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Abstract

The multiresolution directional transform includes two types, frequency domain
and spatial domain. In frequency domain, the wavelet-based contourlet transform
(WBCT) is adopted for image coding because it matches well image textures of
different orientations. However, its-.computational complexity is-very high. In spatial
domain, the direction-adaptive discrete wavelet transform (DA-DWT) provides better
compression performance than discrete wavelet transform (DWT) for it selects
transform directions “to match .image local texture. However, it often picks up
inconsistent directions for neighboring blocks with-similar texture and thus results in
large but redundant side information.

In this dissertation, we propose some enhanced algorithms for improving the
coding efficiency of WBCT and DA-DWT. we propose three algorithms to enhance
the WBCT coding scheme, in particular, on reducing its computational complexity.
First, we propose short-length 2-D filters for directional transform. Second, the

directional transform is applied to only a few selected subbands and the selection is



done by a mean-shift-based decision procedure. Third, we fine-tune the context tables

used by the arithmetic coder in WBCT coding to improve coding efficiency and to

reduce computation. Simulations show that, at comparable coded image quality, the

proposed scheme saves over 92% computing time of the original WBCT scheme.

Comparing to the conventional 2-D wavelet coding schemes, it produces clearly better

subjective image quality.

We propose another three algorithmes to improve the compression performance

of DA-DWT in image and video coding. First, we propose a bottom-up direction

alignment algorithm to align the directions of neighboring blocks in local regions.

Second, we extend alignment algorithm to the subsampling and. direction-adaptive

discrete wavelet transform (SA-DWT). Third, we propose a modified SA-DWT

(MSA-DWT) to improve_the motion-compensated residual coding. Simulations show

that the proposed alignment algorithm reduces about 60% side information and

improves the image coding gain up to 0.4 dB at low bit rate. The MSA-DWT scheme

can also improve about 0.1 ~ 0.2 dB in video coding gain.
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Chapter 1 Introduction

DWT [1]-[5] is adopted widely in image and video coding in recent years.
Wavelet-based image coding, such as JPEG2000 [6], consists of three stages:
two-dimensional discrete wavelet transform (2-D DWT), coefficient quantization, and
arithmetic coding. A digital image is first transformed by 2-D DWT to produce a set
of transform coefficients. After quantization, these coefficients are compressed to a
binary stream by an <entropy coding tool. For wideo signal compression, a
wavelet-based interframe coding, such as Vidwav  [7], includes four stages:
motion-compensated. temporal filtering (MCTE) [8]-[13], 2-D DWT, quantization,
and arithmetic coding. MCTEF. decomposes video frames /into.temporal low-pass
images and high-pass residuals. Then, in addition to image coding, we process the
residuals also by 2-D DWT, quantization, and arithmetic coding.

One-dimensional discrete wavelet transform (1-D DWT) represents 1-D
piecewise smooth signals well in few coefficients [5]. 2-D DWT applies two 1-D
DWTs along horizontal and vertical axes and ignores 2-D piecewise smooth signal
continuity. It represents 2-D signals by many little coefficients and spreads the energy
into the high-pass subbands [14][15]. Quantizing these coefficients to zero at low bit

rates results in Gibbs artifacts at image edges [16].



Many 2-D multiresolution directional transforms have been proposed to solve

this problem, including the directional filter banks [17]-[23] and the

direction-adaptive wavelet transforms [27]-[32]. Directional filter banks use a set of

pre-selected 2-D filters to perform multiresolution directional decomposition. Each

filter corresponds to a basis function with specific spatial direction and resolution.

Directional filter banks can represent 2-D directional texture patterns by relatively

few large coefficients. Do and Vetterli proposed the contourlet transform (CT) [17],

which is composed of the Laplacian pyramid (LP) [24] and the directional filter bank

(DFB) [25]. Lu and Do proposed the finer directional wavelet transform with

additional 2-D directional resolution [18]. Nguyen and Oraintara.re-designed DFBs

and provided enhanced directional decomposition [19][20]. Selesnick et al. proposed

the complex wavelet transform with good directionality ‘and shift invariance [21].

Eslami and Radha proposed the wavelet-based contourlet transform (WBCT) and its

extension version by applying DFBs to 2-D DWT’s high-pass subbands [22][23].

Among them, the WBCT [22] technique has the critical-sampling property, consumes

comparatively less computational power, and requires no side information for

decoding. Therefore, we focus on WBCT in this dissertation.

The direction-adaptive discrete wavelet transform (DA-DWT) technique

partitions an image into local regions (blocks) and filters along the texture direction



by 1-D DWT lifting scheme [26]. It selects the optimal direction and block size by

minimizing the prediction error under the constraint bits. Thus, DA-DWT compacts

more energy into the spatial low-pass subbands and provides good compression

performance [15]. Chang and Girod proposed a DA-DWT based image compression

scheme with integer pixel direction accuracy [27]. Ding et al. uses interpolation to

achieve quarter pixel direction accuracy [28]. Liu and Ngan used a weighted function

to avoid mismatch in the lifting scheme [29].'Dong et al. proposed a 2-D adaptive

interpolation filter for more accurate fractional pixel accuracy [30]. Chang and Girod

proposed another DA-DWT based on the quincunx subsampling pattern [31]. Xu and

Wu combined different subsampling patterns together and proposed the subsampling

and direction-adaptive discrete wavelet transform (SA-DWT)[32]. It is easy to

implementing and integrating DA-DWT into wavelet-based image coding. Thus,

DA-DWT becomes our second focus in this dissertation.

Arithmetic coding schemes compress the transformed/quantized coefficients into

bitstream. They produce a minimum-distortion scalable bitstream under all the

constrained bit rates. They consider three types of correlations among the coefficients.

First, the inter-subband coding methods, such as the set partitioning in hierarchical

tree (SPIHT) method [33] and the embedded zerotrees of wavelet transform (EZW)

method [34], mitigate the inter-band correlations in a tree structure. Second, the



intra-subband coding methods partition the coefficients in one subband to several

non-overlapped coding blocks and handle only the correlations among the neighbors

in one coding block (the intra-subband correlations). Examples in this category are the

embedded block coding with optimized truncation (EBCOT) method [35], the 3-D

embedded subband coding with optimized truncation (3-D ESCOT) method [36], and

the tarp-filter-based system that classifies coefficients to achieve embedding (TCE)

method [37]. Third, the mixed inter-subband and intra-subband coding methods cover

both the inter-subband and intra-subband correlations. Examples are the embedded

conditional entropy.coding of wavelet coefficients (ECECOW) method [38] and the

embedded coding using zeroblocks of wavelet coefficients and. context modeling

(EZBC) method [39]. To save computing power, for single image compression, we

use the intra-subband coding methods in this dissertation:

Combining WBCT and 3-D' ESCOT, a WBCT image coding scheme can achieve

a better coding performance than a regular 2-D DWT image coding scheme. However,

there are a few issues in the existing WBCT coding schemes. They need a large

amount of computations because the existing WBCT directional filters have a large

support. And, we found that for a specific picture, some WBCT frequency subbands

do not need further directional transform. Furthermore, the context table in 3-D

ESCOT needs adjustment to match the characteristics of quantized WBCT



coefficients.

To solve these issues, we propose three algorithms in this dissertation to enhance

the WBCT image coding scheme. First, we suggest a set of short-length 2-D

directional filters [40] and verify their performance. Second, we design a

mean-shift-based decision scheme to dynamically select the proper subbands for

directional transform [41]. Third, we re-design the context tables of 3-D ESCOT to

match the data directionality. With these algorithms, our proposed scheme reduces

92% or higher the computational complexity of the original WBCT image coding

scheme at similar visual quality [40].

DA-DWT first partitions images into non-overlapping blocks. It then applies the

I-D DWT to each block ‘along the candidate directions and calculates the

corresponding prediction errors. It finally selects the candidate direction with the

minimal prediction error as the most suitable direction for the block. For the partition

blocks in smooth region, each candidate direction produces similar prediction error.

Thus, DA-DWT selects inconsistent directions for these blocks and increases side

information. We also encounter similar situation for blocks in similar-textured region.

Tanaka et al. pre-filtered images by 2-D filters [42]. Pre-filtering reduces candidate

directions and makes selected directions more consistent. If a block has filtered output

less than the threshold, it is considered in smooth region and processed by 2-D DWT.



Selecting a suitable threshold for identifying smooth region is hard. Aligning blocks

in similar-textured region also helps reducing side information. Maleki et al. proposed

an alignment cost function for entire image to align small blocks or blocks in smooth

region [15]. Different local areas of the same image have different characteristics.

Aligning directions based on local characteristics provides better results.

In wavelet-based video coding, we deal with motion compensated prediction

residuals instead of images. Kamislirand Lim showed that prediction residuals and

images have different spatial characteristics [43]. lmages have 2-D anisotropic

structures while prediction residuals-have 1-D anisotropic structures. Kamisli and Lim

proposed 1-D DCT for compressing prediction residuals [43]. They also applied 1-D

DA-DWT to prediction residuals [44]. They compared the compression performance

based on number of nonzero transformed coefficients” instead of number of bits.

Because of different spatial characteristics, 2-D DA-DWT compresses prediction

residuals inefficiently. In wavelet-based video coding, temporal low-pass prediction

residuals (T _L) are similar to images but high-pass ones (T _H) are similar to

prediction residuals [45].

We propose another three algorithms in this dissertation to improve DA-DWT’s

coding performance on images and prediction residuals. First, we suggest a direction

alignment algorithm to reduce DA-DWT’s side information [46]. Second, we extend



the suggested direction alignment algorithm to 2-D SA-DWT. Third, we analyze

prediction residuals’ characteristic in frequency domain and their transformed

coefficients. We applied 2-D DA-DWT on T Ls in previous research [45]. Now, we

suggest a 2-D MSA-DWT for compressing T Hs. Our suggested direction alignment

algorithm saves about 60% side information at the cost of about 3% prediction error

increment. It also improves DA-DWT’s coding gain about 0.4 dB at low bit rate. 2-D

MSA-DWT also provides better coding performance than 2-D SA-DWT on T _Hs and

improves about 0.1~0.2 dB in gain.

This dissertation 1s organized as follows. Chapter 2 introduces the adopted

directional filter banks and direction-adaptive wavelet transforms. Chapter 3 gives the

introduction of temporal transform and adopted arithmetic coding. Chapters 4 and 5

desribe the proposed ‘algorithms for WBCT and DA<DWT. Chapter 6 gives the

experimental results and Chapter, 7 contains the concluding remarks. The major

contributions of this dissertation are listed as follows.

(1) We design short-length 2-D directional filters to save computational power of

directional transform in WBCT.

(2) We propose a mean-shift-based decision scheme to dynamically select the proper

subbands for directional transform.

(3) We fine-tune the context tables of 3-D ESCOT to match the data directionality.



(4) We propose a direction alignment algorithm for DA-DWT to reduce side

information.

(5) We extend the proposed direction alignment algorithm to SA-DWT.

(6) We modify SA-DWT for compressing T Hs in wavelet-based video coding.




Chapter 2 Multiresolution

Directional Wavelet Transforms

2.1 Two-Dimensional Discrete Wavelet
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] - . (to next 2-D DWT) -
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[T _t
o e
|
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Fig. 2-1. (a) Filter bank structure of 2-D DWT. (b) Frequency partitions produced by 2-D DWT.

Fig. 2-1(a) shows the filter bank structure of 2-D DWT. After transform, it
outputs four subband signals - HL (the horizontal high-pass and vertical low-pass
subband signal), LH (the horizontal low-pass and vertical high-pass subband signal),
HH (the horizontal high-pass and vertical high-pass subband signal), and LL (the
horizontal low-pass and vertical low-pass subband signal). G;(z)~G4(z) are the filters
with specific pass bands and their output frequency partitions are given in Fig. 2-1(b).

D, represents the decimation matrix, and D,=21,, where I, is an identity matrix. 2-D



DWT is a critical-sampled transform that keeps the same amount of data after one
level transform.

2-D DWT provides multiresolution decomposition for images. In a multi-level
2-D DWT, the subband signal LL produced by the first 2-D DWT is further processed
by the sub-sequent 2-D DWT’s. The first-level 2-D DWT acquires an image and
generates four subbands: LL' HL' LH', and HH'. Then, we filter the LL' subband
signal again by second-level 2-D DWT to obtain LL? HL? LH? and HH?. Likewise,
we recursively apply 2-D:DWT to the LL' subband, and produce LL""', HL™', LH"",
and HH™"', wherein ‘i’ represents the 2-D DWT iterations.

2-D DWT is_the tensor product of two 1-D DWTs, and the Daubechies 9-7
wavelet filter [2][47] is often/in use. 1-D DWT can represent the piecewise smooth
1-D signals by a few coefficients [5]. But the outputs-of 2-D DWT would contain
many small coefficients for 2-D edges when these edges are not aligned with the
vertical or the horizontal axes as shown in Fig. 2-2(a) [14]. If we quantize these
coefficients to zero, the coded image shows Gibbs artifacts along the edges [16]. A
multiresolution transform with directionality in Fig. 2-2(b) is more desirable for

representing 2-D signals.
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(a) 2-D DWT (b) Xlet
Fig. 2-2. Representing a 2-D signal by (a) 2-D DWT and (b) new transform Xlet.

2.2 Contourlet- Transform

2.2.1 Laplacian Pyramid

L u H
(to next LP)
2
=\ e

A4

LL 0

Fi(2)

-11/2

-T1 -T1/2 0 2 L

%})-—» H
Fx
(a) (b)
Fig. 2-3. (a) Filter bank structure of LP. (b) Frequency partitions produced by LP.

Contourlet transform (CT) [17] adopts LP [24] in Fig. 2-3 for multiresolution
decomposition. The LP decomposes the input into one low-pass subband signal, LL,
and one high-pass subband signal, H. F';(2) is the corresponding synthesis filter for the
analysis filter G,(z) in Fig. 2-3(a). Fig. 2-3(b) shows the frequency partition of these

two subbands. When the synthesized subband signal LL is subtracted from the
11



original input, it produces the high-pass subband signal H. Without down-sampling,
subband H is free from frequency scrambling [14]. Fig. 2-4 illustrates frequency
scrambling in 1-D case. The high-pass signal is folded back into low frequency after
down-sampling, and thus its spectrum is reflected. In CT, the LP unit behaves as an

over-sampled transform and it increases 25% data size after the transform.

S WAl W al .
-TC | T - T
(a) high-pass signal (b) down-sampled high-pass signal

Fig. 2-4. Frequency scrambling in 1-D case.

v

The subband signal LL in LP-(Fig. 2-3(a))1s identical to the subband signal LL in
2-D DWT (Fig. 2-1(a)) when their G,(z) and D, are the same. That is, these two LL
signals occupy the same frequency partition as in Fig. 2-1(a) and Fig. 2-3(a),
respectively. In a multiclevel 2-D DWT, the subband signal LL produced by the first
2-D DWT is further processed by the sub=sequent 2-D DWT’s. Likewise, in a

multi-level LP, the LL subband signal may be further processed by a sub-sequent LP.

2.2.2 Directional Filter Bank

CT adopts DFB [25] in Fig. 2-5 for directional decomposition. Fig. 2-5(a)
tlustrates four 2-D filters and four decimation matrices. These four 2-D filters

decompose the input signal to four directional subbands. Each subband has a specific

12



directional pass band. These 2-D filters, A;(z)~A«z), are fan filters and their
corresponding output frequency partitions are drawn in Fig. 2-5(b). The decimation
matrices rotate and down-sample the signals along specific directions. DFB with
different direction number can be constructed by different directional filters and

decimation matrices [14][25].

@
s
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‘ DS, ' /2 0. nR n
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AR ) (b)

Fig. 2-5. (a) A four directional DFB structure. (b) Frequency partitions produced by the DFB in (a).

2.2.3 Contourlet Transform
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Fig. 2-6. (a) Filter bank structure of CT. (b) Frequency partition produced by CT.
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CT applies DFB to the H subband in Fig. 2-6(a). Fig. 2-6(b) shows the frequency
partition of each output of CT in Fig. 2-6(a). CT provides a better nonlinear
approximation of 2-D signals than 2-D DWT [14]. It also provides better PSNR than
2-D DWT at low bit rate coding [48][49]. Because LP increases the data size, CT is

less preferred in the compression scenario.

2.3 Wavelet-Based Contourlet

Transform

Fig. 2-7(a) shows the structure of wavelet-based contourlet transform (WBCT)
[22]. It uses the 2-D-DWT to first generate four subbands, LL, HL, LH and HH. It
further decomposes each of the three high-pass subbandsignals, HL, LH, and HH, by
the DFB in Fig. 2-5(a). Fig. 2-7(b) shows the frequency partition produced by WBCT.
It has the critical-sampling property and it maintains the same data size. Thus, it is
more desirable for compression purpose.

The original structure of WBCT applies DFB to all high-pass subbands (HL', LH',
and HH', i > 1). In 2-D DWT, LL' and its split subband signals (LLi, HL', LH', and
HH', where i > 1) contain the low and mid frequency components in the sensitive
range of human visual system. When we apply the DFB to these subbands and

14



quantize their transform coefficients, the ringing effects may appear on the smooth
image regions. Thus, we tend to represent these coarse subband signals by 2-D DWT
[23]. On the other hand, we apply the directional transform to HL', LH', and HH' to
match their directional textures. But some of these subbands may be inappropriate for

directional transform.
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Fig. 2-7. (a) Filter bank structure of WBCT. (b) Frequency partition produced by WBCT.

2.4 Direction-Adaptive Discrete Wavelet
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Transform

2.4.1 Direction-Adaptive Discrete Wavelet Transform

(a)
O integer pixel

% Interpolated quarter pixel e @ Q@ @ @O
Fig. 2-8. Two sets of candidate directions.(a) proposed in [28] and (b) proposed in [27]. Numbers are

direction indexes.

Direction-adaptive discrete wavelet transform (DA-DWT) consists of a sets of

selected candidate directions as shown in Fig. 2-8. Candidate directions in Fig. 2-8(a)

and Fig. 2-8 (b) are designed for smooth-and sharp textures.

Like 2-D DWT, 2-D DA-DWT first applies the first 1-D DA-DWT along the

vertical candidate directions, then, it applies the second 1-D DA-DWT along the

horizontal candidate directions. The first 1-D DA-DWT partitions the FyxFy image

into non-overlapping ByxBy blocks. Each block B(i, j) has a set of prediction errors

{Dg(i, j; d,)}, each corresponding to a vertical candidate direction d, in Fig. 2-16(a),

1<i<(Fy/Bp), 15<(Fw/Bw), and -4<d,<4. We take the sum of absolute high-pass

16



coefficients as the prediction error. Additionally, it has been show that the sum of
absolute high-pass coefficients and the sum of squared high-pass coefficients result in
similar performance in coding [50].

The DA-DWT selects the best direction based on the minimum prediction errors
for each B(i, j). After selecting the best directions for each B(i, j), the DA-DWT
applied 1-D DWT along selected directions. The transforms are processed cross block
boundary to avoid blocking artifact. The first DA-DWT decomposes an image into the
spatial low-pass subband L (subband size is (F/2)%F) and the high-pass subband H
(subband size is (Fg/2)*%Fy) after transform.. The second DA-DWT also partitions L
subband into non-overlapping (Bz/2)*By blocks and selects the. best direction for
each block in a similar way. The H subband usually contains less energy. Applying the
horizontal 1-D DA-DWT to it is not effective in compression [51]. Thus we apply
only the horizontal 1-D DWT to H subband. We obtain four subbands, LL, LH, HL,
and HH after one level of 2-D DA-DWT. We can apply another level of 2-D

DA-DWT to LL for multiresolution decomposition.

2.4.2 Quadtree Partition

DA-DWT needs to transmit the side information including block partition and

directional information for decoding. We adopt the quadtree partition [52] for block
17



partition. Fig. 2-9 gives an example of quadtree partition. Each block is partitioned

into four quarter sub-blocks for detail presentation. Symbol “1” and “0” present that a

block is partitioned or not. The first transform and the second transform have different

quadtree partitions in 2-D DA-DWT [51].

1101 0101

Code = 11010 1101 0101

Fig. 2-9:. Presenting 2-D signal by quadtree partition [52].

2.4.3 Direction Prediction Coding

The neighboring blocks usually have similar selected directions. Thus, we code
the difference between two neighboring block direction indices to save bits. Fig. 2-10
gives an example of prediction of direction index [28]. € is the direction index of the
current block and a4 @, and a; are the direction indices of neighboring blocks.
Because of sequential processing, we already know ay, a,, and a; when decoding 6 at
decoder. We select a predictor 6, from these three direction indices based on the
observation that the image gradient changes smoothly in (2-1). We code the prediction

error 6-0, as the side information and send it to decoder.

ep — {aw’ lj‘|ad _aw| >|ad _an

(2-1)

an’ lf‘ |ad _aw| < |ad _an
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Fig. 2-10. Prediction of direction index [28].

