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適用於可調式小波視訊編碼之訊源機率模型與位元

率-失真最佳化方法 
 

研究生：蔡家揚 指導教授：杭學鳴 

國立交通大學 電子工程學系 電子研究所博士班 

摘要 

 
本研究主題可分為兩個主要項目：動態補償(motion-compensated) 差值訊號之訊

源模型(source model)以及位元率-失真(rate-distortion)最佳化參數選擇，在第一個項目

中，我們發展了零值廣義高斯分佈(ρ-GGD)訊源模型，可準確模擬可調式小波編碼

(scalable wavelet coding)中的訊號機率分佈。我們提出了分段式線性方法可有效率估測

在零值廣義高斯模型中的型態參數，並且藉由改善零值機率的估測而提高機率模型之

精準度。在第二個項目中，我們提出了一個位元率-失真(rate-distortion)模型用以描述

可調式小波視訊編碼中的動態預測效率。可調式編碼架構為開放式迴圈(open-loop)並

且同時有多種位元率的編碼需求，與傳統非可調式編碼有很大的不同，也因此傳統上

廣泛使用的拉格朗日(Lagrangian)最佳化方法無法良好應用於可調式小波視訊編碼上。

為了找到在動態資訊與殘存訊號間最好的位元率分配方法，我們提出了動態資訊增益

(MIG)做為量測動態預測效率指標。基於這項指標，新的代價函式一同被提出。相較

於傳統拉格朗日最佳化作法，我們的實驗結果顯示了所提出的模式決定方法可在 SNR

與畫面率可調式條件下，擁有較佳的 PSNR 表現。 
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Source Modeling and Rate-Distortion Optimization in 
Scalable Wavelet Video Coder 

Student: Chia-Yang Tsai Advisor: Dr. Hsueh-Ming Hang 

Department of Electronics Engineering & Institute of Electronics 
National Chiao Tung University 

 
Abstract 

 

There are two key elements in this study, namely, the source modeling of the 

motion-compensated prediction error signals, and the coding parameter selection to 

minimize the rate-distortion criterion. For the first item, we develop an accurate ρ-GGD 

(Generalized Gaussian Distribution) source model for approximating the signal probability 

distribution in scalable wavelet coding. An efficient piecewise linear expression is designed 

to estimate the shape parameter of the ρ-GGD. We also improve the model accuracy in 

matching the real data by modifying the ρ parameter estimation formula. For the second 

item, a rate-distortion model for describing the motion prediction efficiency in scalable 

wavelet video coding is proposed. Different from the conventional non-scalable video 

coding, the scalable wavelet video coding needs to operate under multiple bitrate conditions 

and it has an open-loop structure. The conventional Lagrangian multiplier, which is widely 

used to solve the rate-distortion optimization problems in video coding, does not fit well 

into the scalable wavelet structure. In order to find the rate-distortion trade-off due to 

different bits allocated to motion and textual residual information, we suggest a motion 

information gain (MIG) metric to measure the motion prediction efficiency. Based on this 

metric, a new cost function for mode decision is proposed. Compared with the conventional 

Lagrangian optimization, our experimental results show that the new mode decision method 
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generally improves the PSNR performance in the combined SNR and temporal scalability 

cases. 
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Chapter 1  Introduction 
Over the past few years, multimedia delivery becomes an important class of wireless/wired 

internet applications, for example, mobile video and digital TV broadcasting. To overcome 

the constraints on transmission bandwidth and receiver capability, the scalable coding 

technique was developed and adopted by the recent international video standards. There are 

two major approaches on scalable video coding: the DCT-based and the wavelet-based 

coding schemes. These two coding schemes share many similar coding concepts, especially 

in removing the temporal redundancy. The Scalable Video Coding (SVC) extension of the 

H.264/AVC is a representative scheme of the DCT-based approach and has been accepted 

as the ITU/MPEG standards in 2007 [1]. On the other hand, the wavelet-based coding 

scheme is a relatively new structure and has its potential and advantages [2] as shown 

during the MPEG competition process for standardization. 

Discrete wavelet transform (DWT) has been successfully applied to still image 

compression. By exploiting the inter-subband or intra-subband correlation, the DWT 

transformed image signal can be efficiently compressed by a context-based entropy coder, 

such as EZW [3], SPIHT [4], and EBCOT [5]. Different from the DCT-based JPEG image 

coding, the multiresolution property of wavelet transform provides a natural way in 

producing scalable bitstreams. It enables the spatial and the SNR scalability features in the 

well-known JPEG2000 image coding standard [6]. In addition to the spatial decomposition, 
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DWT can also be applied along the temporal axis and decomposes video frames into 

temporal subband signals. Therefore, it provides the temporal scalability for videos. In the 

past fifteen years, the temporal wavelet decomposition is refined by adopting the motion 

compensated temporal filtering (MCTF) technique. These schemes were proposed and 

improved by Ohm [7], Hsiang and Woods [8], Secker and Taubman [9], and Xu et al. [10]. 

MCTF can efficiently decompose video frames along the motion trajectories. After MCTF 

and spatial 2-D DWT, the original video frames are transformed to spatio-temporal subband 

signals and compressed by a context-based entropy coder [9], [11].  This interframe 

wavelet video coding scheme can achieve temporal, spatial and SNR scalability goals 

simultaneously. Depending on the processing order in the spatio-temporal domain, the 

scalable wavelet coding methods can be classified to "t+2D" and "2D+t" structures [12]. In 

this study, we will focus on the t+2D structure. 

The rate-distortion analysis of a scalable interframe wavelet video coder is very different 

from that of a DCT-based coder owing to the following two issues: inter-scale coding and 

open-loop coding structure. In DCT-based video coders, such as MPEG-2 or H.264, use the 

hybrid coding technique; all the temporal and spatial prediction operations are basically 

block-based. Thus, it is quite straightforward to perform the rate-distortion analysis along 

the coding operation flow. On the other hand, in the interframe wavelet coders, the temporal 

MCTF is performed block-wise, but the spatial entropy coding is performed on the 
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subbands. This inconsistent data partition increases the rate-distortion analysis difficulty 

drastically. Wang and Schaar proposed a solution in [13] to analyze the rate-distortion 

behavior across different coding scales for wavelet video coder.  The second issue is that 

the DCT-based video coder has a closed-loop coding structure. The prediction errors within 

the loop can be controlled by adjusting coding parameters [14]; thus, the optimal 

rate-constrained motion compensation can be adaptively adjusted [15],[16]. But the 

interframe wavelet coding has an open-loop prediction structure and the quantization 

process is performed after all the encoding operations are completed. This open-loop 

scheme provides more flexibility on bitstream extraction and robustness to transmission 

errors, but it has no feedback path to provide useful information to adjust prediction 

parameters in the encoding process. Therefore, it is difficult to achieve the rate-distortion 

optimization target, especially in the case of allocating bits between the motion and the 

texture data at multiple operation points all at the same time. How to generate adequate 

amount of motion information and decide the best prediction modes for MCTF becomes a 

challenging problem in the scalable interframe wavelet video coding. 

Our objective is to develop a rate-distortion optimization method to improve the coding 

performance of scalable wavelet video coding. For building an efficient rate-distortion 

model, we propose an accurate source model. Moreover, we also suggest a piecewise linear 

method to estimate the shape parameter of the Model. Besides, we derive an analytical 
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model that describes the trade-off between the motion compensation bits and the residual 

texture coefficients bits. We then allocate bits to each category properly at different 

scalability dimensions. We first examine the rate-distortion effect due to the increase or 

decrease of motion information bits. Then we derive a quantitative expression to measure 

the motion prediction efficiency. Most significantly, we give a theoretical explanation to 

this metric from the entropy viewpoint. Based on this finding, a new cost function is 

proposed. By minimizing the proposed cost function, the best prediction mode is decided 

and the corresponding motion vectors are chosen for the MCTF operation. Compared with 

the mode decision procedure in the conventional scalable wavelet video coder, the proposed 

method shows a PSNR improvement for the combined SNR and temporal scalability cases. 

The proposed methods are also published in [38] and [39]. 

This thesis is organized as follows. Chapter 2 gives a brief review of interframe 

wavelet video and the rate-distortion mechanisms in video coding. In Chapter 3, the ρ-GGD 

source modeling is proposed to approximate the probability distribution of wavelet 

coefficients. In Chapter 4, we suggest the motion information gain (MIG) metric to measure 

the motion prediction efficiency. According to our source model, the MIG metric is further 

discussed from the entropy viewpoint. Extending the work in Chapter 3, the ρ-GGD source 

model is improved by an enhanced estimation method of the ρ value. The one-sided ρ-GGD 

is proposed for the texture residual signal in Chapter 5. In Chapter 6, the two concepts, MIG 
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in Chapter 4 and one-sided ρ-GGD in Chapter 5, are integrated into a complete and working 

algorithm. The major contributions in this thesis are listed as follows. 

Contributions of this Study 

(1) An accurate and efficient source model, ρ-GGD, is proposed to approximate the 

probability distribution of the wavelet coefficients. 

(2) A quantitative metric, MIG, is proposed to measure the motion prediction efficiency of 

MCTF. 

(3) Based on the MIG metric, a new rate-distortion cost function is proposed for mode 

decision. The parameters of the MIG cost function are empirically selected. 

(4) To further improve the ρ-GGD model, the one-sided ρ-GGD model and an more reliable 

estimation method on ρ are proposed to approximate the probability distribution of 

residual texture signal. 

