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應用於無線影像娛樂系統之以記憶體為重心的晶內互

聯網路 

學生：王湘斐          指導教授：黃  威  教授 

國立交通大學電子工程學系電子研究所 

摘    要 

本論文實現一個可應用於無線影像娛樂系統之以記憶體為重心的晶內互聯

網路。在這個晶內互聯網路之中，我們利用記憶體借用的機制讓網路介面可以有

效的降低資料阻塞的情況。除此之外，對於無線影像娛樂系統，晶內互聯網路提

供微架構和基本建構元素給晶內網路包含網路介面，路由器，連接線路。藉由考

量可借出的記憶體區塊大小和分散式的記憶體管理單元，可以動態調整輸出隊列

的大小。基於在 SystemC 週期推動的模擬結果，本論文所提出的網路介面相較

於一般的網路介面可以提升 1.15 倍的效能。同時可以減少 2%~4%的資料阻塞情

況。提供一個良好的資料傳輸環境給無線影像娛樂系統。 
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 Memory-Centric On-Chip Interconnection Network for 

Wireless Video Entertainment Systems 

Student : Shiang-Fei Wang      Advisors : Prof. Wei Hwang 

Department of Electronics Engineering & Institute of Electronics 

National Chiao-Tung University 

ABSTRACT 

A memory-centric on-chip interconnection network (OCIN) with an efficient 

network interface is realized in this thesis. Additionally, a borrowing mechanism is 

proposed to reduce head-of-line data blocking. Furthermore, for wireless video 

entertainment system, on-chip interconnection network (OCIN) provides the micro 

architecture and the building blocks, including network interfaces (NIs), routers and 

link wires. 

By considering the borrowed memory blocks and distributed memory 

management unit (d-MMU), the size of output queue in the NI can be dynamically 

scheduled. Based on the cycle-driven simulation results in SystemC, the proposed 

efficient NI can achieve performance improvement by 1.15x compared to the 

conventional NI. The blocking condition can be reduced 2%~4%. For on-demand 

memory system, we can efficiently reduce data blocking by adjusting buffer size and 

borrowed memory blocks. Under the condition of 70% blocking rate of receiver and 

16 words of borrowed memory blocks, the data blocking reduction rate can reach 25%. 

With the proposed memory-centric OCIN, we can improve the data communication 

environment for wireless video entertainment systems. 
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Chapter 1 

Introduction 

1.1 Background 

With development of System-on-Chip (SoC) and multimedia communication 

technologies, a great amount of data computing requirement increases rapidly. The 

bandwidth requirement between the processing cores in SoCs is increasing. The 

aggregate communication bandwidth between the processing cores is in the GBytes/s 

range for many video applications. In the future, with the integration of many 

applications onto a single device and with increased processing speed of cores, the 

bandwidth demands will scale up to much larger values. Multiprocessor 

system-on-chip (MP-SoC) [1.1][1.2][1.3][1.4][1.5] architectures are emerging as 

appealing solutions for embedded multimedia applications. In general, MP-SoCs are 

composed of core processors, memories and some application-specific coprocessors. 

Communication is provided by advanced interconnect fabrics, such as high 

performance and efficient networks-on-chip (NoCs)[1.6].  

System-on-Chip (SoC) design is an integrated solution for merging processor 

elements (PEs) in communications, multimedia and consumer electronics. However, 

as design complexity of SoC continues to increase, the requirements for on-chip 

communication bandwidth among PEs are growing continually. Therefore, a global 

approach is needed to effectively transport and manage on-chip communication traffic, 

and optimize wire efficiency. Process-independent network-on-chip (NoC) has been 

considered an effective solution to integrate a multi-core system and a packet 

switched approach [1.7][1.8][1.9]. NoC was investigated for dealing with the 

challenges of on-chip data communication caused by the increasing scale of next 
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generation SoC designs. Furthermore, on-chip interconnection networks (OCINs) 

provide the micro-architecture and the building blocks for NoCs, including network 

interfaces (NIs), routers and link wires [1.10]. 

1.2 Motivation 

NoCs design is essentially important for the future System-on-Chip (SoC) design. 

However, as the increasing multimedia data computing grow, data blocking condition 

in the output of processer elements will be more and more common. A fine-design 

network interface and interconnection network can provide a bridge between various 

processor elements which can reduce occurrence of data blocking efficiently. 

Moreover, it provides a well communication environment for wireless video 

entertainment system. 

1.3 Contribution 

In this thesis, we propose the memory-centric on-chip data communication 

platform for e-Home II project which includes two parts: on-demand memory system 

and on-chip interconnection network (OCIN). My thesis focuses the on on-chip 

interconnection network. We propose an efficient network interface and a crossbar 

(interconnection network) for data communication among various processor elements. 

Finally, we integrate a heterogeneous platform for wireless video entertainment 

system. 

1.4 Organization 

The organization of this thesis is as follows. An overview of on-chip 

interconnection network is introduced in the chapter 2. In this chapter, the design 

concept of NoCs will be described. Then, we would introduce flow control 

mechanism and interconnection network (crossbar) including arbitration mechanism 

in the chapter 3. Chapter 4 presents an efficient network interface for memory-centric 

on-chip interconnection network which can reduce the data blocking by a borrowing 

mechanism. Finally, a memory-centric on-chip data communication platform 

developed for a wireless video entertainment system will be introduced in the chapter 

5. 



 

 

 

3 

Chapter 2 
Previous Work of On-Chip Interconnection 

Network 

In this chapter, I describe how Network on Chip (NoC) will be the next major 

challenge to implement complex and function-rich application in advanced process 

technologies in section 2.1. The general design concept is discussed in section 2.2. 

The interconnect architecture, topologies, of NoC should be efficient for a huge 

amount of processor elements. A number of different interconnect architectures will 

been present in section 2.3. Moreover, some advance topologies are present to adopt 

with on-chip platform. Switching fabrics (or called router) is a key component in 

network-on-chip to command the data communication. I will describe the components 

in switch fabrics and how they influence the NoC systems in section 2.4, which 

includes four parts: routing units, buffers, switching circuits, and arbitration unit. In 

addition, the implementation of each unit will be described also. 

2.2 Why NoC? 

System-on-chip (SOC) designs provide the integrated solution to the challenging 

design problems in the communications, multimedia and consumer electronics. 

Moreover, every year System-on-Chip designs become increasingly complex, while 

the associated numbers of transistors grows exponentially. The successful design of 

SoC depends on the availability of the methodologies that allow designers to copy 

with two major challenges: the extreme miniaturization of device and wire features, 

and the extremely large scale of integration. Most SoC will find their application 

within embedded systems, traditional figures of merit, such as performance, energy 

consumption and cost. It will be as important as the first-design correct and reliable 

operation and robustness. Modern SoC design is faced with a number of problems 
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caused by the scale and complexity of the designs. For ideal IP-based SoC, on-chip 

bus interfaces between each IP and a good verification environment [2.1][2.2]. 

 

Figure 2.1 Traditional Synchronous Bus 

In the next SoC era, however, there are some challenges for traditional on-chip 

bus platform which is shown in Fig. 2.1. First, the required on-chip communication 

bandwidth is growing beyond that provided by standard on-chip buses [2.3]. The 

shared bus architecture will limit the development factor for integration with 

increasing IP blocks. Existing bus architectures and techniques are proving to be 

non-scalable, unable to meet leading edge complexity and performance requirements. 

Second, the interconnect delay across the chip exceeds the average clock period 

of the IP blocks, especially in nano-scale technologies [2.4]. The ratio of global 

interconnect delay to average clock period will continue to grow. In a 60nm process, a 

signal can reach only 5% of the die’s length in a clock cycle. However, an 

interconnect channel design methodology for high performance ICs has proposed in 

[2.5], it devised a methodology to size the FIFOs in an interconnect channel 

containing one or more FIFOs connected in series and shows that the sizing of the 

FIFOs in the channel is a function of system parameters such as data production rate 

and communication rate, number of channel stages etc. 

Third, in nano-scale technologies, increased coupling effect for interconnects not 

only aggravates the power-delay metrics but also deteriorates the signal integrity due 

to capacitive and inductive crosstalk noises. Several options were proposed to reduce 

the inter-wire capacitances. The first option is to widen the pitch between bus lines. 

The second option is using P&R (place & route) tools to avoid routing of the bus lines 

side by side. In System-on-Chip, however, the interconnect complexity and the 
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routing time do not allow us trying it to minimize the coupling capacitances. The third 

option is to change the geometrical shape of bus lines. But the disadvantage of this 

method is that the frank area will increase since the cross-sectional area of a bus line 

is fixed. The fourth technique is to add a shielding line (VDD/Ground) between two 

adjacent signal lines. The fifth option is to reduce power is through the use of bus 

encoding schemes [2.6][2.7][2.8][2.9][2.10][2.11]. By the end of the decade, using 60 

nm transistors operating below one volt, with grow to 4 billion transistors running at 

10GHz, according to the International Technology Roadmap for Semiconductors. 

On-chip physical interconnections will present a limited factor for performance and 

energy consumption. The encoding schemes for low power and reliability issues are 

proposed in [2.12]. The designers must overcome the challenge of noises to provide 

the function correct, reliable operation of the interacting components. A robust 

self-calibrating transmission scheme for interconnections is proposed in [2.13] and it 

examines some physical properties of on-chip interconnects, with the goal of 

achieving fast, reliable and low-energy communication. 

Forth, both the system design and performance are limited by the complexity of 

the interconnection between the different modules and blocks into single clocked 

design. Different data transfer speeds are required, as well as parallel transmission. 

The traditional system buses may not be suitable for such a system since only one 

module can transmit at a time. Additionally, the modern SOC designer assembles the 

system using ready virtual components which might not be easily adaptable to 

different clocking situations. The solution to above problems is a segmented bus 

design combined with the concept of the globally asynchronous local synchronous 

(GALS) system architecture [2.14][2.15][2.16][2.17][2.18][2.19]. Asynchronous 

design can make the circuits resilient to delay variation. 
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Figure 2.2 (a) Multi-Layer Bus Architecture (b) Centralized Crossbar Switch 

 
Figure 2.3 Network-on-Chip Architecture 

For the above mentioned problems, new architectures for the on-chip 

communications are proposed to adapt the next SoC era. The traditional synchronous 

on-chip bus architectures as Fig. 1 are faced a serious of acid tests which are 

mentioned in the last paragraphs. Multi-layer on-chip shared bus as Fig. 2.2(a) is the 

advised version of the traditional on-chip bus to reduce the shared-medium channels 

[2.20][2.21][2.22]. It’s the specification of an interconnect scheme that overcome the 

limitations of shared bus. Therefore, it enables parallel access paths between multiple 

masters and slaves by a bus matrix. When each master has its corresponding bus, the 

structure is equivalent to a full crossbar as Fig. 2.2(b). However, not only centralized 

crossbar switching systems but also multi-layer bus architectures will be confused 

with complex wire routings which will introduce larger power consumption and 

interconnect delay with increasing processor elements. 

The network-on-chip architecture as Figure 2.3 is based on a homogeneous and 

scalable switch fabric network, which considers all the requirements of on-chip 

communications and traffic. NoCs have a few distinctive characteristics, namely low 

communication latency [2.23][2.24][2.25], energy consumption constraints and 
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design-time specialization. The motivation of establishing NoC platform is to achieve 

performance using a system perspective of communication. The core of NoC 

technology is the active switching fabric that manages multi-purpose data packets 

within complex, IP laden designs. The most important characteristics of NoC 

architecture can be summarized as packet switched approach [2.26], flexible and 

user-defined topology and global asynchronous locally synchronous (GALS) 

implementation. 

2.2 The Design Concept of Network-on-Chip 

The topic of Network-on-Chip(NoC) designs is vast and complex. There is a 

large literature on architectures for NoCs. Consider on-chip communication and its 

abstraction of network-on-chip as a micro-network and analyze the various levels of 

the micro-network stack bottom to up as right part in Fig. 2.4, starting from physical 

layer to software layer. NoC protocols are typical organized in layers, in a fashion that 

resembles the OSI protocol stacks as the left part in Fig. 2.4 [2.27]. However, the OSI 

protocol stacks is resembled for a marco-network. For a micro-network, the protocol 

stack will be reduced to physical layer, data-link layer, network and transport layer 

and software later [2.28]. The characteristics of each layer will be described in this 

section. 

 

 

Figure 2.4 The design abstraction levels of NoC 
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2.2.1 The Design Abstraction Levels of Network-on-Chip 

NoC protocols are described bottom-up, starting from the physical up to the 

software layer. In the physical layer, global wires are the physical implementation of 

the communication channels. Traditional rail-to-rail voltage signaling with capacitive 

termination, as used today for on-chip communication, is definitely not well-suited for 

high-speed, low-energy communications for future global interconnect. Reduced 

swing can significantly reduce communication power dissipation which preserves the 

speed of data communication. Nevertheless, as the technology trends lead us to use 

smaller voltage swings and capacitances, the upset probabilities will rise. It is 

important to realize that a well-balanced design should not over design wires so that 

their behavior approaches an ideal one, because that the corresponding cost in 

performance, energy-efficiency and modularity may be too high. Physical layer 

design should find a compromise between competing quality metrics and provide a 

clean and complete abstraction of channel characteristics to micro-network layers 

above. 

