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Abstract

Pattern-based block motion estimation (PBME) is one of the most widely adopted compression
tools in the contemporary video coding systems. However, despite that many researchers have
studied PBME, few have attempted toconstruct an analytical model that can explain the

underneath principle and mechanism of various PBME algorithms.

In this dissertation, we propose a statistical PBME model that consists of two components: 1)
the statistical probability distribution of the motion vectors, and 2) the minimal number of search
points (called weighting function, WF).achieved by a search algorithm. We verify the accuracy of
the proposed model by checking the experimental data. Then, two application examples using this
model are proposed. Starting from an ideal weighting function, we devise a novel genetic
rhombus pattern search (GRPS) to match the design target. Simulations show that comparing to
the other popular search algorithms, GRPS reduces the average search points for more than 20%
and, in the meanwhile, it maintains a similar level of coded image peak signal-to-noise ratio
(PSNR) quality. Furthermore, the proposed model can reliably predict the performance of a

PBME algorithm applied to a new video sequence.

With the aid of the proposed model, we design new PBMEs by looking into every
component of a typical PBME algorithm and fine-tuning the major components systematically to
achieve the optimal or nearly optimal results. First, we use the aforementioned analytic model in
analyzing and designing effective genetic-algorithm-based pattern searches. Then, we propose an
adaptive switching strategy that dynamically switches between two pattern searches. Third, we

extend our PBME model to evaluate the efficiency of starting (initial search) points. A near



optimal set of starting points is identified through iterative steps. Fourth, we study the early
termination threshold technique and suggest a metric in selecting an effective threshold. An early
termination mechanism with accurate threshold is thus constructed. Combining all these

techniques, we develop a PBME algorithm that outperforms many existing algorithms.

Although the WF matches the deterministic search schemes quite well, however, the WF fails
to give a precise search point prediction when a probabilistic search method such as a genetic
pattern search is involved. Therefore, we propose a refined weighting function (RWF) that
describes both genetic and non-genetic pattern searches more accurately under the assumption that
the matching error surface is a quadrant monotonic function with smooth quadrant border
(QMSB). In the process of constructing RWF, we further accelerate the pattern searches and two
momentum-directed genetic pattern search algorithms are devised. These new algorithms assign
priorities to the candidate mutations based on the information provided by the preceding
successful searches and this can further reduce. the computational complexity of the previously

proposed genetic pattern searches by 5% to 7% in average.

With refined RWF, the prediction accuracy of the refined model is significantly improved.
Consequently, we re-examine the coding tools in'the adaptive pattern search scheme. We focus on
two components, the pattern switching strategy and the starting point selection. We investigate the
optimal parameter selection issue. in these tools ‘and their impacts on the overall coding
performance. Experimental results show.that our refined pattern switching schemes can further
accelerate the search process and in the meanwhile keep the visual quality comparable to the best

of their constituent pattern searches.

In summary, we propose an analytical model for PBME and demonstrate a methodology for
developing new pattern-based search algorithms and the adaptive pattern search schemes by using
our proposed model. One step further, we refine the original model, improve its accuracy and then

design better fast search algorithms accordingly.
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Chapter 1 Introduction

The explicit use of motion compensation to improve video compression efficiency can be traced
back to the late 1960s, a patent filed by Haskell and Limb [1] and a conference paper by Rocca [2],
both in the year of 1969 [3]. The necessary operation in the video encoder to enable motion
compensation in the video decoder is motion estimation (ME). A technique of motion estimation,
block motion estimation (BME), has been widely adopted by the contemporary video coding
systems [4][5][6][7] because it is an effective means in reducing the inter-frame correlation for
image sequence coding. Block motion estimation schemes partition the current frame into
non-overlapping blocks and find the block with the minimal block-matching cost in the reference
frame. The most straightforward implementation of BME, the so-called full search (FS), evaluates
the matching costs of every motion vector candidate in the search area and finds the motion vector
(MV) of the best-matched bloek. Yet, it requires a huge amount of computing power particularly
for sophisticated coding algorithms that include multiple reference frames and variable size block
motion estimations. Since 1980s, the pattern-based block metion estimation (PBME) algorithms
[17][18][44] have been developed to" alleviate-the computational burden and to minimize the
impact on the coding quality. Static PBME [26][27][28][29][31][32], which use fixed search
patterns, got popular in late 1990s and early 2000s. However, because the characteristics of an
image sequence vary with time, no one single search pattern can handle the entire sequence well.
In 2000s, the adaptive pattern search algorithms [39][40][43], which dynamically switch search

patterns, were devised. In this dissertation, we focus only on PBME and its variations.

