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Asymptotic Theory for Geostatistical Model Selection

student : Chih-Hao Chang Advisors : Dr. Hsin-Cheng Huang
Co-Advisor : Dr. Ching-Kang Ing

Institute of Statistics
National Chiao Tung University

ABSTRACT

Information criteria, such as Akaike's information criterion (AIC), Bayesian
information criterion (BIC), and conditional AIC (CAIC) are often applied in model
selection. However, their asymptotic behaviors under geostatistical regression models
have not been well studied particularly under the fixed domain asymptotic framework
with more and more data observed-in ‘@ bounded fixed region. In this thesis, we
investigate two classes of criteria for  geostatistical model selection: generalized
information criterion (GIC) and conditional GIC (CGIC), which include AIC, BIC,
and CAIC as special cases, under both the increasing domain asymptotic and fixed
domain asymptotic frameworks. We establish conditions under which GIC and CGIC
are selection consistent and asymptotically efficient even without assuming spatial
covariance structure to be known. These conditions are further examined for GIC and
CGIC in selecting one-dimensional geostatistical regression models with the
exponential covariance function class under various settings. For example, under the
fixed domain asymptotic framework, where some covariance parameters are not
consistently estimable, we show that selection consistency not only depends on the
tuning parameter of GIC, but also depends on smoothness of the explanatory variables
in space. In addition, under the increasing domain framework, we show that
asymptotic properties of GIC depend on the growing rates for the size of the domain.
Moreover, some numerical experiments are provided to demonstrate the finite sample
behavior of various criteria.
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Chapter 1

Introduction

More and more spatial data are collected in this world. In many problems, several variables
are measured at some locations over a region in space, and it is of interest to predict a
variable at some locations, where measurements may or may not be taken, based on all
data available in the region. We can formulate the problem as a geostatistical regression
problem by treating the variable of interest as the response and regressing it with other
(explanatory) variables while accounting for spatial dependencies. However, inference and
prediction generally depend on how explanatory variables are chosen, which if not chosen
properly, may lead to poor inference and prediction, particularly when the number of
explanatory variables is large. Clearly, model selection problem is essential in geostatistics.

For example, suppose that we are interested in knowing ground-level ozone concen-
trations for a region consisting of Taoyuan, Hsinchu and Miaoli in Taiwan based on data
measured at some monitoring stations in Taiwan Air Quality Monitoring Network (see
Figure 1.1). At each monitoring station, we collect hourly ozone concentrations together
with some explanatory variables, including ozone precursors (such as nitrogen oxides and
hydrocarbons), meteorological variables (such as wind speed and wind direction, tem-
perature, mixing height, humidity and rainfall), altitude, population, etc. It is of inter-
est to identify influential explanatory variables for ozone concentrations, and to predict
ozone concentrations for the whole region by applying a geostatistical regression model.
Although lower altitudes, lower wind speeds, and higher temperatures are expected to
associate with higher ozone concentrations, some other variables may or may not have
effects on ozone concentrations. Removing unrelated variables, while retaining impor-
tant variables, will allow one to reduce estimation variability, thereby increase prediction
accuracy.

There are two different asymptotic frameworks in geostatistics. One is called the in-
creasing domain asymptotic framework, where the observation region grows with the sam-
ple size. The other is called the fixed domain asymptotic (or infill asymptotic) framework,
where the observation region is bounded and fixed. It is known that these two frameworks
lead to possibly different asymptotic behaviors on covariance parameter estimation, and
hence are also expected to produce different asymptotic behaviors on model selection.
In general, asymptotic behaviors under the increasing domain asymptotic framework are
more standard. For example, the maximum likelihood (ML) estimates of covariance pa-
rameters are typically consistent and asymptotically normal (Mardia and Marshall 1984).
In contrast, not all covariance parameters can be consistently estimated under the fixed
domain asymptotic framework even for a simple one-dimensional example with the sta-
tionary exponential covariance model (Ying 1991). The readers are refereed to Stein
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Figure 1.1: Locations of monitoring stations in Taoyuan, Hsinchu and Miaoli counties in
Taiwan Air Quality Monitoring Network.

(1999) for more details regarding fixed domain asymptotics.

There are many model selection methods that have been applied in geostatistical model
selection, such as Akaike’s information eriterion (AIC, Akaike 1973), Bayesian information
criterion (BIC, Schwartz 1978), the generalized information criterion (GIC, Nishii 1984),
and cross validation. Note that GIC contains a tuning parameter, which includes both
AIC and BIC as special cases. Although asymptotic properties of these selection methods
have been well studied in linear regression and time series model selection (e.g., Shao
1997; McQuarrie and Tsai 1989), they have not been well established for geostatistical
model selection. In fact, there are only limited results available partly because asymptotic
properties under the fixed domain asymptotic framework are generally nonstandard and
difficult to handle. Hoeting et al. (2006) provided some heuristic arguments for AIC
in geostatistical model selection under the assumption that the variable of interest is
observed with no measurement error. They show via a simulation experiment that spatial
dependence has to be considered, which if ignored, may lead to unsatisfactory results.
For linear mixed-effect models, Pu and Niu (2006) provided conditions under which GIC
is selection consistent. In addition, Vaida and Blanchard (2005) developed a criterion for
linear mixed model selection, called the conditional Akaike’s information criterion (CAIC).
This criterion provides unbiased estimation of the mean squared prediction error, which
appears to be more suitable than AIC for geostatistical model selection when spatial
prediction is of main interest. Huang and Chen (2007) developed a general technique of
estimating the mean squared prediction error for a general spatial prediction procedure,
in which a concept called generalized degrees of freedom is used to provide an almost
unbiased estimate. Their method is applicable to select among arbitrary spatial prediction
methods, and is shown to achieve some asymptotic efficiency result.

In this thesis, we first study GIC for geostatistical model selection. Then we propose
a new criterion, called conditional GIC (CGIC), which includes CAIC as a special case.



Major accomplishments are listed in the following:

1. Asymptotic properties of GIC under both the fixed domain asymptotic and the
increasing domain asymptotic frameworks are established under some regularity
conditions.

2. Asymptotic properties of CGIC under both the fixed domain asymptotic and the
increasing domain asymptotic frameworks are established under some regularity
conditions.

3. The above regularity conditions are explicitly checked for some examples in the one-
dimensional space with various forms of explanatory variables under the exponential
covariance model corresponding to the Ornstein-Uhlenbeck process (Uhlenbeck and
Ornstein, 1930).

We shall show that asymptotic behaviors of these criteria are related to how fast the
domain increases with the sample size. In addition, some nonstandard behaviors of these
criteria under the fixed domain asymptotic framework will be highlighted. For example,
under the fixed domain asymptotic framework, GIC and CGIC fail to identify the correct
set of polynomial variables consistently regardless of which tuning parameters are chosen.
On the other hand, both BIC and CBIC are selection consistent when candidate variables
are generated from either white-noise processes or some zero-mean spatial dependent
processes.

We shall start by developing asymptotic results under known covariance parameters,
and then allowing them to be unknown. However, under the fixed domain asymptotic
framework, ML estimates may converge to nondegenerate distributions. In this situation,
general asymptotic properties are very difficult to develop even for parameter estimation.
Therefore, we shall focus only on some-examples of geostatistical models defined over the
one-dimensional space with the exponential covariance model.

The thesis is organized as follows. Chapter 2 gives a brief introduction of geostatistics,
including various spatial covariance models, various spatial prediction and parameter esti-
mation methods. In Chapter 3, we introduce the variable selection problem and consider
two loss functions for comparing among different methods. In Chapter 4, some asymp-
totic properties of GIC are established under some regularity conditions. These conditions
are further verified by some examples in the one-dimensional space with the exponential
covariance model under either known or unknown covariance parameters in Chapter 5.
Chapter 6 is devoted to CGIC and its asymptotic properties. Chapter 7 provides some
simulation examples for comparing among various model selection criteria. Some con-
clusions and discussion regarding future research directions are provided in Chapter 8.
Finally, the appendix contains proofs for all lemmas and propositions.



Chapter 2

(Geostatistics

This chapter provides a brief introduction to geostatistics, including geostatistical models,
spatial prediction, parameter estimation, and the two asymptotic frameworks.

2.1 Geostatistical Models

Consider a spatial process {S(s) : s € D} of interest defined over a region D C R? with
d € N ={1,2,...}. Suppose that we observe data {(x(s;),Z(s;)) : i = 1,...,n} at
locations s; € D, where

x(s;) =L ei(s), v, xp(ss)), (2.1)

is a p-vector of explanatory variables observed at-s; € D, and Z(s;) is the corresponding
response variable observed according to the following measurement equation:

Z(Sl):S(SJ—{-E(Sz), izl,...,n,

and {e(s;) : 1 =1,...,n} are white-noise variables corresponding to measurement errors
with variance o?. The spatial process S(-) is further decomposed into a linear combination
of explanatory variables (-)’3 and a zero-mean spatial dependent process 7(+):

Z(si) =x(s:)'B+n(s;) +e(s;); sieD,i=1,...,n. (2.2)

In general, n(-) is assumed to be L-continuous (i.e., E(n(s) —n(s'))? — 0 as ||s—&'|| — 0)
with its spatial dependence structure described by a variogram model or a covariance
model (Section 2.2). The goal is either to make inference on B3 or more often to predict
{S(s) : s € D} based on data Z = (Z(s1),...,7Z(s,)). Commonly used loss functions

for spatial prediction include [,_,, ‘S’(s) - S(s)}st and Z (S’(sl) — S(si))z, where S(s)
i=1

denotes a generic predictor of S(s) at s € D.

2.2 Variograms and Covariance Functions

In geostatistical literature, spatial dependence is commonly described using a variogram,
defined as
2v*(s,8') =E(Z(s) — Z(s'))* s,8 €D.



The function v*(-,-) is usually called the semivariogram. Clearly, 7*(s,s’) > 0 and
v*(s,s) = 0, for s,8' € D. A spatial process S(-) is said to be intrinsically station-
ary if it has a constant mean: E(S(s + h) — S(s)) = 0, and its variogram can be written
as

2y(h) =27"(s + h,s) = E(Z(s + h) - Z(s))?,

for any pairs s and s + h € D. Note that the function 2y(h) does not depend on s.
Spatial dependence can also be described using a covariance function:

C(s,s") =cov(S(s),S5(s")); s,8€D.

Similar to an intrinsically stationary process, a spatial process S(-) is said to be second-
order stationary if E(S(s + h) — S(s)) = 0 and its covariance function can be written
as:

K(h) =C(s,s+ h) =cov(S(s),S(s+ h)),

independent of s, for any s, s + h € D. Clearly, K(h) = K(—h), and |K(h)| < K(0) =
var(S(s)), for s € D. Note that a second-order stationary process is an intrinsically
stationary process with v(h) = K(0) — K (h), but not necessary vice versa. For example,
a Brownian motion is an intrinsically stationary process, but not a stationary process,
because its variance is not a constant (see Cressie 1993).

In addition, a second-order stationary process is said to be isotropic if K(h) depends
on h only through ||h||, where || - || is the,L? norm. In what follows, we introduce some
isotropic stationary covariance function classes commonly used in the literature. The
exponential covariance class is given by:

K{h) = ayexp(=#y,|lh]), (2.3)

where ag > 0 and k, > 0 is a range parameter. The Gaussian covariance class is given
by:

K (h) = oy exp(—ry||h]*). (24)
where 03 > 0 and k, > 0 is a range parameter. The Matérn covariance class (Matérn
1986) is given by:

o, (k[ R])”
Kh)=-"1—"2-K, h 2.5

(1) = T g Kol ), (25

where 0727 > 0, K, > 0 is a range parameter, v > 0 is a smoothness parameter, and K,
is the modified Bessel function of the second kind with order v (Abramowitz and Stegun
1965). Note that the Matérn covariance class contains the exponential covariance class as
a special case when v = 0.5. It also reduces to the Gaussian covariance class as v — o0.

2.3 Kriging and Spatial Prediction

Spatial prediction is commonly called kriging in geostatistics, which utilizes spatial depen-
dence structure to interpolate or smooth the surface of a spatial stochastic process based
on (noisy) data observed at some locations in space. It is named after a South African
mining engineer, Daniel Gerhardus Krige (1951), who pioneered the field of geostatistics.
In this section, we are going to introduce several kriging methods derived under different
circumstances.



Simple Kriging

Suppose that we observe data Z = (Z(s1),...,Z(s,))" according to (2.2), where o2,

pu(s) = E(S(s)); s € D, and C(s,s’) = cov(S(s),S(s")); s,8 € D, are known. Then
the predictor S(s) that minimizes the mean squared error, E(S(s) — S(s))? is S(s) =
E(S(s)|Z), for s € D. This predictor is called the simple kriging predictor. If in addition,
S(-) and {e(sy),...,€(sn)} are both Gaussian. Then S(s) is a linear predictor and can
be explicitly written as:

S(s) = p(s) +o'S7H(Z — p), (2.6)

where p = (pu(s1), ..., pu(sn)), o = (C(s1,8),...,C(ss,9)), T = [C(s;, Sj):lan + 0?1,
and I, is the n X n identity matrix. Under the Gaussian assumption, the kriging variance
(or the mean squared prediction error) of S(s) at s € D is

E(S(s) — S(s))2 =C(s,8) —o'S 0.

Ordinary Kriging

Suppose that we observe data Z = (Z(sy),...,Z(sy))" according to (2.2), with a constant
mean u = E(S(s)); s € D, which is unknown, whereas o2 and C(s, 8') = cov(S(s), S(s'));
s, SAI € D, are known. Then the best linear unbiased predictor of S(s), which minimizes
E(S(s) — S(s))? among all unbiased linear predictors is given by:

S(s) =it e'®n 1 (Z — 1),

where i = ('27'1)7'1'Y7'Z, o and X are defined in (2.6), and 1 = (1,...,1)’. The
predictor is usually called the ordinary kriging (OK) predictor. The ordinary kriging
variance is

(1-1S o)
1311

E(S(s) — S(s))* = C(s,8) — 'S "o +

Universal Kriging

Instead of having a constant mean as in the ordinary kriging model, suppose that we
observe data Z = (Z(s1),...,Z(s,)) according to (2.2) with mean,

u(s) = E(S(s) = ) Bran(s),

where z;(-)’s are known function corresponding to explanatory variables in (2.1) and ;s
are unknown regression coefficients. Here o and C(s,s’) = cov(S(s),S(s')); s,8 € D,

€

are assumed known. Then the best linear unbiased predictor, usually called the universal
kriging (UK) predictor, has the following linear form:

S(s) =) wiZ(sy),
i=1
which minimizes E(S(s) — S(s))? subject to the following p + 1 unbiasedness constraints:

Zwixj(si) =x(s); j7=0,1,...,p.
i=1



Let X be the n x (p + 1) matrix with the ith row given by x(s;); 1 < i < n, defined in
(2.1). Then the UK predictor is given by:

~

S(s)=z(s)B+0'T(Z - XP),

where 8 = (X’S"1X)"1X'S"1Z is the generalized least square estimate of 3, and o
and X are defined in (2.6). In particular, the UK predictor of S = (S(s1),...,5(s,)) is

~

S=XB+var(S)xHZ - X3). (2.7)

Note that OK is a special case of UK with p = 0. The UK kriging variance satisfies

2

E(S(s)—S(s))” = C(s,8) — 'S0+ o ' X(X'T'X) ' X'S o
+x(s) (X' X) x(s) — 22(s) (X'T'X) ' X'E o

Other Kriging Methods

The above kriging methods assume that the covariance parameters are known. When
they are unknown, one may plug the estimated parameters into the expressions of the
corresponding kriging predictors. Another solution is to apply a Bayesian approach by
specifying a joint prior distribution for all the unknown parameters. Then a Bayesian
kriging method is obtained by using either the posterior mean or the posterior median of
S(-) as a predictor of S(-).

When either S(-) is not a Gaussian proeess ot €(s;)’s are not Gaussian distributed, the
optimal predictor, E(S(s)|Z) of S{s) that minimizes E||S(s) — S(s)|? is generally nonlin-
ear and has a complex form. Under this situation, some nonlinear kriging methods, such
as transGaussin kriging, disjunctive kriging, and indicator kriging have been developed.
The readers are referred to Journel (1983); Cressie (1993), or Schabenberger and Gotway
(2005) for more details.

2.4 Covariance Parameter Estimation

The kriging methods introduced previously basically require knowing o2 and the vari-

ogram (or covariance function) of S(-). In practice, they are generally unknown and have
to be estimated. To visualize the spatial dependence structure, it is common to plot the
following empirical variogram at various spatial lags h > 0:

%m:ﬂﬁngjﬂwo—ﬂ&W,

i,jEN(h)

where N(h) denotes all the pairs of s; and s; such that ||s; —s;|| = h, and |N(h)| denotes
the number of elements in N(h). However, the empirical variogram cannot be computed
at every lag distance due to limited amounts of data. It is common to estimate the
variogram (or covariance function) of S(-) by specifying a parametric model after looking
at the empirical variogram.

Hereafter, we consider a covariance model parameterized by 6. Denote 3(8) to be the
variance-covariance matrix of Z based on parameter 8. Let

[(Z:p, D) = 2m) " (det D) P exp(~(Z — p)S(Z - p)f2),  (28)



be the Gaussian density function with mean g and variance-covariance matrix 3. Given
0, the ML estimates of 3 and p are given by

B(6) = (X'=7'(6)X) ' X'S71(9),

and 1(0) = XB3(0). Therefore, the ML estimate of 8 can be obtained by maximizing the
profile log-likelihood function:

06;:Z) = log f(Z;[(0),3(6))

= 7 log(2m) - %log(det () — %(z — XA3(0))S1(0)(Z — XB(6)). (2.9)
Alternatively, we can estimate @ by restricted maximum likelihood (REML), obtained
by maximizing the likelihood of some contrasts ZT = AZ such that AX = 0, where
Ais a (n —p—1) x n matrix with rank n — p — 1, which can be chosen as A =
I-X(X'2710)X) ' X'Y71(0). Then the REML estimate of @ can be obtained by
maximizing the log-likelihood function of ZT:

log (21,0, AX(0)A") = —Wlog@w)—%logdet(f](@))

_% log det((X'1(8) X)) — %ZT’(AE(O)A’)lzT.

The covariance parameter vector 8 cansalso be estimated by some methods of moments,
which have an advantage of not relying on the Gaussian assumption. For more details,
the readers are referred to Cressie (1993) and Schabenberger and Gotway (2005).

2.5 Asymptotic Frameworks

There are two asymptotic frameworks in geostatistics having different assumptions on the
domain D. One is called the fixed domain asymptotic framework, where data are sampled
more and more densely in a bounded fixed region D. The other is called the increasing
domain asymptotic framework with |D| — oo as n — oo, which is often considered
in time series analysis. The fixed domain asymptotic framework is somewhat unique
in geostatistics, which tends to have some unusual asymptotic behavior due to limited
information available in a bounded fixed region.

Asymptotic properties under the increasing domain asymptotic framework are more
standard. Suppose that we observe data Z according to (2.2), where u(s) = x(s)'8 is
known, but var(Z) depends on some unknown parameter vector 8. Then Mardia and
Marshall (1984) show under some regularity conditions that

011 ~ N (6o, I7(6)), (2.10)

where 6, is the true parameter vector and I(6) is the Fisher information. However,
(2.10) is generally not satisfied under the fixed domain asymptotic framework, and in
fact some parameters of 8 can not be consistently estimated. For example, suppose that
1(-) is generated from a Matérn covariance function of (2.5) with v known but o7 and &,
unknown. Zhang (2004) shows that the ML estimates of o} and &, are inconsistent under
the fixed domain asymptotic framework. That is,

lim P(\&g — 0270| >e} >0,

n—oo



and
lim P(|&y — kol > e} > 0.

n—oo

for any ¢ > 0, where 020 and k,o are the corresponding true parameters. However,
as shown in the following proposition, some function of 0,27 and k, can be consistently
estimated.

Proposition 1 (Zhang, 2004) Consider an increasing sequence of finite subsets D,, of
R?, for d = 1,2,3, such that U D, is bounded and infinite. Suppose that the data Z
are observed on D = D,, according to (2.2) with 3 = 0 and o = 0 known, where 1(-)
is a Gaussian process with a Matérn covariance function of (2.5) and v > 0 is known.
Assume that 072770 > 0 and K, > 0 are the true parameters corresponding to o® and k. If
ky s fized at some constant k, > 0, and 5772] is the ML estimate of 0. Then

~2 2v P 2 2v

0,K1 = Opokpo, QST — 00

Also, Ying (1991) shows the similar results for exponential covariance function which
is a special case of Matérn class for v = 0.5.

Proposition 2 (Ying, 1991) Suppose that the data Z are observed on D = [0, 1] accord-

ing to (2.2) with 3 = 0 and o = 0 known, where n(-) is a zero-mean Gaussian process

with an exponential covariance function of (2.8). Let © be the parameter space of(af], Ky)'.

Assume that either © = [a,b] x (0, 00) 0r ©-=(0,00) X [a,b], where 0 < a < b < 00, and
the true parameter vector (o7 o, kng) € ©.

(i) Let &; and ky be the ML estimates-of o and k,. Then

oA d
\/5(02/@7 — 0%’0/1,770) —N(0, 2(0%70/@770)2), as n — 0o.

(i) Suppose that k, is fized at some constant k1 > 0 and 67 is the corresponding ML

estimate of o;. Then

2 2 2
lopeipy oy O~ nK
~ ,0vn,0 d ,0Mvn,0
\/ﬁ a%—”— — N{[0,2 N/ , a8 m — o0.
K1 R1

(111) Suppose that 0,27 is fized at some constant o? and & is the corresponding ML estimate
of ky. Then

2 2 2
oV 023K
A ,0/vn,0 d ,0Mvn,0
\/ﬁ(/ﬁ— 772 )—>N<O,2(n—2 ,  asn — oo.
o

1 01

The parameters o7x2” in Proposition 1 and o7k, in Proposition 2 are called microer-

godic parameters (Matheron 1971, 1989; Stein 1999), which basically imply that both
parameters can be recovered with probability 1 from observations in a bounded fixed
region. These parameters have also been shown to play an important role in spatial
prediction by Stein (1999). Specifically, consider the spectral density function of K(h),
h € R% .

1) = o /R cap(—iw WK (R)dh: € R'



Stein shows that under the fixed domain asymptotic framework, f(w) contributes to
mean square prediction error mainly for large |w|, whose behavior is governed by some
microergodic parameters. He also provides some specific examples for exponential and
Matérn covariance functions.

For 02 > 0 in (2.2), Chen et al. (2000) provides the following results regarding the ML
estimates of 0%, Ky and oZ.

Proposition 3 (Chen et al. 2000) Suppose that the data Z are observed regularly on
D = [0,1] according to (2.2) with B = 0 known, where n(-) is a zero-mean Gaussian
process with an exponential covariance function of (2.3). Assume that (oy, k,,02) € ©,
where © C (0,00)° is a compact set, and the true parameter vector (024,07 g, kino)' € ©.

(i) Let 6%, 67 and &y be the ML estimates of o2, o7 and k. Then, as n — oo,

711/4(6727/%77 — 0,2770/-@7770) 4 N 0 4\/50670(03’0/17770)3/2 0
n'/2(6% — o2,) 0 ) 0 202 ) )"

€ €,

(i) Suppose that k, is known and 62 and 6,2] are the corresponding ML estimates of o2
and o2. Then, as n — oo,

"
nt/4(62 —02,) \ 0 420,003 i t/? 0
TI,O 670 7770 77»0
( 26t —aty) ) 7 M\Lo ) 0 2080 ) )

In Chapter 5, we shall provide the convergence rates for the ML estimates of o2, ag and
ki, under more general spatial domains with D =1{0,n°] and § € [0, 1). In addition, those
convergence rates will be given under geostatistical regression models of (2.2) based on
not only the true model, but also underfitted and overfitted models.

=
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Chapter 3

Variable Selection

Consider the geostatistical regression model of (2.2). Suppose that we observe spatial data,
{x(s;),Z(s;)}; s; € D and i = 1,...,n. This model reduces to a usual regression model
when 7(-) = 0. Similar to linear regression, a large model with many insignificant variables
tends to produce a large variance, resulting in low predictive power. On the other hand,
a small model that ignores some important variable may produce large bias. To achieve
good compromise between bias and variance, it is essential to identify significant variables.
Clearly, variable selection is essential not only in regression but also in geostatistical
regression.

We consider selecting a subset of {1,::0,p} corresponding to p explanatory variables.
Let A c 2017} be the set of all candidate models, and let o € A denotes a candidate
model. Note that intercept is always included in- our models, and o = () corresponds to
the intercept only model.

Let X () be an n x p(«) sub-matrix of X containing the columns corresponding to
a, and let B(«) be the sub-vector of B-corresponding to X («). A model « is said to be
correct if yi(s) can be written as )., B;z;(s), for s € D. Let A° C A be the set of all

correct models and let a® = argmin || be the correct model having the smallest number
acA

of variables. Then A° = {a € A:a° C a}.
The geostatistical regression model corresponding to o € A can be written in a matrix
form as:

Z=X()B(a)+n+e, (3.1)

where n = (n(s1),...,1(s,)) ~ N(0,%,) and € ~ N(0,02I). Hence the mean and the
variance of Z under model a € A are p(a) = X (o) B(ev) and

3(0)=3%, + 01, (3.2)

where 0 is the covariance parameter vector associate with var(Z).

11



3.1 Loss Functions

We consider two loss functions: the Kullback-Leibler (KL) loss function and the squared
error loss function. First, for model a given in (3.1), the KL loss function is given by:

f(Y;p,3(60))
f(Y; i(a;0),%(0))

- %log det(2()) — %log det(2(8)) + %tr(E(OO)E_l(O)) -

IKHa:9) = / F(Y 11, 5(60)) log 1y
Y cR™

|3

b il )5 (0) (1 — l0:6)), (3:3)

where g = E(Z) is the true mean vector and 6y is the true covariance parameter vector,

i(0;0) = X(a)B(a;0), (3.4)
B(a;0) = (X(a)E71(0)X () X(a)E71(0)Z,

and recall that f(-; u, X) is the Gaussian density function defined in (2.8). Now, let

M(a;0) = X(o)(X(a)E(0)X () ' X () E7(0),
A(a;0) = I— M(w;0).

Note that when 6 = 6y, L**(«; 0) in (3:3)zeduces to a simpler form:

L5 () = I (6169) = g (0)'S ™ (1 — (), (3.7)

where fi(a; 0p) and X(6y) are written as fr(a) and X to simplify their notations. We can
rewrite (3.7) as

L a) = S A(@)S  Al)ut 500+ e/ M(ayS M) +e),  (38)

where A(a;0p) and M («;0) are also simplified as A(«) and M («a). Clearly, the first
term p/A(a)E " A(a)p on the righthand side of the equality in (3.8) vanishes when
a € A°. Thus we have the following lemma.

Lemma 1 Consider a class of models given by (3.1). Let L¥F(a) be the KL loss for
model v defined in (3.7). Then

E(L*(a)) = %M’A(a)’E_lA(a)p, + 7@; a € A, (3.9)

where A(a) is defined in (3.6). In particular, E(L¥L(a)) = p(a)/2, for a € A°.

Lemma 2 Consider a class of models given by (3.1). Let L**(a) be the KL loss for
model v defined in (3.7). Then

lim P(a® = argmin L**(a)) =1, (3.10)
n—00 acAc
and
a‘ = argmin B(L"*(a)). (3.11)
acAc

12



In addition, if a° is fived, and

lim inf p'A(a)E'A(a)p = oo, (3.12)

n—oo ac A\ A°
where A(«a) is defined in (3.6), then

lim P(a“ = argmin L**(a)) = 1. (3.13)

n—oo acA

In general, (3.12) is satisfied under the increasing domain asymptotic framework. How-
ever, under the fixed domain asymptotic framework, it may or may not be satisfied; see
Theorem 9 in Section 5.2 and Theorem 12 in Section 5.3, for which (3.12) holds and
Theorems 5 and 6 in Section 5.1 for which (3.12) fails. In fact, as shown in Theorems
5 and 6, the smallest true model a® does not have the smallest KL loss under the fixed
domain asymptotic framework. In other words, (3.13) is not always satisfied.

The other loss function we consider in this thesis is the squared error loss commonly
used in geostatistics particularly for prediction purpose:

L(a) = ||S(a) - S|, (3.14)

where S(a) is a generic predictor of S based on model & € A. Throughout the thesis,
we consider the universal kriging predictor of S in (2.7) unless indicated otherwise. For
0 = 6y, the universal kriging predictor based on model a can be written as:

S(a)= H(®)Z, (3.15)

where

H(a)=M(a) +3,% ' A(a), (3.16)

with M («) and A(«) defined in (3.5) and (3.6), respectively. Then the corresponding
risk can be decomposed into the following:

E(L(0)) = E|S-E(S]2) - 5(a) + E(S|2)|’
= E||S(a) —E(S|2)|" - 2B((S(e) - E(S|2))'(S - E(S|2))) + E|IS - (S| 2)|*
= E|S(e) - E(S|2)|I” + E[|S — E(S|2)],

which is lower bounded by E||S — E(S|Z)]||?, independent of o € A. The following
lemma provides some more details regarding decomposition of E(L(«)), which is useful
in establishing some asymptotic properties concerning the squared error loss.

Lemma 3 Consider a class of models given by (3.1). Let S’(a) be the UK predictor of S
given by (3.15) and L(«) be the corresponding squared error loss defined in (3.14). Then

E(L(c)) = E|S(a) - E(S|2)|* + E|S — E(S|2)|*
= Ri(a)+ Ro(a) + o?tr(X, 271, (3.17)

where E||S(a) — E(S|Z)|? = Ri(a) + Ro(e),

Ri(0) = ol A0)SAa)p,
Ro(a) = ottr(Z'M(a)), (3.18)

where M () = M («; 0y) is defined in (3.5).
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Note that the term R;(«) corresponds to the model misspecification error, which is
smaller for a larger model a, and in particular, Ry(«) = 0 for a € A°. The term Ra(«)
corresponds to the estimation error, which generally increases with p(a) and is bounded
by o?p(a), since

o?tr(S M (a))

o2tr(E7' X () (X (o) 7' X () ' X ()'E=71)
tr((X ()= X () ) (o
r((X ()= X ()" X ()= X (a))
= tr(Lp)) = p(o).
In addition, the term E||S—E(S|Z)||* = ¢?tr(X,X 1) in (3.17) corresponds to the optimal

mean squared prediction error, which provides a lower bound for E(L(«)).
In general, lim o2tr(%,27")/Ry(a) = oo, for a € A°. It follows from (3.17) that

IN

lim E(L(a))/E(L(a%)) =1, for a € A°

n—oo

In contrast, from (3.9),

lim E(L*"(a))/E(L*(a)) > 1, for a € A%\ {a‘}.

n—oo

Therefore, it would be preferable to select:a among a € A° under the KL loss.

3.2 Consistency and Asymptotic Loss Efficiency

Suppose that we are given a class of models(3.1) and a model selection procedure &.
We consider two aspects in assessing asymptotic optimal properties of @ with respect to
a given loss function L*(-). First, a selection procedure & is said to be asymptotic loss
efficiency if it satisfies

plim L*(a) / inf L*(a) = 1, (3.19)
n—00 ac
where plim denotes convergence in probability. Second, a selection procedure & is said to
be consistent if it satisfies
lim P(a=a} =1

For the KL loss of (3.7), it is straightforward to show that

af = argmin L*(a).
ac A
In some situations,
of = arg min L* (). (3.20)
acA
In this case, consistency automatically implies asymptotic loss efficiency. For example,
when o7 = 0, (3.1) becomes a class of traditional linear regression models with (3.20)
being satisfied under some mild conditions (Shao 1997). However, the results given in
Shao (1997) can’t be easily generalized here, because as to be established in Chapters 4-
6, asymptotic behavior of geostatistical model selection depends not only on asymptotic
frameworks but also on some smoothness property of the explanatory variables in space.

14



According to (3.17), E(L(«)) is lower bounded by E|S—E(S|Z)||?, which is sometimes
a higher order term than both R;(«) and Rs(«). Under this situation, asymptotic loss
efficiency of (3.19) with L*(-) = L(-) can be achieved by an arbitrary model selection
procedure. Therefore, it seems natural and preferable to consider the loss function, L(a)—

|S — E(S|Z)]|?, leading to another version of asymptotic loss efficiency that is stronger
than (3.19).

Definition 1 Consider a class of models given by (3.1) and the squared error loss, L(a) =
|S(a) — S|, where S() is a predictor of S based on model . A selection procedure &
is said to be strongly asymptotically loss efficient with respect to the squared error loss if

AN _ 2
i L@ — IS~ E(5|2)|

- 21
n—00 1nfa€./4 L(Oé) - HS - E(S’Z)HQ (3 )
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Chapter 4

Generalized Information Criterion

Consider a class of models given by (3.1). The generalized information criterion (GIC)
introduced by Nishii (1984) is given by:

Iaicoy (@) = —2 (maximum log-likelihood) 4+ A (number of parameters), (4.1)

where A is a tuning parameter, providing control of compromise between goodness-of-fit
corresponding to maximum log-likelihood and the model parsimoniousness corresponding
to the number of parameters. The criterion includes some commonly used criteria, such
as Akaike’s information criterion (AIC) with A = 2 and Bayesian information criterion
(BIC) with A\ = log(n), as special cases, and has been widely used in many statistical
fields. The model selected by I'qiggy) s given by:

agrop) = arg Iﬁin Laicoy (o). (4.2)
ag

4.1 Akaike’s Information Criterion

We shall first consider AIC with @ known, which corresponds to A = 2 in (4.1) and can
be written as:

Parc(@) = (Z — () E7H(Z — () +2p(a), (4.3)
where fi(«) is given by (3.4), and the goodness-of-fit component becomes the generalized
squared errors, (Z — ()X (Z — (), which is smaller for a larger model a, and
has a x? distribution with n — p(«) degrees of freedom if o € A¢. The model selected by
AIC is given by:

Qarc = arg rﬁin Carc(a). (4.4)
ac

The following theorem provides some asymptotic properties of AIC when 6 is known.

Theorem 1 Consider a class of models given by (3.1). Let L*\(«) be the KL loss for
model o and éarc be defined in (4.4).

(i) For |A°| <1, if
) 1 B
dm > Ry = (45)
acA\A°

then
plim LKL(dAIC)/ ian4LKL(oz) = 1.
ae

n—oo
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(11) For |A°| > 2, if (4.5) holds, and either

i 3 =0
acAe
or
o2 e "
then
plimLKL(dAIC)/CiyrelJ{;LKL(a) = 1.

n—oo

Proof. The proof is essentially the same as that for Theorem 1 of Shao (1997) after
transforming Z into X-1/2Z. We therefore omit the details. O

Equation (4.5) provides a condition for risks associated with underfitted models so
that correct models can be distinguished from incorrect models. The following corollary
provides an example for which (4.5) is replaced by a simple condition that can be easily

checked.

