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摘 要

在正交分頻多工(OFDM)通訊系統下，載波頻率飄移或通道時變導致載波間干

擾(ICI) 和傳輸效能的衰減。 當載波頻率非常高或用戶端移動速度很快時 ，這個

問題特別嚴重。載波間干擾讓通道矩陣不再只有對角方向有值，這種情形使得正

交分頻多工信號接收變得很困難。理論上，一個最佳的訊號偵測器應該考慮所有

的載波間干擾項。但是考慮複雜度和穩健前提下，習知的方法通常只有針對集中

於對角項附近的主要項補償， 而且將未被補償的殘存載波(residual ICI)間干擾視

為通道白色雜訊的一部分。

本論文利用能帶近似法(band approximation)將含有載波間干擾(ICI)的訊號劃

分成三個部份， 其中包含一主要訊號、一殘留的載波間干擾(residual ICI)以及一

通道雜訊。 透過公式逼近、理論推導和通道模擬的方法讓我們觀察到相鄰次載

波之殘留的載波間干擾(residual ICI)具有高度的正規化相關性之統計特性， 並且

特別的是，我們可根據該統計特性將因考量接收器的複雜度而不得不被捨棄之

殘留的載波間干擾(residual ICI)項全部考慮進去。 甚至，我們發現該相鄰次載波

之殘留的載波間干擾(residual ICI)的正規化相關性在幾乎所有實際應用的系統參

數下是不變的， 該系統參數包含最大督普勒頻率位移(maximum Doppler shift)、

多重路徑通道數據(multipath channel profile) 、功率頻譜密度(power spectral

density)、正交分頻多工系統之取樣週期(sampling period)、離散傅利葉轉換之長

度(DFT size)、 正交性分頻多工系統之符號週期(symbol period)以及平均傳送符

號能(average transmitted symbol energy)。 以上的發現說明了該相鄰次載波之殘

留的載波間干擾(residual ICI)高度的正規化相關性和容易估計的特性非常適合應

用於實際通訊系統接收。

利用該統計特性，透過針對殘留的載波間干擾(residual ICI) 和通道雜訊進行
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白化處理的一接受器可以得到非常低的雜訊底(noise floor)， 進而使通訊系統具有

很好的傳輸性能，例如電腦模擬顯示採用最大可能序列估計(maximum-likelihood

sequence estimation, MLSE)的接收器 並且考慮上述白化處理用於該相鄰載波之殘

留的載波間干擾(residual ICI)可以降低位元誤差率(BER)之誤差底(error floor) 數

個級數(order)， 可明顯看出利用該統計特性結合傳統接收偵測方法對於提升通訊

系統之接收效能有很大的貢獻。

更近一步，本論文提供一個考慮上述白化程序用於 “相鄰載波所殘留的載波

間干擾”的線性最小均方誤差(LMMSE)和遞迴線性最小均方誤差接收器。 相對於

最大可能序列估計，這個方法在良好的偵測性能和低複雜度間提供另一折衷選

擇。
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ABSTRACT

Orthogonal frequency-division multiplexing (OFDM) is a popular broadband wire-

less transmission technique, but its performance can suffer severely from the inter-

carrier interference (ICI) induced by fast channel variation arising from high-speed

motion. Existing ICI countermeasures usually address a few dominant ICI terms

only and treat the residual similar to white noise.

We show that the residual ICI has high normalized autocorrelation and that this

normalized autocorrelation is insensitive to the maximum Doppler frequency and the

multipath channel profile, the OFDM sample period, the discrete Fourier transform

(DFT) size, the OFDM symbol time, the transmitted symbol energy. Consequently,

the residual ICI plus noise can be whitened in a nearly channel-independent manner,

leading to significantly improved detection performance. Simulation results confirm

the theoretical analysis. As a result, a whitening transform for the residual ICI plus

noise can be obtained based solely on the ICI-to-noise ratio. Such a transform can

be used in association with many different signal detection schemes to significantly

improve the detection performance.

In particular, they show that the proposed technique can significantly lower

the ICI-induced error floor by several orders of magnitude in maximum-likelihood

sequence estimation (MLSE) designed to address a few dominant ICI terms. For

QPSK, the proposed method can lower the error floor induced by ICI to under 10−6

with MLSE that takes into account two nearest-neighbor ICI terms with perfect
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channel state information (CSI).

Furthermore, we consider linear minimum mean-square error (LMMSE) and

iterative LMMSE detection with the above partial whitening of additive distur-

bance, together with soft decision feedback. The method is shown to provide good

performance-complexity tradeoff compared to other ICI countermeasures.
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Chapter 1

Thesis Introduction

Orthogonal frequency-division multiplexing (OFDM) is widely adopted in broad-

band wireless signal transmission due to its high spectral efficiency. However, its

performance can suffer severely from the intercarrier interference (ICI) induced by

fast channel variation resulting from high-speed motion. Such an effect is sometimes

referred to as loss of subcarriers orthogonality. The problem becomes increasingly

acute as the carrier frequency or the speed of motion increases. For instance, with a

500 km/h mobile speed and a 6 GHz carrier frequency, the peak Doppler frequency

can be as high as about 2800 Hz, which translates to over 0.25 times the 10.94

kHz subcarrier spacing in the Mobile WiMAX standard [1]. The signal detection

performance can become intolerable without proper countermeasures.

Consider the typical OFDM system illustrated in Fig. 1.1. In a system without

ICI, the channel frequency response matrix that relates the inputs of the inverse

discrete Fourier transform (IDFT) and the outputs of the DFT is diagonal. Fast

channel variation introduces sizable off-diagonal elements in the matrix, thus result-

ing in ICI.

The direct minimum mean square error and zero-forcing equalizers for OFDM

symbols requires a large matrix inversion. Several algorithms [14–16] were developed

to reduce the complexity of this direct matrix inverse for OFDM symbols .
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Figure 1.1: OFDM system model.

Choi et al. [14] proposed a MMSE equalizer for OFDM symbols incorporat-

ing with successive interference cancellation. In [15], Cai and Giannakis derived

recursive algorithms for calculation of the matrix inversion by combining the meth-

ods [2,15].

The above equalizers [14,15] still require ≥ O(N2) complexity, where N is the

number of subcarriers. Hsu and Wu [16] proposed a successive detection combined

with Newton’s iterative matrix inversion, requiring O(NlogN) complexity. However,

as the subcarrier numbers in one OFDM symbol increases, the direct implementation

of a traditional MMSE or ZF equalizer should be avoided.

In theory, an optimal signal detector should take all ICI terms into account.

But for reasons of complexity and robustness, usually only the dominant terms are

compensated for. As these dominant terms are normally concentrated (circulantly)

around the diagonal, the channel matrix shows a (circulant) band structure [2–4,22].

Several frequency-domain equalization techniques based on band approxima-

tion to channel matrices have been proposed, including blockwise zero-forcing linear

equalization [2], linear minimum mean-square error (LMMSE) equalization [3,22,23],

and maximum-likelihood sequence estimation (MLSE) [4].

An interested reader may refer to [16] for additional introduction to various ICI

mitigiation studies.
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Jeon et al. [2] consider the situation where the normalized peak Doppler fre-

quency (i.e., peak Doppler frequency expressed in units of frequency spacing of

subcarriers) is on the order of 0.1 or less. In this situation, the channel variation

over one OFDM symbol time is approximately linear. A frequency-domain equalizer

that exploits the ensuing band channel matrix structure is proposed. Schniter [22]

considers substantially higher normalized peak Doppler frequencies, under which

the ICI is more widespread. Time-domain windowing is used to partially counter-

act the effect of channel variation and shrink the bandwidth of the channel matrix.

An iterative minimum mean-square error (MMSE) equalizer is then used to detect

the signal. Rugini et al. [3] employ block-type linear MMSE equalization, wherein

the band channel matrix structure is exploited (via triangular factorization of the

autocorrelation matrix) to reduce the equalizer complexity. Ohno [4] addresses the

ICI via maximum-likelihood sequence estimation (MLSE) in the frequency domain,

where the band channel matrix structure is utilized to limit the trellis size.

The consideration of only the dominant ICI terms results in an irreducible error

floor in time-varying channels [2–4,22]. Moreover, while the uncompensated residual

ICI is colored [5,6,24], for various reasons it is often treated as white [4–7,24].

In principle, the error performance floor can be reduced by whitening. Although

whitening of “I+N” (i.e., sum of ICI and additive channel noise) can lead to improved

signal detection performance, it requires knowing the autocorrelation function of

I+N, which remains a key problem awaiting solution [6,24]. Without knowing the

autocorrelation function, one can only resort to less sophisticated techniques, such as

simple differencing of the received signals at neighboring subcarriers [8]. Authors [8]

further point out that the noise and channel statistics is a challenging and interesting

problem under investigation.

In this thesis, we attempt to characterize this autocorrelation function of resid-

ual ICI pluse noise for the benefit of signal detection.
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1.1 System Model

Fig. 1.1 shows the discrete-time baseband equivalent model of the considered OFDM

system. The input-output relation of the channel is given by

yn =
L−1∑

l=0

hn,lxn−l + wn (1.1)

where xn and yn are, respectively, the channel input and output at time n, L is

the number of multipaths, hn,l is the complex gain of the lth path (or tap) at time

n, and wn is the complex additive white Gaussian noise (AWGN) at time n. We

assume that the length of the cyclic prefix (CP) is sufficient to cover the length

of the channel impulse response (CIR) (L− 1)Tsa, where Tsa denotes the sampling

period.

One common way of expressing the received signal in the DFT domain is

Ym =
N−1∑

k=0

L−1∑

l=0

XkH
(m−k)
l e−j2πlk/N +Wm, 0≤m≤N − 1, (1.2)

where Xk and Ym are, respectively, the channel input and output in the frequency

domain (see Fig. 1.1), N denotes the size of DFT, Wm denotes the DFT of wm, and

H
(k)
l is the frequency spreading function of the lth path given by

H
(k)
l =

1

N

N−1∑

n=0

hn,le
−j2πnk/N . (1.3)

Another way of expressing it is

y = Hx+w (1.4)

where y = [Y0, ..., YN−1]
′, x = [X0, ..., XN−1]

′, w = [W0, ...,WN−1]
′, and

H =




a0,0 a0,1 · · · a0,N−1

a1,0 a1,1 · · · a1,N−1

...
...

. . .
...

aN−1,0 aN−1,1 · · · aN−1,N−1



, (1.5)

with ′ denoting transpose and

am,k =
L−1∑

l=0

H
(m−k)
l e−j2πkl/N . (1.6)
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The quantity am,k is the “ICI coefficient” from subcarrier k to subcarrier m. For

a time-invariant channel, H
(k)
l vanishes ∀k 6= 0 and H becomes diagonal, implying

absence of ICI.

As mentioned, a band approximation to H that retains only the dominant

terms about the diagonal may ease receiver design and operation, but also results

in an irreducible error floor. Consider a symmetric approximation with one-side

bandwidth K, that is, am,k = 0 for |(m − k)%N | > K where K is a nonnegative

integer and % denotes modulo operation. Then the ICI at each subcarrier consists of

contributions from at most 2K nearest (circularly) subcarriers. In this chapter, we

exploit the correlation of the residual ICI outside the band to attain a significantly

enhanced signal detection performance. For convenience, in the following we omit

explicit indication of modulo-N in indexing a length-N sequence, understanding an

index, say n, to mean n%N .

