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Abstract

In this thesis, we consider semiparametric regression analysis for survival data in
presence of non-susceptibility or cure. The mixture framework is adopted in analysis of
such data. The incidence rate is assumed to follow the logistic regression model and the
latency distribution is studied under two types of semiparametric regression models. One
class refers to the semi-parametric linear regression model which includes the AFT and
location-shift models as special cases. We propose estimating functions and also a model
checking procedure based on properties of counting processes. The other class is known as
transformation models which contain the proportional hazards model and proportional
odds model. The likelihood principle is adopted for parameter estimation. WWe examine two
situations of independent and dependent censoring respectively. In both research
directions, the principle of EM is applied to handle uncertain susceptibility status.
Simulation results are provided to examine the finite-sample properties of the proposed
methods.

Keywords: Competing risk; EM, Logistic regression; Linear regression model; Latency
distribution; Log-rank statistic; Transformation model; Martingale; Mixture model;

Non-susceptibiblity.
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Chapter 1

Introduction

1.1 Literature background
Traditional survival models assume that every subject in the study will eventually experience
the event of interest. However, Kaplan-Meier curves based on empirical data often level off at the
right tail and exhibit a stable plateau. Survival analysis which accounts for the possibility of cure
or non-susceptibility has received increasing attentions in the literature since it provides reasonable
explanations for some scientific phenomenon. The most popular approach to analyzing survival
data in presence of cure is to represent the population as a mixture of susceptible and cured
subjects. Define ¢ as the indicator of susceptibility. The population is divided into two groups:
the susceptible with ¢=1 and the cure with ¢=0. For ¢ =1, define T as the time to the
failure event. When ¢ =0, T is undefined or conventionally set to be infinity. Accordingly one
can write
Pr(T >t)=Pr(T >t|¢c=1)Pr(¢ =1)+Pr(c =0).
In presence of covariates denoted by Z, the mixture model can be written as
Pr(T>t|Z)=Pr(T >t|¢c=1,Z)Pr(c=1|2)+Pr(¢=0|Z2). (1.1)
Under the above mixture framework, most literature assumes that the incidence function

follows the logistic regression model which can be written as

_exp(Z76,)

Pric=112)=7(6,12) = :
(c=112)=7(6,12) T+ exp(Z16,)

(1.2)

Different proposals for modeling the latency variable 7'|¢c=1 have appeared in the literature.
Parametric models including the Weibull, generalized Gamma and generzlized F have been
proposed by Farewell (1982), Yamaguchi (1992) and Peng et al. (1998) respectively.
Semi-parametric models are more popular choices due to their flexibility and robustness. Most

popular semi-parametric models, after some transformation, can be written as a linear regression

form. For modeling 7'|¢ =1, one can write



WT)=2"B,+¢, (1.3)
where f,: px1 is the unknown regression parameter of interest, A(-) is a monotone functions
and ¢ isthe error term whose distribution does not depend on Z .

Now we discuss two general classes of model (1.3). One type of models, which refers to
semi-parametric linear models, assumes that #%(-) is given but the error distribution is unknown.

For example if %(¢) =log(z), the model becomes an accelerated failure time model. If A(z) =1¢, it
comes a location-shift model. Hence unknown parameters become B, and F.(¢) =Pr(e<t¢). The

other class, known as transformation models, assumes that %(-) is unknown but the distribution of

& 1s specified. For the Cox proportional hazards (PH) model, & follows the extreme value

distribution with S°(r) = exp{—exp(z)} and A°’(r) =exp(¢). For the proportional odds model, &

follows the logistic distribution with S°(¢) = exp(z) /{L+exp(z)}. Unknown parameters contain

S, and A().

Nonparametric analysis for cure models with right censored observations may suffer from
the inherent non-identifiability problem. A censored observation indicates two possible situations:
the subject may be susceptible but the event has not occurred by the end of study; or he/she is
cured. To distinguish the two different cases, the follow-up period has to be long enough to
observe the susceptible ones as much as possible. The book of Maller and Zhou (1996) discusses
the issue of identifiability and presents nonparametric tests to verify the condition of sufficient
follow-up. Despite the theoretical contribution, these tests are not practical due to their low power.
Therefore for practical applications, expert opinions about whether cure exists or not are important
for choosing an appropriate model (Farewell, 1986).

1.2 Outline of the thesis
This thesis considers semi-parametric inference based on models in (1.2) and (1.3). The

problem of non-identifiability is not as serious as in the nonparametric setting since additional



model assumptions will be imposed. For the latency distribution, we consider both classes of
models. We review the literature for semi-parametric linear models and present our proposal in
Chapter 2 and 3 respectively. Then we consider transformation models in Chapters 4, 5 and 6.
Chapter 4 reviews existing literature and Chapters 5 and 6 present our proposals under independent

censoring and dependent censoring respectively. Chapter 7 contains concluding remarks.



Chapter 2 Literature Review for

Semi-parametric Linear Models with Cure
2.1 Overview

Under the mixture framework, assume that

Pr(c, =1|2) = 7,(6,] Z) =
(gz | 1) z( Ol ) 1+eXp(ZlT90)

and for ¢, =1, we have

W) =27 py+e,,
where k() is specified and ¢, (i=1..,n) form an iid sample with an unknown marginal
distribution independent of Z . Define f°(t), F°(¢), S°(t) and A’(r) as the density,

distribution, survival and cumulative hazard functions of & respectively, all of which are

unspecified. In this chapter, we review existing literature for estimating (6,,3,) in presence of
the nuisance function S°(¢). Note that when A(¢) =log(), the model becomes the AFT model;

and if A(z) =1, the model becomes the location-shift model.

Let C, be the censoring variable for the ith subject. We will assume that C, and 7, are
independent. Denote observed data as {(X,.6,Z), i=1..,n} , where X,=T AC, and
o, =1(T, <C,) . Before we discuss specific methods, it is useful to examine the inference problem
using the classical likelihood approach. One can express the data under the scale of the error
variable. Let &,(8)=h(T)-2' B, e (B)=h(C,)-2Z p and &(B)=h(X,)-Z . Note that
&,(B,) hasthe same distribution as & when g, is the true value of £. The likelihood function

can be written as

(6, o>

L(ﬂ,e,ﬁ):f[ (702 (£B)] ™ X[7,0)S* (2(8))+ 1-7,0)) ] (2.1a)
where 7,(0) =exp(Z,0) I{L+exp(Z' 6)}.

The second component in the right-hand side of (2.1a) becomes complicated after taking

4



logarithm.

The idea of EM algorithm is often adopted in statistical inference of cure models. If

“complete” data denoted as {(X,,Z,,¢,,8,), i=1...,n} are available, the above likelihood in (2.1a)

can be simplified as:

[T {[=@7 @] [ @) o)]

i=1

1(8,=0.6,=1)

[1-7,(6)] " °)} (2.1b)

The resulting log-likelihood function can be written as:

log L(B.0, 1)) = (0.8 1)) =L.(0)+,(B. 1)

where
00)= Y6 1097, (0)+ Y (1-)-logll—7,(O)); (2.33)
00810 = 28100 £2(2,(8)+ Y. (1-8)-¢,10g 52 (,(5). (2.30)

Notice that the parameters ¢ and £ become separated in (2.3a) and (2.3b) respectively.

Accordingly the score functions for & and g become

5 HO, Sy EHOY
o0, (0)106 = Zg 2 (0) Zl)( @) (2.4a)

S J2G(B) £ (B)
ol /0 Z e A T 2.4b
B 1Io= 37 - 2o TG 8y (240)

where f(t)=0af(¢)/ ot and 7(8)=0x(0)86. The above derivations imply that 6 and A can

be estimated separately if the value of ¢, could be observed for all i=1,...,n and f(¢), or at

least its parametric form, is known. However these two conditions often do not hold in practical
applications. Now we discuss how to handle these problems.

To deal with possibly unknown value of ¢,, a common approach is to replace it by an
imputed value, often an estimate of its conditional mean given observed data. Notice that when
0,=1, ¢,=1;butwhen 6,=0, ¢ isunknown. It follows that

E(51X,,0,2)=6,+E(5,|T,>C, =X,,Z,).

5



Under the imposed models, we write
E(gi|Xi’5i’Zi):5i+(1_5i)wi(007ﬂ0’S2)’ (2-5)

where

n(O)<S.EB) 8
7(0)%S, G (P)+L-r,(0)}

In estimation, the weight w.(6,3,S,) is often treated as a fixed value by plugging in previous

Wi(H,ﬂ,Sg) =

estimates of (6,,,,S°). This technique is commonly seen for analyzing missing data.

Under the semi-parametric setting, the major challenge is the log-likelihood function in (2.3b)
or the score equation in (2.4b) which involves the nuisance functions ff(.), £2() and S°(),
the first two of which are complicated. Existing methods try to get rid of the density function

£2() in the estimation but still keep the survival function S°(.) since it is easier to handle. To

see this, there exist two estimators of S°(z) based on complete data given by

) S 1 () =, 5, =1)
St1p) = []- 1, (2.7a)
RS WA CIT R

) S 1 (B) =u,5,=1)
S8 = exp-Y = ). (2.7h)
DGR

Note we use the same notations in (2.7a) and (2.7b) to simplify the presentation since these two

functions are asymptotically equivalent. Replacing ¢, by o, +(1-0o,)w.(6,/,S,), we have

) > 1z (B)=u.5,=1)
S, pw)= [[f-—= }; (2.8a)
S S+ U= 8)WH(E (B) 2 W)

i=1

or



me)WSD
S,t1pw)= exp{-> — }, (2.8b)
v 2{5 +(1=-5)wH (£ (B) 2 u)

where w, =w,(0,8,S,) and w={w,, j=1..,n}. Since S\'g(ﬂﬂ,w) depends on (0,4,S,), the

expressions in (2.8a) and (2.8b) are not explicit estimators of S, (#) but can be used as an

estimating equation along with the score equations in (2.4a) and (2.4b) or its modified version.

We now introduce two papers which provide different ways of modifying the second score
equation. Note that, since the transformation #4(-) is known, the papers usually assume the
accelerated failure time model with () = log(¢).

2.2 M-Estimation by Li & Taylor (2002)
Li and Taylor (2002) extended the idea of M-estimators by Ritov (1990) to cure models. First,

the covariate Z is centered to exclude the unknown intercept term:

S I (GLT.) £
Z.-7) g 2.9
D R T ”ﬁ@mj @9

n 0
where Z = ZZ,- /n . Following Ritov (1990), Li and Taylor (2002) suggested to replace —;08
i=1 e \"

by a reasonable score function g(.). Notice that
T fo (x 0
L@0)=|-"5= M()
[~ o]

0

given that (o) =0. Accordingly £, (£,(f)) can be replaced by I g(x)dF, (x). Here are the
&(p)

examples of g(.) given in the paper:

(N gw)=u;
~3 ifu<-3
(i) gw)=qu iflul<3.
3 ifu>3



Finally Li and Taylor (2002) proposed to modify (2.4b) by
gu)dF, (u)

LT N > ~ _ u=&,(f)
U (ﬂlW’Sg)_;(Zi Z)| 6.g(&(B)+A-3)w, SGH) | (2.10)

2.3 Log-rank type Estimation by Zhang & Peng (2007)
The log-likelihood function in (2.1b) is expressed in terms of density and survival functions.

Zhang and Peng (2007) re-wrote the function in terms of hazard and survival function such that
GBS = 26610904 (€. (B)]+ g, log[S; (£, (B))]. (2.11)
i=1

Zhang and Peng (2007) found new insights from (2.11). Specifically, replacing ¢, by

¢, =0, +(1-0,)w,, the above function can be written as

L. £7) = 3.5 10g[A%( (A1 +G loglS" (G () (2.12a)
which equals
i‘,é’,— log[&, A2, (8)}1+ ¢, log[S;{&, (A} . (2.12b)

In particular, the expression in (2.12b) can be viewed as the likelihood from the model such that

WT)=2 p+e, (2.13a)
where & has the hazard function &A2(-). Notice that the problem in (2.13a) becomes a
semi-parametric model without cure. It has the form of a semi-parametric linear model since #(.)
is specified while the distribution of ¢ is unknown.

The proposal of Zhang and Peng (2007) was motivated by the work of Wei (1992) who
incorporated the rank estimation method under the framework of PH models. Specifically (2.13a)

can be written as
& (B)=nT)-Z'p.

As mentioned earlier & has the hazard function &A2(-). Consider a more general type of

8



proportional hazards model for &

Zon(0) =2} () exp(Z"y) . (2.14a)

The score equation for y deriving from the partial likelihood function based on model (2.14a) is

given by
,1 32,2, exp(Zl ) He (B) 2 € (D)}
v() =262~ - : . (2.14b)
> ¢, exp(Z]7)I{e; (B) 2 & ()}

Notice that (2.14b) has the form of log-rank statistics. When » =0, which reduces to the true

model (2.13a), the above score function becomes

,1 32,61, (A) > 5(8)
w(©0)=2 6|2 -+ - (2.14c)
Y5185 (5)

Zhang and Peng (2007) suggested to add a weight function w(0) to (2.14c) and proposed the

following estimating function:

n 3 2.8 HE (B)2 2 (A)
U (Blw) = Y S WHE (D) Z,- 2 , (2.15)
35,6, (8)2 & (A%

where W(.) isaweight functionand ¢ =3J,+(1-9J,)w, with w, dependingon (6,4,S,).
2.4 Sketch of Numerical Algorithm for EM-type Estimation

Now we discuss how to implement the estimation procedures which will also be adopted by
the proposed approach discussed in the next chapter. We need to solve two estimating equations:
x(@|w)=0 and U (B|w)=0 where

_ . ~M . _F .{_ﬁi(e)}
k(0| w) = ;giﬁi(efrg(l ) 1-2(0)

and * = “LT” based on (2.10) or “ZP” based on (2.15). Define U’ (B|w)=U""(B|w,S,) since

58 depends on (4,w) and the data.



For numerical implementation, let w™ be the mth step estimate of w based on

@™, B Sy . 1t is used to solve x(@|w™)=0 and U (B|w™)=0 to obtain
(é(erl),ﬁ(erl)) and

A S IG () =5, =1)
5= expl-Y, 52—y 4
ust Z O1(& ()= u)+ Zw(m)l(gi (B) = u)

The procedure is repeated for m =0,1,2,... until convergence.

It is important to note that solving U (B|w™,8)=0 is more difficult than

UZ(B|w™)=0 since S plays a more important role in the former equation. As a result, a

grid search with a large number of finely spaced points is suggested by Li and Taylor (2002). In the
simulation studies conducted by Zhang and Peng (2007), the estimator proposed by Li and Taylor

(2002) may fail to produce a consistent estimator.

The dependency of w on (8,4,S,) complicates theoretical analysis. Both papers did not
derive asymptotic properties of their proposed estimators. The bootstrap approach was suggested
by Zhang and Peng (2007) for variance estimation. We will briefly discuss this approach in the

next chapter.

