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ABSTRACT

The academic approach of discovering the singlemgptsolution (ex. makespan) of
scheduling for production system is the mainstreaithough the empirical
requirement of production system is to achieve muldfective optimization. Many
algorithms have been developed to search for optmaear-optimal solutions due to

the computational cost of determining exact sohgio

This study provides a Particle Swarm OptimizatioRSQ) to elaborate
multi-objective flow shop scheduling problem (FSSPp shop scheduling problem
(JSSP) and open shop scheduling problem (OSSP). pfbposed evolutionary
algorithm searches the optimal solution for objexgi by considering the makespan,

total flow time, and machine idle time simultandgus

Particle Swarm Optimization (PSO) is a populati@sdx optimization algorithm,
which was developed in 1995. The original PSO igduso solve continuous
optimization problems. Due to the discrete solugspaces of scheduling optimization
problems, the authors modified the particle positiepresentation, particle movement,
and particle velocity in this study. The modifie®&® could be applied for solving
various benchmark problems; moreover, the reswdtaahstrated that the modified
PSO outperformed traditional evolutionary heursstie Genetic Algorithm in
searching quality and efficiency.

Keywords Particle swarm optimization, Multi-objective, Mloshop scheduling, Job

shop scheduling problem, Open shop scheduling
I
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CHAPTER 1 INTRODUCTION

1.1 Research Motivations

Scheduling is an optimization process by which tédiresources are allocated over
time among parallel and sequential activities. Ssithations develop routinely in
factories, publishing houses, shipping universjtiegspitals, airports, etc. Solving
such a problem amounts to making discrete choicé stat an optimal solution is
found among a finite or a countable infinite numbkalternatives. Such problems are
called combinational optimization problems. Typigathe task is complex, limiting
the practical utility of combinatorial, mathematigaogramming and other analytical

methods in solving scheduling problems effectively.

To find exact solutions of scheduling problems anlsh-and-bound or dynamic
programming algorithm is often used. However, mahgp scheduling problems are
NP-hard, which means that the problem cannot be&tlgxaolved in a reasonable
computation time. Using problem-specific informatisometimes reduces search
space, even though the problem is still difficaltsblve exactly. Therefore, heuristic
algorithms and dispatching rules are developedhiaio the approximate optimal
solution. Meta-heuristic is one of the most popuad the most efficient method to
obtain the approximate optimal solution. Among theta-heuristics, particle swarm
optimization (PSO) is new and extensively impleredrit recent years. However, the
original intent of PSO is to solve continuous opzation problems, and PSO

methods that work well for combinatorial optimizatiare still scarce.



1.2 Research Objectives

The objective of this work is to development PS@stévo shop scheduling problems:
the flow shop scheduling problem (FSSP) and the g§bbp scheduling problem
(JSSP). In the work of FSSP, the problem is to fan@chedule to minimize the

makespan C__ ), mean flow time and machine idle time. In the kvof JSSP, we

max

attempt to search a schedule to minimize the make&p

max

), machine idle time and

total tardiness.

Since the original intent of PSO is to solve combins optimization problems,
we have to modify the original PSO when we implemeB80O to a combinatorial
optimization problem. PSO can be separated sevmmels to discuss: position
representation, particle velocity, and particle eroent. We will develop various PSO
designs in this work. On the other hand, the PS@Ideed in this work can be an

example of PSO design for other discrete optimizagiroblems.

1.3 Research Process

The research of this dissertation begins with teeemnination of research topic. The
literature consists with flow shop scheduling, jshop scheduling, open shop
scheduling, particle swarm optimization and genelgorithms. The programs of
particle swarm optimization and genetic algorithme @oded with programming
language C according to the types of schedulinglpro. Then, the experiments are
compared to evaluate the performance of each #hgorio different problem types.

Finally, the conclusion is remarked. The flow chafrthis dissertation is as figure 1.1.
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A 4

Literature Review
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Experiment
[ Comparison

\/

Conclusion

Figure 1. 1 The flow chart of this dissertation

1.4 Organization

The organization of the remaining chapters for tesearch is as follows. Chapter 2
reviews the literatures of the background of shopeduling problems and PSO.
Chapter 3 describes the factors of PSO design &@ for FSSP. PSO for JSP is
modified and illustrated in Chapter 4. We also jmsgal a novel PSO for OSSP in
Chapter 5. In chapter 6 we draw our conclusion iad@tate the direction for further

research.



CHAPTER 2 LITERATURE REVIEW

2.1 Particle Swarm Optimization

Particle swarm optimization (PSO) is an evolutignsgchnique for unconstrained
continuous optimization problems proposed by Keynadd Eberhart (1995). The
PSO concept is based on observations of the doelavior of animals such as birds
in flocks, fish in schools, and swarm theory. Thiwvamtages of the PSO method:
simple structure, immediate applicability to preati problems, ease of
implementation, quick solution, and robustnessti€®arswarm optimization proposed
recently for unconstrained continuous optimizatimmblems is one of the latest
evolutionary techniques. PSO has been successfpiptied to different field of

applications due to the easy implementation and pcoational efficiency.

Nevertheless, the applications of the PSO on tmebawation optimization problem

are still scarce.

The major idea of PSO is based on observationsh@fsbcial behaviors of
animals such as bird flocking, fish schooling, @whrm theory. The population is
initialized by random solutions. The population sists with individuals (i.e.
particles). Each particle is assigned with a randethvelocity according to its own
and populations’ movement experience. The relatipnsetween swarm and particles

in PSO is similar to the relationship between papah and chromosomes in GA.

In PSO, the problem solution space is formulatedaasearch space. Each
position of the particles in the search space t®raelated solution of the problem.
Particles cooperate to find out the best positgmiufion) in the search space (solution

space).



Suppose that the searching spacB-dimensional ang particles comprise the
swarm. Each particle locates at the position safxXi, X2, ..., Xoi} With the velocity
Vi={V1i, Vai, ..., Wi}, where i=1, 2, ...p. Based on the PSO algorithm, each particle
move toward its own best positiopbes} denoted as Pbesfpbest;, pbest,...,
pbesti} and the best position of the whole swargb¢s) denoted as Gbest={gbegst
gbest, ..., gbesfiwith each iteration. Each particle changes itsifms according to
its velocity which is randomly generated towanoestand gbestpositions. For each
particler and dimensiors, the new velocitys, and positionxs, of particles can be

calculated by the following equations:

Vi

; — WXV, +c¢ xrand, x(pbesf; - x,) + ¢, xrand, x(gbes{ - x) (2.1)

X« Xg t Vg (2.2)

In Egs. (2.1) and (2.2} means the iteration number. The inertia weighis
employed to control exploration and exploitationlafgew keeps particles with high
velocity and prevents particles from trapping iodboptima. A smaklv maintains low
velocity of particles and urges particles to explbe same search area. The constant
c1 andc, are acceleration coefficients to determine whepaaticles prefer to move
closer topbestposition orgbestposition. Therand, andrand, are two independent
random numbers uniformly distributed between 0 andhe termination criterion of
the PSO algorithm includes the maximal number ofegations, designated value of
pbestand no further improvegbest The standard process of PSO is outlined as

follows:

(1)Initialize a population of particles with randgmositions and velocities ash

dimensions in the search space.

(2)Update the velocity of each particle, accordiméq. (2.1).



(3)Update the position of each particle, accordmgq. (2.2).

(4)Map the position of each particle into solutgpace and evaluate its fitness
value according to the desired optimization fithégaction. Meanwhile,

updatepbestandgbestposition if necessary.

(5)Loop to Step2 until a criterion is met, usuadlysufficient good fitness or a

maximum number of iterations.

The original PSO is designed to suit continuousutsmh space. For better
applying to combinational optimization problems, tave to modify PSO position

representation, particle velocity, and particle ement.

2.2 Genetic Algorithm

The concept of genetic algorithms (GA) was intragtlhdy Holland (1975) as a
general search technique which mimics biologicall@ion, with the survival of the
fittest individuals and a structured, yet randordjzeaformation exchange like in
population genetics. GAs have been applied witlhosving success to combinational
problems (Reeves, 1996). GAs works on a set (ptipa)eof solutions. Each solution
is encoded as a string of symbols called chromosand is associated with a
measure of adaptation, the fitness, often relateth¢ objective function. Starting
from an initial population, new solutions are getted by selecting somgarents

randomly, but with a probability growing with fiteg, and by applying genetic
operators such agossover(an exchange of substrings of the parent chromespm
and mutation(a random perturbation of a chromosome). Somdiegisolutions are

then selected at random and replaced by some obftepring, to keep a constant

population size. The process is repeated untitisfaetory solution is found.



For solving optimization problems, genetic alganth have been investigated
and shown to be effective at exploring a large emmiplex space in an adaptive way
guided by the equivalent biological evolution meuken (Huang and Adeli, 1994).
Many conventional optimization methods start frone g@oint in the search area and
then move sequentially to achieve the optimal smhjtthereby operating rather

locally and highly prone to falling inside a coidental local optimum.

GAs are known for their robustness: they can bdieggo a wide range of
problems without special knowledge about the probdgructure. The price to pay is
that they cannot compete with meta-heuristics whetplore problem-specific
neighborhoods. However, more and more paper hawevesh that GAs can
outperform meta-heuristics on some problems, whey tare enriched by some
problem-specific knowledge, or when they are hybdad with other improvement

techniques such as local search.

2.3 Flow Shop Scheduling Problem

Production scheduling in real environments has imeca significant challenge in
enterprises maintaining their competitive positionsapidly changing markets. Flow
shop scheduling problems have attracted much adteimt academic circles in the last
five decades since Johnson’s initial research. Méshese studies have focused on
finding the exact optimal solution. A brief overwieof the evolution of flow shop
scheduling problems and possible approaches todbkition over the last fifty years
has been provided by Gupta and Stafford (2006)t Shavey indicated that most
research on flow shop scheduling has focused agleswbjective problems, such as

minimizing completion time, total flow time, or &dttardiness. Numerous heuristic



techniques have been developed for obtaining tipeoapnate optimal solution to

NP-hard scheduling problems. A complete surveylaf fshop scheduling problems
with makespan criterion and contributions, inclgdiaxact methods, constructive
heuristics, improved heuristics, and evolutiongspraaches from 1954 to 2004, was
offered by Hejazi and Saghafian (2005). Ruiz anddi#ta (2004) also presented a
review and comparative evaluation of heuristics areta-heuristics for permutation
flowshop problems with the makespan criterion. THEH algorithm (Nawaz,

Enscore and Ham, 1983) has been shown to be thecbestructive heuristic for

Taillard’s benchmarks (Taillard, 1993) while therdted local search (Stutzle, 1998)
method and the genetic algorithm (GA) (Reeves, 19&%® better than other

meta-heuristic algorithms.

Most studies of flow shop scheduling have focusadacsingle objective that
could be optimized independently. However, empirscheduling decisions might not
only involve the consideration of more than oneeobye, but also require
minimizing the conflict between two or more objges. In addition, finding the exact
solution to scheduling problems is computationakyensive because such problems
are NP-hard. Solving a scheduling problem with ipldt objectives is even more
complicated than solving a single-objective prohlepproaches including
meta-heuristics and memetics have been developeaddiace the complexity and

improve the efficiency of solutions.

Hybrid heuristics combining the features of diffesre methods in a
complementary fashion have been a hot issue ifi¢lds of computer science and
operational research (Liu et al.,, 2007). Ponnanmbaéd al. (2004) considered a
weighted sum of multiple objectives, including nmmizing the makespan, mean flow

time, and machine idle time as a performance measemt, and proposed a



multi-objective algorithm using a traveling salesmalgorithm and the GA for the
flow shop scheduling problem. Rajendran and Zie(##604) approached the problem
of scheduling in permutation flow shop using twd anlony optimization (ACO)

approaches, first to minimize the makespan, anal ttheninimize the sum of the total
flow time. Yagmahan and Yenisey (2008) was the fosapply ACO meta-heuristics
to flow shop scheduling with the multiple objectvef makespan, total flow time, and

total machine idle time.

The literature on multi-objective flow shop schedglproblems can divided into
two groups: a priori approaches with assigned wseigif each objective, and a
posteriori approaches involving a set of non-dot@dasolutions (Pasupathy et al.,
2006). There is also a multi-objective GA (MOGA)lled PGA-ALS, designed to
search non-dominated sequences with the object¥erinimizing makespan and
total flow time. The multi-objective solutions acalled non-dominated solutions (or
Pareto-optimal solutions in the case of Paretoraglity). Eren and Guner (2007)
tackled a multi-criteria two-machine flow shop sdtkng problem with minimization

of the weighted sum of total completion time, tagatliness, and makespan.

To minimize the objective of maximum completion érfi.e., the makespan), Liu
et al. (2007) invented an effective PSO-based mieraggorithm for the permutation
flow shop scheduling problem. Jarboui et al. (200&yeloped a PSO algorithm for
solving the permutation flow shop scheduling prafglethis was an improved
procedure based on simulated annealing. PSO wammended by Tasgetiren et al.
(2007) to solve the permutation flow shop schedupnoblem with the objectives of
minimizing makespan and the total flow time of joBahimi-Vahed and Mirghorbani
(2007) tackled a bi-criteria permutation flow shsgheduling problem where the

weighted mean completion time and the weighted ntaafiness were minimized



simultaneously. They exploited a new concept calleel ideal point and a new
approach to specifying the superior particle’s posivector in the swarm that is
designed and used for finding the locally Paretbragl frontier of the problem. Due
to the discrete nature of the flow shop schedulommgblem, Lian et al. (2008)
addressed permutation flow shop scheduling with iaimized makespan using a

novel PSO.

2.4 Job Shop Scheduling Problem

Job shop scheduling problem (JSSP) has been stfatiedore than 50 years in both
academic and practical fields. Jain and Meeran L9@ve a concise overview of
JSSP over the last decades and highlighted the taeimiques. JSSP is the toughest
class in the combinational optimization. Gareyle{k076) demonstrated that JSSP is
NP-hard (NP stands for non-deterministic polynojnidlence we cannot find the
exact solution of it in reasonable computation tinie single objective JSSP has
attracted researching concentration widely. Maostlists of single objective JSSP are
discovering a schedule to minimize the time regluit@ complete all jobs, namely
makespan Gmay. In order to conquer the limitation the exactumeration
techniques, many approximate methods have beenogexk in the last decades.
These approximate approaches includes simulateeating (Lourenco, 1995), tabu
search (Sun et al., 1995; Nowicki and Smutnicki@9ezzella and Merelli 2000)
and genetic algorithm (Bean, 1995; Kobayashi et18195; Wang and Zheng, 2001;
Goncalves et al., 2005). However, in real worle, thulti-objectives requirements of
production system should be achieved at the same. fThis makes the academic
concentration of objectives in JSSP has been egteritbm single to multiple.

Related works of JSSP with multiple objectives @teant years is summarized as

10



below.

Ponnambalam et al. (2001) has offered a multi-dieoyenetic algorithm to
derive the optimal machine-wise priority dispatchirules to resolve the job shop
problems with the objective functions considerednimization of makespan,
minimization of total tardiness, and minimizatiofh total idle time of machines.
Verified by the benchmark problem in the literagjrtne proposed MOGA is capable
of providing optimal or near-optimal solutions. Aréto front provides a set of best
solutions to determine the trade-offs between theous objects. Good parameter
settings and appropriate representations can eahingc behavior of an evolution
algorithm. Esquivel et al. (2002) conducted a studythe influence of distinct
parameter combinations as well as different chramasrepresentations. Initial result
shows that: (i)Larger numbers of generations fawa building of a Pareto front
because the search process (if rather slow) daestagnate. (ii)Multi-recombination
helps to speed the search and to find a largesizetvhen seeking the Pareto optimal
set. (iii)Operation based representation is the diethe three representations selected
for contrast under both methods of recombinatiometa-heuristic procedure based
on the simulated annealing algorithm called Pamatthived simulated annealing
(PASA) is proposed by Suresh and Mohanasndaram 6)20@ discover
non-dominated solution sets for the job shop scleglproblem with the objectives
of minimizing the makespan and the mean flow tinfe jabs. The superior
performance of the PASA can be attributed to itseptance mechanism used to
accept the candidate solution. Candido et al. (L19@8Iressed job shop scheduling
problems with numbers of more realistic constraistech as job with several
subassembly levels, alternative processing planpdds and alternative resources of

operations, requirement of multiple resources t@ss an operation, etc. The robust

11



procedure worked well in all problem instances,vahg to be a promising tool to
solve more realistic job shop scheduling problelnes and Wu (2006) firstly designed
a crowding-measure-based multi-objective evolutiprelgorithm (CMOEA) which

makes use of the crowding measure to adjust therredt population and assign
different fitness for individuals. The comparistsetween CMOEA and SPEA
demonstrates that CMOEA performs well in job sholpesluling with two objectives

including minimization of makespan and total tassis.

Coello et al. (2004) provided an approach in whRareto dominance is
incorporated into particle swarm optimization imer to allow the heuristic to handle
problems with several object functions. The aldwnitused secondary repository of
particles to guide particle flight. The proposegmach is validated using several test
functions and metrics taken from the standard ditee on evolutionary
multi-objective optimization. The results show tkia¢ approach is highly competitive.
Liang et al. (2005) have invented a novel PSO-basgdrithm for job- shop
scheduling problems. The algorithm effectively exisl the capability of distributed
and parallel computing systems, with simulatiorulieshowing the possibility of high
quality solutions for typical benchmark problemsei I(2008) presented a particle
swarm optimization for multi-objective job shop edaling problem to
simultaneously minimize makespan and total tardingsjobs. By constructing the
corresponding relation between real vector andctiremosome obtained by using
priority rule-based representation method, job shkopeduling is converted into a
continuous optimization problem. The global besiifon selection is combined with
the crowding measure-based archive maintenancedigrda Pareto archive particle
swarm optimization. The proposed algorithm is cépald producing a number of

high-quality Pareto optimal scheduling plans.

12



Incorporating different approaches to take thengfite of them, some hybrid
algorithms have been proposed lately and lead athan research branch. Wang and
Zheng (2001) reasonably combined GA with SA to mva hybrid framework, in
which GA was introduced to present a parallel dearchitecture, and SA was
introduced to increase escaping probability fromalcoptimal at high temperatures.
Computer simulation results based on some b shdhetdthe hybrid strategy was
very effective and robust, and could almost findirop for all benchmark instances.
Based on the hybridization of PSO and SA, Xia ana (2005) developed an easily
implemented approach for the multi-objective flégilpb shop scheduling problem.
The results obtained from the computational studyehshown that the proposed
algorithm is a viable and effective approach fa thulti-objective FISP, especially
for problems on a large scale. Ripon (2007) extehdsidea called Jumping Genes
Genetic Algorithm (JGGA) to propose a hybrid apgtoavhich can search for the
near-optimal and non-dominated solutions with letienvergence by optimizing

criteria simultaneously.

2.5 Open Shop Scheduling Problem

Shop scheduling problems, including flow-, job-,daopen-shop problems, have
attracted the interest of many researchers. Stlogdsiling has become a significant
factor used by shops to maintain their competifpasition in a rapidly changing

marketplace. Most previous research into the gb@p scheduling problem has
concentrated on finding a single optimal solutierg(, makespan). However, in the
real world, the multiple-objective requirementsstiop scheduling must be achieved
simultaneously. Thus, the academic study of opempsscheduling has been

extended from a single objective to multiple ohijezs.
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Because the open-shop scheduling problem is narrdetistic polynomial-time
hard (NP hard) for more than two machines (m >&)rzalez and Sahni ,1976), we
cannot solve it exactly using a reasonable amodntomputation time. Most
published research has concentrated on develogngshic algorithms to search for
the optimal makespan of open-shop scheduling pnakle A neighborhood search
algorithm based on the simulated annealing teclenigas proposed by Liaw (1999)
to addresses the problem of scheduling a non-priéeengpen shop with the objective
of minimizing the makespan. An efficient local sgaalgorithm based on the tabu

search technique was also proposed by Liaw (1298jinimize the makespan.

Liaw (2000) developed and applied a hybrid genetgorithm (HGA) to the
open-shop scheduling problem.  The hybrid algorithncorporated a local
improvement procedure based on the tabu searchirfitShe basic genetic algorithm
(GA). Blum (2005) proposed the Beam-ACO technidqoe tackle open-shop
scheduling; this technique consisted of a hybriligelution construction mechanism
for ant colony optimization (ACO) with a beam sdarc Several competitive GAs
have also been presented to detect global optiadaks disseminated among many
quasi-optimal schedules of the open-shop problemingP 2000). A heuristic
technigue for the open-shop scheduling problem gushre genetic algorithm to
minimize the makespan was developed by SenthilkmdrShahbudeen (2006), and
Tang and Bai (2010) proposed a heuristic algoritkmoywn as the shortest processing
time block (SPTB), to solve the open-shop problgmniinimizing the sum of the

completion time.

Liang (2005) considered the problem of schedulingemptive open shops to
minimize the total tardiness. He developed ancieffit constructive heuristic to

solve large problems. To solve medium-sized proble he proposed a
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branch-and-bound algorithm that incorporated a tob@nd scheme based on the

solution of an assignment problem as well as varamminance rules.

Blazewicz et al. (2004) applied a non-classicafgrerance measure, the late
work criterion, to scheduling problems. They estied the quality of the obtained
solution with regards to the duration of the lasetp of the tasks, but did not take into

account the quality of these delays.

