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摘  要 

    多重解析度方向性轉換(multiresolution directional transform)包含頻率領域

(frequency domain)和空間領域(spatial domain)兩方面。在頻率領域的多重解析度

方向性轉換中，以小波轉換為基礎的輪廓轉換(wavelet-based contourlet transform，

WBCT)能針對影像中的紋路(texture)方向，提供較佳的配合度，因此用於影像編

碼，但其缺點為較高的計算複雜度。另一方面在空間領域的多重解析度方向性轉

換中，方向可調整性小波轉換(direction-adaptive wavelet transforms，DA-DWT)

會根據影像的紋路選出適合的轉換方向，故可提供較小波轉換(discrete wavelet 

transform，DWT)較佳的壓縮效果。但位於平滑區域(smooth region)中的相鄰區塊

(block)的最佳方向的選擇上，常會選出不一致的最佳方向，因此會造成大量且冗

餘的外加資訊(side information)。 

    在本論文中，我們提出了數個改良演算法，用以改良以小波轉換為基礎的輪

廓轉換以及方向可調整性小波轉換的編碼效果。我們提出了三個改良演算法來改

善採用以小波轉換為基礎的輪廓轉換的編碼方法，特別是在減少其計算量。第一，
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在方向性轉換(directional transform)上，我們提出了一組長度較短的二維濾波器

(2-D filters)。第二，我們提出一個以移動平均(mean shift)為基礎的判斷方法，用

來選出適合作方向性轉換的小波次頻帶(wavelet transform)。第三，我們改良算術

編碼(arithmetic coder)所採用的狀態表(context table)，用來加強以小波轉換為基礎

的輪廓轉換的編碼效果並減少計算複雜度。經由實驗模擬，我們可以得到和原本

採用以小波轉換為基礎的輪廓轉換的編碼方法接近的影像品質，但可減少 92%

以上的計算量。而和採用傳統二維小波轉換(two-dimensional discrete wavelet 

transform，2-D DWT)的編碼方法相比，我們能提供較佳的主觀視覺品質。 

我們也提出了另外三個改良演算法來改善方向可調整性小波轉換的編碼效

果。第一，我們提出了一個由小區塊擴張到大區塊的方向一致化演算法，並把各

別區域中，鄰近的方塊的選擇方向作一致化。第二，我們把所提出的方向一致化

演算法，延伸到次取樣及方向可調整性之小波轉換 (subsampling and 

direction-adaptive discrete wavelet transform，SA-DWT)上。第三，我們針對動態

預測殘像(motion-prediction residuals) 提出了改良式的次取樣及方向可調整性之

小波轉換(modified subsampling and direction-adaptive discrete wavelet transform，

MSA-DWT)。經由實驗模擬，我們所提出的方向一致化演算法可減少大約 60%

的外加訊息，並且在低位元率(low-bit rate)可以增加照片壓縮效果 0.4dB 左右。

而所提出的改良式的次取樣及方向可調整性之小波轉換可以增加視訊壓縮效果

0.1~0.2 dB 左右。 
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Abstract 

The multiresolution directional transform includes two types, frequency domain 

and spatial domain. In frequency domain, the wavelet-based contourlet transform 

(WBCT) is adopted for image coding because it matches well image textures of 

different orientations. However, its computational complexity is very high. In spatial 

domain, the direction-adaptive discrete wavelet transform (DA-DWT) provides better 

compression performance than discrete wavelet transform (DWT) for it selects 

transform directions to match image local texture. However, it often picks up 

inconsistent directions for neighboring blocks with similar texture and thus results in 

large but redundant side information.  

In this dissertation, we propose some enhanced algorithms for improving the 

coding efficiency of WBCT and DA-DWT. we propose three algorithms to enhance 

the WBCT coding scheme, in particular, on reducing its computational complexity. 

First, we propose short-length 2-D filters for directional transform. Second, the 

directional transform is applied to only a few selected subbands and the selection is 
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done by a mean-shift-based decision procedure. Third, we fine-tune the context tables 

used by the arithmetic coder in WBCT coding to improve coding efficiency and to 

reduce computation. Simulations show that, at comparable coded image quality, the 

proposed scheme saves over 92% computing time of the original WBCT scheme. 

Comparing to the conventional 2-D wavelet coding schemes, it produces clearly better 

subjective image quality.  

We propose another three algorithmes to improve the compression performance 

of DA-DWT in image and video coding. First, we propose a bottom-up direction 

alignment algorithm to align the directions of neighboring blocks in local regions. 

Second, we extend alignment algorithm to the subsampling and direction-adaptive 

discrete wavelet transform (SA-DWT). Third, we propose a modified SA-DWT 

(MSA-DWT) to improve the motion-compensated residual coding. Simulations show 

that the proposed alignment algorithm reduces about 60% side information and 

improves the image coding gain up to 0.4 dB at low bit rate. The MSA-DWT scheme 

can also improve about 0.1 ~ 0.2 dB in video coding gain. 

  



v 
 

誌  謝 

    當年考上交大來這念書時，從來沒想過說自己會在這邊一待就十三年了。前

面大學四年和碩士兩年的生活，感覺自己都只是在書堆中，不知道自己真正要什

麼。後面七年的博士，我才真正學到很多東西，看到自己缺乏了什麼，也知道自

己需要什麼，回首這七年真的很像一場很長的夢，而在這七年中我要感謝下面這

些人。 

謝謝我的指導教授杭學鳴老師，在這段時間除了學到作研究的方法外，更重

要的是我也從老師身上學到了很多作人作事的道理，也謝謝老師對我情緒控管不

佳的包容，並時時提醒我注意此問題。也謝謝老師讓我有機會去國外短暫的遊學 

，體驗不同的學術風氣。而且在不景氣找工作困難時，也是經由老師的介紹才找

到現在的工作，真的很謝謝老師。 

    謝謝我的家人，如果不是你們一直給我經濟支援和精神支持，我這個博士可

能會拿得更辛苦，這七年你們的精神壓力也是很大，但還是一直支持我，真的很

謝謝你們。 

    謝謝交大諮商中心李璨如老師，感謝您一年多來的心理諮商，讓我可以去面

對我心中的問題，並且陪我走過博士班最難熬的時期，也讓我可以去思考我未來

想要什麼，要如何去追求我想要的事，並更積極面對我的人生。 

    謝謝實驗室的很多學長，蔡彰哲學長、蔡家揚學長、張豐誠學長、林鴻志等

人常常跟我討論研究方向，並且指導我寫作文章和幫我修改，才能順利完成博士



vi 
 

學位。也謝謝吳俊容學長、陳宜寬學長、鍾翼州學長、王柏森學長、鄭榮仁學長

等人，教了我很多人生應該有的智慧，這些智慧真的讓我受益良多。 

    謝謝我從其他親朋好友們，如果平常沒有你們的支持和給我鼓勵，這段博士

我也真的很難熬。也謝謝你們時常帶我出去走走或聽我發牢騷，或給我很多建議，

讓我可以舒解心中的壓力和疑惑，繼續面對自己的人生。 

    也謝謝系上其他教授，除了從教授們身上學到知識外，更重要的是很多人生

的智慧和方向。也謝謝系上很多助理的幫忙，很多事情如果沒有大家的幫忙，自

己處理起來也很費時費力。也謝謝 lab其他學長姐和學弟妹的幫忙，大家在這個

實驗室一起生活，給我留下了很多回憶。最後謝謝諸佛菩薩的幫忙，讓我可以靜

下心來去面對我的人生，並且總是在我身旁看護我。 

博士這個學位，讓我學到更謙卑而且積極的態度，也讓我學到更多人生的智

慧，如果不是那麼多貴人的幫忙，我自己一個人是很難完成的，謝謝大家。 

 

洪 朝 雄 

謹誌於台灣新竹交通大學 

2012/10/21 

  



vii 
 

Tables of Contents 

摘要…………………………………………………………………………………………………………………………..i 

Abstract……………………………………………………………………………………………………………………iii 

誌謝………………………………………………………………………………………………………………………….v 

Tables of Contents…………………………………………………………………………………………………..vii 

List of Figures…………………………………………………………………………………………………………..x 

List of Tables…………………………………………………………………………………………………………..xv 

Chapter 1 Introduction ................................................................................................... 1 

Chapter 2 Multiresolution Directional Wavelet Transforms .......................................... 9 

2.1 Two-Dimensional Discrete Wavelet Transform ............................................... 9 

2.2 Contourlet Transform ..................................................................................... 11 

2.2.1 Laplacian Pyramid .............................................................................. 11 

2.2.2 Directional Filter Bank ....................................................................... 12 

2.2.3 Contourlet Transform .......................................................................... 13 

2.3 Wavelet-Based Contourlet Transform ............................................................ 14 

2.4 Direction-Adaptive Discrete Wavelet Transform .......................................... 15 

2.4.1 Direction-Adaptive Discrete Wavelet Transform ............................... 16 

2.4.2 Quadtree Partition ............................................................................... 17 

2.4.3 Direction Prediction Coding ............................................................... 18 

2.4.4 Rate-Distortion Optimized Segmentation ........................................... 19 

2.5 Megablocking Partition .................................................................................. 21 

2.6 Subsampling and Direction-Adaptive Discrete Wavelet Transform .............. 23 

2.6.1 Subsampling Patterns .......................................................................... 23 

2.6.2 Phase-Completion Process .................................................................. 26 

Chapter 3 Temporal-Domain Wavelet Transform and Entropy Coding ...................... 28 

3.1 Motion-Compensated Temporal Filtering ...................................................... 28 

3.2 Characteristics of Prediction Residuals ......................................................... 30 

3.2.1 Auto-Covariance Model ...................................................................... 30 

3.3 Embedded Block Coding with Optimized Truncation................................... 33 

3.3.1 Coding Operations .............................................................................. 34 

3.3.2 Coding Passes ..................................................................................... 37 

3.4 Three-dimensional Embedded Subband Coding with Optimized Truncation

.............................................................................................................................. 38 

3.4.1 Coding Operations .............................................................................. 40 

3.4.2 Coding Passes ..................................................................................... 42 

Chapter 4 Enhanced Wavelet-based Contourlet Image Coding ................................... 45 

4-1 Short-Length 2-D Filters ............................................................................... 46 



viii 
 

4-2 Mean-Shift-Based Decision on Subband Selection ....................................... 50 

4.2.1 Energy Spectrum Smoothing .............................................................. 52 

4.2.2 Choosing the Representative Energy Level based on the Low 

Frequency Components ............................................................................... 53 

4.2.3 Deciding Thresholds for Directional Subbands .................................. 55 

4.2.4 Peak Identification using a Mean-Shift-based Procedure ................... 57 

4.2.5 Computational Complexity ................................................................. 60 

4-3 New ZC Context Tables for 3-D ESCOT ...................................................... 64 

Chapter 5 Enhanced Direction-Adaptive Wavelet Image and Video Coding .............. 70 

5.1 Direction Alignment Algorithm ..................................................................... 70 

5.1.1. Step A1: Aligning Block Directions in Similar-Texture Regions ...... 72 

5.1.2. Step A2: Adjusting Directions of Isolated Blocks ............................. 77 

5.1.3. Step A3: Adjusting Directions of Small-Cluster Blocks .................... 80 

5.1.4. Step A4: Adjusting Directions of the Second 1-D DA-DWT ............ 83 

5.2 Direction Alignment Algorithm for SA-DWT ............................................... 85 

5.2.1. Step B1: Aligning Block Directions for Single Subsampling Pattern88 

5.2.2. Step B2: Aligning Block Directions in Similar-Texture Regions ...... 89 

5.2.3. Step B3: Adjusting Directions of Isolated Blocks ............................. 93 

5.2.4. Step B4: Adjusting Directions of Small-Cluster Blocks .................... 96 

5.2.5. Step C1: Aligning Block Directions based on Single Subsampling 

Pattern .......................................................................................................... 98 

5.2.6. Step C2: Adjusting Directions of Isolated Blocks ........................... 103 

5.2.7. Step C3: Adjusting Directions of Small-Cluster Blocks .................. 104 

5.3 Prediction Residual Characteristics and 2-D MSA-DWT ........................... 104 

5.3.1. Predication Residuals in Frequency Domain ................................... 105 

5.3.2. Transform Coefficients .................................................................... 108 

5.3.3. The Second Transform ..................................................................... 111 

Chapter 6 Experimental Results ................................................................................. 113 

6.1 Experimental Results of FMDT ................................................................... 113 

6.1.1. Short Length Directional Filters ...................................................... 114 

6.1.2. Decision Algorithm .......................................................................... 115 

6.1.3. Proposed ZC Context Tables ............................................................ 117 

6.1.4. Overall Improvement ....................................................................... 119 

6.2 Experimental Results of SMDT ................................................................... 120 

6.2.1. Direction Alignment Algorithm for DA-DWT ................................ 122 

6.2.2. Direction Alignment Algorithm for SA-DWT ................................. 125 

6.2.3. Image Coding ................................................................................... 127 

6.2.4. Video Coding ................................................................................... 129 



ix 
 

Chapter 7 Conclusions ............................................................................................... 132 

References .................................................................................................................. 134 

Personal Resume ........................................................................................................ 139 

Publication Papers ...................................................................................................... 141 

Journal Papers .................................................................................................... 141 

Conference Paper ............................................................................................... 141 

Patent.................................................................................................................. 142 

 

  



x 
 

圖目錄(List of Figures) 

Fig. 2-1. (a) Filter bank structure of 2-D DWT. (b) Frequency partitions produced by 

2-D DWT. ............................................................................................................... 9 

Fig. 2-2. Representing a 2-D signal by (a) 2-D DWT and (b) new transform Xlet. ..... 11 

Fig. 2-3. (a) Filter bank structure of LP. (b) Frequency partitions produced by LP. ..... 11 

Fig. 2-4. Frequency scrambling in 1-D case. ................................................................ 12 

Fig. 2-5. (a) A four directional DFB structure. (b) Frequency partitions produced by 

the DFB in (a). ...................................................................................................... 13 

Fig. 2-6. (a) Filter bank structure of CT. (b) Frequency partition produced by CT. ..... 13 

Fig. 2-7. (a) Filter bank structure of WBCT. (b) Frequency partition produced by 

WBCT. .................................................................................................................. 15 

Fig. 2-8. Two sets of candidate directions (a) proposed in [28] and (b) proposed in [27]. 

Numbers are direction indexes. ............................................................................ 16 

Fig. 2-9.  Presenting 2-D signal by quadtree partition [52]. ....................................... 18 

Fig. 2-10. Prediction of direction index [28]. ............................................................... 19 

Fig. 2-11. Quadtree partition with Lagrangian cost function. λt is the Lagrangian 

multiplier. .............................................................................................................. 19 

Fig. 2-12. Block partition and selected directions of test image Barbara after 

rate-distortion optimized segmentation based on different Lagrangian multiplier λt.

 .............................................................................................................................. 20 

Fig. 2-13. Block partition and selected directions of test image Lena after 

rate-distortion optimized segmentation based on different Lagrangian multiplier λt.

 .............................................................................................................................. 21 

Fig. 2-14. (a) test image of polygonal model, (b) quadtree partition, (c) megablocking 

partition. ................................................................................................................ 23 

Fig. 2-15. Four subbands of different subsampling patterns. ....................................... 25 

Fig. 2-16. The candidate first directions of different subsampling patterns. ................ 25 

Fig. 2-17. The candidate second directions of different subsampling patterns. ........... 26 

Fig. 2-18. Phase-completion between process neighboring blocks adopt different 

subsampling patterns. Left block uses CR while right block uses RC. ................ 27 

Fig. 3-1. Lifting scheme with biorthognoal 5/3 filters in MCTF. Fi, Hi, and Li are the 

original video sequences, the temporal high-pass residuals, and the temporal 

low-pass residuals. ................................................................................................ 29 

Fig. 3-2. Temporal residuals after four levels of MCTF applied to 16 input frames, 

F0~F15. .................................................................................................................. 30 

Fig. 3-3. Temporal residuals of three test video sequences. (a) LLLL0 of Akiyo, (b) 

LLLL0 of Bus, (c) LLLL0 of Mobile, (d) LLLH0 of Akiyo, (e) LLLH0 of Bus, (f) 



xi 
 

LLLH0 of Mobile. ................................................................................................. 30 

Fig. 3-4. Scatter plots of estimated (ρ1, ρ2) from images. Fig. 6-6 shows the original 

images ................................................................................................................... 32 

Fig. 3-5. Scatter plots of estimated (ρ1, ρ2) from temporal low-pass residuals. ............ 32 

Fig. 3-6. Scatter plots of estimated (ρ1, ρ2) from temporal high-pass residuals. .......... 32 

Fig. 3-7. (a) Stripe-oriented scanning path. (b) Neighbors within the context window.

 .............................................................................................................................. 34 

Fig. 3-8. Neighbors within the cubic. ........................................................................... 40 

Fig. 4-1. (a) Magnitude response of β(z). (b) Phase response of β(z). (c) Magnitude 

response of β(z
2
). (d) Phase response of β(z

2
). ...................................................... 47 

Fig. 4-2. Derivation of quadrant filters. ........................................................................ 48 

Fig. 4-3. A four-channel cascaded DFB. ....................................................................... 48 

Fig. 4-4. (a) LLF, whose size=23×23 [59]. (b) SLF, whose size=7×7. ......................... 49 

Fig. 4-5. The flowchart of the proposed mean-shift-based decision algorithm. ........... 51 

Fig. 4-6. The coordinates of energy coefficients c(x, y). The padded data are in gray 

background............................................................................................................ 52 

Fig. 4-7. (a) Energy spectrum of image Pepper. (b) Smoothed energy spectrum of 

image Pepper. (c) Smoothing operator. ................................................................. 53 

Fig. 4-8. (a) The subband frequency domain partition produced by WBCT. (b) The 

DFC coordinates in the upper half subband LH 4-0. The gray area in (a) and (b) is 

the low frequency zone. ........................................................................................ 54 

Fig. 4-9. The DFC energy histograms of some directional subbands. Each histogram is 

approximated by a Gaussian distribution. The directional subbands and the 

corresponding images are (a) LH 4-0 of Boat, (b) HL 4-3 of Lena, (c) LH 4-3 of 

Pepper, and (d) HL 4-0 of Fingerprint. ................................................................. 57 

Fig. 4-10. Energy spectrum of test images (a) Barbara, (b) Pepper, and (c) Elaine. 

Horizontal axis and vertical axis represent horizontal frequency and vertical 

frequency, respectively. The energy spectrums are all in log10 scale. The red 

squares are the locations of the identified energy peaks. ...................................... 60 

Fig. 4-11. (a) The directional subbands produced by WBCT. (b) The spatial neighbor 

directions for coefficient A. .................................................................................. 65 

Fig. 4-12. (a) Input signal in spatial domain. (b) Input signal in frequency domain. (c) 

Filter response of DF_LH 4-0 in spatial domain. (d) Filter response of DF_LH 

4-0 in frequency domain. (e) Output signal in spatial domain. (f) Output signal in 

frequency domain. ................................................................................................ 66 

Fig. 4-13. Frequency magnitude responses of (a) LH 4-0 (b) LH 4-2 (c) HH 4-0 (d) 

HH 4-2. ................................................................................................................. 69 

Fig. 5-1. Direction indices: (a) vertical candidate direction dv and (b) horizontal 



xii 
 

candidate direction dh [28]. ................................................................................... 72 

Fig. 5-2. T The best vertical direction dv of each 8×8 block based on minimal 

prediction errors. The indices of direction dv are specified by Fig. 5-1(a). Fig. 6-6 

shows the original images of Barbara and Lena. ................................................. 72 

Fig. 5-3. Flow chart of proposed direction alignment algorithm. ................................. 72 

Fig. 5-4. Patterns and orientation cases of GB. ............................................................. 73 

Fig. 5-5. The pseudo code of Step A1, part A. .............................................................. 74 

Fig. 5-6. The pseudo code of Step A1, part B. .............................................................. 75 

Fig. 5-7. moc of each block (8×8 block size). .............................................................. 75 

Fig. 5-8. Aligned directions after Step A1 (8×8 block). The circles indicate isolated 

blocks. ................................................................................................................... 77 

Fig. 5-9. The pseudo code of Step A2. .......................................................................... 78 

Fig. 5-10. Aligned directions after Step A2 (8×8 block). The circles indicate 

small-cluster blocks. ............................................................................................. 80 

Fig. 5-11. Different types of small-cluster blocks. These blocks cannot be presented by 

a large square block in quadtree partition. ............................................................ 80 

Fig. 5-12. The pseudo code of Step A3. ........................................................................ 81 

Fig. 5-13. Aligned directions after Step A3 (8×8 block). ............................................. 82 

Fig. 5-14. Quadtree combination with Lagrangian cost function. λt is the Lagrangian 

multiplier. .............................................................................................................. 85 

Fig. 5-15. Four spatial subbands of different subsampling patterns [32]. .................... 87 

Fig. 5-16. The best direction ds of each 8×8 block. The direction indexes -4 ~ 4 

correspond to dv (-4 ~ 4) and 5 ~ 13 correspond to dh (-4 ~ 4). ............................ 87 

Fig. 5-17. Flow chart of proposed direction alignment algorithm for the first 1-D 

SA-DWT. .............................................................................................................. 87 

Fig. 5-18. Flow chart of proposed direction alignment algorithm for the second 1-D 

SA-DWT. .............................................................................................................. 87 

Fig. 5-19. The aligned first direction of the entire image (8×8 block). Direction 

indexes in (a)(c) and (b)(d) are specified by Fig. 5-1(a)(b). (a)(c) are the same as 

Fig. 5-10(a)(b). ...................................................................................................... 89 

Fig. 5-20. The pseudo code of Step B2, part A. ............................................................ 90 

Fig. 5-21. The pseudo code of Step B2, part B. ............................................................ 91 

Fig. 5-22. ocrc of each 8×8 block. ................................................................................ 92 

Fig. 5-23. The aligned first directions after Step B2 (8×8 block). The direction indexes 

-4 ~ 4 correspond to dv (-4 ~ 4) and 5 ~ 13 correspond to dh (-4 ~ 4) in Fig. 5-1. 

The circles indicate isolated blocks. ..................................................................... 93 

Fig. 5-24. The pseudo code of Step B3. ........................................................................ 95 

Fig. 5-25. The aligned first directions after Step B3 (8×8 block). The direction indexes 



xiii 
 

-4 ~ 4 correspond to dv (-4 ~ 4) and 5 ~ 13 correspond to dh (-4 ~ 4). The circles 

indicate small-clustered blocks. ............................................................................ 96 

Fig. 5-26. The pseudo code of Step B4. ........................................................................ 97 

Fig. 5-27. The aligned first directions after Step B4 (8×8 block). The direction indexes 

-4 ~ 4 correspond to dv (-4 ~ 4) and 5 ~ 13 correspond to dh (-4 ~ 4). .................. 98 

Fig. 5-28. The pseudo code of Step C1. ........................................................................ 99 

Fig. 5-29. The parallel processes for handling an image’s first direction. .................. 100 

Fig. 5-30. The first direction of each 8×8 block. (a)(b) are the two parallel processes of 

Barbara and (c)(d) are those of Lena. Direction indexes in (a)(c) and (b)(d) are 

defined by Fig. 5-1(a) and Fig. 5-1(b). ............................................................... 101 

Fig. 5-31. The aligned second directions of each 8×8 block. (a)(b) are two parallel 

processes of Barbara and (c)(d) are those of Lena. Direction indexes in (a)(c) and 

(b)(d) are defined by Fig. 5-1(b) and Fig. 5-1(a). ............................................... 102 

Fig. 5-32. The parallel processes for handling the second direction. ......................... 102 

Fig. 5-33. The aligned second directions after Step C1 (8×8 block). The direction 

indexes -4 ~ 4 correspond to dv (-4 ~ 4) and 5 ~ 13 correspond to dh (-4 ~ 4). The 

circles indicate isolated blocks. .......................................................................... 103 

Fig. 5-34. The aligned second directions after Step C2 (8×8 block). The circles 

indicate small-clustered blocks. .......................................................................... 103 

Fig. 5-35. The aligned second directions after Step C3 (8×8 block). ......................... 104 

Fig. 5-36. Frequency domain spectrum of some image blocks. ................................. 106 

Fig. 5-37. Frequency domain spectrum of some T_L blocks. .................................... 106 

Fig. 5-38. Frequency domain spectrum of some T_H blocks. .................................... 107 

Fig. 5-39. The first and the second transform ratios of images. ................................. 110 

Fig. 5-40. The first and the second transform ratios of T_Ls. .................................... 110 

Fig. 5-41. The first and the second transform ratios of T_Hs ..................................... 111 

Fig. 5-42. The transform coefficients in T_Hs after 2-D SA-DWT. The coefficients are 

displayed in absolute value. ................................................................................ 112 

Fig. 6-1. PSNR of the image coding schemes with SLF and LLF (“SLF+WDS+O” and 

“LLF+WDS+O”) ................................................................................................ 115 

Fig. 6-2. PSNR of the image coding schemes with and without decision 

(“SLF+WDS+O”, “SLF+NDS1+O”, and “NDF+NDS2+O”). .......................... 116 

Fig. 6-3. MSSIM of the image coding schemes with and without decision 

(“SLF+WDS+O”, “SLF+NDS1+O”, and “NDF+NDS2+O”). .......................... 116 

Fig. 6-4. (a) Portions of the original and the reconstructed images of Barbara at 

0.125bpp. (b) Portions of the original and the reconstructed images of Elaine at 

0.5bpp. ................................................................................................................ 117 

Fig. 6-5. PSNR of the 2-D DWT scheme (NDF+NDS2+O), the original WBCT 



xiv 
 

scheme (LLF+NDS1+O), and the proposed scheme with three new algorithms 

(SLF+WDS+P). .................................................................................................. 120 

Fig. 6-6. The test images (512×512 image with 256 gray level). ............................... 121 

Fig. 6-7. Directions of the first transform after DA-DWT and DA-DWT-A (4×4 block). 