Section 1.1 Motivation

Despite that many fast algorithms have been proposed to reduce the computational complexity of

PBME, most of them are devised based on experimental data or heuristic ideas. Few researchers,



to our knowledge, have tried to construct an accurate mathematical model for the PBME process.
Therefore, one purpose of this dissertation is to construct an analytical model for PBME, and the
other purpose is to design new fast algorithms by using the proposed model.

To be specific, we like to propose a model that reveals the relationship among the video
sequences, the search methods, and the computational complexity. Essentially, we want to propose
answers to the following questions: Why does one pattern search outperform the other? What is
the underlying mechanism of its search efficiency? Is there a pattern search that handles nearly all
sequences well? If not, how can we adaptively choose the proper pattern searches? What is the
impact of starting points on the coding performance? Is it possible to portray all these problems by

using one single model?

Section 1.2 Research Contributions

Table 1-1 The contributions of this dissertation and the related publications

Theory Application Publication
Journal Conference
MV PDF’ T.CSVT09[54]"
WE Genetic pattern searches” T.CSVTO9[54]* ISCASO7[51]
Complete Model Performance prediction* T.CSVTO9[54]*
1% Method” Selection of the initial search point set” T.CSVT10[55] "
2" Method” Adaptive pattern switching strategy” T.CSVT10[55]"  ICASSPO7[52]
Optimization of early termination T.CSVT10[55]"
mechanism®
RWF" Momentum-directed genetic pattern Submitted[56] ICIPO8[53]
searches’
Refined Complete  Improved prediction accuracy” Submitted[56]
Model”
1°** Method” Influences on the selection of starting Submitted[57]*
point set”
2" Method” Influences on the pattern switching Submitted[57] "
strategy”

Table 1-1 shows the contributions of this dissertation and the related publications. Items with the



same superscript marker are published in the same journal manuscript. Items in the same row are
included in the same conference paper. In the theory part, we build a statistical probability
distribution function of the motion vectors (MV PDF) [54], and the minimal number of search
points achieved by a pattern-based search algorithm, the so called weighting function (WF) [51].
Combining them together, we propose a statistical model for PBME (The Complete Model) [54].
There are two methods to train the parameters in the model. We further replace the WF by the
refined weighting function (RWF) [53], which better describes the behavior of the probabilistic
PBME. Thus, we have the refined model (Refined Complete Model) [56], which similarly has two
training methods to acquire its parameters. In the application part, we devise the genetic pattern
searches [51][54] based on our observation of WF. With the complete model, we are able to
predict the performance of a search algotithm on an image sequence [54]. Based on the 1* method,
we construct the high-performance initial search point set [55]. Based on the 2™ method, we
select properly a good threshold for pattern switching mechanism [52][55]. Another application is
the optimization of the early termination mechanism. Combining all these tools together, we
construct the adaptive pattern search.schemes [55]. In addition, hinted by the shape of RWF, we
further design the momentum-directed genetic pattern searches [53][56]. With the refined model,
the prediction accuracy is improved. Accordingly, we re-examine its influence on the selection of

starting point set and the pattern switching strategy [57].

Section 1.3 Dissertation Organization

The rest of this dissertation is organized as follows. First, we review the development of PBME
and describe several popular pattern-based search algorithms in Chapter 2. Then, we introduce the
model for PBME and present two of its applications — pattern search design and performance
prediction - in Chapter 3. Chapter 4 extends the applications of the model to the design of

adaptive pattern search schemes, which include three major coding tools — pattern switching



strategy, starting point selection, and early termination. In Chapter 5, we further refine our
proposed model and re-examine all the coding tools in a PBME. Finally, we conclude this
dissertation by summarizing our contributions and pointing out some possible future works in

Chapter 6.