Due to the limitations in the physical level and the high bandwidth requirement, 

the SoC design will use network architectures similar to those used for 

multi-processors. Network-on-chip design entails the specification of network 

architectures and control protocols. The data-link layer abstracts the physical layer as 

an unreliable digital link, where the probability of bit upsets is non null. Furthermore, 

reliability can be traded off for energy. The main purpose of data-link protocols is to 

increase the reliability of the link up to a minimum required level, under the 

assumption that the physical layer by itself is not sufficiently reliable. At the data link 

layer, error correction can be complemented by several packet-based error detection 

and recovery protocols. Several parameters in the protocols can be adjusted depending 

on the goal to achieve maximum performance at a specified residual error probability 

within given energy consumption bounds. 

At the network layer, packet data transmission can be customized by the choice 

of switching and routing algorithms. The NoC designers establish the type of 

connection to its final destination. Switching and routing affect heavily performance 



 

 

 

9 

and energy consumption. Robustness and fault tolerance will also be highly desirable. 

At the transport layer, algorithms deal with the decomposition of messages into 

packets at the source and their assembly at destination. Packetization granularity is a 

critical design decision because the behavior of most network control algorithm is 

very sensitive to packet size. Packet size can be application specific in SoCs, as 

opposed to general network. 

Software layers comprise system and application software which includes 

processing element and network operating systems. The system software provides us 

with an abstraction of the underlying hardware platform. Moreover, policies 

implemented at the system software layer request either specific protocols or 

parameters at the lower layers to achieve the appropriate information flow. The 

hardware abstraction is coupled to the design of wrappers for processor cores which 

perform as network interfaces between cores and NoC architecture. 

2.3 Topologies for Network-on-Chip Architecture 

 
Figure 2.5 NoC architecture (a) SPIN (b) Mesh (c) Torus (d) Folded tours (e) Octagon 

(f) Butterfly Fat Tree 

Network on Chip (NoC) technologies will enable designing parallel systems 

resembling cellular structures including thousands of processors. Such systems 

combined with multi-threaded computing can increase system efficiency for 

fine-grain parallel programs [2.29][2.30]. Therefore, the interconnect architecture of 
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NoC should be efficient for a huge amount of processor elements. A number of 

different interconnect architectures have been proposed as Fig. 2.8. Their origins can 

be traced back to the field of parallel computing. However, a different set of 

constraints exists when adapting these architectures to the SoC design paradigm. 

2.3.1 Conventional Topologies of Network-on-Chip 

A generic interconnect template has proposed which is called SPIN (Scalable, 

Programmable, Integrated Network) for on-chip packet switched interconnections as 

Fig. 2.8(a), where a fat-tree architecture is used to interconnect IP blocks. In this fat 

tree, every node has four children and the parent is replicated four times at any level 

of the tree. The functional IP blocks reside at the leaves and the switches reside at the 

vertices. A mesh-based [2.31][2.32] interconnect architecture consists of an mxn mesh 

of switches interconnecting computational resources (IPs) placed along with the 

switches, as shown in Fig. 2.8(b). Every switch, except those at the edges, is 

connected to four neighboring switches and one IP block. 

2D torus has proposed as NoC architecture, shown in Fig. 2.8(c). The Torus 

architecture is basically the same as a regular mesh. The only difference is that the 

switches at the edges are connected to the switches at the opposite edge through 

wrap-around channels. Every switch has five ports, one connected to the local 

resource and the others connected to the closest neighboring switches. The long 

end-around connections can yield excessive delays. However, this can be avoided by 

folding the torus as Fig. 2.8(d). This renders to a more suitable VLSI implementation. 

Karim et al. [2.33] have proposed the OCTAGON MP-SoC architecture. Fig. 

2.8(e) shows a basic octagon unit consisting of eight nodes and 12 bidirectional links. 

Each node is associated with a processing element and a switch. Communication 

between any pair of nodes takes at most two hops within the basic octagonal unit. For 

a system consisting of more than eight nodes, the octagon is extended to 

multidimensional space. Of course, this type of interconnection mechanism may 

significantly increase the wiring complexity. In a Butterfly Fat-Tree (BFT) 

architecture which is shown as Fig. 2.8(f), the IPs are placed at the leaves and 

switches placed at the vertices. A pair of coordinates is used to label each node. The 
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number of switches in the butterfly fat tree architecture converges to a constant 

independent of the number of levels. 

2.3.2 Advanced Network-on-Chip Architectures 

A popular network topology of NoC implementations is the two-dimensional 

mesh architecture, and it provides a regular topology and communications. Therefore, 

many advanced NoC architectures are proposed which are based on mesh topologies. 

An advanced NoC architecture, called Xpipes as Fig. 2.9, targeting high performance 

and reliable communication for on-chip multi-processors is introduced [2.34]. Data 

links can be pipelined with a flexible number of stages to decouple link throughput 

from its length and to get arbitrary topologies. The I/O ports of each switch can be 

parameterized, and Xpipes is optimized from tile-based network on chip architecture. 

Although it has dealt with the floorplan and different bandwidth between neighboring 

IP blocks, it belongs to the 2-D links architecture. 

 

Figure 2.6 Xipies Architecture 

An idea is presented to connect to the hierarchy network-on-chip as shown in 

Figure 2.10. The network on chip can be divided into two kinds of architecture, local 

network and global network. The local network preserves the features of 2-D links 

network on chip, and the global network is designed as centralized crossbar [2.35]. 

With the increasing of the processor elements and numbers of the local network, 

however, the global network might be designed as the distributed crossbars. In 

Figure2.13, block M is mentioned as memory block and block P is about the 
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processor element. Other hierarchy Network-on-chip or hybrid network-on-chip are 

also proposed to adopt multiple processor elements and heterogeneous systems 

[2.36][2.37] [2.38] [2.39]. 

 

Figure 2.7 Hierarchy Network-on-Chip Architecture 

In order to achieve better performance, functionality and packaging density, three 

dimensional ICs are proposed with multiple layers of active devices. Besides, three- 

dimensional (3D) ICs allow for performance enhancements in the absence of scaling. 

This is the result of each transistor being able to reduce interconnect length and access 

more nearest neighbors. The performance improvement arising from the architectural 

advantages of NoCs will be significantly enhanced if 3D ICs are adopted as the basic 

fabrication methodologies. Therefore, new topologies of 3-D network are also 

proposed for the future ICs [2.40]. 

2.4 Switching Fabrics in Network-on-Chip 

Switching fabrics (or called router) is a key component in network-on-chip to 

command the data communication. Every processor element is called resource and 

connects to a switch fabric. The resources consist of process elements, IP blocks, 

embedded memory, DMA controllers etc. The implementation of routers depends on 

the topology and protocol of network-on-chip. In addition, the topology and control 

flows are the design issue for the interfaces of processor elements. No whether which 

network-on-chip architecture is, the router could be divided into five parts as follow: 

 I/O Ports 

 Link Control Unit (Routing Unit) 

 Buffers (queues) 
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 Switching Circuit 

 Arbitration Unit 

The link control units (routing units) control the communication in the 

network-on-chip backbone, and the arbitration unit arbitrates contention data which 

are routed to the same channel. The NoC former should avoid deadlock [2.41] of the 

on-chip communications and traffic which are intruded by the bad policy routing 

algorithms. Besides, it will influence on the sizes of buffers, number of MUXs for 

switching and the complexity of interconnects. For example, each switch connects to 

the side of switches with four directions in a mesh network-on-chip. The links of the 

switches are shown in Figure 2.8(b) and the architecture of the switches in a mesh 

(tile-based) NoC is shown in Figure 2.10. 

We would not introduce link control unit (routing unit) here because in this thesis 

we focus on buffers (queues), switching circuit (network interface) and arbitration 

unit. The detail of these units will be described in following sections. 

2.4.1 Buffers in Switch Fabrics 

In network-on-chip platform, buffers will significantly affect the overall 

performance and the arbitration algorithm. Buffer allow for local storage of data that 

cannot be immediately routed. Unfortunately, queuing buffers have a high cost in 

terms of area and power consumption, and thus many NoC implementations strive 

with limited buffer sizes. If the design lacks sufficient buffer space, on the contrary, 

the buffers may fill up too fast while over-provisioning of buffers clearly is a waste of 

scarce area resources [2.42]. 

Queuing buffer is used in switch fabrics or network interfaces to store un-routed 

data, and buffer architectures can be classified by the location and circuit 

implementation of buffers. The queuing buffers consume the most area and power 

consumption among composing blocks in NoCs. However, insufficient buffer size is a 

factor to induce head-of-line blocking problems as Fig. 2.8. When the head data of a 

virtual channel could not be routed and data behind the head data are occupied 

queuing buffers, it will influence the performance of the network. That’s the so-called 

“head-of-line blocking problem.” Nevertheless, head-of-line blocking problems not 
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only reduce the performance but also increase power consumption of on-chip 

communication. Therefore, head-of-line blocking is a key factor to evaluate different 

buffer architecture. 

Buffer

Input1

Input2

Input3

Output1

Output2

Output3
 

Figure 2.8 Head-of-line blocking problem 

Depending on the location of queuing buffers, the buffers can be placed either 

before or after the interconnection matrix in a switch fabric, which are input buffer 

and output buffer, respectively. To be sure, there is a distinction between input buffers 

and output buffers. If a data word is delayed in a switch fabric with input buffers, it 

will stall all data words arriving on the same input. None of them can be processed 

until the first one has been forwarded successfully. With the output buffers, the 

situation is different because that the switching is performed before the buffering. If a 

switch fabric cannot send the data over one of its outputs, the buffers at that output 

will fill up. There is, however, no immediate influence on the inputs. The successive 

data words can still be received. An architectural disadvantage of output buffering is 

that in one cycle, data from multiple input ports may have to be written to the same 

output port. Nevertheless, the multiple buffers can be implemented in parallel at the 

output to deal with the disadvantage. No whether output buffers or input buffers, they 

will introduce head-of-line blocking problem to stall the input data. 

B
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Input Buffer Middle Buffer Output Buffer  
Figure 2.9 Buffer architecture 



 

 

 

15 

Fig. 2.9 shows the input buffers, middle buffers and output buffers in the switch 

fabrics. The concept of middle buffering describes that the cutest of the buffers 

placement moves to the middle of the switch. The middle buffer architectures have 

O(N
2 

) buffer blocks for a N-port switch fabric while input and output buffering have 

only O(N) buffer blocks. The middle buffer architecture, however, can reduce the 

effects of the head-of-line blocking with multiple virtual channels in the switching. It 

will be a trade-off between traffic problems and buffer sizes. Consequently, both 

output buffers and middle buffers are looking for the best FIFO utility. 

The traditional buffer circuits can be implemented by two different memory units, 

either registers (flip-flops) or SRAM cells. Register-based implementations have a 

definite limitation in their capacity as to the increasing power consumption and area. 

Therefore, the queuing buffer should be implemented as SRAM cells with separated 

read/write ports for large capacity queuing. This is because that area of SRAM cells is 

tenth of registers. 
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Figure 2.10 Buffer Implementation 

The register-based buffers could be classified into four different implementations, 

which are shown as Fig. 2.10. Fig. 2.10(a) shows a conventional shift-register. When 

the consumer sends the request to the buffer, it will enable all registers and shift the 

data to the output port. Indeed, the implementation of a shift-register is uncomplicated 
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than others. However, intermediate empty cells as Fig. 2.10(a) induced by different 

packet in/out rates temporally will influence the performance as to unnecessary 

latency. Nevertheless, shifting all the registers in a buffer consumes huge amount of 

power. The shift-register is not desirable to implement on a chip as to unnecessary 

latency and huge power consumption. In order to remove the intermediate empty 

bubble, the arrival packet can be stored at the empty cell behind the full cells as Fig. 

2.10(b). This style is called as “Bus-In Shift-Out Register”, and it only shifts the full 

cells. Therefore, it can remove unnecessary latency and power consumption caused by 

the empty bubbles. However, as the queuing capacity increases, the driver of the 

sender should be larger for the increasing fan-outs. Besides, it still consumes huge 

amount power by shifting all the occupied cells. To reduce the huge power 

consumption of shifting operation, the outputs of all registers are connected to a 

shared output bus via tri-state buffers as Fig. 2.10(c) which is called “Bus-In Bus-Out 

Register”. The writing and reading tokens which are constructed in rings indicate the 

head and tail of full cells, respectively. The tri-stare buffers are controlled by the 

reading token to read the first-in packet, and the writing token enables the register 

which is behind the full cells to store the input packet. As the queuing capacity 

increases, the capacitance of the shared input/output buses increase as well, output bus 

especially. The parasitic capacitance of tri-state buffers will enlarge not only the delay 

but also power consumption. Therefore, “Bus-In Mux-Out Register” with output 

multiplexers as Fig. 2.10(d) can be used to eliminate the parasitic capacitance of 

tri-state buffers. It needs an extra adder to be a pointer and to calculate the address of 

output packet. 

