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Minimum Rectangular Partition Problem for Simple 
Rectilinear Polygons 

W. T. LIOU. JIMMY JIANN-MEAN TAN, AND R. C. T .  LEE, FELLOW, IEBE 

Abstract-In this paper, an O ( n  log log n )  algorithm is proposed for 
minimally rectangular partitioning a simple rectilinear polygon. For 
any simple rectilinear polygon P ,  a vertex-edge visible pair is a vertex 
and an edge that can be connected by a horizontal or vertical line seg- 
ment that lies entirely inside P .  We show that, if the vertex-edge visible 
pairs are found, the maximum matching and the maximum indepen- 
dent set of the bipartite graph derived from the chords of a simple 
rectilinear polygon can be found in linear time without constructing 
the bipartite graph. Using our algorithm, the minimum partition prob- 
lem for convex rectilinear polygons and vertically (horizontally) con- 
vex rectilinear polygons can be solved in 0 ( n  ) time. 

I. INTRODUCTION 
HE minimum rectangular partition problem for a sim- T ple rectilinear polygon is to partition the interior of a 

simple rectilinear polygon into a minimum number of 
rectangles. The decomposition can be classified into two 
types, depending on the resulting rectangles. If the re- 
sulting rectangles cannot overlap with each other, then the 
decomposition is a partition. If the resulting rectangles 
overlap with each other, then the decomposition is a 
cover. Both partitioning approach and covering approach 
have been discussed in previous researches such as [3], 
171, [lo], [ l l ] ,  [14], [15] for partitioning problems and 
[2], [4], [8] for covering problems. In this paper, we shall 
consider the minimum partition problem for simple rec- 
tilinear polygons. We shall use both horizontal and ver- 
tical cuts to find a minimum partition. However, in some 
applications, only horizontal cuts are permissible [ 141. 

This problem has been studied in [3], [ 101, [ 1 13, [ 151, 
[16]. The best-known result is proposed by [lo], which 
requires O(n'.'logn) time. Note that the algorithms of 
previous approaches can be applied to a rectilinear poly- 
gon with holes. In this paper, we propose an algorithm 
for partitioning simple rectilinear polygons, which re- 
quires O ( n  log log n )  time. We do not know yet whether 
or not our approach can be applied to a rectilinear polygon 
with holes. 
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Based on our approach for solving the partition problem 
for a simple rectilinear polygon, the partition problem for 
convex rectilinear polygons or vertically (horizontally) 
convex polygons can be solved in linear time, which is 
optimal. 

The rest of this paper is organized as follows. In Sec- 
tion 11, we introduce some results of previous research. 
In Section 111, we introduce a theorem of Lipski and 
Preparata [12] and prove that this theorem can be applied 
to the bipartite graph derived from chords of a simple rec- 
tilinear polygon. In Section IV, we propose an algorithm 
to find the maximum matching of vertical and horizontal 
chords for horizontally convex rectilinear polygons with- 
out actually constructing any bipartite graph. In Section 
V, the algorithm in Section IV is extended to simple rec- 
tilinear polygons. In Section VI, based on the maximum 
matching found in Section V, we find the maximum non- 
intersecting chords which can be used to determine a min- 
imal partition. The total time required for executing the 
algorithms in Sections V and VI is O ( n  log log n ) .  Sec- 
tion VI1 gives the conclusion. 

11. PREVIOUS RESULTS 
The minimum rectangular partition problem has been 

studied in [3], [ lo],  [ l l ] ,  [15], [16]. Some of their results 
are discussed; these are the starting point of our research. 

A rectilinear polygon on the plane is a polygon whose 
sides are either vertical or horizontal. A simple rectilinear 
polygon is a rectilinear polygon which has no windows 
(holes) in it. The minimum rectangular partition problem 
defined on a simple rectilinear polygon can be stated as 
follows: given a simple rectilinear polygon P on the plane, 
find a minimally sized set of nonoverlapping rectangles 
such that every rectangle is contained in P and the union 
of all rectangles is equal to P.  In the following, for sim- 
plicity, polygons always denote rectilinear polygons and 
partitioning always denotes rectangular partitioning. 

A concave vertex U ,  : (x i ,  y ,  ) of P is a vertex having a 
270" interior angle. A reJex edge of P is an edge con- 
necting two concave vertices. Two concave vertices 
U ,  : (x,, y ,  ) and v2 : (x2, y 2 )  which do not share the same 
edge of P are co-grid if they are co-horizontal (yi = y 2 )  
or co-vertical (xi  = x2). A chord of P is a line segment 
contained in P connecting two cogrid vertices. If a recti- 
linear polygon contains no chords, then a minimal parti- 
tion can be easily obtained by using the following princ- 
ple. 
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1) For each concave vertex, select one of the edges. 
Note that there are two edges intersecting at each concave 
vertex. 

2) Extend this edge until it hits another such extended 
edge or a boundary edge of P .  

Throughout this paper, we shall assume that our simple 
polygons contain cords. Ferrari, Sankar, and Sklansky [3] 
showed that the size of a minimal partition is equal to 
n - b + 1 where b is the size of the largest set of non- 
intersecting chords. Consider Fig. l(a). The set of chords 
is { a b ,  ef, gh, i j ,  ch, di }. The largest set of noninter- 
secting chords is { a b ,  ef, gh, ij }.  Using these noninter- 
secting chords, a minimal partition can be constructed as 
shown in Fig. l(b). Note that there might be other ap- 
proaches to solve the minimal rectangular partion prob- 
lem. However, this approach, which is based upon find- 
ing a largest set of nonintersecting chords will definitely 
lead to a minimal solution. 

In [3], it was shown that the minimum partition of any 
simple polygon P containing chords can be found in six 
steps. 

1 )  Find chords of P .  
2) Construct a bipartite graph B = ( V ,  H ,  E )  as fol- 

lows. a) Each vertex U ,  in Vcorresponds to a vertical chord 
i .  b) Each vertex h, in H corresponds to a horizontal chord 
j .  c) Each edge v,h, in E corresponds to the intersection 
of chords i andj .  

3) Find a maximum matching [17] M of B .  
4) Find a maximum independent set [ 171 S of B based 

on M .  The nodes in S are not adjacent to each other and, 
therefore, the chords corresponding to nodes in S are non- 
intersecting chords. Denote the size of S as b. 

5) Draw b nonintersecting chords corresponding to S 
to divide P into b + 1 subpolygons such that each sub- 
polygon has no co-grid concave vertices. 

6) Since each subpolygon contains no chords, a mini- 
mal partition of each subpolygon can be found by using 
the principle stated in the previous paragraph. 

In [ 151 and [3], Hopcroft and Karp’s algorithm [9] was 
used to find the maximum matching of a bipartite graph. 
Hopcroft and Karp’s algorithm was designed for general 
bipartite graphs and runs in O( n2 5 ,  time where n is the 
number of vertices in the bipartite graph. Imai and Asano 
[ lo ]  proposed another algorithm to find the maximum 
matching without constructing the bipartite graph. Imai 
and Asano’s algorithm runs in O ( n o 5 N )  time where 
N = min { m ,  n log n } and m is the number of edges in 
the bipartite graph. Imai and Asano’s algorithm runs faster 
than Hopcroft and Karp’s algorithm. However, Imai and 
Asano’s algorithm is not the most suitable one for simple 
polygons (without holes). Some special properties of the 
chords of a simple polygon have not been explored. 

As in [lo], we shall not construct the bipartite graph. 
We shall make a detailed analysis of the properties of the 
chords of a simple polygon. Utilizing these special prop- 
erties, we can have an efficient algorithm to find the max- 
imum matching. Our algorithm requires O ( n  log log n )  
time. After the maximum matching is found, we can find 

(a) (b) 
Fig. 1 .  Chords and the optimal partition. 

the maximum nonintersecting chords in linear time and, 
consequently, the partition problem for simple polygons 
can be solved in 0 ( II log log n ) time. 

111. MAXIMUM MATCHING OF A SPECIAL BIPARTITE 
GRAPH 

In this section, we shall introduce a theorem which was 
initially discussed by Glover [6]  and then generalized by 
Lipski and Preparata [12]. We shall also show that this 
theorem can be applied to the bipartite graph derived from 
the chords of a simple polygon. 

Consider a bipartite graph B = ( V ,  H ,  E ). We use 
H (  vi ) to denote the neighbors of a vertex vl in V and 
V ( h g )  to denote the neighbors of a vertex 6, in H .  

Theorem 3-1 (Lipski and Preparata): Let B = ( V ,  H ,  
E )  be a bipartite graph. If ( v i ,  h , )  E E and H (  vi ) C 
H ( v j  ), for all vi E V (  h g ) ,  then there is a maximum match- 
ing containing ( vi, hg) .  

