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Android 系統上,開機、網頁瀏覽、串流播放的執行時間剖析和瓶頸分析 

 

學生: 杜之雄                            指導教授: 林盈達 

國 立 交 通 大 學   資 訊 學 院   資 訊 學 程 碩 士 班 

 

摘要 

Android 系統在開機、網頁瀏覽及串流播放這三種使用情境下的效能表現顯得

不盡理想。在 Android 系統上剖析一種使用情境的執行時間，會發現面臨到三個主

要的特性:第一、一個使用情境的執行流程會跨不同軟體層呼叫不同元件，第二、任

一軟體層都是由一種以上的程式語言所構成，第三、系統有限的儲存空間。本論文

提出一個可以在多語言多軟體層平台上找出執行時間瓶頸的分階段反覆插入剖析方

法。由單一的模組開始，進而逐漸地加入不同軟體層的不同模組來剖析，以避免在

剖析過程中產生大量不必要的資料，最後再把不同軟體層執行時所輸出的資料合併

分析，藉此找出執行時間瓶頸。此方法被實做測試在一台 Android 的產品上，實驗

結果顯示 72%的開機時間花在 user space 環境的初始化，而在 user space 初始化

中，44.4%的時間花在啟用背景服務程序及背景管理程序，37%花在先行載入 Java 

classes 和 resources.實驗結果並顯示，網路是影響網頁瀏覽最主要的因素。在載

入一個 2128 kB 大小的網頁的實驗環境下，螢幕繪圖顯示系統僅佔總執行時間的 5%。

在 Wi-Fi 環境下播放一段 22 MB 的串流短片，系統需要花 5.7%的時間來做撥放準備

的動作。影片資料下載加上資料解碼部分的執行時間共佔了這段準備時間的 72%。 

                                     

關鍵字: Android，系統開機，網頁瀏覽，串流播放，時間剖析 
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on Android-Based Systems 

 

Student: Tzu-Hsiung Du                 Advisor: Dr. Ying-Dar Lin 

Degree Program of Computer Science 

National Chiao Tung University  
 

Abstract 

Android-based systems perform slowly in three perceptible scenarios: booting, 

browsing, and streaming. Time profiling on Android devices encounters three unique 

properties: 1) the execution flow of a scenario invokes multiple software layers, 2) each 

software layer is implemented in different programming languages, and 3) log space is 

limited. This thesis proposes a staged iterative instrumentation approach that starts 

profiling a scenario from a single module, restrainedly profiles more modules and layers 

to avoid enormous irrelevant profiling results, and finally consolidates the profiling 

results from different layers to find out the bottlenecks. Experiments on the off-the-shelf 

Android product showed that 72% of booting time is spent on the initialization of 

user-space environment; specifically, 44.4% of user-space initialization time is to start 

Android services and managers, and 39.2% is for preloading Java classes and resources. 

Experimental results also showed that the networking technology is the most significant 

factor influencing the browsing performance on Android. The time of drawing screen 

only takes less than 5% of total time for browsing a 2128 kB web page. In the streaming 

scenario, video preparation causes 5.7% time overhead for playing a 22-MB video file 

over Wi-Fi connection. Execution time of Video-downloading and data-decoding take 

72% ratio of preparation time. 

Keywords: Android, booting, browsing, streaming, time profiling. 



 

III 

 

Contents 

CHAPTER 1 INTRODUCTION .................................................................................................................... 1 

CHAPTER 2 BACKGROUND ...................................................................................................................... 4 

2.1 ANDROID ARCHITECTURE ............................................................................................................................. 4 

2.2 PROFILING TOOLS ON ANDROID .................................................................................................................... 6 

CHAPTER 3 STAGED ITERATIVE INSTRUMENTATION APPROACH ............................................................ 10 

CHAPTER 4 IMPLEMENTATION ON BOOTING, BROWSING, AND STREAMING ........................................ 13 

4.1 GENERIC IMPLEMENTATION ....................................................................................................................... 13 

4.2 BOOTING ................................................................................................................................................ 14 

4.3 BROWSING ............................................................................................................................................. 16 

4.4 STREAMING ............................................................................................................................................ 17 

CHAPTER 5 EXPERIMENTAL RESULTS AND OBSERVATIONS .................................................................... 20 

5.1 TESTBED ................................................................................................................................................. 20 

5.2 BOOTING SCENARIO ................................................................................................................................. 21 

5.3 BROWSING SCENARIO ............................................................................................................................... 22 

5.4 STREAMING SCENARIO .............................................................................................................................. 25 

CHAPTER 6 CONCLUSIONS AND FUTURE WORKS ................................................................................... 27 

REFERENCE ........................................................................................................................................... 29 

