

國 立 交 通 大 學

電子工程學系 電子研究所

碩 士 論 文

應用於無線影像娛樂系統之以記憶體為重心的晶內互

聯網路

Memory-Centric On-Chip Interconnection Network for

Wireless Video Entertainment Systems

研 究 生：王湘斐

指導教授：黃 威 教授

中 華 民 國 九 十 九 年 七 月

應用於無線影像娛樂系統之以記憶體為重心的晶內互

聯網路

Memory-Centric On-Chip Interconnection Network for

Wireless Video Entertainment Systems

研 究 生：王湘斐 Student：Shiang-Fei Wang

指導教授：黃 威 教授 Advisor：Prof. Wei Hwang

國 立 交 通 大 學

電 子 工 程 學 系 電 子 研 究 所

碩 士 論 文

A Thesis

Submitted to Department of Electronics Engineering & Institute of Electronics

College of Electrical Engineering and Computer Engineering

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master

in

Electronics Engineering

July 2010

Hsinchu, Taiwan, Republic of China

中華民國九十九年七月

I

應用於無線影像娛樂系統之以記憶體為重心的晶內互

聯網路

學生：王湘斐 指導教授：黃 威 教授

國立交通大學電子工程學系電子研究所

摘 要

本論文實現一個可應用於無線影像娛樂系統之以記憶體為重心的晶內互聯

網路。在這個晶內互聯網路之中，我們利用記憶體借用的機制讓網路介面可以有

效的降低資料阻塞的情況。除此之外，對於無線影像娛樂系統，晶內互聯網路提

供微架構和基本建構元素給晶內網路包含網路介面，路由器，連接線路。藉由考

量可借出的記憶體區塊大小和分散式的記憶體管理單元，可以動態調整輸出隊列

的大小。基於在 SystemC 週期推動的模擬結果，本論文所提出的網路介面相較

於一般的網路介面可以提升 1.15 倍的效能。同時可以減少 2%~4%的資料阻塞情

況。提供一個良好的資料傳輸環境給無線影像娛樂系統。

II

 Memory-Centric On-Chip Interconnection Network for

Wireless Video Entertainment Systems

Student : Shiang-Fei Wang Advisors : Prof. Wei Hwang

Department of Electronics Engineering & Institute of Electronics

National Chiao-Tung University

ABSTRACT

A memory-centric on-chip interconnection network (OCIN) with an efficient

network interface is realized in this thesis. Additionally, a borrowing mechanism is

proposed to reduce head-of-line data blocking. Furthermore, for wireless video

entertainment system, on-chip interconnection network (OCIN) provides the micro

architecture and the building blocks, including network interfaces (NIs), routers and

link wires.

By considering the borrowed memory blocks and distributed memory

management unit (d-MMU), the size of output queue in the NI can be dynamically

scheduled. Based on the cycle-driven simulation results in SystemC, the proposed

efficient NI can achieve performance improvement by 1.15x compared to the

conventional NI. The blocking condition can be reduced 2%~4%. For on-demand

memory system, we can efficiently reduce data blocking by adjusting buffer size and

borrowed memory blocks. Under the condition of 70% blocking rate of receiver and

16 words of borrowed memory blocks, the data blocking reduction rate can reach 25%.

With the proposed memory-centric OCIN, we can improve the data communication

environment for wireless video entertainment systems.

III

致謝

感謝許多人的幫助，讓我完成了這一篇論文。

首先，我要感謝我的指導教授黃威，在他的指導下讓我對自己研究的領域有

更深入的瞭解，建立了研究的興趣與自信心。黃教授提供了一個常優良的研究環

境與充足的研究資源，讓我能夠充分發揮自己的能力完成這一篇論文。

感謝實驗室的成員，在過去的兩年當中在生活上與研究上對我的幫助。感謝

黃柏蒼、張銘宏和張雍對於我在研究上的幫忙，讓我能夠有更加優良的研究成

果。

最後我要感謝我的家人對我在生活上的關心與幫助，讓我能夠順利的完成碩

士的論文研究。

IV

Contents

Chapter 1 Introduction ... 1

1.1 Background .. 1

1.2 Motivation .. 2

1.3 Contribution ... 2

1.4 Organization ... 2

Chapter 2 Previous Work of On-Chip Interconnection Network 3

2.2 Why NoC? ... 3

2.2 The Design Concept of Network-on-Chip ... 7

2.2.1 The Design Abstraction Levels of Network-on-Chip 8

2.3 Topologies for Network-on-Chip Architecture .. 9

2.3.1 Conventional Topologies of Network-on-Chip 10

2.3.2 Advanced Network-on-Chip Architectures ... 11

2.4 Switching Fabrics in Network-on-Chip ... 12

2.4.1 Buffers in Switch Fabrics .. 13

2.4.2 Switching Circuit in Switch Fabrics ... 17

2.4.3 Arbitration Unit Circuit in Switch Fabrics .. 17

Chapter 3 Flow Control for On-Chip Interconnection Network 19

3.1 Overview of Flow Control ... 19

3.2 Bufferless Flow Control ... 20

3.2.1 Circuit Switching Flow Control .. 20

3.3 Buffered Flow Control ... 22

3.3.1 Packet-Buffer Flow Control .. 23

3.3.1.1 Store-and-Forward Flow Control ... 23

3.3.1.2 Virtual Cut Through (VCT) Flow Control 24

3.3.2 Flit-Buffer Flow Control ... 26

3.3.2.1 Wormhole Flow Control .. 26

3.3.2.2 Virtual Channel Flow Control .. 27

3.3.3 Buffer Management and Backpressure ... 29

3.3.3.1 Credit-Based Flow Control .. 29

3.3.3.2 On/Off Flow Control .. 30

3.3.3.3 Ack/Nack Flow Control ... 31

3.3.4 Flit-Reservation Flow Control .. 33

3.4 Memory-Centric On-Chip Interconnection Network for Heterogeneous

Multi-Core SoC .. 33

3.4.1 Network Interconnection .. 35

3.4.1.1 Data Switching Protocol between Crossbar and NI 35

V

3.4.1.2 Arbitration Mechanism for Router (Crossbar) 37

3.5 Summary .. 38

Chapter 4 An Efficient Network Interface for Memory-Centric

On-Chip Interconnection Network 39

4.1 Introduction .. 39

4.2 Memory-Centric On-Chip Interconnection Network..................................... 41

4.2.1 Packet Definition .. 41

4.2.2 Data Communication Protocol .. 42

4.3 Efficient Network Interface for Memory-Centric On-Chip Interconnection

Network.. 47

4.3.1 Borrowing Address Generator .. 49

4.3.2 Buffer Control ... 51

4.4 Simulation Results ... 55

4.5 Summary .. 58

Chapter 5 Memory-Centric On-Chip Data Communication for

Wireless Video Entertainment Systems 60

5.1 Motivations .. 60

5.2 Memory-Centric On-Chip Data Communication Platform 62

5.2.1 Overall Architecture .. 62

5.2.2 Concepts of On-Demand Memory System ... 64

5.3 Wireless Video Entertainment System ... 65

5.3.1 Wireless Processing Unit (WPU) .. 68

5.3.2 Medium Access Control (MAC) ... 70

5.3.3 LT Coding ... 72

5.3.4 Scalable Video Coding (SVC) .. 74

5.4 Memory-Centric On-Chip Data Communication Platform for Wireless Video

Entertainment System .. 75

5.5 Simulation Results ... 77

Chapter 6 Conclusions and Future Work ... 81

6.1 Conclusions .. 81

6.2 Future Work ... 82

VI

List of Figures
Figure 2.1 Traditional Synchronous Bus ... 4

Figure 2.2 (a) Multi-Layer Bus Architecture (b) Centralized Crossbar Switch 6

Figure 2.3 Network-on-Chip Architecture ... 6

Figure 2.4 The design abstraction levels of NoC ... 7

Figure 2.5 NoC architecture (a) SPIN (b) Mesh (c) Torus (d) Folded tours (e)

Octagon (f) Butterfly Fat Tree ... 9

Figure 2.6 Xipies Architecture ... 11

Figure 2.7 Hierarchy Network-on-Chip Architecture .. 12

Figure 2.8 Head-of-line blocking problem .. 14

Figure 2.9 Buffer architecture .. 14

Figure 2.10 Buffer Implementation ... 15

Figure 2.11 Crossbar partial activation technique ... 17

Figure 3.1 Time-space diagram of a circuit-switched message [3.1] 21

Figure 3.2 Buffered flow control methods can be classified based on their

granularity of channel bandwidth allocation and buffer allocation [3.1]

.. 23

Figure 3.3 Time-space diagram of a packet-switched message [3.1] 24

Figure 3.4 Time-space diagram of a virtual cut-through switched message [3.1] ... 25

Figure 3.5 Time-space diagram of a wormhole-switched message [3.1] 27

Figure 3.6 Virtual channels [3.1] ... 29

Figure 3.7 Timeline of credit-based flow control [3.9] .. 30

Figure 3.8 Timeline of on/off flow control [3.9] ... 31

Figure 3.9 Timeline of ack/nack flow control [3.9] ... 32

Figure 3.10 abstraction levels of NoC ... 34

Figure 3.11 Memory-Centric On-Chip Interconnection Architecture. 35

Figure 3.12 Timing diagram between crossbar and NI. ... 37

Figure 3.13 Interface definition between Network Interface and crossbar. 37

Figure 3.14 Flow chart of arbitration. .. 38

Figure 4.1 Memory-centric on-chip interconnection network (OCIN) 40

Figure 4.2 Packet definition of the memory-centric on-chip interconnection

network .. 41

Figure 4.3 Simulation model block diagram.. 42

Figure 4.4 Timing diagram of send packet data to other node................................. 46

Figure 4.5 Timing diagram of send read request to other node 46

Figure 4.6 Timing diagram of receive packet from other node 47

Figure 4.7 Timing diagram of receive request from other node 47

VII

Figure 4.8 Efficient network interface with d-MMU. .. 48

Figure 4.9 Buffer borrowing interface between the NI and d-MMU....................... 49

Figure 4.10 Borrowing mechanism in d-MMU ... 50

Figure 4.11 Architecture of the empty memory block searching. 50

Figure 4.12 Searching flow chart of the borrowing mechanism in d-MMU. 51

Figure 4.13 Block diagrams of borrowing mechanism in network interface 52

Figure 4.14 Borrowing control policy of the buffer control 53

Figure 4.15 Timing diagram of writing blocked data in the d-MMU 54

Figure 4.16 Timing diagram of releasing extension memory block 54

Figure 4.17 Timing diagram of read back blocked data. ... 55

Figure 4.18 Simulation environment ... 55

Figure 4.19 Execution under different output queue size (injection load = 20%) ... 56

Figure 4.20 Execution under different output queue size (injection load = 15%) ... 56

Figure 4.21 (a) Execution time under various injection loads and queue sizes (b)

Transferred packet under various injection loads and queue sizes 57

Figure 5.1 Wireless Video Entertainment Systems .. 60

Figure 5.2 Homogeneous multi-core platform (a) Intel Polaris (b) Tilera

TILEPro64
TM

 Processor ... 61

Figure 5.3 Trend of the data transmitting bandwidth ... 61

Figure 5.4 Comparison between memory bandwidth, memory capacity and

communication efficiency in multi-core systems. 62

Figure 5.5 The architecture of memory-centric on-chip data communication

platform .. 64

Figure 5.6 Illustration of the memory hierarchy in on-demand memory system 65

Figure 5.7 Multi-Task wireless video entertainment systems 67

Figure 5.8 Transmitter and receiver block diagram ... 68

Figure 5.9 Single-FFT Architecture for MIMO Modem ... 68

Figure 5.10 Single-FFT Architecture for MIMO Modem 69

Figure 5.11 Single-FFT Architecture for MIMO Modem .. 69

Figure 5.12 MAC Layer Architecture .. 71

Figure 5.13 An example of decidable codewords which BP decoding fails to

decode .. 73

Figure 5.14 Architecture of an SVC encoder ... 74

Figure 5.15 Data stream of wireless video entertainment system 76

Figure 5.16 On-Demand Memory System architecture ... 77

Figure 5.17 data blocking reduction rate under memory borrowing size = 512

words, size of output queue in the sender = 16 words, size of input

queue in the receiver = 32 words ... 78

VIII

Figure 5.18 trend of data blocking reduction rate under various sizes of memory

borrowing blocks ... 80

Figure 6.1 Architecture of femtocell home multimedia center 82

List of Tables
Table 3.1 Input and output description between network interface and crossbar 36

Table 4.1 Input description of the wrapper .. 44

Table 4.2 Output description of the wrapper ... 45

Table 4.3 Blocking condition reduction rate under various output queue size and

blocking rate of receiver (size of borrowed memory blocks = 512 words)

.. 58

Table 5.1 System Specification .. 67

Table 5.2 data blocking reduction rate under various blocking rate of receiver and

sizes of borrowed memory blocks ... 79

1

Chapter 1

Introduction

1.1 Background

With development of System-on-Chip (SoC) and multimedia communication

technologies, a great amount of data computing requirement increases rapidly. The

bandwidth requirement between the processing cores in SoCs is increasing. The

aggregate communication bandwidth between the processing cores is in the GBytes/s

range for many video applications. In the future, with the integration of many

applications onto a single device and with increased processing speed of cores, the

bandwidth demands will scale up to much larger values. Multiprocessor

system-on-chip (MP-SoC) [1.1][1.2][1.3][1.4][1.5] architectures are emerging as

appealing solutions for embedded multimedia applications. In general, MP-SoCs are

composed of core processors, memories and some application-specific coprocessors.

Communication is provided by advanced interconnect fabrics, such as high

performance and efficient networks-on-chip (NoCs)[1.6].

System-on-Chip (SoC) design is an integrated solution for merging processor

elements (PEs) in communications, multimedia and consumer electronics. However,

as design complexity of SoC continues to increase, the requirements for on-chip

communication bandwidth among PEs are growing continually. Therefore, a global

approach is needed to effectively transport and manage on-chip communication traffic,

and optimize wire efficiency. Process-independent network-on-chip (NoC) has been

considered an effective solution to integrate a multi-core system and a packet

switched approach [1.7][1.8][1.9]. NoC was investigated for dealing with the

challenges of on-chip data communication caused by the increasing scale of next

2

generation SoC designs. Furthermore, on-chip interconnection networks (OCINs)

provide the micro-architecture and the building blocks for NoCs, including network

interfaces (NIs), routers and link wires [1.10].

1.2 Motivation

NoCs design is essentially important for the future System-on-Chip (SoC) design.

However, as the increasing multimedia data computing grow, data blocking condition

in the output of processer elements will be more and more common. A fine-design

network interface and interconnection network can provide a bridge between various

processor elements which can reduce occurrence of data blocking efficiently.

Moreover, it provides a well communication environment for wireless video

entertainment system.

1.3 Contribution

In this thesis, we propose the memory-centric on-chip data communication

platform for e-Home II project which includes two parts: on-demand memory system

and on-chip interconnection network (OCIN). My thesis focuses the on on-chip

interconnection network. We propose an efficient network interface and a crossbar

(interconnection network) for data communication among various processor elements.

Finally, we integrate a heterogeneous platform for wireless video entertainment

system.

1.4 Organization

The organization of this thesis is as follows. An overview of on-chip

interconnection network is introduced in the chapter 2. In this chapter, the design

concept of NoCs will be described. Then, we would introduce flow control

mechanism and interconnection network (crossbar) including arbitration mechanism

in the chapter 3. Chapter 4 presents an efficient network interface for memory-centric

on-chip interconnection network which can reduce the data blocking by a borrowing

mechanism. Finally, a memory-centric on-chip data communication platform

developed for a wireless video entertainment system will be introduced in the chapter

5.

3

Chapter 2
Previous Work of On-Chip Interconnection

Network

In this chapter, I describe how Network on Chip (NoC) will be the next major

challenge to implement complex and function-rich application in advanced process

technologies in section 2.1. The general design concept is discussed in section 2.2.

The interconnect architecture, topologies, of NoC should be efficient for a huge

amount of processor elements. A number of different interconnect architectures will

been present in section 2.3. Moreover, some advance topologies are present to adopt

with on-chip platform. Switching fabrics (or called router) is a key component in

network-on-chip to command the data communication. I will describe the components

in switch fabrics and how they influence the NoC systems in section 2.4, which

includes four parts: routing units, buffers, switching circuits, and arbitration unit. In

addition, the implementation of each unit will be described also.

2.2 Why NoC?

System-on-chip (SOC) designs provide the integrated solution to the challenging

design problems in the communications, multimedia and consumer electronics.

Moreover, every year System-on-Chip designs become increasingly complex, while

the associated numbers of transistors grows exponentially. The successful design of

SoC depends on the availability of the methodologies that allow designers to copy

with two major challenges: the extreme miniaturization of device and wire features,

and the extremely large scale of integration. Most SoC will find their application

within embedded systems, traditional figures of merit, such as performance, energy

consumption and cost. It will be as important as the first-design correct and reliable

operation and robustness. Modern SoC design is faced with a number of problems

4

caused by the scale and complexity of the designs. For ideal IP-based SoC, on-chip

bus interfaces between each IP and a good verification environment [2.1][2.2].

Figure 2.1 Traditional Synchronous Bus

In the next SoC era, however, there are some challenges for traditional on-chip

bus platform which is shown in Fig. 2.1. First, the required on-chip communication

bandwidth is growing beyond that provided by standard on-chip buses [2.3]. The

shared bus architecture will limit the development factor for integration with

increasing IP blocks. Existing bus architectures and techniques are proving to be

non-scalable, unable to meet leading edge complexity and performance requirements.

Second, the interconnect delay across the chip exceeds the average clock period

of the IP blocks, especially in nano-scale technologies [2.4]. The ratio of global

interconnect delay to average clock period will continue to grow. In a 60nm process, a

signal can reach only 5% of the die’s length in a clock cycle. However, an

interconnect channel design methodology for high performance ICs has proposed in

[2.5], it devised a methodology to size the FIFOs in an interconnect channel

containing one or more FIFOs connected in series and shows that the sizing of the

FIFOs in the channel is a function of system parameters such as data production rate

and communication rate, number of channel stages etc.

Third, in nano-scale technologies, increased coupling effect for interconnects not

only aggravates the power-delay metrics but also deteriorates the signal integrity due

to capacitive and inductive crosstalk noises. Several options were proposed to reduce

the inter-wire capacitances. The first option is to widen the pitch between bus lines.

The second option is using P&R (place & route) tools to avoid routing of the bus lines

side by side. In System-on-Chip, however, the interconnect complexity and the

5

routing time do not allow us trying it to minimize the coupling capacitances. The third

option is to change the geometrical shape of bus lines. But the disadvantage of this

method is that the frank area will increase since the cross-sectional area of a bus line

is fixed. The fourth technique is to add a shielding line (VDD/Ground) between two

adjacent signal lines. The fifth option is to reduce power is through the use of bus

encoding schemes [2.6][2.7][2.8][2.9][2.10][2.11]. By the end of the decade, using 60

nm transistors operating below one volt, with grow to 4 billion transistors running at

10GHz, according to the International Technology Roadmap for Semiconductors.