Some approaches are proposed to optimize the location and size of buffers. 

Application-specific buffer space allocation is a novel system-level buffer planning 

algorithm to customize the router design [2.43][2.44][2.45]. Centralized buffer and 

dynamic virtual channel regulator are proposed to decrease the buffer size without 

performance overhead. FC-CB is designed for virtual channels in wormhole routing 

[2.46]. Other approaches are proposed to define the buffer model and buffer constraint 

in NoC systems. 
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2.4.2 Switching Circuit in Switch Fabrics 

There are two kinds of switch design: a cross-point switch and a MUX-based 

switch. The cross-point switch has pass transistors at each crossing junction of input 

and output wires. The capacitive loading of input driver is the junction capacitance of 

pass transistors on input and output wires and the wire capacitance itself. The voltage 

swing on the output wire is reduced to Vdd-Vth as to the threshold voltage drop. The 

fabric area is determined by the wiring area so that its area cost can be the minimum. 

However, this design is hard to be synthesized and sensitive to the noise. The 

MUX-based switches use multiplexer for each output port. The power consumption, 

delay and area are all worse than cross-point switching, especially for large 

input/output. Nevertheless, the power consumption and delay will exponentially 

increase with the number of I/O ports no whether Mux-based switch or cross-point 

switch. Crossbar partial activation technique as Fig. 2.11 is proposed to reduce the 

power consumption and delay with large input and output [2.47]. 

 

Figure 2.11 Crossbar partial activation technique 

2.4.3 Arbitration Unit Circuit in Switch Fabrics 

To arbitrate the output conflicts, arbitration unit is used on each output. The 

latency of the arbitration unit becomes larger as the switch size gets bigger. Besides, 

the contention data will increase also. TDMA [2.48][2.49][2.50] and round-robin 
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scheduling algorithm [2.51][2.52] are most widely used as to its simple 

implementation and its fairness, respectively. A pseudo-LRU algorithm is also 

proposed for lower are and lower latency than those of the round-robin algorithm. 

Besides, input contention-aware arbitration algorithm is proposed to achieve higher 

performance by considering the traffic of neighbor nodes. For a distributed parallel 

characteristic of NoC platform, the arbitration unit is less important than shared 

medium platform, such as on-chip bus architecture. 
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Chapter 3 
Flow Control for On-Chip Interconnection 

Network 

3.1 Overview of Flow Control 

Inter-processor communication can be view as a hierarchy of services starting 

from the physical layer that synchronizes the transfer of bit streams to higher-level 

protocol layers that perform functions such as packetization, data encryption, data 

compression, and so on. We find it useful to distinguish between three layers in the 

operation of the interconnection network: the routing layer, the switching layer, and 

the physical layer. The switching layer utilizes these physical layer protocols to 

implement mechanisms for forwarding messages through the network. The switching 

techniques determine when and how internal switches are set to connect router inputs 

to outputs and the time at which message components may be transferred along these 

paths. These techniques are coupled with flow control mechanisms for the 

synchronized transfer of units of information between routers and through routers in 

forwarding message through network. 

Flow control determines how a network’s resource such as channel bandwidth, 

buffer capacity, and control state, are allocated to packets traversing the network. A 

good flow-control method allocates these resources in an efficient manner so the 

network achieves a high fraction of its ideal bandwidth and delivers packets with low 

predictable latency. On the other hand, a poor flow-control method wastes channel 

bandwidth by leaving resources idle and doing unproductive work with other 

resources. This results in a network which only a tiny fraction of the ideal bandwidth 

is realized and has high and variable latency. 
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Flow control is tightly coupled with buffer management algorithms that 

determine how messages are handled when blocked in the network. One can view 

flow control as either a problem of resource allocation or one of contention resolution. 

From the resource allocation perspective, resources in the form of channels, buffers, 

and state must be allocated to each packet as it advances from the source to the 

destination. 

Flow control is a synchronization protocol for transmitting and receiving a unit 

of information. The unit of flow control refers to that portion of the message whose 

transfer must be synchronized. This unit is defined as the smallest unit of information 

whose transfer is requested by the sender and acknowledged by the receiver. The 

request/acknowledgement signaling is used to ensure successful transfer and the 

availability of buffer space at the receiver. 

3.2 Bufferless Flow Control 

The simplest flow-control mechanisms are bufferless, and rather than 

temporarily storing blocked packets, they either drop or misrouter these packets. 

These forms of flow control use no buffering and simply act to allocated channel state 

and bandwidth to competing packet. In these cases, the flow-control methods must 

perform an arbitration to decide which packet gets the channel it has requested. The 

arbitration method must also decide how to dispose of any packets that did not get 

their requested destination. Since there are no buffers, we cannot hold the losing 

packets until their channels become free. Instead we must either drop them or 

misroute them. 

3.2.1 Circuit Switching Flow Control 

The next step up in complexity and efficiency is circuit switching, where only 

packet headers are buffered. In circuit switching, the header of a packet traverses the 

network ahead of any packet payload, reserving the appropriate resources along the 

path. If the header cannot immediately allocate a resource at a particular node, it 

simply waits at that node until the resource becomes free. Once the entire path, or 

circuit, has been reserved, data may be sent over the circuit until it is torn down by 
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deallocating the channels. 

Circuit switching is a form of bufferless flow control that operates by first 

allocating channels to form a circuit from source to destination and then sending one 

or more packets along this circuit. When no further packets need to be sent, the circuit 

is deallocated. Circuit switching differs from dropping flow control in that if the 

request flit is blocked, it is held in place rather than dropped. Compared to dropping 

flow control, circuit switching has the advantage that it never wastes resource by 

dropping a packet. Because it buffers the header at each hop, it always makes forward 

progress. However, circuit switching does have two weaknesses that make it less 

attractive than buffered flow control methods: high latency and low throughput. 

Circuit switching has advantage of being very simple to implement. All of these 

flow-control mechanisms are rather inefficient because they waste costly channel 

bandwidth to avoid using relatively inexpensive storage space. 

 

Figure 3.1 Time-space diagram of a circuit-switched message [3.1] 

For each switching technique we will consider the computation of the base 

latency of an L-bit message in the absence of any traffic. The flit size is assumed to be 

equivalent and equal to the physical data channel width of W bits. The routing header 

is assumed to be 1 flit; thus the message size is L + W bits. A router can make two 

routers operates at B Hz; that is the physical channel bandwidth is BW bits per second. 

We assume that channel wires are short enough to complete a transmission in one 

clock cycle. Therefore, the propagation delay across this channel is denoted by 

    
 

 
 . Once a path has been set up through the router, the intrarouter delay or 

switching delay is denoted by    . The source and destination processors are assumed 

to be D links apart. We would continue using these representations later. 
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The base latency of a circuit-switched message is determined by the time to set 

up a path and the subsequent time path is busy transmitting data. From Figure 3.1 we 

can write an expression for the base latency of a message as follows: 

                          

                            

        
 

 
 
 

 
  

3.3 Buffered Flow Control 

Adding buffers to our networks results in significantly more efficient flow 

control. This is because a buffer decouples the allocation of adjacent channels. 

Without a buffer, the two channels must be allocated to packet (or flit) during 

consecutive cycles, or the packet must be dropped or misrouted. There is nowhere 

else for the packet to go. Adding a buffer gives us a place to store the packet (or flit) 

while waiting for the second channel, allowing the allocation of the second channel to 

be delayed without complications. 

Once we add buffers to an interconnection network, our flow control mechanism 

must allocate buffers as well as channel bandwidth. Moreover, we have a choice as to 

the granularity at which we allocate each of these resources. As depicted in Figure 3.2, 

we can allocate either buffers or channel bandwidth in units of flits or packets. 

Allocating storage in units of flits rather than packets has three major advantages. It 

reduces the storage required for correct operation of a router, it provides stiffer 

backpressure from a point of congestion to the source, and it enables more efficient 

use of storage. 

 



 

 

 

23 

 

Figure 3.2 Buffered flow control methods can be classified based on their 

granularity of channel bandwidth allocation and buffer allocation [3.1] 

3.3.1 Packet-Buffer Flow Control 

If we allocate both channel bandwidth and buffers in units of packets, we have 

packet-buffer flow control. Storing a flit (or a packet) in a buffer allows us to 

decouple allocation of the input channel to a flit from the allocation of the output 

channel to a flit. Adding a buffer prevents the waste of the channel bandwidth caused 

by dropping or misrouting packets or the idle time inherent in circuit switching. As a 

result, we can approach full channel utilization with buffered flow control. 

3.3.1.1 Store-and-Forward Flow Control 

A packet is completely buffered at each intermediate node before it is forwarded 

to the next node. This is the reason why this switching technique is also referred to as 

store-and forward (SAF) switching. The packet must be allocated two resources 

before it can be forwarded: a packet-sized buffer on the far side of the channel and 

exclusive use of the channel. Once the entire packet has arrived at a node and these 

two resources are acquired, the packet is forwarded to the next node. While waiting to 

acquired resources, if they are not immediately available, no channels are being held 

idle and only a single packet buffer on the current node is occupied. 

Packet switching [3.2] is advantageous when messages are short and frequent. 

Unlike circuit switching, where a segment of a reserved path may be idle for a 

significant period of time, a communication link is fully utilized when there are data 

to be transmitted. The major drawback of store-and-forward flow control is its very 
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high latency. Since the packet is completely received at one node before it can begin 

moving to the next node, serialization latency is experienced at each hop. 

The base latency of a packet-switched message can be computed as follow: 

                          
    

 
   

The important point to note is that the latency is directly proportional to the 

distance between source and destination nodes. 

 

Figure 3.3 Time-space diagram of a packet-switched message [3.1] 

3.3.1.2 Virtual Cut Through (VCT) Flow Control 

Packet switching is based on the assumption that a packet must be received in its 

entirety before any routing decision can be made and the packet forwarded to the 

destination. Rather than waiting for the entire packet to be received, the packet header 

can be examined as soon as it is received. The router can started forwarding the 

header and following data bytes as soon as routing decisions have been made and the 

output buffer is free. In fact the message does not even have to be buffered at the 

output and can cut through to the input of the next router before the complete packet 

has been received at the current router. This switching technique is referred to as 

virtual cut-through switching (VCT). In the absence of blocking, the latency 

experienced by the header at each node is the routing latency and propagation delay 

through the router and along the physical channels. If the header is blocked on a busy 

output channel, the complete message is buffered at the node. Thus, at high network 

loads, VCT switching behaves like packet switching. 
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Cut-through flow control overcomes the latency penalty of store-and-forward 

flow control by forwarding a packet as soon as the header is received and resources 

(buffer and channel) are acquired, without waiting for the entire packet to be received. 

As with store-and-forward flow control, cut-through flow control allocates both 

buffers and channel bandwidth in units of packets. It differs only in that transmission 

over each hop is started as soon as possible without waiting for the entire packet to be 

received. 

Virtual cut through flow control reduced the latency from the product of the hop 

count and the serialization latency. At this point, cut-through flow control may seem 

like an ideal method. It gives very high channel utilization by using buffers to 

decouple channel allocation. It also achieves very low latency by forwarding packets 

as soon as possible. However, the cut-through method, or any other packet-based 

method, has two serious shortcomings. First, by allocating buffers in units of packets, 

it makes very inefficient use of buffer storage. As we shall see, we can make much 

more effective use of storage by allocating buffers in units of flits. This is particularly 

important when we need multiple, independent buffer sets to reduce blocking or 

provide deadlock avoidance. Second, by allocating channels in units of packets, 

contention latency is increased. For example, a high-priority packet colliding with a 

low-priority packet must wait for the entire low-priority packet to be transmitted 

before it can acquire the channel. In the next section, we will see how allocating 

resources in units of flits rather than packets results in more efficient buffer use (and 

hence higher throughput) and reduced contention latency. 

 

Figure 3.4 Time-space diagram of a virtual cut-through switched message [3.1] 

The base latency of a message that successfully cuts through each intermediate 
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router can be computed as follows: 

                                   
 

 
  

Cut-through routing is assumed to occur at the flit level with the routing 

information contained in 1 flit. This model assumed that there is no time penalty for 

cutting through a router if the output buffer and output channel are free. Depending on 

the speed of operation of the routers, this may not be realistic. Note that the header 

experiences routing delay, as well as the switching delay and wire delay at each router. 

This is because the transmission is pipelined and the switched is buffered at the input 

and output. Once the header flit reaches the destination, the cycle time of this message 

pipeline is determined by the maximum of the switching delay and wire delay 

between routers. If the switch had been buffered only at the input, then in one cycle of 

operation, a flit traverses the switch and channel between routers. In this case, the 

coefficient of the second term and the pipeline cycle time would be          . Note 

that the unit of message flow control is a packet. Therefore, even though the message 

may cut through the router, the sufficient buffer space must be allocated for a 

complete packet in case the header is blocked. 