Corollary 1 Consider a class of models given by (3.1) with x;(s)’s independently gen-
erated from Gaussian white-noise processes of (5.7), where p is fivzed and A° # 0. If
lim tr(X71) = oo, then

n—oo

plim LKL (@476 / nf L*(a) = 1.

n—oo

Note that lim tr(X7') = oo when 62> 0." Applying the inequality, >\ w; " /n >

n—oo

n/>i wi, where w; > 0; 4 = 1,..7,n, we obtain a sufficient condition for lim tr(X7') =

n—oo

00, given by lim tr(X)/n? = 0 (see an example in Theorem 12 of Section 5.3).

4.2 Generalized Information Criterion

When p is fixed and |A°| > 2, we have for a € A°\ {a‘},

Larc(@®) = Taro(@) + 2(p(a) = p(a®)) ~ x*(p(@) — p(a®)),
where x?(k) denotes the chi-square distribution with & degrees of freedom. This implies
that lim P (dAIc = af) < 1. That is, AIC is not able to achieve selection consistency.
Replacing the penalty 2 in (4.3) by a penalty parameter A > 0 leads to the GIC of (4.1)

given under 0 = @y:

Patcoy () = (Z — (@) EH(Z — (o)) + Ap(a). (4.6)

Choosing a tuning parameter such that A — oo, we obtain for « € A\ {a‘},
Jim P((Tareoy (@) — Taco(@) <0) = 1

That is, GIC can identify a® among models in A° asymptotically. For linear regression
models (i.e., 07 = 0 in (3.1)), Shao (1997) established asymptotic loss efficiency and
consistency for GIC under some regularity conditions. For linear mixed models, Pu and
Niu (2006) also developed some asymptotic optimal properties of GIC. Adapted from Pu

and Niu (2006), we have the following theorem.
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Theorem 2 Consider a class of models given by (3.1). Let L¥(a) be the KL loss for
model o and &groeny be the model selected by GIC.

(i) For A°=10, if \
lim E L 0 4.7
n—o0 E(LKL(Oz)) ’ ( )

then
plim LKL(dG]C(,\))/ inf L**(a) = 1.

n—00 acA

(i1) For A°# 0, if A\ — oo, (4.7) holds, and

) 1
nll_{go Z ) < 00, (4.8)

a€cAc

then lim (dGIC()\) = of) = 1. In addition,

n—oo

plim L5 (Gigre0n) / inf L5 (a) = 1.

n—00 acA

Proof. The proof is essentially the same asthat for Theorem 2 of Shao (1997) and hence
is omitted. a

Theorem 2 reduces to Theorem: 2 of Shae (1997) if ¥ = o*I. Similar to (4.5),
Equation (4.7) provides a condition for risks associated with underfitted models. Equa-
tion (4.8) is a weak technique condition that holds trivially when p is fixed. In fact,
(4.7) is slightly weaker than the two:eonditions given in Theorem 2 of Shao (1997):

lim ijl\fA E(L*(a))/n > 0 and lim Ap/n = 0. Similar to Corollary 1, we have the
n—oo qe c n—oo

following corollary.

Corollary 2 Consider a class of models given by (3.1) with x;(s)’s independently gener-
ated from white-noise processes of (5.7), where p is fivred and A° # (. If lim tr(E_l)/x\ =
oo and X\ — oo, then lim P(dgm()\) = ac) = 1. In addition,

phm LKL(dgjc()\))/ nf LKL<Oé) =1.

1
n—00 acA

Similar to the remark given right after Corollary 1, lim )\tr(E) / n? = 0 is sufficient
for lim tr(Eil)/x\ = 00. (see an example in Theorem 12 of Section 5.3).

n—oo

4.3 Unknown Covariance Parameters

In practice, the covariance parameter vector @ is usually unknown and needs to be esti-
mated. Two approaches are commonly applied under this situation. The first one utilizes
a two-step procedure by first estimating the covariance parameters using, for example,
ML or REML, and then pretending the estimated parameters as known for subsequent
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inference or prediction. The other one applies a Bayesian method that requires specify-
ing a joint prior distribution for all the unknown parameters. Here we consider only the
former one with 6(a) being the ML estimate of 8 for « € A, obtained by maximizing the
following profile log-likelihood function,

(6:0) — —%nlog(Zw)—%logdet(E(O))
—5(Z - X(@)B(0:0)/SO)(Z - X(@)B(:0),  (49)

where B(a;0) = (X(a)2(0) ' X (a) ' X (a)2(0) 'Z and X is written as 2(0) to
emphasis its dependence on 0. Let © be the parameter space for @, and let 8, € © be
the true covariance parameter vector. We shall develop asymptotic properties of GIC,

~

Faicoy(@) = ~26(6(a); a) + Mp(a)), (4.10)

under both the fixed domain asymptotic and the increasing domain asymptotic frame-
works. The main difficulty to overcome is that some components of é(&) may converge to
nondegenerate distributions even for o € A° under the fixed domain asymptotic frame-
work.

We impose some regularity conditions for establishing asymptotic properties of GIC.
Denote by Apin(M) the smallest eigenvalue of a symmetric matrix M. We consider some
regularity conditions. Suppose that there exists 7,, — oo such that the following are
satisfied;

1
(A.1) For 6 € ©, lim — iJILll\fA wA(0)E Y 0)A(a; 0)u > 0, where A(a; 0) is defined
n—00 T, € c
in (3.6).

(A.2) For @ € O, lim i/\min(X’E’l(B)X) > 0.

n—oo T,

(A.3) For 6 € ©, lim iAmaX(X’z—l(e)z(eo)z—l(e)x) < 0.

n—00 T,

1 N
(A.4) For o € A, there exists some 6, € © such that plim — (£(8(a); a) — £(0,; ) = 0.

n—oo Tn

(A.5) For o € A\ A° and 6, given in (A.4), plim i(LKL(oz; 0()) — L (w; 6,)) = 0.

n—oo T’I’L

In most cases, 7,, can be chosen as inf XX (0)X; or Amin(X'E71(0)X), where X is

JjEQC
the jth column of X (see Theorems 7, 10 and 13). Condition (A.1) provides the effect
suffered from applying an incorrect model. Condition (A.2) ensures that the explanatory
variables are not too much correlated. Obviously, (A.4) and (A.5) hold when plim 6(«) =

n—oo

0., for some 0, € O. In some situation, 6, is different from 6,. For example, when
a € A\ A% 0(a) generally does not converge in probability to 6y. Surprisingly, (A.4) and
(A.5) may hold even if 8(«) converges to a nondegenerate distribution (see Theorems 7,
10 and 13).

Theorem 3 Consider a class of models given by (3.1) with p fized. Let © be a compact
parameter space for @ with 8y € © being the true parameter, and let L¥L(a) be the KL
loss defined in (3.3). Suppose that for a € A, €(0; «) defined in (4.9) is continuous in O,
and (A.1)-(A.5) are satisfied for some 1, — 0.
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(i) For A°=0, if 7,/\ — oo, and the following two conditions hold for o € A:

lim sup l;L'A(oz;9)’2_1(0)2(00)2_1(9)A(0z;0)# < o0, (4.11)

=0 aeA\Ac Tn

plim — tr(((n + &) + €)' — £(6,)) (S (6) — £'(00))) = 0, (4.12)

n—oo Tn

then GIC defined in (4.2) is asymptotically loss efficient:

plim LE(8(aarern) ) darcry) / min L¥(9(a);a) = 1. (4.13)

n—oo

(ii) For A # 0, if A — 00, T,/ \ — 00, (4.12) holds, and

lim i(log det(2(6,)) — log det(2(6p)) + tr(X(00)X " (0a)) —n) = 0, (4.14)

n—oo T,

for a € A°, then lim P(@GIC(,\) = ac) =1.

Proof. (i) We first prove that for o € A,

Laiopy(@) = nlog(2m) + logdet(2(6o)) + (n + €)'E7"(80)(n + €) + 2L (; 6,)
+0p(Tn). (4.15)

By (3.3) and (3.7), we can rewrite 2LXL (a;.0,,) as

2L (a;0,) = logdet(2(0,)) — log det(2(0,)) + tr(X(0,)X(0,)) — n
+u' A Oa)lz_lA(O‘Q 0.)(0)p
+(n + €) M(c:60:)57"(0,)(n + €), (4.16)

where M («;0,) and A(«a;6,) are defined in (3.5) and (3.6). By (4.10), we have for
a € A,

Taiopy(a) = —20(0(a); @) + 20(0; ) — 20(0a; ) + Ap(cv)
= —20(0,; ) + Ap() + 0p(T0)
= nlog(2m) + log det(3(6,)) +uA(a 0.)X7(0,)A(;0,) 1
—2p/ A0;0,)' 27 (02) A0 00) (0 + €) + (1 + €)Z7(8a) (1 + €)
—(n+ €)' M(a;0.)’S ' (0)(n + €) + 0,(7)
= nlog(2m) + logdet(X(0,)) + ' A(a; 0,) S 71 (0,) A(; 0,)
+(n +€)S7H(6a)(n + €) + 0p(7y)
= nlog(2m) + logdet(X(6y)) + (n + €)'E"(00)(n + €) + 2L5 (a; 0,,)
+tr((n + €)(n + €)' — X(00)(Z7(6a) — X7 (60))) + 0,(72)
= nlog(2m) + log det(2(6y)) + (n + €)= (60) (n + €) + 2L5"(a; 0,)
+0p(Ta);

where the second equality follows from (A.4), the third equality follows from (4.9), the
fourth equality follows from the following two equations, which will be proved later:

(M+€)/M(;0,)S71(0,)(n+e) = O,(1); acA, (4.17)
WA(;0,)S710,)A(;0,)(n+€) = o,(Tn); €A, (4.18)
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the fifth equality follows from (4.16) and

(n+€)S7(0a)(n+€) — (n+€)T7(6)(n + €) +n — tr(X(6) X (6a))
= tr((n+e)(n+e) — 2(0) (X7 (8a) — (),

and the last equality follows from (4.12). It remains to show (4.17) and (4.18). For (4.17),
we have

(n+ €)' M(2;0,)S " (6a)(n + €)
_ (te's (0. X (o >) (X(ayz-l(ea)X(a))‘l
o 7_71/2 Tn
. (X(a)'z—ﬂlfga)(n + 6)) . (4.19)
By (A.2), ot .
(%) = 0,(1). (4.20)
By (A.3),

lim iVau"(X > 10.)(n+e€) = lim lX '3710,)(00)2 1 (0,)X; < <.

n—oo T, n—o00 T,

where X; be the jth column of X. This together with E(X[X7'(0,)(n + €)) = 0 imply
that

—X 240 (n+ €)= 0,(1). (4.21)

Tl
Therefore, (4.17) follows from (4.19)-(4.21)" Using
HA(@;00)E7(02)A(; 0) (1 + €) = p' A(@;0,)'S71(0a) (1 + €),
(4.11) and the Markov’s inequality, we have for any € > 0,
lim P (| Aa;0,)E71(0a)(n +€) /7| > ¢)
< lim P (| A 0,) S (0,)(n + €)/7a]* > £7)

n—oo

<

B (1 A; 0,)'S(0,)5(86) 5 (8,) Ala; 0,)p1) = 0.

n—o0 527'2

This gives (4.18). Thus (4.15) is obtained.

We are now ready to prove (4.13). Let o = argmin L**(a; 6,). By (4.15), we have
acA

A KL/, L. KL
0 < plim Laicw (@”) = Taiop (Gerew) _ olim L% (0% 0,.) — L (Gaic; Oagiop, )

n—00 Tn n—00 Tn,

<0,

for some 64, 0,. € © where the first inequality follows from the definition of aqic(y), the
equality follows from (4.15) and the last inequality follows from the definition of a. It
follows that
LX (& -0, — LX¥E(al: 0,
plim ( GIC(N);» GIC()\)) ( L) —0 (4.22)

n—o0o Tn
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In addition, by (A.1) and (4.16),

2 1
plim —L*(a;0,)) > plim —p' A(e;0,) 2" (0,)A(a;0,)p > 0.

n—oo Tn n—oo Tn

This together with (4.22) implies that plim L*"(a*; 6,) /L** (acic); Bacicn,) = 1. Then
by (A.5),

~

plim L** (« /L (Garcpy; O(aaicny)) = 1.

n—oo

which gives (4.13). This completes the proof of (i).
(ii) We first prove (4.15) for A¢ # ). The proof is essentially the same as that in (i)
except (4.18) needs to be shown as follows:

A0 00) %7 (0,) A0 0.)(n + €)

A0 0,)5 (6.)(n +€)
— Bla"\ a)X(a®\ a5 8.)(n + ©)
_(5( “\ o) X(at\ a)'S -1<ea>X<a>)(X<a>'z-l<ea>x<a>)‘1
Té/Q Tn
) (X<a>'2—1<f)a><n+e>
— Blof\ a) X (o \ a) S-HE- € + O,(1)
= OP(TTL)>

where the second last equality follows similarly-from the proof of (4.17) and the last
equality follows from (4.21).
Second, we prove that lim P(FGIc()\)(OZ) > FGIC(,\)(QC)) =1, for a € A\ A°. By

(A.4), we have for o € A,

Faicoy(a) = —20(04; a) + 0,(73)
= nlog(2n) +logdet(X(0,)) + (n + €)X (0,)(n + €)
—(1 + €)' M(;0,)S7"(80) (1 + €) + 0,(2)
= nlog(2m) + logdet(X(0,)) + (1 + €)E71(0,) (0 + €) + 0p(7)(4.23)

where the first equality follows from Ap = o(7,,) and the last equality follows from (4.17).
Then, by (4.15) and (4.23), we have for o € A\ A°,

Laicoy (@) = Tarepy ()
= 2L%(a;0,) + log det(2(6o)) + (n + €)= 7'(80)(n + €)
logdet(z(e <)) = (n+€)E7(0ac)(n + €) + 0(7,)
= 2L"(a;0,) —tr((n+€)(n+€) —X(6;)) (T (0ac) — 7' (6y)))
—(log det(X (OQC)) logdet(E(@o)) + tr(2(00) X7 (Bac)) — 1) + 0p(T5)
= 2L%(a;0,) + oy(,) >

as n — oo with probability tending to 1, where the last equality follow from (4.12), (4.14)
and (4.22). It follows that lim P(&qicp) € A\ A°) = 0.
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Last, it remains to show that GIC achieves its minimum at a¢ among « € A°. For

~

a € A° the ML estimate 8(a) of 8 satisfies
—20(8(); ) = inf —2((6; a)
ggg (nlog(2m) + log det(2(0)) + (n + €)X (0)(n + €)
—(n+€)M(a;0)S7(0)(n + €))
ggg (nlog(2m) + log det(2(8)) + (n + €)X (0)(n + €)) + 0,(N),

where the last equality follows from (4.17). Hence, for a € A° and A — oo, we have

1 .
plim —| — 20(6(a); ) — glelg (nlog(2m) + log det(2(8)) + (n + €)X (0)(n+¢€))| = 0.
It then follows that

plim %1 —20(6(a); ) + 20(6(a): o)

< g&g%(\ —20(6(c); ) — grelg (nlog(2m) + log det(3(0)) + (n + €)X7'(8)(n + €))|
+| —20(8(a®); ) — grel(g (nlog(2m) + log det(X(0)) + (n + €)'T ' (0)(n +¢€))|)
= 0.

Hence, for A — oo,

FGIC(A)(@) — FGIC()\) (Oéc) = )\(p(oz) — p(ozc)) + OP()\) — 00,

as n — oo with probability tending to 1, which follows that lim (&GIC(,\) € A%, agicp) #

n—oo

ozc) = 0. This completes the proof of the theorem. O

Conditions (A.1)-(A.3) in Theorem 3 not only depend on explanatory variables but
also depend on asymptotic frameworks. As shown in Theorem 7, those conditions are
easier to be satisfied under the increasing domain asymptotic framework, particularly
when the domain increases with the sample size in a faster rate. On the other hand, (A.1)
may not be satisfied under the fixed domain asymptotic framework.

Theorem 3 is for fixed designs. A random design version is given in the following
corollary.

Corollary 3 (random design) Consider a class of models given by (3.1) with p fixed and
X random, where X is independent of (n + €). Let © be a compact parameter space for
0 with 8y € © being the true parameter vector, and let L¥F(«) be the KL loss defined

in (3.8). Suppose that for o € A, €(0;«) defined in (4.9) is continuous in O, and there
exists T, — 0o such that

1
(A.1°) For @ € ©, plim — i}\fA wA(;0)E0)A(a; 0)p > 0, where A(a; 0) is defined
n—oo Tnp a€ ¢
in (3.6),

1
(A.2°) For @ € ©, plim—/\min(XIE_l(B)X) >0,

n—oo 'n
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1
(A.3°) For @ € ©, lim —tr(E_l(B)E(OO)E_I(O)E(XjX;-)) < 00, where X; is the jth

n—oo Tn
column of X,

and (A.4)-(A.5) are satisfied.
(i) For A°=0, if T,/ — o0, (4.12) holds and

lim sup lE(u,'A(a;9)'2]_1(0)2(00)2_1(49)A(a;49)u,) < 00,

n=00 qeA\Ac Tn
for @ € ©, then GIC defined in (4.2) is asymptotically loss efficient:

plim L (é(agm 2)i Garon /mlnLKL(é(a);oz) = 1.

n—o0

(ii) For A°# 0, if X\ — 00, T,/\ — 00, (4.12) and (4.14) hold, then

lim P(aGIC(A) = Oéc) =1.

n—oo

Similar to (A.1)-(A.3) in Theorem 3 under fixed designs, (A.1’)-(A.3") in Corollary
3 not only depend on explanatory variables but also depend on asymptotic frameworks.
In contrast to fixed designs with smooth functions as explanatory variables, where (A.1)
may not be satisfied (see Theorem 7) under the fixed domain asymptotic framework,
condition (A.1%) appear to be easier satisfied when random designs are considered (see
some examples in Theorems 10 and 13).

24



Chapter 5

Exponential Covariance Models in
One Dimension

In this chapter, we consider some examples in the one-dimensional space with 7(-) of (2.2)
generated from an exponential covariance function:

cov(n(s),n(s)) = Uz exp(—ryls — §']); s, €R, (5.1)
where o7 > 0 and &, > 0. Let s; = in~(1=9 4 = 1,...,n, for some § € [0,1). Then
{n(s1),...n(sn)} can be expressed as an AR(1) process:

(1) = puni(Sic1) + G, (5.2)
where

o, = exp(—r,n="17%), (5.3)
n(s1) ~ N(0,07), ¢; ~ N(0,02(1 =p;)) is independent of n(s;_;) for i = 2,...,n, and
n(s1),Ca,- ..,y are independent. Then the covariance parameter vector can be written

as 0 = (07, ky,02).

In what follows, we consider four examples corresponding to four different classes of
explanatory variables in (3.1) with the exponential covariance model of (5.1) for ().

Example 1 (polynomials) Suppose that there are p explanatory variables, z;(s;); j =
1,...,p, sampled at s; = in~17%; i = 1,... n, with z;(-) given by

zi(s)=s; seR, j=1,...,p, (5.4)
where p is fixed and § € [0, 1).

P

Example 2 (polynomials varying with n) Suppose that there are p explanatory variables
zi(s;); j=1,...,p, sampled at s; = in~1=9; i =1 ... n, with z;(-) given by

zi(s) = (sn°); seER, j=1,...,p, (5.5)
where p is fixed and § € [0, 1).

Example 3 (spatially dependent processes) Suppose that there are p explanatory vari-
ables z;(s;); j = 1,...,p, sampled at s; = in~17%; i = 1,... n, where z,(-),...,7,(-) are
independent zero-mean Gaussian spatial processes with covariance functions,

COV((EJ'(S),[IZ'J'(S,)) :O']zeXp{—/ﬁ?j’S—S,’}; 87$I eR, j=1,...,p (56)
pis fixed, § € [0,1), and 07, k; > 0; j =1,...,p.
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Example 4 (white noise processes) Suppose that there are p explanatory variables z;(s;);
j=1,...,p,sampled at s; = in"(179: i = 1,... n, where z,(-),...,2,(-) are independent
white-noise processes with

zi(s;) ~ N(0,03); i=1,....n,j=1,...,p, (5.7)
pis fixed, € [0,1), and 07 > 0; j =1,...,p.

We shall characterize the asymptotic behavior of GIC under both the fixed domain
and the increasing domain frameworks with 0 being either known or estimated by ML.
We shall also show how different generating mechanism of explanatory variables in the
aforementioned examples affects the asymptotic behavior.

First, we introduce some notations and a number of technical lemmas regarding ex-
ponential covariance functions, which are crucial for developing the asymptotical results

of GIC. Let

1 0 0 0
—py 1 0
G, = 0 —pn 1 0 ’ o)
: . 0
0 - 0 —pu 1/,
o+ 0l =02pn 0 0
—02pn = fi{pn) - =02 pn '
T, = 0 = -2 filpw) 0 ’ )
: e . =0l
0 . 0 ——USPn fi(pn) kxk

be k x k matrices, where
filpn) = (L=pp)oy + (1 +pp)o?. (5.10)

Lemma 4 Consider (0) and X, defined in (3.2) and (5.1), where s; = in~179; i =
1,...,n, and 6 € [0,1). Then

> '0)=G.\T,'G,, (5.11)
where G,, and T,, are given by (5.8) and (5.9), respectively.

Lemma 5 For anyc >0 and 6 € [0,1) with nM=9/2%¢ < n_ consider Ty, defined in (5.9)
with nM=/2te < g, < n. Let C;,(k, () be the (k,0)th element of T;'. Then there exists
a constant T > 0 such that

fz'n_l(Pn)
(ff(on) — 4p20l)

where p, and fi(p,) are given by (5.3) and (5.10), respectively, and

oy = et (Filon) — 4508 (5.13)

2
20

o7 " det(T5,) (03 + 02) falpa) = p02) + olexp(—Tn?),(5.12)
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In addition,

-1
Pn 2
Cn(]wf) = Cn(ga 1) = — + 0<eXp(—TTLC/ ))a
! ’ (02 + o) falpn) = p202) f2*(Pn)
1 <0< j, —nl=092 (5.14)
. . pzznie c —d+c .
2 n/"e
1
, - = ,0=9/2 —(1-9)
,Jnax. Cj (k,0) = (8/@7020_2)1/2” +o(n ) (5.16)
=t =Jn n €
and
» n(3-0)/2 s
ne
Furthermore, let T\" be the matriz with (07, kn,02) in T, replaced by (07(71)2,%;,(71),09)2).
Then
5-35)/2
tr(T; T~ = n=
25/2(/inafl/igl)aélp)l/?((mnagaélm)lﬂ + (m%l)aglpaz)l/?)
+0(n*°). (5.18)

Notice that T, defined in (5.9) corresponds to the variance-covariance matrix of a

moving average (MA) process {v1, .. «,v;} of order 1:
var(vg) = T,, (5.19)
where v, = (vy,...,v,),
v = up — falpp)ui1; i=2,...,n, (5.20)
with uy ~ N(0, (07 — 02 = fa(pn)02) fi*(pn)) and u; ~ N(0, fo(pa)a?); i =2,....m,
filpn) = puf f2(pn), (5.21)

and recall that fo(p,,) and p,, are defined in (5.13) and (5.3), respectively. Some asymptotic
properties of f4(p,) and T, are given in the follow lemmas.

Lemma 6 With fo(p,) and fi(p,) defined in (5.13) and (5.21), respectively, we have

falpn) = 1-— (2/@70%06_2)1/271_(1_6)/2 + O(n~ 079, (5.22)
Falpn) = 1+ @ryo2or ) o009 1 (02 — %) 2,010 4 O(n31-912), (5.23)

and
108 f1(pa) = —(2ny0307 )20~ 1=0/2 1 O(n~1-9), (5.24)

In addition, for any c >0 and & € [0,1) with n"=9/2%¢ < n_ and any j, with n(*=9/2+¢ <
Jn < n, there exists a constant T > 0 such that

f1" (pu) = oexp(—7n)). (5.25)
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Lemma 7 Consider T, defined in (5.9). For any c > 0, § € [0,1) with n(!=0)/2+¢ < n

and any j, with n1-0)/2+e < Jn < n, there exists a constant T > 0 such that
AT 0
T_1 — Q, In _ Qn + olex _Tnc/2 , 526
! ! ( 0 (falpn)o®) L, ) (exp( ) (5.26)
where
1 0 - 0
= filon 1 (5.27)
f—l(pn) o filon) 1

folpn) and fi(pn) are given by (5.13) and (5.21), respectively, and
Ar = T (5.28)

The following three lemmas are based on Lemmas 4-7, which are crucial in developing
the asymptotical results of ML estimates in Sections 5.1-5.3.

Lemma 8 Consider X(0) and X, defined in (3.2) and (5.1), where s; = in=17%); i =

l,...,n, and § € [0,1). Let 257” be-the same as X, except (0727,/@7) are replaced by
(O'(j)Q, n,({)). Define $0) = E%j) + Ugj)Z; j=1,2,3. Then for 6 € [0,1),

e o2\ 1/2 2 4 g2
log(det(X(6))) = nloggng(ﬁ) n<1+a)/2_(”vn(% 0’5))”5

az ot
—logn =2 1 o(n) + O(1), (5.29)
(12 (1) (L2 (1) (1)
(1)y—1 _ On Kn (1+58)/2 , On  HKn (kn —Kn') 5
tr(3,'%7°(0)) = 2, 0202) 12 0202)1/271 + g
n-n~e nmn
M2, (12
o0k il V08 4 o(n®) + O(1), (5.30)
2/<;,7077
2,020 2)1/2
tr(271(0)) = %—%nﬂm/%o(néwom, (5.31)
(1)gr—1 Ugl)Q Uém 2 _—2\1/2__(1+6)/2 07(11)2“%1) (1+5)/2
t?”(z b)) (9)) = 0_2 n — T..Q<2K/770_770-6 ) n + W’n
€ € n“e
D2 (1 1 1)2 1
0y (i = ) 5, o (= )
KnO2 2kq07
+o(n®) + O(1), (5.32)
tr(2(1)2—1(0)2(2)2(3)_1) 0.7(71)2/{571)052)2,{7(72)”(1+6)/2
K K 1/2 2,.(3) _(3)2y1/2 2..(3)2y1/2 (3) (3)2 _2y1/2
2 (’fnan"fn on ) ((’%%‘76 V2 + (kg oy " 02)1?)
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(1) (1)

oK
tr(ZHe1(@)x® ) = 17 +0(n°),
! 020%(26,020 )12 + (26 00 20 72)12)
(5.34)
1 K 2 —2 1/2 4 H(1)0(1)20£1)72 1/2
tr(zW1n1(9)) = 1"2 — (( 2%y 7c”) (lg ! )
oM o? o) o? 2/
_ D2 _(1)-2
T e G e M )nmm
- 0 (2 _(1)—2
21/2((,{ %U 2)1/2 4 (R%)Ufy) aé ) )1/2)
+0(n). (5.35)

Lemma 9 Consider ¥(0) and X, defined in (3.2) and (5.1), where s;

(1-9) .

)

=" 7 =

1,...,n, and 6 € [0,1). Let @b, = n*(1* 28 ... n*); k € {0,1,...}. Then for any
k=0,1,...,¢0=1,2,..., and any § € [0,1),
1 ket
I y2-1 _ K s -5 s .
1
YpE Ty = "+ = +o(n). (5.37)
2 Un
In addition, for § € [0,1), k,£=0,1,...,p, and XY defined in Lemma 8,
P 2B = O(nd). (5.38)

Lemma 10 Consider 3(0) and %,
1,...

,n, and 0 € [0,1). Let ; = var({a;(sy)s - .

defined in/(3.2) and (5.1), where s; = in~(17%; § =
,2;(8n))") with x;(s) defined in (5.6).

(i) Suppose that |0* — o?| = o(1) for some constant o*> > 0. Then

)+j—M(

6

log(o

i) Suppose that |02 —c?
(i1) Supp :

1 1/2 o2 T
— 1—
<os) ( 207 maz)

(iii) Suppose that |kyo7 — 7| = o(1)

o 1/2
o2
(iv) Suppose that |o* —
Then for any kKj, Kjr

2k, 1

2+

T

2

2/177077

g

, ],O'j >0,

2

)- (5

1
204

0'2—0'

-1 = )* +o((07f = 0%)?).

= (5.39)

= o(1) for some constants 0> > 0. Then for any ky, o7, 7 > 0,

1

_<_

o2

1

2+

T
2
o, —o0

= ).

) (o)

for some constant T > 0. Then for any o > 0,

)1/2 B (kgop —7)°

o (5.40)

2

2/<;77a77

2T 9

o2 S5 2g 32 + o( (Ko, — 7)?).  (5.41)

2\ = o(1) and |kyo; — 7| = o(1) for some constants o*, 7 > 0.

2 2

tr(3(2(0) — X ((07, Ky, 0%))) Z5(B((07, Ky, 7)) = (07, Ky, 0%)')))
o HJO-JQRJ‘/UJQ" (02 . 02)2n(1+5)/2 + 0((02 . 02>2n(1+5)/2) + O(n‘s) (5 42)
29/273/243\ € € : :
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(v) Suppose that |o? — 0| = o(1) and |kyo; — 7| = o(1) for some constants o*, 7 > 0.

Then for any kj,05 >0,

tr(32(271(0) = X7 (0, £y, 0*) ) (E7(0) = B (0, 59, 07)')))
5102
— S (02 = 0PI (0 — o2 Pn2) L O). (5.43)

(vi) Suppose that |o? — 0| = o(1) and |k,0} — 7| = o(1) for some constants o*, 7 > 0.

Then
tr((Z71(0) — 27 (07, £, 0)))(B7(0) = 7 (0, iy, 7))
= (02— Pt of(0? — ) 4 O, (5.44)
(vii) Suppose that |o? — o?| = o(n=""9/2) and |k,02 — 7| = o(1) for some constants

02,7 > 0. Then for any k;, /ij/,o]?,aj/,c,d > 0 with cd =T,

tr(2;(271(8) = =7 ((c,d, 0%)) 2 (271(0) = =7 (¢, d, 07)")))
5/@0?/@@%

= o (/@702 — 7)2p (92 4 0((/@703] — 7)) L O(n?). (5.45)

(viii) Suppose that |02 — o*| = o(noW=0") and |k,02 — 7| = o(1) for some constants
0%, 7> 0. Then for any k;, a7, ¢;d >0 with cd = 7,

tr(E;(271(0) — 27 ((ed, @) N (0) — 27 ((e.d.0?))))

2

K;0?
- 29/2;3;5/2 (rq0y — T PRI + o((knop — )2 10/2)y L OmP).  (5.46)
(iz) Suppose that |02 — o*| = o(n=U=0/2) and |k,0} — 7| = o(1) for some constants

o, 7> 0. Then for any c¢,d > 0 with cd = T,
r((Z7(0) = 27 ((e.d.0”))(Z7(0) = B (e d.0))))

1
= (knoz — 1)’ 42 4 o((ky02 — 7)*nH02) L O(n®). (5.47)

929/2+5/2

5.1 Polynomial Order Selection

In this section, we consider Examples 1 and 2 given by (5.4) and (5.5) for polynomial order
selection. Note that in Example 1, the underlying true polynomial does not vary with
the sample size, whereas in Example 2, the magnitude of the underlying true polynomial
decreases as the sample size increases, making estimation and polynomial order selection
more difficult. Let Vj,; be a j x 7/ matrix with the (k, £)th element,

1

— k=1,...,5,0=1,...,5". 5.48
k_i_g_i_la ) » Js ) )J ( )

Note that when j = j/, the square matrix Vj; is nonsingular (see Shibata 1981).
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Proposition 4 Consider a class of models given by (3.1) with p explanatory variables
corresponding to p monomials defined in (5.5), where p is fived. Let A = {ap, ov1,..., 05},
where ag = 0 and «; = {1,...,j}; 7 = 1,...,p. Suppose that A° # O and the data

are sampled at s; = in~17% € [0,n%); i = 1,...,n, for some d € [0,1). Consider
the exponential covariance model of (5.1) for 77( ) Let @ = (07, k,,02) € O, and let
0o = (070, kin0, 02g) € © be the true parameter vector, where © = (0,00). Then for any
ae A\ A,

lim n—p, "A(a; 0)S71(0)Ala; O)p = %7(@); if 6 € (0,1), (5.49)

n—oo n

limsup g/ A(o; 0)ZHO)A(; O) < o0; if § =0, (5.50)
where A(a; 0) is defined in (3.6),

( ) :8 V;;xplg /6/ pxp(a) V(l Xp(a Xp/Ba (5-51)

and Vi is defined in (5.48). In addition, the log-likelihood of (4.9) based on model
a € A can be decomposed into the following:

(i) For o € (0,1),

_5 2 Ue20
—20(0;a) = nlog(2m) — logn + | logo; + —5 |n
o)

€

1/2
a2 202 2,07

2 2

’iﬂgn 77100-77,0 ’%0%,0 k)

+| — LA BT Ky e 5 1) — ﬁ n
O¢ ,“6770'77 /inO'n

1 (02 + 2. limgafw 2 5
2*”~n03< o At <a$,0+v<a>>1/2) '
2 2
2"2535 (“nvo - %)n‘s +£(0) +0,(n’),  (5.52)
where
£0) = (n+e)S7(0)(n+e) — tr(£(6:)7'(0)). (5.53)
(11) For § =0,

Y 2
—20(0;) = nlog(2nm) — logn + (log ol + i:;) n

€

2/’{770—2 1/2 60 /ﬁ:n700_20 1/2
+(—"> (1 502 + Tg) n'’? +£(0) + 0,(1)(5.54)

2
lop 0O

Equation (5.52) provides some guidance of applying GIC to distinguish between correct
and incorrect models in polynomial order selection. For example, it follows from (5.52)
and y(a“) = 0 that for « € A\ A° and ¢ € (0,1),

—20(0; @) + 20(0; ) = W;gfwuop( ), (5.55)
n
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so that we can get rid of underfitted models if the penalty term has a smaller order than
O(n°). As to be demonstrated in Theorem 6, we can use (5.55) to find an appropriate
penalty A\ that leads to selection consistency. On the other hand, applying (5.54) to
Example 2 under the fixed domain asymptotic framework (i.e., 6 = 0), we obtain

—20(0;a) +20(60;0°) = Op(1), (5.56)

indicating that consistency or asymptotic loss efficiency of GIC is almost impossible.

Additionally, we see from (5.54) that the likelihood value depends on x, and o mainly
through their product, but not their individual values under the fixed domain asymptotic
framework when 6 = 0. Consequently, variable selection based on GIC is expected to
be not much affected by individual estimates of x,, and 02 as long as the estimate of the
microergodic parameter, I<L770'727, remains the same.