On-chip physical interconnections will present a limited factor for performance and

energy consumption. The encoding schemes for low power and reliability issues are

proposed in [2.12]. The designers must overcome the challenge of noises to provide

the function correct, reliable operation of the interacting components. A robust

self-calibrating transmission scheme for interconnections is proposed in [2.13] and it

examines some physical properties of on-chip interconnects, with the goal of

achieving fast, reliable and low-energy communication.

Forth, both the system design and performance are limited by the complexity of

the interconnection between the different modules and blocks into single clocked

design. Different data transfer speeds are required, as well as parallel transmission.

The traditional system buses may not be suitable for such a system since only one

module can transmit at a time. Additionally, the modern SOC designer assembles the

system using ready virtual components which might not be easily adaptable to

different clocking situations. The solution to above problems is a segmented bus

design combined with the concept of the globally asynchronous local synchronous

(GALS) system architecture [2.14][2.15][2.16][2.17][2.18][2.19]. Asynchronous

design can make the circuits resilient to delay variation.

6

Figure 2.2 (a) Multi-Layer Bus Architecture (b) Centralized Crossbar Switch

Figure 2.3 Network-on-Chip Architecture

For the above mentioned problems, new architectures for the on-chip

communications are proposed to adapt the next SoC era. The traditional synchronous

on-chip bus architectures as Fig. 1 are faced a serious of acid tests which are

mentioned in the last paragraphs. Multi-layer on-chip shared bus as Fig. 2.2(a) is the

advised version of the traditional on-chip bus to reduce the shared-medium channels

[2.20][2.21][2.22]. It’s the specification of an interconnect scheme that overcome the

limitations of shared bus. Therefore, it enables parallel access paths between multiple

masters and slaves by a bus matrix. When each master has its corresponding bus, the

structure is equivalent to a full crossbar as Fig. 2.2(b). However, not only centralized

crossbar switching systems but also multi-layer bus architectures will be confused

with complex wire routings which will introduce larger power consumption and

interconnect delay with increasing processor elements.

The network-on-chip architecture as Figure 2.3 is based on a homogeneous and

scalable switch fabric network, which considers all the requirements of on-chip

communications and traffic. NoCs have a few distinctive characteristics, namely low

communication latency [2.23][2.24][2.25], energy consumption constraints and

Maste

r

#

1

Maste

r

#

2

Maste

r

#

3

Bus

Matrix

Slave

#1

Slave

#2

Slave

#3

7

design-time specialization. The motivation of establishing NoC platform is to achieve

performance using a system perspective of communication. The core of NoC

technology is the active switching fabric that manages multi-purpose data packets

within complex, IP laden designs. The most important characteristics of NoC

architecture can be summarized as packet switched approach [2.26], flexible and

user-defined topology and global asynchronous locally synchronous (GALS)

implementation.

2.2 The Design Concept of Network-on-Chip

The topic of Network-on-Chip(NoC) designs is vast and complex. There is a

large literature on architectures for NoCs. Consider on-chip communication and its

abstraction of network-on-chip as a micro-network and analyze the various levels of

the micro-network stack bottom to up as right part in Fig. 2.4, starting from physical

layer to software layer. NoC protocols are typical organized in layers, in a fashion that

resembles the OSI protocol stacks as the left part in Fig. 2.4 [2.27]. However, the OSI

protocol stacks is resembled for a marco-network. For a micro-network, the protocol

stack will be reduced to physical layer, data-link layer, network and transport layer

and software later [2.28]. The characteristics of each layer will be described in this

section.

Figure 2.4 The design abstraction levels of NoC

8

2.2.1 The Design Abstraction Levels of Network-on-Chip

NoC protocols are described bottom-up, starting from the physical up to the

software layer. In the physical layer, global wires are the physical implementation of

the communication channels. Traditional rail-to-rail voltage signaling with capacitive

termination, as used today for on-chip communication, is definitely not well-suited for

high-speed, low-energy communications for future global interconnect. Reduced

swing can significantly reduce communication power dissipation which preserves the

speed of data communication. Nevertheless, as the technology trends lead us to use

smaller voltage swings and capacitances, the upset probabilities will rise. It is

important to realize that a well-balanced design should not over design wires so that

their behavior approaches an ideal one, because that the corresponding cost in

performance, energy-efficiency and modularity may be too high. Physical layer

design should find a compromise between competing quality metrics and provide a

clean and complete abstraction of channel characteristics to micro-network layers

above.

Due to the limitations in the physical level and the high bandwidth requirement,

the SoC design will use network architectures similar to those used for

multi-processors. Network-on-chip design entails the specification of network

architectures and control protocols. The data-link layer abstracts the physical layer as

an unreliable digital link, where the probability of bit upsets is non null. Furthermore,

reliability can be traded off for energy. The main purpose of data-link protocols is to

increase the reliability of the link up to a minimum required level, under the

assumption that the physical layer by itself is not sufficiently reliable. At the data link

layer, error correction can be complemented by several packet-based error detection

and recovery protocols. Several parameters in the protocols can be adjusted depending

on the goal to achieve maximum performance at a specified residual error probability

within given energy consumption bounds.

At the network layer, packet data transmission can be customized by the choice

of switching and routing algorithms. The NoC designers establish the type of

connection to its final destination. Switching and routing affect heavily performance

9

and energy consumption. Robustness and fault tolerance will also be highly desirable.

At the transport layer, algorithms deal with the decomposition of messages into

packets at the source and their assembly at destination. Packetization granularity is a

critical design decision because the behavior of most network control algorithm is

very sensitive to packet size. Packet size can be application specific in SoCs, as

opposed to general network.

Software layers comprise system and application software which includes

processing element and network operating systems. The system software provides us

with an abstraction of the underlying hardware platform. Moreover, policies

implemented at the system software layer request either specific protocols or

parameters at the lower layers to achieve the appropriate information flow. The

hardware abstraction is coupled to the design of wrappers for processor cores which

perform as network interfaces between cores and NoC architecture.

2.3 Topologies for Network-on-Chip Architecture

Figure 2.5 NoC architecture (a) SPIN (b) Mesh (c) Torus (d) Folded tours (e) Octagon

(f) Butterfly Fat Tree

Network on Chip (NoC) technologies will enable designing parallel systems

resembling cellular structures including thousands of processors. Such systems

combined with multi-threaded computing can increase system efficiency for

fine-grain parallel programs [2.29][2.30]. Therefore, the interconnect architecture of

10

NoC should be efficient for a huge amount of processor elements. A number of

different interconnect architectures have been proposed as Fig. 2.8. Their origins can

be traced back to the field of parallel computing. However, a different set of

constraints exists when adapting these architectures to the SoC design paradigm.

2.3.1 Conventional Topologies of Network-on-Chip

A generic interconnect template has proposed which is called SPIN (Scalable,

Programmable, Integrated Network) for on-chip packet switched interconnections as

Fig. 2.8(a), where a fat-tree architecture is used to interconnect IP blocks. In this fat

tree, every node has four children and the parent is replicated four times at any level

of the tree. The functional IP blocks reside at the leaves and the switches reside at the

vertices. A mesh-based [2.31][2.32] interconnect architecture consists of an mxn mesh

of switches interconnecting computational resources (IPs) placed along with the

switches, as shown in Fig. 2.8(b). Every switch, except those at the edges, is

connected to four neighboring switches and one IP block.

2D torus has proposed as NoC architecture, shown in Fig. 2.8(c). The Torus

architecture is basically the same as a regular mesh. The only difference is that the

switches at the edges are connected to the switches at the opposite edge through

wrap-around channels. Every switch has five ports, one connected to the local

resource and the others connected to the closest neighboring switches. The long

end-around connections can yield excessive delays. However, this can be avoided by

folding the torus as Fig. 2.8(d). This renders to a more suitable VLSI implementation.

Karim et al. [2.33] have proposed the OCTAGON MP-SoC architecture. Fig.

2.8(e) shows a basic octagon unit consisting of eight nodes and 12 bidirectional links.

Each node is associated with a processing element and a switch. Communication

between any pair of nodes takes at most two hops within the basic octagonal unit. For

a system consisting of more than eight nodes, the octagon is extended to

multidimensional space. Of course, this type of interconnection mechanism may

significantly increase the wiring complexity. In a Butterfly Fat-Tree (BFT)

architecture which is shown as Fig. 2.8(f), the IPs are placed at the leaves and

switches placed at the vertices. A pair of coordinates is used to label each node. The

11

number of switches in the butterfly fat tree architecture converges to a constant

independent of the number of levels.

2.3.2 Advanced Network-on-Chip Architectures

A popular network topology of NoC implementations is the two-dimensional

mesh architecture, and it provides a regular topology and communications. Therefore,

many advanced NoC architectures are proposed which are based on mesh topologies.

An advanced NoC architecture, called Xpipes as Fig. 2.9, targeting high performance

and reliable communication for on-chip multi-processors is introduced [2.34]. Data

links can be pipelined with a flexible number of stages to decouple link throughput

from its length and to get arbitrary topologies. The I/O ports of each switch can be

parameterized, and Xpipes is optimized from tile-based network on chip architecture.

Although it has dealt with the floorplan and different bandwidth between neighboring

IP blocks, it belongs to the 2-D links architecture.

Figure 2.6 Xipies Architecture

An idea is presented to connect to the hierarchy network-on-chip as shown in

Figure 2.10. The network on chip can be divided into two kinds of architecture, local

network and global network. The local network preserves the features of 2-D links

network on chip, and the global network is designed as centralized crossbar [2.35].

With the increasing of the processor elements and numbers of the local network,

however, the global network might be designed as the distributed crossbars. In

Figure2.13, block M is mentioned as memory block and block P is about the

12

processor element. Other hierarchy Network-on-chip or hybrid network-on-chip are

also proposed to adopt multiple processor elements and heterogeneous systems

[2.36][2.37] [2.38] [2.39].

Figure 2.7 Hierarchy Network-on-Chip Architecture

In order to achieve better performance, functionality and packaging density, three

dimensional ICs are proposed with multiple layers of active devices. Besides, three-

dimensional (3D) ICs allow for performance enhancements in the absence of scaling.

This is the result of each transistor being able to reduce interconnect length and access

more nearest neighbors. The performance improvement arising from the architectural

advantages of NoCs will be significantly enhanced if 3D ICs are adopted as the basic

fabrication methodologies. Therefore, new topologies of 3-D network are also

proposed for the future ICs [2.40].

2.4 Switching Fabrics in Network-on-Chip

Switching fabrics (or called router) is a key component in network-on-chip to

command the data communication. Every processor element is called resource and

connects to a switch fabric. The resources consist of process elements, IP blocks,

embedded memory, DMA controllers etc. The implementation of routers depends on

the topology and protocol of network-on-chip. In addition, the topology and control

flows are the design issue for the interfaces of processor elements. No whether which

network-on-chip architecture is, the router could be divided into five parts as follow:

 I/O Ports

 Link Control Unit (Routing Unit)

 Buffers (queues)

13

 Switching Circuit

 Arbitration Unit

The link control units (routing units) control the communication in the

network-on-chip backbone, and the arbitration unit arbitrates contention data which

are routed to the same channel. The NoC former should avoid deadlock [2.41] of the

on-chip communications and traffic which are intruded by the bad policy routing

algorithms. Besides, it will influence on the sizes of buffers, number of MUXs for

switching and the complexity of interconnects. For example, each switch connects to

the side of switches with four directions in a mesh network-on-chip. The links of the

switches are shown in Figure 2.8(b) and the architecture of the switches in a mesh

(tile-based) NoC is shown in Figure 2.10.

We would not introduce link control unit (routing unit) here because in this thesis

we focus on buffers (queues), switching circuit (network interface) and arbitration

unit. The detail of these units will be described in following sections.

2.4.1 Buffers in Switch Fabrics

In network-on-chip platform, buffers will significantly affect the overall

performance and the arbitration algorithm. Buffer allow for local storage of data that

cannot be immediately routed. Unfortunately, queuing buffers have a high cost in

terms of area and power consumption, and thus many NoC implementations strive

with limited buffer sizes. If the design lacks sufficient buffer space, on the contrary,

the buffers may fill up too fast while over-provisioning of buffers clearly is a waste of

scarce area resources [2.42].

Queuing buffer is used in switch fabrics or network interfaces to store un-routed

data, and buffer architectures can be classified by the location and circuit

implementation of buffers. The queuing buffers consume the most area and power

consumption among composing blocks in NoCs. However, insufficient buffer size is a

factor to induce head-of-line blocking problems as Fig. 2.8. When the head data of a

virtual channel could not be routed and data behind the head data are occupied

queuing buffers, it will influence the performance of the network. That’s the so-called

“head-of-line blocking problem.” Nevertheless, head-of-line blocking problems not

14

only reduce the performance but also increase power consumption of on-chip

communication. Therefore, head-of-line blocking is a key factor to evaluate different

buffer architecture.

Buffer

Input1

Input2

Input3

Output1

Output2

Output3

Figure 2.8 Head-of-line blocking problem

Depending on the location of queuing buffers, the buffers can be placed either

before or after the interconnection matrix in a switch fabric, which are input buffer

and output buffer, respectively. To be sure, there is a distinction between input buffers

and output buffers. If a data word is delayed in a switch fabric with input buffers, it

will stall all data words arriving on the same input. None of them can be processed

until the first one has been forwarded successfully. With the output buffers, the

situation is different because that the switching is performed before the buffering. If a

switch fabric cannot send the data over one of its outputs, the buffers at that output

will fill up. There is, however, no immediate influence on the inputs. The successive

data words can still be received. An architectural disadvantage of output buffering is

that in one cycle, data from multiple input ports may have to be written to the same

output port. Nevertheless, the multiple buffers can be implemented in parallel at the

output to deal with the disadvantage. No whether output buffers or input buffers, they

will introduce head-of-line blocking problem to stall the input data.

B
u
ff

er

Input Buffer Middle Buffer Output Buffer
Figure 2.9 Buffer architecture

15

Fig. 2.9 shows the input buffers, middle buffers and output buffers in the switch

fabrics. The concept of middle buffering describes that the cutest of the buffers

placement moves to the middle of the switch. The middle buffer architectures have

O(N
2

) buffer blocks for a N-port switch fabric while input and output buffering have

only O(N) buffer blocks. The middle buffer architecture, however, can reduce the

effects of the head-of-line blocking with multiple virtual channels in the switching. It

will be a trade-off between traffic problems and buffer sizes. Consequently, both

output buffers and middle buffers are looking for the best FIFO utility.

The traditional buffer circuits can be implemented by two different memory units,

either registers (flip-flops) or SRAM cells. Register-based implementations have a

definite limitation in their capacity as to the increasing power consumption and area.

Therefore, the queuing buffer should be implemented as SRAM cells with separated

read/write ports for large capacity queuing. This is because that area of SRAM cells is

tenth of registers.

D Q D Q D Q D QD Q

R_req

enenenenen

packet_in packet_out
First InNew Arrival

Intermediated Empty Bubble

D Q D Q D QD Q

R_req

enenenen

packet_in

packet_out

First InNew Arrival

D Q

en

onononoffoff 110

Controller
0

W_reg

D Q D Q D Q D Q

FIFO Cell FIFO Cell FIFO Cell FIFO Cell

Reset

W_reg

Packet_in

D Q D Q D Q D Q

Reset

R_reg

Packet_out

New Arrival First In

D Q D Q D Q D Q

FIFO Cell FIFO Cell FIFO Cell FIFO Cell

Reset

W_reg

MUX

Packet_in

packet_out

1

A
d

d
er

D Q

R_reg

First InNew

Arrival

(a)

(b)

(c) (d)

Figure 2.10 Buffer Implementation

The register-based buffers could be classified into four different implementations,

which are shown as Fig. 2.10. Fig. 2.10(a) shows a conventional shift-register. When

the consumer sends the request to the buffer, it will enable all registers and shift the

data to the output port. Indeed, the implementation of a shift-register is uncomplicated

16

than others. However, intermediate empty cells as Fig. 2.10(a) induced by different

packet in/out rates temporally will influence the performance as to unnecessary

latency. Nevertheless, shifting all the registers in a buffer consumes huge amount of

power. The shift-register is not desirable to implement on a chip as to unnecessary

latency and huge power consumption. In order to remove the intermediate empty

bubble, the arrival packet can be stored at the empty cell behind the full cells as Fig.

2.10(b). This style is called as “Bus-In Shift-Out Register”, and it only shifts the full

cells. Therefore, it can remove unnecessary latency and power consumption caused by

the empty bubbles. However, as the queuing capacity increases, the driver of the

sender should be larger for the increasing fan-outs. Besides, it still consumes huge

amount power by shifting all the occupied cells. To reduce the huge power

consumption of shifting operation, the outputs of all registers are connected to a

shared output bus via tri-state buffers as Fig. 2.10(c) which is called “Bus-In Bus-Out

Register”. The writing and reading tokens which are constructed in rings indicate the

head and tail of full cells, respectively. The tri-stare buffers are controlled by the

reading token to read the first-in packet, and the writing token enables the register

which is behind the full cells to store the input packet. As the queuing capacity

increases, the capacitance of the shared input/output buses increase as well, output bus

especially. The parasitic capacitance of tri-state buffers will enlarge not only the delay

but also power consumption. Therefore, “Bus-In Mux-Out Register” with output

multiplexers as Fig. 2.10(d) can be used to eliminate the parasitic capacitance of

tri-state buffers. It needs an extra adder to be a pointer and to calculate the address of

output packet.

Some approaches are proposed to optimize the location and size of buffers.

Application-specific buffer space allocation is a novel system-level buffer planning

algorithm to customize the router design [2.43][2.44][2.45]. Centralized buffer and

dynamic virtual channel regulator are proposed to decrease the buffer size without

performance overhead. FC-CB is designed for virtual channels in wormhole routing

[2.46]. Other approaches are proposed to define the buffer model and buffer constraint

in NoC systems.

17

2.4.2 Switching Circuit in Switch Fabrics

There are two kinds of switch design: a cross-point switch and a MUX-based

switch. The cross-point switch has pass transistors at each crossing junction of input

and output wires. The capacitive loading of input driver is the junction capacitance of

pass transistors on input and output wires and the wire capacitance itself. The voltage

swing on the output wire is reduced to Vdd-Vth as to the threshold voltage drop. The

fabric area is determined by the wiring area so that its area cost can be the minimum.

However, this design is hard to be synthesized and sensitive to the noise. The

MUX-based switches use multiplexer for each output port. The power consumption,

delay and area are all worse than cross-point switching, especially for large

input/output. Nevertheless, the power consumption and delay will exponentially

increase with the number of I/O ports no whether Mux-based switch or cross-point

switch. Crossbar partial activation technique as Fig. 2.11 is proposed to reduce the

power consumption and delay with large input and output [2.47].

