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粒子群演算法於多目標排程問題之研究 

研究生：林信宏        指導教授： 沙永傑博士 

洪瑞雲博士 

國立交通大學工業工程與管理系 

摘摘摘摘 要要要要 

以往學術上排程問題的研究主流是尋找單一目標的最佳解(如: 最小完工時

間) ，然而，實務上生產製造系統的排程需求是達成多目標最佳化。由於運算時

間與成本的考量，過去的許多研究已經發展出許多演算法則以搜尋最佳解或近似

最佳解。 

在本篇論文中，我們分別提出適合求解流程型排程問題 (Flow Shop 

Scheduling Problem, FSSP)、零工型排程問題(Job Shop Scheduling Problem, JSSP)

與開放型排程問題(Open Shop Scheduling Problem, OSSP)的粒子群最佳化演算法

(Particle Swarm Optimization, PSO)。本研究所提出的演算法針對三種典型排程問

題，以同時達到最小完工時間(Makespan)、總流程時間(Total flow time)與機器閒

置時間(Machine idle time)作為目標。 

粒子群演算法是一種群體搜尋最佳化演算法，於 1995年被提出。原始的 PSO

是應用於求解連續最佳化問題。因為排程問題為一離散最佳化問題，我們必須修

改粒子位置、粒子移動以及粒子速度的表達方式，讓 PSO更適於求解排程問題。 

對於 FSSP與 JSSP，本研究比較 PSO 與文獻中的基因演算法(Genetic 

Algorithm, GA)搜尋三大目標的結果，顯示本文提出的 PSO優於基因演算法。本

研究另行發展求解多目標 OSSP的基因演算法並與 PSO進行 Benchmark問題的

比較，計算結果顯示，修改後的 PSO所搜尋到的解，在品質與效率上優於基因

演算法。 

關鍵字：粒子群最佳化、流程型排程、零工型排程、開放型排程、啟發式演算法 
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A Study on Particle Swarm Optimization for Multi-objective 
Production Scheduling Problems 

Student：Hsing-Hung Lin    Advisor： Dr. D. Y. Sha  

Dr. R. Y. Horng 

Department of Industrial Engineering and Management 
National Chiao Tung University 

ABSTRACT 

The academic approach of discovering the single optimal solution (ex. makespan) of 

scheduling for production system is the mainstream although the empirical 

requirement of production system is to achieve multi-objective optimization. Many 

algorithms have been developed to search for optimal or near-optimal solutions due to 

the computational cost of determining exact solutions. 

This study provides a Particle Swarm Optimization (PSO) to elaborate 

multi-objective flow shop scheduling problem (FSSP), job shop scheduling problem 

(JSSP) and open shop scheduling problem (OSSP). The proposed evolutionary 

algorithm searches the optimal solution for objectives by considering the makespan, 

total flow time, and machine idle time simultaneously.  

Particle Swarm Optimization (PSO) is a population-based optimization algorithm, 

which was developed in 1995. The original PSO is used to solve continuous 

optimization problems. Due to the discrete solution spaces of scheduling optimization 

problems, the authors modified the particle position representation, particle movement, 

and particle velocity in this study. The modified PSO could be applied for solving 

various benchmark problems; moreover, the results demonstrated that the modified 

PSO outperformed traditional evolutionary heuristics – Genetic Algorithm in 

searching quality and efficiency. 

Keywords: Particle swarm optimization, Multi-objective, Flow shop scheduling, Job 

shop scheduling problem, Open shop scheduling 
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CHAPTER 1 INTRODUCTION 

 

1.1 Research Motivations 

Scheduling is an optimization process by which limited resources are allocated over 

time among parallel and sequential activities. Such situations develop routinely in 

factories, publishing houses, shipping universities, hospitals, airports, etc. Solving 

such a problem amounts to making discrete choice such that an optimal solution is 

found among a finite or a countable infinite number of alternatives. Such problems are 

called combinational optimization problems. Typically, the task is complex, limiting 

the practical utility of combinatorial, mathematical programming and other analytical 

methods in solving scheduling problems effectively.  

To find exact solutions of scheduling problems a branch-and-bound or dynamic 

programming algorithm is often used. However, many shop scheduling problems are 

NP-hard, which means that the problem cannot be exactly solved in a reasonable 

computation time. Using problem-specific information sometimes reduces search 

space, even though the problem is still difficult to solve exactly. Therefore, heuristic 

algorithms and dispatching rules are developed to obtain the approximate optimal 

solution. Meta-heuristic is one of the most popular and the most efficient method to 

obtain the approximate optimal solution. Among the meta-heuristics, particle swarm 

optimization (PSO) is new and extensively implemented in recent years. However, the 

original intent of PSO is to solve continuous optimization problems, and PSO 

methods that work well for combinatorial optimization are still scarce.  
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1.2 Research Objectives 

The objective of this work is to development PSOs for two shop scheduling problems: 

the flow shop scheduling problem (FSSP) and the job shop scheduling problem 

(JSSP). In the work of FSSP, the problem is to find a schedule to minimize the 

makespan ( maxC ), mean flow time and machine idle time. In the work of JSSP, we 

attempt to search a schedule to minimize the makespan ( maxC ), machine idle time and 

total tardiness. 

Since the original intent of PSO is to solve continuous optimization problems, 

we have to modify the original PSO when we implement PSO to a combinatorial 

optimization problem. PSO can be separated several parts to discuss: position 

representation, particle velocity, and particle movement. We will develop various PSO 

designs in this work. On the other hand, the PSO developed in this work can be an 

example of PSO design for other discrete optimization problems. 

 

1.3 Research Process 

The research of this dissertation begins with the determination of research topic. The 

literature consists with flow shop scheduling, job shop scheduling, open shop 

scheduling, particle swarm optimization and genetic algorithms. The programs of 

particle swarm optimization and genetic algorithm are coded with programming 

language C according to the types of scheduling problem. Then, the experiments are 

compared to evaluate the performance of each algorithm to different problem types. 

Finally, the conclusion is remarked. The flow chart of this dissertation is as figure 1.1. 
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Figure 1. 1 The flow chart of this dissertation 

 

1.4 Organization 

The organization of the remaining chapters for this research is as follows. Chapter 2 

reviews the literatures of the background of shop scheduling problems and PSO. 

Chapter 3 describes the factors of PSO design and PSO for FSSP. PSO for JSP is 

modified and illustrated in Chapter 4. We also proposed a novel PSO for OSSP in 

Chapter 5. In chapter 6 we draw our conclusion and indicate the direction for further 

research. 

 

Research Topic 

Literature Review 

PSO Algorithm 

Coding 

Experiment 

Comparison 

Conclusion 
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CHAPTER 2 LITERATURE REVIEW  

 

2.1 Particle Swarm Optimization 

Particle swarm optimization (PSO) is an evolutionary technique for unconstrained 

continuous optimization problems proposed by Kennedy and Eberhart (1995). The 

PSO concept is based on observations of the social behavior of animals such as birds 

in flocks, fish in schools, and swarm theory. The advantages of the PSO method: 

simple structure, immediate applicability to practical problems, ease of 

implementation, quick solution, and robustness. Particle swarm optimization proposed 

recently for unconstrained continuous optimization problems is one of the latest 

evolutionary techniques. PSO has been successfully applied to different field of 

applications due to the easy implementation and computational efficiency. 

Nevertheless, the applications of the PSO on the combination optimization problem 

are still scarce. 

The major idea of PSO is based on observations of the social behaviors of 

animals such as bird flocking, fish schooling, and swarm theory.  The population is 

initialized by random solutions. The population consists with individuals (i.e. 

particles). Each particle is assigned with a randomized velocity according to its own 

and populations’ movement experience. The relationship between swarm and particles 

in PSO is similar to the relationship between population and chromosomes in GA.  

In PSO, the problem solution space is formulated as a search space. Each 

position of the particles in the search space is a correlated solution of the problem. 

Particles cooperate to find out the best position (solution) in the search space (solution 

space).  
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Suppose that the searching space is D-dimensional and ρ particles comprise the 

swarm. Each particle locates at the position say Xi={x 1i, x2i, …, xDi} with the velocity 

V i={v 1i, v2i, …, vDi}, where i=1, 2, …,ρ. Based on the PSO algorithm, each particle 

move toward its own best position (pbest) denoted as Pbesti={pbest1i, pbest2i,…, 

pbestni} and the best position of the whole swarm (gbest) denoted as Gbest={gbest1, 

gbest2, …, gbestn}with each iteration. Each particle changes its position according to 

its velocity which is randomly generated toward pbest and gbest positions. For each 

particle r and dimension s, the new velocity vsr and position xsr of particles can be 

calculated by the following equations:  

)()( 2211 kjjkjkjkjkj xgbestrandcxpbestrandcvwv −××+−××+×←  (2.1) 

kjkjkj vxx +←              (2.2) 

In Eqs. (2.1) and (2.2), τ means the iteration number. The inertia weight w is 

employed to control exploration and exploitation. A large w keeps particles with high 

velocity and prevents particles from trapping in local optima. A small w maintains low 

velocity of particles and urges particles to exploit the same search area. The constant 

c1 and c2 are acceleration coefficients to determine whether particles prefer to move 

closer to pbest position or gbest position. The rand1 and rand2 are two independent 

random numbers uniformly distributed between 0 and 1. The termination criterion of 

the PSO algorithm includes the maximal number of generations, designated value of 

pbest and no further improved pbest. The standard process of PSO is outlined as 

follows:  

(1)Initialize a population of particles with random positions and velocities on d 

dimensions in the search space.  

(2)Update the velocity of each particle, according to Eq. (2.1).  
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(3)Update the position of each particle, according to Eq. (2.2).  

(4)Map the position of each particle into solution space and evaluate its fitness 

value according to the desired optimization fitness function. Meanwhile, 

update pbest and gbest position if necessary.  

(5)Loop to Step2 until a criterion is met, usually a sufficient good fitness or a 

maximum number of iterations.  

The original PSO is designed to suit continuous solution space. For better 

applying to combinational optimization problems, we have to modify PSO position 

representation, particle velocity, and particle movement. 

 

2.2 Genetic Algorithm 

The concept of genetic algorithms (GA) was introduced by Holland (1975) as a 

general search technique which mimics biological evolution, with the survival of the 

fittest individuals and a structured, yet randomized, information exchange like in 

population genetics. GAs have been applied with a growing success to combinational 

problems (Reeves, 1996). GAs works on a set (population) of solutions. Each solution 

is encoded as a string of symbols called chromosome, and is associated with a 

measure of adaptation, the fitness, often related to the objective function. Starting 

from an initial population, new solutions are generated by selecting some parents 

randomly, but with a probability growing with fitness, and by applying genetic 

operators such as crossover (an exchange of substrings of the parent chromosomes) 

and mutation (a random perturbation of a chromosome). Some existing solutions are 

then selected at random and replaced by some of the offspring, to keep a constant 

population size. The process is repeated until a satisfactory solution is found. 
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For solving optimization problems, genetic algorithms have been investigated 

and shown to be effective at exploring a large and complex space in an adaptive way 

guided by the equivalent biological evolution mechanism (Huang and Adeli, 1994). 

Many conventional optimization methods start from one point in the search area and 

then move sequentially to achieve the optimal solution, thereby operating rather 

locally and highly prone to falling inside a coincidental local optimum.  

GAs are known for their robustness: they can be applied to a wide range of 

problems without special knowledge about the problem structure. The price to pay is 

that they cannot compete with meta-heuristics which explore problem-specific 

neighborhoods. However, more and more paper have showed that GAs can 

outperform meta-heuristics on some problems, when they are enriched by some 

problem-specific knowledge, or when they are hybridized with other improvement 

techniques such as local search. 

  

2.3 Flow Shop Scheduling Problem 

Production scheduling in real environments has become a significant challenge in 

enterprises maintaining their competitive positions in rapidly changing markets. Flow 

shop scheduling problems have attracted much attention in academic circles in the last 

five decades since Johnson’s initial research. Most of these studies have focused on 

finding the exact optimal solution. A brief overview of the evolution of flow shop 

scheduling problems and possible approaches to their solution over the last fifty years 

has been provided by Gupta and Stafford (2006). That survey indicated that most 

research on flow shop scheduling has focused on single-objective problems, such as 

minimizing completion time, total flow time, or total tardiness. Numerous heuristic 
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techniques have been developed for obtaining the approximate optimal solution to 

NP-hard scheduling problems. A complete survey of flow shop scheduling problems 

with makespan criterion and contributions, including exact methods, constructive 

heuristics, improved heuristics, and evolutionary approaches from 1954 to 2004, was 

offered by Hejazi and Saghafian (2005). Ruiz and Maroto (2004) also presented a 

review and comparative evaluation of heuristics and meta-heuristics for permutation 

flowshop problems with the makespan criterion. The NEH algorithm (Nawaz, 

Enscore and Ham, 1983) has been shown to be the best constructive heuristic for 

Taillard’s benchmarks (Taillard, 1993) while the iterated local search (Stützle, 1998) 

method and the genetic algorithm (GA) (Reeves, 1995) are better than other 

meta-heuristic algorithms. 

Most studies of flow shop scheduling have focused on a single objective that 

could be optimized independently. However, empirical scheduling decisions might not 

only involve the consideration of more than one objective, but also require 

minimizing the conflict between two or more objectives. In addition, finding the exact 

solution to scheduling problems is computationally expensive because such problems 

are NP-hard. Solving a scheduling problem with multiple objectives is even more 

complicated than solving a single-objective problem. Approaches including 

meta-heuristics and memetics have been developed to reduce the complexity and 

improve the efficiency of solutions. 

Hybrid heuristics combining the features of different methods in a 

complementary fashion have been a hot issue in the fields of computer science and 

operational research (Liu et al., 2007). Ponnambalam et al. (2004) considered a 

weighted sum of multiple objectives, including minimizing the makespan, mean flow 

time, and machine idle time as a performance measurement, and proposed a 
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multi-objective algorithm using a traveling salesman algorithm and the GA for the 

flow shop scheduling problem. Rajendran and Ziegler (2004) approached the problem 

of scheduling in permutation flow shop using two ant colony optimization (ACO) 

approaches, first to minimize the makespan, and then to minimize the sum of the total 

flow time. Yagmahan and Yenisey (2008) was the first to apply ACO meta-heuristics 

to flow shop scheduling with the multiple objectives of makespan, total flow time, and 

total machine idle time. 

The literature on multi-objective flow shop scheduling problems can divided into 

two groups: a priori approaches with assigned weights of each objective, and a 

posteriori approaches involving a set of non-dominated solutions (Pasupathy et al., 

2006). There is also a multi-objective GA (MOGA) called PGA-ALS, designed to 

search non-dominated sequences with the objectives of minimizing makespan and 

total flow time. The multi-objective solutions are called non-dominated solutions (or 

Pareto-optimal solutions in the case of Pareto-optimality). Eren and Güner (2007) 

tackled a multi-criteria two-machine flow shop scheduling problem with minimization 

of the weighted sum of total completion time, total tardiness, and makespan. 

To minimize the objective of maximum completion time (i.e., the makespan), Liu 

et al. (2007) invented an effective PSO-based memetic algorithm for the permutation 

flow shop scheduling problem. Jarboui et al. (2008) developed a PSO algorithm for 

solving the permutation flow shop scheduling problem; this was an improved 

procedure based on simulated annealing. PSO was recommended by Tasgetiren et al. 

(2007) to solve the permutation flow shop scheduling problem with the objectives of 

minimizing makespan and the total flow time of jobs. Rahimi-Vahed and Mirghorbani 

(2007) tackled a bi-criteria permutation flow shop scheduling problem where the 

weighted mean completion time and the weighted mean tardiness were minimized 
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simultaneously. They exploited a new concept called the ideal point and a new 

approach to specifying the superior particle’s position vector in the swarm that is 

designed and used for finding the locally Pareto-optimal frontier of the problem. Due 

to the discrete nature of the flow shop scheduling problem, Lian et al. (2008) 

addressed permutation flow shop scheduling with a minimized makespan using a 

novel PSO. 

 

2.4 Job Shop Scheduling Problem 

Job shop scheduling problem (JSSP) has been studied for more than 50 years in both 

academic and practical fields. Jain and Meeran (1999) gave a concise overview of 

JSSP over the last decades and highlighted the main techniques. JSSP is the toughest 

class in the combinational optimization. Garey et al. (1976) demonstrated that JSSP is 

NP-hard (NP stands for non-deterministic polynomial), hence we cannot find the 

exact solution of it in reasonable computation time. The single objective JSSP has 

attracted researching concentration widely. Most studies of single objective JSSP are 

discovering a schedule to minimize the time required to complete all jobs, namely 

makespan (Cmax).  In order to conquer the limitation the exact enumeration 

techniques, many approximate methods have been developed in the last decades. 

These approximate approaches includes simulated annealing (Lourenco, 1995), tabu 

search (Sun et al., 1995; Nowicki and Smutnicki 1996; Pezzella and Merelli 2000) 

and genetic algorithm (Bean, 1995; Kobayashi et al., 1995; Wang and Zheng, 2001; 

Goncalves et al., 2005). However, in real world, the multi-objectives requirements of 

production system should be achieved at the same time. This makes the academic 

concentration of objectives in JSSP has been extended from single to multiple. 

Related works of JSSP with multiple objectives in recent years is summarized as 
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below. 

Ponnambalam et al. (2001) has offered a multi-objective genetic algorithm to 

derive the optimal machine-wise priority dispatching rules to resolve the job shop 

problems with the objective functions considered minimization of makespan, 

minimization of total tardiness, and minimization of total idle time of machines. 

Verified by the benchmark problem in the literatures, the proposed MOGA is capable 

of providing optimal or near-optimal solutions. A Pareto front provides a set of best 

solutions to determine the trade-offs between the various objects. Good parameter 

settings and appropriate representations can enhance the behavior of an evolution 

algorithm. Esquivel et al. (2002) conducted a study of the influence of distinct 

parameter combinations as well as different chromosome representations. Initial result 

shows that: (i)Larger numbers of generations favor the building of a Pareto front 

because the search process (if rather slow) does not stagnate. (ii)Multi-recombination 

helps to speed the search and to find a larger set size when seeking the Pareto optimal 

set. (iii)Operation based representation is the best of the three representations selected 

for contrast under both methods of recombination. A meta-heuristic procedure based 

on the simulated annealing algorithm called Pareto archived simulated annealing 

(PASA) is proposed by Suresh and Mohanasndaram (2006) to discover 

non-dominated solution sets for the job shop scheduling problem with the objectives 

of minimizing the makespan and the mean flow time of jobs. The superior 

performance of the PASA can be attributed to its acceptance mechanism used to 

accept the candidate solution. Candido et al. (1998) addressed job shop scheduling 

problems with numbers of more realistic constraints such as job with several 

subassembly levels, alternative processing plans for parts and alternative resources of 

operations, requirement of multiple resources to process an operation, etc. The robust 
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procedure worked well in all problem instances, showing to be a promising tool to 

solve more realistic job shop scheduling problems. Lei and Wu (2006) firstly designed 

a crowding-measure-based multi-objective evolutionary algorithm (CMOEA) which 

makes use of the crowding measure to adjust the external population and assign 

different fitness for individuals.  The comparison between CMOEA and SPEA 

demonstrates that CMOEA performs well in job shop scheduling with two objectives 

including minimization of makespan and total tardiness. 

Coello et al. (2004) provided an approach in which Pareto dominance is 

incorporated into particle swarm optimization in order to allow the heuristic to handle 

problems with several object functions. The algorithm used secondary repository of 

particles to guide particle flight. The proposed approach is validated using several test 

functions and metrics taken from the standard literature on evolutionary 

multi-objective optimization. The results show that the approach is highly competitive. 

Liang et al. (2005) have invented a novel PSO-based algorithm for job- shop 

scheduling problems. The algorithm effectively exploits the capability of distributed 

and parallel computing systems, with simulation result showing the possibility of high 

quality solutions for typical benchmark problems. Lei (2008) presented a particle 

swarm optimization for multi-objective job shop scheduling problem to 

simultaneously minimize makespan and total tardiness of jobs. By constructing the 

corresponding relation between real vector and the chromosome obtained by using 

priority rule-based representation method, job shop scheduling is converted into a 

continuous optimization problem. The global best position selection is combined with 

the crowding measure-based archive maintenance to design a Pareto archive particle 

swarm optimization. The proposed algorithm is capable of producing a number of 

high-quality Pareto optimal scheduling plans. 
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Incorporating different approaches to take the strength of them, some hybrid 

algorithms have been proposed lately and lead to another research branch. Wang and 

Zheng (2001) reasonably combined GA with SA to invent a hybrid framework, in 

which GA was introduced to present a parallel search architecture, and SA was 

introduced to increase escaping probability from local optimal at high temperatures. 

Computer simulation results based on some b showed that the hybrid strategy was 

very effective and robust, and could almost find optima for all benchmark instances. 

Based on the hybridization of PSO and SA, Xia and Wu (2005) developed an easily 

implemented approach for the multi-objective flexible job shop scheduling problem. 

The results obtained from the computational study have shown that the proposed 

algorithm is a viable and effective approach for the multi-objective FJSP, especially 

for problems on a large scale. Ripon (2007) extends the idea called Jumping Genes 

Genetic Algorithm (JGGA) to propose a hybrid approach which can search for the 

near-optimal and non-dominated solutions with better convergence by optimizing 

criteria simultaneously. 

 

2.5 Open Shop Scheduling Problem 

Shop scheduling problems, including flow-, job-, and open-shop problems, have 

attracted the interest of many researchers.  Shop scheduling has become a significant 

factor used by shops to maintain their competitive position in a rapidly changing 

marketplace.  Most previous research into the open-shop scheduling problem has 

concentrated on finding a single optimal solution (e.g., makespan).  However, in the 

real world, the multiple-objective requirements of shop scheduling must be achieved 

simultaneously.  Thus, the academic study of open-shop scheduling has been 

extended from a single objective to multiple objectives. 
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Because the open-shop scheduling problem is non-deterministic polynomial-time 

hard (NP hard) for more than two machines (m > 2) (Gonzalez and Sahni ,1976), we 

cannot solve it exactly using a reasonable amount of computation time.  Most 

published research has concentrated on developing heuristic algorithms to search for 

the optimal makespan of open-shop scheduling problems.  A neighborhood search 

algorithm based on the simulated annealing technique was proposed by Liaw (1999) 

to addresses the problem of scheduling a non-preemptive open shop with the objective 

of minimizing the makespan.  An efficient local search algorithm based on the tabu 

search technique was also proposed by Liaw (1999) to minimize the makespan. 