This theorem states the following. Let vi E V .  Suppose 
that there is an h, E H (  vi ) satisfying the following prop- 
erty: for any vj E V ,  whenever h, E H (  v j ) ,  it implies 
H (  vi ) C H (  vj ), then there is a maximum matching con- 
taining ( vi, hg) .  We define that H,(vi ) = { h, I h, E H ( v i  ) 
and H (  vi ) C H (  vj ), for all vj E V (  h , ) } .  By using Theo- 
rem 3- 1 ,  for any h, E H ,  ( vi ), there is a maximum match- 
ing containing ( vi, h, ) .  For a general bipartite graph, it 
is possible that H,( vi ) = 4 for all vi. Even if H,( vi ) # 
4 for some vi, it is not trivial to find a desired pair of v i  
and h, E H, (v i  ). However, for a bipartite graph derived 
from chords of a simple polygon, we shall prove that there 
always exists a vertical chord vi such that H,( vi ) # 4 
and we can find vi and h, E H,( vi ) efficiently. In the fol- 
lowing, we shall define left-free and right-convex and 
show that, for any vertical chord vi, if v i  is left-free and 
H (  vi ) # is right-convex, then H, ( vi ) # 4 and the 
horizontal chord h, E H,( vi ) where h, has the shortest 
right end in H (  vi ). 

Consider a vertical chord vi of a simple polygon P .  vi 
slices the boundary of P into two parts. One part is left to 
vi and the other part is right to vi .  We define that vi is left- 
free if there is no other vertical chord whose both ends 
are on the left part. For any two vertical chords vi and vj, 
if vi is left-free and x ( vj ) I x ( vi ), then vj must be higher 
than the upper end or lower than the lower end of vi. Con- 
sequently, vj does not intersect with any horizontal chord 
in H (  vi ). 

Lemma 3-1: Let vi be a left-free vertical cord. For any 
vertical chord vj, if x( vj ) 5 x (  vi ), then H (  vi fl H (  vi ) 
= 4. 
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Proof: Immediately proved from the definition of 
left-free. Q.E.D. 

The definition of right-convex is as follows. Let U ,  be 
a vertical chord of a simple polygon. Let h , ,  h,, * - , hk 
be the horizontal cords of H (  U ,  ) sorted in the descending 
order of the y-position. Let a , ,  a2, * - , ak be the right 
ends of h , ,  h2, , h,, respectively. If we start from a ,  
to walk along the boundary of P in the clockwise direc- 
tion, then the order of occurrences of right ends a,’s on 
the boundary is still in the sequence [ a , ,  a2, * * , a k ]  be- 
cause P is simply connected. 

The right-boundary of H (  U ,  ) is a piece of the boundary 
of P ,  which starts from a, passing through all a,, 1 < i 
< k ,  and ends at a,. H (  U ,  ) is right-convex if there is no 
vertical reflex edge on the right-boundary of H(v,). 
H (  U ,  ) is right-concave if it is not right-convex, i.e., there 
exists at least one vertical reflex edge on the right-bound- 
ary of H( U ,  ). 

The following lemma gives a sufficient condition for 
the existence of a vertical reflex edge on a piece of bound- 
ary. The proof of this lemma is not difficult but is very 
tedious. Therefore, we omit it. 

Lemma 3-2: Let AP be a piece of the boundary of a 
simple polygon P such that the interior of P is on the left 
side of AP. Let U ,  and a3 be two concave vertices and a, 
be any vertex on AP such that, if we traverse AP in clock- 
wise direction, the occurrences of these three verticles on 
AP are in the sequence [ a , ,  a,, a 3 ]  and the heights of 
them are y ( a l )  > y ( a 2 )  > y ( a 3 ) .  There is a vertical 
reflex edge between a ,  and a3 on AP if one of the follow- 
ing conditions are true: 

a) x ( a l )  > x ( a 2 )  andx(a2)  < x(a3),  
b) x(a11 = x ( ~ z )  andx(a2)  < x(a3) ,  
c) x ( a l )  > x ( a 2 )  a n d x ( a z )  = x ( a 3 ) .  

Lemma 3-3: Let H (  U ,  ) be right-convex. Then either 
the highest chord or the lowest chord in H( U ,  ) has the 
shortest right end among all cords in H (  U ,  ). 

* , a,] be the set of right 
ends of H (  v l  ) sorted from high to low. Assume that nei- 
ther the highest chord nor the lowest chord has the short- 
est right end. Assume that af, 1 < f < k ,  is the shortest 
right end. We h a v e y ( a l )  > y ( a f )  > y(ak) .  The right- 
boundary of H (  U ,  ) connects a , ,  af, and a,. The occur- 
rences of u I ,  af, and ak on the right-boundary of H (  v, ) 
are in the sequence [ a , ,  af, ak]. By Lemma 3-2, there 
exists a vertical reflex edge on the right-boundary of 
H (  U ,  ), a contradiction. Q.E.D. 

Let U ,  be a vertical chord such that H (  U ,  ) is right-con- 
vex. Consider a vertical chord v,, x ( U ,  ) < x (  U, ). We are 
going to prove in Lemma 3-4, which is the key lemma in 
the section, that if U, intersects with the shortest horizon- 
tal chord in H (  U ,  ), then v, intersects with every horizon- 
tal chord in H (  U ,  ). In order to prove Lemma 3-4, we first 
discuss some properties of the ends of v,. Let h, be the 
shortest chord in H (  U ,  ). Assume that U, intersects with 

Proof: Let A = [ a , ,  a,, * 

g I- h 

p i  

P1 

,;ppi 
(a) (b) 

Fig. 2.  Relative positions o f p , ,  p z .  and p i .  (a) y ( p z )  > y ( p ; ) .  (b) p; is 
convex and x ( p ; )  > x ( p y ) .  

h,. Let p, and p2, respectively, be the upper end and the 
lower end of U,. (See Fig. 2.) Consider the vertical edge 
E of p2. p2 is the higher end of E .  Let pi be the lower end 
of E .  We have y(p2)  > (p i )  as shown in Fig. 2(a). Then, 
consider the horizontal edge X of p;. If p i  is a convex 
vertex, then pi is the right end of X and x ( p ; )  > x ( p ; )  
where p; is the left end of X as shown in Fig. 2(b). 

Lemma 3-4: Let H (  U ,  ) be right-convex and h, be the 
chord in H (  U ,  ) having the the smallest right end. For any 
vertical chord U,, x ( U, ) > x (  U ,  ), if v, intersects with h,, 
then U, intersects with every h, E H (  U ,  ). 

Proof? Assume that hf E H (  U ,  ) and hf does not in- 
tersect with U,. Let p, and p2 be the upper end and the 
lower end of U,, respectively. Let af be the right end of 
hf. By Lemma 4-1, h, is the highest chord or the lowest 
chord in H( U ,  ). Without loss of generality, we assume 
that h, is the highest chord in H (  U ,  ). Let AP denote the 
right-boundary of H (  U ,  ). Since U, does not intersect with 
hf ,  we have y (p2)  > y (af ) and, therefore, p2 and uj are 
concave vertices on AP. Let pi be the lower end of the 
vertical edge p2. We have x ( p 2 )  = x(p;). 1) I f p i  = af, 
then pTf is a vertical reflex edge on AP,  a contradiction. 
2) Assume that af # p i ,  we havey(pz) - > y ( p ; )  > y ( a f ) .  
If pi is a concave vertex, then p2pi is a vertical reflex edge 
on AP,  a contradiction. If p i  is a concave vertex, then 
assuming that p i  is the vertex clockwise succeeding pi on 
AP,  we havex(pZ)  > x(p;) andx(af )  > x ( p i ) .  Since 

is a vertical reflex edge between p 2  and af on AP,  a 
contradiction. Q.E.D. 

Based on Lemmas 3-3 and 3-4, we immediately have 
the following lemma. 

Y(PZ) > Y ( P ~ >  = ~ ( ~ 4 ’ 1  > y ( q ) ,  by Lemma 3-2, there 

Lemma 3-5: Let U ,  be a vertical chord and H (  U ,  ) be 
right-convex. Let h, be a horizontal chord with the small- 
est right end in H (  U ,  ). For any vertical chord U,, x (  U ,  ) 
< x (  U, ), if h, E H ( u ,  ), then H (  U ,  ) C H (  U, 1. 

Lemma 3-1 and Lemma 3-5 show that, for a left-free 
vertical chord U ,  of a simple polygon P ,  if H( U ,  ) # 4 is 
right-convex, then h, E Hg( U ,  ) where h, has the shortest 
right end in H (  U ,  ). Right-free and left-convex can be de- 
fined in a symmetric manner as left-free and right-convex. 
If U ,  is right-free and H (  U ,  ) is left-convex, then Lemma 
3-1 to Lemma 3-5 are also true with suitable modifica- 
tions. For simplicity, we neglect the proofs. We conclude 
our discussion in this section with the following theorem. 
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Theorem 3-2: Let U ,  be a left-free (right-free) verical 
chord of a simple polygon P and H ( v i )  # be right- 
convex (left-convex). Let B = ( V ,  H ,  E ) be the bipartite 
graph derived from the chords of P. There exists a max- 
imum matching M of B such that v jh ,  is in M ,  where h, 
is the chord with the shortest right (left) end in H (  vi ). 

Proof: By Lemma 3-1 and 3-5, for any vi, if h, E 
H ( v j ) ,  then H(v;) C H ( v j ) .  By Theorem 3-1, there is 
a maximum matching M such that vjh, E M. Q.E.D. 

IV. FINDING MAXIMUM MATCHING OF A 

HORIZONTALLY CONVEX POLYGON 
In this section, we shall explain how to find the maxi- 

mum matching of a horizontally convex polygon. The 
technique we illustrated will be later extended to simple 
polygons. 

