

國 立 交 通 大 學

電機學院 IC 設計產業專班

碩 士 論 文

一個使用緩衝器插入且考量連線延遲的單源扇出最佳化

A Single Source Fanout Optimization Using

Buffer Insertion Considering Interconnect Delay

研 究 生：吳國富

 指導教授：李育民 副教授

中 華 民 國 九 十 九 年 七 月

一個使用緩衝器插入且考量連線延遲的單源扇出最佳化
A Single Source Fanout Optimization Using

Buffer Insertion Considering Interconnect Delay

研 究 生：吳國富 Student：Kuo-fu Wu

指導教授：李育民 Advisor：Yu-min Lee

國 立 交 通 大 學
電機學院 IC 設計產業專班

碩 士 論 文

A Thesis

Submitted to College of Electrical and Computer Engineering

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master

in

Industrial Technology R & D Master Program on

IC Design

July 2010

Hsinchu, Taiwan, Republic of China

中華民國九十九年七月

一個使用緩衝器插入且考量連線延遲的單源扇出最佳化

學生：吳國富

指導教授：李育民

國立交通大學電機學院 IC 設計產業專班

摘 要

隨著半導體設備的複雜度持續的發展，電子設計自動化工具的效能及積體電

路設計流程必須著重所有的奈米問題。緩衝器插入是用來改善時序問題效能先進

科技技術。扇出最佳化在時序最佳化中是一個基礎的問題。在這篇論文中，我們

採取緩衝器插入技術且考量連線延遲來解決單源扇出最佳化問題。

i

A Single Source Fanout Optimization Using

Buffer Insertion Considering Interconnect Delay

Student：Kuo-fu Wu

Advisors：Dr. Yu-min Lee

Industrial Technology R & D Master Program of
Electrical and Computer Engineering College

National Chiao Tung University

ABSTRACT
As the complexity of the semiconductor device continues to explode, the EDA tool

performance and IC design flows are necessary to address all nanometer issues. Buffer

insertion is the state-of-the-art technology, which is used to improve the performance of

the timing issue. Fanout optimization is a fundamental problem in timing optimization. In

this thesis, considering the interconnect delay , we will adopt the buffer insertion technique to

solve the single source fanout optimization problem.

ii

誌 謝

 首先要感謝的是指導老師: 李育民 博士 在我交大研究生的生

涯中幫助了我許多，舉凡研究上，心理輔導上以及課業上的種種，以

致於這碩士論文的完成。

再來感謝的是口試委員: 陳富強 博士 及 李毅郎 博士 所提供的寶

貴意見及修正建議，使得此碩士論文得以更臻完善。

 非常感謝愛情長跑十多年的女友幫我 revise 我寫的碩士論文，透

過週日下午三個多小時的電話一句句的校正與修改使得我的論文初

槁得於口試前十天順利的繳交到口試委員的手上。

 最後要感謝的是我的父親、亡母 及大哥。沒有父親無怨無悔的打

拼、亡母從小至臺北科技大學電通所研一的諄諄告誡及教誨、以及大

哥多年來在背後默默的支持我。今日的我可能不知在哪裏流浪或迷失

自我、隨風漂浮！

 再次謝謝我的父親、 亡母 及 大哥。

iii

Contents

1 Introduction 1
1.1 Motivation . 4
1.2 Our Contributions . 6
1.3 Organization of the Thesis . 7

2 Preliminaries 8
2.1 Problem Formulation . 8
2.2 Previous Works . 10

3 A Single Source Fanout Optimization 12
3.1 Interconnect Delay Model . 12
3.2 The Original Example Without Interconnect Delay 13
3.3 The Original Example With Interconnect Delay 15
3.4 The Algorithms Used In Fanout Optimization 16

4 Experimental Results 34

5 Conclusion 39

iv

List of Figures

1.1 Buffer Usage in the Future . 2
1.2 Total Dynamic Breakdown and % Buffer Cells in Block-Level Nets 3
1.3 The Meaning of Fan Out from [25] . 4
1.4 Construct a Fanout Tree at The Source from [15] 5

2.1 The Network from [12] . 8
2.2 The Delay Model from [15] . 10

3.1 The Elmore Delay from [25] . 12
3.2 The Original Example from [12] . 13
3.3 Two-Level Algorithm Step 1 . 18
3.4 Two-Level Algorithm Step 2 . 19
3.5 Two-Level Algorithm Step 3 . 20
3.6 The Building Process For Combinational Merging Tree 21
3.7 Combinational Merging Algorithm Step 1 . 22
3.8 Combinational Merging Algorithm Step 2 . 23
3.9 Combinational Merging Algorithm Step 3 . 24
3.10 Combinational Merging Algorithm Step 4 . 25
3.11 Combinational Merging Algorithm Step 5 . 26
3.12 Combinational Merging Algorithm Step 6 . 27
3.13 The Construct of the LT-Trees . 30

v

List of Tables

4.1 Benchmark Information . 35
4.2 Simulation Results of the LT-Trees and Combinational Merging 36
4.3 Simulation Results of the LT-Trees . 37
4.4 Simulation Results of Combinational Merging 38

vi

List of Algorithms

1 Buffer Insertion Algorithm . 16
2 Two-Level Algorithm . 28
3 Combinational Merging Algorithm . 31
4 LT-Trees Algorithm . 32
5 Retrace Algorithm . 33

vii

Chapter 1

Introduction

The buffer insertion and sizing are essential design methodologies for reducing interconnect

delay [1]-[10]. In his past research [1], the VG algorithm has taken some important steps in

this direction. The idea is to proceed bottom-up from the sink nodes along the tree toward

the source node. During the bottom-up process, the set of candidate solutions at each node

evolves through four operations (grow, add buffer, merge, prune solutions). The algorthm picks

the best one from the solution set of the source and then top-down traverses the tree to get the

corresponding buffer placement.

In Figure 1.1, almost 70% of the cell count on a chip will be the buffer at 32 nm process

technology. Delay has a square dependence on the length of an RC unbuffered wire and buffers

needed to linearize delay. For the interconnect optimization issue, the buffer insertion technique

plays a very important role in DSM IC design: timing optimization, signal integrity and fixing

of the various electrical violations (e.g. load, slew)[11]. In Figure 1.2, as we concern the inter-

connect power, the power consumption in signal nets and the number of buffer are increasing

drastically. The IC designers have actions needed to be taken: using optimal buffer to minimize

the total power.

Fanout of a gate is the number of gates driven by that gate. To be more specifically, the

maximum number of gates can exist without impairing the normal operation of the gate. The

current must flow between logic gates and is limited by logic gate technology. For a single

source fanout issue, the clock and GPIO (General Purpose Input and Output) signal are often

used in VLSI design. This is especially noteworthy in the case of deep sub-micron IC design.

