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搜尋樣型之區塊移動估計研究： 

模型、演算法設計與視訊編碼應用 
 

研究生: 蔡彰哲                指導教授: 杭學鳴 博士 

 

國立交通大學 電子工程學系 電子研究所博士班 
 

摘 要 

基於搜尋樣型之區塊移動估計 (Pattern-based Block Motion Estimation, PBME) 演算法是現

今視訊編碼系統最常採用的壓縮工具之一。儘管許多研究者已經探討過 PBME，卻甚少研

究是關於「解釋 PBME 的工作原理與機制」之理論模型。 

在這篇論文中，我們提出一個 PBME 的統計模型。這個模型包含兩個元件：1)移動向

量 (Motion Vector) 的統計分布機率函數，2)一個搜尋演算法可以達到的最小搜尋點數函

數，我們稱為「權重函數 (Weighting Function, WF)」。藉由檢視實驗資料，我們驗證此統計

模型的正確性。然後我們展示兩個此模型的應用範例。由建立理想的 WF 中，我們設計基

因式稜型搜尋演算法 (Genetic Rhombus Pattern Search, GRPS)。模擬結果顯示，與其他著名

的搜尋演算法相比，GRPS 減少 20%的搜尋點數同時維持類似的壓縮影像 PSNR (Peak 

Signal-to-Noise Ratio) 品質。更進一步，我們提出的模型能可靠預測一個 PBME 演算法應用

在一新影像序列上的運算複雜度。 

我們將此模型應用在 PBME 的設計上，檢視一個典型 PBME 演算法中每個元件，然後

系統化調整主要元件，來達成最佳或接近最佳的結果。首先我們使用解析模型來分析並設

計基因式樣型搜尋 (Genetic Pattern Searches)。然後我們提出一個適應性搜尋樣型切換策略 

(Adaptive Pattern Switching Strategy)，此一樣型切換策略會動態的在兩個樣型搜尋中切換。

第三，我們延伸提出的 PBME 模型來評估起始搜尋點的效率，並漸進式建立一個接近最佳

的起始搜尋點集合 (Starting Point Set)。第四，我們檢視早期終止方法 (Early Termination)，

並建議一個選取有效門檻值的量度值。藉此，我們建立一個有精確門檻值的早期終止機制。
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結合上述的技術，我們發展出一個完整的 PBME 演算，其效能超過許多現存的演算法。 

儘管 WF 相當符合「確定性樣型搜尋方法 (Deterministic Pattern Search Scheme) 」，然

而，WF 不能精確的預測「機率性樣型搜尋方法 (Probabilistic Pattern Search Scheme) 」 (如

基因式樣型演算法 (Genetic Pattern Search) )的效能。因此，我們提出「改良權重函數 (Refined 

Weighting Function, RWF) 」。在「單調象限函數與平滑象限邊界 (Quadrant Monotonic 

function with Smooth quadrant Border, QMSB) 的比對誤差表面 (Matching Error Surface) 」假

設下，RWF 可以更精確描述基因式與非基因式樣型搜尋演算法。RWF 代表一個搜尋演算法

在 QMSB 比對誤差平面中可以達到的平均搜尋點數函數。在建立 RWF 的過程中，我們學習

如何更進一步加速樣型搜尋演算法，並設計兩個動量指引 (Momentum-directed) 基因式樣型

搜尋演算法。此演算法給予每個可能的移動向量變異  (MV Mutation) 不同的優先權 

(Priority) ，平均而言加速之前提出的基因式樣型搜尋演算法 5%到 7%。其中，不同移動向

量變異的優先權是按照之前成功的搜尋來給定。 

此外，我們檢視整個「可以預測樣型搜尋方法之平均搜尋點數」的改良模型。配合 RWF，

改良模型的預測精確度隨之提升。因此，我們重新檢視適應性樣型搜尋演算法中的編碼工

具。我們特別專注在兩個編碼工具的影響：樣型切換策略與起始點選擇。我們研究這些工

具中的最佳參數選擇，以及其對整體效能的影響。實驗結果顯示，我們改良的搜尋樣型切

換策略可以再加速搜尋流程，並且將視覺品質保持到跟其構成的樣型搜尋方法相同。 

總體而言，這篇論文建立一個 PBME 的分析模型，並且示範如何使用此一模型來建立

樣型搜尋演算法與適應性樣型搜尋方法。我們並改良此模型，增加其精確性，也依此設計

更好的快速搜尋演算法。 
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Abstract 

 

Pattern-based block motion estimation (PBME) is one of the most widely adopted compression 

tools in the contemporary video coding systems. However, despite that many researchers have 

studied PBME, few have attempted to construct an analytical model that can explain the 

underneath principle and mechanism of various PBME algorithms.  

In this dissertation, we propose a statistical PBME model that consists of two components: 1) 

the statistical probability distribution of the motion vectors, and 2) the minimal number of search 

points (called weighting function, WF) achieved by a search algorithm. We verify the accuracy of 

the proposed model by checking the experimental data. Then, two application examples using this 

model are proposed. Starting from an ideal weighting function, we devise a novel genetic 

rhombus pattern search (GRPS) to match the design target. Simulations show that comparing to 

the other popular search algorithms, GRPS reduces the average search points for more than 20% 

and, in the meanwhile, it maintains a similar level of coded image peak signal-to-noise ratio 

(PSNR) quality. Furthermore, the proposed model can reliably predict the performance of a 

PBME algorithm applied to a new video sequence.  

With the aid of the proposed model, we design new PBMEs by looking into every 

component of a typical PBME algorithm and fine-tuning the major components systematically to 

achieve the optimal or nearly optimal results. First, we use the aforementioned analytic model in 

analyzing and designing effective genetic-algorithm-based pattern searches. Then, we propose an 

adaptive switching strategy that dynamically switches between two pattern searches. Third, we 

extend our PBME model to evaluate the efficiency of starting (initial search) points. A near 
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optimal set of starting points is identified through iterative steps. Fourth, we study the early 

termination threshold technique and suggest a metric in selecting an effective threshold. An early 

termination mechanism with accurate threshold is thus constructed. Combining all these 

techniques, we develop a PBME algorithm that outperforms many existing algorithms. 

Although the WF matches the deterministic search schemes quite well, however, the WF fails 

to give a precise search point prediction when a probabilistic search method such as a genetic 

pattern search is involved. Therefore, we propose a refined weighting function (RWF) that 

describes both genetic and non-genetic pattern searches more accurately under the assumption that 

the matching error surface is a quadrant monotonic function with smooth quadrant border 

(QMSB). In the process of constructing RWF, we further accelerate the pattern searches and two 

momentum-directed genetic pattern search algorithms are devised. These new algorithms assign 

priorities to the candidate mutations based on the information provided by the preceding 

successful searches and this can further reduce the computational complexity of the previously 

proposed genetic pattern searches by 5% to 7% in average.  

With refined RWF, the prediction accuracy of the refined model is significantly improved. 

Consequently, we re-examine the coding tools in the adaptive pattern search scheme. We focus on 

two components, the pattern switching strategy and the starting point selection. We investigate the 

optimal parameter selection issue in these tools and their impacts on the overall coding 

performance. Experimental results show that our refined pattern switching schemes can further 

accelerate the search process and in the meanwhile keep the visual quality comparable to the best 

of their constituent pattern searches.  

In summary, we propose an analytical model for PBME and demonstrate a methodology for 

developing new pattern-based search algorithms and the adaptive pattern search schemes by using 

our proposed model. One step further, we refine the original model, improve its accuracy and then 

design better fast search algorithms accordingly.  
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Chapter 1 Introduction 
 
The explicit use of motion compensation to improve video compression efficiency can be traced 

back to the late 1960s, a patent filed by Haskell and Limb [1] and a conference paper by Rocca [2], 

both in the year of 1969 [3]. The necessary operation in the video encoder to enable motion 

compensation in the video decoder is motion estimation (ME). A technique of motion estimation, 

block motion estimation (BME), has been widely adopted by the contemporary video coding 

systems [4][5][6][7] because it is an effective means in reducing the inter-frame correlation for 

image sequence coding. Block motion estimation schemes partition the current frame into 

non-overlapping blocks and find the block with the minimal block-matching cost in the reference 

frame. The most straightforward implementation of BME, the so-called full search (FS), evaluates 

the matching costs of every motion vector candidate in the search area and finds the motion vector 

(MV) of the best-matched block. Yet, it requires a huge amount of computing power particularly 

for sophisticated coding algorithms that include multiple reference frames and variable size block 

motion estimations. Since 1980s, the pattern-based block motion estimation (PBME) algorithms 

[17][18][44] have been developed to alleviate the computational burden and to minimize the 

impact on the coding quality. Static PBME [26][27][28][29][31][32], which use fixed search 

patterns, got popular in late 1990s and early 2000s. However, because the characteristics of an 

image sequence vary with time, no one single search pattern can handle the entire sequence well. 

In 2000s, the adaptive pattern search algorithms [39][40][43], which dynamically switch search 

patterns, were devised. In this dissertation, we focus only on PBME and its variations. 

 
Section 1.1 Motivation 

Despite that many fast algorithms have been proposed to reduce the computational complexity of 

PBME, most of them are devised based on experimental data or heuristic ideas. Few researchers, 
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to our knowledge, have tried to construct an accurate mathematical model for the PBME process. 

Therefore, one purpose of this dissertation is to construct an analytical model for PBME, and the 

other purpose is to design new fast algorithms by using the proposed model. 

To be specific, we like to propose a model that reveals the relationship among the video 

sequences, the search methods, and the computational complexity. Essentially, we want to propose 

answers to the following questions: Why does one pattern search outperform the other? What is 

the underlying mechanism of its search efficiency? Is there a pattern search that handles nearly all 

sequences well? If not, how can we adaptively choose the proper pattern searches? What is the 

impact of starting points on the coding performance? Is it possible to portray all these problems by 

using one single model? 

 

Section 1.2 Research Contributions 

Table 1-1 The contributions of this dissertation and the related publications 

Publication Theory Application 
Journal Conference 

MV PDF*  T.CSVT09[54]*  
WF* Genetic pattern searches* T.CSVT09[54]*  ISCAS07[51] 
Complete Model* Performance prediction* T.CSVT09[54]*  

1st Method* Selection of the initial search point set+ T.CSVT10[55] +  
2nd Method* Adaptive pattern switching strategy+ T.CSVT10[55] + ICASSP07[52]

 

 Optimization of early termination 
mechanism+ 

T.CSVT10[55] +  

RWF~ Momentum-directed genetic pattern 
searches~ 

Submitted[56] ~ ICIP08[53] 

Refined Complete 
Model~ 

Improved prediction accuracy~ Submitted[56] ~  

1st Method~ Influences on the selection of starting 
point set# 

Submitted[57] #   

2nd Method~ Influences on the pattern switching 
strategy# 

Submitted[57] #  

     
 

Table 1-1 shows the contributions of this dissertation and the related publications. Items with the 
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same superscript marker are published in the same journal manuscript. Items in the same row are 

included in the same conference paper. In the theory part, we build a statistical probability 

distribution function of the motion vectors (MV PDF) [54], and the minimal number of search 

points achieved by a pattern-based search algorithm, the so called weighting function (WF) [51]. 

Combining them together, we propose a statistical model for PBME (The Complete Model) [54]. 

There are two methods to train the parameters in the model. We further replace the WF by the 

refined weighting function (RWF) [53], which better describes the behavior of the probabilistic 

PBME. Thus, we have the refined model (Refined Complete Model) [56], which similarly has two 

training methods to acquire its parameters. In the application part, we devise the genetic pattern 

searches [51][54] based on our observation of WF. With the complete model, we are able to 

predict the performance of a search algorithm on an image sequence [54]. Based on the 1st method, 

we construct the high-performance initial search point set [55]. Based on the 2nd method, we 

select properly a good threshold for pattern switching mechanism [52][55]. Another application is 

the optimization of the early termination mechanism. Combining all these tools together, we 

construct the adaptive pattern search schemes [55]. In addition, hinted by the shape of RWF, we 

further design the momentum-directed genetic pattern searches [53][56]. With the refined model, 

the prediction accuracy is improved. Accordingly, we re-examine its influence on the selection of 

starting point set and the pattern switching strategy [57]. 

Section 1.3 Dissertation Organization 

The rest of this dissertation is organized as follows. First, we review the development of PBME 

and describe several popular pattern-based search algorithms in Chapter 2. Then, we introduce the 

model for PBME and present two of its applications – pattern search design and performance 

prediction - in Chapter 3. Chapter 4 extends the applications of the model to the design of 

adaptive pattern search schemes, which include three major coding tools – pattern switching 
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strategy, starting point selection, and early termination. In Chapter 5, we further refine our 

proposed model and re-examine all the coding tools in a PBME. Finally, we conclude this 

dissertation by summarizing our contributions and pointing out some possible future works in 

Chapter 6. 
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Chapter 2 Pattern-based Block Motion Estimation 
 
Modern video compression systems convert the huge digitized video data into a small-size 

sophisticated bitstream by using the well-known structure – block-based hybrid coding (BHC) 

[4][5]. A BHC scheme divides an image frame into blocks, reduces the inter-frame dependence 

among image frames by ME, removes the intra-frame redundancy by intra prediction, discrete 

cosine transform and entropy coding techniques, and packs the image essential information into a 

comprehensive representation. In general, a BHC video system comprises two major modules: 

intra frame coding and inter frame coding. Block Motion Estimation (BME), a ME technique, has 

been widely adopted by modern video coding standards [4], such as the H.26X series [5] and 

MPEG-1/2/4 [7].  

Although many algorithms have been developed to accelerate BME, however BME remains 

the most computation-intensive component in the video encoders. As the coding algorithm 

progresses, the more sophisticated ME tools are invented, such as variable block size ME and 

multiple reference frames. The most intuitive BME algorithm is FS, which examines all the 

candidates (checking points) in the search area by calculating the block matching cost between the 

current block and the reference block and find the motion vector (MV) with the smallest block 

matching cost. Because FS consumes a tremendous amount of computing power, many 

researchers have devised fast BME schemes to reduce computation without sacrificing the coding 

efficiency. According to [8], fast BME algorithms can be classified mainly into two categories: 1) 

reducing the number of checking (search) points and 2) lowering the computational complexity in 

calculating the block-matching criterion for each checking (search) point. This dissertation 

focuses on the algorithms in the first category.  

PBME is the most popular scheme in the first fast BME category. It typically consists of 

three sets of tools for reducing the search points: 1) an operative threshold for early decision 
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mechanisms [9][14][30][31], 2) the selection of good initial search points [14][15][16][30][31], 

and 3) an effective set of search patterns [17][26][27] [28][29][31][32][33]. Combing all these 

tools, the latest PBME algorithms achieve a dramatic speed-up in finding the near-optimal 

candidate motion vectors while maintaining a desired level of quality. The first set and the second 

set of speed-up tools make use of the data correlation inside one frame (intra-frame) or between 

nearby frames (inter–frame). The third set of tools (search patterns) is effective when the 

matching cost surface is nearly monotonic. Among these tools, the search pattern plays a key role 

in deciding the performance of a search algorithm especially when the data correlation is low.  

Four step search [26], diamond search [27][28], hexagonal search [29] and their improved 

versions [30][31][32][33][34], have been the most popular and effective methods in fast PBME. 

However, since the contents of an image sequence vary quite drastically along with time, one 

single search pattern often can not handle well the diverse characteristics of the entire sequence. 

Thus, the adaptive PBME [35][36][37][38][39][40][41][42][43], which mainly comprise multiple 

pattern searches and a pattern switching mechanism, have been proposed. Note that, the overall 

performance of an adaptive pattern search algorithm is still bounded by its constituent pattern 

searches.  

 
Section 2.1 Initial Search Point  

The initial search point of the PBME has crucial effect on the search point performance as 

reported in [14][15][16]. Conventionally, the most common used initial search point is zero 

motion vector (ZMV, (2.1)) and predicted motion vector (PMV, (2.2)). Herein, we adopt the 

prediction formula specified by the MPEG-4 standard for PMV. Unless explicitly stated otherwise, 

we use PMV as the predetermined initial search point for the conventional pattern searches for 

two reasons. First, the motion vector differences between the best MV and PMV is coded in the 

bitstream on our simulation platform – a MPEG-4 SP@L3 encoder. That is, when the best MV is 
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PMV, it takes 0 bits to code the best MV. Clearly, the simulation platform favors PMV because it 

consumes the least bits. Second, PMV is likely to be the MV with the smallest block-matching 

error in statistics. Thus, if we choose PMV as the initial search point, the resulting number of 

search point acquired by a typical PBME is small. Further discussions on the best initial search 

points are in Section 4.3. 

)0,0(=ZMV . (2.1)

),,( URLU MVMVMVMedianPMV = ,  

where the location of MVU/MVL/MVUR and PMV are illustrated by Fig. 2-1. MVU is the 
adjacent upper block of the current block, MVL is the adjacent left block of the current 
block, and MVUR is the neighboring up-right block of the current block. 

(2.2)

 

PMVMVL

MVURMVU

 
Fig. 2-1 Predicted motion vector. 

 
Section 2.2 Some Popular Pattern-based Search Algorithms 

Four representative pattern-based search methods, Four Step Search (FSS) [26], Diamond Search 

(DS) [27][28], Enhanced Hexagonal Search (EHS) [32], and Easy Rhombus Pattern Search 

(ERPS), are used to illustrate the construction of the PBME model. These pattern-based search 

algorithms are chosen because of their well-recognized performance. Among the existing PBME 

algorithms, EHS performs rather well particularly on high motion sequences, and ERPS is more 

suitable for low motion sequences. 
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Fig. 2-2 Search patterns used in FSS. 
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Fig. 2-3 Search patterns used in DS. 
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Fig. 2-4 Search patterns used in EHS. 
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Fig. 2-5 Search patterns used in ERPS. 
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FSS and DS both consist of two specific search patterns, as shown in Fig. 2-2 and Fig. 2-3, 

respectively. The large search pattern, Fig. 2-2(a) or Fig. 2-3(a), is used for the coarse regular 

searches, while the small search pattern, Fig. 2-2(b) or Fig. 2-3(b), is used for fine ending search. 

Their procedures can be summarized as follows. 

 
  

Instead of using one single small ending search pattern, EHS uses two small ending search 

patterns as well as one large coarse regular search pattern as shown in Fig. 2-4. Its algorithm is the 

same as the one described above except for step 3. EHS switches the large hexagonal search 

pattern to one of the partial square patterns. The pattern in Fig. 2-4(b) is used when the smallest 

block distortion sum of two neighboring points in the previous-searched hexagonal pattern is in 

the vertical direction and the pattern in Fig. 2-4(c) is used otherwise. The two or three points 

covered by the newly formed partial square pattern are evaluated to compare with the current 

MBD point, and the new MBD point is the final motion vector.  

Unlike other algorithms mentioned above, ERPS uses only one rhombus search pattern in 

Fig. 2-5, for both coarse search and fine ending search. This particular rhombus pattern is also 

known as “small diamond” in [27][28] and “cross pattern” in [19]. ERPS is a simplified version of 

Step 1) Check the predetermined starting point, PMV, in the predefined search 

window, as well as the points in the large pattern, which centers at the predetermined 

starting point, PMV. If the minimal block distortion (MBD) point is found to be at 

the center of the large search pattern, proceed to Step 3; otherwise, proceed to Step 2.

Step 2) Set the MBD point in the previous search step as the center, and a new 

large pattern is formed. New search points generated by the new large pattern are 

checked if they were not examined in the previous large pattern. Thus, the new MBD 

point is again identified. If the MBD point is the center point of the latest large 

search pattern, go to Step 3; otherwise, repeat this step continuously. 

Step 3) Switch the search pattern from the large pattern to the small one. The 

points covered by the small pattern are evaluated to compare with the current MBD 

point. The new MBD point is the final motion vector. 
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adaptive rood pattern search (ARPS[31]). It is ARPS without initial rood patterns as well as 

various motion vector predictors; PMV is the sole starting search point. The algorithm of ERPS is 

as follows.  

 
 

Step 1) Check the predetermined starting point, PMV, in the predefined search 

window, as well as the points in the rhombus pattern, which centers at the 

predetermined starting point. If the MBD point is found to be at the center of the 

rhombus pattern, the MBD point is the final motion vector; otherwise, proceed to 

Step 2. 

Step 2) Set the MBD point in the previous search step as the center, and a new 

rhombus pattern is formed. Three or two new candidate points are checked, and the 

MBD point is again identified. If the new MBD point is the center point of the latest 

rhombus pattern, the new MBD point is the final motion vector; otherwise, repeat 

this step continuously. 
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Chapter 3 Modeling of Pattern-based Block Motion 
Estimation 

 
Many researches have proposed fast PBME to reduce the computational requirement of the highly 

computation-intensive BME. However, few researchers, to our knowledge, have tried to construct 

an accurate model for the PBME process. To be specific, it is a model that unveils the relationship 

among the video sequences, the search methods, and the computational complexity. Our aim is to 

construct an explicit mathematical model for PBME.  

Recent research works on PBME often collect the statistics of motion vectors and design 

good search patterns based on experiences. Few papers are able to provide a systematic way in 

modeling and designing the search pattern. Among the existing search patterns, the rhombus 

patterns are known quite effective for low motion sequences [19][20][31], and the hexagonal 

patterns are very powerful for high motion sequences [29][32][33]. Combining these two sets of 

search patterns, [21] uses rhombus pattern for initial searches and switches to hexagonal pattern 

for the succeeding regular searches. One step further, [39] and [40] select the search patterns 

adaptively according to a set of criteria. Typically these papers use only the experimental data to 

show the effectiveness of the corresponding search patterns. In this chapter, we like to further 

explore the following problems. Why does one search pattern outperform the other? What is the 

underlying mechanism behind it? Is there a search pattern that handles nearly all sequences well? 

Moreover, can we construct a mathematical model that describes the underlying mechanism? An 

attempt is made in this chapter to answer these questions. 

In this study, we are going to construct a simple and yet effective statistical model for PBME. 

Using this statistical model, we can predict the performance of one search algorithm when it is 

applied to a test sequence. Also, based on this model, a novel genetic PBME algorithm is devised. 

The rest of this chapter is organized as follows. Section 3.1 presents the probability 
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distribution functions of the motion vectors acquired by FS. In Section 3.2, we analyze the search 

points of several representative PBME algorithms and formulate the weighting functions (WF, 

first mentioned in Section 1.2). Based on the proposed probability distribution function for motion 

vectors and the WFs of different PBME algorithms, Section 3.3 builds a statistical model for 

PBME. To demonstrate the use of this model, a new genetic rhombus pattern search is presented 

in Section 3.4, which shows good performance for both low motion and relative high motion 

sequences. Section 3.5 describes the second example of using our model: predicting the 

performance of applying a specific search algorithm to a specific video sequence. Lastly, we 

summarize this chapter by Section 3.6. 

 
Section 3.1 Probability Distribution of Motion Vectors 

In order to design a good search pattern set, many papers discussed the nature of motion vectors. 

[19], [20] and [21] empirically gather the statistics of the motion vectors around the initial search 

point and develop their search algorithms. [43] assumes that the motion vector distribution can be 

approximated by either Gaussian or Laplace probability distributions. So far, we have not found 

an attempt of inventing a probability distribution function (PDF) that provides a quite precise 

match to the motion vectors. 

We select a few representative training sequences at various bit rates under the settings given 

in Table 3-1 for generating motion vectors. The selected sequences are encoded by a MPEG-4 

SP@L3 encoder using FS. All the sequences are in CIF (352X288) format. Only the first frame is 

coded as I frame, and all the remaining frames are coded as P frames. The motion vector search 

range is set to 16, the initial quantizer step size is set to 15, and the block size is set to 16x16. 

When the quantization step varies to achieve the desired bit rate, the PSNR quality of the coded 

video sequence ranges from 26dB (poor but acceptable) to 40dB (visually the same as original). 