(5) Based on MIG and one-sided ρ-GGD, an integrated MIG mode decision algorithm is 

developed. The parameters of the cost function are first theoretically derived and then 

fine-tuned by experimental data. 
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Chapter 2  Scalable Wavelet Video 
Coding and Its Rate-Distortion 
Optimization 

2.1 Brief Introduction to Interframe Wavelet 

Video Coding 

 

The most popular coding structure of interframe wavelet video codec is the so-called 

“t+2D” structure as shown in Fig. 2-1. The order of “t+2D” implies the encoding operation 

order: the temporal analysis first and then the spatial analysis. The temporal analysis 

employs the MCTF technique. It decomposes a group of pictures (GOP) into several 

temporal high-pass frames and one low-pass frame along the motion vector trajectories. The 

motion information portion is, in the conventional approach, nonscalable, which is denoted 

as v in Fig. 2-1. Then, the spatial decomposition operation (2-D DWT) is applied to the 

low-pass and high-pass frames to form subbands for further quantization and entropy 

coding. With the help of a scalable entropy coder, these spatio-temporal subbands are 

compressed to a scalable bitstream, denoted as s in Fig. 2-1. Therefore, the coded output 

bitstream consists of two parts, one is the scalable bitstream for the texture information (s) 

and the other is the non-scalable bitstream for the motion information (v); together, they are 

denoted as {s, v}. To fulfill the application requirements imposed on the video bitrates, 

image resolution, and frame rate, the texture bitstream is truncated accordingly but the 

motion bitstream remains intact. Therefore, the output bitstreams of the bitstream extractor 

are {s0
’, v}, {s1

’, v}… {sn
’, v} to match the scalable requirements r0, r0,…, rn, respectively, 

as shown in Fig. 2-1. The truncation mechanism is designed to collaborate with the scalable 
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entropy coder. 

The EBCOT [5] image coding algorithm is adopted by the JPEG2000 standard, and 

similar algorithms are widely adopted by the state-of-art wavelet video codecs [9], [11]. The 

basic coding flow of an interframe wavelet video coder is as follows. After temporal and 

spatial analysis, each subband is partitioned into a number of code blocks, and the bitplanes 

of each block are processed by a few coding paths. The boundary between two consecutive 

coding paths is a truncation point. These truncation points are characterized by the slopes of 

the rate-distortion curves at the truncation point. These slope values are recorded and sent to 

the bitstream extractor. In one extraction unit, such as one GOP, the coding paths with 

similar slopes are grouped into the same coding layer. A permissible positive slope value is 

called a rate-distortion threshold. The coding layers with the absolute values of their slopes 

higher than the rate-distortion threshold are chosen to form an output bitstream. The sum of 

the bitrates of these chosen coding layers is calculated. If the calculated bitrate is less than 

the target bitrate, the rate-distortion threshold is adjusted to a smaller value so that more 

coding layers will be included and the total bitrate increases. On the other hand, the 

threshold value increases so as to discard some coding layers. By repeating the above 

operation, the bitrate of the truncated bitstream reaches the target value. Because each 

bitplane of a code block is split into three coding paths, the bitrate extraction can be quite 

 

Fig. 2-1 The t+2D coding structure of interframe wavelet encoder. The solid line and dashed line 
show the data paths of the texture and motion information respectively. 
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accurate. Therefore, the bitrate of the texture bitstream can be precisely controlled by the 

bitstream truncation mechanism. But the non-scalable motion information imposes a 

constraint on bitstream scalability. The motion information is typically temporal scalable 

and can be adapted to different decoding frame rates. However, when the spatial scalability 

feature is turned on, the motion information is often not adjustable to different decoding 

picture size during the extraction. In the following sub-section, we will compare the 

rate-distortion optimization methods for the non-scalable and the scalable video cases, and 

then develop the methods in the next section to adjust the motion information bitrate. 
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2.2 Rate-Distortion Mechanism in Video Coding 
 

According to the Shannon’s source coding theory [18], the rate-distortion function can be 

derived from the probability model of a coding source. Based on the rate-distortion function 

and with the help of optimization methods, an optimal rate-distortion trade-off can be 

theoretically obtained for a given bitrate or distortion condition.  

In a typical hybrid video coding scheme, the coding source is the transformed residual 

signal after inter or intra predictions. It is well known that the probability distribution of the 

transformed coefficients can be closely approximated by the Laplacian distribution [21]  

         ,                              (1) 

where Λ is the Laplacian parameter and can be estimated from the signal standard deviation 

 by . If the probability distribution of the transformed residual signal is a 

Laplacian source, its rate-distortion function with quantization distortion D and texture 

coding rate R was derived in [18]. In addition to the texture coding bit rate, the extra side 

information needed in a hybrid coder is mostly the motion information rate ΔR. According 

to the optimization theory, the best motion prediction mode can be obtained by minimizing 

the Lagrangian cost function defined by  

,                            (2) 

where λMode is the Lagrange parameter. For a fixed ΔR,  can be theoretically derived 

for a well-defined rate-distortion function in (2). Both the theory and the real data show that 



 

- 10 - 
 

the  value is strongly related to the quantization step size, which controls the amount 

of distortion directly [22], [23]. Different  values are used by several popular 

reference encoders. These  values are picked or derived based on their system 

characteristics and the experimental data [24]. The rate-constrained motion estimation is 

performed separately by using another Lagrangian cost function given by  

        ,                           (3) 

where FD is a function of the frame difference between the original and the reconstructed 

image blocks. In many practical systems, FD is either SSD (sum of squared differences) or 

SAD (sum of absolute differences). In the MPEG reference encoder,  is empirically 

chosen to be  and  for SSD and SAD, respectively [22].  

From (2) and(3),  is, clearly, an important factor that balances the weights of rate 

and distortion in the overall cost (J) and it thus affects the bitrates allocated to the texture 

and the motion information. As discussed earlier,  depends on the source 

characteristics, the quantization step size and the bit rate. Several papers [19], [20] show 

that the statistics of the texture are helpful in selecting the proper  value. The key for 

solving the mode decision and bit allocation problem is to find the relationship between 

quantization step size, texture characteristics and bit rate.  

Using only one fully self-embedded bitstream to satisfy different coding requirements 

simultaneously is the most attractive feature of the scalable video coding technique. In the 
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scalable interframe wavelet coding, the bitstream generation process and bitstream 

extraction process are two separate, independent steps. The encoding process generates 

lossless compressed bitstream. After the encoding, the extractor truncates the lossless 

bitstream according to the bitrate requirement. In other words, the extractor plays the role of 

quantizer. This coding structure uses the input source frames, not the reconstructed frames, 

to predict the current frame. It is often referred as “open-loop structure” in the 3D wavelet 

coding literature [12]. It is very difficult to precisely control the prediction accuracy during 

the encoding process. Moreover, multiple bitstreams are to be extracted from the same 

coded bitstream. It is hard to adequately allocate the motion information bitrates at encoder 

(before the extractor) to satisfy all target operation points simultaneously. A theoretical 

treatment on the optimum trade-off between the motion information bitrate and the texture 

signal bitrate for a motion-compensated video codec was earlier explored by Girod [15] and 

will be discussed in the next section. In practice, most existing scalable wavelet video 

coding schemes still adopt the cost functions used in the hybrid video coding ((2) and (3)), 

but the Lagrange parameter in each temporal decomposition stage is manually selected 

empirically [25].  Because the target bitrate is given after the entire bitstream is coded, the 

pre-selected, fixed-value Lagrange parameter must be working for a range of bitrates. In 

other words, we hope it can provide a reasonable overall performance for all the bitrates of 

interest. The cost function defined by (2) determines the best motion prediction mode. If a 
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total bitrate is given, we can follow the conventional approach to pick up the Lagrange 

parameter. But unfortunately, the bitrate is not known at the encoding stage for scalable 

wavelet video encoding.  

To go one step further, we look into the role that the motion vectors play in scalable 

interframe wavelet coding. The MCTF unit performs the temporal decomposition operation 

along the motion trajectory; therefore, the accuracy of motion vectors is critical to their 

motion compensation performance. The low-pass frames produced by temporal filtering 

will be further decomposed at the next temporal level. Thus, the temporal decomposition 

layers form a hierarchical structure. The inefficiency in motion prediction propagates along 

the temporal hierarchy in the same GOP. Therefore, accurate motion vectors tend to 

decrease the overall distortion. But, a very accurate motion vector often requires more 

coding bits.  

To sum up, the Lagrangian cost function is a very powerful tool in the conventional 

non-scalable coder. But due to the open-loop coding structure and the requirement of 

multiple operating points, the use of the Lagrangian cost function in scalable wavelet video 

coding becomes inadequate. The key problem is finding the proper trade-off between the 

motion information and the residual texture information for scalable wavelet video coder. 

The whole scenario becomes even more complicated when we consider the propagation of 

MCTF inefficiency along temporal hierarchy. Therefore, we propose another approach to 
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replace the ordinary Lagrangian cost function for scalable wavelet video coding. 
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Chapter 3   ρ-GGD Source Modeling 
for Wavelet Coefficients 
 

2-D Image signal can be decomposed twice by a 1-D discrete wavelet transform (DWT) 

into a 2-D multi-resolution representation. Each 1-D DWT splits the 2-D image signal into 

low-pass (L) and high-pass (H) subbands along the vertical or the horizontal direction. 

Typically, the LL subband is further split several times in image coding. In an interframe 

wavelet video coding structure, another wavelet filter bank is applied along the motion 

trajectory of moving objects [7]. The temporal L frame is often a moving average of frames, 

while the temporal H frame contains the frame differences. In video coding, these temporal 

L and H frames are further decomposed by the spatial 2-D DWT, so all original frames in a 

GOP are transformed to a temporal-spatial subband representation. 

For either image or video coding, the source modeling is critical in the R-D analysis. 

The pdf (probability density function) of wavelet coefficients has been modeled as a 

generalized Gaussian distribution (GGD) [26][27]. To construct a GGD source model, the 

pdf variance and kurtosis have to be calculated first in order to estimate the shape 

parameter.  
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Variance and kurtosis are related to the second and the forth moments. Therefore, the 

process of constructing a GGD model is rather complicated. To reduce the complexity, the 

Laplacian distribution is often adopted. Although the Laplacian source model is thus widely 

used, its coefficients approximation errors are sometimes high as shown in Fig. 3-1. 

Therefore, we propose a ρ-GGD source model in the next section to achieve the high 

accuracy of the GGD model but with lower complexity. 