2.4.4 Rate-Distortion Optimized Segmentation

Larger partition blocks spend fewer bits for side information but it produces
large prediction error. Finer partition blocks oftenprovide good directional resolution
at the cost of larger bits for side-information. A good trade-off between distortion and
side information is the problem of rate-distortion optimization. It is usually solved by
using the Lagrangian cost function [53]. We first build a quadtree with full partition.
We then calculate the cost function of every node in-a quadtree partition. We finally

compare these cost function values-decide the-partition case of each node, as an

/ Combing?

4
ZDi,SXS + ﬂ’tR8x8 D16><16 + //LtR16><l6
i=1

example in Fig. 2-11.

Fig. 2-11. Quadtree partition with Lagrangian cost function. 4, is the Lagrangian multiplier.

There are two ways of count the side information. In the first count, except the

information of block partition and direction, we also consider the bits of transform
19



coefficients [27]. In the second count, the transform coefficients are not included. [28].

These two cost functions produce almost the same coding performance except for the

very low bit rate cases (<0.1 bpp) [54].

(a) block partition based onA, =4 (b) selected dirctions bas on A, 4 ‘

e 2
(c) block partition based on A, = 8 (d) selected directions based on A, = 8

Fig. 2-12. Block partition and selected directions of test image Barbara after rate-distortion optimized
segmentation based on different Lagrangian multiplier 4,.

Fig. 2-12 and Fig. 2-13 show an example of block partition and selected

directions after rate-distortion optimized segmentation of two test images. With

20



rate-distortion optimized segmentation, we assign large blocks to the smooth regions

and small blocks to the texture regions. Small Lagrangian multiplier 4, often results in

more detail block partition.

(c) block partition based oni, =8 (d) selecte dirctions bas onk, =8

Fig. 2-13. Block partition and selected directions of test image Lena after rate-distortion optimized
segmentation based on different Lagrangian multiplier 4,.

2.5 Megablocking Partition

The quadtree partition adopts a parent-child pruning procedure to produce the

21



optimal partition under the constrained bit budget. It ignores the correlations between

neighboring nodes partitioned from different parent nodes. Thus its fails to achieve

the optimal R-D performance [55]. The prune-join scheme extends the concept of

pruning the child nodes to the concept of joining the similar neighbor nodes. The

megablocking partition adopts this idea and achieves a better R-D performance for

DA-DWT [15].

The megablocking partition first uses the quadtree partition to achieve block

partition for the entire image. Each block has four neighbor blocks locating at its up,

down, left, and right side [55]. The-megablocking partition then joins the blocks with

the same direction.to form a megablock. It defines two types of blocks, inner blocks

and boundary blocks; for recording the megablocking information. The Inner block

has all its neighboring blocks within the same megablock. On the other hand, the

boundary block has at least one neighboring block from another megablock. The

megablocking partition scheme encodes one directional information for each

megablock. Thus, it saves a large amount of side information. Fig. 2-14 gives an

example of megablocking partition.
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€ (b) (c)
Fig. 2-14. (a) test image of polygonal model, (b) quadtree partition, (c) megablocking partition.

2.6 Subsampling and
Direction-Adaptive Discrete Wavelet

Transform

2.6.1 Subsampling Patterns

The 2-D DWT applies 1-D DWT along the vertical then the horizontal directions,
and so does the 2-D DA-DWT. Different execution orders of these two 1-D
transforms have no effect on final results of 2-D DWT, but affect that of 2-D
DA-DWT. If the following conditions hold, the order of transform makes no
difference. First, the pixel can be predicted by its neighboring pixels as much as
possible. Thus, the candidate directions should angularly cover the whole plane.
Second, we must decompose high-pass subbands fully to reduce its energy. Thus, we

should find the best weighting factors of samples used for prediction by minimizing
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the prediction mean square error (MSE) [56]. However, the candidate directions of
each order of transform cannot cover as whole range as supposed. We usually adopt
the fixed weights (conventional lifting coefficients) for lifting scheme. Thus, we get
different results by using different ordering in applying 1-D transforms in 2-D
DA-DWT [31].

In a lifting-based wavelet transform, we divide the pixels of an image / into two
separate subsets, /; and Iy, where Iz U Iz = Land I; N Iy = @. In the vertical
transform of 1-D DWT; [, and Iy are rows of even and odd indexes. We use the
prediction step (2-2) and update step. (2-3) to obtain the low-pass subbands
coefficients C; and high-pass coefficients Cy:

Cu=1n—P(L) (2-2)

CL =1, — U(Cp) (2-3)

P( ) and U( ) are prediction and update operators. In 2-D DWT, C; can be

decomposed into C;; and Cry, and Cy can be decomposed into Cpyz and Cpy by
another 1-D DWT.

The conventional 2-D DWT and the 2-D DA-DWT applies transform between
rows (along the vertical direction) than between columns (along the horizontal
direction). Thus, this transform order is called subsampling pattern row-column (RC)

in Fig. 2-15(a). The so-called SA-DWT algorithm includes another two subsampling
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patterns, column-row (CR) and quincunx (QU), shown in Fig. 2-15(b) and Fig.

2-15(c). Fig. 2-16 and Fig. 2-17 show the candidate directions of different

subsampling patterns. Fig. 2-16(c) and Fig. 2-17(c) show that the QU’s candidate

directions cover a wide range. Thus, the image rotation has no effect on QU’s coding

performance [31]. However, the QU provides poor coding performance for most

natural images because of the far away reference pixels for prediction [57]. Each

subsampling pattern has its best performed texture [32].
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Fig. 2-15. Four subbands of different subsampling patterns.

(a) Row - Column (b) Column - Row (c) Quincunx
(O original integer pixel £2 Interpolated quarter pixel gx Interpolated half pixel

Fig. 2-16. The candidate first directions of different subsampling patterns.
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(a) Row - Column (b) Column - Row (c) Quincunx
(O original integer pixel £2 Interpolated quarter pixel gx Interpolated half pixel

Fig. 2-17. The candidate second directions of different subsampling patterns.

2.6.2 Phase-Completion Process

When applying the the first transform of 2-D SA-DWT, we encounter a problem
due to the non-uniform distribution of subset partitions between neighboring blocks
with different subsampling patterns as shown in Fig. 2-18. /; (including C;; and C.y)
and 7y (including Cy;, and Cpy) have mismatched locations in two neighboring blocks
in Fig. 2-18. The pixel a € I can be predicted by the pixel f € [;, but not by the pixel
y € Iy along the direction i Fig. 2-18. We need.to estimate the /; at location of y to
predict a. We resolve this problem by the phase-completion process PC( ) in (2-4) and
(2-5).

Cy=In— P(PC(I1)) (2-4)
CL=1.—- UPC(Ch)) (2-5)
The operation of PC({;) in (2-4) is as follows. It estimated loss samples € /; from

neighboring pixels € /;. Since usually the local correlation within an image is strong,
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estimation of /; from neighboring /; is feasible. We use the average of all pixels € [},

within a window to get estimation. For example, in Fig. 2-18, we take the average of

I;, within a 3x3 window centered at y as the estimation of /; located at y. The operation

of PC(Cp) in (2-5) is similar as above.

For the second transform, we use Cj;, to predict C;y. These two phases of pixels

uniformly distribute in all three subsampling patterns. Thus, we can apply the second

transform without the different neighboring subsampling problem.
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Fig. 2-18. Phase-completion between process.neighboring-blocks adopt different subsampling patterns.
Left block uses CR while right block uses RC.
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Chapter 3 Temporal-Domain
Wavelet Transtorm and Entropy

Coding

3.1 Motion-Compensated Temporal

Filtering

The Motion-compensated -temporal filtering (MCTF) is a technique that
performs temporal-subband decomposition on video sequences: It decomposes the
original video frames into temporal low-pass residuals T Ls and temporal high-pass
residuals T Hs. The goal of MCTF 1is to compact the temporal energy along motion
trajectory of a video sequence.

An improved version of MCTF adopting the biorthogonal 5/3 filters for lifting
schemes in is shown Fig. 3-1 [11]. There are three steps in the lifting scheme of
MCTF, polyphase decomposition, prediction step, and update step. The polyphase
decomposition splits the input frames Fjinto odd frames F5; and even frames F;4;.
The prediction step generates the high-pass residuals H; by predicting F;4; from F);

and F;+2:
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H =F,

i 2i+1

%(MC(F MY,

2 MV yi1030) + MC(Ey 1y, MV, 5000)) (3-1)
where MV ;11,2 1s the motion vector from frame Fy; to Faoi. MC(Fa; MViir1—2:) 18
the motion compensation process using motion vector MV, to generate the
predicted pixels of F4; from F. Then, the update step generates the low-pass
residuals by updating F; from H; ; and H;:

L= Fy g (MC(H, MV )+ MCCH, MV, ) 62)
Through one level of MCTF, video frames are decomposed into T Ls and T Hs.
Another level of MCTF decompose low-pass residuals again and iteratively to
achieve temporal scalability. Fig.~3-2 shows"the temporal residuals after a 4-level

MCTF applied to 16 input frames, Fy~F;s. The result includes 1 temporal low-pass

residual LLLL,, and 15 high-pass residuals, LLLHg, LLHo~ LLH,, LHo~ LH3, Hyp~

Fig. 3-1. Lifting scheme with biorthognoal 5/3 filters in MCTF. F;, H;, and L; are the original video
sequences, the temporal high-pass residuals, and the temporal low-pass residuals.
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Fig. 3-2. Temporal residuals after four levels of MCTF applied to 16 input frames, Fyp~F 5.

3.2 Characteristics of Prediction

Residuals

3.2.1 Auto-Covariance Model

21304 151817 el
18102021 2 gg % 8
P e... ¥

(@ (e) . =
Fig. 3-3. Temporal residuals of three test video sequences. (a) LLLL, of 4kiyo, (b) LLLL, of Bus, (c)
LLLL, of Mobile, (d) LLLH, of Akiyo, (e) LLLH, of Bus, (f) LLLH, of Mobile.

30



Fig. 3-3 shows the T Ls and T Hs of different test video sequence. The temporal
T Ls are similar to the original images but the T Hs are similar to the
motion-compensated residuals. The motion-compensated residuals have different
spatial characteristics from the original images [43]. In T Hs, the coefficients forming
large smooth regions are negligibly small. The large coefficients concentrate along
object boundaries and edges to form 1-D structures.

We analyze the characteristics® of image.and prediction residuals by two
auto-covariance models, §eparable model in (3-3) and generalized model in (3-4) [43].
The generalized model is the rotated version of the separable model [43]. The
generalized model allows rotation of axes of the auto-covariance.model and enables
the capturing local anisotropic features in higher precision.

R(I,))=p/p, (3-3)
Rg 0,1,J) = p1|Icos(9)+Jsin(9)| p|2—1sin(49)+Jcos(9)| (3-4)

We estimate parameters p;, p2, and 6 for the generalized model of the images and
the prediction residuals by the following steps. We first partition an image into 8x8
blocks. We calculate the auto-covariance of each 8x8 block by removing its mean,
correlating the zero-mean block with itself, and dividing the correlation by the block
variance. We set shifts / and J as integers between -7 to 7. Then, we minimize the

MSE between the auto-covariance and the generalized model in (3-4) by adjusting the

31



above three parameters. We obtain these parameters from with the minimal MSE.

4. Scatter plots of estimated (p;, p;) from images. Fig. 6-6 shows the original images

Fig. 3-

(c) LLLL, of Mobile

(b) LLLL, of Bus

(a) LLLL, of Akiyo

P

P

Fig. 3-5. Scatter plots of estimated (pj, p,) from temporal low-pass.residuals.
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(c) LLLH, of Mobile

(a) LLLH, of Akiyo

P

(b) LLLH, of Bus
-6. Scatter plots of estimated (p;, p,) from temporal high

14

pass residuals.

Fig. 3

3-4, Fig. 3-5,

We plot the estimated p; and p, of the generalized model in Fig

6 move closer to two axes than those in

and Fig. 3-6. The data points (p,, p,) in Fig. 3

g correlation along one direction
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but weak correlations along the other direction. The large coefficients in T Hs
concentrate along the object boundaries and form 1-D structures [43]. Applying 2-D
transform to these 1-D structure signals results in spreading coefficients and

deteriorate the coding performance [43].

3.3 Embedded Block Coding with

Optimized Truncation

JPEG2000 adopts  the embedded block coding. with optimized truncation
(EBCOT) technique as entropy coding unit [6][35]. EBCOT exhibits state-of-art
coding scheme and it-produces bitstream with scalability and random access property.
It provides a set of ‘context tables with the consideration of characteristics of
transformed coefficients within different spatial subbands.

2-D DWT decomposes an image into many spatial subbands. EBCOT partition
each subband into a number of 32%32 or 64x64 coding blocks. EBCOT is a bit-plane
coding and accesses each bit of a coefficient from the most significant bit (MSB) to
the least significant bit (LSB). Thus, EBCOT is also a binary symbol coding that
encodes only “0” and “1”.

For each coefficient x[i, j] at position [i, j], we assign it a binary-valued state
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variable ofi, j], which indicates the significance of this coefficient. y{i, j] is the sign of
x[i, j]. It is 0 when the sample is positive and 1 when the sample is negative. o{i, j] is
initialized to 0 and toggled to 1 when the x[i, j]’s first non-zero bit-plane value is

encoded. There are 4 coding operations and they are activated by o{i, f].
@ @ 6 @ 6 0 O

D|V |D
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context window
<— coding block width ——=>

(a) (b)
Fig. 3-7. (a) Stripe-oriented scanning path. (b) Neighbors within the context window.
For each coding pass on/a bit-plane, EBCOT scans every bit along the path in
Fig. 3-7(a). When encountering a bit needed to encode; it encodes this bit with the
consideration of its 8 neighbors within-a-3x3 context window. Fig. 3-7(b) shows the

labels of these neighbors.

3.3.1 Coding Operations

EBCOT includes 4 coding operations, significance coding, sign coding,
magnitude refinement coding, and clean up coding. We describe these coding

operations as follows.
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3.3.1.1 Significance Coding

If a coefficient x[i, j] is not yet significant in the previous bit-planes, the
significance coding estimates the probability of x[i, /] becoming significant from its 8
neighbors. It classifies the significance situations of neighbors as the contexts given in
Table 3-1. The significance coding uses the contexts in Table 3-1 to code x[i, j]’s

significant information in the current bit-plane.

Table 3-1. Context table of significance coding: “X” means don’t care.

wavelet LL LH HL HH

subband

context | H vV | D V | H D H+V D
8 2 X1 X 2 X X X >3
7 L= X 1 | =1 X >1 2
6 1 0 | =1 1 0 >1 0 2
5 1 0 0 1 0 0 >2 1
4 0 2 X 0 2 X 1 1
3 0 1 X 0 1 X 1
2 0 0|22 0 0 >2 >2 0
1 0 0 1 0 0 1 0
0 0 0 0 0 0 0 0 0

3.3.1.2 Sign Coding

If a coefficient x[i, /] becomes significant at the current bit-plane, we set ofi, j] =

1 and use the sign coding to code its sign i, j]. The sign coding calculates the

horizontal contribution 2y and the vertical contribution 2, as follows:

x, = min{l, max{-1, ofi-1, j1 x (1-2i-1, j1) + olit1, jIx(1-2 41+ 1, ]} ; (3-5)
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x, =min{l, max{-1, ofi, j-1] x (1-2 i, j-1]) + ofi, j+1]x(1- 2404, j+1])} } (3-6)
Then sign coding using Xy and x, to obtain the sign prediction Z, in Table 3-2 . It

codes the XOR results of 2, and (i, j] using Table 3-2.

Table 3-2. Context table and sign prediction of sign coding

Xu Xv context I
1 1 13 1
1 0 12 1
1 -1 11 1
0 1 10 1
0 0 9 1
0 1 10 -1
-1 1 11 -1
| 0 12 -1
-1 1 13 -1

3.3.1.3 Magnitude Refinement Coding

Table 3-3. Context table for magnitude refinement coding

H+V+D first time for context
magnitude
refinement coding
False 16
>1 True 15
0 True 14

The magnitude refinement coding codes the new information of x[i, j] if it
becomes significant in the previous bit-plane. It uses 3 contexts for arithmetic coding

in Table 3-3.

1. If x[i, j] with no significant neighbors has not been coded by magnitude
refinement coding, the context table of x[i, j] is 14.
2. If x[i, j] with at least one significant neighbor has not been coded by magnitude

refinement coding, the context table of x[i, j] is 15.
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3. Otherwise, the context is 16.

3.3.1.4 Run Length Coding

If 4 consecutive coefficients along the stripe column in Fig. 3-7(a) are all
insignificant, and their surrounding 14 coefficients are all insignificant, we code these
4 coefficients by the run length coding. When a group of 4 coefficients satisfy the
above condition, the run length coding codes them by a single symbol “0”.

If one of these 4 coefficients becomes significant in the current bit-plane, the run
length coding codes them by a single symbol “1”..Then, it uses two bits, “00”, “01”,

“10”, or “11” to encode the position of significant coefficients.

3.3.2 Coding Passes

EBCOT includes 3 different coding passes and each coding passes includes the 4
coding operations in the ‘above. Multiple coding-passes separate the bits within a
coding block into smaller subsets. The results thus form a finely embedded bitstream.

We introduce these coding passes as follows.

3.3.2.1 Significance Propagation Pass

The significance propagation pass processes an insignificant coefficient with at

least one significant neighbor. It uses the significance coding to code the significance
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information in the current bit-plane of this coefficient. If the coefficient becomes

significant in the current bit-plane, then the sign coding is used to code the sign.

3.3.2.2 Magnitude Refinement Pass

This coding pass processes the coefficients that were already significant in the
previous bit-planes. It uses the magnitude refinement coding to code the binary bits

corresponding to these coefficients in the current bit-plane.

3.3.2.3 Cleanup Pass

This coding pass processes. the coefficients that were not processed by previous
two coding passes at the current bit-plane. It uses the rundength coding to codes the
information of 4 consecutive insignificant coefficients along the stripe column with
14 insignificant neighbors. Other un-processed coefficients are coded by significance

coding and sign coding.

3.4 Three-dimensional Embedded

Subband Coding with Optimized
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Truncation

Three-dimensional Embedded Subband Coding with Optimal Truncation (3-D
ESCOT) [36] is an extension of EBCOT used in video coding. It offers high
compression efficiency and other functionalities, such as error resilience and random
access.

3-D ESCOT takes the advantages of the orientation-invariant property of
wavelet subbands to reduce the number of context. It codes each subband
independently so that.each subband can be decoded independently. Because of this
feature, 3-D ESCOT can.achieve a flexible spatial/temporal scalability and the R-D
optimization can be done within subbands to improve compression efficiency.

In addition to the spatial wavelet subbands (LL; LH, HL, and HH) produced by
2-D DWT applying to the residuals, 3-D ESCOT also considers the orientation of
temporal wavelet subbands. The temporal low-pass residuals LLLL, in Fig. 3-2 is
denoted as “L” and the other high-pass residuals are denoted as “H” in the orientation
consideration. Thus each subband in 3-D ESCOT has three orientations. Each
subband is divided into 3-D coding blocks and these coding blocks are coded
independently.

For each coefficient x[i, j, k] at position [i, j, k], we assign it a binary-valued state

variable ofi, j, k], which indicates the significance of this coefficient. y[i, j, k] is the
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sign of the x[i, j, k]. It is 0 when the sample is positive and 1 when the sample is

negative. oli, j, k] is initialized to 0 and toggled to 1 when the x[i, j, k]’s first non-zero

bit-plane value is encoded. When a bit need to be coded, 3-D ESCOT encodes this bit

by checking its 18 neighbors within a 3x3x3 cubic in Fig. 3-8.
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Fig. 3-8. Neighbors within the cubic.

3.4.1 Coding Operations

There are 3 coding operations in 3-D ESCOT and their use is controlled by of, j,
k]. The zero coding (ZC) and the sign coding (SC) are used to code x[i, j, k] if o{i, j, k]
= 0 and magnitude refinement (MR) is used if of7, j, k] =1. We will describe these 3

coding operations as follows.

3.4.1.1 Zero Coding

If a coefficient x[i, j, k] is not yet significant in the previous bit-planes, ZC
estimates the probability of x[7, j, k] becoming significant from its 18 neighbors in Fig.
3-8. It classifies the significance situations of neighbors as contexts in Table 3-4. ZC

uses the contexts in Table 3-4 to code the significance information of x[7, j, £].
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Table 3-4. Context table of zero coding. “X” means don’t care.

wavelet LLL LLH LHH HHH

subband

Context H A\ T D H V+T D D H+V+T
0 2 X X X 2 X
0 1 >1 X X 1 >3 X >6 X
1 1 0 >1 X 1 >1 >4 >4 >3
2 1 0 0 X 1 >1 X >4 X
3 0 2 0 X 1 0 >4 >2 >4
4 0 1 0 X 1 0 X >2 >2
5 0 0 >1 X 0 >3 X >2
6 0 0 0 3 0 >1 >4 >0 >4
7 0 0 0 2 0 >1 X >0 >2
8 0 0 0 1 0 0 >4 >0 1
9 0 0 0 0 0 0 >0 0

3.4.1.2 Sign Coding

Table 3-5. Context table and sign prediction of sign coding.