 



 

IV 

 

 

List of Figures 

FIGURE 1 ANDROID ARCHITECTURE ........................................................................................................ 4 

FIGURE 2 STAGED ITERATIVE INSTRUMENTATION APPROACH .............................................................. 12 

FIGURE 3 BOOTING PROCEDURES ......................................................................................................... 15 

FIGURE 4 BROWSING PROCEDURES ...................................................................................................... 17 

FIGURE 5 STREAMING PROCEDURES ..................................................................................................... 18 

FIGURE 6 TESTBED ................................................................................................................................ 20 

FIGURE 7 PROFILING RESULTS FOR BOOTING ........................................................................................ 21 

FIGURE 8 DISTRIBUTION OF BOOTING TIME .......................................................................................... 22 

FIGURE 9 TIME PROFILING RESULTS FOR BROWSING THRU WI‐FI, 3G, AND 2.75G NETWORKS ............... 24 

FIGURE 10 PROFILING RESULTS OF DIFFERENT WEBPAGE SIZE ............................................................... 25 

FIGURE 11 PROFILING RESULTS FOR STREAMING .................................................................................. 25 

 



 

V 

 

List of Tables 

TABLE 1 BOOTING TIME AND BROWSING EXPERIENCE ON POPULAR SMARTPHONES .............................. 1 

TABLE 2 COMPARISON OF PROFILING TOOLS .......................................................................................... 9 



 

1 

 

Chapter 1 Introduction 

Internet-connectable devices, like smartphones, set-top boxes, and netbooks, provide 

users with the ability to use Internet at anytime in anyplace. Among these 

Internet-connectable devices, the smartphones ported with Android, a platform for 

Internet-connectable devices, are expected to catch the most eyeballs in next few years. 

Android is an open source platform derived from Linux in 2009. Designing a device upon 

Android can reduce the license royalty for manufacturers. Academia also benefits from 

using Android to develop new features and prove experimental thoughts due to its open 

source [1]. Despite the advantages, however, Android-based devices perform slowly in 

three perceptible scenarios: booting, browsing, and streaming. Booting time is the first 

perception to users trying a new smartphone; browsing and streaming are two common 

usage scenarios among smartphone subscribers [2]. Table 1 compares the time spent on 

booting and browsing on popular off-the-shelf products. Though all products have similar 

hardware capabilities, the execution on Android products takes a longer time than that on 

iPhone. 

Table 1 Booting time and browsing experience on popular smartphones 

Product name CPU Frequency Arch RAM OS Boot time(s)i Load page(s)ii

HTC G1 528 MHz ARM11 192M Android 1.5 42 9.5 

HTC Hero 528 MHz ARM11 288M Android 1.5 68 9.4 

Samsung i7500 528 MHz ARM11 128M Android 1.5 60 7.4 

iPhone 3GS 600 MHz ARM Cortex 256M OS X 3.1 24 5.4 

Previous work has intensively studied the performance enhancement technologies for 

the three scenarios [9-13]. Those literals share three common procedures. First, profiling 

                                                 
i The measured time is the interval which starts from pressing the power button and ends at the first GUI window appearing. 
ii Load www.yahoo.com via Wi-Fi interface. 
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tools are used to trace the execution flows and running time on a target scenario. Then, 

execution flows are redesigned to speed up the scenario. Finally, the performance 

improvement of the redesigned system is proven by profiling again. Apparently, profiling 

tools play an important role in performance enhancement. 

The work [3-4] categorized profiling tools into two types: sampling techniques and 

instrumentation techniques. Sampling techniques, e.g., OProfile [5] and gprof [6], collect 

the process-usage statistics by periodically checking which program, or more detailed, 

which function is occupying CPUs. Instrumentation techniques, e.g., LTTng [7] and KFT 

[8], insert profiling code into the source code of targeted programs, so the profiling results 

can be collected during execution.  

Two issues are arisen from previous work. First, each profiling tool has different 

characteristics and therefore only targets on a specific layer or few layers. On the other 

hand, Android is a complicated system with multiple layers, from application layer, i.e., 

Java-derived applications, Java virtual machine, toward Linux kernel. In particular, 

Galenson [9] showed that browsing in Android invokes six layers. Second, previous 

researchers validated their ideas on development boards [10-14] or emulators [9]. 

However, hardware is optimized for the commercial products, so the performance results 

obtained from development boards and emulators may be different from the one in the 

off-the-shelf products. In addition, unlike a development board equipping sufficient log 

space, the hardware optimization may leave only limited space on products, e.g., 64 kB 

log buffer on the HTC Dream smartphone. As a result, using profiling tools having no 

problem on development boards may encounter the out-of-resource problem on products. 