 
 
 
 
 
 
 
 
 
 

 

Fig. 3-1 An example of wavelet coefficients modeling. (LL-LL-HL subband of image Lena). 
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3.1 ρ-GGD Source Model Derivation 
 

The pdf of wavelet coefficients typically has zero-mean. Thus, the generalized Gaussian 

distribution (GGD) source model is given by 

     ,                  (4) 

where  

,                               (5) 

Here, σ is the standard deviation of wavelet coefficients, v is the shape parameter of the 

GGD model, and Γ(x) is the standard Gamma function. Let ρ be the probability of 

zero-value coefficients. According to(4), ρ is given by 

,                               (6) 

Therefore, (4) can be rewritten by the following ρ-GGD representation: 

,                  (7) 

In building a ρ-GGD source model, the shape parameter v has to be estimated first. From (5) 

and (6), the product of ρ and σ can be written as  

,                          (8) 

(8) shows a mapping relationship between the shape parameter v and the product of ρ and σ 

in the ρ-GGD model; that is, ½¾ = ©(®). Because parameters ρ and σ can easily be 

obtained from data, it is convenient to use their product to estimate the value of ©(®).  
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From experiments, the range of ®  is [0.5, 2.5] for typical image/video wavelet 

coefficients. In Fig. 3-2 , the solid line shows the values of Φ(®) in the range of ®∈[0.5, 

2.5], an decreasing one-to-one function of ®. Therefore, the inverse function of Φ(®) at ®∈

[0.5, 2.5] exists and is unique; thus, the shape parameter ® can be estimated from Φ-1(ρσ). 

 
 
 
 
 
 
 
 
 
 
 

 

Fig. 3-2 ©(®) at ®∈[0.5, 2.5] and its piecewise linear approximation. 
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3.2 Piecewise Linear Estimation for the Shape 

Parameter of Wavelet Coefficients 
 

In Fig. 3-2, ©(®) is an exponentially decreasing smooth curve. We found experimentally 

that ©(®)  can be approximated accurately for ® ∈ [0.5, 2.5] by piecewise linear 

approximation. We partition the ©(®) curve into ten pieces for ®∈[0.5, 2.5]. For each 

piece at ® 2 [fi; fi¡1], ©est(®) is approximated by a linear model as below 

,                          (9) 

where i={1,2,…10} and {f0, f1, f2, f3, f4, f5, f6, f7, f8, f9, f10}= {0.5, 0.5625, 0.625, 0.6875, 0.75, 

0.875, 1, 1.25, 1.5, 2, 2.5}. Fig. 3-2 shows that ©(®) is well approximated by ©est(®). 

And the shape parameter can be estimated by , which is 

,                          (10) 

Table 3-1. Look-up table for shape parameter estimation 

 
i 

 
iS  

1

1)()(

−

−

−
Φ−Φ

ii

ii

ff
ff   

)( ifΦ  
 
fi 

1 [2.739, 2.000] -11.810 2.000 0.5625 
2 [2.000, 1.563] -7.005 1.563 0.6250 
3 [1.563, 1.281] -4.506 1.281 0.6875 
4 [1.281, 1.089] -3.080 1.089 0.7500 
5 [1.089, 0.848] -1.926 0.848 0.8750 
6 [0.848, 0.707] -1.126 0.707 1.0000 
7 [0.707, 0.555] -0.610 0.555 1.2500 
8 [0.555, 0.476] -0.314 0.476 1.5000 
9 [0.476, 0.399] -0.154 0.399 2.0000 

10 [0.399, 0.363] -0.073 0.363 2.5000 
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when 

,                          (11) 

Furthermore, a look-up table of the constants used in (10) and (11) can be pre-calculated as 

shown in Table 3-1. In conclusion, a ρ-GGD model for the pdfs of wavelet coefficients can 

be constructed by using the following steps: 

Step 1: Compute ρ and σ from the wavelet coefficients. 

Step 2: Use Table 3-1 to get Si in (11) based on the product of ρ and σ and also the 

corresponding model coefficients. 

Step 3: Calculate the estimated shape parameter ®est  from (10) using the model 

coefficients obtained in Step 2. 

Step 4: Obtain the ρ-GGD source model given by (7). 
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3.3 Modeling Accuracy Evaluation 
 

The difference between two probability distributions can be evaluated by estimating the 

relative entropy or the said Kullback- Leibler (K-L) divergence [28]. In this thesis, we use 

the symmetric definition defined by 

 ,              (12) 

where p is the “true” pdf and q is the “modeling” pdf. A small K-L divergence means a 

higher modeling accuracy. The experimental results of the ρ-GGD and the Laplacian 

modeling are compared for several test cases. In the spatial 2-D DWT case, the Daubechies 

9/7 biorthogonal wavelet filter [29] popular in image coding is adopted in our experiments. 

Fig. 3-3 shows the pdfs of the spatial subband coefficients and their models for the test 

image “Pepper”. It is clear that the ρ-GGD model matches the real pdf much better than the 

Laplacian model in all spatial subbands. Table 3-2 shows the divergence of our model and 

the real pdf by using the symmetric K-L divergence for the test image “Lena”. In general, 

the ρ-GGD model outperforms the Laplacian significantly in all subbands except for the LH 

subband. 
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In the interframe wavelet video case [10], the temporal-spatial subband coefficients are 

produced by using MCTF and the spatial 2-D DWT. Table 3-3 shows the results of the K-L 

divergence estimation of two test sequences, “Bus” and “Mobile”, with GOP=8 and 16 

respectively at CIF resolution. The ρ-GGD model shows a much better modeling accuracy 

than the Laplacian. In general, the higher subband signals are difficult to model but the 

ρ-GGD model shows good accuracy in Table 3-3 (b) even at deep temporal subbands. 

From the experimental results, the ρ-GGD model shows a very good modeling performance 

in both spatial 2-D DWT and interframe wavelet video cases. Compared to the Laplacian 

model, the ρ-GGD has a much better accuracy and consistency in modeling the pdfs of 

wavelet coefficients. 

 

 

Fig. 3-3 The pdfs of wavelet coefficients (dots) and their approximations by Laplacian (dotted line) 
and the proposed ρ-GGD (solid line) models in the subbands: (a) HL, (b) LH, (c) HH, (d) 

LL-HL, (e) LL-LH, (f) LL-HH. The test image is “Pepper”. 
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Table 3-2. K-L divergences of two source models for the 2-D DWT coefficients for image “Lena”. 

Band 
Index 

 
Model 

HL LH HH LL- 
HL 

LL- 
LH 

LL- 
HH 

Laplacian 0.22 0.07 0.03 0.68 0.52 0.42 

ρ-GGD 0.16 0.08 0.03 0.22 0.21 0.20 

 

Table 3-3. K-L divergence comparison of two source models for temporal-spatial subband 
coefficients.  

Band 
Index 

 
Model 

Temporal Level 2 
(H-frame) 

Temporal Level 3 
(H-frame) 

LL HL LH HH LL HL LH HH 

Laplacian 0.89 0.38 0.30 0.08 0.70 0.33 0.27 0.10 
ρ-GGD 0.28 0.19 0.09 0.07 0.22 0.14 0.07 0.07 

(a) “Bus” with GOP=8. 
Band 
Index 

 
Model 

Temporal Level 4 
(H-frame) 

Temporal Level 5 
(L-frame) 

LL HL LH HH HL LH HH 

Laplacian 0.85 0.33 0.30 0.19 0.47 0.46 0.38 
ρ-GGD 0.20 0.05 0.03 0.02 0.06 0.10 0.07 

(b) “Mobile” with GOP=16. 
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Chapter 4  Motion Information Gain 
(MIG) and Mode Decision Method 
 

A typical extraction process in scalable wavelet coding truncates only the encoded 

texture bitstream and maintains the integrity of the entire encoded motion information. For a 

given bitrate condition, different amounts of motion information lead to different types of 

residual texture signals, and thus lead to different rate-distortion behavior. Although there 

are other approximate solutions [29], [31] that select the scalable motion information to 

match certain very low-bitrate requirements, we focus on the pre-partitioned motion 

information solution in the following study. That is, the optimal amount of information bits 

is decided at the encoding stage. We first analyze the rate-distortion behavior of the motion-predicted 

residual signals. Then, based on this rate-distortion relationship, we derive a quantitative metric that measures 

the coding efficiency of motion information. Also, a theoretical explanation from the entropy viewpoint is 

given to our coding efficiency metric. 
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4.1 Rate-Distortion Model of 

Motion-Compensated Prediction 
 

For a scalable wavelet video coder, theoretically, we can fix an extraction bitrate and then 

find the rate-distortion behavior due to the increase/decrease of motion information. In other 

words, at a given bit rate, if a certain amount of the texture bit rate is shifted to the motion 

information, will the reconstructed image distortion be reduced or increased? A solution to 

this problem is searching for the optimal motion information that leads to the optimal R-D 

performance at different bit rates. For example, is the block size or the motion vector 

accuracy more important in improving the coded image quality? Clearly, the answer 

depends on both picture content and bit-rate. 

Although the residual frames after MCTF will be further spatially decomposed by 2-D 

DWT, in this study we focus on the rate-distortion behavior of the texture information at the 

MCTF stage (not after 2-D DWT) because the motion information coding efficiency is our 

main concern. Because the consecutive frames are often very similar, the motion-predicted 

residual signals typically have zero-mean and nearly symmetrical distribution. The residual 

signals after motion prediction can be modeled as Laplacian sources. Because the temporal 

high-pass frame is essentially a weighted combination of the motion-predicted residual 

frames, we next try to construct the rate-distortion model of the motion-compensated 

residual signals.  
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When the residual texture signal is produced by the motion prediction operation, the 

rate-distortion behavior of this texture information portion is decided. That is, since the 

residuals are fixed after motion compensation, their rate and distortion trade-off due to 

quantization and entropy coding is also fixed. However, if we change the motion vectors 

(mv) used in motion prediction, the residual signals are different and thus, the texture 

rate-distortion function changes. We like to know the texture rate-distortion function 

variation before and after the motion prediction being applied to the same coding block.  

For a motion-compensated video codec, Girod [15] pointed out that at a given total bit 

rate, the optimum trade-off point should locate at  

 ,                          (13) 

where the left hand side is the distortion decrease due to texture rate increase and the right 

 

Fig. 4-1 Illustration of rate-distortion curves of texture residual signal before and after motion 
prediction. 
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hand is the distortion decrease due to motion information rate increase. Fig. 4-1 gives an 

illustration of this principle. We use the zero motion vector (no motion-compensation) case 

as a reference. In Fig. 4-1, D0 (R) is the rate-distortion function of the residual signal 

produced by using the zero motion vector, and Dv (R) is the rate-distortion function of the 

residual signals produced with the motion vector set v. From the bitrate viewpoint, an extra 

coding bitrate ΔR is needed for sending the motion vectors v. Since the total target bitrate RT 

is given, the bitrate available for the texture information is reduced to RT -ΔR. If this set of 

mv is beneficial for the overall performance, the quantization error (distortion) of the 

texture information with mv should be less than that without mv at the same target bitrate. 

