

國 立 交 通 大 學

電子工程學系電子研究所

博 士 論 文

高面積效益軟性BCH及RS解碼器

Area-Efficient Soft BCH and RS Decoders

 研 究 生 ：林義閔

 指導教授 ：李鎮宜

 張錫嘉

 中華民國 100 年 六 月

高面積效益軟性 BCH 及 RS 解碼器

Area-Efficient Soft BCH and RS Decoders
研 究 生： 林義閔 Student： Yi-Min Lin

指導教授： 李鎮宜 博士 Advisor： Dr. Chen-Yi Lee

 張錫嘉 博士 Dr. Hsie-Chia Chang

國 立 交 通 大 學

電子工程學系電子研究所

博 士 論 文

A Dissertation

Submitted to Department of Electronics Engineering & Institute Electronics

College of Electrical and Computer Engineering

National Chiao Tung University

in Partial Fulfillment of the Requirements

for the Degree of Doctor of Philosophy

in

Electronics Engineering

June 2011

Hsinchu, Taiwan, Republic of China.

中華民國 100 年 六 月

高面積效益軟性 BCH 及 RS 解碼器

研究生：林義閔 指導教授：李鎮宜教授、張錫嘉教授

國立交通大學電子工程學系電子研究所

摘 要

本論文由演算法到架構設計與電路實現探討軟性BCH跟RS 碼解碼器。依解碼方式

不同可分成 EM 類型以及 Chase 類型解碼方式兩個主要部分做討論。

軟性錯誤更正碼解碼可以在維持相同碼率的前提下提升錯誤更正能力，而其中軟性

BCH 跟 RS 碼已經引起許多的研究風潮。和傳統的硬性解碼器相比，軟性解碼器雖能提

供較好的更正能力，但必須付出高額的硬體代價。本論文首先提出 EM 類型解碼器來針

對最不可靠的位置解碼以降低硬體複雜度。低複雜度 EM 類型解碼和傳統硬性解碼器相

比，可以提供比較低的硬體複雜度，但是必須接受較高可靠度的資訊才能維持住錯誤更

正能力。另一方面，高效能 EM 類型解碼使用和低複雜度 EM 類型解碼相似的概念，但

是提供一個錯誤補償方式在非不可靠位置額外更正一個錯誤。因而，其軟性解碼器可以

在提供和硬性解碼器相似的硬體複雜度前提下擁有較好的錯誤更正能力。

本論文提出了 Chase 類型解碼演算法來提供更通用的 BCH 跟 RS 碼軟性解碼方式。

不像傳統 Chase 解碼器同時使用多個硬性解碼器來解多個候選數列產生其對應候選碼，

所提出的簡易決定軟性解碼方式只需一個硬性解碼器即可執行 Chase 演算法。此外，透

過漢明距離的運算，一個簡化的決定器被設計來決定最有可能的候選碼。而在所提出的

限定決定解碼演算法中，可進一步地省略決定器的運算。透過限定由關鍵方程式運算器

產生的錯誤位置方程式的次數，所提出的解碼方式只需完整解碼一組候選數列。

i

基於上述各項技術，我們實作了四個解碼器。一個 26.9 K 314.5 Mb/s 的軟性BCH

(32400, 32208; 12) 解碼器晶片使用低複雜度EM類型解碼方式首先被設計應用在

DVB-S2 系統上。實現在 90 奈米製程下，所提出的軟性BCH解碼器可以提供 314.5 Mb/s

的資料輸出量，且和一個擁有 99.3 Mb/s資料輸出量的傳統硬性BCH解碼器相比，其邏

輯閘數量僅有硬性解碼器的一半。第二個解碼器則是將高效益EM類型解碼方式應用

BCH (255, 239; 2) 跟BCH (255, 231; 3) 解碼器上。和傳統硬性解碼器相比，所設計的軟

性BCH解碼器透過錯誤補償的方式最多可在 10-5 BER下得到 0.75 dB的更正效能增益，

同時擁有 5%的硬體複雜度改善。第三個解碼器是應用在mmWave系統的軟性RS (224,

216; 4) 解碼器，其使用簡易決定軟性解碼方式用以達到30 K邏輯閘數和2.5 Gb/s的資料

輸出量。和傳統的硬性解碼相比，可在 10-5 BER時擁有 0.5 dB的更正效能增益。最後一

個解碼器則是設計於光通訊系統的軟性RS (255, 239; 8) 解碼器。其使用限定決定軟性

解碼方式用以達到 45.3 K邏輯閘數和 2.56 Gb/s的資料輸出量。且在 10-4 CER下可比硬性

解碼器多擁有 0.4 dB的更正效能。所有的實驗結果皆顯示我們所提的方式能得到如預期

的成效。

ii

Area-Efficient Soft BCH and RS Decoders

Student: Yi-Min Lin Adviser: Chen-Yi Lee and Hsie-Chia Chang

Department of Electronics Engineering & Institute Electronics

National Chiao Tung University

Abstract

 This dissertation investigates the soft BCH and RS decoders from algorithms to

architecture designs and circuit implementation. Two different decoding schemes are studied,

including the error magnitude (EM) type and Chase-type soft decoding algorithms.

 For higher error correcting performance with the same code rate, soft decoding

algorithms of error control codes are the most popular methods and have aroused many

research interests in BCH and RS decoding. As compared with traditional hard decoders, soft

decoders provide better error correcting performance but much higher hardware complexity.

In this dissertation, the EM-type soft decoding algorithms are firstly proposed for BCH codes

to provide low hardware complexity by dealing with the least reliable bits. The low complexity

EM-type approach can provide lower hardware complexity than the hard decoder but has to

exploit higher reliable soft information for maintaining the error correcting performance. On

the other hand, the high performance EM-type approach has similar concept as low

complexity EM-type approach but compensates one extra error outside the least reliable set,

leading to better performance while providing comparable hardware complexity.

 The Chase-type soft decoding algorithms are discussed for providing more general low

complexity decoding methods for both BCH and RS codes. Instead of utilizing various hard

decoders to decode all candidate sequences simultaneously, a decision-eased soft decoding

iii

scheme is provided to process Chase algorithm with one hard decoder module. In addition, a

simplified decision making unit is proposed to determine the most likely codeword with

Hamming distance calculations. Moreover, the decision making unit can be eliminated with

the proposed decision-confined soft decoding algorithm. By confining the degree of error

location polynomial generated from the key equation solver, our proposal only needs to

completely decode one candidate sequence.

Four implemented works are presented in this dissertation. A 26.9 K 314.5 Mb/s soft

(32400, 32208; 12) BCH decoder chip is designed for DVB-S2 system based on low

complexity EM-type approach. The proposed soft BCH decoder can achieve 314.5 Mb/s with

50.0% gate-count reduction in contrast to a 99.3 Mb/s traditional hard BCH decoder in CMOS

90 nm technology. The second designs are high performance EM-type soft BCH (255, 239; 2)

and (255, 231; 3) decoders. Our proposed soft BCH decoders can achieve at most 0.75 dB

coding gain at 10-5 BER with one extra error compensation and 5% less area than traditional

hard BCH decoders. The third design is a 30 K 2.5 Gb/s decision-eased soft RS (224, 216; 4)

decoder for millimeter-wave (mmWave) system, which has 0.5 dB coding gain at 10-5 BER as

compared with the conventional hard decoder. The remaining design is a decision-confined

soft RS (255, 239; 8) decoder chip for optical communications, which can provide 0.4 dB

coding gain at 10-4 CER over hard decoders and achieve 2.56 Gb/s throughput with gate count

of 45.3 K. All the implementation results reveal the positive consequence as expected.

iv

誌 謝

 在博士求學生涯中，承蒙許多師長提攜、朋友的協助以及家人的支持，讓我能一

路順利地走到終點。非常感謝指導教授李鎮宜老師和張錫嘉老師提供了最好的研究環

境，給予我嘗試各式各樣研究方向的機會。他們的諄諄教誨賦予我面對更多挑戰的信

心，他們的啟蒙與指導使得我能在研究上有所發揮，能夠身處於這樣的研究環境，是做

為學生的幸福。

 接著我要謝謝 Si2 實驗室跟 Ocean 研究團隊的所有同仁。感謝每一位實驗室同仁相

助，讓我得以在此學習成長，吸收許多寶貴經驗。在學業上，透過與大家的討論，使得

研究更加完善充實；在生活上，也因為有了各位，在面對研究挑戰的路途上，多了許多

歡笑和愉悅。

 最後由衷地向家人獻上最真摯的感謝。你們無悔的付出，讓我無後顧之憂地完成博

士論文。特別感謝我的太太立芯，這些日子多虧你的耐心等待，並教會我如何享受生

活，讓我平淡的生活中多了許多美好的回憶。

v

Contents

List of Tables . viii

List of Figures . ix

Chapter 1 Introduction . 1
1.1 Thesis Background . 1
1.2 Thesis Motivation . 4
1.3 Thesis Organization . 5

Chapter 2 Review of BCH and RS Codes 6
2.1 Finite Field . 6
2.2 BCH Code . 10
2.3 RS Code . 17
2.4 Overview of Soft Decoding Algorithms . 26

2.4.1 General Minimum Distance Algorithm 27
2.4.2 Chase Algorithm . 29
2.4.3 Guruswami-Sudan Algorithm . 31
2.4.4 Koetter-Vardy Algorithm . 35
2.4.5 Low Complexity Chase Algorithm . 41

Chapter 3 Error Magnitude Type Soft Decoders 46
3.1 Low Complexity EM-Type Approach . 47
3.2 High Performance EM-Type Approach . 54
3.3 High Performance EM-Type Approach for BCH-Like Codes 59
3.4 Design of EM-Type Soft Decoders . 66

3.4.1 Syndrome Calculator . 67
3.4.2 Error Locator Evaluator . 67
3.4.3 Error Magnitude Solver . 69
3.4.4 Architecture Comparison . 75

Chapter 4 Chase Type Soft Decoders . 80
4.1 Decision-Eased Approach . 81
4.2 Decision-Confined Approach . 86
4.3 Design of Chase-Type Soft Decoders . 92

4.3.1 Reliability Evaluator . 92
4.3.2 Syndrome Updater . 93
4.3.3 Half Iteration Key Equation Solver 94

vi

4.3.4 Error Value Evaluator . 97
4.3.5 Simplified Decision Making Unit . 99
4.3.6 Parallel Chien Search Architecture 100
4.3.7 Architecture Comparison . 108

Chapter 5 Implementation Results . 111
5.1 EM-Type Soft BCH (32400, 32208; 12) Decoder for DVB-S2 System 111
5.2 EM-Type Soft BCH and BCH-Like Decoders with 255-Bit Codeword Length 116
5.3 Decision-Eased Soft RS (224, 216; 4) Decoder for mmWave System 118
5.4 Decision-Confined Soft RS (255, 239; 8) Decoder for Optical Communications 121

Chapter 6 Conclusion . 125
6.1 Summary . 125
6.2 Future Work . 127

References . 128

vii

List of Tables

2.1 Representation of the elements in GF (24) . 9

3.1 List of BCH-Like codes over GF (26) ∼ GF (210) 61
3.2 Performance summary of BCH-Like codes over GF (26) ∼ GF (210). 66
3.3 Comparison Table for an (N,K, t) BCH Code 76
3.4 Comparison Table under Different Correct Ability 77
3.5 Comparison Table for an (N,K; t) BCH Code 78

4.1 Analysis of degree of Λ(x) for RS (255, 239; 8) codes 88
4.2 Average computation times for RS (255, 239; 8) codes 91
4.3 Comparison Table for Soft RS (224, 216; 4) Decoder 109
4.4 Comparison Table for Soft RS (255, 239; 8) Decoder 110

5.1 DVB-S2 Specification (N : Codeword Length, K : Message Length) 112
5.2 Summary of Implementation Results . 115
5.3 Summary of Implementation Results . 116
5.4 Implementation Results and Comparision . 120
5.5 Implementation Results and Comparision . 123

viii

List of Figures

1.1 Block diagram of a digital communication system 1
1.2 Decoding spheres . 3

2.1 Binary BCH decoding process . 17
2.2 Error only RS decoding process . 22
2.3 Error and erasure RS decoding process . 26
2.4 GMD decoding process . 28
2.5 Chase decoding process . 29
2.6 The comparison of bounded distance decoding and the list decoding. 31
2.7 Guruswami-Sudan decoding process . 32
2.8 Kotter-Vardy decoding process . 35
2.9 Kotter-Vardy decoding process with re-encoding technique 38
2.10 Simplified Kotter-Vardy decoding process . 41
2.11 Binary tree interpolation procedure of the LCC decoding at η = 3 42
2.12 Hypercube interpolation procedure of the LCC decoding at η = 3 43
2.13 Low complexity Chase decoding process . 45

3.1 Simulation results for BCH (255, 239; 2) under different soft information . . 47
3.2 Low complexity EM-type soft BCH decoding block diagram 48
3.3 Simulation results for (32400, 32208; 12) BCH in DVB-S2 system. 54
3.4 High performance EM-type soft BCH decoding block diagram 54
3.5 Simulation results for the proposed soft BCH (63, 51; 2) decoder. 58
3.6 Simulation results for the proposed soft BCH-Like decoders with 255-bit code-

word length. 59
3.7 Simulation results for the proposed soft BCH-Like (63, 48; 3) and (63, 49; 3)

decoders . 63
3.8 Simulation results for the proposed soft BCH decoders with 255-bit codeword

length. 64
3.9 Simulation results of BCH and BCH-Like decoders at 10−5 BER under AWGN

channel and BPSK modulation. 65
3.10 Syndrome calculator architecture. 67
3.11 Error locator evaluator architecture. 68
3.12 Heuristic error magnitude solver architecture 70
3.13 Björck-Pereyra error magnitude solver architecture. 71
3.14 Multi-mode Björck-Pereyra error magnitude solver architecture for DVB-S2

system. 72
3.15 Compensation error magnitude solver. 73

ix

3.16 Modified compensation error magnitude solver. 74
3.17 Normalized hardware complexity analysis of BCH decoders over GF (216). . . 77

4.1 Decision-eased Chase-type soft decoding process. 82
4.2 Gray code permutation. 82
4.3 Simulation results of decision-eased algorithm for RS (224, 216; 4) codes. . . 83
4.4 Simulation results of decision-free algorithm for RS (255, 239; 8) codes. . . . 88
4.5 Decision-confined Chase-type soft decoding process 90
4.6 Simulation results of decision-confined algorithm for RS (255, 239; 8) codes. 91
4.7 Reliability evaluator. 92
4.8 Merge Sorter. (a) Merge Sort2. (b) Merge Sort4. 92
4.9 Syndrome updater. 93
4.10 The updating criterion for half iteration BM algorithm 94
4.11 The processing element (HI-PE) of half iteration RiBM 97
4.12 The homogeneous architecture of half iteration RiBM 97
4.13 BP-based error value evaluator . 99
4.14 Simplified decision making unit. 100
4.15 Conventional Chien Search Architecture. 100
4.16 Conventional p-Parallel Chien Search Architectures. (a) Straight-Forward.

(b) Direct-Unfolded. 102
4.17 Basic components in proposed Chien search architecture. (a) j-th minimal

polynomial combinational network (MPCNj). (b) j-th basis transformer
(BTj). (c) Group basis transformer (GBT). 105

4.18 MPCN-Based parallel-p Chien search architecture. 106
4.19 Parallel-p joint syndrome calculator and Chien search with MPCN-based ar-

chitecture. 107

5.1 Block diagram of DVB-S2 transmitter. 111
5.2 Fixed point simulation results for BCH (32400, 32208; 12))in DVB-S2 system 113
5.3 Microphoto of Soft BCH (32400, 32208; 12) Chip 114
5.4 Shmoo Plot of Soft BCH (32400, 32208; 12) Chip 114
5.5 Fixed point simulation results for the proposed soft decoders with 255-bit

codeword length. 117
5.6 Block diagram of the transmitter and the receiver of the mmWave system . . 118
5.7 Decoding scheme of the decision-eased soft RS decoder 119
5.8 Fixed point simulation results for Soft RS (224, 216; 4) with η = 3 120
5.9 Block diagram of G.975 . 121
5.10 Block diagram of G.975 - forward error correction architecture 122
5.11 Decoding scheme of the decision-confined soft RS decoder 122
5.12 Fixed point simulation results for soft RS (255, 239; 8) with η = 5 123
5.13 Microphoto of decision-confined soft RS (255, 239; 8) chip 124
5.14 Shmoo Plot of decision-confined soft RS (255, 239; 8) chip 124

x

Chapter 1

Introduction

1.1 Thesis Background

While the digital information data are sent from a source to one or more destinations,

several procedures will be involved to combat the noisy channel for efficient and reliable

transmission. A traditional digital communication system can be depicted as Fig. 1.1, where

the channel can be microwave links, wireline cables, or storage mediums. In general, the

information data are binary symbol sequences and are compressed by the source encoder for

transmitting a shorter bit sequence. The channel encoder then transforms these compressed

data into a longer sequence called a codeword with some redundant symbols. These symbols,

also known as parity check symbols, are exploited for allowing errors which are introduced

into the channel to be corrected. Afterward, the modulator converts the channel coded

symbols into analog signals appropriate for transmission over the channel. The channel

noise, such as thermal noise, signal attenuation, distortion, and interference, will corrupt the

transmitted data. In the receiver, the demodulator estimates the signal from the channel

Error

Control Code

Information

Source

Source

Encoder

Channel

Encoder
Modulator

Demodulator
Channel

Decoder

Source

Decoder

Information

Destination

Channel

Figure 1.1: Block diagram of a digital communication system

1

outputs and converts it into a continuous or quantized symbols. Due to the influence of

channel, the demodulated data might contain errors. If so, the channel decoder can utilize

the parity check symbols to recover the transmitted information. An ideal channel decoder

is able to remove all the errors and produce the data sequence identical with the compressed

one. Finally, the source decoder decompresses such sequence to reproduce the information

source.

The channel encoder and decoder are essential to the digital communication system for

transmitting complete and accurate information through the noisy channel. The devel-

opment of this study, referred to channel coding or error control coding, begins with the

landmark paper by C. E. Shannon in 1948 [1, 2]. Shannon’s channel coding theorem indi-

cated that any asymptotically error-free transmission is achievable with appropriate coding

as long as the information rate R in bits per channel is less than the channel capacity C

for the channel. Based on this theorem, the theoretical performance limit can be calculated

under different signaling schemes, code rates, and channels. After Shannon’s proposal, a lot

of coding researches are developed for devising efficient error control methods to resist noisy

environment.

There are two major types of codes: block codes and convolutional codes [3, 4]. The

convolutional code with the probabilistic decoding feature was first introduced by P. Elias in

1955 [5]. In 1961, J. M. Wozencraft and B. Reiffen proposed the efficient sequential decoding

method [6], and A. J. Viterbi presented the Viterbi algorithm in 1967 [7] for simplifying the

hardware implementation. Afterward, the convolution codes have been widely applied in

wireless communications, such as wireless local area network (WLAN), ultra-wide band

(UWB) and third generation (3G) mobile wireless communications [8–10]. On the other

hand, the block codes have algebraic coding structures [11], and the first block codes were

discovered by R. E. Hamming in 1950 called Hamming codes [12] which are designed for

single error correction. For the multiple error correction block codes, Reed-Muller codes

were first introduced by D. E. Muller in 1954 [13] and completed by I. S. Reed [14]. In 1960,

Bose and Ray-Chaudhuri [15], and Hocquenghem [16] made significant headway by finding

2

a large class of multiple error correcting codes, referred to BCH codes. In the meantime, I.

S. Reed and G. Solomon proposed Reed-Solomon (RS) codes [17], which have been classified

into non-binary BCH codes [18]. Subsequently, the block codes have been well accepted

in storage devices, such as DVD and flash memories, and digital communications, either

wireless or wireline systems [19–24].

Among these well-know error correcting codes, the BCH and the RS codes are the most

commonly used cyclic block codes, where the cyclic feature has additional algebraic structure

to make encoding and decoding more efficient. In the error control coding theory, the error

correcting ability t of algebraic block codes is the largest integer satisfying d∗ ≥ 2t+ 1, and

the minimum distance d∗ is the total amount different places between the two most similar

codewords. With each of the codewords as the the origin, nonintersecting spheres of radius t

can be drawn as shown in Fig. 1.2. Then the received data is always in a sphere and can be

decoded as the codeword at the center of that sphere if t or fewer errors occur. With block

length of N symbols and information length of K symbols, an (N,K; t) BCH code and an

(N,K; t) RS code operating under GF (2m) can correct up to t errors with N −K ≤ m× t

and t =
⌊

N−K
2

⌋
respectively [3, 4].

codewords

t

d
*

Figure 1.2: Decoding spheres

3

1.2 Thesis Motivation

For recent applications, the increasing data rate results in the higher uncertainty of received

signals. To provide higher error correcting performance with the same code rate, soft decod-

ing algorithms of error control codes exploit the reliability information from the channel to

correct an error number larger than half the minimum distance for a code. Many research

interests have been aroused in BCH and RS soft decoding methods [25–32]. In 1966, Forney

developed the generalized-minimum-distance (GMD) [25], which uses soft information to

generate test sequences for several hard decoders to form a list of candidate codewords. A

decision making unit is applied to choose the most likely one from the candidate list. With

the similar concept, Chase algorithm [26] and Chase-GMD methods [27] are also widely used

to efficiently generate the candidate list and applied in many applications. In 2003, Koet-

ter and Vardy introduced the algebraic soft-decision decoding algorithm [28] based on the

list decoding [29] and the soft information are exploited to interpolate each symbol, leading

to larger coding gain. In above methods, the soft informations are only used to generate

test sequences. However, several algorithms based on probability propagation have been

developed to employ the soft information for improving error correcting performance. A

sub optimum maximum a posteriori (MAP) algorithm [30] with a Hamming SISO decoder

was proposed by Therattil and Thangaraj in 2005 [31]. The adaptive belief propagation

algorithm, often used in LDPC decoding, was firstly applied in soft BCH and RS decoding

in 2006 by Jiang [32]. However, the complex computations of soft decoding algorithms still

make soft decoders several times hardware complexity in contrast to hard decoders although

the VLSI architectures of algebraic soft decoders have been developed in these years [33–35].

In this thesis, we will focus on the approaches for reducing the complexity of soft BCH

and RS decoders. Two types of soft decoders are implemented, and both of them exploit

soft informations to determine the least reliable bits. The first type evaluates the error

magnitudes in these unreliable bits and uses the characteristic of BCH codes that the valid

error magnitudes are binary values in the decoding procedure. The second type utilizes

these unreliable bits to process Chase decoding but improves the complex calculations of

4

the decision making procedure. The corresponding implementation results can prove the

feasibility of the proposed designs.

1.3 Thesis Organization

This thesis consists of 6 chapters. Chapter 2 gives a general introduction of BCH and RS

codes. It reviews the conventional code structure and decoding algorithm, including both

hard-decision and soft-decision methods. In Chapter 3, the error magnitude (EM) type

decoding algorithms are presented for BCH codes. According to the different reliability of

input informations, low complexity and high performance EM-type approaches are provided

respectively. For supporting both BCH and RS codes, the Chase-type decoding algorithms

are proposed in Chapter 4. The complex calculation of determining the output codeword

from a list of candidate codewords is the bottleneck of Chase-type soft decoder design. At

the first place, we show that the complexity of decision making procedure can be eased

with Hamming distance calculation. Afterward, the decision-confined approach is presented

by confining the degree of error location polynomial generated by the key equation solver.

Chapter 5 presents implementation results of four soft decoders and gives the state of the

art. Finally, we conclude the dissertation in Chapter 6.

5

Chapter 2

Review of BCH and RS Codes

BCH codes were first constructed by Bose and Ray-Chaudhuri [15], and Hocquenghem [16]

in individual research in 1960. At the same time, Reed-Solomon (RS) codes, which have been

classified into non-binary BCH codes [18]. were proposed by I. S. Reed and G. Solomon [17].

As shown in Chapter 1, both the BCH and RS codes have become the most important

algebraic block codes. The block lengths of an (N,K; t) BCH code and an (N,K; t) RS

code are N symbols consisting of K message symbols in GF (2) and GF (2m) respectively.

With the minimum distance of 2t + 1, the error correcting capability t are N −K ≤ m× t

and t =
⌊

N−K
2

⌋
for BCH and RS codes respectively over GF (2m) [3, 4]. Because of the

effective error correction, BCH and RS codes have enjoyed countless applications, including

data storage systems and digital communications, either wireless or wireline systems [19–24].

The organization of this chapter is as follows. Section 2.1 introduces the basic concepts

of finite field, which is the preliminary knowledge of mathematical background for BCH and

RS codes. The overview of BCH codes and RS codes, including the encoding and decoding

procedures, is described in Section 2.2 and Section 2.3 respectively. At the end of Chapter 2,

Section 2.4 reviews five soft decoding algorithms for BCH and RS codes.

2.1 Finite Field

Before the description of finite fields, the definition of a group G is presented first. A group

G is set of at least two elements on which we can do a binary (algebraic) operation “∗”

without leaving the set, where the binary operation “∗” is defined to satisfy the following

conditions:

6

a) The associative law holds under “∗” operation for every a, b, c ∈ G, ie., a ∗ (b ∗ c) =

(a ∗ b) ∗ c ∀a, b, c ∈ G.

b) There exists an element e in G such that a ∗ e = e ∗ a = a for all a in G, where e is

called the identity of G.

c) For any a of G, there exists a′ in G such that a ∗ a′ = a′ ∗ a = 1, where a′ is called the

inverse of a.

Notice that a group G is commutative (Abelian) if a ∗ b = b ∗ a for all a, b in G.

Based on the definition of group G, a field F is defined as a set of at least two elements

with two algebraic operations, addition “+” and multiplication “·”. Addition, subtraction

(or additive inverse), multiplication and division (or multiplicative inverse) can be operated

in F and the conditions have to be satisfied under these operations as follows:

a) F is an Abelian group under “+” operation with identity element denoted by 0.

b) F is closed under “·” opeartion and the set of nonzero elements in F is an Abelian

group under “·” opration with identity element denoted by 1.

c) The distributive law holds for every a, b, c ∈ F , ie., a · (b+ c) = a · b+ a · c ∀a, b, c ∈ F .

The number of elements in a field, or the order of the field, can be infinite or finite. The set

of all real numbers is one of the well-known example of infinite field. If F has finite elements,

F is called a finite field or Galois field (GF). However, finite fields may not be constructed

with arbitrary number of elements. As proved in [36], the number of elements in a finite field

is a prime number p or is a power of a prime number. A finite field GF (p), which has the

elements {0, 1, . . . , p− 1}, can be constructed according to modulo p arithmetic. Moreover,

an extension field of GF (p), GF (pm), can be built with pm elements for any positive integer

m and can be considered as a vector space of dimension m over GF (p), where p is called the

characteristic of GF (pm). Any element in GF (pm) can be represented by a corresponding set

of m tuples, ie., â = (a0, a1, . . . , am−1), or can be denoted by a polynomial with coefficients

over GF (p) and degree less than or equal to m− 1, ie., â = a0 + a1x+ · · ·+ am−1x
m−1. In a

7

finite field GF (p), a m-degree polynomial f(x) is said to be irreducible if f(x) is not divisible

by any non-zero polynomial over GF (p) of degree less than m. The addition over GF (pm)

is defined component-wise while the multiplication is defined based on the modulo of an

operation irreducible f(x). Therefore, the addition and multiplication operations between

any â, b̂ ∈ GF (pm) can be proceeded as follows.

â+ b̂ = (a0 + b0) + (a1 + b1)x+ · · · + (am−1 + bm−1)x
m−1. (2.1)

â · b̂ = (a0 + a1x+ · · · + am−1x
m−1)(b0 + b1x+ · · · + bm−1x

m−1)] mod f(x). (2.2)

The minimum polynomial of β, mβ(x), is the least degree polynomial with coefficients

in GF (p) such that mβ(β) = 0 and it is an irreducible polynomial over GF (p). Notice that

although mβ(x) is irreducible over GF (p), it can be factored over GF (pm). Since β is a root

of mβ(x), its conjugates {βp, βp2
, . . . βpr−1} are also roots of mβ(x), where r is the smallest

integer that results in βqr

= β and r must be a factor of m [36,37]. The minimal polynomial

mβ(x) with degree of r can be expressed as:

mβ(x) = (x− β)(x− βp) · · · (x− βpr−1

). (2.3)

According to definition of field, the power of a nonzero element β in GF (pm) is still in

GF (pm). Since there are pm − 1 nonzero elements in GF (pm), βi has at most pm − 1 distinct

values for all integers i, implying there exists an integer s that leads βi+s = βi or βs = 1

with 1 ≤ s ≤ pm − 1. The smallest integer s which satisfies βs = 1 is referred to the order

of β. If a nonzero element α in GF (pm) has pm − 1 order, it is called a primitive element.

