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空間統計模型選取之大樣本理論 

學生：張志浩 

 

指導教授：黃信誠 

共同指導：銀慶剛 

國立交通大學 統計學研究所 博士班 

摘 要       

在傳統迴歸模型中，模型選取的大樣本理論已被廣泛建立。然而在空間統計

迴歸模型中，使用傳統模型選取準則的選模結果並未被完善的討論及研究，尤其

當假設資料觀測空間為一固定區域而不隨著樣本增加而放大時，其大樣本理論可

以預期會與傳統的理論結果有所差異。論文中，我們在一些常規假設下，建立了

傳統模型選取準則的大樣本理論。而後在一維空間的一些例子下，我們發現這些

常規假設的成立與否不僅與樣本空間放大的速度有關，也與所選取變數在空間中

的平滑程度有緊密關係。當空間互變異函數參數未知時，我們同樣發現，參數估

計及傳統模型選取準則的大樣本理論，也與樣本空間放大的速度和所選取變數在

空間中的平滑程度有關。最後我們執行有限樣本的模擬實驗，並得到與大樣本理

論一致的結果。 
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Asymptotic Theory for Geostatistical Model Selection  

 
student：Chih-Hao Chang Advisors：Dr. Hsin-Cheng Huang 

Co-Advisor：Dr. Ching-Kang Ing 

Institute of Statistics 

National Chiao Tung University 

ABSTRACT 

Information criteria, such as Akaike's information criterion (AIC), Bayesian 

information criterion (BIC), and conditional AIC (CAIC) are often applied in model 

selection. However, their asymptotic behaviors under geostatistical regression models 

have not been well studied particularly under the fixed domain asymptotic framework 

with more and more data observed in a bounded fixed region. In this thesis, we 

investigate two classes of criteria for geostatistical model selection: generalized 

information criterion (GIC) and conditional GIC (CGIC), which include AIC, BIC, 

and CAIC as special cases, under both the increasing domain asymptotic and fixed 

domain asymptotic frameworks. We establish conditions under which GIC and CGIC 

are selection consistent and asymptotically efficient even without assuming spatial 

covariance structure to be known. These conditions are further examined for GIC and 

CGIC in selecting one-dimensional geostatistical regression models with the 

exponential covariance function class under various settings. For example, under the 

fixed domain asymptotic framework, where some covariance parameters are not 

consistently estimable, we show that selection consistency not only depends on the 

tuning parameter of GIC, but also depends on smoothness of the explanatory variables 

in space. In addition, under the increasing domain framework, we show that 

asymptotic properties of GIC depend on the growing rates for the size of the domain. 

Moreover, some numerical experiments are provided to demonstrate the finite sample 

behavior of various criteria.                                               
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Chapter 1

Introduction

More and more spatial data are collected in this world. In many problems, several variables
are measured at some locations over a region in space, and it is of interest to predict a
variable at some locations, where measurements may or may not be taken, based on all
data available in the region. We can formulate the problem as a geostatistical regression
problem by treating the variable of interest as the response and regressing it with other
(explanatory) variables while accounting for spatial dependencies. However, inference and
prediction generally depend on how explanatory variables are chosen, which if not chosen
properly, may lead to poor inference and prediction, particularly when the number of
explanatory variables is large. Clearly, model selection problem is essential in geostatistics.

For example, suppose that we are interested in knowing ground-level ozone concen-
trations for a region consisting of Taoyuan, Hsinchu and Miaoli in Taiwan based on data
measured at some monitoring stations in Taiwan Air Quality Monitoring Network (see
Figure 1.1). At each monitoring station, we collect hourly ozone concentrations together
with some explanatory variables, including ozone precursors (such as nitrogen oxides and
hydrocarbons), meteorological variables (such as wind speed and wind direction, tem-
perature, mixing height, humidity and rainfall), altitude, population, etc. It is of inter-
est to identify influential explanatory variables for ozone concentrations, and to predict
ozone concentrations for the whole region by applying a geostatistical regression model.
Although lower altitudes, lower wind speeds, and higher temperatures are expected to
associate with higher ozone concentrations, some other variables may or may not have
effects on ozone concentrations. Removing unrelated variables, while retaining impor-
tant variables, will allow one to reduce estimation variability, thereby increase prediction
accuracy.

There are two different asymptotic frameworks in geostatistics. One is called the in-
creasing domain asymptotic framework, where the observation region grows with the sam-
ple size. The other is called the fixed domain asymptotic (or infill asymptotic) framework,
where the observation region is bounded and fixed. It is known that these two frameworks
lead to possibly different asymptotic behaviors on covariance parameter estimation, and
hence are also expected to produce different asymptotic behaviors on model selection.
In general, asymptotic behaviors under the increasing domain asymptotic framework are
more standard. For example, the maximum likelihood (ML) estimates of covariance pa-
rameters are typically consistent and asymptotically normal (Mardia and Marshall 1984).
In contrast, not all covariance parameters can be consistently estimated under the fixed
domain asymptotic framework even for a simple one-dimensional example with the sta-
tionary exponential covariance model (Ying 1991). The readers are refereed to Stein
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Figure 1.1: Locations of monitoring stations in Taoyuan, Hsinchu and Miaoli counties in
Taiwan Air Quality Monitoring Network.

(1999) for more details regarding fixed domain asymptotics.
There are many model selection methods that have been applied in geostatistical model

selection, such as Akaike’s information criterion (AIC, Akaike 1973), Bayesian information
criterion (BIC, Schwartz 1978), the generalized information criterion (GIC, Nishii 1984),
and cross validation. Note that GIC contains a tuning parameter, which includes both
AIC and BIC as special cases. Although asymptotic properties of these selection methods
have been well studied in linear regression and time series model selection (e.g., Shao
1997; McQuarrie and Tsai 1989), they have not been well established for geostatistical
model selection. In fact, there are only limited results available partly because asymptotic
properties under the fixed domain asymptotic framework are generally nonstandard and
difficult to handle. Hoeting et al. (2006) provided some heuristic arguments for AIC
in geostatistical model selection under the assumption that the variable of interest is
observed with no measurement error. They show via a simulation experiment that spatial
dependence has to be considered, which if ignored, may lead to unsatisfactory results.
For linear mixed-effect models, Pu and Niu (2006) provided conditions under which GIC
is selection consistent. In addition, Vaida and Blanchard (2005) developed a criterion for
linear mixed model selection, called the conditional Akaike’s information criterion (CAIC).
This criterion provides unbiased estimation of the mean squared prediction error, which
appears to be more suitable than AIC for geostatistical model selection when spatial
prediction is of main interest. Huang and Chen (2007) developed a general technique of
estimating the mean squared prediction error for a general spatial prediction procedure,
in which a concept called generalized degrees of freedom is used to provide an almost
unbiased estimate. Their method is applicable to select among arbitrary spatial prediction
methods, and is shown to achieve some asymptotic efficiency result.

In this thesis, we first study GIC for geostatistical model selection. Then we propose
a new criterion, called conditional GIC (CGIC), which includes CAIC as a special case.
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Major accomplishments are listed in the following:

1. Asymptotic properties of GIC under both the fixed domain asymptotic and the
increasing domain asymptotic frameworks are established under some regularity
conditions.

2. Asymptotic properties of CGIC under both the fixed domain asymptotic and the
increasing domain asymptotic frameworks are established under some regularity
conditions.

3. The above regularity conditions are explicitly checked for some examples in the one-
dimensional space with various forms of explanatory variables under the exponential
covariance model corresponding to the Ornstein-Uhlenbeck process (Uhlenbeck and
Ornstein, 1930).

We shall show that asymptotic behaviors of these criteria are related to how fast the
domain increases with the sample size. In addition, some nonstandard behaviors of these
criteria under the fixed domain asymptotic framework will be highlighted. For example,
under the fixed domain asymptotic framework, GIC and CGIC fail to identify the correct
set of polynomial variables consistently regardless of which tuning parameters are chosen.
On the other hand, both BIC and CBIC are selection consistent when candidate variables
are generated from either white-noise processes or some zero-mean spatial dependent
processes.

We shall start by developing asymptotic results under known covariance parameters,
and then allowing them to be unknown. However, under the fixed domain asymptotic
framework, ML estimates may converge to nondegenerate distributions. In this situation,
general asymptotic properties are very difficult to develop even for parameter estimation.
Therefore, we shall focus only on some examples of geostatistical models defined over the
one-dimensional space with the exponential covariance model.

The thesis is organized as follows. Chapter 2 gives a brief introduction of geostatistics,
including various spatial covariance models, various spatial prediction and parameter esti-
mation methods. In Chapter 3, we introduce the variable selection problem and consider
two loss functions for comparing among different methods. In Chapter 4, some asymp-
totic properties of GIC are established under some regularity conditions. These conditions
are further verified by some examples in the one-dimensional space with the exponential
covariance model under either known or unknown covariance parameters in Chapter 5.
Chapter 6 is devoted to CGIC and its asymptotic properties. Chapter 7 provides some
simulation examples for comparing among various model selection criteria. Some con-
clusions and discussion regarding future research directions are provided in Chapter 8.
Finally, the appendix contains proofs for all lemmas and propositions.
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Chapter 2

Geostatistics

This chapter provides a brief introduction to geostatistics, including geostatistical models,
spatial prediction, parameter estimation, and the two asymptotic frameworks.

2.1 Geostatistical Models

Consider a spatial process {S(s) : s ∈ D} of interest defined over a region D ⊂ Rd with
d ∈ N ≡ {1, 2, . . . }. Suppose that we observe data {(x(si), Z(si)) : i = 1, . . . , n} at
locations si ∈ D, where

x(si) = (1, x1(si), . . . , xp(si))
′, (2.1)

is a p-vector of explanatory variables observed at si ∈ D, and Z(si) is the corresponding
response variable observed according to the following measurement equation:

Z(si) = S(si) + ε(si); i = 1, . . . , n,

and {ε(si) : i = 1, . . . , n} are white-noise variables corresponding to measurement errors
with variance σ2

ε . The spatial process S(·) is further decomposed into a linear combination
of explanatory variables x(·)′β and a zero-mean spatial dependent process η(·):

Z(si) = x(si)
′β + η(si) + ε(si); si ∈ D, i = 1, . . . , n. (2.2)

In general, η(·) is assumed to be L2-continuous (i.e., E(η(s)−η(s′))2 → 0 as ‖s−s′‖ → 0)
with its spatial dependence structure described by a variogram model or a covariance
model (Section 2.2). The goal is either to make inference on β or more often to predict
{S(s) : s ∈ D} based on data Z ≡ (Z(s1), . . . , Z(sn))′. Commonly used loss functions

for spatial prediction include
∫

s∈D

∣∣Ŝ(s)− S(s)
∣∣2ds and

n∑
i=1

(
Ŝ(si)− S(si)

)2
, where Ŝ(s)

denotes a generic predictor of S(s) at s ∈ D.

2.2 Variograms and Covariance Functions

In geostatistical literature, spatial dependence is commonly described using a variogram,
defined as

2γ∗(s, s′) ≡ E(Z(s)− Z(s′))2; s, s′ ∈ D.

4



The function γ∗(·, ·) is usually called the semivariogram. Clearly, γ∗(s, s′) ≥ 0 and
γ∗(s, s) = 0, for s, s′ ∈ D. A spatial process S(·) is said to be intrinsically station-
ary if it has a constant mean: E(S(s + h)− S(s)) = 0, and its variogram can be written
as

2γ(h) ≡ 2γ∗(s + h, s) = E(Z(s + h)− Z(s))2,

for any pairs s and s + h ∈ D. Note that the function 2γ(h) does not depend on s.
Spatial dependence can also be described using a covariance function:

C(s, s′) ≡ cov(S(s), S(s′)); s, s′ ∈ D.

Similar to an intrinsically stationary process, a spatial process S(·) is said to be second-
order stationary if E(S(s + h) − S(s)) = 0 and its covariance function can be written
as:

K(h) = C(s, s + h) = cov(S(s), S(s + h)),

independent of s, for any s, s + h ∈ D. Clearly, K(h) = K(−h), and |K(h)| ≤ K(0) =
var(S(s)), for s ∈ D. Note that a second-order stationary process is an intrinsically
stationary process with γ(h) = K(0)−K(h), but not necessary vice versa. For example,
a Brownian motion is an intrinsically stationary process, but not a stationary process,
because its variance is not a constant (see Cressie 1993).

In addition, a second-order stationary process is said to be isotropic if K(h) depends
on h only through ‖h‖, where ‖ · ‖ is the L2 norm. In what follows, we introduce some
isotropic stationary covariance function classes commonly used in the literature. The
exponential covariance class is given by:

K(h) = σ2
η exp(−κη‖h‖), (2.3)

where σ2
η > 0 and κη ≥ 0 is a range parameter. The Gaussian covariance class is given

by:
K(h) = σ2

η exp(−κη‖h‖2), (2.4)

where σ2
η > 0 and κη ≥ 0 is a range parameter. The Matérn covariance class (Matérn

1986) is given by:

K(h) =
σ2

η(κ‖h‖)ν

Γ(ν)2ν−1
Kν(κη‖h‖), (2.5)

where σ2
η > 0, κη ≥ 0 is a range parameter, ν > 0 is a smoothness parameter, and Kν

is the modified Bessel function of the second kind with order ν (Abramowitz and Stegun
1965). Note that the Matérn covariance class contains the exponential covariance class as
a special case when ν = 0.5. It also reduces to the Gaussian covariance class as ν →∞.

2.3 Kriging and Spatial Prediction

Spatial prediction is commonly called kriging in geostatistics, which utilizes spatial depen-
dence structure to interpolate or smooth the surface of a spatial stochastic process based
on (noisy) data observed at some locations in space. It is named after a South African
mining engineer, Daniel Gerhardus Krige (1951), who pioneered the field of geostatistics.
In this section, we are going to introduce several kriging methods derived under different
circumstances.
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Simple Kriging

Suppose that we observe data Z = (Z(s1), . . . , Z(sn))′ according to (2.2), where σ2
ε ,

µ(s) = E(S(s)); s ∈ D, and C(s, s′) = cov(S(s), S(s′)); s, s′ ∈ D, are known. Then
the predictor Ŝ(s) that minimizes the mean squared error, E(Ŝ(s) − S(s))2 is Ŝ(s) =
E(S(s)|Z), for s ∈ D. This predictor is called the simple kriging predictor. If in addition,
S(·) and {ε(s1), . . . , ε(sn)} are both Gaussian. Then Ŝ(s) is a linear predictor and can
be explicitly written as:

Ŝ(s) = µ(s) + σ′Σ−1(Z − µ), (2.6)

where µ ≡ (µ(s1), . . . , µ(sn))′, σ ≡ (C(s1, s), . . . , C(sn, s))′, Σ ≡ [
C(si, sj)

]
n×n

+ σ2
ε In,

and In is the n×n identity matrix. Under the Gaussian assumption, the kriging variance
(or the mean squared prediction error) of Ŝ(s) at s ∈ D is

E
(
Ŝ(s)− S(s)

)2
= C(s, s)− σ′Σ−1σ.

Ordinary Kriging

Suppose that we observe data Z = (Z(s1), . . . , Z(sn))′ according to (2.2), with a constant
mean µ = E(S(s)); s ∈ D, which is unknown, whereas σ2

ε and C(s, s′) = cov(S(s), S(s′));
s, s′ ∈ D, are known. Then the best linear unbiased predictor of S(s), which minimizes
E(Ŝ(s)− S(s))2 among all unbiased linear predictors is given by:

Ŝ(s) = µ̂ + σ′Σ−1(Z − µ̂1),

where µ̂ ≡ (1′Σ−11)−11′Σ−1Z, σ and Σ are defined in (2.6), and 1 ≡ (1, . . . , 1)′. The
predictor is usually called the ordinary kriging (OK) predictor. The ordinary kriging
variance is

E
(
Ŝ(s)− S(s)

)2
= C(s, s)− σ′Σ−1σ +

(1− 1′Σ−1σ)2

1′Σ−11
.

Universal Kriging

Instead of having a constant mean as in the ordinary kriging model, suppose that we
observe data Z = (Z(s1), . . . , Z(sn))′ according to (2.2) with mean,

µ(s) = E(S(s)) =

p∑

k=0

βkxk(s),

where xj(·)’s are known function corresponding to explanatory variables in (2.1) and βj’s
are unknown regression coefficients. Here σ2

ε and C(s, s′) = cov(S(s), S(s′)); s, s′ ∈ D,
are assumed known. Then the best linear unbiased predictor, usually called the universal
kriging (UK) predictor, has the following linear form:

Ŝ(s) =
n∑

i=1

ωiZ(si),

which minimizes E(Ŝ(s)−S(s))2 subject to the following p + 1 unbiasedness constraints:

n∑
i=1

ωixj(si) = xj(s); j = 0, 1, . . . , p.
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Let X be the n × (p + 1) matrix with the ith row given by x(si); 1 ≤ i ≤ n, defined in
(2.1). Then the UK predictor is given by:

Ŝ(s) = x(s)′β̂ + σ′Σ−1(Z −Xβ̂),

where β̂ = (X ′Σ−1X)−1X ′Σ−1Z is the generalized least square estimate of β, and σ
and Σ are defined in (2.6). In particular, the UK predictor of S ≡ (S(s1), . . . , S(sn))′ is

Ŝ = Xβ̂ + var(S)Σ−1(Z −Xβ̂). (2.7)

Note that OK is a special case of UK with p = 0. The UK kriging variance satisfies

E
(
Ŝ(s)− S(s)

)2
= C(s, s)− σ′Σ−1σ + σΣ−1X(X ′Σ−1X)−1X ′Σ−1σ

+x(s)′(X ′Σ−1X)−1x(s)− 2x(s)′(X ′Σ−1X)−1X ′Σ−1σ.

Other Kriging Methods

The above kriging methods assume that the covariance parameters are known. When
they are unknown, one may plug the estimated parameters into the expressions of the
corresponding kriging predictors. Another solution is to apply a Bayesian approach by
specifying a joint prior distribution for all the unknown parameters. Then a Bayesian
kriging method is obtained by using either the posterior mean or the posterior median of
S(·) as a predictor of S(·).

When either S(·) is not a Gaussian process or ε(si)’s are not Gaussian distributed, the
optimal predictor, E(S(s)|Z) of S(s) that minimizes E‖Ŝ(s)−S(s)‖2 is generally nonlin-
ear and has a complex form. Under this situation, some nonlinear kriging methods, such
as transGaussin kriging, disjunctive kriging, and indicator kriging have been developed.
The readers are referred to Journel (1983), Cressie (1993), or Schabenberger and Gotway
(2005) for more details.

2.4 Covariance Parameter Estimation

The kriging methods introduced previously basically require knowing σ2
ε and the vari-

ogram (or covariance function) of S(·). In practice, they are generally unknown and have
to be estimated. To visualize the spatial dependence structure, it is common to plot the
following empirical variogram at various spatial lags h > 0:

γ̂(h) =
1

2|N(h)|
∑

i,j∈N(h)

(Z(si)− Z(sj))
2,

where N(h) denotes all the pairs of si and sj such that ‖si−sj‖ ≈ h, and |N(h)| denotes
the number of elements in N(h). However, the empirical variogram cannot be computed
at every lag distance due to limited amounts of data. It is common to estimate the
variogram (or covariance function) of S(·) by specifying a parametric model after looking
at the empirical variogram.

Hereafter, we consider a covariance model parameterized by θ. Denote Σ(θ) to be the
variance-covariance matrix of Z based on parameter θ. Let

f(Z; µ,Σ) = (2π)−n/2(detΣ)−1/2 exp(−(Z − µ)′Σ−1(Z − µ)/2), (2.8)
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be the Gaussian density function with mean µ and variance-covariance matrix Σ. Given
θ, the ML estimates of β and µ are given by

β̂(θ) = (X ′Σ−1(θ)X)−1X ′Σ−1(θ),

and µ̂(θ) ≡ Xβ̂(θ). Therefore, the ML estimate of θ can be obtained by maximizing the
profile log-likelihood function:

`(θ; Z) = log f(Z; µ̂(θ),Σ(θ))

= −n

2
log(2π)− 1

2
log(detΣ(θ))− 1

2
(Z −Xβ̂(θ))′Σ−1(θ)(Z −Xβ̂(θ)). (2.9)

Alternatively, we can estimate θ by restricted maximum likelihood (REML), obtained
by maximizing the likelihood of some contrasts Z† = AZ such that AX = 0, where
A is a (n − p − 1) × n matrix with rank n − p − 1, which can be chosen as A =
I − X(X ′Σ−1(θ)X)−1X ′Σ−1(θ). Then the REML estimate of θ can be obtained by
maximizing the log-likelihood function of Z†:

log f
(
Z†;0,AΣ(θ)A′) = −(n− p− 1)

2
log(2π)− 1

2
log det(Σ(θ))

−1

2
log det((X ′Σ−1(θ)X)−1)− 1

2
Z†′(AΣ(θ)A′)−1Z†.

The covariance parameter vector θ can also be estimated by some methods of moments,
which have an advantage of not relying on the Gaussian assumption. For more details,
the readers are referred to Cressie (1993) and Schabenberger and Gotway (2005).

2.5 Asymptotic Frameworks

There are two asymptotic frameworks in geostatistics having different assumptions on the
domain D. One is called the fixed domain asymptotic framework, where data are sampled
more and more densely in a bounded fixed region D. The other is called the increasing
domain asymptotic framework with |D| → ∞ as n → ∞, which is often considered
in time series analysis. The fixed domain asymptotic framework is somewhat unique
in geostatistics, which tends to have some unusual asymptotic behavior due to limited
information available in a bounded fixed region.

Asymptotic properties under the increasing domain asymptotic framework are more
standard. Suppose that we observe data Z according to (2.2), where µ(s) = x(s)′β is
known, but var(Z) depends on some unknown parameter vector θ. Then Mardia and
Marshall (1984) show under some regularity conditions that

θ̂ML ∼ N(θ0, I
−1(θ0)), (2.10)

where θ0 is the true parameter vector and I(θ0) is the Fisher information. However,
(2.10) is generally not satisfied under the fixed domain asymptotic framework, and in
fact some parameters of θ can not be consistently estimated. For example, suppose that
η(·) is generated from a Matérn covariance function of (2.5) with ν known but σ2

η and κη

unknown. Zhang (2004) shows that the ML estimates of σ2
η and κη are inconsistent under

the fixed domain asymptotic framework. That is,

lim
n→∞

P
(|σ̂2

η − σ2
η,0| > ε} > 0,
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and
lim

n→∞
P

(|κ̂η − κη,0| > ε} > 0.

for any ε > 0, where σ2
η,0 and κη,0 are the corresponding true parameters. However,

as shown in the following proposition, some function of σ2
η and κη can be consistently

estimated.

Proposition 1 (Zhang, 2004) Consider an increasing sequence of finite subsets Dn of
Rd, for d = 1, 2, 3, such that ∪∞n=1Dn is bounded and infinite. Suppose that the data Z
are observed on D = Dn according to (2.2) with β = 0 and σ2

ε = 0 known, where η(·)
is a Gaussian process with a Matérn covariance function of (2.5) and ν > 0 is known.
Assume that σ2

η,0 > 0 and κη,0 > 0 are the true parameters corresponding to σ2 and κη. If
κη is fixed at some constant κ1 > 0, and σ̂2

η is the ML estimate of σ2. Then

σ̂2
ηκ

2ν
1

p−→ σ2
η,0κ

2ν
η,0, as n →∞.

Also, Ying (1991) shows the similar results for exponential covariance function which
is a special case of Matérn class for ν = 0.5.

Proposition 2 (Ying, 1991) Suppose that the data Z are observed on D = [0, 1] accord-
ing to (2.2) with β = 0 and σ2

ε = 0 known, where η(·) is a zero-mean Gaussian process
with an exponential covariance function of (2.3). Let Θ be the parameter space of (σ2

η, κη)
′.

Assume that either Θ = [a, b]× (0,∞) or Θ = (0,∞)× [a, b], where 0 < a ≤ b < ∞, and
the true parameter vector (σ2

η,0, κη,0)
′ ∈ Θ.

(i) Let σ̂2
η and κ̂η be the ML estimates of σ2

η and κη. Then

√
n(σ̂2

ηκ̂η − σ2
η,0κη,0)

d−→ N(0, 2(σ2
η,0κη,0)

2), as n →∞.

(ii) Suppose that κη is fixed at some constant κ1 > 0 and σ̂2
1 is the corresponding ML

estimate of σ2
η. Then

√
n

(
σ̂2

1 −
σ2

η,0κη,0

κ1

)
d−→ N

(
0, 2

(
σ2

η,0κη,0

κ1

)2
)

, as n →∞.

(iii) Suppose that σ2
η is fixed at some constant σ2

1 and κ̂1 is the corresponding ML estimate
of κη. Then

√
n

(
κ̂1 −

σ2
η,0κη,0

σ2
1

)
d−→ N

(
0, 2

(
σ2

η,0κη,0

σ2
1

)2 )
, as n →∞.

The parameters σ2
ηκ

2ν
η in Proposition 1 and σ2

ηκη in Proposition 2 are called microer-
godic parameters (Matheron 1971, 1989; Stein 1999), which basically imply that both
parameters can be recovered with probability 1 from observations in a bounded fixed
region. These parameters have also been shown to play an important role in spatial
prediction by Stein (1999). Specifically, consider the spectral density function of K(h),
h ∈ Rd:

f(ω) =
1

(2π)d

∫

Rd

exp(−iω′h)K(h)dh; ω ∈ Rd.
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Stein shows that under the fixed domain asymptotic framework, f(ω) contributes to
mean square prediction error mainly for large |ω|, whose behavior is governed by some
microergodic parameters. He also provides some specific examples for exponential and
Matérn covariance functions.

For σ2
ε > 0 in (2.2), Chen et al. (2000) provides the following results regarding the ML

estimates of σ2
η, κη and σ2

ε .

Proposition 3 (Chen et al. 2000) Suppose that the data Z are observed regularly on
D = [0, 1] according to (2.2) with β = 0 known, where η(·) is a zero-mean Gaussian
process with an exponential covariance function of (2.3). Assume that (ση, κη, σ

2
ε )
′ ∈ Θ,

where Θ ⊂ (0,∞)3 is a compact set, and the true parameter vector (σ2
ε,0, σ

2
η,0, κη,0)

′ ∈ Θ.

(i) Let σ̂2
ε , σ̂2

η and κ̂η be the ML estimates of σ2
ε , σ2

η and κη. Then, as n →∞,

(
n1/4(σ̂2

ηκ̂η − σ2
η,0κη,0)

n1/2(σ̂2
ε − σ2

ε,0)

)
d−→ N

((
0
0

)
,

(
4
√

2σε,0(σ
2
η,0κη,0)

3/2 0
0 2σ4

ε,0

))
.

(ii) Suppose that κη is known and σ̂2
ε and σ̂2

η are the corresponding ML estimates of σ2
ε

and σ2
η. Then, as n →∞,

(
n1/4(σ̂2

η − σ2
η,0)

n1/2(σ̂2
ε − σ2

ε,0)

)
d−→ N

((
0
0

)
,

(
4
√

2σε,0σ
3
η,0κ

−1/2
η,0 0

0 2σ4
ε,0

))
.

In Chapter 5, we shall provide the convergence rates for the ML estimates of σ2
ε , σ2

η and
κη under more general spatial domains with D = [0, nδ] and δ ∈ [0, 1). In addition, those
convergence rates will be given under geostatistical regression models of (2.2) based on
not only the true model, but also underfitted and overfitted models.
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Chapter 3

Variable Selection

Consider the geostatistical regression model of (2.2). Suppose that we observe spatial data,
{x(si), Z(si)}; si ∈ D and i = 1, . . . , n. This model reduces to a usual regression model
when η(·) = 0. Similar to linear regression, a large model with many insignificant variables
tends to produce a large variance, resulting in low predictive power. On the other hand,
a small model that ignores some important variable may produce large bias. To achieve
good compromise between bias and variance, it is essential to identify significant variables.
Clearly, variable selection is essential not only in regression but also in geostatistical
regression.

We consider selecting a subset of {1, . . . , p} corresponding to p explanatory variables.
Let A ⊂ 2{1,...,p} be the set of all candidate models, and let α ∈ A denotes a candidate
model. Note that intercept is always included in our models, and α = ∅ corresponds to
the intercept only model.

Let X(α) be an n × p(α) sub-matrix of X containing the columns corresponding to
α, and let β(α) be the sub-vector of β corresponding to X(α). A model α is said to be
correct if µ(s) can be written as

∑
j∈α βjxj(s), for s ∈ D. Let Ac ⊂ A be the set of all

correct models and let αc = arg min
α∈A

|α| be the correct model having the smallest number

of variables. Then Ac = {α ∈ A : αc ⊂ α}.
The geostatistical regression model corresponding to α ∈ A can be written in a matrix

form as:
Z = X(α)β(α) + η + ε, (3.1)

where η ≡ (η(s1), . . . , η(sn))′ ∼ N(0,Ση) and ε ∼ N(0, σ2
ε I). Hence the mean and the

variance of Z under model α ∈ A are µ(α) = X(α)β(α) and

Σ(θ) = Ση + σ2
ε I, (3.2)

where θ is the covariance parameter vector associate with var(Z).
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3.1 Loss Functions

We consider two loss functions: the Kullback-Leibler (KL) loss function and the squared
error loss function. First, for model α given in (3.1), the KL loss function is given by:

LKL(α; θ) =

∫

Y ∈Rn

f(Y ; µ,Σ(θ0)) log
f(Y ; µ,Σ(θ0))

f(Y ; µ̂(α; θ),Σ(θ))
dY

=
1

2
log det(Σ(θ))− 1

2
log det(Σ(θ0)) +

1

2
tr(Σ(θ0)Σ

−1(θ))− n

2

+
1

2
(µ− µ̂(α; θ))′Σ−1(θ)(µ− µ̂(α; θ)), (3.3)

where µ = E(Z) is the true mean vector and θ0 is the true covariance parameter vector,

µ̂(α; θ) = X(α)β̂(α; θ), (3.4)

β̂(α; θ) = (X(α)′Σ−1(θ)X(α))−1X(α)′Σ−1(θ)Z,

and recall that f(·; µ,Σ) is the Gaussian density function defined in (2.8). Now, let

M (α; θ) = X(α)(X(α)′Σ−1(θ)X(α))−1X(α)′Σ−1(θ), (3.5)

A(α; θ) = I −M (α; θ). (3.6)

Note that when θ = θ0, LKL(α; θ) in (3.3) reduces to a simpler form:

LKL(α) ≡ LKL(α; θ0) =
1

2
(µ− µ̂(α))′Σ−1(µ− µ̂(α)), (3.7)

where µ̂(α; θ0) and Σ(θ0) are written as µ̂(α) and Σ to simplify their notations. We can
rewrite (3.7) as

LKL(α) =
1

2
µ′A(α)′Σ−1A(α)µ +

1

2
(η + ε)′M(α)′Σ−1M(α)(η + ε), (3.8)

where A(α; θ0) and M (α; θ0) are also simplified as A(α) and M(α). Clearly, the first
term µ′A(α)′Σ−1A(α)µ on the righthand side of the equality in (3.8) vanishes when
α ∈ Ac. Thus we have the following lemma.

Lemma 1 Consider a class of models given by (3.1). Let LKL(α) be the KL loss for
model α defined in (3.7). Then

E(LKL(α)) =
1

2
µ′A(α)′Σ−1A(α)µ +

p(α)

2
; α ∈ A, (3.9)

where A(α) is defined in (3.6). In particular, E(LKL(α)) = p(α)/2, for α ∈ Ac.

Lemma 2 Consider a class of models given by (3.1). Let LKL(α) be the KL loss for
model α defined in (3.7). Then

lim
n→∞

P
(
αc = arg min

α∈Ac

LKL(α)
)

= 1, (3.10)

and
αc = arg min

α∈Ac

E(LKL(α)). (3.11)
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In addition, if αc is fixed, and

lim
n→∞

inf
α∈A\Ac

µ′A(α)′Σ−1A(α)µ = ∞, (3.12)

where A(α) is defined in (3.6), then

lim
n→∞

P
(
αc = arg min

α∈A
LKL(α)

)
= 1. (3.13)

In general, (3.12) is satisfied under the increasing domain asymptotic framework. How-
ever, under the fixed domain asymptotic framework, it may or may not be satisfied; see
Theorem 9 in Section 5.2 and Theorem 12 in Section 5.3, for which (3.12) holds and
Theorems 5 and 6 in Section 5.1 for which (3.12) fails. In fact, as shown in Theorems
5 and 6, the smallest true model αc does not have the smallest KL loss under the fixed
domain asymptotic framework. In other words, (3.13) is not always satisfied.

The other loss function we consider in this thesis is the squared error loss commonly
used in geostatistics particularly for prediction purpose:

L(α) = ‖Ŝ(α)− S‖2, (3.14)

where Ŝ(α) is a generic predictor of S based on model α ∈ A. Throughout the thesis,
we consider the universal kriging predictor of S in (2.7) unless indicated otherwise. For
θ = θ0, the universal kriging predictor based on model α can be written as:

Ŝ(α) = H(α)Z, (3.15)

where
H(α) ≡ M (α) + ΣηΣ

−1A(α), (3.16)

with M(α) and A(α) defined in (3.5) and (3.6), respectively. Then the corresponding
risk can be decomposed into the following:

E(L(α)) = E‖S − E(S|Z)− Ŝ(α) + E(S|Z)‖2

= E‖Ŝ(α)− E(S|Z)‖2 − 2E((Ŝ(α)− E(S|Z))′(S − E(S|Z))) + E‖S − (S|Z)‖2

= E‖Ŝ(α)− E(S|Z)‖2 + E‖S − E(S|Z)‖2,

which is lower bounded by E‖S − E(S|Z)‖2, independent of α ∈ A. The following
lemma provides some more details regarding decomposition of E(L(α)), which is useful
in establishing some asymptotic properties concerning the squared error loss.

Lemma 3 Consider a class of models given by (3.1). Let Ŝ(α) be the UK predictor of S
given by (3.15) and L(α) be the corresponding squared error loss defined in (3.14). Then

E(L(α)) = E‖Ŝ(α)− E(S|Z)‖2 + E‖S − E(S|Z)‖2

= R1(α) + R2(α) + σ2
ε tr(ΣηΣ

−1), (3.17)

where E‖Ŝ(α)− E(S|Z)‖2 = R1(α) + R2(α),

R1(α) = σ4
ε µ

′A(α)′Σ−2A(α)µ,

R2(α) = σ4
ε tr(Σ

−1M (α)), (3.18)

where M (α) = M (α; θ0) is defined in (3.5).
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Note that the term R1(α) corresponds to the model misspecification error, which is
smaller for a larger model α, and in particular, R1(α) = 0 for α ∈ Ac. The term R2(α)
corresponds to the estimation error, which generally increases with p(α) and is bounded
by σ2

ε p(α), since

σ2
ε tr(Σ

−1M(α)) = σ2
ε tr

(
Σ−1X(α)(X(α)′Σ−1X(α))−1X(α)′Σ−1

)

= tr
((

X(α)′Σ−1X(α)
)−1

X(α)′
(
σ2

εΣ
−2

)
X(α)

)

≤ tr
((

X(α)′Σ−1X(α)
)−1

X(α)′Σ−1X(α)
)

= tr(Ip(α)) = p(α).

In addition, the term E‖S−E(S|Z)‖2 = σ2
ε tr(ΣηΣ

−1) in (3.17) corresponds to the optimal
mean squared prediction error, which provides a lower bound for E(L(α)).

In general, lim
n→∞

σ2
ε tr(ΣηΣ

−1)
/
R2(α) = ∞, for α ∈ Ac. It follows from (3.17) that

lim
n→∞

E(L(α))
/
E(L(αc)) = 1, for α ∈ Ac.

In contrast, from (3.9),

lim
n→∞

E(LKL(α))
/
E(LKL(αc)) > 1, for α ∈ Ac \ {αc}.

Therefore, it would be preferable to select αc among α ∈ Ac under the KL loss.

3.2 Consistency and Asymptotic Loss Efficiency

Suppose that we are given a class of models (3.1) and a model selection procedure α̂.
We consider two aspects in assessing asymptotic optimal properties of α̂ with respect to
a given loss function L∗(·). First, a selection procedure α̂ is said to be asymptotic loss
efficiency if it satisfies

plim
n→∞

L∗(α̂)
/

inf
α∈A

L∗(α) = 1, (3.19)

where plim denotes convergence in probability. Second, a selection procedure α̂ is said to
be consistent if it satisfies

lim
n→∞

P
(
α̂ = αc} = 1.

For the KL loss of (3.7), it is straightforward to show that

αc = arg min
α∈Ac

LKL(α).

In some situations,
αc = arg min

α∈A
LKL(α). (3.20)

In this case, consistency automatically implies asymptotic loss efficiency. For example,
when σ2

η = 0, (3.1) becomes a class of traditional linear regression models with (3.20)
being satisfied under some mild conditions (Shao 1997). However, the results given in
Shao (1997) can’t be easily generalized here, because as to be established in Chapters 4-
6, asymptotic behavior of geostatistical model selection depends not only on asymptotic
frameworks but also on some smoothness property of the explanatory variables in space.
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According to (3.17), E(L(α)) is lower bounded by E‖S−E(S|Z)‖2, which is sometimes
a higher order term than both R1(α) and R2(α). Under this situation, asymptotic loss
efficiency of (3.19) with L∗(·) = L(·) can be achieved by an arbitrary model selection
procedure. Therefore, it seems natural and preferable to consider the loss function, L(α)−
‖S − E(S|Z)‖2, leading to another version of asymptotic loss efficiency that is stronger
than (3.19).

Definition 1 Consider a class of models given by (3.1) and the squared error loss, L(α) =
‖Ŝ(α)− S‖2, where Ŝ(α) is a predictor of S based on model α. A selection procedure α̂
is said to be strongly asymptotically loss efficient with respect to the squared error loss if

plim
n→∞

L(α̂)− ‖S − E(S|Z)‖2

infα∈A L(α)− ‖S − E(S|Z)‖2
= 1. (3.21)

15



Chapter 4

Generalized Information Criterion

Consider a class of models given by (3.1). The generalized information criterion (GIC)
introduced by Nishii (1984) is given by:

ΓGIC(λ)(α) = −2 (maximum log-likelihood) + λ (number of parameters), (4.1)

where λ is a tuning parameter, providing control of compromise between goodness-of-fit
corresponding to maximum log-likelihood and the model parsimoniousness corresponding
to the number of parameters. The criterion includes some commonly used criteria, such
as Akaike’s information criterion (AIC) with λ = 2 and Bayesian information criterion
(BIC) with λ = log(n), as special cases, and has been widely used in many statistical
fields. The model selected by ΓGIC(λ) is given by:

α̂GIC(λ) ≡ arg min
α∈A

ΓGIC(λ)(α). (4.2)

4.1 Akaike’s Information Criterion

We shall first consider AIC with θ known, which corresponds to λ = 2 in (4.1) and can
be written as:

ΓAIC(α) = (Z − µ̂(α))′Σ−1(Z − µ̂(α)) + 2 p(α), (4.3)

where µ̂(α) is given by (3.4), and the goodness-of-fit component becomes the generalized
squared errors, (Z − µ̂(α))′Σ−1(Z − µ̂(α)), which is smaller for a larger model α, and
has a χ2 distribution with n− p(α) degrees of freedom if α ∈ Ac. The model selected by
AIC is given by:

α̂AIC ≡ arg min
α∈A

ΓAIC(α). (4.4)

The following theorem provides some asymptotic properties of AIC when θ is known.

Theorem 1 Consider a class of models given by (3.1). Let LKL(α) be the KL loss for
model α and α̂AIC be defined in (4.4).

(i) For |Ac| ≤ 1, if

lim
n→∞

∑

α∈A\Ac

1

E(LKL(α))
= 0, (4.5)

then
plim
n→∞

LKL(α̂AIC)
/

inf
α∈A

LKL(α) = 1.
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(ii) For |Ac| ≥ 2, if (4.5) holds, and either

lim
n→∞

∑
α∈Ac

1

p(α)
= 0,

or

lim
n→∞

∑

α∈Ac\{αc}

1

p(α)− p(αc)
= 0,

then
plim
n→∞

LKL(α̂AIC)
/

inf
α∈A

LKL(α) = 1.

Proof. The proof is essentially the same as that for Theorem 1 of Shao (1997) after
transforming Z into Σ−1/2Z. We therefore omit the details. 2

Equation (4.5) provides a condition for risks associated with underfitted models so
that correct models can be distinguished from incorrect models. The following corollary
provides an example for which (4.5) is replaced by a simple condition that can be easily
checked.

Corollary 1 Consider a class of models given by (3.1) with xj(s)’s independently gen-
erated from Gaussian white-noise processes of (5.7), where p is fixed and Ac 6= ∅. If
lim

n→∞
tr(Σ−1) = ∞, then

plim
n→∞

LKL(α̂AIC)
/

inf
α∈A

LKL(α) = 1.

Note that lim
n→∞

tr(Σ−1) = ∞ when σ2
ε > 0. Applying the inequality,

∑n
i=1 ω−1

i

/
n ≥

n
/ ∑n

i=1 ωi, where ωi > 0; i = 1, . . . , n, we obtain a sufficient condition for lim
n→∞

tr(Σ−1) =

∞, given by lim
n→∞

tr(Σ)/n2 = 0 (see an example in Theorem 12 of Section 5.3).

4.2 Generalized Information Criterion

When p is fixed and |Ac| ≥ 2, we have for α ∈ Ac \ {αc},
ΓAIC(αc)− ΓAIC(α) + 2(p(α)− p(αc)) ∼ χ2(p(α)− p(αc)) ,

where χ2(k) denotes the chi-square distribution with k degrees of freedom. This implies
that lim

n→∞
P

(
α̂AIC = αc) < 1. That is, AIC is not able to achieve selection consistency.

Replacing the penalty 2 in (4.3) by a penalty parameter λ > 0 leads to the GIC of (4.1)
given under θ = θ0:

ΓGIC(λ)(α) = (Z − µ̂(α))′Σ−1(Z − µ̂(α)) + λ p(α). (4.6)

Choosing a tuning parameter such that λ →∞, we obtain for α ∈ A \ {αc},
lim

n→∞
P

((
ΓGIC(λ)(α

c)− ΓGIC(λ)(α)
)

< 0
)

= 1.

That is, GIC can identify αc among models in Ac asymptotically. For linear regression
models (i.e., σ2

η = 0 in (3.1)), Shao (1997) established asymptotic loss efficiency and
consistency for GIC under some regularity conditions. For linear mixed models, Pu and
Niu (2006) also developed some asymptotic optimal properties of GIC. Adapted from Pu
and Niu (2006), we have the following theorem.
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Theorem 2 Consider a class of models given by (3.1). Let LKL(α) be the KL loss for
model α and α̂GIC(λ) be the model selected by GIC.

(i) For Ac = ∅, if

lim
n→∞

∑

α∈A\Ac

λp

E(LKL(α))
= 0, (4.7)

then
plim
n→∞

LKL(α̂GIC(λ))
/

inf
α∈A

LKL(α) = 1.

(ii) For Ac 6= ∅, if λ →∞, (4.7) holds, and

lim
n→∞

∑
α∈Ac

1

p(α)
< ∞, (4.8)

then lim
n→∞

P
(
α̂GIC(λ) = αc

)
= 1. In addition,

plim
n→∞

LKL(α̂GIC(λ))
/

inf
α∈A

LKL(α) = 1.

Proof. The proof is essentially the same as that for Theorem 2 of Shao (1997) and hence
is omitted. 2

Theorem 2 reduces to Theorem 2 of Shao (1997) if Σ = σ2I. Similar to (4.5),
Equation (4.7) provides a condition for risks associated with underfitted models. Equa-
tion (4.8) is a weak technique condition that holds trivially when p is fixed. In fact,
(4.7) is slightly weaker than the two conditions given in Theorem 2 of Shao (1997):
lim

n→∞
inf

α∈A\Ac
E(LKL(α))/n > 0 and lim

n→∞
λp/n = 0. Similar to Corollary 1, we have the

following corollary.

Corollary 2 Consider a class of models given by (3.1) with xj(s)’s independently gener-
ated from white-noise processes of (5.7), where p is fixed and Ac 6= ∅. If lim

n→∞
tr

(
Σ−1

)/
λ =

∞ and λ →∞, then lim
n→∞

P
(
α̂GIC(λ) = αc

)
= 1. In addition,

plim
n→∞

LKL(α̂GIC(λ))
/

inf
α∈A

LKL(α) = 1.

Similar to the remark given right after Corollary 1, lim
n→∞

λtr
(
Σ

)/
n2 = 0 is sufficient

for lim
n→∞

tr
(
Σ−1

)/
λ = ∞. (see an example in Theorem 12 of Section 5.3).

4.3 Unknown Covariance Parameters

In practice, the covariance parameter vector θ is usually unknown and needs to be esti-
mated. Two approaches are commonly applied under this situation. The first one utilizes
a two-step procedure by first estimating the covariance parameters using, for example,
ML or REML, and then pretending the estimated parameters as known for subsequent
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inference or prediction. The other one applies a Bayesian method that requires specify-
ing a joint prior distribution for all the unknown parameters. Here we consider only the
former one with θ̂(α) being the ML estimate of θ for α ∈ A, obtained by maximizing the
following profile log-likelihood function,

`(θ; α) = −1

2
n log(2π)− 1

2
log det(Σ(θ))

−1

2
(Z −X(α)β̂(α; θ))′Σ−1(θ)(Z −X(α)β̂(α; θ)), (4.9)

where β̂(α; θ) ≡ (X(α)′Σ(θ)−1X(α))−1X(α)′Σ(θ)−1Z and Σ is written as Σ(θ) to
emphasis its dependence on θ. Let Θ be the parameter space for θ, and let θ0 ∈ Θ be
the true covariance parameter vector. We shall develop asymptotic properties of GIC,

ΓGIC(λ)(α) = −2`(θ̂(α); α) + λ(p(α)), (4.10)

under both the fixed domain asymptotic and the increasing domain asymptotic frame-
works. The main difficulty to overcome is that some components of θ̂(α) may converge to
nondegenerate distributions even for α ∈ Ac under the fixed domain asymptotic frame-
work.

We impose some regularity conditions for establishing asymptotic properties of GIC.
Denote by λmin(M) the smallest eigenvalue of a symmetric matrix M . We consider some
regularity conditions. Suppose that there exists τn → ∞ such that the following are
satisfied;

(A.1) For θ ∈ Θ, lim
n→∞

1

τn

inf
α∈A\Ac

µ′A(α; θ)′Σ−1(θ)A(α; θ)µ > 0, where A(α; θ) is defined

in (3.6).

(A.2) For θ ∈ Θ, lim
n→∞

1

τn

λmin

(
X ′Σ−1(θ)X

)
> 0.

(A.3) For θ ∈ Θ, lim
n→∞

1

τn

λmax

(
X ′Σ−1(θ)Σ(θ0)Σ

−1(θ)X
)

< ∞.