Otherwise, the motion compensation is judged inefficient. Therefore, the distortion with 

motion prediction is smaller than that without motion prediction: 

 .                        (14) 

Conceptually, (14) is equivalent to (13) in [15]. But different from the motion region 

partition approach in [15], we try to find an instrumental trade-off measure and a design 

procedure for adjusting the mv bit rate. 

For the Laplacian source described by (1), if the absolute-error distortion measurement 

is in use, (14) can be rewritten using the rate-distortion functions given in [18] as 

 .                            (15) 

The Laplacian parameter  and  can be estimated from the residual signal variances, 
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 and , respectively. That is, . Thus, (15) becomes 

 .                               (16) 

Let us define the function Φ to be the logarithm value of the signal standard deviation, and 

let ΔΦ be 

 .                      (17) 

Then, (16) can be rewritten as 

 .                                 (18) 

From (14) to (18), we can see that the target bitrate term RT is cancelled because it appears 

on both sides in (15). This target bitrate elimination gives us a big advantage in the rest of 

our rate-distortion analysis. Different from the conventional video coding, the target 

(extraction) bitrate is unknown during the scalable encoding process. In this formulation, 

the measurement of motion prediction efficiency is extraction bitrate irrelevant. This is true 

under the assumption that the residual signal probability distribution is Laplacian for both 

with and without motion-compensated prediction. This Laplacian model is not all accurate 

in real cases. Here, ΔΦ and ΔR represent the variation of texture statistics and the bitrate 

cost of adopting motion estimation, respectively. We thus view ΔΦ/ΔR as a gain factor in 

measuring the motion prediction efficiency. Intuitively, the motion prediction operation is 

preferred if it reduces the texture variance significantly. Furthermore, (18) gives a 

quantitative metric and specifies a threshold of acceptable ΔΦ/ΔR. This threshold is derived 
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based on the Laplacian source assumption with absolute-error distortion definition. 
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4.2 Motion Information Gain (MIG) 
 

According to the last sub-section, ΔΦ represents the variation of texture statistics due to 

motion-compensated prediction. We are going to show next that ΔΦ represents the 

difference between two differential entropies. For the Laplacian source X, its differential 

entropy h(X) is given below [18]. 

 ,               (19) 

where Λ is the Laplacian parameter. Thus, the differential entropies of the residual signals 

 and  produced by the zero motion vector and the motion vector set v are, 

respectively,  

.                         (20) 

Although the differential entropy does not represent the actual bitrate, the difference 

between two differential entropies represents the bitrate difference estimation of these two 

sources. Since the Laplacian parameter can be estimated from the signal variance, we thus 

obtain the following equation: 

.                (21) 

Comparing (21) with (17), as a consequence of rate-distortion theory on the Laplacian 

source, we find that these two equations are the same. Therefore, ΔΦ represents the 

reduction of residual signal entropy in encoding the residual signals before and after 

motion-compensated prediction. Thus, the interpretation of ΔΦ/ΔR is as follows.  

.               (22) 



 

- 30 - 
 

From (22), we can see that ΔΦ/ΔR is the ratio of the “reward” and the “cost” due to the use 

of motion-compensated prediction. The “cost” is the extra bitrate for encoding the motion 

vectors, and the “reward” is the entropy reduction of the residual texture signals. Therefore, 

ΔΦ/ΔR is called the “motion information gain”, abbreviated as MIG. It is thus used to 

measure the motion prediction efficiency. We denote this MIG function due to the motion 

vector set v by 

 .                                 (23) 

This gain factor implicitly represents the trade-off between the residual signal bitrate and 

motion information bitrate. The fundamental concept behind (23) is similar to that (13) in 

[15] as discussed earlier. But through our preceding lengthy derivation, we show that the 

total target bitrate disappears in the final MIG expression. Thus, the MIG metric fits well 

for applying to the scalable wavelet video coding structure. 

Let us extend the original criterion (18) to a more general form. When we consider the 

advantage of using motion- prediction in scalable wavelet video coding, the MIG metric of 

the candidate motion vector set v should satisfy 

,                                   (24) 

where C is a chosen threshold value. In the original derivation, C is 1. Here we investigate 

the range of C values in real video coding cases. Because a practical entropy coder cannot 

approach the entropy bound, both the compressed texture and the compressed motion 

information would need more bits to code. Therefore, the motion prediction is not as 

effective as (14) shows. The distortion reduction by the motion bitrate , measured in 

bits/pixel, is less than the expected value; that is,  should be larger in real cases. 

Therefore, (14) is modified to 

,                        (25) 



 

- 31 - 
 

where . Using the above equation, we can follow the same derivation process in 

section III.A to obtain the MIG lower bound. Consequently, an inequality similar  (16) is 

derived:  

.                     (26) 

Because , the right term of the above equation, the lower bound of C, is larger than 1. 

When  is small or  is large, C becomes much larger than 1. 
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4.3 MIG Cost Function 
 

Since our motion mode and vector selection process is applied only to image blocks with 

non-zero optimal motion vectors, the denominator of  (23) is non-zero. There are a few 

interesting properties associated with . 

1) .  Clearly, we will not use an mv that produces a negative ΔΦ value.  For a 

given image block, if the zero mv is the best mv in the sense that any non-zero mv cannot 

reduce the residual signal variance, then the  value associated with this block is 

assigned to be 0 and the best coding mode is the one with the zero motion vector.  

2)  is bounded. In digital image coding, the residual signal has a finite variance. The 

best non-zero mv can, at the best, reduce the residual variance to zero. The variance 

difference before and after employing mv is thus finite. In other words, the  value 

saturates and cannot be further improved when a proper mv is identified. 

3) In the following sections, we deal mainly with the case that . That is, 

the useful mv, v, should produce a  value greater than 0 and less than or equal to 

. Ideally, the parameter C is 1 and is independent of image contents and target bit 

rate if the Laplacian rate-distortion model holds. However, as discussed earlier, 

practically C is not 1 and is bitrate dependent.  

Intuitively, the MIG metric  with the constraint, , can be the cost 

function used for searching for the optimal mv. However, the C value is unknown and to be 
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identified in real image coding. Thus, for the convenience in computation, we use the 

following equivalent form. We expand (24) with the aid of (17) and (23). The inequality 

becomes 

.                            (27) 

A large MIG value implies a large ΔΦ and/or a small ΔR. In (17), a large ΔΦ value implies 

that the difference between  and  is large. Thus, the right term in (27), , 

should be as small as possible. Therefore, we propose a so-called “MIG cost function” to 

measure the prediction cost. For a coding source s, the motion vector set v produces the 

residual signals with variance  and its average information bitrate (for representing v) 

is ΔR(v). The MIG cost function J is defined as 

,                     (28) 

where C is generally source and bit-rate dependent. We include it explicitly in the argument 

of the J function to emphasize its role in our rate control algorithm. The problem now 

becomes looking for v that minimizes J.  

We need to identify the value of C in (28). According to our previous discussions, the C 

value is decided by the coding system and the source signal s in (23). In practice, the source 

signal s is the temporal high-pass frames generated by MCTF. Indeed, the probability 

distributions of the different temporal layers have different shapes [32]. We conduct the 

following experiments to characterize J and also to identify the value of C.  
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We start with a fixed C value and simply use (28) as the cost function in performing 

motion estimation and mode decision in encoding. The detailed procedure of mode decision 

will be described in the next sub-section. After the encoding process is done, the encoded 

bitstream is truncated to a fixed bitrate, for example, 256kbps, and then we decode the 

truncated bitstream. The mean-squared error (MSE) between the decoded and the original 

images is calculated; thus, one test point of a MSE and C pair is obtained. The data are 

collected from 32 frames of the Mobile sequence at CIF resolution.  

Repeating the above steps with different C values, we obtain a MSE vs. C curve at 

256Kbps as shown in Fig. 4-2 (a). By changing the truncation bitrates settings, the MSE vs. 

C curves at 384Kbps and 800Kbps are obtained as shown in Fig. 4-2 (c) and (d) respectively.  

Each of Fig. 4-2 (a)(b)(c) shows that the MSE is minimal when C reaches a certain value. 

This is equivalent to the performance saturation phenomenon we discuss earlier. When C is 

large, only the very effective mv’s can make positive contribution and their value is 

diminishing as C gets larger; and thus the MSE goes up again as shown in Fig. 4-2 (a)(b)(c). 

Although the theory predicts that MIG is independent of bit rate, in reality, however, the 

coding system efficiency and the source probability distribution are bitrate and temporal 

level dependent. Indeed, the best C value that leads to the minimum MSE tends to be 

smaller at higher bitrates. This is consistent with the known observation that the 

mathematical model matches the real rate-distortion relationship at higher rates. For 
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example, the rate-distortion relationship of a quantizer approximates the asymptotical R-D 

function at high bitrates [18]. If the optimum C value does not change significantly, we 

prefer to use a constant C to cover the bitrates of our interests. We pick up seven target 

bitrates, 256k, 384k, 512k, 800k, 1024k, 1200k, and 1500k, and their average behavior 

(MSE vs. C) is shown in Fig. 4-2 (d). In conclusion, the C value generally falls in the range 

of [4, 10]. 
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(a)                                          (b) 

 
(c)                                         (d) 

 

Fig. 4-2 MSE vs. C value in the MIG cost function at (a) 256Kbps, (b) 284Kbps, and (c) 800Kbps truncation 
bitrates, and (d) the average MSE for 7 bitrates. (Mobile, CIF resolution). 
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4.4 Block-Based Mode Decision Procedure 
 

The MIG cost function can be used to decide the coding mode. It tells us the trade-off 

between the motion information and the texture information. Based on MIG, we develop a 

mode decision procedure. In a conventional non-scalable video coder, the best motion 

vector and coding mode are decided by minimizing the Lagrangian cost function ((2) and 

(3)) for a given single bitrate. As discussed in the previous sub-sections, with the MIG cost 

function we are able to choose the most appropriate coding mode (including mv) by 

minimizing its value. The basic steps in the proposed mode decision procedure are similar 

to that in the conventional scheme. In the existing scalable wavelet video coding schemes, 

the mv search is block-based and the variable block-size motion compensation technique is 

used to find the best macroblock coding mode. Each macroblock coding mode represents a 

partition of macroblock into a certain combination of sub-blocks. Fig. 4-3 illustrates the 

proposed mode decision procedure, which consists of three steps as described below. 

