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ABSTRACT
As the complexity of the semiconductor device continues to explode, the EDA tool

performance and IC design flows are necessary.to-address all nanometer issues. Buffer
insertion is the state-of-the-art technology, which is used to improve the performance of

the timing issue. Fanout optimization is a fundamental problem in timing optimization. In
this thesis, considering the interconnect delay , we will adopt the buffer insertion technique to

solve the single source fanout optimization problem.
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Chapter 1

Introduction

The buffer insertion and sizing are essential design methodologies for reducing interconnect
delay [1]-[10]. In his past research [1], the VG algorithm has taken some important steps in
this direction. The idea is to proceed bottom-up from the sink nodes along the tree toward
the source node. During the bottom-up process, the set of candidate solutions at each node
evolves through four operations (grow, add buffer, merge, prune solutions). The algorthm picks
the best one from the solution set of the source and then top-down traverses the tree to get the
corresponding buffer placement.

In Figure 1.1, almost 70% of the cell 'count on a chip will be the buffer at 32 nm process
technology. Delay has a square dependence on the length of an RC unbuffered wire and buffers
needed to linearize delay. For the interconnect optimization issue, the buffer insertion technique
plays a very important role in DSM IC design: timing optimization, signal integrity and fixing
of the various electrical violations (e.g. load, slew)[11]. In Figure 1.2, as we concern the inter-
connect power, the power consumption in signal nets and the number of buffer are increasing
drastically. The IC designers have actions needed to be taken: using optimal buffer to minimize
the total power.

Fanout of a gate is the number of gates driven by that gate. To be more specifically, the
maximum number of gates can exist without impairing the normal operation of the gate. The
current must flow between logic gates and is limited by logic gate technology. For a single
source fanout issue, the clock and GPIO (General Purpose Input and Output) signal are often

used in VLSI design. This is especially noteworthy in the case of deep sub-micron IC design.
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1.1 Motivation

sink

sink

sink

Fan-out N

Fig. 1.3: The Meaning of Fan Out from [25]

In order to make sure all that inputs of the logic gate still maintain the precise logic, the

fanout optimization is the driving force behind VLSI design. The fanout is the number of load

gates N that are connected to the output of the driving gate (see Figurel.3). On the other hand,

the fanout is an unit of the ability of a logic gate output to drive a number of inputs of other

logic gates of the same type. In most designs, logic gates are connected together to form more

complex circuits, and it is common for one logic gate output to be connected to several logic

gate inputs. Increasing the fanout of a gate can affect its logic output levels. Many library

components define a maximum fanout to guarantee that the static and dynamic performance of

the element meet the specification. In this thesis, considering interconnect delay, we will adopt

the buffer insertion technique to synthesize the fanot tree which connects the source to the sink

(see Figure 1.4) such that the require times at all the sinks are satisfied and the required time at

the input pin of the source is maximized.



Fig. 1.4: Construct a Fanout Tree at The Source from [15]



1.2 Our Contributions

In this thesis, we try to add interconnect delay in [12]. The interconnect delay could not be
neglected because it will have huge impact on the design such as the number of buffer inserted,
and the total delay. Considering the gate delay only will not get the correct result of the real
world. Another contribution is the combination of the combinational merging algorithm and the
LT-Trees algorithm because there is a trade-off between better solution and less time. The last
contribution is to implement the retrace function that can be very easy to trace back the fanout

tree structure.



1.3 Organization of the Thesis

The introduction, motivation, and contribution are in Chapter 1. Chapter 2 will have the
previous works, and the problem formulation. The detail algorithm such as two-level algorithm,
combinational merging algorithm, LT-Trees algorithm, and retrace algorithm will be explained
clearly in Chapter 3. Finally, the experimental results and conclusion are given in Chapter 4 and

Chapter 5, respectively.



Chapter 2

Preliminaries

2.1 Problem Formulation

] r1 Buffer
Y
- Sink 2
’ Cbuf Cout
Source r2 1 [ Sou
O Fanout C2

Tree

~~ Fanout

— N\
N
N

L
Cn A
L

Fig. 2.1: The Network from [12]

In [12], given a source, and n sinkss, s, .., S,, €ach sink has a required timg ry, .., 7,
and an input pin capacitaneg, ¢, .., ¢,, as shown in Figure 2.1. The buffer and gate at the
source are also provided in Figure 2.1. The delay of the buftér,js= ., + By Cowr and the

delay of the gate atthe SOUfCQjL%urCE = Osource +Bsourcecout1 Where&bufa ﬁbuf: Usources ﬁsource

8



are known constants. Thg,,; in buffer delay calculations is the sum total of the input pin
capacitances for all fanouts of the buffer. Anotld&y,; involved in the gate delay is the sum

total of the input pin capacitances for all fanouts of the source. The problem is to evolve an
algorithm to construct the fanout tree which connects the source to the sink (using the buffers as
intermediate nodes) such that the required times at all the sinks are met, and the required time
at the input pin of the source is maximized. The definition of the problem could be described

more specifically as follows:

e Given a library of buffers with the same size: the input léag; .., the load dependent

delay By, rer and the intrinsic delay buffet,, e,

Given the source signal s, its drive capability,,... and its intrinsic delayy,,c.