A simple polygon P is horizontally convex if, for any 
horizontal line segment, two ends of this line segment are 
contained in P implies that this line segment is contained 
in P. A support edge of P is an edge connecting two 90" 
angles. In a horizontally convex polygon, two horizontal 
support edges separate the boundary of the 
polygon into two chains of vertices, a left chain and a 
right chain. Consider a vertical reflex edge e; and a ver- 
tical support edge si on the same chain. Assume that there 
is no other support or reflex edges between e; and si on 
the same chain. For e; and si on the left chain, a vertical 
chord vk is located between e; and si if x ( s i  ) 5 x ( v k )  5 
x ( e ;  ). For ei and si on the right chain, a vertical chord is 
located between e; and si if x ( sj ) > x ( u k )  2 x ( e i  ). We 
can draw an extension through e; such that the higher 
(lower) end of si is lower (higher) than the higher (lower) 
end of the extension. The boundary shrinking along this 
extension is the elimination of the boundary between e; 
and si.  

In general, for a given horizontally convex ploygon, we 
can start from the top support edge to trace the left chain 
and the right chain at the same time such that we are on 
the same heights at both chains. We keep on tracing until 
we find the first vertical reflex edge e;. Assume that e; is 
on the left chain. Let si be the last support edge traced 
before e; on the same chain. For any vertical chord vi be- 
tween si and e;, H (  vi ) is right-convex because there is no 
vertical reflex edge e,! on the right-boundary of H (  vi ). If 
vi is the left-most chord between si and e;, then vi is left- 
free. After vi is matched and removed, the vertical chord 
succeeding vi will be left-free. Therefore, for vertical 
chords vi located between si and e,, we can process them 
from left to right as follows. 

1) If H (  vi ) = 4, then remove vi from the polygon. 
2) If H (  vi ) # 4, then vi is matched with a horizontal 

chord h, E H (  vi ) where h, is the chord with the shortest 
right end in H (  vi ). After matching, vi and h, are removed 
from the polygon. 

After all vertical chords between si and e, have been 
processed as described above, s, and e; are eliminated by 

the boundary shrinking along the vertical extension 
through ei. After boundary shrinking, e; and si do not exist 
in the new polygon. If ei and si are on the right chain, we 
will process vertical chords, vi located between e; and s; 
from right to left. 

Repeatedly applying the above procedure, we can elim- 
inate all vertical reflex edges on both chains. When all 
vertical reflex edges are eliminated, the remaining bound- 
ary forms a polygon with no reflex edges (a convex 
polygon) and, therefore, the neighbors of vertical chords 
of the remaining polygon are both right-convex and left- 
convex, which can be processed from left to right or from 
right to left. 

A horizontally convex polygon can also be processed 
from the bottom support edge. In this case, when we trace 
upwards along the left chain and right chain, the vertical 
reflex edge with the lowest lower end point will be elim- 
inated first. It is important to note that, if we process a 
horizontally convex polygon from the top to the bottom, 
we always execute boundary shrinkings along the upward 
extensions of vertical reflex edges. If we process from the 
bottom to the top, then boundary shrinkings are executed 
along the downward extensions of vertical reflex edges. 
The following algorithm, Algorithm 1, implements the 
above ideas. 

Algorithm I 
input: A horizontally convex polygon P. 
output: The maximum set M of matched chords of P. 
Steps: 
1) Find horizontal chords and vertical chords of P;  
2) Trace the left chain and the right chain of P at the 

same time to find the first pair of support edge s, and reflex 
edge e, of P;  

3) If there is no vertical cords located between s, and 
e,, then execute boundary shrinking along e,; otherwise, 
find the vertical chord U ,  located beween s, and e, such 
that there is no other vertical located between s, and U , ;  

4) Match U ,  with the shortest horizontal chord h, in 

5) Put v,h, into M ;  
6) Remove v, and h, from P to have a new polygon P' ;  
7) Recursively use Algorithm 1 to find M' for P ' ;  
8) M = M U M ' ;  
9) end; 

H(v, 1; 

Theorem 4-1: Algorithm 1 finds the maximum set of 
matched chords of a horizontally convex polygon P. 

Proof: Let vi be a vertical chord being processed by 
Algorithm 1. Algorithm 1 ensures that vI  is left-free and 
H (  v1 ) is right-convex. In Algorithm 1, vl  is matched with 
h, E H (  vI  ) where h, has the shortest right end in H (  vI  ). 
By Theorem 3-2,  there exists a maximum matching of P,  
which contains v,h,. After v l  and h, are matched, we 
move the x-position of the upper end of vI  a small dis- 
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tance (and modify the x-positions of the other relevant 
vertices, suitably,) such that u1 will not exist and no other 
vertical chords will be produced. We also move the left 
end of h, a small distance in the y-direction such that h, 
will not exist and no other horizontal chords will be pro- 
duced. The resulting polygon is still a horizontal convex 
polygon without chords u1 and h,. All other chords re- 
main unchanged. Let B’ and B 2  be the bipartite graph de- 
rived from chords of the old polygon and the new poly- 
gon, respectively. B’ - { v l ,  h, } = B2. Let M 2  be the 
maximum matching of B2. By Theorem 3-1, the maxi- 
mum matching MI of B1 is equal to M 2  U { uI h, }. We 
can recursively apply the same procedure to the new 
polygon to find M 2 .  Therefore, Algorithm 1 finds the 
maximum set of matched chords of P. Q.E.D. 

t yyb;;-dJq - - - - - - -  
I 

g 
e 

U 
Fig. 3 .  A simple polygon. 

Fig. x 4. The tree of subpolygons. 

V.FINDING THE MAXIMUM MATCHING OF A SIMPLE 
POLYGON 

This section includes two subsections. ln  Section 
V-5.1, we will explain our basic ideas for finding the 
maximum matching for a simple polygon and prove that 
our ideas are correct. In Section V-5.2, we will explain 
our algorithm in detail and analyze the time required for 
executing our algorithm. 

5.1. Basic Ideas 

Before presenting the many definitions needed by our 
algorithm, let us now present a high level informal de- 
scription of crur approach. Our approach consists of the 
following steps. 

1) We find all of the horizontal reflex edges of the given 
simple polygon. For instance, in Fig. 3 ,  the horizontal 
reflex edges are { ab, cd }. 

2) Through ab and cd, draw horizontal extensions. 
These horizontal extensions will decompose this simple 
polygon into five horizontally convex subpolygons as 
shown in Fig. 3. 

3) Construct a tree of these horizontally convex sub- 
polygons by the following rule: two horizontally convex 
subpolygons are connected if and only if they share one 
horizontal extension through some horizontal reflex edge. 
For the case shown in Fig. 3, the tree is shown in Fig. 4. 

4) Select any node as the root. For instance, for the tree 
in Fig. 4, we may select 5 as the root. We then use a post- 
order [ l ]  sequence to process the nodes. Again, for the 
tree in Fig. 4, a post-order sequence is 1, 2, 4, 3, 5 .  

5 )  For each node under processing, we use the method 
described in Section IV to find vertical reflex edges and 
the vertical chords relevant to these vertical reflex edges. 
A vertical reflex edge is elminated by the boundary 
shrinking after its relevant vertical chords are matched. 
For example, subpolygon 1 has two vertical reflex edges 
{ hg, f e  } . The vertical chords relevant to f e  are v 1  and v2 
and vertical chords relevant to hg are u1 and v4, as shown 

(a) (b) 

Fig, 5 .  Processing subpolygon 1 

Fig. 6.  Subpolygon 1 after processing. 

in Fig. 5(a). With respect to hg andfe, the matching found 
is { ( U , ,  h2).  ( u 2 ,  h l ) ,  ( u 3 ,  h 3 ) ,  ( u 4 ,  h4)} ,  and the result- 
ing subpolygon after boundary shrinkings is shown in Fig. 
5(b). 

6) After all vertical reflex edges are eliminated, con- 
sider two ends of the upper support edge tc of subpolygon 
1. The vertical edges at each end of tc are viewed as ver- 
tical reflex edges, i.e., ts and CY are viewed as vertical 
reflex edges and should be eliminated by boundary shrink- 
ings. There is no boundary left to ts and no boundary 
shrinking is needed at ts .  However, the boundary right to 
cv should be eliminated and the relevant vertical chord u5 
should be matched. The matching found in this step is 
{( u5, h 5 ) }  and the resulting subpolygon is shown in Fig. 
6 .  

7) We merge the resulting subpolygon 1 to its parent 
node, namely, subpolygon 3, such that subpolygon 3 be- 
comes that in Fig. 7. 

8) We repeat the same procedure illustrated in steps 5 ) ,  
6 ) ,  and 7) to all other subpolygons in the post-order se- 
quence. 

In step 5 ) ,  it is stated that we can use the method de- 
scribed in Section IV to eliminate vertical reflex edges. 
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Fig. 7. Merging subpolygon 1 to subpolygon 3. 