The direction indexes -4 ~ 4 are identical to dv (-4 ~ 4) in Fig. 5-1(a). .............. 123 

Fig. 6-8. Directions of the first transform after SA-DWT and SA-DWT-A (4×4 block). 

The direction indexes -4 ~ 4 correspond to dv’ (-4 ~ 4) and 5 ~ 13 correspond to 

dh (-4 ~ 4). ........................................................................................................... 126 

 

  



xv 
 

表目錄(List of Tables) 

Table 3-1. Context table of significance coding. “X” means don’t care. ...................... 35 

Table 3-2. Context table and sign prediction of sign coding ........................................ 36 

Table 3-3. Context table for magnitude refinement coding .......................................... 36 

Table 3-4. Context table of zero coding. “X” means don’t care. .................................. 41 

Table 3-5. Context table and sign prediction of sign coding. ....................................... 41 

Table 3-6. Context table for magnitude refinement coding .......................................... 42 

Table 4-1. The computational complexity and run time measured on the non-zero filter 

coefficients. ........................................................................................................... 50 

Table 4-2. Some test images, their max energy peak location in each subband ((x, y)) 

and the decision result for each subband (suitable for DT). ................................. 59 

Table 4-3. Computational complexity and run time for the systems with and without 

decision when LLF is adopted. ............................................................................. 63 

Table 4-4. Computational complexity and run time for the systems with and without 

decision when SLF is adopted. ............................................................................. 63 

Table 4-5. ZC context table for 2-D wavelet subbands ................................................ 68 

Table 4-6. ZC context table for directional subbands ................................................... 68 

Table 6-1. Abbreviations for the adopted algorithms in the image coding scheme .... 114 

Table 6-2. Run time of the image coding schemes with SLF and LLF ...................... 115 

Table 6-3. Average run time of the image coding schemes with and without decision.

 ............................................................................................................................ 117 

Table 6-4. PSNR of the image coding schemes with the original and the new ZC 

context tables (directional filters = SLF). ........................................................... 118 

Table 6-5. PSNR of the image coding schemes with the original and the new ZC 

context tables (directional filters = LLF). ........................................................... 119 

Table 6-6. Run time of the image coding schemes with different ZC context tables. 119 

Table 6-7. Average run time of the 2-D DWT scheme (NDF+NDS2+O), the original 

WBCT scheme (LLF+NDS1+O), and the proposed scheme with three new 

algorithms (SLF+WDS+P). ................................................................................ 120 

Table 6-8. Prediction errors of the first transform. ..................................................... 124 

Table 6-9. Side Information in bits of the first transform using two side information 

coding schemes. .................................................................................................. 124 

Table 6-10. Prediction errors of the first transform. ................................................... 127 

Table 6-11. Side information in bits of the first transform using two side information 

coding schemes. .................................................................................................. 127 

Table 6-12. PSNR of different coding schemes. ......................................................... 128 

Table 6-13. PSNR of different coding schemes on T_Ls. .......................................... 131 



xvi 
 

Table 6-14. PSNR of different coding schemes on T_Hs. .......................................... 131 

 

  



1 
 

Chapter 1 Introduction 

DWT [1]-[5] is adopted widely in image and video coding in recent years. 

Wavelet-based image coding, such as JPEG2000 [6], consists of three stages: 

two-dimensional discrete wavelet transform (2-D DWT), coefficient quantization, and 

arithmetic coding. A digital image is first transformed by 2-D DWT to produce a set 

of transform coefficients. After quantization, these coefficients are compressed to a 

binary stream by an entropy coding tool. For video signal compression, a 

wavelet-based interframe coding, such as Vidwav [7], includes four stages: 

motion-compensated temporal filtering (MCTF) [8]-[13], 2-D DWT, quantization, 

and arithmetic coding. MCTF decomposes video frames into temporal low-pass 

images and high-pass residuals. Then, in addition to image coding, we process the 

residuals also by 2-D DWT, quantization, and arithmetic coding. 

One-dimensional discrete wavelet transform (1-D DWT) represents 1-D 

piecewise smooth signals well in few coefficients [5]. 2-D DWT applies two 1-D 

DWTs along horizontal and vertical axes and ignores 2-D piecewise smooth signal 

continuity. It represents 2-D signals by many little coefficients and spreads the energy 

into the high-pass subbands [14][15]. Quantizing these coefficients to zero at low bit 

rates results in Gibbs artifacts at image edges [16]. 
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Many 2-D multiresolution directional transforms have been proposed to solve 

this problem, including the directional filter banks [17]-[23] and the 

direction-adaptive wavelet transforms [27]-[32]. Directional filter banks use a set of 

pre-selected 2-D filters to perform multiresolution directional decomposition. Each 

filter corresponds to a basis function with specific spatial direction and resolution. 

Directional filter banks can represent 2-D directional texture patterns by relatively 

few large coefficients. Do and Vetterli proposed the contourlet transform (CT) [17], 

which is composed of the Laplacian pyramid (LP) [24] and the directional filter bank 

(DFB) [25]. Lu and Do proposed the finer directional wavelet transform with 

additional 2-D directional resolution [18]. Nguyen and Oraintara re-designed DFBs 

and provided enhanced directional decomposition [19][20]. Selesnick et al. proposed 

the complex wavelet transform with good directionality and shift invariance [21]. 

Eslami and Radha proposed the wavelet-based contourlet transform (WBCT) and its 

extension version by applying DFBs to 2-D DWT’s high-pass subbands [22][23]. 

Among them, the WBCT [22] technique has the critical-sampling property, consumes 

comparatively less computational power, and requires no side information for 

decoding. Therefore, we focus on WBCT in this dissertation. 

The direction-adaptive discrete wavelet transform (DA-DWT) technique 

partitions an image into local regions (blocks) and filters along the texture direction 



3 
 

by 1-D DWT lifting scheme [26]. It selects the optimal direction and block size by 

minimizing the prediction error under the constraint bits. Thus, DA-DWT compacts 

more energy into the spatial low-pass subbands and provides good compression 

performance [15]. Chang and Girod proposed a DA-DWT based image compression 

scheme with integer pixel direction accuracy [27]. Ding et al. uses interpolation to 

achieve quarter pixel direction accuracy [28]. Liu and Ngan used a weighted function 

to avoid mismatch in the lifting scheme [29]. Dong et al. proposed a 2-D adaptive 

interpolation filter for more accurate fractional pixel accuracy [30]. Chang and Girod 

proposed another DA-DWT based on the quincunx subsampling pattern [31]. Xu and 

Wu combined different subsampling patterns together and proposed the subsampling 

and direction-adaptive discrete wavelet transform (SA-DWT) [32]. It is easy to 

implementing and integrating DA-DWT into wavelet-based image coding. Thus, 

DA-DWT becomes our second focus in this dissertation. 

Arithmetic coding schemes compress the transformed/quantized coefficients into 

bitstream. They produce a minimum-distortion scalable bitstream under all the 

constrained bit rates. They consider three types of correlations among the coefficients. 

First, the inter-subband coding methods, such as the set partitioning in hierarchical 

tree (SPIHT) method [33] and the embedded zerotrees of wavelet transform (EZW) 

method [34], mitigate the inter-band correlations in a tree structure. Second, the 
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intra-subband coding methods partition the coefficients in one subband to several 

non-overlapped coding blocks and handle only the correlations among the neighbors 

in one coding block (the intra-subband correlations). Examples in this category are the 

embedded block coding with optimized truncation (EBCOT) method [35], the 3-D 

embedded subband coding with optimized truncation (3-D ESCOT) method [36], and 

the tarp-filter-based system that classifies coefficients to achieve embedding (TCE) 

method [37]. Third, the mixed inter-subband and intra-subband coding methods cover 

both the inter-subband and intra-subband correlations. Examples are the embedded 

conditional entropy coding of wavelet coefficients (ECECOW) method [38] and the 

embedded coding using zeroblocks of wavelet coefficients and context modeling 

(EZBC) method [39]. To save computing power, for single image compression, we 

use the intra-subband coding methods in this dissertation.  

Combining WBCT and 3-D ESCOT, a WBCT image coding scheme can achieve 

a better coding performance than a regular 2-D DWT image coding scheme. However, 

there are a few issues in the existing WBCT coding schemes. They need a large 

amount of computations because the existing WBCT directional filters have a large 

support. And, we found that for a specific picture, some WBCT frequency subbands 

do not need further directional transform. Furthermore, the context table in 3-D 

ESCOT needs adjustment to match the characteristics of quantized WBCT 
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coefficients.  

To solve these issues, we propose three algorithms in this dissertation to enhance 

the WBCT image coding scheme. First, we suggest a set of short-length 2-D 

directional filters [40] and verify their performance. Second, we design a 

mean-shift-based decision scheme to dynamically select the proper subbands for 

directional transform [41]. Third, we re-design the context tables of 3-D ESCOT to 

match the data directionality. With these algorithms, our proposed scheme reduces 

92% or higher the computational complexity of the original WBCT image coding 

scheme at similar visual quality [40]. 

DA-DWT first partitions images into non-overlapping blocks. It then applies the 

1-D DWT to each block along the candidate directions and calculates the 

corresponding prediction errors. It finally selects the candidate direction with the 

minimal prediction error as the most suitable direction for the block. For the partition 

blocks in smooth region, each candidate direction produces similar prediction error. 

Thus, DA-DWT selects inconsistent directions for these blocks and increases side 

information. We also encounter similar situation for blocks in similar-textured region. 

Tanaka et al. pre-filtered images by 2-D filters [42]. Pre-filtering reduces candidate 

directions and makes selected directions more consistent. If a block has filtered output 

less than the threshold, it is considered in smooth region and processed by 2-D DWT. 
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Selecting a suitable threshold for identifying smooth region is hard. Aligning blocks 

in similar-textured region also helps reducing side information. Maleki et al. proposed 

an alignment cost function for entire image to align small blocks or blocks in smooth 

region [15]. Different local areas of the same image have different characteristics. 

Aligning directions based on local characteristics provides better results. 

In wavelet-based video coding, we deal with motion compensated prediction 

residuals instead of images. Kamisli and Lim showed that prediction residuals and 

images have different spatial characteristics [43]. Images have 2-D anisotropic 

structures while prediction residuals have 1-D anisotropic structures. Kamisli and Lim 

proposed 1-D DCT for compressing prediction residuals [43]. They also applied 1-D 

DA-DWT to prediction residuals [44]. They compared the compression performance 

based on number of nonzero transformed coefficients instead of number of bits. 

Because of different spatial characteristics, 2-D DA-DWT compresses prediction 

residuals inefficiently. In wavelet-based video coding, temporal low-pass prediction 

residuals (T_L) are similar to images but high-pass ones (T_H) are similar to 

prediction residuals [45]. 

We propose another three algorithms in this dissertation to improve DA-DWT’s 

coding performance on images and prediction residuals. First, we suggest a direction 

alignment algorithm to reduce DA-DWT’s side information [46]. Second, we extend 
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the suggested direction alignment algorithm to 2-D SA-DWT. Third, we analyze 

prediction residuals’ characteristic in frequency domain and their transformed 

coefficients. We applied 2-D DA-DWT on T_Ls in previous research [45]. Now, we 

suggest a 2-D MSA-DWT for compressing T_Hs. Our suggested direction alignment 

algorithm saves about 60% side information at the cost of about 3% prediction error 

increment. It also improves DA-DWT’s coding gain about 0.4 dB at low bit rate. 2-D 

MSA-DWT also provides better coding performance than 2-D SA-DWT on T_Hs and 

improves about 0.1~0.2 dB in gain. 

This dissertation is organized as follows. Chapter 2 introduces the adopted 

directional filter banks and direction-adaptive wavelet transforms. Chapter 3 gives the 

introduction of temporal transform and adopted arithmetic coding. Chapters 4 and 5 

desribe the proposed algorithms for WBCT and DA-DWT. Chapter 6 gives the 

experimental results and Chapter 7 contains the concluding remarks. The major 

contributions of this dissertation are listed as follows.  

(1) We design short-length 2-D directional filters to save computational power of 

directional transform in WBCT.  

(2) We propose a mean-shift-based decision scheme to dynamically select the proper 

subbands for directional transform. 

(3) We fine-tune the context tables of 3-D ESCOT to match the data directionality. 
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(4) We propose a direction alignment algorithm for DA-DWT to reduce side 

information. 

(5) We extend the proposed direction alignment algorithm to SA-DWT. 

(6) We modify SA-DWT for compressing T_Hs in wavelet-based video coding. 
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Chapter 2 Multiresolution 

Directional Wavelet Transforms 

2.1 Two-Dimensional Discrete Wavelet 

Transform 

 
Fig. 2-1. (a) Filter bank structure of 2-D DWT. (b) Frequency partitions produced by 2-D DWT. 

 

Fig. 2-1(a) shows the filter bank structure of 2-D DWT. After transform, it 

outputs four subband signals - HL (the horizontal high-pass and vertical low-pass 

subband signal), LH (the horizontal low-pass and vertical high-pass subband signal), 

HH (the horizontal high-pass and vertical high-pass subband signal), and LL (the 

horizontal low-pass and vertical low-pass subband signal). G1(z)~G4(z) are the filters 

with specific pass bands and their output frequency partitions are given in Fig. 2-1(b). 

D2 represents the decimation matrix, and D2=2I2, where I2 is an identity matrix. 2-D 
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DWT is a critical-sampled transform that keeps the same amount of data after one 

level transform.  

2-D DWT provides multiresolution decomposition for images. In a multi-level 

2-D DWT, the subband signal LL produced by the first 2-D DWT is further processed 

by the sub-sequent 2-D DWT’s. The first-level 2-D DWT acquires an image and 

generates four subbands: LL
1
, HL

1
, LH

1
, and HH

1
. Then, we filter the LL

1
 subband 

signal again by second-level 2-D DWT to obtain LL
2
, HL

2
, LH

2
, and HH

2
. Likewise, 

we recursively apply 2-D DWT to the LL
i
 subband, and produce LL

i+1
, HL

i+1
, LH

i+1
, 

and HH
i+1

, wherein ‘i’ represents the 2-D DWT iterations. 

2-D DWT is the tensor product of two 1-D DWTs, and the Daubechies 9-7 

wavelet filter [2][47] is often in use. 1-D DWT can represent the piecewise smooth 

1-D signals by a few coefficients [5]. But the outputs of 2-D DWT would contain 

many small coefficients for 2-D edges when these edges are not aligned with the 

vertical or the horizontal axes as shown in Fig. 2-2(a) [14]. If we quantize these 

coefficients to zero, the coded image shows Gibbs artifacts along the edges [16]. A 

multiresolution transform with directionality in Fig. 2-2(b) is more desirable for 

representing 2-D signals. 
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Fig. 2-2. Representing a 2-D signal by (a) 2-D DWT and (b) new transform Xlet. 

 

2.2 Contourlet Transform 

2.2.1 Laplacian Pyramid 

 
Fig. 2-3. (a) Filter bank structure of LP. (b) Frequency partitions produced by LP. 

 

    Contourlet transform (CT) [17] adopts LP [24] in Fig. 2-3 for multiresolution 

decomposition. The LP decomposes the input into one low-pass subband signal, LL, 

and one high-pass subband signal, H. F1(z) is the corresponding synthesis filter for the 

analysis filter G1(z) in Fig. 2-3(a). Fig. 2-3(b) shows the frequency partition of these 

two subbands. When the synthesized subband signal LL is subtracted from the 
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original input, it produces the high-pass subband signal H. Without down-sampling, 

subband H is free from frequency scrambling [14]. Fig. 2-4 illustrates frequency 

scrambling in 1-D case. The high-pass signal is folded back into low frequency after 

down-sampling, and thus its spectrum is reflected. In CT, the LP unit behaves as an 

over-sampled transform and it increases 25% data size after the transform.  

 
Fig. 2-4. Frequency scrambling in 1-D case. 

 

The subband signal LL in LP (Fig. 2-3(a)) is identical to the subband signal LL in 

2-D DWT (Fig. 2-1(a)) when their G1(z) and D2 are the same. That is, these two LL 

signals occupy the same frequency partition as in Fig. 2-1(a) and Fig. 2-3(a), 

respectively. In a multi-level 2-D DWT, the subband signal LL produced by the first 

2-D DWT is further processed by the sub-sequent 2-D DWT’s. Likewise, in a 

multi-level LP, the LL subband signal may be further processed by a sub-sequent LP. 

 

2.2.2 Directional Filter Bank 

CT adopts DFB [25] in Fig. 2-5 for directional decomposition. Fig. 2-5(a) 

illustrates four 2-D filters and four decimation matrices. These four 2-D filters 

decompose the input signal to four directional subbands. Each subband has a specific 

π-π π-π

(a) high-pass signal (b) down-sampled high-pass signal
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directional pass band. These 2-D filters, A1(z)~A4(z), are fan filters and their 

corresponding output frequency partitions are drawn in Fig. 2-5(b). The decimation 

matrices rotate and down-sample the signals along specific directions. DFB with 

different direction number can be constructed by different directional filters and 

decimation matrices [14][25]. 

 
Fig. 2-5. (a) A four directional DFB structure. (b) Frequency partitions produced by the DFB in (a). 

 

2.2.3 Contourlet Transform 

 
Fig. 2-6. (a) Filter bank structure of CT. (b) Frequency partition produced by CT. 
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CT applies DFB to the H subband in Fig. 2-6(a). Fig. 2-6(b) shows the frequency 

partition of each output of CT in Fig. 2-6(a). CT provides a better nonlinear 

approximation of 2-D signals than 2-D DWT [14]. It also provides better PSNR than 

2-D DWT at low bit rate coding [48][49]. Because LP increases the data size, CT is 

less preferred in the compression scenario. 

 

2.3 Wavelet-Based Contourlet 

Transform 

Fig. 2-7(a) shows the structure of wavelet-based contourlet transform (WBCT) 

[22]. It uses the 2-D DWT to first generate four subbands, LL, HL, LH and HH. It 

further decomposes each of the three high-pass subband signals, HL, LH, and HH, by 

the DFB in Fig. 2-5(a). Fig. 2-7(b) shows the frequency partition produced by WBCT. 

It has the critical-sampling property and it maintains the same data size. Thus, it is 

more desirable for compression purpose. 

The original structure of WBCT applies DFB to all high-pass subbands (HL
i
, LH

i
, 

and HH
i
, i ≥ 1). In 2-D DWT, LL

1
 and its split subband signals (LL

i
, HL

i
, LH

i
, and 

HH
i
, where i > 1) contain the low and mid frequency components in the sensitive 

range of human visual system. When we apply the DFB to these subbands and 
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quantize their transform coefficients, the ringing effects may appear on the smooth 

image regions. Thus, we tend to represent these coarse subband signals by 2-D DWT 

[23]. On the other hand, we apply the directional transform to HL
1
, LH

1
, and HH

1
 to 

match their directional textures. But some of these subbands may be inappropriate for 

directional transform. 

 
Fig. 2-7. (a) Filter bank structure of WBCT. (b) Frequency partition produced by WBCT. 
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Transform 

2.4.1 Direction-Adaptive Discrete Wavelet Transform 

 

 
Fig. 2-8. Two sets of candidate directions (a) proposed in [28] and (b) proposed in [27]. Numbers are 

direction indexes. 

 

Direction-adaptive discrete wavelet transform (DA-DWT) consists of a sets of 

selected candidate directions as shown in Fig. 2-8. Candidate directions in Fig. 2-8(a) 

and Fig. 2-8 (b) are designed for smooth and sharp textures. 

Like 2-D DWT, 2-D DA-DWT first applies the first 1-D DA-DWT along the 

vertical candidate directions, then, it applies the second 1-D DA-DWT along the 

horizontal candidate directions. The first 1-D DA-DWT partitions the FH×FW image 

into non-overlapping BH×BW blocks. Each block B(i, j) has a set of prediction errors 

{DB(i, j; dv)}, each corresponding to a vertical candidate direction dv in Fig. 2-16(a), 

1≤i≤(FH/BH), 1≤j≤(FW/BW), and -4≤dv≤4. We take the sum of absolute high-pass 
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coefficients as the prediction error. Additionally, it has been show that the sum of 

absolute high-pass coefficients and the sum of squared high-pass coefficients result in 

similar performance in coding [50]. 

The DA-DWT selects the best direction based on the minimum prediction errors 

for each B(i, j). After selecting the best directions for each B(i, j), the DA-DWT 

applied 1-D DWT along selected directions. The transforms are processed cross block 

boundary to avoid blocking artifact. The first DA-DWT decomposes an image into the 

spatial low-pass subband L (subband size is (FH/2)×FW) and the high-pass subband H 

(subband size is (FH/2)×FW) after transform. The second DA-DWT also partitions L 

subband into non-overlapping (BH/2)×BW blocks and selects the best direction for 

each block in a similar way. The H subband usually contains less energy. Applying the 

horizontal 1-D DA-DWT to it is not effective in compression [51]. Thus we apply 

only the horizontal 1-D DWT to H subband. We obtain four subbands, LL, LH, HL, 

and HH after one level of 2-D DA-DWT. We can apply another level of 2-D 

DA-DWT to LL for multiresolution decomposition. 

 

2.4.2 Quadtree Partition 

DA-DWT needs to transmit the side information including block partition and 

directional information for decoding. We adopt the quadtree partition [52] for block 
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partition. Fig. 2-9 gives an example of quadtree partition. Each block is partitioned 

into four quarter sub-blocks for detail presentation. Symbol “1” and “0” present that a 

block is partitioned or not. The first transform and the second transform have different 

quadtree partitions in 2-D DA-DWT [51]. 

 
Fig. 2-9.  Presenting 2-D signal by quadtree partition [52]. 

 

2.4.3 Direction Prediction Coding 

The neighboring blocks usually have similar selected directions. Thus, we code 

the difference between two neighboring block direction indices to save bits. Fig. 2-10 

gives an example of prediction of direction index [28]. θ is the direction index of the 

current block and αd, αn, and αd are the direction indices of neighboring blocks. 

Because of sequential processing, we already know αd, αn, and αd when decoding θ at 

decoder. We select a predictor θp from these three direction indices based on the 

observation that the image gradient changes smoothly in (2-1). We code the prediction 

error θ-θp as the side information and send it to decoder. 

,
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Fig. 2-10. Prediction of direction index [28]. 

 

2.4.4 Rate-Distortion Optimized Segmentation 

Larger partition blocks spend fewer bits for side information but it produces 

large prediction error. Finer partition blocks often provide good directional resolution 

at the cost of larger bits for side information. A good trade-off between distortion and 

side information is the problem of rate-distortion optimization. It is usually solved by 

using the Lagrangian cost function [53]. We first build a quadtree with full partition. 

We then calculate the cost function of every node in a quadtree partition. We finally 

compare these cost function values decide the partition case of each node, as an 

example in Fig. 2-11.  

 
Fig. 2-11. Quadtree partition with Lagrangian cost function. λt is the Lagrangian multiplier. 

 

There are two ways of count the side information. In the first count, except the 

information of block partition and direction, we also consider the bits of transform 
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coefficients [27]. In the second count, the transform coefficients are not included. [28]. 

These two cost functions produce almost the same coding performance except for the 

very low bit rate cases (≤0.1 bpp) [54]. 

 
Fig. 2-12. Block partition and selected directions of test image Barbara after rate-distortion optimized 

segmentation based on different Lagrangian multiplier λt. 

 

Fig. 2-12 and Fig. 2-13 show an example of block partition and selected 

directions after rate-distortion optimized segmentation of two test images. With 

(a) block partition based on λt = 4 (b) selected directions based on λt = 4

(c) block partition based on λt = 8 (d) selected directions based on λt = 8
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rate-distortion optimized segmentation, we assign large blocks to the smooth regions 

and small blocks to the texture regions. Small Lagrangian multiplier λt often results in 

more detail block partition. 