This work proposes a profiling approach to find out the true bottlenecks crossing 

multiple layers for the three scenarios, i.e., booting, browsing, and streaming, on 

real-world Android products. The common profiling procedures for arbitrary scenarios are 
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revealed. For each scenario, specific profiling procedures are then developed. The 

procedures are validated on the off-the-shelf products, and the bottlenecks of each 

scenario are identified. 

The rest of this thesis is organized as follows. Chapter 2 briefs Android architecture 

and various profiling tools. Chapter 3 proposes the methodologies of profiling procedures, 

and then Chapter 4 details the implementation. Chapter 5 presents the experimental 

environment and discusses the profiling results. Finally, Chapter 6 concludes this thesis 

and offers directions for future research. 
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Chapter 2 Background 

 The chapter briefs Android architecture first and then describes and compares 

various profiling tools in section 2.2. 

2.1 Android Architecture 

As shown in Figure 1, Android consists of four major software layers which are 

written in three different programming languages, i.e., Java, C++, and C. From the 

hardware-dependent toward the user-controllable, the four layers are: Linux kernel, 

running environment, application framework, and applications. 

 

Browser Streaming 
players

Applications

Application framework
Window 
manager

Activity 
manager

Libraries Android runtime

Core librarieslibc

OpenGL/ES Dalvik virtual 
machine

Drivers

Linux kernel

Managements 
modules

Java

C/C++

C/C++/Java

C

Running environment

...

...

…

...

Yaffs2
 

Figure 1 Android Architecture 

Linux kernel layer 

Android kernel was derived from Linux 2.6 kernel, so it inherits lots of Linux 

advantages including numerous device drivers and the core operating system 

functionalities, e.g., memory management, process management, and networking. The 

inheritances have been proven and shown robust over time. Android also modifies Linux 

kernel for accommodating the tightly resource-constraint factors in embedded devices, 
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such as using the Yaffs2 [15], which is optimized filesystem for NAND flash. The whole 

kernel is written in C programming language, so most of profiling tools which are used in 

common Linux distributions can be adopted in Android.  

Running environment layer 

Running environment layer includes two major components, native libraries and 

Android runtime. Native libraries contain a set of C and C++ libraries, such as libc and 

OpenGL/ES, to provide common routines for upper layers. Android runtime includes 

Dalvik virtual machine (VM) and core libraries. Dalvik VM is derived from Java VM 

which is written in C, C++ and Java. The core libraries, which are written in Java, contain 

common Java classes for application development. The Android runtime was designed 

specifically for Android to meet the needs of running in a resource-limited embedded 

device. 

Application framework layer 

Application framework layer contains reusable components which can be used by 

applications. Components in this layer are written in Java, C++ and C programming 

languages. Activity manager which manages the life cycle of applications is the major 

component of this layer. In Android, only one foreground graphic-user-interface (GUI) 

application is allowed to exhibit at one time, and other running applications are managed 

by the activity manger in the background. Besides, window manager draws the graphic 

component, such as status bar, for a foreground GUI.  

Applications layer 

All user-visible applications on Android are written in Java programming language. 

They include applications written by Google, and applications written by open-source 

communities and commercial developers. 
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2.2 Profiling Tools on Android 

Profiling tools are used to detect the hotspots of a program or set of programs for 

alleviating performance issues. A hotspot is a piece of code that is frequently executed or 

whose execution time is extremely long. The bottleneck in this paper is a piece of code 

whose long-time execution making users intolerable. Therefore, the first step to find 

bottlenecks is to use profiling tools to identify hot spots. This section briefs seven 

profiling tools commonly used in Linux or Android platform. Specifically, OProfile [5] 

Bootchart [16] and printk [17] are general profiling tools supporting both Linux and 

Android. The Debug class [18] and Log utilities [19] are profiling tools specific to 

Android. Linux Trace Toolkit Next Generation (LTTng) [7], Kernel Function Tracer 

(KFT) [8], vertical profiling tool [20] are another three profiling tools commonly used in 

Linux, yet they are not ported to Android. 

OProfile 

OProfile benefits from a kernel driver which utilizes the performance counters, 

presented in most modern CPUs, to record CPU-related events, such as cache misses, and 

the hardware timer periodically collecting function-executing information of either 

user-space programs or kernel. The profiling overhead using OProfile is low [21].  

However, the resolution of call graph, i.e., relationships between function calls, depends 

on the granularly of hardware timer, and therefore may be inaccurate. Porting effort of the 

kernel driver is the major obstacle of using OProfile. Fortunately, OProfile has already 

ported on Android. 

Bootchart 

Bootchart also uses sampling techniques to profile the booting processes of Linux. 

