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Source Modeling and Rate-Distortion Optimization in
Scalable Wavelet Video Coder

Student: Chia-Yang Tsai Advisor: Dr. Hsueh-Ming Hang

Department of Electronics Engineering & Institute of Electronics
National Chiao Tung University

Abstract

There are two key elements in this study, namely, the source modeling of the
motion-compensated prediction error signals, and the coding parameter selection to
minimize the rate-distortion criterion. For the first item, we develop an accurate p-GGD
(Generalized Gaussian Distribution)-source model for approximating the signal probability
distribution in scalable wavelet coding. An efficient piecewise linear expression is designed
to estimate the shape parameter of the p-GGD. We also improve the model accuracy in
matching the real data by modifying the p parameter estimation formula. For the second
item, a rate-distortion model for describing the motion prediction efficiency in scalable
wavelet video coding is proposed. Different from the conventional non-scalable video
coding, the scalable wavelet video coding needs to operate under multiple bitrate conditions
and it has an open-loop structure. The conventional Lagrangian multiplier, which is widely
used to solve the rate-distortion optimization problems in video coding, does not fit well
into the scalable wavelet structure. In order to find the rate-distortion trade-off due to
different bits allocated to motion and textual residual information, we suggest a motion
information gain (MIG) metric to measure the motion prediction efficiency. Based on this
metric, a new cost function for mode decision is proposed. Compared with the conventional

Lagrangian optimization, our experimental results show that the new mode decision method



generally improves the PSNR performance in the combined SNR and temporal scalability

casces.
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Chapter 1 Introduction

Over the past few years, multimedia delivery becomes an important class of wireless/wired
internet applications, for example, mobile video and digital TV broadcasting. To overcome
the constraints on transmission bandwidth and receiver capability, the scalable coding
technique was developed and adopted by the recent international video standards. There are
two major approaches on scalable video coding: the DCT-based and the wavelet-based
coding schemes. These two coding schemes share many similar coding concepts, especially
in removing the temporal redundancy. The Scalable Video Coding (SVC) extension of the
H.264/AVC is a representative scheme of the DCT-based approach and has been accepted
as the ITU/MPEG standards in 2007 [1]. On the other hand, the wavelet-based coding
scheme is a relatively new structure and has its potential and advantages [2] as shown
during the MPEG competition process for standardization.

Discrete wavelet transform (DWT) has been successfully applied to still image
compression. By exploiting the inter-subband or intra-subband correlation, the DWT
transformed image signal can be efficiently compressed by a context-based entropy coder,
such as EZW [3], SPIHT [4], and EBCOT [5]. Different from the DCT-based JPEG image
coding, the multiresolution property of wavelet transform provides a natural way in
producing scalable bitstreams. It enables the spatial and the SNR scalability features in the

well-known JPEG2000 image coding standard [6]. In addition to the spatial decomposition,



DWT can also be applied along the temporal axis and decomposes video frames into

temporal subband signals. Therefore, it provides the temporal scalability for videos. In the

past fifteen years, the temporal wavelet decomposition is refined by adopting the motion

compensated temporal filtering (MCTF) technique. These schemes were proposed and

improved by Ohm [7], Hsiang and Woods [8], Secker and Taubman [9], and Xu et al. [10].

MCTF can efficiently decompose video frames along the motion trajectories. After MCTF

and spatial 2-D DWT, the original video frames are transformed to spatio-temporal subband

signals and compressed by a context-based entropy coder [9], [11]. This interframe

wavelet video coding scheme can achieve témporal, spatial and SNR scalability goals

simultaneously. Depending on the processing order in the spatio-temporal domain, the

scalable wavelet coding methods can be classified to "t+2D" and "2D+t" structures [12]. In

this study, we will focus on the t+2D structure.

The rate-distortion analysis of a scalable interframe wavelet video coder is very different

from that of a DCT-based coder owing to the following two issues: inter-scale coding and

open-loop coding structure. In DCT-based video coders, such as MPEG-2 or H.264, use the

hybrid coding technique; all the temporal and spatial prediction operations are basically

block-based. Thus, it is quite straightforward to perform the rate-distortion analysis along

the coding operation flow. On the other hand, in the interframe wavelet coders, the temporal

MCTF is performed block-wise, but the spatial entropy coding is performed on the



subbands. This inconsistent data partition increases the rate-distortion analysis difficulty

drastically. Wang and Schaar proposed a solution in [13] to analyze the rate-distortion

behavior across different coding scales for wavelet video coder. The second issue is that

the DCT-based video coder has a closed-loop coding structure. The prediction errors within

the loop can be controlled by adjusting coding parameters [14]; thus, the optimal

rate-constrained motion compensation can be adaptively adjusted [15],[16]. But the

interframe wavelet coding has an open-loop prediction structure and the quantization

process is performed after all the encoding operations are completed. This open-loop

scheme provides more flexibility on bitstream extraction and robustness to transmission

errors, but it has no feedback path to provide useful information to adjust prediction

parameters in the encoding process. Therefore; it is difficult to achieve the rate-distortion

optimization target, especially in the case of allocating bits between the motion and the

texture data at multiple operation points all at the same time. How to generate adequate

amount of motion information and decide the best prediction modes for MCTF becomes a

challenging problem in the scalable interframe wavelet video coding.

Our objective is to develop a rate-distortion optimization method to improve the coding

performance of scalable wavelet video coding. For building an efficient rate-distortion

model, we propose an accurate source model. Moreover, we also suggest a piecewise linear

method to estimate the shape parameter of the Model. Besides, we derive an analytical



model that describes the trade-off between the motion compensation bits and the residual

texture coefficients bits. We then allocate bits to each category properly at different

scalability dimensions. We first examine the rate-distortion effect due to the increase or

decrease of motion information bits. Then we derive a quantitative expression to measure

the motion prediction efficiency. Most significantly, we give a theoretical explanation to

this metric from the entropy viewpoint. Based on this finding, a new cost function is

proposed. By minimizing the proposed cost function, the best prediction mode is decided

and the corresponding motion vectors are chosen for the MCTF operation. Compared with

the mode decision procedure in the conventional scalable wavelet video coder, the proposed

method shows a PSNR improvement for the combined SNR and temporal scalability cases.

The proposed methods are also published in {38] and [39].

This thesis is organized as follows. Chapter 2 gives a brief review of interframe

wavelet video and the rate-distortion mechanisms in video coding. In Chapter 3, the p-GGD

source modeling is proposed to approximate the probability distribution of wavelet

coefficients. In Chapter 4, we suggest the motion information gain (MIG) metric to measure

the motion prediction efficiency. According to our source model, the MIG metric is further

discussed from the entropy viewpoint. Extending the work in Chapter 3, the p-GGD source

model is improved by an enhanced estimation method of the p value. The one-sided p-GGD

is proposed for the texture residual signal in Chapter 5. In Chapter 6, the two concepts, MIG



in Chapter 4 and one-sided p-GGD in Chapter 5, are integrated into a complete and working

algorithm. The major contributions in this thesis are listed as follows.

Contributions of this Study

(1) An accurate and efficient source model, p-GGD, is proposed to approximate the

probability distribution of the wavelet coefficients.

(2) A quantitative metric, MIG, is proposed to measure the motion prediction efficiency of

MCTF.

(3) Based on the MIG metric, a new rate-distortion cost function is proposed for mode

decision. The parameters of the MIG cost function are empirically selected.

(4) To further improve the p-GGD model; the one-sided p-GGD model and an more reliable

estimation method on p are proposed to approximate the probability distribution of

residual texture signal.

(5) Based on MIG and one-sided p-GGD, an integrated MIG mode decision algorithm is

developed. The parameters of the cost function are first theoretically derived and then

fine-tuned by experimental data.



Chapter 2 Scalable Wavelet Video
Coding and Its Rate-Distortion
Optimization

2.1 Brief Introduction to Interframe Wavelet

Video Coding

The most popular coding structure of interframe wavelet video codec is the so-called
“t+2D” structure as shown in Fig. 2-1. The order of “t+2D” implies the encoding operation
order: the temporal analysis first and then the spatial analysis. The temporal analysis
employs the MCTF technique. It decomposes: a group of pictures (GOP) into several
temporal high-pass frames and one low-pass frame along the motion vector trajectories. The
motion information portion is, in the conventional approach, nonscalable, which is denoted
as v in Fig. 2-1. Then, the spatial decomposition operation (2-D DWT) is applied to the
low-pass and high-pass frames to form subbands for further quantization and entropy
coding. With the help of a scalable entropy coder, these spatio-temporal subbands are
compressed to a scalable bitstream, denoted as s in Fig. 2-1. Therefore, the coded output
bitstream consists of two parts, one is the scalable bitstream for the texture information (s)
and the other is the non-scalable bitstream for the motion information (v); together, they are
denoted as {s, v}. To fulfill the application requirements imposed on the video bitrates,
image resolution, and frame rate, the texture bitstream is truncated accordingly but the
motion bitstream remains intact. Therefore, the output bitstreams of the bitstream extractor
are {so, v}, {s1, v}... {sn, v} to match the scalable requirements ro, r,..., , respectively,

as shown in Fig. 2-1. The truncation mechanism is designed to collaborate with the scalable
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Fig. 2-1 The t+2D coding structure of interframe wavelet encoder. The solid line and dashed line

show the data paths of the texture and motion information respectively.

entropy coder.

The EBCOT [5] image coding algorithm is adopted by the JPEG2000 standard, and
similar algorithms are widely adopted by the state-of-art wavelet video codecs [9], [11]. The
basic coding flow of an interframe wavelet video coder is as follows. After temporal and
spatial analysis, each subband is partitioned into.a number of code blocks, and the bitplanes
of each block are processed by a few coding paths. The boundary between two consecutive
coding paths is a truncation point. These truncation points are characterized by the slopes of
the rate-distortion curves at the truncation point. These slope values are recorded and sent to
the bitstream extractor. In one extraction unit, such as one GOP, the coding paths with
similar slopes are grouped into the same coding layer. A permissible positive slope value is
called a rate-distortion threshold. The coding layers with the absolute values of their slopes
higher than the rate-distortion threshold are chosen to form an output bitstream. The sum of
the bitrates of these chosen coding layers is calculated. If the calculated bitrate is less than
the target bitrate, the rate-distortion threshold is adjusted to a smaller value so that more
coding layers will be included and the total bitrate increases. On the other hand, the
threshold value increases so as to discard some coding layers. By repeating the above
operation, the bitrate of the truncated bitstream reaches the target value. Because each

bitplane of a code block is split into three coding paths, the bitrate extraction can be quite



accurate. Therefore, the bitrate of the texture bitstream can be precisely controlled by the
bitstream truncation mechanism. But the non-scalable motion information imposes a
constraint on bitstream scalability. The motion information is typically temporal scalable
and can be adapted to different decoding frame rates. However, when the spatial scalability
feature is turned on, the motion information is often not adjustable to different decoding
picture size during the extraction. In the following sub-section, we will compare the
rate-distortion optimization methods for the non-scalable and the scalable video cases, and

then develop the methods in the next section to adjust the motion information bitrate.



