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蛋白質-配體結合模式預測與其結合區域定性研究 
研究生：陳彥甫                                                                                    指導教授：楊進木博士 

國立交通大學 生物資訊及系統生物研究所 博士班 

摘     要 

隨著蛋白質結晶結構的快速增加，以結構為基礎之藥物設計與虛擬藥物篩選(virtual 
screening)在先導藥物開發過程日漸重要。目前一系列的分子對接(protein-ligand docking)
以及虛擬藥物篩選方法已經被應用到先導藥物發展中，並且已獲得數個成功的藥物開發

案例。即使如此，目前由巨量的虛擬藥物篩選資料中找出真正具有活性的先導藥物仍然

是一個困難的挑戰。其問題肇因於目前對蛋白質-配體之間的結合機制了解仍然有所不

足，使得已發展的蛋白質-配體結合計分方程式不夠周全。 
針對上述議題，我們已提出了以藥物孔洞為基礎的計分方程式(pharmacophore-based 

scoring function)與虛擬藥物篩選共通計分方法應用準則(consensus scoring criteria)之研

究。其中，共通計分方法是透過結合數個計分方程式的共同處，相較於單一計分方法可

以有更好的虛擬藥物篩選準確性。然而虛擬藥物篩選的計分方程式通常無法辨識蛋白質

-配體間的關鍵結合特性[例如: 藥效基團熱點(pharmacophore hotspot)]，而這些關鍵特性

卻通常是觸發或抑制目標蛋白質對其調控的生物反應必要條件。雖然應用藥物孔洞方法

與相關計分方程式可以找出關鍵結合特性，但是這些方法需要一系列已知的活性配體，

這些資料必須由實驗取得，使應用性受到限制。因此，對於虛擬藥物篩選過程發展更好

的篩選後分析(post-screening analysis)與關鍵特性之發現方法，將對於藥物發展具有重要

價值。 
在本研究中，我們已經發展出 site-moiety map (簡稱 SiMMap)方法，並且將其延伸

應用到辨識與定性垂直同源蛋白質(ortholog)的共通結合環境 (orthologous SiMMap)研究

之中。SiMMap 透過統計對目標蛋白質與一群對其預測或共結晶之配體所產生的交互作

用，推測位於目標蛋白質結合區域內之錨點(anchor)，並用以描述分布在結合區域中的

配體官能基偏好(moiety preference)以及物化特性集合。每一個錨點具有三個基本構成要

件：1)由具一致交互作用之殘基構成的結合袋點(binding pocket)；2)複數個虛擬配體構

成的官能基組成；3)結合袋點與官能基之交互作用關係(包含靜電力、氫鍵及凡德瓦力交

互作用)。實驗證據已顯示錨點通常是蛋白質-配體結合區域中的熱點。同時 site-moiety 
map 也可提供將官能基團(靜電力、氫鍵及凡德瓦力特性之官能基)之組合最佳化的建

議，有助於設計潛在先導藥物。實驗結果也證實當小分子化合物與 site-moiety map 描述

的錨點特性高度相符時，通常有高度潛力成為目標蛋白質的抑制劑或促進劑。SiMMap
已提供全球服務，網址為 http://simfam.life.nctu.edu.tw/。我們相信我們對於藥物孔洞為

基之計分方程式、虛擬藥物篩選之共通計分方法應用準則的成果、以及 site-moiety map
之研究，將對藥物發現與了解蛋白質-配體機制有所幫助。 
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ABSTRACT 

As the number of protein structures increases rapidly, structure-based drug design and 
virtual screening approaches are becoming important and helpful in lead discovery. A number 
of docking and virtual screening (VS) methods have been utilized to identify lead compounds, 
and some success stories have been reported. However, identifying lead compounds by 
exploiting thousands of docked protein-compound complexes is still a challenging task. The 
major weakness of virtual screenings is likely due to incomplete understandings of ligand 
binding mechanisms and the subsequently imprecise scoring algorithms.  

To address these issues, we have proposed a pharmcophore-based scoring function 
approach and a consensus strategies among different scoring methods in VS. The consensus 
scores would improve the performance and, on average, the performance of the combined 
method performs better than the average of the individual scoring functions. Nevertheless, the 
approaches generally cannot identify the key features (e.g., pharmacophore spots) that are 
essential to trigger or block the biological responses of the target protein. Although 
pharmacophore techniques have been applied to derive the key features, these methods require 
a set of known active ligands that were acquired experimentally. Therefore, the more powerful 
techniques for post-screening analysis to identify the key features through docked compounds 
and to characterize the binding site provide a great potential value for drug design.  

Recently, we have developed the site-moiety map (SiMMap) method and extended to 
characterize the consensus binding environments (i.e., anchors) of orthologous targets 
(orthSiMMap). SiMMap statistically derived anchors from the interaction profiles between 
query target protein and its docked (or co-crystallized) compounds, and then described the 
relationship between the moiety preferences and physico-chemical properties of the binding 
site. Each anchor includes three basic elements: a binding pocket with conserved interacting 
residues, the moiety composition of query compounds, and pocket-moiety interaction type 
(electrostatic, hydrogen-bonding, or van der Waals). Experimental results showed that an 
anchor is often a hot spot and the site-moiety map can be helpful to assemble potential leads by 
optimal steric, hydrogen-bonding, and electronic moieties. When a compound highly agrees 
with anchors of site-moiety map, this compound often activates or inhibits the target protein. 
The SiMMap web server is available at http://simfam.life.nctu.edu.tw/. We believe that our 
evolutionary approach with pharmacophore-based scoring functions, consensus scoring criteria 
for virtual screening, and the method of site-moiety map are useful for drug discovery and 
understanding biological mechanisms. 



iii 

 

Acknowledgement 

      來到新竹交大十二個年頭，從一個懵懂的大學生一路念到了博士學位。回首這些生

命中的精彩日子，每一個畫面都充滿了無數的回憶。在這段學習的黃金時代，難免遇到

瓶頸與困難，感謝許多貴人的幫助讓我得以安然度過，並且學到如何面對壓力與思考問

題的能力。我認為這些能力將是未來面對下一階段的人生路程之重要基礎與助力。 
        第一個貴人是我的指導教授楊進木博士。在這段學習的過程中，我的指導教授總是

嚴格且不厭其煩的指出我的缺點與問題，並提出可能的方向讓我依循。雖然克服困難的

過程中，難免跌跌撞撞，但是這些解決問題的經驗、創新思考與邏輯歸納能力將是我未

來人生中的寶藏。 
        接著我要特別感謝的是實驗室同組的凱程、伸融與御哲，由於有了他們的配合與日

以繼夜的努力，我們才能在最短的時間之內突破困難的關卡，完成這本論文中的許多重

點工作。除此之外，指導教授、凱程與我之間的討論與合作過程，也是突破這些困難的

另外一個重要關鍵。許多的深入探討與解決困難的經驗，都是在這個時候得到啟發與進

展，並且讓我獲益良多。 
         口試期間承蒙所內黃鎮剛教授、趙瑞益教授與梁美智教授，及所外王雯靜教授、徐

祖安教授與謝興邦教授百忙之中不吝賜教並且提供許多寶貴建言，使得本文得以更加完

善。同時我也從口試委員以及指導教授身上看到頂尖學術研究人才所應具備的條件以及

視野，這將是我未來需要繼續努力的目標。 
        在本文的理論發展過程中，我的指導教授提供許多與國內外頂尖實驗室合作的機

會，使得我有機會可以與跨領域的研究人才合作與交流，這樣的交流過程中經常會激發

出許多新的想法與題材。同時在本中有引用到與這些頂尖實驗室(美國 Fordham 大學 D. 
Frank Hsu 教授、清大王雯靜教授、國衛院徐祖安教授與交大楊昀良教授)在合作過程中

所完成與提供寶貴實驗資料，特此感謝。 
        在這段辛苦而充實的研究生活中，實驗室的同學們也不時的給予我許多生活上的幫

助或研究討論的空間，像是已經畢業的再威、右儒與振寧，或是現在的宇書、章維、怡

馨、一原、志達…等許多同學，在這裡也要感謝他們。除此之外在論文的撰寫過程中，

感謝已經畢業的陳俊辰博士給予我許多的撰寫方面的建議，使我事半功倍。 
        最後我必須要特別感謝我的父母與家人。在許多困難的時候，他們總是默默的支持

著我，無怨無悔的付出。每當我覺得筋疲力盡的時候，我知道總是有一盞溫暖的燈火等

著我回家，隨時幫我加滿重新面對挑戰的能量。因此我將此論文獻給我的父母，希望他

們可以以我為榮。 



iv 

 

Contents 

摘     要 ..................................................................................................................................... i 

ABSTRACT ................................................................................................................................ ii 
Acknowledgement ..................................................................................................................... iii 
Contents ..................................................................................................................................... iv 
Chapter 1. Introduction ............................................................................................................. 1 

1.1 Background .................................................................................................................... 1 
1.2 Thesis overview .............................................................................................................. 3 

Chapter 2. Related works .......................................................................................................... 6 
2.1 Pharmacophore-based scoring functions ...................................................................... 10 
2.2 Consensus scoring criteria ............................................................................................ 11 
2.3 Combinative clustering analysis................................................................................... 14 
2.4 Summary ...................................................................................................................... 16 

Chapter 3. Site-moiety map for recognizing interaction preferences between protein 
pockets and compound moieties ............................................................................................. 17 

3.1 Introduction .................................................................................................................. 17 
3.2 Method ......................................................................................................................... 17 

3.2.1 Definitions of site-moiety map, anchor and pocket .......................................... 19 
3.2.2 Constructing site-moiety map ........................................................................... 19 

3.3 Results .......................................................................................................................... 21 
3.3.1 Web service ....................................................................................................... 21 
3.3.2 Thymidine kinase and estrogen receptor ........................................................... 23 

3.4 Summary ...................................................................................................................... 26 
Chapter 4. The application of site-moiety map for characterizing protein-ligand binding 
sites and discovering adaptive inhibitors for orthologous protein targets .......................... 28 

4.1 Introduction .................................................................................................................. 28 
4.2 orthSiMMap methods ................................................................................................... 29 
4.3 Results .......................................................................................................................... 31 

4.3.1 orthSiMMap method ......................................................................................... 31 
4.3.2 Orthologous SiMMaps and orthSiMMaps of SKs ............................................ 33 
4.3.3 Inhibitors and inhibition assay .......................................................................... 37 



v 

 

4.3.4 Site-directed mutagenesis .................................................................................. 41 
4.3.5 Analogues assay and orthSiMMap .................................................................... 42 
4.3.6 Structural mechanism of the inhibitor binding for shikimate kinases ............... 43 
4.3.7 Performance of the orthSiMMap method.......................................................... 46 

4.4 Summary ...................................................................................................................... 48 
Chapter 5. Conclusion .............................................................................................................. 51 

5.1 Summary ...................................................................................................................... 51 
5.2 Future works ................................................................................................................. 52 

Appendix A ............................................................................................................................... 55 
List of publications ............................................................................................................. 55 

Journal papers ............................................................................................................. 55 
Conference paper........................................................................................................ 55 

References ................................................................................................................................. 56 

 



vi 

 

List of Figures  
Figure 1.1. Overview of structure-based drug design and related works.. ................................... 3 
Figure 1.2. The research framework for predicting protein-ligand binding modes and 

characterizing protein-ligand binding sites in structure-based drug design. .......................... 5 
Figure 2.1. Main procedure of structure-based virtual screening. ............................................... 7 
Figure 2.2. The influences of ligand structures and molecular weight on docking energy.. ........ 8 
Figure 2.3. The binding-site pharmacological consensuses are identified by overlapping the 

docked conformations of (a) 10 known ER antagonists and (b) 10 known ER agonists 
against the reference proteins 3ert and 1gwr, respectively. .................................................... 9 

Figure 2.4. The main steps of GEMDOCK for virtual database screening, including the target 
protein and compound database preparation, flexible docking, and post-docking analysis. 11 

Figure 2.5. Rank/score curves of five methods for four virtual screening targets: (a) TK, (b) 
DHFR, (c) ER-antagonist receptor, and (d) ER-agonist receptor. ........................................ 12 

Figure 2.6. The relationships between the GH-score improvement with (a) normalized value of 
variance of rank/score graph and (b) normalized value of Pl/ Ph of 40 pairing combinations 
of five methods for four virtual screening targets. (c) The GH-score improvements with 
normalized variances of rank/score graphs (R/Svar) and normalized relative performance 
measurement (Pl/ Ph) of 40 RCS and SCS pairing combinations of five methods for four 
virtual screening targets. (d) The positive and negative GH-score improvements are denoted 
with circle and cross, respectively. ....................................................................................... 13 

Figure 2.7. The known active ligands of four VS targets, estrogen receptors (ER) of antagonists 
(a) and agonists (b), (c) thymidine kinase (TK), and (d) human dihydrofolate reductase 
(DHFR).. ............................................................................................................................... 14 

Figure 2.8. Overall process of the two-stage combinative cluster analysis.. ............................. 15 
Figure 2.9. Designing a reference threshold of P-L interaction and atom-pair descriptors.. ..... 15 
Figure 3.1. Overview of the SiMMap server for the site-moiety map using herpes simplex virus 

type-1 thymidine kinase (TK) and 1000 docked compounds as the query. .......................... 18 
Figure 3.2. The SiMMap server analysis results using estrogen receptor (ER) and 1000 docked 

compounds as the query.. ...................................................................................................... 22 
Figure 3.3. The relationships between the site-moiety map and 22 co-crystallized ligands of ER.