However, there is a little difference. In Section IV, we 
have shown that, for a horizontally convex polygon P ,  P 
can be processed from the top to the bottom or from the 
bottom to the top. However, in this section, any sub- 
polygon should be processed in a predefined direction as 
explained below. For a node n, of the resulting tree in step 
3), there are two support edges of n,. We define that the 
master bound of n, is the support edge (the horizontal ex- 
tension) between n, and its parent. If n,  is the root, then 
we assign the upper support edge of n, to be the master 
bound of n,. (Note that it makes no difference to assign 
the lower support edge as the master bound for the root.) 
The slave bound is the other support edge of n,. The mas- 
ter bound and the slave bound of a node are fixed. For 
example, in Fig. 3 ,  the master bound of subpolygon 3 is 
bq and the slave bound is tr. This will not be changed 
even after subpolygons 1, 2, and 4 are merged to sub- 
polygon 3.  The processing direction of a leave node, 
which is always a horizontally convex subpolygon, of the 
tree is from the slave bound toward the master bound. 
However, the internal nodes may not be a horizontally 
convex subpolygon after merging. For example, the re- 
sulting subpolygon 3 after merging with subpolygons 1, 
2, and 4 is not a horizontally convex subpolygon because 
the horizontal reflex edge cd exists as shown in Fig. 8.  
However, we are sure that, if there exist vertical reflex 
edges in an internal node n, after merging, these vertical 
reflex edges must be on the left chain and the right chain 
between the master bound and the slave bound of n, be- 
cause all vertical reflex edges of the child nodes of ni have 
been eliminated by boundary shrinkings. For example, in 
Fig. 8,  the vertical reflex edges ji and rnk are on the 
boundary between the master bound bq and the slave 
bound tr. We still can find the vertical reflex edges and 
compare their heights. We will prove in Theorem 5-1 that 
the matching algorithm, Algorithm 1 of Section IV, still 
finds the maximum matching for the subpolygons of this 
section. 

Steps 6) and 7) need some explanations. For the given 
simple polygon, there might exist vertical chords inter- 
secting with the horizontal extensions drawn through the 
horizontal reflex edges. Consider Fig. 3.  There is a ver- 

I I  
--LA 

Fig. 8. Subpolygon 3 after merging with its children. 

visible to E if we draw a vertical extension through v and 
E is the first hit edge. If v is vertically visible to the master 
bound, then it is possible that there exists a vertical chord 
through v and this chord cannot be found in n,. When we 
process node n,, we do not process the vertices which are 
vertically visible to the master bound of n,. In other words, 
for any vertical chord U ,  of n,, if U ,  does not intersect with 
the master bound of n, ( U ,  can intersect at two ends of the 
master bound), U ,  will be processed in n,. In step 6), the 
vertical edges at each end of the master bound are viewed 
as vertical reflex edges. We call them virtual vertical re- 
Jlex edges. After all relevant vertical chords are pro- 
cessed, we execute boundary shrinkings to eliminate these 
virtual vertical reflex edges and to eliminate all vertices 
in n, which are invisible to the master bound. The re- 
maining boundary of n,, which only contains the verti- 
cally visible vertices, will be merged to the parent of a, 
for further processing. 

In order to have the intersecting conditions of the chords 
in n, to be the same as in the original polygon, we can 
imagine that there are concave vertices on the master 
bound such that the vertical chords through the visible 
vertices exist in n,. Adding concave vertices on the master 
bound will not influence our matching procedure for n, 
because the vertices visible to the master bound will not 
be processed in n,. Though we do not actually draw con- 
cave vertices on the bound of n,, we can accept the ar- 
gument that the intersecting conditions of chords in n, are 
the same as in the original polygon. Consequently, the 
result of processing subpolygon n, is applicable to the 
original polygon. 

The last detail that we have to consider is that, when 
we decompose a given simple polygon into subpolygons, 
the horizontal extension through horizontal reflex edges 
might be horizontal chords. For example, in Fig. 3, the 
extension ua between subpolygons 3 and 4 is a horizontal 
chord. Since each extension defines a parent node and a 
child node, if it is a horizontal chord, then it will be re- 
corded as a horizontal chord in the child node. For ex- 
ample, ua will be a horizontal chord of subpolygon 4. 
Algorithm 2 impiements the above ideas. 

tical chord p h  crossing the horizontal extensions between 
subpolygons 1 and 3 and subpolygons 3 and 4. When we 
process subpolygon 1 or subpolygon 4, we cannot findph. 
ph  can be found in subpolygon 3 only after subpolygon 1 
and subpolygon 4 are merged to subpolygon 3.  In order 
to solve this anomaly, we define vertically visible for a 
concave vertex v and a horizontal edge E .  v is vertically 

Algorithm 2 
input: A simple polygon P .  
output: The maximum set M of matched chords of P.  
steps: 
1) partition p into horizontally convex subpolygons and 

construct a tree T of horizontally convex subpoly- 
gons; 
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2) arbitrarily assign a node of T as the root and deter- 
mine the master bound and the slave bound for each 
node; 

3 )  visit nodes n, of T i n  post-order and do the follow- 
ing for n, 

assign two vertical edges at two ends of the 
master bound of n, to be two vertical reflex edges 
of n,; 
use Algorithm 1 to find a matching MI of n, and 
to eliminate all vertical reflex edges of n,; 

/*Note that Algorithm 1 will trace from the 
slave bound to find vertical reflex edges but 
will trace the whole boundary to find the rele- 
vant vertical support edges and chords.*/ 

M = M U  M , ;  
if n, is the root, then 

else 

end if; 

return; 

merge n, to its parent; 

end; 

Theorem 5-1: Algorithm 2 finds the maximum set of 
matched chords of a simple polygon P .  

Proof: Consider step 3) of Algorithm 2. The vertical 
reflex edges of n, are found by tracing the left chain and 
the right chain from the slave bound. Without loss of gen- 
erality, we assume that the slave bound of n, is lower than 
the master bound and, consequently, the slave bound is 
lower than any vertical reflex edge of n,. Let e, be the first 
found vertical reflex edge. We are sure that there is no 
other vertical reflex edge lower than e, .  Assume that e, is 
on the left chain. After e, is found, we can find the cor- 
responding support edge s, of e, .  s, might not be on the 
boundary between the slave bound and the master bound 
but s, is always lower than e , .  Therefore, for any vertical 
chords U ,  located between e, and s,, H (  U ,  ) is right-convex 
in n, because there is no vertical reflex edge lower than 
e,. Lemma 3-1 to Lemma 3-5 are still valid for U , .  There- 
fore, the vertical chords located between s, and e,  can be 
processed from left to right to find their matches. Using 
the similar techniques in the proof of Theorem 
4- 1, we can prove that Algorithm 2 finds the maximum 
matching of P .  Q.E.D. 

It is important to note that although some vertices might 
be recursively merged to their parent nodes, we are sure 
that any vertex will only be processed constant times for 
the following reasons. Consider an internal node n, of T. 
In Algorithm 2,  we only trace the boundary between the 
master bound and the slave bound to find the lowest or 
the highest vertical reflex edge of n,.  After a desired ver- 
tical reflex edge is found, we will trace the whole bound- 
ary of n, to find the relevant vertical support edge and the 
relevant vertical chords. However, the traced boundary 
will be eliminated by the boundary shrinking along this 
vertical reflex edge. Therefore, any vertex will only be 
traced constant times before being eliminated. It should 

also be noted that in Algorithm 2, the ends of a master 
bound are treated the same as ends of vertical reflex edges 
and the vertices of a subpolygon n,, which are vertically 
visible to the master bound of n,, are not processed in n,. 
In order to execute Algorithm 2 efficiently, it will be mod- 
ified in Section V-5.2 to find a maximum matching in U( n 
log log n )  time. 

5.2. Algorithms 
For a given simple polygon P ,  the algorithm for finding 

the maximum matching is shown in Algorithm MAIN. In 
addition to finding the maximum matching M of P ,  MAIN 
also outputs the set U of unmatched chords with respect 
to M. M and U will be used in Section VI to find the 
maximum set of nonintersecting chords of P in linear time, 
which is the final goal of this paper. 

Algorithm MAIN 
input: A simple polygon P .  
output: The maximum matching M of chords of P and 

the set U of unmatched chords with respect to 
M. 

begin 
1) Partition P into horizontally convex subpolygons. 

Construct a tree Th of horizontally convex sub- 
polygons; 
For each node nk of Th, find horizontal chords in nk; 

2) Construct a tree T,, storing the x-positions of verti- 
cal reflex edges and end points of master bounds; 

3) Visit nodes of Th in post-order; 
4) For each visited node nk of Th, do 

Find the maximum matching of cords in nk; 
If nk is not the root of Th, then merge nk to the 
parent of n,; 

end 

We discuss each step in detail as follows. 
Step I :  The input polygon P is a sequence of vertices. 

We store P into an array R ( P ) .  For each vertex v of P ,  
there are two data items about U. One is the position of U 
on the plane and the other is that v is the ith input element 
of P .  For the ith vertex v, we can locate v in R ( P )  in 
constant time. In order to partition P into horizontally 
convex subpolygons, we have to draw horizontal exten- 
sions through horizontal reflex edges to hit the nearest 
boundary. Tarjan and Van Wyk [18] have defined a ver- 
tex-edge visible pair to be a vertex and an edge that can 
be connected by an open horizontal line segment that lies 
entirely inside P .  For a particular concave vertex v ,  if the 
vertex-edge visible pairs of v is known, the hit point of v 
can be computed in constant time. In [18], Tarjan and 
Van Wyk proposed an O ( n  log log n )  algorithm to find 
all the vertex-edge visible pairs. We use Tarjan and Van 
Wyk’s algorithm to find all the vertex-edge visible pairs 
as preprocessing. After these pairs are found, we record 
this information back into R (  P )  such that, for the ith ver- 
tex v of P ,  we can decide the hit point of v in constant 
time. 