3.3.2 Flit-Buffer Flow Control 

3.3.2.1 Wormhole Flow Control 

The need to buffer complete packets within a router can make it difficult to 

construct small, compact, and fast router. Wormhole flow control operates like 

cut-through, but with channel and buffers allocated to flits rather than packets. In 

wormhole switching, the buffer requirements within the routers are substantially 

reduced over the requirement for VCT switching. The primary difference between 

wormhole switching and VCT switching is that, in the former, the unit of message 

flow control is a single flit and, as a consequence, small buffers can be used. 

Compared to cut-through flow control, wormhole flow control makes far more 

efficient use of buffer space, as only a small number of flit buffers are required per 
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virtual channel. In contrast, cut-through flow control requires several packets of buffer 

space, which is typically at least an order of magnitude more storage than wormhole 

flow control. This savings in buffer space, however, comes at the expense of some 

throughput, since wormhole flow control may block a channel mid-packet. Blocking 

may occur with wormhole flow control because the channel is owned by a packet, but 

buffers are allocated on a flit-by-flit basis. 

The base latency of a wormhole-switched message can be computed as follows: 

                                        
 

 
  

This expression assumes flit buffers at the router inputs and outputs. Note in the 

absence of contention, VCT and wormhole switching have the same latency. Once the 

header flit arrives at the destination, the message pipeline cycle time is determined by 

the maximum of the switch delay and wire delay. For an input-only and output-only 

buffered switch, this cycle time would be given by the sum of the switch and wire 

delays. 

 

Figure 3.5 Time-space diagram of a wormhole-switched message [3.1] 

3.3.2.2 Virtual Channel Flow Control 

The preceding switching techniques were described assuming that messages or 

parts of messages were buffered at the input and output of each physical channel. 

Buffers are commonly operated as FIFO queues. Therefore, once a message occupies 

a buffer for a channel, no other message can access the physical channel, even if the 

message is blocked. Alternatively, a physical channel may support several logical or 
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virtual channels multiplexed across physical channel. Each unidirectional virtual 

channel is realized by an independently managed pair of message buffers as illustrated 

in Figure 3.6. Consider wormhole switching with a message in each virtual channel 

[3.3]. Each message can share the physical channel on a flit-by-flit basis. The physical 

channel protocol must be able to distinguish between the virtual channels using the 

physical channel. Logically, each virtual channel operates as if each were using a 

distinct physical channel operating half the speed. Virtual channel were originally 

introduced to solve the problem of deadlock in wormhole-switched networks. 

Deadlock is a network state where no messages can advance because each message 

requires a channel occupied by another message. By allowing messages to share a 

physical channel, messages can make progress rather than remain blocked. Virtual 

channels can also be used to improve message latency and network throughout. 

Virtual-channel flow control decouples the allocation of channel state from channel 

bandwidth. This decoupling prevents a packet that acquires channel state and then 

blocks from holding channel bandwidth idle. This permits virtual-channel flow 

control to achieve substantially higher throughput than wormhole flow control. 

As in wormhole flow control, an arriving head flit must allocate a virtual channel, 

a downstream flit buffer, and channel bandwidth to advance. Subsequent body flits 

from the packet use the virtual channel allocated by the header and still must allocate 

a flit buffer and channel bandwidth. However, unlike wormhole flow control, these 

flits are not guaranteed access to channel bandwidth because other virtual channels 

may be competing to transmit flits of their packets across the same link. 

In fact, given the same total amount of buffer space, virtual-channel flow control 

also outperforms cut-through flow control because it is more efficient to allocate 

buffer space as multiple short virtual-channel flit buffers than as a single large 

cut-through packet buffer. 

We can envision continuing to add virtual channels to further reduce the blocking 

experienced by each message. The result is increased network throughput measured in 

flits/s, due to increased physical channel utilization. However, each additional virtual 

channel improves performance by a smaller amount, and the increase channel 

multiplexing reduces the data rate of individual messages, increasing the message 

latency. This increase in latency due to data rate multiplexing will eventually 
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overshadow the reduction in latency due to blocking, leading to overall increasing 

average message latency. 

 

Figure 3.6 Virtual channels [3.1] 

3.3.3 Buffer Management and Backpressure 

All of the flow control methods that use buffering need a means to communicate 

the availability of buffers at the downstream nodes. Then the upstream nodes can 

determine when a buffer is available to hold the next flit (or packet for 

store-and-forward or cut-through) to be transmitted. This type of buffer management 

provides backpressure by informing the upstream nodes when they must stop 

transmitting flits because all of the downstream flit buffers are full. Three types of 

low-level flow control mechanisms are in common use today to provide such 

backpressure [3.4]: credit-based [3.5], on/off, and ack/nack [3.6]. We examine each of 

these in turn. 

3.3.3.1 Credit-Based Flow Control 

With credit-based flow control [3.7][3.8][3.9], the upstream router keeps a count 

of the number of free flit buffers in each virtual channel downstream. Then, each time 

the upstream router forwards a flit, thus consuming a downstream buffer, it 

decrements the appropriate count. If the count reaches zero, all of the downstream 

buffers are full and no further flits can be forwarded until a buffer becomes available. 

Once the downstream router forwards a flit and frees the associated buffer, it sends a 

credit to the upstream router, causing a buffer count to be incremented. 
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From Figure 3.7 we can see that the minimum time between the credit being sent 

at time    and a credit being sent for the same buffer at time    is the credit 

round-trip delay     . This delay, which includes a round-trip wire delay and 

additional processing time at both ends, is a critical parameter of any router because it 

determines the maximum throughput that can be supported by the flow control 

mechanism. 

A potential drawback of credit-based flow control is a one-to-one 

correspondence between flits and credits. For each flit sent downstream, a 

corresponding credit is eventually sent upstream. This requires a significant amount of 

upstream signaling and, especially for small flits, can represent a large overhead. 

 

Figure 3.7 Timeline of credit-based flow control [3.9] 

3.3.3.2 On/Off Flow Control 

On/off flow control can greatly reduce the amount of upstream signaling in 

certain cases. With this method the upstream state is a single control bit that 

represents whether the upstream node is permitted to send (on) or not (off). A signal is 

sent upstream only when it is necessary to change this state. An off signal is sent 

when the control bit is on and the number of free buffers falls below the threshold 

    . If the control bit is off and the number of free buffers rises above the threshold 
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   , an on signal is sent. A timeline illustrating on/off flow control is illustrated in 

Figure 3.8. With an adequate number of buffers, on/off flow control systems can 

operate with very little upstream signaling. 

 

Figure 3.8 Timeline of on/off flow control [3.9] 

3.3.3.3 Ack/Nack Flow Control 

Both credit-based and on/off flow control require a round-trip delay     between 
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the time a buffer becomes empty, triggering a credit or an on signal, and when a flit 

arrives to occupy that buffer. Ack/nack flow control reduces the minimum of this 

buffer vacancy time to zero and the average vacancy time to    /2. Unfortunately 

there is no net gain because buffers are held for an additional      waiting for an 

acknowledgment, making ack/nack flow control less efficient in its use of buffers than 

credit-based flow control. It is also inefficient in its use of bandwidth which it uses to 

send flits only to drop them when no buffer is available. With ack/nack flow control, 

there is no state kept in the upstream node to indicate buffer availability. The upstream 

node optimistically sends flits whenever they become available. If the downstream 

node has a buffer available, it accepts the flit and sends an acknowledge (ack) to the 

upstream node. If no buffers are available when the flit arrives, the downstream node 

drops the flit and sends a negative acknowledgment (nack). The upstream node holds 

onto each flit until it receives an ack. If it receives a nack, it retransmits the flit. 

Because of its buffer and bandwidth inefficiency, ack/nack flow control is rarely 

used. Rather, credit-based flow control is typically used in systems with small 

numbers of buffers, and on/off flow control is employed in most systems that have 

large numbers of flit buffers. 

 

Figure 3.9 Timeline of ack/nack flow control [3.9] 
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3.3.4 Flit-Reservation Flow Control 

While traditional wormhole networks greatly reduce the latency of sending 

packets through an interconnection network, the idealized view of router behavior can 

differ significantly from a pipelined hardware implementation. Pipelining breaks the 

stages of flit routing into several smaller steps, which increases the hop time. 

Accounting for these pipelining delays and propagation latencies gives an accurate 

view of buffer utilization. 

The remaining time required to recycle the credit and issue another flit to occupy 

the buffer is called the turnaround time. Lower buffer utilization reduces network 

throughput because fewer buffers are available for bypassing blocked messages and 

absorbing traffic variations. Flit-reservation flow control can reduce turnaround time 

to zero and hide the flit pipeline delay in a practical implementation. Flit-reservation 

hides the overhead associated with a pipelined router implementation by separating 

the control and data networks. Control flits race ahead of the data flits to reserve 

network resources. As the data flits arrive, they have already been allocated an 

outgoing virtual channel and can proceed with little overhead. Reservation also 

streamlines the delivery of credits, allowing zero turnaround time for buffers. Of 

course, it is not always possible to reserve resources in advance, especially in the case 

of heavy congestion. In these situations, data flits simply wait at the router until 

resources have been reserved which is the same behavior of a standard wormhole 

router. 

3.4 Memory-Centric On-Chip Interconnection Network for 

Heterogeneous Multi-Core SoC 

NoCs contain very wide range of area that we describe in the chapter 2. Figure 

3.10 shows the abstraction levels of NoCs. In this thesis we focus on transport 

(repacketization), switching circuit and arbitration. In this section we would describe 

the switching protocol between network interface and router (crossbar) and arbitration 

mechanism. Moreover, later we will describe network interface including buffers 

(queues), message transport (repacketization), switching policy between processor 
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element and network interface in the chapter 4. 

NoC

Software, 

Application,

Task mapping

On-Chip Interconnection 

Network

(router, network interface, data link)

 

Figure 3.10 abstraction levels of NoC 

The performance of a multi-core SoC [3.10] will be limited by the on-chip data 

communication, memory resource allocation, and memory data accessing. Therefore, 

a memory-centric on-chip interconnection network as shown in Figure 3.11 is 

presented for improving both the communication bandwidth and memory bandwidth. 

For each PE, a NI and a d-MMU with distributed memories is developed to 

communicate with the OCIN and on-demand memory subsystem, respectively. If a 

process element requires additional memory resources, the centralized memory 

resources, including centralized SRAMs and off-chip DRAM, can be utilized. The 

centralized memory resources are managed by a c-MMU that dynamically allocates 

and manages the memory resources based on different memory requirements. 

Therefore, the on-demand memory subsystem can efficiently handle all memory 

requests generated by PEs. 

Memory-centric on-chip interconnection network includes a network interface 

(NI) for data switching between processor element and network interconnection 

(crossbar switch) and a network interconnection (crossbar switch) for data switching 

among each request with different priority from other node and routing and 

arbitration. 
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Figure 3.11 Memory-Centric On-Chip Interconnection Architecture. 

We will introduce network interface (NI) later in the chapter 4. 

3.4.1 Network Interconnection 

3.4.1.1 Data Switching Protocol between Crossbar and NI 

This router is a 4×4 crossbar. Crossbar switch receives transmit request from 

each network interface (NI) and decides which node can get grant to use. Table 3.1 

shows input and output description between NI and interconnection network 

(crossbar). 

I/O Port name Width Description 

Input N_TX_REQ 1 Request transmit grant: Active high when transfer header flit 

Input N_TX_PRI 2 Packet priority: PRI signal represents the priority of 

transmitting data packet. It is used to determine the priority 

of network arbitration. The default value is 0 (highest 

priority) 
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Output N_TX_GRANT 1 Grant to transfer: Active high when arbiter give the transmit 

grant 

Input N_DATA_RDY 1 Data ready: Active high when data is ready for transmit 

Input N_TX_DATA 34 Transmit data: include flit type (2bits) and data (32bits) 

Output N_STALL 1 Transmit stall: Active high when buffer queue of receiver 

end has no free slot under grant to transfer condition 

Input N_num_free 1 Number free slot: Active high when buffer queue of receiver 

end has free slot 

Output N_transmit 1 Transmit: Active high when transmit data to receiver 

Output N_type_out 2 Packet flit type: value 0 for header flit, value 1 for body flit 

and value 2 for tail flit 

Output N_data_out 32 Transmit data: 

Table 3.1 Input and output description between network interface and crossbar 

 

When requests from each network interface compete to get transmit grant, arbiter 

would decide which is winner according to packet priority. We would introduce the 

arbitration mechanism later in next section. Network interface sends transmit request 

and packet priority to crossbar and put header flit simultaneously. When crossbar is 

ready for next transmit, crossbar will give grant to winner node and receive header flit. 

When network interface gets grant to transmit, network interface activates data ready 

signal and puts data flit. 

