapter 4 reviews existing literature and Chapters 5 and 6 present our proposals under independent 

censoring and dependent censoring respectively. Chapter 7 contains concluding remarks.  
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Chapter 2 Literature Review for  

Semi-parametric Linear Models with Cure 

2.1 Overview 

 Under the mixture framework, assume that 

  0Pr( 1| ) ( | )i i iZ Z    0

0

exp( )

1 exp( )

T
i

T
i

Z

Z







 

and for 1i  , we have  

0( ) T
i i ih T Z    , 

where ( )h   is specified and  ( 1,..., )i i n   form an iid sample with an unknown marginal 

distribution independent of iZ . Define 0 ( )f t , 0 ( )F t , 0 ( )S t  and 0 ( )t  as the density, 

distribution, survival and cumulative hazard functions of   respectively, all of which are 

unspecified. In this chapter, we review existing literature for estimating 0 0, ) (  in presence of 

the nuisance function 0 ( )S t . Note that when ( ) log( )h t t , the model becomes the AFT model; 

and if ( )h t t , the model becomes the location-shift model.  

Let iC  be the censoring variable for the ith subject. We will assume that iC  and iT  are 

independent. Denote observed data as  ( , , ),  1,...,i i iX Z i n  , where i i iX T C   and 

( )i i iI T C   . Before we discuss specific methods, it is useful to examine the inference problem 

using the classical likelihood approach. One can express the data under the scale of the error 

variable. Let    T
iii ZTh )( ,    T

ii
C
i ZCh )(  and ( ) ( ) T

i i ih X Z    . Note that 

0( )i   has the same distribution as   when 0  is the true value of  . The likelihood function 

can be written as  

0( , , )L f    ( 1)0

1

( ) ( )
i

n I

i i
i

f


   




       ( 0)0( ) ( ) (1 ( ))
iI

i i iS


     


     ,   (2.1a) 

where ( ) exp( ) /{1 exp( )}T T
i i iZ Z     . 

The second component in the right-hand side of (2.1a) becomes complicated after taking 
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logarithm.  

The idea of EM algorithm is often adopted in statistical inference of cure models. If 

“complete” data denoted as  ( , , , ),  1,...,i i i iX Z i n    are available, the above likelihood in (2.1a) 

can be simplified as:  

     ( 1) ( 0, 1)0 0

1

( ) ( ) ( ) ( )
i i i

n I I

i i i i
i

f S
  

        
  



           ( 0, 0)
1 ( ) i iI

i

     .   (2.1b) 

The resulting log-likelihood function can be written as: 

      0log ( , , )L f    0 0
1 2( , , ) ( ) ( , )f f         

where  

1( ) 
1

log ( )
n

i i
i

  



1

(1 ) log{1 ( )}
n

i i
i

  


   ;        (2.3a) 

0
2 ( , )f   0

1

log ( )
n

i i
i

f  


   0

1

(1 ) log ( )
n

i i i
i

S   


   .       (2.3b) 

Notice that the parameters   and   become separated in (2.3a) and (2.3b) respectively. 

Accordingly the score functions for   and   become 

  1( ) /     
1

( )

( )

n
i

i
i i

 
 

 
1

{ ( )}
(1 )

1 ( )

n
i

i
i i

 
 


 

 
,         (2.4a) 

 0
2 ( , ) /f     

0 0

0 0
1

( ( )) ( ( ))
(1 )

( ( )) ( ( ))

n
i i

i i i i
i i i

f f
Z

f S
 

 

     
   

 
   
 


  
 

,         (2.4b) 

where ( ) ( ) /f t f t t    and ( ) ( ) /       . The above derivations imply that   and   can 

be estimated separately if the value of i  could be observed for all 1,...,i n  and 0 ( )f t , or at 

least its parametric form, is known. However these two conditions often do not hold in practical 

applications. Now we discuss how to handle these problems.  

To deal with possibly unknown value of i , a common approach is to replace it by an 

imputed value, often an estimate of its conditional mean given observed data. Notice that when 

1i  , 1i  ; but when 0i  , i  is unknown. It follows that  

),|(),,|( iiiiiiiiii ZXCTEZXE   .  
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Under the imposed models, we write  

0
0 0( | , , ) (1 ) ( , , )i i i i i i iE X Z w S        ,          (2.5) 

where  

( , , )iw S   
( ) ( ( ))

( ) ( ( )) {1 ( )}
i i

i i i

S

S




   
     




  



.         (2.6) 

In estimation, the weight ( , , )iw S   is often treated as a fixed value by plugging in previous 

estimates of 0
0 0( , , )S  . This technique is commonly seen for analyzing missing data.  

Under the semi-parametric setting, the major challenge is the log-likelihood function in (2.3b) 

or the score equation in (2.4b) which involves the nuisance functions 0 (.)f
 , 0 (.)f  and 0 (.)S , 

the first two of which are complicated. Existing methods try to get rid of the density function 

0 (.)f  in the estimation but still keep the survival function 0 (.)S  since it is easier to handle. To 

see this, there exist two estimators of 0 ( )S t  based on complete data given by  

0ˆ ( | )S t    1

1

( ( ) , 1)
{1 }

( ( ) )

n

i i
i

n
u t

i i
i

I u

I u

  

  







 












,         (2.7a) 

0ˆ ( | )S t    1

1

( ( ) , 1)
exp( )

( ( ) )

n

i i
i

n
u t

i i
i

I u

I u

  

  







 












.         (2.7b) 

Note we use the same notations in (2.7a) and (2.7b) to simplify the presentation since these two 

functions are asymptotically equivalent. Replacing i  by (1 ) ( , , )i i iw S     , we have  

ˆ ( | , )S t w    1

1

( ( ) , 1)
{1 }

{ (1 ) } ( ( ) )

n

i i
i

n
u t

i i i i
i

I u

w I u

  

   







 


  









;       (2.8a) 

or  
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ˆ ( | , )S t w    1

1

( ( ) , 1)
exp{ }

{ (1 ) } ( ( ) )

n

i i
i

n
u t

i i i i
i

I u

w I u

  

   







 


  








,        (2.8b) 

where ( , , )i iw w S   and { , 1,..., }jw w j n  . Since ˆ ( | , )S t w   depends on ( , , )S  , the 

expressions in (2.8a) and (2.8b) are not explicit estimators of ( )S t  but can be used as an 

estimating equation along with the score equations in (2.4a) and (2.4b) or its modified version.  

 We now introduce two papers which provide different ways of modifying the second score 

equation. Note that, since the transformation ( )h   is known, the papers usually assume the 

accelerated failure time model with ( ) log( )h t t .  

2.2  M-Estimation by Li & Taylor (2002)  

Li and Taylor (2002) extended the idea of M-estimators by Ritov (1990) to cure models. First, 

the covariate Z  is centered to exclude the unknown intercept term:  

  
0 0

0 0
1

( ( )) ( ( ))
( ) (1 )

( ( )) ( ( ))

n
i i

i i i i i
i i i

f f
Z Z

f S
 

 

      
   

 
    

 


  
 

,          (2.9) 

where 
1

/
n

i
i

Z Z n


  . Following Ritov (1990), Li and Taylor (2002) suggested to replace 
0

0

(.)

(.)

f

f







 

by a reasonable score function (.)g . Notice that  

  
0 0

0 0 0
0 0

( ) ( )
( ) ( ) ( )

( ) ( )t t

f x f x
f t f x dx dF x

f x f x
 

  
 

 

    
 

 

given that 0 ( ) 0f   . Accordingly ( ( ))if    can be replaced by 
( )

( ) ( )
i

g x dF x
 






. Here are the 

examples of (.)g  given in the paper:  

(i) uug )( ; 

(ii) 













33

3||

33

)(

uif

uifu

uif

ug . 
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Finally Li and Taylor (2002) proposed to modify (2.4b) by  

( )
i

1

( ) ( )

( | , ) (Z ) ( ( )) (1 )
( ( ))

i

n
uLT

i i i i
i i

g u dF u

U w S Z g w
S


 




    
 







 
 
     
 
  


 


.      (2.10)  

2.3 Log-rank type Estimation by Zhang & Peng (2007)  

 The log-likelihood function in (2.1b) is expressed in terms of density and survival functions. 

Zhang and Peng (2007) re-wrote the function in terms of hazard and survival function such that  

0
2 ( , )f   0 0

1

log[ ( ( ))] log[ ( ( ))]
n

i i i i i
i

S        


   .         (2.11) 

Zhang and Peng (2007) found new insights from (2.11). Specifically, replacing i  by 

(1 )i i i iw     , the above function can be written as  

  0
2 ( , )l f  0 0

1

log[ ( ( ))] log[ ( ( ))]
n

i i i i
i

S       


            (2.12a) 

which equals  

0 0

1

log[ { ( )}] log[ { ( )}]
n

i i i i i
i

S        


     .        (2.12b) 

In particular, the expression in (2.12b) can be viewed as the likelihood from the model such that  

     *( ) T
i i ih T Z    ,           (2.13a) 

where *
i  has the hazard function 0 ( )i    . Notice that the problem in (2.13a) becomes a 

semi-parametric model without cure. It has the form of a semi-parametric linear model since (.)h  

is specified while the distribution of *
i  is unknown.  

 The proposal of Zhang and Peng (2007) was motivated by the work of Wei (1992) who 

incorporated the rank estimation method under the framework of PH models. Specifically (2.13a) 

can be written as  

     *( ) ( ) T
i i ih T Z    .       

As mentioned earlier *
i  has the hazard function 0 ( )i    . Consider a more general type of 
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proportional hazards model for *  

    0
PH ( ) ( ) exp( )Tt t Z    .          (2.14a) 

The score equation for   deriving from the partial likelihood function based on model (2.14a) is 

given by  

   

* *

1

* *1

1

exp( ) { ( ) ( )}

( )
exp( ) { ( ) ( )}

n
T

j j j j in
j

i i n
Ti

j j j i
j

Z Z I

Z
Z I

     
  

     







  
  
  
 









.      (2.14b) 

Notice that (2.14b) has the form of log-rank statistics. When 0  , which reduces to the true 

model (2.13a), the above score function becomes  

1

1

1

( ( ) ( ))

(0)
( ( ) ( ))

n

j j j in
j

i i n
i

j j i
j

Z I

Z
I

    
 

    







  
  
  
 






  

  
.        (2.14c) 

Zhang and Peng (2007) suggested to add a weight function (0)  to (2.14c) and proposed the 

following estimating function: 

1

1

1

{ ( ) ( )}

( | ) { ( )}
{ ( ) ( )}

n

j j j in
jZP

i i i n
i

j j i
j

Z I

U w W Z
I

    
   

    







  
  
  
 






  


  
,        (2.15) 

where (.)W  is a weight function and (1 )i i i iw      with iw  depending on ( , , )S  .  

2.4  Sketch of Numerical Algorithm for EM-type Estimation  

Now we discuss how to implement the estimation procedures which will also be adopted by 

the proposed approach discussed in the next chapter. We need to solve two estimating equations: 

( | ) 0w    and *( | ) 0U w   where   

( | )w    
1

( )

( )

n
i

i
i i

 
 

 
1

{ ( )}
(1 )

1 ( )

n
i

i
i i

 
 


 

   

and * = “LT” based on (2.10) or “ZP” based on (2.15). Define ˆ( | ) ( | , )LT LTU w U w S   since 

Ŝ  depends on ( , )w  and the data.  
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For numerical implementation, let ( )mw  be the mth step estimate of w  based on 

( ) ( ) ( )ˆ ˆ ˆ( , , )m m mS  . It is used to solve ( )( | ) 0mw    and * ( )( | ) 0mU w   to obtain 

( 1) ( 1)ˆ ˆ( , )m m    and  

( 1)ˆ ( )mS t
   1

( )

1 1

( ( ) , 1)
exp{ }

( ( ) ) ( ( ) )

n

i i
i

n n
mu t

i i i
i i

I u

I u w I u

  

    





 

 


  



 



 
.  

The procedure is repeated for 0,1, 2,...m   until convergence.  

 It is important to note that solving ( ) ( )ˆ( | , ) 0LT m mU w S   is more difficult than 

( )( | ) 0ZP mU w   since ( )ˆ mS  plays a more important role in the former equation. As a result, a 

grid search with a large number of finely spaced points is suggested by Li and Taylor (2002). In the 

simulation studies conducted by Zhang and Peng (2007), the estimator proposed by Li and Taylor 

(2002) may fail to produce a consistent estimator.  

 The dependency of w  on ( , , )S   complicates theoretical analysis. Both papers did not 

derive asymptotic properties of their proposed estimators. The bootstrap approach was suggested 

by Zhang and Peng (2007) for variance estimation. We will briefly discuss this approach in the 

next chapter.  
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Chapter 3 Proposed Approach for Semiparametric Linear Models 

In this chapter we present our proposal to replace the second score function in (2.4b):   

0
2 ( , ) /f     

0 0

0 0
1

( ( )) ( ( ))
(1 )

( ( )) ( ( ))

n
T i i
i i i i

i i i

f f
Z

f S
 

 

     
   

 
   
 


  
 

.   

3.1 Martingale estimating function based on complete data 

Temporarily we assume that the information of i  is available. Recall that 

   T
iii ZTh )(  and ( ) ( ) T

i i ih X Z    . Define the observable counting process for 

( )i   as  

( ; ) ( ( ) , 1, 1) ( ( ) , 1)i i i i i iN t I t I t               ,        (3.1a) 

the at-risk process for a susceptible subject:  

( ; ) ( ( ) , 1)i i iY t I t                  (3.1b) 

and the corresponding filtration for the susceptible group: 

( , ) ( ( ) , 1), ( ( ) , 0, 1), | 0 , 1,..., }T
t i i i i i iF t I u I u Z u t i n                  . 