In addition to R ( P ) ,  P is also stored in$nger search 
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tree [18] which can be constructed in linear time. Using 
a concave vertex v and its hit point hit (v), the finger 
search tree of P is partitioned into two subtrees (sub- 
polygons): one contains the vertices from v to hit ( v )  and 
the other contains rest vertices. This is a three-way split- 
ting [ 181. Each three-way splitting will reduce one end of 
horizontal reflex edges. For each subpolygon, we can re- 
cursively apply the three-way splitting until there exists 
no end of horizontal reflex edges. If there are n vertices 
in the original finger search tree and i vertices from v to 
hit( v )  (hit ( v )  is exclusive), it takes U (  1 + log( min { i ,  
n - i } + 1 )) amortized time [18] to split this finger 
search tree into two subtrees containing i and n - i ver- 
ticles, respectively. (Note that, though the hit point will 
be a vertex in each subpolygon, we do not include these 
two new vertices in the subtrees because the hit points are 
irrelevant for the further partitioning.) Let T ( n )  be the 
worst-case total time required for partitioning. We have 
the following recurrence formula: 

if n I no where no is a constant; 

T ( n )  = F!, ' T ( i )  + T ( n  - i )  

+ 0(1 + log (min {i, n - i }  + 1) )  

if n > no. 
Solving this recurrence, we have T ( n )  = O ( n )  1131. 
Therefore, the total time required for partitioning P into 
horizontally convex subpolygons is 0 ( n  log log n ). Note 
that it may take U(1og n )  time to split P into two sub- 
polygons without using the finger search tree and, con- 
sequently, in the worst case, it may take O ( n  log n )  time 
to split P into horizontally convex subpolygons. How- 
ever, the finger search tree ensures us that we can split P 
into horizontally convex subpolygons in 0 ( n )  time. 

The tree Th of horizontally convex subpolygons is con- 
structed according to the rule described in Section IV-4.4. 
Each node of Th corresponds to a finger search subtree 
storing the vertices of a horizontally convex subpolygon, 
i.e.,  there is a pointer in this node pointing to the subtree. 
Th can be constructed during the process of the partition- 
ing P into horizontally convex subpolygons. Initially, 
there is only one node in Th corresponding to the original 
finger search tree. Whenever the finger search tree or a 
subfinger search tree is split, the corresponding node in 
Th will also be split and the resulting nodes are connected. 
Th is constructed when P is partitioned into horizontally 
convex subpolygons. After constructing Th, arbitrarily as- 
sign a node of Th as the root. The post-order of nodes in 
Th is the processing sequence of horizontally convex sub- 
polygons. In the post-order sequence, a node will be pro- 
cessed if all its children have been processed. 

Horizontal chords can be found in linear time by tracing 
the left-chain and the right chain of a node nk of Th. When 
two concave vertices on different chains of nk are found 
to have the same y-position, a horizontal chord exists. 
When a horizontal chord h is found, we record the exis- 
tence of h at both ends of h on the boundary of nk.  

Step 2: In Section V 5.1, we have explained that hor- 
izontal chords will be shortened after boundary shrink- 
ings. Boundary shrinkings are executed along the vertical 
extensions through vertical reflex edges and virtual ver- 
tical reflex edges. These extensions are fixed after the 
master bound of each node in Th is determined. These 
extensions partition P into a set of vertically convex sub- 
polygons. Tree T,,is constructed as follows: there is a node 
in T,, for each vertically convex subpolygon and an edge 
for each extension. Among the nodes of TI,, there is a 
node containing the master bound of the root of Th. We 
assign this node as the root of T,,. When a boundary 
shrinking is executed along an extension, the relevant 
horizontal chords in the child part are shortened to the x- 
position of this extension. Therefore, finding new posi- 
tions of horizontal chords can be executed on Tt, using the 
static tree set union algorithm of Gabow and Tarjan [ 5 ] .  
In [ 5 ] ,  for static tree set union, a rooted tree with k nodes 
is given. Each node of this tree is a singleton set. The 
LINK( U )  operation is to unite a node U in the tree to its 
parent. (Actually, LINK( v )  is to make a mark on node 
v.) FIND( 21) will return U if node v is not marked by 
LINK; otherwise, the nearest unmarked ancestor of v will 
be returned [ 5 ] .  We can apply the static tree set union to 
tree T,,. Tc, corresponds to the given rooted tree. The 
boundary shrinking along an extension U corresponds to 
making a mark on the child node of the edge defined by 
U .  Since the child node v of U is uniquely defined, 
LINK ( U )  is well defined for the boundary shrinking along 
U .  Our FIND operation is executed as follows. Let p be 
an end point of a horizontal chord h.  Assume that p is 
originally contained in the node v of T,,. When v is marked 
by LINK( U ) ,  it means that p has been shortened to the 
position of the edge connection U and its parent. If p is 
recursively shortened, the new position of p is the edge 
incident to the nearest unmarked ancestor of U .  Therefore, 
FIND ( U )  which returns the nearest unmarked ancestor of 
v can be used to find the new positions of p which is orig- 
inally contained in U .  It is shown in [5] that a sequence 
of O(m) intermixed LINK and FIND operations can be 
executed in O(m + k )  time where k is the number of 
nodes in the static tree. Since the number of vertical reflex 
edges and master bounds is of O ( n ) ,  k is bounded by 
O ( n ) .  The number of LINK operations is at most equal 
to the number of k .  The number of FIND operations is 
equal to the number of vertical chords which is also bound 
by O(.v). Therefore, O(m + k )  is bounded by O ( n ) .  

Step 3: The ideas for finding maximum matching of a 
node of Th have been explained in Section V-5.1. Assume 
that a vertical reflex edge e, (or an end of a master bound) 
and its corresponding vertical support edge s, have been 
found. We only explain how the vertical chords U ,  be- 
tween e, and s, and their neighbors H (  U ,  ) are found. 

Assume that e, and s, are on the left chain. The vertical 
chords between e, and s, can be found as follows. s, par- 
titions the left chain into two parts: the upper chain and 
the lower chain. Starting from s, and tracing the upper 
chain and the lower chain of s, at the same time, a vertical 
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chord exists when two concave vertices on the different 
chains have the same x-position. (Note that the vertices 
which are visible to the master bound of nk are not traced 
and vertical chords crossing the master bound of nh will 
not be found.) For a found vertical chord U , ,  H (  U ,  ) can 
be found as follows. 1)  Assume that U ,  is the first vertical 
chord with respect to s,. H (  U ,  ) is the set of horizontal 
edges whose one end is on the boundary between v, and 
s, and the other end is not. H( U ,  ) can be found by tracing 
the boundary from s, to U , .  2) Assume that U ,  is not the 
first vertical chord and U ,  - I is the vertical chord prior to 
U,. H (  U ,  ) is equal to the union of H (  v,- ) and the set of 
horizontal chords found on the boundary between U ,  - and 
U,.  For simplicity, we set s, = vo and H ( v o )  = 4. Pro- 
cedure FIND-NEIGHBOR ( U , -  U ,  ) will return H (  U ,  ) 
where U ,  is the vertical next to U ,  - I .  In FIND-NEIGH- 
BOR, a double linked list H(v,) is constructed. Two 
pointers, head ( H (  U ,  ) )  and tail ( H (  U ,  )), point to the head 
and the tail of H (  U ,  ), respectively. Since we assume that 
e, and s, are on the left-chain, we trace the upper chain 
and the lower chain of s, from left to right. If the left end 
of a horizontal chord h is found on the upper chain, then 
h will be put at head ( H  ( U ,  ) ). If the left end of h is found 
on the lower chain, then h will be put at tail ( H (  U ,  )). If 
the right end of h is found on the upper chain, then 
head( H (  v, )) will be removed and h will be set to un- 
matched. If the right end of h is found on the lower chain, 
then tail ( H (  U ,  ) ) will be removed and h will be set to be 
unmatched. The unmatched chords are put into a set U .  
U will be used to find the maximum independent set. The 
removed horizontal chord is always on the head or the tail 
of H (  U ,  ) because horizontal chords never intersect with 
each other. For a horizontal chord h E H (  v, ), assume that 
the left end of h is on the upper (lower) chain. It is pos- 
sible that the right end of h is found on the lower (upper) 
chain. However, at the time the right end of h is traced 
by FIND-NEIGHBOR, h is the tail (head) of the list 
H(v, ). 

Algorithm FIND-NEIGHBOR(v, -, , U ,  1 
input: Two vertical chords v , - ~  and U , ,  where U , - ,  

and U ,  are on the left-chain, ~ ( v , - ~ ) < x ( v , ) ,  
and u I p 1  has been processed. 

output: H(v,) 
begin 

/*Assume that v , - ~  is left to U, and is on the 
left chain. Similar codes can be written for U ,  - I 

and U ,  on the right chain. For simplicity, we 
neglect the codes for the right chain.*/ 

make an empty list H (  U , ) ;  

trace the upper chain and the lower chain of vertices 
between u lp1  and v,; 
for each found concave vertex p , ,  do: 

h,  then 
subcase 1:  h is matched, then skip; 
subcase 2: p ,  is on the upper chain, 

H(v,) = H(u,-1); 

case A:  p ,  is the left end of a horizontal chord 

case B 

then put p ,  at head 
( M u ,  )I; 

subcase 3: p, is on the lower chain, 
then put p, at tail(H(v,)); 

p ,  is the right end of a horizontal 
chord h, then 
subcase 1: h is matched, then skip; 
subcase 2: p ,  is on the upper chain, 

then delete head(H(v,)); 
subcase 3: ifp, is on the lower chain, 

then delete tail (H(v,)); 
if h is not matched, then put h into 
U; 

end do; 
end. 