If free slot of buffer queue in the receiver end is not equal to zero, crossbar will 

transfer data in order to destination node. Otherwise, crossbar must activate stall 

signal to inform network interface suspend to transmit. In this case, crossbar will 

receive current data and transmit to destination node. When sender of network 

interface receives stall signal, network interface would suspend transmit until stall 

signal is released. Network interface would continue uncompleted transmit. The 

timing diagram is showed in the Figure 3.12. Interface definition is showed in Figure 

3.13. 
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Figure 3.12 Timing diagram between crossbar and NI. 
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Figure 3.13 Interface definition between Network Interface and crossbar. 

3.4.1.2 Arbitration Mechanism for Router (Crossbar) 

When crossbar (interconnection network) receives request from network 

interface, crossbar must arbitrate which node get grant first. Our arbitration 

mechanism according to packet priority and grant order is very fair. Packet priority is 

defined by processor element and grant order is decided by present transmit. For 

example, we assume the current grant order is (node1, node2, node3). In the case that 

node1, node2 and node3 request to transfer to node0, we would give grant to node1 

and set grant order to (node2, node3, node1). This setting can avoid the high priority 

node occupying transfer channel which leads to low priority node always cannot get 

grant to use channel.  
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Figure 3.14 Flow chart of arbitration. 

Figure 3.14 shows flow chart of arbitration. First, crossbar receives request from 

network interface (sender), arbiter would decide which node get grant and set new 

grant order for next arbitration. Then, crossbar would pass data from source node to 

destination node if no stall condition. 

3.5 Summary 

This chapter focuses on data switching policy between network interface and 

router and arbitration mechanism of router. We used wormhole switching policy to 

reduce the congestion condition and improve data transfer performance. About the 

arbitration mechanism, we consider a fairness policy to avoid high priority data 

occupying communication channel lead to starvation of low priority data. 
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Chapter 4 
An Efficient Network Interface for 

Memory-Centric On-Chip Interconnection 

Network 

The performance of a multi-core system-on-chip (SoC) will be limited by the 

on-chip data communication, memory resource allocation, and memory data 

accessing. A memory-centric on-chip interconnection network (OCIN) is presented to 

improve both the communication bandwidth and memory bandwidth. Moreover, 

network interfaces (NIs), one of the building block of OCINs, is a major factor in the 

performance. In this chapter, an efficient NI is proposed for the memory-centric 

on-chip interconnection network to reduce the data blocking by a borrowing 

mechanism. By considering the borrowed memory blocks and distributed memory 

management unit (d-MMU), the size of the output queue in NI can be dynamically 

scheduled. 

4.1 Introduction 

NI is designed as a bridge between a process element and a router. Additionally, 

NI is a major factor in the performance of OCINs, and implements the communication 

protocols of OCINs [4.1]. NI is implemented based on the message dependencies in 

shared–memory and message-passing communication paradigms. Therefore, a NI 

micro-architecture was proposed for the connection-then-credit (CTC) flow control 

protocol among both communication paradigms [4.2]. Moreover, an efficient NI was 

investigated to offer guaranteed services, shared-memory abstraction and flexible 

network configuration [4.3]. These two approaches increase design reuse and allow 

flexible instantiations in different design constraints. In addition to meet hare 

real-time constraints, a communication and configuration controller was developed to 

manage reconfiguration data-flows in NIs [4.4].  Furthermore, a high-speed NI was 
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proposed to support the serial-link packet-based transmission model [4.5]. 
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Figure 4.1 Memory-centric on-chip interconnection network (OCIN) 

With the increasing PEs, data coherent of the shared–memory communication 

becomes one of the critical design challenges. Therefore, the message-passing 

communication paradigm is popular in multi-core systems [4.6][4.7]. Additionally, 

with increasing demands on ubiquitous wireless high-data-rate multimedia services, 

large amounts of high speed and low power memories are indispensable for a 

multi-core platform. Therefore, on-chip SRAM-rich SoCs and processors was 

proposed for multimedia devices, and a memory-access-specific OCIN was developed 

[4.8]. In view of this, a memory-centric OCIN as shown in Figure 4.1 will be an 

effective platform for the future wireless multimedia systems. The memory-centric 

OCIN is developed by a conventional OCIN and an on-demand memory sub-system, 

including distributed memories, centralized memories, distributed memory 

management units (d-MMUs) and a centralized MMU (c-MMU). In this paper, an 

efficient NI for the memory-centric OCIN is proposed to reduce the data blocking in 

NIs via the d- MMU. The d-MMU can dynamically allocate the memory resources for 

buffering the blocking network data. 
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4.2 Memory-Centric On-Chip Interconnection Network 

4.2.1 Packet Definition 

The message-passing communication paradigm is adopted among the PEs via the 

packet switching technique. Therefore, Figure 4.2 presents the packet definition of the 

memory-centric on-chip interconnection network. The header field in the header flit 

contains the information of this packet to route this packet to the destination in the 

OCIN. Additionally, “Mes” indicates this packet is routed for message-passing or 

on-demand memory subsystem. Therefore, the message-passing field or the 

on-demand memory field indicates the control signals between PEs or d-MMU and 

c-MMU. Furthermore, if both “Mes” and “Addr” are activated, the control signals 

between two PEs are extended in the address field. In additional, “R/W” indicates the 

access operation of this packet and “Pr” indicates the packet priority. “BL” indicates 

the burst length of packet, in other words, it represents the size of payload flits. 
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Figure 4.2 Packet definition of the memory-centric on-chip interconnection network 
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4.2.2 Data Communication Protocol 

In on-demand memory platform, a specific memory access and data 

communication protocol has been defined to integrate all processor elements. Base on 

this protocol, processor element can use large memory space and communicate with 

other processor elements. This section will describe the detail information about the 

protocol, including I/O definition and all kind of operation behaviors. 

In order to finish high level verification, a simple MMU behavior model has 

been established to simulate memory access and data communication behavior. Figure 

4.3 shows the block diagram of the simulation model. In this diagram, MMU behavior 

model acts as memory system behavior including memory access, data transmit, data 

receive and special MMU operation. In this section, these will be described clearly. 

According to this protocol, processor element providers need to establish a wrapper to 

execute memory access, data transmit and data receive successfully. 

Interconnection 

network

Other node

d-MMU NI

Input

Output

Memory 

Model

Wrapper

Processor element

 

Figure 4.3 Simulation model block diagram 

In the Figure 4.3, the red line indicates the I/O port interface and I/O direction 

(based on wrapper). The detail input and output port definition between d-MMU and 

wrapper will be introduced in the Table 4.1 and Table 4.2 respectively. 
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I/O Category Port name Width Description 

Input 

Memory 

R/W 

operation 

M_IN_VALID 1 

Memory data input enable signal : Active high 

when memory data inputs are valid 

M_RDATA 32 

Memory data input : It will be read data from 

memory 

M_IN_BL 

3 

Memory input data burst length : The burst length 

value is IN_BL + 1. For example, IN_BL = 3’b000 

represents the burst length is 1, and 3’b111 

represents the burst length is 8 

MA_READY 

1 

MMU memory access ready signal : Active high 

when the d-MMU is ready to service memory 

access 

Input 

MMU 

operation 

MU_READY 
1 

MMU operation ready signal : Active high when 

the d-MMU is ready to service MMU operation 

Transmit 

operation 
TX_READY 1 

MMU transmit ready signal : Active high when the 

d-MMU is ready to service transmit operation 

Receive 

operation 

RX_IN_VALID 1 

Receive operation input enable signal : Active high 

when receive operation data input are valid 

RX_RW 1 

Receive operation Read/Write signal : Indicate the 

receive operation is receiving data or receiving  

request 

0 : Receiving data 

1 : Receiving request 

RX_IN_BL 3 

Receive data burst length : The burst length value 

is IN_BL + 1. For example, IN_BL = 3’b000 

represents the burst length is 1, and 3’b111 

represents the burst length is 8 

RX_SOURCE 2 

Input data source : Indicate the source of the 

receiving data. The node ID is shown below 

0 : WPU 

1 : MAC 

2 : LT coding 

3 : SVC 

The details will be showed in the chapter 5 

MSG_INFO_IN 8 

Message data information : The signal represents 

the receiving data type and information which are 

defined by each processor elements 
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RX_DATA 32 

Receive data input : It will be packet data from 

other node 

Common 

CLK 1 Clock 

RST 1 
Reset : Synchronous active high reset 

Table 4.1 Input description of the wrapper 

 

I/O Category Port name Width Description 

output 

Memory 

R/W 

operation 

M_OUT_VALID 1 

Memory data output enable signal : Active 

high when memory access output signals are 

valid 

M_RW 1 

Memory Read/Write signal : Indicate the 

memory access is read or write 

0 : write 

1 : read 

M_OUT_BL 3 

Memory access output data burst length : The 

burst length value is IN_BL + 1. For example, 

IN_BL = 3’b000 represents the burst length is 1, 

and 3’b111 represents the burst length is 8 

M_ADDR 32 

Read/Write address : ADDR signal represents 

the start address of the continuous burst data 

M_WDATA 32 

Memory write data output : This signal will be 

memory write data. 

Transmit 

operation 

TX_OUT_VALID 1 

Transmit output enable signal : Active high 

when transmit operation output signals are valid 

TX_RW 1 

Transmit operation Read/Write signal : 

Indicate the transmit operation is sending data 

or sending request 

0 : Sending data 

1 : Sending request 

TX_OUT_BL 3 

Transmit operation output data burst length : 

The burst length value is IN_BL + 1. For 

example, IN_BL = 3’b000 represents the burst 

length is 1, and 3’b111 represents the burst 

length is 8 

TX_DEST 2 

Transmit operation output data destination : 

Indicate the data destination. The node ID is 

show below 
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0 : WPU 

1 : MAC 

2 : LT coding 

3 : SVC 

The details will be showed in the chapter 5 

TX_DATA 32 

Transmit data output : This signal will be 

memory write data 

TX_PRI 2 

Packet priority : PRI signal represents the 

priority of transmitting data packet. It is used to 

determine the priority of network arbitration. 

The default value is 0 (highest priority) 

MSG_INFO_OUT 8 

Message data information : The signal 

represents the transmitted data type and 

information which are defined by each 

processor elements 

Receive 

operation 
RX_CAP 4 

Data capacity : This signal indicates available 

space of the buffer which is utilized to store 

receiving data. Its maximum value is 8, which 

indicates available space is equal or larger than 

8 

MMU 

operation 

MU_VALID 1 

MMU enable : Active high when processor 

element want to use MMU signal to tell 

d-MMU specific information 

MU_INFO 8 MMU information 

Table 4.2 Output description of the wrapper 

 

In the transmit operation, processor elements can transmit data to another node. 

This operation need to provide destination ID which indicated the data destination. 

This information is represented by TX_DEST port. The transmit also uses burst 

transmit, so it need burst length information which is represented by TX_OUT_BL. In 

addition, specific message information which is predefined by these two nodes will be 

required to identify the packet data type, so processor element can use 

MSG_INFO_OUT signal to present it. Besides, PRI signal indicates the packet data 

priority to determine the packet priority in the interconnect network, and its default 

value is set to 0 (highest priority). Also, TX_READY signal indicates the MMU 

transmit state Processor elements need to check this signal first to know about 
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whether the MMU is ready to serve transmit operations. The detail timing diagram of 

transmit operation is shown in Figure 4.4 and Figure 4.5. 
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Figure 4.4 Timing diagram of send packet data to other node 
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Figure 4.5 Timing diagram of send read request to other node 

When another node transmits a packet data to the local node, d-MMU will 

execute receive operation, and then it forward the packet data to the processor element. 

In receive operation, RX_IN_BL signal indicates the transmitted packet burst length 

and RX_SOURCE signal indicates the source ID. Besides, MSG_INFO_IN signal is 

used to represent specific message information which is predefined by these two 

nodes. Processor element can use message information to identify received data. 

Moreover, in order that d-MMU want to check whether the processor element or 

wrapper has enough capacity to handle these data, RX_CAP signal indicate the 
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residual space of the received data buffer in the wrapper. D-MMU will check this 

signal first, and then decide whether the burst data can be send. If it cannot be send, 

these data will be stored in the d-MMU buffer until the processor element has enough 

capacity. The detail timing diagram is shown in Figure 4.6 and Figure 4.7. 
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Figure 4.6 Timing diagram of receive packet from other node 
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Figure 4.7 Timing diagram of receive request from other node 

4.3 Efficient Network Interface for Memory-Centric 

On-Chip Interconnection Network 

For the memory-centric OCIN, d-MMUs are designed for PEs to store the 

temporal data of their tasks. The d-MMU and distributed memories perform as a low 

level cache for the dedicated PE in the on-demand memory sub-system. Additionally, 

NI is designed as a bridge between the PEs and the OCIN. NI contains the input 
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queue and output queue for buffering packets. However, the sizes of the queues 

dominate the area and the performance of data transfer. If the buffer is insufficient, the 

PE will be stall until the head-of-line blocking releases. Therefore, if the utilization of 

the distributed memory is low, the d-MMU can borrow the memory resources for 

buffering the blocking packets from the PEs, and the PEs can keep computing for 

their tasks. 