During booting, a script is run by the user-space program, init, to periodically gather 

statistics on process level. Like OProfile, the overhead of Bootchart is also small, i.e., less 
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than 7% of CPU utilization [22]. However, the profiling results are too rough to find out 

the true bottlenecks in Android. The reasons are twofold. First, most of Android services 

and managers are threads, whereas Bootchart can only present the relation of processes. 

Second, Bootchart is executed after kernel triggering the first user-space program, init, so 

Bootchart cannot provide the complete profiling information of kernel booting. 

Debug Class 

The Android built-in Java Debug class, i.e., android.os.Debug, provides developers a 

way to create log and trace the execution of an Android application. The source code of 

applications must be instrumented with specific code. The Debug class does not satisfy 

our profiling objectives due to two disadvantages. First, the class cannot profile native 

libraries which are written in C and C++. Second, the class overwrites an existing 

profiling result for every execution of the instrumented source-code block. As a result, the 

Debug class cannot profile a service-type program which needs to be executed several 

times during a scenario. 

Log Utilities 

The Log utilities, including the Java Log class, i.e., android.util.Log, and C/C++ 

native library, i.e., liblog, are also built-in Android. The utilities can record log during the 

execution of user-space applications. Like using the Debug class, the source code of 

targeted programs has to been instrumented by specific code provided by the Log utilities. 

Comparing to the Debug class, the Log utilities have two advantages. First, the utilities 

can be used with not only Java but also C and C++ programs. Second, the utilities do not 

overwrite an existing output, so a program can be executed several times during profiling.  

LTTng and KFT 

LTTng and KFT are two profiling tools for tracing kernel performance. Both of them 

leverage the instrumentation techniques. LTTng provides a programming interface to 
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instrument the source code, while KFT uses a compiler-assisted capability, i.e., the 

-finstrument-functions flag in GNU compiler collection (gcc), to automatically instrument 

profiling routines to every entry and exit of kernel functions. When the execution reaches 

an instrumentation point, a log event is recorded. The overhead of LTTng is proportional 

to the number of instrumentation, whereas the overhead of KFT is extremely high, i.e., 

over 100% of overhead in our measurement, because KFT instruments all kernel 

functions. 

printk 

Printk is a log-recording function built-in in Linux kernel. Kernel developers can 

insert the functions anywhere in the kernel source to record log. The advantage of using 

printk is that the function does not have any kernel-version capability issue. On the other 

hand, the need of human effort to instrument is its major drawback. 

Vertical profiling 

 Vertical profiling tool uses hardware performance monitors [23] and specific Java 

virtual machine, Jikes RVM, to observe events of the system on various software layers. 

Hardware performance monitors are supported on most modern processors by different 

application program interface (API). Vertical profiling tool can do time profiling on a 

multi-layer and multi-language platform with low system overhead. The main drawback 

of this tool is the hardware/software dependence issue, thus it is hard to port on different 

platform such as an embedded system with few performance counters in CPU. 

Table 2 summarizes the pros and cons of the abovementioned profiling tools. 

Besides vertical profiling tool, no single tool can profile the complete scenario, cross 

multi-language multi-layer, on Android. But vertical profiling tool is not generic enough 

to port on different platform and hardware. Next chapter proposes approach to meet this 

requirement. 
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Table 2 Comparison of profiling tools 

Profiling 
technique 

Tool Android 
support

Advantages Drawbacks 

Sampling OProfile Yes Low overhead Not support Java on 
Android 

Bootchart Yes Low overhead
Friendly GUI

No kernel-space booting log
No information for threads

Instrumentation Debug 
class 

Yes Call graph Not support C,C++ 
 Trace log will be 

overwritten 
 Human effort for 

instrumentation 
Log 
utilities 

Yes Support Java/C/C++ Human effort for 
instrumentation 

LTTng No Low overhead Not support Java on 
Android 

KFT No Provide complete call 
graph 
Kernel profiling

High overhead 
 Not support user-space 

profiling 
printk Yes No kernel-version 

capability issue 
 Kernel profiling 

Human effort for 
instrumentation  
 Not support user-space 

profiling 
Sampling/Instru
mentation 

Vertical 
profiling 

No Low system overhead
 Support Java/C/C++ 
 Support Kernel-space 

and user-space 
profiling

Hardware dependence
 No embedded environment 

verification 
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Chapter 3 Staged Iterative Instrumentation Approach  

Designing a time profiling approach in Android shall consider three unique 

properties: 1) multi-layers, 2) multi-programming-languages, and 3) limited log space.  