 
Fig. 2-13. Block partition and selected directions of test image Lena after rate-distortion optimized 

segmentation based on different Lagrangian multiplier λt. 

 

2.5 Megablocking Partition 

The quadtree partition adopts a parent-child pruning procedure to produce the 

(a) block partition based on λt = 4 (b) selected directions based on λt = 4

(c) block partition based on λt = 8 (d) selected directions based on λt = 8
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optimal partition under the constrained bit budget. It ignores the correlations between 

neighboring nodes partitioned from different parent nodes. Thus its fails to achieve 

the optimal R-D performance [55]. The prune-join scheme extends the concept of 

pruning the child nodes to the concept of joining the similar neighbor nodes. The 

megablocking partition adopts this idea and achieves a better R-D performance for 

DA-DWT [15]. 

    The megablocking partition first uses the quadtree partition to achieve block 

partition for the entire image. Each block has four neighbor blocks locating at its up, 

down, left, and right side [55]. The megablocking partition then joins the blocks with 

the same direction to form a megablock. It defines two types of blocks, inner blocks 

and boundary blocks, for recording the megablocking information. The Inner block 

has all its neighboring blocks within the same megablock. On the other hand, the 

boundary block has at least one neighboring block from another megablock. The 

megablocking partition scheme encodes one directional information for each 

megablock. Thus, it saves a large amount of side information. Fig. 2-14 gives an 

example of megablocking partition. 
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Fig. 2-14. (a) test image of polygonal model, (b) quadtree partition, (c) megablocking partition. 

 

2.6 Subsampling and 

Direction-Adaptive Discrete Wavelet 

Transform 

2.6.1 Subsampling Patterns 

    The 2-D DWT applies 1-D DWT along the vertical then the horizontal directions, 

and so does the 2-D DA-DWT. Different execution orders of these two 1-D 

transforms have no effect on final results of 2-D DWT, but affect that of 2-D 

DA-DWT. If the following conditions hold, the order of transform makes no 

difference. First, the pixel can be predicted by its neighboring pixels as much as 

possible. Thus, the candidate directions should angularly cover the whole plane. 

Second, we must decompose high-pass subbands fully to reduce its energy. Thus, we 

should find the best weighting factors of samples used for prediction by minimizing 

(a) (b) (c)
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the prediction mean square error (MSE) [56]. However, the candidate directions of 

each order of transform cannot cover as whole range as supposed. We usually adopt 

the fixed weights (conventional lifting coefficients) for lifting scheme. Thus, we get 

different results by using different ordering in applying 1-D transforms in 2-D 

DA-DWT [31]. 

    In a lifting-based wavelet transform, we divide the pixels of an image I into two 

separate subsets, IL and IH, where IL ∪ IH = I and IL ∩ IH = Ø . In the vertical 

transform of 1-D DWT, IL and IH are rows of even and odd indexes. We use the 

prediction step (2-2) and update step (2-3) to obtain the low-pass subbands 

coefficients CL and high-pass coefficients CH.  

CH = IH – P(IL) (2-2) 

CL = IL – U(CH) (2-3) 

 P( ) and U( ) are prediction and update operators. In 2-D DWT, CL can be 

decomposed into CLL and CLH, and CH can be decomposed into CHL and CHH by 

another 1-D DWT. 

The conventional 2-D DWT and the 2-D DA-DWT applies transform between 

rows (along the vertical direction) than between columns (along the horizontal 

direction). Thus, this transform order is called subsampling pattern row-column (RC) 

in Fig. 2-15(a). The so-called SA-DWT algorithm includes another two subsampling 
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patterns, column-row (CR) and quincunx (QU), shown in Fig. 2-15(b) and Fig. 

2-15(c). Fig. 2-16 and Fig. 2-17 show the candidate directions of different 

subsampling patterns. Fig. 2-16(c) and Fig. 2-17(c) show that the QU’s candidate 

directions cover a wide range. Thus, the image rotation has no effect on QU’s coding 

performance [31]. However, the QU provides poor coding performance for most 

natural images because of the far away reference pixels for prediction [57]. Each 

subsampling pattern has its best performed texture [32]. 

 
Fig. 2-15. Four subbands of different subsampling patterns. 

 

 
Fig. 2-16. The candidate first directions of different subsampling patterns. 
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Fig. 2-17. The candidate second directions of different subsampling patterns. 

 

2.6.2 Phase-Completion Process 

    When applying the the first transform of 2-D SA-DWT, we encounter a problem 

due to the non-uniform distribution of subset partitions between neighboring blocks 

with different subsampling patterns as shown in Fig. 2-18. IL (including CLL and CLH) 

and IH (including CHL and CHH) have mismatched locations in two neighboring blocks 

in Fig. 2-18. The pixel α ∈ IH can be predicted by the pixel β ∈ IL, but not by the pixel 

γ ∈ IH along the direction in Fig. 2-18. We need to estimate the IL at location of γ to 

predict α. We resolve this problem by the phase-completion process PC( ) in (2-4) and 

(2-5). 

CH = IH – P(PC(IL)) (2-4) 

CL = IL – U(PC(CH)) (2-5) 

The operation of PC(IL) in (2-4) is as follows. It estimated loss samples ∈ IL from 

neighboring pixels ∈ IL. Since usually the local correlation within an image is strong, 
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estimation of IL from neighboring IL is feasible. We use the average of all pixels ∈ IL 

within a window to get estimation. For example, in Fig. 2-18, we take the average of 

IL within a 3×3 window centered at γ as the estimation of IL located at γ. The operation 

of PC(CH) in (2-5) is similar as above. 

For the second transform, we use CLL to predict CLH. These two phases of pixels 

uniformly distribute in all three subsampling patterns. Thus, we can apply the second 

transform without the different neighboring subsampling problem. 

 
Fig. 2-18. Phase-completion between process neighboring blocks adopt different subsampling patterns. 

Left block uses CR while right block uses RC. 
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Chapter 3 Temporal-Domain 

Wavelet Transform and Entropy 

Coding 

3.1 Motion-Compensated Temporal 

Filtering 

    The Motion-compensated temporal filtering (MCTF) is a technique that 

performs temporal subband decomposition on video sequences. It decomposes the 

original video frames into temporal low-pass residuals T_Ls and temporal high-pass 

residuals T_Hs. The goal of MCTF is to compact the temporal energy along motion 

trajectory of a video sequence. 

    An improved version of MCTF adopting the biorthogonal 5/3 filters for lifting 

schemes in is shown Fig. 3-1 [11]. There are three steps in the lifting scheme of 

MCTF, polyphase decomposition, prediction step, and update step. The polyphase 

decomposition splits the input frames Fk into odd frames F2i and even frames F2i+1. 

The prediction step generates the high-pass residuals Hi by predicting F2i+1 from F2i 

and F2i+2: 
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2 1 2 2 1 2 2 2 2 1 2 2

1
( ( , ) ( , ))

2
i i i i i i i iH F MC F MV MC F MV          (3-1) 

where MV2i+1→2i is the motion vector from frame F2i+1 to F2i. MC(F2i, MV2i+1→2i) is 

the motion compensation process using motion vector MV2i+1→2i to generate the 

predicted pixels of F2i+1 from F2i. Then, the update step generates the low-pass 

residuals by updating F2i from Hi-1 and Hi: 

2 1 2 2 1 2 2 1

1
( ( , ) ( , ))

4
i i i i i i i iL F MC H MV MC H MV        (3-2) 

Through one level of MCTF, video frames are decomposed into T_Ls and T_Hs. 

Another level of MCTF decompose low-pass residuals again and iteratively to 

achieve temporal scalability. Fig. 3-2 shows the temporal residuals after a 4-level 

MCTF applied to 16 input frames, F0~F15. The result includes 1 temporal low-pass 

residual LLLL0, and 15 high-pass residuals, LLLH0, LLH0~ LLH1, LH0~ LH3, H0~ 

H7. 

 
Fig. 3-1. Lifting scheme with biorthognoal 5/3 filters in MCTF. Fi, Hi, and Li are the original video 

sequences, the temporal high-pass residuals, and the temporal low-pass residuals. 
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Fig. 3-2. Temporal residuals after four levels of MCTF applied to 16 input frames, F0~F15. 

 

3.2 Characteristics of Prediction 

Residuals 

3.2.1 Auto-Covariance Model 

 
Fig. 3-3. Temporal residuals of three test video sequences. (a) LLLL0 of Akiyo, (b) LLLL0 of Bus, (c) 

LLLL0 of Mobile, (d) LLLH0 of Akiyo, (e) LLLH0 of Bus, (f) LLLH0 of Mobile. 
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Fig. 3-3 shows the T_Ls and T_Hs of different test video sequence. The temporal 

T_Ls are similar to the original images but the T_Hs are similar to the 

motion-compensated residuals. The motion-compensated residuals have different 

spatial characteristics from the original images [43]. In T_Hs, the coefficients forming 

large smooth regions are negligibly small. The large coefficients concentrate along 

object boundaries and edges to form 1-D structures. 

We analyze the characteristics of image and prediction residuals by two 

auto-covariance models, separable model in (3-3) and generalized model in (3-4) [43]. 

The generalized model is the rotated version of the separable model [43]. The 

generalized model allows rotation of axes of the auto-covariance model and enables 

the capturing local anisotropic features in higher precision. 

| | | |

1 2( , ) I J

sR I J    (3-3) 

| cos( ) sin( )| | sin( ) cos( )|

1 2( , , ) I J I J

gR I J          (3-4) 

We estimate parameters ρ1, ρ2, and θ for the generalized model of the images and 

the prediction residuals by the following steps. We first partition an image into 8×8 

blocks. We calculate the auto-covariance of each 8×8 block by removing its mean, 

correlating the zero-mean block with itself, and dividing the correlation by the block 

variance. We set shifts I and J as integers between -7 to 7. Then, we minimize the 

MSE between the auto-covariance and the generalized model in (3-4) by adjusting the 
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above three parameters. We obtain these parameters from with the minimal MSE. 

 
Fig. 3-4. Scatter plots of estimated (ρ1, ρ2) from images. Fig. 6-6 shows the original images 

 

 
Fig. 3-5. Scatter plots of estimated (ρ1, ρ2) from temporal low-pass residuals. 

 

 
Fig. 3-6. Scatter plots of estimated (ρ1, ρ2) from temporal high-pass residuals. 

 

We plot the estimated ρ1 and ρ2 of the generalized model in Fig. 3-4, Fig. 3-5, 

and Fig. 3-6. The data points (ρ1, ρ2) in Fig. 3-6 move closer to two axes than those in 

Fig. 3-4 and Fig. 3-5. It means that T_Hs have strong correlation along one direction 
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but weak correlations along the other direction. The large coefficients in T_Hs 

concentrate along the object boundaries and form 1-D structures [43]. Applying 2-D 

transform to these 1-D structure signals results in spreading coefficients and 

deteriorate the coding performance [43].  

 

3.3 Embedded Block Coding with 

Optimized Truncation 

    JPEG2000 adopts the embedded block coding with optimized truncation 

(EBCOT) technique as entropy coding unit [6][35]. EBCOT exhibits state-of-art 

coding scheme and it produces bitstream with scalability and random access property. 

It provides a set of context tables with the consideration of characteristics of 

transformed coefficients within different spatial subbands. 

    2-D DWT decomposes an image into many spatial subbands. EBCOT partition 

each subband into a number of 32×32 or 64×64 coding blocks. EBCOT is a bit-plane 

coding and accesses each bit of a coefficient from the most significant bit (MSB) to 

the least significant bit (LSB). Thus, EBCOT is also a binary symbol coding that 

encodes only “0” and “1”.  

For each coefficient x[i, j] at position [i, j], we assign it a binary-valued state 
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variable [i, j], which indicates the significance of this coefficient. [i, j] is the sign of 

x[i, j]. It is 0 when the sample is positive and 1 when the sample is negative. [i, j] is 

initialized to 0 and toggled to 1 when the x[i, j]’s first non-zero bit-plane value is 

encoded. There are 4 coding operations and they are activated by [i, j]. 

 
Fig. 3-7. (a) Stripe-oriented scanning path. (b) Neighbors within the context window. 

 

    For each coding pass on a bit-plane, EBCOT scans every bit along the path in 

Fig. 3-7(a). When encountering a bit needed to encode, it encodes this bit with the 

consideration of its 8 neighbors within a 3×3 context window. Fig. 3-7(b) shows the 

labels of these neighbors. 

3.3.1 Coding Operations 

    EBCOT includes 4 coding operations, significance coding, sign coding, 

magnitude refinement coding, and clean up coding. We describe these coding 

operations as follows. 
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3.3.1.1 Significance Coding 

If a coefficient x[i, j] is not yet significant in the previous bit-planes, the 

significance coding estimates the probability of x[i, j] becoming significant from its 8 

neighbors. It classifies the significance situations of neighbors as the contexts given in 

Table 3-1. The significance coding uses the contexts in Table 3-1 to code x[i, j]’s 

significant information in the current bit-plane. 

Table 3-1. Context table of significance coding. “X” means don’t care. 

 

 

3.3.1.2 Sign Coding 

    If a coefficient x[i, j] becomes significant at the current bit-plane, we set [i, j] = 

1 and use the sign coding to code its sign [i, j]. The sign coding calculates the 

horizontal contribution 
H
 and the vertical contribution 

V
 as follows: 


H
 = min{1, max{-1, [i-1, j]  (1-2[i-1, j]) + [i+1, j](1-2[i+1, j])}} (3-5) 

wavelet

subband

LL   LH HL HH

context H V D V H D H+V D

8 2 X X 2 X X X ≥3

7 1 ≥1 X 1 ≥1 X ≥1 2

6 1 0 ≥1 1 0 ≥1 0 2

5 1 0 0 1 0 0 ≥2 1

4 0 2 X 0 2 X 1 1

3 0 1 X 0 1 X 0 1

2 0 0 ≥2 0 0 ≥2 ≥2 0

1 0 0 1 0 0 1 1 0

0 0 0 0 0 0 0 0 0
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
V
 = min{1, max{-1, [i, j-1]  (1-2[i, j-1]) + [i, j+1](1-2[i, j+1])}} (3-6) 

Then sign coding using 
H
 and 

V
 to obtain the sign prediction 

P
 in Table 3-2 . It 

codes the XOR results of 
P
 and [i, j] using Table 3-2. 

Table 3-2. Context table and sign prediction of sign coding 

 

 

3.3.1.3 Magnitude Refinement Coding 

Table 3-3. Context table for magnitude refinement coding 

 

    The magnitude refinement coding codes the new information of x[i, j] if it 

becomes significant in the previous bit-plane. It uses 3 contexts for arithmetic coding 

in Table 3-3. 

1.  If x[i, j] with no significant neighbors has not been coded by magnitude 

refinement coding, the context table of x[i, j] is 14. 

2. If x[i, j] with at least one significant neighbor has not been coded by magnitude 

refinement coding, the context table of x[i, j] is 15. 

H V context P

1 1 13 1

1 0 12 1

1 -1 11 1

0 1 10 1

0 0 9 1

0 -1 10 -1

-1 1 11 -1

-1 0 12 -1

-1 -1 13 -1

H+V+D first time for

magnitude

refinement coding

context

X False 16

≥1 True 15

0 True 14
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3. Otherwise, the context is 16. 

 

3.3.1.4 Run Length Coding 

    If 4 consecutive coefficients along the stripe column in Fig. 3-7(a) are all 

insignificant, and their surrounding 14 coefficients are all insignificant, we code these 

4 coefficients by the run length coding. When a group of 4 coefficients satisfy the 

above condition, the run length coding codes them by a single symbol “0”. 

    If one of these 4 coefficients becomes significant in the current bit-plane, the run 

length coding codes them by a single symbol “1”. Then, it uses two bits, “00”, “01”, 

“10”, or “11” to encode the position of significant coefficients. 

 

3.3.2 Coding Passes 

    EBCOT includes 3 different coding passes and each coding passes includes the 4 

coding operations in the above. Multiple coding passes separate the bits within a 

coding block into smaller subsets. The results thus form a finely embedded bitstream. 

We introduce these coding passes as follows. 

 

3.3.2.1 Significance Propagation Pass 

    The significance propagation pass processes an insignificant coefficient with at 

least one significant neighbor. It uses the significance coding to code the significance 
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information in the current bit-plane of this coefficient. If the coefficient becomes 

significant in the current bit-plane, then the sign coding is used to code the sign. 

 

3.3.2.2 Magnitude Refinement Pass 

    This coding pass processes the coefficients that were already significant in the 

previous bit-planes. It uses the magnitude refinement coding to code the binary bits 

corresponding to these coefficients in the current bit-plane. 

 

3.3.2.3 Cleanup Pass 

    This coding pass processes the coefficients that were not processed by previous 

two coding passes at the current bit-plane. It uses the run length coding to codes the 

information of 4 consecutive insignificant coefficients along the stripe column with 

14 insignificant neighbors. Other un-processed coefficients are coded by significance 

coding and sign coding. 

 

3.4 Three-dimensional Embedded 

Subband Coding with Optimized 
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Truncation 

    Three-dimensional Embedded Subband Coding with Optimal Truncation (3-D 

ESCOT) [36] is an extension of EBCOT used in video coding. It offers high 

compression efficiency and other functionalities, such as error resilience and random 

access. 

    3-D ESCOT takes the advantages of the orientation-invariant property of 

wavelet subbands to reduce the number of context. It codes each subband 

independently so that each subband can be decoded independently. Because of this 

feature, 3-D ESCOT can achieve a flexible spatial/temporal scalability and the R-D 

optimization can be done within subbands to improve compression efficiency. 

    In addition to the spatial wavelet subbands (LL, LH, HL, and HH) produced by 

2-D DWT applying to the residuals, 3-D ESCOT also considers the orientation of 

temporal wavelet subbands. The temporal low-pass residuals LLLL0 in Fig. 3-2 is 

denoted as “L” and the other high-pass residuals are denoted as “H” in the orientation 

consideration. Thus each subband in 3-D ESCOT has three orientations. Each 

subband is divided into 3-D coding blocks and these coding blocks are coded 

independently. 

    For each coefficient x[i, j, k] at position [i, j, k], we assign it a binary-valued state 

variable [i, j, k], which indicates the significance of this coefficient. [i, j, k] is the 
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sign of the x[i, j, k]. It is 0 when the sample is positive and 1 when the sample is 

negative. [i, j, k] is initialized to 0 and toggled to 1 when the x[i, j, k]’s first non-zero 

bit-plane value is encoded. When a bit need to be coded, 3-D ESCOT encodes this bit 

by checking its 18 neighbors within a 3×3×3 cubic in Fig. 3-8. 

 
Fig. 3-8. Neighbors within the cubic. 

 

3.4.1 Coding Operations 

    There are 3 coding operations in 3-D ESCOT and their use is controlled by [i, j, 

k]. The zero coding (ZC) and the sign coding (SC) are used to code x[i, j, k] if [i, j, k] 

= 0 and magnitude refinement (MR) is used if [i, j, k] = 1. We will describe these 3 

coding operations as follows. 

 

3.4.1.1 Zero Coding 

If a coefficient x[i, j, k] is not yet significant in the previous bit-planes, ZC 

estimates the probability of x[i, j, k] becoming significant from its 18 neighbors in Fig. 

3-8. It classifies the significance situations of neighbors as contexts in Table 3-4. ZC 

uses the contexts in Table 3-4 to code the significance information of x[i, j, k]. 

X

H

V

T

D
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Table 3-4. Context table of zero coding. “X” means don’t care. 

 

 

3.4.1.2 Sign Coding 

Table 3-5. Context table and sign prediction of sign coding. 

 

If a coefficient x[i, j, k] becomes significant at the current bit-plane, we set [i, j, 

k] = 1 and use SC to code its sign [i, j, k]. SC calculates the horizontal contribution 


H
, the vertical contribution 

V
, and the temporal contribution 

T
, as following: 


H
 = min{1, max{-1, [i-1, j, k]  (1-2[i-1, j, k]) + [i+1, j, k]  (1-2[i+1, j, k])}} (3-7) 


V
 = min{1, max{-1, [i, j-1, k]  (1-2[i, j-1, k]) + [i, j+1, k]  (1-2[i, j+1, k])}} (3-8) 


T
 = min{1, max{-1, [i, j, k-1]  (1-2[i, j-1, k]) + [i, j, k+1]  (1-2[i, j, k+1])}} (3-9) 

wavelet

subband

LLL LLH LHH HHH

Context H V T D H V+T D D H+V+T

0 2 X X X 2 X X

0 1 ≥1 X X 1 ≥3 X ≥6 X

1 1 0 ≥1 X 1 ≥1 ≥4 ≥4 ≥3

2 1 0 0 X 1 ≥1 X ≥4 X

3 0 2 0 X 1 0 ≥4 ≥2 ≥4

4 0 1 0 X 1 0 X ≥2 ≥2

5 0 0 ≥1 X 0 ≥3 X ≥2 X

6 0 0 0 3 0 ≥1 ≥4 ≥0 ≥4

7 0 0 0 2 0 ≥1 X ≥0 ≥2

8 0 0 0 1 0 0 ≥4 ≥0 1

9 0 0 0 0 0 0 X ≥0 0

H = -1 H = 0 H = 1

V T P context V T P context V T P context

-1 -1 0 0 -1 -1 0 9 -1 -1 1 8

-1 0 0 1 -1 0 0 10 -1 0 1 7

-1 1 0 2 -1 1 0 11 -1 1 1 6

0 -1 0 3 0 -1 0 12 0 -1 1 5

0 0 0 4 0 0 0 13 0 0 1 4

0 1 0 5 0 1 1 12 0 1 1 3

1 -1 0 6 1 -1 1 11 1 -1 1 2

1 0 0 7 1 0 1 10 1 0 1 1

1 1 0 8 1 1 1 9 1 1 1 0
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    Then, SC uses 
H
, 

V
, and 

T
 to get the sign prediction 

P
 in Table 3-5. It codes 

the XOR results of 
P
 and [i, j, k] using Table 3-5. 

 

3.4.1.3 Magnitude Refinement Coding 

Table 3-6. Context table for magnitude refinement coding 

 

MR encodes the new information about x[i, j, k] if it became significant in the 

previous bit plane. It uses three contexts in Table 3-6 for arithmetic coding. 

1.  If x[i, j, k] with no significant neighbors has not been coded by MR, the context 

table of x[i, j, k] is 0. 

4. If x[i, j, k] with at least one significant neighbor has not been coded by MR, the 

context table of x[i, j, k] is 1. 

5. Otherwise, the context is 2. 

 

3.4.2 Coding Passes 

    3-D ESCOT provides a high coding gain due to the use of fractional bit-plane 

coding. The fractional bit-plane coding provides a practical means of scanning the 

wavelet coefficients within each bit-plane for rate-distortion (R-D) optimization at 

different rates. There are 3 different fractional bit-plane coding passes and the 

scanning order in each of them is along the i-direction firstly, then the j-direction and 

H+V+D+T first time for

magnitude

refinement coding

context

X False 2

≥1 True 1

0 True 0
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the k-direction lastly. 

 

3.4.2.1 Significance Propagation Pass 

    If the coefficients which are not yet significant but have “preferred neighborhood” 

are processed by this pass. A coefficient has a “preferred neighborhood” if and only if 

the coefficient has at least one significant immediate diagonal neighbor for the HHH 

subband or the horizontal, vertical, temporal neighbor for the other types of subbands. 

For these coefficients, we apply the ZC to code their significance information in the 

current bit-plane of this coefficient. If the coefficient becomes significant in the 

current bit-plane, then SC is used to code the sign. 

 

3.4.2.2 Magnitude Refinement Pass 

If the coefficient became significant in the previous bit-plane, it will be coded in 

this pass. The binary bits corresponding to these coefficients in the current bit-plane 

are coded by MR. 

 

3.4.2.3 Normalization Pass 

It is used to code the coefficients if it is not coded in the previous two passes. 
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Because these coefficients are not yet significant, they are only processed by ZC and 

SC. 

  



45 
 

Chapter 4 Enhanced Wavelet-based 

Contourlet Image Coding 

Combining WBCT and 3-D ESCOT, a WBCT image coding scheme can achieve 

a better coding performance than a regular 2-D DWT image coding scheme. However, 

there are a few issues in the existing WBCT coding schemes. They need a large 

amount of computations because the existing WBCT directional filters have a large 

support. And, we found that for a specific picture, some WBCT frequency subbands 

do not need further directional transform. Furthermore, the context table in 3-D 

ESCOT needs adjustment to match the characteristics of quantized WBCT 

coefficients. 