Zu=-1 =0 =1

v Xr I context YA Xt Xp context v X X context
-1 -1 0 0 -1 -1 0 9 -1 -1 1 8
-1 0 0 1 -1 0 0 10 -1 0 1 7
-1 1 0 2 -1 1 0 11 -1 1 1 6
0 -1 0 3 0 -1 0 12 0 -1 1 5
0 0 0 4 0 0 0 13 0 0 1 4
0 1 0 5 0 1 1 12 0 1 1 3
1 -1 0 6 1 -1 1 11 1 -1 1 2
1 0 0 7 1 0 1 10 1 0 1 1
1 1 0 8 1 1 1 9 1 1 1 0

If a coefficient x[i, j, k] becomes significant at the current bit-plane, we set ofi, j,

k] = 1 and use SC to code its sign [i, j, k]. SC calculates the horizontal contribution

X the vertical contribution Xy and the temporal contribution X3S following:

X, = min{1, max{-1, oli-1, j, k] x (1-24[i-1,/, k]) + ofi+1, j, k] x (1-24[i+1, j, k])}} (3_7)
;(V =min{l, max{-1, ofi, j-1, k] x (1-24[i, j-1, k]) + oli, j+1, k] x (1-24[i, j+1, k])}} (3_8)
x.= min{1, max{-1, oli, j, k-1] x (1-24[i, j-1, k]) + ofi, j, k+1] x (1-24]i, j, k+1])}} (3-9)
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Then, SC uses Xip X and X, to get the sign prediction Z, in Table 3-5. It codes

the XOR results of X, and y[i, j, k] using Table 3-5.

3.4.1.3 Magnitude Refinement Coding

Table 3-6. Context table for magnitude refinement coding

H+V+D+T first time for context
magnitude
refinement coding
False 2
>1 True 1
0 True 0

MR encodes the new information about x[i; j, k] if it became significant in the
previous bit plane. It uses three contexts in Table 3-6 for arithmetic coding.
1. If x[i, j, k] with no significant neighbors has not been coded by MR, the context
table of x[7, j, k].is 0.
4. 1If x[i, j, k] with at least one significant neighbor has not been coded by MR, the
context table of x[i, j, k] is 1.

5. Otherwise, the context is 2.

3.4.2 Coding Passes

3-D ESCOT provides a high coding gain due to the use of fractional bit-plane
coding. The fractional bit-plane coding provides a practical means of scanning the
wavelet coefficients within each bit-plane for rate-distortion (R-D) optimization at
different rates. There are 3 different fractional bit-plane coding passes and the

scanning order in each of them is along the i-direction firstly, then the j-direction and
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the k-direction lastly.

3.4.2.1 Significance Propagation Pass

If the coefficients which are not yet significant but have “preferred neighborhood”
are processed by this pass. A coefficient has a “preferred neighborhood” if and only if
the coefficient has at least one significant immediate diagonal neighbor for the HHH
subband or the horizontal, vertical, temporal neighbor for the other types of subbands.
For these coefficients; we apply-the-ZC to code their significance information in the
current bit-plane of this.coefficient. If the coefficient becomes significant in the

current bit-plane, then SC is used to code the sign.

3.4.2.2 Magnitude Refinement Pass

If the coefficient became significant in the previous bit-plane, it will be coded in
this pass. The binary bits corresponding to these coefficients in the current bit-plane

are coded by MR.

3.4.2.3 Normalization Pass

It is used to code the coefficients if it is not coded in the previous two passes.
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Because these coefficients are not yet significant, they are only processed by ZC and

SC.
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Chapter 4 Enhanced Wavelet-based

Contourlet Image Coding

Combining WBCT and 3-D ESCOT, a WBCT image coding scheme can achieve
a better coding performance than a regular 2-D DWT image coding scheme. However,
there are a few issues in the existing WBCT coding schemes. They need a large
amount of computations because the existing WBCT .directional filters have a large
support. And, we found that for a specific picture, some WBCT frequency subbands
do not need further directional-transform. Furthermore, the context table in 3-D
ESCOT needs adjustment to match the characteristics of quantized WBCT
coefficients.

To solve these issues, we propose three algorithms in this paper to enhance the
WBCT image coding scheme. First, we suggest a set of short-length 2-D directional
filters and verify their performance. Second, we design a mean-shift-based decision
scheme to dynamically select the proper subbands for directional transform. Third, we
re-design the context tables of 3-D ESCOT to match the data directionality. With
these algorithms, our proposed scheme reduces 92% or higher the computational

complexity of the original WBCT image coding scheme at similar visual quality.
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4-1 Short-Length 2-D Filters

To reduce computational load of the current WBCT, we design new short-length
2-D filters (SLF). The design procedure is as follows. We first choose an appropriate
1-D filter, up-sample it, and map it to a 2-D filter.

We begin our design from a 1-D type-II linear phase finite impulse response
filter [60][65]. Eq. (4-1) is a 1-D prototype filter f(z), wherein the coefficients {v;}
satisfy (4-2) so that #(¢')=1..When N;=1(shortfilter); A(z) has a wide transition band.
To keep a good balance between-the transition band width and the filter length, we
select Nj=2, and thus, v,=0.5916 and v,=—0.0982. Fig. 4-1 (a) and (b) show the
magnitude and the ‘phase responses of A(z). We up-sample 5(z) by 2 and get A(z°). Fig.
4-1 (c) and (d) show the magnitude and the phase responses of A(z°). In Fig. 4-1(d),
B(z°) contains a phase discontinuity of m at frequency 0.57. Because of this phase
discontinuity, the left-side and the right-side amplitudes in Fig. 4-1(c) have different
signs.

Ny
B(2)=D v, (2" M (4-1)

k=1

v, =0.5 (4-2)
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Fig. 4-1. (a) Magnitude response of (). (b) Phase response of (z). (c) Magnitude response of A(z°). (d)
Phase response of f(z°).

We up-sample f(z) by 2 and get /5’(22). Fig. 4-1 (c) and (d) show the magnitude
and the phase responses of ﬂ(zz). In Fig. 4-1 (d), ﬂ(zz) contains a phase discontinuity
of m at frequency 0.5n. Because of this phase discontinuity, the left-side and the
right-side amplitudes in Fig. 4-1 (¢) have different signs.

We then map ,[)’(22) toa 2-D filter [61]. From ,B(zz), we derive the quadrant filters
and rotate them by 45 degrees to construct the hourglass filters [18]. In Fig. 4-2, the
symbol z; denotes the horizontal frequency, and z, denotes the vertical one. In Fig.
4-2(a), we shift ﬁ(zz) by 0.57 along the negative frequency axis and the shifted ﬁ(zz) in
horizontal direction is denoted by a(znd). Similarly, the shifted ﬁ(zz) in vertical
direction is denoted by a(z,”) in Fig. 4-2(b). In Fig. 4-2(c), we multiply a(z;’) and
a(z,’) together to obtain a quadrant filter a(z;, z,). Accordingly, the four acquired

quadrant filters are defined by (4-3), (4-4), (4-5), and (4-6 [18]. We rotate these
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quadrant filters by (4-7) to obtain the hourglass filters. In (4-7), an hourglass filter

A’(w) is obtained from a quadrant filter A(w) [14], wherein Qp and Q; are the

quincunx sampling matrices specified by (4-8) [58].

H,(z,,z,)=(+a(z,,2,))/\2 (4-3)

H,(z,,2,)= 2,2 ~(N2H,(z,,2,) - 1) H(z,,2,)) (4-4)

Fy(z,,z)= —thlHl (-z,,z,) (4-5)

F(z,,z)= Zh_lHO (=z,,2,) (4-6)

A'(w)=A(Q0‘Tw)=A(%Q1Tw)=A(%Qow) 4-7)
_ 1 -1 - L 1

0, —(l IJ, 0 —(_1 J (4-8)

(<Tt,-Tc) (-m,-T) (=T,-1r)
@a(z?) (b)a(z,?) (©alz 2,)
Fig. 4-2. Derivation of quadrant filters.

H'4(zy, 2,) Fi(zn 2,)

Fig. 4-3. A four-channel cascaded DFB.

Fig. 4-3 shows a cascaded DFB structure [14]. The left half, H y(zs, z,) and H’;(z,

z,), 1s the analysis filters, and the right half, F’,(z;, z,) and F’i(z5, z,), is the
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corresponding synthesis filters. The signals DS;~DS, are identical to those in Fig.

2-5(a) and their frequency partitions are in Fig. 2-5(b). This two-level analysis DFB

structure consists of hourglass filters and quincunx sampling matrices. We rotate the

quadrant filter Hy(zp, z,) in (4-3) to obtain the hourglass filter H o(zs, z,). H i(zp, zv),

F’(zp, zy) and F’i(z;, z,) are designed similarly.

The sizes of our proposed 2-D hourglass short-length filters (SLF) are 7x7 and

13x13. They are much smaller.than the 'sizes (23x23 and 45x45) of their

corresponding long-length filters (LLF) [59]. Fig. 4-4 shows the magnitude responses

of SLF and LLF. Although the transition band of SL.F seems wider than that of the

LLF, SLF matches the image local variation well due to its small size.

1.4 : 14
1.2

4

1

magnitude
magnitude

n

no

0

. 0
Fy ( radian) Fx (17 radian)

9508 Fx (1 radian)

(a) (b)
Fig. 4-4. (a) LLF, whose size=23%23 [59]. (b) SLF, whose size=7x7.

Fy (1 radian)
05 08

Table 4-1 shows the impacts of SLF and LLF on the DFB computational

complexities. We compare two DFB implementations, direct structure and ladder

structure, on the non-zero SLF/LLF coefficients. S is the size of input image. The

numbers of multiplications and additions are proportional to S. The runtime is

measured by running Matlab r2008b on a PC with Intel Core 2 Quad Q9400 CPU.
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The numbers of multiplications and additions include both convolution and
down-sampling operations. When the sizes of the hourglass filters are 23x23, 45x45,
7x7 and 13x13, the numbers of nonzero coefficients are 145, 649, 17 and 65,
respectively. For both the direct and the ladder structures, the SLF-based DFB takes
approximately only 10% multiplications and additions of those of the LLF-based DFB.
In the runtime profile, the SLF-based DFB saves roughly 80% computation time in
both structures. The performance 'gap between our theoretical estimates

(multiplications and additions) and experimental measurements (runtime) are largely

due to data transfer (disk access).

Table 4-1. The computational complexity and run time measured on the non-zero filter coefficients.

LLF SLF
Direct structure Ladder structure Direct structure Ladder structure
Number of 4S(145+649+2) 4S(144+2) 4S(17+65+2) 4S(16+2)
Multiplications =3124S =584S =336S =68S
Number of 4S(145+649+2) 4S5(144+2) 4S(17+65+1) 4S(16+2)
Additions =3124S =584S =336S =68S
S=512%512 43.656 sec 14.938 sec 9.078 sec 3.953 sec
S=256%256 10.906 sec 3.813 sec 1.797 sec 0.854 sec
S=128x128 2.859 sec 0.953 sec 0.438 sec 0.219 sec

4-2 Mean-Shift-Based Decision on

Subband Selection

In the WBCT image coding scheme, we apply the directional transform to the

LH', HL', and HH' subbands. Yet, only the subband signal with significant energy in
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that direction would benefit from the directional transform. We thus try to locate the
subbands with this property. Essentially, we identify the energy peaks and find their
locations.

Mean shift technique is adopted to locate the energy peaks in the frequency
spectrum. Mean shift is an iterative, nonparametric estimator of the peak location
[62][63]; it finds a path to local maximum [64]. Let {x;},-.., be an arbitrary n-point
data set in the d-dimensional Euclidean space'R% First, we calculate the mean shift
vector m(x) by (4-9), wherein x is the center of current window, 4 is the window
radius, and K(x) is the flat kernel defined by (4-10)..Then, we update the center by
setting m(x)+x as the center of the next window. We repeat this process until m(x)

converges to 0.

PIEAIC
m(x) = S —x (4-9)
ZK S0
K(x):{l,zfllxllél (4-10)
0,7 || x [>1

A. Energy Spectrum Smoothing

B. Choosing the Representative Energy
Level based on Low Frequency Components

l

’ C. Deciding Thresholds for Directional Subbands ‘

l

’ D. Peak Identification using a Mean-Shift-based Procedure ‘

Fig. 4-5. The flowchart of the proposed mean-shift-based decision algorithm.

Fig. 4-5 shows our proposed mean-shift-based decision process for selecting the
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subbands. To illustrate the decision flow, we use a 512x512 pixel, 256 gray-level

image as the input.

4.2.1 Energy Spectrum Smoothing

We calculate the input image frequency spectrum by the 2-D discrete Fourier

transform (2-D DFT). The frequency spectrum comprises 512x512 discrete frequency

components (DFC). The DFC is generally a complex number with the form in (4-11)

and their energy levels are in form-of (4-12). Herein, (x, y) represents the coordinate

pair of a DFC, 1<x<512, and 1<y<512.

m(x, y)=a(x, pyto, y)i

e(x, y)=(alx, ») (b5 )’

horizontal coordinate x
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c(513, y) = c(1, y), 1sy<512
c(x, 513) = c(x, 1), 1=x<513

(4-11)

(4-12)

Fig. 4-6. The coordinates of energy coefficients c(x, y). The padded data are in gray background.

In Fig. 4-6, we copy the left-most column to the right-most column border and
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copy the upmost row to the bottom-most row border in order to get a symmetric

energy spectrum. The zero frequency DFC is at (257, 257).

Fig. 4-7(a) shows the energy spectrum c(x, y) of the input image Pepper, wherein

the energy levels are in log scale, i.e., logjo(c(x, ¥)). It contains many small peaks.

These small peaks may cause misjudgment on cluster identification. Therefore, we

use a smoothing operator (defined in Fig. 4-7(c)) to reduce small peaks [41]. Fig.

4-7(b) shows the smoothed energy.spectrum. The large energy peaks typically stand

out after smoothing.
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Fig. 4-7. (a) Energy spectrum of image Pepper. (b) Smoothed energy spectrum of image Pepper. (c)
Smoothing operator.

4.2.2 Choosing the Representative Energy Level

based on the Low Frequency Components

Fig. 4-7(b) shows natural images contain strong low frequency components. We
choose it as the basis for calculating the threshold value for identifying energy peaks.

Fig. 4-8(a) shows the subband signals generated by WBCT and Fig. 4-8(b) shows the
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DFC coordinates in the upper half subband LH 4-0. The gray area is called the low

frequency zone, and the white area is the high frequency zone. Because the upper half

subband is symmetric to its lower half, we only look at the DFC in the upper half of

LH'. The upper half of LH' is the region bounded by 129<x<385 and 1<y<129. Along

each column x of LH', we calculate the mean p(x) and the variance o(x) of the DFC

by (4-13) and (4-14). We find that the DFC magnitudes in the center three columns

(256=<x<258) usually have large means and small variances. Similar property holds for

HL'. Therefore, we set the width of low frequency zone.in LH' and HL' to 3 when the

input image size is 512%512.
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Fig. 4-8. (a) The subband frequency domain partition produced by WBCT. (b) The DFC coordinates in
the upper half subband LH 4-0. The gray area in (a) and (b) is the low frequency zone.

To detect the peaks, we calculate the representative energy levels of the low

frequency components. Eq. (4-15) computes the DFC mean of the LH' low frequency
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zone, and (4-16) computes that of the HL' low frequency zone. With these DFC
means, we define the representative energy level LH_L for LH' by (4-17), and HL L
for HL' by (4-18). Essentially, we like to select a threshold that identifies the peaks
with “significant” energy. In (4-17), when the average energy level of low frequency
components in HL subband is at least four times larger than that in the LH subband,
we use the former as the threshold; otherwise, the latter. The parameter “log;o(4)”
denotes the case that the large  energy is at least 4 times of small ones.
Correspondingly, the absolute magnitude of the large energy is at least twice of that of
the small energy because the energy is the square of the absolute value. In this case,

the difference in bit plan coding is significant.

129 258 log C(x y)
LH — y=1 x=256 10 i (4- 1 5)
\\ 3x129
258 129
2 log,, c(x, )
HL N y=256 x=1 10 (4- 1 6)
d 3x129
if(HL_p—LH_p)<logio(4)) LH_.L=LH , else LH L=HL_p (4-17)
if(LH_p—HL p)<logio(4)) HL L=HL p,else HL L=LH pn (4-18)

4.2.3 Deciding Thresholds for Directional Subbands

A directional subband sometimes contains stronger energy level than the low

frequency components. We consider this situation and adjust threshold in this step. We
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try to determine a peak detection threshold for every WBCT subband. Take the
subband LH 4-0 as an example. We only look at the upper half of LH 4-0 because the
DFCs in the upper half of LH 4-0 are symmetric to those in the lower half of LH 4-0.
In the upper half of LH 4-0, we first consider only the DFC outside the low frequency
zone. We calculate the mean LH 4-0 p and the variance LH 4-0 o outside the low
frequency zone in LH 4-0, i.e., the c(x, y) of white area in Fig. 4-8(b), and construct a
Gaussian distribution using the calculated mean and variance. In Fig. 4-9, each
Gaussian distribution approximates its corresponding energy histogram well. Thus,
the peak detection threshold for LH 4-0 is set by (4-19).. The parameter b in (4-19) is
chosen to be 0.7 because we like to eliminate the 75% DFC candidates. Together with
the representative energy level LH L defined earlier, 25% or fewer DFC candidates
may be identified as energy peaks. We repeat similar procedures on LH 4-1~LH 4-3,
and HL 4-0~HL 4-3.

Generally, the transmission priority of HH' is lower than the other subbands due
to its lower information contents. Because of its low energy, we use the thresholds of
its neighboring subbands to identify the energy peaks in HH'. For example, we set the
threshold HH_4-0_T of HH 4-0 by (4-20) using the parameters of HL 4-1.

LH 4-0 T=Max(LH L, LH 4-0 p+bxLH 4-0 o) (4-19)

HH 4-0 T=Max(HL L, HL 4-1 p+bxHL 4-1 o) (4-20)
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Fig. 4-9. The DFC energy histograms of some directional subbands. Each histogram is approximated
by a Gaussian distribution. The directional subbands jand the corresponding images are (a) LH 4-0 of
Boat, (b) HL 4-3 of Lena, (c) LH 4-3 of Pepper,.and (d) HL 4-0 of Fingerprint.

4.2.4 Peak Identification using a Mean-Shift-based

Procedure

We like to identify a directional band that has significant energy by examining
the discrete frequency components (DEC) of an image. This typically is caused by
periodic texture patterns. And its corresponding DFC pattern is a cluster of DFCs with
high energy. Thus, an energy peak in this paper is defined as a cluster of coefficients
(c(x, y) in a neighborhood) whose energy level is larger than the threshold. It has two
properties: the energy level is high and these high-energy DFC coefficients are
clustered in a small neighborhood. We use an image cluster identification scheme,

Mean-Shift technique, to allocate them.
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1) When a c(x, y) within a directional subband and outside the low frequency

zone is greater than the threshold of that subband, its location (x, y) is set to be the

center of a search window. We then calculate its mass center coordinates (Xmass, Vmass)

by (4-21). The window size is chosen to be 11x11, or, roughly, its radius »=5, because

a small radius often leads to too many small peaks and a large radius sometimes

misses peaks. In the search procedure, we extend the coefficients outside the subband

boundary by periodic extension

X+t +5 X+ +5
S5 et 3 ietmn)
s> Vmass) =T 55 T3 Ra ) (4-21)
S S ey 3 S conan)
m=x-5n=y=5 m=x-5n=y-5

We round X455 and Vs to the nearest integers and set the rounded (X455, Vimass) @s the

center of next search-window: Then, we use (4-21) again to update the mass center.

We repeat this procedure until the rounded (Xjass, Vmass) converges. Thus, a peak

candidate is identified.

2) The number of the peak candidates is recorded by a table d(x, y). The initial

values of all entries of d(x, y) are 0. When we identify a DFC at (x, y) as an energy

peak candidate, we increase d(x, y) by 1. When the table value of a specific location (x,

v) is greater than 10 and it is also the largest d(x, y) within a 3x3 window, the DFC

located at (x, y) is judged as an energy peak. When one subband contains one or more

energy peaks in the high frequency zone, it is considered to be suitable for directional
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decomposition.