The following lemma provides consistency of the ML estimate of o and the microer-
godic parameter, /inag, under both the fixed domain and the increasing domain asymptotic
frameworks with 6 € [0,1). The results are extended from Chen et al. (2000) who consider
only a € A° and § = 0.

Lemma 11 Under the setup of Proposition 4, let © C (0,00)3 be a compact set and let
0(a) = (02(a), hn(a),02(a)) be the ML estimate of @ based on model a. Then for any

de0,1),

() ="z, + 0p(1), (5.57)
/@n(a)frg(a) ;S fimoaio%—op(l). (5.58)

The following theorem further provides the convergence rates for the ML estimates of
K, 0’% and 2. These results are also extended from Chen et al. (2000) who consider only
a € A and 6 = 0, and are keys for establishing some asymptotic properties of GIC in
Theorem 7.

Theorem 4 Under the setup of Proposition 4, let © C (0,00)3 be a compact set and let

0(a) = (G2(a), fy(a),02())" be the ML estimate of @ based on model .. Then

(i) For o € (0,1),

62(a) = 062,0 + op(n_(1_5)/2); a€ A, (5.59)
Fg(@)o2(a) = Kyoong+ 0,(n~ =V, o e A, (5.60)

2 ; c

9 _ an’o—l—op(l); if a € A,
ay() { () + 0,2]’0 +0,(1); ifae A\ A, (5-61)

. Kpo + 0p(1); if a € A,
= . 5.62
) = { o v e At 0D
where y(a) > 0 is a constant defined in (5.51) for a € A\ A°.
(ii) For 6 =0 and any o € A,

G2 a) = 02y+0,(n7?), (5.63)
Fg(@)o2(a) = kpoorg+ O,(n= %), (5.64)
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Proof. Denote o7 , = v(a) + 07y and ko = kyoor o/ (V(a) + 07 4), for a € A, where
v(a) = 0 for o € A°. Note that k07, = K007 -
First, we prove (5.59). By (5.57) and (5.58), it suffices to show that for |07 — o2| =
o(1), |kyop = Kinooy ol = o(1) and any € > 0,
inf (—20(8; @) + 20((07, Ky, 024) 5 0)) > 0, (5.65)

o202 g 2en=(1-)2

as n — oo with probability tending to 1. By (5.52), we can write

2
—20(0; ) = nlog(2m) — 0 logn + <logae2 + 06’20>n
o

€

1/2
n A 1_‘73,0+’f77’0‘72,0 (140)/2
[ — N
02 202 2r,07

2 2 2 2
KO K 00 Ky o0 o
+< - 77277 + m;( 0 g,o — 1) _ 20700 nz’o)né + —na2( — /in,a)2n5
O¢ linan 2/1770'7] 2/1770'
2
’in,Oan,o 5 5
2,4;770% ('%7770 - /{Uva)n +£(0) + Op(n ), (5.66)

where £(8) is given in (5.53). Then for |07 — 02| = o(1) and |k,07 — Ky 007 4| = o(1), we
have

—20(0; ) + 2€((02, K, 062,0)'; @)
o2,
= (loga + logaeo—l)
o? 202 2/{,,02 o2y 2 2/<c,70727
+E(0) — (a7, rny 020)") + 0p(n)

= (07— 2 E(0) — (02 0%0)) + 0,0,

2‘75,0

where the last equality follows from (5.39) and (5.40). Therefore, for (5.65) to hold, it
remains to show that

£(0) — 5((0%, Ky, 052,0)/) = op(max((ae2 - 06270)271, n°)). (5.67)

We can decompose £(8) — £((07, £y, 024)") into the following three parts:

£(0) — &((oy, ki 02y))
= 0/(Z7(0) =27 (07, iy, 02) )1 — t(24(00) (Z71(0) — B (0, iy 02p)"))
+27I'(2_1(9) - 2_1<(U$’ Kns 0-6270),))6
+€' (271(0) = =7 (02, 5y, 020) ) € — 02 otr (B7H(0) — (07, Ky 020)"))- (5.68)

Applying Chebyshev’s inequality on each of the three parts and using the following three
moment conditions given from (5.42)-(5.44) on (5.68):

var(n'(Z71(0) = 7' (07, kp, 020)))m) = O(max((0? — 02y)*n,n’)),
var(n'(Z71(0) — =7 (07, kp, 020)))e) = O(max((0? — a2)*n,n")),
Var(e’(E_l(G) — E_l(( iy 0cg)'))€ ) = O(max((a? — 06270)271, n‘s)),

”‘l\’)”‘l\’)
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we obtain (5.67). This completes the proof of (5.59).
Second, we prove (5.60). By (5.58) and (5.59), it suffices to show that for |07 —0? | =
o(n=0-9/2), |Kyop — knoor ol = o(1) and any € > 0,

inf (—20(0; ) + 20((0) . Fiyas 020) 5 )) > 0, (5.69)

2 2 —(1-8)/4
|0'nm,70'77’0n7,,0\25n ( )/

as n — oo with probability tending to 1. By (5.66), for |02 — 02y| = o(n~(!9/2) and
|Kyo7 = Kipoor o] = o(1), we have

—20(8; ) + 20((0 o Finar o) s )

1/2 1/2
_ {(2/@7 > / (l n "177,0072770) B <2/€n,00270) / }n(1+5)/2
o2y 2 2r,07 oy

0.2

gy i1+ 6(0) = €((02 s 020)) + 0y ()
7,0~ n,0
_ (s = ng oo PO 0y~ na) o2 e
25/2(,43”,00—72]’0)3/2 21%71,00.727’0 n,a 'vn,00 Ye 0
+0,(n?), (5.70)

where the first equality follows from (5.39) and the second equality follows from (5.41).
Therefore, for (5.69) to hold, it remaing to show that

£(0) — £((07.0: nar 020)) = Oplmax((r,o) — ry00y o) 02 0%), (5.71)

which can be obtained from a decomposition similar to (5.68) in addition to the following
three moment conditions given from(5:45)-(5.47):

var (1 (£71(0) = B (07,0, ke 020) M) = Olmax((kyoy — ryo0y o) 072, 0%)),

var (1'(£71(8) — 27 ((070: finar 020)))€) = O(max((kyoy — kyooy,)*n!72 n?)),
var(€/(E1(6) = £ (02 g 020))e) = Olmax((sy2 — o P92 ),
Thus (5.69) is obtained. This completes the proof of (5.60).

Third, we prove (5.61) and (5.62). By (5.70) and (5.71), for |02 — 02| = o(n=179/2),
|02y — 02 gkino| = o(n~179/%) and any ¢ > 0, we have

2

inf  —20(0;0) +20((02,, Kya, 02y)50) = Agn‘s—i—o (n°) > 0
|k —tn,al2e T s Feo 2'L{'7700-770 . 7

as n — oo with probability tending to 1, which gives (5.62). This together with (5.60)
gives (5.61).

Fourth, we prove (5.63). By (5.57) and (5.58), it suffices to show that for |02 — 02| =
o(1) and |k,07 — knoop | = o(1), there exists M > 0 such that

inf { —20(6;0) +20((0}, Ky, 02p);00)} > 0, (5.72)

2_g2 -1/2
02—0Zy|=Mn /
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as n — oo with probability tending to 1. By (5.54), for |07 — 0?¢| = o(1) and |k,0} —
kin00s ol = 0(1), we have

—20(0; ) + 26((05, Ko, ‘752,0)/§ Q)

2

o
= (logaf - Lzo —logo?, — 1)n
0- ’

€

26,02\ /2 0%y KnoOpg 26,02\ (1 Ky002, 12
+ - 1- -+ =) - —= =+ =) e
o 20 2K,0; o 2 2ry0;
+£(6) = £((a5, 1y, 020)) + Op(1)
1

= g (02 = a2Pn - £(0) (0} 0%0)) + 0y (02 — 02o'n) + O,(1)
= (02 = ont oy((0? — oZy)"n) + O,(1).

where the second equality follows from (5.39) and (5.40), and the last equality follows
from

£(0) = &((ay, iy 020)) = 0p((0F — 020)"n) + Oy(1), (5.73)

which can be obtained in a way similar to (5.67). Consequently, there exists M > 0 such
that

M2

]
20570

inf (—20(0; a) F2€((07 Kinr02g) s ) =

|U€27cr52’0|2Mn_1/2

+0,(1) > 0,

as n — oo with probability tending to.-1. Thus; we obtain (5.72), and hence the proof of
(5.63) is complete.

Finally, we prove (5.64). By (5.58) and (5.63), it suffices to show that for |67 — 07,| =
O(n~/?) and |kin07 = Kna0s 4| = 0(1), there exists M > 0 such that

inf (—20(0; ) + 20((0) . Fyas 020) 5 )) > 0, (5.74)

2 2 —-1/4
lodkin—03l gkin0l=Mn /

as n — oo with probability tending to 1, where mn,aag,a
2

02 — 02| = O(n™'?) and |k,02 — K002 o| = o(1), we have

By (5.54), for

— 2
- ,{/77)00-77,0 N

_26(0 C‘) +2£(( nom"inoﬂ 620)/' a)

1/2 2 2\ 1/2 2
-{G) ) - () G5
b 2 2/@7077 opg 2 2/{,7077

+€(0)_§<< 7%017'%770” 60))+O( )

(/inaz _ ’%,00'2,0)2711/2
- 25?7/2(,{ 0027]0)3/2 + 5(0) - 5((0727,m Kn,a) (752,0)/)
L m,

+0p((Ryy = Kino0y 0)*n2) + Oy (1)

(Kn0y — K00y 0)n'/?

2/(1y07%)77

+ 0p((Knop — mn,oa;o)%l/?) + 0,(1), (5.75)
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where the first equality follows from |02 — 02| = o(n~(!79/2), the second equality follows
from (5.41), and the last equality follows from

£(0) — £((07.0: Fnar 020)") = 05 (K907 — K00 0)*02) + Op(1), (5.76)
which can be obtained in a way similar to (5.71). Thus, (5.74), and hence (5.64) are
obtained. This completes the proof. O

Note that a special case of Theorem 4 for which § = 0 and 3 = 0, can be found in
Zhang and Zimmerman (2005), where they consider no regressor, and hence consider no
underfitted model.

Corollary 4 Under the setup of Theorem 4, let
0% = (7(a) + 05 . tin 00y o (7(@) + 07 0) "1 020)s @€ A, (5.77)

where y(a) =0 for a € A°. Then

plim%(—%(é(a);a)—1—26(0&1);0()) — 0 ifse(01), (5.78)
—20(0(a);0) + 200V a) = 0,(1); if6=0. (5.79)

In addition, for L¥(c; 0) defined in (3.3) and o € A\ AC,

plim L*"(0(a); o) | LEE0D0) = 1; if 6 € (0,1), (5.80)
L¥(0(a); )= LEHOD 0) - = 0,(1); if6=0. (5.81)

Note that from Theorem 4, we haye plim 8(a) = 8 for § € (0, 1), which immediately

n—oo

gives (5.78). On the other hand, (5.79) is somewhat surprising, because 6(c) generally
does not converge to 0 for § = 0.

Theorem 5 Consider a class of models given by (3.1) with x;(s) = s7; j = 1,...,p,
and cov(n(s),n(s")) = o7 exp(—kyls — §'|), where o} > 0, K,y > 0 and 07 > 0 are known,
and p is fived. Suppose that A = {ag,aq,...,qp}, where ag = 0, ay = {1,...,5} for

j=1,...,p, and A # 0. In addition, suppose that the data are collected at s; = in~(1=9);
i=1,...,n, for somed €10,1).
(i) For 6 =0 and any A > 0,
71113010 P(a® = argerﬁin L") < 1. (5.82)
In addition, if A — oo, then
lim P(&gren) = o) =1, (5.83)

where Ggroy s defined in (4.2).
(i) Ford € (0,1), if A — oo and n®**@I+8 /X — 00 as n — oo, then
lim (@jS()\) = Ozc) =1.

n—oo
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Proof. (i) For § =0, by (3.8),
L*(a) = @A) Aa)p+ (n+€)M(a)E™(n +e),
where

(n+e)/M(a)S (n+e) = (n+€)37X(a)(X() T X (a)) " X ()% (1 + €)
~ X(p(e)), (5.84)

with x%(k) denoting the chi-square distribution with & degrees of freedom. Similarly,
(n+ € (M(a%) — M(a))'S" (0 + €) ~ x*(p(a”) — p(a)).
By (5.50), for a € A\ A°, we have g/ A(a)’E'A(a)u = O(1). Hence, for a € A\ A,
lim P(L*"(a%) — L**(a) > 0)

n—oo

= nlglgo P((n+e)(M(a)—M(a)E ' (n+e) — pA(e)S " A(a)p > 0) > 0.

Thus (5.82) is obtained.
For (5.83), by (4.6) with A — o0,

Taicy(@) = (Z — (@) T7HZ — pu(a)) + Ap(«)
WAQ)Z A+ (n+e)Ala)S Hn+e) + 2 A(Q)E (g +€)
+Ap(a)
= 2/ A(a)E 7 (n +e) + (m+e)T ' (n+€) + Ap(a) + 0,(N),

where the last equality follows from (5.50) and (5.84). In addition, by Chebyshev’s in-
equality and the following moment-condition:

var(p' A(a) S (n + €)) = W A(Q)ZT A(a)p = O(1),
we have g/ A(a) X7 (n + €) = O,(1). Therefore, for a« € A\ {ao},

LCarcoy (@) = Taicpy (o) = Alp(a) — plag)) + 0p(N),

which is greater than zero with probability tending to 1. Thus (5.83) is obtained.
(ii) It suffices to show that lim, .. ELXE(a)/\ = oo for a € A\ A° by (4.7). First,
for a € A\ A,

W A(a)E T A(a)p
BX'(X7 = 27X (a)(X ()27 X (@) X ()2 )X
BIXT(ZT - E*1X*< )(X*( V2T () X ()BT XS
| @ p)B" + o(n@eITIe)

frnd /8* (‘/pp — V V_ p(a
= Byae) (ap)(V — Vot Vi e Vatarn)€naeynPEITIN 4 o(nrlay o),

p(a),p(a

where e; is the jth column of I,, 8*(a) = D(a)B(a), X* (o) = D™ () X () with

1 O 0
)
D=|"" .t
0 0 nple)?d
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Vixj is defined in (5.48), and €},,c\(Vy.p = Vpp(a Vp(a) o) Vo(e)p)En(ae) IS & constant, which
is bounded away from 0 by Theorem 3.1 of Shibata (1981). It follows from (3.9) and

lim )\/n(zp(a 19 — () that

ELKL(OJ) ELKL(&)/TL(2P(QC)+1)6
lim —————= = lim - = 00.
n—00 A n—00 )\/n(Zp(a )+1)o
This completes the proofs. O
Theorem 6 Consider the same setup as in Theorem 5 except x;(s) = (sn™°); j =
1,...,p.

(i) For 6 =0 and any X\ > 0,

lim P(a“ = argmin L**(a)) < 1.

n—oo acA

In addition, if A — oo, then

lim P(aGIC( N = ao) =1,

where Ggreey s defined in (4.2).
(i) Ford € (0,1), if X — oo and n’/N*500 as n — oo, then

lim P(OJG[(/V()\) =« ) =1.

n—oo

Proof. (i). See (i) in Proof of Theorem 5.
(ii). From (ii) of Theorem 2, it suffices to show that lim, .., ELXF(a)/)\ = oo for
ae A\ A°. By (5.49),

WAQ)E A = y(a)n® + o(n’),

where () is a constant, which is bounded away from 0 by Theorem 3.1 of Shibata (1981).
It follows from (3.9) and lim )\/n5 = 0 that

_EL¥Ma) . EL¥(a)/n’
am e = I s =
This completes the proof. O

Theorem 7 Under the setup of Theorem 6, suppose that 8 = (O’n,/in, 0?) € © is un-

known, where © C (0,00) is a compact set such that 8y € ©. Let 0() be the ML
estimate of 0 . For 6 =0, if A\ — 00 as n — oo, then

lim P<dGIC()\) = Oég) =1.

n—oo

For § € (0,1), if \ — oo and \/n® — 0 as n — oo, then

lim P(aG[C(,\) = ozc) =1.

n—oo
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Proof. First, for 6 = 0, we prove

lim P(@GIC(A) = Oz()) =1.

n—oo

By (4.10) and by (5.79), for ap = 0 and 6 defined in (5.77), we have

Farcoy(@) = Daiopy (o) = =208 ) 4+ 26(6%); ) + Mp(er) — plaw)) + Op(1)
= AMp(a) —p(ag)) +£(0) — £(8)) + O,(1)
= Alp(a) = p(ag)) + O,(1) > 0,

as n — oo with probability tending to 1, where the second equality follows from (5.54)
and the third equality follows from (5.76).
Second, for ¢ € (0,1), we prove

lim P(OA‘GIC()\) = Oéc) =1.

n—oo

It suffices to show that the conditions in Theorem 3 are satisfied. First, by (5.36) and
(5.37), we have

X's 10X = %V;Xpnuo(né),
n

where V,, is defined in (5.48) and:is nonsingular. Then (A.2) is satisfied. Second, by
(5.38), (A.3) is satisfied trivially. Third, (A.4)-(A.5) are followed by (5.78) and (5.80) for
7. =nd and 6, = 0" defined in (5.77). Fourtli, (A.1) holds by (5.49). Fifth, for £(6)
defined in (5.53), by (5.71), we have

£(6y) —E(0) = o,(n’).

Hence, (4.12) holds. Last, for v € A, o) = 0o, (4.14) holds trivially. This completes
the proof. O

5.2 Spatially Dependent Regressors

In this section, we consider Example 3 with explanatory variables generated independently
from spatially dependent processes with exponential covariance functions of (5.6). This
example considers spatial dependence not only for the response but also for explanatory
variables.

Proposition 5 Consider a class of models given by (3.1) with x;(s)’s independently gen-
erated from white-noise processes of (5.7) and cov(n(s),n(s")) = o} exp(—ky|s—5'|), where
A £ () and p is fived. Suppose that the data are collected at s; = in"(1=% € [0,n%);
i=1,...,n forsomed €[0,1). Let @ = (07, Ky, 02) € © and let Oy = (07, kiy0,02,) € O
be the true parameter vector, where © = (0,00)3. Define

(— Z 207K + K000, (5.85)

JjE€a\a

Then the log-likelihood of (4.9) based on model o € A can be decomposed into the following.
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(i) For o € (0,1),

—20(0;a) = nlog(2m) —

1 + 1 2 + 062,0
ogn 0g o, 72 n

€

2k0, i o2y On,a (1+5)/2
+| — l—-—=+—"—=n
o? 202 2k,07

€

2 2
K0y On,a Fn090.0\ s

+H —— thHy sl ———5 |n
lop: Kno, 2K,0;

TRREAS AL (SN P
29 T (Ejeana 07 +000)
+ ! ( Z 203KT + 02 gk o — o >n5
20\ oma T (Keana Bi07 + 070)
+EP(; 0) + 0,(n?), (5.86)

where

(D(;0) = A0S pA(;O)p— > Btr(,271(0))
e\
A0SO+ €) £ 6, (5.87)
A(a; 0) is defined in (3.6), 335 = var(X;) with X; being the jth column of X, and
£(0) is defined in (5.53).
(ii) For d =0,
o?

logn + <log062 + 20)n
o

€

2

2/{”0727 2 ol Oy 1
— _ sy e /2 @) /..
+( o? ) (1 203+2Hn02)n + & 0) + Oy(1). (5.88)

—20(0;a) = nlog(2m) —

By (5.86), it can be seen that for any o € A\ A° and 0 € (0, 1),
—20(6;a) +20(0;0°) = (2k,020%)71/? Z 202k,;n1T02 1 @ (a; 0) — P (a”; 0)

9 393
jEa\a
+0,(n?)
= (21@,0203)*1/2 Z ]za?ﬁjn(1+5)/2—i—Op(n(H‘s)/Z), (5.89)
jEat\a

where the last equality holds because by (5.87), (@ (a;0) — €@ (a%0) = o0,(n(1+9/2),
Similarly, by (5.88) for 6 =0,

—20(0; ) + 20(0;0°) = (2/{,702062)_1/2 Z ﬁ;a?/éjnl/2+op(nl/2).

jEa\a
As to be demonstrated in Theorem 9, we can use (5.89) to find an appropriate penalty A
that leads to selection consistency.

2

The following lemma shows that r,o; is over-estimated by ML asymptotically when
a € A\ A° under both the fixed domain and the increasing domain asymptotic frameworks.
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Lemma 12 Under the setup of Proposition 5, let © C (0,00)3 be a compact set and
let O(ar) = (62(), kp(),02(ax)) be the ML estimate of @ based on model . Then, for

d€[0,1) and o € A,
Ha) = 025+ 0p(1), (5.90)
fon(@)5i(e) = Z 320285 + Kyoorg + 0p(1). (5.91)

jEa\a

The following theorem further provides the convergence rates for the ML estimates of
K, a and 2. These results are keys for establishing some asymptotic properties of GIC
in Theorem 10

Theorem 8 Under the setup of Proposition 5, let © C (0,00) be a compact set and let

0(a) = (62(a), ky(a),02())" be the ML estimate of @ based on model .. Then

(1) Ford e (0,1) and 6, . defined in (5.85),

&52(6)‘) = 520 +o ( _(1_6)/2); a € A, (5_92)
(1-0)/4y. c
A ~2 _ /inoano—l—opn )’ if a € A,
fiy(@)oy, (@) { W+Op (1-0)/4y. ifae A\ A (5.93)
5 +o if o € A°
2 — 7,0 o ,
e { jearia ﬁ202+0 ot op(l); i o€ ANAY (5:94)
N :‘ino—i-Op if a € A°,
- - . 5.95
e { aeac\a@a 1 02)  oy(1); ifae A A PP
(11) For§ =0,
ol a) = 620 +0,(n U ae A, (5.96)
- /4 . ) c
: -2 _ Fino0ro + Op(n™14); if a € A°
Km(Oé)O'n(Oé) { Oy + Op(n —1/4), ifae A\ A (5.97)
Proof. Let oi,a = Zgéac\a + UnO and K, = 0, a/Una, for o € A, where 0, is

defined in (5.85). In addition, for aec A\ A let

£(0;0) = Bla\a)X(a\a)EZ0)X(a\ a)B(a"\ )
- ) Bu(zne)),

jEa\a
£(0;0) = —2B(a\ o)X (a\ a)Z71(0)(n +¢). (5.98)
In advance, we prove a simpler expansion of (5.87),
£(6; ) = &1(0; ) + &(6; ) + £(8) + Oy(1). (5.99)

By (5.87), we have

£@(0:0) = Ba\ )X\ a)EH0)X (o \ )B(af\ «
—B(a’\ @) X (a®\ a)E7H(0) M (e;0) X (a° \ a)B(a” \ @)
a®\ a)T7H(0)(n +

—2B(a €)
a\ a)S7H(0) M (a;0)(n + €) + £(0),

\ a)
+28(a“\ a)
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where M («; 0) is defined in (3.5). Therefore, for (5.99) to hold, it remains to show that

Bla®\ a) X (a°\ a)S(O)M(: )X (o \ a)B(a*\ @) = O,(1), (5.100)
Bla®\ a) X (a*\ a)S (O)M(a:0)(n+e¢) = O,(1).

It follows easily from

n(1+6)/2(X(@)/E_I(G)X(a))_l _ Op(l), (5'101)
WX@‘)/E_I(O)("H) = 0y(1), (5.102)

which follows from (5.33), (5.34) and Chebyshev’s inequality by checking the following
moment conditions:

var(X;EH0)Xy) = w(Z,271(0)2;271(0)) = 07,
var(XJ871(0)(n + €)) = t(Z,57(0)S(80)571(0)) = O(n+)12).

Thus, (5.99) is obtained.
First, we prove (5.92). By (5.90) and (5.91), it suffices to show that for |67 — 2| =
o(1), |kyo7 = Opal = o(1), and any € > 0,

inf (—20(8; ) + 20((07, ki, 024) 5 0)) > 0, (5.103)

lo2—02 | >en—(1-9)/2

as n — oo with probability tending to 1. By (5.86),

—20(0;a) = mnlog(2m) —

-9 0'62
logn—f—(logcrf—l— ’20>n
o

€

2\ 1/2 2
+(2’£71077 (1 _ 9e0 + enoc )n(1+6)/2

o? 202 2k,07
2 2
Knoy 9777CY K000 5
+(—7+’%(m—1) " 22 )"
€ n-n n
T a 2 2 5
+m(/<;n — Kpa) 1 Z Bi07K5 4 0 gkt g — Onakina |0
mrn jEat\a
+£1(0; ) + £(0; ) +£(0) + op(n‘;), (5.104)
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where £(0) is defined in (5.53) and the last equality follows from (5.99). Then, for |¢? —
052,0| = o(1) and |"“3n072; — 0.0 = o(1), we have

—20(0; «) + 26((03, Koy, 052,0)/3 @)

o2,
= <loga + 1oga€0—1>

. 2kn0; 1/2 - oy N Opa \ 25203] 1/2 l—i— 0, o L (146)/2
o? 202 2/{,70% ol 2 2/{,70%

+61(0; ) — &1((07, ki, 020) s @) + E2(0; @) — &a((07, Ky 020)s @)

+£(0) — £((07, Ky, 020)') + 0p(n")

(052 — O¢ 0)

= T TR 6(0:0) — &((02 Ry 0%0)'10) + £2(050) — &((02 Ky 0%)'30)

2(7E 0

+£(0) — £((02, ki, 020)') + 0((07 — 020)*n) + 0, (1)
(062 - 0520)2n 2 2 \/ 2 2 \/
= —— 5 +&(0:a) = &((0y, ky, 020) s @) + &(0; ) — &a((0g, ki, 02)'s @)

1
20670

+o((0? = 024)%n) + 0,(n°),

where the second equality follows from (5.39) and (5.40) and the last equality follows from
(5.67). Therefore, for (5.103) to hold, it:remains to show that

61(6:0) — &1((02 w62 i) 150 o max (02 — 02p)%n, n%)),  (5.105)
£(0:0) = &a(0%, w02y /30 = max (02 — 02p)?n, n%)).  (5.106)
By (5.98), we have
&(0;0) — &((og, kg, 02y)s0) = —2B8(a\ @) X (o \ o) (E71(6) — X7 (07, Ky, 025) )

—2B(a\ a) X (a"\ o) (B7(0) = X7 (0, 119, 02,)") ) €

Then, (5.105)-(5.106) follow from Chebyshev’s inequality and using the following three
moments conditions given from (5.42)-(5.43):

var(X((371(0) — X7 (0, 19, 020) ) Xyr) = O(max((o7 — o
var(X(571(0) — B (07, fiy, 02)))n) = O(max((0? — 02g)*n,n’)),

var(X;((271(0) = 27 ((0,), kiy, 020)")) €)= O(max((o

we obtain (5.105)-(5.106). This completes the proof of (5.92).
Second, we prove (5.93). By (5.91) and (5.92), it suffices to show that for |02 — 0?2, =
o(n=1=972) "k,02 — 0, .4| = 0(1) and any € > 0,

(—200; ) + 20((0} . Foas 020) ) > 0, (5.107)

n
02kn—0n,a|>en—(1=9)/4
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as n — oo with probability tending to 1. By (5.104), we have for |02 — 02| = o(n~(179/2)
and [k,02 — 04| = o(1),

—20(0; ) +2((o naa"inm 620)/ a)

26,02\ (1 6, 20, \ " 1
— - e _ e (148)/2 , _ — _ 2.6
{< 020 ) <2 i 260, 020 ! i 2“77&(/{” ) 1

+61(0;0) = &1((07) 0 Finas 00) s @) + £2(05.0) — &((07 0, Fina 060) 1 1)
+€(0)_€(( 1700’%7]017 60))+0p( )

(,%UQ o (977 a) (1+9)/2 1

= T By el 1ol 0y
—|—51(9,C¥) 51(( 77047"{770“ 50) )+£2(0 Ck) 52(( na”'ﬁnaa 620) O{)
+6(0) = £((07 s Finar 020)") + 0p(n%), (5.108)

where the first equality follows from |02 — 02| = o(n~!79/2), the second equality follows
from (5.41). Therefore, for (5.107) to hold, it suffices to show that

4912 )

—

5.109)
5.110)
5.111)

§1(0;a) = &i((o nw“n ava?()),'a) = Op(max((’ingg - 9777&)2”
£(0;a) — &((o; T, o, Uzoy a) = Op(maX((Fan% - Qn,a)Qn(lM)/Za n’)),
£0) = £((07 0 finar 020)") = op(max((yoy = Oy0)*n 02, n%)),

which can be obtained from the following thtee moment conditions given from

(5.47):
var(X;(371(0) — B ((0, kigy 020) ). = - O(max((x

var(X((371(0) — X7 (0, 19, 020)))Je) = O(max((x

n’

var(€'(271(0) — 27 (07, iy, 020)')))€) = O(maX((/inZ

Thus, (5.107) is obtained. This completes the proof of (5.93).
Third, we prove (5.94) and (5.95). By (5.108), we have for |02 — 0| = o(n=179/2),
026y — Opal = o(n=079/4) and any ¢ > 0,

o~

—~

5.45)-

6 >2n(1+6)/2’n5)>7
(9 )Qn(1+§)/2’n6)>’
0

7770[)2”(1—&-6)/2, 77,6)),

1
o 2H050) + 200 020)50) = o oy (n) > 0
as n — oo with probability tending to 1, which gives (5.95). This together with (5.93)
gives (5.94).
Fourth, we prove (5.96). By (5.90) and (5.91), it suffices to show that for |07 — 02| =
o(1), |kyoy = Oya| = o(1), there exists M > 0 such that
inf (=20(0; ) + 20((02, Ky, 029) ) > 0, (5.112)

lo2—02|>Mn=1/2

as n — oo with probability tending to 1. By (5.88) and (5.99),

_ 6 0’52
—20(0; ) = mnlog(2m) — logn + <log ol + 0’20>n

€

2
2% 0_2 1/2 0
+ n-n 1 — 60 4 e n1/2
o? 202 2/@,0,2]

+61(6; @) + &(0;) +£(6) + Oy (1). (5.113)
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Then, for [0? — 02| = o(1) and |k,07 — 6] = o(1), we have

—20(0; ) + 2(((07, iy, 02)'; @)
o2,
= <10ga + 10g060—1>
N 2ky0; 1/2 1_06270+ Opo \ 2ky0; 1/2 1—1— 0.0 /2
o? 202 2k,07 oy 2 2ky07
+61(0; ) — &1((07, Ky, 020)'5 @) + &2(65 ) — (07, by, 02)'s )
+£(8) = &((07. iy, 020)') + Op(1)

= 20130(02 —020)’n + £1(0; ) — &1((07, Ky 020) s @) + &2(0; ) — Eo((07, Ky 020)'s )
+E(0) = £((02, Ky 020) ) + 0p(((07 — 024)°n)) + O,(1)
- 201§0 (07 = c0)"n + 0p(((07 = 020)"n)) + Op(1),

where the second equality follows from (5.39) and (5.40), and the last equality follows
from (5.73) and

§1(0: @) = &i((oy, Ky, 02g)50) = 0p((07 = 02y)*n) + Op(1),
&(0;0) = &((oy, Ky, 02y)50) = 0p((07 = 02y)*n) + Oy(1),
which can be obtained in a way similar_to (5:105)-(5.106). Consequently, there exists

M > 0 such that

2
—e2+ 0,(1) > 0,

20670

|03—0?,3\nszn—1/2<_2£(0; Ck) - 26((072]’ K 062,0)/; Oé)) =
as n — oo with probability tending to 1. Thus, we obtain (5.112) and hence the proof of
(5.96) is complete.
Finally, we prove (5.97). By (5.91) and (5.96), it suffices to show that for |02 — 06270\ =
O(n='/2), |/‘€n02 — 0h.] = o(1) and there exist M > 0 such that
. -
|U%I{n79n17£l|f2Mn*1/4 ( — 20(6; ) + 2(((or, Tn,a0 Fom,a O, 0); a)) > 0, (5.114)
as n — oo with probability tending to 1, where ”in,agg,a = 0, By (5.113), for |0€2—a€270\ _
O(n_1/2) and |"1n02 — 0.0l = 0(1), we have

—26(9 Oé) +2€(( na;"inaao-go),.a)

2 1/2 1/2
= {(5) Gramse) - () b e aihumniario
+6(0; ) — &((02 4 Finas 020) 5 @) + £(0) — E((02 4 K 020)') + Op(1)

(/{ o2 —f ’a)2n1/2
= . 7725/20773/2 —{—51(0;04) 51« na?/ﬂﬁom 620)/ Ck)

+62(0; ) — £2((05 o Fina 020)' 1) +8(0) = §((07,0: Finas 020))

+0((knop = Oy.a)’n'?) + Op(1)
(KJ 0'2 — 9 ’a>2n1/2
= g ol = 6,0)n') +0,(1), (5.115)
n,&
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where the first equality follows from |07 — 02| = O(n=%/2), the second equality follows
from (5.41) and the last equality follows from

1(0;0) = E1((07 0 Finas 020) 5 @) = 0p((Ryas — 0y a)?n'/?) + Oy(1),
£(6;0) = &((07 4 Finar 020)50) = 0p((Ryoy — by.0)°n'%) + Op(1),  (5.116)
0 nt

£(0) — £((05 0 Finas 020)") = 0p((Ry0yy = 00)"n'%) + Op(1),  (5.117)

which can be obtained in a way similar to (5.109)-(5.111). Thus, (5.114) and hence (5.97)
are obtained. This completes the proof. O

Corollary 5 Under the setup of Theorem 8, let

-1 !
N R UM (D DR I PR

jEa\a jEa\a

where 6, ., is defined in (5.85). For the log-likelihood defined in (2.9),

plim 1( 200(a); ) +20(02:a)) = 0; ifde(0,1), (5.119)

n—oo n

—20(0(); ) +20(6P: ) = 0,(1); if6=0. (5.120)
In addition, for L¥E(0; «) defined in (3.5),

plim L¥¥(0(a); a) LL5H(0P50)) = 0; ifd€[0,1). (5.121)

n—oo

Note that from Theorem 8, plim é(a) —= 0 for § € (0,1), which immediately implies

n—00

(5.119). On the other hand, (5.79) is somewhat surprising, because 8(«) generally does not
converge to 0 for 6 = 0. However, selection consistency and asymptotic loss efficiency
are possible for geostatistical model selection even if some covariance parameters cannot

be consistently estimated under the fixed domain asymptotic framework (see Theorem
10).