10



Chapter 3 Proposed Approach for Semiparametric Linear Models

In this chapter we present our proposal to replace the second score function in (2.4b):

yiope 3 71| -5 LLEDD IRGI)
ol,(p, f.)lop= Z | =0, 5 1-6)s, =5 .
APIND= 22 sy @)

3.1 Martingale estimating function based on complete data
Temporarily we assume that the information of ¢ is available. Recall that
g(B)=hT)-z'p and &(B)=h(X,)-Z'p. Define the observable counting process for
&(p) as
N6 8) =1(E(B) <16, =1, =1) = 1(5.(B) 1,5, =1), (3.1a)
the at-risk process for a susceptible subject:
Y68 =1 (B)>1.c,=1) (3.1b)

and the corresponding filtration for the susceptible group:
F(t,8)= o {I(Z,(B)<u,8,=1),1(Z(B)<u,5,=0,5,=1), 2] |0<u<t,i=1,..,n}.
Define

M, (6; ) = N,(6: B) [ Y, BN (w). (3.1¢)
When g equals its true value g, the Doob-Meyer decomposition says that M. (z; 5,) is a
mean-zero martingale with respectto £ (z, 5,) .
The martingale property of M, (¢; 5,) can be used to construct an estimating function for S

when ¢, (i=1,...,n) are available. Consider

O(B)=[ Y. 2, {dN,(5; )~ Y,(: YA, ( B)}. (3.23)
where
RCIA) =[N, P YT, ). (3.20)

We can express U(f) in terms of the log-rank statistics. It follows that

11



> dN (¢ ) .
Zz Y6 B)dA (1 ) = ZZ Y(t: ) =2 Z(t; BN, (t; ),
; =1 ZY (t ﬂ) J=1

where Z(z; 5) _ZZ Y(t ﬂ)/ZY (t; #) . Accordingly we can write

j=1

0B)=] 27 {aN,(6:5) -1, PR (: ). (3.32)
- [, 242 - 26PN ). (3.30)

3.2 The proposed estimating functions
A possibly unknown ¢, can be replaced by its imputed value: &, =4, +(1-J,)w,, where

m(0)xS,EB)
7(0)% 5, (G (B) +HL-7,(0)}

The at-risk process Y,(¢; #) can be replaced by

W :Wi(e’ﬂ’Sg) =

Y| Bow) =1(6(B) 21,6, =)+ wi(£(f) 21,6, =0)
and define
(6,5, w) =§Zi2(t;ﬂ.wi)/§i<z;ﬁ,m)
and
Al pow) =j;§dNi(u;ﬁ)/gZ(u;ﬁ,wi).

We propose the following estimating function for g

UGB =37 dN 6D -T(6 pow)aR, (5] (3.43)
_ j:i{zi ~Z(t; B,w)}¥dN,(5; B), (3.4b)

where Z(t; 5, w) = ZZi ﬁ(t;ﬂ,wi )/ZZ(t;ﬂ,wi ). Recall that the other estimating function of &

i=1 i=1

(0] w) = z*”gg Z(— )—”(fg)},

0
where 7(80) =—(6).
7(0) ae”( )

12



The expression of U(B|w) in (3.4b) is equivalent to U”’(f|w) proposed by Zhang and
Peng (2007) despite that the two proposals are developed based on different ideas. Nevertheless
our approach starts from the concept of martingales which provides a useful framework for further

analysis including large-sample analysis, variance estimation and model checking.

3.3 Large sample analysis

Recall that the proposed estimators of (6, 5,) , denoted as (é , ,@) solve

k(010,551 | _ {K(m i) } i H
UBIwe,5,5,3) | LUBIW] 0]

where v?z:{ﬁ/j,jzl,....,n} and w, :m{H,,B,§E(.|,B,vT/)},

) 316 () =u,8,=1)
S.¢1pw)= exp(-Y —= ).
Y8+ U8 HE (B) 20)

We also define

_ 7,(0)x S, (£,(8))
7, (0)x S} (&.(B)) +H{L-7,(0)}

where S?() is true survival function. It is not easy to establish asymptotic properties of (é , ,3)

w, =w,(6,,5))

jointly since w still depends on (&,5) in a complicated way. To precede the theoretical
development, we need to assume

Assumption: Sup H&—wﬁ”ﬁo(n_lls) as. forall @ and p.

Note that the quality of weights still plays an important role. We ran simulations to evaluate the
effect of using arbitrary weights but the results lead to a biased estimator of /4. The imposed
assumption is a condition to assure that w is a good weight. Due to this assumption, «(&|w)

can be ignored in the evaluation of ,3 since @ affects ,5’ only through w.

Now we can focus on

13



U(BI#) = [} D47, 23, 9N (6 ). (35)
Temporarily ignoring the estimated weight, first we examine the property of
U(BIW) =[] 202 =20 BN (6 ), (36)
where w" is the true weight. Following Lin et al. (1998), we can write U(B|w")-U(B,|w") as
the sum of the following three terms:
By = Iy 2 2 2P} (NG H-Y @ a6 ),
B, =- jjg{zi ~ 206 By} (AN, (6 B) = (6 BN 65 By)) ,
B,, = IZ{ Z, = Z(t: B} Y (6 B) (dA (6 B) - dAL (6 5,))
where Y (t; 8)=Y.(t| B, w)and A.(z;5,) isthe limit of
jggdfvj(u;ﬂo)/gi(u;ﬂo,w;)
and A'(t; )= N.((t— (B, - B)Z.); B, ). Note that
Iy 27 2 B ¥ BN ) =0,
And
Iy 212 =26} 7PN 6 ) =0,
where A'(t;8,) =oA(t; B0t , A (t;5,)=0N.(t;8,) 6t and A°.(t;5,) is the limit of
J';jzn;de(u;,Bo)/jzn;f,(u;ﬂo,w_j.). We apply similar techniques of Ying (1993) to prove that
B, +B,, hastheorder o(n"?) ina o(n"®) neighborhood of 2,.See Appendix 1 for the proof.

By the Taylor’s expansion,
AL B) = Mo (6 B) +{ 26 By) + o} 27 (B- o)

where A (¢; 8) =0A%(t; B)/ ot or equivalently
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AN (1 B) = dN, (6 o) +{ A (6 fo)di + o)} 27 (B~ )

where 1'(t; B,)dt = d2.(t; 3,). Thus B, can be written as
I:Z{ Z, = Z(6: 8w} ZIY (6 B)A (6 B)dt(B— By) +o(n-| 8-

_ jjj{ 7 -7 ﬂ,w*)}®2%W(t;ﬂ)(ﬂ—ﬂo)+0(n-||ﬂ—ﬂo||),

where N(t;5) = ZN (t; ) and M®* =MM". In summary we have proved
UBIw)-U(B | w)

:Jjé{ Z—Z(t;ﬂ,w*)}@ %Cﬂv(ﬁm(ﬂ—ﬂo)+0(n||ﬂ—ﬂ0||+n1’2)

which is equivalent to

UBIW)=UB | W) = An(B~ ) +o(n™ +n[ -5, (3.7a)

1 X o d or (t /Bo)
h A = — . 3 1]
where 4, n[E_l{Z, Z(tﬂw)} T 0p)

estimated weight. Our original goal is to show that

dN(t; ) .Now let’s incorporate the influence of the

n U (B|w)=nPU(B W) +0,(1).
However we only obtained the result: U(8|w)-U(B|w")=o0(»n*?) which implies that
%(U(,Blv“v)—U(ﬂ|w*))=o(n1’6) which des not converge to o, (1) when » is large. Note that
n

if we impose a more strict condition on w (say sup va —wa <o(n™?) forall (8,8)), we will

get the desirable property. However since this is not a realistic assumption, we have to try other
approaches.

We obtain some intermediate results. Applying similar techniques of expansion, we can write
UBIW)-U(By|w)=A,n(B- )+, (3.7b)
where the components of ,:ln are similar to 4, with w" being replaced by w. The difference

of (3.7a) and (3.7b) directly follows that
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[U(BIwW)=UB | W) -HUBIW) U (8, | )]
_ J‘:i{f(t;ﬂ,w*)—Z(t;ﬂ,ﬁz)}dNi(t;ﬂ)—j:Z’j:{Z(t;ﬁo,w*)—Z(t;ﬂo,vT/)}dNi(t;ﬂo) —d .
In Appendix 2, we show that d, = o(n"'®) . Notice that, based on the right-hand sides of (3.7a) and

(3.7b), one can also write

d, = An(B—p,) +o(n> +n|f-R|) —An(B-B,)+r,.

1/2

In Appendix 3, we show that », =o(n"°) and hence A4, = 21,1 . We aim to establish the result:

Jn ( f- ,BO) = Normal(0,(4)*2(4)™), (3.8)
where 4 isthelimitof 4 and X isthe limit of

% =232 25| NG,
However the above proofs are not enough to make this conclusion. Let’s summarize the results that

we have obtained:

U(B1W) =U(By | W)U By | W) =U By | W)} A,n(B~ ) +o(n™?).
Note that U(B,|w)= Normal(0,Z) . If U(B,|W)=U(B,|w)+o(n"?) , it follows that
asymptotically, 0=n"2U(B|W) +4Jn(B—-pB,) which implies the normality of A . In
developing the variance estimator of ,3 we still rely on the result in (3.8).

In Appendix 4, we show that for each ¢, Z(t; 8, W) = Z(t; ,,w") +0,(1) , but the order after

taking the sum is still not derived yet. The final goal is to prove

UGB, 1#) = U (B, | W)+ 0,

NI NI P
Note that

US| W) =U By | W) = [ 2 AZ (6 By w') = Z(6; o W) N, (1 By) -

i=1

In Appendix 4, we show that for each ¢, Z(s; B,,w) =Z(t; 5, w')+0,(1), but the order after
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taking the sum is still not derived yet. The difficulty comes from the dynamic weight which is a

complicated function of (6,4) . We have conducted simulations to check whether
v =%(U(ﬁo [W)=U(B, | w*)) gets close to zero as the sample size increases. In Table 2D, we
n

can see that the sample size changes from »=100 to »=2000, the value of r (or |r| )

decreases and is close to zero.

3.4 Numerical algorithm and variance estimation

The proposed estimators solve

A0) , {n(e)}
K0 w) = Z — ACH] T (3.9a)
U(B|w) = ij{Z,- ~Z(t:; B, W)}dN,(t: B) (3.9b)

where ¢ =0, +(1-95)w, and

w=w(6,5,5) = 7,(0)x S, (&,(5))
R T n(0)%8,E(8) +HL- 7, (0)}

with S, being replaced by the following explicit formula:

21(8 (B)=u,5,=1)
S, (r) =exp{-> — >
us<t Z{é‘ +(1 5)w}[(8 (ﬂ)>u)

i=1

The estimation procedure requires many iterations by updating the weights using previous

estimates. Specifically let w™ be the m-th step estimate of w based on (6, 3™, 8™).
Treating w™ as fixed value, one can solve x(8|w™)=0 and U(B|w™)=0 toobtain 6"

B respectively and then update

A S 1 (B) =u,5,=1)
Simu) (1) = exp{—z . = 1.
o 2{51' +(A=3)W"H(E(B) > u)

i=1

The procedure is repeated for m =0,1,2,... until convergence.
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3.4.1 Re-sampling based on bootstrap approach
The non-differentiability and the complicated and dynamic weight components make it
difficult to derive an analytic formula for variance estimation. The bootstrap approach provides a

simulation scheme without extra analytic work. Say R bootstrap samples are drawn from the

original data {(Xl.,d.,Z,.T), z'=1,...,n}. For each bootstrap sample, we perform the estimation
procedure which involves x(@|w™)=0 and U(B|w™) for say m=1,..,M . The sampling
distributions of & and ﬁ can be approximated based on the K bootstrap estimates. The

bootstrap method is time-consuming which involves solving the roots RxM times. Note that
solving U(B|w"™) =0 even once is not an easy task.
3.4.2 Re-sampling based on pivotal estimating functions

Parzen, Wei and Ying (1994) proposed a re-sampling method which has become a popular
tool for variance estimation for many semi-parametric inference problems. This approach is useful
when the estimating function is not smooth. In other situations, the derivative of the score function
can be derived under some regularity conditions but still contains unknown density functions
which cannot be estimated based on the simple plug-in approach.

Now we apply and modify the idea of Parzen et al. (1994). For our problem, the pivotal

estimating function are the asymptotic distributions of

{K(enw*)} _{K}
ugiw)] LU

Directly applying this approach, we first need to generate many replicates from the pivotal

distribution denoted as (K ;,U;) for j=1..,R.Thensolve

[K(e w6, 5.5.3) } _ {K} | (3.90)

upIwe.58n| LY

J

Let (éj,,éj) be the corresponding solution for j=1,...,R. Then the conditional distribution of
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J

][ ] , given the observed sample, is asymptotic equivalent to the unconditional distribution

J

6| [6 o
of l:l{ 0} for each j. It implies that the empirical distributions of {(¢;,5,)j=1,...,R},

0

conditional on the observed sample, can be used to approximate the unconditional distribution of

0.5).
The above procedure, however, is very time-consuming since it still involves many iterations

to obtain the solution of (3.9c). We propose to modify the procedure by solving

o
vy LU

where W denotes the final estimated weight. This modification can avoid the time-consuming
iterations within each re-sampling run. In Appendix 3, we will see that this modification still
produces valid results for variance estimation.

Now we derive the algorithm to simulate random samples from the pivotal distributions.

Since our interest is in A3, we only need to focus on U(B|w’) since it does not involve other

parameters when w' is a fixed value. We have
UGBIW) = [[ D242, 28 V)
=3[~ 26 po a6 )
= 4(8w). (3.102)
where ¢,(3,w) = J:{Zf ~Z(t; B, w)¥dM,(t; B) . It can be shown that
n?U(By;w)~N,(0,%), (3.10b)

where X = E[¢.(B,, w)d(B,,w)"]. Plugging in the final estimated weight, asymptotically we

have
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n"*U(By;w') ~ N,(0,), (3.10c)
where the covariance matrix can be estimated by
i:i@(ﬁ,@)(g(/}@)ﬁn. (3.100)
In Section 3.3, we have shown that for g in a small neighborhood of 4,
nPU(B|W) = n2U (By; W) + An™* (B = ) +0, (D),
where A4 is the asymptotic slope matrix of »™“?U(B,;w’) . We simulate G. ~N(0,1)

independently for i=1,...,n. Let /§ be the solution to

UB1#) = (B #)G,. (3.108)

We can show that the conditional distribution of n’“ZZ;/)i (B,Vv*)G,. , given the observed data, is

i=1

. oy . . o / NS - _ —
also N,(0,%). Accordingly the conditional distribution of n'*(B" - p) follows N,(0,4 4™,
which is equivalent to the unconditional distribution of n“z(,[i’—/i’o). To implement the

re-sampling algorithm, we repeat (3.10e) for R times and then obtain ,BJ for j=1,..,R. The

sample variance can be used to estimate Var(,@’). The proposed re-sampling procedure is much

faster than the bootstrap approach since no iteration is needed in solving (3.10e) and also there is

no need to deal with the estimating function of 4.

