
國 立 交 通 大 學

工 業 工 程 與 管 理 學 系

博士論文

粒子群演算法於多目標排程問題之研究

A Study of Particle Swarm Optimization for

Multi-objective Production Scheduling Problems

研究生 ： 林信宏

指導教授 ： 沙永傑 教授

洪瑞雲 教授

中 華 民 國 九 十 九 年 六 月

粒子群演算法於多目標排程問題之研究

A Study on Particle Swarm Optimization for Multi-objective
Production Scheduling Problems

研 究 生： 林信宏 Student： Hsing-Hung Lin

指導教授： 沙永傑 Advisor： Dr. D. Y. Sha

洪瑞雲 Dr. R. Y. Horng

國 立 交 通 大 學
工 業 工 程 與 管 理 學 系

博 士 論 文

A Dissertation

Submitted to Department of Industrial Engineering and Management

College of Management

National Chiao Tung University

in Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

in

Industrial Engineering and Managemen

June 2010

Hsinchu, Taiwan, Republic of China

中 華 民 國 九 十 九 年 六 月

I

粒子群演算法於多目標排程問題之研究

研究生：林信宏 指導教授： 沙永傑博士

洪瑞雲博士

國立交通大學工業工程與管理系

摘摘摘摘 要要要要

以往學術上排程問題的研究主流是尋找單一目標的最佳解(如: 最小完工時

間) ，然而，實務上生產製造系統的排程需求是達成多目標最佳化。由於運算時

間與成本的考量，過去的許多研究已經發展出許多演算法則以搜尋最佳解或近似

最佳解。

在本篇論文中，我們分別提出適合求解流程型排程問題 (Flow Shop

Scheduling Problem, FSSP)、零工型排程問題(Job Shop Scheduling Problem, JSSP)

與開放型排程問題(Open Shop Scheduling Problem, OSSP)的粒子群最佳化演算法

(Particle Swarm Optimization, PSO)。本研究所提出的演算法針對三種典型排程問

題，以同時達到最小完工時間(Makespan)、總流程時間(Total flow time)與機器閒

置時間(Machine idle time)作為目標。

粒子群演算法是一種群體搜尋最佳化演算法，於 1995年被提出。原始的 PSO

是應用於求解連續最佳化問題。因為排程問題為一離散最佳化問題，我們必須修

改粒子位置、粒子移動以及粒子速度的表達方式，讓 PSO更適於求解排程問題。

對於 FSSP與 JSSP，本研究比較 PSO 與文獻中的基因演算法(Genetic

Algorithm, GA)搜尋三大目標的結果，顯示本文提出的 PSO優於基因演算法。本

研究另行發展求解多目標 OSSP的基因演算法並與 PSO進行 Benchmark問題的

比較，計算結果顯示，修改後的 PSO所搜尋到的解，在品質與效率上優於基因

演算法。

關鍵字：粒子群最佳化、流程型排程、零工型排程、開放型排程、啟發式演算法

II

A Study on Particle Swarm Optimization for Multi-objective
Production Scheduling Problems

Student：Hsing-Hung Lin Advisor： Dr. D. Y. Sha

Dr. R. Y. Horng

Department of Industrial Engineering and Management
National Chiao Tung University

ABSTRACT

The academic approach of discovering the single optimal solution (ex. makespan) of

scheduling for production system is the mainstream although the empirical

requirement of production system is to achieve multi-objective optimization. Many

algorithms have been developed to search for optimal or near-optimal solutions due to

the computational cost of determining exact solutions.

This study provides a Particle Swarm Optimization (PSO) to elaborate

multi-objective flow shop scheduling problem (FSSP), job shop scheduling problem

(JSSP) and open shop scheduling problem (OSSP). The proposed evolutionary

algorithm searches the optimal solution for objectives by considering the makespan,

total flow time, and machine idle time simultaneously.

Particle Swarm Optimization (PSO) is a population-based optimization algorithm,

which was developed in 1995. The original PSO is used to solve continuous

optimization problems. Due to the discrete solution spaces of scheduling optimization

problems, the authors modified the particle position representation, particle movement,

and particle velocity in this study. The modified PSO could be applied for solving

various benchmark problems; moreover, the results demonstrated that the modified

PSO outperformed traditional evolutionary heuristics – Genetic Algorithm in

searching quality and efficiency.

Keywords: Particle swarm optimization, Multi-objective, Flow shop scheduling, Job

shop scheduling problem, Open shop scheduling

III

致致致致 謝謝謝謝

時光荏苒，一轉眼已經過了六年，終於我也可以寫下論文的致謝辭。在博士

求學過程間，首先要感謝的是指導教授沙永傑老師，除了在研究期間給我精神上

的支持外，也在出國參加研討會發表論文時，給予相當多的實質幫助。其次，必

須感謝的是共同指導教授洪瑞雲老師，協助處理校內相關的行政規定與作業，使

我得以順利取得學位。另外，感謝論文口試委員，系上老師彭德保教授、中華大

學謝玲芬教授、台灣科技大學王孔政教授、以及雲林科技大學駱景堯教授，在論

文計劃書及最後口試期間提供許多寶貴的建議，由於他們的意見，使本篇論文更

加豐富與完善。

感謝論文研究期間一直提供幫助的誠佑學長，還要感謝共同修課，一起打球

的同學們：新恩、家寧、國良、崑智、俊雄、彰孚、雅甄、惠誠、志偉、清章。

最後要感謝家人支持，父母親六年間不辭辛勞的協助照顧襁褓中的兒女，也

感謝儀鵑一路以來的陪伴，工作同時還要花費心思照料家庭，更付出許多心力叮

嚀剛開始學習成長的女兒，有了家人的協助，使我可以在無後顧之憂下，全力完

成學業。

IV

CONTENTS

中文摘要中文摘要中文摘要中文摘要 .. ⅠⅠⅠⅠ

ABSTRACT .. ⅡⅡⅡⅡ

致謝致謝致謝致謝 ….…………………………………………………………………………. ⅢⅢⅢⅢ

CONTENTS .. ⅣⅣⅣⅣ

LIST OF FIGURES ... ⅥⅥⅥⅥ

LIST OF TABLES .. ⅦⅦⅦⅦ

CHAPTER 1 INTRODUCTION .. 1

1.1 Research Motivations .. 1

1.2 Research Objectives ... 2

1.3 Research Process .. 2

1.4 Organization ... 3

CHAPTER 2 LITERATURE REVIEW .. 4

2.1 Particle Swarm Optimization ... 4

2.2 Genetic Algorithm .. 6

2.3 Flow Shop Scheduling Problem .. 7

2.4 Job Shop Scheduling Problem .. 10

2.5 Open Shop Scheduling Problem ... 13

2.6 Multiple Objective Programming... 15

CHAPTER 3 PSO FOR MULTI-OBJECTIVE FSSP ... 19

3.1 Problem Formulation .. 19

3.2 Particle Position Representation... 21

V

3.3 Particle Velocity .. 23

3.4 Particle Movement ... 24

3.5 Pareto optimal set maintenance .. 26

3.6 Computational Results .. 28

CHAPTER 4 PSO FOR MULTI-OBJECTIVE JSSP .. 48

4.1 Problem Formulation .. 48

4.2 Particle Position Representation... 48

4.3 Particle Velocity .. 51

4.4 Particle Movement ... 52

4.5 Diversification strategy .. 54

4.6 Computational Results .. 55

CHAPTER 5 PSO FOR MULTI-OBJECTIVE OSSP ... 74

5.1 Problem Formulation .. 74

5.2 Particle Position Representation... 74

5.3 Particle Velocity .. 76

5.4 Particle Movement ... 77

5.5 Computational Results .. 79

CHAPTER 6 CONCLUSIONS AND FUTURE STUDIES 96

6.1 Conclusions ... 96

6.2 Future Studies ... 98

Appendix ……………………………………………….………………………….100

References ... 102

VI

LIST OF FIGURES

FIGURE 1. 1 THE FLOW CHART OF THIS DISSERTATION ... 3

FIGURE 3.1 THE CONVERSION BETWEEN INTEGERS AND FLOAT-POINT NUMBERS 22

FIGURE 3.2 THE PRIORITY LIST STORED IN THE ARRAY .. 22

FIGURE 3.3 THE PRIORITY LIST CHANGED AS PARTICLE MOVEMENT 22

FIGURE 3.4 A NEW PERMUTATION LIST .. 23

FIGURE 4. 1 EXAMPLE OF JSSP ... 54

FIGURE 4. 2 FINDING THE LOCATION TO EXCHANGE .. 54

FIGURE 4. 3 EXCHANGE OPERATION OF PSO ... 54

FIGURE 4. 4 THE FACTOR RESPONSE DIAGRAM OF S/N RATIO DIAGRAM OF 15×15

PROBLEM ... 57

FIGURE 4. 5 THE FACTOR RESPONSE DIAGRAM OF S/N RATIO DIAGRAM OF 20×15

PROBLEM ... 58

FIGURE 4. 6 THE FACTOR RESPONSE DIAGRAM OF S/N RATIO DIAGRAM OF 20×20

PROBLEM ... 59

FIGURE 4. 7 THE FACTOR RESPONSE DIAGRAM OF S/N RATIO DIAGRAM OF 30×15

PROBLEM ... 61

FIGURE 4. 8 THE FACTOR RESPONSE DIAGRAM OF S/N RATIO DIAGRAM OF 30×20

PROBLEM ... 62

FIGURE 4. 9 THE FACTOR RESPONSE DIAGRAM OF S/N RATIO DIAGRAM OF 50×15

PROBLEM ... 63

FIGURE 4. 10 THE FACTOR RESPONSE DIAGRAM OF S/N RATIO DIAGRAM OF 50×20

PROBLEM ... 65

FIGURE 5. 1 THE SCATTER DIAGRAMS OF GP8 .. 94

FIGURE 5. 2 THE SCATTER DIAGRAMS OF GP9 .. 95

FIGURE 5. 3 THE SCATTER DIAGRAMS OF GP10 .. 95

VII

LIST OF TABLES

TABLE 3. 1 THE AVERAGE RELATIVE ERROR IN CMAX AND MFT OF PROBLEM RECXX 31

TABLE 3. 2 THE AVERAGE RELATIVE ERROR IN MIT AND AGGREGATE OF PROBLEM REC

 .. 32

TABLE 3. 3 THE AVERAGE RELATIVE ERROR IN CMAX , MFT AND MIT OF PROBLEM TAI_20

 .. 33

TABLE 3. 4 THE AVERAGE RELATIVE ERROR IN CMAX , MFT AND MIT OF PROBLEM TAI_50

 .. 34

TABLE 3. 5 THE AVERAGE RELATIVE ERROR IN CMAX , MFT AND MIT OF PROBLEM

TAI_100 .. 35

TABLE 3. 6 THE AVERAGE RELATIVE ERROR IN CMAX , MFT AND MIT OF PROBLEM

TAI_200 AND TAI_500 .. 36

TABLE 3. 7 THE AGGREGATE PERFORMANCE OF PROBLEM TAI20×5 TO TAI50×20 37

TABLE 3. 8 THE NUMBER AND PERCENTAGE OF PROBLEMS FOR DIFFERENT OBJECTIVE

WITH SUPERIOR RESULTS ... 39

TABLE 3. 9 THE NUMBER OF PROBLEMS FOR AGGREGATE OBJECTIVES WITH SUPERIOR

RESULTS .. 39

TABLE 3. 10 COMPARISON OF MAKESPAN(MS) FOR DIFFERENT HEURISTICS. 42

TABLE 3. 11 COMPARISON OF TOTAL FLOW TIME (TFT) FOR DIFFERENT HEURISTICS 42

TABLE 3. 12 COMPARISON OF MACHINE IDLE TIME (MIT) FOR DIFFERENT HEURISTICS . 43

TABLE 3. 13 SUMMATION OF MS, TFT AND MIT FOR DIFFERENT HEURISTICS 43

TABLE 3. 14 AVERAGE CPU TIME (IN SECONDS) .. 44

TABLE 3. 15 COMPARISON OF TOTAL FLOW TIME (TFT) FOR HEURISTICS IN ARPD 44

TABLE 3. 16 COMPARISON OF TOTAL FLOW TIME (TFT) FOR HEURISTICS IN MPD 45

TABLE 3. 17 THE RESULTS OF TSP_GA ... 45

TABLE 3. 18 THE AVERAGE RELATIVE ERROR OF PSO AND TSP-GA 47

TABLE 4. 1 AN 2×2 EXAMPLE .. 50

TABLE 4. 2 THE PARAMETER OF PSO ... 56

TABLE 4. 3 THE L16 ORTHOGONAL ARRAY AND S/N RATION OF 15×15 PROBLEM 56

TABLE 4. 4 THE FACTORS RESPONSE OF 15×15 PROBLEM .. 56

TABLE 4. 5 THE BEST LEVEL OF FACTORS OF 15×15 PROBLEM 57

TABLE 4. 6 THE L16 ORTHOGONAL ARRAY AND S/N RATION OF 20×15 PROBLEM 57

TABLE 4. 7 THE FACTORS RESPONSE OF 20×15 PROBLEM .. 58

TABLE 4. 8 THE BEST LEVEL OF FACTORS OF 20×15 PROBLEM 58

TABLE 4. 9 THE L16 ORTHOGONAL ARRAY AND S/N RATION OF 20×20 PROBLEM 59

TABLE 4. 10 THE FACTORS RESPONSE OF 20×20 PROBLEM .. 59

VIII

TABLE 4. 11 THE BEST LEVEL OF FACTORS OF 20×20 PROBLEM 59

TABLE 4. 12 THE L16 ORTHOGONAL ARRAY AND S/N RATION OF 30×15 PROBLEM 60

TABLE 4. 13 THE FACTORS RESPONSE OF 30×15 PROBLEM .. 60

TABLE 4. 14 THE BEST LEVEL OF FACTORS OF 30×15 PROBLEM 61

TABLE 4. 15 THE L16 ORTHOGONAL ARRAY AND S/N RATION OF 30×20 PROBLEM 61

TABLE 4. 16 THE FACTORS RESPONSE OF 30×20 PROBLEM .. 62

TABLE 4. 17 THE BEST LEVEL OF FACTORS OF 30×20 PROBLEM 62

TABLE 4. 18 THE L16 ORTHOGONAL ARRAY AND S/N RATION OF 50×15 PROBLEM 63

TABLE 4. 19 THE FACTORS RESPONSE OF 50×15 PROBLEM .. 63

TABLE 4. 20 THE BEST LEVEL OF FACTORS OF 50×15 PROBLEM 64

TABLE 4. 21 THE L16 ORTHOGONAL ARRAY AND S/N RATION OF 50×20 PROBLEM 64

TABLE 4. 22 THE FACTORS RESPONSE OF 50×20 PROBLEM .. 64

TABLE 4. 23 THE BEST LEVEL OF FACTORS OF 50×20 PROBLEM 65

TABLE 4. 24 COMPARISON OF MOGA AND MOPSO FOR MAKESPAN 67

TABLE 4. 25 COMPARISON OF MOGA AND MOPSO FOR TOTAL IDLE TIME 68

TABLE 4. 26 COMPARISON OF MOGA AND MOPSO FOR TOTAL TARDINESS 69

TABLE 4. 27 COMPARISON OF MOGA AND MOPSO WITH THREE OBJECTIVES 70

TABLE 4. 28 THE RESULTS OF SOLVING FT, ABZ, ORB AND YN WITH MOPSO 71

TABLE 4. 29 THE RESULTS OF SOLVING LA WITH MOPSO .. 72

TABLE 4. 30 THE RESULTS OF SOLVING SWV WITH MOPSO... 73

TABLE 5. 1 THE RESULTS OF THE FIRST EXPERIMENT CONSIDERING THREE OBJECTIVES AS

PARETO SET ... 80

TABLE 5. 2 THE RESULTS OF THE FIRST EXPERIMENT CONSIDERING MAKESPAN AND

TOTAL FLOW TIME AS PARETO SET ... 80

TABLE 5. 3 THE RESULTS OF THE FIRST EXPERIMENT CONSIDERING MAKESPAN AND

MACHINE IDLE TIME AS PARETO SET .. 81

TABLE 5. 4 THE RESULTS OF THE FIRST EXPERIMENT CONSIDERING TOTAL FLOW TIME

AND MACHINE IDLE TIME AS PARETO SET .. 81

TABLE 5. 5 SUMMARY OF THE RESULTS OF THE FIRST EXPERIMENT 82

TABLE 5. 6 THE RESULTS OF THE SECOND EXPERIMENT CONSIDERING THREE OBJECTIVES

WITH THREE SUB-SWARMS ... 82

TABLE 5. 7 THE RESULTS OF THE SECOND EXPERIMENT CONSIDERING MAKESPAN WITH

ONE SWARM ... 83

TABLE 5. 8 THE RESULTS OF THE SECOND EXPERIMENT CONSIDERING TOTAL FLOW TIME

WITH ONE SWARM .. 83

TABLE 5. 9 THE RESULTS OF THE SECOND EXPERIMENT CONSIDERING MACHINE IDLE

TIME WITH ONE SWARM ... 84

IX

TABLE 5. 10 THE RESULTS OF THE SECOND EXPERIMENT CONSIDERING MAKESPAN AND

TFT WITH TWO SUB-SWARMS .. 84

TABLE 5. 11 THE RESULTS OF THE SECOND EXPERIMENT CONSIDERING MAKESPAN AND

MIT WITH TWO SUB-SWARMS .. 85

TABLE 5. 12 THE RESULTS OF THE SECOND EXPERIMENT CONSIDERING TFT AND MIT

WITH TWO SUB-SWARMS .. 85

TABLE 5. 13 SUMMARY OF THE RESULTS OF THE SECOND EXPERIMENT 86

TABLE 5. 14 THE RESULTS OF MOPSO FOR BENCHMARK PROBLEMS GP03-GP10 87

TABLE 5. 15 THE RESULTS OF MOGA FOR BENCHMARK PROBLEMS GP03-GP10 90

TABLE 5. 16 THE COMPARISON OF MOPSO AND MOGA FOR MAKESPAN 93

TABLE 5. 17 THE COMPARISON OF MOPSO AND MOGA FOR MACHINE IDLE TIME 93

TABLE 5. 18 THE COMPARISON OF MOPSO AND MOGA FOR TOTAL FLOW TIME 94

1

CHAPTER 1 INTRODUCTION

1.1 Research Motivations

Scheduling is an optimization process by which limited resources are allocated over

time among parallel and sequential activities. Such situations develop routinely in

factories, publishing houses, shipping universities, hospitals, airports, etc. Solving

such a problem amounts to making discrete choice such that an optimal solution is

found among a finite or a countable infinite number of alternatives. Such problems are

called combinational optimization problems. Typically, the task is complex, limiting

the practical utility of combinatorial, mathematical programming and other analytical

methods in solving scheduling problems effectively.

To find exact solutions of scheduling problems a branch-and-bound or dynamic

programming algorithm is often used. However, many shop scheduling problems are

NP-hard, which means that the problem cannot be exactly solved in a reasonable

computation time. Using problem-specific information sometimes reduces search

space, even though the problem is still difficult to solve exactly. Therefore, heuristic

algorithms and dispatching rules are developed to obtain the approximate optimal

solution. Meta-heuristic is one of the most popular and the most efficient method to

obtain the approximate optimal solution. Among the meta-heuristics, particle swarm

optimization (PSO) is new and extensively implemented in recent years. However, the

original intent of PSO is to solve continuous optimization problems, and PSO

methods that work well for combinatorial optimization are still scarce.

2

1.2 Research Objectives

The objective of this work is to development PSOs for two shop scheduling problems:

the flow shop scheduling problem (FSSP) and the job shop scheduling problem

(JSSP). In the work of FSSP, the problem is to find a schedule to minimize the

makespan (maxC), mean flow time and machine idle time. In the work of JSSP, we

attempt to search a schedule to minimize the makespan (maxC), machine idle time and

total tardiness.

Since the original intent of PSO is to solve continuous optimization problems,

we have to modify the original PSO when we implement PSO to a combinatorial

optimization problem. PSO can be separated several parts to discuss: position

representation, particle velocity, and particle movement. We will develop various PSO

designs in this work. On the other hand, the PSO developed in this work can be an

example of PSO design for other discrete optimization problems.

1.3 Research Process

The research of this dissertation begins with the determination of research topic. The

literature consists with flow shop scheduling, job shop scheduling, open shop

scheduling, particle swarm optimization and genetic algorithms. The programs of

particle swarm optimization and genetic algorithm are coded with programming

language C according to the types of scheduling problem. Then, the experiments are

compared to evaluate the performance of each algorithm to different problem types.

Finally, the conclusion is remarked. The flow chart of this dissertation is as figure 1.1.

3

Figure 1. 1 The flow chart of this dissertation

1.4 Organization

The organization of the remaining chapters for this research is as follows. Chapter 2

reviews the literatures of the background of shop scheduling problems and PSO.

Chapter 3 describes the factors of PSO design and PSO for FSSP. PSO for JSP is

modified and illustrated in Chapter 4. We also proposed a novel PSO for OSSP in

Chapter 5. In chapter 6 we draw our conclusion and indicate the direction for further

research.

Research Topic

Literature Review

PSO Algorithm

Coding

Experiment

Comparison

Conclusion

4

CHAPTER 2 LITERATURE REVIEW

2.1 Particle Swarm Optimization

Particle swarm optimization (PSO) is an evolutionary technique for unconstrained

continuous optimization problems proposed by Kennedy and Eberhart (1995). The

PSO concept is based on observations of the social behavior of animals such as birds

in flocks, fish in schools, and swarm theory. The advantages of the PSO method:

simple structure, immediate applicability to practical problems, ease of

implementation, quick solution, and robustness. Particle swarm optimization proposed

recently for unconstrained continuous optimization problems is one of the latest

evolutionary techniques. PSO has been successfully applied to different field of

applications due to the easy implementation and computational efficiency.

Nevertheless, the applications of the PSO on the combination optimization problem

are still scarce.

The major idea of PSO is based on observations of the social behaviors of

animals such as bird flocking, fish schooling, and swarm theory. The population is

initialized by random solutions. The population consists with individuals (i.e.

particles). Each particle is assigned with a randomized velocity according to its own

and populations’ movement experience. The relationship between swarm and particles

in PSO is similar to the relationship between population and chromosomes in GA.

In PSO, the problem solution space is formulated as a search space. Each

position of the particles in the search space is a correlated solution of the problem.

Particles cooperate to find out the best position (solution) in the search space (solution

space).

5

Suppose that the searching space is D-dimensional and ρ particles comprise the

swarm. Each particle locates at the position say Xi={x 1i, x2i, …, xDi} with the velocity

V i={v 1i, v2i, …, vDi}, where i=1, 2, …,ρ. Based on the PSO algorithm, each particle

move toward its own best position (pbest) denoted as Pbesti={pbest1i, pbest2i,…,

pbestni} and the best position of the whole swarm (gbest) denoted as Gbest={gbest1,

gbest2, …, gbestn}with each iteration. Each particle changes its position according to

its velocity which is randomly generated toward pbest and gbest positions. For each

particle r and dimension s, the new velocity vsr and position xsr of particles can be

calculated by the following equations:

)()(2211 kjjkjkjkjkj xgbestrandcxpbestrandcvwv −××+−××+×← (2.1)

kjkjkj vxx +← (2.2)

In Eqs. (2.1) and (2.2), τ means the iteration number. The inertia weight w is

employed to control exploration and exploitation. A large w keeps particles with high

velocity and prevents particles from trapping in local optima. A small w maintains low

velocity of particles and urges particles to exploit the same search area. The constant

c1 and c2 are acceleration coefficients to determine whether particles prefer to move

closer to pbest position or gbest position. The rand1 and rand2 are two independent

random numbers uniformly distributed between 0 and 1. The termination criterion of

the PSO algorithm includes the maximal number of generations, designated value of

pbest and no further improved pbest. The standard process of PSO is outlined as

follows:

(1)Initialize a population of particles with random positions and velocities on d

dimensions in the search space.

(2)Update the velocity of each particle, according to Eq. (2.1).

6

(3)Update the position of each particle, according to Eq. (2.2).

(4)Map the position of each particle into solution space and evaluate its fitness

value according to the desired optimization fitness function. Meanwhile,

update pbest and gbest position if necessary.

(5)Loop to Step2 until a criterion is met, usually a sufficient good fitness or a

maximum number of iterations.

The original PSO is designed to suit continuous solution space. For better

applying to combinational optimization problems, we have to modify PSO position

representation, particle velocity, and particle movement.

2.2 Genetic Algorithm

The concept of genetic algorithms (GA) was introduced by Holland (1975) as a

general search technique which mimics biological evolution, with the survival of the

fittest individuals and a structured, yet randomized, information exchange like in

population genetics. GAs have been applied with a growing success to combinational

problems (Reeves, 1996). GAs works on a set (population) of solutions. Each solution

is encoded as a string of symbols called chromosome, and is associated with a

measure of adaptation, the fitness, often related to the objective function. Starting

from an initial population, new solutions are generated by selecting some parents

randomly, but with a probability growing with fitness, and by applying genetic

operators such as crossover (an exchange of substrings of the parent chromosomes)

and mutation (a random perturbation of a chromosome). Some existing solutions are

then selected at random and replaced by some of the offspring, to keep a constant

population size. The process is repeated until a satisfactory solution is found.

7

For solving optimization problems, genetic algorithms have been investigated

and shown to be effective at exploring a large and complex space in an adaptive way

guided by the equivalent biological evolution mechanism (Huang and Adeli, 1994).

Many conventional optimization methods start from one point in the search area and

then move sequentially to achieve the optimal solution, thereby operating rather

locally and highly prone to falling inside a coincidental local optimum.

GAs are known for their robustness: they can be applied to a wide range of

problems without special knowledge about the problem structure. The price to pay is

that they cannot compete with meta-heuristics which explore problem-specific

neighborhoods. However, more and more paper have showed that GAs can

outperform meta-heuristics on some problems, when they are enriched by some

problem-specific knowledge, or when they are hybridized with other improvement

techniques such as local search.