Let the channel be wide-sense stationary uncorrelated scattering (WSSUS) [10]

with

E[hn,lh
∗
n−q,l−m] = σ2

l rl(q)δ(m) (1.7)

where E[·] denotes expectation, σ2
l denotes the variance of the lth tap gain, rl(q)

denotes the normalized tap autocorrelation (where rl(0) = 1), and δ(m) is the

Kronecker delta function. For convenience, assume
∑

l σ
2
l = 1. Let Pl(f) denote the

Doppler power spectral density (PSD) of path l and thus

rl(q) =

[∫ fd

−fd

Pl(f)e
j2πfτdf

]∣∣∣∣
τ=Tsaq

, (1.8)

where fd denotes the peak Doppler frequency of the channel. We assume that the

paths may be subject to arbitrary, different fading so that Pl(f) may be asymmetric

about f = 0 and different for different l.

1.2 Thesis Organization and Contributions

The content of Chap. 3,4 has been published in [9,25] and the content of Chap. 5

will be published in [40].
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The contribution of the present thesis is twofold.

First, we explore the correlation property of ICI outside the band and derive

an approximate mathematical expression for it. The expression applies not only to

classical multipath Rayleigh fading, but also to arbitrary Doppler spectrum shapes

in general. It is found that the correlation values are based solely on the ICI-to-noise

ratio. Moreover, the correlation values are very high for the residual ICI beyond the

few dominant terms.

Secondly, to capitalize on the above high correlation to improve signal recep-

tion over fast varying channels, we consider performing simple blockwise whitening

of the residual I+N before signal detection (i.e., equalization), where the whitener

makes use of the ICI characteristics as found. Numerical results show that substan-

tial gains can be achieved with this approach.

This chapter describes the system model and introduced this thesis organiza-

tion.

In Chap. 2, we introduce some mobile channel characterization.

In Chap. 3,we find that, in a mobile time-varying channel, the residual ICI

beyond several dominant terms had high normalized autocorrelation. We derive

a rather precise closed-form approximation for the (unnormalized) autocorrelation

function. As a result, a whitening transform for the residual ICI plus noise can be

obtained based solely on the ICI-to-noise ratio.

In Chap. 4, we consider MLSE-type signal detection in ICI with blockwise

whitening of the residual ICI plus noise. Simulations and SINR numerical analysis

are provided.

In Chap. 5 , we consider LMMSE signal detection with blockwise whitening of

residual ICI plus noise. We present some simulation results based on 3 × 3 block

whitening and three-sample equalization. The results show that a good tradeoff

between complexity and performance could be achieved.

Finally, Chap. 6 gives an overall conclusion and describes the potential future
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topics.
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Chapter 2

Wireless Channel Characterization

2.1 Wireless Channel

In general, “channel” can be used to mean everything between the source and the

There may be more than one path over which the signal can travel between the

transmitter and receiver over the air. Various signals are sent from the transmitter

antennas and the all paths before it reaches the receiver antennas are referred as

channel. The wireless users communicate over the air and then there is significant

interference over channels. The wireless channel could be a simple straight line (Line

of Sight, LOS). It also may be interfered by other factors, such as multi-path effects,

which are due to atmospheric scattering and reflections from buildings and other

objects.

Before arriving at the receiving antenna, the transmitted signal follows many

different paths, and these paths constitute the multipath radio propagation channel.

The resulting signal strength will undergo large fluctuations. How to deal with fading

and with interference over channel is a key issue for the design of communication

systems. The time variation of the channel strengths due to the small-scale effect of
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multipath effects, as well as larger-scale effects such as shadowing by obstacles and

path loss by distance attenuation. Shadow fading reveals itself as an attenuation of

the average signal power. Shadow fading is induced by obstacles (buildings, hills,

etc.) between transmitter and receiver. The wireless users communicating over

the air often encounters both types of fading: multipath fading superimposed on

the slower fading. The channel impulse response in the complex-lowpass equivalent

form is composed of two components,

h(τ, t) = s(t)× c̃(τ, t) (2.1)

where s(t) denotes the shadow fading component and c̃(τ, t) denotes the multipath

component. ( 2.1) means the multipath fading is superimposed on the shadow fading

. It turns out that channels gains vary over multiple time-scales. At a fast time-

scale, channels vary due to the multipath effects. At a slow time-scale, channels

vary due to large-scale fading effects such as shadowing and path loss by distance

attenuation. The duration of a shadow fade lasts for multiple seconds or minutes,

and hence occurs at a much slower time-scale compared to multipath fading. Since

the shadow fading is slow and is often compensated by power control, it may be

regarded as quasi-static. Large-scale shadowing fading is often relevant to issues

such as cell-site planning. Small-scale multipath fading is often relevant to the

wireless communication systems design. For a given shadow fading component, the

signal envelope is conditionally Rayleigh or Ricean distribution. If there is no LOS

signal contribution to the receiver, the signal follows a Rayleigh distribution. If there

is a LOS signal contribution to the receiver, the signal follows a Ricean distribution.

2.2 Multipath Fading

In a multipath channel, the transmitted signals arriving along different paths can

have different attenuations and delays and they might be superimposed either con-

structively or destructively at the receiver. This is the phenomenon of multipath

fading.

Two of the important multipath fading channels are the diffuse and discrete
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channels [31]. Many realistic channels contain both diffuse and discrete properties.

Those two properties often are separated for the purpose of channel modeling.

1. Diffuse multipath channel: The multipath signal paths are generated by

a large number of unresolvable reflections. The Diffuse multipath fading might

occur in an urban or a mountainous area. The signal envelope generated by lots

unresolvable reflections is Rayleigh or Ricean distribution.

2. Discrete multipath channel: The multipath paths are made up of a few

identifiable and resolvable components, which are reflected by hills or structures

in open or rural areas. This results in a channel model with a finite number of

multipath components.

2.2.1 Statistical Characterization of Multipath Channels

The multipath channels for both the diffuse and discrete effects have the following

statistical characterization [31]:

1. Time spreading of the symbol duration in τ , which can be modeled as a set

of discrete resolvable multipath components [31]: The channels effect is equivalent

to filtering and band-limiting. A popular model for discrete multipath channels is

the tapped-delay-line (TDL) channel model [33,34].

2. A time-variant channel behavior in t due to the motion of the receiver or

the changing environment such as movements of reflectors or scatters: A popular

channel model describing a time-variant behavior is the Jakes Doppler Spectrum.

2.2.2 Doubly Selective Channel Model

The doubly selective channel actually means the multipath channel with the time-

variant behavior. Different time-variant and frequency selective fading channels may

be simulated, depending on the settings of gain and time delay. They are shown in

Fig. 2.1.
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Figure 2.1: Frequency Selective Fading Channel Simulators.

2.3 Statistical Characterization of the

Time-Variant Behavior

The components of the multipath fading received signal can be modeled by treating

c̃(τ, t) as a random process in t. Since c̃(τ, t) arises from a large number of reflections

and scattering, then by the central limit theorem, it can be modeled as a complex

Gaussian process. In radio communications, the most common model describing flat

fading in urban/suburban environments is Clarke’s model [35].

At any time t, the probability density functions of the real and imaginary parts

of c̃(τ, t) are Gaussian. If c̃(τ, t) has a zero mean, then the envelope |c̃(τ, t)| = r

can be shown [36] to be Rayleigh-distributed, i.e. with probability density function

(pdf):

p(r) =
r

σ2
e−

r2

2σ2 (2.2)
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where σ2 is the time-average power of the received signal before envelope detec-

tion If c̃(τ, t) has a nonzero mean, which implies there is a significant line-of-sight

component present, can then be shown [36] to be Rician-distributed, i.e. with pdf:

p(r) =
r

σ2
e

−(r2+A2)

2σ2 I0(
Ar

σ2
) (2.3)

where A is the nonzero mean of and I0(.)is the zero-order modified Bessel function of

the first kind. In such a situation, random multipath components arriving at differ-

ent angles are superimposed on a stationary dominant signal. A ratio K = A2/(2σ2)

is an indicator of the relative power in the faded and unfaded components.K is

termed the Rician K-factor and completely specifies the Ricean distribution. As

K >> 1, and as the dominant path fades away, the Ricean distribution degenerates

to a Rayleigh distribution.

2.4 Statistical Characterization: The WSSUS

Model

A frequency-flat fading channel simulator needs to reproduce the Doppler spread-

ing only, while a frequency-selective fading channel simulator should emulate both

Doppler spreading and time spreading. In general, the time spreading and Doppler

spreading are mutually related. However, most channel simulators treat the two

spreading processes independently for simplicity.

Such simulators are said to follow the Wide-Sense Stationary Uncorrelated Scat-

tering (WSSUS) assumption in [32]. In the sections below, common approaches

are reviewed for separately simulating the Doppler spreading process and the time

spreading process. A model for the multipath channel that includes both the vari-

ations in t and τwas introduced by Bello [32]. The time-varying channel c̃(τ, t) is

modeled as a wide-sense stationary (WSS) random process in t with an autocorre-

lation function

Rc̃(τ1, τ2,∆t) = E[c̃∗(τ1, t)c̃(τ2, t+∆t)] (2.4)

In most multipath channels, the attenuation and phase shift associated with different
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delays may be uncorrelated. This is the uncorrelated scattering (US) assumption,

which leads to

Rc̃(τ1, τ2,∆t) = Rc̃(τ1,∆t)δ(τ2 − τ1) (2.5)

The most important class of stochastic time-variant linear channel models is repre-

sented by models belonging to the WSS models as well as to the US models. These

channel models with both the WSS and US assumptions are called WSSUS mod-

els (WSSUS, wide-sense stationary uncorrelated scattering). This autocorrelation

function is denoted by Rc̃(∆τ,∆t), and

Rc̃(∆τ,∆t) = E[c̃(τ, t)c̃(τ +∆τ, t+∆t)] (2.6)

Due to their simplicity, they are of great practical importance and are nowadays

almost exclusively employed for modeling frequency-selective mobile radio channels.

2.5 The Time-Varying Channel

For mobile radio applications, the channel is time-varying because the motion be-

tween the transmitter and receiver results in propagation paths change. It should

be noted that since the channel characteristics are dependent on the relative posi-

tions of the transmitter and receiver, time variance is equivalent to space variance.

As mentioned previously, the time variation of the channel is characterized by the

Doppler power spectrum. Although Doppler power spectrums apply to any time-

variant model, for the sake of simplicity we present the commonly used Jakes model.

2.5.1 Jakes Doppler Spectrum

Jakes Doppler spectrum applies to time-varying channels. The so-called ”Jakes”

Doppler power spectrum model is due to Gans [37]. Gans analyzed the Doppler

spectrum of time-varying channels by Clarke’s model [35], which is also called the

”classical model”. Jakes Doppler spectrum follows the following assumptions [38,39]:

1. The radio waves propagate horizontally.
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2. The ray arrival angles at receivers are uniformly distributed over [−π, π] .

3. The receiver’s antenna is omnidirectional. The normalized Jakes Doppler

spectrum is given by

Sj(f) =
1

πfd

√
1− (f/fd)

2
, |f | ≥ fd (2.7)

where fd is the maximum Doppler shift. And the corresponding autocorrelation

is then:

Rj(τ) = J0(2πfdτ) (2.8)

where J0(z)is the Bessel function of the first kind of order 0. We will have the

amplitude of the frequency response as

|Hj(f)| =
√
Sj(f) (2.9)

2.5.2 Doppler Spreading Simulation

The Rayleigh or Rician fading simulators designed to ensure that the following

two properties are approximately verified, Due to the Doppler spreading, its power

spectrum is given by the Clarke model, or by any other specified spectrum. For

simulated fading process, its envelope should be Rayleigh or Rician-distributed.