3.5 Model Checking
We utilize the martingale framework to construct a model checking procedure for the latency

distribution. Here the model assumption refers to the chosen form of #(.). Define the residual

process:
VEB)=n Y Z M (), (3.11a)

where
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M6 B) = N,(t: ) - [ ¥, B3, (1) (3.11b)
and

RO =[ SN (ST i B, (3.110)

The Kolmogorov-type test based on sup,

n‘”ZV(t;/})H can be used to measure the degree of
departure from the imposed model.
First of all we need to show that, under the assumed model, 7 (z; ,é) converges weakly to a

mean-zero Gaussian process. The argument is similarly to Ghosh (2003). Here we summarize the

sketch of proof. One can write
V(e B)=n"Y 2, M, B)
i=1
n ¢ / 4 A ~ ~
= n’llZZIO(Zi —Z(u; S, w*))dMi(u;ﬂ,w*) :
i=1
Notice that

no. ~ n R - i](gj(ﬁ):u!é‘j:]-)
DM, f) =D 1 (B) =u,6, =) =W 1(E(B) 2u) 7 -
2 Wi, (B)zu)

y P L . il(gj(ﬁ)zu’é‘jzl)
=D 1EB) =u.6,=0) - X W15 (B) 2u) 15 :
1 (B) 2 )

=0,for O<u<t.

Using (3.8), V(t;,@’) can be rewritten as

WY [ (2= 200 o W)V (6 o W) 4 A4,0) (= ) +0,0).

A

By the martingale central limit theorem and the consistency of S,
V(t;f) ——>N,(0,3),

where the covariance matrix (X ) can be estimated by (3.10d). Furthermore its asymptotic
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distribution can be approximated by
Vi) =nt?y jo’{z,. — Z(w, BoW)YAM  (u; B)G, +V (1, B) -V (£, B) (3.12)
i=1
For informal model diagnostics, we can plot the sample curve of V(t;,@’) along with several

simulated curves of I}(t) . If the sample curve is located within the range of simulated curves, the

model assumption is reasonable. Formally, we can generate many replicates of I}(t) and compute

the value of sup,

n 2I}(t)H for the model candidates under consideration. The p-value refers to

the empirical frequency that the observed value of sup,

n (s B)H exceeds the simulated

values of sup,

n"”zl}(t)H .

3.6 Simulation analysis
3.6.1 Data generation

We first generate Z, from Bernoulli (0.5) and compute
7'0,=(1.72,) (6;,60) =0, + 7,

where the values of 4, are 6" are specified. Then generate ¢ ~ Bernoulli( p,) with

exp(Z'6,)
=70|72)=————.
p,=7(012) 1+exp(Z'6,)

If ¢ =1, we generate the latency variable 7" which follows
log7 =p"Z,+pPZ,+&

where & follows the log-exponential distribution. If ¢ =0, we set 7 to be a very large number

exceeding the support of C which follows a uniform distribution. Observed variables include
replications of (X, 5,2), where X =T AC and o =1(T <C).We consider two settings with A:

Z, ~ Ber(0.5) and Z, ~ Ber(0.5);and B: Z, ~ Ber(0.5) and Z, ~Unif'(0,1).

3.6.2 Simulation results
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Tables 1A and 1B show the results for estimating 6", 6,

exp(6”
Po :”(H|Z:O):1+e?(( ; (2) ,
p(6;”)
and
0 , p
pl :71'(9|Z:1): eXp(eo +90 )

1+exp(0” +6)

We calculate the average bias and standard deviation based on 1000 replications. In the two tables,

the estimators have reasonable performances which improve as the sample size increases.
Transforming (6”,6") into the probability scale based on (p,,p,), the performances of

(po, ) look satisfactory. Comparing the two tables which differ in the values of p,, we see that

the corresponding estimator becomes more variable when p, is closer to 0.5.

Our main proposal is developed for estimating £, in the latency model. Table 2A and Table
2B correspond to the incidence models in Table 1A and Table 1B respectively. The proposed
estimators of A" and B{? have reasonable performances but sometimes produce larger bias

when the sample size is small or the censoring rate is high. Our another important proposal is the

re-sampling scheme for variance estimation. To examine the performance, we first check whether

the sample average of ,[3’} which solves (3.10e) is close to the true parameter value. Then we
examine whether the proposed estimator &(,Bj), which is sample standard deviation of ,BJ

(j=1...,R), is close to the simulated estimate denoted as se(,@'j) . The results are satisfactory. As

a consequence, the coverage probability is close to the 95% nominal level in most cases. Notice
that the results in Table 2B appear to be better than those in Table 2A since the former corresponds
to higher incidence rate which provides more data to estimate the latency distribution.

Finally we examine the proposed model checking procedure. We first simulate data from an

AFT model and then analyze it by an AFT model. Figures 4.1A and 4.1B show the two

23



components of V(z; ,3) based on Z, and Z, respectively. The observed curves are mostly

located within 20 simulated curves which show that the fitted model is acceptable. Then we
generate an AFT model and fit a location shift model. Figures 4.2A and 4.2B, the observed curves

are located outside the simulated curves which show that the fitted model is not satisfactory.
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Chapter 4

Literature Review for
Transformation Models with Cure
4.1 Background

In this chapter we consider the second class of models with the incidence model given by

exp(2"6,)

Pric=112)=7(6,|Z) = ———2"—.
(¢=112)=7(6,12) T+ exp(Z16,)

And for ¢=1, 7 follows a transformation model of the form
WT)=Z"B,+¢,

where A(-) is a unknown monotone function but the distribution of & is completely specified.
Note that we denote the distribution, survival and cumulative hazard functions of & as F., S,

and A, which are fully specified. The most well-known example is the proportional hazards (PH)

model in which & follows the extreme value distribution with Fg(s):l—exp{-exp(s)}. When

¢ follows the standard logistic distribution with F (s)=exp(s)/{l+exp(s)}, the model

becomes the proportional odds (PO) model.
For the discussions in this chapter, observed data are denoted as {(X,,5,,Z,), i=1,...,n},

where X, =7 AC, and &, =I(T, <C,). The parameters of interest are(6, f) while A(r) is an
infinite-dimensional nuisance function. In the early stage of methodology development,
statisticians including Kuk and Chen (1992), Sy and Taylor (2000) and Peng and Dear (2000)
focused on the special case that the latency distribution follows the PH model. Then a new trend
starting from Lu and Ying (2004) considers statistical inference for the whole of class of
transformation models. In this chapter, we review existing literature for transformation cure
models. Roughly speaking, existing inference approaches can be classified into two types. One is

based on the likelihood principle and the other is based on moment properties.
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4.2 Different model expressions
We first review different formulations of a transformation model since the form of model
expression affects subsequent inference development. The most well-known representation is
given by
Wr)y=2"g,+¢, (4.1a)
which states that the failure time 7' for a susceptible subject can be written as a parametric linear

model after an unknown monotone transformation. Alternatively one can also write
AS, O}=h()+Z" ,, (4.1b)
where SZ (1)=Pr(T >t|¢=127) is the survival function of T|¢c=1Z and F.(t)=1-¢ ()

which is a known function. The representation of (4.1b) says that a known transformation of the
survival function leads to a linear structure in the parameters which contains an un-specified

intercept function. One can also write (4.1b) in terms of the cumulative hazard function, defined as

A, (t) =—log{S, (1)}, such that

A, (6)==loglp™{h(r) + Z" B}1= H{n(t) + Z" B;}, (4.1c)
where H(t) =-log{e'(¢)} is also completely specified. Notice that the above three equivalent
expressions only allow for time-independent covariates. Later in Chapter 5, we will discuss the
extension of including time-dependent covariates.

4.3 Likelihood approach under the PH model

The likelihood function under the transformation model can be written as
]i[[ﬂ,» ©)- 1, IS, (%) 7,(0) +1- 7, (O , (4.2a)
where Sz = {h(t)+Z" B} and fz 6= —65‘2 (¢)/ 0t . Expressing the function in terms of
hazard and survival functions, we obtain

[T @2, 05, )] =03, )41z @] | (4.20)

i=1
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When the latency follows the PH model, (4.2b) can be written as

Iy 7.0) - &y ()" - 5y @ 2.6 - 5, () ™ 41—, (0)] [

i=1

where 50 () and 10(.) are the baseline survival and hazard functions for the susceptible group.

Equation (4.3) can be simplified by first considering complete data with ¢, being observed.

The completed likelihood function for (6,5) <can be written as follows:

n

H{ [7[,- ©)- 7 (x )" -5, (xl_)exp(ﬁ’rzi):| o [ 7.(0)-5, (x[)exp(/fTZ‘):| (-8 [1-7,6)] " | which can

i=1

be written as the product of the following two terms:

LO=T]{ = OF - @F | (4.5
and
LAY =TT e Sy S, a ™7 L s

Both terms involve possibly missing ¢, and the second equation involves the nuisance function
So() or Aq().

Kuk and Chen (1992) considered the marginal likelihood function Z:Ll(e)L2 (ﬂ,f\o), where

ceQ)

Q is the collection of all »_-tuples of 0’s and 1’s, n, = Z[(éi =0) and ¢eQ is a realization

i=1

of ¢, for those observations with 6, =0 (i=1,...,n). However since this marginal likelihood,
which involves the complicated summation, is not easy to handle numerically, a Monte Carlo
approach was suggested to implement the procedure.

Later researchers proposed to analyze the two terms in (4.5a) and (4.5b) separately. The

log-likelihood can be rewritten as the sum of
L(0) = Z ;log(7,(8))+ (L -¢,)log(1- 7,(6))} (4.6a)
and

L(5.50) = 3 {8 1og (577) + ¢, log ,6)7" )} (4.6)

i=1
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There are two ways of handling the nuisance function in (4.5b) — ignore it as in the classical
analysis without cure or estimate it using explicit formula. Now we discuss both approaches.

Motivated by the marginal distribution of ranks discussed in Kalbfleisch and Prentice (1973),

Peng and Dear (2000) suggested to ignore the nuisance function A,(.) in (4.5b). To simplify the
discussion, assume there are no ties. Let x;, < <x,, be ordered uncensored failure times with

corresponding covariates Z ... Z,,. The partial likelihood for A, assuming that ¢, (i=1,...,n)

are available, is given by

L= [ %) | @)

"D gexp (ﬂTZ.i)

JER(x(;y)

where R(t)={i: X, >t} is the risk set at time ¢. Peng and Dear (2000) further proposed to

impute ¢, by an estimator of its conditional mean:
E(g |x,6,,2)=6,+@1-8)Pr(,|T, >x,6,=0,z),
where

7,(0)S,, (x)
7T (H)SZi (xi) +1- 7; (6) .

w, =Pr(g, =1|T, > x,,6,=0,z) =

The baseline function §0 (t) can be estimated by

1

Sy(t)=exp| = > |
Jxpy<t Z{é‘l + (1_51)Wl}exp(,8TZl)

[eR;

Since S, (1) =8,(t)™*”*, S, (x,) can be estimated by S,(x,)**”*. Finally an estimator of

£ can be obtained by maximizing
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L=[1] d Gl

Y 5+ a-s)wdexn(57)

JER(x;y)

In each iteration of the maximization, w, is treated as a fixed value by plugging in previous
estimates of (4, S, S’O) . The final estimator is obtained when the convergence criteria is satisfied.
Sy and Taylor (2000) proposed two methods for handling (4.5b). Their first proposal

suggested to substitute A, (f) in L(ﬂ,KO) by the Breslow estimator given by

z {1/Zg, exp(ﬂrzl )}. Their first approach becomes very similar to that of Peng and Dear

Jxy<t leR/
(2000). Their second proposal was motivated by Kalbfleisch and Prentice (1980) such that the

nuisance function So(t) is decomposed as the product-limit form of hazard rates at observed

failure times. Then Lz(ﬂ,f\o) can be expressed as a function of g and the (baseline) hazard

rates. The idea of profile likelihood estimation is adopted such that the hazard rates are estimated

first, assuming that £ is known, and then £ is maximized based on the profile likelihood.

4.4 Moment approach for the class of transformation models

Lu and Ying (2004) extended the analysis to the whole class of transformation models.
Unknown parameters become {6, 3,h(-)} with true values denoted by {6,,5,.%4,(-)} respectively.
Properties of counting processes and martingales are applied to construct estimating functions.
Specifically define N, (1)=1(X,<t,6,=1) and F, as the corresponding filtration up to time ¢.
It follows that

E[dAN.(t)| F_1=1(X, 2 t)dA,(t) = I(X, > I)W’

where

1 N exp(Z76,)

S.(1).
1+exp(Z76,) 1+exp(Z76,) 2

SZ (t) =
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Additional re-parameterization is needed to express E[dN,(¢)|F,_] as a simpler function of the

unknown parameters. It follows that

1+exp(Z"6,— A, (1) _1+exp(Z" 6, — H{h (1) + Z' f})

S, ()=
2 1+exp(Z78,) 1+exp(Z'8,)
0 0

)

where H(x)=-log{p"(x)} is a known function. To simplify the expression, define
w(x) =exp(x) {1+exp(x)} as the logistic function and w(x) =1—-w(x). Then

wZe) _ §ze)
'/7(ZT‘90 A, () ‘/7[ZT00 — H{h, () + ZTﬂo}]

Sz (t) =
and

A, (1) == log{yr(Z" 6))}+log{w[Z" 6, — H{h, (1) + Z" S }1}-

Note that the first term in A, (z) does not depend on ¢. Accordingly one can define
M, (t;0,5,h) = N,(t) - 1(X, 2 1) d log{w[Z] 6 — H{h(t) + Z] f}]}

=N,()-1(X, 2z t)d log{y[-Z 6+ H{h(t) + Z F}]},
where the second term uses the fact that w(—x)=w(x). An important property is that
M (t,6,, B, h,) is a mean-zero martingale. This expression is nice since it is a tractable function

of linear terms in the unknown parameters. Two sets of estimating functions can be constructed:

S dN, (1) - Y,(0)d log{i71Z! 6 — F{A() + Z! FHT} =0

i1
[ Z4dN, ()~ Y, () 1og{# 2] 0~ H{h(r) + 2] Y1} =0,
i1
where the first one can be viewed as for estimating /%(¢z) and the second one is for . Notice that
for the transformation cure model, estimation for the latency distribution does not use the idea of
E-step since the compensator 7(.X, >¢)dA,(¢) does not need the information of ¢, . Nevertheless
since @ is also unknown, additional set of estimating equation is needed. Lu and Ying (2004)

suggested to modify the estimating function:

"o exp(Z]0)
/8 (sl R U
,Z::‘jo A< 1+exp(Z,.T6')}

where & =0, +(1-0)w and w =Pr(g, =1|T >x,,6,=0,z,) is expressed as a function of
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{0, B, 1()}.
The approach proposed by Lu and Ying is attractive since it can be applied to the whole class
of transformation models. Their idea is based on martingale properties which can be viewed as a

moment approach. In the next chapter, we also consider general transformation models but adopt

the likelihood principle for inference.
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Chapter 5

Proposed Approach for Transformation Cure Model
under Independent Censoring
Recently Zeng and Lin (2006) extended the transformation model without cure to allow for
time-dependent covariates. The model assumption is imposed on the cumulative intensity function

which can be expressed as
A, (1) = G{j] (T > s)exp{B, Z (s)}dR(s)} : (5.1)

where Z(¢t) denotes the vector of time-dependent covariates, G(.) is a known transformation
and R(.) is an unknown increasing function. We derive the connection of model (5.1) with the

original model expressions discussed in Chapter 4 under time-independent covariates with

Z(t) = Z . Notice that the cumulative hazards function can be written as:
A ()= G{ [exp(s; Z(s)}dR(s)}
0

= G{exp( A7+ Iog[R(t)])}
= H{BIZ +h(1)}, (5.2)
where H(r)=G{exp(s)} and h(s)=logR(z) which correspond to (4.1c). The advantage of (5.1)

is the inclusion of time-dependent covariates in the model. Besides the model extension, Zeng and
Lin (2006) also proposed likelihood-based inference methods which may yield more efficient
results. We consider two extensions. In this chapter we apply the approach to the mixture model
when the latency distribution follows the transformation models. In Chapter 6, we discuss a
complicated situation of the cure model when dependent censoring exists.