1) Step 1: Select the appropriate MIG cost function parameters 

The proposed MIG cost function contains one parameter, C. According to our previous 

discussions, C can be empirically chosen from the intervals, [4, 10] 

2) Step2: Search for the best motion vector set for each block mode 

There are many possible sub-block combinations for motion compensation in one 

macroblock. For example, a typical 16x16 size macroblock has 16x16, 16x8, 8x16, and 
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8x8 block modes; and each 8x8 block can be further partitioned to 8x4, 4x8, and 4x4 

sub-blocks. Assuming that a macroblock can be partitioned to Nm sub-blocks for mode m, 

the mv’s (vi) associated with all sub-blocks (bi) form two Nm-tuple vectors, vm and bm, 

respectively, where 

.                              (29) 

For each sub-block, to find the best mv, all the mv candidates within the search range S 

are examined. These candidate motion vectors can have forward, backward or 

bi-directional prediction directions. By minimizing the MIG cost function in (28), the best 

motion vector  for sub-block bi is obtained. Mathematically, it is identified by 

performing the following optimization procedure. 

.                  (30) 

Then, the best mv for the macroblock is the collection of all the best motion vectors for 

mode m; i.e., 

.                        (31) 

The residual signal is modeled as a Laplacian source with zero-mean. After all the 

sub-blocks finish the motion estimation process for mode m, the residual variance 

 and the average motion information bitrate   of a macroblock can be, 

respectively, expressed as 
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,                    (32) 

where rm is the average extra bits needed to record the coding mode information. Both 

 and  are in bits/pixel. 

3) Step 3: Choose the best block mode with the minimum MIG cost 

Assuming that the block mode m in Step 2 belongs to the mode set M, which contains 

all possible block modes, the MIG cost function in (28) is used again to choose the best 

macroblock mode. Hence, the best block mode is decided by minimizing the MIG cost 

function: 

.               (33) 

Therefore, the best block mode and its associated motion vectors of a macroblock are obtained. 
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Fig. 4-3 Flow chart of the proposed mode decision procedure using the MIG cost function 
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Chapter 5  One-Sided ρ-GGD Source 
Modeling for Residual Signals 
In the study of motion estimation efficiency, an accurate source model on the 

motion-compensated residual signal is critical and essential. The results in [32] show that 

the ρ-GGD source model is more accurate than the Laplacian model. Because we use, 

typically, a non-negative metric on the prediction errors such as MAD or SSD (Sum of 

Squared Difference), we propose the so-call one-sided ρ-GGD model to approximate the 

probability distribution of the absolute-valued residual signals. In the modeling process, we 

propose an efficient linear method to estimate the shape parameter. Furthermore, we 

increase the modeling accuracy on the real data by proposing an improved ρ value selection 

method. 
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5.1 One-Sided ρ-GGD Function 

 

The probability distribution of the motion-compensated residual signal can be 

approximated by a zero mean and symmetric probability density function (pdf), and the 

GGD model is a good example [27]. The GGD pdf is given by 

 ,                 (34) 

where 

 ,                             (35) 

and α is the shape parameter; Γ(·) and exp(·) are the Gamma function and the exponential 

function, respectively. The σ parameter represents the standard deviation of the residual 

signal. We now like to approximate the probability distribution of the absolute values of 

the residual signals. Let the source sample be denoted as x X∈ , where X is the source 

alphabet set. Because (34) is a zero-mean and symmetric pdf and X is non-negative, we 

modify the GGD model to the one-sided GGD with the following pdf:  

 .             (36) 

The shape parameter α in (36) can be estimated by using the variance and kurtosis of the 

source signal [27] but the complexity of this approach is very high. We will derive an 
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alternative expression that can be computed from the data samples with much less 

computation. 

We denote the probability of zero in (36) by ρ. That is,  

 .                            (37) 

And then (36) can be rewritten as 

 .             (38) 

We name (38) the one-sided ρ-GGD. There is an interesting property of the proposed 

one-sided ρ-GGD. From (35) and (37), the product of ρ2 and σ2 can be rewritten as 

  .                                (39) 

That is, the product of the square of zero-value probability and the variance is a function of 

α. We denote this function as 

 

Fig. 5-1  The solid line and the dashed line are the curves of Ω(α) and its approximating 
function Ωe(α), respectively. Ωe(α) is made of 20 line segments in this example. 
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  .                            (40) 

This functional relationship is useful in estimating the shape parameter. As Fig. 5-1 shows, 

the mapping between Ω(α) and α is one-to-one. Therefore, the inverse function of Ω(α) 

exists. According to (39) and (40), α can be obtained by 

 .                                (41) 

Different from the conventional approach, we develop a new and fast method to estimate 

the shape parameter based on the expression of (41). That is, we use the zero-value 

probability and the variance value to estimate α. 
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5.2 Piecewise Linear Estimation of Shape 

Parameter of Residual Signal 

 

Fig. 5-1 shows that Ω(α) is an exponentially decreasing function of the argument α. Ω(α) can be 

divided into a number of segments and each segment is approximated by a straight line. The entire 

range of α is [α0, αn]. We uniformly partition it into n segments. Thus, Ω(α) curve is approximated 

by n pieces of line segments; these line segments are specified by the n sets of boundary points: 

{Ω(α0), Ω(α1)}, {Ω(α1), Ω(α2)} …,and {Ω(αn-1), Ω(αn)}. That is, Ω(α) is approximated by a 

piecewise linear function Ωe(α). For the i-th segment, 

  ,               (42) 

where α∈[αi-1, αi]. Generally, the approximation is more accurate for large n. Fig. 5-1 shows the 

example of n=20, and Ω(α) is rather accurately approximated by Ωe(α) in this case. 

The linear function defined by (42) clearly has an inverse. We can thus estimate the shape 

parameter αe using (41). If both ρ and σ2 are known, then 

   ,            (43) 
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for 

  .                             (44) 

One may notice that the coefficients in (43) are independent of data and can thus be calculated in 

advance and recorded on a table. Table 5-1 shows the example of n=20. Therefore, for the i-th line 

segment, the coefficients can be retrieved from Table I, and then the shape parameter can be 

estimated by using (43). 

Table 5-1. A 20-SEGMENT SHAPE PARAMETER ESTIMATION TABLE 

i 1( )iα −Ω  ( )iαΩ
1

1

( ) ( )( ) i i
i i

i i

α αα α
α α

−

−

Ω − ΩΩ −
−

1

1

( ) ( )i i

i i

α α
α α

−

−

Ω −Ω
−

 

1 30 11.7 121.3 -182.6 

2 11.7 6.12 45.49 -56.25 

3 6.12 3.8 22.34 -23.18 

4 3.8 2.65 13.01 -11.51 

5 2.65 2 8.5 -6.5 

6 2 1.6 6.023 -4.023 

7 1.6 1.33 4.532 -2.667 

8 1.33 1.14 3.568 -1.865 

9 1.14 1.01 2.911 -1.359 

10 1.01 0.91 2.442 -1.024 

11 0.91 0.83 2.096 -0.793 

12 0.83 0.76 1.833 -0.629 

13 0.76 0.71 1.628 -0.508 

14 0.71 0.67 1.464 -0.417 

15 0.67 0.64 1.332 -0.348 

16 0.64 0.61 1.223 -0.293 

17 0.61 0.58 1.132 -0.25 

18 0.58 0.56 1.056 -0.215 

19 0.56 0.54 0.99 -0.187 

20 0.54 0.53 0.934 -0.163 
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5.3 Improved ρ Estimation 

 

In the above discussion, ρ is defined as the zero-value probability of the one-sided 

ρ-GGD. In the one-sided ρ-GGD model, ρ also represents the highest probability value of 

the model. However, for some residual image macroblocks, zero is not the most probable 

value. In this case, using the zero probability to estimate ρ does not lead to good 

approximation. Therefore, we modify the ρ estimation formula for this special case.  

Fig. 5-2 shows two cases. To plot the probability derived from data, the residual 

absolute-valued signal is rounded to its nearest integer and is denoted by xr; the probability 

distribution of xr and its modeling results are shown in Fig. 5-2. In the case of Fig. 5-2 (a), 

the zero probability, , is the highest probability, and thus the one-sided ρ-GGD 

can well approximates the data distribution. However, in the case of Fig. 5-2 (b), because 

 is not the peak probability and it results in poor approximation. Therefore, we 

propose a modified estimation formula for ρ. Although the mean of the real residual signal 

may not be zero, it is not far away from zero based on our collected data. We thus use both 

the probability of zero, , and the probability of one, , to estimate ρ: 

that is, ρ is the linear combination of two probabilities, 
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                 (45) 

 

                                    (a) 

 

(b) 

Fig. 5-2  The dots are the probability distribution of the residual absolute-valued signal, xr. The dashed 
line and solid line show the approximation results by one-sided Laplacian and ρ-GGD modeling, 

respectively. The ρ value of the ρ-GGD modeling is estimated based on only the zero probability. Two 
different cases are shown here: The highest probabilities of the distributions are located at xr=0 (a) and 

xr=1 (b), respectively. 
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and . In order to find the optimal a value, we test the following a values, {0, 

0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}, and examine the one-sided ρ-GGD modeling 

results for each a value. The a value that leads to the most accurate approximation is chosen 

to calculate the ρ value. To evaluate the modeling accuracy, we use the K-L 

(Kullback-Leibler) divergence as (12). Therefore, for each residual macroblock, we can 

choose the best a value, denoted by a*,  

,                 (46) 

where P is the probability distribution of the residual absolute-valued signal;  is 

defined by (38) and its ρ value is estimated using (45). Although (17) can be used in the 

off-line analysis, it is impractical in processing real data. We thus develop an efficient 

method for determining the a* value.  