Multi-layers multi-languages 

The proposed approach takes multi-layer multi-language features into account by 

mixing using different profiling tools for different modules on an execution flow. A 

consequent issue is that a process must be developed to consolidate all profiling results 

from different profiling tools. As a result, a time-stamped tag is embedded in each log to 

help consolidation. 

Limited log space 

To conquer the limited log space, the proposed approach starts profiling a scenario 

from a single module, and restrainedly profiles more modules and layers to avoid 

enormous irrelevant profiling results. Specifically, the approach first selects the earliest 

executed module of a scenario, e.g., the web browser for the browsing scenario, and other 

modules suggested by domain experts. All functions S of the selected modules M are 

instrumented with checkpoints. Then the source codes of M are rebuilt and the scenario is 

executed to obtain profiling results. The profiling results may contain unnecessary 

checkpoint S’. Therefore, the checkpoints S shall be refined to reduce output results. 

Consequently, the source codes are rebuilt, and the scenario is executed again to get 

refined profiling results. The abovementioned steps describe one profiling stage. The huge 

amounts of logs are refined by one or more iteration, the iterative procedures from step 6 

to step 10, in one stage. However, the selected modules M may not cover all required 

modules in a complete execution flow of a scenario. For such case, modules M+ and 

checkpoints S+ in adjacent layers are included to profile. New stage can then start. The 
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approach continues until no new module can be added to M. Figure 2(a) depicts the 

approach. 

An example of approach: Browsing 

The proposed approach is demonstrated by the example of profiling web browsing. 

For loading a web page, the web browser invokes many modules located in different 

layers. These modules includes, but not limited to belong to, the web browser on the 

application layer, the activity manager and window manager on the application 

framework layer, the surface manger (a module for screen drawing) and the Webkit (a 

web-browser engine) on the running environment layer, and the network driver and touch 

screen driver on the kernel layer. Figure 2(b) shows the modules invoked by web 

browsing. 

In the first stage of our approach, M only contains the web browser, and S is all 

functions of the browser. The step 6 to step 10 in Figure 2(a) removes unnecessary 

functions from S iterative, so the checkpoints and corresponding profiling results are 

reduced after iteration. The step 11 determines that activity manager and window manager 

can be added, which causes an additional stage with M+={activity manager, window 

manager} and M={browser, activity manager, window manager} to profile the scenario 

again. The stages end after all invoked components in the kernel layer are profiled. 

Potential issue 

 This approach removes the unnecessary checkpoints depending on the questions we 

are interesting in manually. It may cause mis-uninstrument issue if the checkpoints have 

been removed before is an important points on later stage. Although this kind of issue 

doesn’t appear in our experiment, we assume that it may be triggered on specify situation. 

If we suffer this kind of issue, we can roll back to Step 2 to instrument related modules M 

again anytime on this procedure. 
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      Figure 2 Staged iterative instrumentation approach 
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Chapter 4 Implementation on Booting, Browsing, and Streaming 

 This chapter details the implementation of the staged instrumentation approach in 

Android. The generic implementation techniques, including the selection of profiling 

tools, log consolidation, and instrumentation automation, are introduced first. Then, the 

specific implementation techniques for three scenarios, i.e., booting, browsing, and 

streaming, are described in turn.  

4.1 Generic Implementation 

Selection of Profiling Tools 

Though many profiling tools are available on Android, some tools among them are 

superior to others because they can profile multiple layers. The support of multi-layer 

profiling reduces the profiling complexity in twofold. First, the learning time on profiling 

tools is shortened and the code-modification complexity is decreased. Second, the formats 

of profiling results are simplified. This thesis selects the Log utilities for profiling 

user-space modules, because the utilities can profile all user-space modules no matter 

what programming languages they are implemented by and which layers they reside in. 

For kernel-profiling, this work picks the printk function, since the code-style of using 

printk is similar to the use of Log utilities. 

Logs Consolidation 

The profiling results of both Log utilities and the printk function have already 

embedded the time information. Unfortunately, the time resolutions, baselines, and 

formats of the two profiling tools are different. The time resolution of Log utilities is 

microsecond, its format is YY/mm/dd transformed from the output of cpu_clock 

function, and the value is bound for local CPU. On the other hand, the time resolution of 

printk is nanosecond, its format is a numerical number transformed from the output of 

current_kernel_time function, and the value is bound for kernel. To obtain more 
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precise results, we unify the time format of both profiling tools with the printk format. 

Auto Instrumentation 

Source-code instrumentation is a heavy and boring routine, so we implemented an 

instrumentation-automation script to insert the specific profiling code into specific files or 

directories, i.e., turning-on checkpoints, and remove the inserted profiling code, i.e., 

turning-off checkpoints. The script works for C, C++, and Java, and can instrument the 

source code with the format in either the Log utilities or printk. As a result, the procedures 

of a profiling iteration, i.e., adding or removing modules from the M and S, is easy to 

achieve by the turning on and turning off. 