1

0

10

20

30

40

50

60

70

80

90nm 65nm 45nm 32nm

%
ce

lls
 u

se
d

as
 b

uf
fe

rs

[Saxena et al., TCAD ’04]

Fig. 1.1: Buffer Usage in the Future

2

0

10

20

30

40

50

60

70

80

90nm 65nm 45nm 32nm%
bu

ffe
r c

el
ls

 in
 b

lo
ck

-le
ve

l n
et

s

clocked

uncloced

total

P. Saxena, ISPD’04

Interconnect

51%

Gate

34%

Diffusion

15%

Total Dynamic Power Breakdown

N. Magen, SLIP’04

Fig. 1.2: Total Dynamic Breakdown and % Buffer Cells in Block-Level Nets

3

1.1 Motivation

source

sink

sink

sink

N

Fan-out N

Fig. 1.3: The Meaning of Fan Out from [25]

In order to make sure all that inputs of the logic gate still maintain the precise logic, the

fanout optimization is the driving force behind VLSI design. The fanout is the number of load

gates N that are connected to the output of the driving gate (see Figure1.3). On the other hand,

the fanout is an unit of the ability of a logic gate output to drive a number of inputs of other

logic gates of the same type. In most designs, logic gates are connected together to form more

complex circuits, and it is common for one logic gate output to be connected to several logic

gate inputs. Increasing the fanout of a gate can affect its logic output levels. Many library

components define a maximum fanout to guarantee that the static and dynamic performance of

the element meet the specification. In this thesis, considering interconnect delay, we will adopt

the buffer insertion technique to synthesize the fanot tree which connects the source to the sink

(see Figure 1.4) such that the require times at all the sinks are satisfied and the required time at

the input pin of the source is maximized.

4

Fig. 1.4: Construct a Fanout Tree at The Source from [15]

5

1.2 Our Contributions

In this thesis, we try to add interconnect delay in [12]. The interconnect delay could not be

neglected because it will have huge impact on the design such as the number of buffer inserted,

and the total delay. Considering the gate delay only will not get the correct result of the real

world. Another contribution is the combination of the combinational merging algorithm and the

LT-Trees algorithm because there is a trade-off between better solution and less time. The last

contribution is to implement the retrace function that can be very easy to trace back the fanout

tree structure.

6

1.3 Organization of the Thesis

The introduction, motivation, and contribution are in Chapter 1. Chapter 2 will have the

previous works, and the problem formulation. The detail algorithm such as two-level algorithm,

combinational merging algorithm, LT-Trees algorithm, and retrace algorithm will be explained

clearly in Chapter 3. Finally, the experimental results and conclusion are given in Chapter 4 and

Chapter 5, respectively.

7

Chapter 2

Preliminaries

2.1 Problem Formulation

Fanout

Tree

Source

C1

Sink 1

r1

Sink 2

r2
C2

Cn

Sink n

rn

Cbuf Cout

Buffer

Fanout

Tree
Cout

Source

Fig. 2.1: The Network from [12]

In [12], given a sources0 and n sinkss1, s2, .., sn, each sink has a required timer1, r2, .., rn

and an input pin capacitancec1, c2, .., cn, as shown in Figure 2.1. The buffer and gate at the

source are also provided in Figure 2.1. The delay of the buffer isdbuf = αbuf +βbufCout and the

delay of the gate at the source isdsource = αsource+βsourceCout, whereαbuf , βbuf , αsource, βsource

8

are known constants. TheCout in buffer delay calculations is the sum total of the input pin

capacitances for all fanouts of the buffer. AnotherCout involved in the gate delay is the sum

total of the input pin capacitances for all fanouts of the source. The problem is to evolve an

algorithm to construct the fanout tree which connects the source to the sink (using the buffers as

intermediate nodes) such that the required times at all the sinks are met, and the required time

at the input pin of the source is maximized. The definition of the problem could be described

more specifically as follows:

• Given a library of buffers with the same size: the input loadCbuffer, the load dependent

delayβbuffer and the intrinsic delay bufferαbuffer.

• Given the source signal s, its drive capabilityβsource and its intrinsic delayαsource

• Given n sinks with separate required timesri and loadCi

• To find a tree of buffers that distributes the signal s to all the sinks and maximizes the

required time at the input end of source

• To take the interconnect delay into consideration

9

2.2 Previous Works

• Effort-based delay equation:

τ : Semiconductor process parameter
p : Parasitic delay (due to diffusion cap.)
g : Logical effort (gate topology)
h : Electrical effort (gate size – L/Cin)

LCin

()delay p ghτ= +

Fig. 2.2: The Delay Model from [15]

For the fanout optimization issue only, a paper provides such an approach: two-level, com-

binational merging, LT-Trees algorithm under the discrete buffer size [13]. Considering the

continuous buffer sizes issue [14] [15], they find that the fanout optimization result will be bet-

ter than discrete buffer library. In [26], taking the gate sizing and fanout optimization at the same

time, he claims that the optimization problem will be formulated as a non-convex optimization

problem. Fanout optimization [22] is the problem of constructing a buffer tree topology be-

tween a source and all sinks and the timing restrictions at all sinks are satisfied [13] [16] [19].

Several objective functions have been considered for the fanout optimization problem, such as

minimizing area [16] [17] [18] [19], reducing power consumption [17] [19], and turning down

load on the source [20].

In [15], they proposed an optimum solution for the single-sink buffering problem and de-

veloped an effective heuristic for the multiple-sink fanout optimization problem. Specifically

10

speaking, they divide the input capacitance bound into a set of bounds for different source-sink

pairs, solve the problem for each source-sink individually, merge all the source-sink pair solu-

tions into a single fanout tree solution, discretize and map the logical buffers to physical buffers

in the library. Figure 2.2 shows the delay model of their solution.

In [23], in their recent survey on repeater insertion, they have taken some important steps in

this direction. A repeater insertion flow at different stages of back-end IC flow at circuit-level

is presented. The main concern in this paper is what accuracy is required for the timing model

at different stages of the flow and what stages establish the quality of the results. The flow was

tested with very high-fanout nets. It is capable of simultaneously solving the problem of fanout

optimization and repeater insertion during the back-end IC flow.

In [24], an algorithm was presented for delay optimization under the constraint of combina-

tional logic, and they expand the state-of-the art sizing algorithm based on lagrangian relaxation.

Moreover, tightly combining fanout tree build process, buffer insertion/sizing and gate sizing,

they thereby accomplish more optimization than if they were performed independently.

11

Chapter 3

A Single Source Fanout Optimization

3.1 Interconnect Delay Model

A simple approximation to the delay in a RC network is elmore delay calculations used in

logic synthesis very often. For the sake of the easy calculation and precise, the elmore delay

model will be used to estimate the interconnect delay in this fanout optimization problem (see

Figure 3.1).

Elmore Delay

22211)()(CRCCRCADelay ++=−

A B C
R1 R2

C1 C2

Fig. 3.1: The Elmore Delay from [25]

12

3.2 The Original Example Without Interconnect Delay

Cout

Source
r out

r1

r2

r3
r4
r5

1

2

3

4

5

Cout

Source
r out

r1

r2

1

2

Buffer

rbufin

3

4

5

rbufout

Cbufout

Source

Buffer 1

Buffer 2
Buffer 3

1

2
3

4

5

(a) (b)

(c)

Fig. 3.2: The Original Example from [12]

The fanout tree given in Figure 3.2(a) is adopted from [12]. TheCout=C1+C2+C3+C4+C5

that is the summation of all the capacitance at sink and therout= minimum(r1,r2,r3,r4,r5), where

Ci is the input pin capacitance of node i andri is the required time at the input of node i. The

required time at the input of the source is given byrsource = rout - dsource= rout - (αsource +

βsourceCout).