We separate all events into two cases:  and the opposite. At each 

temporal level, we collect the a* values of all macroblocks, and separate them into two bins 

according to the preceding two cases. The probability distributions of a* of these two cases 

are shown in Fig. 5-3. In the case of , the most probable a* value is 

1 and its probability is over 90%. Therefore, when the first case occurs, a* is chosen to be 1. 

Otherwise, 0 is chosen to be the value of a*. In other words, 

 .                     (47) 
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In summary, the probability distribution of the residual absolute-valued signal can be 

 
(a)                                          (b) 

(c)                                             (d) 

 

(e) 

Fig. 5-3. The solid line and dashed line are the probability distributions of the best a value, denoted by a*, 
of the following two cases. The first case is  (solid) and the second case is the 

opposite (dashed). The five figures show the results at 5 temporal levels: (a) t=0, (b) t=1, (c) t=2, (d) t=3, 
and (e) t=4. The test sequence is Foreman (CIF, 30fps). 
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approximated by the proposed one-sided ρ-GGD source model by the following steps. 

Step 1: Calculate the variance σ2 from the motion-compensated residual signals. 

Step 2: Estimate the ρ value using (45) and (47). 

Step 3: Compute the product of ρ2 and σ2. 

Step 4: Using TABLE I, we can find the interval [Ω(αi-1), Ω(αi)] that the ρ2σ2 value 

belongs to. 

Step 5: Pick up the i-th segment coefficients from TABLE I. The shape parameter αe is 

estimated by using (43). 

Step 6: Insert αe and ρ into (38). The one-sided ρ-GGD modeling is done. 
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5.4 Experimental Results 

 

In Section 5.1, we propose the one-sided ρ-GGD model and an efficient estimation method 

on the shape parameter. Furthermore, an improved ρ estimation method is proposed in 

Section 5.3. In this experiment, we compare the modeling results using three different 

methods; they are one-sided Laplacian, the proposed one-sided ρ-GGD, and the proposed 

one-sided ρ-GGD with improved ρ estimation. We use the K-L divergence to measure the 

modeling accuracy. A small K-L divergence value means a more accurate approximation. 

For each macroblock in a frame, the K-L divergence between the probability distribution of 

the residual absolute-valued signal and its approximation is calculated. Then, we take the 

average of the K-L divergences of all macroblocks in one frame. Fig. 5-4 (a) and Fig. 5-5(a) 

show the average K-L divergences of all residual frames at the first temporal level of two 

test sequences, Foreman and Mobile, respectively (CIF format, and 30fps). From Fig. 5-4 (a) 

and Fig. 5-5 (a), the proposed one-sided ρ-GGD shows a better modeling accuracy than 

Laplacian. Also, with the improved ρ estimation, the approximation accuracy of the 

one-sided ρ-GGD is further improved. Because the low-pass frame quality degrades after 

temporal decompositions, the motion compensation efficiency is also reduced at deep 

temporal level. In the meanwhile, modeling the probability distribution of residual signal 

becomes more difficult. Fig. 5-4 (b)-(e) and Fig. 5-5 (b)-(e) show the modeling performance 
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of the residual frames for the rest of temporal levels. We can see that the proposed one-sided 

ρ-GGD with the improved ρ estimation consistently maintains good approximation 

accuracy at all temporal levels. 
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(a)                                            (b) 

 
(c)                                           (d) 

 
(e) 

Fig. 5-4. The dotted, dashed and solid lines show the K-L divergence between the probability distributions 

of the absolute-valued signal and three approximations. These three approximations are Laplacian distribution 

(dotted), one-sided ρ-GGD (dashed), and one-sided ρ-GGD with the improved ρ estimation (solid), respectively. 

(a)-(e) figures are the results at different temporal levels (t): (a) t=0, (b) t=1, (c) t=2, (d) t=3, and (e) t=4. The test 

sequence is Foreman (CIF, 30fps). 
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                  (a)                                   (b) 

 
                 (c)                                    (d) 

 
(e) 

Fig. 5-5. The dotted, dashed and solid lines show the K-L divergence between the probability distributions 

of the absolute-valued signal and three approximations. These three approximations are Laplacian distribution 

(dotted), one-sided ρ-GGD (dashed), and one-sided ρ-GGD with the improved ρ estimation (solid), respectively. 

(a)-(e) figures are the results at different temporal levels (t): (a) t=0, (b) t=1, (c) t=2, (d) t=3, and (e) t=4. The test 

sequence is Mobile (CIF, 30fps). 
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Chapter 6  Generalized MIG Derivation 
and Improved Mode Decision Method 
In this chapter, extending our previous work in Chapter 4, we improve the MIG mode 

decision method by two ways. First, we generalize the MIG derivation by using 

high-dimensional probability model. Second, we improve the mode decision method by 

introducing a new temporal weighting factor to the cost function.  

 

6.1 Rate-Distortion Function of ρ-GGD 
 

The source signal is denoted by x X∈ with probability distribution function  

defined by (38). According to the Shannon’s rate-distortion theory [18], the Shannon lower 

bound for the magnitude-error criterion is 

 ,                      (48) 

where D is the distortion, e is the Euler’s number, log(·) is the natural logarithm function, 

and Φ(X) is the differential entropy of X. Based on (99) in Appendix, the differential entropy 

of the one-sided  ρ-GGD source model can be written as 

 .                 (49) 

where α and ρ are the shape parameter and the zero-value probability of the source model, 

respectively. Replace Φ(X) in (48) by (49), 
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 .                      (50) 

If the conditions given in [18] are satisfied, RL(D) becomes R(D), the true rate-distortion 

function, and can be rewritten as (51) 

 .                           (51) 
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6.2 Generalized MIG Derivation 
 

We now try to find relationship connection between the residual signal statistics and the 

motion bitrate. As discussed earlier, ρv and αv denote, respectively, the zero-value 

probability and the shape parameter in one-sided ρ-GGD model of the residual signal using 

motion vector v. Thus, ρ0 and α0 are the residual signal statistics when v=0. We substitute 

(51) into (14) with the corresponding parameters, and (14) becomes 

  .                      (52) 

(52) can be simplified to (53), 

 .                       (53) 

Interestingly, the target coding rate term, RT, in (14) is eliminated. This elimination implies 

that (53) is a rate-independent criterion for checking the motion prediction efficiency. 

Therefore, in theory, this criterion is applicable in the multiple operation rate situations, 

such as scalable interframe wavelet coding. However, this criterion needs to be adjusted to 

match the real video data.  

We can examine (53) from a different perspective. Let the residual signal produced by 

using motion vector v be x∈Xv. Similar to the derivation of (49), the differential entropies 

of X0 and Xv are expressed, respectively, as 

  .                           (54) 
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If motion vector v results in good motion compensation, the differential entropy of the 

residual signal should be smaller than that obtained by using the zero motion vector. The 

positive difference of the differential entropies of X0 and Xv is as follows. 

 .                    (55) 

We can find that (55) is exactly the numerator of the left term in (53). Thus, (53) is reduced 

to 

  .                               (56) 

In (18), a similar conclusion was obtained based on the Laplacian source assumption. 

However, as discussed in Section 4.2, this result does not match the real-world situation due 

to at least two factors: one is that a practical coder cannot achieve the rate-distortion bound 

predicted by the information theory; and the other factor is that the real video data do not 

completely satisfy the mathematical assumptions in theory such as stationarity and 

probability distribution. Thus, the theoretically derived rate-distortion function may not 

accurately represent the relationship between the produced coding rate and the real 

distortion. Therefore, we modified  (56) to 

,                                      (57) 

where C is the MIG lower bound in real world. Due to this divergence problem, C is not 1 

for a practical wavelet coder applied to the test video data. Therefore, two parameters are 

introduced and inserted into (14) to reflect the model divergence problem. We rewrite (14) 
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as 

,                     (58) 

where  is the “real distortion” measured from the quantized residual signal 

compensated using motion vector v.  is the “ideal distortion” derived from the 

rate-distortion function of the source model in (14). And a new parameter βv is introduced to 

compensate for the difference between  and . In other words, 

. Or, 

.                              (59) 

Here, we assume that a (nearly) constant multiplication factor is adequate for compensating 

the model divergence. Since this factor is introduced to bridge the gap between the ideal 

case and the real world case, it is to be verified by the test data. Then, ,  and 

β0 are similarly defined for using the 0 motion vector. Hence, (58) can be rewritten as 

,              (60) 

By replacing  by the rate-distortion function in (51), (60) gives 

.                          (61) 

(61) is very similar to (56). In the ideal case, the “ideal distortion” would be equal to the 

“real distortion”, which makes =1 and =1 and (A.4) would fall back to (56). Therefore, 

for the real case, the MIG lower bound C becomes 

.                            (62) 
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Let  denotes the quantized residual signal. According to (51), is calculated by 

 ,                         (63) 

where  is the entropy of the quantized residual signal. Use (59) and (63), (62) can 

be rewritten as 

. (64) 

Based on (64), the C value can be found using statistical analysis. How to obtain the 

quantized residual signal  and  is an issue. The scalable encoder does not have the 

bitstream extraction condition at the MCTF stage. Due to this reason, it becomes very tricky 

to select a quantization step size to generate  and . However, the purpose of 

generating the quantized residual signal is to simulate the divergence problem of the 

rate-distortion function. We conjecture that there exists a certain range of the quantization 

step sizes that are representative. Therefore, we take an engineering solution to find a proper 

quantization step size for deriving the C value. We ran exhaustive experiments for all 

sequences and found that 8 is generally a good quantization step size for estimating C in 

(64).  
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Therefore, we design an adaptive C-value updating scheme. In our scheme, there are two 

levels in the C value adaptation: frame level and GOP level. In the frame level, we collect 

the statistics of the macroblocks with non-zero motion vector and calculate the frame-level 

C value using (64). This new C value is then used for the next frame. If the encoding frame 

is the last frame of the GOP, the GOP-level C value is updated by averaging all frame-level 

C values in that GOP. Then, we explain the connection between the frame-level and the 

GOP-level adaptations. The newly derived frame-level C value is limited to the range of 

[ ], where  is the current GOP-level C value and  is 

used to prevent from the extreme values due to noise or insufficient data in the adaptation 

process. Also, the GOP-level C value is also limited in the same rage in the adaptation 

process. For example, if the newly derived GOP-level C value is larger than the previous 

 plus , the new GOP-level C value is set to . In our experiments, 

 is chosen to be 0.5 empirically. 