 .............................................................................................................................................. 24 
Figure 4.1. Framework of the orthSiMMap method. ................................................................. 30 
Figure 4.2. Shikimate kinase orthSiMMaps. .............................................................................. 32 



vii 

 

Figure 4.3. The site-moiety maps of (a) HpSK and (b) MtSK. Each anchor represents one of 
three binding environments (electrostatic: blue; hydrogen-bonding: green; van der Waals: 
black).. .................................................................................................................................. 34 

Figure 4.4. Structures of the 38 inactive compounds from the NCI and Maybridge databases. 37 
Figure 4.5. Characterization of shikimate kinase inhibitors by enzyme assay, orthSiMMaps, 

site-mutagenesis studies and analogues.. .............................................................................. 40 
Figure 4.6. Interaction profiles between selected anchor residues and 27 tested compounds.. . 43 
Figure 4.7. Probing the affinity pockets in HpSK. ..................................................................... 45 
Figure 4.8. Performance of the orthSiMMap method on apo-form HpSK and MtSK.. ............. 47 
Figure 5.1. The NAD(P) and ATP related pathways play key roles in various biological 

functions, such as aromatic amino acid synthesis, pyrimidine metabolism and TCA cycle 
regulation. ............................................................................................................................. 52 

Figure 5.2. Preliminary result of the PathDrug on the shikimate pathway.. .............................. 53 

 



viii 

 

List of Tables 
Table 3.1. The relationship between the anchors and moieties of 15 co-crystallized ligands for 

TK ......................................................................................................................................... 24 
Table 3.2. Comparing SiMMap with other methods on thymidine kinase and estrogen receptor 

by false-positive rates ........................................................................................................... 25 
Table 3.3. The mapping between the anchors and active and typical compounds for ER ......... 27 
Table 4.1. Summary of 37 pairs of orthologous targets ............................................................. 35 
Table 4.2. Summary of 12 inhibitors with inhibition assay, compound structures, docked poses, 

and consensus anchors .......................................................................................................... 38 
Table 4.3. Properties of potent inhibitors for HpSK and MtSK a ............................................... 39 
Table 4.4. The ranks of active compounds using orthSiMMap, energy-bases, and combination 

scoring methods for apo and closed forms of HpSK and MtSK .......................................... 47 
Table 4.5. Some selected top-ranked compounds using orthSiMMap, energy-bases, and 

combination scoring methods for apo and closed forms of HpSK and MtSK ..................... 49 

  



1 

 

Chapter 1 

Introduction 
1.1 Background 

Virtual screening (VS) of molecular compound libraries has emerged as a powerful and 

inexpensive method for the discovery of novel lead compounds for drug development 1-10. 

Given the structure of a target protein active site and a potential small ligand database, VS 

predicts the binding mode and the binding affinity for each ligand and ranks a series of 

candidate ligands. There are four main reasons for the rapid acceptance and success of VS: 1) 

The availability of the growing number of protein crystal structures; 2) The advent of structural 

proteomics technologies; 3) The enrichment and speed of VS 2,11; and 4) The contribution of 

VS to the reduction in the cost of drug discovery.  

Each VS computational method involves two basic critical elements: efficient molecular 

docking and a reliable scoring method. Scoring methods for VS should effectively discriminate 

between correct binding states and non-native docked conformations during the molecular 

docking phase and distinguish a small number of active compounds from hundreds of 

thousands of non-active compounds during the post-docking analysis. There are three general 

classes of scoring functions that calculate the binding free energy, including knowledge-based 
12, physics-based 13, and empirical-based 14 scoring functions.  

However, the performance of these scoring functions is often inconsistent across different 

systems from a database search. The inaccuracy of the scoring methods, i.e., inadequately 

predicting the true binding affinity of a ligand for a receptor, is probably the major weakness 

for VS. It has been reported that fusion among different scoring methods in VS would improve 

the performance and, on average, the performance of the combined method performs better 

than the average of the individual scoring functions. More recently, the same phenomena has 

been previously reported in information retrieval (IR) and in molecular similarity measurement. 

Charifson et al. (1999)15, presented a study in which they used an intersection-based consensus 

approach to combine scoring functions. The evidences showed an enrichment in the ability to 

discriminate between active and inactive enzyme inhibitions for three different enzymes (p38 

MAP kinase, inosine monophosphate dehydrogenase, and HIV protease) using two different 
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docking methods (DOCK16 and GAMBLER) and thirteen scoring functions. Then, Bissantz et 

al. (2000)17 , Stahl and Rarey (2001)18, and Verdonk et al. (2004)19 et.al., also reported their 

works for consensus scores (CS) improving VS. Wang and Wang (2004)20 presented an 

idealized computer experiment to explore how consensus scoring works based on the 

assumption that the error of a scoring function is a random number in a normal distribution. 

They also studied the relationship between the hit-rates and the number of scoring functions 

and the performance of several ranking strategies (the rank-by-score, the rank-by-rank, and the 

rank-by-vote strategy) for consensus scorings. 

These reported results seem to depend on the method of combination (by rank, by score, 

by intersection, by MIN, by MAX, and by voting) and the number and nature of individual 

scoring functions involved in the combination. While researchers focus to realize the benefit of 

method combination and consensus scorings, the major issues of how and when these 

individual scoring functions should be combined remain a challenging problem not only for 

researchers but also perhaps more importantly, for practitioners in virtual screening. 

In addition, some of these VS methods are capable of identifying so-called 

“pharmacological preference” that is often the important interactions or binding-site hot spots 

typically evolved from known active ligands and the target protein 21-22. These preferences 

might improve screening accuracy and guide the design and selection of lead compounds for 

subsequent investigation and refinement during lead discovery and lead optimization processes. 

However, identifying lead compounds by exploiting thousands of docked protein-compound 

complexes is still a challenging task, too. The major weakness of virtual screenings is likely 

due to incomplete understandings of ligand binding mechanisms and the subsequently 

imprecise scoring algorithms 2,6,9.  

Most of docking programs16,23-24  use energy-based scoring methods which are often 

biased toward both the selection of high molecular weight compounds and charged polar 

compounds. These approaches25-26 generally cannot identify the key features (e.g., 

pharmacophore spots) that are essential to the biological responses of the target protein. 

Although pharmacophore techniques27 have been applied to derive the key features, these 

methods are restricted by a set of known active ligands that were acquired experimentally. 

Therefore, the more powerful techniques for post-screening analysis to identify the key 
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features through docked compounds and to understand the binding mechanisms provide a great 

potential value for drug design.  

1.2 Thesis overview 
For addressing above issues, some studies have been reported (Fig. 1.1). Three of our 

related studies were briefly described in Chapter 2. The study of the pharmacophore-based 

scoring function proposed a target-specific scoring function by utilizing the protein-ligand 

interactions and physic-chemical properties of known actives to improve the accuracy and 

precision for the ranking of VS data (Fig. 1.1a). The studies of consensus scoring and cluster  
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Figure 1.1. Overview of structure-based drug design and related works. The major steps of 

structure-based drug design include (a) virtual screening and (b) post-screening analysis and 

following bioassay. 

 

analysis addressed the issues of improving enrichment for the post-screening analysis stage 

(Fig. 1.1b). Furthermore, we also applied these methods on the inhibitor discoveries of the 
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dengue virus E protein and the influenza virus neuraminidase. Although some of novel 

inhibitors were discovered in these researches, we still found the drawbacks of these previous 

studies. Firstly, the pharmacophore-based scoring function is limited by the consensus of 

known active compounds. Second, the consensus scoring criteria and cluster analysis are 

helpful for improving the enrichment of VS, but these methods does not use the protein-ligand 

interaction data and ligand structures produced in the VS process for investigating the key 

environment of the protein-ligand binding site. 

To address these issues, we developed the SiMMap approach to infer the key features by a 

site-moiety map describing the relationship between the moiety preferences and the physico-

chemical properties of the binding site in Chapter 3 (Fig. 1.1b). The further application and 

validation of SiMMap was presented in the Chapter 4. According to our knowledge, SiMMap 

is the first public server that identifies the site-moiety map from a query protein structure and 

its docked (or co-crystallized) compounds. The server characterizes a binding site by pocket-

moiety interaction preferences (anchors) including binding pockets with conserved interacting 

residues, moiety preferences, and interaction type. 

In Chapter 4, we further extended SiMMap to orthologous SiMMap. We derived the 

orthologous site-moiety maps (orthologous SiMMap) from identifying consensus binding 

environments of orthologous proteins; orthologous SiMMap represents the conserved binding 

environment or "hot spots" among orthologous targets in an aim to investigate the protein-

ligand interface family and apply for discovering potential leads across multiple species. 

Finally, Chapter 5 described some conclusions and future perspectives. 

The research framework of this thesis is shown as Figure 1.2. The concept of the research 

of pharmacophore-based scoring function is that utilizing the consensus of known active 

compounds identifies the key feature of binding site. However, such approach needs the known 

active compounds and prefers the compounds similar with the known set.  To address these 

limitations, we extract the consensus of screening compounds to characterize the binding site 

and further validate on the inhibitor discovery of orthologous shikimate kinases. 
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Figure 1.2. The research framework for predicting protein-ligand binding modes and 

characterizing protein-ligand binding sites in structure-based drug design. 
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Chapter 2 

Related works 
Virtual screening (VS) of molecular compound libraries has emerged as a powerful and 

inexpensive method for the discovery of novel lead compounds for drug development 2-3 (Fig. 

2.1). The VS computational method involves two basic critical elements: efficient molecular 

docking and a reliable scoring method. Scoring methods for VS should effectively discriminate 

between correct binding states and non-native docked conformations during the molecular 

docking phase and distinguish a small number of active compounds from hundreds of 

thousands of non-active compounds during the post-docking analysis. The scoring functions 

that calculate the binding free energy mainly include knowledge-based12, physics-based13, and 

empirical-based 14 scoring functions. 

In addition, some of these VS methods are capable of identifying so-called 

“pharmacological preference” that is often the important interactions or binding-site hot spots 

typically evolved from known active ligands and the target protein21-22 (Fig. 2.1b). These 

preferences might improve screening accuracy and guide the design and selection of lead 

compounds for subsequent investigation and refinement during lead discovery and lead 

optimization processes. However, the pharmacological preferences for each protein target and 

corresponded ligands are limited by the demand of pre-studied bioassays or structure data. 

Currently, the screening quality of docking methods using energy-based scoring functions 

alone is often influenced by the molecular weight and the structure of the ligand being screened 

(e.g., the numbers of charged and polar atoms) (Fig. 2.2). These methods are often biased 

toward both the selection of high molecular weight compounds (due to the contribution of the 

compound size 28-29) and charged polar compounds (due to the pair-atom potentials of the 

electrostatic energy and hydrogen-bonding energy). 
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Figure 2.1. Main procedure of structure-based virtual screening. (a) The major steps of 

structure-based virtual screening, including virtual screening, post-screening analysis, and 

bioassay. (b) Pharmacophore-based scoring function for virtual screening step. Post-screening 

analysis step is usually utilized for improving including (c) consensus scoring and (d) cluster 

analysis. 

 

In the meanwhile, the performance of these scoring functions is often inconsistent across 

different systems from a database search 17-18. The inaccuracy of the scoring methods, i.e., 

inadequately predicting the true binding affinity of a ligand for a receptor, is probably the 

major weakness for VS. Furthermore, the application of VS2,30, to the drug discovery process 

invariably produces a large number of potential lead candidates. These prospective ligands 

need to be filtered in order to reduce their number for more precise and labor-intensive studies. 

Hence, it is urgent that the utilizations of post-analysis to minimize the number of false 

positives in the selection list and to propagate the true hits to the top of the list. (Fig. 2.1a, 2.1c 
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and 2.1d) 
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Figure 2.2. The influences of ligand structures and molecular weight on docking energy. (a) 

The fraction of polar atoms in ESA01-C is the smallest among these 3 ligands, whereas that of 

ESA01-COO is the largest. The docked positions are similar, but the docking energies differ: -

91.32 for ESA01, -76.86 for ESA01-CH3, and -99.64 for ESA01-COO. (b) ESA01 (blue) and 

EST03 (yellow) have a common group A, and EST03 has an additional substructure group B. 

The docked conformations (into reference protein 3ert) are similar, and the docking energies 

are -82.82 for ESA01 and -127.27 for EST03. 

 

It has been reported that fusion among different scoring methods in VS would improve the 

performance and, on average, the performance of the combined method performs better than 

the average of the individual scoring functions.15,18-20,31 These reported results are significant 

and potentially robust in that the performance results of these consensus scoring (CS) methods 

seem to be independent of the target receptor and the docking algorithm. The reported results 

seem to depend on the method of combination (by rank, by score, by intersection, by MIN, by 

MAX, and by voting) and the number and nature of individual scoring functions involved in 

the combination. While researchers have come to realize the advantage and benefit of method 

combination and consensus scorings, the major issues of how and when these individual 

scoring functions should be combined remain a challenging problem not only for researchers 
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but also perhaps more importantly, for practitioners in virtual screening. 

Another frequently used technique for post-screening analysis is cluster analysis. 