5.1 Model assumptions

Let ¢ be the susceptible indicator which, given the covariate Z, follows the logistic
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model:

T
7(0)2)= 2P0 (5.30)
1+exp(Z° 0)
For ¢ =1, the cumulative intensity function can be written as
1,012)= G( (1> s)eﬂrz(s)dR(s)) , (5.3b)

where G(.) is a known function and R(.) is an unknown increasing function. Define
Y(s)=I(T >s) and
(6B R) = [ Y(s)e” “dR(s).

Accordingly for ¢ =1, the intensity function can be written as
. 0 _
a(r) = EG(rf(t,ﬁ,R))

(s ) (26@AR)
_(8§(z:ﬂ,R)G(§(”ﬂ ’R))M o )

=g (&8, R) VI(T > 0)e” 7VdR(z), (5.3c)
where g(¢) = %G(t) . For time-independent covariates, the cumulative hazard function and hazard

function are defined as f\z(t) and iz(t) which have similar expressions as le(t) and a,(z)

respectively but without the stochastic component /(7 >¢). Accordingly we have

1 . exp(Z'6)
1+exp(Z'0) 1+exp(Z'6)

S,(1)=Pr(T >1|Z)= exp{-A, (1)}
and

1 N exp(Z’6)
1+exp(Z70) 1+exp(Z'6)

A (1) ==log{S, (1)} =~log { exp{-A, (t)}} :

5.2 Likelihood analysis for complete data

Suppose we have complete data {(X,,5,,¢,),i=1,...,n}.Let N,(t)=I(T, <t,5, =1),

Y(s)=I(T >s) and &(B,R) = [ Y.(s)e” ““dR(s). The log-likelihood function for (dR, B) is
1 1 1 0 1
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proportion to

S| [ al00s (5 .R)+ 2,0 +10gdR)] -5 G(£:5.B) |

—Z { [ [logg (&t B, R)+B'Z,(1) +logdR(r) N, (1) ~¢, | (é—(r—:ﬂ,R))Z(t)e”rzf"’dR(t)}-

Directly maximizing the above likelihood is difficult. Nevertheless Chen (2009) proposed
closed-form score equations which yield nice analytical results. Here we modify his results for the
extended cure model. We need to assume that R(¢) is a step function which takes jumps only at
observed failure points. Let ¢, € (0,7] be an observed time and R, = R(z,) is a step function

which jumps at time ¢,. The score function for dR involves the following two derivative

equations:
SR I log (& (—; 8. R))dN, (z)
- gg((f ((f__fff)))){ 2dR. j Y,(1)e” “dR, (z)} dN. (t)
_ T gl(é(l—,ﬂ,R))Y ﬁTZi(t)dN .
to+ g(é:,(t_yﬂ,R)) i(t*)e z(t) ;
and
g O @A)
=r dR Y(02(£0=BR))-” 7 OdR (1)
N Uz:g'(ff(t—;ﬂ,R))Y,»(f)eﬂrz’(’)Y,-(t*)eﬁrzf"’de. )+ Yi(t*)eﬂrzi(t)g(fi(l*—;ﬂ,R)):|_ it
follows that
o1(B,dR)
OdR,
-3 [ [logdr()+log ¢ (5= B)+ 2,0}V, (0=c.0 (4 =3 5.R)|

_\)dN(e) | i
= i_l{dR(t) 2R I 0g g (& (1= B, R))dN,(¢) gG(f(z- B.R)) }
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- Z{‘W ) B R ()6 " g (£ (1=, R))} (5.4)

dR(t,)
where
] , ,R :1_ Ki(t*;ﬂ!R) ’ 55
e XAy ¥0) (559
gEw=8.R), 5.5b
k(LB R)=] < s p.m)™M) (5.5b)
dM () = dN,(t) - g (£ (6 B, R)) Y, (0)e” " VdR(r). (5.5¢)

The score equation for /3 is given by
S/Z; _i{aﬂf [log g (&(t: 8, R))+ B Z,(t) +log dR(r) |dN, (z)
gﬂ g(& (- ﬂR))gY(t)e”(”dR(t)}
- Zl{ [ RAGLAGE: ﬂ%[ [RADMOT (”)dR(u)} dN, (1)
I, g'(é(t_;/6’R))[J‘OtZi(“)x(”)eﬁrz"(u)dR(“)}QK(l)eﬂrz“(’)a’R(t)

[, 2 (&= 5. R)ST O X7, (0dRE) |.
Re-arranging the terms in the above equation and applying the formula in (5.5a)-(5.5c¢),

ﬂ can be written as
op

[ [F <2 (EGBR)) ¢ e
;{ L Z.(t)dN (1) +IOWUO Z (u)c Y (u)e” *¢ )dR(u)}dMl.(t)

-J; (6= A RS0 OZ (0RO

o [L (£ A.R)) dMi(u)}
:2{ J, Z.0an, )+, gl(;.(t;ﬁ.R))

g(&(6 B R) Zs Y, (H)e” 7 dR(r)

“J 2 (6= pR)ST 0 OZaR0) |
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- Z{L Z,()dN, ()~ [ w.(t: B, R (&6 B, R)) Z, ()6 Y, ()" TZ"(t)dR(t)} | 69

Finally we can obtain the score equations for dR(z,) and £ as follows:

i dN . (1)
dR(f) = ; (5.7)

ZW(tﬂ R)gY,(e” Vg (& (1= B, R))

[ 12,0 - 20y, ) =0, 58)

where

Y wEARE(EEAR) YO 7,0
Z(1) =+ :

5 8, R (&5, R) Y (0

5.3 Imputation for handling missing data

The next job is to deal with the unknown value of ¢, . We can replace ¢, by

=05, +Q-0)w™, where

7, (0)x S(#)
”i(e)xs(ti)"'l_”i(‘g) '
Notice that ¢,Y,(v) = I(T, >u,5, =1)+¢,I(T, >u,5, =0) and hence

wa = wa 0,5,S,R) =

cY.(u) =I(T >u,6 =0)+w"I(T, >u,s,=0).

The final estimating equations can be written as

-2 74,00) ﬂw)} _o: 5.9

257 @) Zl( ) 592)
ZdNi(t)

dR(1) =— o : (5.9b)

2w B REY (0" g (&= . R))

L DB R (A R)EY (0,0
Zj Z, - dN,(1)=0. (5.9c)

T Y wmEAR(EEAR)E LY
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5.4 Numerical algorithm

Implementation of the proposed estimation procedure is stated as follows.

i. Starting with initial the Breslow estimator dR(s,)=1/n and (6’(0),,6‘0)):(0,0), we

SOt 72)= exp{—G(Lj},
n

W.EM(O) — S(O) (ti)
: SO@)+1

obtain

and

ii. Denote k as the indicator of iterations. Given w® and w™® | first obtain dR“™  from

(5.9b) and then (0(’”1),,8(’”1)) from (5.9a) and (5.9¢).
iii. The estimate of the survival function is updated as
S¥D(¢| Z) =exp {—G( [le#"2ar® (s))} ,

which is applied to obtain

EM(k+l) — 7[1' (e(k)) X S(k) (ti)
: (@) xSD(t) +1-7,(6W)

and ¢ =5 +(1-6)w™* D, Then the weights w* are obtained from (5.5a),(5.5b) and
(5.5c).

iv. Repeat the steps (ii) and (iii) for £=0,1,2,... until convergence.

5.5 Simulation analysis

5.5.1 Data generation

We first generate covariate Z=(Z,Z,)" where Z, ~ Ber(0.5)and Z, ~ N(0,1) truncated at

+2 and. Then we generate ¢ which follows the Bernoulli distribution with probability

exp(6° +6.°Z
p,=n(6,|Z2) =1+er>)(( OH(O) 00(1)1) ,
p(6,” +6y2,)

where 6, =(0”,6°)".
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If ¢ =1, we generate the latency variable 7 with

$,() = exp(—G{ [0 eZTﬂOdR(u)}j ,
where Z' B, =(2,,Z,) (B, B?) = pZ, + pPZ,. To obtain T, we can generate U ~ Unif'(0,1)
and then solve

U=35,(T) :exp(—G{ IOT e”' % dR(u) }j
Accordingly

G (—logU) = e’ IOT dR(u).
In the simulations, we choose the proportional odds model with G(f) = log(1+¢) and R(f)=t>.
Hence G(t)=exp(t)-1 and ¢ ™Y —1=¢”".T% Finally for ¢=1, we let

T= \/efzrﬂ0 (e_'ogU —1) = ,/]'_TUeZTﬂO :

If ¢=0,weset T to be avery large number exceeding the support of the censoring variable C

which follows the uniform distribution Uniform(0,z.). The values of z. are set to yield the
censoring rates Pr(o =0) with 25% and 40% respectively. Note that when Pr(¢=1)=1, this
setting is the same as that in Chen (2009).

5.5.2 Simulation results

Tables 3A and 3B summarize the results for »=200 and »=500 based on 1000
replications. In Table 3A, the bias and standard error of éo and él as well as those of p,
(p,=0.88) and p, (p,=0.73) look reasonable. From Table 3B, the proposed parameter
estimators of g, (j=1,2) are virtually unbiased and have satisfactory standard deviations which
improve as the sample size increases. The performances of R(z) are evaluated at selected value of

t=t, which is the pth percentile of S(t|Z =0). The estimator of R, is roughly unbiased but

becomes more variable as #=t¢, increases. Recall that the setting is an extension of the one in
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Chen (2009) in which Pr(¢ =1) and hence we can make comparison to examine the effect of

cure on estimation of £. In present of cure, the proposed estimators are still roughly unbiased, but

the standard deviations slightly increase.
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Chapter 6

Proposed Approach for Transformation Cure Model
Under Dependent Censoring
6.1 Model assumptions
Now we consider the more complicated but commonly-seen situation that, under the mixture

framework, the event of interest is subject to competing risks such as death. Let 7, be the time to
the event of interest, say disease onset and 7, be the time to dependent censoring. We denote Z

as the vector of covariates. Also assume the mixture framework such that only a proportion of

subjects with ¢ =1 develop the disease. The incidence rate is also described by the logistic

model:
i
r(0)z)= 2P0 2) (6.1a)
1+exp(@° Z)
For ¢ =1, the marginal cumulative hazard function of 7,|c=1 can be written as
A (112)=G, ( [["ar, (s)), (6.1b)

where G;(.) isaknown functionsand R.(.) isan unknown increasing function for both ;j=12.

For those with ¢ =0, we assume that 7, =c0 and
Pr(T,>t|¢c=0,Z)=Pr(T,>t|¢=LZ)=Pr(T,>t|Z). (6.1c)

This assumption implies that the competing risk events follow the same distribution for the

susceptible and cured populations. The joint survival function of (7,,7,)|¢ =1 is assumed to

follow a copula model of the form:

S(s,0)=Pr(T, >s,T, >t Z,c =1) = C {S,(s1 2).5,(t| 2)}, (6.1d)

where S.(#|Z)=exp{-A,(t|Z)} and « measures the degree of association between 7; and
T,.

We introduce some popular copula models.
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a. Clayton copula (Clayton, 1978): C, (u, V) =W + v =)D g > 1;

_@-u)a-v)
l-«a

b. Frank copula (Frank,1979): C, (u,v)= |Oga{l } ,0<a<l;

C. Positive stable copula (Hougaard, 1986):

C,(u,v)= exp[— {(— logu)'“ +(~log v)lla}aJ,O <a<l.
Note that the independent copula is degenerated case with C, (u,v): uv.

It is important to mention that when Pr(¢c=1)=1, the model assumptions reduce to the
framework discussed in Chen (2010) who adopted the likelihood approach for parameter
estimation. For inference, we will take the same likelihood principle combined with the EM
technique. Before presenting the detailed likelihood derivations, it is useful to discuss how to
impute the unknown ¢, under the new assumptions.

6.2 Imputation under the new models

In absence of external censoring, data consists of {(7,,A,,Z,)(i=1...,n)},where T, =T, AT,

and A, =I(7, <T,,). Notice that
E(c,=1|T,A)=A,+(1-A)E(s, =1|T,A, =0).

and

Pr(c, =17, >T.,T,, =T,)
Pr(gi :17Tli >T,Ty :];)+Pr(gi :O'Tii >T,T, :Z)

- Pr(7, >T,,T,, =T; |5, =1 Pr(g, =1)
Pr(Tli >T,1, =T, |gi =1) Pr(gi :1)+Pr(gi :O)Pr(T:?i =T |gi =0) ’

Pr(s, =1|T,,A, =0) =

where

PI(T, >t,T, =t|g, =1) = C*{S,(s| 2),S,(¢] 2)}S,(At| Z),

Pr(T,, =t|5, =0) = 5, (A7)
and §j (At| Z) :exp{—]\j(t|Z)}f\j (At|Z) . Note that if g(¢) isincreasing, g(A?)=g()—g(t-);
while if g(z) isdecreasing, g(At)=g(t-)—g(t).
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In presence of censoring, data consists of {(7,,9,,9,,Z)(i=1..n)} , where
I,=T,~T,, nC,0,=1(T,=T), 6,=1(T,,=T,) and C, is the censoring variable independent
of ¢, and (7,,,7,,). Notice that E[I(¢, =1|T;,0,,0,,)] can be written as

S, +38, Pr(g, =1|T, 5, =)+ (1~ 35,)1-6,) Pr(s, =1| T,,6,, = 6,, = 0) .