One of the latest evolutionary techniques, partgs&arm optimization (PSO),
was recently proposed by Kennedy and Eberhart (1f@®3unconstrained continuous
optimization problems. The idea behind PSO is daseobservations of the social
behavior of animals such as flocks of birds or sthef fish, combined with swarm
theory. PSO has been successfully applied to rdiifefields due to its easy
implementation and computational efficiency. Néveless, applications of PSO to

combinations of optimization problems are stillrsea

2.6 Multiple Objective Programming

There are several ways to classify the differenpre@ches to multiobjective
optimization. Adulbhan and Tabucanon (1989) clésithe techniques into three
main approaches based on the way the initial nyéive problem is transformed
into a mathematically manageable format. These cguhes are, respectively, (a)
conversion of secondary objectives into constrai(id development of a single
combined objective function, and (c) treatmentlbbbjectives as constraints. Hwang,
Masud, Paidy and Yoon (1982), on the other handpgse grouping of techniques
according to the stage at which the analyst negdsnation from the decision-maker.
The classification is divided into four approachés) no articulation of decision

maker’s preference data, (b) a priori articulatanpreference data, (c) progressive
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articulation of preference data, and (d) a postieaidiculation of preference data.

A recently proposed method for treating the anedytiphase of the MCDM
process is called multiple criteria optimization, on short, multiobjective
optimization (Seo and Sakawa, 1988). Accordinghie viewpoint, multiple criteria
optimization contains two key concepts: (a) Pagitmality and (b) the preferred
decision (or preferred solution). In general, tleeisions with Pareto optimality are
not uniquely determined, unlike, for instance, whatl programming produces. In
multiobjective optimization problems, the usuallxist many solutions that are
optimal in the Pareo sense, a concept put fortedmpnomists. Owing to such plurality
of optimal decisions, the most desirable decisiosy be selected after one has
generated the Pareto optimal or nondominated solsiti The final solution thus
selected as the most desirable, or at least thiecbegpromised solution, is called

preferred solution.

Many approaches have been developed in the domiimudti-objective
meta-heuristic optimization. Hsu, Dupas, Jolly & rBalves (2002) focus our
presentation on evolutionary approaches that canldssified into three types: (a)
The transformation towards a mono-objective problesnsists of combining the
different objective into a weighted sum. (b) The n+#RRareto approach utilizes
operators for processing the different objectivesaiseparated way. (c) The Pareto
approach is directly based on the Pareto optinumatoncept. It aims at satisfy two
goals: coverage to the Pareto front and obtainrsified solutions scattered all over

the Pareto front.

In real world, empirical scheduling decisions sldoulot only involve the
deliberation of more than one objective at a tilmé,also need to prevent the conflict

of two or more objectives. The solution set of naalijective optimization problem
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with conflicting objective function consisted withe solutions that no other solution
is better than all other objective functions isle@dlPareto optimal. A multi-objective
minimization problem with m decision variables amabjectives is given below to

describe the concept of Pareto optimality.

Minimize F(x) = (f,(Xx), f5(X),..., T,(X))
where xOO™, F(x)OO"

A solutionp is said to dominate solution q if and only if:

f(p)< f(q) OkO{12...n
f(p) < fi(@ kO {12...,n}

The non-dominated solution is defined as solutimhéch dominate the others
but do not dominate themselves. Solutprs said a Pareto-optimal solution if there
exist no other solutiorg in the feasible space which could domingteThe set
including all Pareto-optimal solutions is termed Bareto-optimal Set, or the efficient
set. The graph plotted using collected Pareto-ggitisolutions in feasible space is

designated as Pareto front.

The external Pareto optimal set is employed to siépa limited size of
non-dominated solutions (Knowles et al., 2000; [Eitzt al. 2001). Maximum size of
archive set is specified in advance. This methapidied to forbid missing fragment
of non-dominated front during the searching proc@dse Pareto-optimal front is
getting formed as archive updated iteratively. Whhie archive set is empty enough
and a new non-dominated solution is detected, #ve solution will enter the archive
set. As the new solution enters the archive sey, solution in the archive set
dominated by this solution will be withdrawn frorhet archive set. In case the
maximum archive size reaches its preset valueatbieive set have to decide which

solution could be replaced.
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In this study, we propose a novel Pareto archiveigdating process in order to
preclude from losing non-dominated solutions whiea Pareto archive set is full.
When a new non-dominated solution is discovered atithive set would be updated
when one of the following situation occurs: (a) faenof solutions in the archive set
is less than the maximum value; (b) number of tlet®ns in the archive set is equal
to (greater than) the maximum value, then one efsthlutions in the archive set that
IS most dissimilar to the new solution will be reptd by the new solution. We
measure the dissimilarity by Euclidean distancdorger distance implies a higher
dissimilarity is. The non-dominated solution in tRareto archive set with the longest

distance to the new found solution will be replaced
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CHAPTER 3 PSO for Multi-objective FSSP

In this chapter, we will discuss the probably sgsckctors to develop a PSO design
for a discrete optimization problem. We will compaPSO with another
population-based meta-heuristigenetic algorithm (GA). The principles of a GA

design may be also suitable to a PSO design.

There are two different representations of partigbsition associated with a
schedule. Zhang et al. (2005) demonstrated thamytetion-based position
representation outperforms priority-based repregemt. While we have chosen to
implement permutation-based position representati@must also adjust the particle

velocity and particle movement.

There are four types of feasible schedules in J&uding inadmissible,
semi-active, active and non-delay. The optimal daleeis guaranteed to be an active
schedule. We can decode a particle position intactive schedule employing Giffler
and Thompson’s (1960) heuristic. There are twoedifit representation of particle
position associated with a schedule. The resultghaing (2005) demonstrated that
permutation-based position representation outpagopriority-based representation.
While choosing permutation-based position presemab implement, we also have
to adjust the particle velocity and particle moveimén addition, the maintenance of
Pareto optima and diversification procedure arep@sed finally for better

performance.

3.1 Problem Formulation
The problem of scheduling in flow shops has beenstibject of much investigation.
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The primary elements of flow shop scheduling inelwad set ofm machines and a
collection ofn jobs to be scheduled on the set of machines. pactollows the same
process of machines and passes through each mamhiywe@nce. Each job can be
processed on one and only one machine at a timereat each machine can process
only one job at a time. The processing time of gabhon each machine is fixed and
known in advance. We formulate the multi-objectil@v shop scheduling problem

using the following notation:
n total number of jobs to be scheduled
m total number of machines in the process
t(i,j) processing time for jobon maching (i=1,2,..n), (j=1,2,...m)
Li the lateness of job
{m, m, ...,mn} permutation of jobs
The objectives considered in this paper are fortedlas follows:

Completion time (makespanl (7, j)

C(m ) =t(m ) (3.1)
Clm )=C(m_1 D+t(m D) i=2..n (3.2)
C(m,)=C(m, j-D+t(mm,j) j=2,...m (3.3)
C(7z, 1) =max{C(75 1, ),C(7, ] -1} +1(73,]) i =2,...n; j=2,....m (3.4)
Makespan, f. .., =C(,,m) (3.5)
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Mean flow time, f,,; =[> C(77,m)]/n (3.6)

i=1

Machine idle time,

fur ={C0T,§ =D+ Y Max{C(7, | - ~C7. 0} || =2} (37)

i=2

3.2 Particle Position Representation

In the study of flow shop scheduling, we randoménegrated a group of particles
(solutions) represented by a permutation sequérates an ordered list of operations.
The following example is a permutation sequencefsix-job permutation flow shop
scheduling problem, whejgis the operation of joh.

Index 1 2 3 4 5 6

Permutation js js j1 Jjs J2 s

An operation earlier in the list has a higher ptyoof being placed into the schedule.
We used a list with a length offor ann-job problem in our algorithm to represent the

position of particle, i.e.

X =[x x5 .. x<]
x! is thepriority of |, in particlek.

Then, we convert the permutation list to a priofisg. x* is a value randomly

initialized to some value betweem0.5) and jp + 0.5). This meansx <p + rand —

0.5, wherep is the location (index) gfin the permutation list, andhnd is a random
number between 0 and 1. Consequently, the operatitnsmaller x has a higher

priority for scheduling. The permutation list meméed above can be converted to

X¥=[2.7 52 1.8 06 6.3 3.9
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We describe the conversion between integers armd-floint numbers as follows.
The permutation list is represented in integer,levthie priority list is presented in
floating-point number. At first, we generate integeandomly for permutation list.
The permutation list could convert to priority liga the equatior* = p; +rand()- 05,

whererand() is the random number between 0 and 1.

Index 1 (2|3 |4 |5 |6
FPermutation |j, |5 |J; |Js |J2 |Js
—~————
Permutation list 4 3 |1 |6 |2 b)
P 1 2 |3 |4 |5 6

x;<p;+ rand —0.5 T—ggggmm—

Permutation Ja Vs |1 fs |2 Js

Priority list op #8227 |39 (52 |e3

Figure 3.1 The conversion between integers and-float numbers

The priority list contains real number is used im BSO. The priority list stored in

the array is as follows.

Index
Priority list 2.7|5.2(1.8 |0.6 (6.3 (3.9

Figure 3.2 The priority list stored in the array

As the particle move, the value of priority list ynghange. We assume that the

priority list change to be followed.

Index
Priority list 2.7|5.2|1.8 |0.6 2.6 |3.9

Figure 3.3 The priority list changed as particleverment

Finally, we sort the priority list and we can getew permutation list. The new

list can be used to calculate fitness function.
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Index 1 |2 |3 4
Priority list 2.7|5.2/1.8 |0.6 2.6 |3.9

Sorting -
|Permutation|ist |4 |3 |5 |1 |6 |2 |

Figure 3.4 A new permutation list

3.3 Particle Velocity

The original PSO velocity concept is that each ipl@rtmoves according to the
velocity determined by the distance between theipus position of the particle and
thegbest(pbesj solution. The two major purposes of the particocity are to move
the particle toward thgbestandpbestsolutions, and to maintain the inertia to prevent

particles from becoming trapped in local optima.

In the proposed PSO of flow shop scheduling, wecentrated on preventing
particles from becoming trapped in local optimdeatthan moving them toward the
gbest(pbes} solution. If the priority value increases or deasges with the present
velocity in this iteration, we maintain the prigri¢alue increasing or decreasing at the
beginning of the next iteration with probabiliy, which is the PSO inertial weight.
The larger the value ofv is, the greater the number of iterations over thice
priority value keeps increasing or decreasing, taedgreater the difficulty the particle
has returning to the current position. Forrggob problem, the velocity of particle

can be represented as

Vo =[vEvE LV v O{-101}
wherev is thevelocityof j of particlek.

The initial particle velocities are generated ranflo Instead of considering the

distance fromx* to pbest (gbest), our PSO considers whether the valuexjf

23



k

is larger or smaller thanpbest (gbest) If x“ has decreased in the present

iteration, this means thapbesf (gbest) is smaller thanx, and x“ is set moving
toward pbest (gbest) by letting v < —1. Therefore, in the next iterationy is
kept decreasing by one (i.ex‘< x‘ —1) with probabilityw. Conversely, if x

has increased in this iteration, this means tpaesf (gbest) is larger thanx', and

x is set moving towardpbest (gbest) by letting v <—1. Therefore, in the next

iteration, x* is kept increasing by one (i.ex‘ < x* + 1) with probabilityw.

The inertial weightw influences the velocity of particles in PSO. Wadamly

update velocities at the beginning of iterations: €ach particlé& and operation, if

V€ is not equal to OV* is set to O with probability (). This ensures thak’

stops increasing or decreasing continuously initeration with probability (1w).

3.4 Particle Movement

The particle movement of flow shop scheduling isdahon the insertion operator
proposed by Sha and Hsu (2008). The insertion apeisintroduced to the priority
list to reduce computational complexity. We illage the effect of the insertion
operator using the permutation list example desdrilbove. If we wish to insejt
into the third location of the permutation list, waist moves to the sixth location,
movej; to the fifth location, mové, to the fourth location, and then insgrtin the
third location. The insertion operation comprisitigese actions costs @2) on
average. However, the insertion operator used is gtudy need only set

x¢ < 3+rand-05 when we want to insejt in the third location of the permutation.
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This requires only one step for each insertiorthdf random numberand equals 0.1,

for example, aftej, is inserted into the third location, theX* becomes X*=[ 2.7

52 18 06 26 3.9

If we wish to inserf; into thepth location in the permutation list, we could set
x¥ < p+rand-05. The location of operatiopin the permutation sequence of ttle
pbestandgbestsolutions are pbesf andgbest, respectively. As particle moves, if
vi equals 0 for alj;, then x¥ is set to pbesf +rand- 05 with probabilityc; and set
to gbest+rand-05 with probabilityc,, whererand is a random number between 0
and 1,c; and ¢, are constants between O and 1, apndic, <1. We explain this

concept by assuming specific values\¥rx¥, pbest, gbest ci, andc,.

V¥=[-100100],
X*=[275.21.80.66.33.9],

pbest = [51463 2],
gbest= [634512],c,=08c,=01

Forjy, since v 20 and xf — xf +v, then x=17.

Forj,, since vi =0, the generated random numbeind, = 06. Since rand, <, , then
the generated random numbeind, = 03. Since pbesf < x5, set v§ — -1 and

x5 — pbesk +rand, - 05, i.e., x5 =08.

Forjs, since vk =0, the generated random numbeind, = 093. Since rand, > ¢, +c,,
x5 and v& do not need to be changed.

Forj,, since vk =1, then x§ — x& +vk, i.e., xf=16.

Forjs, since V& =0, the generated random numbeind, = 085. Since

¢, <rand; < ¢, +c,, the generated random numbeind, = 0.7 . Since gbest < x£ , set
v < -1. Then x{ < gbest +rand, - 05, i.e., xf =12.

Forje, since vi =0, the generated random numbemnd, = 095. Since rand, >¢c, +c,,

x¢ and v¢ do not need to be changed.
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Therefore, after particllke moves, tha/“ andX* are

vk=[-1 -1 0 1 -1 0]
x¥=[16 0.8 1.8 1.7 1.2 3.9

In addition, we use a mutation operator in our R8gdrithm. After moving a

particle to a new position, we randomly choose peration and then mutate its
priority value x* in accordance withv. If x“<(n/2), we randomly setx to a

value betweenn(2) andn, and setv < 1. If x*>(n/2), we randomly setx* to a

value between 0 and/@), and setvf < —1.

3.5 Pareto optimal set maintenance

Real empirical scheduling decisions often invole¢ only the consideration of more
than one objective at a time, but also must pretkat conflict of two or more
objectives. The solution set of the multi-objectioptimization problem with
conflicting objective functions consistent with teelutions so that no other solution
is better than all other objective functions idePareto optimal A multi-objective
minimization problem withm decision variables and objectives is given below to

describe the concept of Pareto optimality.

Minimize F(x)=(f,(x), f,(X),..., f,(X))
where xOO™, F(x)OO"

A solutionp is said to dominate solutiapif and only if

f(P)< (@) OKO {L2...1)
f(P) < F(6) KO {L2...1}

Non-dominated solutions are defined as solutioas dbminate the others but do
not dominate themselves. Solutipns said to be a Pareto-optimal solution if there

exists no other solutiom in the feasible space that could dominpteThe set
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including all Pareto-optimal solutions is refertedas the Pareto-optimal efficient
set. A graph plotted using collected Pareto-optisalutions in feasible space is

referred to as thBareto front

The external Pareto optimal set is used to prodacdimited size of
non-dominated solutions (Knowles and Corne (19%9zler et al. (2001)). The
maximum size of the archive set is specified inaambe. This method is used to avoid
missing fragments of the non-dominated front durihg search process. The
Pareto-optimal front is formed as the archive idaipd iteratively. When the archive
set is sufficiently empty and a new non-dominatetutson is detected, the new
solution enters the archive set. As the new satugiaters the archive set, any solution
already there that is dominated by this solutioth @ removed. When the maximum
archive size reaches its preset value, the arcbetemust decide which solution
should be replaced. In this study, we propose aln®areto archive set update
process to preclude losing non-dominated solutiamsn the Pareto archive set is full.
When a new non-dominated solution is discovered,afthive set is updated when
one of the following situations occurs: either thenber of solutions in the archive
set is less than the maximum value, or if the nunalbesolutions in the archive set is
equal to or greater than the maximum value, thenotie solution in the archive set
that is most dissimilar to the new solution is emgld by the new solution. We
measure the dissimilarity by the Euclidean distankdonger distance implies a
higher dissimilarity. The non-dominated solutiontire Pareto archive set with the
longest distance to the newly found solution idaegd. For example, the distancg)(

betweenx! andX? is calculated as
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X'=[275.21.80.6 6.33.9]

X?=[1.60.81.81.71.23.9]
d =

ij

\/ (27-16)%+ (52-08)*+ (06-1.7)? + (63-1.2)*
=691

The Pareto archive set is updated at the end df gakation in the proposed

PSO.

3.6 Computational Results

The proposed PSO algorithm was verified by benchrpesblems obtained from the
OR-Library that were contributed by Carlier (1978gller (1960), and Reeves (1995).
The test program was coded in Visual C++ and rutirB®s on each problem using an
Intel Pentium 4 3.0-GHz processor with 1 GB of RANhNing Windows XP. We
used four swarm sized (10, 20, 60, and 80) to test the algorithm durangilot
experiment. A value oN = 80 was best, so it was used in all subsequsis.t€he
algorithm parameters were set as folloeysandc, were tested over the range 0.1-0.7
in increments of 0.2, and the inertial weightvas reduced fromvmax to0 Wmin during
the iterations. Parametes,,x was set to 0.5, 0.7, and 0.9 corresponding.i@g values

of 0.1, 0.3, and 0.5. Settings of= 0.7,¢c,= 0.1, Wnax= 0.7, andwni,= 0.3 worked

best.

The presented PSO algorithm is compared with twaisigc algorithms: CDS
and NEH. We briefly describe these two methods.heéRS heuristic named by the
three authors was proposed by Campbell, et al.0)197he CDS procedure is a
heuristic generalization of Johnson’s algorithme Tgrocess generates a set of m-1
artificial two-machine problem, each of which igthsolved by Johnson’s rule. In this

study, we modified original CDS and compared th&espan, mean flow time and
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machine idle time of all m-1 generated problemse Tilon-dominated solution was
picked to compare with the solutions obtained froam PSO algorithm. The other
comparison is based on the solutions constructech fNEH algorithm that was
presented by Nawaz M. et al. (1983). The NEH enateen(n+1)/2 permutations to
find near-optimal solutions. Similar to CDS, we nfiedi the original NEH and
compared the three objectives of al(n+1)/2 sequences. We compared the

non-dominated solution from those sequences wétsthutions from our PSO.

The makespan, mean flow time, and machine idle fho® sequence given by
the PSO, CDS and NEH are denomaaso MFTpso andMlTpsd MSps, MFTcps,
and MIT¢cps, and MSyen, MFTnen, and MITyey respectively. The relative error in

makespan, mean flow time, and machine idle timesébeduleés-spare as follows.
[MSpso ~ MIN (MSpgo, MScps, MSygy )1/ MIN (MSps o, MScps, MSyey ) (3.8)

[MFTpgo = MIN (MFTpgo, MFTps, MFT e )]/ MIN (MFT pgo, MFT s, MFT \gy ) (3.9)

[MITps0 — MIN (MITpso, MITcps, MITren )1/ MIN (MIT g, MITps, MITyer) (3.10)

Furthermore, the relative error in makespan, méam fime, and machine idle

time for schedul&:ps could be derived using the following equations.

[MScps = MIN (MSpso, MScps, MSyet )]/ MIN (MSpso, MScps, MSyen ) (3.11)

[MFT¢ps — MIN (MFTpgo, MFTeps, MFTygn )1/ MIN (MFTpgo, MFTeps, MFT en)  (3.12)

[MITcps = MIN (MIT pgg, MITcpg, MIT\gn )1/ MIN(MIT pgq, MITps, MIT \gn) (3.13)

At last, the relative error in makespan, mean ftome, and machine idle time for

scheduléSyen could be derived using the following equations:

[MSyen — MIN (MSpso, MScps, MSyey )]/ MIN (MSpso, MScps, MSyey ) (3.14)
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[MFT ey — MIN (MFTpgo, MFTps, MFT ey )]/ MIN (MFTpgo, MFTops, MFT ) (3.15)

[MIT gy = MIN (MITpso, MITcps, MIT e )]/ MIN (MITpso, MITcps, MIT yep ) (3.16)

Finally, the following functions are used to meastine aggregated objectives

performance of the three heuristics.

[(MSpgo = MIN ys) + (MFTpso = MIN yer ) + (MITpgo = MIN 7 )]

(3.17)
MIN s + MIN g + MIN 17
(MScps ~MINys) + (MFTeps = MIN yer) + (MITeps = MIN 7 ) (3.18)
MIN s + MIN g + MIN 7
(MSnen = MINys) + (MFTyen = MINyer ) + (MITyey = MIN 7 )
MIN ys + MINyer + MIN i (3.19)

where

MIN s = MIN(MSpg0, MScps, MSyey)

MIN yer = MIN(MFTps0, MFTeps, MFT ey )
MIN 1 = MIN(MITpgo, MITeps, MIT ey )

In order to examine the performance including efficy and quality of the
proposed PSO algorithm, we have applied our PSQotally 161 benchmark
problems. For problem RecOl to Rec41l, the averelggivie error of Gaxand MFT
are given in Table 3.1. Table 3.2 shows averagsivel error of MIT and aggregate
performance. From Table 3.3 to Table 3.6, we demnatesl the average relative error

of Chax MFT and MIT with the problem Tai2® to Tai50%20. The aggregate

performance of problem Taikb to Tai50&20 are given in Table 3.7.