Define  

0

0
( ; ) ( ; ) ( ; ) ( )

t

i i iM t N t Y u d u     .           (3.1c) 

When   equals its true value 0 , the Doob-Meyer decomposition says that 0( ; )iM t   is a 

mean-zero martingale with respect to 0( , )tF t  .  

 The martingale property of 0( ; )iM t   can be used to construct an estimating function for   

when  ( 1,..., )i i n   are available. Consider  

 
0

1

( ) ( ; ) ( ; ) ( ; )
n

i i i
i

U Z dN t Y t d t   




    ,        (3.2a) 

where  

 



t n

j
j

n

j
j uYudNt

0
11

);(/);()|(
~  .          (3.2b) 

We can express ( )U   in terms of the log-rank statistics. It follows that  
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1

( ; ) ( ; )
n

i i
i

Z Y t d t 


  1

1

1

( ; )

( ; )
( ; )

n

jn
j

i i n
i

j
j

dN t

Z Y t
Y t
















 1

( ; ) ( ; )
n

j
j

Z t dN t 


  ,  

where ( ; )Z t   
1 1

( ; ) / ( ; )
n n

i i j
i j

Z Y t Y t 
 

  . Accordingly we can write  

   
0

1

( ) ( ; ) ( ; ) ( ; )
n

i i i
i

U Z dN t Y t d t   




    .          (3.3a) 

0
1

{ ( ; )} ( ; )
n

i i
i

Z Z t dN t 




   .            (3.3b) 

3.2 The proposed estimating functions 

 A possibly unknown i  can be replaced by its imputed value: (1 )i i i iw     , where  

( , , )i iw w S   
( ) ( ( ))

( ) ( ( )) {1 ( )}
i i

i i i

S

S




   
     




  



. 

The at-risk process ( ; )iY t   can be replaced by  

( | , ) ( ( ) , 1) ( ( ) , 0)i i i i i i iY t w I t w I t               

and define  

 ( ; , )Z t w
1 1

( ; , ) / ( ; , )
n n

i i i i i
i i

Z Y t w Y t w 
 

    

and 

 



t n

j
ii

n

i
i wuYudNwt

0
11

),;(
~

/);(),|(ˆ  .  

We propose the following estimating function for   

 
0

1

ˆ( | ) ( ; ) ( ; , ) ( ; , )
n

i i i i
i

U w Z dN t Y t w d t w   




            (3.4a) 

0
1

{ ( ; , )} ( ; )
n

i i
i

Z Z t w dN t 




  ,           (3.4b) 

where ( ; , )Z t w
1 1

( ; , ) / ( ; , )
n n

i i i i i
i i

Z Y t w Y t w 
 

   . Recall that the other estimating function of   

is  

( | )w    
 

 



n

i i

i
i

n

i i

i
i

11 )(1

)(
)~1(

)(

)(~










, 

where )()( 






 . 
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The expression of ( | )U w  in (3.4b) is equivalent to ( | )ZPU w  proposed by Zhang and 

Peng (2007) despite that the two proposals are developed based on different ideas. Nevertheless 

our approach starts from the concept of martingales which provides a useful framework for further 

analysis including large-sample analysis, variance estimation and model checking.  

 

3.3 Large sample analysis  

Recall that the proposed estimators of 0 0( , )  , denoted as ˆ( ˆ, )  solve  

   
ˆ ˆ( | { , , }) ( | ) 0

ˆ ˆ( | ) 0( | { , , })

w S w

U wU w S





     
  

     
      
     

, 

where  ˆ ˆ , 1,....,jw w j n   and ˆ iw ˆ ˆ{ , , (. | , )}iw S w   ,   

ˆ ( | , )S t w    1

1

( ( ) , 1)
exp( )

{ (1 ) } ( ( ) )

n

i i
i

n
u t

i i i i
i

I u

w I u

  

   







 


  








. 

We also define 

  * 0( , , )i iw w S   
0

0

( ) ( ( ))

( ) ( ( )) {1 ( )}
i i

i i i

S

S




   
     




  



, 

where 0 ( )S   is true survival function. It is not easy to establish asymptotic properties of ˆ( ˆ, )  

jointly since ŵ  still depends on ( , )   in a complicated way. To precede the theoretical 

development, we need to assume  

  Assumption: 1/3ˆsup ( )i i
i

w w o n    a.s. for all   and  . 

Note that the quality of weights still plays an important role. We ran simulations to evaluate the 

effect of using arbitrary weights but the results lead to a biased estimator of  . The imposed 

assumption is a condition to assure that ŵ  is a good weight. Due to this assumption, ˆ( | )w   

can be ignored in the evaluation of ̂  since ̂  affects ̂  only through ŵ .  

 Now we can focus on 
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0

1

ˆ ˆ( | ) { ( ; , )} ( ; )
n

i i
i

U w Z Z t w dN t  




  .     (3.5) 

Temporarily ignoring the estimated weight, first we examine the property of 

   ( | )U w  *

0
1

{ ( ; , )} ( ; )
n

i i
i

Z Z t w dN t 




  ,      (3.6) 

where w  is the true weight. Following Lin et al. (1998), we can write )|()|( 0
  wUwU   as 

the sum of the following three terms:  

    1 0
1

( ; , ) ( ; ) ( ; ) ( ; )
n

n i i i i
i

B Z Z t w dN t Y t d t   
   



    , 

   2 0 0 0 00
1

( ; , ) ( ; ) ( ; ) ( ; )
n

n i i i
i

B Z Z t w dN t Y t d t   
   



     , 

    3 00
1

( ; , ) ( ; ) ( ; ) ( ; )
n

n i i i
i

B Z Z t w Y t d t d t   
    



           

where *( ; ) ( | , )i i iY t Y t w    and );( 0 t  is the limit of 

   






t n

j
jj

n

j
j wuYudN

0
1

0
1

0 ),;(
~

/);(   

and  00 );)(();(   ii Ztt   . Note that  

   0 0 00
1

( ; , ) ( ; ) ( ; ) 0
n

i i
i

Z Z t w Y t d t  
   



   , 

And 

         00
1

( ; , ) ( ; ) ( ; ) 0
n

i i
i

Z Z t w Y t d t  
   



   , 

where 0( ; )t 
0( ; ) /t t    , 0 0( ; ) ( ; ) /t t t        and );( 0 t  is the limit of 

 






t n

j
jj

n

j
j wuYudN

0
1

0
1

0 ),;(
~

/);(  . We apply similar techniques of Ying (1993) to prove that 

1 2n nB B  has the order 1/2( )o n  in a )( 3/1no  neighborhood of 0 . See Appendix 1 for the proof. 

By the Taylor’s expansion,  

                0 0 0( ; ) ( ; ) ( ; ) (1) ( )Tt t t o Z               , 

where *( ; ) ( ; ) /t t t       or equivalently  
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 0 0 0( ; ) ( ; ) ( ; ) (1) ( )Td t d t t dt o Z                

where );();( 00   tddtt   . Thus 3nB  can be written as  

   0 0 00
1

( ; , ) ( ; ) ( ; ) ( )
n

T
i i i

i

Z Z t w Z Y t t dt o n       
   



       

   2
0

0 00
1

( ; )
( ; , ) ( ; )( )

( ; )

n

i
i

t
Z Z t w dN t o n

t




      
 

 




     


, 

where 



n

j
i tNtN

1

);();(   and 2 TM MM  . In summary we have proved 

 )|()|( 0
  wUwU      

          2 1/20
0 00

1

( ; )
( ; , ) ( ; )( ) ( )

( ; )

n

i

t
Z Z t w dN t o n n

t




      
 

 




     


 

which is equivalent to  

          * * 1/2
0 0 0( | ) ( | ) ( ) ( )nU w U w A n o n n           ,     (3.7a) 

where   2
0

1

( ; )1
( ; , ) ( ; )

( ; )

n

n i
i

t
A Z Z t w dN t

n t




  
 






 


.Now let’s incorporate the influence of the 

estimated weight. Our original goal is to show that 

   1/ 2 1/ 2ˆ( | ) ( | ) (1)pn U w n U w o     . 

However we only obtained the result: 2/3ˆ( | ) ( | ) ( )U w U w o n    which implies that 

  1/ 61
ˆ( | ) ( | ) ( )U w U w o n

n
     which des not converge to (1)po  when n  is large. Note that 

if we impose a more strict condition on ŵ  (say 1/ 2ˆsup ( )i i
i

w w o n    for all ( , )  ), we will 

get the desirable property. However since this is not a realistic assumption, we have to try other 

approaches.  

 We obtain some intermediate results. Applying similar techniques of expansion, we can write  

       0 0
ˆˆ ˆ( | ) ( | ) ( )n nU w U w A n r       ,       (3.7b) 

where the components of ˆ
nA  are similar to nA  with w  being replaced by ŵ . The difference 

of (3.7a) and (3.7b) directly follows that  
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* *
0[ ( | ) ( | )]U w U w  ˆ[ ( | )U w 0 ˆ( | )]U w  

     0 0 00 0
1 1

ˆ ˆ( ; , ) ( ; , ) ( ; ) ( ; , ) ( ; , ) ( ; )
n n

i i
i i

Z t w Z t w dN t Z t w Z t w dN t     
  

 

      nd . 

In Appendix 2, we show that 1/3( )nd o n . Notice that, based on the right-hand sides of (3.7a) and 

(3.7b), one can also write  

  0( )n nd A n    1/ 2
0( )o n n     0

ˆ ( )n nA n r    . 

In Appendix 3, we show that 1/ 2( )nr o n  and hence ˆ
n nA A . We aim to establish the result: 

      1 1
0

ˆ (0, ( ) ( ) )n Normal A A      ,      (3.8)  

where A  is the limit of nA  and   is the limit of  

      2

0 0
1

1
( ; , ) ( ; )

n

n i
i

Z Z t w dN t
n

 




   . 

However the above proofs are not enough to make this conclusion. Let’s summarize the results that 

we have obtained:  

   * * 1/2
0 0 0 0ˆ ˆ( | ) ( | ) { ( | ) ( | )} ( ) ( )nU w U w U w U w A n o n           . 

Note that *
0( | ) (0, )U w Normal   . If * 1/ 2

0 0ˆ( | ) ( | ) ( )U w U w o n   , it follows that 

asymptotically, 1/ 2 ˆ ˆ0 ( | )n U w 0
ˆ( )A n     which implies the normality of ̂ . In 

developing the variance estimator of ̂ , we still rely on the result in (3.8). 

In Appendix 4, we show that for each t , 0 0ˆ( ; , ) ( ; , ) (1)pZ t w Z t w o    , but the order after 

taking the sum is still not derived yet. The final goal is to prove 

   *
0 0

1 1
ˆ( | ) ( | ) (1)pU w U w o

n n
   . 

Note that  

   *
0 0ˆ( | ) ( | )U w U w   0 0 00

1

ˆ( ; , ) ( ; , ) ( ; )
n

i
i

Z t w Z t w dN t  
 



  . 

In Appendix 4, we show that for each t , 0 0ˆ( ; , ) ( ; , ) (1)pZ t w Z t w o    , but the order after 
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taking the sum is still not derived yet. The difficulty comes from the dynamic weight which is a 

complicated function of  ,  . We have conducted simulations to check whether  

 *
0 0

1
ˆ( | ) ( | )nr U w U w

n
    gets close to zero as the sample size increases. In Table 2D, we 

can see that the sample size changes from 100n   to 2000n  , the value of   ( or  )n nr r  

decreases and is close to zero.  

3.4  Numerical algorithm and variance estimation 

The proposed estimators solve  

( | )w    
1

( )

( )

n
i

i
i i

 
 

 
1

{ ( )}
(1 )

1 ( )

n
i

i
i i

 
 


 

  ;              (3.9a) 

( | )U w
0

1

{ ( ; , )} ( ; )
n

i i
i

Z Z t w dN t 




  ,      (3.9b) 

where (1 )i i i iw      and  

( , , )i iw w S   
( ) ( ( ))

( ) ( ( )) {1 ( )}
i i

i i i

S

S




   
     




  



 

with S  being replaced by the following explicit formula: 

1

1

( ( ) , 1)
ˆ ( ) exp{ }

{ (1 ) } ( ( ) )

n

i i
i

n
u t

i i i i
i

I u
S t

w I u


  

   







 
 

  








.  

The estimation procedure requires many iterations by updating the weights using previous 

estimates. Specifically let ( )mw  be the m-th step estimate of w  based on ( ) ( ) ( )ˆ ˆ ˆ( , , )m m mS  . 

Treating ( )mw  as fixed value, one can solve ( )( | ) 0mw    and ( )( | ) 0mU w   to obtain ( 1)ˆ m   

( 1)ˆ m   respectively and then update  

( 1)ˆ ( )mS t
   1

( )

1

( ( ) , 1)
exp{ }

{ (1 ) } ( ( ) )

n

i i
i

n
mu t

i i i i
i

I u

w I u

  

   







 


  








.  