We have

Pr(¢,=1|T,9,, =1)

= Pr(gizl’]—ii>7;'T2i:]—;"ci>7:’)]
Pr(s, =11, >T,T, =T,C,>T)+Pr(s,=0,T,, =T,C, >T))
_ Pr(7, >T,,T,, =T,,C, > T} |5, =1) Pr(¢, =1)
PH(T, > 7,1, =7,,C, > I |, =1 Pr(g, =) + Pr(g, = O)PI(T, = 1,.C, > T, |, =0)
_ Pr(Tli >1,T, =T, |Q',» =1 Pr(Ci >7;)Pr(gi =1)
PH(T, > 7,7 =T, ¢, =) PI(C, > T) Pr(g, =1)+ Pr(g, =0)3, (AT) Pr(C, > T)
Pr(7, >T,T,, =T, |¢, =) Pr(g, =1)

= - : (6.2a)
Pr(7, >T,,T,, =T, | s, =) Pr(s, =1) + Pr(g, = 0)S,(AT;)
and
Pr(gi :1”:"511’ :§2i :0)
_ Pric, =17, >T,,7,, >T,,C, =T))
Pr(¢, =17, >T,,T,, >T,C, =T )+ Pr(,=0,T,, > T,,C, = T})
_ Pr(7, >T,T,,>T,C =T g, =1)Pr(g, =1)
Pr(7, >T,T,, >T,C, =T, | ¢, =1)Pr(s, =1) + Pr(¢, =0)Pr(7,, > T,,C, =T, | ¢, = 0)
_ Pr(T, > T, T, >T; |, =1)S. (AT}) Pr(g, =1)
PI(T, > T, T, > T |, =1)S.(AT,) Pr(g, =1) + Pr(s, = 0)S,(T;) S (AT))

" PHT, > T, T, > T g, =) Pr(, =)+ Pr(¢, = 0)5,(T))
Notice that the effect of censoring is cancelled out in the above derivations which implies that the
conditional means only contain model parameters. This simplification avoids estimation of
nuisance parameter in subsequent inference.

6.3 Likelihood analysis under dependent censorship

We extend the results of Chen (2010) by temporarily assuming that ¢, is observable.
Additional step of imputation is needed for further implementation. Based on completed data
{(T.,6,,6,,¢,),i=1,...,n}, the log-likelihood function can be written as
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/! Pr(T. Lt ¢ = . L .=
5]_[' (1€[t1’t1+A)lT'2>tz|gz 1)+52igilogpr(71>tt’7—'2e[tz’tl+A)|gt 1)
Pr(Tthi’TZZtilgi:l) Pr(EZti'TzZt['gizl)

PI(T, <[t,1,+A) |5, =0)

(A=)l
ou(l=¢))log Pr(Z, >1.| ¢ =0)

+¢,logPr(7; 2¢,,7, 2, | ¢, =1)
+(1_gi) Iog Pr(Tz 21 |§i = 0) +(5li +§2igi)log Pr(gi :1)

+(1_51i)(1_gi) log Pr(gi = 0)} .

Notice that the log-likelihood function contains the cause-specified hazard probabilities:

C2 (8.6, 5,))-(S.(a0))

AS (A =Pr(T, €[t,t+A),T,>t|T,>21,T, > t,c =1) = _——
C, (5,0).5,0)
ASS(A)=Pr(T, >t,T, €[t,t +A) | T, 2 1,T, > t,c =1)

G (8.0),5,(1)) Sy (a0)
G (50.50)

where Cio(ul,uz)ZM and Cgl(upuz):—ca(ul’%).
Uy ou,

- z{ 5, 10g A (AL) + 6,6, 10g AS* (At) + 5,,(1—¢,)log A, (At.) +

i=1

5:10gC, (8,().5,(t))+ (1—¢)10g S, (1) + (8, + 5,6, )log Pr(s, =1)+

(1_51;')(1_9.1‘) log Pr(gi = 0)} .
Note that o, +J,,c; =¢, and o, = d,,6;. Accordingly, the log-likelihood function can be written

as:

2{ Su10g AL (AL)+ 8,6, log AS¥ (AL) + 6, (1—,) log A, (At,)

i=1

+6,109C, (5,(8). 5, (1) )+ (1=5)10g S, (1) + (8, + 5,5, ) log Pr(, =1)
+(1_5li)(1_gi) log Pr(gi = O)} :
Including the effect of covariates, consider data of {(Ti,é‘li,ézi,zi,gi),i:1,...,n}. The next

objective is to re-parameterize the log-likelihood function in terms of the model parameters in
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(6.1a) ~ (6.1d). To simplify the presentation, we illustrate the analysis in terms of time-independent

covariates since adapting to time-varying covariates is straightforward. For ;j =12, we derive the

following quantities. The probability density function is given by

S (At|Z)=exp{-A (t| Z)}A (At | Z)
— e‘Gf{?’f(“ﬁ'R)} g { 7 (t; B, R) } .eﬁfrzf(’)de (1), (6.3a)

where gj(t):%Gj(t) and 7, (t; ﬁ,R):j;eﬂ fTZ(‘Y)de(s). The corresponding cause-specified
hazard function is given by

S, (At)

u;=8; (1)

~ 0
AT (Ar) = o log C,, (uy,1,)|

J
=D (uy,1,)l, sy S, (A1), (6.3b)
where ®(u,,u,)=—logC, (u;,u,), Dj(ul,uz):—£q>(ul,u2), j=12. Hence, A°(At) can be

v

re-expressed as follows:

u;

0 -Gy (t;8,R T7(t
(_é_q)(ul’“z) |u,=eXP{Gj(?/(t;ﬂ,R))}}e 1{ \ )}g/ {}/J (t"B’R)}](T > t)eﬁ/ ( )dRJ (t)

Gy (5, ~Gy (72 (111, -G;{ 7,(:B.R) ’ i
:I(T>t)Dj(e AREAD) gmaalr ('ﬁR)))e e }gj{ﬂfj(t,ﬂ,R)}eﬁ “OdR ().

To simplify the notations, define

1,68, R) = D, (& CHBR, o Gk ) OB gy (1 R ) (6.3¢)
Thus,

AZ (AL B R) = (t— B, R) - I(T 2 1) “VdR, (1) (6.4a)
and

AS (AL B, R,) = 11, (1=; B, R)I(T = 1)’ *dR, () . (6.4b)
Notice that

9 ( oG AR)

oGl (z;ﬂ,m))
ot
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2
-G(7;(t;3.R) ) AG
_ zL__Q(ul,uz) |u.=eG(W/;ﬂvR)}Je VBN g (6 B, R)) 1T = )" R, (1)

=30, (= BRI = )" OdR (1),

. ~G(nth R —Ga (72 (6528, =G 7, (6:5;.R;) .
where Uj(f’ﬂ’R):Dj<e Gy(n( ﬂlR)),e Gy(r2(t:5 R )))e {7 }gj{ }/j(t’ﬂj’Rj) }
Thus, we obtain the re-expression for (e :##) o=0t(#0)) g
2 ., r
Zl: jo n,(t= BRI 2 1)e” " dR (1)
=
Accordingly we obtain

E{aN, ()| F,_} =g, (7,(= 5.R))- Y(©)-"“ -aR (1)

The cumulative intensity function can be re-expressed as follows:

G,(B.R)= | &, (7,t=8,R))Y ()" "R, (1) (6.4c)

Therefore, the log-likelihood function for parameters (de,a’Rz,,Bl,ﬂz) is given by
S| <]y 100, (1=, R)+ A 2,0)+log R, )y ()
+5, |, (logm,, (t=; B, R)+ B Z,(t) + log dR, () ) AN, (£)
+(1-5)] [ 109 2, (7, (t: By R,)) + B Z, () + log dR, (1) | AN, (¢)

~(U=5)- [, & (721(t= By R,)) ¥, (00”7 R, (1)

s i [ n@&B.R)-1(T> e dR, (z)} . (6.5)

6.4 Score equations under dependent censorship
Let ¢ be the observed event-j time and assume R, (z,) is step function at jump time ¢, for

J =12. Differentiating the log-likelihood function with respect to dR,(z,) involves the following

two derivative equations. By (6.3c), we can define the derivative 7, (¢; 3, R) as the differentiation
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of n,(t;8,R) withrespectto y,(t;5,,R;) (k,j=12) asfollows.
If k=,

o 0 -26,{7, 6,
Uj(t’ﬂ'R) =87Dj (ul’uz)|u_:e*°'i(7j<”/m)) € {7 2{7/ (t ,B],R )}

j J

—G(n@p.R —Gy(72(1: 5, . Ry =G\ 7;(6:8):R)) .
4D, (&7 GAR st ) ML g2y g R ) )

+Dj (e—Gl(h(t;ﬁl,Rl))’e—Gz(?/z(l‘Jﬂerz)))'e_G./{V_/ (tiﬂij./)} g; { ]/j (t’ﬁj’Rj) } , (66a)
if k=,
o o N G{nesR))
77(,'/( (t’ ﬁ! R) = _aD‘/ (ul’u2 ) |u‘=e*G/(7j(l§ﬂxR)) li!:e {7 { (t ﬁ/ ! R ) } (66b)
J J=

Hence, the score function for dR (z,) can be written as

ol _y lei(t*) 0
OdR, (t.) —le{ dR,(t,) " 3dR (. )f -log 7, (1= B, R) dN,,(?)

SR ) [, ¢ -logrm, (= B R) Ny, (1)

n,(t; B, R)I(T, > 1) e “dR (1)
ZI

4 adR (1) }

_ & aNy (@)
S dr(t)

_W1i(t*_;ﬂ’R) G '771,-(2—;/3,13)'1(7; > t*)'eﬂlTZi(t)}!

‘//1z(t B, R)-dM, (1) J. Wy (1= By R) -dM ,(t)

where w, (¢,;5,R) =1- G R = B.R) , (6.7a)
_ 7711 (t=B.R) _ M2 (1= B, R)

wy, (= B, R) = 70— B, R) and y,, (t— B, R) = 7,0 (i= R) (6.7b)(6.7¢)

dM (1) = dN, (1) -1, (1= B, R) - I(T, > 1) - " % .dR () and (6.7d)

dM (1) = ANy, (0) = 17,, (1= B, R) - 1(T, > 1)-#% -dR, 1) . (6.7¢)

The resulting maximum likelihood estimator for dR,(z,) is given by
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dR,(t.) =~

D dN, (1)
i=1

The score function for dR,(z,) is given by

adR (t) Z{ 8dR, (z,) %0

where

and

adR( )

+
adR( ) Jo
-(1-¢)-

adR( ) Jo

— gl

) dN,(n)
- Z{ dR,(t,)

—(A=g)wy (5 5o Ry) g (72i (Z*_;ﬂZ’RZ))I(Z—;’ > l‘*)eﬁ;Zi(t)} ,

adR ,(t.) =

[. 5 (1097, (e~ B, R) + B} Z,(t) +10g dR, (1) ) N, (1)

[ (1—;)[

l//z (t ﬂ ) 772 (t ﬂ R)

(= B R)

i (1= p.R) = Bl LTD

m, (= B.R)

(t ﬂz ) g2(72 (t ﬂz R ))

wy, (t,; B, R) =1-""

,(; B, R) =1

(7’2 (; By, R ))

Zwli(t*_;ﬂl R) "G 'nli(t*_;ﬂ!R) 1(7; > t*)'eﬂ{Zi(t)
i=1

[, ¢ (logm, (1= B.R) + Bl Z,(¢) +log dR,(1) ) AN, (1)

l0g &, (7,1 (t: B, Ry)) + B Z,(t) +10g dR, (¢) |dN,, (1)

[ 2 (ralt= B R))-I(T; > 1)-7 - dR, (1)

Z j n,(6 8. R)-I(T, > 1)e” " 4R (z)}

ey (1 By R (1= B R)I(T, > 1,) %)

" (= BLR) M, (1) j W (= B, R)-dM., (1)

7 (.= B, R)
[* (1= B.R)-dM, (1)

2, (t.= B\ R)
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(6.8)

(6.8a)

(6.8)

(6.8¢c)

(6.8d)

(6.8¢e)



dM (1) = dN,, (1) — g, (72, (t: B, R,) ) Y, (1)e™ VR, 1) . (6.8f)

Accordingly the maximum likelihood estimator of dR,(z,) is given by

S AN, (1)
dR,(1,) = — = . (6.9)

> wy (t.=i B R)g (6= B R)I(T, > .)€ %)
i=1

W0, (1= B R 6) 2o (=3 By R)I(T, > 1,) %740

The score equation for g, is given by:

a_ﬂl zl{ 0B, %0 6 (logm, (= B.R) + B Z,(¢) + log dR, (1) )N, (1

5Ly 100m (38 R) 4 B2, 0+ 10gaR, )N, )

G — j 7,6 B,RT, > )" "R, (t)}

8181 j=1

= n {jorgizi(t)lei(t)

i=

o[- [ va= B8y () [ v = B.R) -, ()
" (1= A\ R) (= B, R)

Jnh (s: B, R)I(T, > 5)e” “ ) Z,(s)dR(s)

=S [ 620,00 [[ w63, R, (6 4RI > 05702, 1)

Replacing dR,(t) by the maximum likelihood estimator for dR,(¢), it implies that

n zwlt (t ﬂ R) G T (t ,B R) ](T > t) 6512 (1) Z (t)
ZI R dN,, (7). (6.10)
aﬂl -1 Zwl,- (t;ﬂ,R).g[ 1y (t;ﬂ,R) ](7: > t).eﬂ[z,(z)

The score equation for g, is given by:

B, _Z{ 0B, 0 & (logm, (= B.R) + B Z,(¢) +log dR, (1) )N, (1

2

;ﬂ 6. (10g 7, (t=: B, R) + B Z,(2) + log dR, (£) ) AN, (1
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+§7for(1‘€i)[ 109 g, (7, (t: B, R,))+ B Z,(t) +10g dR, (¢) |dN,,(¢)
_(1—§i)'aiﬂz OT g, (}/Zi(t—;ﬂz,RZ))K(t)eﬁer,(t)dRz(t)

0 2, o7 T7.(t
-5, 52 [, B, ROIT > 1)e" " VdR, (r)},

- Z{ [ Z.(aNy () = cowy, (= B RY I(T; > )y, (1= B, R) 7 R, 1)
i=1
~(A-6) i (= B R (T, > gy (= B R) P VR, (1)) |
Replacing the m.l.e of dR,(¢), the score function for S, becomes

Zn: Wi (t_; IBI R)Zi (f)g,-’?zi (t_; ,Ba R)](Z > t) e,BZTZ,. 2
+i iy, (= B R)Z(6)A—6,) 85, (=1 By, R)I(T, > 1) €77
2 - > 12073 dN, (7). (6.11)

n

z Wai (t= B, R)Gﬁz[ (1= B, R)I(]; >1) eﬁZTZf(t)

i=1

+Zn: Wy, (t—= B, R)A—¢,)g,,(t= B  R,) (T, > ¢) A

i=1

6.5 Numerical algorithm

Implementation of the proposed estimation procedure is stated as follows.

i. Starting with initial the Breslow estimator 4R (z,)=1/n, for j=1,2, and (9‘0),ﬂ(°)): (0,0),

we obtain
S}O)(t|Z)=exp{—Gj(%j},for j=12,
C(t12)=C, (5P (t1 2).52(t1 2)),
cO(t]2) = ai;zca (,2)], s
o _ s CrWS ANy sy sy G and  the

i i + 5 i
YT CO(1)SO (At 2)+ SO (At | 2) () +59(t] 2)

weights w”, wi? v are obtained from (6.7a)~(6.7¢),(6.8a)~(6.8¢).

l
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ii. Denote k as the indicator of iterations. Given w , wi? w® and w™®  first obtain

i i

dR*™ from (6.8), dR{"" from (6.9) and then (19(’”1), () 2"”1)) from (6.10) and (6.11).
iii. The estimate of the survival function is updated as

t k) .
Sj(«k+l) (t | Z) — exp {_Gj (J.o eﬂj Zde(k) (S))} , for ] :1’ 2 ,
Ca(t)12)=C,(S¥(t12),58(t12))

which is applied to obtain

WEM(k+l) =0 C(EII) (ti)Sz(k) (At | Z)
i — Gy

; ()
2 e )8 (AL Z) + S (A Z)
01 i 2 2

Coo' (1) +83°(t1 Z)

+(1-6,)1-5,)

and F%V =5 +1-5)W™MED  Then the weights w® , w{?  w® are obtained from
gz i i i g 1i 2i

l

(6.7a)~(6.7¢),(6.8a)~(6.8e).

iv. Repeat the steps (ii) and (iii) for £=0,1,2,... until convergence.