Liaw (2000) developed and applied a hybrid genetic algorithm (HGA) to the 

open-shop scheduling problem.  The hybrid algorithm incorporated a local 

improvement procedure based on the tabu search (TS) into the basic genetic algorithm 

(GA).  Blum (2005) proposed the Beam-ACO technique to tackle open-shop 

scheduling; this technique consisted of a hybridized solution construction mechanism 

for ant colony optimization (ACO) with a beam search.  Several competitive GAs 

have also been presented to detect global optimal values disseminated among many 

quasi-optimal schedules of the open-shop problem (Prins, 2000).  A heuristic 

technique for the open-shop scheduling problem using the genetic algorithm to 

minimize the makespan was developed by Senthilkumar and Shahbudeen (2006), and 

Tang and Bai (2010) proposed a heuristic algorithm, known as the shortest processing 

time block (SPTB), to solve the open-shop problem by minimizing the sum of the 

completion time. 

Liang (2005) considered the problem of scheduling preemptive open shops to 

minimize the total tardiness.  He developed an efficient constructive heuristic to 

solve large problems.  To solve medium-sized problems, he proposed a 
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branch-and-bound algorithm that incorporated a lower bound scheme based on the 

solution of an assignment problem as well as various dominance rules. 

Blazewicz et al. (2004) applied a non-classical performance measure, the late 

work criterion, to scheduling problems.  They estimated the quality of the obtained 

solution with regards to the duration of the late parts of the tasks, but did not take into 

account the quality of these delays. 

One of the latest evolutionary techniques, particle swarm optimization (PSO), 

was recently proposed by Kennedy and Eberhart (1995) for unconstrained continuous 

optimization problems.  The idea behind PSO is based on observations of the social 

behavior of animals such as flocks of birds or schools of fish, combined with swarm 

theory.  PSO has been successfully applied to different fields due to its easy 

implementation and computational efficiency.  Nevertheless, applications of PSO to 

combinations of optimization problems are still scarce. 

 

2.6 Multiple Objective Programming 

There are several ways to classify the different approaches to multiobjective 

optimization. Adulbhan and Tabucanon (1989) classified the techniques into three 

main approaches based on the way the initial multiobjective problem is transformed 

into a mathematically manageable format. These approaches are, respectively, (a) 

conversion of secondary objectives into constraints, (b) development of a single 

combined objective function, and (c) treatment of all objectives as constraints. Hwang, 

Masud, Paidy and Yoon (1982), on the other hand, propose grouping of techniques 

according to the stage at which the analyst needs information from the decision-maker. 

The classification is divided into four approaches: (a) no articulation of decision 

maker’s preference data, (b) a priori articulation of preference data, (c) progressive 
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articulation of preference data, and (d) a posteriori articulation of preference data. 

A recently proposed method for treating the analytical phase of the MCDM 

process is called multiple criteria optimization or, in short, multiobjective 

optimization (Seo and Sakawa, 1988). According to this viewpoint, multiple criteria 

optimization contains two key concepts: (a) Pareto optimality and (b) the preferred 

decision (or preferred solution). In general, the decisions with Pareto optimality are 

not uniquely determined, unlike, for instance, what goal programming produces. In 

multiobjective optimization problems, the usually exist many solutions that are 

optimal in the Pareo sense, a concept put forth by economists. Owing to such plurality 

of optimal decisions, the most desirable decision may be selected after one has 

generated the Pareto optimal or nondominated solutions. The final solution thus 

selected as the most desirable, or at least the best-compromised solution, is called 

preferred solution. 

Many approaches have been developed in the domain of multi-objective 

meta-heuristic optimization. Hsu, Dupas, Jolly & Goncalves (2002) focus our 

presentation on evolutionary approaches that can be classified into three types: (a) 

The transformation towards a mono-objective problem consists of combining the 

different objective into a weighted sum. (b) The non-Pareto approach utilizes 

operators for processing the different objectives in a separated way. (c) The Pareto 

approach is directly based on the Pareto optimization concept. It aims at satisfy two 

goals: coverage to the Pareto front and obtain diversified solutions scattered all over 

the Pareto front. 

In real world, empirical scheduling decisions should not only involve the 

deliberation of more than one objective at a time, but also need to prevent the conflict 

of two or more objectives. The solution set of multi-objective optimization problem 
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with conflicting objective function consisted with the solutions that no other solution 

is better than all other objective functions is called Pareto optimal. A multi-objective 

minimization problem with m decision variables and n objectives is given below to 

describe the concept of Pareto optimality. 

nm

n
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The non-dominated solution is defined as solutions which dominate the others 

but do not dominate themselves. Solution p is said a Pareto-optimal solution if there 

exist no other solution q in the feasible space which could dominate p. The set 

including all Pareto-optimal solutions is termed the Pareto-optimal Set, or the efficient 

set. The graph plotted using collected Pareto-optimal solutions in feasible space is 

designated as Pareto front.  

The external Pareto optimal set is employed to deposit a limited size of 

non-dominated solutions (Knowles et al., 2000; Zitzler et al. 2001). Maximum size of 

archive set is specified in advance. This method is applied to forbid missing fragment 

of non-dominated front during the searching process. The Pareto-optimal front is 

getting formed as archive updated iteratively. While the archive set is empty enough 

and a new non-dominated solution is detected, the new solution will enter the archive 

set. As the new solution enters the archive set, any solution in the archive set 

dominated by this solution will be withdrawn from the archive set. In case the 

maximum archive size reaches its preset value, the archive set have to decide which 

solution could be replaced.  
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In this study, we propose a novel Pareto archive set updating process in order to 

preclude from losing non-dominated solutions when the Pareto archive set is full. 

When a new non-dominated solution is discovered, the archive set would be updated 

when one of the following situation occurs: (a) number of solutions in the archive set 

is less than the maximum value; (b) number of the solutions in the archive set is equal 

to (greater than) the maximum value, then one of the solutions in the archive set that 

is most dissimilar to the new solution will be replaced by the new solution. We 

measure the dissimilarity by Euclidean distance. A longer distance implies a higher 

dissimilarity is. The non-dominated solution in the Pareto archive set with the longest 

distance to the new found solution will be replaced. 

 

 

 

 

 

 

 

 

 

 

 

 



19 
 

CHAPTER 3 PSO for Multi-objective FSSP 

 

In this chapter, we will discuss the probably success factors to develop a PSO design 

for a discrete optimization problem. We will compare PSO with another 

population-based meta-heuristic—genetic algorithm (GA). The principles of a GA 

design may be also suitable to a PSO design. 

 There are two different representations of particle position associated with a 

schedule. Zhang et al. (2005) demonstrated that permutation-based position 

representation outperforms priority-based representation. While we have chosen to 

implement permutation-based position representation, we must also adjust the particle 

velocity and particle movement.  

There are four types of feasible schedules in JSP, including inadmissible, 

semi-active, active and non-delay. The optimal schedule is guaranteed to be an active 

schedule. We can decode a particle position into an active schedule employing Giffler 

and Thompson’s (1960) heuristic. There are two different representation of particle 

position associated with a schedule. The results of Zhang (2005) demonstrated that 

permutation-based position representation outperforms priority-based representation. 

While choosing permutation-based position presentation to implement, we also have 

to adjust the particle velocity and particle movement. In addition, the maintenance of 

Pareto optima and diversification procedure are proposed finally for better 

performance.  

 

3.1 Problem Formulation 

The problem of scheduling in flow shops has been the subject of much investigation. 
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The primary elements of flow shop scheduling include a set of m machines and a 

collection of n jobs to be scheduled on the set of machines. Each job follows the same 

process of machines and passes through each machine only once. Each job can be 

processed on one and only one machine at a time, whereas each machine can process 

only one job at a time. The processing time of each job on each machine is fixed and 

known in advance. We formulate the multi-objective flow shop scheduling problem 

using the following notation: 

n total number of jobs to be scheduled 

m total number of machines in the process 

t(i, j)  processing time for job i on machine j (i=1,2,…n), (j=1,2,…m) 

Li   the lateness of job i 

{π1, π2, …, πn}  permutation of jobs 

The objectives considered in this paper are formulated as follows: 

Completion time (makespan) ),( jC π  

  )1,()1,( 11 ππ tC =                 (3.1) 

nitCC iii ,...,2  )1,()1,()1,( 1 =+= − πππ           (3.2) 

mjjtjCjC ,...,2  ),()1,(),( 11 =+−= πππ             (3.3) 

mjnijtjCjCjC iiii ,...,2  ;,...,2  ),()}1,(),,(max{),( 1 ==+−= − ππππ    (3.4) 

Makespan, ),(max mCf nC π=                                      (3.5) 
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3.2 Particle Position Representation  

In the study of flow shop scheduling, we randomly generated a group of particles 

(solutions) represented by a permutation sequence that is an ordered list of operations. 

The following example is a permutation sequence for a six-job permutation flow shop 

scheduling problem, where jn is the operation of job n. 

Index:  1    2    3    4    5    6 

Permutation:  j4   j3    j1    j6   j2    j5 

An operation earlier in the list has a higher priority of being placed into the schedule. 

We used a list with a length of n for an n-job problem in our algorithm to represent the 

position of particle k, i.e. 

. particlein   ofpriority   theis 

,   ] ...  [ 21
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i
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Then, we convert the permutation list to a priority list. k
ix  is a value randomly 

initialized to some value between (p – 0.5) and (p + 0.5). This means k
ix ←p + rand – 

0.5, where p is the location (index) of j i in the permutation list, and rand is a random 

number between 0 and 1. Consequently, the operation with smaller k
ix has a higher 

priority for scheduling. The permutation list mentioned above can be converted to 

kX = [ 2.7  5.2  1.8  0.6  6.3  3.9]. 
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We describe the conversion between integers and float-point numbers as follows. 

The permutation list is represented in integer, while the priority list is presented in 

floating-point number. At first, we generate integers randomly for permutation list. 

The permutation list could convert to priority list via the equation 5.0() −+= randpx i
k
i , 

where rand() is the random number between 0 and 1. 

 

Figure 3.1 The conversion between integers and float-point numbers 

The priority list contains real number is used in our PSO. The priority list stored in 

the array is as follows.  

3.96.30.61.85.22.7Priority list

65432 1Index

3.96.30.61.85.22.7Priority list

65432 1Index

 

Figure 3.2 The priority list stored in the array 

As the particle move, the value of priority list may change. We assume that the 

priority list change to be followed. 

3.92.60.61.85.22.7Priority list

65432 1Index

3.92.60.61.85.22.7Priority list

65432 1Index

 

Figure 3.3 The priority list changed as particle movement 

Finally, we sort the priority list and we can get a new permutation list. The new 

list can be used to calculate fitness function. 
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3.92.60.61.85.22.7Priority list

65432 1Index

3.92.60.61.85.22.7Priority list

65432 1Index

261534Permutation list 261534Permutation list

Sorting

 

Figure 3.4 A new permutation list 

 

3.3 Particle Velocity 

The original PSO velocity concept is that each particle moves according to the 

velocity determined by the distance between the previous position of the particle and 

the gbest (pbest) solution. The two major purposes of the particle velocity are to move 

the particle toward the gbest and pbest solutions, and to maintain the inertia to prevent 

particles from becoming trapped in local optima. 

In the proposed PSO of flow shop scheduling, we concentrated on preventing 

particles from becoming trapped in local optima rather than moving them toward the 

gbest (pbest) solution. If the priority value increases or decreases with the present 

velocity in this iteration, we maintain the priority value increasing or decreasing at the 

beginning of the next iteration with probability w, which is the PSO inertial weight. 

The larger the value of w is, the greater the number of iterations over which the 

priority value keeps increasing or decreasing, and the greater the difficulty the particle 

has returning to the current position. For an n-job problem, the velocity of particle k 

can be represented as 

. particle of  of velocity  theis  where
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The initial particle velocities are generated randomly. Instead of considering the 

distance from k
ix  to )( i

k
i gbestpbest , our PSO considers whether the value of k

ix  
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is larger or smaller than )( i
k
i gbestpbest  If k

ix  has decreased in the present 

iteration, this means that )( i
k
i gbestpbest  is smaller than k

ix , and k
ix  is set moving 

toward )( i
k
i gbestpbest  by letting k

iv ← –1. Therefore, in the next iteration, kix  is 

kept decreasing by one (i.e., kix ← k
ix  –1) with probability w. Conversely, if k

ix  

has increased in this iteration, this means that )( i
k
i gbestpbest  is larger than k

ix , and 

k
ix  is set moving toward )( i

k
i gbestpbest  by letting k

iv ←1. Therefore, in the next 

iteration, k
ix  is kept increasing by one (i.e. kix ← k

ix  + 1) with probability w. 

The inertial weight w influences the velocity of particles in PSO. We randomly 

update velocities at the beginning of iterations. For each particle k and operation j i, if 

k
iv  is not equal to 0, k

iv  is set to 0 with probability (1–w). This ensures that k
ix  

stops increasing or decreasing continuously in this iteration with probability (1–w).  

 

3.4 Particle Movement 

The particle movement of flow shop scheduling is based on the insertion operator 

proposed by Sha and Hsu (2008). The insertion operator is introduced to the priority 

list to reduce computational complexity. We illustrate the effect of the insertion 

operator using the permutation list example described above. If we wish to insert j4 

into the third location of the permutation list, we must move j6 to the sixth location, 

move j1 to the fifth location, move j2 to the fourth location, and then insert j4 in the 

third location. The insertion operation comprising these actions costs O(n/2) on 

average. However, the insertion operator used in this study need only set 

5.03 −+← randxk
i  when we want to insert j5 in the third location of the permutation. 
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This requires only one step for each insertion. If the random number rand equals 0.1, 

for example, after j4 is inserted into the third location, then kX becomes kX = [ 2.7  

5.2  1.8  0.6  2.6  3.9]. 

If we wish to insert j i into the pth location in the permutation list, we could set 

5.0−+← randpxk
i . The location of operation j i in the permutation sequence of the kth 

pbest and gbest solutions are k
ipbest  and igbest , respectively. As particle k moves, if 

k
iv  equals 0 for all j i, then k

ix  is set to 5.0−+ randpbestki  with probability c1 and set 

to 5.0−+ randgbesti  with probability c2, where rand is a random number between 0 

and 1, c1 and c2 are constants between 0 and 1, and 121 ≤+ cc . We explain this 

concept by assuming specific values for Vk, Xk, pbestk, gbest, c1, and c2. 

 

.1.0 ,8.0c 2],  1  5  4  3  6[

2],  3  6  4  1  5[

3.9],  6.3  0.6  1.8  5.2  7.2[

 0],  0  1  0  0  1[
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=

−=

cgbest

pbest
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For j1, since 01 ≠kv  and kkk vxx 111 +← , then 7.11 =kx . 

For j2, since 02 =kv , the generated random number 6.01 =rand . Since 11 crand ≤ , then 

the generated random number 3.02 =rand . Since kk xpbest 22 ≤ , set 12 −←kv  and 

5.0222 −+← randpbestx kk , i.e., 8.02 =kx . 

For j3, since 03 =kv , the generated random number 93.01 =rand . Since 211 ccrand +> , 

kx3  and kv3  do not need to be changed. 

For j4, since 14 =kv , then kkk vxx 444 +← , i.e., 6.14 =kx . 

For j5, since 05 =kv , the generated random number 85.01 =rand . Since 

2111 ccrandc +≤< , the generated random number 7.02 =rand . Since kxgbest 55 ≤ , set 

15 −←kv . Then 5.0255 −+← randgbestxk , i.e., 2.15 =kx . 

For j6, since 06 =kv , the generated random number 95.01 =rand . Since 211 ccrand +> , 

kx6  and kv6  do not need to be changed. 
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Therefore, after particle k moves, the Vk and Xk are 

3.9]    1.2    1.7    1.8    0.8    6.1[
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=

−−−=
k

k

X

V

 

In addition, we use a mutation operator in our PSO algorithm. After moving a 

particle to a new position, we randomly choose an operation and then mutate its 

priority value k
ix  in accordance with k

iv . If )2/(nxk
i ≤ , we randomly set k

ix  to a 

value between (n/2) and n, and set k
iv ← 1. If )2/(nxk

i > , we randomly set k
ix  to a 

value between 0 and (n/2), and set k
iv ← –1. 

 

3.5 Pareto optimal set maintenance 

Real empirical scheduling decisions often involve not only the consideration of more 

than one objective at a time, but also must prevent the conflict of two or more 

objectives. The solution set of the multi-objective optimization problem with 

conflicting objective functions consistent with the solutions so that no other solution 

is better than all other objective functions is called Pareto optimal. A multi-objective 

minimization problem with m decision variables and n objectives is given below to 

describe the concept of Pareto optimality. 

nm

n

xFxwhere

xfxfxfxFMinimize

ℜ∈ℜ∈

=

)(  ,  ,

))( ..., ),( ),(()(   21

 

A solution p is said to dominate solution q if and only if 

} ..., ,2 ,1{    )()(

} ..., ,2 ,1{    )()(

nkqfpf

nkqfpf

kk

kk

∈∃<
∈∀≤

 

Non-dominated solutions are defined as solutions that dominate the others but do 

not dominate themselves. Solution p is said to be a Pareto-optimal solution if there 

exists no other solution q in the feasible space that could dominate p. The set 
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including all Pareto-optimal solutions is referred to as the Pareto-optimal or efficient 

set. A graph plotted using collected Pareto-optimal solutions in feasible space is 

referred to as the Pareto front.  

The external Pareto optimal set is used to produce a limited size of 

non-dominated solutions (Knowles and Corne (1999); Zitzler et al. (2001)). The 

maximum size of the archive set is specified in advance. This method is used to avoid 

missing fragments of the non-dominated front during the search process. The 

Pareto-optimal front is formed as the archive is updated iteratively. When the archive 

set is sufficiently empty and a new non-dominated solution is detected, the new 

solution enters the archive set. As the new solution enters the archive set, any solution 

already there that is dominated by this solution will be removed. When the maximum 

archive size reaches its preset value, the archive set must decide which solution 

should be replaced. In this study, we propose a novel Pareto archive set update 

process to preclude losing non-dominated solutions when the Pareto archive set is full. 

When a new non-dominated solution is discovered, the archive set is updated when 

one of the following situations occurs: either the number of solutions in the archive 

set is less than the maximum value, or if the number of solutions in the archive set is 

equal to or greater than the maximum value, then the one solution in the archive set 

that is most dissimilar to the new solution is replaced by the new solution. We 

measure the dissimilarity by the Euclidean distance. A longer distance implies a 

higher dissimilarity. The non-dominated solution in the Pareto archive set with the 

longest distance to the newly found solution is replaced. For example, the distance (dij) 

between X1 and X2 is calculated as 
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The Pareto archive set is updated at the end of each iteration in the proposed 

PSO. 

 

3.6 Computational Results  

The proposed PSO algorithm was verified by benchmark problems obtained from the 

OR-Library that were contributed by Carlier (1978), Heller (1960), and Reeves (1995). 

The test program was coded in Visual C++ and run 20 times on each problem using an 

Intel Pentium 4 3.0-GHz processor with 1 GB of RAM running Windows XP. We 

used four swarm sizes N (10, 20, 60, and 80) to test the algorithm during a pilot 

experiment. A value of N = 80 was best, so it was used in all subsequent tests. The 

algorithm parameters were set as follows: c1 and c2 were tested over the range 0.1–0.7 

in increments of 0.2, and the inertial weight w was reduced from wmax to wmin during 

the iterations. Parameter wmax was set to 0.5, 0.7, and 0.9 corresponding to wmin values 

of 0.1, 0.3, and 0.5. Settings of c1 = 0.7, c2 = 0.1, wmax = 0.7, and wmin = 0.3 worked 

best. 

The presented PSO algorithm is compared with two heuristic algorithms: CDS 

and NEH. We briefly describe these two methods here. CDS heuristic named by the 

three authors was proposed by Campbell, et al. (1970). The CDS procedure is a 

heuristic generalization of Johnson’s algorithm. The process generates a set of m-1 

artificial two-machine problem, each of which is then solved by Johnson’s rule. In this 

study, we modified original CDS and compared the makespan, mean flow time and 
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machine idle time of all m-1 generated problems. The non-dominated solution was 

picked to compare with the solutions obtained from our PSO algorithm. The other 

comparison is based on the solutions constructed from NEH algorithm that was 

presented by Nawaz M. et al. (1983). The NEH enumerates n(n+1)/2 permutations to 

find near-optimal solutions. Similar to CDS, we modified the original NEH and 

compared the three objectives of all n(n+1)/2 sequences. We compared the 

non-dominated solution from those sequences with the solutions from our PSO. 

The makespan, mean flow time, and machine idle time from sequence given by 

the PSO, CDS and NEH are denoted MSPSO, MFTPSO, and MITPSO; MSCDS, MFTCDS, 

and MITCDS; and MSNEH, MFTNEH, and MITNEH respectively. The relative error in 

makespan, mean flow time, and machine idle time for schedule SPSO are as follows. 

 ),,(/)],,([ NEHCDSPSONEHCDSPSOPSO MSMSMSMINMSMSMSMINMS −          (3.8) 

),,(/)],,([ NEHCDSPSONEHCDSPSOPSO MFTMFTMFTMINMFTMFTMFTMINMFT −    (3.9) 

),,(/)],,([ NEHCDSPSONEHCDSPSOPSO MITMITMITMINMITMITMITMINMIT −      (3.10) 

Furthermore, the relative error in makespan, mean flow time, and machine idle 

time for schedule SCDS could be derived using the following equations.  

 ),,(/)],,([ NEHCDSPSONEHCDSPSOCDS MSMSMSMINMSMSMSMINMS −         (3.11)                      

 ),,(/)],,([ NEHCDSPSONEHCDSPSOCDS MFTMFTMFTMINMFTMFTMFTMINMFT −  (3.12) 

),,(/)],,([ NEHCDSPSONEHCDSPSOCDS MITMITMITMINMITMITMITMINMIT −      (3.13) 

At last, the relative error in makespan, mean flow time, and machine idle time for 

schedule SNEH could be derived using the following equations: 

 ),,(/)],,([ NEHCDSPSONEHCDSPSONEH MSMSMSMINMSMSMSMINMS −          (3.14) 
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),,(/)],,([ NEHCDSPSONEHCDSPSONEH MFTMFTMFTMINMFTMFTMFTMINMFT −   (3.15) 

 ),,(/)],,([ NEHCDSPSONEHCDSPSONEH MITMITMITMINMITMITMITMINMIT −      (3.16) 

Finally, the following functions are used to measure the aggregated objectives 

performance of the three heuristics. 

  
)]()()[(

MITMFTMS

MITPSOMFTPSOMSPSO

MINMINMIN

MINMITMINMFTMINMS

++
−+−+−

        (3.17) 
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        (3.18) 
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MINMINMIN
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=
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=
 

In order to examine the performance including efficiency and quality of the 

proposed PSO algorithm, we have applied our PSO to totally 161 benchmark 

problems. For problem Rec01 to Rec41, the average relative error of Cmax and MFT 

are given in Table 3.1. Table 3.2 shows average relative error of MIT and aggregate 

performance. From Table 3.3 to Table 3.6, we demonstrated the average relative error 

of Cmax, MFT and MIT with the problem Tai20×5 to Tai500×20. The aggregate 

performance of problem Tai20×5 to Tai500×20 are given in Table 3.7.  