Another fanout structure is given in Figure 3.2(b). TheCbufout = C3 + C4 + C5, therbufout

= minimum(r3,r4,r5), rbufin = rbufout-dbuf= rbufout - (αbuf + βbufCbufout), therout = minimum

(r1, r2, rbufin), and theCout = C1+C2+Cbuf , whereCi is the input pin capacitance of node i and

ri is the required time at the input of node i. The required time at the input of the source is given

by rsource = rout - dsource= rout - (αsource + βsourceCout).

For the sake of easy reading the output file, the buffers can be given names in any order. On

the other hand the source and sinks must be named as source andsinki . The output file for

13

another topology solution in Figure 3.2(c) will look as follows:

sink1 = source;

buf1 = source;

sink2 = buf1;

buf2 = buf1;

sink3 = buf2;

buf3 = buf2;

sink4 = buf3;

sink5 = buf3;

The simple rule in output file is every net i with source node i and sink node j is represented

as: node j= node i.

14

3.3 The Original Example With Interconnect Delay

We assume the net connecting any two nodes (source,sinks,buffers) will have the per-unit-

resistance R and per-unit-capacitance C. In Figure 3(a), the required time at the input of the

sourcersource = rout - dsource= rout -(αsource + βsourceCout) has to be changed as followsrsource

= rout - dsource-R*C= rout -(αsource + βsourceCout)-R*C.

In Figure 3(b),rbufin =rbufout-dbuf= rbufout - (αbuf +βbufCbufout) is necessary to be changed

as followsrbufin =rbufout-dbuf= rbufout - (αbuf + βbufCbufout) - R*C. The required time at the

input of the source will bersource = rout - dsource-R*C= rout - (αsource + βsourceCout)-R*C.

15

3.4 The Algorithms Used In Fanout Optimization

Algorithm 1 Buffer Insertion Algorithm
Inputs: n sinks with required timeri, capacityCi respectively, one source signal and a
one size buffer libraryαsource, βsource, αbuffer, βbuffer, Cbuffer per-unit-resistance,per-unit-
capacitance
Output: maximum require time at source input and the buffer tree structure.
begin
// The sorting algorithm used is quicksort, which is
// not listed here. Sort the n sinks by increasing
// required. If required time are the same, sorting
// by decreasing capacity.
required = combine();
Ideal required time R0 =r1−αsource−βsource∗(Cbuffer +C)−R∗(Cbuffer +C)−βbufferC1

if (R0− required) < 10 then
output structure tree from the combinational merging;
return required;
exit(0);

else
required= LT();
exit(0);

end if
end

16

H.Touati [13] proposed some methods to solve the one source fanout optimization problem

in his dissertation. The dissertation shows in full detail how a single source fanout optimization

is figured out by two-level, combinational merging, and LT-Trees (Algorithm 2 to 4).

1. Two-Level Trees:

The characteristic of two-level trees is the usage of only one type of buffer. And even with

this restricted tree structure, this optimization problem is NP-complete. The definition of two-

level tree is that any leaf of this tree is separated from the root by only one node in this tree. A

sink is set to an intermediate buffer only if this assignment reduces the required time at source

at least. On the other hand , the algorithm chooses the allocation which maximizes the required

time at the source node. The number of the intermediate node(buffer) could be defined as

follows:
√

βbuffer ∗ sumC1/βsource ∗ Cbuffer. ThesumC1 is the sum of all sink’s capacity. The

time complexity of the algorithm (Algorithm 2) is O(n1.5). This is a greedy algorithm which

does not guarantee optimality, but is a baseline algorithm for other more sophisticated methods.

In algorithm 1, the required time at all sink is sorted by quick sort and the capacity is the

second key in quick sort when two of the required time are the same value. Figure 3.3 to Figure

3.5 show that that the construct process of the two-level tree.

2. Combinational Merging:

The algorithm incrementally inserts buffer cells and connects the k sink nodes with the

largest required times. For combinational merging (Algorithm 3), the method is presented as

follows: To sort the n sinks by ascending required times, to link the n-k+1 sinks with the largest

require times to a buffer, to merge the new buffer node with the left k-1 sinks to generate a new

k nodes sorted array. The procedure must be done recursively, until the k is equal to 1.

The main concern is how to choose k: Given kopt =
√

βbuffer ∗ sumC1/βsource ∗ Cbuffer, k

is the largest index that hassumCk bigger thansumC1/kopt. k is determined by the two-level

tree equation. The algorithm is easy and has time complexity O(nlogn) resulted from the fanout

tree structure. The detailed is below algorithm 3 and in the Figure 3.7 to Figure 3.12.

17

0

0

6

L’i

∞∞2

∞∞1

721320

R’iRminibuf

R0 = 132, L0 = 2

Rr = 24
R1 = 139, L1 = 4

R’0

R’1

R’2
D’r = 48

R0 = 132, L0 = 2

Rr = 32

R1 = 139, L1 = 4

R’0

R’1

R’2
D’r = 48

MIN { R’0 , R’1, R’2 } = 72 MIN { R’0 , R’1, R’2 } = 80

This is a better allocation

0

4

2

L’i

∞∞2

831391

801320

R’iRminibuf

R’i=Rmin0 – βbuffer * load – Sb

Fig. 3.3: Two-Level Algorithm Step 1

18

R0 = 132, L0 = 2
R1 = 139, L1 = 4
R2 = 142, L2 = 6

R4 = 148, L4 = 6
R3 = 146, L3 = 3

R6 = 164, L6 = 3
R5 = 162, L5 = 4

Source R0 = 132, L0 = 2 R0 = 132, L0 = 2

R1 = 139, L1 = 4

R0 = 132, L0 = 2

R1 = 139, L1 = 4

R2 = 142, L2 = 6

R0 = 132, L0 = 2

R1 = 139, L1 = 4

R2 = 142, L2 = 6

R3 = 146, L3 = 3

R0 = 132, L0 = 2

R1 = 139, L1 = 4

R2 = 142, L2 = 6

R3 = 146, L3 = 3

R4 = 148, L4 = 6

Fig. 3.4: Two-Level Algorithm Step 2

19

R0 = 132, L0 = 2

R1 = 139, L1 = 4

R2 = 142, L2 = 6

R3 = 146, L3 = 3

R4 = 148, L4 = 6

R5 = 162, L5 = 4
R0 = 132, L0 = 2

R1 = 139, L1 = 4

R2 = 142, L2 = 6

R3 = 146, L3 = 3

R4 = 148, L4 = 6

R5 = 162, L5 = 4

R6 = 164, L6 = 3

R0 = 132, L0 = 2

R1 = 139, L1 = 4

R2 = 142, L2 = 6

R3 = 146, L3 = 3

R4 = 148, L4 = 6

R5 = 162, L5 = 4

R6 = 164, L6 = 3

Source

Fig. 3.5: Two-Level Algorithm Step 3

20

1. Sort the sinks in the increasing order of their required times (in case of a
tie, the decreasing order of the gate load)

2. For each buffer cell bj, compute the optimal number of sinks kbj (from
the tail of the sink list) to be connected to bj.