Given n sinks with separate required timesand loadC;

To find a tree of buffers that distributes the signal s to all the sinks and maximizes the

required time at the input end of source

To take the interconnect delay. into consideration



2.2 Previous Works

 Effort-based delay equation:

delay = t(p + gh)
* 1 : Semiconductor process parameter

s p : Parasitic delay (due to diffusion cap.)
% g : Logical effort (gate topology)
% h: Electrical effort (gate size — L/C;,)

Fig. 2.2: The Delay Model from [15]

For the fanout optimization issue only, a paper provides such an approach: two-level, com-
binational merging, LT-Trees algorithm under the discrete buffer size [13]. Considering the
continuous buffer sizes issue [14] [15], they find that the fanout optimization result will be bet-
ter than discrete buffer library. In [26], taking the gate sizing and fanout optimization at the same
time, he claims that the optimization problem will be formulated as a non-convex optimization
problem. Fanout optimization [22] is the problem of constructing a buffer tree topology be-
tween a source and all sinks and the timing restrictions at all sinks are satisfied [13] [16] [19].
Several objective functions have been considered for the fanout optimization problem, such as
minimizing area [16] [17] [18] [19], reducing power consumption [17] [19], and turning down
load on the source [20].

In [15], they proposed an optimum solution for the single-sink buffering problem and de-

veloped an effective heuristic for the multiple-sink fanout optimization problem. Specifically

10



speaking, they divide the input capacitance bound into a set of bounds for different source-sink
pairs, solve the problem for each source-sink individually, merge all the source-sink pair solu-

tions into a single fanout tree solution, discretize and map the logical buffers to physical buffers

in the library. Figure 2.2 shows the delay model of their solution.

In [23], in their recent survey on repeater insertion, they have taken some important steps in
this direction. A repeater insertion flow at different stages of back-end IC flow at circuit-level
is presented. The main concern in this paper is what accuracy is required for the timing model
at different stages of the flow and what stages establish the quality of the results. The flow was
tested with very high-fanout nets. It is capable of simultaneously solving the problem of fanout
optimization and repeater insertion during the back-end IC flow.

In [24], an algorithm was presented for delay optimization under the constraint of combina-
tional logic, and they expand the state-of-the art sizing algorithm based on lagrangian relaxation.
Moreover, tightly combining fanout tree build process, buffer insertion/sizing and gate sizing,

they thereby accomplish more optimization than if they were performed independently.

11



Chapter 3

A Single Source Fanout Optimization

3.1 Interconnect Delay Model

A simple approximation to the delay in a RC network is elmore delay calculations used in
logic synthesis very often. For the sake of the easy calculation and precise, the elmore delay
model will be used to estimate the interconnect delay in this fanout optimization problem (see

Figure 3.1).

Elmore Delay

VW

Delay(A-C)=R,(C,+C,)+ R,C,

Fig. 3.1: The Elmore Delay from [25]

12



3.2 The Original Example Without Interconnect Delay

r1 l 1:
Source l 12 l 2 | Source
o r3 l ] 3—
] L r4 | 3:4 4:
Cout - 51 ™4 Cout = ]
@ 5 | 5

Buffer 2
Buffer 3

(c)

Fig. 3.2: The Original Example from [12]

The fanout tree given in Figure 3.2(a) is adopted from [12]. Thg=C,+Cy+C3+Cy+C
that is the summation of all the capacitance at sink andthe minimumg-y,rs,73,74,75), where
C; is the input pin capacitance of node i ands the required time at the input of node i. The
required time at the input of the source is giveny,,.cc = Tout = Asource= Tout = (Usource +
BsourceCout )-

Another fanout structure is given in Figure 3.2(b). Thg ot = Cs + Cy + Cs, thery, fou
= MiNIMUM@s,74,75), Toufin = Toufout=Gbufr= Toufout = (Cuf + Bouf Coufout)s th€T 4 = MiNimum
(71,72, Tousin), and thel,,, = C1+Cy+Ch, s, WhereC; is the input pin capacitance of node i and
r; IS the required time at the input of node i. The required time at the input of the source is given
BY Tsource = Tout = Asource= Tout = (Qtsource + BsourceCout)-

For the sake of easy reading the output file, the buffers can be given names in any order. On

the other hand the source and sinks must be named as soursé.and The output file for

13



another topology solution in Figure 3.2(c) will look as follows:
sinkl = source;

bufl = source;

sink2 = buf1l,
buf2 = buf1,
sink3 = buf2;
buf3 = buf2;
sink4 = buf3;
sink5 = buf3;

The simple rule in output file is every net i with source node i and sink node j is represented

as: node j=node i.

14



3.3 The Original Example With Interconnect Delay

We assume the net connecting any two nodes (source,sinks,buffers) will have the per-unit-
resistance R and per-unit-capacitance C. In Figure 3(a), the required time at the input of the
SOUICErsource = Tout = Asource™ Tout ~(Csource + BsourceCout ) has to be changed as follows,, .
= Tout = Asource"R*C=Tout ~(source + BsourceCout )-R*C.