Clustering methods based on compound structural similarity or interacting profiles can group 

VS data, reduce complexity of observation, and improve the performance of the scoring 

function32-34. Through the cluster analysis, the enormous data produced by VS process is able 

to easily visualize and efficiently handle. However, most of researchers only consider the 

descriptors of protein-ligand interactions or compound structures individually. The 

combination of protein-ligand interactions and compound topology could provide more detail 

and pure classifications for following biological assay and refinement. Therefore, some of 

related studies are briefly introduced as following (Fig. 2.1b and 2.2d). 
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Figure 2.3. The binding-site pharmacological consensuses are identified by overlapping the 

docked conformations of (a) 10 known ER antagonists and (b) 10 known ER agonists against 

the reference proteins 3ert and 1gwr, respectively. (a) Four pharmacological interactions were 

identified and circled as A (phenolic hydroxyl group), B (phenolic hydroxyl group), and C 

(piperidine nitrogen). (b) Three pharmacological interactions were identified and circled as A 

(phenolic hydroxyl group) and B (phenolic hydroxyl group). The dashed lines indicate the 

hydrogen bonds formed between the ligand and the target protein. These pharmacological 

interactions are consistent with those evolved from X-ray structures. 
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2.1 Pharmacophore-based scoring functions 
The screening quality of docking methods using energy-based scoring functions alone is 

often influenced by the molecular weight and the structure of the ligand being screened (e.g., 

the numbers of charged and polar atoms). These methods are often biased toward both the 

selection of high molecular weight compounds (due to the contribution of the compound size 
28-29) and charged polar compounds (due to the pair-atom potentials of the electrostatic energy 

and hydrogen-bonding energy).  

A pharmacophore-based evolutionary approach for virtual screening was developed to 

address these issues. This tool, termed the Generic Evolutionary Method for molecular 

DOCKing (GEMDOCK), combines an evolutionary approach23,35-37 with a new 

pharmacophore-based scoring function. The former integrates discrete and continuous global 

search strategies with local search strategies to expedite convergence. The latter, integrating an 

empirical-based energy function and pharmacological preferences (binding-site 

pharmacological interactions and ligand preferences shown as Fig. 2.3), simultaneously serves 

as the scoring function for both molecular docking and post-docking analyses to improve 

screening accuracy (Fig. 2.4). We apply pharmacological-interaction preferences to select the 

ligands that form pharmacological interactions with target proteins, and use the ligand 

preferences to eliminate the ligands that violate the electrostatic or hydrophilic constraints. We 

assessed the accuracy of our approach using human estrogen receptor (ER) and a ligand 

database from the comparative studies of Bissantz et al.17 Using GEMDOCK, the average 

goodness-of-hit (GH) score was 0.83 and the average false positive rate was 0.13% for ER 

antagonists, and the average GH score was 0.48 and the average false positive rate was 0.75% 

for ER agonists. The performance of GEMDOCK was superior to competing methods such as 

GOLD and DOCK. We found that our pharmacophore-based scoring function indeed is able to 

reduce the number of false positives; moreover, the resulting pharmacological interactions at 

the binding site as well as ligand preferences are important for assigning confidence to the 

results of virtual screening experiments. These results suggest that GEMDOCK constitutes a 

robust tool for virtual database screening. 
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Figure 2.4. The main steps of GEMDOCK for virtual database screening, including the target 

protein and compound database preparation, flexible docking, and post-docking analysis. 

GEMDOCK mines a pharmacological consensus from the target protein and known active 

ligands when available. 

 

2.2 Consensus scoring criteria 
The performance of these scoring functions is often inconsistent across different systems 

from a database search 18,31. The inaccuracy of the scoring methods, i.e., inadequately 

predicting the true binding affinity of a ligand for a receptor, is probably the major weakness 

for VS. It has been demonstrated that combining multiple scoring functions (consensus scoring) 

improves enrichment of true positives. Previous efforts at consensus scoring have largely 

focused on empirical results, but they are yet to provide theoretical analysis that gives insight 

into real features of combinations and data fusion for VS. 

We explore consensus scoring (CS) criteria and provide a consensus scoring procedure for 

improving the enrichment in VS using data fusion and exploring diversity on scoring 

characteristics between individual scoring functions (Fig. 2.5). In particular, we demonstrate 

that combining multiple scoring functions improves enrichment of true positives only if (a) 

each of the individual scoring functions has relatively high performance, and (b) the scoring 

characteristics of each of the individual scoring functions are quite different (Fig. 2.6). These 

two prediction variables are also indicative criteria for the performance between rank 
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combination and score combination. Moreover our second criterion (b) using the rank/score 

characteristics as the scoring diversity is independent of the performance of the individual 

scoring function. It is therefore very useful in practical settings in the VS process when the 

performance of an individual scoring function (such as in criterion (a)) is not known or cannot 

be evaluated at the juncture. We have developed a novel CS system, available online 

http://gemdock.life.nctu.edu.tw/dock/download.php, which was tested for five scoring systems 

with two evolutionary docking algorithms on four targets, thymidine kinase (TK), human 

dihydrofolate reductase (DHFR), and estrogen receptors (ER) of antagonists and agonists (Fig. 

2.7). Our procedure is computationally efficient, able to adapt to different situations, and 

scalable to a large number of compounds and to a greater number of combinations. Results of 

the experiment show a fairly significant improvement on the goodness-of-hit (GH) scores, false 

positive (FP) rate, and enrichment factors over average individual performance. This approach 

has practical utility for cases where the basic tools are known or believed to be generally 

applicable, but where specific training sets are absent. 
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Figure 2.5. Rank/score curves of five methods for four virtual screening targets: (a) TK, (b) 

DHFR, (c) ER-antagonist receptor, and (d) ER-agonist receptor. 
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Figure 2.6. The relationships between the GH-score improvement with (a) normalized value of 
variance of rank/score graph and (b) normalized value of Pl/ Ph of 40 pairing combinations of 
five methods for four virtual screening targets. (c) The GH-score improvements with 
normalized variances of rank/score graphs (R/Svar) and normalized relative performance 
measurement (Pl/ Ph) of 40 RCS and SCS pairing combinations of five methods for four virtual 
screening targets. (d) The positive and negative GH-score improvements are denoted with 
circle and cross, respectively. 
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Figure 2.7. The known active ligands of four VS targets, estrogen receptors (ER) of antagonists 
(a) and agonists (b), (c) thymidine kinase (TK), and (d) human dihydrofolate reductase 
(DHFR). The ligand data set from the comparative studies of Bissantz et al. 17was used to 
evaluate the screening accuracy of different CS on TK, DHFR, ER, and ERA. For each target 
protein, the ligand database included 10 known active compounds and 990 random compounds. 

 

2.3 Combinative clustering analysis 

The increasing numbers of 3D compounds and protein complexes stored in databases 

contribute greatly to current advances in biotechnology, being employed in all kinds of 

pharmaceutical and industrial applications. However, screening and retrieving appropriate 

candidates as well as handling false positives presents a challenge for all post-screening 

analysis methods employed in retrieving therapeutic and industrial targets. 

Using the combinative clustering method (Fig. 2.8), virtually screened compounds were 

clustered based on their protein-ligand interactions then structure clustering employing 

physical-chemical features was done to retrieve the final compounds. Based on the protein- 
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Figure 2.8. Overall process of the two-stage combinative cluster analysis. (a) First stage 
clustering using protein-ligand interactions generated via GEMDOCK. (b) Second stage 
clustering of first stage results done using physical-chemical features. 
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Figure 2.9. Designing a reference threshold of P-L interaction and atom-pair descriptors. The 

complementation between atom-pair descriptor and the protein-ligand interaction descriptor is 

also show in this figure. The distance threshold of atom-pair descriptor was 0.55 (tanimoto 

coefficient). The threshold of distance of protein-ligand interaction descriptor was 0.39 

(correlation coefficient). 
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ligand interaction profile (first stage), docked compounds can be clustered into groups with 

distinct binding interactions. Structure clustering (second stage) grouped similar compounds 

obtained from the first stage into similar structures clusters; the lowest energy compound from 

each cluster being selected as a final candidate. By representing interactions at the atomic-level 

and including measures of interactions strength (Fig. 2.9), better descriptions of protein-ligand 

interactions and a more specific analysis of virtual screening was achieved. The two-stage 

clustering approach enhanced our post-screening analysis by revealing accurate performances 

in clustering, mining and visualizing compound candidates, thus, improving virtual screening 

enrichment. 

2.4 Summary 

As the number of protein structures increases rapidly, structure-based drug design and 

virtual screening approaches are becoming important and helpful in lead discovery1-2,6. A 

number of docking and virtual screening methods 16,23-24,35 have been utilized to indentify lead 

compounds, and some success stories have been reported 1-2,4-5,7-8,10. However, identifying lead 

compounds by exploiting thousands of docked protein-compound complexes is still a 

challenging task. The major weakness of virtual screenings is likely due to incomplete 

understandings of ligand binding mechanisms and the subsequently imprecise scoring 

algorithms . In the related works, several studies were proposed for improving the accuracy and 

precision in the VS processes. First, the scoring function of GEMDOCK evolves the 

pharmacological preferences from a number of known active ligands to take advantage of the 

similarity of a putative ligand to those that are known to bind to a protein’s active site, thereby 

guiding the docking of the putative ligand. In the post-screening analysis process, the 

consensus scoring strategy using data fusion and exploring diversity on scoring characteristics 

between individual scoring functions for improving VS is proposed. When the huge amount of 

VS data needs to be interpreted, the combinative cluster analysis is applied for effectively 

mining the representatives and easily visualizing the VS data. Although we have been 

successfully applied these methods on the VS studies of two important virus targets, dengue 

virus and influenza virus, some shortcomings are needed to be addressed. 
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Chapter 3 

Site-moiety map for recognizing interaction preferences 

between protein pockets and compound moieties 
3.1 Introduction  

Most of docking programs16,23-24 use energy-based scoring methods which are often 

biased toward both the selection of high molecular weight compounds and charged polar 

compounds in the top ranks. Meanwhile, these approaches generally cannot identify the key 

features (e.g., pharmacophore spots) that are essential to trigger or block the biological 

responses of the target protein. Although pharmacophore techniques27  have been applied to 

derive the key features, these methods require a set of known active ligands that were acquired 

experimentally. Therefore, the more powerful techniques for post-screening analysis to identify 

the key features through docked compounds and to understand the binding mechanisms 

provide a great potential value for drug design.  

To address these issues, we presented the SiMMap method to infer the key features by a 

site-moiety map describing the relationship between the moiety preferences and the physico-

chemical properties of the binding site. This method also provides the web server for public 

access. According to our knowledge, SiMMap is the first public server that identifies the site-

moiety map from a query protein structure and its docked (or co-crystallized) compounds. The 

server provides pocket-moiety interaction preferences (anchors) including binding pockets with 

conserved interacting residues; moiety preferences; and interaction type. We verified the site-

moiety map on three targets, thymidine kinase, and estrogen receptors of antagonists and 

agonists. Experimental results show that an anchor is often a hot spot and the site-moiety map 

is useful to identify active compounds for these targets. We believe that the site-moiety map is 

able to provide biological insights and is useful for drug discovery and lead optimization. 

3.2 Method 
Figure 3.1 presents an overview of the SiMMap server for identifying the site-moiety map 

with anchors, describing moiety preferences and physico-chemical properties of the binding 

site, from a query protein structure and docked compounds. The server first uses checkmol 

(http://merian.pch.univie.ac.at/~nhaider/cheminf/cmmm) to recognize the compound moieties  
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Step 2: Generate protein-
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and identify compound moieties 

Step 3: Derive an anchor 
candidate by identifying a 
pocket with significant 
interacting residues and 
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Step 4: Determine anchors by 
grouping neighbor anchor 
candidates with same type. For 
each anchor, identify its binding 
pocket, top-significant 
interacting residues, moiety 
preferences, and anchor type

Step 6: Output graphically site-
moiety map; anchors with 
moiety structures and 
compositions; and pocket-moiety 
interactions.  

Step 5: Determine site-moiety 
map with anchors and rescore 
compounds

 
Figure 3.1. Overview of the SiMMap server for the site-moiety map using herpes simplex virus 

type-1 thymidine kinase (TK) and 1000 docked compounds as the query. (a) Main procedure; 

(b) The merged protein-compound interaction profile; (c) The pocket-moiety interaction 

preferences of the anchors: H (hydrogen-bonding). Each anchor consists of a binding pocket 

with conserved interacting residues, the moiety composition and anchor type; The site-moiety 

map has one hydrogen-bonding (H) and three van der Waals (V) anchors for ER. Each anchor 

contains the moiety structures and composition, anchor type, and key residues in the binding 

pocket. 
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and utilizes GEMDOCK35 to generate a merged protein-compound interaction profile (Fig. 

3.1b), including electrostatic (E), hydrogen-bonding (H) and van der Waals (V) interactions. 

According to this profile, we infer anchor candidates by identifying the pockets with 

significant interacting residues and moieties with Z-score ≥ 1.645. The neighbor anchor 

candidates, which are the same interaction type and the distances between their centers are less 

than 3.5Ǻ, are grouped into one anchor. These anchors form the site-moiety map describing 

interaction preferences between compound moieties and the binding site of the query (Figs. 

3.1c and 3.1d). Finally, this server provides graphic visualization for the site-moiety map; 

anchors with moiety structures and compositions; pocket-moiety interactions; and the 

relationship between anchors and moieties of query compounds.  