Lall : total gate loads in the sink list
nbj = (Tj Lall /Tr Lj)1/2 : optimal number of buffers in two-level tree using cell
bj

Lall / nbj : Optimal load per single buffer bj

L’k： total gate loads of the last k nodes in the sink list
kbj is the smallest k which satisfies L’k ≥ Lall / nbj

3. For each cell type bj, let R(bj) be the required time at the source r where
only a single cell of bj is connected to r and cell bj is connected to the
last k (= kbj) nodes in the sink list.

R(bj) = R’k – Tbj Lk – Sbj – Tr Lbj

R’k ： required time of the k-th node from the bottom of the sink list
Choose the cell type bj which gives the largest R(bj)
(this will have the largest speed up effect)

4. Update sink list :
Insert the cell bj to the fan-out tree
Delete the kbj nodes from the sink list (since they are buffered by bj)
Add bj to the sink list

Required time at the inserted bj cell : R(bj) = R’k – Tbj Lk – Sbj

If kbj is less than the total number of nodes in the sink list, go to 1.
5. Retrieve the best allocation during the whole process (allocation with

the largest required time at the source). End of process.

• Fan-out optimization： Construct a fan-out tree which maximize the required
time Rr at the net source r on following conditions

– Net source r :
• Output transition coefficient : Tr

(Switching delay Sr is not really needed in the optimization)
– Buffer cell bj :

