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ABSTRACT

As the number of protein structures increases rapidly, structure-based drug design and
virtual screening approaches are becoming important and helpful in lead discovery. A number
of docking and virtual screening (VS) methods have been utilized to identify lead compounds,
and some success stories have been reported. However, identifying lead compounds by
exploiting thousands of docked protein-compound complexes is still a challenging task. The
major weakness of virtual screenings is likely due to incomplete understandings of ligand
binding mechanisms and the subsequently imprecise scoring algorithms.

To address these issues, we have proposed a pharmcophore-based scoring function
approach and a consensus strategies among different scoring methods in VS. The consensus
scores would improve the performance and, on average, the performance of the combined
method performs better than the average of the individual scoring functions. Nevertheless, the
approaches generally cannot identify the key features (e.g:, pharmacophore spots) that are
essential to trigger or block the biological responses of the target protein. Although
pharmacophore techniques have been applied to derive the key features, these methods require
a set of known active ligands that-were acquired experimentally. Therefore, the more powerful
techniques for post-screening analysis to identify the key features through docked compounds
and to characterize the binding site provide a great potential value for drug design.

Recently, we have developed the site-moiety map (SiMMap) method and extended to
characterize the consensus binding environments (i.e., anchors) of orthologous targets
(orthSiMMap). SiMMap statistically derived anchors from the interaction profiles between
query target protein and its docked (or co-crystallized) compounds, and then described the
relationship between the moiety preferences and physico-chemical properties of the binding
site. Each anchor includes three basic elements: a binding pocket with conserved interacting
residues, the moiety composition of query compounds, and pocket-moiety interaction type
(electrostatic, hydrogen-bonding, or van der Waals). Experimental results showed that an
anchor is often a hot spot and the site-moiety map can be helpful to assemble potential leads by
optimal steric, hydrogen-bonding, and electronic moieties. When a compound highly agrees
with anchors of site-moiety map, this compound often activates or inhibits the target protein.
The SiMMap web server is available at http://simfam.life.nctu.edu.tw/. We believe that our

evolutionary approach with pharmacophore-based scoring functions, consensus scoring criteria
for virtual screening, and the method of site-moiety map are useful for drug discovery and
understanding biological mechanisms.
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Chapter 1

Introduction

1.1 Background

Virtual screening (VS) of molecular compound libraries has emerged as a powerful and
inexpensive method for the discovery of novel lead compounds for drug development ''°.
Given the structure of a target protein active site and a potential small ligand database, VS
predicts the binding mode and the binding affinity for each ligand and ranks a series of
candidate ligands. There are four main reasons for the rapid acceptance and success of VS: 1)
The availability of the growing number of protein crystal structures; 2) The advent of structural
proteomics technologies; 3) The enrichment and speed of VS *''; and 4) The contribution of
VS to the reduction in the cost of drug discovery.

Each VS computational method involves two basic critical elements: efficient molecular
docking and a reliable scoring method. Scoring methods for VS should effectively discriminate
between correct binding states and non-native docked conformations during the molecular
docking phase and distinguish-a small number of activer compounds from hundreds of
thousands of non-active compounds during the post-docking analysis. There are three general
classes of scoring functions that calculate-the binding free energy, including knowledge-based
12 physics-based °, and empirical-based ' scoring functions.

However, the performance of these scoring functions is often inconsistent across different
systems from a database search. The inaccuracy of the scoring methods, i.e., inadequately
predicting the true binding affinity of a ligand for a receptor, is probably the major weakness
for VS. It has been reported that fusion among different scoring methods in VS would improve
the performance and, on average, the performance of the combined method performs better
than the average of the individual scoring functions. More recently, the same phenomena has
been previously reported in information retrieval (IR) and in molecular similarity measurement.
Charifson et al. (1999)", presented a study in which they used an intersection-based consensus
approach to combine scoring functions. The evidences showed an enrichment in the ability to
discriminate between active and inactive enzyme inhibitions for three different enzymes (p38

MAP kinase, inosine monophosphate dehydrogenase, and HIV protease) using two different
1



docking methods (DOCK'® and GAMBLER) and thirteen scoring functions. Then, Bissantz et
al. (2000)"" , Stahl and Rarey (2001)'®, and Verdonk et al. (2004)" et.al., also reported their
works for consensus scores (CS) improving VS. Wang and Wang (2004)*° presented an
idealized computer experiment to explore how consensus scoring works based on the
assumption that the error of a scoring function is a random number in a normal distribution.
They also studied the relationship between the hit-rates and the number of scoring functions
and the performance of several ranking strategies (the rank-by-score, the rank-by-rank, and the
rank-by-vote strategy) for consensus scorings.

These reported results seem to depend on the method of combination (by rank, by score,
by intersection, by MIN, by MAX, and by voting) and the number and nature of individual
scoring functions involved in the combination. While researchers focus to realize the benefit of
method combination and consensus scorings, the major issues of how and when these
individual scoring functions should be combined remain a challenging problem not only for
researchers but also perhaps more importantly, for practitioners in virtual screening.

In addition, some of these VS -methods are capable of identifying so-called
“pharmacological preference” that is often the important interactions or binding-site hot spots

21-22
. These preferences

typically evolved from known active ligands and the target protein
might improve screening accuracy and. guide the designand selection of lead compounds for
subsequent investigation and refinement during lead discovery and lead optimization processes.
However, identifying lead compounds by exploiting thousands of docked protein-compound
complexes is still a challenging task, too. The major weakness of virtual screenings is likely
due to incomplete understandings of ligand binding mechanisms and the subsequently

. . . . 2.6.9
imprecise scoring algorithms “””.

16,23-24

Most of docking programs use energy-based scoring methods which are often

biased toward both the selection of high molecular weight compounds and charged polar

220 generally cannot identify the key features (e.g.,

compounds. These approaches
pharmacophore spots) that are essential to the biological responses of the target protein.
Although pharmacophore techniques®” have been applied to derive the key features, these
methods are restricted by a set of known active ligands that were acquired experimentally.

Therefore, the more powerful techniques for post-screening analysis to identify the key

2



features through docked compounds and to understand the binding mechanisms provide a great
potential value for drug design.
1.2 Thesis overview

For addressing above issues, some studies have been reported (Fig. 1.1). Three of our
related studies were briefly described in Chapter 2. The study of the pharmacophore-based
scoring function proposed a target-specific scoring function by utilizing the protein-ligand
interactions and physic-chemical properties of known actives to improve the accuracy and

precision for the ranking of VS data (Fig. 1.1a). The studies of consensus scoring and cluster

a Virtual screening / molecular docking

Known active compounds
P s
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b : ,
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Figure 1.1. Overview of structure-based drug design and related works. The major steps of
structure-based drug design include (a) virtual screening and (b) post-screening analysis and

following bioassay.

analysis addressed the issues of improving enrichment for the post-screening analysis stage

(Fig. 1.1b). Furthermore, we also applied these methods on the inhibitor discoveries of the



dengue virus E protein and the influenza virus neuraminidase. Although some of novel
inhibitors were discovered in these researches, we still found the drawbacks of these previous
studies. Firstly, the pharmacophore-based scoring function is limited by the consensus of
known active compounds. Second, the consensus scoring criteria and cluster analysis are
helpful for improving the enrichment of VS, but these methods does not use the protein-ligand
interaction data and ligand structures produced in the VS process for investigating the key
environment of the protein-ligand binding site.

To address these issues, we developed the SIMMap approach to infer the key features by a
site-moiety map describing the relationship between the moiety preferences and the physico-
chemical properties of the binding site in Chapter 3 (Fig. 1.1b). The further application and
validation of SiMMap was presented in the Chapter 4. According to our knowledge, SiMMap
is the first public server that identifies the site-moiety map from a query protein structure and
its docked (or co-crystallized) compounds. The server characterizes a binding site by pocket-
moiety interaction preferences (anchors) including binding pockets with conserved interacting
residues, moiety preferences, and interaction type.

In Chapter 4, we further extended SiMMap to orthologous SiMMap. We derived the
orthologous site-moiety maps (orthologous“SiMMap) from identifying consensus binding
environments of orthologous proteins; orthologous SiMMap represents the conserved binding
environment or "hot spots" among orthologous targets in an aim to investigate the protein-
ligand interface family and apply for discovering potential leads across multiple species.
Finally, Chapter 5 described some conclusions and future perspectives.

The research framework of this thesis is shown as Figure 1.2. The concept of the research
of pharmacophore-based scoring function is that utilizing the consensus of known active
compounds identifies the key feature of binding site. However, such approach needs the known
active compounds and prefers the compounds similar with the known set. To address these
limitations, we extract the consensus of screening compounds to characterize the binding site

and further validate on the inhibitor discovery of orthologous shikimate kinases.
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Figure 1.2. The research framework for predicting protein-ligand binding modes and

characterizing protein-ligand binding sites in structure-based drug design.



Chapter 2

Related works

Virtual screening (VS) of molecular compound libraries has emerged as a powerful and
inexpensive method for the discovery of novel lead compounds for drug development > (Fig.
2.1). The VS computational method involves two basic critical elements: efficient molecular
docking and a reliable scoring method. Scoring methods for VS should effectively discriminate
between correct binding states and non-native docked conformations during the molecular
docking phase and distinguish a small number of active compounds from hundreds of
thousands of non-active compounds during the post-docking analysis. The scoring functions
that calculate the binding free energy mainly include knowledge-based'?, physics-based'?, and
empirical-based '* scoring functions.

In addition, some of these VS methods are capable of identifying so-called
“pharmacological preference” that is often the important interactions or binding-site hot spots
typically evolved from known active ligands and.the target protein®'>* (Fig. 2.1b). These
preferences might improve screening accuracy and guide the design and selection of lead
compounds for subsequent investigation and refinement during lead discovery and lead
optimization processes. However, the pharmacological preferences for each protein target and
corresponded ligands are limited by the demand of pre-studied bioassays or structure data.

Currently, the screening quality of docking methods using energy-based scoring functions
alone is often influenced by the molecular weight and the structure of the ligand being screened
(e.g., the numbers of charged and polar atoms) (Fig. 2.2). These methods are often biased
toward both the selection of high molecular weight compounds (due to the contribution of the

28-29

compound size ) and charged polar compounds (due to the pair-atom potentials of the

electrostatic energy and hydrogen-bonding energy).
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Figure 2.1. Main procedure of_ structure-based virtual screening. (a) The major steps of
structure-based virtual screening,-including virtual screening, post-screening analysis, and
bioassay. (b) Pharmacophore-based scoring-function for virtual screening step. Post-screening
analysis step is usually utilized for improving including (c) consensus scoring and (d) cluster

analysis.