Table 6-1. The average frame-level C values using the proposed adaptive scheme 
 

Test sequence Average C value 

Tempete 7.75 

Mobile 7.43 

Foreman 7.37 

Container 7.99 

Waterfall 7.12 

Irene 6.43 
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   Table 6-1 shows the average frame-level C values using this adaptive approach. We can 

see that the average C value is around 7, which is consistent with our previous finding -- in 

the range of [4, 10] (in Section 4.3). The proposed adaptive scheme verifies that our 

previously used offline-trained C value is adequate. Now we compare the rate-distortion 

performance of the adaptive C scheme and fixed C scheme. We pick up four CIF test 

sequences: Mobile, Container, Waterfall, and Irene. The test bitrate points are 256kbps, 

384kbps, 512kbps, 800kbps, 1024kbps, 1200kbps, and 1500kbps. The average PSNR 

results of 7 test points of these two schemes are shown in Table 6-2. As Table 6-2 shows, 

their PSNR performances are very similar. However, from (64), we can see that the 

adaptive scheme requires a lot of additional encoding operations. In the experiment section 

of this chapter, the results are obtained using the offline-trained C value, which is 7, and it 

still outperforms the conventional Lagrangian method. 

 

 

Table 6-2. The average PSNR results of two different C value scheme 
Test sequence Offline-trained C value Adaptive C value 

Mobile 33.625 33.631 

Container 45.347 45.351 

Waterfall 41.038 41.046 

Irene 41.441 41.461 
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6.3 Improved MIG Cost Function 
 

We follow the similar process in Section 4.3 to derive MIG cost function for ρ–GGD. 

Therefore, (27) is rewritten as  

  .                (65) 

When an MV produces a smaller right-side term in (65), it leads to a larger φ. Hence, we 

look for the best MV that achieves the minimum right term value in (65). Also, when ΔR 

equals to zero, the right term reaches its maximum value  and there is no singular 

problem. Therefore, for source signal s and motion vector v, the proposed MIG cost 

function is defined as  

 ,                           (66) 

where αs and ρs are the shape parameter and zero-value probability of the source signal s and 

ΔR(v) is the MV bit rate. On the other hand, from (39) and (40), we have 

 ,                                    (67) 

where  is the residual signal variance. Hence, (66) can be rewritten as 

 .                     (68) 

Let us define a new weighting function  as 

  ;                                    (69) 
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and thus, 

.                            (70) 

The function values of   are shown in Fig. 6-1. It increases as α increases but saturates 

at about α=2.  

In the preceding discussions, the entropy function value is in the unit of “nat”. In practice, 

“bit” is the most common unit used for sending digital data. If the motion rate, ΔR(v), is 

measured in “bit”, (70) has another equivalent form as follows: 

.                         (71) 

In the case of Laplacian source model in Section 4.3, (71) is reduced to  

.                     (72) 

 

Fig. 6-1. The cost weighting function  for α [0.5, 2.5]. 
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The difference between (71) and (72) is . It represents the impact of the pdf shape 

parameter on the MIG cost function. If the residual signals cluster around the zero value, 

which implies effective motion compensation and the shape parameter, α, in the one-sided 

ρ-GGD model becomes small. As Fig. 6-1 shows, when α is small, so is τ(α). Thus, the 

proposed MIG cost function in the form of (71) provides a richer interpretation, which links 

to the pdf shape. 
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6.4 Temporal Weighting for MIG Lower Bound 
 

After motion-compensated prediction, the relationship between the pixels on the 

predicted and the reference frames can be classified to three types: connected, unconnected, 

and multi-connected [8]. During the MCTF process, because the temporal correlation 

between the low-pass frames at the deep temporal level is relatively small, the unconnected 

pixel percentage increases, which implies that the prediction effectiveness decreases. 

Furthermore, the connection relationship leads to the distortion propagation along the tree 

structure generated by the temporal filtering process after quantization, which is the 

so-called “quantization noise propagation” problem in MCTF [13],[33]. Here we follow the 

notations defined by [13] in modeling the noise propagation process. The average 

distortions of the low-pass frame and the high-pass frame at temporal level t are denoted as 

 and , respectively. When the Harr wavelet filter is adopted in MCTF, Wang and 

Schaar [13] show that  and  are related to  by the following equation,  

 ,                     (73) 

where rc is the ratio of the connected pixels. It is obvious that rc determines the severity of 

the distortion propagation problem. There are two major factors affecting the rc value: the 

picture characteristics and the motion estimation method. By minimizing the MIG cost 

function with the pre-chosen C(t) parameter (the C value at the t temporal level), the best 

motion vector set v(t) can be obtained, and thus rc is decided. The frames are temporally 
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decomposed along the v(t) trajectory. Hence, ( )t
Ld and ( )t

Hd are the functions of v(t). We rewrite 

(73) as 

,      (74) 

in which the notation (.|C(t)) is inserted to emphasize the result depends on the C(t) value. 

Thus, in the Haar wavelet filter case, (74) shows that the rate-distortion behavior of the 

low-pass frame at temporal level t-1 is affected by the motion vectors at temporal level t.  

 
(a)                                         (b) 

 
(c)                                       (d) 

Fig. 6-2. MSE vs. w value with different C0 parameter settings in the MIG cost function: (a) Mobile 
(b) Tempete, (c) Container, and (d) Akiyo, all in CIF resolution. 

 

60

62

64

66

68

70

72

74

0.2 0.4 0.6 0.8 1 1.2

M
SE

w

φ=5
φ=7
φ=9
φ=11

0

0

0

0

5
7
9
11

C
C
C
C

=
=
=
=

44

45

46

47

48

49

50

0.4 0.6 0.8 1 1.2

M
SE

w

φ=5

φ=7

φ=9

φ=11

0

0

0

0

5
7
9
11

C
C
C
C

=
=
=
=

4

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

5

0.4 0.6 0.8 1 1.2

M
SE

w

φ=5

φ=7

φ=9

φ=11

0

0

0

0

5
7
9
11

C
C
C
C

=
=

=
=

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

0.4 0.6 0.8 1 1.2

M
SE

w

φ=3

φ=5

φ=7

φ=9

0

0

0

0

3
5
7
9

C
C
C
C

=
=
=
=



 

- 69 - 
 

Theoretically, to find the optimal solution of mv, the effects of the quantized/truncated 

residual signals at all the previous temporal levels have to be considered. Practically, 

because of the open-loop structure and the complexity of the inter-scale coding system, it is 

very difficult to construct an analytical model, or even an experimental model, to describe 

the relationship between the distortion propagation and the motion information. A feasible 

approach is to adjust the C value of (28) along with the increased temporal level. Also, this 

adjustment changes the values of   and ΔR(v) according to their located MCTF 

decomposition layer and thus it can effectively compensate for the propagation distortion 

loss. Therefore, the MIG cost function of (71) is modified to  

,                       (75) 

where the superscript t is the temporal level index in MCTF. It is shown that the statistical 

relationship between consecutive subband signals can be modeled by a hidden Markov 

 
(a)                                           (b) 

Fig. 6-3. The MSE comparison between the cases with temporal weighting, w=0.8 and w=1, 
in the MIG cost function at different truncation bitrates. Test sequences are (a) Mobile and 

(b) Foreman. (CIF resolution). 
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model [34]. Similarly, a Markov-like relationship seems to exist between consecutive 

temporal decomposition layers. Thus, the optimally decided distortion values of these layers 

are correlated. Therefore, we conjecture that a simple linear predictor can describe the 

relationship of the C parameters among temporal layers. That is, for two consecutive 

temporal levels, 

 .                                      (76) 

Consequently, if C0 is given for the first temporal level, (76) becomes 

         .                                      (77) 

In practice, the weighting factor w can be found by extensive experiments. We start with 

a pair of C0 and w values and use (75) to perform motion search and mode decision. 

Repeating the same experimental steps for Fig. 4-2(d) with different w values, we obtain the 

MSE vs. w curves using different C0 values. The experimental results are shown in Fig. 6-2. 

Because the motion information percentage in fast-motion pictures is larger than that in the 

slow-motion pictures, the error propagation problem is severe. Hence, the benefit of using 

our temporal weighting adjustment is more significant in the fast-motion cases. Fig. 6-2 (a) 

and Fig. 6-2 (d) show the results of Mobile and Akiyo test sequences respectively. 

Compared with Akiyo, Mobile is a relatively fast-motion test sequence, and thus the 

distortion in Fig. 6-2 (a) is more sensitive to the w value than that in Fig. 6-2 (d). In contrast, 

the temporal weight adjustment makes little difference in MSE for the Akiyo test sequence. 
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Fig. 6-2 shows that the average MSE is a convex function in w and the minimal MSE 

appears at around [0.6, 0.9]. According to the collected data, w =0.8 seems to be a good 

value for most cases. To verify the effectiveness of our chosen temporal weighting factor, 

we tested Mobile and Foreman videos and adopted the MIG cost function with weightings, 

w=0.8 and w=1. In these simulations, the C0 parameter is set to 7. Fig. 6-3 shows that 

applying the temporal weighing factor can improve the overall MSE at different bitrates. 

In addition to the empirical selection method, we have also derived the w value from the 

viewpoint of decoder rate-distortion behavior. Because the decoding bit rate is not 

pre-specified at the encoding time, it is very difficult to solve this problem at the encoder 

side. To solve this problem, the rate-distortion behavior at the decoder side has to be 

considered. Because the synthesis gain is used to allocate the bitrate among different 

subbands so that the overall distortion can be minimized [37],  in (75), is highly related 

to the so-called synthesis gain. Let  denote the synthesis gain of the temporal low-pass 

frame. If the high-pass frame is losslessly decoded, the mean-squared distortion after the 

inverse MCTF is a function of  times the mean-squared distortion of the temporal 

low-pass frame. Following the spirit in [13], because the MIG definition consists of the 

magnitude-error, we conjecture that the same relationship between the MIG values of 

different temporal levels would exist. Therefore, at temporal level t, (24) is modified to 

,                              (78) 
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where C0 is the target MIG lower bound at the first temporal level (t=0). Or, (78) can be 

rewritten to an equivalent form: 

,                                     (79) 

where 

.                          (80) 

For example, if the 5/3 wavelet filter is used for temporal decomposition, 

.                     (81) 

Thus, . This theoretically derived  value is consistent with the 

finding in our previous work:  value generally falls in the range of [0.6, 0.9]. In the 

experiment section of this chapter, the results are obtained using the offline-trained  value 

in [17], which is 0.8. In summary, (75) is now the cost function used for both motion 

estimation and mode decision. Their detailed steps are described in the next section. 
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6.5 Improved Mode Decision Procedure 
 

In the previous section, we propose an MIG cost function which is nearly bitrate-independent. It is 

the target function in our multi-operation-point optimization procedure. The inter-prediction process 

in a scalable wavelet video codec is very similar to that in H.264/AVC. We take the well-known 

scalable wavelet codec, Vidwav [25], as an example. The basic prediction unit is macroblock (MB). 