2.2 Rate-Distortion Mechanism in Video Coding

According to the Shannon’s source coding theory [18], the rate-distortion function can be
derived from the probability model of a coding source. Based on the rate-distortion function
and with the help of optimization methods, an optimal rate-distortion trade-off can be
theoretically obtained for a given bitrate or distortion condition.

In a typical hybrid video coding scheme, the coding source is the transformed residual
signal after inter or intra predictions. It is well known that the probability distribution of the
transformed coefficients can be closely approximated by the Laplacian distribution [21]

P(r) =5 el SRl ()
where A is the Laplacian parameter and can be estimated from the signal standard deviation
o by A=+2/c. If the probability distribution of the transformed residual signal is a
Laplacian source, its rate-distortion function with quantization distortion D and texture
coding rate R was derived in [18]. In addition to the texture coding bit rate, the extra side
information needed in a hybrid coder is mostly the motion information rate AR. According
to the optimization theory, the best motion prediction mode can be obtained by minimizing
the Lagrangian cost function defined by

Intode = D + Asode(R + AR), ()

where 4. 1s the Lagrange parameter. For a fixed AR, A4 can be theoretically derived

for a well-defined rate-distortion function in (2). Both the theory and the real data show that



the A\jys.qc Vvalue is strongly related to the quantization step size, which controls the amount

of distortion directly [22], [23]. Different \,;.,4. values are used by several popular

reference encoders. These ;.4 values are picked or derived based on their system

characteristics and the experimental data [24]. The rate-constrained motion estimation is

performed separately by using another Lagrangian cost function given by

')r_\fo(.ion =FD+ AJIUHUHAH’ (3)

where FD is a function of the frame difference between the original and the reconstructed

image blocks. In many practical systems, FD is either SSD (sum of squared differences) or

SAD (sum of absolute differences). In the- MPEG reference encoder, /o0 1S empirically

chosen to be Ajjoqe and /Ayo0. for SSD and SAD, respectively [22].

From (2) and(3), Aas.qe 18, clearly, an important factor that balances the weights of rate

and distortion in the overall cost (J) and it thus affects the bitrates allocated to the texture

and the motion information. As discussed earlier, Ay;.qc depends on the source

characteristics, the quantization step size and the bit rate. Several papers [19], [20] show

that the statistics of the texture are helpful in selecting the proper ;4. value. The key for

solving the mode decision and bit allocation problem is to find the relationship between

quantization step size, texture characteristics and bit rate.

Using only one fully self-embedded bitstream to satisfy different coding requirements

simultaneously is the most attractive feature of the scalable video coding technique. In the

-10 -



scalable interframe wavelet coding, the bitstream generation process and bitstream

extraction process are two separate, independent steps. The encoding process generates

lossless compressed bitstream. After the encoding, the extractor truncates the lossless

bitstream according to the bitrate requirement. In other words, the extractor plays the role of

quantizer. This coding structure uses the input source frames, not the reconstructed frames,

to predict the current frame. It is often referred as “open-loop structure” in the 3D wavelet

coding literature [12]. It is very difficult to precisely control the prediction accuracy during

the encoding process. Moreover, multiple bitstreams are to be extracted from the same

coded bitstream. It is hard to adequately allocate the motion information bitrates at encoder

(before the extractor) to satisfy all target operation points simultaneously. A theoretical

treatment on the optimum trade-off between the motion information bitrate and the texture

signal bitrate for a motion-compensated video codec was earlier explored by Girod [15] and

will be discussed in the next section. In practice, most existing scalable wavelet video

coding schemes still adopt the cost functions used in the hybrid video coding ((2) and (3)),

but the Lagrange parameter in each temporal decomposition stage is manually selected

empirically [25]. Because the target bitrate is given after the entire bitstream is coded, the

pre-selected, fixed-value Lagrange parameter must be working for a range of bitrates. In

other words, we hope it can provide a reasonable overall performance for all the bitrates of

interest. The cost function defined by (2) determines the best motion prediction mode. If a

-11 -



total bitrate is given, we can follow the conventional approach to pick up the Lagrange

parameter. But unfortunately, the bitrate is not known at the encoding stage for scalable

wavelet video encoding.

To go one step further, we look into the role that the motion vectors play in scalable

interframe wavelet coding. The MCTF unit performs the temporal decomposition operation

along the motion trajectory; therefore, the accuracy of motion vectors is critical to their

motion compensation performance. The low-pass frames produced by temporal filtering

will be further decomposed at the next temporal level. Thus, the temporal decomposition

layers form a hierarchical structure. The'inefficiency in motion prediction propagates along

the temporal hierarchy in the same GOP. Therefore, accurate motion vectors tend to

decrease the overall distortion. But, a ‘very accurate motion vector often requires more

coding bits.

To sum up, the Lagrangian cost function is a very powerful tool in the conventional

non-scalable coder. But due to the open-loop coding structure and the requirement of

multiple operating points, the use of the Lagrangian cost function in scalable wavelet video

coding becomes inadequate. The key problem is finding the proper trade-off between the

motion information and the residual texture information for scalable wavelet video coder.

The whole scenario becomes even more complicated when we consider the propagation of

MCTF inefficiency along temporal hierarchy. Therefore, we propose another approach to
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replace the ordinary Lagrangian cost function for scalable wavelet video coding.
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Chapter 3 p-GGD Source Modeling
for Wavelet Coefficients

2-D Image signal can be decomposed twice by a 1-D discrete wavelet transform (DWT)
into a 2-D multi-resolution representation. Each 1-D DWT splits the 2-D image signal into
low-pass (L) and high-pass (H) subbands along the vertical or the horizontal direction.
Typically, the LL subband is further split several times in image coding. In an interframe
wavelet video coding structure, another wavelet filter bank is applied along the motion
trajectory of moving objects [7]. The.temporal L frame is often a moving average of frames,
while the temporal H frame contains the frame differences. In video coding, these temporal
L and H frames are further decomposed by the spatial 2-D DWT, so all original frames in a
GOP are transformed to a temporal-spatial subband representation.

For either image or video coding, the source modeling is critical in the R-D analysis.
The pdf (probability density function) of wavelet coefficients has been modeled as a
generalized Gaussian distribution (GGD) [26][27]. To construct a GGD source model, the
pdf variance and kurtosis have to be calculated first in order to estimate the shape

parameter.
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Fig. 3-1 An example of wavelet coefficients modeling. (LL-LL-HL subband of image Lena).

Variance and kurtosis are related to the second and the forth moments. Therefore, the
process of constructing a GGD model is-rather complicated. To reduce the complexity, the
Laplacian distribution is often adopted. Although the Laplacian source model is thus widely
used, its coefficients approximation errors are sometimes high as shown in Fig. 3-1.
Therefore, we propose a p-GGD source model in the next section to achieve the high

accuracy of the GGD model but with lower complexity.
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3.1 p-GGD Source Model Derivation

The pdf of wavelet coefficients typically has zero-mean. Thus, the generalized Gaussian

distribution (GGD) source model is given by

Pacp(z) = % (%) (‘xp(_[.;;(n-.rr) -] ), 4)

where

_, |T(Ba™h)

no,0) =0
Here, o is the standard deviation of wavelet coefficients, v is the shape parameter of the

GGD model, and I'(x) is the standard Gamma function. Let p be the probability of

zero-value coefficients. According to(4); p'is given by

a nle, o)
N

=P(0); (6)
Therefore, (4) can be rewritten by the following p-GGD representation:

Py—gap(x) =p- t‘XI)(—(Q cpa” ' T(a™h) - J-‘)“)-, (7)
In building a p-GGD source model, the shape parameter v has to be estimated first. From (5)
and (6), the product of p and o can be written as

I'(3a~1)
e ®

(8) shows a mapping relationship between the shape parameter v and the product of p and ¢

Pla) £

b2

in the p-GGD model; that is, po = ®(a). Because parameters p and o can easily be

obtained from data, it is convenient to use their product to estimate the value of ®(«).
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Fig. 3-2 ®(a) at a€[0.5, 2.5] and:its piecewise linear approximation.

From experiments, the range-of a 18 [0.5, 2.5] for typical image/video wavelet
coefficients. In Fig. 3-2 , the solid line ‘shows the values of ®(«) in the range of ae[0.5,
2.5], an decreasing one-to-one function of «. Therefore, the inverse function of ®(«) at ae

[0.5, 2.5] exists and is unique; thus, the shape parameter « can be estimated from @' (po).
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3.2 Piecewise Linear Estimation for the Shape

Parameter of Wavelet Coefficients

In Fig. 3-2, ®(«) is an exponentially decreasing smooth curve. We found experimentally
that ®(a) can be approximated accurately for «a € [0.5, 2.5] by piecewise linear
approximation. We partition the ®(«) curve into ten pieces for a<[0.5, 2.5]. For each
piece at a € [f;, fi—1], Pest(r) is approximated by a linear model as below

_ ®(fi) — ®(fi-1)

(I}f'.uf('f") - f _ f'—]. (.“ - f!) + (I}(.f."]’ (9)

where i={1,2,...10} and {fy, fi, o 5. fin fo for s foo fo fio} = {0.5, 0.5625, 0.625, 0.6875, 0.75,

0.875, 1, 1.25, 1.5, 2, 2.5}. Fig. 3-2 shows that @ («) is well approximated by P .. ().