• Gate load : Lbj
• Switching delay : Sbj
• Output transition coefficient : Tbj

– Sink i (i = 1, 2, … n)
• Gate load : Li
• Required time Ri

Fig. 3.6: The Building Process For Combinational Merging Tree

21

22254
86232

124208
142186
206160
266155
293138
L’kLR

nb1 = (Tb1 Lall /Tr Lb1)1/2

= (116 / 8)1/2

= 3.81
Lall / nb1 = 7.62
Kb1 = 2, L’2 = 8, R’2 = 232

b1 Lb1 = 2
Sb1 = 42
Tb1 = 4

b2 Lb2 = 3
Sb2 = 48
Tb2 = 2

R(b1) = R’2 – Tb1 * L’2 – Sb1 – Tr * Lb1
= 232 – 4 * 8 – 42 – 4 * 2
= 150

R(b2) = R’4 – Tb2 * L’4 – Sb2 – Tr * Lb2
= 186 – 2 * 14 – 48 – 4 * 3
= 98

Tr = 4

Lall = 29

Sr = 12 R0 = 138, L0 = 3
R1 = 155, L1 = 6
R2 = 160, L2 = 6

R4 = 208, L4 = 4
R3 = 186, L3 = 2

R6 = 254, L6 = 2
R5 = 232, L5 = 6

Rr = 10

Dr = 128

nb2 = (Tb2 Lall /Tr Lb2)1/2

= (58 / 12)1/2

= 2.20
Lall / nb2 = 13.19
Kb2 = 4, L’4 = 14, R’4 = 186

b1
Tr = 4

R6 = 254, L6 = 2

R5 = 232, L5 = 6

b2
Tr = 4

R6 = 254, L6 = 2
R5 = 232, L5 = 6
R4 = 208, L4 = 4
R3 = 186, L3 = 2

Fig. 3.7: Combinational Merging Algorithm Step 1

22

142158

44208
62186

126160

206155
233138
L’kLR

nb1 = (Tb1 Lall /Tr Lb1)1/2

= (92 / 8)1/2

= 3.39
Lall / nb1 = 6.78
Kb1 = 3, L’3 = 12, R’3 = 160

b1 Lb1 = 2
Sb1 = 42
Tb1 = 4

b2 Lb2 = 3
Sb2 = 48
Tb2 = 2

R(b1) = R’3 – Tb1 * L’3 – Sb1 – Tr * Lb1
= 160 – 4 * 12 – 42 – 4 * 2
= 62

R(b2) = R’3 – Tb2 * L’3 – Sb2 – Tr * Lb2
= 160 – 2 * 12 – 48 – 4 * 3
= 76

Tr = 4

Lall = 23

Sr = 12 R0 = 138, L0 = 3
R1 = 155, L1 = 6

R2 = 160, L2 = 6

R4 = 208, L4 = 4
R3 = 186, L3 = 2

Rr = 34

Dr = 104

nb2 = (Tb2 Lall /Tr Lb2)1/2

= (46 / 12)1/2

= 1.96
Lall / nb2 = 11.75
Kb2 = 3, L’3 = 12, R’3 = 160

Rb0 = 158, Lb0 = 2
b1

R6 = 254, L6 = 2
R5 = 232, L5 = 6

b2
Tr = 4

R4 = 208, L6 = 4
R3 = 186, L5 = 2
R2 = 172, L4 = 6

b1
Tr = 4

R4 = 208, L6 = 4
R3 = 186, L5 = 2
R2 = 172, L4 = 6

Fig. 3.8: Combinational Merging Algorithm Step 2

23

143100

22158
86155

113138

L’kLR
nb1 = (Tb1 Lall /Tr Lb1)1/2

= (56 / 8)1/2

= 2.65
Lall / nb1 = 5.29
Kb1 = 2, L’2 = 8, R’2 = 155

b1 Lb1 = 2
Sb1 = 42
Tb1 = 4

b2 Lb2 = 3
Sb2 = 48
Tb2 = 2

R(b1) = R’2 – Tb1 * L’2 – Sb1 – Tr * Lb1
= 155 – 4 * 8 – 42 – 4 * 2
= 73

R(b2) = R’3 – Tb2 * L’3 – Sb2 – Tr * Lb2
= 138 – 2 * 11 – 48 – 4 * 3
= 56

Tr = 4

Lall = 14

Sr = 12

R0 = 138, L0 = 3
R1 = 155, L1 = 6

Rr = 32

Dr = 68

nb2 = (Tb2 Lall /Tr Lb2)1/2

= (28 / 12)1/2

= 1.53
Lall / nb2 = 9.17
Kb2 = 3, L’3 = 11, R’3 = 138

Rb0 = 158, Lb0 = 2

Rb1 = 88, Lb1 = 3

b1

R6 = 254, L6 = 2
R5 = 232, L5 = 6

b2

R4 = 208, L4 = 4
R3 = 186, L3 = 2
R2 = 160, L2 = 6

b1
Tr = 4

Rb0 = 158, Lb0 = 2

R1 = 155, L4 = 6

b2
Tr = 4

Rb0 = 158, Lb0 = 2
R1 = 155, L5 = 6
R0 = 132, L4 = 3

Fig. 3.9: Combinational Merging Algorithm Step 3

24

8281
6388
33138

L’kLR
nb1 = (Tb1 Lall /Tr Lb1)1/2

= (32 / 8)1/2

= 2.00
Lall / nb1 = 4.00
Kb1 = 2, L’2 = 6, R’2 = 88

R(b1) = R’3 – Tb1 * L’3 – Sb1 – Tr * Lb1
= 88 – 4 * 6 – 42 – 4 * 2
= 14

R(b2) = R’3 – Tb2 * L’3 – Sb2 – Tr * Lb2
= 81 – 2 * 8 – 48 – 4 * 3
= 5

Tr = 4

Lall = 8

Sr = 12

R0 = 138, L0 = 3

Rr = 37

Dr = 44

nb2 = (Tb2 Lall /Tr Lb2)1/2

= (16 / 12)1/2

= 1.15
Lall / nb2 = 6.93
Kb2 = 3, L’3 = 8, R’3 = 81

Rb1 = 88, Lb1 = 3

Rb2 = 81, Lb2 = 2 Rb0 = 158, Lb0 = 2
b1

R6 = 254, L6 = 2
R5 = 232, L5 = 6

b2

R4 = 208, L4 = 4
R3 = 186, L3 = 2
R2 = 160, L2 = 6

b1 R1 = 155, L1 = 6

b1
Tr = 4

R0 = 132, L0 = 3

Rb1 = 100, Lb1 = 3

b2
Tr = 4

R0 = 132, L0 = 3
Rb1 = 100, Lb1 = 3
Rb2 = 81, Lb2 = 2

Fig. 3.10: Combinational Merging Algorithm Step 4

25

4222
2281

L’kLR
nb1 = (Tb1 Lall /Tr Lb1)1/2

= (16 / 8)1/2

= 1.41
Lall / nb1 = 2.83
Kb1 = 2, L’2 = 4, R’2 = 22

R(b1) = R’2 – Tb1 * L’2 – Sb1 – Tr * Lb1
= 22 – 4 * 4 – 42 – 4 * 2
= – 44

R(b2) = R’3 – Tb2 * L’3 – Sb2 – Tr * Lb2
= 22 – 2 * 4 – 48 – 4 * 3
= – 46

Tr = 4

Lall = 4

Sr = 12

Rr = – 6

Dr = 28

nb2 = (Tb2 Lall /Tr Lb2)1/2

= (8 / 12)1/2

= 0.82
Lall / nb2 = 4.90
Kb2 = 2, L’2 = 4, R’2 = 22

Rb3 = 22, Lb3 = 2
R0 = 138, L0 = 3
Rb1 = 100, Lb1 = 3

b2

R4 = 208, L4 = 4
R3 = 186, L3 = 2
R2 = 160, L2 = 6

Rb2 = 81, Lb2 = 2 Rb0 = 158, Lb0 = 2
b1

R6 = 254, L6 = 2
R5 = 232, L5 = 6

b1 R1 = 155, L1 = 6

b1

b1
Tr = 4

Rb2 = 81, Lb2 = 2

Rb3 = 34, Lb3 = 2

b1
Tr = 4

Rb2 = 81, Lb2 = 2

Rb3 = 34, Lb3 = 2

Fig. 3.11: Combinational Merging Algorithm Step 5

26

Tr = 4
Sr = 12

Rr = – 44

Dr = 20

R0 = 138, L0 = 3

b2

R4 = 208, L4 = 4
R3 = 186, L3 = 2
R2 = 160, L2 = 6

b1 R6 = 254, L6 = 2
R5 = 232, L5 = 6

b1 R1 = 155, L1 = 6

b1
b1

R=158

R=88
R=22

R=81

Tr = 4
Sr = 12

Rr = 37

Dr = 44

R0 = 138, L0 = 3

b2

R4 = 208, L4 = 4
R3 = 186, L3 = 2
R2 = 160, L2 = 6

b1 R6 = 254, L6 = 2
R5 = 232, L5 = 6

b1 R1 = 155, L1 = 6
R=158

R=88

R=81

Tr = 4
Sr = 12

Rr = 6

Dr = 28

R0 = 138, L0 = 3

b2

R4 = 208, L4 = 4
R3 = 186, L3 = 2
R2 = 160, L2 = 6

b1 R6 = 254, L6 = 2
R5 = 232, L5 = 6

b1 R1 = 155, L1 = 6

b1

R=158

R=88
R=22

R=81

Tr = 4
Sr = 12

Rr = 32

Dr = 68

R0 = 138, L0 = 3

b2

R4 = 208, L4 = 4
R3 = 186, L3 = 2
R2 = 160, L2 = 6

b1 R6 = 254, L6 = 2
R5 = 232, L5 = 6
R1 = 155, L1 = 6

R=158

R=88

Tr = 4
Sr = 12

Rr = 34

Dr = 104

R0 = 138, L0 = 3
R4 = 208, L4 = 4
R3 = 186, L3 = 2
R2 = 160, L2 = 6

b1 R6 = 254, L6 = 2
R5 = 232, L5 = 6
R1 = 155, L1 = 6

R=158

Tr = 4
Sr = 12

Rr = 10

Dr = 128

R0 = 138, L0 = 3
R4 = 208, L4 = 4
R3 = 186, L3 = 2
R2 = 160, L2 = 6

R6 = 254, L6 = 2
R5 = 232, L5 = 6
R1 = 155, L1 = 6

Fig. 3.12: Combinational Merging Algorithm Step 6

27

Algorithm 2 Two-Level Algorithm
Inputs: from sink k+1 to sink n , sorted by ascending required time, the capacity of
these (n-k+1) sinks(Ck+1, Ck+2.....Cn), the sum of the capacity of these (n-k) sinks,sumCk

αsource, βsource, αbuffer, βbuffer, Cbuffer per-unit-resistance,per-unit-capacitance
Output: the required time of the (n-k) sinks using two-level fanout tree
begin
//if k is zero, the root is the source, otherwise, the root is buffer
beta = (k==0)?βsource:βbuffer

// calculating the number of buffers needed
nBuffer =

√
βbuffer ∗ sumC1/βsource ∗ Cbuffer

//the number of buffers will less than the number of sinks
nBuffer =((nBuffer) < (n− k))?nBuffer:(n-k)
//rBuffer stands for Cout and lBuffer represents
//Cbuf
for i=1 to nBufferdo

rBuffer[i] =0.0;
lBuffer[i] =0.0;

end for
temp = -1000000;
//assign sink to buffer begin with the one with
// biggest required time, easy to calculate the
// buffer require time
for i=n to k+1do

for j=1 to nBufferdo
// the new added one has the minimum
// require time
required =ri − βbuffer ∗ (lBuffer[j] + Ci)-PerUnitInterconnectDelay;
if (temp) < (required) then

temp =required;
num =j ;

end if
end for
rBuffer[num] = temp;
lBuffer[num] = lBuffer[num]+Ci;

end for
for i =1 to nBufferdo

result =(result < rBuffer[i]) ?result : rBuffer[i];
result = result- (β ∗ Cbuffer ∗ nBuffer)− (αbuffer);

end for
return result;
end

28

3. LT-Trees: The two-level trees can only build restricted type of net structure, which is

not efficient and sufficient if the required times at sinks are very different from each other.