At last, we observed that the PSO perform bettan thther two heuristics while
only one objective is considered. Table 3.8 shdwssuperior number and percentage
of problems among the three different algorithms.wke consider the three objectives

at the same time, we can prove the performanceopioged PSO by Table 3. 9.
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Table 3. 1 The average relative error ip,@nd MFT of problem RecXX

Problem Makespan MFT
CDS NEH PSO CDS NEH PSO

Rec01_20x5 0.0798  0.0000 0.0850 0.4089 0.0000 0.3119
Rec03_20x5 0.1867  0.0000 0.1278 0.4447 0.0000 0.3274
Rec05_20x5 0.1068  0.0008 0.0315 0.3974 0.0000 0.2931
Rec07_20x10  0.0437 0.0000 0.0970 0.1330 0.0000 0.0382
Rec09_20x10 0.1712 0.0000 0.1106 0.1370 0.0004 0.0495
Recll_20x10  0.1430 0.0000 0.0666 0.2467 0.0621 0.0002
Recl3_20x15 0.2233 0.0000 0.1146 0.0487 0.1487 0.0015
Recl5_20x15 0.0796 0.0000 0.0935 0.0801 0.1639 0.0000
Recl7_20x15  0.1990 0.0000 0.1190 0.0721 0.1549 0.0006
Rec19_30x10 0.1059 0.0000 0.1090 0.2520 0.0000 0.1955
Rec21_30x10  0.2029 0.0000 0.1531 0.3009 0.0000 0.2171
Rec23_30x10 0.1542 0.0000 0.1170 0.2376 0.0000 0.2060
Rec25_30x15  0.1640 0.0000 0.0934  0.1249 0.0004 0.0231
Rec27_30x15  0.1365 0.0000 0.0983 0.0988 0.0000 0.0359
Rec29_30x15 0.2419 0.0000 0.1546 0.1576 0.0000 0.0466
Rec31_50x10 0.4748 0.2951 0.0000 0.7323 0.1225 0.0000
Rec33_50x10 0.4603 0.3596 0.0000  0.6403 0.2224 0.0000
Rec35_50x10  0.5053 0.3202 0.0000 0.6703 0.1520 0.0000
Rec37_75x20  0.9534 0.6410 0.0000 1.3879 0.7679 0.0000
Rec39_75x20 0.9371 0.6362 0.0000 1.5575 0.8042 0.0000
Rec4l_75x20 0.9938 0.7155 0.0000 1.6152 0.8441 0.0000
Average 0.3125 0.1413 0.0748 0.4640 0.1640 0.0832
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Table 3. 2 The average relative error in MIT andjfsgyate of problem Rec

Problem MIT Aggregate
CDS NEH PSO CDSs NEH PSO

Rec01_20x5 4.1112 2.4282 0.0000 0.3410 0.0797 0.1676
Rec03_20x5 1.4296 1.0185 0.0014 0.3665 0.0707 0.1887
Rec05_20x5 3.5144 2.1824 0.0000 0.3585 0.0904 0.1281
Rec07_20x10 0.7301 0.4095 0.0019 0.3020 0.1384 0.0480
Rec09 20x10 0.5385 0.2741 0.0127 0.2872 0.0832 0.0594
Recll 20x10 2.0732 0.0082 0.1115 0.7760 0.0203 0.0616
Recl13 20x15 0.2396 0.2623 0.0097 0.1948 0.1580 0.0405
Recl5 20x15 0.4336 0.4493 0.0000 0.2550 0.2521 0.0287
Recl7_20x15 0.4120 0.2383 0.0131 0.2650 0.1366 0.0451
Rec19 30x10 0.5509 0.0166 0.1057 0.2844 0.0049 0.1323
Rec21_30x10 0.9548 0.0343 0.0979 0.4315 0.0082 0.1577
Rec23_30x10 0.1880 0.0990 0.0067 0.1864 0.0362 0.0974
Rec25 30x15 0.6217 0.2278 0.0060 0.3703 0.1056 0.0367
Rec27_30x15 0.3343 0.4371 0.0000 0.2297 0.2262 0.0342
Rec29 30x15 0.5644 0.0862 0.0101 0.3860 0.0421 0.0592
Rec31_50x10 1.4631 0.4220 0.0000 0.8552 0.2808 0.0000
Rec33_50x10 0.6859 0.3633 0.0040 0.5684 0.3117 0.0013
Rec35_50x10 0.7108 0.2891 0.0000 0.6201 0.2607 0.0000
Rec37_75%20 1.1915 0.8135 0.0000 1.1581 0.7601 0.0000
Rec39 75x20 1.8247 0.5223 0.0000 1.5418 0.5946 0.0000
Rec4l 75x20 1.7428 1.1721  0.0000 1.5445 1.0152 0.0000
Average 1.1579 0.5597 0.0181 0.5392 0.2227 0.0613
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Table 3. 3The average relative error in,&x MFT and MIT of problem Tai_20

Makespan MFT MIT
Problem CDS NEH PSO CDS NEH PSO CDS NEH PSO
Tai_20x5_1 0.0010 0.1205 0.0323 0.1135 0.1052 0.0000 3.8211  3.2056 0.0000
Tai_20x5_2 0.0013 0.1180 0.0278 0.0377 0.0310 0.0000 8.7129  0.0296 0.9753
Tai_20x5_3 0.0000 0.1834 0.0626 0.1000 0.0178 0.0000 3.1344  0.0205 0.1308
Tai_20x5_4 0.0088 0.1487 0.0096 0.0757 0.0627 0.0000 4.3087  2.2174 0.0000
Tai_20x5_5 0.0003 0.1761 0.0504 0.1418 0.0468 0.0000 2.2425  0.4427 0.0000
Tai_20%5 6 0.0654 0.1170 0.0001 0.0296 0.0570 0.0000 0.3327  0.8453 0.0000
Tai_20x5 7 0.0027 0.0229 0.0350 0.0642 0.0000 0.0000 16.158  1.2283 0.6350
Tai_20x5_8 0.0003 0.0654 0.0517 0.0633 0.0231 0.0000 5.8688  3.8646 0.0000
Tai_20x5_9 0.0033 0.0814 0.0328 0.0312 0.0366 0.0000 1.5550  1.2519 0.0000
Tai_20x5_10 0.0353 0.0590 0.0039 0.0774 0.0794 0.0000 5.1159  5.3127 0.0000
Average 0.0119 0.1092 0.0306 0.0734 0.0460 0.0000 5.1250  1.8419 0.1741
Tai_20x10_1 0.0733 0.0543 0.0000 0.0406 0.0496 0.0000 0.1589  0.3794 0.0155
Tai_20x10_2 0.0014 0.1127 0.0166 0.0024 0.0768 0.0093 0.0132  0.6637 0.1071
Tai_20x10_3 0.1509 0.0978 0.0000 0.0529 0.0460 0.0003 0.2847  0.3143 0.0044
Tai_20x10_4 0.1079 0.0792 0.0000 0.0688 0.0524 0.0000 0.5260  0.4282 0.0000
Tai_20x10_5 0.0022 0.1666 0.0255 0.0524 0.0420 0.0006 0.6851  0.4076 0.0113
Tai_20x10_6 0.1863 0.1647 0.0000 0.1108 0.0480 0.0000 0.6342  0.1983 0.0043
Tai_20x10_7 0.1230 0.0938 0.0000 0.0454 0.0092 0.0133 03709  0.0616 0.1693
Tai_20x10_8 0.0766 0.1262 0.0000 0.0768 0.0537 0.0002 0.4519  0.3661 0.0020
Tai_20x10_9 0.0902 0.1124 0.0000 0.1244 0.0292 0.0000 1.2666  0.2793 0.0016

Tai_20x10_10 0.0687 0.1368 0.0000 0.1527 0.0845 0.0000 1.3403 0.6326  0.0003

Average 0.0880 0.1144 0.0042 0.0727 0.0491 0.0024 0.5732 0.3731 0.0316
Tai_20x20_1 0.0335 0.0639 0.0009 0.0605 0.0707 0.0000 0.2408 0.2813  0.0000
Tai_20x20_2 0.0334 0.0812 0.0009 0.0262 0.0262 0.0015 0.1384 0.1135 0.0109
Tai_20x20_3 0.0406 0.0672 0.0000 0.0693 0.0693 0.0000 0.2703 0.3117 0.0000
Tai_20x20_4 0.0268 0.0978 0.0005 0.0783 0.0673 0.0001 0.3266 0.2998 0.0005
Tai_20%x20_5 0.0691 0.0702 0.0000 0.0337 0.0109 0.0069 0.1362 0.0368 0.0325
Tai_20x20_6 0.0234 0.0894 0.0004 0.1383 0.0373 0.0103 0.6739 0.1864 0.0490
Tai_20x20_7 0.0232 0.1210 0.0008 0.0541 0.0868 0.0007 0.2585 0.3830 0.0031
Tai_20x20_8 0.0421 0.0725 0.0000 0.0616 0.0655 0.0002 0.2999 0.3040 0.0003
Tai_20%x20_9 0.0003 0.0764 0.0275 0.0588 0.0588 0.0005 0.2485 0.2851 0.0019

Tai_20x20_10 0.1108 0.0526 0.0000 0.0688 0.0432 0.0015 0.2640 0.1535 0.0071

Average 0.0403 0.0792 0.0031 0.0650 0.0536 0.0022 0.2857 0.2355 0.0105
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Table 3. 4The average relative error in,&x MFT and MIT of problem Tai_50

Makespan MFT MIT

Problem CDS NEH PSO CDS NEH PSO CDS NEH PSO

Tai_50x5_1 0.0003 0.1044 0.0288 0.0149 0.0320 0.0000 0.3238  0.4924  0.0000
Tai_50x5_2 0.0006 0.0699 0.0173 0.0242 0.0456 0.0002 0.5121 0.6752  0.0043
Tai_50x5_3 0.0208 0.1076 0.0015 0.0225 0.0065 0.0001 0.6046 0.3555  0.0000
Tai_50x5_4 0.0174 0.1230 0.0017 0.0532 0.0897 0.0000 1.4981  0.1268 0.0519
Tai_50x5_5 0.0098 0.0903 0.0042 0.0441 0.0210 0.0000 0.9365 0.0518  0.0698
Tai_50x5_6 0.0285 0.0972 0.0005 0.0427 0.0019 0.0023 0.9723 1.1903  0.0000
Tai_50x5_7 0.0094 0.0626 0.0021 0.0430 0.0882 0.0000 0.6055 1.4488  0.0000
Tai_50x5_8 0.0688 0.1347 0.0000 0.0785 0.0479 0.0000 1.3355 0.7859  0.0000
Tai_50x5_9 0.1240 0.0624 0.0000 0.1097 0.0001 0.0158 2.5634 0.1153  0.0648
Tai_50x5_10 0.0013 0.0769 0.0130 0.0181 0.0001 0.0070 1.0134 1.2503  0.0000
Average 0.0281 0.0929 0.0069 0.0451 0.0333 0.0025 1.0365  0.6492 0.0191
Tai_50x10_1 0.0801 0.0923 0.0000 0.0602 0.0463 0.0000 0.5719 0.5740  0.0801
Tai_50%10_2 0.0164 0.0644 0.0015 0.0660 0.0264 0.0004 0.6506 0.2583  0.0164
Tai_50%10_3 0.0313 0.0885 0.0000 0.0356 0.0503 0.0000 0.3509 0.5253  0.0313
Tai_50x10_4 0.0748 0.1291 0.0000 0.0952 0.0597 0.0000 1.1933 0.7006  0.0748
Tai_50x10_5 0.0317 0.1246 0.0000 0.0100 0.0438 0.0015 0.1101  0.6553 0.0317
Tai_50x10_6 0.0001 0.0754 0.0242 0.0072 0.0337 0.0026 0.0741 0.2831  0.0001
Tai_50x10_7 0.0678 0.1042 0.0000 0.0474 0.0481 0.0000 0.3679 0.4048  0.0678
Tai_50x10_8 0.0417 0.0798 0.0000 0.0608 0.0117 0.0011 0.4762 0.1079  0.0417
Tai_50x10_9 0.0428 0.0454 0.0002 0.0954 0.0295 0.0000 0.8816 0.4151  0.0428
Tai_50%x10 10 0.0498 0.1492 0.0000 0.0350 0.0322 0.0000 0.2690  0.1005 0.0498
Average 0.0436 0.0953 0.0026 0.0513 0.0382 0.0006 0.4946  0.4025 0.0436
Tai_50x20_1 0.0255 0.0946 0.0005 0.0494 0.0494 0.0000 0.2822 0.2279  0.0000
Tai_50x20_2 0.0305 0.0659 0.0004 0.0458 0.0478 0.0000 0.2430  0.2715 0.0006
Tai_50x20_3 0.0038 0.1261 0.0062 0.0222 0.0458 0.0016 0.1191  0.2660 0.0080
Tai_50x20_4 0.0348 0.0865 0.0000 0.0466 0.0321 0.0001 0.2420  0.2576  0.0000
Tai_50%20_5 0.0141 0.0830 0.0016 0.0325 0.0382 0.0001 0.1791 0.1837  0.0007
Tai_50%20_6 0.0444 0.0617 0.0000 0.0590 0.0151 0.0006 0.2868  0.0663  0.0000
Tai_50%20_7 0.0230 0.0684 0.0007 0.0147 0.0621 0.0006 0.0803  0.3219 0.0028
Tai_50x%20_8 0.0522 0.0423 0.0000 0.0786 0.0238 0.0002 0.3895  0.1730  0.0000
Tai_50x20_9 0.0007 0.0560 0.0154 0.0679 0.0178 0.0010 0.3787 0.1106  0.0000
Tai_50x20 10 0.0061 0.0782 0.0043 0.0578 0.0451 0.0001 0.3079 0.2664  0.0000
Average 0.0235 0.0763 0.0029 0.0475 0.0377 0.0004 0.2508  0.2145 0.0012
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Table 3. 5 The average relative error iR, CMFT and MIT of problem Tai_100

Makespan MFT MIT

Problem CDS NEH PSO CDS NEH PSO CDS NEH PSO

Tai_100x5_1 0.0047 0.1072 0.0031 0.0307 0.1104 0.0000  0.7611 3.3877 0.0000
Tai_100x5_2 0.0146 0.1278 0.0007 0.0228 0.0726 0.0000 1.5465 6.3127 0.0000
Tai_100x5_3 0.0212 0.0519 0.0010 0.0251 0.0005 0.0030 1.0418 3.3001 0.0000
Tai_100x5_4 0.0018 0.0931 0.0080 0.0017 0.0905 0.0009  0.0793 1.6482 0.0186
Tai_100x5_5 0.0989 0.0000 0.0886 0.1423 0.0000 0.1104  0.8203 1.1020 0.0000
Tai_100x5_6 0.0006 0.0441 0.0108 0.0095 0.0008 0.0042  0.2100 2.8709 0.0175
Tai_100x5_7 0.0089 0.1683 0.0012 0.0213 0.1649 0.0000  0.5958 3.9401 0.0000
Tai_100x5_8 0.0153 0.0590 0.0013 0.0317 0.0196 0.0000 25700 3.3516 0.0000
Tai_100x5_9 0.0124 0.0695 0.0007 0.0055 0.0095 0.0003  0.2062 0.3928 0.0660
Tai_100x5 10 0.0104 0.1217 0.0013 0.0262 0.1305 0.0000  0.8053 3.2704 0.0000

Average 0.0189 0.0843 0.0117 0.0317 0.0599 0.0119 0.8636 2.9577 0.0102

Tai_100x10_1 0.0598 0.0001 0.0238 0.0499 0.0625 0.0000  0.6604 0.2145 0.0022
Tai_100x10 2 0.0379 0.0265 0.0000 0.0319 0.0456 0.0000 1.3016 0.0000 0.6481
Tai_100x10 3 0.1283 0.0000 0.0953 0.1286 0.0000 0.0993 2.3663 0.0000 1.5710
Tai_100x10_4 0.1568 0.0000 0.1456 0.0672 0.0000 0.0468 1.7334 0.0000 1.1999
Tai_100x10 5 0.2324 0.0000 0.2222 0.2030 0.0000 0.1564  2.2895 0.0000 1.1552
Tai_100x10_6 0.0976 0.0000 0.0738 0.0497 0.0000 0.0272  0.9419 0.0000 0.5745
Tai_100x10_7 0.0608 0.0381 0.0000 0.0636 0.1082 0.0000 1.1585 0.0000 0.3347
Tai_100x10_8 0.1080 0.0000 0.1040 0.1284 0.0000 0.0906  5.3184 0.0000 3.5692
Tai_100x10_9 0.0338 0.0000 0.0582 0.0928 0.0000 0.0753 11.9100 0.0000 9.9398
Tai_100x10_10 0.0235 0.0001 0.0232 0.0253 0.0821 0.0000 0.8511 0.0000 0.4474

Average 0.0939 0.0065 0.0746 0.0840 0.0298 0.0496 2.8531 0.0214 1.9442

Tai_100x20_1 0.0488 0.0001 0.0232 0.0935 0.0000 0.0540  0.3083 0.0051 0.0572
Tai_100x20_2 0.0168 0.0591 0.0003 0.0190 0.0296 0.0000  0.1362 0.1685 0.0000
Tai_100x20_3  0.0147 0.0515 0.0001 0.0172 0.0284 0.0001 0.1139 0.1299 0.0006
Tai_100x20_4 0.0359 0.0362 0.0000 0.0583 0.0010 0.0047  0.3727 0.0143 0.0196
Tai_100x20_5 0.0012 0.0903 0.0071 0.0079 0.0531 0.0009  0.0571 0.1816 0.0045
Tai_100x20 6 0.0376 0.0613 0.0000 0.0814 0.0042 0.0017  0.5054 0.0439 0.0048
Tai_100x20_7 0.0295 0.0191 0.0000 0.0453 0.0136 0.0003  0.2969 0.1160 0.0008
Tai_100x20_8 0.0164 0.0539 0.0002 0.0339 0.0239 0.0000  0.2102 0.1705 0.0000
Tai_100x20_9 0.0073 0.0405 0.0019 0.0258 0.0128 0.0001  0.1775 0.0943 0.0004
Tai_100x20_10 0.0244 0.0202 0.0003 0.0345 0.0140 0.0000  0.2108 0.1138 0.0000

Average 0.0233 0.0432 0.0033 0.0417 0.0181 0.0062 0.2389 0.1038 0.0088
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Table 3. 6The average relative error in,& MFT and MIT of problem Tai_200 and Tai_500

Makespan MFT MIT

Problem CDS NEH PSO CDS NEH PSO CDS NEH PSO

Tai_200x10 1 0.0100 0.0562 0.0002 0.0618 0.0000 0.0510  0.1367 0.0743 0.0011
Tai_200x10_2 0.0265 0.1715 0.0000 0.0142 0.1150 0.0000  0.1976 1.5751 0.0000
Tai_200x10_3 0.0026 0.0536 0.0036 0.0260 0.0003 0.0036  0.2743 0.5233 0.0000
Tai_200x10_4 0.0016 0.1253 0.0051 0.0104 0.1442 0.0000  0.1644 1.5938 0.0002
Tai_200x10_ 5 0.0034 0.0953 0.0024 0.0054 0.0941 0.0004  0.1018 0.7997 0.0032
Tai_200x10 6 0.0222 0.1332 0.0000 0.0332 0.1435 0.0000  0.4983 1.8804 0.0000
Tai_200x10 7 0.0378 0.1373 0.0000 0.0353 0.1060 0.0000  0.6398 0.3489 0.0000
Tai_200x10_8 0.0001 0.1628 0.0140 0.0135 0.1818 0.0000  0.2319 4.0845 0.0000
Tai_200x10 9 0.0364 0.1752 0.0000 0.0208 0.1410 0.0000  0.2960 0.7618 0.0000
Tai_200x10_10 0.0205 0.0780 0.0000 0.0241 0.0514 0.0000  0.3410 1.2791 0.0000
Average 0.0161 0.1188 0.0025 0.0245 0.0977 0.0055  0.2882 1.2921 0.0005
Tai_200x10_1 0.0218 0.1219 0.0001 0.0312 0.1105 0.0000  0.2688 0.6416 0.0000
Tai_ 200x10 2 0.0022 0.0880 0.0036 0.0098 0.0869 0.0000 0.0800 0.4945 0.0004
Tai_200x20_3 0.0047 0.0946 0.0010 0.0173 0.0940 0.0000 0.1606 0.6374 0.0000
Tai_200%x20_4 0.0009 0.0349 0.0072 0.0107 0.0375 0.0000  0.1038 0.6611 0.0000
Tai_200x20_5 0.0338 0.0703 0.0000 0.0244 0.0871 0.0000  0.1953 0.8382 0.0000
Tai_200x20_6 0.0177 0.0367 0.0003 0.0539 0.0382 0.0000  0.4636 0.5675 0.0000
Tai_200%x20_7 0.0070 0.0528 0.0008 0.0293 0.0611 0.0000  0.2523 0.5203 0.0000
Tai_200x20_8 0.0363 0.1009 0.0000 0.0370 0.1098 0.0000  0.3028 1.0376 0.0000
Tai_200x20_9 0.0351 0.0089 0.0002 0.0274 0.0066 0.0002  0.2270 0.2775 0.0000
Tai_200%x20_10 0.0221 0.0804 0.0000 0.0276 0.0845 0.0000  0.2341 0.6931 0.0000
Average 0.0182 0.0689 0.0013 0.0269 0.0716 0.0000  0.2288 0.6369 0.0000
Tai_500%x20_1 0.0223 0.0315 0.0000 0.0124 0.0305 0.0000  0.1482 0.3843 0.0000
Tai_500%x20_2 0.0329 0.0416 0.0000 0.0164 0.0164 0.0000  0.1945 0.1943 0.0000
Tai_500%x20_3 0.0155 0.0204 0.0001 0.0189 0.0115 0.0000  0.2272 0.1404 0.0000
Tai_500%x20_4 0.0213 0.0481 0.0000 0.0246 0.0350 0.0000  0.2966 0.4243 0.0000
Tai_500x20_ 5 0.0059 0.0278 0.0004 0.0121 0.0213 0.0000  0.1455 0.2538 0.0000
Tai_500%x20_6  0.0107 0.0339 0.0000 0.0113 0.0204 0.0000  0.1445 0.2644 0.0000
Tai_500%x20_7  0.0043 0.0400 0.0006 0.0075 0.0285 0.0000  0.0919 0.2249 0.0000
Tai_500x20_8 0.0313 0.0306 0.0000 0.0260 0.0203 0.0000  0.3062 0.2444 0.0000
Tai_500x20_9 0.0000 0.0466 0.0121 0.0002 0.0281 0.0056  0.0025 0.3506 0.0678
Tai_500x20_10 0.0210 0.0429 0.0000 0.0269 0.0398 0.0000  0.3195 0.4827 0.0000
Average 0.0165 0.0363 0.0013 0.0156 0.0252 0.0006  0.1877 0.2964 0.0068
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Table 3. 7 The aggregate performance of proble@0k&ito Tai5x20