In Figure 3(b) 7 rin =Tbufout=Aousr= Toufout = (Obu s+ BourCrusout) IS NECESSArY to be changed
as followsry, rin =Tvufout=Aous= Toufout = (us + BoufChufour) - R*C. The required time at the

InpUt Of the Source WI” beSO’U/I’C&‘ = Tout - dSOUT‘CE-R*C: Tout - (asource + /BSO’U/I“CCCO’U/t)-R*C'

15



3.4 The Algorithms Used In Fanout Optimization

Algorithm 1 Buffer Insertion Algorithm
Inputs: n sinks with required time;, capacityC; respectively, one source signal and a
one size buffer libraryysource, Bsources Qbuf fers Bous fer, Cousrer PEI-UNit-resistance,per-unit-
capacitance
Output: maximum require time at source input and the buffer tree structure.
begin
/I The sorting algorithm used is quicksort, which is
/I not listed here. Sort the n sinks by increasing
/I required. If required time are the same, sorting
/I by decreasing capacity.
required = combine();
Ideal reqUired time RO Pl — Qsource — 6source * (Cbu.ffer + C) — Rx* (Cbuffer + C) - ﬂbuffercl
if (RO — required) < 10 then
output structure tree from the combinational merging;
return required,;
exit(0);
else
required=LT();
exit(0);
end if
end

16



H.Touati [13] proposed some methods to solve the one source fanout optimization problem
in his dissertation. The dissertation shows in full detail how a single source fanout optimization
is figured out by two-level, combinational merging, and LT-Trees (Algorithm 2 to 4).

1. Two-Level Trees:

The characteristic of two-level trees is the usage of only one type of buffer. And even with
this restricted tree structure, this optimization problem is NP-complete. The definition of two-
level tree is that any leaf of this tree is separated from the root by only one node in this tree. A
sink is set to an intermediate buffer only if this assignment reduces the required time at source
at least. On the other hand , the algorithm chooses the allocation which maximizes the required

time at the source node. The number of the intermediate node(buffer) could be defined as

follows:\/ Bous fer * sUmCi / Bsource * Coupser- ThesumCy is the sum of all sink’s capacity. The
time complexity of the algorithm (Algorithm 2) is O{A). This is a greedy algorithm which
does not guarantee optimality, but is a baseline algorithm for other more sophisticated methods.

In algorithm 1, the required time atall sink is sorted by quick sort and the capacity is the
second key in quick sort when two of the required time are the same value. Figure 3.3 to Figure
3.5 show that that the construct process of the two-level tree.

2. Combinational Merging:

The algorithm incrementally inserts buffer cells and connects the k sink nodes with the
largest required times. For combinational merging (Algorithm 3), the method is presented as
follows: To sort the n sinks by ascending required times, to link the n-k+1 sinks with the largest
require times to a buffer, to merge the new buffer node with the left k-1 sinks to generate a new

k nodes sorted array. The procedure must be done recursively, until the k is equal to 1.

The main concern is how to choose k: Given koR;/;sbuffer * sumCh / Bsource * Chufrers K
is the largest index that hasmC}. bigger thansumC,/kopt. k is determined by the two-level
tree equation. The algorithm is easy and has time complexity O(nlogn) resulted from the fanout

tree structure. The detailed is below algorithm 3 and in the Figure 3.7 to Figure 3.12.

17



Rmin0 — /8y, * load — Sb

buf | Rmin, | L, | R, buf | Rmin, | L) | R;
ol 132 |6 |72 0| 132 | 2|80
11 o lolw 7] 139 | 4 |83
2 © 0| o 2 o 0|
MIN{R’,, R, R} =72 MIN{R,, R’;, R’} =80

.......

This is a better allocation

Fig. 3.3: Two-Level Algorithm Step 1
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R,=132,L,=2

R,=142, L, =

R,=132,L,=2
Source R.=162,L.=4
R,=139,L,=4
R,=146,L,=3
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R,=148,L,=6

Fig. 3.5: Two-Level Algorithm Step 3
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Fan-out optimization: Construct a fan-out tree which maximize the required
time R at the net source 7 on following conditions

— Net source r :

* Output transition coefficient : T,

(Switching delay S, is not really needed in the optimization)

— Buffercell b; :

*+ Gateload: L,

* Switching delay : S,

* Output transition coefficient : 7,
— Sinki(i=1,2,...n)

* Gateload: L;

* Required time R,

1. Sort the sinks in the increasing order of their required times (in case of a
tie, the decreasing order of the gate load)
2. For each buffer cell b, compute the optimal number of sinks k,, (from
the tail of the sink list) to be connected to b,.
< L,y : total gate loads in the sink list
< my=(T;L,,/T.L)"? : optimal number of buffers in two-level tree using cell
by
< L,/ ny; : Optimal load per single buffer b,
< L’.: total gate loads of theilast k;nodes in the sink list

> ky;is the smallest k which satisfies L, > L,/ ny;
3. For each cell type b;, det R(b)) be the required time at the source r where

only a single cell of b, is connected to-+ and cell b; is connected to the
lastk (= k,;) nodes in'the sinklist.
> R(b)= Ry~ Ty Ly~ Sy 5Tk
< R’,: required time of the 4-th node from the bottom of the sink list
»  Choose the cell type b; which gives the largest R()))
(this will have the largest speed up effect)
4. Update sink list :
»  Insert the cell b; to the fan-out tree
»  Delete the kj;nodes from the sink list (since they are buffered by b))
» Add b; to the sink list
< Required time at the inserted b, cell : R(b)=R", — T,,L,— S,
» Ifky; is less than the total number of nodes in the sink list, go to 1.
5. Retrieve the best allocation during the whole process (allocation with
the largest required time at the source). End of process.