Depending on the buffering mechanism of the d-MMU, an efficient NI as shown 

in Figure 4.8 is proposed for the memory-centric OCIN. The NI uses a buffering 

control to generate a borrowing request to the d-MMU for borrowing memory 

resources. And thus, the d-MMU checks the valid table and generates the borrowing 

address for the NI. 
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Figure 4.8 Efficient network interface with d-MMU. 

Figure 4.9 presents the buffer borrowing interface between the NI and d-MMU. 

The operations of the buffer borrowing include write, read and release. For the write 

operation, the buffering control should send a buffer request to the d-MMU first, and 

send the blocking data until receiving a grant signal. However, the head-of-line 

blocking may release while waiting the grant from d-MMU or waiting the data from 



 

 

 

49 

PE. Therefore, a release operation can release the extension memory resources. While 

the blocking condition of output queue disappears, the buffering control would send 

data request to the d-MMU, and wait valid signal to read back the buffering packet 

from d-MMU. 
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Figure 4.9 Buffer borrowing interface between the NI and d-MMU. 

4.3.1 Borrowing Address Generator 

When the NI requests an extend buffer to store the blocking packet, the 

borrowing address generator searches an empty space in the distributed memory via 

checking the valid table. This valid table is attached in the cache tables as shown in 

Figure 4.10. The distributed memories are divided into two banks with four-way 

association. The memories corresponding to the last associated table in bank 0 and 

bank 1 are infrequently used in opposition to others. Therefore, the d-MMU can 

borrow the empty spaces corresponding to this table. Moreover, each cache line in the 

four-way association contains 4 x 8 words. Therefore, the maximum payload of a 

packet can be stored in a memory block (8 words) in one cycle. If a memory block is 

borrowed, the d-MMU asserts the status bit that represents the borrowing data. 

Depending on the status bit, the cache control can mask the searching of this table in a 

searching operation. 
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Figure 4.10 Borrowing mechanism in d-MMU 
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Figure 4.11 Architecture of the empty memory block searching. 

After the NI send a borrowing request to the d-MMU, the NI should take 2-8 

cycles for collecting the payload. Most packets contain 8 flits in their payloads, and 

the average size of payload is about 4 words. Therefore, the d-MMU has to search the 

empty memory block in 4 cycles. Additionally, the last associated tables in bank 0 and 

bank 1 contains 512 valid bits. To search the empty memory block, a 128-bit 

searching window is adopted. Figure 4.11 shows the architecture of the empty 

memory block searching. The searching window is controlled by a search counter. 

The empty detector detects an empty memory block and generates the borrow address 

with the search counter. If all memory blocks in a searching window are full, the 

searching windows will move to the next 128 bits. Figure 4.12 shows the searching 

flow chart of the borrowing mechanism. The flow can be divided into three steps, 

which are empty memory block searching, borrowing status setting, and data writing. 
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The operations of empty memory block searching and borrowing status setting are 

described above. While writing data in the borrowing memory block, the borrowing 

address should be stored in the address queue for reading operations. After writing the 

payload into the memory block, the grant signal is changed to 0 for the next 

borrowing request. 
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Figure 4.12 Searching flow chart of the borrowing mechanism in d-MMU. 

4.3.2 Buffer Control 

The buffering control in NI detects the empty size of the output queue and sends 

the borrowing request to d-MMU. For example, if the burst length of packet is less 

than empty size of output queue, a transfer is permitted. Figure 4.13 shows the block 

diagrams of borrowing mechanism in the buffering control. The buffering control 

sends the write, read, and release operations depending on an empty pointer of the 

output queue and a borrowing pointer of the borrowing header queue. The empty 

pointer and borrowing pointer indicate the number of the occupied buffers in the 
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output queue and borrowing header queue, respectively. If the borrowing header 

queue is not empty, it represents that there are still some blocked packets in the 

d-MMU. 

Network Interface

ready

buffering control

borrowing 

mode

w
ra

p
p

er

PE

empty pointer

borrowing 

header 

queue

output queue

d-MMU

read control

To on-chip 

interconnection network

data stream

borrowing 

pointer

write control

Release 

control

payload 

queue

flow control

 

Figure 4.13 Block diagrams of borrowing mechanism in network interface 

In addition, the write control contains a payload queue for collecting the payload, 

and then writing this payload to the borrowed memory block. The borrowing control 

policy of the buffering control is presented as shown in Figure 4.14. The borrowing 

mode indicates whether the channel is blocked and the blocking data should be stored 

in the d-MMU or not. Therefore, after receiving data from the PE, the data should be 

stored in the d-MMU in the borrowing mode. Otherwise, the data can be stored in the 

output queue when the size of the empty slots is larger than the current payload. 

While waiting the borrowing grant from d-MMU and collecting the payload, the 

head-of-line blocking may be released. Therefore, the borrowing mechanism can also 

be released if the borrowing mode equals to zero. The release signal will interrupt the 

search operation of d-MMU. 
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Figure 4.14 Borrowing control policy of the buffer control 

For write operation, when receiving full payload from PE we would double 

check the empty size of output queue. If the head-of-line is released and there is no 

blocked data in the d-MMU, the received data can store into output queue and set 

borrowing mode to zero. This release operation is shown in the Figure 4.16. 

Otherwise, the received data should store in the d-MMU followed with the former 

blocked data. The timing diagram of write operation is shown in the Figure 4.15. 
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Figure 4.15 Timing diagram of writing blocked data in the d-MMU 
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Figure 4.16 Timing diagram of releasing extension memory block 

While the empty size of output queue is larger than the current packet which is 

stored in the d-MMU, buffer control would send request to d-MMU for reading back. 

We can access the header flit stored in the borrowing header queue to complete this 

work. Then, buffer control would receive blocked data and store into output queue 

while the data valid bit is activated. Timing diagram of read operation is shown in the 

Figure 4.17. 
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Figure 4.17 Timing diagram of read back blocked data. 

4.4 Simulation Results 

The proposed efficient NI and memory-centric OCIN are implemented in 

SystemC for the cycle-driven simulation. Thereby, the simulation environment is set 

as a 4x4 router with 4 PEs to evaluate the performance improvement via the efficient 

NIs which is shown in the Figure 4.18. 
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Figure 4.18 Simulation environment 

The input pattern is generated from C++ code by random function. The access 

type of write/read equals 4. Write operation is the major loading of data transfer. 

Packet priority, burst length and destination address are all random. 

Figure 4.21(a) shows the execution time of transferring 200000 random packets 

under various injection loads and output queue sizes of sender. With the increasing 

injection load, the execution time decreases because the transferred packets are fixed. 
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Figure 4.19 Execution under different output queue size (injection load = 20%) 
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Figure 4.20 Execution under different output queue size (injection load = 15%) 

The buffer size of sender and receiver in the NI can be dynamically adjusted 

according to the congestion of network interconnection [4.9][4.10]. By adjusting the 

size of buffer we can increase the data switching performance. In the same word, we 

can increase the maximum borrowing memory blocks of d-MMU to improve the 

performance of buffer borrowing mechanism and promote efficiency of data transfer 

in the same time. 
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Figure 4.21 (a) Execution time under various injection loads and queue sizes (b) 

Transferred packet under various injection loads and queue sizes 

 

Additionally, Figure 4.21(b) shows the number of transferred packets in 300000 

cycles under various injection loads and queue sizes. Based on the simulation results, 

the proposed borrowing mechanism can achieve the similar performance with 

different queue sizes. Moreover, the proposed efficient NI can realize about 1.15x 

performance improvement compared to the conventional one with 16flits. 

Under the same setting, Table 4.3 shows the number blocking condition under 

various injection rate and queue sizes. We can see this network interface improves 

data blocking condition 2%~5%. 
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injection rate = 35% blocking cycle of PE within 1ms   

Data FIFO size (words) 16 24 32   

with adaptive buffering 38436 38623 38701 
blocking rate = 55% 

without adaptive buffering 39604 39619 39653 

reduction rate 3.0388% 2.5788% 2.4599%   

with adaptive buffering 38184 38687 38007 
blocking rate = 60% 

without adaptive buffering 39677 39715 39734 

reduction rate 3.9100% 2.6572% 4.5439%   

with adaptive buffering 38056 38530 38320 
blocking rate = 65% 

without adaptive buffering 39568 39833 39409 

reduction rate 3.9731% 3.3818% 2.8419%   

with adaptive buffering 38556 38654 38420 
blocking rate = 70% 

without adaptive buffering 40321 39864 40519 

reduction rate 4.5778% 3.1303% 5.4633%   

with adaptive buffering 40093 40019 40603 
blocking rate = 75% 

without adaptive buffering 41796 41252 41457 

reduction rate 4.2476% 3.0810% 2.1033%   

with adaptive buffering 44541 44212 44198 
blocking rate = 80% 

without adaptive buffering 45801 46492 45227 

reduction rate 2.8289% 5.1570% 2.3282%   

with adaptive buffering 52348 52729 52100 
blocking rate = 85% 

without adaptive buffering 54004 53017 53394 

reduction rate 3.1634% 0.5462% 2.4837%   

Table 4.3 Blocking condition reduction rate under various output queue size and 

blocking rate of receiver (size of borrowed memory blocks = 512 words) 

4.5 Summary 

A memory-centric on-chip interconnection network provides effective memory 

and communication bandwidths for on-chip SRAM-rich SoCs based on MMUs. 

Moreover, network interface is a primary element in the performance of on-chip 

interconnection networks. In this chapter, an efficient network interface is presented 

to reduce the data blocking by a borrowing mechanism. The d-MMU can dynamically 

allocate the memory resource for buffering the blocking network data. By considering 

the borrowed memory blocks and d-MMU, the size of the output queue in network 

interface can be dynamically scheduled. According to the cycle-driven simulation 
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results in SystemC, the proposed efficient network interface can achieve performance 

improvement by 1.15x compared to the conventional one. At the same time, this 

efficient network interface can reduce data blocking condition compared to 

conventional one. Therefore, the proposed efficient network interface can increase the 

performance of the memory-centric on-chip interconnection network. 
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Chapter 5 
Memory-Centric On-Chip Data Communication 

for Wireless Video Entertainment Systems 

In this chapter, a memory-centric on-chip data communication platform is 

developed for a wireless video entertainment system. First of all, the introduction and 

motivation of the wireless video entertainment system will be depicted in the section 

5.1. Subsequently, section 5.2 will describe the concept of the memory-centric 

on-chip data communication platform. And then the development of the wireless 

video entertainment system will be introduced in the section 5.3. Finally, wireless 

video entertainment system will be constructed in memory-centric on-chip data 

communication platform, and it will be described in section 5.4. 

5.1 Motivations 

 

Figure 5.1 Wireless Video Entertainment Systems 

With the advancements of the wireless communication and multimedia 
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techniques, various digital communication products are developed in our life. These 

modern electronic products provide more convenient communication environment 

and media enjoyment for humans than those before. However, with different 

applications or standards, a variety of devices would be needed. Figure 5.1 illustrates 

a heterogeneous network environment in our life. In recent years, merging different 

networks, electronic appliances and media devices into a heterogeneous integrated 

platform becomes an important issue that enables people enjoy their life in an more 

friendly and energy-efficient digital environment. 

(a) (b)
 

Figure 5.2 Homogeneous multi-core platform (a) Intel Polaris (b) Tilera TILEPro64
TM

 

Processor 

 

Figure 5.3 Trend of the data transmitting bandwidth 

To integrate various applications into a system, a multi-task/multi-core concept 

provide a typical solution to build the system. The design of multi-core platform is a 

popular research area recently. Figure 5.2 shows two homogeneous multi-core 

platforms. Intel proposed an 80-core platform as shown in Figure 5.2(a) and Tilera 

[5.1] proposed a 64-core platform as shown in Figure 5.2(b). These multi-core 
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platforms can execute billions of operation per second. Furthermore, the data 

transmitting bandwidth for the multi-core platform is increasing year by year as 

shown in the Figure 5.3. However, the overall system performance could be limited 

by the task partitioning, task mapping, memory resource allocation, and memory data 

accessing. Figure 5.4 indicates the bottlenecks of multi-core platforms with 

insufficient memory bandwidth and memory capacity for supporting high 

communication efficiency in the multi-core systems. With ongoing development of 

multi-core or multi-task system, both the memory capacity and memory access 

bandwidth are required. Enabling multiple memory data access is necessary for 

improving the memory bandwidth. However, increasing the memory read/write ports 

not only increases the hardware complexity but also reduces the memory performance 

and noise immunity. Conventional memory access method cannot provide enough 

memory bandwidth for multi-core platform. Hence, the memory management in 

multi-core or multi-task platform will become more and more important. It is an 

essential issue that reducing additional memory access and increasing the memory 

bandwidth effectively. For these reasons, a memory-centric on-chip data 

communication platform will be proposed and introduced in the following section. 

 

Figure 5.4 Comparison between memory bandwidth, memory capacity and 

communication efficiency in multi-core systems 

5.2 Memory-Centric On-Chip Data Communication 

Platform 

5.2.1 Overall Architecture 

To solve the problems as mentioned above, a hierarchy memory-centric on-chip 
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data communication platform is proposed and the architecture is shown in Figure 5.5. 