 
 



 
 

- 13 -

Table 3-1 The selected training sequences and their settings. 

Abbreviation
 

Sequence 
 

Bit rate
(K bps)

Frame rate
(fps) 

Number 
of frames 

PSNR
 

CT256 container 256 7.5 300 39 
CT40 container 40 7.5 300 32 
HL40 hall 40 7.5 300 33 
MD96 mother and daughter 96 10 300 40 
CG112 coastguard 112 30 300 29 
FM512 foreman 512 30 300 34 
FM1024 foreman 1024 30 300 36 
FB1024 football 1024 30 90 35 
FG768 flower garden 768 30 250 26 
ST1024 Steven 1024 30 300 29 

 

3.1.1 Motion Vector Distributions 

 
Fig. 3-1 Contour plots of the motion vector probability distribution of video sequence CG112 
(partial).  

 
In our experiments, we test two kinds of initial motion vectors (origins of PBME search), namely, 

ZMV and PMV. Fig. 3-1 shows the probability distributions of the motion vectors obtained by 

applying FS with a search region [-16~+15, -16~+15] to a video sequence, coast guard at 112K 

(CG112). Only the probability distribution in region [-4~+4, -4~+4] is shown. The left plot is the 

motion vector probability distribution with respect to (w.r.t.) PMV, and the right one is the motion 

vector probability distribution w.r.t. ZMV. Herein, ZMV is defined by (2.1), PMV is defined by 

(2.2), and the label on the contour shows the probability of motion vectors.  
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From the motion vector distributions obtained by applying FS to a video sequence, Fig. 3-1 

for example, the motion vector distributions with respect to (w.r.t.) PMV generally have a more 

symmetric shape as compared to the motion vector distributions w.r.t. ZMV. In addition, the 

PMV-based motion vectors have a smaller standard deviation. They cluster better. Therefore, the 

motion vector distribution w.r.t. PMV is thus used in the rest of this chapter. 

The statistics of the motion vectors w.r.t. PMV of all the selected training sequences show 

that the horizontal mean values (μx) and vertical mean values (μy) both are close to zero. Thus, 

these motion vector distributions are zero-biased w.r.t. PMV. For a particular sequence, the 

variance of the horizontal motion vectors (σ2
x) is often larger than that of the vertical motion 

vectors (σ2
y). Furthermore, the correlations (ρxy) between the horizontal components and the 

vertical components of motion vectors are nearly zero for all our training sequences in Table 3-1. 

 

3.1.2 Normalized Independent 2D Distribution 

Based on the above observations, three popular zero-mean normalized independent 2D 

distributions are considered as candidates for modeling MV distribution: 1) Gaussian distribution 

function, 2) Laplace distribution function and 3) Cauchy distribution function. 

A Gaussian probability distribution with mean μ and variance σ2 is shown by (3.1); a Laplace 

probability distribution with mean μ and variance 22b  is shown by (3.2); and a Cauchy 

probability distribution with median m and the full width at half maximum Γ  can be expressed 

by (3.3), where ),( +∞−∞∈x . 
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Because the correlations between the horizontal components of motion vectors, x, and the 

vertical components of motion vectors, y, are almost zero, it is reasonable to assume that these 

two random variables in the motion vectors, x and y, are independent. The independent 2D 

Gaussian probability distribution can be defined as (3.4), where ),( +∞−∞∈x  and ),( +∞−∞∈y . 
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Furthermore, since the mean values of motion vectors are nearly (0,0), one may set 
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Although these probability distributions are defined in the domains of ),( +∞−∞∈x  and 

),( +∞−∞∈y , the actual distributions of motion vectors are confined in a search area, A. 

Consequently, we need to normalize the probability distributions as shown by (3.6). Then, the sum 

of probabilities in the search area would equal 1.  
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Consequently, the zero-mean normalized independent 2D Gaussian Distribution G(x,y) is 

defined by (3.7). Similarly, the zero-mean normalized independent 2D Laplace Distribution L(x,y) 

is defined by (3.8), and the zero-mean normalized independent 2D Cauchy Distribution C(x,y) is 

defined by (3.9). Note that, Ayx ∈),( , and A is the geographical area of [-32~+31, -32~+31] in our 

experiments. 
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Remark: Strictly speaking, the zero correlation between the horizontal components and vertical 

components of motion vectors does not imply that they are statistically independent. However, we 

will justify the correctness of these probabilistic models using the goodness-of-fit test [10][11] as 

follows.  

To find out which of the three PDFs best approximates the PDF of motion vectors acquired 

by FS, a well-known goodness-of-fit test, 2D KS test [12][13], is adopted. The statistic D defined 

in [13] is used as the measure of similarity between the hypothesized PDF and the observed PDF 

(data). To be more specific, the statistic D is the maximum absolute difference between two 

cumulative probability distributions. The smaller statistic D is, the better the hypothesized PDF 

matches the observed PDF. 

In the 2D KS test, the motion vector probability distributions acquired by FS, PDFFS, are 

tested against the hypothesized zero-mean normalized independent 2D Gaussian (3.7), Laplace 

(3.8) and Cauchy distributions (3.9) with the same variances. Therefore, we need to adjust the 

parameter values of these three distributions so that the variances of the hypothesized distributions 

equal those of PDFFS. Those fitted hypothesized zero-mean normalized independent 2D Gaussian, 

Laplace and Cauchy distributions are called GFS(x,y), LFS(x,y) and CFS(x,y), respectively. 

Table 3-2 shows the 2D KS test results between PDFFS(x,y) and the three hypothesized 

distributions. Clearly the normalized independent 2D Cauchy distribution CFS(x,y) generally has 

the smallest statistic D values. However, according to [13], the values of statistic D in our 
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experiments are so large that it is improper to claim that any of these three 2D distributions has a 

good match to the target PDFFS(x,y). 

 
Table 3-2 Statistic D of 2D KS test. 

Sequences GFS(x,y) LFS(x,y) CFS(x,y) 
CT256 0.48 0.38 0.08 
CT40 0.42 0.35 0.14 
HL40 0.36 0.30 0.08 
MD96 0.38 0.32 0.12 
CG112 0.41 0.32 0.12 
FM512 0.39 0.30 0.07 
FM1024 0.40 0.30 0.06 
FB1024 0.28 0.23 0.19 
FG768 0.40 0.32 0.12 
ST1024 0.39 0.33 0.17 
Average 0.39 0.32 0.11 

 

3.1.3 A Fitted Probability Distribution 

To further reduce the difference between CFS(x,y) and PDFFS(x,y), we extend C(x,y) and propose 

a new form of PDF denoted by T(x,y), which is defined by (3.10). For each of the selected 

training sequences, τx and τy are optimized such that the maximum discrepancy between 

PDFFS(x,y) and T(x,y) is minimized, and ξx and ξy are adjusted such that the variances of T(x,y) 

are the same as those of the training sequences. T(x,y) with those fitted parameters matching the 

PFDFS(x,y) becomes TFS(x,y). The fitted parameters and their corresponding 2D KS test results 

are shown in Table 3-3. One may note that τx and τy vary from 1.13 to 2.2. This indicates the 

variations among the test sequences are considerably large. 
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Despite the large individual differences among the training sequences, Table 3-3 shows that 
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τx and τy generally are around 1.67. We thus choose 
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to simplify T(x,y). The 

resultant distribution is called S(x,y) as defined by (3.11). 
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Table 3-3 Parameters of TFS(x,y) for the training sequences and their corresponding KS test 

results. 

T(X,Y) CT256 CT40 HL40 MD96 CG112 FM512 FM1024 FB1024 FG768 ST1024

xi_x(ξx) 0.01 0.04 0.13 0.11 0.01 0.25 0.21 0.12 0.09 0.10 

xi_y (ξy) 0.03 0.13 0.11 0.10 0.55 0.24 0.20 0.43 0.40 0.19 

tau_x (τx) 1.84 1.70 1.73 1.58 1.46 1.94 1.99 1.13 1.75 1.79 

tau_y (τy) 1.50 1.54 1.72 1.83 2.21 1.82 1.88 1.18 1.98 1.31 

max_pdf_diff 0.01 0.01 0.02 0.01 0.03 0.03 0.03 0.02 0.08 0.01 

Statistic D 0.01 0.05 0.06 0.05 0.07 0.05 0.05 0.14 0.12 0.03 

 

The 2D KS test shows that SFS(x,y) on the average has a smaller statistic D in comparison 

with GFS(x,y), LFS(x,y), and CFS(x,y). Note that the parameters (ζx, ζy) of SFS(x,y) are obtained by 

numerical methods so that the variances of SFS(x,y) match the data statistics. In summary, after 

several attempts, we found that SFS(x,y) is a rather good model to describe the probability 

distribution of the motion vectors derived by using FS. It constitutes the first element of our 

complete model. 

 
Section 3.2 Search Points in Pattern-based Search 

Algorithms 

Search patterns are generally devised based on the assumption that the matching cost surface is a 

unimodal one; in other words, the distortion associated with a search point closer to the global 
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minimum has a smaller value. Under this assumption, the number of search points is defined as 

the minimal number of search points in all possible paths leading to the best-matched point from 

the starting (initial) point. The search point number in this definition depends on the search pattern. 

And, for a given search pattern, it is determined by the shortest path between the initial point and 

the best-matched point. Therefore, it is a discrete function of the location and will be called 

weighting function. By examining the search process of a PBME, we can construct its 

corresponding WF. 

Note that the global uni-modal cost surface assumption is so strong that it is not always true 

for most video sequences [32]. Typically it is valid within a small neighborhood of the global 

minimal point. Consequently, the WF does not represent the actual number of search points. 

Indeed, it represents the lower bound of the number of search points. But the statistics also show 

that the number of actual search points is highly correlated with our defined WF. 

 

3.2.1 Weighting Function of Pattern-based Search Algorithms  

By examining the search algorithms in Section 2.2, we can construct their WFs. Fig. 3-2 shows 

two examples of the FSS search process. Fig. 3-2(a) is the case of the minimum search point. 

There are only two steps. The initial coarse search examines 9 points and the fine ending search 

examines 8 points. The initial point happens to be the best-matched point. Fig. 3-2(b) shows a 

typical search process. In addition to the 9 initial search points and the 8 ending search points, 

FSS checks 3 new points if it moves horizontally or vertically, and it checks 5 new points if it 

moves diagonally. In the WF of FSS (3.12), ‘9’ represents the coarse initial search points, and ‘8’ 

represents the fine ending search points. The parameter MFSS(x,y) is ‘5’ if it moves diagonally and 

‘3’ otherwise. And nFSS(x,y) denotes the number of movements. 
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Fig. 3-2 Examples of FSS process. 

 

8),(),(9),( +×+= yxnyxMyxWF FSSFSSFSS  (3.12)

4),(),(9),( +×+= yxnyxMyxWF DSDSDS  (3.13)

),(),(37),( yxKyxnyxWF EHSEHSEHS +×+=  (3.14)

4),(1),( +×+= yxnMyxWF ERPSERPSERPS  (3.15)

 

Likewise, by examining the search steps of the other three PBME algorithms, the WFs of DS, 

EHS, and ERPS can also be formulated by (3.13), (3.14), and (3.15), respectively. In Eqs (3.13) to 

(3.15), MDS(x,y) is either 5 or 3, KEHS(x,y) is either 3 or 2, MERPS is either 3 or 2, all depending on 

the search direction. And the value of nDS(x,y). nEHS(x,y), and nERPS(x,y) are decided by the 

number of movements. 

From (3.12) to (3.15), it is clear that in the minimum case ERPS checks only 5 points, while 

FSS checks 17 points, DS checks 13 points and EHS checks 9 points. Thus, ERPS has the 

smallest number of search points among the four algorithms for the minimum cases. The 

minimum cases refer to the situations that the best-matched motion vector is located at the starting 

point. 

Fig. 3-3 shows the contour plots of the WFs of FSS, DS, EHS, and ERPS, respectively. The 

value on a contour represents the least number of search points for a search algorithm to move 

from the origin to a point (location) on the contour. Because EHS moves faster than any other 
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algorithms, EHS surpasses the other algorithms at distant locations. Therefore, by looking into the 

WF of a search algorithm, we understand why it works better for a particular situation (fast 

motion or slow motion). Use ERPS as an example: because WFERPS(x,y) has the smallest values 

around the starting point, it has advantages for slow motion situations. On the other extreme, 

WFEHS(x,y) has the smallest values at distant locations. WF forms the second element of our 

complete model. 

 
Fig. 3-3 Contour plots of the WFs of FSS, DS, EHS, and ERPS, respectively. 

 

Section 3.3 Statistical Model for Pattern-based Block Motion 

Estimation 

Based on the problem formulation in Section 3.1 and Section 3.2, the total average search points 

(ASP) for a sequence can be represented by (3.16). It depends on both search algorithm (SA) and 
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the video sequence. It is the sum of the products of the number of search points and the motion 

vector probability distributions at all locations within the search area, where SPFSA(x,y) denotes 

the number of search points, PDFSA(x,y) denotes the motion vector distribution acquired by a 

specific algorithm, and A is the search area. 

∑
∈

×=
Ayx

SASA yxSPFyxPDFASP
),(

),(),(  (3.16)

When we apply a specific algorithm to a specific sequence, we obtain the ASP directly from 

the experiments without the need of calculating (3.16), which requires the knowledge of 

PDFSA(x,y) and SPFSA(x,y). Our goal is to construct a generic model in which the dependency on 

SA and video sequence is separable. In other words, the PDF is sequence dependent but not SA 

dependent. And the search point function is SA dependent but not sequence dependent. That is, we 

would like to replace PDFSA(x,y) by PDFFS(x,y), and SPFSA(x,y) by WFSA(x,y) in (3.16). Thus, 

(3.16) becomes (3.17). Herein, PDFFS(x,y) denotes the PDF of the motion vector acquired by FS, 

and WFSA(x,y) denotes the weighting function of a specific algorithm discussed previously. With 

(3.17), we can thus predict ASP before actually applying a search algorithm to a video sequence, 

as long as we know the motion vector PDF acquired by FS and the WF of a specific SA.  

∑
∈

×=
Ayx

SAFS yxWFyxPDFASP
),(

),(),(  (3.17)

However, (3.17) differs from (3.16) due to a few reasons. First, because the block-matching 

cost surface typically is not globally monotonic in the search area, the actual search process from 

time to time does not take the shortest path to the location of the best-matched motion vector. 

Thus, the average number of actual search points, SPFSA(x,y), is higher than WFSA(x,y), the 

shortest-path (minimal) search points. Second, the motion vectors found by a specific algorithm 

sometimes differ from the ones found by FS. Consequently, the motion vector PDF of this specific 

algorithm, PDFSA(x,y), is not the identical to that of the full search, PDFFS(x,y). 
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Fig. 3-4 PDF shift between PDF acquired by FS and that acquired by EHS (CG112). 

 
Fig. 3-4 shows the cross sections of PDFs acquired by FS and those acquired by EHS for the 

video sequence, CG112. It is clear that these two PDFs are not identical. PDF shift refers to the 

phenomenon that PDFFS(x,y) differs from PDFSA(x,y). The main causes are: 1) the search pattern 

is relatively small, thus the search is trapped by a local optimal; 2) the early decision mechanism 

terminates the search when a near-optimal solution is found; and 3) the starting point of SA 

disagrees to that of FS, PMV, in our formulation.  

Fig. 3-5 shows the theoretical WF and the empirical SPF obtained by applying EHS to the 

video sequence, FB1024, in the region [-10~+10, -10~+10]. Herein, on the left plot (the 

theoretical WF), the value on a contour represents the shortest-path search points for EHS to move 

from the origin to a point (location) on the contour and, on the right plot (the empirical SPF), it 

represents the average number of actual search points. For the empirical SPF, the contour is not 

continuous, because some motion vectors never happen when we apply a SA to a specific 

sequence. Thus there indeed exists some differences between the theoretical WF and the empirical 

SPF and therefore we called it WF drift. It happens because the search algorithm does not always 

follow the shortest path in the search process as discussed earlier. 
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Fig. 3-5 The contour plots of the theoretical WF and the empirical SPF by applying EHS to 
FB1024 (partial).  
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Fig. 3-6 PDF differences between PDFFS(x,y) and SFS(x,y) of CG112. 

 

Moreover, Section 3.1 suggests that the distribution S(x,y) best approximates PDFFS(x,y). We 

can thus substitute S(x,y) for PDFFS(x,y) in (3.17) as long as its variances are known. Thus, S(x,y) 

becomes SFS(x,y), the S(x,y) that matches the motion vectors acquired by FS. However, the 

substitution of SFS(x,y) also induces new PDF matching error. Fig. 3-6 shows the PDF differences 

between SFS(x,y) and PDFFS(x,y) of the video sequence, CG112. 
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Therefore, Eq.(3.17) needs adjustment to compensate for various shifts, drifts and model 

errors. Eq.(3.18) is a modified formula for modeling ASP. Two additional terms, C1 and C2, are 

included in Eq.(3.18). We propose that ASP is a linear function of the sum of the products of 

SFS(x,y) and WFSA(x,y). By tuning the values of C1 and C2, we can reduce the WF drift error, the 

PDF shift error and the PDF mismatch error. Consequently, with the pre-analysis of WFSA(x,y) for 

a specific SA and pre-calculation of SFS(x,y) for a specific sequence, one may use Eq.(3.18) to 

estimate the ASP values of another SA when it is applied to this specific sequence.  

We need to justify the above model is valid for real data. There are two methods to decide C1 

and C2. In the first method, we apply a fixed SA to a set of training sequences to compute C1 and 

C2 by the regression method. Our aim is that the model with trained C1 and C2 can predict the ASP 

of a new sequence accurately. In the second method, we apply a few search algorithms (the 

training algorithms) to a specific sequence, and then calculate C1 and C2 based on the acquired 

data. In this case the goal is that the model with trained C1 and C2 can predict the ASP values of a 

new algorithm. 
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Fig. 3-7 The actual ASP and the predicted ASP pairs for 4 popular search algorithms (1st method) 
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In the first method, C1 and C2 are acquired from a set of training sequences with one specific 

search algorithm. Fig. 3-7 shows the pairs of the actual ASP and predicted ASP of various 

sequences for the four popular search algorithms. Each training sequence is represented by a 

plus-sign mark, the solid line represents the case that the predicted ASP is exactly the same as the 

actual ASP. The X-axis represents the predicted ASP and the Y-axis represents the actual ASP. 

Table 3-4 displays the C1 and C2 values for each search algorithm. The last column is the 

correlation coefficient between the actual ASP and the predicted ASP. One may notice that the 

correlation coefficients for all algorithms are very close to 1, which means that the predicted ASPs 

are nearly the same as the actual ASPs. 

 
Table 3-4 Regression parameters (C1 and C2) and the correlation coefficients between the 

model-predicted ASP and the real data. (1st method). 

BME C1 C2 ASP correlation 
FSS 0.42  10.38  0.98  
DS 0.46  7.59  0.98  
EHS 0.42  5.63  0.99  
ERPS 0.44  2.97  0.98  

 

In the second method, C1 and C2 can be acquired by applying a set of search algorithms 

(training algorithms) to a specific sequence. We then predict the ASP value of a new algorithm by 

using the proposed model. Fig. 3-8 shows the actual ASP versus the predicted ASP pairs for 10 

sequences. Each training algorithm is represented by a cross-sign mark, the dash line shows the 

case that the predicted ASP is exactly the same as the actual ASP, and the X-axis represents the 

predicted ASP and the Y-axis represents the actual ASP. Table 3-5 displays the C1 and C2 values 

for the 10 sequences and the correlation coefficients between the predicted ASP and the actual 

ASP. The correlation coefficients are very close to 1 for all sequences except for FB1024, which 

has a value of 0.73. This may be due to the high motion nature of FB1024. In spite of the small 

number of training algorithms, the coherence between the predicted ASP and the actual ASP is 

very high for all 10 sequences. 
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Fig. 3-8 The actual ASP and predicted ASP pairs for 10 training sequences (2nd method). 
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Table 3-5 Regression parameters (C1 and C2) and the correlation coefficients between 

model-predicted ASP and the actual data (2nd method). 

Sequence C1 C2 ASP correlation 
CT256 1.07  -1.42  1.00  
CT40 1.17  -4.70  0.98  
HL40 1.19  -4.35  0.99  
MD96 1.17  -4.52  0.97  
CG112 1.05  -1.05  1.00  
FM512 1.15  -3.60  0.99  
FM1024 1.10  -2.36  1.00  
FB1024 0.62  1.66  0.73  
FG768 1.15  -3.76  0.98  
ST1024 1.08  -5.82  0.91  

 

The first method and the second method are designed for different scenarios. The first 

method is used to predict the ASP of a new sequence (for a given specific search algorithm), while 

the second method is used to predict the ASP of a new search algorithm (for a given specific 

sequence). Due to different sizes of training samples and purposes, the accuracy comparison 

between these two methods may not be meaningful.  

In the following two sections, we will show how this model, (3.18), can be used to inspire 

the design of a new search algorithm as well as it can be used to predict the search performance of 

a new video sequence or a new search algorithm. 

 

Section 3.4 Application I: Pattern-based Search Algorithm 

Design 

How can we devise a new pattern-based search algorithm with the help of the previous analysis? 

We do this in three steps. We first construct a target WF based on the analysis in the past two 

sections. Then, we devise a search pattern that hopefully achieves the desired WF. At last, we 

evaluate its performance by simulation on real pictures. 
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The first step of designing a new search algorithm is to find a WF that has the smallest 

possible values at all locations, because, in our proposed model, ASP depends on WF and the 

smaller the WF is, the faster the corresponding search algorithm is.  

Most effective PBME algorithms typically consist of two stages: 1) coarse regular search 

stage and 2) fine ending search stage. The purpose of the regular search stage is to fast locate the 

potential optimal motion vectors, and the ending stage is to determine the best-matched point in a 

small neighborhood. Each stage may use one or several search patterns. In the regular search stage, 

because the shortest path between two points in a plane is the strait line, the fastest search path for 

a search algorithm is the strait line from the starting point directly to the best-matched motion 

vector. Based on the previous experiments, we suspect that a doable search method moves at most 

one unit distance horizontally or vertically per step. As shown in Fig. 3-9(a), the minimal number 

of search points for reaching the motion vector (x,y) is ‘abs(x)+abs(y)+1’. In the ending stage, to 

decide precisely the location of the best candidate motion vector generally requires to search at 

least the neighboring 4 points and the current point (center) itself, as shown in Fig. 3-9(b). 

Consequently, the minimal number of search points for motion vector (x,y) is ‘Max(5, 

4+abs(x)+abs(y))’. Thus, the ideal WF (x,y) is expressed as (3.19) and its contour plot is depicted 

in Fig. 3-11. 

 

abs(y))abs(x)4 Max(5,),( ++=yxWFGRPS  (3.19) 
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Fig. 3-9 Search patterns for GRPS. 



 
 

- 30 -

-3 -2 -1 0 1 2 3
-3

-2

-1
0

1
2
3

S

(a)

1
1

1
1

4

3

2

1

0

(b)

-1
-2

-3

-4
-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8

1S 2 3
4

5 66

6

2 4

4

 
Fig. 3-10 Examples of GRPS search process. 

 
The second step is to choose proper search patterns that fulfill the desired WF. By 

simplifying the genetic search algorithms in [22], [23] and [24] as well as combining the rhombus 

search pattern, we propose a genetic rhombus pattern search (GRPS) to match the WF in (3.19). 

The algorithm is described below.  

 
  

Note that, we do not adopt the complete genetic algorithm here. Only the concept of genetic 

optimization is used in the proposed algorithm.  