At last, we observed that the PSO perform better than other two heuristics while 

only one objective is considered. Table 3.8 shows the superior number and percentage 

of problems among the three different algorithms. As we consider the three objectives 

at the same time, we can prove the performance of proposed PSO by Table 3. 9. 
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Table 3. 1 The average relative error in Cmax and MFT of problem RecXX 

Problem Makespan  MFT  

 CDS NEH PSO CDS NEH PSO 

Rec01_20×5 0.0798 0.0000    0.0850 0.4089 0.0000    0.3119 

Rec03_20×5 0.1867 0.0000    0.1278 0.4447 0.0000    0.3274 

Rec05_20×5 0.1068 0.0008    0.0315 0.3974 0.0000    0.2931 

Rec07_20×10 0.0437 0.0000    0.0970 0.1330 0.0000    0.0382 

Rec09_20×10 0.1712 0.0000    0.1106 0.1370 0.0004    0.0495 

Rec11_20×10 0.1430 0.0000    0.0666 0.2467 0.0621 0.0002    

Rec13_20×15 0.2233 0.0000    0.1146 0.0487 0.1487 0.0015    

Rec15_20×15 0.0796 0.0000    0.0935 0.0801 0.1639 0.0000    

Rec17_20×15 0.1990 0.0000    0.1190 0.0721 0.1549 0.0006    

Rec19_30×10 0.1059 0.0000    0.1090 0.2520 0.0000    0.1955 

Rec21_30×10 0.2029 0.0000    0.1531 0.3009 0.0000    0.2171 

Rec23_30×10 0.1542 0.0000    0.1170 0.2376 0.0000    0.2060 

Rec25_30×15 0.1640 0.0000    0.0934 0.1249 0.0004    0.0231 

Rec27_30×15 0.1365 0.0000    0.0983 0.0988 0.0000    0.0359 

Rec29_30×15 0.2419 0.0000    0.1546 0.1576 0.0000    0.0466 

Rec31_50×10 0.4748 0.2951 0.0000    0.7323 0.1225 0.0000    

Rec33_50×10 0.4603 0.3596 0.0000    0.6403 0.2224 0.0000    

Rec35_50×10 0.5053 0.3202 0.0000    0.6703 0.1520 0.0000    

Rec37_75×20 0.9534 0.6410 0.0000    1.3879 0.7679 0.0000    

Rec39_75×20 0.9371 0.6362 0.0000    1.5575 0.8042 0.0000    

Rec41_75×20 0.9938 0.7155 0.0000    1.6152 0.8441 0.0000    

       

Average 0.3125 0.1413 0.0748    0.4640 0.1640 0.0832    
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Table 3. 2 The average relative error in MIT and Aggregate of problem Rec 

Problem MIT  Aggregate  

 CDS NEH PSO CDS NEH PSO 

Rec01_20×5 4.1112 2.4282 0.0000    0.3410 0.0797    0.1676 

Rec03_20×5 1.4296 1.0185 0.0014 0.3665 0.0707 0.1887 

Rec05_20×5 3.5144 2.1824 0.0000 0.3585 0.0904 0.1281 

Rec07_20×10 0.7301 0.4095 0.0019 0.3020 0.1384 0.0480 

Rec09_20×10 0.5385 0.2741 0.0127 0.2872 0.0832 0.0594 

Rec11_20×10 2.0732 0.0082 0.1115 0.7760 0.0203 0.0616 

Rec13_20×15 0.2396 0.2623 0.0097 0.1948 0.1580 0.0405 

Rec15_20×15 0.4336 0.4493 0.0000 0.2550 0.2521 0.0287 

Rec17_20×15 0.4120 0.2383 0.0131 0.2650 0.1366 0.0451 

Rec19_30×10 0.5509 0.0166 0.1057 0.2844 0.0049 0.1323 

Rec21_30×10 0.9548 0.0343 0.0979 0.4315 0.0082 0.1577 

Rec23_30×10 0.1880 0.0990 0.0067 0.1864 0.0362 0.0974 

Rec25_30×15 0.6217 0.2278 0.0060 0.3703 0.1056 0.0367 

Rec27_30×15 0.3343 0.4371 0.0000 0.2297 0.2262 0.0342 

Rec29_30×15 0.5644 0.0862 0.0101 0.3860 0.0421 0.0592 

Rec31_50×10 1.4631 0.4220 0.0000 0.8552 0.2808 0.0000 

Rec33_50×10 0.6859 0.3633 0.0040 0.5684 0.3117 0.0013 

Rec35_50×10 0.7108 0.2891 0.0000 0.6201 0.2607 0.0000 

Rec37_75×20 1.1915 0.8135 0.0000 1.1581 0.7601 0.0000 

Rec39_75×20 1.8247 0.5223 0.0000 1.5418 0.5946 0.0000 

Rec41_75×20 1.7428 1.1721 0.0000 1.5445 1.0152 0.0000 

       

Average 1.1579 0.5597 0.0181 0.5392 0.2227 0.0613 
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Table 3. 3 The average relative error in Cmax , MFT and MIT of problem Tai_20 

 Makespan MFT MIT 

Problem CDS NEH PSO CDS NEH PSO CDS NEH PSO 

Tai_20×5_1 0.0010     0.1205  0.0323  0.1135  0.1052  0.0000     3.8211  3.2056  0.0000     

Tai_20×5_2 0.0013     0.1180  0.0278  0.0377  0.0310  0.0000     8.7129  0.0296  0.9753     

Tai_20×5_3 0.0000     0.1834  0.0626  0.1000  0.0178  0.0000     3.1344  0.0205  0.1308     

Tai_20×5_4 0.0088     0.1487  0.0096  0.0757  0.0627  0.0000     4.3087  2.2174  0.0000     

Tai_20×5_5 0.0003     0.1761  0.0504     0.1418  0.0468  0.0000     2.2425  0.4427  0.0000     

Tai_20×5_6 0.0654  0.1170  0.0001     0.0296  0.0570  0.0000     0.3327  0.8453  0.0000     

Tai_20×5_7 0.0027     0.0229  0.0350  0.0642  0.0000  0.0000     16.158  1.2283  0.6350     

Tai_20×5_8 0.0003     0.0654  0.0517  0.0633  0.0231  0.0000     5.8688  3.8646  0.0000     

Tai_20×5_9 0.0033     0.0814  0.0328  0.0312  0.0366  0.0000     1.5550  1.2519  0.0000     

Tai_20×5_10 0.0353  0.0590  0.0039     0.0774  0.0794  0.0000     5.1159  5.3127  0.0000     

Average 0.0119  0.1092  0.0306     0.0734  0.0460  0.0000     5.1250  1.8419  0.1741     

          

Tai_20×10_1 0.0733  0.0543  0.0000     0.0406  0.0496  0.0000     0.1589  0.3794  0.0155     

Tai_20×10_2 0.0014     0.1127  0.0166  0.0024     0.0768  0.0093  0.0132  0.6637  0.1071     

Tai_20×10_3 0.1509  0.0978  0.0000     0.0529  0.0460  0.0003     0.2847  0.3143  0.0044     

Tai_20×10_4 0.1079  0.0792  0.0000     0.0688  0.0524  0.0000     0.5260  0.4282  0.0000     

Tai_20×10_5 0.0022     0.1666  0.0255  0.0524  0.0420  0.0006     0.6851  0.4076  0.0113     

Tai_20×10_6 0.1863  0.1647  0.0000     0.1108  0.0480  0.0000     0.6342  0.1983  0.0043     

Tai_20×10_7 0.1230  0.0938  0.0000     0.0454  0.0092     0.0133  0.3709  0.0616     0.1693  

Tai_20×10_8 0.0766  0.1262  0.0000     0.0768  0.0537  0.0002     0.4519  0.3661  0.0020     

Tai_20×10_9 0.0902  0.1124  0.0000     0.1244  0.0292  0.0000     1.2666  0.2793  0.0016     

Tai_20×10_10 0.0687  0.1368  0.0000     0.1527  0.0845  0.0000     1.3403  0.6326  0.0003     

Average 0.0880  0.1144  0.0042     0.0727  0.0491  0.0024     0.5732  0.3731  0.0316     

          

Tai_20×20_1 0.0335  0.0639  0.0009     0.0605  0.0707  0.0000     0.2408  0.2813  0.0000     

Tai_20×20_2 0.0334  0.0812  0.0009     0.0262  0.0262  0.0015     0.1384  0.1135  0.0109     

Tai_20×20_3 0.0406  0.0672  0.0000     0.0693  0.0693  0.0000     0.2703  0.3117  0.0000     

Tai_20×20_4 0.0268  0.0978  0.0005     0.0783  0.0673  0.0001     0.3266  0.2998  0.0005     

Tai_20×20_5 0.0691  0.0702  0.0000     0.0337  0.0109  0.0069     0.1362  0.0368  0.0325     

Tai_20×20_6 0.0234  0.0894  0.0004     0.1383  0.0373  0.0103     0.6739  0.1864  0.0490     

Tai_20×20_7 0.0232  0.1210  0.0008     0.0541  0.0868  0.0007     0.2585  0.3830  0.0031     

Tai_20×20_8 0.0421  0.0725  0.0000     0.0616  0.0655  0.0002     0.2999  0.3040  0.0003     

Tai_20×20_9 0.0003     0.0764  0.0275  0.0588  0.0588  0.0005     0.2485  0.2851  0.0019     

Tai_20×20_10 0.1108  0.0526  0.0000     0.0688  0.0432  0.0015     0.2640  0.1535  0.0071     

Average 0.0403  0.0792  0.0031     0.0650  0.0536  0.0022     0.2857  0.2355  0.0105     
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Table 3. 4 The average relative error in Cmax , MFT and MIT of problem Tai_50 

 Makespan MFT MIT 

Problem CDS NEH PSO CDS NEH PSO CDS NEH PSO 

Tai_50×5_1 0.0003     0.1044  0.0288  0.0149  0.0320  0.0000     0.3238  0.4924  0.0000     

Tai_50×5_2 0.0006     0.0699  0.0173  0.0242  0.0456  0.0002     0.5121  0.6752  0.0043     

Tai_50×5_3 0.0208  0.1076  0.0015     0.0225  0.0065  0.0001     0.6046  0.3555  0.0000     

Tai_50×5_4 0.0174  0.1230  0.0017     0.0532  0.0897  0.0000     1.4981  0.1268  0.0519     

Tai_50×5_5 0.0098  0.0903  0.0042     0.0441  0.0210  0.0000     0.9365  0.0518     0.0698  

Tai_50×5_6 0.0285  0.0972  0.0005     0.0427  0.0019     0.0023  0.9723  1.1903  0.0000     

Tai_50×5_7 0.0094  0.0626  0.0021     0.0430  0.0882  0.0000     0.6055  1.4488  0.0000     

Tai_50×5_8 0.0688  0.1347  0.0000     0.0785  0.0479  0.0000     1.3355  0.7859  0.0000     

Tai_50×5_9 0.1240  0.0624  0.0000     0.1097  0.0001     0.0158  2.5634  0.1153  0.0648     

Tai_50×5_10 0.0013  0.0769  0.0130     0.0181  0.0001  0.0070     1.0134  1.2503  0.0000     

Average 0.0281  0.0929  0.0069     0.0451  0.0333  0.0025     1.0365  0.6492  0.0191     

          

Tai_50×10_1 0.0801  0.0923  0.0000     0.0602  0.0463  0.0000     0.5719  0.5740  0.0801     

Tai_50×10_2 0.0164  0.0644  0.0015     0.0660  0.0264  0.0004     0.6506  0.2583  0.0164     

Tai_50×10_3 0.0313  0.0885  0.0000     0.0356  0.0503  0.0000     0.3509  0.5253  0.0313     

Tai_50×10_4 0.0748  0.1291  0.0000     0.0952  0.0597  0.0000     1.1933  0.7006  0.0748     

Tai_50×10_5 0.0317  0.1246  0.0000     0.0100  0.0438  0.0015     0.1101  0.6553  0.0317     

Tai_50×10_6 0.0001     0.0754  0.0242  0.0072  0.0337  0.0026     0.0741  0.2831  0.0001     

Tai_50×10_7 0.0678  0.1042  0.0000     0.0474  0.0481  0.0000     0.3679  0.4048  0.0678     

Tai_50×10_8 0.0417  0.0798  0.0000     0.0608  0.0117  0.0011     0.4762  0.1079  0.0417     

Tai_50×10_9 0.0428  0.0454  0.0002     0.0954  0.0295  0.0000     0.8816  0.4151  0.0428     

Tai_50×10_10 0.0498  0.1492  0.0000     0.0350  0.0322  0.0000     0.2690  0.1005  0.0498     

Average 0.0436  0.0953  0.0026     0.0513  0.0382  0.0006     0.4946  0.4025  0.0436     

          

Tai_50×20_1 0.0255  0.0946  0.0005     0.0494  0.0494  0.0000     0.2822  0.2279  0.0000     

Tai_50×20_2 0.0305  0.0659  0.0004     0.0458  0.0478  0.0000     0.2430  0.2715  0.0006     

Tai_50×20_3 0.0038  0.1261  0.0062     0.0222  0.0458  0.0016     0.1191  0.2660  0.0080     

Tai_50×20_4 0.0348  0.0865  0.0000     0.0466  0.0321  0.0001     0.2420  0.2576  0.0000     

Tai_50×20_5 0.0141  0.0830  0.0016     0.0325  0.0382  0.0001     0.1791  0.1837  0.0007     

Tai_50×20_6 0.0444  0.0617  0.0000     0.0590  0.0151  0.0006     0.2868  0.0663  0.0000     

Tai_50×20_7 0.0230  0.0684  0.0007     0.0147  0.0621  0.0006     0.0803  0.3219  0.0028     

Tai_50×20_8 0.0522  0.0423  0.0000     0.0786  0.0238  0.0002     0.3895  0.1730  0.0000     

Tai_50×20_9 0.0007     0.0560  0.0154  0.0679  0.0178  0.0010     0.3787  0.1106  0.0000     

Tai_50×20_10 0.0061  0.0782  0.0043     0.0578  0.0451  0.0001     0.3079  0.2664  0.0000     

Average 0.0235  0.0763  0.0029     0.0475  0.0377  0.0004     0.2508  0.2145  0.0012     
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Table 3. 5 The average relative error in Cmax , MFT and MIT of problem Tai_100 

 Makespan MFT MIT 

Problem CDS NEH PSO CDS NEH PSO CDS NEH PSO 

Tai_100×5_1 0.0047  0.1072  0.0031     0.0307  0.1104  0.0000     0.7611  3.3877  0.0000     

Tai_100×5_2 0.0146  0.1278  0.0007     0.0228  0.0726  0.0000     1.5465  6.3127  0.0000     

Tai_100×5_3 0.0212  0.0519  0.0010     0.0251  0.0005     0.0030  1.0418  3.3001  0.0000     

Tai_100×5_4 0.0018     0.0931  0.0080  0.0017  0.0905  0.0009     0.0793  1.6482  0.0186     

Tai_100×5_5 0.0989  0.0000     0.0886  0.1423  0.0000     0.1104  0.8203  1.1020  0.0000     

Tai_100×5_6 0.0006     0.0441  0.0108  0.0095  0.0008     0.0042  0.2100  2.8709  0.0175     

Tai_100×5_7 0.0089  0.1683  0.0012     0.0213  0.1649  0.0000     0.5958  3.9401  0.0000     

Tai_100×5_8 0.0153  0.0590  0.0013     0.0317  0.0196  0.0000     2.5700  3.3516  0.0000     

Tai_100×5_9 0.0124  0.0695  0.0007     0.0055  0.0095  0.0003     0.2062  0.3928  0.0660     

Tai_100×5_10 0.0104  0.1217  0.0013     0.0262  0.1305  0.0000     0.8053  3.2704  0.0000     

Average 0.0189  0.0843  0.0117     0.0317  0.0599  0.0119     0.8636  2.9577  0.0102     

          

Tai_100×10_1 0.0598  0.0001     0.0238  0.0499  0.0625  0.0000     0.6604  0.2145  0.0022     

Tai_100×10_2 0.0379  0.0265  0.0000     0.0319  0.0456  0.0000     1.3016  0.0000     0.6481  

Tai_100×10_3 0.1283  0.0000     0.0953  0.1286  0.0000     0.0993  2.3663  0.0000     1.5710  

Tai_100×10_4 0.1568  0.0000     0.1456  0.0672  0.0000     0.0468  1.7334  0.0000     1.1999  

Tai_100×10_5 0.2324  0.0000     0.2222  0.2030  0.0000     0.1564  2.2895  0.0000     1.1552  

Tai_100×10_6 0.0976  0.0000     0.0738  0.0497  0.0000     0.0272  0.9419  0.0000     0.5745  

Tai_100×10_7 0.0608  0.0381  0.0000     0.0636  0.1082  0.0000     1.1585  0.0000     0.3347  

Tai_100×10_8 0.1080  0.0000     0.1040  0.1284  0.0000     0.0906  5.3184  0.0000     3.5692  

Tai_100×10_9 0.0338  0.0000     0.0582  0.0928  0.0000     0.0753  11.9100  0.0000     9.9398  

Tai_100×10_10 0.0235  0.0001     0.0232  0.0253  0.0821  0.0000     0.8511  0.0000     0.4474  

Average 0.0939  0.0065     0.0746  0.0840  0.0298     0.0496  2.8531  0.0214     1.9442  

          

Tai_100×20_1 0.0488  0.0001     0.0232  0.0935  0.0000     0.0540  0.3083  0.0051     0.0572  

Tai_100×20_2 0.0168  0.0591  0.0003     0.0190  0.0296  0.0000     0.1362  0.1685  0.0000     

Tai_100×20_3 0.0147  0.0515  0.0001     0.0172  0.0284  0.0001     0.1139  0.1299  0.0006     

Tai_100×20_4 0.0359  0.0362  0.0000     0.0583  0.0010     0.0047  0.3727  0.0143  0.0196     

Tai_100×20_5 0.0012     0.0903  0.0071  0.0079  0.0531  0.0009     0.0571  0.1816  0.0045     

Tai_100×20_6 0.0376  0.0613  0.0000     0.0814  0.0042  0.0017     0.5054  0.0439  0.0048     

Tai_100×20_7 0.0295  0.0191  0.0000     0.0453  0.0136  0.0003     0.2969  0.1160  0.0008     

Tai_100×20_8 0.0164  0.0539  0.0002     0.0339  0.0239  0.0000     0.2102  0.1705  0.0000     

Tai_100×20_9 0.0073  0.0405  0.0019     0.0258  0.0128  0.0001     0.1775  0.0943  0.0004     

Tai_100×20_10 0.0244  0.0202  0.0003     0.0345  0.0140  0.0000     0.2108  0.1138  0.0000     

Average 0.0233  0.0432  0.0033     0.0417  0.0181  0.0062     0.2389  0.1038  0.0088     
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Table 3. 6 The average relative error in Cmax , MFT and MIT of problem Tai_200 and Tai_500 

 Makespan MFT MIT 

Problem CDS NEH PSO CDS NEH PSO CDS NEH PSO 

Tai_200×10_1 0.0100  0.0562  0.0002     0.0618  0.0000     0.0510  0.1367  0.0743  0.0011     

Tai_200×10_2 0.0265  0.1715  0.0000     0.0142  0.1150  0.0000     0.1976  1.5751  0.0000     

Tai_200×10_3 0.0026     0.0536  0.0036  0.0260  0.0003     0.0036  0.2743  0.5233  0.0000     

Tai_200×10_4 0.0016     0.1253  0.0051  0.0104  0.1442  0.0000     0.1644  1.5938  0.0002     

Tai_200×10_5 0.0034  0.0953  0.0024     0.0054  0.0941  0.0004     0.1018  0.7997  0.0032     

Tai_200×10_6 0.0222  0.1332  0.0000     0.0332  0.1435  0.0000     0.4983  1.8804  0.0000     

Tai_200×10_7 0.0378  0.1373  0.0000     0.0353  0.1060  0.0000     0.6398  0.3489  0.0000     

Tai_200×10_8 0.0001     0.1628  0.0140  0.0135  0.1818  0.0000     0.2319  4.0845  0.0000     

Tai_200×10_9 0.0364  0.1752  0.0000     0.0208  0.1410  0.0000     0.2960  0.7618  0.0000     

Tai_200×10_10 0.0205  0.0780  0.0000     0.0241  0.0514  0.0000     0.3410  1.2791  0.0000     

Average 0.0161  0.1188  0.0025     0.0245  0.0977  0.0055     0.2882  1.2921  0.0005     

          

Tai_200×10_1 0.0218  0.1219  0.0001     0.0312  0.1105  0.0000     0.2688  0.6416  0.0000     

Tai_200×10_2 0.0022     0.0880  0.0036  0.0098  0.0869  0.0000     0.0800  0.4945  0.0004     

Tai_200×20_3 0.0047  0.0946  0.0010     0.0173  0.0940  0.0000     0.1606  0.6374  0.0000     

Tai_200×20_4 0.0009     0.0349  0.0072  0.0107  0.0375  0.0000     0.1038  0.6611  0.0000     

Tai_200×20_5 0.0338  0.0703  0.0000     0.0244  0.0871  0.0000     0.1953  0.8382  0.0000     

Tai_200×20_6 0.0177  0.0367  0.0003     0.0539  0.0382  0.0000     0.4636  0.5675  0.0000     

Tai_200×20_7 0.0070     0.0528  0.0008  0.0293  0.0611  0.0000     0.2523  0.5203  0.0000     

Tai_200×20_8 0.0363  0.1009  0.0000     0.0370  0.1098  0.0000     0.3028  1.0376  0.0000     

Tai_200×20_9 0.0351  0.0089  0.0002     0.0274  0.0066  0.0002     0.2270  0.2775  0.0000     

Tai_200×20_10 0.0221  0.0804  0.0000     0.0276  0.0845  0.0000     0.2341  0.6931  0.0000     

Average 0.0182  0.0689  0.0013     0.0269  0.0716  0.0000     0.2288  0.6369  0.0000     

          

Tai_500×20_1 0.0223  0.0315  0.0000     0.0124  0.0305  0.0000     0.1482  0.3843  0.0000     

Tai_500×20_2 0.0329  0.0416  0.0000     0.0164  0.0164  0.0000     0.1945  0.1943  0.0000     

Tai_500×20_3 0.0155  0.0204  0.0001     0.0189  0.0115  0.0000     0.2272  0.1404  0.0000     

Tai_500×20_4 0.0213  0.0481  0.0000     0.0246  0.0350  0.0000     0.2966  0.4243  0.0000     