Heterogeneous processing elements such as microprocessors and application-specific 

stream processors can be integrated in the platform. In this platform, each processor 

element owns distributed memory management unit (d-MMU). The d-MMU includes 

local cache (D-cache and I-cache) and cache controller which can efficiently handle 

all memory requests generated by the processor elements. It can dynamically allocate 

unused space in cache for buffering the transmitting data. If processor elements need 

additional memory resource requirements, the centralized memory resources 

including centralized cache and off-chip DRAM can be used. It is controlled by a 

centralized memory management unit (c-MMU). It can dynamically allocate and 

manage the memory resources according to different memory requirements. 

For the data communication between processor elements, message-passing 

technique is applied for this platform. The processor elements transmit/receive the 

data to/from others through an on-chip interconnection network. Network interface is 

applied to packetize the transmitted data to interconnection and de-packetizes the 

received data from interconnection. Furthermore, in order to have better energy 

utilization for green computing, the power management unit can be applied to 

dynamically control the supply voltage and operating frequency of each processor 

element for saving energy consumptions. 

In the heterogeneous multi-task platform, different processor elements would 

have quite different memory requirements with different specific functions in a 

platform. For instance, the memory requirement of the video decoding is larger than 

that of the wireless processing unit. Moreover, different system environment factors 

may affect memory utilizations for the applications in platform during runtime. 

Different qualities of wireless channels may have different memory behavior in a 

wireless video integrated system. Thus, a multilevel memory hierarchy on-demand 

memory system is applied for this platform. The memory system enables the 

processing elements to own different memory resources dynamically. In the following 

section, the concept of on-demand memory system will be introduced. 
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Figure 5.5 The architecture of memory-centric on-chip data communication platform 

5.2.2 Concepts of On-Demand Memory System 

In on-demand memory system, a three-level memory hierarchy is constructed, 

and the illustration is shown in Figure 5.6. For the first hierarchy level, distributed 

memory management unit (d-MMU) is applied to control the memory accesses. It 

includes distributed cache and cache controller for processor elements. Furthermore, 

in order to improve the transmitting efficiency for data communication, d-MMU can 

dynamically allocate unused space in distributed cache to store packet data so that the 

stall caused by data blocking can be prevented. 

For the second level hierarchy of the on-demand memory system, centralized 

memory management unit (c-MMU) is constructed to provide more memory 

resources for processor elements. In c-MMU, a cache controller and centralized cache 

is included. In addition, the configuration of centralized cache can be dynamically 

adjusted according to the different memory requirement from processor elements. For 

example, if a processor element need larger memory requirement than others, it can 

own more centralized memory resources than other processor elements. Adaptive 

cache control in c-MMU controls the adaptive allocation and cache operation. In 

addition, unused memories can be power down to save memory power consumptions 
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for green computing. 
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Figure 5.6 Illustration of the memory hierarchy in on-demand memory system 

For supporting enough memory space, off-chip DRAM is applied, and it is the 

third memory hierarchy level in the system. DRAM controller is needed to access the 

off-chip DRAM devices. It includes an external memory interface and address 

translator to improve the memory access efficiency. 

In the on-demand memory system, all processor elements own a private address 

space and can dynamically be allocated. For data switching between processor 

elements, message-passing mechanism is used. On-chip interconnection network in 

the platform is designed for data communication. Note that the thesis is focus on 

on-demand memory system. The design of interconnection network is not included in 

this thesis. In conclusion, adaptive memory resource allocation can be achieved and 

the memory utilization can be improved by the memory management units. 

5.3 Wireless Video Entertainment System 

With the ongoing advancement in digital and communication techniques, digital 
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home service becomes a trend nowadays. In the daily life, home is the personal 

headquarters for living, keeping personal assets and information. If the digital home 

services are applied, the residents will effectively participate in any events happening 

in the local, national and global communities without unnecessary travel. Digital 

home technique integrates wireless, wired physical transmission and multimedia 

real-time processes. With wireless communication technique, we can use mobile 

electronic product, such as cell phone, PDA or notebook, to transmit or receive the 

message by a certain sever. You can monitor and control the situation which 

something or somebody happens at home remotely or receive immediate video what 

you want. But nowadays, many kinds of communication protocol have been used such 

as WLAN, bluetooth, WiMAX or LTE techniques. In order to support a variety of 

protocols, a heterogeneous network system would be constructed. It provides an 

adaptable processing unit to process various communications. 

Many researches try to integrate the communication device and entertainment 

platform into a system. However, the current technologies and systems cannot 

effectively meet the requirements of these digital homes for some reasons [5.2]. First, 

there are too many incompatible and not interoperable systems and standards, and 

each system only work for one particular application, using a particular physical 

transmission medium, and incompatible hardware and firmware. The Second one is 

the throughput of the future digital home system may require up to 10Gps 

(gigabit-per-second), but the current home networking technologies is below 1Gps. So 

the system bandwidth must be improved. Furthermore, the scalability, security and 

power are also the problems. 

To solve these problems, we integrate the wireless sever and multimedia 

processing unit together, construct an integrated heterogeneous-processing platform to 

serve a variety of services. In order to serve various transmit channels, the multi-task 

wireless video entertainment system is shown in Figure 5.7. Analog front-end system 

receives and digitizes the wireless signals. Then the data will be processed by an 

integrated, high performance digital system. 
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Figure 5.7 Multi-Task wireless video entertainment systems 

In order to support various communication standards and have video 

entertainment for digital home service, a wireless video entertainment system is 

developed. It includes four functional blocks. The block diagram of wireless video 

entertainment system transceiver is shown in Figure 5.8. In this system, Scalable 

Video Coding (SVC), the extension of the H.264/AVC standard technique, is applied 

to provide spatial, temporal and quality scalability of the video sequences [5.3]. For 

the channel coding, Luby Transform (LT) coding, one kind of error correcting method, 

is applied to have high channel reliability. Media Access Control (MAC) module is 

the interface between application layer and the physical layer, and Wireless 

Processing Unit (WPU) handles the wireless signal processing including 

multi-standard baseband control and MIMO-OFDM. These functional blocks are 

grouped into a SoC system. At current development stage, receiver system is 

developed in an integrated on-demand memory system as which the red block in the 

Figure 5.8(b) represents. The system specification is listed in Table 5.1. Additionally, 

the details of WPU, MAC, LT coding and SVC coding will be described in the 

following sections. 

 
WPU (4x4) MAC LT Coding SVC 

Input data rate 
160MBps 

(4Gbx12/s) 
7.8MBps 7.8MBps 1333KBps 

Output throughput 
7.8MBps 

(with a 64-QAM modulation) 
7.8MBps 7.8MBps 17.4MBps 

Memory access 

bandwidth 
222.4MBps 124.8MBps 124.8MBps 78.69MBps 

Memory Size 

(Required) 
6.25KB 2MB 1MB 11.34MB (a GOP) 

Table 5.1 System Specification 
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Figure 5.8 Transmitter and receiver block diagram 
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Figure 5.9 Single-FFT Architecture for MIMO Modem 

The WPU is a designed as a frequency domain (FD) modem with the single-FFT 

architecture. Additionally, the single-FFT architecture for multi-standard baseband is 

suitable for IEEE802.11a/b/g/n/VHT and IEEE 802.15.3a/c. The architecture is shown 

as in Figure 5.9. There are three key components in this architecture, including 

frequency-domain (FD) synchronization, FD adaptive sampling and single carrier 

frequency domain equalizer (SC-FDE). The features of the three components are as 
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follows. 

 Frequency-domain (FD) synchronization 

1. FD Adaptive Sampling  

2. FD Boundary Decision 

3. FD Anti-I/Q Phase Recovery 

 Single carrier frequency domain equalizer (SC-FDE) 

1. Frequency-domain channel estimation (FD-CE) 

2. Frequency-domain ISI cancellation for DSSS non-CP SCBT 

3. Frequency-domain data decision 

 FD adaptive sampling 

1. 6-symbol Lock 

2. 32 multiphase clocking 

3. Boundaryless 

4. Tolerance of -30,000~40,000 ppm SCO as shown in Figure 5.10. 

 

 

Figure 5.10 Single-FFT Architecture for MIMO Modem 
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Figure 5.11 Single-FFT Architecture for MIMO Modem 
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Moreover, For the FD boundary decision, it contains the following features, only 

1% detection error with low SNR (<5 dB) and gigh CFO tolerance. It is a trellis-based 

detector, and can be used both for DSSS and OFDM different systems. Figure 5.11 

displays the architecture, and it contains 3 key components, including a metric 

computation, a sorter and an iterative sequence searcher. Additionally, for FD anti-I/Q 

phase recovery, it contain following features. 

1. Pseudo CFO injection 

2. Compatible with conventional method (Moose) 

3. Robust in IQ mismatch 

4. Gain error: 2dB 

5. Phase error:20 

5.3.2 Medium Access Control (MAC) 

Medium Access Control (MAC) protocols play a very important role in wireless 

node-to-node communication, such as that between base stations and mobile terminals. 

This work concentrates on quick prototyping, early-stage verification and extensible 

design of multi-mode MAC layer systems. Starting from the integrated system of 

WiMAX/Wi-Fi dual-mode MAC, we apply Object-Oriented Analysis and Design 

(OOA&D) principle on both protocols, identifying the common and different 

components between both systems. By using divide-and-conquer and bottom-up 

design approaches, we are able to integrate WiMAX and WiFi MAC, and facilitate 

reuse and performance optimization of common components between the two 

systems. 
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Figure 5.12 MAC Layer Architecture 

As shown in Figure 5.12, the MAC protocol layer, in terms of implementation, 

could be separated in two parts: the Data Plane and the Control Plane. The main 

function of the Data Plane is production of MAC layer’s protocol data units (PDUs). 

It could either be analyzed with electronic system level (ESL) methodologies, or 

realized by FPGA hardware solutions. The Control Plane takes control of the Data 

Plane according to various signal feedbacks. These feedbacks include PHY-to-MAC, 

Network-to-MAC and inter-BS or BS-to-MS signaling.  

Besides data processing performance that directly relates to software/hardware 

co-design, there are other factors that have great impact or overall system 

performance. For example, the Request/Grant mechanism – the content of MS request 

shall be properly received and recognized by BS, and then properly responded, vice 

versa. Some MAC transmission mechanisms including auto retransmission request 

(ARQ), handover, uplink scheduling, external environmental mechanisms such as 

BS-end or MS-end channel condition, could deeply influence system performance. 

Unfortunately, it is difficult to analyze and verify the interaction of MAC functional 

interactions. The inter-node concepts cover a range even broader than system-level 
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design flows, and traditionally the verification of Control Plane begins at a later stage 

of design flow. 

5.3.3 LT Coding 

LT code is a class of rateless codes. Its performance is approximately close to 

channel capacities of arbitrary erasure channels. In theory, LT encoder generates 

infinite codewords. Each receiver starts decoding when sufficient codewords are 

collected. In spite of which codeword set is collected, the high recovery probability of 

source symbols is guaranteed. Consequently LT codes are channel independent and 

require no retransmission. For block codes, when there are too many codewords 

erased within a block, codewords in this block are undecodable and retransmission is 

needed. However, retransmission can jam the transmission and paralyze multicasting 

servers in multicasting. In comparison with block codes, LT codes are more suitable 

for multicasting. Recently, pre-codes concatenated with LT codes are standardized in 

3GPP MBMS. 

LT codes conduct BP algorithm as decoding scheme. The advantage of BP 

decoding is its low decoding complexity. It trades decoding ability for decoding 

complexity. The performance of LT codes are determined by two factors. One is the 

degree distributions derived based on BP algorithm. The other is the number of source 

symbols K. Theoretically, K approaches infinity and an LT encoder generates infinite 

codewords. In practice, with the same degree distribution, the performance of LT 

codes degrades with the decrement of K. BP decoding process fails when source 

symbols are not decoded completely but there are not codewords with degree one left. 

The information contained in these codewords is unable to be exploited by BP 

algorithm. This follows that the recovery probability of source symbols is not optimal. 

Codewords transmitted but not efficiently decoded results in the waste of transmission 

bandwidth. 
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Figure 5.13 An example of decidable codewords which BP decoding fails to decode 

Figure 5.13 is a simple example to show this condition. Now, there are six source 

symbols and six codewords. The red dash line stands for the connections that can be 

exploited by BP decoding. After BP decoding, codeword 2, 4, and 5 are left. Notice 

that, the source symbol 1 can be recovered by performing exclusive-or on codeword 2 

and codeword 5. Similarly, source symbol 4 can be recovered by performing 

exclusive-or on codeword 2 and codeword 4. Finally, source symbol 5 is recovered by 

performing exclusive-or on codeword 2, codeword 4, and codeword 5. For rateless 

codes, decoding complexity is proportional to the total number of codeword degrees. 