Problem Average Problem Average
CDS NEH PSO CDS NEH PSO

Tai_20x5_1 39356 34314 00323 Tai_50x5 1 0.6289  0.0288  0.0000
Tai_20x5_2 8.7518  0.1787  1.0031 Tai_50x5 2 0.7907  0.0218  0.0000
Tai_20x5_3 32344 02217 01933 Tai_50x5_3 0.4696  0.0016  0.0000
Tai_20x5_4 43932 24289  0.0096 Tai_50x5_4 0.3395  0.0536  0.0000
Tai_20x5_5 23846  0.6656  0.0504 Tai_50x5 5 0.1631  0.0740  0.0000
Tai_20x5_6 0.4278  1.0193  0.0001 Tai_50x5_6 1.2894  0.0028  0.0000
Tai_20x5_7 16.225  1.2512  0.6700 Tai_50x5_7 15996  0.0021  0.0000
Tai_20x5_8 59324  3.9531  0.0517 Tai_50x5_ 8 0.9686  0.0000  0.0000
Tai_20x5_9 15895  1.3699  0.0328 Tai_50x5_9 0.1778  0.0806  0.0000
Tai_20%5_10 52287 54511  0.0039 Tai_50x5_10 1.3273  0.0200  0.0000
Average 52103  1.9971  0.2047 Average 0.7755  0.0285  0.0000
Tai_20x10_1 02728  0.4833  0.0155 Tai_50x10_1 0.7127  0.0000  0.0000
Tai_20x10_2 0.0170  0.8532  0.1331 Tai_50x10_2 0.3490  0.0054  0.0000
Tai_20x10_3 0.4886  0.4581  0.0047 Tai_50x10_3 0.6641  0.0002  0.0000
Tai_20x10_4 0.7027 05598  0.0000 Tai_50x10_4 0.8893  0.0000  0.0000
Tai_20x10_5 07397  0.6161  0.0374 Tai_50x10_5 0.8237  0.0304  0.0000
Tai_20x10_6 09313 04109  0.0043 Tai_50x10_6 0.3923  0.0474  0.0000
Tai_20x10_7 05393  0.1645  0.1826 Tai_50x10_7 05571  0.0000  0.0000
Tai_20x10_8 0.6053  0.5460  0.0021 Tai_50x10_8 0.1994  0.0080  0.0000
Tai_20x10_9 14812 04208  0.0016 Tai_50x%10_9 0.4900  0.0002  0.0000
Tai_20x10_10 15617 08539  0.0003 Tai_50x10_10 02819  0.0152  0.0000
Average 0.7340 05367  0.0382 Average 0.5359 0.0107  0.0000
Tai_20%20_1 0.4160  0.0009  0.0000 Tai_50x20_1 0.3719  0.0005  0.0000
Tai_20%20_2 0.2208  0.0133  0.0000 Tai_50x20_2 0.3853  0.0010  0.0000
Tai_20%20_3 0.4482  0.0000  0.0000 Tai_50%20_3 0.4378  0.0157  0.0000
Tai_20x20_4 0.4649  0.0011  0.0000 Tai_50x20_4 0.3763  0.0001  0.0000
Tai_20%20_5 0.1179  0.0393  0.0000 Tai_50x20_5 0.3049  0.0024  0.0000
Tai_20%20_6 03131  0.0597  0.0000 Tai_50%20_6 0.1431  0.0006  0.0000
Tai_20x20_7 05909  0.0047  0.0000 Tai_50x20_7 0.4523  0.0040  0.0000
Tai_20%20_8 0.4420  0.0005  0.0000 Tai_50x20_8 0.2391  0.0002  0.0000
Tai_20%x20_9 0.4203  0.0299  0.0000 Tai_50x20_9 0.1844  0.0164  0.0000
Tai_20%x20_10 0.2493  0.0086  0.0000 Tai_50x20_10 0.3897  0.0045  0.0000
Average 0.3683  0.0158  0.0000 Average 0.3285 0.0045  0.0000
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Table 3.7(Cont'd) The aggregate performance of lprabilrai20x5 to Tai50x20

Problem Average Problem Average

CDS NEH PSO CDS NEH PSO
Tai_100x5_1 0.7965  3.6053  0.0031 Tai_200x10 1  0.2085  0.1305  0.0524
Tai_100x5_2 15839 65131  0.0007 Tai_200x10_2 02383  1.8617  0.0000
Tai_100x5_3 10881 33525  0.0040 Tai_200x10_3  0.3029 05773  0.0073
Tai_100x5_4 0.0827  1.8318  0.0275 Tai_200x10_4  0.1764  1.8634  0.0053
Tai_100x5_5 1.0615 11020  0.1991 Tai_200x10_5 0.106 09891  0.0060
Tai_100x5_6 02201 29159 00325 Tai_200x10_6 05537 21572  0.0000
Tai_100x5_7 0.6260  4.2733  0.0012 Tai_200x10_7 07128 05923  0.0000
Tai_100x5 8 2.6171 3.4302 0.0013 Tai_200x10_8 0.2455 4.4290 0.0140
Tai_100x5_9 0.2241 04718  0.0670 Tai_200x10_9 03532  1.0780  0.0000
Tai_100x5_10 0.8419 35225  0.0013 Tai_200x10_10 0.3856  1.4085  0.0000
Average 0.9142 31018  0.0338 Average 0.3288 15087  0.0085
Tai_100x10_1 02771  0.0260  0.0000 Tai_200x20_1  0.8740  0.0001  0.0000
Tai_100x10_2 0.0720  0.6481  0.0000 Tai_200%20_2  0.6694  0.0040  0.0000
Tai_100x10_3 0.0000  1.7656  0.0000 Tai_200%20_3  0.8259  0.0010  0.0000
Tai_100x10_4 0.0000  1.3923  0.0000 Tai_200%20_4  0.7335  0.0072  0.0000
Tai_100x10_5 0.0000 15337  0.0000 Tai_200%20_5 0.9956  0.0000  0.0000
Tai_100x10_6 0.0000  0.6755  0.0000 Tai_200%20_6  0.6424  0.0003  0.0000
Tai_100x10_7 0.1463  0.3347  0.0000 Tai_200%20_7  0.6342  0.0008  0.0000
Tai_100x10_8 0.0000  3.7638  0.0000 Tai_200%20_8  1.2483  0.0000  0.0000
Tai_100x10_9 0.0000 10.0734  0.0000 Tai_200%20_9  0.2930  0.0004  0.0000
Tai_100x10_10 0.0822  0.4706  0.0000 Tai_200x20_10 0.8580  0.0000  0.0000
Average 0.0578 2.0684  0.0000 Average 0.7774 0.0014  0.0000
Tai_100x20_1 0.0051  0.1344  0.0000 Tai_500%x20_1  0.1830  0.4463  0.0000
Tai_100x20_2 0.2572  0.0003  0.0000 Tai_500%20_2  0.2439  0.2524  0.0000
Tai_100x20_3 0.2098  0.0008  0.0000 Tai_500%20_3  0.2616  0.1723  0.0001
Tai_100x20_4 0.0515  0.0243  0.0000 Tai_500%x20_4  0.3426  0.5074  0.0000
Tai_100x20_5 03250  0.0125 ~ 0.0000 Tai_500%20_5 0.1635  0.3030  0.0004
Tai_100x20_6 0.1093  0.0065  0.0000 Tai_500%20_6  0.1665  0.3187  0.0000
Tai_100x20_7 0.1487  0.0011  0.0000 Tai_500%20_7  0.1037  0.2934  0.0006
Tai_100x20_8 0.2482  0.0002  0.0000 Tai_500%20_8  0.3635  0.2953  0.0000
Tai_100x20_9 0.1475  0.0024  0.0000 Tai_500%20_9  0.0026  0.4253  0.0855
Tai_100x20_10 0.1480  0.0003  0.0000 Tai_500x20_10 0.3673  0.5653  0.0000
Average 0.1650  0.0183  0.0000 Average 0.2198 0.3579  0.0086
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Table 3. 8 The number and percentage of problendifferent objective with superior results

Makespan MFT MIT
Problem CDS NEH PSO CDS NEH PSO CDS NEH PSO
Tai_20x5 7 0 3 0 0 10 0 0 10
Tai_20x10 2 0 8 1 1 8 0 1 9
Tai_20%20 1 0 9 0 0 10 0 0 10
Tai_50x5 2 0 8 0 2 8 0 1 9
Tai_50x10 1 0 9 0 0 10 0 0 10
Tai_50%20 1 0 9 0 0 10 0 0 10
Tai_100x5 2 1 7 0 3 7 0 0 10
Tai_100x10 0 8 2 0 6 4 0 9 1
Tai_100x20 1 1 8 0 2 8 0 1 9
Tai_200x10 3 0 7 0 2 8 0 0 10
Tai_200x20 3 0 7 0 0 10 0 0 10
Tai_500x20 1 0 9 1 0 9 1 0 9
Sum 24 10 86 2 16 102 1 12 107
Percentage 20%  833% 7161%  1.67% 13.33% 85% 0.83% 10%  89.17%

Table 3. 9 The number of problems for aggregateativies with superior results

Problem Aggregte Problem Aggregate
CDS NEH PSO CDS NEH PSO

Tai_20x5 O 0 10 Tai_100x5 0 0 10
Tai_20x10 O 0 10 Tai_100x10 O 0 10
Tai_20x20 0O 0 10 Tai_100x20 0O 0 10
Tai_50x5 O 0 10 Tai_200x10 O 0 10
Tai_50x10 O 0 10 Tai_200x20 0 0 10
Tai_50x20 0 0 10 Tai_500x20 0O 0 10
Sum 0 0 60 Sum 0 0 60

The proposed PSO algorithm was compared with figariktic algorithms: CDS
(1970), NEH (1983), RAJ (1994), GAN-RAJ (1993) draha (2008). We also coded
these methods in Visual C++. The CDS heuristic Q) 9@kes its name from its three
authors and is a heuristic generalization of Johssagorithm. The process generates
a set ofm-1 artificial two-machine problems, each of which tleen solved by

Johnson’s rule. In this study, we modified the imdd CDS and compared the
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makespan, mean flow time, and machine idle timaloh—1generated problems. The
non-dominated solution was selected to compare thv@hsolutions obtained from our
PSO algorithm. The other comparison was based lotiets determined by the NEH
algorithm introduced by Nawaz et al. (1983). The HNEhvestigatesn(n+1)/2

permutations to find near-optimal solutions. As did for CDS, we modified the
original NEH and compared the three objectives Ibfnén+1)/2 sequences. We
compared the non-dominated solution from these esemps with the solutions from

our PSO.

The following two performance measures are usdtisstudy: average-relative
percentage deviation (ARPD) and maximum percentiygation (MPD) where MS
stands for makespan, TFT represents total flow tiMid stands for machine idle

time, H is the heuristic.

0 MS,; —BestMS
ARPDys= 1002 S, ® (3.20)
10 = BestMS

MS,; - BestM$

MPDyis= MAX,_, ;| — x100 (3.21)
i BestMS

100 ( TFT, . - BestTFT
ARPDrer= ' 3.22
RUARETo Zl"( BestTFT ] (3.22)
MPDrer= MAX,_, . | i ~BESITET), 169 (3.23)

Ll T BestTFT '

100&( MIT,,, —BestMIT
ARPDyr= ~ 3.24
LT 21:( BestMIT ] (3.24
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MIT,, ; —BestMIT
BestMIT

MPDyyr= MAXiZMO[ jx1oo (3.25)

We tested our PSO on nine different problem sine2@, 50, 100 and m=5, 10,
20) from Taillard’s (1993) benchmarks. Table 3.Hdnpares the six methods using
the ARPD and MPD. Table 4.10 shows that the prap&®0 outperforms for almost
all problem instances in the makespan object. Toraparison of TFT object is
revealed in Table 3.11. It shows the ARPD and MPBix heuristics and the Laha’s
algorithm performs better. We have given the comparof MIT in Table 3.12 that
indicates the proposed PSO can get better soluioiast, we aggregate the results of
three objects in order to show the performancehef groposed PSO to solve the
multi-objectives problems. We observed that the P8@ormed better than other five
heuristics. Table 3.13 shows the superior perfonaaf the proposed PSO in terms
of the three simultaneous objectives. The comprtatbst is demonstrated on Table
3.14. The proposed PSO spend more CPU time than otimstruct heuristic because

of the proposed PSO is an evolutionary algorithm.

In addition, we compare TFT of benchmarks by mdgeorghms --- Liu and
Reeves (2001) (LR), Chakravarthy-Rajendran (19%9nulated annealing-bases
approach (SA) and Laha and Chakraborty (2008) @td H-2). The results show in
Table 3.15 for ARPD and Table 3.16 for MPD. We ohserve that the H-1 and H-2

perform better than other algorithms while only ahgect TFT is considered.
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Table 3. 10 Comparison of makespan(MS) for differexuristics.

Problem NEH CDS RAJ GAN-RAJ Laha PSO

size (1983) (1970) (1994) (1993) (2008)

n m ARPD MPD ARPD MPD ARPD MPD  ARPD MPD ARPD MPD ARPD MPD

20 5 184 025 0.76 0.15 0.44 0.2 0.63 0.14 155 0.21 0.00 0.00
10 1.78 0.23 0.71 0.12 0.85 0.17 0.83 0.14 150 0.20 0.00 0.00
20 1.27 0.17 0.44 0.06 0.88 0.14 0.82 0.12 1.06 0.15 0.00 0.00

50 5 124 0.17 0.83 0.14 0.26 0.05 0.37 0.08 1.29 0.22 0.02 0.02
10 1.28 0.19 0.59 0.08 0.48 0.09 0.53 0.10 1.29 0.18 0.01 0.01
20 1.08 0.17 0.07 0.02 0.35 0.07 0.39 007 1.02 0.16 0.06 0.03

100 5 104 019 0.46 0.12 0.36 0.07 0.23 0.07 1.05 0.16 0.07 0.07
10 0.28 0.06 0.47 0.07 0.29 0.06 0.24 0.04 0.89 0.13 0.01 0.01
20 0.65 0.11 0.16 0.04 0.21 0.05 0.18 0.04 0.72 0.10 0.01 0.01

(NEH= Nawaz M, Enscore JR, Ham | (1983), CDS= CaslifhG, Dudek RA, Smith ML (1970),
RAJ= Rajendran C (1994), GAN-RAJ= Gangadharan Reritlran C (1993), Laha= Laha &

Chakraborty (2008), PSO= proposed PSO)

Table 3. 11 Comparison of total flow time (TFT) fitifferent heuristics

Problem  NEH CDS RAJ GAN-RAJ
size (1983) (1970) (1994) (1993)

Laha
(2008)

PSO

n m ARPD MPD ARPD MPD ARPD MPD ARPD MPD

ARPD MPD ARPD MPD

20 5 0.65 0.17 1.71 0.27 1.70 0.31 1.88 0.34
10 0.70 0.10 1.43 0.18 1.29 0.19 1.47 0.23
20 059 0.14 123 0.18 1.27 0.21 1.31 0.24
50 5 0.11 0.07 248 0.56 256 0.51 2.58 0.53
10 7.87 753 11.33 9.62 10.91 9.24 11.27 9.50
20 0.39 0.09 155 0.20 1.58 0.20 1.60 0.19
100 5 0.27 0.27 224 224 359 359 3.00 3.00
10 0.87 087 1.86 186 191 191 1.80 1.80
20 139 139 165 165 1.73 1.73 1.65 1.65

4.43
3.43
2.29
5.86
14.49
3.18
5.56
4.02
2.83

0.61
0.51
0.30
0.94
10.87
0.40
5.56
4.02
2.83

1.28
0.95
0.82
2.48
10.78
1.44
2.60
1.93
1.59

0.20
0.12
0.12
0.44
9.19
0.17
2.60
1.93
1.59

(NEH= Nawaz M, Enscore JR, Ham | (1983), CDS= CasiighG, Dudek RA, Smith ML (1970),
RAJ= Rajendran C (1994), GAN-RAJ= Gangadharan Reritlsan C (1993), Laha= Laha &

Chakraborty (2008), PSO= proposed PSO)
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Table 3. 12 Comparison of machine idle time (MI@)) different heuristics
Problem NEH CDS RAJ GAN-RAJ Laha PSO
size (1983) (1970) (1994) (1993) (2008)
n m ARPD MPD ARPD MPD ARPD MPD ARPD MPD ARPD MPD ARPD MPD
20 5 454 294 4356 20.33 3.20 1.03 5.04 1.38 10.7¢ 4.70 150 0.43
10 3.87 0.83 15.03 1.94 8.07 1.48 793 142 992 1.76 0.00 0.00
20 11.37 155 19.19 2.40 1488 2.01 14.4€ 1.85 15.2¢ 2.10 0.00 0.00
50 5 67.77 26.9t% 208.65 108.9t 17.11 11.7¢ 17.0€ 11.7€¢ 52.7C 23.48 295 2.82
10 192 0.56 1059 1.74 4.74 0.68 491 0.70 6.92 1.24 0.26 0.18
20 2.26 0.36 8.02 0.97 575 0.8 580 0.87 7.47 0.96 0.00 0.00
100 5 18.18 494 40.24 7.65 4.41 1.40 2.00 0.76 1547 3.34 3,51 1.69
10 196 043 954 138 1.92 0.38 165 041 547 098 0.15 0.09
20 103 0.26 426 052 279 0.40 264 035 3.77 045 0.00 0.00

(NEH= Nawaz M, Enscore JR, Ham | (1983), CDS= CaslifhG, Dudek RA, Smith ML (1970),
RAJ= Rajendran C (1994), GAN-RAJ= Gangadharan Reritlran C (1993), Laha= Laha &
Chakraborty (2008), PSO= proposed PSO)

Table 3. 13 Summation of MS, TFT and MIT for di#fet heuristics

Problem NEH CDS RAJ GAN-RAJ Laha PSO
size (1983) (1970) (1994) (1993) (2008)

n m ARPD MPD ARPD MPD ARPD MPD ARPD MPD ARPD MPD ARPD MPD

20 5 7.04 335 46.03 20.7t 5.34 1.46 7.56 1.86 16.77 5.52 2.78 0.63
10 6.36 1.16 17.18 2.25 10.21 1.83 10.23 1.79 14.85 246 0.95 0.12
20 13.23 1.86 20.86 2.64 17.03 2.36 16.6C 2.22 18.63 2.54 0.82 0.12
50 5 69.12 27.1¢ 211.9€ 109.65 19.93 12.38 20.03 12.37 59.84 24.64 545 3.28
10 11.08 8.28 2251 11.44 16.13 10.0C 16.71 10.3C 22.70 12.2¢ 11.04 9.38
20 3.72 0.62 964 119 7.68 1.10 7.79 1.13 11.68 152 1.50 0.20
100 5 19.49 541 4293 10.01 8.37 5.06 5.23 3.82 22.08 9.06 6.18 4.35
10 3.11 1.36 11.87 3.32 4.12 2.35 3.69 2.25 10.38 5.13 2.08 2.02
20 3.08 1.77 6.07 221 473 219 447 2.04 733 338 1.60 1.60

(NEH= Nawaz M, Enscore JR, Ham | (1983), CDS= CasiighG, Dudek RA, Smith ML (1970),
RAJ= Rajendran C (1994), GAN-RAJ= Gangadharan Reritlsan C (1993), Laha= Laha &
Chakraborty (2008), PSO= proposed PSO)
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Table 3. 14 Average CPU time (in seconds)

n m NEH CDS RAJ GANRAJ Laha PSO
20 5 0.001€ 0.0031 0.0047 0.0014 0.001z 1.6641
10 0.001¢ 0.009: 0.0094 0.001¢ 0.001¢ 2.0547

20 0.0047 0.010¢ 0.0094 0.0031 0.0047 2.807¢

50 5 0.014C 0.001€ 0.015¢ 0.0047 0.0047 4.490¢
10 0.0234 0.003z 0.0297 0.0047 0.006: 5.3047

20 0.050C 0.007¢ 0.053¢ 0.007¢ 0.006z 7.159¢

100 5 0.086( 0.001€ 0.0844 0.0047 0.0047 11.9094
10 0.175C 0.004¢ 0.175C 0.0047 0.007¢ 13.490¢

20 0.375C 0.007¢ 0.365¢ 0.007¢ 0.0141 17.007¢

(NEH= Nawaz M, Enscore JR, Ham | (1983), CDS= CaslihG, Dudek RA, Smith ML (1970),
RAJ= Rajendran C (1994), GAN-RAJ= Gangadharan Reritlran C (1993), Laha= Laha &
Chakraborty (2008), PSO= proposed PSO)

Table 3. 15 Comparison of total flow time (TFT) foguristics in ARPD

n m NEH CDS RAJ GANRAJ Laha LR SA H-1 H-2 PSO

20 5 0.65 1.71 1.70 1.88 443 024 117 0.16 0.20 1.28
10 0.70 1.43 1.29 1.47 343 0.09 0.72 0.01 o0.01 0.95
20 0.59 1.23 1.27 131 229 015 0.66 0.12 0.07 0.82

50 5 011 2.48 2.56 2.58 586 056 178 055 0.54 2.48
10 7.87 11.32 1091 11.27 144¢ 806 124 797 7.89 10.78
20 0.39 1.55 1.58 1.60 3.18 0.15 110 0.08 0.09 1.44

100 5 0.27 2.24 3.59 3.00 556 043 159 043 043 2.60
10 0.87 1.86 1901 1.80 402 0.04 124 0.03 0.03 1.93
20 1.39 1.65 1.73 1.65 283 008 113 0.01 0.02 1.59

(NEH= Nawaz M, Enscore JR, Ham | (1983), CDS= CaslighG, Dudek RA, Smith ML (1970),
RAJ= Rajendran C (1994), GAN-RAJ= Gangadharan Reritlran C (1993), Laha= Laha &
Chakraborty (2008), LR= Liu J, Reeves CR (2001)z®%akravarthy K, Rajendran C (1999), H-1
and H-2= Laha D, Chakraborty UK (2008),PSO= prodd?80)

The heuristic TSP-GA algorithm proposed by Ponndam§004) has been
chosen to compare the performance of our PSO #HiguriThe objectives considered
in TSP-GA algorithm are minimization of makespan,{§ minimization of mean

flow time (MFT), and minimization of machine idlene (MIT). The best production
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sequence was chosen for each problem instance.c@®hgutational results of
twenty-one problem tackled by TSP-GA heuristicgixen in Table 3.17 .