To solve these issues, we propose three algorithms in this paper to enhance the 

WBCT image coding scheme. First, we suggest a set of short-length 2-D directional 

filters and verify their performance. Second, we design a mean-shift-based decision 

scheme to dynamically select the proper subbands for directional transform. Third, we 

re-design the context tables of 3-D ESCOT to match the data directionality. With 

these algorithms, our proposed scheme reduces 92% or higher the computational 

complexity of the original WBCT image coding scheme at similar visual quality. 
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4-1 Short-Length 2-D Filters 

To reduce computational load of the current WBCT, we design new short-length 

2-D filters (SLF). The design procedure is as follows. We first choose an appropriate 

1-D filter, up-sample it, and map it to a 2-D filter. 

We begin our design from a 1-D type-II linear phase finite impulse response 

filter [60][65]. Eq. (4-1) is a 1-D prototype filter β(z), wherein the coefficients {vk} 

satisfy (4-2) so that β(e
j0

)=1. When N1=1 (short filter), β(z) has a wide transition band. 

To keep a good balance between the transition band width and the filter length, we 

select N1=2, and thus, v1=0.5916 and v2=−0.0982. Fig. 4-1 (a) and (b) show the 

magnitude and the phase responses of β(z). We up-sample β(z) by 2 and get β(z
2
). Fig. 

4-1 (c) and (d) show the magnitude and the phase responses of β(z
2
). In Fig. 4-1(d), 

β(z
2
) contains a phase discontinuity of π at frequency 0.5π. Because of this phase 

discontinuity, the left-side and the right-side amplitudes in Fig. 4-1(c) have different 

signs. 

1

1 1 1

1

( ) ( )
N

N k N k

k

k

z v z z     



    (4-1) 





1

1

5.0
N

k

kv  (4-2) 
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Fig. 4-1. (a) Magnitude response of β(z). (b) Phase response of β(z). (c) Magnitude response of β(z2). (d) 

Phase response of β(z2). 

 

We up-sample β(z) by 2 and get β(z
2
). Fig. 4-1 (c) and (d) show the magnitude 

and the phase responses of β(z
2
). In Fig. 4-1 (d), β(z

2
) contains a phase discontinuity 

of π at frequency 0.5π. Because of this phase discontinuity, the left-side and the 

right-side amplitudes in Fig. 4-1 (c) have different signs. 

We then map β(z
2
) to a 2-D filter [61]. From β(z

2
), we derive the quadrant filters 

and rotate them by 45 degrees to construct the hourglass filters [18]. In Fig. 4-2, the 

symbol zh denotes the horizontal frequency, and zv denotes the vertical one. In Fig. 

4-2(a), we shift β(z
2
) by 0.5π along the negative frequency axis and the shifted β(z

2
) in 

horizontal direction is denoted by α(zh
2
). Similarly, the shifted β(z

2
) in vertical 

direction is denoted by α(zv
2
) in Fig. 4-2(b). In Fig. 4-2(c), we multiply α(zh

2
) and 

α(zv
2
) together to obtain a quadrant filter α(zh , zv). Accordingly, the four acquired 

quadrant filters are defined by (4-3), (4-4), (4-5), and (4-6 [18]. We rotate these 
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quadrant filters by (4-7) to obtain the hourglass filters. In (4-7), an hourglass filter 

A’(ω) is obtained from a quadrant filter A(ω) [14], wherein Q0 and Q1 are the 

quincunx sampling matrices specified by (4-8) [58]. 

0 ( , ) (1 ( , )) / 2h v h vH z z z z   (4-3) 

1 0 0 0( , ) ( 2 ( 2 ( , ) 1) ( , ))h v h v h vH z z z H z z H z z    (4-4) 

1

0 1( , ) ( , )h v h h vF z z z H z z    (4-5) 

1

1 0( , ) ( , )h v h h vF z z z H z z   (4-6) 

0 1 0

1 1
'( ) ( ) ( ) ( )

2 2

T TA A Q A Q A Q       (4-7) 








 


11

11
0Q

, 












11

11
1Q

 
(4-8) 

 
Fig. 4-2. Derivation of quadrant filters. 

 

 
Fig. 4-3. A four-channel cascaded DFB. 

 

Fig. 4-3 shows a cascaded DFB structure [14]. The left half, H’0(zh, zv) and H’1(zh, 

zv), is the analysis filters, and the right half, F’o(zh, zv) and F’1(zh, zv), is the 
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corresponding synthesis filters. The signals DS1~DS4 are identical to those in Fig. 

2-5(a) and their frequency partitions are in Fig. 2-5(b). This two-level analysis DFB 

structure consists of hourglass filters and quincunx sampling matrices. We rotate the 

quadrant filter H0(zh, zv) in (4-3) to obtain the hourglass filter H’0(zh, zv). H’1(zh, zv), 

F’o(zh, zv) and F’1(zh, zv) are designed similarly. 

The sizes of our proposed 2-D hourglass short-length filters (SLF) are 7×7 and 

13×13. They are much smaller than the sizes (23×23 and 45×45) of their 

corresponding long-length filters (LLF) [59]. Fig. 4-4 shows the magnitude responses 

of SLF and LLF. Although the transition band of SLF seems wider than that of the 

LLF, SLF matches the image local variation well due to its small size. 

 
Fig. 4-4. (a) LLF, whose size=23×23 [59]. (b) SLF, whose size=7×7. 

 

Table 4-1 shows the impacts of SLF and LLF on the DFB computational 

complexities. We compare two DFB implementations, direct structure and ladder 

structure, on the non-zero SLF/LLF coefficients. S is the size of input image. The 

numbers of multiplications and additions are proportional to S. The runtime is 

measured by running Matlab r2008b on a PC with Intel Core 2 Quad Q9400 CPU. 
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The numbers of multiplications and additions include both convolution and 

down-sampling operations. When the sizes of the hourglass filters are 23×23, 45×45, 

7×7 and 13×13, the numbers of nonzero coefficients are 145, 649, 17 and 65, 

respectively. For both the direct and the ladder structures, the SLF-based DFB takes 

approximately only 10% multiplications and additions of those of the LLF-based DFB. 

In the runtime profile, the SLF-based DFB saves roughly 80% computation time in 

both structures. The performance gap between our theoretical estimates 

(multiplications and additions) and experimental measurements (runtime) are largely 

due to data transfer (disk access).  

Table 4-1. The computational complexity and run time measured on the non-zero filter coefficients. 

 

 

4-2 Mean-Shift-Based Decision on 

Subband Selection 

In the WBCT image coding scheme, we apply the directional transform to the 

LH
1
, HL

1
, and HH

1
 subbands. Yet, only the subband signal with significant energy in 

LLF SLF

Direct structure Ladder structure Direct structure Ladder structure

Number of 

Multiplications

4S(145+649+2)

=3124S

4S(144+2)

=584S

4S(17+65+2)

=336S

4S(16+2)

=68S

Number of 

Additions

4S(145+649+2)

=3124S

4S(144+2)

=584S

4S(17+65+1)

=336S

4S(16+2)

=68S

S=512×512 43.656 sec 14.938 sec 9.078 sec 3.953 sec

S=256×256 10.906 sec 3.813 sec 1.797 sec 0.854 sec

S=128×128 2.859 sec 0.953 sec 0.438 sec 0.219 sec
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that direction would benefit from the directional transform. We thus try to locate the 

subbands with this property. Essentially, we identify the energy peaks and find their 

locations.  

Mean shift technique is adopted to locate the energy peaks in the frequency 

spectrum. Mean shift is an iterative, nonparametric estimator of the peak location 

[62][63]; it finds a path to local maximum [64]. Let {xi}i=1…n be an arbitrary n-point 

data set in the d-dimensional Euclidean space R
d
. First, we calculate the mean shift 

vector m(x) by (4-9), wherein x is the center of current window, h is the window 

radius, and K(x) is the flat kernel defined by (4-10). Then, we update the center by 

setting m(x)+x as the center of the next window. We repeat this process until m(x) 

converges to 0. 
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Fig. 4-5. The flowchart of the proposed mean-shift-based decision algorithm. 

 

Fig. 4-5 shows our proposed mean-shift-based decision process for selecting the 

B. Choosing the Representative Energy 

Level based on Low Frequency Components

D. Peak Identification using a Mean-Shift-based Procedure

A. Energy Spectrum Smoothing

C. Deciding Thresholds for Directional Subbands
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subbands. To illustrate the decision flow, we use a 512×512 pixel, 256 gray-level 

image as the input. 

 

4.2.1 Energy Spectrum Smoothing 

We calculate the input image frequency spectrum by the 2-D discrete Fourier 

transform (2-D DFT). The frequency spectrum comprises 512×512 discrete frequency 

components (DFC). The DFC is generally a complex number with the form in (4-11) 

and their energy levels are in form of (4-12). Herein, (x, y) represents the coordinate 

pair of a DFC, 1≤x≤512, and 1≤y≤512. 

m(x, y)=a(x, y)+b(x, y)i (4-11) 

c(x, y)=(a(x, y))
2
+(b(x, y))

2
 (4-12) 

 
Fig. 4-6. The coordinates of energy coefficients c(x, y). The padded data are in gray background. 

 

In Fig. 4-6, we copy the left-most column to the right-most column border and 
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copy the upmost row to the bottom-most row border in order to get a symmetric 

energy spectrum. The zero frequency DFC is at (257, 257). 

Fig. 4-7(a) shows the energy spectrum c(x, y) of the input image Pepper, wherein 

the energy levels are in log10 scale, i.e., log10(c(x, y)). It contains many small peaks. 

These small peaks may cause misjudgment on cluster identification. Therefore, we 

use a smoothing operator (defined in Fig. 4-7(c)) to reduce small peaks [41]. Fig. 

4-7(b) shows the smoothed energy spectrum. The large energy peaks typically stand 

out after smoothing.  

 
Fig. 4-7. (a) Energy spectrum of image Pepper. (b) Smoothed energy spectrum of image Pepper. (c) 

Smoothing operator. 

 

4.2.2 Choosing the Representative Energy Level 

based on the Low Frequency Components 

Fig. 4-7(b) shows natural images contain strong low frequency components. We 

choose it as the basis for calculating the threshold value for identifying energy peaks. 

Fig. 4-8(a) shows the subband signals generated by WBCT and Fig. 4-8(b) shows the 
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DFC coordinates in the upper half subband LH 4-0. The gray area is called the low 

frequency zone, and the white area is the high frequency zone. Because the upper half 

subband is symmetric to its lower half, we only look at the DFC in the upper half of 

LH
1
. The upper half of LH

1
 is the region bounded by 129≤x≤385 and 1≤y≤129. Along 

each column x of LH
1
, we calculate the mean μ(x) and the variance σ(x) of the DFC 

by (4-13) and (4-14). We find that the DFC magnitudes in the center three columns 

(256≤x≤258) usually have large means and small variances. Similar property holds for 

HL
1
. Therefore, we set the width of low frequency zone in LH

1
 and HL

1
 to 3 when the 

input image size is 512×512. 

129 10

1

log ( , )
( ) ,129 385

129y

c x y
x x


    (4-13) 

2
129 129 210 10

1 1

(log ( , )) log ( , )
( ) ( ) ,129 385

129 129y y

c x y c x y
x x

 
      (4-14) 

 
Fig. 4-8. (a) The subband frequency domain partition produced by WBCT. (b) The DFC coordinates in 

the upper half subband LH 4-0. The gray area in (a) and (b) is the low frequency zone. 

 

To detect the peaks, we calculate the representative energy levels of the low 

frequency components. Eq. (4-15) computes the DFC mean of the LH
1
 low frequency 

LL

LH

4-0

LH

4-0

LH

4-1

LH

4-1

LH

4-2

LH

4-3

LH

4-2

LH

4-3

HH

4-0

HH

4-0

HH

4-2

HH

4-2

HH

4-1

HH

4-1

HH

4-3

HH

4-3

HL

4-1

HL

4-1

HL

4-3

HL

4-3

HL

4-2

HL

4-2

HL

4-0

HL

4-0

π/2

1 129 257 385 513
π

0

-π/2

-π

-π -π/2 0 π/2 π

1

129

257

385

513

horizontal coordinate x

horizontal frequency Fx

v
e

rtic
a

l fre
q
u

e
n
c
y
 F

y

v
e
rt

ic
a
l 
c
o
o
rd

in
a
te

 y

257

1

258

129

259

128
259

129

384

129

383

127

383

129

385

129

383

128

384

128

257

127

258

127

259

127
257

128

258

128
257

129

257 258 259 383 384 385

1

2

3

127

128

129

(a) (b)

v
e
rt

ic
a
l 
c
o
o
rd

in
a
te

 y

horizontal coordinate x

260

4

257

126

258

126

259

126

260

126
260

127
260

128
260

129

382

127

382

126

382

128
382

129

4

126

260 382

257

2
257

3
257

4

258

2
258

3
258

4

259

4

259

3

x

y
= c(x, y)



55 
 

zone, and (4-16) computes that of the HL
1 

low frequency zone. With these DFC 

means, we define the representative energy level LH_L for LH
1 
by (4-17), and HL_L 

for HL
1
 by (4-18). Essentially, we like to select a threshold that identifies the peaks 

with “significant” energy. In (4-17), when the average energy level of low frequency 

components in HL subband is at least four times larger than that in the LH subband, 

we use the former as the threshold; otherwise, the latter. The parameter “log10(4)” 

denotes the case that the large energy is at least 4 times of small ones. 

Correspondingly, the absolute magnitude of the large energy is at least twice of that of 

the small energy because the energy is the square of the absolute value. In this case, 

the difference in bit plan coding is significant. 

129 258

101 256
log ( , )

LH_
3 129

y x
c x y


 




 
 (4-15) 

258 129

10256 1
log ( , )

HL_
3 129

y x
c x y


 




 
 (4-16) 

if((HL_μ−LH_μ)<log10(4)) LH_L = LH_μ, else LH_L = HL_μ (4-17) 

if((LH_μ−HL_μ)<log10(4)) HL_L = HL_μ, else HL_L = LH_μ (4-18) 

 

4.2.3 Deciding Thresholds for Directional Subbands 

A directional subband sometimes contains stronger energy level than the low 

frequency components. We consider this situation and adjust threshold in this step. We 
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try to determine a peak detection threshold for every WBCT subband. Take the 

subband LH 4-0 as an example. We only look at the upper half of LH 4-0 because the 

DFCs in the upper half of LH 4-0 are symmetric to those in the lower half of LH 4-0. 

In the upper half of LH 4-0, we first consider only the DFC outside the low frequency 

zone. We calculate the mean LH_4-0_μ and the variance LH_4-0_σ outside the low 

frequency zone in LH 4-0, i.e., the c(x, y) of white area in Fig. 4-8(b), and construct a 

Gaussian distribution using the calculated mean and variance. In Fig. 4-9, each 

Gaussian distribution approximates its corresponding energy histogram well. Thus, 

the peak detection threshold for LH 4-0 is set by (4-19). The parameter b in (4-19) is 

chosen to be 0.7 because we like to eliminate the 75% DFC candidates. Together with 

the representative energy level LH_L defined earlier, 25% or fewer DFC candidates 

may be identified as energy peaks. We repeat similar procedures on LH 4-1~LH 4-3, 

and HL 4-0~HL 4-3. 

Generally, the transmission priority of HH
1
 is lower than the other subbands due 

to its lower information contents. Because of its low energy, we use the thresholds of 

its neighboring subbands to identify the energy peaks in HH
1
. For example, we set the 

threshold HH_4-0_T of HH 4-0 by (4-20) using the parameters of HL 4-1. 

LH_4-0_T= Max(LH_L, LH_4-0_μ+b×LH_4-0_σ) (4-19) 

HH_4-0_T=Max(HL_L, HL_4-1_μ+b×HL_4-1_σ) (4-20) 
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Fig. 4-9. The DFC energy histograms of some directional subbands. Each histogram is approximated 

by a Gaussian distribution. The directional subbands and the corresponding images are (a) LH 4-0 of 

Boat, (b) HL 4-3 of Lena, (c) LH 4-3 of Pepper, and (d) HL 4-0 of Fingerprint. 

 

4.2.4 Peak Identification using a Mean-Shift-based 

Procedure 

We like to identify a directional band that has significant energy by examining 

the discrete frequency components (DFC) of an image. This typically is caused by 

periodic texture patterns. And its corresponding DFC pattern is a cluster of DFCs with 

high energy. Thus, an energy peak in this paper is defined as a cluster of coefficients 

(c(x, y) in a neighborhood) whose energy level is larger than the threshold. It has two 

properties: the energy level is high and these high-energy DFC coefficients are 

clustered in a small neighborhood. We use an image cluster identification scheme, 

Mean-Shift technique, to allocate them. 
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1) When a c(x, y) within a directional subband and outside the low frequency 

zone is greater than the threshold of that subband, its location (x, y) is set to be the 

center of a search window. We then calculate its mass center coordinates (xmass, ymass) 

by (4-21). The window size is chosen to be 11×11, or, roughly, its radius r=5, because 

a small radius often leads to too many small peaks and a large radius sometimes 

misses peaks. In the search procedure, we extend the coefficients outside the subband 

boundary by periodic extension 

5 55 5

5 5 5 5

5 55 5

5 5 5 5

( , ) ( , )

( , ) ( , )

( , ) ( , )

y yx x

m x n y m x n y

mass mass y yx x

m x n y m x n y

m c m n n c m n

x y

c m n c m n

  

       

  

       

 



   

   
 (4-21) 

We round xmass and ymass to the nearest integers and set the rounded (xmass, ymass) as the 

center of next search window. Then, we use (4-21) again to update the mass center. 

We repeat this procedure until the rounded (xmass, ymass) converges. Thus, a peak 

candidate is identified. 

2) The number of the peak candidates is recorded by a table d(x, y). The initial 

values of all entries of d(x, y) are 0. When we identify a DFC at (x, y) as an energy 

peak candidate, we increase d(x, y) by 1. When the table value of a specific location (x, 

y) is greater than 10 and it is also the largest d(x, y) within a 3×3 window, the DFC 

located at (x, y) is judged as an energy peak. When one subband contains one or more 

energy peaks in the high frequency zone, it is considered to be suitable for directional 
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decomposition.  

Table 4-2. Some test images, their max energy peak location in each subband ((x, y)) and the decision 

result for each subband (suitable for DT). 

 

Table 4-2 shows some representative test images and their band-decomposition 

decision results for each subband. All images are images of 256 gray levels, and their 

sizes are 512×512 pixels. For each subband, the “(x, y)” column denotes the max 

energy peak location, and the “suitable for DT” column denotes the decision result. 

As Table 4-2 shows, the directional transform is inadequate for all subbands of the test 

image Lena; some subbands of Barbara, Fingerprint, Pepper, Boat, and Couple are 

suitable for directional transform, and all subbands of Elaine benefit from the 

directional transform. Fig. 4-10 shows the identified peaks by red dots. We fail to 

identify some peaks for two reasons. First, some peaks contain energy lower than the 

threshold. Second, when a peak is near the low frequency zone, clusters identified by 

the mean Mean-Shift scheme are occasionally in the low frequency zone. Fig. 6-4(a) 

shows a portion of test images Barbara and Elaine. They contain periodic signals. 

Identifying these signals in the spatial domain is hard. These periodic signals are 

LH1 HL1 HH1

(x, y) Suitable 

for DT

(x, y) Suitable 

for DT

(x, y) Suitable 

for DT

Barbara (213,126) N (130,366) Y (92,384) N

Fingerprint (257,129) N (128,200) Y N

Lena (154,121) N (122,259) N (129,390) N

Pepper N N (32,24) Y

Boat N (118,259) Y N

Couple (236,96) N (109,259) Y N

Elaine (177,123) Y (107,212) Y (83,32) Y

wavelet

subband

test

image
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corresponding to energy peaks in the frequency domain and thus we perform peak 

identification in frequency domain. 

 
Fig. 4-10. Energy spectrum of test images (a) Barbara, (b) Pepper, and (c) Elaine. Horizontal axis and 

vertical axis represent horizontal frequency and vertical frequency, respectively. The energy spectrums 

are all in log10 scale. The red squares are the locations of the identified energy peaks. 

 

4.2.5 Computational Complexity 

We now look at the computational complexity issue of our decision algorithm. We 

examine the amount of multiplications and additions for the steps in Fig. 4-5. We 

assume that the input image size is S=W×H. Herein, W is the width of the input image 

and H is the height. We also assume that W and H are all power of 2 and we can 

implement the 2-D DFT in the radix-2 fast Fourier transform (FFT) structure. 

1) In Step A of Fig. 4-5, we apply 2-D DFT to the input image, obtain its energy 

spectrum, and then apply a smoothing filter to the spectrum. The 2-D DFT is 

implemented by the radix-2 FFT, and thus the required numbers of real-value 

additions and multiplications are given by (4-22) and (4-23), in which ceil(x) means 

the smallest integer greater than or equal to x. Next, Eq. (4-12) needs 1 real addition 

and 2 real multiplications to calculate the energy of a DFC. For the entire image, the 

(a) (b) (c)
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required numbers of real additions and real multiplications are in (4-24) and (4-25). 

The smoothing operator in Fig. 4-7(c) requires 8 real additions and 1 real 

multiplication for each c(x, y). Thus, the total numbers of real additions and 

multiplications are given by (4-26) and (4-27). Finally, the overall numbers of real 

additions and real multiplications in Step A are (4-28) and (4-29). 

_ _ _

_ _ _ _ _ _

2 2

2 2

3 (ceil(log ) ceil(log ))

real addition in DFT

complex multiplication in DFT complex addition in DFT

N

N N

W H W H

   

    

 
(4-22) 

_ _ _

_ _ _

2 2

4

2 (ceil(log ) ceil(log ))

real multiplication in DFT

complex multiplication in DFT

N

N

W H W H

 

    

 
(4-23) 

_ _ _ _real addition in calculating powerN W H   (4-24) 

_ _ _ _ 2real multiplication in calculating powerN W H    (4-25) 

_ _ _ _ 8real addition in smoothing spectrumN W H    (4-26) 

_ _ _ _ 2real multiplication in smoothing spectrumN W H    (4-27) 

_ _ _ 2 23 (ceil(log ) ceil(log )) 8real addition in stepAN W H W H W H W H           (4-28) 

_ _ _ 2 22 (ceil(log ) ceil(log )) 2real multiplication in stepAN W H W H W H W H           (4-29) 

2) Step B chooses the representative energy levels based on the low frequency 

zone. Eqs. (4-15) and (4-16) calculate the mean of the DFC energy in the low 

frequency zone. The heights of the low frequency zones in LH
1
 and HL

1
 are 

(ceil(H/4)+1) and (ceil(W/4)+1), respectively. The width is Wlfz. Thus, the mean 

calculation (Step B) needs 2 divisions and _ _ _real addition in stepBN  real additions as shown 
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in (4-30). We choose Wlfz=3 when S=512×512. 

    _ _ _ ceil / 4 ceil / 4 2 2real addition in stepB lfzN W H W      (4-30) 

3) Step C decides the thresholds for directional subbands. The DFC number in 

each directional subband is /16W H , thus the DFC number in each half directional 

subband is / 32W H . In addition to 2 real divisions, we need W×H/32 real 

multiplications and (W×H/16-2) real additions to calculate the mean and the variance 

of each half directional subband. LH
1
 and HL

1
 together have 8 directional subbands in 

total. The numbers of real additions and real multiplications in Step C are, therefore, 

given by (4-31) and (4-32). 

_ _ _ 8 ( /16 2) / 2 16real addition in stepCN W H W H        (4-31) 

_ _ _  8 / 32 / 4real multiplication in stepCN W H W H      (4-32) 

4) Step D identifies the energy peaks. Eq. (4-21) needs 1 division, 242 

multiplications and 480 additions. In total, the numbers of real additions and real 

multiplications in Step D are in (4-33) and (4-34), wherein Nit is the iteration number. 

In our experiments, the minimal Nit is 11 (test image Baboon), the maximal Nit is 

12487 (test image Barbara), and the average Nit is 1697. 

_ _ _ 480real addition in stepD itN N   (4-33) 

_ _ _ 242real multiplication in stepD itN N   (4-34) 

All in all, (4-35) and (4-36) give the total number of multiplications and 
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additions in the decision procedure. When S=W×H=512×512, Wlfz=3, Nin=1697, the 

total number of real additions and real multiplications are 17,461,460 and 10,699,826. 

Ntotal_real_addition = 

W×H×(3×ceil(log2W)+3×ceil(log2H)+9+1/2)−16+Wlfz×(ceil(H/4)+ceil(W/4)+2)−2+Nit×480 
(4-35) 

Ntotal_real_multiplication = W×H×(2×ceil(log2W)+2×ceil(log2H)+3+1/4)+Nit×242 (4-36) 

Table 4-3. Computational complexity and run time for the systems with and without decision when 

LLF is adopted. 