Then all the elements in GF (pm) can be represented with 0 and α:

GF (pm) = {0, α, α2, . . . , αpm−1 = 1}. (2.4)

Besides, the minimum polynomial of α is called the primitive polynomial p(x) with de-

gree of m. Notice that not all irreducible polynomials are primitive but all the primitive

8

Table 2.1: Representation of the elements in GF (24)
Power Polynomial 4-tuple

0 0 0 0 0 0
1 1 0 0 0 1
α α 0 0 1 0
α2 α2 0 1 0 0
α3 α3 1 0 0 0
α4 α + 1 0 0 1 1
α5 α2 + α 0 1 1 0
α6 α3 + α2 1 1 0 0
α7 α3 + α + 1 1 0 1 1
α8 α2 + 1 0 1 0 1
α9 α3 + α 1 0 1 0
α10 α2 + α + 1 0 1 1 1
α11 α3 + α2 + α 1 1 1 0
α12 α3 + α2 + α + 1 1 1 1 0
α13 α3 + α2 + 1 1 1 0 1
α14 α3 + 1 1 0 0 1

polynomials are irreducible. Hence, we can exploit the primitive polynomials to construct

the finite fields. An example of GF (24), an extension filed of GF (2), is shown in Table 2.1

with the primitive polynomial p(x) = x4 + x + 1 in standard basis. There are three rep-

resentations for an element of GF (pm). Since the primitive element α is a root of p(x),

p(α) = α4 + α + 1 = 0. Any nonzero element of GF (24) can be represented as power of α

or can be expressed as a polynomial with degree < 4 according to the equation α4 = α+ 1.

Another representation for elements of GF (24) is the 4-tuple, in which the four components

are the four coefficients in the polynomial representation. Because the addition over GF (pm)

is component-wise and the multiplication is based on the modulo of the primitive polynomial

p(x), the polynomial representation is convenient for addition and the power representation

is convenient for multiplication. It is worth to be noticed that the binary field GF (2) and

its extension field GF (2m) are more attractive for digital applications because of the binary

arithmetic operations. In the the remainder of the thesis, all the discussed error control

codes are based on operation over GF (2m).

9

2.2 BCH Code

BCH code is a kind of cyclic codes and can be view as a generalization of the Hamming

codes for multiple errors correction. An (N,K; t) BCH code has block length of N bits and

information length of K bits. While operating under GF (2m), it has the error correcting

capability t with N −K ≤ m × t. In the encoding procedure, a generator polynomial g(x)

is defined by the least common multiple (LCM) of the minimum polynomials over GF (2)

M1(x), M2(x), . . . , and M2t(x), where Mi(x) is the minimal polynomial for αi for i = 1 ∼ 2t,

and α is primitive in GF (2m).

g(x) = LCM{M1(x),M2(x), · · · ,M2t(x)}. (2.5)

Notice that, not only αi for i = 1 ∼ 2t but also their conjugates (αi)2j

are roots of g(x),

implying that Mi×2j(x) = Mi(x) for each positive integer j and 1 ≤ i× 2j ≤ 2t. Therefore,

the generator polynomial g(x) can be reduced to

g(x) = LCM{M1(x),M3(x), · · · ,M2t−1(x)}, (2.6)

and the degree of each minimal polynomial is a factor of m.

There are two type methods for encoding a BCH codeword: non-systematic encoding

and systematic encoding. According to the coding theory, a codeword polynomial c(x) must

be a multiple of g(x), that is g(x)|c(x). From this definition, the non-systematic encoding

of a message polynomial u(x) = u0 + u1x + u2x
2 + · · · + uk−1x

k−1 can be directly obtained

by multiplying u(x) with g(x) = g0 + g1x+ · · · + grx
r.

c(x) = u(x) · g(x). (2.7)

10

The matrix formulation of (2.7) can be expressed as

[
c0 c1 · · · cN−1

]
=




u0

u1

...

uK−1




T 


g0 g1 · · · · · · gr 0 0 · · · 0

0 g0 g1 · · · · · · gr 0 · · · 0

...
...

...
...

...
...

...
. . .

...

0 0 · · · 0 g0 g1 · · · · · · gr




, (2.8)

where the K ×N generator matrix G is defined as

G =




g0 g1 · · · · · · gr 0 0 · · · 0

0 g0 g1 · · · · · · gr 0 · · · 0

...
...

...
...

...
...

...
. . .

...

0 0 · · · 0 g0 g1 · · · · · · gr




. (2.9)

On the other hand, the systematic encoding generates the remainder polynomial r(x) at

first according to the modulo operation between u(x)xN−K and g(x):

r(x) = u(x) × xN−K mod g(x). (2.10)

Then the systematic code c(x) is obtained by adding r(x) to xN−Ku(x):

c(x) = u(x) × xN−K + r(x). (2.11)

Since xN−Ku(x) = q(x)g(x) + r(x) where q(x) is the quotient polynomial, the systematic

code c(x) becomes

c(x) = xN−Ku(x) + r(x) = q(x)g(x), (2.12)

which is a multiple of g(x), and the message polynomial u(x) is shown in the K successive

positions of c(x). The advantage of the systematic encoding is that we can get u(x) directly

from part of c(x) without any computation. Thus, it is the most common way for encoding

a BCH codeword.

11

Because αi for 1 ≤ i ≤ 2t are roots of g(x), they are also roots of c(x), indicating

c(αi) = c0 + c1α
i + c2α

2i + · · · + cN−1α
(N−1)i = 0, for 1 ≤ i ≤ 2t. (2.13)

Hence, the matrix formulation of (2.13) is




0

0

...

0




=




1 α α2 · · · α(N−1)

1 α2 (α2)2 · · · (α2)(N−1)

...
...

...
. . .

...

1 α2t (α2t)2 · · · (α2t)(N−1)







c0

c1

c2
...

cN−1




. (2.14)

Then the (N −K) ×N parity check matrix H of an (N,K; t) BCH code can be defined as

H =




1 α α2 · · · α(N−1)

1 α2 (α2)2 · · · (α2)(N−1)

...
...

...
. . .

...

1 α2t (α2t)2 · · · (α2t)(N−1)




. (2.15)

In the receiver, the received data R(x) includes the transmitted codeword c(x) and noise

signal:

R(x) = c(x) + e(x), (2.16)

where e(x) is the error pattern. The syndrome polynomial corresponding R(x) is defined as

S(x) = S1 + S2x
1 + · · · + S2tx

2t−1, in which

Si = R(αi) = c(αi) + e(αi) = e(αi), for 1 ≤ i ≤ 2t. (2.17)

If e(x) has v (≤ t) errors in the positions j1, j2, · · · , jv with 0 ≤ j1 < j2 < · · · < jv ≤ N − 1,

e(x) can be expressed as

e(x) = xj1 + xj2 + · · · + xjv . (2.18)

12

According to (2.17) and (2.18), the i-th coefficient of S(x) will be

Si = (αj1)i + (αj2)i + · · · + (αjv)i

= βi
1 + βi

2 + · · · + βi
v, (2.19)

where βx = αjx for x = 1, 2, . . . , v. Then the relation between {S1, S2, · · · , S2t} and

{β1, β2, · · · , βv} can be derived as

S1 = β1 + β2 + · · · + βv

S2 = β2
1 + β2

2 + · · · + β2
v

S3 = β3
1 + β3

2 + · · · + β3
v (2.20)

...

S2t = β2t
1 + β2t

2 + · · · + β2t
v

To solve e(x), an error location polynomial is defined as

Λ(x) = (1 − β1x)(1 − β2x) · · · (1 − βvx)

= Λ0 + Λ1x+ · · · + Λvx
v, (2.21)

whose roots are β−1
1 , β−1

2 , · · · , and β−1
v . After observation, we can see that the relation

between {Λ0,Λ1, · · · ,Λv} and {β1, β2, · · · , βv} is as follows:

Λ0 = 1

Λ1 = β1 + β2 + · · · + βv

Λ2 = β1β2 + β2β3 + · · · + βv−1βv (2.22)

...

Λv = β1β2 · · · βv

13

Furthermore, from (2.20) and (2.22), Peterson proposed the first decoding algorithm for

BCH codes in 1960 according to the following Newton’s identities [38]:

Si + Λ1Si−1 + · · · + Λi−1S1 + iΛi = 0, for 1 ≤ i ≤ v.

Si + Λ1Si−1 + · · · + Λv−1Si−v+1 + ΛvSi−v = 0, for i > v. (2.23)

That is,

i = 1 : S1 + Λ1 = 0

i = 2 : S2 + Λ1S1 + 2Λ2 = 0

i = 3 : S3 + Λ1S2 + Λ2S1 + 3Λ2 = 0

... (2.24)

i = v : Sv + Λ1Sv−1 + Λ2Sv−2 + · · · + vΛv = 0

i = v + 1 : Sv+1 + Λ1Sv + Λ2Sv−1 + · · · + S1Λv = 0

...

i = 2t : S2t + Λ1S2t−1 + Λ2S2t−2 + · · · + ΛvS2t−v = 0

That means Λ(x) can be obtained once S(x) is calculated. However, it is inefficient to

directly solve (2.24) for large v.

In addition to Peterson’s method, Λ(x) can be solved by the definition of the key equa-

tion [39]:

S(x)Λ(x) = Ω(x) mod x2t. (2.25)

In(2.24), there is a linear feedback shift register relationship between {S1, S2, · · · , S2t} and

{Λ0,Λ1, · · · ,Λv} for i > v:

Si =
v∑

j=1

ΛjSi−j, (2.26)

14

which can be expressed as a matrix form




S1 S2 · · · Sv+1

S2 S3 · · · Sv+2

S3 S4 · · · Sv+3

...
...

...

S2t−v S2t−v+1 · · · S2t







Λv

Λv−1

...

Λ0




=




0

0

0

...

0




. (2.27)

Berlekamp-Massey algorithm is an efficient iterative algorithm for solving key equation (2.25)

which was developed by Berlekamp [39, 40] and independently by Massey [41, 42]. This

algorithm iteratively generates Λ(x) for satisfying (2.27). The detailed procedure is given as

follows.

• Initial conditions:

Λ(0)(x) = 1, τ (0)(x) = 1,

∆0 = S1, δ = 1, L0 = 0.

• Iteration from i = 1 to 2t:

Λ(i)(x) = Λ(i−1)(x) +
∆i−1

δ
τ (i−1)(x) · x. (2.28)

∆i =
t−1∑

j=0

Λ
(i)
j Si+1−j. (2.29)

If ∆i−1 = 0 or Li−1 ≥ i− Li−1,

τ (i)(x) = τ (i−1)(x) · x,

Li = Li−1.

Otherwise,

τ (i)(x) = Λ(i−1)(x),

Li = i− Li−1, δ = ∆i−1.

After 2t iterations, the error location polynomial is obtained from Λ(x) = Λ2t(x). In (2.28),

15

the operation compensates the difference to make Λ(x)i satisfy the discrepancy ∆i−1 = 0.

And the operation in (2.29) evaluates a new discrepancy ∆i to verify the correctness of Λ(x)i.

Besides, the control signal L indicates the degree of Λ(x).

Another famous algorithm for solving the key equation is Euclidean algorithm [43, 44],

which rewritten the key equation as

S(x)Λ(x) +Q(x)x2t = Ω(x). (2.30)

Notice that Q(x) is the quotient polynomial and Ω(x) is the remainder polynomial while

S(x)Λ(x) is divided by x2t. According to Euclidean algorithm, Λ(x) and Ω(x)) can be

obtained by deriving the greatest common divisor (GCD) algorithm between S(x) and x2t

with a termination condition. The algorithm proceeds as follows.

• Initial conditions

Ω(−1) = x2t, Ω(0) = S(x)

Λ(−1)(x) = 0, Λ(0)(x) = 1

• Iterations from i = 1:

Ω(i)(x) = Q(i)(x)Ω(i−1)(x) + Ω(i−2)(x) (2.31)

Λ(i)(x) = Q(i)(x)Λ(i−1)(x) + Λ(i−2)(x) (2.32)

• Iteration terminated

deg(Λ(x)) > deg(Ω(x))

The error location polynomial is acquired as long as the iteration is terminated and Λ(x) =

Λ(i)(x). In the decoding procedure, the degree of Ω(i)(x) decreases with i whereas Λ(i)(x)

has an increasing degree. Once the degrees of Λ(x) and Ω(x) satisfy the stopping criterion,

Λ(x)) has the degree v and Ω(x) has the degree at most v − 1.

As a result, the decoding procedure contains three major steps: syndrome calculator, key

equation solver and Chien search as shown in Fig. 2.1. If the syndromes {S1, S2, · · · , S2t} are

16

Figure 2.1: Binary BCH decoding process

calculated according to (2.19), the error location polynomial can be obtained by using Peter-

son’s method or by solving the key equation (2.25) with either Berlekamp-Massey algorithm

or Euclidean algorithm. The error locations can be found by calculating {β1, β2, · · · , βv}

through solving the roots of Λ(x) = 0. However, it is not easy to find a root of a polyno-

mial by directly solving the equation. Since the number of elements in GF (2m) is finite, an

efficient process known as Chien search [45] is exploited to substitute each nonzero element

of GF (2m) into the equation. If α−i is a root of Λ(x), an error is assumed at the i − th

position. Finally, the estimated codeword polynomial ĉ(x) is obtained by inverting those

values at error locations in R(x).

2.3 RS Code

RS code is a kind of cyclic codes and can be classified into non-binary BCH codes [18]. An

(N,K; t) RS code over GF (2m) has block length of N symbols and information length of K

symbols, where a symbol consists of m-bit. It has the error correcting capability t =
⌊

N−K
2

⌋

for error only decoding and can correct up t errors and ρ erasures with t =
⌊

N−K−ρ
2

⌋
for

error and erasure decoding. Notice that, an erasure is defined to be an error with a known

error location. For the encoding procedure, there are two distinct constructions for RS

codes. Although these two constructions initial appear to describe different codes, it is can

be proved that the families of codes described are in fact equivalent according to Galois

field Fourier transform techniques [4]. No matter which construction method is applied, the

number of parity check symbols are 2t and the minimum distance is 2t+ 1.

The first RS code construction is proposed by I. S. Reed and G. Solomon in 1960 [17].

17

The original definition of RS codes is based on evaluation map encoding method: a codeword

c(x) is formed by evaluating the message polynomial u(x) = u0+u1x+u2x
2+ · · ·+uK−1x

K−1

at N elements of GF (2m).

c(x) = c0 + c1x+ c2x
2 + · · · + cN−1x

N−1

= u(1) + u(α)x+ u(α2)x2 + · · · + u(αN−1)xN−1. (2.33)

It is obvious that this construction method is a non-systematic encoding. This evaluation

map encoding method is useful because it provides insight leading to interpolation-based

decoding algorithms, such as Guruswami-Sudan (GS) and Koetter-Vardy (KV) algorithms,

and we will discuss these algorithms in Section 2.4.

However, the second RS code construction is more popular because of its relation with

BCH codes and their associated decoding algorithms. According to the definition of gener-

ator polynomial in (2.5), the g(x) of a RS code that corrects up to t errors is constructed

with the minimum polynomials of α, α2, α3, · · · , and α2t, where α is a primitive element

in GF (2m). Notice that, the minimal polynomial mi(x) over GF (2m) for any element αi is

simply mi(x) = x− αi. Therefore, the generator polynomial becomes

g(x) = (x− α)(x− α2) · · · (x− α2t). (2.34)

The codeword can be generated either in the non-systematic form of (2.7) or in the systematic

form of (2.11). Both non-systematic and systematic encoding schemes make the codeword

c(x) be a multiple of g(x), indicating that c(αi) = 0 for 0 ≤ i ≤ 2t− 1. In this thesis, most

of the encoders and decoders are concerned with the second code construction.

The decoding of RS codes is quite similar to BCH code except for the requirement of

error value calculation. In the receiver, the received data R(x) is the transmitted codeword

c(x) corrupted by the error pattern e(x):

R(x) = c(x) + e(x). (2.35)

18

The syndrome polynomial corresponding R(x) is defined as S(x) = S1+S2x
1+ · · ·+S2tx

2t−1,

in which

Si = R(αi) = c(αi) + e(αi) = e(αi), for 1 ≤ i ≤ 2t. (2.36)

If e(x) has v (≤ t) errors in the positions j1, j2, · · · , jv with 0 ≤ j1 < j2 < · · · < jv ≤ N − 1,

e(x) can be expressed as

e(x) = e1x
j1 + e2x

j2 + · · · + evx
jv , (2.37)

where e1, e2, · · · , ev are error values corresponding to error locations j1, j2, · · · , jv. Therefore,

the i-th coefficient of S(x) will be

Si = e1(α
j1)i + e2(α

j2)i + · · · + ev(α
jv)i

= e1β
i
1 + e2β

i
2 + · · · + evβ

i
v, (2.38)

where βx = αjx for x = 1, 2, . . . , v. The syndrome polynomial S(x) becomes

S(x) =
2t−1∑

i=0

Six
i

=
2t−1∑

i=0

v∑

j=1

ejβ
i+1
j xi

=
v∑

j=1

2t−1∑

i=0

ejβ
i+1
j xi

=
v∑

j=1

ejβj(1 − (βjx)
2t)

1 − βjx
. (2.39)

The error location polynomial Λ(x) is also defined as shown in (2.21). The relation of S(x)

19

and Λ(x) can be formulated as

S(x)Λ(x) =
v∑

j=1

ejβj(1 − (βjx)
2t)

1 − βjx
×

v∏

i=1

(1 − βix)

=
v∑

j=1

ejβj

v∏

i=1,i6=j

(1 − βix) −
v∑

j=1

ejβj(βjx)
2t

v∏

i=1,i6=j

(1 − βix). (2.40)

According to the definition of key equation in (2.25), the error evaluator polynomial Ω(x)

becomes

Ω(x) = S(x)Λ(x) mod x2t

=
v∑

j=1

ejβj

v∏

i=1,i6=j

(1 − βix). (2.41)

The error values can be calculated from Ω(x) based on Forney’s algorithm [46]:

ej =
−Ω(β−1

j)

Λ′(β−1
j)

. (2.42)

Notice that Λ′(x) indicates the derivative of Λ(x) and therefore

Λ′(x) =
dΛ(x)

dx
=

v∑

=1

−β

v∏

i=1,i6=κ

(1 − βix). (2.43)

From (2.41), the degree of Ω(x) is v − 1, implying that, in S(x)Λ(x), the coefficients of

the terms with powers large than v− 1 must be zero. Consequently, the following Newton’s

identity can be derived [39].




S1 S2 · · · Sv+1

S2 S3 · · · Sv+2

S3 S4 · · · Sv+3

...
...

...

S2t−v S2t−v+1 · · · S2t







Λv

Λv−1

...

Λ0




=




0

0

0

...

0




. (2.44)

20

As we have described in Section 2.2, it is inefficient to directly solve (2.44) for large v.

The Berlekamp-Massey and Euclidean algorithms can be employed for solving the the key

equation (2.41). In the error-only decoding, the Euclidean algorithm described in Section 2.2

computes Λ(x) and Ω(x) simultaneously; therefore, it can be applied for RS code without

modification. However, the Berlekamp-Massey algorithm described in Section 2.2 only cal-

culates Λ(x). The evaluation of Ω(x) can be derived according to the key equation (2.44)

after Λ(x) is obtained from Berlekamp-Massey algorithm:

Ω(x) =
v−1∑

i=0

Ωix
i

=
v−1∑

i=0

i∑

j=0

ΛjSi+1−jx
i (2.45)

Nevertheless, the Berlekamp-Massey algorithm can be modified to evaluate Λ(x) and Ω(x)

simultaneously. The Ω(x) is iteratively updated with similar operations as Λ(x) does. The

detailed procedure is given as follows.

• Initial conditions:

Λ(0)(x) = 1, Ω(0)(x) = 1
x
,

τ (0)(x) = 1, γ(0)(x) = 1,

∆0 = S1, δ = 1, L0 = 0.

• Iteration from i = 1 to 2t:

Λ(i)(x) = Λ(i−1)(x) +
∆i−1

δ
τ (i−1)(x) · x. (2.46)

Ω(i)(x) = Ω(i−1)(x) +
∆i−1

δ
γ(i−1)(x) · x. (2.47)

∆i =
t−1∑

j=0

Λ
(i)
j Si+1−j. (2.48)

21

If ∆i−1 = 0 or Li−1 ≥ i− Li−1,

τ (i)(x) = τ (i−1)(x) · x,

γ(i)(x) = γ(i−1)(x) · x,

Li = Li−1.

Otherwise,

τ (i)(x) = Λ(i−1)(x),

γ(i)(x) = Ω(i−1)(x),

Li = i− Li−1, δ = ∆i−1.

After 2t iterations, the error location polynomial is obtained from Λ(x) = Λ2t(x) and the

error evaluator polynomial is obtained from Ω(x) = Ω2t(x).

In summary, the error only decoding procedure of RS codes contains four major steps:

syndrome calculator, key equation solver, Chien search, and error value evaluator as shown in

Fig. 2.2. The received polynomial R(x) is fed into syndrome calculator to generate syndrome

polynomial S(x) according to (2.36). The key equation solver calculates the error location

polynomial Λ(x) and error evaluator polynomial Ω(x) according to the key equation with

either Berlekamp-Massey algorithm or Euclidean algorithm. After the key equation solver,

Chien search is applied to find the roots of Λ(x) while error value evaluator is utilized

to calculate error values based on Forney’s algorithm. Finally, the estimated codeword

polynomial Ĉ(x) is obtained by adding those error values at error locations in R(x).

As consider to the error and erasure decoding, we will find that it is quite similar to the

above mentioned error only decoding procedure. If the received data R(x) contains v errors

Syndrome

Calculator

KEY

Equation

Solver

Chien Search

FIFO

S(x) (x)

C(x)

R(x)

^
Error Value Evaluator

(x)

Figure 2.2: Error only RS decoding process

22

and u erasures with 2v+u ≤ 2t, the erasure symbols are replaced with arbitrary values, such

as zeros, for the syndrome calculation in (2.36). A erasure location polynomial is defined as

θ(x) = (1 − αl1x)(1 − αl2x) · · · (1 − αlux), (2.49)

where l1, l2, . . . , lu are erasure positions. The key equation should be modified by

S(x)θ(x)Λ(x) = Ω(x) mod x2t. (2.50)

The errata location polynomial Φ(x) = θ(x)Λ(x) identifies both error and erasure locations.

The known polynomials S(x) and θ(x)(x) can be combined as Forney syndrome polyno-

mial [46]:

T (x) , S(x)θ(x) mod x2t (2.51)

= T1 + T2x+ T3x
2 + · · · + T2tx

2t−1.

Consequently, the key equation (2.50) is written as:

T (x)Λ(x) = Ω(x) mod x2t. (2.52)

It is can be proved that the maximum degree of Ω(x) is (v + u − 1) while the degree of

Λ(x)θ(x) is (v + u). As a result, the similar equation as (2.44) is derived:




Tu+1 Tu+2 · · · Tu+v+1

Tu+2 Tu+3 · · · Tu+v+2

...
...

...

T2t−v T2t−v+1 · · · T2t







Λv

Λv−1

...

Λ0




=




0

0

...

0




(2.53)

The error location polynomial Λ(x) can be iteratively computed with Berlekamp-Massey

algorithm as follows [47]:

23

• Initial conditions:

Λ(u)(x) = 1, Ω(u)(x) = 1
x
,

τ (u)(x) = 1, γ(u)(x) = 1,

∆u = Tu+1, δ = 1, Lu = 0.

• Iteration from i = (u+ 1) to 2t:

Λ(i)(x) = Λ(i−1)(x) +
∆i−1

δ
τ (i−1)(x) · x (2.54)

Ω(i)(x) = Ω(i−1)(x) +
∆i−1

δ
γ(i−1)(x) · x (2.55)

∆i =
t−1∑

j=0

Λ
(i)
j Ti+1−j (2.56)

If ∆i−1 = 0 or Li−1 ≥ i− u− Li−1,

τ (i)(x) = τ (i−1)(x) · x,

γ(i)(x) = γ(i−1)(x) · x,

Li = Li−1.

Otherwise,

τ (i)(x) = Λ(i−1)(x),

γ(i)(x) = Ω(i−1)(x),

Li = i− u− Li−1, δ = ∆i−1

After 2t iterations, the error location polynomial is obtained from Λ(x) = Λ2t(x) and the

error evaluator polynomial is obtained from Ω(x) = Ω2t(x).

On the other hand, Euclidean algorithm is also applicable for solving (2.52).

• Initial conditions

Ω(−1) = x2t, Ω(0) = T (x)

Λ(−1)(x) = 0, Λ(0)(x) = 1

24

• Iterations from i = 1:

Ω(i)(x) = Q(i)(x)Ω(i−1)(x) + Ω(i−2)(x) (2.57)

Λ(i)(x) = Q(i)(x)Λ(i−1)(x) + Λ(i−2)(x) (2.58)

• Iteration terminated

deg(Λ(x)) + u > deg(Ω(x))

After the termination of Euclidean algorithm, Λ(x) = Λ(i)(x) and Ω(x) = Ω(i)(x), where

Λ(x)) has the degree v and Ω(x) has the degree at most u+ v − 1.

After the error locations are found with Chien search, the error values can be evaluated

according to Forney’s algorithm:

eκ =
−Ω(β−1

κ)

Φ′(β−1
κ)

=
−Ω(α−jκ)

Φ′(α−jκ)
, for 1 ≤ κ ≤ v, (2.59)

and the erasure values are

êρ =
−Ω(α−lρ)

Φ′(α−lρ)
, for 1 ≤ ρ ≤ u, (2.60)

where Φ′(x) indicates the derivative of Φ(x).

In summary, the major difference in error and erasure decoding algorithm is the Forney

syndrome polynomial T (x) in (2.51) and key equation (2.52). In addition, both Berlekamp-

Massey and Euclidean algorithms are modified for the known erasure location polynomial

θ(x) and T (x). There are five major steps in the error and erasure decoding procedure

of RS codes: syndrome calculator, Forney syndrome calculator, key equation solver, Chien

search and error value evaluator as shown in Fig. 2.3. The syndrome calculator generates

2t syndromes from the received vector R(x). If there are erasure symbols, T (x) is evaluated

by the Forney syndrome calculator. Then the key equation solver delivers Λ(x) and Ω(x)

with either Berlekamp-Massey or Euclidean algorithm. According to S(x) or T (x), Λ(x) and

25

Forney

Syndrome

Calculator

lρα

Figure 2.3: Error and erasure RS decoding process

Ω(x) are generated from the key equation solver with either Berlekamp-Massey or Euclidean

algorithm. Additionally, the errata location polynomial Φ(x) is required when θ(x) exists.

After Chien search finds the error locations, error value evaluator uses (2.42) for computing

error values or uses (2.59) and (2.60) for computing both error and erasure values Finally,

the estimated codeword polynomial ĉ(x) is obtained by correcting the received data R(x),

which is stored in the first-in and first-out (FIFO).

2.4 Overview of Soft Decoding Algorithms

Soft decoding algorithms of error control codes exploit the reliability information from the

channel to correct an error number larger than half the minimum distance for a code, As a

general rule of thumb, soft decoding can provide as much as 3 dB of gain over hard decoding.

Due to the higher transmission data rate, the recent applications require better decoding

methods to resist growing uncertainty of received signals; therefore, soft decoding algorithms

have aroused many research interests.

The soft decoding algorithms of BCH and RS codes discussed in this section are classified

into soft-input hard-output decoding algorithms. That is, the soft input values are utilized

to process the algebraic decoding and the decoded values are provided without any reliability

information. On the other hand, the soft-input soft-output decoding algorithms apply prob-

ability propagation methods with soft input values and provide decoded values accompanied

by a probability distribution for the decoded bits. In general, the soft decoding algorithms

26

are much harder to implement than hard decoding algorithms and require more hardware

complexity. For the practice issue, this section only discusses several soft-input hard-output

algorithms based on list decoding approach, where a list decoder generally generates several

candidate codewords and selects one from the list as the decoded codeword.

2.4.1 General Minimum Distance Algorithm

The generalized minimum distance (GMD) decoding algorithm was devised by Forney in

1966 [25]. Recall that a linear code with minimal distance dmin can correct up t errors and

ρ erasures with 2t + ρ ≤ dmin − 1 based on the error and erasure decoding algorithm. The

GMD algorithm exploits the soft input values to determine at most dmin − 1 least reliable

positions (LRPs) and considers all possible case of up to ρ ≤ dmin − 1 erasures in these

positions. That is, this decoding algorithm will generate a list of at most
⌊

dmin+1
2

⌋
candidate

codewords with error and erasure decoding algorithm. Then, a most likely codeword will be

selected from the list according to the Euclidean distance calculations between the received

input values and each candidate codeword. The GMD algorithm operates as follows:

GMD Algorithm

• Initiation:

A hard decision received vector V is formed from the soft received sequence R and the

reliability of each symbol in V is assigned.

• LRPs determination:

The dmin − 1 least reliable positions are determined according to the reliabilities.

• Candidate codewords generation:

A list of at most
⌊

dmin+1
2

⌋
sequence is generated by modified V with LRPs.

If dmin is even:

for j = 1 to dmin − 1 by 2:

27

A modified vector V̂ is formed by erasing j LRPs in V .

else if dmin is odd:

for j = 0 to dmin − 1 by 2:

A modified vector V̂ is formed by erasing j LRPs in V .