(A.4) For α ∈ A, there exists some θα ∈ Θ such that plim
n→∞

1

τn

(
`(θ̂(α); α)− `(θα; α)

)
= 0.

(A.5) For α ∈ A \ Ac and θα given in (A.4), plim
n→∞

1

τn

(
LKL(α; θ̂(α))− LKL(α; θα)

)
= 0.

In most cases, τn can be chosen as inf
j∈αc

X ′
jΣ

−1(θ)Xj or λmin

(
X ′Σ−1(θ)X

)
, where Xj is

the jth column of X (see Theorems 7, 10 and 13). Condition (A.1) provides the effect
suffered from applying an incorrect model. Condition (A.2) ensures that the explanatory
variables are not too much correlated. Obviously, (A.4) and (A.5) hold when plim

n→∞
θ̂(α) =

θα, for some θα ∈ Θ. In some situation, θα is different from θ0. For example, when
α ∈ A\Ac, θ̂(α) generally does not converge in probability to θ0. Surprisingly, (A.4) and
(A.5) may hold even if θ̂(α) converges to a nondegenerate distribution (see Theorems 7,
10 and 13).

Theorem 3 Consider a class of models given by (3.1) with p fixed. Let Θ be a compact
parameter space for θ with θ0 ∈ Θ being the true parameter, and let LKL(α) be the KL
loss defined in (3.3). Suppose that for α ∈ A, `(θ; α) defined in (4.9) is continuous in Θ,
and (A.1)-(A.5) are satisfied for some τn →∞.
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(i) For Ac = ∅, if τn/λ →∞, and the following two conditions hold for α ∈ A:

lim
n→∞

sup
α∈A\Ac

1

τn

µ′A(α; θ)′Σ−1(θ)Σ(θ0)Σ
−1(θ)A(α; θ)µ < ∞, (4.11)

plim
n→∞

1

τn

tr
(
((η + ε)(η + ε)′ −Σ(θ0))

(
Σ−1(θα)−Σ−1(θ0)

))
= 0, (4.12)

then GIC defined in (4.2) is asymptotically loss efficient:

plim
n→∞

LKL(θ̂(α̂GIC(λ)); α̂GIC(λ))
/

min
α∈A

LKL(θ̂(α); α) = 1. (4.13)

(ii) For Ac 6= ∅, if λ →∞, τn/λ →∞, (4.12) holds, and

lim
n→∞

1

τn

(
log det(Σ(θα))− log det(Σ(θ0)) + tr(Σ(θ0)Σ

−1(θα))− n
)

= 0, (4.14)

for α ∈ Ac, then lim
n→∞

P
(
α̂GIC(λ) = αc

)
= 1.

Proof. (i) We first prove that for α ∈ A,

ΓGIC(λ)(α) = n log(2π) + log det(Σ(θ0)) + (η + ε)′Σ−1(θ0)(η + ε) + 2LKL(α; θα)

+op(τn). (4.15)

By (3.3) and (3.7), we can rewrite 2LKL(α; θα) as

2LKL(α; θα) = log det(Σ(θα))− log det(Σ(θ0)) + tr(Σ(θ0)Σ
−1(θα))− n

+µ′A(α; θα)′Σ−1A(α; θα)(θ)µ

+(η + ε)M (α; θα)′Σ−1(θα)(η + ε), (4.16)

where M(α; θα) and A(α; θα) are defined in (3.5) and (3.6). By (4.10), we have for
α ∈ A,

ΓGIC(λ)(α) = −2`(θ̂(α); α) + 2`(θα; α)− 2`(θα; α) + λp(α)

= −2`(θα; α) + λp(α) + op(τn)

= n log(2π) + log det(Σ(θα)) + µ′A(α; θα)′Σ−1(θα)A(α; θα)µ

−2µ′A(α; θα)′Σ−1(θα)A(α; θα)(η + ε) + (η + ε)′Σ−1(θα)(η + ε)

−(η + ε)′M (α; θα)′Σ−1(θα)(η + ε) + op(τn)

= n log(2π) + log det(Σ(θα)) + µ′A(α; θα)′Σ−1(θα)A(α; θα)µ

+(η + ε)′Σ−1(θα)(η + ε) + op(τn)

= n log(2π) + log det(Σ(θ0)) + (η + ε)′Σ−1(θ0)(η + ε) + 2LKL(α; θα)

+tr((η + ε)(η + ε)′ −Σ(θ0)(Σ
−1(θα)−Σ−1(θ0))) + op(τn)

= n log(2π) + log det(Σ(θ0)) + (η + ε)′Σ−1(θ0)(η + ε) + 2LKL(α; θα)

+op(τn),

where the second equality follows from (A.4), the third equality follows from (4.9), the
fourth equality follows from the following two equations, which will be proved later:

(η + ε)′M(α; θα)′Σ−1(θα)(η + ε) = Op(1); α ∈ A, (4.17)

µ′A(α; θα)′Σ−1(θα)A(α; θα)(η + ε) = op(τn); α ∈ A, (4.18)
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the fifth equality follows from (4.16) and

(η + ε)′Σ−1(θα)(η + ε)− (η + ε)′Σ−1(θ0)(η + ε) + n− tr(Σ(θ0)Σ
−1(θα))

= tr((η + ε)(η + ε)′ −Σ(θ0)(Σ
−1(θα)−Σ−1(θ0))),

and the last equality follows from (4.12). It remains to show (4.17) and (4.18). For (4.17),
we have

(η + ε)′M(α; θα)′Σ−1(θα)(η + ε)

=

(
(η + ε)′Σ−1(θα)X(α)

τ
1/2
n

)(
X(α)′Σ−1(θα)X(α)

τn

)−1

×
(

X(α)′Σ−1(θα)(η + ε)

τ
1/2
n

)
. (4.19)

By (A.2), (
X ′Σ−1(θα)X

τn

)−1

= Op(1). (4.20)

By (A.3),

lim
n→∞

1

τn

var(X ′
jΣ

−1(θα)(η + ε)) = lim
n→∞

1

τn

X ′
jΣ

−1(θα)Σ(θ0)Σ
−1(θα)Xj < ∞.

where Xj be the jth column of X. This together with E(X ′
jΣ

−1(θα)(η + ε)) = 0 imply
that

1

τ
1/2
n

X ′
jΣ

−1(θα)(η + ε) = Op(1). (4.21)

Therefore, (4.17) follows from (4.19)-(4.21). Using

µ′A(α; θα)′Σ−1(θα)A(α; θα)(η + ε) = µ′A(α; θα)′Σ−1(θα)(η + ε),

(4.11) and the Markov’s inequality, we have for any ε > 0,

lim
n→∞

P
(|µ′A(α; θα)′Σ−1(θα)(η + ε)

/
τn| > ε

)

≤ lim
n→∞

P
(|µ′A(α; θα)′Σ−1(θα)(η + ε)

/
τn|2 ≥ ε2

)

≤ lim
n→∞

1

ε2τ 2
n

E
(
µ′A(α; θα)′Σ−1(θα)Σ(θ0)Σ

−1(θα)A(α; θα)µ
)

= 0.

This gives (4.18). Thus (4.15) is obtained.
We are now ready to prove (4.13). Let αL = arg min

α∈A
LKL(α; θα). By (4.15), we have

0 ≤ plim
n→∞

ΓGIC(λ)(α
L)− ΓGIC(λ)(α̂GIC(λ))

τn

= plim
n→∞

LKL(αL; θαL)− LKL(α̂GIC(λ); θα̂GIC(λ)
)

τn

≤ 0,

for some θα̂, θαL ∈ Θ where the first inequality follows from the definition of α̂GIC(λ), the
equality follows from (4.15) and the last inequality follows from the definition of αL. It
follows that

plim
n→∞

LKL(α̂GIC(λ);; θα̂GIC(λ)
)− LKL(αL; θαL)

τn

= 0. (4.22)
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In addition, by (A.1) and (4.16),

plim
n→∞

2

τn

LKL(α; θα)) > plim
n→∞

1

τn

µ′A(α; θα)′Σ−1(θα)A(α; θα)µ > 0.

This together with (4.22) implies that plim
n→∞

LKL(αL; θα)
/
LKL(α̂GIC(λ); θα̂GIC(λ)

) = 1. Then

by (A.5),
plim
n→∞

LKL(αL; θ̂(αL))
/
LKL(α̂GIC(λ); θ̂(α̂GIC(λ))) = 1.

which gives (4.13). This completes the proof of (i).
(ii) We first prove (4.15) for Ac 6= ∅. The proof is essentially the same as that in (i)

except (4.18) needs to be shown as follows:

µ′A(α; θα)′Σ−1(θα)A(α; θα)(η + ε)

= µ′A(α; θα)′Σ−1(θα)(η + ε)

= β(αc \ α)′X(αc \ α)′Σ−1(θα)(η + ε)

−
(

β(αc \ α)′X(αc \ α)′Σ−1(θα)X(α)

τ
1/2
n

)(
X(α)′Σ−1(θα)X(α)

τn

)−1

×
(

X(α)′Σ−1(θα)(η + ε)

τ
1/2
n

)

= β(αc \ α)′X(αc \ α)′Σ−1(θα)(η + ε) + Op(1)

= op(τn),

where the second last equality follows similarly from the proof of (4.17) and the last
equality follows from (4.21).

Second, we prove that lim
n→∞

P
(
ΓGIC(λ)(α) > ΓGIC(λ)(α

c)
)

= 1, for α ∈ A \ Ac. By

(A.4), we have for α ∈ Ac,

ΓGIC(λ)(α) = −2`(θα; α) + op(τn)

= n log(2π) + log det(Σ(θα)) + (η + ε)′Σ−1(θα)(η + ε)

−(η + ε)′M(α; θα)′Σ−1(θ0)(η + ε) + op(τn)

= n log(2π) + log det(Σ(θα)) + (η + ε)′Σ−1(θα)(η + ε) + op(τn),(4.23)

where the first equality follows from λp = o(τn) and the last equality follows from (4.17).
Then, by (4.15) and (4.23), we have for α ∈ A \ Ac,

ΓGIC(λ)(α)− ΓGIC(λ)(α
c)

= 2LKL(α; θα) + log det(Σ(θ0)) + (η + ε)′Σ−1(θ0)(η + ε)

− log det(Σ(θαc))− (η + ε)′Σ−1(θαc)(η + ε) + o(τn)

= 2LKL(α; θα)− tr
(
((η + ε)(η + ε)′ −Σ(θ0))

(
Σ−1(θαc)−Σ−1(θ0)

))

−(
log det(Σ(θαc))− log det(Σ(θ0)) + tr(Σ(θ0)Σ

−1(θαc))− n
)

+ op(τn)

= 2LKL(α; θα) + op(τn) > 0,

as n →∞ with probability tending to 1, where the last equality follow from (4.12), (4.14)
and (4.22). It follows that lim

n→∞
P

(
α̂GIC(λ) ∈ A \ Ac

)
= 0.
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Last, it remains to show that GIC achieves its minimum at αc among α ∈ Ac. For
α ∈ Ac, the ML estimate θ̂(α) of θ satisfies

−2`(θ̂(α); α) = inf
θ∈Θ

−2`(θ; α)

= inf
θ∈Θ

(
n log(2π) + log det(Σ(θ)) + (η + ε)′Σ−1(θ)(η + ε)

−(η + ε)′M (α; θ)′Σ−1(θ)(η + ε)
)

= inf
θ∈Θ

(
n log(2π) + log det(Σ(θ)) + (η + ε)′Σ−1(θ)(η + ε)

)
+ op(λ),

where the last equality follows from (4.17). Hence, for α ∈ Ac and λ →∞, we have

plim
n→∞

1

λ
| − 2`(θ̂(α); α)− inf

θ∈Θ

(
n log(2π) + log det(Σ(θ)) + (η + ε)′Σ−1(θ)(η + ε)

)| = 0.

It then follows that

plim
n→∞

1

λ
| − 2`(θ̂(α); α) + 2`(θ̂(αc); αc)|

≤ plim
n→∞

1

λ

(| − 2`(θ̂(α); α)− inf
θ∈Θ

(
n log(2π) + log det(Σ(θ)) + (η + ε)′Σ−1(θ)(η + ε)

)|

+| − 2`(θ̂(αc); αc)− inf
θ∈Θ

(
n log(2π) + log det(Σ(θ)) + (η + ε)′Σ−1(θ)(η + ε)

)|)

= 0.

Hence, for λ →∞,

ΓGIC(λ)(α)− ΓGIC(λ)(α
c) = λ(p(α)− p(αc)) + op(λ) →∞,

as n →∞ with probability tending to 1, which follows that lim
n→∞

P
(
α̂GIC(λ) ∈ Ac, α̂GIC(λ) 6=

αc
)

= 0. This completes the proof of the theorem. 2

Conditions (A.1)-(A.3) in Theorem 3 not only depend on explanatory variables but
also depend on asymptotic frameworks. As shown in Theorem 7, those conditions are
easier to be satisfied under the increasing domain asymptotic framework, particularly
when the domain increases with the sample size in a faster rate. On the other hand, (A.1)
may not be satisfied under the fixed domain asymptotic framework.

Theorem 3 is for fixed designs. A random design version is given in the following
corollary.

Corollary 3 (random design) Consider a class of models given by (3.1) with p fixed and
X random, where X is independent of (η + ε). Let Θ be a compact parameter space for
θ with θ0 ∈ Θ being the true parameter vector, and let LKL(α) be the KL loss defined
in (3.3). Suppose that for α ∈ A, `(θ; α) defined in (4.9) is continuous in Θ, and there
exists τn →∞ such that

(A.1’) For θ ∈ Θ, plim
n→∞

1

τn

inf
α∈A\Ac

µ′A(α; θ)′Σ−1(θ)A(α; θ)µ > 0, where A(α; θ) is defined

in (3.6),

(A.2’) For θ ∈ Θ, plim
n→∞

1

τn

λmin

(
X ′Σ−1(θ)X

)
> 0,
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(A.3’) For θ ∈ Θ, lim
n→∞

1

τn

tr(Σ−1(θ)Σ(θ0)Σ
−1(θ)E(XjX

′
j)) < ∞, where Xj is the jth

column of X,

and (A.4)-(A.5) are satisfied.

(i) For Ac = ∅, if τn/λ →∞, (4.12) holds and

lim
n→∞

sup
α∈A\Ac

1

τn

E
(
µ′A(α; θ)′Σ−1(θ)Σ(θ0)Σ

−1(θ)A(α; θ)µ
)

< ∞,

for θ ∈ Θ, then GIC defined in (4.2) is asymptotically loss efficient:

plim
n→∞

LKL(θ̂(α̂GIC(λ)); α̂GIC(λ))
/

min
α∈A

LKL(θ̂(α); α) = 1.

(ii) For Ac 6= ∅, if λ →∞, τn/λ →∞, (4.12) and (4.14) hold, then

lim
n→∞

P
(
α̂GIC(λ) = αc

)
= 1.

Similar to (A.1)-(A.3) in Theorem 3 under fixed designs, (A.1’)-(A.3’) in Corollary
3 not only depend on explanatory variables but also depend on asymptotic frameworks.
In contrast to fixed designs with smooth functions as explanatory variables, where (A.1)
may not be satisfied (see Theorem 7) under the fixed domain asymptotic framework,
condition (A.1’) appear to be easier satisfied when random designs are considered (see
some examples in Theorems 10 and 13).
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Chapter 5

Exponential Covariance Models in
One Dimension

In this chapter, we consider some examples in the one-dimensional space with η(·) of (2.2)
generated from an exponential covariance function:

cov(η(s), η(s)′) = σ2
η exp(−κη|s− s′|); s, s′ ∈ R, (5.1)

where σ2
η > 0 and κη > 0. Let si = in−(1−δ) i = 1, . . . , n, for some δ ∈ [0, 1). Then

{η(s1), . . . η(sn)} can be expressed as an AR(1) process:

η(si) = ρnη(si−1) + ζi, (5.2)

where
ρn ≡ exp(−κηn

−(1−δ)), (5.3)

η(s1) ∼ N(0, σ2
η), ζi ∼ N(0, σ2

η(1 − ρ2
n)) is independent of η(si−1) for i = 2, . . . , n, and

η(s1), ζ2, . . . , ζn are independent. Then the covariance parameter vector can be written
as θ ≡ (σ2

η, κη, σ
2
ε )
′.

In what follows, we consider four examples corresponding to four different classes of
explanatory variables in (3.1) with the exponential covariance model of (5.1) for η(·).
Example 1 (polynomials) Suppose that there are p explanatory variables, xj(si); j =
1, . . . , p, sampled at si = in−(1−δ); i = 1, . . . , n, with xj(·) given by

xj(s) = sj; s ∈ R, j = 1, . . . , p, (5.4)

where p is fixed and δ ∈ [0, 1).

Example 2 (polynomials varying with n) Suppose that there are p explanatory variables
xj(si); j = 1, . . . , p, sampled at si = in−(1−δ); i = 1, . . . , n, with xj(·) given by

xj(s) = (sn−δ)j; s ∈ R, j = 1, . . . , p, (5.5)

where p is fixed and δ ∈ [0, 1).

Example 3 (spatially dependent processes) Suppose that there are p explanatory vari-
ables xj(si); j = 1, . . . , p, sampled at si = in−(1−δ); i = 1, . . . , n, where x1(·), . . . , xp(·) are
independent zero-mean Gaussian spatial processes with covariance functions,

cov(xj(s), xj(s
′)) = σ2

j exp{−κj|s− s′|}; s, s′ ∈ R, j = 1, . . . , p, (5.6)

p is fixed, δ ∈ [0, 1), and σ2
j , κj > 0; j = 1, . . . , p.

25



Example 4 (white noise processes) Suppose that there are p explanatory variables xj(si);
j = 1, . . . , p, sampled at si = in−(1−δ); i = 1, . . . , n, where x1(·), . . . , xp(·) are independent
white-noise processes with

xj(si) ∼ N(0, σ2
j ); i = 1, . . . , n, j = 1, . . . , p, (5.7)

p is fixed, δ ∈ [0, 1), and σ2
j > 0; j = 1, . . . , p.

We shall characterize the asymptotic behavior of GIC under both the fixed domain
and the increasing domain frameworks with θ being either known or estimated by ML.
We shall also show how different generating mechanism of explanatory variables in the
aforementioned examples affects the asymptotic behavior.

First, we introduce some notations and a number of technical lemmas regarding ex-
ponential covariance functions, which are crucial for developing the asymptotical results
of GIC. Let

Gk ≡




1 0 0 · · · 0

−ρn 1 0
. . .

...

0 −ρn 1
. . . 0

...
. . . . . . . . . 0

0 · · · 0 −ρn 1




k×k

, (5.8)

Tk ≡




σ2
η + σ2

ε −σ2
ε ρn 0 · · · 0

−σ2
ε ρn f1(ρn) −σ2

ε ρn
. . .

...

0 −σ2
ε ρn f1(ρn)

. . . 0
...

. . . . . . . . . −σ2
ε ρn

0 · · · 0 −σ2
ε ρn f1(ρn)




k×k

, (5.9)

be k × k matrices, where

f1(ρn) ≡ (1− ρ2
n)σ2

η + (1 + ρ2
n)σ2

ε . (5.10)

Lemma 4 Consider Σ(θ) and Ση defined in (3.2) and (5.1), where si = in−(1−δ); i =
1, . . . , n, and δ ∈ [0, 1). Then

Σ−1(θ) = G′
nT−1

n Gn, (5.11)

where Gn and Tn are given by (5.8) and (5.9), respectively.

Lemma 5 For any c > 0 and δ ∈ [0, 1) with n(1−δ)/2+c < n, consider Tjn defined in (5.9)
with n(1−δ)/2+c ≤ jn ≤ n. Let Cjn(k, `) be the (k, `)th element of T−1

jn
. Then there exists

a constant τ > 0 such that

σ−2jn
ε det(Tjn) =

f jn−1
2 (ρn)

(f 2
1 (ρn)− 4ρ2

nσ4
ε )

1/2
((σ2

η + σ2
ε )f2(ρn)− ρ2

nσ
2
ε ) + o(exp(−τnc/2)),(5.12)

where ρn and f1(ρn) are given by (5.3) and (5.10), respectively, and

f2(ρn) ≡ f1(ρn) + (f 2
1 (ρn)− 4ρ2

nσ
4
ε )

1/2

2σ2
ε

. (5.13)
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In addition,

Cjn(1, `) = Cjn(`, 1) =
ρ`−1

n

((σ2
η + σ2

ε )f2(ρn)− ρ2
nσ2

ε )f
`−2
2 (ρn)

+ o(exp(−τnc/2));

1 ≤ ` ≤ jn − n(1−δ+c)/2, (5.14)

Cjn(jn, `) = Cjn(`, jn) =
ρjn−`

n

f jn−`+1
2 (ρn)σ2

ε

+ o(exp(−τnc/2)); n(1−δ+c)/2 < ` ≤ jn,(5.15)

max
1≤k,`≤jn

Cjn(k, `) =
1

(8κησ2
ησ

−2
ε )1/2

n(1−δ)/2 + o(n−(1−δ)), (5.16)

and

tr(T−1
n ) =

n(3−δ)/2

2(2κησ2
ησ

2
ε )

1/2
+ O(n1−δ). (5.17)

Furthermore, let T
(1)
n be the matrix with (σ2

η, κη, σ
2
ε ) in Tn replaced by (σ

(1)2
η , κ

(1)
η , σ

(1)2
ε ).

Then

tr(T−1
n T (1)−1

n ) =
n(5−3δ)/2

25/2(κησ2
ηκ

(1)
η σ

(1)2
η )1/2((κησ2

ησ
(1)2
ε )1/2 + (κ

(1)
η σ

(1)2
η σ2

ε )
1/2)

+O(n2−δ). (5.18)

Notice that Tn defined in (5.9) corresponds to the variance-covariance matrix of a
moving average (MA) process {υ1, . . . , υn} of order 1:

var(υn) = Tn, (5.19)

where υn ≡ (υ1, . . . , υn),

υi = ui − f4(ρn)ui−1; i = 2, . . . , n, (5.20)

with u1 ∼ N(0, (σ2
η − σ2

ε − f2(ρn)σ2
ε )f

−2
4 (ρn)) and ui ∼ N(0, f2(ρn)σ2

ε ); i = 2, . . . , n,

f4(ρn) ≡ ρn/f2(ρn), (5.21)

and recall that f2(ρn) and ρn are defined in (5.13) and (5.3), respectively. Some asymptotic
properties of f4(ρn) and Tn are given in the follow lemmas.

Lemma 6 With f2(ρn) and f4(ρn) defined in (5.13) and (5.21), respectively, we have

f4(ρn) = 1− (2κησ
2
ησ

−2
ε )1/2n−(1−δ)/2 + O(n−(1−δ)), (5.22)

f2(ρn) = 1 + (2κησ
2
ησ

−2
ε )1/2n−(1−δ)/2 + (σ2

η − σ2
ε )σ

−2
ε κηn

−(1−δ) + O(n−3(1−δ)/2), (5.23)

and
log f4(ρn) = −(2κησ

2
ησ

−2
ε )1/2n−(1−δ)/2 + O(n−(1−δ)). (5.24)

In addition, for any c > 0 and δ ∈ [0, 1) with n(1−δ)/2+c < n, and any jn with n(1−δ)/2+c ≤
jn ≤ n, there exists a constant τ > 0 such that

f jn

4 (ρn) = o(exp(−τnc)). (5.25)
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Lemma 7 Consider Tn defined in (5.9). For any c > 0, δ ∈ [0, 1) with n(1−δ)/2+c < n,
and any jn with n(1−δ)/2+c ≤ jn ≤ n, there exists a constant τ > 0 such that

T−1
n = Ω′

n

(
Λ−1

jn
0

0 (f2(ρn)σ2
ε )
−1In−jn

)
Ωn + o(exp(−τnc/2)), (5.26)

where

Ωn ≡




1 0 · · · 0

f4(ρn) 1
. . .

...
...

. . . . . . 0
fn−1

4 (ρn) · · · f4(ρn) 1


 , (5.27)

f2(ρn) and f4(ρn) are given by (5.13) and (5.21), respectively, and

Λk = ΩkTkΩ
′
k. (5.28)

The following three lemmas are based on Lemmas 4-7, which are crucial in developing
the asymptotical results of ML estimates in Sections 5.1-5.3.

Lemma 8 Consider Σ(θ) and Ση defined in (3.2) and (5.1), where si = in−(1−δ); i =

1, . . . , n, and δ ∈ [0, 1). Let Σ
(j)
η be the same as Ση except (σ2

η, κη) are replaced by(
σ

(j)2
η , κ

(j)
η

)
. Define Σ(j) ≡ Σ

(j)
η + σ

(j)2
ε ; j = 1, 2, 3. Then for δ ∈ [0, 1),

log(det(Σ(θ))) = n log σ2
ε +

(
2κησ

2
η

σ2
ε

)1/2

n(1+δ)/2 −
(

κη(σ
2
η + σ2

ε )

σ2
ε

)
nδ

− log n(1−δ)/2 + o(nδ) + O(1), (5.29)

tr(Σ(1)
η Σ−1(θ)) =

σ
(1)2
η κ

(1)
η

(2κησ2
ησ

2
ε )

1/2
n(1+δ)/2 +

σ
(1)2
η κ

(1)
η (κη − κ

(1)
η )

κησ2
η

nδ

+
σ

(1)2
η (κη − κ

(1)
η )2

2κησ2
η

nδ + o(nδ) + O(1), (5.30)

tr(Σ−1(θ)) =
n

σ2
ε

− (2κησ
2
ησ

−2
ε )1/2

2σ2
ε

n(1+δ)/2 + o(nδ) + O(1), (5.31)

tr(Σ(1)Σ−1(θ)) =
σ

(1)2
ε

σ2
ε

n− σ
(1)2
ε

2σ2
ε

(2κησ
2
ησ

−2
ε )1/2n(1+δ)/2 +

σ
(1)2
η κ

(1)
η

(2κησ2
ησ

2
ε )

1/2
n(1+δ)/2

+
σ

(1)2
η κ

(1)
η (κη − κ

(1)
η )

κησ2
η

nδ +
σ

(1)2
η (κη − κ

(1)
η )2

2κησ2
η

nδ

+o(nδ) + O(1), (5.32)

tr(Σ(1)
η Σ−1(θ)Σ(2)

η Σ(3)−1) =
σ

(1)2
η κ

(1)
η σ

(2)2
η κ

(2)
η n(1+δ)/2

21/2(κησ2
ηκ

(3)
η σ

(3)2
η )1/2((κησ2

ησ
(3)2
ε )1/2 + (κ

(3)
η σ

(3)2
η σ2

ε )
1/2)

+O(nδ), (5.33)
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tr(Σ(1)
η Σ−1(θ)Σ(2)−1) =

σ
(1)
η κ

(1)
η

σ2
ε σ

(2)2
ε ((2κησ2

ησ
−2
ε )1/2 + (2κ

(2)
η σ

(2)2
η σ

(2)−2
ε )1/2)

+ O(nδ),

(5.34)

tr(Σ(1)−1Σ−1(θ)) =
n

σ
(1)2
ε σ2

ε

− 1

σ
(1)2
ε σ2

ε

(
(κησ

2
ησ

−2
ε )1/2 + (κ

(1)
η σ

(1)2
η σ

(1)−2
ε )1/2

21/2

− (κησ
2
ησ

−2
ε )1/2(κ

(1)
η σ

(1)2
η σ

(1)−2
ε )1/2

21/2((κησ2
ησ

−2
ε )1/2 + (κ

(1)
η σ

(1)2
η σ

(1)−2
ε )1/2)

)
n(1+δ)/2

+O(nδ). (5.35)

Lemma 9 Consider Σ(θ) and Ση defined in (3.2) and (5.1), where si = in−(1−δ); i =
1, . . . , n, and δ ∈ [0, 1). Let ψk ≡ n−k(1k, 2k, . . . , nk)′; k ∈ {0, 1, . . . }. Then for any
k = 0, 1, . . . , ` = 1, 2, . . . , and any δ ∈ [0, 1),

ψ′
kΣ

−1ψ` =
κη

2σ2
η(k + ` + 1)

nδ +
1

2σ2
η

+
k`

2κησ2
η(k + `− 1)

n−δ + o(nδ), (5.36)

ψ′
0Σ

−1ψ0 =
κ

2σ2
η

nδ +
1

σ2
η

+ o(nδ). (5.37)

In addition, for δ ∈ [0, 1), k, ` = 0, 1, . . . , p, and Σ(1) defined in Lemma 8,

ψ′
kΣ

−1Σ(1)Σ−1ψ` = O(nδ). (5.38)

Lemma 10 Consider Σ(θ) and Ση defined in (3.2) and (5.1), where si = in−(1−δ); i =
1, . . . , n, and δ ∈ [0, 1). Let Σj = var((xj(s1), . . . , xj(sn))′) with xj(s) defined in (5.6).

(i) Suppose that |σ2
ε − σ2| = o(1) for some constant σ2 > 0. Then

log(σ2
ε ) +

σ2

σ2
ε

− log(σ2)− 1 =
1

2σ4
(σ2

ε − σ2)2 + o((σ2
ε − σ2)2). (5.39)

(ii) Suppose that |σ2
ε−σ2| = o(1) for some constants σ2 > 0. Then for any κη, σ2

η, τ > 0,

(
1

σ2
ε

)1/2(
1− σ2

2σ2
ε

+
τ

2κησ2
η

)
−

(
1

σ2

)1/2(
1

2
+

τ

2κησ2
η

)
= o(σ2

ε − σ2). (5.40)

(iii) Suppose that |κησ
2
η − τ | = o(1) for some constant τ > 0. Then for any σ2 > 0,

(
2κησ

2
η

σ2

)1/2(
1

2
+

τ

2κησ2
η

)
−

(
2τ

σ2

)1/2

=
(κησ

2
η − τ)2

25/2στ 3/2
+ o((κησ

2
η − τ)2). (5.41)

(iv) Suppose that |σ2
ε − σ2| = o(1) and |κησ

2
η − τ | = o(1) for some constants σ2, τ > 0.

Then for any κj, κj′ , σ
2
j , σj′ > 0,

tr(Σj(Σ(θ)−Σ((σ2
η, κη, σ

2)′))Σj(Σ((σ2
η, κη, σ

2
ε )
′)−Σ((σ2

η, κη, σ
2)′)))

=
κjσ

2
j κj′σ

2
j′

29/2τ 3/2σ3
(σ2

ε − σ2)2n(1+δ)/2 + o((σ2
ε − σ2)2n(1+δ)/2) + O(nδ). (5.42)
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(v) Suppose that |σ2
ε − σ2| = o(1) and |κησ

2
η − τ | = o(1) for some constants σ2, τ > 0.

Then for any κj, σ
2
j > 0,

tr(Σj(Σ
−1(θ)−Σ−1((σ2

η, κη, σ
2)′))(Σ−1(θ)−Σ−1((σ2

η, κη, σ
2)′)))

=
5κjσ

2
j

29/2τ 1/2σ7
(σ2

ε − σ2)2n(1+δ)/2 + o((σ2
ε − σ2)2n(1+δ)/2) + O(nδ). (5.43)

(vi) Suppose that |σ2
ε − σ2| = o(1) and |κησ

2
η − τ | = o(1) for some constants σ2, τ > 0.

Then

tr((Σ−1(θ)−Σ−1((σ2
η, κη, σ

2)′))(Σ−1(θ)−Σ−1((σ2
η, κη, σ

2)′)))

=
1

σ8
(σ2

ε − σ2)2n + o((σ2
ε − σ2)n(1+δ)/2) + O(nδ). (5.44)

(vii) Suppose that |σ2
ε − σ2| = o(n−(1−δ)/2) and |κησ

2
η − τ | = o(1) for some constants

σ2, τ > 0. Then for any κj, κj′ , σ
2
j , σj′ , c, d > 0 with cd = τ ,

tr(Σj(Σ
−1(θ)−Σ−1((c, d, σ2)′))Σj′(Σ

−1(θ)−Σ−1((c, d, σ2)′)))

=
5κjσ

2
j κj′σ

2
j′

29/2στ 7/2
(κησ

2
η − τ)2n(1+δ)/2 + o((κησ

2
η − τ)2n(1+δ)/2) + O(nδ). (5.45)

(viii) Suppose that |σ2
ε − σ2| = o(n−(1−δ)/2) and |κησ

2
η − τ | = o(1) for some constants

σ2, τ > 0. Then for any κj, σ
2
j , c, d > 0 with cd = τ ,

tr(Σj(Σ
−1(θ)−Σ−1((c, d, σ2)′))(Σ−1(θ)−Σ−1((c, d, σ2)′)))

=
κjσ

2
j

29/2σ3τ 5/2
(κησ

2
η − τ)2n(1+δ)/2 + o((κησ

2
η − τ)2n(1+δ)/2) + O(nδ). (5.46)

(ix) Suppose that |σ2
ε − σ2| = o(n−(1−δ)/2) and |κησ

2
η − τ | = o(1) for some constants

σ2, τ > 0. Then for any c, d > 0 with cd = τ ,

tr((Σ−1(θ)−Σ−1((c, d, σ2)′))(Σ−1(θ)−Σ−1((c, d, σ2)′)))

=
1

29/2τ 5/2
(κησ

2
η − τ)2n(1+δ)/2 + o((κησ

2
η − τ)2n(1+δ)/2) + O(nδ). (5.47)

5.1 Polynomial Order Selection

In this section, we consider Examples 1 and 2 given by (5.4) and (5.5) for polynomial order
selection. Note that in Example 1, the underlying true polynomial does not vary with
the sample size, whereas in Example 2, the magnitude of the underlying true polynomial
decreases as the sample size increases, making estimation and polynomial order selection
more difficult. Let Vj×j′ be a j × j′ matrix with the (k, `)th element,

1

k + ` + 1
; k = 1, . . . , j, ` = 1, . . . , j′. (5.48)

Note that when j = j′, the square matrix Vj,j is nonsingular (see Shibata 1981).
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Proposition 4 Consider a class of models given by (3.1) with p explanatory variables
corresponding to p monomials defined in (5.5), where p is fixed. Let A = {α0, α1, . . . , αp},
where α0 ≡ ∅ and αj = {1, . . . , j}; j = 1, . . . , p. Suppose that Ac 6= ∅ and the data
are sampled at si = in−(1−δ) ∈ [0, nδ]; i = 1, . . . , n, for some δ ∈ [0, 1). Consider
the exponential covariance model of (5.1) for η(·). Let θ = (σ2

η, κη, σ
2
ε )
′ ∈ Θ, and let

θ0 = (σ2
η,0, κη,0, σ

2
ε,0)

′ ∈ Θ be the true parameter vector, where Θ ≡ (0,∞)3. Then for any
α ∈ A \ Ac,

lim
n→∞

1

nδ
µ′A(α; θ)′Σ−1(θ)A(α; θ)µ =

κη

2σ2
η

γ(α); if δ ∈ (0, 1), (5.49)

lim sup
n→∞

µ′A(α; θ)′Σ−1(θ)A(α; θ)µ < ∞; if δ = 0, (5.50)

where A(α; θ) is defined in (3.6),

γ(α) ≡ β′Vp×pβ − β′Vp×p(α)V
−1

p(α)×p(α)Vp(α)×pβ, (5.51)

and Vj×j′ is defined in (5.48). In addition, the log-likelihood of (4.9) based on model
α ∈ A can be decomposed into the following:

(i) For δ ∈ (0, 1),

−2`(θ; α) = n log(2π)− 1− δ

2
log n +

(
log σ2

ε +
σ2

ε,0

σ2
ε

)
n

+

(
2κησ

2
η

σ2
ε

)1/2(
1− σ2

ε,0

2σ2
ε

+
κη,0σ

2
η,0

2κησ2
η

)
n(1+δ)/2

+

(
− κησ

2
η

σ2
ε

+ κη

(
κη,0σ

2
η,0

κησ2
η

− 1

)
− κη,0σ

2
η,0

2κησ2
η

)
nδ

+
1

2κησ2
η

(
(σ2

η,0 + γ(α))1/2κη −
κη,0σ

2
η,0

(σ2
η,0 + γ(α))1/2

)2

nδ

+
κη,0σ

2
η,0

2κησ2
η

(
κη,0 −

κη,0σ
2
η,0

σ2
η,0 + γ(α)

)
nδ + ξ(θ) + op(n

δ), (5.52)

where

ξ(θ) = (η + ε)′Σ−1(θ)(η + ε)− tr(Σ(θ0)Σ
−1(θ)). (5.53)

(ii) For δ = 0,

−2`(θ; α) = n log(2π)− 1− δ

2
log n +

(
log σ2

ε +
σ2

ε,0

σ2
ε

)
n

+

(
2κησ

2
η

σ2
ε

)1/2 (
1− σ2

ε,0

2σ2
ε

+
κη,0σ

2
η,0

2κησ2
η

)
n1/2 + ξ(θ) + Op(1).(5.54)

Equation (5.52) provides some guidance of applying GIC to distinguish between correct
and incorrect models in polynomial order selection. For example, it follows from (5.52)
and γ(αc) = 0 that for α ∈ A \ Ac and δ ∈ (0, 1),

−2`(θ; α) + 2`(θ; αc) =
γ(α)κη

2σ2
η

nδ + op(n
δ), (5.55)
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so that we can get rid of underfitted models if the penalty term has a smaller order than
O(nδ). As to be demonstrated in Theorem 6, we can use (5.55) to find an appropriate
penalty λ that leads to selection consistency. On the other hand, applying (5.54) to
Example 2 under the fixed domain asymptotic framework (i.e., δ = 0), we obtain

−2`(θ; α) + 2`(θ; αc) = Op(1), (5.56)

indicating that consistency or asymptotic loss efficiency of GIC is almost impossible.
Additionally, we see from (5.54) that the likelihood value depends on κη and σ2

η mainly
through their product, but not their individual values under the fixed domain asymptotic
framework when δ = 0. Consequently, variable selection based on GIC is expected to
be not much affected by individual estimates of κη and σ2

η as long as the estimate of the
microergodic parameter, κησ

2
η, remains the same.

The following lemma provides consistency of the ML estimate of σ2
ε and the microer-

godic parameter, κησ
2
η, under both the fixed domain and the increasing domain asymptotic

frameworks with δ ∈ [0, 1). The results are extended from Chen et al. (2000) who consider
only α ∈ Ac and δ = 0.

Lemma 11 Under the setup of Proposition 4, let Θ ⊂ (0,∞)3 be a compact set and let
θ̂(α) = (σ̂2

η(α), κ̂η(α), σ̂2
ε (α))′ be the ML estimate of θ based on model α. Then for any

δ ∈ [0, 1),

σ̂2
ε (α) = σ2

ε,0 + op(1), (5.57)

κ̂η(α)σ̂2
η(α) = κη,0σ

2
η,0 + op(1). (5.58)

The following theorem further provides the convergence rates for the ML estimates of
κη, σ2

η and σ2
ε . These results are also extended from Chen et al. (2000) who consider only

α ∈ Ac and δ = 0, and are keys for establishing some asymptotic properties of GIC in
Theorem 7.

Theorem 4 Under the setup of Proposition 4, let Θ ⊂ (0,∞)3 be a compact set and let
θ̂(α) = (σ̂2

η(α), κ̂η(α), σ̂2
ε (α))′ be the ML estimate of θ based on model α. Then

(i) For δ ∈ (0, 1),

σ̂2
ε (α) = σ2

ε,0 + op(n
−(1−δ)/2); α ∈ A, (5.59)

κ̂η(α)σ̂2
η(α) = κη,0σ

2
η,0 + op(n

−(1−δ)/4); α ∈ A, (5.60)

σ̂2
η(α) =

{
σ2

η,0 + op(1); if α ∈ Ac,
γ(α) + σ2

η,0 + op(1); if α ∈ A \ Ac,
(5.61)

κ̂η(α) =

{
κη,0 + op(1); if α ∈ Ac,
κη,0σ

2
η,0(γ(α) + σ2

η,0)
−1 + op(1); if α ∈ A \ Ac,

(5.62)

where γ(α) > 0 is a constant defined in (5.51) for α ∈ A \ Ac.

(ii) For δ = 0 and any α ∈ A,

σ̂2
ε (α) = σ2

ε,0 + Op(n
−1/2), (5.63)

κ̂η(α)σ̂2
η(α) = κη,0σ

2
η,0 + Op(n

−1/4). (5.64)
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Proof. Denote σ2
η,α ≡ γ(α) + σ2

η,0 and κη,α ≡ κη,0σ
2
η,0/(γ(α) + σ2

η,0), for α ∈ A, where
γ(α) ≡ 0 for α ∈ Ac. Note that κη,ασ2

η,α = κη,0σ
2
η,0.

First, we prove (5.59). By (5.57) and (5.58), it suffices to show that for |σ2
ε − σ2

ε,0| =
o(1), |κησ

2
η − κη,0σ

2
η,0| = o(1) and any ε > 0,

inf
|σ2

ε−σ2
ε,0|≥εn−(1−δ)/2

(−2`(θ; α) + 2`((σ2
η, κη, σ

2
ε,0)

′; α)) > 0, (5.65)

as n →∞ with probability tending to 1. By (5.52), we can write

−2`(θ; α) = n log(2π)− 1− δ

2
log n +

(
log σ2

ε +
σ2

ε,0

σ2
ε

)
n

+

(
2κησ

2
η

σ2
ε

)1/2(
1− σ2

ε,0

2σ2
ε

+
κη,0σ

2
η,0

2κησ2
η

)
n(1+δ)/2

+

(
− κησ

2
η

σ2
ε

+ κη

(
κη,0σ

2
η,0

κησ2
η

− 1

)
− κη,0σ

2
η,0

2κησ2
η

)
nδ +

σ2
η,α

2κησ2
η

(κη − κη,α)2nδ

+
κη,0σ

2
η,0

2κησ2
η

(
κη,0 − κη,α

)
nδ + ξ(θ) + op(n

δ), (5.66)

where ξ(θ) is given in (5.53). Then for |σ2
ε − σ2

ε,0| = o(1) and |κησ
2
η − κη,0σ

2
η,0| = o(1), we

have

−2`(θ; α) + 2`((σ2
η, κη, σ

2
ε,0)

′; α)

=

(
log σ2

ε +
σ2

ε,0

σ2
ε

− log σ2
ε,0 − 1

)
n

+

{(
2κησ

2
η

σ2
ε

)1/2(
1− σ2

ε,0

2σ2
ε

+
κη,0σ

2
η,0

2κησ2
η

)
−

(
2κησ

2
η

σ2
ε,0

)1/2(
1

2
+

κη,0σ
2
η,0

2κησ2
η

)}
n(1+δ)/2

+ξ(θ)− ξ((σ2
η, κη, σ

2
ε,0)

′) + op(n
δ)

=
1

2σ4
ε,0

(σ2
ε − σ2

ε,0)
2n + ξ(θ)− ξ((σ2

η, κη, σ
2
ε,0)

′) + op(n
δ),

where the last equality follows from (5.39) and (5.40). Therefore, for (5.65) to hold, it
remains to show that

ξ(θ)− ξ((σ2
η, κη, σ

2
ε,0)

′) = op(max((σ2
ε − σ2

ε,0)
2n, nδ)). (5.67)

We can decompose ξ(θ)− ξ((σ2
η, κη, σ

2
ε,0)

′) into the following three parts:

ξ(θ)− ξ((σ2
η, κη, σ

2
ε,0)

′)

= η′
(
Σ−1(θ)−Σ−1((σ2

η, κη, σ
2
ε,0)

′)
)
η − tr

(
Ση(θ0)(Σ

−1(θ)−Σ−1((σ2
η, κη, σ

2
ε,0)

′))
)

+2η′
(
Σ−1(θ)−Σ−1((σ2

η, κη, σ
2
ε,0)

′)
)
ε

+ε′
(
Σ−1(θ)−Σ−1((σ2

η, κη, σ
2
ε,0)

′)
)
ε− σ2

ε,0tr
(
Σ−1(θ)−Σ−1((σ2

η, κη, σ
2
ε,0)

′)
)
. (5.68)

Applying Chebyshev’s inequality on each of the three parts and using the following three
moment conditions given from (5.42)-(5.44) on (5.68):

var
(
η′(Σ−1(θ)−Σ−1((σ2

η, κη, σ
2
ε,0)

′))η
)

= O
(
max((σ2

ε − σ2
ε,0)

2n, nδ)
)
,

var
(
η′(Σ−1(θ)−Σ−1((σ2

η, κη, σ
2
ε,0)

′))ε
)

= O
(
max((σ2

ε − σ2
ε,0)

2n, nδ)
)
,

var
(
ε′(Σ−1(θ)−Σ−1((σ2

η, κη, σ
2
ε,0)

′))ε
)

= O
(
max((σ2

ε − σ2
ε,0)

2n, nδ)
)
,
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we obtain (5.67). This completes the proof of (5.59).
Second, we prove (5.60). By (5.58) and (5.59), it suffices to show that for |σ2

ε −σ2
ε,0| =

o(n−(1−δ)/2), |κησ
2
η − κη,0σ

2
η,0| = o(1) and any ε > 0,

inf
|σ2

ηκη−σ2
η,0κη,0|≥εn−(1−δ)/4

(− 2`(θ; α) + 2`((σ2
η,α, κη,α, σ2

ε,0)
′; α)

)
> 0, (5.69)

as n → ∞ with probability tending to 1. By (5.66), for |σ2
ε − σ2

ε,0| = o(n−(1−δ)/2) and
|κησ

2
η − κη,0σ

2
η,0| = o(1), we have

−2`(θ; α) + 2`((σ2
η,α, κη,α, σ2

ε,0)
′; α)

=

{(
2κησ

2
η

σ2
ε,0

)1/2(
1

2
+

κη,0σ
2
η,0

2κησ2
η

)
−

(
2κη,0σ

2
η,0

σ2
ε,0

)1/2}
n(1+δ)/2

+
σ2

η,α

2κη,0σ2
η,0

(κη − κη,α)2nδ + ξ(θ)− ξ((σ2
η,α, κη,α, σ2

ε,0)
′) + op(n

δ)

=
(κησ

2
η − κη,0σ

2
η,0)

2n(1+δ)/2

25/2(κη,0σ2
η,0)

3/2
+

σ2
η,α(κη − κη,α)nδ

2κη,0σ2
η,0

+ ξ(θ)− ξ((σ2
η,α, κη,α, σ2

ε,0)
′)

+op(n
δ), (5.70)

where the first equality follows from (5.39) and the second equality follows from (5.41).
Therefore, for (5.69) to hold, it remains to show that

ξ(θ)− ξ((σ2
η,α, κη,α, σ2

ε,0)
′) = op(max((κησ

2
η − κη,0σ

2
η,0)

2n(1+δ)/2, nδ)), (5.71)

which can be obtained from a decomposition similar to (5.68) in addition to the following
three moment conditions given from (5.45)-(5.47):

var
(
η′(Σ−1(θ)−Σ−1((σ2

η,α, κη,α, σ2
ε,0)

′))η
)

= O(max((κησ
2
η − κη,0σ

2
η,0)

2n(1+δ)/2, nδ)),

var
(
η′(Σ−1(θ)−Σ−1((σ2

η,α, κη,α, σ2
ε,0)

′))ε
)

= O(max((κησ
2
η − κη,0σ

2
η,0)

2n(1+δ)/2, nδ)),

var
(
ε′(Σ−1(θ)−Σ−1((σ2

η,α, κη,α, σ2
ε,0)

′))ε
)

= O(max((κησ
2
η − κη,0σ

2
η,0)

2n(1+δ)/2, nδ)).