The combinational merging is only using a heuristic approach to choose the parameter k. The

LT-trees algorithm is a compromised algorithm between combinational merging and two-level

fanout trees. The definition of the LT-trees [13]:

a. A leaf is an LT-Tree

b. A two-level tree is an LT-Tree

c. Let T be a tree rooted at r such that one child of r is an LT-Tree and all the other children

of r are leaves. Then T is an LT-Tree.

If a node has more than one child being intermediate node, we only consider it as a two-level

trees. Compared to the trees structure constructed by two-level trees and combinational merg-

ing, the trees structure defined above is much more complex, making it possible to handle the

situation as sinks have very big capacities or/and the required times of sinks are very different

from each other. On the other hand, the LT-trees are only a small subset of the set of all fanout

trees, making it practical in general use. This algorithm is also not optimal based on the sorting

of sinks by increasing required times. The complexity of it is O(n2.5). The Figure 3.13 shows

the construct of LT-Trees.

The LT-trees algorithm uses the dynamic programming to generate the optimal LT-Trees for

a given fanout problem. The idea is: For k from n to 1, each k is also a fanout problem.

1. First compute the two-level trees on k

2. As induction on k from n to 1, for anym > k, the optimal LT-trees T(m) is already known.

Connect sink k, k+1,....,m-1 and optimal LT-tree T(m) to root, obtain the relative required time.

3. The final optimal LT-tree T(k) is the one from step 1 and 2 with the maximum required

time. Use two-level[k] to indicate if the LT-tree is a two-level trees. If it is not, next[k] is used

to record the first index that is not connected to the root directly.

4. Compute the whole procedure recursively until k =1, to obtain the maximum required

time at source. The detailed algorithm is shown by algorithm 4. Given the array two-level[k]

and next[k], it is very easy to trace back the trees structure. The detailed algorithm is below on

algorithm 5.

29

The fanout optimization is a NP-Complete problem if non-constant capacity values are al-

lowed at sinks. So, there is always a trade-off between better solution and less time. combina-

tional merging algorithm is a heuristic algorithm with much less time consumed than LT-Trees

algorithm. In this thesis, the two algorithms are combined: We already know the minimum re-

quired time at sinks and we can get the ideal maximum required time by:r1−αsource−βsource ∗

(Cbuffer + C)−R ∗ (Cbuffer + C)− βbufferC1

For each benchmark, we first use the combinational merging algorithm, and if the obtained

required time is within a small range of the ideal required time, computing stops here. Other-

wise, the LT-Trees algorithm will be called for a better solution. Since combinational merging

is very fast, its overhead on those using LT-Trees finally is acceptable.

R0 = 132, L0 = 2
R1 = 139, L1 = 4
R2 = 142, L2 = 6

R4 = 148, L4 = 6
R3 = 146, L3 = 3

R6 = 164, L6 = 3
R5 = 162, L5 = 4

Source

R0 R5

R1 R3

R2 R4

R6

Source

Fig. 3.13: The Construct of the LT-Trees

30

Algorithm 3 Combinational Merging Algorithm
Inputs: n sinks sorted by ascending required time , one source signal and a one size buffer
libraryαsource, βsource, αbuffer, βbuffer, Cbuffer per-unit-resistance,per-unit-capacitance
Output:maximum require time at source input and the buffer tree structure
int n= nSink; double kopt;
int k; int step=0;
double rt;
while n > 0 do

for i=0 to ndo
sumC[i]=0.0;
for int j=i to n do

sumC[i]+=cSink[j];
end for

end for
kopt = sqrt(bBuffer*sumC[0]/(bSource*cBuffer));
for i= 0 to ndo

if sumC[i] > (sumC[0]/kopt) then
k=i;

end if
end for
rt= rSink[k]-bBuffer*sumC[k]-aBuffer-PerUnitInterconnectDelay;
for i=k to n do

pSink[sSink[i]]=(k==0)?-1:step;
end for
if k == 0 then

break;
end if
quicksort(rSink,cSink,sSink,0,k);
int i=0;
for i=0 to k do

if rSink[i] > rt then
break;

end if
end for
if i==k then

rSink[k]=rt;
cSink[k]=cBuffer;
sSink[k]=nSink+step;

else
for (intj = k; j > i; j −−) do

rSink[j]=rSink[j-1];
cSink[j]=cSink[j-1];
sSink[j]=sSink[j-1];

end for
rSink[i]=rt;
cSink[i]=cBuffer;
sSink[i]=nSink+step;

end if
n=k+1;
step++;

end while 31

Algorithm 4 LT-Trees Algorithm
Inputs: n sinks sorted by ascending required time one source signal and a one size buffer
library. αsource, βsource, αbuffer, βbuffer, Cbuffer per-unit-resistance,per-unit-capacitance
Output: maximum require time at source input and the buffer tree structure.
begin
for i=1 to n do

for j= i to n do
sumCi = sumCi + Cj;

end for
end for
sumCn+1 = Cbuffer;
required[n+1] =Cn+1000
for i=n to 1do

required[i] = two-level();
tLevel[i] = true;
for j=i+1 to n+1do

// calculating the required time when the sink k to
// to sink(j-1) connected to root directly.
// rk is the smallest required time
temp =min(rk, required[j]− αbuffer)
temp -= ((i == 1)?βsource : βbuffer) * (Cbuffer + sumCk − sumC1)-
PerUnitInterconnectDelay;
if (temp > required[i]) then

required[i] = temp;
tLevel[i] = false;
next[i] = 1

end if
end for

end for
required[1] = (αsource)-(required[1]);
call the retrace function;
return required[1] and the L-T structure
end

32

Algorithm 5 Retrace Algorithm
Inputs: boolean tLevel[k], k=1,2...n, for each k, if two-level is used int next[k], k=1,2,....n,
the first sink that does not connected to root directly
Output: the total number of buffer nBuffer, the parent node for each sink pSink[k], the parent
node for each buffer pBuffer[i], i=1,2.....nBuffer
begin
int step = -1;
int i = 0;
while (i) < (n + 1) do

if tLevel[i]==true then
run two-level algorithm to get nBuffer and the num for each sink
for i=n to k+1 do

for j=1 to nBufferdo
pBuffer[step+1+j] = step;

end for
pSink[i] = step+1+num;

end for
nBuffer = nBuffer + step+1;
break;

else
for j=i to(next[i] - 1) do

pSink[j]=step;
pBuffer[step+1]=step;

end for
end if
step++;
i=next[i];

end while
end

33

Chapter 4

Experimental Results

The whole algorithms are implemented in C++ and the platform used for this master thesis is

Pentium 4 2.66 GHz, 1280MB dram. The parameter of the per-unit-resistance and the per-unit-

capacitance are gotten from [10]. We will adopt interconnects per unit length for every connects

between nodes.