2.3 Flow Shop Scheduling Problem

Production scheduling in real environments has become a significant challenge in

enterprises maintaining their competitive positions in rapidly changing markets. Flow

shop scheduling problems have attracted much attention in academic circles in the last

five decades since Johnson’s initial research. Most of these studies have focused on

finding the exact optimal solution. A brief overview of the evolution of flow shop

scheduling problems and possible approaches to their solution over the last fifty years

has been provided by Gupta and Stafford (2006). That survey indicated that most

research on flow shop scheduling has focused on single-objective problems, such as

minimizing completion time, total flow time, or total tardiness. Numerous heuristic

8

techniques have been developed for obtaining the approximate optimal solution to

NP-hard scheduling problems. A complete survey of flow shop scheduling problems

with makespan criterion and contributions, including exact methods, constructive

heuristics, improved heuristics, and evolutionary approaches from 1954 to 2004, was

offered by Hejazi and Saghafian (2005). Ruiz and Maroto (2004) also presented a

review and comparative evaluation of heuristics and meta-heuristics for permutation

flowshop problems with the makespan criterion. The NEH algorithm (Nawaz,

Enscore and Ham, 1983) has been shown to be the best constructive heuristic for

Taillard’s benchmarks (Taillard, 1993) while the iterated local search (Stützle, 1998)

method and the genetic algorithm (GA) (Reeves, 1995) are better than other

meta-heuristic algorithms.

Most studies of flow shop scheduling have focused on a single objective that

could be optimized independently. However, empirical scheduling decisions might not

only involve the consideration of more than one objective, but also require

minimizing the conflict between two or more objectives. In addition, finding the exact

solution to scheduling problems is computationally expensive because such problems

are NP-hard. Solving a scheduling problem with multiple objectives is even more

complicated than solving a single-objective problem. Approaches including

meta-heuristics and memetics have been developed to reduce the complexity and

improve the efficiency of solutions.

Hybrid heuristics combining the features of different methods in a

complementary fashion have been a hot issue in the fields of computer science and

operational research (Liu et al., 2007). Ponnambalam et al. (2004) considered a

weighted sum of multiple objectives, including minimizing the makespan, mean flow

time, and machine idle time as a performance measurement, and proposed a

9

multi-objective algorithm using a traveling salesman algorithm and the GA for the

flow shop scheduling problem. Rajendran and Ziegler (2004) approached the problem

of scheduling in permutation flow shop using two ant colony optimization (ACO)

approaches, first to minimize the makespan, and then to minimize the sum of the total

flow time. Yagmahan and Yenisey (2008) was the first to apply ACO meta-heuristics

to flow shop scheduling with the multiple objectives of makespan, total flow time, and

total machine idle time.

The literature on multi-objective flow shop scheduling problems can divided into

two groups: a priori approaches with assigned weights of each objective, and a

posteriori approaches involving a set of non-dominated solutions (Pasupathy et al.,

2006). There is also a multi-objective GA (MOGA) called PGA-ALS, designed to

search non-dominated sequences with the objectives of minimizing makespan and

total flow time. The multi-objective solutions are called non-dominated solutions (or

Pareto-optimal solutions in the case of Pareto-optimality). Eren and Güner (2007)

tackled a multi-criteria two-machine flow shop scheduling problem with minimization

of the weighted sum of total completion time, total tardiness, and makespan.

To minimize the objective of maximum completion time (i.e., the makespan), Liu

et al. (2007) invented an effective PSO-based memetic algorithm for the permutation

flow shop scheduling problem. Jarboui et al. (2008) developed a PSO algorithm for

solving the permutation flow shop scheduling problem; this was an improved

procedure based on simulated annealing. PSO was recommended by Tasgetiren et al.

(2007) to solve the permutation flow shop scheduling problem with the objectives of

minimizing makespan and the total flow time of jobs. Rahimi-Vahed and Mirghorbani

(2007) tackled a bi-criteria permutation flow shop scheduling problem where the

weighted mean completion time and the weighted mean tardiness were minimized

10

simultaneously. They exploited a new concept called the ideal point and a new

approach to specifying the superior particle’s position vector in the swarm that is

designed and used for finding the locally Pareto-optimal frontier of the problem. Due

to the discrete nature of the flow shop scheduling problem, Lian et al. (2008)

addressed permutation flow shop scheduling with a minimized makespan using a

novel PSO.

2.4 Job Shop Scheduling Problem

Job shop scheduling problem (JSSP) has been studied for more than 50 years in both

academic and practical fields. Jain and Meeran (1999) gave a concise overview of

JSSP over the last decades and highlighted the main techniques. JSSP is the toughest

class in the combinational optimization. Garey et al. (1976) demonstrated that JSSP is

NP-hard (NP stands for non-deterministic polynomial), hence we cannot find the

exact solution of it in reasonable computation time. The single objective JSSP has

attracted researching concentration widely. Most studies of single objective JSSP are

discovering a schedule to minimize the time required to complete all jobs, namely

makespan (Cmax). In order to conquer the limitation the exact enumeration

techniques, many approximate methods have been developed in the last decades.

These approximate approaches includes simulated annealing (Lourenco, 1995), tabu

search (Sun et al., 1995; Nowicki and Smutnicki 1996; Pezzella and Merelli 2000)

and genetic algorithm (Bean, 1995; Kobayashi et al., 1995; Wang and Zheng, 2001;

Goncalves et al., 2005). However, in real world, the multi-objectives requirements of

production system should be achieved at the same time. This makes the academic

concentration of objectives in JSSP has been extended from single to multiple.

Related works of JSSP with multiple objectives in recent years is summarized as

11

below.

Ponnambalam et al. (2001) has offered a multi-objective genetic algorithm to

derive the optimal machine-wise priority dispatching rules to resolve the job shop

problems with the objective functions considered minimization of makespan,

minimization of total tardiness, and minimization of total idle time of machines.

Verified by the benchmark problem in the literatures, the proposed MOGA is capable

of providing optimal or near-optimal solutions. A Pareto front provides a set of best

solutions to determine the trade-offs between the various objects. Good parameter

settings and appropriate representations can enhance the behavior of an evolution

algorithm. Esquivel et al. (2002) conducted a study of the influence of distinct

parameter combinations as well as different chromosome representations. Initial result

shows that: (i)Larger numbers of generations favor the building of a Pareto front

because the search process (if rather slow) does not stagnate. (ii)Multi-recombination

helps to speed the search and to find a larger set size when seeking the Pareto optimal

set. (iii)Operation based representation is the best of the three representations selected

for contrast under both methods of recombination. A meta-heuristic procedure based

on the simulated annealing algorithm called Pareto archived simulated annealing

(PASA) is proposed by Suresh and Mohanasndaram (2006) to discover

non-dominated solution sets for the job shop scheduling problem with the objectives

of minimizing the makespan and the mean flow time of jobs. The superior

performance of the PASA can be attributed to its acceptance mechanism used to

accept the candidate solution. Candido et al. (1998) addressed job shop scheduling

problems with numbers of more realistic constraints such as job with several

subassembly levels, alternative processing plans for parts and alternative resources of

operations, requirement of multiple resources to process an operation, etc. The robust

12

procedure worked well in all problem instances, showing to be a promising tool to

solve more realistic job shop scheduling problems. Lei and Wu (2006) firstly designed

a crowding-measure-based multi-objective evolutionary algorithm (CMOEA) which

makes use of the crowding measure to adjust the external population and assign

different fitness for individuals. The comparison between CMOEA and SPEA

demonstrates that CMOEA performs well in job shop scheduling with two objectives

including minimization of makespan and total tardiness.

Coello et al. (2004) provided an approach in which Pareto dominance is

incorporated into particle swarm optimization in order to allow the heuristic to handle

problems with several object functions. The algorithm used secondary repository of

particles to guide particle flight. The proposed approach is validated using several test

functions and metrics taken from the standard literature on evolutionary

multi-objective optimization. The results show that the approach is highly competitive.

Liang et al. (2005) have invented a novel PSO-based algorithm for job- shop

scheduling problems. The algorithm effectively exploits the capability of distributed

and parallel computing systems, with simulation result showing the possibility of high

quality solutions for typical benchmark problems. Lei (2008) presented a particle

swarm optimization for multi-objective job shop scheduling problem to

simultaneously minimize makespan and total tardiness of jobs. By constructing the

corresponding relation between real vector and the chromosome obtained by using

priority rule-based representation method, job shop scheduling is converted into a

continuous optimization problem. The global best position selection is combined with

the crowding measure-based archive maintenance to design a Pareto archive particle

swarm optimization. The proposed algorithm is capable of producing a number of

high-quality Pareto optimal scheduling plans.

13

Incorporating different approaches to take the strength of them, some hybrid

algorithms have been proposed lately and lead to another research branch. Wang and

Zheng (2001) reasonably combined GA with SA to invent a hybrid framework, in

which GA was introduced to present a parallel search architecture, and SA was

introduced to increase escaping probability from local optimal at high temperatures.

Computer simulation results based on some b showed that the hybrid strategy was

very effective and robust, and could almost find optima for all benchmark instances.

Based on the hybridization of PSO and SA, Xia and Wu (2005) developed an easily

implemented approach for the multi-objective flexible job shop scheduling problem.

The results obtained from the computational study have shown that the proposed

algorithm is a viable and effective approach for the multi-objective FJSP, especially

for problems on a large scale. Ripon (2007) extends the idea called Jumping Genes

Genetic Algorithm (JGGA) to propose a hybrid approach which can search for the

near-optimal and non-dominated solutions with better convergence by optimizing

criteria simultaneously.

2.5 Open Shop Scheduling Problem

Shop scheduling problems, including flow-, job-, and open-shop problems, have

attracted the interest of many researchers. Shop scheduling has become a significant

factor used by shops to maintain their competitive position in a rapidly changing

marketplace. Most previous research into the open-shop scheduling problem has

concentrated on finding a single optimal solution (e.g., makespan). However, in the

real world, the multiple-objective requirements of shop scheduling must be achieved

simultaneously. Thus, the academic study of open-shop scheduling has been

extended from a single objective to multiple objectives.

14

Because the open-shop scheduling problem is non-deterministic polynomial-time

hard (NP hard) for more than two machines (m > 2) (Gonzalez and Sahni ,1976), we

cannot solve it exactly using a reasonable amount of computation time. Most

published research has concentrated on developing heuristic algorithms to search for

the optimal makespan of open-shop scheduling problems. A neighborhood search

algorithm based on the simulated annealing technique was proposed by Liaw (1999)

to addresses the problem of scheduling a non-preemptive open shop with the objective

of minimizing the makespan. An efficient local search algorithm based on the tabu

search technique was also proposed by Liaw (1999) to minimize the makespan.

Liaw (2000) developed and applied a hybrid genetic algorithm (HGA) to the

open-shop scheduling problem. The hybrid algorithm incorporated a local

improvement procedure based on the tabu search (TS) into the basic genetic algorithm

(GA). Blum (2005) proposed the Beam-ACO technique to tackle open-shop

scheduling; this technique consisted of a hybridized solution construction mechanism

for ant colony optimization (ACO) with a beam search. Several competitive GAs

have also been presented to detect global optimal values disseminated among many

quasi-optimal schedules of the open-shop problem (Prins, 2000). A heuristic

technique for the open-shop scheduling problem using the genetic algorithm to

minimize the makespan was developed by Senthilkumar and Shahbudeen (2006), and

Tang and Bai (2010) proposed a heuristic algorithm, known as the shortest processing

time block (SPTB), to solve the open-shop problem by minimizing the sum of the

completion time.

Liang (2005) considered the problem of scheduling preemptive open shops to

minimize the total tardiness. He developed an efficient constructive heuristic to

solve large problems. To solve medium-sized problems, he proposed a

15

branch-and-bound algorithm that incorporated a lower bound scheme based on the

solution of an assignment problem as well as various dominance rules.

Blazewicz et al. (2004) applied a non-classical performance measure, the late

work criterion, to scheduling problems. They estimated the quality of the obtained

solution with regards to the duration of the late parts of the tasks, but did not take into

account the quality of these delays.

One of the latest evolutionary techniques, particle swarm optimization (PSO),

was recently proposed by Kennedy and Eberhart (1995) for unconstrained continuous

optimization problems. The idea behind PSO is based on observations of the social

behavior of animals such as flocks of birds or schools of fish, combined with swarm

theory. PSO has been successfully applied to different fields due to its easy

implementation and computational efficiency. Nevertheless, applications of PSO to

combinations of optimization problems are still scarce.

2.6 Multiple Objective Programming

There are several ways to classify the different approaches to multiobjective

optimization. Adulbhan and Tabucanon (1989) classified the techniques into three

main approaches based on the way the initial multiobjective problem is transformed

into a mathematically manageable format. These approaches are, respectively, (a)

conversion of secondary objectives into constraints, (b) development of a single

combined objective function, and (c) treatment of all objectives as constraints. Hwang,

Masud, Paidy and Yoon (1982), on the other hand, propose grouping of techniques

according to the stage at which the analyst needs information from the decision-maker.

The classification is divided into four approaches: (a) no articulation of decision

maker’s preference data, (b) a priori articulation of preference data, (c) progressive

16

articulation of preference data, and (d) a posteriori articulation of preference data.

A recently proposed method for treating the analytical phase of the MCDM

process is called multiple criteria optimization or, in short, multiobjective

optimization (Seo and Sakawa, 1988). According to this viewpoint, multiple criteria

optimization contains two key concepts: (a) Pareto optimality and (b) the preferred

decision (or preferred solution). In general, the decisions with Pareto optimality are

not uniquely determined, unlike, for instance, what goal programming produces. In

multiobjective optimization problems, the usually exist many solutions that are

optimal in the Pareo sense, a concept put forth by economists. Owing to such plurality

of optimal decisions, the most desirable decision may be selected after one has

generated the Pareto optimal or nondominated solutions. The final solution thus

selected as the most desirable, or at least the best-compromised solution, is called

preferred solution.

Many approaches have been developed in the domain of multi-objective

meta-heuristic optimization. Hsu, Dupas, Jolly & Goncalves (2002) focus our

presentation on evolutionary approaches that can be classified into three types: (a)

The transformation towards a mono-objective problem consists of combining the

different objective into a weighted sum. (b) The non-Pareto approach utilizes

operators for processing the different objectives in a separated way. (c) The Pareto

approach is directly based on the Pareto optimization concept. It aims at satisfy two

goals: coverage to the Pareto front and obtain diversified solutions scattered all over

the Pareto front.

In real world, empirical scheduling decisions should not only involve the

deliberation of more than one objective at a time, but also need to prevent the conflict

of two or more objectives. The solution set of multi-objective optimization problem

17

with conflicting objective function consisted with the solutions that no other solution

is better than all other objective functions is called Pareto optimal. A multi-objective

minimization problem with m decision variables and n objectives is given below to

describe the concept of Pareto optimality.

nm

n

xFxwhere

xfxfxfxFMinimize

ℜ∈ℜ∈

=

)(, ,

))(...,),(),(()(21

A solution p is said to dominate solution q if and only if:

} ..., ,2 ,1{)()(

} ..., ,2 ,1{)()(

nkqfpf

nkqfpf

kk

kk

∈∃<
∈∀≤

The non-dominated solution is defined as solutions which dominate the others

but do not dominate themselves. Solution p is said a Pareto-optimal solution if there

exist no other solution q in the feasible space which could dominate p. The set

including all Pareto-optimal solutions is termed the Pareto-optimal Set, or the efficient

set. The graph plotted using collected Pareto-optimal solutions in feasible space is

designated as Pareto front.

The external Pareto optimal set is employed to deposit a limited size of

non-dominated solutions (Knowles et al., 2000; Zitzler et al. 2001). Maximum size of

archive set is specified in advance. This method is applied to forbid missing fragment

of non-dominated front during the searching process. The Pareto-optimal front is

getting formed as archive updated iteratively. While the archive set is empty enough

and a new non-dominated solution is detected, the new solution will enter the archive

set. As the new solution enters the archive set, any solution in the archive set

dominated by this solution will be withdrawn from the archive set. In case the

maximum archive size reaches its preset value, the archive set have to decide which

solution could be replaced.

18

In this study, we propose a novel Pareto archive set updating process in order to

preclude from losing non-dominated solutions when the Pareto archive set is full.

When a new non-dominated solution is discovered, the archive set would be updated

when one of the following situation occurs: (a) number of solutions in the archive set

is less than the maximum value; (b) number of the solutions in the archive set is equal

to (greater than) the maximum value, then one of the solutions in the archive set that

is most dissimilar to the new solution will be replaced by the new solution. We

measure the dissimilarity by Euclidean distance. A longer distance implies a higher

dissimilarity is. The non-dominated solution in the Pareto archive set with the longest

distance to the new found solution will be replaced.

19

CHAPTER 3 PSO for Multi-objective FSSP

In this chapter, we will discuss the probably success factors to develop a PSO design

for a discrete optimization problem. We will compare PSO with another

population-based meta-heuristic—genetic algorithm (GA). The principles of a GA

design may be also suitable to a PSO design.

 There are two different representations of particle position associated with a

schedule. Zhang et al. (2005) demonstrated that permutation-based position

representation outperforms priority-based representation. While we have chosen to

implement permutation-based position representation, we must also adjust the particle

velocity and particle movement.

There are four types of feasible schedules in JSP, including inadmissible,

semi-active, active and non-delay. The optimal schedule is guaranteed to be an active

schedule. We can decode a particle position into an active schedule employing Giffler

and Thompson’s (1960) heuristic. There are two different representation of particle

position associated with a schedule. The results of Zhang (2005) demonstrated that

permutation-based position representation outperforms priority-based representation.

While choosing permutation-based position presentation to implement, we also have

to adjust the particle velocity and particle movement. In addition, the maintenance of

Pareto optima and diversification procedure are proposed finally for better

performance.

3.1 Problem Formulation

The problem of scheduling in flow shops has been the subject of much investigation.

20

The primary elements of flow shop scheduling include a set of m machines and a

collection of n jobs to be scheduled on the set of machines. Each job follows the same

process of machines and passes through each machine only once. Each job can be

processed on one and only one machine at a time, whereas each machine can process

only one job at a time. The processing time of each job on each machine is fixed and

known in advance. We formulate the multi-objective flow shop scheduling problem

using the following notation:

n total number of jobs to be scheduled

m total number of machines in the process

t(i, j) processing time for job i on machine j (i=1,2,…n), (j=1,2,…m)

Li the lateness of job i

{π1, π2, …, πn} permutation of jobs

The objectives considered in this paper are formulated as follows:

Completion time (makespan)),(jC π

)1,()1,(11 ππ tC = (3.1)

nitCC iii ,...,2)1,()1,()1,(1 =+= − πππ (3.2)

mjjtjCjC ,...,2),()1,(),(11 =+−= πππ (3.3)

mjnijtjCjCjC iiii ,...,2 ;,...,2),()}1,(),,(max{),(1 ==+−= − ππππ (3.4)

Makespan,),(max mCf nC π= (3.5)

21

Mean flow time, nmCf
n

i
iMFT /]),([

1
∑

=

= π (3.6)

Machine idle time,

}...2|}}0),,()1,({max{)1,({
2

11 ∑
=

− =−−+−=
n

i
iiMIT mjjCjCjCf πππ (3.7)

3.2 Particle Position Representation

In the study of flow shop scheduling, we randomly generated a group of particles

(solutions) represented by a permutation sequence that is an ordered list of operations.

The following example is a permutation sequence for a six-job permutation flow shop

scheduling problem, where jn is the operation of job n.

Index: 1 2 3 4 5 6

Permutation: j4 j3 j1 j6 j2 j5

An operation earlier in the list has a higher priority of being placed into the schedule.

We used a list with a length of n for an n-job problem in our algorithm to represent the

position of particle k, i.e.

. particlein ofpriority theis

,] ... [21

kjx

xxxX

i
k
i

k
n

kkk =

Then, we convert the permutation list to a priority list. k
ix is a value randomly

initialized to some value between (p – 0.5) and (p + 0.5). This means k
ix ←p + rand –

0.5, where p is the location (index) of j i in the permutation list, and rand is a random

number between 0 and 1. Consequently, the operation with smaller k
ix has a higher

priority for scheduling. The permutation list mentioned above can be converted to

kX = [2.7 5.2 1.8 0.6 6.3 3.9].

22

We describe the conversion between integers and float-point numbers as follows.

The permutation list is represented in integer, while the priority list is presented in

floating-point number. At first, we generate integers randomly for permutation list.

The permutation list could convert to priority list via the equation 5.0() −+= randpx i
k
i ,

where rand() is the random number between 0 and 1.

Figure 3.1 The conversion between integers and float-point numbers

The priority list contains real number is used in our PSO. The priority list stored in

the array is as follows.

3.96.30.61.85.22.7Priority list

65432 1Index

3.96.30.61.85.22.7Priority list

65432 1Index

Figure 3.2 The priority list stored in the array

As the particle move, the value of priority list may change. We assume that the

priority list change to be followed.

3.92.60.61.85.22.7Priority list

65432 1Index

3.92.60.61.85.22.7Priority list

65432 1Index

Figure 3.3 The priority list changed as particle movement

Finally, we sort the priority list and we can get a new permutation list. The new

list can be used to calculate fitness function.

23

3.92.60.61.85.22.7Priority list

65432 1Index

3.92.60.61.85.22.7Priority list

65432 1Index

261534Permutation list 261534Permutation list

Sorting

Figure 3.4 A new permutation list

3.3 Particle Velocity

The original PSO velocity concept is that each particle moves according to the

velocity determined by the distance between the previous position of the particle and

the gbest (pbest) solution. The two major purposes of the particle velocity are to move

the particle toward the gbest and pbest solutions, and to maintain the inertia to prevent

particles from becoming trapped in local optima.

In the proposed PSO of flow shop scheduling, we concentrated on preventing

particles from becoming trapped in local optima rather than moving them toward the

gbest (pbest) solution. If the priority value increases or decreases with the present

velocity in this iteration, we maintain the priority value increasing or decreasing at the

beginning of the next iteration with probability w, which is the PSO inertial weight.

The larger the value of w is, the greater the number of iterations over which the

priority value keeps increasing or decreasing, and the greater the difficulty the particle

has returning to the current position. For an n-job problem, the velocity of particle k

can be represented as

. particle of of velocity theis where

}1 ,0 ,1{], ... [21

kjv

vvvvV

i
k
i

k
i

k
n

kkk −∈=

The initial particle velocities are generated randomly. Instead of considering the

distance from k
ix to)(i

k
i gbestpbest , our PSO considers whether the value of k

ix

24

is larger or smaller than)(i
k
i gbestpbest If k

ix has decreased in the present

iteration, this means that)(i
k
i gbestpbest is smaller than k

ix , and k
ix is set moving

toward)(i
k
i gbestpbest by letting k

iv ← –1. Therefore, in the next iteration, kix is

kept decreasing by one (i.e., kix ← k
ix –1) with probability w. Conversely, if k

ix

has increased in this iteration, this means that)(i
k
i gbestpbest is larger than k

ix , and

k
ix is set moving toward)(i

k
i gbestpbest by letting k

iv ←1. Therefore, in the next

iteration, k
ix is kept increasing by one (i.e. kix ← k

ix + 1) with probability w.

The inertial weight w influences the velocity of particles in PSO. We randomly

update velocities at the beginning of iterations. For each particle k and operation j i, if

k
iv is not equal to 0, k

iv is set to 0 with probability (1–w). This ensures that k
ix

stops increasing or decreasing continuously in this iteration with probability (1–w).

3.4 Particle Movement

The particle movement of flow shop scheduling is based on the insertion operator

proposed by Sha and Hsu (2008). The insertion operator is introduced to the priority

list to reduce computational complexity. We illustrate the effect of the insertion

operator using the permutation list example described above. If we wish to insert j4

into the third location of the permutation list, we must move j6 to the sixth location,

move j1 to the fifth location, move j2 to the fourth location, and then insert j4 in the

third location. The insertion operation comprising these actions costs O(n/2) on

average. However, the insertion operator used in this study need only set

5.03 −+← randxk
i when we want to insert j5 in the third location of the permutation.

25

This requires only one step for each insertion. If the random number rand equals 0.1,

for example, after j4 is inserted into the third location, then kX becomes kX = [2.7

5.2 1.8 0.6 2.6 3.9].

If we wish to insert j i into the pth location in the permutation list, we could set

5.0−+← randpxk
i . The location of operation j i in the permutation sequence of the kth

pbest and gbest solutions are k
ipbest and igbest , respectively. As particle k moves, if

k
iv equals 0 for all j i, then k

ix is set to 5.0−+ randpbestki with probability c1 and set

to 5.0−+ randgbesti with probability c2, where rand is a random number between 0

and 1, c1 and c2 are constants between 0 and 1, and 121 ≤+ cc . We explain this

concept by assuming specific values for Vk, Xk, pbestk, gbest, c1, and c2.

.1.0 ,8.0c 2], 1 5 4 3 6[

2], 3 6 4 1 5[

3.9], 6.3 0.6 1.8 5.2 7.2[

 0], 0 1 0 0 1[

21 ===
=

=

−=

cgbest

pbest

X

V

k

k

k

For j1, since 01 ≠kv and kkk vxx 111 +← , then 7.11 =kx .

For j2, since 02 =kv , the generated random number 6.01 =rand . Since 11 crand ≤ , then

the generated random number 3.02 =rand . Since kk xpbest 22 ≤ , set 12 −←kv and

5.0222 −+← randpbestx kk , i.e., 8.02 =kx .

For j3, since 03 =kv , the generated random number 93.01 =rand . Since 211 ccrand +> ,

kx3 and kv3 do not need to be changed.

For j4, since 14 =kv , then kkk vxx 444 +← , i.e., 6.14 =kx .

For j5, since 05 =kv , the generated random number 85.01 =rand . Since

2111 ccrandc +≤< , the generated random number 7.02 =rand . Since kxgbest 55 ≤ , set

15 −←kv . Then 5.0255 −+← randgbestxk , i.e., 2.15 =kx .