Fig. 3-10(a) shows the fastest search case of GRPS, and Fig. 3-10(b) shows a typical search 

case of GRPS. From Fig. 3-10, we conclude that the WF of the proposed GRPS (3.19) can be 

expressed by (3.20), where MGRPS is 1, 2, 3 or 4, depending on whether the mutation is successful 

1. Initial:  
Check the starting point, PMV, and set it as the parent point. 

2. Mutation:  
Select randomly a next generation point (the mutation point) from the untested 
points of a rhombus pattern centered at the parent. That is, check one (black dot, 
for example) of the four solid points (black and gray dots) in the coarse search 
pattern in Fig. 3-9(a). 

3. Competition:  
Select the survivor between the parent and its mutation based on their matching 
costs.  
a. If the mutation is better than the parent, the mutation is the survivor (the next 
parent). Go to step 2.  
b. If the parent is better than its mutation, the parent is the survivor (the next 
parent) and check if there is any remaining untested mutation point in the four 
points of a rhombus pattern. If there is one, go to step 2; otherwise, (that is, all 
points in the ending search pattern, Fig. 3-9(b), are checked,) go to step 4.   

4. End:  
Set the current survivor as the final motion vector.
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and the nGRPS(x,y) value depends on the number of movements. Comparing Fig. 3-11, WFGRPS(x,y) 

contour plot, with the previously discussed known algorithms, we can find that GRPS has the 

same or smaller number of search points as ERPS near the starting point, and it has a smaller 

number of search points than EHS in locations away from the starting point. In other words, it 

achieves the smallest number of search points at nearly all locations, compared to the four popular 

search algorithms. 

 
Fig. 3-11 WF of GRPS. 

 
),(1),( yxnMyxWF GRPSGRPSGRPS ×+=  (3.20) 

In the last step of designing a new search algorithm, we evaluate the performances of the 

proposed GRPS by conducting experiments on the training sequences. The results are shown in 

Table 3-6 (Average number of search points), Table 3-7(Peak signal noise ratio), and Table 3-8 

(Performance comparison). It is compared with FS and the four representative search algorithms 

described in Section 2.2. In Table 3-8, the computing gain (CG) is defined as the ratio of ASP 

minus one, and the quality gain (QG) is defined as the PSNR difference. In summary, the ASP of 

GRPS on average is 22% faster than that of ERPS, 56% faster than EHS, 130% faster than DS, 

172% faster than FSS, and 145 times faster than FS. On the other hand, the PSNR of GRPS is on 

average better than all other search algorithms, except for ERPS. Compared with ERPS, the 

quality loss of GRPS is very small, around 0.01dB. Therefore, GRPS outperforms all the other 

search algorithms in terms of ASP for all training sequences, and its coding quality is comparable 
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with all the other algorithms. 

  

Table 3-6 ASP (Average number of search points). 

ASP GRPS ERPS EHS DS FSS FS 
CT256 5.36  5.75  9.59  13.81  17.53  1024.00  
CT40 5.98  7.04  10.42  15.03  18.38  1024.00  
HL40 6.35  7.33  10.34  15.38  18.72  1024.00  
MD96 5.98  6.83  10.32  14.85  18.37  1024.00  
CG112 6.08  7.63  10.31  15.09  18.25  1024.00  
FM512 7.13  8.65  10.76  16.17  19.03  1024.00  
FM1024 6.94  8.32  10.54  15.76  18.71  1024.00  
FB1024 11.89  16.36  14.29  22.36  22.70  1024.00  
FG768 6.38  7.57  10.55  15.30  18.73  1024.00  

ST1024 7.65  9.95  11.48  16.96  19.47  1024.00  

Average 6.97  8.54  10.86  16.07  18.99  1024.00  
Table 3-7 PSNR (Peak Signal Noise Ratio). 

PSNR GRPS ERPS EHS DS FSS FS 
CT256 39.49  39.50  39.48  39.51  39.49  39.56  
CT40 32.21  32.08  31.46  31.92  31.69  32.04  
HL40 34.49  34.60  34.27  34.25  34.17  33.55  
MD96 40.08  40.09  39.87  39.99  39.93  39.80  
CG112 29.14  29.16  29.07  29.14  29.13  29.08  
FM512 34.05  34.10  33.94  34.06  34.02  34.06  
FM1024 36.52  36.61  36.46  36.59  36.48  36.56  
FB1024 34.87  34.88  34.86  34.93  34.94  35.28  
FG768 26.17  26.19  26.15  26.18  26.16  26.33  
ST1024 29.39  29.31  29.47  29.44  29.35  29.48  
Average 33.64  33.65  33.50  33.60  33.54  33.57  

Table 3-8 Coding Performance Comparison. 

  
GRPS  

over ERPS 
 GRPS 

over EHS 
GRPS  

over DS 
GRPS  

over FSS  
GRPS  

over FS 
Gain CG QG CG QG CG QG CG QG CG QG

CT256 0.07 -0.01 0.79 0.02 1.58 -0.01 2.27 0.00 190.04 -0.07 
CT40 0.18 0.13 0.74 0.74 1.51 0.28 2.07 0.51 170.24 0.16 
HL40 0.15 -0.11 0.63 0.22 1.42 0.24 1.95 0.32 160.26 0.94 
MD96 0.14 -0.02 0.73 0.20 1.48 0.08 2.07 0.15 170.24 0.27 
CG112 0.25 -0.02 0.70 0.07 1.48 0.00 2.00 0.01 167.42 0.06 
FM512 0.21 -0.05 0.51 0.12 1.27 -0.01 1.67 0.03 142.62 -0.00 
FM1024 0.20 -0.08 0.52 0.07 1.27 -0.06 1.70 0.04 146.55 -0.04 
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FB1024 0.38 -0.01 0.20 0.01 0.88 -0.06 0.91 -0.06 85.12 -0.41 
FG768 0.19 -0.02 0.65 0.02 1.40 -0.00 1.94 0.01 159.50 -0.15 
ST1024 0.30 0.07 0.50 -0.08 1.22 -0.06 1.55 0.04 132.86 -0.09 
Average 0.22 -0.01 0.56 0.14 1.30 0.04 1.72 0.11 145.83 0.07 

 

In principle, a classical pattern search checks all possible candidates in its search pattern. 

Comparatively, its corresponding genetic pattern search randomly picks up one candidate in the 

search pattern. When the matching error surface is uni-modal and monotonic, half of the points in 

the search pattern should have smaller matching discrepancies than that of the center of the search 

pattern. Thus, in statistics, a genetic pattern search moves faster than its corresponding classical 

pattern searches. Yet, the classical pattern search moves along the steepest descent path, but the 

genetic pattern search may take a longer path. In addition, when the best MV is the starting point, 

the minimal numbers of search points required by both algorithms are the same. In this case, a 

genetic pattern search has the same computation performance as its corresponding classical 

pattern search. Therefore, as a whole, GRPS is faster than ERPS but its acceleration ratios are 

much less than 100%, as shown in Table 3-6.  

In Table 3-7, the “sub-optimal” fast searches sometimes outperform the “optimal” FS in their 

PSNR qualities. The phenomena are particularly noticeable when the percentages of MV 

differential coding bits in the total bits are very high. FS looks for the motion vectors that 

minimize prediction errors without bit rate consideration; FS does not look for the motion vectors 

that produce the optimal rate-distortion outputs, which includes both distortion and bit rates. 

When the prediction error differences between the sub-optimal blocks and best matched blocks 

are small and this situation occurs in a large proportion of the coded images, the motion vectors 

have a significant influence on the coded picture quality. Although the prediction errors produced 

by a fast algorithm may be higher but the bits needed to encode its motion vectors may be fewer. 

It is thus possible that the final PSNR is higher for a sub-optimal search algorithm. To achieve the 

best overall rate-distortion results, the motion vectors sometimes should be replaced by the 
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“sub-optimal” motion vectors, which have larger estimation errors but fewer bits. In one way, we 

can do a sophisticated R-D optimization scheme, which is out of our scope in this paper. 

Alternatively, we can implicitly take the bitrate into consideration in the search process when we 

search the possible candidates according to the MV differential coding bits. Our proposed GRPS 

follows this concept. 

 

Section 3.5 Application II: Performance Prediction  

Our proposed model can also be used to predict the performance of applying a certain search 

method to an image sequence. 

First, we demonstrate the prediction of the ASP value for a new test sequence using the 

parameters acquired by the first method. With the model parameters obtained from the training 

sequences, Fig. 3-12 depicts the predicted performances on the new extra test sequences with FSS, 

DS, EHS and ERPS, respectively. Herein, the new extra test sequences and their settings in this 

experiment are listed in Table 3-9. In Fig. 3-12, X-axis represents the number of predicted ASP 

and the Y-axis represents the number of actual ASP, the training sequences are in plus-sign marks, 

the test (outside) sequences are in diamond-shape marks and the solid reference line represents 

that the predicted performance is exactly the same as actual performance. It is clear that the 

predicted performances are quite accurate.  

 
Table 3-9 The extra test sequences and their coding settings. 

Abbreviation Sequence Bitrate (K bps) Frame rate (fps) Number of frames
SI96 silent 96 10 300 
TT512 table tennis 512 30 300 
MB1024 mobile calendar 1024 30 300 
TM768 tempete 768 30 260 
NE40 news 40 7.5 90 
 

Moreover, GRPS can be used to verify the validness of the proposed model for a new search 
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algorithm (which is outside the training algorithms). With the modeling parameters obtained from 

the training sequences by the first method, the performance of GRPS between the predicted ASP 

and actual ASP are compared in Fig. 3-13, wherein the plus-sign marks are the training sequences, 

the diamond-shape marks are the test sequences, and the solid line is the reference case when the 

predicted ASP matches exactly as actual ASP. In this figure, the X-axis represents the number of 

predicted ASP and the Y-axis represents the number of actual ASP. Fig. 3-13 shows that 1) the 

proposed model indeed offers a good performance prediction for a new search pattern. One may 

observe that the diamond-shape mark (the ASPs of the test sequences) can be accurately predicted 

by the proposed model, and 2) GRPS has a high performance for both low motion and relative 

high motion sequences as predicted by our proposed model and the experiment results verify this 

prediction. 
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Fig. 3-12 Relation charts between the predicted ASP and the actual ASP (1st Method). 
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Fig. 3-13 Performance prediction for GRPS (for various test sequences, 1st method).  

 

Furthermore, we evaluate the predictive ASP value for the proposed GRPS by using the 

second method. The performance of GRPS on a sequence can be predicted by the proposed model 

with the modeling parameters estimated based on the four popular search algorithms as the 

training data. In Fig. 3-14, the X-axis is the predicted ASP value, and the Y-axis is actual ASP. The 

cross-sign marks are the training search algorithms; they are FSS, DS, EHS, and ERPS. The 

diamond-shape marks represent the proposed GRPS, and the dash line indicates that the predicted 

performance is exactly the same as the actual performance. One may see that the performance 

prediction is generally very accurate for all 10 sequences.  

Thus, the performance prediction can be used to select an effective search pattern set in a 

practical video coding system with adaptive selection of search pattern sets as suggested by [39] 

and [40]. The variances of motion vectors of a video clip can be known by either the predicting 

method (from the previous video clip) or the pre-analysis method (a two-pass process). Then, the 

PDF of motion vectors for the video clip is constructed. Combining with the WF of different 

search pattern sets, we know which search pattern set is more effective for this video clip. The 

video clip can be a video sequence, part of a video sequence (some video frames), part of a frame 

(a few image blocks), and the predicting method can use information from the spatial or temporal 

neighboring video clips. 
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Fig. 3-14 Performance prediction of GRPS as a new search algorithm (2nd method) 

 
Section 3.6 Chapter Summary 

A systematic approach is taken in this chapter for constructing a mathematical model for the 

PBME algorithms. With the assistance of goodness-of-fit tests, we propose a statistical PDF for 

the motion vectors. It matches well the real motion vector PDF produced by FS when their 
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variances are adjusted identical. We then propose a weighting function model that describes the 

minimal search points of a search algorithm. The WF of a certain PBME algorithm is estimated by 

analyzing the search process of that PBME. The complete PBME model includes these two 

elements: the statistical PDF derived from a video sequence and the WF derived from a search 

algorithm. 

With the proposed model, we can predict the performance of a new pattern search without 

actually applying the search algorithm to a video sequence. Thus, it helps us in constructing new 

search patterns (algorithms). Two application examples are given. Starting from an ideal WF 

target, we proposed the GRPS algorithm, which outperforms all other popular search algorithms. 

In addition, because this model can be used to predict the performance of a PBME algorithm, it 

can assist in selecting search patterns adaptively as the video sequence changes its characteristics 

along the time. Therefore, an adaptive (switchable) pattern search algorithm is made possible with 

a small amount of computational overhead. 
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Chapter 4 Design of Pattern-based Block Motion 
Estimation Algorithms 

 
To relieve the computational burden of BME, a myriad of fast BME algorithms have thus been 

proposed. Recent proposals in BME constitute several heuristic components and each has a 

number of possible parametric structures and values. The overall system is very complicated and 

how to optimally choose these parameters/structures are not yet fully explored. After studying 

many algorithms devised in the past, we develop a systematic approach to find the optimal or 

nearly optimal solutions to these problems and, at the end, a new BME algorithm including all 

techniques is proposed.  

According to [8], fast BME algorithms are classified mainly into two categories: 1) reducing 

the number of search (checking) points and 2) lowering the computational complexity in 

calculating the block-matching cost for each search point. In this study, we focus on the first 

category. The most popular algorithm in the first category is the PBME algorithm, which is 

typically a multi-step process. Often, three sets of tools are included: 1) search patterns 

[26][27][28][29][30][31][32][33], 2) starting points [14][15][16][30][31], and 3) early termination 

thresholds [9][14][30][31]. Adopting a divide-and-conquer approach in this study, we first 

scrutinize the underneath mechanism in each tool by using the analytical model [54] in Chapter 3. 

Then, we study and improve the techniques used for each processing step. At the end, we combine 

these tools together and form a very effective PBME algorithm. 

The rest of this chapter is organized as follows. Section 4.1 reviews our previously proposed 

analytical model for PBME algorithms, which consists of 1) a minimal check point profile 

associated with a search pattern and 2) a statistical MV probability distribution associated with an 

image sequence. In Section 4.2, we propose two sets of the genetic-algorithm-based search 

patterns for different types of moving image sequences. Then, we design a pattern switching 
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strategy, which dynamically changes search patterns based on the real-time video statistics. 

Section 4.3 examines the impact of starting (initial) point set and suggests a starting point set that 

produces outstanding search results. Section 4.4 suggests a threshold predictor that can be used in 

the early termination algorithm. Combining all these techniques together, Section 4.5 presents a 

complete PBME algorithm and its performance. At last, a brief concluding summary is given in 

Section 4.6.  

 
Section 4.1 Review of the PBME Model 

In Chapter 3 [54], the proposed mathematical model (expressed by (4.1), identical to (3.18)) can 

predict the ASP produced by a PBME. This model consists of two components: a statistical 

probability distribution function SFS(x,y) of MVs (approximated by (4.2)), and the minimal 

number of search points for a MV located at (x,y), WFSA(x,y), (called weighting function) 

produced by a search algorithm. In (4.1), (x,y) are the relative coordinates of which the origin is 

the PMV, defined by (2.2). The parameters (C1, C2) are obtained experimentally by training 

methods. Note that C1 is always positive because ASP and the sum of products of SFS(x,y) and 

WFSA(x,y) are always positively correlated.  
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Eq.(4.2) is derived from (3.11) based on the experimental data. In (4.2), (x,y) and (x’,y’) are 

relative coordinates with respect to (w.r.t.) PMV, and A is the search area. The parameters (ζx, ζy) 

are obtained by numerical methods such that the variances of SFS(x,y) match those of the MVs 

acquired by performing FS on a specific sequence.  
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Fig. 4-1 Contour plots of the WFs of ERPS and PHS. 

 

The weighting function, WFSA(x,y), is the minimal number of search points produced by a 

specific PBME algorithm when the argument (x,y) is the target MV. The weighting function can 

be obtained by analyzing the search procedure. Fig. 4-1 exemplifies WF of ERPS and PHS 

(Point-oriented Hexagonal Search [33]). 

Note that, the simulation platform, the test sequences and their settings adopted in this 

chapter are the same as described in Section 3.1 and Table 3-1. 

 

Section 4.2 Adaptive Pattern Search Algorithms 

4.2.1 Genetic Pattern Searches  

A preferred pattern search should have the following desirable properties: 1) it consumes less 

computing power, 2) it does not degrade the video quality, and 3) it costs fewer bits in coding the 

MV vectors. 

In [51] and [54], after analyzing the weighting function of several popular search algorithms 

(Fig. 3-3 and Fig. 4-1), we find that ERPS has the smallest ASP values for the MVs near the 
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origin (PMV) and PHS has the smallest ASP for the points away from the origin. These 

observations are consistent with the well-known facts that PHS moves faster than many other 

algorithms and thus it quickly reaches the distant locations, and ERPS examines fewer points 

when the target MV is close to the origin. These observations suggest that a good PBME 

algorithm should have small weighting function values for all locations in the search area, 

particularly for the high probability target MVs.  

A search algorithm degrades the video quality when it is trapped into a local optimum point. 

To reduce such cases, a search algorithm shall check all the neighboring points of the target when 

it decides to terminate the search process. The dilemma is that the increased checking points also 

increase computation. To achieve a balance between speed and quality, a PBME algorithm shall 

carefully select the number and the locations of check points at the termination step. 

A search algorithm should make good use of the uneven MV distribution to reduce the 

entropy coding bits. For example, if the (best) MVs cluster around a predictable location, it takes 

fewer bits in encoding MVs and less computing power in finding MVs. Because the probability 

density function of typical MVs peaks at around the PMV, a PBME algorithm with small 

weighting function near the starting point (PMV) would consume less computing power and 

fewer coding bits on the average. For convenience, therefore, our PBME model is centered at 

PMV. 

Based on the above design considerations, we adopt the genetic algorithms [23][24] to 

modify the traditional PBME algorithms. The simplest genetic algorithm contains only a 

mutation-and-competition loop. When a survivor (parent) produces a mutant (a child), the 

survivor competes with its own mutant to decide the next survivor (next-stage parent). The 

process stops when the survivor beats all its mutants. In contrast, the traditional PBME algorithms 

check all points in the search pattern and move the center (origin) to the winner until the central 

point beats all the other points in the search pattern. Thus, on the average, the traditional methods 



 
 

- 43 -

check more points than the genetic-based methods.  

A traditional PBME algorithm typically consists of two search patterns, the large search 

pattern and the small search pattern. The large search pattern is used for the coarse (regular) 

search and the small search pattern is used for the fine (terminating) search. In converting a 

traditional search algorithm into a genetic one, we blend the genetic algorithm into the coarse 

search stage. The central point (which is the winner of the previous search step) in the search 

pattern is the parent in the genetic search and all the other points are the child candidate set. 

Instead of calculating the block matching cost of all child candidates and deciding the best MV, 

we randomly select a point (a mutant) from the child candidate set, calculate its block-matching 

cost, compare its cost with the parent’s cost (competition), and decide the survivor (next parent). 

This process continues until all the points in the current child set are examined. If the parent beats 

all its children, it is then declared to be the winner. In addition, a typical terminating search checks 

all the points in the small search pattern to avoid trapping into the local minimum. But recent 

studies [32][33] suggest that it is often sufficient to check only the candidate points near the 

smallest error points in the large pattern. This phenomenon can be explained using the monotonic 

error surface assumption below. 

Conceptually, the genetic PBME algorithm can reach the optimal point under the assumption 

that the matching-error (cost) function is monotonic and uni-modal. That is, the block matching 

error surface decreases monotonically as the checking point moves closer to the global minimum. 

Therefore, we can reach the global minimum point by moving the search pattern center to the 

current minimal point step-by-step. Under the monotonic and uni-modal matching-error surface 

assumption, typically, half of the candidate child points (mutants) in a large pattern have higher 

matching cost than the current point (parent). Therefore, on the average, the genetic algorithm 

saves about 50% computation for moving one step when compared to its non-genetic sibling. As 

for the chance of being trapped in the local minimum, a genetic algorithm has roughly a similar 
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behavior as its non-genetic sibling. The reason is that both of them end the (coarse) search stage 

when the matching error of the center point is smaller than that of any other point in the (large) 

search pattern. But they may be trapped into different sub-optimum locations.  

Because of the computational advantage of the genetic algorithm, we convert ERPS into 

GRPS (genetic-based ERPS) and PHS into GPHS (genetic-based PHS), respectively. The flow 

chart of GRPS is shown in Fig. 4-2, and its associated search pattern is shown in Fig. 4-3. In step 

2 (S2), it randomly checks one point (black, for example) among all search points in Fig. 4-3(a). 

The condition of step 3B (S3B) is whether all the (black) points in Fig. 4-3(b) have been checked.  
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Fig. 4-2 The flowchart of GRPS 
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Fig. 4-3 The search patterns for GRPS 
 
The flowchart of GPHS is shown in Fig. 4-4 and its associated search patterns are shown in 

Fig. 4-5. Steps 2 and 3 are similar to those of GRPS but with a different large search pattern. In 

Step 4 (S4, Refinement), as suggested in [33], we first calculate the cost function, so-called 

Normalized Group Distortion (NGD) defined by (4.3), of all the grey points in Fig. 4-5(b). Then, 

we select the smallest NGD point from points a to f in Fig. 4-5(c) and the smaller NGD point 

from points g and h in Fig. 4-5(d). These two points constitute the small search pattern. Herein, 

the NGD of points a to h is calculated, respectively, based on the SADs in the groups A to H as 

defined by Fig. 4-5(c) and Fig. 4-5(d). This last step is biased to the horizontal direction because 

most pixels in nature image sequences have a higher probability in moving horizontally.  
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where (x,y) is the point to be evaluated, (xi, yi) is its i-th neighbor in its group, which can 
be one of A to H in Fig. 4-5(c) and Fig. 4-5(d), and N is the total point number in each 
group. Then, SADi denotes the SAD of the neighbor i, and di denotes the distance 
between (x,y) and (xi, yi).  
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Fig. 4-4 The flow chart of GPHS 
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Fig. 4-5 The search patterns of GPHS 
 

Fig. 4-6 shows the weighting functions of GRPS and GPHS. Compared with the weighting 

functions of the other PBME algorithms in Fig. 4-1, GRPS has the smallest values around the 

center but GPHS has the smallest values at far-away locations. As discussed earlier, we predict 

that they should outperform their non-genetic siblings. 
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Fig. 4-6 Contour plots of the weighting function for GRPS and GPHS. 

 
 
 Table 4-1 shows the performance of FS, DS, ERPS, PHS, GRPS and GPHS when they are 

applied to the representative sequences under the settings in Section 3.1 and Table 3-1. Herein, 

‘ASP’ denotes the average number of search points per block, and ‘PSNR’ denotes the average 

frame PSNR in a coded sequence. On the average, GRPS is faster than ERPS by 23% and GPHS 

is faster than PHS by 6%, and their PNSR values are about the same at the same bit rates. When 

they are compared to their non-genetic siblings, their average PSNR drop is about 0.01dB and 

0.06dB, respectively. When compared to the other popular search algorithms, GRPS outperforms 

DS by 131% in speed with a 0.04dB PSNR gain and it outperforms FS by 146 times in speed with 

a 0.07dB PSNR gain. GPHS outperforms DS by 58% in speed with a 0.19dB PSNR loss and beats 

FS by 100 times in speed with a 0.16dB PSNR loss. Overall, it shows that we can accelerate the 

search process by applying the genetic algorithm to the traditional pattern search and the resulting 

PSNR quality loss is negligible. 