Chapter 2 Pattern-based Block Motion Estimation

Modern video compression systems convert the huge digitized video data into a small-size
sophisticated bitstream by using the well-known structure — block-based hybrid coding (BHC)
[4][5]. A BHC scheme divides an image frame into blocks, reduces the inter-frame dependence
among image frames by ME, removes the intra-frame redundancy by intra prediction, discrete
cosine transform and entropy coding techniques, and packs the image essential information into a
comprehensive representation. In general, a BHC video system comprises two major modules:
intra frame coding and inter frame coding. Block Motion Estimation (BME), a ME technique, has
been widely adopted by modern video coding standards [4], such as the H.26X series [5] and
MPEG-1/2/4 [7].

Although many algorithms have been developed to accelerate BME, however BME remains
the most computation-intensive component in the video encoders. As the coding algorithm
progresses, the more sophisticated ME tools are invented, such as variable block size ME and
multiple reference frames. The most intuitive BME algorithm is FS, which examines all the
candidates (checking points) in the search area by calculating the block matching cost between the
current block and the reference block and find the motion vector (MV) with the smallest block
matching cost. Because FS consumes a tremendous amount of computing power, many
researchers have devised fast BME schemes to reduce computation without sacrificing the coding
efficiency. According to [8], fast BME algorithms can be classified mainly into two categories: 1)
reducing the number of checking (search) points and 2) lowering the computational complexity in
calculating the block-matching criterion for each checking (search) point. This dissertation
focuses on the algorithms in the first category.

PBME is the most popular scheme in the first fast BME category. It typically consists of

three sets of tools for reducing the search points: 1) an operative threshold for early decision



mechanisms [9][14][30][31], 2) the selection of good initial search points [14][15][16][30][31],
and 3) an effective set of search patterns [17][26][27] [28][29][31][32][33]. Combing all these
tools, the latest PBME algorithms achieve a dramatic speed-up in finding the near-optimal
candidate motion vectors while maintaining a desired level of quality. The first set and the second
set of speed-up tools make use of the data correlation inside one frame (intra-frame) or between
nearby frames (inter—frame). The third set of tools (search patterns) is effective when the
matching cost surface is nearly monotonic. Among these tools, the search pattern plays a key role
in deciding the performance of a search algorithm especially when the data correlation is low.
Four step search [26], diamond search [27][28], hexagonal search [29] and their improved
versions [30][31][32][33][34], have been the most popular and effective methods in fast PBME.
However, since the contents of an.image sequence vary quite drastically along with time, one
single search pattern often can not handle-well the diverse characteristics of the entire sequence.
Thus, the adaptive PBME [35][36][37][38][39][40][41][42][43]; which mainly comprise multiple
pattern searches and a pattern switching mechanism, have been proposed. Note that, the overall
performance of an adaptive pattern search algorithm is_still. bounded by its constituent pattern

searches.

Section 2.1 Initial Search Point

The initial search point of the PBME has crucial effect on the search point performance as
reported in [14][15][16]. Conventionally, the most common used initial search point is zero
motion vector (ZMV, (2.1)) and predicted motion vector (PMV, (2.2)). Herein, we adopt the
prediction formula specified by the MPEG-4 standard for PMV. Unless explicitly stated otherwise,
we use PMV as the predetermined initial search point for the conventional pattern searches for
two reasons. First, the motion vector differences between the best MV and PMYV is coded in the

bitstream on our simulation platform —a MPEG-4 SP@L3 encoder. That is, when the best MV is



PMYV, it takes 0 bits to code the best MV. Clearly, the simulation platform favors PMV because it
consumes the least bits. Second, PMV is likely to be the MV with the smallest block-matching
error in statistics. Thus, if we choose PMV as the initial search point, the resulting number of
search point acquired by a typical PBME is small. Further discussions on the best initial search
points are in Section 4.3.

ZMV =(0,0). (2.1)

PMV = Median(MV" ,MV" , MV"®), (2.2)

where the location of MVY/MV*MV"® and PMV are illustrated by Fig. 2-1. MV" is the
adjacent upper block of the current block, MV"is the adjacent left block of the current
block, and MV"® is the neighboring up-right block of the current block.

MWV | MVUR

MV: | PMV

Fig. 2-1 Predicted motion vector.