Two popular methods are sum-of-sinusoids (SoS) simulators and filtered Gaussian

noise (FGN) simulators [39].

1. Simulators by Summing of Sinusoids

Like Clarke’s model, many sum of sinusoids simulators for fading channel have

been proposed over the past three decades. Simulators by summing of sinusoids

create the fading process by superposing several waves, each one being characterized

by random amplitude, angle of arrival, and phase. As mention above, the resulting

process of fading tends towards a Gaussian distribution due to the central limit

theorem.
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2. Simulators Filtering Gaussian Process with The Doppler Filters

A straightforward method of constructing simulators is to filter two independent

white Gaussian noise with low-pass filters (Doppler filter). The Doppler filters H(f)

(impluse response) are to approximate the desired Doppler spectrum by eq(2.9).

A complex Gaussian fading process with desired spectrums can be obtained by

filtering with a Doppler filter. Both finite impulse response (FIR) filters and infinite

impulse response (IIR) filters have been proposed as the Doppler filters. The filtering

operation can be carried out in either the time domain or the frequency domain. A

simple example was shown in [31] p.575.
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Chapter 3

Autocorrelation of Residual

Intercarrier Interference

In this chapter, we try to characterize this autocorrelation function of residual ICI

pluse noise from the viewpoint of signal detection. We derived a rather precise

closed-form approximation for the (unnormalized) autocorrelation function. It is

found that the correlation values are based solely on the ICI-to-noise ratio. More-

over, the correlation values are very high for the residual ICI beyond the few domi-

nant terms.

The remainder of this chapter is organized as follows. Sec. 3.1 analyzes the

correlation property of ICI. Sec. 3.2, we verify some key results above by considering

multipath Rayleigh fading and simple Doppler frequency shift. Finally, Sec. 3.4 gives

a summary.
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3.1 Derivation of Autocorrelation of Residual

ICI

Assume a signal detector (equalizer) able to handle 2K terms of nearest-neighbor

ICI. We may partition the summation over k in (1.2) into an in-band and an out-

of-band term as

Ym =
m+K∑

k=m−K

L−1∑

l=0

H
(m−k)
l e−j2πlk/NXk +

∑

k/∈[m−K,m+K]

L−1∑

l=0

H
(m−k)
l e−j2πlk/NXk

︸ ︷︷ ︸
,cm,K

+Wm,

(3.1)

where cm,K is the out-of-band term, i.e., residual ICI. Alternatively, using the nota-

tion of (1.6),

Ym =
m+K∑

k=m−K

am,kXk + cm,K +Wm (3.2)

where

cm,K =
∑

k/∈[m−K,m+K]

am,kXk. (3.3)

For large enough N , the residual ICI may be modeled as Gaussian by the central

limit theorem.

It turns out that the analysis can be more conveniently carried out by way of

the frequency spreading functions of the propagation paths than by way of am,k.

Hence consider (3.1). From it, the autocorrelation of cm,K at lag r is given by

E[cm,Kc
∗
m+r,K ] = Es ×

∑

k/∈[m−K,m+K]
∪[m+r−K,m+r+K]

L−1∑

l=0

E[H
(m−k)
l H

(m+r−k)∗
l ]

= Es ×
∑

k/∈[−K,K]∪[−K−r,K−r]

L−1∑

l=0

E[H
(k)
l H

(k+r)∗
l ] (3.4)

where Es is the average transmitted symbol energy and we have assumed that Xk

is white. Invoking (1.3) and (1.7), we get

E[cm,Kc
∗
m+r,K ] =

Es

N2

L−1∑

l=0

N−1∑

n=0

N−1∑

n′=0

∑

k/∈[−K,+K]
∪[−K−r,K−r]

σ2
l rl(n− n′)ej2π[n

′(k+r)−nk]/N . (3.5)
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We show in the Sec. 3.3 that

E[cm,Kc
∗
m+r,K ] ≈ 4π2T 2

saEs

(
L−1∑

l=0

σ2
l σD

2
l

)
ρ(K, r,N) (3.6)

where σD
2
l is the mean-square Doppler spread of path l given by σD

2
l =

∫ fd
−fd

Pl(f)f
2dfand

ρ(K, r,N) =
∑

k/∈[−K,K]∪[−K−r,K−r]

1

(1− e−j2πk/N)(1− ej2π(k+r)/N )
. (3.7)

Note that

ρ(K, r,N) =
∑

k∈[0,N−1]\{0,−r}

1

(1− e−j2πk/N)(1− ej2π(k+r)/N)
︸ ︷︷ ︸

,ρ0(r,N)

−
∑

k∈[−K,K]∪[−K−r,K−r]\{0,−r}

1

(1− e−j2πk/N)(1− ej2π(k+r)/N )
︸ ︷︷ ︸

,ρ1(K,r,N)

,(3.8)

where the exclusion of 0 and −r from both ranges of summation is to skip over

the points of singularity where the summands are null anyway. Note further that

−1/(1 − e−j2πk/N) and −1/(1 − e−j2π(k+r)/N) (as sequences in k) are the DFTs of

[n− (N −1)/2]/N and e−j2πrn/N [n− (N −1)/2]/N (as sequences in n), respectively.

Hence, with Parseval’s theorem we get

ρ0(r,N) =
1

N

N−1∑

n=0

(
n−

N − 1

2

)2

ej2πrn/N =





N2−1
12

, r = 0,

−2
(1−ej2πr/N )2

, r 6= 0.
(3.9)

For ρ1(K, r,N), we have

ρ1(K, r,N) = ρ∗1(K,−r,N), (3.10)

i.e., it is conjugate symmetric in r. Moreover, the summands in the last summation

in (3.8) are symmetric over the range of summation. But the range of summation

does not allow us to obtain a compact expression for ρ1(K, r,N) as that for ρ0(r,N).

As mentioned, the proposed receiver will whiten the residual I+N before equal-

ization. Here we make some observations of the properties of the normalized autocor-

relation of residual ICI, i.e., E[cm,Kc
∗
m+r,K ]/E[|cm,K |

2], that are relevant to whitener

design and performance. For this, note from (3.6) that E[cm,Kc
∗
m+r,K ]/E[|cm,K |

2]

18



depends only on K and N through ρ(K, r,N); the other factors cancel out. Thus

this normalized autocorrelation is independent of the average transmitted symbol

energy Es and the sample period Tsa. More interestingly, it is also independent of

the power-delay profile (PDP) of the channel (i.e., σ2
l vs. l) and the Doppler PSD

Pl(f) of each path. While the independence of the normalized autocorrelation on the

average transmitted symbol energy may be intuitively expected, its independence

of the sample period, the PDP, and the Doppler PSDs of channel paths appears

somewhat surprising.

Moreover, the normalized autocorrelation is also substantially independent of

the DFT size N . To see this, note that for complexity reason, in a practical receiver

both the whitener and the equalizer are likely short. A short equalizer implies a

small K and a short whitener implies a small range of r over which the normalized

autocorrelation needs to be computed. Hence, when N is large, the exponential

functions in the above summations for ρ0(r,N) and ρ1(K, r,N) can all be well ap-

proximated with the first two terms of their respective power series expansion (i.e.,

ex ≈ 1 + x when |x| ≪ 1). As a result, we have

ρ(K, r,N) = ρ0(r,N)− ρ1(K, r,N) (3.11)

where

ρ0(r,N) ≈





N2

12
, r = 0,

N2

2π2r2
, r 6= 0,

(3.12)

ρ1(K, r,N) ≈
∑

k∈[−K,K]∪[−K−r,K−r]\{0,−r}

N2

4π2k(k + r)
. (3.13)

Thus the normalized autocorrelation, being essentially given by ρ(K, r,N)/ρ(K, 0, N),

is substantially independent of the DFT size N .

The rules are given below.

Property 1

Assume a receiver partition the frequency channel matrix with band width K into

an in-band and an out-of-band term and is out-of-band term at m-th subcarrier.
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The normalized autocorrelation of cm,K at lag r is given by

E[cm,Kc
∗
m+r,K ]

E[|cm,K |2]
≈

1/r2 −
∑

k∈[−K,K]∪[−K−r,K−r]\{0,−r}

1/2k(k + r)

π2/6−
K∑
k=1

1/k2

, (3.14)

that will approximate to a constant on condition that K, r are given.

Although the above observations concern ICI only, it is straightforward to extend

them to the sum of ICI and AWGN channel noise.

Property 2

The normalized autocorrelation of Zm (i.e. cm,K +Wm) at lag r is given by

E[ZmZm+r
∗]

E[|Zm|2]
≈

1/r2 −
∑

k∈[−K,K]∪[−K−r,K−r]\{0,−r}

1/2k(k + r)

π2/6−
K∑
k=1

1/k2

1

1 + E[|Wm|2]
E[|cm,K |2]

(3.15)

that will approximate to a function only depends on E[|Wm|2]
E[|cm,K |2]

with K, r given.

In particular, the resulting whitening filter and its performance can also disregard

a variety of system parameters and channel conditions, including the DFT size, the

sample period, the system bandwidth (which is approximately proportional to the

inverse of the sample period), the OFDM symbol period NTsa, the channel PDP,

and the Doppler PSDs of the channel paths. They only depend on the ICI-to-noise

power ratio (INR) at the receiver.

As a result, a whitener parameterized on receiver INR can be designed for all

operating conditions, which is advantageous for practical system implementation.

(The estimation of ICI and noise powers is outside the scope of the present work.

Some applicable methods have been proposed in the literature, e.g., [11] for ICI

power and [12] for noise power.)

The whitener performance can be understood to a substantial extent by examin-

ing the above approximation to the normalized autocorrelationE[cm,Kc
∗
m+r,K ]/E[|cm,K |

2].

We leave a detailed study along this vein to potential future work. For now, we shall

be content with a first-order understanding by a look at its value at lag r = 1. A
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large value indicates that whitening can effectively lower the residual ICI. For this,

we see from the above approximation (after some straightforward algebra) that

E[cm,Kc
∗
m+1,K ]

E[|cm,K |2]
≈

ρ(K, 1, N)

ρ(K, 0, N)
≈

1−
∑K

k=1 1/[k(k + 1)]

π2/6−
∑K

k=1 1/k
2

=
1/(K + 1)

π2/6−
∑K

k=1 1/k
2
.

(3.16)

For example, its values for K = 0–3 are, respectively, 0.6079, 0.7753, 0.8440, and

0.8808, which are substantial indeed.

As a side remark that will be of use later, we note the following properties from

(3.6) and (3.11).

Property 3

The total ICI power E[|cm,0|
2] can be approximated as

σ2
c0 , E[|cm,0|

2] ≈ 4π2T 2
saEs

(
L−1∑

l=0

σ2
l σD

2
l

)
ρ(0, 0, N) ≈

Es

12
(2πTsaN)2

(
L−1∑

l=0

σ2
l σD

2
l

)
,

(3.17)

which is in essence the upper bound derived in [11]. Moreover, we have an approxi-

mation to the partial ICI power beyond the 2K central terms.