Thus (5.69) is obtained. This completes the proof of (5.60).
Third, we prove (5.61) and (5.62). By (5.70) and (5.71), for |σ2

ε − σ2
ε,0| = o(n−(1−δ)/2),

|σ2
ηκη − σ2

η,0κη,0| = o(n−(1−δ)/4) and any ε > 0, we have

inf
|κη−κη,α|≥ε

−2`(θ; α) + 2`((σ2
η,α, κη,α, σ2

ε,0)
′; α) =

σ2
η,α

2κη,0σ2
η,0

ε2nδ + op(n
δ) > 0,

as n → ∞ with probability tending to 1, which gives (5.62). This together with (5.60)
gives (5.61).

Fourth, we prove (5.63). By (5.57) and (5.58), it suffices to show that for |σ2
ε −σ2

ε,0| =
o(1) and |κησ

2
η − κη,0σ

2
η,0| = o(1), there exists M > 0 such that

inf
|σ2

ε−σ2
ε,0|≥Mn−1/2

{− 2`(θ; α) + 2`((σ2
η, κη, σ

2
ε,0)

′; α)
}

> 0, (5.72)
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as n → ∞ with probability tending to 1. By (5.54), for |σ2
ε − σ2

ε,0| = o(1) and |κησ
2
η −

κη,0σ
2
η,0| = o(1), we have

−2`(θ; α) + 2`((σ2
η, κη, σ

2
ε,0)

′; α)

=

(
log σ2

ε +
σ2

ε,0

σ2
ε

− log σ2
ε,0 − 1

)
n

+

{(
2κησ

2
η

σ2
ε

)1/2(
1− σ2

ε,0

2σ2
ε

+
κη,0σ

2
η,0

2κησ2
η

)
−

(
2κησ

2
η

σ2
ε,0

)1/2(
1

2
+

κη,0σ
2
η,0

2κησ2
η

)}
n1/2

+ξ(θ)− ξ((σ2
η, κη, σ

2
ε,0)

′) + Op(1)

=
1

2σ4
ε,0

(σ2
ε − σ2

ε,0)
2n + ξ(θ)− ξ((σ2

η, κη, σ
2
ε,0)

′) + op

(
(σ2

ε − σ2
ε,0)

2n
)

+ Op(1)

=
1

2σ4
ε,0

(σ2
ε − σ2

ε,0)
2n + op

(
(σ2

ε − σ2
ε,0)

2n
)

+ Op(1),

where the second equality follows from (5.39) and (5.40), and the last equality follows
from

ξ(θ)− ξ((σ2
η, κη, σ

2
ε,0)

′) = op

(
(σ2

ε − σ2
ε,0)

2n
)

+ Op(1), (5.73)

which can be obtained in a way similar to (5.67). Consequently, there exists M > 0 such
that

inf
|σ2

ε−σ2
ε,0|≥Mn−1/2

(−2`(θ; α) + 2`((σ2
η, κη, σ

2
ε,0)

′; α)) =
M2

2σ4
ε,0

+ Op(1) > 0,

as n →∞ with probability tending to 1. Thus, we obtain (5.72), and hence the proof of
(5.63) is complete.

Finally, we prove (5.64). By (5.58) and (5.63), it suffices to show that for |σ2
ε −σ2

ε,0| =
O(n−1/2) and |κησ

2
η − κη,ασ2

η,α| = o(1), there exists M > 0 such that

inf
|σ2

ηκη−σ2
η,0κη,0|≥Mn−1/4

(− 2`(θ; α) + 2`((σ2
η,α, κη,α, σ2

ε,0)
′; α)

)
> 0, (5.74)

as n → ∞ with probability tending to 1, where κη,ασ2
η,α = κη,0σ

2
η,0. By (5.54), for

|σ2
ε − σ2

ε,0| = O(n−1/2) and |κησ
2
η − κη,0σ

2
η,0| = o(1), we have

−2`(θ; α) + 2`((σ2
η,α, κη,α, σ2

ε,0)
′; α)

=

{(
2κησ

2
η

σ2
ε,0

)1/2(
1

2
+

κη,ασ2
η,α

2κησ2
η

)
−

(
2κησ

2
η

σ2
ε,0

)1/2(
1

2
+

κη,ασ2
η,α

2κησ2
η

)}
n1/2

+ξ(θ)− ξ((σ2
η,α, κη,α, σ2

ε,0)
′) + Op(1)

=
(κησ

2
η − κη,0σ

2
η,0)

2n1/2

25/2(κη,0σ2
η,0)

3/2
+ ξ(θ)− ξ((σ2

η,α, κη,α, σ2
ε,0)

′)

+op((κησ
2
η − κη,0σ

2
η,0)

2n1/2) + Op(1)

=
(κησ

2
η − κη,0σ

2
η,0)

2n1/2

25/2(κη,0σ2
η,0)

3/2
+ op((κησ

2
η − κη,0σ

2
η,0)

2n1/2) + Op(1), (5.75)
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where the first equality follows from |σ2
ε − σ2

ε,0| = o(n−(1−δ)/2), the second equality follows
from (5.41), and the last equality follows from

ξ(θ)− ξ((σ2
η,α, κη,α, σ2

ε,0)
′) = op

(
(κησ

2
η − κη,0σ

2
η,0)

2n1/2
)

+ Op(1), (5.76)

which can be obtained in a way similar to (5.71). Thus, (5.74), and hence (5.64) are
obtained. This completes the proof. 2

Note that a special case of Theorem 4 for which δ = 0 and β = 0, can be found in
Zhang and Zimmerman (2005), where they consider no regressor, and hence consider no
underfitted model.

Corollary 4 Under the setup of Theorem 4, let

θ(1)
α = (γ(α) + σ2

η,0, κη,0σ
2
η,0(γ(α) + σ2

η,0)
−1, σ2

ε,0)
′; α ∈ A, (5.77)

where γ(α) ≡ 0 for α ∈ Ac. Then

plim
n→∞

1

nδ
(−2`(θ̂(α); α) + 2`(θ(1)

α ; α)) = 0; if δ ∈ (0, 1), (5.78)

−2`(θ̂(α); α) + 2`(θ(1)
α ; α) = Op(1); if δ = 0. (5.79)

In addition, for LKL(α; θ) defined in (3.3) and α ∈ A \ Ac,

plim
n→∞

LKL(θ̂(α); α)
/
LKL(θ(1)

α ; α) = 1; if δ ∈ (0, 1), (5.80)

LKL(θ̂(α); α)− LKL(θ(1)
α ; α) = Op(1); if δ = 0. (5.81)

Note that from Theorem 4, we have plim
n→∞

θ̂(α) = θ(1)
α for δ ∈ (0, 1), which immediately

gives (5.78). On the other hand, (5.79) is somewhat surprising, because θ̂(α) generally

does not converge to θ
(1)
α for δ = 0.

Theorem 5 Consider a class of models given by (3.1) with xj(s) = sj; j = 1, . . . , p,
and cov(η(s), η(s′)) = σ2

η exp(−κη|s − s′|), where σ2
η > 0, κη > 0 and σ2

ε > 0 are known,
and p is fixed. Suppose that A = {α0, α1, . . . , αp}, where α0 = ∅, αj = {1, . . . , j} for
j = 1, . . . , p, and Ac 6= ∅. In addition, suppose that the data are collected at si = in−(1−δ);
i = 1, . . . , n, for some δ ∈ [0, 1).

(i) For δ = 0 and any λ > 0,

lim
n→∞

P
(
αc = arg min

α∈A
LKL(α)

)
< 1. (5.82)

In addition, if λ →∞, then

lim
n→∞

P
(
α̂GIC(λ) = α0

)
= 1, (5.83)

where α̂GIC(λ) is defined in (4.2).

(ii) For δ ∈ (0, 1), if λ →∞ and n(2p(αc)+1)δ
/
λ →∞ as n →∞, then

lim
n→∞

P
(
α̂GIC(λ) = αc

)
= 1.
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Proof. (i) For δ = 0, by (3.8),

LKL(α) = µ′A(α)′Σ−1A(α)µ + (η + ε)′M (α)′Σ−1(η + ε),

where

(η + ε)′M (α)′Σ−1(η + ε) = (η + ε)′Σ−1X(α)(X(α)′Σ−1X(α))−1X(α)′Σ−1(η + ε)

∼ χ2(p(α)), (5.84)

with χ2(k) denoting the chi-square distribution with k degrees of freedom. Similarly,

(η + ε)′(M (αc)−M (α))′Σ−1(η + ε) ∼ χ2(p(αc)− p(α)).

By (5.50), for α ∈ A \ Ac, we have µ′A(α)′Σ−1A(α)µ = O(1). Hence, for α ∈ A \ Ac,

lim
n→∞

P
(
LKL(αc)− LKL(α) > 0

)

= lim
n→∞

P
(
(η + ε)′(M (αc)−M(α))′Σ−1(η + ε)− µ′A(α)′Σ−1A(α)µ > 0

)
> 0.

Thus (5.82) is obtained.
For (5.83), by (4.6) with λ →∞,

ΓGIC(λ)(α) = (Z − µ̂(α))′Σ−1(Z − µ̂(α)) + λp(α)

= µ′A(α)′Σ−1A(α)µ + (η + ε)′A(α)′Σ−1(η + ε) + 2µ′A(α)′Σ−1(η + ε)

+λp(α)

= 2µ′A(α)′Σ−1(η + ε) + (η + ε)′Σ−1(η + ε) + λp(α) + op(λ),

where the last equality follows from (5.50) and (5.84). In addition, by Chebyshev’s in-
equality and the following moment condition:

var(µ′A(α)′Σ−1(η + ε)) = µ′A(α)′Σ−1A(α)µ = O(1),

we have µ′A(α)′Σ−1(η + ε) = Op(1). Therefore, for α ∈ A \ {α0},
ΓGIC(λ)(α)− ΓGIC(λ)(α0) = λ(p(α)− p(α0)) + op(λ),

which is greater than zero with probability tending to 1. Thus (5.83) is obtained.
(ii) It suffices to show that limn→∞ ELKL(α)/λ = ∞ for α ∈ A \ Ac by (4.7). First,

for α ∈ A \ Ac,

µ′A(α)′Σ−1A(α)µ

= β′X ′(Σ−1 −Σ−1X(α)(X(α)′Σ−1X(α))−1X(α)Σ−1)Xβ

= β∗
′
X∗′(Σ−1 −Σ−1X∗(α)(X∗(α)′Σ−1X∗(α))−1X∗(α)Σ−1)X∗β∗

= β∗
′
(Vp,p − Vp,p(α)V

−1
p(α),p(α)Vp(α),p)β

∗ + o(n(2p(αc)+1)δ)

= β2
p(αc)e

′
p(αc)(Vp,p − Vp,p(α)V

−1
p(α),p(α)Vp(α),p)ep(αc)n

(2p(αc)+1)nδ

+ o(n(2p(αc)+1)δ),

where ej is the jth column of Ip, β∗(α) = D(α)β(α), X∗(α) = D−1(α)X(α) with

D(α) =




1 0 · · · 0

0 nδ . . .
...

...
. . . . . . 0

0 · · · 0 np(α)δ


 ,
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Vj×j′ is defined in (5.48), and e′p(αc)(Vp,p−Vp,p(α)V
−1

p(α),p(α)Vp(α),p)ep(αc) is a constant, which

is bounded away from 0 by Theorem 3.1 of Shibata (1981). It follows from (3.9) and
lim

n→∞
λ
/
n(2p(α)+1)δ = 0 that

lim
n→∞

ELKL(α)

λ
= lim

n→∞
ELKL(α)/n(2p(αc)+1)δ

λ/n(2p(αc)+1)δ
= ∞.

This completes the proofs. 2

Theorem 6 Consider the same setup as in Theorem 5 except xj(s) = (sn−δ)j; j =
1, . . . , p.

(i) For δ = 0 and any λ > 0,

lim
n→∞

P
(
αc = arg min

α∈A
LKL(α)

)
< 1.

In addition, if λ →∞, then

lim
n→∞

P
(
α̂GIC(λ) = α0

)
= 1,

where α̂GIC(λ) is defined in (4.2).

(ii) For δ ∈ (0, 1), if λ →∞ and nδ
/
λ →∞ as n →∞, then

lim
n→∞

P
(
α̂GIC(λ) = αc

)
= 1.

Proof. (i). See (i) in Proof of Theorem 5.
(ii). From (ii) of Theorem 2, it suffices to show that limn→∞ ELKL(α)/λ = ∞ for

α ∈ A \ Ac. By (5.49),

µ′A(α)′Σ−1A(α)µ = γ(α)nδ + o(nδ),

where γ(α) is a constant, which is bounded away from 0 by Theorem 3.1 of Shibata (1981).
It follows from (3.9) and lim

n→∞
λ
/
nδ = 0 that

lim
n→∞

ELKL(α)

λ
= lim

n→∞
ELKL(α)/nδ

λ/nδ
= ∞.

This completes the proof. 2

Theorem 7 Under the setup of Theorem 6, suppose that θ = (σ2
η, κη, σ

2
ε )
′ ∈ Θ is un-

known, where Θ ⊂ (0,∞)3 is a compact set such that θ0 ∈ Θ. Let θ̂(α) be the ML
estimate of θ . For δ = 0, if λ →∞ as n →∞, then

lim
n→∞

P
(
α̂GIC(λ) = α0

)
= 1.

For δ ∈ (0, 1), if λ →∞ and λ/nδ → 0 as n →∞, then

lim
n→∞

P
(
α̂GIC(λ) = αc

)
= 1.
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Proof. First, for δ = 0, we prove

lim
n→∞

P
(
α̂GIC(λ) = α0

)
= 1.

By (4.10) and by (5.79), for α0 = ∅ and θ
(1)
α defined in (5.77), we have

ΓGIC(λ)(α)− ΓGIC(λ)(α0) = −2`(θ(1)
α ; α) + 2`(θ(1)

α0
; α0) + λ(p(α)− p(α0)) + Op(1)

= λ(p(α)− p(α0)) + ξ(θ(1)
α )− ξ(θ(1)

α0
) + Op(1)

= λ(p(α)− p(α0)) + Op(1) > 0,

as n → ∞ with probability tending to 1, where the second equality follows from (5.54)
and the third equality follows from (5.76).

Second, for δ ∈ (0, 1), we prove

lim
n→∞

P
(
α̂GIC(λ) = αc

)
= 1.

It suffices to show that the conditions in Theorem 3 are satisfied. First, by (5.36) and
(5.37), we have

X ′Σ−1(θ)X =
κη

2σ2
η

Vp×pn
δ + o(nδ),

where Vp×p is defined in (5.48) and is nonsingular. Then (A.2) is satisfied. Second, by
(5.38), (A.3) is satisfied trivially. Third, (A.4)-(A.5) are followed by (5.78) and (5.80) for

τn = nδ and θα = θ
(1)
α defined in (5.77). Fourth, (A.1) holds by (5.49). Fifth, for ξ(θ)

defined in (5.53), by (5.71), we have

ξ(θ0)− ξ(θ(1)
α ) = op(n

δ).

Hence, (4.12) holds. Last, for α ∈ Ac, θ
(1)
α = θ0, (4.14) holds trivially. This completes

the proof. 2

5.2 Spatially Dependent Regressors

In this section, we consider Example 3 with explanatory variables generated independently
from spatially dependent processes with exponential covariance functions of (5.6). This
example considers spatial dependence not only for the response but also for explanatory
variables.

Proposition 5 Consider a class of models given by (3.1) with xj(s)’s independently gen-
erated from white-noise processes of (5.7) and cov(η(s), η(s′)) = σ2

η exp(−κη|s−s′|), where

Ac 6= ∅ and p is fixed. Suppose that the data are collected at si = in−(1−δ) ∈ [0, nδ];
i = 1, . . . , n for some δ ∈ [0, 1). Let θ = (σ2

η, κη, σ
2
ε )
′ ∈ Θ and let θ0 = (σ2

η,0, κη,0, σ
2
ε,0)

′ ∈ Θ
be the true parameter vector, where Θ = (0,∞)3. Define

θη,α ≡
∑

j∈αc\α
β2

j σ
2
j κj + κη,0σ

2
η,0, (5.85)

Then the log-likelihood of (4.9) based on model α ∈ A can be decomposed into the following.
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(i) For δ ∈ (0, 1),

−2`(θ; α) = n log(2π)− 1− δ

2
log n +

(
log σ2

ε +
σ2

ε,0

σ2
ε

)
n

+

(
2κησ

2
η

σ2
ε

)1/2(
1− σ2

ε,0

2σ2
ε

+
θη,α

2κησ2
η

)
n(1+δ)/2

+

(
− κησ

2
η

σ2
ε

+ κη

(
θη,α

κησ2
η

− 1

)
− κη,0σ

2
η,0

2κησ2
η

)
nδ

+

∑
j∈αc\α β2

j σ
2
j + σ2

η,0

2κησ2
η

(
κη − θη,α( ∑

j∈αc\α β2
j σ

2
j + σ2

η,0

)
)2

nδ

+
1

2κησ2
ε

( ∑

j∈αc\α
β2

j σ
2
j κ

2
j + σ2

η,0κ
2
η,0 −

θ2
η,α( ∑

j∈αc\α β2
j σ

2
j + σ2

η,0

)
)

nδ

+ξ(2)(α; θ) + op(n
δ), (5.86)

where

ξ(2)(α; θ) = µ′A(α; θ)′Σ−1µA(α; θ)µ−
∑

j∈αc\α
β2

j tr(ΣjΣ
−1(θ))

−2µ′A(α; θ)′Σ−1(θ)(η + ε) + ξ(θ), (5.87)

A(α; θ) is defined in (3.6), Σj = var(Xj) with Xj being the jth column of X, and
ξ(θ) is defined in (5.53).

(ii) For δ = 0,

−2`(θ; α) = n log(2π)− 1− δ

2
log n +

(
log σ2

ε +
σ2

ε,0

σ2
ε

)
n

+

(
2κησ

2
η

σ2
ε

)1/2(
1− σ2

ε,0

2σ2
ε

+
θη,α

2κησ2
η

)
n1/2 + ξ(2)(α; θ) + Op(1). (5.88)

By (5.86), it can be seen that for any α ∈ A \ Ac and δ ∈ (0, 1),

−2`(θ; α) + 2`(θ; αc) = (2κησ
2
ησ

2
ε )
−1/2

∑

j∈αc\α
β2

j σ
2
j κjn

(1+δ)/2 + ξ(2)(α; θ)− ξ(2)(αc; θ)

+op(n
δ)

= (2κησ
2
ησ

2
ε )
−1/2

∑

j∈αc\α
β2

j σ
2
j κjn

(1+δ)/2 + op(n
(1+δ)/2), (5.89)

where the last equality holds because by (5.87), ξ(2)(α; θ) − ξ(2)(αc; θ) = op(n
(1+δ)/2).

Similarly, by (5.88) for δ = 0,

−2`(θ; α) + 2`(θ; αc) = (2κησ
2
ησ

2
ε )
−1/2

∑

j∈αc\α
β2

j σ
2
j κjn

1/2 + op(n
1/2).

As to be demonstrated in Theorem 9, we can use (5.89) to find an appropriate penalty λ
that leads to selection consistency.

The following lemma shows that κησ
2
η is over-estimated by ML asymptotically when

α ∈ A\Ac under both the fixed domain and the increasing domain asymptotic frameworks.
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Lemma 12 Under the setup of Proposition 5, let Θ ⊂ (0,∞)3 be a compact set and
let θ̂(α) = (σ̂2

η(α), κ̂η(α), σ̂2
ε (α))′ be the ML estimate of θ based on model α. Then, for

δ ∈ [0, 1) and α ∈ A,

σ̂2
ε (α) = σ2

ε,0 + op(1), (5.90)

κ̂η(α)σ̂2
η(α) =

∑

j∈αc\α
β2

j σ
2
j κj + κη,0σ

2
η,0 + op(1). (5.91)

The following theorem further provides the convergence rates for the ML estimates of
κη, σ2

η and σ2
ε . These results are keys for establishing some asymptotic properties of GIC

in Theorem 10.

Theorem 8 Under the setup of Proposition 5, let Θ ⊂ (0,∞)3 be a compact set and let
θ̂(α) = (σ̂2

η(α), κ̂η(α), σ̂2
ε (α))′ be the ML estimate of θ based on model α. Then

(i) For δ ∈ (0, 1) and θη,α defined in (5.85),

σ̂2
ε (α) = σ2

ε,0 + op(n
−(1−δ)/2); α ∈ A, (5.92)

κ̂η(α)σ̂2
η(α) =

{
κη,0σ

2
η,0 + op(n

−(1−δ)/4); if α ∈ Ac,
θη,α + op(n

−(1−δ)/4); if α ∈ A \ Ac,
(5.93)

σ̂2
η(α) =

{
σ2

η,0 + op(1); if α ∈ Ac,∑
j∈αc\α β2

j σ
2
j + σ2

η,0 + op(1); if α ∈ A \ Ac,
(5.94)

κ̂η(α) =

{
κη,0 + op(1); if α ∈ Ac,

θη,α

( ∑
j∈αc\α β2

j σ
2
j + σ2

η,0

)−1
+ op(1); if α ∈ A \ Ac.

(5.95)

(ii) For δ = 0,

σ̂2
ε (α) = σ2

ε,0 + Op(n
−1/2); α ∈ A, (5.96)

κ̂η(α)σ̂2
η(α) =

{
κη,0σ

2
η,0 + Op(n

−1/4); if α ∈ Ac,
θη,α + Op(n

−1/4); if α ∈ A \ Ac.
(5.97)

Proof. Let σ2
η,α ≡

∑
j∈αc\α β2

j σ
2
j + σ2

η,0 and κη,α ≡ θη,α

/
σ2

η,α, for α ∈ A, where θη,α is

defined in (5.85). In addition, for α ∈ A \ Ac, let

ξ1(θ; α) = β(αc \ α)′X(αc \ α)′Σ−1(θ)X(αc \ α)β(αc \ α)

−
∑

j∈αc\α
β2

j tr(ΣjΣ
−1(θ)),

ξ2(θ; α) = −2β(αc \ α)′X(αc \ α)′Σ−1(θ)(η + ε). (5.98)

In advance, we prove a simpler expansion of (5.87),

ξ(2)(θ; α) = ξ1(θ; α) + ξ2(θ; α) + ξ(θ) + Op(1). (5.99)

By (5.87), we have

ξ(2)(θ; α) = β(αc \ α)′X(αc \ α)′Σ−1(θ)X(αc \ α)β(αc \ α)

−β(αc \ α)′X(αc \ α)′Σ−1(θ)M(α; θ)X(αc \ α)β(αc \ α)

−2β(αc \ α)′X(αc \ α)′Σ−1(θ)(η + ε)

+2β(αc \ α)′X(αc \ α)′Σ−1(θ)M (α; θ)(η + ε) + ξ(θ),
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where M (α; θ) is defined in (3.5). Therefore, for (5.99) to hold, it remains to show that

β(αc \ α)′X(αc \ α)′Σ−1(θ)M (α; θ)X(αc \ α)β(αc \ α) = Op(1), (5.100)

β(αc \ α)′X(αc \ α)′Σ−1(θ)M(α; θ)(η + ε) = Op(1).

It follows easily from

n(1+δ)/2
(
X(α)′Σ−1(θ)X(α)

)−1
= Op(1), (5.101)

1

n(1+δ)/4
X(α)′Σ−1(θ)(η + ε) = Op(1), (5.102)

which follows from (5.33), (5.34) and Chebyshev’s inequality by checking the following
moment conditions:

var
(
X ′

jΣ
−1(θ)Xj′

)
= tr

(
ΣjΣ

−1(θ)Σj′Σ
−1(θ)

)
= O(n(1+δ)/2),

var
(
X ′

jΣ
−1(θ)(η + ε)

)
= tr

(
ΣjΣ

−1(θ)Σ(θ0)Σ
−1(θ)

)
= O(n(1+δ)/2).

Thus, (5.99) is obtained.
First, we prove (5.92). By (5.90) and (5.91), it suffices to show that for |σ2

ε − σ2
ε,0| =

o(1), |κησ
2
η − θη,α| = o(1), and any ε > 0,

inf
|σ2

ε−σ2
ε,0|≥εn−(1−δ)/2

(−2`(θ; α) + 2`((σ2
η, κη, σ

2
ε,0)

′; α)) > 0, (5.103)

as n →∞ with probability tending to 1. By (5.86),

−2`(θ; α) = n log(2π)− 1− δ

2
log n +

(
log σ2

ε +
σ2

ε,0

σ2
ε

)
n

+

(
2κησ

2
η

σ2
ε

)1/2(
1− σ2

ε,0

2σ2
ε

+
θη,α

2κησ2
η

)
n(1+δ)/2

+

(
− κησ

2
η

σ2
ε

+ κη

(
θη,α

κησ2
η

− 1

)
− κη,0σ

2
η,0

2κησ2
η

)
nδ

+
σ2

η,α

2κησ2
η

(
κη − κη,α

)2
nδ +

1

2κησ2
η

( ∑

j∈αc\α
β2

j σ
2
j κ

2
j + σ2

η,0κ
2
η,0 − θη,ακη,α

)
nδ

+ξ1(θ; α) + ξ2(θ; α) + ξ(θ) + op(n
δ), (5.104)
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where ξ(θ) is defined in (5.53) and the last equality follows from (5.99). Then, for |σ2
ε −

σ2
ε,0| = o(1) and |κησ

2
η − θη,α| = o(1), we have

−2`(θ; α) + 2`((σ2
η, κη, σ

2
ε,0)

′; α)

=

(
log σ2

ε +
σ2

ε,0

σ2
ε

− log σ2
ε,0 − 1

)
n

+

{(
2κησ

2
η

σ2
ε

)1/2(
1− σ2

ε,0

2σ2
ε

+
θη,α

2κησ2
η

)
−

{(
2κησ

2
η

σ2
ε,0

)1/2(
1

2
+

θη,α

2κησ2
η

)}
n(1+δ)/2

+ξ1(θ; α)− ξ1((σ
2
η, κη, σ

2
ε,0)

′; α) + ξ2(θ; α)− ξ2((σ
2
η, κη, σ

2
ε,0)

′; α)

+ξ(θ)− ξ((σ2
η, κη, σ

2
ε,0)

′) + op(n
δ)

=
(σ2

ε − σ2
ε,0)

2n

2σ4
ε,0

+ ξ1(θ; α)− ξ1((σ
2
η, κη, σ

2
ε,0)

′; α) + ξ2(θ; α)− ξ2((σ
2
η, κη, σ

2
ε,0)

′; α)

+ξ(θ)− ξ((σ2
η, κη, σ

2
ε,0)

′) + o((σ2
ε − σ2

ε,0)
2n) + op(n

δ)

=
(σ2

ε − σ2
ε,0)

2n

2σ4
ε,0

+ ξ1(θ; α)− ξ1((σ
2
η, κη, σ

2
ε,0)

′; α) + ξ2(θ; α)− ξ2((σ
2
η, κη, σ

2
ε,0)

′; α)

+o((σ2
ε − σ2

ε,0)
2n) + op(n

δ),

where the second equality follows from (5.39) and (5.40) and the last equality follows from
(5.67). Therefore, for (5.103) to hold, it remains to show that

ξ1(θ; α)− ξ1((σ
2
η, κη, σ

2
ε,0)

′; α) = op

(
max

(
(σ2

ε − σ2
ε,0)

2n, nδ
))

, (5.105)

ξ2(θ; α)− ξ2((σ
2
η, κη, σ

2
ε,0)

′; α) = op

(
max

(
(σ2

ε − σ2
ε,0)

2n, nδ
))

. (5.106)

By (5.98), we have

ξ2(θ; α)− ξ2((σ
2
η, κη, σ

2
ε,0)

′; α) = −2β(αc \ α)′X(αc \ α)′
(
Σ−1(θ)−Σ−1((σ2

η, κη, σ
2
ε,0)

′)
)
η

−2β(αc \ α)′X(αc \ α)′
(
Σ−1(θ)−Σ−1((σ2

η, κη, σ
2
ε,0)

′)
)
ε.

Then, (5.105)-(5.106) follow from Chebyshev’s inequality and using the following three
moments conditions given from (5.42)-(5.43):

var(X ′
j((Σ

−1(θ)−Σ−1((σ2
η, κη, σ

2
ε,0)

′)))Xj′) = O(max((σ2
ε − σ2

ε,0)
2n, nδ)),

var(X ′
j(Σ

−1(θ)−Σ−1((σ2
η, κη, σ

2
ε,0)

′))η) = O(max((σ2
ε − σ2

ε,0)
2n, nδ)),

var(X ′
j((Σ

−1(θ)−Σ−1((σ2
η, κη, σ

2
ε,0)

′)))ε) = O(max((σ2
ε − σ2

ε,0)
2n, nδ)),

we obtain (5.105)-(5.106). This completes the proof of (5.92).
Second, we prove (5.93). By (5.91) and (5.92), it suffices to show that for |σ2

ε −σ2
ε,0| =

o(n−(1−δ)/2), |κησ
2
η − θη,α| = o(1) and any ε > 0,

inf
|σ2

ηκη−θη,α|≥εn−(1−δ)/4

(− 2`(θ; α) + 2`((σ2
η,α, κη,α, σ2

ε,0)
′; α)

)
> 0, (5.107)
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as n →∞ with probability tending to 1. By (5.104), we have for |σ2
ε −σ2

ε,0| = o(n−(1−δ)/2)
and |κησ

2
ε − θη,α| = o(1),

−2`(θ; α) + 2`((σ2
η,α, κη,α, σ2

ε,0)
′; α)

=

{(
2κησ

2
η

σ2
ε,0

)1/2(
1

2
+

θη,α

2κησ2
η

)
−

(
2θη,α

σ2
ε,0

)1/2}
n(1+δ)/2 +

1

2κη,α

(κη − κη,α)2nδ

+ξ1(θ; α)− ξ1((σ
2
η,α, κη,α, σ2

ε,0)
′; α) + ξ2(θ; α)− ξ2((σ

2
η,α, κη,α, σ2

ε,0)
′; α)

+ξ(θ)− ξ((σ2
η,α, κη,α, σ2

ε,0)
′) + op(n

δ)

=
(κησ

2
η − θη,α)2n(1+δ)/2

25/2σε,0θ
3/2
η,α

+
1

2κη,α

(κη − κη,α)2nδ + o((κησ
2
η − θη,α)2n(1+δ)/2)

+ξ1(θ; α)− ξ1((σ
2
η,α, κη,α, σ2

ε,0)
′; α) + ξ2(θ; α)− ξ2((σ

2
η,α, κη,α, σ2

ε,0)
′; α)

+ξ(θ)− ξ((σ2
η,α, κη,α, σ2

ε,0)
′) + op(n

δ), (5.108)

where the first equality follows from |σ2
ε − σ2

ε,0| = o(n−(1−δ)/2), the second equality follows
from (5.41). Therefore, for (5.107) to hold, it suffices to show that

ξ1(θ; α)− ξ1((σ
2
η,α, κη,α, σ2

ε,0)
′; α) = op(max((κησ

2
η − θη,α)2n(1+δ)/2, nδ)), (5.109)

ξ2(θ; α)− ξ2((σ
2
η,α, κη,α, σ2

ε,0)
′; α) = op(max((κησ

2
η − θη,α)2n(1+δ)/2, nδ)), (5.110)

ξ(θ)− ξ((σ2
η,α, κη,α, σ2

ε,0)
′) = op(max((κησ

2
η − θη,α)2n(1+δ)/2, nδ)), (5.111)

which can be obtained from the following three moment conditions given from (5.45)-
(5.47):

var(X ′
j(Σ

−1(θ)−Σ−1((σ2
η, κη, σ

2
ε,0)

′))η) = O(max((κησ
2
η − θη,α)2n(1+δ)/2, nδ)),

var(X ′
j((Σ

−1(θ)−Σ−1((σ2
η, κη, σ

2
ε,0)

′)))ε) = O(max((κησ
2
η − θη,α)2n(1+δ)/2, nδ)),

var(ε′((Σ−1(θ)−Σ−1((σ2
η, κη, σ

2
ε,0)

′)))ε) = O(max((κησ
2
η − θη,α)2n(1+δ)/2, nδ)),

Thus, (5.107) is obtained. This completes the proof of (5.93).
Third, we prove (5.94) and (5.95). By (5.108), we have for |σ2

ε − σ2
ε,0| = o(n−(1−δ)/2),

|σ2
ηκη − θη,α| = o(n−(1−δ)/4) and any ε > 0,

inf
|κη−κη,α|≥ε

−2`(θ; α) + 2`((σ2
η,α, κη,α, σ2

ε,0)
′; α) =

1

2κη,α

ε2nδ + op(n
δ) > 0,

as n → ∞ with probability tending to 1, which gives (5.95). This together with (5.93)
gives (5.94).

Fourth, we prove (5.96). By (5.90) and (5.91), it suffices to show that for |σ2
ε −σ2

ε,0| =
o(1), |κησ

2
η − θη,α| = o(1), there exists M > 0 such that

inf
|σ2

ε−σ2
ε,0|≥Mn−1/2

(−2`(θ; α) + 2`((σ2
η, κη, σ

2
ε,0)

′; α)) > 0, (5.112)

as n →∞ with probability tending to 1. By (5.88) and (5.99),

−2`(θ; α) = n log(2π)− 1− δ

2
log n +

(
log σ2

ε +
σ2

ε,0

σ2
ε

)
n

+

(
2κησ

2
η

σ2
ε

)1/2(
1− σ2

ε,0

2σ2
ε

+
θη,α

2κησ2
η

)
n1/2

+ξ1(θ; α) + ξ2(θ; α) + ξ(θ) + Op(1). (5.113)
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Then, for |σ2
ε − σ2

ε,0| = o(1) and |κησ
2
η − θη,α| = o(1), we have

−2`(θ; α) + 2`((σ2
η, κη, σ

2
ε,0)

′; α)

=

(
log σ2

ε +
σ2

ε,0

σ2
ε

− log σ2
ε,0 − 1

)
n

+

{(
2κησ

2
η

σ2
ε

)1/2(
1− σ2

ε,0

2σ2
ε

+
θη,α

2κησ2
η

)
−

(
2κησ

2
η

σ2
ε,0

)1/2(
1

2
+

θη,α

2κησ2
η

)}
n1/2

+ξ1(θ; α)− ξ1((σ
2
η, κη, σ

2
ε,0)

′; α) + ξ2(θ; α)− ξ2((σ
2
η, κη, σ

2
ε,0)

′; α)

+ξ(θ)− ξ((σ2
η, κη, σ

2
ε,0)

′) + Op(1)

=
1

2σ4
ε,0

(σ2
ε − σ2

ε,0)
2n + ξ1(θ; α)− ξ1((σ

2
η, κη, σ

2
ε,0)

′; α) + ξ2(θ; α)− ξ2((σ
2
η, κη, σ

2
ε,0)

′; α)

+ξ(θ)− ξ((σ2
η, κη, σ

2
ε,0)

′) + op

(
((σ2

ε − σ2
ε,0)

2n)
)

+ Op(1)

=
1

2σ4
ε,0

(σ2
ε − σ2

ε,0)
2n + op

(
((σ2

ε − σ2
ε,0)

2n)
)

+ Op(1),

where the second equality follows from (5.39) and (5.40), and the last equality follows
from (5.73) and

ξ1(θ; α)− ξ1((σ
2
η, κη, σ

2
ε,0)

′; α) = op((σ
2
ε − σ2

ε,0)
2n) + Op(1),

ξ2(θ; α)− ξ2((σ
2
η, κη, σ

2
ε,0)

′; α) = op((σ
2
ε − σ2

ε,0)
2n) + Op(1),

which can be obtained in a way similar to (5.105)-(5.106). Consequently, there exists
M > 0 such that

inf
|σ2

ε−σ2
ε,0|≥Mn−1/2

(−2`(θ; α) + 2`((σ2
η, κη, σ

2
ε,0)

′; α)) =
M2

2σ4
ε,0

ε2 + Op(1) > 0,

as n →∞ with probability tending to 1. Thus, we obtain (5.112) and hence the proof of
(5.96) is complete.

Finally, we prove (5.97). By (5.91) and (5.96), it suffices to show that for |σ2
ε −σ2

ε,0| =
O(n−1/2), |κησ

2
η − θη,α| = o(1) and there exist M > 0 such that

inf
|σ2

ηκη−θη,α|≥Mn−1/4

(− 2`(θ; α) + 2`((σ2
η,α, κη,α, σ2

ε,0)
′; α)

)
> 0, (5.114)

as n →∞ with probability tending to 1, where κη,ασ2
η,α = θη,α. By (5.113), for |σ2

ε−σ2
ε,0| =

O(n−1/2) and |κησ
2
η − θη,α| = o(1), we have

−2`(θ; α) + 2`((σ2
η,α, κη,α, σ2

ε,0)
′; α)

=

{(
2κησ

2
η

σ2
ε,0

)1/2(
1

2
+

θη,α

2κησ2
η

)
−

(
2θη,α

σ2
ε,0

)1/2}
n1/2 + ξ1(θ; α)− ξ1((σ

2
η,α, κη,α, σ2

ε,0)
′; α)

+ξ2(θ; α)− ξ2((σ
2
η,α, κη,α, σ2

ε,0)
′; α) + ξ(θ)− ξ((σ2

η,α, κη,α, σ2
ε,0)

′) + Op(1)

=
(κησ

2
η − θη,α)2n1/2

25/2θ
3/2
η,α

+ ξ1(θ; α)− ξ1((σ
2
η,α, κη,α, σ2

ε,0)
′; α)

+ξ2(θ; α)− ξ2((σ
2
η,α, κη,α, σ2

ε,0)
′; α) + ξ(θ)− ξ((σ2

η,α, κη,α, σ2
ε,0)

′)

+o((κησ
2
η − θη,α)2n1/2) + Op(1)

=
(κησ

2
η − θη,α)2n1/2

25/2θ
3/2
η,α

+ o((κησ
2
η − θη,α)2n1/2) + Op(1), (5.115)
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where the first equality follows from |σ2
ε − σ2

ε,0| = O(n−1/2), the second equality follows
from (5.41) and the last equality follows from

ξ1(θ; α)− ξ1((σ
2
η,α, κη,α, σ2

ε,0)
′; α) = op((κησ

2
η − θη,α)2n1/2) + Op(1),

ξ2(θ; α)− ξ2((σ
2
η,α, κη,α, σ2

ε,0)
′; α) = op((κησ

2
η − θη,α)2n1/2) + Op(1), (5.116)

ξ(θ)− ξ((σ2
η,α, κη,α, σ2

ε,0)
′) = op((κησ

2
η − θη,α)2n1/2) + Op(1), (5.117)

which can be obtained in a way similar to (5.109)-(5.111). Thus, (5.114) and hence (5.97)
are obtained. This completes the proof. 2

Corollary 5 Under the setup of Theorem 8, let

θ(2)
α =

( ∑

j∈αc\α
β2

j σ
2
j + σ2

η,0, θη,α

( ∑

j∈αc\α
β2

j σ
2
j + σ2

η,0

)−1

, σ2
ε,0

)′
, (5.118)

where θη,α is defined in (5.85). For the log-likelihood defined in (2.9),

plim
n→∞

1

nδ
(−2`(θ̂(α); α) + 2`(θ(2)

α ; α)) = 0; if δ ∈ (0, 1), (5.119)

−2`(θ̂(α); α) + 2`(θ(2)
α ; α) = Op(1); if δ = 0. (5.120)

In addition, for LKL(θ; α) defined in (3.3),

plim
n→∞

LKL(θ̂(α); α)
/
LKL(θ(2)

α ; α)) = 0; if δ ∈ [0, 1). (5.121)

Note that from Theorem 8, plim
n→∞

θ̂(α) = θ(2)
α for δ ∈ (0, 1), which immediately implies

(5.119). On the other hand, (5.79) is somewhat surprising, because θ̂(α) generally does not

converge to θ
(2)
α for δ = 0. However, selection consistency and asymptotic loss efficiency

are possible for geostatistical model selection even if some covariance parameters cannot
be consistently estimated under the fixed domain asymptotic framework (see Theorem
10).

Theorem 9 Consider a class of models given by (3.1) with xj(s)’s independently gen-
erated from zero-mean spatial processes having exponential covariance functions of (5.6)
and cov(η(s), η(s′)) = σ2

η exp(−κη|s − s′|), where Ac 6= ∅ and p is fixed. Suppose that
σ2

η > 0, κη > 0 and σ2
ε > 0 are known. In addition, suppose that the data are collected at

si = in−(1−δ) ∈ [0, nδ]; i = 1, . . . , n for some δ ∈ [0, 1). If λ →∞ and λ/n → 0, then

LKL(α̂GIC(λ))
/
min
α∈A

LKL(α)
p−→ 1, as n →∞.

In addition,
lim

n→∞
P

(
α̂GIC(λ) = αc

)
= 1.
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Proof. By Theorem 2, it suffices to show that limn→∞ E(LKL(α))/λ = ∞ for α ∈ A \Ac

by (4.7). First, for δ[0, 1),

µ′A(α)′Σ−1A(α)µ = β(αc \ α)′X(αc \ α)′Σ−1X(αc \ α)β(αc \ α)

−β(αc \ α)′X(αc \ α)′Σ−1M (α)X(αc \ α)β(αc \ α)

= β(αc \ α)′X(αc \ α)′Σ−1X(αc \ α)β(αc \ α) + Op(1)

=
∑

j∈αc\α
β2

j tr(ΣjΣ
−1) + op(n

(1+δ)/2)

=
∑

j∈αc\α

β2
j σ

2
j κj

(2κησ2
ησ

2
ε )

1/2
n(1+δ)/2 + op(n

(1+δ)/2), (5.122)

where M (α) is defined in (3.5), Σj = var(Xj), the second equality follows from (5.100),
the third equality follows if

β(αc \ α)′X(αc \ α)′Σ−1X(αc \ α)β(αc \ α) =
∑

j∈αc\α
β2

j tr(ΣjΣ
−1) + op(n

(1+δ)/2),(5.123)

and the last equality follows from (5.30). By Chebyshev’s inequality, (5.123) holds by

var(XjΣ
−1Xj′) = ΣjΣ

−1Σj′Σ
−1 = O(n(1+δ)/2),

which follows from (5.33). It follows from (3.9) and lim
n→∞

λ
/
n(1+δ)/2 = 0 that for δ ∈ [0, 1).

lim
n→∞

E(L(α))

λ
≥ lim

n→∞
E(µ′A(α)′Σ−1A(α)µ)/n(1+δ)/2

λ/n(1+δ/2)
= ∞.

This completes the proof. 2

¿From Theorems 5, 6 and 9, we see that the behavior of GIC highly depends on the
variables to be selected under the fixed domain asymptotic framework (i.e., δ = 0). When
the variables to be selected are polynomials, GIC fails to select αc unless αc = ∅. In
contrast, when the variables to be selected are generated from some spatial processes,
GIC is consistent as long as λ → ∞ and λ/n → 0. Generally speaking, GIC has better
ability to distinguish among variables that are less smooth, which is somewhat expected,
because less smooth variables tends to produce less smooth mean structure and hence is
less confounded with the spatial process η(·).

Theorem 10 Under the setup of Theorem 9, suppose that θ = (σ2
η, κη, σ

2
ε )
′ ∈ Θ is un-

known, where Θ ⊂ (0,∞)3 is a compact set such that θ0 ∈ Θ. Let θ̂(α) be the ML estimate
of θ based on model α. If δ ∈ [0, 1), λ →∞ and λ

/
n(1+δ)/2 → 0, then

lim
n→∞

P
(
α̂GIC(λ) = αc

)
= 1.

Proof. For the consistency, it suffices to show that the conditions in Corollary 3 are
satisfied with τn = n(1+δ)/2. First, by (5.122), we have for any θ ∈ Θ,

plim
n→∞

1

n(1+δ)/2
µ′A(α; θ)′Σ−1A(θ)(α; θ)µ =

∑

j∈αc\α

β2
j σ

2
j κj

(2κηκ2
σσ

2
ε )

1/2
,
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where Θ is the covariance parameter space. Hence, (A.1’) is satisfied. Second, by (5.30)
and (5.33), we have for any θ ∈ Θ,

plim
n→∞

1

n(1+δ)/2
X ′Σ−1(θ)X = D(θ),

where D(θ) is a p × p diagonal matrix with diagonals κjσ
2
j /(2κησησ

2
ε )

1/2, j = 1, . . . , p.
Hence, (A.2’) holds. Third, by (5.33) and (5.34), (A.3’) holds trivially. Fourth, by (5.119)-

(5.121), (A.4) and (A.5) hold trivially for τn = n(1+δ)/2 and θ
(2)
α defined in (5.118). Fifth,

for ξ(θ) defined in (5.53), by (5.111) and (5.117), we have for δ ∈ [0, 1),

plim
n→∞

1

n(1+δ)/2

(
ξ(θ0)− ξ(θ(2)

α )
)

= 0.

Hence, (4.12) is satisfied. Last, for α ∈ Ac, θ
(2)
α = θ0, (4.14) holds trivially. Then, for

Ac 6= ∅, λ →∞ and λ = o(n(1+δ)/2), we have

lim
n→∞

P
(
α̂GIC(λ) = αc

)
= 1,

which completes the proof. 2

5.3 White Noise Regressors

In this section, we consider explanatory variables generated independently from Gaussian
white noise processes of (5.7).

Proposition 6 Consider a class of models given by (3.1) with xj(s)’s independently gen-
erated from white-noise processes of (5.7) and cov(η(s), η(s′)) = σ2

η exp(−κη|s−s′|), where
Ac 6= ∅ and p is fixed. Suppose that σ2

η > 0, κη > 0 and σ2
ε > 0 are known. In addition,

suppose that the data are collected at si = in−(1−δ) ∈ [0, nδ]; i = 1, . . . , n for some
δ ∈ [0, 1). Let θ = (σ2

η, κη, σ
2
ε )
′ ∈ Θ and θ0 = (σ2

η,0, κη,0, σ
2
ε,0)

′ ∈ Θ be the true parame-
ter vector, where Θ = (0,∞)3. Then the log-likelihood of (4.9) based on α ∈ A can be
decomposed into the following:

(i) For δ ∈ (0, 1),

−2`(θ; α) = n log(2π)− 1− δ

2
log n +

(
log σ2

ε +

∑
j∈αc\α β2

j σ
2
j + σ2

ε,0

σ2
ε

)
n

+

(
2κησ

2
η

σ2
ε

)1/2(
1−

∑
j∈αc\α β2

j σ
2
j + σ2

ε,0

2σ2
ε

+
κη,0σ

2
η,0

2κησ2
η

)
n(1+δ)/2

+

(
− κησ

2
η

σ2
ε

+ κη

(
κη,0σ

2
η,0

κησ2
η

− 1

)
− κη,0σ

2
η,0

2κησ2
η

)
nδ

+
σ2

η,0

2κησ2
η

(κη − κη,0)
2 nδ + ξ(3)(α; θ) + op(n

δ), (5.124)

where

ξ(3)(α; θ) = µ′A(α; θ)′Σ−1(θ)A(α; θ)µ−
∑

j∈αc\α
β2

j σ
2
j tr(Σ

−1(θ))

+µ′A(α; θ)′Σ−1(θ)(η + ε) + (η + ε)′Σ−1(θ)(η + ε)

−tr(Σ(θ0)Σ
−1(θ)), (5.125)
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and A(α; θ) is defined in (3.6).