3.2.1 Definitions of site-moiety map, anchor and pocket 

The anchor (pocket-moiety interaction preference) is the core of a site-moiety map. An 

anchor possesses three essential elements: (1) a binding pocket with conserved interacting 

residues and specific physico-chemical properties; (2) moiety preferences of the pocket; (3) 

pocket-moiety interaction type (E, H, or V). An anchor can be considered as "key features" for 

representing the conserved binding environment element or a "hot spot" which involves 

biological functions. In addition, we regard a binding pocket, which consists of several 

residues significantly interacting to compound moieties, as a part of the binding site. The 

binding pocket often possesses specific physico-chemical properties and geometric shape to 

bind preferred moieties. The site-moiety map, which can help to assemble potential leads by 

optimal steric, hydrogen-bonding, and electronic moieties, is useful for drug discovery and 

understanding biological mechanisms.   

3.2.2 Constructing site-moiety map 

The SiMMap server performs six main steps for a query (Fig. 3.1a). Here, we used TK as 

an example for describing these steps.  

Generating protein-compound interaction profiles and identification of compound 

moieties 

First, users input a protein structure and its docked compounds. The server used checkmol 

to identify moieties of docked compounds and GEMDOCK to generate E, H and V interaction 

profiles. For each profile, the matrix size is N×K where N and K are the numbers of 
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compounds and interacting residues of query protein, respectively. An interaction profile 

matrix P(I) with type I (E, H, or V) is represented as  
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where pi,j is a binary value for the compound i interacting to the residue j (Fig. 4.2B). For H 

and E profiles, pi,j is set to 1 (green) if an atom pair between the compound i and the residue j 

forms hydrogen-bonding or electrostatic interactions, respectively; conversely, the interaction 

is set to 0 (black). For van der Waals (vdW) interaction, an interaction is set to 1 when the 

energy is less than -4 (kcal/mol). 

SiMMap identified consensus interactions between residues and compound moieties with 

similar physical-chemical properties through the profiles. For each interacting residue (a 

column of the matrix P(I)) (Fig. 3.1b), we used Z-score value to measure the interacting 

conservation between this residue and moieties. The standard deviation (σ) and mean (μ) were 

derived by random shuffling 1,000 times in a profile. The Z-score of the residue j is defined as 

σ
μf

Z j
j

−
=

, where fj is the interaction frequency and given as 
∑ =

=
N

i
ji

j N
p

f
1 .  

We treated protein-compound interactions as a binomial distribution, and then consensus 

interactions with statistical significance could be identified by their normal approximation. 

Statistically, a binomial distribution is approximated by a normal distribution when either 

p≤0.5 and np>5 or p>0.5 and n(1 − p)> 5, where n is the number of trials and p is the 

probability of success. Here, n is the number of selected compounds and p is the probability of 

forming an interaction between a protein and a compound, that is, pi,j=1. Typically, the p values 

ranged between 0.01 and 0.03 in this study. While the binomial distribution is a normal 

approximation, at least 500 compounds should be selected for constructing an interaction 

profile matrix. 

Deriving anchor by identifying a pocket with significant interacting residues and moieties  

Spatially neighbor interacting residues and moieties with statistically significant Z-score ≥ 

1.645 were referred as an anchor candidate. Neighbor anchor candidates, which are spatially 

overlapped and the same anchor type, were clustered as an anchor and the anchor center is the 
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weighted geometric center of their interacting compound moieties. Here, two anchors were 

merged if the distance of two anchor centers is less than 3.5 Ǻ. In each anchor, top three 

residues with the highest Z-score values were regarded as key residues forming a binding 

pocket. For each anchor, we identified its moieties of docked compounds according to the 

moiety library derived from checkmol, and calculated the moiety composition (Fig. 3.1c). 

These anchors form the site-moiety map (Fig. 3.1d) of the query.  

Outputting graphically site-moiety map and identifying active compounds 

SiMMap can be applied to identify active compounds for structure-based virtual screening. 

One of weaknesses of virtual screening is likely incomplete understanding of the chemistry 

involved in ligand binding and the subsequently imprecise scoring algorithms. When a 

compound highly agrees with the anchors of the site-moiety map, this compound often 

activates or inhibits the target. The SiMMap server scores a compound by combining predicted 

binding energy of GEMDOCK and the anchor score between the map and the compound. The 

SiMMap score, S(i), for a compound i is defined as  

∑ =
−+=

n

a a M
iEiASiS

1 5.0

)()001.0()()(
  (1) 

where ASa(i) is the anchor score of compound i in the anchor a, n is the number of anchors, E(i) 

is the docked energy of compound i, and M is the atom number of compound i. The anchor 

score is set to 1 when the compound i agrees the moiety preference of the anchor a. Here, the 

anchor score and the term M0.5 are useful to reduce the deleterious effects of selecting high 

molecular weight compounds26. Based on SiMMap scores, we can obtain new ranks of query 

compounds. 

3.3 Results 
3.3.1 Web service 

SiMMap is an easy-to-use web server (Fig. 3.2). Users input a protein structure without 

ligands in PDB format and its docked or co-crystallized compounds in MDL mol, SYBYL 

mol2, or PDB format (Fig. 3.2a). These docked compounds should be generated by any 

external docking methods (e.g., DOCK, FlexX, GOLD and GEMDOCK) before users 

uploaded these compounds. Typically, the SiMMap server yields a site-moiety map within 5 

minutes if the number of query compounds is less than 100. This server provides the graphic 
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Figure 3.2. The SiMMap server analysis results using estrogen receptor (ER) and 1000 docked 

compounds as the query. (a) The user interface for uploading target protein structure and 

docked compounds. (b) The site-moiety map has one hydrogen-bonding and three van der 

Waals anchors for ER. Each anchor contains the moiety structures and composition, anchor 

type, and key residues in the binding pocket. (c) The details of moiety structures and residue-

moiety interactions in the H1 anchor. (d) The SiMMap scores, ranks and the relationships 

between anchors and moieties of query compounds. 

 

visualization of the site-moiety map and anchors elements, including a binding pocket with 

interacting residues, moiety compositions and structures, numbers of involved compounds, and 

anchor types (Fig. 3.2b). For each anchor, this server shows docked conformations of 

compounds and the detailed atomic interactions between pocket residues and moieties (Fig. 

3.2c). In addition, SiMMap shows the new rank and compound moiety structures fitting the 

anchors for each query compound (Fig. 3.2d). SiMMap uses two open source tools for graphic 

visualization: Jmol (http://www.jmol.org/) for displaying three-dimensional protein and 
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compound structures with anchors and OASA (http://bkchem.zirael.org/oasa_en.html) for 

visualizing compound structures. The server allows users to download the anchor coordinates 

in the PDB format; interaction profiles; new ranks and anchor scores of query compounds. 

3.3.2 Thymidine kinase and estrogen receptor 
The SiMMap server inferred the site-moiety map of TK. This map consisted of four anchors 

(i.e., E1, H1, H2, and V1 (Fig. 3.1d) and the moiety composition and conserved interacting 

residues of each anchor (Fig. 3.1c). For example, the E1 anchor possesses a binding pocket 

with residue R222, and three moiety types (i.e., sulfuric acid monoester (40%), carboxylic 

group (35%) and phosphoric acid monoester (25%)) derived from 57 compounds. Meanwhile, 

the E1 includes the phosphate moiety of ATP and its residue R222 playing a major role to 

interact with the substrate 38-39. The preferred moiety types of an anchor are suitable groups 

interacting to conserved residues of the binding pocket. The moiety preference is able to guide 

the suggestion of functional group substitutions for lead structures.  

We used estrogen receptor (ER), a therapeutic target for osteoporosis and breast cancer40, as 

the example. Based on 1000 docked compounds and ER, the SiMMap server identifies four 

anchors (H1, V1, V2, and V3) and provides moiety preferences and compositions in these 

anchors (Fig. 3.2b and 3.3). The H1 anchor comprises three residues (E353, L387, and R394) 

and five main moiety types: hydroxyl group (36%), carboxylic acid (16%), amine (7%), ketone 

(7%), and sulfuric acid monoester (6%) summarized from 319 compounds. Furthermore, three 

residues (L346, T347, and L525) and 839 compounds are involved in the V1 anchor, preferring 

five moiety types (i.e., aromatic ring (49%), heterocyclic group (22%), alkenes (11%), phenol 

(8%), and oxohetarene (4%)). The anchor V2 is a hydrophobic pocket containing L346, F404, 

and L387, and the former two re sidues are highly conserved41. These hydrophobic residues 

interact with aromatic ring (52%), heterocyclic group (23%), phenol (12%), alkenes (5%), and 

oxohetarene (3%). Finally, aromatic rings (55%), heterocyclic groups (17%), alkenes (11%), 

and phenols (9%) summarized from 560 compounds often form vdW contacts with the long 

side chains of M343, M421, and L525 in the anchor V3. The ring groups of antagonists are 

often stabilized by the side chains of M343, L346, T347, L387, M421, and L525. In this case, 

most selective estrogen receptor modulators of ER (e.g., EST_01 (raloxifene), EST_06 (LY-

326315,) and EST_05 (EM-343)) agree with these four anchors (Fig. 3.2d and 3.3c). Anchors 
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Figure 3.3. The relationships between the site-moiety map and 22 co-crystallized ligands of ER. 

(a) The mapping between four inferred anchors (binding pocket with conserved interacting 

residues) and these 22 ligands in the active site. (b) The moieties of these 22 ligands in each 

anchor. Black cell presents that the moiety of the compound does not agree with the anchor H1. 

(c) The moiety compositions of 1000 docked compounds (SiMMap) and these 22 ligands. 

 

Table 3.1. The relationship between the anchors and moieties of 15 co-crystallized ligands for 

TK 

PDB code Compound structure 
Anchor 

E1 H1 H2 V1 

3vtk 
  

R-OH 
  

1vtk 
  

R-OH 
  

1p7c   
R-OH 

  

1of1 
 

 R-OH 
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1ki6 
 

 R-OH 
  

1ki8 
 

 R-OH 
  

1e2k 
 

 R-OH 
  

1ki7 
 

 R-OH 
  

1ki4 
 

 R-OH 
  

1kim 
 

 R-OH 
  

1e2p 
 

 R-OH 
  

1ki3 
 

 R-OH 
 

Aromatic moiety 

1ki2 
 

 R-OH 
 

Aromatic moiety 

1qhi 
 

 R-OH R-NH2 Aromatic moiety 

2ki5 
 

 R-OH R-NH2 Aromatic moiety 

 

Table 3.2. Comparing SiMMap with other methods on thymidine kinase and estrogen receptor 

by false-positive rates  

True positive (%) 
Thymidine kinase (TK) Estrogen receptor (ER) 
SiMMap DOCK a FlexX a GOLD a SiMMap DOCK a FlexX a GOLD a 

80 6.3b 23.4 8.8 8.3 1.1 13.3 57.8 5.3 
90 6.8 25.5 13.3 9.1 1.1 17.4 70.9 8.3 
100 6.8 27 19.4 9.3 7.5 18.9 NA 23.4 
a Summarized from Bissantz et al.17  

 

identified by the SiMMap server often contain key pockets and moieties. To initially validate 

the anchors for biological mechanisms (e.g., ligand binding and catalysis mechanisms), we 

selected 15 TK and 22 ER co-crystallized ligands (Table 3.1 and Fig. 3.3). The corresponding 

moieties of these co-crystallized ligands were highly matched the anchors derived from 1000 

docked compounds (10 known active ligands and 990 randomly selected compounds described 
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in Data sets). The site-directed mutagenesis shows that the conserved interacting residues of 

the anchors are often essential for ligand binding and catalysis mechanisms. For ER target, 22 

ER co-crystallized ligands contain three consistent moieties that are hydroxyl group and 

aromatic rings (Fig. 3.3b). The hydroxyl group forms hydrogen bonds with R394 and E353 in 

H1, and the aromatic ring yields vdW contacts with L346, L387, and F404 in V2. The other 

consistent aromatic ring forms vdW contacts with L346, T347, and L525 in V1. These results 

show that an anchor is often a hot spot and involved in biological functions. 

To provide initial validation of the SiMMap server for virtual screening, we selected TK, 

ER, and ERA with 1000 compounds as test sets. First, we compared the accuracies of SiMMap 

with those of GEMDOCK on these three targets based on true positive rates. SiMMap, 

combining anchor scores and docking energies (Equation 1), outperforms GEMDOCK on these 

cases. We then compared SiMMap with other three programs (DOCK, FlexX, and GOLD) on 

TK and ER sets. All approaches were tested using the same proteins and compound sets (Table 

3.2). When the positive rate was 90%, the false positive rates were 6.8% (SiMMap), 25.5% 

(DOCK), 13.3% (FlexX), and 9.1% (GOLD) for TK and were 1.1% (SiMMap), 17.4% 

(DOCK), 70.9% (FlexX), and 8.3% (GOLD) for ER. 

The compound, which agrees with anchors of the site-moiety map, is often able to activate 

or inhibit the target protein (Tables 3.1 and 3.3). In addition, the anchor score (i.e. AS(i) defined 

in Equation 1) of SiMMap can be used to reduce the ill-effect of the energy-based scoring 

methods which are often biased toward both the selection of high molecular weight compounds 

and charged polar compounds25-26. For example, according to the SiMMap scores (Equation 1), 

the top ranks of ER, MFCD0002206 (masoprocol) and MFCD00012748 were identified as the 

analogs of the active compounds (Table 3.3). The anchor score of SiMMap was helpful to 

reduce the highly polar compounds (e.g., MFCD00004690 and MFCD00013089 in ER) whose 

anchor scores are low. The anchor score of SiMMap can easily combine with other energy-

based scoring functions.  