Theorem 9 Consider a class of models given by (3.1) with x;(s)’s independently gen-
erated from zero-mean spatial processes having exponential covariance functions of (5.6)
and cov(n(s),n(s')) = opexp(—ry|s — §'|), where A° # O and p is fized. Suppose that
O’% > 0,k, >0 and 02 > 0 are known. In addition, suppose that the data are collected at
s; =in" (170 € [0,n°];i=1,...,n for some § €[0,1). If \ — oo and \/n — 0, then

LKL(&G[C(,\))/miE L () 51, asn — oo
ae

In addition,
lim P(aG[C(,\) =« ) =1.

n—oo
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Proof. By Theorem 2, it suffices to show that lim,, ., E(L¥F(a))/\ = oo for a € A\ A°
by (4.7). First, for 4]0, 1),
WAQ)E T Al@)p = Ba®\ ) X(a\a)Z7' X (0 \ a)B(a”\ a)
—B(a°\ @) X(a®\ o) Z7 M (a) X (o \ a)B(a” \ @)
= B\ a)X(a\ a)T ' X(a\ a)B(a\ a) + 0,(1)
= D BT ) + o (n )

jEa\a
Bio%i
— _y7ytd o (146)/2 (1+0)/2
= Z <2Hn0202>1/2n + op(n ) (5.122)
jea\a n-e

where M () is defined in (3.5), 3, = var(X), the second equality follows from (5.100),
the third equality follows if

B(a*\ a) X (a°\ a) S X (o \ @)Ba\ a) = 3 Bur(SE) + 0, (/%) (5.123)

jeat\a
and the last equality follows from (5.30). By Chebyshev’s inequality, (5.123) holds by
var(X; 271 X)) = ;878 m 0 = 0o(n(H02),

which follows from (5.33). It follows from (3.9).and lim )\/n(1+5)/2 = 0 that for § € [0,1).

n—oo

- E(L(a)) . B(WA(Q)E " Ala)p) /n 2
nh—%o A = 7}1_{20 X/n(1+6/2) = .
This completes the proof. -

From Theorems 5, 6 and 9, we see that the behavior of GIC highly depends on the
variables to be selected under the fixed domain asymptotic framework (i.e., § = 0). When
the variables to be selected are polynomials, GIC fails to select o unless o = ). In
contrast, when the variables to be selected are generated from some spatial processes,
GIC is consistent as long as A — oo and A/n — 0. Generally speaking, GIC has better
ability to distinguish among variables that are less smooth, which is somewhat expected,
because less smooth variables tends to produce less smooth mean structure and hence is
less confounded with the spatial process 7(-).

Theorem 10 Under the setup of Theorem 9, suppose that 0 = (ag, Ky, 02) € © is un-

known, where © C (0,00) is a compact set such that 6y € ©. Let é(oz) be the ML estimate
of 0 based on model ov. If § € [0,1), A — oo and A\/n+9/2 — 0, then

lim P(dg[c()\) = Ozc) =1.

n—oo

Proof. For the consistency, it suffices to show that the conditions in Corollary 3 are
satisfied with 7,, = n(!79/2, First, by (5.122), we have for any 8 € O,

) 1 _ 202k ;
pllmmM/A(OZ%e),E LA(0)(a; 0)p = Z ( e

2 -2\1/2°
anC\oz 2,{77,{0'0-6)
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where © is the covariance parameter space. Hence, (A.1") is satisfied. Second, by (5.30)
and (5.33), we have for any 6 € O,

. 1 _
phm WX/E 1(0)X = D(g),

where D(0) is a p x p diagonal matrix with diagonals r;0?/(2k,0,02)"%, j = 1,..
Hence, (A.2’) holds. Third, by (5.33) and (5.34), (A.3’) holds trivially. Fourth, by (5.119)
(5.121), (A.4) and (A.5) hold trivially for 7, = n(!+9/2 and 6 defined in (5.118). Fifth,
for £(0) defined in (5.53), by (5.111) and (5.117), we have for § € [0,1),

, 1
plim —7 (6(00) — £(68) = 0.
Hence, (4.12) is satisfied. Last, for a € A, 02 = 0, (4.14) holds trivially. Then, for
A # (Z) A — oo and A = o(n 1+5)/2) we have
Jim P(acicp) = o) =1,

which completes the proof. O

5.3 White Noise Regressors

In this section, we consider explanatory variables generated independently from Gaussian
white noise processes of (5.7).

Proposition 6 Consider a class:of models given by (3.1) with x;(s)’s independently gen-
erated from white-noise processes of (5.7} and.cov(n(s),n(s’ )) or exp(—ky|s—s']), where
A #£ () and p is fized. Suppose that 0727 > 0,7 > 0 and 02 > 0 are known. In addition,
suppose that the data are collected at's;"= in~1=% € [0,n%]; i = 1,...,n for some
6 €[0,1). Let @ = (07, ky,02) € © and 8y = (07, kino, 02o) € @ be the true parame-
ter vector, where © = (0,00)>. Then the log-likelihood of (4 9) based on a € A can be
decomposed into the following:

(i) For o € (0,1),

—20(0;a) = nlog(2m) —

Y cac\y BP07 + 02
logn—l—(logaf—i-z:]E Ny ’O)n

2\ 1/2 _ 2 2 2 2
+<2“nan (1 _ deaC\a 105 T 0co + "{7770077,0)n(1+5)/2

202 2k, 02

€ € n
2 2 2
+<_n—2n+"in< e 72770—1) e 772’0)715
O¢ ’%‘777 2'%770-7]
2
Tn.0 2.0 L ) 5
2/@':072; (Fon = Ro)"n" + 3 )(a’ 0) +0,(n), (5.124)

where

6(3)(0[; 0) = pA(x 0)/2_1(9)14(04; 0)p — Z 5320]2‘”’(2_1(0))

jea\a
+1 A(a;0)E7H0)(n + €) + (n +€)Z7H(0)(n + €
—tr(2(6,)X27(9)), (5.125)
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and A(a; 0) is defined in (3.6).
(i1) For 6 =0,

1-— o\a 0 + a
—20(0;0) = nlog(2m) — 2 jenct 2 )n
o

)
logn + (1og062 +
2,%0127 1/2 Zjeac\a ﬁ?aj? + 062’0 /<;T770<7%70 1/2
+ 1 - 5 + 5 |n
2072 2Kk,05
+6¥(a; 8) + 0,(1). (5.126)

€

By (5.124), for § € (0,1) and any o € A\ A,

—20(6;0) +2((6;0°) = 0.2 Y Bloin+ 0 (a;0) — (a3 0) + 0,(n)
jEa\a
= o2 Z ﬂ?a?nqLop(n), (5.127)
jeat\a

where the last equality holds because by (5.125), £€3)(a; 0) — @) (a%; 0) = 0,(n). Similarly
by (5.126) for § =0,
—20(0;a) +20(0;0°) = o.? Z 2oin + o0,(n).

i3
JjE€a\a
As to be demonstrated in Theorem 12, we can use (5.127) to find an appropriate penalty
A that leads to selection consistency:
The following lemma shows that«o? is over-estimated by ML asymptotically when
a € A\ A° under both the fixed domain and theincreasing domain asymptotic frameworks.

Lemma 13 Under the setup of Proposition 6, let © C (0,00)% be a compact set and

let O(a)) = (G2(a), fy(a),02()) be the ML estimate of @ based on model o. Then for

d€[0,1) and o € A,

6la) = Y Bloj+0ly+0,(1), (5.128)
jEat\a
p(@)or(a) = kpoor o+ 0p(1). (5.129)

The following theorem further provides the convergence rates for the ML estimates of
K, a and 2. These results are keys for establishing some asymptotic properties of GIC
in Theorem 13

Theorem 11 Under the setup of Proposition 6, let © C (0,00)3 be a compact set and let

0(a) = (G2(a), fy(a),02())" be the ML estimate of @ based on model .. Then

(i) For o € (0,1),

. 02y 4 0,(n=179/2 if o € A°,

ol a) = { Zjeac\:( —0—06)0—1—0 (n=(-0)/2), i{fa c A\Ac7(5.130)
fin(Q)62(a) = Kpoomg + 0p(n *(1 0/, (5.131)

oi(a) = orp+0y(l); a€A, (5.132)

Rpla) = Kyo+o0p(l); a€A (5.133)
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(ii) For d =0,

2 ~1/2 , c

.9 er—l—O( /) if a € A,
o) = { Zj@c\a O' + er +0,(n7Y2); ifae A\ A (5.134)
fin(@)62() = Kpooog+ Op(n=/h). (5.135)

Proof. Let 07, =30, 0707 + 02, for a € A. In addition, for a € A\ A, let

&(0:a) = Bla®\a)X(a”\ a)’E‘l(H)X(aC \a)B(a“\ a)
— ) Bojt(s7(9)), (5.136)

jEa\a
&(0;0) = —2B(a”\a)X(a"\a)S7(0)(n + ). (5.137)
Then, it can be obtained in a way similar to (5.99) that
£¥(0:0) = &(8;0) + &(8: ) +£(8) + O,(1). (5.138)

First, we prove (5.130). By (5.128) and (5.129), it suffices to show that for [0? —0? | =
o(1), |/<,70,27 — /fn70072]’0| =0(1), and any € > 0,

inf (—20(0; ) + 2L((07, Ky, 02,)5a)) > 0, (5.139)

o202 o [>en=(1-9)/2

as n — oo with probability tending to 1. By« (5.124),

—20(0;a) = mnlog(2m) —

_6 2 gezoz
logn + {loga; + —- |n
o

€

2/@7(73 1/2 Uz,a ’%,00'72,,0 (146)/2
5 195+ 2 )"
o 207 2hn0;;

2 2 2 2
KO, K 0O e o
n m, ,0 iR ,0 ,0 2
+< - H"(—Z N 1) B 2—’72>n5 * ﬁ(”n — Figo) 1’
0?2 KnO2 KnO2

+£,1(6; Q) + &(0; a) + £(0) + 0,(n°), (5.140)
where £(0) is defined in (5.53) and the equality follows from (5.138). Then, for |0?—0?,| =

o(1) and |k,07 — knoos ol = o(1), we have

—20(0; @) + 20((02, Ky, 02 )5 @)

n’KTH €,x

o2,
= <loga + loga 1)n

6

1/2 1/2
N 2ky0; / L 04 N Fn00 0 B 2k 0; / 1+ Fn00m o L1502
o2 202 2ky07 o2, 2 2ky07
+€1(0 Oé) - 51((07277 Ky, Uza),; ) + 52(0a O‘) - 52((0-27 Ky, Uz,a)/; Oé)
+€(0) = ({07, Ky, 024)') + 0p(n”)
2

2 2
— ‘(UE % ZE —) +&(0;0) — &1((02, ki, 02,)5 @) + &2(0; ) — &((07, kg, 024)'5 )
+E(0) — (02, ki, 02,)") + 0p((07 = 02,)*n) + 0y(n°)
(U2 —02 )2” 2 2 32 s
= T + OP((Us - O-e,oz) n) + Op(n )7

20



where the second equality follows from |07 — 07| = o(1), (5.39) and (5.40), and the last
equality follows form (5.67) and

§1(0;0) — &il(0y, 1y, 02,)" @) = oy(max((o

§2(0;0) — &((0, 1y, 02,)" @) = oy(max((o

which can be obtained in a way similar to (5.105)-(5.106) where the moment conditions
are given from (5.43)-(5.44) in this case. Thus, (5.139) is obtained. This completes the
proof of (5.130).

Second, we prove (5. 131). By (5.129) and (5.130), it suffices to show that for |02 —
ol = O(n (=0)/2) | kyok = knoonl = o(1) and any € > 0,

— ‘752,@)2”» né)), (5.141)
— aza)zn, né)), (5.142)

2
€
2
€

inf (—200;0) + 20((07 g, g0, 020) ) > 0, (5.143)

lo2kn—kn,002 o|>en—(1=0)/4

as n — oo with probability tending to 1. By (5.140), we have for |02 — o2, | = o(n~(179/2)
and |k,02 — ﬁn’003’0| = o(1),

—20(8; ) + 2((07, ¢, K10, 0c) ;s @)

2\ 1/2 2 2 \1/2
_ A 1+ Fin00y0) (260,070 / n(1+0)/2 | 1 (K — Ky.a)?n®
o2, 2 2k,0? Oear 26na e

n
+€1(0,0é) 51(( nO’KUm 62(1’) ) )+§2(0,05) 52(( 7707'%7707 620[),; Oé)
+€(9) - 6(( 730’ Kn,0,0 ea) ) + OP( )
(,%Ug] — ,%700%70) n(1+8)/2 1

T T (57 P +6(650) = &((02, g0, 02, )3 )

+£2(0; a) 52(( 0n,05 fin,0, 0, eza) ) Oz) + 5(0) - 5((0727,(” Kn,0, 052,04)/)
+0<(“n0727 - ’1777002 0)2 (1+5)/2) + Op(né)

777
2 _ 2 2. (143)/2 _ 2.5
_ (:‘ﬁn K, 0‘777 0) + (/in HU,O) n X 0((/%02 — Ky 002 0)2n(1+6)/2)
25/2(n 002 )32 2kin 0 n 09,
+o,(n%), (5.144)
where the first equality follows from |02 — 02 | = o(n=(1=9/2), the second equality follows

from (5.41), and the last equality follows from

£1(6; @) = &1((07 9, o, 020)50) = op(max((ryo) — Kooy )72, n%)) (5.145)
£(6; ) = &((07 9, o, 020)50) = op(max((ryo) — kyo0y o) 72, n%)) (5.146)
£(0) — 5((02& Kn,0, 062,01)/) = Op(maX«“nU?; - “n,Oaz,o) ”(1+6)/ 6))7(5-147)

which can be obtained in a way similar to (5.109)-(5.111). Thus, (5.143) is obtained. This
completes the proof of (5.131).
Third, we prove (5.132) and (5.133). By (5.144), we have for |02 — 0?2 | = o(n~179/2),
|02y — kno02 ol = o(n=179/%) and any & > 0,
1
inf  —20(0;«) —1—26((0,2,70,/{77’0,062’05)’;04) = — &% —I—op( 6) > 0,

|ten—kn,0l>e 2%77 0

as n — oo with probability tending to 1, which gives (5.133). This together with (5.131)
gives (5.132).
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Fourth, we prove (5.134). By (5.128) and (5.129), it suffices to show that for |02 —
ol = o(1), |kyoy — Kyoop ol = o(1), there exists M > 0 such that

inf (—20(0; ) + 20((07, Ky 02,) ) > 0, (5.148)

€,
0202 4> Mn=1/2

as n — oo with probability tending to 1. By (5.126) and (5.138),

2
—2((0; ) = nlog(2m) — d logn + (logae2 + 06’20‘)71
o

€

2/1770% 1/2 af,a /@7700270 1/
+ 5 1— B + B n
lop 20 2Kky0,

+&1(0; ) + &2(0; ) +£(0) + O,(1). (5.149)

Then, for [0? — o7 ,| = o(1) and |k,07 — Ky 07| = 0(1), we have

~20(6: ) + 20((02, 5y, 02, )

€,

o2
= (loga + loga 1>n

6

260 s 0o | Kno0yo 260, e Fn00p0 1/2
RN e =55+ 2 ) 2 5T 52 ) ("
lops 20 26,04 0¢ o 2 2ky0;
+61(050) — &1 (0, 1y, 0 0)'5.0) + 620300 — & (0, iy, 02,)'5 @)

+£(0) = £((ay. 1, 02,)') + Opld)
- = (0¢ = 020)"n + &1(8; 0) = G, 02,) s @) + (0 0) — &((0g, 1y, 02,)"s @)

207,
+£(0) = &((@ 777’%777 ea))"'_op((a _U 0)’ n) + O,(1)
- 2014 (o _062, )*n +op((0? — 6,0) n) + O,(1),

where the second equality follows from (5.39) and (5.40) with 0 = 0,4 and 7 = K, 007,
and the last equality follows from (5.73) and

51(03 Ot) - él((o-?w Hﬂ? 0-52,&)/; Oé) = Op((O'EQ -
£2(0; ) —52((0727>“n7062,a>’504) = 010((052 -
which can be obtained in a way similar to (5.105)-(5.106). Consequently, there exists
M > 0 such that
2

M
inf (—20(0; ) + 2(((07, Ky, 02,) ) = g2+ 0,(1) > 0,

lo2—02 ,|>Mn=1/2 20—21,(1

as n — oo with probability tending to 1. Thus, (5.148) is obtained. This completes the
proof of (5.134).

Finally, we prove (5.135). By (5.129) and (5.134), it suffices to show that for |02 —
= 0(n™'?), |kyo? — kyoop ol = o(1) and there exist M > 0 such that

e,a| -

inf (—200;00) +20((07 5, in0,024) ) > 0, (5.150)

2, 2 ~1/4
o5 kn—kn,00; o|=Mn /
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as n — oo with probability tending to 1. By (5.149), for |02 — 0?,| = O(n"'/?) and
kin0p — kino0s ol = o(1), we have

—20(8: ) + 26((02 ., Ky 0%)'3 )

_ 2%770-77 1/2 1 + /i,rhoo'?ho - 2/{77’00-?]’0 n1/2
o2, 2 2ky02 o2,
+61(0: @) = &1((07 0, Fin0:020) s @) + &2(0: ) — &2((07 05 £,0, 024) 5 )
+€<0)_§<< 7707I€7107 ea))+0( )
(/inag — Ky 002 0)2nt/?
— ) , 0 o 2 2 \/.
25/2(’£7],00727,0)3/2 + 51( ) CK) 51((0-77,07 Kn,0, Ue7a) ) O‘)
+€2(0’ Oé) - 52((0-727 0> 0,0, 0 304),; Oé) + 5(0> - 5((03,07 Kn,05 0-62,(1)/>
+0((“n0727 - “n,Oag 0)2 1/2) + O,(1)

(kpo? — K 700270)2711/2
- n2;;/2</€ 7700277 )3/2 + 0(("577(72 - /fn,OU?; 0)2 1/2) + O,(1), (5.151)
m, 77,0

where the first equality follows from |02 — o2 O(n~%/2), the second equality follows

e,a| -

from (5.41), and the last equality follows from
§1(0;0) = &i((o noﬁnm 02a)50) ( )7+ 0
§2(0;a) = &((o noﬂ'”vnOa 0ca)500)=L0,( )’nt/?) + 0,(1), (5.152)
§(6) = &0y, Bn 0T ) 2= 0pllrinoy — Kinooy0)'n' ) + Op(1), (5.153)
)- (5.

= 0p((Kky0o; —

completes the proof of (5.135). O
Corollary 6 Under the setup of Theorem 11, let

00 = (ehrma 30 a2+ ). (5.154)

jEa\a

Then for €(6; ) defined in (2.9),

plim L (20@a)0) + 26(09:0)) = 0; ifse(0,1), (5.155)
—2(0(a);0) +20(0P: ) = 0,(1); if6=0. (5.156)

In addition, for L¥L(0;a) defined in (3.3),
plim L¥4((a); a) /L¥4(0D);0)) = 0; ifd€[0,1). (5.157)

Note that from Theorem 11, plim é(a) = 0% for ¢ € (0,1), which immediately im-

n—oo
plies (5.155). On the other hand, (5.156) is somewhat surprising, because 6(«) generally
does not converge to 0 for § = 0. However, selection consistency and asymptotic loss
efficiency are possible for geostatistical model selection even if some covariance parame-

ters cannot be consistently estimated under the fixed domain asymptotic framework (see
Theorem 13).

53



Theorem 12 Consider a class of models given by (3.1) with x;(s)’s independently gener-
ated from white-noise processes of (5.7) and cov(n(s),n(s")) = oy exp(—ky|s — '|), where
A® # 0 and p is fived. Suppose that o) > 0,k, > 0 and 07 > 0 are known. In addi-
tion, suppose that the data are collected at s; = in~ (179 ¢ [0,n°]; i =1,...,n for some

d€[0,1). If A\ = o0 and A\/n — 0, then
LKL(&G[C(,\))/miﬂ L) 51, asn — oo
ac
In addition,

lim P(OAJG[C(A) = Oéc) =1.

n—0o0

Proof. By Corollary 2, it suffices to show that

lim tr(X71)/\ = oo, (5.158)
which follows from (5.31) and A = o(n). This completes the proof. O

Theorem 13 Under the setup of Theorem 12, suppose that 8 = (Un’ K, 02) is unknown,

where © C (0,00) is a compact set such that 0y € ©. Let @(«) be the ML estimate of 0
based on model «. For § € [0,1), if A — oo and )\/n — 0, then

lim P(OJG[C(A) C) =1.

n—oo

Proof. For the consistency, it suffices to show that the conditions in Corollary 3 are
satisfied with 7,, = n. First, for 0-€ [0,1),

HWA(;0)S71(0)A(; O)p = Blaf\ ) X(a®\

—B(a"\ ) X (a”

= B(a’\a)X(a”\

( 1

a)E7H0)X (a\ a)B(a" \ a)
\a)EH(0) M (2;0) X (o \ a)B(a”\ )
a)S7H0)X (0 \ a)B(a”\ a) + Oy(1)

= Y Bot(27'(0)) + oy(n)
jeat\a
20.2
= Y Hnton), (5.159)
jEat\a €

where the second equality is obtained in a way similar to (5.100), the third equality follows
from

Bla\ @) X (a°\ @)E7H(0)X (o \ a)B(a = ) Bioitr(Z7(8)) + oy(n),
jea\a

which can be obtained by (5.35), Chebyshev’s inequality and using the following moment
condition:

var( X% 71(0)X;) = ojoitr(272(0)) = O(n),

and the last equality follows from (5.31). Hence, (A.1°) is satisfied. Second, by (5.31) and
(5.35), we have for any 6 € ©,

1
plim —X'S"1(0)X = D(6),

n—oo n
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where D(6) is a p x p diagonal matrix with diagonals sz/af, j=1,...,p. Hence, (A.2")
holds. Third, by (5.34) and (5.35), (A.3’) holds. Fourth, by (5.155)-(5.157), (A.4) and
(A.5) hold trivially for 7, = n and 6 defined in (5.154). Fifth, for £(0) defined in (5.53),
by (5.147) and (5.153), we have for ¢ € [0, 1),

plim - (£(60) — £(09)) = 0.

n—oo 1

Hence, (4.12) holds. Last, for o € A, 0¥ = 0,, (4.14) holds trivially. Then, for A # 0,
A — oo and A = o(n), we have

li A =a) =1

nl_{glo (aGIC(A) «Q ) )

which completes the proof. O
Comparing among Theorems 7, 10 and 13, we see that GIC is easiest to be consistent

when the variables to be selected are from white-noise processes, but is most difficult to

be so when the variables to be selected are polynomials.
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Chapter 6

Conditional Generalized Information
Criterion

If we are interested to find the asymptotic optimal properties of (3.14) throughout some
selection procedure, it is somehow difficult to prove the asymptotic properties directly
from GIC we introduce above. Another criterion is needed. Vaida and Blanchard (2005)
suggest a suitable criterion when we are interesting in spatial process prediction which
is named conditional AIC (CAIC). Here we will also suggest a conditional generalized
information criterion (CGIC) which includes CAIC as a special case. In the following
sections, we are going to introduce the asymptotic theory of CGIC in geostatistical model
selection problems.

6.1 Conditional Akaike’s Information Criterion

Consider the loss, L() defined in (3.14) with estimators, S(«) defined in (3.15). It’s
difficult to find the optimal properties of L(«) directly from the criterion (4.6). Vaida
and Blanchard (2005) suggested a conditional AIC (CAIC) selection procedure for the
linear mixed models which is an unbiased estimator of E(L(«)) shown in (3.17). They
suggested when focus on the mean function estimate, the AIC in (4.3) is good to be a
selection procedure. When focus on both the mean function estimate and the spatial
process prediction, CAIC is much adequate than AIC to be a selection procedure. That
is for o € A,

Loatc(a) = (| Z = S(a)||* + 2tr(H (a))o?, (6.1)
where S(a) = H(a)Z with H(a) defined in (3.16). Let
OA‘CAIC = arg 1’211’1 FCAIc(Oé). (62)
ac

Then we have the following theorem.

Theorem 14 Consider a class of models given by (3.1). Suppose that
1
lim —— =0, (6.3)
. 2 HE@)

where L(«) is defined in (3.14). Then the criterion I'caic() defined in (6.1) is asymp-
totically loss efficient:
plim L(&carc)/ in}ZL(a) =1
ac

n—oo
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Proof. Here, we first expand the CAIC defined in (6.1). It is

(Z - 5(0)(Z - §(a) + 202tx(H ()
= (8- S(a)+ e)’(:S' — S(a) + €) + 202tr(H (o))
= L(a)+2€(S — S(a)) + €e+ 202tr(H())
= L(a)+2€(I — H(a))S — 26 H(a)e + €'€ + 20%tr(H ()
= L(a) +20%€ (27 "A(q))S — 2¢ H(a)e + €€ + 202tr(H (o))
= L(a)+20% (7' A(a))p + 20%€ (S A(a))n + €€
—2(¢ H(a)e — oltr(H(w))), (6.4)

[eare(a)

where the third equality follows from (3.14) and the second last equality follows from
I-H(a)=A(a) - 3,2 "A(a) = 0?27 A(a).
It then needs to show that for a € A,
Lcarc(a) = €€+ L(a) + oy(L(w)), (6.5)

which suffices to show that

€(EA(a)p

D LB (L () ) o0
S - &)
pnnp SRS - 0 ©9
pimaup |y~ | 09

Hence, by (6.5), for dcaic defined in (6.2) and of = argmin, 4 L(a), we can easily
conclude that

Lcarc(Goaic) = €€+ L(acaic) + op(L(dcarc)),
Tearc(a®) = €e+ L(a®) + o,(L(a")).

It follows that

Loarc(a?) — Tearc(@eaic)  L(ar) — L{acaic)

0< — = — + 0,(1),
L(Gcaic) L(Gcaic) »(1)
and then
L) — L(a
plim (27) - (dcarc) =0,
n—oo L(aCAIC)

which gives plim L(dcaic)/ ianL‘L(oz) = 1.
ac

n—oo
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Here, we start to prove (6.6)-(6.9) one by one. First, any € > 0,

tig P ST 2 ) < i 3 (T )

acA

cp’ 04)2 PA(a)p
= JEEOZ 2(B(L()?

1
< Jm D e
= 0,
which gives (6.6), where the second last inequality follows from
o A(0) S A()p < E(L(a)),

by (3.17) and the last equality follows from (6.3).
Second, for any ¢ > 0,

(o ey 2e) = (e =)

i 37 ZAGD A2,
3o A
= JLI“E}OQ; tr;ié(?((j)))in)
; AE&%W
_

IN

acA

IN

where the third inequality follows from 0?3 ~! < I, the second last inequality follows from
c2tr(T T A(0)E,) < otr(Z,X7Y) < E(L()),

by (3.17) and the last equality follows from (6.3).
Third, for any € > 0,

to P S )
GO
< 3 SO
_ JHEOQ; 1ot (1r(2, 5 (25 (+L3(Z€>t>;§2_ M(a)))
& JL%ZAgQSEZi;)> =0

o8



where the second inequality is an application of Theorem 2 of Whittle (1960) for some
c1 > 0, the third equality follows from

tr(H(a)H (o)) = (8,27 + 0’2 "'M(a))(Z,X7" + 0’2 'M(a)))
= (T, X778, + 08,2 ' M(a)T ' + 0’2 M(0)E7'Y,
+o!M ()T *M())

< (2,27 + 3%t (T M (a))
< 30 "E(L(a)),
by
(2,278, = tr(,T 7' - 0227y,
< tr(Z, =7
tr(o?E, X' M ()T = tr(e’tr(M()S™! — o227 M(a)E™))
< tr(oftr(M(a)E7),
and

oltr(M (o)L 2M(a)) < o*tr(M (o) S "M (a)) = o?tr(Z M (a)).
Last, it remains to show (6.9). Here, we first expand L(«) defined in (3.14). That is

L(a) = (8—5(a))(S~Sa ))
(n
Ch

(I — H(e))p + 772_1("7‘|‘€)) — 0eS T M () (n + €)|?

lofS " A)p + (07570 = BB e) = 0! X7 M (a)(n + €)|”

= 0 W A(a) S A(a )M oS = 2,2 el|* — 2001/ A(a) ST M (a)(n + €)
+oi(n + €)' M(a) 2 M(a)(n-e) + 204 A(0) S (0727 'n — 2,57 €)
—202(0?X7'p - 2,7 e)E T M (a)(n + €). (6.10)

It then follows together with (3.17),

L(e) = E(L(a)) = [ofZ7'n — 3,2 e|” — oltx(2,37)
+ol(n+e)M(a)T*M(a)(n+€) — oltr(S M(a))
+202 0 A(0)S 7 (075 I — 5,5 e) — 2004 A(a) T2 M (a)(n + €)
—202(02% 7' - 2,5 7'e)S M (o) (n + €).

Then, to show (6.9), it suffices to show that

|22 In — 2,5 e||? — o2tr(Z, 57|

lim su < = 0, 6.11
vt E(L(a)) (o1
/ / 2 _ -1
plim sup [(n+ €)' M(a)SM(a)(n +€) —tr(X" M(a))| _ 0 (6.12)
n—oo a€A E(L( ))
. [ A)E (02X In - 5,5 le)|
lim su £ = 0, 6.13
plim sup (L)) (6.13)
: W A(a) X2 M(a)(n + €)|
1 - 0 6.14
D E(Z() oo
: [(0257'n — 2,35 €)' M(a)(n + €|
lim su € = 0. 6.15
e E(L(a)) (019
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Now, we start to prove (6.11)-(6.15) one by one.
For (6.11), we have

llo?5 7 n - £,2 7 e|” - o2tx(2, 27|
= |oln'S7n - oltr(Z, 2—2) +eXIEIn e — 2tr(222_2)6+202n’2_12 3 el
< oSy — oltr(B,270)| 4 |€5TEI8 e — oZtr(B2NY)e| + 207 'SR, e
Hence, to show (6.11), it suffices to show
IS — (%, 572)]

lim su 0, 6.16
emacd  B(L()) .
|€X7IIN e — o2tr(B2X7?)|
plim sup u < u = 0, 6.17
ey B(L(a) (10
DIRED I s
plim sup " 2] = 0. (6.18)

n—oo a€A E(L(Ol))

First, (6.16) can be established in a similar manner by Theorem 2 of Whittle. It is for
any € > 0,

. 'S — (3,37 ) . (In’Ezn — tr(%, 27| )
lim P|( sup >e] < lim P >¢
n—00 (aE.A E(L(a)) nﬂm; E(L(a))

, et (2,525, 52)
fm 2 B () 7

IA

acA

catr( E E h
D o E L@

A

< lim ——
e azeA =y
= 0,

for some ¢y > 0, where the third inequality follows from
tr(X, X728, X7?) <o, Ur(EPE7?) < oMt (XT, 27, (6.19)

by 02X~ < I and 2717/22_12717/2 < I by X, <X, and the last equality follows from (4.5).
Second, (6.17) is also established by Theorem 2 of Whittle. It is for any ¢ > 0,

y P( |e'2—12372-1e—aztr(zgz—Q){>)
1m Su £
nooe’ \aci E(L(a))
|€X71528 e — o2t (22872
< i P U < U >
= nfi‘o% ( E(L(a)) >
< i Z (Ypan D IRRD Vb Iae) V> Yy
Byt e2(E(L(a)))?
4 -1
, czo tr(X2,357)
<
< i ) e
acA
2
C30
< €
= JLII;‘OQXE;E?E(L(@))
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for some c3 > 0, where third inequality follows from
—ly2y—2y2y 1 —ly2y—1 -1
(XX ETEIE ) <tr(XTEET) < tr(X,X7),

by 2,57°%, < I by X2 < 3? and the last equality follows from (6.3). Third, similarly
from the proof of (6.7). It is for any € > 0,

. In'E7Ix, S e ) . <|n’2_12n2_16‘ >
lim P sup > ¢ < lim P > ¢
n—00 <a€A E(L(Oé)) n—>ooa€ZA E(L(Oé))

lim Z Uftr(E’lEUE’lan’lan’l)
n—00 e?(E(L(@)))?

IA

acA

tr(2,271)
2 20 (E(L()))?

IN
=

INA
=
g B
M ¢
ql\.')
m[\')
™
—~| =
=
L

where the third equality follows from

cir(27'y, 271y, 7y, v cir(27'y, 27y, 2
cir(7'E, 27

tr(znz_l)a

VARVANRVAN

by ¢2¥~! < I and 2*1/22772*1/2 < I by 3, < X, and the last equality follows from
(6.3). It then gives (6.11).
For (6.12), it can be established"by Theorem 2 of Whittle. It is for any € > 0,

. 1+ €/ M(a)S>M(a)(n+ ) — (2~ M(0)
(o BL(a)) N
. 1+ €/ M (@)’ S*M(@)(n +€) — (%~ M(a)
< m 3 p( B(L(a) )
Z eatr(EM (a)EX2M () XM ()2 72M (a))
= F(E(L(a))?

eatr(ZTM ()
ZA e?a¢(E(L(a)))?

€

IN

IN

. C4
< 1 _—
= nEEo; o1e2E(L(a))
= 0,
for some ¢, > 0, where the third inequality follows from

tr(EM () S M (a)EM ()X ?M(a)) = tr(M(a)Z 'M(a)2™)
tr(Z'M(a)X™)

<
< 0;2tr(2_1M(a)),

by M(a)XM'(a)X7! = M(a), 2 'M(a) < X7 and 0?27! < I, and the last equality
follows from (6.3).

61



For (6.13), we have

W A(Q)SH(0?E I - 2,57 )| = [0 A()E Py — p'Ala) TR, B el
< o2 A()E 7] + [WA(Q)2TIE, B el

Hence, to show (6.13), it suffices to show that

: | A()'E 0|
| 2
Plim S T ) . (620)
/A 12—12 271
plim sup wA) > €l = 0. (6.21)

n—s00 ac.A E(L(a))

First, (6.20) can be show similarly from (6.6). It is for any € > 0,

1 INV—2 l —2
limP(supmA(a)E "7|>€) < hmz (’“A )%~ "7|2€)

n—00 acA E(L(a)) B ))
-2 2
pA 2 X A(a)p
< lim
?HOOZ (a)))2
-2
< lim Z é( )
n—oo (@)
< dim Z !
S 2 EH(L ()
= 0,
where the third inequality follows from
HAQ)E?E, S Ala)p < pAla)E P Ae)p
< o Ala) B Ala)p,

by 27128, %712 < T by ¥, < ¥ and 622! < I, and the last equality follows from
(6.3). Second, (6.21) is similar to (6.20). It is for any € > 0,

_ W A()E 13,5 e | A( )E 13,3 e
lim P > < 1 >
L (f’};ﬁ E(L()) ) < lm D P E(L(a)) =°

acA
: o Ala) SIS, B8, B A(a)p
< 1]
= ﬁﬁ;; 2(B(L(a))?
2 A(a) 2 A(a)
< €
< B ) @)
acA
1
< lim Z
oo £ 02e?E(L(w))
pu— 07

where the third inequality follows from 3, 37?3, < I by X2 < 32, and the last equality
follows from (6.3). It then gives (6.13).
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For (6.14), we have for any € > 0,

Tim p(zgg lulA(a)/%E(Qszi §§%)(n tol 5>
< JE&O;PCWA(&) ‘(2 (aggﬂé)(n o)l 6)
: T
) Lﬂ@ogcw e
< Jm X ZngL)(f)))f(am

acA
. Cs
< - -
= JEEOZ: S522E(L(a))
— O’

for some c5 > 0, where the third equality follows from M (a)XM'(a)X™! = M(«), the
fourth inequality follows from XM (a) < 7! and 02X~! < I, and the last equality
follows from (6.3). It then gives (6.14).