(ii) For δ = 0,

−2`(θ; α) = n log(2π)− 1− δ

2
log n +

(
log σ2

ε +

∑
j∈αc\α β2

j σ
2
j + σ2

ε,0

σ2
ε

)
n

+

(
2κησ

2
η

σ2
ε

)1/2(
1−

∑
j∈αc\α β2

j σ
2
j + σ2

ε,0

2σ2
ε

+
κη,0σ

2
η,0

2κησ2
η

)
n1/2

+ξ(3)(α; θ) + Op(1). (5.126)

By (5.124), for δ ∈ (0, 1) and any α ∈ A \ Ac,

−2`(θ; α) + 2`(θ; αc) = σ−2
ε

∑

j∈αc\α
β2

j σ
2
j n + ξ(3)(α; θ)− ξ(2)(αc; θ) + op(n)

= σ−2
ε

∑

j∈αc\α
β2

j σ
2
j n + op(n), (5.127)

where the last equality holds because by (5.125), ξ(3)(α; θ)−ξ(3)(αc; θ) = op(n). Similarly
by (5.126) for δ = 0,

−2`(θ; α) + 2`(θ; αc) = σ−2
ε

∑

j∈αc\α
β2

j σ
2
j n + op(n).

As to be demonstrated in Theorem 12, we can use (5.127) to find an appropriate penalty
λ that leads to selection consistency.

The following lemma shows that σ2
ε is over-estimated by ML asymptotically when

α ∈ A\Ac under both the fixed domain and the increasing domain asymptotic frameworks.

Lemma 13 Under the setup of Proposition 6, let Θ ⊂ (0,∞)3 be a compact set and
let θ̂(α) = (σ̂2

η(α), κ̂η(α), σ̂2
ε (α))′ be the ML estimate of θ based on model α. Then for

δ ∈ [0, 1) and α ∈ A,

σ̂2
ε (α) =

∑

j∈αc\α
β2

j σ
2
j + σ2

ε,0 + op(1), (5.128)

κ̂η(α)σ̂2
η(α) = κη,0σ

2
η,0 + op(1). (5.129)

The following theorem further provides the convergence rates for the ML estimates of
κη, σ2

η and σ2
ε . These results are keys for establishing some asymptotic properties of GIC

in Theorem 13.

Theorem 11 Under the setup of Proposition 6, let Θ ⊂ (0,∞)3 be a compact set and let
θ̂(α) = (σ̂2

η(α), κ̂η(α), σ̂2
ε (α))′ be the ML estimate of θ based on model α. Then

(i) For δ ∈ (0, 1),

σ̂2
ε (α) =

{
σ2

ε,0 + op(n
−(1−δ)/2); if α ∈ Ac,∑

j∈αc\α β2
j σ

2
j + σ2

ε,0 + op(n
−(1−δ)/2); if α ∈ A \ Ac,

(5.130)

κ̂η(α)σ̂2
η(α) = κη,0σ

2
η,0 + op(n

−(1−δ)/4), (5.131)

σ̂2
η(α) = σ2

η,0 + op(1); α ∈ A, (5.132)

κ̂η(α) = κη,0 + op(1); α ∈ A. (5.133)
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(ii) For δ = 0,

σ̂2
ε (α) =

{
σ2

ε,0 + Op(n
−1/2); if α ∈ Ac,∑

j∈αc\α β2
j σ

2
j + σ2

ε,0 + Op(n
−1/2); if α ∈ A \ Ac,

(5.134)

κ̂η(α)σ̂2
η(α) = κη,0σ

2
η,0 + Op(n

−1/4). (5.135)

Proof. Let σ2
ε,α ≡

∑
j∈αc\α β2

j σ
2
j + σ2

ε,0 for α ∈ A. In addition, for α ∈ A \ Ac, let

ξ1(θ; α) = β(αc \ α)′X(αc \ α)′Σ−1(θ)X(αc \ α)β(αc \ α)

−
∑

j∈αc\α
β2

j σ
2
j tr(Σ

−1(θ)), (5.136)

ξ2(θ; α) = −2β(αc \ α)′X(αc \ α)′Σ−1(θ)(η + ε). (5.137)

Then, it can be obtained in a way similar to (5.99) that

ξ(3)(θ; α) = ξ1(θ; α) + ξ2(θ; α) + ξ(θ) + Op(1). (5.138)

First, we prove (5.130). By (5.128) and (5.129), it suffices to show that for |σ2
ε−σ2

ε,α| =
o(1), |κησ

2
η − κη,0σ

2
η,0| = o(1), and any ε > 0,

inf
|σ2

ε−σ2
ε,α|≥εn−(1−δ)/2

(−2`(θ; α) + 2`((σ2
η, κη, σ

2
ε,α)′; α)) > 0, (5.139)

as n →∞ with probability tending to 1. By (5.124),

−2`(θ; α) = n log(2π)− 1− δ

2
log n +

(
log σ2

ε +
σ2

ε,α

σ2
ε

)
n

+

(
2κησ

2
η

σ2
ε

)1/2(
1− σ2

ε,α

2σ2
ε

+
κη,0σ

2
η,0

2κησ2
η

)
n(1+δ)/2

+

(
− κησ

2
η

σ2
ε

+ κη

(
κη,0σ

2
η,0

κησ2
η

− 1

)
− κη,0σ

2
η,0

2κησ2
η

)
nδ +

σ2
η,0

2κησ2
η

(
κη − κη,0

)2
nδ

+ξ1(θ; α) + ξ2(θ; α) + ξ(θ) + op(n
δ), (5.140)

where ξ(θ) is defined in (5.53) and the equality follows from (5.138). Then, for |σ2
ε−σ2

ε,α| =
o(1) and |κησ

2
η − κη,0σ

2
η,0| = o(1), we have

−2`(θ; α) + 2`((σ2
η, κη, σ

2
ε,α)′; α)

=

(
log σ2

ε +
σ2

ε,α

σ2
ε

− log σ2
ε,α − 1

)
n

+

{(
2κησ

2
η

σ2
ε

)1/2(
1− σ2

ε,α

2σ2
ε

+
κη,0σ

2
η,0

2κησ2
η

)
−

(
2κησ

2
η

σ2
ε,α

)1/2(
1

2
+

κη,0σ
2
η,α

2κησ2
η

)}
n(1+δ)/2

+ξ1(θ; α)− ξ1((σ
2
η, κη, σ

2
ε,α)′; α) + ξ2(θ; α)− ξ2((σ

2
η, κη, σ

2
ε,α)′; α)

+ξ(θ)− ξ((σ2
η, κη, σ

2
ε,α)′) + op(n

δ)

=
(σ2

ε − σ2
ε,α)2n

2σ4
ε,α

+ ξ1(θ; α)− ξ1((σ
2
η, κη, σ

2
ε,α)′; α) + ξ2(θ; α)− ξ2((σ

2
η, κη, σ

2
ε,α)′; α)

+ξ(θ)− ξ((σ2
η, κη, σ

2
ε,α)′) + op((σ

2
ε − σ2

ε,α)2n) + op(n
δ)

=
(σ2

ε − σ2
ε,α)2n

2σ4
ε,α

+ op((σ
2
ε − σ2

ε,α)2n) + op(n
δ),
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where the second equality follows from |σ2
ε − σ2

ε,α| = o(1), (5.39) and (5.40), and the last
equality follows form (5.67) and

ξ1(θ; α)− ξ1((σ
2
η, κη, σ

2
ε,α)′; α) = op(max((σ2

ε − σ2
ε,α)2n, nδ)), (5.141)

ξ2(θ; α)− ξ2((σ
2
η, κη, σ

2
ε,α)′; α) = op(max((σ2

ε − σ2
ε,α)2n, nδ)), (5.142)

which can be obtained in a way similar to (5.105)-(5.106) where the moment conditions
are given from (5.43)-(5.44) in this case. Thus, (5.139) is obtained. This completes the
proof of (5.130).

Second, we prove (5.131). By (5.129) and (5.130), it suffices to show that for |σ2
ε −

σ2
ε,α| = o(n−(1−δ)/2), |κησ

2
η − κη,0σ

2
η,0| = o(1) and any ε > 0,

inf
|σ2

ηκη−κη,0σ2
η,0|≥εn−(1−δ)/4

(− 2`(θ; α) + 2`((σ2
η,0, κη,0, σ

2
ε,α)′; α)

)
> 0, (5.143)

as n →∞ with probability tending to 1. By (5.140), we have for |σ2
ε −σ2

ε,α| = o(n−(1−δ)/2)
and |κησ

2
ε − κη,0σ

2
η,0| = o(1),

−2`(θ; α) + 2`((σ2
η,0, κη,0, σ

2
ε,α)′; α)

=

{(
2κησ

2
η

σ2
ε,α

)1/2(
1

2
+

κη,0σ
2
η,0

2κησ2
η

)
− (2κη,0σ

2
η,0)

1/2

σε,α

}
n(1+δ)/2 +

1

2κη,α

(κη − κη,α)2nδ

+ξ1(θ; α)− ξ1((σ
2
η,0, κη,0, σ

2
ε,α)′; α) + ξ2(θ; α)− ξ2((σ

2
η,0, κη,0, σ

2
ε,α)′; α)

+ξ(θ)− ξ((σ2
η,0, κη,0, σ

2
ε,α)′) + op(n

δ)

=
(κησ

2
η − κη,0σ

2
η,0)

2n(1+δ)/2

25/2(κη,0σ2
η,0)

3/2
+

1

2κη,0

(κη − κη,0)
2nδ + ξ1(θ; α)− ξ1((σ

2
η,0, κη,0, σ

2
ε,α)′; α)

+ξ2(θ; α)− ξ2((σ
2
η,0, κη,0, σ

2
ε,α)′; α) + ξ(θ)− ξ((σ2

η,0, κη,0, σ
2
ε,α)′)

+o((κησ
2
η − κη,0σ

2
η,0)

2n(1+δ)/2) + op(n
δ)

=
(κησ

2
η − κη,0σ

2
η,0)

2n(1+δ)/2

25/2(κη,0σ2
η,0)

3/2
+

(κη − κη,0)
2nδ

2κη,0

+ o((κησ
2
η − κη,0σ

2
η,0)

2n(1+δ)/2)

+op(n
δ), (5.144)

where the first equality follows from |σ2
ε −σ2

ε,α| = o(n−(1−δ)/2), the second equality follows
from (5.41), and the last equality follows from

ξ1(θ; α)− ξ1((σ
2
η,0, κη,0, σ

2
ε,α)′; α) = op(max((κησ

2
η − κη,0σ

2
η,0)

2n(1+δ)/2, nδ)),(5.145)

ξ2(θ; α)− ξ2((σ
2
η,0, κη,0, σ

2
ε,α)′; α) = op(max((κησ

2
η − κη,0σ

2
η,0)

2n(1+δ)/2, nδ)),(5.146)

ξ(θ)− ξ((σ2
η,0, κη,0, σ

2
ε,α)′) = op(max((κησ

2
η − κη,0σ

2
η,0)

2n(1+δ)/2, nδ)),(5.147)

which can be obtained in a way similar to (5.109)-(5.111). Thus, (5.143) is obtained. This
completes the proof of (5.131).

Third, we prove (5.132) and (5.133). By (5.144), we have for |σ2
ε −σ2

ε,α| = o(n−(1−δ)/2),

|σ2
ηκη − κη,0σ

2
η,0| = o(n−(1−δ)/4) and any ε > 0,

inf
|κη−κη,0|≥ε

−2`(θ; α) + 2`((σ2
η,0, κη,0, σ

2
ε,α)′; α) =

1

2κη,0

ε2nδ + op(n
δ) > 0,

as n →∞ with probability tending to 1, which gives (5.133). This together with (5.131)
gives (5.132).
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Fourth, we prove (5.134). By (5.128) and (5.129), it suffices to show that for |σ2
ε −

σ2
ε,α| = o(1), |κησ

2
η − κη,0σ

2
η,0| = o(1), there exists M > 0 such that

inf
|σ2

ε−σ2
ε,α|≥Mn−1/2

(−2`(θ; α) + 2`((σ2
η, κη, σ

2
ε,α)′; α)) > 0, (5.148)

as n →∞ with probability tending to 1. By (5.126) and (5.138),

−2`(θ; α) = n log(2π)− 1− δ

2
log n +

(
log σ2

ε +
σ2

ε,α

σ2
ε

)
n

+

(
2κησ

2
η

σ2
ε

)1/2(
1− σ2

ε,α

2σ2
ε

+
κη,0σ

2
η,0

2κησ2
η

)
n1/2

+ξ1(θ; α) + ξ2(θ; α) + ξ(θ) + Op(1). (5.149)

Then, for |σ2
ε − σ2

ε,α| = o(1) and |κησ
2
η − κη,0σ

2
η,0| = o(1), we have

−2`(θ; α) + 2`((σ2
η, κη, σ

2
ε,α)′; α)

=

(
log σ2

ε +
σ2

ε,α

σ2
ε

− log σ2
ε,α − 1

)
n

+

{(
2κησ

2
η

σ2
ε

)1/2(
1− σ2

ε,α

2σ2
ε

+
κη,0σ

2
η,0

2κησ2
η

)
−

(
2κησ

2
η

σ2
ε,α

)1/2(
1

2
+

κη,0σ
2
η,0

2κησ2
η

)}
n1/2

+ξ1(θ; α)− ξ1((σ
2
η, κη, σ

2
ε,α)′; α) + ξ2(θ; α)− ξ2((σ

2
η, κη, σ

2
ε,α)′; α)

+ξ(θ)− ξ((σ2
η, κη, σ

2
ε,α)′) + Op(1)

=
1

2σ4
ε,α

(σ2
ε − σ2

ε,α)2n + ξ1(θ; α)− ξ1((σ
2
η, κη, σ

2
ε,α)′; α) + ξ2(θ; α)− ξ2((σ

2
η, κη, σ

2
ε,α)′; α)

+ξ(θ)− ξ((σ2
η, κη, σ

2
ε,α)′) + op((σ

2
ε − σ2

ε,α)2n) + Op(1)

=
1

2σ4
ε,α

(σ2
ε − σ2

ε,α)2n + op((σ
2
ε − σ2

ε,α)2n) + Op(1),

where the second equality follows from (5.39) and (5.40) with σ = σε,α and τ = κη,0σ
2
η,0,

and the last equality follows from (5.73) and

ξ1(θ; α)− ξ1((σ
2
η, κη, σ

2
ε,α)′; α) = op((σ

2
ε − σ2

ε,α)2n) + Op(1),

ξ2(θ; α)− ξ2((σ
2
η, κη, σ

2
ε,α)′; α) = op((σ

2
ε − σ2

ε,α)2n) + Op(1),

which can be obtained in a way similar to (5.105)-(5.106). Consequently, there exists
M > 0 such that

inf
|σ2

ε−σ2
ε,α|≥Mn−1/2

(−2`(θ; α) + 2`((σ2
η, κη, σ

2
ε,α)′; α)) =

M2

2σ4
ε,α

ε2 + Op(1) > 0,

as n → ∞ with probability tending to 1. Thus, (5.148) is obtained. This completes the
proof of (5.134).

Finally, we prove (5.135). By (5.129) and (5.134), it suffices to show that for |σ2
ε −

σ2
ε,α| = O(n−1/2), |κησ

2
η − κη,0σ

2
η,0| = o(1) and there exist M > 0 such that

inf
|σ2

ηκη−κη,0σ2
η,0|≥Mn−1/4

(− 2`(θ; α) + 2`((σ2
η,0, κη,0, σ

2
ε,α)′; α)

)
> 0, (5.150)
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as n → ∞ with probability tending to 1. By (5.149), for |σ2
ε − σ2

ε,α| = O(n−1/2) and
|κησ

2
η − κη,0σ

2
η,0| = o(1), we have

−2`(θ; α) + 2`((σ2
η,α, κη,α, σ2

ε,0)
′; α)

=

{(
2κησ

2
η

σ2
ε,α

)1/2(
1

2
+

κη,0σ
2
η,0

2κησ2
η

)
−

(
2κη,0σ

2
η,0

σ2
ε,α

)}
n1/2

+ξ1(θ; α)− ξ1((σ
2
η,0, κη,0, σ

2
ε,α)′; α) + ξ2(θ; α)− ξ2((σ

2
η,0, κη,0, σ

2
ε,α)′; α)

+ξ(θ)− ξ((σ2
η,0, κη,0, σ

2
ε,α)′) + Op(1)

=
(κησ

2
η − κη,0σ

2
η,0)

2n1/2

25/2(κη,0σ2
η,0)

3/2
+ ξ1(θ; α)− ξ1((σ

2
η,0, κη,0, σ

2
ε,α)′; α)

+ξ2(θ; α)− ξ2((σ
2
η,0, κη,0, σ

2
ε,α)′; α) + ξ(θ)− ξ((σ2

η,0, κη,0, σ
2
ε,α)′)

+o
(
(κησ

2
η − κη,0σ

2
η,0)

2n1/2
)

+ Op(1)

=
(κησ

2
η − κη,0σ

2
η,0)

2n1/2

25/2(κη,0σ2
η,0)

3/2
+ o

(
(κησ

2
η − κη,0σ

2
η,0)

2n1/2
)

+ Op(1), (5.151)

where the first equality follows from |σ2
ε − σ2

ε,α| = O(n−1/2), the second equality follows
from (5.41), and the last equality follows from

ξ1(θ; α)− ξ1((σ
2
η,0, κη,0, σ

2
ε,α)′; α) = op((κησ

2
η − κη,0σ

2
η,0)

2n1/2) + Op(1),

ξ2(θ; α)− ξ2((σ
2
η,0, κη,0, σ

2
ε,α)′; α) = op((κησ

2
η − κη,0σ

2
η,0)

2n1/2) + Op(1), (5.152)

ξ(θ)− ξ(σ2
η,0, κη,0, σ

2
ε,α)′) = op((κησ

2
η − κη,0σ

2
η,0)

2n1/2) + Op(1), (5.153)

which can be obtained in a way similar to (5.109)-(5.111). Thus, (5.150) is obtained. This
completes the proof of (5.135). 2

Corollary 6 Under the setup of Theorem 11, let

θ(3)
α =

(
σ2

η,0, κη,0,
∑

j∈αc\α
β2

j σ
2
j + σ2

ε,0

)
. (5.154)

Then for `(θ; α) defined in (2.9),

plim
n→∞

1

nδ
(−2`(θ̂(α); α) + 2`(θ(3)

α ; α)) = 0; if δ ∈ (0, 1), (5.155)

−2`(θ̂(α); α) + 2`(θ(3)
α ; α) = Op(1); if δ = 0. (5.156)

In addition, for LKL(θ; α) defined in (3.3),

plim
n→∞

LKL(θ̂(α); α)
/
LKL(θ(3)

α ; α)) = 0; if δ ∈ [0, 1). (5.157)

Note that from Theorem 11, plim
n→∞

θ̂(α) = θ(3)
α for δ ∈ (0, 1), which immediately im-

plies (5.155). On the other hand, (5.156) is somewhat surprising, because θ̂(α) generally

does not converge to θ
(2)
α for δ = 0. However, selection consistency and asymptotic loss

efficiency are possible for geostatistical model selection even if some covariance parame-
ters cannot be consistently estimated under the fixed domain asymptotic framework (see
Theorem 13).
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Theorem 12 Consider a class of models given by (3.1) with xj(s)’s independently gener-
ated from white-noise processes of (5.7) and cov(η(s), η(s′)) = σ2

η exp(−κη|s− s′|), where
Ac 6= ∅ and p is fixed. Suppose that σ2

η > 0, κη > 0 and σ2
ε > 0 are known. In addi-

tion, suppose that the data are collected at si = in−(1−δ) ∈ [0, nδ]; i = 1, . . . , n for some
δ ∈ [0, 1). If λ →∞ and λ/n → 0, then

LKL(α̂GIC(λ))
/
min
α∈A

LKL(α)
p−→ 1, as n →∞.

In addition,
lim

n→∞
P

(
α̂GIC(λ) = αc

)
= 1.

Proof. By Corollary 2, it suffices to show that

lim
n→∞

tr(Σ−1)/λ = ∞, (5.158)

which follows from (5.31) and λ = o(n). This completes the proof. 2

Theorem 13 Under the setup of Theorem 12, suppose that θ = (σ2
η, κη, σ

2
ε )
′ is unknown,

where Θ ⊂ (0,∞)3 is a compact set such that θ0 ∈ Θ. Let θ̂(α) be the ML estimate of θ
based on model α. For δ ∈ [0, 1), if λ →∞ and λ

/
n → 0, then

lim
n→∞

P
(
α̂GIC(λ) = αc

)
= 1.

Proof. For the consistency, it suffices to show that the conditions in Corollary 3 are
satisfied with τn = n. First, for δ ∈ [0, 1),

µ′A(α; θ)′Σ−1(θ)A(α; θ)µ = β(αc \ α)′X(αc \ α)′Σ−1(θ)X(αc \ α)β(αc \ α)

−β(αc \ α)′X(αc \ α)′Σ−1(θ)M(α; θ)X(αc \ α)β(αc \ α)

= β(αc \ α)′X(αc \ α)′Σ−1(θ)X(αc \ α)β(αc \ α) + Op(1)

=
∑

j∈αc\α
β2

j σ
2
j tr(Σ

−1(θ)) + op(n)

=
∑

j∈αc\α

β2
j σ

2
j

σ2
ε

n + op(n), (5.159)

where the second equality is obtained in a way similar to (5.100), the third equality follows
from

β(αc \ α)′X(αc \ α)′Σ−1(θ)X(αc \ α)β(αc \ α) =
∑

j∈αc\α
β2

j σ
2
j tr(Σ

−1(θ)) + op(n),

which can be obtained by (5.35), Chebyshev’s inequality and using the following moment
condition:

var(X ′
jΣ

−1(θ)Xj′) = σ2
j σ

2
j′tr(Σ

−2(θ)) = O(n),

and the last equality follows from (5.31). Hence, (A.1’) is satisfied. Second, by (5.31) and
(5.35), we have for any θ ∈ Θ,

plim
n→∞

1

n
X ′Σ−1(θ)X = D(θ),
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where D(θ) is a p× p diagonal matrix with diagonals σ2
j

/
σ2

ε , j = 1, . . . , p. Hence, (A.2’)
holds. Third, by (5.34) and (5.35), (A.3’) holds. Fourth, by (5.155)-(5.157), (A.4) and

(A.5) hold trivially for τn = n and θ
(3)
α defined in (5.154). Fifth, for ξ(θ) defined in (5.53),

by (5.147) and (5.153), we have for δ ∈ [0, 1),

plim
n→∞

1

n

(
ξ(θ0)− ξ(θ(3)

α )
)

= 0.

Hence, (4.12) holds. Last, for α ∈ Ac, θ
(3)
α = θ0, (4.14) holds trivially. Then, for Ac 6= ∅,

λ →∞ and λ = o(n), we have

lim
n→∞

P
(
α̂GIC(λ) = αc

)
= 1,

which completes the proof. 2

Comparing among Theorems 7, 10 and 13, we see that GIC is easiest to be consistent
when the variables to be selected are from white-noise processes, but is most difficult to
be so when the variables to be selected are polynomials.
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Chapter 6

Conditional Generalized Information
Criterion

If we are interested to find the asymptotic optimal properties of (3.14) throughout some
selection procedure, it is somehow difficult to prove the asymptotic properties directly
from GIC we introduce above. Another criterion is needed. Vaida and Blanchard (2005)
suggest a suitable criterion when we are interesting in spatial process prediction which
is named conditional AIC (CAIC). Here we will also suggest a conditional generalized
information criterion (CGIC) which includes CAIC as a special case. In the following
sections, we are going to introduce the asymptotic theory of CGIC in geostatistical model
selection problems.

6.1 Conditional Akaike’s Information Criterion

Consider the loss, L(α) defined in (3.14) with estimators, Ŝ(α) defined in (3.15). It’s
difficult to find the optimal properties of L(α) directly from the criterion (4.6). Vaida
and Blanchard (2005) suggested a conditional AIC (CAIC) selection procedure for the
linear mixed models which is an unbiased estimator of E(L(α)) shown in (3.17). They
suggested when focus on the mean function estimate, the AIC in (4.3) is good to be a
selection procedure. When focus on both the mean function estimate and the spatial
process prediction, CAIC is much adequate than AIC to be a selection procedure. That
is for α ∈ A,

ΓCAIC(α) = ‖Z − Ŝ(α)‖2 + 2tr(H(α))σ2
ε , (6.1)

where Ŝ(α) = H(α)Z with H(α) defined in (3.16). Let

α̂CAIC = arg min
α∈A

ΓCAIC(α). (6.2)

Then we have the following theorem.

Theorem 14 Consider a class of models given by (3.1). Suppose that

lim
n→∞

∑
α∈A

1

E(L(α))
= 0, (6.3)

where L(α) is defined in (3.14). Then the criterion ΓCAIC(α) defined in (6.1) is asymp-
totically loss efficient:

plim
n→∞

L(α̂CAIC)
/

inf
α∈A

L(α) = 1.
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Proof. Here, we first expand the CAIC defined in (6.1). It is

ΓCAIC(α) = (Z − Ŝ(α))′(Z − Ŝ(α)) + 2σ2
ε tr(H(α))

= (S − Ŝ(α) + ε)′(S − Ŝ(α) + ε) + 2σ2
ε tr(H(α))

= L(α) + 2ε′(S − Ŝ(α)) + ε′ε + 2σ2
ε tr(H(α))

= L(α) + 2ε′(I −H(α))S − 2ε′H(α)ε + ε′ε + 2σ2
ε tr(H(α))

= L(α) + 2σ2
ε ε
′(Σ−1A(α))S − 2ε′H(α)ε + ε′ε + 2σ2

ε tr(H(α))

= L(α) + 2σ2
ε ε
′(Σ−1A(α))µ + 2σ2

ε ε
′(Σ−1A(α))η + ε′ε

−2
(
ε′H(α)ε− σ2

ε tr(H(α))
)
, (6.4)

where the third equality follows from (3.14) and the second last equality follows from

I −H(α) = A(α)−ΣηΣ
−1A(α) = σ2

εΣ
−1A(α).

It then needs to show that for α ∈ A,

ΓCAIC(α) = ε′ε + L(α) + op(L(α)), (6.5)

which suffices to show that

plim
n→∞

sup
α∈A

|ε′(Σ−1A(α))µ|
E(L(α))

= 0, (6.6)

plim
n→∞

sup
α∈A

|ε′(Σ−1A(α))η|
E(L(α))

= 0, (6.7)

plim
n→∞

sup
α∈A

|ε′H(α)ε− σ2
ε tr(H(α))|

E(L(α))
= 0, (6.8)

plim
n→∞

sup
α∈A

∣∣∣∣
L(α)

E(L(α))
− 1

∣∣∣∣ = 0. (6.9)

Hence, by (6.5), for α̂CAIC defined in (6.2) and αL = arg minα∈A L(α), we can easily
conclude that

ΓCAIC(α̂CAIC) = ε′ε + L(α̂CAIC) + op(L(α̂CAIC)),

ΓCAIC(αL) = ε′ε + L(αL) + op(L(αL)).

It follows that

0 ≤ ΓCAIC(αL)− ΓCAIC(α̂CAIC)

L(α̂CAIC)
=

L(αL)− L(α̂CAIC)

L(α̂CAIC)
+ op(1),

and then

plim
n→∞

L(αL)− L(α̂CAIC)

L(α̂CAIC)
= 0,

which gives plim
n→∞

L(α̂CAIC)
/

inf
α∈A

L(α) = 1.
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Here, we start to prove (6.6)-(6.9) one by one. First, any ε > 0,

lim
n→∞

P

(
sup
α∈A

|ε′(Σ−1A(α))µ|
E(L(α))

≥ ε

)
≤ lim

n→∞

∑
α∈A

P

( |ε′(Σ−1A(α))µ|
E(L(α))

≥ ε

)

≤ lim
n→∞

∑
α∈A

σ2
ε µ

′A(α)′Σ−2A(α)µ

ε2(E(L(α)))2

≤ lim
n→∞

∑
α∈A

1

σ2
ε ε

2E(L(α))

= 0,

which gives (6.6), where the second last inequality follows from

σ4
ε µ

′A(α)′Σ−2A(α)µ ≤ E(L(α)),

by (3.17) and the last equality follows from (6.3).
Second, for any ε > 0,

lim
n→∞

P

(
sup
α∈A

|ε′(Σ−1A(α))η|
E(L(α))

≥ ε

)
≤ lim

n→∞

∑
α∈A

P

( |ε′(Σ−1A(α))η|
E(L(α))

≥ ε

)

≤ lim
n→∞

∑
α∈A

σ2
ε tr(A(α)′Σ−2A(α)Ση)

ε2(E(L(α)))2

≤ lim
n→∞

∑
α∈A

tr(A(α)′Σ−1A(α)Ση)

ε2(E(L(α)))2

= lim
n→∞

∑
α∈A

tr(Σ−1A(α)Ση)

ε2(E(L(α)))2

≤ lim
n→∞

∑
α∈A

1

σ2
ε ε

2E(L(α))

= 0,

where the third inequality follows from σ2
εΣ

−1 ≤ I, the second last inequality follows from

σ2
ε tr(Σ

−1A(α)Ση) ≤ σ2
ε tr(ΣηΣ

−1) ≤ E(L(α)),

by (3.17) and the last equality follows from (6.3).
Third, for any ε > 0,

lim
n→∞

P

(
sup
α∈A

|ε′H(α)ε− σ2
ε tr(H(α))|

E(L(α))
≥ ε

)

≤ lim
n→∞

∑
α∈A

P

( |ε′H(α)ε− σ2
ε tr(H(α))|

E(L(α))
≥ ε

)

≤ lim
n→∞

∑
α∈A

c1σ
4
ε tr(H(α)H(α)′)
ε2(E(L(α)))2

≤ lim
n→∞

∑
α∈A

c1σ
4
ε

(
tr(ΣηΣ

−1) + 3σ2
ε tr(Σ

−1M (α))
)

ε2(E(L(α)))2

≤ lim
n→∞

∑
α∈A

3c1σ
2
ε

ε2E(L(α))
= 0,
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where the second inequality is an application of Theorem 2 of Whittle (1960) for some
c1 > 0, the third equality follows from

tr(H(α)H(α)′) = tr
(
ΣηΣ

−1 + σ2
εΣ

−1M(α))(ΣηΣ
−1 + σ2

εΣ
−1M(α))′

)

= tr
(
ΣηΣ

−2Ση + σ2
εΣηΣ

−1M (α)′Σ−1 + σ2
εΣ

−1M (α)Σ−1Ση

+σ4
ε M(α)′Σ−2M(α)

)

≤ tr(ΣηΣ
−1) + 3σ2

ε tr(Σ
−1M(α))

≤ 3σ−2
ε E(L(α)),

by

tr(ΣηΣ
−2Ση) = tr(ΣηΣ

−1 − σ2
εΣ

−2Ση)

≤ tr(ΣηΣ
−1)

tr(σ2
εΣηΣ

−1M(α)′Σ−1) = tr(σ2
ε tr(M (α)′Σ−1 − σ2

εΣ
−1M (α)′Σ−1))

≤ tr(σ2
ε tr(M (α)′Σ−1)),

and

σ4
ε tr(M(α)′Σ−2M (α)) ≤ σ2

ε tr(M (α)′Σ−1M(α)) = σ2
ε tr(Σ

−1M(α)).

Last, it remains to show (6.9). Here, we first expand L(α) defined in (3.14). That is

L(α) = (S − Ŝ(α))′(S − Ŝ(α))

= ‖(I −H(α))µ + (η −ΣηΣ
−1(η + ε))− σ2

εΣ
−1M (α)(η + ε)‖2

= ‖σ2
εΣ

−1A(α)µ + (σ2
εΣ

−1η −ΣηΣ
−1ε)− σ2

εΣ
−1M(α)(η + ε)‖2

= σ4
ε µ

′A(α)′Σ−2A(α)µ + ‖σ2
εΣ

−1η −ΣηΣ
−1ε‖2 − 2σ4

ε µ
′A(α)′Σ−2M(α)(η + ε)

+σ4
ε (η + ε)′M(α)′Σ−2M (α)(η + ε) + 2σ2

ε µ
′A(α)′Σ−1(σ2

εΣ
−1η −ΣηΣ

−1ε)

−2σ2
ε (σ

2
εΣ

−1η −ΣηΣ
−1ε)′Σ−1M(α)(η + ε). (6.10)

It then follows together with (3.17),

L(α)− E(L(α)) = ‖σ2
εΣ

−1η −ΣηΣ
−1ε‖2 − σ2

ε tr(ΣηΣ
−1)

+σ4
ε (η + ε)′M (α)′Σ−2M(α)(η + ε)− σ4

ε tr(Σ
−1M (α))

+2σ2
ε µ

′A(α)′Σ−1(σ2
εΣ

−1η −ΣηΣ
−1ε)− 2σ4

ε µ
′A(α)′Σ−2M(α)(η + ε)

−2σ2
ε (σ

2
εΣ

−1η −ΣηΣ
−1ε)′Σ−2M(α)(η + ε).

Then, to show (6.9), it suffices to show that

plim
n→∞

sup
α∈A

∣∣‖σ2
εΣ

−1η −ΣηΣ
−1ε‖2 − σ2

ε tr(ΣηΣ
−1)

∣∣
E(L(α))

= 0, (6.11)

plim
n→∞

sup
α∈A

|(η + ε)′M (α)′Σ−2M (α)(η + ε)− tr(Σ−1M (α))|
E(L(α))

= 0, (6.12)

plim
n→∞

sup
α∈A

|µ′A(α)′Σ−1(σ2
εΣ

−1η −ΣηΣ
−1ε)|

E(L(α))
= 0, (6.13)

plim
n→∞

sup
α∈A

|µ′A(α)′Σ−2M(α)(η + ε)|
E(L(α))

= 0, (6.14)

plim
n→∞

sup
α∈A

|(σ2
εΣ

−1η −ΣηΣ
−1ε)′Σ−1M(α)(η + ε)|

E(L(α))
= 0. (6.15)
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Now, we start to prove (6.11)-(6.15) one by one.
For (6.11), we have

∣∣‖σ2
εΣ

−1η −ΣηΣ
−1ε‖2 − σ2

ε tr(ΣηΣ
−1)

∣∣
=

∣∣σ4
ε η

′Σ−2η − σ4
ε tr(ΣηΣ

−2) + ε′Σ−1Σ2
ηΣ

−1ε− σ2
ε tr(Σ

2
ηΣ

−2)ε + 2σ2
ε η

′Σ−1ΣηΣ
−1ε

∣∣
≤

∣∣σ4
ε η

′Σ−2η − σ4
ε tr(ΣηΣ

−2)
∣∣ +

∣∣ε′Σ−1Σ2
ηΣ

−1ε− σ2
ε tr(Σ

2
ηΣ

−2)ε
∣∣ + 2σ2

ε

∣∣η′Σ−1ΣηΣ
−1ε

∣∣.
Hence, to show (6.11), it suffices to show

plim
n→∞

sup
α∈A

∣∣η′Σ−2η − tr(ΣηΣ
−2)

∣∣
E(L(α))

= 0, (6.16)

plim
n→∞

sup
α∈A

∣∣ε′Σ−1Σ2
ηΣ

−1ε− σ2
ε tr(Σ

2
ηΣ

−2)
∣∣

E(L(α))
= 0, (6.17)

plim
n→∞

sup
α∈A

∣∣η′Σ−1ΣηΣ
−1ε

∣∣
E(L(α))

= 0. (6.18)

First, (6.16) can be established in a similar manner by Theorem 2 of Whittle. It is for
any ε > 0,

lim
n→∞

P

(
sup
α∈A

∣∣η′Σ−2η − tr(ΣηΣ
−2)

∣∣
E(L(α))

≥ ε

)
≤ lim

n→∞

∑
α∈A

P

(∣∣η′Σ−2η − tr(ΣηΣ
−2)

∣∣
E(L(α))

≥ ε

)

≤ lim
n→∞

∑
α∈A

c2tr(ΣηΣ
−2ΣηΣ

−2)

ε2(E(L(α)))2

≤ lim
n→∞

∑
α∈A

c2tr(ΣηΣ
−1)

ε2σ4
ε (E(L(α)))2

≤ lim
n→∞

∑
α∈A

c2

ε2σ6
ε E(L(α))

= 0,

for some c2 > 0, where the third inequality follows from

tr(ΣηΣ
−2ΣηΣ

−2) ≤ σ−4
ε tr(Σ2Σ−2) ≤ σ−4

ε tr(ΣηΣ
−1), (6.19)

by σ2
εΣ

−1 ≤ I and Σ
1/2
η Σ−1Σ

1/2
η ≤ I by Ση ≤ Σ, and the last equality follows from (4.5).

Second, (6.17) is also established by Theorem 2 of Whittle. It is for any ε > 0,

lim
n→∞

P

(
sup
α∈A

∣∣ε′Σ−1Σ2
ηΣ

−1ε− σ2
ε tr(Σ

2
ηΣ

−2)
∣∣

E(L(α))
≥ ε

)

≤ lim
n→∞

∑
α∈A

P

(∣∣ε′Σ−1Σ2
ηΣ

−1ε− σ2
ε tr(Σ

2
ηΣ

−2)
∣∣

E(L(α))
≥ ε

)

≤ lim
n→∞

∑
α∈A

c3σ
4
ε tr(Σ

−1Σ2
ηΣ

−2Σ2
ηΣ

−1)

ε2(E(L(α)))2

≤ lim
n→∞

∑
α∈A

c3σ
4
ε tr(ΣηΣ

−1)

ε2(E(L(α)))2

≤ lim
n→∞

∑
α∈A

c3σ
2
ε

ε2E(L(α))

= 0,
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for some c3 > 0, where third inequality follows from

tr(Σ−1Σ2
ηΣ

−2Σ2
ηΣ

−1) ≤ tr(Σ−1Σ2
ηΣ

−1) ≤ tr(ΣηΣ
−1),

by ΣηΣ
−2Ση ≤ I by Σ2

η ≤ Σ2 and the last equality follows from (6.3). Third, similarly
from the proof of (6.7). It is for any ε > 0,

lim
n→∞

P

(
sup
α∈A

∣∣η′Σ−1ΣηΣ
−1ε

∣∣
E(L(α))

≥ ε

)
≤ lim

n→∞

∑
α∈A

P

(∣∣η′Σ−1ΣηΣ
−1ε

∣∣
E(L(α))

≥ ε

)

≤ lim
n→∞

∑
α∈A

σ2
ε tr(Σ

−1ΣηΣ
−1ΣηΣ

−1ΣηΣ
−1)

ε2(E(L(α)))2

≤ lim
n→∞

∑
α∈A

tr(ΣηΣ
−1)

ε2σ4
ε (E(L(α)))2

≤ lim
n→∞

∑
α∈A

1

σ2
ε ε

2E(L(α))

= 0,

where the third equality follows from

σ2
ε tr(Σ

−1ΣηΣ
−1ΣηΣ

−1ΣηΣ
−1) ≤ σ2

ε tr(Σ
−1ΣηΣ

−1ΣηΣ
−1)

≤ σ2
ε tr(Σ

−1ΣηΣ
−1)

≤ tr(ΣηΣ
−1),

by σ2
εΣ

−1 ≤ I and Σ−1/2ΣηΣ
−1/2 ≤ I by Ση < Σ, and the last equality follows from

(6.3). It then gives (6.11).
For (6.12), it can be established by Theorem 2 of Whittle. It is for any ε > 0,

lim
n→∞

P

(
sup
α∈A

|(η + ε)′M (α)′Σ−2M(α)(η + ε)− tr(Σ−1M(α))|
E(L(α))

≥ ε

)

≤ lim
n→∞

∑
α∈A

P

( |(η + ε)′M (α)′Σ−2M (α)(η + ε)− tr(Σ−1M (α))|
E(L(α))

≥ ε

)

≤ lim
n→∞

∑
α∈A

c4tr(ΣM(α)′Σ−2M(α)ΣM (α)′Σ−2M(α))

ε2(E(L(α)))2

≤ lim
n→∞

∑
α∈A

c4tr(Σ
−1M (α))

ε2σ2
ε (E(L(α)))2

≤ lim
n→∞

∑
α∈A

c4

σ4
ε ε

2E(L(α))

= 0,

for some c4 > 0, where the third inequality follows from

tr(ΣM(α)′Σ−2M(α)ΣM (α)′Σ−2M (α)) = tr(M(α)Σ−1M(α)Σ−1)

≤ tr(Σ−1M (α)Σ−1)

≤ σ−2
ε tr(Σ−1M(α)),

by M(α)ΣM ′(α)Σ−1 = M(α), Σ−1M (α) ≤ Σ−1 and σ2
εΣ

−1 ≤ I, and the last equality
follows from (6.3).
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For (6.13), we have

|µ′A(α)′Σ−1(σ2
εΣ

−1η −ΣηΣ
−1ε)| = |σ2

ε µ
′A(α)′Σ−2η − µ′A(α)′Σ−1ΣηΣ

−1ε|
≤ |σ2

ε µ
′A(α)′Σ−2η|+ |µ′A(α)′Σ−1ΣηΣ

−1ε|.

Hence, to show (6.13), it suffices to show that

plim
n→∞

sup
α∈A

|µ′A(α)′Σ−2η|
E(L(α))

= 0, (6.20)

plim
n→∞

sup
α∈A

|µ′A(α)′Σ−1ΣηΣ
−1ε|

E(L(α))
= 0. (6.21)

First, (6.20) can be show similarly from (6.6). It is for any ε > 0,

lim
n→∞

P

(
sup
α∈A

|µ′A(α)′Σ−2η|
E(L(α))

≥ ε

)
≤ lim

n→∞

∑
α∈A

P

( |µ′A(α)′Σ−2η|
E(L(α))

≥ ε

)

≤ lim
n→∞

∑
α∈A

µ′A(α)′Σ−2ΣηΣ
−2A(α)µ

ε2(E(L(α)))2

≤ lim
n→∞

∑
α∈A

σ−2
ε µ′A(α)′Σ−2A(α)µ

ε2(E(L(α)))2

≤ lim
n→∞

∑
α∈A

1

σ6
ε ε

2E(L(α))

= 0,

where the third inequality follows from

µ′A(α)′Σ−2ΣηΣ
−2A(α)µ ≤ µ′A(α)′Σ−3A(α)µ

≤ σ−2
ε µ′A(α)′Σ−2A(α)µ,

by Σ−1/2ΣηΣ
−1/2 ≤ I by Ση ≤ Σ and σ2

εΣ
−1 ≤ I, and the last equality follows from

(6.3). Second, (6.21) is similar to (6.20). It is for any ε > 0,

lim
n→∞

P

(
sup
α∈A

|µ′A(α)′Σ−1ΣηΣ
−1ε|

E(L(α))
≥ ε

)
≤ lim

n→∞

∑
α∈A

P

( |µ′A(α)′Σ−1ΣηΣ
−1ε|

E(L(α))
≥ ε

)

≤ lim
n→∞

∑
α∈A

σ2
ε µ

′A(α)′Σ−1ΣηΣ
−2ΣηΣ

−1A(α)µ

ε2(E(L(α)))2

≤ lim
n→∞

∑
α∈A

σ2
ε µ

′A(α)′Σ−2A(α)µ

ε2(E(L(α)))2

≤ lim
n→∞

∑
α∈A

1

σ2
ε ε

2E(L(α))

= 0,

where the third inequality follows from ΣηΣ
−2Ση ≤ I by Σ2

η ≤ Σ2, and the last equality
follows from (6.3). It then gives (6.13).
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For (6.14), we have for any ε > 0,

lim
n→∞

P

(
sup
α∈A

|µ′A(α)′Σ−2M(α)(η + ε)|
E(L(α))

≥ ε

)

≤ lim
n→∞

∑
α∈A

P

( |µ′A(α)′Σ−2M (α)(η + ε)|
E(L(α))

≥ ε

)

≤ lim
n→∞

∑
α∈A

c5µ
′A(α)′Σ−2M (α)ΣM(α)′Σ−2A(α)µ

ε2(E(L(α)))2

= lim
n→∞

∑
α∈A

c5µ
′A(α)′Σ−2M (α)Σ−1A(α)µ

ε2(E(L(α)))2

≤ lim
n→∞

∑
α∈A

c5σ
−2
ε µ′A(α)′Σ−2A(α)µ

ε2(E(L(α)))2

≤ lim
n→∞

∑
α∈A

c5

σ6
ε ε

2E(L(α))

= 0,

for some c5 > 0, where the third equality follows from M(α)ΣM ′(α)Σ−1 = M(α), the
fourth inequality follows from Σ−1M (α) ≤ Σ−1 and σ2

εΣ
−1 ≤ I, and the last equality

follows from (6.3). It then gives (6.14).
For (6.15), we have

|(σ2
εΣ

−1η −ΣηΣ
−1ε)′Σ−1M (α)(η + ε)|

= |σ2
ε η

′Σ−2M (α)(η + ε)− σ2
ε tr(ΣηΣ

−2M(α))

−ε′Σ−1ΣηΣ
−1M (α)(η + ε) + σ2

ε tr(M (α)′Σ−1Ση)|
≤ |σ2

ε η
′Σ−2M (α)(η + ε)− σ2

ε tr(ΣηΣ
−2M(α))|

+|ε′Σ−1ΣηΣ
−1M(α)(η + ε)− σ2

ε tr(M (α)′Σ−1Ση)|
≤ |σ2

ε η
′Σ−2M (α)η − σ2

ε tr(ΣηΣ
−2M(α))|+ |σ2

ε η
′Σ−2M (α)ε|

+|ε′Σ−1ΣηΣ
−1M(α)η|+ |ε′Σ−1ΣηΣ

−1M(α)ε− σ2
ε tr(M (α)′Σ−1Ση)|.