Table 4-2. Some test images, their max energy peak location in each subband ((x, y)) and the decision
result for each subband (suitable for DT).

wavelet LH! HL! HH!
subband
test (x, ) Suitable (x, ) Suitable x, ) Suitable
. for DT for DT for DT
image
Barbara (213,126) N (130,366) Y (92,384) N
Fingerprint | (257,129) N (128,200) Y N
Lena (154,121) N (122,259) N (129,390) N
Pepper N N (32,24) Y
Boat N (118,259) Y N
Couple (236,96) N (109,259) Y N
Elaine (177,123) Y (107,212) Y (83,32) Y

Table 4-2 shows some representative test images and their band-decomposition

decision results for each subband. All images are images of 256 gray levels, and their

sizes are 512x512 pixels. For each- subband; the “(x, y)” column denotes the max

energy peak location, and the “‘suitable for DT” column denotes.the decision result.

As Table 4-2 shows, the directional transform 1s inadequate for all subbands of the test

image Lena; some subbands of Barbara, Fingerprint, Pepper, Boat, and Couple are

suitable for directional transform, and all subbands of Elaine benefit from the

directional transform. Fig. 4-10 shows the identified peaks by red dots. We fail to

identify some peaks for two reasons. First, some peaks contain energy lower than the

threshold. Second, when a peak is near the low frequency zone, clusters identified by

the mean Mean-Shift scheme are occasionally in the low frequency zone. Fig. 6-4(a)

shows a portion of test images Barbara and Elaine. They contain periodic signals.

Identifying these signals in the spatial domain is hard. These periodic signals are
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corresponding to energy peaks in the frequency domain and thus we perform peak

identification in frequency domain.

- - -1
1 ® 05 0 05 1 © 05 0 05 1

A
-1
(@)  radian  radian  radian

Fig. 4-10. Energy spectrum of test images (a) Barbara, (b) Pepper, and (c) Elaine. Horizontal axis and
vertical axis represent horizontal frequency and vertical frequency, respectively. The energy spectrums
are all in log scale. The red squares are the locations of the identified energy peaks.

4.2.5 Computational Complexity

We now look at the computational complexity issue of our decision algorithm. We
examine the amount of multiplications and additions for the steps in Fig. 4-5. We
assume that the input image size is SSWXH. Herein, W is the width of the input image
and H is the height. We also assume that W and“H are all power of 2 and we can
implement the 2-D DFT in the radix-2 fast Fourier transform (FFT) structure.

1) In Step A of Fig. 4-5, we apply 2-D DFT to the input image, obtain its energy
spectrum, and then apply a smoothing filter to the spectrum. The 2-D DFT is
implemented by the radix-2 FFT, and thus the required numbers of real-value
additions and multiplications are given by (4-22) and (4-23), in which ceil(x) means
the smallest integer greater than or equal to x. Next, Eq. (4-12) needs 1 real addition

and 2 real multiplications to calculate the energy of a DFC. For the entire image, the
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required numbers of real additions and real multiplications are in (4-24) and (4-25).

The smoothing operator in Fig. 4-7(c) requires 8 real additions and 1 real

multiplication for each c(x, y). Thus, the total numbers of real additions and

multiplications are given by (4-26) and (4-27). Finally, the overall numbers of real

additions and real multiplications in Step A are (4-28) and (4-29).

Nreal _addition _in _DFT

=2xN, complex _multiplication _in_DFT T 2xN, complex _addition _in_ DFT (4‘22)
=3xW x H x(ceil(log, W) + ceil(log, H))

N et muttipiication _in_pET

=AXN piet, mitiiplication—in “DFT (4'23)

=2 xW x Hx(ceil(log, W) + ceil(log, H))

N, real _addition -in - calculating _power W xH (4-24)

N, real _multiplication _in _calculating _power — 2xW < H (4-25)
N, real _addition _in._smoothing . spectrum 8xW xH (4—26)
N, real ~ multiplication — in<smoothing _spectrum — 2xWxH (4—27)

N

real _addition _in _stepA

=3xW x H x (¢ceil(log, W)y+ceil(log, H))+W x H +8xW x H (4-28)

N,

veal mutiplicaion_in_sipa = 2 X W x H x(ceil(log, W) +ceil(log, H))+2xW x H+W x H (4-29)

2) Step B chooses the representative energy levels based on the low frequency
zone. Eqgs. (4-15) and (4-16) calculate the mean of the DFC energy in the low
frequency zone. The heights of the low frequency zones in LH' and HL' are
(ceil(H/4)+1) and (ceil(W/4)+1), respectively. The width i1s Wj.. Thus, the mean

calculation (Step B) needs 2 divisions and N, uuiion i sz T€8l additions as shown
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in (4-30). We choose W;.=3 when §=512x512.

N,

real addiioninweps =Wy X (ceil (H / &)+ ceil (W / 4)+2) -2 (4-30)

3) Step C decides the thresholds for directional subbands. The DFC number in
each directional subband is WxH /16, thus the DFC number in each half directional
subband is WxH/32. In addition to 2 real divisions, we need WxH/32 real
multiplications and (WxH/16-2) real additions to calculate the mean and the variance
of each half directional subband. LH''and HL' together have 8 directional subbands in
total. The numbers of real additions and real multiplications in Step C are, therefore,

given by (4-31) and(4-32).

N

real _addition_in _stepC

=8x(WxH/16=2)=WxH/2-16 (4-31)

N

real® mulbigheation_in IlBC =8xWxH/32=WxH /4 (4-32)

4) Step D identifies the energy peaks. Eq. (4-21) needs 1 division, 242
multiplications and 480 additions: In total, the numbers of real additions and real
multiplications in Step D are in (4-33) and (4-34), wherein N is the iteration number.

In our experiments, the minimal N; is 11 (test image Baboon), the maximal N; is

12487 (test image Barbara), and the average N;, is 1697.

Nrealiaddition7i)17.vtepD = ]vit X 480 (4-33)
real _multiplication _in_stepD = ]vit X 242 (4-34)

All in all, (4-35) and (4-36) give the total number of multiplications and
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additions in the decision procedure. When S=WxH=512x512, W;=3, N;,=1697, the

total number of real additions and real multiplications are 17,461,460 and 10,699,826.

N, total_real_addition —

W Hx(3%ceil(log, W) +3xceil(log,H)+9+1/2)—16+ W% (ceil (H/4)+ceil (W/4)+2)—~2+N; <480 (4-35)

]Vtatalirealimultiplication = WxHX* (2XCCi1(1Og2 W)+2><C€i1(10g2H)+3+ 1 /4)+]\]l[><242 (4'3 6)

Table 4-3. Computational complexity and run time for the systems with and without decision when
LLF is adopted.

LLF without LLF with LLF with Ratio Ratio
decision decision decision (fastest) (slowest)
(fastest) (slowest)
Number of 114,819,072 10,699,826 125,518,898 9.32% 109.32%
Multiplications
Number of 114,819,072 17,461,460 132,280,521 15.21% 115.21%
Additions
Run Time 11.613 sec 1.385 sec 13.012 sec 11.93% 112.05%

Table 4-4. Computational complexity and run time for the systems with.and without decision when
SLF is adopted.

SLEF without SLE with SLF with Ratio Ratio
decision decision decision (fastest) (slowest)
(fastest) (slowest)
Number of 13,369,344 10,699,826 24,069,170 80.03% 180.03%
Multiplications
Number of 13,369,344 17,461,460 30,830,804 130.61% 230.61%
Additions
Run Time 2.662 sec 1.385sec 4.055 sec 52.03% 152.33%

Table 4-3 and Table 4-4 'show the computational complexity and the run time of
the entire system with and without decision, wherein the directional filters are LLF
and SLF, respectively. With decision, the fastest case occurs when no directional
transform is conducted on LH', HL', and HH'. And the slowest case occurs when we
apply the directional transform to all subbands. In Table 4-3, the image coding scheme
with LLF and decision may save over 84% computational load or 88% run time in the
fastest case. In the slowest case, the decision process requires an additional 16%

computational load or 13% run time. In Table 4-4, the image coding scheme with SLF
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and decision saves about 48% run time in the fastest case and consumes 52% extra
run time in the slowest case. On the average, the image coding schemes with decision

require less run time.

4-3 New Z.C Context Tables for 3-D

ESCOT

Arithmetic coding methods encode the transformed/quantized coefficients into a
bit-stream. 3-D ESCOT is a bit-plane coding method and it uses its neighbors for the
context model. Let the sequence = {XN, XN-1, - .45 X2, X1} TEpresents one bit-plane of a
coefficient block. Because the bit-plane consists of binary symbols, i.e., x €{0,1}, the
minimum code length of a binary sequence estimated based on the information theory
is shown in (4-37), wherein P(x{x"") is the conditional probability of x; given x™' =
{xi1, X2, ..., X2, x1}. Clearly, x"! is the subset of x”. Assuming x" is a Markov random
sequence of some finite order, we then can reduce the size of x"'down to x"', which is
a subsequence of x"'. This x"' is the context model support [36][38]. Typically, x"'
includes the neighbors and the (bit-plane) parents of x;. Ideally, the optimal context
model gives the maximum mutual information [68].

L=~log, ]:[P(xi |x™) (4-37)
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The original 3-D ESCOT considers only the 2-D DWT coefficients in the

horizontal and the vertical directions. Yet, the coefficients in a certain directional

subband may cluster along one specific direction (different from the vertical or

horizontal directions). The original context table fails to handle this case well.

Therefore, we redesign the context models of 3-D ESCOT.

HH} LH LH} HH

a2l 43 L 2430, <
4-0 41| 4-0 adan 3 D2 v D1
HL HL 8
1V NG ;..
4-3 4-2
LL 03 H A H
HL HL c
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— = -2 D1 | V | D2
HH LH| LH HH Nz
S IS RSN N
4-3] 4-2 4-3) 4-2 -
- -1t/2 /2 T

horizontal frequency Fx

(a) (b)
Fig. 4-11. (a) The directional subbands produced by WBCT. (b) The spatial neighbor directions for

coefficient 4.

In Fig. 4-11(a), the 13 subbands produced by WBCT are labeled as “LL”, “HH
4-0”, “LH 4-0”, “HL 4-0”, and likewise. In Fig. 4-11(b), the edges passing through A
can be H-A-H (0°), V-A-V (90°), D1-A-D1 (45°), and D2-A-D2 (-45°). We denote
the OO, 900, 450, -45° directions as “H”, “V”, “D1”, and “D2”, respectively.

In Fig. 4-12, we examine the effect of the directional filter LH 4-0 (DF_LH 4-0).
A concentric-circle pattern, which has edges of all directions, is used as the input
pattern. Fig. 4-12(a) and (b) show this input signal and its frequency spectrum. Fig.

4-12(c) shows the spatial filter impulse response of DF LH 4-0, which is roughly
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along the H direction (slightly tilted to the D2 direction). Fig. 4-12(d) shows the filter
frequency magnitude response of DF_LH 4-0, whose energy clusters mainly along the
vertical axis. In Fig. 4-12(e), the filtered output image contains mainly the spatial
edges aligned with the H direction (slightly tilted to the D2 direction). Fig. 4-12(f)
shows the frequency spectrum of filtered signals. Evidently, the dominated directions
of the LH 4-0 outputs are H and D2. Hence, “H and D2” are the filtered directions of

LH 4-0.
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Fig. 4-12. (a) Input signal in spatial domain. (b) Input signal in frequency domain. (c) Filter response of
DF _LH 4-0 in spatial domain. (d) Filter response of DF_LH 4-0 in frequency domain. (¢) Output signal
in spatial domain. (f) Output signal in frequency domain.
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Similarly, we identify the filtered directions of the other directional subbands.
The filtered directions of LH 4-1 are “H and D1, those of HL 4-2 are “V and D2”,
and those of HL 4-3 are “V and DI1”. The filtered directions of the four corner

subbands (LH 4-2, HH 4-3, HH 4-1, and HL 4-0) are D2. And those of the other four
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corner subbands (LH 4-3, HH 4-2, HH 4-0, HL 4-1) are D1.

3-D ESCOT uses three types of context models or context tables — the zero

coding tables (ZC), the sign coding tables (SC) and the magnitude refinement tables

(MR). 3-D ESCOT codes bit-planes from the most significant bit-plane to the least

significant bit-plane. 3-D ESCOT starts with ZC to code the beginning zeros until it

hits the first non-zero bit. 3-D ESCOT uses ZC to code the magnitude of the first

non-zero bit and SC to code its sign. For the remaining bits, 3-D ESCOT uses MR to

code their magnitudes. To match the characteristics of the WBCT coefficients, we

alter the ZC context table in 3-D-ESCOT. For the coefficients in the ordinary 2-D

wavelet subbands, we adopt the ZC context table (Table 4-5) in EBCOT [35]. But for

the coefficients in the directional subbands, the proposed Table 4-6 is the ZC context

table.

In Table 4-5 and Table 4-6, each “context” denotes a model, and the numbers of

non-zero coefficients are listed under the directions, H, V, and D1+D2, and X denotes

“Don't care”. Fig. 4-11(b) shows the neighbors and their notations we use in the

entropy coding. The neighbors include vertical neighbors (V), horizontal neighbors

(H), left-lower and right-upper neighbors (D1), and left-upper and right-lower

neighbors (D2). To code coefficient A in a wavelet subband of a bit-plane, we first

calculate the number of non-zero coefficients in all directions. For 2-D wavelets,
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based on the subband location and the non-zero coefficient patterns, we decide which

context in Table 4-5 is to be used to code this bit of coefficient A. Similarly, we code

the coefficients in the other directional subbands using Table 4-6.

Table 4-5. ZC context table for 2-D wavelet subbands

wavelet LL LH HL HH

subband

context |H| V | DI+D2 | V| H | DI+D2 | H+V | D1+D2
8 2| X X 2| X X X >3
7 1| =1 X 1| =1 X >1 2
6 1|0 >1 1|0 >1 0 2
5 1|0 0 1|0 0 >2 1
4 0| 2 X 0| 2 X 1 1
3 0] 1 X 0] 1 X 0 1
2 0| O >2 0] 0 >2 >2 0
1 0] 0 1 0] 0 1 1 0
0 0| 0 0 0| 0 0 0 0

Table 4-6. ZC context table for directional subbands

Directional LH 4-0 LH 4-1 HL 4-2 HL 4-3 LH4-3 HL 4-1 LH4-2 HL4-0
subband HH4-0 - HH4-2 | HH4-1 HH4-3
context D2+H |V D1 | DI+H | V. _[D2| D2+V ["H |DI|{ DI1+V | H |-D2 | D1 | H+V | D2 | D2 | H+V | DI

8 >2 X | X =2 X | X >2 X | X =2 X | X |2 X X 2 X X
7 1 >1 | X 1 >1 | X 1 >l | X 1 >l X |1 =1 X 1 =1 X
6 1 0 | =1 1 0 | =1 1 0 =1 1 0 | =11/ 0 =1 1 =1
5 1 0|0 1 0 0 1 0 |0 1 0 0 1 0 0 1 0 0
4 0 2| X 0 2 | X 0 2 | X 0 2 X |10 =2 X 0 >2 X
3 0 1] X 0 1| X 0 1| X 0 1 X |10 1 X 0 1 X
2 0 012 0 0|2 0 0] 2 0 0 2 0, 0 2 0 0 2
1 0 0|1 0 0 1 0 01 0 0 1 0 0 1 0 0 1
0 0 010 0 0 0 0 01]0 0 0 0 10 0 0 0 0 0

Fig. 4-13 shows the frequency responses of the WBCT directional filters. We
notice the aliasing phenomenon in WBCT [69]. Because the directional filters are not
ideal filters, their outputs contain aliasing components. Thus, the outputs of a certain
filter populate not only along one direction but also along another direction (with less
energy). Consequently, the context model in arithmetic coding becomes less accurate
or its coding efficiency is reduced. We may reduce aliasing by adopting a sharper (and

thus longer) filter but the computation time would then increase.
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Chapter 5 Enhanced
Direction-Adaptive Wavelet Image

and Video Coding

5.1 Direction Alignment Algorithm

A typical 2-D DWT conducts two 1-D DWTs. sequentially. For example, it
applies a 1-D DWT vertically (along column) to an image and then down-samples the
low-pass output and high-pass output vertically to produces the L subband (even rows)
and H subband (odd rows). The image rows are split into two subbands and thus this
operation is called row. transform in [32]. Then, the horizontal 1-D DWT and
down-sampling process is applied along the rows of these two subbands. The columns
of L are spilt into LL (even columns)‘and LH (odd columns) subbands and those of H
are split into HL (even columns) and HH (odd columns) subbands (column transform).
This transform and subsampling order is called row-column (RC) subsampling pattern
in [32]. We can reverse the order of the above two transform and down-sampling
processes and the result is the column-row (CR) subsampling pattern. The 2-D
DA-DWT also conducts two separable 1-D DA-DWTs using either the RC or CR

subsampling pattern. Other subsampling patterns are possible but we consider only
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these two subsampling patterns in this study. In this section, the direction alignment

algorithm designed for 2-D DA-DWT is based on the RC subsampling pattern. It can

easily be extended to the CR subsampling pattern in a similar way.

We first apply the vertical 1-D DA-DWT to an image. Nine wavelet candidate

directions in [28] are used and they are labeled from -4 to 4 in Fig. 5-1(a). We

partition an FxFy image into non-overlapping By*By blocks. We label a block with

its coordinates (i, j) as B(i, j), 1<i<(Fu/Bm), 1<j<(Fw/Bw). Each block B(i, j) is

associated with a set of prediction errors {Dj(i, j; d,)};€ach corresponds to a vertical

candidate direction. d, in Fig. 5-1(a) -4<d,<4. We choose the sum of absolute

high-pass coefficients as the prediction error because the absolute value and the

squared value result-in similar performance for video coding [50]. The DA-DWT

selects the best direction based on the minimum {D3(i, j; dy)} for each B(i, j). It often

produces different directions of mearby blocks as shown in Fig. 5-2, which leads to

higher side information bits. According to the rate-distortion theory, the optimal

direction should be decided based on both bits and distortion. Therefore, we thus try

to align the directions of neighboring blocks using the Lagrangian cost function. Fig.

5-3 shows the flow chart of proposed direction alignment algorithm. Step Al aligns

the block directions in similar-texture regions. It scans through the entire image. Steps

A2 and A3 align the directions of isolated blocks and small-cluster blocks. They
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adjust directions of local areas.

(a)

O original integer pixel

Fig. 5-1. Direction indices: (a) vertical candidate direction d, and (b) horizontal candidate direction d,

[28].

vertical block index

g 10 20 } 30 40 . 50 60
(a) Barbara horizontal block index

Lena.

(b) @4

$3 Interpolated quarter pixel

vertical block index

(b) Lena b ﬁorizoarztal bfgck insziex -
Fig. 5-2. T The best vertical direction d, of each 8%8 block based on minimal prediction errors. The
indices of direction d, are specified by-Fig.-5-1(a). Fig. 6-6 shows the original images of Barbara and

Step A1. Aligning Block Directions
in Similar-Texture Regions

Step A2. Adjusting Directions
[N

of Isolated Blocks

N Step A3. Adjusting Directions

of Small-Cluster Blocks

Fig. 5-3. Flow chart of proposed direction alignment algorithm.

5.1.1. Step Al: Aligning Block Directions in

Similar-Texture Regions

We follow the left-right, top-down scanning order in processing image blocks.
We choose the best direction for each block first based on the minimal prediction error.
In similar-texture regions, some candidate directions have prediction errors of similar

magnitudes. In this case, choosing one direction or the other does not change the

distortion much. We like to merge the directions of these blocks into one.
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) .

GB nt1_r1 GB n2 r1 GB n2 r2 GB n2 r3 GB n2 r4 GB n5_r1
a) pattern n7, 1 orientation case b) pattern n2, 4 orientation cases e) pattern n5, 1 orientation case
GB n3 r1 GB n3.r2 GB_n3 r3 GB n3 r4 GB _n4_r1 GB_n4_r2 GB_n4_r3 GB_n4_r4
(c) pattern n3, 4 orientation cases d) pattern n4, 4 orientation cases
I:‘ block B . current block B, . neighboring block B, D a group of blocks GB

Fig. 5-4. Patterns and orientation cases of GB.

We examine the optimal R-D wavelet direction of a group of blocks (GB) in Fig.
5-4. It consists of 5 patterns: 1-block, 2-block, 4-block, 6-block, and 9-block. Each
pattern may contain several cases due to_different pattern orientations. For example,
the 2-block pattern.(72) has 4 cases corresponding to the 4 possible orientations
shown in Fig. 5-4(b), where the green block is the current block-under consideration.
We define other patterns and their associated orientation cases similarly. Fig. 5-5 and
Fig. 5-6 show the pseudo code of Step Al.