Moreover, the computational overhead of the genetic based algorithms is very small because 

we did not use the entire conventional genetic algorithm. Other than a few additional comparisons 

of the matching errors, the only computational overhead is the random selection of a mutant from 

the child set and this process can be implemented by a simple pseudo number generator. 
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Table 4-1 The performance of FS, DS, ERPS, PHS, GRPS, and GPHS 
Normal FS DS ERPS PHS GRPS GPHS 
Sequence ASP PSNR ASP PSNR ASP PSNR ASP PSNR ASP PSNR ASP PSNR
CT256 1024 39.56 13.81 39.51 5.75 39.50 9.52 39.44 5.36 39.49 9.38 39.43 
CT40 1024 32.04 15.03 31.92 7.04 32.08 10.30 31.48 5.98 32.21 9.89 31.21 
HL40 1024 33.55 15.38 34.25 7.34 34.57 10.10 34.17 6.35 34.49 9.68 34.09 
MD96 1024 39.80 14.85 39.99 6.82 40.10 10.03 39.85 5.98 40.08 9.65 39.80 
CG112 1024 29.08 15.09 29.14 7.64 29.12 10.26 29.03 6.08 29.14 9.76 29.00 
FM512 1024 34.06 16.17 34.06 8.65 34.10 10.57 33.92 7.13 34.05 10.00 33.89 
FM1024 1024 36.56 15.76 36.59 8.32 36.61 10.35 36.44 6.94 36.52 9.85 36.46
FB1024 1024 35.28 22.36 34.93 16.36 34.88 14.18 34.87 11.89 34.87 12.75 34.73 
FG768 1024 26.33 15.30 26.18 7.57 26.19 10.34 26.17 6.38 26.17 9.95 26.15 
ST1024 1024 29.48 16.96 29.44 9.95 29.31 11.40 29.33 7.65 29.39 10.56 29.42 
Average 1024 33.57 16.07 33.60 8.54 33.65 10.71 33.47 6.97 33.64 10.15 33.41 

 

4.2.2 Adaptive Pattern Switching Strategy  

Because the contents of video sequences vary drastically, one single pattern search may not 

produce the best result in terms of speed and PSNR. Thus, the adaptive pattern-switching search 

algorithms were proposed [35][36][37][38][39][40][41][42][43]. These algorithms are empirically 

constructed and the switching criterion is often based on block (feature) classification. Few papers 

have clear and strong evidence as why certain block features can be used as the switching 

criterion. Also, there are few discussions on how to optimally choose the pattern search set. 

Therefore, we like to explore these issues based on our previous study [52].  

We look for an adequate index that can be used to decide the right instant to switch between 

two pattern searches. The target is lowering the computational complexity. That is, if search 

algorithm 1 (SA1) is in use, would the average search points be fewer than that produced by using 

search algorithm 2 (SA2)? Based on our ASP model (Eq.(4.1)), the difference in ASP is expressed 

by (4.4).  

)),(),((),( 2
,

11 yxWFyxWFyxSCD SA
Ayx

SAFSASP −××= ∑
∈

 (4.4)

Note that WFSA1 and WFSA2 depend on search algorithms only. But because SFS is a function 

of the MV variance, DASP is thus picture-dependent. The parameter C1 is fixed for a video 

sequence; dividing DASP by C1, we obtain the switching index (IASP) defined by (4.5).  
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1/CDI ASPASP =    (4.5)

ERPS and PHS are chosen as the basic pattern searches owing to their short range and long 

range search performance. Then, the IASP between ERPS and PHS, drawn against two variables, 

MV variance and MV standard deviation, are shown in Fig. 4-7(a) and Fig. 4-7(c). In Fig. 4-7(a), 

the X-axis is the MV variance of the horizontal component and the Y-axis is that of the vertical 

component. In Fig. 4-7(c), the axes are the MV standard deviations along the horizontal direction 

and the vertical direction, respectively. When IASP > 0, ERPS outperforms PHS in terms of ASP, 

and when IASP < 0, PHS is better. Therefore, the switching criterion can be the MV variance value, 

at which IASP equals zero. For the case of ERPS and PHS pair, the threshold, IASP=0, is 

approximately a straight line in the MV variance coordinates. That is, (4.6) is used to decide the 

pattern search in use, wherein P, Q, and R are determined by the numerical methods. In our 

experiments, P = 1, Q = 1 and R = 20. 

RVARQVARP YX =⋅+⋅ . (4.6)

When GRPS and GPHS are the two basic pattern searches, their IASP are shown in Fig. 4-7(b) 

and Fig. 4-7(d). But in this case, we find that in the MV standard deviation domain, IASP=0 is 

better approximated by a straight line. That is, (4.7) is used to decide the pattern search and U =1, 

V = 1 and W = 12 in our experiments. 

WSTDVSTDU YX =⋅+⋅ . (4.7)

Indeed, our analysis in the above agrees with the commonly accepted principle that the small 

search patterns are more suitable for the ‘low motion’ sequences or ‘low MV variance’ sequences 

and the large search patterns are more suitable for the ‘high motion’ sequences or ‘high MV 

variance’ sequences. In other words, the key in determining the relative search cost (namely, ASP) 

between two pattern searches is not the magnitudes of MV, but the randomness of MV, which can 

be measured by the MV variance or standard deviation.  
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Fig. 4-7 The IASP between ERPS and PHS w.r.t. MV variance or MV standard deviation, and that 

between GRPS and GPHS w.r.t. MV variance or MV standard deviation  
 
An adaptive pattern switching strategy is thus developed based on the threshold equation 

defined by (4.6) or (4.7). To ease the following discussions, the adaptive algorithm using GRPS 

and GPHS is called adaptive genetic pattern search (AGPS). Its flow chart is shown in Fig. 4-8. 

A similar algorithm is developed for the ERPS and PHS pair and is called adaptive pattern search 

(APS), which has a similar procedure but replaces (4.7) by (4.6) in Step S3 in Fig. 4-8 and, of 

course, GRPS and GPHS are replaced by ERPS and PHS, respectively. 

In real-time applications, the MV variances or standard deviations of the current frame are 

not available before its MVs are calculated. Fortunately, the motion characteristics in an image 

sequence typically change gradually [30]; therefore, the MV variances in the neighboring spatial 

or temporal areas are generally similar. After testing a few MV variance predictors, we found that 

the MV variance of the previous frame is a good prediction to its value in the current frame.  



 
 

- 51 -

 

S2: Calculate the 
standard deviations 

of MV

S4:
GRPS

S3: U*frame_std_x + 
V*frame_std_y < W?

S5:
GPHS

Y N

S1: Begin

S6:
End

 
Fig. 4-8 The flow chart of AGPS.  

 
Furthermore, using one single pattern search for the entire frame is a rough strategy. The MV 

characteristics may vary in different parts of a frame. Hence, we can switch the pattern search for 

each block. Because the MV characteristics in the nearby spatial/temporal area tend to be similar, 

after a few try-and-errors, three neighboring blocks in the current and previous frame is used in 

calculating the MV variance and standard deviation as shown by (4.8) and (4.9). The locations of 

these three blocks are defined by Fig. 4-12. 

 

3
)()()( 222 meanPmeanUmeanL

MV MVMVMVMVMVMVVAR −+−+−= . 
(4.8) 

MV MVSTD VAR= . (4.9) 

3

PUL
mean MVMVMVMV ++= , 

where MVL, MVU and MVP are the motion vectors of the left and the upper block 
neighbors to the current block, and the collocated block in the previous frame, 
respectively, as illustrated by Fig. 4-12. 
 

(4.10)

The so-called double level pattern switching strategy for AGPS (abbr. DL AGPS) is thus 

proposed and its flow chart is shown in Fig. 4-9. If the previous frame has small MV standard 
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deviations, we incline towards using GRPS as the pattern search with the exception that the MV 

standard deviations derived from the nearby blocks are very large. On the other hand, if the 

previous frame has large MV standard deviations, GPHS is often chosen unless the MV standard 

deviations derived from the neighboring blocks are very small. The parameter values of U, V, 

Wframe, Wblock1, and Wblock2 are derived from data by using the numerical method. In our 

experiments, U = 1, V = 1, Wframe = 12, Wblock1 = 8, and Wblock2 = 16. Likewise, the flow chart of 

the double level pattern switching strategy for APS (abbr. DL APS) is similar but the MV standard 

deviation is replaced by MV variance in choosing the pattern search. Also, (4.6) is in use and P = 

1, Q = 1, Rframe = 20, Rblock1 = 8, and Rblock2 = 32. 
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Fig. 4-9 Flow chart of the double level adaptive genetic pattern search (DL AGPS).  

 

The computational overhead of the proposed adaptive pattern selection strategy is very small. 

At the frame level, the frame MV variance/standard deviation is calculated once per frame. At the 

block level, we only use the upper, the left, and the co-located block motion vectors to calculate 

the MV variance/standard deviation. In computer simulation, the run time profiling shows that the 

overhead of the proposed adaptive strategy consumes only about 2% computation of the entire 
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ME module. 

Table 4-2 shows the performance of GRPS, GPHS, AGPS and DL AGPS, and Table 4-4 

shows the performance of ERPS, PHS, APS and DL APS, when they are tested on the sequences 

under the settings given by Table 3-1 (‘normal’ speed). To test the extreme cases, we generate 

new test sequences consisting of the odd frames of the sequences in Table 3-1. These new 

sequences (denoted as ‘2X’) thus run at twice the speed of their originals. Table 4-3 and Table 

4-5 show the performance of various pattern search algorithms tested on the 2X sequences under 

the settings given by Table 3-1. In Table 4-2 to Table 4-5, ‘ASP’ is the average number of search 

points per block, ‘PSNR’ is the average frame PSNR of a sequence, and ‘RATIO’ is the frequency 

(probability) ratio of GRPS or ERPS used. 

Table 4-2 (normal sequences) shows that both AGPS and DL AGPS outperform GPHS by 

around 46% in terms of ASP and they have similar PSNR performance as GRPS. Both the single 

level pattern switching strategy and the double level pattern switching strategy tend to use GRPS 

as the pattern search because most natural image sequences have relative small MV standard 

deviation. However, in the extreme cases such as football (FB1024), AGPS outperforms GRPS by 

1.3% in ASP (0.01dB PSNR loss) and outperforms GPHS by 8.6% (0.13dB PSNR gain). And the 

DL AGPS further outperforms AGPS by 0.9% (0.04dB PSNR loss).  

In Table 4-3 (2X sequences), AGPS outperforms GRPS by 1.5% in ASP (0.01dB PSNR loss) 

and outperforms GPHS by 33.7% (0.25dB PSNR gain), and DL AGPS further outperforms AGPS 

by 0.5% (0.02dB PSNR gain). In general, AGPS has some advantages on fast motion sequences 

and DL AGPS adds in a slightly better gain in ASP and PSNR quality. 

Without the genetic search feature, Table 4-4 (normal sequences) shows that APS 

outperforms ERPS by 3.4% in ASP (0.00dB PSNR gain) and outperforms PHS by 29.6% (0.17dB 

PSNR gain). And DL APS further outperforms AGPS by 0.7% (0.01dB PSNR gain). On the 2X 

sequences (Table 4-5), APS outperforms ERPS by 8% in ASP (0.01dB PSNR loss) and 
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outperforms PHS by 20% (0.19dB PSNR loss), and DL APS further outperforms AGPS by about 

0.8% (0.01dB PSNR gain).  

Overall, the adaptive pattern switching strategy is effective. It does not hurt the slow motion 

sequences but reduce the computation quite significantly on the fast motion sequences. With the 

adaptive pattern switching scheme, the proposed algorithm outperforms the ‘single’ pattern search 

algorithms. Clearly, the genetic version, AGPS, is much better than the non-genetic version, APS. 

Though marginally, the double level strategy further improves in both PSNR quality and speed 

especially for sequences with high MV variances. 

To examine the correctness of the switching strategy, we show the IASP (represented by the 

diagonal curves) for the ‘normal’ sequences and the ‘2X’ sequences in Fig. 4-10 and Fig. 4-11. In 

these figures, a dot denotes an MV variance or standard deviation (STD) pair of an image frame 

and the cross denotes the MV variance/STD for the entire sequences. The dashed line is the 

pattern switching threshold. It is clear that for most sequences, the MV variance or STD of the 

current frame is highly correlated with that of the preceding frames and its value changes slowly 

across frames. Overall, ERPS and GRPS are generally adequate for coding these sequences. 

However, in the extreme case, such as football (FB1024) and foreman (FM512/FM1024), PHS 

and GPHS stand out. 

 
 

Table 4-2 Performance of GRPS, GPHS, AGPS, and DL AGPS on the normal speed sequences. 
Normal GRPS GPHS AGPS DL AGPS 
Sequence ASP PSNR ASP PSNR ASP PSNR RATIO ASP PSNR RATIO
CT256 5.35 39.50 9.38 39.43 5.35 39.50 100% 5.36 39.51 100%
CT40 5.98 32.20 9.89 31.21 5.98 32.20 100% 6.04 32.07 100%
HL40 6.35 34.45 9.68 34.09 6.35 34.45 100% 6.35 34.45 100%
MD96 5.98 40.06 9.65 39.80 5.98 40.06 100% 5.98 40.04 100%
CG112 6.08 29.11 9.76 29.00 6.08 29.11 100% 6.08 29.11 100%
FM512 7.13 34.05 10.00 33.89 7.13 34.05 100% 7.10 34.04 100%
FM1024 6.94 36.52 9.85 36.46 6.94 36.52 100% 6.93 36.53 100%
FB1024 11.89 34.87 12.75 34.73 11.74 34.86 89% 11.64 34.82 93%
FG768 6.38 26.17 9.95 26.15 6.38 26.17 100% 6.37 26.17 100%
ST1024 7.65 29.39 10.56 29.42 7.65 29.39 100% 7.62 29.43 100%
Average 6.97 33.63 10.15 33.41 6.96 33.63   6.95 33.62   
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Table 4-3 Performance of GRPS, GPHS, AGPS and DL AGPS on the 2X sequences. 
2x forward GRPS GPHS AGPS DL AGPS 
Sequence ASP PSNR ASP PSNR ASP PSNR RATIO ASP PSNR RATIO
CT256 5.62 38.65 9.51 38.52 5.62 38.65 100% 5.59 38.79 100%
CT40 6.60 30.28 10.34 29.22 6.60 30.28 100% 6.60 30.27 100%
HL40 6.51 33.31 9.74 32.95 6.51 33.31 100% 6.51 33.31 100%
MD96 6.40 38.66 9.85 38.37 6.40 38.66 100% 6.38 38.67 100%
CG112 7.36 27.43 10.64 27.24 7.36 27.43 100% 7.34 27.45 100%
FM512 9.07 32.34 11.01 32.19 8.80 32.33 93% 8.73 32.35 93%
FM1024 8.85 35.25 10.79 35.12 8.49 35.22 92% 8.47 35.25 93%
FB1024 15.75 33.22 14.62 33.12 15.13 33.18 84% 14.92 33.23 83%
FG768 7.01 25.51 10.35 25.42 7.01 25.51 100% 7.03 25.51 100%
ST1024 9.28 27.99 11.73 27.87 9.28 27.99 100% 9.27 27.92 100%
Average 8.25 32.27 10.86 32.00 8.12 32.26   8.08 32.28   

Table 4-4 Performance of ERPS, PHS, APS and DL APS on the normal sequences. 
Normal ERPS PHS APS  DL APS 
Sequence ASP PSNR ASP PSNR ASP PSNR RATIO ASP PSNR RATIO
CT256 5.75 39.50 9.52 39.44 5.75 39.50 100% 5.75 39.49 100%
CT40 7.04 32.08 10.30 31.48 7.04 32.08 100% 6.97 32.15 99%
HL40 7.34 34.57 10.10 34.17 7.34 34.57 100% 7.31 34.55 100%
MD96 6.82 40.10 10.03 39.85 6.82 40.10 100% 6.80 40.10 100%
CG112 7.64 29.12 10.26 29.03 7.64 29.12 100% 7.64 29.13 100%
FM512 8.65 34.10 10.57 33.92 8.47 34.06 92% 8.33 34.10 94%
FM1024 8.32 36.61 10.35 36.44 8.23 36.60 93% 8.07 36.65 95%
FB1024 16.36 34.88 14.18 34.87 14.02 34.86 51% 13.88 34.90 60%
FG768 7.57 26.19 10.34 26.17 7.57 26.19 100% 7.57 26.19 99%
ST1024 9.95 29.31 11.40 29.33 9.72 29.33 85% 9.68 29.30 85%
Average 8.54 33.65 10.71 33.47 8.26 33.64   8.20 33.65   

Table 4-5 Performance of ERPS, PHS, APS and DL APS on the 2X sequences. 
2X forward ERPS PHS APS  DL APS 
Sequence ASP PSNR ASP PSNR ASP PSNR RATIO ASP PSNR RATIO
CT256 6.35 38.68 9.74 38.51 6.35 38.68 100% 6.35 38.67 99%
CT40 8.15 30.22 10.89 29.54 8.15 30.22 100% 8.13 30.26 98%
HL40 7.57 33.38 10.22 33.02 7.57 33.38 100% 7.58 33.34 100%
MD96 7.56 38.66 10.38 38.44 7.56 38.66 100% 7.49 38.72 99%
CG112 9.54 27.53 11.48 27.34 9.62 27.50 99% 9.54 27.49 97%
FM512 11.70 32.45 12.02 32.23 10.58 32.41 79% 10.35 32.43 82%
FM1024 11.36 35.29 11.75 35.21 10.23 35.31 80% 9.94 35.29 82%
FB1024 22.32 33.24 17.15 33.22 17.31 33.24 9% 17.29 33.25 21%
FG768 8.69 25.53 10.83 25.48 8.69 25.53 100% 8.65 25.54 98%
ST1024 12.45 27.93 13.00 27.88 11.81 27.87 66% 11.78 27.88 67%
Average 10.57 32.29 11.75 32.09 9.79 32.28   9.71 32.29   
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Fig. 4-10 Pattern switching threshold (dash line), IASP (solid line) and the frame MV 

variance/STD of the normal sequences. 
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Fig. 4-11 Pattern switching threshold (dash line), IASP (solid line) and the MV variance/STD for 

the 2X sequences.  
 

Section 4.3 Starting Point Selection 

The impact of starting points or initial points on fast search algorithms have been studied by many 

researchers such as [14], [16], [30] and [31]. Typically the starting point is predicted by using a 

combination of the MVs of a few neighboring blocks. The most probable MV estimated by this 

type of MV predictor is used as the starting point for PBME algorithms. Although many MV 

predictors have been proposed, most of them are derived based on heuristic experiments. We like 
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to design a criterion that evaluates the effectiveness of MV predictors and propose a systematical 

approach that constructs the optimal Starting Point Set (SPS). The DL AGPS and DL APS 

discussed in the previous section are the search algorithms used to test our starting point set in this 

section.  

We assume that the proposed PBME model (first method in Section 3.3 [54]) is valid for 

different starting point selection. Then, because the MV field acquired by FS is fixed for a given 

video sequence, a different starting point only does a translational shift on the motion vector 

distribution. Given two starting points, SP1 and SP2, their difference in ASP (EASP) can be 

represented by (4.11). 

∑
∈

×−×=
Ayx

SASPFSSPFSASP yxWFyxSyxSCE
,

2_1_1 )),()),(),(((  (4.11)

Let SP2 be a fixed starting point for comparison purpose; (4.11) thus becomes (4.12), in which η  

is a constant. 

1 _ 1
,

( ( , ) ( , ))ASP FS SP SA
x y A

E C S x y WF x y η
∈

= × × −∑  (4.12)

Rearrange (4.12), we obtain GASP defined by (4.13), which is proportional to the ASP using SP1. 

Thus, it is used as the performance assessment criterion for starting point evaluation.  

1/)( CEG ASPASP η+=  (4.13)

Because WF is fixed for a specific algorithm and only SFS_SP1(x,y) may vary, GASP is a function of 

MV characteristics. Herein, the MV characteristics are either the MV variances or MV standard 

deviations calculated from the MV w.r.t. a specific starting point (SP1). And the MVs are acquired 

by using FS on the selected sequence.  

Fig. 4-12 shows the MV candidates that are often considered in starting point selection. They 

are the MVs of the neighboring spatial/temporal neighboring blocks. And the most commonly 

used mathematical function includes median(.) and mean(.). Combining them together, 

(4.14)-(4.25) are some representative MV predictors under our investigation.  
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Table 4-6 to Table 4-9 show the GASP of some of the well-known and best performed MV 

predictors ((4.14)-(4.25)) applied to the test sequences using the weighting functions of ERPS, 

PHS, GRPS and GPHS, respectively. We find that MVpred21 (mean value of MVU, MVL, and MVP), 

MVpred23 (mean value of MVU, MVL, and two MVP) and MVpred28 (mean value of MVPU, MVPD, 

MVPL, MVPR, MVPUL, MVPUR, MVPDL, MVPDR, and MVP) have the smallest average GASP among all 

the MV predictors. Together with the well-known PMV (MVpred16, identical to (2.2)) and ZMV 

(MVpred15, identical to (2.1)), these 5 MV predictors form the candidate set for the starting points.  
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Fig. 4-12 Motion vector predictor candidates in the current frame, the previous frame and the 
frame before previous frame. 
 

Table 4-6 GASP of the MV predictors applied to the test sequences using WFERPS. 
MV CT256 CT40 HL40 MD96 CG112 FM512 FM1024 FB1024 FG768 ST1024 Average

pred15 6.22 9.99 9.87 10.07 8.78 14.59 13.75 32.21 9.56 19.84 13.49 

pred16 6.47 10.73 10.67 10.71 8.55 11.47 10.20 30.84 10.16 17.46 12.73 

pred21 6.31 10.52 10.51 10.47 8.50 10.66 9.47 27.92 9.90 15.24 11.95 

pred23 6.33 10.51 10.66 10.60 8.54 10.77 9.60 29.06 9.89 15.40 12.14 

pred27 6.22 9.98 10.20 10.43 8.20 11.08 10.02 30.80 9.67 15.86 12.25 

pred28 6.29 10.37 10.54 10.60 8.38 10.95 9.84 28.56 9.88 15.15 12.06 

MIN 6.22 9.98 9.87 10.07 8.20 10.66 9.47 27.92 9.56 15.15  11.95

 
Table 4-7 GASP of the MV predictors applied to the test sequences using WFPHS. 

MV CT256 CT40 HL40 MD96 CG112 FM512 FM1024 FB1024 FG768 ST1024 Average
pred15 9.49 11.05 11.00 11.08 10.55 13.03 12.66 21.59 10.87 15.59 12.69 
pred16 9.59 11.36 11.34 11.35 10.45 11.67 11.14 20.88 11.12 14.41 12.33 
pred21 9.53 11.27 11.27 11.25 10.43 11.33 10.83 19.41 11.01 13.36 11.97 
pred23 9.54 11.27 11.33 11.31 10.44 11.38 10.89 19.98 11.01 13.43 12.06 
pred27 9.49 11.05 11.13 11.23 10.31 11.51 11.06 20.87 10.91 13.66 12.12 
pred28 9.52 11.21 11.28 11.31 10.38 11.45 10.98 19.73 11.00 13.32 12.02 
MIN 9.49 11.05 11.00 11.08 10.31 11.33 10.83 19.41 10.87 13.32 11.97 
 

Table 4-8 GASP of the MV predictors applied to the test sequences using WFGRPS. 
MV CT256 CT40 HL40 MD96 CG112 FM512 FM1024 FB1024 FG768 ST1024 Average

pred15 5.30 6.28 6.27 6.32 5.96 7.70 7.43 14.39 6.18 9.27 7.51 

pred16 5.36 6.48 6.50 6.50 5.90 6.73 6.36 13.87 6.35 8.53 7.26 

pred21 5.32 6.43 6.45 6.43 5.89 6.50 6.16 12.69 6.28 7.83 7.00 

pred23 5.32 6.42 6.50 6.47 5.90 6.53 6.20 13.15 6.28 7.88 7.06 

pred27 5.30 6.28 6.36 6.42 5.81 6.62 6.31 13.83 6.21 8.01 7.11 

pred28 5.31 6.38 6.46 6.47 5.85 6.58 6.26 12.93 6.27 7.79 7.03 

MIN 5.30 6.28 6.27 6.32 5.81 6.50 6.16 12.69 6.18 7.79 7.00
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Table 4-9 GASP of the MV predictors applied to the test sequences using WFGPHS. 
MV CT256 CT40 HL40 MD96 CG112 FM512 FM1024 FB1024 FG768 ST1024 Average

pred15 9.16 9.68 9.67 9.69 9.52 10.34 10.22 13.20 9.62 11.20 10.23 

pred16 9.20 9.79 9.78 9.78 9.48 9.89 9.71 12.96 9.71 10.80 10.11 

pred21 9.18 9.76 9.76 9.75 9.48 9.78 9.61 12.47 9.67 10.45 9.99 

pred23 9.18 9.76 9.78 9.77 9.48 9.79 9.63 12.66 9.67 10.48 10.02 

pred27 9.16 9.68 9.71 9.74 9.44 9.84 9.69 12.96 9.64 10.55 10.04 

pred28 9.17 9.74 9.76 9.77 9.46 9.82 9.66 12.58 9.67 10.44 10.01 

MIN 9.16 9.68 9.67 9.69 9.44 9.78 9.61 12.47 9.62 10.44 9.99 
 

We adopt the initial candidate set approach. That is, the proposed BME algorithm examines 

all MV candidates in the candidate set and then uses the best candidate as the starting point for the 

subsequent search procedure. As shown by (4.26), the total search point number (NTSP) equals to 

the size of starting point set (NSPS) plus the number of average search points ( ASPN ) produced by a 

specific search algorithm minus one, where “minus one” represents the initial point count 

included in the ASPN . 