Section 2.2 Some Popular Pattern-based Search Algorithms

Four representative pattern-based search methods, Four Step Search (FSS) [26], Diamond Search
(DS) [27][28], Enhanced Hexagonal Search (EHS) [32], and Easy Rhombus Pattern Search
(ERPS), are used to illustrate the construction of the PBME model. These pattern-based search
algorithms are chosen because of their well-recognized performance. Among the existing PBME
algorithms, EHS performs rather well particularly on high motion sequences, and ERPS is more

suitable for low motion sequences.
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FSS and DS both consist of two specific search patterns, as shown in Fig. 2-2 and Fig. 2-3,
respectively. The large search pattern, Fig. 2-2(a) or Fig. 2-3(a), is used for the coarse regular
searches, while the small search pattern, Fig. 2-2(b) or Fig. 2-3(b), is used for fine ending search.

Their procedures can be summarized as follows.

Step 1) Check the predetermined starting point, PMV, in the predefined search
window, as well as the points in the large pattern, which centers at the predetermined
starting point, PMV. If the minimal block distortion (MBD) point is found to be at
the center of the large search pattern, proceed to Step 3; otherwise, proceed to Step 2.

Step 2) Set the MBD point in the previous search step as the center, and a new
large pattern is formed. New search points generated by the new large pattern are
checked if they were not examined in the previous large pattern. Thus, the new MBD
point is again identified. If the MBD point is the center point of the latest large
search pattern, go to Step 3; otherwise, repeat this step continuously.

Step 3) Switch the search pattern from the large pattern to the small one. The

points covered by the small pattern are evaluated to compare with the current MBD

point. The new MBD point is the final motion vector.

Instead of using one single small ending search pattern, EHS uses two small ending search
patterns as well as one large coarse regular search pattern as shown in Fig. 2-4. Its algorithm is the
same as the one described above except for step 3. EHS switches the large hexagonal search
pattern to one of the partial square patterns. The pattern in Fig. 2-4(b) is used when the smallest
block distortion sum of two neighboring points in the previous-searched hexagonal pattern is in
the vertical direction and the pattern in Fig. 2-4(c) is used otherwise. The two or three points
covered by the newly formed partial square pattern are evaluated to compare with the current
MBD point, and the new MBD point is the final motion vector.

Unlike other algorithms mentioned above, ERPS uses only one rhombus search pattern in
Fig. 2-5, for both coarse search and fine ending search. This particular rhombus pattern is also

known as “small diamond” in [27][28] and “cross pattern” in [19]. ERPS is a simplified version of



adaptive rood pattern search (ARPS[31]). It is ARPS without initial rood patterns as well as
various motion vector predictors; PMV is the sole starting search point. The algorithm of ERPS is

as follows.

Step 1) Check the predetermined starting point, PMV, in the predefined search
window, as well as the points in the rhombus pattern, which centers at the
predetermined starting point. If the MBD point is found to be at the center of the
rhombus pattern, the MBD point is the final motion vector; otherwise, proceed to
Step 2.

Step 2) Set the MBD point in the previous search step as the center, and a new
rhombus pattern is formed. Three or two new candidate points are checked, and the
MBD point is again identified. If the new MBD point is the center point of the latest
rhombus pattern, the new MBD point is the final motion vector; otherwise, repeat

this step continuously.
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Chapter 3 Modeling of Pattern-based Block Motion
Estimation

Many researches have proposed fast PBME to reduce the computational requirement of the highly
computation-intensive BME. However, few researchers, to our knowledge, have tried to construct
an accurate model for the PBME process. To be specific, it is a model that unveils the relationship
among the video sequences, the search methods, and the computational complexity. Our aim is to
construct an explicit mathematical model for PBME.

Recent research works on PBME often collect the statistics of motion vectors and design
good search patterns based on experiences. Few papers are able to provide a systematic way in
modeling and designing the search pattern.-Among the existing search patterns, the rhombus
patterns are known quite effective for-low motion sequences [19][20][31], and the hexagonal
patterns are very powerful for high motion sequences [29][32][33]. Combining these two sets of
search patterns, [21] uses rhombus pattern for initial searches and switches to hexagonal pattern
for the succeeding regular searches. One step further, [39] and [40] select the search patterns
adaptively according to a set of criteria. Typically these papers use only the experimental data to
show the effectiveness of the corresponding search patterns. In this chapter, we like to further
explore the following problems. Why does one search pattern outperform the other? What is the
underlying mechanism behind it? Is there a search pattern that handles nearly all sequences well?
Moreover, can we construct a mathematical model that describes the underlying mechanism? An
attempt is made in this chapter to answer these questions.