Table 3. 16 Comparison of total flow time (TFT) foeuristics in MPD

n m NEH CDS RAJ GANRAJ Laha LR SA  H-1 H-2 PSO

20 5 0.17 0.27 0.31 0.34 061 0.12 021 0.11 0.12 0.20
10 0.10 0.18 0.19 0.23 051 0.01 0.12 0.00 o0.01 0.12
20 0.14 0.18 0.21 0.24 0.30 0.05 0.12 0.05 0.05 0.12
50 5 0.07 0.56 0.51 0.53 094 025 038 025 0.25 0.44
10 7.53 9.62 9.24 950 1087 792 019 787 782 9.19
20 0.09 0.20 0.20 0.19 040 0.04 0.16 0.04 0.04 0.17
100 5 0.27 2.24 3.59 3.00 556 043 159 043 043 2.60
10 0.87 1.86 191 1.80 402 0.04 124 0.03 0.03 1.93
20 1.39 1.65 1.73 1.65 283 008 113 001 0.02 159

(NEH= Nawaz M, Enscore JR, Ham | (1983), CDS= CaeliiG, Dudek RA, Smith ML (1970),
RAJ= Rajendran C (1994), GAN-RAJ= Gangadharan Reritlian C (1993), Laha= Laha &
Chakraborty (2008), LR= Liu J, Reeves CR (2001)z$*akravarthy K, Rajendran C (1999), H-1
and H-2= Laha D, Chakraborty UK (2008),PSO= prodd280)

Table 3. 17 The results of TSP_GA

Problem instance Scale N x M* Crnax MFT MIT
Carl 11x5 8243 5746 2110
Car2 13x4 8458 5524 586
Car3 12x5 9010 6410 1485
Car4 14x4 8214 5416 1620
Carb 10x6 8633 5980 11666
Car6 8x9 10690 8125 7974
Car7 <7 6681 5247 3587
Car8 8x8 8816 6605 8492
Hel2 20x10 169 114 143
Rec01 20x5 1505 1010 423
Rec03 20x5 1207 780 267
Rec05 20x5 1391 898 631
Rec07 20x10 1899 1269 3248
Rec09 20x10 1815 1164 3213
Recll 20x10 1806 1196 2327
Rec13 20x15 2314 1582 5469
Rec15 20x15 2307 1655 4789
Recl7 20x15 2547 1710 7111
Rec19 30x10 2496 1599 2904
Rec21 30x10 2627 1628 3177
Rec23 30x10 2469 1570 3687

*N: number of jobs; M: number of machines
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Though, the TSP-GA selected only one manufactupegnmutation for each
problem, the proposed PSO algorithm can find ayroap of Pareto optimal solutions.
All the solutions included in the Pareto optimat aee measured with the solution
proposed by TSP-GA within each problem scenarie figlative evaluation method
of two algorithms is introduced below. The sequegizen by the PSO is note&gso
with makespan, mean flow time, and machine idleetaaMpsg MFTpsg andMITpesq
respectively, and the sequence given by TSP-GAotedhSrspca With makespan,
mean flow time, and machine idle time lsspcp MFTrspca @andMITrspea. The
relative error in makespan, mean flow time, and hivecidle time for schedul&-so

are as follows.

M pso — MiN(M pso, M 1spca) (3.26)
MiN(M pso, M1spa)
MFTpso — MIN(MFTpgo, MFTrspen) (3.27)
MiN(MFTpgo, MFTrspg )
MiITpso ~ MiN(MITpso, MITrspea) (3.28)

min(MITpso, MITrspgp)

Furthermore, the relative error in makespan, méam fime, and machine idle
time for schedul&rspea could be derived using the following equations.

M 1spea— MIN(M spga M pso) (3.29)
min(Mtspga M pso)
MFTrspea= MIN(MFTrgpea MFTRs0)
miN(MFTrspga MFTpso)
MITrgpga~ MIN(MITgpea MITpse)
min(MITrspga MITpso)

(3.30)

(3.31)

The average relative error of.& MFT and MIT are given in Table 3.18. For
each problem scenario, we sum up the averagevelatior of Ga, MFT and MIT

and also present in Table 3.18.
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Table 3. 18 The average relative error of PSO &5id-GA

Average relative error Average relative error Average relative error Sum of relative errors

Eroblem iN Chax in MFT in MIT in Cax MFT, MIT
Instance

PSO TSP-GA PSO TSP-GA PSO TSP-GA PSO TSP-GA
Carl 0.0019 0.0624 0 0.1134 0.1539 0.1666 0.1559 0.3426
Car2 0.0036 0.0493 0.0019 0.1167 0.8397 0.1360 0.8451 0.3021
Car3 0.0003 0.1116 0.0011 0.1706 0.6444 0.0755 0.6458 0.3578
Car4 0.0617 0.0006 0.0299 0.0101 0.0160 1.0439 0.1076 1.0547
Carb 0.0028 0.0664 0.0134 0.0701 0 2.5296 0.0162 2.6662
Car6 0 0.1774 0 0.1472 0.0218 0.1502 0.0218 0.4749
Car7 0.0563 0.0013 0.0356 0.0165 0.0651 0.8770 0.1570 0.8950
Car8 0.0188 0.0076 0.0165 0.0026 0.0002 0.2678 0.9124 0.2781
Hel2 0 0.0956 0 0.1012 0.0062 0.2418 0.0062 0.4387
Rec01 0 0.0649 0.1119 0 0 42732 0.1119 4.3382
Rec03 0.0427 0.0018 0.2474 0 0.0125 0.6474 0.3028 0.6493
Rec05 0.0011 0.0372 0.2210 0 0 54157 0.2221 5.4529
Rec07 0.0004 0.0655 0.0001 0.0634 0 1.1898 0.0006 1.3187
Rec09 0.0005 0.0334 0.0228 0.0128 0 1.1366 0.0233 1.1830
Recll 0 0.0915 0 0.0717 0 0.7475 0 0.9108
Rec13 0.0005 0.0379 0 0.2253 0 0.6488 0.0005 0.9121
Rec15 0 0.0503 0 0.3085 0 0.4447 0 0.8037
Recl17 0 0.1531 0 0.3481 0 1.3679 0 1.8693
Rec19 0 0.0274  0.1035 0 0 0.6042 0.1035 0.6316
Rec21 0 0.1064 0.0309 0 0 1.3329 0.0309 1.4394
Rec23 0.0002 0.0526  0.0992 0 0 0.6914 0.0994 0.7441
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CHAPTER 4 PSO for Multi-objective JSSP

4.1 Problem Formulation

A typical job shop scheduling problem could be fokated as follows. There are
jobs to be processed throughmachines. Each job must pass through each machine
once and only once. Each job should be processemigh the machines in a
particular order, and there are no precedence reomst among different job
operations. Each machine can process only one tob @me, and it cannot be
interrupted. Besides, the operation time is fixed &nown in advanced. The most
objective of JSSP is to find a schedule to mininttze time required to complete all
jobs, that is, makespan {&). In this study, we attempt to reach the threecbjes
(makespan, machine idle time and total tardineissyiltaneously. We formulate the

object function of job shop scheduling problema@kftvs.

Makespan, f. .. = C(7T,,m) (4.1)
Total tardiness, f,. wardiness = i max[o, L] (4.2)
i=1

Total idle time,

frotalidletime ={C(77, | ~1) + _g{maX{C(fTi =) =-C(75-1,1)03 | =2..m}
i=2 (4.3)

4.2 Particle Position Representation

In the study of job shop scheduling, we randomiyegated a group of particles
positions whose value represents the associatechtape priority. For ann-job
m-machine problem, the position of partiddleean be represented by amxn matrix,

i.e.
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k k k
X1 X2 - Xn

kK ok k
X X: . X L . .
xk=| "1 722 2n | where xi'j‘ denotes the priority of operatio; which
ko ok k
Xor Xm2 - Xmn

means the operation of jgbthat need to be processed on machin€he particle
positions are decoded into an active schedule HfleGGiand Thompson’s(1960)

heuristic.
The G&T algorithm is briefly described as follows.

Notation:
(i,)): the operation of jopthat needs to be processed on machine
S the partial schedule that contains scheduledadip@rs.
Q: the set of schedulable operations.
i) the earlist time at which operati@ij) belongs ta2 could be started.
PG, the processing time of operati@ip).
fa,j: the earlist time at which operatidry) belongs ta2 could be finished, fj;
=S T P -
G&T algorithm
Step 1: Initialize S=¢; Q is initialized to contain all operations without
predecessors.
Step 2: Determinef =ming ;1o {f; )} and the machinen on which f
could be realized.
Step 3. (1) ldentify the operation séi, j)O0Q such that(i’, ') requires
machinem’, and s j;y < f~
(2)Choosei( j) from the operation set identified in (1) with tlaegest
priority.

(3)Add (, j)to S
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(4)Assigns; ;) as the starting time of, §).

Step 4: If a complete schedule has been genewsttgal,Else, delete, () from Q

and include its immediate successoflirthen go to Step 2.
We demonstrated the mechanism of G&T algorithmHey2x2 example shows

on Table 3.1, and the position of partiklis X ¥ =E ﬂ

Table 4. 1 An 2x2 example

Jobs Machine sequence Processing times
1 1, 2 Pa.275; P14

2 2, 1 P24, Pa23
Initialization

Step 1: S=¢;0={(1, 1), (2, 2)}.
Iteration 1
Step 2:8(1,1):0, 5(272)20, f(171):5, f(272):4; f*:min{f(lyl),f(z,z)}=4, m =2.

Step 3: Identify the operation set {(2, 2)}; choaxgeration (2, 2), which has the

largest priority, and add it into schedde
Step 4: Updat®©={(1,1), (1,2)}, go to Step 2.
Iteration 2
Step 251,170, Su.274, fa 1575, fa.2=7;  =min{f.1)fa.23=5, m =1.

Step 3: Identify the operation set {(1, 1), (1,;2hoose operation (1, 2), which

has the largest priority, and add it into schedile
Step 4: Updat@={(1, 1)} , go to Step 2.

Iteration 3
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Step 251177, fu1=12;f =min{f,1}=12, m =1.

Step 3: Identify the operation set {(1, 1)}; choageeration (1, 1), which has the

largest priority, and add it into schedde
Step 4: Updat®©={(2, 1)}, go to Step 2.
Iteration 4
Step 2:521712, f2.1716;f =min{f 1}=16, m =2.

Step 3: Identify the operation set {(2, 1)}; choag®eration (2, 1), which has the

largest priority, and add it into schedde

Step 4: A complete schedule has been generatedhandtops.

The proposed PSO differs from the original PSChminhformation stored in the
pbestandgbestsolution. While the original PSO keeps the besitpms found so far,
the proposed PSO holds the best schedule geneosted&T algorithm. In the
previous example, the sched®erather than the positiox® is retained in th@best
and gbest solutions, whereS® is E ﬂ Based on the insertion operator the
movement of particles is modified in accordancethte representation of particle

position.

4.3 Particle Velocity

In the proposed PSO for job shop scheduling, thecitg of operatioro; of particlek

is denoted byvi'j‘, vi'j‘ D{OJ}, whereo; is the operation of jolp that needs to be
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processed on machine When vij.‘ equals 1, it means that operatiop in the
preference list of particlé (the position matrix, § has just been moved to the
current location, and we should not move it in tisation. On the other hand, if
operationo; is moved to a new location in this iteration, vt sq'f(— 1, indicating
that o; has been moved in this iteration and should netlbbaoved in the next few
iterations.

Just as the original PSO is applied to a contisigpace, inertia weight is used
to control particle velocities. We randomly upda#docities at the beginning of the

vE will be set to 0

iteration. For each particle k and operatmn if vij.‘ equals 1,v;
with probability (1-w). This means that if operation; is fixed on the current
location in the preference list of parti®eo; is allowed to move in this iteration with

probability (1—-w). The newly moved operations will then be fixed fioore iteration

with larger inertia weight, and fixed for less @8ons with smaller inertia weight.

4 .4 Particle Movement

The particle movement of job shop scheduling issdam the swap operator proposed

by D.Y. Sha et al. (2006).
Notations:

xK is the schedule list of machinef particlek.

pbesf is the schedule list of machinef k-th pbestsolution.

gbest is the schedule list of machinef gbestsolution.
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c1 andc; are constant between 0 andd,+c, <1.

The swap procedure is accounted as below.

Step 1: Randomly choose a positipftom x .
Step 2: Mark the job on positidrof x¢ by ;.

Step 3: If the random numbeand < ¢; then seek the position df in pbesf,

otherwise seek the position #f in gbest. Denote the position that has
been found in pbest or gbest by, and job in positiori’ of x by
A».

Step 4: If 4, has been denoted/,i‘jl =0 and viﬁz =0, then swapt; and 4, in

Step 5: If all the position ofx have been considered, then stop. Otherwise, if
<n, then{ — {+1, else; — 1, go to Step 2.
We take a 6-job problem for example whexk—:‘:[4 2136 5], pbesf:[l 542
6 3], gbest=[32 645 1],v¥=[0 010 0 0]c;=0.6 andc,=0.2.
Step 1: The position of* is randomly chos&=3.

Step 2: The job in the“éposition of >qk is job 1, namelyl;=1.

Step 3: A random numbeand is generated, saynd=0.7. Sincerand > c;, we

compare each position ofbest with 4, and the matched positidfF6.

The job in the B position of x is job 5, namely,=5.
Step 4: Sincevy, =0 and v =0, swap job 1 and job 5 in<, then xX=[4 2 5
361], and letv’, — 1 then v¥=[001100].
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Step 5: Let{ — 4 and go to Step2. Repeat the process until altipos of >qk
have been considered.

vA={0 010 0}

pbestt |4 13 |1 |5 |2

ghest; |2 |1 |5 |3 |4

xk 311|425

1

¢;=0.5 ¢,=0.3 rand=0.6

Figure 4. 1 Example of JSSP

pbest® |4 |3 |1 |5 |2

ghest; |12 11 |5 |3 |4

xt 13|14 ]|2|5

1=3,J=4 I'=5,J,=5
Figure 4. 2 Finding the location to exchange

v ={0 0 11 0}

phest \4 3l1ls5]2

ghest; |2 1115 |3 |4

s3] ]5)2]4]

A

Swap job4 and job5 inxF; let v, /=1

Figure 4. 3 Exchange operation of PSO

4.5 Diversification strategy

If all the particles have the same non-dominatddtiems, they will be trapped in
local optima. To prevent this from happening, aedsfication strategy is proposed to
keep the non-dominated solutions different. Oncg r@@w solution is generated by

particles, the non-dominating solution set willlplated in these three situations:
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(1)If the solution of the particle dominates tigestsolution, assign the particle
solution to thegbest

(2)If the solution of the particle equals to anyuson in the non-dominated
solution set, replace the non-dominated solutiah tie particle solution.

If the solution of the particle is dominated by tlierst solution and not equal to

any non-dominated solution, set the worst solugiqual to the particle solution.

4.6 Computational Results

The proposed multi-objective PSO (MOPSO) algorittuas tested on benchmark
problems obtained from the OR-Library. The prognaas coded in Visual C++ and
run 40 times on each problem on a Pentium 4 3.0-Gitzputer with 1 GB of RAM
running Windows XP.

The Taguchi methods employ the loss function foasneng product or process
quality as well as for determining manufacturedsetance limits (Taguchi 1986).
Basically, the objective is to improve product oogess quality by reducing the mean
squared deviation. Taguchi also proposes signabise (S/N) ratio to the
nominal-the-best (NTB), the smaller-the-better (3 Tdhd the larger-the-better (LTB)
problems, which are used when quality charactesistire static, to evaluate the
robustness of a system performance. In this stwdyfocus on the minimization of
the objective function with the STB characterisfiberefore, the definition of the S/N

ratio is as follow.
in ,
S/IN = —10&09(;2 y; j (4.4)
i=1

wheren denotes the number of repetitignrepresents the experimental data.
The parameter of PSO includes weight, learningofactg, ¢;), swarm size and

iteration numbers. This study considers four fectwith four levels each. The
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parameter settings of four factors are as TableWechoose the orthogonal array; L
to execute the experiments.

Table 4. 2 The parameter of PSO

Fact Level
actors 1 5 3 )
A (w) 0.1 0.3 0.6 0.9
B(cy, ©) 0.1,0.9 0.3,0.7 0.5,0.5 0.7,0.3
C(Swarm size) 60 80 100 120
D(Iteration) 50 100 150 200

According to the ks » the experimental data and S/N ratio 0k15 problems are
given in Table 4.3. According to Table 4.3, thetdas response of S/N ratio is showed
in Table 4.4. The factors response diagram of &t shows as Figure4.4. Table 4.5

shows the best level of factors.

Table 4. 3 The g orthogonal array and S/N ration ofxll% problem
No. of Level of Factors

Experiment A(w) B(cy, & C(Swarm size) D(lteration) S/N ratio
1 1 1 1 1 -79.4583
2 1 2 2 2 -79.1078
3 1 3 3 3 -78.8201
4 1 4 4 4 -78.9164
5 2 1 2 3 -78.8372
6 2 2 1 4 -79.1162
7 2 3 4 1 -79.4006
8 2 4 3 2 -79.1026
9 3 1 3 4 -78.9947
10 3 2 4 3 -79.2078
11 3 3 1 2 -79.5239
12 3 4 2 1 -80.0762
13 4 1 4 2 -80.3084
14 4 2 3 1 -80.7562
15 4 3 2 4 -80.1928
16 4 4 1 3 -80.4881

Table 4. 4 The factors response 0k15 problem
Factors
Level - -
A(w) B(cy, ©) C(Swarm size) D(Iteration)
1 -79.0826 -79.4384 -79.6775 -79.9582
2 -79.1187 -79.6066 -79.5934 -79.5393
3 -79.4700 -79.5118 -79.4926 -79.3945
4 -80.4416 -79.6955 -79.4904 -79.3371
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Figure 4. 4 The factor response diagram of S/N ditagram of 1815 problem

Table 4. 5 The best level of factors o&15 problem

Factors
Level - -
w C, & Swarm size Iteration
1 1 4 4
0.1 0.1, 0.9 120 200

According to the ks ° the experimental data and S/N ratio 0k29 problems are
given in Table 4.6. According to Table 4.6, thetdas response of S/N ratio is showed
in Table 4.7. The factors response diagram of &t shows as Figure4.5. Table 4.8

shows the best level of factors.

Table 4. 6 The L orthogonal array and S/N ration ofA® problem

No. of Level of Factors .
. s - S/N ratio
Experiment w Ci, G Swarm size Iteration

1 1 1 1 1 -79.6904
2 1 2 2 2 -79.3892
3 1 3 3 3 -79.5379
4 1 4 4 4 -79.1821
5 2 1 2 3 -79.4004
6 2 2 1 4 -79.5285
7 2 3 4 1 -80.5712
8 2 4 3 2 -79.9816
9 3 1 3 4 -79.6734
10 3 2 4 3 -79.8359
11 3 3 1 2 -80.3399
12 3 4 2 1 -81.1149
13 4 1 4 2 -81.2241
14 4 2 3 1 -81.5864
15 4 3 2 4 -81.0604
16 4 4 1 3 -81.2293
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Table 4. 7 The factors response 0k2B problem

Factors
Level - -
w C, & Swarm size Iteration
1 -79.4540 -80.0597 -80.2499 -80.7967
2 -79.8950 -80.1805 -80.3232 -80.2853
3 -80.2782 -80.4116 -80.2769 -80.0649
4 -81.2794 -80.4571 -80.2709 -79.9229
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Figure 4. 5 The factor response diagram of S/N mditigram of 2015 problem

Table 4. 8 The best level of factors 0&26 problem

Factors
Level - .
w Ci, & Swarm size Iteration
1 1 4 4
0.1 0.1,0.9 120 200

According to the ks > the experimental data and S/N ratio 0k20 problems are
given in Table 4.9. According to Table 4.9, thetdas response of S/N ratio is showed
in Table 4.10. The factors response diagram of 1@thd shows as Figure4.6. Table

4.11 shows the best level of factors 0k20 problem.
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Table 4. 9 The g orthogonal array and S/N ration ofx2D problem

No. of Level of Factors .