In FIND-NEIGHBOR, since H (  U , -  I ) is directly as- 
signed to H (  U ,  ), the horizontal chords common to H (  U ,  ) 
and H(v,-,) are not to be found again. Therefore, the 
vertices on the boundary left to v , - ~  do not have to be 
traced for H (  U ,  ) and the time required for finding H ( v ,  ) 
is proportional to the number of vertices on the upper 
chain and the lower chain between u , - ~  and U , .  The total 
time required for Algorithm MAIN to execute FIND- 
NEIGHBOR to find H (  U ,  ) for all U ,  is O ( n ) .  The follow- 
ing property is obvious from Algorithm FIND- 
NEIGHBOR. This property will be used for finding the 
maximum independent set. Let p ,  and p ,  be two vertices. 
Since FIND-NEIGHBOR traces every vertex in a fixed 
sequence. p, is traced by FIND-NEIGHBOR before pJ if 
p ,  is prior to pJ in the tracing sequence. 

Property 5-1: Letp, be a concave vertex between a pair 
of neighboring support edge and vertical reflex edge (or 
between a support edge and an end of a master bound). 
Let hit ( p ,  ) be the vertical hit point ofp,. The vertical line 
segment p,hit(p, ) slices the polygon into two pieces. 
Then, either the vertices on the left-piece or the vertices 
on the right-piece of p,hit(p,) are traced by FIND- 
NEIGHBOR before p,. 

The maximum number of matched chords in nk can be 
found by procedure MATCHING. The basic ideas have 
been explained in Section V-5. I .  In MATCHING, a ver- 
tical chord U ,  whose neighbor is empty will be set to un- 
matched and be put into U. Otherwise, U ,  will be matched 
with the head or the tail of the list H (  U ,  ). 

Algorithm MATCHING 
input: A node nh of tree Th 
output: M: the maximum set of matched chords of nk. 

U: the set of unmatched chords. 
begin 
1) assign the vertical edge at each end of the master 

bound of nk as vertical reflex edges; 
2) trace from the slave bound of nk to find the nearest 

vertical reflex edge e, and its corresponding vertical 
support edge s,. 

/*Assume that e, and s, are on the left chain.*/ 
3) trace from s, to find vertical chords between e, and 

s,; 
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do for vertical chords U, between e, and s, from left 
to right. 

FIND-NEIGHBOR( U, - 1 ,  U, ); 
i fH(v , )=b ,  then U=UU{v,} ;  
xI  =FIND(head(H(v,)); 
x2 =FIND(tail(H(v,)); 
if xI <xz, then h,=head(H(u,); 
else h, =tail(H(v,); 
put U& into M ;  
remove U, and h,; 

end do; 
execute boundary shrinking along e,; 

reflex edge; 

else U= U U H(u,); /*Remaining horizontal chords 
are unmatched chords.* 

4) repeat step 2 and step 3 until there is no vertical 

5) if nk is not the root, then LINK@,); 

end; 

In MAIN, the time required for partitioning P into hor- 
izontally convex subpolygons is O ( n  log log n )  where n 
is the number of vertices of P.  The time required for pro- 
cessing each node of t h  is proportional to the number of 
vertices of this node because each vertex in this node is 
traced constant times. It takes totally O ( n )  time to pro- 
cess all nodes of Th. Therefore, the total time required for 
finding the maximum matching of P is O(  n log log n ) .  

Theorem 5-2: The total time required for Algorithm 
MAIN to find the maximum matching of chords of a sim- 
ple polygon P is O(  n log log n )  where n is the number of 
vertices of P.  

As for a horizontally (vertically) convex polygon or a 
convex polygon, it takes O( n ) time to find the maximum 
matching of chords because we do not have to partition it 
into subpolygons. This time bound is an obvious lower 
bound. 

Theorem 5-3: Algorithm MAIN is optimal for finding 
the maximum matching of chords of a horizontally (ver- 
tically) convex polygon. 

VI. FINDING MAXIMUM NONINTERSECTING CHORDS 
In this section, we will show that, without constructing 

the bipartite graph of chords, the maximum independent 
(nonintersecting) set of chords can be found in linear time 
based on the matched pairs and unmatched chords found 
in Section V. We first give an example to explain our ap- 
proach and, then, prove that our approach is correct. At 
the end of this section, we will give an Algorithm which 
runs in linear time. 

Consider Fig. 9. In Fig. 9, a simple polygon P with 
one horizontal reflex edge uv is shown. In order to find 
the maximum matching, as explained in Section V, P 
should be partitioned into horizontally convex subpoly- 
gons by drawing horizontal extensions through uv and a 
tree of subpolygons should be constructed. Assume that 
wa is the master bound of the root of this tree. For any 
horizontal or vertical cord U of P ,  U slices the boundary 

~ 

129 

U 
Fig. 9. A simple polygon with its matched chords. 

of P into two pieces. One piece contains the master bound 
wa and this piece is the main boundary of U ,  denoted as 
mb( U ) .  The other piece is the second boundary of U ,  de- 
noted as sb( U ) .  For example, consider the vertical chord 
qk. mb(qk)  is the piece of boundary right to qk and 
sb (qk)  is the piece of boundary left to qk. As for the 
horizontal chord vb ,  m b ( v b )  is the boundary above vb 
and s b ( v b )  is the boundary below vb. In Fig. 9, if we 
use Algorithm MAIN to find the maximum matching, the 
found maximum matching is M = { ( f g ,  pf ), ( eh ,  j h ) ,  
(pm, n g ) ,  ( r j ,  rd ), (bd ,  s c )  }, and the set of unmatched 
chords is U = { qk, v b }  where qk is vertical and vb  is 
horizontal. Note that the elements in M and U are ordered 
according to their outputting sequence. The maximum in- 
dependent set can be found by the following steps. 

1) Let S be the set of maximum independent set. Ini- 
tially, S = 4. 

2) Sort unmatched chords in U according to their out- 
putting sequence. In our example, the outputting se- 
quence of U is qk, vb.  

3) Take the first element out from U and put it into S .  
That is, S = { qk}. 

4) Since qk is vertical, put the vertical chords which 
are on sb ( qk)  into S .  There is only one vertical chord pm 
on sb ( q k ) .  Therefore, S = { qk, pm }. 

5) Eliminate sb (qk)  to have a new polygon as shown 
in Fig. 10. Note that horizontal chords pf and ng do not 
exist in the new polygon. ng is matched with pm which 
has been put into S .  pf is matched with f g  which is an 
unmatched chord in the new polygon. We put f g  into a 
set W ,  i.e., W = { f g } .  W is the set of unmatched chords 
which are caused by eliminating sb (qk). 

6) Take an element from W ,  i .e.,  f g ,  and putfg into S .  
S = { qk, pm, f g } .  Since there is no vertical chord on 
sb ( f g ) ,  no chords will put into S together with f g .  

7) Eliminate sb( f g ) .  The resulting polygon is shown 
in Fig. 11. Since no horizontal chords are eliminated to- 
gether with sb ( f g ) ,  no unmatched chords are produced 
in the new polygon and, therefore, no chords will be added 
into W .  

8) If W is not empty, then repeat steps 6) and 7). Since 
W is empty now, we execute the next step. 

9) Take the first element, vb ,  from U and repeat steps 
4)-8). That is, we first put vb  into S .  Since vb  is horizon- 
tal, we put all horizontal chords,jh, rd, and sc, on sb( v b )  
into S .  Then, we eliminate s b ( v b )  as shown in Fig. 12. 
Vertical chords eh, r j ,  and bd are eliminated also. Since 
the horizontal chords matched with these three vertical 
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Fig. 12. Eliminating s b ( e b ) .  

chords have been put into S ,  no horizontal chords will be 
added into W. 

10) Since U and Ware empty, the whole process stops. 
We have S = { qk, pm,  fg, vb, j h ,  rd, sc }. 

Two chords have the same orientation if they are both 
vertical and both horizontal. orient(u) is a set of chords 
such that, for any t E orient(u), t is on s b ( u )  and t has 
the same orientation as U. For any chord U, s b ( u )  is con- 
sistent if every unmatched chord U '  whose both ends are 
on s b ( u )  has the same orientation as U, i.e., U' E ori- 
e n t ( ~ ) .  In order to prove that the above operations cor- 
rectly find the maximum matching, we will prove the fol- 
lowing. 

a) Let M be any maximal matching of a simple polygon 
P and let U be the set of unmatched chords with respect 
to M .  We prove that, for any U E U ,  if sb ( U )  is consistent, 
then U and orient(u) are in the maximum independent S 
of P .  This will be proved in Corollary 6-1 and Lemma 
6-1. In addition, we show in Lemma 6-5 that, s b ( u , )  is 
consistent where U ,  is the first unmatched chord output by 
Algorithm MAIN. 

b) After eliminating s b ( u i ) ,  we have a new polygon. 
Let S' be a maximal independent set of the new polygon. 
We prove that S = { U ,  } U orient(u,) U S' .  This is 
proved in Lemma 6-3. This lemma tells us that S can be 
found by recursively finding S' .  

c) In order to find S ' ,  we first try to find a maximal 
matching and the relevant unmatched chords of the new 
polygon. In Lemma 6-2, we prove that, after eliminating 
sb ( U ,  ), the set of remaining matched chords is a maximal 
matching of the new polygon. That is, MI = M - {chords 
on sb ( uI  ) } is a maximal matching of the new polygon. 