Property 4

The total ICI power E[|cm,K |
2] can be approximated as

σ2
cK , E[|cm,K |

2] ≈ 4π2T 2
saEs

(
L−1∑

l=0

σ2
l σD

2
l

)
ρ(K, 0, N) ≈ σ2

c0

(
1−

6

π2

K∑

k=1

1

k2

)
.

(3.18)

In the following section, we provide some numerical examples to verify the above

results on ICI correlation. Then, in the next section, we consider how to incorporate

a whitener for residual ICI plus noise in the receiver.

3.2 Numerical Examples

In this section, we verify some key results above by considering two very different

channel conditions: multipath Rayleigh fading and simple Doppler frequency shift.
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Figure 3.1: Normalized autocorrelation of residual ICI over multipath Rayleigh fad-

ing channel at K = 0, with N = 128 and Tsa = 714 ns. The first-order approxi-

mation (3.11)–(3.13) yields 0.6079 for r = 1 and 0.1520 for r = 2, which are quite

accurate at low fd values.
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Figure 3.2: Normalized autocorrelation of residual ICI over multipath Rayleigh fad-

ing channel at K = 1, with N = 128 and Tsa = 714 ns. The first-order approxi-

mation (3.11)–(3.13) yields 0.7753, 0.6461, 0.5599, 0.3036, 0.1912, and 0.1317, for

r = 1–6, respectively, which are quite accurate.
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Figure 3.3: Normalized autocorrelation of residual ICI over multipath Rayleigh fad-

ing channel at K = 2, with N = 128 and Tsa = 714 ns. The first-order approxi-

mation (3.11)–(3.13) yields 0.8440, 0.7358, 0.6612, 0.6014, and 0.5534, for r = 1–5,

respectively, which are quite accurate.
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Figure 3.4: Normalized autocorrelation of residual ICI over one-Doppler-line channel

at K = 0, with N = 128 and Tsa = 714 ns.
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Figure 3.5: Normalized autocorrelation of residual ICI over one-Doppler-line channel

at K = 1, with N = 128 and Tsa = 714 ns.
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Figure 3.6: Normalized autocorrelation of residual ICI over one-Doppler-line channel

at K = 2, with N = 128 and Tsa = 714 ns.
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First, consider a multipath channel having the COST 207 6-tap Typical Urban

(TU6) PDP as shown in Table 4.1 [13, p. 94]. Let the paths be subject to Rayleigh

fading with the same peak Doppler frequency fd, so that rl(q) = J0(2πfdTsaq) for

all l, where J0(·) denotes the zeroth-order Bessel function of the first kind [10].

Let the OFDM system have N = 128, subcarrier spacing fs = 10.94 kHz, and

sampling period Tsa = 1/(Nfs) = 714 ns, which are some of the Mobile WiMAX

parameters [1].

Figs. 3.1–3.3 illustrate the normalized autocorrelation of the residual ICI for

K = 0–2, respectively, where the theoretical values are calculated using (3.5). As

points of reference, note that a peak Doppler frequency of 1 kHz corresponds to a

180 km/h mobile speed at a 6 GHz carrier frequency, or a 540 km/h mobile speed

at a 2 GHz carrier frequency. Figs. 3.1–3.3 show that the theory and the simulation

results agree well up to very large Doppler spreads. In addition, they also show

that, for given lag r, the normalized autocorrelation increases with K. The last

fact can be understood by examining (3.3): as K increases, the residual ICI cm,K is

composed of the sum of increasingly fewer terms with generally smaller magnitudes,

which naturally leads to higher normalized autocorrelation.

Next, consider a channel with a one-line Doppler PSD equal to δ(f − fd); in

other words, the channel simply effects a frequency offset of fd. The temporal

autocorrelation of the CIR is given by rl(q) = exp(j2πfdTsaq). It turns out that the

normalized autocorrelation of residual ICI is very similar to that obtained for the

previous example, as the theory predicts. Figs. 3.4–3.6 illustrate the corresponding

normalized autocorrelation of the residual ICI for K = 0–2, respectively. They are

very similar to Figs. 3.1–3.3, as the theory predicts.

Looking backwards from the one-Doppler-line example to the earlier analysis

in this Section 3.1, we find that this example also provides an alternative way of

interpreting the earlier analytical results. Specifically, an arbitrary Doppler PSD

can be considered as composed of a (possibly infinite) number of line PSDs. Hence

the autocorrelation of residual ICI associated with an arbitrary Doppler PSD may

be obtained as a linear combination of the autocorrelation associated with a line
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PSD as

E[cm,Kc
∗
m+r,K ]|any shape =

L−1∑

l=0

σ2
l

∫ fd

−fd

Pl(f)E[cm,Kc
∗
m+r,K ]|line,fdf (3.19)

where E[cm,Kc
∗
m+r,K ]|any shape denotes the autocorrelation of residual ICI associated

with a multipath channel of arbitrary Doppler PSD and E[cm,Kc
∗
m+r,K ]|line,f that

associated with a line Doppler PSD corresponding to a Doppler frequency f . As we

have verified now (through Figs. 3.4–3.6, for example) that

E[cm,Kc
∗
m+r,K ]|line,fd

E[cm,Kc
∗
m,K ]|line,fd

≈
ρ(K, r,N)

ρ(K, 0, N)
, (3.20)

substituting it into (3.19) yields

E[cm,Kc
∗
m+r,K ]|any shape ≈

ρ(K, r,N)

ρ(K, 0, N)
×

L−1∑

l=0

σ2
l

∫ fd

−fd

Pl(f)E[cm,Kc
∗
m,K ]|line,fdf

=
ρ(K, r,N)

ρ(K, 0, N)
×E[cm,Kc

∗
m,K ]|any shape. (3.21)

In other words, since the single-Doppler-line channel shows substantial invariance of

the normalized residual ICI autocorrelation over a large range of operating conditions

(as we have seen in the last example), it follows that a channel with any Doppler

PSD has a similar property.

In summary, we have confirmed that the normalized autocorrelation of the

residual ICI is quite insensitive to various system parameters and channel condi-

tions. To lower the error floor, therefore, a whitening filter for the residual ICI plus

noise can be designed without regard to these system parameters and channel con-

ditions. Such a fixed design can lead to low implementation complexity and robust

performance.
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3.3 Derivation of (3.6) and Some Related

Comments

Equation (3.5) gives

E[cm,Kc
∗
m+r,K ] =

Es

N2

L−1∑

l=0

N−1∑

n=0

N−1∑

n′=0

∑

k/∈[−K,+K]∪[−K−r,K−r]

σ2
l rl(n− n′)ej2π[n

′(k+r)−nk]/N .

Substituting the inverse Fourier transform relation in (1.8) into the right-hand side

(RHS) of (3.5), we get

E[cm,Kc
∗
m+r,K ] =

Es

N2

L−1∑

l=0

N−1∑

n=0

N−1∑

n′=0

∑

k/∈[−K,+K]∪[−K−r,K−r]

σ2
l

·

∫ fd

−fd

Pl(f){cos[2πfTsa(n− n′)] + j sin[2πfTsa(n− n′)]}df · ej2π[n
′(k+r)−nk]/N .

(3.22)

Let ξ denote the quantity that collects all the terms associated with sin[2πfTsa(n−

n′)]. That is,

ξ =
Es

N2

L−1∑

l=0

σ2
l

∫ fd

−fd

dfPl(f)
N−1∑

n=0

N−1∑

n′=0

∑

k/∈[−K,+K]
∪[−K−r,K−r]

j sin[2πfTsa(n−n′)]ej2π[n
′(k+r)−nk]/N .

(3.23)

Consider the inner triple sum and denote it by χ. By substituting the variables n,

n′, and k with ν ′, ν, and −(κ + r), respectively, we get, after some straightforward

algebra,

χ =
N−1∑

ν=0

N−1∑

ν′=0

∑

κ/∈[−K,+K]∪[−K−r,K−r]

−j sin[2πfTsa(ν − ν ′)]ej2π[ν
′(κ+r)−νκ]/N . (3.24)

A comparison with the inner triple sum in (3.23) shows that χ = −χ, which implies

χ = 0 and thus ξ = 0. Therefore, only the cosine terms remain in E[cm,Kc
∗
m+r,K ].

Approximating the cosine function by taking its power series expansion and retaining
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only up to the second-order term as cosx ≈ 1− x2/2, we get

E[cm,Kc
∗
m+r,K ]

≈
Es

N2

L−1∑

l=0

σ2
l

∫ fd

−fd

Pl(f)df
∑

k/∈[−K,K]∪[−K−r,K−r]

N−1∑

n=0

e−j2πnk/N

︸ ︷︷ ︸
=0

N−1∑

n′=0

ej2πn
′(k+r)/N

︸ ︷︷ ︸
=0

−
Es

2N2

L−1∑

l=0

σ2
l

∫ fd

−fd

Pl(f)(2πfTsa)
2df

∑

k/∈[−K,K]
∪[−K−r,K−r]




N−1∑

n=0

n2e−j2πnk/N
N−1∑

n′=0

ej2πn
′(k+r)/N

︸ ︷︷ ︸
=0

+
N−1∑

n=0

e−j2πnk/N

︸ ︷︷ ︸
=0

N−1∑

n′=0

n′2ej2πn
′(k+r)/N − 2

N−1∑

n=0

ne−j2πnk/N
N−1∑

n′=0

n′ej2πn
′(k+r)/N




= 4π2T 2
saEs

L−1∑

l=0

σ2
l

∫ fd

−fd

Pl(f)f
2df

∑

k/∈[−K,K]
∪[−K−r,K−r]

1

(1− e−j2πk/N)(1− ej2π(k+r)/N )
. (3.25)

In fact, the above second-order approximation to cosine function is tantamount

to assuming linearly time-varying paths in the CIR. To see it, let hl(t) denote the

continuous-time waveform of the lth path of the CIR (of which hn,l is a sampled

version) and let h′
l(t) be its time-derivative. Then by a well-known relation between

the time-derivative of a stochastic process and its PSD, we have 4π2σ2
l

∫
Pl(f)f

2df =

E [|h′
l(t)|

2] [20, Table 7.5-1]. Therefore, if we approximate the channel by one whose

lth path response varies linearly with time in some period with its slope equal to[
|h′

l(t)|
2
]1/2

in magnitude (where the overline in the brackets denotes time average

over this period), then the autocorrelation of residual ICI of the approximating

channel would be exactly that obtained above, without approximation. In this

sense, the second-order approximation to cosine function above is tantamount to

assuming linearly time-varying paths in the CIR.

Numerical examples in Section 3.1 show that the ensuing approximation to the

autocorrelation of the residual ICI is rather accurate even under a relatively large

peak Doppler shift.
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3.4 Summary of Results

We found that, in a mobile time-varying channel, the residual ICI beyond several

dominant terms had high normalized autocorrelation. We derived a rather precise

closed-form approximation for the (unnormalized) autocorrelation function. It turns

out that, up to a rather high peak Doppler frequency, the normalized autocorrelation

was not sensitive to a variety of system parameters and channel conditions, includ-

ing the DFT size, the sample period, the system bandwidth, the OFDM symbol

period, the average transmitted symbol energy, the multipath channel profile, and

the Doppler PSDs of the channel paths. As a result, a whitening transform for the

residual ICI plus noise can be obtained based solely on the ICI-to-noise ratio. Such

a transform can be used in association with many different signal detection schemes

to significantly improve the detection performance. That it depends only on the

ICI-to-noise ratio but no other quantities also implies simplicity and robustness.
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Chapter 4

MLSE Detection with Whitening

of Residual ICI Plus Noise

In Sec. 4.1, we considered MLSE-type signal detection with blockwise whitening of

the residual ICI plus noise. Simulations showed that the proposed technique could

lower the ICI induced error floor by several orders of magnitude in MLSE that

addressed a few dominant ICI terms.