For j6, since 06 =kv , the generated random number 95.01 =rand . Since 211 ccrand +> ,

kx6 and kv6 do not need to be changed.

26

Therefore, after particle k moves, the Vk and Xk are

3.9] 1.2 1.7 1.8 0.8 6.1[

]0 1 1 0 1 1[

=

−−−=
k

k

X

V

In addition, we use a mutation operator in our PSO algorithm. After moving a

particle to a new position, we randomly choose an operation and then mutate its

priority value k
ix in accordance with k

iv . If)2/(nxk
i ≤ , we randomly set k

ix to a

value between (n/2) and n, and set k
iv ← 1. If)2/(nxk

i > , we randomly set k
ix to a

value between 0 and (n/2), and set k
iv ← –1.

3.5 Pareto optimal set maintenance

Real empirical scheduling decisions often involve not only the consideration of more

than one objective at a time, but also must prevent the conflict of two or more

objectives. The solution set of the multi-objective optimization problem with

conflicting objective functions consistent with the solutions so that no other solution

is better than all other objective functions is called Pareto optimal. A multi-objective

minimization problem with m decision variables and n objectives is given below to

describe the concept of Pareto optimality.

nm

n

xFxwhere

xfxfxfxFMinimize

ℜ∈ℜ∈

=

)(, ,

))(...,),(),(()(21

A solution p is said to dominate solution q if and only if

} ..., ,2 ,1{)()(

} ..., ,2 ,1{)()(

nkqfpf

nkqfpf

kk

kk

∈∃<
∈∀≤

Non-dominated solutions are defined as solutions that dominate the others but do

not dominate themselves. Solution p is said to be a Pareto-optimal solution if there

exists no other solution q in the feasible space that could dominate p. The set

27

including all Pareto-optimal solutions is referred to as the Pareto-optimal or efficient

set. A graph plotted using collected Pareto-optimal solutions in feasible space is

referred to as the Pareto front.

The external Pareto optimal set is used to produce a limited size of

non-dominated solutions (Knowles and Corne (1999); Zitzler et al. (2001)). The

maximum size of the archive set is specified in advance. This method is used to avoid

missing fragments of the non-dominated front during the search process. The

Pareto-optimal front is formed as the archive is updated iteratively. When the archive

set is sufficiently empty and a new non-dominated solution is detected, the new

solution enters the archive set. As the new solution enters the archive set, any solution

already there that is dominated by this solution will be removed. When the maximum

archive size reaches its preset value, the archive set must decide which solution

should be replaced. In this study, we propose a novel Pareto archive set update

process to preclude losing non-dominated solutions when the Pareto archive set is full.

When a new non-dominated solution is discovered, the archive set is updated when

one of the following situations occurs: either the number of solutions in the archive

set is less than the maximum value, or if the number of solutions in the archive set is

equal to or greater than the maximum value, then the one solution in the archive set

that is most dissimilar to the new solution is replaced by the new solution. We

measure the dissimilarity by the Euclidean distance. A longer distance implies a

higher dissimilarity. The non-dominated solution in the Pareto archive set with the

longest distance to the newly found solution is replaced. For example, the distance (dij)

between X1 and X2 is calculated as

28

91.6

)2.13.6()7.16.0()8.02.5()6.17.2(

3.9] 1.2 1.7 1.8 0.8 6.1[

3.9] 6.3 0.6 1.8 5.2 7.2[

2222

2

1

=
−+−+−+−

=
=

=

ijd

X

X

The Pareto archive set is updated at the end of each iteration in the proposed

PSO.

3.6 Computational Results

The proposed PSO algorithm was verified by benchmark problems obtained from the

OR-Library that were contributed by Carlier (1978), Heller (1960), and Reeves (1995).

The test program was coded in Visual C++ and run 20 times on each problem using an

Intel Pentium 4 3.0-GHz processor with 1 GB of RAM running Windows XP. We

used four swarm sizes N (10, 20, 60, and 80) to test the algorithm during a pilot

experiment. A value of N = 80 was best, so it was used in all subsequent tests. The

algorithm parameters were set as follows: c1 and c2 were tested over the range 0.1–0.7

in increments of 0.2, and the inertial weight w was reduced from wmax to wmin during

the iterations. Parameter wmax was set to 0.5, 0.7, and 0.9 corresponding to wmin values

of 0.1, 0.3, and 0.5. Settings of c1 = 0.7, c2 = 0.1, wmax = 0.7, and wmin = 0.3 worked

best.

The presented PSO algorithm is compared with two heuristic algorithms: CDS

and NEH. We briefly describe these two methods here. CDS heuristic named by the

three authors was proposed by Campbell, et al. (1970). The CDS procedure is a

heuristic generalization of Johnson’s algorithm. The process generates a set of m-1

artificial two-machine problem, each of which is then solved by Johnson’s rule. In this

study, we modified original CDS and compared the makespan, mean flow time and

29

machine idle time of all m-1 generated problems. The non-dominated solution was

picked to compare with the solutions obtained from our PSO algorithm. The other

comparison is based on the solutions constructed from NEH algorithm that was

presented by Nawaz M. et al. (1983). The NEH enumerates n(n+1)/2 permutations to

find near-optimal solutions. Similar to CDS, we modified the original NEH and

compared the three objectives of all n(n+1)/2 sequences. We compared the

non-dominated solution from those sequences with the solutions from our PSO.

The makespan, mean flow time, and machine idle time from sequence given by

the PSO, CDS and NEH are denoted MSPSO, MFTPSO, and MITPSO; MSCDS, MFTCDS,

and MITCDS; and MSNEH, MFTNEH, and MITNEH respectively. The relative error in

makespan, mean flow time, and machine idle time for schedule SPSO are as follows.

),,(/)],,([NEHCDSPSONEHCDSPSOPSO MSMSMSMINMSMSMSMINMS − (3.8)

),,(/)],,([NEHCDSPSONEHCDSPSOPSO MFTMFTMFTMINMFTMFTMFTMINMFT − (3.9)

),,(/)],,([NEHCDSPSONEHCDSPSOPSO MITMITMITMINMITMITMITMINMIT − (3.10)

Furthermore, the relative error in makespan, mean flow time, and machine idle

time for schedule SCDS could be derived using the following equations.

),,(/)],,([NEHCDSPSONEHCDSPSOCDS MSMSMSMINMSMSMSMINMS − (3.11)

),,(/)],,([NEHCDSPSONEHCDSPSOCDS MFTMFTMFTMINMFTMFTMFTMINMFT − (3.12)

),,(/)],,([NEHCDSPSONEHCDSPSOCDS MITMITMITMINMITMITMITMINMIT − (3.13)

At last, the relative error in makespan, mean flow time, and machine idle time for

schedule SNEH could be derived using the following equations:

),,(/)],,([NEHCDSPSONEHCDSPSONEH MSMSMSMINMSMSMSMINMS − (3.14)

30

),,(/)],,([NEHCDSPSONEHCDSPSONEH MFTMFTMFTMINMFTMFTMFTMINMFT − (3.15)

),,(/)],,([NEHCDSPSONEHCDSPSONEH MITMITMITMINMITMITMITMINMIT − (3.16)

Finally, the following functions are used to measure the aggregated objectives

performance of the three heuristics.

)]()()[(

MITMFTMS

MITPSOMFTPSOMSPSO

MINMINMIN

MINMITMINMFTMINMS

++
−+−+−

 (3.17)

)()()(

MITMFTMS

MITCDSMFTCDSMSCDS

MINMINMIN

MINMITMINMFTMINMS

++
−+−+−

 (3.18)

MITMFTMS

MITNEHMFTNEHMSNEH

MINMINMIN

MINMITMINMFTMINMS

++
−+−+−)()()(

 (3.19)

),,(

),,(

),,(

NEHCDSPSOMIT

NEHCDSPSOMFT

NEHCDSPSOMS

MITMITMITMINMIN

MFTMFTMFTMINMIN

MSMSMSMINMIN

where

=
=

=

In order to examine the performance including efficiency and quality of the

proposed PSO algorithm, we have applied our PSO to totally 161 benchmark

problems. For problem Rec01 to Rec41, the average relative error of Cmax and MFT

are given in Table 3.1. Table 3.2 shows average relative error of MIT and aggregate

performance. From Table 3.3 to Table 3.6, we demonstrated the average relative error

of Cmax, MFT and MIT with the problem Tai20×5 to Tai500×20. The aggregate

performance of problem Tai20×5 to Tai500×20 are given in Table 3.7.

At last, we observed that the PSO perform better than other two heuristics while

only one objective is considered. Table 3.8 shows the superior number and percentage

of problems among the three different algorithms. As we consider the three objectives

at the same time, we can prove the performance of proposed PSO by Table 3. 9.

31

Table 3. 1 The average relative error in Cmax and MFT of problem RecXX

Problem Makespan MFT

 CDS NEH PSO CDS NEH PSO

Rec01_20×5 0.0798 0.0000 0.0850 0.4089 0.0000 0.3119

Rec03_20×5 0.1867 0.0000 0.1278 0.4447 0.0000 0.3274

Rec05_20×5 0.1068 0.0008 0.0315 0.3974 0.0000 0.2931

Rec07_20×10 0.0437 0.0000 0.0970 0.1330 0.0000 0.0382

Rec09_20×10 0.1712 0.0000 0.1106 0.1370 0.0004 0.0495

Rec11_20×10 0.1430 0.0000 0.0666 0.2467 0.0621 0.0002

Rec13_20×15 0.2233 0.0000 0.1146 0.0487 0.1487 0.0015

Rec15_20×15 0.0796 0.0000 0.0935 0.0801 0.1639 0.0000

Rec17_20×15 0.1990 0.0000 0.1190 0.0721 0.1549 0.0006

Rec19_30×10 0.1059 0.0000 0.1090 0.2520 0.0000 0.1955

Rec21_30×10 0.2029 0.0000 0.1531 0.3009 0.0000 0.2171

Rec23_30×10 0.1542 0.0000 0.1170 0.2376 0.0000 0.2060

Rec25_30×15 0.1640 0.0000 0.0934 0.1249 0.0004 0.0231

Rec27_30×15 0.1365 0.0000 0.0983 0.0988 0.0000 0.0359

Rec29_30×15 0.2419 0.0000 0.1546 0.1576 0.0000 0.0466

Rec31_50×10 0.4748 0.2951 0.0000 0.7323 0.1225 0.0000

Rec33_50×10 0.4603 0.3596 0.0000 0.6403 0.2224 0.0000

Rec35_50×10 0.5053 0.3202 0.0000 0.6703 0.1520 0.0000

Rec37_75×20 0.9534 0.6410 0.0000 1.3879 0.7679 0.0000

Rec39_75×20 0.9371 0.6362 0.0000 1.5575 0.8042 0.0000

Rec41_75×20 0.9938 0.7155 0.0000 1.6152 0.8441 0.0000

Average 0.3125 0.1413 0.0748 0.4640 0.1640 0.0832

32

Table 3. 2 The average relative error in MIT and Aggregate of problem Rec

Problem MIT Aggregate

 CDS NEH PSO CDS NEH PSO

Rec01_20×5 4.1112 2.4282 0.0000 0.3410 0.0797 0.1676

Rec03_20×5 1.4296 1.0185 0.0014 0.3665 0.0707 0.1887

Rec05_20×5 3.5144 2.1824 0.0000 0.3585 0.0904 0.1281

Rec07_20×10 0.7301 0.4095 0.0019 0.3020 0.1384 0.0480

Rec09_20×10 0.5385 0.2741 0.0127 0.2872 0.0832 0.0594

Rec11_20×10 2.0732 0.0082 0.1115 0.7760 0.0203 0.0616

Rec13_20×15 0.2396 0.2623 0.0097 0.1948 0.1580 0.0405

Rec15_20×15 0.4336 0.4493 0.0000 0.2550 0.2521 0.0287

Rec17_20×15 0.4120 0.2383 0.0131 0.2650 0.1366 0.0451

Rec19_30×10 0.5509 0.0166 0.1057 0.2844 0.0049 0.1323

Rec21_30×10 0.9548 0.0343 0.0979 0.4315 0.0082 0.1577

Rec23_30×10 0.1880 0.0990 0.0067 0.1864 0.0362 0.0974

Rec25_30×15 0.6217 0.2278 0.0060 0.3703 0.1056 0.0367

Rec27_30×15 0.3343 0.4371 0.0000 0.2297 0.2262 0.0342

Rec29_30×15 0.5644 0.0862 0.0101 0.3860 0.0421 0.0592

Rec31_50×10 1.4631 0.4220 0.0000 0.8552 0.2808 0.0000

Rec33_50×10 0.6859 0.3633 0.0040 0.5684 0.3117 0.0013

Rec35_50×10 0.7108 0.2891 0.0000 0.6201 0.2607 0.0000

Rec37_75×20 1.1915 0.8135 0.0000 1.1581 0.7601 0.0000

Rec39_75×20 1.8247 0.5223 0.0000 1.5418 0.5946 0.0000

Rec41_75×20 1.7428 1.1721 0.0000 1.5445 1.0152 0.0000

Average 1.1579 0.5597 0.0181 0.5392 0.2227 0.0613

33

Table 3. 3 The average relative error in Cmax , MFT and MIT of problem Tai_20

 Makespan MFT MIT

Problem CDS NEH PSO CDS NEH PSO CDS NEH PSO

Tai_20×5_1 0.0010 0.1205 0.0323 0.1135 0.1052 0.0000 3.8211 3.2056 0.0000

Tai_20×5_2 0.0013 0.1180 0.0278 0.0377 0.0310 0.0000 8.7129 0.0296 0.9753

Tai_20×5_3 0.0000 0.1834 0.0626 0.1000 0.0178 0.0000 3.1344 0.0205 0.1308

Tai_20×5_4 0.0088 0.1487 0.0096 0.0757 0.0627 0.0000 4.3087 2.2174 0.0000

Tai_20×5_5 0.0003 0.1761 0.0504 0.1418 0.0468 0.0000 2.2425 0.4427 0.0000

Tai_20×5_6 0.0654 0.1170 0.0001 0.0296 0.0570 0.0000 0.3327 0.8453 0.0000

Tai_20×5_7 0.0027 0.0229 0.0350 0.0642 0.0000 0.0000 16.158 1.2283 0.6350

Tai_20×5_8 0.0003 0.0654 0.0517 0.0633 0.0231 0.0000 5.8688 3.8646 0.0000

Tai_20×5_9 0.0033 0.0814 0.0328 0.0312 0.0366 0.0000 1.5550 1.2519 0.0000

Tai_20×5_10 0.0353 0.0590 0.0039 0.0774 0.0794 0.0000 5.1159 5.3127 0.0000

Average 0.0119 0.1092 0.0306 0.0734 0.0460 0.0000 5.1250 1.8419 0.1741

Tai_20×10_1 0.0733 0.0543 0.0000 0.0406 0.0496 0.0000 0.1589 0.3794 0.0155

Tai_20×10_2 0.0014 0.1127 0.0166 0.0024 0.0768 0.0093 0.0132 0.6637 0.1071

Tai_20×10_3 0.1509 0.0978 0.0000 0.0529 0.0460 0.0003 0.2847 0.3143 0.0044

Tai_20×10_4 0.1079 0.0792 0.0000 0.0688 0.0524 0.0000 0.5260 0.4282 0.0000

Tai_20×10_5 0.0022 0.1666 0.0255 0.0524 0.0420 0.0006 0.6851 0.4076 0.0113

Tai_20×10_6 0.1863 0.1647 0.0000 0.1108 0.0480 0.0000 0.6342 0.1983 0.0043

Tai_20×10_7 0.1230 0.0938 0.0000 0.0454 0.0092 0.0133 0.3709 0.0616 0.1693

Tai_20×10_8 0.0766 0.1262 0.0000 0.0768 0.0537 0.0002 0.4519 0.3661 0.0020

Tai_20×10_9 0.0902 0.1124 0.0000 0.1244 0.0292 0.0000 1.2666 0.2793 0.0016

Tai_20×10_10 0.0687 0.1368 0.0000 0.1527 0.0845 0.0000 1.3403 0.6326 0.0003

Average 0.0880 0.1144 0.0042 0.0727 0.0491 0.0024 0.5732 0.3731 0.0316

Tai_20×20_1 0.0335 0.0639 0.0009 0.0605 0.0707 0.0000 0.2408 0.2813 0.0000

Tai_20×20_2 0.0334 0.0812 0.0009 0.0262 0.0262 0.0015 0.1384 0.1135 0.0109

Tai_20×20_3 0.0406 0.0672 0.0000 0.0693 0.0693 0.0000 0.2703 0.3117 0.0000

Tai_20×20_4 0.0268 0.0978 0.0005 0.0783 0.0673 0.0001 0.3266 0.2998 0.0005

Tai_20×20_5 0.0691 0.0702 0.0000 0.0337 0.0109 0.0069 0.1362 0.0368 0.0325

Tai_20×20_6 0.0234 0.0894 0.0004 0.1383 0.0373 0.0103 0.6739 0.1864 0.0490

Tai_20×20_7 0.0232 0.1210 0.0008 0.0541 0.0868 0.0007 0.2585 0.3830 0.0031

Tai_20×20_8 0.0421 0.0725 0.0000 0.0616 0.0655 0.0002 0.2999 0.3040 0.0003

Tai_20×20_9 0.0003 0.0764 0.0275 0.0588 0.0588 0.0005 0.2485 0.2851 0.0019

Tai_20×20_10 0.1108 0.0526 0.0000 0.0688 0.0432 0.0015 0.2640 0.1535 0.0071

Average 0.0403 0.0792 0.0031 0.0650 0.0536 0.0022 0.2857 0.2355 0.0105

34

Table 3. 4 The average relative error in Cmax , MFT and MIT of problem Tai_50

 Makespan MFT MIT

Problem CDS NEH PSO CDS NEH PSO CDS NEH PSO

Tai_50×5_1 0.0003 0.1044 0.0288 0.0149 0.0320 0.0000 0.3238 0.4924 0.0000

Tai_50×5_2 0.0006 0.0699 0.0173 0.0242 0.0456 0.0002 0.5121 0.6752 0.0043

Tai_50×5_3 0.0208 0.1076 0.0015 0.0225 0.0065 0.0001 0.6046 0.3555 0.0000

Tai_50×5_4 0.0174 0.1230 0.0017 0.0532 0.0897 0.0000 1.4981 0.1268 0.0519

Tai_50×5_5 0.0098 0.0903 0.0042 0.0441 0.0210 0.0000 0.9365 0.0518 0.0698

Tai_50×5_6 0.0285 0.0972 0.0005 0.0427 0.0019 0.0023 0.9723 1.1903 0.0000

Tai_50×5_7 0.0094 0.0626 0.0021 0.0430 0.0882 0.0000 0.6055 1.4488 0.0000

Tai_50×5_8 0.0688 0.1347 0.0000 0.0785 0.0479 0.0000 1.3355 0.7859 0.0000

Tai_50×5_9 0.1240 0.0624 0.0000 0.1097 0.0001 0.0158 2.5634 0.1153 0.0648

Tai_50×5_10 0.0013 0.0769 0.0130 0.0181 0.0001 0.0070 1.0134 1.2503 0.0000

Average 0.0281 0.0929 0.0069 0.0451 0.0333 0.0025 1.0365 0.6492 0.0191

Tai_50×10_1 0.0801 0.0923 0.0000 0.0602 0.0463 0.0000 0.5719 0.5740 0.0801

Tai_50×10_2 0.0164 0.0644 0.0015 0.0660 0.0264 0.0004 0.6506 0.2583 0.0164

Tai_50×10_3 0.0313 0.0885 0.0000 0.0356 0.0503 0.0000 0.3509 0.5253 0.0313

Tai_50×10_4 0.0748 0.1291 0.0000 0.0952 0.0597 0.0000 1.1933 0.7006 0.0748

Tai_50×10_5 0.0317 0.1246 0.0000 0.0100 0.0438 0.0015 0.1101 0.6553 0.0317

Tai_50×10_6 0.0001 0.0754 0.0242 0.0072 0.0337 0.0026 0.0741 0.2831 0.0001

Tai_50×10_7 0.0678 0.1042 0.0000 0.0474 0.0481 0.0000 0.3679 0.4048 0.0678

Tai_50×10_8 0.0417 0.0798 0.0000 0.0608 0.0117 0.0011 0.4762 0.1079 0.0417

Tai_50×10_9 0.0428 0.0454 0.0002 0.0954 0.0295 0.0000 0.8816 0.4151 0.0428

Tai_50×10_10 0.0498 0.1492 0.0000 0.0350 0.0322 0.0000 0.2690 0.1005 0.0498

Average 0.0436 0.0953 0.0026 0.0513 0.0382 0.0006 0.4946 0.4025 0.0436

Tai_50×20_1 0.0255 0.0946 0.0005 0.0494 0.0494 0.0000 0.2822 0.2279 0.0000

Tai_50×20_2 0.0305 0.0659 0.0004 0.0458 0.0478 0.0000 0.2430 0.2715 0.0006

Tai_50×20_3 0.0038 0.1261 0.0062 0.0222 0.0458 0.0016 0.1191 0.2660 0.0080

Tai_50×20_4 0.0348 0.0865 0.0000 0.0466 0.0321 0.0001 0.2420 0.2576 0.0000

Tai_50×20_5 0.0141 0.0830 0.0016 0.0325 0.0382 0.0001 0.1791 0.1837 0.0007

Tai_50×20_6 0.0444 0.0617 0.0000 0.0590 0.0151 0.0006 0.2868 0.0663 0.0000

Tai_50×20_7 0.0230 0.0684 0.0007 0.0147 0.0621 0.0006 0.0803 0.3219 0.0028

Tai_50×20_8 0.0522 0.0423 0.0000 0.0786 0.0238 0.0002 0.3895 0.1730 0.0000

Tai_50×20_9 0.0007 0.0560 0.0154 0.0679 0.0178 0.0010 0.3787 0.1106 0.0000

Tai_50×20_10 0.0061 0.0782 0.0043 0.0578 0.0451 0.0001 0.3079 0.2664 0.0000

Average 0.0235 0.0763 0.0029 0.0475 0.0377 0.0004 0.2508 0.2145 0.0012

35

Table 3. 5 The average relative error in Cmax , MFT and MIT of problem Tai_100

 Makespan MFT MIT

Problem CDS NEH PSO CDS NEH PSO CDS NEH PSO

Tai_100×5_1 0.0047 0.1072 0.0031 0.0307 0.1104 0.0000 0.7611 3.3877 0.0000

Tai_100×5_2 0.0146 0.1278 0.0007 0.0228 0.0726 0.0000 1.5465 6.3127 0.0000

Tai_100×5_3 0.0212 0.0519 0.0010 0.0251 0.0005 0.0030 1.0418 3.3001 0.0000

Tai_100×5_4 0.0018 0.0931 0.0080 0.0017 0.0905 0.0009 0.0793 1.6482 0.0186

Tai_100×5_5 0.0989 0.0000 0.0886 0.1423 0.0000 0.1104 0.8203 1.1020 0.0000

Tai_100×5_6 0.0006 0.0441 0.0108 0.0095 0.0008 0.0042 0.2100 2.8709 0.0175

Tai_100×5_7 0.0089 0.1683 0.0012 0.0213 0.1649 0.0000 0.5958 3.9401 0.0000

Tai_100×5_8 0.0153 0.0590 0.0013 0.0317 0.0196 0.0000 2.5700 3.3516 0.0000

Tai_100×5_9 0.0124 0.0695 0.0007 0.0055 0.0095 0.0003 0.2062 0.3928 0.0660

Tai_100×5_10 0.0104 0.1217 0.0013 0.0262 0.1305 0.0000 0.8053 3.2704 0.0000

Average 0.0189 0.0843 0.0117 0.0317 0.0599 0.0119 0.8636 2.9577 0.0102

Tai_100×10_1 0.0598 0.0001 0.0238 0.0499 0.0625 0.0000 0.6604 0.2145 0.0022

Tai_100×10_2 0.0379 0.0265 0.0000 0.0319 0.0456 0.0000 1.3016 0.0000 0.6481

Tai_100×10_3 0.1283 0.0000 0.0953 0.1286 0.0000 0.0993 2.3663 0.0000 1.5710

Tai_100×10_4 0.1568 0.0000 0.1456 0.0672 0.0000 0.0468 1.7334 0.0000 1.1999

Tai_100×10_5 0.2324 0.0000 0.2222 0.2030 0.0000 0.1564 2.2895 0.0000 1.1552

Tai_100×10_6 0.0976 0.0000 0.0738 0.0497 0.0000 0.0272 0.9419 0.0000 0.5745

Tai_100×10_7 0.0608 0.0381 0.0000 0.0636 0.1082 0.0000 1.1585 0.0000 0.3347

Tai_100×10_8 0.1080 0.0000 0.1040 0.1284 0.0000 0.0906 5.3184 0.0000 3.5692

Tai_100×10_9 0.0338 0.0000 0.0582 0.0928 0.0000 0.0753 11.9100 0.0000 9.9398

Tai_100×10_10 0.0235 0.0001 0.0232 0.0253 0.0821 0.0000 0.8511 0.0000 0.4474

Average 0.0939 0.0065 0.0746 0.0840 0.0298 0.0496 2.8531 0.0214 1.9442

Tai_100×20_1 0.0488 0.0001 0.0232 0.0935 0.0000 0.0540 0.3083 0.0051 0.0572

Tai_100×20_2 0.0168 0.0591 0.0003 0.0190 0.0296 0.0000 0.1362 0.1685 0.0000

Tai_100×20_3 0.0147 0.0515 0.0001 0.0172 0.0284 0.0001 0.1139 0.1299 0.0006

Tai_100×20_4 0.0359 0.0362 0.0000 0.0583 0.0010 0.0047 0.3727 0.0143 0.0196

Tai_100×20_5 0.0012 0.0903 0.0071 0.0079 0.0531 0.0009 0.0571 0.1816 0.0045

Tai_100×20_6 0.0376 0.0613 0.0000 0.0814 0.0042 0.0017 0.5054 0.0439 0.0048

Tai_100×20_7 0.0295 0.0191 0.0000 0.0453 0.0136 0.0003 0.2969 0.1160 0.0008

Tai_100×20_8 0.0164 0.0539 0.0002 0.0339 0.0239 0.0000 0.2102 0.1705 0.0000

Tai_100×20_9 0.0073 0.0405 0.0019 0.0258 0.0128 0.0001 0.1775 0.0943 0.0004

Tai_100×20_10 0.0244 0.0202 0.0003 0.0345 0.0140 0.0000 0.2108 0.1138 0.0000

Average 0.0233 0.0432 0.0033 0.0417 0.0181 0.0062 0.2389 0.1038 0.0088

36

Table 3. 6 The average relative error in Cmax , MFT and MIT of problem Tai_200 and Tai_500