For (6.15), we have

(0?27 — 3,27 e) S M(a)(n + €l
= |oin'ST2M (a)(n + €) - gt (2,2 7 M (o))
— €X', 2 M (a)(n+€) + ot (M (o) E27'%,)|
i S 2M (o) (n + €) — o7 tr(3, 57 M (a))]
+HETTIE, M (a)(n + €) — o’tr(M(a)E7'E,)|
i ST M () — otr(2, 57 M ()| + |07 M (a)e]
+€X'E8, X M (a)n] + [€X7'E, 5 M (a)e — o’tr(M(a)'S7'E,)|.

IN

IN

Then, to show (6.15), it suffices to show that

[n'S2M (o) — tr(E, 572 M ()|

plirn sup E(L(a)) 0 (6.22)
INY—2
oy Sy~ 00
5%, M
Eﬁfiiléﬁk B(L() el o, (6.24)
DIED I Sty Y | —c’tr(M (o)X
e R

Now, we start to show (6.22)-(6.25) one by one. First, (6.22) can be established by
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Theorem 2 of Whittle. That is for any € > 0,

(sup IZ2M - S8 )

lim P

n—oo

el E(L(a))

(2 M0y — (8,5 M ()|
= nhooa%}f( E(L(a) <)
lim Z cetr (2,2 2M( )X, M (a)X?)

e 2 (E(L()))?

_ ctr(21 EnEflil*lM(oz))
2 T S E @)y

- ceo2tr(XT M (o))
P D AT

IN

IN

IN

acA

IN

. Ce
[ Y —
n—00 dc2
2 5IE(L(a))
= ()’
for some ¢g > 0, where the third inequality follows from
STTM(@)E,M()S! < ET'TM(@)EM ()Y =X 'M(a),

and the fourth inequality follows from o233, X! < I by ¥, < ¥ and 02X~ < I, and
the last equality follows from (6.3)..Second,(6.23) is similarly to (6.18). It is

(o ety o e e (e =)

_ o2tr(X2M (o) M (a)'X7%3,)
Jm D 82<E<L<a>>>2

IN

acA

tr(2 )2 13,5
N O
| ﬂr(z 1M< )
tm 3 S
. 1
< B )

IA

IN

= 0,

where the third inequality follows from o?X " 'M(a)M (a)X™! < 7'M («a), and the
fourth inequality follows from o?X 713, 37! < T by 3, < ¥ and 623! < I, and the last
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equality follows from (6.3). Third, (6.24) is similar to (6.23). It is for any € > 0,

tim P (s I 2 )

< Jm S r( T =)

= JLHSOO; octr( 127:21612‘?2()((2)27)1)\;!2(@)’212”21)
< Jm 3 M%)

< Jm 3 e <)0;>>

IA
J =
=
M
mw
m

= 0,

where the third inequality follows from

SIM(Q)S,M(@)E < STM(a)EM(a)S =

S 'M(a),

and the fourth inequality follows from 33;37°%, < I by 272] < X2, and the last equality
follows from (6.3). Last, (6.25) can be established by Theorem 2 of Whittle. It is for any

e >0,
lim P sup €X71E, XM (a)e =o2tr(M (o) X713, .-
nooe \aed E(L(e)) N
< lim ZP €213, 57 M (a)e — o2tr(M (o) X713, .
Ity E(L(a)) -
< lim ) croctr (B8, 5 M () M () 575, 57)
eyt e2(BE(L()))?
< 1 Z crottr(E M ()X, X723,
T oo e2(B(L(e)))?
2 1
croztr(X M («))
< 1 -
”—’WZA e2(E(L()))?
. Cr
< lim _
nﬂooag;4 e?E(L(a))

for some ¢; > 0, where the third equality follows from

S M()M(a)S < ST M(0)SM(a)S =

S 'M(a),

and the fourth inequality follows from 33,3723, < I by 2727 < X2, and the last equality
follows from (6.3). Thus, we ends the proof of (6.9), which completes the proof. a
Note that (6.3) holds in general. Here, we consider an example where (6.3) is satisfied.
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Corollary 7 Consider a class of models given by (3.1) with p fixred and any arbitrary
explanatory variables. Suppose that the data are collected at s; = in~1=% ¢ [0,n°%];
i=1,...,n for some § € [0,1). Consider the exponential covariance model of (5.1) for
n(-). Let &oare be the model selected by CAIC as defined in (6.2). Then,

Iim L(a inf L = 1.
plim L(écarc)/ inf L(a)

n—oo

Further, if A° # 0, then for any model selection procedure &, such that lim P(& € A°) =

n—oo
1

plim L(a)/olégiL(oz) =1

n—oo

It is shown in (3.17) that E(L(«)) is lower bounded by dominated by o2tr(%,37!) for
a € A, which is often a dominated term of E(L(«)). In addition, for a € A¢, o2tr(X,X7")
is the dominated term of E(L(«)). Hence, it might suggests us that whatever correct
model we select, it will be always satisfied the asymptotic loss efficiency. Further, in the
following example, EL((«)) are dominated by o?tr(X,X71) for @ € A. In such case, every
candidate model achieves the asymptotic loss efficiency.

Corollary 8 Consider a class of models given by (8.1) with x;(s) = (sn™%)i; j=1,...,p,
and cov(n(s),n(s')) = o7 exp(—kyls — §'|), where p fived and A° # ). Suppose that the
data are collected at s; = in=1=9 € [0,n%]; 4% 1,...,n for some § € [0,1). Let Goare be
the model selected by CAIC as defined-in-(6.2). Then

n—oo

Further, for any model selection procedure’é,

plim L(a)/igiL(a) = 1.

n—o0

JFrom (7) and (8), it might suggest us that the variable selection is somehow unnec-
essary for the asymptotic loss efficiency of L(a) in those cases. Here, we consider the
strongly asymptotic loss efficiency of L(«) defined in (3.21).

Theorem 15 Consider a class of models given by (3.1) and the universal kriging predictor
S(a) of S defined in (3.15). Suppose

1

lim Z 5 —
aee 2 HL() — o2 (5,5 )

=0, (6.26)

where L(«) is defined in (3.14). If |A°| <1 and a° is fized, then &oarc of (6.2) is strongly

asymptotic loss efficient:

plim L(Gcarc) — ||S — E(S|2)]]?

= 1.
n—oo infaEA L(Oé) - ||S - E(S|Z>||2
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Proof. Here, we first suppose that A° = (). Now, we expand the CAIC defined in (6.1)
from (6.4). It is

TLearc(a) = L{a)+20%€ (7' A(a))p + 202€ (S A(a))n + €e
—2(€H(a)e—0o tr(H(a)))
= L(a)+202 (X7 A()p + 2027 ' — 20%€ M (a)n + €'e
—2(e%, X 'e— 08, X7") — 202 (€X' M (a)e — oltr(E 7' M(a))) (6.27)
where the last equality follows from H (o) = X,X7 1 + 02X M («) by (3.16). Note that

202€Y7'n+€e—2(eX, X e— 02,57 is constant in variable selection. It then needs
to show that for a € A\ A,

[carc(a) = constant + L*(a) + o,(L* (), (6.28)
where L*(a) = L(a) — ||S — E(S|Z)]|?, which suffices to show that
€(E Aa)p

EE{-EQGSE&C B(L*(a)) 0 (6.29)

/ -1
plim s ‘ (2133( AEI())))"’ 0, (6.30)
Eﬁﬁaiﬁi’Ac‘elz_lM( )E&*Tt;)@ e (6.31)
plini sup %—1' = 0. (6.32)

Hence, by (6.28), for dcaic defined in (6.2) and o* = argmin, 4 L*(«), we can easily
conclude that

FCAIC(dCAIC) = constant + L*(dCAIC) + OP(L (dCAIC))
Toaic(a®) = constant + L*(a*) + o,(L*(a*)).

It follows that

Loarc(a®) — Tearc(@earc)  L*(af) — L*(dcaic)

0< — = — + 0,(1),
- L*(acarc) L*(acaic) o)
and then
* L\ _ 17%(A
plimL (al) AL (Gcarc) _0,
n— oo L*(aCAIC)
which gives plim L*(&caic)/ in/f4 L*(a) = 1 when A° = 0.
n—00 ac
Here, we first calculate EL*(«). By (9.1), we have
E(L*(e)) = E(L(a)) — E[IS - E(S]2)|*
= E(L(a)) — c?tr(Z,E7)
= ol A(Q)E 2 A(Q)p + ottr (2 M (o)), (6.33)

by (3.17). Now, we start to prove (6.29)-(6.32) one by one. For (6.29), the proof can be
followed from the proof of (6.6) by replacing E(L(«a)) with (6.33).
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For (6.30), we have for any € > 0,

ol €S M(@)n] - € ("M ()|
i p( s ST ) < am 3 (S )

IA

, o2tr(M ()X 13,3 M (o))
fm, 2 L)y

IN

= 0,

where the third inequality follows from X7Y/2%, 371/2 < I the second last inequality
follows from (6.33) and the last equality follows from (6.26).
For (6.31), we have for any € > 0,

tim P, 1T HER LN+ o)
< i 3 PSR )
< i a GAZ\AC o) tz;(;ZIE g)é)) )J;/I (@)
< 3 g
<m0 )

where the second inequality is an application of Theorem 2 of Whittle (1960) for some
c1 > 0, and the third and fourth inequality follows from

oltr(M (o)L 2M(a)) < o*tr(M()E 'M(a)) = c*tr(X'M(a)) < o °E(L*(a)),

and the last equality follows from (6.26).
Now, it remains to show (6.32). Here, we first expand L*(a) from (6.10). That is

L*(a) = L(a)—|IS—E(S|2)”

L(a) = |05 ' — 2,5 €l

oA A(0) S2A(0)pu + ot (n + €)' M () S M (a)(n + €)

+202 W A(@) 2?2 In - 2,57 ) — 200/ A(a) 2 M (a)(n + €)
—202(0?S " 'n - 2,3 )T ' M(a)(n + €), (6.34)
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the second equality follows from (9.1). It then follows together with (3.17),

L*(a) = E(L(a)) = oi(n+e€)M(a)S*M(a)(n+€) — oltr(X M(a))
P20 A () S (25 — 5,57 Ne) — 200 Ala) S M (a)(n + €)
—202(a?X7'n - 2,7 e)E M (a)(n + €).

Equation (6.32) can then be followed by

i MO M)+ ) — (S M@)o
n—oo ac A\ A° E(L* (Oé)) ,

. WA (02X In - 5,5 e)|

lim su < = 0, 6.36

g—wo aeAFAC E(L*(a)) < )
. W A(Q) S M(a)(n + €)|

plim sup = 0, 6.37

n—00 a€A\A° E(L*(a)) (647
. |(0227'n — X, 5 'e)S M (a)(n + €)|

plim sup < = 0. 6.38

n—oo ac A\ A E(L*(a)) ( )

Note that the proofs of (6.35)-(6.38) can be followed from the proofs of (6.12)-(6.15)
by replacing EL(«) with E(L*(«)). Hence, (6.32) is then followed, which completes the
proof when A¢ = (.

Not, we suppose that A° = {a°}. To show that the CAIC is still asymptotically loss
efficient, it remains to show that for fixed ‘o<

L*(af) =7 0,(L*(a)); if o € A\ A, (6.39)
Foarc(@) = comstant + L™ () + 0,(L* (). (6.40)

Hence, by (6.39) and (6.40), we can easily conclude that
lim P(aL = ac) =1,

n—oo

lim P<dCAIC = Oéc) = 1,

n—oo

which gives plim L*(@CAIC)/ in/f4 L*(a) = 1if |A° < 1.
n—oo ac

Now, we start to prove (6.39). Equation (6.39) can be followed by (6.32) and

: L*(a®)
plim sup — =0. (6.41
P 2P E( (@) )
By (6.34), we have

L*(a%) = o*(n+e)/M()YS M) (n+¢€) — otr(ZM(a”))
+oltr(E'M (o)) — 202(0?E 'n - 2,5 )T M (a%)(n + €).
Equations (6.41) can then be followed by
(0 + &/ M(a*Y =M (o) (n + €) — (S~ M{(0)

plim sup = 0, (6.42)
n—oo ac A\ Ac E(L* (CY))
tr(Z 1M (¢
plim sup [tx( - ()] 0, (6.43)
n—ooacA\ae  B(L*(a))
22—1 -y 2—1 IE—IM c

n—oo acA\A° E(L*(CM))
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Note that (6.42) can be followed similarly from the proof of (6.35) and (6.43) is trivial
since otr(X M (o)) < p(a®) < oo, and (6.44) can be followed similarly from the proof
of (6.38). It then gives (6.39).

Now we start to prove (6.40). By (6.27), we have

Leatc(af) = constant + L*(a°) — 202 M (a®)n — 207 (€X' M (a)e — oltr(E7 M (af))).

Equation (6.40) can then be followed by

. |€'M(a)n|
plim sup 0,

n—oo ac A\ A° (L*(Oé))
i s (€M@ — 25 M@)]
n—oo ac A\ A E(L*(a)) )

which can be followed easily from (6.30) and (6.31). It then gives (6.40). This completes
the proof. O
An example is given here for the Theorem 15.

Corollary 9 Consider a class of models given by (3.1) with x;(s)’s independently gener-
ated from white-noise processes of (5.7), where p fived and A° = {a°}. If lim tr(X72) =

o0, then

L(dcarc) =S — E(SI1Z)|>

plim 5 =L

n—oo ifae g () = [|S'= E(S|Z)||

The model with smallest value of L(a) might not exist for [A¢| > 2. If there are at
least two correct models with fixed dimensions in-.A¢, there will be no asymptotic optimal
properties under the level of loss comparison.. We are then interested to ask if the model
selection procedure still has some optimal properties on E(L(«)) in the cases of [A¢| > 2.
Hence, we need a much more heavily penalty on model dimension to select a® among A°.

6.2 Conditional Generalized Information Criterion

We have the criterion I'carc(a) in (6.1) is weakly asymptotic loss efficient. Further, It also
suggests that the asymptotic loss efficiency may not exist in the case of |.A°| > 2. Hence,
we might ask if there has any optimal properties which is defined on the risk (3.17). In
the following, we will introduce the conditional generalized information criterion (CGIC)
which includes CAIC as a special case,

Leaiow (@) = |1 Z = 5(a)|* + Ac?tr(H (a)),

for any a € A. Let
Qegic(n) = arg Tjin Leaicoy (o). (6.45)
ac

Theorem 16 Consider a class of models given by (3.1). Consider the loss function L(«)
defined in (8.14) and &ogreeny defined in (6.45).
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(i) For A° =10, if

: Ap
lim Z 5 — =0, (6.46)
MY 2 Ba) = 2,5 )
then A )
plim L(acgro) — |S — E(S|Z)IF _ |
n—oo ilfaca L(a) — ||S — E(S|Z)|]?
(ii) For A¢# 0 with fized o, if X — o0, (6.46) holds and
1

li —_— 6.47
b O;C tr(X1M(a)) =% (6.47)

then lim P(@CGIC(A) = Oéc) =1.

n—od

Proof. First, we suppose that A = (). By (6.40), for o € A\ A,

Fecicpy(o) = constant + L* (o) + (A — Q)UStr(H(a)) + 0,(L*(v))
= constant + L*(a) + (A — 2)o?tr(2,E71) + (A = 2)oltr(Z 7'M () + 0,(L*(«))
= constant + L*(a) + (A — 2)ottr(Z ' M (a)) + 0,(L*())
= constant + L*(a) + op(L* (),

where L*(a) = L(a) — ||S — E(S|Z)||%; the second last equality follows from (\ —

2)o?tr(X,X7 ") is independent of @ and the last equality follows from

plim sup Ar(ZEM ()
n—oo ac A\ A E(L*(Oé))

by (6.32) and o?tr(X"'M () < p(«) and (6.46). Hence, for dcgiop defined in (6.45)
and o = argmin, 4, L*(«), we can easily conclude that

0,

LCocico (@eaicyy) = constant + L™ (Gccrow)) + 0p(L (Gocic));
Loaicoy(@”) = constant + L*(a*) + o,(L*(a™)).

It follows that

Tearcy (@) — Tearewy (Geaiopy) L") — L (docien)

0< ~ = - +0,(1),
L*(écaiow)) L*(é&coaio)) (1)
and then
L* Ly L* A
blim (o) i (Goaiew)) _0,
n—00 L*(Gcaio))

which gives plim L*(dcaic(y)/ ian4 L*(a) =1 when A° = ().
n—oo ac

Now, we suppose that A°¢ # (). To show the consistency, it suffices to show that

LCeaicpy (@) = constant 4 0,(L*(ar));  if o€ A\ A, (6.48)
Focicoy(@) = constant + ARy(a) + 0,(AR2(v));  if a € A, (6.49)
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where Ry(a) = ottr(X 7'M (a)) is defined in (3.18) and a° = arg min, ¢ 4 R2(a). Hence,
by (6.48), it follows that hm P(aCGIC € A\ A°) = 0. In addition, by (6.49), it follows

that lim P(OCCGIC(A) € .A ,Qcaic(y) = a) = 1. Thus, it completes the proof of the

n—
consistency.

Now, we first start to prove (6.48). By (6.27), we have
Toaicpy (@) = constant + L*(a®) — 202 M (a)n + (A — 2)otr(E7 M (a))
—202 (€X' M (a)e — oltr(Z7 M (a))).
Equation (6.48) can then be followed by (6.32) and

: €' M (a“)n|
plim sup — 0, 6.50
n—oo acd\Ae B(L*(a)) (650
) €X 1M (a%)e — o2tr(Z M (a°))|
plim sup - = 0, 6.51
n—00 ac A\ A¢ E(L*(a)) 021
) A = 2)tr(Z" M (af))
plim sup 0, 6.52
n—o00 acA\A° E(L*(a)) (052
L*(af
plim sup L) = 0. (6.53)

n—oo ac A\ A° E(L*( ))
Equations (6.50) and (6.51) can be followed easily from (6.30) and (6.31). Equation (6.52)
holds trivially for Aotr(Z'M (a®)) < o2\p. Equation (6.53) is the same to (6.41).
Now, we start to prove (6.49). By (6.27), we have that for o € A,
Togicoy (@) = constant + L*(a) =202/ M (a)n + (A — 2)oltr(Z 7 M (a))
—202 (€7 M(a)e = o tr(Z 7" M(w))).
Equation (6.49) can then be followed from (6:32) and

. |€M(a)n|
lim su = 0, 6.54
Pk (o) (659
, |€X M (a)e — o?tr(Z'M(«))|
1 = 0 6.55
plim sup Aa(a) | (0:59)
L*
plim sup 1)l = 0. (6.56)

n—oo a€A° )\R2< )
For (6.54), we have for any € > 0,

tim P (s SN 2 c) <t 3 p(ISEEON )

a€cAc acAc
2ty (M ()27 18,21 M
o 3 M S5 M (@)
2 2(Va(a))

, o?tr(M (o)X M (a))
fm ) ORI}

IN

IN

2tr
:7£&§Z TRV <>)

2

1
< lim E _
n—oo 05262)\2R2(04>
= ()’
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where the third inequality follows from 3~V 22,72*1/ 2 < I, the second last inequality
follows from (6.33) and the last equality follows from A — oo and (6.47). Equation (6.55)
can then be followed by (6.31) in a similar way.

Now we start to prove (6.56). By (6.34) for a € A,

L*(a) = o/(n+e)M(a)EM(a)(n+€) - oltr(Z7 M(a))
+ottr(Z M () — 202(0?2 'n — 2,57 'e) T M (a)(n + €).

Equations (6.56) can then be followed by

. (n+€)'M(a)S2M(a)(n +e) — tr(X"M(a))| _
PR M (a) S

|tr(3~ M (o))

lim su 0, 6.58
hach  ARy(a) (05%)
@S- B, e M(a)(n + €)
lim su < = 0. 6.59
173—>0<> ae}z /\R2(a) ( )
Equation (6.57) can be followed from (6.12). That is for any € > 0,
/ INYV—2 _ -1
i sup L LM 01 1) M
n—oo  \ aede ARs(a)
! N2 _ -1
< > p(lo SISl s - um M) )
e acAc )\R2 (Oé)
M (a)X2 > "SI M
3 MO IS M (o)
2 FORw)
. ctr(X71M (o)
< 1
= i a; 202 ( ARy (av) )2
c
< —_
- nl_{&gc 22 \2 Ry ()

where the second inequality is an application of Theorem 2 of Whittle (1960) for some
¢ > 0, the last equality follows from (6.47). Equation (6.58) holds trivially for A — oc.
Equation (6.59) can also be followed from (6.15) in a similar way. It then completes the
proof. O

Similar to the conditions given by (4.7) and (4.8) in Theorem 2, Equation (6.46) pro-
vides a condition for risks associated with incorrect models and (6.47) is a weak technique
condition that holds trivially when p is fixed. Here, we give an example for Theorem 16.

Corollary 10 Consider a class of models given by (3.1) with x;(s)’s independently gen-
erated from white-noise processes of (5.7). If A — oo, lim tr(E’Q)/)\ = oo and

lim tr(27%)/tr(%71) > 0,

n—oo

then lim (dGIC(A) = ozc) =1.

n—oo

73



Chapter 7

Simulations

In this chapter, we consider three simulation experiments (Experiments I-III) in the fol-
lowing three sections corresponding to Examples 2-4 given at the beginning of Chapter 5.
We shall examine their finite sample behaviors and compare them with their asymptotic
results developed in Chapter 5.

7.1 Experiment I: Polynomial Order Selection

In this experiment, we consider p = 3 monomials, z;(s) = (sn™%)7; j =1,...,3, of (5.5) as
the explanatory variables. We generated the'data at s; = in~0=9 € [0,n%]; i =1,...,n,
for some § € [0, 1) according to the following:

Z(s;) = xo(s;) — 2x1(8;) +4xa(s;) +m(s;) +€(s;); i=1,...,n,

where cov(n(s;),n(s;)) = o7 exp(“hnolsi =78;), €(-) ~ N(0,02;) and the parameter
values are chosen as (07, fiy0,029) = (0.5,1,0.5)". Denote the collection of candidate
models as A = {ag, a1, ag, ag}, where ap = 0 and o; = {1,...,5}; j = 1,2,3. Note that,
zo(-) = 1 is always included in the model and the smallest correct model is a° = «s.
We consider two ¢ values: § = 0 and 6 = 0.75, corresponding to the fixed domain
asymptotic and increasing domain asymptotic frameworks. For each case, we consider six
different sample sizes (n = 100, 500, 1000, 5000, 10000, 50000). Figure 7.1a shows the
mean, zo(-) — 2z1(+) + 4xo(+), and a typical realization of data for § = 0 and n = 100.

The results are shown in Table 7.1, and Figures 7.2 and 7.3. Table 7.1 shows the
frequencies of models selected by BIC and GIC with A = 2logn for Experiment I based
on 100 simulation replicates. Basically, BIC tends to select the smallest model oy when
0 = 0, and tends to select a® when 6 = 0.75 particularly when n is large regardless of
whether the covariance parameters are known or unknown, which is consistent with the
theoretical results developed in Theorems 6 and 7. Similar results can be seen for GIC
with A = 2logn. Notice that when § = 0, a very large sample size is needed for BIC to
achieve the asymptotic result of selecting only «g, which is especially the case when the
covariance parameters are unknown. On the other hand, GIC with A\ = 2logn requires a
much smaller sample size to achieve the same asymptotic result.

Figures 7.2 and 7.3 show the probability density functions for 67(«), &,(a) and 672 ()
under 0 = 0 and 0.75 based on 100 simulation replicates. As expected from Theorem
4, we see that both 67(a) and &, (a)o2(a) tend to 07 and k07, for all cases except
for ap and aq with 6 = 0.75, where the converge rate of the two estimates for a larger o
tends to be slower (see Theorem 4). When § = 0.75, we see from Figure 7.3 that both
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Figure 7.1: Mean functions and simulated data from (a) Experiment I, (b) Experiment
II, and (c¢) Experiment III for § = 0 and n = 100.

Table 7.1: Frequencies of models selected by GIC with two tuning parameter values of A
for Experiment I based on 100 simulation replicates.

A n known (o7, ki, 07) unknown (07, iy, 07)
6=0 0 =0.75 0=0 0 =0.75
&) Q1 Qg Q3 | @p O [$%] ag Qo Q1 Qg Q3 | @p g &5] a3
log(n) 100 22 37 41 0 |10 59 29 2 3 37 59 1 | 8 16 1 0
500 39 18 31 12| 0,729 068 3 51 28 17 3 0 28 70 2
1000 40 29 24 7 0 1090 0 60 29 10 1 0 9 91 0
5000 54 23 22 1 0 0 99 1 48 18 31 2 0 0 98 2
10000 | 65 23 12 O 0 0~ 100 -0 32 18 45 5 0 0 100 O
50000 | 69 22 9 0 0 0100/~ 0 45 16 38 1 0 0 100 O
2log(n) 100 84 11 5 0 1487 48 4 0 74 21 5 0 | 8 16 1 0
500 83 11 4 2 077426 0 96 4 0 0129 54 17 0
1000 86 9 4 1 0 49 51 0 98 2 0 0 2 57 41 0
5000 90 7 3 0 0 0 100 O 96 3 1 0 0 0 100 O
10000 | 95 4 1 0 0 0 100 O 93 7 0 0 0 0 100 O
50000 | 100 0O 0 0 0 0 100 0 |100 O 0 0 0 0 100 O

67 (c) and y,(a) tend to their theoretical convergence values as n increases. In contrast,

when § = 0, both 67 (a) and &, (c) display no clear convergence pattern, because neither
of them converges to a degenerate distribution (Chen et al. 2000).

7.2 Experiment 1I: Spatially Dependent Regressors

In this experiment, we consider p = 3 spatially dependent processes, z;(s); j = 1,2, 3,
of (5.6) with 0]2- = r; = 0.75 as the explanatory variables. We generated the data at
s; =in" (170 € [0,n%]; i =1,...,n, for some § € [0,1) according to the following:

Z(si) = xo(s;) + x1(8i) + wa(s;) +n(si) +€(sy); i=1,...,n, (7.1)

where cov(n(si),n(s;)) = 07 exp(—knolsi — s51), €(-) ~ N(0,02,) and the parameter
values are chosen as (07, fino,0c0) = (0.5,1,0.5). We consider exhausted search over
all possible models with A = 2{1:23} where a;’s are defined in Table 7.2. Note that,
zo(+) = 1 is always included in the model and the smallest true model is a® = a3. Similar
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Figure 7.2: Probability density functions for the ML estimates of covariance parameters
in Experiment I with 6 = 0 based on 100 simulation replicates, where the solid lines, the
dashed lines, and the dot-dashed lines correspond to n = 50000, 10000, 5000, respectively,
and the vertical dotted lines correspond to the convergence values of the ML estimates.
Some density functions have support outside displayed regions.

to Experiment I, we consider two ¢ values (6 = 0, 0.75) combined with five different
sample sizes (n = 100, 500, 1000, 5000, 10000). Figure 7.1b shows a realization of the
mean, xo(-) + z1(-) + z2(-), and a typical realization of data for § = 0 and n = 100.

The results are shown in Tables 7.3 and 7.4, and Figures 7.4 and 7.5. Tables 7.3 and 7.4
show the frequencies of models selected by BIC for Experiment II based on 100 simulation
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Figure 7.3: Probability density functions for the ML estimates of covariance parameters in
Experiment I with 6 = 0.75 based on 100 simulation replicates, where the solid lines, the
dashed lines, and the dot-dashed lines correspond to n = 50000, 10000, 5000, respectively,
and the vertical dotted lines correspond to the convergence values of the ML estimates.
Some density functions have support outside displayed regions.

replicates. Basically, BIC tends to select a3 = a® when 6 = 0 and § = 0.75 regardless of
whether the covariance parameters are known or unknown, which is consistent with the
theoretical results developed in Theorems 9 and 10.

Figures 7.4 and 7.5 show the probability density functions for 67(«), &,(a) and 672 (a)
under 6 = 0 and § = 0.75 based on 100 replicates. We show only a nested sequence
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Table 7.2: Candidate models for Experiments 1T and III.
Models Qp (05} Qo (0% Quy (071 Qg (0%4

indices 0 {1} {2} {12} {3} {1,3} {23} {1,2,3}

Table 7.3: Frequencies of models selected by BIC for Experiment II with {0727, Koy O2
known based on 100 simulation replicates.
n 0=0 0 =0.75
Qo 1 Qo Q3 Q4 Q5 Qg Q7 | Qg Q1 Qg ag Q4 Q5 Qg Q7
100 0 0 0 8 0 0 0 1410 0 0 98 0 0 0 2
500 0 0 0 8 0 0 0 18] 0 0 0 99 0 0 0 1
1000 0 0 0 8 0 0 0 1110 0 0 99 0 0 0 1
5000 0 0 0 98 O 0 0 2 0 0 0 100 O 0 0 0
10000 | O 0 0 98 O 0 0 2 0 0 0 100 O 0 0 0

of models, ay C a3 C a3z C a7, including two incorrect models ay and a;, the smallest
correct model as, and the full model ;. As expected from Theorem 8, we see that both
62() and k()07 () tend to 02 and 6, , defined in (5.118) for all cases. When § = 0.75,
we see from Figure 7.5 that both 67(«) and &, () tend to their theoretical convergence
values as n increases. In contrast, when § = 0, both 62(a) and &,(«) display no clear
convergence pattern, because neither of them converges to a degenerate distribution (Chen

et al. 2000).

7.3 Experiment III:"'White Noise Regressors

In this experiment, we consider p = 3 white-noise processes, z;(s); j = 1,...,3, of (5.7)
with 0]2- = 0.6 as the explanatory variables. We generated the data at s; = in~(17% ¢
[0,n°];i=1,...,n, for some § € [0,1) according to (7.1) with the parameter values chosen

as (07, kino, 0co) = (0.5,1,0.5)". We consider exhausted search over all possible models
with A = 21123} where a;’s are defined in Table 7.2. Note that, zo(-) = 1 is always
included in the model and the smallest true model is a¢ = «3. Similar to Experiments
I and II, we consider two ¢ values (6 = 0, 0.75) combined with five different sample
sizes (n = 100, 500, 1000, 5000, 10000). Figure 7.1c shows a realization of the mean,
zo(+) + x1(+) + x2(+), and a typical realization of data for § = 0 and n = 100.

The results are shown in Tables 7.5 and 7.6, and Figures 7.6 and 7.7. Tables 7.5 and 7.6
show the frequencies of models selected by BIC for Experiment I1I based on 100 simulation

Table 7.4: Frequencies of models selected by BIC for Experiment II with {03]7/{77,062
unknown based on 100 simulation replicates.
n 0=0 0=1
Qp 1 Qo Q3 Q4 Q5 Qg Q7 | Qg Q1 Q3 ag Q4 Q5 Qg Q7
100 0 0 0 94 0 0 0 6 0 0 0 94 0 0 0 6
500 0 0 0 99 0 0 0 1 0 0 0 99 0 0 0 1
1000 0 0 0 99 0 0 0 1 0 0 0 99 0 0 0 1
5000 0 0 0 97 0 0 0 3 0 0 0 100 O 0 0 0
10000 | 0O 0 0 98 O 0 0 2 0 0 0 100 O 0 0 0
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Figure 7.4: Probability density functions for the ML estimates of covariance parameters
in Experiment II with 6 = 0 based on 100 simulation replicates, where the solid lines, the
dashed lines, and the dot-dashed lines correspond to n = 50000, 10000, 5000, respectively,
and the vertical dotted lines correspond to the convergence values of the ML estimates.
Some density functions have support outside displayed regions.

replicates. Basically, BIC tends to select a3 = a® when 6 = 0 and § = 0.75 regardless of
whether the covariance parameters are known or unknown, which is consistent with the
theoretical results developed in Theorems 12 and 13.

Figures 7.6 and 7.7 show the probability density functions for 67(«), &,(a) and 672 ()
under 9 = 0 and § = 0.75 based on 100 replicates. As in Experiment II, we show only
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Figure 7.5: Probability density functions for the ML estimates of covariance parameters in
Experiment IT with 6 = 0.75 based on 100 simulation replicates, where the solid lines, the
dashed lines, and the dot-dashed lines correspond to n = 50000, 10000, 5000, respectively,
and the vertical dotted lines correspond to the convergence values of the ML estimates.
Some density functions have support outside displayed regions.

a nested sequence of models, ag C a3 C a3 C ay7. As expected from Theorem 11, we

see that both 62(a) and &, (a)&;(a) tend to their theoretical values given in the theorem
for all cases. When ¢ = 0.75, we see from Figure 7.7 that both 62(«) and &,(c) tend to
o7 and ryo as n increases. In contrast, when § = 0, both 67() and &,(a) display no
clear convergence pattern, because neither of them converges to a degenerate distribution
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Table 7.5: Frequencies of models selected by BIC for Experiment III with {af], Ky, O

known based on 100 simulation replicates.

n 0=0 0=0.75
Qo QG Q3 | oy &5 Qe Q7 | &g Q1 @y Q3 | g Q5 Qg Q7
100 0 0 0 9 | 0O 0 0 10| O 0 0 97 |0 0 0 3
500 0 0 0 96 | 0 0 0 4 0 0 0 100 | O 0 0 0
1000 | 0 0 0 100| O 0 0 0 0 0 0 100 | O 0 0 0
5000 | O 0 0 98 | 0 0 0 2 0 0 0 100 | O 0 0 0
10000 | 0O 0 0 98 | 0 0 0 2 0 0 0 100 | O 0 0 0

Table 7.6: Frequencies of models selected by BIC for
unknown based on 100 simulation replicates.