6.6 Simulation analysis

6.6.1 Data generation

We also generate covariate Z =(Z,,Z,)" where Z, ~ Ber(0.5)and Z, ~ N(0,1) truncated at

+2 and set

exp(6” +602.)
pZ:ﬂ’.(eolz): : (0) : (1)1 ]
1+exp(6,” +6,"Z,)

where 6, =(6”,6)" .
We assume that (Z,,Z,) affects the (7;,7,). Marginally for 7,|¢c =1, we set G,(¢) =log(l+1)
and R,(¢)=¢" which corresponds to a proportional odds model with the survival function:

5’1 (t|Z)=exp {—Gl (.[Ot AP dR (u))} :

For 7,|¢=1,weset G,(t)=¢t and R,(t)=ct which corresponds to the survival function:
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$,(112) = exp {—Gz ( [ e#ne0aR, (u))} .
The value of ¢ controls the proportion of experiencing the two events (i.e. Pr(7; <7,|¢s=1)) and
in the simulations we set ¢=0.3 and ¢=0.15.
Now we describe how to simulate (7},7,)|s=12,,Z, which jointly follows a Clayton
model. At first, we generate a pair of correlated failure times (1;,Y,) following the Clayton

distribution with exponential marginals and the association parameter « related to Kendall’s tau

1 o :
¢ suchthat a=>"". To attain this, we perform the following steps:

1-7
I.  Generate independent U, and U, , both of which follow Uniform(0,1);

ii. Let aa=(1-U,)"".Then set
Y, =—log(l-U,) and Y, :Lllog(l—aa+aa(l—U2)‘1‘“”“).
a_
Secondly we obtain (7,7,)|s=172,Z, from (¢, Y,Y,,Z,,Z,). Recall that Y, ~exp(l) and

hence S, =exp(-Y;) follows a uniform distribution for both j=1,2.If ¢=1, set

]1 — \/1;‘91 e—(ﬁlzﬁﬂzzz) and Tz b _llog(Sz)e*(%ZﬁﬁAZz) :
C

1

while if ¢=0,set 7, =00 (avery large number) and

T, = —ilog(Sz)e‘(%Z”ﬁ“ZZ) :
C

Repeating the procedure » times, we have {(ﬂi,];i,gi,Zli,Zzi),i :1,...,n} . Then we simulate the

external ~ censoring  variables C. ~ uniform(0,7,) (t=%..,n) . By setting

I, =min(1,,,T,,,C)) , 0, =I(T,=T,) and ¢, =I(T,=T,), observed data can be written as
{(Ti,éli,ézi,Zli,ZZi),i :1,...,n}. The censoring support 7, affects the censoring rate which is set
to be 10 and 8 yielding about 1% and 5% rates of external censoring respectively. We set the value
of 7 to be 0.3 and 0.5 which controls the association of (7;,7,)|s =1. The sample size is set to

be n=300. Two settings are evaluated:
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Setting A: (c,7,)=(0.3,210) which corresponds to
{Pr(s, =1),Pr(s, =1),Pr(s,=0,5, =0)}=(0.5,0.49,0.01) ;
Setting B: (c,7,) =(0.15,8) which corresponds to
{Pr(s, =1),Pr(s, =1),Pr(s,=0,5, =0)}=(0.63,0.32,0.05).
Simulation results based on 1000 replications are provided.

6.6.2 Simulation results
Table 4A presents the results for the bias and standard error of éo and él as well as those

of p, (p,=0.88)and p, (p,=0.73). Most results look reasonable. However under setting A
with lower Pr(6,=1), p, has larger variation. From Tables 4B & 4C, we see that the proposed
parameter estimators of £ are virtually unbiased. For estimating R(¢), the performances are
better for small 7. The performances seem not much affected by the chosen values of 7. Based

on Tables 4B which evaluates the latency estimation, we see that Setting B which gives higher

Pr(o, =1) yields better results. On the other hand based on Tables 4C which evaluates the survival
estimation, we see that Setting A which gives higher Pr(5, =1) yields better results. It is worthy
to mention that Chen (2010) considered dependent censoring without cure. The settings in Tables
4B and 4C mimic Table 1 of Chen (p243, JRSSB 2010) so that we can assess the effect of cure on
the results. In present of cure, the proposed estimators are still roughly unbiased, but the standard
deviations slightly increase.

To evaluate the effect of dependent censoring on estimation, we design two settings under
independent censoring:

Setting A*: {Pr(6 =1),Pr(6 =0)}=(0.5,0.5);

Setting B*: {Pr(6 =1),Pr(6 =0)}=(0.63,0.37).
The results using the proposed methods in Chapter 5 are given in Tables 4D and 4E. We see that
the presence of dependent censoring increases the variation of the proposed estimators for both the

incidence and latency models.
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Conclusion

Cure model provides a useful approach to describing failure time data when some subjects will
never experience of the event. In the thesis, we adopt the mixture framework to analyze such data.
The latency distribution is modeled by two general types of semi-parametric models.

For the first class of semi-parametric linear models, the proposed estimating functions are
originally constructed based on martingale properties for complete data under the error scale. Then
the information of uncertain susceptibility status is imputed by its conditional mean. Our proposal
turns out to coincide with the log-rank estimating function proposed by Zhang and Peng (2007).
However, the proposed approach can utilize the nice martingale structure in further inference
problems. For example based on the large sample analysis, we propose a fast algorithm for
variance estimation which does not require doing iterations in each re-sampling step. We also
propose a model diagnostic approach and a test for model checking. For the second class of
transformation models which permit r time-dependent covariates, we extended the results of Zeng
and Lin (2006) and Chen (2009) to cure models. Besides independent censorship, we also consider
the situation of competing risks which is an extension of the work by Chen (2010).

For practical applications, whether a cure model is appropriate at hand should consult with
experts in the field. Although there exist nonparametric tests as described in the book of Maller and
Zhau (1996), the condition of sufficient follow-up may not satisfied and the tests may have low
power. We have performed simulations to examine the effect of fitting survival data without cure
by the proposed approach assuming cure. We obtained high incidence probability close to one and
unbiased (but with larger variance) estimates for the parameters in the latency model. Thus our
approach is in some sense robust. However under this situation, the parameter is located on the
boundary of the parameter space, the distribution of the proposed estimator may no longer be
normally distributed. Model checking for the second class of models will be one future work.

Extending the likelihood approach to the first class of models may deserve some investigation.
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Appendix 1: Proof for the order of B, +B,,

Define  N.(58)=I1(Z(B)<t,5,=1) and N,(;B)=I1(Z(B)=t,5,=1) Notice that
dN,(t; ) = N,(t; )~ N,(t—; B) =—dN,(1; B) . Recall that Y (;8)=Y,(t; 8,w)) and A(t| B) is
the limit of J.;i;de(u;ﬂ)/ifi(u; B,w’). Define dEN,(t; ) = Y;" (1; BN (t; ) -

Now we show B, + B,, =o(n"'***) for a small value ¢>0. We can write B, +B,, as
follows:

[ Z{ Z, ~Z(t; .w)} (dN,(; B)—dEN,(t; 3))) jZ{ Z, = Z(t; B )} (dN,(t: B,) — dEN, (t; )

= [} 32, (4N, 5) ~dEN, (9~ dN, (6 ) ~dEN (33)
[ Z”t P (1; )~ dEN, (1 ) )+ ZY(’ Po) (an (63 8,) — dEN, (1 5,)).

i ( ﬂ) Y (4 B)
=Q1n+Q2n+Q3n’

where Y (50)= Y ¥ (. pw)) and Y;(68) = Z7(t: f,w!) . For a<[01), define
i=l i=1
t,(@) =inf{t: EY'(5; 8) < n* e |.
We will use the facts that
i. EN(0;5)=0.
ii. EN(@;B)<EY'(1;8)<n™ for 1>1,(a).
Then for Q,, , we have

sup
|B-polsn™"®

I'U()ZZ dN,(t; B) - dEN,(t; B) — dN,(t; B,) — dEN, (t; ,))

sz (dN,(t; B)—dEN,(t; B) — dN,(t; ) — dEN,(t; ) )

< sup
5~ ﬂH< e

+
|5~ ﬂ H< s

IW)ZZ (dN,(t: )~ dEN, (t; ) ~dN, (t; ) ~dEN (5. 5,))
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jﬂsz dN,(t; ) —dEN,(t; ) —dN,(t; f,) —dEN,(t; 5,))

IW)ZZ (N, (5: )~ dEN, (t; ) ~ N, (¢: ) ~ dEN, (1 5,) )| -

IB- ﬁ H<n v

+
|5~ ﬂ H<n 13

If we write

J.:Zn“z,- dNi(t;ﬁ) :Nz(oo;ﬂ); '[:Zn:zl_ dENi(t;ﬂ) ZENZ(oo;ﬂ);

ﬁo()

1S 2N =Ny i ) [ D2 dEN, ) = EN 1, @i )

f, ()ZZ dN,(t; )= N”(t,, (a); ) and j Zz dEN,(t; B) = EN” (t,, (a); B).

It follows that

LS [V ) BN (1) )~ BN )

< U [V ) )Ny, (@ B) = N7 1, (@) o) —EN (1 (<) 5
b Sup [ (@ B) — EN (1, (@) B) = N7 (1 () )~ EN (1 () iy

which is the case with v, = N,(¢; ) or ]Vi (z; #) in Lemma 2 and Lemma 3 of Ying (1993).
Hence
0, = o(n(l’“)/z), for ¢ €[0)).
For Q,,, without loss of generality, we assume supHZiTH<1. Using the fact of the total

variation, we have B >0,

supj

|l<5*°

vy’ (. p)| _
Y p) =O(logn).

<sup [

- plss "

Y’ (t ﬂ)
By lemma 1(a) of Ying (1993) let v, = N,(¢; ), we have

HSlHJIOHN (o0} B) = EN(o; )| = o(n®™"%),

where j:idzvi (t; B) = N(»; ) and I:Zn:dENi(t; B) = EN(: ).

By integration by part, it follows that
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u J‘ Y, (t, )
lgl<s|”® Y (t; B)

(dN(; B) —dEN(; /3))”

dY GF2)
< dN (o0; dEN (o0; dN(t, dEN(t,
sup [dN (i §) ~dEN (i B)] + supll[, (aN (6 B) ~ dEN (1 ) H

=o0(n" ") +o(n™*"?).0(log n)
:O(n(lfa)/2+g) )
For Q,,, we can follow the idea for proving Q,, and get

= Y (65) Cay L : 12

Hsﬁmjég .[o ;Y*(l‘;ﬂo) (dNi(tlﬂO) dENi(ZlﬂO)* =o(n"") as.
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Appendix 2: Proof for sup |d,|=o(n")

l8=poll<n”"?

The proofs are derived under the assumption that

-1/3

sup HM};_‘Z}i HSO(H ) a.s. forall i,
i

where

7,(0)x S, (Z,(8))

w, =w/(0,5,5;) = 7, (0)x L (E.(B) +{L-7,(0)}

We can write

J':g{f(t;ﬂ, w') = Z(t; B, W) [N, (¢; B) —j:g{f(z;ﬂo,w*) —Z(t; By, W) AN, (¢ )

- j:g{Z(t;ﬂ,w*)—Z(t;/f,fv)—Z(f;ﬂo,W*) + Z(6 fy )} N, (6.)
—J.:g{z(t;ﬂo,w*)—z(t;ﬂo,W)}(dl\c(t;ﬂ)—di\fi(t; 5))

=® + ©®,

where

@=fi{Z(z;ﬁ,w*)—Z(t;ﬂ,ﬁ/)—Z(t;,é’o,w*)+Z(t;ﬁ0,{v)}d]vi(t;,3)

oY B Yp) Y (6B T(EpB)

o {Yz*(t:ﬁ) RUGIRAT SN ?Z(t;ﬂo)} AED,

®=["3 20 50w~ Z(6: o, AN, (1 5) ~ N, (51 5,))

NRAGARETS ey
=}, {Y* AR }(dN(t,ﬂ) dN (1, y)).
We derive that

V) _Ywp) _ Y, YA -V LAY (1.h)
Y'@p) Ynp Y ()Y (5 5)

RAG)RETIIRETIRATIRITY
Y (5 5) Y(5:8) Y (5, 8)

Similarly,
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Y8 Y 6 _ VBT 6h) Y)Y (6S) =Y ()
Y*(t;ﬂo) Y By) Y*(t;/go) Y(t; B,) Y*(t;ﬁo)

Therefore, we obtain

V6B Y6 Y)Yk
Y'@p) Ywp Y @A) Y6A)

Y68 =Y (68) Y, (6B) =Y (t:5)

< ; ; (A1)
Y'(t; §) Y (t; By)
N GOREHRI(IRETHRA RIS (A2)
Y(t; B) Y (4 B) Y(t; By) Y (4 5y)
We derive that

Y (68) - Y (6 8) = l_zfl‘,(l—cf,-)zi (w/ =) 1(E(B)21) < o(n )R (t; B);

Y6 B,) - Y (£ ) =§<1—6,-)Z,- (W) =) 1(E(By) 2 1) < o™ )R (8 3,),
where

R (6:8) = ga—&»z[ I(Z(B)21), R (t: ) = g(l—(z)zi I(Z(8)=1).
Accordingly

Y, (68 =Y (68) Y, (6B8)-Y (6 8)
Y' (¢ ) Y*(t y)

R*(t;8) R*(t; )
y'sp) Y(tB)

< O(n—l/3) .