Then a list of candidate codewords is generated by decoding each sequence with the

error and erasure decoding algorithm.

• Best codeword selection:

The Euclidean distance of the soft received sequence R and each candidate codeword

is calculated. Then the decoded codeword, which is with the smallest distance, is the

selected from the list.

Notice that, since hard decision values are actually used in the error and erasure decoding

algorithm, the algebraic decoding algorithm presented in Section 2.3 can be applied for GMD

algorithm. In most case, fewer than
⌊

dmin+1
2

⌋
candidate codewords are generated because the

error and erasure decoding may fail to generate a candidate codeword in some erasure number

case.

To sum up, there are four major steps in the GMD decoding procedure: LRPs evaluator,

candidate sequence generator, error and erasure hard decoder, and decision making unit as

shown in Fig. 2.4. The soft values are fed into LRPs evaluator to determine dmin − 1 LRPs.

Soft

Information

LRPs

Evaluator

Candidate

Sequence

Generator

Error and Erasure

Hard Decoder
Decision

Making

Unit

Output

Codeword

Error and Erasure

Hard Decoder

Error and Erasure

Hard Decoder

Figure 2.4: GMD decoding process

28

With these positions,
⌊

dmin+1
2

⌋
candidate sequences are formed by the candidate sequence

generator. Furthermore, totally
⌊

dmin+1
2

⌋
error and erasure hard decoders are applied to solve

each candidate sequence. Finally, the decision making unit selects a best codeword from the

outputs of all the error and erasure hard decoders.

2.4.2 Chase Algorithm

Based on the concept of GMD algorithm, Chase devised three algorithms, referred as Chase-

1, Chase-2, and Chase-3, in 1973 [26]. Unlike GMD algorithm utilizes error and erasure

decoding algorithm, Chase algorithm uses error only decoding algorithm to generate candi-

date codewords. In Chase-1 algorithm, all the possible combinations among dmin − 1 LRPs

are complemented (i.e., changing a 1 to 0, or a 0 to 1), resulting in at most CN

⌊ dmin
2 ⌋

candidate

codewords. Chase-3 algorithm, which is very similar to GMD algorithm, replaces the erasure

position with the complementation operation at LRPs. A list of at most dmin − 1 candidate

codewords will be generated. As considered both error correcting ability and computation

complexity, Chase-2 algorithm is the most popular one.

In Chase-2 algorithm, there are four major steps in the decoding procedure: LRPs eval-

uator, candidate sequence generator, error only hard decoder, and decision making unit as

shown in Fig. 2.5. The soft values are fed into LRPs evaluator to determine at most dmin

2

LRPs are determined according to the reliabilities. With these positions, a list of 2
dmin

2

candidate sequences are formed by the candidate sequence generator. Furthermore, totally

Soft

Information

LRPs

Evaluator

Candidate

Sequence

Generator

Error Only

Hard Decoder
Decision

Making

Unit

Output

Codeword

Error Only

Hard Decoder

Error Only

Hard Decoder

Figure 2.5: Chase decoding process

29

⌊
dmin+1

2

⌋
error only hard decoders solve each candidate sequence and generate a list of at

most 2
dmin

2 candidate codewords. Finally, a most likely codeword will be selected from the

list by the decision making unit according to the Euclidean distance calculations between

the received input values and each candidate codeword. The details of Chase-2 decoding

process are listed as follows:

Chase Algorithm

• Initiation:

A hard decision received vector V is formed from the soft received sequence R and the

reliability of each symbol in V is assigned.

• LRPs determination:

The dmin

2
least reliable positions are determined according to the reliabilities.

• Candidate codewords generation:

A list of at most 2
dmin

2 sequence is generated by modified V with LRPs.

for j = 1 to 2
dmin

2 by 1:

A modified vector V̂ is formed by complementing one combination of LRPs

in V .

Then a list of candidate codewords is generated by decoding each sequence with the

error only decoding algorithm.

• Best codeword selection:

The Euclidean distance of the soft received sequence R and each candidate codeword

is calculated. Then the decoded codeword, which is with the smallest distance, is the

selected from the list.

30

1 2

3

4

min

(a) Bounded distance decoding

1 2

3

4

min

(b) List decoding

Figure 2.6: The comparison of bounded distance decoding and the list decoding.

2.4.3 Guruswami-Sudan Algorithm

An alternative decoding algorithm of RS codes is Guruswami-Sudan (GS) algorithm, which

was introduced by Madhu Sudan and Venkatesan Guruswami in 1999 [29]. GS algorithm

is the first interpolation-based list decoding algorithm. It can stretch the error correction

ability and find out all the probable codewords within its extended decoding sphere. Fig 2.6

shows the comparison of original bounded distance (BD) decoding and the list decoding

with sphere ball representation. The BD decoding only returns at most one codeword will

be in Hamming sphere dmin−1
2

with received data R as original. On the other hand, the list

decoding returns all codewords within the extended Hamming distance, which is larger than

dmin−1
2

. Hence, the list decoding is able to solve some situations that would be uncorrectable

for BD decoding.

The encoding of GS algorithm is based on the first construction (2.33) which has been

discussed in Section 2.3. An evaluation mapping method constructs the codeword C =

(co, c1, . . . , cN−1) = (u(1), u(α), . . . , u(αN−1) from the message polynomial u(x) = u0 +u1x+

u2x
2+· · ·+uK−1x

K−1. The decoding of GS algorithm consists two major steps: interpolation

and factorization as shown in Fig. 2.3. Since a set of data points (xi, ci), i = 0, 1, . . . , N − 1,

are generated in the encoding procedure with xi = αi, the codeword polynomial can be

viewed as the interpolation result from each point of the set. However, the received data

31

Evaluation

Map

Encoder

Interpolation Factorization

Decision

Making

Unit

Figure 2.7: Guruswami-Sudan decoding process

are suffered from noise. To recover the points in error, polynomials that can match enough

data points are searched based on interpolation procedure. The interpolating polynomial is

constructed as a non-zero bivariate polynomials Q(x,y) by interpolating every received point

(xi, yi) for i = 0 ∼ N − 1. In addition to simple interpolating, an interpolation parameter,

multiplicity θ, is introduced to define the order of the interpolation at each point. The

constructed polynomial is of the form

Q(x, y) =
C∑

j=0

ajφj(x, y) (2.61)

C = n ·
(θ + 1)!

2! (θ − 1)!
, (2.62)

where φj(x, y) is of the form xpyq. Notice that larger multiplicity θ increases the error

correction ability of GS decoder but also raises the computation complexity of GS decoder.

The time complexity of GS algorithm is O(N2θ4). However, the error correcting ability of

GS algorithm has a upper bound. For an (N,K; t) RS code applying GS algorithm, the

maximum decoding sphere limit is t∞ = N − 1 −
⌊√

N(K − 1)
⌋
.

For efficient interpolating, Feng-Tzeng algorithm [48] and Koetter algorithm [49] were

presented in 1991 and 2002 respectively. In general, Koetter algorithm is more popular and

the detailed of Koetter algorithm is described as follows:

Koetter’s Interpolation Algorithm

• Input:

Points: (xi, yi), i = 0, 1 . . . , N − 1;

Interpolation order θi;

L = maximum list number.

32

• Initial conditions:

gj = yj for j = 0 ∼ L.

• Iteration from i = 0 to N − 1:

for (r, s) = (0, 0) to (θi−1, 0) by (θi−1, 1) lex order

for j = 0 to L

∆j = Dr,sgj(xi, yi)

end (for j)

J = {j : ∆j 6= 0}

if (J 6= NULL)

j∗ = argmin{gj : j ∈ J}

f = gj∗

∆ = ∆j∗

for (j ∈ J)

if (j 6= j∗)

gj = ∆gj + ∆jf

else if (j = j∗)

gj = (x− xi)f

end (if)

end (for j)

end (for J)

end (for (r, s))

• Output:

Q(x, y) = minj{gj(x, y)}

After the interpolation procedure, Q(x, y) will contain some factor polynomials of the

form y− p(x), where p(x) is a polynomial of degree K − 1 or less, and is one of the decoded

result of the candidates.

L = {p1(x), p2(x), ..., pℓ(x)}. (2.63)

33

Factorization is exploited to decompose these factors from Q(x, y) to get the candidate

codeword p(x). Since we only interest in the factor of the form y − p(x), it is not necessary

to factorize all the factor of Q(x, y). For the efficient computations, Roth and Ruckenstein

algorithm [50] which was developed in 2000 is usually performed. A recursive computations

are presented to construct a depth-first tree structure. The details of Roth and Ruckenstein

algorithm is stated as follows:

Roth-Ruckenstein Algorithm

• Input:

Q(x, y);

• Initial conditions:

p(x) = 0, u = deg(p) = −1,

D = maximum degree of p(x), v = 0. Call Rothrucktree (Q(x, y), u, p)

• Function Rothrucktree (Q(x, y), u, p):

v = v + 1

if (Q(x, 0) = 0)

add p(x) into output list

else if (u < D)

R = list of roots of Q(0, y)

for each α ∈ R

Qnew(x, y) = Q(x, xy + α)

pu+1 = α

Call rothrucktree (Qnew(x, y), u+ 1, p)

end (for)

else

output list = NULL

end (if)

34

• Output:

List of polynomials p(x) of degree ≤ D such that (y − p(x))|Q(x, y).

After the decoded list is generated, normally the result with the minimum Euclidean distance

is chosen as the decoded codeword.

2.4.4 Koetter-Vardy Algorithm

Based on the GS algorithm, Kotter and Vardy proposed a soft decoding method, referred

to Koetter-Vardy (KV) algorithm, that allowing each point on the interpolated curve to

have its own multiplicity [28]. Unequal multiplicities are assign to points according to their

relatively reliabilities. Fig. 2.8 shows the decoding process of KV algorithm.

Multiplicity

Assignment
Interpolation Factorization

Soft

Information

Decision

Making

Unit

Decoded

Codeword

Figure 2.8: Kotter-Vardy decoding process

The major difference between KV and GS algorithms is that KV algorithm provides a

multiplicity assignment to offer every point its own multiplicity according to the reliabilities

of all possible transmitted/received symbol pairs. For an (N,K; t) RS code over GF (2m), a

(2m − 1)×N reliability matrix Π is constructed for representing the a posteriori probability

of each transmitted/received symbol pair. Then an multiplicity assignment is proposed to

calculate Θ from Π subject to complexity constraints “s” [28]:

Multiplicity Assignment Algorithm

• Input:

Reliability matrix Π ;

• Initial conditions:

Choose a desired value for s =
2m−1∑
i=0

N−1∑
j=0

θi,j.

Π∗ = Π, Θ = 0.

35

• While s > 0:

Find the position (i, j) of the largest entry πi,j in Π∗.

π∗
i,j =

πi,j

θi,j+2

θi,j = θi,j + 1

s = s− 1

• Output:

Multiplicities Θ

Notice that, if s is large enough, it is possible to have more than N points having their

own multiplicities. The interpolation procedure of KV algorithm deals with equal to or more

than N points with their relatively reliabilities while that of GS algorithm handles exact N

points with identical reliability. For example, for a (7, 5; 1) RS code over GF (23), if the

received reliability matrix is

Π =




0.959796 0.214170 0.005453 0.461070 0.001125 0.000505 0.691729

0.001749 0.005760 0.000000 0.525038 0.897551 0.025948 0.000209

0.028559 0.005205 0.000148 0.003293 0.000126 0.018571 0.020798

0.000052 0.000140 0.000000 0.003750 0.100855 0.954880 0.000006

0.009543 0.736533 0.968097 0.003180 0.000000 0.000000 0.278789

0.000017 0.019810 0.000006 0.003621 0.000307 0.000003 0.000084

0.000284 0.017900 0.026295 0.000023 0.000000 0.000002 0.008382

0.000001 0.000481 0.000000 0.000026 0.000035 0.000092 0.000003




,

36

after running multiplicity assignment with constraint s = 12, the multiplicity matrix becomes

Θ =




2 0 0 1 0 0 1

0 0 0 1 2 0 0

0 0 0 0 0 0 0

0 0 0 0 0 2 0

0 1 2 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0




.

Then the interpolation procedure will run with the following input:

x y Multiplicity

1 0 2

α α3 1

α2 α3 2

α3 0 1

α3 1 1

α4 1 2

α5 α2 2

α6 0 1

In the KV algorithm, the interpolation step is the most time and hardware consuming

component and the complexity reduction of the interpolation step is essential for the real-

time applications. The re-encoding technique as shown in Fig. 2.9 is applied to reduce the

number of interpolation points. After transmitting the codeword C through a noisy channel,

the hard decision vector r can be extracted from the reliability matrix as r = C+ e, where e

is the error vector. The received symbols in r can be separated into two sets: N−K symbols

in U (“unreliable”) and K symbols in R (“reliable”). In addition, the set of positions of the

37

Evaluation

Map

Encoder

KV

Decoder

Systematic Encoder

^ ^
^Decision

Making

Unit

Figure 2.9: Kotter-Vardy decoding process with re-encoding technique

symbols in R is the set RK . A re-encoded codeword ψ can be constructed by a systematic

encoder with K most reliability symbol in R. Notice that, the systematic decoder is designed

as an erasure only decoder for re-encoding withK arbitrary positions. The difference between

r and ψ is

r′ = r − ψ

= (C + e) − ψ

= (C − ψ) + e

= C ′ + e, (2.64)

indicating that r′ can be viewed as a codeword suffered from the same error vector as r.

Since the systematic encoder is applied for generating ψ from r, their difference r′ will have

K zeros symbols in the RK locations, meaning that there are K interpolation points with a

zero y-component:

V = {(αi, 0)}, i ∈ RK . (2.65)

Therefore, an interpolation polynomial for these K points in V with the same multiplicity θ

is v(x)θ, where v(x) can be calculated through a simple univariate interpolation:

v(x) =
∏

i∈RK

(x− αi). (2.66)

Hence, Koetter’s interpolation algorithm can be simplified for interpolating the remainder

38

points with the initial polynomial set:

G = {v(x)θ, v(x)θ−1y, . . . , v(x)θ−dyydy}, (2.67)

where dy is the maximum degree of the bivariate polynomial Q(x, y). For the high code rate

codes, most of the points are zero points after the re-encoding procedure and the calculation

of Koetter’s interpolation can be significantly reduced due to few number of the remainder

points.

Another technique for improving the complexity is the coordinate transformation method,

provided by Koetter and Vardy in 2003 [51,52]. If the re-encoding is used and the points in

R have the maximum possible multiplicity θ = dy, the bivariate polynomial Q(x, y) can be

reduced to [49]

Q(x, y) =

dy∑

j=0

ωj(x)v(x)
θ−jyj

= v(x)θ

dy∑

j=0

ωj(x)

(
y

v(x)

)j

, (2.68)

which indicates that a large amount of memories is required for storing the common term

v(x). Since we only interest in the factor of the form y − p(x) from Q(x,y), the term v(x)θ

can be removed and a reduced interpolation polynomial can be defined as:

Q̃(x, ỹ) =

dy∑

j=0

ωj(x)ỹ
j, (2.69)

where ỹ = y
v(x)

. Hence, Koetter’s interpolation algorithm can be further simplified for

interpolating the remainder points with the initial polynomial set:

G̃ = {1, ỹ, . . . , ỹdy}. (2.70)

With re-encoding method, if the decoding is successful, a message polynomial u′(x) cor-

39

responding to the estimated transformed codeword C ′ will be a linear y-root of Q(x, y),

implying u′(x)
v(x)

is linear ỹ-root of Q̃(x, ỹ):

Q̃(x, ỹ) =

(
ỹ −

u′(x)

v(x)

)
A(x, ỹ). (2.71)

After applying Roth-Ruckenstein algorithm, we can obtain a reduced factorization polyno-

mial :

s(x) =
u′(x)

v(x)
. (2.72)

Obviously, the degree of s(x) is much smaller thanK, leading to the significantly computation

improvement for Roth-Ruckenstein algorithm.

Although Roth-Ruckenstein algorithm is simplified, a complex procedure is required to

construct u′(x) from s(x) × v(x). For the further improvement, let’s recall that the trans-

formed received hard-decision word is r′ = C ′ + e and has K zeros in RK . Therefore, in the

K most reliable positions, the summation of encoded symbol u′(αi and error value ei is zero,

i.e.,

u′(αi) = ei, i ∈ RK . (2.73)

Notice that (x− αi) is a root u′(x) in all the error-free locations in RK . Hence, s(x) can be

rewritten as:

s(x) =
u′(x)

v(x)

=

∏
i∈Rk,ei=0

(x− αi)Ω(x)

∏
i∈Rk

(x− αi)

=
Ω(x)∏

i∈Rk,ei 6=0

(x− αi)
(2.74)

=
Ω(x)

Λ(x)
. (2.75)

The Λ(x) can be viewed as an error location polynomial for the positions in RK while Ω(x)

can be viewed as a corresponding error evaluator polynomial. With the syndrome polynomial

40

Erasure Only

Decoder

Multipilicity

Assiment

Decision

Making

Unit

Simplified

Interpolation

Simplified

Factorization

Berlekamp-Massey

Algorithm

Chien Search

&

Froney´s Algorithm

^
Erasure Only

Decoder

Figure 2.10: Simplified Kotter-Vardy decoding process

s(x), the Berlekamp-Massey algorithm can be applied to solve Λ(x) and Ω(x). Afterward,

the roots of Λ(x) are found by Chien search and the correspond error values can be evaluated

by the Forney’s algorithm:

ei = u′(αi)

=
Ω(αi)v(αi)

Λ(αi)

=
Ω(αi)v(1)(αi)

Λ(1)(αi)
, (2.76)

where v(1)(x) and Λ(1)(x) are the formal derivatives of v(x) and Λ(x) respectively. Notice

that, the estimated error vector ê is found without subtract off r′. However, ê only represents

for the errors in R. An erasure only decoder is required to find the errors in U . Fig 2.10

shows the block diagram of the fully simplified KV algorithm.

2.4.5 Low Complexity Chase Algorithm

In Subsection 2.4.4, we introduce several techniques for reducing the hardware complexity of

KV algorithm; however, the complexity of interpolation with high multiplicity θ is still too

high for practical implementation. In 2006, a Chase-type decoding method exploiting KV

algorithm with multiplicity θ = 1 is introduced and is referred to low complexity Chase (LCC)

algorithm [53]. According to the received reliability matrix Π, the most possible and second

possible symbol pairs of each received point can be defined as the hard-decision (xi, y
HD
i)

and secondary hard-decision (xi, y
2HD
i) respectively for i = 0 ∼ N − 1. The probability γi

41

000 001

0 1

0

0

1

1

010 011

0 1

100 101

0

0

1

1

110 111

0 1

Figure 2.11: Binary tree interpolation procedure of the LCC decoding at η = 3

which gives a measure of the reliability of each point is given as

γi =
p(ci = y2HD

i |γi)

p(ci = yHD
i |γi)

≤ 1, (2.77)

where the condition that the hard-decision is wrong and the secondary hard-decision is

correct becomes more possible if γi is closer to 1.

In the LCC decoding, we determine totally η least reliability symbols which maximize

γi for i = 0 ∼ N − 1 and form the unreliable position set: I = {i1, i2, . . . , iη}. Then the

N -point candidate sequence is defined as

(xi, yi) =
{

{(xi,y
HD
i)} if i/∈I

{(xi,yHD
i ,(xi,y2HD

i)} if i∈I
(2.78)

Since there are two possible points in each location at the unreliable position set I, the

total number of candidate sequences generated for the LCC decoding is 2η. Notice that

there are N−η common points in these candidate sequences, implying that a common point

interpolation can be processed for decoding these 2η candidate sequences. For the remaining

uncommon η points, a binary tree interpolation procedure can be applied after the common

point interpolation for generating 2η bivariate polynomials [53]. Fig. 2.11 is an example of

the binary tree interpolation procedure of the LCC decoding at η = 3. In the tree, the

‘0’ and ‘1’ labels by the edges indicate (xi, y
HD
i) and (xi, y

HD
i) respectively. A breadth-first

42

000

001

010

011

100

101

110

111

Figure 2.12: Hypercube interpolation procedure of the LCC decoding at η = 3

scheme scheme can be exploited to reuse 2η−1 intermediate interpolation results leading to

large memory requirement.

In 2008, a η-dimension hypercube interpolation procedure for the LCC decoding was

proposed [54]. Fig. 2.11 is an example of the hypercube interpolation procedure of the LCC

decoding at η = 3. In hypercubes, there is only one bit different between the adjacent labels

and we can travel through all the vertices with passing each vertex only once, where the

path can be based on the flipping order of gray code. Therefore, the 2η bivariate polyno-

mials can be generated sequentially according to the travel path. After the first bivariate

polynomial is constructed, the next bivariate polynomial can be derived from the former

one by removing one point from the interpolation result and adding another point. Hence,

only one intermediate interpolation result needs to be stored. The hypercube interpolation

algorithm is described as follows:

Hypercube Interpolation Algorithm

• For each (xi, y
HD
i) ⇒ (xi, y

2HD
i) in the hypercube

• Input:

(xi, y
2HD
i),

g0(x, y) = g0
0(x) + g0

1(x)y,

g1(x, y) = g1
0(x) + g1

1(x)y.

43

• Backward interpolation:

Compute g0
0(xi), g

0
1(xi), and g0(xi, y

2HD
i)

Compute g1
0(xi), g

1
1(xi), and g1(xi, y

2HD
i)

δ = argmini(Wdeg(gi(x, y))|gi(xi, y
2HD
i) 6= 0)

l = {0, 1}\δ

if ((gl
0(xi)! = 0)||(gl

1(xi)! = 0))

gl(x, y) = gl(xi, y
2HD
i)gδ(x, y) + gδ(xi, y

2HD
i)gl(x, y)

divide gl(x, y) by (x− xi)

• Forward interpolation:

Compute g0
0(xi), g

0
1(xi), and g0(xi, y

2HD
i)

Compute g1
0(xi), g

1
1(xi), and g1(xi, y

2HD
i)

δ = argmini(Wdeg(gi(x, y))|gi(xi, y
2HD
i) 6= 0)

l = {0, 1}\δ

gl(x, y) = gl(xi, y
2HD
i)gδ(x, y) + gδ(xi, y

2HD
i)gl(x, y)

gδ(x, y) = gδ(x, y)(x− xi)

• Output:

Q(x, y) = gκ(x, y), where κ = argmini(Wdeg(gi(x, y))

In 2009, Xinmiao Zhang indicated that the factorization and key equator solver procedure

are not required for the LCC decoding [55]. According to the characteristic of the LCC

decoding that the maximum y-degree of the interpolation output is one, Q(x, y) can be

expressed as

Q(x, y) = q0(x) + q1(x)y. (2.79)

If the re-encoding and coordinate transformation techniques have been applied, the factor-

44

ization procedure can generate the reduced factorization polynomial s(x) of the form:

s(x) =
q0(x)

q1(x)
. (2.80)

As compared to the (2.75), q0(x) and q1(x) can be derived as

{
q0(x)=h(x)Ω(x)
q1(x)=h(x)Λ(x) , (2.81)

where h(x) is the common factor between q0(x) and q1(x). From (2.75)) and (2.80), the

estimated message polynomial becomes

u′(x) = s(x)v(x) =
q0(x)v(x)

q1(x)
. (2.82)

In addition, it can be proved that h(x) does not contain any factor (x + αi) for i ∈ R [34],

implying that we can find error locations by finding the roots of q1(x). Consequently, the

error value can be calculated as

ei = u′(αi) =
q0(α

i)v(1)(αi)

q
(1)
1 (αi)

. (2.83)

Fig. 2.13 is the LCC decoding process. As compared to the simplified KV decoding process

in Fig. 2.10, the factorization and Berlekamp-Massey algorithm are eliminated.

Erasure Only

Decoder

Multipilicity

Assiment

Decision

Making

Unit

Simplified

Interpolation

Chien Search

&

Froney´s Algorithm

^

Erasure Only

Decoder

Figure 2.13: Low complexity Chase decoding process

45

Chapter 3

Error Magnitude Type Soft Decoders

In general, the hardware complexity and the storage requirement of a soft decoder are much

higher than that of a hard decoder [25–32]. On the other hand, a soft decoding method which

collects and deals with the least reliable bits instead of the entire codeword was developed

to achieve lower complexity BCH decoders in 1997 [56]. However, this kind of soft decoder

corrects the errors only when all actual error locations are collected in the limited possible

locations. The decoder is unable to solve any error even though only one error occurred

outside these locations. The hardware complexity is improved but the error correcting

performance highly depends on the reliability of the input signals. As a result, the soft BCH

decoders with existing algorithms provide either better error correcting performance or lower

hardware complexity than traditional hard BCH decoders do.

In this chapter, soft decoding algorithms based on the concept of [56] are presented.

Section 3.1 introduces the low complexity error magnitude (EM) type approach for BCH

codes, which provides low hardware complexity by dealing with the least reliable bits and

maintaining the error correcting performance by exploiting soft information from another

decoder. As considered to receive soft information from AWGN channel, the high perfor-

mance approaches for BCH and BCH-Like codes are presented in Section 3.2 and Section 3.3

respectively. The proposed soft decoders perform better performance by compensating one

extra error outside the least reliable set while providing comparable hardware complexity.

At the end of Chapter 3, Section 3.4 describes the EM-type soft decoder designs.

46

3.1 Low Complexity EM-Type Approach

In [56], the soft decoder corrects the errors only when all the actual error locations are

collected in the limited possible error locations; hence the error correcting performance

highly depends on the reliability of the input signals. Fig. 3.1(a) shows that there is about

0.25dB performance loss at bit error rate (BER) = 10−5 in AWGN channel as compared to

the hard (255,239) BCH decoder, indicating that soft information from AWGN channel is

not sufficiently reliable. However, the soft BCH decoder based on [56] can provide 0.25dB

performance gain with soft information from a 16-state Bahl-Cocke-Jelinek-Raviv (BCJR)

decoder [57] as shown in Fig. 3.1(b). It is because that the BCJR decoder provides more

5 5.5 6 6.5 7 7.5 8

10
−5

10
−4

10
−3

10
−2

Eb/No(db)

B
E

R

HARD BCH (255,239)
SOFT BCH (255,239) [56]

(a) Information from AWGN Channel

1 2 3 4 5 6
10

−6

10
−4

10
−2

Eb/No(db)

B
E

R

16 state BCJR + HARD (255,239) BCH
16 state BCJR + SOFT (255,239) BCH [56]

(b) Information from 16-State BCJR

Figure 3.1: Simulation results for BCH (255, 239; 2) under different soft information

47

Figure 3.2: Low complexity EM-type soft BCH decoding block diagram

reliable soft information than AWGN channel. Accordingly, the soft BCH decoders with

existing algorithms under AWGN channel provide either better error correcting performance

or lower hardware complexity than a traditional hard BCH decoder. But, it is possible to

provide a soft BCH decoder which has both correcting performance and hardware complexity

advantages as long as sufficiently reliable soft information is provided.

Based on the concept of [56], Fig. 3.2 shows the proposed soft BCH decoder that in-

cludes three major steps: syndrome calculator, error locator evaluator, and error magni-

tude solver [58]. From the received polynomial R(x), the syndrome polynomial S(x) =

S1 + S2x
1 + · · · + S2tx

2t−1 is defined in (2.17). With the soft inputs, the decoder chooses

2t least reliable inputs and evaluates their corresponding error locators to form the error

locator set B = [βl1 , βl2 , . . . , βl2t
]T . Also, the error location set, L = [l1, l2, . . . , l2t]

T , can be

calculated with B because βli is the error locator of the li-th location and βli = αli .

The relation between B and the syndrome vector, S = [S1, S2, . . . , S2t]
T , can be formu-

lated as 


βl1 βl2 · · · βl2t

β2
l1

β2
l2

· · · β2
l2t

...
... · · ·

...

β2t
l1

β2t
l2

· · · β2t
l2t







γ1

γ2

...

γ2t




=




S1

S2

...

S2t




, (3.1)

where γi is the error magnitude in the li-th location.

Notice that in BCH codes, the valid error magnitude set Γ = [γ1, γ2, . . . , γ2t]
T must be a

binary vector. If the li-th location is the exact error location, γi is equal to 1; otherwise, γi is

48

equal to 0. The 2t × 2t matrix in (3.1) is defined as error locator matrix B. The estimated

codeword polynomial Ĉ(x) can be obtained by xoring γi with Rli . In this decoding algorithm,

2t locations are collected in L such that at most 2t errors can be corrected.

To represent the difference between S and multiplication result of B and Γ, a discrepancy

vector ∆ = [δ1, δ2, . . . , δ2t]
T is defined as

∆ = B × Γ + S. (3.2)

Notice that both the operations in (3.1) and (3.2) are under GF (2m). It is evident that if

all the errors are occurred in the location set L, the valid Γ can be determinated to make ∆

be a zero vector; otherwise, this decoding approach calculates Γ as a non-binary vector and

fails to correct errors. For example, if there are three errors in 3rd, 7th and 9th locations for

a BCH (255, 239; 2) decoder which can correct 2 errors, S is expressed as

S =




β3 + β7 + β9

β2
3 + β2

7 + β2
9

β3
3 + β3

7 + β3
9

β4
3 + β4

7 + β4
9




.