We adopt GB n3 in Step Al. GB n3(m, n) is made of 4 B(i, j)s: {B(i, j),
m-1<i<m+1, n-1<5<n+1, B(i, j) € GB n3(m, n)}. For a given GB _n3(m, n), a
candidate direction d, produces a GB distortion defined by (5-1). This GB distortion,
Dgp n3(m, n; d,), consists of 4 components — 4 block distortion, Dg(i, j; d,), using the

current candidate direction.
m+l  n+l

Dy s(mym;d)=Y > Dy(i, j;d,), B, j)eGB_n3(m,n) (5-1)

i=m—1 j=n-1
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The best group direction, dgg n3em ), of @ GB_n3(m, n) is chosen based on the

minimum prediction error among all candidate directions. However, one block can

belong to four GB n3(m, n)s depending on the choice of origin. That is, if we slide

the GB_n3(m, n) pattern over an image, we get its four position or orientation cases,

GB n3 rl ~ GB_n3_r4, defined in Fig. 5-4(c). Thus, a block B(i, j) has four possible

best GB directions using four orientation cases: GB_n3 rl ~ GB_n3 r4. We count the

occurrence of GB directions of four ' orientation cases. The maximum value of

occurrence number, moc¢, ranges from 1 to 4. Fig. 5-7 shows the moc of two test

images. The larger moc appears-in the smooth or the.similar-texture regions and the

smaller moc often locates at region boundaries.

moc_table = zeros((Fy/By), (Fy/By));
d_offset=5; % d,=-4~4, thus we set d_offset =5 to match the array index.

% (Part A) Find the moc of a block B using GB_n3
fori=1:(Fy/By)
forj=1:(Fy/By)
d_temp_buffer = zeros(1, 9);

for GB = GB_n3
Dy = zeros(1, 9);
ford=d,
for m =i-1:i+1
for n =j-1:j+1
if(B(m, n) € GB)
Dp(d + d_offset) += Dy(m, n, d);
% Dg(m, n, d) is prediction error of B(m, n) corresponding to direction d
end
end
end
end
find the best direction d;; of GB based on the minimum candidate in D ;;;
d_temp_buffer(d;; + d_offset)++; % accumulate the occurrence of d;;
end

moc_table(i, j) = the maximum element of d_temp_buffer;
end
end

Fig. 5-5. The pseudo code of Step A1, part A.
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% (Part B) Find the d; ,; of a block B
fori=1:(Fy/By) B
forj=1:(Fy/By)
% set the considered GB based on moc
if(moc_table(i, j) <2)
considered_GB = GB_nl && GB_n2;
end
if(moc_table(i, j) == 3)
considered GB =GB nl && GB n2 && GB _n3 && GB_n4;
end
if(moc_table(i, j) == 4)
considered_ GB =GB _nl && GB_n2 && GB_n3 && GB_n4 && GB_n5;
end

cost_temp_buffer = zeros(1, 9);
cost_temp_buffer = cost_temp_buffer + 10000000000;
% We assume 10000000000 is the up limit of the Lagrangian cost.

% calculate the corresponding Lagrangian cost of each considered GB
for GB = considered_GB
Dy = zeros(1, 9);

ford=d,
for m =i-1:i+1
for n=j-1:j+1

if(B(m, n) € GB)
D p(d + d_offset) += Dy(m, n, d);
end
end
end
end

find the best direction d;; of GB based on the minimum candidate in D;
set B(i, /) =B, of GB; Ly .= DBc(dGB) +2,41(R4,/Nep)s
if(cost_temp_buffer(d, + d_offset) <Lz ,,)
cost_temp_buffer(d., + d_offset) =L, 43
end -
end
find the aligned direction d; ,; of B(i; j) based on the minimum candidate in cost_temp_buffer;
end )
end

Fig. 5-6. The pseudo.code of Step A1, part B.
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Fig. 5-7. moc of each block (8%8 block size).
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To simplify the notations, we abbreviate GB n3(m, n) as GB n3 when its
coordinates are not important. The other symbols are abbreviated in a similar way.
The aligned direction dp 4; of a block B is derived by using the following procedure.
Assuming B, is the current block (green color) in Fig. 5-4. We calculate the
Lagrangian cost function of each orientation case in Fig. 5-4. We take the 4-block
pattern case of GB n3 rl (Fig. 5-4(c)) as an example. Its Lagrangian cost function
Lg n3 r1 41 1s calculated by (5-2).

Les vs 11 at = Ppcp 5 1)+ A (Ryy | Nogs 1) (5-2)
where Dpc(dgg n3 r1):1s the prediction error of B, using dgs 3 r15-the best direction of
GB_n3_rl, and Nigg »3 1 1s the total number of blocks within GB n3 r/ and thus
Ngs 3 r1 = 4. The bit rate is derived under the assumption that 9 candidate directions
occur equally likely with the same probability 1/9 and thus Ry, is logy(9) for all cases.
The Lagrangian multiplier 44; is‘chosen empirically. Each orientation case in Fig. 5-4
results in one Lagrangian cost function. We select the aligned direction dp 4; for a
block B based on the minimum Lagrangian cost function. The adopted GB patterns for
a block B depends on moc of B as follows.

Next, we examine the distribution of directions of all cases for the current block.
The maximum occurrence (of a candidate direction) is called moc as defined earlier.

The moc gives the texture orientation information surrounding that block. A larger
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moc implies most blocks in its neighborhood have similar-texture, and in contrast, a
smaller moc (say, moc < 2) often indicates it locates at object corners or boundaries.
In the case of complex surrounding texture, the smaller patterns (say, the 2-block
pattern) show more consistent directions. However, moc ties appear often and we use
the following rules to make the final decision. If moc < 2, we choose the direction
associated with GB pattern n/ or n2, because the current block is likely located in a
complex region. When moc = 3, the direction comes from GB pattern n/, n2, n3 and
n4. When moc = 4, the direction comes from all GB patterns.

Fig. 5-8 shows dg 4; of all"blocks after Step Al. The neighboring blocks in
similar-texture or smooth regions now have consistent directions.. But still there are
some isolated blocks; which are expensive in sending side information. Therefore, we

design the Step A2 next to reduce 1solated blocks.

vertical block index
vertical block index

10 20 30 0 50 60
(a) Barbara horizontal block index (b) Lena horizontal block index

Fig. 5-8. Aligned directions after Step A1 (8x8 block). The circles indicate isolated blocks.

30 40 50 60 10

5.1.2. Step A2: Adjusting Directions of Isolated Blocks

Let B be an Isolated Block (IB) if its direction dp 4; differs from all its 4
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neighboring blocks after Step Al. Fig. 5-8 shows some /Bs in circles. If a block B is
IB, we adjust its direction by Step A2 and the new direction is denoted as dz 4. Fig.

5-9 shows the pseudo code of Step A2.

d_offset=4; 1IB_table = zeros((Fy/By), (Fy/By));

% record the location of IB
fori=1:(Fy/By)
forj=1:(F,/By)
if(B(i, j) == IB)
IB_table(i, j) =1;
end
end
end

% Find the d; ,, of IB
while(sum of IB_table ~= 0)
fori=1:(Fy/By)
forj=1:(Fy,/By)
if(IB_table(i, j)) == 1)
cost_temp_buffer = zeros(1,9);
cost_temp_buffer = cost_temp._buffer +10000000000;

% calculate the corresponding-Lagrangian cost of each considered GB
for GB =GB _nl && GB_n2 && GB_n3 && GB _n4 && GB_n5
if(B,, of GB have identical direction dBmEGB && 1B_table of B, == 0)
%B,, can be IB with d; ,, but not d; 4.
set B(i, /) = B, of GB;  Lgp 4= Dy (dy - cgp) + 245(R 1/ Nep);
if(cost_temp_buffer(d;z; + d_offset) <L, ,,)
cost_temp_buffer(d , +d_offsety="L¢p 45
end 1
end
end

if(the minimum candidate of cost_temp_buffer < 10000000000)
find the aligned direction‘'dy , of B(i,j) based on the minimum candidate in cost_temp_buffer;
IB_table(i, j) = 0; h

end

end
end
end
end

Fig. 5-9. The pseudo code of Step A2.

We set IB as B, in Fig. 5-4 and calculate djz 4, as follows. We take GB_n3_rI as

an example. The Lagrangian cost function, L Gz »3 1 42, 1s defined by (5-3).
LGBin37r17A2 = DBL (dB(.nEGBinj’fr]) + A’A2(RA2 / NGBJL?J‘I) (5'3)
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We consider the case that all the neighboring blocks, B.,, within GB_n3 rl (B., €

GB_n3_rl) in Fig. 5-4(c) must have identical directions dgcueGa n3 r1. Ben € GB_n3_rl

may have inconsistent directions after Step A1l. We discard the case with inconsistent

B., directions. An /B may still be /B after Step A2 and we re-define its direction as

dis 42. We also adopt these IBs as B., for future processing patterns in Fig. 5-4. If all

B., € GB_n3 rl have consistent direction, we define it as dpeegr n3 1. Let

Dp(dpenecn n3 r1) be the prediction rerror of ‘B using the direction dpeneGs n3 r1-

Ngs 3 r1 =4 as discussed earlier. We now estimate the side information bits R4, based

on the known direction information. For the current GB, we use the direction index of

its neighboring blocks (up, left, left-up) as a direction index predictor. If a block B is

not an /B, we chooseits Step Al aligned direction dp 4, as a predictor. For an /B, we

choose its Step A2 aligned direction djz 4> if we already known it. We encode the

prediction index differences of the current GB, which gives R4, as in [28]. In

calculating the Lagrangian cost function in Step A2, A4 is the Lagrangian multiplier

obtained empirically. For an /B, we use all GB patterns in Fig. 5-4 and calculate the

Lgp 42 in each orientation case. We select a direction djp 4, for IB based on the

minimum Lgp 42. We repeat the above procedure on all /Bs following the scanning

order.

After Step A2, we denote the directions of all blocks as dp 4. Fig. 5-10 shows
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the dp 42 of all blocks. Most IBs in Fig. 5-8 are eliminated. If an /B remains, it must
have a large R-D cost reason. Next, we find a few clustered blocks that have different
directions from their neighbors. If the cluster size is small, we like to re-examine their

R-D cost.

vertical block index
vertical block index
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(a) Barbara horizontal block index (b) Lena horizontal block index

Fig. 5-10. Aligned directions after Step A2 (8%8 block). The circles indicate small-cluster blocks.

5.1.3. Step A3: Adjusting Directions of Small-Cluster

Blocks

Djjimjafﬂ‘ ‘
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Fig. 5-11. Different t}q)es of small-cluster blocks. These blocks cannot be presented by a large square
block in quadtree partition.

The shapes of Small-Cluster Blocks (SCB) are defined by Fig. 5-11. An SCB is a
small group of blocks with a consistent direction, but their direction differs from those
of their surrounding blocks, as shown in Fig. 5-10. We are unable to present these

SCBs by a larger square block in quadtree partition. If a block B belongs to a SCB, we
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adjust its direction to dscp 43 by Step A3 below. Each SCB contains a number of
blocks. We process each block within SCB from left to right, top to down by Step A3.

Fig. 5-12 shows the pseudo code of Step A3.

d_offset=4; SCB_table = zeros((F,/By), (F/By));

% record the location of SCB
fori=1:(Fy/By)
forj=1:(F,/By)
if(B(i, j) == SCB)
SCB_table(i, j) =1;
end
end
end

% Find the d; ,; of SCB
while(sum of SCB_table ~= 0)
fori=1:(Fy/By)
forj=1:(Fy,/By)
if(IB_table(i, j)) == 1)
cost_temp_buffer = zeros(1,9);
cost_temp_buffer = cost_temp_buffer +10000000000;

% calculate the corresponding-Lagrangian cost of each considered GB
for GB =GB _nl && GB_n2 && GB_n3 && GB _n4 && GB_n5
if(B,, of GB have identical direction dBmEGB && SCB_table of B, == 0)
%B,, can be SCB with d, ,; but not d; ,,.
set B(,j) = B, of GB; Ly 43=Dg (dy . cop) + 243(R 45/Ngp);
if(cost_temp_buffer(d;z; + d_offset) < L;p ,3)
cost_temp_buffer(d , +d_offsety="L¢p 433
end 1
end
end

if(the minimum candidate of cost_temp_buffer < 10000000000)
find the aligned direction‘'dy ;; of B(i,j) based on the minimum candidate in cost_temp_buffer;
SCB_table(i, j) = 0; h

end

end
end
end
end

Fig. 5-12. The pseudo code of Step A3.

The directions of its surrounding blocks are the candidates, and the direction
alignment procedure is similar to that of Step A2. If block B. belongs to a SCB, we

calculate its Lagrangian cost function (eqn. (5-4)) of all cases in Fig. 5-4 for all its
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surrounding directions. Let us take GB _n3 rl as an example again. Its Lagrangian
cost function Lgg »3 11 43 15 as follows.

Log vs v1 a5 = DBC (dBmeGBfrﬁir]) + AR5/ NGBﬁnSﬁr}) (5-4)

We calculate the side information R,; in (5-4) in a similar way to R4, in (5-3).
Since a SCB often locates in the complex texture region, we adopt the value of 14, for
A43. Similar to Step A2, B., € GB_n3_rI must have a consistent direction dgc,eGs 13 r1-
Step A3 may still keep some SCBsunchanged. We define directions of these SCBs as
dscp 43. We also adopt the SCBs with directions dscp 437@s_B., for future process.
Dgc(dpenecs n3 r1) 1s the prediction-error of B, corresponding to dpeecs n3 1. We select

a direction dscp 43 for SCB based on the minimum Lgp 3.
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Fig. 5-13. Aligned directions after Step A3 (8x8 block).

10

Fig. 5-13 shows the results after Step A3. Clearly, compared to Fig. 5-10,
adjusting the directions of SCB helps in forming larger connected blocks. These large
connected blocks reduce the side information and thus improve the coding

performance. Step A2 adjusts the directions of /Bs and Step A3 adjusts those of SCBs.
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Images with low-resolution may contain complex textures inside a small region.
Aligning directions of these regions significantly increases prediction error. Thus,

applying Step A2 and Step A3 to low-resolution images is less desirable.

5.1.4. Step A4: Adjusting Directions of the Second 1-D

DA-DWT

Similar to the vertical 1-D DWT, the vertical 1-D DA-DWT decomposes an
FpxFy image into the spatial low-pass and high-pass subbands with size (Fu/2)xFy
each. Then, we apply the horizontal 1-D DA-DWT to the spatial low-pass subband
and then followed by a direction-alignment algorithm similar to-that of the vertical
1-D DA-DWT describe in the above. We start with partitioning the spatial low-pass
subband into non-overlapping (Bn/2)xBy blocks. The nine candidate directions for dj,
are defined by Fig. 5-1(b). Then, the 3-step direction alignment algorithm can be
applied to the low-pass subband blocks in a similar way. The spatial high-pass
subband usually contains little energy. Applying the horizontal 1-D DA-DWT to it is
inefficient. Thus, we apply the conventional horizontal 1-D DWT to vertical high-pass
subband to save side information [51].

A popular DA-DWT image coding structure adopts the quadtree partition to
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represent the partition information as illustrated by Fig. 5-14 [27][28][50]. Four

individual blocks (block size is By*xBy) often provide less prediction error but at the

cost of higher side information bits. A larger block (block size is (2B5)*(2By)) needs

fewer side information bits but produce large prediction errors. A well-designed

DA-DWT uses the Lagrangian cost function (R-D optimization) to find the optimal

trade-off between prediction errors and side information bits. For a multi-layer

quadtree, we need to calculate the-cost functions.of all possible partitions and then

choose the one with the'minimum overall cost. This exhaustive search is generally

impractical because.the total possible combinations are too huge. Also, the search for

the optimal Lagrangian multiplier 4, is another highly complicated job. Typically, a

larger A, puts more-weights on _bits and results in larger block partitions while a

smaller 4, does the opposite. In general, a 2-D DA-DWT scheme [51] may have

different block partition for the first (vertical) and the second (horizontal) 1-D

DA-DWT. In the experimental section, we adopt some existing quadree partition [52],

megablocking partition [15], and direction prediction techniques in coding the side

information.

As for the parameter selections, it may worth noting that both the distortion

model and bits model (bit estimation) adopted in the previous discussions do not

match exactly the coding distortion and the coding bits at the end. The exact models
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are too complicated in real images even if they exist. Therefore, a lot of the above

formulas are approximations and the parameters are tuned empirically. Although the

words “best” or “optimal” are sometimes used, they describe the cases under the

given assumptions or models. We cannot guarantee that they are the ultimate best or

optimal choices for the final coding results. With more accurate distortion and bits

model, the coding performance of the proposed scheme may be further improved.

/ Combing?
—_—
/ A 4
4
Z Di,BWxBH T ﬂ’tRBWxBH D(2BW (2B ) + ﬂ’tR(2BW)><(ZBH)
i=l1

Fig. 5-14. Quadtree combination with Lagrangian cost function. /,is the Lagrangian multiplier.

5.2 Direction Alignment Algorithm for

SA-DWT

The 2-D DWT applies two 1-D DWTs to an image along the vertical direction
and then the horizontal direction. The conventional 2-D DA-DWT applies two 1-D
DA-DWTs in a similar way. Different orders of these two 1-D DWTs have no effect
on the final results of 2-D DWT. But for DA-DWAT, if we reverse the order of two

1-D DA-DWTs, we may obtain different final results [31][56]. Under certain
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conditions given in [56], the order of applying 1-D DA-DWT is irrelevant; however,

those conditions are not satisfied practically. We thus discuss the selection of

subsampling patterns.

Three most commonly used subsampling patterns are RC, CR, and quincunx

(QU). The QU subsampling pattern is most effective for the strongly anisotropic

images. It is reported that for most nature images, its performance is not as good as

RC or CR [31]. Therefore, we only .consider the RC and CR patterns in this study.

We can examine individual block separately for.the RC and CR subsampling

patterns and select.one’ with better performance. This is the key idea behind the

subsampling and direction-adaptive DWT (SA-DWT) [32]. If two.neighboring blocks

have different subsampling patterns, it uses a phase-completion process to handle the

transform across their boundaries. Fig. 5-15 shows the 4 spatial subbands of different

subsampling patterns [32]. In/ this section, we propose an extended direction

alignment algorithm for 2-D SA-DWT.

We again partition an FyxFy image into non-overlapping blocks with ByxBy

block size. For the first 1-D SA-DWT, each block B(i, j) now has 18 candidate

directions, d, including 9 possible d, and 9 possible dj, in Fig. 5-1. The corresponding

prediction errors are denoted as {Dg(i, j; ds)}. The SA-DWT selects the best direction

based on the minimum {Djp(i, j; d;)} among all candidates. Fig. 5-16 shows the best
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direction of two test images. Neighboring blocks have inconsistent directions and

subsampling patterns. It results in a large amount of side information of directions and

subsampling patters. We extend the proposed direction alignment algorithm for the

2-D SA-DWT with some modifications on the original SA-DWT. Fig. 5-17 and Fig.

5-18 show the flow charts of our proposed direction alignment algorithms.
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Fig. 5-15. Four spatial-subbands of different subsampling patterns [32].
(a) Barbara10 ﬁorizoar?ltal bfg)ck in5(oiex * ’ (b) Lena " ﬁorizosgtal b?gck insgiex ” ’

Fig. 5-16. The best direction d; of each 8x8 block. The direction indexes -4 ~ 4 correspond to d, (-4 ~ 4)
and 5 ~ 13 correspond to d, (-4 ~ 4).

Step B1. Aligning Block Directions N Step B2. Aligning Block Directions N Step B3. Adjusting Directions L Step B4. Adjusting Directions
for Single Subsampling Pattern in Similar-Texture Regions of Isolated Blocks of Small-Cluster Blocks

Fig. 5-17. Flow chart of proposed direction alignment algorithm for the first 1-D SA-DWT.

Step C1. Aligning Block Directions N Step C2. Adjusting Directions L) Step C3. Adjusting Directions
based on Single Subsampling Pattern of Isolated Blocks of Small-Cluster Blocks

Fig. 5-18. Flow chart of proposed direction alignment algorithm for the second 1-D SA-DWT.

To simplify the process and reduce the distortion increased due to subsampling

pattern change at block boundaries, we start with only one single subsampling pattern
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(either RC or CR) applied to the entire image. We propose four steps to align
directions of the first 1-D SA-DWT in Fig. 5-17. Step B1 aligns block directions
based on a single subsampling pattern. We then choose the row transform or the
column transform (and the best direction) for each individual block. Step B2 aligns
directions in similar-texture regions. Step B3 and B4 aligns directions of isolated
blocks and small-cluster blocks.

Except best directions, the first 1-D SA-DWT also decide subsampling patterns
of each block. Thus, after the first 1-D SA-DWT, we execute the second 1-D
SA-DWT based on double subsampling patterns, RC.and CR, interlacing together. A
3-step procedure similar to Algorithm A aligns the directions.of the second 1-D
SA-DWT in Fig. 5-18. Step C1 aligns block directions based on a single subsampling
pattern. It also calculates the prediction errors for StepsC2 and C3. Steps C2 and C3

align the directions of isolated blocks and small-cluster blocks.