. . - S/N ratio
Experiment w C, & Swarm size Iteration

1 1 1 1 1 -85.2975
2 1 2 2 2 -85.0583
3 1 3 3 3 -85.0206
4 1 4 4 4 -84.6681
5 2 1 2 3 -84.8432
6 2 2 1 4 -84.8625
7 2 3 4 1 -85.7203

8 2 4 3 2 -85.128
9 3 1 3 4 -84.9865
10 3 2 4 3 -85.2221
11 3 3 1 2 -85.4592
12 3 4 2 1 -86.1118
13 4 1 4 2 -86.2683
14 4 2 3 1 -86.5763
15 4 3 2 4 -86.174
16 4 4 1 3 -86.1046

Table 4. 10 The factors response ok20 problem
Factors
Level - .

w Ci, & Swarm size Iteration

1 -85.0169 -85.3857 -85.4541 -85.9522

2 -85.1533 -85.4848 -85.5882 -85.5058

3 -85.4656 -85.6137 -85.4816 -85.3256

4 -86.2846 -85.5477 -85.5100 -85.2145
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Table 4. 11 The best level of factors 0&20 problem

Figure 4. 6 The factor response diagram of S/N rditigram of 2820 problem

Factors
Level - .
w Cy, & Swarm size [teration
1 1 3 4
0.1 0.1, 0.9 100 200
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According to the ks > the experimental data and S/N ratio okBD problems are
given in Table 4.12. According to Table 4.12, tlaetbérs response of S/N ratio is
showed in Table 4.13. The factors response diagfa®iN ratio shows as Figure4.7.

Table 4.14 shows the best level of factors ofl¥problem.

Table 4. 12 The J¢ orthogonal array and S/N ration of<A® problem
No. of Level of Factors

Experiment w C, & Swarm size Iteration S/N ratio
1 1 1 1 1 -80.9651
2 1 2 2 2 -80.6913
3 1 3 3 3 -80.4876
4 1 4 4 4 -80.2728
5 2 1 2 3 -80.2116
6 2 2 1 4 -80.4169
7 2 3 4 1 -82.1322
8 2 4 3 2 -81.3419
9 3 1 3 4 -80.5676
10 3 2 4 3 -81.1456
11 3 3 1 2 -81.9082
12 3 4 2 1 -82.4581
13 4 1 4 2 -82.2892
14 4 2 3 1 -82.5693
15 4 3 2 4 -82.2314
16 4 4 1 3 -82.3951

Table 4. 13 The factors response okBB problem
Factors
Level - -

w Cu G Swarm size Iteration
1 -80.6117 -81.0826 -81.4900 -82.0755
2 -81.0946 -81.2888 -81.5040 -81.5989
3 -81.5794 -81.7436 -81.3253 -81.1448
4 -82.3731 -81.7055 -81.5340 -80.9489
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Figure 4. 7 The factor response diagram of S/N rditiagram of 3R15 problem

Table 4. 14 The best level of factors ok28 problem

Factors
Level - -
w C, & Swarm size Iteration
1 1 3 4
0.1 0.1, 0.9 100 200

According to the ks ° the experimental data and S/N ratio 0k20 problems are
given in Table 4.15. According to Table 4.15, tlaetdérs response of S/N ratio is
showed in Table 4.16. The factors response diagfa8iN ratio shows as Figure4.8.

Table 4.17 shows the best level of factors ofZ80problem.

Table 4. 15 The {5 orthogonal array and S/N ration of<&D problem
No. of Level of Factors

Experiment w Ci, G Swarmsize __lteraion ' a0
1 1 1 1 1 -85.9203
2 1 2 2 2 -85.2966
3 1 3 3 3 -85.3185
4 1 4 4 4 -85.0323
> 2 1 2 3 -85.1811
6 2 2 1 4 -85.2356
7 2 3 4 1 -86.7576
8 2 4 3 2 -86.0746
9 3 1 3 4 -85.5114
10 3 2 4 3 -85.8642
11 3 3 1 2 -86.4892
12 3 4 2 1 -86.9177
13 4 1 4 2 -86.962
14 4 2 3 1 -87.3283
15 4 3 2 4 -86.8707
16 4 4 1 3 -86.93
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Table 4. 16 The factors response 030 problem

Factors
Level - -
w C, & Swarm size Iteration
1 -85.4043 -85.9470 -86.1896 -86.7605
2 -85.8617 -86.0174 -86.1451 -86.2479
3 -86.2298 -86.4007 -86.1320 -85.8799
4 -87.0265 -86.3056 -86.2201 -85.7249
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Figure 4. 8 The factor response diagram of S/N mditigram of 3020 problem

Table 4. 17 The best level of factors ok20 problem

Factors
Level - -
w Ci, & Swarm size Iteration
1 1 3 4
0.1 0.1, 0.9 100 200

According to the ks > the experimental data and S/N ratio ok®B problems are
given in Table 4.18. According to Table 4.18, tlaetbrs response of S/N ratio is

showed in Table 4.19. The factors response diagfa8iN ratio shows as Figure4.9.

Table 4.20 shows the best level of factors ofl&problem.
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Table 4. 18 The {g orthogonal array and S/N ration o8 problem

No. of Level of Factors .
. . - S/N ratio
Experiment w C, & Swarm size Iteration

1 1 1 1 1 -82.4901
2 1 2 2 2 -82.8781
3 1 3 3 3 -83.4561
4 1 4 4 4 -82.5799
5 2 1 2 3 -82.0682
6 2 2 1 4 -82.4229
7 2 3 4 1 -84.2093
8 2 4 3 2 -83.2563
9 3 1 3 4 -82.5724
10 3 2 4 3 -83.2699
11 3 3 1 2 -83.8847
12 3 4 2 1 -84.0546
13 4 1 4 2 -83.8385
14 4 2 3 1 -84.3872
15 4 3 2 4 -83.8774
16 4 4 1 3 -83.9298
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Figure 4. 9 The factor response diagram of S/N rditagram of 5815 problem

Table 4. 19 The factors response okBB problem

Factors
Level - .
w Cy, & Swarm size Iteration
1 -82.8678 -82.7947 -83.2423 -83.8471
2 -83.0693 -83.3023 -83.2918 -83.4845
3 -83.4836 -83.8650 -83.4670 -83.2330
4 -84.0140 -83.4943 -83.5173 -82.9050
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Table 4. 20 The best level of factors ok&8 problem

Factors
Level - -
w C, & Swarm size Iteration
1 1 1 4
0.1 0.1, 0.9 60 200

According to the ks > the experimental data and S/N ratio 0k30 problems are
given in Table 4.21. According to Table 4.21, tlaetdérs response of S/N ratio is
showed in Table 4.22. The factors response diagfe®iN ratio shows as Figure4.10.

Table 4.23 shows the best level of factors ofl5Dproblem.

Table 4. 21 The {5 orthogonal array and S/N ration ofx&D problem

No. of Level of Factors .

. . - S/N ratio
Experiment w Cy, & Swarm size Iteration

1 1 1 1 1 -87.1114
2 1 2 2 2 -87.0564

3 1 3 3 3 -87.589
4 1 4 4 4 -86.2943
5 2 1 2 3 -86.4336
6 2 2 1 4 -86.4534
7 2 3 4 1 -88.1888
8 2 4 3 2 -87.3232
9 3 1 3 4 -86.5846
10 3 2 4 3 -87.2789
11 3 3 1 2 -87.9287
12 3 4 2 1 -88.1861
13 4 1 4 2 -87.9479
14 4 2 3 1 -88.349
15 4 3 2 4 -87.895
16 4 4 1 3 -88.0081

Table 4. 22 The factors response 0£30 problem
Factors
Level - s

w Cl, & Swarm size Iteration

1 -87.0371 -87.0608 -87.4212 -87.9857

2 -87.1615 -87.3397 -87.4470 -87.5811

3 -87.5381 -87.9055 -87.5072 -87.3649

4 -88.0537 -87.5140 -87.4874 -86.8558
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Figure 4. 10 The factor response diagram of S/l gdiagram of 5820 problem

Table 4. 23 The best level of factors ok30 problem

Factors
Level - -
w C, & Swarm size Iteration
1 1 1 4
0.1 0.1, 0.9 60 200

The results of the experiments showed that the Ibest of parametew, ci, C;
and iteration numbers are the same even in diffeseale of problems. The inertia
weight w is 0.1 which means the particles prefer to mowsvisi in the searching
progress. The possibilities of moving back to eréiposition are existed. However,
the learning factors; andc; are fixed 0.1 and 0.9, no matter the scale optieblems
are changed. We can say that the particles areadeteto learn from the global
solution more than the local best solution. Thathis particles learning more from
swarm experience than individual experience.

During the pilot experiment, we used four swarnesld (60, 80, 100, and 120)
to test the algorithm. The outcome £120 was best, so that value was used in all
further tests. Parametarsandc, were tested at various values in the range 0.1ir0.7
increments of 0.2. The inertial weight was reduced fronWmaxt0 Wmin during

iterations, wherevy,.xwas set to 0.5, 0.7, and 0.8, amgl, was set to 0.1, 0.3, and 0.5.
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The combination 0€;=0.1, ¢,=0.8, Wna=0.5 andwp,ii=0.1 gave the best results. The
maximum iteration limit was set to 200 and the maxin archive size was set to 120.
The MOGA proposed by Ponnambalam et al. (2001) etsen as a baseline
against which to compare the performance of our R&@rithm. The objectives
considered in the MOGA algorithm are minimizatioghneakespan, minimization of
total tardiness, and minimization of machine idleet The MOGA methodology is
based on the machine-wise priority dispatching (pldr) and the G&T procedure
(1960). The each gene represents a pdr code. ThE @&cedure was used to
generate an active feasible schedule. The MOGAdggrfunction is the weighted sum
of makespan, total tardiness, and total idle tifne@achines with random weights.
The computation results showed that the relativeresf the solution foICnax
and total idle time determined by the proposed MORf&as better in 23 out of 23
problems than the MOGA. In 22 of the 23 problenhg proposed PSO performed
better for the solution considering total tarding3serall, the proposed MOPSO was

superior to the MOGA in solving the JSP with mu#ipbjectives.
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Table 4. 24 Comparison of MOGA and MOPSO for Malaesp

Benchmark n m Makespan (MOGA) Makespan (MOPSOY% Deviation

abz5 10 10 1587 1338 0
abz6 10 10 1369 1046 0
ft06 6 6 76 56 0
ft10 10 10 1496 1045 0
la01 10 5 1256 709 0
la02 10 5 1066 713 0
la03 10 5 821 671 0
la04 10 5 861 631 0
la05 10 5 893 593 0
lal6 10 10 1452 1040 0
lal7 10 10 1172 889 0
lal9 10 10 1251 038 0
la20 10 10 1419 985 0
orb01 10 10 1704 1181 0
orb02 10 10 1284 1029 0
orb03 10 10 1643 1114 0
orb04 10 10 1543 1122 0
orb05 10 10 1323 1013 0
orb06 10 10 1645 1144 0
orb07 10 10 583 302 0
orb08 10 10 1340 1000 0
orb09 10 10 1462 1044 0
orb10 10 10 1382 1077 0
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Table 4. 25 Comparison of MOGA and MOPSO for Tadld time

Benchmark n m Total idle time(MOGA) Total idle time(MOPSO) % Deviation
abz5 10 10 8097 3978 0
abz6 10 10 7744 2937 0
ft06 6 6 259 100 0
ft10 10 10 9851 1999 0
la01 10 5 3431 571 0
la02 10 5 2687 573 0
la03 10 5 1722 633 0
la04 10 5 1798 557 0
la05 10 5 2182 473 0
lal6 10 10 9169 2718 0
lal7 10 10 7044 3365 0
lal9 10 10 7164 2796 0
la20 10 10 8745 2883 0
orb01 10 10 11631 3909 0
orb02 10 10 7585 3539 0
orb03 10 10 11138 3788 0
orb04 10 10 9802 3921 0
orb05 10 10 8322 3727 0
orb06 10 10 10836 3478 0
orb07 10 10 3423 1381 0
orb08 10 10 8840 3542 0
orb09 10 10 9439 4224 0
orb10 10 10 8271 4177 0
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Table 4. 26 Comparison of MOGA and MOPSO for Ttaadliness

Benchmark N m Total tardiness (MOGA) Total tardiness (MOPSO) % Deviation
abz5 10 10 1948 611 0
abz6 10 10 1882 339 0
ft06 6 6 31 3 0
ft10 10 10 3459 1534 0
la01 10 5 3324 721 0
la02 10 5 2081 425 0
la03 10 5 1926 373 0
la04 10 5 3194 673 0
la05 10 5 1716 736 0
lal6 10 10 1127 1417 0
lal7 10 10 1779 53 0
lal9 10 10 1581 733 0
la20 10 10 1451 407 0
orb01 10 10 3052 191 0
orb02 10 10 1565 137 0
orb03 10 10 4140 247 0
orb04 10 10 4951 221 0
orb05 10 10 2195 30 0
orb06 10 10 2601 0 0
orb07 10 10 699 0 0
orb08 10 10 3498 253 0
orb09 10 10 2029 0 0
orb10 10 10 1806 0 0
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Table 4. 27 Comparison of MOGA and MOPSO with thobgectives

Problem n m Makespan Total machine idle time Total tardiness

MOGA MOPSO MOGA MOPSO MOGA MOPSO

best best average worstbest best average worstbest best average worst
abz5 10 10 1587 1399 1460 1521 8097 3911 4429.6 54411948 90 3722 725
abz6 10 10 1369 1049 1102.6 1162 7744 2868 3203.1 38751882 90 232.85 385
ft10 10 10 1496 1055 1123.6 1166 9851 1630 2204.45 27623459 848 1231.95 1663
lal6 10 10 1452 1015 1077 1152 9169 2740 3157.65 36791127 340 517.95 813
lal7 10 10 1172 840 898.6 976 7044 2643 2997.8 32791779 277 3929 552
la19 10 10 1251 923 998.15 1047 7164 2288 3023.2 34761581 49 264.45 567
la20 10 10 1419 980 1051.65 1123 8745 2758 3246.7 37791451 204 357.1 439
orb01 10 10 1704 1234 1274 137711631 3700 4125.8 48123052 769 1098.85 1629
orb02 10 10 1284 999 1066 1135 7585 3352 3768.8 45611565 64 249.65 436
orb03 10 10 1643 1165 1256.05 135411138 3620 4277.85 48394140 571 1071.45 1552
orb04 10 10 1543 1134 1208.7 1327 9802 3682 4451.6 54824951 443 809.4 1267
orb05 10 10 1323 1009 1066.1 1118 8322 3328 3923.05 42532195 136 413.25 697
orb06 10 10 1645 1124 1211.75 127210836 3192 3718.8 41772601 558 914.15 1390
orb07 10 10 583 271 290.45 318 3423 233 344.15 580 699 63 829 112
orb08 10 10 1340 976 1067.3 1123 8840 3349 3810.55 42023498 745 1026.15 1365
orb09 10 10 1462 1024 1106.65 1196 9439 3762 4279.3 46582029 445 642.1 765
orb10 10 10 1382 1123 1172.65 1243 8271 3863 4531.35 49541806 45 4795 774
la01 10 51256 715 770.55 819 3431 479 661.3 10323324 453 599.75 861
la02 10 51066 713 758.45 804 2687 411 5495 6882081 296 447.75 706
la03 10 5 821 663 70355 757 1722 648 776.55 9021926 381 684.5 926
la04 10 5 861 601 669.85 720 1798 345 58255 7273194 389 563.45 768
la05 10 5 893 593 609.55 669 2182 390 517.65 6651716 477 630.55 900
ft06 6 6 76 58 60.65 68 259 93 118.7 163 31 0 0.75 9
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Table 4. 28 The results of solving FT, ABZ, ORB afid with MOPSO

Problem n m Makespan MFT MIT

best average worst best average worst best average worst
ft06 6 6 55 55.24 57 49 50.29 51 54 60.90 90
ft10 10 10 973 997.4¢ 1033 852 885.62 938 1116 1707.2¢ 2131
ft20 20 5 1247 1280.1¢ 1315 883 951.M 1032 166 361.9C 551
abz5 10 10 1249 1276.6z 1329 1134 1173.8¢ 1236 3124 3531.1C 4223
abz6 10 10 948 971.24 996 889 910.24 933 2370 2688.1¢ 3069
abz7 20 15 779 791.0C 814 676 693.1C 714 3132 34525z 3665
abz8 20 15 776 803.81 835 681 708.52 732 3193 3551.2¢ 3973
abz9 20 15 786 823.1¢ 843 667 696.71 739 3225 3660.6z 4321
orb01 10 10 1093 1136.98 1185 992 1026.4: 1076 1286 1780.6z 2677
orb02 10 10 921 939.24 967 867 897.1¢ 925 2185 2600.3: 2925
orb03 10 10 1064 1101.08 1148 962 10155z 1072 1186 1627.2¢ 2366
orb04 10 10 1031 1070.9t 1106 994 1029.81 1079 2179 2645.14 3342
orb05 10 10 896 946.81 1003 828 870.8€ 915 2331 273457 3351
orb06 10 10 1028 1071.7¢ 1135 955 985.24 1068 1439 1666.90 1980
orb07 10 10 403 420.71 438 381 402.24 425 919 1094.0C 1195
orb08 10 10 937 957.9C 1025 882 904.4¢ 946 1123 1606.57 1990
orb09 10 10 958 981.1C 1028 903 942.9C 1004 2291 2699.1¢ 3127
orb10 10 10 967 1023.0C 1065 944 991.67 1029 2606 2927.95 3338
ynl 20 20 999 1030.5z 1058 889 908.3¢ 931 6481 7002.1¢4 7456
yn2 20 20 1043 1073.5z 1127 940 966.6z 1003 7116 7598.67 8363
yn3 20 20 1021 1044.0C 1072 912 938.2¢ 961 6640 7039.3: 7880
yn4 20 20 1108 1141.8¢ 1160 973 1005.29 1033 7223 7752.7¢ 8387
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Table 4. 29 The results of solving LA with MOPSO

Problem

la01
la02
la03
la04
la05
la06
la07
la08
la09
lal0
lall
lal2
lal3
lal4
lal5
lal6
lal7
lal8
lal9
la20
la21
la22
la23
la24
la25
la26
la27
la28
la29
1a30
la31
la32
la33
la34
la35

n

10
10
10
10
15
15
15
15
15
20
20
20
20
20
10
10
10
10
10
15
15
15
15
15
20
20
20
20
20
30
30
30
30
30

m

oo oo oo a0 g0 ;o0 o0 ;o1 ;g1 oG

Ay
o

10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10

Makespan MFT MIT
best average worst best average worst best average worst
666 666.1C 668 561 584.9C 604 242 336.81 435
665 682.1¢ 706 525 560.2¢ 591 223 401.57 548
608 626.8€ 657 508 540.62 594 431 518.24 579
593 605.4¢ 617 516 537.4Z 571 209 314.4¢ 426
593 593.0C 593 483 517.0% 559 422 492.67 652
926 926.0C 926 762 789.57 832 393 488.8¢ 584
890 894.9t 906 672 714.52 745 532 623.4€ 676
863 865.95 884 710 740.1C 783 239 333.71 450
951 951.0% 952 805 818.9% 849 273 359.57 445
958 958.0C 958 798 835.62 865 433 523.9C 624
1222 1222.0C 1222 960 1014.1C 1072 344 496.71 654
1039 1039.0C 1039 840 881.4: 926 346 393.3¢ 454
1150 1151.5z 1162 926 984.81 1043 334 452.52 555
1292  1292.0C 1292 1010 1056.1C 1094 544 8225z 1014
1210 1236.57 1255 926 986.57 1041 371 588.8¢ 726
979 992.9C 1008 798 847.4¢ 882 2644 2962.6 3265
784 801.1¢ 832 725 745.0% 777 2333 2555.4: 2909
853 892.14 942 760 788.8 829 2417 2660.5z 2920
847 875.1C 902 753 782.71 805 2000 2329.0t¢ 2625
907 922.4¢ 942 789 811.1¢ 852 2328 2597.7¢ 2997
1136  1177.67 1229 965 1006.81 1047 2230 2584.671 3157
1000 1026.67 1049 879 909.42 963 2056 2323.4: 2756
1040 1080.1¢ 1111 934 967.81 1002 1826 2129.1C 2345
1004 1034.3: 1072 900 929.1C 961 1741 2039.1¢ 2313
1042 1076.57 1122 906 939.0% 979 2004 2512.8¢ 2909
1347 1376.8 1417 1145 1195.6z 1263 1932 24258¢ 2725
1378 1428.4: 1480 1163 12259t 1295 1979 252157 3074
1373  1400.2¢ 1425 1187 1217.3: 1289 2154 2568.4¢ 2863
1345 1382.67 1428 1130 1183.2¢ 1252 2846 3106.9C 3474
1443  1488.0t¢ 1529 1175 1255.2¢ 1305 2530 3032.2¢ 3443
1850 1880.5z 1918 1528 1593.81 1643 2654 2923.1¢ 3292
1969 2013.57 2056 1705 1733.2¢ 1771 2425 2765.7¢ 3186
1767 1834.1¢ 1887 1520 1572.81 1648 2424 2783.1¢ 3342
1846  1893.4: 1924 1564 1623.2¢ 1682 2375 2824.6: 3110
1946  2020.2¢ 2111 1600 1651.2¢ 1710 3295 3917.2¢ 4550