Fig. 3.6: The Building Process For Combinational Merging Tree

21
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Fig. 3.7: Combinational Merging Algorithm Step 1
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Fig. 3.8: Combinational Merging Algorithm Step 2
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Fig. 3.9: Combinational Merging Algorithm Step 3
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Fig. 3.10: Combinational Merging Algorithm Step 4
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R | LILY = (16 / 8)12

2[2[4]: =141 Rpz =81, L, =2

811212 | ¢ Lyl n, =283 R(b) =R =Ty "L’y = Sp= T, "Ly
K =2 . =4. R.,=22 =22-4%4-42-4*2 H
H b1 — ’ 2~ ’ 2~ =_44

.. R

Npy = (Tpp Loy /T, Lpp) "

T, =4 b1 Rb3 = 34’ Lb3 =2
= @/12)" Rl
R,,=81,L,,=2

=0.82
La” / nb2 =490 R(bZ) = Rys— sz *L,S — sz— Tr * Lb2
Kyp=2L,=4 R,=22 f224g2*4—43—4*3

Fig. 3.11: Combinational Merging Algorithm Step 5

26



N
N

w

000 D
w
oo

x
EN

<
-

@
3}

o
NN= A=
AW WO M
ANGO 0O
~e e
NOO WANOD

Py
0
-~
o
[e¢]
o
2 X

o
o

N

Py
1l
|

A0
now
oo

- (=}

NNN= A=
DR WO D
ANGO 05O
~r—r

2 2 0
o O
o

o e

N

[STE NI

/I ~
i
]
=
X
(=}
NN= AN
QWA WO®D
ARG 0050
~r—r -
NOD WANOD

o o =

............................................................................

Fig. 3.12: Combinational Merging Algorithm Step 6

27

N
N

w
o n

000 D
w
oo

x
EN

<

o (=}

NN= 2N =
TR WO D
ANGO 00O
~— e
NOO WANOD

BV VR Py
o O =

£

w
o n
w
o

<

o
NDN= A=
TR WO D
ANGO OO
~—r e
NOD WANOD

2 0 X
o O
o

N
N

w
naun

£

A0 0
w
o

N

Y
nonn

o
NNN= A=
TR WO D
ANGO OO0
~r~r~ e
o = (=]
NOD WANOD

2 0 X
(&
o

o
o



Algorithm 2 Two-Level Algorithm
Inputs: from sink k+1 to sink n , sorted by ascending required time, the capacity of
these (n-k+1) sink€y .1, Cyyo.....C}, ), the sum of the capacity of these (n-k) sinksnC),
source Bsources Cbuf fer, Bouffers Coufrer PEI-UNit-resistance,per-unit-capacitance
Output: the required time of the (n-k) sinks using two-level fanout tree
begin
/lif k is zero, the root is the source, otherwise, the root is buffer
beta = ( kzzo)?ﬁsource:ﬁbuffer
/I calculating the number of buffers needed
nBuffer = \/ﬁbuffer * SumCl/ﬁsource * Cbuffer
/Ithe number of buffers will less than the number of sinks
nBuffer =(nBuf fer) < (n — k))?nBuffer:(n-k)
/IrBuffer stands for Cout and IBuffer represents
//Cbuf
for i=1 to nBufferdo
rBuffer[i] =0.0;
IBuffer[i] =0.0;
end for
temp =-1000000;
/lassign sink to buffer begin with the one with
I/ biggest required time, easy to calculate the
/I buffer require time
for i=n to k+1do
for j=1 to nBufferdo
// the new added one has the minimum
Il require time
required =r; — Byt fer * (IBuf fer[j] + C;)-PerUnitinterconnectDelay;
if (temp) < (required) then
temp =required;
num =j ;
end if
end for
rBuffer[num] = temp;
[Buffer[num] = IBuffer[num]+C;;
end for
for i =1 to nBufferdo
result =(result < rBuf fer[i]) ?result : rBuffer[i];
result = result- 3 * Chy s fer ¥ nBuf fer) — (Qugfer);
end for
return result;
end
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3. LT-Trees: The two-level trees can only build restricted type of net structure, which is
not efficient and sufficient if the required times at sinks are very different from each other.
The combinational merging is only using a heuristic approach to choose the parameter k. The
LT-trees algorithm is a compromised algorithm between combinational merging and two-level
fanout trees. The definition of the LT-trees [13]:

a. Aleafis an LT-Tree

b. A two-level tree is an LT-Tree

c. Let T be a tree rooted at r such that one child of r is an LT-Tree and all the other children
of r are leaves. Then T is an LT-Tree.