 
Table 4-4. Computational complexity and run time for the systems with and without decision when 

SLF is adopted. 

 

Table 4-3 and Table 4-4 show the computational complexity and the run time of 

the entire system with and without decision, wherein the directional filters are LLF 

and SLF, respectively. With decision, the fastest case occurs when no directional 

transform is conducted on LH
1
, HL

1
, and HH

1
. And the slowest case occurs when we 

apply the directional transform to all subbands. In Table 4-3, the image coding scheme 

with LLF and decision may save over 84% computational load or 88% run time in the 

fastest case. In the slowest case, the decision process requires an additional 16% 

computational load or 13% run time. In Table 4-4, the image coding scheme with SLF 

LLF without 

decision

LLF with 

decision

(fastest)

LLF with 

decision

(slowest)

Ratio

(fastest)

Ratio

(slowest)

Number of 

Multiplications

114,819,072 10,699,826 125,518,898 9.32% 109.32%

Number of 

Additions

114,819,072 17,461,460 132,280,521 15.21% 115.21%

Run Time 11.613 sec 1.385 sec 13.012 sec 11.93% 112.05%

SLF without 

decision

SLF with 

decision

(fastest)

SLF with 

decision

(slowest) 

Ratio

(fastest)

Ratio

(slowest) 

Number of 

Multiplications

13,369,344 10,699,826 24,069,170 80.03% 180.03%

Number of 

Additions

13,369,344 17,461,460 30,830,804 130.61% 230.61%

Run Time 2.662 sec 1.385 sec 4.055 sec 52.03% 152.33%
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and decision saves about 48% run time in the fastest case and consumes 52% extra 

run time in the slowest case. On the average, the image coding schemes with decision 

require less run time. 

 

4-3 New ZC Context Tables for 3-D 

ESCOT 

Arithmetic coding methods encode the transformed/quantized coefficients into a 

bit-stream. 3-D ESCOT is a bit-plane coding method and it uses its neighbors for the 

context model. Let the sequence x
N 

= {xN, xN-1, …, x2, x1} represents one bit-plane of a 

coefficient block. Because the bit-plane consists of binary symbols, i.e., }1,0{ix , the 

minimum code length of a binary sequence estimated based on the information theory 

is shown in (4-37), wherein P(xi|x
i-1

) is the conditional probability of xi given x
i-1 

= 

{xi-1, xi-2, …, x2, x1}. Clearly, x
i-1

 is the subset of x
N
. Assuming x

N
 is a Markov random 

sequence of some finite order, we then can reduce the size of x
i-1 

down to x
i-1

, which is 

a subsequence of x
i-1

. This x
i-1

 is the context model support [36][38]. Typically, x
i-1

 

includes the neighbors and the (bit-plane) parents of xi. Ideally, the optimal context 

model gives the maximum mutual information [68]. 





n

i

i

i xxPL
1

1

2 )|(log  (4-37) 
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The original 3-D ESCOT considers only the 2-D DWT coefficients in the 

horizontal and the vertical directions. Yet, the coefficients in a certain directional 

subband may cluster along one specific direction (different from the vertical or 

horizontal directions). The original context table fails to handle this case well. 

Therefore, we redesign the context models of 3-D ESCOT. 

 

Fig. 4-11. (a) The directional subbands produced by WBCT. (b) The spatial neighbor directions for 

coefficient A. 

 

In Fig. 4-11(a), the 13 subbands produced by WBCT are labeled as “LL”, “HH 

4-0”, “LH 4-0”, “HL 4-0”, and likewise. In Fig. 4-11(b), the edges passing through A 

can be H-A-H (0
O
), V-A-V (90

O
), D1-A-D1 (45

O
), and D2-A-D2 (-45

O
). We denote 

the 0
O
, 90

O
, 45

O
, -45

O
 directions as “H”, “V”, “D1”, and “D2”, respectively. 

In Fig. 4-12, we examine the effect of the directional filter LH 4-0 (DF_LH 4-0). 

A concentric-circle pattern, which has edges of all directions, is used as the input 

pattern. Fig. 4-12(a) and (b) show this input signal and its frequency spectrum. Fig. 

4-12(c) shows the spatial filter impulse response of DF_LH 4-0, which is roughly 
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along the H direction (slightly tilted to the D2 direction). Fig. 4-12(d) shows the filter 

frequency magnitude response of DF_LH 4-0, whose energy clusters mainly along the 

vertical axis. In Fig. 4-12(e), the filtered output image contains mainly the spatial 

edges aligned with the H direction (slightly tilted to the D2 direction). Fig. 4-12(f) 

shows the frequency spectrum of filtered signals. Evidently, the dominated directions 

of the LH 4-0 outputs are H and D2. Hence, “H and D2” are the filtered directions of 

LH 4-0. 

 
Fig. 4-12. (a) Input signal in spatial domain. (b) Input signal in frequency domain. (c) Filter response of 

DF_LH 4-0 in spatial domain. (d) Filter response of DF_LH 4-0 in frequency domain. (e) Output signal 

in spatial domain. (f) Output signal in frequency domain. 

 

Similarly, we identify the filtered directions of the other directional subbands. 

The filtered directions of LH 4-1 are “H and D1”, those of HL 4-2 are “V and D2”, 

and those of HL 4-3 are “V and D1”. The filtered directions of the four corner 

subbands (LH 4-2, HH 4-3, HH 4-1, and HL 4-0) are D2. And those of the other four 
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corner subbands (LH 4-3, HH 4-2, HH 4-0, HL 4-1) are D1. 

3-D ESCOT uses three types of context models or context tables – the zero 

coding tables (ZC), the sign coding tables (SC) and the magnitude refinement tables 

(MR). 3-D ESCOT codes bit-planes from the most significant bit-plane to the least 

significant bit-plane. 3-D ESCOT starts with ZC to code the beginning zeros until it 

hits the first non-zero bit. 3-D ESCOT uses ZC to code the magnitude of the first 

non-zero bit and SC to code its sign. For the remaining bits, 3-D ESCOT uses MR to 

code their magnitudes. To match the characteristics of the WBCT coefficients, we 

alter the ZC context table in 3-D ESCOT. For the coefficients in the ordinary 2-D 

wavelet subbands, we adopt the ZC context table (Table 4-5) in EBCOT [35]. But for 

the coefficients in the directional subbands, the proposed Table 4-6 is the ZC context 

table. 

In Table 4-5 and Table 4-6, each “context” denotes a model, and the numbers of 

non-zero coefficients are listed under the directions, H, V, and D1+D2, and X denotes 

“Don't care”.  Fig. 4-11(b) shows the neighbors and their notations we use in the 

entropy coding. The neighbors include vertical neighbors (V), horizontal neighbors 

(H), left-lower and right-upper neighbors (D1), and left-upper and right-lower 

neighbors (D2). To code coefficient A in a wavelet subband of a bit-plane, we first 

calculate the number of non-zero coefficients in all directions. For 2-D wavelets, 
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based on the subband location and the non-zero coefficient patterns, we decide which 

context in Table 4-5 is to be used to code this bit of coefficient A. Similarly, we code 

the coefficients in the other directional subbands using Table 4-6. 

Table 4-5. ZC context table for 2-D wavelet subbands 

 
Table 4-6. ZC context table for directional subbands 

 

Fig. 4-13 shows the frequency responses of the WBCT directional filters. We 

notice the aliasing phenomenon in WBCT [69]. Because the directional filters are not 

ideal filters, their outputs contain aliasing components. Thus, the outputs of a certain 

filter populate not only along one direction but also along another direction (with less 

energy). Consequently, the context model in arithmetic coding becomes less accurate 

or its coding efficiency is reduced. We may reduce aliasing by adopting a sharper (and 

thus longer) filter but the computation time would then increase. 

wavelet

subband

LL   LH HL HH

context H V D1+D2 V H D1+D2 H+V D1+D2

8 2 X X 2 X X X ≥3

7 1 ≥1 X 1 ≥1 X ≥1 2

6 1 0 ≥1 1 0 ≥1 0 2

5 1 0 0 1 0 0 ≥2 1

4 0 2 X 0 2 X 1 1

3 0 1 X 0 1 X 0 1

2 0 0 ≥2 0 0 ≥2 ≥2 0

1 0 0 1 0 0 1 1 0

0 0 0 0 0 0 0 0 0

Directional

subband

LH 4-0 LH 4-1 HL 4-2 HL 4-3 LH 4-3  HL 4-1

HH 4-0  HH4-2

LH 4-2 HL 4-0

HH 4-1  HH 4-3

context D2+H V D1 D1+H V D2 D2+V H D1 D1+V H D2 D1 H+V D2 D2 H+V D1

8 ≥2 X X ≥2 X X ≥2 X X ≥2 X X 2 X X 2 X X

7 1 ≥1 X 1 ≥1 X 1 ≥1 X 1 ≥1 X 1 ≥1 X 1 ≥1 X

6 1 0 ≥1 1 0 ≥1 1 0 ≥1 1 0 ≥1 1 0 ≥1 1 0 ≥1

5 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0

4 0 2 X 0 2 X 0 2 X 0 2 X 0 ≥2 X 0 ≥2 X

3 0 1 X 0 1 X 0 1 X 0 1 X 0 1 X 0 1 X

2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2

1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Fig. 4-13. Frequency magnitude responses of (a) LH 4-0 (b) LH 4-2 (c) HH 4-0 (d) HH 4-2. 
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Chapter 5 Enhanced 

Direction-Adaptive Wavelet Image 

and Video Coding 

5.1 Direction Alignment Algorithm 

A typical 2-D DWT conducts two 1-D DWTs sequentially. For example, it 

applies a 1-D DWT vertically (along column) to an image and then down-samples the 

low-pass output and high-pass output vertically to produces the L subband (even rows) 

and H subband (odd rows). The image rows are split into two subbands and thus this 

operation is called row transform in [32]. Then, the horizontal 1-D DWT and 

down-sampling process is applied along the rows of these two subbands. The columns 

of L are spilt into LL (even columns) and LH (odd columns) subbands and those of H 

are split into HL (even columns) and HH (odd columns) subbands (column transform). 

This transform and subsampling order is called row-column (RC) subsampling pattern 

in [32]. We can reverse the order of the above two transform and down-sampling 

processes and the result is the column-row (CR) subsampling pattern. The 2-D 

DA-DWT also conducts two separable 1-D DA-DWTs using either the RC or CR 

subsampling pattern. Other subsampling patterns are possible but we consider only 
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these two subsampling patterns in this study. In this section, the direction alignment 

algorithm designed for 2-D DA-DWT is based on the RC subsampling pattern. It can 

easily be extended to the CR subsampling pattern in a similar way. 

We first apply the vertical 1-D DA-DWT to an image. Nine wavelet candidate 

directions in [28] are used and they are labeled from -4 to 4 in Fig. 5-1(a). We 

partition an FH×FW image into non-overlapping BH×BW blocks. We label a block with 

its coordinates (i, j) as B(i, j), 1≤i≤(FH/BH), 1≤j≤(FW/BW). Each block B(i, j) is 

associated with a set of prediction errors {DB(i, j; dv)}; each corresponds to a vertical 

candidate direction dv in Fig. 5-1(a) -4≤dv≤4. We choose the sum of absolute 

high-pass coefficients as the prediction error because the absolute value and the 

squared value result in similar performance for video coding [50]. The DA-DWT 

selects the best direction based on the minimum {DB(i, j; dv)} for each B(i, j). It often 

produces different directions of nearby blocks as shown in Fig. 5-2, which leads to 

higher side information bits. According to the rate-distortion theory, the optimal 

direction should be decided based on both bits and distortion. Therefore, we thus try 

to align the directions of neighboring blocks using the Lagrangian cost function. Fig. 

5-3 shows the flow chart of proposed direction alignment algorithm. Step A1 aligns 

the block directions in similar-texture regions. It scans through the entire image. Steps 

A2 and A3 align the directions of isolated blocks and small-cluster blocks. They 
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adjust directions of local areas. 

 
Fig. 5-1. Direction indices: (a) vertical candidate direction dv and (b) horizontal candidate direction dh 

[28]. 

 

 
Fig. 5-2. T The best vertical direction dv of each 8×8 block based on minimal prediction errors. The 

indices of direction dv are specified by Fig. 5-1(a). Fig. 6-6 shows the original images of Barbara and 

Lena. 

 

 
Fig. 5-3. Flow chart of proposed direction alignment algorithm. 

 

5.1.1. Step A1: Aligning Block Directions in 

Similar-Texture Regions 

We follow the left-right, top-down scanning order in processing image blocks. 

We choose the best direction for each block first based on the minimal prediction error. 

In similar-texture regions, some candidate directions have prediction errors of similar 

magnitudes. In this case, choosing one direction or the other does not change the 

distortion much. We like to merge the directions of these blocks into one. 
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Fig. 5-4. Patterns and orientation cases of GB. 

 

We examine the optimal R-D wavelet direction of a group of blocks (GB) in Fig. 

5-4. It consists of 5 patterns: 1-block, 2-block, 4-block, 6-block, and 9-block. Each 

pattern may contain several cases due to different pattern orientations. For example, 

the 2-block pattern (n2) has 4 cases corresponding to the 4 possible orientations 

shown in Fig. 5-4(b), where the green block is the current block under consideration. 

We define other patterns and their associated orientation cases similarly. Fig. 5-5 and 

Fig. 5-6 show the pseudo code of Step A1. 

We adopt GB_n3 in Step A1. GB_n3(m, n) is made of 4 B(i, j)s: {B(i, j), 

m-1≤i≤m+1, n-1≤j≤n+1, B(i, j) ∈ GB_n3(m, n)}. For a given GB_n3(m, n), a 

candidate direction dv produces a GB distortion defined by (5-1). This GB distortion, 

DGB_n3(m, n; dv), consists of 4 components – 4 block distortion, DB(i, j; dv), using the 

current candidate direction.  

1 1

_ 3

1 1

( , ; ) ( , ; ), ( , ) _ 3( , )
m n

GB n v B v

i m j n

D m n d D i j d B i j GB n m n
 

   

    (5-1) 

block B current block Bc neighboring block Bcn a group of blocks GB

(a) pattern n1, 1 orientation case

GB_n1_r1 GB_n2_r1

(b) pattern n2, 4 orientation cases (e) pattern n5, 1 orientation case

(c) pattern n3, 4 orientation cases (d) pattern n4, 4 orientation cases

GB_n2_r2 GB_n2_r3 GB_n2_r4 GB_n5_r1

GB_n3_r1 GB_n3_r2 GB_n3_r3 GB_n3_r4 GB_n4_r1 GB_n4_r2 GB_n4_r3 GB_n4_r4



74 
 

The best group direction, dGB_n3(m, n), of a GB_n3(m, n) is chosen based on the 

minimum prediction error among all candidate directions. However, one block can 

belong to four GB_n3(m, n)s depending on the choice of origin. That is, if we slide 

the GB_n3(m, n) pattern over an image, we get its four position or orientation cases, 

GB_n3_r1 ~ GB_n3_r4, defined in Fig. 5-4(c). Thus, a block B(i, j) has four possible 

best GB directions using four orientation cases: GB_n3_r1 ~ GB_n3_r4. We count the 

occurrence of GB directions of four orientation cases. The maximum value of 

occurrence number, moc, ranges from 1 to 4. Fig. 5-7 shows the moc of two test 

images. The larger moc appears in the smooth or the similar-texture regions and the 

smaller moc often locates at region boundaries. 

 
Fig. 5-5. The pseudo code of Step A1, part A. 

 

moc_table = zeros((FH/BH),  (FW/BW));    

d_offset = 5;    % dv = -4 ~ 4, thus we set d_offset = 5 to match the array index.

% (Part A) Find the moc of a block B using GB_n3

for i = 1 : (FH/BH)

for j = 1 : (FW/BW)

d_temp_buffer = zeros(1, 9);    

for GB = GB_n3

DGB = zeros(1, 9);

for d = dv

for m = i-1 : i+1

for n = j-1 : j+1

if(B(m, n) ∈ GB)

DGB(d + d_offset) += DB(m, n, d);    

% DB(m, n, d) is prediction error of B(m, n) corresponding to direction d

end

end

end

end

find the best direction dGB of GB based on the minimum candidate in DGB;    

d_temp_buffer(dGB + d_offset)++;     % accumulate the occurrence of dGB

end

moc_table(i, j) = the maximum element of d_temp_buffer;

end

end
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Fig. 5-6. The pseudo code of Step A1, part B. 

 

 
Fig. 5-7. moc of each block (8×8 block size). 

 

% (Part B) Find the dB_A1 of a block B

for i = 1 : (FH/BH)

for j = 1 : (FW/BW)

% set the considered GB based on moc

if(moc_table(i, j) ≤ 2)

considered_GB = GB_n1 && GB_n2;

end

if(moc_table(i, j) == 3)

considered_GB = GB_n1 && GB_n2 && GB_n3 && GB_n4;

end

if(moc_table(i, j) == 4)

considered_GB = GB_n1 && GB_n2 && GB_n3 && GB_n4 && GB_n5;

end

cost_temp_buffer = zeros(1, 9);    

cost_temp_buffer = cost_temp_buffer + 10000000000;    

% We assume 10000000000 is the up limit of the Lagrangian cost.

% calculate the corresponding Lagrangian cost of each considered GB

for GB = considered_GB

DGB = zeros(1, 9);

for d = dv

for m = i-1 : i+1

for n = j-1 : j+1

if(B(m, n) ∈ GB)

DGB(d + d_offset) += DB(m, n, d);

end

end

end

end

find the best direction dGB of GB based on the minimum candidate in DGB;    

set B(i, j) = Bc of GB;    LGB_A1 = DBc
(dGB) + λA1(RA1/NGB);

if(cost_temp_buffer(dGB + d_offset) < LGB_A1)

cost_temp_buffer(dGB + d_offset) = LGB_A1;

end

end

find the aligned direction dB_A1 of B(i, j) based on the minimum candidate in cost_temp_buffer;

end

end
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To simplify the notations, we abbreviate GB_n3(m, n) as GB_n3 when its 

coordinates are not important. The other symbols are abbreviated in a similar way. 

The aligned direction dB_A1 of a block B is derived by using the following procedure. 

Assuming Bc is the current block (green color) in Fig. 5-4. We calculate the 

Lagrangian cost function of each orientation case in Fig. 5-4. We take the 4-block 

pattern case of GB_n3_r1 (Fig. 5-4(c)) as an example. Its Lagrangian cost function 

LGB_n3_r1_A1 is calculated by (5-2). 

_ _ _ _ _ _ _( ) ( / )
cGB n3 r1 A1 B GB n3 r1 A1 A1 GB n3 r1L D d R N   (5-2) 

where DBc(dGB_n3_r1) is the prediction error of Bc using dGB_n3_r1, the best direction of 

GB_n3_r1, and N GB_n3_r1 is the total number of blocks within GB_n3_r1 and thus 

NGB_n3_r1 = 4. The bit rate is derived under the assumption that 9 candidate directions 

occur equally likely with the same probability 1/9 and thus RA1 is log2(9) for all cases. 

The Lagrangian multiplier λA1 is chosen empirically. Each orientation case in Fig. 5-4 

results in one Lagrangian cost function. We select the aligned direction dB_A1 for a 

block B based on the minimum Lagrangian cost function. The adopted GB patterns for 

a block B depends on moc of B as follows. 

Next, we examine the distribution of directions of all cases for the current block. 

The maximum occurrence (of a candidate direction) is called moc as defined earlier. 

The moc gives the texture orientation information surrounding that block. A larger 
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moc implies most blocks in its neighborhood have similar-texture, and in contrast, a 

smaller moc (say, moc ≤ 2) often indicates it locates at object corners or boundaries. 

In the case of complex surrounding texture, the smaller patterns (say, the 2-block 

pattern) show more consistent directions. However, moc ties appear often and we use 

the following rules to make the final decision. If moc ≤ 2, we choose the direction 

associated with GB pattern n1 or n2, because the current block is likely located in a 

complex region. When moc = 3, the direction comes from GB pattern n1, n2, n3 and 

n4. When moc = 4, the direction comes from all GB patterns. 

Fig. 5-8 shows dB_A1 of all blocks after Step A1. The neighboring blocks in 

similar-texture or smooth regions now have consistent directions. But still there are 

some isolated blocks, which are expensive in sending side information. Therefore, we 

design the Step A2 next to reduce isolated blocks. 

 
Fig. 5-8. Aligned directions after Step A1 (8×8 block). The circles indicate isolated blocks. 

 

5.1.2. Step A2: Adjusting Directions of Isolated Blocks 

Let B be an Isolated Block (IB) if its direction dB_A1 differs from all its 4 
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neighboring blocks after Step A1. Fig. 5-8 shows some IBs in circles. If a block B is 

IB, we adjust its direction by Step A2 and the new direction is denoted as dIB_A2. Fig. 

5-9 shows the pseudo code of Step A2. 

 
Fig. 5-9. The pseudo code of Step A2. 

 

We set IB as Bc in Fig. 5-4 and calculate dIB_A2 as follows. We take GB_n3_r1 as 

an example. The Lagrangian cost function, L GB_n3_r1_A2, is defined by (5-3).  

_ _ _ _ _ _ _( ) ( / )
c cnGB n3 r1 A2 B B GB n3 r1 A2 A2 GB n3 r1L D d R N   (5-3) 

d_offset = 4;    IB_table = zeros((FH/BH),  (FW/BW));

% record the location of IB

for i = 1 : (FH/BH)

for j = 1 : (FW/BW)

if(B(i, j) == IB)

IB_table(i, j) = 1;

end

end

end

% Find the dB_A2 of IB

while(sum of IB_table ~= 0)

for i = 1 : (FH/BH)

for j = 1 : (FW/BW)

if(IB_table(i, j) == 1)

cost_temp_buffer = zeros(1, 9);    

cost_temp_buffer = cost_temp_buffer + 10000000000; 

% calculate the corresponding Lagrangian cost of each considered GB

for GB = GB_n1 && GB_n2 && GB_n3 && GB_n4 && GB_n5

if(Bcn of GB have identical direction dBcn∈GB && IB_table of Bcn == 0)    

%Bcn can be IB with dB_A2 but not dB_A1.

set B(i, j) = Bc of GB; LGB_A2 = DBc
(dBcn∈GB) + λA2(RA2/NGB);

if(cost_temp_buffer(dGB + d_offset) < LGB_A2)

cost_temp_buffer(dGB + d_offset) = LGB_A2;

end

end

end

if(the minimum candidate of cost_temp_buffer < 10000000000)

find the aligned direction dB_A2 of B(i, j) based on the minimum candidate in cost_temp_buffer;

IB_table(i, j) = 0;

end

end

end

end

end
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We consider the case that all the neighboring blocks, Bcn, within GB_n3_r1 (Bcn ∈ 

GB_n3_r1) in Fig. 5-4(c) must have identical directions dBcn∈GB_n3_r1. Bcn ∈ GB_n3_r1 

may have inconsistent directions after Step A1. We discard the case with inconsistent 

Bcn directions. An IB may still be IB after Step A2 and we re-define its direction as 

dIB_A2. We also adopt these IBs as Bcn for future processing patterns in Fig. 5-4. If all 

Bcn ∈ GB_n3_r1 have consistent direction, we define it as dBcn∈GB_n3_r1. Let 

DBc(dBcn∈GB_n3_r1) be the prediction error of Bc using the direction dBcn∈GB_n3_r1. 

NGB_n3_r1 = 4 as discussed earlier. We now estimate the side information bits RA2 based 

on the known direction information. For the current GB, we use the direction index of 

its neighboring blocks (up, left, left-up) as a direction index predictor. If a block B is 

not an IB, we choose its Step A1 aligned direction dB_A1 as a predictor. For an IB, we 

choose its Step A2 aligned direction dIB_A2 if we already known it. We encode the 

prediction index differences of the current GB, which gives RA2 as in [28]. In 

calculating the Lagrangian cost function in Step A2, λA2 is the Lagrangian multiplier 

obtained empirically. For an IB, we use all GB patterns in Fig. 5-4 and calculate the 

LGB_A2 in each orientation case. We select a direction dIB_A2 for IB based on the 

minimum LGB_A2. We repeat the above procedure on all IBs following the scanning 

order.  

After Step A2, we denote the directions of all blocks as dB_A2. Fig. 5-10 shows 
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the dB_A2 of all blocks. Most IBs in Fig. 5-8 are eliminated. If an IB remains, it must 

have a large R-D cost reason. Next, we find a few clustered blocks that have different 

directions from their neighbors. If the cluster size is small, we like to re-examine their 

R-D cost. 

 
Fig. 5-10. Aligned directions after Step A2 (8×8 block). The circles indicate small-cluster blocks. 

 

5.1.3. Step A3: Adjusting Directions of Small-Cluster 

Blocks 

 
Fig. 5-11. Different types of small-cluster blocks. These blocks cannot be presented by a large square 

block in quadtree partition. 