Experiment III with {02,/@,,0

n 0=0 0=0.75
Qo Q1 Gy 43 g Q5 QG Q7 | &p Q1 @y Q3 g A5 Qg Q7
100 0 0 0 9 0 0 0 410 0 0 97 0 0 0 3
500 0 0 0 99 0 0 0 1 0 0 0 100 O 0 0 0
1000 | O 0 0 100 O 0 0 0 0 0 0 100 O 0 0 0
5000 | O 0 0 100 O 0 0 0 0 0 0 100 O 0 0 0
10000 | O 0 0 99 0 0 0 1 0 0 0 100 O 0 0 0

(Chen et al. 2000).
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Figure 7.6: Probability density functions for the ML estimates of covariance parameters
in Experiment III with 6 = 0 based on 100 simulation replicates, where the solid lines, the
dashed lines, and the dot-dashed lines correspond to n = 50000, 10000, 5000, respectively,
and the vertical dotted lines correspond to the convergence values of the ML estimates.
Some density functions have support outside displayed regions.
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Figure 7.7: Probability density functions for the ML estimates of covariance parameters in
Experiment I1I with § = 0.75 based on 100 simulation replicates, where the solid lines, the
dashed lines, and the dot-dashed lines correspond to n = 50000, 10000, 5000, respectively,
and the vertical dotted lines correspond to the convergence values of the ML estimates.
Some density functions have support outside displayed regions.
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Chapter 8

Summary and Discussion

In this thesis, we study asymptotic properties of geostatistical model selection. We find
that asymptotic behaviors of GIC and CGIC depend not only on asymptotic frameworks
but also on the smoothness of explanatory processes in space. For example, if the domain
does not grow fast enough, GIC may select the smallest model asymptotically under
some situation, and may possess different asymptotic properties if the domain grows in
different rates. In addition, we find that the convergence rates of the ML estimates of
covariance parameters also depend on the growth rate of the domain. In particular, we
show that some covariance parameters are overestimated and some are underestimated by
ML when fitting an incorrect model. These results are interesting and somewhat unique
in geostatistics and geostatistical model selection.
The following are some topics we consider for further research.

8.1 Zeros of Covariance Parameters

In Chapter 5, we assume that {07, x,,0?} are all positive. How if some of them is zero?
When o7 = 0, the model of (3.1) reduces to the traditional regression model. However, it
is of interest to study GIC to cover either 62 = 0 or x, = 0, which require modifications

of theorems and their proofs to avoid singularity.

8.2 Other Covariance Structures

In Chapter 5, we consider the exponential covariance function class. There are many other
covariance function classes that can be considered for 7(-). For example, we may consider
the Gaussian covariance function class defined in (2.4) or the Matérn class defined in
(2.5), and study their asymptotic behavior for GIC or CGIC.

8.3 Sampling Designs

In this article, we focus on regular designs for the sampling locations in a one-dimensional
domain. Asymptotic properties of GIC and CGIC for higher-dimensional spaces and
some other commonly used spatial sampling designs, such as simple random sampling
and stratified sampling, are of interest and require further research.
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8.4 Continuous Functions as Explanatory Variables

In Chapter 5, we consider polynomial order selection. It is of interest to extend the poly-
nomial variables to continuous or smooth functions. We conjecture that the asymptotic
results similar to Theorems 6 and 7 can be extended from polynomials to functions of
bounded variation.
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Chapter 9

Appendix: Proofs

Proof of Lemma 1
By (3.8), we have E((n + €)M (a)’S™'M (a)(n + €)) = p(«), which gives (3.9).

Proof of Lemma 2

First, by (3.8), we have for a € A,

IR o) ~ I¥Mat) = S0+ ) (Mi@)= ™ M(a) ~ M(a)S™ M(a)(n + €)

= X’p(a) —=p(@?) >0,

with x2(p(a) — p(a©)) denoting the chi-square distribution with p(a) — p(a©) degrees of
freedom. Hence we obtain (3.10).~ Second,(3/11) follows trivially from (3.9). Last, by
(3.8) and (3.12), for any « € A\ A", we have

L¥(a) = L (%) = W A(a)S ' A(a)pu + 0,(1) — oo,

as n — oo with probability tending to 1. Hence (3.13) follows. This completes the proof.

Proof of Lemma 3

Since S and Z are jointly Gaussian,

E(S|1Z) = p+3,27(Z - p), (9.1)
E|S —E(S|Z)|* = tr(var(S|2)) =tr(%, - E,X7'%,) = oltr(Z,E71).

In addition, from (3.16),

E[[S(a) ~E(S|Z)IP = E|(H(a) = Dp+ (H(a) = Z,27") (0 +¢)|?

E|(H(a) = Ip|* + El(H(a) = 2,57)(n + €)|”

= ol A(a)S?A(a)p + ottr(M (o) * M (a)X)
()X ?A

(a)p + ot (S M (a)).

— —

= oW A()

Therefore, we obtain (3.17). This completes the proof.
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Proof of Corollary 1
By (4.5) and (3.9), it suffices to show that for o € A\ A°,

. 1 , -1 _ 2 2
EEE; mu Al)XTA(a)p = Z S0 > 0. (9.2)

j€a\a
Since
W A(a) S Alo)u (X (oS IX 0\ @) .
Ve = ooy (FEE O g a)
(X (0 )X (0) (X () S X (a) !
- ““‘”( (=) )( (=) )

X (X(a)liz;{()ac A a))ﬁ(ac \ @),

it is enough to show that
o3, ifj =7,
0; ifj#J,

where X is the jth column of X. The desired result then follows from

1
X'y 1X, =
n— oo tr(z_l) J ! {

1 I+l _ [} iti=1,
RIS Xﬂ’)_{o; if j # 7,
and
var ;X{E_lX'/ = ;ozaztr(E_Q)
tr(x-1)" Y X (tr(3-1))2 777
1

2 2 -1
oAt
1

2
0,
o2r(n-1) 9%

asn — oo for 1 < j < 5/ < p by applying Chebyshev’s inequality. This completes the
proof. O

Proof of Corollary 2

Since (4.8) holds trivially, it suffices to check (4.7), which follows from (9.2) and the
assumption of lim tr(E’l) / A = oco. This completes the proof. O

n—oo

Proof of Corollary 3

The proof is essentially the same as that for Theorem 3 except (A.2) and (A.3) are now
replaced by (A.2’) and (A.3’) in proving the corresponding statements. For example,
(4.21) holds because E(X/X71(0,)(n + €)) = 0 and

1 1
lim —var(X;%7'(6.)(n +€)) = lim —tr(X7(0,)%(00) % (0,)E(X; X)) < .
n—oo Tn n—oo Tn

Details of the proof is omitted. O
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Proof of Lemma 4

By (5.2), Gunt = (1(51),60,. .-, £,)', which gives n = G
variance on both sides, we have

%, = G,'D,(G,"),

(n(s1),&2,...,&). Taking the

where
n(s1) 1 0 0
2 :
D, = var 2 = 0,3 O 1=r
: 0
&n 0 0 1-p2

It follows that
3= Ggl(Dn + UfGnG;)(Ggl)a

and hence

>'=G (D, +7G,G) G, =G T 'G,,
where the second equality follows from D,, + 0?G, G’, = T,, obtained by direct computa-

tion. This completes the proof.

Proof of Lemma 5
For (5.12), we start by writing T}-in terms of

J1(pn) _pno'eQ 0
—ang fl(pn) —pnﬁf

0

2
—Pn0O¢

Fi(on) /i

By, = 0 —pn0? fi(pn)
0 oo 0 _pngg
Then
det(T}) = (07 + 07) det(Bg_1) — p2otdet(By_s),
and

det(By-1) = fi(pn) det(By—o) — prot d

et(By_3),

for k > 3, where det(By) = 1. Solving the difference equation of (9.6), we have

det(Bk_l) =

where

Fa(pn) = (fr(pa) + (f7(pn) — 4phod)"?
and

F3(pn) = (fr(pn) = (fE(pn) — 4p708)"?
Hence by (9.5)

Uzk(fzk(Pn) - f§(pn)>
ft(pn) — 4p2ot)t/2”

)(202) 7,

)(209)7".

(03 +02) 13" () = P20 3" (pn) (o7 +02) 3" (pn) = prolfi"

(9.3)

O

(pn>.

~2n det(Tj,) =
oc " det(T;,) (o) — A2t
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Consequently, for (5.12) to hold, we remain to show the following:

<ff<pn§31(i’;ia4>l/2 = o(exp(—n?), (9-8)

which can be obtained if the following two equations are satisfied:

(F2(pn) = 492012 = 2(2w,0%02) 200012 4 O(~30-0012), (99)

ne
f(pn) = o(exp(—7n°)), for some constant 7 > 0. (9.10)

For (9.9), we note by (5.3),
Pk =1—kx,n 70 £ O(n2179); keN. (9.11)
It follows that

filon) —4phol = (1= ph)oz+ (14 p})o?)” — 4piot
= (Lo} + 201 = ph)oko? + (14 7! dgle!
(1= p)2o, +2(1 - pn)a ol 4+ (1—pi)’o!
= 8/@70071 (19 4 O(n=2179)),
For (9.10), we note by (9.11),
filpn) = (1=ph)os+ (1+ )0’
= 207+ (1 —p}) (o5 =02) =202 +2r,(0 — 02)n ~(1=9) L O(n~201-9)),
It follows that
filpn) = (f2(pn) — 4p202)?

f3(pn) = 20,2
2 2 _ 2 —(1-8) _ 2,,211/2),~(1-6)/2
_ 207 +2(0, — 02)kgn — 2(2k,0,02) " n +O(n’3(1’5)/2)
0-6
= 1- (2/{,7072]06_2)1/271_(1_5)/2 + O(n~ 179, (9.12)

Since it is not difficult to show that f3(p,) < 1, we have

log f3"(pn) < 0= log(fs(pn))
_ _(2,%710727 )1/2 C+O( (1- 6/2+c)

where the equality follows by (9.12) and log(l — z) = —x + O(2?) as * — 0. Taking
T = (2ky020, )2, we obtain (9.10). This completes the proof of (5.12).

For (5.14) and (5.15), we first define W; (k, /) to be the (j, — 1) x (j, — 1) matrix
resulting from deleting row k& and column ¢ of T; , for 1 < k,¢ < j,, then

O (. ) = (~ 1) (det (T, )) ™ det (W, (k. 0)). (9.13)

Note that for 1 < k < /{ < j,,



where T,_; and B;,_, are defined in (5.9) and (9.4), respectively,

—on0? fi(pn) —pno? 0 e 0
0 _pno.? fl(pn> _pno'g ' :
Pm = 0 0 _pno_€2 fl (pn) hE 0 ’
0 0 0 _pno-? i _pnaez
S fi(pa)
0 0 e 0 0 —ppo?

is an m X m matrix, and Py = Ty = By = (). Similarly, for 1 < /¢ < k < j,,

T,, O 0
w, k0= =« P_, o0 |. (9.15)
* * Bjn—k

It follows from (9.14) and (9.15) for 1 < k., ¢ < j,, that
det(W;, (k, 0)) = det(Tmin(k,0)—1) det(Pr—g) det(Bj, —max(k,0))- (9.16)
Hence, by (5.12), (9.7), (9.8), (9.13) and (9.16),
(=) (—p,uo2)=tdet(B;, )
det(T5;)

B Iy P o o(T exp(—n®/?
~ (G + oD Hlp) = 72 2(f2(ﬂn)) +olrexp(=n"),

for 1 <V <j,— n(1=9 C)/Z, and
) —1)nt nO; In=t det (1
Cjn(]nag) ( ) ( () ) ( - 1)

- ! P " o(T exp(—n/?
— falpa)o? (f2<pn>> + olrexp(—n"),

;. (1,0) =

n

for n(1=0+4)/2 < ¢ < j,..
For (5.16), it is not difficult to show that fa(p,) > 1. Hence, by (5.12), (9.7) and
(9.16), we have | Inax. Cj,(k,0) = Cj,(jn/2, jn/2). Hence,
SRAESIn

_ det(T}, j2-1)
1 c/4
- 02 gn gn/2+1(pn) det(Bjn/Q) + 0(exp(—7-n / ))

= - —— + 0(exp(—7n°/4))
20 [ () (TR (pe) — AR01) 7

1
— (1-6)/2 —(1-9)
= (8&70%0;2)1/271 +o(n ),
where the first equality follows from (9.13) and (9.16), the second equality follows (5.12),
the third equality follows from (9.7) and (9.8), and the last equality follows from (9.9).
Thus, we obtain (5.16).
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For (5.17), by (5.12), (9.7) and (9 16) let ¢ = ((07 + 02) falpn) — pio?) /(02 +
02) f3(pn) — p2o?), we have for i = 1,.

Colii) = < _ . )( n(;l 4p:(:;§§n))+o(exp(—rnc/2))
) @ o B o i + ol

— ¢

(pn) >

fs 2(pn) 5" (on) ( ) (f2(pn) — 4p2ot)1/?
(pn)
(Pn)

n 141
— <1 ¢f pm) = Z” + o(exp(—7n?)),

(ft(on) 4,0 o)l

’I’L

where the last equality follows from (9.10). Hence, we have
tr(T) = Z C(i,1)

- B f (pn) fn H—l 1 olex _Tnc/?)
‘( 0% Bl - L e ) Gy o)

= (n- &3 (pn) + £3(pn) | P

- ( f2(pn)f3(pn)(f2(pn)_f3<pn)))(f12(pn)—4p%a'él)1/2+ (exp( )
P30/

BECT AR

where the second equality followsfrom

n fgf*?(pn) . f22(:0n> olexh( — 71
Z;?%m“M%wmm—Mm»+<p( )
) £2(on) e

ZZ:; ;_H_l(pn) a f2(pn)<f2(pn)_f3(pn))+ (exp( )

and the last equality follows from ¢ = 1+ O(n=(179/2) (9.9) and (9.10) that

1 n(1-8)/2 o
f2<pn> - f3(pn) N 2(2/4;?70'%0-6—2)1/2 + ( )7

and

1 1 (1-9)/2 e
(f2(pn) — 4920012~ 2(2k,0202)1/2 +0(n )- (9.17)

Thus, (5.17) is obtained.
Finally, we prove (5.18). By (5.12), (9.7) and (9.16), for k£ < ¢, we have

_ 216_2(pn) - ¢f:§_2(pn) [—k 2n_£+1(pn) —J3 €+1<pn) olexp(—7rnc/?
i) = (B ) (S )+ oew( )

_ ( 21c—£( n) — ¢f 2(pn) 3 E—H(pn)

Pn_ o(exp(—mn?)).
s ) T g o)
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Hence, let Cﬁl)(k,f) be the (k, ¢)th element of TV we have for k, 0 =1,...,n,

te(T TV = ZC (b, k)CM (ke k) + 2~ Co(k, OCO (, €)

k<t
(1) -k 1—s
PnPn n 2-45
= 2 — +0(n*?)
22% (Jé(pn)fb( ph >) (4<2mnanaz>V2<2m$>oé”20£1”>1/2)
(5—38)/2
= : +0(m*™),

1 1)2 1 1)2
2202 sy oy )2 ()12 + (il ) 112)

where the second equality follows from (9.17),

S i) - 208 R Gem)

k=1 ¢=k /2 f2(Pn fa(pn) f (
n k
— O nt-9r2 (f3(ﬂn)))
( kz:; fQ(pn)
= 0,
"= ) [ papt) s falpa) VT s (o) T
— 2nk+1<,0n)<f2(p£11))) e (fz(pn)) ;(fQ(pg))>
n n—_0+1
— O pt-0/2 (fs(%)) )
( =1 fZ(pn)

DR ek S (o) Fao) )T (e
e (f2(p")f2<P7(1))) (Pnﬂn) k (fQ(Pn) 2(P$zl))) = <f2(Pn)f2(Pn ))

o <f2(:0n)f2(/)n )) Z (fz(/)n)f2(/)7(zl)))

(n<1—6>/2 3 ( 3§pn)f3(p21)))””1)

Fa(pn) F2(p)

I
Q

Il
S

(n~9)

b
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and the last equality follows from
S5 (o
(1)
k=1 t=k+1 f2(Pn)f2( )

(1)
n nfPn n n TL c
Falpa) Fa(ph”) = pupn <f2(pn)f2( ) papn’)?
(1-6)/2
nn
B 2.+2)1/2 1) (12 _(1)2y1/2 + O(n'™).
(2640502)' 2 + (26 "o “oc ")
This completes the proof. O

Proof of Lemma 6

We first prove (5.22)-(5.24). By (5.10), (9.9), and (9.11), we have

Silpn) = (fi(pn) — 4p2al)/?

f4<,0n) = 2Pn0'2

(1= )02+ (1 + )2 miflingg?od) P 0902

= +o(n )
2:071052
—(1-8) 2 2 —(1-5) 2 1/2,) —(1-5)/2
_ P )Un + 2022k, 402 — (8K, or07) /29— (1=0)/ + on-0-)
2p,07?
- 1- (2/%70,20;2)1/2 —(1= 6)/2+O( (1- 6))
That is, we obtain (5.22). By (9.11) and (5.22), we have
oy = A1en)+ ilon) = 44 0l)'/?
—(1-6 —(1-6
_ 202 + 2(0} — 2)kgn (1-0) 4 2(2/<cna,270€2)1/2n (1-38)/2 4 O(n-30-92)

2
207

= 14+ (2/@170206—2)1/271—(1—5)/2 + (0727 - 062)06—2%77”—(1_5) n O(n‘(l“s)),
and hence (5.23) holds. Applying log(1 —z) = —x + O(2?) as x — 0 to (5.22), we have
108 () = Fi(pe) — 1+ O(Ufa(pn) — 1)) = ~(2,02072) 20~ 0=/2 1 O (=09

Thus (5.24) is obtained.
We remain to show (5.25). Applying log(1 — z) = —z + O(z?) as  — 0, we have
log f{"(pa) < n"=**log fu(pn)
_ n(176)/2+c 10g(1 . (2,{” 2 72)1/2 —(1-9) /2) + O( (1- 5)/2+c)
— _(25”0}2} )1/2 ¢y O( (1— 6)/2+c)

Taking the exponential on both sides of the above equation with 7 = (2k,020,2)"/? yields
(5.25). This completes the proof. O
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Proof of Lemma 7

Let F,, = (Fy,..., F,) = Q,u,, where v = (vy,...,v,) is given in (5.20). Since T,, =
var(v) by (5.19), we have var(F,) = Q,T,,€ , and hence

T, ' = Q) (var(F,)) '$,.

Therefore, to prove (5.26), it is enough to show that

—1 Al 0 2¢/3
(var(F,)) " = (j)n (fQ(pn>02)_lIn—j + o(exp(—mn*"")). (9.18)
By (5.20) for any m € N,
m—1 m—1
F = ff(pn)vm—k = Z ff(pnxum—k - f4(ﬂﬂ)um—(k+1)) = Up — f1" (pn)0-
k=0 k=0

It follows that '
F, = (F; , (4,41, un) + f7" (pn)uofn—j,)"),

where ;. = (1, fa(pn), - -, £17"(pn)). Tt follows that
— Ajn 0 _ 4c/5
var(F,) = ( o A ) + o(exp(—1n*/?)), (9.19)

which follows from (5.25), (5.28) andicov(v;,; up) = (— fa(pn)var(ug),0,...,0)’, by (5.20).
Since

1 0 0 0
—falpa) T 0 :
Q' = 0 —fulpa) 1 0 |
KPR PO PO |
0 0 —fulpn) 1

it follows from (5.16) that all elements of Aj_n1 = (Q}n)_lfl”];lﬂj_nl are less than or equal
to 4n1=9/2, This together with (9.19) give (9.18). Thus (5.26) is obtained.

Proof of Lemma 8

First, we prove (5.29). By (5.8), we have det(G) = 1 and hence by (5.11) and (5.12),

det(2(0)) = (det(G")) ' det(T,)(det(G,1))~"

= det(T},)
n—1
e 12’2)04>1/2 (0% + 02) alpn) — p202) + olexp(—7n/2)).
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It follows from log(z + A,) = logx + O(A,/x) as A, — 0 that
log(det(22(6)))
n-1

_ (pn) 2 2 2 2 c/2

- IOg ( (fl (pn) 4p%0_3)1/2 ((Un + O )f?(pn) pnae> + O(QXp( ™ ))

= nlogo? + (n— 1)log(fa(pn)) +log((0, + 07) fa(pn) — o)

—log((f7(pn) — 4p70:)"?) + o(exp(~Tn?))

= nlogo? + (n— 1) log(fa(pn)) + log(oy) —log((f7(pn) — 4p;0)'*) + O(n=1=072)

= nlogo? + (n—1)log(fa(pn)) — logn =" + O(1)

= nlogo? + (2/@na§0;2)1/2n(1+5)/2 — (kp(op + o) o Hn® —logn' =972 4 o(n) + O(1),

where the third equality follows from (9.11) and (5.23), the fourth equality follows from
(9.9) that

log((£2(pn) — 420)?) = 2= 210gn 1+ 0(1),

and the last equality follows from a Taylor expansion of log(f2(p,)) at fa(pn,) = 1 and
together with (5.23) that

o2 — g2
log fa(pn) = (26,000, 2) 20~ 0792 — (25,020 72 )n =1~ 6, In " % Sk ~(1-9) L O (n~30-9)/2)

Hence, (5.29) is obtained.
Second, we prove (5.30). By (5:11),
S GIDE)
where G and DYV are given in (5.8) and (9.3) with 07, iy and p, are replaced by 07(71)2,
/<;1(71) and p&l) = exp(—%%l)n’(l’é)), respectively. It follows together with (5.11),
(V2 0) = t(GP'DYV(GY )G T, G,)
= tr(DY GV G TG, G<1 1)
= o1 - (GG T, GGV
+o2p%tr(ere) (GV) G T, GGV,

where e; = (1,0,...,0)". Therefore, for (5.30) to hold, it remains to show that

el (GG T GG er = 0(1), (9.20)
and
RGO TG, ey — M s e (s )
2(2’%0727‘762)1/2 2;-@,70% 45571)/%02
Folr) 00 (921)

Before proving (9.20) and (9.21), we compute some matrices that are used very often in
the followings. First,

10 0
(1)
cgoi_| 1
n . 0 Y
pgbl)n—l ngl) 1
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and hence

1 0 0 0
pg) — Pn 1 0 0
GGV = | ok —pa) o =
: 0
o = o) P =) P = 1
= I+ (p) = pa) L, (9.22)
where
0 0 0 0
10 0 0
W=\ oY 1 o0 (9.23)
: IR .0
pgll)n—Q o pq(zl) 10

Second, for €2 defined in (5.27), we have

0 0 0 0
1 0 0 0
QLY = | g1(pp)is. 1 0o .o, (9.24)
: LN : o0
gn—2(pn) g1 (pn) 1 0

where fort=1,...,n — 2,

9i(pn) = filon) + 5P + -+ falpa) o+ pl
1)i+1 i
P F Y (p,)

- . (9.25)
p7(11) - f4(pn>
Now, we prove (9.20). By (9.22), it is enough to show
eT, 'e; = O(1), (9.26)
(0 = p)? e LY T, L Vey = O(1), (9.27)

For (9.26), it follows easily from (5.14) that C,(1,1) = O(1). For (9.27), by (5.26) with

some ¢ > 0 such that n* = n1=9/2+¢ < n_ we have

T, 0O
0 O

(P = p)’e LY T LVer = (ol = pa)’ei L)Y ( )Li”el +o(exp(—n/?)

(107(11) - pn)2

f2(pn)ae2
1) 2 )
- %em Q;(g O )nan>e1+o<1>
2(Pn O'E n—n*

= o3 )

= O1),

0O O
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where the second equality follows from

e’ng)’(%" 8>L,<3>e1 = O(1,.T,-1,-)

— O(n(l—é)/2n*2) _ O(n2(1—6))’

and
P = pn = (kg — [0 4 O(n2079), (9.28)

the second last equality follows from (9.24) and (9.28), and the last equality follows from
(9.25) that

- 2 N -0 16( 1 1 . 2 >):O 2(1-9) )
;gz (p ) (n 1_ ,07(11)2 + 1_ ff(ﬂn) 1_ ,07(11)f4(,0n) (Tl )

Thus, (9.20) is obtained. Next, we prove (9.21). By (9.22), we have

tr((G,.GV YT 'G,GV1)
= (T, ") + 20 — pu)tr(T, ' LY) + (o — pp) (LY T, L)
= 271 (2k,0002) P02 4 2(p) — p)tr (T, ' LED)

+(pl) — po)*tr(LY' T, LY) + O(n' ),

where the second last equality follows from (5.17). Therefore, for (9.21) to hold, it remains
to show that

0
B Kiy— K
(0 = pu)en (T B A o), (9.29)
nn
_ (M2
() — (LT L) = Y ) o, (00)
4/{%1)/@70727

For (9.29), we have

A N (G

S, o o
gy (Q;( 0 I >QnL£})) + o(exp(—7n?))

f2(pn)062
P(l) —p 0 O (1) 1-6
o n n / —
— fg(pn)dgtr<ﬂn( 0 I . >Q,LLn ) +o(n %),

where the first equality follows from (5.26) and the last equality follows from (5.16) that,

_ O(n—(1—5)/2n*2)

= o(n'™).
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Therefore, for (9.29) to hold, it remains to show that

(1)

Pn’ — Pn (0 0 ) (1))
P~ Prir( 2 Q, L{
fo(pm)o? ( "(0 L.

(1)

= W Z(gz(pn) Z+1(pn) + gz‘—l(lon)ﬁ(pn) + o+ falpn))

(;07(11) - pn) - ( f4(pn)P$ll) _ ff(pn)
F2(p)o2(pi) — falpn)) S \1 = falpn)py) 1= filpn)

) + O(GXp(—TTLC/Q))

(K — m(?l))n—(l—a) n(1-8)/2 n(1-9)/2 .
B o? (2ky02072)12 2(2k, 020 72)1/2 (n —n') +oln)
(kn — "’fsil))
= 4 7/ , 9.31
4o n+o(n) (9:31)

where the first equality follows from (5.27) and (9.24), the second equality follows from
(5.25) and (9.25) that

(0 = Faon))(9:(pa) £ (pn) + 9i-1(pn) Filpn) + -+ filpn))
= (o falpa) + -+ (P Fa(pa)) ) = () + -+ 17 ()
. pgzl)f4(pn) _ ff(pn) . c
= 1_ ,07(11)f4<,0n> 1— ff(ﬂn) + O(GXP( ™ ))7

for i = n*,...,n, and the third equality follows from (9.28),

1 n(1-0)/2
— + o(n1=9/2), (9-32)
pr = falpa)os ruogg )2
(1 (1-8)/2
pn_ falpn) _ m + o(n(=9/2), (9.33)

1—pi falpn)  (2hnoios?)'?
and

L—f(pn)  2(2ky02072)1/2
Thus, (9.29) is obtained. For (9.30), we have
/ f T« 0
1) _ 2 ' =171y _— 1) _ 2 (1) n (1)

(08 = p)? [ rayey (OO
M ) el LW Q. LW

+ fz(pn)aeg r n n 0 In—n* ndp

+0(exp(—7'nc/2))
1) 2 )

_ (anz . )TQ)_H (Lg) o ( 8 In(_)n* )Qn Lg})) +o(n),

where the first equality follows from (5.26), the last equality follows from (5.16) and (9.23)
that

2 (1-8)/2
filon) _ __m + o(n(179/2), (9.34)

= o(n). .
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Therefore, for (9.30) to hold, it remains to show that

(1) 2
Mtr(LS)/QZ< 0 0 )QnLS)>

f2(pn)ae2 0 I,
(pgbl) - pn)2 i 2 2
= (1+gl(pn)+"'+g'(pn>>
2 (A
f2(pn>o-€ i=n*+1
_ (p,(f) — pn)2 u 0%1)2 - ,01(11)2z+4 _ 2p£11)f4(:0n) f42(pn)
Plp)o2(p) = falp)? S\ 1=pk? 1=l fap) L= fipa)

+o(exp(—1n?))

(Ky — kD)2p—20-0) pl1-s .
03(2/@”07270;2)”—(1—5) 2,{7(71) (n—n")4+o(n) +0(n~°)
_ (D)2
N w" +o(n) +0(n'™), (9.35)
Ak Kno

where the first equality follows from (9.24) and (9.25), where the second equality follows
from

(P = f1(pn))? (1 + gi(pn) + -+ + g7 (pn))
= () = falpn))? + (B2 — f2(pn))” + -+ 4 (0 = fi7 (pn))?
= (P74 - PP 20 (pn) + -+ T ()
(R on) + -+ £ pn))

1)2 1)2i-+4 1
o 200 f1lpu) f2(pn) ¢/2
= mr D + 5 + o(exp(—1n?)),
1—pn 1 %0 falpg)s 1— fi(pn)
for i =n*,...,n, and the third equality follows from (9.32), (9.33), (9.34) and
(1)2 1-5
Pn n 1-6
S )
pOE 2D
n D+
L = on¥9),
i=n* 1- p7(‘61)2

Thus, (9.30) and hence (9.21) are obtained. It completes the proof of (5.30).
Second, we prove (5.31). By (5.30), we have

2
O, Ry

tr(2,271(9)) = mn(l+§)/z +o(n) +0O(1),
n"n"e

and
tr(L,) = tr(Z(0)X710)) = ’tr(T71(0)) + tr(X,X71(0)).

Then, we have

tr(271(0)) = %tr(In)—%tr(EnEl(O))
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Thus, (5.31) is obtained.
Third, we prove (5.32). By (5.31), we have

(1)2 (1)2
oWtr(271(9)) = ";2 n— 0202 (2020, )20 972 4 o(nf) 4+ O(1).
Then, by (5.30),
r(EVR0) = oMtr(Z71()) + tr(ZVE71(8))

(1)2 ( )2 (12 (1)

o oy’ K

_ O . 9 o2 1/2, (1+6)/2 n_ R (1+6)/2
052 n 9 62 ( l{nO}]O’E ) n + (21{770'7270'62)1/2
(12 (1) _ M (1)2 RO
+Un Kn (HWZ Kn )né + On (’%7 2’%77 ) n6+0(n6) —0—0(1).
Kno, 2k,0;

Thus, (5.32) is obtained.
Fourth, before proving (5.33), we need several equations that are helpful in the follow-

ing. First, for some ¢ > 0 such that n* = n(1=9/2+¢ < n and Q) defined in (5.27) with

pn replaced by p% = exp(— ,1(3)71 (1- 5)>7

0 0 ' 0 0
(3 _ .
( 0 I . ) 2,Q, ( 0, QY > + o(exp(—7n9)), (9.36)
where
) )
QY. = L falon) o :
n—n* 3 ) ’
1_f4(pn)f4<p1(1)) : fa (pS’))
7 ) e falpn) 1
which follows from
(3) _ flidl o 1= p)
wiwy = fi7en) D L) i) = 0 o(exp(—rnel?),

L= filoa) fi(pi?)
for n* <i,5 < n, by (5.25), where p}, = ppli<jy + p%g)l{bj} and w; is the ith column of
Second, for LY defined in (9.23),

0 O , 0 0
OO — —(1=6)/2
( 0 I . )QnLn Q, ( f Q. ) + O(n ), (9.37)
where

L) ) e i ()

Q*(l) — 0 n1_5 pg) f4(pn3)) .

L ff(p%’
A
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which follows from (5.25), (9.24), (9.25) that for n* +1 <i < j < n,

(gi-2(pn): -+ 91(pa), 1,0, , )
J 1—0—1 igk N pf’))
k=1
j—i+1l, (3) (1)
: (pn) P fa(pn) c/2
+ o(exp(—
o) = (o) (1—p£3>f4<p£i”>> U= Filpn) o “”))) otespl=r)

o)
(1= fa(pW) (1 = Filpou) Fi(017)
= O (o)),

and for n* +1<j5<i<n,

+ o(exp(—TnC/z))

~—

(gi—2(pn

= Gi—j— 1+k(pn)f4(

0
1—1 11— i— ) — 3
1 (pff) T TN i ) = 7 (ea) 1(/)51)))

— o) \1 =)V, 1- f4<pn>f4<p$3’>>
— O i),

y T 7gl(pn)7 1707 e 70>w](3)

<.
(51

3))

i

Note that the result is similar when L§ s replaced by L " Third, by (9.24) and (9.25),
we have

0 0 D v (1) e (3) 0 0
(o5 )emrryaw=(7 oh ). (5:38)
where
1 )07(11) p7(11)n n*—1
)
t 2(1-6) P 1
Qn n* O n : . . pg) 3
pgbl) n*—1 pgbl) 1
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which follows from (9.24) and (9.25) that for n* +1 <i < j < n,

(gifZ(pn%”' 7gl(pn>71707" O)(.gj 2(p7(13))7 ng(pgzg))?lvof" 70)I

i—1
= ng—l(pn>gj—i—1+k(p7(13))
) k=1 1
(05 = Fa(oa)) () = Fa(pD))
y (p%” e a0 e ) T falen) )
1 — pb2 1=V LY 1= faon) 1= falon) f2(0$)
+0(exp(—7n6/2)
1
e = Al — o)
x<%”“4 A T ) ) = Falpn) )
1 —pi? 1= falpn) (1= o fa(p) (1 = Falpa) fa(p)))

i
+o(exp(—n?)
= O(n?0 i),

Fourth, by (5.16),
T 0 1, 1,- \
n T\ (1=6)/2 n n
(%5 o) Zofre(5 (%)) 0

Last, by (5.25) and (5.27),

( g Inon* >9n< 18* ) = oexp(—7n°)). (9.40)

Now, we prove (5.33). By (5.11), we have
=) - G DG,

where G and DY) are given in (5.8) and (9.3) with o7, , and p, are replaced by 07(72)2,

Ii,(72) and p\) = exp(—/fgf)n*(lf‘;)), respectively. It follows together with (5.11),

tr(ZEH(0) =P n®)

:ntr(G(l) 'DPGY)G T, 'G.GY D 2>(G,3 )~ 1G(3)'T(3) 1G ))
= o1 - p)tr((GY )1G' T7'G,.GP ' DY (GG TO1gP g1
+o(V?p2tr(ere) (GV) G T, G,.GP ' DY (GY) 1G(3)'T(3) '),
where e; = (1,0,...,0)". Therefore, for (5.33) to hold, it remains to show that
e’l(G Gl‘1)’T7;1GnG,(f)‘1ele’1(G,(f)')_lGﬁf’ TE1GPGEM e, = 0O(1),(9.41)
(1 -t ((G,GV YT 'G,GP e e (GPGPHTO1GP Gnl ) = 0O(n)(9.42)

n

/-\v

and

tr((GnGng)_l)/Tn_lGnGg)_l (Gq(f)Gq(qJQ)_l),Tygzi)_le(f)GS)_l)
n(5—39)/2
= +0(n?7%),  (9.43)

25215, 02680 022 (102012 + (550 02)112)
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For (9.41), it follows easily from (9.20). For (9.42), by (5.26), it is enough to show that

-1 -1
e;(GnGg”—l)'( Tg* g)GnGﬁf)‘l(Gnt)‘l)’( Tg g)GnG;U—lel = o(n}9.44)

and

0

(G G (1)— I)IQI ( oI 0 )QnGnGS)—I(G G(Q) 1)’9/ ( o I )QnGnGS)—l

= O(n). (9.45)

For (9.44), by (9.22) and (9.39), we have

3)—1

e’1<GnG£3>‘1)’< T 0 )GnG@‘l(GnGS")‘l)’( T 0 )Gnaﬁl”‘lel

_ sef Lo (2)-1 @)—1y/ [ Lo
- O<n ( o )GnGn (GG ( g
_ O(chn*) O(n(175)/2+3c> _ o(n)

For (9.45), we have

e\ ( g 1. 0 > = o(exp(—mn?)),

' 0 0 1
(1) o = — 1-0
el Q"(O 1)9 O((l—f4(pn))21"> On™"1n)

and hence by (9.22) that,

/ 0 0 _ _
el Qg@( 0 I, )Q”Gnaf) b= 0(n'’1,).