In hard BCH decoding, these three errors are unable to be corrected. However, in the case

that the decoder chooses the least reliable bits and forms the B as [β3, β4, β7, β9], ∆ becomes

∆=




β3 β4 β7 β9

β2
3 β2

4 β2
7 β2

9

β3
3 β3

4 β3
7 β3

9

β4
3 β4

4 β4
7 β4

9







γ1

γ2

γ3

γ4




+




β3 + β7 + β9

β2
3 + β2

7 + β2
9

β3
3 + β3

7 + β3
9

β4
3 + β4

7 + β4
9




.

After Gauss Elimination method, Γ is calculated as [1, 0, 1, 1] to make ∆ be a zero vector.

According to B and Γ, the errors at 3rd, 7th and 9th locations can be corrected.

In the proposed decoder, the syndrome calculator is used to calculate S. The error

49

locator evaluator classifies the soft input to choose 2t least reliability and creates B and L.

The error magnitudes solver (EMS) is used to solve (3.1) to get Γ. The Gauss Elimination

method is the most intuitive way to solve (3.1) but the complexity is O(n3). Therefore,

the EMS dominates the hardware complexity in the proposed decoder. In this section,

two alternative algorithms for improving decoding complexity are revealed. Heuristic Error

Magnitudes Solver (H-EMS) uses the characteristic that the valid error magnitude in BCH

codes is either 0 or 1, and Björck-Pereyra Error Magnitudes Solver (BP-EMS) employs the

quick Vandermonde matrix solution.

In BCH codes, the valid error magnitude in Γ is a binary value. The problem can be

formulated into checking all combinations of γi over GF (2) instead of calculating exact

error magnitudes. Thus, a 2t-bit counter is used to execute a heuristic search for all binary

combinations. Notice that S2
1 = S2, S

2
2 = S4, . . . , S

2
t = S2t in BCH codes, the computation

of the even part syndromes (S2, S4,, S2t) can be eliminated. The odd syndrome vector

Sodd = [S1, S3, . . . , S2t−1]
T and the error locator matrix with half rows, Bodd, are applied to

simplify (3.1) as :




βl1 βl2 · · · βl2t

β3
l1

β3
l2

· · · β3
l2t

...
... · · ·

...

β2t−1
l1

β2t−1
l2

· · · β2t−1
l2t







γ1

γ2

...

γ2t−1

γ2t




=




S1

S3

...

S2t−1




. (3.3)

The discrepancy vector for (3.3) is modified as

∆odd = [δ1, δ3, . . . , δ2t−1]
T

= Bodd × Γ + Sodd. (3.4)

Notice that only t rows in the Bodd and Sodd means only half computation in ∆odd calculation

as compared with ∆ calculation. The complexity of ∆odd calculation is significantly reduced.

50

The detail of the low complexity implementation of H-EMS is illustrated as followed:

Heuristic EMS Algorithm

• Input:

B and Sodd.

• Initial conditions:

Γ = 0.

• Step 1:

Construct the Bodd with B.

• Step 2:

∆odd = Bodd × Γ + Sodd.

• Step 3:

if ∆odd is a zero vector

Successful Decoding !!!

Go to Output

else

if Γ == 22t − 1

Failed Decoding !!!

else

Γ = Γ + 1

Go to Step 2

• Output:

Γ, where γi is the error magnitude at li-th location

The heuristic search for all binary combinations is processed by iteratively counting Γ

value, and the values of ∆odd are updated and verified whether ∆odd becomes a zero vector

51

or not at each iteration. The decoding procedure successfully completes if certain Γ makes

∆odd become a zero vector; otherwise, this decoding procedure fails to correct the errors.

On the other hand, let us consider the matrix with the terms of a geometric progression

in each row or column: a Vandermonde matrix, which of oder n is the form




1 1 · · · 1

X1 X2 · · · Xn

X2
1 X2

2 · · · X2
n

...
... · · ·

...

Xn−1
1 Xn−1

2 · · · Xn−1
n




.

To solve (3.1), the inverse matrix of B is calculated and it is very complicated to calculate the

inverse matrix of an arbitrary matrix. However, the computation of (3.1) can be simplified

because B is a Vandermonde matrix. The quick Vandermonde matrix computation is applied

with Björck-Pereyra algorithm [59, 60] to evaluate the error magnitude efficiently. Instead

of using the whole B to compute (3.1), the geometric relation in each column makes the

proposed BP-EMS only need B for the complexity reduction. Following shows the detail of

the low complexity implementation of BP-EMS:

Björck-Pereyra EMS Algorithm

• Input:

B and S.

• Step 1:

for (k = 1; k < 2t, k = k + 1)

for (i = 2t; i > k, i = i− 1)

Si = Si − βlkSi−1

• Step 2:

for (k = 2t− 1; k > 0, k = k − 1)

52

for (i = k + 1; i ≤ 2t, i = i+ 1)

Si = Si/(βli − βli−k
)

for (i = k; i < 2t, i = i+ 1)

Si = Si − Si+1

• Step 3:

for (k = 1; k ≤ 2t, k = k + 1)

Si = Sk/βlk

• Step 4:

if S is a binary sequence

Successful Decoding !!!

Go to Output

else

Failed Decoding !!

• Output:

S, where Si is the error magnitude at li-th location.

In the proposed BP-EMS algorithm, the variable Si, which initially represents the i-th syn-

drome value, is updated iteratively. Each calculation of the syndrome represents a row

operation in (3.1). After all computations, Si indicates the li-th error magnitude. Although

the valid error magnitude in BCH codes is either 0 or 1, a non-binary Si may be generated

because not all errors are in the L. Therefore, a binary sequence check of S is applied in the

final step to determine the decoding successful or not. The proposed BP-EMS is composed

of division, multiplication and addition operations. The regular operations make BP-EMS

suitable for low complexity hardware implementation.

In DVB-S2 system, (32400,32208) BCH over GF (216) is defined to be concatenated with

(64800,32400) LDPC code. Fig. 3.3 presents the BER performance at 50 LDPC decoding

iterations under QPSK modulation and AWGN channel. The proposed soft BCH decoder

has similar performance as the hard BCH decoder in DVB-S2 system at BER = 10−5.

53

0.8 0.85 0.9 0.95 1
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

Eb/No(db)

B
E

R

HARD (32400,32208) BCH
SOFT (32400,32208) BCH PROPOSED

Figure 3.3: Simulation results for (32400, 32208; 12) BCH in DVB-S2 system.

3.2 High Performance EM-Type Approach

Although the soft BCH decoder introduced in Section 3.1 has significantly low hardware

complexity, the error correcting performance highly depends on the reliability of the input

signals. Without another decoder providing reliable soft information, it has worse error cor-

recting ability than the hard BCH decoder. In this section, soft decoding algorithms having

similar concept as [56] but with one extra error compensation are presented to enhance the

correcting performance for BCH decoders. Consequently, in contrast to the conventional

hard BCH decoders, the proposed soft BCH decoders perform better performance by com-

pensating one extra error outside the least reliable set and provide comparable hardware

complexity by dealing with the least reliable bits.

Figure 3.4: High performance EM-type soft BCH decoding block diagram

54

The proposed soft BCH decoder shown in Fig. 3.4 includes three major blocks: syndrome

calculator, error locator evaluator, and compensation error magnitude solver (CEMS) The

syndrome calculator is used to calculate the syndrome polynomial S(x). The error locator

evaluator classifies the soft input to choose 2t least reliabilities and creates the error locator

set B as well as the error location set L. Based on these informations, the CEMS is applied

to find the error locations. According to (3.1) and (3.2), it is evident that if all errors are

located within the location set L, the valid Γ can be determinated to make ∆ be a zero vector.

Otherwise, Γ is calculated as a non-binary vector and this decoding approach fails to correct

errors. If any error occurred outside L, the decoder is unable to solve any error, resulting in

the lower correcting performance. However, the error correcting ability can be enhanced by

not only correcting errors located inside L but also correcting errors outside L. Under the

analysis of ∆, an error located at lmiss and outside L induces ∆ = [βlmiss
, β2

lmiss
, . . . , β2t

lmiss
],

where βlmiss
= αlmiss . Notice that a geometrical progression is a sequence of numbers where

each term can be formulated by multiplying the previous one by a common ratio. In order to

improve the error correcting ability, we can additionally check whether ∆ has the property

of a geometrical progression and make a compensation for finding the missing location lmiss

from ∆. For example, if there are four errors at the 1st, 3rd, 5th and 9th locations for a

BCH (255, 239; 2) decoder, S can be expressed as

S =




β1 + β3 + β5 + β9

β2
1 + β2

3 + β2
5 + β2

9

β3
1 + β3

3 + β3
5 + β3

9

β4
1 + β4

3 + β4
5 + β4

9




.

The decoder which collects B = [β1, β3, β6, β9] from the least reliable bits determined by the

error locator evaluator is unable to correct errors without compensation procedure because

55

of the missing β5. However, once Γ = [1, 1, 0, 1], ∆ becomes

∆=




β1 β3 β6 β9

β2
1 β2

3 β2
6 β2

9

β3
1 β3

3 β3
6 β3

9

β4
1 β4

3 β4
6 β4

9







1

1

0

1




+




β1 + β3 + β5 + β9

β2
1 + β2

3 + β2
5 + β2

9

β3
1 + β3

3 + β3
5 + β3

9

β4
1 + β4

3 + β4
5 + β4

9




= [β5, β
2
5 , β

3
5 , β

4
5].

∆ is a geometrical progression with β5 as the common ratio. Therefore, the decoder can get

the missing location by verifying ∆. Then not only errors at 1st, 3rd and 9th locations but

also an error at 5th location can be corrected.

Moreover, if there are five errors at the 1st, 3rd, 5th, 6th and 9th locations, the decoder

can collect at most four (2t) exact error locations in L, such as L = [1, 3, 6, 9]. While the

decoder provides Γ = [1, 1, 1, 1], the ∆ becomes [β5, β
2
5 , β

3
5 , β

4
5]. The missing location still can

be found from the geometrical progression ∆. Accordingly, the proposed compensation soft

BCH decoder can correct at most 2t + 1 errors. Except for the lmiss, other error locations

are li whose corresponding γi equals 1. The estimated codeword polynomial Ĉ(x) can be

obtained by inversing values at these error locations in the received polynomial R(x).

The CEMS is applied to calculate Γ and ∆ according to (3.1) and (3.2). Similar as in

Section 3.1, the binary characteristic of BCH codes allows we solve (3.1) and (3.2) checking

all combinations of γi over GF (2) instead of calculating exact error magnitudes with Gauss

Elimination method. A 2t-bit counter is employed to execute a heuristic search for all binary

combinations. Also, S2
1 = S2, S

2
2 = S4, . . . , S

2
t = S2t in BCH codes, the computation of the

even part syndromes (S2, S4,, S2t) can be eliminated. The equation (3.1) and (3.2) can be

modified as (3.3) and (3.4) respectively. Following steps illustrate the details of the proposed

algorithm for CEMS.

Compensation EMS Algorithm

• Input:

56

B and Sodd.

• Initial conditions:

Γ = 0.

• Step 1:

Construct the Bodd with B.

• Step 2:

∆odd = Bodd × Γ + Sodd.

• Step 3:

if ∆odd is a zero vector

lmiss = NULL

Go to Output

else if ∆odd is a geometrical progression

Go to Step 4

else

if Γ == 22t − 1

Failed Decoding !!!

else

Γ = Γ + 1

Go to Step 2

• Step 4:

Find lmiss according to the relation: δ1 = αlmiss

• Output:

Γ and lmiss, where γi is the error magnitude at li-th location.

A heuristic search for all binary combinations is completed by iteratively counting Γ

value from 0 to 22t−1. At each iteration, the solver verifies whether or not ∆odd becomes a

57

4 4.5 5 5.5 6 6.5 7 7.5

10
−5

10
−4

10
−3

10
−2

Eb/No(db)

B
E

R

BCH (63,51) Hard
BCH (63,51) Proposed
BCH (63,51) GMD [25]
BCH (64,51) SUB MAP [31]

Figure 3.5: Simulation results for the proposed soft BCH (63, 51; 2) decoder.

geometrical progression. Once the geometrical progression check passes at certain Γ value,

the corresponding error locations in L and lmiss can be found with Γ and ∆odd.

For the purpose of comparing with existing methods, our proposed designs are compared

with traditional hard decision, GMD [25] and 2 iterations sub-optimum MAP [31] decod-

ing algorithms. In all cases, BPSK modulation and AWGN channel are used and all the

performances are compared at 10−5 BER.

For the 63-bit codeword length, the simulation results of 2-error-correcting BCH code is

presented in Fig. 3.5. The achieved coding gain over the hard BCH (63, 51; 2) decoder is

about 0.95 dB for the proposed soft BCH (63, 51; 2) decoder. Compared with other existing

soft-decision methods, the proposed decoder can obtain 0.3 dB and 0.5 dB coding gains over

GMD and sub-optimum MAP decoders respectively.

Fig. 3.6(a) and Fig. 3.6(b) provide the simulation results of 2-error-correcting and 3-

error-correcting BCH codes with 255-bit codeword length. As compared to the hard BCH

(255, 239; 2) decoder, the proposed soft BCH (255, 239; 2) decoder outperforms 0.75 dB.

Our proposed decoder can outperform 0.35 dB and 0.13 dB coding gain as compared with

GMD and sub-optimum MAP decoders respectively. The coding gain of our soft BCH (255,

231; 3) decoders is 0.33 dB and 0.4dB over sub-optimum MAP and conventional hard BCH

(255, 231; 3) decoders. Also our proposed decoder is comparable with GMD decoder.

58

5 5.5 6 6.5 7 7.5 8 8.5
10

−6

10
−5

10
−4

10
−3

10
−2

Eb/No(db)

B
E

R

BCH (255,239) Hard
BCH (255,239) Proposed
BCH (255,239) GMD [25]
BCH (256,239) SUB MAP [31]

(a) BCH (255, 239; 2)

5 5.5 6 6.5 7 7.5
10

−6

10
−5

10
−4

10
−3

10
−2

Eb/No(db)

B
E

R

BCH (255,231) Hard
BCH (255,231) PROPOSED
BCH (255,231) GMD [25]
BCH (256,231) SUB MAP [31]

(b) BCH (255, 231; 3)

Figure 3.6: Simulation results for the proposed soft BCH-Like decoders with 255-bit code-
word length.

3.3 High Performance EM-Type Approach for

BCH-Like Codes

A new constructed code, referred as BCH-Like code, is proposed to enhance the code rate

according to the original definition of the BCH codes. As compared to BCH codes with

similar code rate, the BCH-Like codes with proposed decoding scheme can provide better

error correcting performance.

For an (N,K; t) t-error-correcting BCH code over GF (2m), the generator polynomial

g(x) is defined in (2.5) with minimal polynomials: M1(x),M3(x), · · · ,M2t−1(x). Notice that

59

Mi(x) is the minimal polynomial for αi, and the degree of the minimal polynomial is a factor

of m. If m is even, there must exist a degree-2 minimal polynomial, such asM21(x) in GF (26)

or M85(x) in GF (28). On the other hand, if m is odd, the existence of minimal polynomial

with lower degree depends on whether m is a prime number. For instance, the M73(x) is

the degree-3 minimal polynomial in GF (29) whereas there is no minimal polynomial with

degree less than 7 in GF (27).

While the minimal polynomial M2t−1(x) in (2.5) is replaced with the minimal polynomial

with less degree, a new generator polynomial used to construct higher code rate codes can

be formulated as

glike(x)=LCM{M1(x),M3(x),· · · ,M2t−3(x),Mρ(x)}, (3.5)

where deg(Mρ(x)) < deg(M2t−1(x)). Consequently, an (N,K ′; t) BCH-Like code is con-

structed by

C(x) = m(x) × xN−K′

+ r(x), (3.6)

and

r(x) = m(x) × xN−K′

mod glike(x), (3.7)

where m(x) represents the message polynomial and the information length K ′ > K since

deg(glike(x)) < deg(g(x)). Notice that the item t in the BCH-Like codes means the number

of minimal polynomials utilized to construct glike(x).

TABLE 3.1 lists the construction of BCH-Like codes over GF (26) ∼ GF (210). For ex-

ample, the BCH-Like (1023, 1001; 3) code is constructed from BCH (1023, 993; 3) code

by replacing the degree-10 M5(x) with the degree-2 M341(x) in GF (210). Notice that an

(N,K ′; t) BCH-Like code can be constructed with different Mρ(x) and the error correcting

performance of BCH-Like codes will highly depend on which Mρ(x) is chosen. For in-

stance, there are three minimal polynomials with degree 4 over GF (28): M17(x), M51(x) and

M109(x), and the BCH-Like (255, 243; 2) decoder can be constructed with anyone of them.

However, the BCH-Like (255, 243; 2) decoder with M51(x) has the best error correcting

60

Table 3.1: List of BCH-Like codes over GF (26) ∼ GF (210)
BCH-Like Corresponding

ρ deg(Mρ(x))Code BCH Code

GF (26)
(63, 54; 2) (63, 51; 2) 27 3
(63, 48; 3) (63, 45; 3) 27 3
(63, 49; 3) (63, 45; 3) 21 2

GF (28)
(255, 243; 2) (255, 239; 2) 51 4
(255, 235; 3) (255, 231; 3) 17 4
(255, 237; 3) (255, 231; 3) 85 2

GF (29) (511, 490; 3) (511, 484; 3) 219 3

GF (210)
(1023, 1008; 2) (1023, 1003; 2) 33 5
(1023, 998; 3) (1023, 993; 3) 99 5
(1023, 1001; 3) (1023, 993; 3) 341 2

performance according to our simulation results.

Based on the proposed BCH-Like codes construction method, there is only 2t−2 consec-

utive roots for the codeword set. According to the BCH argument [3], the minimal distance

of the BCH-Like codeword set is only guaranteed as 2t − 1 while that of the BCH code-

word set is 2t+ 1. As a result, the lower correcting performance is observed while the hard

decision decoding is applied. However, the proposed soft decoding method is also suitable

for BCH-Like codes and the maximum error correcting ability is 2t + 1 as well. Similar

to BCH codes, only odd syndromes have to be calculated for the efficient computations in

BCH-Like codes. According to (3.6) and (3.7), α1, α3, · · · , α2t−3, and αρ are the roots of

BCH-Like codewords, C(x). The relation between B and the modified odd syndrome vector

S ′
odd = [S1, S3, . . . , S2t−3, Sρ]

T can be formulated as




βl1 βl2 · · · βl2t

β3
l1

β3
l2

· · · β3
l2t

...
... · · ·

...

β2t−3
l1

β2t−3
l2

· · · β2t−3
l2t

βρ
l1

βρ
l2

· · · βρ
l2t







γ1

γ2

...

...

γ2t−1

γ2t




=




S1

S3

...

S2t−3

Sρ




, (3.8)

where the modified error locator matrix with half row is called as B′
odd

. The only difference

61

between (3.3) and (3.8) is the bottom row of each matrix; therefore, the BCH-Like decoder

has the similar decoding flow as shown in Fig. 3.4. The modifications are designed for dealing

with Sρ and βρ
li

in the syndrome calculator and the CEMS. The modified discrepancy vector

∆′
odd = [δ′1, δ

′
3, . . . , δ

′
2t−3, δ

′
ρ]

T is defined as

∆′
odd = B′

odd
× Γ + S ′

odd. (3.9)

If all errors are located within the location set L, the valid Γ can be determined to make

∆′
odd be a zero vector. In the case that there is an error location lmiss outside L, ∆′

odd becomes

[βlmiss
, β3

lmiss
, . . . , β2t−3

lmiss
, βρ

lmiss
], which is still a geometrical progression excluding the last term,

βρ
lmiss

. A modified CEMS (M-CMES) for BCH-Like codes is provided to additionally check δ′ρ

term for finding lmiss, and the details of the proposed algorithm for M-CEMS are illustrated

as the following steps.

Modified Compensation EMS Algorithm

• Input:

B and S ′
odd.

• Initial conditions:

Γ = 0.

• Step 1:

Construct B′
odd

based on B.

• Step 2:

∆′
odd = [δ′1, δ

′
3, . . . , δ

′
2t−3, δ

′
ρ]

T

= B′
odd

× Γ + S ′
odd

• Step 3:

if ∆odd is a zero vector

lmiss = NULL

62

Go to Output

else if δ′ρ == δ′ρ1 && [δ′1, δ
′
3, . . . , δ

′
2t−3]

T is a geometrical progression

Go to Step 4

else

if Γ == 22t − 1

Failed Decoding !!!

else

Γ = Γ + 1

Go to Step 2

• Step 4:

Find lmiss according to the relation: δ′1 = αlmiss

• Output:

Γ and lmiss, where γi is the error magnitude at li-th location.

At Step 3, not only the geometrical progression check but also the relation between δ′1 and δ′ρ

are evaluated for an extra error compensation for BCH-Like codes. After M-CEMS process,

for those γi equal to 1, the corresponding li and lmiss are the estimated error locations.

For the purpose of comparing with existing methods, our proposed designs are simulated

4.5 5 5.5 6 6.5 7 7.5

10
−5

10
−4

10
−3

10
−2

Eb/No(db)

B
E

R

BCH (63,45) Hard
BCH (63,45) Proposed
BCH−Like (63,48) Proposed
BCH−Like (63,49) Proposed
BCH (63,45) GMD [25]

Figure 3.7: Simulation results for the proposed soft BCH-Like (63, 48; 3) and (63, 49; 3)
decoders

63

5 5.5 6 6.5 7 7.5 8 8.5
10

−6

10
−5

10
−4

10
−3

10
−2

Eb/No(db)

B
E

R

BCH (255,239) Hard
BCH (255,239) Proposed
BCH−Like (255,243) Proposed
BCH (255,239) GMD [25]

(a) BCH-Like (255, 243; 2)

5 5.5 6 6.5 7 7.5
10

−6

10
−5

10
−4

10
−3

10
−2

Eb/No(db)

B
E

R

BCH (255,231) Hard
BCH (255,231) Proposed
BCH−Like (255,235) Proposed
BCH−Like (255,237) Proposed
BCH (255,231) GMD [25]

(b) BCH-Like (255, 235; 3) and (255, 237; 3)

Figure 3.8: Simulation results for the proposed soft BCH decoders with 255-bit codeword
length.

with traditional hard decision and GMD [25] decoding algorithms. In all cases, BPSK

modulation and AWGN channel are used and all performances are compared at 10−5 BER.

Fig. 3.7 shows the simulation results of 3-error-correcting BCH-Like code with 63-bit

codeword length in GF (26). The coding gains over the hard BCH (63, 45; 3) decoder are

0.7 dB and 0.75 dB respectively for our soft BCH-Like (63, 48; 3) and (63, 49; 3) decoders.

Even though the minimal distance of BCH-Like (63, 48; 3) and (63, 49; 3) codeword sets is

less than 7, the performances of our soft BCH-Like (63, 48; 3) and (63, 49; 3) decoders are

comparable with that of the GMD decoder.

For the 255-bit codeword length in GF (28), the simulation results of 2-error-correcting

64

(1023,1003)
(1023,993)

(511,484)
(255,239)

(255,231)

(63,51)

(63,45)

(1023,993)

(1023,1003)

(511,484)
(255,239)

(255,231)

(63,51)

(63,45)

(1023,1008)
(1023,1001)
(1023,998)

(511,490) (255,243)

(255,235)
(255,237)

(63,54)

(63,49)
(63,48)

Shannon Limit
■ N = 63
▼ N = 255
● N = 511

N = 1023

■ HARD BCH
■ SOFT BCH PROPOSED
□ SOFT BCH-LIKE PROPOSED

Figure 3.9: Simulation results of BCH and BCH-Like decoders at 10−5 BER under AWGN
channel and BPSK modulation.

and 3-error-correcting BCH-Like codes are presented in Fig. 3.8(a) and Fig. 3.8(b) respec-

tively. As compared to the hard BCH (255, 239; 2) decoder, our soft BCH-Like (255, 243;

2) decoder outperforms 0.3 dB. The corresponding coding gains over the hard BCH (255,

231; 3) decoder are around 0.5 dB for both soft BCH-Like (255, 235; 3) and (255, 237; 3)

decoders. Moreover, our soft BCH-Like (255, 235; 3) and (255, 237; 3) decoders achieve

similar coding gains in contrast to GMD decoder according to the higher code rate and one

extra error compensation.

Although the proposed BCH-Like codes will decrease the error-correcting capability from

t to t−1 if hard decision decoding is applied, our soft BCH-Like decoders with M-CEMS, like

the proposed soft BCH decoders with CEMS, can utilize t syndrome values in the decoding

procedures. As a result, both the code rate and the error correcting performance can be

improved by our soft BCH-Like decoders. As shown in Fig. 3.7 and Fig. 3.8, our soft BCH-

Like decoders outperform original BCH decoders with lower code rate, implying they can

provide the better coding gain over BCH decoders with similar code rate. For example, the

proposed soft BCH-Like (255, 237; 3) decoder outperforms 1.0 dB and 0.3 dB as compared

to the hard and the proposed soft BCH (255, 239; 2) decoders respectively from Fig. 3.6(a)

and Fig. 3.8(b).

Fig. 3.9 demonstrates the performances of BCH and BCH-Like decoders at 10−5 BER

under AWGN channel and BPSK modulation. The capacity (symbol/bit) is equal to the

65

Table 3.2: Performance summary of BCH-Like codes over GF (26) ∼ GF (210).

BCH-Like Code Corresponding BCH Code Coding Gain 1(dB) Coding Gain 2(dB) Coding Gain 3(dB)

GF (26)
(63, 54; 2) (63, 51; 2) 0.38 0.88 0
(63, 48; 3) (63, 45; 2) 0.7 1.1 0.44
(63, 49; 3) (63, 45; 2) 0.75 1.19 0.57

GF (28)
(255, 243; 2) (255, 239; 2) 0.29 0.68 0
(255, 235; 3) (255, 231; 3) 0.45 0.75 0.36
(255, 237; 3) (255, 231; 3) 0.47 0.87 0.48

GF (29) (511, 490; 3) (511, 484; 3) 0.4 0.71 0.3

GF (210)
(1023, 1008; 2) (1023, 1003; 2) 0.19 0.49 0.82
(1023, 998; 3) (1023, 998; 3) 0.28 0.9 0
(1023, 1001; 3) (1023, 998; 3) 0.25 0.97 0.1

1 The performance gain as compared with corresponding hard BCH decoder.
2 The performance gain closer to corresponding Shannon limit in contrast to corresponding hard BCH decoder.
3 The performance gain closer to corresponding Shannon limit in contrast to corresponding proposed soft BCH decoder.

code rate in the BPSK modulator [61]. Notice that codes with higher code rate have smaller

gap code to the Shannon limit. Accordingly, the performances of our soft BCH-Like decoders

are closer to Shannon limit as compared to the corresponding hard and soft BCH decoders.

TABLE 3.2 summarizes the performance gains of BCH-Like codes over GF (26) ∼ GF (210).

Notice that these three performance gains achieved by the soft BCH-Like decoder are pro-

vided while the corresponding hard BCH decoders and proposed soft BCH decoders are

compared respectively. In contrast to hard BCH decoders, the performances of our soft

BCH-Like (63, 49; 3) and (255, 237; 3) decoders are 1.2 dB and 0.9 dB closer to Shannon

limit respectively. Even compared with the proposed soft BCH decoders, our soft BCH-Like

(63, 49; 3) and (255, 237; 3) decoders achieve 0.5 dB and 0.6 dB performance gain closer to

Shannon limit.

3.4 Design of EM-Type Soft Decoders

As mentioned in Section 3.1 ∼ Section 3.3, the proposed soft decoders include three major

steps. The syndrome calculator and error locator evaluator architectures are designed to deal

with serial input. Following are the efficient architectures of different EMS. The architecture

comparison between the hard BCH decoder and the proposed soft BCH decoders is discussed

in the end of this section as well.

66

Figure 3.10: Syndrome calculator architecture.

3.4.1 Syndrome Calculator

The syndrome calculator generates the syndrome polynomial S(x) from the received polyno-

mial R(x). Fig. 3.10 shows totally t syndrome cells composed of constant multipliers, adders

and registers because only odd syndromes will be calculated for the efficient implementation.

The difference between the syndrome calculator of the proposed soft BCH and BCH-Like

decoders is the last syndrome cell, Sρ. For soft BCH decoder, Sρ will be replaced by S2t−1

with the constant multiplier α2t−1. Receiving data from RN−1 to R0, the i-th syndrome cell

can be formulated as

Si = R(αi)

= (((RN−1α
i+RN−2)α

i+RN−3)α
i+· · ·)αi+R0 (3.10)

Totally N cycles are required to receive and calculate all data for a BCH codeword.

At each cycle, the partial result is stored in the register as partial syndrome value, which

is multiplied with αi and then accumulated with the received data. Once all the data is

received, the accumulated value is the i-th syndrome value. Notice that the input of the soft

decoder is its reliability value, and RN−j is the inverse of the j-th input sign bit.