Tai_500×20_5 0.0059  0.0278  0.0004     0.0121  0.0213  0.0000     0.1455  0.2538  0.0000     

Tai_500×20_6 0.0107  0.0339  0.0000     0.0113  0.0204  0.0000     0.1445  0.2644  0.0000     

Tai_500×20_7 0.0043  0.0400  0.0006     0.0075  0.0285  0.0000     0.0919  0.2249  0.0000     

Tai_500×20_8 0.0313  0.0306  0.0000     0.0260  0.0203  0.0000     0.3062  0.2444  0.0000     

Tai_500×20_9 0.0000     0.0466  0.0121  0.0002     0.0281  0.0056  0.0025     0.3506  0.0678  

Tai_500×20_10 0.0210  0.0429  0.0000     0.0269  0.0398  0.0000     0.3195  0.4827  0.0000     

Average 0.0165  0.0363  0.0013     0.0156  0.0252  0.0006     0.1877  0.2964  0.0068     
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Table 3. 7 The aggregate performance of problem Tai20×5 to Tai50×20 

Problem Average Problem Average 

 CDS NEH PSO  CDS NEH PSO 

Tai_20×5_1 3.9356  3.4314  0.0323     Tai_50×5_1 0.6289  0.0288  0.0000     

Tai_20×5_2 8.7518  0.1787  1.0031  Tai_50×5_2 0.7907  0.0218  0.0000     

Tai_20×5_3 3.2344  0.2217  0.1933     Tai_50×5_3 0.4696  0.0016  0.0000     

Tai_20×5_4 4.3932  2.4289  0.0096     Tai_50×5_4 0.3395  0.0536  0.0000     

Tai_20×5_5 2.3846  0.6656  0.0504     Tai_50×5_5 0.1631  0.0740  0.0000     

Tai_20×5_6 0.4278  1.0193  0.0001     Tai_50×5_6 1.2894  0.0028  0.0000     

Tai_20×5_7 16.225  1.2512  0.6700     Tai_50×5_7 1.5996  0.0021  0.0000     

Tai_20×5_8 5.9324  3.9531  0.0517     Tai_50×5_8 0.9686  0.0000  0.0000     

Tai_20×5_9 1.5895  1.3699  0.0328     Tai_50×5_9 0.1778  0.0806  0.0000     

Tai_20×5_10 5.2287  5.4511  0.0039     Tai_50×5_10 1.3273  0.0200  0.0000     

Average 5.2103  1.9971  0.2047     Average 0.7755  0.0285  0.0000     

        

Tai_20×10_1 0.2728  0.4833  0.0155     Tai_50×10_1 0.7127  0.0000  0.0000     

Tai_20×10_2 0.0170  0.8532  0.1331     Tai_50×10_2 0.3490  0.0054  0.0000     

Tai_20×10_3 0.4886  0.4581  0.0047     Tai_50×10_3 0.6641  0.0002  0.0000     

Tai_20×10_4 0.7027  0.5598  0.0000     Tai_50×10_4 0.8893  0.0000  0.0000     

Tai_20×10_5 0.7397  0.6161  0.0374     Tai_50×10_5 0.8237  0.0304  0.0000     

Tai_20×10_6 0.9313  0.4109  0.0043     Tai_50×10_6 0.3923  0.0474  0.0000     

Tai_20×10_7 0.5393  0.1645  0.1826     Tai_50×10_7 0.5571  0.0000  0.0000     

Tai_20×10_8 0.6053  0.5460  0.0021     Tai_50×10_8 0.1994  0.0080  0.0000     

Tai_20×10_9 1.4812  0.4208  0.0016     Tai_50×10_9 0.4900  0.0002  0.0000     

Tai_20×10_10 1.5617  0.8539  0.0003     Tai_50×10_10 0.2819  0.0152  0.0000     

Average 0.7340  0.5367  0.0382     Average 0.5359  0.0107  0.0000     

        

Tai_20×20_1 0.4160  0.0009  0.0000     Tai_50×20_1 0.3719  0.0005  0.0000     

Tai_20×20_2 0.2208  0.0133  0.0000     Tai_50×20_2 0.3853  0.0010  0.0000     

Tai_20×20_3 0.4482  0.0000  0.0000     Tai_50×20_3 0.4378  0.0157  0.0000     

Tai_20×20_4 0.4649  0.0011  0.0000     Tai_50×20_4 0.3763  0.0001  0.0000     

Tai_20×20_5 0.1179  0.0393  0.0000     Tai_50×20_5 0.3049  0.0024  0.0000     

Tai_20×20_6 0.3131  0.0597  0.0000     Tai_50×20_6 0.1431  0.0006  0.0000     

Tai_20×20_7 0.5909  0.0047  0.0000     Tai_50×20_7 0.4523  0.0040  0.0000     

Tai_20×20_8 0.4420  0.0005  0.0000     Tai_50×20_8 0.2391  0.0002  0.0000     

Tai_20×20_9 0.4203  0.0299  0.0000     Tai_50×20_9 0.1844  0.0164  0.0000     

Tai_20×20_10 0.2493  0.0086  0.0000     Tai_50×20_10 0.3897  0.0045  0.0000     

Average 0.3683  0.0158  0.0000     Average 0.3285  0.0045  0.0000     
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Table 3.7(Cont’d) The aggregate performance of problem Tai20×5 to Tai50×20 

Problem Average Problem Average 

 CDS NEH PSO  CDS NEH PSO 

Tai_100×5_1 0.7965  3.6053  0.0031     Tai_200×10_1 0.2085  0.1305  0.0524     

Tai_100×5_2 1.5839  6.5131  0.0007     Tai_200×10_2 0.2383  1.8617  0.0000     

Tai_100×5_3 1.0881  3.3525  0.0040     Tai_200×10_3 0.3029  0.5773  0.0073     

Tai_100×5_4 0.0827  1.8318  0.0275     Tai_200×10_4 0.1764  1.8634  0.0053     

Tai_100×5_5 1.0615  1.1020  0.1991     Tai_200×10_5 0.1106  0.9891  0.0060     

Tai_100×5_6 0.2201  2.9159  0.0325     Tai_200×10_6 0.5537  2.1572  0.0000     

Tai_100×5_7 0.6260  4.2733  0.0012     Tai_200×10_7 0.7128  0.5923  0.0000     

Tai_100×5_8 2.6171  3.4302  0.0013     Tai_200×10_8 0.2455  4.4290  0.0140     

Tai_100×5_9 0.2241  0.4718  0.0670     Tai_200×10_9 0.3532  1.0780  0.0000     

Tai_100×5_10 0.8419  3.5225  0.0013     Tai_200×10_10 0.3856  1.4085  0.0000     

Average 0.9142  3.1018  0.0338     Average 0.3288  1.5087  0.0085     

        

Tai_100×10_1 0.2771  0.0260  0.0000     Tai_200×20_1 0.8740  0.0001  0.0000     

Tai_100×10_2 0.0720  0.6481  0.0000     Tai_200×20_2 0.6694  0.0040  0.0000     

Tai_100×10_3 0.0000  1.7656  0.0000     Tai_200×20_3 0.8259  0.0010  0.0000     

Tai_100×10_4 0.0000  1.3923  0.0000     Tai_200×20_4 0.7335  0.0072  0.0000     

Tai_100×10_5 0.0000  1.5337  0.0000     Tai_200×20_5 0.9956  0.0000  0.0000     

Tai_100×10_6 0.0000  0.6755  0.0000     Tai_200×20_6 0.6424  0.0003  0.0000     

Tai_100×10_7 0.1463  0.3347  0.0000     Tai_200×20_7 0.6342  0.0008  0.0000     

Tai_100×10_8 0.0000  3.7638  0.0000     Tai_200×20_8 1.2483  0.0000  0.0000     

Tai_100×10_9 0.0000  10.0734  0.0000     Tai_200×20_9 0.2930  0.0004  0.0000     

Tai_100×10_10 0.0822  0.4706  0.0000     Tai_200×20_10 0.8580  0.0000  0.0000     

Average 0.0578  2.0684  0.0000     Average 0.7774  0.0014  0.0000     

        

Tai_100×20_1 0.0051  0.1344  0.0000     Tai_500×20_1 0.1830  0.4463  0.0000     

Tai_100×20_2 0.2572  0.0003  0.0000     Tai_500×20_2 0.2439  0.2524  0.0000     

Tai_100×20_3 0.2098  0.0008  0.0000     Tai_500×20_3 0.2616  0.1723  0.0001     

Tai_100×20_4 0.0515  0.0243  0.0000     Tai_500×20_4 0.3426  0.5074  0.0000     

Tai_100×20_5 0.3250  0.0125  0.0000     Tai_500×20_5 0.1635  0.3030  0.0004     

Tai_100×20_6 0.1093  0.0065  0.0000     Tai_500×20_6 0.1665  0.3187  0.0000     

Tai_100×20_7 0.1487  0.0011  0.0000     Tai_500×20_7 0.1037  0.2934  0.0006     

Tai_100×20_8 0.2482  0.0002  0.0000     Tai_500×20_8 0.3635  0.2953  0.0000     

Tai_100×20_9 0.1475  0.0024  0.0000     Tai_500×20_9 0.0026  0.4253  0.0855     

Tai_100×20_10 0.1480  0.0003  0.0000     Tai_500×20_10 0.3673  0.5653  0.0000     

Average 0.1650  0.0183  0.0000     Average 0.2198  0.3579  0.0086     
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Table 3. 8 The number and percentage of problems for different objective with superior results 

 Makespan MFT MIT 

Problem CDS NEH PSO CDS NEH PSO CDS NEH PSO 

Tai_20×5 7777    0 3 0 0 10101010    0 0 10101010    

Tai_20×10 2 0 8888    1 1 8888    0 1 9999    

Tai_20×20 1111    0 9 0 0 10101010    0 0 10101010    

Tai_50×5 2 0 8888    0 2 8888    0 1 9999    

Tai_50×10 1 0 9999    0 0 10101010    0 0 10101010    

Tai_50×20 1 0 9999    0 0 10101010    0 0 10101010    

Tai_100×5 2 1 7777    0 3 7777    0 0 10101010    

Tai_100×10 0 8888    2 0 6666    4 0 9999    1 

Tai_100×20 1 1 8888    0 2 8888    0 1 9999    

Tai_200×10 3 0 7777    0 2 8888    0 0 10101010    

Tai_200×20 3 0 7777    0 0 10101010    0 0 10101010    

Tai_500×20 1 0 9999    1 0 9999    1 0 9999    

Sum 24 10 86868686    2 16 102102102102    1 12 107107107107    

Percentage 20% 8.33% 71.67%71.67%71.67%71.67%    1.67% 13.33% 85%85%85%85%    0.83% 10% 89.17%89.17%89.17%89.17%    

 

Table 3. 9 The number of problems for aggregate objectives with superior results 

Problem Aggregte   Problem Aggregate   

 CDS NEH PSO  CDS NEH PSO 

Tai_20×5 0 0 10 Tai_100×5 0 0 10 

Tai_20×10 0 0 10 Tai_100×10 0 0 10 

Tai_20×20 0 0 10 Tai_100×20 0 0 10 

Tai_50×5 0 0 10 Tai_200×10 0 0 10 

Tai_50×10 0 0 10 Tai_200×20 0 0 10 

Tai_50×20 0 0 10 Tai_500×20 0 0 10 

Sum 0 0 60 Sum 0 0 60 

 

The proposed PSO algorithm was compared with five heuristic algorithms: CDS 

(1970), NEH (1983), RAJ (1994), GAN-RAJ (1993) and Laha (2008). We also coded 

these methods in Visual C++. The CDS heuristic (1970) takes its name from its three 

authors and is a heuristic generalization of Johnson’s algorithm. The process generates 

a set of m–1 artificial two-machine problems, each of which is then solved by 

Johnson’s rule. In this study, we modified the original CDS and compared the 
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makespan, mean flow time, and machine idle time of all m–1 generated problems. The 

non-dominated solution was selected to compare with the solutions obtained from our 

PSO algorithm. The other comparison was based on solutions determined by the NEH 

algorithm introduced by Nawaz et al. (1983). The NEH investigates n(n+1)/2 

permutations to find near-optimal solutions. As we did for CDS, we modified the 

original NEH and compared the three objectives of all n(n+1)/2 sequences. We 

compared the non-dominated solution from these sequences with the solutions from 

our PSO. 

The following two performance measures are used in this study: average-relative 

percentage deviation (ARPD) and maximum percentage deviation (MPD) where MS 

stands for makespan, TFT represents total flow time, MIT stands for machine idle 

time, H is the heuristic. 
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MPDMIT= 100,
10..1 ×







 −
=

i

iiH
i BestMIT

BestMITMIT
MAX                (3.25) 

We tested our PSO on nine different problem sizes (n=20, 50, 100 and m=5, 10, 

20) from Taillard’s (1993) benchmarks. Table 3.10 compares the six methods using 

the ARPD and MPD. Table 4.10 shows that the proposed PSO outperforms for almost 

all problem instances in the makespan object. The comparison of TFT object is 

revealed in Table 3.11. It shows the ARPD and MPD of six heuristics and the Laha’s 

algorithm performs better. We have given the comparison of MIT in Table 3.12 that 

indicates the proposed PSO can get better solution. At last, we aggregate the results of 

three objects in order to show the performance of the proposed PSO to solve the 

multi-objectives problems. We observed that the PSO performed better than other five 

heuristics. Table 3.13 shows the superior performance of the proposed PSO in terms 

of the three simultaneous objectives. The computation cost is demonstrated on Table 

3.14. The proposed PSO spend more CPU time than other construct heuristic because 

of the proposed PSO is an evolutionary algorithm.  

In addition, we compare TFT of benchmarks by more algorithms --- Liu and 

Reeves (2001) (LR), Chakravarthy-Rajendran (1999), simulated annealing-bases 

approach (SA) and Laha and Chakraborty (2008) (H-1 and H-2). The results show in 

Table 3.15 for ARPD and Table 3.16 for MPD. We can observe that the H-1 and H-2 

perform better than other algorithms while only one object TFT is considered. 
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Table 3. 10 Comparison of makespan(MS) for different heuristics. 

Problem 

size  

NEH 

(1983)  

CDS 

(1970)  

RAJ 

(1994)  

GAN-RAJ 

(1993)  

Laha 

(2008)  

PSO 

 

n m  ARPD  MPD  ARPD  MPD  ARPD  MPD  ARPD  MPD  ARPD  MPD  ARPD  MPD 

20 5  1.84  0.25  0.76  0.15  0.44  0.12  0.63  0.14  1.55  0.21  0.00  0.00 

 10  1.78  0.23  0.71  0.12  0.85  0.17  0.83  0.14  1.50  0.20  0.00  0.00 

 20  1.27  0.17  0.44  0.06  0.88  0.14  0.82  0.12  1.06  0.15  0.00  0.00 

50 5  1.24  0.17  0.83  0.14  0.26  0.05  0.37  0.08  1.29  0.22  0.02  0.02 

 10  1.28  0.19  0.59  0.08  0.48  0.09  0.53  0.10  1.29  0.18  0.01  0.01 

 20  1.08  0.17  0.07  0.02  0.35  0.07  0.39  0.07  1.02  0.16  0.06  0.03 

100 5  1.04  0.19  0.46  0.12  0.36  0.07  0.23  0.07  1.05  0.16  0.07  0.07 

 10  0.28  0.06  0.47  0.07  0.29  0.06  0.24  0.04  0.89  0.13  0.01  0.01 

 20  0.65  0.11  0.16  0.04  0.21  0.05  0.18  0.04  0.72  0.10  0.01  0.01 

(NEH= Nawaz M, Enscore JR, Ham I (1983), CDS= Campbell HG, Dudek RA, Smith ML (1970), 

RAJ= Rajendran C (1994), GAN-RAJ= Gangadharan R, Rajendran C (1993), Laha= Laha & 

Chakraborty (2008), PSO= proposed PSO) 

 

Table 3. 11 Comparison of total flow time (TFT) for different heuristics 

Problem 

size  

NEH 

(1983)  

CDS 

(1970)  

RAJ 

(1994)  

GAN-RAJ 

(1993)  

Laha 

(2008)  

PSO 

 

n m  ARPD  MPD  ARPD  MPD  ARPD  MPD  ARPD  MPD  ARPD  MPD  ARPD  MPD 

20 5  0.65  0.17  1.71  0.27  1.70  0.31  1.88  0.34  4.43  0.61  1.28  0.20 

 10  0.70  0.10  1.43  0.18  1.29  0.19  1.47  0.23  3.43  0.51  0.95  0.12 

 20  0.59  0.14  1.23  0.18  1.27  0.21  1.31  0.24  2.29  0.30  0.82  0.12 

50 5  0.11  0.07  2.48  0.56  2.56  0.51  2.58  0.53  5.86  0.94  2.48  0.44 

 10  7.87  7.53  11.33  9.62  10.91  9.24  11.27  9.50  14.49  10.87  10.78  9.19 

 20  0.39  0.09  1.55  0.20  1.58  0.20  1.60  0.19  3.18  0.40  1.44  0.17 

100 5  0.27  0.27  2.24  2.24  3.59  3.59  3.00  3.00  5.56  5.56  2.60  2.60 

 10  0.87  0.87  1.86  1.86  1.91  1.91  1.80  1.80  4.02  4.02  1.93  1.93 

 20  1.39  1.39  1.65  1.65  1.73  1.73  1.65  1.65  2.83  2.83  1.59  1.59 

(NEH= Nawaz M, Enscore JR, Ham I (1983), CDS= Campbell HG, Dudek RA, Smith ML (1970), 

RAJ= Rajendran C (1994), GAN-RAJ= Gangadharan R, Rajendran C (1993), Laha= Laha & 

Chakraborty (2008), PSO= proposed PSO) 
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Table 3. 12 Comparison of machine idle time (MIT) for different heuristics  

Problem 

size  

NEH 

(1983)  

CDS 

(1970)  

RAJ 

(1994)  

GAN-RAJ 

(1993)  

Laha 

(2008)  

PSO 

 

n m  ARPD  MPD  ARPD  MPD  ARPD  MPD  ARPD  MPD  ARPD  MPD  ARPD  MPD 

20 5  4.54  2.94  43.56  20.33  3.20  1.03  5.04  1.38  10.79  4.70  1.50  0.43 

 10  3.87  0.83  15.03  1.94  8.07  1.48  7.93  1.42  9.92  1.76  0.00  0.00 

 20  11.37  1.55  19.19  2.40  14.88  2.01  14.46  1.85  15.29  2.10  0.00  0.00 

50 5  67.77  26.95  208.65  108.95  17.11  11.76  17.08  11.76  52.70  23.48  2.95  2.82 

 10  1.92  0.56  10.59  1.74  4.74  0.68  4.91  0.70  6.92  1.24  0.26  0.18 

 20  2.26  0.36  8.02  0.97  5.75  0.83  5.80  0.87  7.47  0.96  0.00  0.00 

100 5  18.18  4.94  40.24  7.65  4.41  1.40  2.00  0.76  15.47  3.34  3.51  1.69 

 10  1.96  0.43  9.54  1.38  1.92  0.38  1.65  0.41  5.47  0.98  0.15  0.09 

 20  1.03  0.26  4.26  0.52  2.79  0.40  2.64  0.35  3.77  0.45  0.00  0.00 

(NEH= Nawaz M, Enscore JR, Ham I (1983), CDS= Campbell HG, Dudek RA, Smith ML (1970), 

RAJ= Rajendran C (1994), GAN-RAJ= Gangadharan R, Rajendran C (1993), Laha= Laha & 

Chakraborty (2008), PSO= proposed PSO) 

 

Table 3. 13 Summation of MS, TFT and MIT for different heuristics 

Problem 

size  

NEH 

(1983)  

CDS 

(1970)  

RAJ 

(1994)  

GAN-RAJ 

(1993)  

Laha 

(2008)  

PSO 

 

n m  ARPD  MPD  ARPD  MPD  ARPD  MPD  ARPD  MPD  ARPD  MPD  ARPD  MPD 

20 5  7.04  3.35  46.03  20.75  5.34  1.46  7.56  1.86  16.77  5.52  2.78  0.63 

 10  6.36  1.16  17.18  2.25  10.21  1.83  10.23  1.79  14.85  2.46  0.95  0.12 

 20  13.23  1.86  20.86  2.64  17.03  2.36  16.60  2.22  18.63  2.54  0.82  0.12 

50 5  69.12  27.19  211.96  109.65  19.93  12.33  20.03  12.37  59.84  24.64  5.45  3.28 

 10  11.08  8.28  22.51  11.44  16.13  10.00  16.71  10.30  22.70  12.29  11.04  9.38 

 20  3.72  0.62  9.64  1.19  7.68  1.10  7.79  1.13  11.68  1.52  1.50  0.20 

100 5  19.49  5.41  42.93  10.01  8.37  5.06  5.23  3.82  22.08  9.06  6.18  4.35 

 10  3.11  1.36  11.87  3.32  4.12  2.35  3.69  2.25  10.38  5.13  2.08  2.02 

 20  3.08  1.77  6.07  2.21  4.73  2.19  4.47  2.04  7.33  3.38  1.60  1.60 

(NEH= Nawaz M, Enscore JR, Ham I (1983), CDS= Campbell HG, Dudek RA, Smith ML (1970), 

RAJ= Rajendran C (1994), GAN-RAJ= Gangadharan R, Rajendran C (1993), Laha= Laha & 

Chakraborty (2008), PSO= proposed PSO) 

 

 

 

 



44 
 

Table 3. 14 Average CPU time (in seconds) 

n m NEH CDS RAJ GANRAJ Laha PSO 

20 5 0.0016 0.0031 0.0047 0.0014 0.0012 1.6641 

 10 0.0015 0.0093 0.0094 0.0015 0.0015 2.0547 

 20 0.0047 0.0109 0.0094 0.0031 0.0047 2.8078 

50 5 0.0140 0.0016 0.0156 0.0047 0.0047 4.4906 

 10 0.0234 0.0032 0.0297 0.0047 0.0063 5.3047 

 20 0.0500 0.0078 0.0539 0.0078 0.0062 7.1593 

100 5 0.0860 0.0016 0.0844 0.0047 0.0047 11.9094 

 10 0.1750 0.0046 0.1750 0.0047 0.0078 13.4906 

 20 0.3750 0.0078 0.3656 0.0079 0.0141 17.0079 

(NEH= Nawaz M, Enscore JR, Ham I (1983), CDS= Campbell HG, Dudek RA, Smith ML (1970), 

RAJ= Rajendran C (1994), GAN-RAJ= Gangadharan R, Rajendran C (1993), Laha= Laha & 

Chakraborty (2008), PSO= proposed PSO) 

 

Table 3. 15 Comparison of total flow time (TFT) for heuristics in ARPD 

n m NEH CDS RAJ GANRAJ Laha LR SA H-1 H-2 PSO 

20 5 0.65 1.71 1.70 1.88 4.43 0.24 1.17 0.16 0.20 1.28 

 10 0.70 1.43 1.29 1.47 3.43 0.09 0.72 0.01 0.01 0.95 

 20 0.59 1.23 1.27 1.31 2.29 0.15 0.66 0.12 0.07 0.82 

50 5 0.11 2.48 2.56 2.58 5.86 0.56 1.78 0.55 0.54 2.48 

 10 7.87 11.33 10.91 11.27 14.49 8.06 1.24 7.97 7.89 10.78 

 20 0.39 1.55 1.58 1.60 3.18 0.15 1.10 0.08 0.09 1.44 

100 5 0.27 2.24 3.59 3.00 5.56 0.43 1.59 0.43 0.43 2.60 

 10 0.87 1.86 1.91 1.80 4.02 0.04 1.24 0.03 0.03 1.93 

 20 1.39 1.65 1.73 1.65 2.83 0.08 1.13 0.01 0.02 1.59 

(NEH= Nawaz M, Enscore JR, Ham I (1983), CDS= Campbell HG, Dudek RA, Smith ML (1970), 

RAJ= Rajendran C (1994), GAN-RAJ= Gangadharan R, Rajendran C (1993), Laha= Laha & 

Chakraborty (2008), LR= Liu J, Reeves CR (2001), SA= Chakravarthy K, Rajendran C (1999), H-1 

and H-2= Laha D, Chakraborty UK (2008),PSO= proposed PSO) 

 

The heuristic TSP-GA algorithm proposed by Ponnambalam(2004) has been 

chosen to compare the performance of our PSO algorithm. The objectives considered 

in TSP-GA algorithm are minimization of makespan (Cmax), minimization of mean 

flow time (MFT), and minimization of machine idle time (MIT). The best production 
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sequence was chosen for each problem instance. The computational results of 

twenty-one problem tackled by TSP-GA heuristic are given in Table 3.17 .  