In this study, we are going to construct a simple and yet effective statistical model for PBME.
Using this statistical model, we can predict the performance of one search algorithm when it is
applied to a test sequence. Also, based on this model, a novel genetic PBME algorithm is devised.

The rest of this chapter is organized as follows. Section 3.1 presents the probability

-11-



distribution functions of the motion vectors acquired by FS. In Section 3.2, we analyze the search
points of several representative PBME algorithms and formulate the weighting functions (WF,
first mentioned in Section 1.2). Based on the proposed probability distribution function for motion
vectors and the WFs of different PBME algorithms, Section 3.3 builds a statistical model for
PBME. To demonstrate the use of this model, a new genetic rhombus pattern search is presented
in Section 3.4, which shows good performance for both low motion and relative high motion
sequences. Section 3.5 describes the second example of using our model: predicting the
performance of applying a specific search algorithm to a specific video sequence. Lastly, we

summarize this chapter by Section 3.6.

Section 3.1 Probability Distribution of Motion Vectors

In order to design a good search pattern-set, many papers discussed the nature of motion vectors.
[19], [20] and [21] empirically-gather the statistics of the motion vectors around the initial search
point and develop their search algorithms. [43] assumes that the motion vector distribution can be
approximated by either Gaussian‘or Laplace probability distributions. So far, we have not found
an attempt of inventing a probability" disttibution function (PDF) that provides a quite precise
match to the motion vectors.

We select a few representative training sequences at various bit rates under the settings given
in Table 3-1 for generating motion vectors. The selected sequences are encoded by a MPEG-4
SP@L3 encoder using FS. All the sequences are in CIF (352X288) format. Only the first frame is
coded as I frame, and all the remaining frames are coded as P frames. The motion vector search
range is set to 16, the initial quantizer step size is set to 15, and the block size is set to 16x16.
When the quantization step varies to achieve the desired bit rate, the PSNR quality of the coded

video sequence ranges from 26dB (poor but acceptable) to 40dB (visually the same as original).
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Table 3-1 The selected training sequences and their settings.

CT256 container 256 7.5 300 39
CT40 container 40 7.5 300 32
HL40 hall 40 7.5 300 33
MD96 mother and daughter 96 10 300 40
CGl112 coastguard 112 30 300 29
FM512 foreman 512 30 300 34
FM1024 foreman 1024 30 300 36
FB1024 football 1024 30 90 35
FG768 flower garden 768 30 250 26

ST1024 Steven 1024 30 300 29

3.1.1 Motion Vector Distributions

Probability Distribution w.r.t PV Prabability Distribution w.r.t ZhW

01

50 0Ra 50 o <}12
= =

al 1

2 2+

3 3

4 . a

Fig. 3-1 Contour plots of the motion vector probability distribution of video sequence CG112
(partial).

In our experiments, we test two kinds of initial motion vectors (origins of PBME search), namely,
ZMV and PMV. Fig. 3-1 shows the probability distributions of the motion vectors obtained by
applying FS with a search region [-16~+15, -16~+15] to a video sequence, coast guard at 112K
(CG112). Only the probability distribution in region [-4~+4, -4~+4] is shown. The left plot is the
motion vector probability distribution with respect to (w.r.t.) PMV, and the right one is the motion
vector probability distribution w.r.t. ZMV. Herein, ZMV is defined by (2.1), PMV is defined by

(2.2), and the label on the contour shows the probability of motion vectors.
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From the motion vector distributions obtained by applying FS to a video sequence, Fig. 3-1
for example, the motion vector distributions with respect to (w.r.t.) PMV generally have a more
symmetric shape as compared to the motion vector distributions w.r.t. ZMV. In addition, the
PMV-based motion vectors have a smaller standard deviation. They cluster better. Therefore, the
motion vector distribution w.r.t. PMV is thus used in the rest of this chapter.