 Makespan MFT MIT

Problem CDS NEH PSO CDS NEH PSO CDS NEH PSO

Tai_200×10_1 0.0100 0.0562 0.0002 0.0618 0.0000 0.0510 0.1367 0.0743 0.0011

Tai_200×10_2 0.0265 0.1715 0.0000 0.0142 0.1150 0.0000 0.1976 1.5751 0.0000

Tai_200×10_3 0.0026 0.0536 0.0036 0.0260 0.0003 0.0036 0.2743 0.5233 0.0000

Tai_200×10_4 0.0016 0.1253 0.0051 0.0104 0.1442 0.0000 0.1644 1.5938 0.0002

Tai_200×10_5 0.0034 0.0953 0.0024 0.0054 0.0941 0.0004 0.1018 0.7997 0.0032

Tai_200×10_6 0.0222 0.1332 0.0000 0.0332 0.1435 0.0000 0.4983 1.8804 0.0000

Tai_200×10_7 0.0378 0.1373 0.0000 0.0353 0.1060 0.0000 0.6398 0.3489 0.0000

Tai_200×10_8 0.0001 0.1628 0.0140 0.0135 0.1818 0.0000 0.2319 4.0845 0.0000

Tai_200×10_9 0.0364 0.1752 0.0000 0.0208 0.1410 0.0000 0.2960 0.7618 0.0000

Tai_200×10_10 0.0205 0.0780 0.0000 0.0241 0.0514 0.0000 0.3410 1.2791 0.0000

Average 0.0161 0.1188 0.0025 0.0245 0.0977 0.0055 0.2882 1.2921 0.0005

Tai_200×10_1 0.0218 0.1219 0.0001 0.0312 0.1105 0.0000 0.2688 0.6416 0.0000

Tai_200×10_2 0.0022 0.0880 0.0036 0.0098 0.0869 0.0000 0.0800 0.4945 0.0004

Tai_200×20_3 0.0047 0.0946 0.0010 0.0173 0.0940 0.0000 0.1606 0.6374 0.0000

Tai_200×20_4 0.0009 0.0349 0.0072 0.0107 0.0375 0.0000 0.1038 0.6611 0.0000

Tai_200×20_5 0.0338 0.0703 0.0000 0.0244 0.0871 0.0000 0.1953 0.8382 0.0000

Tai_200×20_6 0.0177 0.0367 0.0003 0.0539 0.0382 0.0000 0.4636 0.5675 0.0000

Tai_200×20_7 0.0070 0.0528 0.0008 0.0293 0.0611 0.0000 0.2523 0.5203 0.0000

Tai_200×20_8 0.0363 0.1009 0.0000 0.0370 0.1098 0.0000 0.3028 1.0376 0.0000

Tai_200×20_9 0.0351 0.0089 0.0002 0.0274 0.0066 0.0002 0.2270 0.2775 0.0000

Tai_200×20_10 0.0221 0.0804 0.0000 0.0276 0.0845 0.0000 0.2341 0.6931 0.0000

Average 0.0182 0.0689 0.0013 0.0269 0.0716 0.0000 0.2288 0.6369 0.0000

Tai_500×20_1 0.0223 0.0315 0.0000 0.0124 0.0305 0.0000 0.1482 0.3843 0.0000

Tai_500×20_2 0.0329 0.0416 0.0000 0.0164 0.0164 0.0000 0.1945 0.1943 0.0000

Tai_500×20_3 0.0155 0.0204 0.0001 0.0189 0.0115 0.0000 0.2272 0.1404 0.0000

Tai_500×20_4 0.0213 0.0481 0.0000 0.0246 0.0350 0.0000 0.2966 0.4243 0.0000

Tai_500×20_5 0.0059 0.0278 0.0004 0.0121 0.0213 0.0000 0.1455 0.2538 0.0000

Tai_500×20_6 0.0107 0.0339 0.0000 0.0113 0.0204 0.0000 0.1445 0.2644 0.0000

Tai_500×20_7 0.0043 0.0400 0.0006 0.0075 0.0285 0.0000 0.0919 0.2249 0.0000

Tai_500×20_8 0.0313 0.0306 0.0000 0.0260 0.0203 0.0000 0.3062 0.2444 0.0000

Tai_500×20_9 0.0000 0.0466 0.0121 0.0002 0.0281 0.0056 0.0025 0.3506 0.0678

Tai_500×20_10 0.0210 0.0429 0.0000 0.0269 0.0398 0.0000 0.3195 0.4827 0.0000

Average 0.0165 0.0363 0.0013 0.0156 0.0252 0.0006 0.1877 0.2964 0.0068

37

Table 3. 7 The aggregate performance of problem Tai20×5 to Tai50×20

Problem Average Problem Average

 CDS NEH PSO CDS NEH PSO

Tai_20×5_1 3.9356 3.4314 0.0323 Tai_50×5_1 0.6289 0.0288 0.0000

Tai_20×5_2 8.7518 0.1787 1.0031 Tai_50×5_2 0.7907 0.0218 0.0000

Tai_20×5_3 3.2344 0.2217 0.1933 Tai_50×5_3 0.4696 0.0016 0.0000

Tai_20×5_4 4.3932 2.4289 0.0096 Tai_50×5_4 0.3395 0.0536 0.0000

Tai_20×5_5 2.3846 0.6656 0.0504 Tai_50×5_5 0.1631 0.0740 0.0000

Tai_20×5_6 0.4278 1.0193 0.0001 Tai_50×5_6 1.2894 0.0028 0.0000

Tai_20×5_7 16.225 1.2512 0.6700 Tai_50×5_7 1.5996 0.0021 0.0000

Tai_20×5_8 5.9324 3.9531 0.0517 Tai_50×5_8 0.9686 0.0000 0.0000

Tai_20×5_9 1.5895 1.3699 0.0328 Tai_50×5_9 0.1778 0.0806 0.0000

Tai_20×5_10 5.2287 5.4511 0.0039 Tai_50×5_10 1.3273 0.0200 0.0000

Average 5.2103 1.9971 0.2047 Average 0.7755 0.0285 0.0000

Tai_20×10_1 0.2728 0.4833 0.0155 Tai_50×10_1 0.7127 0.0000 0.0000

Tai_20×10_2 0.0170 0.8532 0.1331 Tai_50×10_2 0.3490 0.0054 0.0000

Tai_20×10_3 0.4886 0.4581 0.0047 Tai_50×10_3 0.6641 0.0002 0.0000

Tai_20×10_4 0.7027 0.5598 0.0000 Tai_50×10_4 0.8893 0.0000 0.0000

Tai_20×10_5 0.7397 0.6161 0.0374 Tai_50×10_5 0.8237 0.0304 0.0000

Tai_20×10_6 0.9313 0.4109 0.0043 Tai_50×10_6 0.3923 0.0474 0.0000

Tai_20×10_7 0.5393 0.1645 0.1826 Tai_50×10_7 0.5571 0.0000 0.0000

Tai_20×10_8 0.6053 0.5460 0.0021 Tai_50×10_8 0.1994 0.0080 0.0000

Tai_20×10_9 1.4812 0.4208 0.0016 Tai_50×10_9 0.4900 0.0002 0.0000

Tai_20×10_10 1.5617 0.8539 0.0003 Tai_50×10_10 0.2819 0.0152 0.0000

Average 0.7340 0.5367 0.0382 Average 0.5359 0.0107 0.0000

Tai_20×20_1 0.4160 0.0009 0.0000 Tai_50×20_1 0.3719 0.0005 0.0000

Tai_20×20_2 0.2208 0.0133 0.0000 Tai_50×20_2 0.3853 0.0010 0.0000

Tai_20×20_3 0.4482 0.0000 0.0000 Tai_50×20_3 0.4378 0.0157 0.0000

Tai_20×20_4 0.4649 0.0011 0.0000 Tai_50×20_4 0.3763 0.0001 0.0000

Tai_20×20_5 0.1179 0.0393 0.0000 Tai_50×20_5 0.3049 0.0024 0.0000

Tai_20×20_6 0.3131 0.0597 0.0000 Tai_50×20_6 0.1431 0.0006 0.0000

Tai_20×20_7 0.5909 0.0047 0.0000 Tai_50×20_7 0.4523 0.0040 0.0000

Tai_20×20_8 0.4420 0.0005 0.0000 Tai_50×20_8 0.2391 0.0002 0.0000

Tai_20×20_9 0.4203 0.0299 0.0000 Tai_50×20_9 0.1844 0.0164 0.0000

Tai_20×20_10 0.2493 0.0086 0.0000 Tai_50×20_10 0.3897 0.0045 0.0000

Average 0.3683 0.0158 0.0000 Average 0.3285 0.0045 0.0000

38

Table 3.7(Cont’d) The aggregate performance of problem Tai20×5 to Tai50×20

Problem Average Problem Average

 CDS NEH PSO CDS NEH PSO

Tai_100×5_1 0.7965 3.6053 0.0031 Tai_200×10_1 0.2085 0.1305 0.0524

Tai_100×5_2 1.5839 6.5131 0.0007 Tai_200×10_2 0.2383 1.8617 0.0000

Tai_100×5_3 1.0881 3.3525 0.0040 Tai_200×10_3 0.3029 0.5773 0.0073

Tai_100×5_4 0.0827 1.8318 0.0275 Tai_200×10_4 0.1764 1.8634 0.0053

Tai_100×5_5 1.0615 1.1020 0.1991 Tai_200×10_5 0.1106 0.9891 0.0060

Tai_100×5_6 0.2201 2.9159 0.0325 Tai_200×10_6 0.5537 2.1572 0.0000

Tai_100×5_7 0.6260 4.2733 0.0012 Tai_200×10_7 0.7128 0.5923 0.0000

Tai_100×5_8 2.6171 3.4302 0.0013 Tai_200×10_8 0.2455 4.4290 0.0140

Tai_100×5_9 0.2241 0.4718 0.0670 Tai_200×10_9 0.3532 1.0780 0.0000

Tai_100×5_10 0.8419 3.5225 0.0013 Tai_200×10_10 0.3856 1.4085 0.0000

Average 0.9142 3.1018 0.0338 Average 0.3288 1.5087 0.0085

Tai_100×10_1 0.2771 0.0260 0.0000 Tai_200×20_1 0.8740 0.0001 0.0000

Tai_100×10_2 0.0720 0.6481 0.0000 Tai_200×20_2 0.6694 0.0040 0.0000

Tai_100×10_3 0.0000 1.7656 0.0000 Tai_200×20_3 0.8259 0.0010 0.0000

Tai_100×10_4 0.0000 1.3923 0.0000 Tai_200×20_4 0.7335 0.0072 0.0000

Tai_100×10_5 0.0000 1.5337 0.0000 Tai_200×20_5 0.9956 0.0000 0.0000

Tai_100×10_6 0.0000 0.6755 0.0000 Tai_200×20_6 0.6424 0.0003 0.0000

Tai_100×10_7 0.1463 0.3347 0.0000 Tai_200×20_7 0.6342 0.0008 0.0000

Tai_100×10_8 0.0000 3.7638 0.0000 Tai_200×20_8 1.2483 0.0000 0.0000

Tai_100×10_9 0.0000 10.0734 0.0000 Tai_200×20_9 0.2930 0.0004 0.0000

Tai_100×10_10 0.0822 0.4706 0.0000 Tai_200×20_10 0.8580 0.0000 0.0000

Average 0.0578 2.0684 0.0000 Average 0.7774 0.0014 0.0000

Tai_100×20_1 0.0051 0.1344 0.0000 Tai_500×20_1 0.1830 0.4463 0.0000

Tai_100×20_2 0.2572 0.0003 0.0000 Tai_500×20_2 0.2439 0.2524 0.0000

Tai_100×20_3 0.2098 0.0008 0.0000 Tai_500×20_3 0.2616 0.1723 0.0001

Tai_100×20_4 0.0515 0.0243 0.0000 Tai_500×20_4 0.3426 0.5074 0.0000

Tai_100×20_5 0.3250 0.0125 0.0000 Tai_500×20_5 0.1635 0.3030 0.0004

Tai_100×20_6 0.1093 0.0065 0.0000 Tai_500×20_6 0.1665 0.3187 0.0000

Tai_100×20_7 0.1487 0.0011 0.0000 Tai_500×20_7 0.1037 0.2934 0.0006

Tai_100×20_8 0.2482 0.0002 0.0000 Tai_500×20_8 0.3635 0.2953 0.0000

Tai_100×20_9 0.1475 0.0024 0.0000 Tai_500×20_9 0.0026 0.4253 0.0855

Tai_100×20_10 0.1480 0.0003 0.0000 Tai_500×20_10 0.3673 0.5653 0.0000

Average 0.1650 0.0183 0.0000 Average 0.2198 0.3579 0.0086

39

Table 3. 8 The number and percentage of problems for different objective with superior results

 Makespan MFT MIT

Problem CDS NEH PSO CDS NEH PSO CDS NEH PSO

Tai_20×5 7777 0 3 0 0 10101010 0 0 10101010

Tai_20×10 2 0 8888 1 1 8888 0 1 9999

Tai_20×20 1111 0 9 0 0 10101010 0 0 10101010

Tai_50×5 2 0 8888 0 2 8888 0 1 9999

Tai_50×10 1 0 9999 0 0 10101010 0 0 10101010

Tai_50×20 1 0 9999 0 0 10101010 0 0 10101010

Tai_100×5 2 1 7777 0 3 7777 0 0 10101010

Tai_100×10 0 8888 2 0 6666 4 0 9999 1

Tai_100×20 1 1 8888 0 2 8888 0 1 9999

Tai_200×10 3 0 7777 0 2 8888 0 0 10101010

Tai_200×20 3 0 7777 0 0 10101010 0 0 10101010

Tai_500×20 1 0 9999 1 0 9999 1 0 9999

Sum 24 10 86868686 2 16 102102102102 1 12 107107107107

Percentage 20% 8.33% 71.67%71.67%71.67%71.67% 1.67% 13.33% 85%85%85%85% 0.83% 10% 89.17%89.17%89.17%89.17%

Table 3. 9 The number of problems for aggregate objectives with superior results

Problem Aggregte Problem Aggregate

 CDS NEH PSO CDS NEH PSO

Tai_20×5 0 0 10 Tai_100×5 0 0 10

Tai_20×10 0 0 10 Tai_100×10 0 0 10

Tai_20×20 0 0 10 Tai_100×20 0 0 10

Tai_50×5 0 0 10 Tai_200×10 0 0 10

Tai_50×10 0 0 10 Tai_200×20 0 0 10

Tai_50×20 0 0 10 Tai_500×20 0 0 10

Sum 0 0 60 Sum 0 0 60

The proposed PSO algorithm was compared with five heuristic algorithms: CDS

(1970), NEH (1983), RAJ (1994), GAN-RAJ (1993) and Laha (2008). We also coded

these methods in Visual C++. The CDS heuristic (1970) takes its name from its three

authors and is a heuristic generalization of Johnson’s algorithm. The process generates

a set of m–1 artificial two-machine problems, each of which is then solved by

Johnson’s rule. In this study, we modified the original CDS and compared the

40

makespan, mean flow time, and machine idle time of all m–1 generated problems. The

non-dominated solution was selected to compare with the solutions obtained from our

PSO algorithm. The other comparison was based on solutions determined by the NEH

algorithm introduced by Nawaz et al. (1983). The NEH investigates n(n+1)/2

permutations to find near-optimal solutions. As we did for CDS, we modified the

original NEH and compared the three objectives of all n(n+1)/2 sequences. We

compared the non-dominated solution from these sequences with the solutions from

our PSO.

The following two performance measures are used in this study: average-relative

percentage deviation (ARPD) and maximum percentage deviation (MPD) where MS

stands for makespan, TFT represents total flow time, MIT stands for machine idle

time, H is the heuristic.

ARPDMS= ∑
=








 −10

1

,

10

100

i i

iiH

BestMS

BestMSMS
 (3.20)

MPDMS= 100,
10..1 ×







 −
=

i

iiH
i BestMS

BestMSMS
MAX (3.21)

ARPDTFT= ∑
=








 −10

1

,

10

100

i i

iiH

BestTFT

BestTFTTFT
 (3.22)

MPDTFT= 100,
10..1 ×







 −
=

i

iiH
i BestTFT

BestTFTTFT
MAX (3.23)

ARPDMIT= ∑
=








 −10

1

,

10

100

i i

iiH

BestMIT

BestMITMIT
 (3.24)

41

MPDMIT= 100,
10..1 ×







 −
=

i

iiH
i BestMIT

BestMITMIT
MAX (3.25)

We tested our PSO on nine different problem sizes (n=20, 50, 100 and m=5, 10,

20) from Taillard’s (1993) benchmarks. Table 3.10 compares the six methods using

the ARPD and MPD. Table 4.10 shows that the proposed PSO outperforms for almost

all problem instances in the makespan object. The comparison of TFT object is

revealed in Table 3.11. It shows the ARPD and MPD of six heuristics and the Laha’s

algorithm performs better. We have given the comparison of MIT in Table 3.12 that

indicates the proposed PSO can get better solution. At last, we aggregate the results of

three objects in order to show the performance of the proposed PSO to solve the

multi-objectives problems. We observed that the PSO performed better than other five

heuristics. Table 3.13 shows the superior performance of the proposed PSO in terms

of the three simultaneous objectives. The computation cost is demonstrated on Table

3.14. The proposed PSO spend more CPU time than other construct heuristic because

of the proposed PSO is an evolutionary algorithm.

In addition, we compare TFT of benchmarks by more algorithms --- Liu and

Reeves (2001) (LR), Chakravarthy-Rajendran (1999), simulated annealing-bases

approach (SA) and Laha and Chakraborty (2008) (H-1 and H-2). The results show in

Table 3.15 for ARPD and Table 3.16 for MPD. We can observe that the H-1 and H-2

perform better than other algorithms while only one object TFT is considered.

42

Table 3. 10 Comparison of makespan(MS) for different heuristics.

Problem

size

NEH

(1983)

CDS

(1970)

RAJ

(1994)

GAN-RAJ

(1993)

Laha

(2008)

PSO

n m ARPD MPD ARPD MPD ARPD MPD ARPD MPD ARPD MPD ARPD MPD

20 5 1.84 0.25 0.76 0.15 0.44 0.12 0.63 0.14 1.55 0.21 0.00 0.00

 10 1.78 0.23 0.71 0.12 0.85 0.17 0.83 0.14 1.50 0.20 0.00 0.00

 20 1.27 0.17 0.44 0.06 0.88 0.14 0.82 0.12 1.06 0.15 0.00 0.00

50 5 1.24 0.17 0.83 0.14 0.26 0.05 0.37 0.08 1.29 0.22 0.02 0.02

 10 1.28 0.19 0.59 0.08 0.48 0.09 0.53 0.10 1.29 0.18 0.01 0.01

 20 1.08 0.17 0.07 0.02 0.35 0.07 0.39 0.07 1.02 0.16 0.06 0.03

100 5 1.04 0.19 0.46 0.12 0.36 0.07 0.23 0.07 1.05 0.16 0.07 0.07

 10 0.28 0.06 0.47 0.07 0.29 0.06 0.24 0.04 0.89 0.13 0.01 0.01

 20 0.65 0.11 0.16 0.04 0.21 0.05 0.18 0.04 0.72 0.10 0.01 0.01

(NEH= Nawaz M, Enscore JR, Ham I (1983), CDS= Campbell HG, Dudek RA, Smith ML (1970),

RAJ= Rajendran C (1994), GAN-RAJ= Gangadharan R, Rajendran C (1993), Laha= Laha &

Chakraborty (2008), PSO= proposed PSO)

Table 3. 11 Comparison of total flow time (TFT) for different heuristics

Problem

size

NEH

(1983)

CDS

(1970)

RAJ

(1994)

GAN-RAJ

(1993)

Laha

(2008)

PSO

n m ARPD MPD ARPD MPD ARPD MPD ARPD MPD ARPD MPD ARPD MPD

20 5 0.65 0.17 1.71 0.27 1.70 0.31 1.88 0.34 4.43 0.61 1.28 0.20

 10 0.70 0.10 1.43 0.18 1.29 0.19 1.47 0.23 3.43 0.51 0.95 0.12

 20 0.59 0.14 1.23 0.18 1.27 0.21 1.31 0.24 2.29 0.30 0.82 0.12

50 5 0.11 0.07 2.48 0.56 2.56 0.51 2.58 0.53 5.86 0.94 2.48 0.44

 10 7.87 7.53 11.33 9.62 10.91 9.24 11.27 9.50 14.49 10.87 10.78 9.19

 20 0.39 0.09 1.55 0.20 1.58 0.20 1.60 0.19 3.18 0.40 1.44 0.17

100 5 0.27 0.27 2.24 2.24 3.59 3.59 3.00 3.00 5.56 5.56 2.60 2.60

 10 0.87 0.87 1.86 1.86 1.91 1.91 1.80 1.80 4.02 4.02 1.93 1.93

 20 1.39 1.39 1.65 1.65 1.73 1.73 1.65 1.65 2.83 2.83 1.59 1.59

(NEH= Nawaz M, Enscore JR, Ham I (1983), CDS= Campbell HG, Dudek RA, Smith ML (1970),

RAJ= Rajendran C (1994), GAN-RAJ= Gangadharan R, Rajendran C (1993), Laha= Laha &

Chakraborty (2008), PSO= proposed PSO)

43

Table 3. 12 Comparison of machine idle time (MIT) for different heuristics

Problem

size

NEH

(1983)

CDS

(1970)

RAJ

(1994)

GAN-RAJ

(1993)

Laha

(2008)

PSO

n m ARPD MPD ARPD MPD ARPD MPD ARPD MPD ARPD MPD ARPD MPD

20 5 4.54 2.94 43.56 20.33 3.20 1.03 5.04 1.38 10.79 4.70 1.50 0.43

 10 3.87 0.83 15.03 1.94 8.07 1.48 7.93 1.42 9.92 1.76 0.00 0.00

 20 11.37 1.55 19.19 2.40 14.88 2.01 14.46 1.85 15.29 2.10 0.00 0.00

50 5 67.77 26.95 208.65 108.95 17.11 11.76 17.08 11.76 52.70 23.48 2.95 2.82

 10 1.92 0.56 10.59 1.74 4.74 0.68 4.91 0.70 6.92 1.24 0.26 0.18

 20 2.26 0.36 8.02 0.97 5.75 0.83 5.80 0.87 7.47 0.96 0.00 0.00

100 5 18.18 4.94 40.24 7.65 4.41 1.40 2.00 0.76 15.47 3.34 3.51 1.69

 10 1.96 0.43 9.54 1.38 1.92 0.38 1.65 0.41 5.47 0.98 0.15 0.09

 20 1.03 0.26 4.26 0.52 2.79 0.40 2.64 0.35 3.77 0.45 0.00 0.00

(NEH= Nawaz M, Enscore JR, Ham I (1983), CDS= Campbell HG, Dudek RA, Smith ML (1970),

RAJ= Rajendran C (1994), GAN-RAJ= Gangadharan R, Rajendran C (1993), Laha= Laha &

Chakraborty (2008), PSO= proposed PSO)

Table 3. 13 Summation of MS, TFT and MIT for different heuristics

Problem

size

NEH

(1983)

CDS

(1970)

RAJ

(1994)

GAN-RAJ

(1993)

Laha

(2008)

PSO

n m ARPD MPD ARPD MPD ARPD MPD ARPD MPD ARPD MPD ARPD MPD

20 5 7.04 3.35 46.03 20.75 5.34 1.46 7.56 1.86 16.77 5.52 2.78 0.63

 10 6.36 1.16 17.18 2.25 10.21 1.83 10.23 1.79 14.85 2.46 0.95 0.12

 20 13.23 1.86 20.86 2.64 17.03 2.36 16.60 2.22 18.63 2.54 0.82 0.12

50 5 69.12 27.19 211.96 109.65 19.93 12.33 20.03 12.37 59.84 24.64 5.45 3.28

 10 11.08 8.28 22.51 11.44 16.13 10.00 16.71 10.30 22.70 12.29 11.04 9.38

 20 3.72 0.62 9.64 1.19 7.68 1.10 7.79 1.13 11.68 1.52 1.50 0.20

100 5 19.49 5.41 42.93 10.01 8.37 5.06 5.23 3.82 22.08 9.06 6.18 4.35

 10 3.11 1.36 11.87 3.32 4.12 2.35 3.69 2.25 10.38 5.13 2.08 2.02

 20 3.08 1.77 6.07 2.21 4.73 2.19 4.47 2.04 7.33 3.38 1.60 1.60

(NEH= Nawaz M, Enscore JR, Ham I (1983), CDS= Campbell HG, Dudek RA, Smith ML (1970),

RAJ= Rajendran C (1994), GAN-RAJ= Gangadharan R, Rajendran C (1993), Laha= Laha &

Chakraborty (2008), PSO= proposed PSO)

44

Table 3. 14 Average CPU time (in seconds)

n m NEH CDS RAJ GANRAJ Laha PSO

20 5 0.0016 0.0031 0.0047 0.0014 0.0012 1.6641

 10 0.0015 0.0093 0.0094 0.0015 0.0015 2.0547

 20 0.0047 0.0109 0.0094 0.0031 0.0047 2.8078

50 5 0.0140 0.0016 0.0156 0.0047 0.0047 4.4906

 10 0.0234 0.0032 0.0297 0.0047 0.0063 5.3047

 20 0.0500 0.0078 0.0539 0.0078 0.0062 7.1593

100 5 0.0860 0.0016 0.0844 0.0047 0.0047 11.9094

 10 0.1750 0.0046 0.1750 0.0047 0.0078 13.4906

 20 0.3750 0.0078 0.3656 0.0079 0.0141 17.0079

(NEH= Nawaz M, Enscore JR, Ham I (1983), CDS= Campbell HG, Dudek RA, Smith ML (1970),

RAJ= Rajendran C (1994), GAN-RAJ= Gangadharan R, Rajendran C (1993), Laha= Laha &

Chakraborty (2008), PSO= proposed PSO)

Table 3. 15 Comparison of total flow time (TFT) for heuristics in ARPD

n m NEH CDS RAJ GANRAJ Laha LR SA H-1 H-2 PSO

20 5 0.65 1.71 1.70 1.88 4.43 0.24 1.17 0.16 0.20 1.28

 10 0.70 1.43 1.29 1.47 3.43 0.09 0.72 0.01 0.01 0.95

 20 0.59 1.23 1.27 1.31 2.29 0.15 0.66 0.12 0.07 0.82

50 5 0.11 2.48 2.56 2.58 5.86 0.56 1.78 0.55 0.54 2.48

 10 7.87 11.33 10.91 11.27 14.49 8.06 1.24 7.97 7.89 10.78

 20 0.39 1.55 1.58 1.60 3.18 0.15 1.10 0.08 0.09 1.44

100 5 0.27 2.24 3.59 3.00 5.56 0.43 1.59 0.43 0.43 2.60

 10 0.87 1.86 1.91 1.80 4.02 0.04 1.24 0.03 0.03 1.93

 20 1.39 1.65 1.73 1.65 2.83 0.08 1.13 0.01 0.02 1.59

(NEH= Nawaz M, Enscore JR, Ham I (1983), CDS= Campbell HG, Dudek RA, Smith ML (1970),

RAJ= Rajendran C (1994), GAN-RAJ= Gangadharan R, Rajendran C (1993), Laha= Laha &

Chakraborty (2008), LR= Liu J, Reeves CR (2001), SA= Chakravarthy K, Rajendran C (1999), H-1

and H-2= Laha D, Chakraborty UK (2008),PSO= proposed PSO)

The heuristic TSP-GA algorithm proposed by Ponnambalam(2004) has been

chosen to compare the performance of our PSO algorithm. The objectives considered

in TSP-GA algorithm are minimization of makespan (Cmax), minimization of mean

flow time (MFT), and minimization of machine idle time (MIT). The best production

45

sequence was chosen for each problem instance. The computational results of

twenty-one problem tackled by TSP-GA heuristic are given in Table 3.17 .