Table 3. 16 Comparison of total flow time (TFT) for heuristics in MPD 

n m NEH CDS RAJ GANRAJ Laha LR SA H-1 H-2 PSO 

20 5 0.17 0.27 0.31 0.34 0.61 0.12 0.21 0.11 0.12 0.20 

 10 0.10 0.18 0.19 0.23 0.51 0.01 0.12 0.00 0.01 0.12 

 20 0.14 0.18 0.21 0.24 0.30 0.05 0.12 0.05 0.05 0.12 

50 5 0.07 0.56 0.51 0.53 0.94 0.25 0.38 0.25 0.25 0.44 

 10 7.53 9.62 9.24 9.50 10.87 7.92 0.19 7.87 7.82 9.19 

 20 0.09 0.20 0.20 0.19 0.40 0.04 0.16 0.04 0.04 0.17 

100 5 0.27 2.24 3.59 3.00 5.56 0.43 1.59 0.43 0.43 2.60 

 10 0.87 1.86 1.91 1.80 4.02 0.04 1.24 0.03 0.03 1.93 

 20 1.39 1.65 1.73 1.65 2.83 0.08 1.13 0.01 0.02 1.59 

(NEH= Nawaz M, Enscore JR, Ham I (1983), CDS= Campbell HG, Dudek RA, Smith ML (1970), 

RAJ= Rajendran C (1994), GAN-RAJ= Gangadharan R, Rajendran C (1993), Laha= Laha & 

Chakraborty (2008), LR= Liu J, Reeves CR (2001), SA= Chakravarthy K, Rajendran C (1999), H-1 

and H-2= Laha D, Chakraborty UK (2008),PSO= proposed PSO) 

 

Table 3. 17 The results of TSP_GA 

Problem instance Scale  N × M* Cmax MFT MIT 

Car1 11×5 8243 5746 2110 

Car2 13×4 8458 5524 586 

Car3 12×5 9010 6410 1485 

Car4 14×4 8214 5416 1620 

Car5 10×6 8633 5980 11666 

Car6 8×9 10690 8125 7974 

Car7 7×7 6681 5247 3587 

Car8 8×8 8816 6605 8492 

Hel2 20×10 169 114 143 

Rec01 20×5 1505 1010 423 

Rec03 20×5 1207 780 267 

Rec05 20×5 1391 898 631 

Rec07 20×10 1899 1269 3248 

Rec09 20×10 1815 1164 3213 

Rec11 20×10 1806 1196 2327 

Rec13 20×15 2314 1582 5469 

Rec15 20×15 2307 1655 4789 

Rec17 20×15 2547 1710 7111 

Rec19 30×10 2496 1599 2904 

Rec21 30×10 2627 1628 3177 

Rec23 30×10 2469 1570 3687 

*N: number of jobs; M: number of machines 
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Though, the TSP-GA selected only one manufacturing permutation for each 

problem, the proposed PSO algorithm can find out a group of Pareto optimal solutions. 

All the solutions included in the Pareto optimal set are measured with the solution 

proposed by TSP-GA within each problem scenario. The relative evaluation method 

of two algorithms is introduced below. The sequence given by the PSO is noted SPSO 

with makespan, mean flow time, and machine idle time as MPSO, MFTPSO, and MITPSO, 

respectively, and the sequence given by TSP-GA is noted STSPGA with makespan, 

mean flow time, and machine idle time as MTSPGA, MFTTSPGA, and MITTSPGA . The 

relative error in makespan, mean flow time, and machine idle time for schedule SPSO 

are as follows. 

(3.28)                                              
),min(

),min(

(3.27)                                           
),min(

),min(

(3.26)                                                      
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MM
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−

−

−

 

Furthermore, the relative error in makespan, mean flow time, and machine idle 

time for schedule STSPGA could be derived using the following equations. 

(3.31)                                          
),min(

),min(

(3.30)                                      
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),min(
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−

−
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The average relative error of Cmax, MFT and MIT are given in Table 3.18. For 

each problem scenario, we sum up the average relative error of Cmax, MFT and MIT 

and also present in Table 3.18. 
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Table 3. 18 The average relative error of PSO and TSP-GA 

Problem 

instance 

Average relative error 

in Cmax 

Average relative error 

in MFT 

Average relative error 

in MIT 

Sum of relative errors 

in Cmax, MFT, MIT 

PSO TSP-GA PSO TSP-GA PSO TSP-GA PSO TSP-GA 

Car1 0.0019    0.0624 0 0.1134 0.1539    0.1666 0.1559    0.3426 

Car2 0.0036    0.0493 0.0019 0.1167 0.8397 0.1360    0.8451 0.3021    

Car3 0.0003    0.1116 0.0011 0.1706 0.6444 0.0755    0.6458 0.3578    

Car4 0.0617 0.0006    0.0299 0.0101 0.0160    1.0439 0.1076    1.0547 

Car5 0.0028    0.0664 0.0134 0.0701 0    2.5296 0.0162    2.6662 

Car6 0    0.1774 0 0.1472 0.0218    0.1502 0.0218    0.4749 

Car7 0.0563 0.0013    0.0356 0.0165 0.0651    0.8770 0.1570    0.8950 

Car8 0.0188 0.0076    0.0165 0.0026 0.0002    0.2678 0.9124 0.2781    

Hel2 0    0.0956 0    0.1012 0.0062    0.2418 0.0062    0.4387 

Rec01 0    0.0649 0.1119 0 0    4.2732 0.1119    4.3382 

Rec03 0.0427 0.0018    0.2474 0 0.0125    0.6474 0.3028    0.6493 

Rec05 0.0011    0.0372 0.2210 0 0    5.4157 0.2221    5.4529 

Rec07 0.0004    0.0655 0.0001 0.0634 0    1.1898 0.0006    1.3187 

Rec09 0.0005    0.0334 0.0228 0.0128 0    1.1366 0.0233    1.1830 

Rec11 0    0.0915 0 0.0717 0    0.7475 0    0.9108 

Rec13 0.0005    0.0379 0 0.2253 0    0.6488 0.0005    0.9121 

Rec15 0    0.0503 0 0.3085 0    0.4447 0    0.8037 

Rec17 0    0.1531 0 0.3481 0    1.3679 0    1.8693 

Rec19 0    0.0274 0.1035 0 0    0.6042 0.1035    0.6316 

Rec21 0    0.1064 0.0309 0 0    1.3329 0.0309    1.4394 

Rec23 0.0002    0.0526    0.0992 0 0    0.6914 0.0994    0.7441 
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CHAPTER 4 PSO for Multi-objective JSSP 

 

4.1 Problem Formulation 

A typical job shop scheduling problem could be formulated as follows. There are n 

jobs to be processed through m machines. Each job must pass through each machine 

once and only once. Each job should be processed through the machines in a 

particular order, and there are no precedence constraints among different job 

operations. Each machine can process only one job at a time, and it cannot be 

interrupted. Besides, the operation time is fixed and known in advanced. The most 

objective of JSSP is to find a schedule to minimize the time required to complete all 

jobs, that is, makespan (Cmax). In this study, we attempt to reach the three objectives 

(makespan, machine idle time and total tardiness) simultaneously. We formulate the 

object function of job shop scheduling problem as follows. 

Makespan, ),(max mCf nC π=                                      (4.1) 

Total tardiness, ] ,0max[
1

 ∑=
=

n

i
itardinesstotal Lf                              (4.2) 

Total idle time, 

}...2|}}0),,()1,({max{)1,({
2

11  ∑ =−−+−=
=

−
n

i
iitimeidletotal mjjCjCjCf πππ

    (4.3) 
 

4.2 Particle Position Representation 

In the study of job shop scheduling, we randomly generated a group of particles 

positions whose value represents the associated operation priority. For an n-job 

m-machine problem, the position of particle k can be represented by an m×n matrix, 

i.e. 
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 , where k

ijx  denotes the priority of operation ijo  which 

means the operation of job j that need to be processed on machine i. The particle 

positions are decoded into an active schedule by Giffler and Thompson’s(1960) 

heuristic. 

The G&T algorithm is briefly described as follows. 

Notation: 

(i,j): the operation of job j that needs to be processed on machine i. 

S: the partial schedule that contains scheduled operations. 

Ω: the set of schedulable operations. 

s(i,j): the earlist time at which operation (i,j) belongs to Ω could be started. 

p(i,j): the processing time of operation (i,j). 

f(i,j): the earlist time at which operation (i,j) belongs to Ω could be finished,  f(i,j) 

= s(i,j) + p(i,j) . 

G&T algorithm 

Step 1: Initialize φ=S ; Ω is initialized to contain all operations without 

predecessors. 

Step 2: Determine }{ min ),(),(
*

jiji ff Ω∈=  and the machine m* on which f* 

could be realized. 

Step 3: (1) Identify the operation set Ω∈′′ ) ,( ji  such that ) ,( ji ′′  requires 

machine m*, and *
),( fs ji <′′  

(2)Choose (i, j) from the operation set identified in (1) with the largest 

priority. 

(3)Add (i, j) to S. 
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(4)Assign s(i,j) as the starting time of (i, j). 

Step 4: If a complete schedule has been generated, stop. Else, delete (i, j) from Ω 

and include its immediate successor in Ω, then go to Step 2. 

We demonstrated the mechanism of G&T algorithm by the 2×2 example shows 

on Table 3.1, and the position of particle k is 







=

21

12kX . 

Table 4. 1 An 2×2 example 

Jobs Machine sequence Processing times 

1 1, 2 p(1,2)=5; p(2,1)=4 

2 2, 1 p(2,2)=4; p(1,2)=3 

Initialization 

Step 1: φ=S ;Ω={(1, 1), (2, 2)}. 

Iteration 1 

Step 2: s(1,1)=0, s(2,2)=0, f(1,1)=5, f(2,2)=4; f*=min{f(1,1),f(2,2)}=4, m*=2. 

Step 3: Identify the operation set {(2, 2)}; choose operation (2, 2), which has the 

largest priority, and add it into schedule S. 

Step 4: Update Ω={(1,1), (1,2)}, go to Step 2. 

Iteration 2 

Step 2: s(1,1)=0, s(1,2)=4, f(1,1)=5, f(1,2)=7; f*=min{f(1,1),f(1,2)}=5, m*=1. 

Step 3: Identify the operation set {(1, 1), (1, 2)}; choose operation (1, 2), which 

has the largest priority, and add it into schedule S. 

Step 4: Update Ω={(1, 1)} , go to Step 2. 

Iteration 3 
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Step 2: s(1,1)=7, f(1,1)=12; f*=min{f(1,1)}=12, m*=1. 

Step 3: Identify the operation set {(1, 1)}; choose operation (1, 1), which has the 

largest priority, and add it into schedule S. 

Step 4: Update Ω={(2, 1)} , go to Step 2. 

Iteration 4 

Step 2: s(2,1)=12, f(2,1)=16; f*=min{f(2,1)}=16, m*=2. 

Step 3: Identify the operation set {(2, 1)}; choose operation (2, 1), which has the 

largest priority, and add it into schedule S. 

Step 4: A complete schedule has been generated, and then stops. 

The proposed PSO differs from the original PSO in the information stored in the 

pbest and gbest solution. While the original PSO keeps the best positions found so far, 

the proposed PSO holds the best schedule generated by G&T algorithm. In the 

previous example, the schedule Sk rather than the position Xk is retained in the pbest 

and gbest solutions, where Sk is 








12

12
. Based on the insertion operator the 

movement of particles is modified in accordance to the representation of particle 

position. 

 

4.3 Particle Velocity 

In the proposed PSO for job shop scheduling, the velocity of operation oij of particle k 

is denoted by k
ijv , { }1,0∈k

ijv , where oij is the operation of job j that needs to be 
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processed on machine i. When k
ijv  equals 1, it means that operation oij in the 

preference list of particle k (the position matrix, Xk) has just been moved to the 

current location, and we should not move it in this iteration. On the other hand, if 

operation oij is moved to a new location in this iteration, we set k
ijv � 1, indicating 

that oij has been moved in this iteration and should not been moved in the next few 

iterations. 

 Just as the original PSO is applied to a continuous space, inertia weight w is used 

to control particle velocities. We randomly update velocities at the beginning of the 

iteration. For each particle k and operation oij, if 
k
ijv  equals 1, k

ijv  will be set to 0 

with probability (1－w). This means that if operation oij is fixed on the current 

location in the preference list of particle k, oij is allowed to move in this iteration with 

probability (1－w). The newly moved operations will then be fixed for more iteration 

with larger inertia weight, and fixed for less iterations with smaller inertia weight. 

 

4.4 Particle Movement 

The particle movement of job shop scheduling is based on the swap operator proposed 

by D.Y. Sha et al. (2006).  

Notations: 

k
ix  is the schedule list of machine i of particle k. 

k
ipbest  is the schedule list of machine i of k-th pbest solution. 

igbest  is the schedule list of machine i of gbest solution. 
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c1 and c2 are constant between 0 and 1, 121 ≤+ cc . 

 

The swap procedure is accounted as below. 

Step 1: Randomly choose a position ζ from k
ix . 

Step 2: Mark the job on position ζ of k
ix  by Λ1. 

Step 3: If the random number rand < c1 then seek the position of Λ1 in k
ipbest , 

otherwise seek the position of Λ1 in igbest . Denote the position that has 

been found in k
ipbest  or igbest  by ζ′, and job in position ζ′ of k

ix  by 

Λ2. 

Step 4: If Λ2 has been denoted, 0
1

=k
iJv  and 0

2
=k

iJv , then swap Λ1 and Λ2 in 

k
ix , 1

1
←k

iJv . 

Step 5: If all the position of k
ix  have been considered, then stop. Otherwise, if ζ 

< n, then ζ←ζ+1, else ζ←1, go to Step 2. 

 

We take a 6-job problem for example where k
ix =[4 2 1 3 6 5], k

ipbest =[1 5 4 2 

6 3], igbest =[3 2 6 4 5 1], k
iv =[0 0 1 0 0 0], c1=0.6 and c2=0.2.  

Step 1: The position of k
ix  is randomly chose, ζ=3. 

Step 2: The job in the 3rd position of k
ix  is job 1, namely Λ1=1. 

Step 3: A random number rand is generated, say rand=0.7. Since rand > c1, we 

compare each position of igbest  with Λ1 and the matched position ζ′=6. 

The job in the 6th position of k
ix  is job 5, namely Λ2=5.  

Step 4: Since 04 =k
iv  and 05 =k

iv , swap job 1 and job 5 in kix , then k
ix =[4 2 5 

3 6 1], and let 14 ←k
iv  then k

iv =[0 0 1 1 0 0].  
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Step 5: Let ζ←4 and go to Step2. Repeat the process until all positions of k
ix  

have been considered. 

 

Figure 4. 1 Example of JSSP 

 

Figure 4. 2 Finding the location to exchange 

 

Figure 4. 3 Exchange operation of PSO 

 

4.5 Diversification strategy 

If all the particles have the same non-dominated solutions, they will be trapped in 

local optima. To prevent this from happening, a diversification strategy is proposed to 

keep the non-dominated solutions different. Once any new solution is generated by 

particles, the non-dominating solution set will be updated in these three situations: 
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(1)If the solution of the particle dominates the gbest solution, assign the particle 

solution to the gbest.  

(2)If the solution of the particle equals to any solution in the non-dominated 

solution set, replace the non-dominated solution with the particle solution.  

If the solution of the particle is dominated by the worst solution and not equal to 

any non-dominated solution, set the worst solution equal to the particle solution. 

 

4.6 Computational Results 

The proposed multi-objective PSO (MOPSO) algorithm was tested on benchmark 

problems obtained from the OR-Library. The program was coded in Visual C++ and 

run 40 times on each problem on a Pentium 4 3.0-GHz computer with 1 GB of RAM 

running Windows XP.  

The Taguchi methods employ the loss function for measuring product or process 

quality as well as for determining manufacturer’s tolerance limits (Taguchi 1986). 

Basically, the objective is to improve product or process quality by reducing the mean 

squared deviation. Taguchi also proposes signal-to-noise (S/N) ratio to the 

nominal-the-best (NTB), the smaller-the-better (STB), and the larger-the-better (LTB) 

problems, which are used when quality characteristics are static, to evaluate the 

robustness of a system performance. In this study, we focus on the minimization of 

the objective function with the STB characteristic. Therefore, the definition of the S/N 

ratio is as follow. 









∑⋅−=
=

n

i
iyNS

1

2

n

1
Log10/                        (4.4) 

      where n denotes the number of repetition, yi represents the experimental data. 

The parameter of PSO includes weight, learning factors (c1, c2), swarm size and 

iteration numbers. This study considers four factors with four levels each. The 
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parameter settings of four factors are as Table 4.2. We choose the orthogonal array L16 

to execute the experiments.  

Table 4. 2 The parameter of PSO 

Factors 
Level 

1 2 3 4 
A (w) 0.1 0.3 0.6 0.9 
B(c1, c2) 0.1, 0.9 0.3, 0.7 0.5, 0.5 0.7, 0.3 
C(Swarm size)  60 80 100 120 
D(Iteration) 50 100 150 200 

 

According to the L16，the experimental data and S/N ratio of 15×15 problems are 

given in Table 4.3. According to Table 4.3, the factors response of S/N ratio is showed 

in Table 4.4. The factors response diagram of S/N ratio shows as Figure4.4. Table 4.5 

shows the best level of factors. 

 

Table 4. 3 The L16 orthogonal array and S/N ration of 15×15 problem 

No. of 
Experiment 

Level of Factors 
S/N ratio 

A(w) B(c1, c2) C(Swarm size) D(Iteration) 
1 1 1 1 1 -79.4583 
2 1 2 2 2 -79.1078 
3 1 3 3 3 -78.8201 
4 1 4 4 4 -78.9164 
5 2 1 2 3 -78.8372 
6 2 2 1 4 -79.1162 
7 2 3 4 1 -79.4006 
8 2 4 3 2 -79.1026 
9 3 1 3 4 -78.9947 
10 3 2 4 3 -79.2078 
11 3 3 1 2 -79.5239 
12 3 4 2 1 -80.0762 
13 4 1 4 2 -80.3084 
14 4 2 3 1 -80.7562 
15 4 3 2 4 -80.1928 
16 4 4 1 3 -80.4881 

 

Table 4. 4 The factors response of 15×15 problem 

Level 
Factors 

A(w) B(c1, c2) C(Swarm size) D(Iteration) 
1 -79.0826    -79.4384    -79.6775 -79.9582 
2 -79.1187 -79.6066 -79.5934 -79.5393 
3 -79.4700 -79.5118 -79.4926 -79.3945 
4 -80.4416 -79.6955 -79.4904    -79.3371    
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Figure 4. 4 The factor response diagram of S/N ratio diagram of 15×15 problem 

 

Table 4. 5 The best level of factors of 15×15 problem 

Level 
Factors 

w c1, c2 Swarm size Iteration 
 1 1 4 4 
 0.1 0.1, 0.9 120    200    

 

According to the L16，the experimental data and S/N ratio of 20×15 problems are 

given in Table 4.6. According to Table 4.6, the factors response of S/N ratio is showed 

in Table 4.7. The factors response diagram of S/N ratio shows as Figure4.5. Table 4.8 

shows the best level of factors. 