3.4.2 Error Locator Evaluator

The proposed error locator evaluator shown in Fig. 3.11 classifies the soft inputs for choosing

2t least reliable inputs according to the candidate reliabilities, Rl1 , Rl2 , . . . , Rl2t
. Their corre-

sponding error locators βli and error locations li are also calculated and stored in registers as

67

l l l

l l l

α-1

1 2 2t

l l l

1 2 2t

1 2 2t

1 2 2t

1 2 2t

Figure 3.11: Error locator evaluator architecture.

soon as Rli is chosen. The proposed error locator evaluator architecture includes three major

parts: the reliability part, the error locator part and the error location part. The reliability

part stores 2t candidate reliabilities Rl1 ∼ Rl2t
from 1st stage to 2t-th stage. The values

stored in the reliability part are compared with soft inputs to generate the select signals

SELi for controlling the multiplexers. In the i-th stage, if the input is smaller than Rli−1
,

the i-th stage value is updated with (i− 1)-th stage value. If the input is greater than Rli−1

and smaller than Rli , the i-th stage value is updated with the input value. Otherwise, the

i-th stage value holds its current value.

68

The error locator part constructs B. The input data is received from RN−1 to R0 serially,

and the error locator of the li-th location is αli . Accordingly, the error locator can be

computed by multiplying α−1 with register REG, which stores the error locator of previous

location. The error locator part uses a constant multiplier to calculate the error locator of

each input. Notice that αN−1 is the initial value of register REG. The error location part

utilizes a counter to compute the corresponding error location li of each Rli to form the

error location set L. The least reliable bits, instead of the entire codeword, are handled by

the proposed decoding method and the possible error locations are only searched in the L.

Hence, Chien search procedure is no longer required and lots of redundant decoding latencies

can be eliminated.

3.4.3 Error Magnitude Solver

In Section 3.1 ∼ Section 3.3, we have proposed 4 type EMS: H-EMS, BP-EMS, CEMS and

M-CEMS. The H-EMS and BP-EMS are proposed for low complexity EM-type soft BCH

decoders, where H-EMS is more suitable for smaller t applications while BP-EMS is adequate

for larger t applications.

Based on H-EMS algorithm, Fig. 3.12 illustrates the proposed H-EMS architecture to

evaluate ∆odd = Bodd × Γ + Sodd while given Sodd and B. There are 2t2 registers used to

store all entries in Bodd matrix. The register values of the i-th column forms a geometric

progression with the common ratio β2
li
. In the i-th column, the initial values of the top

registers is set as βli so that the output of the squarer will always be β2
li
. Also, iteratively

multiplied by β2
li
, the bottom register with initial values βli as well generates β2j+1

li
for j =

0 ∼ t-1. Each register, except for the top register, iteratively updates upper register with

the generated value. Hence, Bodd matrix is calculated with totally only 2t multipliers and

squarers in t-1 cycles and is stored in the registers. The registers will hold their values in

matrix multiplication procedure.

Matrix multiplication is evaluated in the following 22t cycles. By counting Γ value, a

heuristic search for all binary combinations can be completed. The Γ block in Fig. ?? is

69

represented as a counter to generate a new Γ iteratively. At each iteration, each βj
li

value

will be calculated with γi, and the solver verifies whether ∆odd becomes a zero vector or not.

A successful decoding is completed when Γ satisfies the verification.

On the other hand, the proposed BP-EMS has division, multiplication and addition oper-

ations from BP-EMS algorithm. To minimize the hardware complexity with only one divider,

one multiplier and several adders simultaneously, the operations in BP-EMS algorithm are

coped with sequentially, and take 4t2 − 2t, 2t2 − t, 2t cycles for Step 1 ∼ Step 3 respectively.

The Step 4, binary sequence check of S, is executed as soon as each Si value has been fully

updated. Notice that the multiplier can be shared if the divider can be decomposed into

an inversion unit and a multiplier. Thus, as shown in Fig. 3.13, BP-EMS only contains 1

multiplier, 1 inversion unit, 3 adders and a control logic. The control logic determines the

1

2t-1

&

&

&

2t-1

l1

1

3

2t-1

3

l1

S
Q
U
A
R
E
R

&

&

&

&

S
Q
U
A
R
E
R

&

&

&

&

S
Q
U
A
R
E
R

& 3

2t-3

2t-3

2t-3

l1

l1 l2 l2t

γ
2t

3

l2t

3

l2

2t-3

l2

2t-3

l2t

2t-1

l2

2t-1

l2t

γ
2

γ
1

Figure 3.12: Heuristic error magnitude solver architecture

70

i+1ii-1

l

k

l

l

i i+1

SQUARE
MSB

LSB

INVERSION

MSB

LSB

SQUARE

i l i-1

i l l

k l
i

i-k

k

i-kk

k

k

Figure 3.13: Björck-Pereyra error magnitude solver architecture.

computation order of the Si and βli , and the computation results will be used to update

each Si value. The inversion unit in the proposed architecture is carried out in compos-

ite field because the finite field inversion over GF (2m) is very complex with table-lookup

implementation for large m.

Composite field [62] is viewed as an extension field of GF (2k) while given m = kr. The

finite field GF (2m) can be constructed by coefficients from the subfield GF (2k). Operating

in subfield leads to lower implementation complexity and better computation efficiency. For

example, every element in GF (216) can be represented by bx+ c and inversion of bx+ c can

be derived as (3.11) with the polynomial x2 + x+ ψ [62]

1

bx+ c
= (b2ψ + bc+ c2)−1(bx+ b+ c). (3.11)

The composite field inversion units over GF (214) and GF (216) are only 1.1K and 2.1K gate-

count in CMOS 90nm technology respectively while the inversion units using Look Up Table

method are about 41.5K and 186K gate-count.

Fig. 3.14 illustrates a multi-mode BP-EMS architecture to support 21 modes in DVB-S2

system, including normal and short frames. Except an additional inversion unit for GF (214),

71

i+1ii-1k

14

i i+1

i l i-1

i l l

k l

i-kk

k

k

lkl
i

li-k

16

Figure 3.14: Multi-mode Björck-Pereyra error magnitude solver architecture for DVB-S2
system.

most components can be shared with a single mode design, leading to only few control logics

requirement. Two composite field inversion units are provided for supporting GF (214) and

GF (216) operations. Also, the partial product and modular operation in the multiplier design

over GF (214) and GF (216) are shared such that one reconfigurable multiplier can be used in

both normal and short frames.

For the high performance EM-type soft BCH decoders, CEMS is proposed. Based on

CEMS algorithm, Fig. 3.15 illustrates the CEMS architecture to evaluate ∆odd = Bodd×Γ+

Sodd with Sodd and B. The solid lines are data flow of the Bodd matrix construction procedure

while the dash lines are the data flow of the geometrical progression check procedure. There

are 2t2 registers for storing all entries in Bodd matrix. In the i-th column, the initial value

of the first row register is set as βli so that the output of the squarer will always be β2
li
. The

t-th row register is also initially set as βli and iteratively multiplied by β2
li

to generate β2j+1
li

for operating cycles j = 1 ∼ (t − 1). Consequently, the register values of the i-th column

form a geometric progression with the common ratio β2
li

after t− 1 cycles.

The Bodd matrix is calculated with totally only 2t multipliers and 2t squarers in t − 1

72

REG &

&

&

β
2t-1

l1

γ
1

β
3

l1

REG

REG

S
Q
U
A
R
E
R

REG &

REG &

&

®

REG

REG &

REG &

&

®

REG

REG &

β
2t-3

l1

β
l1

βl2
β
lt-1

γ
2

γ
t-1

β
3

β
3

l2

β
2t-3

β
2t-1

l2
β
2t-1

MUX

MUX

MUX

S
Q
U
A
R
E
R

MUX

S
Q
U
A
R
E
R

MUX

MUX

REG &

&

®

REG

REG &

β
lt

γ
t

β
3

lt

β
2t-3

lt

β
2t-1

lt

S
Q
U
A
R
E
R

REG &

&

®

REG

REG &

β
l2t

γ
2t

β
3

l2t

β
2t-3

l2t

β
2t-1

l2t

S
Q
U
A
R
E
R

S1

S2t-1

δ1

δ3

δ2t-1

lmiss

S3

δ2t-3

S2t-3

LUT

δ2t-1

δ1 δ3 δ2t-3

δ1

β
2t-3

l2

lt-1

lt-1

lt-1

Figure 3.15: Compensation error magnitude solver.

cycles. These registers will hold their values in matrix multiplication procedure: ∆odd =

Bodd × Γ + Sodd.

Both matrix multiplication and geometrical progression check are evaluated simultane-

ously in the following 22t cycles. A heuristic search for all binary combinations is completed

iteratively to count Γ value from 0 to 22t−1. At each iteration, the βj
li

value stored in the

register will be operated with γi to generate the modified discrepancy vector ∆odd. Then

the solver verifies whether ∆odd is a geometrical progression or not. In the geometrical pro-

gression check procedure, δ1 passes through a squarer to generate δ2
1, which is multiplied

with each δi value for being compared with δi+2. If ∆odd is a geometrical progression, then

δi×δ
2
1 = δi+2 for i = 1, 3, . . . , 2t−3. The CEMS applies t-1 multipliers and 1 squarer to check

this relation, and employs a look up table (LUT) to obtain lmiss according to δ1 = αlmiss .

However, the geometrical progression check is processed after the Bodd matrix construc-

tion, the squarer and multipliers can be shared, leading to totally only 2t multipliers and 2t

squarers in the proposed CEMS architecture. The critical path of the matrix multiplication

procedure is (Tand + 2t× Txor) for generating ∆odd while that of the geometrical progression

73

REG &

&

&

β
2t-3

l1

γ
1

β
3

l1

REG

REG

S
Q
U
A
R
E
R

REG &

REG &

&

®

REG

REG &

REG &

&

®

REG

REG &

β
2t-5

l1

β
l1

βl2
β
lt-2

γ
2

γ
t-1

β
3

β
3

l2

β
2t-5

β
2t-3

l2
β
2t-3

MUX

MUX

MUX

S
Q
U
A
R
E
R

MUX

S
Q
U
A
R
E
R

MUX

MUX

REG &

&

®

REG

REG &

β
lt-1

γ
t

β
3

lt-1

β
2t-5

lt-1

β
2t-3

lt-1

S
Q
U
A
R
E
R

REG &

&

®

REG

REG &

β
l2t

γ
2t

β
3

l2t

β
2t-5

l2t

β
2t-3

l2t

S
Q
U
A
R
E
R

S1

S2t-3

δ1

δ3

δ2t-3

lmiss

S3

δ2t-5

S2t-5

LUT

δ2t-3
δ1 δ3 δ2t-5

δ1

β
2t-5

l2

lt-2

lt-2

lt-2

® ® ®

β
ρ

l2
β
ρ

®

β
ρ

lt-1

®

β
ρ

l2t
Sρ

lt-2

δρ

δ1β
l1

β
l2

β
lt-2

β
lt-1

β
l2t

β
ρ

l1

Figure 3.16: Modified compensation error magnitude solver.

check procedure is (Txor +2Tmux +Tsq +Tmult) for using δ1 to verify the relation δi×δ
2
1 = δi+2

with i = 1, 3, . . . , 2t−3. Notice that Tand, Txor, Tmux, Tsq, and Tmult represent the critical path

of AND gate, XOR gate, multiplexer, squarer, and multiplier respectively. Consequently,

the critical path of CEMS is (Tand + (2t+ 1) × Txor + 2 × Tmux + Tsq + Tmult).

In the last place, M-CEMS is proposed or the high performance EM-type soft BCH-Like

decoders. With S ′
odd and B, the M-CEMS architecture shown in Fig. 3.16 is employed to

evaluate ∆′
odd = B′

odd
× Γ + S ′

odd based on algorithm B. The solid lines are data flow of the

B′
odd

matrix construction procedure while the dash lines are the data flow of the geometrical

progression check procedure. The major difference between CEMS and M-CEMS is the

74

requirement of the ρ-TIMER, which makes values become ρ times. The architecture design

of a ρ-TIMER depends on the coefficient ρ. For a low complexity design, a ρ-TIMER can

be decomposed into several smaller TIMERs with corresponding ρ as power of 2, which

have similar hardware complexity as a constant multiplier under Galois field operations. For

example, a 85-TIMER can be constructed with a 4-TIMER and a 16-TIMER according to 85

= (1+4)*(1+16). In the matrix construction procedure, the (t−1)-th row register in the i-th

column replaces the t-th row register to generate β2j+1
li

for operating cycles j = 1 ∼ (t− 2).

Nevertheless, the 2t register values in the t-th row are ρ times that in the 1st row and

requires 2t cycles to be computed with only one ρ-TIMER. Hence, B′
odd

matrix, in total, is

calculated with 2t multipliers, 2t squarers and a ρ-TIMER in 2t cycles.

The matrix multiplication and geometrical progression check procedures are evaluated

in the following 22t cycles. A heuristic search of all binary combinations of Γ is completed.

The geometrical progression check block verifies the relations that are δ′i × δ′21 = δ′i+2 for i

= 1, 3, . . . , 2t − 5 and δ′ρ1 = δ′ρ. The hardware between B′
odd

matrix construction and the

geometrical progression check can be shared since they operate separately. As a result, in

total, the M-CMES utilize 2t multipliers, 2t squarers and a ρ-TIMER. The critical path of

the matrix multiplication procedure is (Tand + 2t × Txor) for generating ∆′
odd while that of

the geometrical progression check procedure is (Txor + (2log2(2t+ 1))× Tmux + Tρ−timer) for

using δ′1 to verify the relation δ′ρ1 = δ′ρ. Notice that the critical path of one (2t + 1)-to-1

multiplexer and one 1-to-(2t + 1) demultiplexer is assumed as (2log2(2t+ 1)) × Tmux and

the critical path of ρ-TIMER is represented as Tρ−timer. Consequently, the critical path of

M-CEMS is (Tand + (2t+ 1) × Txor + (2log2(2t+ 1)) × Tmux + Tρ−timer).

3.4.4 Architecture Comparison

For the low complexity EM-type soft BCH decoders, the architectures of a hard BCH decoder

and two proposed soft BCH decoders are compared in TABLE 3.3. The two proposed soft

BCH decoders are designed with H-EMS and BP-EMS respectively while hard BCH decoder

is designed with inversionless Berlekamp-Massey (iBM) algorithm [63]. As compared with

75

Table 3.3: Comparison Table for an (N,K, t) BCH Code

Hard BCH Soft BCH * Soft BCH **

(iBM) (H-EMS) (BP-EMS)

Register 5t+ 2 2t2 + 5t 8t
Multiplier 3t+ 3 2t 1
Constant Multiplier 3t t+ 1 2t+ 1
Squarer 0 2t 0
Inversion Unit 0 0 1
Latency 2N + 2t N + 22t + t− 1 N + 6t2 − t
* In the special case : t = 1, the number of multipliers and squarers

is 0.
If t is very small, like 1 or 2, we can check all combinations of
γci over GF (2) at one cycle.

** Registers can be inserted into composite field inversion to reduce
the critical path with the doubled latency in EMS step.

the soft BCH decoder with BP-EMS, only half syndromes are required for soft BCH decoder

with H-EMS. In H-EMS, 2t multipliers and 2t squarers are used to construct the Bodd.

Notice that, if the error correcting capabilities is equal to 1, the number of multipliers and

squarers is 0 because only S1 will be computed. The first row registers in the H-EMS can

be shared with registers of the error locator part in error locator evaluator so that totally

2t2−2t registers are used in this part. In BP-EMS, only 1 multiplier and 1 inversion unit are

employed to evaluate Γ. Both the soft decoders take n clock cycles for syndrome calculator

and error locator evaluator simultaneously and H-EMS and BP-EMS take 22t + t − 1 and

6t2 − t clock cycles respectively.

TABLE 3.4 illustrates the number of each component at t = 1, 2, and 12. Notice that the

synthesis results in CMOS 90nm technology shows that the complexity ratio over GF (216)

among 16-bit register, multiplier, constant multiplier, squarer and inversion unit is 1 : 10 :

3 : 1.5 : 25. With this normalized ratio, Fig. 3.17 shows the normalized complexity analysis

among hard and soft decoders. In large finite field operations, a multiplier is much more

complicated than a register. Due to fewer number of multipliers, the proposed soft BCH

decoders with more registers have much lower hardware complexity as compared to the hard

BCH decoder with iBM algorithm under different error correcting capabilities t. Because of

non-linear increment of the number of registers, the complexity of soft BCH decoder with

76

Table 3.4: Comparison Table under Different Correct Ability

Hard BCH Soft BCH Soft BCH Hard BCH Soft BCH Soft BCH Hard BCH Soft BCH Soft BCH
(iBM) (H-EMS) (BP-EMS) (iBM) (H-EMS) (BP-EMS) (iBM) (H-EMS) (BP-EMS)
t = 1 t = 1 t = 1 t = 2 t = 2 t = 2 t = 12 t = 12 t = 12

Register 7 7 8 12 18 16 62 348 96
Multiplier 6 0 1 9 4 1 39 24 1
Constant

3 2 3 6 3 5 36 13 25
Multiplier
Squarer 0 0 0 0 4 0 0 24 0
Inversion Unit 0 0 1 0 0 1 0 0 1

Normalized Complexity *

76 13 52 120 73 66 560 663 206
(number of register)

Latency 2N+2 N+4 N+5 2N+4 N+17 N+22 2N+24 N + 224 + 11 N+852
* According to the synthesis results in CMOS 90nm technology, the complexity ratio over GF (216) among Register, Multiplier, Constant Multiplier,

Squarer and Inversion Unit is 1 : 10 : 3 : 1.5 : 25

1 2 3 4 5 6 7 8 9 10
0

100

200

300

400

500

600

Error Correcting : t

N
or

m
al

iz
ed

 C
om

pl
ex

ity

HARD BCH with iBM
SOFT BCH with H−EMS
SOFT BCH with BP−EMS

Figure 3.17: Normalized hardware complexity analysis of BCH decoders over GF (216).

H-EMS is less than that of hard BCH decoder only if t is smaller than 8 as shown in Fig. 3.17.

H-EMS is more suitable to be applied in small t application, like BCH (762, 752, 1) decoder

defined in DMB-T system. In addition, the soft BCH decoder with BP-EMS can always

provide lower complexity than hard BCH decoder. In this paper, we applied BP-EMS in the

proposed design according to the high error correcting capability requirement. The proposed

soft decoders, searching error locations at error locator evaluator procedure, lead to a lot of

latency saving. Consequentially, the proposed soft decoders provide both higher throughput

and much lower hardware complexity.

For further improvement on latency, H-EMS could complete all the computations in one

cycle with less hardware overhead for small t. In addition, BP-EMS could insert registers

into composite field inversion for operation frequency improvement. Although the latency

77

Table 3.5: Comparison Table for an (N,K; t) BCH Code

(N,K; t) (N,K; t) (N,K; t) (N,K; t) (255, 239; 2) (255, 239; 2) (255, 239; 2) (255, 243; 2)
Hard BCH Hard BCH Soft BCH Soft BCH-Like Hard BCH Hard BCH Soft BCH Soft BCH-Like
with iBM with SiBM with CEMS with M-CEMS with iBM with SiBM with CEMS with M-CEMS

Register 5t+ 2 7t+ 2 2t2 + 5t 2t2 + 5t 12 16 18 18
Mux t+ 1 2t 8t− 2 10t− 2 3 4 14 18

Mult 3t+ 3 4t 2t 2t * 9 8 4 0
Constant

3t 3t t+ 1 t+ 1 6 6 3 3
Mult

Squarer 0 0 2t 2t * 0 0 4 0
ρ-Timer 0 0 0 1 0 0 0 1

LUT 0 0 1 1 0 0 1 1
RAM (bit) N N N N 255 255 255 255
Latency 2N + 2t 2N + t N + 22t + t− 1 N + 22t + 2t 514 512 272 275

Normalized **

54t+ 42 72t+ 5
5t2 + 49t 5t2 + 51t

150 149 144.5 133.5
Complexity +26.5 +56.5*

* In the special case: t = 2, the number of multiplier and squarer is 0.
** The normalized complexity is in terms of number of 8-bit 2-to-1 multiplexer. According to the synthesis results in CMOS 90 nm

technology, the complexity ratio over GF (28) among a 8-bit 2-to-1 multiplexer, a squarer, a constant multiplier, a 8-bit register, a
multiplier, a LUT and a 51-TIMER is 1 : 1.5 : 1.5 : 2.5 : 12 : 27 : 30.

in EMS step will be doubled, it is only few percentage of overall decoding procedure for long

block length BCH decoders, resulting in that throughputs of the soft BCH decoder can be

nearly doubled.

For the high performance EM-type soft BCH decoders, the architectures of hard BCH de-

coders and the proposed soft decoders are compared in TABLE 3.5. The proposed soft BCH

and BCH-Like decoders are designed with the CEMS approach and the M-CEMS approach

respectively whereas the hard BCH decoders are designed with inversionless Berlekamp-

Massey (iBM) algorithm [63] and simplified iBM (SiBM) algorithm [64].

Both the soft BCH and BCH-Like decoders are designed with 2t multipliers, 2t squarers

and 1 LUT. Nevertheless, an additional ρ-TIMER is applied in the M-CEMS. The registers

in the first row of Bodd and B′
odd

matrice in the CMES and the M-CMES are applied

to store the error locator set B, which is also stored in the registers of the error locator

evaluator. Therefore, these registers can be shared, resulting in totally 2t2 − 2t registers

used in the CEMS and the M-CEMS. Note that in the special case: t = 2, the M-CEMS

can be constructed without any multiplier and squarer since there are only two syndrome

values: S1 and Sρ. In addition, the syndrome calculator and the error locator evaluator take

N clock cycles simultaneously in the decoding process and the CEMS and the M-CEMS take

22t + t− 1 and 22t + 2t clock cycles respectively.

In finite field operations, a multiplier is more complex than a register and a multiplexer.

78

Due to fewer multipliers, the proposed soft BCH decoder with more registers and multiplexers

as well as an additional LUT has similar hardware complexity while compared to the hard

BCH decoders with iBM and SiBM algorithms. The proposed soft BCH-Like decoder has a

little more hardware complexity due to an extra TIMER, which contains 2 or more multipliers

dependent on the coefficient ρ. According to the synthesis results in CMOS 90 nm technology,

the complexity ratio over GF (28) among each 8-bit 2-to-1 multiplexer, squarer, constant

multiplier, 8-bit register, multiplier, LUT and 51-TIMER is 1 : 1.5 : 1.5 : 2.5 : 12 :

27 : 30. The normalized complexity of the soft BCH and BCH-Like decoders is around

(5t2 + 49t + 26.5) and (5t2 + 51t + 56.5) 8-bit 2-to-1 multiplexers while that of the hard

BCH decoder with iBM/SiBM algorithms is (54t + 42)/(72t + 5) 8-bit 2-to-1 multiplexers

respectively. For the high code rate BCH and BCH-Like codes, the error correcting ability t is

small, implying that the proposed soft decoders can provide similar hardware complexity as

hard decoders even though the complexity of hard and soft decoders is linear and quadratic

to t respectively. For example, the normalized complexity of the soft BCH (255, 239; 2) and

BCH-Like (255, 243; 2) decoders is around 144.5 and 133.5 8-bit 2-to-1 multiplexers while

that of the hard BCH (255, 239; 2) decoder with iBM/SiBM algorithms is 150/149 8-bit

2-to-1 multiplexers respectively.Moreover, the proposed soft decoders have only 53% latency

compared to that from the tranditional hard BCH decoders by searching for error locations

at error locator evaluator procedure.

79

Chapter 4

Chase Type Soft Decoders

Since the EM-type methods only can provide better error correcting performance while

applied in small error correcting codes or with reliable information, this chapter discusses

the Chase-type soft decoding algorithms to provide more general low complexity decoding

methods. Recall the Chased algorithm we have been introduced in Section 2.4.2. A list of

2η candidate sequences are formed according to η LRPs. After the error only hard decoders

solving each candidate sequence, a list of 2η candidate codewords are generated. Finally, a

most likely codeword will be selected from the list by the decision making unit according to

the Euclidean distance calculations between the received input values and each candidate

codeword. For the practical implementation, the decision making unit is too complex because

evaluating the Euclidean distance between the received data and a candidate codeword

requires N multiplication and 1 square root operations.

In this chapter, two Chase-type soft decoding algorithms are presented for both BCH

and RS codes. Notice that, the major difference between BCH codes decoding and RS codes

decoding is that the error value evaluation is required in the latter one. For the convenience

of discussion, the following sections describe these algorithms with RS codes. In Section 4.1,

instead of utilizing 2η hard decoders to decode all candidate sequences simultaneously, a

decision-eased soft decoding scheme is provided to process Chase algorithm with one hard

decoder module, and to determine the most likely codeword with a simplified decision making

unit. In order to eliminate the decision making unit, a decision-confined soft decoding

algorithm is proposed in Section 4.2 by confining the degree of error location polynomial

generated from the key equation solver. At the end of Chapter 4, Section 4.3 describes the

Chase-type decoder designs.

80

4.1 Decision-Eased Approach

In the Chase algorithm, the final step is exploited a decision making unit to select the

candidate codeword with the smallest Euclidean distance as the decoded codeword, where the

Euclidean distance between the received data and i-th candidate codeword y(i) is calculated

as

d(i) =

√
(y

(i)
0 − r0)2 + (y

(i)
1 − r1)2 + · · · (y

(i)
N−1 − rN−1)2. (4.1)

For the long length codeword, however, the Euclidean distance calculation requires large

number of multiplication and square root calculations, which are too complex for practical

implementation. In this section, a decision-eased soft decoding algorithm is proposed to ease

the computations of decision making procedure, leading to hardware reduction.

Figure 4.1 shows the proposed soft decision-eased decoder that includes seven major

steps: syndrome calculator, reliability evaluator, syndrome updater, key equation solver,

Chien search, error value evaluator, and simplified decision making unit. The received data is

fed into the syndrome calculator for calculating the syndrome polynomial S(x). In the mean-

time, the reliability evaluator determines η least reliable positions (LRPs) L = [l1, l2, . . . , lη]

according to the received data. The corresponding error values: E ′ = [e′1, e
′
2, . . . , e

′
η] are also

computed. Instead of evaluating of 2η syndrome polynomials with (2.36) for 2η candidate

sequences, a syndrome updater is applied to obtain the i-th syndrome polynomial S(i)(x)

from the syndrome polynomial S(x). There are only η uncommon points for all the can-

didate sequences; therefore, the i-th candidate sequence can be constructed by adding the

error pattern e
(i)
f (x) induced by the bit flipping procedure to the received data. The e

(i)
f (x)

is of the form:

e
(i)
f (x) = a

(i)
1 e

′

1x
l1 + a

(i)
2 e

′

2x
l2 + · · · + a(i)

η e
′

ηx
lη , (4.2)

where a
(i)
j ∈ GF (2) for i = 0 ∼ 2η − 1 and j = 1 ∼ η. The i-th syndrome polynomial can be

derived as

S(i)(x) =
2t∑

j=1

(Sj + e
(i)
f (αj))xj−1. (4.3)

81

(i)

(i)
(i)

Figure 4.1: Decision-eased Chase-type soft decoding process.

000

001 011

010

110

111101

100

0: Unchanged

1: Bit-Flipping

Figure 4.2: Gray code permutation.

To further improve the complexity, S(i)(x) can be obtained from the previous syndrome

polynomial S(i−1)(x). With gray code based bit flipping order as shown in Fig. 4.2, there is

only one different bit between successive two candidate sequences. For example, if the LRPs

are at 3rd, 50th and 67th bits of the received data, then a sequence ”011” in the Fig. 4.2

means to flip the 50th and 67th bits and maintain to the 3rd bit. In the general case, both

the 50th and 67th bits will be flipped; however, only the 50th bit is flipped in this design

since sequence ”011” is permuted after sequence ”001”, indicating that the 67th bit has been

82

5 5.5 6 6.5 7 7.5

10
−5

10
−4

10
−3

10
−2

Eb/No(db)

B
E

R HARD
Chase η = 3, Euclidean
Chase η = 4, Euclidean
Chase η = 5, Euclidean
Chase η = 3, Hamming
Chase η = 4, Hamming
Chase η = 5, Hamming

Figure 4.3: Simulation results of decision-eased algorithm for RS (224, 216; 4) codes.

flipped. Hence, S(i)(x) can be simplified as

S(i)(x) =
2t∑

j=1

(S
(i−1)
j + e

′(i)
f (αj))xj−1, (4.4)

where e
′(i)
f (x) = e′κx

lκ is difference polynomial between e
(i−1)
f and e

(i)
f (x) and the only one

different bit is at lκ-th position. There is only one bit required to be flipped while the decoder

generates one candidate codeword, leading to the reduction of the multipliers. Accordingly,

the computations of the syndrome updater will be reduced.

After 2η syndrome polynomials are generated from syndrome updater, the key equation

solver, Chien search and error value evaluator are applied to form 2η candidate codewords.