After BP decoding, most of the codewords are removed. Besides, the average degree 

of remaining codewords is decreased. For example, with K=1000 and N=1120, the 

average degree of the received codewords is 43.6. After BP decoding, the average 

degree of remaining codewords is 8.3 and the corresponding degree distribution is 

shown in Figure 5.13. In addition, the average number of remaining codewords is 

85.9. The total number of codeword degrees are (43.6×1120)/(8.3×85.9)=68.5 times 
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less after BP decoding. It is efficient to conduct more complicated decoding methods 

to recover the information in the remaining codewords. 

5.3.4 Scalable Video Coding (SVC) 

 

Figure 5.14 Architecture of an SVC encoder 

Recently, with the prosperity of the Internet video, digital television, and portable 

devices, the demand of digital video becomes more and more diversified. To deal with 

those diversified video applications, Scalable Video Coding, the latest video coding 

standard inherited from the state-of-art H.264/AVC, is formed to provide different 

scalabilities (temporal, spatial, and quality) in a single bit-stream. Figure 5.14 shows 

an SVC encoder architecture with two spatial layers. To generate scalable bitstream, 

the input images are first downsampled to lower spatial resolution and encoded by 

H.264/AVC compatible video encoder. Afterward, the higher spatial resolution images 

are encoded by H.264/AVC encoder with additional advanced inter-layer prediction 

techniques to fully utilize the relationship between two consecutive spatial layers and 

consequently improve the coding performance. In addition, the quality and temporal 

scalabilities are achieved in each spatial layer by the approaches of Coarse Granular 

Scalability (CGS) and Hierarchical B structure, respectively. Finally, all generated 

bitstreams corresponding to different quality scalabilities are grouped into a single 

SVC bitstream. However, in addition to the primitive coding complexities of H.264, 
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the extra scalabilities of SVC also contribute significant computational complexity 

and memory requirement in hardware realization. Therefore, in order to minimize the 

computational complexity and memory requirement for realizing SVC codec, this 

project first analyzes the internal memory requirement and external memory access to 

find out the best coding method which can achieve best tradeoff between internal 

memory usages and external memory accesses and several efficient techniques are 

also proposed to improve the coding performance of SVC codec. 

5.4 Memory-Centric On-Chip Data Communication 

Platform for Wireless Video Entertainment System 

The designers try to meet efficient processing capability, merge multi-task 

system and use green computing concept in a system. However, when they try to 

integrate the heterogeneous functional blocks into a system, multiprocessing 

technique and multimedia process unit must be used. Furthermore, as the resolution of 

video processing applications becomes high, video signal processors should deal with 

a large amount of data within a tightly bounded time. Due to the huge data accesses, 

the system performance strongly depends on the memory bandwidth between 

processors and external memories. The system needs real-time and huge memory 

access requirement, but the speed gap of the memory and processor unit is large in the 

SoC system. Many researches are trying to minimize the speed gap. A well-organized 

memory management can significantly reduce the memory access latency. According 

to the data features of these applications, designer can find a well memory allocation 

method to reduce the number of memory access time and average access latency. 

Accordingly, for wireless video entertainment system, memory-centric on-chip data 

communication platform is applied to provide a high bandwidth and satisfy enough 

memory requirements. 

According to the receiver system as mentioned in section 5.3, the processing 

sequence of these multiple tasks is generally step by step. Figure 5.15 shows the data 

stream of wireless video entertainment system. In memory-centric on-chip data 

communication platform, on-demand memory system can support heterogeneous and 

real-time memory requirement for wireless video entertainment system. MMUs in 

on-demand memory system enable the processor elements to have adaptive memory 
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resources. Base on different memory requirement of these processor elements, 

centralized MMU can dynamically allocate memory resources for processor elements. 

The architecture of the system is shown in Figure 5.16. The system components can 

be categorized into data computation part, data communication part and data storage 

part. For data computation, it includes WPU, MAC, LT coding and SVC processor 

elements. Subsequently, the other components will be introduced as follows. 

WPU MAC
LT 

coding
SVC

Video 

frames
Input 

data

 

Figure 5.15 Data stream of wireless video entertainment system 

For data communication, it includes network interface (NI) and interconnection 

network. In this system, message-passing mechanism is applied. With this mechanism, 

the transmitting data are packed into packets by network interface, and through the 

interconnection network using a pre-defined message-passing protocol. NI packetizes 

the transmitting data with a header indicating the data source, destination and some 

data information, and then transmits to the other node. It also de-packetizes the 

receiving data from the other processor elements. In addition, a packet queue is 

included in NI to store the blocking packet. 

For data storage, each distributed processor element own a d-MMU, it includes a 

distributed cache (L1 cache) and cache controller for memory access. It also manages 

the cache usage. When packet queue size in NI is insufficient, d-MMU can borrow 

some unused cache block for NI. In addition, c-MMU is constructed for providing 

more memory resources. It includes centralized cache (L2 cache) and cache controller 

for processor elements. The cache controller can support dynamical cache 

re-organization for allocating different cache resources for different processor 

elements. In c-MMU, a DRAM controller is constructed to efficiently access off-chip 

DRAM. In DRAM controller, Address translator rearranges and translates address to 

have an efficient memory allocation, and the memory requests enter the memory 

interface with command scheduling to reduce memory access latency. 
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Figure 5.16 On-Demand Memory System architecture 

5.5 Simulation Results 

The proposed on-demand memory system is implemented in SystemC for the 

cycle-driven simulation. Thereby, the simulation environment is set as a hierarchy 

centralized MMU and a 4x4 router with 4 PEs (WPU, MAC, LT coding, SVC) and 4 

distributed MMUs to evaluate the performance improvement via the efficient network 

interfaces which is showed in Fig. 5.16. We focus on the data transmit among PEs and 

data blocking condition of PEs. When the transmit data type is a large number and 

consecutive, this network interface can show more its value. The output data of this 

WPU and LT coding does not meet this type. Therefore, we do not discuss here. 

For the MAC we detect the number of data blocking cycles in the output of 

wrapper under various output queue size of sender in NI. We dynamically adjust the 

size of output queue and input queue in the NIs and the size borrowed memory blocks 

for various blocking load in the receiver to see the data blocking condition in the 

output of processor elements. 
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Figure 5.17 shows the reduction rate under various blocking rate of receiver end. 

The size of output queue is 16 words in the sender and size of input queue in the 

receiver is 32 words. We can see if the size of memory borrowed blocks is enough; 

the reduction rate can increase linearly. 

 

Figure 5.17 data blocking reduction rate under memory borrowing size = 512 words, 

size of output queue in the sender = 16 words, size of input queue in the receiver = 32 

words 

 

sender output FIFO size =16 words 
 

receiver FIFO size = 32 words blocking cycle of MAC within 2000000cycle 

memory borrowing size (words) 16 32 48   

with adaptive buffering 11339 11339 11339 
blocking rate = 50% 

without adaptive buffering 11394 11438 11357 

data blocking reduction rate 0.4827% 0.8655% 0.1585%   

with adaptive buffering 11339 11340 11340 
blocking rate = 55% 

without adaptive buffering 11965 11962 11803 

data blocking reduction rate 5.2319% 5.1998% 3.9227%   

with adaptive buffering 11341 11340 11339 
blocking rate = 60% 

without adaptive buffering 13050 13191 12984 

data blocking reduction rate 13.0958% 14.0323% 12.6694%   

with adaptive buffering 11425 11345 11343 
blocking rate = 65% 

without adaptive buffering 14221 14398 14364 

data blocking reduction rate 19.6611% 21.2043% 21.0317%   
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without adaptive buffering 16420 16369 16392 

data blocking reduction rate 25.2436% 30.7105% 30.8138%   

with adaptive buffering 15221 11428 11363 
blocking rate = 75% 

without adaptive buffering 19018 19042 19330 

data blocking reduction rate 19.9653% 39.9853% 41.2157%   

with adaptive buffering 19023 14440 11615 
blocking rate = 80% 

without adaptive buffering 23197 23390 23851 

data blocking reduction rate 17.9937% 38.2642% 51.3018%   

with adaptive buffering 26497 21118 16449 
blocking rate = 85% 

without adaptive buffering 30755 30804 31892 

data blocking reduction rate 13.8449% 31.4440% 48.4228%   

with adaptive buffering 42553 35869 30773 
blocking rate = 90% 

without adaptive buffering 47868 47983 47040 

data blocking reduction rate 11.1035% 25.2464% 34.5812%   

with adaptive buffering 84987 77393 68708 
blocking rate = 95% 

without adaptive buffering 93615 94141 95188 

data blocking reduction rate 9.2165% 17.7903% 27.8186%   

Table 5.2 data blocking reduction rate under various blocking rate of receiver and 

sizes of borrowed memory blocks 

Table 5.2 shows the reduction rate of data blocking under various sizes of 

borrowed memory blocks and blocking rate of receiver. 

Here, we limit the size of memory borrowed blocks to see the trend of reduction 

rate versus various blocking rate of receiver. For the same setting of size of input and 

output queue, the reduction rate will reach the maximum value under the memory 

borrowed blocks sets to 32 words when blocking rate of receiver equals 70% ~ 80%. 

In other words, when the blocking rate of receiver exceeds 80% under this setting, the 

reduction rate of data blocking condition would not increase. Figure 5.18 shows the 

results. 
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Figure 5.18 trend of data blocking reduction rate under various sizes of memory 

borrowing blocks 

We can see the same trend when size of memory borrowed blocks equals 16 

words and 48 words. When the blocking rate of receiver equals 70%, the reduction 

rate of data blocking condition would reach maximum under 16 words memory 

borrowed blocks. The improvement of data blocking reduction rate increases with the 

size of memory borrowed blocks. We can see the same situation under memory 

borrowed block equals 48 words. 

5.5 Summary 

We propose an on-demand memory system architecture shown in Figure 5.16 to 

verify the memory-centric on-chip data communication for wireless video 

entertainment system. The memory-centric on-chip interconnection network can 

reduce the data blocking condition and improve the performance. When the size of 

borrowed memory blocks increases, the data blocking reduction rate can have further 

improvement under limited size of borrowed memory blocks. Similarly, we also can 

adjust the size of output queue of sender and input queue of receiver to improve data 

transfer efficiency. For the MAC, the data blocking reduction rate can reach to 

39.98% under the setting of output queue equals 16 words, input queue equals 32 

words and maximum borrowed memory blocks equals 32 words. 
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Chapter 6 
Conclusions and Future Work 

6.1 Conclusions 

A memory-centric on-chip interconnection network provides effective memory 

and communication bandwidths for on-chip SRAM-rich SoCs based on memory 

management units. Additionally, network interface is a major factor in the 

performance of on-chip interconnection networks. In this thesis, an efficient network 

interface for the memory-centric on-chip interconnection network is presented to 

reduce the data blocking via a borrowing mechanism. The d-MMU can dynamically 

allocate the memory resources for buffering the blocking network data. By 

considering the borrowed memory blocks and d-MMU, the size of the output queue 

for sender and the input queue for receiver in NI can be dynamically scheduled to 

improve the data transfer efficiency. According to the cycle-driven simulation results 

in SystemC, the proposed efficient NI can achieve performance improvement by 

1.15x compared to the conventional one. Under different data injection load and 

output queue size we can reduce 2%~5% data blocking condition. 

For the proposed on-demand memory system, the memory-centric on-chip 

interconnection network can efficiently reduce data blocking condition by adjusting 

the size of queue and borrowed memory blocks. Under limited size of borrowed 

memory blocks (16 words) and 70% blocking rate of receiver, the reduction rate of 

data blocking can reach 25%. Moreover, this OCIN provide a communication 

platform between various processing cores for wireless video entertainment systems. 

Therefore, the proposed efficient NI can increase the performance of the 

memory-centric on-chip interconnection network. 
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6.2 Future Work 

For the future continued expansion of demand in the quantity and quality of 

multimedia service, multi-view 3D video technology becomes future star of global 

multimedia industry. At the same time, facing the growing mobile 3D multimedia 

services, the wireless communication infrastructure based on inherent Macrocell has 

become the bottleneck of service. How to integrate different network environment, 

home appliances, and video entertainment system in a heterogeneous integrated 

platform to establish a user-friendly and energy-efficient digital environment and 

system has become a very important topic. An efficient communication platform is 

essential. 

For this memory-centric on-chip interconnection network, we use mesh-based 

router. We would extend to other various topologies to increase its scalability. We 

have already verified this memory-centric on-chip interconnection network by 

cycle-driven SystemC simulator in this phase. Later, we would use Verilog and 

SystemC for co-simulation to gain further improvement. 

The eHome project is still going on. For eH-III project, a femtocell home 

multimedia center will be developed for supporting multi-view 3D video, high-speed 

MIMO OFDM and gigabit cross-layer RRM in a heterogeneous platform. The 

architecture is shown in Figure 6.1. In the future, in order to support huge memory 

bandwidth and data transmitting requirements, it will be necessary that constructing a 

heterogeneous memory-centric multi-core platform for multimedia center. 

 

Figure 6.1 Architecture of femtocell home multimedia center 
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