Figure 2.11 Crossbar partial activation technique

2.4.3 Arbitration Unit Circuit in Switch Fabrics

To arbitrate the output conflicts, arbitration unit is used on each output. The

latency of the arbitration unit becomes larger as the switch size gets bigger. Besides,

the contention data will increase also. TDMA [2.48][2.49][2.50] and round-robin

18

scheduling algorithm [2.51][2.52] are most widely used as to its simple

implementation and its fairness, respectively. A pseudo-LRU algorithm is also

proposed for lower are and lower latency than those of the round-robin algorithm.

Besides, input contention-aware arbitration algorithm is proposed to achieve higher

performance by considering the traffic of neighbor nodes. For a distributed parallel

characteristic of NoC platform, the arbitration unit is less important than shared

medium platform, such as on-chip bus architecture.

19

Chapter 3
Flow Control for On-Chip Interconnection

Network

3.1 Overview of Flow Control

Inter-processor communication can be view as a hierarchy of services starting

from the physical layer that synchronizes the transfer of bit streams to higher-level

protocol layers that perform functions such as packetization, data encryption, data

compression, and so on. We find it useful to distinguish between three layers in the

operation of the interconnection network: the routing layer, the switching layer, and

the physical layer. The switching layer utilizes these physical layer protocols to

implement mechanisms for forwarding messages through the network. The switching

techniques determine when and how internal switches are set to connect router inputs

to outputs and the time at which message components may be transferred along these

paths. These techniques are coupled with flow control mechanisms for the

synchronized transfer of units of information between routers and through routers in

forwarding message through network.

Flow control determines how a network’s resource such as channel bandwidth,

buffer capacity, and control state, are allocated to packets traversing the network. A

good flow-control method allocates these resources in an efficient manner so the

network achieves a high fraction of its ideal bandwidth and delivers packets with low

predictable latency. On the other hand, a poor flow-control method wastes channel

bandwidth by leaving resources idle and doing unproductive work with other

resources. This results in a network which only a tiny fraction of the ideal bandwidth

is realized and has high and variable latency.

20

Flow control is tightly coupled with buffer management algorithms that

determine how messages are handled when blocked in the network. One can view

flow control as either a problem of resource allocation or one of contention resolution.

From the resource allocation perspective, resources in the form of channels, buffers,

and state must be allocated to each packet as it advances from the source to the

destination.

Flow control is a synchronization protocol for transmitting and receiving a unit

of information. The unit of flow control refers to that portion of the message whose

transfer must be synchronized. This unit is defined as the smallest unit of information

whose transfer is requested by the sender and acknowledged by the receiver. The

request/acknowledgement signaling is used to ensure successful transfer and the

availability of buffer space at the receiver.

3.2 Bufferless Flow Control

The simplest flow-control mechanisms are bufferless, and rather than

temporarily storing blocked packets, they either drop or misrouter these packets.

These forms of flow control use no buffering and simply act to allocated channel state

and bandwidth to competing packet. In these cases, the flow-control methods must

perform an arbitration to decide which packet gets the channel it has requested. The

arbitration method must also decide how to dispose of any packets that did not get

their requested destination. Since there are no buffers, we cannot hold the losing

packets until their channels become free. Instead we must either drop them or

misroute them.

3.2.1 Circuit Switching Flow Control

The next step up in complexity and efficiency is circuit switching, where only

packet headers are buffered. In circuit switching, the header of a packet traverses the

network ahead of any packet payload, reserving the appropriate resources along the

path. If the header cannot immediately allocate a resource at a particular node, it

simply waits at that node until the resource becomes free. Once the entire path, or

circuit, has been reserved, data may be sent over the circuit until it is torn down by

21

deallocating the channels.

Circuit switching is a form of bufferless flow control that operates by first

allocating channels to form a circuit from source to destination and then sending one

or more packets along this circuit. When no further packets need to be sent, the circuit

is deallocated. Circuit switching differs from dropping flow control in that if the

request flit is blocked, it is held in place rather than dropped. Compared to dropping

flow control, circuit switching has the advantage that it never wastes resource by

dropping a packet. Because it buffers the header at each hop, it always makes forward

progress. However, circuit switching does have two weaknesses that make it less

attractive than buffered flow control methods: high latency and low throughput.

Circuit switching has advantage of being very simple to implement. All of these

flow-control mechanisms are rather inefficient because they waste costly channel

bandwidth to avoid using relatively inexpensive storage space.

Figure 3.1 Time-space diagram of a circuit-switched message [3.1]

For each switching technique we will consider the computation of the base

latency of an L-bit message in the absence of any traffic. The flit size is assumed to be

equivalent and equal to the physical data channel width of W bits. The routing header

is assumed to be 1 flit; thus the message size is L + W bits. A router can make two

routers operates at B Hz; that is the physical channel bandwidth is BW bits per second.

We assume that channel wires are short enough to complete a transmission in one

clock cycle. Therefore, the propagation delay across this channel is denoted by

 . Once a path has been set up through the router, the intrarouter delay or

switching delay is denoted by . The source and destination processors are assumed

to be D links apart. We would continue using these representations later.

22

The base latency of a circuit-switched message is determined by the time to set

up a path and the subsequent time path is busy transmitting data. From Figure 3.1 we

can write an expression for the base latency of a message as follows:

3.3 Buffered Flow Control

Adding buffers to our networks results in significantly more efficient flow

control. This is because a buffer decouples the allocation of adjacent channels.

Without a buffer, the two channels must be allocated to packet (or flit) during

consecutive cycles, or the packet must be dropped or misrouted. There is nowhere

else for the packet to go. Adding a buffer gives us a place to store the packet (or flit)

while waiting for the second channel, allowing the allocation of the second channel to

be delayed without complications.

Once we add buffers to an interconnection network, our flow control mechanism

must allocate buffers as well as channel bandwidth. Moreover, we have a choice as to

the granularity at which we allocate each of these resources. As depicted in Figure 3.2,

we can allocate either buffers or channel bandwidth in units of flits or packets.

Allocating storage in units of flits rather than packets has three major advantages. It

reduces the storage required for correct operation of a router, it provides stiffer

backpressure from a point of congestion to the source, and it enables more efficient

use of storage.

23

Figure 3.2 Buffered flow control methods can be classified based on their

granularity of channel bandwidth allocation and buffer allocation [3.1]

3.3.1 Packet-Buffer Flow Control

If we allocate both channel bandwidth and buffers in units of packets, we have

packet-buffer flow control. Storing a flit (or a packet) in a buffer allows us to

decouple allocation of the input channel to a flit from the allocation of the output

channel to a flit. Adding a buffer prevents the waste of the channel bandwidth caused

by dropping or misrouting packets or the idle time inherent in circuit switching. As a

result, we can approach full channel utilization with buffered flow control.

3.3.1.1 Store-and-Forward Flow Control

A packet is completely buffered at each intermediate node before it is forwarded

to the next node. This is the reason why this switching technique is also referred to as

store-and forward (SAF) switching. The packet must be allocated two resources

before it can be forwarded: a packet-sized buffer on the far side of the channel and

exclusive use of the channel. Once the entire packet has arrived at a node and these

two resources are acquired, the packet is forwarded to the next node. While waiting to

acquired resources, if they are not immediately available, no channels are being held

idle and only a single packet buffer on the current node is occupied.

Packet switching [3.2] is advantageous when messages are short and frequent.

Unlike circuit switching, where a segment of a reserved path may be idle for a

significant period of time, a communication link is fully utilized when there are data

to be transmitted. The major drawback of store-and-forward flow control is its very

24

high latency. Since the packet is completely received at one node before it can begin

moving to the next node, serialization latency is experienced at each hop.

The base latency of a packet-switched message can be computed as follow:

The important point to note is that the latency is directly proportional to the

distance between source and destination nodes.

Figure 3.3 Time-space diagram of a packet-switched message [3.1]

3.3.1.2 Virtual Cut Through (VCT) Flow Control

Packet switching is based on the assumption that a packet must be received in its

entirety before any routing decision can be made and the packet forwarded to the

destination. Rather than waiting for the entire packet to be received, the packet header

can be examined as soon as it is received. The router can started forwarding the

header and following data bytes as soon as routing decisions have been made and the

output buffer is free. In fact the message does not even have to be buffered at the

output and can cut through to the input of the next router before the complete packet

has been received at the current router. This switching technique is referred to as

virtual cut-through switching (VCT). In the absence of blocking, the latency

experienced by the header at each node is the routing latency and propagation delay

through the router and along the physical channels. If the header is blocked on a busy

output channel, the complete message is buffered at the node. Thus, at high network

loads, VCT switching behaves like packet switching.

25

Cut-through flow control overcomes the latency penalty of store-and-forward

flow control by forwarding a packet as soon as the header is received and resources

(buffer and channel) are acquired, without waiting for the entire packet to be received.

As with store-and-forward flow control, cut-through flow control allocates both

buffers and channel bandwidth in units of packets. It differs only in that transmission

over each hop is started as soon as possible without waiting for the entire packet to be

received.

Virtual cut through flow control reduced the latency from the product of the hop

count and the serialization latency. At this point, cut-through flow control may seem

like an ideal method. It gives very high channel utilization by using buffers to

decouple channel allocation. It also achieves very low latency by forwarding packets

as soon as possible. However, the cut-through method, or any other packet-based

method, has two serious shortcomings. First, by allocating buffers in units of packets,

it makes very inefficient use of buffer storage. As we shall see, we can make much

more effective use of storage by allocating buffers in units of flits. This is particularly

important when we need multiple, independent buffer sets to reduce blocking or

provide deadlock avoidance. Second, by allocating channels in units of packets,

contention latency is increased. For example, a high-priority packet colliding with a

low-priority packet must wait for the entire low-priority packet to be transmitted

before it can acquire the channel. In the next section, we will see how allocating

resources in units of flits rather than packets results in more efficient buffer use (and

hence higher throughput) and reduced contention latency.

Figure 3.4 Time-space diagram of a virtual cut-through switched message [3.1]

The base latency of a message that successfully cuts through each intermediate

26

router can be computed as follows:

Cut-through routing is assumed to occur at the flit level with the routing

information contained in 1 flit. This model assumed that there is no time penalty for

cutting through a router if the output buffer and output channel are free. Depending on

the speed of operation of the routers, this may not be realistic. Note that the header

experiences routing delay, as well as the switching delay and wire delay at each router.

This is because the transmission is pipelined and the switched is buffered at the input

and output. Once the header flit reaches the destination, the cycle time of this message

pipeline is determined by the maximum of the switching delay and wire delay

between routers. If the switch had been buffered only at the input, then in one cycle of

operation, a flit traverses the switch and channel between routers. In this case, the

coefficient of the second term and the pipeline cycle time would be . Note

that the unit of message flow control is a packet. Therefore, even though the message

may cut through the router, the sufficient buffer space must be allocated for a

complete packet in case the header is blocked.

3.3.2 Flit-Buffer Flow Control

3.3.2.1 Wormhole Flow Control

The need to buffer complete packets within a router can make it difficult to

construct small, compact, and fast router. Wormhole flow control operates like

cut-through, but with channel and buffers allocated to flits rather than packets. In

wormhole switching, the buffer requirements within the routers are substantially

reduced over the requirement for VCT switching. The primary difference between

wormhole switching and VCT switching is that, in the former, the unit of message

flow control is a single flit and, as a consequence, small buffers can be used.

Compared to cut-through flow control, wormhole flow control makes far more

efficient use of buffer space, as only a small number of flit buffers are required per

27

virtual channel. In contrast, cut-through flow control requires several packets of buffer

space, which is typically at least an order of magnitude more storage than wormhole

flow control. This savings in buffer space, however, comes at the expense of some

throughput, since wormhole flow control may block a channel mid-packet. Blocking

may occur with wormhole flow control because the channel is owned by a packet, but

buffers are allocated on a flit-by-flit basis.

The base latency of a wormhole-switched message can be computed as follows:

This expression assumes flit buffers at the router inputs and outputs. Note in the

absence of contention, VCT and wormhole switching have the same latency. Once the

header flit arrives at the destination, the message pipeline cycle time is determined by

the maximum of the switch delay and wire delay. For an input-only and output-only

buffered switch, this cycle time would be given by the sum of the switch and wire

delays.

Figure 3.5 Time-space diagram of a wormhole-switched message [3.1]

3.3.2.2 Virtual Channel Flow Control

The preceding switching techniques were described assuming that messages or

parts of messages were buffered at the input and output of each physical channel.

Buffers are commonly operated as FIFO queues. Therefore, once a message occupies

a buffer for a channel, no other message can access the physical channel, even if the

message is blocked. Alternatively, a physical channel may support several logical or

28

virtual channels multiplexed across physical channel. Each unidirectional virtual

channel is realized by an independently managed pair of message buffers as illustrated

in Figure 3.6. Consider wormhole switching with a message in each virtual channel

[3.3]. Each message can share the physical channel on a flit-by-flit basis. The physical

channel protocol must be able to distinguish between the virtual channels using the

physical channel. Logically, each virtual channel operates as if each were using a

distinct physical channel operating half the speed. Virtual channel were originally

introduced to solve the problem of deadlock in wormhole-switched networks.

Deadlock is a network state where no messages can advance because each message

requires a channel occupied by another message. By allowing messages to share a

physical channel, messages can make progress rather than remain blocked. Virtual

channels can also be used to improve message latency and network throughout.

Virtual-channel flow control decouples the allocation of channel state from channel

bandwidth. This decoupling prevents a packet that acquires channel state and then

blocks from holding channel bandwidth idle. This permits virtual-channel flow

control to achieve substantially higher throughput than wormhole flow control.

As in wormhole flow control, an arriving head flit must allocate a virtual channel,

a downstream flit buffer, and channel bandwidth to advance. Subsequent body flits

from the packet use the virtual channel allocated by the header and still must allocate

a flit buffer and channel bandwidth. However, unlike wormhole flow control, these

flits are not guaranteed access to channel bandwidth because other virtual channels

may be competing to transmit flits of their packets across the same link.

In fact, given the same total amount of buffer space, virtual-channel flow control

also outperforms cut-through flow control because it is more efficient to allocate

buffer space as multiple short virtual-channel flit buffers than as a single large

cut-through packet buffer.

We can envision continuing to add virtual channels to further reduce the blocking

experienced by each message. The result is increased network throughput measured in

flits/s, due to increased physical channel utilization. However, each additional virtual

channel improves performance by a smaller amount, and the increase channel

multiplexing reduces the data rate of individual messages, increasing the message

latency. This increase in latency due to data rate multiplexing will eventually

29

overshadow the reduction in latency due to blocking, leading to overall increasing

average message latency.

Figure 3.6 Virtual channels [3.1]

3.3.3 Buffer Management and Backpressure

All of the flow control methods that use buffering need a means to communicate

the availability of buffers at the downstream nodes. Then the upstream nodes can

determine when a buffer is available to hold the next flit (or packet for

store-and-forward or cut-through) to be transmitted. This type of buffer management

provides backpressure by informing the upstream nodes when they must stop

transmitting flits because all of the downstream flit buffers are full. Three types of

low-level flow control mechanisms are in common use today to provide such

backpressure [3.4]: credit-based [3.5], on/off, and ack/nack [3.6]. We examine each of

these in turn.

3.3.3.1 Credit-Based Flow Control

With credit-based flow control [3.7][3.8][3.9], the upstream router keeps a count

of the number of free flit buffers in each virtual channel downstream. Then, each time

the upstream router forwards a flit, thus consuming a downstream buffer, it

decrements the appropriate count. If the count reaches zero, all of the downstream

buffers are full and no further flits can be forwarded until a buffer becomes available.

Once the downstream router forwards a flit and frees the associated buffer, it sends a

credit to the upstream router, causing a buffer count to be incremented.

30

From Figure 3.7 we can see that the minimum time between the credit being sent

at time and a credit being sent for the same buffer at time is the credit

round-trip delay . This delay, which includes a round-trip wire delay and

additional processing time at both ends, is a critical parameter of any router because it

determines the maximum throughput that can be supported by the flow control

mechanism.

A potential drawback of credit-based flow control is a one-to-one

correspondence between flits and credits. For each flit sent downstream, a

corresponding credit is eventually sent upstream. This requires a significant amount of

upstream signaling and, especially for small flits, can represent a large overhead.

Figure 3.7 Timeline of credit-based flow control [3.9]

3.3.3.2 On/Off Flow Control

On/off flow control can greatly reduce the amount of upstream signaling in

certain cases. With this method the upstream state is a single control bit that

represents whether the upstream node is permitted to send (on) or not (off). A signal is

sent upstream only when it is necessary to change this state. An off signal is sent

when the control bit is on and the number of free buffers falls below the threshold

 . If the control bit is off and the number of free buffers rises above the threshold

31

 , an on signal is sent. A timeline illustrating on/off flow control is illustrated in

Figure 3.8. With an adequate number of buffers, on/off flow control systems can

operate with very little upstream signaling.

Figure 3.8 Timeline of on/off flow control [3.9]

3.3.3.3 Ack/Nack Flow Control

Both credit-based and on/off flow control require a round-trip delay between

32

the time a buffer becomes empty, triggering a credit or an on signal, and when a flit

arrives to occupy that buffer. Ack/nack flow control reduces the minimum of this

buffer vacancy time to zero and the average vacancy time to /2. Unfortunately

there is no net gain because buffers are held for an additional waiting for an

acknowledgment, making ack/nack flow control less efficient in its use of buffers than

credit-based flow control. It is also inefficient in its use of bandwidth which it uses to

send flits only to drop them when no buffer is available. With ack/nack flow control,

there is no state kept in the upstream node to indicate buffer availability. The upstream

node optimistically sends flits whenever they become available. If the downstream

node has a buffer available, it accepts the flit and sends an acknowledge (ack) to the

upstream node. If no buffers are available when the flit arrives, the downstream node

drops the flit and sends a negative acknowledgment (nack). The upstream node holds

onto each flit until it receives an ack. If it receives a nack, it retransmits the flit.

Because of its buffer and bandwidth inefficiency, ack/nack flow control is rarely

used. Rather, credit-based flow control is typically used in systems with small

numbers of buffers, and on/off flow control is employed in most systems that have

large numbers of flit buffers.

Figure 3.9 Timeline of ack/nack flow control [3.9]

33

3.3.4 Flit-Reservation Flow Control

While traditional wormhole networks greatly reduce the latency of sending

packets through an interconnection network, the idealized view of router behavior can

differ significantly from a pipelined hardware implementation. Pipelining breaks the

stages of flit routing into several smaller steps, which increases the hop time.

Accounting for these pipelining delays and propagation latencies gives an accurate

view of buffer utilization.