—o(n?). R%(t; B) _RZ(f;,Bo) B Rz(t;ﬁo) Y'(;8)-Y"(t; 5,)
Y'(t B) Y'(t; 3,) Y (¢ §) !
where
sup [ R”(5:8)-R*(1: B,) |
Hﬁ_ﬁOH<n71/3
P i(l—él)zf (1G(B) 2t +(B~B)Z)~1(E(S) 21))
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W=
w|N

<n-|B-B|- 1, GBS n-n *=n

Hence

REE8) (o f oy ve
m(Y 6P -Y (t,ﬂo))

|8-Boll<n”t"

SU-8)ZI1EB) =)
= sup |——= D A=8)w (1(&,(B)2 1)~ 1(£.(B,) 21))
\5=Aulr” 2(5 +(L-8)w ) I(E(By) 2 1)

i=1

SU-8)ZI1EB) =)
= sup | D @-8)w [1G(B) = 1+ (8- £)Z) -1 (5,) 21)]
sl 2(5 +(A-8)w )G (By) 2 1)

i=1

O(n) Z(l 8)-w-[IE(By) 2t + (8- Bo)Z,) - 1(E.(B,) = 1)]
Hﬂ /fo\ s O(n) 4
O(n)
= 3 1-0, r
15~ ﬂi 3| O(n) 4 Z( )W, 8= 5o 1., (6. o)

1 2

<O@)-0()-n * =o(n?).

Therefore for (Al), we have

Y, (68 =Y (68) Y, (68) =Y (t:5)
Y*(t; B) Y* (¢ y)

Y (t; B) Y68

|8-Boll<n”t"

SO(I’Z_US) .{nB +0(n3)] — O(ng)

For the second term (A2), we obtain

Y68 Y (6B -Y(B) Y (65) Y (65)-Y (5,

l-plen || Y (5 ) Y (t; B) Y(5;8,) Y*(t; B,)
_ (ﬁZ(r;ﬂ)_?Z(r;ﬂo)j_Y*(r;ﬂ)—m;ﬂ) (A3)
sl | B8 Y6 B) Y (6 B)
N ﬁZ(t:m(Y*(t:/{?)—Y(t;ﬂo)_Y*(r;/g)—?(r;ﬂ)] | Ad)
1-mln || Y (2, By) Y (8, B) Y*(t; B)
where
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HY* 5 - V(& ﬂ)” - <o(n™3)-0(n) = o(n*'?) .

> -6 - W JE (5) 20

We have
M—]‘ =o0(l) asand sup M—!{:o(l) a.s.
l-palen ™ | Y (25 By) I8-pol<n 2| Y (85 By)
It can be shown that
17268 74 @5) =
su =~ - <KWL= LBoll)=o(n 2).
el Y68) Y(5,) | (g =l =t

Thus for (A3), we have

(?fa;ﬂ)_?j(r;ﬂo)}?(t;m—Y*(t;ﬂ) Loln ®)-0(n®) _ o(n?)
Y(68) Y 5) VALGY)NE S NGV NS M V)

su
|8=pol<n"?

By the assumption (condition) with sup| Z, || <1, then

Y(t: )
Y (& 5,)

25 o)
Y (5 5,)

<
|8-Boll<n7"

=0().
|8-Boll<n"

It follows that

[v*@8) -1 8,)

Yl +a-0)w 1 1G (B 20- 2[5 + @-8)w |1 (8) 21

i=1

n

Y6+ A=) [-[1E(B) 2 t+(B-B)Z]) - 1(E () 21) ]

i=1

<Om)-|B- Bl 1., (6 o) < On)-o(n™) = 0o(n™"?).

Since = L , then
Y (t;5,)| O(n)
Y (6B =Y (64) | _ o(n*?)1O0(n) _o(n™"?)

[ S
Y @8) v

YU (6 B)Y" (5 B) Y'sp) Y p)

We have HY*(t;ﬂ)—?(t;,b’)H:o(nm) forall g, so that
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)=V (65 _Yp) - Y(tﬂ)H_ (né) 1 1 H

s Y65y Y (6 ) Y :8) Y (©h)
o) AT) o)
Y (65 Y (6P
Thus for (A4),
?f(r;ﬂo),[?(r;m—Y*(r:ﬁo)_?(r;ﬂ)—Y*(t;ﬂ)J __on®)
15-pol<n2|| Y (t; By) Y'(t; By) Y'(t, B) Y (4, )

Therefore, we obtain

®= {YZ(t P _TGp) Y @) Y ﬁo)} NEB)
a5 Y GH) T6h) Y 6h) T6h)
g [Y Bp) Y’ (t:ﬁo)} YGEH =Y 6B i )
sl Y@ B) Y (6 B,) Y' (6. B) ’
. V() [Y(r Bo) =Y (65) Y(6A)-Y ﬂ)
-l || Y (£, Bo) Y (5 5,) Y* (6 B)
3 = 1 _ 3 3
<o(n )Hﬂ—ﬂo\kn’“ J-O V) dN(t; ﬂ)‘ o(n )O(Iogn) o(n )
and also

RG-S IR G- |
®-) {Y*(t;ﬂo) 7(.) }(‘M'ﬂ )N A)

:r{Y;(nﬂo)_?%r;ﬂo)

0 Y*(l;ﬂo) f’(t;ﬂo) }(dN(t;ﬂ)_dN(t;ﬁo)),

where

|dN (t; B) - aN (t; B,)] =

8 (1(2.08) =+ (8- 2! )-1(2.8) =1))

< n”ﬂ_ﬂo ”f;,lo (t; By)dt
and
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Y5 (6 8) - Y2 (5 o)

> @-8)Z! () =) 1G (5 2)

<o(n™?)-0(n) = o(n*?).

Similarly, HY*(t; B,) -t ﬂO)H — o(n?'?), and we have

V(6 5o)
Y& 5,)

25 Bo)
Y (5 5,)

<
|8-Boll<n"

=0Q),

|8-Boll<n"?

VA o) Y (6.5) =V (63 o)
Y(t; B,) Y (4 5)

Y;(68,) Y (65,

i AGTIREGIIR
V't f) Y 4)

Y (8 By)

<sup

sup sup

0(’72/3) _ -1/3
SW—O(I’I ) .

Hence,

:

|8-Boll<n™"?

Iw{Y;(r;ﬂo)_?Z(r:ﬂo)

Y'(6B) Y f,) }Wr;ﬂ '\ ‘%

<[ o) -n-| B-py

S (65 By) dt

<o(n ™) n-n 1 (1 Bo)
:0(1’11/3).
By ® and (®, we complete the proof for

sup

< 0(n1/3 )
18-Bol<n™®

_[:[an:{f(t;ﬂ. w*) = Z(t; B, vAv)}dN,. & B) - J‘:iznll{f(t;ﬁo,w*) - Z(t;ﬂo,ﬁz)}le_ ¢, 5,)

64



Appendix 3: Proof for » =o(n"?)

The technique of verifying r =o(n"?) is similar as proving

B, +B, =o(n"*) which involves applying the property of dN.(¢; 8)—dEN.,(t; 5))

which is o(n"“"?) . The difference is in the at-risk set. We replace w’ in

(B w) by % and obtain Y8 =Y B W) . Note o that

PR =X 6A0) and ¥,(68) =Y Z1,68,%).

Then we can also obtain that

-

=

dy, (t; )

dY (£, B)
Y(5: )

Y (%)

<sup I
|48 °

‘ =O(log n)

Apply the integration by part, we can get r, = o(n"?).
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Appendix 4: Derivation of the difference between

Z(t, By,w) and Z(t; B,,w").

We derive that

_ Zn‘,Z,»(@- + (=)W, ) 1(E(By) 2 1)
Z(t; By, w) =L

(8 +A=8), ) I(Z(By) 2 1)

i=1

3 12,(8+@- 80 VIG(B) 20~ Y 7,(8,+Q-8)w ) 1(3(8) > 1)

37,5+ @-)w ) IGE(B) 1)

n

(8 + @80, ) 1) 20~ X (6, + A-8)w) ) 1G(5) 21)

i=1

#3064+ @) ) () > )

izi(l—a;)(fvi —wj)z(g(ﬁo)mpizi(ai +@-8) ) I(E(B) 21)

> W= 8)0h —w)IE(A) 20+ X (6 + -8 ) 1(E(4) 21

> 2,4 8)Gk ~w)I(E(A) =)

+1
2 Z,(8+ W= ) IEB)=0) | Y Z(6+A-5)w ) 1(E(B) 20)
> (W-8)(, —w))I(E(B) 2 1) (6 +-8)w ) 1(E(8) 2 )
i=1 +1 i=1

28+ A=W ) I(E(By) 2 1)

i=1l

which, based on the assumption that sup”fv—w”u <o(n™?), can be written as

b V] Sz (oo e
(o(()n(n))ﬂJ 3 (8 + - 8)w ) IE(B) 1)

i=1

which converges in probability to
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) 37,6+ @-8)w ) 1E(B) 2 1)
AGY A EES _
Y (8 +@-8)w ) I(E(B) = 1)

i=1
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Appendix 5: Discussion on the validity of
the modified re-sampling algorithm

Consider three weights, denoted as w, w', W, representing the proposed weight

formula as a function of (&, f3), the true weight and the final estimated weight. Consider
three estimators of A, , denoted B, A and B, which solve U(B|W)=0,
U(B|w)=0 and U(B|w)=0 respectively. We aim to claim that the asymptotic
variances of ﬁ ,3 and £ are the same. The results depend on whether

UB, | W) =U(B, | w)+o(n'?) and U(B,|%)=U(B,|w)+o(n'?) . When the two

statements are true, the asymptotic normality of U (3, |w") Yyield the following results:
Jn (B - By) = Normal(0,(4)"2(4)™)
and
Vi (B - B,) = Normal (0, (A)£(4)™).

For variance estimation, we will use U(B|w)=0 as the basis in the re-sampling

algorithm since, unlike w", " is available and does not involve performing iterations.
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0% =0 oY =05 p, =05 p, =0.6225
Setting Ce;s:ﬂr;ng " Bias(4") | o(0®) | Bias(4®) | o) | Bias(p,) | o(p,) | Bias(p) | o(p)
100 0.0128 0.2919 0.0270 0.4412 0.0031 0.0714 0.0061 0.0737
0.4630 200 0.0014 0.2042 0.0130 0.3043 0.0004 0.0505 0.0020 0.0507
A 500 0.0088 0.1386 0.0012 0.2063 0.0022 0.0345 0.0018 0.0331
100 0.0617 0.3518 0.0168 0.5559 0.0148 0.0851 0.0125 0.0939
0.5741 200 0.0493 0.2465 0.0190 0.3926 0.0121 0.0605 0.0132 0.0660
500 0.0234 0.1546 0.0031 0.2449 0.0058 0.0384 0.0052 0.0429
100 0.0184 0.3046 0.0069 0.4517 0.0045 0.0746 0.0029 0.0733
0.4611 200 0.0105 0.2162 -0.0036 0.3165 0.0026 0.0534 0.0003 0.0506
B 500 0.0011 0.1323 -0.0016 0.1935 0.0003 0.0329 | -0.0006 0.0319
100 0.0638 0.3389 0.0154 0.5592 0.0154 0.0824 0.0125 0.0913
0.5340 200 0.0388 0.2343 0.0123 0.3744 0.0096 0.0578 0.0096 0.0630
500 0.0315 0.1440 0.0101 0.2256 0.0078 0.0358 0.0089 0.0388

under AFT model based on 1000 replications
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0¥ =0 Y =3.0 p,=05 p, =0.9526
Setting Ce';;;'”g no| o Biss(8®) | o(0®) | Bias(d®) | o(6") | Bias(po) o(fy) Bias( 5,) o(5,)
100 0.0181 0.3047 -0.0686 0.6554 0.0044 0.0744 -0.0098 0.0312
0.3083 | 200 -0.0012 0.2062 0.0986 0.5897 -0.0003 0.0510 -0.0012 0.0227
A 500 0.0081 0.1386 0.0380 0.4096 0.0020 0.0345 -0.0005 0.0152
100 0.0159 0.3568 -0.3540 0.6263 0.0037 0.0864 -0.0256 0.0383
0.4584 | 200 0.0118 0.2490 -0.0169 0.5999 0.0029 0.0613 -0.0067 0.0278
500 0.0147 0.1547 0.0103 0.4333 0.0036 0.0384 -0.0018 0.0191
100 0.0192 0.3020 -0.0342 0.6573 0.0046 0.0740 -0.0080 0.0305
0.3054 | 200 0.0085 0.2163 0.0837 0.5832 0.0021 0.0535 -0.0012 0.0221
o 500 0.0000 0.1324 0.0572 0.3818 0.0000 0.0329 0.0002 0.0146
100 0.0163 0.3435 -0.3611 0.6013 0.0033 0.0842 -0.0272 0.0505
0.4052 | 200 0.0097 0.2279 0.0206 0.5837 0.0024 0.0562 -0.0095 0.0280
500 0.0016 0.1426 0.0096 0.4293 0.0004 0.0355 0.0005 0.0189

Table 1B: Finite-sample performances for estimating 6,”,0%, p, and p,

under AFT model based on 1000 replications
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Estimation of /3,

@

Estimation of 3°

. Censoring | Sample A LA, ~ oA A A A A
Setting rate size Bias(p,) | Bias(p;) | se(p,) |Avgo(p,) | CP Bias(p,) | Bias(p,) | se(B,) |Avgo(p,) | CP
100 -0.0058 -0.0199 0.3040 0.3378 0.96 0.0166 -0.0082 0.2965 0.3367 0.94
0.4630 200 0.0090 -0.0387 0.2083 0.2228 0.95 -0.0072 -0.0046 0.2036 0.2196 0.92
500 0.0019 -0.0049 0.1282 0.1272 0.93 -0.0051 -0.0034 0.1309 0.1245 0.92
A 100 -0.0182 -0.0050 0.3776 0.4494 | 0.975| -0.0209 0.0229 0.4711 0.4452 | 0.915
0.5741 200 -0.0070 -0.0405 0.2534 0.2823 | 0.935| -0.0080 -0.0136 0.3355 0.2667 0.84
500 0.0009 0.0029 0.1558 0.1648 | 0.955| -0.0020 -0.0047 0.2025 0.1592 | 0.895
100 0.0164 -0.0166 0.3044 0.3273 0.97 0.0047 0.0083 0.5287 0.5599 | 0.905
0.4611 200 0.0023 -0.0442 0.2080 0.2165 | 0.945 0.0092 0.0082 0.3693 0.3629 | 0.945
500 -0.0032 -0.0033 0.1234 0.1266 0.95 0.0052 -0.0022 0.2216 0.2153 0.94
B 100 -0.0094 -0.013 0.3659 0.3977 0.94 -0.0185 -0.0274 0.7294 0.6700 0.9
0.5340 200 -0.0080 -0.0584 0.2566 0.2487 0.92 0.0106 -0.0435 0.4926 0.4168 0.89
500 -0.0028 -0.0033 0.1527 0.1470 | 0.935 0.0037 -0.0221 0.2998 0.2542 | 0.905

Table 2A: Performances of proposed estimators of éj) and a(ﬁ,) under SP model based on 1000 replications with p, =0.6225.