In the meanwhile, the performance of these scoring functions is often inconsistent across
different systems from a database search '"'®. The inaccuracy of the scoring methods, i.c.,
inadequately predicting the true binding affinity of a ligand for a receptor, is probably the

major weakness for VS. Furthermore, the application of VS**°

, to the drug discovery process
invariably produces a large number of potential lead candidates. These prospective ligands
need to be filtered in order to reduce their number for more precise and labor-intensive studies.
Hence, it is urgent that the utilizations of post-analysis to minimize the number of false

positives in the selection list and to propagate the true hits to the top of the list. (Fig. 2.1a, 2.1c
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Figure 2.2. The influences of ligand structures and molecular weight on docking energy. (a)
The fraction of polar atoms in ESA01-C is the smallest:among these 3 ligands, whereas that of
ESAO01-COO is the largest. The docked positions are similar, but the docking energies differ: -
91.32 for ESAO01, -76.86 for ESAQ1<CHs; and -99.64 for ESA01-COO. (b) ESA01 (blue) and
ESTO3 (yellow) have a common'group A, and EST03 has an additional substructure group B.
The docked conformations (into reference protein 3ert) are similar, and the docking energies

are -82.82 for ESAO01 and -127.27 for ESTO3.

It has been reported that fusion among different scoring methods in VS would improve the
performance and, on average, the performance of the combined method performs better than
the average of the individual scoring functions.'”'*?%3! These reported results are significant
and potentially robust in that the performance results of these consensus scoring (CS) methods
seem to be independent of the target receptor and the docking algorithm. The reported results
seem to depend on the method of combination (by rank, by score, by intersection, by MIN, by
MAX, and by voting) and the number and nature of individual scoring functions involved in
the combination. While researchers have come to realize the advantage and benefit of method
combination and consensus scorings, the major issues of how and when these individual

scoring functions should be combined remain a challenging problem not only for researchers



but also perhaps more importantly, for practitioners in virtual screening.

Another frequently used technique for post-screening analysis is cluster analysis.
Clustering methods based on compound structural similarity or interacting profiles can group
VS data, reduce complexity of observation, and improve the performance of the scoring
function®*>*. Through the cluster analysis, the enormous data produced by VS process is able
to easily visualize and efficiently handle. However, most of researchers only consider the
descriptors of protein-ligand interactions or compound structures individually. The
combination of protein-ligand interactions and compound topology could provide more detail
and pure classifications for following biological assay and refinement. Therefore, some of

related studies are briefly introduced as following (Fig. 2.1b and 2.2d).

M %Rsm NH2 ; 2 % ? R394- NHi
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Figure 2.3. The binding-site pharmacological consensuses are identified by overlapping the
docked conformations of (a) 10 known ER antagonists and (b) 10 known ER agonists against
the reference proteins 3ert and 1gwr, respectively. (a) Four pharmacological interactions were
identified and circled as A (phenolic hydroxyl group), B (phenolic hydroxyl group), and C
(piperidine nitrogen). (b) Three pharmacological interactions were identified and circled as A
(phenolic hydroxyl group) and B (phenolic hydroxyl group). The dashed lines indicate the
hydrogen bonds formed between the ligand and the target protein. These pharmacological

interactions are consistent with those evolved from X-ray structures.



2.1 Pharmacophore-based scoring functions

The screening quality of docking methods using energy-based scoring functions alone is
often influenced by the molecular weight and the structure of the ligand being screened (e.g.,
the numbers of charged and polar atoms). These methods are often biased toward both the
selection of high molecular weight compounds (due to the contribution of the compound size
282%) and charged polar compounds (due to the pair-atom potentials of the electrostatic energy
and hydrogen-bonding energy).

A pharmacophore-based evolutionary approach for virtual screening was developed to
address these issues. This tool, termed the Generic Evolutionary Method for molecular

h?¥337  with a new

DOCKing (GEMDOCK), combines an evolutionary approac
pharmacophore-based scoring function. The former integrates discrete and continuous global
search strategies with local search strategies to expedite convergence. The latter, integrating an
empirical-based energy function and . pharmacological preferences (binding-site
pharmacological interactions and ligand preferences shown as Fig. 2.3), simultaneously serves
as the scoring function for both“molecular docking and post-docking analyses to improve
screening accuracy (Fig. 2.4). We apply pharmacological-interaction preferences to select the
ligands that form pharmacological interactions with target proteins, and use the ligand
preferences to eliminate the ligands‘that violate the electrostatic or hydrophilic constraints. We
assessed the accuracy of our approach using human estrogen receptor (ER) and a ligand
database from the comparative studies of Bissantz et al.'” Using GEMDOCK, the average
goodness-of-hit (GH) score was 0.83 and the average false positive rate was 0.13% for ER
antagonists, and the average GH score was 0.48 and the average false positive rate was 0.75%
for ER agonists. The performance of GEMDOCK was superior to competing methods such as
GOLD and DOCK. We found that our pharmacophore-based scoring function indeed is able to
reduce the number of false positives; moreover, the resulting pharmacological interactions at
the binding site as well as ligand preferences are important for assigning confidence to the
results of virtual screening experiments. These results suggest that GEMDOCK constitutes a

robust tool for virtual database screening.
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Figure 2.4. The main steps of GEMDOCK for virtual database screening, including the target
protein and compound database preparation, flexible docking, and post-docking analysis.
GEMDOCK mines a pharmacological .consensus. from the target protein and known active

ligands when available.

2.2 Consensus scoring criteria
The performance of these scoring functions-is often inconsistent across different systems

from a database search '®°!

. The anaccuracy of.-the scoring methods, i.e., inadequately
predicting the true binding affinity of a ligand for a receptor, is probably the major weakness
for VS. It has been demonstrated that combining multiple scoring functions (consensus scoring)
improves enrichment of true positives. Previous efforts at consensus scoring have largely
focused on empirical results, but they are yet to provide theoretical analysis that gives insight
into real features of combinations and data fusion for VS.

We explore consensus scoring (CS) criteria and provide a consensus scoring procedure for
improving the enrichment in VS using data fusion and exploring diversity on scoring
characteristics between individual scoring functions (Fig. 2.5). In particular, we demonstrate
that combining multiple scoring functions improves enrichment of true positives only if (a)
each of the individual scoring functions has relatively high performance, and (b) the scoring

characteristics of each of the individual scoring functions are quite different (Fig. 2.6). These

two prediction variables are also indicative criteria for the performance between rank
11



combination and score combination. Moreover our second criterion (b) using the rank/score
characteristics as the scoring diversity is independent of the performance of the individual
scoring function. It is therefore very useful in practical settings in the VS process when the
performance of an individual scoring function (such as in criterion (a)) is not known or cannot
be evaluated at the juncture. We have developed a novel CS system, available online
http://gemdock.life.nctu.edu.tw/dock/download.php, which was tested for five scoring systems
with two evolutionary docking algorithms on four targets, thymidine kinase (TK), human
dihydrofolate reductase (DHFR), and estrogen receptors (ER) of antagonists and agonists (Fig.
2.7). Our procedure is computationally efficient, able to adapt to different situations, and
scalable to a large number of compounds and to a greater number of combinations. Results of
the experiment show a fairly significant improvement on the goodness-of-hit (GH) scores, false
positive (FP) rate, and enrichment factors over average individual performance. This approach
has practical utility for cases where the basic tools are known or believed to be generally

applicable, but where specific training sets are absent.
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Figure 2.5. Rank/score curves of five methods for four virtual screening targets: (a) TK, (b)

DHFR, (c) ER-antagonist receptor, and (d) ER-agonist receptor.
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Figure 2.7. The known active ligands of four VS targets, estrogen receptors (ER) of antagonists
(a) and agonists (b), (c) thymidine kinase (TK), and (d) human dihydrofolate reductase
(DHFR). The ligand data set from the comparative studies of Bissantz et al. '"was used to
evaluate the screening accuracy of different CS on TK, DHFR, ER, and ERA. For each target

protein, the ligand database included 10 known active compounds and 990 random compounds.

2.3 Combinative clustering analysis

The increasing numbers of 3D compounds and protein complexes stored in databases
contribute greatly to current advances in biotechnology, being employed in all kinds of
pharmaceutical and industrial applications. However, screening and retrieving appropriate
candidates as well as handling false positives presents a challenge for all post-screening
analysis methods employed in retrieving therapeutic and industrial targets.

Using the combinative clustering method (Fig. 2.8), virtually screened compounds were
clustered based on their protein-ligand interactions then structure clustering employing

physical-chemical features was done to retrieve the final compounds. Based on the protein-
14
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ligand interaction profile (first stage), docked compounds can be clustered into groups with
distinct binding interactions. Structure clustering (second stage) grouped similar compounds
obtained from the first stage into similar structures clusters; the lowest energy compound from
each cluster being selected as a final candidate. By representing interactions at the atomic-level
and including measures of interactions strength (Fig. 2.9), better descriptions of protein-ligand
interactions and a more specific analysis of virtual screening was achieved. The two-stage
clustering approach enhanced our post-screening analysis by revealing accurate performances
in clustering, mining and visualizing compound candidates, thus, improving virtual screening

enrichment.

2.4 Summary

As the number of protein structures increases rapidly, structure-based drug design and
virtual screening approaches are becoming important and helpful in lead discovery'>®. A
number of docking and virtual screening methods 16.23-2435 have been utilized to indentify lead
compounds, and some success stories have beenreported *>"*!°. However, identifying lead
compounds by exploiting thousands of docked protein-compound complexes is still a
challenging task. The major weakness of virtual screenings is likely due to incomplete
understandings of ligand binding mechanisms and the- subsequently imprecise scoring
algorithms . In the related works, several studies were proposed for improving the accuracy and
precision in the VS processes. First, the scoring function of GEMDOCK evolves the
pharmacological preferences from a number of known active ligands to take advantage of the
similarity of a putative ligand to those that are known to bind to a protein’s active site, thereby
guiding the docking of the putative ligand. In the post-screening analysis process, the
consensus scoring strategy using data fusion and exploring diversity on scoring characteristics
between individual scoring functions for improving VS is proposed. When the huge amount of
VS data needs to be interpreted, the combinative cluster analysis is applied for effectively
mining the representatives and easily visualizing the VS data. Although we have been
successfully applied these methods on the VS studies of two important virus targets, dengue

virus and influenza virus, some shortcomings are needed to be addressed.
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Chapter 3

Site-moiety map for recognizing interaction preferences

between protein pockets and compound moieties

3.1 Introduction

16,23-24 . .
’ use energy-based scoring methods which are often

Most of docking programs
biased toward both the selection of high molecular weight compounds and charged polar
compounds in the top ranks. Meanwhile, these approaches generally cannot identify the key
features (e.g., pharmacophore spots) that are essential to trigger or block the biological
responses of the target protein. Although pharmacophore techniques® have been applied to
derive the key features, these methods require a set of known active ligands that were acquired
experimentally. Therefore, the more powerful techniques for post-screening analysis to identify
the key features through docked compounds and to understand the binding mechanisms
provide a great potential value for drug design.