The procedure is repeated for 0,1,2,...m   until convergence.  
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3.4.1 Re-sampling based on bootstrap approach 

The non-differentiability and the complicated and dynamic weight components make it 

difficult to derive an analytic formula for variance estimation. The bootstrap approach provides a 

simulation scheme without extra analytic work. Say R  bootstrap samples are drawn from the 

original data  ( , , ),  1,...,T
i i iX Z i n  . For each bootstrap sample, we perform the estimation 

procedure which involves ( )( | ) 0mw    and ( )( | )mU w  for say 1,...,m M . The sampling 

distributions of ̂  and ̂  can be approximated based on the K  bootstrap estimates. The 

bootstrap method is time-consuming which involves solving the roots R M  times. Note that 

solving ( )( | ) 0mU w   even once is not an easy task.  

3.4.2 Re-sampling based on pivotal estimating functions  

Parzen, Wei and Ying (1994) proposed a re-sampling method which has become a popular 

tool for variance estimation for many semi-parametric inference problems. This approach is useful 

when the estimating function is not smooth. In other situations, the derivative of the score function 

can be derived under some regularity conditions but still contains unknown density functions 

which cannot be estimated based on the simple plug-in approach. 

Now we apply and modify the idea of Parzen et al. (1994). For our problem, the pivotal 

estimating function are the asymptotic distributions of  

*
0

*
0

( | )

( | )

w

U w

 



 
 
  

 1

1U

 
  
 

.  

Directly applying this approach, we first need to generate many replicates from the pivotal 

distribution denoted as ( , )j jU  for 1,...,j R . Then solve  

    
ˆ( | { , , })

ˆ( | { , , })

j

j

w S

UU w S





   

  

   
   
     

.          (3.9c) 

Let ( , )j j    be the corresponding solution for 1,...,j R . Then the conditional distribution of 
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ˆ

ˆ
j

j





  
  
     



 , given the observed sample, is asymptotic equivalent to the unconditional distribution 

of 0

0

ˆ

ˆ




   
   
   

 for each j . It implies that the empirical distributions of {( , ) 1,..., }j j j R    , 

conditional on the observed sample, can be used to approximate the unconditional distribution of 

ˆ ˆ( , )  . 

 The above procedure, however, is very time-consuming since it still involves many iterations 

to obtain the solution of (3.9c). We propose to modify the procedure by solving  

*

*

ˆ( | )

ˆ( | )

j

j

w

UU w

 



  
   
    

,            (3.10) 

where *ŵ  denotes the final estimated weight. This modification can avoid the time-consuming 

iterations within each re-sampling run. In Appendix 3, we will see that this modification still 

produces valid results for variance estimation.  

 Now we derive the algorithm to simulate random samples from the pivotal distributions. 

Since our interest is in  , we only need to focus on *( | )U w  since it does not involve other 

parameters when *w  is a fixed value. We have  

*( | )U w *

0
1

{ ( ; , )} ( ; )
n

i i
i

Z Z t w dN t 




   

*

0
1

{ ( ; , )} ( ; )
n

i i
i

Z Z t w dM t 




   

*

1

( , )
n

i
i

w 


 ,            (3.10a) 

where 
0

( , ) { ( ; , )} ( ; )i i iw Z Z t w dM t   


  . It can be shown that 

    1/ 2 *
0( ; ) ~ (0, )pn U w N  ,           (3.10b) 

where * *
0 0[ ( , ) ( , ) ]T

i iE w w     . Plugging in the final estimated weight, asymptotically we 

have  
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    1/ 2 *
0 ˆ( ; ) ~ (0, )pn U w N  ,           (3.10c) 

where the covariance matrix can be estimated by  

     
1

ˆ ˆˆ ˆ ˆ( , ) ( , ) /
n

T
i i

i

w w n   


  .          (3.10d) 

In Section 3.3, we have shown that for   in a small neighborhood of 0 ,  

         1/2 1/2 1/2
0 0ˆ ˆ( | ) ( ; ) ( ) (1)pn U w n U w An o          , 

where A  is the asymptotic slope matrix of 1/ 2 *
0( ; )n U w . We simulate ~ (0,1)iG N  

independently for 1,...,i n . Let *̂  be the solution to 

    


 
n

i
ii GwwU

1

)ˆ,ˆ()ˆ|(  .         (3.10e) 

We can show that the conditional distribution of 



n

i
ii Gwn

1

2/1 )ˆ,ˆ( , given the observed data, is 

also (0, )pN  . Accordingly the conditional distribution of )ˆˆ(2/1  n  follows 1 1(0, )pN A A  , 

which is equivalent to the unconditional distribution of )ˆ( 0
2/1  n . To implement the 

re-sampling algorithm, we repeat (3.10e) for R  times and then obtain *ˆ
j  for 1,...,j R . The 

sample variance can be used to estimate ˆ( )Var  . The proposed re-sampling procedure is much 

faster than the bootstrap approach since no iteration is needed in solving (3.10e) and also there is 

no need to deal with the estimating function of  .    

3.5 Model Checking  

 We utilize the martingale framework to construct a model checking procedure for the latency 

distribution. Here the model assumption refers to the chosen form of (.)h . Define the residual 

process:  

1/ 2

1

ˆ( ; ) ( ; )
n

i i
i

V t n Z M t 



  ,          (3.11a) 

where  
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ˆ ( ; )iM t  *

0

ˆˆ( ; ) ( ; , ) ( )
t

i i iN t Y u w d u             (3.11b) 

and  

*

0
1 1

ˆ ˆ( ) ( ; ) / ( ; , )
n nt

j i i
j j

t dN u Y u w  
 

     .         (3.11c) 

The Kolmogorov-type test based on 1/ 2 ˆsup ( ; )t n V t   can be used to measure the degree of 

departure from the imposed model.  

First of all we need to show that, under the assumed model, ˆ( ; )V t   converges weakly to a 

mean-zero Gaussian process. The argument is similarly to Ghosh (2003). Here we summarize the 

sketch of proof. One can write  

          1/2

1

ˆ ˆˆ( ; ) ( ; )
n

i i
i

V t n Z M t 



                        

                 1/2

0
1

ˆ ˆˆˆ ˆ( ; , ) ( ; , )
n t

i i
i

n Z Z u w dM u w   



  . 

Notice that 

1

1 1

1

ˆ( ( ) , 1)
ˆ ˆ ˆˆ ˆ ˆ( ; , ) ( ( ) , 1) ( ( ) )

ˆˆ ( ( ) )

n

j jn n
j

i i i i i n
i i

j j
j

I u

M u w I u w I u
w I u

  
     

 

 

 



   
     
  
 


 




 


 

                 1

1 1

1

ˆ( ( ) , 1)
ˆ ˆˆ( ( ) , 1) ( ( ) )

ˆˆ ( ( ) )

n

j jn n
j

i i i i n
i i

j j
j

I u

I u w I u
w I u

  
    

 



 



 
    




 




 


 

                 0 , for 0 u t  . 

Using (3.8), ˆ( ; )V t   can be rewritten as             

          1/2 1/2
0 1 0 00

1

ˆˆˆ ˆ( ( ; , )) ( ; , ) ( ) ( ) (1)
n t

i i n p
i

n Z Z t w dM t w A t n o     



     . 

By the martingale central limit theorem and the consistency of ̂ ,  

        ˆ( ; )V t  (0, )d
pN  , 

where the covariance matrix (  ) can be estimated by (3.10d). Furthermore its asymptotic 
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distribution can be approximated by  

  ˆ ( )V t 1/2 *

0
1

ˆ ˆ ˆˆˆ{ ( ; , )} ( ; ) ( ; ) ( ; )
n t

i i i
i

n Z Z u w dM u G V t V t   



     .       (3.12) 

For informal model diagnostics, we can plot the sample curve of ˆ( ; )V t   along with several 

simulated curves of ˆ( )V t . If the sample curve is located within the range of simulated curves, the 

model assumption is reasonable. Formally, we can generate many replicates of ˆ( )V t  and compute 

the value of 1/ 2 ˆsup ( )t n V t  for the model candidates under consideration. The p-value refers to 

the empirical frequency that the observed value of 1/ 2 ˆsup ( ; )t n V t   exceeds the simulated 

values of 1/ 2 ˆsup ( )t n V t .  

3.6 Simulation analysis 

3.6.1 Data generation  

We first generate 1Z  from Bernoulli (0.5) and compute  

* (1) * (1)
0 1 0 0 0 0 1(1, ) ( , )T TZ Z Z       , 

where the values of *
0  are (1)

0  are specified. Then generate ~ Bernoulli( Zp ) with  

   0

0

exp( )
( | )

1 exp( )

T

Z T

Z
p Z

Z

 


 


.      

If 1 , we generate the latency variable T  which follows  

logT  (1) (2)
0 1 0 2Z Z      

where   follows the log-exponential distribution. If 0 , we set T  to be a very large number 

exceeding the support of C  which follows a uniform distribution. Observed variables include 

replications of  , ,X Z , where X T C   and ( )I T C   . We consider two settings with A: 

)5.0(~1 BerZ  and )5.0(~2 BerZ ; and B: )5.0(~1 BerZ  and )1,0(~2 UnifZ .  

3.6.2  Simulation results  
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Tables 1A and 1B show the results for estimating )0(
0 , (1)

0 ,  

(0)
0

0 (0)
0

exp( )
( | 0)

1 exp( )
p Z

 


  


,     

and 

(0) (1)
0 0

1 (0) (1)
0 0

exp( )
( | 1)

1 exp( )
p Z

  
 


  
 

.    

We calculate the average bias and standard deviation based on 1000 replications. In the two tables, 

the estimators have reasonable performances which improve as the sample size increases. 

Transforming ),( )1(
0

)0(
0   into the probability scale based on ),( 10 pp , the performances of 

)ˆ,ˆ( 10 pp  look satisfactory. Comparing the two tables which differ in the values of 1p , we see that 

the corresponding estimator becomes more variable when 1p  is closer to 0.5.  

 Our main proposal is developed for estimating 0  in the latency model. Table 2A and Table 

2B correspond to the incidence models in Table 1A and Table 1B respectively. The proposed 

estimators of (1)
0  and (2)

0  have reasonable performances but sometimes produce larger bias 

when the sample size is small or the censoring rate is high. Our another important proposal is the 

re-sampling scheme for variance estimation. To examine the performance, we first check whether 

the sample average of *ˆ
j  which solves (3.10e) is close to the true parameter value. Then we 

examine whether the proposed estimator ˆˆ ( )j  , which is sample standard deviation of *ˆ
j  

( 1,..., )j R , is close to the simulated estimate denoted as ˆ( )jse  . The results are satisfactory. As 

a consequence, the coverage probability is close to the 95% nominal level in most cases. Notice 

that the results in Table 2B appear to be better than those in Table 2A since the former corresponds 

to higher incidence rate which provides more data to estimate the latency distribution.  

 Finally we examine the proposed model checking procedure. We first simulate data from an 

AFT model and then analyze it by an AFT model. Figures 4.1A and 4.1B show the two 
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components of ˆ( ; )V t   based on 1Z  and 2Z  respectively. The observed curves are mostly 

located within 20 simulated curves which show that the fitted model is acceptable. Then we 

generate an AFT model and fit a location shift model. Figures 4.2A and 4.2B, the observed curves 

are located outside the simulated curves which show that the fitted model is not satisfactory.  
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Chapter 4  

Literature Review for 

Transformation Models with Cure 

4.1 Background 

In this chapter we consider the second class of models with the incidence model given by  

           0Pr( 1| ) ( | )Z Z    0

0

exp( )

1 exp( )

T

T

Z

Z







. 

And for 1  , iT  follows a transformation model of the form  

0( ) Th T Z    ,  

where ( )h   is a unknown monotone function but the distribution of   is completely specified. 

Note that we denote the distribution, survival and cumulative hazard functions of   as F , S  

and   which are fully specified. The most well-known example is the proportional hazards (PH) 

model in which   follows the extreme value distribution with   1 exp{ exp( )}F s - - s  . When 

  follows the standard logistic distribution with      exp {1 exp }εF s s  /  + s , the model 

becomes the proportional odds (PO) model.  

For the discussions in this chapter, observed data are denoted as  ( , , ),  1,...,i i iX Z i n  , 

where i i iX T C   and ( )i i iI T C   . The parameters of interest are ( , )   while ( )h t  is an 

infinite-dimensional nuisance function. In the early stage of methodology development, 

statisticians including Kuk and Chen (1992), Sy and Taylor (2000) and Peng and Dear (2000) 

focused on the special case that the latency distribution follows the PH model. Then a new trend 

starting from Lu and Ying (2004) considers statistical inference for the whole of class of 

transformation models. In this chapter, we review existing literature for transformation cure 

models. Roughly speaking, existing inference approaches can be classified into two types. One is 

based on the likelihood principle and the other is based on moment properties.  
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4.2 Different model expressions 

We first review different formulations of a transformation model since the form of model 

expression affects subsequent inference development. The most well-known representation is 

given by   

0( ) Th T Z    ,         (4.1a) 

which states that the failure time T  for a susceptible subject can be written as a parametric linear 

model after an unknown monotone transformation. Alternatively one can also write  

    0{ ( )} ( ) T
ZS t h t Z   ,         (4.1b) 

where ( ) Pr( | 1, )ZS t T t Z    is the survival function of | 1,T Z   and 1( ) 1 ( )F t t    

which is a known function. The representation of (4.1b) says that a known transformation of the 

survival function leads to a linear structure in the parameters which contains an un-specified 

intercept function. One can also write (4.1b) in terms of the cumulative hazard function, defined as 

( ) log{ ( )}Z Zt S t    , such that  

   1
0 0( ) log[ { ( ) }] { ( ) }T T

Z t h t Z H h t Z        ,     (4.1c) 

where 1( ) log{ ( )}H t t   is also completely specified. Notice that the above three equivalent 

expressions only allow for time-independent covariates. Later in Chapter 5, we will discuss the 

extension of including time-dependent covariates.  