 

Table 4. 6 The L16 orthogonal array and S/N ration of 20×15 problem 

No. of 
Experiment 

Level of Factors 
S/N ratio 

w c1, c2 Swarm size Iteration 
1 1 1 1 1 -79.6904 
2 1 2 2 2 -79.3892 
3 1 3 3 3 -79.5379 
4 1 4 4 4 -79.1821 
5 2 1 2 3 -79.4004 
6 2 2 1 4 -79.5285 
7 2 3 4 1 -80.5712 
8 2 4 3 2 -79.9816 
9 3 1 3 4 -79.6734 
10 3 2 4 3 -79.8359 
11 3 3 1 2 -80.3399 
12 3 4 2 1 -81.1149 
13 4 1 4 2 -81.2241 
14 4 2 3 1 -81.5864 
15 4 3 2 4 -81.0604 
16 4 4 1 3 -81.2293 
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Table 4. 7 The factors response of 20×15 problem 

Level 
Factors 

w c1, c2 Swarm size Iteration 
1 -79.4540    -80.0597    -80.2499 -80.7967 
2 -79.8950 -80.1805 -80.3232 -80.2853 
3 -80.2782 -80.4116 -80.2769 -80.0649 
4 -81.2794 -80.4571 -80.2709    -79.9229    

 

 

Figure 4. 5 The factor response diagram of S/N ratio diagram of 20×15 problem 

 

Table 4. 8 The best level of factors of 20×15 problem 

Level 
Factors 

w c1, c2 Swarm size Iteration 
 1 1 4 4 
 0.1 0.1, 0.9 120    200    

 

According to the L16，the experimental data and S/N ratio of 20×20 problems are 

given in Table 4.9. According to Table 4.9, the factors response of S/N ratio is showed 

in Table 4.10. The factors response diagram of S/N ratio shows as Figure4.6. Table 

4.11 shows the best level of factors of 20×20 problem. 
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Table 4. 9 The L16 orthogonal array and S/N ration of 20×20 problem 

No. of 
Experiment 

Level of Factors 
S/N ratio 

w c1, c2 Swarm size Iteration 
1 1 1 1 1 -85.2975 
2 1 2 2 2 -85.0583 
3 1 3 3 3 -85.0206 
4 1 4 4 4 -84.6681 
5 2 1 2 3 -84.8432 
6 2 2 1 4 -84.8625 
7 2 3 4 1 -85.7203 
8 2 4 3 2 -85.128 
9 3 1 3 4 -84.9865 
10 3 2 4 3 -85.2221 
11 3 3 1 2 -85.4592 
12 3 4 2 1 -86.1118 
13 4 1 4 2 -86.2683 
14 4 2 3 1 -86.5763 
15 4 3 2 4 -86.174 
16 4 4 1 3 -86.1046 

 

Table 4. 10 The factors response of 20×20 problem 

Level 
Factors 

w c1, c2 Swarm size Iteration 
1 -85.0169    -85.3857    -85.4541 -85.9522 
2 -85.1533 -85.4848 -85.5882 -85.5058 
3 -85.4656 -85.6137 -85.4816    -85.3256 
4 -86.2846 -85.5477 -85.5100 -85.2145    

 

 

Figure 4. 6 The factor response diagram of S/N ratio diagram of 20×20 problem 

 

Table 4. 11 The best level of factors of 20×20 problem 

Level 
Factors 

w c1, c2 Swarm size Iteration 
 1 1 3 4 
 0.1 0.1, 0.9 100    200    

 



60 
 

According to the L16，the experimental data and S/N ratio of 30×15 problems are 

given in Table 4.12. According to Table 4.12, the factors response of S/N ratio is 

showed in Table 4.13. The factors response diagram of S/N ratio shows as Figure4.7. 

Table 4.14 shows the best level of factors of 30×15 problem. 

 

Table 4. 12 The L16 orthogonal array and S/N ration of 30×15 problem 

No. of 
Experiment 

Level of Factors 
S/N ratio 

w c1, c2 Swarm size Iteration 
1 1 1 1 1 -80.9651 
2 1 2 2 2 -80.6913 
3 1 3 3 3 -80.4876 
4 1 4 4 4 -80.2728 
5 2 1 2 3 -80.2116 
6 2 2 1 4 -80.4169 
7 2 3 4 1 -82.1322 
8 2 4 3 2 -81.3419 
9 3 1 3 4 -80.5676 
10 3 2 4 3 -81.1456 
11 3 3 1 2 -81.9082 
12 3 4 2 1 -82.4581 
13 4 1 4 2 -82.2892 
14 4 2 3 1 -82.5693 
15 4 3 2 4 -82.2314 
16 4 4 1 3 -82.3951 

 

Table 4. 13 The factors response of 30×15 problem 

Level 
Factors 

w c1, c2 Swarm size Iteration 
1 -80.6117    -81.0826    -81.4900 -82.0755 
2 -81.0946 -81.2888 -81.5040 -81.5989 
3 -81.5794 -81.7436 -81.3253    -81.1448 
4 -82.3731 -81.7055 -81.5340 -80.9489    
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Figure 4. 7 The factor response diagram of S/N ratio diagram of 30×15 problem 

 

Table 4. 14 The best level of factors of 30×15 problem 

Level 
Factors 

w c1, c2 Swarm size Iteration 
 1 1 3 4 
 0.1 0.1, 0.9 100    200    

 

According to the L16，the experimental data and S/N ratio of 30×20 problems are 

given in Table 4.15. According to Table 4.15, the factors response of S/N ratio is 

showed in Table 4.16. The factors response diagram of S/N ratio shows as Figure4.8. 

Table 4.17 shows the best level of factors of 30×20 problem.  

 

Table 4. 15 The L16 orthogonal array and S/N ration of 30×20 problem 

No. of 
Experiment 

Level of Factors 
S/N ratio 

w c1, c2 Swarm size Iteration 
1 1 1 1 1 -85.9203 
2 1 2 2 2 -85.2966 
3 1 3 3 3 -85.3185 
4 1 4 4 4 -85.0323 
5 2 1 2 3 -85.1811 
6 2 2 1 4 -85.2356 
7 2 3 4 1 -86.7576 
8 2 4 3 2 -86.0746 
9 3 1 3 4 -85.5114 
10 3 2 4 3 -85.8642 
11 3 3 1 2 -86.4892 
12 3 4 2 1 -86.9177 
13 4 1 4 2 -86.962 
14 4 2 3 1 -87.3283 
15 4 3 2 4 -86.8707 
16 4 4 1 3 -86.93 
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Table 4. 16 The factors response of 30×20 problem 

Level 
Factors 

w c1, c2 Swarm size Iteration 
1 -85.4043    -85.9470    -86.1896 -86.7605 
2 -85.8617 -86.0174 -86.1451 -86.2479 
3 -86.2298 -86.4007 -86.1320    -85.8799 
4 -87.0265 -86.3056 -86.2201 -85.7249    

 

 

Figure 4. 8 The factor response diagram of S/N ratio diagram of 30×20 problem 

 

Table 4. 17 The best level of factors of 30×20 problem 

Level 
Factors 

w c1, c2 Swarm size Iteration 
 1 1 3 4 
 0.1 0.1, 0.9 100    200    

 

According to the L16，the experimental data and S/N ratio of 50×15 problems are 

given in Table 4.18. According to Table 4.18, the factors response of S/N ratio is 

showed in Table 4.19. The factors response diagram of S/N ratio shows as Figure4.9. 

Table 4.20 shows the best level of factors of 50×15 problem. 
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Table 4. 18 The L16 orthogonal array and S/N ration of 50×15 problem 

No. of 
Experiment 

Level of Factors 
S/N ratio 

w c1, c2 Swarm size Iteration 
1 1 1 1 1 -82.4901 
2 1 2 2 2 -82.8781 
3 1 3 3 3 -83.4561 
4 1 4 4 4 -82.5799 
5 2 1 2 3 -82.0682 
6 2 2 1 4 -82.4229 
7 2 3 4 1 -84.2093 
8 2 4 3 2 -83.2563 
9 3 1 3 4 -82.5724 
10 3 2 4 3 -83.2699 
11 3 3 1 2 -83.8847 
12 3 4 2 1 -84.0546 
13 4 1 4 2 -83.8385 
14 4 2 3 1 -84.3872 
15 4 3 2 4 -83.8774 
16 4 4 1 3 -83.9298 

 

 

Figure 4. 9 The factor response diagram of S/N ratio diagram of 50×15 problem 

 

Table 4. 19 The factors response of 50×15 problem 

Level 
Factors 

w c1, c2 Swarm size Iteration 
1 -82.8678    -82.7947    -83.2423    -83.8471 
2 -83.0693 -83.3023 -83.2918 -83.4845 
3 -83.4836 -83.8650 -83.4670 -83.2330 
4 -84.0140 -83.4943 -83.5173 -82.9050    
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Table 4. 20 The best level of factors of 50×15 problem 

Level 
Factors 

w c1, c2 Swarm size Iteration 
 1 1 1 4 
 0.1 0.1, 0.9 60    200    

 

According to the L16，the experimental data and S/N ratio of 50×20 problems are 

given in Table 4.21. According to Table 4.21, the factors response of S/N ratio is 

showed in Table 4.22. The factors response diagram of S/N ratio shows as Figure4.10. 

Table 4.23 shows the best level of factors of 50×15 problem. 

 

Table 4. 21 The L16 orthogonal array and S/N ration of 50×20 problem 

No. of 
Experiment 

Level of Factors 
S/N ratio 

w c1, c2 Swarm size Iteration 
1 1 1 1 1 -87.1114 
2 1 2 2 2 -87.0564 
3 1 3 3 3 -87.589 
4 1 4 4 4 -86.2943 
5 2 1 2 3 -86.4336 
6 2 2 1 4 -86.4534 
7 2 3 4 1 -88.1888 
8 2 4 3 2 -87.3232 
9 3 1 3 4 -86.5846 
10 3 2 4 3 -87.2789 
11 3 3 1 2 -87.9287 
12 3 4 2 1 -88.1861 
13 4 1 4 2 -87.9479 
14 4 2 3 1 -88.349 
15 4 3 2 4 -87.895 
16 4 4 1 3 -88.0081 

 

Table 4. 22 The factors response of 50×20 problem 

Level 
Factors 

w c1, c2 Swarm size Iteration 
1 -87.0371    -87.0608    -87.4212    -87.9857 
2 -87.1615 -87.3397 -87.4470 -87.5811 
3 -87.5381 -87.9055 -87.5072 -87.3649 
4 -88.0537 -87.5140 -87.4874 -86.8558    
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Figure 4. 10 The factor response diagram of S/N ratio diagram of 50×20 problem 

 

Table 4. 23 The best level of factors of 50×20 problem 

Level 
Factors 

w c1, c2 Swarm size Iteration 
 1 1 1 4 
 0.1 0.1, 0.9 60    200    

 

The results of the experiments showed that the best level of parameter w, c1, c2 

and iteration numbers are the same even in different scale of problems. The inertia 

weight w is 0.1 which means the particles prefer to move slowly in the searching 

progress. The possibilities of moving back to original position are existed. However, 

the learning factors c1 and c2 are fixed 0.1 and 0.9, no matter the scale of the problems 

are changed. We can say that the particles are intended to learn from the global 

solution more than the local best solution. That is the particles learning more from 

swarm experience than individual experience.  

During the pilot experiment, we used four swarm sizes N (60, 80, 100, and 120) 

to test the algorithm. The outcome of N=120 was best, so that value was used in all 

further tests. Parameters c1 and c2 were tested at various values in the range 0.1–0.7 in 

increments of 0.2. The inertial weight w was reduced from wmax to wmin during 

iterations, where wmax was set to 0.5, 0.7, and 0.8, and wmin was set to 0.1, 0.3, and 0.5. 
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The combination of c1=0.1, c2=0.8, wmax=0.5 and wmin=0.1 gave the best results. The 

maximum iteration limit was set to 200 and the maximum archive size was set to 120. 

The MOGA proposed by Ponnambalam et al. (2001) was chosen as a baseline 

against which to compare the performance of our PSO algorithm. The objectives 

considered in the MOGA algorithm are minimization of makespan, minimization of 

total tardiness, and minimization of machine idle time. The MOGA methodology is 

based on the machine-wise priority dispatching rule (pdr) and the G&T procedure 

(1960). The each gene represents a pdr code. The G&T procedure was used to 

generate an active feasible schedule. The MOGA fitness function is the weighted sum 

of makespan, total tardiness, and total idle time of machines with random weights. 

The computation results showed that the relative error of the solution for Cmax 

and total idle time determined by the proposed MOPSO was better in 23 out of 23 

problems than the MOGA. In 22 of the 23 problems, the proposed PSO performed 

better for the solution considering total tardiness. Overall, the proposed MOPSO was 

superior to the MOGA in solving the JSP with multiple objectives. 
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Table 4. 24 Comparison of MOGA and MOPSO for Makespan  

Benchmark n m Makespan (MOGA) Makespan (MOPSO) % Deviation 

abz5 10 10 1587 1338 0 

abz6 10 10 1369 1046 0 

ft06 6 6 76 56 0 

ft10 10 10 1496 1045 0 

la01 10 5 1256 709 0 

la02 10 5 1066 713 0 

la03 10 5 821 671 0 

la04 10 5 861 631 0 

la05 10 5 893 593 0 

la16 10 10 1452 1040 0 

la17 10 10 1172 889 0 

la19 10 10 1251 938 0 

la20 10 10 1419 985 0 

orb01 10 10 1704 1181 0 

orb02 10 10 1284 1029 0 

orb03 10 10 1643 1114 0 

orb04 10 10 1543 1122 0 

orb05 10 10 1323 1013 0 

orb06 10 10 1645 1144 0 

orb07 10 10 583 302 0 

orb08 10 10 1340 1000 0 

orb09 10 10 1462 1044 0 

orb10 10 10 1382 1077 0 
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Table 4. 25 Comparison of MOGA and MOPSO for Total idle time  

Benchmark n m Total idle time(MOGA) Total idle time(MOPSO) % Deviation 

abz5 10 10 8097 3978 0 

abz6 10 10 7744 2937 0 

ft06 6 6 259 100 0 

ft10 10 10 9851 1999 0 

la01 10 5 3431 571 0 

la02 10 5 2687 573 0 

la03 10 5 1722 633 0 

la04 10 5 1798 557 0 

la05 10 5 2182 473 0 

la16 10 10 9169 2718 0 

la17 10 10 7044 3365 0 

la19 10 10 7164 2796 0 

la20 10 10 8745 2883 0 

orb01 10 10 11631 3909 0 

orb02 10 10 7585 3539 0 

orb03 10 10 11138 3788 0 

orb04 10 10 9802 3921 0 

orb05 10 10 8322 3727 0 

orb06 10 10 10836 3478 0 

orb07 10 10 3423 1381 0 

orb08 10 10 8840 3542 0 

orb09 10 10 9439 4224 0 

orb10 10 10 8271 4177 0 
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Table 4. 26 Comparison of MOGA and MOPSO for Total tardiness  

Benchmark N m Total tardiness (MOGA) Total tardiness (MOPSO) % Deviation 

abz5 10 10 1948 611 0 

abz6 10 10 1882 339 0 

ft06 6 6 31 3 0 

ft10 10 10 3459 1534 0 

la01 10 5 3324 721 0 

la02 10 5 2081 425 0 

la03 10 5 1926 373 0 

la04 10 5 3194 673 0 

la05 10 5 1716 736 0 

la16 10 10 1127 1417 0 

la17 10 10 1779 53 0 

la19 10 10 1581 733 0 

la20 10 10 1451 407 0 

orb01 10 10 3052 191 0 

orb02 10 10 1565 137 0 

orb03 10 10 4140 247 0 

orb04 10 10 4951 221 0 

orb05 10 10 2195 30 0 

orb06 10 10 2601 0 0 

orb07 10 10 699 0 0 

orb08 10 10 3498 253 0 

orb09 10 10 2029 0 0 

orb10 10 10 1806 0 0 
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Table 4. 27 Comparison of MOGA and MOPSO with three objectives 

Problem n m Makespan Total machine idle time  Total tardiness 

   MOGA MOPSO  MOGA MOPSO  MOGA MOPSO  

   best best average worst best best average worst best best average worst 

abz5 10 10 1587 1399 1460 1521 8097 3911 4429.6 5441 1948 90 372.2 725 

abz6 10 10 1369 1049 1102.6 1162 7744 2868 3203.1 3875 1882 90 232.85 385 

ft10 10 10 1496 1055 1123.6 1166 9851 1630 2204.45 2762 3459 848 1231.95 1663 

la16 10 10 1452 1015 1077 1152 9169 2740 3157.65 3679 1127 340 517.95 813 

la17 10 10 1172 840 898.6 976 7044 2643 2997.8 3279 1779 277 392.9 552 

la19 10 10 1251 923 998.15 1047 7164 2288 3023.2 3476 1581 49 264.45 567 

la20 10 10 1419 980 1051.65 1123 8745 2758 3246.7 3779 1451 204 357.1 439 

orb01 10 10 1704 1234 1274 1377 11631 3700 4125.8 4812 3052 769 1098.85 1629 

orb02 10 10 1284 999 1066 1135 7585 3352 3768.8 4561 1565 64 249.65 436 

orb03 10 10 1643 1165 1256.05 1354 11138 3620 4277.85 4839 4140 571 1071.45 1552 

orb04 10 10 1543 1134 1208.7 1327 9802 3682 4451.6 5482 4951 443 809.4 1267 

orb05 10 10 1323 1009 1066.1 1118 8322 3328 3923.05 4253 2195 136 413.25 697 

orb06 10 10 1645 1124 1211.75 1272 10836 3192 3718.8 4177 2601 558 914.15 1390 

orb07 10 10 583 271 290.45 318 3423 233 344.15 580 699 63 82.9 112 

orb08 10 10 1340 976 1067.3 1123 8840 3349 3810.55 4202 3498 745 1026.15 1365 

orb09 10 10 1462 1024 1106.65 1196 9439 3762 4279.3 4658 2029 445 642.1 765 

orb10 10 10 1382 1123 1172.65 1243 8271 3863 4531.35 4954 1806 45 479.5 774 

la01 10 5 1256 715 770.55 819 3431 479 661.3 1032 3324 453 599.75 861 

la02 10 5 1066 713 758.45 804 2687 411 549.5 688 2081 296 447.75 706 

la03 10 5 821 663 703.55 757 1722 648 776.55 902 1926 381 684.5 926 

la04 10 5 861 601 669.85 720 1798 345 582.55 727 3194 389 563.45 768 

la05 10 5 893 593 609.55 669 2182 390 517.65 665 1716 477 630.55 900 

ft06 6 6 76 58 60.65 68 259 93 118.7 163 31 0 0.75 9 
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Table 4. 28 The results of solving FT, ABZ, ORB and YN with MOPSO 

Problem n m Makespan MFT MIT 

   best average worst best average worst best average worst 

ft06 6 6 55 55.24 57 49 50.29 51 54 60.90 90 

ft10 10 10 973 997.48 1033 852 885.62 938 1116 1707.24 2131 

ft20 20 5 1247 1280.19 1315 883 951.00 1032 166 361.90 551 

            

abz5 10 10 1249 1276.62 1329 1134 1173.86 1236 3124 3531.10 4223 

abz6 10 10 948 971.24 996 889 910.24 933 2370 2688.14 3069 

abz7 20 15 779 791.00 814 676 693.10 714 3132 3452.52 3665 

abz8 20 15 776 803.81 835 681 708.52 732 3193 3551.24 3973 

abz9 20 15 786 823.19 843 667 696.71 739 3225 3660.62 4321 

            

orb01 10 10 1093 1136.95 1185 992 1026.43 1076 1286 1780.62 2677 

orb02 10 10 921 939.24 967 867 897.19 925 2185 2600.33 2925 

orb03 10 10 1064 1101.05 1148 962 1015.52 1072 1186 1627.24 2366 

orb04 10 10 1031 1070.95 1106 994 1029.81 1079 2179 2645.14 3342 

orb05 10 10 896 946.81 1003 828 870.86 915 2331 2734.57 3351 

orb06 10 10 1028 1071.76 1135 955 985.24 1068 1439 1666.90 1980 

orb07 10 10 403 420.71 438 381 402.24 425 919 1094.00 1195 

orb08 10 10 937 957.90 1025 882 904.48 946 1123 1606.57 1990 

orb09 10 10 958 981.10 1028 903 942.90 1004 2291 2699.14 3127 

orb10 10 10 967 1023.00 1065 944 991.67 1029 2606 2927.95 3338 

            

yn1 20 20 999 1030.52 1058 889 908.38 931 6481 7002.14 7456 

yn2 20 20 1043 1073.52 1127 940 966.62 1003 7116 7598.67 8363 

yn3 20 20 1021 1044.00 1072 912 938.29 961 6640 7039.33 7880 

yn4 20 20 1108 1141.86 1160 973 1005.29 1033 7223 7752.76 8387 
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Table 4. 29 The results of solving LA with MOPSO 

Problem n m Makespan MFT MIT 

   best average worst best average worst best average worst 

la01 10 5 666 666.10 668 561 584.90 604 242 336.81 435 

la02 10 5 665 682.19 706 525 560.29 591 223 401.57 548 

la03 10 5 608 626.86 657 508 540.62 594 431 518.24 579 

la04 10 5 593 605.48 617 516 537.43 571 209 314.48 426 

la05 10 5 593 593.00 593 483 517.05 559 422 492.67 652 

la06 15 5 926 926.00 926 762 789.57 832 393 488.86 584 

la07 15 5 890 894.95 906 672 714.52 745 532 623.48 676 

la08 15 5 863 865.95 884 710 740.10 783 239 333.71 450 

la09 15 5 951 951.05 952 805 818.95 849 273 359.57 445 

la10 15 5 958 958.00 958 798 835.62 865 433 523.90 624 

la11 20 5 1222 1222.00 1222 960 1014.10 1072 344 496.71 654 

la12 20 5 1039 1039.00 1039 840 881.43 926 346 393.38 454 

la13 20 5 1150 1151.52 1162 926 984.81 1043 334 452.52 555 

la14 20 5 1292 1292.00 1292 1010 1056.10 1094 544 822.52 1014 

la15 20 5 1210 1236.57 1255 926 986.57 1041 371 588.86 726 

la16 10 10 979 992.90 1008 798 847.48 882 2644 2962.62 3265 

la17 10 10 784 801.19 832 725 745.05 777 2333 2555.43 2909 

la18 10 10 853 892.14 942 760 788.48 829 2417 2660.52 2920 

la19 10 10 847 875.10 902 753 782.71 805 2000 2329.05 2625 

la20 10 10 907 922.48 942 789 811.19 852 2328 2597.76 2997 

la21 15 10 1136 1177.67 1229 965 1006.81 1047 2230 2584.67 3157 

la22 15 10 1000 1026.67 1049 879 909.43 963 2056 2323.43 2756 

la23 15 10 1040 1080.19 1111 934 967.81 1002 1826 2129.10 2345 

la24 15 10 1004 1034.33 1072 900 929.10 961 1741 2039.14 2313 

la25 15 10 1042 1076.57 1122 906 939.05 979 2004 2512.86 2909 

la26 20 10 1347 1376.48 1417 1145 1195.62 1263 1932 2425.86 2725 

la27 20 10 1378 1428.43 1480 1163 1225.95 1295 1979 2521.57 3074 

la28 20 10 1373 1400.24 1425 1187 1217.33 1289 2154 2568.48 2863 

la29 20 10 1345 1382.67 1428 1130 1183.24 1252 2846 3106.90 3474 

la30 20 10 1443 1488.05 1529 1175 1255.24 1305 2530 3032.29 3443 

la31 30 10 1850 1880.52 1918 1528 1593.81 1643 2654 2923.14 3292 

la32 30 10 1969 2013.57 2056 1705 1733.29 1771 2425 2765.76 3186 

la33 30 10 1767 1834.19 1887 1520 1572.81 1648 2424 2783.14 3342 

la34 30 10 1846 1893.43 1924 1564 1623.24 1682 2375 2824.62 3110 

la35 30 10 1946 2020.24 2111 1600 1651.24 1710 3295 3917.29 4550 
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Table 4.19(cont’d) The results of solving LA with MOPSO 

la36 15 15 1351 1395.33 1447 1211 1256.33 1321 6595 7075.29 7914 

la37 15 15 1504 1548.24 1617 1280 1315.29 1351 6909 7622.57 8405 

la38 15 15 1272 1334.10 1378 1130 1158.24 1217 5819 6796.67 7999 

la39 15 15 1331 1367.43 1404 1141 1185.43 1217 5875 6404.76 7103 

la40 15 15 1293 1322.67 1367 1160 1193.10 1248 5607 6227.33 7030 

 

Table 4. 30 The results of solving SWV with MOPSO 

Problem n m Makespan MFT MIT 

   best average worst best average worst best average worst 

swv01 20 10 1694 1724.285714 1761 1442 1507.238095 1577 2375 2965.142857 3703 

swv02 20 10 1710 1758.52381 1805 1490 1558.761905 1622 2265 2961.619048 3652 

swv03 20 10 1672 1720.047619 1781 1483 1540.333333 1606 2323 2883.666667 3421 

swv04 20 10 1734 1802.666667 1860 1504 1560.52381 1644 1967 2602.809524 3091 

swv05 20 10 1749 1787.428571 1824 1498 1575.571429 1630 2094 2571.047619 3881 

swv06 20 15 2099 2141.666667 2220 1714 1785.809524 1928 4559 5697.333333 7070 

swv07 20 15 1957 2003.095238 2057 1631 1705.333333 1806 4872 5427.380952 6718 

swv08 20 15 2155 2210.190476 2260 1718 1800.428571 1880 5353 6335.333333 7728 

swv09 20 15 2048 2114.952381 2164 1644 1739.142857 1871 5005 6113.47619 7360 

swv10 20 15 2138 2183.809524 2227 1742 1805.380952 1916 5297 6266.142857 7290 

swv11 50 10 3815 3865 3944 2902 3006.285714 3145 3755 4884.571429 6071 

swv12 50 10 3742 3881.714286 3987 2885 2993.333333 3164 4097 5032.809524 5931 

swv13 50 10 3884 3937.52381 3990 2888 2992.428571 3069 4655 5961.380952 7658 

swv14 50 10 3658 3743.142857 3855 2686 2841.571429 2997 3305 4400.619048 5821 

swv15 50 10 3681 3752.714286 3844 2725 2839.52381 2923 3978 5279.380952 6326 

swv16 50 10 2924 2954.047619 3043 2446 2517.142857 2614 2970 3437.238095 4299 

swv17 50 10 2839 2880.857143 2927 2344 2421.095238 2512 3235 3605.380952 3905 

swv18 50 10 2879 2902.190476 2938 2377 2437.904762 2482 3205 3588.238095 3889 

swv19 50 10 2965 3013.380952 3065 2421 2504.52381 2575 3186 3667.380952 4092 

swv20 50 10 2829 2879.238095 2907 2352 2404.952381 2480 2800 3243.047619 3572 
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CHAPTER 5 PSO for Multi-objective OSSP 

 

5.1 Problem Formulation 

The common characteristics of shop scheduling problems are as follows. A set of n 

jobs must be processed on a set of m machines.  Each job consists of m operations, 

each of which must be processed on a different machine for a given process time. At 

any time, at most one operation can be processed on each machine, and at most one 

operation of each job can be processed.  Unlike flow-shop and job-shop scheduling 

problems, the exceptional condition of the open-shop scheduling problem is that the 

operations of each job can be processed in any order. 