3.4 Summary 
The utility and feasibility of SiMMap method is demonstrated for statistically inferring 

the site-moiety map describing the relationship between the moiety preferences and physico-

chemical properties of the binding site. The validation results show that the site-moiety map is 
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useful to reflect biological functions and identify active compounds from thousands of 

compounds. In addition, the site-moiety map can guide to assemble potential leads by optimal 

steric, hydrogen-bonding, and electronic moieties. We believe that the SiMMap serve is able to 

provide the biological insights of protein-ligand binding models, enrich the screening accuracy, 

and guide the processes of lead optimization. 

 

Table 3.3. The mapping between the anchors and active and typical compounds for ER 

Compound Structure GEMDOCK 
rank

SiMMap
rank

SiMMap
score H1 V1 V2 V3

EST_01 2 1 4.239

EST_02 32 19 4.216

EST_03 28 16 4.217

EST_04 8 5 4.226

EST_05 6 4 4.228

EST_06 3 2 4.238

EST_07 21 13 4.218 Other

EST_08 10 7 4.225 Other Other

EST_09 30 20 4.216

EST_10 246 84 4.193

MFCD00002206 4 3 4.232 Other

MFCD00012748 17 11 4.221 Other

MFCD00004690 5 154 3.23 Other Other

MFCD00013089 25 617 2.218

Compound Structure GEMDOCK 
rank

SiMMap
rank

SiMMap
score H1 V1 V2 V3

EST_01 2 1 4.239

EST_02 32 19 4.216

EST_03 28 16 4.217

EST_04 8 5 4.226

EST_05 6 4 4.228

EST_06 3 2 4.238

EST_07 21 13 4.218 Other

EST_08 10 7 4.225 Other Other

EST_09 30 20 4.216

EST_10 246 84 4.193

MFCD00002206 4 3 4.232 Other

MFCD00012748 17 11 4.221 Other

MFCD00004690 5 154 3.23 Other Other

MFCD00013089 25 617 2.218
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Chapter 4 

The application of site-moiety map for characterizing 

protein-ligand binding sites and discovering adaptive 

inhibitors for orthologous protein targets 
4.1 Introduction 

The expanding number of protein structures and advances in bioinformatics tools have 

offered an exciting opportunity for structure-based virtual screening methods in drug 

discovery42. Although there are some successful agents in the antibiotic development, few 

agents act at novel molecular sites to target multiple antibiotic–resistant pathogenic bacteria43-

44.  However, the screening tools are often designed for one-target paradigm and the scoring 

methods are highly target-dependent and energy-based, and cannot persuasively identify true 

leads, which results in a lower success rate 2-3,45. To discover adaptive inhibitors of multiple 

targets is an emergent task for drug design46-48. 

SiMMap modeling provides an in silico post-screening analysis to establish a target binding 

site-moiety map that comprises three crucial elements (conserved interacting residues, the 

moiety preference, and pocket-moiety interaction type [electrostatic (E), hydrogen-bonding (H), 

or van der Waals (V)])49. For structural-based virtual screening 1-2,9,45, this method offers a 

more efficient solution for drug discovery, particularly in the absence of a pharmacophore 

model describing the structure-activity relationship extracted from experiments. 

We introduce the concept of orthSiMMap to represent the conserved binding environment 

elements or "hot spots" among orthologous targets. Identification of these consensus features in 

the orthSiMMap can then be used for identifying novel binding partners of orthologous targets. 

We then developed a method to extract the conserved features of the ligand-binding 

environments of orthologous targets, thus establishing the orthSiMMap using structure-based 

virtual screening. We focused on shikimate kinase (EC 2.7.1.71), the fifth enzyme in the 

shikimate pathway that is present in bacteria, fungi, and plants, but not animals. This 

expression pattern makes shikimate kinase an attractive target for the development of new 
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antimicrobial agents, herbicides, and antiparasitic agents50. In using these models, six potent 

inhibitors with low IC50 values (<8.0 μM) were identified. Site-directed mutagenesis studies 

revealed that critical conserved interacting residues contribute to specific pocket-moiety 

interaction anchors (S15, D33, F48, R57, R116, and R132). These results illustrate a robust 

orthSiMMap-based approach to identify selective SK inhibitors and shed insight to a new 

induced-fit mechanism by an inhibitor. The works of the biological assay and the crystal 

structures in this chapter are done by Dr. Wen-Ching Wang of National Tsing Hua University51. 

4.2 orthSiMMap methods  
The main steps of the orthSiMMap method for producing SiMMaps and an orthSiMMap 

from orthologous targets are described as follows (Fig. 4.1):  

(1) Virtual screening of orthologous targets. We used in-house GEMDOCK program26,35 to 

screen Maybridge (65,947 compounds) and NCI (236,962 compounds) databases for both 

HpSK and MtSK (apo/closed forms). The top-ranked 2% (6,000 compounds) of each target 

were selected from the screening results for the subsequent protein-compound profiling. 

(2) Profiling analysis of target-compound interactions. The target-compound interactions of 

clustered top ranked ~3,000 compounds by discarding similar compounds were assessed to 

derive the anchor with the interacting type, including hydrogen-bonding, electrostatic, and 

van der Waals interactions. For H and E profiles, an interaction is set to 1 (green) if an atom 

pair forms hydrogen-bonding or electrostatic interactions; conversely, the interaction is set 

to 0 (black). For van der Waals interaction, an interaction is set to 1 when the energy is less 

than -4 (kcal/mol) (Fig. 4.1b).  

(3) Identification of anchors (Fig. 4.1c). We identified consensus interactions between residues 

and compound moieties through the profiles. For an interacting residue, we used Z-score to 

measure the interacting conservation between the residue and moieties. The interaction is 

treated as a binomial distribution that is approximated to a normal distribution when either 

p≤0.5 and np>5 or p>0.5 and n(1−p)>5, where n is the number of selected compounds and p 

is the probability of forming an interaction. Theoretically, at least 500 compounds should be 

selected for constructing a target-compound interaction profile. Spatially neighbor interact-

ing residues and moieties with statistically significant Z-score ≥ 1.645 were referred as an 

anchor. A set of anchors derived from the target-compound interacting profile can be used 
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to establish a site-moiety map for each orthologous target.  
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Figure 4.1. Framework of the orthSiMMap method. In Step 1, GEMDOCK was used to 

generate docked poses for HpSK and MtSK by screening compound libraries (Maybridge and 

NCI). For each target (HpSK or MtSK), the protein-compound interacting profile was derived 

from fusing the top ranked 5% (~3000) compounds. In Step 3, conserved interactions of the 

target protein and chemical moieties of ligands are identified to deduce the anchors of HpSK 

and MtSK. The orthSiMMap is constructed based on the conserved features between 

orthologous target site-moiety maps, which will be used to select candidate compounds for the 

enzymatic assay. Finally, the model is refined based on the bioassay of candidate compounds. 

 

(4) Establishment of the orthSiMMap of the orthologous targets (Fig. 4.1d and 4.1e). The supe-

rimposed SiMMaps (anchors) of orthologous proteins (HpSK and MtSK) revealed an over-
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lapping region of matched anchors which form the orthSiMMap (Fig. 4.2c and 4.2d). For 

the compound x, the orthSiMMap score is defined as )(001.0)()(
1

xExASwxCAS a

i ii −= ∑ =
, 

where wi is the conservation of the anchor i on orthologous targets; ASi(x) is the anchor 

score of the compound x in the anchor i; a is the number of anchors; E(x) is the docked 

energy of the compound x. The orthSiMMap rank of the compound x was obtained by sort-

ing CAS(x) into the descending order. 

(5) Inhibition assay. We selected top-ranked compounds using rank-based consensus scoring 

(RCS) for inhibitory assay. For a compound x, we calculated its RCS by combining the 

ranks of m (apo/closed) forms of n orthologous targets as follows: 

∑ ∑= =
=

n

i

m

k CR mnxRxS
ki1 1

2/)()( , where )(xR
kiC  is the orthSiMMap rank of x on the k 

(apo/closed) form of the target i. Here, m and n are 2. We yielded the RCS rank of the com-

pound x by sorting SR(x) into the ascending order.  

(6) Refinement of orthSiMMaps. Active and inactive compounds from the enzyme inhibition 

assay were used to evaluate and refine the orthSiMMaps. 

4.3 Results 
4.3.1 orthSiMMap method 

We have previously reported "SiMMap" to construct the site-moiety map of a target 

protein from a set of screening compounds. This map consists of several anchors, which is 

useful in providing biological insights and guiding the process in drug discovery including hit 

search and lead optimization49. Here, an orthSiMMap method is established to derive a core 

site-moiety map, referred as orthSiMMap, from orthologous site-moiety maps by structure-

based virtual screening on these targets (Fig. 4.2 and Fig. 4.1). The consensus anchors of an 

orthSiMMap derived from multiple orthologous targets can be considered as "key features" 

that represent the conserved binding environment involved in biological functions. An 

orthSiMMap is defined by a set of consensus anchors between orthologous proteins and 

compound moieties. The following criteria are considered: (1) screening targets are 

orthologous proteins; (2) the binding sites of orthologous targets share conserved physical-

chemical features; (3) the site-moiety maps of orthologous targets often share comparable 

anchors with respect to their sites and crucial protein-ligand interactions. 
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Figure 4.2. Shikimate kinase orthSiMMaps. (a) Superimposed apo-form anchors of HpSK and 
MtSK. (b) Superimposed closed-form anchors of HpSK and MtSK. (c) The apo-form 
orthSiMMap model and (d) closed-form orthSiMMap include six consensus anchors derived 
from consensus anchors (a) and (b), respectively. Each consensus anchor shares conserved 
residues between HpSK and MtSK and the same type of binding environment. (e) Features of 
the six consensus anchors of the apo-form orthSiMMap. Each of T groups (T1–T4) represents 
a given chemical moiety and T-O* indicates other chemical groups. H1, V1, and H2 are 
situated at the ATP-binding site, while H3, V2, and E1 are at the shikimate-binding site. Each 
consensus anchor includes conserved interacting residues (●) and the major chemical moieties 
of the compound candidates. 

 

For each orthologous target, we used top ranked 2% (~3000) compounds obtained by 

screening compound libraries to analyze target-compound interaction profiles in order to 

establish the site-moiety map (SiMMap) comprised of several anchors (Fig. 4.2a and 4.2b). 

Each anchor represents a local binding environment with specific physico-chemical property or 



33 

 

pharmacophore spot, which is derived by identifying statistically significant interacting residues 

and compound moieties (Fig. 4.3). The orthSiMMap (Fig. 4.2c and 4.2d) that consists of the 

matched anchors, referred as "hot spots", of orthologous proteins is generated by extracting the 

consensus anchors of orthologous SiMMaps. We were able to derive the orthSiMMaps of apo-

form and closed-form HpSK and MtSK according to the above steps. 

To validate the orthSiMMap method, we collected a dataset of 37 orthologous target pairs 

(Table 4.1) with biological function annotations summarized from UniProt52. Experimental 

results show that the consensus anchors of an orthSiMMap often reveal the binding pocket with 

conserved interacting residues involving biological functions.  

4.3.2 Orthologous SiMMaps and orthSiMMaps of SKs 

Figure 4.2 shows the orthSiMMaps of SKs. We first generated the apo-form SiMMaps of 

HpSK (6 anchors) and MtSK (7 anchors), respectively, allowing us to derive the orthSiMMap 

with 6 consensus anchors (Fig. 4.2a and 4.2c). In parallel, the closed-form orthSiMMap with 6 

consensus anchors was also derived (Fig. 4.2b and 4.2d). It is noted that the apo-form and 

closed-form orthSiMMaps share six comparable anchors (hot spots): E1, H1−H3, V1, and V2 

(Fig. 4.2c and 4.2d). H1, H2, and V1 sit at the ATP site, while H3, V2, and E1 are situated at the 

shikimate site (Fig. 4.3). The protein-ligand relationship was analyzed for each hot spot; a set of 

chemically related entities that contribute to intermolecular interactions were then identified 

(Fig. 4.2e). Our results support the notion that a hot spot shares a unique chemical-physical 

binding environment, which may be used to guide combinatorial library design for further 

compound development and lead optimization. The compounds moieties, anchors, SiMMaps 

and orthSiMMaps are available at http://simmap.life.nctu.edu.tw/orthsimmap/. 

Of the six consensus anchors (Fig. 4.2e), E1 is a negatively charged site that interacts with 

R57 (R58 in MtSK), R116 (R117 in MtSK), and R132 in HpSK (R136 in MtSK); these 

arginines are highly conserved in SKs and are critical for binding to shikimate53. The chemical 

entities on E1 consisted of carboxyl, sulfonate, and phosphate groups. H1 is enclosed with a 

tight turn (Walker A motif) that binds the β-phosphate of ATP53. The identified moieties were 

carboxylic amide, sulfonate ester, carboxyl acid, and ketone. H2 is situated between H1 and H3 

and possesses a hydrogen bonding environment from Walker A motif (K14 and S15 in HpSK; 

K15 and S16 in MtSK) and a DT/SD motif (D31 and D33 in HpSK; D32 and D34 in MtSK). 
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Figure 4.3. The site-moiety maps of (a) HpSK and (b) MtSK. Each anchor represents one of 

three binding environments (electrostatic: blue; hydrogen-bonding: green; van der Waals: 

black). The distribution of identified chemical moieties for each anchor is shown as a pie chart. 