1−+= ASPSPSTSP NNN  (4.26)

A well-designed starting point set should decrease ASPN  more than the increased size of 

starting point set (NSPS). We develop a systematic approach to find the optimal SPS. It is an add-on 

approach. At the beginning, there is only one MV in the SPS. We calculate its NTSP using a certain 

search algorithm. After a number of simulations, we retain a few best performers. We then add a 

second MV into each of these sets and evaluate their NTSP again. We continue adding new points 

until the NTSP does not decrease with additional MV in that set. This procedure is described by the 

flow chart in Fig. 4-13. In theory, this procedure does not guarantee that the final best set is 

globally optimal because our set is progressively constructed. However, our experiments indicate 

that the results are quite good. 
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Fig. 4-13 The flow chart of constructing SPS. 

 
We show the performance of DL APS with various starting point sets here. Due to limited 

space, only the better performed ones are shown. Table 4-10 is the results of DL APS with one 

starting point. We find that DL APS with MVpred21, MVpred23 or PMV are the best. Use each of these 

three MVs as the first element in three separated sets, we add a second MV. Their performance is 

shown in Table 4-11. The better performer for both speed and quality is the set of MVpred23 plus 

PMV. Based on this selection, we add one more MV into the starting point set and the results are 

on Table 4-12. The set of MVpred23 plus PMV and MVpred28 is the best. If we add one more MV into 

SPS, NTSP increases. Therefore, our SPS for DL APS is {MVpred23, PMV, MVpred28}. The order in 

the set is the order in search. We repeat the same SPS identification procedure for DL AGPS and 

the best result is PMV plus MVpred23, which gives an average ASP of 6.61. The experimental 

results used in constructing the set for DL AGPS are shown in Table 4-13 and Table 4-14. 

 
Table 4-10 The performance of DL APS with only one starting point. 

Normal PMV Pred21 Pred23 Pred28 ZMV 
Sequence ASP PSNR  ASP PSNR ASP PSNR ASP PSNR  ASP PSNR
CT256 5.75 39.49  5.58 39.57 5.57 39.60 5.50 39.58  5.48 39.55 
CT40 6.97 32.15  6.89 32.11 6.71 32.49 6.51 32.70  6.47 32.76 
HL40 7.31 34.55  7.27 34.54 7.33 34.48 7.15 34.54  7.10 34.55 
MD96 6.80 40.10  6.76 40.12 6.73 40.11 6.79 40.15  7.01 40.07 
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CG112 7.64 29.13  7.59 29.11 7.58 29.10 7.87 29.11  10.49 28.99 
FM512 8.33 34.10  8.44 34.04 8.49 34.03 9.03 33.97  11.83 33.27 
FM1024 8.07 36.65  8.24 36.53 8.28 36.53 8.85 36.49  11.71 36.00 
FB1024 13.88 34.90  13.61 34.94 14.06 34.92 16.16 34.71  19.85 34.04 
FG768 7.57 26.19  7.60 26.18 7.56 26.17 7.70 26.18  9.68 26.17 
ST1024 9.68 29.30  9.57 29.37 9.41 29.44 10.06 29.49  13.81 28.23 
Average 8.20 33.65  8.16 33.65 8.17 33.69 8.56 33.69  10.34 33.36 

Table 4-11 The performance of DL APS when there are two points in the starting point set. 
Normal  

PMV 
+Pred21 

PMV 
+Pred23 

PMV 
+Pred28 

PMV 
+ZMV 

Pred21 
+Pred23 

Pred21 
+PMV 

Pred21 
+Pred28 

Pred21 
+ZMV 

Pred23 
+Pred21 

Pred23 
+PMV 

Pred23 
+Pred28 

Pred23 
+ZMV 

Sequence ASP PSNR ASP PSNR ASP PSNR ASP PSNR ASP PSNR ASP PSNR ASP PSNR ASP PSNR ASP PSNR ASP PSNR ASP PSNR ASP PSNR

CT256 5.52 39.57 5.50 39.55 5.47 39.56 5.45 39.57 5.52 39.61 5.51 39.53 5.46 39.61 5.45 39.55 5.53 39.57 5.49 39.59 5.45 39.63 5.45 39.56 

CT40 6.53 32.45 6.43 32.69 6.40 32.69 6.39 32.74 6.58 32.61 6.53 32.50 6.42 32.71 6.38 32.72 6.57 32.63 6.46 32.68 6.41 32.72 6.36 32.73 

HL40 7.00 34.56 6.99 34.51 6.95 34.56 6.98 34.54 7.17 34.50 7.00 34.56 6.99 34.58 6.98 34.59 7.16 34.55 6.98 34.52 7.00 34.56 6.98 34.56 

MD96 6.56 40.10 6.56 40.09 6.55 40.11 6.62 40.12 6.66 40.11 6.56 40.11 6.59 40.11 6.64 40.13 6.66 40.11 6.52 40.10 6.60 40.10 6.63 40.11 

CG112 7.00 29.12 6.96 29.12 6.97 29.13 7.71 29.12 7.37 29.10 7.01 29.12 7.13 29.12 7.75 29.09 7.36 29.11 6.94 29.12 7.13 29.12 7.78 29.06 

FM512 7.86 34.10 7.78 34.12 7.92 34.11 8.48 34.05 8.33 34.03 7.86 34.08 8.23 34.06 8.77 33.98 8.29 34.04 7.80 34.13 8.28 34.06 8.81 33.97 

FM1024 7.63 36.60 7.56 36.50 7.71 36.61 8.24 36.55 8.10 36.54 7.62 36.57 8.02 36.51 8.58 36.50 8.11 36.54 7.57 36.64 8.12 36.56 8.60 36.50 

FB1024 12.70 34.98 12.48 35.02 12.94 34.99 14.55 34.91 13.64 34.94 12.70 35.00 13.65 34.91 15.41 34.75 13.67 34.96 12.52 35.05 14.03 34.85 15.61 34.71 

FG768 7.09 26.21 7.05 26.21 7.00 26.19 7.34 26.18 7.49 26.17 7.08 26.18 7.25 26.18 7.60 26.19 7.49 26.18 7.06 26.20 7.24 26.18 7.58 26.18 

ST1024 8.83 29.48 8.71 29.46 8.77 29.52 10.06 29.23 9.41 29.36 8.87 29.44 9.15 29.43 10.42 29.09 9.41 29.33 8.71 29.44 9.05 29.43 10.38 29.13 

Average 7.67 33.72 7.60 33.73 7.67 33.75 8.18 33.70 8.03 33.70 7.67 33.71 7.89 33.72 8.40 33.66 8.03 33.70 7.61 33.75 7.93 33.72 8.42 33.65 

Table 4-12 The performance of DL APS when there are three points in the starting point set, 
MVpred23 is the first starting point, and PMV is the second starting point. 

Normal Pred23+PMV+Pred21 Pred23+PMV+Pred28 Pred23+PMV+ZMV 
Sequence ASP PSNR ASP PSNR ASP PSNR 
CT256 5.48 39.61 5.45 39.53 5.44 39.57 
CT40 6.44 32.64 6.36 32.69 6.31 32.74 
HL40 6.97 34.58 6.91 34.54 6.90 34.53 
MD96 6.50 40.17 6.49 40.14 6.53 40.18 
CG112 6.90 29.12 6.79 29.12 7.29 29.11 
FM512 7.80 34.10 7.80 34.12 8.13 34.08 
FM1024 7.57 36.62 7.59 36.59 7.92 36.59 
FB1024 12.79 35.01 12.81 35.02 13.60 34.90 
FG768 7.06 26.19 6.93 26.19 7.20 26.19 
ST1024 8.73 29.47 8.59 29.55 9.39 29.39 
Average 7.62 33.75 7.57 33.75 7.87 33.73 

Table 4-13 The performance of DL AGPS with only one starting point. 
Normal PMV Pred21 Pred23 Pred28 ZMV 
Sequence ASP PSNR  ASP PSNR ASP PSNR ASP PSNR  ASP PSNR
CT256 5.36 39.51  5.26 39.55 5.26 39.56 5.22 39.55  5.22 39.62 
CT40 6.04 32.07  5.83 32.47 5.78 32.61 5.71 32.67  5.70 32.70 
HL40 6.35 34.45  6.34 34.42 6.35 34.46 6.25 34.50  6.22 34.52 
MD96 5.98 40.04  5.95 40.04 5.94 40.07 5.95 40.11  6.09 40.04 
CG112 6.08 29.11  6.04 29.10 6.11 29.04 6.22 29.09  7.77 28.96 
FM512 7.10 34.04  7.10 33.97 7.11 33.96 7.42 33.90  9.66 33.20 
FM1024 6.93 36.53  6.98 36.49 6.98 36.45 7.29 36.41  9.60 35.98 
FB1024 11.64 34.82  11.61 34.83 11.95 34.72 13.55 34.53  16.50 33.99 
FG768 6.37 26.17  6.33 26.16 6.31 26.16 6.27 26.18  7.34 26.16 
ST1024 7.62 29.43  7.31 29.43 7.23 29.47 7.54 29.46  10.37 28.22 
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Average 6.95 33.62  6.88 33.64 6.90 33.65 7.14 33.64  8.45 33.34 
Table 4-14 The performance of DL AGPS when there are two points in the starting point set.  

Normal  
Pred21 

+Pred23 
Pred21 
+PMV 

Pred21 
+Pred28 

Pred21 
+ZMV 

PMV 
+Pred21 

PMV 
+Pred23 

PMV 
+Pred28 

PMV 
+ZMV 

Pred23 
+Pred21 

Pred23 
+PMV 

Pred23 
+Pred28 

Pred23 
+ZMV 

Sequence ASP PSNR ASP PSNR ASP PSNR ASP PSNR ASP PSNR ASP PSNR ASP PSNR ASP PSNR ASP PSNR ASP PSNR ASP PSNR ASP PSNR

CT256 5.24 39.54 5.26 39.55 5.22 39.57 5.21 39.58 5.25 39.52 5.24 39.62 5.22 39.59 5.22 39.60 5.24 39.59 5.24 39.56 5.21 39.56 5.20 39.55 

CT40 5.76 32.60 5.76 32.52 5.69 32.68 5.68 32.73 5.78 32.40 5.72 32.67 5.69 32.61 5.67 32.73 5.75 32.62 5.72 32.61 5.68 32.70 5.67 32.72 

HL40 6.30 34.53 6.26 34.53 6.21 34.51 6.21 34.55 6.24 34.51 6.25 34.54 6.21 34.57 6.20 34.55 6.30 34.54 6.24 34.53 6.23 34.57 6.21 34.55 

MD96 5.95 40.07 5.89 40.07 5.90 40.10 5.95 40.08 5.91 40.08 5.91 40.12 5.89 40.09 5.94 40.09 5.92 40.11 5.88 40.14 5.90 40.10 5.93 40.09 

CG112 5.98 29.11 5.89 29.13 5.94 29.12 6.40 29.08 5.89 29.12 5.88 29.12 5.89 29.11 6.41 29.11 5.99 29.11 5.87 29.11 5.97 29.11 6.43 29.08 

FM512 7.05 34.00 6.82 34.10 7.03 34.02 7.52 33.91 6.84 34.07 6.78 34.09 6.89 34.08 7.39 34.01 7.03 34.00 6.78 34.09 7.06 33.99 7.52 33.91 

FM1024 6.92 36.49 6.68 36.53 6.89 36.51 7.40 36.48 6.65 36.54 6.61 36.57 6.74 36.55 7.21 36.56 6.91 36.51 6.62 36.57 6.95 36.54 7.41 36.47 

FB1024 11.61 34.80 10.66 35.00 11.69 34.86 13.00 34.69 10.61 34.95 10.55 35.02 10.85 35.00 12.23 34.80 11.65 34.86 10.49 35.03 11.93 34.83 13.11 34.69 

FG768 6.28 26.18 6.13 26.18 6.16 26.19 6.39 26.18 6.14 26.18 6.14 26.20 6.09 26.19 6.35 26.19 6.28 26.16 6.11 26.18 6.15 26.18 6.38 26.18 

ST1024 7.20 29.45 7.19 29.48 7.17 29.44 8.27 29.13 7.15 29.49 7.11 29.46 7.19 29.52 8.19 29.20 7.24 29.41 7.13 29.47 7.16 29.51 8.25 29.14 

Average 6.83 33.68 6.65 33.71 6.79 33.70 7.20 33.64 6.65 33.69 6.62 33.74 6.67 33.73 7.08 33.68 6.83 33.69 6.61 33.73 6.82 33.71 7.21 33.64 

 
 
Table 4-15 is a comparison of DL APS and DL AGPS with and without SPS. As discussed 

earlier, “DL APS + SPS” uses the 3-point SPS, “DL AGPS + SPS” uses the 2-point SPS, and the 

other algorithms use only PMV as the sole starting point. We find that DL APS with SPS 

outperforms DL APS by 8.3% in ASP (0.09dB PSNR gain). The DL AGPS with SPS outperforms 

DL AGPS by 5.0% in ASP (0.12dB PSNR gain). 

In summary, the best SPS we identify for DL APS is {MVpred23, PMV, MVpred28}, and the best 

SPS for DL AGPS, {PMV, MVpred23}. With SPS, DL APS and DL AGPS can reduce ASP with 

slightly increased PSNR. In these two cases, the SPS size of DL AGPS is smaller. Our conjecture 

is that a fast-moving pattern search needs only a small SPS because the search algorithm can 

cover a large search area quickly without the help of additional starting points. The experiments 

also indicate that a 2-point (or 3-point) SPS is generally better than the single-point SPS (PMV). 

 
Table 4-15 The effects of SPS on DL APS and DL AGPS. 

Normal  DL APS DL APS + SPS DL AGPS DL AGPS + SPS 

Sequence ASP PSNR ASP PSNR ASP PSNR ASP PSNR 
CT256 5.75 39.49 5.45 39.53 5.36 39.51 5.24 39.62

CT40 6.97 32.15 6.36 32.69 6.04 32.07 5.72 32.67

HL40 7.31 34.55 6.91 34.54 6.35 34.45 6.25 34.54
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MD96 6.8 40.1 6.49 40.14 5.98 40.04 5.91 40.12

CG112 7.64 29.13 6.79 29.12 6.08 29.11 5.88 29.12

FM512 8.33 34.1 7.8 34.12 7.1 34.04 6.78 34.09

FM1024 8.07 36.65 7.59 36.59 6.93 36.53 6.61 36.57

FB1024 13.88 34.9 12.81 35.02 11.64 34.82 10.55 35.02

FG768 7.57 26.19 6.93 26.19 6.37 26.17 6.14 26.2

ST1024 9.68 29.3 8.59 29.55 7.62 29.43 7.11 29.46

Average 8.2 33.65 7.57 33.75 6.95 33.62 6.62 33.74
 

 

Section 4.4 Early Termination Mechanism 

The early termination mechanism terminates the search process when the block-matching error 

produced by a MV (in the search area) is smaller than a pre-chosen threshold. And in this case, 

this MV is accepted as the best MV. Clearly, there is a trade-off between the MV quality 

(matching error) and the computational speed. Thus, the challenge is to find the termination 

threshold that maximizes the speed gain and minimizes the quality degradation. In this section, we 

set up a systematic method to find the nearly optimal early termination threshold (ETT) [50]. 

The most commonly used block matching error is the sum of absolute difference (SAD). Due 

to the correlation among the spatial/temporal nearby blocks, [14] proposed a general form (4.27) 

for ETT. It suggests that the threshold is a function of the SAD and the MV of the neighboring 

blocks. 
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where iSAD  and iMV , respectively, are the SAD and MV of a neighboring block labeled by i, 

and Tmin and Tmax stand for the lower and the upper bounds of the threshold, respectively. In 

practice, most researches use only the SAD predictor. For example, [16] suggests (4.28) and [30] 

suggest (4.29). 
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bSADSADSADaT n +×= ),...,,min( 21 , (4.28)

where a, b are fixed values. 

 

δ+= pSADT  ,   (4.29)

where SADp is the SAD of the co-located block in the previous frame (Fig. 4-14) and δ  is a bias 

parameter. 

 

To find the best threshold predictor, we use the correlation coefficient between the SAD 

predictor (SADpred) and the best SAD acquired using FS (SADc, as shown in Fig. 4-14) as the 

measure for the effectiveness of this threshold. First, we perform FS on the test sequences in 

Table 3-1 to obtain the SAD values of all blocks. For each of the SAD predictors, we calculate its 

correlation with the actual SAD (SADC) of the corresponding block. The one with highest 

correlation coefficient (closer to 1) is the best SAD predictor. By using the regression method, we 

find an approximation function (predictor) that best describes the relation between the predicted 

SAD and SADC. Also, we set up an upper bound for the threshold estimate to prevent the quality 

loss in the high ETT cases. And at last, we fine-tune the predictor coefficients (slope and offset) to 

achieve the desired speed and quality trade-off. This fine-tuned function thus serves as the early 

termination threshold. 
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Fig. 4-14 The SAD candidates in the current frame, the previous frame and the frame before the 
previous frame.  
 

An ETT predictor often consists of two elements: 1) a selected SAD set of nearby blocks, 

and 2) a mathematical function operating on the selected SAD set. The most commonly used 
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mathematical functions are mean(.), median(.), min(.) and max(.). The most commonly used 14 

neighboring SADs are shown in Fig. 4-14. Combining them together, there are 65532 possibilities. 

( 655324)2(4)( 14
0

14
14

1

14 =×−=×∑
=

CC
i

i ). Moreover, we can insert different weighting before each 

block SAD, which leads to enormous forms of the SAD predictors. In our study, we select some 

representative SAD predictors ((4.30)-(4.43)). Table 4-16 shows the correlation coefficient 

between a few selected SAD predictors and SADC. Limited by space, only the better ones are 

shown there. Among the 55 SAD predictors under consideration, SADpred15 (mean SAD of the 

upper and left blocks) is the best predictor in 2D cases and SADpred35 (median SAD of the upper, 

left, and two previous blocks) is the best predictor in all cases (2D and 3D cases). Herein, the 2D 

cases only use the SADs of the blocks in the same frame, and the 3D cases can also use the SADs 

of the blocks in the current frame and the previous frame SADs.  
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Table 4-16 The correlation coefficients between the selected SAD predictors and the actual block 

SAD. 
SAD CT256 CT40 HL40 MD96 CG112 FM512 FM1024 FB1024 FG768 ST1024 Average All 
pred15 0.725 0.809 0.760 0.711 0.767 0.748 0.743 0.727 0.926 0.844 0.776 0.886 
pred16 0.698 0.754 0.698 0.715 0.675 0.658 0.651 0.653 0.887 0.747 0.714 0.831 
pred30 0.856 0.908 0.891 0.850 0.883 0.835 0.825 0.765 0.958 0.908 0.868 0.932 
pred34 0.892 0.938 0.934 0.890 0.918 0.850 0.835 0.753 0.966 0.924 0.890 0.942 
pred35 0.906 0.957 0.961 0.914 0.938 0.848 0.828 0.714 0.970 0.930 0.897 0.945 
pred36 0.903 0.950 0.951 0.905 0.931 0.851 0.832 0.737 0.968 0.928 0.896 0.945 
pred37 0.888 0.957 0.974 0.904 0.936 0.813 0.781 0.635 0.960 0.914 0.876 0.931 

 
To produce a better SAD predictor on SADC, we have tried the multi-dimensional regression 

method. But we find that the linear regression is sufficient to have a pretty accurate approximation. 

Consequently, (4.44) is the predictor of choice. 

21
_ KSADKSAD predpredictedLinear

th +×= , (4.44)

Table 4-17 shows the coefficients of the best 2D/3D predictors for various test sequences. 

The ‘Average’ row denotes the average values of all sequences. The ‘All’ row shows the values 

calculated using all sequences as data samples. To check the effectiveness of these predictors, we 

calculate the mean and the standard deviation (STD) of both the best 2D and 3D SAD prediction 

errors. In Fig. 4-15 and Fig. 4-16, each dot represents the SAD pair (SADpred, SADC) of a block. 

The star mark at the center of a vertical bar represents the mean of SADC, and the bar length 

represents the standard deviation of prediction errors. It is obvious that the standard deviation 

becomes larger as the value of SADpred increases. This implies that for large predicted SAD values, 

their prediction accuracy is lower. Hence, to ensure a high MV quality, we propose an upper 

bound in (4.45) using the average SAD of all coded block in the same frame.  
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where SADi is the SAD of the i-th block in the current frame, K3 is the allowed maximum early 

termination error offset, and Nc denotes the current block index in a frame. Finally, the early 

termination threshold (ETT) is defined below by (4.46).  
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thth SADSADSADT ≡= , (4.46)

The parameter values are empirically decided: K1 is set to 1, K2 is set to 384 and K3 is set to 512. 

Under this setting, we achieve a good balance between speed and quality. 

 

 
Table 4-17 Regression coefficients for the best 2D and 3D SAD predictors.  

Predictor Pred 15 (best 2D) Pred35 (best 3D) 
  K1 K2 K1 K2 
CT256 0.84 77.20 0.98 13.83 
CT40 0.92 95.43 1.02 -11.95 
HL40 0.88 90.38 1.04 -27.50 
MD96 0.80 83.77 0.96 27.77 
CG112 0.86 320.99 0.98 70.65 
FM512 0.81 249.69 0.85 192.79 
FM1024 0.79 239.74 0.83 200.46 
FB1024 0.69 549.12 0.64 660.09 
FG768 0.99 216.38 0.97 146.71 
ST1024 0.95 165.75 0.93 202.48 
Average 0.85 208.85 0.92 147.53 
All 0.97 66.65 0.96 76.53 

 
 

 
Fig. 4-15 Best 2D SAD predictor versus SADC 
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Fig. 4-16 Best 3D SAD predictor versus SADC 

 
The computational overhead of our proposed early termination mechanism is negligible 

when compared to the speed gain. In the memory requirement, it only needs to record the SAD of 

roughly a row of blocks in the 2D case and the SAD of roughly a frame of blocks in the 3D case. 

As for the computing power requirement, it needs a few ‘compare’, one ‘shift’, one ‘multiply’, 

and one ‘divide’ operations for each block.  