5.2.1. Step B1: Aligning Block Directions for Single

Subsampling Pattern

We adopt the direction alignment Algorithm A to align the directions of the first
transform based on one single subsampling pattern. We repeat the transform and
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alignment procedure twice: for RC and for CR. After the procedure is completed, each
B(i, j) has two candidate first directions, ds ;) rc 51 € d, and dag j cr 81 € dp,
corresponding to RC and CR. Fig. 5-19 shows separately the aligned first directions
for two subsmapling patterns. In fact, Fig. 5-19(a) and Fig. 5-19(c) are identical to Fig.

5-10(a) and Fig. 5-10(b).
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Fig. 5-19. The aligned first direction of the entire image (8x8 block). Direction indexes in (a)(c) and
(b)(d) are specified by Fig. 5-1(a)(b). (a)(c) are the same as Fig. 5-10(a)(b).

5.2.2. Step B2: Aligning Block Directions in

Similar-Texture Regions

Next, we choose both the direction and subsampling pattern together in Step B2.

Fig. 5-20 and Fig. 5-21 show the pseudo code of Step B2. For simplicity, we use only
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one GB pattern in this step, namely, GB_n3, which is a 4-block pattern defined in Fig.
5-4(c). Each orientation of GB_n3 has a set of 18 prediction errors {Dgg n3(m, n; dy)},
which is calculated using (5-1) in a similar way. We choose the best direction for an
orientation of GB_n3 based on the minimum {Dgp ,3(m, n; dy)}. The best direction
belongs to one of two subsampling patterns, RC or CR. Each GB n3 has four
orientation cases, GB n3 rl ~ GB n3 r4 in Fig. 5-4(c). We count the occurrence

number of the best orientation-case directions that-belong to RC and call it ocrc.

ocrc_table = zeros((F/By), (FyiBy));
d_offset v=5; d_offset h=14;
% d,=-4~4,d,=-4~4, thus we set d_offset_v =35 and d_offset_h = 14 to match the array index.

subsampling_table = zeros((Fy/B), (Fy/By));
% This table records the subsampling pattern of each block, RC is 1, CR is 2.

% (Part A) Find the ocre of a block B using GB_n3
fori=1:(Fy/By)
forj=1:(Fy/By)
for GB=GB_n3
D = zeros(1, 18);
ford=d, and d,
for m =i-1:i+1

for n =j-1: j+1
if(B(m, n) € GB)
if(ded,)
Dp(d + d_offset_v) += Dy(mn, n, d);
else
Dp(d + d_offset_h) += Dy(m, n, d);
end
end
end
end
end
find the best direction d;; of GB based on the minimum candidate in D g;
if(dgg€d,)
ocrc_table(, j))t+; % accumulate the occurrence of d; € d,
end
end
end

end

Fig. 5-20. The pseudo code of Step B2, part A.

Fig. 5-22 shows the ocrc distributions of two test images. Often, the blocks
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with ocrc > 3 and those with ocrc < 1 form two different regions. The blocks locating

at region boundaries have ocrc = 2. Thus, we decide the subsampling pattern (RC or

CR) of B(i, j) based on its ocrc value. If ocrc > 3, it is RC; and if ocre < 1, it is CR.

% (Part B) Find the dj; 5, of a block B
considered GB =GB _nl && GB_n2 && GB_n3;
fori=1:(Fy/By)
forj=1:(Fy/By)
if(ocrc_table(i, j) > 3)
dg p=dp pc ;5 subsampling_table(i,j) =1; % subsampling pattern of B(, j) is RC
end
if(ocrc_table(i, j) < 1)
dp py=dp cg ;5 subsampling_table(i,j) =2; % subsampling pattern of B(, j) is CR
end
if(ocrc_table(i, j) == 2)

cost_temp_buffer = zeros(1,18);
cost_temp_buffer = cost temp_ buffer + 10000000000;
% We assume 10000000000 is the up limit of the Lagrangian cost.

% calculate the corresponding Liagrangian cost of each considered GB
for GB = considered_GB
Dy = zeros(1, 18);
for d=d, and d,
for m=i-1:i+1
for n =j-1:j+1
if(d €d,)
Dp(d + d_offset_v) += Dy(m, n,d);
else
Dp(d+d_offset_h) +=Dy(m, n, d);
end
end
end
end

find the best direction d;; of GB based on the minimum candidate in D g;

set B(i,j) = B, of GB; Ly p, =Dy (dgp) + Apy(Rp/Np)s

if(dgp € d, && cost_temp_buffer(d;; + d_offset_v) <L, )
cost_temp_buffer(d;, + d_offset_v)=L;; 5 -

end B

if(dgp € d, && cost_temp_buffer(d;; + d_offset_h) <L, 5,)
cost_temp_buffer(d;, + d_offset_h) = Ly 5, )

end B

end

find the aligned direction d g, of B(i, j) based on the minimum candidate in cost_temp_buffer;

if(dy p,€d,) )
subsampling_table(, j) = 1;

else
subsampling_table(i, j) = 2;

end

end
end
end

Fig. 5-21. The pseudo code of Step B2, part B.
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Fig. 5-22. ocrc of each 8x8 block.

We now try to align the blocks with ocrc = 2. If a block has an ocrc >3 or < 1, its
direction, dp 2, 1s set to dp rc 10T dp cr g1 s discussed previously. For a block with
ocrc = 2, similar to Step Al, we set it as Be in Fig. 5-4 then compute the
corresponding Lagrangian cost function, for instance, Lgz 13 r1 B2 by (5-5).

Loy sy =Dy g s )+ 4Ry I Ny 1) (5-5)
Again, Ngg »3 1 = 4 and Ap; is obtained empirically. We assume 18 directions
occurring with the same probability and set Rz, as logs(18) for all cases. dgp 3 »1 1S
the best direction of GB_n3 _ri. 1t is either d, or d, in Fig. 5-1. Dg.(dgs n3 1) 1s the
prediction error of B, corresponding to dgg »3 r1- A block with ocre = 2 usually locates
on the region boundaries in Fig. 5-22. We thus consider only the GB patterns of n/, n2,
and n3 here. We calculate Lgp > for each case and pick up the best direction with the
minimum Lgp g2 as dp g2 for the current block under consideration. Fig. 5-23 shows
the aligned first directions after Step B2. As expected, the neighboring blocks with

similar-texture regions have consistent directions and subsampling patterns. Again, a
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few isolated or small-cluster blocks still remain.
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Fig. 5-23. The aligned first directions after Step B2 (8x8 block). The direction indexes -4 ~ 4
correspond to d, (-4 ~4) and 5 ~ 13 correspond to dj, (-4 ~ 4) in Fig. 5-1. The circles indicate isolated
blocks.

5.2.3. Step B3: Adjusting Directions of Isolated Blocks

The isolated block (IB) definition here is the same as that in Step A2 except that
each block has 18 possible directions (not 9 directions). Fig. 5-23 shows some IBs in
circles. Fig. 5-24 shows the pseudo code of Step B3. We adopt the procedure of Step
A2 for Step B3 except that the Lagrangian cost funetion (eq. (5-3)) is replaced by
(5-6).

Lo us 1 53 =Dy (dy o5 03 1)+ Ags(Ryy I Nog 5,1 (5-6)
In Step B3, the subsampling pattern (RC or CR) is decided by its ocrc (ocrec > 3 or <
1). If the ocrc of the current B. is > 3 or < 1, we align its direction to those B, with
the same subbsampling pattern. If ocrc = 2, we align its direction to the directions of
all B., in GB without considering the subsampling pattern. All cases in Fig. 5-4 are

included in the selection process. The conditions of B,, € GB n3 rl are similar as
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those in Step A2. B., € GB_n3 rl must have a consistent subsampling pattern and

directions dpcnecs n3 ri- Dp(dpenecn 3 +1) 1s the prediction error of B. corresponding to

dpenecn n3 r1- The final selection is based on the minimum Lagrangian cost function

and the final selected direction is denoted as djp p3. Again, in calculating Rp;, we

assume a direction index predictor is in use [28], similar to the calculation of R,. 453

is the Lagrangian multiplier obtained empirically.
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d_offset_ v=35; d_offset_h=14; IB_table=zeros((F,/By), (Fy/By));

% record the location of IB
fori=1: (Fy/By)
forj=1:(Fyu/By)
if(B(i, j) == IB)
IB_table(i, j)=1;
end
end
end

while(sum of IB_table ~= 0)
fori=1:(Fy/Bp)
forj=1:(F,/By)
if(IB_table(i, j)) == 1)
cost_temp_buffer = zeros(1, 18);
cost_temp_buffer = cost_temp_buffer + 10000000000;

% calculate the corresponding Lagrangian cost of each considered GB
for GB=GB_nl && GB_n2 && GB_n3 && GB_n4 && GB_n5
if(B,, of GB have identical direction d; ., and subsampling pattern && IB_table of B, == 0)
%B,, can be IB with d, ,; but notd,
set B(i,j) = B, of GB; Ly 3 =Dy (dp . ecn) + 4p5(Ry3/Ngp);
if(dgp € d, && cost_temp_buffer(dg; + d_offset_v) < Lsp 53 && ocre_table(i, j) = 2)
cost_temp_buffer(dgy + d_offset_v)=Lgp ps 3
end h
if(d;p € d;, && cost_temp_buffer(d;; + d_offset_h) <L, p; && ocrc_table(i, j) <2)
cost_temp buffer(d, +d_offset_h) =L 53 .
end -
end
end

if(the minimum element of cost_temp_buffer <10000000000)
find the aligned direction d; 5; of B(i, ) based-on the minimum candidate in cost_temp_buffer;
if(d, 5; € d, && ocre_table(i, j) == 2)
subsampling_table(i, j) =1;

else
subsampling_table(i, j) = 2;
end
IB_table(i, j) = 0;
end
end
end
end

end

Fig. 5-24. The pseudo code of Step B3.

After Step B3, the directions of all blocks are renamed as dp p3. Fig. 5-25 shows

dp p3 of two test images. Most of IBs in Fig. 5-23 are eliminated.
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Fig. 5-25. The aligned first directions after Step B3 (8x8 block). The direction indexes -4 ~ 4
correspond to d, (-4 ~4) and 5 ~ 13 correspond to d), (-4 ~ 4). The circles indicate small-clustered
blocks.

5.2.4. Step B4: Adjusting Directions of Small-Cluster

Blocks

The small-cluster block (SCB) definition in Step A3 is also-adopted here. Fig.
5-25 shows some examples of SCBs in circles. We adopt the procedure of Step A3
except that the Lagrangian cost function (eq.(5-3)is replaced by (5-7) in Step B4. Fig.
5-26 shows the pseudo code of Step B4

LGBfn37r1fB4 =Dy (dBC,,eGBin.?frI) + /134 (RB4 / NGBﬁn.’s’frI) (5-7)

For the subsampling pattern selection of B,,, it decided by the ocrc of the current
block in a similar way to Step B3. After picking up the best direction based on the

Lagrangian cost function, the directions of all blocks are denoted as dp zs. Two

aligned direction samples after Step B4 are shown in Fig. 5-27.
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d_offset_v=35; d_offset_h=14; SCB_table =zeros((Fy/By), (Fy/By));

% record the location of SCB
fori=1:(Fy/By)
forj=1:(F,/By)
if(B(i, j) == IB)
SCB_table(i, j) =1;
end
end
end

while(sum of SCB_table ~= 0)
fori=1:(Fy/By)
forj=1:(F,/By)
if(SCB_table(i, j) == 1)
cost_temp_buffer = zeros(1, 18);
cost_temp_buffer = cost_temp_buffer + 10000000000;

% calculate the corresponding Lagrangian cost of each considered GB
for GB=GB_nl && GB_n2 && GB_n3 && GB_n4 && GB_n5
if(B,, of GB have identical direction dy ..z and subsampling pattern && SCB_table of B, == 0)
%B,, can be SCB with d;; ,, but not d, ..
set B(i, ) =B of GB;  Lgp p, =Dy (dy cop) T 4p/(Rp/Nep)3
if(dgp € d, && cost_temp_buffer(d;;+ d_offset_v) < L., p, && ocrc_table(, j) > 2)
cost_temp_buffer(dgy + d-offset v) = L, .3 P
end )
if(dgp € d,, && cost_temp_buffer(d;, + d_offset_h) <L, ., && ocrc_table(i, j) < 2)
cost_temp_buffer(d;; + d_offset_ h) =Lz 3 .
end )
end
end

if(the minimum element of cost_temp_buffer < 10000000000)
find the aligned direction d p, of B(i, j) based on the minimum candidate in cost_temp_buffer;
if(dy, p, € d,&& ocrc_table(i, j)==2)
subsampling_table(, j) = 1;

else
subsampling_table(i, j) = 2;

end

SCB_table(i, j) = 03

end
end
end
end
end

Fig. 5-26. The pseudo code of Step B4.

We have aligned the first directions and subsampling patterns using Steps B1 to

B4. This helps in reducing the side information and improving the coding

performance. The phase-completion process estimates the missing pixel from its

neighboring pixels with the same sampling phase. It induces a bit of the boundary

effect between two different subsampling patterns due to mismatch. The aligned
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subsampling patterns can also reduce this boundary effect. Similar to Steps A2 and A3,

Steps B3 and B4 are also less desirable for the low-resolution images.
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Fig. 5-27. The aligned first directions after Step B4 (8x8 block). The direction indexes -4 ~ 4
correspond to d, (-4 ~4) and 5 ~ 13 correspond to dj, (-4 ~ 4).

5.2.5. Step C1: Aligning Block Directions based on

Single Subsampling Pattern

Now, we apply the second 1-D SA-DWT to all blocks. Because the first 1-D
SA-DWT has decided the subsampling pattern of every block, the sampling pattern of
the second 1-D SA-DWT is thus decided, which is the complementary to the first one.
Consequently, the candidate directions under consideration must be consistent with
the specified subsampling pattern. In principle, we copy Steps Al to A3 to Steps C1 to
C3 for aligning the directions of the second 1-D SA-DWT. Because different
subsampling patterns interweave each other, the prediction error calculation for

aligning the second directions is tedious.
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fori=1:(Fy/By)
forj=1:(Fy/By)
if(subsampling_table (i, j)) ==1)
the first direction of By (i, j) = dy p, of B(i, j);
the first direction of B (i, j) = direction 0 of d,;
else
the first direction of By (i, j) = direction 0 of d,;
the first direction of B (i, j) = dy p, of B(i, j);
end B
end
end

% The process based on RC. B (i, j)’s first direction € d, and second direction € d,,.

Applying vertical 1-D DA-DWT to the test image in the process based on RC.

The size of two spatial subbands are (Fy / 2) x Fy.

Partitioning the spatial low-pass subband into (B, / 2) x B), blocks.

Applying Step A1 ~ Step A3 to the spatial low-pass subband.

Setting the aligned second directions to By (i, j).

Each By (i, j) has a set of prediction errors corresponding to the second direction from Step Al.

% The process based on CR. B (i, j)’s first direction € d;, and second direction € d,.

Applying horizontal 1-D DA-DWT to the test image in the process based on CR.

The size of two spatial subbands are Fy x (Fy/ 2).

Partitioning the spatial low-pass subband into B, X (B}, / 2) blecks.

Applying Step A1 ~ Step A3 to the spatial low-pass subband.

Setting the aligned second directions to B (i, j).

Each B (i, j) has a set of prediction errors.corresponding to the second direction from Step Al.

fori=1:(Fy/By)
forj=1:(Fy/By)
if(subsampling_table (i, /) == 1)
the second direction of B(i, j) = the second direction of B,(i, j);
the prediction errors of B(i, j) for Step C2 ~ Step C3
= the prediction errors of B,(i, j) corresponding to the second direction;
else
the second direction of B(i, j) = the second direction of B (i, j);
the prediction errors of B(i, j) for Step C2 ~ Step C3
= the prediction errors of B (i, /) corresponding to the second direction;
end
end
end

Fig. 5-28./The pseudo code of Step C1.

Fig. 5-28 shows the pseudo code of Step Cl. We assume the blocks with

different subsampling patterns can be processed independently. Thus, we calculate the

directions and prediction error of the second 1-D SA-DWT in two parallel processes,

one based on RC and the other based on CR, as illustrated by Fig. 5-29. We have

decided the directions of the first 1-D SA-DWT for every block. We label a block by

Brc(i, j) in the process based on RC and Bcr(i, j) in the process based on CR. If the
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subsampling pattern of B(i, j) is RC, we set the first direction of Brc(i, j) as da, ;) s

Otherwise, we set the first direction of Brc(i, j) as 0 of d,, the vertical 1-D DWT. We

set the first directions of B¢g(i, j) in the other process in a similar way. The purpose is

to make the cost function calculation easily. Certainly, this is an approximation. Fig.

5-30 shows the first directions of these two parallel processes.

|:| Bgdi; j): directions = dj g4

- Bgi, j): directions = vertical 1-D DWT

process based on
subsampling
pattern RC

process based on
subsampling

pattern S‘;

|:| B/, j): directions = horizontal 1-D DWT

- Begli, )): directions = dj g,

. B(/, j): subsampling pattern is RC

|:| B(j, j): subsampling pattern is CR

Fig. 5-29. The parallel processes for-handling an.image’s first direction.

After setting up the directions of the first transform in each of the two parallel

processes, we apply the specified the first 1-D DA-DWT and subsampling pattern to a

test image for each process. It results in the spatial low-pass and high-pass subbands

located in different rows for the first process and located in different columns in the

second process. We then can start the procedure of selecting the second transform

directions. This procedure is identical to Steps Al ~ Step A3. For the second

transform, we use 1-D DA-DWT for the spatial low-pass subband and use 1-D DWT
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for the high-pass subband. Applying the alignment algorithm Step Al ~ Step A3 to

each process separately, Fig. 5-31 shows the aligned second directions of spatial

low-pass subbands of each process.
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Fig. 5-30. The first direction of each 8x8block. (a)(b) are the two parallel processes of Barbara and
g(i)l((db)).are those of Lena. Direction indexes in (a)(c) and (b)(d) are defined by Fig. 5-1(a) and Fig.

Next, we need to merge the two processed processes into one image. In the first
parallel process, block Bgrc(i, j) has both valid the first transform and the second
transform. In the second process, block Bcr(i, j) also has valid the first transform and
the second transform. Therefore, we pick up these blocks and put them into the final
image as illustrated by Fig. 5-32. The merged image with selected directions is shown

in Fig. 5-33. The aligned second transform direction of block B(i, ) is denoted as dp;

j) c1 after Step C1. We can get the prediction error of the second transform when
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aligning directions. We assign the prediction errors to each block B(i, j) similarly for

following alignment.

>
w
>

vertical block index
vertical block index

10 20 30 40 50 60 “ 10 20 30 40 50 60 “+
(a) Barbara. RC horizontal block index (b) Barbara, CR horizontal block index
4 4
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Fig. 5-31. The aligned second directions of each 8x8 block. (a)(b) are two parallel processes of
Barbara and (c)(d) are those of Lena. Direction indexes in (a)(c) and (b)(d) are defined by Fig. 5-1(b)
and Fig. 5-1(a).

Bgrd, j) with its own second
direction

_—
process based on
subsampling
pattern RC

process based on
subsampling
pattern CR

B(i j): subsampling pattern is RC
- adopting second direction of
corresponding B/, /)

BeA/, /) with its own second
direction

B(i j): subsampling pattern is CR
adopting second direction of
corresponding B/, /)

Fig. 5-32. The parallel processes for handling the second direction.
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vertical block index

30 40 50 60

10 20 3 30 40 50 60 1 20
(a) Barbara horizontal block index (b) Lena horizontal block index

Fig. 5-33. The aligned second directions after Step C1 (8x8 block). The direction indexes -4 ~ 4
correspond to d, (-4 ~ 4) and 5 ~ 13 correspond to d;, (-4 ~ 4). The circles indicate isolated blocks.

5.2.6. Step C2: Adjusting Directions of Isolated Blocks

The isolated block (IB) definition of the second /-D SA DWT is similar to the
previous one. Fig. 5-33 shows some-/Bs in circles. We adjust the second directions of
IBs in a similar way to adjusting those of the first transform /Bs in Step B3. We align
the current block direction to the neighboring blocks with the same subsampling
pattern. The aligned second. direction 1s denoted as dp ¢ after Step C2; two test

images are shown in Fig. 5-34:

vertical block index

60

\ » = =
(a) Barpard®  forizofital bibck index * (b) Lena ' Forizofital bfSck index

Fig. 5-34. The aligned second directions after Step C2 (8%8 block). The circles indicate small-clustered
blocks.
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5.2.7. Step C3: Adjusting Directions of Small-Cluster

Blocks

The small-cluster blocks (SCB) definition is similar to the previous one. Their
second directions are adjusted in a similar way to Step B4. Fig. 5-34 shows some

SCBs. Fig. 5-35 shows the aligned second directions after this step.

vertical block index

0 30 40 50 60

10 20 3 30 40 50 60 1 2
(a) Barbara horizontal block index (b) Lena horizontal block index

Fig.15-35. The aligned second-dircctions after Step C3 (8%8 block).