Then, to show (6.15), it suffices to show that

plim
n→∞

sup
α∈A

|η′Σ−2M(α)η − tr(ΣηΣ
−2M(α))|

E(L(α))
= 0, (6.22)

plim
n→∞

sup
α∈A

|η′Σ−2M(α)ε|
E(L(α))

= 0, (6.23)

plim
n→∞

sup
α∈A

|ε′Σ−1ΣηΣ
−1M (α)η|

E(L(α))
= 0, (6.24)

plim
n→∞

sup
α∈A

|ε′Σ−1ΣηΣ
−1M(α)ε− σ2

ε tr(M (α)′Σ−1Ση)|
E(L(α))

= 0. (6.25)

Now, we start to show (6.22)-(6.25) one by one. First, (6.22) can be established by
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Theorem 2 of Whittle. That is for any ε > 0,

lim
n→∞

P

(
sup
α∈A

|η′Σ−2M (α)η − tr(ΣηΣ
−2M (α))|

E(L(α))
≥ ε

)

≤ lim
n→∞

∑
α∈A

P

( |η′Σ−2M(α)η − tr(ΣηΣ
−2M(α))|

E(L(α))
≥ ε

)

≤ lim
n→∞

∑
α∈A

c6tr(ΣηΣ
−2M (α)ΣηM (α)′Σ−2)

ε2(E(L(α)))2

≤ lim
n→∞

∑
α∈A

c6tr(Σ
−1ΣηΣ

−1Σ−1M(α))

ε2(E(L(α)))2

≤ lim
n→∞

∑
α∈A

c6σ
−2
ε tr(Σ−1M(α))

ε2(E(L(α)))2

≤ lim
n→∞

∑
α∈A

c6

σ4
ε ε

2E(L(α))

= 0,

for some c6 > 0, where the third inequality follows from

Σ−1M(α)ΣηM(α)′Σ−1 ≤ Σ−1M(α)ΣM (α)′Σ−1 = Σ−1M(α),

and the fourth inequality follows from σ2
εΣ

−1ΣηΣ
−1 ≤ I by Ση ≤ Σ and σ2

εΣ
−1 ≤ I, and

the last equality follows from (6.3). Second, (6.23) is similarly to (6.18). It is

lim
n→∞

P

(
sup
α∈A

|η′Σ−2M(α)ε|
E(L(α))

≥ ε

)
≤ lim

n→∞

∑
α∈A

P

( |η′Σ−2M(α)ε|
E(L(α))

≥ ε

)

≤ lim
n→∞

∑
α∈A

σ2
ε tr(Σ

−2M(α)M(α)′Σ−2Ση)

ε2(E(L(α)))2

≤ lim
n→∞

∑
α∈A

tr(Σ−1M(α)Σ−1ΣηΣ
−1)

ε2(E(L(α)))2

≤ lim
n→∞

∑
α∈A

σ−2
ε tr(Σ−1M (α))

ε2(E(L(α)))2

≤ lim
n→∞

∑
α∈A

1

σ4
ε ε

2E(L(α))

= 0,

where the third inequality follows from σ2
εΣ

−1M (α)M(α)Σ−1 ≤ Σ−1M(α), and the
fourth inequality follows from σ2

εΣ
−1ΣηΣ

−1 ≤ I by Ση ≤ Σ and σ2
εΣ

−1 ≤ I, and the last
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equality follows from (6.3). Third, (6.24) is similar to (6.23). It is for any ε > 0,

lim
n→∞

P

(
sup
α∈A

|ε′Σ−1ΣηΣ
−1M (α)η|

E(L(α))
≥ ε

)

≤ lim
n→∞

∑
α∈A

P

( |ε′Σ−1ΣηΣ
−1M(α)η|

E(L(α))
≥ ε

)

≤ lim
n→∞

∑
α∈A

σ2
ε tr(Σ

−1ΣηΣ
−1M(α)ΣηM (α)′Σ−1ΣηΣ

−1)

ε2(E(L(α)))2

≤ lim
n→∞

∑
α∈A

σ2
ε tr(Σ

−1M(α)ΣηΣ
−2Ση)

ε2(E(L(α)))2

≤ lim
n→∞

∑
α∈A

σ2
ε tr(Σ

−1M(α))

ε2(E(L(α)))2

≤ lim
n→∞

∑
α∈A

1

ε2E(L(α))

= 0,

where the third inequality follows from

Σ−1M(α)ΣηM(α)′Σ−1 ≤ Σ−1M(α)ΣM (α)′Σ−1 = Σ−1M(α),

and the fourth inequality follows from ΣηΣ
−2Ση ≤ I by Σ2

η ≤ Σ2, and the last equality
follows from (6.3). Last, (6.25) can be established by Theorem 2 of Whittle. It is for any
ε > 0,

lim
n→∞

P

(
sup
α∈A

|ε′Σ−1ΣηΣ
−1M (α)ε− σ2

ε tr(M(α)′Σ−1Ση)|
E(L(α))

≥ ε

)

≤ lim
n→∞

∑
α∈A

P

( |ε′Σ−1ΣηΣ
−1M(α)ε− σ2

ε tr(M (α)′Σ−1Ση)|
E(L(α))

≥ ε

)

≤ lim
n→∞

∑
α∈A

c7σ
4
ε tr(Σ

−1ΣηΣ
−1M (α)M(α)′Σ−1ΣηΣ

−1)

ε2(E(L(α)))2

≤ lim
n→∞

∑
α∈A

c7σ
2
ε tr(Σ

−1M (α)ΣηΣ
−2Ση)

ε2(E(L(α)))2

≤ lim
n→∞

∑
α∈A

c7σ
2
ε tr(Σ

−1M (α))

ε2(E(L(α)))2

≤ lim
n→∞

∑
α∈A

c7

ε2E(L(α))

= 0,

for some c7 > 0, where the third equality follows from

σ2
εΣ

−1M(α)M (α)′Σ−1 ≤ Σ−1M (α)ΣM(α)′Σ−1 = Σ−1M (α),

and the fourth inequality follows from ΣηΣ
−2Ση ≤ I by Σ2

η ≤ Σ2, and the last equality
follows from (6.3). Thus, we ends the proof of (6.9), which completes the proof. 2

Note that (6.3) holds in general. Here, we consider an example where (6.3) is satisfied.
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Corollary 7 Consider a class of models given by (3.1) with p fixed and any arbitrary
explanatory variables. Suppose that the data are collected at si = in−(1−δ) ∈ [0, nδ];
i = 1, . . . , n for some δ ∈ [0, 1). Consider the exponential covariance model of (5.1) for
η(·). Let α̂CAIC be the model selected by CAIC as defined in (6.2). Then,

plim
n→∞

L(α̂CAIC)
/

inf
α∈A

L(α) = 1.

Further, if Ac 6= ∅, then for any model selection procedure α̂, such that lim
n→∞

P (α̂ ∈ Ac) =

1,
plim
n→∞

L(α̂)
/

inf
α∈A

L(α) = 1.

It is shown in (3.17) that E(L(α)) is lower bounded by dominated by σ2
ε tr(ΣηΣ

−1) for
α ∈ A, which is often a dominated term of E(L(α)). In addition, for α ∈ Ac, σ2

ε tr(ΣηΣ
−1)

is the dominated term of E(L(α)). Hence, it might suggests us that whatever correct
model we select, it will be always satisfied the asymptotic loss efficiency. Further, in the
following example, EL((α)) are dominated by σ2

ε tr(ΣηΣ
−1) for α ∈ A. In such case, every

candidate model achieves the asymptotic loss efficiency.

Corollary 8 Consider a class of models given by (3.1) with xj(s) = (sn−δ)j; j = 1, . . . , p,
and cov(η(s), η(s′)) = σ2

η exp(−κη|s − s′|), where p fixed and Ac 6= ∅. Suppose that the

data are collected at si = in−(1−δ) ∈ [0, nδ]; i = 1, . . . , n for some δ ∈ [0, 1). Let α̂CAIC be
the model selected by CAIC as defined in (6.2). Then

plim
n→∞

L(α̂CAIC)
/

inf
α∈A

L(α) = 1.

Further, for any model selection procedure α̂,

plim
n→∞

L(α̂)
/

inf
α∈A

L(α) = 1.

¿From (7) and (8), it might suggest us that the variable selection is somehow unnec-
essary for the asymptotic loss efficiency of L(α) in those cases. Here, we consider the
strongly asymptotic loss efficiency of L(α) defined in (3.21).

Theorem 15 Consider a class of models given by (3.1) and the universal kriging predictor
Ŝ(α) of S defined in (3.15). Suppose

lim
n→∞

∑

α∈A\Ac

1

E(L(α))− σ2
ε tr(ΣηΣ−1)

= 0, (6.26)

where L(α) is defined in (3.14). If |Ac| ≤ 1 and αc is fixed, then α̂CAIC of (6.2) is strongly
asymptotic loss efficient:

plim
n→∞

L(α̂CAIC)− ‖S − E(S|Z)‖2

infα∈A L(α)− ‖S − E(S|Z)‖2
= 1.
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Proof. Here, we first suppose that Ac = ∅. Now, we expand the CAIC defined in (6.1)
from (6.4). It is

ΓCAIC(α) = L(α) + 2σ2
ε ε
′(Σ−1A(α))µ + 2σ2

ε ε
′(Σ−1A(α))η + ε′ε

−2
(
ε′H(α)ε− σ2

ε tr(H(α))
)

= L(α) + 2σ2
ε ε
′(Σ−1A(α))µ + 2σ2

ε ε
′Σ−1η − 2σ2

ε ε
′M (α)η + ε′ε

−2
(
ε′ΣηΣ

−1ε− σ2
εΣηΣ

−1
)− 2σ2

ε

(
ε′Σ−1M(α)ε− σ2

ε tr(Σ
−1M(α))

)
,(6.27)

where the last equality follows from H(α) = ΣηΣ
−1 + σ2

εΣ
−1M (α) by (3.16). Note that

2σ2
ε ε
′Σ−1η+ε′ε−2

(
ε′ΣηΣ

−1ε−σ2
εΣηΣ

−1
)

is constant in variable selection. It then needs
to show that for α ∈ A \ Ac,

ΓCAIC(α) = constant + L∗(α) + op(L
∗(α)), (6.28)

where L∗(α) = L(α)− ‖S − E(S|Z)‖2, which suffices to show that

plim
n→∞

sup
α∈A\Ac

|ε′(Σ−1A(α))µ|
E(L∗(α))

= 0, (6.29)

plim
n→∞

sup
α∈A\Ac

|ε′(Σ−1M(α))η|
E(L∗(α))

= 0, (6.30)

plim
n→∞

sup
α∈A\Ac

|ε′Σ−1M (α)ε− σ2
ε tr(Σ

−1M (α))|
E(L∗(α))

= 0, (6.31)

plim
n→∞

sup
α∈A\Ac

∣∣∣∣
L∗(α)

E(L∗(α))
− 1

∣∣∣∣ = 0. (6.32)

Hence, by (6.28), for α̂CAIC defined in (6.2) and αL = arg minα∈A L∗(α), we can easily
conclude that

ΓCAIC(α̂CAIC) = constant + L∗(α̂CAIC) + op(L
∗(α̂CAIC)),

ΓCAIC(αL) = constant + L∗(αL) + op(L
∗(αL)).

It follows that

0 ≤ ΓCAIC(αL)− ΓCAIC(α̂CAIC)

L∗(α̂CAIC)
=

L∗(αL)− L∗(α̂CAIC)

L∗(α̂CAIC)
+ op(1),

and then

plim
n→∞

L∗(αL)− L∗(α̂CAIC)

L∗(α̂CAIC)
= 0,

which gives plim
n→∞

L∗(α̂CAIC)
/

inf
α∈A

L∗(α) = 1 when Ac = ∅.
Here, we first calculate EL∗(α). By (9.1), we have

E(L∗(α)) = E(L(α))− E‖S − E(S|Z)‖2

= E(L(α))− σ2
ε tr(ΣηΣ

−1)

= σ4
ε µ

′A(α)′Σ−2A(α)µ + σ4
ε tr(Σ

−1M(α)), (6.33)

by (3.17). Now, we start to prove (6.29)-(6.32) one by one. For (6.29), the proof can be
followed from the proof of (6.6) by replacing E(L(α)) with (6.33).
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For (6.30), we have for any ε > 0,

lim
n→∞

P

(
sup

α∈A\Ac

|ε′(Σ−1M(α))η|
E(L∗(α))

≥ ε

)
≤ lim

n→∞

∑

α∈A\Ac

P

( |ε′(Σ−1M(α))η|
E(L∗(α))

≥ ε

)

≤ lim
n→∞

∑

α∈A\Ac

σ2
ε tr(M(α)′Σ−1ΣηΣ

−1M (α))

ε2(E(L∗(α)))2

≤ lim
n→∞

∑

α∈A\Ac

σ2
ε tr(M(α)′Σ−1M (α))

ε2(E(L∗(α)))2

= lim
n→∞

∑

α∈A\Ac

σ2
ε tr(Σ

−1M (α))

ε2(E(L∗(α)))2

≤ lim
n→∞

∑

α∈A\Ac

1

σ2
ε ε

2E(L∗(α))

= 0,

where the third inequality follows from Σ−1/2ΣηΣ
−1/2 ≤ I, the second last inequality

follows from (6.33) and the last equality follows from (6.26).
For (6.31), we have for any ε > 0,

lim
n→∞

P

(
sup

α∈A\Ac

|ε′Σ−1M(α)ε− σ2
ε tr(Σ

−1M(α))|
E(L∗(α))

≥ ε

)

≤ lim
n→∞

∑

α∈A\Ac

P

( |ε′Σ−1M (α)ε− σ2
ε tr(Σ

−1M (α))|
E(L∗(α))

≥ ε

)

≤ lim
n→∞

∑

α∈A\Ac

c1σ
4
ε tr(M(α)′Σ−2M(α))

ε2(E(L∗(α)))2

≤ lim
n→∞

∑

α∈A\Ac

c1σ
2
ε

(
tr(Σ−1M (α))

)

ε2(E(L∗(α)))2

≤ lim
n→∞

∑

α∈A\Ac

c1

ε2σ2
ε E(L(α))

= 0,

where the second inequality is an application of Theorem 2 of Whittle (1960) for some
c1 > 0, and the third and fourth inequality follows from

σ4
ε tr(M (α)′Σ−2M(α)) ≤ σ2

ε tr(M(α)′Σ−1M (α)) = σ2
ε tr(Σ

−1M (α)) ≤ σ−2
ε E(L∗(α)),

and the last equality follows from (6.26).
Now, it remains to show (6.32). Here, we first expand L∗(α) from (6.10). That is

L∗(α) = L(α)− ‖S − E(S|Z)‖2

= L(α)− ‖σ2
εΣ

−1η −ΣηΣ
−1ε‖2

= σ4
ε µ

′A(α)′Σ−2A(α)µ + σ4
ε (η + ε)′M (α)′Σ−2M(α)(η + ε)

+2σ2
ε µ

′A(α)′Σ−1(σ2
εΣ

−1η −ΣηΣ
−1ε)− 2σ4

ε µ
′A(α)′Σ−2M (α)(η + ε)

−2σ2
ε (σ

2
εΣ

−1η −ΣηΣ
−1ε)′Σ−1M(α)(η + ε), (6.34)
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the second equality follows from (9.1). It then follows together with (3.17),

L∗(α)− E(L∗(α)) = σ4
ε (η + ε)′M (α)′Σ−2M(α)(η + ε)− σ4

ε tr(Σ
−1M (α))

+2σ2
ε µ

′A(α)′Σ−1(σ2
εΣ

−1η −ΣηΣ
−1ε)− 2σ4

ε µ
′A(α)′Σ−2M (α)(η + ε)

−2σ2
ε (σ

2
εΣ

−1η −ΣηΣ
−1ε)′Σ−2M(α)(η + ε).

Equation (6.32) can then be followed by

plim
n→∞

sup
α∈A\Ac

|(η + ε)′M (α)′Σ−2M (α)(η + ε)− tr(Σ−1M (α))|
E(L∗(α))

= 0, (6.35)

plim
n→∞

sup
α∈A\Ac

|µ′A(α)′Σ−1(σ2
εΣ

−1η −ΣηΣ
−1ε)|

E(L∗(α))
= 0, (6.36)

plim
n→∞

sup
α∈A\Ac

|µ′A(α)′Σ−2M(α)(η + ε)|
E(L∗(α))

= 0, (6.37)

plim
n→∞

sup
α∈A\Ac

|(σ2
εΣ

−1η −ΣηΣ
−1ε)′Σ−1M(α)(η + ε)|

E(L∗(α))
= 0. (6.38)

Note that the proofs of (6.35)-(6.38) can be followed from the proofs of (6.12)-(6.15)
by replacing EL(α) with E(L∗(α)). Hence, (6.32) is then followed, which completes the
proof when Ac = ∅.

Not, we suppose that Ac = {αc}. To show that the CAIC is still asymptotically loss
efficient, it remains to show that for fixed αc,

L∗(αc) = op(L
∗(α)); if α ∈ A \ Ac, (6.39)

ΓCAIC(αc) = constant + L∗(αc) + op(L
∗(α)). (6.40)

Hence, by (6.39) and (6.40), we can easily conclude that

lim
n→∞

P
(
αL = αc

)
= 1,

lim
n→∞

P
(
α̂CAIC = αc

)
= 1,

which gives plim
n→∞

L∗(α̂CAIC)
/

inf
α∈A

L∗(α) = 1 if |Ac| ≤ 1.

Now, we start to prove (6.39). Equation (6.39) can be followed by (6.32) and

plim
n→∞

sup
α∈A\Ac

L∗(αc)

E(L∗(α))
= 0. (6.41)

By (6.34), we have

L∗(αc) = σ4
ε (η + ε)′M(αc)′Σ−2M(αc)(η + ε)− σ4

ε tr(Σ
−1M (αc))

+σ4
ε tr(Σ

−1M(αc))− 2σ2
ε (σ

2
εΣ

−1η −ΣηΣ
−1ε)′Σ−1M(αc)(η + ε).

Equations (6.41) can then be followed by

plim
n→∞

sup
α∈A\Ac

|(η + ε)′M(αc)′Σ−2M (αc)(η + ε)− tr(Σ−1M(α))|
E(L∗(α))

= 0, (6.42)

plim
n→∞

sup
α∈A\Ac

|tr(Σ−1M (αc))|
E(L∗(α))

= 0, (6.43)

plim
n→∞

sup
α∈A\Ac

|(σ2
εΣ

−1η −ΣηΣ
−1ε)′Σ−1M(αc)(η + ε)|

E(L∗(α))
= 0. (6.44)
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Note that (6.42) can be followed similarly from the proof of (6.35) and (6.43) is trivial
since σ2

ε tr(Σ
−1M(αc)) ≤ p(αc) < ∞, and (6.44) can be followed similarly from the proof

of (6.38). It then gives (6.39).
Now we start to prove (6.40). By (6.27), we have

ΓCAIC(αc) = constant + L∗(αc)− 2σ2
ε ε
′M(αc)η − 2σ2

ε

(
ε′Σ−1M (αc)ε− σ2

ε tr(Σ
−1M(αc))

)
.

Equation (6.40) can then be followed by

plim
n→∞

sup
α∈A\Ac

|ε′M(αc)η|
E(L∗(α))

= 0,

plim
n→∞

sup
α∈A\Ac

|ε′Σ−1M(αc)ε− σ2
ε tr(Σ

−1M (αc))|
E(L∗(α))

= 0,

which can be followed easily from (6.30) and (6.31). It then gives (6.40). This completes
the proof. 2

An example is given here for the Theorem 15.

Corollary 9 Consider a class of models given by (3.1) with xj(s)’s independently gener-
ated from white-noise processes of (5.7), where p fixed and Ac = {αc}. If lim

n→∞
tr(Σ−2) =

∞, then

plim
n→∞

L(α̂CAIC)− ‖S − E(S|Z)‖2

infα∈A L(α)− ‖S − E(S|Z)‖2
= 1.

The model with smallest value of L(α) might not exist for |Ac| ≥ 2. If there are at
least two correct models with fixed dimensions in Ac, there will be no asymptotic optimal
properties under the level of loss comparison. We are then interested to ask if the model
selection procedure still has some optimal properties on E(L(α)) in the cases of |Ac| ≥ 2.
Hence, we need a much more heavily penalty on model dimension to select αc among Ac.

6.2 Conditional Generalized Information Criterion

We have the criterion ΓCAIC(α) in (6.1) is weakly asymptotic loss efficient. Further, It also
suggests that the asymptotic loss efficiency may not exist in the case of |Ac| ≥ 2. Hence,
we might ask if there has any optimal properties which is defined on the risk (3.17). In
the following, we will introduce the conditional generalized information criterion (CGIC)
which includes CAIC as a special case,

ΓCGIC(λ)(α) = ‖Z − Ŝ(α)‖2 + λσ2
ε tr(H(α)),

for any α ∈ A. Let
α̂CGIC(λ) = arg min

α∈A
ΓCGIC(λ)(α). (6.45)

Theorem 16 Consider a class of models given by (3.1). Consider the loss function L(α)
defined in (3.14) and α̂CGIC(λ) defined in (6.45).
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(i) For Ac = ∅, if

lim
n→∞

∑

α∈A\Ac

λp

E(L(α))− σ2
ε tr(ΣηΣ−1)

= 0, (6.46)

then

plim
n→∞

L(α̂CGIC)− ‖S − E(S|Z)‖2

infα∈A L(α)− ‖S − E(S|Z)‖2
= 1.

(ii) For Ac 6= ∅ with fixed α, if λ →∞, (6.46) holds and

lim
n→∞

∑
α∈Ac

1

tr(Σ−1M (α))
< ∞, (6.47)

then lim
n→∞

P
(
α̂CGIC(λ) = αc

)
= 1.

Proof. First, we suppose that Ac = ∅. By (6.40), for α ∈ A \ Ac,

ΓCGIC(λ)(α) = constant + L∗(α) + (λ− 2)σ2
ε tr(H(α)) + op(L

∗(α))

= constant + L∗(α) + (λ− 2)σ2
ε tr(ΣηΣ

−1) + (λ− 2)σ4
ε tr(Σ

−1M (α)) + op(L
∗(α))

= constant + L∗(α) + (λ− 2)σ4
ε tr(Σ

−1M(α)) + op(L
∗(α))

= constant + L∗(α) + op(L
∗(α)),

where L∗(α) = L(α) − ‖S − E(S|Z)‖2, the second last equality follows from (λ −
2)σ2

ε tr(ΣηΣ
−1) is independent of α and the last equality follows from

plim
n→∞

sup
α∈A\Ac

λtr(Σ−1M(α))

E(L∗(α))
= 0,

by (6.32) and σ2
ε tr(Σ

−1M(α)) ≤ p(α) and (6.46). Hence, for α̂CGIC(λ) defined in (6.45)
and αL = arg minα∈A L∗(α), we can easily conclude that

ΓCGIC(λ)(α̂CGIC(λ)) = constant + L∗(α̂CGIC(λ)) + op(L
∗(α̂CGIC(λ))),

ΓCGIC(λ)(α
L) = constant + L∗(αL) + op(L

∗(αL)).

It follows that

0 ≤ ΓCGIC(λ)(α
L)− ΓCGIC(λ)(α̂CGIC(λ))

L∗(α̂CGIC(λ))
=

L∗(αL)− L∗(α̂CGIC(λ))

L∗(α̂CGIC(λ))
+ op(1),

and then

plim
n→∞

L∗(αL)− L∗(α̂CGIC(λ))

L∗(α̂CGIC(λ))
= 0,

which gives plim
n→∞

L∗(α̂CGIC(λ))
/

inf
α∈A

L∗(α) = 1 when Ac = ∅.
Now, we suppose that Ac 6= ∅. To show the consistency, it suffices to show that

ΓCGIC(λ)(α
c) = constant + op(L

∗(α)); if α ∈ A \ Ac, (6.48)

ΓCGIC(λ)(α) = constant + λR2(α) + op(λR2(α)); if α ∈ Ac, (6.49)

71



where R2(α) = σ4
ε tr(Σ

−1M(α)) is defined in (3.18) and αc = arg minα∈Ac R2(α). Hence,
by (6.48), it follows that lim

n→∞
P

(
α̂CGIC(λ) ∈ A\Ac

)
= 0. In addition, by (6.49), it follows

that lim
n→∞

P
(
α̂CGIC(λ) ∈ Ac, α̂CGIC(λ) = αc

)
= 1. Thus, it completes the proof of the

consistency.
Now, we first start to prove (6.48). By (6.27), we have

ΓCGIC(λ)(α
c) = constant + L∗(αc)− 2σ2

ε ε
′M(αc)η + (λ− 2)σ4

ε tr(Σ
−1M (α))

−2σ2
ε

(
ε′Σ−1M (αc)ε− σ2

ε tr(Σ
−1M(αc))

)
.

Equation (6.48) can then be followed by (6.32) and

plim
n→∞

sup
α∈A\Ac

|ε′M(αc)η|
E(L∗(α))

= 0, (6.50)

plim
n→∞

sup
α∈A\Ac

|ε′Σ−1M(αc)ε− σ2
ε tr(Σ

−1M (αc))|
E(L∗(α))

= 0, (6.51)

plim
n→∞

sup
α∈A\Ac

(λ− 2)tr(Σ−1M (αc))

E(L∗(α))
= 0, (6.52)

plim
n→∞

sup
α∈A\Ac

L∗(αc)

E(L∗(α))
= 0. (6.53)

Equations (6.50) and (6.51) can be followed easily from (6.30) and (6.31). Equation (6.52)
holds trivially for λσ4

ε tr(Σ
−1M(αc)) ≤ σ2

ε λp. Equation (6.53) is the same to (6.41).
Now, we start to prove (6.49). By (6.27), we have that for α ∈ Ac,

ΓCGIC(λ)(α) = constant + L∗(α)− 2σ2
ε ε
′M (α)η + (λ− 2)σ4

ε tr(Σ
−1M(α))

−2σ2
ε

(
ε′Σ−1M(α)ε− σ2

ε tr(Σ
−1M(α))

)
.

Equation (6.49) can then be followed from (6.32) and

plim
n→∞

sup
α∈Ac

|ε′M(α)η|
λR2(α)

= 0, (6.54)

plim
n→∞

sup
α∈Ac

|ε′Σ−1M(α)ε− σ2
ε tr(Σ

−1M (α))|
λR2(α)

= 0, (6.55)

plim
n→∞

sup
α∈Ac

|L∗(α)|
λR2(α)

= 0. (6.56)

For (6.54), we have for any ε > 0,

lim
n→∞

P

(
sup
α∈Ac

|ε′(Σ−1M(α))η|
λR2(α)

≥ ε

)
≤ lim

n→∞

∑
α∈Ac

P

( |ε′(Σ−1M (α))η|
λR2(α)

≥ ε

)

≤ lim
n→∞

∑
α∈Ac

σ2
ε tr(M (α)′Σ−1ΣηΣ

−1M (α))

ε2(λR2(α))2

≤ lim
n→∞

∑
α∈Ac

σ2
ε tr(M (α)′Σ−1M (α))

ε2(λR2(α))2

= lim
n→∞

∑
α∈Ac

σ2
ε tr(Σ

−1M(α))

ε2(λR2(α))2

≤ lim
n→∞

∑
α∈Ac

1

σ2
ε ε

2λ2R2(α)

= 0,
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where the third inequality follows from Σ−1/2ΣηΣ
−1/2 ≤ I, the second last inequality

follows from (6.33) and the last equality follows from λ →∞ and (6.47). Equation (6.55)
can then be followed by (6.31) in a similar way.

Now we start to prove (6.56). By (6.34) for α ∈ Ac,

L∗(α) = σ4
ε (η + ε)′M(α)′Σ−2M(α)(η + ε)− σ4

ε tr(Σ
−1M(α))

+σ4
ε tr(Σ

−1M(α))− 2σ2
ε (σ

2
εΣ

−1η −ΣηΣ
−1ε)′Σ−1M(α)(η + ε).

Equations (6.56) can then be followed by

plim
n→∞

sup
α∈Ac

|(η + ε)′M (α)′Σ−2M (α)(η + ε)− tr(Σ−1M (α))|
λR2(α)

= 0, (6.57)

plim
n→∞

sup
α∈Ac

|tr(Σ−1M (α))|
λR2(α)

= 0, (6.58)

plim
n→∞

sup
α∈Ac

|(σ2
εΣ

−1η −ΣηΣ
−1ε)′Σ−1M(α)(η + ε)|
λR2(α)

= 0. (6.59)

Equation (6.57) can be followed from (6.12). That is for any ε > 0,

lim
n→∞

P

(
sup
α∈Ac

|(η + ε)′M (α)′Σ−2M(α)(η + ε)− tr(Σ−1M(α))|
λR2(α)

≥ ε

)

≤ lim
n→∞

∑
α∈Ac

P

( |(η + ε)′M (α)′Σ−2M (α)(η + ε)− tr(Σ−1M (α))|
λR2(α)

≥ ε

)

≤ lim
n→∞

∑
α∈Ac

ctr(ΣM(α)′Σ−2M(α)ΣM (α)′Σ−2M(α))

ε2(λR2(α))2

≤ lim
n→∞

∑
α∈Ac

ctr(Σ−1M (α))

ε2σ2
ε (λR2(α))2

≤ lim
n→∞

∑
α∈Ac

c

σ4
ε ε

2λ2R2(α)

= 0,

where the second inequality is an application of Theorem 2 of Whittle (1960) for some
c > 0, the last equality follows from (6.47). Equation (6.58) holds trivially for λ → ∞.
Equation (6.59) can also be followed from (6.15) in a similar way. It then completes the
proof. 2

Similar to the conditions given by (4.7) and (4.8) in Theorem 2, Equation (6.46) pro-
vides a condition for risks associated with incorrect models and (6.47) is a weak technique
condition that holds trivially when p is fixed. Here, we give an example for Theorem 16.

Corollary 10 Consider a class of models given by (3.1) with xj(s)’s independently gen-
erated from white-noise processes of (5.7). If λ →∞, lim

n→∞
tr(Σ−2)

/
λ = ∞ and

lim
n→∞

tr(Σ−2)
/
tr(Σ−1) > 0,

then lim
n→∞

P
(
α̂GIC(λ) = αc

)
= 1.
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Chapter 7

Simulations

In this chapter, we consider three simulation experiments (Experiments I-III) in the fol-
lowing three sections corresponding to Examples 2-4 given at the beginning of Chapter 5.
We shall examine their finite sample behaviors and compare them with their asymptotic
results developed in Chapter 5.

7.1 Experiment I: Polynomial Order Selection

In this experiment, we consider p = 3 monomials, xj(s) = (sn−δ)j; j = 1, . . . , 3, of (5.5) as
the explanatory variables. We generated the data at si = in−(1−δ) ∈ [0, nδ]; i = 1, . . . , n,
for some δ ∈ [0, 1) according to the following:

Z(si) = x0(si)− 2x1(si) + 4x2(si) + η(si) + ε(si); i = 1, . . . , n,

where cov(η(si), η(sj)) = σ2
η,0 exp(−κη,0|si − sj|), ε(·) ∼ N(0, σ2

ε,0) and the parameter
values are chosen as (σ2

η,0, κη,0, σ
2
ε,0)

′ = (0.5, 1, 0.5)′. Denote the collection of candidate
models as A = {α0, α1, α2, α3}, where α0 ≡ ∅ and αj = {1, . . . , j}; j = 1, 2, 3. Note that,
x0(·) = 1 is always included in the model and the smallest correct model is αc = α2.
We consider two δ values: δ = 0 and δ = 0.75, corresponding to the fixed domain
asymptotic and increasing domain asymptotic frameworks. For each case, we consider six
different sample sizes (n = 100, 500, 1000, 5000, 10000, 50000). Figure 7.1a shows the
mean, x0(·)− 2x1(·) + 4x2(·), and a typical realization of data for δ = 0 and n = 100.

The results are shown in Table 7.1, and Figures 7.2 and 7.3. Table 7.1 shows the
frequencies of models selected by BIC and GIC with λ = 2 log n for Experiment I based
on 100 simulation replicates. Basically, BIC tends to select the smallest model α0 when
δ = 0, and tends to select αc when δ = 0.75 particularly when n is large regardless of
whether the covariance parameters are known or unknown, which is consistent with the
theoretical results developed in Theorems 6 and 7. Similar results can be seen for GIC
with λ = 2 log n. Notice that when δ = 0, a very large sample size is needed for BIC to
achieve the asymptotic result of selecting only α0, which is especially the case when the
covariance parameters are unknown. On the other hand, GIC with λ = 2 log n requires a
much smaller sample size to achieve the same asymptotic result.

Figures 7.2 and 7.3 show the probability density functions for σ̂2
ε (α), κ̂η(α) and σ̂2

η(α)
under δ = 0 and 0.75 based on 100 simulation replicates. As expected from Theorem
4, we see that both σ̂2

ε (α) and κ̂η(α)σ̂2
η(α) tend to σ2

ε,0 and κη,0σ
2
η,0 for all cases except

for α0 and α1 with δ = 0.75, where the converge rate of the two estimates for a larger δ
tends to be slower (see Theorem 4). When δ = 0.75, we see from Figure 7.3 that both
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Figure 7.1: Mean functions and simulated data from (a) Experiment I, (b) Experiment
II, and (c) Experiment III for δ = 0 and n = 100.

Table 7.1: Frequencies of models selected by GIC with two tuning parameter values of λ
for Experiment I based on 100 simulation replicates.

λ n known (σ2
η, κη, σ2

ε ) unknown (σ2
η, κη, σ2

ε )
δ = 0 δ = 0.75 δ = 0 δ = 0.75

α0 α1 α2 α3 α0 α1 α2 α3 α0 α1 α2 α3 α0 α1 α2 α3

log(n) 100 22 37 41 0 10 59 29 2 3 37 59 1 83 16 1 0
500 39 18 31 12 0 29 68 3 51 28 17 3 0 28 70 2
1000 40 29 24 7 0 10 90 0 60 29 10 1 0 9 91 0
5000 54 23 22 1 0 0 99 1 48 18 31 2 0 0 98 2
10000 65 23 12 0 0 0 100 0 32 18 45 5 0 0 100 0
50000 69 22 9 0 0 0 100 0 45 16 38 1 0 0 100 0

2 log(n) 100 84 11 5 0 48 48 4 0 74 21 5 0 83 16 1 0
500 83 11 4 2 0 74 26 0 96 4 0 0 29 54 17 0
1000 86 9 4 1 0 49 51 0 98 2 0 0 2 57 41 0
5000 90 7 3 0 0 0 100 0 96 3 1 0 0 0 100 0
10000 95 4 1 0 0 0 100 0 93 7 0 0 0 0 100 0
50000 100 0 0 0 0 0 100 0 100 0 0 0 0 0 100 0

σ̂2
η(α) and κ̂η(α) tend to their theoretical convergence values as n increases. In contrast,

when δ = 0, both σ̂2
η(α) and κ̂η(α) display no clear convergence pattern, because neither

of them converges to a degenerate distribution (Chen et al. 2000).

7.2 Experiment II: Spatially Dependent Regressors

In this experiment, we consider p = 3 spatially dependent processes, xj(s); j = 1, 2, 3,
of (5.6) with σ2

j = κj = 0.75 as the explanatory variables. We generated the data at

si = in−(1−δ) ∈ [0, nδ]; i = 1, . . . , n, for some δ ∈ [0, 1) according to the following:

Z(si) = x0(si) + x1(si) + x2(si) + η(si) + ε(si); i = 1, . . . , n, (7.1)

where cov(η(si), η(sj)) = σ2
η,0 exp(−κη,0|si − sj|), ε(·) ∼ N(0, σ2

ε,0) and the parameter
values are chosen as (σ2

η,0, κη,0, σ
2
ε,0)

′ = (0.5, 1, 0.5)′. We consider exhausted search over

all possible models with A = 2{1,2,3}, where αj’s are defined in Table 7.2. Note that,
x0(·) = 1 is always included in the model and the smallest true model is αc = α3. Similar
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Figure 7.2: Probability density functions for the ML estimates of covariance parameters
in Experiment I with δ = 0 based on 100 simulation replicates, where the solid lines, the
dashed lines, and the dot-dashed lines correspond to n = 50000, 10000, 5000, respectively,
and the vertical dotted lines correspond to the convergence values of the ML estimates.
Some density functions have support outside displayed regions.

to Experiment I, we consider two δ values (δ = 0, 0.75) combined with five different
sample sizes (n = 100, 500, 1000, 5000, 10000). Figure 7.1b shows a realization of the
mean, x0(·) + x1(·) + x2(·), and a typical realization of data for δ = 0 and n = 100.

The results are shown in Tables 7.3 and 7.4, and Figures 7.4 and 7.5. Tables 7.3 and 7.4
show the frequencies of models selected by BIC for Experiment II based on 100 simulation
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Figure 7.3: Probability density functions for the ML estimates of covariance parameters in
Experiment I with δ = 0.75 based on 100 simulation replicates, where the solid lines, the
dashed lines, and the dot-dashed lines correspond to n = 50000, 10000, 5000, respectively,
and the vertical dotted lines correspond to the convergence values of the ML estimates.
Some density functions have support outside displayed regions.

replicates. Basically, BIC tends to select α3 = αc when δ = 0 and δ = 0.75 regardless of
whether the covariance parameters are known or unknown, which is consistent with the
theoretical results developed in Theorems 9 and 10.

Figures 7.4 and 7.5 show the probability density functions for σ̂2
ε (α), κ̂η(α) and σ̂2

η(α)
under δ = 0 and δ = 0.75 based on 100 replicates. We show only a nested sequence
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Table 7.2: Candidate models for Experiments II and III.

Models α0 α1 α2 α3 α4 α5 α6 α7

indices ∅ {1} {2} {1,2} {3} {1,3} {2,3} {1,2,3}

Table 7.3: Frequencies of models selected by BIC for Experiment II with {σ2
η, κη, σ

2
ε}

known based on 100 simulation replicates.
n δ = 0 δ = 0.75

α0 α1 α2 α3 α4 α5 α6 α7 α0 α1 α2 α3 α4 α5 α6 α7

100 0 0 0 86 0 0 0 14 0 0 0 98 0 0 0 2
500 0 0 0 82 0 0 0 18 0 0 0 99 0 0 0 1
1000 0 0 0 89 0 0 0 11 0 0 0 99 0 0 0 1
5000 0 0 0 98 0 0 0 2 0 0 0 100 0 0 0 0
10000 0 0 0 98 0 0 0 2 0 0 0 100 0 0 0 0

of models, α0 ⊂ α1 ⊂ α3 ⊂ α7, including two incorrect models α0 and α1, the smallest
correct model α3, and the full model α7. As expected from Theorem 8, we see that both
σ̂2

ε (α) and κ̂η(α)σ̂2
η(α) tend to σ2

ε,0 and θη,α defined in (5.118) for all cases. When δ = 0.75,
we see from Figure 7.5 that both σ̂2

η(α) and κ̂η(α) tend to their theoretical convergence
values as n increases. In contrast, when δ = 0, both σ̂2

η(α) and κ̂η(α) display no clear
convergence pattern, because neither of them converges to a degenerate distribution (Chen
et al. 2000).

7.3 Experiment III: White Noise Regressors

In this experiment, we consider p = 3 white-noise processes, xj(s); j = 1, . . . , 3, of (5.7)
with σ2

j = 0.6 as the explanatory variables. We generated the data at si = in−(1−δ) ∈
[0, nδ]; i = 1, . . . , n, for some δ ∈ [0, 1) according to (7.1) with the parameter values chosen
as (σ2

η,0, κη,0, σ
2
ε,0)

′ = (0.5, 1, 0.5)′. We consider exhausted search over all possible models

with A = 2{1,2,3}, where αj’s are defined in Table 7.2. Note that, x0(·) = 1 is always
included in the model and the smallest true model is αc = α3. Similar to Experiments
I and II, we consider two δ values (δ = 0, 0.75) combined with five different sample
sizes (n = 100, 500, 1000, 5000, 10000). Figure 7.1c shows a realization of the mean,
x0(·) + x1(·) + x2(·), and a typical realization of data for δ = 0 and n = 100.

The results are shown in Tables 7.5 and 7.6, and Figures 7.6 and 7.7. Tables 7.5 and 7.6
show the frequencies of models selected by BIC for Experiment III based on 100 simulation

Table 7.4: Frequencies of models selected by BIC for Experiment II with {σ2
η, κη, σ

2
ε}

unknown based on 100 simulation replicates.
n δ = 0 δ = 1

α0 α1 α2 α3 α4 α5 α6 α7 α0 α1 α2 α3 α4 α5 α6 α7

100 0 0 0 94 0 0 0 6 0 0 0 94 0 0 0 6
500 0 0 0 99 0 0 0 1 0 0 0 99 0 0 0 1
1000 0 0 0 99 0 0 0 1 0 0 0 99 0 0 0 1
5000 0 0 0 97 0 0 0 3 0 0 0 100 0 0 0 0
10000 0 0 0 98 0 0 0 2 0 0 0 100 0 0 0 0
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Figure 7.4: Probability density functions for the ML estimates of covariance parameters
in Experiment II with δ = 0 based on 100 simulation replicates, where the solid lines, the
dashed lines, and the dot-dashed lines correspond to n = 50000, 10000, 5000, respectively,
and the vertical dotted lines correspond to the convergence values of the ML estimates.
Some density functions have support outside displayed regions.

replicates. Basically, BIC tends to select α3 = αc when δ = 0 and δ = 0.75 regardless of
whether the covariance parameters are known or unknown, which is consistent with the
theoretical results developed in Theorems 12 and 13.

Figures 7.6 and 7.7 show the probability density functions for σ̂2
ε (α), κ̂η(α) and σ̂2

η(α)
under δ = 0 and δ = 0.75 based on 100 replicates. As in Experiment II, we show only
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Figure 7.5: Probability density functions for the ML estimates of covariance parameters in
Experiment II with δ = 0.75 based on 100 simulation replicates, where the solid lines, the
dashed lines, and the dot-dashed lines correspond to n = 50000, 10000, 5000, respectively,
and the vertical dotted lines correspond to the convergence values of the ML estimates.
Some density functions have support outside displayed regions.

a nested sequence of models, α0 ⊂ α1 ⊂ α3 ⊂ α7. As expected from Theorem 11, we
see that both σ̂2

ε (α) and κ̂η(α)σ̂2
η(α) tend to their theoretical values given in the theorem

for all cases. When δ = 0.75, we see from Figure 7.7 that both σ̂2
η(α) and κ̂η(α) tend to

σ2
η,0 and κη,0 as n increases. In contrast, when δ = 0, both σ̂2

η(α) and κ̂η(α) display no
clear convergence pattern, because neither of them converges to a degenerate distribution
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Table 7.5: Frequencies of models selected by BIC for Experiment III with {σ2
η, κη, σ

2
ε}

known based on 100 simulation replicates.
n δ = 0 δ = 0.75

α0 α1 α2 α3 α4 α5 α6 α7 α0 α1 α2 α3 α4 α5 α6 α7

100 0 0 0 90 0 0 0 10 0 0 0 97 0 0 0 3
500 0 0 0 96 0 0 0 4 0 0 0 100 0 0 0 0
1000 0 0 0 100 0 0 0 0 0 0 0 100 0 0 0 0
5000 0 0 0 98 0 0 0 2 0 0 0 100 0 0 0 0
10000 0 0 0 98 0 0 0 2 0 0 0 100 0 0 0 0

Table 7.6: Frequencies of models selected by BIC for Experiment III with {σ2
η, κη, σ

2
ε}

unknown based on 100 simulation replicates.
n δ = 0 δ = 0.75

α0 α1 α2 α3 α4 α5 α6 α7 α0 α1 α2 α3 α4 α5 α6 α7

100 0 0 0 96 0 0 0 4 0 0 0 97 0 0 0 3
500 0 0 0 99 0 0 0 1 0 0 0 100 0 0 0 0
1000 0 0 0 100 0 0 0 0 0 0 0 100 0 0 0 0
5000 0 0 0 100 0 0 0 0 0 0 0 100 0 0 0 0
10000 0 0 0 99 0 0 0 1 0 0 0 100 0 0 0 0

(Chen et al. 2000).
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Figure 7.6: Probability density functions for the ML estimates of covariance parameters
in Experiment III with δ = 0 based on 100 simulation replicates, where the solid lines, the
dashed lines, and the dot-dashed lines correspond to n = 50000, 10000, 5000, respectively,
and the vertical dotted lines correspond to the convergence values of the ML estimates.
Some density functions have support outside displayed regions.
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Figure 7.7: Probability density functions for the ML estimates of covariance parameters in
Experiment III with δ = 0.75 based on 100 simulation replicates, where the solid lines, the
dashed lines, and the dot-dashed lines correspond to n = 50000, 10000, 5000, respectively,
and the vertical dotted lines correspond to the convergence values of the ML estimates.
Some density functions have support outside displayed regions.
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Chapter 8

Summary and Discussion

In this thesis, we study asymptotic properties of geostatistical model selection. We find
that asymptotic behaviors of GIC and CGIC depend not only on asymptotic frameworks
but also on the smoothness of explanatory processes in space. For example, if the domain
does not grow fast enough, GIC may select the smallest model asymptotically under
some situation, and may possess different asymptotic properties if the domain grows in
different rates. In addition, we find that the convergence rates of the ML estimates of
covariance parameters also depend on the growth rate of the domain. In particular, we
show that some covariance parameters are overestimated and some are underestimated by
ML when fitting an incorrect model. These results are interesting and somewhat unique
in geostatistics and geostatistical model selection.

The following are some topics we consider for further research.

8.1 Zeros of Covariance Parameters

In Chapter 5, we assume that {σ2
η, κη, σ

2
ε} are all positive. How if some of them is zero?

When σ2
η = 0, the model of (3.1) reduces to the traditional regression model. However, it

is of interest to study GIC to cover either σ2
ε = 0 or κη = 0, which require modifications

of theorems and their proofs to avoid singularity.

8.2 Other Covariance Structures

In Chapter 5, we consider the exponential covariance function class. There are many other
covariance function classes that can be considered for η(·). For example, we may consider
the Gaussian covariance function class defined in (2.4) or the Matérn class defined in
(2.5), and study their asymptotic behavior for GIC or CGIC.

8.3 Sampling Designs

In this article, we focus on regular designs for the sampling locations in a one-dimensional
domain. Asymptotic properties of GIC and CGIC for higher-dimensional spaces and
some other commonly used spatial sampling designs, such as simple random sampling
and stratified sampling, are of interest and require further research.
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8.4 Continuous Functions as Explanatory Variables

In Chapter 5, we consider polynomial order selection. It is of interest to extend the poly-
nomial variables to continuous or smooth functions. We conjecture that the asymptotic
results similar to Theorems 6 and 7 can be extended from polynomials to functions of
bounded variation.
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Chapter 9

Appendix: Proofs

Proof of Lemma 1

By (3.8), we have E
(
(η + ε)′M(α)′Σ−1M(α)(η + ε)

)
= p(α), which gives (3.9).

Proof of Lemma 2

First, by (3.8), we have for α ∈ Ac,

LKL(α)− LKL(αc) =
1

2
(η + ε)′

(
M (α)′Σ−1M (α)−M (αc)′Σ−1M(αc)

)
(η + ε)

= χ2(p(α)− p(αc)) > 0,

with χ2(p(α) − p(αc)) denoting the chi-square distribution with p(α) − p(αc) degrees of
freedom. Hence we obtain (3.10). Second, (3.11) follows trivially from (3.9). Last, by
(3.8) and (3.12), for any α ∈ A \ Ac, we have

LKL(α)− L(KL)(αc) = µ′A(α)′Σ−1A(α)µ + Op(1) →∞,

as n →∞ with probability tending to 1. Hence (3.13) follows. This completes the proof.