Table 3. 16 Comparison of total flow time (TFT) for heuristics in MPD

n m NEH CDS RAJ GANRAJ Laha LR SA H-1 H-2 PSO

20 5 0.17 0.27 0.31 0.34 0.61 0.12 0.21 0.11 0.12 0.20

 10 0.10 0.18 0.19 0.23 0.51 0.01 0.12 0.00 0.01 0.12

 20 0.14 0.18 0.21 0.24 0.30 0.05 0.12 0.05 0.05 0.12

50 5 0.07 0.56 0.51 0.53 0.94 0.25 0.38 0.25 0.25 0.44

 10 7.53 9.62 9.24 9.50 10.87 7.92 0.19 7.87 7.82 9.19

 20 0.09 0.20 0.20 0.19 0.40 0.04 0.16 0.04 0.04 0.17

100 5 0.27 2.24 3.59 3.00 5.56 0.43 1.59 0.43 0.43 2.60

 10 0.87 1.86 1.91 1.80 4.02 0.04 1.24 0.03 0.03 1.93

 20 1.39 1.65 1.73 1.65 2.83 0.08 1.13 0.01 0.02 1.59

(NEH= Nawaz M, Enscore JR, Ham I (1983), CDS= Campbell HG, Dudek RA, Smith ML (1970),

RAJ= Rajendran C (1994), GAN-RAJ= Gangadharan R, Rajendran C (1993), Laha= Laha &

Chakraborty (2008), LR= Liu J, Reeves CR (2001), SA= Chakravarthy K, Rajendran C (1999), H-1

and H-2= Laha D, Chakraborty UK (2008),PSO= proposed PSO)

Table 3. 17 The results of TSP_GA

Problem instance Scale N × M* Cmax MFT MIT

Car1 11×5 8243 5746 2110

Car2 13×4 8458 5524 586

Car3 12×5 9010 6410 1485

Car4 14×4 8214 5416 1620

Car5 10×6 8633 5980 11666

Car6 8×9 10690 8125 7974

Car7 7×7 6681 5247 3587

Car8 8×8 8816 6605 8492

Hel2 20×10 169 114 143

Rec01 20×5 1505 1010 423

Rec03 20×5 1207 780 267

Rec05 20×5 1391 898 631

Rec07 20×10 1899 1269 3248

Rec09 20×10 1815 1164 3213

Rec11 20×10 1806 1196 2327

Rec13 20×15 2314 1582 5469

Rec15 20×15 2307 1655 4789

Rec17 20×15 2547 1710 7111

Rec19 30×10 2496 1599 2904

Rec21 30×10 2627 1628 3177

Rec23 30×10 2469 1570 3687

*N: number of jobs; M: number of machines

46

Though, the TSP-GA selected only one manufacturing permutation for each

problem, the proposed PSO algorithm can find out a group of Pareto optimal solutions.

All the solutions included in the Pareto optimal set are measured with the solution

proposed by TSP-GA within each problem scenario. The relative evaluation method

of two algorithms is introduced below. The sequence given by the PSO is noted SPSO

with makespan, mean flow time, and machine idle time as MPSO, MFTPSO, and MITPSO,

respectively, and the sequence given by TSP-GA is noted STSPGA with makespan,

mean flow time, and machine idle time as MTSPGA, MFTTSPGA, and MITTSPGA . The

relative error in makespan, mean flow time, and machine idle time for schedule SPSO

are as follows.

(3.28)
),min(

),min(

(3.27)
),min(

),min(

(3.26)
),min(

),min(

TSPGAPSO

TSPGAPSOPSO

TSPGAPSO

TSPGAPSOPSO

TSPGAPSO

TSPGAPSOPSO

MITMIT

MITMITMIT

MFTMFT

MFTMFTMFT

MM

MMM

−

−

−

Furthermore, the relative error in makespan, mean flow time, and machine idle

time for schedule STSPGA could be derived using the following equations.

(3.31)
),min(

),min(

(3.30)
),min(

),min(

(3.29)
),min(

),min(

PSOTSPGA

PSOTSPGATSPGA

PSOTSPGA

PSOTSPGATSPGA

PSOTSPGA

PSOTSPGATSPGA

MITMIT

MITMITMIT

MFTMFT

MFTMFTMFT

MM

MMM

−

−

−

The average relative error of Cmax, MFT and MIT are given in Table 3.18. For

each problem scenario, we sum up the average relative error of Cmax, MFT and MIT

and also present in Table 3.18.

47

Table 3. 18 The average relative error of PSO and TSP-GA

Problem

instance

Average relative error

in Cmax

Average relative error

in MFT

Average relative error

in MIT

Sum of relative errors

in Cmax, MFT, MIT

PSO TSP-GA PSO TSP-GA PSO TSP-GA PSO TSP-GA

Car1 0.0019 0.0624 0 0.1134 0.1539 0.1666 0.1559 0.3426

Car2 0.0036 0.0493 0.0019 0.1167 0.8397 0.1360 0.8451 0.3021

Car3 0.0003 0.1116 0.0011 0.1706 0.6444 0.0755 0.6458 0.3578

Car4 0.0617 0.0006 0.0299 0.0101 0.0160 1.0439 0.1076 1.0547

Car5 0.0028 0.0664 0.0134 0.0701 0 2.5296 0.0162 2.6662

Car6 0 0.1774 0 0.1472 0.0218 0.1502 0.0218 0.4749

Car7 0.0563 0.0013 0.0356 0.0165 0.0651 0.8770 0.1570 0.8950

Car8 0.0188 0.0076 0.0165 0.0026 0.0002 0.2678 0.9124 0.2781

Hel2 0 0.0956 0 0.1012 0.0062 0.2418 0.0062 0.4387

Rec01 0 0.0649 0.1119 0 0 4.2732 0.1119 4.3382

Rec03 0.0427 0.0018 0.2474 0 0.0125 0.6474 0.3028 0.6493

Rec05 0.0011 0.0372 0.2210 0 0 5.4157 0.2221 5.4529

Rec07 0.0004 0.0655 0.0001 0.0634 0 1.1898 0.0006 1.3187

Rec09 0.0005 0.0334 0.0228 0.0128 0 1.1366 0.0233 1.1830

Rec11 0 0.0915 0 0.0717 0 0.7475 0 0.9108

Rec13 0.0005 0.0379 0 0.2253 0 0.6488 0.0005 0.9121

Rec15 0 0.0503 0 0.3085 0 0.4447 0 0.8037

Rec17 0 0.1531 0 0.3481 0 1.3679 0 1.8693

Rec19 0 0.0274 0.1035 0 0 0.6042 0.1035 0.6316

Rec21 0 0.1064 0.0309 0 0 1.3329 0.0309 1.4394

Rec23 0.0002 0.0526 0.0992 0 0 0.6914 0.0994 0.7441

48

CHAPTER 4 PSO for Multi-objective JSSP

4.1 Problem Formulation

A typical job shop scheduling problem could be formulated as follows. There are n

jobs to be processed through m machines. Each job must pass through each machine

once and only once. Each job should be processed through the machines in a

particular order, and there are no precedence constraints among different job

operations. Each machine can process only one job at a time, and it cannot be

interrupted. Besides, the operation time is fixed and known in advanced. The most

objective of JSSP is to find a schedule to minimize the time required to complete all

jobs, that is, makespan (Cmax). In this study, we attempt to reach the three objectives

(makespan, machine idle time and total tardiness) simultaneously. We formulate the

object function of job shop scheduling problem as follows.

Makespan,),(max mCf nC π= (4.1)

Total tardiness,] ,0max[
1

 ∑=
=

n

i
itardinesstotal Lf (4.2)

Total idle time,

}...2|}}0),,()1,({max{)1,({
2

11 ∑ =−−+−=
=

−
n

i
iitimeidletotal mjjCjCjCf πππ

 (4.3)

4.2 Particle Position Representation

In the study of job shop scheduling, we randomly generated a group of particles

positions whose value represents the associated operation priority. For an n-job

m-machine problem, the position of particle k can be represented by an m×n matrix,

i.e.

49





















=

k
mn

k
m

k
m

k
n

kk

k
n

kk

k

xxx

xxx

xxx

X

...

...

...

21

22221

11211

MMM
 , where k

ijx denotes the priority of operation ijo which

means the operation of job j that need to be processed on machine i. The particle

positions are decoded into an active schedule by Giffler and Thompson’s(1960)

heuristic.

The G&T algorithm is briefly described as follows.

Notation:

(i,j): the operation of job j that needs to be processed on machine i.

S: the partial schedule that contains scheduled operations.

Ω: the set of schedulable operations.

s(i,j): the earlist time at which operation (i,j) belongs to Ω could be started.

p(i,j): the processing time of operation (i,j).

f(i,j): the earlist time at which operation (i,j) belongs to Ω could be finished, f(i,j)

= s(i,j) + p(i,j) .

G&T algorithm

Step 1: Initialize φ=S ; Ω is initialized to contain all operations without

predecessors.

Step 2: Determine }{ min),(),(
*

jiji ff Ω∈= and the machine m* on which f*

could be realized.

Step 3: (1) Identify the operation set Ω∈′′) ,(ji such that) ,(ji ′′ requires

machine m*, and *
),(fs ji <′′

(2)Choose (i, j) from the operation set identified in (1) with the largest

priority.

(3)Add (i, j) to S.

50

(4)Assign s(i,j) as the starting time of (i, j).

Step 4: If a complete schedule has been generated, stop. Else, delete (i, j) from Ω

and include its immediate successor in Ω, then go to Step 2.

We demonstrated the mechanism of G&T algorithm by the 2×2 example shows

on Table 3.1, and the position of particle k is 







=

21

12kX .

Table 4. 1 An 2×2 example

Jobs Machine sequence Processing times

1 1, 2 p(1,2)=5; p(2,1)=4

2 2, 1 p(2,2)=4; p(1,2)=3

Initialization

Step 1: φ=S ;Ω={(1, 1), (2, 2)}.

Iteration 1

Step 2: s(1,1)=0, s(2,2)=0, f(1,1)=5, f(2,2)=4; f*=min{f(1,1),f(2,2)}=4, m*=2.

Step 3: Identify the operation set {(2, 2)}; choose operation (2, 2), which has the

largest priority, and add it into schedule S.

Step 4: Update Ω={(1,1), (1,2)}, go to Step 2.

Iteration 2

Step 2: s(1,1)=0, s(1,2)=4, f(1,1)=5, f(1,2)=7; f*=min{f(1,1),f(1,2)}=5, m*=1.

Step 3: Identify the operation set {(1, 1), (1, 2)}; choose operation (1, 2), which

has the largest priority, and add it into schedule S.

Step 4: Update Ω={(1, 1)} , go to Step 2.

Iteration 3

51

Step 2: s(1,1)=7, f(1,1)=12; f*=min{f(1,1)}=12, m*=1.

Step 3: Identify the operation set {(1, 1)}; choose operation (1, 1), which has the

largest priority, and add it into schedule S.

Step 4: Update Ω={(2, 1)} , go to Step 2.

Iteration 4

Step 2: s(2,1)=12, f(2,1)=16; f*=min{f(2,1)}=16, m*=2.

Step 3: Identify the operation set {(2, 1)}; choose operation (2, 1), which has the

largest priority, and add it into schedule S.

Step 4: A complete schedule has been generated, and then stops.

The proposed PSO differs from the original PSO in the information stored in the

pbest and gbest solution. While the original PSO keeps the best positions found so far,

the proposed PSO holds the best schedule generated by G&T algorithm. In the

previous example, the schedule Sk rather than the position Xk is retained in the pbest

and gbest solutions, where Sk is 








12

12
. Based on the insertion operator the

movement of particles is modified in accordance to the representation of particle

position.

4.3 Particle Velocity

In the proposed PSO for job shop scheduling, the velocity of operation oij of particle k

is denoted by k
ijv , { }1,0∈k

ijv , where oij is the operation of job j that needs to be

52

processed on machine i. When k
ijv equals 1, it means that operation oij in the

preference list of particle k (the position matrix, Xk) has just been moved to the

current location, and we should not move it in this iteration. On the other hand, if

operation oij is moved to a new location in this iteration, we set k
ijv � 1, indicating

that oij has been moved in this iteration and should not been moved in the next few

iterations.

 Just as the original PSO is applied to a continuous space, inertia weight w is used

to control particle velocities. We randomly update velocities at the beginning of the

iteration. For each particle k and operation oij, if
k
ijv equals 1, k

ijv will be set to 0

with probability (1－w). This means that if operation oij is fixed on the current

location in the preference list of particle k, oij is allowed to move in this iteration with

probability (1－w). The newly moved operations will then be fixed for more iteration

with larger inertia weight, and fixed for less iterations with smaller inertia weight.

4.4 Particle Movement

The particle movement of job shop scheduling is based on the swap operator proposed

by D.Y. Sha et al. (2006).

Notations:

k
ix is the schedule list of machine i of particle k.

k
ipbest is the schedule list of machine i of k-th pbest solution.

igbest is the schedule list of machine i of gbest solution.

53

c1 and c2 are constant between 0 and 1, 121 ≤+ cc .

The swap procedure is accounted as below.

Step 1: Randomly choose a position ζ from k
ix .

Step 2: Mark the job on position ζ of k
ix by Λ1.

Step 3: If the random number rand < c1 then seek the position of Λ1 in k
ipbest ,

otherwise seek the position of Λ1 in igbest . Denote the position that has

been found in k
ipbest or igbest by ζ′, and job in position ζ′ of k

ix by

Λ2.

Step 4: If Λ2 has been denoted, 0
1

=k
iJv and 0

2
=k

iJv , then swap Λ1 and Λ2 in

k
ix , 1

1
←k

iJv .

Step 5: If all the position of k
ix have been considered, then stop. Otherwise, if ζ

< n, then ζ←ζ+1, else ζ←1, go to Step 2.

We take a 6-job problem for example where k
ix =[4 2 1 3 6 5], k

ipbest =[1 5 4 2

6 3], igbest =[3 2 6 4 5 1], k
iv =[0 0 1 0 0 0], c1=0.6 and c2=0.2.

Step 1: The position of k
ix is randomly chose, ζ=3.

Step 2: The job in the 3rd position of k
ix is job 1, namely Λ1=1.

Step 3: A random number rand is generated, say rand=0.7. Since rand > c1, we

compare each position of igbest with Λ1 and the matched position ζ′=6.

The job in the 6th position of k
ix is job 5, namely Λ2=5.

Step 4: Since 04 =k
iv and 05 =k

iv , swap job 1 and job 5 in kix , then k
ix =[4 2 5

3 6 1], and let 14 ←k
iv then k

iv =[0 0 1 1 0 0].

54

Step 5: Let ζ←4 and go to Step2. Repeat the process until all positions of k
ix

have been considered.

Figure 4. 1 Example of JSSP

Figure 4. 2 Finding the location to exchange

Figure 4. 3 Exchange operation of PSO

4.5 Diversification strategy

If all the particles have the same non-dominated solutions, they will be trapped in

local optima. To prevent this from happening, a diversification strategy is proposed to

keep the non-dominated solutions different. Once any new solution is generated by

particles, the non-dominating solution set will be updated in these three situations:

55

(1)If the solution of the particle dominates the gbest solution, assign the particle

solution to the gbest.

(2)If the solution of the particle equals to any solution in the non-dominated

solution set, replace the non-dominated solution with the particle solution.

If the solution of the particle is dominated by the worst solution and not equal to

any non-dominated solution, set the worst solution equal to the particle solution.

4.6 Computational Results

The proposed multi-objective PSO (MOPSO) algorithm was tested on benchmark

problems obtained from the OR-Library. The program was coded in Visual C++ and

run 40 times on each problem on a Pentium 4 3.0-GHz computer with 1 GB of RAM

running Windows XP.

The Taguchi methods employ the loss function for measuring product or process

quality as well as for determining manufacturer’s tolerance limits (Taguchi 1986).

Basically, the objective is to improve product or process quality by reducing the mean

squared deviation. Taguchi also proposes signal-to-noise (S/N) ratio to the

nominal-the-best (NTB), the smaller-the-better (STB), and the larger-the-better (LTB)

problems, which are used when quality characteristics are static, to evaluate the

robustness of a system performance. In this study, we focus on the minimization of

the objective function with the STB characteristic. Therefore, the definition of the S/N

ratio is as follow.









∑⋅−=
=

n

i
iyNS

1

2

n

1
Log10/ (4.4)

 where n denotes the number of repetition, yi represents the experimental data.

The parameter of PSO includes weight, learning factors (c1, c2), swarm size and

iteration numbers. This study considers four factors with four levels each. The

56

parameter settings of four factors are as Table 4.2. We choose the orthogonal array L16

to execute the experiments.

Table 4. 2 The parameter of PSO

Factors
Level

1 2 3 4
A (w) 0.1 0.3 0.6 0.9
B(c1, c2) 0.1, 0.9 0.3, 0.7 0.5, 0.5 0.7, 0.3
C(Swarm size) 60 80 100 120
D(Iteration) 50 100 150 200

According to the L16，the experimental data and S/N ratio of 15×15 problems are

given in Table 4.3. According to Table 4.3, the factors response of S/N ratio is showed

in Table 4.4. The factors response diagram of S/N ratio shows as Figure4.4. Table 4.5

shows the best level of factors.

Table 4. 3 The L16 orthogonal array and S/N ration of 15×15 problem

No. of
Experiment

Level of Factors
S/N ratio

A(w) B(c1, c2) C(Swarm size) D(Iteration)
1 1 1 1 1 -79.4583
2 1 2 2 2 -79.1078
3 1 3 3 3 -78.8201
4 1 4 4 4 -78.9164
5 2 1 2 3 -78.8372
6 2 2 1 4 -79.1162
7 2 3 4 1 -79.4006
8 2 4 3 2 -79.1026
9 3 1 3 4 -78.9947
10 3 2 4 3 -79.2078
11 3 3 1 2 -79.5239
12 3 4 2 1 -80.0762
13 4 1 4 2 -80.3084
14 4 2 3 1 -80.7562
15 4 3 2 4 -80.1928
16 4 4 1 3 -80.4881

Table 4. 4 The factors response of 15×15 problem

Level
Factors

A(w) B(c1, c2) C(Swarm size) D(Iteration)
1 -79.0826 -79.4384 -79.6775 -79.9582
2 -79.1187 -79.6066 -79.5934 -79.5393
3 -79.4700 -79.5118 -79.4926 -79.3945
4 -80.4416 -79.6955 -79.4904 -79.3371

57

Figure 4. 4 The factor response diagram of S/N ratio diagram of 15×15 problem

Table 4. 5 The best level of factors of 15×15 problem

Level
Factors

w c1, c2 Swarm size Iteration
 1 1 4 4
 0.1 0.1, 0.9 120 200

According to the L16，the experimental data and S/N ratio of 20×15 problems are

given in Table 4.6. According to Table 4.6, the factors response of S/N ratio is showed

in Table 4.7. The factors response diagram of S/N ratio shows as Figure4.5. Table 4.8

shows the best level of factors.

Table 4. 6 The L16 orthogonal array and S/N ration of 20×15 problem

No. of
Experiment

Level of Factors
S/N ratio

w c1, c2 Swarm size Iteration
1 1 1 1 1 -79.6904
2 1 2 2 2 -79.3892
3 1 3 3 3 -79.5379
4 1 4 4 4 -79.1821
5 2 1 2 3 -79.4004
6 2 2 1 4 -79.5285
7 2 3 4 1 -80.5712
8 2 4 3 2 -79.9816
9 3 1 3 4 -79.6734
10 3 2 4 3 -79.8359
11 3 3 1 2 -80.3399
12 3 4 2 1 -81.1149
13 4 1 4 2 -81.2241
14 4 2 3 1 -81.5864
15 4 3 2 4 -81.0604
16 4 4 1 3 -81.2293

58

Table 4. 7 The factors response of 20×15 problem

Level
Factors

w c1, c2 Swarm size Iteration
1 -79.4540 -80.0597 -80.2499 -80.7967
2 -79.8950 -80.1805 -80.3232 -80.2853
3 -80.2782 -80.4116 -80.2769 -80.0649
4 -81.2794 -80.4571 -80.2709 -79.9229

Figure 4. 5 The factor response diagram of S/N ratio diagram of 20×15 problem

Table 4. 8 The best level of factors of 20×15 problem

Level
Factors

w c1, c2 Swarm size Iteration
 1 1 4 4
 0.1 0.1, 0.9 120 200

According to the L16，the experimental data and S/N ratio of 20×20 problems are

given in Table 4.9. According to Table 4.9, the factors response of S/N ratio is showed

in Table 4.10. The factors response diagram of S/N ratio shows as Figure4.6. Table

4.11 shows the best level of factors of 20×20 problem.

59

Table 4. 9 The L16 orthogonal array and S/N ration of 20×20 problem

No. of
Experiment

Level of Factors
S/N ratio

w c1, c2 Swarm size Iteration
1 1 1 1 1 -85.2975
2 1 2 2 2 -85.0583
3 1 3 3 3 -85.0206
4 1 4 4 4 -84.6681
5 2 1 2 3 -84.8432
6 2 2 1 4 -84.8625
7 2 3 4 1 -85.7203
8 2 4 3 2 -85.128
9 3 1 3 4 -84.9865
10 3 2 4 3 -85.2221
11 3 3 1 2 -85.4592
12 3 4 2 1 -86.1118
13 4 1 4 2 -86.2683
14 4 2 3 1 -86.5763
15 4 3 2 4 -86.174
16 4 4 1 3 -86.1046

Table 4. 10 The factors response of 20×20 problem

Level
Factors

w c1, c2 Swarm size Iteration
1 -85.0169 -85.3857 -85.4541 -85.9522
2 -85.1533 -85.4848 -85.5882 -85.5058
3 -85.4656 -85.6137 -85.4816 -85.3256
4 -86.2846 -85.5477 -85.5100 -85.2145

Figure 4. 6 The factor response diagram of S/N ratio diagram of 20×20 problem

Table 4. 11 The best level of factors of 20×20 problem

Level
Factors

w c1, c2 Swarm size Iteration
 1 1 3 4
 0.1 0.1, 0.9 100 200

60

According to the L16，the experimental data and S/N ratio of 30×15 problems are

given in Table 4.12. According to Table 4.12, the factors response of S/N ratio is

showed in Table 4.13. The factors response diagram of S/N ratio shows as Figure4.7.

Table 4.14 shows the best level of factors of 30×15 problem.