Table 4-18 shows the performance of DL AGPS with SPS and several early termination 

mechanisms. As suggested by their proponents, parameter a is set to 1.2 and b is set to 128 in 

(4.28), and δ  is set to 50 in (4.29). We find that the DL AGPS with our best 2D ETT 

outperforms the plain DL AGPS scheme by 154% in average search points (0.02dB PSNR gain), 

and it outperforms (4.28) by 10% (0.01dB PSNR loss) and outperforms (4.29) by 11% (0dB 

PSNR gain). And the DL AGPS with our best 3D ETT outperforms the plain DL AGPS scheme by 

162% in average search points (0.02dB PSNR gain), and it outperforms (4.28) by 14% (0.01dB 

PSNR loss), outperforms (4.29) by 15% (0dB PSNR gain) and finally it further outperforms our 

best 2D ETC by 4% (0dB PSNR gain).  
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Table 4-18 The performance of DL AGPS with SPS and various early termination mechanisms. 
Normal NO ETT (4.28) (4.29) Best 2D ETT Best 3D ETT  
Sequence ASP PSNR  ASP PSNR ASP PSNR ASP PSNR  ASP PSNR 
CT256 5.24 39.62  1.59 39.59 1.57 39.54 1.38 39.55  1.36 39.63 
CT40 5.72 32.67  2.00 32.85 1.63 32.83 1.71 32.89  1.63 32.87 
HL40 6.25 34.54  2.14 35.05 2.01 34.90 1.64 35.05  1.56 35.03 
MD96 5.91 40.12  1.89 40.24 1.78 40.25 1.52 40.23  1.48 40.21 
CG112 5.88 29.12  2.64 29.02 2.91 29.09 2.43 29.01  2.23 28.99
FM512 6.78 34.09  3.27 33.98 3.34 34.00 2.70 33.91  2.54 33.93 
FM1024 6.61 36.57  3.15 36.52 3.34 36.53 2.57 36.48  2.48 36.49 
FB1024 10.55 35.02  5.44 34.78 5.88 34.95 5.06 34.79  5.09 34.85 
FG768 6.14 26.20  3.08 26.18 2.81 26.18 3.98 26.17  3.84 26.18 
ST1024 7.11 29.46  3.40 29.47 3.76 29.33 3.15 29.52  2.97 29.40 
Average 6.62 33.74  2.86 33.77 2.90 33.76 2.61 33.76  2.52 33.76 

 
We also test our proposed ETT on outside sequences, which are sequences not in the training 

set. These 4 extra sequences and their settings are in Table 4-19. The performance of DL AGPS 

with SPS and various early termination mechanisms on these sequences is shown in Table 4-20. 

 
Table 4-19 The extra sequences and their settings. 

Abbreviation Sequence Bitrate (K bps) Frame rate (fps) Number of frames 
st96 silent 96 10 300

tt512 table tennis 512 30 300

mb1024 mobile calendar 1024 30 300

ne40 news 40 7.5 90
 
In Table 4-20, we find that the DL AGPS with our best 2D ETT outperforms the plain DL 

AGPS scheme by 151.1% in average search points (0.03dB PSNR loss) and it outperforms (4.28) 

by 11.6% (0.03dB PSNR gain). And it has about the same performance as (4.29) in both speed 

and quality. And the DL AGPS with our best 3D ETT outperforms the plain DL AGPS scheme by 

166.8% in average search points (0.06dB PSNR loss), and it outperforms (4.28) by 18.5% 

(0.00dB PSNR loss), outperforms (4.29) by 6.3% (0.03dB PSNR loss) and outperforms our best 

2D ETT by 6.3% (0.03dB PSNR loss). Overall, the results of the outside sequences are consistent 

with the training sequences and, therefore, the proposed ETT is rather effective. 
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Table 4-20 The performance of DL AGPS with SSP and various early termination mechanisms on 
the extra sequences in Table 4-19. 

Normal NO ETC (4.28) (4.29) Best 2D ETT Best 3D ETT 

Sequence ASP PSNR  ASP PSNR ASP PSNR ASP PSNR  ASP PSNR 
st96 5.86 35.25  2.34 35.26 2.06 35.27 2.00 35.28  1.98 35.28 

tt512 6.02 35.15  2.23 35.02 2.31 35.08 2.07 35.05  2.03 35.01 

mb1024 5.32 27.54  2.93 27.52 3.02 27.53 2.87 27.52  2.53 27.51 

ne40 5.40 34.49  2.54 34.40 1.61 34.42 2.06 34.46  1.93 34.39 
Average 5.65 33.11  2.51 33.05 2.25 33.07 2.25 33.08  2.12 33.05 

 
 

Section 4.5 A PBME Algorithm with All Features  

We have discussed in the previous three sections three techniques that reduce computations of a 

PBME algorithm. They are 1) adaptive genetic pattern search, 2) starting point set and 3) early 

termination mechanism. We now examine the performance of the PBME scheme with all the best 

selected techniques.  

 
Table 4-21 The ASP performance of FS, DS, AIPS-MP, ARPS-ZMP and our proposed best 

algorithm. 
Type Sequence FS DS AIPS-MP ARPS-ZMP Ours 

 CT256  1,024 13.81 1.37 3.58 1.36 

 CT40  1,024 15.03 1.64 5.59 1.63 

 HL40  1,024 15.38 1.62 5.14 1.56 

 MD96  1,024 14.85 1.70 3.62 1.48 

 CG112  1,024 15.09 2.96 9.88 2.22 

 FM512  1,024 16.17 3.64 9.59 2.55 

 FM1024  1,024 15.76 3.55 9.22 2.49 

 FB1024  1,024 22.36 7.78 18.86 5.06 

 FG768  1,024 15.30 5.04 7.07 3.84 

 1X  

 ST1024  1,024 16.96 4.54 10.63 2.98 

 CT256  1,024 14.15 1.43 4.36 1.42 

 CT40  1,024 16.05 1.77 6.71 1.75 

 HL40  1,024 15.62 1.88 5.53 1.74

 MD96  1,024 15.44 2.35 4.82 1.89 

 CG112  1,024 17.04 4.45 11.95 2.90 

 FM512  1,024 18.72 6.07 13.31 3.89 

 FM1024  1,024 18.26 5.92 12.99 3.83 

 FB1024  1,024 27.39 10.16 23.35 7.15 

 FG768  1,024 16.30 6.73 8.57 4.24 

 2X  

 ST1024  1,024 19.49 5.73 13.14 4.07 

  Average 1,024 16.96 4.02 9.40 2.90 
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Table 4-22 The PSNR performance of FS, DS, AIPS-MP, ARPS-ZMP and our proposed best 
algorithm. 

Type Sequence FS DS AIPS-MP ARPS-ZMP Ours 

 CT256  39.57 39.51 39.62 39.59 39.62 

 CT40  32.04 31.92 32.90 32.88 32.88 

 HL40  33.55 34.25 35.07 34.87 35.05 

 MD96  39.80 40.00 40.15 40.25 40.22 

 CG112  29.08 29.14 28.48 29.15 29.03 

 FM512  34.06 34.06 33.56 34.00 33.92 

 FM1024  36.56 36.58 36.31 36.51 36.50 

 FB1024  35.28 34.93 34.01 34.82 34.82 

 FG768  26.20 26.18 26.17 26.19 26.18 

 1X  

 ST1024  29.48 29.44 29.40 29.18 29.40 

 CT256  38.95 38.60 38.99 39.01 38.94 

 CT40  29.81 29.94 31.18 31.16 31.12 

 HL40  32.33 33.08 33.88 33.68 33.91 

 MD96  38.41 38.60 38.63 38.77 38.73 

 CG112  27.36 27.51 26.54 27.45 27.28 

 FM512  32.42 32.38 31.86 32.37 32.23 

 FM1024  35.28 35.24 35.01 35.20 35.20 

 FB1024  33.44 33.28 32.83 33.12 33.15 

 FG768  25.51 25.53 25.50 25.54 25.52 

 2X  

 ST1024  28.11 27.96 27.67 27.68 27.91 

  Average 32.86 32.91 32.89 33.07 33.08 

 
 
Table 4-23 The sizes (number of bytes) of the coded bitstreams by FS, DS, AIPS-MP, ARPS-ZMP 

and our proposed best algorithm. 
Type Sequence FS DS AIPS-MP ARPS-ZMP Ours 

 CT256  1138576 1154328 1148264 1156088 1148108 

 CT40  207006 206694 206660 206858 206576 

 HL40  209118 208978 207572 207758 207434 

 MD96  369588 369794 370496 369780 370022 

 CG112  433944 433866 433836 433932 434006 

 FM512  653302 654332 654126 654218 654466 

 FM1024  1269206 1279634 1280938 1275726 1277238 

 FB1024  390320 388370 393910 390680 391420 

 FG768  822462 822476 822514 822486 822486 

 1X  

 ST1024  1149726 1164650 1216952 1164104 1174556 

 CT256  646044 625926 648724 637682 641638 

 CT40  105318 104618 104460 104714 104304 

 HL40  106892 106708 106414 106562 106550 

 MD96  185516 185396 186060 185458 185552 

 CG112  219324 219258 230076 219274 219240 

 FM512  328032 327970 327630 327956 328200 

 FM1024  644290 642322 646118 641534 642620 

 FB1024  193800 195098 197144 197026 197410 

 FG768  412942 412944 412902 412930 412976 

 2X  

 ST1024  618942 626372 634250 621654 628812 

  Average 505217 506487 511452 506821 507681 
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The performance of FS, DS [27][28], ARPS-ZMP[30], AIPS-MP[31] and the DL AGPS with 

SPS and the 3D ETT (our proposed best algorithm with all features) are shown in Table 4-21, 

Table 4-22, and Table 4-23. Experimental results show that the proposed best algorithm 

outperforms ARPS-ZMP by 224% in average search points, AIPS-MP by 38%, DS by 485%, and 

FS by 353 times while the average PSNR quality is slightly better (0.01dB~0.22dB) than all the 

other algorithms including FS and the average sizes of the coded bitstreams are very similar 

(-0.49%~+0.74%). This may be due to the fact that our scheme often prefers a smaller value MV, 

which requires fewer bits in coding. Thus, a few additional bits are available for texture (DCT 

coefficients) coding, which results in better overall PSNR.  

For our proposed algorithm with all the best techniques, each component contributes to the 

overall computation gain and the PSNR quality. In average, the adaptive pattern search 

outperforms its constituent pattern searches up to 34% with roughly the same PSNR quality, the 

optimal starting point set further provides 5% computation gain with 0.1dB PSNR increment, and 

the early termination mechanism offers up to 167% computation acceleration and roughly the 

same PSNR quality. Clearly, the early termination mechanism provides the most gain in the 

computation complexity, and the optimal starting point set offers the least gain. Yet, in theory, the 

video quality may degrade if we further accelerate the computation by the early termination 

mechanism. Comparatively, the video quality can be slightly improved by the optimal starting 

point set because it may reduce the variances of MV PDF and use less bits to code MV. 

We may examine the overhead of the tools in our proposed complete algorithm one by one. 

For the genetic pattern search and adaptive pattern switching strategy, the run time profiling 

shows that the overhead is about 2% of the total computation time used for motion estimation. For 

the starting point calculation, it is fixed for each pattern search algorithm and thus it is negligible. 

For the early termination criterion calculation, the parameters in Eq. (4.46) are fixed and Eq. (4.46) 

uses simple arithmetic operations performed on a small amount of data. The additional computing 
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time is also negligible. Overall, the run time overhead of our proposed PBME algorithm is very 

small. Note that, this profiling is conducted on the personal computer with an Intel CPU. It may 

not perfectly portray the reality. For an embedded multimedia system, we may use a DSP or an 

ASIC for the video encoding and decoding. The extra computation of our proposed algorithm can 

be calculated in parallel by some auxiliary hardware. 

Note that, the three proposed tools are not necessary coupled together. Any of the three tools 

can be adopted and combined by the other BME schemes. Because there are numerous possible 

combinations, it is beyond our capability to explore all the possibilities.  

 

4.5.1 The Rate-Distortion Performance  

To further understand the rate-distortion performance of our proposed best algorithm, we 

further select one slow motion sequence, container, and one fast motion sequence, foreman, and 

code them by FS and our proposed best algorithm at four different bitrates under the settings in 

Table 4-24.  

Table 4-24 The rate-distortion test sequences and their settings. 

Bit rate Frame rate Number 
Abbreviation Sequence 

(K bps) (fps) of frames 

CT256 container 256 7.5 300 

CT128 container 128 7.5 300 

CT64 container 64 7.5 300 

CT32 container 32 7.5 300 

FM1536 foreman 1536 30 300 

FM1024 foreman 1024 30 300 

FM512 foreman 512 30 300 

FM256 foreman 256 30 300 

 

Fig. 4-17 shows the ASP performance of DS, AIPS-MP, and our proposed best algorithm. We 

do not show the ASP of FS here, because they are fixed to 1024. The ASPs of FS are very large 

when compared with all other fast algorithms. Our proposed best algorithm noticeably 

outperforms all other algorithms. Fig. 4-18 shows the rate-distortion performances of FS, DS, 
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AIPS-MP and our proposed best algorithm. For both low and high motion sequences, our 

proposed best algorithm shows rather good rate-distortion performance. Quantitatively, we show 

the BDPSNR and BDRate [58][59] comparisons between FS, DS, AIPS-MP and our proposed 

best algorithm in Table 4-25. Thus, it is quiet clear that our proposed best algorithm provides 

substantial gain in computing complexity and keeps comparable rate-distortion performance with 

other algorithms including FS. 
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Fig. 4-17 The ASP performances of DS, AIPS-MP and our proposed best algorithm. 
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Fig. 4-18 The rate-distortion performances of FS, DS, AIPS-MP and our proposed best 

algorithm. 
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Table 4-25 The BDPSNR and BDRate comparisons between FS, DS, AIPS-MP and our 

proposed best algorithm. 

  Ours to FS Ours to DS Our to AIPS 

Sequence BDPSNR(dB) BDRate(%) BDPSNR(dB) BDRate(%) BDPSNR(dB) BDRate(%)

Container 0.40 -6.84 0.55 -11.34 -0.02 0.40 

Foreman -0.14 3.60 -0.15 3.78 0.36 -7.58 

Average 0.13 -1.62 0.20 -3.78 0.17 -3.59 

 

 

Section 4.6 Chapter Summary  

In this chapter, three important techniques have been investigated for reducing complexity of 

pattern-based block motion estimation (PBME). They are adaptive pattern switch [35][36][37][38] 

[39][40][41][42][43], starting point selection [14][16][30][31] and early termination 

[14][30][31][50]. The prior arts in designing these schemes often based on heuristic reasoning 

and/or speculation on the collected data. The contribution of this study is to re-examine these 

techniques using a systematic approach. Optimal or nearly optimal solutions are thus proposed. 

Based on our previous motion estimation model and pattern search analysis ([51] and [54]), we 

impose the genetic search structure on the conventional ERPS and PHS schemes to reduce 

computation. Furthermore, a pattern switching strategy based on the on-line MV statistics is 

proposed. A well-chosen starting point set indeed reduces the average number of search points. A 

step-by-step procedure is proposed to find the best starting point set. The so-called early 

termination can further improve the search speed. We suggest a metric (correlation coefficient) to 

identify the best predictor for determining the termination threshold. At last, a PBME algorithm 

combining all the above features is examined. Simulations show that the search speed of the 

proposed algorithm is much faster than any previous search algorithm and its coding quality is 

kept at about the same PSNR level.  
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Chapter 5 Refined Model and Its Impact on Video 
Coding 

 
In Chapter 3 [54], we propose a model for describing the pattern-based block motion estimation 

behavior. Our proposed model uses the notion of weighting function to characterize the efficiency 

of a pattern search algorithm. WF is defined as the minimum number of search points that a 

specific pattern search algorithm can achieve when the matching error surface is monotonic. 

Therefore, its values depend on the search patterns. Given the motion vector probability 

distribution of a video sequence, our complete model (expressed in (3.18)) can predict the 

performance (number of search points) of a PBME algorithm by using its WF and the motion 

vector probability distribution of a particular video sequence.  

Yet, because our proposed genetic algorithms are stochastic in nature, the afore-mentioned 

WF cannot accurately characterize their average performance (number of search points). The 

difference is due to the fact that the genetic pattern searches randomly pick up the search direction 

but the classical pattern searches move along the steepest descent path on the matching error 

surface directly toward the best matching point. One purpose of this study is to construct a more 

accurate model for the genetic pattern searches and thus we can predict more precisely the 

performance of a new search algorithm. Accordingly, the refined weighting function (RWF, first 

mentioned in Section 1.2) is proposed. Also, inspired by the RWF, we devise a new type of 

genetic pattern searches that further reduce the computation.  

Besides, we re-examine two critical coding tools in the adaptive pattern search scheme with 

the refined model. One is the impact of the component pattern searches of an adaptive pattern 

search on the switching threshold and the other one is the impact of the starting points on a search 

algorithm’s performance. For comparison purpose, the conventional adaptive pattern search 

schemes and the genetic adaptive pattern search schemes are designed and tested. For each type of 
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pattern searches (the conventional type and the genetic type), we design a single level adaptive 

scheme and a double level adaptive scheme. Thus we totally propose four schemes. 

The remaining parts of this chapter are organized as follows. Section 5.1 analyzes and 

models the behavior of a genetic pattern search by the RWF, which replaces the original WF. 

Based on the analysis, new search algorithms are proposed in Section 5.2. In Section 5.3, we 

adopt RWF in our refined model and compare its prediction accuracy with the original model 

using WF. Based on the refined model and the selected constituent searches, Section 5.4 

re-examines the optimal threshold selection in the pattern switching mechanisms and the 

construction of the starting search point set for different search algorithms. Finally, we summarize 

this chapter in Section 5.5. 

 
Section 5.1 Analysis on Genetic Pattern Searches  

In this section, we dissect how the RWF characterizes the genetic pattern searches. First, we 

examine the assumption on the matching error surface required in the building of RWF. 

Accordingly, we demonstrate the construction of RWF by using two genetic pattern searches as 

the examples.   

 
Matching Error Surface 

To ensure the convergence to the optimal point of a fast BME search algorithm, most 

previous researches assume that the matching error (distortion) surface has a bell-like shape. In 

history, Jain and Jain [44] first suggested that the matching error surface satisfies the 

quadrant-monotonicity condition [45]. Let the origin point )0,0(=O be the global minimum point 

(GMP) of a two-dimensional function FQM(x,y). Function FQM (x,y) is said quadrant monotonic 

(QM) if FQM (A) ≤ FQM (B) for any two points satisfying the following conditions: 1) Points 

A=(xA,yA) and B=(xB,yB) are located in the same quadrant within the search range, and 2) |xA|≤ |xB| 

and |yA|<|yB| , or  |xA|<|xB| and |yA|≤ |yB|. This condition requires only the monotonic ordering 
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relationship for any two points located inside the same quadrant. It does not specify the 

relationship for two points resided on different quadrants. Although a loose condition may cover a 

large range of real data, it also excludes powerful fast search techniques that assume a reasonable 

distance-dependent ordering relationship for two points near the quadrant boundaries.   

The other extreme makes a strong uniform monotonicity (SM) assumption on the error 

surface. Examples are the recent studies [46][47] on examining the matching error surface. In [46], 

a mathematical model (5.1) of the matching error surface is proposed and verified by data fitting 

on the nature image sequences. In their proposed model (5.1), FSM (r) denotes the matching error 

of a search point with a distance of “r” away from GMP, FSM (0) is the global minimal matching 

error value of GMP, r is the chess board distance of (x,y), and h is an image-dependent constant. 

Although [46] shows that their statistical data fit this model well, in practice the error surface of 

individual block (not the entire image sequence) is processed by the search algorithm. In this case, 

model (5.1) is too strong and the individual block error surface does not match it well from time 

to time.  

In this study, we assume that the matching error (distortion) surface  is a 

quadrant monotonic function with smooth quadrant border (QMSB), which is specified by the 

following two properties.  

Property 1: The error surface  is quadrant-monotonic (QM).  

Property 2: Let  and  be any two points inside the search region 

and located in different quadrants and ( , (e.g.,  =3)). If 

 implies , then this quadrant monotonic 

function  has a smooth quadrant border.  

With this QMSB assumption, we can compare two points located at different quadrants if 

they are not far away from each other. On the other hand, it is a more general and relaxed model 

rhFFrF SMSMSM ⋅×+= )0()0()( , where yxr += . (5.1)
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than the model (5.1). In (5.1), the matching error surface is strictly symmetric, but QMSB only 

assumes smooth borders. Thus, it can cover broader cases. 

 
Construction of the Refined Weighting Function 

Because WF does not accurately describe the random nature of genetic pattern searches, 

herein we propose a RWF under the QMSB assumption. The RWF, , represents the 

average number of search points needed to reach the GMP located at (0,0) from the starting point 

(x,y). In contrast, the weighting function, , represents the minimal number of search 

steps required to reach GMP from the starting point (x,y). 

We use two examples to show how the averaged search point numbers are produced in a 

genetic search algorithm. In the following examples, we assume a parent point has N possible 

mutations (children) and m out of the N candidates have smaller matching error than the parent. 

Our purpose is to find the mutation with a matching error smaller than the parent. If we check one 

mutation at one step, it takes at most (N-m+1) steps (search points) to identify a solution. Fig. 5-1 

shows all possible search sequences for the case of a parent point with 4 possible mutations (A, B, 

C, and D) and only one of them, denoted as D, has the smaller matching error (than the parent). In 

the first branch, point A is picked up at the first step. Because its matching error is higher than the 

parent, we continue to pick up another mutation among B, C, and D. At any step, if D is picked, it 

becomes the new parent. Another example is shown in Fig. 5-2, in which two mutations (out of 4 

candidates), denoted as C and D, have smaller matching errors. In this case, the new parent is 

produced when either C or D is checked. At the end, based on the entire search sequence tree in 

each case, the expected number of search points (ESP) needed to move from a parent to a smaller 

matching error mutation is N
mE , as shown by (5.2).  

∑
−

= = +
+=

−
−−−∏×++=

mN

j

j

i

N
m m

N
iN

imNj
N
m

N
mE

1 1 1
1)))1()(()1(( , where mN > . (5.2)

Herein we assume that the probability for selecting each mutation is equal. On a QMSB 
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matching error surface, the number of the admissible mutations, m, is decided by the relative 

location pattern formed by the current parent and the global optimal point. And N is decided by 

the search pattern, the parent location and its type (a starting parent or an intermediate parent). 

Eqs. (5.3) and (5.4) exemplify the calculations of the ESP values for finding an admissible 

mutation (it becomes the next parent) for the cases of Fig. 5-1 and Fig. 5-2, respectively. Similarly, 

the ESP values of the other m and N values can be calculated. Table 5-1 lists the ESP values, N
mE , 

for N=3,...,6, and m=1,...,N.   

 

 

Fig. 5-1 All possible search sequences for a parent point with N=4 and m=1. 

 

 

Fig. 5-2 All possible search sequences for a parent point with N=4 and m=2. 
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Table 5-1 The ESP values  

m 
N
mE  

1 2 3 4 5 6 

3 2.00 1.33 1.00    

4 2.50 1.67 1.25 1.00   

5 3.00 2.00 1.50 1.20 1.00  
N 

6 3.50 2.33 1.75 1.40 1.17 1.00 

 

5.1.1 RWF of the Genetic Rhombus Pattern Search  

As an example, we construct the RWF for GRPS, defined in Subsection 4.2.1 [54]. Assuming the 

matching error surface is QMSB, then we are able to get the number of small distortion points (the 

value of m in N
mE ) in this search pattern. For GRPS, there are two types of starting search point 

cases ( GRPSS1 and GRPSS2 ) and two types of intermediate search point cases ( GRPSM1 and GRPSM 2 ), as 

shown in Fig. 5-3. Herein, points A, B, C and D are the search candidates (mutations) and point 
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GMP denotes the best matching point. In Fig. 5-3(a), assuming GRPSS1  is the starting point of a 

new search, only 1 out of the 4 points belonging to the GRPS pattern centering at GRPSS1  have a 

smaller matching error than GRPSS1  when point GMP has the same horizontal or vertical 

coordinate as GRPSS1 . Otherwise, it is the Fig. 5-3(b) case, in which 2 out of the 4 points in the 

pattern centering at GRPSS2  have smaller errors. Similarly, for the intermediate steps in Fig. 5-3(c), 

only 1 out of the 3 points centering around GRPSM1  has a smaller matching error when point GMP 

has the same horizontal or vertical coordinate as GRPSM1 . Otherwise, in the case of Fig. 5-3(d), 2 

out of the 3 points centering around GRPSM 2  have smaller errors. Therefore, the average numbers 

of search points needed to move from GRPSS1 , GRPSS2 , GRPSM1  and GRPSM 2  to a legitimate next 

point are 4
1E (=5/2), 4

2E (=5/3), 3
1E (=4/2) and 3

2E (=4/3), respectively, as listed in Table 5-1. 