If a node has more than one child being intermediate node, we only consider it as a two-level
trees. Compared to the trees structure constructed by two-level trees and combinational merg-
ing, the trees structure defined above is much more complex, making it possible to handle the
situation as sinks have very big capacities or/and the required times of sinks are very different
from each other. On the other hand, the LT-trees are only a small subset of the set of all fanout
trees, making it practical in general.use. This algorithm is also not optimal based on the sorting
of sinks by increasing required times. The complexity of it isOfn The Figure 3.13 shows
the construct of LT-Trees.

The LT-trees algorithm uses the dynamic programming to generate the optimal LT-Trees for
a given fanout problem. The ideais: For k from nto 1, each k is also a fanout problem.

1. First compute the two-level trees on k

2. Asinduction on k from nto 1, for any. > k, the optimal LT-trees T(m) is already known.
Connect sink k, k+1,....,m-1 and optimal LT-tree T(m) to root, obtain the relative required time.

3. The final optimal LT-tree T(k) is the one from step 1 and 2 with the maximum required
time. Use two-level[K] to indicate if the LT-tree is a two-level trees. If it is not, next[k] is used
to record the first index that is not connected to the root directly.

4. Compute the whole procedure recursively until k =1, to obtain the maximum required
time at source. The detailed algorithm is shown by algorithm 4. Given the array two-level[K]
and next[k], it is very easy to trace back the trees structure. The detailed algorithm is below on

algorithm 5.
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The fanout optimization is a NP-Complete problem if non-constant capacity values are al-
lowed at sinks. So, there is always a trade-off between better solution and less time. combina-
tional merging algorithm is a heuristic algorithm with much less time consumed than LT-Trees
algorithm. In this thesis, the two algorithms are combined: We already know the minimum re-
quired time at sinks and we can get the ideal maximum required tim& bBY¢v,ource — Bsource *

(Couffer +C) — R (Couffer + C) = BousrerCh

For each benchmark, we first use the combinational merging algorithm, and if the obtained
required time is within a small range of the ideal required time, computing stops here. Other-
wise, the LT-Trees algorithm will be called for a better solution. Since combinational merging

is very fast, its overhead on those using LT-Trees finally is acceptable.

Source

R,=132,L,=2 ‘
Source R(: =139, L‘: =4 N

R,=142,L,=6

g R,=146,L,=3 I:> R, g
R,=148 L, =6 5
R, =162, L =4
RS =164, [2=3 R, Ry R,

R, R,

Fig. 3.13: The Construct of the LT-Trees
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Algorithm 3 Combinational Merging Algorithm
Inputs: n sinks sorted by ascending required time , one source signal and a one size buffer
librarycsource, Bsources Qbuf fers Bouf fer, Cousfer PEI-UNIt-resistance, per-unit-capacitance
Output:maximum require time at source input and the buffer tree structure
int n= nSink; double kopt;
int k; int step=0;
double rt;
while n > 0 do

for i=0 to ndo
sumCli]=0.0;
for intj=itondo
sumCli]+=cSink[jJ;
end for
end for
kopt = sqgrt(bBuffer*sumC[0]/(bSource*cBuffer));
for i=0tondo
if sumC[i] > (sumC10]/kopt) then
k=i;
end if
end for
rt= rSink[k]-bBuffer*sumCJk]-aBuffer-PerUnitInterconnectDelay;
for i=k to ndo
pSink[sSink[i]]=(k==0)?-1:step;
end for
if £ == 0then
break;
end if
quicksort(rSink,cSink,sSink,0,k);
int i=0;
for i=0 to kdo
if rSink[i] > rt then
break;
end if
end for
if i==k then
rSink[k]=rt;
cSink[k]=cBuffer;
sSink[k]=nSink+step;
else
for (intj = k;j >i;j ——) do
rSink[j]=rSink][j-1];
cSink[j]=cSink][j-1];
sSink[j]=sSink[j-1];
end for
rSink[i]=rt;
cSink[i]=cBuffer;
sSink[i]=nSink+step;
end if
n=k+1;
step++;
end while 31




Algorithm 4 LT-Trees Algorithm

Inputs: n sinks sorted by ascending required time one source signal and a one size buffer
library. csource, Bsources Qbuf fers Bouffer, Cousfer PEI-UNIt-resistance, per-unit-capacitance
Output: maximum require time at source input and the buffer tree structure.
begin
for i=1ton do
for j=itondo
sumC; = sumC; + Cj;
end for
end for
sumCi 1 = Chuyfer;
required[n+1] £,,+1000
for i=nto 1do
required[i] = two-level();
tLevel[i] = true;
for j=i+1 to n+1do
/I calculating the required time when the sink k to
/I to sink(j-1) connected to root directly.
I rk is the smallest required time
temp =mir(ry, required[j] — Qpuffer)
temp -= ((Z - 1)?5501””66 : ﬁbuffer) * (Cbuffer + Sumck - Sumcl)_
PerUnitInterconnectDelay;
if (temp > required[i]) then
required[i] = temp;
tLevel[i] = false;
next[i] = 1
end if
end for
end for
required[l] = @source)'(reqUired[l]);
call the retrace function;
return required[1] and the L-T structure
end
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Algorithm 5 Retrace Algorithm
Inputs: boolean tLevellk], k=1,2...n, for each k, if two-level is used int next[k], k=1,2,....n,
the first sink that does not connected to root directly
Output: the total number of buffer nBuffer, the parent node for each sink pSink[k], the parent
node for each buffer pBuffer[i], i=1,2.....nBuffer
begin
int step = -1,
inti=0;
while (i) < (n+1) do
if tLevel[i]==true then
run two-level algorithm to get nBuffer and the num for each sink
for i=nto k+1 do
for j=1 to nBufferdo
pBuffer[step+1+j] = step;

end for
pSink[i] = step+1+num;
end for
nBuffer = nBuffer + step+1;
break;
else

for j=i to(next[i] - 1) do
pSink[j]=step;
pBuffer[step+1]=step;
end for
end if
step++;
i=next[i];
end while
end
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Chapter 4