 

The shapes of Small-Cluster Blocks (SCB) are defined by Fig. 5-11. An SCB is a 

small group of blocks with a consistent direction, but their direction differs from those 

of their surrounding blocks, as shown in Fig. 5-10. We are unable to present these 

SCBs by a larger square block in quadtree partition. If a block B belongs to a SCB, we 
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adjust its direction to dSCB_A3 by Step A3 below. Each SCB contains a number of 

blocks. We process each block within SCB from left to right, top to down by Step A3. 

Fig. 5-12 shows the pseudo code of Step A3. 

 
Fig. 5-12. The pseudo code of Step A3. 

 

The directions of its surrounding blocks are the candidates, and the direction 

alignment procedure is similar to that of Step A2. If block Bc belongs to a SCB, we 

calculate its Lagrangian cost function (eqn. (5-4)) of all cases in Fig. 5-4 for all its 

d_offset = 4;    SCB_table = zeros((FH/BH),  (FW/BW));

% record the location of SCB

for i = 1 : (FH/BH)

for j = 1 : (FW/BW)

if(B(i, j) == SCB)

SCB_table(i, j) = 1;

end

end

end

% Find the dB_A3 of SCB

while(sum of SCB_table ~= 0)

for i = 1 : (FH/BH)

for j = 1 : (FW/BW)

if(IB_table(i, j) == 1)

cost_temp_buffer = zeros(1, 9);    

cost_temp_buffer = cost_temp_buffer + 10000000000; 

% calculate the corresponding Lagrangian cost of each considered GB

for GB = GB_n1 && GB_n2 && GB_n3 && GB_n4 && GB_n5

if(Bcn of GB have identical direction dBcn∈GB && SCB_table of Bcn == 0)    

%Bcn can be SCB with dB_A3 but not dB_A2.

set B(i, j) = Bc of GB; LGB_A3 = DBc
(dBcn∈GB) + λA3(RA3/NGB);

if(cost_temp_buffer(dGB + d_offset) < LGB_A3)

cost_temp_buffer(dGB + d_offset) = LGB_A3;

end

end

end

if(the minimum candidate of cost_temp_buffer < 10000000000)

find the aligned direction dB_A3 of B(i, j) based on the minimum candidate in cost_temp_buffer;

SCB_table(i, j) = 0;

end

end

end

end

end



82 
 

surrounding directions. Let us take GB_n3_r1 as an example again. Its Lagrangian 

cost function LGB_n3_r1_A3 is as follows. 

_ _ _ _ _ _ _( ) ( / )
c cnGB n3 r1 A3 B B GB n3 r1 A3 A3 GB n3 r1L D d R N   (5-4) 

We calculate the side information RA3 in (5-4) in a similar way to RA2 in (5-3). 

Since a SCB often locates in the complex texture region, we adopt the value of λA2 for 

λA3. Similar to Step A2, Bcn ∈ GB_n3_r1 must have a consistent direction dBcn∈GB_n3_r1. 

Step A3 may still keep some SCBs unchanged. We define directions of these SCBs as 

dSCB_A3. We also adopt the SCBs with directions dSCB_A3 as Bcn for future process. 

DBc(dBcn∈GB_n3_r1) is the prediction error of Bc corresponding to dBcn∈GB_n3_r1. We select 

a direction dSCB_A3 for SCB based on the minimum LGB_A3. 

 
Fig. 5-13. Aligned directions after Step A3 (8×8 block). 

 

Fig. 5-13 shows the results after Step A3. Clearly, compared to Fig. 5-10, 

adjusting the directions of SCB helps in forming larger connected blocks. These large 

connected blocks reduce the side information and thus improve the coding 

performance. Step A2 adjusts the directions of IBs and Step A3 adjusts those of SCBs. 
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Images with low-resolution may contain complex textures inside a small region. 

Aligning directions of these regions significantly increases prediction error. Thus, 

applying Step A2 and Step A3 to low-resolution images is less desirable. 

 

5.1.4. Step A4: Adjusting Directions of the Second 1-D 

DA-DWT 

Similar to the vertical 1-D DWT, the vertical 1-D DA-DWT decomposes an 

FH×FW image into the spatial low-pass and high-pass subbands with size (FH/2)×FW 

each. Then, we apply the horizontal 1-D DA-DWT to the spatial low-pass subband 

and then followed by a direction alignment algorithm similar to that of the vertical 

1-D DA-DWT describe in the above. We start with partitioning the spatial low-pass 

subband into non-overlapping (BH/2)×BW blocks. The nine candidate directions for dh 

are defined by Fig. 5-1(b). Then, the 3-step direction alignment algorithm can be 

applied to the low-pass subband blocks in a similar way. The spatial high-pass 

subband usually contains little energy. Applying the horizontal 1-D DA-DWT to it is 

inefficient. Thus, we apply the conventional horizontal 1-D DWT to vertical high-pass 

subband to save side information [51]. 

A popular DA-DWT image coding structure adopts the quadtree partition to 
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represent the partition information as illustrated by Fig. 5-14 [27][28][50]. Four 

individual blocks (block size is BH×BW) often provide less prediction error but at the 

cost of higher side information bits. A larger block (block size is (2BH)×(2BW)) needs 

fewer side information bits but produce large prediction errors. A well-designed 

DA-DWT uses the Lagrangian cost function (R-D optimization) to find the optimal 

trade-off between prediction errors and side information bits. For a multi-layer 

quadtree, we need to calculate the cost functions of all possible partitions and then 

choose the one with the minimum overall cost. This exhaustive search is generally 

impractical because the total possible combinations are too huge. Also, the search for 

the optimal Lagrangian multiplier λt is another highly complicated job. Typically, a 

larger λt puts more weights on bits and results in larger block partitions while a 

smaller λt does the opposite. In general, a 2-D DA-DWT scheme [51] may have 

different block partition for the first (vertical) and the second (horizontal) 1-D 

DA-DWT. In the experimental section, we adopt some existing quadree partition [52], 

megablocking partition [15], and direction prediction techniques in coding the side 

information. 

As for the parameter selections, it may worth noting that both the distortion 

model and bits model (bit estimation) adopted in the previous discussions do not 

match exactly the coding distortion and the coding bits at the end. The exact models 
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are too complicated in real images even if they exist. Therefore, a lot of the above 

formulas are approximations and the parameters are tuned empirically. Although the 

words “best” or “optimal” are sometimes used, they describe the cases under the 

given assumptions or models. We cannot guarantee that they are the ultimate best or 

optimal choices for the final coding results. With more accurate distortion and bits 

model, the coding performance of the proposed scheme may be further improved. 

 
Fig. 5-14. Quadtree combination with Lagrangian cost function. λt is the Lagrangian multiplier. 

 

5.2 Direction Alignment Algorithm for 

SA-DWT 

The 2-D DWT applies two 1-D DWTs to an image along the vertical direction 

and then the horizontal direction. The conventional 2-D DA-DWT applies two 1-D 

DA-DWTs in a similar way. Different orders of these two 1-D DWTs have no effect 

on the final results of 2-D DWT. But for DA-DWAT, if we reverse the order of two 

1-D DA-DWTs, we may obtain different final results [31][56]. Under certain 
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conditions given in [56], the order of applying 1-D DA-DWT is irrelevant; however, 

those conditions are not satisfied practically. We thus discuss the selection of 

subsampling patterns. 

Three most commonly used subsampling patterns are RC, CR, and quincunx 

(QU). The QU subsampling pattern is most effective for the strongly anisotropic 

images. It is reported that for most nature images, its performance is not as good as 

RC or CR [31]. Therefore, we only consider the RC and CR patterns in this study. 

We can examine individual block separately for the RC and CR subsampling 

patterns and select one with better performance. This is the key idea behind the 

subsampling and direction-adaptive DWT (SA-DWT) [32]. If two neighboring blocks 

have different subsampling patterns, it uses a phase-completion process to handle the 

transform across their boundaries. Fig. 5-15 shows the 4 spatial subbands of different 

subsampling patterns [32]. In this section, we propose an extended direction 

alignment algorithm for 2-D SA-DWT. 

We again partition an FH×FW image into non-overlapping blocks with BH×BW 

block size. For the first 1-D SA-DWT, each block B(i, j) now has 18 candidate 

directions, ds, including 9 possible dv and 9 possible dh in Fig. 5-1. The corresponding 

prediction errors are denoted as {DB(i, j; ds)}. The SA-DWT selects the best direction 

based on the minimum {DB(i, j; ds)} among all candidates. Fig. 5-16 shows the best 
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direction of two test images. Neighboring blocks have inconsistent directions and 

subsampling patterns. It results in a large amount of side information of directions and 

subsampling patters. We extend the proposed direction alignment algorithm for the 

2-D SA-DWT with some modifications on the original SA-DWT. Fig. 5-17 and Fig. 

5-18 show the flow charts of our proposed direction alignment algorithms. 

 
Fig. 5-15. Four spatial subbands of different subsampling patterns [32]. 

 

 
Fig. 5-16. The best direction ds of each 8×8 block. The direction indexes -4 ~ 4 correspond to dv (-4 ~ 4) 

and 5 ~ 13 correspond to dh (-4 ~ 4). 

 

 
Fig. 5-17. Flow chart of proposed direction alignment algorithm for the first 1-D SA-DWT. 

 

 
Fig. 5-18. Flow chart of proposed direction alignment algorithm for the second 1-D SA-DWT. 

 

To simplify the process and reduce the distortion increased due to subsampling 

pattern change at block boundaries, we start with only one single subsampling pattern 

(a) Row - Column (b) Column - Row (c) Quincunx
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(either RC or CR) applied to the entire image. We propose four steps to align 

directions of the first 1-D SA-DWT in Fig. 5-17. Step B1 aligns block directions 

based on a single subsampling pattern. We then choose the row transform or the 

column transform (and the best direction) for each individual block. Step B2 aligns 

directions in similar-texture regions. Step B3 and B4 aligns directions of isolated 

blocks and small-cluster blocks.  

Except best directions, the first 1-D SA-DWT also decide subsampling patterns 

of each block. Thus, after the first 1-D SA-DWT, we execute the second 1-D 

SA-DWT based on double subsampling patterns, RC and CR, interlacing together. A 

3-step procedure similar to Algorithm A aligns the directions of the second 1-D 

SA-DWT in Fig. 5-18. Step C1 aligns block directions based on a single subsampling 

pattern. It also calculates the prediction errors for Steps C2 and C3. Steps C2 and C3 

align the directions of isolated blocks and small-cluster blocks.  

 

5.2.1. Step B1: Aligning Block Directions for Single 

Subsampling Pattern 

We adopt the direction alignment Algorithm A to align the directions of the first 

transform based on one single subsampling pattern. We repeat the transform and 
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alignment procedure twice: for RC and for CR. After the procedure is completed, each 

B(i, j) has two candidate first directions, dB(i, j)_RC_B1 ∈ dv and dB(i, j)_CR_B1 ∈ dh, 

corresponding to RC and CR. Fig. 5-19 shows separately the aligned first directions 

for two subsmapling patterns. In fact, Fig. 5-19(a) and Fig. 5-19(c) are identical to Fig. 

5-10(a) and Fig. 5-10(b). 

 
Fig. 5-19. The aligned first direction of the entire image (8×8 block). Direction indexes in (a)(c) and 

(b)(d) are specified by Fig. 5-1(a)(b). (a)(c) are the same as Fig. 5-10(a)(b). 

 

5.2.2. Step B2: Aligning Block Directions in 

Similar-Texture Regions 

Next, we choose both the direction and subsampling pattern together in Step B2. 

Fig. 5-20 and Fig. 5-21 show the pseudo code of Step B2. For simplicity, we use only 
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one GB pattern in this step, namely, GB_n3, which is a 4-block pattern defined in Fig. 

5-4(c). Each orientation of GB_n3 has a set of 18 prediction errors {DGB_n3(m, n; ds)}, 

which is calculated using (5-1) in a similar way. We choose the best direction for an 

orientation of GB_n3 based on the minimum {DGB_n3(m, n; ds)}. The best direction 

belongs to one of two subsampling patterns, RC or CR. Each GB_n3 has four 

orientation cases, GB_n3_r1 ~ GB_n3_r4 in Fig. 5-4(c). We count the occurrence 

number of the best orientation-case directions that belong to RC and call it ocrc. 

 
Fig. 5-20. The pseudo code of Step B2, part A. 

 

    Fig. 5-22 shows the ocrc distributions of two test images. Often, the blocks 

ocrc_table = zeros((FH/BH),  (FW/BW));

d_offset_v = 5;    d_offset_h = 14; 

% dv = -4 ~ 4, dh = -4 ~ 4, thus we set d_offset_v = 5 and d_offset_h = 14 to match the array index.

subsampling_table = zeros((FH/BH),  (FW/BW));

% This table records the subsampling pattern of each block, RC is 1, CR is 2.

% (Part A) Find the ocrc of a block B using GB_n3

for i = 1 : (FH/BH)

for j = 1 : (FW/BW)

for GB = GB_n3

DGB = zeros(1, 18);

for d = dv and dh

for m = i-1 : i+1

for n = j-1 : j+1

if(B(m, n) ∈ GB)

if(d ∈ dv)

DGB(d + d_offset_v) += DB(m, n, d);

else

DGB(d + d_offset_h) += DB(m, n, d);

end

end

end

end

end

find the best direction dGB of GB based on the minimum candidate in DGB;

if(dGB∈ dv)

ocrc_table(i, j)++;    % accumulate the occurrence of dGB ∈ dv

end

end

end

end
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with ocrc ≥ 3 and those with ocrc ≤ 1 form two different regions. The blocks locating 

at region boundaries have ocrc = 2. Thus, we decide the subsampling pattern (RC or 

CR) of B(i, j) based on its ocrc value. If ocrc ≥ 3, it is RC; and if ocrc ≤ 1, it is CR. 

 

Fig. 5-21. The pseudo code of Step B2, part B. 

% (Part B) Find the dB_B2 of a block B

considered_GB = GB_n1 && GB_n2 && GB_n3;

for i = 1 : (FH/BH)

for j = 1 : (FW/BW)

if(ocrc_table(i, j) ≥ 3)

dB_B2 = dB_RC_B1 ;    subsampling_table(i, j) = 1;    % subsampling pattern of B(i, j) is RC

end

if(ocrc_table(i, j) ≤ 1)

dB_B2 = dB_CR_B1 ;    subsampling_table(i, j) = 2 ;    % subsampling pattern of B(i, j) is CR

end

if(ocrc_table(i, j) == 2)

cost_temp_buffer = zeros(1, 18);    

cost_temp_buffer = cost_temp_buffer + 10000000000;    

% We assume 10000000000 is the up limit of the Lagrangian cost.

% calculate the corresponding Lagrangian cost of each considered GB

for GB = considered_GB

DGB = zeros(1, 18);

for d = dv and dh

for m = i-1 : i+1

for n = j-1 : j+1

if(d ∈ dv)

DGB(d + d_offset_v) += DB(m, n, d);

else

DGB(d + d_offset_h) += DB(m, n, d);

end

end

end

end

find the best direction dGB of GB based on the minimum candidate in DGB;    

set B(i, j) = Bc of GB;    LGB_B2 = DBc
(dGB) + λB2(RB2/NGB);

if(dGB ∈ dv && cost_temp_buffer(dGB + d_offset_v) < LGB_B2)

cost_temp_buffer(dGB + d_offset_v) = LGB_B2;

end

if(dGB ∈ dh && cost_temp_buffer(dGB + d_offset_h) < LGB_B2)

cost_temp_buffer(dGB + d_offset_h) = LGB_B2;

end

end

find the aligned direction dB_B2 of B(i, j) based on the minimum candidate in cost_temp_buffer;

if(dB_B2 ∈ dv)

subsampling_table(i, j) = 1;

else

subsampling_table(i, j) = 2;

end

end

end

end
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Fig. 5-22. ocrc of each 8×8 block. 

 

We now try to align the blocks with ocrc = 2. If a block has an ocrc ≥ 3 or ≤ 1, its 

direction, dB_B2, is set to dB_RC_B1 or dB_CR_B1 as discussed previously. For a block with 

ocrc = 2, similar to Step A1, we set it as Bc in Fig. 5-4 then compute the 

corresponding Lagrangian cost function, for instance, LGB_n3_r1_B2 by (5-5). 

_ _ _ _ _ _ _( ) ( / )
cGB n3 r1 B2 B GB n3 r1 B2 B2 GB n3 r1L D d R N   (5-5) 

Again, NGB_n3_r1 = 4 and λB2 is obtained empirically. We assume 18 directions 

occurring with the same probability and set RB2 as log2(18) for all cases. dGB_n3_r1 is 

the best direction of GB_n3_r1. It is either dv or dh in Fig. 5-1. DBc(dGB_n3_r1) is the 

prediction error of Bc corresponding to dGB_n3_r1. A block with ocrc = 2 usually locates 

on the region boundaries in Fig. 5-22. We thus consider only the GB patterns of n1, n2, 

and n3 here. We calculate LGB_B2 for each case and pick up the best direction with the 

minimum LGB_B2 as dB_B2 for the current block under consideration. Fig. 5-23 shows 

the aligned first directions after Step B2. As expected, the neighboring blocks with 

similar-texture regions have consistent directions and subsampling patterns. Again, a 
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few isolated or small-cluster blocks still remain. 

 
Fig. 5-23. The aligned first directions after Step B2 (8×8 block). The direction indexes -4 ~ 4 

correspond to dv (-4 ~ 4) and 5 ~ 13 correspond to dh (-4 ~ 4) in Fig. 5-1. The circles indicate isolated 

blocks. 

 

5.2.3. Step B3: Adjusting Directions of Isolated Blocks 

The isolated block (IB) definition here is the same as that in Step A2 except that 

each block has 18 possible directions (not 9 directions). Fig. 5-23 shows some IBs in 

circles. Fig. 5-24 shows the pseudo code of Step B3. We adopt the procedure of Step 

A2 for Step B3 except that the Lagrangian cost function (eq. (5-3)) is replaced by 

(5-6). 

_ _ _ _ _ _ _( ) ( / )
c cnGB n3 r1 B3 B B GB n3 r1 B3 B3 GB n3 r1L D d R N   (5-6) 

In Step B3, the subsampling pattern (RC or CR) is decided by its ocrc (ocrc ≥ 3 or ≤ 

1). If the ocrc of the current Bc is ≥ 3 or ≤ 1, we align its direction to those Bcn with 

the same subbsampling pattern. If ocrc = 2, we align its direction to the directions of 

all Bcn in GB without considering the subsampling pattern. All cases in Fig. 5-4 are 

included in the selection process. The conditions of Bcn ∈ GB_n3_r1 are similar as 
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those in Step A2. Bcn ∈ GB_n3_r1 must have a consistent subsampling pattern and 

directions dBcn∈GB_n3_r1. DBc(dBcn∈GB_n3_r1) is the prediction error of Bc corresponding to 

dBcn∈GB_n3_r1. The final selection is based on the minimum Lagrangian cost function 

and the final selected direction is denoted as dIB_B3. Again, in calculating RB3, we 

assume a direction index predictor is in use [28], similar to the calculation of RA2. λB3 

is the Lagrangian multiplier obtained empirically. 
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Fig. 5-24. The pseudo code of Step B3. 

 

After Step B3, the directions of all blocks are renamed as dB_B3. Fig. 5-25 shows 

dB_B3 of two test images. Most of IBs in Fig. 5-23 are eliminated. 

d_offset_v = 5;    d_offset_h = 14;     IB_table = zeros((FH/BH),  (FW/BW));

% record the location of IB

for i = 1 : (FH/BH)

for j = 1 : (FW/BW)

if(B(i, j) == IB)

IB_table(i, j) = 1;

end

end

end

while(sum of IB_table ~= 0)

for i = 1 : (FH/BH)

for j = 1 : (FW/BW)

if(IB_table(i, j) == 1)

cost_temp_buffer = zeros(1, 18);    

cost_temp_buffer = cost_temp_buffer + 10000000000; 

% calculate the corresponding Lagrangian cost of each considered GB

for GB = GB_n1 && GB_n2 && GB_n3 && GB_n4 && GB_n5

if(Bcn of GB have identical direction dBcn∈GB and subsampling pattern && IB_table of Bcn == 0)    

%Bcn can be IB with dB_B3 but not dB_B2.

set B(i, j) = Bc of GB; LGB_B3 = DBc
(dBcn∈GB) + λB3(RB3/NGB);

if(dGB ∈ dv && cost_temp_buffer(dGB + d_offset_v) < LGB_B3 && ocrc_table(i, j) ≥ 2)

cost_temp_buffer(dGB + d_offset_v) = LGB_B3;

end

if(dGB ∈ dh && cost_temp_buffer(dGB + d_offset_h) < LGB_B3 && ocrc_table(i, j) ≤ 2)

cost_temp_buffer(dGB + d_offset_h) = LGB_B3;

end

end

end

if(the minimum element of cost_temp_buffer < 10000000000)

find the aligned direction dB_B3 of B(i, j) based on the minimum candidate in cost_temp_buffer;

if(dB_B3 ∈ dv && ocrc_table(i, j) == 2)

subsampling_table(i, j) = 1;

else

subsampling_table(i, j) = 2;

end

IB_table(i, j) = 0;

end

end

end

end

end
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Fig. 5-25. The aligned first directions after Step B3 (8×8 block). The direction indexes -4 ~ 4 

correspond to dv (-4 ~ 4) and 5 ~ 13 correspond to dh (-4 ~ 4). The circles indicate small-clustered 

blocks. 

 

5.2.4. Step B4: Adjusting Directions of Small-Cluster 

Blocks 

The small-cluster block (SCB) definition in Step A3 is also adopted here. Fig. 

5-25 shows some examples of SCBs in circles. We adopt the procedure of Step A3 

except that the Lagrangian cost function (eq.(5-3) is replaced by (5-7) in Step B4. Fig. 

5-26 shows the pseudo code of Step B4. 

_ _ _ _ _ _ _( ) ( / )
c cnGB n3 r1 B4 B B GB n3 r1 B4 B4 GB n3 r1L D d R N   (5-7) 

For the subsampling pattern selection of Bcn, it decided by the ocrc of the current 

block in a similar way to Step B3. After picking up the best direction based on the 

Lagrangian cost function, the directions of all blocks are denoted as dB_B4. Two 

aligned direction samples after Step B4 are shown in Fig. 5-27. 
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Fig. 5-26. The pseudo code of Step B4. 

 

We have aligned the first directions and subsampling patterns using Steps B1 to 

B4. This helps in reducing the side information and improving the coding 

performance. The phase-completion process estimates the missing pixel from its 

neighboring pixels with the same sampling phase. It induces a bit of the boundary 

effect between two different subsampling patterns due to mismatch. The aligned 

d_offset_v = 5;    d_offset_h = 14;     SCB_table = zeros((FH/BH),  (FW/BW));

% record the location of SCB

for i = 1 : (FH/BH)

for j = 1 : (FW/BW)

if(B(i, j) == IB)

SCB_table(i, j) = 1;

end

end

end

while(sum of SCB_table ~= 0)

for i = 1 : (FH/BH)

for j = 1 : (FW/BW)

if(SCB_table(i, j) == 1)

cost_temp_buffer = zeros(1, 18);    

cost_temp_buffer = cost_temp_buffer + 10000000000; 

% calculate the corresponding Lagrangian cost of each considered GB

for GB = GB_n1 && GB_n2 && GB_n3 && GB_n4 && GB_n5

if(Bcn of GB have identical direction dBcn∈GB and subsampling pattern && SCB_table of Bcn == 0)    

%Bcn can be SCB with dB_B4 but not dB_B3.

set B(i, j) = Bc of GB; LGB_B4 = DBc
(dBcn∈GB) + λB4(RB4/NGB);

if(dGB ∈ dv && cost_temp_buffer(dGB + d_offset_v) < LGB_B4 && ocrc_table(i, j) ≥ 2)

cost_temp_buffer(dGB + d_offset_v) = LGB_B4;

end

if(dGB ∈ dh && cost_temp_buffer(dGB + d_offset_h) < LGB_B4 && ocrc_table(i, j) ≤ 2)

cost_temp_buffer(dGB + d_offset_h) = LGB_B4;

end

end

end

if(the minimum element of cost_temp_buffer < 10000000000)

find the aligned direction dB_B4 of B(i, j) based on the minimum candidate in cost_temp_buffer;

if(dB_B4 ∈ dv && ocrc_table(i, j) == 2)

subsampling_table(i, j) = 1;

else

subsampling_table(i, j) = 2;

end

SCB_table(i, j) = 0;

end

end

end

end

end
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subsampling patterns can also reduce this boundary effect. Similar to Steps A2 and A3, 

Steps B3 and B4 are also less desirable for the low-resolution images. 