Finally, the decision making unit selects the most possible one from the candidate list as

decoded codeword. In the decision making unit, however, all the Euclidean distances are

applied only for choosing the most likely codeword from the candidate list. Their exact

values are not demanded as long as their relations are still held, implying that the square

root calculation can be eliminated. Moreover, it can be found in Fig. 4.3 that the Chase

algorithm with Hamming distance calculation almost has no performance loss as compared

to the Chase algorithm with Euclidean distance calculation for RS (224, 216; 4) code with

η LRPs, where η = 3 ∼ 5. Hence, the Hamming distance calculation is utilized in the

proposed decoder for replacing the Euclidean distance calculation due to its much simpler

83

computations. In addition, the i-th candidate codeword Ĉ(i)(x) in the Chase algorithm can

be viewed as

Ĉ(i)(x) = R(x) + e(i)(x) + e
(i)
f (x), (4.5)

where e(i)(x) is the i-th estimated error pattern by decoding R(x)+e
(i)
f (x). Notice that from

(4.5),

Ĉ(i)(x) +R(x) = e(i)(x) + e
(i)
f (x). (4.6)

Therefore, we can computing the weight of e(i)(x) + e
(i)
f (x) instead of storing each candidate

codeword and directly calculating the Hamming distance between Ĉ(i)(x) and R(x), leading

to significantly reduced memory requirement. Also, in the decoding process, only the smallest

weight error pattern e(φ)(x)+e
(φ)
f (x) will be added with the received data R(x) for generating

the decoded codeword, where

φ = argmin{weight(e(i)(x) + e
(i)
f (x)) : i = 0 ∼ 2η − 1} (4.7)

This indicates that we do not have to store all the e(i)(x) + e
(i)
f (x) with i = 0 ∼ 2η − 1. The

details of the proposed decision-eased soft decoding algorithm is illustrated as follows:

Decision-Eased Chase-Type Algorithm

• Input:

The received sequence R(x) and the reliability of each bit.

• Initial conditions:

i = 0, γ = 0, γ′ = 0.

e′(x) = 0, emin(x) = ∞

• Step 1:

Evaluate η LRPs: L = [l1, l2, . . . , lη].

Evaluate the corresponding error values: E ′ = [e′1, e
′
2, . . . , e

′
η].

Calculate syndrome polynomial S(x).

84

• Step 2:

γ′ = γ

γ = i⊕ (i >> 1)

Find the only 1 different bit between γ and γ′: the κ-th bit

Evaluate the flipped error pattern: e′(x) = e′(x) ⊕ e′κx
lκ ;

• Step 3:

Update syndrome polynomial S(i)(x) =
2t∑

j=1

(S
(i−1)
j + e′κ(α

j×lκ))xj−1.

• Step 4:

Calculate Λi(x) from key equal solver with S(i)(x)

Evaluate error location and error value to obtain e(i)(x)

• Step 5:

e′′(x) = e′(x) ⊕ e(i)(x)

if (weight of e′′(x) < weight of emin(x))

emin(x) = e′′(x)

else

emin(x) = emin(x)

if(i = 2η − 1)

Go to Output

else

i = i+ 1

Go to Step 2

• Output:

The decoded codeword Ĉ(x) = R(x) ⊕ emin(x).

The η-bit γ and γ′ is the gray code representation of the values i and i− 1 respectively.

At each time, there will be only 1 different bit between γ and γ′: κ-th bit, implying that the

flipped error pattern e′(x) can be calculated by adding the previous flipped error pattern

85

with the error patten caused by the κ-th bit: e′κx
lκ . Then the estimated error pattern e(i)(x)

can be obtained by solving the updated syndrome polynomial S(i)(x). According to (4.6),

the Hamming distance between received data and candidate codeword is the same as the

weight of the summation of flipped error pattern e′(x) and estimated error pattern e(i)(x).

Hence, Step 5 verifies whether the stored error pattern has smallest weight or not at each

iteration. After 2η iterations, the decoded codeword can be constructed with smallest weight

error pattern: Ĉ(x) = R(x) ⊕ emin(x).

4.2 Decision-Confined Approach

Although the decision-eased method proposed in Section. 4.1 can decrease the complexity

of decision making unit, it still have to decode 2η the candidate sequence and select the

most possible one from the candidate list. This section will discuss the soft decoding meth-

ods which can provide similar error correcting performance with fewer number of decoded

candidate sequence and without a decision making unit for determining a most possible

codeword.

To reduce the number of decoded candidate sequence, a decision-free soft decoding al-

gorithm is proposed to decode without decision making unit. Instead of generating 2η the

candidate codewords and selecting one of them, the first successful decoded codeword is cho-

sen as output codeword. Following steps illustrate the details of the proposed decision-free

algorithm.

Decision-Free Chase-Type Algorithm

• Input:

The received sequence R(x) and the reliability of each bit.

• Initial conditions:

i = 0, γ = 0, γ′ = 0.

86

• Step 1:

Evaluate η LRPs: L = [l1, l2, . . . , lη].

Evaluate the corresponding error values: E ′ = [e′1, e
′
2, . . . , e

′
η].

Calculate syndrome polynomial S(x).

• Step 2:

γ′ = γ

γ = i⊕ (i >> 1)

Find the only 1 different bit between γ and γ′: the κ-th bit

• Step 3:

Update syndrome polynomial S(i)(x) =
2t∑

j=1

(S
(i−1)
j + e′κ(α

j×lκ))xj−1.

• Step 4:

Calculate Λ(i)(x) from key equal solver with S(i)(x)

• Step 5:

Evaluate error location and error value to obtain e(i)(x)

If (deg(Λ(i)(x)) = the number of roots found by the Chien search)

Go to Output

else if (i = 2η − 1)

Decoding Failed

else

i = i+ 1

Go to Step 2

• Output:

The decoded codeword Ĉ(x) = R(x) ⊕ e(i)(x).

Fig. 4.4 shows that the decision-free method almost has no performance loss with η = 3

and η = 4. for RS (255, 239; 8) codes. However, the Chien search and error value evaluator

87

5.5 6 6.5 7 7.5
10

−6

10
−4

10
−2

10
0

Eb/No(db)

C
E

R

HARD
Chase η = 3
Chase η = 4
Decision−Free η = 3
Decision−Free η = 4

Figure 4.4: Simulation results of decision-free algorithm for RS (255, 239; 8) codes.

Table 4.1: Analysis of degree of Λ(x) for RS (255, 239; 8) codes
Number of errors in R(x) 8 9 10 11 12 13 14

Percentage of deg(Λ(x)) = 8 99.5 99.5 99.5 99.5 99.5 99.5 99.5

have to been executed several times in decision-free method. The long decoding latency will

still result in complexity architecture in a decoder design.

TABLE 4.1 shows the analysis of degree of Λ(x) for RS (255, 239; 8) codes, where each

value is generated under 105 codewords simulation. From our simulation results, there is over

99.5% probability for Chien search finding less than t roots when a received data has more

than t errors. This indicates that Λ(x) with degree t has more probability to result in failed

decoding than Λ(x) with other degree does. According to this characteristic, we propose

a decision-confined algorithm to enhance the decoding efficiency by confining the degree of

Λ(x). The proposed algorithm only allows the Λ(x) with degree less than t to be sent into

Chien search and error value evaluator, which avoids that the decoder finishes the Chien

search procedure but the decoding is failed. The details of the proposed decision-confined

soft decoding algorithm is illustrated as follows:

Decision-Confined Chase-Type Algorithm

• Input:

The received sequence R(x) and the reliability of each bit.

88

• Initial conditions:

i = 1, γ = 0, γ′ = 0.

• Step 1:

Evaluate η LRPs: L = [l1, l2, . . . , lη].

Evaluate the corresponding error values: E ′ = [e′1, e
′
2, . . . , e

′
η].

Calculate syndrome polynomial S(x).

• Step 2:

γ′ = γ

γ = i⊕ (i >> 1)

Find the only 1 different bit between γ and γ′: the κ-th bit

• Step 3:

Update syndrome polynomial S(i)(x) =
2t∑

j=1

(S
(i−1)
j + e′κ(α

j×lκ))xj−1.

• Step 4:

Calculate Λ(i)(x) from key equal solver with S(i)(x)

If (deg(Λ(i)(x)) < t)

Go to Step 5

else if (i = 2η − 1 and deg(Λ(i)(x)) = t)

Go to Step 6

else

i = i+ 1

Go to Step 2

• Step 5:

Calculate Λ(x) from key equal solver with S(x)

• Step 6:

Evaluate error location and error value to obtain e(x)

89

(i) (i)

deg
(i)

t

Figure 4.5: Decision-confined Chase-type soft decoding process

• Output:

The decoded codeword Ĉ(x) = R(x) ⊕ e(x).

In summary, the decoding procedure contains six major steps: syndrome calculator,

reliability evaluator, syndrome updater, key equation solver, Chien search and error value

evaluator as shown in Fig. 4.5. With the received soft information, the syndrome calculator

calculates the syndrome polynomial S(x). In the meantime, the reliability evaluator deter-

mines η LRPs L = [l1, l2, . . . , lη] and corresponding error values: E ′ = [e′1, e
′
2, . . . , e

′
η]. The

candidate sequences are generated according to Gray code based bit flipping method, leading

to only one bit of these LRPs flipped between each two successive candidate. As a result,

S(i)(x) for the i-th candidate sequence can be formed with the method in Step 2. Then

the corresponding error location polynomial Λ(i)(x) is calculated by the key equation solver.

Only if the degree of Λ(i)(x) is less than t, the Chien search and error value evaluator start

to evaluate the error locations and error values. Otherwise, the decoder will generate a new

syndrome polynomial with another bit flipping sequence. Notice that, if all the generated

error location polynomials have degree of t, the proposed decoder will decode received data

as a hard RS decoder to guarantee the error correction capability .

Fig. 4.6 shows the RS (255, 239; 8) simulation results for our proposed decision-confined

algorithm with η = 3 ∼ 5 under BPSK modulation and AWGN channel. Our proposal with

η = 5 can provide 0.4 dB coding gain at 10−4 codeword error rate (CER) over the hard RS

90

5.5 6 6.5 7 7.5
10

−6

10
−4

10
−2

10
0

Eb/No(db)

C
E

R HARD
Chase η = 3
Decision−Confined η = 3
Decision−Confined η = 4
Decision−Confined η = 5
GMD
KV (m

max
=4)

Figure 4.6: Simulation results of decision-confined algorithm for RS (255, 239; 8) codes.

Table 4.2: Average computation times for RS (255, 239; 8) codes
Decision-Confined Algorithm Chase Algorithm

η = 5 η = 3
Eb/N0 6.0 6.5 7.0 6.0 6.5 7.0

Syndrom Calculator 5.22 1.30 1.07 8 8 8
Key Equation Solver 5.22 1.30 1.07 8 8 8

Chien Search 1 1 1 8 8 8
Error Value Evaluator 1 1 1 8 8 8

decoder, and also outperforms than GMD and KV algorithms. As compared with Chase

algorithm with η = 3, our proposed method can achieve similar error correcting ability

with η = 5. Notice that, the average computation complexity of our proposal is much less

than Chase algorithm although it requires more LRPs to achieve similar error correcting

performance. As shown in TABLE 4.2, if our approach with η = 5 is applied at Eb/N0 = 7,

the average computation of syndrome calculator, key equation solver, Chien search and error

value evaluator are 1.07, 1.07, 1 and 1 times respectively. However, the Chase algorithm with

η = 3 executes 23 calculation for all the decoding blocks.

91

4.3 Design of Chase-Type Soft Decoders

4.3.1 Reliability Evaluator

For RS (224, 216; 4) and (255, 239; 8) codes over GF (28), a symbol consisting of 8 bit

is fed into the reliability evaluator each cycle for choosing η LRPs. Hence, the reliability

evaluator has to compare 8+η values and determine η least reliability values. To reduce the

computation time as well as the critical path, the merge sort concept introduced in [65] is

exploited for designing the reliability evaluator with 3-stage pipeline architecture as shown

in Fig. 4.7, where the architecture of merge sorter is shown in Fig. 4.8. The first and second

Merge Sort 2 Merge Sort 2 Merge Sort 2 Merge Sort 2

Merge Sort 4 Merge Sort 4

Merge Sort 8 η LRPs

4 4

2 2 2 2

Merge Sort 2η

IN1 IN2 IN3 IN4 IN5 IN6 IN7 IN8

REG REG

4 4

REG REG

η

η η

η

Figure 4.7: Reliability evaluator.

(a) (b)

Figure 4.8: Merge Sorter. (a) Merge Sort2. (b) Merge Sort4.

92

stages calculate the η LRPs of the inputted 8 bits according to the divide-and-conquer

concept. The third stage decides the new temporary LRPs among the output of the second

stage and the temporary LRPs from previous calculation.

4.3.2 Syndrome Updater

Instead of recalculating the i-th syndrome polynomial S(i)(x) with syndrome calculator, the

syndrome updater calculates it by updating the (i − 1)-th syndrome polynomial S(i−1)(x),

leading to further hardware reduction. According to (4.4), S(i)(x) can be obtained with

e′κ × xlκ , where the only one different bit between successive two candidate sequences is at

lκ-th position. The proposed syndrome updater shown in Fig. 4.9 utilizes look up table 1

(LUT1) and LUT2 to find the e′κ and αlκ based on the results of reliability evaluator. Note

that the finite field multipliers (FFMs) and squarers for updating syndrome polynomials can

be shared because there are N clock cycles for computing at most 2η candidates sequences

for each received data. For a RS (255, 239; 8) decoder, it only requires 4 FFMs and 2 squares

for updating a syndrome polynomial.

l

Figure 4.9: Syndrome updater.

93

4.3.3 Half Iteration Key Equation Solver

The Berlekamp-Massey (BM) algorithm is an iterative procedure to determine polynomials

Λ(x) and Ω(x). In 2000, Raghupathy and Liu found that the degree of Λ(x), L, in the BM

algorithm can be increased only once in any two successive iterations [66], implying that the

computation cycle of key equation solver can be half-reduced. The discrepancy of the odd

iteration ∆2k−1 and the discrepancy predicted for the even iteration ε2k with k = 1 ∼ t are

defined as:

∆2k−1 =

Lk−1∑

j=0

Λ
(2k−2)
j s2k−2−j (4.8)

ε2k =

Lk−1∑

j=0

Λ
(2k−2)
j s2k−1−j (4.9)

The updating equation can be modified into five cases as shown in Fig. 4.10. Then Λ(x) is

calculated as

Λ
(2k)
i = Λ

(2k−2)
i + g1Λ

(2k−2)
i−1 + g2B

(2k−2)
i−1 + g3B

(2k−2)
i−2 (4.10)

where gj (j = 1 ∼ 3) are the updating factors based on the different cases. As a result, Λ(x)

will be constructed within only t iterations.

In comparison with the RiBM algorithm [67], the architecture of [66] lacks for the irreg-

ularity and has a longer critical path delay. A half iteration RiBM (HI-RiBM) algorithm is

proposed to improve the critical path as well as to providing regular construction. Notice

2 1
0

k−∆ =

2 1
0

k−∆ ≠

2
0

k
ε =

2
0

k
ε ≠

2 1
2 2 1

k
L k− ≤ −

2 1
2 2 1

k
L k− > −

2 2
2 2 2

k
L k− ≤ −

2 2
2 2 2

k
L k− > −

Figure 4.10: The updating criterion for half iteration BM algorithm

94

that ∆2k−1 and ε2k are exactly the coefficients of x2k−2 and x2k−1 in

∆(k, x) = Λ(k, x) · S(x)

= δ0(k)+δ1(k)·x+· · ·+δk(k)·x
k + · · · . (4.11)

Therefore, we define δ̂i(k) = δi+2k−2(k) and θ̂i(k) = θi+2k−2(k) and the polynomial coef-

ficients can be updated with the equation:

δ̂i(k + 1) = δi+2k(k + 1)

= g0 · δi+2k(k) + g1 · δi+2k−1(k) + g2 · θi+2k−1(k) + g3 · θi+2k−2(k)

= g0 · δ̂i+2(k) + g1 · δ̂i+1(k) + g2 · θ̂i+1(k) + g3 · θ̂i(k). (4.12)

The details of the proposed half iteration RiBM algorithm is illustrated as follows:

Half iteration RiBM Algorithm

• Input:

Syndrome polynomial: S(x)

• Initialization:

L0 = 0, α0 = S0, c0 = 1, β0 = S1 − S2
0

δ̂i(0) = θ̂i(0) = Si, (i = 1, ..., 2t− 1)

δ̂2t(0) = θ̂2t(0) = 1

• Iteration from k = 1 to t:

Step 1:

Case 1: δ̂0(k − 1) = 0 and δ̂1(k − 1) = 0

g0 = ck−1, g1 = g2 = g3 = 0

θ̂i(k) = θ̂i(k − 1), θ̂2t−2k(k) = θ̂2t−2k+1(k) = 0

Lk = Lk−1, αk = αk−1, ck = ck−1

Case 2: δ̂0(k − 1) = 0 and δ̂1(k − 1) 6= 0 and Lk−1 > k − 1

95

g0 = ck−1, g1 = g2 = 0, g3 = δ̂1(k − 1)

θ̂i(k) = θ̂i(k − 1), θ̂2t−2k(k) = θ̂2t−2k+1(k) = 0

Lk = Lk−1, αk = αk−1, ck = ck−1

Case 3: δ̂0(k − 1) = 0 and δ̂1(k − 1) 6= 0 and Lk−1 ≤ k − 1

g0 = ck−1, g1 = g2 = 0, g3 = δ̂1(k − 1)

θ̂i(k) = δ̂i+2(k − 1)

Lk = 2k − Lk−1, αk = δ̂2(k − 1), ck = δ̂1(k − 1)

Case 4: δ̂0(k − 1) 6= 0 and Lk−1 ≤ k − 1

g0 = ck−1 · δ̂0(k − 1), g1 = βk−1, g2 = δ̂2
0(k − 1),

g3 = 0, θ̂i(k) = δ̂i+1(k − 1), θ̂2t−2k(k) = 0

Lk = 2k − 1 − Lk−1, αk = δ̂1(k − 1), ck = δ̂0(k − 1)

Case 5: δ̂0(k − 1) 6= 0 and Lk−1 > k − 1

g0 = c2k−1, g1 = 0, g2 = ck−1 · δ̂0(k − 1), g3 = βk−1

θ̂i(k) = θ̂i(k − 1), θ̂2t−2k(k) = θ̂2t−2k+1(k) = 0

Lk = Lk−1, αk = αk−1, ck = ck−1

Step 2:

δ̂i(k) = g0 · δ̂i+2(k − 1) + g1 · δ̂i+1(k − 1) + g2 · θ̂i+1(k − 1) + g3 · θ̂i(k − 1)

βk = g0(αk · δ̂2(k − 1) + ck · δ̂3(k − 1)) + g1(αk · δ̂1(k − 1) + ck · δ̂2(k − 1))

+g2(αk · θ̂1(k − 1) + ck · θ̂2(k − 1)) + g3(αk · θ̂0(k − 1) + ck · θ̂1(k − 1))

• Output:

Λi(t+ 1) = δ̂i(t+ 1), (i = 0, 1, ..., t).

The structure of processing element in half iteration RiBM algorithm is depicted in

Fig. 4.11 and Fig. 4.12 shows the homogeneous architecture of half iteration RiBM with

2t+1 HI-PEs. At the beginning of the process, Λ0 is initialized to 1 and stored into HI-PE2t.

In each iteration, Λ0 is calculated and stored into HI-PE2t−2k. Notice that the discrepancies

∆2k−1 and ε2k are always in the first and second HI-PE (δ̂0(k) and δ̂1(k)). The critical path

passes through only two multipliers, two adders and one multiplexer because the updating

96

factor βk for the next iteration is required to be available at the beginning of the next clock

cycle.

0

0

1 3/g g

2g

1 3/g g

2g

1
ˆ ()i kθ +

0g

2
ˆ ()i kδ +

1
ˆ ()i kδ +

ˆ ()i kδ

ˆ ()i kδ

2
ˆ ()i kδ +

0g

ˆ ()i kθ

1 3/g g

2g

1 3/g g

2g

0g 0g

ˆ ()i kθ

2
ˆ ()i kδ +

ˆ ()i kδ

ˆ ()i kδ

2
ˆ ()i kδ +

1
ˆ ()i kδ +

1
ˆ ()i kθ +

Figure 4.11: The processing element (HI-PE) of half iteration RiBM

HI-PE2tHI-PE2t-1

٠٠٠

٠٠٠

٠٠٠
٠٠٠

٠٠٠
٠٠٠

1S2t-1

S2t-1 1

HI-PE1HI-PE0

S1S0

S0 S1

0

0

0

HI-PEt

St

St

٠٠٠

٠٠٠

٠٠٠
٠٠٠

٠٠٠
٠٠٠

Λ1(k) Λ2(k) Λt(k)

g0

g2

g1 / g3

Controller

Figure 4.12: The homogeneous architecture of half iteration RiBM

4.3.4 Error Value Evaluator

The large parallelism requirement induces costly hardware complexity for error values cal-

culation. The Björck-Pereyra (BP) [59] based method is applied to replace the Forney’s

algorithm for computing error values because syndrome values Si and error locators βli have

97

following relation: 


βl1 βl2 · · · βlt

β2
l1

β2
l2

· · · β2
lt

...
...

. . .
...

βt
l1

βt
l2

· · · βt
lt







e1

e2
...

et




=




S1

S2

...

St




, (4.13)

where li is the i-th error location. To decrease the operating latency for the BP algorithm in-

troduced in Section 3.1, the Si and Si−1 can be computed simultaneously in Step 2. Following

shows the detail of the modified BP algorithm:

Modified Björck-Pereyra Algorithm

• Input:

B and S.

• Step 1:

for (k = 1; k < t, k = k + 1)

for (i = t; i > k, i = i− 1)

Si = Si − βlkSi−1

• Step 2:

for (k = t− 1; k > 0, k = k − 1)

for (i = k + 1; i ≤ t, i = i+ 1)

Si = Si/(βli − βli−k
)

Si−1 = Si−1 − Si

• Step 3:

for (k = 1; k ≤ t, k = k + 1)

Si = Sk/βlk

• Output:

S, where Si is the error value at li-th location.

98

1

i i-k

1

2

t-1

t

i k i-1

k i-1

Si

i- i-k

k

k

2

t-1

Figure 4.13: BP-based error value evaluator

The variable Si, which initially represents the i-th syndrome value, is updated iteratively.

Each calculation of the syndrome represents a row operation in (4.13). The control logic

determines the computation order of the Si and Xi, and the computation results will be used

to update each Si value. After all computations, Si indicates the i-th error value. Although

BP algorithm takes t2 cycles time to work, in our design, it matches our timing schedule.

4.3.5 Simplified Decision Making Unit

The Hamming distance of each candidate codeword Ĉ(i)(x) to the received data R(x) is

sufficient to choose the desired output. From (4.6), the weight of e(i)(x) + e
(i)
f (x) stands

for the Hamming distance between Ĉ(i)(x) and R(x). That means at most t + η symbols

are different while counting the distance of candidates codewords. Fig. 4.14 illustrates the

proposed simplified decision making unit. The estimated error pattern e(i)(x) and the flipped

error pattern e
(i)
f (x) are added at first and the corresponding weight is calculated. Then the

minimum weight error pattern emin(x) is determined by comparing the current minimum

weight with the weight of e(i)(x) + e
(i)
f (x). If the weight of e(i)(x) + e

(i)
f (x) is smaller than

the stored value, e(i)(x) + e
(i)
f (x) becomes the minimum weight error pattern emin(x). While

2η candidate codewords are all processed, the results in registers are the determined output.

99

(i)

min

(i)

f

Figure 4.14: Simplified decision making unit.

4.3.6 Parallel Chien Search Architecture

In an (N,K; t) BCH/RS decoder, once the error location polynomial Λ(x) is obtained in

the decoding process, a Chien search block shown in Fig. 4.15 can be used to exhaustively

examine whether Λ(αi) = 0 for i = 0 ∼ N − 1, where

Λ(αi) =
t∑

j=0

Λjα
(i)j

=
t∑

j=1

Λjα
ij + 1. (4.14)

t

t

i

Figure 4.15: Conventional Chien Search Architecture.

100

Notice that an arbitrary element over GF (2m) is presented as
m−1∑
i=0

aiα
i with the binary

coordinate ai due to the basis {α0, α1, · · · , αm−1}. Therefore, Λjα
ij can be expressed as

Pij = Λjα
ij

= (λj,0α
0 + λj,1α

1 + · · · + λj,m−1α
m−1)αij

= pij,0α
0 + pij,1α

1 + · · · + pij,m−1α
m−1, (4.15)

where {λj,0, λj,1,· · · ,λj,m−1} and {pij,0, pij,1,· · · ,pij,m−1} are the coordinates of Λj and Pij

respectively, and




pij,0

pij,1

...

pij,m−1




=




αij
0 αij+1

0 · · · αij+m−1
0

αij
1 αij+1

1 · · · αij+m−1
1

...
...

. . .
...

αij
m−1 αij+1

m−1 · · · αij+m−1
m−1







λj,0

λj,1

...

λj,m−1




. (4.16)

Notice that the binary element αk
l stands for the l-th coordinate of αk. We define ρij as the

density of the matrix constructed with coordinates of αij ∼ αij+m−1 as shown in (4.16) (i.e.,

the ratio between the number of 1’s and the number of all entries) [68]. Then the complexity

of an αij-CFFM, a constant finite field multiplier with αij as the multiplicator, is around

m× (m− 1) × ρij XOR gates according to (4.16).

To improve the decoding efficiency for the long BCH/RS codes, multiple successive lo-

cations can be examined with parallel Chien search architectures. Fig. 4.16 depicts two

conventional p-parallel Chien search architectures to shorten the operating cycles from N to
⌈

N
p

⌉
, where p is the parallel factor. Fig. 4.16(a) is the straight-forward version from Fig. 4.15

while Fig. 4.16(b) is the direct-unfolded version with the unfolded factor p [69, 70]. Both

designs have p× t CFFMs and p (t+ 1)-input m-bit finite field adders (FFAs), resulting in

a linear dependence of p for the hardware complexity. The directed-unfolded architecture,

which utilizes αi-CFFM to replace αij-CFFM for j = 2 ∼ p, provides lower hardware com-

plexity because the density ρi is much smaller than ρij for i < m. Nevertheless, the critical

101

p 2p

t

tp

(p+pτ)

(p-1) 2(p-1) t(p-1)

(p-1+pτ)

2 t

(1+pτ)

(a)

2

t

t

(1+pτ)

2 t

(2+pτ)

2 t

(p+pτ)

(b)

Figure 4.16: Conventional p-Parallel Chien Search Architectures. (a) Straight-Forward. (b)
Direct-Unfolded.

path in Fig. 4.16(b) is (Tmux+p×Tm+Ta) while that in Fig. 4.16(a) is only (Tmux+Tm+Ta),

where Tmux, Tm, and Ta represent the critical path of multiplexer, CFFM, and FFA respec-

tively. The direct-unfolded architecture will lead to p times longer critical path if CFFM

dominates the delay path.

The hardware complexity of the high parallel Chien search architecture is dominated by

numerous CFFMs. This section will reformulate the Chien search equation with minimal

polynomials and utilize minimal polynomial combinational networks (MPCNs) for replacing

the CFFMs in Chien search architecture. In addition, the proposed MPCN-based Chien

102

search architecture can merge the syndrome calculator with small overhead, leading to sig-

nificant hardware complexity reduction.

To calculate Λjα
ij with minimal polynomials, the proposed new Chien search scheme

defines a m − 1 degree polynomial Tj(x) = tj,0 + tj,1x
1 + · · · + tj,m−1x

m−1, and the relation

between Λj and Tj(x) is defined as

Λj = Tj(x) |x=αj

= tj,0α
0 + tj,1α

j + · · · + tj,m−1α
(m−1)j

= λj,0α
0 + λj,1α

1 + · · · + λj,m−1α
m−1. (4.17)

From (4.17), {λj,0, λj,1,· · · ,λj,m−1} and {tj,0, tj,1,· · · ,tj,m−1} are viewed as coordinates with

the basis {α0, α1, · · · , αm−1} and {α0, αj, · · · , α(m−1)j} respectively, where




λj,0

λj,1

...

λj,m−1




=




α0
0 αj

0 · · · α
(m−1)j
0

α0
1 αj

1 · · · α
(m−1)j
1

...
...

. . .
...

α0
m−1 αj

m−1 · · · α
(m−1)j
m−1







tj,0

tj,1
...

tj,m−1




. (4.18)

After the binary matrix operation in (4.18), Λj is represented with the basis from

{α0, αj, · · · , α(m−1)j} to {α0, α1, · · · , αm−1}; therefore, this operation is called as j-th ba-

sis transformer (BTj). As a result, the coefficients of Tj(x) can be determined as




tj,0

tj,1
...

tj,m−1




=




α0
0 αj

0 · · · α
(m−1)j

0

α0
1 αj

1 · · · α
(m−1)j
1

...
...

. . .
...

α0
m−1 αj

m−1 · · · α
(m−1)j
m−1




−1 


λj,0

λj,1

...