Experimental Results

The whole algorithms are implemented in C++ and the platform used for this master thesis is
Pentium 4 2.66 GHz, 1280MB dram. The parameter of the per-unit-resistance and the per-unit-
capacitance are gotten from [10]. We will adopt interconnects per unit length for every connects
between nodes.

There are three output files :

1. The number and the name ofthe buffer used.

2. The net information among these nodes:source, sink, buffer.

3. The runtime for each benchmark and relative information.

The information for each benchmarkare shown in Table 4.1. In Table 4.2 to Table 4.4, the
Minimum is the minimum required time at sinks, the Original stands for the required time at
source without buffer insertion, the Ideal represents the potential best required time, the Result
on behalf of the final result at source after buffer insertion, and the NBuffer is the usage of
buffer number for every benchmark. The simulation results are shown in Table 4.2 to Table 4.4.
While a great number of papers have been written on the fanout optimization, many of them
entirely do not consider the interconnect delay issue.

The * symbol in Table 4.2 to Table 4.4 is the whole algorithm running with consideration
of the interconnect delay. Once the delay value in Table 4.2 to Table 4.4 has been changed, the
number of the buffer is also different from that without interconnect delay. The result** means
that we check the timing for every sink to source and choose the smallest one.

Besides the field of Method, NBuffer and Runtime in Table 4.2 to Table 4.4, the unit of

every field in the Table 4.2 to Table 4.4 is picosecond. For each benchmark, we first use the
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Table 4.1: Benchmark Information

Benchl| Bench2| Bench3| Bench4| Bench5
U source 1 1 1 1 1
Bsource 0.5 0.5 0.5 0.5 0.5
Olpy f 1 1 1 1 1
Bous 0.5 0.5 0.5 0.5 0.5
Chuf 1 1 1 1 1
Total Sinks| 1000 2000 3000 4000 5000
Bench6| Bench7| Bench8| Bench9| Benchl10
U source 1 1 1 1 l
Bsource 0.5 0.5 0.5 0.5 0.5
Oélmf 1 1 1 1 1
Bous 0.5 0.5 0.5 0.5 0.5
Chuf 1 1 1 1 1
Total Sinks| 6000 7000 8000 9000 10000

combinational merging algorithm, and if the obtained required time is within a small range of
the ideal required time, computing stops here. Otherwise, the LT-Trees algorithm will be called
for a better solution. Since combinational merging algorithm is efficient, its overhead on those
using LT-Trees algorithm finally is acceptable.. Adding the interconnect delay results in the

usage of decreasing the number.of buffer.
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Table 4.2: Simulation Results of the LT-Trees and Combinational Merging

Benchl | Bench2| Bench3| Bench4 Bench5
Minimum 70265 76067 | 70265 80005 80000
Original 68933 73404 | 66271 74071 72726
Ideal 70263 76063 | 70263 80002 79998
Result 70263 76056 | 70258 80002 79997
Result** 70262 75993 | 70139 80001 79995
Result* 70257 76036 | 70241 79997 79991
Delay 2.0221 | 10.9944| 7.8357 2.0005 3
Delay* 8.0672 | 30.8928| 24.0712| 7.5015 8.5008
NBuffer 493 135 168 2497 3062
NBuffer* 476 136 168 1422 1488
Runtime 0.2810 0.5150 |+2.3590 8.3760 13.1720
Runtime* | 0.2970 0.5160-| 2.4840 8.8280 15.2040
Method | LT-TREES| C.M. C.M. | LT-TREES| LT-TREES
Bench6 | Bench7{ Bench8} . Bench9 Bench10
Minimum 80000 76067 | 70265 80000 80000
Original 71285 66749 | 59617 67179 65651
Ideal 79998 76064 | 70263 79998 79998
Result 79997 76054 | 70259 79997 79996
Result** 79996 75893 | 70145 79996 79995
Result* 79990 76035 | 70241 79990 79989
Delay 2.1653 | 12.2716| 6.4508 2.7819 3.0004
Delay* 9.0013 | 31.8043| 24.4905| 9.5019 10.5032
NBuffer 3363 267 288 3177 2598
NBuffer* 1415 267 288 1004 802
Runtime | 20.3440 | 23.2660| 28.2660| 54.8600 71.7190
Runtime* | 23.7810 | 24.4060| 29.6400| 64.1880 84.0940
Method | LT-TREES| C.M. C.M LT-TREES | LT-TREES
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Table 4.3: Simulation Results of the LT-Trees