The aim of the openshop scheduling problems are to assign jobs to machines so 

that the completion time, also called the makespan, total flow time, and machine idle 

time are minimized simultaneously. To minimize the makespan, we must minimize 

the maximum total processing time on all machines.  The total flow time refers to the 

sum of the completion times of all jobs.  The idle times of each machine during the 

work cycle are summed to obtain the total machine idle time. The object functions of 

makespan, total flow time and machine idle time are described as chapter 3. 

 

5.2 Particle Position Representation 

In this study, we randomly generated a group of particles (solutions) represented by a 

permutation sequence that is an ordered list of operations. For an n-job m-machine 

problem, the position of particle k can be represented by an m×n matrix, i.e., 
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ijx denotes the priority of operationijo , which 
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means the operation of job j that must be processed on machine i.  

The Giffler and Thompson (G&T) algorithm is briefly described below. 

Notation: 

(i,j) is the operation of job j that must be processed on machine i 

S is the partial schedule that contains scheduled operations 

Ω is the set of operations that can be scheduled 

s(i,j) is the earliest time at which operation (i,j) belonging to Ω can be started. 

p(i,j) is the processing time of operation (i,j). 

f(i,j) is the earliest time at which operation (i,j) belonging to Ω can be finished, 

f(i,j) = s(i,j) + p(i,j) . 

G&T algorithm: 

Step 1: Initialize φ=S ; Ω to contain all operations without predecessors. 

Step 2: Determine )},({min ),(
* jiff ji Ω∈= and the machine m* on which f* can be 

realized. 

Step 3:  

(1)Identify the operation set Ω∈′′ ),( ji such that ),( ji ′′ requires machine m*, 

and *),( fjiS <′′ . 

(2) Choose (i, j) from the operation set identified in Step 3(1) with the 

largest priority. 

(3) Add (i, j) to S. 
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(4) Assign s(i,j) as the starting time of (i, j). 

Step 4: If a complete schedule has been generated, stop. Otherwise, delete (i, j) from 

Ω, include its immediate successor in Ω, and then go to Step 2. 

The movement of particles is modified in accordance with the representation of 

particle position based on the insertion operator. 

 

5.3 Particle Velocity 

The original PSO velocity concept is that each particle moves according to the 

velocity determined by the distance between the previous position of the particle and 

the gbest (pbest) solution. The two major purposes of the particle velocity are to move 

the particle toward the gbest and pbest solutions, and to maintain the inertia to prevent 

particles from becoming trapped in local optima. 

In the proposed PSO, we concentrated on preventing particles from becoming 

trapped in local optima rather than moving them toward the gbest (pbest) solution. If 

the priority value increases or decreases with the present velocity in this iteration, we 

maintain the priority value increasing or decreasing at the beginning of the next 

iteration with probability w, which is the PSO inertial weight. The larger the value of 

w is, the greater the number of iterations over which the priority value keeps 

increasing or decreasing, and the greater the difficulty the particle has returning to the 

current position. For an n-job problem, the velocity of particle k can be represented as 
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, where k
ijv is the velocity of the operation ijo of particle k, 

}1,0,1{−∈k
ijv . 
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The initial particle velocities are generated randomly. Instead of considering the 

distance from k
ijx  to )( ij

k
ij gbestpbest , our PSO considers whether the value of k

ijx  is 

larger or smaller than )( ij
k
ij gbestpbest  If k

ijx  has decreased in the present iteration, this 

means that )( ij
k
ij gbestpbest  is smaller than k

ijx , and k
ijx  is set moving toward 

)( ij
k
ij gbestpbest  by letting k

ijv ←  –1. Therefore, in the next iteration, kijx  is kept 

decreasing by one (i.e., kijx  ← k
ijx  –1) with probability w. Conversely, if k

ijx  has 

increased in this iteration, this means that )( ij
k
ij gbestpbest  is larger than k

ijx , and k
ijx  

is set moving toward )( ij
k
ij gbestpbest  by letting k

ijv ←1. Therefore, in the next iteration, 

k
ijx  is kept increasing by one (i.e. kijx ← k

ijx  + 1) with probability w. 

The inertial weight w influences the velocity of particles in PSO. We randomly update 

velocities at the beginning of each iteration. For each particle k and operation ijo , if 

k
ijv  is not equal to 0, k

ijv  is set to 0 with probability (1–w). This ensures that kijx  

stops increasing or decreasing continuously in this iteration with probability (1–w). 

 

5.4 Particle Movement 

In our PSO, the particle movement is based on the insert operator proposed by Sha 

and Hsu. We set 5.02 −+← randpxk
ij if we want to insert ijo into the pth location in the 

permutation list. In addition, the location of operation ijo in the operation sequence of 

kth pbest and gbest solution are k
ijpbest and ijgbest . When particle k moves, for all ijo , if 

k
ijv equals 0, thek

ijx will be set to 5.02 −+ randpbestkij with probability c1 and set to be 

5.02 −+ randgbestij  with probability c2, where rand2 is a random variable between 0 
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and 1, and c1 and c2 are constants between 0 and 1, and c1+c2≦1. For example, 

assume that V k, Xk, pbestk, gbest, c1, and c2 are as follows: 
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For o11: 

 Because .5.1  is,  that , ,0 1111111111 =+←≠ kkkkk xvxxv  

For o12: 

 Because .6.0 generaterandomly   ,0 112 == randvk  

 Because .3.0 generaterandomly   , 211 =≤ randcrand  

 Because  thenand  ,1set   , 121212 ←≥ kkk vxpbest  

  . 8.3  is,  that ,5.0 1221212 =−+← kkk xrandpbestx  

For o21: 

 Because .9.0 generaterandomly   ,0 121 == randvk  

 Because .changed benot  does   , 21211
kxccrand +>  

For o22: 

 Because .75.0 generaterandomly   ,0 122 == randvk  

 Because .8.0 generate  , 22111 =+≤< randccrandc  

 Because  thenand  ,1set   , 222221 −←< kkk vxgbest  

  . 3.2  is,  that ,5.0 2222222 =−+← kkk xrandgbestx  

Finally, after the particle moved, the Vk and Xk are: 
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5.5 Computational Results 

The proposed multi-objective PSO (MOPSO) algorithm was tested on benchmark 

problems obtained from the Guéret and Prins (1999). The program was coded in 

Visual C++ and run 20 times on each problem on a Pentium 4 3.0-GHz computer with 

1 GB of RAM running Windows XP. During the pilot experiment, we used four 

swarm sizes N (30, 60, 80, and 100) to test the algorithm. The outcome of N=80 was 

best, so that value was used in all further tests. Parameters c1 and c2 were tested at 

various values in the range 0.1–0.7 in increments of 0.2. The inertial weight w was 

reduced from wmax to wmin during iterations, where wmax was set to 0.5, 0.7, and 0.9, 

and wmin was set to 0.1, 0.3, and 0.5. The combination of c1=0.7, c2=0.1, wmax=0.7 and 

wmin=0.3 gave the best results. The maximum iteration limit was set to 60 and the 

maximum archive size was set to 80. 

In the first experiment, we have assigned the Pareto set as Pbest solutions which 

considered four different conditions. In the first scenario, we took all three objectives 

into consideration. The two objectives including makespan and total flow time are 

considered in the second scenario. The third and fourth scenario considered makespan, 

machine idle time and total flow time, machine idle time, respectively. The results of 

the first experiment are as Table 5.1-5.4. 
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Table 5. 1 The results of the first experiment considering three objectives as Pareto set 

 makespane total flow time machine idle time 

 best average best average best average 

1 1100 1109.3 10636 10717 624 712.15 

2 1097 1101.8 10489 10551 590 659.75 

3 1090 1101.8 10563 10661 589 648.4 

4 1089 1091.6 10561 10606 498 625.1 

5 1084 1094.7 10495 10595 558 616.7 

6 1071 1082.1 10530 10560 493 513.95 

7 1081 1083.3 10519 10569 549 594.85 

8 1098 1103.1 10675 10722 671 714.6 

9 1117 1128.3 10662 10738 681 763.6 

10 1097 1098 10621 10715 673 777.2 

 1092.4 1099.4 10575 10643 592.6 662.63 

 

Table 5. 2 The results of the first experiment considering makespan and total flow time as Pareto set 

 makespane total flow time machine idle time 

 best average best average best average 

1 1106 1108.85 10604 10687.1 637 727 

2 1097 1101.4 10499 10542.1 612 681.6 

3 1087 1099.5 10560 10645.7 597 670.8 

4 1089 1093.7 10527 10591.4 550 661.85 

5 1087 1097.6 10516 10597.6 608 668.75 

6 1071 1076.25 10527 10558.6 501 528.05 

7 1081 1082.65 10500 10541.4 585 605 

8 1098 1102.4 10656 10719.6 692 755.4 

9 1122 1129.2 10667 10757.6 734 838.1 

10 1097 1098.25 10704 10751.6 800 839.65 

 1093.5 1098.98 10576 10639.2 631.6 697.62 
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Table 5. 3 The results of the first experiment considering makespan and machine idle time as Pareto set 

 makespane total flow time machine idle time 

 best average best average best average 

1 1097 1111.85 10733 10785.4 668 717.6 

2 1100 1109.2 10602 10683.1 594 666.7 

3 1087 1094.45 10606 10682.15 580 638.85 

4 1089 1093.6 10557 10634.45 482 599.25 

5 1075 1092.75 10552 10659.35 520 616.95 

6 1071 1077.9 10554 10577.2 496 504.7 

7 1081 1082.75 10537 10576.7 521 564.75 

8 1098 1101.9 10696 10750.85 654 700.9 

9 1116 1127 10722 10854.15 681 761.8 

10 1094 1098.2 10635 10747.3 656 742.15 

 1091 1098.96 10619 10695.065 585 651.365 

 

Table 5. 4 The results of the first experiment considering total flow time and machine idle time as 

Pareto set 

 makespane total flow time machine idle time 

 best average best average best average 

1 1112 1114.2 10636 10733.8 617 679.95 

2 1101 1111.3 10470 10556.35 582 673.05 

3 1100 1113.5 10558 10668.65 591 662.45 

4 1096 1099.45 10547 10597 476 576.5 

5 1085 1097.65 10523 10596 514 603 

6 1071 1098 10490 10558.3 473 525.45 

7 1081 1083.5 10501 10556.85 491 553.65 

8 1099 1106.05 10634 10711.15 628 708.6 

9 1129 1134.6 10644 10685.55 685 765.6 

10 1096 1100.2 10642 10717.7 627 721.45 

 1097 1105.845 10565 10638.135 568 646.97 
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Table 5. 5 Summary of the results of the first experiment 

Optimized makespane total flow time machine idle time 

Objectives best average best average best average 

All 1092.4 1099.38 10575.1 10643.31 592.6 662.63 

MS+TFT 1093.5 1098.98 10576 10639.25 631.6 697.62 

MS+MIT 1090.8 1098.96 10619.4 10695.07 585.2 651.365 

TFT+MIT 1097 1105.845 10564.5 10638.14 568.4 646.97 

 

In the second experiment, we have divided the swarm into sub-swarm to search 

for the solutions. At first we use three groups (sub-swarm) for three objects as (i) in 

Table 5.13. In (ii), (iii) and (iv), only one particle swarm is applied to search single 

object. In the last part of this experiment, two  sub-swarm are used to search the 

solutions. In (v) of Table 5.13, the two sub-swarm, one is searched for the object 

makespan while the other is searched for total flow time. In (vi) of Table 5.13, the two 

sub-swarm, one is searched for the object makespan while the other is searched for 

machine idle time. In (vii) of Table 5.13, the two sub-swarm, one is searched for the 

object total flow time while the other is searched for machine idle time. 

 

Table 5. 6 The results of the second experiment considering three objectives with three sub-swarms 

 makespane total flow time machine idle time 

 best average Best average best average 

1 1106 1116.85 10632 10731.45 627 714.05 

2 1101 1113.85 10492 10568.75 619 740.55 

3 1109 1115.45 10548 10705.75 608 678.9 

4 1091 1099.7 10550 10617.9 476 600.25 

5 1088 1101 10509 10601.15 495 608.3 

6 1071 1089.9 10488 10533.65 451 515.05 

7 1081 1085.65 10493 10569.2 492 562.1 

8 1099 1112.35 10655 10747.05 684 720.65 

9 1131 1136.65 10697 10746.2 705 791.95 

10 1097 1101.15 10665 10772.3 640 724.95 

 1097 1107.255 10573 10659.34 580 665.675 
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Table 5. 7 The results of the second experiment considering makespan with one swarm 

 makespane total flow time machine idle time 

 best average best average best average 

1 1095 1100.55 10725 10777.85 704 749.65 

2 1097 1100.1 10565 10652.05 621 705.65 

3 1087 1094.1 10566 10682.4 606 665.25 

4 1089 1091.1 10615 10650.5 663 679.2 

5 1084 1091.2 10550 10631.8 586 650.6 

6 1071 1080.7 10522 10577.9 503 564.8 

7 1081 1081.6 10561 10607.55 560 615.8 

8 1098 1100.4 10660 10723.45 665 736.3 

9 1116 1125.65 10765 10853.95 802 874.9 

10 1092 1095.1 10679 10736.4 751 798.05 

 1091 1096.05 10621 10689.385 646 704.02 

 

Table 5. 8 The results of the second experiment considering total flow time with one swarm 

 makespane total flow time machine idle time 

 best average best average best average 

1 1109 1117.5 10636 10749.8 637 820.3 

2 1101 1112.85 10495 10547.55 620 766.75 

3 1103 1114.7 10577 10700.2 660 704.35 

4 1090 1099.2 10550 10609.1 587 686.3 

5 1087 1096.9 10524 10589.5 564 668.45 

6 1072 1087.3 10481 10565.2 522 564.6 

7 1081 1089.3 10508 10577.65 591 660.2 

8 1100 1111.1 10700 10757.45 739 783.55 

9 1131 1141.55 10678 10783.4 825 903.05 

10 1097 1106 10700 10782.95 742 854.3 

 1097 1107.64 10585 10666.28 649 741.185 
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Table 5. 9 The results of the second experiment considering machine idle time with one swarm 

 makespane total flow time machine idle time 

 best average best average best average 

1 1112 1117.9 10780 10853.35 625 705.7 

2 1101 1118.65 10646 10746.35 633 739.2 

3 1103 1114.75 10688 10740.85 678 690.15 

4 1096 1100.15 10596 10675.6 473 556.5 

5 1095 1103.1 10644 10717.25 569 622.8 

6 1072 1111.1 10540 10599.6 494 533.75 

7 1081 1088.45 10537 10629.4 492 573.7 

8 1100 1113.65 10734 10808.45 679 723.2 

9 1132 1137.95 10745 10877.85 720 818.5 

10 1099 1107.4 10814 10856.7 649 722.55 

 1099 1111.31 10672 10750.54 601 668.605 

 

Table 5. 10 The results of the second experiment considering makespan and TFT with two sub-swarms 

 makespane total flow time machine idle time 

 best average best average best average 

1 1100 1106.7 10609 10683.65 631 728.75 

2 1097 1101.4 10478 10523.75 582 674.8 

3 1082 1098.75 10515 10660.55 579 680.8 

4 1089 1091.45 10543 10577 595 652.75 

5 1087 1092.5 10512 10555.05 505 620 

6 1071 1079.45 10490 10542.95 499 536.15 

7 1081 1081.5 10490 10533.6 551 598.05 

8 1097 1100.3 10632 10679.7 692 733.25 

9 1116 1128.2 10647 10721.3 703 859.05 

10 1092 1095.1 10629 10671.15 728 771.35 

 1091 1097.535 10555 10614.87 607 685.495 
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Table 5. 11 The results of the second experiment considering makespan and MIT with two sub-swarms 

 makespane total flow time machine idle time 

 best average best average best average 

1 1095 1105.35 10705 10784.85 658 705.65 

2 1097 1104.6 10570 10678.4 554 639 

3 1087 1098.45 10557 10682.4 544 653.3 

4 1089 1093.6 10597 10637.6 508 583.3 

5 1087 1094.3 10560 10629.95 532 603.4 

6 1071 1087.7 10529 10576.4 473 507.1 

7 1081 1082.2 10548 10592.45 489 557.25 

8 1097 1099.4 10700 10744.7 651 698.05 

9 1116 1125.5 10726 10817.7 666 780.2 

10 1092 1097.35 10702 10760.4 642 711.6 

 1091 1098.845 10619 10690.485 572 643.885 

 

Table 5. 12 The results of the second experiment considering TFT and MIT with two sub-swarms 

 makespane total flow time machine idle time 

 best average best average best average 

1 1106 1116.85 10632 10731.45 627 714.05 

2 1101 1113.85 10492 10568.75 619 740.55 

3 1109 1115.45 10548 10705.75 608 678.9 

4 1091 1099.7 10550 10617.9 476 600.25 

5 1088 1101 10509 10601.15 495 608.3 

6 1071 1089.9 10488 10533.65 451 515.05 

7 1081 1085.65 10493 10569.2 492 562.1 

8 1099 1112.35 10655 10747.05 684 720.65 

9 1131 1136.65 10697 10746.2 705 791.95 

10 1097 1101.15 10665 10772.3 640 724.95 

 1097 1107.255 10573 10659.34 580 665.675 
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Table 5. 13 Summary of the results of the second experiment 

Optimized makespane total flow time machine idle time 

Objectives best average best average best average 

All 1091.6 1099.08 10562.3 10633.97 567.6 648.77 

MS 1091 1096.05 10620.8 10689.39 646.1 704.02 

TFT  1097.1 1107.64 10584.9 10666.28 648.7 741.185 

MIT  1099.1 1111.31 10672.4 10750.54 601.2 668.605 

MS+ TFT  1091.2 1097.535 10554.5 10614.87 606.5 685.495 

MS +MIT 1091.2 1098.845 10619.4 10690.49 571.7 643.885 

TFT +MIT 1097.4 1107.255 10572.9 10659.34 579.7 665.675 

 

 In order to compare the performance of our PSO with traditional meta-heuristic 

algorithm, we code the GA algorithm to program with C++ language in addition. At 

first, we apply PSO to solve the hardest benchmark problem generated by Guéret and 

Prins (1999). The program runs 20 times on each problem on a Pentium 4 3.0-GHz 

computer with 1 GB of RAM running Windows XP. During the pilot experiment, we 

used four swarm sizes N (50, 100, 150, and 200) to test the algorithm. The outcome of 

N=150 was best, so that value was used in all further tests. Parameters c1 and c2 were 

tested at various portfolios in the range 0.1–0.7 in increments of 0.2. The inertial 

weight w was reduced from 0.9 to 0.1 during iterations. The combination of c1=0.1, 

c2=0.8, w=0.1 gave the best results. The maximum iteration limit was set to 60 and the 

maximum archive size was set to 150. The results of MOPSO for notorious open shop 

scheduling problems are demonstrated in Table 5.14 
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Table 5. 14 The results of MOPSO for benchmark problems gp03-gp10 