The basic concepts: of Steps C1 to C3 are similar to those of B2 to B4,
individually. The 2-D SA-DWT needs to consider two subsampling patterns at the
same time and this complicates quite a bit the entire direction alignment process. Note
that the two-parallel processes operation is added into Step CI to reduce the
prediction error calculation. Also, Steps C2 and C3 are also less desirable for

low-resolution images

5.3 Prediction Residual Characteristics
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and 2-D MSA-DWT

5.3.1. Predication Residuals in Frequency Domain

In this section, we examine the frequency-domain energy distribution of the
temporal high-pass (prediction residual) signals. Because the DA-DWT partitions an
image into blocks and find the best filtering direction for each block, we thus study
the block characteristics. We partition natural images, T Ls, and T Hs into 8x8
blocks and we apply 64x64 2-D DFT to each block.

Fig. 5-36 shows the energy spectrum .of image blocks. Blocks with smooth
texture have narrow and strong energy peak located at low. frequencies. DWT
provides good compression performance for these blocks. Some blocks contain edges
along specific directions. Their energy spectrums have energy peaks spreading over a
short line segment at a specific angle (decided by the edge orientation). The
zero-frequency component has powerful energy. For repeated line patterns such as the
pants of Barbara (Fig. 5-36(a)), their spectrum contains periodic peaks spreading
along a line. The DA-DWT filters can be adjusted along specific directions and thus it
can represent edges and line patterns more efficiently. Blocks of T Ls show similar
property in Fig. 5-37. Therefore, DA-DWT also compresses T _Ls well and improves
the coding performance of wavelet-based image coding [45].
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Fig. 5-37. Frequency domain spectrum of some T L blocks.
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Fig. 5-38. Frequency domain spectrum of some T H blocks.

Fig. 5-38 shows the energy spectrum of T H blocks. The energy of most blocks

is quite low. For blocks with a somewhat significant amount of energy, a few blocks

have energy peak locating at low frequency.. These energy peaks contain much less

energy than those in Fig. 5-36 and Fig. 5-37. A number of blocks have edge or

line—type spectrums. Potentially, these blocks can be well represented by DA-DWT or

SA-DWT. There are many other blocks having spectrums spreading over a wide

region or even nearly the entire frequency plane. DA-DWT and SA-DWT do not

seem to offer more coding gains than the ordinary DWT on these blocks. Overall, the

edge and line-type blocks are not yet dominate the T H signals and the total energy of
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T H signals is much less than that of the T L signals; therefore, the advantage of T H
band, DA-DWT or SA-DWT on the overall coding efficiency is not dramatic although

they do provide some gains on the T H signal compression.

5.3.2. Transform Coefficients

It is reported that 1-D DCT with adaptive orientation compresses T H better than
2-D DCT because the latter spreads the energy to.a larger number of transformed
coefficients [43]. We examine-the-transformed coefficients of 2-D SA-DWT on
natural images, T ‘Ls, and-T Hs. The 1-D SA-DWT decomposes a block B into
spatial low-pass subband B; and spatial high-pass subband B. Another 1-D SA-DWT
decomposes B, into By and By. For all the transform coefficients in B, we calculate
the sum of absolute values and it.is denoted as SA4Vz. The other quantities, SAVj,,
SAVpy, SAVprr, and SAVpyy, are similarly defined for the coefficients in various

subbands. We then define the ratios between these quantities in (5-8) and (5-9).

B_ratio_1=(SAV, [\Ja, +54V, |Jo,)/s4V, (5-8)
B_ratio_2=(SAV, |w, +S4V, |Je,)/s4V, (5-9)

where w; and wy are the energy responses of the low-pass and high-pass wavelet

filters. Because the bit-plane coding technique is adopted for entropy coding, SAV is

in a way in proportional to the coding bits. Thus, this SAV ratio gives an indication of
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coding bits before and after transform. A ratio < 1 usually implies higher compression

efficiency.

These two ratios calculated for images, T Ls, and T Hs are shown in Fig. 5-39,

Fig. 5-40, and Fig. 5-41. For images and T_Ls (Fig. 5-39 and Fig. 5-40), the SA-DWT

produces both ratios at around 75% in average. In other words, after the wavelet

decomposition, the coding bits are generally fewer. It saves about 20% ~ 28% in SAV

in the first and the second transform. For T H in Fig. 5-41, the SA-DWT saves about

10% in SAV at most. Thus, the SA-DWT is less. efficient in coding T Hs. Many

blocks of T H have the second transform ratios largerthan 1'in Fig. 5-41(b)(d); that is,

the SAV value is .increased after the second transform. The effect of the second

transform on T_H will be further examined in the next sub-section:
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Fig. 5-40. The first and the second transform ratios of T Ls.
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Fig. 5-41. The first and the second transform ratios of T Hs

5.3.3. The Second Transform

We apply 2-D SA-DWT to blocks.of T.Hs and show the transform coefficients
in Fig. 5-42. Typically, the first 1-D SA-DWT concentrates energy into B, but the
second 1-D SA-DWT often spreads the energy into both B;; and By This is
consistent with the report that 2-D transforms compresses T H inefficiently because
of 1-D structures of T H [43]. Often, the 2-D transform spreads the energy of
coefficients and results in more coefficients.

We thus modify the original 2-D SA-DWT and call it 2-D MSA-DWT (modified

111



subsampling and direction-adaptive DWT). The 2-D MSA-DWT has the same first
transform as 2-D SA-DWT but it may or may not perform the second transform on B;.

The second transform is turned on when (5-10) holds.

SAV, >S4V, [\Jo, +S4v, [o, (5-10)

When (5-10) is not valid, we split the samples of B; in Fig. 5-15 into By, and By
without executing transform. This “no second transform” case is labeled by a

direction index of “5”.

- ' ‘DSADWT..
: ‘DSADWT ".
‘DSADWT '.

Fig. 5-42. The transform coefficients in T Hs after 2-D SA-DWT. The coefficients are displayed in
absolute value.
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Chapter 6 Experimental Results

6.1 Experimental Results of FMDT

We have discussed the three proposed algorithms that enhance a WBCT image
coding scheme in computation and/or complexity reduction. They are short length
2-D filters, a mean-shift-based decision, and new ZC context tables for ESCOT. In
this section, we examine the' impact  of -each’ algorithm towards the system
performance. And, putting them together; we compare the overall performance
between the 2-D DWT image coding scheme, the original WBCT image coding
scheme, and the proposed WBCT image coding scheme with three new aglorithms.

A few abbreviations are explained below. The original WBCT image coding
scheme can apply directional filtering to either all subbands (NDS1) or no subband
(NDS2). With our decision mechanism (WDS), we adaptively choose the subbands
for directional filtering. Moreover, the original WBCT scheme uses long length
directional filters (LLF), and our proposed image coding scheme uses short length
directional filters (SLF) instead. The no directional filtering (NDF) situation appears
when either the WDS declares that no subband needs directional filtering or the NDS2
strategy is adopted. There are two options for ESCOT: the original context tables (O)

designed for 2-D DWT coefficients or the proposed context tables (P) fine-tuned for
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the WBCT coefficients. Table 6-1 summarizes all the aforementioned abbreviations.

Table 6-1. Abbreviations for the adopted algorithms in the image coding scheme

Directional Transform
SLF Short Length directional Filter.
LLF Long Length directional Filter.
NDF No directional Filter.
Decision
NDSI No Decision, applying directional transform on all subbands (LH', HL!, and HH").
NDS2 No Decision, directional transform not applied.
WDS With Decision, applying directional transform on the chosen wavelet subbands.
Entropy Coder
0O ESCOT with the Original ZC context tables.
P ESCOT with the Proposed ZC context tables.

The notation of an image coding scheme consists of three parts: the directional
transform type, the decision; and the coder tables. For example, the 2-D DWT image
coding scheme is “NDF+NDS2+0”, the original WBCT image coding scheme is
“LLF+NDS1+0”, "and our proposed coding scheme with three algorithms is
“SLF+WDS(HL', HH')+P”. Note that the subbands selected by WDS are listed in the

parenthesis after WDS; and thus “WDS(LHI, HL', and HHI)” 1s the same as “NDS1”.

6.1.1. Short Length Directional Filters

Our test images are listed in Table 4-2. The experimental platform is Matlab
r2008b on a PC with Intel Core 2 Quad Q9400 CPU. First, we show the impacts of
filter length in terms of PSNR and run time by comparing “SLF+WDS+0O” and
“LLF+WDS+0O”. Fig. 6-1 shows their PSNR at various bitrates (bit per pixel, bpp).

Obviously, the image coding scheme with SLF has similar PSNR performances as
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that with LLF. Table 6-2 shows the run time of these two schemes and the image

coding scheme with SLF consumes only 10%~20% computational time of that with
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Fig. 6-1. PSNR of the image coding schemes with SLF

“LLF+WDS+0”)

and  LLF (“SLF+WDS+0O” and

Table,6-2. Run time of the-image coding schemes with SLF and LLF

Scheme SLF+WDS(HL!)+O SLF+WDS(HH)+0, | SLE+WDS(LH!, HL!, HH)+O
(Barbara, Fingerprint, Boat, Couple, average) (Pepper) (Elaine)
Run Time 4.547 sec 4.550 sec 8.203 sec
Scheme LLF+WDS(HL")+O LLF+WDS(HH")+O | LLF+WDS(LH', HL!, HH!)+O
(Barbara, Fingerprint, Boat, Couple, average) (Pepper) (Elaine)
Run Time 23.031 sec 23.026-sec 62.484 sec

6.1.2. Decision Algorithm

Next, we present the impacts of decision algorithm in terms of PSNR, MSSIM

[70] and run time among “SLF+WDS+0O”, “SLF+NDS1+0”, and “NDF+NDS2+0”

(the 2-D DWT coding scheme). MSSIM represents mean of structural similarity. A

higher MSSIM implies a better image subjective quality. Fig. 6-2 shows the PSNR of

the image coding schemes with and without decision. The image coding scheme with
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decision (“SLF+WDS+0") has similar PSNR performance as those without decisions

(“SLF+NDS1+0” and “NDF+NDS2+0”). Fig. 6-3 shows the MSSIM of the image

coding schemes with and without decision. Our proposed image coding scheme with

decision (“SLF+WDS+0") has similar MSSIM performance as “SLF+NDS1+0” and

has better MSSIM than “NDF+NDS2+0”. The visual quality improvement is most

obvious on some pictures such as Elaine.
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Fig. 6-3. MSSIM of the image coding schemes with and without decision (“SLF+WDS+0O”,
“SLF+NDS1+0”, and “NDF+NDS2+0”).

Fig. 6-4 shows portions of the original and the reconstructed images of Barbara
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and Elaine generated by these three schemes. Noticeably, “SLF+WDS+0O” and

“SLF+NDS1+0” show more texture details than “NDF+NDS2+0”. Table 6-3 shows

the run time of these schemes. “SLF+WDS+0O” saves about 50% computational time

comparing to “SLF+NDS1+0” but it needs roughly 70% extra computational time

comparing to “NDF+NDS2+0O”. In brief, the image coding scheme with decision,

“SLF+WDS+0,” achieves a good balance between quality and speed.

Table 6-3. Average run time of the image coding schemes with and without decision.

Scheme SLF+WDS+0 . | SLE+NDS1+0.| NDF+NDS2+0
Run Time 4.804 sec 8.206'sec 2.688 sec

SLF+NDS1+O

(b)  Originallmage ~ SLF+WDS(HH', HL', LH")+O SLF+NDS1+0 NDF+NDS2+0

Fig. 6-4. (a) Portions of the original and the reconstructed images of Barbara at 0.125bpp. (b) Portions
of the original and the reconstructed images of Elaine at 0.5bpp.

6.1.3. Proposed ZC Context Tables

Next, we examine the effect of the new ESCOT context tables in terms of PSNR

and run time. Table 6-4 shows the PSNR of the image coding schemes with the
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original and the new ZC context tables when the directional filters are SLF. And Table

6-5 shows the PSNR when the directional filters are LLF. The image coding schemes

with the new ZC context tables (“SLF/LLF+WDS+P”) have a slightly better PSNR

performance than those with the original ZC context table (“SLF/LLF+WDS+0O”) in

all cases. Moreover, Table 6-6 indicates that “SLF/LLF+WDS+P” consumes less

computation time than its “SLF/LLF+WDS+0O” counterpart in all cases. The context

table of “O” considers 26 neighbors in a 3x3X3 cubic but that of “P” considers only 8

neighbors in a 3x3 square. Clearly, “P” uses fewer mneighbors and consumes less

computation. Thus, our proposed context tables can also speed up slightly the coding

process.

Table 6-4. PSNR of the image coding schemes with

(directional filters = SLF):

the original and the.new ZC context tables

Test image Coding Shceme 0.125 0.25 0.5 0.75 1.0
bpp bpp bpp bpp | bpp
Barbara SLF+WDS(HL")+O 25.62 28.41 | 32.22 | 34.89 | 36.99
SLF+WDS(HL")+P 25.79 28.53 32.33 | 3496 | 37.11
Fingerprint SLF+WDS(HL")+O 22.64 2536 | 29.09 | 31.33 [ 33.25
SLF+WDS(HL")+P 22.64 | 2552 | 29.09 | 31.33 [ 33.25
Pepper SLF+WDS(HH")+O 30.49 33.34 | 35.54 | 36.85 | 37.96
SLF+WDS(HH!)+P 30.6 33.37 | 35.61 | 36.82 | 37.95
Elaine SLF+WDS(LH!, HL!, HH")+O 30.99 323 33.8 35.11 | 36.29
SLF+WDS(LH', HL!, HH")+P 31.09 32.31 | 33.84 | 35.12 | 36.37
Boat SLF+WDS(HL")+O 28.88 32.32 | 36.17 | 38.68 | 40.52
SLF+WDS(HL")+P 28.9 3242 ] 36.26 | 38.78 | 40.58
Couple SLF+WDS(HL")+O 26.92 29.33 | 32.58 | 34.81 | 36.48
SLF+WDS(HL!)+P 26.92 29.39 32.6 34.85 | 36.63
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Table 6-5. PSNR of the image coding schemes with

(directional filters = LLF).

the original and the new ZC context tables

Test image Coding Shceme 0.125 0.25 0.5 0.75 1.0
bpp bpp | bpp | bpp [ bpp
Barbara LLF+WDS(HLH)+O 2572 | 28.51 | 32.22 | 34.89 [ 37.01
LLF+WDS(HL")+P 25.86 28.71 32.41 34.96 | 37.11
Fingerprint LLF+WDS(HLH)+O 22.64 | 25.36 | 29.09 | 31.33 [ 33.25
LLF+WDS(HL')+P 22.64 | 2552 | 29.09 | 31.41 |33.26
Pepper LLF+WDS(HH")+O 3049 | 33.33 | 3556 | 36.81 |37.93
LLF+WDS(HH')+P 30.6 33.37 | 35.62 | 36.9 |38.07

Elaine LLF+WDS(LH!, HL!, HH")+O 30.99 | 32.29 | 33.94 | 3534 | 36.5
LLF+WDS(LH!, HL!, HH")+P 31.09 | 3233 34 35.38 | 36.53
Boat LLF+WDS(HL")+O 28.81 32.28 | 36.13 | 38.6 |40.46
LLF+WDS(HL!)+P 28.8 32.39 | 36.22 | 38.67 [ 40.58
Couple LLF+WDS(HL")+O 26.87 | 29.31 | 32.55 | 34.73 | 36.47
LLF+WDS(HL")+P 2693 | 29.37 | 32.56 | 34.79 | 36.53

Table 6-6. Run time of the'image coding schemes with different ZC context tables.

Scheme SLF+WDS(HL)+0 SLF+WDSHH")+O [. SLF+WDS(LH!, HL!, HH)+O
(Barbara, Fingerprint, Boat, Couple, average) (Pepper) (Elaine)
Run Time 4.547 sec 4.550 sec 8.023 sec
Scheme SLF+WDS(HL!)+P SLF+WDS(HH')+P | SLE+WDS(LH!, HL!, HH')+P
(Barbara, Fingerprint, Boat, Couple, average) (Pepper) (Elaine)
Run Time 4.203 sec 4.177 sec 7.813 sec
Scheme LLF+WDS(HL)+O LLF+tWDSHH")+O | LLF+WDS(LH!, HL!, HH')+O
(Barbara, Fingerprint, Boat, Couple, average) (Pepper) (Elaine)
Run Time 23.031 sec 23.026 sec 62.484 sec
Scheme LLF+WDS(HL")+P LLF+WDS(HH')+P | LLF+WDS(LH!, HL!, HH")+P
(Barbara, Fingerprint, Boat, Couple; average) (Pepper) (Elaine)
Run Time 22.391 sec 22.386 sec 62.256 sec

6.1.4. Overall Improvement

At last, we compare the performance of the entire image coding scheme for three

candidates: “LLF+NDS1+0O” (the original WBCT image coding scheme),

“NDF+NDS2+0” (the 2-D DWT image coding scheme) and “SLF+WDS+P” (our
proposed WBCT image coding scheme). Fig. 6-5 shows the PSNR of these three
coding schemes. Generally, our proposed “SLF+WDS+P” has better average PSNR

than the “NDF+NDS2+0” and its average PSNR is comparable with that of
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“LLF+NDS1+0”. Table 6-7 shows their run time. Our proposed scheme
“SLF+WDS+P” saves more than 92% computing time than “LLF+NDSI+O” (the
original WBCT image coding scheme). On the other hand, it costs 67% extra
computing time than “NDF+NDS2+0” (the 2-D DWT image coding scheme). Clearly,
our proposed scheme offers a good balance between computational complexity and
image visual quality.

Table 6-7. Average run time of the 2-D DWT scheme (NDF+NDS2+0), the original WBCT scheme
(LLF+NDS1+0), and the proposed scheme with three new algorithms (SLF+WDS+P).

Scheme SLF+WDS+P*| LLF+NDS1+0O [ NDF+NDS2+0
Run Time 4.499 sec 62.469 sec 2.688 sec
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Fig. 6-5. PSNR of the 2-D DWT /scheme (NDF+NDS2+0), the original WBCT scheme
(LLF+NDS1+0), and the proposed scheme with three new algorithms (SLF+WDS+P).

6.2 Experimental Results of SMDT

We have developed three algorithms for enhancing the coding performance of
DA-DWT and SA-DWT. First, the direction alignment algorithm for 2-D DA-DWT

aligns the directions of 2-D DA-DWT based on a single subsampling pattern RC.
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Then, an extended direction alignment algorithm for 2-D SA-DWT aligns the

directions of 2-D SA-DWT based the double subsampling patterns, RC and CR.

Finally, the proposed 2-D MSA-DWT improves the compression performance of 2-D

SA-DWT on T Hs by adaptively switching off the second transform performed on B;.

In this section, we simulate the proposed schemes on images and videos. We first

compare the prediction error and the side information of DA-DWT and SA-DWT

with and without direction alignment algorithms. Then, we compare the coding

performance with and <without the direction alignment algorithms. Finally, we

compare MSA-DWT and SA-DWT on T_Hs. Six test images are shown in Fig. 6-6

(512x512 image with 256 gray level). In addition, there are six MPEG test videos

listed in Table 6-13 (CIF video with 1420).

(a) Barbara

(d) Monarch (e) Pentagon (f) Spoke

Fig. 6-6. The test images (512x512 image with 256 gray level).

121



6.2.1. Direction Alignment Algorithm for DA-DWT

We compare the prediction error (sum of absolute coefficients in the high pass
subbands) and the side information of DA-DWT with alignment (DA-DWT-A) and
without alignment (DA-DWT). DA-DWT chooses the best direction (with fixed
subsampling pattern RC) for each partition block. We compare the side information
coded by the quadtree partition (SI-QP) [28][52] and the megablocking partition
(SI-MP) [15]. SI-QP includes the side information of quadtree partition and the
direction of each block. Except-these two pieces of side information, SI-MP includes
one more piece of side information used to indicate the megablocking partition of
each block. SI-MP codes the direction of each megablock instead of each block. A
megablock is composed of many connected-quadtree partition blocks of the same
direction. Thus, each megablock. contains onlyone direction. Therefore, large
megablocks save the total amount of side information.

We adopt the coding method in [52] for encoding the quadtree partition. For a
given block, the direction index predictor uses its left, up, and left-up blocks to predict
the current block direction. The prediction difference (error) is then coded [28]. In the
megablocking partition, we classify blocks into “inner blocks” and “boundary blocks”.
Each block has 4 neighboring blocks [55]. The inner block has all its neighboring

blocks inside the same megablock. On the other hand, a boundary block has at least
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one neighboring block from the other megablock [15]. We adopt the coding method in

[15] for encoding the megablock partition. We then adopt the run length coding

scheme to code these three pieces of side information [15]. Based on our data, we set

/1,41 = 8, /lAg = 4, and ﬂ,Ag =4 for all images.
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Fig. 6-7. Directions of the first transform after DA-DWT and DA-DWT-A (4x4 block). The direction
indexes -4 ~ 4 are identical to d, (-4 ~ 4) in Fig. 5-1(a).