4.2 Booting 

Booting Time 

The booting time in this work is defined as the period starting from pushing the 

power bottom on the target Android platform and ending at the finish of drawing booting 

screen, i.e., the function, SurfaceFlinger::bootFinished(), in SurfaceFlinger.cpp. As 

default factory setting, Wi-Fi service and telecom service are disabled on our testing 

environment. 

Booting Procedures 

After the power button is pressed, Initial Program Loader (IPL) checks hardware and 

loads the Second Program Loader (SPL). SPL loads the compressed kernel image from 

flash to memory, decompresses kernel, and then executes the first kernel function, 

start_kernel. Kernel first initializes lots of data structures and tasks, and loads drivers. 

Next, the first user-space program, init, is executed. The init starts the service_manager 

(the core Android service taking responsibility for the registration of other Android 

services), daemon programs (like the Volume Management daemon, vold), zygote, (the 

parent process of all Java virtual machines), and media_server (a server managing 
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multimedia framework on Android). Zygote immediately preloads some Java classes and 

resources for the acceleration of Java applications, and then starts the system_server 

process. The system_server is a process managing all Android services. It scans the flash 

to find out all installed applications, and then creates threads for Android services. One of 

the services important for booting is the SurfaceFlinger, a screen-drawing service. The 

booting procedure ends at the finish of bootFinished() routine of the SurfaceFlinger 

service.  
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      Figure 3 Booting procedures 

Checkpoints 

According to the booting procedures described above, we divided the booting 

sequence into three blocks: boot loader, kernel space, and user space. The first three 

checkpoints are set to the boundaries of the three blocks. Then, we used the staged 

instrumentation approach incrementally profiling the booting scenario, and identified the 

following seven important checkpoints: the first service (service_manger), the first 
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daemon (vold), the parent process of virtual machines (zygote), the multimedia server 

(media_server), the Java classes and resources preloading routine, the core of system 

services (system_server), and the first system service launched by system_server. Figure 3 

draws the important modules for booting procedures, and the corresponding checkpoints. 

4.3 Browsing 

Browsing Time 

The booting time in this work is defined as the period starting from touching the “go” 

button on screen in the web browser after a URL has been specified, and ending at 

completely loading the specified webpage, i.e., the function, onPageFinished(), in 

BrowserActivity.java, is called. 

Browsing Procedures 

Pressing the go bottom on screen first generates a system event. The event is handled 

by the touch screen driver in kernel, and passed to the activity manager (ActivityManager) 

and the web browser. The web browser can then know the specified URL and send the 

webpage request to Webkit, which is the built-in web browser engine in Android. Webkit 

uses HTTP protocol to request the desired webpage, and then parses the received 

webpage into a Document Object Model (DOM) tree. The detail of the DOM is beyond 

the scope of this work, so we omit the process. Usually, a webpage contains multiple 

element resources, e.g., image files, which shall be loaded together with the target 

webpage, so Webkit continues queuing and downloading the remaining element resources 

while drawing the layout on screen with using skia, a 2D drawing library. 

Checkpoints 

When applying the staged instrumentation approach on browsing scenario, the 

module set M in first iteration contains only the web browser. After multiple iterations, 

we identified the following important checkpoints: the interrupt request (IRQ) handler of 
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touch screen driver, the event handlers in activity manager and web browser, the 

Webkit-invoking function in web browser, the HTTP request and response functions in 

Webkit, the DOM-tree building and parsing functions in Webkit, and the screen layout 

functions in Webkit. Figure 4 illustrates the important modules for browsing procedures, 

and the corresponding checkpoints. 
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RenderView: layout()

HTMLTokenizer.cpp: 
HTMLTokenizer: begin()

DocumentLoader.cpp: 
DocumentLoader: receivedData()

ResourceHandleAndroid.cpp: 
ResourceHandle: start()

Build the root of DOM tree

Download element 
resources

Queue the download 
requests for element 

resources

Build DOM  tree

Build rendering tree

HTMLDocument.cpp: 
HTMLDocument: HTMLDocument() 

ResourceHandle.cpp: 
ResourceHandle: client()

GraphicsContextAndroid.cpp: 
GraphicsContextPlatformPrivate()

Modules Checkpoints

 

Figure 4 Browsing procedures 

4.4 Streaming 

Streaming Time 

The built-in streaming player on Android is called YouTube. Before profiling the 

streaming scenario, we first connected to Internet and executed YouTube. YouTube 
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showed a list of video icons on screen. The booting time in this work is defined as the 

period starting from touching a video icon on screen, and ending at finishing the video 

play, i.e., the function, stayAwake(), in MediaPlayer.java, is called. 