Table 4. 12 The L16 orthogonal array and S/N ration of 30×15 problem

No. of
Experiment

Level of Factors
S/N ratio

w c1, c2 Swarm size Iteration
1 1 1 1 1 -80.9651
2 1 2 2 2 -80.6913
3 1 3 3 3 -80.4876
4 1 4 4 4 -80.2728
5 2 1 2 3 -80.2116
6 2 2 1 4 -80.4169
7 2 3 4 1 -82.1322
8 2 4 3 2 -81.3419
9 3 1 3 4 -80.5676
10 3 2 4 3 -81.1456
11 3 3 1 2 -81.9082
12 3 4 2 1 -82.4581
13 4 1 4 2 -82.2892
14 4 2 3 1 -82.5693
15 4 3 2 4 -82.2314
16 4 4 1 3 -82.3951

Table 4. 13 The factors response of 30×15 problem

Level
Factors

w c1, c2 Swarm size Iteration
1 -80.6117 -81.0826 -81.4900 -82.0755
2 -81.0946 -81.2888 -81.5040 -81.5989
3 -81.5794 -81.7436 -81.3253 -81.1448
4 -82.3731 -81.7055 -81.5340 -80.9489

61

Figure 4. 7 The factor response diagram of S/N ratio diagram of 30×15 problem

Table 4. 14 The best level of factors of 30×15 problem

Level
Factors

w c1, c2 Swarm size Iteration
 1 1 3 4
 0.1 0.1, 0.9 100 200

According to the L16，the experimental data and S/N ratio of 30×20 problems are

given in Table 4.15. According to Table 4.15, the factors response of S/N ratio is

showed in Table 4.16. The factors response diagram of S/N ratio shows as Figure4.8.

Table 4.17 shows the best level of factors of 30×20 problem.

Table 4. 15 The L16 orthogonal array and S/N ration of 30×20 problem

No. of
Experiment

Level of Factors
S/N ratio

w c1, c2 Swarm size Iteration
1 1 1 1 1 -85.9203
2 1 2 2 2 -85.2966
3 1 3 3 3 -85.3185
4 1 4 4 4 -85.0323
5 2 1 2 3 -85.1811
6 2 2 1 4 -85.2356
7 2 3 4 1 -86.7576
8 2 4 3 2 -86.0746
9 3 1 3 4 -85.5114
10 3 2 4 3 -85.8642
11 3 3 1 2 -86.4892
12 3 4 2 1 -86.9177
13 4 1 4 2 -86.962
14 4 2 3 1 -87.3283
15 4 3 2 4 -86.8707
16 4 4 1 3 -86.93

62

Table 4. 16 The factors response of 30×20 problem

Level
Factors

w c1, c2 Swarm size Iteration
1 -85.4043 -85.9470 -86.1896 -86.7605
2 -85.8617 -86.0174 -86.1451 -86.2479
3 -86.2298 -86.4007 -86.1320 -85.8799
4 -87.0265 -86.3056 -86.2201 -85.7249

Figure 4. 8 The factor response diagram of S/N ratio diagram of 30×20 problem

Table 4. 17 The best level of factors of 30×20 problem

Level
Factors

w c1, c2 Swarm size Iteration
 1 1 3 4
 0.1 0.1, 0.9 100 200

According to the L16，the experimental data and S/N ratio of 50×15 problems are

given in Table 4.18. According to Table 4.18, the factors response of S/N ratio is

showed in Table 4.19. The factors response diagram of S/N ratio shows as Figure4.9.

Table 4.20 shows the best level of factors of 50×15 problem.

63

Table 4. 18 The L16 orthogonal array and S/N ration of 50×15 problem

No. of
Experiment

Level of Factors
S/N ratio

w c1, c2 Swarm size Iteration
1 1 1 1 1 -82.4901
2 1 2 2 2 -82.8781
3 1 3 3 3 -83.4561
4 1 4 4 4 -82.5799
5 2 1 2 3 -82.0682
6 2 2 1 4 -82.4229
7 2 3 4 1 -84.2093
8 2 4 3 2 -83.2563
9 3 1 3 4 -82.5724
10 3 2 4 3 -83.2699
11 3 3 1 2 -83.8847
12 3 4 2 1 -84.0546
13 4 1 4 2 -83.8385
14 4 2 3 1 -84.3872
15 4 3 2 4 -83.8774
16 4 4 1 3 -83.9298

Figure 4. 9 The factor response diagram of S/N ratio diagram of 50×15 problem

Table 4. 19 The factors response of 50×15 problem

Level
Factors

w c1, c2 Swarm size Iteration
1 -82.8678 -82.7947 -83.2423 -83.8471
2 -83.0693 -83.3023 -83.2918 -83.4845
3 -83.4836 -83.8650 -83.4670 -83.2330
4 -84.0140 -83.4943 -83.5173 -82.9050

64

Table 4. 20 The best level of factors of 50×15 problem

Level
Factors

w c1, c2 Swarm size Iteration
 1 1 1 4
 0.1 0.1, 0.9 60 200

According to the L16，the experimental data and S/N ratio of 50×20 problems are

given in Table 4.21. According to Table 4.21, the factors response of S/N ratio is

showed in Table 4.22. The factors response diagram of S/N ratio shows as Figure4.10.

Table 4.23 shows the best level of factors of 50×15 problem.

Table 4. 21 The L16 orthogonal array and S/N ration of 50×20 problem

No. of
Experiment

Level of Factors
S/N ratio

w c1, c2 Swarm size Iteration
1 1 1 1 1 -87.1114
2 1 2 2 2 -87.0564
3 1 3 3 3 -87.589
4 1 4 4 4 -86.2943
5 2 1 2 3 -86.4336
6 2 2 1 4 -86.4534
7 2 3 4 1 -88.1888
8 2 4 3 2 -87.3232
9 3 1 3 4 -86.5846
10 3 2 4 3 -87.2789
11 3 3 1 2 -87.9287
12 3 4 2 1 -88.1861
13 4 1 4 2 -87.9479
14 4 2 3 1 -88.349
15 4 3 2 4 -87.895
16 4 4 1 3 -88.0081

Table 4. 22 The factors response of 50×20 problem

Level
Factors

w c1, c2 Swarm size Iteration
1 -87.0371 -87.0608 -87.4212 -87.9857
2 -87.1615 -87.3397 -87.4470 -87.5811
3 -87.5381 -87.9055 -87.5072 -87.3649
4 -88.0537 -87.5140 -87.4874 -86.8558

65

Figure 4. 10 The factor response diagram of S/N ratio diagram of 50×20 problem

Table 4. 23 The best level of factors of 50×20 problem

Level
Factors

w c1, c2 Swarm size Iteration
 1 1 1 4
 0.1 0.1, 0.9 60 200

The results of the experiments showed that the best level of parameter w, c1, c2

and iteration numbers are the same even in different scale of problems. The inertia

weight w is 0.1 which means the particles prefer to move slowly in the searching

progress. The possibilities of moving back to original position are existed. However,

the learning factors c1 and c2 are fixed 0.1 and 0.9, no matter the scale of the problems

are changed. We can say that the particles are intended to learn from the global

solution more than the local best solution. That is the particles learning more from

swarm experience than individual experience.

During the pilot experiment, we used four swarm sizes N (60, 80, 100, and 120)

to test the algorithm. The outcome of N=120 was best, so that value was used in all

further tests. Parameters c1 and c2 were tested at various values in the range 0.1–0.7 in

increments of 0.2. The inertial weight w was reduced from wmax to wmin during

iterations, where wmax was set to 0.5, 0.7, and 0.8, and wmin was set to 0.1, 0.3, and 0.5.

66

The combination of c1=0.1, c2=0.8, wmax=0.5 and wmin=0.1 gave the best results. The

maximum iteration limit was set to 200 and the maximum archive size was set to 120.

The MOGA proposed by Ponnambalam et al. (2001) was chosen as a baseline

against which to compare the performance of our PSO algorithm. The objectives

considered in the MOGA algorithm are minimization of makespan, minimization of

total tardiness, and minimization of machine idle time. The MOGA methodology is

based on the machine-wise priority dispatching rule (pdr) and the G&T procedure

(1960). The each gene represents a pdr code. The G&T procedure was used to

generate an active feasible schedule. The MOGA fitness function is the weighted sum

of makespan, total tardiness, and total idle time of machines with random weights.

The computation results showed that the relative error of the solution for Cmax

and total idle time determined by the proposed MOPSO was better in 23 out of 23

problems than the MOGA. In 22 of the 23 problems, the proposed PSO performed

better for the solution considering total tardiness. Overall, the proposed MOPSO was

superior to the MOGA in solving the JSP with multiple objectives.

67

Table 4. 24 Comparison of MOGA and MOPSO for Makespan

Benchmark n m Makespan (MOGA) Makespan (MOPSO) % Deviation

abz5 10 10 1587 1338 0

abz6 10 10 1369 1046 0

ft06 6 6 76 56 0

ft10 10 10 1496 1045 0

la01 10 5 1256 709 0

la02 10 5 1066 713 0

la03 10 5 821 671 0

la04 10 5 861 631 0

la05 10 5 893 593 0

la16 10 10 1452 1040 0

la17 10 10 1172 889 0

la19 10 10 1251 938 0

la20 10 10 1419 985 0

orb01 10 10 1704 1181 0

orb02 10 10 1284 1029 0

orb03 10 10 1643 1114 0

orb04 10 10 1543 1122 0

orb05 10 10 1323 1013 0

orb06 10 10 1645 1144 0

orb07 10 10 583 302 0

orb08 10 10 1340 1000 0

orb09 10 10 1462 1044 0

orb10 10 10 1382 1077 0

68

Table 4. 25 Comparison of MOGA and MOPSO for Total idle time

Benchmark n m Total idle time(MOGA) Total idle time(MOPSO) % Deviation

abz5 10 10 8097 3978 0

abz6 10 10 7744 2937 0

ft06 6 6 259 100 0

ft10 10 10 9851 1999 0

la01 10 5 3431 571 0

la02 10 5 2687 573 0

la03 10 5 1722 633 0

la04 10 5 1798 557 0

la05 10 5 2182 473 0

la16 10 10 9169 2718 0

la17 10 10 7044 3365 0

la19 10 10 7164 2796 0

la20 10 10 8745 2883 0

orb01 10 10 11631 3909 0

orb02 10 10 7585 3539 0

orb03 10 10 11138 3788 0

orb04 10 10 9802 3921 0

orb05 10 10 8322 3727 0

orb06 10 10 10836 3478 0

orb07 10 10 3423 1381 0

orb08 10 10 8840 3542 0

orb09 10 10 9439 4224 0

orb10 10 10 8271 4177 0

69

Table 4. 26 Comparison of MOGA and MOPSO for Total tardiness

Benchmark N m Total tardiness (MOGA) Total tardiness (MOPSO) % Deviation

abz5 10 10 1948 611 0

abz6 10 10 1882 339 0

ft06 6 6 31 3 0

ft10 10 10 3459 1534 0

la01 10 5 3324 721 0

la02 10 5 2081 425 0

la03 10 5 1926 373 0

la04 10 5 3194 673 0

la05 10 5 1716 736 0

la16 10 10 1127 1417 0

la17 10 10 1779 53 0

la19 10 10 1581 733 0

la20 10 10 1451 407 0

orb01 10 10 3052 191 0

orb02 10 10 1565 137 0

orb03 10 10 4140 247 0

orb04 10 10 4951 221 0

orb05 10 10 2195 30 0

orb06 10 10 2601 0 0

orb07 10 10 699 0 0

orb08 10 10 3498 253 0

orb09 10 10 2029 0 0

orb10 10 10 1806 0 0

70

Table 4. 27 Comparison of MOGA and MOPSO with three objectives

Problem n m Makespan Total machine idle time Total tardiness

 MOGA MOPSO MOGA MOPSO MOGA MOPSO

 best best average worst best best average worst best best average worst

abz5 10 10 1587 1399 1460 1521 8097 3911 4429.6 5441 1948 90 372.2 725

abz6 10 10 1369 1049 1102.6 1162 7744 2868 3203.1 3875 1882 90 232.85 385

ft10 10 10 1496 1055 1123.6 1166 9851 1630 2204.45 2762 3459 848 1231.95 1663

la16 10 10 1452 1015 1077 1152 9169 2740 3157.65 3679 1127 340 517.95 813

la17 10 10 1172 840 898.6 976 7044 2643 2997.8 3279 1779 277 392.9 552

la19 10 10 1251 923 998.15 1047 7164 2288 3023.2 3476 1581 49 264.45 567

la20 10 10 1419 980 1051.65 1123 8745 2758 3246.7 3779 1451 204 357.1 439

orb01 10 10 1704 1234 1274 1377 11631 3700 4125.8 4812 3052 769 1098.85 1629

orb02 10 10 1284 999 1066 1135 7585 3352 3768.8 4561 1565 64 249.65 436

orb03 10 10 1643 1165 1256.05 1354 11138 3620 4277.85 4839 4140 571 1071.45 1552

orb04 10 10 1543 1134 1208.7 1327 9802 3682 4451.6 5482 4951 443 809.4 1267

orb05 10 10 1323 1009 1066.1 1118 8322 3328 3923.05 4253 2195 136 413.25 697

orb06 10 10 1645 1124 1211.75 1272 10836 3192 3718.8 4177 2601 558 914.15 1390

orb07 10 10 583 271 290.45 318 3423 233 344.15 580 699 63 82.9 112

orb08 10 10 1340 976 1067.3 1123 8840 3349 3810.55 4202 3498 745 1026.15 1365

orb09 10 10 1462 1024 1106.65 1196 9439 3762 4279.3 4658 2029 445 642.1 765

orb10 10 10 1382 1123 1172.65 1243 8271 3863 4531.35 4954 1806 45 479.5 774

la01 10 5 1256 715 770.55 819 3431 479 661.3 1032 3324 453 599.75 861

la02 10 5 1066 713 758.45 804 2687 411 549.5 688 2081 296 447.75 706

la03 10 5 821 663 703.55 757 1722 648 776.55 902 1926 381 684.5 926

la04 10 5 861 601 669.85 720 1798 345 582.55 727 3194 389 563.45 768

la05 10 5 893 593 609.55 669 2182 390 517.65 665 1716 477 630.55 900

ft06 6 6 76 58 60.65 68 259 93 118.7 163 31 0 0.75 9

71

Table 4. 28 The results of solving FT, ABZ, ORB and YN with MOPSO

Problem n m Makespan MFT MIT

 best average worst best average worst best average worst

ft06 6 6 55 55.24 57 49 50.29 51 54 60.90 90

ft10 10 10 973 997.48 1033 852 885.62 938 1116 1707.24 2131

ft20 20 5 1247 1280.19 1315 883 951.00 1032 166 361.90 551

abz5 10 10 1249 1276.62 1329 1134 1173.86 1236 3124 3531.10 4223

abz6 10 10 948 971.24 996 889 910.24 933 2370 2688.14 3069

abz7 20 15 779 791.00 814 676 693.10 714 3132 3452.52 3665

abz8 20 15 776 803.81 835 681 708.52 732 3193 3551.24 3973

abz9 20 15 786 823.19 843 667 696.71 739 3225 3660.62 4321

orb01 10 10 1093 1136.95 1185 992 1026.43 1076 1286 1780.62 2677

orb02 10 10 921 939.24 967 867 897.19 925 2185 2600.33 2925

orb03 10 10 1064 1101.05 1148 962 1015.52 1072 1186 1627.24 2366

orb04 10 10 1031 1070.95 1106 994 1029.81 1079 2179 2645.14 3342

orb05 10 10 896 946.81 1003 828 870.86 915 2331 2734.57 3351

orb06 10 10 1028 1071.76 1135 955 985.24 1068 1439 1666.90 1980

orb07 10 10 403 420.71 438 381 402.24 425 919 1094.00 1195

orb08 10 10 937 957.90 1025 882 904.48 946 1123 1606.57 1990

orb09 10 10 958 981.10 1028 903 942.90 1004 2291 2699.14 3127

orb10 10 10 967 1023.00 1065 944 991.67 1029 2606 2927.95 3338

yn1 20 20 999 1030.52 1058 889 908.38 931 6481 7002.14 7456

yn2 20 20 1043 1073.52 1127 940 966.62 1003 7116 7598.67 8363

yn3 20 20 1021 1044.00 1072 912 938.29 961 6640 7039.33 7880

yn4 20 20 1108 1141.86 1160 973 1005.29 1033 7223 7752.76 8387

72

Table 4. 29 The results of solving LA with MOPSO

Problem n m Makespan MFT MIT

 best average worst best average worst best average worst

la01 10 5 666 666.10 668 561 584.90 604 242 336.81 435

la02 10 5 665 682.19 706 525 560.29 591 223 401.57 548

la03 10 5 608 626.86 657 508 540.62 594 431 518.24 579

la04 10 5 593 605.48 617 516 537.43 571 209 314.48 426

la05 10 5 593 593.00 593 483 517.05 559 422 492.67 652

la06 15 5 926 926.00 926 762 789.57 832 393 488.86 584

la07 15 5 890 894.95 906 672 714.52 745 532 623.48 676

la08 15 5 863 865.95 884 710 740.10 783 239 333.71 450

la09 15 5 951 951.05 952 805 818.95 849 273 359.57 445

la10 15 5 958 958.00 958 798 835.62 865 433 523.90 624

la11 20 5 1222 1222.00 1222 960 1014.10 1072 344 496.71 654

la12 20 5 1039 1039.00 1039 840 881.43 926 346 393.38 454

la13 20 5 1150 1151.52 1162 926 984.81 1043 334 452.52 555

la14 20 5 1292 1292.00 1292 1010 1056.10 1094 544 822.52 1014

la15 20 5 1210 1236.57 1255 926 986.57 1041 371 588.86 726

la16 10 10 979 992.90 1008 798 847.48 882 2644 2962.62 3265

la17 10 10 784 801.19 832 725 745.05 777 2333 2555.43 2909

la18 10 10 853 892.14 942 760 788.48 829 2417 2660.52 2920

la19 10 10 847 875.10 902 753 782.71 805 2000 2329.05 2625

la20 10 10 907 922.48 942 789 811.19 852 2328 2597.76 2997

la21 15 10 1136 1177.67 1229 965 1006.81 1047 2230 2584.67 3157

la22 15 10 1000 1026.67 1049 879 909.43 963 2056 2323.43 2756

la23 15 10 1040 1080.19 1111 934 967.81 1002 1826 2129.10 2345

la24 15 10 1004 1034.33 1072 900 929.10 961 1741 2039.14 2313

la25 15 10 1042 1076.57 1122 906 939.05 979 2004 2512.86 2909

la26 20 10 1347 1376.48 1417 1145 1195.62 1263 1932 2425.86 2725

la27 20 10 1378 1428.43 1480 1163 1225.95 1295 1979 2521.57 3074

la28 20 10 1373 1400.24 1425 1187 1217.33 1289 2154 2568.48 2863

la29 20 10 1345 1382.67 1428 1130 1183.24 1252 2846 3106.90 3474

la30 20 10 1443 1488.05 1529 1175 1255.24 1305 2530 3032.29 3443

la31 30 10 1850 1880.52 1918 1528 1593.81 1643 2654 2923.14 3292

la32 30 10 1969 2013.57 2056 1705 1733.29 1771 2425 2765.76 3186

la33 30 10 1767 1834.19 1887 1520 1572.81 1648 2424 2783.14 3342

la34 30 10 1846 1893.43 1924 1564 1623.24 1682 2375 2824.62 3110

la35 30 10 1946 2020.24 2111 1600 1651.24 1710 3295 3917.29 4550

73

Table 4.19(cont’d) The results of solving LA with MOPSO

la36 15 15 1351 1395.33 1447 1211 1256.33 1321 6595 7075.29 7914

la37 15 15 1504 1548.24 1617 1280 1315.29 1351 6909 7622.57 8405

la38 15 15 1272 1334.10 1378 1130 1158.24 1217 5819 6796.67 7999

la39 15 15 1331 1367.43 1404 1141 1185.43 1217 5875 6404.76 7103

la40 15 15 1293 1322.67 1367 1160 1193.10 1248 5607 6227.33 7030

Table 4. 30 The results of solving SWV with MOPSO

Problem n m Makespan MFT MIT

 best average worst best average worst best average worst

swv01 20 10 1694 1724.285714 1761 1442 1507.238095 1577 2375 2965.142857 3703

swv02 20 10 1710 1758.52381 1805 1490 1558.761905 1622 2265 2961.619048 3652

swv03 20 10 1672 1720.047619 1781 1483 1540.333333 1606 2323 2883.666667 3421

swv04 20 10 1734 1802.666667 1860 1504 1560.52381 1644 1967 2602.809524 3091

swv05 20 10 1749 1787.428571 1824 1498 1575.571429 1630 2094 2571.047619 3881

swv06 20 15 2099 2141.666667 2220 1714 1785.809524 1928 4559 5697.333333 7070

swv07 20 15 1957 2003.095238 2057 1631 1705.333333 1806 4872 5427.380952 6718

swv08 20 15 2155 2210.190476 2260 1718 1800.428571 1880 5353 6335.333333 7728

swv09 20 15 2048 2114.952381 2164 1644 1739.142857 1871 5005 6113.47619 7360

swv10 20 15 2138 2183.809524 2227 1742 1805.380952 1916 5297 6266.142857 7290

swv11 50 10 3815 3865 3944 2902 3006.285714 3145 3755 4884.571429 6071

swv12 50 10 3742 3881.714286 3987 2885 2993.333333 3164 4097 5032.809524 5931

swv13 50 10 3884 3937.52381 3990 2888 2992.428571 3069 4655 5961.380952 7658

swv14 50 10 3658 3743.142857 3855 2686 2841.571429 2997 3305 4400.619048 5821

swv15 50 10 3681 3752.714286 3844 2725 2839.52381 2923 3978 5279.380952 6326

swv16 50 10 2924 2954.047619 3043 2446 2517.142857 2614 2970 3437.238095 4299

swv17 50 10 2839 2880.857143 2927 2344 2421.095238 2512 3235 3605.380952 3905

swv18 50 10 2879 2902.190476 2938 2377 2437.904762 2482 3205 3588.238095 3889

swv19 50 10 2965 3013.380952 3065 2421 2504.52381 2575 3186 3667.380952 4092

swv20 50 10 2829 2879.238095 2907 2352 2404.952381 2480 2800 3243.047619 3572

74

CHAPTER 5 PSO for Multi-objective OSSP

5.1 Problem Formulation

The common characteristics of shop scheduling problems are as follows. A set of n

jobs must be processed on a set of m machines. Each job consists of m operations,

each of which must be processed on a different machine for a given process time. At

any time, at most one operation can be processed on each machine, and at most one

operation of each job can be processed. Unlike flow-shop and job-shop scheduling

problems, the exceptional condition of the open-shop scheduling problem is that the

operations of each job can be processed in any order.

The aim of the openshop scheduling problems are to assign jobs to machines so

that the completion time, also called the makespan, total flow time, and machine idle

time are minimized simultaneously. To minimize the makespan, we must minimize

the maximum total processing time on all machines. The total flow time refers to the

sum of the completion times of all jobs. The idle times of each machine during the

work cycle are summed to obtain the total machine idle time. The object functions of

makespan, total flow time and machine idle time are described as chapter 3.

5.2 Particle Position Representation

In this study, we randomly generated a group of particles (solutions) represented by a

permutation sequence that is an ordered list of operations. For an n-job m-machine

problem, the position of particle k can be represented by an m×n matrix, i.e.,





















=

k
mn

k
m

k
m

k
n

kk

k
n

kk

k

xxx

xxx

xxx

X

L

MMM

L

L

21

22221

11211

, where k
ijx denotes the priority of operationijo , which

75

means the operation of job j that must be processed on machine i.

The Giffler and Thompson (G&T) algorithm is briefly described below.

Notation:

(i,j) is the operation of job j that must be processed on machine i

S is the partial schedule that contains scheduled operations

Ω is the set of operations that can be scheduled

s(i,j) is the earliest time at which operation (i,j) belonging to Ω can be started.

p(i,j) is the processing time of operation (i,j).

f(i,j) is the earliest time at which operation (i,j) belonging to Ω can be finished,

f(i,j) = s(i,j) + p(i,j) .

G&T algorithm:

Step 1: Initialize φ=S ; Ω to contain all operations without predecessors.

Step 2: Determine)},({min),(
* jiff ji Ω∈= and the machine m* on which f* can be

realized.

Step 3:

(1)Identify the operation set Ω∈′′),(ji such that),(ji ′′ requires machine m*,

and *),(fjiS <′′ .

(2) Choose (i, j) from the operation set identified in Step 3(1) with the

largest priority.

(3) Add (i, j) to S.

76

(4) Assign s(i,j) as the starting time of (i, j).

Step 4: If a complete schedule has been generated, stop. Otherwise, delete (i, j) from

Ω, include its immediate successor in Ω, and then go to Step 2.

The movement of particles is modified in accordance with the representation of

particle position based on the insertion operator.

5.3 Particle Velocity

The original PSO velocity concept is that each particle moves according to the

velocity determined by the distance between the previous position of the particle and

the gbest (pbest) solution. The two major purposes of the particle velocity are to move

the particle toward the gbest and pbest solutions, and to maintain the inertia to prevent

particles from becoming trapped in local optima.

In the proposed PSO, we concentrated on preventing particles from becoming

trapped in local optima rather than moving them toward the gbest (pbest) solution. If

the priority value increases or decreases with the present velocity in this iteration, we

maintain the priority value increasing or decreasing at the beginning of the next

iteration with probability w, which is the PSO inertial weight. The larger the value of

w is, the greater the number of iterations over which the priority value keeps

increasing or decreasing, and the greater the difficulty the particle has returning to the

current position. For an n-job problem, the velocity of particle k can be represented as





















=

k
mn

k
m

k
m

k
n

kk

k
n

kk

k

vvv

vvv

vvv

V

L

MLMM

L

L

21

22221

11211

, where k
ijv is the velocity of the operation ijo of particle k,

}1,0,1{−∈k
ijv .

77

The initial particle velocities are generated randomly. Instead of considering the

distance from k
ijx to)(ij

k
ij gbestpbest , our PSO considers whether the value of k

ijx is

larger or smaller than)(ij
k
ij gbestpbest If k

ijx has decreased in the present iteration, this

means that)(ij
k
ij gbestpbest is smaller than k

ijx , and k
ijx is set moving toward

)(ij
k
ij gbestpbest by letting k

ijv ← –1. Therefore, in the next iteration, kijx is kept

decreasing by one (i.e., kijx ← k
ijx –1) with probability w. Conversely, if k

ijx has

increased in this iteration, this means that)(ij
k
ij gbestpbest is larger than k

ijx , and k
ijx

is set moving toward)(ij
k
ij gbestpbest by letting k

ijv ←1. Therefore, in the next iteration,

k
ijx is kept increasing by one (i.e. kijx ← k

ijx + 1) with probability w.