 

S1
GRPS

GMP

A

B C

D

(a)

S2
GRPS

GMP

A

B C

D

(b)

M1
GRPS

GMP

AB

C

(c)

M2
GRPS

GMP

A

B

C

(d)  

Fig. 5-3 Two cases of starting search points, (a) and (b), and two cases of intermediate search 
points, (c) and (d), in the search process of GRPS when the matching error surface is QMSB. 
 

We next consider the averaged search points of multiple moves from the starting point (x,y) 

to the best matching point (0,0). This average number of search points is defined to be 

RWFGRPS(x,y). When the starting point is chosen and thus it belongs to one of the quadrants 

defined by GMP, the GRPS procedure moves along the search points only located inside that 

quadrant, as shown by Fig. 5-3(b) or Fig. 5-3(d). If the starting point is located on a quadrant 

boundary, Fig. 5-3(a) and Fig. 5-3(c) show the cases that it moves along that quadrant boundary. 

Thus, the RWFGRPS(x,y) function is quadrant-symmetric. We only need to study one quadrant. Fig. 
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5-4 shows the recursive procedure of calculating the RWF of GRPS based on the above analysis. 

And Fig. 5-5 shows the contour plot of RWFGRPS(x,y).  
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Fig. 5-4 The construction of RWF   
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Fig. 5-5 The RWF of GRPS 

 

Let GMP be (0,0). In Fig. 5-4,  denotes the final RWF value from the starting 

point (x,y) to GMP, and Weight(α,β) denotes the recursively accumulated ESP from the 

intermediate point (α,β) to GMP. Because  is quadrant-symmetric, we only need to 
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consider the non-negative quadrant, thus α=Abs(x) and β=Abs(y). Abs(.) denotes the absolute 

value operation. When α=0 and β=0, this is the last step and  is 5. The other cases 

include intermediate points. If α≠0 and β≠0, it is Fig. 5-3(b) and thus,  is 4
2E +4 plus 

the average of Weight(α-1,β) and Weight(α,β-1). Otherwise, either α≠0 or β≠0; thus, it is Fig. 5-3(a) 

and  is 4
1E +4 plus either Weight(α-1,β) or Weight(α,β-1).  

In calculating the intermediate point ESP, Weight(α,β), we adopt the recursive approach. If 

α=0 and β=0, this is the final step and Weight(α,β) is 0. If α≠0 and β≠0, it is the Fig. 5-3(d) case 

and Weight(α,β) is 
3
2E  plus the average of Weight(α-1,β) and Weight(α,β-1). Otherwise, either 

α≠0 or β≠0; thus, it is Fig. 5-3(c) and Weight(α,β) is 
3
1E  plus either Weight(α-1,β) or 

Weight(α,β-1).   
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Fig. 5-6 The real average search points of GRPS when it is applied on the sequence ‘2X MD96’. 

Fig. 5-6 shows the real average search points of GRPS when it is applied to the sequence ‘2X 

MD96’. The outer ring of Fig. 5-6 is empty because these points never become the best matching 

points. When we compare Fig. 5-6 (the real average search points of GRPS) with Fig. 3-11 (the 

WF of GRPS) and Fig. 5-5 (the RWF of GRPS), the inner contour shape in Fig. 5-6 is more 

similar to that in Fig. 5-5 than to that in Fig. 3-11. Evidently, RWF is a better representation for 

the real average search point than WF. 
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5.1.2 RWF of the Genetic Point-oriented Hexagonal Search 

As another example, we construct the RWF for GPHS, defined Subsection 4.2.1 [55]. For the ease 

of the derivation of RWF for GPHS, let the matching error surface ),( yxHQMSB be a quadrant 

monotonic function with smooth border (QMSB), )0,0(=O  be the optimum search point, and 

),( PP yxP =  and ),( QQ yxQ =  be any two points in the search range, and , 

( =3). That is,  implies )()( QHPH QMSBQMSB > . Then, using a similar 

procedure in deriving RWFGRPS(x,y), we construct RWFGPHS(x,y) by computer simulations and 

show its contour plot in Fig. 5-7. 

We like to add some remarks here on the necessity of the QMSB assumption. In Subsection 

5.1.1 [53], the less rigorous QM assumption is sufficient for the derivation of RWF for GRPS. Yet, 

in the derivation of RWF for GPHS, the more rigorous QMSB assumption is required. It is 

because that a large search pattern contains possibly two nearby points in different quadrants. For 

different search patterns, we can adjust Rnbd in the QMSB assumption to match the maximum 

distance between any two points in the search pattern. A special case is =2; the QMSB 

assumption becomes the QM assumption in this case. On the other hand, when  approaches 

infinity, the QMSB assumption becomes the SM assumption. In this study, the more general 

QMSB assumption is used to expand our previously proposed model [53] for modeling the 

genetic pattern searches. 
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Fig. 5-7 The RWF of GPHS. 

 

Section 5.2 Proposed Momentum-directed Genetic Pattern 

Searches 

We propose two momentum-directed genetic pattern searches (MD-GPS) in this section. They are 

the momentum-directed version of GRPS and GPHS, respectively. 

Observing the operation of the current GRPS, we find a way to speed it up: the algorithm 

should move directly towards the direction of best matching point. Statistically, the successful 

direction of the previous search is often the correct search direction at the current point. Our 

QMSB error surface model certainly leads to this conclusion too. Therefore, instead of selecting 

randomly one mutation from the candidate child set, we select the mutation based on its preceding 

successful mutations. That is, it tends to move along the same direction of the prior successful 

search. On the other hand, it can change the search directions when the assumption of QMSB 

matching error surface is not valid.  

The flow chart of the proposed algorithm, namely, momentum-directed GRPS (MD-GRPS), 

is described by Fig. 5-9. Its RWF contour plot is in Fig. 5-8. In Fig. 5-10, C is the current parent, 

P is obtained using the last successful mutation direction, and PP is obtained using the 
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second-to-the-last successful mutation direction differing from P. Arrows show the search order. It 

indicates shows the search order (priority) of candidate mutations in MD-GRPS, which is 1) the 

mutation with the same direction as the last successful mutation (P), 2) the mutation with the same 

direction as the second-to-the-last successful mutation (PP), 3) the mutation with the opposite 

direction to the second-to-the-last successful mutation, and 4) the mutation with the opposite 

direction to the last successful mutation. In Fig. 5-10, P cannot be in the opposite direction of PP. 

If they are in the opposite direction, the search process returns to its previous parent. Also, the 

fourth (also the least) priority point is never searched, because the opposite direction to the last 

successful mutation is the previous parent point that has been checked in the early search step.  

Likewise, by adopting the momentum-directed search order in the genetic pattern search, we 

convert GPHS to a momentum-directed one. Fig. 5-11 shows its RWF contour plot. The flow 

chart of the proposed algorithm, namely, the momentum-directed GPHS (MD-GPHS), is 

described by Fig. 5-12. And the search order (priority) of candidate mutations in MD-GPHS is 

shown in Fig. 5-13. In Fig. 5-13, C is the current parent, P is obtained using the last successful 

mutation direction, and PP is obtained using the second-to-the-last successful mutation direction 

but is different from P. Arrows show the search order. Fig. 5-13 shows two possible cases, which 

are decided by the relative direction of the last successful mutation direction (P) and the 

second-to-the-last successful mutation direction (PP). Similar to the discussions in MD-GRPS, we 

do not consider the case that P and PP are in the opposite direction. And the search order is 

determined by the following principles. The first priority candidate is the mutation with the same 

direction to the last successful mutation (P), the second is the one with the same direction to the 

second-to-the-last successful mutation (PP) but it must differ from P, and the last candidate is the 

one with the opposite direction to the last successful mutation. As for the search order of the 

remaining three candidates, it is determined by their distance to the last successful mutation, P 

(the smaller one is checked first). When they are identical, the order is decided by their distance to 
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the second-to-the-last successful mutation, PP. Similar to the discussion in MD-GRPS, the sixth 

(also the least) priority point is never searched, because the opposite direction to the last 

successful mutation is the previous parent point that has been checked. 
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Fig. 5-8 The RWF of MD-GRPS 

 

Fig. 5-9 The flow chart of MD-GRPS  

 

C P

PP

 



 
 

- 90 -

Fig. 5-10 The search priority of all candidate mutations in MD-GRPS. 
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Fig. 5-11 The RWF of MD-GPHS 

 

 

Fig. 5-12 The flow chart of MD-GPHS 

 

C P

PP

(a)

C P

PP

(b)
 

Fig. 5-13 The search priority of all candidate mutations in MD-GPHS. 
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Fig. 5-14 The real average search points of MD-GRPS when it is applied on the sequence ‘2X 

MD96’. 
 

Fig. 5-14 shows the real average search points of MD-GRPS when it is applied to the 

sequence ‘2X MD96’. The outer ring of Fig. 5-14 is empty because these points never become the 

best matching points. When we compare Fig. 5-14 with Fig. 5-8, we can find that the shapes of 

their inner contours are similar. Thus, RWF characterizes well the real average search points of 

MD-GRPS. 

 

5.2.1 Performance of Momentum-Directed Genetic Pattern 

Searches  

To test the proposed algorithm, ten sequences (denoted as ‘1X’) with different MV variances are 

tested under the parameter settings given in Table 3-1. Moreover, to test the extreme cases, we 

generate ten new test sequences by skipping the even frames of these sequences, and these new 

sequences are denoted as ‘2X’. They are roughly the two times fast forward playback of the 

originals. These 20 test sequences are coded by an MPEG-4 SP@L3 encoder. The other 

simulation settings are the same as described in Section 3.1. 

In selecting the simulation platform, our focus is whether it provides a fair and direct 

comparison among different ME algorithms. The H.264 scheme is a newer and very sophisticated 

platform. It contains many tools that affect the choice of motion vectors, such as multiple (block) 

mode decision and rate distortion optimization. For example, at different bit rates, the same mode 
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decision tool can select different motion vectors. Thus, the PSNR impact due to the use of 

different ME algorithms may become hidden or be blurred. Thus, we adopt a simpler MPEG-4 

platform on which the impact of different motion estimation algorithms can be observed more 

clearly.  

The average number of search points (ASP) and the peak signal to noise ratio (PSNR) for 

various sequences and search algorithms are listed in Table 5-2 and Table 5-3, respectively. The 

predicted MV (PMV, defined by (2.2)) is used as the search starting point in all cases. FS denotes 

the full search, ERPS is proposed by [30] but we replace the MV predictors in [30] by the PMV, 

and PHS is proposed by [33].  

The pair-wise performance comparisons in ASP and PSNR between MD-GRPS and some 

selected popular algorithms are given in Fig. 5-15 and Fig. 5-16. The pair-wise performance 

comparisons in ASP and PSNR between MD-GPHS and some selected popular algorithms are 

given in Fig. 5-17 and Fig. 5-18. In Fig. 5-15 and Fig. 5-17, the computing gain (CG) is defined 

as the ASP ratio between the original and the chosen algorithm minus one. In Fig. 5-16 and Fig. 

5-18, the quality gain (QG) is the PSNR difference. The CG of MD-GRPS and MD-GPHS 

substantially outperforms the other popular algorithms, while their average QG is near 0.  

MD-GRPS can be up to 18% faster than GRPS for very fast sequences (2X FB1024), and 

their PSNR values are about the same. On the average, comparing their ASP values, MD-GRPS is 

7% faster than GRPS, 35% faster than ERPS, 1.39 times faster than DS, 1.76 times faster than 

FSS and 143 times faster than FS. And the PSNR of MD-GRPS is about the same as that of all the 

other search algorithms (+0.06dB ~ -0.06dB).  

Similarly, MD-GPHS can be up to 13% faster than GPHS for very fast sequences (2X 

FB1024) and its PSNR quality is roughly at the same level. On the average, MD-GPHS is 5% 

faster than GPHS, 12% faster than PHS, 69% faster than DS, 96% faster than FSS, and 101 times 

faster than FS. And the PSNR of MD-GPHS is about the same as those of GPHS and the 
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non-genetic version (PHS) (+0.02dB ~ -0.05dB). When being compared to the conventional 

pattern search algorithms, all these three algorithms (MD-GPHS, GPHS, and PHS) have slightly 

PSNR drop (-0.12dB ~ -0.17dB).    

Generally MD-GRPS is significantly better in speed than MD-GPHS for most test sequences. 

However, MD-GPHS outperforms MD-GRPS by 3% for very fast sequences (2X FB1024). As 

expected in comparing Fig. 5-8 with Fig. 5-11, RWFMD-GPHS has smaller values than RWFMD-GRPS 

near the outer border of the search area. In short, one algorithm beats the other in certain scenarios 

but none is the best for all cases. Thus, a good adaptive pattern scheme that dynamically selects 

the most appropriate pattern search algorithms further reduces the computational complexity. 

The computation overheads of MD-GRPS and MD-GPHS are negligible. For all possible 

pairs of the last and the second-to-the-last successful mutation directions, we generate the 

corresponding search priority tables in advance. In execution of a momentum-directed algorithm, 

we record the last and the second-to-the-last successful mutation directions, use this direction pair 

to choose the search priority table and decide the search priority accordingly. A few memory 

access and comparisons can do all the works. 

Note that, in Table 5-2, the PSNR of both ‘1X’ and ‘2X’ HL40 acquired by FS are lower than 

those acquired by other algorithms. Because HL40 has slight noise textures, the motion vector 

field produced by FS is much noiser (with larger magnitude) than those produced by the other 

algorithms. This phenomenon influences the matching error little but the size of motion vectors a 

lot, therefore, has a more significant influence on the coded picture quality, particularly for low 

bitrate sequences. 

 
 

Table 5-2 ASP (Average Number of Search Points). 

Type Sequence MD-GRPS GRPS ERPS MD-GPHS GPHS PHS DS FSS FS 

CT256 5.28 5.36 5.75 9.19 9.37 9.52 13.81 17.53 1024 1X 
CT40 5.85 5.98 7.04 9.51 9.88 10.31 15.03 18.38 1024 
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HL40 6.23 6.35 7.33 9.60 9.68 10.10 15.38 18.72 1024 
MD96 5.94 5.98 6.83 9.58 9.65 10.02 14.85 18.37 1024 
CG112 5.75 6.08 7.63 9.29 9.76 10.25 15.09 18.25 1024 
FM512 6.80 7.13 8.65 9.80 10.00 10.57 16.17 19.03 1024 
FM1024 6.64 6.94 8.32 9.67 9.85 10.35 15.76 18.71 1024 
FB1024 10.35 11.89 16.36 11.36 12.75 14.18 22.36 22.70 1024 
FG768 6.06 6.38 7.57 9.72 9.95 10.34 15.30 18.73 1024 

ST1024 7.24 7.65 9.95 9.90 10.56 11.40 16.96 19.47 1024 

CT256 5.43 5.62 6.35 9.26 9.51 9.74 14.15 17.72 1024 
CT40 6.40 6.60 8.15 9.82 10.34 10.89 16.05 19.11 1024
HL40 6.37 6.51 7.57 9.66 9.74 10.22 15.62 18.88 1024 
MD96 6.29 6.40 7.56 9.77 9.85 10.38 15.44 18.76 1024 
CG112 6.73 7.36 9.54 9.74 10.64 11.48 17.04 19.57 1024 
FM512 8.25 9.07 11.70 10.52 11.01 12.02 18.72 20.67 1024 
FM1024 7.98 8.85 11.36 10.35 10.79 11.75 18.26 20.28 1024 
FB1024 13.27 15.75 22.32 12.94 14.62 17.15 27.39 26.22 1024 
FG768 6.55 7.01 8.69 9.88 10.35 10.83 16.30 19.29 1024 

2X 

ST1024 8.61 9.28 12.45 10.72 11.73 13.00 19.49 21.26 1024 

  Average 7.10 7.61 9.56 10.01 10.50 11.23 16.96 19.58 1024.00 
 

Table 5-3 PSNR (Peak Signal to Noise Ratio). 

Type Sequence MD-GRPS GRPS ERPS MD-GPHS GPHS PHS DS FSS FS 

CT256 39.48 39.49 39.50 39.47 39.43 39.44 39.51 39.49 39.56 
CT40 31.99 32.21 32.08 31.28 31.24 31.47 31.92 31.69 32.04 
HL40 34.41 34.49 34.60 34.15 34.14 34.22 34.25 34.17 33.55 
MD96 40.05 40.08 40.09 39.78 39.79 39.85 39.99 39.93 39.80 
CG112 29.13 29.14 29.16 29.06 29.03 29.06 29.14 29.13 29.08 
FM512 34.04 34.05 34.10 33.86 33.89 33.92 34.06 34.02 34.06 
FM1024 36.55 36.52 36.61 36.49 36.46 36.44 36.59 36.48 36.56 
FB1024 34.92 34.87 34.88 34.85 34.73 34.87 34.93 34.94 35.28 
FG768 26.18 26.17 26.19 26.14 26.15 26.17 26.18 26.16 26.20 

1X 

ST1024 29.16 29.39 29.31 29.31 29.42 29.33 29.44 29.35 29.48 

CT256 38.63 38.65 38.68 38.52 38.52 38.51 38.60 38.72 38.95 
CT40 30.15 30.28 30.22 29.30 29.22 29.54 29.94 29.73 29.81 
HL40 33.25 33.31 33.38 32.91 32.95 33.02 33.07 32.93 32.33 
MD96 38.66 38.66 38.66 38.39 38.37 38.44 38.60 38.57 38.41 
CG112 27.43 27.43 27.53 27.33 27.23 27.34 27.50 27.45 27.37 
FM512 32.36 32.34 32.45 32.16 32.19 32.23 32.38 32.35 32.42 
FM1024 35.23 35.25 35.29 35.14 35.12 35.21 35.24 35.17 35.28 

2X 

FB1024 33.26 33.22 33.24 33.21 33.12 33.22 33.28 33.30 33.44 
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FG768 25.52 25.51 25.53 25.46 25.42 25.48 25.53 25.49 25.51 
ST1024 27.86 27.99 27.93 27.87 27.87 27.88 27.97 27.93 28.10 

  Average 32.91 32.95 32.97 32.73 32.71 32.78 32.91 32.85 32.86 
 

Fig. 5-15 Performance comparisons in ASP between MD-GRPS and some popular algorithms. 
Performance comparison in ASP between MD-GRPS and some popular algorithmgs
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Fig. 5-16 Performance comparisons in PSNR between MD-GRPS and some popular algorithms. 
Performance comparison in PSNR between MD-GRPS and some popular algorithms
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Fig. 5-17 Performance comparisons in ASP between MD-GPHS and some popular algorithms. 
Performance comparison in ASP between MD-GPHS and some popular algorithms
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Fig. 5-18 Performance comparisons in PSNR between MD-GPHS and some popular algorithms. 
Performance comparison in PSNR between MD-GPHS and some popular algorithms
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Section 5.3 Refined Analytic Model for PBME and Its 

Accuracy 

In Chapter 3 [54], we propose a mathematical model (expressed by (3.18)) that can predict the 

average number of search points (ASP) produced by a PBME. In Chapter 4 [55], we demonstrate 

the construction of a new PBME by using this model. With RWF, the original model is enhanced. 

The refined analytical model is introduced in this section. 

 
Refined Analytical Model 
 

The refined weighting function [53], , is defined to be the average number of 

search points produced by a search algorithm when the best matching point is located at (x,y). We 

are able to calculate the RWF associated with a search algorithm when the matching error 

(distortion) surface is unimodal and monotonic. For the deterministic search algorithms 

(conventional PBME), their WF and RWF are the same. For the probabilistic search algorithms 

(for example, genetic algorithms), the WF expression is not an accurate representation. In 

comparison, RWF better portrays the behavior of a search algorithm. 

Fig. 5-20 shows the RWF contour plots of 4 popular pattern search algorithms, FSS [26], DS 

[27][28], PHS [33] and ERPS. The ERPS algorithm adopted here is the adaptive rood pattern 

search in [31] but with a single starting point - PMV. The value marked on a contour represents 

the average search points required for a search algorithm to move from the origin to a point 

(location) on the contour. 

Because WF does not well convey the randomness nature of the genetic pattern searches, the 

RWF replaces WF in (3.18). Thus, (3.18) becomes (5.5). We use (5.5) as the refined model to 

characterize the behavior of a pattern search algorithm. 

 
∑
∈

+××=
Ayx

SAFS CyxRWFyxSCASP
,

21 ),(),(
 

(5.5)



 
 

- 97 -

 
Training Methods 
 

Similar to the training methods of the original model [54] using WF, there are two methods 

to decide the C1 and C2 in the refined model using RWF. In the first method, we apply a fixed SA 

to a set of training sequences to compute C1 and C2 by the regression method. Our objective is 

that the refined model with trained C1 and C2 can predict the ASP of a new sequence accurately. In 

the second method, we apply a few search algorithms (the training algorithms) to a specific 

sequence, and then calculate C1 and C2 based on the acquired data. In this case, the goal is that the 

refined model with trained C1 and C2 can predict the ASP values produced by a new search 

algorithm on the same sequence.  

 

Prediction Accuracy 
 

When we use the second method to predict the ASP of new (genetic) search algorithms, Fig. 

5-19 show the comparison between the actual ASP and the predicted ASP for the 1X (left part) 

and 2X sequences (right part). The blue dash straight line is obtained by applying the regression 

method to the purple cross data points that are generated by FSS, DS, ERPS and PHS. Therefore, 

it shows the perfect prediction case (actual ASPs equal predicted ASP). The red open diamond is 

the prediction data point of GRPS using WF and the green solid diamond uses RWF. The red open 

square is the prediction data point of GPHS using WF and the green solid square uses RWF. It is 

quite obvious that the green solid symbols (the refined model with RWF) are closer to the blue 

dash line (perfect prediction) than the red open symbols (the original model with WF) in most 

cases. Quantitatively, Table 5-4 shows the average absolute difference between the actual ASP 

and predicted ASP when either WF or RWF is in use. Herein, the parameters C1 and C2 in the 

predictive ASP model are trained by using FSS, DS, ERPS and PHS. When we replace WF by 

RWF, the average prediction error for GRPS is reduced from 2.76 to 0.74, and that for GPHS is 

reduced from 2.8 to 1.5. Clearly, the refined model with RWF is more accurate.  
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On the other hand, when we use the first method to predict the ASP of a new sequence, the 

prediction differences owing to the adaptation of WF and RWF in the model are about the same. It 

is because the inaccuracy of WF is compensated by adjusting parameters C1 and C2 in its overall 

prediction model.  

 

Table 5-4 The average absolute difference between predicted ASP and actual ASP for all 1X and 
2X sequences. 

The average absolute difference 
 between predicted ASP and actual ASP  WF RWF 

GRPS 2.76 0.74 
GPHS 2.80 1.50 

 

 
Fig. 5-19 The relationships between the actual ASP and the predicted ASP for the 1X and 2X 

sequences. 
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Section 5.4 Refined Model and Coding Tool Design 

Typically there are three major coding tools in an adaptive pattern search algorithm – the 

constituent pattern searches, the pattern switching strategy, and the starting point set.  