Proof of Lemma 3

Since S and Z are jointly Gaussian,

E(S|Z) = µ + ΣηΣ
−1(Z − µ), (9.1)

E‖S − E(S|Z)‖2 = tr(var(S|Z)) = tr
(
Ση −ΣηΣ

−1Ση

)
= σ2

ε tr(ΣηΣ
−1).

In addition, from (3.16),

E‖Ŝ(α)− E(S|Z)‖2 = E‖(H(α)− I)µ + (H(α)−ΣηΣ
−1)(η + ε)‖2

= E‖(H(α)− I)µ‖2 + E‖(H(α)−ΣηΣ
−1)(η + ε)‖2

= σ4
ε µ

′A(α)′Σ−2A(α)µ + σ4
ε tr(M(α)′Σ−2M(α)Σ)

= σ4
ε µ

′A(α)′Σ−2A(α)µ + σ4
ε tr(Σ

−1M(α)).

Therefore, we obtain (3.17). This completes the proof.
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Proof of Corollary 1

By (4.5) and (3.9), it suffices to show that for α ∈ A \ Ac,

plim
n→∞

1

tr(Σ−1)
µ′A(α)′Σ−1A(α)µ =

∑

j∈αc\α
β2

j σ
2
j > 0. (9.2)

Since

µ′A(α)′Σ−1A(α)µ

tr(Σ−1)
= β(αc \ α)′

(
X(αc \ α)′Σ−1X(αc \ α)

tr(Σ−1)

)
β(αc \ α)

−β′(αc \ α)′
(

X(αc \ α)Σ−1X(α)

tr(Σ−1)

)(
X(α)′Σ−1X(α)

tr(Σ−1)

)−1

×
(

X(α)′Σ−1X(αc \ α)

tr(Σ−1)

)
β(αc \ α),

it is enough to show that

plim
n→∞

1

tr(Σ−1)
X ′

jΣ
−1Xj′ =

{
σ2

j ; if j = j′,
0; if j 6= j′,

where Xj is the jth column of X. The desired result then follows from

1

tr(Σ−1)
E

(
X ′

jΣ
−1Xj′

)
=

{
σ2

j ; if j = j′,
0; if j 6= j′,

and

var

(
1

tr(Σ−1)
X ′

jΣ
−1Xj′

)
=

1

(tr(Σ−1))2
σ2

j σ
2
j′tr(Σ

−2)

≤ 1

σ2
ε (tr(Σ

−1))2
σ2

j σ
2
j′tr(Σ

−1)

=
1

σ2
ε tr(Σ

−1)
σ2

j σ
2
j′ → 0 ,

as n → ∞ for 1 ≤ j ≤ j′ ≤ p by applying Chebyshev’s inequality. This completes the
proof. 2

Proof of Corollary 2

Since (4.8) holds trivially, it suffices to check (4.7), which follows from (9.2) and the
assumption of lim

n→∞
tr

(
Σ−1

)/
λ = ∞. This completes the proof. 2

Proof of Corollary 3

The proof is essentially the same as that for Theorem 3 except (A.2) and (A.3) are now
replaced by (A.2’) and (A.3’) in proving the corresponding statements. For example,
(4.21) holds because E(X ′

jΣ
−1(θα)(η + ε)) = 0 and

lim
n→∞

1

τn

var(X ′
jΣ

−1(θα)(η + ε)) = lim
n→∞

1

τn

tr
(
Σ−1(θα)Σ(θ0)Σ

−1(θα)E(XjX
′
j)

)
< ∞.

Details of the proof is omitted. 2
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Proof of Lemma 4

By (5.2), Gnη = (η(s1), ξ2, . . . , ξn)′, which gives η = G−1
n (η(s1), ξ2, . . . , ξ)

′. Taking the
variance on both sides, we have

Ση = G−1
n Dn(G−1

n )′,

where

Dn = var




η(s1)
ξ2
...
ξn


 = σ2

η




1 0 · · · 0

0 1− ρ2
n

. . .
...

...
. . . . . . 0

0 · · · 0 1− ρ2
n


 . (9.3)

It follows that

Σ = G−1
n (Dn + σ2

ε GnG
′
n)(G−1

n ),

and hence
Σ−1 = G′

n(Dn + σ2
ε GnG

′
n)−1Gn = G′

nT−1
n Gn,

where the second equality follows from Dn + σ2
ε GnG

′
n = Tn obtained by direct computa-

tion. This completes the proof. 2

Proof of Lemma 5

For (5.12), we start by writing Tk in terms of

Bk =




f1(ρn) −ρnσ2
ε 0 · · · 0

−ρnσ
2
ε f1(ρn) −ρnσ2

ε
. . .

...

0 −ρnσ2
ε f1(ρn)

. . . 0
...

. . . . . . . . . −ρnσ
2
ε

0 · · · 0 −ρnσ
2
ε f1(ρn)




k×k

. (9.4)

Then
det(Tk) = (σ2

η + σ2
ε ) det(Bk−1)− ρ2

nσ
4
ε det(Bk−2), (9.5)

and
det(Bk−1) = f1(ρn) det(Bk−2)− ρ2

nσ
4
ε det(Bk−3), (9.6)

for k ≥ 3, where det(B0) ≡ 1. Solving the difference equation of (9.6), we have

det(Bk−1) =
σ2k

ε (fk
2 (ρn)− fk

3 (ρn))

(f 2
1 (ρn)− 4ρ2

nσ4
ε )

1/2
, (9.7)

where
f2(ρn) ≡ (f1(ρn) + (f 2

1 (ρn)− 4ρ2
nσ

4
ε )

1/2)(2σ2
ε )
−1,

and
f3(ρn) ≡ (f1(ρn)− (f 2

1 (ρn)− 4ρ2
nσ4

ε )
1/2)(2σ2

ε )
−1.

Hence by (9.5)

σ−2jn
ε det(Tjn) =

(σ2
η + σ2

ε )f
jn

2 (ρn)− ρ2
nσ

2
ε f

jn−1
2 (ρn)

(f 2
1 (ρn)− 4ρ2

nσ
4
ε )

1/2
− (σ2

η + σ2
ε )f

jn

3 (ρn)− ρ2
nσ2

ε f
jn−1
3 (ρn)

(f 2
1 (ρn)− 4ρ2

nσ4
ε )

1/2
.
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Consequently, for (5.12) to hold, we remain to show the following:

f jn

3 (ρn)

(f 2
1 (ρn)− 4ρ2

nσ
4
ε )

1/2
= o(exp(−τnc/2)), (9.8)

which can be obtained if the following two equations are satisfied:

(f 2
1 (ρn)− 4ρ2

nσ4
ε )

1/2 = 2(2κησ
2
ησ

2
ε )

1/2n−(1−δ)/2 + O(n−3(1−δ)/2), (9.9)

f jn

3 (ρn) = o(exp(−τnc)), for some constant τ > 0. (9.10)

For (9.9), we note by (5.3),

ρk
n = 1− kκηn

−(1−δ) + O(n−2(1−δ)); k ∈ N. (9.11)

It follows that

f 2
1 (ρn)− 4ρ2

nσ
4
ε = ((1− ρ2

n)σ2
η + (1 + ρ2

n)σ2
ε )

2 − 4ρ2
nσ4

ε

= (1− ρ2
n)2σ4

η + 2(1− ρ4
n)σ2

ησ
2
ε + (1 + ρ2

n)2σ4
ε − 4ρ2

nσ
4
ε

= (1− ρ2
n)2σ4

η + 2(1− ρ4
n)σ2

ησ
2
ε + (1− ρ2

n)2σ4
ε

= 8κησ
2
ησ

2
ε n

−(1−δ) + O(n−2(1−δ)).

For (9.10), we note by (9.11),

f1(ρn) = (1− ρ2
n)σ2

η + (1 + ρ2
n)σ2

ε

= 2σ2
ε + (1− ρ2

n)(σ2
η − σ2

ε ) = 2σ2
ε + 2κη(σ

2
η − σ2

ε )n
−(1−δ) + O(n−2(1−δ)).

It follows that

f3(ρn) =
f1(ρn)− (f 2

1 (ρn)− 4ρ2
nσ4

ε )
1/2

2σ2
ε

=
2σ2

ε + 2(σ2
η − σ2

ε )κηn
−(1−δ) − 2(2κησ

2
ησ

2
ε )

1/2n−(1−δ)/2

2σ2
ε

+ O(n−3(1−δ)/2)

= 1− (2κησ
2
ησ

−2
ε )1/2n−(1−δ)/2 + O(n−(1−δ)). (9.12)

Since it is not difficult to show that f3(ρn) < 1, we have

log f jn

3 (ρn) ≤ n(1−δ)/2+c log(f3(ρn))

= −(2κησ
2
ησ

−2
ε )1/2nc + O(n−(1−δ)/2+c),

where the equality follows by (9.12) and log(1 − x) = −x + O(x2) as x → 0. Taking
τ = (2κησ

2
ησ

−2
ε )1/2, we obtain (9.10). This completes the proof of (5.12).

For (5.14) and (5.15), we first define Wjn(k, `) to be the (jn − 1) × (jn − 1) matrix
resulting from deleting row k and column ` of Tjn , for 1 ≤ k, ` ≤ jn, then

Cjn(k, `) = (−1)k+`(det(Tjn))−1 det(Wjn(k, `)). (9.13)

Note that for 1 ≤ k ≤ ` ≤ jn,

Wjn(k, `) =




Tk−1 ∗ ∗
0 P`−k ∗
0 0 Bjn−`


 , (9.14)
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where Tk−1 and Bjn−` are defined in (5.9) and (9.4), respectively,

Pm ≡




−ρnσ2
ε f1(ρn) −ρnσ2

ε 0 . . . 0

0 −ρnσ2
ε f1(ρn) −ρnσ

2
ε

. . .
...

0 0 −ρnσ2
ε f1(ρn)

. . . 0

0 0 0 −ρnσ
2
ε

. . . −ρnσ2
ε

...
...

. . . . . . . . . f1(ρn)
0 0 . . . 0 0 −ρnσ2

ε




,

is an m×m matrix, and P0 = T0 = B0 ≡ ∅. Similarly, for 1 ≤ ` ≤ k ≤ jn,

Wjn(k, `) =




T`−1 0 0
∗ P ′

k−` 0
∗ ∗ Bjn−k


 . (9.15)

It follows from (9.14) and (9.15) for 1 ≤ k, ` ≤ jn that

det(Wjn(k, `)) = det(Tmin(k,`)−1) det(P|k−`|) det(Bjn−max(k,`)). (9.16)

Hence, by (5.12), (9.7), (9.8), (9.13) and (9.16),

Cjn(1, `) =
(−1)`+1(−ρnσ2

ε )
`−1 det(Bjn−`)

det(Tjn)

=
f2(ρn)

(σ2
η + σ2

ε )f2(ρn)− ρ2
nσ

2
ε

(
ρn

f2(ρn)

)`−1

+ o(τ exp(−nc/2)),

for 1 ≤ ` ≤ jn − n(1−δ+c)/2, and

Cjn(jn, `) =
(−1)jn+`(−ρnσ

2
ε )

jn−` det(T`−1)

det(Tjn)

=
1

f2(ρn)σ2
ε

(
ρn

f2(ρn)

)jn−`

+ o(τ exp(−nc/2)),

for n(1−δ+c)/2 ≤ ` ≤ jn.
For (5.16), it is not difficult to show that f2(ρn) > 1. Hence, by (5.12), (9.7) and

(9.16), we have max
1≤k,`≤jn

Cjn(k, `) = Cjn(jn/2, jn/2). Hence,

max
1≤k,`≤jn

Cjn(k, `) =
det(Tjn/2−1)

det(Tjn)
det(Bjn/2)

=
1

σ2
ε σ

jn
ε f

jn/2+1
2 (ρn)

det(Bjn/2) + o(exp(−τnc/4))

=
1

σ2
ε σ

jn
ε f

jn/2+1
2 (ρn)

σ2
ε σ

jn
ε f

jn/2+1
2 (ρn)

(f 2
1 (ρn)− 4ρ2

nσ4
ε )

1/2
+ o(exp(−τnc/4))

=
1

(8κησ2
ησ

−2
ε )1/2

n(1−δ)/2 + o(n−(1−δ)),

where the first equality follows from (9.13) and (9.16), the second equality follows (5.12),
the third equality follows from (9.7) and (9.8), and the last equality follows from (9.9).
Thus, we obtain (5.16).
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For (5.17), by (5.12), (9.7) and (9.16), let φ = ((σ2
η + σ2

ε )f2(ρn) − ρ2
nσ

2
ε )

/
((σ2

η +
σ2

ε )f3(ρn)− ρ2
nσ2

ε ), we have for i = 1, . . . , n,

Cn(i, i) =

(
f i−2

2 (ρn)− φf i−2
3 (ρn)

fn−1
2 (ρn)

)(
fn−i+1

2 (ρn)− fn−i+1
3 (ρn)

(f 2
1 (ρn)− 4ρ2

nσ
4
ε )

1/2

)
+ o(exp(−τnc/2))

=

(
1− φf i−2

3 (ρn)

f i−2
2 (ρn)

− fn−i+1
3 (ρn)

fn−i+1
2 (ρn)

+
φfn−1

3 (ρn)

fn−1
2 (ρn)

)
1

(f 2
1 (ρn)− 4ρ2

nσ
4
ε )

1/2
+ o(exp(−τnc/2))

=

(
1− φf i−2

3 (ρn)

f i−2
2 (ρn)

− fn−i+1
3 (ρn)

fn−i+1
2 (ρn)

)
1

(f 2
1 (ρn)− 4ρ2

nσ
4
ε )

1/2
+ o(exp(−τnc/2)),

where the last equality follows from (9.10). Hence, we have

tr(T−1
n ) =

n∑
i=1

Cn(i, i)

=

(
n− φ

n∑
i=1

f i−2
3 (ρn)

f i−2
2 (ρn)

−
n∑

i=1

fn−i+1
3 (ρn)

fn−i+1
2 (ρn)

)
1

(f 2
1 (ρn)− 4ρ2

nσ
4
ε )

1/2
+ o(exp(−τnc/3))

=

(
n− φf 3

2 (ρn) + f 2
3 (ρn)

f2(ρn)f3(ρn)(f2(ρn)− f3(ρn))

)
1

(f 2
1 (ρn)− 4ρ2

nσ4
ε )

1/2
+ o(exp(−τnc/3))

=
n(3−δ)/2

2(2κησ2
ησ

2
ε )

1/2
+ O(n1−δ),

where the second equality follows from

n∑
i=1

f i−2
3 (ρn)

f i−2
2 (ρn)

=
f 2

2 (ρn)

f3(ρn)(f2(ρn)− f3(ρn))
+ o(exp(−τnc)),

n∑
i=1

fn−i+1
3 (ρn)

fn−i+1
2 (ρn)

=
f 2

3 (ρn)

f2(ρn)(f2(ρn)− f3(ρn))
+ o(exp(−τnc)),

and the last equality follows from φ = 1 + O(n−(1−δ)/2), (9.9) and (9.10) that

1

f2(ρn)− f3(ρn)
=

n(1−δ)/2

2(2κησ2
ησ

−2
ε )1/2

+ O(1),

and

1

(f 2
1 (ρn)− 4ρ2

nσ4
ε )

1/2
=

n(1−δ)/2

2(2κησ2
ησ

2
ε )

1/2
+ O(n−(1−δ)/2). (9.17)

Thus, (5.17) is obtained.
Finally, we prove (5.18). By (5.12), (9.7) and (9.16), for k < `, we have

Cn(k, `) =

(
fk−2

2 (ρn)− φfk−2
3 (ρn)

fn−1
2 (ρn)

)
ρ`−k

n

(
fn−`+1

2 (ρn)− fn−`+1
3 (ρn)

(f 2
1 (ρn)− 4ρ2

nσ4
ε )

1/2

)
+ o(exp(−τnc/2))

=

(
fk−`

2 (ρn)− φfk−2
3 (ρn)

f `−2
2 (ρn)

− fn−`+1
3 (ρn)

fn−k+1
2 (ρn)

)
ρ`−k

n

(f 2
1 (ρn)− 4ρ2

nσ4
ε )

1/2
+ o(exp(−τnc/2)).
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Hence, let C
(1)
n (k, `) be the (k, `)th element of T

(1)−1
n , we have for k, ` = 1, . . . , n,

tr(T−1
n T (1)−1

n ) =
n∑

k=1

Cn(k, k)C(1)
n (k, k) + 2

∑

k<`

Cn(k, `)C(1)
n (k, `)

= 2
∑

k<`

(
ρnρ

(1)
n

f2(ρn)f2(ρ
(1)
n )

)`−k(
n1−δ

4(2κησησ2
ε )

1/2(2κ
(1)
η σ

(1)2
η σ

(1)2
ε )1/2

)
+ O(n2−δ)

=
n(5−3δ)/2

25/2(κησ2
ηκ

(1)
η σ

(1)2
η )1/2((κησ2

η)
1/2 + (κ

(1)
η σ

(1)2
η )1/2)

+ O(n2−δ),

where the second equality follows from (9.17),

n∑

k=1

n∑

`=k

fk−2
3 (ρn)

f `−2
2 (ρn)

(
ρnρ

(1)
n

f2(ρ
(1)
n )

)`−k

=
n∑

k=1

(
f3(ρn)

f2(ρn)

)k−2 n∑

`=k

(
ρnρ

(1)
n

f2(ρn)f2(ρ
(1)
n )

)`−k

= O

(
n(1−δ)/2

n∑

k=1

(
f3(ρn)

f2(ρn)

)k)

= O(n1−δ),

n∑

k=1

n∑

`=k

fn−`+1
3 (ρn)

fn−k+1
2 (ρn)

(
ρnρ

(1)
n

f2(ρ
(1)
n )

)`−k

=
n∑

`=1

(
f3(ρn)

f2(ρn)

)n−`+1 ∑̀

k=1

(
ρnρ

(1)
n

f2(ρ
(1)
n )

)`−k

= O

(
n(1−δ)/2

n∑

`=1

(
f3(ρn)

f2(ρn)

)n−`+1)

= O(n1−δ),

n∑

k=1

n∑

`=k

(f3(ρn)f3(ρ
(1)
n ))k−2

(f2(ρn)f2(ρ
(1)
n ))`−2

(ρnρ
(1)
n )`−k =

n∑

k=1

(
f3(ρn)f3(ρ

(1)
n )

f2(ρn)f2(ρ
(1)
n )

)k−2 n∑

`=k

(
ρnρ

(1)
n

f2(ρn)f2(ρ
(1)
n )

)`−k

= O

(
n(1−δ)/2

n∑

k=1

(
f3(ρn)f3(ρ

(1)
n )

f2(ρn)f2(ρ
(1)
n )

)k−2)

= O(n1−δ),

and

n∑

k=1

n∑

`=k

(f3(ρn)f3(ρ
(1)
n ))n−`+1

(f2(ρn)f2(ρ
(1)
n ))n−k+1

(ρnρ
(1)
n )`−k =

n∑

`=1

(
f3(ρn)f3(ρ

(1)
n )

f2(ρn)f2(ρ
(1)
n )

)n−`+1 ∑̀

k=1

(
ρnρ

(1)
n

f2(ρn)f2(ρ
(1)
n )

)`−k

= O

(
n(1−δ)/2

n∑

`=1

(
f3(ρn)f3(ρ

(1)
n )

f2(ρn)f2(ρ
(1)
n )

)n−`+1)

= O(n1−δ),
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and the last equality follows from

n∑

k=1

n∑

`=k+1

(
ρnρ

(1)
n

f2(ρn)f2(ρ
(1)
n )

)`−k

= (n− 1)

(
ρnρ

(1)
n

f2(ρn)f2(ρ
(1)
n )

)
+ · · ·+

(
ρnρ

(1)
n

f2(ρn)f2(ρ
(1)
n )

)n−1

=
nρnρ

(1)
n

f2(ρn)f2(ρ
(1)
n )− ρnρ

(1)
n

− f2(ρn)f2(ρ
(1)
n )ρnρ

(1)
n

(f2(ρn)f2(ρ
(1)
n )− ρnρ

(1)
n )2

+ o(exp(−τnc))

=
nn(1−δ)/2

(2κησ2
ησ

2
ε )

1/2 + (2κ
(1)
η σ

(1)2
η σ

(1)2
ε )1/2

+ O(n1−δ).

This completes the proof. 2

Proof of Lemma 6

We first prove (5.22)-(5.24). By (5.10), (9.9), and (9.11), we have

f4(ρn) =
f1(ρn)− (f 2

1 (ρn)− 4ρ2
nσ4

ε )
1/2

2ρnσ2
ε

=
(1− ρ2

n)σ2
η + (1 + ρ2

n)σ2
ε − (8κησ

2
ησ

2
ε )

1/2n−(1−δ)/2

2ρnσ2
ε

+ o(n−(1−δ))

=
2κηn

−(1−δ)σ2
η + 2σ2

ε − 2κηn
−(1−δ)σ2

ε − (8κησ
2
ησ

2
ε )

1/2n−(1−δ)/2

2ρnσ2
ε

+ o(n−(1−δ))

= 1− (2κησ
2
ησ

−2
ε )1/2n−(1−δ)/2 + O(n−(1−δ)).

That is, we obtain (5.22). By (9.11) and (5.22), we have

f2(ρn) =
f1(ρn) + (f 2

1 (ρn)− 4ρ2
nσ

4
ε )

1/2

2σ2
ε

=
2σ2

ε + 2(σ2
η − σ2

ε )κηn
−(1−δ) + 2(2κησ

2
ησ

2
ε )

1/2n−(1−δ)/2

2σ2
ε

+ O(n−3(1−δ)/2)

= 1 + (2κησ
2
ησ

−2
ε )1/2n−(1−δ)/2 + (σ2

η − σ2
ε )σ

−2
ε κηn

−(1−δ) + O(n−(1−δ)),

and hence (5.23) holds. Applying log(1− x) = −x + O(x2) as x → 0 to (5.22), we have

log f4(ρn) = f4(ρn)− 1 + O((f4(ρn)− 1)2) = −(2κησ
2
ησ

−2
ε )1/2n−(1−δ)/2 + O(n−(1−δ)).

Thus (5.24) is obtained.
We remain to show (5.25). Applying log(1− x) = −x + O(x2) as x → 0, we have

log f jn

4 (ρn) ≤ n(1−δ)/2+c log f4(ρn)

= n(1−δ)/2+c log(1− (2κησ
2
ησ

−2
ε )1/2n−(1−δ)/2) + O(n−(1−δ)/2+c)

= −(2κησ
2
ησ

−2
ε )1/2nc + O(n−(1−δ)/2+c).

Taking the exponential on both sides of the above equation with τ = (2κησ
2
ησ

−2
ε )1/2 yields

(5.25). This completes the proof. 2
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Proof of Lemma 7

Let Fn = (F1, . . . , Fn) = Ωnυn, where υ = (υ1, . . . , υn)′ is given in (5.20). Since Tn =
var(v) by (5.19), we have var(Fn) = ΩnTnΩ

′
n, and hence

T−1
n = Ω′

n(var(Fn))−1Ωn.

Therefore, to prove (5.26), it is enough to show that

(var(Fn))−1 =

(
Λ−1

jn
0

0 (f2(ρn)σ2
ε )
−1In−jn

)
+ o(exp(−τn2c/3)). (9.18)

By (5.20) for any m ∈ N,

Fm =
m−1∑

k=0

fk
4 (ρn)υm−k =

m−1∑

k=0

fk
4 (ρn)(um−k − f4(ρn)um−(k+1)) = um − fm

4 (ρn)u0.

It follows that
Fn = (F ′

jn
, ((ujn+1, . . . , un) + f jn

4 (ρn)u0fn−jn)′)′,

where fn−jn = (1, f4(ρn), . . . , fn−jn

4 (ρn))′. It follows that

var(Fn) =

(
Λjn 0
0 f2(ρn)σ2

ε In−jn

)
+ o(exp(−τn4c/5)), (9.19)

which follows from (5.25), (5.28) and cov(υjn , u0) = (−f4(ρn)var(u0), 0, . . . , 0)′, by (5.20).
Since

Ω−1
k =




1 0 0 · · · 0

−f4(ρn) 1 0
. . .

...

0 −f4(ρn) 1
. . . 0

...
. . . . . . . . . 0

0 · · · 0 −f4(ρn) 1




,

it follows from (5.16) that all elements of Λ−1
jn

= (Ω′
jn

)−1T−1
jn

Ω−1
jn

are less than or equal

to 4n(1−δ)/2. This together with (9.19) give (9.18). Thus (5.26) is obtained.

Proof of Lemma 8

First, we prove (5.29). By (5.8), we have det(G) = 1 and hence by (5.11) and (5.12),

det(Σ(θ)) = (det(G′
n))−1 det(Tn)(det(G−1

n ))−1

= det(Tn)

= σ2n
ε

fn−1
2 (ρn)

(f 2
1 (ρn)− 4ρ2

nσ
4
ε )

1/2
((σ2

η + σ2
ε )f2(ρn)− ρ2

nσ2
ε ) + o(exp(−τnc/2)).
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It follows from log(x + ∆x) = log x + O(∆x/x) as ∆x → 0 that

log(det(Σ(θ)))

= log

(
σ2n

ε

fn−1
2 (ρn)

(f 2
1 (ρn)− 4ρ2

nσ
4
ε )

1/2
((σ2

η + σ2
ε )f2(ρn)− ρ2

nσ2
ε )

)
+ o(exp(−τnc/2))

= n log σ2
ε + (n− 1) log(f2(ρn)) + log((σ2

η + σ2
ε )f2(ρn)− ρ2

nσ
2
ε )

− log((f 2
1 (ρn)− 4ρ2

nσ4
ε )

1/2) + o(exp(−τnc/2))

= n log σ2
ε + (n− 1) log(f2(ρn)) + log(σ2

η)− log((f 2
1 (ρn)− 4ρ2

nσ
4
ε )

1/2) + O(n−(1−δ)/2)

= n log σ2
ε + (n− 1) log(f2(ρn))− log n(1−δ)/2 + O(1)

= n log σ2
ε + (2κησ

2
ησ

−2
ε )1/2n(1+δ)/2 − (κη(σ

2
η + σ2

ε )σ
−2
ε )nδ − log n(1−δ)/2 + o(nδ) + O(1),

where the third equality follows from (9.11) and (5.23), the fourth equality follows from
(9.9) that

log((f 2
1 (ρn)− 4ρ2

nσ
4
ε )

1/2) =
1− δ

2
log n + O(1),

and the last equality follows from a Taylor expansion of log(f2(ρn)) at f2(ρn) = 1 and
together with (5.23) that

log f2(ρn) = (2κησ
2
ησ

−2
ε )1/2n−(1−δ)/2−(2κησ

2
ησ

−2
ε )n−(1−δ)+

σ2
η − σ2

ε

σ2
ε

κηn
−(1−δ)+O(n−3(1−δ)/2).

Hence, (5.29) is obtained.
Second, we prove (5.30). By (5.11),

Σ(1)
η = G(1)

n D(1)
n (G(1)′

n )−1,

where G
(1)
n and D

(1)
n are given in (5.8) and (9.3) with σ2

η, κη and ρn are replaced by σ
(1)2
η ,

κ
(1)
η and ρ

(1)
n = exp(−κ

(1)
η n−(1−δ)), respectively. It follows together with (5.11),

tr(Σ(1)
η Σ−1(θ)) = tr(G(1)−1

n D(1)
n (G(1)′

n )−1G′
nT

−1
n Gn)

= tr(D(1)
n (G(1)′

n )−1G′
nT−1

n GnG
(1)−1
n )

= σ(1)2
η (1− ρ(1)2

n )tr((G(1)′
n )−1G′

nT
−1
n GnG

(1)−1
n )

+σ(1)2
η ρ(1)2

n tr(e1e
′
1(G

(1)′
n )−1G′

nT
−1
n GnG(1)−1

n ),

where e1 ≡ (1, 0, . . . , 0)′. Therefore, for (5.30) to hold, it remains to show that

e′1(GnG
(1)−1
n )′T−1

n GnG(1)−1
n e1 = O(1), (9.20)

and

tr((GnG
(1)−1
n )′T−1

n GnG
(1)−1
n ) =

n(3−δ)/2

2(2κησ2
ησ

2
ε )

1/2
+

(κη − κ
(1)
η )n

2κησ2
η

+
(κη − κ

(1)
η )2n

4κ
(1)
η κησ2

η

+o(n) + O(n1−δ). (9.21)

Before proving (9.20) and (9.21), we compute some matrices that are used very often in
the followings. First,

G(1)−1
n =




1 0 · · · 0

ρ
(1)
n 1

. . .
...

...
. . . . . . 0

ρ
(1)n−1
n · · · ρ

(1)
n 1




,
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and hence

GnG
(1)−1
n =




1 0 0 · · · 0

ρ
(1)
n − ρn 1 0 · · · 0

ρ
(1)
n (ρ

(1)
n − ρn) ρ

(1)
n − ρn 1

. . .
...

...
. . . . . . . . . 0

ρ
(1)n−2
n (ρ

(1)
n − ρn) · · · ρ

(1)
n (ρ

(1)
n − ρn) ρ

(1)
n − ρn 1




= In + (ρ(1)
n − ρn)L(1)

n , (9.22)

where

L(1)
n ≡




0 0 0 · · · 0
1 0 0 · · · 0

ρ
(1)
n 1 0

. . .
...

...
. . . . . . . . . 0

ρ
(1)n−2
n · · · ρ

(1)
n 1 0




. (9.23)

Second, for Ω defined in (5.27), we have

ΩnL
(1)
n =




0 0 0 · · · 0
1 0 0 · · · 0

g1(ρn) 1 0
. . .

...
...

. . . . . . . . . 0
gn−2(ρn) · · · g1(ρn) 1 0




, (9.24)

where for i = 1, . . . , n− 2,

gi(ρn) = f i
4(ρn) + f i−1

4 (ρn)ρ(1)
n + · · ·+ f4(ρn)ρ(1)i−1

n + ρ(1)i
n

=
ρ

(1)i+1
n − f i+1

4 (ρn)

ρ
(1)
n − f4(ρn)

. (9.25)

Now, we prove (9.20). By (9.22), it is enough to show

e′1T
−1
n e1 = O(1), (9.26)

(ρ(1)
n − ρn)2e′1L

(1)′
n T−1

n L(1)
n e1 = O(1). (9.27)

For (9.26), it follows easily from (5.14) that Cn(1, 1) = O(1). For (9.27), by (5.26) with
some c > 0 such that n∗ = n(1−δ)/2+c < n, we have

(ρ(1)
n − ρn)2e′1L

(1)′
n T−1

n L(1)
n e1 = (ρ(1)

n − ρn)2e′1L
(1)′
n

(
Tn∗ 0
0 0

)
L(1)

n e1 + o(exp(−τnc/3)

+
(ρ

(1)
n − ρn)2

f2(ρn)σ2
ε

e′1L
(1)′
n Ω′

n

(
0 0
0 In−n∗

)
ΩnL(1)

n e1

=
(ρ

(1)
n − ρn)2

f2(ρn)σ2
ε

e′1L
(1)′
n Ω′

n

(
0 0
0 In−n∗

)
ΩnL

(1)
n e1 + o(1)

= O

(
n−2(1−δ)

n∑
i=n∗

g2
i (ρn)

)

= O(1),
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where the second equality follows from

e′1L
(1)′
n

(
Tn∗ 0
0 0

)
L(1)

n e1 = O(1′n∗Tn∗1n∗)

= O(n(1−δ)/2n∗2) = o(n2(1−δ)),

and
ρ(1)

n − ρn = (κη − κ(1)
η )n−(1−δ) + O(n−2(1−δ)), (9.28)

the second last equality follows from (9.24) and (9.28), and the last equality follows from
(9.25) that

n∑
i=1

g2
i (ρn) = O

(
n1−δ

(
1

1− ρ
(1)2
n

+
1

1− f 2
4 (ρn)

− 2

1− ρ
(1)
n f4(ρn)

))
= O(n2(1−δ)).

Thus, (9.20) is obtained. Next, we prove (9.21). By (9.22), we have

tr((GnG(1)−1
n )′T−1

n GnG(1)−1
n )

= tr(T−1
n ) + 2(ρ(1)

n − ρn)tr(T−1
n L(1)

n ) + (ρ(1)
n − ρn)2tr(L(1)′

n T−1
n L(1)

n )

= 2−1(2κησ
2
ησ

2
ε )
−1/2n(3−δ)/2 + 2(ρ(1)

n − ρn)tr(T−1
n L(1)

n )

+(ρ(1)
n − ρn)2tr(L(1)′

n T−1
n L(1)

n ) + O(n1−δ),

where the second last equality follows from (5.17). Therefore, for (9.21) to hold, it remains
to show that

(ρ(1)
n − ρn)tr(T−1

n L(1)
n ) =

(κη − κ
(1)
η )

4κησ2
η

n + o(n), (9.29)

(ρ(1)
n − ρn)2tr(L(1)′

n T−1
n L(1)

n ) =
(κη − κ

(1)
η )2n

4κ
(1)
η κησ2

η

+ o(n) + O(n1−δ). (9.30)

For (9.29), we have

(ρ(1)
n − ρn)tr(T−1

n L(1)
n ) = (ρ(1)

n − ρn)tr

((
Tn∗ 0
0 0

)
L(1)

n

)

+
ρ

(1)
n − ρn

f2(ρn)σ2
ε

tr

(
Ω′

n

(
0 0
0 In−n∗

)
ΩnL

(1)
n

)
+ o(exp(−τnc/2))

=
ρ

(1)
n − ρn

f2(ρn)σ2
ε

tr

(
Ω′

n

(
0 0
0 In−n∗

)
ΩnL

(1)
n

)
+ o(n1−δ),

where the first equality follows from (5.26) and the last equality follows from (5.16) that,

(ρ(1)
n − ρn)tr

((
Tn∗ 0
0 0

)
L(1)

n

)
= O(n−(1−δ)/2(1 + 2 + · · ·+ n∗))

= O(n−(1−δ)/2n∗2)

= o(n1−δ).
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Therefore, for (9.29) to hold, it remains to show that

ρ
(1)
n − ρn

f2(ρn)σ2
ε

tr

(
Ω′

n

(
0 0
0 In−n∗

)
ΩnL

(1)
n

)

=
(ρ

(1)
n − ρn)

f2(ρn)σ2
ε

n∑
i=n∗

(gi(ρn)f i+1
4 (ρn) + gi−1(ρn)f i

4(ρn) + . . . + f4(ρn))

=
(ρ

(1)
n − ρn)

f2(ρn)σ2
ε (ρ

(1)
n − f4(ρn))

n∑
i=n∗

(
f4(ρn)ρ

(1)
n

1− f4(ρn)ρ
(1)
n

− f 2
4 (ρn)

1− f 2
4 (ρn)

)
+ o(exp(−τnc/2))

=
(κη − κ

(1)
η )n−(1−δ)

σ2
ε

n(1−δ)/2

(2κησ2
ησ

−2
ε )1/2

n(1−δ)/2

2(2κησ2
ησ

−2
ε )1/2

(n− n∗) + o(n)

=
(κη − κ

(1)
η )

4κησ2
η

n + o(n), (9.31)

where the first equality follows from (5.27) and (9.24), the second equality follows from
(5.25) and (9.25) that

(ρ(1)
n − f4(ρn))(gi(ρn)f i+1

4 (ρn) + gi−1(ρn)f i
4(ρn) + . . . + f4(ρn))

= (ρ(1)
n f4(ρn) + · · ·+ (ρ(1)

n f4(ρn))i+1)− (f 2
4 (ρn) + · · ·+ f

2(i+1)
4 (ρn))

=
ρ

(1)
n f4(ρn)

1− ρ
(1)
n f4(ρn)

− f 2
4 (ρn)

1− f 2
4 (ρn)

+ o(exp(−τnc)),

for i = n∗, . . . , n, and the third equality follows from (9.28),

1

ρ
(1)
n − f4(ρn)

=
n(1−δ)/2

(2κησ2
ησ

−2
ε )1/2

+ o(n(1−δ)/2), (9.32)

ρ
(1)
n f4(ρn)

1− ρ
(1)
n f4(ρn)

=
n(1−δ)/2

(2κησ2
ησ

−2
ε )1/2

+ o(n(1−δ)/2), (9.33)

and
f 2

4 (ρn)

1− f 2
4 (ρn)

=
n(1−δ)/2

2(2κησ2
ησ

−2
ε )1/2

+ o(n(1−δ)/2). (9.34)

Thus, (9.29) is obtained. For (9.30), we have

(ρ(1)
n − ρn)2tr(L(1)′

n T−1
n L(1)

n ) = (ρ(1)
n − ρn)2tr

(
L(1)′

n

(
Tn∗ 0
0 0

)
L(1)

n

)

+
(ρ

(1)
n − ρn)2

f2(ρn)σ2
ε

tr

(
L(1)′

n Ω′
n

(
0 0
0 In−n∗

)
ΩnL

(1)
n

)

+o(exp(−τnc/2))

=
(ρ

(1)
n − ρn)2

f2(ρn)σ2
ε

tr

(
L(1)′

n Ω′
n

(
0 0
0 In−n∗

)
ΩnL

(1)
n

)
+ o(n),

where the first equality follows from (5.26), the last equality follows from (5.16) and (9.23)
that

(ρ(1)
n − ρn)2tr

(
L(1)′

n

(
Tn∗ 0
0 0

)
L(1)

n

)
= O

(
n−3(1−δ)/2

n∗∑
i=1

(i− 1)2

)

= o(n).
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Therefore, for (9.30) to hold, it remains to show that

(ρ
(1)
n − ρn)2

f2(ρn)σ2
ε

tr

(
L(1)′

n Ω′
n

(
0 0
0 In−n∗

)
ΩnL(1)

n

)

=
(ρ

(1)
n − ρn)2

f2(ρn)σ2
ε

n∑
i=n∗+1

(1 + g2
1(ρn) + · · ·+ g2

i (ρn))

=
(ρ

(1)
n − ρn)2

f2(ρn)σ2
ε (ρ

(1)
n − f4(ρn))2

n∑
i=n∗+1

(
ρ

(1)2
n − ρ

(1)2i+4
n

1− ρ
(1)2
n

− 2ρ
(1)
n f4(ρn)

1− ρ
(1)
n f4(ρn)

+
f 2

4 (ρn)

1− f 2
4 (ρn)

)

+o(exp(−τnc/3))

=
(κη − κ

(1)
η )2n−2(1−δ)

σ2
ε (2κησ2

ησ
−2
ε )n−(1−δ)

n1−δ

2κ
(1)
η

(n− n∗) + o(n) + O(n1−δ)

=
(κη − κ

(1)
η )2

4κ
(1)
η κησ2

η

n + o(n) + O(n1−δ), (9.35)

where the first equality follows from (9.24) and (9.25), where the second equality follows
from

(ρ(1)
n − f4(ρn))2(1 + g2

1(ρn) + · · ·+ g2
i (ρn))

= (ρ(1)
n − f4(ρn))2 + (ρ(1)2

n − f 2
4 (ρn))2 + · · ·+ (ρ(1)i+1

n − f i+1
4 (ρn))2

= (ρ(1)2
n + · · ·+ ρ(1)2(i+1)

n )− 2(ρ(1)
n f4(ρn) + · · ·+ ρ(1)i+1

n f i+1
4 (ρn))

+(f 2
4 (ρn) + · · ·+ f

2(i+1)
4 (ρn))

=
ρ

(1)2
n − ρ

(1)2i+4
n

1− ρ
(1)2
n

− 2ρ
(1)
n f4(ρn)

1− ρ
(1)
n f4(ρn)

+
f 2

4 (ρn)

1− f 2
4 (ρn)

+ o(exp(−τnc/2)),

for i = n∗, . . . , n, and the third equality follows from (9.32), (9.33), (9.34) and

ρ
(1)2
n

1− ρ
(1)2
n

=
n1−δ

2κ
(1)
η

+ o(n1−δ),

n∑
i=n∗

ρ
(1)2i+4
n

1− ρ
(1)2
n

= O(n2(1−δ)).

Thus, (9.30) and hence (9.21) are obtained. It completes the proof of (5.30).
Second, we prove (5.31). By (5.30), we have

tr(ΣηΣ
−1(θ)) =

σ2
ηκη

(2κησ2
ησ

2
ε )

1/2
n(1+δ)/2 + o(nδ) + O(1),

and

tr(In) = tr(Σ(θ)Σ−1(θ)) = σ2
ε tr(Σ

−1(θ)) + tr(ΣηΣ
−1(θ)).

Then, we have

tr(Σ−1(θ)) =
1

σ2
ε

tr(In)− 1

σ2
ε

tr(ΣηΣ
−1(θ))

=
n

σ2
ε

− (2κησ
2
ησ

−2
ε )1/2

2σ2
ε

n(1+δ)/2 + o(nδ).
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Thus, (5.31) is obtained.
Third, we prove (5.32). By (5.31), we have

σ(1)
ε tr(Σ−1(θ)) =

σ
(1)2
ε

σ2
ε

n− σ
(1)2
ε

2σ2
ε

(2κησ
2
ησ

−2
ε )1/2n(1+δ)/2 + o(nδ) + O(1).

Then, by (5.30),

tr(Σ(1)Σ−1(θ)) = σ(1)
ε tr(Σ−1(θ)) + tr(Σ(1)

η Σ−1(θ))

=
σ

(1)2
ε

σ2
ε

n− σ
(1)2
ε

2σ2
ε

(2κησ
2
ησ

−2
ε )1/2n(1+δ)/2 +

σ
(1)2
η κ

(1)
η

(2κησ2
ησ

2
ε )

1/2
n(1+δ)/2

+
σ

(1)2
η κ

(1)
η (κη − κ

(1)
η )

κησ2
η

nδ +
σ

(1)2
η (κη − κ

(1)
η )2

2κησ2
η

nδ + o(nδ) + O(1).

Thus, (5.32) is obtained.
Fourth, before proving (5.33), we need several equations that are helpful in the follow-

ing. First, for some c > 0 such that n∗ = n(1−δ)/2+c < n and Ω
(3)
n defined in (5.27) with

ρn replaced by ρ
(3)
n = exp(−κ

(3)
η n−(1−δ)),

(
0 0
0 In−n∗

)
ΩnΩ

(3)′
n =

(
0 0

∗ Q
(3)
n−n∗

)
+ o(exp(−τnc)), (9.36)

where

Q
(3)
n−n∗ =

1

1− f4(ρn)f4(ρ
(3)
n )




1 f4(ρ
(3)
n ) · · · fn−n∗−1

4 (ρ
(3)
n )

f4(ρn) 1
. . .

...
...

. . . . . . f4(ρ
(3)
n )

fn−n∗−1
4 (ρn) · · · f4(ρn) 1




,

which follows from

ω′
iω

(3)
j = f

|i−j|
4 (ρ∗n)

min(i,j)∑

k=0

fk
4 (ρn)fk

4 (ρ(3)
n ) =

f
|i−j|
4 (ρ∗n)

1− f4(ρn)f4(ρ
(3)
n )

+ o(exp(−τnc/2)),

for n∗ ≤ i, j ≤ n, by (5.25), where ρ∗n = ρnI{i≤j} + ρ
(3)
n I{i>j} and ωi is the ith column of

Ω′
n.

Second, for L
(1)
n defined in (9.23),

(
0 0
0 In−n∗

)
ΩnL(1)

n Ω(3)′
n =

(
0 0

∗ Q
∗(1)
n−n∗

)
+ O(n−(1−δ)/2), (9.37)

where

Q
∗(1)
n−n∗ = O




n1−δ




f4(ρ
(3)
n ) f 2

4 (ρ
(3)
n ) · · · fn−n∗

4 (ρ
(3)
n )

ρ
(1)
n f4(ρ

(3)
n )

. . .
...

...
. . . . . . f 2

4 (ρ
(3)
n )

ρ
(1)n−n∗−1
n · · · ρ

(1)
n f4(ρ

(3)
n )







,
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which follows from (5.25), (9.24), (9.25) that for n∗ + 1 ≤ i ≤ j ≤ n,

(gi−2(ρn), · · · , g1(ρn), 1, 0, · · · , 0)ω
(3)
j

= f j−i+1
4 (ρ(3)

n )
i−1∑

k=1

gk−1(ρn)fk−1
4 (ρ(3)

n )

=
f j−i+1

4 (ρ
(3)
n )

ρ
(1)
n − f4(ρn)

(
ρ

(1)
n

1− ρ
(1)
n f4(ρ

(3)
n )

− f4(ρn)

1− f4(ρn)f4(ρ
(3)
n )

)
+ o(exp(−τnc/2))

=
f j−i+1

4 (ρ
(3)
n )

(1− ρ
(1)
n f4(ρ

(3)
n ))(1− f4(ρn)f4(ρ

(3)
n ))

+ o(exp(−τnc/2))

= O(n1−δf j−i+1
4 (ρ(3)

n )),

and for n∗ + 1 ≤ j < i ≤ n,

(gi−2(ρn), · · · , g1(ρn), 1, 0, · · · , 0)ω
(3)
j

=

j−1∑

k=0

gi−j−1+k(ρn)fk
4 (ρ(3)

n )

=
1

ρ
(1)
n − f4(ρn)

(
ρ

(1)i−j
n − ρ

(1)i−1
n

1− ρ
(1)
n f4(ρ

(3)
n )

− f i−j
4 (ρn)− f i−1

4 (ρn)f j−1
4 (ρ

(3)
n )

1− f4(ρn)f4(ρ
(3)
n )

)

= O(n1−δρ(1)i−j
n ).

Note that the result is similar when L
(1)
n is replaced by L

(1)′
n . Third, by (9.24) and (9.25),

we have
(

0 0
0 In−n∗

)
ΩnL

(1)
n L(1)′

n Ω(3)′
n =

(
0 0

∗ Q
†(1)
n−n∗

)
, (9.38)

where

Q
†(1)
n−n∗ = O




n2(1−δ)




1 ρ
(1)
n · · · ρ

(1)n−n∗−1
n

ρ
(1)
n 1

. . .
...