The inertial weight w influences the velocity of particles in PSO. We randomly update

velocities at the beginning of each iteration. For each particle k and operation ijo , if

k
ijv is not equal to 0, k

ijv is set to 0 with probability (1–w). This ensures that kijx

stops increasing or decreasing continuously in this iteration with probability (1–w).

5.4 Particle Movement

In our PSO, the particle movement is based on the insert operator proposed by Sha

and Hsu. We set 5.02 −+← randpxk
ij if we want to insert ijo into the pth location in the

permutation list. In addition, the location of operation ijo in the operation sequence of

kth pbest and gbest solution are k
ijpbest and ijgbest . When particle k moves, for all ijo , if

k
ijv equals 0, thek

ijx will be set to 5.02 −+ randpbestkij with probability c1 and set to be

5.02 −+ randgbestij with probability c2, where rand2 is a random variable between 0

78

and 1, and c1 and c2 are constants between 0 and 1, and c1+c2≦1. For example,

assume that V k, Xk, pbestk, gbest, c1, and c2 are as follows:

1.0 ,7.0 ,
21

43
 ,

23

41
 ,

2.43.1

3.35.2
 ,

00

01
21 ==








=








=








=







−
= ccgbestpbestXV kkk

For o11:

 Because .5.1 is, that , ,0 1111111111 =+←≠ kkkkk xvxxv

For o12:

 Because .6.0 generaterandomly ,0 112 == randvk

 Because .3.0 generaterandomly , 211 =≤ randcrand

 Because thenand ,1set , 121212 ←≥ kkk vxpbest

 . 8.3 is, that ,5.0 1221212 =−+← kkk xrandpbestx

For o21:

 Because .9.0 generaterandomly ,0 121 == randvk

 Because .changed benot does , 21211
kxccrand +>

For o22:

 Because .75.0 generaterandomly ,0 122 == randvk

 Because .8.0 generate , 22111 =+≤< randccrandc

 Because thenand ,1set , 222221 −←< kkk vxgbest

 . 3.2 is, that ,5.0 2222222 =−+← kkk xrandgbestx

Finally, after the particle moved, the Vk and Xk are:

79

.
3.23.1

8.35.1
 and

10

11








=









−
−

= kk XV

5.5 Computational Results

The proposed multi-objective PSO (MOPSO) algorithm was tested on benchmark

problems obtained from the Guéret and Prins (1999). The program was coded in

Visual C++ and run 20 times on each problem on a Pentium 4 3.0-GHz computer with

1 GB of RAM running Windows XP. During the pilot experiment, we used four

swarm sizes N (30, 60, 80, and 100) to test the algorithm. The outcome of N=80 was

best, so that value was used in all further tests. Parameters c1 and c2 were tested at

various values in the range 0.1–0.7 in increments of 0.2. The inertial weight w was

reduced from wmax to wmin during iterations, where wmax was set to 0.5, 0.7, and 0.9,

and wmin was set to 0.1, 0.3, and 0.5. The combination of c1=0.7, c2=0.1, wmax=0.7 and

wmin=0.3 gave the best results. The maximum iteration limit was set to 60 and the

maximum archive size was set to 80.

In the first experiment, we have assigned the Pareto set as Pbest solutions which

considered four different conditions. In the first scenario, we took all three objectives

into consideration. The two objectives including makespan and total flow time are

considered in the second scenario. The third and fourth scenario considered makespan,

machine idle time and total flow time, machine idle time, respectively. The results of

the first experiment are as Table 5.1-5.4.

80

Table 5. 1 The results of the first experiment considering three objectives as Pareto set

 makespane total flow time machine idle time

 best average best average best average

1 1100 1109.3 10636 10717 624 712.15

2 1097 1101.8 10489 10551 590 659.75

3 1090 1101.8 10563 10661 589 648.4

4 1089 1091.6 10561 10606 498 625.1

5 1084 1094.7 10495 10595 558 616.7

6 1071 1082.1 10530 10560 493 513.95

7 1081 1083.3 10519 10569 549 594.85

8 1098 1103.1 10675 10722 671 714.6

9 1117 1128.3 10662 10738 681 763.6

10 1097 1098 10621 10715 673 777.2

 1092.4 1099.4 10575 10643 592.6 662.63

Table 5. 2 The results of the first experiment considering makespan and total flow time as Pareto set

 makespane total flow time machine idle time

 best average best average best average

1 1106 1108.85 10604 10687.1 637 727

2 1097 1101.4 10499 10542.1 612 681.6

3 1087 1099.5 10560 10645.7 597 670.8

4 1089 1093.7 10527 10591.4 550 661.85

5 1087 1097.6 10516 10597.6 608 668.75

6 1071 1076.25 10527 10558.6 501 528.05

7 1081 1082.65 10500 10541.4 585 605

8 1098 1102.4 10656 10719.6 692 755.4

9 1122 1129.2 10667 10757.6 734 838.1

10 1097 1098.25 10704 10751.6 800 839.65

 1093.5 1098.98 10576 10639.2 631.6 697.62

81

Table 5. 3 The results of the first experiment considering makespan and machine idle time as Pareto set

 makespane total flow time machine idle time

 best average best average best average

1 1097 1111.85 10733 10785.4 668 717.6

2 1100 1109.2 10602 10683.1 594 666.7

3 1087 1094.45 10606 10682.15 580 638.85

4 1089 1093.6 10557 10634.45 482 599.25

5 1075 1092.75 10552 10659.35 520 616.95

6 1071 1077.9 10554 10577.2 496 504.7

7 1081 1082.75 10537 10576.7 521 564.75

8 1098 1101.9 10696 10750.85 654 700.9

9 1116 1127 10722 10854.15 681 761.8

10 1094 1098.2 10635 10747.3 656 742.15

 1091 1098.96 10619 10695.065 585 651.365

Table 5. 4 The results of the first experiment considering total flow time and machine idle time as

Pareto set

 makespane total flow time machine idle time

 best average best average best average

1 1112 1114.2 10636 10733.8 617 679.95

2 1101 1111.3 10470 10556.35 582 673.05

3 1100 1113.5 10558 10668.65 591 662.45

4 1096 1099.45 10547 10597 476 576.5

5 1085 1097.65 10523 10596 514 603

6 1071 1098 10490 10558.3 473 525.45

7 1081 1083.5 10501 10556.85 491 553.65

8 1099 1106.05 10634 10711.15 628 708.6

9 1129 1134.6 10644 10685.55 685 765.6

10 1096 1100.2 10642 10717.7 627 721.45

 1097 1105.845 10565 10638.135 568 646.97

82

Table 5. 5 Summary of the results of the first experiment

Optimized makespane total flow time machine idle time

Objectives best average best average best average

All 1092.4 1099.38 10575.1 10643.31 592.6 662.63

MS+TFT 1093.5 1098.98 10576 10639.25 631.6 697.62

MS+MIT 1090.8 1098.96 10619.4 10695.07 585.2 651.365

TFT+MIT 1097 1105.845 10564.5 10638.14 568.4 646.97

In the second experiment, we have divided the swarm into sub-swarm to search

for the solutions. At first we use three groups (sub-swarm) for three objects as (i) in

Table 5.13. In (ii), (iii) and (iv), only one particle swarm is applied to search single

object. In the last part of this experiment, two sub-swarm are used to search the

solutions. In (v) of Table 5.13, the two sub-swarm, one is searched for the object

makespan while the other is searched for total flow time. In (vi) of Table 5.13, the two

sub-swarm, one is searched for the object makespan while the other is searched for

machine idle time. In (vii) of Table 5.13, the two sub-swarm, one is searched for the

object total flow time while the other is searched for machine idle time.

Table 5. 6 The results of the second experiment considering three objectives with three sub-swarms

 makespane total flow time machine idle time

 best average Best average best average

1 1106 1116.85 10632 10731.45 627 714.05

2 1101 1113.85 10492 10568.75 619 740.55

3 1109 1115.45 10548 10705.75 608 678.9

4 1091 1099.7 10550 10617.9 476 600.25

5 1088 1101 10509 10601.15 495 608.3

6 1071 1089.9 10488 10533.65 451 515.05

7 1081 1085.65 10493 10569.2 492 562.1

8 1099 1112.35 10655 10747.05 684 720.65

9 1131 1136.65 10697 10746.2 705 791.95

10 1097 1101.15 10665 10772.3 640 724.95

 1097 1107.255 10573 10659.34 580 665.675

83

Table 5. 7 The results of the second experiment considering makespan with one swarm

 makespane total flow time machine idle time

 best average best average best average

1 1095 1100.55 10725 10777.85 704 749.65

2 1097 1100.1 10565 10652.05 621 705.65

3 1087 1094.1 10566 10682.4 606 665.25

4 1089 1091.1 10615 10650.5 663 679.2

5 1084 1091.2 10550 10631.8 586 650.6

6 1071 1080.7 10522 10577.9 503 564.8

7 1081 1081.6 10561 10607.55 560 615.8

8 1098 1100.4 10660 10723.45 665 736.3

9 1116 1125.65 10765 10853.95 802 874.9

10 1092 1095.1 10679 10736.4 751 798.05

 1091 1096.05 10621 10689.385 646 704.02

Table 5. 8 The results of the second experiment considering total flow time with one swarm

 makespane total flow time machine idle time

 best average best average best average

1 1109 1117.5 10636 10749.8 637 820.3

2 1101 1112.85 10495 10547.55 620 766.75

3 1103 1114.7 10577 10700.2 660 704.35

4 1090 1099.2 10550 10609.1 587 686.3

5 1087 1096.9 10524 10589.5 564 668.45

6 1072 1087.3 10481 10565.2 522 564.6

7 1081 1089.3 10508 10577.65 591 660.2

8 1100 1111.1 10700 10757.45 739 783.55

9 1131 1141.55 10678 10783.4 825 903.05

10 1097 1106 10700 10782.95 742 854.3

 1097 1107.64 10585 10666.28 649 741.185

84

Table 5. 9 The results of the second experiment considering machine idle time with one swarm

 makespane total flow time machine idle time

 best average best average best average

1 1112 1117.9 10780 10853.35 625 705.7

2 1101 1118.65 10646 10746.35 633 739.2

3 1103 1114.75 10688 10740.85 678 690.15

4 1096 1100.15 10596 10675.6 473 556.5

5 1095 1103.1 10644 10717.25 569 622.8

6 1072 1111.1 10540 10599.6 494 533.75

7 1081 1088.45 10537 10629.4 492 573.7

8 1100 1113.65 10734 10808.45 679 723.2

9 1132 1137.95 10745 10877.85 720 818.5

10 1099 1107.4 10814 10856.7 649 722.55

 1099 1111.31 10672 10750.54 601 668.605

Table 5. 10 The results of the second experiment considering makespan and TFT with two sub-swarms

 makespane total flow time machine idle time

 best average best average best average

1 1100 1106.7 10609 10683.65 631 728.75

2 1097 1101.4 10478 10523.75 582 674.8

3 1082 1098.75 10515 10660.55 579 680.8

4 1089 1091.45 10543 10577 595 652.75

5 1087 1092.5 10512 10555.05 505 620

6 1071 1079.45 10490 10542.95 499 536.15

7 1081 1081.5 10490 10533.6 551 598.05

8 1097 1100.3 10632 10679.7 692 733.25

9 1116 1128.2 10647 10721.3 703 859.05

10 1092 1095.1 10629 10671.15 728 771.35

 1091 1097.535 10555 10614.87 607 685.495

85

Table 5. 11 The results of the second experiment considering makespan and MIT with two sub-swarms

 makespane total flow time machine idle time

 best average best average best average

1 1095 1105.35 10705 10784.85 658 705.65

2 1097 1104.6 10570 10678.4 554 639

3 1087 1098.45 10557 10682.4 544 653.3

4 1089 1093.6 10597 10637.6 508 583.3

5 1087 1094.3 10560 10629.95 532 603.4

6 1071 1087.7 10529 10576.4 473 507.1

7 1081 1082.2 10548 10592.45 489 557.25

8 1097 1099.4 10700 10744.7 651 698.05

9 1116 1125.5 10726 10817.7 666 780.2

10 1092 1097.35 10702 10760.4 642 711.6

 1091 1098.845 10619 10690.485 572 643.885

Table 5. 12 The results of the second experiment considering TFT and MIT with two sub-swarms

 makespane total flow time machine idle time

 best average best average best average

1 1106 1116.85 10632 10731.45 627 714.05

2 1101 1113.85 10492 10568.75 619 740.55

3 1109 1115.45 10548 10705.75 608 678.9

4 1091 1099.7 10550 10617.9 476 600.25

5 1088 1101 10509 10601.15 495 608.3

6 1071 1089.9 10488 10533.65 451 515.05

7 1081 1085.65 10493 10569.2 492 562.1

8 1099 1112.35 10655 10747.05 684 720.65

9 1131 1136.65 10697 10746.2 705 791.95

10 1097 1101.15 10665 10772.3 640 724.95

 1097 1107.255 10573 10659.34 580 665.675

86

Table 5. 13 Summary of the results of the second experiment

Optimized makespane total flow time machine idle time

Objectives best average best average best average

All 1091.6 1099.08 10562.3 10633.97 567.6 648.77

MS 1091 1096.05 10620.8 10689.39 646.1 704.02

TFT 1097.1 1107.64 10584.9 10666.28 648.7 741.185

MIT 1099.1 1111.31 10672.4 10750.54 601.2 668.605

MS+ TFT 1091.2 1097.535 10554.5 10614.87 606.5 685.495

MS +MIT 1091.2 1098.845 10619.4 10690.49 571.7 643.885

TFT +MIT 1097.4 1107.255 10572.9 10659.34 579.7 665.675

 In order to compare the performance of our PSO with traditional meta-heuristic

algorithm, we code the GA algorithm to program with C++ language in addition. At

first, we apply PSO to solve the hardest benchmark problem generated by Guéret and

Prins (1999). The program runs 20 times on each problem on a Pentium 4 3.0-GHz

computer with 1 GB of RAM running Windows XP. During the pilot experiment, we

used four swarm sizes N (50, 100, 150, and 200) to test the algorithm. The outcome of

N=150 was best, so that value was used in all further tests. Parameters c1 and c2 were

tested at various portfolios in the range 0.1–0.7 in increments of 0.2. The inertial

weight w was reduced from 0.9 to 0.1 during iterations. The combination of c1=0.1,

c2=0.8, w=0.1 gave the best results. The maximum iteration limit was set to 60 and the

maximum archive size was set to 150. The results of MOPSO for notorious open shop

scheduling problems are demonstrated in Table 5.14

87

Table 5. 14 The results of MOPSO for benchmark problems gp03-gp10

Proble

m

Makespan MIT TFT CPU

Time Best Average Best Average Best Average

gp03-01 1168 1168 0 0 3174 3408.9 7.016

gp03-02 1170 1170 0 0 3340 3437.8 7.015

gp03-03 1168 1168 0 0 3336 3418.0 7.063

gp03-04 1166 1166 0 0 3170 3380.6 7.000

gp03-05 1170 1170 0 24 3181 3387.7 7.110

gp03-06 1169 1169 0 0 3177 3386.3 7.187

gp03-07 1165 1165 0 0 3166 3444.8 7.188

gp03-08 1167 1167 0 0 3334 3398.8 7.047

gp03-09 1162 1162 0 7.9 3167 3386.8 7.094

gp03-10 1165 1165 0 0 3330 3401.1 7.063

Average 1167 1167 0 3.2 3238 3405.1 7.078

gp04-01 1281 1281 274 455 4326 4534.75 14.297

gp04-02 1270 1270 0 257 4346 4872.85 14.250

gp04-03 1288 1288 240 393 4574 4778.4 14.110

gp04-04 1261 1261 0 187 4530 4820.7 14.125

gp04-05 1289 1289 277 405 4305 4783.3 14.156

gp04-06 1269 1269 179 301 4539 4937.4 15.281

gp04-07 1267 1267 0 175 4568 4722.85 14.563

gp04-08 1259 1259 191 368 4524 4751.7 14.406

gp04-09 1280 1280 278 512 4304 4545.2 14.375

gp04-10 1263 1263 188 228 4549 5005 14.250

Average 1272.7 1272.7 162.7 328 4456.5 4775.215 14.381

gp05-01 1245 1245 456 489.25 5593 5802.4 24.844

gp05-02 1247 1247 243 596.25 5418 5828.1 24.813

gp05-03 1265 1265 260 364.1 5797 6024.4 24.734

gp05-04 1258 1258.2 471 553.4 5713 5851.6 25.000

gp05-05 1280 1280 291 632.55 5318 5824.65 24.500

gp05-06 1269 1269.05 268 326.25 5589 5618.35 24.156

gp05-07 1269 1269 0 317.95 5550 5879.3 24.187

gp05-08 1287 1287 294 704.8 5526 5733.2 24.657

gp05-09 1262 1262 302 480.35 5630 6030.6 23.937

gp05-10 1254 1254.95 271 539.8 5618 5885.75 23.984

Average 1263.6 1263.72 285.6 500.47 5575.2 5847.835 24.481

88

Table 5.14(Cont’d) The results of MOPSO for benchmark problems gp03-gp10

gp06-01 1265 1265 332 432 6858 7053.9 41.812

gp06-02 1285 1285.45 409 677 7003 7111.85 40.485

gp06-03 1256 1256.75 44 545 6811 7149.25 42.000

gp06-04 1275 1275.05 525 821 6857 7046.25 41.422

gp06-05 1299 1299.4 82 670 7042 7215.4 38.703

gp06-06 1284 1284.85 282 619 6687 7181.8 41.250

gp06-07 1290 1290 317 684 6601 7077.85 41.813

gp06-08 1265 1265.7 352 626 7047 7194.7 39.641

gp06-09 1243 1245.8 252 536 6401 6955.7 41.047

gp06-10 1254 1254.25 486 593 6580 6878.75 40.859

Average 1271.6 1272.225 308.1 620 6788.7 7086.545 40.903

gp07-01 1159 1162.3 319 482 7799 7980.15 58.547

gp07-02 1185 1185 152 533 7749 7885.75 58.141

gp07-03 1237 1237.65 57 676 8042 8316.15 58.922

gp07-04 1167 1168.75 197 502 7783 8016.5 60.656

gp07-05 1158 1158.3 417 493 7793 7868.25 64.469

gp07-06 1193 1194.25 346 613 7771 7979.95 65.594

gp07-07 1185 1185.1 372 549 7767 7916 62.766

gp07-08 1181 1181.2 46 569 7869 8019.25 60.062

gp07-09 1220 1220.15 306 549 7780 7995.95 62.078

gp07-10 1270 1270 276 614 8023 8274.05 61.079

Average 1195.5 1196.27 249 558 7837.6 8025.2 61.231

gp08-01 1147 1160.25 29 347 9005 9127.15 84.156

gp08-02 1137 1143.85 247 404 8923 9018.7 93.281

gp08-03 1115 1119.55 67 285 8739 8813.65 93.031

gp08-04 1154 1159.6 267 410 8960 9071.3 91.860

gp08-05 1218 1219.35 214 625 8864 9157.15 97.609

gp08-06 1116 1130.85 51 321 8777 8928.4 93.375

gp08-07 1129 1135.95 132 339 8892 8957.2 92.766

gp08-08 1148 1158.55 7 358 8928 9113.45 93.375

gp08-09 1115 1118.95 159 245 8838 8891.85 93.109

gp08-10 1162 1162.5 225 590 8982 9052.8 95.781

Average 1144.1 1150.94 140 392 8890.8 9013.165 92.834

89

Table 5.14(Cont’d) The results of MOPSO for benchmark problems gp03-gp10

gp09-01 1138 1146.75 255 419 10050 10118.25 133.42

gp09-02 1114 1120 0 205 9857 9969.00 137.37

gp09-03 1118 1120.4 232 422 9991 10042.65 136.17

gp09-04 1140 1145.35 186 430 10014 10114.50 137.15

gp09-05 1180 1180.3 344 572 10029 10186.15 150.39

gp09-06 1097 1113.9 0 394 9819 9936.90 166.68

gp09-07 1098 1114.75 82 319 9792 9875.10 165.82

gp09-08 1110 1117.25 0 219 9749 9919.35 167.46

gp09-09 1126 1130.05 124 341 9829 9964.70 164.56

gp09-10 1124 1137 213 317 9862 9947.05 163.62

Average 1124.5 1132.575 144 364 9899.2 10007.36 152.26

gp10-01 1100 1113.6 0 201 10835 11008.05 220.45

gp10-02 1102 1116.7 82 351 10816 10994.45 228.82

gp10-03 1093 1113.1 74 199 10813 10935.10 224.67

gp10-04 1087 1100.75 51 266 10760 10884.35 212.71

gp10-05 1093 1101.3 0 125 10731 10900.35 208.71

gp10-06 1074 1104.3 0 186 10637 10900.05 214.31

gp10-07 1084 1093.6 0 142 10632 10787.55 185.40

gp10-08 1098 1105.8 101 261 10779 10924.30 187.01

gp10-09 1117 1138.8 61 424 10955 11182.60 173.26

gp10-10 1095 1115.5 136 279 10824 10991.15 176.79

Average 1094.3 1110.345 51 243 10778.2 10950.79 203.21

 The GA program also runs 20 times on each problem on a Pentium 4 3.0-GHz

computer with 1 GB of RAM running Windows XP. The parameter setting of GA

algorithm is described as follows. During the pilot experiment, we used four

population sizes N (50, 100, 150, and 200) to test the algorithm. The outcome of

N=150 was best, so that value was used in all further tests. The crossover and

mutation rate is test in the range of 0.1-0.9. The combination of cross rate equals 0.5,

mutation rate equals 0.1 gave the best results. The maximum iteration limit was set to

90

60 and the maximum archive size was set to 150. The results of MOGA for notorious

open shop scheduling problems are demonstrated in Table 5.15.

Table 5. 15 The results of MOGA for benchmark problems gp03-gp10

Proble

m

Makespan MIT TFT CPU

Time Best Average Best Average Best Average

gp03-01 1168 1168.15 0 0 3174 3384.9 3.59

gp03-02 1170 1170 0 32.6 3177 3397.05 3.75

gp03-03 1168 1168 0 0 3336 3426.2 3.91

gp03-04 1166 1166 0 0 3170 3413 3.75

gp03-05 1170 1170 0 15.9 3181 3403.6 3.75

gp03-06 1169 1169 0 16.1 3177 3394.35 3.90

gp03-07 1165 1165.05 0 16.4 3166 3379.25 3.60

gp03-08 1167 1167 0 0 3172 3366.4 3.90

gp03-09 1162 1162 0 7.85 3167 3402.5 3.60

gp03-10 1165 1165 0 7.9 3172 3385.3 3.90

Average 1167 1167.02 0 9.675 3189.2 3395.255 3.76

gp04-01 1281 1283.7 0 204.1 4325 4705.8 4.22

gp04-02 1270 1271.75 0 147.5 4309 4798.6 4.69

gp04-03 1288 1290.7 0 321.6 4574 4889.9 4.37

gp04-04 1261 1261 233 252 4527 4651.85 4.69

gp04-05 1289 1290.25 0 362.2 4309 4881.25 4.53

gp04-06 1269 1270.85 179 339.7 4539 4848.3 5.00

gp04-07 1271 1277.8 0 194 4582 4845.2 4.53

gp04-08 1259 1259 191 496 4524 4549.3 4.69

gp04-09 1280 1284.5 0 320.4 4316 4642.45 4.69

gp04-10 1263 1263.45 188 219.8 4785 5005.45 4.69

Average 1273.1 1275.3 79.1 285.7 4479 4781.81 4.61

91

Table 5.15(Cont’d) The results of MOGA for benchmark problems gp03-gp10

gp05-01 1245 1253.8 454 716.1 5824 5960 6.25

gp05-02 1247 1267.2 270 672 5587 6004.5 6.25

gp05-03 1265 1265 260 339.6 5588 6043.9 6.25

gp05-04 1263 1275.95 231 516.8 5633 5890.1 6.41

gp05-05 1281 1285.5 274 406.1 5574 6019.5 6.25

gp05-06 1270 1282.15 228 484.7 5589 5884.25 6.09

gp05-07 1269 1269.65 0 493.9 5552 5786.8 6.25

gp05-08 1288 1294.45 295 383.7 5836 6048.45 6.40

gp05-09 1262 1274.15 262 589.4 5573 5973.75 6.25

gp05-10 1257 1274.5 237 610.7 5675 6013.65 6.25

Average 1264.7 1274.235 251.1 521.3 5643.1 5962.49 6.26

gp06-01 1266 1284.95 271 671.1 7076 7256.45 8.75

gp06-02 1289 1289.85 0 670.5 6914 7254.25 8.12

gp06-03 1257 1261.8 0 670.9 6842 7233.65 8.60

gp06-04 1275 1283.35 240 902.5 6903 7066.35 9.21

gp06-05 1301 1302.6 105 787.7 6910 7283.45 8.44

gp06-06 1285 1294.95 0 914.4 6918 7251.8 8.44

gp06-07 1292 1295.7 294 640 6826 7454.2 8.44

gp06-08 1268 1271.75 426 864.7 6652 7015.5 8.28

gp06-09 1246 1254.9 467 714.7 6985 7024 8.75

gp06-10 1258 1267.55 504 892.4 6585 7007 8.75

Average 1273.7 1280.74 230.7 772.9 6861.1 7184.665 8.57

gp07-01 1189 1190.55 594 641.3 7974 8025.8 23.44

gp07-02 1186 1190.7 618 668.6 7811 7854.7 23.12

gp07-03 1239 1264.95 253 866.65 8001 8482.15 23.59

gp07-04 1173 1188.15 407 758 7882 8022.65 23.75

gp07-05 1188 1202.85 416 593.5 7991 8188.85 23.60

gp07-06 1200 1236.75 394 903.6 7740 8147.6 23.75

gp07-07 1186 1211.6 362 614 7668 8069.9 23.29

gp07-08 1191 1191 626 735.05 7902 7966.5 23.28

gp07-09 1222 1222 510 618.3 7829 7859.3 23.28

gp07-10 1271 1273.65 556 1145.65 8091 8466.7 23.91

Average 1204.5 1217.22 473.6 754.465 7888.9 8108.415 23.50

92

Table 5.15(Cont’d) The results of MOGA for benchmark problems gp03-gp10

gp08-01 1182 1203.1 457 869.4 9072 9283.6 33.12

gp08-02 1166 1184.05 453 867.2 9101 9184.9 33.28

gp08-03 1148 1180.85 416 644 8987 9073.8 32.97

gp08-04 1181 1189 656 768 8955 9041.75 32.81

gp08-05 1224 1227.65 482 899.5 8824 9185.45 32.97

gp08-06 1170 1183.3 700 908.7 8983 9092.35 33.60

gp08-07 1169 1199.15 560 746.2 9028 9271.2 32.97

gp08-08 1182 1191.5 455 921.7 9210 9348.45 33.43

gp08-09 1152 1190.5 471 803.8 8810 9216.15 32.97

gp08-10 1187 1202.8 368 811.7 8910 9250.45 32.50

Average 1176.1 1195.19 501.8 824 8988 9194.81 33.06

gp09-01 1166 1190.05 664 983.6 10109 10275.05 46.56

gp09-02 1158 1173.85 255 733.5 9907 10194.45 45.63

gp09-03 1157 1209.5 689 1177 10113 10537.95 45.78

gp09-04 1164 1181.55 478 786.6 10071 10323.45 46.72

gp09-05 1199 1206.75 346 978.8 10209 10355.3 46.40

gp09-06 1139 1159.6 591 967.7 10071 10221.55 46.10

gp09-07 1153 1159.05 507 615 9870 10105 46.41

gp09-08 1151 1179 561 762.6 10044 10186.85 45.78

gp09-09 1176 1180.2 614 753.4 9877 10129.1 46.25

gp09-10 1142 1165.95 526 750.5 9880 10051.6 46.72

Average 1160.5 1180.55 523.1 850.9 10015.1 10238.03 46.23

gp10-01 1157 1163.9 617 849.55 11165 11292.55 63.75

gp10-02 1155 1170 691 1041.85 11151 11397.55 63.44

gp10-03 1141 1157.8 476 775.95 11064 11212.95 63.75

gp10-04 1113 1136.4 484 692.15 10871 11082.85 63.60

gp10-05 1145 1160.05 522 706.75 11155 11271.35 64.38

gp10-06 1148 1190.2 460 815.15 11181 11488.2 63.44

gp10-07 1139 1160.3 519 855.2 11084 11264.6 63.90

gp10-08 1146 1182.8 474 888.95 11142 11529.45 64.07

gp10-09 1147 1164.2 480 779.75 11070 11326.95 63.90

gp10-10 1163 1180.3 491 741.55 11123 11354 63.60

Average 1145.4 1166.595 521.4 814.685 11100.6 11322.04 63.78

93

The comparison of MOPSO and MOGA for objectives makespan, machine idle

time and total flow time are showed in Table 5.16, 5.17, 5.18 respectively.