To address these issues, we presented the SiMMap method to infer the key features by a
site-moiety map describing the relationship between the moiety preferences and the physico-
chemical properties of the binding site. This method also provides the web server for public
access. According to our knowledge,SiMMap is the first public server that identifies the site-
moiety map from a query protein structure and its docked (or co-crystallized) compounds. The
server provides pocket-moiety interaction preferences (anchors) including binding pockets with
conserved interacting residues; moiety preferences; and interaction type. We verified the site-
moiety map on three targets, thymidine kinase, and estrogen receptors of antagonists and
agonists. Experimental results show that an anchor is often a hot spot and the site-moiety map
is useful to identify active compounds for these targets. We believe that the site-moiety map is
able to provide biological insights and is useful for drug discovery and lead optimization.

3.2 Method

Figure 3.1 presents an overview of the SiIMMap server for identifying the site-moiety map
with anchors, describing moiety preferences and physico-chemical properties of the binding
site, from a query protein structure and docked compounds. The server first uses checkmol

(http://merian.pch.univie.ac.at/~nhaider/cheminf/cmmm) to recognize the compound moieties
17
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Step 3: Derive an anchor
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Figure 3.1. Overview of the SiIMMap server for the site-moiety map using herpes simplex virus
type-1 thymidine kinase (TK) and 1000 docked compounds as the query. (a) Main procedure;
(b) The merged protein-compound interaction profile; (c) The pocket-moiety interaction
preferences of the anchors: H (hydrogen-bonding). Each anchor consists of a binding pocket
with conserved interacting residues, the moiety composition and anchor type; The site-moiety
map has one hydrogen-bonding (H) and three van der Waals (V) anchors for ER. Each anchor

contains the moiety structures and composition, anchor type, and key residues in the binding
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and utilizes GEMDOCK?® to generate a merged protein-compound interaction profile (Fig.
3.1b), including electrostatic (E), hydrogen-bonding (H) and van der Waals (V) interactions.
According to this profile, we infer anchor candidates by identifying the pockets with
significant interacting residues and moieties with Z-score > 1.645. The neighbor anchor
candidates, which are the same interaction type and the distances between their centers are less
than 3.5A’, are grouped into one anchor. These anchors form the site-moiety map describing
interaction preferences between compound moieties and the binding site of the query (Figs.
3.1c and 3.1d). Finally, this server provides graphic visualization for the site-moiety map;
anchors with moiety structures and compositions; pocket-moiety interactions; and the
relationship between anchors and moieties of query compounds.
3.2.1 Definitions of site-moiety map, anchor and pocket

The anchor (pocket-moiety interaction preference) is the core of a site-moiety map. An
anchor possesses three essential elements: (1) a binding pocket with conserved interacting
residues and specific physico-chemical properties; (2) moiety preferences of the pocket; (3)
pocket-moiety interaction type (E;H, or V). An anchor can be considered as "key features" for
representing the conserved binding environment element or a "hot spot" which involves
biological functions. In addition, we regard a binding pocket, which consists of several
residues significantly interacting to compound moieties, as a part of the binding site. The
binding pocket often possesses specific physico-chemical properties and geometric shape to
bind preferred moieties. The site-moiety map, which can help to assemble potential leads by
optimal steric, hydrogen-bonding, and electronic moieties, is useful for drug discovery and
understanding biological mechanisms.
3.2.2 Constructing site-moiety map

The SiMMap server performs six main steps for a query (Fig. 3.1a). Here, we used TK as
an example for describing these steps.
Generating protein-compound interaction profiles and identification of compound
moieties

First, users input a protein structure and its docked compounds. The server used checkmol
to identify moieties of docked compounds and GEMDOCK to generate E, H and V interaction

profiles. For each profile, the matrix size is NxK where N and K are the numbers of
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compounds and interacting residues of query protein, respectively. An interaction profile

matrix P(/) with type I (E, H, or V) is represented as

P P2 0 Pk
P(I) = p:2,1 p?,z p?K
Pni Py 7 Pax

where p;;is a binary value for the compound i interacting to the residue j (Fig. 4.2B). For H
and E profiles, p;; is set to 1 (green) if an atom pair between the compound 7 and the residue j
forms hydrogen-bonding or electrostatic interactions, respectively; conversely, the interaction
is set to 0 (black). For van der Waals (vdW) interaction, an interaction is set to 1 when the
energy is less than -4 (kcal/mol).

SiMMap identified consensus interactions between residues and compound moieties with
similar physical-chemical properties through the profiles. For each interacting residue (a
column of the matrix P(/)) (Fig. 3.1b), we used Z-score value to measure the interacting
conservation between this residue and moieties. The standard deviation (¢) and mean («) were
derived by random shuffling 1,000 times in a profile. The Z-score of the residue j is defined as

Z‘:ﬂ f/:ZN&

J . . \ . i=1
O, where f; is the interaction frequency and given as N .

We treated protein-compound interactions as a binomial distribution, and then consensus
interactions with statistical significance could be identified by their normal approximation.
Statistically, a binomial distribution is approximated by a normal distribution when either
p<0.5 and np>5 or p>0.5 and n(1 — p)> 5, where n is the number of trials and p is the
probability of success. Here, 7 is the number of selected compounds and p is the probability of
forming an interaction between a protein and a compound, that is, p; =1. Typically, the p values
ranged between 0.01 and 0.03 in this study. While the binomial distribution is a normal
approximation, at least 500 compounds should be selected for constructing an interaction
profile matrix.

Deriving anchor by identifying a pocket with significant interacting residues and moieties

Spatially neighbor interacting residues and moieties with statistically significant Z-score >
1.645 were referred as an anchor candidate. Neighbor anchor candidates, which are spatially

overlapped and the same anchor type, were clustered as an anchor and the anchor center is the
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weighted geometric center of their interacting compound moieties. Here, two anchors were
merged if the distance of two anchor centers is less than 3.5 A. Tn each anchor, top three
residues with the highest Z-score values were regarded as key residues forming a binding
pocket. For each anchor, we identified its moieties of docked compounds according to the
moiety library derived from checkmol, and calculated the moiety composition (Fig. 3.1c).
These anchors form the site-moiety map (Fig. 3.1d) of the query.
Outputting graphically site-moiety map and identifying active compounds

SiMMap can be applied to identify active compounds for structure-based virtual screening.
One of weaknesses of virtual screening is likely incomplete understanding of the chemistry
involved in ligand binding and the subsequently imprecise scoring algorithms. When a
compound highly agrees with the anchors of the site-moiety map, this compound often
activates or inhibits the target. The SiMMap server scores a compound by combining predicted
binding energy of GEMDOCK and the anchor score between the map and the compound. The

SiMMap score, S(i), for a compound.iis defined as
E()

SG) =D, A8, () +(-0.001) 73 0

where 4S,(i) is the anchor score of compound i in the anchor.a, » is the number of anchors, E(7)
is the docked energy of compound i, .and M is the atom number of compound i. The anchor
score is set to 1 when the compound i‘agrees-the-moiety preference of the anchor a. Here, the
anchor score and the term M"° are useful to reduce the deleterious effects of selecting high
molecular weight compounds®®. Based on SiMMap scores, we can obtain new ranks of query
compounds.
3.3 Results
3.3.1 Web service

SiMMap is an easy-to-use web server (Fig. 3.2). Users input a protein structure without
ligands in PDB format and its docked or co-crystallized compounds in MDL mol, SYBYL
mol2, or PDB format (Fig. 3.2a). These docked compounds should be generated by any
external docking methods (e.g., DOCK, FlexX, GOLD and GEMDOCK) before users
uploaded these compounds. Typically, the SiIMMap server yields a site-moiety map within 5

minutes if the number of query compounds is less than 100. This server provides the graphic
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Figure 3.2. The SiMMap server analysis results using estrogen receptor (ER) and 1000 docked
compounds as the query. (a) The user interface for uploading target protein structure and
docked compounds. (b) The site-moiety map has one hydrogen-bonding and three van der
Waals anchors for ER. Each anchor contains-the moiety structures and composition, anchor
type, and key residues in the binding pocket. (c) The details of moiety structures and residue-
moiety interactions in the HI anchor. (d) The SiMMap scores, ranks and the relationships

between anchors and moieties of query compounds.

visualization of the site-moiety map and anchors elements, including a binding pocket with
interacting residues, moiety compositions and structures, numbers of involved compounds, and
anchor types (Fig. 3.2b). For each anchor, this server shows docked conformations of
compounds and the detailed atomic interactions between pocket residues and moieties (Fig.
3.2¢). In addition, SiMMap shows the new rank and compound moiety structures fitting the
anchors for each query compound (Fig. 3.2d). SIMMap uses two open source tools for graphic

visualization: Jmol (http://www.jmol.org/) for displaying three-dimensional protein and
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compound structures with anchors and OASA (http://bkchem.zirael.org/oasa en.html) for
visualizing compound structures. The server allows users to download the anchor coordinates
in the PDB format; interaction profiles; new ranks and anchor scores of query compounds.
3.3.2 Thymidine kinase and estrogen receptor

The SiMMap server inferred the site-moiety map of TK. This map consisted of four anchors
(i.e., E1, H1, H2, and V1 (Fig. 3.1d) and the moiety composition and conserved interacting
residues of each anchor (Fig. 3.1c). For example, the E1 anchor possesses a binding pocket
with residue R222, and three moiety types (i.e., sulfuric acid monoester (40%), carboxylic
group (35%) and phosphoric acid monoester (25%)) derived from 57 compounds. Meanwhile,
the E1 includes the phosphate moiety of ATP and its residue R222 playing a major role to
interact with the substrate **>°. The preferred moiety types of an anchor are suitable groups
interacting to conserved residues of the binding pocket. The moiety preference is able to guide
the suggestion of functional group substitutions for lead structures.