 
Fig. 5-27. The aligned first directions after Step B4 (8×8 block). The direction indexes -4 ~ 4 

correspond to dv (-4 ~ 4) and 5 ~ 13 correspond to dh (-4 ~ 4). 

 

5.2.5. Step C1: Aligning Block Directions based on 

Single Subsampling Pattern 

Now, we apply the second 1-D SA-DWT to all blocks. Because the first 1-D 

SA-DWT has decided the subsampling pattern of every block, the sampling pattern of 

the second 1-D SA-DWT is thus decided, which is the complementary to the first one. 

Consequently, the candidate directions under consideration must be consistent with 

the specified subsampling pattern. In principle, we copy Steps A1 to A3 to Steps C1 to 

C3 for aligning the directions of the second 1-D SA-DWT. Because different 

subsampling patterns interweave each other, the prediction error calculation for 

aligning the second directions is tedious. 
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Fig. 5-28. The pseudo code of Step C1. 

 

Fig. 5-28 shows the pseudo code of Step C1. We assume the blocks with 

different subsampling patterns can be processed independently. Thus, we calculate the 

directions and prediction error of the second 1-D SA-DWT in two parallel processes, 

one based on RC and the other based on CR, as illustrated by Fig. 5-29. We have 

decided the directions of the first 1-D SA-DWT for every block. We label a block by 

BRC(i, j) in the process based on RC and BCR(i, j) in the process based on CR. If the 

for i = 1 : (FH/BH)

for j = 1 : (FW/BW)

if(subsampling_table (i, j) == 1)

the first direction of BRC(i, j) = dB_B4 of B(i, j);

the first direction of BCR(i, j) = direction 0 of dh;

else

the first direction of BRC(i, j) = direction 0 of dv;

the first direction of BCR(i, j) = dB_B4 of B(i, j); 

end

end

end

% The process based on RC. BRC(i, j)’s first direction ∈ dv and second direction ∈ dh.

Applying vertical 1-D DA-DWT to the test image in the process based on RC.

The size of two spatial subbands are (FH / 2) × FW.

Partitioning the spatial low-pass subband into (BH / 2) × BW blocks.

Applying Step A1 ~ Step A3 to the spatial low-pass subband. 

Setting the aligned second directions to BRC(i, j).

Each BRC(i, j) has a set of prediction errors corresponding to the second direction from Step A1.

% The process based on CR. BCR(i, j)’s first direction ∈ dh and second direction ∈ dv.

Applying horizontal 1-D DA-DWT to the test image in the process based on CR.

The size of two spatial subbands are FH × (FW / 2).

Partitioning the spatial low-pass subband into BH × (BW / 2) blocks.

Applying Step A1 ~ Step A3 to the spatial low-pass subband. 

Setting the aligned second directions to BCR(i, j).

Each BCR(i, j) has a set of prediction errors corresponding to the second direction from Step A1.

for i = 1 : (FH/BH)

for j = 1 : (FW/BW)

if(subsampling_table (i, j) == 1)

the second direction of B(i, j) = the second direction of BRC(i, j);

the prediction errors of B(i, j) for Step C2 ~ Step C3 

= the prediction errors of BRC(i, j) corresponding to the second direction;

else

the second direction of B(i, j) = the second direction of BCR(i, j);

the prediction errors of B(i, j) for Step C2 ~ Step C3

= the prediction errors of BCR(i, j) corresponding to the second direction;

end

end

end
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subsampling pattern of B(i, j) is RC, we set the first direction of BRC(i, j) as dB(i, j)_B4. 

Otherwise, we set the first direction of BRC(i, j) as 0 of dv, the vertical 1-D DWT. We 

set the first directions of BCR(i, j) in the other process in a similar way. The purpose is 

to make the cost function calculation easily. Certainly, this is an approximation. Fig. 

5-30 shows the first directions of these two parallel processes. 

 
Fig. 5-29. The parallel processes for handling an image’s first direction. 

 

After setting up the directions of the first transform in each of the two parallel 

processes, we apply the specified the first 1-D DA-DWT and subsampling pattern to a 

test image for each process. It results in the spatial low-pass and high-pass subbands 

located in different rows for the first process and located in different columns in the 

second process. We then can start the procedure of selecting the second transform 

directions. This procedure is identical to Steps A1 ~ Step A3. For the second 

transform, we use 1-D DA-DWT for the spatial low-pass subband and use 1-D DWT 

B(i, j): subsampling pattern is CR

B(i, j): subsampling pattern is RC

BRC(i, j ): directions = vertical 1-D DWT

BRC(i, j): directions = dB_B4

BCR(i, j): directions = dB_B4

BCR(i, j ): directions = horizontal 1-D DWT

process based on 

subsampling

pattern RC

process based on 

subsampling

pattern CR
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for the high-pass subband. Applying the alignment algorithm Step A1 ~ Step A3 to 

each process separately, Fig. 5-31 shows the aligned second directions of spatial 

low-pass subbands of each process. 

 
Fig. 5-30. The first direction of each 8×8 block. (a)(b) are the two parallel processes of Barbara and 

(c)(d) are those of Lena. Direction indexes in (a)(c) and (b)(d) are defined by Fig. 5-1(a) and Fig. 

5-1(b). 

 

Next, we need to merge the two processed processes into one image. In the first 

parallel process, block BRC(i, j) has both valid the first transform and the second 

transform. In the second process, block BCR(i, j) also has valid the first transform and 

the second transform. Therefore, we pick up these blocks and put them into the final 

image as illustrated by Fig. 5-32. The merged image with selected directions is shown 

in Fig. 5-33. The aligned second transform direction of block B(i, j) is denoted as dB(i, 

j)_C1 after Step C1. We can get the prediction error of the second transform when 
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aligning directions. We assign the prediction errors to each block B(i, j) similarly for 

following alignment. 

 
Fig. 5-31. The aligned second directions of each 8×8 block. (a)(b) are two parallel processes of 

Barbara and (c)(d) are those of Lena. Direction indexes in (a)(c) and (b)(d) are defined by Fig. 5-1(b) 

and Fig. 5-1(a). 

 

 
Fig. 5-32. The parallel processes for handling the second direction. 
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Fig. 5-33. The aligned second directions after Step C1 (8×8 block). The direction indexes -4 ~ 4 

correspond to dv (-4 ~ 4) and 5 ~ 13 correspond to dh (-4 ~ 4). The circles indicate isolated blocks. 

 

5.2.6. Step C2: Adjusting Directions of Isolated Blocks 

The isolated block (IB) definition of the second 1-D SA_DWT is similar to the 

previous one. Fig. 5-33 shows some IBs in circles. We adjust the second directions of 

IBs in a similar way to adjusting those of the first transform IBs in Step B3. We align 

the current block direction to the neighboring blocks with the same subsampling 

pattern. The aligned second direction is denoted as dB_C2 after Step C2; two test 

images are shown in Fig. 5-34. 

 

Fig. 5-34. The aligned second directions after Step C2 (8×8 block). The circles indicate small-clustered 

blocks. 
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5.2.7. Step C3: Adjusting Directions of Small-Cluster 

Blocks 

The small-cluster blocks (SCB) definition is similar to the previous one. Their 

second directions are adjusted in a similar way to Step B4. Fig. 5-34 shows some 

SCBs. Fig. 5-35 shows the aligned second directions after this step. 

 
Fig. 5-35. The aligned second directions after Step C3 (8×8 block).  

 

The basic concepts of Steps C1 to C3 are similar to those of B2 to B4, 

individually. The 2-D SA-DWT needs to consider two subsampling patterns at the 

same time and this complicates quite a bit the entire direction alignment process. Note 

that the two-parallel processes operation is added into Step C1 to reduce the 

prediction error calculation. Also, Steps C2 and C3 are also less desirable for 

low-resolution images 

 

5.3 Prediction Residual Characteristics 
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and 2-D MSA-DWT 

5.3.1. Predication Residuals in Frequency Domain 

In this section, we examine the frequency-domain energy distribution of the 

temporal high-pass (prediction residual) signals. Because the DA-DWT partitions an 

image into blocks and find the best filtering direction for each block, we thus study 

the block characteristics. We partition natural images, T_Ls, and T_Hs into 8×8 

blocks and we apply 64×64 2-D DFT to each block. 

Fig. 5-36 shows the energy spectrum of image blocks. Blocks with smooth 

texture have narrow and strong energy peak located at low frequencies. DWT 

provides good compression performance for these blocks. Some blocks contain edges 

along specific directions. Their energy spectrums have energy peaks spreading over a 

short line segment at a specific angle (decided by the edge orientation). The 

zero-frequency component has powerful energy. For repeated line patterns such as the 

pants of Barbara (Fig. 5-36(a)), their spectrum contains periodic peaks spreading 

along a line. The DA-DWT filters can be adjusted along specific directions and thus it 

can represent edges and line patterns more efficiently. Blocks of T_Ls show similar 

property in Fig. 5-37. Therefore, DA-DWT also compresses T_Ls well and improves 

the coding performance of wavelet-based image coding [45]. 
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Fig. 5-36. Frequency domain spectrum of some image blocks. 

 
Fig. 5-37. Frequency domain spectrum of some T_L blocks. 
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Fig. 5-38. Frequency domain spectrum of some T_H blocks. 

 

Fig. 5-38 shows the energy spectrum of T_H blocks. The energy of most blocks 

is quite low. For blocks with a somewhat significant amount of energy, a few blocks 

have energy peak locating at low frequency. These energy peaks contain much less 

energy than those in Fig. 5-36 and Fig. 5-37. A number of blocks have edge or 

line–type spectrums. Potentially, these blocks can be well represented by DA-DWT or 

SA-DWT. There are many other blocks having spectrums spreading over a wide 

region or even nearly the entire frequency plane. DA-DWT and SA-DWT do not 

seem to offer more coding gains than the ordinary DWT on these blocks. Overall, the 

edge and line-type blocks are not yet dominate the T_H signals and the total energy of 
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T_H signals is much less than that of the T_L signals; therefore, the advantage of T_H 

band, DA-DWT or SA-DWT on the overall coding efficiency is not dramatic although 

they do provide some gains on the T_H signal compression. 

 

5.3.2. Transform Coefficients 

It is reported that 1-D DCT with adaptive orientation compresses T_H better than 

2-D DCT because the latter spreads the energy to a larger number of transformed 

coefficients [43]. We examine the transformed coefficients of 2-D SA-DWT on 

natural images, T_Ls, and T_Hs. The 1-D SA-DWT decomposes a block B into 

spatial low-pass subband BL and spatial high-pass subband BH. Another 1-D SA-DWT 

decomposes BL into BLL and BLH. For all the transform coefficients in B, we calculate 

the sum of absolute values and it is denoted as SAVB. The other quantities, SAVBL, 

SAVBH, SAVBLL, and SAVBLH, are similarly defined for the coefficients in various 

subbands. We then define the ratios between these quantities in (5-8) and (5-9). 

_ _ ( )
L HB L B H BB ratio 1 SAV SAV SAV    (5-8) 

_ _ ( )
LL LH LB L B H BB ratio 2 SAV SAV SAV    (5-9) 

where ωL and ωH are the energy responses of the low-pass and high-pass wavelet 

filters. Because the bit-plane coding technique is adopted for entropy coding, SAV is 

in a way in proportional to the coding bits. Thus, this SAV ratio gives an indication of 
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coding bits before and after transform. A ratio < 1 usually implies higher compression 

efficiency. 

These two ratios calculated for images, T_Ls, and T_Hs are shown in Fig. 5-39, 

Fig. 5-40, and Fig. 5-41. For images and T_Ls (Fig. 5-39 and Fig. 5-40), the SA-DWT 

produces both ratios at around 75% in average. In other words, after the wavelet 

decomposition, the coding bits are generally fewer. It saves about 20% ~ 28% in SAV 

in the first and the second transform. For T_H in Fig. 5-41, the SA-DWT saves about 

10% in SAV at most. Thus, the SA-DWT is less efficient in coding T_Hs. Many 

blocks of T_H have the second transform ratios larger than 1 in Fig. 5-41(b)(d); that is, 

the SAV value is increased after the second transform. The effect of the second 

transform on T_H will be further examined in the next sub-section. 
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Fig. 5-39. The first and the second transform ratios of images. 

 
Fig. 5-40. The first and the second transform ratios of T_Ls. 
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Fig. 5-41. The first and the second transform ratios of T_Hs 

 

5.3.3. The Second Transform 

We apply 2-D SA-DWT to blocks of T_Hs and show the transform coefficients 

in Fig. 5-42. Typically, the first 1-D SA-DWT concentrates energy into BL but the 

second 1-D SA-DWT often spreads the energy into both BLL and BLH. This is 

consistent with the report that 2-D transforms compresses T_H inefficiently because 

of 1-D structures of T_H [43]. Often, the 2-D transform spreads the energy of 

coefficients and results in more coefficients. 

We thus modify the original 2-D SA-DWT and call it 2-D MSA-DWT (modified 
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subsampling and direction-adaptive DWT). The 2-D MSA-DWT has the same first 

transform as 2-D SA-DWT but it may or may not perform the second transform on BL. 

The second transform is turned on when (5-10) holds. 

L LL LHB B L B HSAV SAV SAV    (5-10) 

When (5-10) is not valid, we split the samples of BL in Fig. 5-15 into BLL and BLH 

without executing transform. This “no second transform” case is labeled by a 

direction index of “5”. 

 
Fig. 5-42. The transform coefficients in T_Hs after 2-D SA-DWT. The coefficients are displayed in 

absolute value. 
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Chapter 6 Experimental Results 

6.1 Experimental Results of FMDT 

We have discussed the three proposed algorithms that enhance a WBCT image 

coding scheme in computation and/or complexity reduction. They are short length 

2-D filters, a mean-shift-based decision, and new ZC context tables for ESCOT. In 

this section, we examine the impact of each algorithm towards the system 

performance. And, putting them together, we compare the overall performance 

between the 2-D DWT image coding scheme, the original WBCT image coding 

scheme, and the proposed WBCT image coding scheme with three new aglorithms.  

A few abbreviations are explained below. The original WBCT image coding 

scheme can apply directional filtering to either all subbands (NDS1) or no subband 

(NDS2). With our decision mechanism (WDS), we adaptively choose the subbands 

for directional filtering. Moreover, the original WBCT scheme uses long length 

directional filters (LLF), and our proposed image coding scheme uses short length 

directional filters (SLF) instead. The no directional filtering (NDF) situation appears 

when either the WDS declares that no subband needs directional filtering or the NDS2 

strategy is adopted. There are two options for ESCOT: the original context tables (O) 

designed for 2-D DWT coefficients or the proposed context tables (P) fine-tuned for 
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the WBCT coefficients. Table 6-1 summarizes all the aforementioned abbreviations. 

Table 6-1. Abbreviations for the adopted algorithms in the image coding scheme 

 

The notation of an image coding scheme consists of three parts: the directional 

transform type, the decision, and the coder tables. For example, the 2-D DWT image 

coding scheme is “NDF+NDS2+O”, the original WBCT image coding scheme is 

“LLF+NDS1+O”, and our proposed coding scheme with three algorithms is 

“SLF+WDS(HL
1
, HH

1
)+P”. Note that the subbands selected by WDS are listed in the 

parenthesis after WDS, and thus “WDS(LH
1
, HL

1
, and HH

1
)” is the same as “NDS1”. 

 

6.1.1. Short Length Directional Filters 

Our test images are listed in Table 4-2. The experimental platform is Matlab 

r2008b on a PC with Intel Core 2 Quad Q9400 CPU. First, we show the impacts of 

filter length in terms of PSNR and run time by comparing “SLF+WDS+O” and 

“LLF+WDS+O”. Fig. 6-1 shows their PSNR at various bitrates (bit per pixel, bpp). 

Obviously, the image coding scheme with SLF has similar PSNR performances as 

Directional Transform 

SLF Short Length directional Filter. 

LLF Long Length directional Filter. 

NDF No directional Filter. 

Decision 

NDS1 No Decision, applying directional transform on all subbands (LH1, HL1, and HH1). 

NDS2 No Decision, directional transform not applied. 

WDS With Decision, applying directional transform on the chosen wavelet subbands. 

Entropy Coder 

O ESCOT with the Original ZC context tables. 

P ESCOT with the Proposed ZC context tables. 
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that with LLF. Table 6-2 shows the run time of these two schemes and the image 

coding scheme with SLF consumes only 10%~20% computational time of that with 

LLF. 

 
Fig. 6-1. PSNR of the image coding schemes with SLF and LLF (“SLF+WDS+O” and 

“LLF+WDS+O”) 

 
Table 6-2. Run time of the image coding schemes with SLF and LLF 

 

 

6.1.2. Decision Algorithm 

Next, we present the impacts of decision algorithm in terms of PSNR, MSSIM 

[70] and run time among “SLF+WDS+O”, “SLF+NDS1+O”, and “NDF+NDS2+O” 

(the 2-D DWT coding scheme). MSSIM represents mean of structural similarity. A 

higher MSSIM implies a better image subjective quality. Fig. 6-2 shows the PSNR of 

the image coding schemes with and without decision. The image coding scheme with 
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(Pepper)
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(Elaine)

Run Time 23.031 sec 23.026 sec 62.484 sec
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decision (“SLF+WDS+O”) has similar PSNR performance as those without decisions 

(“SLF+NDS1+O” and “NDF+NDS2+O”). Fig. 6-3 shows the MSSIM of the image 

coding schemes with and without decision. Our proposed image coding scheme with 

decision (“SLF+WDS+O”) has similar MSSIM performance as “SLF+NDS1+O” and 

has better MSSIM than “NDF+NDS2+O”. The visual quality improvement is most 

obvious on some pictures such as Elaine.  

 
Fig. 6-2. PSNR of the image coding schemes with and without decision (“SLF+WDS+O”, 

“SLF+NDS1+O”, and “NDF+NDS2+O”). 

 

 
Fig. 6-3. MSSIM of the image coding schemes with and without decision (“SLF+WDS+O”, 

“SLF+NDS1+O”, and “NDF+NDS2+O”). 

 

Fig. 6-4 shows portions of the original and the reconstructed images of Barbara 
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and Elaine generated by these three schemes. Noticeably, “SLF+WDS+O” and 

“SLF+NDS1+O” show more texture details than “NDF+NDS2+O”. Table 6-3 shows 

the run time of these schemes. “SLF+WDS+O” saves about 50% computational time 

comparing to “SLF+NDS1+O” but it needs roughly 70% extra computational time 

comparing to “NDF+NDS2+O”. In brief, the image coding scheme with decision, 

“SLF+WDS+O,” achieves a good balance between quality and speed.  

Table 6-3. Average run time of the image coding schemes with and without decision. 

 

 
Fig. 6-4. (a) Portions of the original and the reconstructed images of Barbara at 0.125bpp. (b) Portions 

of the original and the reconstructed images of Elaine at 0.5bpp. 

 

6.1.3. Proposed ZC Context Tables 

Next, we examine the effect of the new ESCOT context tables in terms of PSNR 

and run time. Table 6-4 shows the PSNR of the image coding schemes with the 

Scheme SLF+WDS+O SLF+NDS1+O NDF+NDS2+O

Run Time 4.804 sec 8.206 sec 2.688 sec

SLF+WDS(HL1)+O SLF+NDS1+O NDF+NDS2+O

Original Image

(a)

(b) NDF+NDS2+O

Original Image

SLF+WDS(HH1, HL1, LH1)+O SLF+NDS1+O
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original and the new ZC context tables when the directional filters are SLF. And Table 

6-5 shows the PSNR when the directional filters are LLF. The image coding schemes 

with the new ZC context tables (“SLF/LLF+WDS+P”) have a slightly better PSNR 

performance than those with the original ZC context table (“SLF/LLF+WDS+O”) in 

all cases. Moreover, Table 6-6 indicates that “SLF/LLF+WDS+P” consumes less 

computation time than its “SLF/LLF+WDS+O” counterpart in all cases. The context 

table of “O” considers 26 neighbors in a 3×3×3 cubic but that of “P” considers only 8 

neighbors in a 3×3 square. Clearly, “P” uses fewer neighbors and consumes less 

computation. Thus, our proposed context tables can also speed up slightly the coding 

process. 

Table 6-4. PSNR of the image coding schemes with the original and the new ZC context tables 

(directional filters = SLF). 

 

 

 

 

Test image Coding Shceme 0.125 

bpp

0.25 

bpp

0.5 

bpp

0.75 

bpp

1.0 

bpp

Barbara SLF+WDS(HL1)+O 25.62 28.41 32.22 34.89 36.99

SLF+WDS(HL1)+P 25.79 28.53 32.33 34.96 37.11

Fingerprint SLF+WDS(HL1)+O 22.64 25.36 29.09 31.33 33.25

SLF+WDS(HL1)+P 22.64 25.52 29.09 31.33 33.25

Pepper SLF+WDS(HH1)+O 30.49 33.34 35.54 36.85 37.96

SLF+WDS(HH1)+P 30.6 33.37 35.61 36.82 37.95

Elaine SLF+WDS(LH1, HL1, HH1)+O 30.99 32.3 33.8 35.11 36.29

SLF+WDS(LH1, HL1, HH1)+P 31.09 32.31 33.84 35.12 36.37

Boat SLF+WDS(HL1)+O 28.88 32.32 36.17 38.68 40.52

SLF+WDS(HL1)+P 28.9 32.42 36.26 38.78 40.58

Couple SLF+WDS(HL1)+O 26.92 29.33 32.58 34.81 36.48

SLF+WDS(HL1)+P 26.92 29.39 32.6 34.85 36.63
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Table 6-5. PSNR of the image coding schemes with the original and the new ZC context tables 

(directional filters = LLF). 

 
 

Table 6-6. Run time of the image coding schemes with different ZC context tables. 

 

 

6.1.4. Overall Improvement 

At last, we compare the performance of the entire image coding scheme for three 

candidates: “LLF+NDS1+O” (the original WBCT image coding scheme), 

“NDF+NDS2+O” (the 2-D DWT image coding scheme) and “SLF+WDS+P” (our 

proposed WBCT image coding scheme). Fig. 6-5 shows the PSNR of these three 

coding schemes. Generally, our proposed “SLF+WDS+P” has better average PSNR 

than the “NDF+NDS2+O” and its average PSNR is comparable with that of 

Test image Coding Shceme 0.125 

bpp

0.25 

bpp

0.5 

bpp

0.75 

bpp

1.0 

bpp

Barbara LLF+WDS(HL1)+O 25.72 28.51 32.22 34.89 37.01

LLF+WDS(HL1)+P 25.86 28.71 32.41 34.96 37.11

Fingerprint LLF+WDS(HL1)+O 22.64 25.36 29.09 31.33 33.25

LLF+WDS(HL1)+P 22.64 25.52 29.09 31.41 33.26

Pepper LLF+WDS(HH1)+O 30.49 33.33 35.56 36.81 37.93

LLF+WDS(HH1)+P 30.6 33.37 35.62 36.9 38.07

Elaine LLF+WDS(LH1, HL1, HH1)+O 30.99 32.29 33.94 35.34 36.5

LLF+WDS(LH1, HL1, HH1)+P 31.09 32.33 34 35.38 36.53

Boat LLF+WDS(HL1)+O 28.81 32.28 36.13 38.6 40.46

LLF+WDS(HL1)+P 28.8 32.39 36.22 38.67 40.58

Couple LLF+WDS(HL1)+O 26.87 29.31 32.55 34.73 36.47

LLF+WDS(HL1)+P 26.93 29.37 32.56 34.79 36.53

Scheme SLF+WDS(HL1)+O

(Barbara, Fingerprint, Boat, Couple, average)

SLF+WDS(HH1)+O

(Pepper)

SLF+WDS(LH1, HL1, HH1)+O

(Elaine)

Run Time 4.547 sec 4.550 sec 8.023 sec

Scheme SLF+WDS(HL1)+P

(Barbara, Fingerprint, Boat, Couple, average)

SLF+WDS(HH1)+P

(Pepper)

SLF+WDS(LH1, HL1, HH1)+P

(Elaine)

Run Time 4.203 sec 4.177 sec 7.813 sec

Scheme LLF+WDS(HL1)+O

(Barbara, Fingerprint, Boat, Couple, average)

LLF+WDS(HH1)+O

(Pepper)

LLF+WDS(LH1, HL1, HH1)+O

(Elaine)

Run Time 23.031 sec 23.026 sec 62.484 sec

Scheme LLF+WDS(HL1)+P

(Barbara, Fingerprint, Boat, Couple, average)

LLF+WDS(HH1)+P

(Pepper)

LLF+WDS(LH1, HL1, HH1)+P

(Elaine)

Run Time 22.391 sec 22.386 sec 62.256 sec
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“LLF+NDS1+O”. Table 6-7 shows their run time. Our proposed scheme 

“SLF+WDS+P” saves more than 92% computing time than “LLF+NDS1+O” (the 

original WBCT image coding scheme). On the other hand, it costs 67% extra 

computing time than “NDF+NDS2+O” (the 2-D DWT image coding scheme). Clearly, 

our proposed scheme offers a good balance between computational complexity and 

image visual quality. 