There are three output files :

1. The number and the name of the buffer used.

2. The net information among these nodes:source, sink, buffer.

3. The runtime for each benchmark and relative information.

The information for each benchmark are shown in Table 4.1. In Table 4.2 to Table 4.4, the

Minimum is the minimum required time at sinks, the Original stands for the required time at

source without buffer insertion, the Ideal represents the potential best required time, the Result

on behalf of the final result at source after buffer insertion, and the NBuffer is the usage of

buffer number for every benchmark. The simulation results are shown in Table 4.2 to Table 4.4.

While a great number of papers have been written on the fanout optimization, many of them

entirely do not consider the interconnect delay issue.

The * symbol in Table 4.2 to Table 4.4 is the whole algorithm running with consideration

of the interconnect delay. Once the delay value in Table 4.2 to Table 4.4 has been changed, the

number of the buffer is also different from that without interconnect delay. The result** means

that we check the timing for every sink to source and choose the smallest one.

Besides the field of Method, NBuffer and Runtime in Table 4.2 to Table 4.4, the unit of

every field in the Table 4.2 to Table 4.4 is picosecond. For each benchmark, we first use the

34

Table 4.1: Benchmark Information
Bench1 Bench2 Bench3 Bench4 Bench5

αsource 1 1 1 1 1
βsource 0.5 0.5 0.5 0.5 0.5
αbuf 1 1 1 1 1
βbuf 0.5 0.5 0.5 0.5 0.5
Cbuf 1 1 1 1 1

Total Sinks 1000 2000 3000 4000 5000
Bench6 Bench7 Bench8 Bench9 Bench10

αsource 1 1 1 1 1
βsource 0.5 0.5 0.5 0.5 0.5
αbuf 1 1 1 1 1
βbuf 0.5 0.5 0.5 0.5 0.5
Cbuf 1 1 1 1 1

Total Sinks 6000 7000 8000 9000 10000

combinational merging algorithm, and if the obtained required time is within a small range of

the ideal required time, computing stops here. Otherwise, the LT-Trees algorithm will be called

for a better solution. Since combinational merging algorithm is efficient, its overhead on those

using LT-Trees algorithm finally is acceptable. Adding the interconnect delay results in the

usage of decreasing the number of buffer.

35

Table 4.2: Simulation Results of the LT-Trees and Combinational Merging
Bench1 Bench2 Bench3 Bench4 Bench5

Minimum 70265 76067 70265 80005 80000
Original 68933 73404 66271 74071 72726

Ideal 70263 76063 70263 80002 79998
Result 70263 76056 70258 80002 79997

Result** 70262 75993 70139 80001 79995
Result* 70257 76036 70241 79997 79991
Delay 2.0221 10.9944 7.8357 2.0005 3
Delay* 8.0672 30.8928 24.0712 7.5015 8.5008
NBuffer 493 135 168 2497 3062
NBuffer* 476 136 168 1422 1488
Runtime 0.2810 0.5150 2.3590 8.3760 13.1720
Runtime* 0.2970 0.5160 2.4840 8.8280 15.2040
Method LT-TREES C.M. C.M. LT-TREES LT-TREES

Bench6 Bench7 Bench8 Bench9 Bench10
Minimum 80000 76067 70265 80000 80000
Original 71285 66749 59617 67179 65651

Ideal 79998 76064 70263 79998 79998
Result 79997 76054 70259 79997 79996

Result** 79996 75893 70145 79996 79995
Result* 79990 76035 70241 79990 79989
Delay 2.1653 12.2716 6.4508 2.7819 3.0004
Delay* 9.0013 31.8043 24.4905 9.5019 10.5032
NBuffer 3363 267 288 3177 2598
NBuffer* 1415 267 288 1004 802
Runtime 20.3440 23.2660 28.2660 54.8600 71.7190
Runtime* 23.7810 24.4060 29.6400 64.1880 84.0940
Method LT-TREES C.M. C.M LT-TREES LT-TREES

36

Table 4.3: Simulation Results of the LT-Trees
Bench1 Bench2 Bench3 Bench4 Bench5

Minimum 70265 76067 70265 80005 80000
Original 68933 73404 66271 74071 72726

Ideal 70263 76063 70263 80002 79998
Result 70263 75994 70140 80002 79997

Result** 70262 75993 70139 80001 79996
Result* 70257 75970 70097 79997 79991
Delay 2.0221 72.7322 125.2144 2.0005 3
Delay* 8.0672 96.1278 168.1960 7.5015 8.5008
NBuffer 493 980 671 2497 3062
NBuffer* 476 868 622 1422 1488
Runtime 0.2660 1.0780 2.3590 7.7970 13.3900
Runtime* 0.2970 1.2510 3.7650 8.7660 15.1570
Method LT-TREES LT-TREES LT-TREES LT-TREES LT-TREES

Bench6 Bench7 Bench8 Bench9 Bench10
Minimum 80000 76067 70265 80000 80000
Original 71285 66749 59617 67179 65651

Ideal 79998 76063 70263 79998 79998
Result 79997 75894 70146 79997 79996

Result** 79996 75893 70145 79996 79995
Result* 79990 75860 70097 79990 79989
Delay 2.1653 172.3098 119.2462 2.7819 3.0004
Delay* 9.0013 206.2102 167.9518 9.5019 10.5032
NBuffer 3363 1039 2872 3177 2598
NBuffer* 1415 979 1662 1004 802
Runtime 21 27.6410 28.2660 57.2660 74.7810
Runtime* 23.7030 31.3600 43.5790 64.5310 83.7650
Method LT-TREES LT-TREES LT-TREES LT-TREES LT-TREES

37

Table 4.4: Simulation Results of Combinational Merging
Bench1 Bench2 Bench3 Bench4 Bench5

Minimum 70265 76067 70265 80005 80000
Original 68933 73404 66271 74071 72726

Ideal 70263 76063 70263 80002 79998
Result 70263 76056 70258 80002 79995

Result** 70262 75993 70139 80001 79996
Result* 70251 76036 70241 79993 79985
Delay 2.0221 10.9944 7.0167 2.000500 4.5008
Delay* 14.0221 30.8928 24.0712 11.0145 14.5000
NBuffer 100 135 168 215 237
NBuffer* 100 136 168 215 237
Runtime 0.2810 0.5160 2.438 8.3440 14.11
Runtime* 0.2800 0.5320 2.469 8.2810 14.4680
Method C.M. C.M. C.M. C.M. C.M.

Bench6 Bench7 Bench8 Bench9 Bench10
Minimum 80000 76067 70265 80000 80000
Original 71285 66749 59617 67179 65651

Ideal 79998 76064 70263 79998 79998
Result 79996 76054 70259 79995 79996

Result** 79996 75893 70145 79996 79995
Result* 79981 76035 70241 79982 79980
Delay 3.1653 12.2716 6.4508 4.0002 4.1379
Delay* 18.1657 31.8043 24.4905 17.5104 19.5010
NBuffer 260 267 288 317 337
NBuffer* 260 267 288 317 337
Runtime 22.1412 24.1876 29.1253 60.9537 80.7813
Runtime* 22.6720 24.4060 29.8280 61.7660 82.9230
Method C.M. C.M. C.M C.M. C.M.