And the shape parameter can be estimated by cvesy = @;;( po), which is

fi — fi-1
Q(fi) — P(fi-1)

D 1 (po) =

(po = @(fi)) + fis (10)

Table 3-1. Look-up table for shape parameter estimation

O(f) - P(fi)

i S, fi—fa (f) fi

1 | [2.739,2.000] -11.810 2.000 0.5625
2 | [2.000, 1.563] -7.005 1.563 0.6250
3 | [1.563, 1.281] -4.506 1.281 0.6875
4 | [1.281, 1.089] -3.080 1.089 0.7500
5 | [1.089, 0.848] -1.926 0.848 0.8750
6 | [0.848, 0.707] -1.126 0.707 1.0000
7 | [0.707, 0.555] -0.610 0.555 1.2500
8 | [0.555, 0.476] -0.314 0.476 1.5000
9 | [0.476, 0.399] -0.154 0.399 2.0000
10 | [0.399, 0.363] -0.073 0.363 2.5000
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when

po € Si = [®(fi-1). (f)) (1D
Furthermore, a look-up table of the constants used in (10) and (11) can be pre-calculated as
shown in Table 3-1. In conclusion, a p-GGD model for the pdfs of wavelet coefficients can
be constructed by using the following steps:
Step 1: Compute p and ¢ from the wavelet coefficients.
Step 2: Use Table 3-1 to get S; in (11) based on the product of p and o and also the
corresponding model coefficients.
Step 3: Calculate the estimated shape parameter «.y from (10) using the model
coefficients obtained in Step 2.

Step 4: Obtain the p-GGD source model givenby (7).
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3.3 Modeling Accuracy Evaluation

The difference between two probability distributions can be evaluated by estimating the
relative entropy or the said Kullback- Leibler (K-L) divergence [28]. In this thesis, we use

the symmetric definition defined by

KLpllg =Y pl) 1("“) + 3 () lg(%) , (12)

reX reX

where p is the “true” pdf and ¢ is the “modeling” pdf. A small K-L divergence means a

higher modeling accuracy. The experimental results of the p-GGD and the Laplacian

modeling are compared for several test cases. In the spatial 2-D DWT case, the Daubechies

9/7 biorthogonal wavelet filter [29] popular in image coding is adopted in our experiments.

Fig. 3-3 shows the pdfs of the spatial subband coefficients and their models for the test

image “Pepper”. It is clear that the p-GGD model matches the real pdf much better than the

Laplacian model in all spatial subbands. Table 3-2 shows the divergence of our model and

the real pdf by using the symmetric K-L divergence for the test image “Lena”. In general,

the p-GGD model outperforms the Laplacian significantly in all subbands except for the LH

subband.
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Fig. 3-3 The pdfs of wavelet coefficients (dots) and their approximations by Laplacian (dotted line)
and the proposed p-GGD (solid line) models in the subbands: (a) HL, (b) LH, (¢) HH, (d)
LL-HL, (e) LL-LH, (f) LL-HH. The test image is “Pepper”.

In the interframe wavelet video case [10], the temporal-spatial subband coefficients are

produced by using MCTF and the spatial 2-D DWT. Table 3-3 shows the results of the K-L

divergence estimation of two test sequences, “Bus” and “Mobile”, with GOP=8 and 16

respectively at CIF resolution. The p-GGD model shows a much better modeling accuracy

than the Laplacian. In general, the higher subband signals are difficult to model but the

p-GGD model shows good accuracy in Table 3-3 (b) even at deep temporal subbands.

From the experimental results, the p-GGD model shows a very good modeling performance

in both spatial 2-D DWT and interframe wavelet video cases. Compared to the Laplacian

model, the p-GGD has a much better accuracy and consistency in modeling the pdfs of

wavelet coefficients.
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Table 3-2. K-L divergences of two source models for the 2-D DWT coefficients for image “Lena”.

Band HL LH HH LL- LL- LL-
dex HL LH HH
Model
Laplacian 0.22 0.07 0.03 0.68 0.52 0.42
p-GGD 0.16 0.08 0.03 0.22 0.21 0.20

Table 3-3. K-L divergence comparison of two source models for temporal-spatial subband

coefficients.
Band Temporal Level 2 Temporal Level 3
dex (H-frame) (H-frame)

LL HL LH HH LL HL LH HH
Model

Laplacian | 0.89 | 0.38 [ 0.30 | 0.08 | 0.70 [ 033 | 0.27 | 0.10
p-GGD | 0.28 [ 0.19 | 0.09 | 0.07 | 0.22 | 0.14 | 0.07 | 0.07
(a) “Bus” with GOP=8.

Band Temporal Level 4 Temporal Level 5
dex (H=frame) L-frame

LL HL LH HH HL LH HH

Model

Laplacian 0.85 |=0.33 | 030 } 0.19 | 047 | 046 | 0.38
p-GGD 0.20 | 0:05 | 0.03 [/10.02 | 0.06 | 0.10 | 0.07

(b) “Mobile” with GOP=16.
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Chapter 4 Motion Information Gain
(MIG) and Mode Decision Method

A typical extraction process in scalable wavelet coding truncates only the encoded
texture bitstream and maintains the integrity of the entire encoded motion information. For a
given bitrate condition, different amounts of motion information lead to different types of
residual texture signals, and thus lead to different rate-distortion behavior. Although there
are other approximate solutions [29], [31] that select the scalable motion information to
match certain very low-bitrate requirements, we focus on the pre-partitioned motion
information solution in the following study. That is, the optimal amount of information bits
is decided at the encoding stage. We first analyze the rate-distortion behavior of the motion-predicted
residual signals. Then, based on this rate-distortion relationship, we derive a quantitative metric that measures
the coding efficiency of motion information. Also, a theoretical explanation from the entropy viewpoint is

given to our coding efficiency metric.

-23-



4.1 Rate-Distortion Model of

Motion-Compensated Prediction

For a scalable wavelet video coder, theoretically, we can fix an extraction bitrate and then
find the rate-distortion behavior due to the increase/decrease of motion information. In other
words, at a given bit rate, if a certain amount of the texture bit rate is shifted to the motion
information, will the reconstructed image distortion be reduced or increased? A solution to
this problem is searching for the optimal motion information that leads to the optimal R-D
performance at different bit rates. For example, is the block size or the motion vector
accuracy more important in improying|the coded image quality? Clearly, the answer
depends on both picture content and bit-rate.

Although the residual frames after MCTF will be further spatially decomposed by 2-D
DWT, in this study we focus on the rate-distortion behavior of the texture information at the
MCTF stage (not after 2-D DWT) because the motion information coding efficiency is our
main concern. Because the consecutive frames are often very similar, the motion-predicted
residual signals typically have zero-mean and nearly symmetrical distribution. The residual
signals after motion prediction can be modeled as Laplacian sources. Because the temporal
high-pass frame is essentially a weighted combination of the motion-predicted residual
frames, we next try to construct the rate-distortion model of the motion-compensated

residual signals.
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Fig. 4-1 Illustration of rate-distortion curves of texture residual signal before and after motion

prediction.

When the residual texture signal is produced by the motion prediction operation, the
rate-distortion behavior of this texture information portion is decided. That is, since the
residuals are fixed after motion compensation, their rate and distortion trade-off due to
quantization and entropy coding is also fixed. However, if we change the motion vectors
(mv) used in motion prediction, the residual signals are different and thus, the texture
rate-distortion function changes. We like to know the texture rate-distortion function
variation before and after the motion prediction being applied to the same coding block.

For a motion-compensated video codec, Girod [15] pointed out that at a given total bit
rate, the optimum trade-off point should locate at

oD aD

= 13
01{!{'.:'?:;;‘(- 0117.””-, ( )

where the left hand side is the distortion decrease due to texture rate increase and the right
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hand is the distortion decrease due to motion information rate increase. Fig. 4-1 gives an
illustration of this principle. We use the zero motion vector (no motion-compensation) case
as a reference. In Fig. 4-1, Dy (R) is the rate-distortion function of the residual signal
produced by using the zero motion vector, and Dy (R) is the rate-distortion function of the
residual signals produced with the motion vector set v. From the bitrate viewpoint, an extra
coding bitrate AR is needed for sending the motion vectors v. Since the total target bitrate Ry
is given, the bitrate available for the texture information is reduced to Ry -AR. If this set of
mv is beneficial for the overall performance, the quantization error (distortion) of the
texture information with mv should be less than. that without mv at the same target bitrate.
Otherwise, the motion compensation is judged inefficient. Therefore, the distortion with
motion prediction is smaller than that without motion prediction:
D (Ry — AR) < Do(Rp). (14)
Conceptually, (14) is equivalent to (13) in [15]. But different from the motion region
partition approach in [15], we try to find an instrumental trade-off measure and a design
procedure for adjusting the mv bit rate.
For the Laplacian source described by (1), if the absolute-error distortion measurement

isinuse, (14) can be rewritten using the rate-distortion functions given in [18] as

L .9~ (Rr—AR) < i } 2—1?';'. (15)
A‘V J'\.U

The Laplacian parameter A, and Ap can be estimated from the residual signal variances,
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o2 and o, respectively. Thatis, A = /2/o. Thus, (15) becomes

log,(09) — log,(oy)

AR

> 1. (16)
Let us define the function ® to be the logarithm value of the signal standard deviation, and
let AD be

AP = g — Dy = log,y(00) — loga (o) (17)

Then, (16) can be rewritten as

AP

From (14) to (18), we can see that the target bitrate term Ry is cancelled because it appears
on both sides in (15). This target bitrate elimination gives us a big advantage in the rest of
our rate-distortion analysis. Different from the conventional video coding, the target
(extraction) bitrate is unknown during ‘the scalable encoding process. In this formulation,
the measurement of motion prediction efficiency is extraction bitrate irrelevant. This is true
under the assumption that the residual signal probability distribution is Laplacian for both
with and without motion-compensated prediction. This Laplacian model is not all accurate
in real cases. Here, A® and AR represent the variation of texture statistics and the bitrate
cost of adopting motion estimation, respectively. We thus view A®/AR as a gain factor in
measuring the motion prediction efficiency. Intuitively, the motion prediction operation is
preferred if it reduces the texture variance significantly. Furthermore, (18) gives a

quantitative metric and specifies a threshold of acceptable A®/AR. This threshold is derived
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based on the Laplacian source assumption with absolute-error distortion definition.
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4.2 Motion Information Gain (MIG)

According to the last sub-section, A® represents the variation of texture statistics due to
motion-compensated prediction. We are going to show next that A® represents the
difference between two differential entropies. For the Laplacian source X, its differential

entropy A4(X) is given below [18].
h(X)=- / P(X)logy(P(X))dx
Jx

"o A . A .
= — / 3(3_'”"' -lt)gg(gf_.’_'\l"l)d::r , (19)

[ =
=1+ log, (K)
where A is the Laplacian parameter. Thus, the differential entropies of the residual signals

Xy and X, produced by the zero motion vector and the motion vector set v are,

respectively,
h{Xo) =14 log, (%)

0

h( Xy =1+1og, ({—)

v

(20)

Although the differential entropy does not represent the actual bitrate, the difference
between two differential entropies represents the bitrate difference estimation of these two
sources. Since the Laplacian parameter can be estimated from the signal variance, we thus

obtain the following equation:

h(Xo) — W Xy) = l(}gg(i—;)= logg(@). (21)

Ty
Comparing (21) with (17), as a consequence of rate-distortion theory on the Laplacian
source, we find that these two equations are the same. Therefore, A® represents the
reduction of residual signal entropy in encoding the residual signals before and after

motion-compensated prediction. Thus, the interpretation of A®/AR is as follows.