Fig. 6-7 shows the first directions of several images after DA-DWT and
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DA-DWT-A. DA-DWT-A aligns directions and creates large megablocks. Table 6-8

and Table 6-9 show the prediction error and side information of three schemes (DWT,

DA-DWT, and DA-DWT-A). The Increment and Decrement are changes (in %) in

distortion and side information with the direction alignment algorithm. The proposed

alignment algorithm reduces about 38.90% in SI-QP at the cost of 1.76% increment in

prediction error in average. DA-DWT creates many isolated blocks and results in

large SI-MP in Table 6-9. The propesed alignment algorithm creates large megablocks

and saves about 69.10% in. SI-MP.

Table 6-8. Prediction errors of the first transform.

DWT DA-DWT DA-DWT-A Increment

Barbara 512922.314 329705.753 338734.072 +1.760%
(100%) (64.280%) (66.040%)

Elaine 672054.724 494316.594 504065.074 +1.451%
(100%) (73.553%) (75.004%)

Lena 332228.596 272420.695 283420.955 +3.311%
(100%) (81.998%) (85.309%)

Monarch 405322.749 301468.907 310280.483 +2.174%
(100%) (73.378%) (76.552%)

Pentagon 591543.922 450194.050 459085.593 +1.503%
(100%) (76.105%) (77.608%)

Spoke 907817.169 544294.268 551541.042 +0.798%
(100%) (59.956%) (60:755%)

Table 6-9. Side Information in bits of the first transform using two side information coding schemes.

Quadtree Partition Megablocking Partition

DA-DWT DA-DWT-A | Decrement | DA-DWT | DA-DWT-A | Decrement

Barbara 23695 14192 -40.105% 29858 9057 -69.667%
(100%) (59.895%) (100%) (30.333%)

Elaine 29409 18814 -36.026% 38096 13258 -65.198%
(100%) (63.974%) (100%) (34.802%)

Lena 27629 15973 -42.188% 34832 10616 -69.522%
(100%) (57.812%) (100%) (30.478%)

Monarch 27665 16983 -38.612% 35379 11707 -66.910%
(100%) (61.388%) (100%) (33.090%)

Pentagon 26039 16911 -35.055% 35112 13439 -61.725%
(100%) (64.945%) (100%) (38.275%)

Spoke 24956 14626 -41.393% 30802 9364 -69.599%
(100%) (58.607%) (100%) (30.401%)
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6.2.2. Direction Alignment Algorithm for SA-DWT

We compare the prediction error and the side information of SA-DWT with
alignment (SA-DWT-A) and without alignment (SA-DWT). SA-DWT chooses the
best direction among d, and dj, in Fig. 5-1 for each partition block. That is, both
direction and subsampling pattern are selected in the first transform. We also
implement and compare two side-information coding schemes, SI-QP and SI-MP. For
sending the side information of subsampling pattern, we use one more bit for each
block (or megablock) in" SI-QP-—(or SI-MP). We also code this subsampling
information by runlength.coding. Again, we set Az; = 8, Az; =4, and 1z, = 4.

Fig. 6-8 shows the first directions of test images after SA-DWT and SA-DWT-A.
The alignment algorithm in SA-DWT-A (described in section/III) aligns the directions
and the subsampling patterns. Table 6-10 and Table 6-11 show the prediction errors
and the side information of different schemes. The Increment and Decrement are
change (in %) in distortion and side information with direction alignment algorithm.
Comparing to DA-DWT, the SA-DWT offers smaller prediction errors at the cost of
more side information. The proposed alignment algorithm increases about 1.64% in
prediction error but saves about 34.71% in SI-QP (quadtree representation) in average.
Similar to DA-DWT, the SA-DWT has larger SI-MP (megablock) than SA-DWT-A

due to many isolated blocks. The proposed direction alignment algorithm reduces
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about 64.33% in SI-MP in average. So far, our implementation of SA-DWT shows

some advantages in perdition errors over DA-DWT but has disadvantage in the side

information bit rate.
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Fig. 6-8. Directions of the first transform after SA-DWT and SA-DWT-A (4x4 block). The direction
indexes -4 ~ 4 correspond to d,” (-4 ~4) and 5 ~ 13 correspond to dj, (-4 ~ 4).
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Table 6-10. Prediction errors of the first transform.

DWT SA-DWT SA-DWT-A Increment

Barbara 512922.314 327553.509 327678.521 +0.024%
(100%) (63.860%) (63.885%)

Elaine 672054.724 430522.407 445250.739 +2.486%
(100%) (72.659%) (75.145%)

Lena 332228.596 246194.604 258235.258 +3.624%
(100%) (74.104%) (77.728%)

Monarch 405322.749 229335.836 239349.809 +2.679%
(100%) (61.360%) (64.039%)

Pentagon 591543.922 354943.377 363918.102 +1.517%
(100%) (60.003%) (61.520%)

Spoke 907817.169 343166.137 338832.988 -0.477%
(100%) (37.801%) (37.324%)

Table 6-11. Side information in bits of the first transform using two side information coding schemes.

Quadtree Partition Megablocking Partition

SA-DWT SA-DWT-A | Decrement | SA-DWT | SA-DWT-A | Decrement

Barbara 30594 18302 -40.178% 37875 11021 -70.902%
(100%) (59.822%) (100%) (29.098%)

Elaine 36684 25352 -30.891% 44915 20871 -53.532%
(100%) (69.109%) (100%) (46.468%)

Lena 34719 23142 -33.345% 41782 14968 -64.716%
(100%) (66.655%) (100%) (35.824%)

Monarch 34423 22220 -34.450% 41795 13621 -67.410%
(100%) (64.550%) (100%) (32.590%)

Pentagon 31077 21458 -30.952% 40215 15404 -61.696%
(100%) (69.048%) (100%) (38.304%)

Spoke 31795 19547 -38.520% 36925 11927 -67.699%
(100%) (61.478%) (100%) (32.301%)

6.2.3. Image Coding

We compare the coding performance of three wavelet schemes. Scheme 1 is
three level 2-D DWT (2-D DWT x 3). Scheme 2 is one level 2-D SA-DWT together
with two level 2-D DA-DWT (2-D SA-DWT x 1 + 2-D DA-DWT x 2). Scheme 3 is
one level 2-D SA-DWT-A together with two level 2-D DA-DWT-A (2-D SA-DWT-A
x 1+ 2-D DA-DWT-A x 2). In the first level transform of last two schemes, we found
that SA-DWT is able to compact more energy into the low-pass subband.

The SA-DWT adopts the phase-completion process to implement the lifting

scheme in the transition between two different neighboring subsampling patterns [32].
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It estimates the missing pixels from the neighboring pixels with the same subsampling

phase. This may lead to mismatch and boundary effect problem and thus reduce the

coding performance [29]. Therefore, when the mismatch problem becomes more

serious at lower resolutions (higher transform levels), we adopt DA-DWT for the

second and the third level transforms. We use variable block sizes from 4x4 to

128x128 to partition images. We set A4 =8, Ao =4, A3 =4, Ap2 =8, Ag3 =4, and Aps =

4 for the direction alignment algorithm at different levels. We set 4, = 12 for the

quadtree combination. We code the transformed coefficients by EBCOT [35] and the

side information by SI-MP (megablock). Table 6-12 shows the coding results.

Table 6-12. PSNR of different coding schemes.

Test Transform 0.125 0.25 0.5 0.75 1.0
Image Schemes bpp bpp bpp bpp bpp
Barbara 2-D DWT % 3 25.26 28.25 32.10 34.77 | 36.98

2-D SA-DWT x 1 + 2-D DA-DWT x 2 26.38 29.68 33.58 35.72 | 37.82

2-D SA-DWT-A x 1 +2-D DA-DWT-A x 2 26.64 29.91 33.64 35.85 | 37.86

Elaine 2-D DWT x 3 31.01 32.25 | 33.55 34.70 | 35.87
2-D SA-DWT x 1 + 2-D DA-DWT x 2 30.84 32.43 33.69 34.88 | 36.03

2-D SA-DWT-A x 1.+ 2-D DA-DWT-A x 2 31.20 32.39 33.73 3495 | 36.07

Lena 2-DDWT x 3 30.66 33.82 37.00 38.79 | 40.05
2-D SA-DWT x 1 + 2-D DA-DWT x 2 30.84 34.33 37.37 38.97 | 40.06

2-D SA-DWT-A x 1 + 2-D DA-DWT-A x 2 31.17 34.41 37.42 39.00 | 40.17

Monarch 2-D DWT % 3 27.09 30.35 35.55 39.08 | 41.69
2-D SA-DWT x 1 + 2-D DA-DWT x 2 26.89 30.93 35.80 39.23 | 41.61

2-D SA-DWT-A x 1 + 2-D DA-DWT-A x 2 27.18 31.03 35.92 39.27 | 41.67

Pentagon 2-D DWT x 3 26.95 28.66 31.36 33.39 | 35.07
2-D SA-DWT x 1 + 2-D DA-DWT x 2 26.73 28.97 31.78 33.95 | 35.54

2-D SA-DWT-A x 1 + 2-D DA-DWT-A x 2 27.06 29.17 31.85 33.97 | 35.63

Spoke 2-D DWT % 3 20.57 23.62 | 28.89 32.36 | 35.14
2-D SA-DWT x 1 + 2-D DA-DWT x 2 22.26 27.02 31.90 35.04 | 37.07

2-D SA-DWT-A x 1 + 2-D DA-DWT-A x 2 22.72 27.35 32.12 35.14 | 37.14

Table 6-12 shows the PSNR of three coding schemes. “bpp” means bit per pixel

in bit rate. “2-D SA-DWT x 1 + 2-D DA-DWT x 2” sometimes has the lowest PSNR

particularly at low bit rates due its huge side information. “2-D SA-DWT-A x 1 + 2-D
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DA-DWT-A x 2” needs fewer side information bits and outperforms “3 DWT” at all
bit rates. “2-D SA-DWT-A x 1 + 2-D DA-DWT-A x 2” also outperforms “2-D
SA-DWT x 1 + 2-D DA-DWT x 27, especially at low bit rates. The PSNR gain is

about 0.3dB~0.5dB at low bit rates.

6.2.4. Video Coding

As said in Section I, we adopted the interfarme wavelet structure [7] for our
video codec, in whichh MCTF [8]-[13] decomposes video frames into T Ls and T Hs.
As discussed in ‘section. 1V, because T Ls and T Hs have different signal
characteristics [43], we apply 2-D DA-DWT to T Ls and apply 2-D MSA-DWT to
T Hs.

We adopt four-level: MCTF for temporal transform and it generates 1 T L
subband and 15 T_H subbands (residuals) from 16 video frames [45]. Then, two-level
spatial transforms are applied to each temporal subbands (residuals). We design four
coding schemes using different combinations of spatial transforms. Scheme 1 applies
two-level 2-D DWT to all residuals (T_L(2-D DWT x 2), T H(2-D DWT x 2)).
Scheme 2 applies one-level 2-D SA-DWT together with one-level 2-D DA-DWT to

T Ls and two-level DWT to T Hs (T_L(2-D SA-DWT x 1 + 2-D DA-DWT x 1),

T H(2-D DWT x 2)). For similar reasons as discussed earlier, we use 2-D DA-DWT
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instead of 2-D SA-DWT for the second-level transform to avoid the mismatch

problem on T Ls. Scheme 3 use the two-level 2-D SA-DWT on T Hs (T _L(2-D

SA-DWT x 1 +2-D DA-DWT x 1), T H(2-D SA-DWT x 2)). Scheme 4 is similar to

Scheme 3 except that it adopts the two-level MSA-DWT on T Hs (T _L(2-D

SA-DWT x 1 + 2-D DA-DWT x 1), T H(2-D MSA-DWT x 2)). T H subband

usually composes of uniform small-coefficient smooth regions and large-coefficient

(prediction error) edge regions [43]./The small-coefficient regions help in reducing

the mismatch problem in 2-D SA-DWT because_they are close to zero. Thus, in

Schemes 3 and 4, we employ 2-D'SA-DWT and 2-D MSA-DWT for the second-level

spatial transform to reduce coefficients spreading:

For 2-D DA-DWT, 2-D SA-DWT and 2-D MSA-DWT, we partition the images

into blocks with size 4%x4 and.choose the best direction foreach block. We assume the

side information of these spatial transforms are all 0. The test video sequences are all

CIF format, 1420, and 30 fps. We compress 32 frames of different test video

sequences and code the transform coefficients by 3-D ESCOT [36]. Table 6-13 shows

the coding results of different test video sequences. “kpbs” means 1024 bits (kilobits)

per second in bit rate.

MCTF concentrates most energy into T Ls. Scheme 2 compresses T Ls well and

often outperforms Scheme 1 significantly in Table 6-13. In MCTF, T Ls and T Hs
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compose of “the same” and “different” components of video sequences. For video

sequences with fast moving objects, such as Stefan, T Ls contain less “the same”

components. The coding gain of scheme 2 is about 0.1dB for Stefan.

As discussed in section VI, in the second transform, 2-D DA-DWT and 2-D

SA-DWT could spread out coefficients in T_Hs. The 2-D MSA-DWT can switch off

the second transform and thus provides better coding performance than 2-D SA-DWT

on T Hs in Table 6-14.

Table 6-13. PSNR-of different coding:schemescon T Ls.

Test Spatial 128 256 512 1024 | 2048

Video Transform kbps kbps kbps kbps kbps
Sequence Schemes

Akiyo T_L(2-D DWT x-2); T-H(2-D DWT x 2) 41.11 4443 | 47.28 | 50.33 | 53.60

T_L(2-D SA-DWT x 1+ 2-D DA-DWT x 1), T_H(2-D DWT x 2) 41.81 4485 | 47.48 | 50.63 | 53.83

Bus T_L(2-D DWT % 2), T H(2-D DWT x 2) 26.37 | 29.78 | 32.62 | 35.74 | 39.33

T_L(2-D SA-DWT x 1+ 2-D DA-DWT x 1), T_H(2-D DWT x 2) 26.61 30.01 32.86 | 35.78 | 39.34

Foreman T _L(2-D DWT x 2), T_H(2-D DWT x 2) 33.64 | 36.61 39.29 | 41.76 | 44.25

T_L(2-D SA-DWT x 1+ 2-D DA-DWT x 1), T_H(2-D DWT x 2) 34.33 | 36.91 39.39 | 41.93 | 44.41

Mobile T_L(2-D DWT x 2), T_H(2-D DWT x 2) 2453 | 27.77. | 31.03 | 34.07 | 37.63

T_L(2-D SA-DWT x 1+ 2-D DA-DWT x 1), T_H(2-D DWT x 2) 25.22 /| 28.23 | 31.24 | 34.09 | 37.56

News T _L(2-D DWT x 2), T_H(2-D DWT x 2) 35.33 | 39.08 | 43.10 | 46.70 | 50.14

T_L(2-D SA-DWT x 1+ 2-D DA-DWT x 1), T_H(2-D DWT % 2) 35,50 | 89.29 | 43.12 | 46.86 | 50.34

Stefan T_L(2-D DWT x 2), T_H(2-D DWT x 2) 2556 | 29.33 | 32.78 | 35.77 | 39.02

T_L(2-D SA-DWT x 1+ 2-D DA-DWT x 1), T_H(2-D DWT x 2) 25.73 | 2945 | 32.85 | 35.71 | 39.00

Table 6-14: PSNR of different coding schemes.on T Hs.

Test Spatial 128 256 512 1024 | 2048

Video Transform kbps kbps kbps kbps kbps
Sequence Schemes

Akiyo T_L(2-D SA-DWT x 1+ 2-D DA-DWT x 1), T_H(2-D DWT x 2) 41.81 4485 | 47.48 | 50.63 | 53.83

T_L(2-D SA-DWT x 1+ 2-D DA-DWT x 1), T_H(2-D SA-DWT x 2) 41.84 | 44.88 | 47.54 | 50.65 | 53.80
T_L(2-D SA-DWT x 1+ 2-D DA-DWT x 1), T_H(2-D MSA-DWT x 2) 41.87 | 45.08 | 47.61 | 50.74 | 53.82
Bus T_L(2-D SA-DWT x 1+ 2-D DA-DWT x 1), T_H(2-D DWT x 2) 26.61 30.01 32.86 | 35.78 | 39.34

T_L(2-D SA-DWT x 1+ 2-D DA-DWT x 1), T_H(2-D SA-DWT x 2) 26.61 30.02 | 32.85 | 35.72 | 39.32
T_L(2-D SA-DWT x 1+ 2-D DA-DWT x 1), T_H(2-D MSA-DWT x 2) 26.64 | 30.13 | 33.10 | 35.90 | 39.38
Foreman T_L(2-D SA-DWT x 1+ 2-D DA-DWT x 1), T_H(2-D DWT x 2) 34.33 | 36.91 39.39 | 41.93 | 44.41

T_L(2-D SA-DWT x 1+ 2-D DA-DWT x 1), T_H(2-D SA-DWT x 2) 34.40 | 37.01 39.54 | 42.01 | 44.39
T_L(2-D SA-DWT x 1+ 2-D DA-DWT x 1), T_H(2-D MSA-DWT x 2) 3445 | 37.15 | 39.65 | 42.11 | 44.46
Mobile T_L(2-D SA-DWT x 1+ 2-D DA-DWT x 1), T_H(2-D DWT x 2) 2522 | 28.23 | 31.24 | 34.09 | 37.56

T_L(2-D SA-DWT x 1+ 2-D DA-DWT x 1), T_H(2-D SA-DWT x 2) 2525 | 28.20 | 31.21 | 34.02 | 37.47
T_L(2-D SA-DWT x 1+ 2-D DA-DWT x 1), T_H(2-D MSA-DWT x 2) 2526 | 28.24 | 31.33 | 34.27 | 37.67
News T_L(2-D SA-DWT x 1+ 2-D DA-DWT x 1), T_H(2-D DWT x 2) 35.50 | 39.29 | 43.12 | 46.86 | 50.34

T_L(2-D SA-DWT x 1+ 2-D DA-DWT x 1), T_H(2-D SA-DWT x 2) 35.59 | 39.41 43.31 | 46.80 | 50.34
T_L(2-D SA-DWT x 1+ 2-D DA-DWT x 1), T_H(2-D MSA-DWT x 2) 35.64 | 39.46 | 43.42 | 46.87 | 50.37
Stefan T_L(2-D SA-DWT x 1+ 2-D DA-DWT x 1), T_H(2-D DWT x 2) 25.73 | 29.45 | 32.85 | 35.71 | 39.00

T_L(2-D SA-DWT x 1+ 2-D DA-DWT x 1), T_H(2-D SA-DWT x 2) 2570 | 29.50 | 32.88 | 35.60 | 39.03
T_L(2-D SA-DWT x 1+ 2-D DA-DWT x 1), T_H(2-D MSA-DWT x 2) 25.77 | 29.61 33.02 | 35.75 | 39.15
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Chapter 7 Conclusions

In this thesis, we study and improve two types of popular directional
wavelet-based image and video coding schemes. We propose three enhanced
algorithms to improve the coding performance of wavelet-based contourlet transform
(WBCT) on image coding. We propose another three enhanced algorithms to improve
the coding performance of direction-adaptive discrete wavelet transform (DA-DWT)
on images and video coding.

The WBCT-based image coding approach is explored in this thesis. We propose
three components to.enhance its performance. First, we design a short-length filters
(SLF) to speed uprthe filtering process. It provides similar coding performance but
requires only 10% of computational complexity of the original long-length filters
(LLF). Second, we construct a mean-shift-based decision process to decide if a higher
subband (HH', HL', or LH") is appropriate for directional decomposition. Threshold
values are carefully selected to identify the energy peaks in each candidate subband.
Finally, we design new zero-coding (ZC) context tables for ESCOT because the
coefficients produced by directional decomposition have different statistical
characteristics among near-by coefficients. Compared with the conventional 2-D

DWT coding scheme, our scheme provides better visual quality with a moderate
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additional computational cost. Compared with the original WBCT coding scheme, the

proposed coding scheme provides comparable image quality (PSNR and MSSIM) but

with significantly less computing time.

We further study the DA-DWT approach. We propose three algorithms to

enhance the coding performance of 2-D DA-DWT and 2-D SA-DWT. We first

propose a direction alignment algorithm to reduce the side information of 2-D

DA-DWT. We then extend the direction alignhment algorithms to reduce the side

information of 2-D SA-DWT. This extension requires. quite a bit of extra work to

reduce complexity in the selection process. The proposed alignment algorithms save a

large amount of side information at the cost of small increment.in prediction error.

Overall, it also improves the coding performance on still images. To encode the

temporal high-pass bands (T..H) more efficiently, we propose an adaptive switching

algorithm that turns off the second transform in 2-D SA-DWT. This so-called 2-D

MSA-DWT provides better coding efficiency than 2-D SA-DWT and 2-D DWT on

T Hs.
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