We used estrogen receptor (ER), a therapeutic target for osteoporosis and breast cancer™, as
the example. Based on 1000 docked compounds and ER, the SiMMap server identifies four
anchors (H1, V1, V2, and V3) ‘and provides moiety preferences and compositions in these
anchors (Fig. 3.2b and 3.3). The HI anchor comprises three residues (E353, L387, and R394)
and five main moiety types: hydroxyl group (36%), carboxylic acid (16%), amine (7%), ketone
(7%), and sulfuric acid monoester (6%) summarized from 319 compounds. Furthermore, three
residues (L346, T347, and L525) and 839 compounds are involved in the V1 anchor, preferring
five moiety types (i.e., aromatic ring (49%), heterocyclic group (22%), alkenes (11%), phenol
(8%), and oxohetarene (4%)). The anchor V2 is a hydrophobic pocket containing [.346, F404,
and L1387, and the former two re sidues are highly conserved*'. These hydrophobic residues
interact with aromatic ring (52%), heterocyclic group (23%), phenol (12%), alkenes (5%), and
oxohetarene (3%). Finally, aromatic rings (55%), heterocyclic groups (17%), alkenes (11%),
and phenols (9%) summarized from 560 compounds often form vdW contacts with the long
side chains of M343, M421, and L525 in the anchor V3. The ring groups of antagonists are
often stabilized by the side chains of M343, L346, T347, L387, M421, and L525. In this case,
most selective estrogen receptor modulators of ER (e.g., EST 01 (raloxifene), EST 06 (LY-
326315,) and EST 05 (EM-343)) agree with these four anchors (Fig. 3.2d and 3.3c). Anchors
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Figure 3.3. The relationships between the site-moiety map and 22 co-crystallized ligands of ER.

(a) The mapping between four inferred anchors (binding pocket with conserved interacting

residues) and these 22 ligands in the active site. (b) The moieties of these 22 ligands in each

anchor. Black cell presents that the moiety of the-compound does not agree with the anchor H1.

(c) The moiety compositions of 1000 docked compounds (SiMMap) and these 22 ligands.
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Table 3.2. Comparing SiMMap with other. methods onthymidine kinase and estrogen receptor

by false-positive rates

. Thymidine kinase (TK) Estrogen receptor (ER)
True positive (%) - -
SiMMap DOCK*“ FlexX* GOLD® SiMMap DOCK*® FlexX* GOLD*
80 6.3’ 23.4 8.8 8.3 1.1 57.8 53
90 6.8 25.5 133 9.1 1.1 70.9 8.3
100 6.8 27 19.4 93 7.5 NA 23.4

. . 1
« Summarized from Bissantz et al.'’

identified by the SiMMap server often contain key pockets and moieties. To initially validate

the anchors for biological mechanisms (e.g., ligand binding and catalysis mechanisms), we

selected 15 TK and 22 ER co-crystallized ligands (Table 3.1 and Fig. 3.3). The corresponding

moieties of these co-crystallized ligands were highly matched the anchors derived from 1000

docked compounds (10 known active ligands and 990 randomly selected compounds described
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in Data sets). The site-directed mutagenesis shows that the conserved interacting residues of
the anchors are often essential for ligand binding and catalysis mechanisms. For ER target, 22
ER co-crystallized ligands contain three consistent moieties that are hydroxyl group and
aromatic rings (Fig. 3.3b). The hydroxyl group forms hydrogen bonds with R394 and E353 in
H1, and the aromatic ring yields vdW contacts with L346, L387, and F404 in V2. The other
consistent aromatic ring forms vdW contacts with L346, T347, and L525 in V1. These results
show that an anchor is often a hot spot and involved in biological functions.

To provide initial validation of the SiMMap server for virtual screening, we selected TK,
ER, and ERA with 1000 compounds as test sets. First, we compared the accuracies of SiMMap
with those of GEMDOCK on these three targets based on true positive rates. SiMMap,
combining anchor scores and docking energies (Equation 1), outperforms GEMDOCK on these
cases. We then compared SiMMap with other three programs (DOCK, FlexX, and GOLD) on
TK and ER sets. All approaches were tested using the same proteins and compound sets (Table
3.2). When the positive rate was 90%, the false positive rates were 6.8% (SiMMap), 25.5%
(DOCK), 13.3% (FlexX), and 9:1% (GOLD) for TK and were 1.1% (SiMMap), 17.4%
(DOCK), 70.9% (FlexX), and 8.3% (GOLD) for ER:

The compound, which agrees with anchors of the site-moiety map, is often able to activate
or inhibit the target protein (Tables 3.1 and 3.3). In addition, the anchor score (i.e. 45(7) defined
in Equation 1) of SiMMap can be used to reduce the ill-effect of the energy-based scoring
methods which are often biased toward both the selection of high molecular weight compounds

2526 For example, according to the SiMMap scores (Equation 1),

and charged polar compounds
the top ranks of ER, MFCD0002206 (masoprocol) and MFCD00012748 were identified as the
analogs of the active compounds (Table 3.3). The anchor score of SiMMap was helpful to
reduce the highly polar compounds (e.g., MFCD00004690 and MFCDO00013089 in ER) whose
anchor scores are low. The anchor score of SiMMap can easily combine with other energy-
based scoring functions.
3.4 Summary

The utility and feasibility of SiMMap method is demonstrated for statistically inferring

the site-moiety map describing the relationship between the moiety preferences and physico-

chemical properties of the binding site. The validation results show that the site-moiety map is
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useful to reflect biological functions and identify active compounds from thousands of
compounds. In addition, the site-moiety map can guide to assemble potential leads by optimal
steric, hydrogen-bonding, and electronic moieties. We believe that the SiMMap serve is able to
provide the biological insights of protein-ligand binding models, enrich the screening accuracy,

and guide the processes of lead optimization.
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Chapter 4
The application of site-moiety map for characterizing
protein-ligand binding sites and discovering adaptive

inhibitors for orthologous protein targets

4.1 Introduction
The expanding number of protein structures and advances in bioinformatics tools have
offered an exciting opportunity for structure-based virtual screening methods in drug
discovery™. Although there are some successful agents in the antibiotic development, few
agents act at novel molecular sites to target multiple antibiotic—resistant pathogenic bacteria®"
*. However, the screening tools are often designed for one-target paradigm and the scoring
methods are highly target-dependent ‘and energy-based, and cannot persuasively identify true
leads, which results in a lower success rate *' . To discover adaptive inhibitors of multiple
targets is an emergent task for drug design®®*®
SiMMap modeling provides an in silico post-screening analysis to establish a target binding
site-moiety map that comprises three. crucial elements (conserved interacting residues, the
moiety preference, and pocket-moiety interaction type [electrostatic (E), hydrogen-bonding (H),

or van der Waals (V)])49. For structural-based virtual screening 129,45

, this method offers a
more efficient solution for drug discovery, particularly in the absence of a pharmacophore
model describing the structure-activity relationship extracted from experiments.

We introduce the concept of orthSiMMap to represent the conserved binding environment
elements or "hot spots" among orthologous targets. Identification of these consensus features in
the orthSiMMap can then be used for identifying novel binding partners of orthologous targets.
We then developed a method to extract the conserved features of the ligand-binding
environments of orthologous targets, thus establishing the orthSiMMap using structure-based
virtual screening. We focused on shikimate kinase (EC 2.7.1.71), the fifth enzyme in the

shikimate pathway that is present in bacteria, fungi, and plants, but not animals. This

expression pattern makes shikimate kinase an attractive target for the development of new
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antimicrobial agents, herbicides, and antiparasitic agents’’. In using these models, six potent
inhibitors with low ICsy values (<8.0 uM) were identified. Site-directed mutagenesis studies
revealed that critical conserved interacting residues contribute to specific pocket-moiety
interaction anchors (S15, D33, F48, R57, R116, and R132). These results illustrate a robust
orthSiMMap-based approach to identify selective SK inhibitors and shed insight to a new
induced-fit mechanism by an inhibitor. The works of the biological assay and the crystal
structures in this chapter are done by Dr. Wen-Ching Wang of National Tsing Hua University”".
4.2 orthSiMMap methods

The main steps of the orthSiMMap method for producing SiMMaps and an orthSiMMap
from orthologous targets are described as follows (Fig. 4.1):

26,35
7 to

(1) Virtual screening of orthologous targets. We used in-house GEMDOCK program
screen Maybridge (65,947 compounds) and NCI (236,962 compounds) databases for both
HpSK and MtSK (apo/closed forms). The.top-ranked 2% (6,000 compounds) of each target
were selected from the screening results for the subsequent protein-compound profiling.

(2) Profiling analysis of target-compound- interactions. The target-compound interactions of
clustered top ranked ~3,000 compounds by discarding similar compounds were assessed to
derive the anchor with the interacting type, including hydrogen-bonding, electrostatic, and
van der Waals interactions. For H and E profiles, an‘interaction is set to 1 (green) if an atom
pair forms hydrogen-bonding or electrostatic interactions; conversely, the interaction is set
to 0 (black). For van der Waals interaction, an interaction is set to 1 when the energy is less
than -4 (kcal/mol) (Fig. 4.1b).

(3) Identification of anchors (Fig. 4.1c). We identified consensus interactions between residues
and compound moieties through the profiles. For an interacting residue, we used Z-score to
measure the interacting conservation between the residue and moieties. The interaction is
treated as a binomial distribution that is approximated to a normal distribution when either
p=0.5 and np>5 or p>0.5 and n(1—p)>5, where n is the number of selected compounds and p
is the probability of forming an interaction. Theoretically, at least 500 compounds should be
selected for constructing a target-compound interaction profile. Spatially neighbor interact-
ing residues and moieties with statistically significant Z-score > 1.645 were referred as an

anchor. A set of anchors derived from the target-compound interacting profile can be used
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to establish a site-moiety map for each orthologous target.
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Figure 4.1. Framework of the orthSiMMap method. In Step 1, GEMDOCK was used to
generate docked poses for HpSK and MtSK by screening compound libraries (Maybridge and
NCI). For each target (HpSK or MtSK), the protein-compound interacting profile was derived
from fusing the top ranked 5% (~3000) compounds. In Step 3, conserved interactions of the
target protein and chemical moieties of ligands are identified to deduce the anchors of HpSK
and MtSK. The orthSiMMap is constructed based on the conserved features between
orthologous target site-moiety maps, which will be used to select candidate compounds for the

enzymatic assay. Finally, the model is refined based on the bioassay of candidate compounds.

(4) Establishment of the orthSiMMap of the orthologous targets (Fig. 4.1d and 4.1¢). The supe-
rimposed SiMMaps (anchors) of orthologous proteins (HpSK and MtSK) revealed an over-
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lapping region of matched anchors which form the orthSiMMap (Fig. 4.2c¢ and 4.2d). For
the compound x, the orthSiMMap score is defined as CAS(x) = ijlwiASl.(x) —-0.001E(x),

where w; is the conservation of the anchor i on orthologous targets; 4Si(x) is the anchor
score of the compound x in the anchor i; @ is the number of anchors; E(x) is the docked
energy of the compound x. The orthSiMMap rank of the compound x was obtained by sort-
ing CAS(x) into the descending order.