Benchl Bench?2 Bench3 Bench4 Bench5
Minimum 70265 76067 70265 80005 80000
Original 68933 73404 66271 74071 72726
Ideal 70263 76063 70263 80002 79998
Result 70263 75994 70140 80002 79997
Result** 70262 75993 70139 80001 79996
Result* 70257 75970 70097 79997 79991
Delay 2.0221 72.7322 | 125.2144 2.0005 3
Delay* 8.0672 96.1278 | 168.1960 7.5015 8.5008
NBuffer 493 980 671 2497 3062
NBuffer* 476 868 622 1422 1488
Runtime 0.2660 1.0780 2.3590 7.7970 13.3900
Runtime*| 0.2970 1.2510 3.7650 8.7660 15.1570
Method | LT-TREES | LT-TREES| LT-TREES| LT-TREES | LT-TREES
Bench6 Bench? Bench8 Bench9 Bench10
Minimum 80000 76067 70265 80000 80000
Original 71285 66749 59617 67179 65651
Ideal 79998 76063 70263 79998 79998
Result 79997 75894 70146 79997 79996
Result** 79996 75893 70145 79996 79995
Result* 79990 75860 70097 79990 79989
Delay 2.1653 172.3098 | 119.2462 2.7819 3.0004
Delay* 9.0013 206.2102 | 167.9518 9.5019 10.5032
NBuffer 3363 1039 2872 3177 2598
NBuffer* 1415 979 1662 1004 802
Runtime 21 27.6410 28.2660 57.2660 74.7810
Runtime* | 23.7030 31.3600 43.5790 64.5310 83.7650
Method | LT-TREES| LT-TREES | LT-TREES | LT-TREES | LT-TREES
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Table 4.4: Simulation Results of Combinational Merging

Benchl| Bench2| Bench3| Bench4 | Bench5
Minimum | 70265 | 76067 | 70265 80005 80000
Original | 68933 | 73404 | 66271 74071 72726
Ideal 70263 | 76063 | 70263 80002 79998
Result 70263 | 76056 | 70258 80002 79995
Result** | 70262 | 75993 | 70139 80001 79996
Result* | 70251 | 76036 | 70241 79993 79985
Delay 2.0221 | 10.9944| 7.0167 | 2.000500( 4.5008
Delay* | 14.0221| 30.8928| 24.0712| 11.0145 | 14.5000
NBuffer 100 135 168 215 237
NBuffer* 100 136 168 215 237
Runtime | 0.2810 | 0.5160 | 2.438 8.3440 14.11
Runtime* | 0.2800 | 0.5320 | -2.469 8.2810 | 14.4680
Method C.M. C.M. C.M. C.M. C.M.
Bench6| Bench7| Bench8| Bench9| Benchl10
Minimum | 80000 | 76067 | 70265-{-80000 | 80000
Original | 71285 | 66749 | 59617 | 67179 | 65651
Ideal 79998 | 76064 | 70263 | 79998 | 79998
Result 79996 | 76054 | 70259 | 79995 | 79996
Result** | 79996 | 75893 | 70145 | 79996 | 79995
Result* | 79981 | 76035 | 70241 | 79982 | 79980
Delay 3.1653 | 12.2716| 6.4508 | 4.0002 | 4.1379
Delay* | 18.1657| 31.8043| 24.4905| 17.5104| 19.5010
NBuffer 260 267 288 317 337
NBuffer* 260 267 288 317 337
Runtime | 22.1412| 24.1876| 29.1253| 60.9537| 80.7813
Runtime* | 22.6720| 24.4060| 29.8280| 61.7660| 82.9230
Method C.M. C.M. C.M C.M. C.M.
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Chapter 5

Conclusion

The fanout optimization is a NP-Complete problem if non-constant capacity values are
allowed at sinks. There is always a trade-off between better solution and less time. Combina-
tional Merging Algorithm is a heuristic algorithm with much less time consuming than LT-Trees
Algorithm. In this thesis, the two algorithms are combined: We already know the minimum re-
quired time at sinks and we can get the ideal maximum required time by: Ideal required time:
11 — Qsource — Bsource ¥ (Couffer + C) =R * (Cpuprer + C) — BousserCi

For each benchmark, we first use the combinational merging algorithm, if the obtained re-
quired time is within a small range of the ideal required time, computing stops here. Otherwise,
LT-Trees algorithm will be called for a ‘better solution. Since combinational merging is very
fast, its overhead on those using LT-Trees finally is acceptable.

The interconnect delay could not be neglected in deep sub-micron IC design. In this thesis,
the interconnect delay is elmore delay model. The future works will include the extension
of gate sizing, one more size buffer library, multiple sink, more precise model of source gate
model and interconnect delay. At last, the improvement of the benchmark will have the X-
Y information for every node including buffer, source, sink that can estimate the length of

interconnect more precisely .

39



Bibliography

[1]

[2]

[3]

L. P. P. P. van Ginneken, “ Buffer placement in distributed RC-tree networks for minimal

Elmore delay,in In Proc. Intl. Symposium on Circuits and Systems, pp. 8651368.