In constructing the adaptive pattern searches, we first select the constituent pattern searches. 

An effective pattern search should have a small RWF at all locations in a search window. 

However, it is difficult to devise such a pattern search; therefore, two complementary pattern 

searches, one is good at small motion vectors and the other is good at large motion vector, are 

selected as the pattern search set in an adaptive pattern switching scheme.  

From the RWF profiles given in Fig. 5-20, we conclude that 1) DS outperforms FSS for all 

possible MVs, 2) ERPS uses the least number of search points when the motion vectors are 

located near the PMV, and 3) PHS uses the least number of search points for the motion vectors 

located far from PMV. Therefore, two conventional pattern searches, ERPS and PHS, are selected 

as the traditional pattern search set.  

Fig. 5-21 shows the RWF of the genetic pattern searches, GRPS (the genetic-based ERPS) 

and GPHS (the genetic-based PHS). When comparing Fig. 5-20 to Fig. 5-21, we choose GRPS 

and GPHS as the genetic pattern search set, because the RWF of GRPS has the smallest values for 

small motion vectors and that of GPHS has the smallest values for large motion vectors. The 

details of GRPS and GPHS are described in Subsection 4.2.1 [54][55]. 
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Fig. 5-20 Contour plots of the RWF for FSS, DS, ERPS and PHS. 
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Fig. 5-21 Contour plots of the RWF for GRPS and GPHS. 

 

5.4.1 Pattern Switching Strategy 

The second component in an adaptive pattern search scheme is the pattern switching strategy. 

Similar to Subsection 4.2.2, we design one single level and one double level pattern switching 

strategies for each of the two selected pattern search sets. Totally four schemes are proposed. 

Each pattern search set comprises two pattern searches. One set is the traditional pattern searches 

{ERPS, PHS}, and the other set is the genetic pattern searches {GRPS, GPHS}. In Subsection 

4.2.2, the original model with WF is used. In this subsection, we use the refined model with RWF 
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to decide a proper switching threshold and the pattern switching strategy for each pattern search 

set is described by a flowchart. 

The key element in the pattern switching scheme is an adequate threshold. It is used to 

decide which pattern search is to be used. The target is to lower the computational complexity. 

That is, when search algorithm 1 (SA1) is in use, its average search points should be fewer than 

that produced by using search algorithm 2 (SA2). According to our refined average search point 

equation (eq. (5.5)), their difference in ASP is in (5.6). 

 
)),(),((),( 2

,
11 yxRWFyxRWFyxSC SA

Ayx
SAFSASP −××=Δ ∑

∈

. (5.6)

 
Note that both RWFSA1 and RWFSA2 depend on search algorithms only. Because SFS is a 

function of the MV variance and  is thus picture-dependent, the parameter C1 is fixed for a 

video sequence. Dividing  by C1, we obtain the refined switching index (JASP) in (5.7).  

 
1/CJ ASPASP Δ=  (5.7)

 
Given a set of search patterns (SA1 and SA2), their JASP for a video sequence can be 

calculated. When JASP > 0, SA2 should be used; otherwise, SA1 should be selected. In principle, 

by using plural thresholds in a cascaded architecture, we may choose the best-performed pattern 

searches and expand the number of component pattern searches from two to many. Yet, it is 

impractical to identify a large set of pattern searches of which each pattern individually produces 

the least search points for a portion of image sequence. Therefore, only the 2-pattern search 

schemes are designed in the following examples. 
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Fig. 5-22 The JASP between ERPS and PHS w.r.t. MV variance (a) and that between GRPS and 
GPHS w.r.t. MV variance (b).  

 
Note that when the parameters of our model, such as (ζx, ζy) in SFS(x,y), are calculated based 

on the data of a picture (frame), JASP is a function of the MV variance measured for one frame. 

The JASP between ERPS and PHS, drawn against MV variance is shown in Fig. 5-22(a). In Fig. 

5-22 (a), the X-axis is the MV variance of the horizontal component and the Y-axis is that of the 

vertical component. When JASP > 0, ERPS outperforms PHS in terms of ASP, and when JASP < 0, 

PHS is better. Therefore, the switching criterion can be the MV variance values, at which JASP 

equals zero. For the case of ERPS and PHS pair, the threshold, JASP=0, is approximately a straight 

line below in the MV variance coordinates.  

 

 
Thus, this dash straight line in Fig. 5-22 (a) acts as the pattern switching threshold. That is, 

Eq.(5.8) is used to decide the pattern search in use, wherein P, Q, and R are determined by the 

numerical methods. In our experiments, P = 1, Q = 1 and R = 20. 

When GRPS and GPHS are the two component pattern searches, their JASP is shown in Fig. 

5-22 (b). Similarly, JASP=0 can be approximated by a straight line in the MV variance coordinates. 

This dash straight line in Fig. 5-22 (b) serves as the pattern switching threshold. That is, Eq. (5.8) 

is again used to decide the pattern search and P=1, Q= 1 and R = 48 . Thus, similar to Subsection 

RVARQVARP YX =⋅+⋅ . (5.8)
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4.2.2, single level pattern-switching strategy and double level pattern-switching strategy are 

developed.  

 
Single Level Strategies 
 

An adaptive pattern switching strategy is thus developed based on the threshold equation 

defined by (5.8). To ease the following discussions, the adaptive algorithm using ERPS and PHS 

is called adaptive pattern search (APS). Its flow chart is shown in Fig. 5-23. A similar algorithm 

is developed for the GRPS and GPHS pair and is called adaptive genetic pattern search (AGPS), 

which has a similar procedure but uses different parameters in Step S3 in Fig. 5-23 and, of course, 

ERPS and PHS are replaced by GRPS and GPHS, respectively. 

 

S2: calculate the variances of MV

S4:
ERPS

S3: 
P*frame_var_x + 
Q*frame_var_y < 

R?

S5:
PHS

Y N

S1: BEGIN

S6: 
END

  
Fig. 5-23 The flow chart of APS. 

 
Moreover, when comparing Fig. 5-22 (a) to Fig. 5-22 (b), we find that the optimal threshold 

for APS is smaller than that for AGPS. It means the search capability difference between the 

constituent pattern searches in APS locates in the relative low motion part but that in AGPS 

locates in the relative high motion part. This is consistent with the characteristics of the 

constituent pattern searches.  
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Double Level Strategies 
 

Because the MV characteristics vary at different parts of a frame, using one single search 

pattern for the entire frame is a rough strategy. To refine this strategy, we also switch the search 

pattern for each image block inside a frame. Because the MV characteristics in the nearby 

spatial/temporal areas tend to be similar, three neighboring blocks in the current and previous 

frame are used in calculating the MV variance as defined by (4.8). 

The so-called double level pattern switching strategy for APS (abbr. DL APS) constitutes the 

frame-level switching, which is similar to the single-level strategy, and the block-level switching, 

described by the last paragraph. Its flow chart is shown by Fig. 5-24. If the previous frame has 

small MV variances, we incline towards using ERPS as the search pattern with the exception that 

the MV variances derived from the nearby blocks are very large. On the other hand, if the 

previous frame has large MV variances, PHS is often chosen unless the MV variances derived 

from the neighboring blocks are very small. The parameter values of P, Q, Rframe, Rblock1, and 

Rblock2 are derived from data by using the numerical method. In our experiments, P = 1, Q = 1, 

Rframe = 20, Rblock1 = 3, and Rblock2 = 37.  

Likewise, the flow chart of the double level pattern switching strategy for AGPS (abbr. DL 

AGPS) is similar but the corresponding parameters in S3, S4, and S5 are P = 1, Q = 1, Rframe = 48, 

Rblock1= 6, and Rblock2 = 90. Also, ERPS and PHS are replaced by GRPS and GPHS, respectively. 
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Fig. 5-24 Flow chart of the double level adaptive pattern search (DL APS).  

 

5.4.2 Starting Point Selection  

The third component in an adaptive pattern search scheme is the starting point or initial point in a 

search. Often, the starting point is predicted by using a combination of the MVs of a few 

neighboring blocks. The most probable MV predictor is used as the starting point for PBME 

algorithms. We like to design a criterion that evaluates the effectiveness of MV predictors and 

propose a systematic approach that constructs the optimal Starting Point Set (SPS). The DL AGPS 

and DL APS discussed in the previous section are the search algorithms used to test our SPS in 

this section.  

We assume that the refined PBME model is valid for different starting points. Then, because 

the MV field acquired by FS is fixed for a given video sequence, a different starting point only 

does a translational shift on the motion vector distribution. Given two starting points, SP1 and 

SP2, their difference in ASP can be represented by (5.9). 

 
∑
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Let SP2 be a fixed starting point for comparison purpose; (5.9) thus becomes (5.10), in which η  

is a constant. 
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(5.11)

 
Rearrange (5.10), we obtain  defined by (5.11), which is a function of ASP using SP1. 

Thus, it is used as the performance assessment criterion for starting point evaluation. Because 

RWFSA(x,y) is fixed for a specific algorithm and only  may vary,  is a 

function of MV characteristics. Herein, the MV characteristics are the MV variances calculated 

from the MV w.r.t. a specific starting point (SP1). And the MVs are acquired by using FS on the 

selected sequences.  

Similar to Section 4.3, we consider the MV candidates in Fig. 4-12 in the starting point 

selection and investigate the representative MV predictors in Eq.(4.14)-(4.25). We find the MV 

predictors with the smallest average HASP and form the candidate set. We choose one or several 

starting points from the candidate set to form the starting point set (SPS) by using the progressive 

SPS construction in Fig. 4-13. Accordingly, we can get the constructed SPS. Like Section 4.3, we 

obtain similar SPS for our proposed search schemes. 

 

5.4.3 Coding Performance 

 
Test Image Sequences and Platform 
 

Table 5-5 The test sequences and their parameters. 
Bit rate Frame rate Number 

Abbreviation Sequence 
(K bps) (fps) of frames 

PSNR

CR2048 crew 2048 60 600 35
CR1024 crew 1024 60 600 32
SC3072 soccer 3072 60 600 35
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IC1536 ice 1536 60 480 38
MB768 mobile 768 30 300 25
FM512 foreman 512 30 300 34
FM1024 foreman 1024 30 300 36
FB1024 football 1024 30 90 35
FG768 flower garden 768 30 250 26
ST1024 Steven 1024 30 300 29

 
Table 5-5 lists the test image sequences (denoted as the ‘1X’ sequences), their target coding 

bit rates (which are chosen to produce acceptable image quality), peak signal noise ratio (PSNR), 

and the other parameters. To test the extreme cases, we enlarge the extent of motion by generating 

some new sequences consisting of the odd frames of the ‘1X’ sequences (denoted as the ‘2X’ 

sequences) and one quarter frames of the original (denoted as the ‘4X’ sequences). All the 

sequences are in the CIF (352X288) resolution. The video coding platform in our experiments is 

an MPEG-4 (SP@L3) encoder. Only the first frame is coded as I frame, and all the remaining 

frames are coded as P frames. The motion vector search range is 16, the initial quantization step 

size is set to 15, and the block size is 16x16. The quantization step is adjusted to achieve the 

desired bit rate. The frame skip and the block skip (macroblock not coded) modes are not in use. 

 
 
 
Performance of Pattern Switching Strategy 
 

Fig. 5-25 and Fig. 5-26 show the performances of ERPS, PHS, APS and DL APS, and Fig. 

5-27 and Fig. 5-28 show the performances of GRPS, GPHS, AGPS and DL AGPS, when they are 

tested on the ‘1X’, ‘2X’ and ‘4X’ sequences under the settings given in Table 5-5. In these figures, 

‘ASP’ is the average number of search points per block, and ‘PSNR’ is the average frame PSNR 

of a sequence.  

Regarding the ASP performances of the conventional pattern searches in Fig. 5-25, PHS 

outperforms ERPS in 1 out of ten 1X sequences, 3 out of ten 2X sequences and 7 out of ten 4X 

sequences. And the computational complexity of our proposed APS and DL APS are usually 
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below the lower one of ERPS and PHS. In most cases, DL APS has the lowest computation 

complexity, and APS takes the second place. On average, APS outperforms EPRS by 4.1%, 8.9% 

and 15.6% for the 1X, 2X and 4X sequences, and outperforms PHS by 20.2%, 11.7% and 4.7%. 

And DL APS outperforms ERPS by 4.3%, 9.3% and 16.2%, and outperforms PHS by 20.5%, 

12.1% and 5.2%. In terms of PSNR in Fig. 5-26, the performances of both APS and DL APS are 

very close to those of FS in all our test sequences. Specifically, their PSNR performances usually 

are between those of the constituent pattern searches.  

Regarding the ASP performances of the genetic pattern searches in Fig. 5-27, GPHS never 

outperforms GRPS in 1X sequences. Yet, GPHS outperforms GRPS in 1 out of ten 2X sequences 

and 2 out of ten 4X sequences. And the computational complexity of our proposed AGPS and DL 

AGPS are usually below the lower one of GRPS and GPHS. In most cases, DL AGPS has the 

lowest computation complexity, and AGPS takes the second place. On average, AGPS 

outperforms GPRS by 0.6%, 2.5% and 4.5% for the 1X, 2X and 4X sequences, and outperforms 

GPHS by 38.0%, 26.1% and 14.5%. And DL AGPS outperforms GRPS by 0.9%, 2.5% and 4.9%, 

and outperforms GPHS by 38.3%, 26.1% and 14.9%. In terms of PSNR in Fig. 5-28, the 

performances of AGPS and DL AGPS are very near to those of FS in all our test sequences. 

Likewise, their PSNR performances usually are between those of the constituent pattern searches.  

Clearly, the adaptive pattern switching strategy is robust. It does not hurt the low motion 

variance sequences but effectively reduces the computational complexity on the high motion 

variance sequences. The proposed algorithms outperform their constituent pattern search 

algorithms in ASP, and their PSNR qualities typically are in-between those of their constituent 

algorithms.  

When we compare the conventional adaptive schemes with the genetic adaptive schemes, the 

genetic versions are better than their corresponding non-genetic versions in computational 

complexity. For example, GRPS is better than ERPS, and GPHS is better than PHS. GRPS is an 
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efficient search algorithm for almost all image sequences. Therefore, the advantage offered by the 

adaptive switching mechanism is relatively small for the genetic searches. In contrast, the 

adaptive pattern switching mechanism helps the conventional searches more. Though marginally, 

the double level strategy further improves in both PSNR and speed.  

Note that the sequences with high but regular motions, like ‘flower garden’ (FG768), are 

considered as moderate motion sequences because we use a very good MV predictor. In our 

pattern switching schemes, the MV difference to its predictor decides which pattern search to be 

used. We do not compare our pattern switching algorithms, DL APS or DL AGPS, with the other 

pattern switching algorithms because our selected constituent pattern searches differ from those 

used by the other existing pattern switching algorithms. Moreover, the performances of our 

constituent pattern searches already exceed those of many known pattern switching algorithms.  
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(c) ASP on 4X sequences
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Fig. 5-25 The ASP values of applying ERPS, PHS, APS and DL APS on the 1X, 2X and 4X 
sequences.  
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(b) PSNR on 2X sequences
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(c) PSNR on 4X sequences
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Fig. 5-26 The PSNR values of applying FS, ERPS, PHS, APS and DL APS on the 1X, 2X and 4X 
sequences. 
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(c) ASP on 4X sequences
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Fig. 5-27 The ASP values of applying GRPS, GPHS, AGPS and DL AGPS on the 1X, 2X and 4X 
sequences.  
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(b) PSNR on 2X sequences
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(c) PSNR on 4X sequences
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Fig. 5-28 The PSNR values of applying FS, GRPS, GPHS, AGPS and DL AGPS on the 1X, 2X 
and 4X sequences. 

 
Discussions 
 

To examine the correctness of the switching strategy, Fig. 5-29 shows the frequency (in 

percentage) that PHS is chosen when the adaptive pattern schemes, APS and DL APS, are applied 

to the 1X, 2X and 4X sequences. Fig. 5-30 shows the percentage that GPHS is chosen when the 

adaptive genetic pattern schemes, AGPS and DL AGPS, are applied to those sequences. In Fig. 

5-29, the percentages of using PHS on the 4X sequences are higher than those on the 2X 

sequences, and in turn, the percentages on the 2X sequences are higher than those on the 1X 

sequences in both APS and DL APS. This is consistent with our earlier projection that the 

adaptive algorithms show advantages on fast moving sequences. Similar conclusion applies to the 

use of GPHS in both AGPS and DL AGPS.  

Fig. 5-31 and Fig. 5-32 display the pattern switching thresholds (represented by the dash 

straight line) and the refined switching index JASP. In these figures, a yellow dot denotes the JASP 

of an image frame (equivalently, an MV variance pair) and a cross denotes the JASP of an entire 

sequence. In Fig. 5-31, the dots in the higher-right part of JASP=0 are increasing as the sequences 
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are getting faster. Similar situation happens in Fig. 5-32. In Fig. 5-31, the MV variance pairs are 

evenly distributed on the two sides of the pattern switching threshold between ERPS and PHS. In 

contrast, in Fig. 5-32, most MV variance pairs are in the lower-left side of the pattern switching 

threshold designed for GRPS and GPHS. Consequently, the percentages of using PHS in Fig. 

5-29 are higher than that of using GPHS in Fig. 5-30. 
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Fig. 5-29 The frequency (in percentage) that PHS is chosen when the adaptive pattern schemes, 
APS and DL APS, are applied to the 1X, 2X and 4X sequences. 
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Fig. 5-30 The frequency (in percentage) that GPHS is chosen when the adaptive genetic pattern 
schemes, AGPS and DL AGPS, are applied to the 1X, 2X and 4X sequences. 
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Fig. 5-31 Pattern switching threshold (dash line), JASP (solid line) and the frame MV variance of 
the 1X, 2X and 4X sequences when the constituent searches are ERPS and PHS.  
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Fig. 5-32 Pattern switching threshold (dash line), JASP (solid line) and the frame MV variance of 
the 1X, 2X and 4X sequences when the constituent searches are GRPS and GPHS.  
 

For our selected image sequences, the adaptive switching methods offer reasonable 

computation reduction and ensure robust performance in the occasional high motion cases. It 

provides nearly the best ASP with negligible PSNR degradation. Overall, our design methodology 

produces a stable and efficient fast MV search scheme that can be used for all types of motion 

sequences. Indeed, based on the refined ASP prediction model, we can systematically choose the 

nearly optimal decision threshold. In practical implementation, the non-linear ideal threshold 

function is approximated by a liner equation. 

Section 5.5 Chapter Summary 

This study tries to improve the modeling accuracy of the pattern-based motion vector search 

algorithms. Specifically, we propose the refined weighting function, which is defined as the 

average number of search points needed to find the best matched point. Based on the QMSB 

matching error surface assumption, we can analytically calculate the RWF for the search 

algorithms of our interests. RWF is a better replacement for our previously proposed weighting 

function. When it is used to predict the ASP performance of a new search algorithm, it reduces the 
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average prediction errors significantly.  

In the model improving process, we also find clues to further speed up the previously 

proposed genetic pattern search algorithms. The basic idea is that the search direction used in the 

previous search steps hints us in finding the next matching point. By properly prioritizing the 

candidate search order, we lower the average computations. Two momentum-directed genetic 

pattern search algorithms are thus devised. Simulation results show that the modified algorithms 

offer 5% to 7% average computation reduction when compared with their corresponding genetic 

pattern searches. 

In addition, this study provides a methodology to design a robust and high performance 

adaptive pattern search algorithms. Our refined analytical model for pattern-based block motion 

estimations (PBME) serves as the foundation of the entire design process. The refined model can 

accurately predict the average number of search points (ASP) of a single pattern search. By using 

the refined model, we re-examine the critical coding tools in the adaptive pattern searches, the 

decision threshold and the starting point set. 

Our proposed design methodology leads to a systematic procedure in choosing the 

appropriate threshold for selecting the pattern search. Based on the characteristics of the 

constituent searches, the motion vector variance is chosen as the decision metric. And the 

threshold function is well approximated by a linear equation to reduce computation. Accordingly, 

the frame-level switching strategy and the block-level switching strategy are constructed. With 

different constituent pattern searches, two examples of adaptive pattern search design are 

presented. One uses the conventional pattern searches and the other uses genetic pattern searches. 

A most distinct advantage of the adaptive schemes is their robust performance (in both 

computation and quality) on both slow and fast motion sequences.  
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Chapter 6 Conclusions 
 
A systematic approach is taken in this dissertation to construct a mathematical model for the 

pattern based block motion estimation (PBME) algorithms. The complete PBME model includes 

two elements: the statistical probability distribution function (PDF) of motion vectors derived 

from a video sequence and the weighting function (WF) derived from a search algorithm. With the 

proposed model, we can predict the performance of a new search pattern without actually 

applying the search algorithm to a video sequence. Thus, it helps us in constructing new patterns 

searches. Two application examples are given. One is the design of a genetic pattern search, and 

the other is the performance prediction of a PBME algorithm.  

Based on the analytical model, three important techniques have been investigated for 

reducing complexity of PBME. They are adaptive pattern switch, starting point selection and early 

termination. The contribution of this study is to examine these techniques using a systematic 

approach. Optimal or nearly optimal solutions are thus identified. A PBME algorithm combining 

all the above features is constructed and the simulations show that the search speed of the 

proposed algorithm is much faster than many previous search algorithms and its coding quality is 

kept at about the same PSNR level.  

We further improve the modeling accuracy of the pattern-based motion vector search 

algorithms. Specifically, we propose the refined weighting function (RWF) on the quadrant 

monotonic function with smooth quadrant border (QMSB) matching error surface assumption. 

RWF is a better replacement for WF. When it is used to predict the ASP performance of a new 

search algorithm, it reduces the average prediction errors significantly. In the model improving 

process, we also find clues to further speed up the previously proposed genetic pattern search 

algorithms. Two momentum-directed genetic pattern search algorithms are thus devised. We also 

use our refined analytical model for PBME as the foundation of the PBME design process. In 
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re-examining the major coding tools in the adaptive pattern search algorithm, we suggest a better 

threshold for selecting the pattern search.  

In summary, we build an analytical model for PBME and demonstrate how we use the model 

to develop new pattern searches for video coding applications. In addition, we further refine the 

model and apply it for developing better search schemes. 

 
Section 6.1 Future Works 

This study may be further extended in two directions as described in this section. One is regarding 

the theoretical robustness of our proposed model and the other, new video coding applications. 

 
Theory 

In developing the analytical model, the motion vectors are obtained by applying the full 

search (FS) to video sequences of CIF size (352X288) in integer pixel precision and the block size 

in the block matching process is fixed to 16X16. Yet, in current standardization process of next 

generation video coding standard (high efficiency video coding, HEVC), video sequences may 

alter from Sub-QCIF (128X96) to 16HD (7680X4320) in size [48], the block size may vary from 

2X2 to 64X64 [49] and the pixel precision may range from 1/4 pixel to 1 pixel. With the 

variations in these three factors, the accuracy of proposed analytical model may need adjustment. 

We should examine the influences of image size and block size. If a mismatch occurs, additional 

parameters may be introduced into this model. Providing that additional parameters are introduced 

to the model, we may develop new fast algorithms for mode selection and sub-pixel motion 

estimation. 

 
Application 

The computation time of PBME varies drastically due to the nature of PBME. This high 

variation is not welcomed by the practical system, whose computing power (due to its hardware or 

software platform) is usually limited and fixed. The frame-to-frame and block-to-block 
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computation variation may cause various synchronization problems or, otherwise, may waste 

computation power. Thus, the computation-aware motion estimation is desirable. How can we 

achieve the best coded image quality under the given or restricted computation resources? Can our 

proposed analytical model help in designing the computation aware motion estimation schemes? 

These issues are worth exploration.  
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