To capitalize on the above high correlation to improve signal reception over fast

varying channels, In Sec. 4.4, we consider performing simple blockwise whitening of

the residual I+N before signal detection (i.e., equalization), where the whitener

makes use of the ICI characteristics as found. Numerical analysis of SINR also

confirms that substantial gains can be achieved with this approach. The chapter is

organized as follows.

The remainder of this chapter is organized as follows. Sec. 4.2, we presents

complexity analysis of proposed method. Sec. 4.3 presents some simulation results

on signal detection performance. Sec. 4.4 explores how signal detection performance

depends on whitener parameter setting. Finally, Sec. 4.5 gives a summary.
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4.1 MLSE Detection with Whitening of Residual

ICI Plus Noise

As indicated, we propose to whiten the residual ICI plus noise in signal detection.

This can be applied to many detection methods, including MMSE, iterative MMSE,

decision-feedback equalization (DFE), MLSE, etc., providing a wide range of tradeoff

between complexity and performance. In this chapter, we consider an MLSE-based

technique both to illustrate how such whitening can be carried out and to demon-

strate its benefit. For simplicity, rather than performing whitening over a complete

sequence, we do blockwise whitening over windows of size 2q + 1 where q may or

may not be equal to K. The details are as follows.

Consider a vector of 2q+1 frequency-domain signal samples centered at sample

m:

ym = [Ym−q · · · Ym · · · Ym+q]
′ = Hmxm + zm (4.1)

where xm = [Xm−p · · · Xm · · · Xm+p]
′ for some integer p, Hm is a (2q + 1) ×

(2p + 1) submatrix of H of bandwidth K, and zm collects all the right-hand-side

(RHS) terms in (1.2) (or (1.4)) associated with Yk, m − q ≤ k ≤ m + q, that do

not appear in Hmxm. The elements of zm include both residual ICI and channel

noise. To avoid clogging the mathematical expressions with details, we have omitted

explicit indexing of various quantities in (4.1) with the parameters K, p, and q,

understanding that their dimensions and contents depend on these parameters. As

an example, with the set of parameters {K = 1, q = 1, p = 2} we have

Hm =




am−1,m−2 am−1,m−1 am−1,m 0 0

0 am,m−1 am,m am,m+1 0

0 0 am+1,m am+1,m+1 am+1,m+2


 (4.2)

whereas with {K = 1, q = 1, p = 1},

Hm =




am−1,m−1 am−1,m 0

am,m−1 am,m am,m+1

0 am+1,m am+1,m+1


 . (4.3)
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Let Kz = E[zmz
H
m], i.e., the covariance matrix of zm, where superscript H

stands for Hermitian transpose. The aforesaid blockwise whitening of residual ICI

plus noise zm is given by

ỹm , K
− 1

2
z ym = K

− 1
2

z Hm︸ ︷︷ ︸
,H̃m

xm +K
− 1

2
z zm︸ ︷︷ ︸
,z̃m

(4.4)

where K
− 1

2
z may be defined in more than one way. One choice is to let K

− 1
2

z =

UΛ− 1
2UH where U is the matrix of orthonormal eigenvectors of Kz and Λ is the

diagonal matrix of corresponding eigenvalues of Kz.

If block-by-block signal detection were desired, then the ML criterion would

result in the detection rule x̂m = argminxm ‖ỹm − H̃mxm‖
2. As stated, we consider

MLSE-based detection in this chapter.

In developing the MLSE-based detection method, we treat z̃m,m = 0, . . . , N−1,

as if they were mutually independent, even though this may at best be only nearly

so. Then the probability density function of the received sequence conditioned on

the transmitted sequence would be

f(ỹ0, ỹ1, . . . , ỹN−1|x0,x1, . . . ,xN−1) = f(z̃0, z̃1, . . . , z̃N−1) =

N−1∏

n=0

f(z̃n). (4.5)

As a result, the recursive progression of the log-likelihood values, i.e.,

Λk , log f(z̃0, z̃1, . . . , z̃k) = Λk−1 + log f(ỹk − H̃kxk), k = 1, . . . , N − 1, (4.6)

leads to a standard Viterbi algorithm. Disregarding some common terms that do

not affect sequence detection, in the Viterbi algorithm we may use ‖ỹk − H̃kxk‖
2

as the branch metric instead of log f(ỹk − H̃kxk). Fig. 4.1 illustrates the trellis

structure of the MLSE detector for p = 1 under QPSK modulation. A tradeoff

between complexity and performance can be achieved by different choices of the

three parameters K, q, and p, where p determines the number of states in each

trellis stage and the three parameters jointly affect the branch metric structure in

the trellis and the autocorrelation structure of the residual ICI (and thereby the

whitener behavior).
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Figure 4.1: Trellis structure for MLSE-based detection using the Viterbi algorithm,

under QPSK modulation and with p = 1, where numerals 0–3 represent the QPSK

constellation points.
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Table 4.1: Two Channel Power-Delay Profiles Used in This Study, Where TU6

Corresponds to the COST 207 6-Tap Typical Urban Channel And SUI4 the SUI-4

3-Tap Channel

Tap Index 1 2 3 4 5 6

TU6 Delay (µs) 0.0 0.2 0.5 1.6 2.3 5.0

Power (%) 19 38 24 9 6 4

Tap Index 1 2 3 – – –

SUI4 Delay (µs) 0.0 1.5 4.0 – – –

Power (%) 64 26 10 – – –

4.2 Complexity Analysis

Concerning complexity, let NA denote the signal constellation size at each subcar-

rier. Then, for each subcarrier, the nonwhitening MLSE requires O[(2K+1)N2K+1
A ]

complex multiplications and additions (CMAs) to build the trellis and O(N2K+1
A )

CMAs to conduct the Viterbi search [4]. In contrast, the proposed method requires

O[(2K + 1)N2p+1
A + (2q + 1)2N2p+1

A ] CMAs to build the trellis, wherein O[(2K +

1)N2p+1
A ] are for computing Hmxm and O[(2q + 1)2N2p+1

A ] are for multiplying with

K
− 1

2
z . Then the Viterbi search requires O[(2q+1)N2p+1

A ] CMAs. The computation of

K
− 1

2
z requires estimation of the ICI power and the AWGN power, but the complexity

is far lower than building the trellis or performing the Viterbi search and is thus

neglected. From the above, the proposed method may seem to require much higher

complexity than nonwhitened MLSE. But, to the contrary, the reduced residual I+N

through whitening may facilitate using a smaller ICI bandwidth K in the MLSE,

culminating in a complexity gain rather than loss. This will be demonstrated in the

simulation results below.
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4.3 Simulation Results on Detection

Performance

We present some simulation results on signal detection performance in this section.

As in Sec. 3.2, we let subcarrier spacing fs = 10.94 kHz and sample period Tsa = 714

ns. The subcarriers are QPSK-modulated with Gray-coded bit-to-symbol mapping.

There is no channel coding. The channels are multipath Rayleigh-faded WSSUS

channels having the PDPs shown in Table 4.1.

Unless otherwise noted, we let N = 128 and assume that the receiver has perfect

knowledge of the channel state information (CSI), which includes the channel matrix

within band K and the covariance matrix Kz of the residual ICI plus noise.

To start, consider the extreme case of K = 0 in absence of channel noise.

Through this we look at the limit imposed by the ICI to the performance of the

conventional detection method. We also look at the possible gain from blockwise

whitening of the full ICI followed by MLSE with p = q = 1, at infinite signal-to-noise

ratio (SNR). The ICI covariance matrix in this case is given by

Kz =




1 0.6 0.15

0.6 1 0.6

0.15 0.6 1


 σ2

c0 (4.7)

where recall that σ2
c0 = E[|cm,0|

2] is the total ICI power. Fig. 4.2 shows some simu-

lation results for the TU6 channel. The numerical performance for the SUI4 channel

is very similar. These results show that ICI-whitening detection (the proposed tech-

nique) yields some advantage over conventional detection: the error probability is

reduced by about 2.2 times.

Significantly higher gain can be obtained by ICI-whitening MLSE with K = 1.

In Fig. 4.3 we compare the corresponding performance of the proposed technique

with that of MLSE which treats the residual ICI as white [4], over TU6 and SUI4

channels in the noise-free condition (i.e., SNR = ∞). For the proposed technique,

two parameter settings are considered, viz. {q = 1, p = 2} and {q = 1, p = 1}, for
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which the covariance matrices Kz of residual ICI are given by, respectively,




1 0.775 0.645

0.775 1 0.775

0.645 0.775 1


 σ2

c1,




1.785 1.16 1.16

1.16 1 1.16

1.16 1.16 1.785


 σ2

c1, (4.8)

where recall that σ2
cK = E[|cm,K |

2] is the residual ICI power outside band K.

Consider the case p = q = 1 first. In this case, the proposed method shows a

remarkable gain of roughly three to four orders of magnitude in error performance

compared to treating residual ICI as white. The error floor induced by the residual

ICI can be driven to below 10−5 even at the very high normalized peak Doppler

frequency of 0.32.

Very interestingly, Fig. 4.3 also shows that the setting {q = 1, p = 2} yields a

worse performance than p = q = 1, even though the former setting may seem more

natural in its associated band channel matrix structure (compare (4.2) with (4.3)),

which captures all the ICI terms within the modeling range (K = 1). Moreover, its

corresponding trellis has more states than the latter setting (45 vs. 43). The reason

will be explored in the next section. For now, we note that the above results appear

to indicate the suitability of setting p = q = K = 1 in practical system design.

It yields good performance without undue complexity. With this observation, we

now present some more simulation results under this setting. The aims are to

examine the proposed technique’s performance at finite SNR and to compare it

with a benchmarking upper bound. For this, we first consider how it varies with

Doppler spread and then how it varies with SNR.

Fig. 4.4 shows some results for the TU6 channel with p = q = K = 1 at several

SNR values. The results for SUI4 show similar characteristics and are omitted. We

compare the performance of the proposed method with a benchmark: the matched-

filter bound (MFB), i.e., signal detection with perfect knowledge of the interfering

symbols. To make the MFB a more-or-less absolute lower bound, it is obtained with

the residual ICI outside band K fully cancelled. Other than these, the same MLSE

as in the proposed technique is used. For all three finite SNR values shown, note that

the MFB drops monotonically with increasing fd, i.e., with increasing time-variation
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of the channel. This is in line with the fact that faster channel variation yields

greater time diversity, as various researchers have observed [15,17,18]. However,

such time diversity can show clearly only when ICI is sufficiently small (e.g., after

ICI cancellation). For the proposed technique, its error performance at Eb/N0 = 15

and 28 dB tracks that of the MFB reasonably closely, deviating by less than a

multiplicative factor of three for normalized peak Doppler frequencies up to 0.18

(fd ≤ 2000 Hz). At Eb/N0 = 45 dB, the performance improves with fd until fd

reaches about 1500 Hz (normalized peak Doppler frequency ≈ 0.14). Afterwards,

the residual ICI dominates in determining the performance, as can be seen by the

closeness between the corresponding curves for Eb/N0 = 45 dB and ∞.

Next, consider how the performance of the proposed method varies with SNR.