λj,m−1




, (4.19)

where the operation of the inverse matrix in (4.19) is called as j-th inverse basis transformer

(IBTj).

103

Based on our definitions, Λj can be represented in terms of Tj(x) and (4.15) becomes

Pij = Λjα
ij

= Tj(x)
∣∣
x=αj × (αj)i

= xiTj(x) |x=αj

= Mj(x) ×Wj(x) +Dj(x) |x=αj , (4.20)

whereMj(x) is the minimal polynomial of αj andDj(x) is the remainder polynomial resulting

from dividing xiTj(x) by Mj(x). Since αj is a root of Mj(x), Dj(α
j) is the only non-zero

term in (4.20). Then the Chien search equation can be reformulated as

Λ(αi) =
t∑

j=1

Pij + 1 =
t∑

j=1

Dj(α
j) + 1. (4.21)

As shown in (4.21), the Chien search can be simply realized by summing up all the

evaluation results of 1st ∼ t-th BTs. Instead of executing summation after the basis trans-

formations, the addition operation can be moved before the transformation, leading to fewer

transformation operations.

Hence, (4.22) can be reformulated with group basis transformer (GBT) as

Λ(αi) =
t∑

j=1

m−1∑

k=0

dj,kα
jk + 1

=
mt∑

v=0

(
∑

∀jk=v

dj,k

)
αv + 1, (4.22)

where dj,k is the k-th coefficient of Dj(x).

Fig. 4.17 shows the architectures of three basis components, including j-th MPCN, j-th

BT and GBT. The j-th MPCN (MPCNj) shown in Fig. 4.17(a) executes modulo operation

with the divisor Mj(x). It is constructed by the combinational circuit of the linear feedback

shift register with the connection polynomial Mj(x). Each binary element mk
j in Fig. 4.17(a)

is the k-th coefficient of Mj(x), indicating the wire connection. In the j-th BT shown in

104

IN_MPCN[0]
IN_MPCN[1]

IN_MPCN[m-2]

IN_MPCN[m-1]

1
j

2
j

m-1
j

(a)

2j

0

j

0 m-1

0

m

m

0

0

(m-1)j

0

0
1

j

1

2j

1

(m-1)j

1
j
m-1

2j

m-1

(m-1)j

m-1

IN_BT

OUT_BT

IN_BT[m-1]

IN_BT[0]

IN_BT[1]
IN_BT[2]

(b)

2

0

1

0 m-1

0

m

0

0

mt

0

0
1

1

1

2

1

mt

1
1
m-1

2

m-1

mt

m-1

OUT_GBT

SUMMATION CIRCUIT

IN_GBT
mt

(c)

Figure 4.17: Basic components in proposed Chien search architecture. (a) j-th minimal
polynomial combinational network (MPCNj). (b) j-th basis transformer (BTj). (c) Group
basis transformer (GBT).

Fig. 4.17(b), each αk
l is a binary element as in (4.18) and can be represented whether the wire

is connected or not. Fig. 4.17(c) illustrates the block diagram of the GBT. The additions

are executed firstly with all the coefficients of Dj(x) for j = 1 ∼ t (total mt bits), and the

similar operations as a BT are applied with the basis α0 ∼ αmt.

In the proposed MPCN-based parallel-p Chien search architecture shown in Fig. 4.18, the

coefficients of Λ(x) are applied to the IBTs for transforming the operating basis. According to

105

t

(1+pτ)

(2+pτ)

(p+pτ)

1

1 2 t

1

1

2

2

2

t

t

t

Figure 4.18: MPCN-Based parallel-p Chien search architecture.

(4.20) ∼ (4.22), the transformed values are evaluated with minimal polynomials for obtaining

the Chien search results. All the multiplexers select the outputs of IBTs in the first cycle,

and then select the register data afterward. Searching from (N − 1)-th to 0-th location, the

proposed design checks p locations at each cycle. In each row, mt bits data are fed into a

GBT to examine the error locations. An error is found at (N + r− p(τ + 1)− 1)-th location

if the output of the r-th row GBT equals zero at τ -th cycle. In contrast to Fig. 4.16, our

proposed Chien search architecture utilizes p × t MPCNs to replace p × t CFFMs. Notice

that the XOR gate count requirement of one MPCN is at most m−1, which is much smaller

than that of one CFFM. Therefore, it is area-efficient to apply the MPCNs, especially in the

large parallelism conditions.

The proposed MPCN-based architecture can merge the syndrome calculator and Chien

search in the same hardware with small overhead. In the BCH/RS decoding process, the re-

ceived polynomial R(x) is fed into the syndrome calculator to generate syndrome polynomial

106

t

1 2 t

1+pτ)

(2+pτ)

1 2 t

1 2 t

(p+pτ

N-p-pτ

N-1-pτ

N-2-pτ

1

1

1

2

2

2

t

t

t

Figure 4.19: Parallel-p joint syndrome calculator and Chien search with MPCN-based archi-
tecture.

S(x) = S1 + S2x
1 + · · · + S2tx

2t−1, which is expressed as [3]

Sj = R(x) |x=αj

= Mj(x) ×Qj(x) +Bj(x) |x=αj

= Bj(α
j), (4.23)

where Bj(x) is the remainder polynomial resulting from dividing R(x) by Mj(x). Conse-

quently, the j-th syndrome value can be calculated with Mj(x).

Fig. 4.19 illustrates our parallel-p joint syndrome calculator and Chien search with

MPCN-based architecture. The syndrome calculator phase and Chien search phase are

determined by the SEL signal. When the SEL signal is high, the j-th syndrome value is

107

formulated as

Sj = (((RN−1x
p−1+· · ·+RN−p−1) mod Mj(x))x

p

+ (RN−p−2x
p−1+· · ·+RN−2p−1)) mod Mj(x))x

p

+ · · ·)xp+Rp−1x
p−1+· · ·+R0) mod Mj(x) |x=αj (4.24)

The partial remainder stored in the register is multiplied by xp and accumulated with the

received symbols. After all the received symbols are processed, the BTj transforms the

accumulated result to j-th syndrome value. In contrast to Fig. 4.18, t BTs are applied

instead of one GBT in the first row to evaluate individual syndrome value. Note that the

FFA in Fig. 4.19 is only a 1-bit operation because each coefficient of R(x) is binary value.

Therefore, except for the difference between the BT and GBT, the overhead of supporting

syndrome calculation is only p NAND and p× t XOR gates.

4.3.7 Architecture Comparison

For RS (224, 216; 4) code, there was no soft RS (224, 216; 4) decoder has been published

according the best knowledge of the author. Thus, a LCC soft RS (255, 239; 8) decoder [34]

is shortened to RS (224, 216; 4) decoder for comparison. The proposed decision-eased soft

RS decoder with 2-stage pipeline architecture is compared with the LCC soft RS decoder

with 4-stage pipeline architecture as shown in TABLE 4.3. Both soft decoders evaluates 3

LRPs for generating candidate sequences.

The LCC decoder has 4-stage pipeline architecture and has to storage every candidate

codeword, resulting in large amount of storage elements. Notice that, the complexity ratio

over GF (28) among XOR, CFFM, FFM, FFA, MUX, Register, ROM (byte) and RAM (byte)

is 1 : 20 : 100 : 8 : 3: 1 : 8 : 8. While the complexity of these designs is normalized to

XOR gate, the proposed decision-eased soft RS decoder is around 13,248 XOR gates and

the LCC soft RS decoder is about 32,991 XOR gates. Due to fewer number of FFMs and

storage elements, our proposed decoder can save around 59.8% complexity as compared to

108

LCC decoder, even though the LCC decoder excludes the decision making unit.

Table 4.3: Comparison Table for Soft RS (224, 216; 4) Decoder

Architecture
GF (28) GF (28) GF (28) 2-to1 MUX Register ROM RAM Latency
CFFM FFM FFA (Bit) (Bit) (Byte) (Byte) (Cycle)

Decision-Eased with η = 3
Syndrome Calculator 8 0 8 0 64 0 0 224
Reliability Evaluator 0 0 0 192 0 0 0 224
Syndrome Updater 0 1 1 128 64 232 0 16
Key Equation Solver 0 9 8 72 136 0 0 16
Parallel-16

64 0 64 128 224 0 0 16
Chien Search
BP-Based

0 2 2 192 64 224 0 16
Error Value Evaluator
Simplified

0 0 3 80 80 0 0 16
Decision Making Unit
Total 72 12 86 792 632 456 0+224×2 224

LCC with η = 3 [34]
Re-encoder 0 13 23 392 344 448 0 464
Interpolation 0 14 12 87 166 0 68 461
Polynomial Select 0 8 8 139 264 0 0 23
Chien Search 4 0 4 0 64 0 0 216
Forney’s Algorithm 0 2 2 136 24 224 0 76
Erasure Decoder 0 13 23 243 168 224 0 464
Total 4 50 72 997 1430 896 68+224 × 8 464
* The complexity ratio over GF (28) among XOR, CFFM, FFM, FFA, MUX, Register, ROM (byte) and RAM (byte) is

1 : 20 : 100 : 8 : 3: 1 : 8 : 8.

For RS (255, 239; 8) code, the proposed decision-confined soft RS decoder with 3-stage

pipeline architecture is compared with the LCC soft RS decoder with 4-stage pipeline ar-

chitecture as shown in TABLE 4.4. The proposed design evaluates 5 LRPs for generating

candidate sequences while the LCC decoder evaluates 3 LRPs.

In LCC decoder, each candidate codeword to be stored; therefore, the LCC decoder with

4-stage pipeline architecture requires large number of storage elements. While the complexity

of these designs is normalized to XOR gate, the proposed decision-eased soft RS decoder is

around 22,534 XOR gates and the LCC soft RS decoder is about 38,671 XOR gates. Even

though the complexity of LCC decoder excludes the complexity of the decision making unit,

our proposed decoder can save around 42% complexity as compared to LCC decoder because

of fewer number of storage elements.

109

Table 4.4: Comparison Table for Soft RS (255, 239; 8) Decoder

Architecture
GF (28) GF (28) GF (28) 2-to1 MUX Register ROM RAM Latency
CFFM FFM FFA (Bit) (Bit) (Byte) (Byte) (Cycle)

Decision-Confined with η = 5
Syndrome Calculator 16 0 16 0 128 0 0 256
Reliability Evaluator 0 0 0 40 90 0 0 259
Syndrome Updater 0 4 16 288 128 264 0 8
Half Iteration

0 62 37 464 296 0 0 8
Key Equation Solver
Parallel-2

16 0 16 64 64 0 0 128
Chien Search
BP-Based

0 2 2 448 128 256 0 92
Error Value Evaluator
Total 32 68 87 1592 834 520 0+256×3 259

LCCwith η = 3 [34]
Re-encoder 0 21 39 448 600 512 0 528
Interpolation 0 14 12 87 166 0 68 525
Polynomial Select 0 8 8 139 264 0 0 23
Chien Search 8 0 8 0 128 0 0 239
Forney’s Algorithm 0 2 2 136 24 256 0 152
Erasure Decoder 0 21 39 299 424 256 0 528
Total 8 66 108 1109 1606 1024 68+256 × 8 528
* The complexity ratio over GF (28) among XOR, CFFM, FFM, FFA, MUX, Register, ROM (byte) and RAM (byte) is 1 :

20 : 100 : 8 : 1 : 3 : 8 : 8.

110

Chapter 5

Implementation Results

5.1 EM-Type Soft BCH (32400, 32208; 12) Decoder

for DVB-S2 System

DVB-S2 system [22] shown in Fig. 5.1 is the second generation standard of Digital Video

Broadcasting via satellites, which is developed by European Telecommunications Standard

Institute (ETSI). It provides higher order modulations and a powerful FEC system based on

serial concatenation of BCH codes and low density parity check (LDPC) codes, leading to

30% channel capacity gain over exsiting DVB-S standard [21]. For the high speed and long

distance data transmission, the BCH codes with long block length are specified to suppress

the error floor due to iterative LDPC decoding. The BCH codes have different 21 code

rates, where there are GF (216) for DVB-S2 normal frame and GF (214) for DVB-S2 short

frame. The detailed specifications of 21 kinds BCH codes are listed in TABLE. 5.1. The long

Single

Input

Stream

Multiple

Input

Stream

Input

Interfance

Input Stream

Synchroniser

Null-Packet

Deletion

(ACM, TS)

CRC-8

Encoder
Buffer

Input

Interfance

Input Stream

Synchroniser

Null-Packet

Deletion

(ACM, TS)

CRC-8

Encoder

Merger

Slicer

BB

Signalling

DATA

ACM

COMMAND

{ Buffer

PADDER

BB

SCRAM

BLER

BCH

Encoder

LDPC

Encoder

Bit

Inter-

leaver

Bit

Mapper

into

Constel-

lations

PL Signalling &

Pilot Insertion

PL

SCRAM

BLER
BB Filter

and

Quadrature

Modulation

STREAM

ADAPTATION FEC ENCODING

Dummy

PLFRAME

Insertion

MAPPING PL FRAMING

Rates 1/4, 1/3, 2/5

1/2, 3/5, 2/3, 3/4, 4/5,

5/6, 8/9, 9/10

QPSK,

8PSK,

16APSK,

32APSK

MODULATION

To the RF

Satellite

Channel

= 0,35, 0,25,

0, 20

Figure 5.1: Block diagram of DVB-S2 transmitter.

111

Table 5.1: DVB-S2 Specification (N : Codeword Length, K : Message Length)
Normal Frame Short Frame

N LDPC : 64800 N LDPC : 16200
LDPC

N BCH K BCH t N BCH K BCH t
Code Rate

1/4 16200 16008 12 3240 3072 12
1/3 21600 21408 12 5400 5232 12
2/5 25920 25728 12 6480 6312 12
1/2 32400 32208 12 7200 7032 12
3/5 38880 38688 12 9720 9552 12
2/3 43200 43040 10 10800 10632 12
3/4 48600 48408 12 11880 11712 12
4/5 51840 51648 12 12600 12432 12
5/6 54000 53840 10 13320 13152 12
8/9 57600 57472 8 14400 14232 12
9/10 58320 58192 8 NA NA NA

block length, which has 58320 bits at most, demands considerably complex arithmetic over

large finite field, resulting in higher circuit complexity. Moreover, the storage requirement

becomes costly due to the large codeword should be buffered for error correction, where a

memory bank is about 100 K gate-count for a BCH codeword in DVB-S2 system.

Over 50 decoding iterations in the LDPC decoder result in a long decoding latency

and a short period of data output time. The BCH decoder for the DVB-S2 system is

required to achieve at most 250 Mb/s throughput that accommodates the LDPC decoder

output. For long block length BCH decoders, the decoding latency is dominated by the

syndrome calculator and Chien search. Pipeline architecture can improve the throughput

but more memory banks are required to store each stage codeword. Parallelism Chien

search is another approach to enhance the throughput [68, 71] but it causes more hardware

complexity. Therefore, a decoder with single stage pipeline and serial architecture forms a

low complexity design.

In this section, a low complexity and high throughput BCH decoder is designed for

DVB-S2 system. To achieve the throughput requirement with low complexity, the soft

information from the LDPC decoder can be employed by BCH decoders in DVB-S2 system.

Soft information can help the decoder to choose the least reliable bits and then the decoder

112

1.5 1.52 1.54 1.56 1.58 1.6

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

Eb/No(db)

B
E

R

LDPC FIXED POINT (6,4) + HARD BCH
LDPC FIXED POINT (7,4) + HARD BCH
LDPC FIXED POINT (8,5) + HARD BCH
LDPC FIXED POINT (7,4) +
PROPOSED SOFT BCH FIXED POINT(7,4)

Figure 5.2: Fixed point simulation results for BCH (32400, 32208; 12))in DVB-S2 system

can find certain errors from those bits. Based on this concept, an error locator evaluator

is proposed to eliminate Chien search for higher throughput. Furthermore, the decoder can

maintain similar performance because the soft information from LDPC decoder provides

sufficient reliability.

In DVB-S2 system, BCH (32400, 32208; 12) over GF (216) is defined to be concatenated

with LDPC (64800, 32400) code. Fig. 5.2 analyzes the required bit-width for the LDPC and

BCH codes in DVB-S2 system. The simulation parameters fixed point (A,B) represents A-bit

input quantization with B-bit decimal fraction. The BER performance for the fixed point

LDPC code concatenated with the hard BCH code is demonstrated with the solid lines. The

BER curves indicate that the fixed point (6,4) LDPC code has performance loss and the fixed

point (7,4) LDPC code is sufficient to achieve similar performance to the fixed point (8,5)

LDPC code. Since the more input quantization in LDPC code results in linear increment for

longer critical path delay and message storage, the fixed point (7,4) LDPC code is adequate

in our approach. In addition, the proposed soft BCH code with 7-bit input quantization is

also simulated in Fig. 5.2 with the dotted line while it receives the soft information from

the the fixed point (7,4) LDPC code. It can achieve less than 0.01 dB performance loss in

contrast to the hard BCH code at BER = 10−6, indicating that 7-bit input quantization is

sufficient for our approach. Notice that the input quantization of the proposed soft BCH

113

Figure 5.3: Microphoto of Soft BCH (32400, 32208; 12) Chip

Figure 5.4: Shmoo Plot of Soft BCH (32400, 32208; 12) Chip

code only affects the size of the comparators and components of reliability part in error

locator evaluator. Consequently, it has little influence on hardware complexity.

Fig. 5.3 shows the proposed soft BCH (32400, 32208; 12) decoder die photo, which is

implemented with the cell-based design flow and fabricated in 90nm 1P9M CMOS process.

The chip is verified by Agilent 93000 SOC test system and the Shmoo plot shown in Fig. 5.4

indicates that our design can achieve 333 MHz operation frequency at 0.94 V supply. TA-

BLE 5.2 illustrates the chip summary as well as a hard BCH decoder for comparison. To

minimize the storage requirement, all the designs in TABLE 5.2 are constructed with sin-

gle stage pipeline architecture. In the hard BCH decoder, the iBM algorithm is utilized to

114

Table 5.2: Summary of Implementation Results

Hard (32400,32208) BCH Hard DVB-S2 BCH [72] Soft (32400,32208) BCH Soft DVB-S2 BCH Soft DVB-S2 BCH
t = 12 Normal + Short Frame t = 12 Normal Frame Normal + Short Frame

Technology 90nm 0.13 µm 90nm 90nm 90nm

Architecture
iBM Reversed iBM BP-EMS BP-EMS BP-EMS

w/ Chien Search w/ Parallel-4 Chien Search w/o Chien Search w/o Chien Search w/o Chien Search
Pipeline Stage 1 1 1 1 1
Number of Mode 1 21 1 11 21
Operation Frequency 200MHz (Post Layout) 190 MHz (Post Layout) 333MHz (Measurement) 300MHz (Post Layout) 300MHz (Post Layout)
Core Area 190497µm2 336000µm2 102400µm2 105625µm2 119025µm2

Gate Count 54.0K 44K 26.9K 28.2K 32.4K
Normalized Gate Count 2.06 1.64 1 1.05 1.2

Maximum Throughput 99.3Mb/s 380 Mb/s * 314.5Mb/s 295.5Mb/s * 295.5Mb/s *

Normalized Throughput 1 3.8 3.17 2.98 2.98

Maximum Latency 64824 29208* 34104 59072 * 59072 *

Power 6.32mW @200MHz 26mW @ 190MHz 8.43mW @333MHz 9.45mW @300MHz 11.9mW @300MHz
Energy Efficiency 63.6 pJ/bit 68.4 pJ/bit 26.8 pJ/bit 32 pJ/bit 40.2 pJ/bit
* The maximum latency and throughput are provided by (58320,58192) BCH code.

solve key equation as well as Chien search is applied to get error locations. By inserting

registers into composite field inversion unit, the operation frequency of our proposed soft

BCH decoder can be enhanced from 166 MHz to 333 MHz with only 2.5% latency overhead.

Moreover, our soft BCH decoder that computing error locations without Chien search has

almost half latencies of the hard BCH decoder. The measurement results reveal that our

proposed soft BCH decoder performs three times throughput with 50.0% gate-count saving

as compared with the hard BCH decoder. The measured power consumption of the proposed

soft BCH decoder is 8.43 mW with 1.0 V supply at 314.5 Mb/s, and the energy efficiency is

26.8 pJ/bit while that of the hard BCH decoder is 63.6 pJ/bit.

In addition, the proposed architectures are favorable to multi-mode designs because most

components can be shared and only a few control logics are required. While extended to

process DVB-S2 normal frame which consists of 11 modes, the proposed design can achieve

300 MHz operation frequency with only 5% gate-count increment as compared to the pro-

posed soft BCH (32400, 32208; 12) decoder. To support those 21 modes defined in DVB-S2

system, including normal and short frames, our approach can achieve 300 MHz operation

frequency with gate-count of 32.4 K, which is 20% more than the original single mode design.

The post-layout simulation results of these two multi-modes design are also illustrated in

TABLE 5.2.

115

5.2 EM-Type Soft BCH and BCH-Like Decoders

with 255-Bit Codeword Length

Fig. 5.5 analyzes the required bit-width for the proposed soft BCH and BCH-Like decoders

with 255-bit codeword length, where Fig. 5.5(a) is for 2-error-correcting codes and Fig. 5.5(b)

is for 3-error-correcting codes respectively. The BER performance for the soft BCH decoders

is demonstrated with the solid lines while that of the soft BCH-Like decoders is demonstrated

with the dash lines. The BER curves indicate that the proposed soft BCH/BCH-Like codes

with 6-bit input quantization are sufficient to achieve similar performance to the floating

point BCH/BCH-Like codes. Notice that the input quantization of the proposed soft BCH

code only affects the size of the comparators and components of reliability part in error

locator evaluator. Consequently, it has little influence on hardware complexity.

In TABLE 5.3, the BCH decoders are implemented with hard and soft decision methods

to demonstrate BCH (255, 239; 2) and BCH (255, 231; 3) codes. From TABLE 3.5, the BCH

decoder with iBM algorithm has similar hardware complexity as that with SiBM algorithm;

therefore, we design the hard BCH decoders which solve key equation with iBM algorithm

and evaluate error locations with Chien search. The soft BCH and BCH-Like decoders are

designed with CEMS and M-CEMS respectively. The BCH-Like (255, 243; 2) decoder is

designed from BCH (255, 239; 2) with ρ = 51 whereas the BCH-Like (255, 237; 3) decoder

is constructed from BCH (255, 231; 3) with ρ = 85.

The implementation results reveal that the proposed soft BCH (255, 239; 2) and (255,

231; 3) decoders can reach 4.2 K and 6.7 K gate count with 400 MHz and 360 MHz opera-

Table 5.3: Summary of Implementation Results

BCH (255, 239) BCH (255, 239) BCH-Like (255, 243) BCH (255, 231) BCH (255, 231) BCH-Like (255, 237)
HARD SOFT SOFT HARD SOFT SOFT

Technology 90 nm 90 nm 90 nm 90 nm 90 nm 90 nm
Architecture iBM + Chien Search CEMS M-CEMS iBM + Chien Search CEMS M-CEMS
Code Rate 0.937 0.937 0.952 0.905 0.905 0.929
Operation 400 MHz 400 MHz 320 MHz 360 MHz 360 MHz 315 MHz
Frequency (Post Layout) (Post Layout) (Post Layout) (Post Layout) (Post Layout) (Post Layout)
Core Area 14, 400µm2 13, 225µm2 13, 225µm2 21, 025µm2 21, 025µm2 24, 025µm2

Gate Count 4.4 K 4.2 K 4.2 K 6.8 K 6.7 K 7.5 K
Latency 514 272 275 516 321 325

Throughput 186 Mb/s 351.5 Mb/s 282.8 Mb/s 161.2 Mb/s 259.1 Mb/s 229.7 Mb/s

116

5 5.5 6 6.5 7 7.5

10
−5

10
−4

10
−3

10
−2

Eb/No(db)

B
E

R

Soft BCH FIX POINT (5,4)
Soft BCH FIX POINT (6,5)
Soft BCH FLOAT
Soft BCH−Like FIX POINT (5,4)
Soft BCH−Like FIX POINT (6,5)
Soft BCH−Like FLOAT

(a) BCH (255, 239; 2) and BCH-Like (255, 243; 2)

5 5.2 5.4 5.6 5.8 6 6.2 6.4 6.6 6.8

10
−5

10
−4

10
−3

10
−2

Eb/No(db)

B
E

R

Soft BCH FIX POINT (5,4)
Soft BCH FIX POINT (6,5)
Soft BCH FLOAT
Soft BCH−Like FIX POINT (5,4)
Soft BCH−Like FIX POINT(6,5)
Soft BCH−Like FLOAT

(b) BCH (255, 231; 3) and BCH-Like (255, 237; 3)

Figure 5.5: Fixed point simulation results for the proposed soft decoders with 255-bit code-
word length.

tion frequency respectively in standard CMOS 90 nm technology, which are similar to that

provided by the hard BCH decoders. The BCH-Like (255, 243; 2) decoder provides 4.2 K

gate count because there is no multiplier in t = 2 case, while the BCH-Like (255, 237; 3)

decoder has 7.5 K gate count due to an extra ρ-TIMER. The ρ-TIMER results in longer

critical path so that the BCH-Like (255, 243; 2) and (255, 237; 3) decoders have slower

operation frequency than BCH (255, 239; 2) and (255, 231; 3) decoders do. Nevertheless,

the proposed soft BCH and BCH-Like decoders computing error locations without Chien

search achieves 1.4 ∼ 1.9 times throughput enhancement over the hard BCH decoders as

shown in TABLE 5.3.

117

5.3 Decision-Eased Soft RS (224, 216; 4) Decoder for

mmWave System

The millimeter-wave (mmWave) system can promise throughput in the order of multi-Gpbs

because of the huge bandwidth ranging from 57-64 GHz. Hence it has aroused much in-

terest, such as Ecma International TC32-TG20 Task Group [73] and IEEE 802.15.3c Task

Group [74]. To support the uncompressed high-definition (HD) video transmission, which

can enhance picture quality, the mmWave system is required to provide 3.0 Gb/s throughput

if the color depth of a single uncompressed HD (1080p) stream is 8-bit. In the future, the

throughput is demanded to achieve 4.5 Gb/s due to the 12-bit color depth in the future

applications.

Fig. 5.6 shows a block diagram of mmWave system for supporting uncompressed video

streaming. Two RS (224, 216; 4) decoders are applied to execute error correction for the 4

MSB and 4 LSB bitstreams respectively, implying a RS (224, 216; 4) decoder is demanded to

provide 2.25 Gb/s throughput for future video applications. However, the high throughput

Uncompressed

Video Source

Pixel

Partitioning

Multiple

CRC

application layer
MAC

layer

Scrambler

Reed-Solomon

Encoder

Reed-Solomon

Encoder

4-MSB

4-LSB

Convolutional

Encoder and

Puncturing

Other

Baseband

Blocks

Tx

Beamforming

PHY layer

antenna arrays

Multiple

CRC

Uncompressed

Video Source

Pixel

Assembly

Error

Concealment

application layer MAC layer

De-

scrambler

Reed-Solomon

Decoder

Reed-Solomon

Decoder

4-MSB

4-LSB

Convolutional

Decoder and

Depuncturing

Other

Baseband

Blocks

Rx

Beamforming

PHY layer

antenna arrays

CHANNEL

Figure 5.6: Block diagram of the transmitter and the receiver of the mmWave system

118

Input

Syndrome

Key Equation Solver

Parallel-16 Chien Search

BP-Based Error Value Evaluator

Simplified Decision Making

Output

Codeword A Codeword B Codeword C

A B C

Codeword A

1A 2A 3A 4A 5A 6A 7A0A

1A 2A 3A 4A 5A 6A 7A0A

1A 2A 3A 4A 5A 6A 7A0A

1A 2A 3A 4A 5A 6A 7A0A

0B 1B 2B 3B 4B 5B 6B 7B

0B 1B 2B 3B 4B 5B 6B 7B

0B 1B 2B 3B 4B 5B 6B 7B

0B 1B 2B 3B 4B 5B 6B 7B

Codeword B

Latency = 176 cycles

1A 2A 3A 4A 5A 6A 7A 1B 2B 3B 4B 5B 6B 7BSyndrome Updater

Figure 5.7: Decoding scheme of the decision-eased soft RS decoder

will damage the reliability of the transmitted data. In this section, a low complexity and

high throughput soft RS decoder is designed for mmWave system.

For the 2.25 Gb/s requirement of the mmWave systems, a soft RS (224, 216; 4) decoder

with 2-stage pipeline architecture is presented in Fig. 5.7 based on our decision-eased de-

coding algorithm. The syndrome polynomial S(x) is reckoned at data input and the first

syndrome pattern is available while the first input pattern ends. Then, the key equation

solver starts working. Note that the syndrome updater computes the updated syndrome

polynomial at the same time, which ensures that the next syndrome polynomial S(i+1)(x)

is ready while key equation solver finishes its previous work. After a series of calculation of

Chien search and error value evaluation, the simplified decision making unit computes the

Hamming distance and updates the estimated codeword C ′(x) when each candidate code-

word arrives. Total 8 candidate codewords will be generated since η equals 3 in our proposed

design. Therefore, the final estimated codeword is determined and outputted after the 8th

candidate codeword arriving. In our design, each block is well-arranged and takes only 16

cycles, leading to 176 cycles decoding latency except for the syndrome calculation procedure.