The remaining time required to recycle the credit and issue another flit to occupy

the buffer is called the turnaround time. Lower buffer utilization reduces network

throughput because fewer buffers are available for bypassing blocked messages and

absorbing traffic variations. Flit-reservation flow control can reduce turnaround time

to zero and hide the flit pipeline delay in a practical implementation. Flit-reservation

hides the overhead associated with a pipelined router implementation by separating

the control and data networks. Control flits race ahead of the data flits to reserve

network resources. As the data flits arrive, they have already been allocated an

outgoing virtual channel and can proceed with little overhead. Reservation also

streamlines the delivery of credits, allowing zero turnaround time for buffers. Of

course, it is not always possible to reserve resources in advance, especially in the case

of heavy congestion. In these situations, data flits simply wait at the router until

resources have been reserved which is the same behavior of a standard wormhole

router.

3.4 Memory-Centric On-Chip Interconnection Network for

Heterogeneous Multi-Core SoC

NoCs contain very wide range of area that we describe in the chapter 2. Figure

3.10 shows the abstraction levels of NoCs. In this thesis we focus on transport

(repacketization), switching circuit and arbitration. In this section we would describe

the switching protocol between network interface and router (crossbar) and arbitration

mechanism. Moreover, later we will describe network interface including buffers

(queues), message transport (repacketization), switching policy between processor

34

element and network interface in the chapter 4.

NoC

Software,

Application,

Task mapping

On-Chip Interconnection

Network

(router, network interface, data link)

Figure 3.10 abstraction levels of NoC

The performance of a multi-core SoC [3.10] will be limited by the on-chip data

communication, memory resource allocation, and memory data accessing. Therefore,

a memory-centric on-chip interconnection network as shown in Figure 3.11 is

presented for improving both the communication bandwidth and memory bandwidth.

For each PE, a NI and a d-MMU with distributed memories is developed to

communicate with the OCIN and on-demand memory subsystem, respectively. If a

process element requires additional memory resources, the centralized memory

resources, including centralized SRAMs and off-chip DRAM, can be utilized. The

centralized memory resources are managed by a c-MMU that dynamically allocates

and manages the memory resources based on different memory requirements.

Therefore, the on-demand memory subsystem can efficiently handle all memory

requests generated by PEs.

Memory-centric on-chip interconnection network includes a network interface

(NI) for data switching between processor element and network interconnection

(crossbar switch) and a network interconnection (crossbar switch) for data switching

among each request with different priority from other node and routing and

arbitration.

35

RISC

Centralized

Memory

(L2 Cache)

D-Cache I-Cache

Centralized

MMU Interconnection Network

Voltage/

Frequency

DSP

D-Cache I-Cache

Voltage/

Frequency

D-Cache

WPU

Power

Management

Unit

DSP

D-Cache I-Cache

Voltage/

Frequency

MAC SVC

Memory-Centric On-Chip

Interconnection Network

Voltage/

Frequency

Voltage/

Frequency

Voltage/

Frequency

d-MMU : Distributed Memory Management Unit

NI : Network Interface

D-Cache : Data Cache
I-Cache : Instruction Cache

D-Cache D-Cache

O
ff
-C

h
ip

 D
R

A
M

d-MMU NI d-MMU NI

d-MMU NId-MMU NI

d-MMU NI

d-MMU NI

Figure 3.11 Memory-Centric On-Chip Interconnection Architecture.

We will introduce network interface (NI) later in the chapter 4.

3.4.1 Network Interconnection

3.4.1.1 Data Switching Protocol between Crossbar and NI

This router is a 4×4 crossbar. Crossbar switch receives transmit request from

each network interface (NI) and decides which node can get grant to use. Table 3.1

shows input and output description between NI and interconnection network

(crossbar).

I/O Port name Width Description

Input N_TX_REQ 1 Request transmit grant: Active high when transfer header flit

Input N_TX_PRI 2 Packet priority: PRI signal represents the priority of

transmitting data packet. It is used to determine the priority

of network arbitration. The default value is 0 (highest

priority)

36

Output N_TX_GRANT 1 Grant to transfer: Active high when arbiter give the transmit

grant

Input N_DATA_RDY 1 Data ready: Active high when data is ready for transmit

Input N_TX_DATA 34 Transmit data: include flit type (2bits) and data (32bits)

Output N_STALL 1 Transmit stall: Active high when buffer queue of receiver

end has no free slot under grant to transfer condition

Input N_num_free 1 Number free slot: Active high when buffer queue of receiver

end has free slot

Output N_transmit 1 Transmit: Active high when transmit data to receiver

Output N_type_out 2 Packet flit type: value 0 for header flit, value 1 for body flit

and value 2 for tail flit

Output N_data_out 32 Transmit data:

Table 3.1 Input and output description between network interface and crossbar

When requests from each network interface compete to get transmit grant, arbiter

would decide which is winner according to packet priority. We would introduce the

arbitration mechanism later in next section. Network interface sends transmit request

and packet priority to crossbar and put header flit simultaneously. When crossbar is

ready for next transmit, crossbar will give grant to winner node and receive header flit.

When network interface gets grant to transmit, network interface activates data ready

signal and puts data flit.

If free slot of buffer queue in the receiver end is not equal to zero, crossbar will

transfer data in order to destination node. Otherwise, crossbar must activate stall

signal to inform network interface suspend to transmit. In this case, crossbar will

receive current data and transmit to destination node. When sender of network

interface receives stall signal, network interface would suspend transmit until stall

signal is released. Network interface would continue uncompleted transmit. The

timing diagram is showed in the Figure 3.12. Interface definition is showed in Figure

3.13.

37

CLK

N_TX_REQ

N_TX_GRANT

N_DATA_RDY

N_TX_DATA

output
input

N_STALL

N_transmit

N_num_free

N_type_out

N_data_out D0 D1 DN-1H D2

0 21 1

H D0 D1 D2 DN-1

Figure 3.12 Timing diagram between crossbar and NI.

Sender

(NI)
Crossbar

N_TX_REQ

N_TX_GRANT

N_DATA_RDY

N_TX_DATA

N_STALL

N_transmit

N_num_free

N_type_out

N_data_out

N_TX_PRI

Receiver

(NI)

Figure 3.13 Interface definition between Network Interface and crossbar.

3.4.1.2 Arbitration Mechanism for Router (Crossbar)

When crossbar (interconnection network) receives request from network

interface, crossbar must arbitrate which node get grant first. Our arbitration

mechanism according to packet priority and grant order is very fair. Packet priority is

defined by processor element and grant order is decided by present transmit. For

example, we assume the current grant order is (node1, node2, node3). In the case that

node1, node2 and node3 request to transfer to node0, we would give grant to node1

and set grant order to (node2, node3, node1). This setting can avoid the high priority

node occupying transfer channel which leads to low priority node always cannot get

grant to use channel.

38

request,

priority,

type, data

Rec_fifo is

space-free ?

wait

Yes No

Priority sorting

and grant

arbitration

grant order

Transmit

grant = 1,

type, data

Transmit

grant = 0,

type, data

Yes No

No

If data

ready?

If tail

(type = 2)?

Transmit

type, data

Yes

NoYes

wait

Header?

(need arbit)

Figure 3.14 Flow chart of arbitration.

Figure 3.14 shows flow chart of arbitration. First, crossbar receives request from

network interface (sender), arbiter would decide which node get grant and set new

grant order for next arbitration. Then, crossbar would pass data from source node to

destination node if no stall condition.

3.5 Summary

This chapter focuses on data switching policy between network interface and

router and arbitration mechanism of router. We used wormhole switching policy to

reduce the congestion condition and improve data transfer performance. About the

arbitration mechanism, we consider a fairness policy to avoid high priority data

occupying communication channel lead to starvation of low priority data.

39

Chapter 4
An Efficient Network Interface for

Memory-Centric On-Chip Interconnection

Network

The performance of a multi-core system-on-chip (SoC) will be limited by the

on-chip data communication, memory resource allocation, and memory data

accessing. A memory-centric on-chip interconnection network (OCIN) is presented to

improve both the communication bandwidth and memory bandwidth. Moreover,

network interfaces (NIs), one of the building block of OCINs, is a major factor in the

performance. In this chapter, an efficient NI is proposed for the memory-centric

on-chip interconnection network to reduce the data blocking by a borrowing

mechanism. By considering the borrowed memory blocks and distributed memory

management unit (d-MMU), the size of the output queue in NI can be dynamically

scheduled.

4.1 Introduction

NI is designed as a bridge between a process element and a router. Additionally,

NI is a major factor in the performance of OCINs, and implements the communication

protocols of OCINs [4.1]. NI is implemented based on the message dependencies in

shared–memory and message-passing communication paradigms. Therefore, a NI

micro-architecture was proposed for the connection-then-credit (CTC) flow control

protocol among both communication paradigms [4.2]. Moreover, an efficient NI was

investigated to offer guaranteed services, shared-memory abstraction and flexible

network configuration [4.3]. These two approaches increase design reuse and allow

flexible instantiations in different design constraints. In addition to meet hare

real-time constraints, a communication and configuration controller was developed to

manage reconfiguration data-flows in NIs [4.4]. Furthermore, a high-speed NI was

40

proposed to support the serial-link packet-based transmission model [4.5].

RISC

Centralized

Memory

(L2 Cache)

D-Cache I-Cache

Centralized

MMU Interconnection Network

Voltage/

Frequency

DSP

D-Cache I-Cache

Voltage/

Frequency

D-Cache

WPU

Power

Management

Unit

DSP

D-Cache I-Cache

Voltage/

Frequency

MAC SVC

Memory-Centric On-Chip

Interconnection Network

Voltage/

Frequency

Voltage/

Frequency

Voltage/

Frequency

d-MMU : Distributed Memory Management Unit

NI : Network Interface

D-Cache : Data Cache
I-Cache : Instruction Cache

D-Cache D-Cache

O
ff
-C

h
ip

 D
R

A
M

d-MMU NI d-MMU NI

d-MMU NId-MMU NI

d-MMU NI

d-MMU NI

Figure 4.1 Memory-centric on-chip interconnection network (OCIN)

With the increasing PEs, data coherent of the shared–memory communication

becomes one of the critical design challenges. Therefore, the message-passing

communication paradigm is popular in multi-core systems [4.6][4.7]. Additionally,

with increasing demands on ubiquitous wireless high-data-rate multimedia services,

large amounts of high speed and low power memories are indispensable for a

multi-core platform. Therefore, on-chip SRAM-rich SoCs and processors was

proposed for multimedia devices, and a memory-access-specific OCIN was developed

[4.8]. In view of this, a memory-centric OCIN as shown in Figure 4.1 will be an

effective platform for the future wireless multimedia systems. The memory-centric

OCIN is developed by a conventional OCIN and an on-demand memory sub-system,

including distributed memories, centralized memories, distributed memory

management units (d-MMUs) and a centralized MMU (c-MMU). In this paper, an

efficient NI for the memory-centric OCIN is proposed to reduce the data blocking in

NIs via the d- MMU. The d-MMU can dynamically allocate the memory resources for

buffering the blocking network data.

41

4.2 Memory-Centric On-Chip Interconnection Network

4.2.1 Packet Definition

The message-passing communication paradigm is adopted among the PEs via the

packet switching technique. Therefore, Figure 4.2 presents the packet definition of the

memory-centric on-chip interconnection network. The header field in the header flit

contains the information of this packet to route this packet to the destination in the

OCIN. Additionally, “Mes” indicates this packet is routed for message-passing or

on-demand memory subsystem. Therefore, the message-passing field or the

on-demand memory field indicates the control signals between PEs or d-MMU and

c-MMU. Furthermore, if both “Mes” and “Addr” are activated, the control signals

between two PEs are extended in the address field. In additional, “R/W” indicates the

access operation of this packet and “Pr” indicates the packet priority. “BL” indicates

the burst length of packet, in other words, it represents the size of payload flits.

Flit0

Ack

R

Addr

R/W

Mes

Pri(2)

BL(3)

D(3)

S(3)

D
a

ta
 (3

2
 b

its)

A
d

d
ress (3

2
 b

its)

D
a

ta
 (3

2
 b

its)

Valid

00 01 10

Flit1 Flit2 Flit10

Header

Field

Header

1 packet

Type

Source ID

Destination ID

Burst Length(1~8)

Packet Priority

Message passing

Read/Write

Address enable

Return packet indicator

Acknowledge

S :

D :

BL :

Pr :

Mes :

R/W :

Addr :

R :

Ack :

MMU

(8bits)

MSG

(8bits)

Message

Passing

Field

On-

Demand

Memory

Field

Figure 4.2 Packet definition of the memory-centric on-chip interconnection network

42

4.2.2 Data Communication Protocol

In on-demand memory platform, a specific memory access and data

communication protocol has been defined to integrate all processor elements. Base on

this protocol, processor element can use large memory space and communicate with

other processor elements. This section will describe the detail information about the

protocol, including I/O definition and all kind of operation behaviors.

In order to finish high level verification, a simple MMU behavior model has

been established to simulate memory access and data communication behavior. Figure

4.3 shows the block diagram of the simulation model. In this diagram, MMU behavior

model acts as memory system behavior including memory access, data transmit, data

receive and special MMU operation. In this section, these will be described clearly.

According to this protocol, processor element providers need to establish a wrapper to

execute memory access, data transmit and data receive successfully.

Interconnection

network

Other node

d-MMU NI

Input

Output

Memory

Model

Wrapper

Processor element

Figure 4.3 Simulation model block diagram

In the Figure 4.3, the red line indicates the I/O port interface and I/O direction

(based on wrapper). The detail input and output port definition between d-MMU and

wrapper will be introduced in the Table 4.1 and Table 4.2 respectively.

43

I/O Category Port name Width Description

Input

Memory

R/W

operation

M_IN_VALID 1

Memory data input enable signal : Active high

when memory data inputs are valid

M_RDATA 32

Memory data input : It will be read data from

memory

M_IN_BL

3

Memory input data burst length : The burst length

value is IN_BL + 1. For example, IN_BL = 3’b000

represents the burst length is 1, and 3’b111

represents the burst length is 8

MA_READY

1

MMU memory access ready signal : Active high

when the d-MMU is ready to service memory

access

Input

MMU

operation

MU_READY
1

MMU operation ready signal : Active high when

the d-MMU is ready to service MMU operation

Transmit

operation
TX_READY 1

MMU transmit ready signal : Active high when the

d-MMU is ready to service transmit operation

Receive

operation

RX_IN_VALID 1

Receive operation input enable signal : Active high

when receive operation data input are valid

RX_RW 1

Receive operation Read/Write signal : Indicate the

receive operation is receiving data or receiving

request

0 : Receiving data

1 : Receiving request

RX_IN_BL 3

Receive data burst length : The burst length value

is IN_BL + 1. For example, IN_BL = 3’b000

represents the burst length is 1, and 3’b111

represents the burst length is 8

RX_SOURCE 2

Input data source : Indicate the source of the

receiving data. The node ID is shown below

0 : WPU

1 : MAC

2 : LT coding

3 : SVC

The details will be showed in the chapter 5

MSG_INFO_IN 8

Message data information : The signal represents

the receiving data type and information which are

defined by each processor elements

44

RX_DATA 32

Receive data input : It will be packet data from

other node

Common

CLK 1 Clock

RST 1
Reset : Synchronous active high reset

Table 4.1 Input description of the wrapper

I/O Category Port name Width Description

output

Memory

R/W

operation

M_OUT_VALID 1

Memory data output enable signal : Active

high when memory access output signals are

valid

M_RW 1

Memory Read/Write signal : Indicate the

memory access is read or write

0 : write

1 : read

M_OUT_BL 3

Memory access output data burst length : The

burst length value is IN_BL + 1. For example,

IN_BL = 3’b000 represents the burst length is 1,

and 3’b111 represents the burst length is 8

M_ADDR 32

Read/Write address : ADDR signal represents

the start address of the continuous burst data

M_WDATA 32

Memory write data output : This signal will be

memory write data.

Transmit

operation

TX_OUT_VALID 1

Transmit output enable signal : Active high

when transmit operation output signals are valid

TX_RW 1

Transmit operation Read/Write signal :

Indicate the transmit operation is sending data

or sending request

0 : Sending data

1 : Sending request

TX_OUT_BL 3

Transmit operation output data burst length :

The burst length value is IN_BL + 1. For

example, IN_BL = 3’b000 represents the burst

length is 1, and 3’b111 represents the burst

length is 8

TX_DEST 2

Transmit operation output data destination :

Indicate the data destination. The node ID is

show below

45

0 : WPU

1 : MAC

2 : LT coding

3 : SVC

The details will be showed in the chapter 5

TX_DATA 32

Transmit data output : This signal will be

memory write data

TX_PRI 2

Packet priority : PRI signal represents the

priority of transmitting data packet. It is used to

determine the priority of network arbitration.

The default value is 0 (highest priority)

MSG_INFO_OUT 8

Message data information : The signal

represents the transmitted data type and

information which are defined by each

processor elements

Receive

operation
RX_CAP 4

Data capacity : This signal indicates available

space of the buffer which is utilized to store

receiving data. Its maximum value is 8, which

indicates available space is equal or larger than

8

MMU

operation

MU_VALID 1

MMU enable : Active high when processor

element want to use MMU signal to tell

d-MMU specific information

MU_INFO 8 MMU information

Table 4.2 Output description of the wrapper

In the transmit operation, processor elements can transmit data to another node.

This operation need to provide destination ID which indicated the data destination.

This information is represented by TX_DEST port. The transmit also uses burst

transmit, so it need burst length information which is represented by TX_OUT_BL. In

addition, specific message information which is predefined by these two nodes will be

required to identify the packet data type, so processor element can use

MSG_INFO_OUT signal to present it. Besides, PRI signal indicates the packet data

priority to determine the packet priority in the interconnect network, and its default

value is set to 0 (highest priority). Also, TX_READY signal indicates the MMU

transmit state Processor elements need to check this signal first to know about

46

whether the MMU is ready to serve transmit operations. The detail timing diagram of

transmit operation is shown in Figure 4.4 and Figure 4.5.

CLK

TX_READY

TX_DEST

output
input

D0 D1 DN-1

TX_RW

TX_OUT_VALID

TX_OUT_BL

TX_DATA

Burst Length (N)

Data destination node ID

Message informationMSG_INFO_OUT

Packet PriorityTX_PRI

Figure 4.4 Timing diagram of send packet data to other node

CLK

TX_READY

TX_DEST

output
input

TX_RW

TX_OUT_VALID

MSG_INFO_OUT

TX_PRI

Message

info.

Destination

ID

Message

priority

Figure 4.5 Timing diagram of send read request to other node

When another node transmits a packet data to the local node, d-MMU will

execute receive operation, and then it forward the packet data to the processor element.

In receive operation, RX_IN_BL signal indicates the transmitted packet burst length

and RX_SOURCE signal indicates the source ID. Besides, MSG_INFO_IN signal is

used to represent specific message information which is predefined by these two

nodes. Processor element can use message information to identify received data.