4.3 Likelihood approach under the PH model  

 The likelihood function under the transformation model can be written as  

1

1

[ ( ) ( )] [ ( ) ( ) 1 ( )]i i

i i

n

i Z i Z i i i
i

f x S x       



      ,      (4.2a) 

where 1( ) { ( ) }T
ZS t h t Z    and ( ) ( ) /Z Zf t S t t    . Expressing the function in terms of 

hazard and survival functions, we obtain  

             





n

i
iiZiiZiZi

i

i

i

ii
xSxSx

1

1
)(1)(

~
)()(

~
)(

~
)(


 .     (4.2b) 
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When the latency follows the PH model, (4.2b) can be written as  

   








 

n

i
i

Z
ii

Z
i

Z
ii

i
i

Ti
i

T
i

T

xSxSex
1

1
)exp(

0
)exp(

00 )(1)(
~

)()(
~

)(
~

)(
    (4.3) 

where 0 (.)S  and 0 (.)  are the baseline survival and hazard functions for the susceptible group.  

 Equation (4.3) can be simplified by first considering complete data with i  being observed. 

The completed likelihood function for ),(   can be written as follows: 

  (1 ) (1 )(1 )exp( ) exp( )
0 0 0

1

( ) ( ) ( ) ( ) ( ) 1 ( )
i i iT T T

i ii i i

n
Z Z Z

i i i i i i
i

x e S x S x
            

  



             which can 

be written as the product of the following two terms: 

              



n

i
ii

iiL
1

)1(
1 )(1)()(          (4.5a) 

and  

           








 

n

i

Z
i

Z
i

Z
i

ii
i

Ti
i

T
i

T

xSxSexL
1

)1(
)exp(

0
)exp(

0002 )(
~

)(
~

)(
~

)
~

,(
 .  (4.5b) 

Both terms involve possibly missing i  and the second equation involves the nuisance function 

0 (.)S  or 0 (.) .    

 Kuk and Chen (1992) considered the marginal likelihood function 1 2 0( ) ( , )L L


 


  , where 

  is the collection of all cn -tuples of 0’s and 1’s, 
1

( 0)
n

c i
i

n I 


   and    is a realization 

of i  for those observations with 0i   ( 1,..., )i n . However since this marginal likelihood, 

which involves the complicated summation, is not easy to handle numerically, a Monte Carlo 

approach was suggested to implement the procedure.   

Later researchers proposed to analyze the two terms in (4.5a) and (4.5b) separately. The 

log-likelihood can be rewritten as the sum of  

            



n

i
iiiil

1
1 )(1log)1()(log)(        (4.6a) 

and  

            exp( )
2 0 0

1

( , ) log log ( )
T

i

n
ZT

i i i
i

l S Z S x    


   .     (4.6b) 
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There are two ways of handling the nuisance function in (4.5b) – ignore it as in the classical 

analysis without cure or estimate it using explicit formula. Now we discuss both approaches.   

 Motivated by the marginal distribution of ranks discussed in Kalbfleisch and Prentice (1973), 

Peng and Dear (2000) suggested to ignore the nuisance function 0 (.)  in (4.5b). To simplify the 

discussion, assume there are no ties. Let )()1( kxx    be ordered uncensored failure times with 

corresponding covariates )(,,)1( kZZ  . The partial likelihood for  , assuming that i  ( 1,..., )i n  

are available, is given by  

                   
 

 
( )

( )*
2

1

( )

exp
( )

exp
i

Tk
i

Ti
j j

j R x

Z
L

Z




 



 
 
 
 
  
 




,      (4.7) 

where ( ) { : }iR t i X t   is the risk set at time t . Peng and Dear (2000) further proposed to 

impute i  by an estimator of its conditional mean:  

   | , , (1 ) Pr( | , 0, )i i i i i i i i i i iE x z T x z          ,  

where  

         Pr( 1| , 0, )i i i i i iw T x z    
( ) ( )

( ) ( ) 1 ( )
i

i

i Z i

i Z i i

S x

S x

 
   


 


 .  

The baseline function )(
~

0 tS  can be estimated by  

                

 ( )

0
:

1
( ) exp

{ (1 ) }expj

j

Tj x t
l l l l

l R

S t
w z  



 
 
  
 

   
 





.  

Since ( )
iZS t  exp( )

0 ( )
T

izS t   , ( )
iZ iS x  can be estimated by exp( )

0 ( )
T

iz
iS x 

. Finally an estimator of 

  can be obtained by maximizing  
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 .    

In each iteration of the maximization, iw  is treated as a fixed value by plugging in previous 

estimates of 0( , , )S   . The final estimator is obtained when the convergence criteria is satisfied.  

Sy and Taylor (2000) proposed two methods for handling (4.5b). Their first proposal 

suggested to substitute 0 ( )t  in )
~

,( 0L  by the Breslow estimator given by 

 
( ):

{1/ exp }
j j

T
l l

j x t l R

z 
 

  . Their first approach becomes very similar to that of Peng and Dear 

(2000). Their second proposal was motivated by Kalbfleisch and Prentice (1980) such that the 

nuisance function 0 ( )S t  is decomposed as the product-limit form of hazard rates at observed 

failure times. Then )
~

,( 02 L  can be expressed as a function of   and the (baseline) hazard 

rates. The idea of profile likelihood estimation is adopted such that the hazard rates are estimated 

first, assuming that   is known, and then   is maximized based on the profile likelihood. 

4.4 Moment approach for the class of transformation models 

 Lu and Ying (2004) extended the analysis to the whole class of transformation models. 

Unknown parameters become { , , ( )}h    with true values denoted by 0 0 0{ , , ( )}h    respectively. 

Properties of counting processes and martingales are applied to construct estimating functions. 

Specifically define ( ) ( , 1)i i iN t I X t     and tF  as the corresponding filtration up to time t . 

It follows that  

   
log{ ( )}

[ ( ) | ] ( ) ( ) ( ) Z
i t i Z i

S t
E dN t F I X t d t I X t

t

 
    


,  

where 

   0

0 0

exp( )1
( ) ( )

1 exp( ) 1 exp( )

T

Z ZT T

Z
S t S t

Z Z


 

 
 

 .  
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Additional re-parameterization is needed to express [ ( ) | ]i tE dN t F   as a simpler function of the 

unknown parameters. It follows that  

  0 0 0 0

0 0

1 exp( ( )) 1 exp( { ( ) })
( )

1 exp( ) 1 exp( )

T T T
Z

Z T T

Z t Z H h t Z
S t

Z Z

  
 

    
 

 


,   

where 1( ) log{ ( )}H x x   is a known function. To simplify the expression, define 

( ) exp( ) /{1 exp( )}x x x    as the logistic function and ( ) 1 ( )x x   . Then 

  0 0

0 0 0 0

( ) ( )
( )

( ( )) [ { ( ) }]

T T

Z T T T
Z

Z Z
S t

Z t Z H h t Z

   
    

 
    

and 

         0 0 0 0( ) log{ ( )} log{ [ { ( ) }]}T T T
Z t Z Z H h t Z          .  

Note that the first term in ( )Z t  does not depend on t . Accordingly one can define  

   ( ; , , ) ( ) ( )i i iM t h N t I X t     log{ [ { ( ) }]}T T
i id Z H h t Z     

( ) ( ) log{ [ { ( ) }]}T T
i i i iN t I X t d Z H h t Z        ,   

where the second term uses the fact that ( ) ( )x x   . An important property is that 

0 0 0( ; , , )iM t h   is a mean-zero martingale. This expression is nice since it is a tractable function 

of linear terms in the unknown parameters. Two sets of estimating functions can be constructed:   

  
1

( ) ( ) log{ [ { ( ) }]} 0
n

T T
i i i i

i

dN t Y t d Z H h t Z  


    ;  

0
1

{ ( ) ( ) log{ [ { ( ) }]} 0
n

T T
i i i i i

i

Z dN t Y t d Z H h t Z  




    ,  

where the first one can be viewed as for estimating ( )h t  and the second one is for  . Notice that 

for the transformation cure model, estimation for the latency distribution does not use the idea of 

E-step since the compensator ( ) ( )i ZI X t d t   does not need the information of i . Nevertheless 

since   is also unknown, additional set of estimating equation is needed. Lu and Ying (2004) 

suggested to modify the estimating function:  

    
0

1

exp( )
{ } 0

1 exp( )

Tn
i

i i T
i i

Z
Z

Z








 
  ,  

where (1 )i i i iw      and Pr( 1| , 0, )i i i i i iw T x z      is expressed as a function of 
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{ , , ( )}h   .  

 The approach proposed by Lu and Ying is attractive since it can be applied to the whole class 

of transformation models. Their idea is based on martingale properties which can be viewed as a 

moment approach. In the next chapter, we also consider general transformation models but adopt 

the likelihood principle for inference.  
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Chapter 5 

Proposed Approach for Transformation Cure Model  

under Independent Censoring 

Recently Zeng and Lin (2006) extended the transformation model without cure to allow for 

time-dependent covariates. The model assumption is imposed on the cumulative intensity function 

which can be expressed as 

   0

0

( ) ( ) exp{ ( )} ( )
t

T
ZA t G I T s Z s dR s

 
  

 
 ,      (5.1) 

where ( )Z t  denotes the vector of time-dependent covariates, (.)G  is a known transformation 

and (.)R  is an unknown increasing function. We derive the connection of model (5.1) with the 

original model expressions discussed in Chapter 4 under time-independent covariates with 

( )Z t Z . Notice that the cumulative hazards function can be written as:  

0

0

( ) exp{ ( )} ( )
t

T
Z t G Z s dR s

 
   

 
  

  0exp log[ ( )]TG Z R t   

0{ ( )}TH Z h t  ,           (5.2)  

where  ( ) exp( )H t G t  and ( ) log ( )h t R t  which correspond to (4.1c). The advantage of (5.1) 

is the inclusion of time-dependent covariates in the model. Besides the model extension, Zeng and 

Lin (2006) also proposed likelihood-based inference methods which may yield more efficient 

results. We consider two extensions. In this chapter we apply the approach to the mixture model 

when the latency distribution follows the transformation models. In Chapter 6, we discuss a 

complicated situation of the cure model when dependent censoring exists.  

5.1 Model assumptions 

Let   be the susceptible indicator which, given the covariate Z , follows the logistic 
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model:  

  
exp( )

( | )
1 exp( )

T

T

Z
Z

Z

 





.                (5.3a) 

For 1  , the cumulative intensity function can be written as  

     (s)

0
( | ) ( ) ( )

Tt Z
ZA t Z G I T s e dR s  ,       (5.3b) 

where (.)G  is a known function and (.)R  is an unknown increasing function. Define 

( ) ( )Y s I T s   and  

( )

0
( ; , ) ( ) ( )

Tt Z st R Y s e dR s    .  

Accordingly for 1  , the intensity function can be written as  

 ( ) ( ; , )a t G t R
t

 



  

          ( ; , )
( ; , )

( ; , )

t R
G t R

t R t

  
 

          
     

          ( )( ; , ) ( ) ( )
T Z tg t R I T t e dR t   ,      (5.3c) 

where )()( tG
t

tg



 . For time-independent covariates, the cumulative hazard function and hazard 

function are defined as ( )Z t  and ( )Z t  which have similar expressions as ( )ZA t  and ( )Za t  

respectively but without the stochastic component ( )I T t . Accordingly we have  

1 exp( )
( ) Pr( | ) exp{ ( )}

1 exp( ) 1 exp( )

T

Z ZT T

Z
S t T t Z t

Z Z


 

    
 

  

and  

  
1 exp( )

( ) log{ ( )} log exp{ ( )}
1 exp( ) 1 exp( )

T

Z Z ZT T

Z
t S t t

Z Z


 

 
         

 .  

 

5.2 Likelihood analysis for complete data  

Suppose we have complete data   niX iii ,...,1,,,  . Let )1,()(  iii tTItN  , 

( ) ( )i iY s I T s   and ( )

0
( ; , ) ( ) ( )

T
i

t Z s
i it R Y s e dR s    . The log-likelihood function for  ,dR  is 
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proportion to   

    0
1

log ( ; , ) ( ) log ( ) ( ; , )
n

T
i i i i i

i

g t R Z t dR t G t R

      



       

    ( )

0 0
1

log ( ; , ) ( ) log ( ) ( ) ( ; , ) ( ) ( ) .
T

i

n
Z tT

i i i i i i
i

g t R Z t dR t dN t g t R Y t e dR t
       



        

Directly maximizing the above likelihood is difficult. Nevertheless Chen (2009) proposed 

closed-form score equations which yield nice analytical results. Here we modify his results for the 

extended cure model. We need to assume that ( )R t  is a step function which takes jumps only at 

observed failure points. Let ],0( t  be an observed time and ( )R R t   is a step function 

which jumps at time t . The score function for dR  involves the following two derivative 

equations: 

       








0
)(),;(log tdNRtg

dR ii  

     
 
 

( )

0

' ( ; , )
( ) ( ) ( )

( ; , )

T
iZ ti

i i it
i

g t R
Y t e dR t dN t

g t R dR

   
  

  
    
   

     
 
 

( )' ( ; , )
( ) ( )

( ; , )

T
iZ ti

i it
i

g t R
Y t e dN t

g t R

  
 






 ; 

and 

 ),;( RG
dR i 




 

      ( )

0
( ) ( ; , ) ( )

T
iZ t

i i iY t g t R e dR t
dR

  



  
   

   ( ) ( ) ( )' ( ; , ) ( ) ( ) ( ) ( ) ( ; , ) .
T T T
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      It 

follows that  




dR

dRl ),(
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 ( )
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      (5.4) 

where  
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 ,       (5.5b) 

  ( )( ) ( ) ( ; , ) ( ) ( )
T

iZ t
i i i idM t dN t g t R Y t e dR t   .      (5.5c) 

The score equation for   is given by  


 l  

0
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Re-arranging the terms in the above equation and applying the formula in (5.5a)-(5.5c),  


 l

 can be written as  
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  ( )
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    .       (5.6) 

Finally we can obtain the score equations for )( tdR  and   as follows:  
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where  
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5.3 Imputation for handling missing data 

 The next job is to deal with the unknown value of i . We can replace i  by 

EM
iiii w)1(ˆ   , where 
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 .  