72



Table 4.19(cont’d) The results of solving LA withQPSO

la36 15 15 1351 1395.3: 1447 1211 1256.3t 1321 6595 7075.2¢ 7914
la37 15 15 1504 1548.2¢ 1617 1280 1315.2¢ 1351 6909 7622.57 8405
la38 15 15 1272 1334.1C 1378 1130 1158.2¢ 1217 5819 6796.67 7999
la39 15 15 1331 1367.4: 1404 1141 1185.4: 1217 5875 6404.7¢ 7103
la40 15 15 1293 1322.67 1367 1160 1193.1C 1248 5607 6227.3: 7030
Table 4. 30 The results of solving SWV with MOPSO
Problem n m Makespan MFT MIT

best average worst best average worst best average worst
swv0l 20 10 1694 1724.285714 1761 1442  1507.238095 1577 2375  2965.142857 3703
swv02 20 10 1710 1758.52381 1805 1490 1558.761905 1622 2265 2961.619048 3652
swv03 20 10 1672 1720.047619 1781 1483 1540.333333 1606 2323 2883.666667 3421
swv04 20 10 1734 1802.666667 1860 1504 1560.52381 1644 1967  2602.809524 3091
swv05 20 10 1749 1787.428571 1824 1498 1575.571429 1630 2094 2571.047619 3881
swv06 20 15 2099 2141.666667 2220 1714 1785.809524 1928 4559  5697.333333 7070
swv07 20 15 1957 2003.095238 2057 1631 1705.333333 1806 4872 5427.380952 6718
swv08 20 15 2155 2210.190476 2260 1718 1800.428571 1880 5353 6335.333333 7728
swv09 20 15 2048 2114.952381 2164 1644 1739.142857 1871 5005 6113.47619 7360
swv10 20 15 2138 2183.809524 2227 1742  1805.380952 1916 5297 6266.142857 7290
swvll 50 10 3815 3865 3944 2902 3006.285714 3145 3755  4884.571429 6071
swv12 50 10 3742 3881.714286 3987 2885 2993.333333 3164 4097 5032.809524 5931
swv13 50 10 3884 3937.52381 3990 2888 2992.428571 3069 4655 5961.380952 7658
swvl4 50 10 3658 3743.142857 3855 2686 2841.571429 2997 3305 4400.619048 5821
swv15 50 10 3681 3752.714286 3844 2725 2839.52381 2923 3978 5279.380952 6326
Swv16 50 10 2924 2954.047619 3043 2446  2517.142857 2614 2970  3437.238095 4299
swv1l7 50 10 2839 2880.857143 2927 2344 2421.095238 2512 3235 3605.380952 3905
swv18 50 10 2879 2902.190476 2938 2377 2437.904762 2482 3205  3588.238095 3889
swv19 50 10 2965 3013.380952 3065 2421 2504.52381 2575 3186  3667.380952 4092
swv20 50 10 2829 2879.238095 2907 2352 2404.952381 2480 2800  3243.047619 3572
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CHAPTER 5 PSO for Multi-objective OSSP

5.1 Problem Formulation
The common characteristics of shop scheduling problare as follows. A set af
jobs must be processed on a seinahachines. Each job consistsrofoperations,
each of which must be processed on a different madbr a given process time. At
any time, at most one operation can be processezhcm machine, and at most one
operation of each job can be processed. Unlikg-8bop and job-shop scheduling
problems, the exceptional condition of the openpstcheduling problem is that the
operations of each job can be processed in any.orde

The aim of the openshop scheduling problems aessgn jobs to machines so
that the completion time, also called the makespza| flow time, and machine idle
time are minimized simultaneously. To minimize thekespan, we must minimize
the maximum total processing time on all machin€Bhe total flow time refers to the
sum of the completion times of all jobs. The itiees of each machine during the
work cycle are summed to obtain the total machiite time. The object functions of

makespan, total flow time and machine idle timedsecribed as chapter 3.

5.2 Particle Position Representation
In this study, we randomly generated a group ofigas (solutions) represented by a
permutation sequence that is an ordered list ofadipes. For am-job m-machine

problem, the position of partickecan be represented by mwn matrix, i.e.,

K ok k
X1 X2 = Xn
K Xk Xk Xk Kk . - . -
XK= "2 722 2n |, wherex; denotes the priority of operatiop, which
k k k
Xmi Xm2 ~° Xmn
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means the operation of jpbhat must be processed on machine
The Giffler and Thompson (G&T) algorithm is briethgscribed below.
Notation:
(i,)) is the operation of jopthat must be processed on machine
Sis the partial schedule that contains scheduledations
Q is the set of operations that can be scheduled
S, Is the earliest time at which operati@f) belonging ta can be started.
PG, IS the processing time of operati@y).

f,j 1s the earliest time at which operati@f) belonging ta can be finished,
fi) = Ssip *+ Pap -
G&T algorithm:

Step 1: Initialize s=¢; Q to contain all operations without predecessors.

Step 2: Determinef” =ming qf fG, )} and the machinen on whichf can be
realized.
Step 3:

(1)Identify the operation seti’, j")OQ such that (', j’) requires machinen,

and s(i', j)<f".

(2) Choosei( j) from the operation set identified in Step 3(1}thahe

largest priority.

(3)Add (,j) to S
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(4) Assigns; ) as the starting time of, ).

Step 4: If a complete schedule has been genesitgal, Otherwise, deletg () from

Q, include its immediate successoKinand then go to Step 2.

The movement of particles is modified in accordawih the representation of

particle position based on the insertion operator.

5.3 Particle Velocity

The original PSO velocity concept is that each ipl@rtmoves according to the
velocity determined by the distance between thegipus position of the particle and
thegbest(pbesj solution. The two major purposes of the parti@éocity are to move
the particle toward thgbestandpbestsolutions, and to maintain the inertia to prevent

particles from becoming trapped in local optima.

In the proposed PSO, we concentrated on preveip@ntcles from becoming
trapped in local optima rather than moving themathegbest(pbesj solution. If
the priority value increases or decreases withptieeent velocity in this iteration, we
maintain the priority value increasing or decregsat the beginning of the next
iteration with probabilityw, which is the PSO inertial weight. The larger ttadue of
w is, the greater the number of iterations over Wwhibe priority value keeps
increasing or decreasing, and the greater thecdiffi the particle has returning to the

current position. For an-job problem, the velocity of partickecan be represented as

k k k

Vin V2 o Vi
v Vs V& . : . .
vk=| T T2 2n |, where v{is the velocity of the operatiom; of particlek,
k k k
Vb Vm2 " Vi
v 0{-101} .
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The initial particle velocities are generated rantlo Instead of considering the

distance fromx{ to pbesf (gbesj), our PSO considers whether the valuexpf is

larger or smaller thanpbesf(gbesg) If x”-k has decreased in the present iteration, this

means that pbesf (gbesj) is smaller thanx, and x is set moving toward

ij o

pbesf (gbesj) by letting v <— —1. Therefore, in the next iterationg is kept

decreasing by one (i.ex < x —1) with probabilityw. Conversely, if x has

increased in this iteration, this means thaesf (gbesj) is larger thanx{, and x{

is set moving towardpbesf (gbes}) by letting vf <-1. Therefore, in the next iteration,

k

x is kept increasing by one (i.e¢ <—x{ + 1) with probabilityw.

i
The inertial weightv influences the velocity of particles in PSO. Wadamly update
velocities at the beginning of each iteration. Bach particlek and operationo; , if
vi is not equal to Oy} is set to O with probability (3%). This ensures thak

ij

stops increasing or decreasing continuously initaration with probability (1w).

5.4 Particle Movement

In our PSO, the particle movement is based onnbkeri operator proposed by Sha

and Hsu. We sek — p+rand, - 05if we want to inserto; into thepth location in the
permutation list. In addition, the location of ogono; in the operation sequence of
kth pbestandgbestsolution are pbesf andgbesj . When particlek moves, for alb; , if

vi equals 0, the will be set to pbesf +rand, - 05with probability c; and set to be

gbesf +rand, - 05 with probability c,, whererand, is a random variable between 0
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and 1, andc; andc, are constants between 0 and 1, apet,<1. For example,

assume tha¥ ¥, X¥, pbesf, gbest c, andc; are as follows:

VEEl o ol X Rl G 42,pbesf‘: 5 | dbest| ) ez 07.c=01

Foroy:
Becausevy, # 0,xf, — xk +vK, thatis, x5, = 15.
For oz
Becausevf, = 0, randomlygenerateand, = 0.
Becauserand, < ¢, randomlygenerateand, = 0.3.
Because pbes, > x&,, setv, — 1, andthen
x5 < pbesf, +rand, - 05, thatis, x£, = 38.
For oo
Becausevs, = 0, randomlygenerateand, = 0.9.
Becauserand, >c, +c,, x%, doesnotbechanged
For o2
Becausev§2 = 0, randomlygenerateand, = 0.75.
Becausec, <rand, < ¢, +c,, generateand, = 08.
Because gbest, < x&,, setvk, — -1, andthen
x5, — gbesk, +rand, - 05, thatis, x5, = 23.

Finally, after the particle moved, tM andXk are:
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-1 1 15 38
vk = and XX = .
0 -1 13 23

5.5 Computational Results

The proposed multi-objective PSO (MOPSO) algorittuas tested on benchmark
problems obtained from the Guéret and Prins (1998g program was coded in
Visual C++ and run 20 times on each problem onrdi®a 4 3.0-GHz computer with
1 GB of RAM running Windows XP. During the pilot gariment, we used four
swarm sizedN (30, 60, 80, and 100) to test the algorithm. Thiz@me ofN=80 was
best, so that value was used in all further té3&sameterg; andc, were tested at
various values in the range 0.1-0.7 in incremeht8.2. The inertial weightv was
reduced fromwmaxto Wmin during iterations, where,x was set to 0.5, 0.7, and 0.9,
andwmin was set to 0.1, 0.3, and 0.5. The combinatiocy=d.7,c,=0.1, Wna=0.7 and
Wnmin=0.3 gave the best results. The maximum iterationt Wwas set to 60 and the

maximum archive size was set to 80.

In the first experiment, we have assigned the Baret asPbestsolutions which
considered four different conditions. In the fissenario, we took all three objectives
into consideration. The two objectives includingkespan and total flow time are
considered in the second scenario. The third andHf@scenario considered makespan,
machine idle time and total flow time, machine itlae, respectively. The results of

the first experiment are as Table 5.1-5.4.
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Table 5. 1 The results of the first experiment édesng three objectives as Pareto set

makespane total flow time machine idle time
best average best average best average

1 1100 1109.3 10636 10717 624 712.15
2 1097 1101.8 10489 10551 590 659.75
3 1090 1101.8 10563 10661 589 648.4
4 1089 1091.6 10561 10606 498 625.1
5 1084 1094.7 10495 10595 558 616.7
6 1071 1082.1 10530 10560 493 513.95
7 1081 1083.3 10519 10569 549 594.85
8 1098 1103.1 10675 10722 671 714.6
9 1117 1128.3 10662 10738 681 763.6
10 1097 1098 10621 10715 673 777.2

1092.4 1099.4 10575 10643 592.6 662.63

Table 5. 2 The results of the first experiment adering makespan and total flow time as Pareto set

makespane total flow time machine idle time
best average best average best average

1 1106 1108.85 10604 10687.1 637 727
2 1097 1101.4 10499 10542.1 612 681.6
3 1087 1099.5 10560 10645.7 597 670.8
4 1089 1093.7 10527 10591.4 550 661.85
5 1087 1097.6 10516 10597.6 608 668.75
6 1071 1076.25 10527 10558.6 501 528.05
7 1081 1082.65 10500 10541.4 585 605
8 1098 1102.4 10656 10719.6 692 755.4
9 1122 1129.2 10667 10757.6 734 838.1
10 1097 1098.25 10704 10751.6 800 839.65

1093.5 1098.98 10576 10639.2 631.6 697.62
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Table 5. 3 The results of the first experiment édeisng makespan and machine idle time as Par¢to se

makespane total flow time machine idle time

best average best average best average
1 1097 1111.85 10733 10785.4 668 717.6
2 1100 1109.2 10602 10683.1 594 666.7
3 1087 1094.45 10606 10682.15 580 638.85
4 1089 1093.6 10557 10634.45 482 599.25
5 1075 1092.75 10552 10659.35 520 616.95
6 1071 1077.9 10554 10577.2 496 504.7
7 1081 1082.75 10537 10576.7 521 564.75
8 1098 1101.9 10696 10750.85 654 700.9
9 1116 1127 10722 10854.15 681 761.8
10 1094 1098.2 10635 10747.3 656 742.15

1091 1098.96 10619 10695.065 585 651.365

Table 5. 4 The results of the first experiment édersng total flow time and machine idle time as

Pareto set
makespane total flow time machine idle time
best average best average best average
1 1112 1114.2 10636 10733.8 617 679.95
2 1101 1111.3 10470 10556.35 582 673.05
3 1100 1113.5 10558 10668.65 591 662.45
4 1096 1099.45 10547 10597 476 576.5
5 1085 1097.65 10523 10596 514 603
6 1071 1098 10490 10558.3 473 525.45
7 1081 1083.5 10501 10556.85 491 553.65
8 1099 1106.05 10634 10711.15 628 708.6
9 1129 1134.6 10644 10685.55 685 765.6
10 1096 1100.2 10642 10717.7 627 721.45
1097 1105.845 10565 10638.135 568 646.97
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Table 5. 5 Summary of the results of the first expent

Optimized makespane total flow time machine idle time
Objectives best average best average best average
All 1092.4 1099.38 10575.1 10643.31 592.6 662.63
MS+TFT 1093.5 1098.98 10576 10639.25 631.6 697.62
MS+MIT 1090.8 1098.96 10619.4 10695.07 585.2 651.365
TFT+MIT 1097 1105.845 10564.5 10638.14 568.4 646.97

In the second experiment, we have divided the swatmsub-swarm to search

for the solutions. At first we use three groupsb¢swarm) for three objects as (i) in

Table 5.13. In (ii), (iii) and (iv), only one pasté swarm is applied to search single

object. In the last part of this experiment, twaib-swarm are used to search the

solutions. In (v) of Table 5.13, the two sub-swawonge is searched for the object

makespan while the other is searched for total fiave. In (vi) of Table 5.13, the two

sub-swarm, one is searched for the object makespéa the other is searched for

machine idle time. In (vii) of Table 5.13, the twab-swarm, one is searched for the

object total flow time while the other is searcliedmachine idle time.

Table 5. 6 The results of the second experimengidering three objectives with three sub-swarms

makespane total flow time machine idle time

best average Best average best average
1 1106 1116.85 10632 10731.45 627 714.05
2 1101 1113.85 10492 10568.75 619 740.55
3 1109 1115.45 10548 10705.75 608 678.9
4 1091 1099.7 10550 10617.9 476 600.25
5 1088 1101 10509 10601.15 495 608.3
6 1071 1089.9 10488 10533.65 451 515.05
7 1081 1085.65 10493 10569.2 492 562.1
8 1099 1112.35 10655 10747.05 684 720.65
9 1131 1136.65 10697 10746.2 705 791.95
10 1097 1101.15 10665 10772.3 640 724.95

1097 1107.255 10573 10659.34 580 665.675
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Table 5. 7 The results of the second experimergidering makespan with one swarm

makespane total flow time machine idle time

best average best average best average
1 1095 1100.55 10725 10777.85 704 749.65
2 1097 1100.1 10565 10652.05 621 705.65
3 1087 1094.1 10566 10682.4 606 665.25
4 1089 1091.1 10615 10650.5 663 679.2
5 1084 1091.2 10550 10631.8 586 650.6
6 1071 1080.7 10522 10577.9 503 564.8
7 1081 1081.6 10561 10607.55 560 615.8
8 1098 1100.4 10660 10723.45 665 736.3
9 1116 1125.65 10765 10853.95 802 874.9
10 1092 1095.1 10679 10736.4 751 798.05

1091 1096.05 10621 10689.385 646 704.02

Table 5. 8 The results of the second experimergidering total flow time with one swarm

makespane total flow time machine idle time

best average best average best average
1 1109 1117.5 10636 10749.8 637 820.3
2 1101 1112.85 10495 10547.55 620 766.75
3 1103 1114.7 10577 10700.2 660 704.35
4 1090 1099.2 10550 10609.1 587 686.3
5 1087 1096.9 10524 10589.5 564 668.45
6 1072 1087.3 10481 10565.2 522 564.6
7 1081 1089.3 10508 10577.65 591 660.2
8 1100 1111.1 10700 10757.45 739 783.55
9 1131 1141.55 10678 10783.4 825 903.05

10 1097 1106 10700 10782.95 742 854.3
1097 1107.64 10585 10666.28 649 741.185
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Table 5. 9 The results of the second experimergidering machine idle time with one swarm

makespane total flow time machine idle time

best average best average best average
1 1112 1117.9 10780 10853.35 625 705.7
2 1101 1118.65 10646 10746.35 633 739.2
3 1103 1114.75 10688 10740.85 678 690.15
4 1096 1100.15 10596 10675.6 473 556.5
5 1095 1103.1 10644 10717.25 569 622.8
6 1072 1111.1 10540 10599.6 494 533.75
7 1081 1088.45 10537 10629.4 492 573.7
8 1100 1113.65 10734 10808.45 679 723.2
9 1132 1137.95 10745 10877.85 720 818.5
10 1099 1107.4 10814 10856.7 649 722.55

1099 1111.31 10672 10750.54 601 668.605

Table 5. 10 The results of the second experimemsidering makespan and TFT with two sub-swarms

makespane total flow time machine idle time

best average best average best average
1 1100 1106.7 10609 10683.65 631 728.75
2 1097 1101.4 10478 10523.75 582 674.8
3 1082 1098.75 10515 10660.55 579 680.8
4 1089 1091.45 10543 10577 595 652.75
5 1087 1092.5 10512 10555.05 505 620
6 1071 1079.45 10490 10542.95 499 536.15
7 1081 1081.5 10490 10533.6 551 598.05
8 1097 1100.3 10632 10679.7 692 733.25
9 1116 1128.2 10647 10721.3 703 859.05
10 1092 1095.1 10629 10671.15 728 771.35

1091 1097.535 10555 10614.87 607 685.495
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Table 5. 11 The results of the second experimemsidering makespan and MIT with two sub-swarms

makespane total flow time machine idle time

best average best average best average
1 1095 1105.35 10705 10784.85 658 705.65
2 1097 1104.6 10570 10678.4 554 639
3 1087 1098.45 10557 10682.4 544 653.3
4 1089 1093.6 10597 10637.6 508 583.3
5 1087 1094.3 10560 10629.95 532 603.4
6 1071 1087.7 10529 10576.4 473 507.1
7 1081 1082.2 10548 10592.45 489 557.25
8 1097 1099.4 10700 10744.7 651 698.05
9 1116 1125.5 10726 10817.7 666 780.2
10 1092 1097.35 10702 10760.4 642 711.6

1091 1098.845 10619 10690.485 572 643.885

Table 5. 12 The results of the second experimemsidering TFT and MIT with two sub-swarms

makespane total flow time machine idle time

best average best average best average
1 1106 1116.85 10632 10731.45 627 714.05
2 1101 1113.85 10492 10568.75 619 740.55
3 1109 1115.45 10548 10705.75 608 678.9
4 1091 1099.7 10550 10617.9 476 600.25
5 1088 1101 10509 10601.15 495 608.3
6 1071 1089.9 10488 10533.65 451 515.05
7 1081 1085.65 10493 10569.2 492 562.1
8 1099 1112.35 10655 10747.05 684 720.65
9 1131 1136.65 10697 10746.2 705 791.95
10 1097 1101.15 10665 10772.3 640 724.95

1097 1107.255 10573 10659.34 580 665.675
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Table 5. 13 Summary of the results of the secompeement

Optimized makespane total flow time machine idle time
Objectives best average best average best average
All 1091.6 1099.08 10562.3 10633.97 567.6 648.77
MS 1091 1096.05 10620.8 10689.39 646.1 704.02
TFT 1097.1 1107.64 10584.9 10666.28 648.7 741.185
MIT 1099.1 1111.31 10672.4 10750.54 601.2 668.605
MS+ TFT 1091.2 1097.535 10554.5 10614.87 606.5 685.495
MS +MIT 1091.2 1098.845 10619.4 10690.49 571.7 643.885

TFT +MIT 1097.4 1107.255 10572.9 10659.34 579.7 665.675

In order to compare the performance of our PS® wéditional meta-heuristic
algorithm, we code the GA algorithm to program with+ language in addition. At
first, we apply PSO to solve the hardest benchrmpeasklem generated by Guéret and
Prins (1999). The program runs 20 times on eachl@nmo on a Pentium 4 3.0-GHz
computer with 1 GB of RAM running Windows XP. Dugithe pilot experiment, we
used four swarm sizeéé (50, 100, 150, and 200) to test the algorithm. dliteome of
N=150 was best, so that value was used in all futdsts. Parametecs andc, were
tested at various portfolios in the range 0.1-@.7ncrements of 0.2. The inertial
weight w was reduced from 0t® 0.1 during iterations. The combination @£0.1,
c,=0.8,w=0.1 gave the best results. The maximum iteratiait ivas set to 60 and the
maximum archive size was set to 150. The resullM@PSO for notorious open shop

scheduling problems are demonstrated in Table 5.14
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Table 5. 14 The results of MOPSO for benchmark gl gp03-gp10