Moreover, in order that d-MMU want to check whether the processor element or

wrapper has enough capacity to handle these data, RX_CAP signal indicate the

47

residual space of the received data buffer in the wrapper. D-MMU will check this

signal first, and then decide whether the burst data can be send. If it cannot be send,

these data will be stored in the d-MMU buffer until the processor element has enough

capacity. The detail timing diagram is shown in Figure 4.6 and Figure 4.7.

CLK

RX_CAP

RX_SOURCE

output
input

D0 D1 DN-1

RX_RW

RX_IN_VALID

RX_IN_BL

RX_DATA

Burst Length (N)

Data destination node ID

Message informationMSG_INFO_IN

Capacity Capacity

Figure 4.6 Timing diagram of receive packet from other node

CLK

output
input

Message

info.

RX_CAP

RX_SOURCE

RX_RW

RX_IN_VALID

MSG_INFO_IN

Capacity Capacity

Source ID

Figure 4.7 Timing diagram of receive request from other node

4.3 Efficient Network Interface for Memory-Centric

On-Chip Interconnection Network

For the memory-centric OCIN, d-MMUs are designed for PEs to store the

temporal data of their tasks. The d-MMU and distributed memories perform as a low

level cache for the dedicated PE in the on-demand memory sub-system. Additionally,

NI is designed as a bridge between the PEs and the OCIN. NI contains the input

48

queue and output queue for buffering packets. However, the sizes of the queues

dominate the area and the performance of data transfer. If the buffer is insufficient, the

PE will be stall until the head-of-line blocking releases. Therefore, if the utilization of

the distributed memory is low, the d-MMU can borrow the memory resources for

buffering the blocking packets from the PEs, and the PEs can keep computing for

their tasks.

Depending on the buffering mechanism of the d-MMU, an efficient NI as shown

in Figure 4.8 is proposed for the memory-centric OCIN. The NI uses a buffering

control to generate a borrowing request to the d-MMU for borrowing memory

resources. And thus, the d-MMU checks the valid table and generates the borrowing

address for the NI.

Wrapper

Valid Table

Distributed MMU

Flow

Control

Packetization

arbiter

Processing Element

Cache

Network Interface

O
n

-C
h

ip
 In

te
rc

o
n

n
e

c
tio

n

a
rc

h
ite

c
tu

re

Buffering

Control F
IF

O

Borrowing
Address

Generator

Cache
Control

Borrowing
mechanism

Figure 4.8 Efficient network interface with d-MMU.

Figure 4.9 presents the buffer borrowing interface between the NI and d-MMU.

The operations of the buffer borrowing include write, read and release. For the write

operation, the buffering control should send a buffer request to the d-MMU first, and

send the blocking data until receiving a grant signal. However, the head-of-line

blocking may release while waiting the grant from d-MMU or waiting the data from

49

PE. Therefore, a release operation can release the extension memory resources. While

the blocking condition of output queue disappears, the buffering control would send

data request to the d-MMU, and wait valid signal to read back the buffering packet

from d-MMU.

N_BUF_REQ

N_BUF_GRANT

N_DATA_VALID

N_BUF_DATA (8 words)

N_DATA_REQ

N_BACK_VALID

N_BACK_DATA(8 words)

N_RELEASE

B
o

rro
w

in
g

 A
d

d
re

s
s

G
e

n
e

ra
to

r

B
u

ffe
rin

g
 C

o
n

tro
l

write

read

release

Figure 4.9 Buffer borrowing interface between the NI and d-MMU.

4.3.1 Borrowing Address Generator

When the NI requests an extend buffer to store the blocking packet, the

borrowing address generator searches an empty space in the distributed memory via

checking the valid table. This valid table is attached in the cache tables as shown in

Figure 4.10. The distributed memories are divided into two banks with four-way

association. The memories corresponding to the last associated table in bank 0 and

bank 1 are infrequently used in opposition to others. Therefore, the d-MMU can

borrow the empty spaces corresponding to this table. Moreover, each cache line in the

four-way association contains 4 x 8 words. Therefore, the maximum payload of a

packet can be stored in a memory block (8 words) in one cycle. If a memory block is

borrowed, the d-MMU asserts the status bit that represents the borrowing data.

Depending on the status bit, the cache control can mask the searching of this table in a

searching operation.

50

Index offsetTAG

Bank1 table
Valid

dirty status
TAG

bank

Bank0 table

TAG

Status bit : represents the data is buffering data

mask

Hit detector Hit?

Address from processor element (word address)

10 31

Valid table

Valid
dirty

4

4-way associativity

Figure 4.10 Borrowing mechanism in d-MMU

Search window (128 bits)

Empty detector

MUX
Search counter

72

Valid bit

Buffer borrowing address (word address)
All full?

Figure 4.11 Architecture of the empty memory block searching.

After the NI send a borrowing request to the d-MMU, the NI should take 2-8

cycles for collecting the payload. Most packets contain 8 flits in their payloads, and

the average size of payload is about 4 words. Therefore, the d-MMU has to search the

empty memory block in 4 cycles. Additionally, the last associated tables in bank 0 and

bank 1 contains 512 valid bits. To search the empty memory block, a 128-bit

searching window is adopted. Figure 4.11 shows the architecture of the empty

memory block searching. The searching window is controlled by a search counter.

The empty detector detects an empty memory block and generates the borrow address

with the search counter. If all memory blocks in a searching window are full, the

searching windows will move to the next 128 bits. Figure 4.12 shows the searching

flow chart of the borrowing mechanism. The flow can be divided into three steps,

which are empty memory block searching, borrowing status setting, and data writing.

51

The operations of empty memory block searching and borrowing status setting are

described above. While writing data in the borrowing memory block, the borrowing

address should be stored in the address queue for reading operations. After writing the

payload into the memory block, the grant signal is changed to 0 for the next

borrowing request.

No

Search empty memory block

in a searching winodw

Does any

space can be

borrowed?

Yes
All valid bits

have been

checked?

No

Yes

Status bit=1

Valid bit=1

Grant=1

Wait the data

Ready

Request?
No

Yes

Input

valid?

Yes

No

Put the borrowing address to the address queue

& write the buffer data to cache ; Grant=0

Empty memory

block searching

Borrowing

Status Setting

Data writing

Figure 4.12 Searching flow chart of the borrowing mechanism in d-MMU.

4.3.2 Buffer Control

The buffering control in NI detects the empty size of the output queue and sends

the borrowing request to d-MMU. For example, if the burst length of packet is less

than empty size of output queue, a transfer is permitted. Figure 4.13 shows the block

diagrams of borrowing mechanism in the buffering control. The buffering control

sends the write, read, and release operations depending on an empty pointer of the

output queue and a borrowing pointer of the borrowing header queue. The empty

pointer and borrowing pointer indicate the number of the occupied buffers in the

52

output queue and borrowing header queue, respectively. If the borrowing header

queue is not empty, it represents that there are still some blocked packets in the

d-MMU.

Network Interface

ready

buffering control

borrowing

mode

w
ra

p
p

er

PE

empty pointer

borrowing

header

queue

output queue

d-MMU

read control

To on-chip

interconnection network

data stream

borrowing

pointer

write control

Release

control

payload

queue

flow control

Figure 4.13 Block diagrams of borrowing mechanism in network interface

In addition, the write control contains a payload queue for collecting the payload,

and then writing this payload to the borrowed memory block. The borrowing control

policy of the buffering control is presented as shown in Figure 4.14. The borrowing

mode indicates whether the channel is blocked and the blocking data should be stored

in the d-MMU or not. Therefore, after receiving data from the PE, the data should be

stored in the d-MMU in the borrowing mode. Otherwise, the data can be stored in the

output queue when the size of the empty slots is larger than the current payload.

While waiting the borrowing grant from d-MMU and collecting the payload, the

head-of-line blocking may be released. Therefore, the borrowing mechanism can also

be released if the borrowing mode equals to zero. The release signal will interrupt the

search operation of d-MMU.

53

Ready

YesNo Borrowing

mode?

Write header/data

into output queue

 every cycle

Borrowing mode,

borrowing

request

No

No

Wait payload

Write payload

into D-MMU

Borrowing

releasing

No

Yes

Yes

Yes

No

Yes

Free slot >

max payload

Free slot >

max paload,

Borrowing

mode = 0

Borrowing

grant?

Free slot >

payload,

borrowing

mode = 0

Figure 4.14 Borrowing control policy of the buffer control

For write operation, when receiving full payload from PE we would double

check the empty size of output queue. If the head-of-line is released and there is no

blocked data in the d-MMU, the received data can store into output queue and set

borrowing mode to zero. This release operation is shown in the Figure 4.16.

Otherwise, the received data should store in the d-MMU followed with the former

blocked data. The timing diagram of write operation is shown in the Figure 4.15.

54

CLK

N_BUF_REQ

N_BUF_GRANT

N_DATA_VALID

N_BUF_DATA

output
input

D0 D1 DN-1

TX_READY

TX_RW

TX_OUT_VALID

TX_BL

TX_DATA

(DN-1, …, D1, D0)

Queue_Full

Burst Length (N)

Figure 4.15 Timing diagram of writing blocked data in the d-MMU

CLK

N_BUF_REQ

N_BUF_GRANT

N_RELEASE

output
input

Figure 4.16 Timing diagram of releasing extension memory block

While the empty size of output queue is larger than the current packet which is

stored in the d-MMU, buffer control would send request to d-MMU for reading back.

We can access the header flit stored in the borrowing header queue to complete this

work. Then, buffer control would receive blocked data and store into output queue

while the data valid bit is activated. Timing diagram of read operation is shown in the

Figure 4.17.

55

CLK

N_DATA_REQ

N_BACK_VALID

N_BACK_DATA

output
input

Queue_Free

BUF_data

Figure 4.17 Timing diagram of read back blocked data.

4.4 Simulation Results

The proposed efficient NI and memory-centric OCIN are implemented in

SystemC for the cycle-driven simulation. Thereby, the simulation environment is set

as a 4x4 router with 4 PEs to evaluate the performance improvement via the efficient

NIs which is shown in the Figure 4.18.

cr
o
ss

b
a
r

N
et

w
o
rk

 I
F

ar
b
it

er

ar
b
it

er

ar
b
it

er

ar
b
it

er

wrapper wrapper wrapper wrapper

b
u

ff
er

co
n

tr
o

l

fl
o
w

 c
o
n
tr

o
l

b
u

ff
er

co
n

tr
o

l

fl
o
w

 c
o
n
tr

o
l

b
u

ff
er

co
n

tr
o

l

fl
o
w

 c
o
n
tr

o
l

b
u

ff
er

co
n

tr
o

l

fl
o
w

 c
o
n
tr

o
l

d
-M

M
U

C
a

ch
e

ct
rl

d
- M

M
U

C
a

ch
e

ct
rl

d
-M

M
U

C
a

ch
e

ct
rl

d
-M

M
U

C
a

ch
e

ct
rl

Figure 4.18 Simulation environment

The input pattern is generated from C++ code by random function. The access

type of write/read equals 4. Write operation is the major loading of data transfer.

Packet priority, burst length and destination address are all random.

Figure 4.21(a) shows the execution time of transferring 200000 random packets

under various injection loads and output queue sizes of sender. With the increasing

injection load, the execution time decreases because the transferred packets are fixed.

56

1.26

1.28

1.3

1.32

1.34

1.36

1.38

1.4

1.42

1.44

1.46

16 24 32 40 48 56 64

M
ill
io
n

runtime with adaptive
buffering(ns)

runtime without adaptive
buffering(ns)

Figure 4.19 Execution under different output queue size (injection load = 20%)

1.45

1.5

1.55

1.6

1.65

1.7

1.75

1.8

16 24 32 40 48 56 64

M
ill
io
n

runtime with adaptive
buffering(ns)

runtime without adaptive
buffering(ns)

Figure 4.20 Execution under different output queue size (injection load = 15%)

The buffer size of sender and receiver in the NI can be dynamically adjusted

according to the congestion of network interconnection [4.9][4.10]. By adjusting the

size of buffer we can increase the data switching performance. In the same word, we

can increase the maximum borrowing memory blocks of d-MMU to improve the

performance of buffer borrowing mechanism and promote efficiency of data transfer

in the same time.

57

16 24 32 40 48 56 64

1.2

1.4

1.6

1.8

2.0

2.2

2.4

Injection load = 0.10

Performance Improvement

Queue Size in Network Interface (Flits)

E
x
e

c
u

ti
o

n
 t
im

e
 (

x
1

0
6
 C

y
c
le

s
) 1.13x

Injection load = 0.15

Injection load = 0.20

Injection load = 0.25

Injection load = 0.30

(a)

16 24 32 40 48 56 64

2.0

2.5

3.0

3.5

Injection load = 0.10
1.15x

Performance Improvement

N
u

m
b

e
r

o
f
T

ra
n

s
fe

rr
e

d
 P

a
c
k
e

t
 (

x
1

0
4
)

Queue Size in Network Interface (Flits)

Injection load = 0.15

Injection load = 0.20

Injection load = 0.25

Injection load = 0.30

Conventional NI

Efficient NI with borrowing mechanism

(b)

Conventional NI

Efficient NI with borrowing mechanism

Figure 4.21 (a) Execution time under various injection loads and queue sizes (b)

Transferred packet under various injection loads and queue sizes

Additionally, Figure 4.21(b) shows the number of transferred packets in 300000

cycles under various injection loads and queue sizes. Based on the simulation results,

the proposed borrowing mechanism can achieve the similar performance with

different queue sizes. Moreover, the proposed efficient NI can realize about 1.15x

performance improvement compared to the conventional one with 16flits.

Under the same setting, Table 4.3 shows the number blocking condition under

various injection rate and queue sizes. We can see this network interface improves

data blocking condition 2%~5%.

58

injection rate = 35% blocking cycle of PE within 1ms

Data FIFO size (words) 16 24 32

with adaptive buffering 38436 38623 38701
blocking rate = 55%

without adaptive buffering 39604 39619 39653

reduction rate 3.0388% 2.5788% 2.4599%

with adaptive buffering 38184 38687 38007
blocking rate = 60%

without adaptive buffering 39677 39715 39734

reduction rate 3.9100% 2.6572% 4.5439%

with adaptive buffering 38056 38530 38320
blocking rate = 65%

without adaptive buffering 39568 39833 39409

reduction rate 3.9731% 3.3818% 2.8419%

with adaptive buffering 38556 38654 38420
blocking rate = 70%

without adaptive buffering 40321 39864 40519

reduction rate 4.5778% 3.1303% 5.4633%

with adaptive buffering 40093 40019 40603
blocking rate = 75%

without adaptive buffering 41796 41252 41457

reduction rate 4.2476% 3.0810% 2.1033%

with adaptive buffering 44541 44212 44198
blocking rate = 80%

without adaptive buffering 45801 46492 45227

reduction rate 2.8289% 5.1570% 2.3282%

with adaptive buffering 52348 52729 52100
blocking rate = 85%

without adaptive buffering 54004 53017 53394

reduction rate 3.1634% 0.5462% 2.4837%

Table 4.3 Blocking condition reduction rate under various output queue size and

blocking rate of receiver (size of borrowed memory blocks = 512 words)

4.5 Summary

A memory-centric on-chip interconnection network provides effective memory

and communication bandwidths for on-chip SRAM-rich SoCs based on MMUs.

Moreover, network interface is a primary element in the performance of on-chip

interconnection networks. In this chapter, an efficient network interface is presented

to reduce the data blocking by a borrowing mechanism. The d-MMU can dynamically

allocate the memory resource for buffering the blocking network data. By considering

the borrowed memory blocks and d-MMU, the size of the output queue in network

interface can be dynamically scheduled. According to the cycle-driven simulation

59

results in SystemC, the proposed efficient network interface can achieve performance

improvement by 1.15x compared to the conventional one. At the same time, this

efficient network interface can reduce data blocking condition compared to

conventional one. Therefore, the proposed efficient network interface can increase the

performance of the memory-centric on-chip interconnection network.

60

Chapter 5
Memory-Centric On-Chip Data Communication

for Wireless Video Entertainment Systems

In this chapter, a memory-centric on-chip data communication platform is

developed for a wireless video entertainment system. First of all, the introduction and

motivation of the wireless video entertainment system will be depicted in the section

5.1. Subsequently, section 5.2 will describe the concept of the memory-centric

on-chip data communication platform. And then the development of the wireless

video entertainment system will be introduced in the section 5.3. Finally, wireless

video entertainment system will be constructed in memory-centric on-chip data

communication platform, and it will be described in section 5.4.

5.1 Motivations

Figure 5.1 Wireless Video Entertainment Systems

With the advancements of the wireless communication and multimedia

61

techniques, various digital communication products are developed in our life. These

modern electronic products provide more convenient communication environment

and media enjoyment for humans than those before. However, with different

applications or standards, a variety of devices would be needed. Figure 5.1 illustrates

a heterogeneous network environment in our life. In recent years, merging different

networks, electronic appliances and media devices into a heterogeneous integrated

platform becomes an important issue that enables people enjoy their life in an more

friendly and energy-efficient digital environment.

(a) (b)

Figure 5.2 Homogeneous multi-core platform (a) Intel Polaris (b) Tilera TILEPro64
TM

Processor

Figure 5.3 Trend of the data transmitting bandwidth

To integrate various applications into a system, a multi-task/multi-core concept

provide a typical solution to build the system. The design of multi-core platform is a

popular research area recently. Figure 5.2 shows two homogeneous multi-core

platforms. Intel proposed an 80-core platform as shown in Figure 5.2(a) and Tilera

[5.1] proposed a 64-core platform as shown in Figure 5.2(b). These multi-core

62

platforms can execute billions of operation per second. Furthermore, the data

transmitting bandwidth for the multi-core platform is increasing year by year as

shown in the Figure 5.3. However, the overall system performance could be limited

by the task partitioning, task mapping, memory resource allocation, and memory data

accessing. Figure 5.4 indicates the bottlenecks of multi-core platforms with

insufficient memory bandwidth and memory capacity for supporting high

communication efficiency in the multi-core systems. With ongoing development of

multi-core or multi-task system, both the memory capacity and memory access

bandwidth are required. Enabling multiple memory data access is necessary for

improving the memory bandwidth. However, increasing the memory read/write ports

not only increases the hardware complexity but also reduces the memory performance

and noise immunity. Conventional memory access method cannot provide enough

memory bandwidth for multi-core platform. Hence, the memory management in

multi-core or multi-task platform will become more and more important. It is an

essential issue that reducing additional memory access and increasing the memory

bandwidth effectively. For these reasons, a memory-centric on-chip data

communication platform will be proposed and introduced in the following section.

Figure 5.4 Comparison between memory bandwidth, memory capacity and

communication efficiency in multi-core systems

5.2 Memory-Centric On-Chip Data Communication

Platform

5.2.1 Overall Architecture

To solve the problems as mentioned above, a hierarchy memory-centric on-chip

63

data communication platform is proposed and the architecture is shown in Figure 5.5.