Notice that )0,()1,()(  iiiiiii uTIuTIuY   and hence 

)(ˆ uYii )0,()1,(  ii
EM
iii uTIwuTI  . 

The final estimating equations can be written as  
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T
i
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.      (5.9c) 
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5.4  Numerical algorithm 

Implementation of the proposed estimation procedure is stated as follows.  

i. Starting with initial the Breslow estimator (0) ( ) 1/dR t n   and  (0) (0), (0,0)   ,   we 

obtain 

             (0) ( | ) exp
t

S t Z G
n

     
  

,  

  and  

           (0)EM
iw

(0)

(0)

( )

( ) 1
i

i

S t

S t



. 

ii. Denote k  as the indicator of iterations. Given ( )k
iw  and ( )EM k

iw , first obtain  ( 1)kdR    from 

(5.9b) and then  ( 1) ( 1),k k    from (5.9a) and (5.9c).  

iii. The estimate of the survival function is updated as  

  ( )( 1) ( )

0
( | ) exp ( )

ktk Z kS t Z G e dR s    , 

   which is applied to obtain   

     ( 1)EM k
iw 

( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( ) 1 ( )

k k
i i

k k k
i i i

S t

S t

 
   




  
  

   and ( 1) ( 1)ˆ (1 )k EM k
i i i iw      . Then the weights ( 1)k

iw   are obtained from (5.5a),(5.5b) and 

(5.5c). 

iv. Repeat the steps (ii) and (iii) for 0,1,2,...k   until convergence.  

5.5 Simulation analysis 

5.5.1 Data generation 

We first generate covariate 1 2( , )TZ Z Z  where 1 ~ (0.5)Z Ber and 2 ~ (0,1)Z N  truncated at 

2  and. Then we generate   which follows the Bernoulli distribution with probability  

    
(0) (1)
0 0 1

0 (0) (1)
0 0 1

exp( )
( | )

1 exp( )Z

Z
p Z

Z

  
 


 
 

,  

where (0) (1)
0 0 0( , )T   .   
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If 1 , we generate the latency variable T  with  

    0

0
( ) exp ( )

Tt Z
ZS t G e dR u   

  , 

where (1) (2) (1) (2)
0 1 2 0 0 0 1 0 2( , ) ( , )T TZ Z Z Z Z       . To obtain T , we can generate )1,0(~ UnifU  

and then solve  

( )ZU S T   0

0
exp e ( )

TT ZG dR u   
  .  

Accordingly  

     01

0
log ( )

T TZG U e dR u    .  

In the simulations, we choose the proportional odds model with )1log()( ttG   and 2)( ttR  . 

Hence 1( ) exp( ) 1G t t    and 0log 21
TZUe e T    . Finally for 1  , we let  

         0 0log 1
1

T TZ ZU U
T e e e

U
   

   . 

If 0 , we set T  to be a very large number exceeding the support of the censoring variable C  

which follows the uniform distribution (0, )CUniform  . The values of C  are set to yield the 

censoring rates Pr( 0)   with 25% and 40% respectively. Note that when Pr( 1) 1   , this 

setting is the same as that in Chen (2009).    

5.5.2 Simulation results 

 Tables 3A and 3B summarize the results for 200n  and 500n   based on 1000 

replications. In Table 3A, the bias and standard error of 0̂  and 1̂  as well as those of 0p̂  

( 0 0.88p  ) and 1p̂  ( 1 0.73p  ) look reasonable. From Table 3B, the proposed parameter 

estimators of j  ( 1, 2)j   are virtually unbiased and have satisfactory standard deviations which 

improve as the sample size increases. The performances of ( )R t  are evaluated at selected value of 

pt t  which is the pth percentile of )0|( ZtS . The estimator of pR  is roughly unbiased but 

becomes more variable as pt t  increases. Recall that the setting is an extension of the one in 
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Chen (2009) in which Pr( 1)   and hence we can make comparison to examine the effect of 

cure on estimation of  . In present of cure, the proposed estimators are still roughly unbiased, but 

the standard deviations slightly increase. 
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Chapter 6 

Proposed Approach for Transformation Cure Model 

Under Dependent Censoring 

6.1 Model assumptions 

Now we consider the more complicated but commonly-seen situation that, under the mixture 

framework, the event of interest is subject to competing risks such as death. Let 1T  be the time to 

the event of interest, say disease onset and 2T  be the time to dependent censoring. We denote Z  

as the vector of covariates. Also assume the mixture framework such that only a proportion of 

subjects with 1   develop the disease. The incidence rate is also described by the logistic 

model:    

exp( )
( | )

1 exp( )

T

T

Z
Z

Z

 





.        (6.1a) 

For 1  , the marginal cumulative hazard function of | 1jT    can be written as 

       ( )

0
( | ) ( )

T
j

t Z s

j j jt Z G e dR s   ,        (6.1b) 

where (.)jG  is a known functions and (.)jR  is an unknown increasing function for both 1,2j  . 

For those with 0  , we assume that 1T    and  

  2 2 2Pr( | 0, ) Pr( | 1, ) Pr( | )T t Z T t Z T t Z        .      (6.1c) 

This assumption implies that the competing risk events follow the same distribution for the 

susceptible and cured populations. The joint survival function of 1 2( , ) | 1T T    is assumed to 

follow a copula model of the form:  

   1 2 1 2( , ) Pr( , | , 1) { ( | ), ( | )}S s t T s T t Z C S s Z S t Z       ,    (6.1d) 

where ( | ) exp{ ( | )}j jS t Z t Z    and   measures the degree of association between 1T  and 

2T . 

 We introduce some popular copula models.  
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a. Clayton copula (Clayton, 1978):   )1/(111 )1(, 


  vuvuC , 1 ; 

b. Frank copula (Frank,1979):  
















 1

)1)(1(
1log,

vu
vuC , 10  ; 

c. Positive stable copula (Hougaard, 1986):   

          


/1/1 loglogexp, vuvuC  , 10  . 

Note that the independent copula is degenerated case with   uvvuC , . 

 It is important to mention that when Pr( 1) 1   , the model assumptions reduce to the 

framework discussed in Chen (2010) who adopted the likelihood approach for parameter 

estimation. For inference, we will take the same likelihood principle combined with the EM 

technique. Before presenting the detailed likelihood derivations, it is useful to discuss how to 

impute the unknown i  under the new assumptions.  

6.2 Imputation under the new models 

In absence of external censoring, data consists of {( , , )( 1,..., )}i i iT Z i n  , where 1 2i i iT T T   

and 1 2( )i i iI T T   . Notice that  

( 1| , ) (1 ) ( 1| , 0)i i i i i i i iE T E T           .  

and 

Pr( 1| , 0)i i iT    1 2

1 2 1 2

Pr( 1, , )

Pr( 1, , ) Pr( 0, , )
i i i i i

i i i i i i i i i i

T T T T

T T T T T T T T


 

  


      
  

1 2

1 2 2

Pr( , | 1) Pr( 1)

Pr( , | 1) Pr( 1) Pr( 0) Pr( | 0)
i i i i i i

i i i i i i i i i i

T T T T

T T T T T T

 
   
   


       

,  

where  

1 2Pr( , | 1)i i iT t T t    01
1 2 2{ ( | ), ( | )} ( | )C S s Z S t Z S t Z    , 

2 2Pr( | 0) ( )i iT t S t     

and ( | ) exp{ ( | )} ( | )j j jS t Z t Z t Z       . Note that if ( )g t  is increasing, ( ) ( ) ( )g t g t g t    ; 

while if ( )g t  is decreasing, ( ) ( ) ( )g t g t g t    .  
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 In presence of censoring, data consists of 1 2{( , , , )( 1,..., )}i i i iT Z i n   , where 

1 2i i i iT T T C   , 1 1( )i i iI T T   , 2 2( )i i iI T T    and iC  is the censoring variable independent 

of i  and 1 2( , )i iT T . Notice that 1 2[ ( 1| , , )]i i i iE I T    can be written as  

1 2 2 1 2 1 2Pr( 1| , 1)] (1 )(1 ) Pr( 1| , 0)i i i i i i i i i i iT T                 . 

We have  

2Pr( 1| , 1)i i iT    

1 2

1 2 2

Pr( 1, , , )]

Pr( 1, , , ) Pr( 0, , )
i i i i i i i

i i i i i i i i i i i i

T T T T C T

T T T T C T T T C T


 

   


       
 

1 2

1 2 2

Pr( , , | 1) Pr( 1)

Pr( , , | 1) Pr( 1) Pr( 0) Pr( , | 0)
i i i i i i i i

i i i i i i i i i i i i i i

T T T T C T

T T T T C T T T C T

 
   

    


         
 

 1 2

1 2 2

Pr( , | 1) Pr( ) Pr( 1)

Pr( , | 1) Pr( ) Pr( 1) Pr( 0) ( ) Pr( )
i i i i i i i i

i i i i i i i i i i i i

T T T T C T

T T T T C T S T C T

 
  
    


          

1 2

1 2 2

Pr( , | 1) Pr( 1)

Pr( , | 1) Pr( 1) Pr( 0) ( )
i i i i i i

i i i i i i i i

T T T T

T T T T S T

 
  

   


       ;      (6.2a) 

and 

1 2Pr( 1| , 0)i i i iT      

1 2

1 2 2

Pr( 1, , , )

Pr( 1, , , ) Pr( 0, , )
i i i i i i i

i i i i i i i i i i i i

T T T T C T

T T T T C T T T C T


 

   


       
 

1 2

1 2 2

Pr( , , | 1) Pr( 1)

Pr( , , | 1) Pr( 1) Pr( 0) Pr( , | 0)
i i i i i i i i

i i i i i i i i i i i i i i

T T T T C T

T T T T C T T T C T

 
   

    


         
 

1 2

1 2 2

Pr( , | 1) ( ) Pr( 1)

Pr( , | 1) ( ) Pr( 1) Pr( 0) ( ) ( )
i i i i i C i i

i i i i i C i i i i C i

T T T T S T

T T T T S T S T S T

 
  
    


         

1 2

1 2 2

Pr( , | 1) Pr( 1)

Pr( , | 1) Pr( 1) Pr( 0) ( )
i i i i i i

i i i i i i i i

T T T T

T T T T S T

 
  

   


       .       (6.2b) 

Notice that the effect of censoring is cancelled out in the above derivations which implies that the 

conditional means only contain model parameters. This simplification avoids estimation of 

nuisance parameter in subsequent inference.  

6.3 Likelihood analysis under dependent censorship  

We extend the results of Chen (2010) by temporarily assuming that i  is observable. 

Additional step of imputation is needed for further implementation. Based on completed data 

  1 2, , , , 1,...,i i i iT i n    , the log-likelihood function can be written as  
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1 2
1

1 1 2

Pr( [ , ), | 1)
log

Pr( , | 1)

n
i i i i

i
i i i i

T t t T t

T t T t




     
   

 1 2
2

1 2

Pr( , [ , ) | 1)
log

Pr( , | 1)
i i i i

i i
i i i

T t T t t

T t T t

 


    
  

    

     2
2

2

Pr( [ , ) | 0)
(1 ) log

Pr( | 0)
i i i

i i
i i

T t t

T t

 


   
 

  1 2log Pr( , | 1)i i i iT t T t      

     2(1 ) log Pr( | 0)i i iT t      1 2 log Pr( 1)i i i i       

1(1 )(1 ) log Pr( 0)i i i      .  

Notice that the log-likelihood function contains the cause-specified hazard probabilities:  

1 1 2 1 2( ) Pr( [ , ), | , , 1)CS t T t t T t T t T t            
   

 
10

1 2 1

1 2

( ), ( ) ( )

( ), ( )

C S t S t S t

C S t S t





 


  

  ; 

2 1 2 1 2( ) Pr( , [ , ) | , , 1)CS t T t T t t T t T t            

 
 

01
1 2 2

1 2

( ), ( ) ( )

( ), ( )

C S t S t S t

C S t S t








  

  , 

where    
1

21
21

10 ,
,

u

uuC
uuC


 

  and    
2

21
21

01 ,
,

u

uuC
uuC


 

 . 

 1 1
1

log ( )
n

CS
i i

i

t


    
2 2log ( )CS

i i it    
2 2(1 ) log ( )i i it      

      1 2log ( ), ( )i i iC S t S t  
2(1 ) log ( )i iS t     )1Pr(log21 iiii   

      1(1 )(1 ) log Pr( 0)i i i     .  

Note that iiii   21  and iii  11  . Accordingly, the log-likelihood function can be written 

as: 

 1 1
1

log ( )
n

CS
i i

i

t


   
2 2log ( )CS

i i it    
2 2(1 ) log ( )i i it     

     1 2log ( ), ( )i i iC S t S t  
2(1 ) log ( )i iS t   1 2 log Pr( 1)i i i i           

  1(1 )(1 ) log Pr( 0)i i i      . 