For HpSK, H1, V1, and H2 are situated at the nucleotide site, while H3, V2, and E1 are at the 

shikimate site. For MtSK, H1, V1, and H2 are at nucleotide site, while H3, V2, and E1 are at 

the shikimate site. 
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Table 4.1. Summary of 37 pairs of orthologous targets 

ID Description 
Gene 
Name 

Species PDB code Bound 
ligand A B A B 

1 3-phosphoshikimate 1-
carboxyvinyl transferase 

aroA Escherichia coli Agrobacterium 
sp. 

1x8t 2pqc RC1 

2 Adenosine deaminase Ada Mus musculus Bos taurus 1a4m 1krm PRH 
3 Androgen receptor AR Homo sapiens Rattus 

norvegicus 
1t5z 1i37 DHT 

4 Arginase-1 ARG1 Homo sapiens Rattus 
norvegicus 

2pll 1d3v ABH 

5 Aspartate aminotransferase aspC Thermus 
thermophilus 

Escherichia coli 1bkg 1aia PMP 

6 ATP-dependent hsl 
protease ATP-binding 
subunit hslU 

hslU Escherichia coli Haemophilus 
influenzae 

1do0 1g3i ATP 

7 Bifunctional protein glmU glmU Haemophilus 
influenzae 

Escherichia coli 2v0i 1fwy UD1 

8 cAMP-dependent protein 
kinase catalytic subunit α 

Prkaca Mus musculus Bos taurus 1atp 1q24 ATP 

9 Cytochrome b MT-
CYB 

Gallus gallus Bos taurus 3l71 1sqb AZO 

10 Dihydrofolate reductase DHFR Homo sapiens Mus musculus 3gyf 3k47 D09 
11 Dihydrofolate reductase folA Escherichia coli Mycobacterium 

tuberculosis 
1ddr 1df7 MTX 

12 DNA mismatch repair 
protein mutS 

mutS Escherichia coli Thermus 
aquaticus 

1e3m 1fw6 ADP 

13 Elongation factor Tu-A tufA Thermus 
thermophilus 

Escherichia coli 1ha3 1d8t GDP 

14 Fatty acid-binding protein, 
adipocyte 

Fabp4 Mus musculus Homo sapiens 1lie 2hnx PLM 

15 Fructose-1,6-
bisphosphatase 1 

FBP1 Sus scrofa Homo sapiens 1eyj 1fta AMP 

16 Glucose-6-phosphate 
isomerase 

Gpi Mus musculus Oryctolagus 
cuniculus  

2cxr 1dqr 6PG 

17 Hemagglutinin-
neuraminidase 

HN Newcastle 
disease virus 

Newcastle 
disease virus 

1e8v 1usr DAN 

18 HTH-type transcriptional 
regulator qacR 

qacR Staphylococcus 
aureus 

Staphylococcus 
aureus 

1jt6 3br1 DEQ 

19 Inositol-1-
monophosphatase 

suhB Methanocaldoco
ccus jannaschii 

Archaeoglobus 
fulgidus 

1g0h 1lbx IPD 

20 Methionine 
aminopeptidase 

map Escherichia coli Mycobacterium 
tuberculosis 

1xnz 3iu7 FCD 

21 Neuraminidase NA Influenza A 
virus (H11N9) 

Influenza A 
virus (H1N1) 

1nnc 3b7e ZMR 

22 NH(3)-dependent NAD(+) 
synthetase 

nadE Bacillus subtilis Bacillus 
anthracis 

1ih8 2pz8 APC 

23 Orotidine 5'-phosphate 
decarboxylase 

pyrF Methanobacteri
um 

Pyrococcus 
horikoshii 

1lol 2czf XMP 
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thermoautotroph
icum 

24 Peptide deformylase def Escherichia coli Leptospira 
interrogans 

1g2a 1szz BB2 

25 Protein farnesyltransferase 
subunit beta 

Fntb Rattus 
norvegicus 

Homo sapiens 1d8d 1tn6 FII 

26 Protein recA recA Mycobacterium 
smegmatis 

Mycobacterium 
tuberculosis 

1ubg 1mo6 DTP 

27 Purine nucleoside 
phosphorylase 

PNP Bos taurus Homo sapiens 1a9s 1rct NOS 

28 Pyridoxal kinase PDXK Homo sapiens Ovis aries 2yxu 1lhr ATP 
29 Ribulose bisphosphate 

carboxylase large chain 
rbcL Nicotiana 

tabacum 
Spinacia 
oleracea 

1rlc 1ir1 CAP 

30 Shikimate kinase aroK Helicobacter 
pylori 

Mycobacterium 
tuberculosis 

hpsa 1zyu S3P 

31 Thymidine kinase TK Human 
herpesvirus 1 

Equine 
herpesvirus 4 

1e2j 1p6x THM 

32 Thymidylate synthase thyA Escherichia coli Lactobacillus 
casei 

1aiq 1lca CB3 

33 Tyrosine-protein kinase 
ABL1 

Abl1 Mus musculus Homo sapiens 1opk 1opl P16 

34 UDP-glucose 4-epimerase galE Escherichia coli Homo sapiens 1lrj 1hzj UD1 
35 UDP-N-acetylglucosamine 

1-carboxyvinyltransferase 
murA Enterobacter 

cloacae 
Escherichia coli 1ryw 3iss EPU 

36 Vitamin D3 receptor VDR Homo sapiens Rattus 
norvegicus 

1db1 1rk3 VDX 

37 Xylose isomerase xylA Streptomyces 
rubiginosus 

Arthrobacter sp. 1xig 1xlc XYL 

 

Amide, ketone, sulfonate ester, and azine-contained compounds fit into this site. H3 is situated 

above the central sheet in which two conserved residues (D33, and G80 in HpSK; D34, G80 in 

MtSK) contribute to H3. Amide, sulfonate ester, and ester groups were frequently identified. 

V1, which is adjacent to H1, bears a vdW-binding environment and also contains residues 

from Walker A motif. V2, in proximity to H3, is situated at the border between shikimate and 

the nucleotide binding regions. V1 and V2, allowing the interactions with large chemical 

groups, prefer aromatic groups (over 60% on average). Analysis of the closed-form SiMMaps 

revealed that E114 and R116 (T115 and R117 in MtSK) located in LID are conserved 

interacting residues. 
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Figure 4.4. Structures of the 38 inactive compounds from the NCI and Maybridge databases. 

 

4.3.3 Inhibitors and inhibition assay 

Following the SiMMap analysis, compounds were rescored using the rank-based consensus 

scoring (RCS54), which combines energy-based and anchor-based scoring functions. Since a 

compound simultaneously docked into apo and closed-form binding sites of orthSiMMaps was 

considered as a potentially useful hit, we selected common top-ranked compounds from the 

closed-form and apo-form orthSiMMap analysis for subsequent bioassay. After RCS ranks in 

both the Maybridge and NCI databases, 48 compounds that were available (either requested or 

purchased) were then subjected to MtSK and HpSK inhibitory assays (Fig. 4.4). Among those, 

10 compounds had an IC50 value ≦ 100 μM for both HpSK and MtSK (Table 4.2), in which 

six (NSC45611, NSC162535, NSC45612, NSC45174, NSC45547, and NSC45609) 

demonstrated IC50 values of ≦10 μM (Table 4.3). In parallel, 65 existing kinase inhibitors 

were tested to evaluate their inhibitory effects against shikimate kinase. Of the two compounds 
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(AG538 and GW5074) that showed inhibitory effects, AG538 had a low IC50 value.  

Enzymatic kinetic analysis showed that NSC45611, NSC162535, NSC45612, NSC45174, 

and AG538 were competitive inhibitors of ATP, in agreement with the docked poses (Table 4.2 

and Table 4.3). Of these, NSC45611, NSC162535 and NSC45612 also competed with 

shikimate. Notably, NSC45611, NSC162535, NSC45612 and NSC45174 had low IC50 and αKi 

values, showing potent inhibition. Figure 4.5 shows that three (NSC45611, NSC162535, and 

NSC45612) had lower values of IC50 (≤ 10 μM) and fit well over five hot spots (H1, V1, H3, 

V2, and E1). For those with IC50 ≥ 20 μM, these compounds lack of negatively charged groups 

to form electrostatic interactions with arginines (R57 and R136 in HpSK) on E1. On the other 

hand, kinase inhibitors AG538 and GW5074 did not occupy the shikimate site. Moieties with 

1−3 rings were present at V1 and V2, yielding a number of vdW contacts. The binding groups 

of active inhibitors matched well with the identified moieties found from the consensus 

anchors. For example, the sulfonate groups of NSC162535, NSC45611, and NSC45612 were 

found to occupy H1. The moieties of NSC162535 (SO3
- group), NSC45611 (CO2

- group), and 

NSC45612 (CO2
- group) occupied E1. 

 

Table 4.2. Summary of 12 inhibitors with inhibition assay, compound structures, docked poses, 

and consensus anchors 

Compound ID 
SK 

species 
IC50 

(μM)a 
Compound structure 

Docked pose 
ATP site SKM site 

 H1 V1 H2 H3 V2 E1  

 NSC45611 
Hp 4.8  
Mt 1.5  

   NSC162535 
Hp 4.9  

 Mt 1.6  

NSC45612 
Hp 6.1  

N N

N N

COO-

OH

OH-O3S

Mt 2.8  

NSC45174 
Hp 7.8  

 Mt 2.8  

NSC45547 
Hp 7.8  

 Mt 3.4  
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NSC45609 
Hp 7.0  

 Mt 2.0  

RH00037 
Hp 23.8  

O

H
NN

H
O2N

O O

 Mt <100 

RH00016 
Hp 40.2  

 Mt <100 

GK01385 
Hp <100 

Mt <100 

SPB01099 
Hp <100 

 Mt <100 

AG538 
Hp 2.3  

 Mt 0.4  

GW5074 
Hp 31.4  

Mt 29.6  
a The inhibition assay is done by Dr. Wen-Ching Wang of National Tsing Hua University51. 

 

Table 4.3. Properties of potent inhibitors for HpSK and MtSK a 
Compound ID 

SK 
species 

Inhibition modeb αKi, ATP  
(μM) 

αKi, SKM  
(μM) ATP  SKM  

NSC45611 
Hp ■ ■ 1.1 1.7 
Mt ■ ■ 0.3 0.7 

NSC162535 
Hp ■ ■ 1.9 1.8 
Mt ■ ■ 0.2 0.6 

NSC45612 
Hp ■ ■ 2.0 2.4 
Mt ■ ■ 0.7 1.0 

NSC45174 
Hp ■ □  1.7 12.8 
Mt ■ □  0.4 2.7 

AG538 
Hp ■ □  3.1 5.4 
Mt ■ □  0.04 0.4 

a The inhibition assay is done by Dr. Wen-Ching Wang of National Tsing Hua University51. 

b■: Competitive inhibition; □: Non-competitive inhibition 
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Figure 4.5. Characterization of shikimate kinase inhibitors by enzyme assay, orthSiMMaps, 

site-mutagenesis studies and analogues. (a–c) Structures of three inhibitors, NSC162535, 

NSC45611, and NSC45612. (d–f) The inhibitions of these compounds were analyzed by 

enzyme IC50 test on HpSK (filled) and MtSK. (g–i) The relationship between anchors and the 

docked mode of each inhibitor for HpSK. These compounds consistently include two negative 

charge moieties (SO3
- or CO2

-) that form hydrogen bonds with conserved interactions residues 

of anchors E1 and H1. (j) Comparison of relative activities of HpSK mutants. The conserved 

interacting residues for each anchor were mutated, respectively. R57, R132, R116, and F48 

located in the shikimate site are critical for the enzymatic functions. (k) The potency of 

NSC162535 analogues. The substitution moieties of analogues are indicated in black. Those 

that lack the E1 moiety greatly lost the inhibitory effects (IC50 >100 μM).  The inhibition assay 

is done by Dr. Wen-Ching Wang of National Tsing Hua University51. 

 



41 

 

4.3.4 Site-directed mutagenesis  

A consensus anchor of orthologous targets, identified from the conserved binding pockets 

shared with conserved interacting residues and specific physico-chemical property, usually 

engages with specific functions in the enzymatic catalysis. We sought to investigate the roles of 

identified consensus anchor residues of the orthSiMMaps in catalysis. The site-directed 

mutagenesis study is done by Dr. Wen-Ching Wang of National Tsing Hua University51. We 

first investigated mutants of E1 residues (R57, R116, and R132) that contact with shikimate55. 

Enzymatic analysis revealed that these arginines had extremely low activity (Fig. 4.5j), 

suggesting the importance of these residues in catalysis. Indeed, R117 of MtSK that 

corresponds to R116 of HpSK has thus been suggested as a primary candidate to stabilize the 

transition-state intermediate56.  

For the H3 (D33) and V2 (F48) residues, D33A completely lost the enzymatic activity 

while F48A exhibited hardly any detectable activity (1%). D33 and F48 are in direct contact 

with shikimate. More importantly, it should be noted that D33 forms a hydrogen bond to the 3-

OH group of shikimate, which may increase the nucleophilicity of the O atom or accept the 

proton from the 3-OH group of shikimate, facilitating the catalysis. E114A, a LID residue 

whose side chain faces the solvent, retained 82% relative activity. On the other hand, the F48 

side chain contacts with those from several residues nearby (V44, E53, F56, R57 and P117), 

which may form a stable platform to interact with the ligand for subsequent catalytic reaction.  

We then evaluated residues from H1, H2, and V1 located at the nucleotide site. H1 

residues are primarily from the Walker A motif (P loop; residues 11−16, GSGKSS) surrounding 

the phosphate groups of the nucleotides. Of the three mutants (S12A, S15A, and S16A), S12A 

and S16A remained >50% of the relative activity, while S15A had extremely low activity (1%). 