~

Notes: ,3 is the average of proposed estimator /3 solving (3.4b) and bias(f) s the average bias in 1000 replications. ,3 is the average of the solution to (3.10e)

based on R= 200 re-sampling runs and pias(3") is the average bias in 1000 replications. s e(/}l) is the sample standard error of ﬁ based on 1000 replications.

&(p, ) is the sample standard deviation of ,[;’ based on R= 200 re-sampling runs and Avg &(3,) is the average in 1000 replications. CP is the coverage probability
of the Wald 95% confidence interval using &(,) in the formula.
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Estimation of A

Estimation of 5?

_ Censored | Sample ~ A, ~ o A . - o
Setting rate size Bias(f,) | Bias(p,) | se(B,) |Avgo(p,) | CP Bias(f,) | Bias(p,) | se(f,) |Avgo(p,) | CP

100 -0.0137 -0.0397 0.2717 0.2742 |0.945| -0.0240 -0.0233 | 0.2585 0.2602 0.93
0.3083 200 0.0061 -0.0356 0.1877 0.1846 | 0.96 -0.0117 0.0058 | 0.1798 0.1789 | 0.905

500 0.0007 0.0011 0.1166 0.1164 | 0.94 -0.0062 -0.0083 | 0.1140 0.1105 0.96

A 100 -0.0229 -0.0206 0.3240 0.3641 | 0.97 -0.0373 0.029 0.3683 0.3823 0.94
0.4584 200 -0.0012 -0.0131 0.2221 0.2436 | 0.98 0.0045 0.0289 | 0.2512 0.2482 | 0.905

500 0.0037 0.0006 0.1371 0.1493 | 0.98 -0.0016 0.0035 | 0.1595 0.1483 0.94

100 0.0113 -0.0483 0.2713 0.2722 |0.935| -0.0178 -0.0667 | 0.4646 0.4435 | 0.915

0.3054 200 0.0028 -0.0377 0.1878 0.1855 |0.955| 0.0105 0.0137 | 0.3227 0.3004 | 0.935

500 -0.0031 -0.0023 0.1103 0.1159 | 0.94 0.0075 -0.0149 | 0.1920 0.1908 0.97

B 100 -0.0542 -0.0604 0.3096 0.3219 | 0.95 -0.0793 -0.0019 | 0.5766 0.5384 | 0.905
0.4052 200 -0.0208 -0.0551 0.2164 0.2197 |0.945| -0.0172 0.0094 | 0.3890 0.3695 0.94

500 -0.0082 -0.0021 0.1390 0.1346 | 0.95 0.0050 -0.0095 | 0.2417 0.227 0.95

~

Table 2B: Performances of proposed estimators of ,Béj) and a(,@j) under SP model

based on 1000 replications with p, =0.9526 .

Notes: ,B is the average of proposed estimator /3 solving (3.4b) and pias(4) is the average bias in 1000 replications. ,3 is the average of the solution to (3.10e)

based on R= 200 re-sampling runs and pias(3") is the average bias in 1000 replications. s e(ﬁ’l) is the sample standard error of ,3 based on 1000 replications.

&(p, ) is the sample standard deviation of B based on R= 200 re-sampling runs and Avg &(;3,) Is the average in 1000 replications. CP is the coverage probability

of the Wald 95% confidence interval using &(,) in the formula.
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Sample size =

Z, ~ Ber(0.5 Z,~U(0,1
200 : (0.5) . ~U(0.])
i Proportion selection Proportion selection
Censoring rate P-value AFT P-value LS P-value AFT P-value LS
for AFT for AFT

0.3075 0.8390 0.0330 0.99 0.8313 0.0550 0.99
0.49 0.7347 0.0516 1.00 0.5705 0.0771 1.00
0.4628 0.7943 0.0514 1.00 0.7722 0.0774 0.98
0.5727 0.7833 0.0525 1.00 0.6036 0.0807 1.00

Table 2C: Results of model diagnostics based on p-value and selected proportion with fitting AFT and LS model

based on 100 datasets simulated from AFT model.
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Average mean for r,

Average mean for |r,|

Setting Z, ~ Ber(0.5) Z,~U(0,1) Z, ~ Ber(0.5) Z,~U(0,1)
Censored
6, | (B.5,) ate n=100 n=2000 n=100 n=2000 n =100 n=2000 n=100 n=2000
3.0 | (051 | 0.3054 -0.0011 -0.0001 -0.0009 -0.0002 0.0046 0.0018 0.0036 0.0018
05 | (051 | 04611 -0.0010 0.0001 -0.0008 0.0002 0.0043 0.0024 0.0028 0.0018
3.0 | (0.8,3) | 0.4052 -0.0020 -0.0019 -0.0023 -0.0011 0.0146 0.0063 0.0090 0.0078
0.5 | (0.8,3) | 0.5340 -0.0009 -0.0007 -0.0031 -0.0006 0.0150 0.0064 0.0128 0.0099

Table 2D: Performances of , __1

n

n

(UB, 1% -U (s, |w)) Withn =100 and n = 2000
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Residual Process

-0.3

T T T T I T T
-4 -3 -2 -1 0 1 2
Failure Time (Error Scale)

Figure 4.1a: Diagnostic plot of I7(t) in (3.12) based on Z, when the true and imposed model are both AFT model.
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Residual Process

T T T T T T T
-4 -3 -2 -1 0] 1 2
Failure Time (Error scale)

Figure 4.1b: Diagnostic plot of V() in (3.12) based on Z, when the true and imposed model are both AFT model.
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Residual Process

-0.5

Failure Time (Error Scale)

Figure 4.2a: Diagnostic plot of ¥ (r) in (3.12) based on Z, when the true model is AFT model and imposed model is LS model
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Residual Process

T T T T T T
-3 -2 -1 o 1 2
Failure Time (Error Scale)

Figure 4.2b: Diagnostic plot of I7(t) in (3.12) based on Z, when the true model is AFT model and imposed model is LS model
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parameter 0, =2 6, =-1 , =0.88 p,=0.73
censoring rate | Sample Size BS(6,) o (6,) BS(6,) o (6,) BS( p,) o (Do) BS(p,) o (p)
0.5 200 0.3302 0.5248 -0.0033 0.6338 0.0228 0.0360 0.0521 0.0593
. 500 0.1603 0.2393 0.0221 0.2656 0.0138 0.0216 0.0325 0.0353
0.40 200 0.3503 0.6282 0.0085 0.7573 0.0209 0.0457 0.0523 0.0770
' 500 0.1861 0.4087 0.0267 0.4524 0.0126 0.0344 0.0345 0.0544

Table 3A: Finite-sample performances for estimating 6,”,6%, p, and p, in the incidence model based on 1000 replications

parameter p=-1 B, =1 Ry = R(t0.75) =0.3333 Rys = R(to.s) =1 Ry = R(to.zs) =3
censoring | Sample Size n n - - n ~ A A n A
rate Bs(ﬂl) o (ﬂl) Bs(ﬂz) o (ﬁz) BS(R0.75) o (Ro.75) BS(RO.S) o (Ro.s) BS(Ro.zs) o (Ro.zs)
0.5 200 -0.0612 0.3064 | -0.0133 | 0.1725 -0.0054 0.0762 -0.0260 0.2163 -0.1572 0.6968
' 500 -0.0756 0.1972 | -0.0052 | 0.1209 0.0083 0.0489 0.0222 0.1329 -0.0510 0.4092
0.40 200 -0.0548 0.3369 | -0.0179 | 0.1802 -0.0059 0.0814 -0.0276 0.2256 -0.1460 0.7714
' 500 -0.0488 0.2149 | -0.0223 | 0.1189 0.0014 0.0530 -0.0062 0.1472 -0.1029 0.5174

Table 3B: Finite-sample performances for estimating £, in the latency model based on 1000 replications.

Note: 7, = 0.5773such that S(to75 |Z=0)=0.75 and R(ty,5) =0.3333; t,5 =1 such that S(tQ5 | Z=0)=0.50 and R(tys) =10 ty,s =1.732 such that S(tys 1 Z=0)=0.25 and R(ty) =3
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Parameter 0, =2 6,=-1 p, =0.88 p,=0.73
Kendall’s _ - A - A A A A A
o | seting | BS(4) o@) | BS(8) () BS( 5,) o(py) BS(5,) o(py)
0.30 A -0.1336 0.3747 -0.1465 0.6260 -0.0204 0.0409 -0.0692 0.1008
' B -0.1369 0.2787 -0.0657 0.3646 -0.0184 0.0317 -0.0441 0.0519
0.50 A -0.1017 0.3272 -0.1825 0.7167 -0.0154 0.0354 -0.0699 0.1138
' B -0.1213 0.2682 -0.0650 0.3472 -0.0163 0.0305 -0.0404 0.0486

Table 4A: Finite-sample performances for estimating the incidence model based on n=300 and 1000 replications

Parameter p,=-07 S, =03 R,75 =R (t,,5) =0.3333 Rys = R (t,5)=1 Ry = R(ty,5) =3
Kendall’s tau | Setting | BS(4) | o(8) | BS(A,) | o(B) | BS(Ry) | o(Rs) | BS(R) | o(R) | BS(Ry) | o(Ry)
0.30 A 0.0158 | 0.3761 0.0007 | 0.1615 0.0106 0.0769 0.0648 0.2197 0.3762 0.8367

' B -0.0136 | 0.2824 | -0.0080 | 0.1397 0.0111 0.0701 0.0596 0.2008 0.3435 0.7078

0.50 A 0.0217 | 0.4314 | -0.0076 | 0.1691 0.0096 0.0754 0.0485 0.2040 0.2399 0.7073

' B -0.0099 | 0.2690 | -0.0070 | 0.1370 0.0110 0.0703 0.0517 0.1935 0.2752 0.6481

Table 4B: Finite-sample performances for estimating the latency model (7;) based on n=300 and 1000 replications.
Note: t0.75 = 0.5773such that 51(l0,75 | Z= 0) =0.75 and R1([o,75) =0.3333; los = 1 such that 51(t0,5 |Z = 0) =0.50 and R1(to.5) =1 logs = 1.732 such that 51(t0.25 | Z= 0) =0.25 and R1(to.25) =3
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Parameter B3 =05 B, =0.00 Ry75 = Rlty75) = clo s Rys = R(tys) = ctys Ry 25 = R(ty25) =l s
Kendall’s tau | Setting | Bias(3,) | o (3,) | Bias(B,) | o (B,) | Bias(Ry+s) | o(R.) | Bias(R,s) | o (R,s) | Bias(Ry,) | o (Ryy)
0.30 A 0.0099 | 0.1854 | -0.0062 | 0.0924 | -0.0033 | 0.0468 | -0.0230 | 0.1106 | -0.0941 0.2267

' B | -0.0030 | 0.2298 | 0.0015 | 0.1095 | 0.0004 | 0.0309 | -0.0041 | 0.0722 | -0.0300 0.1394

0.50 A | -0.0179 | 0.1898 | 0.0048 | 0.0960 | -0.0017 | 0.0504 | -0.0336 | 0.1135 | -0.1645 0.2237

' B | -0.0061 | 0.2483 | 0.0053 | 0.1164 | -0.0002 | 0.0331 | -0.0045 | 0.0825 | -0.0420 0.1495

Table 4C: Finite-sample performances for estimating £, and a(,@’j) in the survival model (7,) based on n=300 and 1000

Note that:

replications.

Setting A: ¢, .. = 0.9589 suchthat S(z,,.|Z =0)=0.75 and R(z,,.)=0.28767; t,, =2.3105 suchthat S(z,,|Z=0)=0.5 and R(,.)=0.69315; f,, =4.621 suchthat

S(ty5 1 Z =0)=0.25 and R(z,,;) =1.3863

Setting B: ¢, =0.9589 suchthat S(z,,.|Z=0)=0.87 and R(z,,.)=0.1438; #,, =2.3105 suchthat S(z,,|Z=0)=0.7071 and R(z,.)=0.3466: ¢

0.25

S(ty51Z =0)=0.50 and R(z,,;) =0.69315
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—=4.621 such that







Setting 181 =-0.7 ﬁ?_ =0.3 Ryz5 = R(to.75) =0.3333 Rys = R(to.s) =1 Ry, = R(to.zs) =3

Pr(6 =1) Pr(6 =0) Bs(ﬁl) o (Iél) BS(,‘%) o (,éz ) BS( 1%0.75) o (1%0.75) Bs(ﬁo.s) o (éo.s) BS(1§025) o (ﬁo.zs)
0.50 0.50 0.0085 | 0.2227 | 0.0042 0.1335 0.0002 0.0581 0.0272 0.1544 | -0.2781 0.3567
0.63 0.37 -0.0028 | 0.2051 | -0.0015 0.1203 -0.0019 0.0558 -0.0107 0.1396 -0.0553 0.3341

Table 4E: Finite-sample performances for estimating £, and a(ﬁj) in the latency model based on n= 300 and 1000 replications.

Note: 1,5 = 0.5773such that (1,75 | Z = 0) = 0.75 a0 R(t,,5) = 0.33335 tpg =1 SUchthat S(ty | Z=0)=0.50 & R(sp,) =1i 1y =1732 SUChthal S(ty5 | Z =0) =025 and R(spp) =3
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Setting 0, =2 6, =-1 p, =0.88 p, =0.73
Pr(5 =1) Pr(s =0) BS(4,) o (6,) BS(6),) o (6,) BS(p,) a (Do) BS(p,) o (py)
05 05 0.0077 0.2889 -0.1275 0.3738 -0.0025 0.0302 -0.0256 0.0380
0.63 0.37 0.0462 0.2428 -0.0322 0.3014 0.0025 0.0244 0.0023 0.0299

Table 4D: Finite-sample performances for estimating 6,6, p, and p, in the incidence model based on 300 sample size and 1000

replications
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