Streaming Procedures 
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Figure 5 Streaming procedures 

Like the browsing scenario, touching a video icon on screen also generates a system 

event, which is handled by the touch screen driver and passed to the activity manager and 

YouTube in turn. YouTube then sends the video request to MediaPlayer, which is a 

service taking responsibility for all kinds of media-playing requests. MediaPlayer 

dispatches the video-playing request to the PVPlayer, the built-in video player. Next, the 

PVPlayer continues downloading and decoding video from the Internet, and showing 

video on screen. At the end of play, MediaPlayer is notified by its stayAwake function. 
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Checkpoints 

YouTube does not open its source, so we cannot apply the staged instrumentation 

approach on YouTube directly. Therefore, the approach starts from application framework 

layer instead. Thus, at the first iteration, M includes modules in application framework 

layer. Besides, YouTube, though released in binary form, still leaves some log data, 

which are taken as the checkpoints during our profiling. After multiple iterations, we 

identified the following important checkpoints: IRQ handler of touch screen driver, the 

event handler in activity manager, the log messages indicating that YouTube starts 

loading video, the constructors of MediaPlayer and PVPlayer, the video-downloading, 

audio-decoding, video-decoding functions in PVPlayer, the video-playing function in 

MediaPlayer, and finally, the end function, stayAwake, indicating the terminate of video 

play. Figure 5 illustrates the important modules for streaming procedures, and the 

corresponding checkpoints.   
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Chapter 5 Experimental Results and Observations 

This chapter presents the profiling results obtained from an off-the-shelf Android 

device for the three user-perceptible scenarios, i.e., booting, browsing, and streaming. The 

testbed is first described. Then, important time-consuming functional blocks for each 

scenario are discussed in turn.  

5.1 Testbed 

 

Figure 6 Testbed 

The experiments in this work were conducted on an Android-based DUT (Device 

under test), Android Dev Phone 1. The DUT is an Android-based smartphone, whose root 

permission is left unlocked for developers to rewrite any program or the whole system on 

the platform. The hardware is 100% same as another off-the-shelf Android smartphone, 

HTC Dream, so we regard it as a commercial product. The version of Android platform is 

AOSP 1.6 (Android Open Source Project). Beside the DUT, a host machine is installed to 

provide us an operating interface to the DUT. Recall that the Android platform allows 

only one foreground GUI program to be executed at one time. Hence, the host machine 

provides an alternative, command-line, interface to on-line operate profiling tools, and to 

collect profiling results during the execution of a scenario. The operating interface on the 

host is a client program called adb (Android Debug Bridge), and the corresponding server 
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on the DUT is adbd. DUT and the host connect to each other thru the USB interface. 

Finally, the EDGE (2.75G), WCDMA (3G), and IEEE 802.11g (Wi-Fi) networks are 

accessible in the testbed environment. Figure 6 depicts the testbed. 

5.2 Booting Scenario 

Questions to Answer 

We use the approach in this work to answer two questions on booting time. First, 

what is the accurate execution time of bootloader, kernel-space initialization, and 

user-space initialization? Second, which services or functions dominate booting time? 

Profiling Results 
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Figure 7 Profiling results for booting 

Figure 7 shows the profiling results for the booting scenario with the checkpoints 

defined in chapter 4. As shown in Figure 8, the initialization of user-space environment 

takes 72% of total booting time. Drilling down the user-space initialization, the major 

time-consuming parts are Java classes and resources preloading by zygote (39.2% of user 
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space) and the startup of services and managers (44.4% of user space). 

 

Figure 8 Distribution of booting time 

Bottleneck Discussion 

Preloading Java classes and resources takes lots of booting time. Apparently, 

reducing the number of preloaded classes and resources can efficiently decrease the 

booting time. However, the startup time for an application after booting is increased, 

because the Java virtual machine must spend time on loading those un-preloaded classes 

and resources. Therefore, tradeoff between booting time and startup time must be 

evaluated. 

The startup time of services and managers also takes considerable booting time. In 

current Android design, the desktop screen is shown after all services and managers are 

ready. However, for many users, the later the screen shows, the slower the booting 

performance is. Thus, a booting-sequence redesign, which draws the desktop screen as 

early as possible and postpones launching the desktop-unrelated services, may be admired 

by users. 

5.3 Browsing Scenario 

Questions to Answer 

 Three questions are answered after profiling by our approach. First, what is the 

accurate execution time spent on each invoked module on Figure 4? Second, is there any 

hardware acceleration, i.e., Graphic Processing Unit accelerated (GPU-accelerated), on 
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rendering procedure during browsing? Third, as well know rendering and networking 

function is the major function on browsing. We are interesting in which of them 

dominates browsing time? 