AP decrease in residual signal entropy

(22)

~J
AR increase in motion information bitrate
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From (22), we can see that A®/AR is the ratio of the “reward” and the “cost” due to the use
of motion-compensated prediction. The “cost” is the extra bitrate for encoding the motion
vectors, and the “reward” is the entropy reduction of the residual texture signals. Therefore,
AD/AR is called the “motion information gain”, abbreviated as MIG. It is thus used to
measure the motion prediction efficiency. We denote this MIG function due to the motion

vector set v by

(_,-")(V = E .

(23)

This gain factor implicitly represents the trade-off between the residual signal bitrate and
motion information bitrate. The fundamental concept behind (23) is similar to that (13) in
[15] as discussed earlier. But through our preceding lengthy derivation, we show that the
total target bitrate disappears in the final MIG expression. Thus, the MIG metric fits well
for applying to the scalable wavelet video coding structure.

Let us extend the original criterion (18)-to a more general form. When we consider the
advantage of using motion- prediction in scalable wavelet video coding, the MIG metric of

the candidate motion vector set v should satisfy

AD
AR C, (24)

where C is a chosen threshold value. In the original derivation, C is 1. Here we investigate
the range of C values in real video coding cases. Because a practical entropy coder cannot
approach the entropy bound, both the compressed texture and the compressed motion
information would need more bits to code. Therefore, the motion prediction is not as
effective as (14) shows. The distortion reduction by the motion bitrate AR, measured in
bits/pixel, is less than the expected value; that is, 7, should be larger in real cases.
Therefore, (14) is modified to

a-Du(Ry — AR) < Do(Ry)s (25)
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where @ > 1. Using the above equation, we can follow the same derivation process in
section III.A to obtain the MIG lower bound. Consequently, an inequality similar (16) is

derived:

logs(0¢) — logs(oy) S 14 log,(a)

AR AR (26)

Because a > 1, the right term of the above equation, the lower bound of C, is larger than 1.

When AR is small or log,(a) is large, C becomes much larger than 1.
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4.3 MIG Cost Function

Since our motion mode and vector selection process is applied only to image blocks with
non-zero optimal motion vectors, the denominator of (23) is non-zero. There are a few
interesting properties associated with ¢(v).

1) ¢(v) > 0. Clearly, we will not use an mv that produces a negative A® value. For a
given image block, if the zero mv is the best mv in the sense that any non-zero mv cannot
reduce the residual signal variance, then the ¢(v) value associated with this block is
assigned to be 0 and the best coding mode is the one with the zero motion vector.

2) ¢(v) is bounded. In digital image coding, the residual signal has a finite variance. The
best non-zero mv can, at the best, reduce the residual variance to zero. The variance
difference before and after employing mv is thus finite. In other words, the #(v) value
saturates and cannot be further improved when a proper mv is identified.

3) In the following sections, we deal mainly with the case that ¢4 > #(v) > C. That is,
the useful mv, v, should produce a ¢(v) value greater than 0 and less than or equal to
dmaz. 1deally, the parameter C is 1 and is independent of image contents and target bit
rate if the Laplacian rate-distortion model holds. However, as discussed earlier,
practically C is not 1 and is bitrate dependent.

Intuitively, the MIG metric ¢(v) with the constraint, ¢,,.. > ¢(v) > C, can be the cost

function used for searching for the optimal mv. However, the C value is unknown and to be
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identified in real image coding. Thus, for the convenience in computation, we use the
following equivalent form. We expand (24) with the aid of (17) and (23). The inequality
becomes
0% > 02 . 22CAR (27)

A large MIG value implies a large A® and/or a small AR. In (17), a large AD value implies
that the difference between oo and o, is large. Thus, the right term in (27), o2 .22 AR
should be as small as possible. Therefore, we propose a so-called “MIG cost function” to
measure the prediction cost. For a coding source s, the motion vector set v produces the
residual signals with variance o2(v) and'its-average information bitrate (for representing v)
1S AR(v). The MIG cost function J is defined as

J(s, v|Oy=al(v) - 22 CARN), (28)
where C is generally source and bit-rate dependent. We include it explicitly in the argument
of the J function to emphasize its role in our rate control algorithm. The problem now
becomes looking for v that minimizes J.

We need to identify the value of C in (28). According to our previous discussions, the C
value is decided by the coding system and the source signal s in (23). In practice, the source
signal s is the temporal high-pass frames generated by MCTF. Indeed, the probability
distributions of the different temporal layers have different shapes [32]. We conduct the

following experiments to characterize J and also to identify the value of C.
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We start with a fixed C value and simply use (28) as the cost function in performing

motion estimation and mode decision in encoding. The detailed procedure of mode decision

will be described in the next sub-section. After the encoding process is done, the encoded

bitstream is truncated to a fixed bitrate, for example, 256kbps, and then we decode the

truncated bitstream. The mean-squared error (MSE) between the decoded and the original

images is calculated; thus, one test point of a MSE and C pair is obtained. The data are

collected from 32 frames of the Mobile sequence at CIF resolution.

Repeating the above steps with different C values, we obtain a MSE vs. C curve at

256Kbps as shown in Fig. 4-2 (a). By changing the truncation bitrates settings, the MSE vs.

C curves at 384Kbps and 800Kbps are obtained as shown in Fig. 4-2 (c) and (d) respectively.

Each of Fig. 4-2 (a)(b)(c) shows that the MSE'is minimal when C reaches a certain value.

This is equivalent to the performance saturation phenomenon we discuss earlier. When C is

large, only the very effective mv’s can make positive contribution and their value is

diminishing as C gets larger; and thus the MSE goes up again as shown in Fig. 4-2 (a)(b)(c).

Although the theory predicts that MIG is independent of bit rate, in reality, however, the

coding system efficiency and the source probability distribution are bitrate and temporal

level dependent. Indeed, the best C value that leads to the minimum MSE tends to be

smaller at higher bitrates. This is consistent with the known observation that the

mathematical model matches the real rate-distortion relationship at higher rates. For
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example, the rate-distortion relationship of a quantizer approximates the asymptotical R-D
function at high bitrates [18]. If the optimum C value does not change significantly, we
prefer to use a constant C to cover the bitrates of our interests. We pick up seven target
bitrates, 256k, 384k, 512k, 800k, 1024k, 1200k, and 1500k, and their average behavior
(MSE vs. C) is shown in Fig. 4-2 (d). In conclusion, the C value generally falls in the range

of [4, 10].

-35-



116

114 A
112 A

110 A

jsa)
2108 A

106

104

102

100

36.5

36.3

36.1

359

35.7 A

MSE

353 A

35.1

349

34.7 A

345

Fig. 4-2 MSE vs. C value in the MIG cost function at (a) 256Kbps, (b) 284Kbps, and (c) 800Kbps truncation

——256kbps

73

72.5 A

72

71.5 A

MSE

70.5

70 4

69.5 -

69

71 4

——384kbps

w

w

9 10 11 12

355

=—800kbps

49.5

MSE

49 1

48.5

48 -

47.5 -

47 A

—&— All bitrate average

)

w

bitrates, and (d) the average MSE for 7 bitrates. (Mobile, CIF resolution).

-36-




4.4 Block-Based Mode Decision Procedure

The MIG cost function can be used to decide the coding mode. It tells us the trade-off
between the motion information and the texture information. Based on MIG, we develop a
mode decision procedure. In a conventional non-scalable video coder, the best motion
vector and coding mode are decided by minimizing the Lagrangian cost function ((2) and
(3)) for a given single bitrate. As discussed in the previous sub-sections, with the MIG cost
function we are able to choose the most appropriate coding mode (including mv) by
minimizing its value. The basic steps in the proposed mode decision procedure are similar
to that in the conventional scheme. In the existing scalable wavelet video coding schemes,
the mv search is block-based and the variable block-size motion compensation technique is
used to find the best macroblock coding mode. Each macroblock coding mode represents a
partition of macroblock into a certain combination of sub-blocks. Fig. 4-3 illustrates the
proposed mode decision procedure, which consists of three steps as described below.