...
. . . . . . ρ

(1)
n

ρ
(1)n−n∗−1
n · · · ρ

(1)
n 1







,
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which follows from (9.24) and (9.25) that for n∗ + 1 ≤ i ≤ j ≤ n,

(gi−2(ρn), · · · , g1(ρn), 1, 0, · · · , 0)(gj−2(ρ
(3)
n ), · · · , g1(ρ

(3)
n ), 1, 0, · · · , 0)′

=
i−1∑

k=1

gk−1(ρn)gj−i−1+k(ρ
(3)
n )

=
1

(ρ
(1)
n − f4(ρn))(ρ

(1)
n − f4(ρ

(3)
n ))

×
(

ρ
(1)j−i+1
n − ρ

(1)i+j−2
n

1− ρ
(1)2
n

− ρ
(1)
n f j−i

4 (ρ
(3)
n )

1− ρ
(1)
n f4(ρ

(3)
n )

− ρ
(1)j−i
n f4(ρn)

1− ρ
(1)
n f4(ρn)

+
f j−i

4 (ρ
(3)
n )f4(ρn)

1− f4(ρn)f4(ρ
(3)
n )

)

+o(exp(−τnc/2)

=
1

(ρ
(1)
n − f4(ρn))(ρ

(1)
n − f4(ρ

(3)
n ))

×
(

ρ
(1)j−i+1
n − ρ

(1)i+j−2
n

1− ρ
(1)2
n

− ρ
(1)j−i
n f4(ρn)

1− ρ
(1)
n f4(ρn)

− f j−i
4 (ρ

(3)
n )(ρ

(1)
n − f4(ρn))

(1− ρ
(1)
n f4(ρ

(3)
n ))(1− f4(ρn)f4(ρ

(3)
n ))

)

+o(exp(−τnc/2)

= O(n2(1−δ)ρ(1)j−i+1
n ).

Fourth, by (5.16),
(

T−1
n∗ 0
0 0

)
= O

(
n(1−δ)/2

(
1n∗

0

)(
1n∗

0

)′)
. (9.39)

Last, by (5.25) and (5.27),
(

0 0
0 In−n∗

)
Ωn

(
1n∗

0

)
= o(exp(−τnc)). (9.40)

Now, we prove (5.33). By (5.11), we have

Σ(2)
η = G(2)−1

n D(2)
n (G(2)′

n )−1,

where G
(2)
n and D

(2)
n are given in (5.8) and (9.3) with σ2

η, κη and ρn are replaced by σ
(2)2
η ,

κ
(2)
η and ρ

(2)
n = exp(−κ

(2)
η n−(1−δ)), respectively. It follows together with (5.11),

tr(Σ(1)
η Σ−1(θ)Σ(2)

η Σ(3)−1)

= tr(G(1)−1
n D(1)

n (G(1)′
n )−1G′

nT
−1
n GnG(2)−1

n D(2)
n (G(2)′

n )−1G(3)′
n T (3)−1

n G(3)
n )

= σ(1)2
η (1− ρ(1)2

n )tr((G(1)′
n )−1G′

nT−1
n GnG

(2)−1
n D(2)

n (G(2)′
n )−1G(3)′

n T (3)−1
n G(3)

n G(1)−1
n )

+σ(1)2
η ρ(1)2

n tr(e1e
′
1(G

(1)′
n )−1G′

nT
−1
n GnG(2)−1

n D(2)
n (G(2)′

n )−1G(3)′
n T (3)−1

n G(3)
n G(1)−1

n ),

where e1 = (1, 0, . . . , 0)′. Therefore, for (5.33) to hold, it remains to show that

e′1(GnG(1)−1
n )′T−1

n GnG
(2)−1
n e1e

′
1(G

(2)′
n )−1G(3)′

n T (3)−1
n G(3)

n G(1)−1
n e1 = O(1),(9.41)

(1− ρ(1)2
n )tr((GnG(1)−1

n )′T−1
n GnG

(2)−1
n e1e

′
1(G

(3)
n G(2)−1

n )T (3)−1
n G(3)

n G(1)−1
n ) = O(nδ),(9.42)

and

tr((GnG
(1)−1
n )′T−1

n GnG
(2)−1
n (G(3)

n G(2)−1
n )′T (3)−1

n G(3)
n G(1)−1

n )

=
n(5−3δ)/2

25/2(κησ2
ηκ

(3)
η σ

(3)2
η )1/2((κησ2

ησ
(3)2
ε )1/2 + (κ

(3)
η σ

(3)2
η σ2

ε )
1/2)

+ O(n2−δ), (9.43)
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For (9.41), it follows easily from (9.20). For (9.42), by (5.26), it is enough to show that

e′1(GnG
(1)−1
n )′

(
T−1

n∗ 0
0 0

)
GnG

(2)−1
n (GnG(2)−1

n )′
(

T−1
n∗ 0
0 0

)
GnG(1)−1

n e1 = o(n),(9.44)

and

e′1(GnG(1)−1
n )′Ω′

n

(
0 0
0 In−n∗

)
ΩnGnG(2)−1

n (GnG
(2)−1
n )′Ω′

n

(
0 0
0 In−n∗

)
ΩnGnG

(1)−1
n e1

= O(n). (9.45)

For (9.44), by (9.22) and (9.39), we have

e′1(GnG
(1)−1
n )′

(
T−1

n∗ 0
0 0

)
GnG

(2)−1
n (GnG(2)−1

n )′
(

T
(3)−1
n∗ 0
0 0

)
GnG(1)−1

n e1

= O

(
n2c

(
1n∗

0

)′
GnG(2)−1

n (GnG
(2)−1
n )′

(
1n∗

0

))

= O(n2cn∗) = O(n(1−δ)/2+3c) = o(n).

For (9.45), we have

e′1Ω
′
n

(
0 0
0 In−n∗

)
= o(exp(−τnc/2)),

e′1L
(1)′
n Ω′

n

(
0 0
0 In−n∗

)
Ωn = O

(
1

(1− f4(ρn))2
1n

)
= O(n1−δ1n),

and hence by (9.22) that,

e′1L
(1)′
n Ω′

n

(
0 0
0 In−n∗

)
ΩnGnG(2)−1

n = O(n1−δ1n).

It then follows

e′1(GnG(1)−1
n )′Ω′

n

(
0 0
0 In−n∗

)
ΩnGnG(2)−1

n (GnG
(2)−1
n )′Ω′

n

(
0 0
0 In−n∗

)
ΩnGnG

(1)−1
n e1

= (ρ(1)
n − ρn)2e′1L

(1)′
n Ω′

n

(
0 0
0 In−n∗

)
ΩnGnG

(2)−1
n (GnG(2)−1

n )′Ω′
n

(
0 0
0 In−n∗

)
ΩnL

(1)
n e1

+o(exp(−τnc/2))

= O((ρ(1)
n − ρn)2n2(1−δ)n)

= O(n).
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Thus, (9.45) and hence (9.42) are obtained. Last, we prove (9.43). By (9.22),

tr((G(1)′
n )−1G′

nT
−1
n GnG(2)−1

n (G(2)′
n )−1G(3)′

n T (3)−1
n G(3)

n G(1)−1
n )

= tr(T−1
n T (3)−1

n ) + ((ρ(1)
n − ρ(3)

n ) + (ρ(1)
n − ρn))tr(L(1)′T−1

n T (3)−1
n )

+((ρ(2)
n − ρ(3)

n ) + (ρ(2)
n − ρn))tr(T−1

n L(2)′T (3)−1
n )

+((ρ(1)
n − ρn)(ρ(2)

n − ρn) + (ρ(2)
n − ρ(3)

n )(ρ(1)
n − ρ(3)

n ))tr(L(1)′
n T−1

n L(2)
n T (3)−1

n )

+((ρ(1)
n − ρn)(ρ(2)

n − ρ(3)
n ) + (ρ(2)

n − ρn)(ρ(1)
n − ρ(3)

n ))tr(L(1)
n T−1

n L(2)
n T (3)−1

n )

+(ρ(1)
n − ρn)(ρ(1)

n − ρ(3)
n )tr(L(1)′

n T−1
n T (3)−1

n L(1)
n )

+(ρ(2)
n − ρn)(ρ(2)

n − ρ(3)
n )tr(T−1

n L(2)
n L(2)′

n T (3)−1
n )

+(ρ(1)
n − ρn)(ρ(2)

n − ρn)(ρ(2)
n − ρ(3)

n )tr(L(1)′
n T−1

n L(2)
n L(2)′

n T (3)−1
n )

+(ρ(2)
n − ρn)(ρ(2)

n − ρ(3)
n )(ρ(1)

n − ρ(3)
n )tr(T−1

n L(2)
n L(2)′

n T (3)−1
n L(1)

n )

+(ρ(2)
n − ρ(3)

n )(ρ(1)
n − ρ(3)

n )(ρ(1)
n − ρn)tr(L(1)′

n T−1
n L(2)′

n T (3)−1
n L(1)

n )

+(ρ(1)
n − ρ(3)

n )(ρ(1)
n − ρn)(ρ(2)

n − ρn)tr(L(1)′
n T−1

n L(2)
n T (3)−1

n L(1)
n )

+(ρ(1)
n − ρn)(ρ(2)

n − ρn)(ρ(2)
n − ρ(3)

n )(ρ(1)
n − ρ(3)

n )tr(L(1)′
n T−1

n L(2)
n L(2)′

n T (3)−1
n L(1)

n ).(9.46)

Therefore, (9.43) to hold, it is enough to show that

tr(T−1
n T (3)−1

n ) =
n(5−3δ)/2

25/2(κησ2
ηκ

(3)
η σ

(3)2
η )1/2((κησ2

ησ
(3)2
ε )1/2 + (κ

(3)
η σ

(3)2
η σ2

ε )
1/2)

+ O(n2−δ),(9.47)

tr(T−1
n T (3)−1

n L(1)
n ) = O(n3−δ), (9.48)

tr(L(1)′
n T−1

n L(2)
n T (3)−1

n ) = O(n4−3δ), (9.49)

tr(T−1
n L(2)

n L(2)′
n T (3)−1

n ) = O(n4−3δ), (9.50)

tr(L(1)′
n T−1

n L(2)
n L(2)′

n T (3)−1
n ) = O(n5−4δ), (9.51)

tr
(
T−1

n L(2)
n L(2)′

n T−1
n L(1)

n L(1)′
n

)
= O(n6−5δ). (9.52)

For (9.47), it follows from (5.18). For (9.48), we have

tr(T−1
n T (3)−1

n L(1)
n )

= tr

((
T−1

n∗ 0
0 0

)(
T

(3)−1
n∗ 0
0 0

)
L(1)

n

)

+
1

f2(ρ
(3)
n )σ

(3)2
ε

tr

((
T−1

n∗ 0
0 0

)
Ω(3)′

n

(
0 0
0 In−n∗

)
Ω(3)

n L(1)
n

)

+
1

f2(ρn)σ2
ε

tr

(
Ω′

n

(
0 0
0 In−n∗

)
Ωn

(
T

(3)−1
n∗ 0
0 0

)
L(1)

n

)

+
1

f2(ρn)σ2
ε f2(ρ

(3)
n )σ

(3)2
ε

tr

((
0 0
0 In−n∗

)
ΩnΩ

(3)′
n

(
0 0
0 In−n∗

)
Ω(3)

n L(1)
n Ω′

n

)

=
1

f2(ρn)σ2
ε f2(ρ

(3)
n )σ

(3)2
ε

tr

((
0 0

∗ Q
(3)
n−n∗

)(
0 0

∗ Q
∗(1)
n−n∗

))
+ o(n3−2δ)

= O(n3−2δ),
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where the first equality follows from (5.26), the second equality follows (9.36), (9.37),

tr

(
L(1)

n

(
T−1

n∗ 0
0 0

)(
T

(3)−1
n∗ 0
0 0

))

= O

(
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by (9.39) that
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Thus, (5.33) is obtained.
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It then follows that
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where the second equality follows from (5.31) and (5.34). Thus, we completes the proof.
2

Proof of Lemma 9

First, we prove (5.37). By (5.8) and (5.11), we have
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where the last equality follows from (5.13) and (9.11),
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with ψb
k ≡ n−k(0, 1k, . . . , (n− 1)k). Therefore, for (9.58) to hold, it remains to show that

(1− ρn)21′T−1
n ψk =

κη

2σ2
η(k + 1)

nδ + o(nδ), (9.60)

ρn(1− ρn)1′T−1
n (ψk −ψb

k) =
1

2σ2
η

+ o(1), (9.61)

ρn(1− ρn)e′1T
−1
n ψk = o(1), (9.62)

ρ2
ne′1T

−1
n (ψk −ψb

k) = o(1). (9.63)
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For (9.60),

(1− ρn)21′T−1
n ψk

= (1− ρn)21′
(

T−1
n∗ 0
0 0

)
ψk +

(1− ρn)2

f2(ρn)σ2
ε

1′Ω′
n

(
0 0
0 In−n∗

)
Ωnψk + o(exp(−τnc/2))

=
(1− ρn)2

f2(ρn)σ2
ε

n∑
i=n∗+1

(ω′
i1)(ω′

iψk) + o(1)

=
(1− ρn)2

(f2(ρn)σ2
ε )(1− f4(ρn))2

n∑
i=n∗+1

(
i

n

)k

+ o(1)

= κ2
ηn

−2(1−δ) n1−δ

2κησ2
ησ

2
ε

1

σ2
ε

n

k + 1
+ o(nδ)

=
κη

2σ2
η(k + 1)

nδ + o(nδ),

where the first equality follows from (5.26), the second equality follows from (9.39) that

(1− ρn)21′
(

T−1
n∗ 0
0 0

)
ψk = O(n−2(1−δ)n(1−δ)/2n∗2) = o(1),

ωi is the ith column of Ωn and the third equality follows from

ω′
iψk =

1

1− f4(ρn)

(
i

n

)k

+ O(n−δ), (9.64)

which will be proved later, and the fourth equality follows from that for k ≥ 1,

n∑
i=n∗

(
i

n

)k

= (k + 1)−1n + o(n). (9.65)

We now prove (9.64). It follows from

ω′
iψk − f4(ρn)ω′

iψk =
i∑

j=1

f i−j
4 (ρn)

(
i

n

)k

− f4(ρn)
i∑

j=1

f i−j
4 (ρn)

(
j

n

)k

=

(
i

n

)k

− f i
4(ρn)

(
1

n

)k

+
i−1∑
j=1

f i−j
4 (ρn)

((
j

n

)k

−
(

j − 1

n

)k
)

=

(
i

n

)k

+
i−1∑
j=1

f i−j
4 (ρn)

((
j

n

)k

−
(

j − 1

n

)k
)

+ o(exp(−τnc))

=

(
i

n

)k

+
k

n

i−1∑
j=1

f i−j
4 (ρn)

(
j

n

)k−1

+ o(n−1)

=

(
i

n

)k

+ O(n−(1+δ)/2),

where the third equality follows from the Taylor’s expansion directly,

(
j

n

)k

−
(

j − 1

n

)k

=
k

n

(
j

n

)k−1

+ O(n−2), (9.66)
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and the second last equality follows from

k

n

i−1∑
j=1

f i−j
4 (ρn)

(
j

n

)k−1

≤ k

n

i−1∑
j=1

f i−j
4 (ρn) =

k

n

f4(ρn)

1− f4(ρn)
+ o(exp(−τnc)) = O(n−(1+δ)/2).

For (9.61), we have

ρn(1− ρn)1′T−1
n (ψk −ψb

k) = ρn(1− ρn)1′
(

T−1
n∗ 0
0 0

)
(ψk −ψb

k)

+
ρn(1− ρn)

f2(ρn)σ2
ε

1′Ω′
n

(
0 0
0 In−n∗

)
Ωn(ψk,1 −ψb

k,1)

+o(exp(−τnc/3))

=
ρn(1− ρn)

f2(ρn)σ2
ε

n∑
i=n∗

(ω′
i1)(ω′

i(ψk −ψb
k)) + o(1)

=
ρn(1− ρn)

f2(ρn)σ2
ε (1− f4(ρn))2

k

n

n∑
i=n∗

(
i

n

)k−1

+ o(1)

= κηn
−(1−δ) n1−δ

2κησ2
ησ

−2
ε

1

σ2
ε

k

n

n

k
+ o(1)

=
1

2σ2
η

+ o(1),

where the first equality follows from (5.26), the second equality follows from (9.39) and
ψk −ψb

k = O(n−1) that

ρn(1− ρn)1′
(

T−1
n∗ 0
0 0

)
(ψk −ψb

k) = O(n−(1−δ)n(1−δ)/2n−1n2∗) = o(1),

the third equality follows from (9.64) and (9.66) that

ω′
i(ψk −ψb

k) =
k

n
ωjψk−1 + o(n−(3+δ)/2)

=
k

n

1

1− f4(ρn)

(
i

n

)k−1

+ o(n−(1+δ)), (9.67)

and the second last equality follows from (9.65). For (9.62), by (5.14), and (9.11),

ρn(1− ρn)e′1T
−1
n ψk = ρn(1− ρn)(Cn(1, 1), . . . , Cn(1, n))ψk

= ρn(1− ρn)
f2(ρn)

(σ2
η + σ2

ε )f2(ρn)− ρ2
nσ2

ε

n−n∗∑
i=1

f i−1
4 (ρn)

(
i

n

)k

+o(exp(−τnc/2))

= o(1),

where the last equality follows from

n−n∗∑
i=1

f4(ρn)i−1

(
i

n

)k

≤
n−n∗∑
i=1

f4(ρn)i−1 =
1

1− f4(ρn)
+ o(exp(−τnc)).
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For (9.63), we have

ρ2
ne′1T

−1
n (ψk −ψb

k) = ρ2
n(Cn(1, 1), . . . , Cn(1, n))(ψk −ψb

k) = O(n−(1+δ)/2).

Hence, (9.58) is obtained. It now remains to show that (5.36) for k, ` ≥ 1. For k, ` ≥ 1,
we have

ψ′
kΣ

−1ψ` = ψ′
kG

′
nT−1

n Gnψ

= ((1− ρn)ψk + ρn(ψk −ψb
k))

′T−1
n ((1− ρn)ψ` + ρn(ψ` −ψb

`))

= (1− ρn)2ψ′
kT

−1
n ψ` + ρn(1− ρn)ψ′

kT
−1
n (ψ` −ψb

`)

+ρn(1− ρn)(ψk −ψb
k)
′T−1

n ψ` + ρ2
n(ψk −ψb

k)
′T−1

n (ψ` −ψb
`),

where the first equality follows from (5.11) and the second equality follows from (9.59).
Therefore, for (5.36) to hold, it remains to show that

(1− ρn)2ψ′
kT

−1
n ψ` =

κη

2σ2
η(k + ` + 1)

nδ + o(nδ), (9.68)

ρn(1− ρn)ψ′
kT

−1
n (ψ` −ψb

`) =
1

2σ2
ε

k

k + `
+ o(1), (9.69)

ρ2
n(ψk −ψb

k)
′T−1

n (ψ` −ψb
`) =

k`n−δ

2κησ2
η(k + `− 1)

+ o(1). (9.70)

For (9.68), we have

(1− ρn)2ψ′
kT

−1
n ψ` = (1− ρn)2ψ′

k

(
T−1

n∗ 0
0 0

)
ψ` +

(1− ρn)2

f2(ρn)σ2
ε

ψ′
kΩ

′
n

(
0 0
0 In−n∗

)
Ωnψ`

+o(exp(−τnc/3)

=
(1− ρn)2

f2(ρn)σ2
ε

n∑
j=n∗+1

(ω′
jψk)(ω

′
jψ`) + o(1)

=
(1− ρn)2

(f2(ρn)σ2
ε )(1− f4(ρn))2

n∑
i=n∗+1

(
i

n

)k+`

+ o(1)

= κ2
ηn

2δ−2 n1−δ

2κησ2
ησ

−2
ε

1

σ2
ε

n

k + ` + 1
+ o(nδ)

=
κη

2σ2
η(k + ` + 1)

nδ + o(nδ),

where the first equality follows from (5.26), the second equality follows from (9.39) that

(1− ρn)2ψ′
k

(
T−1

n∗ 0
0 0

)
ψ` = O(n−2(1−δ)n−(1−δ)/2n∗2) = o(1),

the third equality follows from (9.64), and the fourth equality follows from (5.22), (9.11)
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and (9.65). For (9.69), we have

ρn(1− ρn)ψ′
kT

−1
n (ψ` −ψb

`)

= ρn(1− ρn)ψ′
k

(
T−1

n∗ 0
0 0

)
(ψk −ψb

k) +
ρn(1− ρn)

f2(ρn)σ2
ε

ψ′
kΩ

′
n

(
0 0
0 In−n∗

)
Ωnψ`

+o(exp(−τnc/3))

=
ρn(1− ρn)

f2(ρn)σ2
ε

n∑
i=n∗+1

(ω′
iψk)(ω

′
i(ψ` −ψb

`)) + o(1)

=
ρn(1− ρn)

f2(ρn)σ2
ε (1− f4(ρn))2

k

n

n∑
i=n∗+1

(
i

n

)`+k−1

+ o(1)

= κηn
−(1−δ) 1

σ2
ε

n1−δ

2κησ2
ησ

−2
ε

k

n

n

k + `
+ o(1)

=
1

2σ2
ε

k

k + `
+ o(1),

where the first equality follows from (5.26), the second equality follows from (9.39) and
ψk −ψb

k = O(n−1) that

ρn(1− ρn)ψ′
k

(
T−1

n∗ 0
0 0

)
(ψk −ψb

k) = O(n−(1−δ)n−(1−δ)/2n−1n∗2) = o(1),

the third equality follows from (9.64), (9.67) and the fourth equality follows from (5.22),
(9.11) and (9.65). For (9.70), we have

ρ2
n(ψk −ψb

k)
′T−1

n (ψ` −ψb
`)

= ρ2
n(ψk −ψb

k)
′
(

T−1
n∗ 0
0 0

)
(ψk −ψb

k)

+
ρ2

n

f2(ρn)σ2
ε

(ψk −ψb
k)
′Ω′

n

(
0 0
0 In−n∗

)
Ωn(ψk −ψb

k) + o(exp(−τnc/3))

=
ρ2

n

f2(ρn)σ2
ε

n∑
i=n∗

(ω′
i(ψk −ψb

k))(ω
′
i(ψ` −ψb

`)) + o(1)

=
ρ2

n

f2(ρn)σ2
ε

k`

n2

n∑
i=n∗+1

(
i

n

)k+`−2

+ o(1)

= n−2 n1−δ

2κησ2
ησ

−2
ε

1

σ2
ε

nk`

k + `− 1
+ o(1)

=
k`n−δ

2κησ2
η(k + `− 1)

+ o(1),

where the first equality follows from (5.26), the second equality follows from (9.39) and
ψk −ψb

k = O(m−1) that

ρ2
n(ψk −ψb

k)
′
(

T−1
n∗ 0
0 0

)
(ψk −ψb

k) = O(n−2n(1−δ)/2n∗2) = o(1),

the third equality follows from (9.67), and fourth equality follows from (5.22), (9.11) and
(9.65). Hence, (5.36) is obtained.
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Finally, we prove (5.38). It follows easily that

ψ′
kΣ

−2(θ)ψk = O(ψ′
kΣ

−1(θ)ψk).

It then suffices to show that

ψkΣ
−1(θ)Σ(1)

η Σ−1(θ)ψ` = O(nδ). (9.71)

For k ≥ 0, we have

ψ′
kΣ

−1(θ)Σ(1)
η Σ−1(θ)ψk = ψ′

kG
′
nT−1

n GnG
(1)−1
n D(1)

n (G(1)−1
n )′G′

nT−1
n Gnψk

= σ(1)2
η (1− ρ(1)2

n )ψ′
kG

′
nT

−1
n GnG

(1)−1
n (G(1)−1

n )′G′
nT

−1
n Gnψk

+σ(1)2
η ρ(1)2

n ψ′
kG

′
nT

−1
n GnG

(1)−1
n e1e

′
1(G

(1)−1
n )′G′

nT−1
n Gnψk,

where the first equality follows from (5.11) and

Σ(1)
η = G(1)−1

n D(1)
n (G(1)−1

n )′,

G
(1)
n and D

(1)
n are given in (5.8) and (9.3) with σ2

η, κη and ρn are replaced by σ
(1)2
η , κ

(1)
η

and ρ
(1)
n = exp(−κ

(1)
η n−(1−δ)), respectively. Therefore, for (9.71) to hold, it remains to

show that

ψ′
kG

′
nT−1

n GnG
(1)−1
n e1 = O(1), (9.72)

(1− ρ(1)2
n )ψ′

kG
′
nT−1

n GnG
(1)−1
n (G(1)−1

n )′G′
nT

−1
n Gnψk = O(nδ). (9.73)

For (9.72), by (9.22) and (9.59), we have

ψ′
kG

′
nT

−1
n GnG(1)−1

n e1 = ((1− ρn)ψk + ρn(ψk −ψb
k))

′T−1
n (e1 + (ρ(1)

n − ρn)L(1)
n e1)

= (1− ρn)ψ′
kT

−1
n e1 + ρn(ψk −ψb

k))
′T−1

n e1

+(1− ρn)(ρ(1)
n − ρn)ψ′

kT
−1
n L(1)

n e1

+ρn(ρ(1)
n − ρn)(ψk −ψb

k))
′T−1

n L(1)
n e1

= (1− ρn)(ρ(1)
n − ρn)1′T−1

n L(1)
n e1 + o(1),

where the last equality follows from (9.62), (9.63) and by (9.55) that

(ρ(1)
n − ρn)e′1T

−1
n L(1)

n e1 ≤ (ρ(1)
n − ρn)e′1T

−1
n 1 = o(1).

Therefore, for (9.72) to hold, it is enough to show that

(1− ρn)(ρ(1)
n − ρn)ψ′

kT
−1
n L(1)

n e1

= (1− ρn)(ρ(1)
n − ρn)ψ′

k

(
T−1

n∗ 0
0 0

)
L(1)

n e1

+
(1− ρn)(ρ

(1)
n − ρn)

f2(ρn)σ2
ε

ψ′
kΩ

′
n

(
0 0
0 In−n∗

)
ΩnL(1)

n e1 + o(exp(−τnc/3))

=
(1− ρn)(ρ

(1)
n − ρn)

f2(ρn)σ2
ε

ψ′
kΩ

′
n

(
0 0
0 In−n∗

)
ΩnL

(1)
n e1 + o(1)

=
(1− ρn)(ρ

(1)
n − ρn)

f2(ρn)σ2
ε (1− f4(ρn))

n∑
i=n∗

(
i

n

)k

gi(ρn) + o(1)

= O

(
n−2(1−δ)n(1−δ)/2

n∑
i=n∗

gi(ρn)

)

= O(1),
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where the first equality follows from (5.26), the second equality follows from (9.39) that

(1− ρn)(ρ(1)
n − ρn)ψ′

k

(
T−1

n∗ 0
0 0

)
L(1)

n e1 = O(n−2(1−δ)n(1−δ)/2n∗2) = o(1),

the third equality follows from (9.64) and (9.24), and the last equality follows from (9.25)
that

n∑
i=n∗

gi(ρn) = O(n3(1−δ)/2).

Hence, (9.72) is obtained. For (9.73), we have

(1− ρ(1)2
n )ψ′

kG
′
nT

−1
n GnG(1)−1

n (G(1)−1
n )′G′

nT−1
n Gnψk

= (1− ρ(1)2
n )((1− ρn)ψk + ρn(ψk −ψb

k))
′T−1

n GnG
(1)−1
n (G(1)−1

n )′G′
nT−1

n

×((1− ρn)ψk + ρn(ψk −ψb
k))

= (1− ρ(1)2
n )(1− ρn)2ψ′

kT
−1
n GnG(1)−1

n (G(1)−1
n )′G′

nT
−1
n ψk

+2ρn(1− ρ(1)2
n )(1− ρn)ψ′

kT
−1
n GnG

(1)−1
n (G(1)−1

n )′G′
nT−1

n (ψk −ψb
k)

+ρ2
n(1− ρ(1)2

n )(ψk −ψb
k)
′T−1

n GnG(1)−1
n (G(1)−1

n )′G′
nT−1

n (ψk −ψb
k).

Therefore, for (9.73) to hold, it suffices to show that

(1− ρ(1)2
n )(ψk −ψb

k)
′T−1

n GnG
(1)−1
n (G(1)−1

n )′G′
nT−1

n (ψk −ψb
k) = O(nδ), (9.74)

(1− ρ(1)2
n )(1− ρn)2ψ′

kT
−1
n GnG

(1)−1
n (G(1)−1

n )′G′
nT−1

n ψk = O(nδ). (9.75)

For (9.74), by (9.22), we have

(1− ρ(1)2
n )(ψk −ψb

k)
′T−1

n GnG
(1)−1
n (G(1)−1

n )′G′
nT

−1
n (ψk −ψb

k)

= (1− ρ(1)2
n )(ψk −ψb

k)
′T−2

n (ψk −ψb
k)

+2(1− ρ(1)2
n )(ρ(1)

n − ρn)(ψk −ψb
k)
′T−1

n L(1)
n T−1

n (ψk −ψb
k)

+(1− ρ(1)2
n )(ρ(1)

n − ρn)2(ψk −ψb
k)
′T−1

n L(1)
n L(1)′

n T−1
n (ψk −ψb

k).

Therefore, for (9.74) to hold, it remains to show that

(1− ρ(1)2
n )(ψk −ψb

k)
′T−2

n (ψk −ψb
k) = O(nδ), (9.76)

(1− ρ(1)2
n )(ρ(1)

n − ρn)2(ψk −ψb
k)
′T−1

n L(1)
n L(1)′

n T−1
n (ψk −ψb

k) = O(nδ). (9.77)

For (9.76), by (9.66), we have

(1− ρ(1)2
n )(ψk −ψb

k)
′T−2

n (ψk −ψb
k) = O(n−(3−δ)ψ′

k−1T
−2
n ψk−1) = O(n−(3−δ)1′T−2

n 1).

Hence, for (9.76) to hold, it is enough to show that

1′T−2
n 1 = (1− ρ(1)2

n )(1− ρn)21′
(

T−2
n∗ 0
0 0

)
1

+
2

f4(ρn)σ2
ε

1′
(

T−1
n∗ 0
0 0

)
Ω′

n

(
0 0
0 In−n∗

)
Ωn1

+
1

(f4(ρn)σ2
ε )

2
1′Ω′

n

(
0 0
0 In−n∗

)
ΩnΩ

′
n

(
0 0
0 In−n∗

)
Ωn1 + o(exp(−τnc/3))

= O(n3−2δ), (9.78)
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where the first equality follows from (5.26) and the last equality follows from (9.39) that

1′
(

T−2
n∗ 0
0 0

)
1 = O(n1−δn∗2) = O(n2(1−δ+c)),

and by (9.57), (9.36) with ρ
(1)
n = ρn that,

1′Ω′
n

(
0 0
0 In−n∗

)
ΩnΩ

′
n

(
0 0
0 In−n∗

)
Ωn1

=
1

(f4(ρn)σ2
ε )

2(1− f4(ρn))2
1′Q(3)

n−n∗1 + o(1)

= O

(
n1−δ 1

1− f 2
4 (ρn)

(
2

n−n∗∑
i=0

(n− n∗ − i)f i
4(ρn)− (n− n∗)

))

= O

(
n1−δ 1

1− f 2
4 (ρn)

(
n− n∗

1− f4(ρn)
− f4(ρn)

(1− f4(ρn))2

))

= O(n3−2δ).

Thus, (9.76) is obtained. For (9.77), by (9.66), we have

(1− ρ(1)2
n )(ρ(1)

n − ρn)2(ψk −ψb
k)
′T−1

n L(1)
n L(1)′

n T−1
n (ψk −ψb

k)

= O(n−3(1−δ)n−2ψ′
k−1T

−1
n L(1)

n L(1)′
n T−1

n ψk−1)

= O(n−(5−3δ)1′T−1
n L(1)

n L(1)′
n T−1

n 1).

Thus, for (9.77) to hold, it is enough to show that

1′T−1
n L(1)

n L(1)′
n T−1

n 1

= 1′
(

T−1
n∗ 0
0 0

)
L(1)

n L(1)′
n

(
T−1

n∗ 0
0 0

)
1

+
2

f2(ρn)σ2
ε

1′
(

T−1
n∗ 0
0 0

)
L(1)

n L(1)′
n Ω′

n

(
0 0
0 In−n∗

)
Ωn1

+
2

(f2(ρn)σ2
ε )

2
1′Ω′

n

(
0 0
0 In−n∗

)
ΩnL

(1)
n L(1)′

n Ω′
n

(
0 0
0 In−n∗

)
Ωn1 + o(exp(−τnc/3))

= O(n5−4δ), (9.79)

where the first equality follows from(5.26) and the last equality follows from (9.39) and
(9.23) that

1′
(

T−1
n∗ 0
0 0

)
L(1)

n L(1)′
n

(
T−1

n∗ 0
0 0

)
1

= O

(
n(1−δ)1′

(
1n∗

0

)(
1n∗

0

)′
L(1)

n L(1)′
n

(
1n∗

0

)(
1n∗

0

)′
1

)

= O(n(1−δ)n∗2(n∗, n∗ − 1, · · · , 1)′(n∗, n∗ − 1, · · · , 1))

= O(n(1−δ)n∗5) = O(n5−4δ),
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and by (9.57) and (9.38) with ρ
(3)
n = ρn that,

1′Ω′
n

(
0 0
0 In−n∗

)
ΩnL

(1)
n L(1)′

n Ω′
n

(
0 0
0 In−n∗

)
Ωn1

= O

(
1

(1− f4(ρn))2
1Q

†(1)
n−n∗1

)

= O

(
n3(1−δ)

(
2

n−n∗∑
i=0

(n− n∗ − i)ρi
n − (n− n∗)

))

= O

(
n3(1−δ)

(
n− n∗

1− ρn

− 1

(1− ρn)2

))
= O(n5−4δ).

Thus, (9.74) is obtained. For (9.75), we have

(1− ρ(1)2
n )(1− ρn)2ψ′

kT
−1
n GnG(1)−1

n (G(1)−1
n )′G′

nT−1
n ψk

= (1− ρ(1)2
n )(1− ρn)2ψ′

kT
−2
n ψk + 2(1− ρ(1)2

n )(1− ρn)2(ρ(1)
n − ρn)ψ′

kT
−1
n L(1)

n T−1
n ψk

+(1− ρ(1)2
n )(1− ρn)2(ρ(1)

n − ρn)2ψ′
kT

−1
n L(1)

n L(1)′
n T−1

n ψk

= O(nδ),

where the first equality follows from (9.22) and the last equality follows from (9.78) that

(1− ρ(1)2
n )(1− ρn)2ψ′

kT
−2
n ψk = O(n−3(1−δ)1′T−2

n 1) = O(n−3(1−δ)n3−2δ) = O(nδ),

and by (9.79) that

(1− ρ(1)2
n )(1− ρn)2(ρ(1)

n − ρn)2ψ′
kT

−1
n L(1)

n L(1)′
n T−1

n ψk = O(n−5(1−δ)1′T−1
n L(1)

n L(1)′
n T−1

n 1)

= O(n−5(1−δ)n5−4δ) = O(nδ).

Thus (9.75) and hence (9.71). This completes the proof. 2

Proof of Lemma 10

For (5.39) and (5.40), it follows by applying Taylor expansions on the lefthand sides of
(5.39) and (5.40) at σ2

ε = σ2. Similarly, (5.41) follows by applying a Taylor expansion on
the lefthand side of (5.41) at κησ

2
η = τ .

For (5.42), we have

tr(ΣjΣ
−1(θ)Σj′Σ

−1(θ)) + tr(ΣjΣ
−1((σ2

η, κη, σ
2)′)Σj′Σ

−1((σ2
η, κη, σ

2)′))

−tr(ΣjΣ
−1(θ)Σj′Σ

−1((σ2
η, κη, σ

2)′))− tr(ΣjΣ
−1((σ2

η, κη, σ
2)′)Σj′Σ

−1(θ))

=

(
κjσ

2
j κj′σ

2
j′

σε(2κησ2
η)

3/2
+

κjσ
2
j κj′σ

2
j′

σ(2κησ2
η)

3/2
− 4κjσ

2
j κj′σ

2
j′

(σε + σ)(2κησ2
η)

3/2

)
n(1+δ)/2 + O(nδ)

=
κjσ

2
j κj′σ

2
j′

23/2(κηση)3/2

(
(σε − σ)2

σεσ(σε + σ)

)
n(1+δ)/2 + O(nδ)

=
κjσ

2
j κj′σ

2
j′

29/2τ 3/2σ3
(σ2

ε − σ2)2n(1+δ)/2 + o((σ2
ε − σ2)2n(1+δ)/2) + O(nδ),

where the second equality follows from (5.33) and the last equality follows from |σ2
ε−σ2| =

o(1) and |κησ
2
η − τ | = o(1).
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For (5.43), we have

tr(ΣjΣ
−2(θ)) + tr(ΣjΣ

−2((σ2
η, κη, σ

2)′))− tr(ΣjΣ
−1(θ)Σ−1((σ2

η, κη, σ
2)′))

−tr(ΣjΣ
−1((σ2

η, κη, σ
2)′)Σ−1(θ))

=

(
κjσ

2
j

23/2σ3
ε (κησ2

η)
1/2

+
κjσ

2
j

23/2σ3(κησ2
η)

1/2
− 2κjσ

2
j

21/2σεσ(σε + σ)(κησ2
η)

1/2

)
n(1+δ)/2 + O(nδ)

=
κjσ

2
j

23/2(κησ2
η)

1/2

(
(σ2

ε − σ2)2 + σεσ(σε − σ)2

σ3
ε σ

3(σε + σ)

)
n(1+δ)/2 + O(nδ)

=
5κjσ

2
j

29/2τ 1/2σ7
(σ2

ε − σ2)2n(1+δ)/2 + o((σ2
ε − σ2)2n(1+δ)/2) + O(nδ),

where the second equality follows from (5.34) and the last equality follows from |σ2
ε−σ2| =

o(1) and |κησ
2
η − τ | = o(1).

For (5.44), we have

tr(Σ−2(θ)) + tr(Σ−2((σ2
η, κη, σ

2)′))− 2tr(Σ−1(θ)Σ−1((σ2
η, κη, σ

2)′))

=

(
n

σ4
ε

− 3(2κησ
2
η)

1/2n(1+δ)/2

4σε

)
+

(
n

σ4
− 3(2κησ

2
η)

1/2n(1+δ)/2

4σ

)

−2

(
n

σ2
ε σ

2
− 2(2κησ

2
η)

1/2(σ2
ε + σ2 + σεσ)n(1+δ)/2

2σεσ(σε + σ)

)
+ O(nδ)

=
(σ2

ε − σ2)2

σ4
ε σ

4
n +

(2κησ
2
η)

1/2

4

(
(σε − σ)2

σεσ(σε + σ)

)
n(1+δ)/2 + O(nδ)

=
1

σ8
(σ2

ε − σ2)2n + o((σ2
ε − σ2)2n) + o((σ2

ε − σ2)n(1+δ)/2) + O(nδ),

where the second equality follows from (5.35) and the last equality follows from |σ2
ε−σ2| =

o(1).
For (5.45), we have

tr(ΣjΣ
−1(θ)Σj′Σ

−1(θ)) + tr(ΣjΣ
−1((c, d, σ2)′)Σj′Σ

−1((c, d, σ2)′))

−tr(ΣjΣ
−1(θ)Σj′Σ

−1((c, d, σ2)′))− tr(ΣjΣ
−1((c, d, σ2)′))Σj′Σ

−1(θ)

=

(
2κjσ

2
j κj′σ

2
j′

2σε(2κησ2
η)

3/2
+

2κjσ
2
j κj′σ

2
j′

2σ(2τ)3/2
− 4κjσ

2
j κj′σ

2
j′

σεσ(2κησ2
η)

1/2(2τ)1/2((2κησ2
ησ

−2
ε )1/2 + (2τσ−2)1/2)

)

×n(1+δ)/2 + O(nδ)

=
κjσ

2
j κj′σ

2
j′

23/2σ

(
1

(κησ2
η)

3/2
+

1

τ 3/2
− 4

(κησ2
η)

1/2τ 1/2((κησ2
η)

1/2 + τ 1/2)

)
n(1+δ)/2 + O(nδ)

=
κjσ

2
j κj′σ

2
j′

23/2σ

(
(κηση − τ)2 + (κηση)

1/2τ 1/2((κηση)
1/2 − τ 1/2)2

(κηση)3/2τ 3/2((κηση)1/2 + τ 1/2)

)
n(1+δ)/2 + O(nδ)

=
5κjσ

2
j κj′σ

2
j′

29/2στ 7/2
(κησ

2
η − τ)2n(1+δ)/2 + o((κησ

2
η − τ)2n(1+δ)/2) + O(nδ),

where the second equality follows from (5.33), the third equality follows from |σ2
ε − σ2| =

o(n−(1−δ)/2), and the last equality follows from |κησ
2
η − τ | = o(1).

120



For (5.46), we have

tr(ΣjΣ
−2(θ)) + tr(ΣjΣ

−2((c, d, σ2)′))− tr(ΣjΣ
−1(θ)Σ−1((c, d, σ2)′))

−tr(ΣjΣ
−1((c, d, σ2)′)Σ−1(θ))

=

(
κjσ

2
j

23/2σ3
ε (κησ2

η)
1/2

+
κjσ

2
j

23/2σ3(τ)1/2
− 2κjσ

2
j

21/2σ2
ε σ

2((κησ2
ησ

−2
ε )1/2 + (τσ−2)1/2)

)
n(1+δ)/2

+O(nδ)

=
κjσ

2
j

23/2σ3

(
1

(κησ2
η)

1/2
+

1

τ 1/2
− 4

((κησ2
η)

1/2 + τ 1/2)

)
n(1+δ)/2 + O(nδ)

=
κjσ

2
j

23/2σ3

(
((κησ

2
η)

1/2 − τ 1/2)2

(κησ2
η)

1/2τ 1/2((κησ2
η)

1/2 + τ 1/2)

)
n(1+δ)/2 + O(nδ)

=
κjσ

2
j

29/2σ3τ 5/2
(κησ

2
η − τ)2n(1+δ)/2 + o((κησ

2
η − τ)2n(1+δ)/2) + O(nδ),

where the second equality follows from (5.34), the third equality follows from |σ2
ε − σ2| =

o(n−(1−δ)/2) and the last equality follows from |κησ
2
η − τ | = o(1).

For (5.47), we have

tr(Σ−2(θ)) + tr(Σ−2((c, d, σ2)′))− 2tr(Σ−1(θ)Σ−1((c, d, σ2)′))

=

(
n

σ4
ε

− 3(2κησ
2
ησ

−2
ε )

4σ4
ε (2κησ2

ησ
−2
ε )1/2

n(1+δ)/2

)
+

(
n

σ4
− 3(2τσ−2)

4σ4(2τσ−2)1/2
n(1+δ)/2

)

−2

(
n

σ2
ε σ

2
− 2κησ

2
ησ

−2
ε + (2κησ

2
ησ

−2
ε )1/2(2τσ−2)1/2 + 2τσ−2

2σ2
ε σ

2((2κησ2
ησ

−2
ε )1/2 + (2τσ−2)1/2)

n(1+δ)/2

)
+ O(nδ)

= − 1

23/2σ

(
3(κησ

2
η)

1/2 + 3τ 1/2 − 4(κησ
2
η + (κησ

2
η)

1/2τ 1/2 + τ)

(κησ2
η)

1/2 + τ 1/2

)
n(1+δ)/2 + O(nδ)

=
1

23/2σ

((κησ
2
η)

1/2 − τ 1/2)2

(κησ2
η)

1/2 + τ 1/2
n(1+δ)/2 + O(nδ)

=
1

29/2τ 5/2
(κησ

2
η − τ)2n(1+δ)/2 + o((κησ

2
η − τ)2n(1+δ)/2) + O(nδ),

where the second equality follows from (5.35), the third equality follows from |σ2
ε − σ2| =

o(n−(1−δ)/2), and the last equality follows from |κησ
2
η − τ | = o(1). 2

Proof of Proposition 4

We first prove (5.49) and (5.50). Let Xj be the jth column of X. For δ ∈ (0, 1), by (5.36)
and (5.37),

X ′
jΣ

−1(θ)Xj′ =
κη

2σ2
η(j + j′ + 1)

nδ + o(nδ); j, j′ = 1, . . . , p, (9.80)

whereas for δ = 0, by (5.38),

X ′
jΣ

−1(θ)Xj′ = O(1); j, j′ = 1, . . . , p. (9.81)
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Hence, for A(α; θ) defined in (3.6), and δ ∈ (0, 1), we obtain

lim
n→∞

1

nδ
µ′A(α; θ)′Σ−1A(α; θ)µ

= lim
n→∞

1

nδ
β′X ′A(α; θ)′Σ−1Xβ

= lim
n→∞

1

nδ
β′X ′Σ−1(θ)Xβ

− lim
n→∞

β′X ′Σ−1(θ)X(α)

nδ

(
X(α)′Σ−1(θ)X(α)

nδ

)−1
X(α)′Σ−1(θ)Xβ

nδ

= γ(α),

where γ(α) is defined in (5.51) and the last equality follows from (9.80). It then gives
(5.49). Similarly, it also gives (5.50) by (9.81).

Next, we prove (5.52). By (4.9), we have

−2`(θ; α) = n log(2π) + log det(Σ(θ)) + Z ′A(α; θ)′Σ−1(θ)A(α; θ)Z

= n log(2π) + log det(Σ(θ)) + µ′A(α; θ)′Σ−1(θ)A(α; θ)µ

−2µ′A(α; θ)′Σ−1(θ)(η + ε) + (η + ε)′Σ−1(θ)(η + ε)

−(η + ε)′M (α; θ)′Σ−1(θ)(η + ε)

= n log(2π) + log det(Σ(θ)) + µ′A(α; θ)′Σ−1(θ)A(α; θ)µ + tr(Σ(θ0)Σ
−1(θ))

−(η + ε)′M (α; θ)′Σ−1(θ)(η + ε)− 2µ′A(α; θ)′Σ−1(θ)(η + ε)

+ξ(θ), (9.82)

where the last equality follows from (5.53). In addition, by (5.29),

log det(Σ(θ)) = n log σ2
ε −

1− δ

2
log n + (2κησ

2
ησ

−2
ε )1/2n(1+δ)/2 − (2κησ

2
ησ

−2
ε )nδ

+(σ2
η − σ2

ε )σ
−2
ε κηn

δ + o(nδ) + O(1),

by (5.32),

tr(Σ(θ0)Σ
−1(θ)) =

σ2
ε,0

σ2
ε

n +

(
2κησ

2
η

σ2
ε

)1/2 (
−σ2

ε,0

2σ2
ε

+
σ2

η,0κη,0

2κησ2
η

)
n(1+δ)/2

+
σ2

η,0κη,0(κη − κη,0)

κησ2
η

nδ +
σ2

η,0(κη − κη,0)
2

2κησ2
η

nδ + o(nδ) + O(1),

and by (5.49),

µ′A(α; θ)′Σ−1(θ)A(α; θ)µ =
κη

2σ2
η

γ(α)nδ + o(nδ).
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It then follows together with (9.82), for δ ∈ (0, 1),

−2`(θ; α) = n log(2π)− 1− δ

2
log n +

(
log σ2

ε +
σ2

ε,0

σ2
ε

)
n

+

(
2κησ

2
η

σ2
ε

)1/2(
1− σ2

ε,0

2σ2
ε

+
κη,0σ

2
η,0

2κησ2
η

)
n(1+δ)/2

+

(
− κησ

2
η

σ2
ε

+ κη

(
κη,0σ

2
η,0

κησ2
η

− 1

)
− κη,0σ

2
η,0

2κησ2
η

)
nδ

+
σ2

η,0 + γ(α)

2κησ2
η

(
κη −

κη,0σ
2
η,0

σ2
η,0 + γ(α)

)2

nδ +
κη,0σ

2
ε,0

2κησ2
η

(
κη,0 −

κη,0σ
2
η,0

σ2
η,0 + γ(α)

)
nδ

−(η + ε)′M (α; θ)′Σ−1(θ)(η + ε)− 2µ′A(α; θ)′Σ−1(θ)(η + ε)

+ξ(θ) + op(n
δ) + O(1). (9.83)

Therefore, for (5.52) to hold, it remains to show that for δ ∈ [0, 1),

(η + ε)′M(α; θ)′Σ−1(θ)(η + ε) = Op(1), (9.84)

µ′A(α; θ)′Σ−1(θ)(η + ε) = op(n
δ), (9.85)

which are enough to show

nδ(X ′Σ−1(θ)X)−1 = O(1), (9.86)
1

nδ/2
X ′Σ−1(θ)(η + ε) = Op(1). (9.87)

For (9.86), it follows from (5.36), (5.37). For (9.87), by Chebyshev’s inequality, it is
enough to show

var(X ′Σ−1(θ)(η + ε)) = tr(X ′Σ−1(θ)Σ(θ0)Σ
−1(θ)X) = O(nδ),

which follows from (5.38). Then, by (9.86) and (9.87), it then gives (9.84) and (9.85). It
then completes the proof of (5.52).