Also in Lemma 6-2, we prove that Wl U U - ( { U ,  } U 
orient (uI ) )  is the set of unmatched chords with respect to 
M I  where Wl is the set of unmatched chords caused by 
deleting sb ( U ). 

d) We show that, if order elements of U - ( {  U ,  } U 
orient ( ui  )) according to their outputting sequence and put 
W ,  at the beginning of U - ( {  U ,  3 U orient( U , ) )  to have 
a new sequence U' = [w,, . w,, u2, 9 * ,un] ,  then 
s b ( u f )  is consistent where uf is the first element in U ' .  
(Note that uf = u2 if W = 4.) This is proved in Proposi- 
tion 6-1. By Lemma 6-1, we can put ur and orient ( uf ) 
into S'.  

In the following, we will use several terms of bipartite 
graphs such as maximum matching, maximum indepen- 
dent set, minimum node cover, alternating path and aug- 
menting path in our theorems and lemmas without any 
explanation which can be found in most text books such 
as [17]. Let B = ( V ,  H ,  E )  be a bipartite graph, M be 
any maximum matching of B ,  U be the set of unmatched 
nodes with respect to M ,  S be a set of maximum indepen- 
dent set of B ,  and N be a set of minimum node cover of 
B .  We introduce two theorems about bipartite graphs, 
which can also be found in [ 171. 

meorem 6-1 [ 171: M is a maximum matching of B if and 
only if there does not exist any augmenting path with re- 
spect to M .  

Theorem 6-2 (Konig-Egervdry Theorem): The size of 
m is equal to the size of N ,  i .e.,  I M 1 = 1 N 1 .  

If we remove N from B ,  then the remaining nodes in B 
form an independent set. Because N is minimum, ( H  U 
V )  - N is a maximum independent set. By definition of 
node cover and Theorem 6-2, for any matched pair ( U ,  h )  
E M, exactly one of U and h belongs to N .  The following 
corollary follows directly. 

Corollary 6-1: For any maximum independent set S of 
nodes in B,  we have U C S and, for any matched pair 
( U ,  h )  E M, either v E S or h E S .  

From Lemma 6-1 to Lemma 6-3, we still assume that 
M is an arbitrary maximum matching of chords of a sim- 
ple polygon P and U is the set of unmatched chords with 
respect to M .  

Lemma 6-1: Let U E U be an unmatched chord of a 
simple polygon P.  If s b ( u )  is consistent, then there is a 
set S of maximum nonintersecting chords such that U E S 
and orient( U )  c S.  

Pro08 By Corollary 6- 1 ,  there is a set S of maximum 
nonintersecting chords such that U E S .  Let U; E orient( U ) .  
If U; is unmatched, then, by Corollary 6-1, U; E S .  If U, is 
matched with wi and U; 6 S ,  then, by Corollary 6-1, w, E 
S. For all matched ui E orient(u) and ui S, we remove 
corresponding wi from S and put U; into S.  After replacing, 
the size of S is not changed. For any chord wj in P having 
the different orientation as U ,  there are three possibilities: 
both ends of wj are not on sb ( U  ); only one of two ends of 
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wJ is on sb ( U )  and both ends of wJ are on sb ( U ). If neither 
end of wJ are on s b ( u ) ,  then w, does not intersect with 
any U, E orient( U ). If only one end of w, is on sb ( U  ) , then 
wJ intersects with U E S and wJ $ S .  If both ends of wJ are 
on sb(  U ) ,  then, by our assumption that sb ( U )  is consis- 
tent, wJ is matched with a chord uJ E orient( U )  and, owing 
to our replacing, wJ $ S .  Therefore, for any U ,  E orient( U ) ,  
U, does not intersect with any other chord in S and S is 
independent. Q.E.D. 

from boundary shrinking along U and S' be any set of 
maximum nonintersecting chords of P ' .  Then S' U { U } 
U orient( U )  is a maximal set of nonintersecting chords of 
P .  

Proof: By the definition of boundary shrinking, no 
chord in { U } U orient( U )  intersects with any chord in 
P' .  Therefore, S'  U { U }  U orient(u) is a set of nonin- 
tersecting chords. Assume that the size of S'  U { U }  U 
orient(u) is not maximum. By Lemma 6-1, there is a 

By Lemma 6-  if U is unmatched and sb ( U  is con- 
sistent, then we can put U and orient( U )  into S .  After that, 
we should not consider U and orient( U )  any longer. There- 
fore, we execute boundary shrinking along U to eliminate 

maximum set s of nonintersecting chords such that ( { U 1 
U orient(u)) C S a n d  I S (  > IS' U { U }  orient(u)( .  
Assume that orient(u)). * is a set Of 
nonintersecting chords of P' because no chord on sb (. 1 

= - ( 1 U 1 

sb (U).  Boundary shrinking has been defined in Section 
IV to eliminate the vertical reflex edge. In this section, 

is in T. We have I set 
Of nonintersecting chords Of p' 7 we have 1 s' 1 2 1 * 1 9  a 

I ' I " I. Since " is a 

Q.E.D. boundary shrinking can be executed along a vertical chord contradiction. - - 
or a horizontal chord. Figs. 10 and 1 I are examples for 
boundary shrinkings along vertical chords. Fig. 12 is an 
example for the boundary shrinking along a horizontal 
chord. After eliminating sb ( U )  by boundary shrinking, 
the chords intersecting with U will not exist in the new 
polygon. We use N H ( u )  to denote the set of chords in- 
tersecting with U. Let P' be the new polygon. Let M' be 
the set remaining matched chords after boundary shrink- 
ing, i.e., M '  = {u,h, 1 ulhJ E M ,  both ends of U ,  and both 
ends of h, are on mb(u).}. For any z E " ( U ) ,  z is 
matched with a chord w where w has the same orientation 
as U .  If w E orient(u), then w is eliminated. If w @ ori- 
ent( U ) ,  then w is in P ' ,  but does not belong to any matched 
pair in M' because z is deleted; that is, w is unmatched 
with respect to M ' .  Let W = { w I w is matched with 
z E NH(u)  and w $ orient(u)}. Let U' be the set of 
unmatched chords after boundary shrinking, i.e., U' = 
W U U - ( { U }  U orient ( U ) ) .  

Lemma 6-2: Let U be an unmatched chord of a simple 
polygon P such that sb(  U )  is consistent. Let P ' ,  M ' ,  and 
U' be the polygon resulting by executing boundary 
shrinking along U, the remaining matched cords in P' and 
unmatched chords of P ' ,  respectively. Then M' is a max- 
imum matching of chords of P' and U' is the set of un- 
matched cords with respect to M ' .  

Proof: It is obvious that M' contains only matched 
chords of P' .  If M' is not maximum, then there are at least 
two chords U ,  and uJ in U' such that there is an augmenting 
path between U ,  and uJ. It is impossible that both U, and U, 

are in W because all chords in W have the same orienta- 
tion. It is impossible either that both U ,  and uJ are in U - 
( { U  } U orient( U ) )  because, by Theorem 6-1, there is no 
augmenting path between any U, and U, in U. Therefore, 
w e h a v e u , E  W a n d u , E U -  ( { U }  U orient(u)).Since 
U, intersects with N H (  U ) ,  U, is on an alternating path start- 
ing from U.  Therefore, there is an augmenting path be- 
tween U and U ) ,  which is a contradiction because M is a 
maximum matching and both U and uJ are in U .  Q.E.D. 

Lemma 6-3: Let U E U .  Assume that s b ( u )  is consis- 
tent. Let P '  = mb(u)  U { U }  be the polygon resulting 

Based on Lemma 6-1 to Lemma 6-3, we know that the 
maximum set S of nonintersecting chords of P can be 
found by recursively executing the following steps. 

1) Find U E U such that sb ( U )  is consistent. 
2) Put { U } U oGent( U )  into S .  
3) Execute boundary shrinking along U to have P' ,  M ' ,  

and U ' .  
4) Let P = P ' ,  M = M ' ,  and U = U' and go back to 

step 1. 
In the following, we will show that for the original 

polygon or for the polygon resulting from a sequence of 
boundary shrinkings, how to find an unmatched chord U 

such that sb ( U )  is consistent. Let us consider Algorithm 
MAIN in Section V-5.2. For each output w (either a 
matched pair o r  an unmatched chord) of MAIN, we give 
w a number to indicate the outputting sequence of w .  This 
number is the processing number of w ,  P N (  w ). If w is an 
unmatched chord U ,  then P N (  U )  = PN ( w ). If w is a 
matched pair v,h,, then P N (  U ,  ) = P N (  hJ ) = P N (  a). The 
processing number of each chord isJixed during the whole 
process of finding the maximum independent set in spite 
of the boundary shrinkings. Let P' and M' be the polygon 
and the maximum matching resulting after a sequence of 
boundary shrinking, respectively. sb( U )  of U in P' is a 
subset of the original sb ( U )  of U in P.  Based on sb ( U ) 
defined in P' ,  orient( U )  and N H (  U )  can be defined for U 

in P' accordingly. In the following, we will always use 
P ,  M ,  U ,  and S to denote the original polygon, the max- 
imum matching, the unmatched chords with respect to M ,  
and the maximum independent set, and use P ' ,  M ' ,  U ' ,  
and S' to denote the polygon, the maximum matching, the 
unmatched chords with respect to M ' ,  and the maximum 
independent set resulting from a sequence of boundary 
shrinkings. In the following, we assume that 
U = [ U , ,  U 2 ,  * * , uk]  is ordered in the ascending order 
of processing numbers. The sorting sequence does not re- 
quire any extra time because it is exactly the outputting 
sequence. 