Proble Makespan MIT TFT CPU
m Best Average Best Average Best Average Time
gp03-01 1168 1168 0 0 3174 3408.9 7.016
gp03-02 1170 1170 0 0 3340 3437.8 7.015
gp03-03 1168 1168 0 0 3336 3418.0 7.063
gp03-04 1166 1166 0 0 3170 3380.6 7.000
gp03-05 1170 1170 0 24 3181 3387.7 7.110
gp03-06 1169 1169 0 0 3177 3386.3 7.187
gp03-07 1165 1165 0 0 3166 3444.8 7.188
gp03-08 1167 1167 0 0 3334 3398.8 7.047
gp03-09 1162 1162 0 7.9 3167 3386.8 7.094
gp03-10 1165 1165 0 0 3330 3401.1 7.063
Average 1167 1167 0 3.2 3238 3405.1 7.078
gp04-01 1281 1281 274 455 4326 4534.75 14.297
gp04-02 1270 1270 0 257 4346 4872.85 14.250
gp04-03 1288 1288 240 393 4574 4778.4 14.110
gp04-04 1261 1261 0 187 4530 4820.7 14.125
gp04-05 1289 1289 277 405 4305 4783.3 14.156
gp04-06 1269 1269 179 301 4539 4937.4 15.281
gp04-07 1267 1267 0 175 4568 4722.85 14.563
gp04-08 1259 1259 191 368 4524 4751.7 14.406
gp04-09 1280 1280 278 512 4304 4545.2 14.375
gp04-10 1263 1263 188 228 4549 5005 14.250
Average 1272.7 1272.7 162.7 328 4456.5 4775.215 14.381
gp05-01 1245 1245 456 489.25 5593 5802.4 24.844
gp05-02 1247 1247 243 596.25 5418 5828.1 24.813
gp05-03 1265 1265 260 364.1 5797 6024.4 24.734
gp05-04 1258 1258.2 471 553.4 5713 5851.6 25.000
gp05-05 1280 1280 291 632.55 5318 5824.65 24.500
gp05-06 1269 1269.05 268 326.25 5589 5618.35 24.156
gp05-07 1269 1269 0 317.95 5550 5879.3 24.187
gp05-08 1287 1287 294 704.8 5526 5733.2 24.657
gp05-09 1262 1262 302 480.35 5630 6030.6 23.937
gp05-10 1254 1254.95 271 539.8 5618 5885.75 23.984
Average 1263.6 1263.72 285.6 500.47 5575.2 5847.835 24.481
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Table 5.14(Cont'd) The results of MOPSO for benctiomoblems gp03-gp10

gp06-01 1265 1265 332 432 6858 7053.9 41.812
gp06-02 1285 1285.45 409 677 7003 7111.85 40.485
gp06-03 1256 1256.75 44 545 6811 7149.25 42.000
gp06-04 1275 1275.05 525 821 6857 7046.25 41.422
gp06-05 1299 1299.4 82 670 7042 7215.4 38.703
gp06-06 1284 1284.85 282 619 6687 7181.8 41.250
gp06-07 1290 1290 317 684 6601 7077.85 41.813
gp06-08 1265 1265.7 352 626 7047 7194.7 39.641
gp06-09 1243 1245.8 252 536 6401 6955.7 41.047
gp06-10 1254 1254.25 486 593 6580 6878.75 40.859
Average 1271.6 1272.225 308.1 620 6788.7 7086.545 40.903
gp07-01 1159 1162.3 319 482 7799 7980.15 58.547
gp07-02 1185 1185 152 533 7749 7885.75 58.141
gp07-03 1237 1237.65 57 676 8042 8316.15 58.922
gp07-04 1167 1168.75 197 502 7783 8016.5 60.656
gp07-05 1158 1158.3 417 493 7793 7868.25 64.469
gp07-06 1193 1194.25 346 613 7771 7979.95 65.594
gp07-07 1185 1185.1 372 549 7767 7916 62.766
gp07-08 1181 1181.2 46 569 7869 8019.25 60.062
gp07-09 1220 1220.15 306 549 7780 7995.95 62.078
gp07-10 1270 1270 276 614 8023 8274.05 61.079
Average 11955 1196.27 249 558 7837.6 8025.2 61.231
gp08-01 1147 1160.25 29 347 9005 9127.15 84.156
gp08-02 1137 1143.85 247 404 8923 9018.7 93.281
gp08-03 1115 1119.55 67 285 8739 8813.65 93.031
gp08-04 1154 1159.6 267 410 8960 9071.3 91.860
gp08-05 1218 1219.35 214 625 8864 9157.15 97.609
gp08-06 1116 1130.85 51 321 8777 8928.4 93.375
gp08-07 1129 1135.95 132 339 8892 8957.2 92.766
gp08-08 1148 1158.55 7 358 8928 9113.45 93.375
gp08-09 1115 1118.95 159 245 8838 8891.85 93.109
gp08-10 1162 1162.5 225 590 8982 9052.8 95.781
Average 1144.1 1150.94 140 392 8890.8 9013.165 92.834
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Table 5.14(Cont'd) The results of MOPSO for benctiomoblems gp03-gp10

gp09-01 1138 1146.75 255 419 10050 10118.25 133.42
gp09-02 1114 1120 0 205 9857 9969.00 137.37
gp09-03 1118 1120.4 232 422 9991 10042.65 136.17
gp09-04 1140 1145.35 186 430 10014 10114.50 137.15
gp09-05 1180 1180.3 344 572 10029 10186.15 150.39
gp09-06 1097 1113.9 0 394 9819 9936.90 166.68
gp09-07 1098 1114.75 82 319 9792 9875.10 165.82
gp09-08 1110 1117.25 0 219 9749 9919.35 167.46
gp09-09 1126 1130.05 124 341 9829 9964.70 164.56
gp09-10 1124 1137 213 317 9862 9947.05 163.62
Average 11245 1132.575 144 364 9899.2 10007.36 152.26
gpl0-01 1100 1113.6 0 201 10835 11008.05 220.45
gp10-02 1102 1116.7 82 351 10816  10994.45 228.82
gpl0-03 1093 1113.1 74 199 10813  10935.10 224.67
gpl0-04 1087 1100.75 51 266 10760 10884.35 212.71
gpl0-05 1093 1101.3 0 125 10731  10900.35 208.71
gpl0-06 1074 1104.3 0 186 10637  10900.05 214.31
gpl0-07 1084 1093.6 0 142 10632  10787.55 185.40
gpl0-08 1098 1105.8 101 261 10779  10924.30 187.01
gpl10-09 1117 1138.8 61 424 10955  11182.60 173.26
gpl0-10 1095 1115.5 136 279 10824  10991.15 176.79
Average 1094.3  1110.345 51 243 10778.2 10950.79 203.21

The GA program also runs 20 times on each proldama Pentium 4 3.0-GHz
computer with 1 GB of RAM running Windows XP. Tharameter setting of GA
algorithm is described as follows. During the pilexperiment, we used four
population sizedN (50, 100, 150, and 200) to test the algorithm. ©boécome of
N=150 was best, so that value was used in all furtBsts. The crossover and
mutation rate is test in the range of 0.1-0.9. Gbmmbination of cross rate equals 0.5,

mutation rate equals 0.1 gave the best resultsnTdemum iteration limit was set to
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60 and the maximum archive size was set to 150.résidts of MOGA for notorious

open shop scheduling problems are demonstrateahie 5.15.

Table 5. 15 The results of MOGA for benchmark peotd gp03-gp10

Proble Makespan MIT TFT CPU

m Best Average Best Average Best Average Time
gp03-01 1168 1168.15 0 0 3174 3384.9 3.59
gp03-02 1170 1170 0 32.6 3177 3397.05 3.75
gp03-03 1168 1168 0 0 3336 3426.2 3.91
gp03-04 1166 1166 0 0 3170 3413 3.75
gp03-05 1170 1170 0 15.9 3181 3403.6 3.75
gp03-06 1169 1169 0 16.1 3177 3394.35 3.90
gp03-07 1165 1165.05 0 16.4 3166 3379.25 3.60
gp03-08 1167 1167 0 0 3172 3366.4 3.90
gp03-09 1162 1162 0 7.85 3167 3402.5 3.60
gp03-10 1165 1165 0 7.9 3172 3385.3 3.90
Average 1167 1167.02 0 9.675 3189.2 3395.255 3.76
gp04-01 1281 1283.7 0 204.1 4325 4705.8 4.22
gp04-02 1270 1271.75 0 147.5 4309 4798.6 4.69
gp04-03 1288 1290.7 0 321.6 4574 4889.9 4.37
gp04-04 1261 1261 233 252 4527 4651.85 4.69
gp04-05 1289 1290.25 0 362.2 4309 4881.25 4.53
gp04-06 1269 1270.85 179 339.7 4539 4848.3 5.00
gp04-07 1271 1277.8 0 194 4582 4845.2 4.53
gp04-08 1259 1259 191 496 4524 4549.3 4.69
gp04-09 1280 1284.5 0 320.4 4316 4642.45 4.69
gp04-10 1263 1263.45 188 219.8 4785 5005.45 4.69
Average 1273.1 1275.3 79.1 285.7 4479 4781.81 4.61
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Table 5.15(Cont'd) The results of MOGA for benchkaroblems gp03-gp10

gp05-01 1245 1253.8 454 716.1 5824 5960 6.25
gp05-02 1247 1267.2 270 672 5587 6004.5 6.25
gp05-03 1265 1265 260 339.6 5588 6043.9 6.25
gp05-04 1263 1275.95 231 516.8 5633 5890.1 6.41
gp05-05 1281 1285.5 274 406.1 5574 6019.5 6.25
gp05-06 1270 1282.15 228 484.7 5589 5884.25 6.09
gp05-07 1269 1269.65 0 493.9 5552 5786.8 6.25
gp05-08 1288 1294.45 295 383.7 5836 6048.45 6.40
gp05-09 1262 1274.15 262 589.4 5573 5973.75 6.25
gp05-10 1257 1274.5 237 610.7 5675 6013.65 6.25
Average 1264.7 1274.235 251.1 521.3 5643.1 5962.49 6.26
gp06-01 1266 1284.95 271 671.1 7076 7256.45 8.75
gp06-02 1289 1289.85 0 670.5 6914 7254.25 8.12
gp06-03 1257 1261.8 0 670.9 6842 7233.65 8.60
gp06-04 1275 1283.35 240 902.5 6903 7066.35 9.21
gp06-05 1301 1302.6 105 787.7 6910 7283.45 8.44
gp06-06 1285 1294.95 0 914.4 6918 7251.8 8.44
gp06-07 1292 1295.7 294 640 6826 7454.2 8.44
gp06-08 1268 1271.75 426 864.7 6652 7015.5 8.28
gp06-09 1246 1254.9 467 714.7 6985 7024 8.75
gp06-10 1258 1267.55 504 892.4 6585 7007 8.75
Average 1273.7 1280.74 230.7 772.9 6861.1 7184.665 8.57
gp07-01 1189 1190.55 594 641.3 7974 8025.8 23.44
gp07-02 1186 1190.7 618 668.6 7811 7854.7 23.12
gp07-03 1239 1264.95 253 866.65 8001 8482.15 23.59
gp07-04 1173 1188.15 407 758 7882 8022.65 23.75
gp07-05 1188 1202.85 416 593.5 7991 8188.85 23.60
gp07-06 1200 1236.75 394 903.6 7740 8147.6 23.75
gp07-07 1186 1211.6 362 614 7668 8069.9 23.29
gp07-08 1191 1191 626 735.05 7902 7966.5 23.28
gp07-09 1222 1222 510 618.3 7829 7859.3 23.28
gp07-10 1271 1273.65 556 1145.65 8091 8466.7 23.91
Average 1204.5 1217.22 473.6 754.465 7888.9 8108.415 23.50
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Table 5.15(Cont'd) The results of MOGA for benchkaroblems gp03-gp10

gp08-01 1182 1203.1 457 869.4 9072 9283.6 33.12
gp08-02 1166 1184.05 453 867.2 9101 9184.9 33.28
gp08-03 1148 1180.85 416 644 8987 9073.8 32.97
gp08-04 1181 1189 656 768 8955 9041.75 32.81
gp08-05 1224 1227.65 482 899.5 8824 9185.45 32.97
gp08-06 1170 1183.3 700 908.7 8983 9092.35 33.60
gp08-07 1169 1199.15 560 746.2 9028 9271.2 32.97
gp08-08 1182 1191.5 455 921.7 9210 9348.45 33.43
gp08-09 1152 1190.5 471 803.8 8810 9216.15 32.97
gp08-10 1187 1202.8 368 811.7 8910 9250.45 32.50
Average 1176.1 1195.19 501.8 824 8988 9194.81 33.06
gp09-01 1166 1190.05 664 983.6 10109 10275.05 46.56
gp09-02 1158 1173.85 255 733.5 9907 10194.45 45.63
gp09-03 1157 1209.5 689 1177 10113  105837.95 45.78
gp09-04 1164 1181.55 478 786.6 10071 10323.45 46.72
gp09-05 1199 1206.75 346 978.8 10209 10355.3 46.40
gp09-06 1139 1159.6 591 967.7 10071  10221.55 46.10
gp09-07 1153 1159.05 507 615 9870 10105 46.41
gp09-08 1151 1179 561 762.6 10044  10186.85 45.78
gp09-09 1176 1180.2 614 753.4 9877 10129.1 46.25
gp09-10 1142 1165.95 526 750.5 9880 10051.6 46.72
Average 1160.5 1180.55 523.1 850.9 10015.1 10238.03 46.23
gpl0-01 1157 1163.9 617 849.55 11165  11292.55 63.75
gpl0-02 1155 1170 691 1041.85 11151  11397.55 63.44
gp10-03 1141 1157.8 476 775.95 11064  11212.95 63.75
gp10-04 1113 1136.4 484 692.15 10871  11082.85 63.60
gpl0-05 1145 1160.05 522 706.75 11155  11271.35 64.38
gpl0-06 1148 1190.2 460 815.15 11181 11488.2 63.44
gpl0-07 1139 1160.3 519 855.2 11084 11264.6 63.90
gpl0-08 1146 1182.8 474 888.95 11142  11529.45 64.07
gp10-09 1147 1164.2 480 779.75 11070  11326.95 63.90
gpl0-10 1163 1180.3 491 741.55 11123 11354 63.60
Average 11454  1166.595 521.4 814.685 11100.6 11322.04 63.78
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The comparison of MOPSO and MOGA for objectives es@glan, machine idle

time and total flow time are showed in Table 58.8,7, 5.18 respectively.

Table 5. 16 The comparison of MOPSO and MOGA fokespan

PSO GA Error Ratio
Makespan Makespan Makespan
Best Average Best Average Best Avgerage

gp03 1167.0 1167.0 1167.0 1167.0 0 0
gp04 1272.7 1272.7 1273.1 1275.3 0 0
gp05 1263.6 1263.7 1264.7 1274.2 0 0
gp06 1271.6 1272.2 1273.7 1280.7 0 0
gp07 1195.5 1196.2 1204.5 1217.2 0 0
gp08 1144.1 1150.9 1176.1 1195.1 0 0
gp09 1124.5 1132.5 1160.5 1180.5 0 0
gpl10 1094.3 1110.3 1145.4 1166.5 0 0

Table 5. 17 The comparison of MOPSO and MOGA fochirze idle time

PSO GA Error Ratio
Machine Idle Time Machine Idle Time Machine Idle Time
Best Average Best Average Best Avgerage
gp03 0.0 3.1 0 9.6 0 0
gp04 162.7 328.1 79.1 285.7 1.05 0.14
gp05 285.6 500.4 251.1 521.2 0.13 0
gp06 308.1 620.2 230.7 772.8 0.33 0
gp07 248.8 558.0 473.6 754.4 0 0
gp08 139.8 392.3 501.8 823.9 0 0
gp09 143.6 363.8 523.1 850.8 0 0
gp10 50.5 243.3 521.4 814.6 0 0
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Table 5. 18 The comparison of MOPSO and MOGA ftalttiow time

PSO GA Error Ratio

Total Flow Time Total Flow Time Total Flow Time

Best Average Best Average Best Avgerage
gp03 32375 3405.0 3189.2 3395.2 0.015 0.0028
gp04 4456.5 4775.2 4479.0 4781.8 0 0
gp05 5575.2 5847.8 5643.1 5962.4 0 0
gp06 6788.7 7086.5 6861.1 7184.6 0 0
gp07 7837.6 8025.2 7888.9 8108.4 0 0
gp08 8890.8 9013.1 8988.0 9194.8 0 0
gp09 9899.2 10007.3 10015.1 10238.0 0 0
gp10 10778.2  10950.7 11100.6 11322.0 0 0

In order to compare the convergence degree of @ISO, the scatter diagrams
are plot as Figure 5.1-5.3. The solutions foundhgyPSO are more condensed than

the GA.
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Figure 5. 1 The scatter diagrams of gp8
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Figure 5. 2 The scatter diagrams of gp9
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CHAPTER 6 CONCLUSIONS AND FUTURE STUDIES

6.1 Conclusions

Many studies focused on flowshop scheduling proldenid be found. However, the
objective of most research focused on minimizatibmaximum completion time (i.e.
makespan). In real world, there exist other obyestisuch as minimization of
machine idle time that might help improve efficigrand reduce production costs.
Particle swarm optimization inspired by the spafitbird flocking and fish schooling
behaviors consists with advantages including sinsplacture, easy implementation,
immediate accessibility, short searching time, avimlistness. However, limited study
of flowshop scheduling problem with multi-objecttva@addressed by PSO could be
found from the literature. We have presented a P&thod for solving flowshop
scheduling problem with multiple objectives inclogi minimization makespan,

minimization mean flow time and machine idle time.

The original PSO was proposed for the continuousnopation problems. In
order to make it suitable for flowshop scheduling.(a combinational problem), we
modified the representation of particle positiomrtigle movement, and particle
velocity. In addition, a mutation operator was aedpn our PSO algorithm. We also
incorporated the concept of Pareto optimal to meagwe performance of multiple
objectives rather than weighted fitness functiomo#her necessary adjustment of
original PSO to keep Pareto optimal solution isekternal Pareto optimal set that is
cooperated to deposit a limited size of non-donedatolutions. At last, we utilized a
diversification strategy in our PSO algorithm. Thesults demonstrated that the
proposed PSO can obtain more optimal solutions @ameuristic. The relative error

ratios of each problem scenario in our PSO algoritive less than the GA. The
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results of performance measure also revealed thatptoposed PSO algorithm
outperformed GA in minimizing makespan, mean flomet and total machine idle
time.

While there has been a large amount of researohthet JSSP, most of this has
focused on minimizing the maximum completion tinne.( makespan). There exist
other objectives in the real world, such as theimiration of machine idle time that
might help improve efficiency and reduce productmosts. PSO, inspired by the
behavior of birds in flocks and fish in schoolss lthe advantages of simple structure,
easy implementation, immediate accessibility, shs@arch time, and robustness.
However, few applications of PSO to multi-objectiV8SPs can be found in the
literature. Therefore, we presented a MOPSO mefloodsolving the JSSP with
multiple objectives, including minimization of madgan, total tardiness, and total

machine idle time.

The original PSO was proposed for continuous optimn problems. To make
it suitable for job-shop scheduling (i.e., a conalional problem), we modified the
representation of particle position, particle moeain and particle velocity. We also
introduced a mutation operator and used a diveadiin strategy. The results
demonstrated that the proposed MOPSO could obtane wptimal solutions than the
MOGA. The relative error ratios of each problemnsg® in our MOPSO algorithm
were less than in the MOGA. The performance meamsdts also revealed that the
proposed MOPSO algorithm outperformed MOGA in stamgously minimizing

makespan, total tardiness, and total machine iidie. t

Although a large amount of research has addressedpen-shop scheduling
problem, most of this has focused on minimizing rieximum completion time (i.e.,

makespan). Other objectives exist in the real dyalich as minimizing the machine
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idle time, that might help improve efficiency anelduce production costs. PSO,
inspired by the behavior of flocks of birds and@als of fish, has the advantages of a
simple structure, easy implementation, immediatessibility, short search time, and
robustness. However, few applications of PSO toltirabjective open-shop
scheduling problems can be found in the literatur€herefore, we proposed a
MOPSO algorithm to solve the open-shop schedulimgblpm with multiple
objectives, including minimization of makespan,ataiow time, and machine idle

time.

The algorithm was tested to verify different scémsrusing different Pareto sets
with different combinations of objectives. Diffete swarm sizes with varied
objective combinations were also evaluated. Thault® demonstrated that the
algorithm performed better when only one swarm wsed for all three objectives
compared to the case where the swarm was dividedtlmee sub-swarms for each

objective.

6.2 Future Studies

For further research, we will attempt to apply &80 to other shop scheduling
problems with multiple objectives. Possible topios further study include the

modification of particle position representatiomarfcle movement, and particle
velocity. In addition, issues related to Paretoiropt such as solution maintenance

strategy and performance measurement are also wopininvestigated in future.

We will also attempt to apply MOPSO to other shopesluling problems with
multiple objectives in future research. Other gasgopics for further study include

modification of the particle position, particle neswent, and particle velocity
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representation. Issues related to Pareto optimizasuch as solution maintenance

strategy and performance measurement, also mariefinvestigation.
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Appendix

The pseudo-code of the PSO for MO-FSSP is as follow

Initialize a population of particles with randomsut@mns.
for each particlé do

EvaluateX* (the position of particle k)

Save thebesf to optimal solution se$
end for
Setgbestsolution equals to the basibesf
repeat

Updates particles velocities

for each particld do

Move particlek

EvaluateX®
Updategbest pbestandS

end for

until maximum iteration limit is reached

The pseudo code of the PSO for MO-JSSP is givaeswbel

Initialize a population of particles with randomsteons.
for each particlé do

Apply G&T algorithm to decodeX® into a scheduleS* .

set thek" pbestsolution (pbest) equal to S, pbest < S*.

end for

setgbestsolution equal to the bespbest .

repeat
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update velocities

for each particlé do
move particlek
apply G&T algorithm to decodex* into S.
updatepbestsolutions andgjbestsolution

end for

until maximum iterations is attained

The pseudo code of the PSO for MO-OSSP is givemwbel

Initialize a population of particles with randomsgtmns.
for each particlé do

Apply G&T algorithm to decodeX® into a scheduleS* .

set thek" pbestsolution (pbest) equal to S, pbest < S*.

end for

setgbestsolution equal to the bespbest .

repeat
update velocities
for each particld do
move particlek
apply G&T algorithm to decode* into S.
updatepbestsolutions andjbestsolution
end for

until maximum iterations is attained
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