(5) Inhibition assay. We selected top-ranked compounds using rank-based consensus scoring
(RCS) for inhibitory assay. For a compound x, we calculated its RCS by combining the

ranks of m (apo/closed) forms of »n orthologous targets as follows:
SR(x):Z:L1 Z:lleCk,- (x)/2mn , where R (x) is the orthSiMMap rank of x on the &

(apo/closed) form of the target i. Here, m and n are 2. We yielded the RCS rank of the com-

pound x by sorting Sk(x) into the ascending order:
(6) Refinement of orthSiMMaps. Active and inactive compounds from the enzyme inhibition

assay were used to evaluate and refine the orthSiMMaps.
4.3 Results
4.3.1 orthSiMMap method

We have previously reported "SiMMap" to construct the site-moiety map of a target

protein from a set of screening compounds. This map consists of several anchors, which is
useful in providing biological insights and guiding the process in drug discovery including hit
search and lead optimization®. Here, an orthSiMMap method is established to derive a core
site-moiety map, referred as orthSiMMap, from orthologous site-moiety maps by structure-
based virtual screening on these targets (Fig. 4.2 and Fig. 4.1). The consensus anchors of an
orthSiMMap derived from multiple orthologous targets can be considered as "key features"
that represent the conserved binding environment involved in biological functions. An
orthSiMMap is defined by a set of consensus anchors between orthologous proteins and
compound moieties. The following criteria are considered: (1) screening targets are
orthologous proteins; (2) the binding sites of orthologous targets share conserved physical-
chemical features; (3) the site-moiety maps of orthologous targets often share comparable

anchors with respect to their sites and crucial protein-ligand interactions.
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Figure 4.2. Shikimate kinase orthSiMMaps. (a) Superimposed apo-form anchors of HpSK and
MtSK. (b) Superimposed closed-form anchors of HpSK and MtSK. (c) The apo-form
orthSiMMap model and (d) closed-form orthSiMMap include six consensus anchors derived
from consensus anchors (a) and (b), respectively. Each consensus anchor shares conserved
residues between HpSK and MtSK and the same type of binding environment. (e) Features of
the six consensus anchors of the apo-form orthSiMMap. Each of T groups (T1-T4) represents
a given chemical moiety and T-O* indicates other chemical groups. H1, V1, and H2 are
situated at the ATP-binding site, while H3, V2, and E1 are at the shikimate-binding site. Each
consensus anchor includes conserved interacting residues (@) and the major chemical moieties

of the compound candidates.

For each orthologous target, we used top ranked 2% (~3000) compounds obtained by
screening compound libraries to analyze target-compound interaction profiles in order to
establish the site-moiety map (SiMMap) comprised of several anchors (Fig. 4.2a and 4.2b).

Each anchor represents a local binding environment with specific physico-chemical property or
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pharmacophore spot, which is derived by identifying statistically significant interacting residues
and compound moieties (Fig. 4.3). The orthSiMMap (Fig. 4.2c and 4.2d) that consists of the
matched anchors, referred as "hot spots", of orthologous proteins is generated by extracting the
consensus anchors of orthologous SiMMaps. We were able to derive the orthSiMMaps of apo-
form and closed-form HpSK and MtSK according to the above steps.

To validate the orthSiMMap method, we collected a dataset of 37 orthologous target pairs
(Table 4.1) with biological function annotations summarized from UniProt™>. Experimental
results show that the consensus anchors of an orthSiMMap often reveal the binding pocket with
conserved interacting residues involving biological functions.

4.3.2 Orthologous SiMMaps and orthSiMMaps of SKs

Figure 4.2 shows the orthSiMMaps of SKs. We first generated the apo-form SiMMaps of
HpSK (6 anchors) and MtSK (7 anchors), respectively, allowing us to derive the orthSiMMap
with 6 consensus anchors (Fig. 4.2a and 4.2¢). In parallel, the closed-form orthSiMMap with 6
consensus anchors was also derived (Fig. 4.2b and 4.2d). It is noted that the apo-form and
closed-form orthSiMMaps share six comparable -anchors' (hot spots): E1, HI-H3, V1, and V2
(Fig. 4.2c and 4.2d). H1, H2, and V1 sit at the ATP site, while H3, V2, and E1 are situated at the
shikimate site (Fig. 4.3). The protein-ligand relationship was.analyzed for each hot spot; a set of
chemically related entities that contribute to intermolecular interactions were then identified
(Fig. 4.2e). Our results support the notion that-a hot spot shares a unique chemical-physical
binding environment, which may be used to guide combinatorial library design for further
compound development and lead optimization. The compounds moieties, anchors, SiMMaps

and orthSiMMaps are available at http://simmap.life.nctu.edu.tw/orthsimmap/.

Of the six consensus anchors (Fig. 4.2e), E1 is a negatively charged site that interacts with
R57 (R58 in MtSK), R116 (R117 in MtSK), and R132 in HpSK (R136 in MtSK); these
arginines are highly conserved in SKs and are critical for binding to shikimate™. The chemical
entities on E1 consisted of carboxyl, sulfonate, and phosphate groups. H1 is enclosed with a
tight turn (Walker A motif) that binds the p-phosphate of ATP>. The identified moieties were
carboxylic amide, sulfonate ester, carboxyl acid, and ketone. H2 is situated between H1 and H3
and possesses a hydrogen bonding environment from Walker A motif (K14 and S15 in HpSK;
K15 and S16 in MtSK) and a DT/SD motif (D31 and D33 in HpSK; D32 and D34 in MtSK).
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Figure 4.3. The site-moiety maps of (a) HpSK and (b) MtSK. Each anchor represents one of
three binding environments (electrostatic: blue; hydrogen-bonding: green; van der Waals:
black). The distribution of identified chemical moieties for each anchor is shown as a pie chart.
For HpSK, H1, V1, and H2 are situated at the nucleotide site, while H3, V2, and E1 are at the
shikimate site. For MtSK, H1, V1, and H2 are at nucleotide site, while H3, V2, and E1 are at

the shikimate site.
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Table 4.1. Summary of 37 pairs of orthologous targets

o Gene Species PDB code Bound
ID  Description .
Name A B A B ligand
1 3-phosphoshikimate 1- aroA Escherichia coli ~ Agrobacterium 1x8t  2pgc  RCI
carboxyvinyl transferase sp.
2 Adenosine deaminase Ada Mus musculus Bos taurus ladm lkrm  PRH
3 Androgen receptor AR Homo sapiens Rattus 1t5z 1137 DHT
norvegicus
4 Arginase-1 ARGI Homo sapiens Rattus 2pll 1d3v.  ABH
norvegicus
5 Aspartate aminotransferase  aspC Thermus Escherichiacoli  1bkg  laia PMP
thermophilus
6 ATP-dependent hsl hslU Escherichia coli  Haemophilus 1do0  1g3i  ATP
protease ATP-binding influenzae
subunit hslU
7 Bifunctional protein glmU  glmU Haemophilus Escherichia coli ~ 2vO0i 1fwy UDI
influenzae
8 cAMP-dependent protein Prkaca  Mus musculus Bos taurus latp 1q24  ATP
kinase catalytic subunit a
9 Cytochrome b MT- Gallus gallus Bos taurus 3171 Isgp  AZO
CYB
10 Dihydrofolate reductase DHFR . Homo sapiens Mus musculus 3gyf  3k47 D09
11 Dihydrofolate reductase folA Escherichia coli . Mycobacterium  1ddr  1df7  MTX
tuberculosis
12 DNA mismatch repair mutS Escherichia coli  Thermus le3m 1fw6  ADP
protein mutS aquaticus
13 Elongation factor Tu-A tufA Thermus Escherichia coli  1ha3  1d8t  GDP
thermophilus
14 Fatty acid-binding protein, ~Fabp4 © . Mus musculus Homo sapiens 1lie 2hnx  PLM
adipocyte
15  Fructose-1,6- FBP1 Sus scrofa Homo sapiens leyj 1fta AMP
bisphosphatase 1
16  Glucose-6-phosphate Gpi Mus musculus Oryctolagus 2cxr 1dgr  6PG
isomerase cuniculus
17  Hemagglutinin- HN Newcastle Newcastle le8v  lusr DAN
neuraminidase disease virus disease virus
18  HTH-type transcriptional gqacR Staphylococcus  Staphylococcus  1jt6 3brl  DEQ
regulator qacR aureus aureus
19 Inositol-1- suhB Methanocaldoco  Archaeoglobus 1gbh  1lbx  IPD
monophosphatase ccus jannaschii  fulgidus
20  Methionine map Escherichia coli Mycobacterium  1xnz  3iu7 FCD
aminopeptidase tuberculosis
21  Neuraminidase NA Influenza A Influenza A 1Innc 3b7e ZMR
virus (H11N9) virus (HIN1)
22 NH(3)-dependent NAD(+) nadE Bacillus subtilis  Bacillus 1ih8 2pz8  APC
synthetase anthracis
23 Orotidine 5'-phosphate pyrF Methanobacteri ~ Pyrococcus 1lol 2czf  XMP
decarboxylase um horikoshii

35



thermoautotroph
icum

24 Peptide deformylase def Escherichia coli  Leptospira 1g2a 1szz  BB2
interrogans
25  Protein farnesyltransferase  Fntb Rattus Homo sapiens 1d8d 1tn6  FII
subunit beta norvegicus
26 Protein recA recA Mycobacterium  Mycobacterium  lubg  Imo6 DTP
smegmatis tuberculosis
27  Purine nucleoside PNP Bos taurus Homo sapiens 1a9s Irct NOS
phosphorylase
28  Pyridoxal kinase PDXK  Homo sapiens Ovis aries 2yxu  llhr ATP
29  Ribulose bisphosphate rbcL Nicotiana Spinacia Irle lirl CAP
carboxylase large chain tabacum oleracea
30  Shikimate kinase aroK Helicobacter Mycobacterium  hpsa lzyu  S3P
pylori tuberculosis
31  Thymidine kinase TK Human Equine le2j Ip6x  THM
herpesvirus 1 herpesvirus 4
32 Thymidylate synthase thyA Escherichia coli  Lactobacillus laiq llca CB3
casei
33 Tyrosine-protein kinase Abll Mus musculus Homo sapiens lopk lopl P16
ABLI
34  UDP-glucose 4-epimerase  galE Escherichia-coli " Homo sapiens 11 1hzj UD1
35  UDP-N-acetylglucosamine murA Enterobacter Escherichiacoli  1ryw  3iss EPU
1-carboxyvinyltransferase cloacae
36  Vitamin D3 receptor VDR Homo sapiens Rattus 1dbl  1rk3 VDX
norvegicus
37  Xylose isomerase xylA Streptomyces Arthrobacter sp.  1xig Ixlc XYL
rubiginosus

Amide, ketone, sulfonate ester, and azine-contained compounds fit into this site. H3 is situated

above the central sheet in which two conserved residues (D33, and G80 in HpSK; D34, G80 in

MtSK) contribute to H3. Amide, sulfonate ester, and ester groups were frequently identified.

from Walker A motif. V2, in proximity to H3, is situated at the border between shikimate and
the nucleotide binding regions. V1 and V2, allowing the interactions with large chemical
groups, prefer aromatic groups (over 60% on average). Analysis of the closed-form SiMMaps

revealed that E114 and R116 (T115 and R117 in MtSK) located in LID are conserved

interacting residues.
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Figure 4.4. Structures of the 38 inactive compounds from the NCI and Maybridge databases.