Lemma 6-4: Let U E U be any unmatched chord of the 
original polygon P.  For any unmatched chord U ,  E U 
whose both ends are on sb(u) ,  P N ( u , )  < P N ( u ) .  
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Proof: If U is vertical, then, by Algorithm MATCH- 
ING, U is left-free or right-free at the time of U being 
processed for matching. Therefore, every vertex on sb ( U ) 
should have been traced before U. If U is horizontal, by 
Algorithm FIND-NEIGHBOR, we know that every ver- 
tex on s b ( u )  should have been traced before U is found 
to be unmatched. Therefore, for any U, whose both ends 
are on &(U), P N ( u , )  < P N ( u ) .  Q.E.D. 

- , uk] be ordered 
in the ascending order of processing numbers. Then, 
sb ( u1 ) is consistent. 

Proof: By Lemma 6-4, we know that for any un- 
matched chord U, E U ,  if both ends of U, are on s b ( u , ) ,  
then PN(u,  ) < P N ( u l  ). Since U is ordered in the as- 
cending order of processing number, there is no un- 
matched chord on s b ( u I ) .  By definition, s b ( u l )  is 
consistent. Q.E.D. 

By Lemma 6-1 and 6-5, we know that we can put U, E 
U and orient( u1 ) into S. If we execute boundary shrinking 
along U', then a new polygon P' and relevant MI and U' 
will be resulted. Let W' = { w 1 w tie matched with z E 

" ( U , )  and w orient(u)}. We have U '  = W' U U - 
({U'} U orient(u,)). Let W'  = [ w l ,  w2, * .  - , W d l  be 
an arbitrary sequence of elements in W ' .  If we put W1 at 
the beginning of U -( { u1 } U orient( U)), then we have 

show that s b ( w , )  is consistent so that we can execute 
boundary shrinking along w l  . However, the proof for the 
consistence of sb ( wl ) is not the same as that of sb ( u I  ). 
Because, if we apply Algorithm MAIN to the new poly- 
gon p ' ,  M' may not be a possible output (in fact, we have 
an example to show this) and, consequently, it is not pos- 
sible to prove that w l  is the first unmatched chord as U'. 
In addition, the boundary shrinking along w I  will cause 
more unmatching chords w; and we still have to prove that 
sb ( w ;  ) is consistent. Lemma 6-6 and Proposition 6- 1 are 
dedicated to prove that sb ( w I  ) and sb ( w; ) are consistent. 

If we execute boundary shrinking along w l ,  we will 
have a new polygon P 2 ,  M 2 ,  and U 2 .  Let W 2  = [ w ; ,  
. . .  , w:] be the unmatched chords caused by boundary 
shrinking along w l .  We say that W '  is directly caused by 
u1 and W 2  is indirectly caused by U,. For any element in 
w E W' < W 2 ,  w has the same orientation as U'. It will 
also be proved later that, for any w E W' U W 2 ,  s b ( w )  
is consistent. If we execute boundary shrinking along w 
E W 1  U W 2 ,  then more unmatched chords might be caused 
indirectly by U'. It is easy to see that, for any w caused 
directly or indirectly by U', w has the same orientation as 
u l  . If we recursively repeat boundary shrinking along the 
unmatched chords caused directly or indirectly by uI , then 
no boundary shrinking along u2 will be executed until all 
unmatched chords caused by u I  are eliminated. If we re- 
peat this process to eliminate unmatched chords U', u2, 
* , U, - I ,  then we will have a polygon P' resulting by 
a sequence of boundary shrinkings along U ,  to U, - I and 
along unmatched chords caused by u I  to U, - 2. Let U' = 
[Wl, w2, - * * uk] be the relevant un- 

Lemma 6-5: Let U = [U', u2, . 

U '  = [W', w2, * * , W d ,  U2, U2+1, * ' 'Uk]. We shall 

a , wd, U,, U, + 

matched cords of P' .  We know that W = [ w,, w2, * * , 
wd] C U' is caused (directly or indirectly) by U, - I where 
w = [ W ' ,  w2, * - * , wd] is an arbitrarily sequence of W. 
In the following lemma and proposition, we are going to 
show that, for any w E W, sb( w )  is consistent. 

, wd] be the set of 
unmatched chords caused directly or indirectly by bound- 
ary shrinking along U, - ' .  If an unmatched chord uJ E [ U,, 
U,+', - * , uk]  which has different orientation as w f ,  then 
no ends of uJ are on sb ( wf ) for any wf E W .  

Proof: The proof is omitted here but is available from 
the authors. Q.E.D. 

Lemma 6-6: Let W = [ w , ,  w2, . 

Proposition 6-1: Let U'  = [w,, w2, - 
7 wd, U,, U, + 1 9  

. * ' 4 1  where W = [w,, w2, , wd] is the set of un- 
matched chords caused directly or indirectly by the elim- 
ination of U, - ,. For any w E W,  sb ( w )  is consistent. 

Proof: By Lemma 6-6, there is no unmatched chord 
uJ on sb ( wf ) such that uJ has different orientation as wy. 
By definition, sb ( wf ) is consistent. Q.E.D. 

By Proposition 6-1, we know that, after executing 
boundary shrinking along an unmatched U, - of the orig- 
inal polygon such that sb(u ,  - is consistent, the next 
unmatched chord whose secondary boundary is consistent 
can be found by arbitrarily choosing an element from W 
caused by U, - ,. After all unmatched chords caused by 
U, - are eliminated, the remaining unmatched chord in 
the polygon is U'  = [ U,, U, + I ,  . * u k ] .  By Lemma 6-4, 
it is easy to see that sb(  U ,  ) is consistent. Therefore, we 
can execute boundary shrinking along U,. Repeatedly ex- 
ecuting boundary shrinking along the unmatched cord 
whose secondary bound is consistent, we can find a max- 
imum set of nonintersecting chords. The following algo- 
rithm implements the above ideas. 

Algorithm INDEPENDENT(P) 
input: A simple polygon P .  
output: The set S of maximum nonintersecting chords 

steps 
1) Use Algorithm MAIN to find the maximum match- 

ing m and the set of U of unmatched chords. U is 
organized as a stack such that the unmatched chord 
with the least processing number is on the top of U ;  

. 

of P .  

2) Do until U is empty 
U' =pop(U); 
If sb(u,) have been shrinked, then repeat from 
2; 
traverse sb(ul)  to find orient ( U )  and " ( U ) ;  

put U and orient(u) into S; 
find W from " ( U ) ;  
push W into U 
boundary shrinking along U,; 

3) end. 

Theorem 6-3: For a simple polygon P, the set S of 
maximum nonintersecting chords can be found in 0 ( n log 
log n )  time. 
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Proof: Step 1) of INDEPENDENT( P) requires O (  n 
log log n )  time. Steps 2) and 3) require linear time. The 
boundary shrinking along u l  in step 4) is actually a three- 
way splitting of the finger search tree P [ 181. There is no 
further splitting for the vertices on sb( u1 ). Therefore, the 
time required for boundary shrinkings along ui’s is 
bounded by O ( n ) .  Totally, we need O ( n  log log n )  
time. Q.E.D. 

After the maximum set S of nonintersecting chords of 
P is found, we then, as described in Section 11, draw these 
chords to partition P into a set of subpolygons such that 
there is no cogrid vertices in any subpolygon. The mini- 
mal partition of P is equivalent to partitioning each sub- 
polygon into minimal rectangles. The minimal partition 
of each subpolygon can be found by drawing a vertical 
line through each concave vertex in this subpolygon as 
described in Section 11. Therefore, we have to find the 
vertex-edge visible pairs for each subpolygon. After the 
vertex-edge visible pairs of a subpolygon are found, this 
subpolygon can be partitioned into rectangles in a time 
proportional to the number of the vertices of this sub- 
polygon. Since it takes totally O (  n log log n ) time [ 181 
to find all the vertex-edges visible pairs for all subpoly- 
gons, the total time required for partitioning P is O (  n log 
log n ) .  

VII. CONCLUSION 
We have proposed an algorithm to solve the problem of 

finding the maximum matching of the bipartite graph of 
the intersecting chords of a simple polygon. The partition 
problem of simple polygon can be solved in 0 ( n  log log 
n )  by applying our results. This time bound is equal to 
the time required for triangulating a nonrectilinear simple 
polygon. If the simple rectilinear polygon can be trian- 
gulated in linear time, then our algorithm will be an op- 
timal one. However, our algorithm is optimal for parti- 
tioning convex and horizontally convex rectilinear 
polygons. 
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