Different networking technologies 

Figure 9 presents the time profiling results of loading a 2128-kB webpage which 

contains eight attached images. The experiments were conducted under different 

networking technologies, including Wi-Fi, 3G, and 2.75G.  

The results showed that the browsing performance with 2.75G is slower than the 

performance under other networks. Browsing with Wi-Fi exhibited the fast performance. 

In addition, the results showed that 90% browsing time consumed by downloading 

element resources, no matter what kinds of networks the DUT connected to. The function 

of downloading element resources takes responsibility for using HTTP protocol to request 

the attached web resources, e.g., the images in our experiments, from web server. 

Apparently, the performance of the function depends on the networking technology in use. 

We conclude that the networking technology in use is the most significant factor 

influencing the browsing performance on Android. 

The source code of GPU related drivers have been instrumented in this 

experimentation, but we didn’t found any GPU related output during browsing procedure. 

Thus we could also verify GPU didn’t be invoked during the rendering procedure of 

browser. If system invoke GPU to support browsing, it may takes addition energy 

consumption and addition offload time between CPU and GPU. The results showed that 

only 5% browsing time consumed by rendering function. Therefore, we can understand 

that there isn’t sufficient niche to invoke GPU during browsing. 
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Figure 9 Time profiling results for browsing thru Wi-Fi, 3G, and 2.75G networks 

Different size of single component in a webpage 

Figure 10 presents the experimental results of the performance for different total 

webpage size under Wi-Fi networks. The webpage size is adjusted by the size of the 

attached web image. The “others” part denotes the sum of all execution time excluding 

the time for downloading element resources. We collapse most functions into the “others” 

part, because the total time of these functions are small and steady no matter what the 

webpage size is. Again, the function of downloading element resources dominates the 

execution time of browsing, which indicates that the network transmissions are the most 

important factor affecting the performance of web browsing. 
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Figure 10 Profiling results of different webpage size 

5.4 Streaming Scenario 

Questions to Answer 

 We interest in three questions in streaming. First, what is the accurate execution time 

spent on each invoked module on Figure 5? Second, what is the execution time from the 

selected video icon be touched to the video be played (preparation time)? Third, which 

functions dominate preparation time? 

Profiling Results 

 

  Figure 11 Profiling results for streaming 
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Figure 11 shows the time profiling results of playing a one-minute MPEG-4 video 

from YouTube site. The file size of the video is 22 MB, and the DUT accessed the 

Internet thru the Wi-Fi interface. No jitter happened during experiments. Therefore, the 

streaming performance sensed by user in this experiment is the time spent on video 

preparation, i.e., 3.64 seconds. Obviously, two bottlenecks residing in video preparation 

are the video-downloading (1.572 seconds) and data-decoding (1.068 seconds). The 

data-decoding include audio decoding (0,515 seconds) and video decoding (0.553 

seconds). 
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Chapter 6 Conclusions and Future Works 

In this thesis, we designed a staged instrumentation approach for time profiling on 

multi-language multi-layer platform. The approach was practiced on the off-the-shelf 

product to examine the execution flows of three common scenarios, booting, browsing, 

and streaming. 

As well know, user-space initialization time dominate the booting time, but no 

literals present the complete numeric distribution of total Android booting time. This 

work showed that 72% of Android booting time is spent on the initialization of user-space 

environment, 13% is on kernel initialization, and 15% is for boot loader. Drilling down 

the booting time in user space, 44.4% is used by starting Android services and managers, 

and 39.2% is used by preloading Java classes and resources. For the browsing scenario, 

the experimental results exposed that the networking technology in use is the most 

significant factor influencing the browsing performance on Android. The time of drawing 

screen only takes less 5% of total time for browsing a 2128 kB web page. This result can 

explain why the GPU-acceleration is unnecessary for rendering function of browser. In 

the streaming scenario, video preparation causes 5.7% time overhead for playing a 22-MB 

video file over Wi-Fi connection. The execution time of Video-downloading and 

data-decoding take 72% ratio of preparation time. 

Though the proposed profiling approach can profile multi-language multi-layer 

platform, the profiling results still need manual analysis. In the future, we will design 

tools for analysis automation. Besides, this approach can integrated with energy profiling 

to measure the energy consumption of functions on system runtime. More scenarios, like 

the GPS navigation, and platforms, such as Android on set-top boxes, will also be profiled. 

The GPU didn’t supported on current version of Android browser for rendering function, 
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but it may supported on new version ones. We will also profile the browsing time with 

GPU and browsing time without GPU in future work. 
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