Heterogeneous processing elements such as microprocessors and application-specific

stream processors can be integrated in the platform. In this platform, each processor

element owns distributed memory management unit (d-MMU). The d-MMU includes

local cache (D-cache and I-cache) and cache controller which can efficiently handle

all memory requests generated by the processor elements. It can dynamically allocate

unused space in cache for buffering the transmitting data. If processor elements need

additional memory resource requirements, the centralized memory resources

including centralized cache and off-chip DRAM can be used. It is controlled by a

centralized memory management unit (c-MMU). It can dynamically allocate and

manage the memory resources according to different memory requirements.

For the data communication between processor elements, message-passing

technique is applied for this platform. The processor elements transmit/receive the

data to/from others through an on-chip interconnection network. Network interface is

applied to packetize the transmitted data to interconnection and de-packetizes the

received data from interconnection. Furthermore, in order to have better energy

utilization for green computing, the power management unit can be applied to

dynamically control the supply voltage and operating frequency of each processor

element for saving energy consumptions.

In the heterogeneous multi-task platform, different processor elements would

have quite different memory requirements with different specific functions in a

platform. For instance, the memory requirement of the video decoding is larger than

that of the wireless processing unit. Moreover, different system environment factors

may affect memory utilizations for the applications in platform during runtime.

Different qualities of wireless channels may have different memory behavior in a

wireless video integrated system. Thus, a multilevel memory hierarchy on-demand

memory system is applied for this platform. The memory system enables the

processing elements to own different memory resources dynamically. In the following

section, the concept of on-demand memory system will be introduced.

64

RISC

Centralized

Memory

(L2 Cache)

D-Cache I-Cache

Centralized

MMU Interconnection Network

Voltage/

Frequency

DSP

D-Cache I-Cache

Voltage/

Frequency

D-Cache

WPU

Power

Management

Unit

DSP

D-Cache I-Cache

Voltage/

Frequency

MAC SVC

Memory-Centric On-Chip

Interconnection Network

Voltage/

Frequency

Voltage/

Frequency

Voltage/

Frequency

d-MMU : Distributed Memory Management Unit

NI : Network Interface

D-Cache : Data Cache
I-Cache : Instruction Cache

D-Cache D-Cache

O
ff
-C

h
ip

 D
R

A
M

d-MMU NI d-MMU NI

d-MMU NId-MMU NI

d-MMU NI

d-MMU NI

Figure 5.5 The architecture of memory-centric on-chip data communication platform

5.2.2 Concepts of On-Demand Memory System

In on-demand memory system, a three-level memory hierarchy is constructed,

and the illustration is shown in Figure 5.6. For the first hierarchy level, distributed

memory management unit (d-MMU) is applied to control the memory accesses. It

includes distributed cache and cache controller for processor elements. Furthermore,

in order to improve the transmitting efficiency for data communication, d-MMU can

dynamically allocate unused space in distributed cache to store packet data so that the

stall caused by data blocking can be prevented.

For the second level hierarchy of the on-demand memory system, centralized

memory management unit (c-MMU) is constructed to provide more memory

resources for processor elements. In c-MMU, a cache controller and centralized cache

is included. In addition, the configuration of centralized cache can be dynamically

adjusted according to the different memory requirement from processor elements. For

example, if a processor element need larger memory requirement than others, it can

own more centralized memory resources than other processor elements. Adaptive

cache control in c-MMU controls the adaptive allocation and cache operation. In

addition, unused memories can be power down to save memory power consumptions

65

for green computing.

Distributed

cache

(L1 cache)

Centralized

cache

(L2 cache)

Off-chip

DRAM

PE n PE 2 PE 1

Unused
(Power down) For

PE n

For

PE 2

For

PE n

Message

Passing

Buffer

Dynamic configuration

(Controlled by d-MMU)

Dynamic configuration

(Controlled by c-MMU)

For

PE 1

For

PE 1

Figure 5.6 Illustration of the memory hierarchy in on-demand memory system

For supporting enough memory space, off-chip DRAM is applied, and it is the

third memory hierarchy level in the system. DRAM controller is needed to access the

off-chip DRAM devices. It includes an external memory interface and address

translator to improve the memory access efficiency.

In the on-demand memory system, all processor elements own a private address

space and can dynamically be allocated. For data switching between processor

elements, message-passing mechanism is used. On-chip interconnection network in

the platform is designed for data communication. Note that the thesis is focus on

on-demand memory system. The design of interconnection network is not included in

this thesis. In conclusion, adaptive memory resource allocation can be achieved and

the memory utilization can be improved by the memory management units.

5.3 Wireless Video Entertainment System

With the ongoing advancement in digital and communication techniques, digital

66

home service becomes a trend nowadays. In the daily life, home is the personal

headquarters for living, keeping personal assets and information. If the digital home

services are applied, the residents will effectively participate in any events happening

in the local, national and global communities without unnecessary travel. Digital

home technique integrates wireless, wired physical transmission and multimedia

real-time processes. With wireless communication technique, we can use mobile

electronic product, such as cell phone, PDA or notebook, to transmit or receive the

message by a certain sever. You can monitor and control the situation which

something or somebody happens at home remotely or receive immediate video what

you want. But nowadays, many kinds of communication protocol have been used such

as WLAN, bluetooth, WiMAX or LTE techniques. In order to support a variety of

protocols, a heterogeneous network system would be constructed. It provides an

adaptable processing unit to process various communications.

Many researches try to integrate the communication device and entertainment

platform into a system. However, the current technologies and systems cannot

effectively meet the requirements of these digital homes for some reasons [5.2]. First,

there are too many incompatible and not interoperable systems and standards, and

each system only work for one particular application, using a particular physical

transmission medium, and incompatible hardware and firmware. The Second one is

the throughput of the future digital home system may require up to 10Gps

(gigabit-per-second), but the current home networking technologies is below 1Gps. So

the system bandwidth must be improved. Furthermore, the scalability, security and

power are also the problems.

To solve these problems, we integrate the wireless sever and multimedia

processing unit together, construct an integrated heterogeneous-processing platform to

serve a variety of services. In order to serve various transmit channels, the multi-task

wireless video entertainment system is shown in Figure 5.7. Analog front-end system

receives and digitizes the wireless signals. Then the data will be processed by an

integrated, high performance digital system.

67

Multi-System

MAC

Streaming

Units

Display

Units

Peripherals
Processor

Scalable Video

Coding

Analog

Front-end

Joint Channel/

Source Coding

MIMO-OFDM PHY

WUWB

3G HSOPA

WiMAX

Terrestrial

WLAN

On-Demand

Memory System

PAC DSP

Figure 5.7 Multi-Task wireless video entertainment systems

In order to support various communication standards and have video

entertainment for digital home service, a wireless video entertainment system is

developed. It includes four functional blocks. The block diagram of wireless video

entertainment system transceiver is shown in Figure 5.8. In this system, Scalable

Video Coding (SVC), the extension of the H.264/AVC standard technique, is applied

to provide spatial, temporal and quality scalability of the video sequences [5.3]. For

the channel coding, Luby Transform (LT) coding, one kind of error correcting method,

is applied to have high channel reliability. Media Access Control (MAC) module is

the interface between application layer and the physical layer, and Wireless

Processing Unit (WPU) handles the wireless signal processing including

multi-standard baseband control and MIMO-OFDM. These functional blocks are

grouped into a SoC system. At current development stage, receiver system is

developed in an integrated on-demand memory system as which the red block in the

Figure 5.8(b) represents. The system specification is listed in Table 5.1. Additionally,

the details of WPU, MAC, LT coding and SVC coding will be described in the

following sections.

WPU (4x4) MAC LT Coding SVC

Input data rate
160MBps

(4Gbx12/s)
7.8MBps 7.8MBps 1333KBps

Output throughput
7.8MBps

(with a 64-QAM modulation)
7.8MBps 7.8MBps 17.4MBps

Memory access

bandwidth
222.4MBps 124.8MBps 124.8MBps 78.69MBps

Memory Size

(Required)
6.25KB 2MB 1MB 11.34MB (a GOP)

Table 5.1 System Specification

68

On-Demand Memory System

and eH-II Platform

Scale Video

Decoding

LT

Decoding

Dual-mode

MAC
WPU

RF

RF

HD

SD

CIF

On-Demand Memory System

and eH-II Platform

Scale Video

Coding
LT Coding

MAC

WPU

MAC

WPU

Adpative Modem

Adpative Modem

RF

RF

RF

RF

(a). Transmitter

(b). Receiver

Figure 5.8 Transmitter and receiver block diagram

5.3.1 Wireless Processing Unit (WPU)

Modern

output

Multiphase

Generator

DDFS

ADC

N-

point

FFT

to

RF

\RF

output Correlator

& Reconst

Beamfor

ming

MC-CFR

Estimation

\

ISI

Cancellation

\

Timing

Recovery

Freq.

Recovery

Packet

Detection

Boundary

Detection

\

\

Sphere

Decoder

SC-FDE

FD
Frame synchronization

Phase

Rotator

Phase

Recovery

S
/P

SC-CFR

Estimation

D
M

U
X

\

\

M
U

X
M

U
X

\

\\ \

Packet-Type

Decision

mode

20 & 22 MHz

P
/S

Figure 5.9 Single-FFT Architecture for MIMO Modem

The WPU is a designed as a frequency domain (FD) modem with the single-FFT

architecture. Additionally, the single-FFT architecture for multi-standard baseband is

suitable for IEEE802.11a/b/g/n/VHT and IEEE 802.15.3a/c. The architecture is shown

as in Figure 5.9. There are three key components in this architecture, including

frequency-domain (FD) synchronization, FD adaptive sampling and single carrier

frequency domain equalizer (SC-FDE). The features of the three components are as

69

follows.

 Frequency-domain (FD) synchronization

1. FD Adaptive Sampling

2. FD Boundary Decision

3. FD Anti-I/Q Phase Recovery

 Single carrier frequency domain equalizer (SC-FDE)

1. Frequency-domain channel estimation (FD-CE)

2. Frequency-domain ISI cancellation for DSSS non-CP SCBT

3. Frequency-domain data decision

 FD adaptive sampling

1. 6-symbol Lock

2. 32 multiphase clocking

3. Boundaryless

4. Tolerance of -30,000~40,000 ppm SCO as shown in Figure 5.10.

Figure 5.10 Single-FFT Architecture for MIMO Modem

ROM2

Cross-correlator1
max

2nd

3rd

4th

5th

6th

7th

...

min

Trellis rule checker

B
o

u
n

d
a

ry
 o

ff
s
e

t

 Length counter
Memory module

In
se

rt
er

FFT data

buffer

1st 2nd 10th
...

S
ta

ti
s
ti
c
a

l
o

p
e

ra
ti
o

n

(m
o

d
e
)

...

… …

Search Length = 5

Cross-correlator2

...

max

2nd

3rd

4th

5th

6th

7th

S
ig

n
 b

it m
ask

...

...

Rt(0)

Rt(1)

Rt(2)

Rt(3)

Rt(L-1)
Sorted

Buffer

Candidates

Buffer

...

C
o

n
fi

d
en

ce
 f

il
te

r

Multi-mode

control unit

ROM1

ROM4ROM3

Sorter

T
w

o
 P

ar
al

le
l

co
m

p
ar

at
o
r

b
an

k
s

Interactive sequence seacher Metric computation

Clock generator
77 MHz for DSSS

80 MHz for OFDM

11 MHz for DSSS, 20 MHz for OFDM

 ,t k R Pk ,t k R Pk Conf.

Figure 5.11 Single-FFT Architecture for MIMO Modem

70

Moreover, For the FD boundary decision, it contains the following features, only

1% detection error with low SNR (<5 dB) and gigh CFO tolerance. It is a trellis-based

detector, and can be used both for DSSS and OFDM different systems. Figure 5.11

displays the architecture, and it contains 3 key components, including a metric

computation, a sorter and an iterative sequence searcher. Additionally, for FD anti-I/Q

phase recovery, it contain following features.

1. Pseudo CFO injection

2. Compatible with conventional method (Moose)

3. Robust in IQ mismatch

4. Gain error: 2dB

5. Phase error:20

5.3.2 Medium Access Control (MAC)

Medium Access Control (MAC) protocols play a very important role in wireless

node-to-node communication, such as that between base stations and mobile terminals.

This work concentrates on quick prototyping, early-stage verification and extensible

design of multi-mode MAC layer systems. Starting from the integrated system of

WiMAX/Wi-Fi dual-mode MAC, we apply Object-Oriented Analysis and Design

(OOA&D) principle on both protocols, identifying the common and different

components between both systems. By using divide-and-conquer and bottom-up

design approaches, we are able to integrate WiMAX and WiFi MAC, and facilitate

reuse and performance optimization of common components between the two

systems.

71

Figure 5.12 MAC Layer Architecture

As shown in Figure 5.12, the MAC protocol layer, in terms of implementation,

could be separated in two parts: the Data Plane and the Control Plane. The main

function of the Data Plane is production of MAC layer’s protocol data units (PDUs).

It could either be analyzed with electronic system level (ESL) methodologies, or

realized by FPGA hardware solutions. The Control Plane takes control of the Data

Plane according to various signal feedbacks. These feedbacks include PHY-to-MAC,

Network-to-MAC and inter-BS or BS-to-MS signaling.

Besides data processing performance that directly relates to software/hardware

co-design, there are other factors that have great impact or overall system

performance. For example, the Request/Grant mechanism – the content of MS request

shall be properly received and recognized by BS, and then properly responded, vice

versa. Some MAC transmission mechanisms including auto retransmission request

(ARQ), handover, uplink scheduling, external environmental mechanisms such as

BS-end or MS-end channel condition, could deeply influence system performance.

Unfortunately, it is difficult to analyze and verify the interaction of MAC functional

interactions. The inter-node concepts cover a range even broader than system-level

72

design flows, and traditionally the verification of Control Plane begins at a later stage

of design flow.

5.3.3 LT Coding

LT code is a class of rateless codes. Its performance is approximately close to

channel capacities of arbitrary erasure channels. In theory, LT encoder generates

infinite codewords. Each receiver starts decoding when sufficient codewords are

collected. In spite of which codeword set is collected, the high recovery probability of

source symbols is guaranteed. Consequently LT codes are channel independent and

require no retransmission. For block codes, when there are too many codewords

erased within a block, codewords in this block are undecodable and retransmission is

needed. However, retransmission can jam the transmission and paralyze multicasting

servers in multicasting. In comparison with block codes, LT codes are more suitable

for multicasting. Recently, pre-codes concatenated with LT codes are standardized in

3GPP MBMS.

LT codes conduct BP algorithm as decoding scheme. The advantage of BP

decoding is its low decoding complexity. It trades decoding ability for decoding

complexity. The performance of LT codes are determined by two factors. One is the

degree distributions derived based on BP algorithm. The other is the number of source

symbols K. Theoretically, K approaches infinity and an LT encoder generates infinite

codewords. In practice, with the same degree distribution, the performance of LT

codes degrades with the decrement of K. BP decoding process fails when source

symbols are not decoded completely but there are not codewords with degree one left.

The information contained in these codewords is unable to be exploited by BP

algorithm. This follows that the recovery probability of source symbols is not optimal.

Codewords transmitted but not efficiently decoded results in the waste of transmission

bandwidth.

73

1 111Collected

Codewords

Source

Symbols

0 0

1 2 3 4 5 6

BP Decoding

11

00

0

0

1 2 3 4 5 6

Remaining

Codewords

Source

Symbols

1 6~ : Source symbol number

: Connections used by BP decoding

1 2 3 4 5 6

2 4 5

1 6~ : Codeword number

Figure 5.13 An example of decidable codewords which BP decoding fails to decode

Figure 5.13 is a simple example to show this condition. Now, there are six source

symbols and six codewords. The red dash line stands for the connections that can be

exploited by BP decoding. After BP decoding, codeword 2, 4, and 5 are left. Notice

that, the source symbol 1 can be recovered by performing exclusive-or on codeword 2

and codeword 5. Similarly, source symbol 4 can be recovered by performing

exclusive-or on codeword 2 and codeword 4. Finally, source symbol 5 is recovered by

performing exclusive-or on codeword 2, codeword 4, and codeword 5. For rateless

codes, decoding complexity is proportional to the total number of codeword degrees.

After BP decoding, most of the codewords are removed. Besides, the average degree

of remaining codewords is decreased. For example, with K=1000 and N=1120, the

average degree of the received codewords is 43.6. After BP decoding, the average

degree of remaining codewords is 8.3 and the corresponding degree distribution is

shown in Figure 5.13. In addition, the average number of remaining codewords is

85.9. The total number of codeword degrees are (43.6×1120)/(8.3×85.9)=68.5 times

74

less after BP decoding. It is efficient to conduct more complicated decoding methods

to recover the information in the remaining codewords.

5.3.4 Scalable Video Coding (SVC)

Figure 5.14 Architecture of an SVC encoder

Recently, with the prosperity of the Internet video, digital television, and portable

devices, the demand of digital video becomes more and more diversified. To deal with

those diversified video applications, Scalable Video Coding, the latest video coding

standard inherited from the state-of-art H.264/AVC, is formed to provide different

scalabilities (temporal, spatial, and quality) in a single bit-stream. Figure 5.14 shows

an SVC encoder architecture with two spatial layers. To generate scalable bitstream,

the input images are first downsampled to lower spatial resolution and encoded by

H.264/AVC compatible video encoder. Afterward, the higher spatial resolution images

are encoded by H.264/AVC encoder with additional advanced inter-layer prediction

techniques to fully utilize the relationship between two consecutive spatial layers and

consequently improve the coding performance. In addition, the quality and temporal

scalabilities are achieved in each spatial layer by the approaches of Coarse Granular

Scalability (CGS) and Hierarchical B structure, respectively. Finally, all generated

bitstreams corresponding to different quality scalabilities are grouped into a single

SVC bitstream. However, in addition to the primitive coding complexities of H.264,

75

the extra scalabilities of SVC also contribute significant computational complexity

and memory requirement in hardware realization. Therefore, in order to minimize the

computational complexity and memory requirement for realizing SVC codec, this

project first analyzes the internal memory requirement and external memory access to

find out the best coding method which can achieve best tradeoff between internal

memory usages and external memory accesses and several efficient techniques are

also proposed to improve the coding performance of SVC codec.

5.4 Memory-Centric On-Chip Data Communication

Platform for Wireless Video Entertainment System

The designers try to meet efficient processing capability, merge multi-task

system and use green computing concept in a system. However, when they try to

integrate the heterogeneous functional blocks into a system, multiprocessing

technique and multimedia process unit must be used. Furthermore, as the resolution of

video processing applications becomes high, video signal processors should deal with

a large amount of data within a tightly bounded time. Due to the huge data accesses,

the system performance strongly depends on the memory bandwidth between

processors and external memories. The system needs real-time and huge memory

access requirement, but the speed gap of the memory and processor unit is large in the

SoC system. Many researches are trying to minimize the speed gap. A well-organized

memory management can significantly reduce the memory access latency. According

to the data features of these applications, designer can find a well memory allocation

method to reduce the number of memory access time and average access latency.