Including the effect of covariates, consider data of   1 2, , , , , 1,...,i i i i iT Z i n    . The next 

objective is to re-parameterize the log-likelihood function in terms of the model parameters in 
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(6.1a) ~ (6.1d). To simplify the presentation, we illustrate the analysis in terms of time-independent 

covariates since adapting to time-varying covariates is straightforward. For 2,1j , we derive the 

following quantities. The probability density function is given by  

   ( | ) exp{ ( | )} ( | )j j jS t Z t Z t Z         

              ( ; , ) ( )( ; , ) ( )
T

j j j jG t R Z t
j j je g t R e dR t

      ,             (6.3a) 

where )()( tG
t

tg jj 


  and ( )

0
( ; , ) ( )

T
j

t Z s

j jt R e dR s    . The corresponding cause-specified 

hazard function is given by  

( )CS
j t    1 2 ( )

log , | ( )
j j

ju S t
j

C u u S t
u  


 
 

  

          1 2 ( )
, | ( )

j j
ju S t

D u u S t 
 ,            (6.3b) 

where    2121 ,log, uuCuu  ,    2121 ,, uu
u

uuD
j

j 



 , 2,1j . Hence, ( )CS
j t   can be 

re-expressed as follows:  

    
   ( ; , ) ( )

1 2 exp ( ; , )
, | ( ; , ) ( ) ( )

T
j j j

j j j

G t R Z t

j j ju G t R
j

u u e g t R I T t e dR t
u

  

 
 

 

 
     

        1 1 2 2
( ; , ) ( )( ; , ) ( ; , )( ) , ( ; , ) ( )

T
j j jG t R Z tG t R G t R

j j j jI T t D e e e g t R e dR t
          . 

To simplify the notations, define  

        1 1 1 1 2 2 2 2
( ; , )( ; , ) ( ; , )( ; , ) , ( ; , )j j j jG t RG t R G t R

j j j j j jt R D e e e g t R
         .       (6.3c) 

Thus, 

1 1 1( ; , )CS t R  1 ( )
1 1( ; , ) ( ) ( )

T Z tt R I T t e dR t               (6.4a) 

and  

2 2 2( ; , )CS t R  2 ( )
2 2( ; , ) ( ) ( )

T Z tt R I T t e dR t    .            (6.4b) 

Notice that  

    1 1 2 2( ; , ) ( ; , ),G t R G t Re e
t
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   ( ; , )

2
( ; , ) ( )

1 2
1

, | ( ; , ) ( ) ( )
T

j j

G t Rj j
j

G t R Z t

j j
u ej j

u u e g t R I T t e dR t
u  

   






 
      


2
( )

1

( ; , ) ( ) ( )
T
j Z t

j j
j

t R I T t e dR t 


   , 

where         1 1 1 1 2 2 2 2
( ; , )( ; , ) ( ; , )( ; , ) , ( ; , )j j j jG t RG t R G t R

j j j j j jt R D e e e g t R
         .  

Thus, we obtain the re-expression for     ),;(),;( 21 , RGRG ee    as              

          
2

( )

0
1

( ; , ) ( ) ( )
T
j Z t

j j
j

t R I T t e dR t
  



  . 

Accordingly we obtain 

         ( )( ) | ( ; , ) ( ) ( )
T
j jZ t

j t j j jE dN t F g t R Y t e dR t       . 

The cumulative intensity function can be re-expressed as follows: 

          ( )

0
( , ) ( ; , ) ( ) ( )

T
j Z t

j j j j j jG R g t R Y t e dR t
     .         (6.4c) 

Therefore, the log-likelihood function for parameters  2121 ,,, dRdR  is given by 

  1 1 1 10
1

log ( ; , ) ( ) log ( ) ( )
n

T
i i i i

i

t R Z t dR t dN t


   


     

    2 2 2 20
log ( ; , ) ( ) log ( ) ( )T

i i i it R Z t dR t dN t


        

    2 2 2 2 2 2 20
(1 ) log ( ; , ) ( ) log ( ) ( )T

i i i ig t R Z t dR t dN t


          

     2 ( )
2 2 2 2 20

(1 ) ( ; , ) ( ) ( )
T

iZ t
i i ig t R Y t e dR t

        

   
2

( )

0
1

( ; , ) ( ) ( )
T
j iZ t

i j j
j

t R I T t e dR t
   




    


 .            (6.5) 

6.4 Score equations under dependent censorship  

Let t  be the observed event-j time and assume ( )jR t  is step function at jump time t , for 

2,1j . Differentiating the log-likelihood function with respect to ( )jdR t  involves the following 

two derivative equations. By (6.3c), we can define the derivative ( ; , )jk t R   as the differentiation 
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of ( ; , )j t R   with respect to ( ; , )k j jt R   ( 2,1, jk )  as follows.  

If jk  , 

   
   ( ; , )

2 ( ; , ) 2
1 2( ; , ) , | ( ; , )j j j j

G t Rj j
j

G t R

j j j j j j
u e

j

t R D u u e g t R
u  

    





   


 

                     1 1 1 1 2 2 2 2
( ; , )( ; , ) ( ; , ) 2, ( ; , )j j j jG t RG t R G t R

j j j j jD e e e g t R
           

                     1 1 1 1 2 2 2 2
( ; , )( ; , ) ( ; , ), ( ; , )j j j jG t RG t R G t R

j j j j jD e e e g t R
           ;    (6.6a) 

if jk  , 

   
   ( ; , )

2
( ; , )

1 2
1

( ; , ) , | ( ; , )j j j j

G t Rj j
j

G t R

jk j j j j j
u e jk

t R D u u e g t R
u  

    




 

    
  .       (6.6b) 

Hence, the score function for 1( )dR t  can be written as  

1( )

l

dR t




1
1 10

1 1 1

( )
log ( ; , ) ( )

( ) ( )

n
i

i i i
i

dN t
t R dN t

dR t dR t


  

  

 
    
                      

2 20
1

log ( ; , ) ( )
( ) i i it R dN t

dR t


  




  
     

2
( )

0
11

( ; , ) ( ) ( )
( )

T
j iZ t

i j i j
j

t R I T t e dR t
dR t

   



   

           

1 ( )1
1 1

1 1

( )
( ; , ) ( ; , ) ( )

( )

T
i

n
Z ti

i i i i
i

dN t
w t R t R I T t e

dR t
   

  
 

          
 

 , 

where 1 1( ; , )iw t R

1 1 21 2

1 1

( ; , ) ( ) ( ; , ) ( )
1

( ; , ) ( ; , )

i i i it t

i i

t R dM t t R dM t

t R t R

 
   

   
  

 

   
  

 
 

,       (6.7a) 

      
),;(

),;(
),;(

1

1
1 Rt

Rt
Rt

i

i
i 





  and 
),;(

),;(
),;(

2

21
21 Rt

Rt
Rt

i

i
i 





 ,       (6.7b)(6.7c) 

      1 ( )
1 1 1 1( ) ( ) ( ; , ) ( ) ( )

T
iZ t

i i i idM t dN t t R I T t e dR t         and        (6.7d) 

      2 ( )
2 2 2 2( ) ( ) ( ; , ) ( ) ( )

T
iZ t

i i i idM t dN t t R I T t e dR t        .        (6.7e) 

The resulting maximum likelihood estimator for 1( )dR t  is given by  
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1

1
1

1
( )

1 1
1
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( )

( ; , ) ( ; , ) ( )
T

i

n

i
i

n
Z t

i i i i
i

dN t
dR t

w t R t R I T t e   






  



      




.    (6.8) 

The score function for 2 ( )dR t  is given by  

2 ( )

l

dR t




 1 1 1 10
1 2
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(1 ) log ( ; , ) ( ) log ( ) ( )
( )

T
i i i ig t R Z t dR t dN t

dR t


   



          

             2 ( )
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              2 ( )
2 2 2 2 2 2 2(1 ) ( ; , ) ( ; , ) ( )
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 ,                  (6.8a) 
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 ,              (6.8b) 
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and  
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  2 ( )
2 2 2 2 2 2 2( ) ( ) ( ; , ) ( ) ( )

T
iZ t

i i i idM t dN t g t R Y t e dR t   .        (6.8f) 

Accordingly the maximum likelihood estimator of 2 ( )dR t  is given by  
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.       (6.9) 

The score equation for 1  is given by: 
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Replacing )(1 tdR  by the maximum likelihood estimator for )(1 tdR , it implies that  
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The score equation for 2  is given by: 
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Replacing the m.l.e of )(2 tdR , the score function for 2  becomes 
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6.5 Numerical algorithm  

Implementation of the proposed estimation procedure is stated as follows.  

i. Starting with initial the Breslow estimator (0) ( ) 1/jdR t n  , for 1,2j  , and  (0) (0), (0,0)   , 

we obtain 

             (0) ( | ) expj j

t
S t Z G

n

     
  

, for 1,2j  ,  

              (0) (0) (0)
00 1 2( | ) ( | ), ( | )C t Z C S t Z S t Z , 
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01 1 2 ( | )

2

| , |
j ju S t Z

C t Z C u u
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01(0) 00
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01 00

( ) ( | ) ( )
(1 )(1 )

( ) ( | ) ( | ) ( ) ( | )
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i i i i i
i j j i j

C t S t Z C t
w

C t S t Z S t Z C t S t Z
   


    

   
 and the 

weights (0)
1iw , (0)

2iw , (0)
iw  are obtained from (6.7a)~(6.7e),(6.8a)~(6.8e). 
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ii. Denote k  as the indicator of iterations. Given ( )
1

k
iw , ( )

2
k
iw , ( )k

iw  and ( )EM k
iw , first obtain 

( 1)
1

kdR   from (6.8), ( 1)
2

kdR   from (6.9) and then  ( 1) ( 1) ( 1)
1 2, ,k k k      from (6.10) and (6.11).  

iii. The estimate of the survival function is updated as  

  ( )
( 1) ( )

0
( | ) exp ( )

k
j

t Zk k
j j jS t Z G e dR s    , for 1,2j  , 

 ( 1) ( 1) ( 1)
00 1 2( | ) ( | ), ( | )k k kC t Z C S t Z S t Z

    

   which is applied to obtain   

( ) ( ) ( )
( 1) 01 2 00

1 2 1 2( ) ( ) ( ) ( ) ( )
01 2 2 00 2

( ) ( | ) ( )
(1 )(1 )

( ) ( | ) ( | ) ( ) ( | )

k k k
EM k i i
i i i i ik k k k k

i i

C t S t Z C t
w

C t S t Z S t Z C t S t Z
    

    
   

  

   and ( 1) ( 1)ˆ (1 )k EM k
i i i iw      . Then the weights (0)

1iw , (0)
2iw , (0)

iw  are obtained from 

(6.7a)~(6.7e),(6.8a)~(6.8e). 

iv. Repeat the steps (ii) and (iii) for 0,1,2,...k   until convergence.  

 

6.6 Simulation analysis 

6.6.1  Data generation  

We also generate covariate 1 2( , )TZ Z Z  where 1 ~ (0.5)Z Ber and 2 ~ (0,1)Z N  truncated at 

2  and set  

    
(0) (1)
0 0 1

0 (0) (1)
0 0 1

exp( )
( | )

1 exp( )Z

Z
p Z

Z

  
 


 
 

, 

where (0) (1)
0 0 0( , )T   .  

We assume that 1 2( , )Z Z  affects the 1 2( , )T T . Marginally for 1 | 1T   , we set 1( ) log(1 )G t t   

and 2
1( )R t t  which corresponds to a proportional odds model with the survival function: 

             1 1 2 2
1 1 10
( | ) exp ( )

t Z ZS t Z G e dR u    . 

For 2 | 1T   , we set 2 ( )G t t  and 2 ( )R t ct  which corresponds to the survival function: 
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                3 1 4 2
2 2 20
( | ) exp ( )

t Z ZS t Z G e dR u    .  

The value of c  controls the proportion of experiencing the two events (i.e. 1 2Pr( | 1)T T   ) and 

in the simulations we set 0.3c   and 0.15c  . 

Now we describe how to simulate 1 2 1 2( , ) | 1, ,T T Z Z   which jointly follows a Clayton 

model. At first, we generate a pair of correlated failure times 1 2( , )Y Y  following the Clayton 

distribution with exponential marginals and the association parameter   related to Kendall’s tau 

  such that 
1

1








. To attain this, we perform the following steps:  

i. Generate independent 1U  and 2U , both of which follow (0,1)Uniform ;  

ii. Let 1
1(1 )aa U   . Then set  

1 1log(1 )Y U    and (1 )/
2 2

1
log(1 (1 ) )

1
Y aa aa U  


   


. 

Secondly we obtain 1 2 1 2( , ) | 1, ,T T Z Z   from 1 2 1 2( , , , , )Y Y Z Z . Recall that ~ exp(1)jY  and 

hence exp( )j jS Y   follows a uniform distribution for both 1,2j  . If 1  , set  

  1 1 2 21
1

1

1
e Z ZS

T
S

  
  and  3 1 4 2

2 2

1
log( )e Z ZT S

c
    ;  

while if 0  , set 1T    (a very large number) and  

 3 1 4 2

2 2

1
log( )e Z ZT S

c
    . 