The statistics of the motion vectors w.r.t. PMV of all the selected training sequences show
that the horizontal mean values (u,) and vertical mean values (u,) both are close to zero. Thus,
these motion vector distributions are zero-biased w.r.t. PMV. For a particular sequence, the
variance of the horizontal motion vectors (¢%) is often larger than that of the vertical motion
vectors (crzy). Furthermore, the correlations (py,) between the horizontal components and the

vertical components of motion vectors are nearly zero for all our training sequences in Table 3-1.

3.1.2 Normalized Independent 2D Distribution

Based on the above observations,, three popular: zero-mean normalized independent 2D
distributions are considered as candidates.for modeling MV distribution: 1) Gaussian distribution
function, 2) Laplace distribution function and 3) Cauchy distribution function.

A Gaussian probability distribution with mean p and variance o” is shown by (3.1); a Laplace
probability distribution with mean p and variance 2b> is shown by (3.2); and a Cauchy
probability distribution with median m and the full width at half maximum I" can be expressed

by (3.3), where x& (—oo,+c0).

1 Gy

GlD(x) = e (31)
270°
5 (3.2)
L — ¢ b .
1p(X) 2be
1 r/2
Cip(x)=— (3.3)

7 (x—m) +(/2)
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Because the correlations between the horizontal components of motion vectors, x, and the
vertical components of motion vectors, y, are almost zero, it is reasonable to assume that these
two random variables in the motion vectors, x and y, are independent. The independent 2D

Gaussian probability distribution can be defined as (3.4), where x € (—oo,+o0) and ye€ (—oo,+c0).

(=)’ o)
1 20-)(2 20,7

Gindependent_ZD (x9 y) = —Ze —26 ’ (34)
270, 270,

Furthermore, since the mean values of motion vectors are nearly (0,0), one may set

{(uﬂuy) =(0,0)
. Thus, (3.4) becomes (3.5).

(0.,0,)=(4.4,)
x2 y

L o1 % (3.5)

G,p(x,y) = ,—Zﬂﬂx e ,—Zﬂﬂy

Although these probability distributions are defined in the domains of x& (—co,4+o0) and

Y€ (—oo,400), the actual distributions of motion vectors are confined in a search area, A.

Consequently, we need to normalize the probability distributions as shown by (3.6). Then, the sum

of probabilities in the search area would equal 1.

__ Gplny)
G(x,y)= ZGw(x'ay') (3.6)

(x4

Consequently, the zero-mean normalized independent 2D Gaussian Distribution G(x,y) is
defined by (3.7). Similarly, the zero-mean normalized independent 2D Laplace Distribution L(x,y)
is defined by (3.8), and the zero-mean normalized independent 2D Cauchy Distribution C(x,y) is

defined by (3.9). Note that, (x, y)e 4, and 4 is the geographical area of [-32~+31, -32~+31] in our

experiments.
x? yz
eiﬁ-e_gy
G (x,y)=
(x,») s (3.7)
2, 24,
St
(x\y)e4
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Lay)=—77 (3.8)
b b,
Ze e’
(x,y)eA
1 1
X4, v+,
C (x,y)= 5 1 (3.9)

2 2 2 2
Wea XA YA,

Remark: Strictly speaking, the zero correlation between the horizontal components and vertical
components of motion vectors does not imply that they are statistically independent. However, we
will justify the correctness of these probabilistic models using the goodness-of-fit test [10][11] as
follows.

To find out which of the three PDFs best approximates the PDF of motion vectors acquired
by FS, a well-known goodness-of-fit test,; 2D KS test [12][13];"is adopted. The statistic D defined
in [13] is used as the measure of similarity between the hypothesized PDF and the observed PDF
(data). To be more specific, the statistic .D.is-the.maximum-absolute difference between two
cumulative probability distributions. The smaller statistic D 1s, the better the hypothesized PDF
matches the observed PDF.

In the 2D KS test, the motion vector probability distributions acquired by FS, PDFps, are
tested against the hypothesized zero-mean normalized independent 2D Gaussian (3.7), Laplace
(3.8) and Cauchy distributions (3.9) with the same variances. Therefore, we need to adjust the
parameter values of these three distributions so that the variances of the hypothesized distributions
equal those of PDFrs. Those fitted hypothesized zero-mean normalized independent 2D Gaussian,
Laplace and Cauchy distributions are called Grs(X,y), Lrs(X,y) and Cgs(X,y), respectively.