Accordingly, for wireless video entertainment system, memory-centric on-chip data

communication platform is applied to provide a high bandwidth and satisfy enough

memory requirements.

According to the receiver system as mentioned in section 5.3, the processing

sequence of these multiple tasks is generally step by step. Figure 5.15 shows the data

stream of wireless video entertainment system. In memory-centric on-chip data

communication platform, on-demand memory system can support heterogeneous and

real-time memory requirement for wireless video entertainment system. MMUs in

on-demand memory system enable the processor elements to have adaptive memory

76

resources. Base on different memory requirement of these processor elements,

centralized MMU can dynamically allocate memory resources for processor elements.

The architecture of the system is shown in Figure 5.16. The system components can

be categorized into data computation part, data communication part and data storage

part. For data computation, it includes WPU, MAC, LT coding and SVC processor

elements. Subsequently, the other components will be introduced as follows.

WPU MAC
LT

coding
SVC

Video

frames
Input

data

Figure 5.15 Data stream of wireless video entertainment system

For data communication, it includes network interface (NI) and interconnection

network. In this system, message-passing mechanism is applied. With this mechanism,

the transmitting data are packed into packets by network interface, and through the

interconnection network using a pre-defined message-passing protocol. NI packetizes

the transmitting data with a header indicating the data source, destination and some

data information, and then transmits to the other node. It also de-packetizes the

receiving data from the other processor elements. In addition, a packet queue is

included in NI to store the blocking packet.

For data storage, each distributed processor element own a d-MMU, it includes a

distributed cache (L1 cache) and cache controller for memory access. It also manages

the cache usage. When packet queue size in NI is insufficient, d-MMU can borrow

some unused cache block for NI. In addition, c-MMU is constructed for providing

more memory resources. It includes centralized cache (L2 cache) and cache controller

for processor elements. The cache controller can support dynamical cache

re-organization for allocating different cache resources for different processor

elements. In c-MMU, a DRAM controller is constructed to efficiently access off-chip

DRAM. In DRAM controller, Address translator rearranges and translates address to

have an efficient memory allocation, and the memory requests enter the memory

interface with command scheduling to reduce memory access latency.

77

Interconnection

Network

Network

interface

L2 cache

Off-chip

memory

(DRAM)

M
u

lti-c
h

a
n

n
e

l a
rb

ito
r

L2 cache

controller

c-MMU

WPU

d-MMU

L1

cache

MAC

LT Coding

SVC

Cache

controller

Address

translator

External

memory

interface

DRAM controller

L1

cache

L1

cache

L1

cache

Figure 5.16 On-Demand Memory System architecture

5.5 Simulation Results

The proposed on-demand memory system is implemented in SystemC for the

cycle-driven simulation. Thereby, the simulation environment is set as a hierarchy

centralized MMU and a 4x4 router with 4 PEs (WPU, MAC, LT coding, SVC) and 4

distributed MMUs to evaluate the performance improvement via the efficient network

interfaces which is showed in Fig. 5.16. We focus on the data transmit among PEs and

data blocking condition of PEs. When the transmit data type is a large number and

consecutive, this network interface can show more its value. The output data of this

WPU and LT coding does not meet this type. Therefore, we do not discuss here.

For the MAC we detect the number of data blocking cycles in the output of

wrapper under various output queue size of sender in NI. We dynamically adjust the

size of output queue and input queue in the NIs and the size borrowed memory blocks

for various blocking load in the receiver to see the data blocking condition in the

output of processor elements.

78

Figure 5.17 shows the reduction rate under various blocking rate of receiver end.

The size of output queue is 16 words in the sender and size of input queue in the

receiver is 32 words. We can see if the size of memory borrowed blocks is enough;

the reduction rate can increase linearly.

Figure 5.17 data blocking reduction rate under memory borrowing size = 512 words,

size of output queue in the sender = 16 words, size of input queue in the receiver = 32

words

sender output FIFO size =16 words

receiver FIFO size = 32 words blocking cycle of MAC within 2000000cycle

memory borrowing size (words) 16 32 48

with adaptive buffering 11339 11339 11339
blocking rate = 50%

without adaptive buffering 11394 11438 11357

data blocking reduction rate 0.4827% 0.8655% 0.1585%

with adaptive buffering 11339 11340 11340
blocking rate = 55%

without adaptive buffering 11965 11962 11803

data blocking reduction rate 5.2319% 5.1998% 3.9227%

with adaptive buffering 11341 11340 11339
blocking rate = 60%

without adaptive buffering 13050 13191 12984

data blocking reduction rate 13.0958% 14.0323% 12.6694%

with adaptive buffering 11425 11345 11343
blocking rate = 65%

without adaptive buffering 14221 14398 14364

data blocking reduction rate 19.6611% 21.2043% 21.0317%

with adaptive buffering 12275 11342 11341 blocking rate = 70%

0.0000%

10.0000%

20.0000%

30.0000%

40.0000%

50.0000%

60.0000%

70.0000%

80.0000%

90.0000%

100.0000%

50 55 60 65 70 75 80 85 90 95

data blocking
reduction rate
(memory
borrowing size =
512 words)

79

without adaptive buffering 16420 16369 16392

data blocking reduction rate 25.2436% 30.7105% 30.8138%

with adaptive buffering 15221 11428 11363
blocking rate = 75%

without adaptive buffering 19018 19042 19330

data blocking reduction rate 19.9653% 39.9853% 41.2157%

with adaptive buffering 19023 14440 11615
blocking rate = 80%

without adaptive buffering 23197 23390 23851

data blocking reduction rate 17.9937% 38.2642% 51.3018%

with adaptive buffering 26497 21118 16449
blocking rate = 85%

without adaptive buffering 30755 30804 31892

data blocking reduction rate 13.8449% 31.4440% 48.4228%

with adaptive buffering 42553 35869 30773
blocking rate = 90%

without adaptive buffering 47868 47983 47040

data blocking reduction rate 11.1035% 25.2464% 34.5812%

with adaptive buffering 84987 77393 68708
blocking rate = 95%

without adaptive buffering 93615 94141 95188

data blocking reduction rate 9.2165% 17.7903% 27.8186%

Table 5.2 data blocking reduction rate under various blocking rate of receiver and

sizes of borrowed memory blocks

Table 5.2 shows the reduction rate of data blocking under various sizes of

borrowed memory blocks and blocking rate of receiver.

Here, we limit the size of memory borrowed blocks to see the trend of reduction

rate versus various blocking rate of receiver. For the same setting of size of input and

output queue, the reduction rate will reach the maximum value under the memory

borrowed blocks sets to 32 words when blocking rate of receiver equals 70% ~ 80%.

In other words, when the blocking rate of receiver exceeds 80% under this setting, the

reduction rate of data blocking condition would not increase. Figure 5.18 shows the

results.

80

0.0000%

10.0000%

20.0000%

30.0000%

40.0000%

50.0000%

60.0000%

50 55 60 65 70 75 80 85 90 95

data blocking
reduction rate
(memory borrowing

size = 16 words)

data blocking
reduction rate
(memory borrowing

size = 32 words)

data blocking
reduction rate
(memory borrowing

size = 48 words)

Figure 5.18 trend of data blocking reduction rate under various sizes of memory

borrowing blocks

We can see the same trend when size of memory borrowed blocks equals 16

words and 48 words. When the blocking rate of receiver equals 70%, the reduction

rate of data blocking condition would reach maximum under 16 words memory

borrowed blocks. The improvement of data blocking reduction rate increases with the

size of memory borrowed blocks. We can see the same situation under memory

borrowed block equals 48 words.

5.5 Summary

We propose an on-demand memory system architecture shown in Figure 5.16 to

verify the memory-centric on-chip data communication for wireless video

entertainment system. The memory-centric on-chip interconnection network can

reduce the data blocking condition and improve the performance. When the size of

borrowed memory blocks increases, the data blocking reduction rate can have further

improvement under limited size of borrowed memory blocks. Similarly, we also can

adjust the size of output queue of sender and input queue of receiver to improve data

transfer efficiency. For the MAC, the data blocking reduction rate can reach to

39.98% under the setting of output queue equals 16 words, input queue equals 32

words and maximum borrowed memory blocks equals 32 words.

81

Chapter 6
Conclusions and Future Work

6.1 Conclusions

A memory-centric on-chip interconnection network provides effective memory

and communication bandwidths for on-chip SRAM-rich SoCs based on memory

management units. Additionally, network interface is a major factor in the

performance of on-chip interconnection networks. In this thesis, an efficient network

interface for the memory-centric on-chip interconnection network is presented to

reduce the data blocking via a borrowing mechanism. The d-MMU can dynamically

allocate the memory resources for buffering the blocking network data. By

considering the borrowed memory blocks and d-MMU, the size of the output queue

for sender and the input queue for receiver in NI can be dynamically scheduled to

improve the data transfer efficiency. According to the cycle-driven simulation results

in SystemC, the proposed efficient NI can achieve performance improvement by

1.15x compared to the conventional one. Under different data injection load and

output queue size we can reduce 2%~5% data blocking condition.

For the proposed on-demand memory system, the memory-centric on-chip

interconnection network can efficiently reduce data blocking condition by adjusting

the size of queue and borrowed memory blocks. Under limited size of borrowed

memory blocks (16 words) and 70% blocking rate of receiver, the reduction rate of

data blocking can reach 25%. Moreover, this OCIN provide a communication

platform between various processing cores for wireless video entertainment systems.

Therefore, the proposed efficient NI can increase the performance of the

memory-centric on-chip interconnection network.

82

6.2 Future Work

For the future continued expansion of demand in the quantity and quality of

multimedia service, multi-view 3D video technology becomes future star of global

multimedia industry. At the same time, facing the growing mobile 3D multimedia

services, the wireless communication infrastructure based on inherent Macrocell has

become the bottleneck of service. How to integrate different network environment,

home appliances, and video entertainment system in a heterogeneous integrated

platform to establish a user-friendly and energy-efficient digital environment and

system has become a very important topic. An efficient communication platform is

essential.

For this memory-centric on-chip interconnection network, we use mesh-based

router. We would extend to other various topologies to increase its scalability. We

have already verified this memory-centric on-chip interconnection network by

cycle-driven SystemC simulator in this phase. Later, we would use Verilog and

SystemC for co-simulation to gain further improvement.

The eHome project is still going on. For eH-III project, a femtocell home

multimedia center will be developed for supporting multi-view 3D video, high-speed

MIMO OFDM and gigabit cross-layer RRM in a heterogeneous platform. The

architecture is shown in Figure 6.1. In the future, in order to support huge memory

bandwidth and data transmitting requirements, it will be necessary that constructing a

heterogeneous memory-centric multi-core platform for multimedia center.

Figure 6.1 Architecture of femtocell home multimedia center

83

Bibliography

[1.1] J. Howard, S. Dighe, Y. Hoskote, S. Vangal, D. Finan, G. Ruhl, D. Jenkins, H.

Wilson, N. Borkar, G. Schrom, F. Pailet, S. Jain, T. Jacob, S. Yada, S. Marella, P.

Salihundam, V. Erraguntla, M. Konow, M. Riepen, G. Droege, J. Lindemann, M.

Gries, T. Apel, K. Henriss, T. Lund-Larsen, S. Steibl, S. Borkar, V. De, R. Van

Der Wijngaart, and T. Mattson, "A 48-Core IA-32 message-passing processor

with DVFS in 45nm CMOS," IEEE International Solid-State Circuits

Conference Digest of Technical Papers (ISSCC),pp.108-109, Feb. 2010.

[1.2] N. A. Kurd, S. Bhamidipati, C. Mozak, J. L. Miller, T. M. Wilson, M. Nemani,

and M. Chowdhury, "Westmere: A family of 32nm IA processors," IEEE

International Solid-State Circuits Conference Digest of Technical Papers

(ISSCC), pp.96-97, Feb. 2010.

[1.3] J. L. Shin, K. Tam, D. Huang, B. Petrick, H. Pham, C.-K. Hwang, H.-P. Li, A.

Smith, T. Johnson, F. Schumacher, D. Greenhill, A. S. Leon, and A. Strong, "A

40nm 16-core 128-thread CMT SPARC SoC processor," IEEE International

Solid-State Circuits Conference Digest of Technical Papers (ISSCC), pp.98-99,

Feb. 2010.

[1.4] Y. Yuyama, M. Ito, Y. Kiyoshige, Y. Nitta, S. Matsui, O. Nishii, A. Hasegawa, M.

Ishikawa, T. Yamada, J. Miyakoshi, K. Terada, T. Nojiri, M. Satoh, H. Mizuno, K.

Uchiyama, Y. Wada, K. Kimura, H. Kasahara, and H. Maejima, "A 45nm

37.3GOPS/W heterogeneous multi-core SoC," IEEE International Solid-State

Circuits Conference Digest of Technical Papers (ISSCC), pp.100-101, Feb.

2010.

[1.5] C. Johnson, D. H. Allen, J. Brown, S. Vanderwiel, R. Hoover, H. Achilles, C.-Y.

Cher, G. A. May, H. Franke, J. Xenedis, and C. Basso, "A wire-speed power
TM

processor: 2.3GHz 45nm SOI with 16 cores and 64 threads," 2010 IEEE

International Solid-State Circuits Conference Digest of Technical Papers

(ISSCC), pp.104-105, Feb. 2010.

[1.6] R. Marculescu, U. Y. Ogras, Li-Shiuan Peh, N. E. Jerger, and Y. Hoskote,

"Outstanding Research Problems in NoC Design: System, Microarchitecture, and

Circuit Perspectives," IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems,vol.28, no.1, pp.3-21, Jan. 2009.

[1.7] R. Iris Bahar, Dan Hammerstrom, Justin Harlow, William H. Joyner Jr., Clifford

Lau, Diana Marculescu, Alex Orailoglu, and Massoud Pedram, “Architectures

84

for Silicon Nanoelectronics and Beyond,” IEEE Computer, vol. 40, no. 1, pp.

25-33, Jan. 2007.

[1.8] M. Moadeli, P.P. Maji and W. Vanderbauwhede, "Design and implementation of

the Quarc Network on-Chip," IEEE International Symposium on Parallel &

Distributed Processing (IPDPS), pp.1-9, May 2009.

[1.9] A. Avakian, J. Nafziger, A. Panda, and R. Vemuri, "A reconfigurable architecture

for multicore systems," IEEE International Symposium on Parallel &

Distributed Processing, Workshops and Phd Forum (IPDPSW), pp.1-8, April

2010.

[1.10] W. J. Dally and B. Towles, Principles and Practices of Interconnection

Networks, Morgan Kaufmann, 2004.

[2.1] K. Warathe, D. Padole and P. Bajaj, "A Design Approach to AMBA (Advanced

Microcontroller Bus Architecture) Bus Architecture with Dynamic Lottery

Arbiter," 2009 Annual IEEE India Conference (INDICON), pp.1-4, Dec. 2009.

[2.2] Younjin Jung, Ok Kim, Byoungyup Lee, Hongkyun Jung, and Kwangki Ryoo,

"SoC platform design with multi-channel bus architecture," International SoC

Design Conference (ISOCC), vol.03, pp.III-48-III-49, Nov. 2008.

[2.3] M. Copploa, “Trends and trade-offs in designing highly robust throughput on

chip communication network,” IEEE International On-Line Testing Symposium,

July 2006.

[2.4] V. Chandra, A. Xu, H. Schmit, and L. Pileggi, “An interconnect channel design

methodology for high performance integrated circuits,” Proceedings of Design,

Automation and Test in Europe Conference and Exhibition, Vol. 2, pp. 1138 –

1143, 2004.

[2.5] H. Lekatsas and J. Henkel, “ETAM++: extended transition activity measure for

low power address bus designs,” VLSID, pp. 113-120, 2002.

[2.6] A. Ganguly, P.P. Pande and B. Belzer, "Crosstalk-Aware Channel Coding

Schemes for Energy Efficient and Reliable NOC Interconnects," IEEE

Transactions on Very Large Scale Integration Systems, vol.17, no.11,

pp.1626-1639, Nov. 2009.

[2.7] Jih-Sheng Shen, Chun-Hsian Huang and Pao-Ann Hsiung, "PRESSNoC:

Power-Aware and Reliable Encoding Schemes Supported Reconfigurable

Network-on-Chip Architecture," 4th International Conference on Embedded and

http://books.elsevier.com/us/mk/us/subindex.asp?isbn=0122007514&country=United+States&community=mk&mscssid=2A8E5X4SJR2L8HQB1U9WLHR2PLPFF9AB
http://books.elsevier.com/us/mk/us/subindex.asp?isbn=0122007514&country=United+States&community=mk&mscssid=2A8E5X4SJR2L8HQB1U9WLHR2PLPFF9AB

85

Multimedia Computing (EM-Com), pp.1-6, Dec. 2009.

[2.8] Jih-Sheng Shen, Chun-Hsian Huang and Pao-Ann Hsiung, "Learning-based

adaptation to applications and environments in a reconfigurable

Network-on-Chip," Design, Automation & Test in Europe Conference &

Exhibition (DATE), pp.381-386, March 2010.

[2.9] P.P. Pande, Haibo Zhu, A. Ganguly, and C. Grecu, "Crosstalk-aware Energy

Reduction in NoC Communication Fabrics," IEEE International SOC

Conference, pp.225-228, Sept. 2006.

[2.10] M. Taassori and S. Hessabi, "Low Power Encoding in NoCs Based on Coupling

Transition Avoidance," Euromicro Conference on Digital System Design,

Architectures, Methods and Tools, pp.247-254, Aug. 2009.

[2.11] Yi Liu, Yintang Yang, Yadong Jiao, and Ning Wang, "An Encoding Drive

Approach to Reduce Signal Jitter of Interconnection Lines between NoC

Routers," 2nd International Congress on Image and Signal Processing (CISP),

pp.1-4, Oct. 2009.

[2.12] S. R. Sridhara and N. R. Shanbhag, “Coding for reliable on-chip buses:

fundamental limits and practical codes,” Proceedings of IEEE International

Conference on VLSI Design, pp. 417-422, Jan. 2005.

[2.13] F. Worm, P. Ienne, P. Thira, and G. DeMicheli, “A Robust Self-Calibrating

Transmission Scheme for On-Chip Networks,” IEEE Transactions on Very Large

Scale Integration Systems, vol. 13, pp. 126-139, 2004.

[2.14] Y. Thonnart, P. Vivet and F. Clermidy, "A fully-asynchronous low-power

framework for GALS NoC integration," Design, automation & Test in Europe

Conference & Exhibition (DATE), pp.33-38, March 2010.