Its motion compensation mode consists of a MB partition. The sub-block size can be 16x16, 16x8, 

8x16, 8x8, 8x4, 4x8, and 4x4 for a MB in the Vidwav coder. Therefore, for mode m, there are Nm 

sub-blocks in a MB. The motion-compensated MB residuals and the associated motion vectors can 

be expressed by two Nm-tuple vectors as 

  ,                                   (82) 

where bi and vi represents the i-th sub-block residual signal and its MV, respectively. Assume M is 

the mode candidate set, that is, m∈M. As Fig. 6-4 shows, there are six steps in deciding the best 

prediction mode.  

1) Step 1: Select the MIG cost function parameters 

The proposed MIG cost function (75) contains one parameter, Ct. According to (80), Ct  is 

further split to two parameters, C0  and ω. As discussed earlier, we empirically choose C0  

and ω from the range of [4, 10] and [0.6, 0.9], respectively.  

2) Step 2: Perform motion estimation for mode m 
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           Given a candidate mode m, the current MB is partitioned to Nm sub-blocks. Thus, we 

have to find the best motion vector for each sub-block and combine them into the motion 

vector set for this MB. For the i-th sub-block, we test motion vector v for motion compensation 

and obtain the residual sub-block bi. The residual signal variance is calculated and denoted as 

; the zero-value probability of the one-sided ρ-GGD model is estimated by (45) and (47) 

and is denoted as . According to (43), the shape parameter of the sub-block bi can be 

obtained by 

  .                          (83) 

        Therefore, the MIG cost for motion vector v is 

 ,                    (84) 

        where ∆R(v) is the motion bitrate. If the entire MV candidate set (search range) is denoted 

as S, for all motion vector v∈  S, the best motion vector for the sub-block  can be found by 

 .                          (85) 

        This is the most time-consuming process in our procedure. Repeating the same process for 

all Nm sub-blocks, we obtain all the MVs needed for mode m. The resultant motion vector set of 

mode m is  

 .                               (86) 

 

3) Step 3: Calculate the residual MB statistics and the motion rate 
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The MB residual signal bm for mode m is obtained in Step 2 after performing motion 

compensation using the MV set . To construct the one-sided ρ-GGD model for bm, we need 

to calculate the variance  and estimate the zero-value probability. Let  and  denote, 

respectively, the zero-value probability and the variance of bm.   are computed by 

  ,                       (87) 

       where *
mv is the best motion vector set for mode m in Step 2;  is estimated by (45) 

and (47). Next, the motion bitrate for this MB is given by 

  ,                         (88) 

       where *( )iR vΔ  is the bitrate of encoding MV , and  rm is the average bitrate for 

recording the MB mode information. 

4) Step 4: Estimate the shape parameter from MB residuals 

According to (43), the shape parameter of bm is estimated by 

.                         (89) 

5) Step 5: Calculate the MIG cost for mode m 

Using the parameter values calculated in Steps 1 to 5, we can compute the MIG cost for 

mode m: 

.                (90) 
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       If mode m is the last mode in M, go to Step 6 to decide the best prediction mode; if not, go 

to Step 2 to perform the same operation for the next candidate mode. 

6) Step 6: Choose the best mode m* with the minimum cost 

              After all MIG costs for all  are obtained, the best mode m* is obtained by 

.                   (91) 
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Fig. 6-4. Flow chart of the proposed mode decision procedure 
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6.6 Experimental Results 
 

In this experiment, we compare the rate-distortion performance of the proposed MV 

selection and mode decision scheme with that of the conventional Lagrangian method in the 

original Vidwav. Based on the one-sided ρ-GGD source model, we derive its MIG cost 

function and use it to decide the best MV and prediction mode. The MCTF parameters of 

the conventional Lagrangian method are given in Table 6-3. Our proposed method use the 

same motion search range and motion vector accuracy settings in Table 6-3. The parameters, 

C0 and ω, are empirically selected and will be given below. We focus on the mid bitrate to 

high bitrate cases. There are two scenarios in this experiment.  

The first scenario is the SNR scalability test. We select 6 test sequences: Container, Irene, 

Foreman, Tempete, Waterfall, Mobile. All are in the CIF format and 30 fps. In this scenario, 

C0  and ω of the MIG cost function are 7 and 0.8, respectively. The operation bitrates are: 

256kbps, 384kbps, 512kbps, 800kbps, 1024kbps, 1.2Mbps, and 1.5Mbps. For each test 

sequence, 7 bitstreams are extracted according to the bitrate conditions from the same 

losslessly coded bitstream, and then each extracted bitstream is decoded to obtain the PSNR 

at various selected bitrate points. Fig. 6-5 shows the PSNR comparison between the two 

coding methods for the 6 test sequences. Compared with the conventional Lagrangian 

method, our method shows 0.1 to 0.9 dB PSNR improvements.  

The second scenario is the combined temporal and SNR scalability test. In this scenario, in 
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addition to the CIF videos in the first scenario, we also test 5 high-resolution test sequences: 

City, Crew, Harbour, Soccer, and Ice. All are in the 4CIF format and 60 fps. The operation 

points include 6 bitrates combined with 3 frame rates. The C0 value is empirically selected 

within [7, 10] and ω is 0.8. Table 6-4 lists the PSNR results of the proposed MIG and the 

conventional Lagrangian methods. Our proposed method shows 0.1 to 0.5 dB PSNR 

improvements on all 30 test points. 
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Table 6-3 
The default parameter settings [36] of MCTF in Vidwav coder. 

 Motion search range 
(pel) 

Motion vector accuracy 
(pel) 

Lagrange 
parameter 

CIF 4CIF CIF 4CIF 
t=0 32 1/4 1/4 16 16 
t=1 64 1/2 1/2 32 50 
t=2 128 1/2 1 64 150 
t=3 128 1/2 1 64 150 
t=4 128 1/2 1 64 150 

 

Table 6-4 
The PSNR Comparison between the Proposed MIG cost method and the Conventional Lagrangian 

Method in Combined Temporal and SNR Scalability Test for 5 Test Sequences (4CIF Resolution, 60fps) 

Sequence 
(4CIF) 

GOP 
size 

Mode 
decision 
method 

750Kbps
15fps 

1024Kbps
15fps 

1200Kbps
30fps 

1500Kbps 
30fps 

2048Kbps 
60fps 

3000Kbps
60fps 

City 32 Lagrangian 36.39 37.33 37.42 37.98 38.49 39.33 

Proposed 36.72 37.70 37.81 38.42 38.86 39.63 

Crew 32 Lagrangian 36.39 37.30 36.74 37.34 37.18 38.20 

Proposed 36.41 37.35 36.87 37.50 37.38 38.34 

Harbour 32 Lagrangian 33.91 34.97 34.96 35.59 36.25 37.50 

Proposed 33.94 35.02 34.99 35.65 36.29 37.53 

Soccer 32 Lagrangian 36.28 37.22 36.92 37.61 38.00 39.20 

Proposed 36.52 37.52 37.18 37.94 38.20 39.42 

Ice 16 Lagrangian 40.51 41.65 41.25 42.00 42.41 43.62 

Proposed 40.88 42.05 41.75 42.51 42.84 44.06 
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Conclusions  
 

The interframe wavelet video coding scheme provides a flexible and efficient structure 

for producing scalable bit streams. However, because of its open-loop structure, its 

parameter optimization issue becomes a challenging problem. To analytically solve this 

R-D optimization problem, we construct the wavelet texture model and derive a motion 

information index.  

The ρ-GGD source model is proposed to approximate the probability distribution of the 

wavelet coefficients and the residual signals in the scalable wavelet video codec. We 

suggest a fast scheme that constructs the ρ-GGD based on the zero-value probability (ρ) and 

the source signal variance. Also, we propose a piecewise linear expression to estimate the 

shape parameter of the source model. Furthermore, an improved ρ estimation scheme is 

proposed to increase the model accuracy for the one-sided ρ-GGD.  

We derive the rate-distortion function for the wavelet video coder based on the one-sided 

ρ-GGD model. The notion of “motion information gain” (MIG) is defined and a mode 

decision procedure is developed based on this MIG metric. This mode decision procedure is 

nearly bitrate independent in theory and thus is suitable for solving the 

multi-operation-point (multiple rates) problem in scalable wavelet video coding. Our 

simulation results show that the one-sided ρ-GGD based mode decision algorithm provides 
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an improvement of 0.1 to 0.5 dB in PSNR over the conventional Lagrangian method on 

both the SNR scalability and the combined SNR and temporal scalability tests.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

- 86 - 
 

附錄(Appendix): Differential Entropy 
of the High-Order Exponential PDF 

 

Let  p(x) be a high-order exponential probability distribution function given by 

 ,                         (92) 

where exp(·) is the exponential function. α, β, and γ are positive constants. By definition, the 

differential entropy of  is 

 ,                         (93) 

where log(·) is the natural logarithm function. Φ(X) can be derived as 

  .        (94) 

Here we rewrite Φ(X) as  

 ,                            (95) 

where 

  .                         (96) 

Let us derive A and B first, and then substitute the results into Φ(X) in (95). We use a new 

variable  to replace the variable x in A. Thus, A is derived as 
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 ,                (97) 

where Γ(·) is the standard Gamma function. With the similar procedure, B in (96) is derived 

as 

  .                  (98) 

By using (97) and (98), Φ(X) can be rewritten as 

  .   (99) 

Therefore, the differential entropy of the high-order exponential probability distribution 

function is derived.  
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