Repeating the procedure n  times, we have   1 2 1 2, , , , , 1,...,i i i i iT T Z Z i n  . Then we simulate the 

external censoring variables ~ (0, )i cC uniform   ( 1,..., )i n . By setting 

1 2min( , , )i i i iT T T C , 1 1( )i i iI T T    and 2 2( )i i iI T T   , observed data can be written as 

  1 2 1 2, , , , , 1,...,i i i i iT Z Z i n   . The censoring support c  affects the censoring rate which is set 

to be 10 and 8 yielding about 1% and 5% rates of external censoring respectively. We set the value 

of   to be 0.3 and 0.5 which controls the association of  1 2, | 1T T   . The sample size is set to 

be 300n  . Two settings are evaluated: 
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Setting  A: ( , ) (0.3,10)cc    which corresponds to  

1 2 1 2{Pr( 1),Pr( 1),Pr( 0, 0)} (0.5,0.49,0.01)        ;  

Setting B: ( , ) (0.15,8)cc    which corresponds to  

1 2 1 2{Pr( 1),Pr( 1),Pr( 0, 0)} (0.63,0.32,0.05)        . 

Simulation results based on 1000 replications are provided. 

6.6.2  Simulation results   

Table 4A presents the results for the bias and standard error of 0̂  and 1̂  as well as those 

of 0p̂  ( 0 0.88p  ) and 1p̂  ( 1 0.73p  ). Most results look reasonable. However under setting A 

with lower 1Pr( 1)  , 1p̂  has larger variation. From Tables 4B & 4C, we see that the proposed 

parameter estimators of   are virtually unbiased. For estimating ( )R t , the performances are 

better for small t . The performances seem not much affected by the chosen values of  . Based 

on Tables 4B which evaluates the latency estimation, we see that Setting B which gives higher 

1Pr( 1)   yields better results. On the other hand based on Tables 4C which evaluates the survival 

estimation, we see that Setting A which gives higher 2Pr( 1)   yields better results. It is worthy 

to mention that Chen (2010) considered dependent censoring without cure. The settings in Tables 

4B and 4C mimic Table 1 of Chen (p243, JRSSB 2010) so that we can assess the effect of cure on 

the results. In present of cure, the proposed estimators are still roughly unbiased, but the standard 

deviations slightly increase.  

To evaluate the effect of dependent censoring on estimation, we design two settings under 

independent censoring:  

Setting A*: {Pr( 1), Pr( 0)} (0.5,0.5)    ;  

Setting B*: {Pr( 1),Pr( 0)} (0.63,0.37)    .  

The results using the proposed methods in Chapter 5 are given in Tables 4D and 4E. We see that 

the presence of dependent censoring increases the variation of the proposed estimators for both the 

incidence and latency models.  
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Conclusion 

Cure model provides a useful approach to describing failure time data when some subjects will 

never experience of the event. In the thesis, we adopt the mixture framework to analyze such data. 

The latency distribution is modeled by two general types of semi-parametric models.  

For the first class of semi-parametric linear models, the proposed estimating functions are 

originally constructed based on martingale properties for complete data under the error scale. Then 

the information of uncertain susceptibility status is imputed by its conditional mean. Our proposal 

turns out to coincide with the log-rank estimating function proposed by Zhang and Peng (2007). 

However, the proposed approach can utilize the nice martingale structure in further inference 

problems. For example based on the large sample analysis, we propose a fast algorithm for 

variance estimation which does not require doing iterations in each re-sampling step. We also 

propose a model diagnostic approach and a test for model checking. For the second class of 

transformation models which permit r time-dependent covariates, we extended the results of Zeng 

and Lin (2006) and Chen (2009) to cure models. Besides independent censorship, we also consider 

the situation of competing risks which is an extension of the work by Chen (2010).  

 For practical applications, whether a cure model is appropriate at hand should consult with 

experts in the field. Although there exist nonparametric tests as described in the book of Maller and 

Zhau (1996), the condition of sufficient follow-up may not satisfied and the tests may have low 

power. We have performed simulations to examine the effect of fitting survival data without cure 

by the proposed approach assuming cure. We obtained high incidence probability close to one and 

unbiased (but with larger variance) estimates for the parameters in the latency model. Thus our 

approach is in some sense robust. However under this situation, the parameter is located on the 

boundary of the parameter space, the distribution of the proposed estimator may no longer be 

normally distributed. Model checking for the second class of models will be one future work. 

Extending the likelihood approach to the first class of models may deserve some investigation. 
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Appendix 1: Proof for the order of 1 2n nB B   
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which is the case with );( tNv ii   or );(
~ tNi  in Lemma 2 and Lemma 3 of Ying (1993).  

Hence  
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Appendix 2: Proof for  
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We derive that  
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Therefore for (A1), we have  
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Appendix 3: Proof for 1/ 2( )nr o n  

The technique of verifying 1/ 2( )nr o n  is similar as proving 

1/2
1 2 ( )n nB B o n   which involves applying the property of ( ; ) ( ; ))i idN t dEN t   

which is (1 ) / 2( )o n  . The difference is in the at-risk set. We replace iw  in 

*( ; , )i iY t w  by ˆ iw  and obtain ˆ ˆ( ; ) ( ; , )i i iY t Y t w  . Note that 
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Apply the integration by part, we can get 1/ 2( )nr o n .
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Appendix 4: Derivation of the difference between  

0 ˆ( ; , )Z t w  and 0( ; , )Z t w  . 

We derive that  
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which, based on the assumption that * 1/3ˆsup ( )
i

w w o n  , can be written as  

    
 

 

2 /3

0
1

2 /3

0
1

( )
1 (1 ) ( ( ) )

( )

( ) (1 ) ( ( ) )1
( )

n

i i i i
i

n

i i i
i

o n
Z w I t

O n

o n w I t
O n

   

   









 
    

  
     
 








 

which converges in probability to  
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Appendix 5: Discussion on the validity of  

the modified re-sampling algorithm 

Consider three weights, denoted as ŵ , *w , *ŵ , representing the proposed weight 

formula as a function of ( , )  , the true weight and the final estimated weight. Consider 

three estimators of 0 , denoted ̂ , *̂  and * , which solve ˆ( | ) 0U w  , 

*ˆ( | ) 0U w   and *( | ) 0U w   respectively. We aim to claim that the asymptotic 

variances of ̂ , *̂  and *  are the same. The results depend on whether 

* 1/ 2
0 0ˆ( | ) ( | ) ( )U w U w o n    and * * 1/ 2

0 0ˆ( | ) ( | ) ( )U w U w o n   . When the two 

statements are true, the asymptotic normality of *
0( | )U w  yield the following results:  

    1 1
0 (0, ( ) ( ) )n Normal A A       

and 

    1 1
0

ˆ (0, ( ) ( ) )n Normal A A      . 

For variance estimation, we will use *ˆ( | ) 0U w   as the basis in the re-sampling 

algorithm since, unlike *w , *ŵ  is available and does not involve performing iterations.  
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  0)0(
0   5.0)1(

0   0p 0.5  1p  0.6225  

Setting 
Censoring 

Rate 
n  Bias( )0(

0̂ ) )ˆ( )0(
0 Bias( )1(

0̂ ) (1)
0̂( )  Bias( 0p̂ ) )ˆ( 0p  Bias( 1p̂ ) 1ˆ( )p  

100 0.0128 0.2919 0.0270 0.4412 0.0031 0.0714 0.0061 0.0737 

200 0.0014 0.2042 0.0130 0.3043 0.0004 0.0505 0.0020 0.0507 0.4630 

500 0.0088 0.1386 0.0012 0.2063 0.0022 0.0345 0.0018 0.0331 

100 0.0617 0.3518 0.0168 0.5559 0.0148 0.0851 0.0125 0.0939 

200 0.0493 0.2465 0.0190 0.3926 0.0121 0.0605 0.0132 0.0660 

A 

0.5741 

500 0.0234 0.1546 0.0031 0.2449 0.0058 0.0384 0.0052 0.0429 

100 0.0184 0.3046 0.0069 0.4517 0.0045 0.0746 0.0029 0.0733 

200 0.0105 0.2162 -0.0036 0.3165 0.0026 0.0534 0.0003 0.0506 0.4611 

500 0.0011 0.1323 -0.0016 0.1935 0.0003 0.0329 -0.0006 0.0319 

100 0.0638 0.3389 0.0154 0.5592 0.0154 0.0824 0.0125 0.0913 

200 0.0388 0.2343 0.0123 0.3744 0.0096 0.0578 0.0096 0.0630 

B 

0.5340 

500 0.0315 0.1440 0.0101 0.2256 0.0078 0.0358 0.0089 0.0388 

Table 1A: Finite-sample performances for estimating )1(
0

)0(
0 , , 0p  and 1p   

under AFT model based on 1000 replications 
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 0)0(
0   0.3)1(

0   0p 0.5  1p  0.9526  

Setting 
Censoring 

Rate 
n  Bias( )0(

0̂ ) )ˆ( )0(
0  Bias( )1(

0̂ ) (1)
0̂( )   Bias( 0p̂ ) )ˆ( 0p  Bias( 1p̂ ) 1ˆ( )p  

100 0.0181 0.3047 -0.0686 0.6554 0.0044 0.0744 -0.0098 0.0312 

200 -0.0012 0.2062 0.0986 0.5897 -0.0003 0.0510 -0.0012 0.0227 0.3083 

500 0.0081 0.1386 0.0380 0.4096 0.0020 0.0345 -0.0005 0.0152 

100 0.0159 0.3568 -0.3540 0.6263 0.0037 0.0864 -0.0256 0.0383 

200 0.0118 0.2490 -0.0169 0.5999 0.0029 0.0613 -0.0067 0.0278 

A 

0.4584 

500 0.0147 0.1547 0.0103 0.4333 0.0036 0.0384 -0.0018 0.0191 

100 0.0192 0.3020 -0.0342 0.6573 0.0046 0.0740 -0.0080 0.0305 

200 0.0085 0.2163 0.0837 0.5832 0.0021 0.0535 -0.0012 0.0221 0.3054 

500 0.0000 0.1324 0.0572 0.3818 0.0000 0.0329 0.0002 0.0146 

100 0.0163 0.3435 -0.3611 0.6013 0.0033 0.0842 -0.0272 0.0505 

200 0.0097 0.2279 0.0206 0.5837 0.0024 0.0562 -0.0095 0.0280 

B 

0.4052 

500 0.0016 0.1426 0.0096 0.4293 0.0004 0.0355 0.0005 0.0189 

Table 1B: Finite-sample performances for estimating )1(
0

)0(
0 , , 0p  and 1p   

under AFT model based on 1000 replications 
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Table 2A: Performances of proposed estimators of )(
0

j  and ˆ( )j   under SP model based on 1000 replications with 1 0.6225p  . 

Notes: ̂  is the average of proposed estimator   solving (3.4b) and ˆ( )bias   is the average bias in 1000 replications. ̂  is the average of the solution to (3.10e)      

      based on R= 200 re-sampling runs and *ˆ( )bias   is the average bias in 1000 replications. )ˆ( 1es  is the sample standard error of ̂  based on 1000 replications.  

     )ˆ(ˆ 1 is the sample standard deviation of ̂  based on R= 200 re-sampling runs and Avg )ˆ(ˆ 1  is the average in 1000 replications. CP is the coverage probability   

     of the Wald 95% confidence interval using )ˆ(ˆ 1  in the formula.  

 Estimation of )1(
0  Estimation of )2(

0  

Setting 
Censoring 

rate 

Sample 

size 
)ˆ( 1Bias )ˆ( 1

Bias )ˆ( 1es  Avg )ˆ(ˆ 1  CP )ˆ( 2Bias  )ˆ( 2
Bias )ˆ( 2es  Avg )ˆ(ˆ 2  CP 

100 -0.0058 -0.0199 0.3040 0.3378 0.96 0.0166 -0.0082 0.2965 0.3367 0.94 

200 0.0090 -0.0387 0.2083 0.2228 0.95 -0.0072 -0.0046 0.2036 0.2196 0.92 0.4630 

500 0.0019 -0.0049 0.1282 0.1272 0.93 -0.0051 -0.0034 0.1309 0.1245 0.92 

100 -0.0182 -0.0050 0.3776 0.4494 0.975 -0.0209 0.0229 0.4711 0.4452 0.915 

200 -0.0070 -0.0405 0.2534 0.2823 0.935 -0.0080 -0.0136 0.3355 0.2667 0.84 

 

A 

0.5741 

500 0.0009 0.0029 0.1558 0.1648 0.955 -0.0020 -0.0047 0.2025 0.1592 0.895 

100 0.0164 -0.0166 0.3044 0.3273 0.97 0.0047 0.0083 0.5287 0.5599 0.905 

200 0.0023 -0.0442 0.2080 0.2165 0.945 0.0092 0.0082 0.3693 0.3629 0.945 0.4611 

500 -0.0032 -0.0033 0.1234 0.1266 0.95 0.0052 -0.0022 0.2216 0.2153 0.94 

100 -0.0094 -0.013 0.3659 0.3977 0.94 -0.0185 -0.0274 0.7294 0.6700 0.9 

200 -0.0080 -0.0584 0.2566 0.2487 0.92 0.0106 -0.0435 0.4926 0.4168 0.89 

 

B 

0.5340 

500 -0.0028 -0.0033 0.1527 0.1470 0.935 0.0037 -0.0221 0.2998 0.2542 0.905 
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 Estimation of )1(
0  Estimation of )2(

0  

Setting 
Censored 

rate 

Sample 

size 
)ˆ( 1Bias  )ˆ( 1

Bias )ˆ( 1es  Avg )ˆ(ˆ 1 CP )ˆ( 2Bias )ˆ( 2
Bias )ˆ( 2es  Avg )ˆ(ˆ 2  CP 

100 -0.0137 -0.0397 0.2717 0.2742 0.945 -0.0240 -0.0233 0.2585 0.2602 0.93 

200 0.0061 -0.0356 0.1877 0.1846 0.96 -0.0117 0.0058 0.1798 0.1789 0.905 0.3083 

500 0.0007 0.0011 0.1166 0.1164 0.94 -0.0062 -0.0083 0.1140 0.1105 0.96 

100 -0.0229 -0.0206 0.3240 0.3641 0.97 -0.0373 0.029 0.3683 0.3823 0.94 

200 -0.0012 -0.0131 0.2221 0.2436 0.98 0.0045 0.0289 0.2512 0.2482 0.905 

A 

0.4584 

500 0.0037 0.0006 0.1371 0.1493 0.98 -0.0016 0.0035 0.1595 0.1483 0.94 

100 0.0113 -0.0483 0.2713 0.2722 0.935 -0.0178 -0.0667 0.4646 0.4435 0.915 

200 0.0028 -0.0377 0.1878 0.1855 0.955 0.0105 0.0137 0.3227 0.3004 0.935 0.3054 

500 -0.0031 -0.0023 0.1103 0.1159 0.94 0.0075 -0.0149 0.1920 0.1908 0.97 

100 -0.0542 -0.0604 0.3096 0.3219 0.95 -0.0793 -0.0019 0.5766 0.5384 0.905 

200 -0.0208 -0.0551 0.2164 0.2197 0.945 -0.0172 0.0094 0.3890 0.3695 0.94 

 

B 

0.4052 

500 -0.0082 -0.0021 0.1390 0.1346 0.95 0.0050 -0.0095 0.2417 0.227 0.95 

Table 2B: Performances of proposed estimators of )(
0

j  and ˆ( )j   under SP model 

based on 1000 replications with 1 0.9526p  . 