Finally, we prove (5.54). For δ = 0, it can be followed easily from (9.83) that

−2`(θ; α) = n log(2π)− 1− δ

2
log n +

(
log σ2

ε +
σ2

ε,0

σ2
ε

)
n

+

(
2κησ

2
η

σ2
ε

)1/2(
1− σ2

ε,0

2σ2
ε

+
κη,0σ

2
η,0

2κησ2
η

)
n1/2

−(η + ε)′M(α; θ)′Σ−1(θ)(η + ε)− 2µ′A(α; θ)′Σ−1(θ)(η + ε)

+ξ(θ) + Op(1)

= n log(2π)− 1− δ

2
log n +

(
log σ2

ε +
σ2

ε,0

σ2
ε

)
n

+

(
2κησ

2
η

σ2
ε

)1/2(
1− σ2

ε,0

2σ2
ε

+
κη,0σ

2
η,0

2κησ2
η

)
n1/2 + ξ(θ) + Op(1),

where the last equality follows from (9.84) and (9.85). 2
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Proof of Lemma 11

Denote σ2
η,α ≡ γ(α) + σ2

η,0 and κη,α ≡ κη,0σ
2
η,0/(γ(α) + σ2

η,0), for α ∈ A, where γ(α) is
defined in (5.51) and γ(α) = 0 for α ∈ Ac.

First, we prove (5.57). It suffices to show that for δ ∈ [0, 1) and any ε > 0,

inf
|σ2

ε−σ2
ε,0|≥ε

(− 2`(θ; α) + 2`((σ2
η, κη, σ

2
ε,0)

′; α)
)

> 0, (9.88)

as n →∞ with probability tending to 1. By (5.54) and (5.66) and for δ ∈ [0, 1), we have

−2`(θ; α) + 2`((σ2
η, κη, σ

2
ε,0)

′; α)

=

(
log σ2

ε +
σ2

ε,0

σ2
ε

− log σ2
ε,0 − 1

)
n

+

{(
2κησ

2
η

σ2
ε

)1/2(
1− σ2

ε,0

2σ2
ε

+
κη,0σ

2
η,0

2κησ2
η

)
−

(
2κη,0σ

2
η,0

σ2
ε,0

)1/2}
n(1+δ)/2 + op(n)

=
(σ2

ε − σ2
ε,0)

2n

2σ4
ε,0

+ op(n),

where the first equality follows by ξ(θ) = op(n) that

ξ(θ)− ξ((σ2
η, κη, σ

2
ε )
′) = op(n),

and the last equality follows from (5.39) and (5.40). Thus, (9.88) and hence (5.57) are
obtained.

Second, we prove (5.58). By (5.57), it suffices to show that for |σ2
ε − σ2

ε,0| = o(1),
δ ∈ [0, 1) and any ε > 0,

inf
|κησ2

η−κη,0σ2
η,0|≥ε

(− 2`(θ; α) + 2`((σ2
η,α, κη,α, σ2

ε,0)
′; α)

)
> 0, (9.89)

as n → ∞ with probability tending to 1. By (5.54) and (5.66), for δ ∈ [0, 1) and
|σ2

ε − σ2
ε,0| = o(1), we have

−2`(θ; α) + 2`((σ2
η,α, κη,α, σ2

ε,0)
′; α)

≥
{(

2κησ
2
η

σ2
ε,0

)1/2(
1

2
+

κη,0σ
2
η,0

2κησ2
η

)
−

(
2κη,0σ

2
η,0

σ2
ε,0

)1/2}
n(1+δ)/2

+ξ(θ)− ξ((σ2
η,α, κη,α, σ2

ε,0)
′) + op(n

(1+δ)/2)

=
(κησ

2
η − κη,0σ

2
η,0)

2n(1+δ)/2

25/2σε,0(κη,0σ2
η,0)

3/2
+ ξ(θ)− ξ((σ2

η,α, κη,α, σ2
ε,0)

′) + op(n
(1+δ)/2),

where the first inequality follows from |σ2
ε − σ2

ε,0| = o(1) and the lefthand side of (5.39) is
positive for σε > 0, and the second equality follows from (5.41). Therefore, for (9.89) to
hold, it remains to show that

ξ(θ)− ξ((σ2
η,α, κη,α, σ2

ε,0)
′) = op(n

(1+δ)/2),

which follows from (5.68) and Chebyshev’s inequality, by to checking the following moment
conditions:

var(η′(Σ−1(θ)−Σ−1((σ2
η,α, κη,α, σ2

ε,0)
′))η) = o(n),

var(η′(Σ−1(θ)−Σ−1((σ2
η,α, κη,α, σ2

ε,0)
′))ε) = o(n),

var(ε′(Σ−1(θ)−Σ−1((σ2
η,α, κη,α, σ2

ε,0)
′))ε) = o(n),
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where the previous two equations follow trivially by (5.33) and (5.34) and the last equation
follows from (5.35) and |σ2

ε − σ2
ε,0| = o(1) that

var
(
ε′

(
Σ−1(θ)−Σ−1((σ2

η,α, κη,α, σ2
ε,0)

′)
)
ε
)/

(2σ4
ε,0)

= tr(Σ−2(θ)) + tr(Σ−2((σ2
η, κη, σ

2
ε,0)

′))− 2tr(Σ−1Σ−1((σ2
η,α, κη,α, σ2

ε,0)
′))

=
n

σ4
ε

+
n

σ4
ε,0

− 2n

σ2
ε σ

2
ε,0

+ O(n(1+δ)/2)

= o(n).

Thus, (9.89) and hence (5.58) are obtained. This completes the proof. 2

Proof of Corollary 4

Let σ2
η,α ≡ γ(α)+σ2

η,0 and κη,α ≡ κη,0σ
2
η,0

/
σ2

η,α, for α ∈ A, where γ(α) is defined in (5.51).

First, we prove (5.78). By (5.70) and (5.71), for |σ2
ε − σ2

ε,0| = o(n−(1−δ)/2) and |κησ
2
η −

κη,0σ
2
η,0| = o(n−(1−δ)/4), we have

sup
|κη−κη,α|=o(1)

−2`(θ; α) + 2`(θ(1)
α ; α) = o(nδ).

It then gives (5.78).
Second, we prove (5.79). By (5.75), for |σ2

ε − σ2
ε,0| = O(n−1/2), we have

sup
|κησ2

η−κη,0σ2
η,0|=O(n−1/4)

−2`(θ; α) + 2`(θ(1)
α ; α) = Op(1).

It then gives (5.79).
Third, we prove (5.80). By (9.82) and (3.3), we have

−2`(θ; α) = n log(2π) + log det(Σ(θ)) + µ′A(α; θ)′Σ−1(θ)A(α; θ)µ + tr(Σ(θ0)Σ
−1(θ))

−(η + ε)′M (α; θ)′Σ−1(θ)(η + ε)− 2µ′A(α; θ)′Σ−1(θ)(η + ε) + ξ(θ)

= n log(2π) + log det(Σ(θ0)) + (η + ε)′Σ−1(θ0)(η + ε) + ξ(θ)− ξ(θ0)

+2LKL(α; θ)− 2µ′A(α; θ)′Σ−1(θ)(η + ε)− 2(η + ε)′M(α; θ)′Σ−1(θ)(η + ε)

= n log(2π) + log det(Σ(θ0)) + (η + ε)′Σ−1(θ0)(η + ε) + ξ(θ)− ξ(θ0)

+2LKL(α; θ) + op(n
δ), (9.90)

where ξ(θ) is defined in (5.53), the second equality follows from (3.3) and

(µ− µ̂(α; θ))′Σ−1(θ)(µ− µ̂(α; θ)) = µ′A(α; θ)′Σ−1(θ)A(α; θ)µ

+(η + ε)′M (α; θ)′Σ−1(θ)M(α; θ)(η + ε),

and the last equality follows from (9.84) and (9.85). Then for α ∈ A \ Ac, |σ2
ε − σ2

ε,0| =

o(n−(1−δ)/2), |σ2
ηκη − σ2

η,0κη,0| = o(n−(1−δ)/4) and |κη − κη,α| = o(1), we have

−2`(θ; α) + 2`(θ(1)
α ; α) = 2LKL(α; θ)− 2LKL(α; θ(1)

α ) + ξ(θ)− ξ(θ(1)
α ) + op(n

δ)

= 2LKL(α; θ)− 2LKL(α; θ(1)
α ) + op(n

δ)

= op(n
δ),
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where the second equality follows from (5.71) and the last equality follows from (5.78).
In addition, by (5.49) and (9.84), we have

LKL(α; θ) =
1

2
µ′A(α; θ)′Σ−1(θ)A(α; θ)µ + Op(1)

=
1

2
γ(α)nδ + op(n

δ) > 0,

as n →∞ with probability tending to 1. Then, we have

plim
n→∞

LKL(α; θ)
/
LKL(α; θ(1)

α ) = 1,

which gives (5.80).
Finally, we prove (5.81). Similar to (9.90), we have

−2`(θ; α) = n log(2π) + log det(Σ(θ0)) + (η + ε)′Σ−1(θ0)(η + ε) + ξ(θ)− ξ(θ0)

+2LKL(α; θ) + Op(1).

Hence, for α ∈ A, |σ2
ε − σ2

ε,0| = O(n−1/2) and |σ2
ηκη − σ2

η,0κη,0| = O(n−1/4),

−2`(θ; α) + 2`(θ(1)
α ; α) = 2LKL(α; θ)− 2LKL(α; θ(1)

α ) + ξ(θ)− ξ(θ(1)
α ) + Op(1)

= 2LKL(α; θ)− 2LKL(α; θ(1)
α ) + Op(1)

= Op(1),

where the second equality follows from (5.76) and the last equality follows from (5.79).
Then,

LKL(α; θ)− LKL(α; θ(1)
α ) = Op(1),

which gives (5.81). This completes the proof. 2

Proof of Proposition 5

First, we prove (5.86). By (4.9), we have

−2`(θ; α) = n log(2π) + log det(Σ(θ)) + Z ′A(α; θ)′Σ−1(θ)A(α; θ)Z

= n log(2π) + log det(Σ(θ)) + µ′A(α; θ)′Σ−1µ− 2µ′A(α; θ)′Σ−1(θ)(η + ε)

+(η + ε)′Σ−1(θ)(η + ε)− (η + ε)′M(α; θ)′Σ−1(θ)(η + ε)

= n log(2π) + log det(Σ(θ)) +
∑

j∈αc\α
β2

j tr(ΣjΣ
−1(θ)) + tr(Σ(θ0)Σ

−1(θ))

−(η + ε)′M (α; θ)′Σ−1(θ)(η + ε) + ξ(2)(α; θ), (9.91)

where the last equality follows from (5.87). In addition, by (5.29),

log det(Σ(θ)) = n log σ2
ε −

1− δ

2
log n + (2κησ

2
ησ

−2
ε )1/2n(1+δ)/2 − (2κησ

2
ησ

−2
ε )nδ

+(σ2
η − σ2

ε )σ
−2
ε κηn

δ + o(nδ) + O(1),
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by (5.32),

tr(Σ(θ0)Σ
−1(θ)) =

σ2
ε,0

σ2
ε

n +

(
2κησ

2
η

σε

)1/2(
− σ2

ε,0

2σ2
ε

+
σ2

η,0κη,0

2κησ2
η

)
n(1+δ)/2

+
σ2

η,0κη,0(κη − κη,0)

κησ2
η

nδ +
σ2

η,0(κη − κη,0)
2

2κησ2
η

nδ + o(nδ) + O(1),

and by (5.30),

∑

j∈αc\α
β2

j tr(ΣjΣ
−1(θ)) =

∑

j∈αc\α

β2
j σ

2
j κj

(2κησ2
ησ

2
ε )

1/2
n(1+δ)/2 +

∑

j∈αc\α

β2
j σ

2
j κj(κη − κj)

κησ2
η

nδ

+
∑

j∈αc\α

β2
j σ

2
j (κη − κj)

2

2κησ2
η

nδ + o(nδ) + O(1).

It then follows together with and (9.91), for δ ∈ (0, 1),

−2`(θ; α) = n log(2π)− 1− δ

2
log n +

(
log σ2

ε +
σ2

ε,0

σ2
ε

)
n

+

(
2κησ

2
η

σ2
ε

)1/2(
1− σ2

ε,0

2σ2
ε

+
θη,α

2κησ2
η

)
n(1+δ)/2

+

(
− κησ

2
η

σ2
ε

+ κη

(
θη,α

κησ2
η

− 1

)
− κη,0σ

2
η,0

2κησ2
η

)
nδ

+
1

2κησ2
η

(( ∑

j∈αc\α
β2

j σ
2
j + σ2

η,0

)1/2

κη − θη,α( ∑
j∈αc\α β2

j σ
2
j + σ2

η,0

)1/2

)2

nδ

+
1

2κησ2
ε

( ∑

j∈αc\α
β2

j σ
2
j κ

2
j + σ2

η,0κ
2
η,0 −

θ2
η,α( ∑

j∈αc\α β2
j σ

2
j + σ2

η,0

)
)

nδ

−(η + ε)′M(α; θ)′Σ−1(θ)(η + ε) + ξ(2)(α; θ) + o(nδ) + O(1). (9.92)

Therefore, for (5.86) to hold, it remains to show that for δ ∈ [0, 1),

(η + ε)′M(α; θ)′Σ−1(θ)(η + ε) = Op(1), (9.93)

which follows in a similar way as (9.84). This completes the proof of (5.86).
Finally, we prove (5.88). For δ = 0, it can be followed easily from (9.92) that

−2`(θ; α) = n log(2π)− 1− δ

2
log n +

(
log σ2

ε +
σ2

ε,0

σ2
ε

)
n

+

(
2κησ

2
η

σ2
ε

)1/2(
1− σ2

ε,0

2σ2
ε

+
θη,α

2κησ2
η

)
n1/2

−(η + ε)′M(α; θ)′Σ−1(θ)(η + ε) + ξ(2)(α; θ) + Op(1)

= n log(2π)− 1− δ

2
log n +

(
log σ2

ε +
σ2

ε,0

σ2
ε

)
n

+

(
2κησ

2
η

σ2
ε

)1/2(
1− σ2

ε,0

2σ2
ε

+
θη,α

2κησ2
η

)
n1/2 + ξ(2)(α; θ) + Op(1),

where the last equality follows from (9.93). 2
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Proof of Lemma 12

Let σ2
η,α ≡

∑
j∈αc\α β2

j σ
2
j + σ2

η,0 and κη,α ≡ θη,α

/
σ2

η,α, for α ∈ A, where θη,α is defined in

(5.85).
First, we prove (5.90). It suffices to show that for δ ∈ [0, 1) and any ε > 0,

inf
|σ2

ε−σ2
ε,0|≥ε

(− 2`(θ; α) + 2`((σ2
η,α, κη,α, σ2

ε,0)
′; α)

)
> 0, (9.94)

as n →∞ with probability tending to 1. By (5.104) and (5.113), we have

−2`(θ; α) + 2`((σ2
η,α, κη,α, σ2

ε,0)
′; α)

=

(
log σ2

ε +
σ2

ε,0

σ2
ε

− log σ2
ε,0 − 1

)
n

+

{(
2κησ

2
η

σ2
ε

)1/2(
1− σ2

ε,0

2σ2
ε

+
θη,α

2κησ2
η

)
−

(
2κη,0σ

2
η,0

σ2
ε,0

)1/2}
n(1+δ)/2

+ξ(2)(α; θ)− ξ(2)(α; (σ2
η, κη, σ

2
ε,0)

′) + op(n
(1+δ)/2)

=
(σ2

ε − σ2
ε,0)

2n

2σ4
ε,0

+ ξ(2)(α; θ)− ξ(2)(α; (σ2
η, κη, σ

2
ε,0)

′) + op(n),

where the last equality follows from (5.39) and (5.40). Therefore, for (9.94) to hold, it
remains to show that

ξ(2)(α; θ)− ξ(2)(α; (σ2
η, κη, σ

2
ε,0)

′) = op(n),

which follows from (5.67), (5.99) and

ξ1(θ; α)− ξ1((σ
2
η, κη, σ

2
ε,0)

′; α) = op(n),

ξ2(θ; α)− ξ2((σ
2
η, κη, σ

2
ε,0)

′; α) = op(n).

by (5.33) and (5.35) that

var(X ′
j((Σ

−1(θ)−Σ−1((σ2
η, κη, σ

2
ε,0)

′)))Xj′) = O(n),

var(X ′
j(Σ

−1(θ)−Σ−1((σ2
η, κη, σ

2
ε,0)

′))η) = O(n),

var(X ′
j(Σ

−1(θ)−Σ−1((σ2
η, κη, σ

2
ε,0)

′))ε) = O(n).

Thus, (9.94) and hence (5.90) are obtained.
Second, we prove (5.91). By (5.90), it suffices to show that for |σ2

ε − σ2
ε,0| = o(1),

δ ∈ [0, 1) and any ε > 0

inf
|κησ2

η−θη,α|≥ε

(− 2`(θ̂(α); α) + 2`((σ2
η,α, κη,α, σ2

ε,0)
′; α)

)
> 0, (9.95)

as n → ∞ with probability tending to 1. By (5.104) and (5.113), for |σ2
ε − σ2

ε,0| = o(1)
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and any ε > 0, we have

−2`(θ; α) + 2`((σ2
η,α, κη,α, σ2

ε,0)
′; α)

≥
{(

2κησ
2
η

σ2
ε,0

)1/2(
1

2
+

θη,α

2κησ2
η

)
−

(
2θη,α

σ2
ε,0

)1/2}
n(1+δ)/2

+ξ1(θ; α)− ξ1((σ
2
η,α, κη,α, σ2

ε,0)
′; α) + ξ2(θ; α)− ξ2((σ

2
η,α, κη,α, σ2

ε,0)
′; α)

+ξ(θ)− ξ((σ2
η,α, κη,α, σ2

ε,0)
′) + op(n

(1+δ)/2)

=
(κησ

2
η − θη,α)2n(1+δ)/2

25/2σε,0θ
3/2
η,α

+ ξ1(θ; α)− ξ1((σ
2
η,α, κη,α, σ2

ε,0)
′; α)

+ξ2(θ; α)− ξ2((σ
2
η,α, κη,α, σ2

ε,0)
′; α) + ξ(θ)− ξ((σ2

η,α, κη,α, σ2
ε,0)

′) + op(n
(1+δ)/2),

where the first inequality follows from |σ2
ε − σ2

ε,0| = o(1) and the lefthand side of (5.39)is
positive for σε > 0, the first equality follows from (5.41). Therefore, for (9.95) to hold, it
remains to show that

ξ1(θ; α)− ξ1((σ
2
η,α, κη,α, σ2

ε,0)
′; α) = op(n

(1+δ)/2),

ξ2(θ; α)− ξ2((σ
2
η,α, κη,α, σ2

ε,0)
′; α) = op(n

(1+δ)/2),

ξ(θ)− ξ((σ2
η,α, κη,α, σ2

ε,0)
′) = op(n

(1+δ)/2),

where the previous two equations can be obtained in a way similarly to (5.105)- (5.106)
by using the following moments conditions given by (5.33), (5.34) and (5.35):

var(X ′
j(Σ

−1(θ)−Σ−1((σ2
η,α, κη,α, σ2

ε,0)
′))Xj′) = o(n),

var(X ′
j(Σ

−1(θ)−Σ−1((σ2
η,α, κη,α, σ2

ε,0)
′))ε) = o(n),

and for |σ2
ε − σ2

ε,0| = o(1),

var
(
ε′

(
Σ−1(θ)−Σ−1((σ2

η,α, κη,α, σ2
ε,0)

′)
)
ε
)/

(2σ4
ε,0)

= tr(Σ−2(θ)) + tr(Σ−2((σ2
η, κη, σ

2
ε,0)

′))− 2tr(Σ−1Σ−1((σ2
η,α, κη,α, σ2

ε,0)
′))

=
n

σ4
ε

+
n

σ4
ε,0

− 2n

σ2
ε σ

2
ε,0

+ O(n1/2)

= o(n).

Thus, (9.95) and hence (5.91) are obtained. The proof is then complete. 2

Proof of Corollary 5

Let σ2
η,α ≡

∑
j∈αc\α β2

j σ
2
j + σ2

η,0 and κη,α ≡ θη,α

/
σ2

η,α for α ∈ A, where θη,α is defined in

(5.85).
First, we prove (5.119). By (5.108) and (5.109)-(5.111), for |σε − σ2

ε,0| = o(n−(1−δ)/2)

and |κησ
2
η − θη,α| = o(n−(1−δ)/4), we have

sup
|κη−κη,α|=o(1)

−2`(θ; α) + 2`(θ(2)
α ; α) = o(nδ).

It then gives (5.119).

129



Second, we prove (5.120). By (5.115), for |σε − σ2
ε,0| = O(n−1/2), we have

sup
|κησ2

η−θη,α|=O(n−1/4)

−2`(θ; α) + 2`(θ(2)
α ; α) = Op(1).

It then gives (5.120).
Finally, we prove (5.121). First, for δ ∈ (0, 1), by (9.82), we have

−2`(θ; α) = n log(2π) + log det(Σ(θ)) + µ′A(α; θ)′Σ−1(θ)A(α; θ)µ + tr(Σ(θ0)Σ
−1(θ))

−(η + ε)′M (α; θ)′Σ−1(θ)(η + ε)− 2µ′A(α; θ)′Σ−1(θ)(η + ε) + ξ(θ)

= n log(2π) + log det(Σ(θ0)) + (η + ε)′Σ−1(θ0)(η + ε) + ξ(θ)− ξ(θ0)

+2LKL(α; θ)− 2µ′A(α; θ)′Σ−1(θ)(η + ε)− 2(η + ε)′M(α; θ)′Σ−1(θ)(η + ε)

= n log(2π) + log det(Σ(θ0)) + (η + ε)′Σ−1(θ0)(η + ε) + ξ(θ)− ξ(θ0)

+ξ2(θ; α) + 2LKL(α; θ) + op(n
δ), (9.96)

where ξ(θ) and ξ2(θ; α) are defined in (5.53) and (5.98), respectively, the second equality
follows from (3.3) and

(µ− µ̂(α; θ))′Σ−1(θ)(µ− µ̂(α; θ)) = µ′A(α; θ)′Σ−1(θ)A(α; θ)µ

+(η + ε)′M (α; θ)′Σ−1(θ)M(α; θ)(η + ε),

and the last equality follows from (9.93). Then, for α ∈ A\Ac, |σ2
ε − σ2

ε,0| = o(n−(1−δ)/2),

|σ2
ηκη − θη,α| = o(n−(1−δ)/4) and |κη − κη,α| = o(1), we have

−2`(θ; α) + 2`(θ(2)
α ; α) = 2LKL(α; θ)− 2LKL(α; θ(2)

α ) + ξ(θ)− ξ(θ(2)
α )

+ξ2(θ; α)− ξ2(θ
(2)
α ; α) + op(n

δ)

= 2LKL(α; θ)− 2LKL(α; θ(2)
α ) + op(n

δ)

= op(n
δ),

where the second equality follows from (5.110) and (5.111) and the last equality follows
from (5.78). In addition, by (5.122) and (9.93), we have

LKL(α; θ) =
1

2
µ′A(α; θ)′Σ−1(θ)A(α)µ + Op(1)

=
1

2

∑

j∈αc\α

β2
j σ

2
j κj

(2κησ2
ησ

2
ε )

1/2
n(1+δ)/2 + op(n

(1+δ)/2) > 0,

as n →∞ with probability tending to 1. Then, we have

plim
n→∞

LKL(α; θ)
/
LKL(α; θ(2)

α ) = 1,

which gives (5.121) for δ ∈ (0, 1). Second, for δ = 0, similar to (9.96),

−2`(θ; α) = n log(2π) + log det(Σ(θ0)) + (η + ε)′Σ−1(θ0)(η + ε) + ξ(θ)− ξ(θ0)

+ξ2(θ; α) + 2LKL(α; θ) + Op(1).

Hence, for α ∈ A, |σ2
ε − σ2

ε,0| = O(n1/2) and |κησ
2
η − θη,α| = O(n−1/4),

−2`(θ; α) + 2`(θ(2)
α ; α) = 2LKL(α; θ)− 2LKL(α; θ(2)

α ) + ξ(θ)− ξ(θ(2)
α ) + Op(1)

+ξ2(θ; α)− ξ2(θ
(2)
α ; α) + Op(1)

= 2LKL(α; θ)− 2LKL(α; θ(2)
α ) + Op(1)

= Op(1),
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where the second equality follows from (5.116) and (5.117), and the last equality follows
from (5.120). Then

LKL(α; θ)− LKL(α; θ(2)
α ) = Op(1).

In addition, by (5.122) and (9.93), we have

LKL(α; θ) =
1

2
µ′A(α; θ)′Σ−1(θ)A(α)µ + Op(1)

=
1

2

∑

j∈αc\α

β2
j σ

2
j κj

(2κησ2
ησ

2
ε )

1/2
n1/2 + op(n

1/2) > 0,

as n →∞ with probability tending to 1. Then, we have

plim
n→∞

LKL(α; θ)
/
LKL(α; θ(2)

α ) = 1,

which gives (5.121) for δ = 0. This completes the proof. 2

Proof of Proposition 6

Let σ2
ε,α ≡

∑
j∈αc\α β2

j σ
2
j + σ2

ε,0 for α ∈ A.

First, we prove (5.124). By (4.9), we have

−2`(θ; α) = n log(2π) + log det(Σ(θ)) + Z ′A(α; θ)′Σ−1(θ)A(α; θ)Z

= n log(2π) + log det(Σ(θ)) + µ′A(α; θ)′Σ−1µ− 2µ′A(α; θ)′Σ−1(θ)(η + ε)

+(η + ε)′Σ−1(θ)(η + ε)− (η + ε)′M(α; θ)′Σ−1(θ)(η + ε)

= n log(2π) + log det(Σ(θ)) +
∑

j∈αc\α
β2

j σ
2
j tr(Σ

−1(θ)) + tr(Σ(θ0)Σ
−1(θ))

−(η + ε)′M (α; θ)′Σ−1(θ)(η + ε) + ξ(3)(α; θ), (9.97)

where the last equality follows from (5.125). In addition, by (5.29),

log det(Σ(θ)) = n log σ2
ε −

1− δ

2
log n + (2κησ

2
ησ

−2
ε )1/2n(1+δ)/2 − (2κησ

2
ησ

−2
ε )nδ

+(σ2
η − σ2

ε )σ
−2
ε κηn

δ + o(nδ) + O(1),

by (5.32),

tr(Σ(θ0)Σ
−1(θ)) =

σ2
ε,0

σ2
ε

n +

(
2κησ

2
η

σε

)1/2(
− σ2

ε,0

2σ2
ε

+
σ2

η,0κη,0

2κησ2
η

)
n(1+δ)/2

+
σ2

η,0κη,0(κη − κη,0)

κησ2
η

nδ +
σ2

η,0(κη − κη,0)
2

2κησ2
η

nδ + o(nδ) + O(1),

and by (5.31),

tr(Σ−1(θ)) =
n

σ2
ε

− (2κησ
2
ησ

−2
ε )1/2

2σ2
ε

n(1+δ)/2 + o(nδ) + O(1),

131



It then follows together with and (9.97), for δ ∈ (0, 1),

−2`(θ; α) = n log(2π)− 1− δ

2
log n +

(
log σ2

ε +

∑
j∈αc\α β2

j σ
2
j + σ2

ε,0

σ2
ε

)
n

+

(
2κησ

2
η

σ2
ε

)1/2(
1−

∑
j∈αc\α β2

j σ
2
j + σ2

ε,0

2σ2
ε

+
κη,0σ

2
η,0

2κησ2
η

)
n(1+δ)/2

+

(
− κησ

2
η

σ2
ε

+ κη

(
κη,0σ

2
η,0

κησ2
η

− 1

)
− κη,0σ

2
η,0

2κησ2
η

)
nδ +

σ2
η,0

2κησ2
η

(κη − κη,0)
2nδ

−(η + ε)′M(α; θ)′Σ−1(θ)(η + ε) + ξ(3)(α; θ) + op(n
δ) + O(1). (9.98)

Therefore, for (5.124) to hold, it remains to show that for δ ∈ [0, 1),

(η + ε)′M(α; θ)′Σ−1(θ)(η + ε) = Op(1), (9.99)

which follows in a similar way as (9.84). This completes the proof of (5.124).
Finally, we prove (5.88). For δ = 0, it can be followed easily from (9.98) that

−2`(θ; α) = n log(2π)− 1− δ

2
log n +

(
log σ2

ε +

∑
j∈αc\α β2

j σ
2
j + σ2

ε,0

σ2
ε

)
n

+

(
2κησ

2
η

σ2
ε

)1/2(
1−

∑
j∈αc\α β2

j σ
2
j + σ2

ε,0

2σ2
ε

+
κη,0σ

2
η,0

2κησ2
η

)
n1/2

−(η + ε)′M (α; θ)′Σ−1(θ)(η + ε) + ξ(3)(α; θ) + Op(1)

= n log(2π)− 1− δ

2
log n +

(
log σ2

ε +

∑
j∈αc\α β2

j σ
2
j + σ2

ε,0

σ2
ε

)
n

+

(
2κησ

2
η

σ2
ε

)1/2(
1−

∑
j∈αc\α β2

j σ
2
j + σ2

ε,0

2σ2
ε

+
κη,0σ

2
η,0

2κησ2
η

)
n1/2 + ξ(3)(α; θ) + Op(1),

where the last equality follows from (9.99). This completes the proof. 2

Proof of Lemma 13

Let σ2
ε,α ≡

∑
j∈αc\α β2

j σ
2
j + σ2

ε,0.

First, we prove (5.128). It suffices to show that for δ ∈ [0, 1) and any ε > 0,

inf
|σ2

ε−σ2
ε,α|≥ε

(− 2`(θ; α) + 2`((σ2
η, κη, σ

2
ε,α)′; α)

)
> 0, (9.100)

as n →∞ with probability tending to 1. By (5.140) and (5.149), we have

−2`(θ; α) + 2`((σ2
η, κη, σ

2
ε,α)′; α)

=

(
log σ2

ε +
σ2

ε,α

σ2
ε

− log σ2
ε,α − 1

)
n

+

{(
2κησ

2
η

σ2
ε

)1/2(
1− σ2

ε,α

2σ2
ε

+
κη,0σ

2
η,0

2κησ2
η

)
−

(
2κη,0σ

2
η,0

σ2
ε,α

)1/2}
n(1+δ)/2

+ξ(3)(α; θ)− ξ(3)(α; (σ2
η, κη, σ

2
ε,α)′) + op(n

(1+δ)/2)

=
(σ2

ε − σ2
ε,α)2n

2σ4
ε,α

+ ξ(3)(α; θ)− ξ(3)(α; (σ2
η, κη, σ

2
ε,α)′) + op(n

(1+δ)/2),
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where the last equality follows from (5.39) and (5.40). Therefore, for (9.100) to hold, it
remains to show that

ξ(3)(α; θ)− ξ(3)(α; (σ2
η, κη, σ

2
ε,α)′) = op(n).

By (5.138), it is enough to show that

ξ1(θ; α)− ξ1((σ
2
η, κη, σ

2
ε,α)′; α) = op(n),

ξ2(θ; α)− ξ2((σ
2
η, κη, σ

2
ε,α)′; α) = op(n),

ξ(θ)− ξ((σ2
η, κη, σ

2
ε,α)′) = op(n),

which can be obtained from Chebyshev’s inequality and using the following moment
conditions given by (5.34) and (5.35):

var(X ′
j((Σ

−1(θ)−Σ−1((σ2
η, κη, σ

2
ε,α)′)))Xj′) = O(n),

var(X ′
j(Σ

−1(θ)−Σ−1((σ2
η, κη, σ

2
ε,α)′))η) = O(n),

var(X ′
j(Σ

−1(θ)−Σ−1((σ2
η, κη, σ

2
ε,α)′))ε) = O(n).

Thus, (9.100) and hence (5.128) are obtained.
Second, we prove (5.129). By (5.128), it suffices to show that for |σ2

ε − σ2
ε,α| = o(1),

δ ∈ [0, 1) and any ε > 0

inf
|κησ2

η−κη,0σ2
η,0|≥ε

(− 2`(θ̂(α); α) + 2`((σ2
η,0, κη,0, σ

2
ε,α)′; α)

)
> 0, (9.101)

as n → ∞ with probability tending to 1. By (5.140) and (5.149), for |σ2
ε − σ2

ε,α| = o(1)
and any ε > 0, we have

−2`(θ; α) + 2`((σ2
η,0, κη,0, σ

2
ε,α)′; α)

≥
{(

2κησ
2
η

σ2
ε,α

)1/2(
1

2
+

κη,0σ
2
η,0

2κησ2
η

)
−

(
2κη,0σ

2
η,0

σ2
ε,α

)1/2}
n(1+δ)/2 + ξ1(θ; α)− ξ1((σ

2
η,0, κη,0, σ

2
ε,α)′; α)

+ξ2(θ; α)− ξ2((σ
2
η,0, κη,0, σ

2
ε,α)′; α) + ξ(θ)− ξ((σ2

η,0, κη,0, σ
2
ε,α)′) + op(n

(1+δ)/2)

=
(κησ

2
η − κη,0σ

2
η,0)

2n(1+δ)/2

25/2σε,α(κη,0σ2
η,0)

3/2
+ ξ1(θ; α)− ξ1((σ

2
η,0, κη,0, σ

2
ε,α)′; α)

+ξ2(θ; α)− ξ2((σ
2
η,0, κη,0, σ

2
ε,α)′; α) + ξ(θ)− ξ((σ2

η,0, κη,0, σ
2
ε,α)′) + op(n

(1+δ)/2),

where the first inequality follows from |σ2
ε − σ2

ε,α| = o(1) and the lefthand side of (5.39) is
positive, the first equality follows from (5.41). Therefore, for (9.101) to hold, it remains
to show that

ξ1(θ; α)− ξ1((σ
2
η,0, κη,0, σ

2
ε,α)′; α) = op(n

(1+δ)/2),

ξ2(θ; α)− ξ2((σ
2
η,0, κη,0, σ

2
ε,α)′; α) = op(n

(1+δ)/2),

ξ(θ)− ξ((σ2
η,0, κη,0, σ

2
ε,α)′) = op(n

(1+δ)/2),

which follows similarly from (5.141)-(5.142), by using the following moment conditions
given by (5.33) and (5.34):

var(η′(Σ−1(θ)−Σ−1((σ2
η,0, κη,0, σ

2
ε,α)′))η) = o(n),

var(η′(Σ−1(θ)−Σ−1((σ2
η,0, κη,0, σ

2
ε,α)′))ε) = o(n),
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and for |σ2
ε − σ2

ε,α| = o(1),

var
(
ε′

(
Σ−1(θ)−Σ−1((σ2

η,0, κη,0, σ
2
ε,α)′)

)
ε
)/

(2σ4
ε,0)

= tr(Σ−2(θ)) + tr(Σ−2((σ2
η,0, κη,0, σ

2
ε,α)′))− 2tr(Σ−1Σ−1((σ2

η,0, κη,0, σ
2
ε,α)′))

=
n

σ4
ε

+
n

σ4
ε,α

− 2n

σ2
ε σ

2
ε,α

+ O(n1/2)

= o(n).

Thus, (9.101) and hence (5.129) are obtained. The proof is then complete. 2

Proof of Corollary 6

Let σ2
ε,α ≡

∑
j∈αc\α β2

j σ
2
j + σ2

ε,0 for α ∈ A.

First, we prove (5.155). By (5.144) and (5.145)-(5.147), for |σ2
ε − σ2

ε,α| = o(n−(1−δ)/2)

and |κησ
2
η − κη,0σ

2
η,0| = o(n−(1−δ)/4), we have

sup
|κη−κη,0|=o(1)

−2`(θ; α) + 2`(θ(3)
α ; α) = o(nδ).

It then gives (5.155).
Second, we prove (5.156). By (5.151), for |σε − σ2

ε,α| = O(n−1/2), we have

sup
|κησ2

η−κη,0σ2
η,0|=O(n−1/4)

−2`(θ; α) + 2`(θ(3)
α ; α) = Op(1).

It then gives (5.156).
Finally, we prove (5.157). First, for δ ∈ (0, 1), by (9.97), we have

−2`(θ; α) = n log(2π) + log det(Σ(θ)) + µ′A(α; θ)′Σ−1(θ)A(α; θ)µ + tr(Σ(θ0)Σ
−1(θ))

−(η + ε)′M (α; θ)′Σ−1(θ)(η + ε)− 2µ′A(α; θ)′Σ−1(θ)(η + ε) + ξ(θ)

= n log(2π) + log det(Σ(θ0)) + (η + ε)′Σ−1(θ0)(η + ε) + ξ(θ)− ξ(θ0)

+2LKL(α; θ)− 2µ′A(α; θ)′Σ−1(θ)(η + ε)− 2(η + ε)′M(α; θ)′Σ−1(θ)(η + ε)

= n log(2π) + log det(Σ(θ0)) + (η + ε)′Σ−1(θ0)(η + ε) + ξ(θ)− ξ(θ0)

+ξ2(θ; α) + 2LKL(α; θ) + op(n
δ), (9.102)

where ξ(θ) and ξ2(θ; α) are defined in (5.53) and (5.137), respectively, the second equality
follows from (3.3) and

(µ− µ̂(α; θ))′Σ−1(θ)(µ− µ̂(α; θ)) = µ′A(α; θ)′Σ−1(θ)A(α; θ)µ

+(η + ε)′M (α; θ)′Σ−1(θ)M(α; θ)(η + ε),

and the last equality follows from (9.99). Then, for α ∈ A\Ac, |σ2
ε − σ2

ε,α| = o(n−(1−δ)/2),

|σ2
ηκη − κη,0σ

2
η,0| = o(n−(1−δ)/4) and |κη − κη,0| = o(1), we have

−2`(θ; α) + 2`(θ(3)
α ; α) = 2LKL(α; θ)− 2LKL(α; θ(3)

α ) + ξ(θ)− ξ(θ(3)
α )

+ξ2(θ; α)− ξ2(θ
(3)
α ; α) + op(n

δ)

= 2LKL(α; θ)− 2LKL(α; θ(3)
α ) + op(n

δ)

= op(n
δ),
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where the second equality follows from (5.146) and (5.147) and the last equality follows
from (5.78). In addition, by (5.159) and (9.99), we have

LKL(α; θ) =
1

2
µ′A(α; θ)′Σ−1(θ)A(α)µ + Op(1)

=
1

2

∑

j∈αc\α

β2
j σ

2
j

σ2
ε

n + op(n) > 0,

as n →∞ with probability tending to 1. Then, we have

plim
n→∞

LKL(α; θ)
/
LKL(α; θ(3)

α ) = 1,

which gives (5.157) for δ ∈ (0, 1). Second, for δ = 0, similar to (9.102),

−2`(θ; α) = n log(2π) + log det(Σ(θ0)) + (η + ε)′Σ−1(θ0)(η + ε) + ξ(θ)− ξ(θ0)

+ξ2(θ; α) + 2LKL(α; θ) + Op(1).

Hence, for α ∈ A, |σ2
ε − σ2

ε,α| = O(n1/2) and |κησ
2
η − κη,0σ

2
η,0| = O(n−1/4),

−2`(θ; α) + 2`(θ(3)
α ; α) = 2LKL(α; θ)− 2LKL(α; θ(3)

α ) + ξ(θ)− ξ(θ(3)
α ) + Op(1)

+ξ2(θ; α)− ξ2(θ
(3)
α ; α) + Op(1)

= 2LKL(α; θ)− 2LKL(α; θ(3)
α ) + Op(1)

= Op(1),

where the second equality follows from (5.152) and (5.153), and the last equality follows
from (5.156). Then

LKL(α; θ)− LKL(α; θ(3)
α ) = Op(1).

In addition, by (5.122) and (9.93), we have

LKL(α; θ) =
1

2
µ′A(α; θ)′Σ−1(θ)A(α)µ + Op(1)

=
1

2

∑

j∈αc\α

β2
j σ

2
j

σ2
ε

n + op(n) > 0,

as n →∞ with probability tending to 1. Then, we have

plim
n→∞

LKL(α; θ)
/
LKL(α; θ(3)

α ) = 1,

which gives (5.157) for δ = 0. This completes the proof. 2

Proof of Corollary 7

It suffices to show that (6.3) is satisfied all the time in this case. By (3.17),

E(L(α)) = R1(α) + R2(α) + σ2
ε tr(ΣηΣ

−1) ≥ σ2
ε tr(ΣηΣ

−1),
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where the inequality follows from R1(α) ≥ 0 and R2(α) ≥ 0, for all α ∈ A. Also, from
(5.30),

lim
n→∞

σ2
ε tr(ΣηΣ

−1)

n(1+δ)/2
= 2−1/2(σ2

ηκησ
2
ε )

1/2 > 0. (9.103)

Hence, (6.3) is then satisfied for fixed p.
For A 6= ∅ and (6.3) is satisfied from above, it is shown that for fixed p and α ∈ A,

plim
n→∞

∣∣∣∣
L(α)

E(L(α))
− 1

∣∣∣∣ = 0, (9.104)

by (6.9). Also, from (3.17), we have for α ∈ A \ Ac,

lim
n→∞

E(L(α))

E(L(αc))
≥ 1,

by σ2
ε tr(Σ

−1M (α)) ≤ p(α) < ∞ and (9.103), where the equality holds for

lim
n→∞

σ4
ε µ

′A(α)′Σ−2A(α)µ

E(L(αc))
= 0. (9.105)

Let αL = arg minα∈A L(α). If (9.105) is not satisfied, by (9.104), we have

plim
n→∞

L(α)

L(αc)
= c,

for some c > 1 and α ∈ A \ Ac, which follows that P
(
αL ∈ Ac

)
= 1. In addition, by

(3.17) and (9.103), we have for any α ∈ Ac,

lim
n→∞

E(L(αL))

E(L(α))
= 1,

Then by (9.104), for any α ∈ Ac, we have

plim
n→∞

L(α)

L(αL)
= 1.

It then gives plim
n→∞

L(α̂)
/

inf
α∈A

L(α) = 1, if lim
n→∞

P
(
α̂ ∈ Ac

)
= 1. If (9.105) is satisfied, we

then have for any α ∈ Ac,

lim
n→∞

E(L(αL))

E(L(α))
= 1,

which gives that for any α ∈ A,

plim
n→∞

L(α)

L(αL)
= 1, (9.106)

by (9.104), which also gives plim
n→∞

L(α̂)
/

inf
α∈A

L(α) = 1, for lim
n→∞

P
(
α̂ ∈ Ac

)
= 1. Then, it

completes the proof. 2
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Proof of Corollary 8

For fixed p, (6.3) is shown by (9.103). Hence, by Theorem 14, it gives

plim
n→∞

L(α̂CAIC)
/

inf
α∈A

L(α) = 1.

For any δ ∈ [0, 1), by (5.38), we have

σ4
ε µ

′A(α)Σ−2A(α)µ = O(nδ),

which gives (9.105) by (9.103). It then follows (9.106), which gives plim
n→∞

L(α̂)
/

inf
α∈A

L(α) =

1, for any arbitrary selected model α̂. It completes the proof. 2

Proof of Corollary 9

For Ac = {αc}, it suffices to show that lim
n→∞

E(L(α))− σ2
ε tr(ΣηΣ

−1) = ∞ for α ∈ A \ Ac

and finite fixed p by

plim
n→∞

µ′A(α)′Σ−1A(α)µ = ∞.

First, for i = 1, . . . , p, let Xj be the jth column of X. Then, for j = 1, . . . , p,

plim
n→∞

1

tr(Σ−2)
X ′

jΣ
−2Xj = σ2

j ,

by its expectation equals to σ2
j and its variance

lim
n→∞

σ4
j tr(Σ

−4)

/(
tr(Σ−2)

)2

≤ lim
n→∞

σ4
j tr(Σ

−2)

/(
σ2

ε tr(Σ
−2)

)2

= σ4
j

/
lim

n→∞

(
σ4

ε tr(Σ
−2)

)
= 0,

by σ2
εΣ

−1 ≤ I and lim
n→∞

tr(Σ−2) = ∞, and for j, k = 1, . . . , p and j 6= k,

lim
n→∞

1

tr(Σ−2)
X ′

jΣ
−2Xk = 0,

by its expectation equals to 0 and its variance

lim
n→∞

σ2
j σ

2
ktr(Σ

−4)

/(
tr(Σ−2)

)2

≤ lim
n→∞

σ2
j σ

2
ktr(Σ

−2)

/(
tr(Σ−2)

)2

= σ2
j σ

2
k

/
lim

n→∞

(
σ4

ε tr(Σ
−2)

)
= 0.

It then follows that for µ = Xβ and β = (β0, . . . , βj),

lim
n→∞

1

tr(Σ−2)
µ′A(α)′Σ−2A(α)µ =

∑

j∈αc\α
β2

j σ
2
j > 0, (9.107)

for α ∈ Ac. Hence, (6.26) holds by lim
n→∞

tr(Σ−2) = ∞, we then complete the proof. 2
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Proof of Corollary 10

For Ac 6= ∅ and λ →∞, by (9.107) and lim
n→∞

tr(Σ−2)
/
λ = ∞, (6.46) is then satisfied. In

addition, we have

plim
n→∞

tr(Σ−1M(α)) = plim
n→∞

tr
(
(X(α)′Σ−1X(α))−1X(α)′Σ−2X(α)

)

= lim
n→∞

∑
j∈α

σ2
j

tr(Σ−2)

tr(Σ−1)
> 0,

which gives (6.47) for fixed p. It then follows that lim
n→∞

P
(
α̂GIC(λ) = αc

)
= 1, which

completes the proof. 2
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