4.3.3 Inhibitors and inhibition assay

Following the SiMMap analysis, compounds were rescored using the rank-based consensus
scoring (RCS™), which combines energy-based and anchor-based scoring functions. Since a
compound simultaneously docked into apo and closed-form binding sites of orthSiMMaps was
considered as a potentially useful hit, we selected common top-ranked compounds from the
closed-form and apo-form orthSiMMap analysis for subsequent bioassay. After RCS ranks in
both the Maybridge and NCI databases, 48 compounds that were available (either requested or
purchased) were then subjected to MtSK and HpSK inhibitory assays (Fig. 4.4). Among those,
10 compounds had an ICsy value = 100 uM for both HpSK and MtSK (Table 4.2), in which
six (NSC45611, NSC162535, NSC45612, NSC45174, NSC45547, and NSC45609)
demonstrated 1Csy values of VII10 puM (Table 4.3). In parallel, 65 existing kinase inhibitors

were tested to evaluate their inhibitory effects against shikimate kinase. Of the two compounds
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(AG538 and GW5074) that showed inhibitory effects, AG538 had a low 1Csy value.

Enzymatic kinetic analysis showed that NSC45611, NSC162535, NSC45612, NSC45174,
and AG538 were competitive inhibitors of ATP, in agreement with the docked poses (Table 4.2
and Table 4.3). Of these, NSC45611, NSC162535 and NSC45612 also competed with
shikimate. Notably, NSC45611, NSC162535, NSC45612 and NSC45174 had low ICsy and oK;
values, showing potent inhibition. Figure 4.5 shows that three (NSC45611, NSC162535, and
NSC45612) had lower values of ICsy (< 10 uM) and fit well over five hot spots (H1, V1, H3,
V2, and E1). For those with ICsy > 20 uM, these compounds lack of negatively charged groups
to form electrostatic interactions with arginines (R57 and R136 in HpSK) on E1. On the other
hand, kinase inhibitors AG538 and GW5074 did not occupy the shikimate site. Moieties with
1-3 rings were present at V1 and V2, yielding a number of vdW contacts. The binding groups
of active inhibitors matched well with the identified moieties found from the consensus
anchors. For example, the sulfonate groups of NSC162535, NSC45611, and NSC45612 were
found to occupy H1. The moieties of NSC162535 (SO; group), NSC45611 (CO," group), and
NSC45612 (CO;,” group) occupied El.

Table 4.2. Summary of 12 inhibitors with inhibition assay, compound structures, docked poses,

and consensus anchors

SK ICs Docked pose
Compound structure ATP site SKM site
HI V1 H2 H3 V2 El

Compound ID

species  (uM)*

NH, SOy coo
NSCdsell P 8 Q@@@

Mt 1.5

Hp 49 e O NHo O NH.
NSC162535 s

Mt 1.6

Hp 61 058 OH N /§OH
NSC45612 el

Mt 28

a
Hp 7.8 oH OH
(@]

Nscasita u 2, SO&_

Hp 7.8 O™ 2
NSC45547 RATA W W

Mt 34 0,8
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Hp 7.0
NSC45609

Mt 2.0

Hp 238
RH00037

Mt <100

Hp 40.2
RH00016

Mt <100

Hp <100
GKO01385

Mt <100

H <100
SPB01099 P

Mt <100

Hp 23

AG538

Mt 0.4

Hp 314
GW5074

Mt 296

* The inhibition assay is done by Dr. Wen-Ching Wang of National Tsing Hua University’'.

Table 4.3. Properties of potent inhibitors for HpSK and MtSK.*

Compound ID SK Inhibition mode® ~ aKi,ATP aKi, SKM
species ATP SKM (M) (LM)
H 1.1 1.7
NSC45611 Mlz : : . 17
H 1.9 1.8
NSC162535 M‘; : : . 8
H 2.0 2.4
NSC45612 MII : : > 4
H 1.7 12.8
NSC45174 Mfi : E 7 2
H 3.1 54
AG538 M‘i - E > o

“ The inhibition assay is done by Dr. Wen-Ching Wang of National Tsing Hua University”".

°m: Competitive inhibition; o: Non-competitive inhibition
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Figure 4.5. Characterization of shikimate Kinase inhibitors by enzyme assay, orthSiMMaps,
site-mutagenesis studies and analogues. (a—c). Structures of three inhibitors, NSC162535,
NSC45611, and NSC45612. (d—f) The inhibitions of these compounds were analyzed by
enzyme ICsg test on HpSK (filled) and MtSK. (g—1) The relationship between anchors and the
docked mode of each inhibitor for HpSK. These compounds consistently include two negative
charge moieties (SO3™ or CO;") that form hydrogen bonds with conserved interactions residues
of anchors E1 and HI. (j) Comparison of relative activities of HpSK mutants. The conserved
interacting residues for each anchor were mutated, respectively. R57, R132, R116, and F48
located in the shikimate site are critical for the enzymatic functions. (k) The potency of
NSC162535 analogues. The substitution moieties of analogues are indicated in black. Those
that lack the E1 moiety greatly lost the inhibitory effects (ICso>100 uM). The inhibition assay
is done by Dr. Wen-Ching Wang of National Tsing Hua University”".
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4.3.4 Site-directed mutagenesis

A consensus anchor of orthologous targets, identified from the conserved binding pockets
shared with conserved interacting residues and specific physico-chemical property, usually
engages with specific functions in the enzymatic catalysis. We sought to investigate the roles of
identified consensus anchor residues of the orthSiMMaps in catalysis. The site-directed
mutagenesis study is done by Dr. Wen-Ching Wang of National Tsing Hua University”'. We
first investigated mutants of E1 residues (R57, R116, and R132) that contact with shikimate”.
Enzymatic analysis revealed that these arginines had extremely low activity (Fig. 4.5j),
suggesting the importance of these residues in catalysis. Indeed, R117 of MtSK that
corresponds to R116 of HpSK has thus been suggested as a primary candidate to stabilize the
transition-state intermediate™.

For the H3 (D33) and V2 (F48) residues, D33A completely lost the enzymatic activity
while F48A exhibited hardly any detectable activity (1%). D33 and F48 are in direct contact
with shikimate. More importantly, it should be noted that D33 forms a hydrogen bond to the 3-
OH group of shikimate, which may increase the nucleophilicity of the O atom or accept the
proton from the 3-OH group of shikimate, facilitating the catalysis. E114A, a LID residue
whose side chain faces the solvent, retained 82% relative activity. On the other hand, the F48
side chain contacts with those from several residues neatby (V44, E53, F56, R57 and P117),
which may form a stable platform to interact with the ligand for subsequent catalytic reaction.

We then evaluated residues from H1, H2, and V1 located at the nucleotide site. Hl
residues are primarily from the Walker A motif (P loop; residues 11-16, GSGKSS) surrounding
the phosphate groups of the nucleotides. Of the three mutants (S12A, S15A, and S16A), S12A
and S16A remained >50% of the relative activity, while S15A had extremely low activity (1%).
The S15 side chain resides nearby the B-phosphate of ADP. Furthermore, the adjacent lysine
(K14) corresponding to K15 of MtSK has been identified as a critical catalytic residue in MtSK
since its side chain points toward the y-phosphate®®. The other H2 mutant D31A retained 62%
of the relative activity (62%), possibly due to its remote location to the phosphate group. For
V1 that is just next to H1, several H1 residues are also shared by V1. Enzymatic analysis
showed that M10A remained 38% relative activity. These results suggest that the conserved

interacting residues from E1 (R57, R116 and R132), H1 (S15 and R116), H2 (S15 and D33),
41



H3 (D33), V1 (S15) and V2 (F48) contribute significantly to catalytic power and substrate
binding.
4.3.5 Analogues assay and orthSiMMap

To validate the moiety preferences of consensus anchors, we identified four analogues

(NSC45547, NSC45609, NSC37215, and NSC45208) of NSC162535 for inhibitory assays (Fig.
4.5k). NSC45547 and NSC45609 that occupy E1 (SO;3™ group) and H1 (SO;™ and NO; groups)
retained good ICsy values (7.8 and 7.0 uM for HpSK; 3.4 and 2.0 uM for MtSK). Conversely,
NSC37215 and NSC45208, that cannot anchor at E1, lost the inhibitory.
To evaluate the significance of pocket-moiety interaction preferences of consensus anchors in
the orthSiMMaps, we performed clustering analysis on 27 inhibitory assay compounds. These
compounds can be roughly clustered into three groups (Fig. 4.6). The potent inhibitors of group
I (NSC162535, NSC45609, NSC45547, NSC45174, NSC45611, and NSC45612) match more
than 5 consensus anchors (Fig. 4.5g-1, and. Table 4.2). For Group II compounds (RH00037,
RHO00016, GK01385, and SPB01099), each compound matches four of six anchors; Group III
are kinase inhibitors (AG538 and-GW5074) and these compounds share anchors of ATP site.
For inactive compounds, there “are fewer matched consensus anchors in the HpSK/MtSK
(usually 4), particularly E1 is the least seen. While the inhibitors of group I and II agreed with
anchors of ATP site and shikimate site, the kinetic assay showed competitive inhibitions for ATP
and shikimate acid (Table 4.3). The kinase inhibitors of group III occupied the anchors of ATP
site, and only showed the competitive inhibitions for ATP. Generally, the pocket environment of
ATP is conserved for kinase family, and the inhibitors of group III also have the broadband
inhibition for multiple kinases, such as the inhibition of AG538 observed on insulin-like growth
factor-1 receptor (IGF-1R)”’, IR, EGFR®, and Src kinases’.