Notes: ̂  is the average of proposed estimator   solving (3.4b) and ˆ( )bias   is the average bias in 1000 replications. ̂  is the average of the solution to (3.10e)      

      based on R= 200 re-sampling runs and *ˆ( )bias   is the average bias in 1000 replications. )ˆ( 1es  is the sample standard error of ̂  based on 1000 replications.  

     )ˆ(ˆ 1 is the sample standard deviation of ̂  based on R= 200 re-sampling runs and Avg )ˆ(ˆ 1  is the average in 1000 replications. CP is the coverage probability   

     of the Wald 95% confidence interval using )ˆ(ˆ 1  in the formula.  
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Sample size = 

200 
1 ~ (0.5)Z Ber  2 ~ (0,1)Z U  

Censoring rate P-value AFT P-value LS 
Proportion selection 

for AFT 
P-value AFT P-value LS 

Proportion selection 

for AFT 

0.3075 0.8390 0.0330 0.99 0.8313 0.0550 0.99 

0.49 0.7347 0.0516 1.00 0.5705 0.0771 1.00 

0.4628 0.7943 0.0514 1.00 0.7722 0.0774 0.98 

0.5727 0.7833 0.0525 1.00 0.6036 0.0807 1.00 

Table 2C: Results of model diagnostics based on p-value and selected proportion with fitting AFT and LS model  

based on 100 datasets simulated from AFT model. 
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 Average mean for nr  Average mean for nr  

Setting  1 ~ (0.5)Z Ber  1 ~ (0,1)Z U  1 ~ (0.5)Z Ber  1 ~ (0,1)Z U  

0  1 2( , )  Censored 

rate 
100n   2000n   100n   2000n   100n   2000n   100n   2000n   

3.0 (0.5,1) 0.3054 -0.0011 -0.0001 -0.0009 -0.0002 0.0046 0.0018 0.0036 0.0018 

0.5 (0.5,1) 0.4611 -0.0010 0.0001 -0.0008 0.0002 0.0043 0.0024 0.0028 0.0018 

3.0 (0.8,3) 0.4052 -0.0020 -0.0019 -0.0023 -0.0011 0.0146 0.0063 0.0090 0.0078 

0.5 (0.8,3) 0.5340 -0.0009 -0.0007 -0.0031 -0.0006 0.0150 0.0064 0.0128 0.0099 

Table 2D: Performances of  *
0 0

1
ˆ( | ) ( | )nr U w U w

n
    with n = 100 and n = 2000 
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Figure 4.1a: Diagnostic plot of ˆ( )V t  in (3.12) based on 1Z  when the true and imposed model are both AFT model.  
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Figure 4.1b: Diagnostic plot of ˆ( )V t  in (3.12) based on 2Z  when the true and imposed model are both AFT model. 
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Figure 4.2a: Diagnostic plot of ˆ( )V t  in (3.12) based on 1Z  when the true model is AFT model and imposed model is LS model 
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Figure 4.2b: Diagnostic plot of ˆ( )V t  in (3.12) based on 2Z  when the true model is AFT model and imposed model is LS model 
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parameter 20   11   0 0.88p   1 0.73p   

censoring rate Sample Size BS( 0̂ )  ( 0̂ ) BS( 1̂ )  ( 1̂ ) BS( 0p̂ )  ( 0p̂ ) BS( 1p̂ )  ( 1p̂ ) 

200 0.3302 0.5248 -0.0033 0.6338 0.0228 0.0360 0.0521 0.0593 
0.25 

500 0.1603 0.2393 0.0221 0.2656 0.0138 0.0216 0.0325 0.0353 

200 0.3503 0.6282 0.0085 0.7573 0.0209 0.0457 0.0523 0.0770 
0.40 

500 0.1861 0.4087 0.0267 0.4524 0.0126 0.0344 0.0345 0.0544 

Table 3A: Finite-sample performances for estimating )1(
0

)0(
0 , , 0p  and 1p  in the incidence model based on 1000 replications 

 

 

 

parameter 11   12   75.0R 3333.0)( 75.0 tR  5.0R 1)( 5.0 tR  25.0R 3)( 25.0 tR  

censoring 

rate 

Sample Size 
BS( 1̂ )  ( 1̂ ) BS( 2̂ )  ( 2̂ ) BS( 0.75R̂ )  ( 0.75R̂ ) BS( 0.5R̂ )  ( 0.5R̂ ) BS( 0.25R̂ )  ( 0.25R̂ ) 

200 -0.0612 0.3064 -0.0133 0.1725 -0.0054 0.0762 -0.0260 0.2163 -0.1572 0.6968 
0.25 

500 -0.0756 0.1972 -0.0052 0.1209 0.0083 0.0489 0.0222 0.1329 -0.0510 0.4092 

200 -0.0548 0.3369 -0.0179 0.1802 -0.0059 0.0814 -0.0276 0.2256 -0.1460 0.7714 
0.40 

500 -0.0488 0.2149 -0.0223 0.1189 0.0014 0.0530 -0.0062 0.1472 -0.1029 0.5174 

Table 3B: Finite-sample performances for estimating j  in the latency model based on 1000 replications. 

Note: 5773.075.0 t such that 75.0)0|( 75.0 ZtS  and 3333.0)( 75.0 tR ; 15.0 t  such that 50.0)0|( 5.0 ZtS  and 1)( 5.0 tR ; 732.125.0 t  such that 25.0)0|( 25.0 ZtS  and 3)( 25.0 tR  
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Parameter 20   11   0 0.88p   1 0.73p   

Kendall’s 

tau 
Setting BS( 0̂ ) 0̂( )   BS( 1̂ ) 1̂( )   BS( 0p̂ ) 0ˆ( )p  BS( 1p̂ ) 1ˆ( )p  

A -0.1336 0.3747 -0.1465 0.6260 -0.0204 0.0409 -0.0692 0.1008 
0.30 

B -0.1369 0.2787 -0.0657 0.3646 -0.0184 0.0317 -0.0441 0.0519 

A -0.1017 0.3272 -0.1825 0.7167 -0.0154 0.0354 -0.0699 0.1138 
0.50 

B -0.1213 0.2682 -0.0650 0.3472 -0.0163 0.0305 -0.0404 0.0486 

Table 4A: Finite-sample performances for estimating the incidence model based on n=300 and 1000 replications 

Parameter 1 0.7    2 0.3   0.75 1 0.75( ) 0.3333R R t   5.0R 1 0.5( ) 1R t   25.0R 3)( 25.0 tR  

Kendall’s tau Setting BS( 1̂ ) 1̂( )  BS( 2̂ ) 2
ˆ( )  BS( .75R̂ ) .75

ˆ( )R  BS( .5R̂ ) .5
ˆ( )R  BS( .25R̂ ) .25

ˆ( )R  

A 0.0158 0.3761 0.0007 0.1615 0.0106 0.0769 0.0648 0.2197 0.3762 0.8367 
0.30 

B -0.0136 0.2824 -0.0080 0.1397 0.0111 0.0701 0.0596 0.2008 0.3435 0.7078 

A 0.0217 0.4314 -0.0076 0.1691 0.0096 0.0754 0.0485 0.2040 0.2399 0.7073 
0.50 

B -0.0099 0.2690 -0.0070 0.1370 0.0110 0.0703 0.0517 0.1935 0.2752 0.6481 

Table 4B: Finite-sample performances for estimating the latency model ( 1T ) based on n=300 and 1000 replications. 

Note: 5773.075.0 t such that 
1 0.75( | 0) 0.75S t Z    and 

1 0.75( ) 0.3333R t  ; 15.0 t  such that 
1 0.5( | 0) 0.50S t Z    and 

1 0.5( ) 1R t  ; 732.125.0 t  such that 
1 0.25( | 0) 0.25S t Z    and 

1 0.25( ) 3R t   
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Parameter 3 0.5   4 0.00   75.0R 0.75 0.75( )R t ct 5.0R 0.5 0.5( )R t ct  25.0R 0.25 0.25( )R t ct  

Kendall’s tau Setting Bias( 3̂ )  ( 3̂ ) Bias( 4̂ )  ( 4̂ ) Bias( 0.75R̂ ) .75
ˆ( )R Bias( 0.5R̂ )  ( 0.5R̂ ) Bias( 0.25R̂ )  ( 0.25R̂ ) 

A 0.0099 0.1854 -0.0062 0.0924 -0.0033 0.0468 -0.0230 0.1106 -0.0941 0.2267 
0.30 

B -0.0030 0.2298 0.0015 0.1095 0.0004 0.0309 -0.0041 0.0722 -0.0300 0.1394 

A -0.0179 0.1898 0.0048 0.0960 -0.0017 0.0504 -0.0336 0.1135 -0.1645 0.2237 
0.50 

B -0.0061 0.2483 0.0053 0.1164 -0.0002 0.0331 -0.0045 0.0825 -0.0420 0.1495 

Table 4C: Finite-sample performances for estimating j  and ˆ( )j   in the survival model ( 2T ) based on n=300 and 1000 

replications. 
Note that: 

Setting A:
0.75 0.9589t   such that 75.0)0|( 75.0 ZtS  and 

0.75( ) 0.28767R t  ; 
0.5 2.3105t   such that 

0.5( | 0) 0.5S t Z    and 
0.5( ) 0.69315R t  ; 

0.25 4.621t   such that  

25.0)0|( 25.0 ZtS  and 
0.25( ) 1.3863R t   

Setting B: 
0.75 0.9589t   such that 

0.75( | 0) 0.87S t Z    and 
0.75( ) 0.1438R t  ; 

0.5 2.3105t   such that 
0.5( | 0) 0.7071S t Z    and 

0.5( ) 0.3466R t  ; 
0.25 4.621t   such that 

0.25( | 0) 0.50S t Z    and 
0.25( ) 0.69315R t   
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Setting 1 0.7    2 0.3   75.0R 3333.0)( 75.0 tR 5.0R 1)( 5.0 tR 25.0R 3)( 25.0 tR  

Pr( 1)   Pr( 0)   BS( 1̂ )  ( 1̂ ) BS( 2̂ )  ( 2̂ ) BS( 0.75R̂ )  ( 0.75R̂ ) BS( 0.5R̂ )  ( 0.5R̂ ) BS( 0.25R̂ )  ( 0.25R̂ ) 

0.50 0.50 0.0085 0.2227 0.0042 0.1335 0.0002 0.0581 0.0272 0.1544 -0.2781 0.3567 

0.63 0.37 -0.0028 0.2051 -0.0015 0.1203 -0.0019 0.0558 -0.0107 0.1396 -0.0553 0.3341 

Table 4E: Finite-sample performances for estimating j  and ˆ( )j   in the latency model based on n= 300 and 1000 replications. 

Note: 5773.075.0 t such that 75.0)0|( 75.0 ZtS  and 3333.0)( 75.0 tR ; 15.0 t  such that 50.0)0|( 5.0 ZtS  and 1)( 5.0 tR ; 732.125.0 t  such that 25.0)0|( 25.0 ZtS  and 3)( 25.0 tR  
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Setting 20   11   0 0.88p   1 0.73p   

Pr( 1)   Pr( 0)   BS( 0̂ )  ( 0̂ ) BS( 1̂ )  ( 1̂ ) BS( 0p̂ )  ( 0p̂ ) BS( 1p̂ )  ( 1p̂ ) 

0.5 0.5 0.0077 0.2889 -0.1275 0.3738 -0.0025 0.0302 -0.0256 0.0380 

0.63 0.37 0.0462 0.2428 -0.0322 0.3014 0.0025 0.0244 0.0023 0.0299 

Table 4D: Finite-sample performances for estimating )1(
0

)0(
0 , , 0p  and 1p  in the incidence model based on 300 sample size and 1000 

replications 
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