Proble

m 

Makespan  MIT  TFT  CPU 

Time Best Average  Best Average  Best Average  

gp03-01 1168 1168  0 0  3174 3408.9  7.016 

gp03-02 1170 1170  0 0  3340 3437.8  7.015 

gp03-03 1168 1168  0 0  3336 3418.0  7.063 

gp03-04 1166 1166  0 0  3170 3380.6  7.000 

gp03-05 1170 1170  0 24  3181 3387.7  7.110 

gp03-06 1169 1169  0 0  3177 3386.3  7.187 

gp03-07 1165 1165  0 0  3166 3444.8  7.188 

gp03-08 1167 1167  0 0  3334 3398.8  7.047 

gp03-09 1162 1162  0 7.9  3167 3386.8  7.094 

gp03-10 1165 1165  0 0  3330 3401.1  7.063 

Average 1167 1167  0 3.2  3238 3405.1  7.078 

           

gp04-01 1281 1281  274 455  4326 4534.75  14.297 

gp04-02 1270 1270  0 257  4346 4872.85  14.250 

gp04-03 1288 1288  240 393  4574 4778.4  14.110 

gp04-04 1261 1261  0 187  4530 4820.7  14.125 

gp04-05 1289 1289  277 405  4305 4783.3  14.156 

gp04-06 1269 1269  179 301  4539 4937.4  15.281 

gp04-07 1267 1267  0 175  4568 4722.85  14.563 

gp04-08 1259 1259  191 368  4524 4751.7  14.406 

gp04-09 1280 1280  278 512  4304 4545.2  14.375 

gp04-10 1263 1263  188 228  4549 5005  14.250 

Average 1272.7 1272.7  162.7 328  4456.5 4775.215  14.381 

           

gp05-01 1245 1245  456 489.25  5593 5802.4  24.844 

gp05-02 1247 1247  243 596.25  5418 5828.1  24.813 

gp05-03 1265 1265  260 364.1  5797 6024.4  24.734 

gp05-04 1258 1258.2  471 553.4  5713 5851.6  25.000 

gp05-05 1280 1280  291 632.55  5318 5824.65  24.500 

gp05-06 1269 1269.05  268 326.25  5589 5618.35  24.156 

gp05-07 1269 1269  0 317.95  5550 5879.3  24.187 

gp05-08 1287 1287  294 704.8  5526 5733.2  24.657 

gp05-09 1262 1262  302 480.35  5630 6030.6  23.937 

gp05-10 1254 1254.95  271 539.8  5618 5885.75  23.984 

Average 1263.6 1263.72  285.6 500.47  5575.2 5847.835  24.481 
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Table 5.14(Cont’d) The results of MOPSO for benchmark problems gp03-gp10 

gp06-01 1265 1265  332 432  6858 7053.9  41.812 

gp06-02 1285 1285.45  409 677  7003 7111.85  40.485 

gp06-03 1256 1256.75  44 545  6811 7149.25  42.000 

gp06-04 1275 1275.05  525 821  6857 7046.25  41.422 

gp06-05 1299 1299.4  82 670  7042 7215.4  38.703 

gp06-06 1284 1284.85  282 619  6687 7181.8  41.250 

gp06-07 1290 1290  317 684  6601 7077.85  41.813 

gp06-08 1265 1265.7  352 626  7047 7194.7  39.641 

gp06-09 1243 1245.8  252 536  6401 6955.7  41.047 

gp06-10 1254 1254.25  486 593  6580 6878.75  40.859 

Average 1271.6 1272.225  308.1 620  6788.7 7086.545  40.903 

           

gp07-01 1159 1162.3  319 482  7799 7980.15  58.547 

gp07-02 1185 1185  152 533  7749 7885.75  58.141 

gp07-03 1237 1237.65  57 676  8042 8316.15  58.922 

gp07-04 1167 1168.75  197 502  7783 8016.5  60.656 

gp07-05 1158 1158.3  417 493  7793 7868.25  64.469 

gp07-06 1193 1194.25  346 613  7771 7979.95  65.594 

gp07-07 1185 1185.1  372 549  7767 7916  62.766 

gp07-08 1181 1181.2  46 569  7869 8019.25  60.062 

gp07-09 1220 1220.15  306 549  7780 7995.95  62.078 

gp07-10 1270 1270  276 614  8023 8274.05  61.079 

Average 1195.5 1196.27  249 558  7837.6 8025.2  61.231 

           

gp08-01 1147 1160.25  29 347  9005 9127.15  84.156 

gp08-02 1137 1143.85  247 404  8923 9018.7  93.281 

gp08-03 1115 1119.55  67 285  8739 8813.65  93.031 

gp08-04 1154 1159.6  267 410  8960 9071.3  91.860 

gp08-05 1218 1219.35  214 625  8864 9157.15  97.609 

gp08-06 1116 1130.85  51 321  8777 8928.4  93.375 

gp08-07 1129 1135.95  132 339  8892 8957.2  92.766 

gp08-08 1148 1158.55  7 358  8928 9113.45  93.375 

gp08-09 1115 1118.95  159 245  8838 8891.85  93.109 

gp08-10 1162 1162.5  225 590  8982 9052.8  95.781 

Average 1144.1 1150.94  140 392  8890.8 9013.165  92.834 
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Table 5.14(Cont’d) The results of MOPSO for benchmark problems gp03-gp10 

gp09-01 1138 1146.75  255 419  10050 10118.25  133.42 

gp09-02 1114 1120  0 205  9857 9969.00  137.37 

gp09-03 1118 1120.4  232 422  9991 10042.65  136.17 

gp09-04 1140 1145.35  186 430  10014 10114.50  137.15 

gp09-05 1180 1180.3  344 572  10029 10186.15  150.39 

gp09-06 1097 1113.9  0 394  9819 9936.90  166.68 

gp09-07 1098 1114.75  82 319  9792 9875.10  165.82 

gp09-08 1110 1117.25  0 219  9749 9919.35  167.46 

gp09-09 1126 1130.05  124 341  9829 9964.70  164.56 

gp09-10 1124 1137  213 317  9862 9947.05  163.62 

           

Average 1124.5 1132.575  144 364  9899.2 10007.36  152.26 

           

gp10-01 1100 1113.6  0 201  10835 11008.05  220.45 

gp10-02 1102 1116.7  82 351  10816 10994.45  228.82 

gp10-03 1093 1113.1  74 199  10813 10935.10  224.67 

gp10-04 1087 1100.75  51 266  10760 10884.35  212.71 

gp10-05 1093 1101.3  0 125  10731 10900.35  208.71 

gp10-06 1074 1104.3  0 186  10637 10900.05  214.31 

gp10-07 1084 1093.6  0 142  10632 10787.55  185.40 

gp10-08 1098 1105.8  101 261  10779 10924.30  187.01 

gp10-09 1117 1138.8  61 424  10955 11182.60  173.26 

gp10-10 1095 1115.5  136 279  10824 10991.15  176.79 

           

Average 1094.3 1110.345  51 243  10778.2 10950.79  203.21 

 

 The GA program also runs 20 times on each problem on a Pentium 4 3.0-GHz 

computer with 1 GB of RAM running Windows XP. The parameter setting of GA 

algorithm is described as follows. During the pilot experiment, we used four 

population sizes N (50, 100, 150, and 200) to test the algorithm. The outcome of 

N=150 was best, so that value was used in all further tests. The crossover and 

mutation rate is test in the range of 0.1-0.9. The combination of cross rate equals 0.5, 

mutation rate equals 0.1 gave the best results. The maximum iteration limit was set to 
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60 and the maximum archive size was set to 150. The results of MOGA for notorious 

open shop scheduling problems are demonstrated in Table 5.15. 

 

Table 5. 15 The results of MOGA for benchmark problems gp03-gp10 

Proble

m 

Makespan  MIT  TFT  CPU 

Time Best Average  Best Average  Best Average  

gp03-01 1168 1168.15  0 0  3174 3384.9  3.59 

gp03-02 1170 1170  0 32.6  3177 3397.05  3.75 

gp03-03 1168 1168  0 0  3336 3426.2  3.91 

gp03-04 1166 1166  0 0  3170 3413  3.75 

gp03-05 1170 1170  0 15.9  3181 3403.6  3.75 

gp03-06 1169 1169  0 16.1  3177 3394.35  3.90 

gp03-07 1165 1165.05  0 16.4  3166 3379.25  3.60 

gp03-08 1167 1167  0 0  3172 3366.4  3.90 

gp03-09 1162 1162  0 7.85  3167 3402.5  3.60 

gp03-10 1165 1165  0 7.9  3172 3385.3  3.90 

           

Average 1167 1167.02  0 9.675  3189.2 3395.255  3.76 

           

gp04-01 1281 1283.7  0 204.1  4325 4705.8  4.22 

gp04-02 1270 1271.75  0 147.5  4309 4798.6  4.69 

gp04-03 1288 1290.7  0 321.6  4574 4889.9  4.37 

gp04-04 1261 1261  233 252  4527 4651.85  4.69 

gp04-05 1289 1290.25  0 362.2  4309 4881.25  4.53 

gp04-06 1269 1270.85  179 339.7  4539 4848.3  5.00 

gp04-07 1271 1277.8  0 194  4582 4845.2  4.53 

gp04-08 1259 1259  191 496  4524 4549.3  4.69 

gp04-09 1280 1284.5  0 320.4  4316 4642.45  4.69 

gp04-10 1263 1263.45  188 219.8  4785 5005.45  4.69 

           

Average 1273.1 1275.3  79.1 285.7  4479 4781.81  4.61 
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Table 5.15(Cont’d) The results of MOGA for benchmark problems gp03-gp10 

gp05-01 1245 1253.8  454 716.1  5824 5960  6.25 

gp05-02 1247 1267.2  270 672  5587 6004.5  6.25 

gp05-03 1265 1265  260 339.6  5588 6043.9  6.25 

gp05-04 1263 1275.95  231 516.8  5633 5890.1  6.41 

gp05-05 1281 1285.5  274 406.1  5574 6019.5  6.25 

gp05-06 1270 1282.15  228 484.7  5589 5884.25  6.09 

gp05-07 1269 1269.65  0 493.9  5552 5786.8  6.25 

gp05-08 1288 1294.45  295 383.7  5836 6048.45  6.40 

gp05-09 1262 1274.15  262 589.4  5573 5973.75  6.25 

gp05-10 1257 1274.5  237 610.7  5675 6013.65  6.25 

Average 1264.7 1274.235  251.1 521.3  5643.1 5962.49  6.26 

           

gp06-01 1266 1284.95  271 671.1  7076 7256.45  8.75 

gp06-02 1289 1289.85  0 670.5  6914 7254.25  8.12 

gp06-03 1257 1261.8  0 670.9  6842 7233.65  8.60 

gp06-04 1275 1283.35  240 902.5  6903 7066.35  9.21 

gp06-05 1301 1302.6  105 787.7  6910 7283.45  8.44 

gp06-06 1285 1294.95  0 914.4  6918 7251.8  8.44 

gp06-07 1292 1295.7  294 640  6826 7454.2  8.44 

gp06-08 1268 1271.75  426 864.7  6652 7015.5  8.28 

gp06-09 1246 1254.9  467 714.7  6985 7024  8.75 

gp06-10 1258 1267.55  504 892.4  6585 7007  8.75 

Average 1273.7 1280.74  230.7 772.9  6861.1 7184.665  8.57 

           

gp07-01 1189 1190.55  594 641.3  7974 8025.8  23.44 

gp07-02 1186 1190.7  618 668.6  7811 7854.7  23.12 

gp07-03 1239 1264.95  253 866.65  8001 8482.15  23.59 

gp07-04 1173 1188.15  407 758  7882 8022.65  23.75 

gp07-05 1188 1202.85  416 593.5  7991 8188.85  23.60 

gp07-06 1200 1236.75  394 903.6  7740 8147.6  23.75 

gp07-07 1186 1211.6  362 614  7668 8069.9  23.29 

gp07-08 1191 1191  626 735.05  7902 7966.5  23.28 

gp07-09 1222 1222  510 618.3  7829 7859.3  23.28 

gp07-10 1271 1273.65  556 1145.65  8091 8466.7  23.91 

Average 1204.5 1217.22  473.6 754.465  7888.9 8108.415  23.50 
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Table 5.15(Cont’d) The results of MOGA for benchmark problems gp03-gp10 

gp08-01 1182 1203.1  457 869.4  9072 9283.6  33.12 

gp08-02 1166 1184.05  453 867.2  9101 9184.9  33.28 

gp08-03 1148 1180.85  416 644  8987 9073.8  32.97 

gp08-04 1181 1189  656 768  8955 9041.75  32.81 

gp08-05 1224 1227.65  482 899.5  8824 9185.45  32.97 

gp08-06 1170 1183.3  700 908.7  8983 9092.35  33.60 

gp08-07 1169 1199.15  560 746.2  9028 9271.2  32.97 

gp08-08 1182 1191.5  455 921.7  9210 9348.45  33.43 

gp08-09 1152 1190.5  471 803.8  8810 9216.15  32.97 

gp08-10 1187 1202.8  368 811.7  8910 9250.45  32.50 

Average 1176.1 1195.19  501.8 824  8988 9194.81  33.06 

           

gp09-01 1166 1190.05  664 983.6  10109 10275.05  46.56 

gp09-02 1158 1173.85  255 733.5  9907 10194.45  45.63 

gp09-03 1157 1209.5  689 1177  10113 10537.95  45.78 

gp09-04 1164 1181.55  478 786.6  10071 10323.45  46.72 

gp09-05 1199 1206.75  346 978.8  10209 10355.3  46.40 

gp09-06 1139 1159.6  591 967.7  10071 10221.55  46.10 

gp09-07 1153 1159.05  507 615  9870 10105  46.41 

gp09-08 1151 1179  561 762.6  10044 10186.85  45.78 

gp09-09 1176 1180.2  614 753.4  9877 10129.1  46.25 

gp09-10 1142 1165.95  526 750.5  9880 10051.6  46.72 

Average 1160.5 1180.55  523.1 850.9  10015.1 10238.03  46.23 

           

gp10-01 1157 1163.9  617 849.55  11165 11292.55  63.75 

gp10-02 1155 1170  691 1041.85  11151 11397.55  63.44 

gp10-03 1141 1157.8  476 775.95  11064 11212.95  63.75 

gp10-04 1113 1136.4  484 692.15  10871 11082.85  63.60 

gp10-05 1145 1160.05  522 706.75  11155 11271.35  64.38 

gp10-06 1148 1190.2  460 815.15  11181 11488.2  63.44 

gp10-07 1139 1160.3  519 855.2  11084 11264.6  63.90 

gp10-08 1146 1182.8  474 888.95  11142 11529.45  64.07 

gp10-09 1147 1164.2  480 779.75  11070 11326.95  63.90 

gp10-10 1163 1180.3  491 741.55  11123 11354  63.60 

Average 1145.4 1166.595  521.4 814.685  11100.6 11322.04  63.78 
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The comparison of MOPSO and MOGA for objectives makespan, machine idle 

time and total flow time are showed in Table 5.16, 5.17, 5.18 respectively. 

 

Table 5. 16 The comparison of MOPSO and MOGA for makespan 

  PSO  GA  Error Ratio 

  Makespan  Makespan  Makespan 

  Best Average  Best Average  Best Avgerage 

gp03  1167.0 1167.0  1167.0 1167.0  0    0    

gp04  1272.7 1272.7  1273.1 1275.3  0    0    

gp05  1263.6 1263.7  1264.7 1274.2  0    0    

gp06  1271.6 1272.2  1273.7 1280.7  0    0    

gp07  1195.5 1196.2  1204.5 1217.2  0    0    

gp08  1144.1 1150.9  1176.1 1195.1  0    0    

gp09  1124.5 1132.5  1160.5 1180.5  0    0    

gp10  1094.3 1110.3  1145.4 1166.5  0    0    

 

Table 5. 17 The comparison of MOPSO and MOGA for machine idle time 

  PSO  GA  Error Ratio 

  Machine Idle Time  Machine Idle Time  Machine Idle Time 

  Best Average  Best Average  Best Avgerage 

gp03  0.0 3.1  0 9.6  0    0    

gp04  162.7 328.1  79.1 285.7  1.05 0.14 

gp05  285.6 500.4  251.1 521.2  0.13 0    

gp06  308.1 620.2  230.7 772.8  0.33 0    

gp07  248.8 558.0  473.6 754.4  0    0    

gp08  139.8 392.3  501.8 823.9  0    0    

gp09  143.6 363.8  523.1 850.8  0    0    

gp10  50.5 243.3  521.4 814.6  0    0    
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Table 5. 18 The comparison of MOPSO and MOGA for total flow time 

  PSO  GA  Error Ratio 

  Total Flow Time  Total Flow Time  Total Flow Time 

  Best Average  Best Average  Best Avgerage 

gp03  3237.5 3405.0  3189.2 3395.2  0.015 0.0028 

gp04  4456.5 4775.2  4479.0 4781.8  0    0    

gp05  5575.2 5847.8  5643.1 5962.4  0    0    

gp06  6788.7 7086.5  6861.1 7184.6  0    0    

gp07  7837.6 8025.2  7888.9 8108.4  0    0    

gp08  8890.8 9013.1  8988.0 9194.8  0    0    

gp09  9899.2 10007.3  10015.1 10238.0  0    0    

gp10  10778.2 10950.7  11100.6 11322.0  0    0    

 

 In order to compare the convergence degree of GA and PSO, the scatter diagrams 

are plot as Figure 5.1-5.3. The solutions found by the PSO are more condensed than 

the GA. 

 

  

Figure 5. 1 The scatter diagrams of gp8 
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Figure 5. 2 The scatter diagrams of gp9 

 

 

Figure 5. 3 The scatter diagrams of gp10 
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CHAPTER 6 CONCLUSIONS AND FUTURE STUDIES 

 

6.1 Conclusions 

Many studies focused on flowshop scheduling problem could be found. However, the 

objective of most research focused on minimization of maximum completion time (i.e. 

makespan). In real world, there exist other objectives such as minimization of 

machine idle time that might help improve efficiency and reduce production costs. 

Particle swarm optimization inspired by the spirit of bird flocking and fish schooling 

behaviors consists with advantages including simple structure, easy implementation, 

immediate accessibility, short searching time, and robustness. However, limited study 

of flowshop scheduling problem with multi-objectives addressed by PSO could be 

found from the literature. We have presented a PSO method for solving flowshop 

scheduling problem with multiple objectives including minimization makespan, 

minimization mean flow time and machine idle time. 

The original PSO was proposed for the continuous optimization problems. In 

order to make it suitable for flowshop scheduling (i.e. a combinational problem), we 

modified the representation of particle position, particle movement, and particle 

velocity. In addition, a mutation operator was adopted in our PSO algorithm. We also 

incorporated the concept of Pareto optimal to measure the performance of multiple 

objectives rather than weighted fitness function. Another necessary adjustment of 

original PSO to keep Pareto optimal solution is the external Pareto optimal set that is 

cooperated to deposit a limited size of non-dominated solutions. At last, we utilized a 

diversification strategy in our PSO algorithm. The results demonstrated that the 

proposed PSO can obtain more optimal solutions than GA heuristic. The relative error 

ratios of each problem scenario in our PSO algorithm are less than the GA. The 
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results of performance measure also revealed that the proposed PSO algorithm 

outperformed GA in minimizing makespan, mean flow time and total machine idle 

time. 

While there has been a large amount of research into the JSSP, most of this has 

focused on minimizing the maximum completion time (i.e., makespan). There exist 

other objectives in the real world, such as the minimization of machine idle time that 

might help improve efficiency and reduce production costs. PSO, inspired by the 

behavior of birds in flocks and fish in schools, has the advantages of simple structure, 

easy implementation, immediate accessibility, short search time, and robustness. 

However, few applications of PSO to multi-objective JSSPs can be found in the 

literature. Therefore, we presented a MOPSO method for solving the JSSP with 

multiple objectives, including minimization of makespan, total tardiness, and total 

machine idle time. 

The original PSO was proposed for continuous optimization problems. To make 

it suitable for job-shop scheduling (i.e., a combinational problem), we modified the 

representation of particle position, particle movement, and particle velocity. We also 

introduced a mutation operator and used a diversification strategy. The results 

demonstrated that the proposed MOPSO could obtain more optimal solutions than the 

MOGA. The relative error ratios of each problem scenario in our MOPSO algorithm 

were less than in the MOGA. The performance measure results also revealed that the 

proposed MOPSO algorithm outperformed MOGA in simultaneously minimizing 

makespan, total tardiness, and total machine idle time. 

Although a large amount of research has addressed the open-shop scheduling 

problem, most of this has focused on minimizing the maximum completion time (i.e., 

makespan).  Other objectives exist in the real world, such as minimizing the machine 
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idle time, that might help improve efficiency and reduce production costs.  PSO, 

inspired by the behavior of flocks of birds and schools of fish, has the advantages of a 

simple structure, easy implementation, immediate accessibility, short search time, and 

robustness.  However, few applications of PSO to multi-objective open-shop 

scheduling problems can be found in the literature.  Therefore, we proposed a 

MOPSO algorithm to solve the open-shop scheduling problem with multiple 

objectives, including minimization of makespan, total flow time, and machine idle 

time. 

The algorithm was tested to verify different scenarios, using different Pareto sets 

with different combinations of objectives.  Different swarm sizes with varied 

objective combinations were also evaluated.  The results demonstrated that the 

algorithm performed better when only one swarm was used for all three objectives 

compared to the case where the swarm was divided into three sub-swarms for each 

objective. 

 

6.2 Future Studies 

For further research, we will attempt to apply our PSO to other shop scheduling 

problems with multiple objectives. Possible topics for further study include the 

modification of particle position representation, particle movement, and particle 

velocity. In addition, issues related to Pareto optimal such as solution maintenance 

strategy and performance measurement are also worth to be investigated in future. 

We will also attempt to apply MOPSO to other shop scheduling problems with 

multiple objectives in future research.  Other possible topics for further study include 

modification of the particle position, particle movement, and particle velocity 
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representation.  Issues related to Pareto optimization, such as solution maintenance 

strategy and performance measurement, also merit future investigation. 
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Appendix 

The pseudo-code of the PSO for MO-FSSP is as follow. 

Initialize a population of particles with random positions. 

for each particle k do  

 Evaluate Xk (the position of particle k) 

 Save the pbestk to optimal solution set S 

end for 

Set gbest solution equals to the best pbestk 

repeat 

 Updates particles velocities 

 for each particle k do  

  Move particle k 

Evaluate Xk 

Update gbest, pbest and S 

 end for 

until maximum iteration limit is reached 

 

The pseudo code of the PSO for MO-JSSP is given below: 

Initialize a population of particles with random positions. 

for each particle k do 

Apply G&T algorithm to decode kX  into a schedule kS . 

set the kth pbest solution ( kpbest ) equal to kS , kpbest ← kS . 

end for  

set gbest solution equal to the best kpbest . 

repeat 
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update velocities 

for each particle k do 

move particle k  

apply G&T algorithm to decode kx  into kS . 

update pbest solutions and gbest solution 

end for 

until maximum iterations is attained 

 

The pseudo code of the PSO for MO-OSSP is given below: 

Initialize a population of particles with random positions. 

for each particle k do 

Apply G&T algorithm to decode kX  into a schedule kS . 

set the kth pbest solution ( kpbest ) equal to kS , kpbest ← kS . 

end for  

set gbest solution equal to the best kpbest . 

repeat 

update velocities 

for each particle k do 

move particle k 

apply G&T algorithm to decode kx  into kS . 

update pbest solutions and gbest solution 

end for 

until maximum iterations is attained 
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