While there are the same number of consensus anchors (E1, H1, H2, H3, V1 and V2), the
spatial arrangement of these anchors were closer in the closed form (Fig. 4.2c¢ and 4.2d).
Residues (D31 and D33) that contribute to H2 of the apo form were in closer proximity in the
closed conformation, resulting in a reduced volume at this site. Likewise, the corresponding site
at V2 surrounded by F48, G80, and G81 in HpSK had less space in the closed form, hindering
the accommodation of large moieties carrying one or two rings at this site. The above evidences

demonstrate that induced LID conformation of shikimate kinases was sensitive in the structure-
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based drug discovery strategy.
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Figure 4.6. Interaction profiles between selected anchor residues and 27 tested compounds. (a)
The anchor profile of tested compounds on shikimate kinases. (b) Group I: the NCI compounds
(orange). (¢) Group II: the Maybridge compounds (yellow). (d) Group III: kinase inhibitors
(cyan). The NCI compounds consistently occupy anchors E1 and V2 locating in both ATP and
shikimate sites. Except for NSC45174, the NCI compounds are competitive inhibitors with
both ATP and shikimate. For the Maybridge compounds, none form electrostatic interactions
with R57 and R132 on the consensus anchor E1. The two kinase compounds are located at the
ATP site, in good agreement with the kinetic results showing that they exhibited competitive

inhibition with ATP and noncompetitive inhibition with shikimate.

4.3.6 Structural mechanism of the inhibitor binding for shikimate kinases

Superposition of various structures (apo HpSK, HpSK:-shikimate-PO4, HpSK-S3P-ADP,
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and E114A-162535) reveals a significant conformational change in the LID-containing
segment after 4 of the CORE domain (residues 101 to 138; a5, LID and a6) (Fig. 4.7).
Furthermore, the SB region (residues 32—60) shows a small rotation among the different
unliganded/liganded states, in accord with MtSK structures™.

Of the three conserved arginines (R57, R116, and R132), it is noted the Ca atom of R57
superimposes relatively well, while that of R132 has a small shift among various structures
(Fig. 4.7a-4.7d). A shorter Ca-atom (R57-R132) distance (~0.6 A) is noted for HpSK-S3P-ADP
and HpSK-shikimate-PO4 as compared to the apo-form HpSK. On the other hand, there is a
significant drift for R116 due to the distinct conformations of the LID loop (Fig. 4.7a-4.7d).
Our results suggest that these arginines contribute to the movement of the lid region and the
shikimate-binding domain upon ligand binding. R116, when visible, makes a significant shift
to form hydrogen-bonding interactions with various ligands in the binding pocket: (i) shikimate
in HpSK:-shikimate-POy; (ii) B-phosphate of ADP in HpSK-S3P-ADP; and (iii) NSC162535 in
E114A-162535. In the MtSK-shikimate:AMPPCP structure, a direct contact is also observed
between R117 (corresponding to-R116-in HpSK) and' y-phosphate of AMPPCP, an ATP
analogue, which supports its catalytic role in the y-phosphoryl transfer’.

To evaluate whether NSC162535 will come in contact with R116 in other forms, we have
docked NSC162535 into the binding pockets of various HpSK structures (Fig. 4.7e-4.71). In the
apo form, HpSK with a flexible LID presents a wide-opening pocket, allowing entry of
promising substrates (Figs. 4.7a, 4.7e and 4.7j). No close contacts are found between R116 and
the docked NSC162535 in the binding pockets of the apo and HpSK-shikimate-PO, forms (Fig.
4.7e and 4.7f). In the HpSK-S3P-ADP state, NSC162535 is docked into a site where the Nn1
and Nn2 of the guanidino group in R116 make no significant contacts. NSC162535, on the
other hand, is docked into a comparable site in the E114A-162535 form, where it contacts
directly with the Nn1 and Nn2 atoms of R116 just like that of the crystal structure. Thus, it is
likely that R116 plays a crucial role during the course of a conformational cycle in conducting
a catalytic event (Fig. 4.71 and 4.7j). Upon diffusion into the binding pocket, NSC162535 that

carries two SO;3™ and a -N=N- groups may bind to the active site, interact with R57 and R132,
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Figure 4.7. Probing the affinity pockets in HpSK. (a-d) The binding pockets of HpSK (a),
HpSK-shikimate-SO4 (b), HpSK-S3P-ADP (c), and E114A-162535 (d) structures. The bound
ligands, D33, F48, R57, R116, and R132 are drawn as sticks. The LID segments (residues
109—123) are drawn as the ribbon structures. (e—h) The docked NSC162535 models in the
binding pockets of HpSK (e), HpSK-shikimate-SO4 (f), HpSK-S3P-ADP (g), and
E114A-162535 (h) structures. Superposition of three residues (R57, R116, and R132), docked
and bound NSC162535 among HpSK (blue), HpSK-SKM-SO, (yellow), HpSK-S3P-ADP
(cyan), and E114A-162535 (orange) structures. (i) Superimposed docked structures (e—h). The
conformation of LID segment (residues 113-119, ribbon) having R116 (thick stick)

demonstrates the greatest conformational changes induced by bound ligands. (j) Schematic
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diagram of induced-fit conformational changes upon binding to ligands. The view of LID
regions corresponding to apo HpSK, HpSK-S3P-ADP, and E114A-162535 is colored as blue,
cyan, and orange, respectively. The crystallized structures studies are done by Dr. Wen-Ching

Wang of National Tsing Hua University.

and then trigger a conformational change cycle. As a result, R116 along with R57 and R132
will trap the inhibitor, yielding an optimized anchor (E1). These results also suggest an
unusually elastic LID region, which allows accommodating various ligands, as demonstrated
here. In this section, the crystallized structures studies are done by Dr. Wen-Ching Wang of
National Tsing Hua University.

4.3.7 Performance of the orthSiMMap method

We then evaluated the accuracy of the orthSiMMap approach. The orthSiMMap score (solid
lines) significantly outperformed those (dashed lines) of energy-based scoring methods, which
are often used in docking tools, on apo-form HpSK and MtSK (Fig. 4.8a). The average
enrichments of 3.73 (HpSK), 1.59«MtSK),-and 2:74 (fusion-of HpSK and MtSK) were obtained
using energy-based scoring methods, as compared to 11.18 (HpSK), 35.51 (MtSK), and 93.69
(fusion of HpSK and MtSK) “using /the orthSiMMap scoring method. Additionally, the
orthSiMMap scores exhibited a higher accuracy than that of the SiMMap score from a single
target (HpSK or MtSK).

The orthSiMMap is able to reduce the deleterious effects of screening ligand structures that
are rich in charged or polar atoms. Generally, energy-based scoring functions favor the selection
of high-molecular-weight compounds yielding high vdW potentials, as well as polar compounds
that produce hydrogen-bonding and/or electrostatic potentials®®. The average molecular weights
of the top ranked 100 compounds of the orthSiMMap and the energy-based scoring methods
were 459.9 and 532.6, respectively; the average numbers of polar atoms were 11.3
(orthSiMMap method) and 14.1 (energy-based method) (Fig. 4.8b,c). The ranks of those 10
active compounds were much higher in the orthSiMMap scoring analysis than in the energy-
based analysis. It should be noted that NSC162535 was ranked as 1 and 1821 using the apo-
form orthSiMMap and energy-based scoring methods, respectively (Table 4.4).
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Figure 4.8. Performance of the orthSiMMap method on apo-form HpSK and MtSK. (a) The

true-hit rates of energy-based and orthSiMMap scoring approaches. The orthSiMMap scores
(solid line) of adaptive inhibitors significantly. outperform energy-based scores (dashed line)
using the top ranked 6000 compounds by combining.the Maybridge and NCI databases. (b)
Distribution of number of polar atoms, and (c¢) molecular weight of top 100 compounds from

orthSiMMap scores and energy-based score.

Table 4.4. The ranks of active compounds using orthSiMMap, energy-bases, and combination

scoring methods for apo and closed forms of HpSK and MtSK

Apo form Closed form ]
Compound ID  Compound structure - - RCS*®
orthSiMMap  Energy orthSiMMap  Energy
NSCASOTT  woe O Chon 48 435 515 827 96
HO HO
NSC162535 e 1 1821 242 253 25
038 0,8
NSC45612 3 %E)U ' 32 106 238 229 31
)

OH OH
NSC45174 u g, o0, 38 162 737 110 147

47



HO
NSC45547 ATA e e 130 5999 308 1540 67

e}
HO HQ
NSC45609 @ 18 4017 5 17 3
0,8 0,8
RF00037 o 2 K L9 786 876 891 1549 371
Ho§ L
@
RH00016 @A 3 3765 6000 1219 5824 1837
N
GKO01385 @ 286 1774 730 49 199
o cl N\HZOH
SPB01099 BoBen 117 5940 68 2871 19

NO,

* The rank is the rank combination of orthSiMMap and energy.

4.4 Summary

The largest obstacle by far in structure-based drug discovery is the relatively low hit rates
in scoring methods due to the lack.of adequate quantities of binding partners for a given target.
In other words, there is no adequate training set to establish the veracity or utility of an
algorithm. Under these circumstances, the accuracy of a given individual scoring function is
generally unknown and/or cannot be evaluated at a critical point. The current emphasis of the
orthSiMMap scoring developed here thus provides a useful index to improve the screening
accuracy for identification of adaptive inhibitors when the target proteins shared conserved
binding sites. Through the employment of this developed method, we successfully found six
new potent inhibitors (<8.0 uM) of HpSK and MtSK. Two of the 65 kinase inhibitors were also
found to inhibit both HpSK and MtSK activity. The finding that NSC45611, NSC162535, and
NSC45612 were competitive inhibitors of ATP and shikimate suggests that they belong to a
novel class of shikimate kinase inhibitors. Based on the novel inhibitor - NSC162535, the
inhibitor complex crystal structure, E114A-162535, was determined by Dr. Wang’s group of
National Tsing Hua University. These results illustrate a robust orthSiMMap-based approach to

identify selective kinase inhibitors.
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Table 4.5. Some selected top-ranked compounds using orthSiMMap, energy-bases, and

combination scoring methods for apo and closed forms of HpSK and MtSK

Apo form Closed form

C dID C d struct RCS * Bi
Ompoun Ompoun structure 1S1MMap Energy 181MMap Energy loassay
NSC131133 ot 2 2153 7 456 | b
%S\iuwor
NSC407257 f\m ) 3 91 17 317 2 ]

NSC644745 @Q)f(@/ 430 1 3152 745 1085 -

NSC714539 ?*@ o 431 3 1 9 64 Inactive
NSC524127 L 920 3090 2 189 175 -
NO,

TR0, :

NSC2460 e T 313 2633 4 2073 49 Inactive
‘EJ\)TO'
N o

ZINC05823979 BT 1321 11578 g 1021 265 -
NSC83262 o T 1 n280 20 1 5 .
NSC16220 ey eae- /== 5|2 10 2 137 Inactive

O
NSC82523 R H 13 170 15 238 4 Inactive
'ZOAP/©/ @/Q)L

NSC624285 ;W To 39 19 22 8 8 -
o A,
NSC85597 Q 28 68 31 476 6 -
'OT(\O:Q/

* The rank is the rank combination of orthSiMMap and energy.