The solid lines in Fig. 4.5 show results at fd = 1500 Hz (normalized peak Doppler

frequency ≈ 0.14) under perfect CSI. It is seen that the proposed method at K = 1

can yield a substantial performance gain compared to nonwhitening MLSE [4] at

K = 2. The dash-dot lines in Fig. 4.5 depict some results under imperfect CSI.

Limited by space, we cannot elaborate on the many possible channel estimation

methods and their performance. Hence the results shown pertain to a typical con-

dition only. For this, we note that the mean-square channel estimation error is

typically proportional to the variance of the unestimatable channel disturbance,

with the proportionality constant inversely dependent on the sophistication of the

channel estimation method [19]. In our case, the unestimatable channel distur-

bance includes residual ICI (mostly that beyond K = 1) and additive channel noise

(AWGN). At a normalized peak Doppler frequency of 0.14 (fd = 1500 Hz), the first

term is approximately 20 dB below the received signal power. The proportionality

constant is set to 1/8. The channel estimation error limits the performance of all

detection methods and the residual ICI-free bound in the form of error floors. The

floor of the proposed method at K = 1 is seen to be lower than that of nonwhitening

MLSE at K = 2 and is relatively close to the bound. We further note that, while

Fig. 4.5 has been obtained with N = 128, the results obtained with N = 1024 (eight

times the bandwidth) are very close.
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Figure 4.2: Error performance in TU6 channel of the conventional OFDM signal

detection method and ICI-whitening MLSE (the proposed method) with K = 0 and

p = q = 1 in noise-free condition.
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Figure 4.4: Performance of proposed technique versus Doppler spread in the TU6

channel with p = q = K = 1, at N = 128 and Tsa = 714 ns and under QPSK

subcarrier modulation.
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4.4 Dependence of Detection Performance on

Parameter Setting

As mentioned, we here explore how signal detection performance depends on whitener

parameter setting. In particular, recall that one intriguing phenomenon observed

earlier is the worse performance with p = 2 than with p = 1 (both at q = K = 1),

although the former is associated with a seemingly more natural-looking band chan-

nel matrix and a more expanded MLSE trellis. A comprehensive analysis would

require examining the distance property of the received signal after the proposed

blockwise whitening. However, a crude understanding can be obtained by looking

at the signal-to-interference-plus-noise ratio (SINR) after blockwise whitening.

From (4.1) and (4.4), the pre- and post-whitening SINRs are given by, respec-

tively,

SINRpre = E[xH
mH

H
mHmxm]/E[zHmzm], (4.9)

SINRpost = E[xH
mH

H
mK

−1
z Hmxm]/E[zHmK

−1
z zm]. (4.10)

For the power of residual ICI plus noise, we have E[zHmzm] = tr(E[zmz
H
m]) = tr(Kz)

and E[zHmK
−1
z zm] = tr(E[K−1

z zmz
H
m]) = tr(K−1

z Kz) = 2q + 1, where tr(A) de-

notes the trace of a matrix A. For the signal power, we have E[xH
mH

H
mHmxm] =

tr(E[HH
mHmxmx

H
m]) = Es·tr(E[HH

mHm]) = Es·tr(E[HmH
H
m]) and E[xH

mH
H
mK

−1
z Hmxm] =

tr(E[HH
mK

−1
z Hmxmx

H
m]) = Es · tr(E[HH

mK
−1
z Hm]) = Es · tr(K

−1
z E[HmH

H
m]), where

Es is as defined previously (the average energy of the transmitted signal samples)

and we have assumed that the transmitted signal is independent and identically

distributed (i.i.d.).

Note that the factor E[HmH
H
m] appears in the signal power terms of both

SNRs. Employing a procedure similar to that for E[cm,Kc
∗
m+r,K ] in Sec. 3.1, we can

derive an expression for E[HmH
H
m] in terms of the channel parameters as in the

case of E[cm,Kc
∗
m+r,K ]. However, although such an expression can provide more pre-

cise numerical results, an illuminating insight into the SNR impact of the proposed

blockwise whitening technique can already be gathered with a very simple approx-

45



imation to E[HmH
H
m], and this insight is sufficient for the purpose of the present

work. Specifically, in the limit of little ICI, Hm approaches a diagonal matrix of the

channel frequency response. In this case, E[HmH
H
m] ≈ (

∑L−1
l=0 σ2

l )I where I denotes

an identity matrix and recall that we have assumed a unity channel power gain, i.e.,
∑

l σ
2
l = 1. Hence

SINRpre ≈ (2q + 1)Es/tr(Kz), SINRpost ≈ Es · tr(K
−1
z )/(2q + 1). (4.11)

As a result,
SINRpost

SINRpre

≈
tr(K−1

z ) · tr(Kz)

(2q + 1)2
. (4.12)

Now let λi, 0 ≤ i ≤ 2q, denote the eigenvalues of Kz. Then the eigenvalues of K−1
z

are given by λ−1
i and we have

SINRpost

SINRpre
≈

(
∑2q

i=0 λ
−1
i )(

∑2q
i=0 λi)

(2q + 1)2
. (4.13)

Therefore, the more disparate the eigenvalues of Kz are, the greater gain the pro-

posed blockwise whitening can offer. If the eigenvalues are all equal, then no gain

is attained.

As examples, we consider the previously considered cases 1) {K = 0, q = 1, p =

1}, 2) {K = 1, q = 1, p = 1}, and 3) {K = 1, q = 1, p = 2}, all at infinite SNR. The

corresponding Kz matrices are given in (4.7) and (4.8). For case 1), we obtain the

eigenvalues 0.2232σ2
c0, 0.8500σ

2
c0, and 1.9268σ2

c0; for case 2), 0.0654σ2
c1, 0.6250σ

2
c1,

and 3.8796σ2
c1; and for case 3), 0.1800σ2

c1, 0.3550σ
2
c1, and 2.4650σ2

c1. The result-

ing post- to pre-SINR ratios are 2.0588, 8.7052, and 2.9258, respectively. They

do correspond monotonically to the performance gains shown in Figs. 4.2 and 4.3.

However, the mathematical relation between SINR and bit error rate (BER) is

not straightforward—a point worth remembering when comparing the SINR perfor-

mance of different detection methods and different parameter settings.

With the above caveat, we show some SINR performance results at finite SNR

values in Fig. 4.6, both to verify the theory derived in this section and to further

illustrate the performance of different detection methods. In the case of the proposed

method, the theoretical SINR values shown in the figure have been obtained using

(4.11), i.e., SINRpost = Es · tr(K
−1
z )/(2q + 1), whereas in the case of nonwhitening
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Figure 4.6: SINR performance of different methods in the TU6 channel, with N =

128 and Tsa = 714 ns and assuming perfect CSI.

MLSE, the values of “I” in the theoretical SINR are simply given by σ2
c1, which

are calculated using (3.18) with K = 1. We see that, in the case fd = 500 Hz

(normalized peak Doppler frequency ≈ 0.046), the theory and the simulation results

agree almost exactly, whereas in the case fd = 3500 Hz (normalized peak Doppler

frequency ≈ 0.32), the theory consistently underestimates the SINR performance by

a fraction of a dB. The latter phenomenon can be understood by the fact that the σ2
c0

as given in (3.17) is a progressively looser upper bound to the actual ICI power as the

normalized peak Doppler frequency increases [11]. The figure confirms the earlier

observation concerning the superiority of the proposed method with K = q = p = 1,

especially in high SNR or high Doppler spread.
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4.5 Summary of Results

We considered MLSE-type signal detection in ICI with blockwise whitening of the

residual ICI plus noise. Simulations showed that the proposed technique could attain

a substantially lower ICI-induced error floor than conventional MLSE.

To capitalize on the above high correlation to improve signal reception over fast

varying channels, we consider performing simple blockwise whitening of the residual

I+N before signal detection , where the whitener makes use of the ICI characteristics

as found. SINR numerical results also show that substantial gains can be achieved

with whitening residual ICI plus noise .
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Chapter 5

Low Complexity Detection with

Whitening of Residual ICI Plus

Noise

The ICI is known to be colored [6,24]. Hence it is possible to reduce the error floor by

whitening the residual “I+N” (i.e., sum of residual ICI and additive channel noise).

But this would require knowing its autocorrelation function, which remained for

a while an unsolved problem. Without knowing the autocorrelation function, one

can only resort to less sophisticated techniques, such as simple differencing of the

received signals at neighboring subcarriers [8]. Recently, we have obtained a char-

acterization of the autocorrelation of the ICI [25]. It is shown that the normalized

autocorrelation of the residual ICI is not only high, but also insensitive to a vari-

ety of system parameters and channel conditions including the sampling period Tsa,

the DFT size N , the signal bandwidth, the average transmitted symbol energy Es,

the peak Doppler frequency fd, and the channel power-delay profile (PDP). This

is confirmed in [25] by simulation. As a result, the residual I+N can be whitened

in a nearly channel-independent manner and, using MLSE as a demonstrator, we

have shown that such whitening can facilitate significantly improved signal detection

performance.
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A main concern with MLSE is its complexity, especially with higher-order mod-

ulations. For reduced complexity, in this chapter we consider performing LMMSE

and iterative LMMSE detection in association with the above mentioned whitening,

together with soft decision feedback. Our LMMSE detector follows a similar princi-

ple as that proposed in [22,23], but contains modifications for improved performance.

Simulations show that a good tradeoff between complexity and performance can be

achieved.

In what follows, Sec. 5.1 presents the proposed detection method and Sec. 5.2

some simulation results. Finally, Sec. 5.3 gives the summary.

5.1 LMMSE Signal Detection with Whitening of

Residual ICI Plus Noise

As indicated, in this chapter we consider LMMSE and iterative LMMSE signal

detection, with partial whitening of additive disturbance (i.e., the residual I+N) to

lower the error floor and with soft decision feedback.

Consider a vector of 2q+1 frequency-domain signal samples centered at sample

m, where q need not be equal to K:

ym = [Ym−q · · · Ym · · · Ym+q]
′ = Hmxm + zm (5.1)

where xm = [Xm−p · · · Xm · · · Xm+p]
′ for some integer p, Hm is a (2q+1)×(2p+1)

submatrix of channel matrix H of bandwidth K, and zm collects all the right-hand-

side (RHS) terms in (1.2) (or (1.4)) associated with Yk, m − q ≤ k ≤ m + q,

that do not appear in Hmxm. The elements of zm include both residual ICI and

channel noise. To avoid clogging the mathematical expressions, we have omitted

explicit indexing of various quantities in (5.1) with the parameters K, p, and q,

understanding that their dimensions and contents depend on these parameters. As
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examples, with {K = 1, q = 1, p = 1} we have

Hm =




am−1,m−1 am−1,m 0

am,m−1 am,m am,m+1

0 am+1,m am+1,m+1


 (5.2)

and with {K = 2, q = 1, p = 1},

Hm =




am−1,m−1 am−1,m am−1,m+1

am,m−1 am,m am,m+1

am+1,m−1 am+1,m am+1,m+1


 . (5.3)

A tradeoff between complexity and performance can be achieved by judicious choice

of {K, q, p}.