1) Step I: Select the appropriate MIG cost function parameters
The proposed MIG cost function contains one parameter, C. According to our previous
discussions, C can be empirically chosen from the intervals, [4, 10]
2) Step2: Search for the best motion vector set for each block mode
There are many possible sub-block combinations for motion compensation in one

macroblock. For example, a typical 16x16 size macroblock has 16x16, 16x8, 8x16, and
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8x8 block modes; and each 8x8 block can be further partitioned to 8x4, 4x8, and 4x4

sub-blocks. Assuming that a macroblock can be partitioned to N,, sub-blocks for mode m,

the mv’s (v;) associated with all sub-blocks (b;) form two N,-tuple vectors, v,, and b,,,

respectively, where

Vi = (Vl EE V.\'m)

b, = (b1, -+ ,bn,,) "

m

(29)

For each sub-block, to find the best mv, all the mv candidates within the search range S
are examined. These candidate motion vectors can have forward, backward or
bi-directional prediction directions. By minimizing the MIG cost function in (28), the best
motion vector v} for sub-block b; 'is—obtained. Mathematically, it is identified by

performing the following optimization procedure.

v =arg 111111{.]‘Ur;;,-”,,(b,-. -.’.'|(_'.-‘)}
vES . (30)

with Jazotion (bi, v|C) = aj, (v) - 22 2R
Then, the best mv for the macroblock is the collection of all the best motion vectors for
mode m; i.e.,
v, = (v],..., o, )- (31)
The residual signal is modeled as a Laplacian source with zero-mean. After all the
sub-blocks finish the motion estimation process for mode m, the residual variance

‘712:m (v;,) and the average motion information bitrateAR(v;,) of a macroblock can be,

Tre

respectively, expressed as
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] . 1 . .
a—lzjm (T"‘m) = ﬁ Z O";i ('{_.‘?- )
P D : (32)
AR(”:”} = N,, ZAR(NT) + Tm

where 7, is the average extra bits needed to record the coding mode information. Both
AR and r,, are in bits/pixel.
3) Step 3: Choose the best block mode with the minimum MIG cost
Assuming that the block mode m in Step 2 belongs to the mode set M, which contains
all possible block modes, the MIG cost function in (28) is used again to choose the best
macroblock mode. Hence, the best block mode is decided by minimizing the MIG cost

function:

m = arg ?E]éii}l-{’fﬂff)(fr(bn:- VTH |(")}

. Ao (33)
with J_Uodr(bmr v:rl) - G'f;m (V:!) . 2‘2‘(' AR(vy,)

Therefore, the best block mode and its associated motion vectors of a macroblock are obtained.
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Fig. 4-3 Flow chart of the proposed mode decision procedure using the MIG cost function

-40 -



Chapter 5 One-Sided p-GGD Source
Modeling for Residual Signals

In the study of motion estimation efficiency, an accurate source model on the
motion-compensated residual signal is critical and essential. The results in [32] show that
the p-GGD source model is more accurate than the Laplacian model. Because we use,
typically, a non-negative metric on the prediction errors such as MAD or SSD (Sum of
Squared Difference), we propose the so-call one-sided p-GGD model to approximate the
probability distribution of the absolute-valued residual signals. In the modeling process, we
propose an efficient linear method to estimate.the shape parameter. Furthermore, we
increase the modeling accuracy on the real data by proposing an improved p value selection

method.
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5.1 One-Sided p-GGD Function

The probability distribution of the motion-compensated residual signal can be
approximated by a zero mean and symmetric probability density function (pdf), and the

GGD model is a good example [27]. The GGD pdf'is given by

Pe) = (280 exp(~lnfae) - o1°), (34)
where
(o, o) = glfr((ga__l)), (35)

and a is the shape parameter; I'(-) and exp(-) are the Gamma function and the exponential
function, respectively. The ¢ parameter represents the standard deviation of the residual
signal. We now like to approximate the probability distribution of the absolute values of
the residual signals. Let the source sample be denoted as xe x , where X is the source
alphabet set. Because (34) is a zero-mean and symmetric pdf and X is non-negative, we
modify the GGD model to the one-sided GGD with the following pdf:

P(z) = (%) exp(~[n(e,0) - a*), w20, (36)
The shape parameter a in (36) can be estimated by using the variance and kurtosis of the

source signal [27] but the complexity of this approach is very high. We will derive an
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30

Fig. 5-1 The solid line and the dashed line are the curves of Q(a) and its approximating

function Q.(a), respectively. Q.(a) is made of 20 line segments in this example.

alternative expression that can be computed. from the data samples with much less

computation.

We denote the probability of zero in (36) by p. That is,

n(en,o) _
pPEa o) ~ P(0). (37)
And then (36) can be rewritten as
P,_ccn(r) ::p.oxp<4—0wy_1f(a_1)-m)a), x> 0. (38)

We name (38) the one-sided p-GGD. There is an interesting property of the proposed

one-sided p-GGD. From (35) and (37), the product of p* and ¢* can be rewritten as

(39)

That is, the product of the square of zero-value probability and the variance is a function of

a.. We denote this function as
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T(3()Fl)

Q(a)éoﬂ-m .

(40)
This functional relationship is useful in estimating the shape parameter. As Fig. 5-1 shows,
the mapping between Q(a) and o is one-to-one. Therefore, the inverse function of Q(a)
exists. According to (39) and (40), a can be obtained by

a=Q (p?0?). (41)
Different from the conventional approach, we develop a new and fast method to estimate

the shape parameter based on the expression of (41). That is, we use the zero-value

probability and the variance value to estimate a.
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5.2 Piecewise Linear Estimation of Shape

Parameter of Residual Signal

Fig. 5-1 shows that Q(a) is an exponentially decreasing function of the argument a. Q(«) can be
divided into a number of segments and each segment is approximated by a straight line. The entire
range of a is [ay, a,]. We uniformly partition it into #» segments. Thus, Q(a) curve is approximated
by n pieces of line segments; these line segments are specified by the n sets of boundary points:
{Q(ag), Qa))}, {Qay), Qaz)} ...,and {Q(a,.1), Qa,)}. That is, Q(a) is approximated by a
piecewise linear function Q.(a). For the'j-th segment,

Q(O/l) 7~ Q((M?’_l)

Gy — C—

Qe(a) = (a—a;) + Q) , (42)

where ae [0, ;). Generally, the approximation is more accurate for large n. Fig. 5-1 shows the
example of n=20, and Q(«) is rather accurately approximated by Q.(a) in this case.
The linear function defined by (42) clearly has an inverse. We can thus estimate the shape

parameter a, using (41). If both p and ¢” are known, then

B (p202 - (Q(ai) B Sl(oz(iz : i(jil) .ai))/<52(ozz : Z(jzl)) ) (43)
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Table 5-1. A 20-SEGMENT SHAPE PARAMETER ESTIMATION TABLE

i Qe | Aa) ()~ 2=, | Aa)-a,.)
o -0, o -0,
1 30 11.7 121.3 -182.6
2 11.7 6.12 45.49 -56.25
3 6.12 3.8 22.34 -23.18
4 3.8 2.65 13.01 -11.51
5 2.65 2 8.5 -6.5
6 2 1.6 6.023 -4.023
7 1.6 1.33 4,532 -2.667
8 1.33 1.14 3.568 -1.865
9 1.14 1.01 2911 -1.359
10 1.01 0.91 2.442 -1.024
11| 0091 0.83 2.096 -0.793
12| 0.83 0.76 1.833 -0.629
13| 0.76 0.71 1.628 -0.508
14| 0.71 0.67 1.464 -0.417
15| 0.67 0.64 1.332 -0.348
16 | 0.64 0.61 1.223 -0.293
17| 0.61 0.58 1.132 -0.25
18 | 0.58 0.56 1.056 -0.215
19| 0.56 0.54 0.99 -0.187
20| 0.54 0.53 0.934 -0.163
for
pPo’ € [Qaio1), Q)] . (44)

One may notice that the coefficients in (43) are independent of data and can thus be calculated in

advance and recorded on a table. Table 5-1 shows the example of #=20. Therefore, for the i-th line

segment, the coefficients can be retrieved from Table I, and then the shape parameter can be

estimated by using (43).
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5.3 Improved p Estimation

In the above discussion, p is defined as the zero-value probability of the one-sided
p-GGD. In the one-sided p-GGD model, p also represents the highest probability value of
the model. However, for some residual image macroblocks, zero is not the most probable
value. In this case, using the zero probability to estimate p does not lead to good
approximation. Therefore, we modify the p estimation formula for this special case.

Fig. 5-2 shows two cases. To plot the probability derived from data, the residual
absolute-valued signal is rounded to its:nearest integer and is denoted by x,; the probability
distribution of x, and its modeling results are shown in Fig. 5-2. In the case of Fig. 5-2 (a),
the zero probability, P{x, = 0}, is the highest probability, and thus the one-sided p-GGD
can well approximates the data distribution. However, in the case of Fig. 5-2 (b), because
P{z, = 0} is not the peak probability and it results in poor approximation. Therefore, we
propose a modified estimation formula for p. Although the mean of the real residual signal
may not be zero, it is not far away from zero based on our collected data. We thus use both
the probability of zero, P{z, = 0}, and the probability of one, P{x, = 1}, to estimate p:

that is, p is the linear combination of two probabilities,
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Fig. 5-2 The dots are the probability distribution of the residual absolute-valued signal, x,. The dashed
line and solid line show the approximation results by one-sided Laplacian and p-GGD modeling,
respectively. The p value of the p-GGD modeling is estimated based on only the zero probability. Two
different cases are shown here: The highest probabilities of the distributions are located at x,=0 (a) and

x,=1 (b), respectively.

p=a-P{r,=0}+ (1 —a)- Pz, =1}, (45)
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and 0 <a < 1. In order to find the optimal a value, we test the following a values, a €{0,
0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}, and examine the one-sided p-GGD modeling
results for each a value. The a value that leads to the most accurate approximation is chosen
to calculate the p wvalue. To evaluate the modeling accuracy, we use the K-L
(Kullback-Leibler) divergence as (12). Therefore, for each residual macroblock, we can
choose the best a value, denoted by a*,

a® = arg ggéi_g{lx’b(f’(:ff) | Pp—cap(a: a))}, (46)
where P is the probability distribution of the residual absolute-valued signal; P, gep 1S
defined by (38) and its p value is estimated using (45). Although (17) can be used in the
off-line analysis, it is impractical ;in processing real data. We thus develop an efficient
method for determining the a* value.

We separate all events into two cases: P{z, = 0} > P{z, = 1} and the opposite. At each
temporal level, we collect the a* values of all macroblocks, and separate them into two bins
according to the preceding two cases. The probability distributions of a* of these two cases
are shown in Fig. 5-3. In the case of P{z, =0} > P{x, = 1}, the most probable a* value is
1 and its probability is over 90%. Therefore, when the first case occurs, a* is chosen to be 1.

Otherwise, 0 is chosen to be the value of a*. In other words,

o {1 Ple, =0} > Ple, =1} @

0 otherwise
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Fig. 5-3. The solid line and dashed line are the probability distributions of the best a value, denoted by a*,
of the following two cases. The first case is P{x, = 0} > P{x,. = 1} (solid) and the second case is the
opposite (dashed). The five figures show the results at 5 temporal levels: (a) =0, (b) =1, (¢) =2, (d) =3,
and (e) =4. The test sequence is Foreman (CIF, 301fps).



approximated by the proposed one-sided p-GGD source model by the following steps.

Step 1: Calculate the variance o” from the motion-compensated residual signals.

Step 2: Estimate the p value using (45) and (47).

Step 3: Compute the product of p* and o”.