It then follows

eg(G"G’(“l)_l)m(g I >Q”GnGﬁf"l(GnGé”‘l)’ﬂé(g . )”nGnGS)‘lel
{0 0 . . 0 0
— (D — pel LD n;(o O )nnanaﬁ? Y(G G 1)'9;(0 . )ﬂnLSPe
+o(exp(—1n?))
= O((p\ D) p,) 22100y
= O(n).
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Thus, (9.45) and hence (9.42) are obtained. Last, we prove (9.43). By (9.22),

tr((G’l G TG, G(2) I(G ) 1G(3)’ (3) 1G£LS G(l h

= tr(T, 1TT§) DA (o) = o) + (o) = pa)) (LTI
+((p = o) + (P = pu)) (T, L”Té?’) D)
+H((P = ) (P = pu) + (P — pff’))(p%’ PN (LT, LY T
H((pM = pa) (0 = D) + (02 = pu) (p) = PN (LT LTI
+(p = pu) (P = D) e (LT, TP L)
+(p = pu) (P = D)t (T, ' LP LY TP
() = pn) (P2 — ) (p2) — p@’))tr(Ln”'T’lL@)L(Z"Tf”’l)
+(P£2)—Pn)(07(3)—Pf’))(Pg (T, ' LY LY TOLY)
+(p = P (P = pP) (pl! n>tr( 53 lL(z TP'LY)
+(p = o) (0 = pu) (P —pn)tr(L VT LT L))
+(pM = pa) (02 = pu) (0 — ) () —pﬁl)) r(LY' T LY LY T

Therefore, (9.43) to hold, it is enough to show that

1 (5-30)/2

2212y 00 A (g )2 + (0o

tr(T ' TPALY) = On®),
tr( L' TALATCI=Y = O(nt=39),
tr(TALOLOTE) = On*),
tr(L(l)'Tn_ng)L;‘?)/Tég)_l) _ O(n5—46)7
tr <T{1L;2)L,(12)'TT:1L7(11)Lnl)'> — O(n*).
For (9.47), it follows from (5.18). For (9.48), we have
tr(T, ' T® 1LY
T o\/TD" 0,0
_tr(<0 0)( o o)l
1 T,.' 0 /0 0
S — n* (3) 3) 1)
WATREE <( 0 0>Q" (0 - )Q L”)
1 0 0 T(3)—1 0
—tr( & Q. LW
n L w((Q 9 Yoao(0 O
f2(,0n)(7?f2(p( )> 63)2 0 Infn* " 0 Infn*
1 0 0 0 0
= tr . 4+ o(n3~2
Falpn) a2 fa(pi))o ™ (( £ QY. )( Q). )> ()

O(n* ),
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where the first equality follows from (5.26), the second equality follows (9.36), (9.37),

T' 0 T3)-1
(1) n n*
(e (5 0) (M

— O(nlfén*ii) — O(n5(176)/2+3c) — 0(713725),

nd (9.40) that

) a
(o (75 )3 o)
- ofsn () (5 V(8 .. )o)

26)
)

and the last equality follows from (9.36) and (9.37) that

0 0 0 0 1-8)/2. 1—5 (1—6)/2
(2 g0 ) (Lol 00ty

= O(n*%).
For (9.49), we have

tr(LY' T LA T® )
_ L(l)/ T 1 0 L(g) T,rgf)_l 0
0o 0 )™ 0 0
1 T3 0 (0 0
o (1) n* 2B (3)
@) (e (% 0 )ree (G 10 ) o)

1 s (00 731 o
— Y (O o 1C)) QB L® n*

+f2(pn)062) ! ( " " 0 Infn* " " 0 0
(

1 ' 0 0 / 0
+f oot hul (3)) (3)2tr (LS) Q) ( 0 I ) Q”Lf)gf’) 7 ) QS’))
2\Pn)0¢c J2\Pn " )0e n—n* n—n*
1 <( 0 0 ) ( 0 0 9§
= tr (2) *(1) +o(n”?)
fa(pa)o2 fa(p) o * Qnlne * Qnope
= O ¥),

where the first equality follows from (5.26), the second equality follows from (9.37), (9.39)
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that

(3)-1 -1
a (T 0\ e Tw O
N <L" ( 0 0 ) L ( 0 0

0 ( Lg)n(lﬂs)ﬂ ( 18* ) ( 18* ) ))
= 0 (tr <n15n*1 ( 18* ) n*1 (

= O(n(1—5)n*4) _ O(n3(1—5)+4c) _ O(n4_35),

by (9.39) and (9.40) that
tr (Lgll)/ ( Tg:l 8 ) LOQE ( 8 In(jn* ) QS)))
- 0 (tr (L;“’n(l@/?( 18* ) ( 13* )/L,(f)ﬁff’)/ < 8 I:n* )
= O (tr (71*27L(1_5)/2 ( 16”* ) ( 18* )/QS)' ( 8 Inon* )Qg’))

— O(n4—35>7

and the last equality follows easily from(9.37).that

O 0 0 0 ) ) ) )
tr (( « Q. ) ( « QY )) < EO(n = nt 010 = O(nt=),

For (9.50), we have

tr(T ' LA LA 7)1

n

T, 0 LT
= n 2,2 n*
t(( . O)LnLn ( o
1 T*l 0 , ) 0 0
- n* @) 71200 3)

n

1 0 0 , , T—l 0
5 B r@r@ B n*
+f2(pn>ae2tr (( 0 I, p ) 7L, Ly, SY, ( 0O 0 >)

I 1 tr((0 0 )
Folpn) o2 fo(pP)o P2 0o I,

1 . ((0 0 )
= - r
Folpn)o2 fo(pP) o2 « Qi
— O<n4—36)7

where the first equality follows from (5.26), the second equality follows from (9.36), (9.38),
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(9.39) that

by (9.39) and (9.40) that,

T' 0 s v [0 0
n* 2 1.2/ OB (3)
t<( : O>Ln L'l (0 I)n)

1, 1\ / 0 0
_ -2 ( 1n n @) 1@ o
= o(e(re () (o) omen (547, ) o))
)
and the last equality follows easily from (9.36), (9.38) that

0O O 0 O 2(1-5), (1—6)/2. (1-5 4-35
tr(( .y ) ( -y )) — 029209 ) — O,
For (9.51),

tr (Lg”’T;lLf)Lg)’Tﬁ)-l)

—1 3)—1
— tr (LD T,-" 0 LA T o

n 0 0 n 00

1 T' 0 r v [0 0
s @ ( Lo @) 7.2/ OB) (3)
bt (Ln ( . O)Ln LO'Ql (O O )Q)

1 0 o0 T o
—— (LW Q,LAOL® n*
+f2(pn)0?r< N A nn 0 o0

+ e (o g e (o0 Jevnya)
f2(pn)‘752f2(Pn )Ue n—n* n—n*

1 0 0 0 o )
) f2(/)n)03f2(/)513))0§3)2tr (( « QI ) ( « Q). >) +Om)
— O(n5_45),

where the first equality follows from (5.26), the second equality follows from (9.37), (9.38)
and (9.39) that

(3)-1 -1

@@ [ Ty 0 o T O

o (momer (T80 Yo (T 0
o1, 1.\ 1,. 1.\

_ 1-57(2) 7 (2) n n (1) n n
= ofu(wmneny (5) (%5 ) 2 (5 ) (%))
_ 1-4, %3 17’L* ]-n* / 1n* ]-n* /
= O(tr n°’n < 0 )( 0 ) 0 0
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by (9.39) and (9.40) that

and the last equality follows easily from (9.37), (9.38) that

t((o . )(0 a0, )) = O™ ') = 0(n*™).

For (9.52), we have

-
~
/N
N
A
~
S
~
S
N
L
&~
=
~
5o
~—

1
+——FF—Ftr (
Fa(p)o?

_l_
—_
S~—
-+
=
7 N
o)
<
/\/_\
o o

fZ(pn o?

+ 2tr

Fa(pn) o2 fa(p)o ) (

0 0 / (0 0
OF J)e1C) (3) (1 '
(02 Vazorgay (3,0 Javmpmye)
0
k

0 0 0
(5—-35)/2
o, ) (0 gy, ) ot

where the first equality follows from (5.26), the second equality follows from (9.38), (9.39)

that
— 3)—
tr (( T, 0 ) LA L’ ( TT%)) 1 8 )L@Lg})’)
!/ !/

o0 () (s w5 ) (s ) mom))
_ 1— 6 *4 1n* / ]-n* 1n* /
- ((n (o) (8 ) () (s

6

55

1
— tr
Fopn)o2 fa(p§) o B (
= O(n®),
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by (9.39) that

T, O / '
21206 @) @)@
N(O)LLQ(OQJQ%%)
= O tr(nt79/2 ALe'qr 0 0 Vo, LoLw
0 In—n* n-=n n
:O<tr< (1-3)/2 *2( >( ) /QL(SIO >QnL
_ (1- 5)/2 *4 /
- O(tr< v (9,0 )aa))

_ 1 5)/2 *4 1-6 ) O(n6755)’

so
N———
N———

and the last equality follows easily from (9.38) that

(2 g, ) (0 g ) = oot = ont)

Thus, (5.33) is obtained.
Fifth, we prove (5.34). We have

2(SPE9) = w(EPnl(g)nPE@)
U£2)2tr(21(71)2—1(3)2(2)—1) +tr(Eff)E_l(0)2572)2(2)‘1).

It then follows that

6)x)
1)) — tr(BVE T (O) BRI mE)

tr(SVE

> +0(n°)

(
1 07(71)2%1) 80(1 2/{%1)@(}2)2/{7(72)
é )2 (2"077‘772;062)1/2 06209)2((2/1,707706—2)1/2 + (2/%,(72)0,(72)209)72)1/2)3
( ) (1)

2)2 (2
L — 8027
<

020 (2)2 2“77(772;06_2)1/2 U£2)2((2’€n0%‘76—2)1/2+<2H$12)U7(72)20£2)_2>1/2>3

>+Om%

which gives (5.34).
Finally, we prove (5.35). We have

tr(X740)) = tr(ZTVEO-1xn-1(g))
= oPtr(zWs01871(9)) + tr(BPEWTn71(9)).
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It then follows that

B(E0IE0) = — ((579)) — a(ZPEO 15 (9))

1) _(1)2 _(1)-2
= L no_ (25"0 Te )1/2 <2'£’(7 )07(7) Ué : >1/2 n(1+8)/2
U£1)2 202 202

_ 1 1)2 (1)-2
2(2ky0; 2 2)(2%;,(7)07(7) otV ) (146))
0,02, 02) 17273 +0(n’)
02 (264050 2) 2 + (26 oy "o 7)H2)3

_ D2 _(1)-2
B n (2/@70206 )2 4 (2/—@5, )07(7) oM )1/2n(1+6)/2

£1)2 20£1)202
2(2k,0202) (26 oy 2ot )

12 _ D2 _(1)—2
g ) 02((2’@7%% 2)1/2 (2,1% )07(7) Jé ) )1/2)3

+

n(+0/2 4 O(nd),

where the second equality follows from (5.31) and (5.34). Thus, we completes the proof.
([

Proof of Lemma 9
First, we prove (5.37). By (5.8) and (5.11), we have

's™"1 = 1'G.T;'G,1
(1= pPET D0 (e p VT e+ 2T e,

where the second equality followsfrom
G, 1 =(L=p,)1+ pues, (9.53)

with e; = (1,0,...,0). Therefore, for (5.37) to hold, it remains to show that

1
1 o
el ‘e = a_% + o(1), (9.54)
pn(1—p )T e; = ofl), 9.55
(1= p) VT = 22 4 o(1) 9.56)
20,
For (9.54), by (5.14), we have
1
eT e, = Co(1,1) = f2(pn) +o(1) = = +o(1
e = GO = G e — e T T oW
For (9.55), by (5.14) with some ¢ > 0 such that n* = n179/2+¢ < n_we have
on(1—p)1T s = 2p,(1 — p,)1(C(1,1),...,Cu(1,n))
f? pn iy ' /3
- n 1— n —71n°
p ( p )(0_2 +O’2)f2 n Z: +O(eXp( ™ ))
f2(pn) Pn

= (1l - pn)( + o(exp(—n/*))

0727 + Uz)fQ(Pn) pnae f?(pn) Pn
_ O p0-0/2)  o(1),
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where the last equality follows from (5.13) and (9.11),

Folpn) = po = (26030 2) 200002 g g2 =00) 1 O (20902,

For (9.56), we have

- 1
vr = (% 3)”T1”'(3 1D )Rt oesp(- i)
1

= (0 1, )t

1 0
= —1'Q, Q,1
f2(pn)02 ( 0 I" n* )

— n(l 0)/2 *2+ (7’L )
2—4

(1- f4(pn))2

f— 2(1_5)

where the first equality follows from (5.26), the second equality follows from (9.39) and
the third equality follows from (5.22) that

( g InOn* )in - %( 1n0n* ) + o(exp(—7n?)), (9.57)

and the last equality follows from-(5.21). Thus, (9.56) and hence (5.37) are obtained.
Second, we prove (5.36). We first go a step further to show that for k > 1,

1
1S lap, = w6 5. 9.58
(o 203k 1 " + 207 +o(n°) (9.58)

For k > 1, we have

'Sy, = 1G, T, G

(1= pu) 1+ pued) T, (1= po)tr + pu(thr — 9Y)

= (1= pu)°VT, "y + pu(1 — po) VT, (91, — 9))
+pn(1 — pn)e’leﬁbk pnel (1/% - 1/)1@)

where the first equality follows from (5.11) and the second equality follows from (9.53)
and

G = P — puthy, = (1= pa) i + pu (P — 41), (9.59)
with 92 = n=%(0,1%, ... (n — 1)*). Therefore, for (9.58) to hold, it remains to show that
N2qi—1 _ Ko § s
(= p VT = 5gtgsnd o), (9.60)
. 1
pu(l = pu) VT (b — ) = 22 +o(1), (9.61)
pul1 = p)eT, e = o), (9.62)
paei T (Y — ) = o). (9.63)
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For (9.60),
(1= pu)" VT, ey

= a-prr( % )¢k+§2(p5;)219’(3 1D )t ofexp(-ra)
(1_pn)2 .

= P Z (wil)(wipr) + o(1)

2
f2 (pn)ge i=n*+1

_ (1—pn)? n i k )
— (falpn)o?)(1 = falpn))? > (n) +o(1)

=n*+1
1-6

—  p2p20-9) n I n
K 2/£n0 o? 02 k+1
K s
= —1 __n +0(n ),
202(k +1)

+o(n’)

where the first equality follows from (5.26), the second equality follows from (9.39) that

o Tt 0 —2(1-8), (1-8)/2, %2

w; is the ith column of €2,, and the third equality follows from

1 i\"
w; ===~ ) +0(n™), 9.64
v —gimgEn () + o) (9.64)
which will be proved later, and the fourth equality follows from that for k > 1,
n Z k
> (E) Sk +1)"'n+ o(n). (9.65)

We now prove (9.64). It follows from

it~ lpa)oliby = éﬁ—f(pn) (5) - s Z o (1)
- (1) o () e ((3) - ()

:(>+§fﬂn<<' ]_1 >+Oexp ne)

SO T

k

i
7j=1
— (l) + O( —(1+49) /2)

n

where the third equality follows from the Taylor’s expansion directly,
N\ K . k -\ k—1
—1 k
(1) - (‘7 ) == (l> +0(n™?), (9.66)
n n n\n
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and the second last equality follows from

k—1
ES 0 () <A = S ot — o0 o

For (9.61), we have

-1
=T -l = -0ty ) - b

on(L=pn) e [0 O
ATar i E A LIRS

+o(exp(—7n/?))

= 2l 00 S gy — ) + ol L)

_ pu(l = pn) E - o o o
- f2<pn>as<1—f4<pn>>2nz(n> +oll)

=n*

+o(1)

+

1-6
1k
= 1" 5)% T
2K,050.2 0] nk

1
= goeed)

where the first equality follows from (5.26), the second equality follows from (9.39) and
Y — P? = O(n™1) that

-1
pn(l _pn)]-/( TS* g )(’l/)k _7/’]2) _ O(n—(l—é) (1- 6)/2n—1n2*) - 0(1)’

the third equality follows from (9.64) and (9.66) that
k

wi(r, —Yp) = E‘*’jd’k—l + o(n~B072)
k 1 i\ —(145)
= nl- filew) <_> Foln e

and the second last equality follows from (9.65). For (9.62), by (5.14), and (9.11),
pn(L = pu)erT, e = pu(1 = p)(Co(1,1), .., Cu(1, 1))ty

g B 00 (2

— pio?
—i—o(exp(—TnC/Q))
= 0(1)’

where the last equality follows from
n—n* i k n—n* ' 1
fa(pn)™! (‘) < fa(pn)™ ' = ——— + o(exp(—7n°)).
> o™ () = 3 an) T = g o )
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For (9.63), we have

paei T (P — ) = p(Cu(1,1), ..., Cu(1, ) (th — 9pp) = O(n=(H972),

Hence, (9.58) is obtained. It now remains to show that (5.36) for k,¢ > 1. For k,¢ > 1,
we have

YX e = PG T, Gy
(1 = pu)tbr + pulthr, — %)) ((1 _pn)¢€+pn<¢é_¢g))
= (1- pn) T, S+ pn(1 pn)"pk (’(,be ¢e)

+pn(1 = pn) (W — 2) T, e + (i — 1) T, (vhe — 4p),

where the first equality follows from (5.11) and the second equality follows from (9.59).
Therefore, for (5.36) to hold, it remains to show that

(1= po)* T py = 20%(]{’1”6 . l)n“ +o(nd), (9.68)
1 k
pn(L = pu) Wi T, (h — 4pp) = %07 k1 +o(1), (9.69)

kén=?
2k,02(k + £ —1)

by — )T, (Y — 4p) = +o(1). (9.70)

For (9.68), we have

- p e = - Tae g Joor St buan (00 e

+o(exp(—1n3)

n

_ (=p) i )
= et 2 (Wi o)

= (1—pn)? n i k+e
— (folpn)a2)(1 = fa(pn))? Z (n) +o(1)

i=n*+1

1-5
26-2_ 1 1 n

1 2/€n00202k+€+1

= 5 ] n® + o(n’),
20%(k +0+1)

where the first equality follows from (5.26), the second equality follows from (9.39) that

( pn) 1/)k( T 1 8 )¢e _ O(n_Q(l—(S)n—(l—(S)/Qn*Q) _ 0(1)’

the third equality follows from (9.64), and the fourth equality follows from (5.22), (9.11)
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and (9.65). For (9.69), we have

T,.) 0

n 1_ n / /
= pu(1— M«p,;( o o )('l,bk — ) + W@bkﬂn( 8 Inon* )an

+o(exp(—7nc/3))

n

= 2P S ) @i — 1) + o)

2

_ pn(1 = pn) E i O+k—1 )
 falpn)o2(1 = falpn))2n > (n) +o(1)

i=n*+1

1 n'% k on
7(175)_2 2521 +o(1)
02 260502k + €

= Ryn

1k
= — 1
20?k+€+0( )

where the first equality follows from (5.26), the second equality follows from (9.39) and
Yr — P2 = O(n~1) that

(Tt 0 b —(1=8), —(1-8)/2, —1,_*2
m= o Ty 0 )@ wh) = OOt o),

the third equality follows from (9.64);(9.67) and the fourth equality follows from (5.22),
(9.11) and (9.65). For (9.70), we have

P (Wb — ) T, (vhe — ;)
2 by Tn:l 0 b

+L<wk—¢b>'ﬂ'(° 0 )ﬂ (1 — B1) + olexp(—rn/?))
ATA: D o 1, )l
2 n

= PR S @l — ) (Wit — ) + o(1)

1=n*

2 n .\ k+4-2
[ 14 i

o 0t 1 nkl

2ky020 2 o2k+0—1
kén=? +o(1)
= 0
2k,02(k + £ —1) ’

= n +o(1)

where the first equality follows from (5.26), the second equality follows from (9.39) and
Yr — P2 = O(m™!) that
2 o Tpt O b —2 (1-8)/2, *2

the third equality follows from (9.67), and fourth equality follows from (5.22), (9.11) and
(9.65). Hence, (5.36) is obtained.
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Finally, we prove (5.38). It follows easily that
Y2 72(0) 3 = O(P 271 (0) ).
It then suffices to show that
vZ (O ET Oy = O,
For k > 0, we have
YOS O = WG T GG DY (G G Gy
a,gU (1 PV G T GGV Y GG T,
+o? o2 GL T GG e el (G GLT,
where the first equality follows from (5.11) and
=Y~ GU-IDY(EHY.

(9.71)

1Gn,¢k’
1Gn1/)k7

(2 (1)
"

G and D are given in (5.8) and (9.3) with o7, s, and p, are replaced by o K

(1)

and pg) = exp(—ry 'n~17%) respectively. Therefore, for (9.71) to hold, it remains to

show that

ka’ T'G,G! = 0(1),
(1-p"y, G T, G, GV (G )G’ 1Gn¢k = 0(n°).
For (9.72), by (9.22) and (9.59), we have
WG T, GGV er = (
= (1 =p) T, 1 + pu(r — ¥7)) T, ey
+(1 =) (0 =)W T, L e,

+pn(p$zl) - pn)(¢k - @blZ))/Tn_ng)e
= (1—p)(p" = p) VT, ' LVe; + 0(1),

where the last equality follows from (9.62), (9.63) and by (9.55) that
(P = p)ei T LVer < (pl) = pa)eiT, 11 = o(1).
Therefore, for (9.72) to hold, it is enough to show that
(1= pu)(pf) — pn)tbk T,'L)e

= (=)l pnm(T 0 )Ete,

(1= pu) i + pa(the — ¥))'T, (€1 + (08 — pn)

(1= pa) (P’ = pu) 0 0 C
+ f2(Pn)U2 ,(Ib]/i’ﬂ’/n 0 I, . QHLS)el + o(exp(—rn /3))
(1= p) (Pt — pn) 0o o
- fo(pn)o? Prsd, 0 I, .. Q,LVe, +o0(1)

= (- p”)(pg) — Pn) - i ' . 0
— falpa)a2(L = fulp ))g; (n> 9i(pn) 4 0(1)

= 0 (n‘2(1‘5)n‘1‘5)/ ? Z gz-(pn))

= 0O(1),
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where the first equality follows from (5.26), the second equality follows from (9.39) that

A e ) L L e RO}

the third equality follows from (9.64) and (9.24), and the last equality follows from (9.25)
that

> gilpa) = 0¥ 072),

Hence, (9.72) is obtained. For (9.73), we have

(1= G T, GGG G T G
= (1 — P (1= p)bk + pu(thr — 3)' T, ' GGGV G, T,
X ((1 = pn)r + pu(Pr — ¥)))
= (1-p"")1 = p)* T, ' GGV GG, T,
+20,(1 = p*)(1 = po). T, ' GG~ 1(Gnl -y G TJ (Y1, — ¥))
+p2 (1= piD%) (o — 9})' T, 1G GV GG, T, (v — ).

Therefore, for (9.73) to hold, it suffices to show that

(1= pI) (e — ) T, G GEEHGY Y GL T, (v — ) = O(n’), (9.74)
1 -1 - p) YT GGV GV GT, e = On°). (9.75)

For (9.74), by (9.22), we have
(1= p 2 (4y, — ) T, "GRG MG G T (v — 4))
= (1= p ) (hr — ¥p)' T, (b — 9})

+2(1 — p2) (P — po) (i — 2 T, LT (4 — 1Y)
+(1 = pI*) (M - >(¢k—¢b>’T 'LOLY T (4, — pp).

Therefore, for (9.74) to hold, it remains to show that

(1- )(1/’ ¢k) ('lpk_'lpk> = O<”6)a (9.76)

(1= p ) () = pn)? (31, — ¢ >’T 'LOLYT Y, —ypp) = O(n). (9.77)
For (9.76), by (9.66), we have
(1= o) (r, — ) T, (h — pp) = O(n™ O app_ T %apyq) = O(n~ 91T, %1).

Hence, for (9.76) to hold, it is enough to show that

2
'L = e (0 )

2 AT 0N, (0 0
S (% o) (o . )en

; 10/ 0 0 , 0 0 s
+(f4(p">“3)21 h ( 0 I, ) Sl ( 0 I, ,. ) Q,1 + o(exp(—7n?))

= 0O(n*?), (9.78)
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where the first equality follows from (5.26) and the last equality follows from (9.39) that

-2
v ( TS* g ) 1 = Om'n™2) = Om20-5+9),

and by (9.57), (9.36) with Pt = p, that,

1'%(8 IO )ﬂnﬂg(g IO )in

1
" (Fa(pn)o2)2(1 = falpn))? 1'QY,.1+0(1)

_ O(#”Tjj%55<;§§W=4f—ﬂﬁ@0—%”—”ﬂ))

1=0

O?f?éwmg”ﬂiwufﬁ8m9>
= O(n* ),

Thus, (9.76) is obtained. For (9.77), by (9.66), we have

(1—pih2 )(pn pn)? (W1, — Y1) T, ' LY LY T (4, — )
- O( n_2¢k—1Tn an ngl)/Tn "7[) —1)
= O(n—<5—35>1’T,;1L;1>L;1>’T7;11).

Thus, for (9.77) to hold, it is enough to show that
1T LY Ln1>’ 1

T, T 0
! 1) n*
2 T,' 0 0 0
LR LYLVq Q,1
" Ralon)o? ( 0 o) (0 L. )
2 0 O , 0 0
" 1/92( >QnL§})L§}) le( )in + o(exp(—rn</?
(f2(pn)o?)? 0 I 0 I, - (exp( )

= O(n°), (9.79)

where the first equality follows from(5.26) and the last equality follows from (9.39) and
(9.23) that
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and by (9.57) and (9.38) with p'Y = p, that,

1, ( 0 1. ) Q,LYLY ', ( 0 1. ) i

- O(W Qe 1)

Thus, (9.74) is obtained. For (9.75), we have

(1= pI*) (1 = p) i T, ' GGG G T by
= (1= )1 = pu)*p T i+ 2(1 — D) (1 = pn)? (08 — pu) W, T, LT My,
+(1 = p0?) (1 = pn)? (P = pu) i T, LD LY T,y
= O(n’),

where the first equality follows from (9.22) and the last equality follows from (9.78) that
(1 _ ng1)2)(1 _ pn)Q'l/’;ng_QQ/’k _ O<n—3(1—6)1/Tn—21> _ O(n—3(1—6)n3—26> _ O(né),
and by (9.79) that

1= o121 = p)2 (P — o), By VL Ty, = O 01T, 'LV LY T, 1)

n

O(n—5(1—5)n5—45) — O(né)

Thus (9.75) and hence (9.71). This completes the proof. O

Proof of Lemma 10

For (5.39) and (5.40), it follows by applying Taylor expansions on the lefthand sides of
(5.39) and (5.40) at 02 = o> Slmllarly, (5.41) follows by applying a Taylor expansion on
the lefthand side of (5 41) at kyop =T.

For (5.42), we have

(2 OV, 1(0) + (S5 (0 1y, 02)) 25 (02, iy 02))
—tr(E;571(0)X, 3 (0, Ky, o)) — tr(E,57 (0, 1y, 0%) )2 E71(6))
( KO R0 KO K0, 4k;02k 0%

o J J )n(1+5)/2 + O(né)

05(2/%,0'2)3/2 0(2ky02)3% (0 + 0)(2ry02)3/?
Fd] /ﬁ}J/O' ) (O'e — 0')2 (1+6)/2 5
— O
23/2(/@70,7)3/2 (060(06 + o) " +0(’)
/ijO'j?Hj/O'Z/

_ 29/27_3/2033 (O_EQ _ 02)2n(1+6)/2 + 0((03 _ 02>2n(1+5)/2) + O<n5)’

where the second equality follows from (5.33) and the last equality follows from |02 —c?| =
o(1) and |k,07 — 7] = o(1).
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For (5.43), we have

tr(3,27%(0)) + tr(Z; 272 ((07, iy, 0%)) — (B2 H(0)2 (07, Ky 07)'))
—tr(Z; 37 (07, ki, 02))27H(H))
B K07 N K07 2k;07;
25203 (kyo2)1/2 23263 (kyo2)Y2  2120.0(0c + 0)(Kyo2)1/?
_ Kjoj (02 — 0%+ o.0(0. — 0)? (972 4 O(n?)
23/2(/@70?7)1/2 odc3(o.+ o)
5/€jO'J2-

= i (062 _ 02)2n(1+6)/2 + 0((062 _ 02)2n(1+5)/2) + O(n‘;),

)n(1+6)/2 + O(né)

where the second equality follows from (5.34) and the last equality follows from |02 —c?| =
o(1) and |kyo7 — 7] = o(1).

For (5.44), we have

tr(2_2(0>> + tI‘(E_Q((O'?], K, 02)/)) - 2tr(2_1(0)2_1<< 72)7 K, 02)/>>
ﬁ - 3(2Rn0.%)1/2n(1+5)/2 . E B 3(2/{n02)1/2n(1+6)/2
ol 4o, ot 4o
2(2k,02)%(02 + 0% + o.0)n119)/2
0202 2000(0. + 0)
2\1/2
_ (02 - 02)271 (2"577%) . (go=0)? n+0)/2 | O(n‘5)
olot 4 oeo(0c+ 0)
L,

= —(0? = *)’n+ofla? =a*)n) & o((0? — o*)n" %) + O(n’),
o

where the second equality follows from (5.35) and the last equality follows from |02 —0?| =

o(1).
For (5.45), we have

(2,57 (0)2,57(0)) + tr(%, 57 (c.d. %)), 87 (e, d. o))
—tr(S,271(0)5, 27 (0. d, 0?)) — tr(8,5 (e, d,0%))) S, 27 (6)

2@0?/13-/0]2./ 2/%]'0']2-%]'/0']2-/ 4/@0]2./@]-/0]%
— \20c(2,02)3/? * 20(27)32  00(2k,02)Y2(27)V2((2ky02072) 12 + (27072)1/2)

Xn(1+5)/2 + O(nﬁ)
_ /ﬂ]jU?lij/O']% 1 4 1 . 4
226\ (kyo2)32 " 732 (kyo2) 2012 (ko) V2 + 71/2)
_ K05 Ky 05 (Ko = 7)% + (kyoy) 272 ((Ryoy) > — 71/2)? n(+9/2 4 O(nf)
2% Gena T A (o) P+ 717
5mjaj2/ij/a]2-,(
29/257/2

)n(1+6)/2 + O(né)

ko2 — 7)2n0H02 L o((k,0% — 7)2n1F0/2) L O(nf),
n¥n mn

where the second equality follows from (5.33), the third equality follows from |02 — 0% =
o(n=(179/2) "and the last equality follows from |k,02 — 7| = o(1).
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For (5.46), we have

t(Z,572(9)) + (8,2 (e, d.0%))) - (2,857 (O)Z (e, d. 0?)))
—tr(EjZ*((c, d,0?))x71(0))

_ IijUJQ- N IijO'JQ- B 2@0? )n(1+5)/
23/203(,{77072])1/2 2/253(1)1/2 21/2052‘72((“71072;‘7;2)1/2"'(70_2)1/2)

+0(n%)

KO ( 1 1 4 ) (145)/2 5
= + — n +O(n°)

93/253 (MU%)UQ 172 ((HWU%)1/2+T1/2)

A s
N (kno)

93/253 102 1/27'1/2(("3n‘7127)1/2+7'1/2)

)n(1+6)/2 + 0(77,6)

2
K;0?
29/2;3;5/2 (Knag - 7_)2n(1+6)/2 + 0((,«;”0727 _ 7_)2n(1+6)/2) + O(né),
where the second equality follows from (5.34), the third equality follows from |02 — 0% =
o(n=(1=9/2) and the last equality follows from |r,02 — 7| = o(1).
For (5.47), we have

tr(X7()) + tr(2° ((C d,0%))) = 2tr(X7H(0)X " ((c.d, 0?)))

no 3(2ky050.7) natoyed (1 3(2707%) p(140)/2
ot 4ot (2k,07 )1/2 ot 4dot(2r072)1/?

2K,0%07 2ino0- 227072 + 27072
_2< ;12_ — €2 2 3 n;; 6—2)1/2( )—2 1/2 ntt+o/ )"‘O( ’)
oo 20202((2ryo2a2) /% & (27072)1/2)
1 1/2 1/2°2 4("371‘7 + (Ko )1/2 V24 7) (146)/2 5
= _23/20_ (3<’%7] n) + 37 (IinO'%)lm n ~1/2 n + O(n )
2\1/2 _ 1/2)2
B (1 kil AR DR Y
2526 (r,02)1/% + 112
1
= gz oy — TV 4 o((goy — 7)) 4 O(n),
where the second equality follows from (5.35), the third equality follows from |02 — ¢?| =
o(n~(1=9/2) "and the last equality follows from kgor — 7| = o(1). O

Proof of Proposition 4

We first prove (5.49) and (5.50). Let X be the jth column of X. For § € (0,1), by (5.36)
and (5.37),

X' 9) X, = Fon 5 . ' =1,...p 9.80
7 ( ) J 20-72](]_{_]/_‘_1)” +0(n )7 .]7.] ) 7p ( )

whereas for § = 0, by (5.38),

X3 N0)X; =0(1); 4, =1,....p. (9.81)
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Hence, for A(«q;0) defined in (3.6), and § € (0,

1
lim —u'A(a; 0) S A(a; 0)p

n—00 n

= lim —BX Ala;0)'%"

n—oo 715

1X/8

— lim —65X2 10)X3

n—oo M,

/Xlzfl
— lim P

1), we obtain

= (a),

where v(«) is defined in (5.51) and the last equality follows from (9.80).
(5.49). Similarly, it also gives (5.50) by (9.81).