Let Kuv denote the covariance matrix of random vectors u and v, i.e., Kuv =

E[(u−E{u})(v−E{v})H ] where superscript H denotes Hermitian transpose. When

u = v, we simply write Ku. For simplicity, rather than performing whitening over

a complete sequence, we do blockwise whitening of the residual I+N over windows

of size 2q + 1 as

ỹm , K
− 1

2
z ym = K

− 1
2

z Hm︸ ︷︷ ︸
,H̃m

xm +K
− 1

2
z zm︸ ︷︷ ︸
,z̃m

(5.4)

where we have omitted the subscript m in Kz due to its invariance over m. The

quantity K
− 1

2
z may be defined in more than one way; for example, we may let

K
− 1

2
z = UΛ− 1

2UH where U is the matrix of orthonormal eigenvectors of Kz and Λ

is the diagonal matrix of corresponding eigenvalues of Kz.

If we treat each signal block (window) separately without regard to their par-

tially overlapping relationship, then the LMMSE estimate of some Xd in xm (where

m− p ≤ d ≤ m+ p), conditioned on prior estimates of all other elements of xm, is

given by [22,26]

X̂
(m)
d = KH

ỹmXd|x̄
(d)
m
K−1

ỹm|x̄
(d)
m

(ỹm −E[ỹm|x̄
(d)
m ])

= KH

ỹmXd|x̄
(d)
m
K−1

ỹm|x̄
(d)
m

(ỹm − H̃mx̄
(d)
m ) (5.5)

where x̄
(d)
m = [X̄m−p, . . . , X̄d−1, 0, X̄d+1, . . . , X̄m+p]

′ is a vector of prior estimates of

Xk, k = m−p, . . . , d−1, d+1, . . . , m+p (with overbars indicating their being prior
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estimates) and the notation “|x̄
(d)
m ” indicates conditioning on x̄

(d)
m . The term H̃mx̄

(d)
m

gives the contribution of the priors (except that at subcarrier d) in the received signal

ỹm. With Xk assumed white, we have K
ỹmXd|x̄

(d)
m

= Esh̃
(d)
m , where h̃

(d)
m stands for the

(d−m+p+1)th column of H̃m. Further, we haveKỹm|x̄
(d)
m

= H̃mKxm|x̄
(d)
m
H̃H

m+I where

K
xm|x̄

(d)
m

= E[(xm − x̄
(d)
m )(xm − x̄

(d)
m )H |x̄

(d)
m ]. It has been observed, albeit in different

contexts than the present work, that ignoring the nondiagonal terms of K
xm|x̄

(d)
m

only

results in minor performance loss [27,28]. Previous works on iterative LMMSE ICI

equalization have also adopted a diagonal approximation to the conditional signal

covariance matrix [22,23]. Therefore, we also employ such a diagonal approximation

for simplicity: K
xm|x̄

(d)
m

≈ V
(d)
m ≈ diag(vm−p, . . . , vd−1, Es, vd+1, . . . , vm+p) where vk =

E[|Xk|
2|X̄k]− |X̄k|

2, k = m− p, . . . , d− 1, d+ 1, . . . , m+ p. Carrying out the above

estimation for each Xd in each xm would yield 2p + 1 estimates for each signal

sample.

Based on the above, our LMMSE detector considers each Xd in each xm in se-

quence and conducts conditional LMMSE estimation as described, with the needed

priors formed by soft-combining the most recent 2p+ 1 estimates of Xk, k 6= d. Af-

ter completing the estimation of all Xd in all xm, the process may be repeated over

the same signal samples, resulting in iterative LMMSE detection. The above proce-

dure resembles the “sequential iterative estimation (SIE)” method of [22] except for

multiple (i.e., 2p+ 1) estimations of each signal sample and their soft combination.

Simulation results show that these modifications can yield significant performance

gain. We now explain the method of soft combination.

First, we set up a buffer of (2p+ 1)N entries to hold X̂
(m)
d ∀d ∀m. The buffer

entries are initialized to zero. A new estimate X̂
(m)
d immediately overwrites the

previous value recorded in the corresponding entry and is used in subsequent soft

combination. In soft-combining the multiple estimates, we take the average of signal

values over the posterior probability distribution as

X̄d =
∑

ξ∈Ξ

ξP (Xd = ξ|x̂d) =

∑
ξ∈Ξ ξf(x̂d|Xd = ξ)∑
ξ∈Ξ f(x̂d|Xd = ξ)

(5.6)

where Ξ denotes the signal constellation, x̂d = [X̂
(d−p)
d , . . . , X̂

(d+p)
d ]′, P (Xd = ξ|x̂d)

denotes the posterior probability of Xd = ξ, and f(x̂d|Xd = ξ) denotes the likelihood
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function of x̂d for Xd = ξ. For simplicity, assume that the likelihood function

observes a jointly circularly Gaussian distribution as

f(x̂d|Xd = ξ) =
1

c
e−

1
2
(x̂d−uξ)

HK
−1
ξ (x̂d−uξ) (5.7)

where c is an inconsequential constant, uξ = E[x̂d|Xd = ξ], and Kξ denotes the

covariance matrix of x̂d conditioned on Xd = ξ.

To avoid the complexity of working with a full Kξ matrix, we approximate it by

1
s
K̂ξ where K̂ξ is a diagonal matrix that has the same diagonal elements as Kξ and

s is a subunity factor to compensate for the (statistically) over-optimistic likelihood

characterization arising from omission of the nondiagonal terms in Kξ. This is

similar to what has been considered in turbo decoding [29,30], and a factor s = 0.7

is suggested in [30] based on simulation. We also let s = 0.7 in our simulation.

Concerning the elements of uξ and K̂ξ, we have

E[X̂
(m)
d |Xd = ξ] = g(d)

m

H
h̃(d)
m ξ (5.8)

and

K̂ξ =
1

2
diag([σ

(d−p)
d (ξ)]2, . . . , [σ

(d+p)
d (ξ)]2) (5.9)

with

[σ
(m)
d (ξ)]2 = g(d)

m

H
h̃(d)
m (1− h̃(d)

m
Hg(d)

m ), (5.10)

where d− p ≤ m ≤ d+ p and g
(d)
m , (H̃mV

(d)
m H̃H

m + I)−1h̃
(d)
m . Also for simplicity, for

QAM the update (5.6) is carried out in the I and Q directions separately, which is

particularly appropriate under Gray coding.

5.2 Simulation Results

Consider an OFDM system with DFT size N = 128, subcarrier spacing fs = 10.94

kHz, and sample period Tsa = 1/(Nfs) = 714 ns, which are some of the Mobile

WiMAX parameters. Let there be no channel coding. The modulations employ

Gray-coded bit-to-symbol mapping. The channel is WSSUS with PDP as shown

in Table 4.1 and with each path subject to Rayleigh fading. Assume that the
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Figure 5.1: Bit error rate of different detection methods in the TU6 channel, with

N = 128, Tsa = 714 ns, fd = 1500 Hz (normalized peak Doppler frequency fdTsaN =

0.1371) and QPSK subcarrier modulation.

receiver has perfect channel state information (CSI), which includes the channel

matrix within band K and the covariance matrix Kz of the residual I+N.

First, consider QPSK subcarrier modulation in a relatively high fd = 1500 Hz

(normalized peak Doppler frequency ≈ 0.14). Let {K = 2, p = q = 1}. From the

theory outlined in Sec. III, it can be derived that the normalized autocorrelation

matrix of the out-of-band (i.e., residual) ICI is given by



1.62 1.17 1.17

1.17 1 1.17

1.17 1.17 1.62


 . (5.11)

The first four curves in Fig. 5.1 compare the performance of the proposed technique

with that of MLSE which treats the residual ICI as white [4]. They show that the

proposed method can yield a substantial gain compared to nonwhitening MLSE at
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Figure 5.2: Bit error rate floor versus Doppler spread of different detection methods

in the TU6 channel with N = 128, Tsa = 714 ns, and QPSK subcarrier modulation.

both K = 1 and K = 2. For additional comparison, we also show the performance

of the whitened MLSE of [25] and a benchmark, namely, the matched-filter bound

(MFB). The MFB does MLSE with perfect knowledge of the interfering symbols and

with the residual ICI outside band K fully cancelled. Not surprisingly, the whitened

MLSE has a better performance, but the proposed LMMSE technique has a much

lower complexity and thus provides a good complexity-performance tradeoff.

We now examine the ICI-induced error floors of different techniques. Fig. 5.2

shows the results of the proposed technique (with soft-combined feedback) and that

of MLSE which treats the residual ICI as white [4], over a large range of peak

Doppler frequencies under QPSK subcarrier modulation. For the proposed tech-

nique, we again let {K = 2, p = q = 1}. The proposed method (three bottom

curves) shows a remarkable gain of roughly two to three orders of magnitude com-

pared to treating the residual ICI as white (two top curves). The error floor can be
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Figure 5.3: Bit error rate floor versus Doppler spread of different detection methods

in the TU6 channel with N = 128, Tsa = 714 ns, and 16QAM subcarrier modulation.

driven to well below 10−4 even at the very high normalized peak Doppler frequency

of 0.32. The results also shows that, under the simulated conditions, one iteration of

the proposed method may already provide close to what more iterations can provide

in performance. For comparison, we also show the performance of LMMSE without

soft combination in feedback, i.e., with X̄k = X̂
(k)
k ∀k (two middle curves). There is

obvious gain from performing soft combination.

In Fig. 5.3, we look at the ICI-induced error floors of different methods under

16QAM subcarrier modulation. As MLSE-based techniques appear too complicated

with high-order modulations, we only consider LMMSE methods. We compare the

performance of the proposed method with the sequential iterative LMMSE (without

whitening of residual I+N) of [22]. In the proposed method, we again let {K = 2, p =

q = 1}. We see that there is still an order-of-magnitude performance gain with the

proposed technique under 16QAM, with soft-combined feedback. This can be highly
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beneficial when coupled with channel coding.

5.3 Summary of Results

In this chapter, we considered LMMSE signal detection with blockwise whiten-

ing of residual ICI plus noise. After whitening, the method performed conditional

LMMSE equalization of each signal sample in a sequential manner, enlisting previ-

ously equalized samples at nearby subcarriers in soft-combined feedback to enhance

detection performance. We presented some simulation results based on 3× 3 block

whitening and three-sample equalization. The results showed that a good tradeoff

between complexity and performance could be achieved. They also showed that the

proposed technique could attain a substantially lower ICI-induced error floor than

conventional MLSE and iterative LMMSE, not only under QPSK but also under a

higher-order modulation such as 16QAM.
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Chapter 6

Thesis Conclusions and Potential

Future Topics

In time-varying channels, OFDM transmission suffers from ICI. In a system with-

out ICI, the channel frequency response matrix that relates the inputs of the inverse

discrete Fourier transform (IDFT) and the outputs of the DFT is diagonal. Fast

channel variation introduces sizable off-diagonal elements in the matrix, thus re-

sulting in ICI. As stated previously, a band approximation to channel matrix that

retains only the dominant terms about the diagonal may ease receiver design, but

also results in an irreducible noise floor at receiver.

In this thesis, we exploit the correlation of the residual ICI outside the band of

channel matrix to attain a significantly enhanced signal detection performance.

6.1 Thesis Conclusions

In Chap. 3, we found that, in a mobile time-varying channel, the residual ICI beyond

several dominant terms had high normalized autocorrelation. We derived a rather

precise closed-form approximation for the (unnormalized) autocorrelation function.

It turns out that, up to a rather high peak Doppler frequency, the normalized
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autocorrelation was not sensitive to a variety of system parameters and channel

conditions, including the DFT size, the sample period, the system bandwidth, the

OFDM symbol period, the average transmitted symbol energy, the multipath chan-

nel profile, and the Doppler PSDs of the channel paths. As a result, a whitening

transform for the residual ICI plus noise can be obtained based solely on the ICI-to-

noise ratio. A whitening transform depends on the ICI-to-noise ratio but no other

quantities also implies that it is easy to be estimated.