Step 4: Using TABLE 1, we can find the interval [Q(a:,), Q(a;)] that the p’o” value
belongs to.

Step 5: Pick up the i-th segment coefficients from TABLE 1. The shape parameter «, is
estimated by using (43).

Step 6: Insert a, and p into (38). The one-sided p-GGD modeling is done.
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5.4 Experimental Results

In Section 5.1, we propose the one-sided p-GGD model and an efficient estimation method
on the shape parameter. Furthermore, an improved p estimation method is proposed in
Section 5.3. In this experiment, we compare the modeling results using three different
methods; they are one-sided Laplacian, the proposed one-sided p-GGD, and the proposed
one-sided p-GGD with improved p estimation. We use the K-L divergence to measure the
modeling accuracy. A small K-L divergence value means a more accurate approximation.
For each macroblock in a frame, the K-LI.'divetgence between the probability distribution of
the residual absolute-valued signal-and its approximation is calculated. Then, we take the
average of the K-L divergences of all macroblocks in one frame. Fig. 5-4 (a) and Fig. 5-5(a)
show the average K-L divergences of all residual frames at the first temporal level of two
test sequences, Foreman and Mobile, respectively (CIF format, and 30fps). From Fig. 5-4 (a)
and Fig. 5-5 (a), the proposed one-sided p-GGD shows a better modeling accuracy than
Laplacian. Also, with the improved p estimation, the approximation accuracy of the
one-sided p-GGD is further improved. Because the low-pass frame quality degrades after
temporal decompositions, the motion compensation efficiency is also reduced at deep
temporal level. In the meanwhile, modeling the probability distribution of residual signal

becomes more difficult. Fig. 5-4 (b)-(e) and Fig. 5-5 (b)-(e) show the modeling performance
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of the residual frames for the rest of temporal levels. We can see that the proposed one-sided

p-GGD with the improved p estimation consistently maintains good approximation

accuracy at all temporal levels.
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Fig. 5-4. The dotted, dashed and solid lines show the K-L divergence between the probability distributions

of the absolute-valued signal and three approximations. These three approximations are Laplacian distribution
(dotted), one-sided p-GGD (dashed), and one-sided p-GGD with the improved p estimation (solid), respectively.
(a)-(e) figures are the results at different temporal levels (7): (a) =0, (b) =1, (c) =2, (d) =3, and (e) =4. The test

sequence is Foreman (CIF, 301ps).
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Chapter 6 Generalized MIG Derivation
and Improved Mode Decision Method

In this chapter, extending our previous work in Chapter 4, we improve the MIG mode
decision method by two ways. First, we generalize the MIG derivation by using
high-dimensional probability model. Second, we improve the mode decision method by

introducing a new temporal weighting factor to the cost function.

6.1 Rate-Distortion Function of p-GGD

The source signal is denoted by - xe x with-probability distribution function P, ccp(x)
defined by (38). According to the Shannon’s rate-distortion theory [18], the Shannon lower
bound for the magnitude-error criterion is

Ri(D) = ®(X) — log(2eD), (48)
where D is the distortion, e is the Euler’s number, log(-) is the natural logarithm function,
and ®@(X) is the differential entropy of X. Based on (99) in Appendix, the differential entropy
of the one-sided p-GGD source model can be written as

2(X) = pa~ (paT(a ) T(a ) ~logp)

(49)
=a ! —logp

where a and p are the shape parameter and the zero-value probability of the source model,

respectively. Replace ©(X) in (48) by (49),
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Rp(D)=a ! —logp - log(2eD)

=— 10g(2pe(17"‘71) - D) (50)

If the conditions given in [18] are satisfied, R, (D) becomes R(D), the true rate-distortion

function, and can be rewritten as (51)

—R

ST - (1)

D(R) = 2l
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6.2 Generalized MIG Derivation

We now try to find relationship connection between the residual signal statistics and the
motion bitrate. As discussed earlier, p, and a, denote, respectively, the zero-value
probability and the shape parameter in one-sided p-GGD model of the residual signal using
motion vector v. Thus, py and ay are the residual signal statistics when v=0. We substitute

(51) into (14) with the corresponding parameters, and (14) becomes

o—(R—AR) o R
— < — . (52)
2py - ell—ay ™) 200 - ell—og )
(52) can be simplified to (53),
—1
g oy =+ 10g(ﬂv/,00> > 1. (53)

AR

Interestingly, the target coding rate term, Rz, in-(14) is eliminated. This elimination implies
that (53) is a rate-independent criterion for checking the motion prediction efficiency.
Therefore, in theory, this criterion is applicable in the multiple operation rate situations,
such as scalable interframe wavelet coding. However, this criterion needs to be adjusted to
match the real video data.

We can examine (53) from a different perspective. Let the residual signal produced by
using motion vector v be x€ X,. Similar to the derivation of (49), the differential entropies

of Xy and X, are expressed, respectively, as

B(Xo) = o'~ log po

(I)(Xv) = O‘\71 — log py ' (54)
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If motion vector v results in good motion compensation, the differential entropy of the
residual signal should be smaller than that obtained by using the zero motion vector. The
positive difference of the differential entropies of X, and X, is as follows.

AD(Xy) = ®(Xp) — B(Xy)

-1
= —

. 55
ay ! +log(pv/po) (3)
We can find that (55) is exactly the numerator of the left term in (53). Thus, (53) is reduced

to

AD

ﬁ>1 . (56)

In (18), a similar conclusion was obtained based on the Laplacian source assumption.
However, as discussed in Section 4.2, this result does not match the real-world situation due
to at least two factors: one is that a-practical coder cannot achieve the rate-distortion bound
predicted by the information theory; and the other factor is that the real video data do not
completely satisfy the mathematical assumptions in theory such as stationarity and
probability distribution. Thus, the theoretically derived rate-distortion function may not
accurately represent the relationship between the produced coding rate and the real

distortion. Therefore, we modified (56) to

A

N C, (57)

where C is the MIG lower bound in real world. Due to this divergence problem, C is not 1
for a practical wavelet coder applied to the test video data. Therefore, two parameters are

introduced and inserted into (14) to reflect the model divergence problem. We rewrite (14)
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as

Dreaz,v(RT —AR) < Dreal,O(R’l'), (58)
where D,... 1s the “real distortion” measured from the quantized residual signal
compensated using motion vector v. D,;..;. 18 the “ideal distortion” derived from the
rate-distortion function of the source model in (14). And a new parameter £, is introduced to
compensate for the difference between D,..,, and D;;... .- In other words,

."Ia’v Diu’rmf,v = Dm-r:!.v' Or’

DJ'('”I.V

v = .
[)r'u’f'frf.v

(59)

Here, we assume that a (nearly) constant multiplication factor is adequate for compensating

the model divergence. Since this factor is introduced to bridge the gap between the ideal

case and the real world case, it is to be verified by the test data. Then, D,..;.0, Djgearo and

Lo are similarly defined for using the 0 motion vector. Hence, (58) can be rewritten as
By * Digeaiv(Br — AR) < 8o+ Digearo(Fr), (60)

By replacing D;,..,. by the rate-distortion function in (51), (60) gives

AD . log, (Bv/Bo)

AR~ AR (61)

(61) is very similar to (56). In the ideal case, the “ideal distortion” would be equal to the
“real distortion”, which makes 3,=1 and 3,=1 and (A.4) would fall back to (56). Therefore,

for the real case, the MIG lower bound C becomes

log, (5v/ o)

=1
TTTAR

(62)
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Let X! denotes the quantized residual signal. According to (51), D, e 1S calculated by

2—H(X{)

Dideal,v = (63)

2pv(i<1*(¥;1) ’

where H(X.) is the entropy of the quantized residual signal. Use (59) and (63), (62) can

be rewritten as

=1+ ALR (%1 —ats 1og(’p’_;’) —H(X!) + H(XL) + log, (g::)) (64)
Based on (64), the C value can be found using statistical analysis. How to obtain the
quantized residual signal X! and X§ is an issue. The scalable encoder does not have the
bitstream extraction condition at the MCTF stage. Due to this reason, it becomes very tricky
to select a quantization step size- to generate X, and X{. However, the purpose of
generating the quantized residual signal is to simulate the divergence problem of the
rate-distortion function. We conjecture that there exists a certain range of the quantization
step sizes that are representative. Therefore, we take an engineering solution to find a proper
quantization step size for deriving the C value. We ran exhaustive experiments for all

sequences and found that 8 is generally a good quantization step size for estimating C in

(64).
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Table 6-1. The average frame-level C values using the proposed adaptive scheme

Test sequence Average C value
Tempete 7.75
Mobile 7.43
Foreman 7.37
Container 7.99
Waterfall 7.12
Irene 6.43

Therefore, we design an adaptive C-value updating scheme. In our scheme, there are two

levels in the C value adaptation: frame level and GOP level. In the frame level, we collect

the statistics of the macroblocks with non-zero motion vector and calculate the frame-level

C value using (64). This new C value is then used for the next frame. If the encoding frame

is the last frame of the GOP, the GOP-level C value is updated by averaging all frame-level

C values in that GOP. Then, we explain the connection between the frame-level and the

GOP-level adaptations. The newly derived frame-level C value is limited to the range of

[Caop — AC, Caop + AC], where Crop 1s the current GOP-level C value and AC' is

used to prevent from the extreme values due to noise or insufficient data in the adaptation

process. Also, the GOP-level C value is also limited in the same rage in the adaptation

process. For example, if the newly derived GOP-level C value is larger than the previous

Caop plus AC, the new GOP-level C value is set to Crop + AC. In our experiments,

AC' is chosen to be 0.5 empirically.
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Table 6-2. The average PSNR results of two different C value scheme

Test sequence Offline-trained C value Adaptive C value
Mobile 33.625 33.631
Container 45.347 45.351
Waterfall 41.038 41.046
Irene 41.441 41.461

Table 6-1 shows the average frame-level C values using this adaptive approach. We can

see that the average C value is around 7, which is consistent with our previous finding -- in

the range of [4, 10] (in Section 4.3). The proposed adaptive scheme verifies that our

previously used offline-trained C value is adequate. Now we compare the rate-distortion

performance of the adaptive C scheme and fixed C scheme. We pick up four CIF test

sequences: Mobile, Container, Waterfall, and Irene. The test bitrate points are 256kbps,

384kbps, 512kbps, 800kbps, 1024kbps, 1200kbps, and 1500kbps. The average PSNR

results of 7 test points of these two schemes are shown in Table 6-2. As Table 6-2 shows,

their PSNR performances are very similar. However, from (64), we can see that the

adaptive scheme requires a lot of additional encoding operations. In the experiment section

of this chapter, the results are obtained using the offline-trained C value, which is 7, and it

still outperforms the conventional Lagrangian method.
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6.3 Improved MIG Cost Function

We follow the similar process in Section 4.3 to derive MIG cost function for p—GGD.