The S15 side chain resides nearby the β-phosphate of ADP. Furthermore, the adjacent lysine 

(K14) corresponding to K15 of MtSK has been identified as a critical catalytic residue in MtSK 

since its side chain points toward the γ-phosphate56. The other H2 mutant D31A retained 62% 

of the relative activity (62%), possibly due to its remote location to the phosphate group. For 

V1 that is just next to H1, several H1 residues are also shared by V1. Enzymatic analysis 

showed that M10A remained 38% relative activity. These results suggest that the conserved 

interacting residues from E1 (R57, R116 and R132), H1 (S15 and R116), H2 (S15 and D33), 
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H3 (D33), V1 (S15) and V2 (F48) contribute significantly to catalytic power and substrate 

binding.  

4.3.5 Analogues assay and orthSiMMap 

To validate the moiety preferences of consensus anchors, we identified four analogues 

(NSC45547, NSC45609, NSC37215, and NSC45208) of NSC162535 for inhibitory assays (Fig. 

4.5k). NSC45547 and NSC45609 that occupy E1 (SO3
- group) and H1 (SO3

- and NO2 groups) 

retained good IC50 values (7.8 and 7.0 μM for HpSK; 3.4 and 2.0 μM for MtSK). Conversely, 

NSC37215 and NSC45208, that cannot anchor at E1, lost the inhibitory. 

To evaluate the significance of pocket-moiety interaction preferences of consensus anchors in 

the orthSiMMaps, we performed clustering analysis on 27 inhibitory assay compounds. These 

compounds can be roughly clustered into three groups (Fig. 4.6). The potent inhibitors of group 

I (NSC162535, NSC45609, NSC45547, NSC45174, NSC45611, and NSC45612) match more 

than 5 consensus anchors (Fig. 4.5g-i, and Table 4.2). For Group II compounds (RH00037, 

RH00016, GK01385, and SPB01099), each compound matches four of six anchors; Group III 

are kinase inhibitors (AG538 and GW5074) and these compounds share anchors of ATP site. 

For inactive compounds, there are fewer matched consensus anchors in the HpSK/MtSK 

(usually 4), particularly E1 is the least seen. While the inhibitors of group I and II agreed with 

anchors of ATP site and shikimate site, the kinetic assay showed competitive inhibitions for ATP 

and shikimate acid (Table 4.3). The kinase inhibitors of group III occupied the anchors of ATP 

site, and only showed the competitive inhibitions for ATP. Generally, the pocket environment of 

ATP is conserved for kinase family, and the inhibitors of group III also have the broadband 

inhibition for multiple kinases, such as the inhibition of AG538 observed on insulin-like growth 

factor-1 receptor (IGF-1R)57, IR, EGFR58, and Src kinases59.  

While there are the same number of consensus anchors (E1, H1, H2, H3, V1 and V2), the 

spatial arrangement of these anchors were closer in the closed form (Fig. 4.2c and 4.2d). 

Residues (D31 and D33) that contribute to H2 of the apo form were in closer proximity in the 

closed conformation, resulting in a reduced volume at this site. Likewise, the corresponding site 

at V2 surrounded by F48, G80, and G81 in HpSK had less space in the closed form, hindering 

the accommodation of large moieties carrying one or two rings at this site. The above evidences 

demonstrate that induced LID conformation of shikimate kinases was sensitive in the structure-
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based drug discovery strategy.  

 

NSC162535
NSC45609
NSC45547
NSC45612
NSC45611
NSC45174
HTS04421
NSC714539
NSC16220
HTS07010
NSC45208
NSC45562
NSC89166
NSC646942
RH00037
DFP00083
KM03325
RJF01863
SPB01099
NSC37215
SPB01160
SPB07577
GK01385
RH00016
NSC71881
AG538
GW5074

H
1

V
1

H
2

H
3

V
2

E
1

H
1

V
1

H
2

H
3

V
2

E
1

Hp Mt

ATP SKM ATP SKM

a

b

c

d

AG538
GW5074

NSC162535
NSC45609
NSC45547
NSC45612
NSC45611
NSC45174
HTS04421
NSC714539
NSC16220
HTS07010

I

II

III

G
1
1

S
1
2

G
1
3

K
1
4

S
1
5

M
1
0

G
1
1

S
1
2

G
1
3

K
1
4

S
1
5

S
1
5

D
3
1

D
3
3

K
1
4

D
3
3

G
8
0

D
3
3

F
4
8

G
8
0

G
8
1

R
5
7

R
1
3
2

G
1
2

S
1
3

G
1
4

K
1
5

P
1
1

G
1
2

S
1
3

G
1
4

K
1
5

K
1
5

S
1
6

D
3
2

K
1
5

D
3
4

G
8
0

D
3
4

G
7
9

G
8
0

R
5
8

R
1
3
6

H1 H2 H3 E1V1 V2 H1 H2 H3 E1V1 V2

G
1
1

S
1
2

G
1
3

K
1
4

S
1
5

M
1
0

G
1
1

S
1
2

G
1
3

K
1
4

S
1
5

S
1
5

D
3
1

D
3
3

K
1
4

D
3
3

G
8
0

D
3
3

F
4
8

G
8
0

G
8
1

R
5
7

R
1
3
2

G
1
2

S
1
3

G
1
4

K
1
5

P
1
1

G
1
2

S
1
3

G
1
4

K
1
5

K
1
5

S
1
6

D
3
2

K
1
5

D
3
4

G
8
0

D
3
4

G
7
9

G
8
0

R
5
8

R
1
3
6

H1 H2 H3 E1V1 V2 H1 H2 H3 E1V1 V2

G
1
1

S
1
2

G
1
3

K
1
4

S
1
5

M
1
0

G
1
1

S
1
2

G
1
3

K
1
4

S
1
5

S
1
5

D
3
1

D
3
3

K
1
4

D
3
3

G
8
0

D
3
3

F
4
8

G
8
0

G
8
1

R
5
7

R
1
3
2

G
1
2

S
1
3

G
1
4

K
1
5

P
1
1

G
1
2

S
1
3

G
1
4

K
1
5

K
1
5

S
1
6

D
3
2

K
1
5

D
3
4

G
8
0

D
3
4

G
7
9

G
8
0

R
5
8

R
1
3
6

H1 H2 H3 E1V1 V2 H1 H2 H3 E1V1 V2
Hp Mt

NSC45208
NSC45562
NSC89166
NSC646942
RH00037
DFP00083
KM03325
RJF01863
SPB01099
NSC37215
SPB01160
SPB07577
GK01385
RH00016
NSC71881

 
Figure 4.6. Interaction profiles between selected anchor residues and 27 tested compounds. (a) 

The anchor profile of tested compounds on shikimate kinases. (b) Group I: the NCI compounds 

(orange). (c) Group II: the Maybridge compounds (yellow). (d) Group III: kinase inhibitors 

(cyan). The NCI compounds consistently occupy anchors E1 and V2 locating in both ATP and 

shikimate sites. Except for NSC45174, the NCI compounds are competitive inhibitors with 

both ATP and shikimate. For the Maybridge compounds, none form electrostatic interactions 

with R57 and R132 on the consensus anchor E1. The two kinase compounds are located at the 

ATP site, in good agreement with the kinetic results showing that they exhibited competitive 

inhibition with ATP and noncompetitive inhibition with shikimate. 

 

4.3.6 Structural mechanism of the inhibitor binding for shikimate kinases 

Superposition of various structures (apo HpSK, HpSK·shikimate·PO4, HpSK·S3P·ADP, 
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and E114A·162535) reveals a significant conformational change in the LID-containing 

segment after β4 of the CORE domain (residues 101 to 138; α5, LID and α6) (Fig. 4.7). 

Furthermore, the SB region (residues 32−60) shows a small rotation among the different 

unliganded/liganded states, in accord with MtSK structures53.  

Of the three conserved arginines (R57, R116, and R132), it is noted the Cα atom of R57 

superimposes relatively well, while that of R132 has a small shift among various structures 

(Fig. 4.7a-4.7d). A shorter Cα-atom (R57-R132) distance (~0.6 Å) is noted for HpSK·S3P·ADP 

and HpSK·shikimate·PO4 as compared to the apo-form HpSK. On the other hand, there is a 

significant drift for R116 due to the distinct conformations of the LID loop (Fig. 4.7a-4.7d). 

Our results suggest that these arginines contribute to the movement of the lid region and the 

shikimate-binding domain upon ligand binding. R116, when visible, makes a significant shift 

to form hydrogen-bonding interactions with various ligands in the binding pocket: (i) shikimate 

in HpSK·shikimate·PO4; (ii) β-phosphate of ADP in HpSK·S3P·ADP; and (iii) NSC162535 in 

E114A·162535. In the MtSK·shikimate·AMPPCP structure, a direct contact is also observed 

between R117 (corresponding to R116 in HpSK) and γ-phosphate of AMPPCP, an ATP 

analogue, which supports its catalytic role in the  γ-phosphoryl transfer56.  

To evaluate whether NSC162535 will come in contact with R116 in other forms, we have 

docked NSC162535 into the binding pockets of various HpSK structures (Fig. 4.7e-4.7i). In the 

apo form, HpSK with a flexible LID presents a wide-opening pocket, allowing entry of 

promising substrates (Figs. 4.7a, 4.7e and 4.7j). No close contacts are found between R116 and 

the docked NSC162535 in the binding pockets of the apo and HpSK·shikimate·PO4 forms (Fig. 

4.7e and 4.7f). In the HpSK·S3P·ADP state, NSC162535 is docked into a site where the Nη1 

and Nη2 of the guanidino group in R116 make no significant contacts. NSC162535, on the 

other hand, is docked into a comparable site in the E114A·162535 form, where it contacts 

directly with the Nη1 and Nη2 atoms of R116 just like that of the crystal structure. Thus, it is 

likely that R116 plays a crucial role during the course of a conformational cycle in conducting 

a catalytic event (Fig. 4.7i and 4.7j). Upon diffusion into the binding pocket, NSC162535 that 

carries two SO3
- and a -N=N- groups may bind to the active site, interact with R57 and R132,  
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Figure 4.7. Probing the affinity pockets in HpSK. (a-d) The binding pockets of HpSK (a), 

HpSK·shikimate·SO4 (b), HpSK·S3P·ADP (c), and E114A·162535 (d) structures. The bound 

ligands, D33, F48, R57, R116, and R132 are drawn as sticks. The LID segments (residues 

109−123) are drawn as the ribbon structures. (e−h) The docked NSC162535 models in the 

binding pockets of HpSK (e), HpSK·shikimate·SO4 (f), HpSK·S3P·ADP (g), and 

E114A·162535 (h) structures. Superposition of three residues (R57, R116, and R132), docked 

and bound NSC162535 among HpSK (blue), HpSK·SKM·SO4 (yellow), HpSK·S3P·ADP 

(cyan), and E114A·162535 (orange) structures. (i) Superimposed docked structures (e−h). The 

conformation of LID segment (residues 113−119, ribbon) having R116 (thick stick) 

demonstrates the greatest conformational changes induced by bound ligands. (j) Schematic 
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diagram of induced-fit conformational changes upon binding to ligands. The view of LID 

regions corresponding to apo HpSK, HpSK·S3P·ADP, and E114A·162535 is colored as blue, 

cyan, and orange, respectively. The crystallized structures studies are done by Dr. Wen-Ching 

Wang of National Tsing Hua University. 

 

and then trigger a conformational change cycle. As a result, R116 along with R57 and R132 

will trap the inhibitor, yielding an optimized anchor (E1). These results also suggest an 

unusually elastic LID region, which allows accommodating various ligands, as demonstrated 

here. In this section, the crystallized structures studies are done by Dr. Wen-Ching Wang of 

National Tsing Hua University. 

4.3.7 Performance of the orthSiMMap method 

We then evaluated the accuracy of the orthSiMMap approach. The orthSiMMap score (solid 

lines) significantly outperformed those (dashed lines) of energy-based scoring methods, which 

are often used in docking tools, on apo-form HpSK and MtSK (Fig. 4.8a). The average 

enrichments of 3.73 (HpSK), 1.59 (MtSK), and 2.74 (fusion of HpSK and MtSK) were obtained 

using energy-based scoring methods, as compared to 11.18 (HpSK), 35.51 (MtSK), and 93.69 

(fusion of HpSK and MtSK) using the orthSiMMap scoring method. Additionally, the 

orthSiMMap scores exhibited a higher accuracy than that of the SiMMap score from a single 

target (HpSK or MtSK). 

The orthSiMMap is able to reduce the deleterious effects of screening ligand structures that 

are rich in charged or polar atoms. Generally, energy-based scoring functions favor the selection 

of high-molecular-weight compounds yielding high vdW potentials, as well as polar compounds 

that produce hydrogen-bonding and/or electrostatic potentials54. The average molecular weights 

of the top ranked 100 compounds of the orthSiMMap and the energy-based scoring methods 

were 459.9 and 532.6, respectively; the average numbers of polar atoms were 11.3 

(orthSiMMap method) and 14.1 (energy-based method) (Fig. 4.8b,c). The ranks of those 10 

active compounds were much higher in the orthSiMMap scoring analysis than in the energy-

based analysis. It should be noted that NSC162535 was ranked as 1 and 1821 using the apo-

form orthSiMMap and energy-based scoring methods, respectively (Table 4.4).  
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Figure 4.8. Performance of the orthSiMMap method on apo-form HpSK and MtSK. (a) The 

true-hit rates of energy-based and orthSiMMap scoring approaches. The orthSiMMap scores 

(solid line) of adaptive inhibitors significantly outperform energy-based scores (dashed line) 

using the top ranked 6000 compounds by combining the Maybridge and NCI databases. (b) 

Distribution of number of polar atoms, and (c) molecular weight of top 100 compounds from 

orthSiMMap scores and energy-based score. 