[2.15] Y. Zhiyi and B. M. Baas, "A Low-Area Multi-Link Interconnect Architecture

for GALS Chip Multiprocessors," IEEE Transactions on Very Large Scale

Integration Systems, vol.18, no.5, pp.750-762, May 2010.

[2.16] Y. Thonnart, E. Beigne and P. Vivet, "Design and Implementation of a GALS

Adapter for ANoC Based Architectures," 15th IEEE Symposium on

Asynchronous Circuits and Systems (ASYNC), pp.13-22, May 2009.

[2.17] M.A.U. Rahman, I. Ahmed, F. Rodriguez, and N. Islam, "Efficient 2DMesh

Network on Chip (NoC) Considering GALS Approach," Fourth International

Conference on Computer Sciences and Convergence Information Technology

86

(ICCIT), pp.841-846, Nov. 2009.

[2.18] E. Beigne, F. Clermidy, H. Lhermet, S. Miermont, Y. Thonnart, Xuan-Tu Tran,

A. Valentian, D. Varreau, P. Vivet, X. Popon, and H. Lebreton, "An

Asynchronous Power Aware and Adaptive NoC Based Circuit," IEEE Journal of

Solid-State Circuits, vol.44, no.4, pp.1167-1177, April 2009.

[2.19] D. Gebhardt, J. You and K. S. Stevens, "Comparing Energy and Latency of

Asynchronous and Synchronous NoCs for Embedded SoCs," Fourth ACM/IEEE

International Symposium on Networks-on-Chip (NOCS), pp.115-122, May 2010.

[2.20] M. Drinic, D. Kirovski, S. Megerian, and M. Potkonjak, “Latency-Guided

On-Chip Bus-Network Design,” IEEE Transactions on computer-Aided Design

of Integrated Circuits and Systems, Vol. 25, Issue 12, pp. 2663-2673, Dec.

2006.

[2.21] Byungyong Kim and Chanho Lee, "High performance on-chip-network

architecture with multiple channels and dual routing," International SoC Design

Conference (ISOCC), vol.03, no., pp.III-33-III-34, Nov. 2008.

[2.22] A. M. Amory, K. Goossens, E. J. Marinissen, M. Lubaszewski, and F. Moraes,

“Wrapper design for the reuse of a bus, network-on-chip, or other functional

interconnect as test access mechanism,” Computers & Digital Techniques, IET,

Vol. 1,Issue 3, pp. 197 – 206, May 2007.

[2.23] J. Diemer, R. Ernst and M. Kauschke, "Efficient throughput-guarantees for

latency-sensitive networks-on-chip," Asia and South Pacific Design, automation

Conference (ASP-DAC), pp.529-534, Jan. 2010.

[2.24] J. Diemer and R. Ernst, "Back Suction: Service Guarantees for

Latency-Sensitive On-chip Networks," Fourth ACM/IEEE International

Symposium on Networks-on-Chip (NOCS), vol., no., pp.155-162, May 2010.

[2.25] D. Gebhardt, J. You and K. S. Stevens, "Comparing Energy and Latency of

Asynchronous and Synchronous NoCs for Embedded SoCs," Fourth ACM/IEEE

International Symposium on Networks-on-Chip (NOCS), pp.115-122, May 2010.

[2.26] P. Guerrier and A. Greiner, “A Generic Architecture for On-Chip Packet

Switched Interconnections,” Proceedings of Design, automation and Test in

Europe Conference and Exhibition, pp. 250 - 256, Mar. 2006.

[2.27] A. Ivanov and G. De-Micheli, “Guest Editors' Introduction: The

Network-on-Chip Paradigm in Practice and Research,” IEEE Design and Test of

http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=4014513
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=4117424
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=4205027

87

Computers, vol. 22, Issue 5, pp. 399-403, Sep. 2005.

[2.28] M. Dehyadgari, M. Nickray, A. Afzali-kusha and, Z. Navabi, “A new protocol

stack model for network on chip,” IEEE Computer Society Annual Symposium

on Emerging VLSI Technologies and Architectures, March 2000.

[2.29] M. Tudruj and L. Masko, “Dynamic SMP Clusters with Communication on the

Fly in NoC Technology for Very Fine Grain Computations”, Parallel and

Distributed Computing, 2004. Third International Symposium on/Algorithms,

Models and Tools for Parallel Computing on Heterogeneous Networks, pp.

97-104, 2004.

[2.30] P.G. Paulin, C. Pilkington, E. Bensoudane, M. Langevin and, D. Lyonnard,

“Application of a multi-processor SoC platform to high-speed packet

forwarding”, Proceedings of Design, Automation and Test in Europe Conference

and Exhibition, volume 3, pp. 58-63, 2004.

[2.31] M. A. Anders, H. Kaul, S. K. Hsu, A. Agarwal, S. K. Mathew, F. Sheikh, R. K.

Krishnamurthy, and S. Borkar, "A 4.1Tb/s bisection-bandwidth 560Gb/s/W

streaming circuit-switched 8×8 mesh network-on-chip in 45nm CMOS," IEEE

International Solid-State Circuits Conference Digest of Technical Papers

(ISSCC), pp.110-111, 7-11 Feb. 2010.

[2.32] F. Clermidy, C. Bernard, R. Lemaire, J. Martin, I. Miro-Panades, Y. Thonnart, P.

Vivet and, N. Wehn, "A 477mW NoC-based digital baseband for MIMO 4G

SDR," International Solid-State Circuits Conference Digest of Technical Papers

(ISSCC), pp.278-279, Feb. 2010.

[2.33] F. Karim, A. Nguyen and S. Dey, “An Interconnect Architecture for

Networking Systems on Chips,” IEEE Micro, vol. 22, no. 5, pp. 36-45, Sept./Oct.

2002.

[2.34] D. Bertozzi and L. Benini, “Xpipes: a network-on-chip architecture for

gigascale systems-on-chip,” Circuits and Systems Magazine, Volume 4, pp

18-31, 2004.

[2.35] G. Passas, M. Katevenis and D. Pnevmatikatos, "A 128 x 128 x 24Gb/s

Crossbar Interconnecting 128 Tiles in a Single Hop and Occupying 6% of Their

Area," Fourth ACM/IEEE International Symposium on Networks-on-Chip

(NOCS), pp.87-95, May 2010.

[2.36] Y. Thonnart, R. Lemaire and F. Clermidy, "Distributed Sequencing for

http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=10672

88

Resource Sharing in Multi-applicative Heterogeneous NoC Platforms," Fourth

ACM/IEEE International Symposium on Networks-on-Chip (NOCS), pp.233-240,

May 2010.

[2.37] M. Saneei, A. Afzali-Kusha and Z. Navabi, "Low-power and low-latency

cluster topology for local traffic NoCs," IEEE International Symposium on

Circuits and Systems, 2006.

[2.38] S. Bourduas and Z. Zilic, "A Hybrid Ring/Mesh Interconnect for

Network-on-Chip Using Hierarchical Rings for Global Routing," First

International Symposium on Networks-on-Chip, pp. 195-204, 2007.

[2.39] Z. Marrakchi, H. Mrabet, C. Masson, and H. Mehrez, "Mesh of Tree: Unifying

Mesh and MFPGA for Better Device Performances," First International

Symposium on Networks-on-Chip, pp. 243-252, 2007.

[2.40] V. F. Pavlidis and E. G. Friedman, "3-D Topologies for Networks-on-Chip,"

IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol.15,

no.10, pp.1081-1090, Oct. 2007.

[2.41] F. A. Samman, T. Hollstein and M. Glesner, "Adaptive and Deadlock-Free

Tree-Based Multicast Routing for Networks-on-Chip," IEEE Transactions on

Very Large Scale Integration Systems, vol.18, no.7, pp.1067-1080, July 2010.

[2.42] V. Chandra, A. Xu, H. Schmit and L. Pileggi, “An interconnect channel design

methodology for high performance integrated circuits”, Proceedings of Design,

Automation and Test in Europe Conference and Exhibition, pp. 1138-1143, 2004.

[2.43] K. Latif, T. Seceleanu and H. Tenhunen, "Power and Area Efficient Design of

Network-on-Chip Router through Utilization of Idle Buffers," IEEE

International Conference and Workshops on Engineering of Computer Based

Systems (ECBS), pp.131-138, March 2010.

[2.44] R. S. Ramanujam, V. Soteriou, B. Lin and, Li-Shiuan Peh, "Design of a

High-Throughput Distributed Shared-Buffer NoC Router," Fourth ACM/IEEE

International Symposium on Networks-on-Chip (NOCS), pp.69-78, May 2010.

[2.45] V. Soteriou, R.S. Ramanujam, B. Lin, and Li-Shiuan Peh, "A High-Throughput

Distributed Shared-Buffer NoC Router," Computer Architecture Letters , vol.8,

no.1, pp.21-24, Jan. 2009.

[2.46] Zhe Zhang, Xiaoming Hu and Lili Cui, "A synthesizable on-chip wormhole

router," Asia-Pacific Conference on Computational Intelligence and Industrial

89

Applications (PACIIA), vol.2, pp.193-196, Nov. 2009.

[2.47] L. Kangmin, L. Se-Joong, and Y. Hoi-Jun, "Low-power network-on-chip for

high-performance SoC design," IEEE Transactions on Very Large Scale

Integration Systems, , vol. 14, pp. 148-160, 2006.

[2.48] Liu Zheng, Cai Jueping, Du Ming, Yao Lei and, Li Zan, "Hybrid

Communication Reconfigurable Network on Chip for MPSoC," IEEE

International Conference on Advanced Information Networking and Applications

(AINA), pp.356-361, April 2010.

[2.49] A. Ruadulescu, K. Goossens, G. De Micheli, S. Murali, and M. Coenen, "A

buffer-sizing algorithm for networks on chip using TDMA and credit-based

end-to-end flow control," Proceedings of the 4th international conference on

Hardware/Software Codesign and System Synthesis (CODES+ISSS), pp.

130-135, 2006.

[2.50] T. D. Richardson, C. Nicopoulos, D. Park, V. Narayanan, X. Yuan, C. Das, and

V. Degalahal, "A hybrid SoC interconnect with dynamic TDMA-based

transaction-less buses and on-chip networks," Held jointly with 5th International

Conference on Embedded Systems and Design, 19th International Conference on

VLSI Design, 2006.

[2.51] Yun-Lung Lee, Jer Min Jou and Yen-Yu Chen, "A high-speed and decentralized

arbiter design for NoC," IEEE/ACS International Conference on Computer

Systems and Applications (AICCSA), pp.350-353, May 2009.

[2.52] X. Gao, Z. Zhang and X. Long, "Round Robin Arbiters for Virtual Channel

Router," IMACS Multiconference on Computational Engineering in Systems

Applications, pp. 1610-1614, 2006.

[3.1] Jose Duato, Sudhakar Yalamanchili and Lionel Ni, “Interconnection Networks –

An Engineering Approach”.

[3.2] Yue Qian, Zhonghai Lu and Wenhua Dou, "Analysis of Worst-Case Delay

Bounds for On-Chip Packet-Switching Networks," IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, vol.29, no.5,

pp.802-815, May 2010.

[3.3] I. Nousias and T. Arslan, "Wormhole Routing with Virtual Channels using

Adaptive Rate Control for Network-on-Chip (NoC)," First NASA/ESA

Conference on Adaptive Hardware and Systems (AHS), vol., no., pp.420-423,

90

15-18 June 2006.

[3.4] L.I. Tabada and P.U. Tagle, "Shared Buffer Approach in Fault Tolerant

Networks," International Conference on Computer Technology and Development

(ICCTD), vol.1, no., pp.235-239, 13-15 Nov. 2009.

[3.5] Xiao Canwen, Zhang Minxuan, Dou Yong, and Zhao Zhitong, "Dimensional

Bubble Flow Control and Fully Adaptive Routing in the 2-D Mesh Network on

Chip," International Conference on Embedded and Ubiquitous Computing

(EUC), vol.1, pp.353-358, 17-20 Dec. 2008.

[3.6] A. Pullini, F. Angiolini, D. Bertozzi, and L. Benini, "Fault Tolerance Overhead in

Network-on-Chip Flow Control Schemes," 18th Symposium on Integrated

Circuits and Systems Design, pp.224-229, Sept. 2005.

[3.7] Teck Peow Lee and J. Siliquini, "Deficit round robin with hop-by-hop credit

based flow control," IEEE Region 10 Conference (TENCON), pp.1-4, Oct. 30

2007-Nov. 2 2007.

[3.8] N. Concer, L. Bononi, M. Soulie, R. Locatelli, and L. P. Carloni, "CTC: An

end-to-end flow control protocol for multi-core systems-on-chip," 3rd

ACM/IEEE International Symposium on Networks-on-Chip (NoCS), vol., no.,

pp.193-202, 10-13 May 2009.

[3.9] William James Dally and Brian Towles, “Principles and Practices of

Interconnection Networks”.

[3.10] F. Gilabert, M. E. Gómez, S. Medardoni, and D. Bertozzi, "Improved

Utilization of NoC Channel Bandwidth by Switch Replication for Cost-Effective

Multi-processor Systems-on-Chip," Fourth ACM/IEEE International Symposium

on Networks-on-Chip (NOCS), pp.165-172, May 2010.

[4.1] L. Benini and G. De Micheli, Network on Chips: Technology and Tools, Morgan

Kaufmann, 2006.

[4.2] N. Concer, L. Bononi, M. Soulie, R. Locatelli, and L. P. Carloni, "The

Connection-Then-Credit Flow Control Protocol for Heterogeneous Multicore

Systems-on-Chip," IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, vol.29, no.6, pp.869-882, June 2010.

[4.3] A. Radulescu, J. Dielissen, S.G. Pestana, O.P. Gangwal, E. Rijpkema, P. Wielage,

and K. Goossens, "An efficient on-chip NI offering guaranteed services,

shared-memory abstraction, and flexible network configuration," IEEE

91

Transactions on Computer-Aided Design of Integrated Circuits and Systems,

vol.24, no.1, pp. 4- 17, Jan. 2005.

[4.4] F. Clermidy, R. Lemaire, Y. Thonnart, and P. Vivet, “A Communication and

Configuration Controller for NoC based Reconfigurable Data Flow Architecture,”

Proceedings of ACM/IEEE International Symposium on Networks-on-Chip, pp.

153–162, May. 2009.

[4.5] Y.-L. Lai, S.-W. Yang, M.-H. Sheu, Y.-T. Hwang, H.-Y. Tang, and P.-Z. Huang,

“A High-Speed Network Interface Design for Packet-Based NoC,” Proceedings

of IEEE International Conference on Communication, Circuits and Systems, pp.

2667–2671, 2006.

[4.6] J. Howard, S. Dighe, Y. Hoskote, S. Vangal, D. Finan, G. Ruhl, D. Jenkins, H.

Wilson, N. Borkar, G. Schrom, F. Pailet, S. Jain, T. Jacob, S. Yada, S. Marella, P.

Salihundam, V. Erraguntla, M. Konow, M. Riepen, G. Droege, J. Lindemann, M.

Gries, T. Apel, K. Henriss, T. Lund-Larsen, S. Steibl, S. Borkar, V. De, R. Van

Der Wijngaart, and T. Mattson, "A 48-Core IA-32 message-passing processor

with DVFS in 45nm CMOS," IEEE International Solid-State Circuits

Conference Digest of Technical Papers (ISSCC),pp.108-109, Feb. 2010.

[4.7] S.R. Vangal, J. Howard, G. Ruhl, S. Dighe, H. Wilson, J. Tschanz, D. Finan, A.

Singh, T. Jacob, S. Jain, V. Erraguntla, C. Roberts, Y. Hoskote, N. Borkar, and S.

Borkar, “An 80-Tile Sub-100-W TeraFLOPS Processor in 65-nm CMOS,” IEEE

Journal of Solid-State Circuits, vol. 43, no.1, pp. 29-41, Jan. 2008.

[4.8] H. Saito, M. Nakajima, T. Okamoto, Y. Yamada, A. Ohuchi, N. Iguchi, T.

Sakamoto, K. Yamaguchi, and M. Mizuno, "A Chip-Stacked Memory for

On-Chip SRAM-Rich SoCs and Processors," IEEE Journal of Solid-State

Circuits, vol.45, no.1, pp.15-22, Jan. 2010.

[4.9] P. Giaccone, E. Leonardi and D. Shah, "Throughput Region of Finite-Buffered

Networks," IEEE Transactions on Parallel and Distributed Systems, vol.18, no.2,

pp.251-263, Feb. 2007.

[4.10] P. Giaccone, E. Leonardi and D. Shah, "On the maximal throughput of

networks with finite buffers and its application to buffered crossbars,"

INFOCOM 2005. 24th Annual Joint Conference of the IEEE Computer and

Communications Societies, vol.2, pp. 971- 980 vol. 2, 13-17 March 2005.

[5.1] S. Bell, B. Edwards, J. Amann, R. Conlin, K. Joyce, V. Leung, J. MacKay, M.

Reif, Liewei Bao, J. Brown, M. Mattina, Chyi-Chang Miao, C. Ramey, D.

92

Wentzlaff, W. Anderson, E. Berger, N. Fairbanks, D. Khan, F. Montenegro, J.

Stickney, and J. Zook, "TILE64 - Processor: A 64-Core SoC with Mesh

Interconnect", IEEE International Solid-State Circuits Conference, 2008, ISSCC

2008, pp.88-598, 3-7 Feb. 2008.

[5.2] Yunxin Li, “Cognitive and Integrated Digital Home via Dynamic Media Access”,

IEEE International Symposium on Broadband Multimedia Systems and

Broadcasting (BMSB), pp. 1-6, May 2009.

[5.3] H. Schwarz, D. Marpe and T. Wiegand, "Overview of the Scalable Video Coding

Extension of the H.264/AVC Standard", IEEE Transactions on Circuits and

Systems for Video Technology, vol.17, no.9, pp.1103-1120, Sept. 2007.

93

Vita

王湘斐

Shiang-Fei Wang

PERSONAL INFORMATION

Birth Date: April. 18, 1982

Birth Place: Tainan, TAIWAN

E-Mail Address: fila.ee94g@nctu.edu.tw

EDUCATION
09/2005 – 07/2010 M.S. in Institute of Electronics Engineering, National Chiao Tung

University

Thesis: Memory-Centric On-Chip Interconnection Network for

Wireless Video Entertainment System

09/2000 – 06/2005 B.S. in Department of Electronics, National Chiao Tung

University

PUBLICATIONS

Po-Tsang Huang, Yung Chang, Shiang-Fei Wang and Wei Huang, “An Efficient

Network Interface for Memory-Centric On-Chip Interconnection Network,” IEEE

Asia Pacific Conference on Circuit and Systems, APCCAS, Sept, 2010. (Submitted)

mailto:fila.ee94g@nctu.edu.tw