Therefore, (27) is rewritten as

(ag' —logpo) 2 (ay ' —logpy) +C- AR
= 2-log(e® " /py) > 2-log (e TOAR/p, )

e2/040 62/cyV
2 2

(65)

— 2CAR

P0° T Py

When an MV produces a smaller right-side term in (65), it leads to a larger ¢. Hence, we
look for the best MV that achieves the minimum right term value in (65). Also, when AR
equals to zero, the right term reaches its maximum value ¢2/®/p,? and there is no singular
problem. Therefore, for source signal s and motion vector v, the proposed MIG cost

function is defined as

2/ s ,
T(s,v|C) = S 2 CARM), (66)

S

where o5 and p are the shape parameter and zero-value probability of the source signal s and

AR(v) is the MV bit rate. On the other hand, from (39) and (40), we have

pstos® = Qas), (67)

where o2 is the residual signal variance. Hence, (66) can be rewritten as

2/

e C-AR(v
J(s,v|C) = AR gg2 - e2CARM) (68)

Let us define a new weighting function r(a) as

(o)== ; (69)
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4.5

(o)

25

Fig. 6-1. The cost weighting function r(a) for a €[0.5, 2.5].

and thus,

J(s,v|C) = T(ag) -as2 - e2CREN), (70)
The function values of r(a) are shown in Fig. 6-1. It increases as o increases but saturates

at about a=2.

In the preceding discussions, the entropy function value is in the unit of “nat”. In practice,

“bit” is the most common unit used for sending digital data. If the motion rate, AR(v), is

measured in “bit”, (70) has another equivalent form as follows:
J(5,v|C) = T(ag) - ag? - 22 CARWM), (71)

In the case of Laplacian source model in Section 4.3, (71) is reduced to

‘]Laplacian(s; V‘C) = 0—52 . 22‘C~AR(V).

(72)
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The difference between (71) and (72) is 7(as). It represents the impact of the pdf shape

parameter on the MIG cost function. If the residual signals cluster around the zero value,

which implies effective motion compensation and the shape parameter, «, in the one-sided

p-GGD model becomes small. As Fig. 6-1 shows, when a is small, so is 7(a). Thus, the

proposed MIG cost function in the form of (71) provides a richer interpretation, which links

to the pdf shape.
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6.4 Temporal Weighting for MIG Lower Bound

After motion-compensated prediction, the relationship between the pixels on the
predicted and the reference frames can be classified to three types: connected, unconnected,
and multi-connected [8]. During the MCTF process, because the temporal correlation
between the low-pass frames at the deep temporal level is relatively small, the unconnected
pixel percentage increases, which implies that the prediction effectiveness decreases.
Furthermore, the connection relationship leads to the distortion propagation along the tree
structure generated by the temporal filtering process after quantization, which is the
so-called “quantization noise propagation” problem in MCTF [13],[33]. Here we follow the
notations defined by [13] in modeling the noise propagation process. The average
distortions of the low-pass frame and the high-pass frame at temporal level ¢ are denoted as

J(Lt) and Eﬁ?, respectively. When the Harr wavelet filter is adopted in MCTF, Wang and

(t)

Schaar [13] show that d; (* (¢-1)

and dy arerelatedto d; ~ by the following equation,

=(t-1) 1=t (3 1o =)
a " =5d) + (5 - 5w (73)

where 7. is the ratio of the connected pixels. It is obvious that 7. determines the severity of
the distortion propagation problem. There are two major factors affecting the r. value: the
picture characteristics and the motion estimation method. By minimizing the MIG cost

function with the pre-chosen C” parameter (the C value at the ¢ temporal level), the best

®

motion vector set v\~ can be obtained, and thus 7. is decided. The frames are temporally
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Fig. 6-2. MSE vs. w value with different ¢ parameter settings in the MIG cost function: (a) Mobile
(b) Tempete, (c) Container, and (d) Akiyo, all in CIF resolution.

decomposed along the v trajectory. Hence, 7\and 7% are the functions of v. We rewrite

(73) as

—(t-1) _ 1

d\ 232)(v(” c®)

4

4

: r (vl _
+(£_r{,(v |C ))-d

(¢
H

) (v(ﬂ |(j{f) )7

(74)

in which the notation (.|C"”) is inserted to emphasize the result depends on the C* value.

Thus, in the Haar wavelet filter case, (74) shows that the rate-distortion behavior of the

low-pass frame at temporal level #-1 is affected by the motion vectors at temporal level ¢.
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Theoretically, to find the optimal solution of mv, the effects of the quantized/truncated
residual signals at all the previous temporal levels have to be considered. Practically,
because of the open-loop structure and the complexity of the inter-scale coding system, it is
very difficult to construct an analytical model, or even an experimental model, to describe
the relationship between the distortion propagation and the motion information. A feasible
approach is to adjust the C value of (28) along with the increased temporal level. Also, this
adjustment changes the values of #2(v) and AR(v) according to their located MCTF
decomposition layer and thus it can effectively compensate for the propagation distortion
loss. Therefore, the MIG cost function of (71) s modified to

J(s.v C{”) — T(as) 'Jg(v) _22.‘cf(t)..-_\.1?(v), (75)

where the superscript ¢ is the temporal level index in MCTF. It is shown that the statistical

relationship between consecutive subband signals can be modeled by a hidden Markov

Bitrate F

. oreman

MOblle 1500kbps
ps

1200kbps

1024kbps

51.4 800kbps
50.03

11.74
75.69 512kbps -
512kbps —J 7456 Owet —Jilﬂ Ow=1
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256kbps —132.41 MSE P — 21.33
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(a) (b)

Fig. 6-3. The MSE comparison between the cases with temporal weighting, w=0.8 and w=1,
in the MIG cost function at different truncation bitrates. Test sequences are (a) Mobile and
(b) Foreman. (CIF resolution).
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model [34]. Similarly, a Markov-like relationship seems to exist between consecutive
temporal decomposition layers. Thus, the optimally decided distortion values of these layers
are correlated. Therefore, we conjecture that a simple linear predictor can describe the
relationship of the C parameters among temporal layers. That is, for two consecutive
temporal levels,

Cc®) = .U, (76)

Consequently, if C° is given for the first temporal level, (76) becomes
ct) =t . 0. (77)
In practice, the weighting factor w can be found by extensive experiments. We start with
a pair of C° and w values and use (75) to perform motion search and mode decision.
Repeating the same experimental steps for Fig. 4-2(d) with different w values, we obtain the
MSE vs. w curves using different C° values. The experimental results are shown in Fig. 6-2.
Because the motion information percentage in fast-motion pictures is larger than that in the
slow-motion pictures, the error propagation problem is severe. Hence, the benefit of using
our temporal weighting adjustment is more significant in the fast-motion cases. Fig. 6-2 (a)
and Fig. 6-2 (d) show the results of Mobile and Akiyo test sequences respectively.
Compared with Akiyo, Mobile is a relatively fast-motion test sequence, and thus the
distortion in Fig. 6-2 (a) is more sensitive to the w value than that in Fig. 6-2 (d). In contrast,

the temporal weight adjustment makes little difference in MSE for the Akiyo test sequence.
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Fig. 6-2 shows that the average MSE is a convex function in w and the minimal MSE
appears at around [0.6, 0.9]. According to the collected data, w =0.8 seems to be a good
value for most cases. To verify the effectiveness of our chosen temporal weighting factor,
we tested Mobile and Foreman videos and adopted the MIG cost function with weightings,
w=0.8 and w=1. In these simulations, the C° parameter is set to 7. Fig. 6-3 shows that
applying the temporal weighing factor can improve the overall MSE at different bitrates.

In addition to the empirical selection method, we have also derived the w value from the
viewpoint of decoder rate-distortion behavior. Because the decoding bit rate is not
pre-specified at the encoding time, it is'very difficult to solve this problem at the encoder
side. To solve this problem, the rate-distortion behavior at the decoder side has to be
considered. Because the synthesis gain is-used to allocate the bitrate among different
subbands so that the overall distortion can be minimized [37], C*) in (75), is highly related
to the so-called synthesis gain. Let g; denote the synthesis gain of the temporal low-pass
frame. If the high-pass frame is losslessly decoded, the mean-squared distortion after the
inverse MCTF is a function of g; times the mean-squared distortion of the temporal
low-pass frame. Following the spirit in [13], because the MIG definition consists of the
magnitude-error, we conjecture that the same relationship between the MIG values of
different temporal levels would exist. Therefore, at temporal level #, (24) is modified to

AD
q (VD' > €, (78)
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where C° is the target MIG lower bound at the first temporal level (2=0). Or, (78) can be

rewritten to an equivalent form:

AD
~ e (79)
where
1\!
Ot = ( ) OV =w'C (80)
qi

For example, if the 5/3 wavelet filter is used for temporal decomposition,

gr = (0.5)2 + (1)* 4+ (0.5)?) = 1.5. (81)
Thus, w =1 /\/ﬁ = 0.817. This theoretically derived w value is consistent with the
finding in our previous work: w value 'generally falls in the range of [0.6, 0.9]. In the
experiment section of this chapter, the results are obtained using the offline-trained w value
in [17], which is 0.8. In summary, (75) is now the cost function used for both motion

estimation and mode decision. Their detailed steps are described in the next section.
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6.5 Improved Mode Decision Procedure

In the previous section, we propose an MIG cost function which is nearly bitrate-independent. It is
the target function in our multi-operation-point optimization procedure. The inter-prediction process
in a scalable wavelet video codec is very similar to that in H.264/AVC. We take the well-known
scalable wavelet codec, Vidwav [25], as an example. The basic prediction unit is macroblock (MB).
Its motion compensation mode consists of a MB partition. The sub-block size can be 16x16, 16x8,
8x16, 8x8, 8x4, 4x8, and 4x4 for a MB in the Vidwav coder. Therefore, for mode m, there are N,,
sub-blocks in a MB. The motion-compensated MB residuals and the associated motion vectors can

be expressed by two N,-tuple vectors as

bm = (bh ay abN,,L)

Vi = (Vi o ) (82)
where b; and v; represents the i-th sub-block residual signal and its MV, respectively. Assume M is
the mode candidate set, that is, mE€ M. As Fig. 6-4 shows, there are six steps in deciding the best
prediction mode.
1) Step I: Select the MIG cost function parameters
The proposed MIG cost function (75) contains one parameter, C,. According to (80), C, is
further split to two parameters, C, and w. As discussed earlier, we empirically choose Cp

and w from the range of [4, 10] and [0.6, 0.9], respectively.