Fig. 5.8 analyzes the required bit-width for the proposed decision-eased soft RS (224,

216; 4) decoder with 3 LRPs. The simulation parameters fixed point (A,B) represents A-bit

input quantization with B-bit decimal fraction. The BER curves indicate that the proposed

soft RS decoder with 6-bit input quantization can provide around 0.5 dB coding gain at

10−5 BER over the hard RS decoder as the floating point soft RS decoder does. Notice

that the input quantization of the proposed soft RS decoder only affects the size of the

comparators and registers in reliability evaluator. Consequently, it has little influence on

119

5 5.5 6 6.5 7 7.5

10
−5

10
−4

10
−3

10
−2

Eb/No(db)

B
E

R
HARD

Decision−Eased FLOAT

Decision−Eased FIX POINT (5,4)

Decision−Eased FIX POINT (6,5)

Decision−Eased FIX POINT (7,6)

Figure 5.8: Fixed point simulation results for Soft RS (224, 216; 4) with η = 3

Table 5.4: Implementation Results and Comparision

Decision-Eased pRiBM [75] pDCME [76] DCME [77]

Code Type Soft RS (224, 216) Hard RS (255, 239) Hard RS (255, 239) Hard RS (255, 239)
Technology 90 nm 90 nm 0.13 µm 0.25 µm
Operation 312.5 MHz 690 MHz 660 MHz 200 MHz
Frequency (Post Layout) (Synthesis) (Synthesis) (Synthesis)
Core Area 221,030 µm2 - - -

Gate Count * 30.0 K 43.6 K 53.2 K 42.2 K
(Normalized) (1.42) (1.03) (1.26) (1)
Throughput 2.5 Gb/s 5.52 Gb/s 5.28 Gb/s 1.6 Gb/s
Coding Gain 0.5 dB @ 10−5 BER - - -

Power 23.8 mW - - -

* The normalized gate count is calculate as:
(gate count)×(8

t
)

(gate count of DCME)
.

hardware complexity.

TABLE 5.4 illustrates the implementation result of our soft RS decoder as well as three

hard RS decoders for comparison. From the post-layout simulation, our design can achieve

2.5 Gb/s throughput with gate count of 30 K in 90nm 1P9M CMOS process. Moreover, it

can fit well for 2.25 Gb/s throughput requirement in mmWave system with 0.5 dB coding

gain over hard decoders at 10−5 BER. Note that, as considered the difference of the error

correcting ability among these designs, a normalized area is defined as
(gate count)×(8

t
)

(gate count of DCME)
for

a fair comparison. From [34], the LCC based soft RS decoder has about three times area in

contrast to the hard decoder. However, our proposed decision-eased soft RS decoder is only

1.38 and 1.42 times as compared to pRiBM and DCME based hard decoders respectively.

120

5.4 Decision-Confined Soft RS (255, 239; 8) Decoder

for Optical Communications

According to International Telecommunication Union (ITU-T) recommendation, RS (255,

239; 8) is standardized in the high speed optical fiber system [78], which provides 2.5 Gb/s

throughput with 16 RS decoders as shown in Fig. 5.9 and Fig. 5.10. However, in the near

future, the optical fiber system will be demanded to achieve 10 ∼ 40 Gb/s throughput,

implying that a RS decoder is demanded to provide 2.5 Gb/s throughput. In addition,

the 2.5 Gb/s throughput can also satisfy the maximum up and down link requirement in

Gigabit Passive Optical Network (GPON) [79]. However, the high throughput will damage

the reliability of the transmitted data. In this section, a low complexity and high throughput

soft RS decoder is designed for optical communications.

For the 2.5 Gb/s requirement of the optical communication systems, a soft RS (255,

239; 8) decoder with 3-stage pipeline scheme is presented in Fig. 5.11 based on our decision-

confined decoding algorithm. At the first stage, the reliability evaluator computes 5 LRPs

and the syndrome calculator counts the syndrome S(x) in the meantime. Then the syndrome

Figure 5.9: Block diagram of G.975

121

1/16

1/8

1/8

1/8

8/1

8/1

8/1

RS(255,239)

decoder #1

RS(255,239)

decoder #2

RS(255,239)

decoder #16

16/1

Demultiplexer Multiplexer

subframe

1

subframe

(8x16)

8

8

8

8

8

8

Framing

structure

(extracton)

FEC

frame STM-16

Figure 5.10: Block diagram of G.975 - forward error correction architecture

Input

Syndrome

Key Equation Solver

Parallel-2 Chien Search

BP-Based Error Value Evaluator

Output

Codeword A Codeword B Codeword C

A B C

Codeword A

1A 2A 3A 4A 5A 6A 7A0A 0B 1B 2B 3B 4B 5B 6B 7B

Latency = 259 cycles

1A 2A 3A 4A 5A 6A 7A 1B 2B 3B 4B 5B 6B 7BSyndrome Updater 31A
31A

31B

31B

A
A

Figure 5.11: Decoding scheme of the decision-confined soft RS decoder

updater iteratively modifies the syndromes S(i)(x) according to the LRPs with Gray code

based bit-flipping method. The half iteration key equation solver solves the corresponding

Λ(i)(x) within 8 clock cycles. As long as the degree of Λ(i)(x) is less than t, the parallel-

2 Chien search and the BP-based error value evaluator will be applied to find the error

locations as well as error values at the last stage. According to our timing schedule, each

pipeline stage has been slightly enlarged from 255 to 259 clock cycles because of the 3-stage

reliability evaluation.

Fig. 5.12 analyzes the required bit-width for the proposed decision-confined soft RS (255,

239; 8) decoder with 5 LRPs. The CER curves indicate that the proposed soft RS decoder

with 6-bit input quantization is sufficient to achieve similar performance to the floating point

soft RS decoder. Notice that the input quantization of the proposed soft RS decoder only

affects the size of the comparators and registers in reliability evaluator. Consequently, it has

122

5.5 6 6.5 7 7.5

10
−4

10
−3

10
−2

10
−1

10
0

Eb/No(db)

C
E

R

HARD
Decision−Confined, FLOAT
Decision−Confined, FIX POINT (5,4)
Decision−Confined, FIX POINT (6,5)
Decision−Confined, FIX POINT (7,6)

Figure 5.12: Fixed point simulation results for soft RS (255, 239; 8) with η = 5

Table 5.5: Implementation Results and Comparision

Decision-Confined pRiBM [75] pDCME [76] DCME [77]

Code Type Soft RS (255, 239) Hard RS (255, 239) Hard RS (255, 239) Hard RS (255, 239)
Technology 90 nm 90 nm 0.13 µm 0.25 µm
Operation 320MHz 690MHz 660MHz 200MHz
Frequency (Measurement) (Synthesis) (Synthesis) (Synthesis)
Core Area 216,225 µm2 - - -

Gate Count 45.3 K 43.6 K 53.2 K 42.2 K
Throughput 2.56 Gb/s 5.52 Gb/s 5.28 Gb/s 1.6 Gb/s
Coding Gain 0.4 dB @ 10−4 CER - - -

Power 19.6 mW - - -

little influence on hardware complexity.

Fig. 5.13 shows the decision-confined soft RS (255, 239; 8) decoder die photo, which is

implemented with the cell-based design flow and fabricated in 90nm 1P9M CMOS process.

The chip is verified by Agilent 93000 SOC test system and the Shmoo plot shown in Fig. 5.14

indicates that our design can achieve 320 MHz operation frequency at 0.98 V supply.

In our understanding, our decoder chip is the first soft RS decoder chip. Hence, TA-

BLE 5.4 illustrates the implementation results of our soft RS decoder with other hard RS

decoders. Our chip with 45.3K gates is comparable with a conventional hard decoder. More-

over, it can fit well for 10-40 Gb/s with 16 RS decoders in optical fiber systems and 2.5 Gb/s

GPON applications with 0.4 dB coding gain over hard decoders at 10−4 CER.

123

Memory

Syndrome

Calculator

Key Equation

Solver

Error Value

Evaluator

Chien

Search
Relibility

Evaluator

Syndrome Updator

Figure 5.13: Microphoto of decision-confined soft RS (255, 239; 8) chip

Figure 5.14: Shmoo Plot of decision-confined soft RS (255, 239; 8) chip

124

Chapter 6

Conclusion

The research on the area-efficient soft BCH and RS decoder design and implementation is

reported in this dissertation. We investigate the error magnitude (EM) type decoders for

BCH codes and the Chase-Type decoders for both BCH and RS codes.

6.1 Summary

A 26.9 K 314.5 Mb/s soft BCH (32400, 32208; 12) decoder chip is designed for DVB-S2

system. With the EM-type approach, the proposed decoder architecture not only deals with

the least reliable bits to reduce complexity but also utilizes the single stage pipeline to mini-

mize the memory bank usage. The proposed error locator evaluator eliminates Chien search

to ensure sufficient throughput without parallelism. As compared with the conventional

hard BCH decoder, our BCH decoder with soft information from LDPC decoder provides

similar system performance. From the measurement results, the proposed soft BCH decoder

can achieve 314.5 Mb/s with 50.0% gate-count reduction in contrast to a 99.3 Mb/s tradi-

tional hard BCH decoder in CMOS 90 nm technology. While extended to fully support 21

modes in DVB-S2 system, the proposed design can operate 300 MHz frequency with 32.4 K

gate-count.

To enhance the error correcting performance, improved EM-type soft decoders with one

extra error compensation are proposed. Based on the reformulation of generator polynomial,

the BCH-Like codes are also defined to enhance code rate, resulting in higher channel usage

efficiency. Compared to the conventional hard BCH decoder, the proposed soft BCH and

BCH-Like decoders not only achieve better error correcting performance but also provide

125

competitive hardware complexity. The decoders with soft information can reduce hardware

complexity by focusing on the least reliable bits. Meanwhile, the error correcting ability is

improved with one extra error compensation. From the experimental results, the proposed

soft BCH (255, 239; 2) and BCH-Like (255, 237; 3) decoders can obtain 0.75 dB and 0.47

dB coding gain over the hard BCH (255, 239; 2) and (255, 231; 3) decoders at 10−5 BER

respectively. The soft BCH-Like (63, 49; 3) decoder with higher code rate can also improve

the coding gain to be 1.2 dB closer to Shannon limit as compared with the hard BCH (63,

45; 3) decoder. According to the post-layout simulation in 90 nm CMOS technology, the

proposed soft decoders can achieve at most 1.9 times throughput enhancement and 5% gate

count reduction as compared with the traditional hard BCH decoders.

Since the EM-type methods only can provide better error correcting performance for

BCH codes while applied in small error correcting codes or with reliable information. To

provide more general low complexity decoding methods for both BCH and RS codes, the

Chase-type soft decoders are proposed. From the simulation, the proposed soft (224, 216;

4) decoder has 0.5 dB coding gain at 10−5 BER as compared with the conventional hard de-

coder. In addition, a decision-eased soft RS (224, 216; 4) decoder is designed in CMOS 90 nm

technology for the mmWave system. The rescheduled decoding scheme allows for generating

8 candidate codewords with only one suit hardware, leading to significantly hardware com-

plexity reduction. Moreover, determining the output codeword with the Hamming distance

calculation avoids the complex computation of Euclidean distance calculation. According to

the post-layout simulation, the proposed soft RS decoder can achieve 2.5 Gb/s throughput

with gate count of 30 K, which is only 1.38 times the normalized area of a pRiBM based

hard RS decoder. As a result, it is very suitable for practical applications.

In addition, the decision-confined decoder is proposed for soft BCH and RS codes. By

confining the degree of error location polynomial, our approach only needs to completely

decode one candidate sequence unlike conventional Chase-type methods using several hard

RS decoders and determining the most possible candidate. From the simulation, the pro-

posed soft (255, 239; 8) decoder can achieve 0.4 dB coding gain at 10−4 CER over hard

126

decoders. A decision-confined soft RS (255, 239; 8) decoder is implemented in CMOS 90 nm

technology for optical communications. According to the measurement results, the proposed

soft RS decoder can operate at 320 MHz frequency to achieve 2.56 Gb/s throughput with

45.3 K gates, where the hardware complexity is comparable with the hard RS decoders. As

a result, our proposal can provide more powerful error correcting ability with a high-speed

and area efficient solution for optical communications.

6.2 Future Work

In this dissertation, we have discussed two EM-types soft decoders for BCH codes and two

Chase-type soft decoders for both BCH and RS codes. Although the proposed decision-

confined approach can support both BCH and RS codes with arbitrary error correcting

ability and lead the soft decoder to have competitive hardware complexity as compared

to the hard decoder, there are still two design challenges demanded to be improved. The

first one is to improve the throughput. Due to the doubled operations in the key equation

solver, which leads to half-reduced decoding iterations, the critical path of the decision-

confined soft decoder is nearly twice as long as the hard decoders, resulting the throughput

reduction. If we could modify the decoding criterion for making the soft decoder provide

similar performance with fewer number of LRPs, the key equation solver will not need to

execute doubled operations and the critical path will be half-reduced. The second challenge is

the performance gain provided by our approach for larger t, like t = 24, is not as obvious as for

codes with smaller t, like t = 8. This is because the Chase-type decoding algorithms enhance

the performance by flipping η LRPs to generate candidate codewords and the maximum

number of errors can be corrected is t + η. If the ratio between η and t is decreasing

due to the increasing t, the performance enhancement will be smaller. To overcome this

situation, we would like to investigate the soft-input soft-output decoding algorithms, like

belief propagation algorithm which is often used in LDPC decoding.

127

References

[1] C. E. Shannon, “A mathematical theory of communication,” Bell Syst. Tech. J., vol. 27,
pp. 379–428(Part I), Jul. 1948.

[2] ——, “A mathematical theory of communication,” Bell Syst. Tech. J., vol. 27, pp.
623–656(Part II), July 1948.

[3] S. Lin and D. J. Costello, Jr., Error control coding: fundamentals and applications,
2nd ed. Englewood Cliffs, NJ: Pearson-Hall, 2004.

[4] R. J. McEliece, The theory of information and coding, 2nd ed. Cambridge, UK: Cam-
bridge University Press, 2004.

[5] P. Elias, “Coding for noisy channels,” IRE Conv. Rec., vol. pt.4, pp. 37–47, 1955.

[6] J. M. Wozencraft and B. Reiffen, Sequential decoding. Cambridge: MIT Press and
John Wiley, 1961.

[7] A. J. Viterbi, “Error bounds for convolutional codes and an asymptotically optimum
decoding algorithm,” IEEE Trans. Inform. Theory, vol. IT-13, no. 2, pp. 260–269, Apr.
1967.

[8] Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specification,
IEEE Std. 802.11a, 1999.

[9] Physical Layer Standard for cdma2000 Spread Spectrum Systems, 3GPP2 Std. C.S0002-
D, Rev. 1.0, 2004.

[10] High Rate Ultra Wideband PHY and MAC Standard, ECMA Std. ECMA-368, 2005.

[11] R. E. Blahut, Theory and practice of error control codes. Reading: Addison-Wesley,
1983.

[12] R. W. Hamming, “Error detecting and error correcting codes,” Bell Syst. Tech. J.,
vol. 29, pp. 147–160, Apr. 1950.

[13] D. E. Muller, “Applications of boolean algebra to switching circuits design and to error
detection,” IRE Trans., vol. EC-3, pp. 6–12, Sept. 1954.

[14] I. S. Reed, “A class of multile-error-correcting codes and the decoding scheme,” IRE
Trans., vol. IT-4, pp. 38–49, Sept. 1954.

128

[15] R. C. Bose and D. K. Ray-Chaudhuri, “On a class of error correcting binary group
codes,” Inform. Control, vol. 2, pp. 68–69, Mar. 1960.

[16] A. Hocquenghem, “Codes corecteurs d’erreurs,” Chiffres, vol. 2, pp. 147–156, 1959.

[17] I. S. Reed and G. Solomon, “Polynomial codes over certain finite fields,” J. Soc. Ind.
Appl. Math., vol. 8, pp. 300–304, June 1960.

[18] D. C. Gorenstein and N. Zierler, “A class of cyclic linear error-correcting codes in pm

symbols,” J. Soc. Indust. Appl. Math., vol. 9, pp. 207–214, June 1961.

[19] Forward error correction for submarine systems, ITU-T Std. G.975, 2000.

[20] Forward Error Correction for high bit-rate DWDM Submarine System, ITU-T Std.
G.975.1, 2004.

[21] Digital Video Broadcasting (DVB): Framing Structure, Channel Coding and Modulation
for 11/12 GHz Satellite Services, ETSI Std. EN 300 421 v1.1.2, 1997.

[22] Digital Video Bracasting (DVB) Second Generation System for Broadcasting, Interactive
Services, News Gathering and Other Broadband Satellite Applications, ETSI Std. En 302
307, 2005.

[23] Framing Structure, Channel Coding and Modulation for Digital Television Terrestrial
Broadcasting System, NSPRC Std. GB 20 600-2006, 2007.

[24] Digital Video Broadcasting (DVB); Frame structure channel coding and modulation for
a second generation digital terrestrial television broadcasting system (DVB-T2), ETSI
Std. EN 302 755 V1.2.0b, 2008.

[25] G. D. Forney, “Generalized minimum distance decoding,” IEEE Trans. Inform. Theory,
vol. 12, p. 125V131, Apr. 1966.

[26] D. Chase, “A class of algorithms for decoding block codes with channel measurement
information,” IEEE Trans. Inform. Theory, vol. IT-18, p. 170V182, Jan. 1972.

[27] H. Tang, Y. Liu, M. Fossorier, and S. Lin, “On combining Chase-2 and GMD decoding
algorithms for nonbinary block codes,” IEEE Commun. Lett., vol. 5, no. 5, pp. 209
–211, May 2001.

[28] R. Koetter and A. Vardy, “Algebraic soft-decision decoding of reed− solomon codes,”
IEEE Trans. Inform. Theory, vol. 49, no. 11, pp. 2809–2825, Nov. 2003.

[29] V. Guruswami and M. Sudan, “Improved decoding of Reed-Solomon and algebraic-
geometry codes,” IEEE Trans. Inform. Theory, vol. 45, no. 6, pp. 1757–1767, Sept.
1999.

[30] C. Hartmann and L. Rudolph, “An optimum symbol-by-symbol decoding rule for linear
codes,” IEEE Trans. Inform. Theory, vol. 22, no. 5, pp. 514–517, Sept. 1976.

129

[31] F. Therattil and A. Thangaraj, “A low-complexity soft-decision decoder for extended
BCH and RS-Like codes,” in IEEE Int. Symp. on Info. Theory. (ISIT), Sept. 2005, pp.
1320–1324.

[32] J. Jiang and K. Narayanan, “Iterative soft-input soft-output decoding of Reed-Solomon
codes by adapting the parity-check matrix,” IEEE Trans. Inform. Theory, vol. 52, no. 8,
pp. 3746–3756, Aug. 2006.

[33] W. J. Gross, F. R. Kschischang, R. Koetter, and P. G. Gulak, “Towards a VLSI archi-
tecture for interpolation-based soft-decision Reed-Solomon decoders,” J. VLSI Signal
Process, vol. 39, pp. 93–111, 2005.

[34] X. Zhang, “High-speed VLSI architecture for low-complexity Chase soft-decision Reed-
Solomon decoding,” in IEEE Info. Theory and Application Workshop. (ITA), Feb. 2009,
pp. 422–430.

[35] A. Ahmed, R. Koetter, and N. Shanbhag, “VLSI architectures for soft-decision decoding
of Reed-Solomon codes,” IEEE Trans. Inform. Theory, vol. 57, no. 2, pp. 648 –667, Feb.
2011.

[36] R. J. McEliece, Finite field for computer scientists and engineers. Boston: Kluwer
Academic, 1987.

[37] F. J. MacWilliams and N. J. A. Sloane, The theory of error-correcting codes. Amster-
dam: North-Holland, 1977.

[38] W. W. Peterson, “Encoding and error-correction procedures for the Bose-Chaudhuri
codes,” IRE Trans. Inform. Theory, vol. IT-6, pp. 459–470, Sept. 1960.

[39] E. R. Berlekamp, Algrbraic coding theory. New York: McGraw-Hill, 1968.

[40] ——, “On decoding binary Bose-Chaudhuri-Hocquenghem codes,” IEEE Trans. Inform.
Theory, vol. IT-11, pp. 577–579, Oct. 1965.

[41] J. Massey, “Step-by-step decoding of the Bose-Chaudhuri-Hocquenghem codes,” IEEE
Trans. Inform. Theory, vol. IT-11, pp. 580–585, Oct. 1965.

[42] ——, “Shift-register synthesis and bch decoding,” IEEE Trans. Inform. Theory, vol.
IT-15, pp. 122–127, Jan. 1969.

[43] Y. Sugiyama, M. Kasahara, S. Hirasawa, and T. Namekawa, “A method for solving key
equation for decoding Goppa codes,” Inform. Contr., vol. 27, pp. 87–99, Jan. 1975.

[44] L. Welch and R. Scholtz, “Continued fractions and Berlekamp’s algorithm,” IEEE
Trans. Inform. Theory, vol. IT-25, pp. 19–27, Jan. 1979.

[45] R. Chien, “Cyclic decoding procedure for the Bose-Chaudhuri-Hocquenghem codes,”
IEEE Trans. Inform. Theory, vol. IT-10, pp. 357–363, Oct. 1964.

[46] G. D. Forney, Jr., “On decoding BCH codes,” IEEE Trans. Inform. Theory, vol. IT-11,
pp. 549–557, Oct. 1965.

130

[47] H. C. Chang, “Research on Reed-Solomon decoder-design and implementation,” Ph.D.
dissertation, National Chiao Tung Univ., Hsinchu, Taiwan, 2002.

[48] G. Feng and K. Tzeng, “A generalization of the Berlekamp-Massey algorithm for mul-
tisequence shift-register synthesis with applications to decoding cyclic codes,” IEEE
Trans. Inform. Theory, vol. 37, pp. 1274–1287, Sept. 1991.

[49] W. Gross, F. Kschischang, R. Koetter, and M. Sudan, “A VLSI architecture for interpo-
lation in soft-decision list decoding of Reed-Solomon code,” in IEEE Workshop Signal
Process Syst. (SiPS), Oct. 2002, pp. 39–44.

[50] R. Roth and G. Ruckenstein, “Efficient decoding of Reed-Solomon codes beyond half
the minimum distance,” IEEE Trans. Inform. Theory, vol. 46, no. 1, pp. 246 –257, Jan.
2000.

[51] R. Koetter, J. Ma, A. Vardy, and A. Ahmed, “Efficient interpolation and factorization
in algebraic soft-decision decoding of Reed-Solomon codes,” in IEEE Int. Symp. on
Info. Theory. (ISIT), 2003.

[52] R. Koetter and A. Vardy, “A complexity reducing transformation in algebraic list de-
coding of Reed-Solomon codes,” in IEEE Info. Theory Workshop. (ITW), March 2003,
pp. 10 – 13.

[53] J. Bellorado and A. Kavcic, “A low-complexity method for Chase-Type decoding of
Reed-Solomon codes,” in IEEE Int. Symp. on Info. Theory. (ISIT), 2006, pp. 2037
–2041.

[54] J. Zhu, X. Zhang, and Z. Wang, “Novel interpolation architecture for low-complexity
Chase soft-decision decoding of Reed-Solomon codes,” in IEEE Int. Symp. on Circuits
and Systems (ISCAS), May 2008, pp. 3078 –3081.

[55] J. Zhu and X. Zhang, “Factorization-free low-complexity Chase soft-decision decoding
of Reed-Solomon codes,” in IEEE Int. Symp. on Circuits and Systems (ISCAS), May
2009, pp. 2677 –2680.

[56] W. J. ReidIII, L. L. Joiner, and J. J. Komo, “Soft decision decoding of BCH codes using
error magnitudes,” in IEEE Int. Symp. on Info. Theory. (ISIT), June 1997, p. 303.

[57] L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of linear codes for
minimizing symbol error rate,” IEEE Trans. Inform. Theory, vol. 20, pp. 284–287, Mar.
1974.

[58] Y.-M. Lin, C.-L. Chen, H.-C. Chang, and C.-Y. Lee, “A 26.9 K 314.5 Mb/s soft (32400,
32208) BCH decoder chip for DVB-S2 system,” IEEE J. Solid-State Circuits, vol. 45,
pp. 2330–2340, Nov. 2010.

[59] A. Björck and V. Pereyra, “Solution of Vandermonde systems of equations,” Math.
Computation, vol. 24, pp. 893–903, Oct. 1970.

[60] J. Hong and M. Vetterli, “Simple algorithms for BCH decoding,” IEEE Trans. Com-
mun., vol. 43, pp. 2324–2333, Aug. 1995.

131

[61] P. E. McIllree, “Channel capacity calculations for M-ary N-dimensional signal sets,”
Master thesis, University of South Australia, 1995.

[62] C. Parr, “Efficient VLSI architectures for bit-parallel computation in Galois fields,”
Ph.D. dissertation, Inst. for Experimental Mathematics of Univ. of Essen Germany,
1994.

[63] I. S. Reed, M. T. Shih, and T. K. Truong, “VLSI design of inverse-free Berlekamp-
Massey algorithm,” in IEEE Proc. Inst. Elect. Eng, vol. 138, Sept. 1991, pp. 295–298.

[64] W. Liu, J. Rho, and W. Sung, “Low-power high-throughput BCH error correction VLSI
design for multi-level cell NAND flash memories,” in IEEE Workshop Signal Process
Syst. (SiPS), 2006, pp. 303 –308.

[65] D. Knuth, The Art of Computer Programming, Vol. 3, Sorting and Searching, 2nd ed.
Addision-Wesley, 1998.

[66] A. Raghupathy and K. J. R. Liu, “Algorithm-based low-power/high-speed Reed-
Solomon decoder design,” IEEE Trans. Circuits Syst. II, vol. 47, no. 11, pp. 1254–1270,
Nov. 2000.

[67] D. Sarwate and N. Shanbhag, “High-speed architectures for Reed-Solomon decoders,”
IEEE Trans. VLSI Syst., vol. 9, no. 5, pp. 641–655, Oct. 2001.

[68] J. Cho and W. Sung, “Strength-reduced parallel Chien search architecture for strong
BCH codes,” IEEE Trans. Circuits Syst. II, vol. 55, no. 5, pp. 427–431, May 2008.

[69] H.-C. Chang, C.-C. Lin, and C.-Y. Lee, “A low-power Reed-Solomon decoder for STM-
16 optical communications,” in IEEE Asia-Pacific Conf. on ASIC (APASIC), 2002, pp.
351 – 354.

[70] L. Song, M.-L. Yu, and M. Shaffer, “10- and 40-Gb/s forward error correction devices
for optical communications,” IEEE J. Solid-State Circuits, vol. 37, no. 11, pp. 1565 –
1573, Nov. 2002.

[71] Y. Chen and K. Parhi, “Small area parallel Chien search architectures for long BCH
codes,” IEEE Trans. VLSI Syst., vol. 12, no. 5, pp. 545–549, May 2004.

[72] Y.-M. Lin, J.-Y. Wu, C.-C. Lin, and H.-C. Chang, “A long block length BCH decoder
for DVB-S2 application,” in IEEE Int. Symp. on Integrated Circuits (ISIC), Dec. 2009,
pp. 171 –174.

[73] High Rate Short Range Wireless Communication, ECMA TC32-TG20 Std., [online].
Available:http://www.ecma-international.org/memento/TC-32-TG20-M.htm/.

[74] IEEE 802.15 WPAN Millimeter-wave Alternative PHY Task Group 3c (TG3c)., IEEE
Std. Draft Document, 2009.

[75] J.-I. Park, K. Lee, C.-S. Choi, and H. Lee, “High-speed low-complexity Reed-Solomon
decoder using pipelined Berlekamp-Massey algorithm,” in IEEE Int. SoC Design Con-
ference (ISOCC), 2009, pp. 452 –455.

132

[76] S. Lee, H. Lee, J. Shin, and J.-S. Ko, “A high-speed pipelined degree-computationless
modified Euclidean algorithm architecture for Reed-Solomon decoders,” in IEEE Int.
Symp. on Circuits and Systems (ISCAS), May 2007, pp. 901 –904.

[77] J. Baek and M. Sunwoo, “New degree computationless modified Euclid algorithm and
architecture for Reed-Solomon decoder,” IEEE Trans. VLSI Syst., vol. 14, no. 8, pp.
915 –920, Aug. 2006.

[78] Forward Error Correction for Submarine Systems, ITU-T Std. G.975, 1996.

[79] Gigabit-capable Passive Optical Networks (G-PON): Transmission convergence layer
specification, ITU-T Std. G.984.3, 2008.

133

	Abstract_Chinese.pdf
	摘　要

	Abstract_English.pdf
	Department of Electronics Engineering & Institute Electronics National Chiao Tung University
	Abstract