H. Bakoglu, “ Circuits, Interconnections, and Packaging for VL3lddison-Wesley Pub-

lishing Company1987.

J. Lillis, C. K. Cheng and T.-T. Y. Lin, “ Optimal wire sizing and buffer insertion for low
power and a generalized delay modeh”|EEE J. Solid-State Circuits, vol. 31(3), pp.
437-4471996.

[4] Weiping Shi and Zhuo Li, “-A Fast Algorithm for Optimal Buffer Insertionfi IEEE

Trans. Computer-Aidede Design, vol. 24, no. 6, pp. 879;80de 2005.

[5] Weiping Shi and Zhuo Li, “ An O(nlogn) Time Algorithm for Optimal Buffer Insertion,”

[6]

in 40th Design Automation Conference (DAC), pp. 580;28®3.

Zhuo Li and Weiping Shi, “ An O(bn2) Time Algorithm for Optimal Buffer Insertion
with b Buffer Types,’in Conference on Design, Automation and Test in Europe (DATE),

Munich, Germany, pp. 1324-1328larch 2005.

[7] Weiping Shi, Zhuo Li and Charles J. Alpert, “ Complexity Analysis and Speedup Tech-

[8]

niques for Optimal Buffer Insertion with Minimum Cosifi 9th Asia and South Pacific

Design Automation Conference (ASP-DAC), Yokohama, Japan, pp. 609a612004.

Zhuo Li, C. N. Sze, Charles J. Alpert, Jiang Hu and Weiping Shi, “ Making Fast Buffer In-
sertion even Faster via Approximation Techniques0th Asia and South Pacific Design

Automation Conference (ASP-DAC), Shanghai, China, pp. 13k82005.

40



[9] Zhuo Li and Weiping Shi, * An O(mn) Time Algorithm for Optimal Buffer Insertion of
Nets with m Sinks,in 11st Asia and South Pacific Design Automation Conference (ASP-

DAC), Yokohama, Japan, pp. 320-325Fn 2006.
[10] “Fast Buffer Insertion Source Code,”

[11] Y. Peng and X. Liu, “ Low-power repeater insertion with both delay and slew rate con-

straints ,"in DAC, pp. 303-30,/2006.
[12] “ http://www.ece.umd.edu/class/enee644.52004/project/project.htm,”

[13] H. Touati, “ Performance-oriented technology mappingn,”Ph.D. dissertation, Univ.

California, Berkeley, CA1990.

[14] D. Kung, “ A Fast Fanout Optimization Algorithm for Near- Continuous Buffer Libraries

. Proc. of 35th DAC, pp. 352-355June 1998.

[15] P. Rezvani, A. Ajami, M. Pedram; H. Savoj, “ Leopard: A Logical Effort-based fanout
Optimization for Area and Delay Proc. of ICCAD, pp. 516-519November 1999.

[16] P. Rezvani and M. Pedram, “ A fanout optimization algorithm based on the effort delay
model,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 22, no. 12, pp.
1671-1678Dec. 2003.

[17] D. Zhou and X. Liu,” Minimization of chip size and power consumption of high-speed

VLSI buffers,” in Proc. Int. Symp. Phys.pp. 186-191ec.1997.

[18] K. J. Singh and A. Sangiovanni-Vincentelli, “ A heuristic algorithm for the fanout prob-

lem,” in Proc. Des. Autom. Conf.pp. 357-36390.

[19] B. Amelifard, F. Fallah, and M. Pedram, “ Low-power fanout optimization using multiple

threshold voltage invertersfi Proc. Int. Symp. Low Power Electron.pp. 95;8%c. 2005.

[20] C.L.Berman, J. L. Carter, and K. F. Day, “ The fanout problem: From theory to practice,”
iin Proc. Decennial Caltech Conf. Adv. Res. VLSI, pp. 691989.

41



[21] K. Kodandapani, J. Grodstein, A. Domic, and H. Touati,“ A simple algorithm for fanout
optimization using high-performance buffer libraries,"Proc. Int. Conf. Comput.-Aided

Des. pp. 466-4711993.

[22] B. Amelifard, F. Fallah, and M. Pedram,“Low-power fanout optimization using multi
threshold voltages and multi channel lengtHEEE Trans. on Computer Aided Design,,

Vol. 28, No. 4, pp.478-48%pr. 2009.

[23] Nikolai Ryzhenko, Oleg Venger,“"A Practical Repeater Insertion Flo@[.SVLSIO8
pp.261-266May 2008.

[24] 1-Min Liu, Adnan Aziz, “ Delay Constrained Optimization by Simultaneous Fanout Tree
Construction, Buffer InsertiodSizing and Gate Sizing’roceedings of the 37th annual

ACM/IEEE Design Automation Conference pp.209;2llshe 2000.

[25] Jan M. Rabaey, Anantha Chandrakasan, and Borivoje Nikolic, “ Digital Integrated Circuits
(2nd Edition),”pp. 25-26Jan 2003.

[26] Wei Chen, Cheng-Ta Hsieh, Massoud Pedram, “ Simultaneous Gate Sizing and Fanout
Optimization,”Proceedings of the 2000 IEEE/ACM international conference on Computer

aided design , pp. 374-378une 2000.

42