38

Chapter 5

Conclusion

The fanout optimization is a NP-Complete problem if non-constant capacity values are

allowed at sinks. There is always a trade-off between better solution and less time. Combina-

tional Merging Algorithm is a heuristic algorithm with much less time consuming than LT-Trees

Algorithm. In this thesis, the two algorithms are combined: We already know the minimum re-

quired time at sinks and we can get the ideal maximum required time by: Ideal required time:

r1 − αsource − βsource ∗ (Cbuffer + C)−R ∗ (Cbuffer + C)− βbufferC1

For each benchmark, we first use the combinational merging algorithm, if the obtained re-

quired time is within a small range of the ideal required time, computing stops here. Otherwise,

LT-Trees algorithm will be called for a better solution. Since combinational merging is very

fast, its overhead on those using LT-Trees finally is acceptable.

The interconnect delay could not be neglected in deep sub-micron IC design. In this thesis,

the interconnect delay is elmore delay model. The future works will include the extension

of gate sizing, one more size buffer library, multiple sink, more precise model of source gate

model and interconnect delay. At last, the improvement of the benchmark will have the X-

Y information for every node including buffer, source, sink that can estimate the length of

interconnect more precisely .

39

Bibliography

[1] L. P. P. P. van Ginneken, “ Buffer placement in distributed RC-tree networks for minimal

Elmore delay,”in In Proc. Intl. Symposium on Circuits and Systems, pp. 865-868,1990.

[2] H. Bakoglu, “ Circuits, Interconnections, and Packaging for VLSI,”Addison-Wesley Pub-

lishing Company,1987.

[3] J. Lillis, C. K. Cheng and T.-T. Y. Lin, “ Optimal wire sizing and buffer insertion for low

power and a generalized delay model,”in IEEE J. Solid-State Circuits, vol. 31(3), pp.

437-447,1996.

[4] Weiping Shi and Zhuo Li, “ A Fast Algorithm for Optimal Buffer Insertion,”in IEEE

Trans. Computer-Aidede Design, vol. 24, no. 6, pp. 879-891.,June 2005.

[5] Weiping Shi and Zhuo Li, “ An O(nlogn) Time Algorithm for Optimal Buffer Insertion,”

in 40th Design Automation Conference (DAC), pp. 580-585, 2003.

[6] Zhuo Li and Weiping Shi, “ An O(bn2) Time Algorithm for Optimal Buffer Insertion

with b Buffer Types,”in Conference on Design, Automation and Test in Europe (DATE),

Munich, Germany, pp. 1324-1329, March 2005.

[7] Weiping Shi, Zhuo Li and Charles J. Alpert, “ Complexity Analysis and Speedup Tech-

niques for Optimal Buffer Insertion with Minimum Cost,”in 9th Asia and South Pacific

Design Automation Conference (ASP-DAC), Yokohama, Japan, pp. 609-614, Jan 2004.

[8] Zhuo Li, C. N. Sze, Charles J. Alpert, Jiang Hu and Weiping Shi, “ Making Fast Buffer In-

sertion even Faster via Approximation Techniques,”in 10th Asia and South Pacific Design

Automation Conference (ASP-DAC), Shanghai, China, pp. 13-18, Jan 2005.

40

[9] Zhuo Li and Weiping Shi, “ An O(mn) Time Algorithm for Optimal Buffer Insertion of

Nets with m Sinks,”in 11st Asia and South Pacific Design Automation Conference (ASP-

DAC), Yokohama, Japan, pp. 320-325., Jan 2006.

[10] “Fast Buffer Insertion Source Code,”

[11] Y. Peng and X. Liu, “ Low-power repeater insertion with both delay and slew rate con-

straints ,”in DAC, pp. 303-307, 2006.

[12] “ http://www.ece.umd.edu/class/enee644.S2004/project/project.htm,”

[13] H. Touati, “ Performance-oriented technology mapping ,”in Ph.D. dissertation, Univ.

California, Berkeley, CA, 1990.

[14] D. Kung, “ A Fast Fanout Optimization Algorithm for Near- Continuous Buffer Libraries

,” Proc. of 35th DAC, pp. 352-355, June 1998.

[15] P. Rezvani, A. Ajami, M. Pedram, H. Savoj, “ Leopard: A Logical Effort-based fanout

Optimization for Area and Delay ,”Proc. of ICCAD, pp. 516-519, November 1999.

[16] P. Rezvani and M. Pedram, “ A fanout optimization algorithm based on the effort delay

model,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 22, no. 12, pp.

1671-1678, Dec. 2003.

[17] D. Zhou and X. Liu,“ Minimization of chip size and power consumption of high-speed

VLSI buffers,” in Proc. Int. Symp. Phys.pp. 186-191, Dec.1997.

[18] K. J. Singh and A. Sangiovanni-Vincentelli, “ A heuristic algorithm for the fanout prob-

lem,” in Proc. Des. Autom. Conf.pp. 357-360, 1990.

[19] B. Amelifard, F. Fallah, and M. Pedram, “ Low-power fanout optimization using multiple

threshold voltage inverters,”in Proc. Int. Symp. Low Power Electron.pp. 95-98, Dec. 2005.

[20] C. L. Berman, J. L. Carter, and K. F. Day, “ The fanout problem: From theory to practice,”

iin Proc. Decennial Caltech Conf. Adv. Res. VLSI, pp. 69-99, 1989.

41

[21] K. Kodandapani, J. Grodstein, A. Domic, and H. Touati,“ A simple algorithm for fanout

optimization using high-performance buffer libraries,”in Proc. Int. Conf. Comput.-Aided

Des. pp. 466-471, 1993.

[22] B. Amelifard, F. Fallah, and M. Pedram,“Low-power fanout optimization using multi

threshold voltages and multi channel lengths,”IEEE Trans. on Computer Aided Design,,

Vol. 28, No. 4, pp.478-489, Apr. 2009.

[23] Nikolai Ryzhenko, Oleg Venger,“A Practical Repeater Insertion Flow,”GLSVLSI08

pp.261-266, May 2008.

[24] I-Min Liu, Adnan Aziz, “ Delay Constrained Optimization by Simultaneous Fanout Tree

Construction, Buffer InsertiodSizing and Gate Sizing ,”Proceedings of the 37th annual

ACM/IEEE Design Automation Conference pp.209-214, June 2000.

[25] Jan M. Rabaey, Anantha Chandrakasan, and Borivoje Nikolic, “ Digital Integrated Circuits

(2nd Edition),”pp. 25-26,Jan 2003.

[26] Wei Chen, Cheng-Ta Hsieh, Massoud Pedram, “ Simultaneous Gate Sizing and Fanout

Optimization,”Proceedings of the 2000 IEEE/ACM international conference on Computer

aided design , pp. 374-378, June 2000.

42