Table 5. 16 The comparison of MOPSO and MOGA for makespan

 PSO GA Error Ratio

 Makespan Makespan Makespan

 Best Average Best Average Best Avgerage

gp03 1167.0 1167.0 1167.0 1167.0 0 0

gp04 1272.7 1272.7 1273.1 1275.3 0 0

gp05 1263.6 1263.7 1264.7 1274.2 0 0

gp06 1271.6 1272.2 1273.7 1280.7 0 0

gp07 1195.5 1196.2 1204.5 1217.2 0 0

gp08 1144.1 1150.9 1176.1 1195.1 0 0

gp09 1124.5 1132.5 1160.5 1180.5 0 0

gp10 1094.3 1110.3 1145.4 1166.5 0 0

Table 5. 17 The comparison of MOPSO and MOGA for machine idle time

 PSO GA Error Ratio

 Machine Idle Time Machine Idle Time Machine Idle Time

 Best Average Best Average Best Avgerage

gp03 0.0 3.1 0 9.6 0 0

gp04 162.7 328.1 79.1 285.7 1.05 0.14

gp05 285.6 500.4 251.1 521.2 0.13 0

gp06 308.1 620.2 230.7 772.8 0.33 0

gp07 248.8 558.0 473.6 754.4 0 0

gp08 139.8 392.3 501.8 823.9 0 0

gp09 143.6 363.8 523.1 850.8 0 0

gp10 50.5 243.3 521.4 814.6 0 0

94

Table 5. 18 The comparison of MOPSO and MOGA for total flow time

 PSO GA Error Ratio

 Total Flow Time Total Flow Time Total Flow Time

 Best Average Best Average Best Avgerage

gp03 3237.5 3405.0 3189.2 3395.2 0.015 0.0028

gp04 4456.5 4775.2 4479.0 4781.8 0 0

gp05 5575.2 5847.8 5643.1 5962.4 0 0

gp06 6788.7 7086.5 6861.1 7184.6 0 0

gp07 7837.6 8025.2 7888.9 8108.4 0 0

gp08 8890.8 9013.1 8988.0 9194.8 0 0

gp09 9899.2 10007.3 10015.1 10238.0 0 0

gp10 10778.2 10950.7 11100.6 11322.0 0 0

 In order to compare the convergence degree of GA and PSO, the scatter diagrams

are plot as Figure 5.1-5.3. The solutions found by the PSO are more condensed than

the GA.

Figure 5. 1 The scatter diagrams of gp8

95

Figure 5. 2 The scatter diagrams of gp9

Figure 5. 3 The scatter diagrams of gp10

96

CHAPTER 6 CONCLUSIONS AND FUTURE STUDIES

6.1 Conclusions

Many studies focused on flowshop scheduling problem could be found. However, the

objective of most research focused on minimization of maximum completion time (i.e.

makespan). In real world, there exist other objectives such as minimization of

machine idle time that might help improve efficiency and reduce production costs.

Particle swarm optimization inspired by the spirit of bird flocking and fish schooling

behaviors consists with advantages including simple structure, easy implementation,

immediate accessibility, short searching time, and robustness. However, limited study

of flowshop scheduling problem with multi-objectives addressed by PSO could be

found from the literature. We have presented a PSO method for solving flowshop

scheduling problem with multiple objectives including minimization makespan,

minimization mean flow time and machine idle time.

The original PSO was proposed for the continuous optimization problems. In

order to make it suitable for flowshop scheduling (i.e. a combinational problem), we

modified the representation of particle position, particle movement, and particle

velocity. In addition, a mutation operator was adopted in our PSO algorithm. We also

incorporated the concept of Pareto optimal to measure the performance of multiple

objectives rather than weighted fitness function. Another necessary adjustment of

original PSO to keep Pareto optimal solution is the external Pareto optimal set that is

cooperated to deposit a limited size of non-dominated solutions. At last, we utilized a

diversification strategy in our PSO algorithm. The results demonstrated that the

proposed PSO can obtain more optimal solutions than GA heuristic. The relative error

ratios of each problem scenario in our PSO algorithm are less than the GA. The

97

results of performance measure also revealed that the proposed PSO algorithm

outperformed GA in minimizing makespan, mean flow time and total machine idle

time.

While there has been a large amount of research into the JSSP, most of this has

focused on minimizing the maximum completion time (i.e., makespan). There exist

other objectives in the real world, such as the minimization of machine idle time that

might help improve efficiency and reduce production costs. PSO, inspired by the

behavior of birds in flocks and fish in schools, has the advantages of simple structure,

easy implementation, immediate accessibility, short search time, and robustness.

However, few applications of PSO to multi-objective JSSPs can be found in the

literature. Therefore, we presented a MOPSO method for solving the JSSP with

multiple objectives, including minimization of makespan, total tardiness, and total

machine idle time.

The original PSO was proposed for continuous optimization problems. To make

it suitable for job-shop scheduling (i.e., a combinational problem), we modified the

representation of particle position, particle movement, and particle velocity. We also

introduced a mutation operator and used a diversification strategy. The results

demonstrated that the proposed MOPSO could obtain more optimal solutions than the

MOGA. The relative error ratios of each problem scenario in our MOPSO algorithm

were less than in the MOGA. The performance measure results also revealed that the

proposed MOPSO algorithm outperformed MOGA in simultaneously minimizing

makespan, total tardiness, and total machine idle time.

Although a large amount of research has addressed the open-shop scheduling

problem, most of this has focused on minimizing the maximum completion time (i.e.,

makespan). Other objectives exist in the real world, such as minimizing the machine

98

idle time, that might help improve efficiency and reduce production costs. PSO,

inspired by the behavior of flocks of birds and schools of fish, has the advantages of a

simple structure, easy implementation, immediate accessibility, short search time, and

robustness. However, few applications of PSO to multi-objective open-shop

scheduling problems can be found in the literature. Therefore, we proposed a

MOPSO algorithm to solve the open-shop scheduling problem with multiple

objectives, including minimization of makespan, total flow time, and machine idle

time.

The algorithm was tested to verify different scenarios, using different Pareto sets

with different combinations of objectives. Different swarm sizes with varied

objective combinations were also evaluated. The results demonstrated that the

algorithm performed better when only one swarm was used for all three objectives

compared to the case where the swarm was divided into three sub-swarms for each

objective.

6.2 Future Studies

For further research, we will attempt to apply our PSO to other shop scheduling

problems with multiple objectives. Possible topics for further study include the

modification of particle position representation, particle movement, and particle

velocity. In addition, issues related to Pareto optimal such as solution maintenance

strategy and performance measurement are also worth to be investigated in future.

We will also attempt to apply MOPSO to other shop scheduling problems with

multiple objectives in future research. Other possible topics for further study include

modification of the particle position, particle movement, and particle velocity

99

representation. Issues related to Pareto optimization, such as solution maintenance

strategy and performance measurement, also merit future investigation.

100

Appendix

The pseudo-code of the PSO for MO-FSSP is as follow.

Initialize a population of particles with random positions.

for each particle k do

 Evaluate Xk (the position of particle k)

 Save the pbestk to optimal solution set S

end for

Set gbest solution equals to the best pbestk

repeat

 Updates particles velocities

 for each particle k do

 Move particle k

Evaluate Xk

Update gbest, pbest and S

 end for

until maximum iteration limit is reached

The pseudo code of the PSO for MO-JSSP is given below:

Initialize a population of particles with random positions.

for each particle k do

Apply G&T algorithm to decode kX into a schedule kS .

set the kth pbest solution (kpbest) equal to kS , kpbest ← kS .

end for

set gbest solution equal to the best kpbest .

repeat

101

update velocities

for each particle k do

move particle k

apply G&T algorithm to decode kx into kS .

update pbest solutions and gbest solution

end for

until maximum iterations is attained

The pseudo code of the PSO for MO-OSSP is given below:

Initialize a population of particles with random positions.

for each particle k do

Apply G&T algorithm to decode kX into a schedule kS .

set the kth pbest solution (kpbest) equal to kS , kpbest ← kS .

end for

set gbest solution equal to the best kpbest .

repeat

update velocities

for each particle k do

move particle k

apply G&T algorithm to decode kx into kS .

update pbest solutions and gbest solution

end for

until maximum iterations is attained

102

References

Adulbjan P., M. T. Tabucanon (1980). Multicriterion Optimization in Industrial

Systems. Chapter 9, Decision Models for Industrial System Engineers and

Managers, Asian Institute of Technology, Bangkok

Bean, J. (1994). Genetic algorithms and random keys for sequencing and optimization.

Operations Research Society of America (ORSA) Journal on Computing, 6,

154–160.

Bllzewicz J., Pesch E., Sterna M., Werner F. (2004). Open shop scheduling problems

with late work criteria. Discrete Applied Mathematics, 134 (1-3), 1-24.

Blum C. (2005). Beam-ACO—hybridizing ant colony optimization with beam search:

an application to open shop scheduling. Computers & Operations Research, 32,

1565–1591.

Campbell H.G., Dudek R.A. & Smith M.L. (1970). A heuristic algorithm for the n-job

m,_machine sequencing problem. Management Science, 16, B630–B637.

Candido M. A. B., S. K. Khator & R.M. Barcia. (1998). A genetic algorithm based

rocedre for more realistic job shop scheduling problems. International Journal

of Production Research, 36(12), 3437-3457.

Carlier J. (1978). Ordonnancements à contraintes disjonctives. RAIRO Rech

Oper/Oper Res 12, 333–351.

Chakravarthy K. & Rajendran C. (1999). A heuristic for scheduling in a flowshop

with the bicriteria of makespan and maximum tardiness minimization.

Production Planning and Control, 10, 707-714.

Coello Coello Carlos A., Gregorio Toscano Plido & Maximino Salazar Lechga. (2004).

Handling Mltiple Objectives With article Swarm optimization. IEEE

Transactions on Evolutionary Computation, 8(3), 256-278.

Eren T. & Güner E. (2007). The tricriteria flowshop scheduling problem. International

Journal of Advanced Manufacturing Technology, 36, 1210–1220.

Esquivel S. C., S. W. Ferrero & R. H. Gallard, (2002). Parameter Settings and

Representations in Pareto-based Optimization for Job Shop Scheduling.

Cybernetics and Systems: An international Journal, 33, 559-578.

Fisher, H., & Thompson, G. L., (1963). Industrial scheduling. Englewood Cliffs. NJ:

103

Prentice-Hall.

Gangadharan R. & Rajendran C. (1993) Heuristic algorithms for scheduling in

no-wait flow shop. International Journal of Production Economy, 32, 285-290.

Garey, M. R., Johnson, D. S., & Sethi, R., (1976). The complexity of flowshop and

jobshop scheduling. Mathematics of Operations Research, 1, 117–129.

Giffler, J., Thompson, G. L., (1960). Algorithms for solving production scheduling

problems. Operations Research, 8, 487–503.

Gonc¸alves, J. F., Mendes, J. J. M., & Resende, M. G. C., (2005). A hybrid genetic

algorithm for the job shop scheduling problem. European Journal of

Operational Research, 167(1), 77–95.

Gonzalez T, Sahni S. (1976). Open shop scheduling to minimize finish time. Journal

of the ACM, 23(4), 665–79.

Gupta J.N.D. & Stafford J.E.F. (2006). Flowshop scheduling research after five

decades. European Journal of Operational Research, 169, 699–711.

Hejazi S.R. & Saghafian S. (2005). Flowshop scheduling problems with makespan

criterion: a review. International Journal of Production Research, 43,

2895–2929.

Heller J. (1960). Some numerical experiments for an MxJ flow shop and its decision-

theoretical aspects. Operations Research, 8, 178–184.

Hwang C. L., A. S. M. Masud, S. R. Paidy & K. Yoon (1982). Mathematical

Programming with Multiple Objectives: A Tutorial. Computers and Operations

Research: A Special Issue on Mathematical Programming with Multiple

Objective, 7(1-2).

Jain A. S. & S. Meeran, (1999). Deterministic job-shop scheduling: Past, present and

future. European Journal of Operational Research, 113, 390-434.

Jarboui B., Ibrahim S., Siarry P. & Rebai A. (2008). A combinational particle swarm

optimisation for solving permutation flowshop problems. Computers &

Industrial Engineering, 54, 526–538.

Kennedy J. & Eberhart R. (1995). Particle swarm optimization. Proceedings of the

IEEE International Conference on Neural Networks 1995, 1942–1948.

Knowles J.D. & Corne D.W. (1999). The Pareto archived evolution strategy: a new

baseline algorithm for multi-objective optimization. In: Congress on

104

Evolutionary Computation, Washington, DC, IEEE Service Center, 98–105

Kobayashi, S., Ono, I., & Yamamura, M., 1995, "An efficient genetic algorithm for

job shop scheduling problems", In L. J. Eshelman (Ed.), Proceedings of the sixth

international conference on genetic algorithms, San Francisco, CA: Morgan

Kaufman Publishers, 506–511.

Laha D. & Chakraborty U.K. (2008) An efficient heuristic approach to total flowtime

minimization in permutation flowshop scheduling. International Journal of

Advanced Manufacturing Technology, 38, 1018-1025.

Laha D. & Chakraborty U.K. (2008) A constructive heuristic for minimizing

makespan in no-wait flow shop scheduling. International Journal of Advanced

Manufacturing Technology, DOI 10.1007/s00170-008-1545-0

Lawrence, S. (1984). Resource constrained project scheduling: An experimental

investigation of heuristic scheduling techniques. Graduate School of Industrial

Administration (GSIA), Carnegie Mellon University, Pittsburgh, PA.

Lei Deming (2008). A Pareto archive particle swarm optimization for multi-objective

job shop scheduling. Computers & Industrial Engineering, 54(4), 960-971.

Lei Deming & Zhiming Wu (2006). Crowding-measure-based multiobjective

evolutionary algorithm for job shop scheduling. International Journal of

Advanced Manufacturing Technology, 30, 112-117.

Lian Z., Gu X. & Jiao B. (2008). A novel particle swarm optimization algorithm for

permutation flow-shop scheduling to minimize makespan. Chaos, Solutions and

Fractals, 35, 851–861.

Liang Y. C., H. W. GE, Y. Zho & X. C. GUO (2005). A Particle Swarm

Optimization-based Algorithm for Job-shop Schedling Problems. International

Journal of Computational Methods, 2(3), 419-430.

Liaw C-F. (1999) Applying simulated annealing to the open shop scheduling problem.

IIE Transactions, 31, 457–65.

Liaw C-F. (1999) A tabu search algorithm for the open shop scheduling problem.

Computers & Operations Research, 26, 109–26.

Liaw C-F. (2000) A hybrid genetic algorithm for the open shop scheduling problem.

European Journal of Operational Research, 124, 28–42.

Liu B., Wang L. & Jin Y.H. (2007). An effective PSO-based memetic algorithm for

105

flow shop scheduling. IEEE Transaction on System Man and Cybernetics- Part

C, 37, 18–27.

Liu J. & Reeves C.R. (2001). Constructive and composite heuristic solutions to the

P//∑Ci scheduling problem. European Journal of Operational Research, 132,

439-452.

Lourenc¸o, H. R. (1995). Local optimization and the job-shop scheduling problem.

European Journal of Operational Research, 83, 347–364.

Nawaz M., Enscore J.R. & Ham I. (1983). A heuristic algorithm for the m-machine,

n-job flow-shop sequencing problem. Omega, 11, 91–95.

Nowicki, E. & Smutnicki, C., (1996). A fast taboo search algorithm for the job shop

problem. Management Science, 42(6), 797–813.

Pasupathy T., Rajendran C., & Suresh R.K. (2006). A multi-objective genetic

algorithm for scheduling in flow shops to minimize the makespan and total flow

time of jobs. International Journal of Advanced Manufacturing Technology, 27,

804–815.

Pezzella F. & Merelli E. (2000). A tabu search method guided by shifting bottleneck

for the job shop scheduling problem. European Journal of Operational Research,

120(2), 297–310.

Ponnambalam S.G., Jagannathan H. & Kataria M. (2004). A TSP-GA multi-objective

algorithm for flow-shop scheduling. International Journal of Advanced

Manufacturing Technology, 23, 909–915.

Ponnambalam S. G., V. Ramkumar & N. Jawahar, (2001). A multiobjective genetic

algorithm for job shop scheduling. Production Planning and Control, 12(8),

764-774.

Rahimi-Vahed A. & Mirghorbani S. (2007). A multi-objective particle swarm for a

flow shop scheduling problem. Journal of Combination Optimzation, 13,

79–102.

Rajendran C. (1994). A no-wait flow shop scheduling heuristic to minimize makespan.

Journal of the Operational Research Society, 45, 472-478.

Rajendran C. & Ziegler H. (2004). Ant-colony algorithms for permutation flowshop

scheduling to minimize makespan/total flowtime of jobs. European Journal of

Operational Research, 155, 426–438.

106

Reeves C.R. (1995). A genetic algorithm for flowshop sequencing. Computers &

Operations Research, 22, 5–13.

Ripon Kazi Shah Nawaz (2007). Hybrid Evolutionary Approach for Multi-objective

Job-shop Scheduling Problem. Malaysian journal of Computer Science, 20(2),

183-198.

Prins C. (2000) Competitive genetic algorithms for the open-shop scheduling problem.

Mathematical Methods of Operations Research, 52, 389–411.

Ruiz R. & Maroto C. (2004). A comprehensive review and evaluation of permutation

flowshop heuristics. European Journal of Operational Research, 165, 479–494.

Senthilkumar P., Shahbudeen P. (2006) GA based heuristic for the open job shop

scheduling problem. International Journal of Advanced Manufacturing

Technology, 30, 297–301.

Seo Fumiko & Masatoshi Sakawa (1988). Multiple Criteria Decision Analysis in

Regional Planning : Concepts, Methods and Applications, Reidel, Boston.

Sha D.Y. & Hsu C.Y. (2006). A hybrid particle swarm optimization for job shop

scheduling problem. Computers & Industrial Engineering, 51, 791–808.

Sha, D.Y. & Hsu C.Y. (2008). A new particle swarm optimization for the open shop

scheduling problem. Computers & Operations Research, 35, 3243–3261.

Stützle T. (1998). Applying iterated local search to the permutation flow shop problem.

Tech Rep, AIDA-98-04, FG Intellektik, TU Darmstadt.

Sun, D., Batta, R., & Lin, L., (1995), Effective job shop scheduling through active

chain manipulation. Computers & Operations Research, 22(2), 159–172.

Suresh R. K. & K. M. Mohanasndaram (2006). Pareto archived simulated annealing

for job shop scheduling with multiple objectives. International Journal of

Advanced Manufacturing Technology, 29, 184-196.

Taillard E. (1993). Benchmarks for basic scheduling problems. European Journal of

Operational Research, 64, 278-285.

Tang Lixin, Bai Danyu. (2010). A new heuristic for open shop total completion time

problem. Applied Mathematical Modeling , 34, 735-743.

Tasgetiren M.F., Liang Y.C., Sevkli M. & Gencyilmaz G. (2007). A particle swarm

optimization algorithm for makespan and total flowtime minimization in the

permutation flowshop sequencing problem. European Journal of Operational

107

Research, 177, 1930–1947.

Wang Ling & Da-Zhong Zheng (2001). An effective hybrid optimization strategy for

job-shop scheduling problems. Computers & Operations Research, 28, 585-596.

Xia Weijn & Zhiming Wu, (2005). An effective hybrid optimization approach for

multi-objective flexible job-shop scheduling problems. Computers & Industrial

Engineering, 48, 409-425.

Yagmahan B. & Yenisey M.M. (2008). Ant colony optimization for multi-objective

flow shop scheduling problem. Computers & Industrial Engineering 54,

411–420.

Young M., The Techincal Writers Handbook. Mill Valley, CA: University Science,

1989.

Zhang H., Li X., Li H. & Huang F. (2005). Particle swarm optimization-based

schemes for resource-constrained project scheduling. Automation in

Construction, 14(3), 393–404.

Zitzler E., Laumanns M. & Thiele L. (2001) SPEA2: Improving the strength Pareto

evolutionary algorithm. Computer Engineering and Networks Laboratory

(TIK) – Report 103 Sept 2001.

108

作者簡介

姓名：林信宏 (Hsing-Hung Lin)

學歷：

學士 東海大學 資訊科學系 (79.9~83.6)

碩士 中華大學 工業工程與管理研究所 (85.9~87.6)

博士 交通大學 工業工程與管理研究所 (93.9~ 99.6)

著作：

一、 期刊論文

1. D.Y. Sha, Hsing-Hung Lin, 2009, “A particle swarm optimization for

multi-objective flowshop scheduling,” International Journal of Advanced

Manufacturing Technology, 45(7), 749-762. (SCI)

2. D.Y. Sha, Hsing-Hung Lin, 2010, “A multi-objective PSO for job-shop scheduling

problem,” Expert Systems with Applications, 37(2), 1065-1070. (SCI)

二、 審查中論文

1. D.Y. Sha, Hsing-Hung Lin, “A multi-objective PSO for open-shop scheduling

problem,” submit to Journal of Information & Optimization Sciences

2. D.Y. Sha, Hsing-Hung Lin, “A novel particle swarm optimization for

multi-objective job-shop scheduling ,” submit to Journal of Industrial and

Management Optimization

3. D.Y. Sha, Hsing-Hung Lin, “Scheduling multi-objective jobshops using particle

swarm optimization,” submitted to Journal of Intelligent Manufacturing

三、 研討會論文

1. D.Y. Sha, Hsing-Hung Lin, 2008, “A Multi-objective Particle Swarm

Optimization for Flow Shops Scheduling Problem,” Proceedings of the 38th

International Conference on Computers and Industrial Engineering, pp. 233-241,

Beijing, China.

2. D.Y. Sha, Hsing-Hung Lin, 2008, “A Pareto Archive Particle Swarm

Optimization for Multi-objective Flowshop Scheduling,” Proceedings of the

109

2008 Asia Pacific Industrial Engineering & Management Systems Conference,

pp.2269-2277, Bali, Indonesia.

3. D.Y. Sha, Hsing-Hung Lin, 2009, “A Multi-objective PSO for Job-shop

Scheduling Problem,” Proceedings of the 39th International Conference on

Computers and Industrial Engineering, Troyes, France.

4. D.Y. Sha, Hsing-Hung Lin, 2009, “A Novel Particle Swarm Optimization for

Multi-objective Job-shop Scheduling,” Proceedings of the 2009 Asia Pacific

Industrial Engineering & Management Systems Conference, Kitakyushu, Japan.

5. D.Y. Sha, Hsing-Hung Lin, 2010, “A Modified Particle Swarm Optimization for

Multi-objective Open-shop Scheduling,” Proceedings of the 2010 AENG

International Conference on Industrial Engineering, Hong Kong.