Table 6-7. Average run time of the 2-D DWT scheme (NDF+NDS2+O), the original WBCT scheme 

(LLF+NDS1+O), and the proposed scheme with three new algorithms (SLF+WDS+P). 

 

 
Fig. 6-5. PSNR of the 2-D DWT scheme (NDF+NDS2+O), the original WBCT scheme 

(LLF+NDS1+O), and the proposed scheme with three new algorithms (SLF+WDS+P). 

 

6.2 Experimental Results of SMDT 

We have developed three algorithms for enhancing the coding performance of 

DA-DWT and SA-DWT. First, the direction alignment algorithm for 2-D DA-DWT 

aligns the directions of 2-D DA-DWT based on a single subsampling pattern RC. 

Scheme SLF+WDS+P LLF+NDS1+O NDF+NDS2+O

Run Time 4.499 sec 62.469 sec 2.688 sec
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Then, an extended direction alignment algorithm for 2-D SA-DWT aligns the 

directions of 2-D SA-DWT based the double subsampling patterns, RC and CR. 

Finally, the proposed 2-D MSA-DWT improves the compression performance of 2-D 

SA-DWT on T_Hs by adaptively switching off the second transform performed on BL. 

In this section, we simulate the proposed schemes on images and videos. We first 

compare the prediction error and the side information of DA-DWT and SA-DWT 

with and without direction alignment algorithms. Then, we compare the coding 

performance with and without the direction alignment algorithms. Finally, we 

compare MSA-DWT and SA-DWT on T_Hs. Six test images are shown in Fig. 6-6 

(512×512 image with 256 gray level). In addition, there are six MPEG test videos 

listed in Table 6-13 (CIF video with I420). 

 
Fig. 6-6. The test images (512×512 image with 256 gray level). 

(a) Barbara (b) Elaine (c) Lena

(d) Monarch (e) Pentagon (f) Spoke
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6.2.1. Direction Alignment Algorithm for DA-DWT 

We compare the prediction error (sum of absolute coefficients in the high pass 

subbands) and the side information of DA-DWT with alignment (DA-DWT-A) and 

without alignment (DA-DWT). DA-DWT chooses the best direction (with fixed 

subsampling pattern RC) for each partition block. We compare the side information 

coded by the quadtree partition (SI-QP) [28][52] and the megablocking partition 

(SI-MP) [15]. SI-QP includes the side information of quadtree partition and the 

direction of each block. Except these two pieces of side information, SI-MP includes 

one more piece of side information used to indicate the megablocking partition of 

each block. SI-MP codes the direction of each megablock instead of each block. A 

megablock is composed of many connected quadtree partition blocks of the same 

direction. Thus, each megablock contains only one direction. Therefore, large 

megablocks save the total amount of side information. 

We adopt the coding method in [52] for encoding the quadtree partition. For a 

given block, the direction index predictor uses its left, up, and left-up blocks to predict 

the current block direction. The prediction difference (error) is then coded [28]. In the 

megablocking partition, we classify blocks into “inner blocks” and “boundary blocks”. 

Each block has 4 neighboring blocks [55]. The inner block has all its neighboring 

blocks inside the same megablock. On the other hand, a boundary block has at least 
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one neighboring block from the other megablock [15]. We adopt the coding method in 

[15] for encoding the megablock partition. We then adopt the run length coding 

scheme to code these three pieces of side information [15]. Based on our data, we set 

λA1 = 8, λA2 = 4, and λA3 = 4 for all images. 

 
Fig. 6-7. Directions of the first transform after DA-DWT and DA-DWT-A (4×4 block). The direction 

indexes -4 ~ 4 are identical to dv (-4 ~ 4) in Fig. 5-1(a). 

 

Fig. 6-7 shows the first directions of several images after DA-DWT and 
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DA-DWT-A. DA-DWT-A aligns directions and creates large megablocks. Table 6-8 

and Table 6-9 show the prediction error and side information of three schemes (DWT, 

DA-DWT, and DA-DWT-A). The Increment and Decrement are changes (in %) in 

distortion and side information with the direction alignment algorithm. The proposed 

alignment algorithm reduces about 38.90% in SI-QP at the cost of 1.76% increment in 

prediction error in average. DA-DWT creates many isolated blocks and results in 

large SI-MP in Table 6-9. The proposed alignment algorithm creates large megablocks 

and saves about 69.10% in SI-MP. 

Table 6-8. Prediction errors of the first transform. 

 
 

Table 6-9. Side Information in bits of the first transform using two side information coding schemes. 

 

 

DWT DA-DWT DA-DWT-A Increment

Barbara 512922.314

(100%)

329705.753

(64.280%)

338734.072

(66.040%)

+1.760%

Elaine 672054.724

(100%)

494316.594

(73.553%)

504065.074

(75.004%)

+1.451%

Lena 332228.596

(100%)

272420.695

(81.998%)

283420.955

(85.309%)

+3.311%

Monarch 405322.749

(100%)

301468.907

(73.378%)

310280.483

(76.552%)

+2.174%

Pentagon 591543.922

(100%)

450194.050

(76.105%)

459085.593

(77.608%)

+1.503%

Spoke 907817.169

(100%)

544294.268

(59.956%)

551541.042

(60.755%)

+0.798%

Quadtree Partition Megablocking Partition

DA-DWT DA-DWT-A Decrement DA-DWT DA-DWT-A Decrement

Barbara 23695

(100%)

14192

(59.895%)

-40.105% 29858

(100%)

9057

(30.333%)

-69.667%

Elaine 29409

(100%)

18814

(63.974%)

-36.026% 38096

(100%)

13258

(34.802%)

-65.198%

Lena 27629

(100%)

15973

(57.812%)

-42.188% 34832

(100%)

10616

(30.478%)

-69.522%

Monarch 27665

(100%)

16983

(61.388%)

-38.612% 35379

(100%)

11707

(33.090%)

-66.910%

Pentagon 26039

(100%)

16911

(64.945%)

-35.055% 35112

(100%)

13439

(38.275%)

-61.725%

Spoke 24956

(100%)

14626

(58.607%)

-41.393% 30802

(100%)

9364

(30.401%)

-69.599%
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6.2.2. Direction Alignment Algorithm for SA-DWT 

We compare the prediction error and the side information of SA-DWT with 

alignment (SA-DWT-A) and without alignment (SA-DWT). SA-DWT chooses the 

best direction among dv and dh in Fig. 5-1 for each partition block. That is, both 

direction and subsampling pattern are selected in the first transform. We also 

implement and compare two side-information coding schemes, SI-QP and SI-MP. For 

sending the side information of subsampling pattern, we use one more bit for each 

block (or megablock) in SI-QP (or SI-MP). We also code this subsampling 

information by run length coding. Again, we set λB2 = 8, λB3 = 4, and λB4 = 4. 

Fig. 6-8 shows the first directions of test images after SA-DWT and SA-DWT-A. 

The alignment algorithm in SA-DWT-A (described in section III) aligns the directions 

and the subsampling patterns. Table 6-10 and Table 6-11 show the prediction errors 

and the side information of different schemes. The Increment and Decrement are 

change (in %) in distortion and side information with direction alignment algorithm. 

Comparing to DA-DWT, the SA-DWT offers smaller prediction errors at the cost of 

more side information. The proposed alignment algorithm increases about 1.64% in 

prediction error but saves about 34.71% in SI-QP (quadtree representation) in average. 

Similar to DA-DWT, the SA-DWT has larger SI-MP (megablock) than SA-DWT-A 

due to many isolated blocks. The proposed direction alignment algorithm reduces 
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about 64.33% in SI-MP in average. So far, our implementation of SA-DWT shows 

some advantages in perdition errors over DA-DWT but has disadvantage in the side 

information bit rate. 

 
Fig. 6-8. Directions of the first transform after SA-DWT and SA-DWT-A (4×4 block). The direction 

indexes -4 ~ 4 correspond to dv’ (-4 ~ 4) and 5 ~ 13 correspond to dh (-4 ~ 4). 
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Table 6-10. Prediction errors of the first transform. 

 
 

Table 6-11. Side information in bits of the first transform using two side information coding schemes. 

 

 

6.2.3. Image Coding 

We compare the coding performance of three wavelet schemes. Scheme 1 is 

three level 2-D DWT (2-D DWT × 3). Scheme 2 is one level 2-D SA-DWT together 

with two level 2-D DA-DWT (2-D SA-DWT × 1 + 2-D DA-DWT × 2). Scheme 3 is 

one level 2-D SA-DWT-A together with two level 2-D DA-DWT-A (2-D SA-DWT-A 

× 1 + 2-D DA-DWT-A × 2). In the first level transform of last two schemes, we found 

that SA-DWT is able to compact more energy into the low-pass subband. 

The SA-DWT adopts the phase-completion process to implement the lifting 

scheme in the transition between two different neighboring subsampling patterns [32]. 

DWT SA-DWT SA-DWT-A Increment

Barbara 512922.314

(100%)

327553.509

(63.860%)

327678.521

(63.885%)

+0.024%

Elaine 672054.724

(100%)

430522.407

(72.659%)

445250.739

(75.145%)

+2.486%

Lena 332228.596

(100%)

246194.604

(74.104%)

258235.258

(77.728%)

+3.624%

Monarch 405322.749

(100%)

229335.836

(61.360%)

239349.809

(64.039%)

+2.679%

Pentagon 591543.922

(100%)

354943.377

(60.003%)

363918.102

(61.520%)

+1.517%

Spoke 907817.169

(100%)

343166.137

(37.801%)

338832.988

(37.324%)

-0.477%

Quadtree Partition Megablocking Partition

SA-DWT SA-DWT-A Decrement SA-DWT SA-DWT-A Decrement

Barbara 30594

(100%)

18302

(59.822%)

-40.178% 37875

(100%)

11021

(29.098%)

-70.902%

Elaine 36684

(100%)

25352

(69.109%)

-30.891% 44915

(100%)

20871

(46.468%)

-53.532%

Lena 34719

(100%)

23142

(66.655%)

-33.345% 41782

(100%)

14968

(35.824%)

-64.716%

Monarch 34423

(100%)

22220

(64.550%)

-34.450% 41795

(100%)

13621

(32.590%)

-67.410%

Pentagon 31077

(100%)

21458

(69.048%)

-30.952% 40215

(100%)

15404

(38.304%)

-61.696%

Spoke 31795

(100%)

19547

(61.478%)

-38.520% 36925

(100%)

11927

(32.301%)

-67.699%
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It estimates the missing pixels from the neighboring pixels with the same subsampling 

phase. This may lead to mismatch and boundary effect problem and thus reduce the 

coding performance [29]. Therefore, when the mismatch problem becomes more 

serious at lower resolutions (higher transform levels), we adopt DA-DWT for the 

second and the third level transforms. We use variable block sizes from 4×4 to 

128×128 to partition images. We set λA1 = 8, λA2 = 4, λA3 = 4, λB2 = 8, λB3 = 4, and λB4 = 

4 for the direction alignment algorithm at different levels. We set λt = 12 for the 

quadtree combination. We code the transformed coefficients by EBCOT [35] and the 

side information by SI-MP (megablock). Table 6-12 shows the coding results. 

Table 6-12. PSNR of different coding schemes. 

 

Table 6-12 shows the PSNR of three coding schemes. “bpp” means bit per pixel 

in bit rate. “2-D SA-DWT × 1 + 2-D DA-DWT × 2” sometimes has the lowest PSNR 

particularly at low bit rates due its huge side information. “2-D SA-DWT-A × 1 + 2-D 

Test

Image

Transform

Schemes

0.125

bpp

0.25

bpp

0.5

bpp

0.75

bpp

1.0

bpp

Barbara 2-D DWT × 3 25.26 28.25 32.10 34.77 36.98

2-D SA-DWT × 1 + 2-D DA-DWT × 2 26.38 29.68 33.58 35.72 37.82

2-D SA-DWT-A × 1 + 2-D DA-DWT-A × 2 26.64 29.91 33.64 35.85 37.86

Elaine 2-D DWT × 3 31.01 32.25 33.55 34.70 35.87

2-D SA-DWT × 1 + 2-D DA-DWT × 2 30.84 32.43 33.69 34.88 36.03

2-D SA-DWT-A × 1 + 2-D DA-DWT-A × 2 31.20 32.39 33.73 34.95 36.07

Lena 2-D DWT × 3 30.66 33.82 37.00 38.79 40.05

2-D SA-DWT × 1 + 2-D DA-DWT × 2 30.84 34.33 37.37 38.97 40.06

2-D SA-DWT-A × 1 + 2-D DA-DWT-A × 2 31.17 34.41 37.42 39.00 40.17

Monarch 2-D DWT × 3 27.09 30.35 35.55 39.08 41.69

2-D SA-DWT × 1 + 2-D DA-DWT × 2 26.89 30.93 35.80 39.23 41.61

2-D SA-DWT-A × 1 + 2-D DA-DWT-A × 2 27.18 31.03 35.92 39.27 41.67

Pentagon 2-D DWT × 3 26.95 28.66 31.36 33.39 35.07

2-D SA-DWT × 1 + 2-D DA-DWT × 2 26.73 28.97 31.78 33.95 35.54

2-D SA-DWT-A × 1 + 2-D DA-DWT-A × 2 27.06 29.17 31.85 33.97 35.63

Spoke 2-D DWT × 3 20.57 23.62 28.89 32.36 35.14

2-D SA-DWT × 1 + 2-D DA-DWT × 2 22.26 27.02 31.90 35.04 37.07

2-D SA-DWT-A × 1 + 2-D DA-DWT-A × 2 22.72 27.35 32.12 35.14 37.14
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DA-DWT-A × 2” needs fewer side information bits and outperforms “3 DWT” at all 

bit rates. “2-D SA-DWT-A × 1 + 2-D DA-DWT-A × 2” also outperforms “2-D 

SA-DWT × 1 + 2-D DA-DWT × 2”, especially at low bit rates.  The PSNR gain is 

about 0.3dB~0.5dB at low bit rates. 

 

6.2.4. Video Coding 

As said in Section I, we adopted the interfarme wavelet structure [7] for our 

video codec, in which MCTF [8]-[13] decomposes video frames into T_Ls and T_Hs. 

As discussed in section IV, because T_Ls and T_Hs have different signal 

characteristics [43], we apply 2-D DA-DWT to T_Ls and apply 2-D MSA-DWT to 

T_Hs.  

We adopt four-level MCTF for temporal transform and it generates 1 T_L 

subband and 15 T_H subbands (residuals) from 16 video frames [45]. Then, two-level 

spatial transforms are applied to each temporal subbands (residuals). We design four 

coding schemes using different combinations of spatial transforms. Scheme 1 applies 

two-level 2-D DWT to all residuals (T_L(2-D DWT × 2), T_H(2-D DWT × 2)). 

Scheme 2 applies one-level 2-D SA-DWT together with one-level 2-D DA-DWT to 

T_Ls and two-level DWT to T_Hs (T_L(2-D SA-DWT × 1 + 2-D DA-DWT × 1), 

T_H(2-D DWT × 2)). For similar reasons as discussed earlier, we use 2-D DA-DWT 
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instead of 2-D SA-DWT for the second-level transform to avoid the mismatch 

problem on T_Ls. Scheme 3 use the two-level 2-D SA-DWT on T_Hs (T_L(2-D 

SA-DWT × 1 + 2-D DA-DWT × 1), T_H(2-D SA-DWT × 2)). Scheme 4 is similar to 

Scheme 3 except that it adopts the two-level MSA-DWT on T_Hs (T_L(2-D 

SA-DWT × 1 + 2-D DA-DWT × 1), T_H(2-D MSA-DWT × 2)). T_H subband 

usually composes of uniform small-coefficient smooth regions and large-coefficient 

(prediction error) edge regions [43]. The small-coefficient regions help in reducing 

the mismatch problem in 2-D SA-DWT because they are close to zero. Thus, in 

Schemes 3 and 4, we employ 2-D SA-DWT and 2-D MSA-DWT for the second-level 

spatial transform to reduce coefficients spreading. 

For 2-D DA-DWT, 2-D SA-DWT and 2-D MSA-DWT, we partition the images 

into blocks with size 4×4 and choose the best direction for each block. We assume the 

side information of these spatial transforms are all 0. The test video sequences are all 

CIF format, I420, and 30 fps. We compress 32 frames of different test video 

sequences and code the transform coefficients by 3-D ESCOT [36]. Table 6-13 shows 

the coding results of different test video sequences. “kpbs” means 1024 bits (kilobits) 

per second in bit rate. 

MCTF concentrates most energy into T_Ls. Scheme 2 compresses T_Ls well and 

often outperforms Scheme 1 significantly in Table 6-13. In MCTF, T_Ls and T_Hs 
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compose of “the same” and “different” components of video sequences. For video 

sequences with fast moving objects, such as Stefan, T_Ls contain less “the same” 

components. The coding gain of scheme 2 is about 0.1dB for Stefan.  

As discussed in section VI, in the second transform, 2-D DA-DWT and 2-D 

SA-DWT could spread out coefficients in T_Hs. The 2-D MSA-DWT can switch off 

the second transform and thus provides better coding performance than 2-D SA-DWT 

on T_Hs in Table 6-14. 

Table 6-13. PSNR of different coding schemes on T_Ls. 

 
Table 6-14. PSNR of different coding schemes on T_Hs. 

 
  

Test

Video

Sequence

Spatial

Transform

Schemes

128

kbps

256

kbps

512

kbps

1024

kbps

2048

kbps

Akiyo T_L(2-D DWT × 2), T_H(2-D DWT × 2) 41.11 44.43 47.28 50.33 53.60

T_L(2-D SA-DWT × 1+ 2-D DA-DWT × 1), T_H(2-D DWT × 2) 41.81 44.85 47.48 50.63 53.83

Bus T_L(2-D DWT × 2), T_H(2-D DWT × 2) 26.37 29.78 32.62 35.74 39.33

T_L(2-D SA-DWT × 1+ 2-D DA-DWT × 1), T_H(2-D DWT × 2) 26.61 30.01 32.86 35.78 39.34

Foreman T_L(2-D DWT × 2), T_H(2-D DWT × 2) 33.64 36.61 39.29 41.76 44.25

T_L(2-D SA-DWT × 1+ 2-D DA-DWT × 1), T_H(2-D DWT × 2) 34.33 36.91 39.39 41.93 44.41

Mobile T_L(2-D DWT × 2), T_H(2-D DWT × 2) 24.53 27.77 31.03 34.07 37.63

T_L(2-D SA-DWT × 1+ 2-D DA-DWT × 1), T_H(2-D DWT × 2) 25.22 28.23 31.24 34.09 37.56

News T_L(2-D DWT × 2), T_H(2-D DWT × 2) 35.33 39.08 43.10 46.70 50.14

T_L(2-D SA-DWT × 1+ 2-D DA-DWT × 1), T_H(2-D DWT × 2) 35.50 39.29 43.12 46.86 50.34

Stefan T_L(2-D DWT × 2), T_H(2-D DWT × 2) 25.56 29.33 32.78 35.77 39.02

T_L(2-D SA-DWT × 1+ 2-D DA-DWT × 1), T_H(2-D DWT × 2) 25.73 29.45 32.85 35.71 39.00

Test

Video

Sequence

Spatial

Transform

Schemes

128

kbps

256

kbps

512

kbps

1024

kbps

2048

kbps

Akiyo T_L(2-D SA-DWT × 1+ 2-D DA-DWT × 1), T_H(2-D DWT × 2) 41.81 44.85 47.48 50.63 53.83

T_L(2-D SA-DWT × 1+ 2-D DA-DWT × 1), T_H(2-D SA-DWT × 2) 41.84 44.88 47.54 50.65 53.80

T_L(2-D SA-DWT × 1+ 2-D DA-DWT × 1), T_H(2-D MSA-DWT × 2) 41.87 45.08 47.61 50.74 53.82

Bus T_L(2-D SA-DWT × 1+ 2-D DA-DWT × 1), T_H(2-D DWT × 2) 26.61 30.01 32.86 35.78 39.34

T_L(2-D SA-DWT × 1+ 2-D DA-DWT × 1), T_H(2-D SA-DWT × 2) 26.61 30.02 32.85 35.72 39.32

T_L(2-D SA-DWT × 1+ 2-D DA-DWT × 1), T_H(2-D MSA-DWT × 2) 26.64 30.13 33.10 35.90 39.38

Foreman T_L(2-D SA-DWT × 1+ 2-D DA-DWT × 1), T_H(2-D DWT × 2) 34.33 36.91 39.39 41.93 44.41

T_L(2-D SA-DWT × 1+ 2-D DA-DWT × 1), T_H(2-D SA-DWT × 2) 34.40 37.01 39.54 42.01 44.39

T_L(2-D SA-DWT × 1+ 2-D DA-DWT × 1), T_H(2-D MSA-DWT × 2) 34.45 37.15 39.65 42.11 44.46

Mobile T_L(2-D SA-DWT × 1+ 2-D DA-DWT × 1), T_H(2-D DWT × 2) 25.22 28.23 31.24 34.09 37.56

T_L(2-D SA-DWT × 1+ 2-D DA-DWT × 1), T_H(2-D SA-DWT × 2) 25.25 28.20 31.21 34.02 37.47

T_L(2-D SA-DWT × 1+ 2-D DA-DWT × 1), T_H(2-D MSA-DWT × 2) 25.26 28.24 31.33 34.27 37.67

News T_L(2-D SA-DWT × 1+ 2-D DA-DWT × 1), T_H(2-D DWT × 2) 35.50 39.29 43.12 46.86 50.34

T_L(2-D SA-DWT × 1+ 2-D DA-DWT × 1), T_H(2-D SA-DWT × 2) 35.59 39.41 43.31 46.80 50.34

T_L(2-D SA-DWT × 1+ 2-D DA-DWT × 1), T_H(2-D MSA-DWT × 2) 35.64 39.46 43.42 46.87 50.37

Stefan T_L(2-D SA-DWT × 1+ 2-D DA-DWT × 1), T_H(2-D DWT × 2) 25.73 29.45 32.85 35.71 39.00

T_L(2-D SA-DWT × 1+ 2-D DA-DWT × 1), T_H(2-D SA-DWT × 2) 25.70 29.50 32.88 35.60 39.03

T_L(2-D SA-DWT × 1+ 2-D DA-DWT × 1), T_H(2-D MSA-DWT × 2) 25.77 29.61 33.02 35.75 39.15
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Chapter 7 Conclusions 

    In this thesis, we study and improve two types of popular directional 

wavelet-based image and video coding schemes. We propose three enhanced 

algorithms to improve the coding performance of wavelet-based contourlet transform 

(WBCT) on image coding. We propose another three enhanced algorithms to improve 

the coding performance of direction-adaptive discrete wavelet transform (DA-DWT) 

on images and video coding.  

The WBCT-based image coding approach is explored in this thesis. We propose 

three components to enhance its performance. First, we design a short-length filters 

(SLF) to speed up the filtering process. It provides similar coding performance but 

requires only 10% of computational complexity of the original long-length filters 

(LLF). Second, we construct a mean-shift-based decision process to decide if a higher 

subband (HH
1
, HL

1
, or LH

1
) is appropriate for directional decomposition. Threshold 

values are carefully selected to identify the energy peaks in each candidate subband. 

Finally, we design new zero-coding (ZC) context tables for ESCOT because the 

coefficients produced by directional decomposition have different statistical 

characteristics among near-by coefficients. Compared with the conventional 2-D 

DWT coding scheme, our scheme provides better visual quality with a moderate 
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additional computational cost. Compared with the original WBCT coding scheme, the 

proposed coding scheme provides comparable image quality (PSNR and MSSIM) but 

with significantly less computing time. 

We further study the DA-DWT approach. We propose three algorithms to 

enhance the coding performance of 2-D DA-DWT and 2-D SA-DWT. We first 

propose a direction alignment algorithm to reduce the side information of 2-D 

DA-DWT. We then extend the direction alignment algorithms to reduce the side 

information of 2-D SA-DWT. This extension requires quite a bit of extra work to 

reduce complexity in the selection process. The proposed alignment algorithms save a 

large amount of side information at the cost of small increment in prediction error. 

Overall, it also improves the coding performance on still images. To encode the 

temporal high-pass bands (T_H) more efficiently, we propose an adaptive switching 

algorithm that turns off the second transform in 2-D SA-DWT. This so-called 2-D 

MSA-DWT provides better coding efficiency than 2-D SA-DWT and 2-D DWT on 

T_Hs. 
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