 

Table 4.4. The ranks of active compounds using orthSiMMap, energy-bases, and combination 

scoring methods for apo and closed forms of HpSK and MtSK 

Compound ID Compound structure 
Apo form Closed form 

RCS a 
orthSiMMap Energy orthSiMMap Energy 

NSC45611 
 

48 435 515 827 96 

NSC162535 
 

1 1821 242 253 25 

NSC45612 

 

32 106 238 229 31 

NSC45174 
 

38 162 737 110 147 
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NSC45547 
 

130 5999 308 1540 67 

NSC45609 
 

18 4017 5 17 3 

RH00037 
 

786 876 891 1549 371 

RH00016 
 

3765 6000 1219 5824 1837 

GK01385 
 

286 1774 730 49 199 

SPB01099 
 

117 5940 68 2871 19 

a The rank is the rank combination of orthSiMMap and energy. 

 

4.4 Summary 

The largest obstacle by far in structure-based drug discovery is the relatively low hit rates 

in scoring methods due to the lack of adequate quantities of binding partners for a given target. 

In other words, there is no adequate training set to establish the veracity or utility of an 

algorithm. Under these circumstances, the accuracy of a given individual scoring function is 

generally unknown and/or cannot be evaluated at a critical point. The current emphasis of the 

orthSiMMap scoring developed here thus provides a useful index to improve the screening 

accuracy for identification of adaptive inhibitors when the target proteins shared conserved 

binding sites. Through the employment of this developed method, we successfully found six 

new potent inhibitors (<8.0 μM) of HpSK and MtSK. Two of the 65 kinase inhibitors were also 

found to inhibit both HpSK and MtSK activity. The finding that NSC45611, NSC162535, and 

NSC45612 were competitive inhibitors of ATP and shikimate suggests that they belong to a 

novel class of shikimate kinase inhibitors. Based on the novel inhibitor - NSC162535, the 

inhibitor complex crystal structure, E114A·162535, was determined by Dr. Wang’s group of 

National Tsing Hua University. These results illustrate a robust orthSiMMap-based approach to 

identify selective kinase inhibitors. 
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Table 4.5. Some selected top-ranked compounds using orthSiMMap, energy-bases, and 

combination scoring methods for apo and closed forms of HpSK and MtSK 

Compound ID Compound structure 
Apo form Closed form 

RCS a Bioassay
iSiMMap Energy iSiMMap Energy

NSC131133 
 

2 2153 7 456 1 -b 

NSC407257 
 

3 91 17 317 2 - 

NSC644745 
 

430 1 3152 745 1085 - 

NSC714539 
 

431 3 1 9 64 Inactive

NSC524127 
 

920 3090 2 189 175 - 

NSC2460 
 

313 2633 4 2073 49 Inactive

ZINC05823979 
 

1321 578 8 1021 265 - 

NSC83262 
NO2O2N

N
HO

-O
NH3

+

 
11 28 21 1 5 - 

NSC16220 
 

728 37 10 2 137 Inactive

NSC82523 
 

13 170 15 238 4 Inactive

NSC624285 
 

39 199 22 8 8 - 

NSC85597 S
O

O
NO2

O
O

O-

O2N

O
O

-O

 
28 68 31 476 6 - 

a The rank is the rank combination of orthSiMMap and energy. 
b The compound is not tested. 

 

The developed orthSiMMap scoring method appears to outperform the energy-based 

method (Tables 4.4 and 4.5). Of six potent inhibitors, it was interesting to find that aside from 

NSC45609, the others have a higher rank in the apo-form than in the closed-form orthSiMMap 

scoring analysis. Additionally, the top-ranked inhibitors from the apo-form orthSiMMap 

scoring analysis often possess larger moieties (e.g. naphthalene or nitrobenzene) at both sides 

as opposed to those with a relatively small moiety (e.g. amide or aliphatic chain). The closed-

form orthSiMMap scoring analysis has, nonetheless, yielded useful hits including NSC45609 
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and SPB01099.  

P-loop kinase fold consists of functionally diverse kinase classes, such as shikimate kinase, 

NTPases and GTPases60. They frequently share conserved binding environments (e.g., P-loop 

and walker A/B motifs) for interacting with partners (e.g., small compounds and proteins). The 

molecules inhibit P-loop kinases that play a key role in various diseases, such as cancer, 

cardiovascular diseases, gastric diseases or infections. Although a number of inhibitors in 

clinical trials 61-63 or on the market (omeprazole and ciprofloxacin) inhibit the activity of P-loop 

kinases, few of them bind to the ATP-binding site64. Meanwhile, target proteins with dynamic 

induced-fit forms, like the P-loop SKs, represent a major limitation for the structure-based 

screening approach. The approach of orthSiMMap designing the competitive ATP inhibitors 

with specific substrate pocket presents a novel strategy of targeting P-loop kinases. 

The developed orthSiMMap method is database independent. Comparable anchors were 

identified in compounds from the Maybridge and NCI databases. Each of the anchors also 

included analogous chemical moieties. Nonetheless, the derived proportion of these moieties 

was different because the Maybridge and NCI databases contain heterogeneous distribution of 

compounds. For example, the proportion of carboxyl, sulfonate, and phosphate was 

significantly higher in compounds from the NCI database than in those from the Maybridge 

database. On the other hand, the derived model was sensitive to binding-site properties, as 

illustrated by the difference between the apo- and closed-form models (Fig. 4.2). In summary, 

we anticipate that the orthSiMMap method can be useful in discovering new inhibitors, 

investigating the binding mechanisms, and guiding the lead optimization for orthologous 

targets. Additionally, crystal structures reveal the details of ligand binding in the induced-fit P-

loop kinases and will be valuable in the development of novel P-loop kinase inhibitors. 
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Chapter 5 

Conclusion 
5.1 Summary 
Briefly, the major contributions of this thesis can be summarized in the following: 

(1) The concept of site-moiety map (SiMMap) was proposed for predicting protein-ligand 

binding modes and characterizing protein-ligand binding sites in structure-based drug 

design. SiMMap statistically infers the site-moiety map describing the relationship between 

the moiety preferences and physico-chemical properties of the binding site. Our 

experimental results showed that the site-moiety map is useful to reflect biological 

functions and identify active compounds from thousands of compounds. In addition, the 

site-moiety map can guide to assemble potential leads by optimal steric, hydrogen-bonding, 

and electronic moieties.  

(2) Members of individual protein families often share a homologous fold and conserved 

structural features to interact with chemically similar ligands throughout evolution, despite 

low sequence identity. A structure-based site-moiety screening method, orthSiMMap, was 

developed to discover the inhibitors for a family of orthologous proteins. Here, we utilized 

the orthSiMMap to pharmacologically interrogate orthologous shikimate kinases (SKs) 

from Mycobacterium tuberculosis and Helicobacter pylori. The derived apo/closed core 

site-moiety maps and the anchor scores were used to identify six potent inhibitors (<8.0 

μM). Site-directed mutagenesis (these studies done by Dr. W.C. Wang of National Tsing 

Hua University) and analogues studies revealed that critical conserved interacting residues 

contribute to a given pocket-moiety interaction spot. Crystal structures of HpSK·SO4, 

R57A, HpSK·shikimate-3-phosphate·ADP, and E114A·162535 (These structures obtained 

by Dr. Wang, W.C. of National Tsing Hua University) show a characteristic three-layer 

architecture and a conformationally elastic region having R57, R116, and R132 occupied 

by shikimate/inhibitor, locking into an induced-fit form. These results illustrate a robust 

approach in identifying selective inhibitors and reveal insight to the active site chemistry of 

SKs and a new induced-fit mechanism by an inhibitor. We believe that the SiMMap is able 

to provide the biological insights of protein-ligand binding models, enrich the screening 

accuracy, and guide the processes of lead optimization. 
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5.2 Future works 
The one-disease, one-target, and one-drug philosophy has been the dominating drug dis-

covery approach in the past decades. Drugs against multiple targets may overcome the many 

limitations of single targets and achieve a more effective and safer control of diseases. 65-66 

However, to design a selective drug structure which is able to against multiple targets is still a 

challenge task. The NAD(P) and ATP related pathways play key roles in various biological 

functions, such as aromatic amino acid synthesis, pyrimidine metabolism and TCA cycle regu-

lation. In these pathways, the NAD(P) and ATP enzymes usually process a sequentially enzy-

matic reactions to transform specific substrates to products (Fig. 5.1). For maintaining their 

catalytic functions, these proteins have a cofactor site (ATP or NAD(P)) next a substrate bind-

ing site. From the substrate similarity, ATP and NAD(P) have a similar scaffold, such as ade-

nosine and di-phosphate group. Therefore, It is possible to develop selectively multi-targeted 

inhibitors on a specific pathway through considering the specific substrate site and the similar 

cofactor site of ATP and NAD(P) related enzymes. 

Shikimate dehydrogenase Shikimate kinase

Aromatic amino 
acid synthesis

Thymidine kinaseDihydrothyminedehydrogenase

Pyrimidine
metabolism

TCA cycle 
regulation

Pyruvate dehydrogenase
Pyruvate dehydrogenase kinase

+ ATP+ NADP

+ ATP+ NADP

+ ATP+ NAD

…

 
Figure 5.1. The NAD(P) and ATP related pathways play key roles in various biological 

functions, such as aromatic amino acid synthesis, pyrimidine metabolism and TCA cycle 

regulation. 
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b
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Figure 5.2. Preliminary result of the PathDrug on the shikimate pathway. (a) The shikimate 

pathway includes seven enzymes to convert erythrose 4-phospate and phosphoenolpyruvate 

into chorismate. Shikimate dehydrogenase (SDH) and shikimate kinase (SK) are selected as 

targeting proteins for developing PathDrug. (b) Three compounds structures inhibit both SDH 

and SK. 

 

To address these issues, we extend our previous studies to propose a new concept, named 

PathDrug. The core idea of PathDrug is to identify and integrate the consensus binding envi-

ronments (site-moiety maps) of the enzymes on the same pathway. Using the consensus map of 

the protein targets on the same pathway to discover the multi-target leads and then guide to op-

timize the selectivity for a specific pathway. To validate the concept of PathDrug, we cooperate 

with Dr. W.C. Wang of National Tsing Hua University and select the shikimate dehydrogenase 

(SDH) and shikimate kinase (SK) of Helicobacter pylori to develop the PathDrug. Figure 5.2 

shows the preliminary result of dual-targeted inhibitors for SDH and SK. The inhibitory assay 
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was done by Dr. W.C. Wang of National Tsing Hua University. From the PathDrug map of 

SDH and SK, three inhibitor structures are identified and shown the dual-inhibition. These re-

sult preliminarily demonstrate the possibility of PathDrug and provide a potential direction to 

develop the drug with high affinity and low resistance. 

The study of SiMMap and orthSiMMap in this thesis enables us to identify PathDrug, in-

vestigate the consensus properties of PathDrug, and discovery pathway-specific inhibitors. In 

the future, we believe that the designed highly-specific compounds with activity against dis-

ease-related pathway can help us to reduce drug resistance and enhance the lead activity. 
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1. Y.-F. Chen, K.-C. Hsu, S.-R. Lin, W.-C. Wang, Y.-C. Huang and J.-M. Yang*, " SiMMap: 
a web server for inferring site-moiety map to recognize interaction preferences between 
protein pockets and compound moieties," Nucleic Acids Research, 2010 

2. D. Clinciu, Y.-F. Chen, C.-N. Ko, C.-C. Lo and J.-M. Yang*, "TSCC: Two-Stage 
Combinative Clustering for Virtual Screening Using Protein-ligand Interactions and 
Physical-Chemical Features, " BMC Genomcis,  to be published. 

3. K.-C. Hsu, Y.-F. Chen, and J.-M. Yang*,"GemAffinity: a scoring function for predicting 
binding affinity and Virtual Screening", International Journal of Data Mining and 
Bioinformatics, to be published. 

4. H.-C. Hung, C.-P. Tseng, J.-M. Yang, Y.-W Ju, S.-N. Tseng, Y.-F. Chen, Y.-S. Chao, H.-P. 
Hsieh, S.-R. Shih, John T.-A. Hsu, "Aurintricarboxylic acid inhibits influenza virus 
neuraminidase," Antiviral Research, vol. 81, pp. 123-131, 2009. 

5. J.-M. Yang, Y.-F. Chen, Y.-Y. Tu, K.-R. Yen, and Y.-L. Yang*, “Combinatorial 
computation approaches identifying tetracycline derivates as flaviviruses inhibitors,” PLoS 
ONE, pp. e428.1- e428.12, 2007. 

6. J.-M. Yang*, Y.-F. Chen, T.-W. Shen, B. S. Kristal, and D. F. Hsu, "Consensus Scoring 
Criteria for Improving Enrichment in Virtual Screening," Journal of Chemical Information 
and Modeling, vol. 45, pp. 1134-1146, 2005 

7. J.-M. Yang*, T.-W. Shen, Y.-F. Chen, Y.-Y. Chiu, "An evolutionary approach with 
pharmacophore-based scoring functions for virtual database screening," Lecture Notes in 
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Conference paper 
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