Such a whitening transform can be used in association with many different

detection schemes and significantly improves the performance.

In Sec. 4.1, we considered MLSE-type signal detection with blockwise whitening

of the residual ICI plus noise. Simulations showed that the proposed technique

could lower the ICI induced error floor by several orders of magnitude in MLSE

that addressed a few dominant ICI terms.

To capitalize on the above high correlation to improve signal reception over fast

varying channels, in Sec. 4.4, we consider performing simple blockwise whitening of

the residual I+N before signal detection (i.e., equalization), where the whitener

makes use of the ICI characteristics as found. Numerical analysis of SINR also

confirms that substantial gains can be achieved with this approach.

In Chap. 5 , we considered LMMSE signal detection with blockwise whiten-

ing of residual ICI plus noise. After whitening, the method performed conditional

LMMSE equalization of each signal sample in a sequential manner, enlisting previ-

ously equalized samples at nearby subcarriers in soft-combined feedback to enhance

detection performance. We presented some simulation results based on 3× 3 block

whitening and three-sample equalization. They showed that a good tradeoff between

complexity and performance could be achieved.
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6.2 Potential Future Research Topics

• As mention above, we explore the correlation property of ICI outside the band

and derive an approximate mathematical expression from it. We found that

the correlation values are based solely on the ICI-to-noise ratio. It should be

noted that the ICI correlation property derived applies not only to the flat

fading, but also to the frequency selective fading. Furthermore, this property

applies not only to classical multipath Rayleigh fading, but also to arbitrary

different Doppler spectrum shapes in each path. The assumptions of approxi-

mate expression of normalized ICI autocorrelation are so general that we can

extend ICI correlation property to many applications. Even for different fre-

quency offsets or Doppler spectrums coming from multiple transmitters and

channels, this approximation of normalized ICI autocorrelation still works.

Some interesting topics arise and worth investigating:

– ICI and CFO mitigation in MIMO OFDM

– ICI and CFO mitigation in Cooperative OFDM

– ICI and CFO mitigation in OFDMA

• Through this assumption of perfect channel knowledge, the improvement of

the detection performance confirms the substantial gains of numerical analysis

in Sec. 4.1. On the other hand, we keep digging into most of our research

based on the assumption of perfect channel knowledge until now. More detail

of the actual implementation of ICI correlation property should be go through.

– We should incorporate the online estimation of covariance matrix of resid-

ual ICI plus noise into the proposed detection.

– We may incorporate channel estimation into the proposed LMMSE de-

tection, which may resolve the estimation error of CSI.

– We may also incorporate the FEC decoder into the proposed LMMSE de-

tection with blockwise whitening of residual ICI plus noise. This scheme

is a form of turbo equalization.
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Appendix A: The Whiteners of

Residual ICI Plus Noise

As mentioned in Chap. 4 and 5, we do blockwise whitening over windows of size

2q+1 by Kz, which depends on the settings of q, p,K. In this Appendix, we consider

all Kz listed in the thesis and illustrate how these whitener are calculated from the

properties of autocorrelation of residual ICI in Chap. 3.

As defined in Chap. 4, we have Kz = E[zmz
H
m] and the aforesaid blockwise

whitening of residual ICI plus noise zm is given by

ỹm , K
− 1

2
z ym = K

− 1
2

z Hm︸ ︷︷ ︸
,H̃m

xm +K
− 1

2
z zm︸ ︷︷ ︸
,z̃m

A tradeoff between complexity and performance can be achieved by choosing q, p,

and K. All the settings of {q, p,K} that have been used in the thesis are as follows:

• {K = 1, q = 1, p = 2},

Hm =




am−1,m−2 am−1,m−1 am−1,m 0 0

0 am,m−1 am,m am,m+1 0

0 0 am+1,m am+1,m+1 am+1,m+2


 (A.1)

• {K = 0, q = 1, p = 1},

Hm =




am−1,m−1 0 0

0 am,m 0

0 0 am+1,m+1


 (A.2)
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• {K = 1, q = 1, p = 1},

Hm =




am−1,m−1 am−1,m 0

am,m−1 am,m am,m+1

0 am+1,m am+1,m+1


 . (A.3)

• {K = 2, q = 1, p = 1},

Hm =




am−1,m−1 am−1,m am−1,m+1

am,m−1 am,m am,m+1

am+1,m−1 am+1,m am+1,m+1


 . (A.4)

Values of the Whiteners of Residual ICI (Infinite SNR)

At infinite SNR, consider the setting {K = 1, q = 1, p = 2} as (A.1), for which the

covariance matrices Kz of residual ICI (Zm = cm,k) is given by

Kz|{K=1,q=1,p=2} =




E[|cm,1|
2] E[cm,1cm+1,1

∗] E[cm,1cm+2,1
∗]

E[cm,1cm+1,1
∗]∗ E[|cm,1|

2] E[cm,1cm+1,1
∗]

E[cm,1cm+2,1
∗]∗ E[cm,1cm+1,1

∗]∗ E[|cm,1|
2]


 (A.5)

By Fig. 3.1 or (3.8), we get

Kz|{K=1,q=1,p=2} =




1 0.775 0.645

0.775 1 0.775

0.645 0.775 1


 σ2

c1. (A.6)

where σ2
c1 = E[|cm,1|

2] is the residual ICI power outside band K=1.

Similarly,

Kz|{K=0,q=1,p=1} =




E[|cm,0|
2] E[cm,0cm+1,0

∗] E[cm,0cm+2,0
∗]

E[cm,0cm+1,0
∗]∗ E[|cm,0|

2] E[cm,0cm+1,0
∗]

E[cm,0cm+2,0
∗]∗ E[cm,0cm+1,0

∗]∗ E[|cm,0|
2]


 (A.7)

=




1 0.6 0.15

0.6 1 0.6

0.15 0.6 1


 σ2

c0. (A.8)
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where σ2
c0 = E[|cm,0|

2] is the residual ICI power outside band K=0.

Next, we consider the setting {K = 1, q = 1, p = 1} as (A.3). By comparing

Hm in (A.3) with (A.1), we note that the absent items am−1,m−2 and am+1,m+2,

which should be considered by rearranging the terms of sum in (3.5) or (3.14).

Kz|{K=1,q=1,p=1} =




1.785 1.16 1.16

1.16 1 1.16

1.16 1.16 1.785


 σ2

c1. (A.9)

Similarly,

Kz|{K=2,q=1,p=1}




1.62 1.17 1.17

1.17 1 1.17

1.17 1.17 1.62


 σ2

c1. (A.10)

We note that the whiteners of residual ICI can be any scaled version of square

root of K−1
z given above. Consequently, the normalized autocorrelation matrix of

residual ICI is a good choice instead of Kz. After normalizing Kz with σ2
ck, the

whiteners of residual ICI approximates to a constant matrix.

Values of the Whiteners of Residual ICI Plus Noise

At finite SNR, consider the setting {K = 1, q = 1, p = 2} as (A.1), for which the

covariance matrices Kz of residual ICI plus noise (Zm = cm,k +Wm) is given by

Kz|{K=1,q=1,p=2} =




1 0 0

0 1 0

0 0 1


 σ2

W +




1 0.775 0.645

0.775 1 0.775

0.645 0.775 1


 σ2

c1. (A.11)

where σ2
W = E[|Wm|

2] and Zm = cm,k +Wm.

After normalizing Kz given in (A.11), the whitener of residual ICI plus noise

approximates to a matrix only depends on σ2
c1/σ

2
W . It is straightforward to extend

this propoerty to the other settings of {q, p,K}.
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Gains of the Whiteners of Residual ICI

We consider the four cases

1. {K = 0, q = 1, p = 1},

2. {K = 1, q = 1, p = 2},

3. {K = 1, q = 1, p = 1},

4. {K = 2, q = 1, p = 1}, all at infinite SNR.

The corresponding Kz matrices are given above.

By (4.11), the resulting post- to pre-whitening SINR ratios are 2.0588, 2.9258,

8.7052, and 35.25, respectively.

Please note that the pre-whitening SINR of case (3) and (4) are worse than

case (2). If we compare the post-whitening SINR of case (2), (3) and (4) with the

conventional SINR Es/σc1 , the resulting SINR ratios of case (2), (3) and (4) will

be 2.9258, 5.7146, and 24.94 times beter than Es/σc1, respectively. In Fig. 4.6, the

difference of SINR between unwhitening and {K = 1, q = 1, p = 1} methods is close

to 5.7146 (7.57 dB). Simulation confirms theory.

However, the mathematical relation between SINR and bit error rate (BER) is

not straightforward. The proposed MLSE of {K = 2, q = 1, p = 1} indeed provides

a lower error floor than {K = 1, q = 1, p = 1} with perfect CSI assumed. But

Fig. 5.1 shows that the two proposed MLSE have very close and indistinguishable

performances at practical SNR. As a result, we provide {K = 1, q = 1, p = 1}

as the default setting of the proposed MLSE detection. Furthermore, we provide

{K = 2, q = 1, p = 1} as the default setting of the proposed MMSE/iterative MMSE

for its significant SNR improvement.
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Simulation of the Imperfect Whiteners

As mentioned, the whitener of residual ICI plus noise approximates to a matrix only

depends on σ2
c1/σ

2
W . For {K = 1, q = 1, p = 1}, we have the whitener as




σ2
W/c1

+1.785

σ2
W/c1

+1
1.16 1

σ2
W/c1

+1
1.16 1

σ2
W/c1

+1

1.16 1
σ2
W/c1

+1
1 1.16 1

σ2
W/c1

+1

1.16 1
σ2
W/c1

+1
1.16 1

σ2
W/c1

+1

σ2
W/c1

+1.785

σ2
W/c1

+1




(A.12)

and for {K = 2, q = 1, p = 1}




σ2
W/c1

+1.62

σ2
W/c1

+1
1.17 1

σ2
W/c1

+1
1.17 1

σ2
W/c1

+1

1.17 1
σ2
W/c1

+1
1 1.17 1

σ2
W/c1

+1

1.17 1
σ2
W/c1

+1
1.17 1

σ2
W/c1

+1

σ2
W/c1

+1.62

σ2
W/c1

+1




(A.13)

where σ2
W/c1 denotes σ2

W/σ2
c1.

It seems reasonable to assume that σ2
W/c1 will be estimated first and apply to

(A.12) and (A.13) when we estimate the whitener’s coefficients. We also assume a

mismatch model of NIR: σ̃2
W/c1 = γ×σ2

W/c1, where γ is a factor related to estimation

error. When γ = 1, it means a perfect estimation σ2
W/c1 without error. Figs. A.1

shows some simulation results for the TU6 channel. These results show that the

mismatched NIR σ̃2
W/c1 can be 0.25 times or 2 times as σ2

W/c1 without performance

loss in proposed MLSE {p = q = K = 1}. Similary, in proposed MMSE {p = q =

K = 2}, the tolerance of mismatched NIR ranges form 0.7 to 1.05 times as σ2
W/c1.
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Figure A.1: Performance of proposed MLSE p = q = K = 1 and MMSE p = q =

1, K = 2, with imperfect whitener in the TU6 channel, at N = 128 and Tsa = 714

ns fdTsaN = 0.137 and under QPSK subcarrier modulation.
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