Next, we prove (5.52). By (4.9), we have
—20(0;) = nlog(2m) + log det(X
= nlog(27m) + log det(X

—2u' A(w; 0)

(0))+ Z'A(x;0)'S
(0)) + 1 A(0:0)S 1 (0) A(0
'S O0)n+e)+(n+e)T () (n+e

It then gives

“(0)A(:0)Z

“H0)A(; )

~—

—(n+ €)' M(c:0)Z7(0)(n + €)
= nlog(2m) + logdet(X(0)) + p' A(a; 0)'S"H0) A(a; O)pu + tr(Z(0)X1(6))
—(n+€)'M(a;0)8710)(n +€) — 2’ A(; 0)'X7(0)(n + €)
+£(6), (9.82)
where the last equality follows from (5.53). In addition, by (5.29),
logdet(2(0)) = nlogo? — — g logn + (2nn020;2)1/2n(1+5)/2 — (2"%‘7%05 2)n?
+(02 — 02)o2k,m’ + o(n®) + O(1),
by (5.32),

o? 26,02
w(BO20) — L (2

€

1/2 o2
€,0
) ( 207 "

i no“m(’% ’in,O)n5+Ug,o(”n_

2
07770’%77:0) n(1+0)/2
2
2/@7077

2
Kn0)

n’ 4+ o(n®) + O(1),

2

linO',q

and by (5.49),

wA(;0)% !
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2
2/{,7077

%’y( )n5 + o(n5).
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It then follows together with (9.82), for 6 € (0,1),

—20(0; ) = nlog(2mw) —

2
- 2 Je 0
logn + | logoZ + —- |n
2 o2

2/-@770% 1/2 062,0 f‘&n,oag,o (1+6)/2
+ 5 1-— 3 + o 2 N
0? 20 2K,0;,

2 2 2

Kn0y,) Kn,000.0 Kn,00,.0 5

+| — — + Ky 5 1) — ﬁ n
g /‘6770— /413770—77

€

_{_03,0 + () o ’{771002,0 2n5 “n,OOEQ,O . KU,OU%,O n’
2k 02 Tooly+9(a) 202 K o2 o+ ()

—(n+€)M(x;0)Z7(0)(n+€) — 21/ A(;0) T (0)(n + €)

+£(0) + 0,(n) + O(1). (9.83)

Therefore, for (5.52) to hold, it remains to show that for § € [0, 1),

(n+€)M(a;0)S(0)(n+e) = Oy(1), (9.84)
HA;0)S7H0)(n+e) = op(n), (9.85)

which are enough to show
n’ (X'ZHOX)' = 0(1), (9.86)
L x5 0imeer = 0,(1). (9.87)

n5/2

For (9.86), it follows from (5.36); (5.37).~ For (9.87), by Chebyshev’s inequality, it is
enough to show

var(X'S710)(n +€) = tr(X'T7H0)X(0,)271(0)X) = O(n?),

which follows from (5.38). Then, by (9.86) and (9.87), it then gives (9.84) and (9.85). It
then completes the proof of (5.52).
Finally, we prove (5.54). For 6 = 0, it can be followed easily from (9.83) that

2
- 2 Ue 0
logn + ( logoZ + —- |n
2 o?

2,02\ '/ 0l KnoOig 12
+ —— l-—=S+—>n
o? 202 2k,03

—(n+€)M(;0)Z7'(0)(n +€) — 21/ A(;0)'E7'(0)(n + €)
+£(0) + 0,(1)

—20(0; ) = nlog(2m) —

= nlog(2m) —

2
- 2 Oe 0
logn + ( logo. + —- |n
2 o?

2k, 02\ /2 o2 Koy 002
+(—"7 ") (1 —0 | 22 mo "’°)n1/2+£(0)+0p(1)7

2 T 5.2 2
o 20¢ 2Kky0,

where the last equality follows from (9.84) and (9.85). O

123



Proof of Lemma 11

Denote o7 , = y(a) + 07y and Ky = knoor o/ (Y(@) + 02 ), for a € A, where y(a) is
defined in (5.51) and y(«) = 0 for o € A°.
First, we prove (5.57). It suffices to show that for ¢ € [0,1) and any £ > 0,

inf  (—20(0;a) +20((07, ki, 024)50)) > 0, (9.88)

|0'g_0'?,o|25
as n — oo with probability tending to 1. By (5.54) and (5.66) and for 6 € [0,1), we have
—20(0; o) + 26((072], Ky, 06270)’; a)

2
= (loga +— logaeo—l)
2/1,70% 1/2 052,0 lin,odg,o 2"017,003,0 2 (145)/2
+ 2 1-55+ 2 | T 2 " +op(n)
o¢ 206 2'%770—77 Tec0

(02 —02y)%n

— : + 0,(n),
2030 P

where the first equality follows by £(6) = o,(n) that

£(0) — 5((02’ K, 062)/) = Op<n)>

and the last equality follows from (5.39) and (5.40). Thus, (9.88) and hence (5.57) are
obtained.

Second, we prove (5.58). By {5.57), it suffices to show that for |07 — 02y| = o(1),
d€1[0,1) and any € > 0,

inf (= 2000; ) +20((a; . Fiar020) ) > 0, (9.89)

|n,,a%—nmoag70|25

as n — oo with probability tending to 1. By (5.54) and (5.66), for 6 € [0,1) and
02 —aZy| = o(1), we have

—20(0; ) + 2(((o na,/{na,afo)"a)
2"{77077 1/2 l_i_’{n,ogg,o _ 2/4377700270 12 n(1+5)/2
UZO 2 2/@70% 06270
+E(6) — £((07 0s s 020) ) + 0p(nUH9/2)
(ko2 —

n — Fn00y o) (1+0)/2 2 (146)/2
25/20'570(/{”,00-7770)3/2 + 5(0) - g((gn ar Bn,as e 0) ) + OP( )7

where the first inequality follows from |0 — 02| = o(1) and the lefthand side of (5.39) is
positive for o, > 0, and the second equality follows from (5.41). Therefore, for (9.89) to
hold, it remains to show that

£(0) = £((07 0 Fina, 020)") = 0p(nH02),

which follows from (5.68) and Chebyshev’s inequality, by to checking the following moment
conditions:

var(n/(371(0) — 7 (0705 Finas 020) )M = o(n),
var(n/(371(8) — =7(( naaﬂna»afo)'))‘f) = o(n),
var(e'(371(0) — 37 (0.0, inas 020) ) )€) = o(n),

~—

—_
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where the previous two equations follow trivially by (5.33) and (5.34) and the last equation
follows from (5.35) and |07 — 07| = o(1) that

Var(e’(E_l(O)—E_l(( 2a,/<c77a, 60)') e)/ 2050
= (Z740)) + (B2 (07, hin, 020)") = 2t (ZT BT (05 05 Finas 020)"))

177
_ o, 2 + O(n(+9)/2)
O-él 0-3,0 ge Je ,0
= o(n).
Thus, (9.89) and hence (5.58) are obtained. This completes the proof. O

Proof of Corollary 4

Let 07 , = vy(a)+0% and Ko = K000/ 00 for o € A, where v(«) is defined in (5.51).
First, we prove (5.78). By (5.70) and (5.71), for |02 — 02y| = o(n~79/2) and |k,0}

Fin000 o = o(n=1=9/%) " we have

sup  —20(0;a) +20(01V;0) = o(n’).

[y —kKn,a|=0(1)

It then gives (5.78).
Second, we prove (5.79). By (5.75)yf61'}a? — 02| = O(n™"/?), we have

sup —20(0:a) 200V 0) = 0,(1).

‘“770721_“n,002,0|zo(”_1/4)

It then gives (5.79).
Third, we prove (5.80). By (9.82) and (3.3), we have

—20(0;a) = nlog(2r) + logdet(X(0)) + ' A(a; 0) 71 (0)A(; 0)pu + tr(X(0)X71(9))
—(n+€)M(a;0)=7(0)(n +€) — 21’ Aa;0)S71(8)(n + €) + £(6)
= nlog(2m) + log det(2(6y)) + (n + €)'S71(8o)(n + €) + £(8) — ()
205 (0;0) — 2p/ A(; 027 1(0)(n + €) — 2(n + €)M (a; 0)Z7(0)(n + €)
= nlog(27) +log det(X(6y)) + (1 + €)'S 7" (680)(n + €) + £(6) — £(60)
+2L%E(0; 0) + 0,(n?), (9.90)

where £(0) is defined in (5.53), the second equality follows from (3.3) and

(1= 1(;0)271(0) (1 — f1(;0)) = W A(;0)E71(0)A(c; 0)p
+(n + €)' M (0;0) 7 (0) M (; 6)(n + €,
and the last equality follows from (9.84) and (9.85). Then for a € A\ A°, |0? — 02| =
o(n=0-9/2), |0 Ky — 2701@770| = o(n~(1=9/4) and |y — Kyl = 0o(1), we have
—20(8; ) +20(8\); ) = 2L%"(a;0) — 2L%"(; () + £(0) — £(6Y)) + 0, (n”)
= 205 (;0) — 2L%(a; OV) + 0,(n°)

= Op(n6>7
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where the second equality follows from (5.71) and the last equality follows from (5.78).
In addition, by (5.49) and (9.84), we have

L*(a;0) = %p,’A(a; 0)S71(0)A(c; 0)p + O,(1)
— %y(a)n‘s—f—op(na) > 0,

as n — oo with probability tending to 1. Then, we have

plim L (a; 9)/LKL(a; 0((11)) =1,

n—oo

which gives (5.80).
Finally, we prove (5.81). Similar to (9.90), we have

—20(6;0) = nlog(2m) + logdet(X(8y)) + (n + €)X (6o)(n + €) + £(8) — £(60)
+2L5E (a; 0) + O,(1).

Hence, for a € A, |07 — %] = O(n™"/2) and |03k, — 0% gigol = O(n~%)

—20(6;0) +20(6%;a) = 2L%(a;0) — 2L%(; 01)) + £(0) — £(05)) + O, (1)
— 91K%(0:0) — 205(a; 00)) + 0,(1)

= Op(l),

where the second equality follows from (5.76) and the last equality follows from (5.79).
Then,

L¥ (a;0) — L@ 0)) = 0,(1),

which gives (5.81). This completes the proof. O

Proof of Proposition 5

First, we prove (5.86). By (4.9), we have

—20(0;0) = nlog(2r) +logdet(X(0)) + Z'A(a;0)S 1 (0)A(0;0)Z
= nlog(2n) +logdet(X(0)) + ' A(a; 0) S ' — 2u' A(; 0)S7H(0) (1 + €)
+(n+€)Z7(0)(n +€) — (n+€)M(a;0)S7(0)(n + €)
= nlog(2m) + logdet(2(0)) + Y Btr(E,571(0)) + tr(X(6)Z'(9))

jEa\

—(n+€)/M(a;0)S7(0)(n +€) + £ (a; ), (9.91)

where the last equality follows from (5.87). In addition, by (5.29),

1-9¢
logdet(X(0)) = nlogo? — logn + (2/€n020€_2)1/2n(1+5)/2 - (2/€n020€_2)n5

+(02 — oo 2k’ +o(n®) + O(1),

126



2\ 1/2 2 2
0 2k, Teo | Tnofn0\ (146)/2
s+ | —— 55t 5 N
lops Oc 207 2K,0;,

2 2 2
2 2
KnOp 2/{,7077

n’ 4+ o(n®) + O(1),

and by (5.30),

S puEzEe) = Y ( 6]‘5“?1/2 (o2 5O Biojri(ry — ki) s

2 2
= —~ (2r,0202) -
JjE€a\a jEat\a jEa\a

+ Z J J - j)2n5+0(n5)+0(1).

2/@ o
JjE€a\a e

It then follows together with and (9.91), for ¢ € (0, 1),

-0 2 0520
—20(0;a) = mnlog(2m) — logn + ( logo: + — |n
o

2\ 1/2 2
+ 2’1770'77 / 1 _ UE,O + 077701 n(1+5)/2
2 2 2
o: 20; anan
Ky 02 0 o o2
+<_n—2n+/€n( T),_a2_1>_—7],0 néo>n6
o¢ KnOyy 2Ky0;

1/2 0 2
+ (< 202—1-020) Ky — 1 > n?
2,%0727 Z N n n (Z J —|—0 )1/2

jEa\a

92
2 2 0 5
Z JUJKJ+Un0’in0 ))”

jea\a ( 2 jcat\a Biof + o5,
—(n+€)/M(a;0)T7(0)(n+ €) + £ (a;0) + o(n’) + O(1).  (9.92)
Therefore, for (5.86) to hold, it remains to show that for § € [0, 1),
(n+€)M(e;0)X(0)(n+e€) = Op(1), (9.93)

which follows in a similar way as (9.84). This completes the proof of (5.86).
Finally, we prove (5.88). For § = 0, it can be followed easily from (9.92) that

—20(0;a) = nlog(2m) —

-9 2 062,0
logn + (logaE + 2 n

2 €
2kn0; 1/2 o2y 0
1 Jeo ma\, 1/2
+( o? ) ( 202 * 2/1,70727>n
—(77+€)'M( 0)’S71(0)(n + €) + £ (a:0) + Oy(1)

5 2
logn—i-(loga + O, )
o?

€

2/177077 1/2 0 977 1
g} Teo | Yna \ 172 | @),
+( 2 > (1 2‘72+2“n‘7727 n= 4+ 9 (a;0) + 0,(1),

where the last equality follows from (9.93). O

= nlog(2m) —
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Proof of Lemma 12

Let 07, = > jcac\a Bio3 + o2y and Ky o = Oy, a/ona, for o € A, where 0, , is defined in
(5.85).
First, we prove (5.90). It suffices to show that for ¢ € [0,1) and any £ > 0,

inf  (—20(0;a) +20((07 s Fnar 020)50)) > 0, (9.94)

|062—a€270|2£
as n — oo with probability tending to 1. By (5.104) and (5.113), we have
—20(0; @) + 2((07, 4 Finas 02)'s )

o2,
= (loga + logaeo—l)

1/2 2 2\ 1/2
N 2/{,70,7 / - Tco n 0.0 B 2Kp,00,0 / (146)/2
O'Z 20'62 2KJTIO'2 0'6270
+EP(;0) — £ (a; (02, iy, 02)') + 0p(n10/2)
(02 —0a2)*n

= o €0 0) = €0ai (o7, kg, 07)) + 0p(n),
€,0

where the last equality follows from (5.39) and (5.40). Therefore, for (9.94) to hold, it
remains to show that

£%(a;0) =€¢Pailog kg 020)) = o,(n),
which follows from (5.67), (5.99) and
§1(0;0) = &i((0y, kin, 020)50) = 0p(n),
§2(0;0) — &((0y, 9y 0)50) = 0p(n).
by (5.33) and (5.35) that

var(X;((371(0) — 2~ 1((03; kg 0e0)))Xy) = On),
' N

var(X5(X7(0) — (0 ki, 020) ))m) = O(n),
var(X{(271(0) — X7 (0, g, 000)"))€) = O(n).

j
Thus, (9.94) and hence (5.90) are obtained.

Second, we prove (5.91). By (5.90), it suffices to show that for |07 — 02| = o(1),
9 €[0,1) and any € > 0

inf (= 20(0(a);q) +20((02 ,, Kpas020) @) > 0, (9.95)

|m,072179,77a\25

as n — oo with probability tending to 1. By (5.104) and (5.113), for |07 — o2,| = o(1)
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and any € > 0, we have

—26(0704) +2£(( na;KJT]Omo-eO)/ O{)

1/2 1/2
o L (Fo (L e N (20007 e
= oy 2 2ky02 o2y
+§1(07a) 51(( naﬂﬁ'f]OHO-eO) )+§2(0’ Oé) 52(( na”‘i"loﬂo-e(]), Oé)
+£(8) = £((07, 05 Finas T20)) + 0 (/)
Ky — Ona) *nl 02 2\,
- 25/206003/2 —|—€1(07Oé) 61(( 7704"%77067 60) OZ)
+§2(07a) §2(( 7704”%770670-60) ) +€(0) _5((072]047/{’770” 60) )+0 ( (1+5)/2)’
where the first inequality follows from |02 — 02| = o(1) and the lefthand side of (5.39)is

positive for o, > 0, the first equality follows from (5.41). Therefore, for (9.95) to hold, it
remains to show that

§1(8: @) = &((07 05 Finar 0c0) 1) = 0y
£2(0; ) — &a(( 727047’%710” 520)/'04) = oy(n
5(0) 5((07]&7’%77047 520)/) = Op(n(1+6)/2)7

where the previous two equations can'be-obtained in a way similarly to (5.105)- (5.106)
by using the following moments conditions given by (5.33), (5.34) and (5.35):

(1+3)/2)
(1+3)/2)

S

(o}

var(X;(271(0) =8 {0y as finas 020) ) X 1) = o(n),
var (XS O) S B (o2 R 2) ) = oln),
and for |02 — 02| = o(1),
var( ( 1) — 1((ana,mna, 60)’) e)/ 2060
= t(27%(0)) + te(Z (07, iy, 020)")) — 2t0(BTETH((07 01 Fnar 020)'))

n n 2
_ v . 9] 1/2
U? o 0-210 e 6,0 P ( )
= o(n).
Thus, (9.95) and hence (5.91) are obtained. The proof is then complete. O

Proof of Corollary 5

Let Ufm = Zjeac\a ﬁ]a + 02 2o and Ky o = 0, a/a for o € A, where 6, is defined in
(5.85).

First, we prove (5.119). By (5.108) and (5.109)-(5.111), for |o. — 02y| = o(n=(19/2)
and |r,07 — O] = o(n~79/%) we have

sup  —20(0;a) +20(0P;0) = o(n’).

|k —rn,al=0(1)

It then gives (5.119).
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Second, we prove (5.120). By (5.115), for |o. — 02y| = O(n/?), we have

sup —20(0;0) +20(0;0) = 0O,(1).
|knof—0n,al=0(n" 1/4)

It then gives (5.120).
Finally, we prove (5.121). First, for ¢ € (0,1), by (9.82), we have
—20(0;0) = nlog(2m) + logdet(X(0)) + ' A(a; 0) 71 (0) A(; O)p + tr(X(09)X1(0))
—(n+¢€)M(a;0)=71(0)(n +¢€) — 21’ A(a;0)=71(0)(n + €) +£(0)
= nlog(2m) + logdet(X(6o)) + (1 + €)'Z 7" (6o)(n + €) + £(6) — £(60)
+2L(0:0) — 204 A(0: 0)S7H(0) (1 + €) — 2(n + €)' M (a; 8)Z71(0)(n + €)
= nlog(2m) + logdet(X(6o)) + (1 + €)'Z " (60)(n + €) + £(6) — £(60)
+£,(0; ) +2L%E(a; 0) + 0,(n?), (9.96)

where £(0) and &(0; «) are defined in (5.53) and (5.98), respectively, the second equality
follows from (3.3) and

(1= 1(;0)2710) (1 — f1(;0)) = W A(;0)E7(0)A(c; 0)p
+(n + €)' M(a;0)X7(0)M(o; 6)(n + €),
and the last equality follows from (9.93). Then, for o € A\ A, |02 — 02| = o(n~(179/2),
07Ky — Onal = o(n=1=9/%) and |k, — Kyl = 0(1), we have
20(0:0) + 26(0:0) = 2L (B~ 215 (a: 02) 1 £(0) — £(02)
+62(0: ) + &(6; ) + 0,(n”)
= 2LXE(0;:0) = 205 (0; 0P + 0, (n°)
Op(n6)7

where the second equality follows from (5.110) and (5.111) and the last equality follows
from (5.78). In addition, by (5.122) and (9.93), we have

L*(o;0) = %u’A(a;O)’E_l(O)A(a)p,+Op(l)

1 Bioin; (146)/2 (146)/2

= 3 Z Omotod)ITE 062>1/2n + 0,(n ) > 0,
jE€a\a n

as n — oo with probability tending to 1. Then, we have

plim L*E (o; ) /L*E (0 0)) =

n—oo

which gives (5.121) for 6 € (0,1). Second, for § = 0, similar to (9.96),

—20(6;0) = nlog(2m) + logdet(X(8y)) + (n + €)= (6o)(n + €) + £(8) — £(60)
+£5(0; ) + 2L5 (0 0) + O,(1).
Hence, for o € A, |02 — 02y = O(n/?) and |k,07 — O] = O(n™14),
—20(0;0) +20(0;0) = 2L"(0;0) — 2L (0; 07) + £(0) — £(617) + O,(1)
+63(0;0) — &(07;a) + 0y(1)
= 20%(a;0) — 205 (; 8Y) + O, (1)
= 0,(1),
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where the second equality follows from (5.116) and (5.117), and the last equality follows
from (5.120). Then

L% (0;0) — L (a; ) = O,(1).

In addition, by (5.122) and (9.93), we have
KL 1 / I5—1
L*a:0) = S A(;0)Z () Aa)pu + Oy(1)

1 JQUJQ'%j 1/2 1/2
-9 Z (2 0202)1/2n +0p(n’7) > 0,
jEa\« menTe

as n — oo with probability tending to 1. Then, we have

plim L¥(a; 0) /L*E (0; 69)) = 1,

n—oo

which gives (5.121) for 6 = 0. This completes the proof. O

Proof of Proposition 6

Let 02, =3 jcae\a 5707 + 02 for a € A.
First, we prove (5 124) By (4.9), we have

—20(0;) = nlog(2r) + log det(X(8)) + Z"A(c; 0) S (0)A(x;0)Z
= nlog(27) + logdet(X(8)) + ' A(e; )X — 2u' A(; 0)'S7H0) (1 + €)
+(m+ €)S7(0) (4 €) — (n+/€) M(a;0)S7(0)(n + €)
= nlog(2m) + logdet(S(O))+ > Blottr(X7(0)) + tr(S(6p)% ()

jE€at\a

—(n+€)/'M(x;0)S71(0)(n+€) + P (;0), (9.97)

where the last equality follows from (5.125). In addition, by (5.29),

1 —
logdet(X(0)) = nlogo? — logn + (2k,000.2) Pl +02 — (2k,020 %0’

mn-e

+(o2 — 02)o 2k’ + o(n’) + O(1),

by (5.32),

o? 202\ /2 020 02k
tr(Z(0,)X1(0 = €0 7 Y 7,01, (145)/2
H(S(0,)571(0)) U?n+( . e )
0'73,0%7],()(’%77 - K’?],O) 5 + 0-72770(’%7] - /‘in’o)2

n’ + o(n’) + O(1),

Knop 207
and by (5.31),
Ve o20—2)1/2
tr(X71(0)) = % — %n“”m +o(n®) + O(1),
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It then follows together with and (9.97), for § € (0, 1),

2 2 2

Zjeac\a jo_j + UE,O

B n
O

—20(0; ) = mnlog(2m) —

logn + (logaf—i—

1/2 2 9 2

2577073 / . ZanC\a 105 T 0co '%77,00727,0 (1+6)/2

+ — 1 + n
o? 202 2kq07

2 2 2 2
KO K 0O K 00 o
" 7,0% 7,0 17,09 1,0 ,0
p — 2 g (2220 g ) IO s 0 g )20
o2 K 2 2k, 02 2,02 " K
€ nn n-'n

—(n+€)/M(a;0)S71(0)(n+€) + (e 0) + 0,(n°) + O(1).  (9.98)
Therefore, for (5.124) to hold, it remains to show that for § € [0, 1),

(n+e)M(a;0)S7(0)(n+e) = O,(1), (9.99)

which follows in a similar way as (9.84). This completes the proof of (5.124).
Finally, we prove (5.88). For § = 0, it can be followed easily from (9.98) that

2 2 2

Z]Eac\a jU] + 06,0

2 n
0-6

5 logn + (logaf—f—

2\ 1/2 2.2 2 2

2 2 2
lops 207 2Ky0.

—20(0; ) = nlog(2m) —

n

—(n+€)/M(c;0)S7(0)(m+€)+ P (o;0) + 0,(1)

— . 20'2 -+ 0-62
= nlog(2m) — 5 logn + (1Og062+ Zyea \ 12 J ,o)n
UE
2;1,70% 1/2 Z,eac\a 2024_0620 Ky 002
1 1 — J 37 ) 17,0%n,0 1/2 (3) 0 0.(1
+< o2 ) ( 202 P gz 7 0O
where the last equality follows from (9.99). This completes the proof. O

Proof of Lemma 13

Let 052,@ = Zj@c\a ﬁ?a? + 06270.
First, we prove (5.128). It suffices to show that for 6 € [0,1) and any ¢ > 0,

inf (= 200;0) +20((0, K, 02,) ) > 0, (9.100)

€,
log—02q|2e ’

as n — oo with probability tending to 1. By (5.140) and (5.149), we have

€,a
2
_ 2
= (log o; +
€
77’/{77’ €,
2 2 )2
(Ue - O-e,a)

—20(0; ) + 25((0,27, Ky 020) @)
0;’; —logo?, — l)n
+{ (2/@703)1/2 (1 Ol N ﬁn,oag,o) B (2%;7;,0072;,0)1/2}”(1%)/2
o2 202 2k,0; 02,
+®(:0) — £¥(as (07, k9, 02,)') + 0p(n1F072)
B Tﬂ +ED(:0) — €% (o (07, iy, 02,)) + 0, (02,
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where the last equality follows from (5.39) and (5.40). Therefore, for (9.100) to hold, it
remains to show that

5(3) (Oé, 0) - 5(3) (Oé, (072]7 K, 0-62,01)/> = Op(n)'
By (5.138), it is enough to show that

£1(0;0) = &i((07, kn, 020)50) = op(n),
§(0;a) — 52((02 "{n’aia)/§@) = 01)(”)7
5(0) - 5(( 7277 "4’777052,(1),) = Op(”)a

which can be obtained from Chebyshev’s inequality and using the following moment
conditions given by (5.34) and (5.35):

var(X((S74(0) = £ (02 1y, 02,) ) Xy) = Oln),
var(X}(8 1<e> = (0} o) D) = Ol

var(X(371(0) — X7 (0, g, 02,)))e) = O(n).

Thus, (9.100) and hence (5.128) are obtained.
Second, we prove (5.129). By (5.128), it suffices to show that for |07 — o2 ,| = o(1),
d€[0,1) and any € > 0

o inf _ | (= 20(0(a)ya)£2(((02 g, Kino, 020) 5 0)) > 0, (9.101)
Kn0j—HKn,005 o >e ’

as n — oo with probability tendingto 1. By (5.140) and (5.149), for |67 — o7 ,| = o(1)
and any € > 0, we have

—20(0; o) + 25((0270, K05 aia)’; @)

26,02\"2 (1 Kpoo2, 2hin 002 o\ /2
= ) G i) - (Fa) e i) - 6@ty
€,a n

n
162(0: @) — (02, g0, 020)'10) + E(8) — E((02 K0, 07,)) + 0,(n %)

2 2 \2, (1+6)/2
(kno Kn,00, 0)'n

J— n ) . 2 2 /.
N 25/206,a(/<n,0<7%,o)3/2 +&(05a) — 51((077,07 Fn0: Oca)'s )

+62(0: ) — &((00, K0, 020)'3 ) + E(0) = E((07) 0, K0, 020)") + 0p (n1TH12),
where the first inequality follows from |07 — o7 ,| = o(1) and the lefthand side of (5.39) is

positive, the first equality follows from (5. 41) Therefore, for (9.101) to hold, it remains
to show that

1(0;0) = &1((07 9, im0, 022)50) = 0,(n'F07?),
£(0;0) = &((02 0, ko, 020) ;@) = 0,(n1F/2),
£(0) — ((‘7 0 ’in,07az,a)/) = Op(n(1+6)/2)’

which follows similarly from (5.141)-(5.142), by using the following moment conditions
given by (5.33) and (5.34):

var(n'(371(0) — 27 (070, 90, 0e0) ))M) = o(n),
var(n/(371(0) — 37 (07,0, 490, 0ca) ) )€) = o(n),
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and for |o? — 0?2 ,| = o(1),

Var(e'(Efl(H)—Efl(( no,/ino, o ) )/ 2060
= tr(2740)) + tr(Z72((07 g, Fin0, 024)")) = 20(Z7IETH((07 o, Ko, 024)"))

_on n 2n 1/2
T o e e, T
= o(n).
Thus, (9.101) and hence (5.129) are obtained. The proof is then complete. O

Proof of Corollary 6
Let 02, =3 jcae\a 5707 + 02 for a € A.

First, we prove (5.155). By (5.144) and (5.145)-(5.147), for |02 — 02| = o(n~179/2)
and |k,02 — Kyo00ol = o(n=179/4) we have

sup  —20(0;0) +20(0:a) = o(n).

|k —rn,0l=0(1)

It then gives (5.155).
Second, we prove (5.156). By (5.151), for |o. — 02| = O(n"'/?), we have

e,a|

sup —26(0;0)4 20(09;0) = 0,(1).

‘NWU%_“n,O‘Tz,d:O(n*lM)

It then gives (5.156).
Finally, we prove (5.157). First, for 6 € (0;1), by (9.97), we have

—20(0;a) = nlog(2n) + logdet(X(0)) + ' A(a;0) S 1(0) A(; O)p + tr(X(0p)21(0))
—(n+ e/ M(c; 0)Z7(0)(n + €) — 21’ A(; 0)Z71(0)(n + €) + £(6)

= nlog(2r) + log det(2(0o)) + (1 + €)= (60) (n + €) + £(8) — &(6o)
+2L%(0:0) — 204/ A(0: 0)S71(0) (1 + €) — 2(n + €)' M(a; 0)Z7'(0)(n + €)

= nlog(2m) + logdet(X(6y)) + (1 + €)Z ™" (6o)(n + €) + £(6) — £(60)
+£,(0; ) + 2L%E(a; 0) + 0,(n?), (9.102)

where £(0) and &(0; «) are defined in (5.53) and (5.137), respectively, the second equality
follows from (3.3) and

(1= 1(;0)27H0) (1 — 1(;0)) = W A(x;0)Z7H(0)A(c; 0)p
+(n+ €)' M(a;0)'S7(0)M(a;0)(n + €),
and the last equality follows from (9.99). Then, for a € A\ A¢, |0 —02,| = o(n~(179/2),

|02k — Fi00a ol = o(n™179/4) and |k, — k0l = o(1), we have

—20(0; ) +20(0Y;0) = 205 (a;0) — 2L%(0; 6Y) + £(8) — £(6)
+62(0; ) = &(657; ) + 0,(n”)
= 2L%(a;0) — 205 (; 8 + 0,(n°)

= Op(né)’
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where the second equality follows from (5.146) and (5.147) and the last equality follows
from (5.78). In addition, by (5.159) and (9.99), we have

L*(a;0) = %u’A(a;H)’E1(9)A(O¢)u+0p(1)

as n — oo with probability tending to 1. Then, we have

plim L¥(a; 0) /L*E (a; 9)) = 1,

n—oo

which gives (5.157) for 6 € (0,1). Second, for § = 0, similar to (9.102),

—20(0;0) = nlog(2m) + logdet(X(0y)) + (n +€)S71O)(n + €) + £(0) — £(6y)
+£5(0; ) + 2L5 (; 0) + O,(1).

Hence, for a € A, |02 — 02| = O(n"?) and |0 — g0l = O(n~/%),

—20(0; ) +20(0;0) = 2L%"(a;0) — 2L (0; 6Y) + £(8) — £(8) + O,(1)
+6(0; @) — &(65; ) + O,(1)
= 2L 0y <25 (0; D) + 0, (1)
= OP(]')7

where the second equality follows“from (5.152) and (5.153), and the last equality follows
from (5.156). Then

L% (;0) — L (; 09)) = O,(1).

In addition, by (5.122) and (9.93), we have

L*(a;0) = %H’A(a;e)’E‘l(H)A(a)u+Op(l)

as n — oo with probability tending to 1. Then, we have

plim L¥(a; 0) /L*E (a; ) = 1,

n—oo

which gives (5.157) for 6 = 0. This completes the proof. O

Proof of Corollary 7
It suffices to show that (6.3) is satisfied all the time in this case. By (3.17),

E(L(e)) = Ri(a)+ Ry(a)+ oitr(X, X271 > o?tr(X, X7,
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where the inequality follows from R;(a) > 0 and Rs(a) > 0, for all & € A. Also, from
(5.30),

lim oltr(X,X71)

ez 2712 (02k,0?) > 0. (9.103)
n—o00 n

n

Hence, (6.3) is then satisfied for fixed p.
For A # () and (6.3) is satisfied from above, it is shown that for fixed p and « € A,

| L)
EI_IE.}‘E(L(O&)) 1‘ = 0, (9.104)

by (6.9). Also, from (3.17), we have for o € A\ A,

. E(L()

ARELe) ©

by otr(X 7'M («)) < p(a) < oo and (9.103), where the equality holds for

4.1 INY—2
iy MA@ T A()p

lim L) 0. (9.105)

Let of = argmin, 4 L(a). If (9.105) is not satisfied, by (9.104), we have

. L(a)
1 A
1}@)_1)1;1; L(a°) “

for some ¢ > 1 and o € A\ A°, ‘which follows that P(aL € AC) = 1. In addition, by
(3.17) and (9.103), we have for any o &A%

1 E(L(@h)
2% B(L{a)

Then by (9.104), for any « € A, we have

. L(a)
|
D~ L(a?)

It then gives plim L(&)/ ianAL(oz) =1, if lim P(& € A°) = 1. If (9.105) is satisfied, we
aec

n—oo n—oo

then have for any a € A°,

L B(L")
e B(L()

which gives that for any a € A,

plim 7755 = L (9.106)

by (9.104), which also gives plim L(d&)/ iniL(a) =1, for lim P(& € A°) = 1. Then, it
ac

n—00 n—00

completes the proof. O
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Proof of Corollary 8
For fixed p, (6.3) is shown by (9.103). Hence, by Theorem 14, it gives

lim L(a inf L = 1.
plim L(&carc)/ inf L(a)

n—oo

For any ¢ € [0,1), by (5.38), we have
o W A()E? A(a)p = O(n’),
which gives (9.105) by (9.103). It then follows (9.106), which gives EE{.I.} L(a)/ igiL(a) =
1, for any arbitrary selected model &. It completes the proof. O

Proof of Corollary 9
For A° = {a°}, it suffices to show that lim E(L(a)) — o?tr(2,X7") = oo for a € A\ A°

n—oo

and finite fixed p by
plim g/ A(a)' = A(a)p = co.

n—oo

First, for i = 1,...,p, let X; be the jth column of X. Then, for j =1,...,p,

1
lim ———+ XI5 °X; =
Eif.f tr(X-2) 0

by its expectation equals to 0]2- and its variance

2 2
: 4 —4 =2 : 4 —2 2 —2
lim_ ojtr(377) / (tr(E >) < <l ojtr(377) / (aetr(z ))
= a;-l/ lim (aftr(EZ)) =0,

by 0?%7! < I and lim tr(X7%) = oo, and for j,k =1,...,p and j # k,

n—oo

lim

1
XXX, =
n—oo tr(E_Q) J K 0’

by its expectation equals to 0 and its variance

lim o?oitr(S" )/(tr(2—2)>2 < lim ofoptr(3° 2)/(tr(2_2))2

It then follows that for p = X3 and B = (5, ..., §;),

WA@)S Al = Y ol >0, (9.107)

jEa\a

lim

1
n—00 tr(2—2)

for a € A°. Hence, (6.26) holds by lim tr(X~2) = oo, we then complete the proof. a

n—oo
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Proof of Corollary 10
For A # () and A — oo, by (9.107) and lim tr(X7%)/X = oo, (6.46) is then satisfied. In

n—oo

addition, we have

plimtr(E7'M(a)) = plimtr((X ()= 'X(a) ' X(a)E7?X(a))

n—oo n—oo

which gives (6.47) for fixed p. It then follows that lim (&GIC(A) = of) = 1, which

n—oo

completes the proof. O
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