2) Step 2: Perform motion estimation for mode m
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Given a candidate mode m, the current MB is partitioned to N,, sub-blocks. Thus, we
have to find the best motion vector for each sub-block and combine them into the motion
vector set for this MB. For the i-th sub-block, we test motion vector v for motion compensation
and obtain the residual sub-block b,;. The residual signal variance is calculated and denoted as
oy, ?(v); the zero-value probability of the one-sided p-GGD model is estimated by (45) and (47)
and is denoted as p,,. According to (43), the shape parameter of the sub-block b; can be

obtained by

Qp;, = Qe_l (pbi2(v) ’ O-biQ(v)) . (83)

Therefore, the MIG cost for motion vector v-is
Jaay (b, 0]C5), = Tl w0y, 2 (v) - 22 CHARE) (84)
where AR(v) is the motion bitrate. If the entire MV candidate set (search range) is denoted

as S, for all motion vector v€ S, the best motion vector for the sub-block b; can be found by

/U;;k = arg Inl;l{:]mv(b% U|Ct)} (85)
ve

This is the most time-consuming process in our procedure. Repeating the same process for
all N,, sub-blocks, we obtain all the MVs needed for mode m. The resultant motion vector set of

mode m is

V;Kn = (1)1‘7 T "U}k\fm)' (86)

3) Step 3: Calculate the residual MB statistics and the motion rate
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The MB residual signal b, for mode m is obtained in Step 2 after performing motion
compensation using the MV set v7;,. To construct the one-sided p-GGD model for b,,, we need
to calculate the variance and estimate the zero-value probability. Let pp,. and op 2 denote,

2

respectively, the zero-value probability and the variance of b,,. ¢y, ~ are computed by

(Tb'm2(v’;’kn) = Z O—biz(v;) ’ (87)

where v’ is the best motion vector set for mode m in Step 2; pu,, (v;;,) is estimated by (45)
and (47). Next, the motion bitrate for this MB is given by

N,
1 m
AR(V,) = > AR@) + i (88)
T =1

where A R(V)) is the bitrate -of encoding MV w7, and r, is the average bitrate for
recording the MB mode information.
4) Step 4: Estimate the shape parameter from MB residuals
According to (43), the shape parameter of b,, is estimated by
N (R ) 59)
5) Step 5: Calculate the MIG cost for mode m
Using the parameter values calculated in Steps I to 5, we can compute the MIG cost for
mode m:

Jmode(brm. Vi, |Ct) = T(aw,.) - 0b,, 2(V],) - 22 ARV, (90)
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If mode m is the last mode in M, go to Step 6 to decide the best prediction mode; if not, go
to Step 2 to perform the same operation for the next candidate mode.
6) Step 6: Choose the best mode m” with the minimum cost

After all MIG costs for all m € M are obtained, the best mode m" is obtained by

77?/* = arg 7216111\1/[{ Jmode<bml7 V:(n‘c’t) } (91)
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Fig. 6-4. Flow chart of the proposed mode decision procedure
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6.6 Experimental Results

In this experiment, we compare the rate-distortion performance of the proposed MV
selection and mode decision scheme with that of the conventional Lagrangian method in the
original Vidwav. Based on the one-sided p-GGD source model, we derive its MIG cost
function and use it to decide the best MV and prediction mode. The MCTF parameters of
the conventional Lagrangian method are given in Table 6-3. Our proposed method use the
same motion search range and motion vector accuracy settings in Table 6-3. The parameters,
Co and w, are empirically selected and will be given below. We focus on the mid bitrate to
high bitrate cases. There are two scenarios in this experiment.

The first scenario is the SNR scalability test. We select 6 test sequences: Container, Irene,
Foreman, Tempete, Waterfall, Mobile. All are in the CIF format and 30 fps. In this scenario,
Co and w of the MIG cost function are 7 and 0.8, respectively. The operation bitrates are:
256kbps, 384kbps, 512kbps, 800kbps, 1024kbps, 1.2Mbps, and 1.5Mbps. For each test
sequence, 7 bitstreams are extracted according to the bitrate conditions from the same
losslessly coded bitstream, and then each extracted bitstream is decoded to obtain the PSNR
at various selected bitrate points. Fig. 6-5 shows the PSNR comparison between the two
coding methods for the 6 test sequences. Compared with the conventional Lagrangian
method, our method shows 0.1 to 0.9 dB PSNR improvements.

The second scenario is the combined temporal and SNR scalability test. In this scenario, in
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addition to the CIF videos in the first scenario, we also test 5 high-resolution test sequences:

City, Crew, Harbour, Soccer, and Ice. All are in the 4CIF format and 60 fps. The operation

points include 6 bitrates combined with 3 frame rates. The Cy value is empirically selected

within [7, 10] and w is 0.8. Table 6-4 lists the PSNR results of the proposed MIG and the

conventional Lagrangian methods. Our proposed method shows 0.1 to 0.5 dB PSNR

improvements on all 30 test points.
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Table 6-3

The default parameter settings [36] of MCTF in Vidwav coder.

Motion search range | Motion vector accuracy Lagrange
(pel) (pel) parameter
CIF 4CIF CIF 4CIF
=0 32 1/4 1/4 16 16
=1 64 12 12 32 50
=2 128 12 1 64 150
=3 128 12 1 64 150
=4 128 12 1 64 150
Table 6-4

The PSNR Comparison between the Proposed MIG cost method and the Conventional Lagrangian
Method in Combined Temporal and SNR Scalability Test for 5 Test Sequences (4CIF Resolution, 60fps)

Sequence | GOP Mode 750Kbps | 1024Kbps | 1200Kbps | 1500Kbps | 2048Kbps | 3000Kbps

(4CIF) size decision 15fps 15fps 301ps 301ps 601ps 601ps
method

City 32 | Lagrangian | 36.39 37.33 37.42 37.98 38.49 39.33
Proposed 36.72 37.70 37.81 38.42 38.86 39.63
Crew 32 | Lagrangian | 36.39 3730 36.74 37.34 37.18 38.20
Proposed 36.41 37.35 36.87 37.50 37.38 38.34
Harbour | 32 | Lagrangian | 33.91 34.97 34.96 35.59 36.25 37.50
Proposed 33.94 35.02 34.99 35.65 36.29 37.53
Soccer 32 | Lagrangian | 36.28 37.22 36.92 37.61 38.00 39.20
Proposed 36.52 37.52 37.18 37.94 38.20 39.42
Ice 16 | Lagrangian | 40.51 41.65 41.25 42.00 42.41 43.62
Proposed 40.88 42.05 41.75 42.51 42.84 44.06
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Conclusions

The interframe wavelet video coding scheme provides a flexible and efficient structure
for producing scalable bit streams. However, because of its open-loop structure, its
parameter optimization issue becomes a challenging problem. To analytically solve this
R-D optimization problem, we construct the wavelet texture model and derive a motion
information index.

The p-GGD source model is proposed to approximate the probability distribution of the
wavelet coefficients and the residual signals in the scalable wavelet video codec. We
suggest a fast scheme that constructs the p-GGD based on the zero-value probability (p) and
the source signal variance. Also, we propose a piecewise linear expression to estimate the
shape parameter of the source model. Furthermore, an improved p estimation scheme is
proposed to increase the model accuracy for the one-sided p-GGD.

We derive the rate-distortion function for the wavelet video coder based on the one-sided
p-GGD model. The notion of “motion information gain” (MIG) is defined and a mode
decision procedure is developed based on this MIG metric. This mode decision procedure is
nearly bitrate independent in theory and thus 1is suitable for solving the
multi-operation-point (multiple rates) problem in scalable wavelet video coding. Our

simulation results show that the one-sided p-GGD based mode decision algorithm provides

-84 -



an improvement of 0.1 to 0.5 dB in PSNR over the conventional Lagrangian method on

both the SNR scalability and the combined SNR and temporal scalability tests.
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4 (Appendix): Differential Entropy
of the High-Order Exponential PDF

Let p(x) be a high-order exponential probability distribution function given by
p(x) = yexp(—Bz%), x>0, (92)
where exp(*) is the exponential function. a, f, and y are positive constants. By definition, the
differential entropy of =z € Xis
B(X) =~ [ o) 1og(o(w)) . 93)

where log(*) is the natural logarithm function. ®(X) can be derived as

(X) = —/ v exp(: Ba) - log(yexp(—fz*)) da
S - . (94)
= 'y(ﬁ /0 x® exp(=px*)dxr ~logy - /0 exp(—/)’x“)d:r)

Here we rewrite ®(X) as
P(X) = ’)/(,8 A —log~- B), 95)

where

A= / " - exp(—Fx")dx
. (96)
B= / exp(—Gz%)dx
Jo

Let us derive 4 and B first, and then substitute the results into ®(X) in (95). We use a new

variable ¢ = —gx™ to replace the variable x in 4. Thus, 4 is derived as
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A_/ B Ytexp(—t)a g Vat/elgy
0

_ a—lﬂ—(l/a—l-l) /OO exp(—t)t(l/a+l)_1dt s (97)
0

_ Ozflﬁf(l/aJrl) . F(O{il + 1)
where I'(*) is the standard Gamma function. With the similar procedure, B in (96) is derived
as

B = &_15_1/“/ exp(—t) - /o1t
0 . (98)
_ aflﬂfl/a . F(O{il)

By using (97) and (98), ®(X) can be rewritten as

d(X) = ’y(()’ofl/6’7(1/(’+1)F(of1 +1)—log~- ofl/Bfl/aF(ofl)>

=70 57V D) Sogy - D(a ) . (99)

=~a g Vo0 Y (afl ~log 7~) (nat)

Therefore, the differential entropy of ‘the high-order exponential probability distribution

function is derived.
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