® The compound is not tested.

The developed orthSiMMap scoring method appears to outperform the energy-based
method (Tables 4.4 and 4.5). Of six potent inhibitors, it was interesting to find that aside from
NSC45609, the others have a higher rank in the apo-form than in the closed-form orthSiMMap
scoring analysis. Additionally, the top-ranked inhibitors from the apo-form orthSiMMap
scoring analysis often possess larger moieties (e.g. naphthalene or nitrobenzene) at both sides
as opposed to those with a relatively small moiety (e.g. amide or aliphatic chain). The closed-

form orthSiMMap scoring analysis has, nonetheless, yielded useful hits including NSC45609
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and SPB01099.

P-loop kinase fold consists of functionally diverse kinase classes, such as shikimate kinase,
NTPases and GTPases®. They frequently share conserved binding environments (e.g., P-loop
and walker A/B motifs) for interacting with partners (e.g., small compounds and proteins). The
molecules inhibit P-loop kinases that play a key role in various diseases, such as cancer,
cardiovascular diseases, gastric diseases or infections. Although a number of inhibitors in

clinical trials "%

or on the market (omeprazole and ciprofloxacin) inhibit the activity of P-loop
kinases, few of them bind to the ATP-binding site®". Meanwhile, target proteins with dynamic
induced-fit forms, like the P-loop SKs, represent a major limitation for the structure-based
screening approach. The approach of orthSiMMap designing the competitive ATP inhibitors
with specific substrate pocket presents a novel strategy of targeting P-loop kinases.

The developed orthSiMMap method is database independent. Comparable anchors were
identified in compounds from the Maybridge and NCI databases. Each of the anchors also
included analogous chemical moieties. Nonetheless, the derived proportion of these moieties
was different because the Maybridge and NCI databases contain heterogeneous distribution of
compounds. For example, the  proportion of carboxyl, sulfonate, and phosphate was
significantly higher in compounds from the NCI database than in those from the Maybridge
database. On the other hand, the derived model was_sensitive to binding-site properties, as
illustrated by the difference between the apo-and closed-form models (Fig. 4.2). In summary,
we anticipate that the orthSiMMap method can be useful in discovering new inhibitors,
investigating the binding mechanisms, and guiding the lead optimization for orthologous
targets. Additionally, crystal structures reveal the details of ligand binding in the induced-fit P-

loop kinases and will be valuable in the development of novel P-loop kinase inhibitors.
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Chapter 5

Conclusion

5.1 Summary

Briefly, the major contributions of this thesis can be summarized in the following:

(1) The concept of site-moiety map (SiMMap) was proposed for predicting protein-ligand
binding modes and characterizing protein-ligand binding sites in structure-based drug
design. SiIMMap statistically infers the site-moiety map describing the relationship between
the moiety preferences and physico-chemical properties of the binding site. Our
experimental results showed that the site-moiety map is useful to reflect biological
functions and identify active compounds from thousands of compounds. In addition, the
site-moiety map can guide to assemble potential leads by optimal steric, hydrogen-bonding,
and electronic moieties.

(2) Members of individual protein families .often share a homologous fold and conserved
structural features to interact with'chemically similar ligands throughout evolution, despite
low sequence identity. A structure-based site-moiety screening method, orthSiMMap, was
developed to discover the inhibitors for a family of orthologous proteins. Here, we utilized
the orthSiMMap to pharmacologically interrogate orthologous shikimate kinases (SKs)
from Mycobacterium tuberculosis and Helicobacter pylori. The derived apo/closed core
site-moiety maps and the anchor scores were used to identify six potent inhibitors (<8.0
uM). Site-directed mutagenesis (these studies done by Dr. W.C. Wang of National Tsing
Hua University) and analogues studies revealed that critical conserved interacting residues
contribute to a given pocket-moiety interaction spot. Crystal structures of HpSK-SOs,
R57A, HpSK-shikimate-3-phosphate:r ADP, and E114A-162535 (These structures obtained
by Dr. Wang, W.C. of National Tsing Hua University) show a characteristic three-layer
architecture and a conformationally elastic region having R57, R116, and R132 occupied
by shikimate/inhibitor, locking into an induced-fit form. These results illustrate a robust
approach in identifying selective inhibitors and reveal insight to the active site chemistry of
SKs and a new induced-fit mechanism by an inhibitor. We believe that the SiMMap is able
to provide the biological insights of protein-ligand binding models, enrich the screening

accuracy, and guide the processes of lead optimization.
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5.2 Future works

The one-disease, one-target, and one-drug philosophy has been the dominating drug dis-
covery approach in the past decades. Drugs against multiple targets may overcome the many
limitations of single targets and achieve a more effective and safer control of diseases. %
However, to design a selective drug structure which is able to against multiple targets is still a
challenge task. The NAD(P) and ATP related pathways play key roles in various biological
functions, such as aromatic amino acid synthesis, pyrimidine metabolism and TCA cycle regu-
lation. In these pathways, the NAD(P) and ATP enzymes usually process a sequentially enzy-
matic reactions to transform specific substrates to products (Fig. 5.1). For maintaining their
catalytic functions, these proteins have a cofactor site (ATP or NAD(P)) next a substrate bind-
ing site. From the substrate similarity, ATP and NAD(P) have a similar scaffold, such as ade-
nosine and di-phosphate group. Therefore, It is possible to develop selectively multi-targeted

inhibitors on a specific pathway through considering the specific substrate site and the similar

cofactor site of ATP and NAD(P) related enzymes.

+ NADP +ATP
Aromatic amino =
....... J—O_> __.___, _._}
acid synthesis J « s
Shikimate dehydrogenase Shikimate kinase
o +NADP +ATP
Pyr|m|d|!"|e ....... J O J__.__.—r J\.\) a2 §— o
metabolism -
Dihydrothymine dehydrogenase Thymidine kinase
+ NAD +ATP
TCAcycle —= I—O— g
regulation o o

Pyruvate dehydrogenase
Pyruvate dehydrogenase kinase

Figure 5.1. The NAD(P) and ATP related pathways play key roles in various biological
functions, such as aromatic amino acid synthesis, pyrimidine metabolism and TCA cycle

regulation.
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Figure 5.2. Preliminary result of the PathDrug on the shikimate pathway. (a) The shikimate
pathway includes seven enzymes to convert erythrose 4-phospate and phosphoenolpyruvate
into chorismate. Shikimate dehydrogenase (SDH)-and shikimate kinase (SK) are selected as
targeting proteins for developing PathDrug. (b) Three compounds structures inhibit both SDH
and SK.

To address these issues, we extend our previous studies to propose a new concept, named
PathDrug. The core idea of PathDrug is to identify and integrate the consensus binding envi-
ronments (site-moiety maps) of the enzymes on the same pathway. Using the consensus map of
the protein targets on the same pathway to discover the multi-target leads and then guide to op-
timize the selectivity for a specific pathway. To validate the concept of PathDrug, we cooperate
with Dr. W.C. Wang of National Tsing Hua University and select the shikimate dehydrogenase
(SDH) and shikimate kinase (SK) of Helicobacter pylori to develop the PathDrug. Figure 5.2

shows the preliminary result of dual-targeted inhibitors for SDH and SK. The inhibitory assay
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was done by Dr. W.C. Wang of National Tsing Hua University. From the PathDrug map of
SDH and SK, three inhibitor structures are identified and shown the dual-inhibition. These re-
sult preliminarily demonstrate the possibility of PathDrug and provide a potential direction to
develop the drug with high affinity and low resistance.

The study of SiMMap and orthSiMMap in this thesis enables us to identify PathDrug, in-
vestigate the consensus properties of PathDrug, and discovery pathway-specific inhibitors. In
the future, we believe that the designed highly-specific compounds with activity against dis-

ease-related pathway can help us to reduce drug resistance and enhance the lead activity.
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List of publications

Journal papers

1.

Y.-F. Chen, K.-C. Hsu, S.-R. Lin, W.-C. Wang, Y.-C. Huang and J.-M. Yang*, " SiMMap:
a web server for inferring site-moiety map to recognize interaction preferences between

protein pockets and compound moieties," Nucleic Acids Research, 2010

D. Clinciu, Y.-F. Chen, C.-N. Ko, C.-C. Lo and J.-M. Yang*, "TSCC: Two-Stage
Combinative Clustering for Virtual Screening Using Protein-ligand Interactions and

Physical-Chemical Features, " BMC Genomcis, to be published.

K.-C. Hsu, Y.-F. Chen, and J.-M. Yang*,"GemAffinity: a scoring function for predicting
binding affinity and Virtual Screening", International Journal of Data Mining and

Bioinformatics, to be published.

H.-C. Hung, C.-P. Tseng, J.-M..Yang, Y.-W Ju, S.-N. Tseng, Y.-F. Chen, Y.-S. Chao, H.-P.
Hsieh, S.-R. Shih, John T.-A. _Hsu, "Aurintricarboxylic acid inhibits influenza virus
neuraminidase," Antiviral Research, vol. 81, pp. 123-131,.2009.

J-M. Yang, Y.-F. Chen, Y.-Y. Tu, K.-R. Yen, ‘and Y.-L. Yang*, ‘“Combinatorial
computation approaches identifying tetracycline derivates as flaviviruses inhibitors,” PLoS
ONE, pp. e428.1- e428.12, 2007.

J.-M. Yang*, Y.-F. Chen, T.-W. Shen, B. S. Kristal, and D. F. Hsu, "Consensus Scoring
Criteria for Improving Enrichment in Virtual Screening," Journal of Chemical Information
and Modeling, vol. 45, pp. 1134-1146, 2005

J.-M. Yang*, T.-W. Shen, Y.-F. Chen, Y.-Y. Chiu, "An evolutionary approach with
pharmacophore-based scoring functions for virtual database screening," Lecture Notes in
Computer Science, vol. 3102, pp. 481-492, 2004

Conference paper

1.

K.-C. Hsu, Y.-F. Chen, and J.-M. Yang*, "GemAffinity: a Scoring function for predicting
Binding Affinity and Virtual Screening," bibm, pp.309-314, 2009 IEEE International

Conference on Bioinformatics and Biomedicine, 2009
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