Table 3-2 shows the 2D KS test results between PDFrs(x,y) and the three hypothesized
distributions. Clearly the normalized independent 2D Cauchy distribution Crs(X,y) generally has

the smallest statistic D values. However, according to [13], the values of statistic D in our
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experiments are so large that it is improper to claim that any of these three 2D distributions has a

good match to the target PDFrs(x,).

Table 3-2 Statistic D of 2D KS test.

Sequences Grs(X,y) Lrs(X,y)  Crs(X,y)
CT256 0.48 0.38 0.08
CT40 0.42 0.35 0.14
HL40 0.36 0.30 0.08
MD96 0.38 0.32 0.12
CGl112 0.41 0.32 0.12
FM512 0.39 0.30 0.07
FM1024 0.40 0.30 0.06
FB1024 0.28 0.23 0.19
FG768 0.40 0.32 0.12
ST1024 0.39 0.33 0.17
Average  0.39 0.32 0.11

3.1.3 A Fitted Probability Distribution

To further reduce the difference between Cps(x,y) and PDFrs(X,y), we extend C(x,y) and propose
a new form of PDF denoted by T(x,y), which is defined by+(3.10). For each of the selected
training sequences, 7, and 7, are .optimized such that the maximum discrepancy between
PDFrs(x,y) and T(x,y) is minimized, and &y and ¢ are adjusted such that the variances of T(x,y)
are the same as those of the training sequences. T(x,y) with those fitted parameters matching the
PFDgs(x,y) becomes Trs(x,y). The fitted parameters and their corresponding 2D KS test results
are shown in Table 3-3. One may note that 7, and 7, vary from 1.13 to 2.2. This indicates the

variations among the test sequences are considerably large.

1 1

A +& P +¢
T (x,y)= i 1 ly (3.10)

7, n é:y

Despite the large individual differences among the training sequences, Table 3-3 shows that

y

(x'\y)eA ‘xrx + fx
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(TX’Ty) - (393)
(o6)=(£08)

7. and 7, generally are around 1.67. We thus choose to simplify T(x,y). The

resultant distribution is called S(x,y) as defined by (3.11).

1 1
5/3 5/3
S,y =2 “}‘ ) +§f (3.11)
Wyl x|5/3 + é,x y|5/3 n é,y

Table 3-3 Parameters of Trs(x,y) for the training sequences and their corresponding KS test

results.

T(X,Y) CT256 CT40 HL40 MD96 CGIl12 FM512 FM1024 FB1024 FG768 ST1024
xi_x(Ex) 0.01 0.04 0.13 0.11 0.01 0.25 0.21 0.12 0.09 0.10
xi_y (&) 0.03 0.13 0.11 0.100 = 0.55 0.24 0.20 0.43 040 0.19
tau_x (Tx) 1.84 1.70 1.73¢. 158 1.46 1:94 1.99 1.13 1.75 1.79
tau_y (Ty) 1.50 1.54 172 1.83___2.21 1.82 1.88 1.18 1.98 1.31
max_pdf diff 0.01 0.01 .0.02 0.01—- 0.03 0.03 0.03 0.02 0.08  0.01
Statistic D 0.01 0.05,..006 005 0.07 0:05 0.05 0.14 0.12  0.03

The 2D KS test shows that Sgs(X,y) on the average has a smaller statistic D in comparison
with Grs(X,y), Lrs(X,y), and Crs(xsy)- Note that the parameters (C, {y) of Srs(x,y) are obtained by
numerical methods so that the variances of Spg(X,y) match the data statistics. In summary, after
several attempts, we found that Spg(Xx,y) is a rather good model to describe the probability
distribution of the motion vectors derived by using FS. It constitutes the first element of our

complete model.

Section 3.2 Search Points in Pattern-based Search

Algorithms

Search patterns are generally devised based on the assumption that the matching cost surface is a

unimodal one; in other words, the distortion associated with a search point closer to the global
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minimum has a smaller value. Under this assumption, the number of search points is defined as
the minimal number of search points in all possible paths leading to the best-matched point from
the starting (initial) point. The search point number in this definition depends on the search pattern.
And, for a given search pattern, it is determined by the shortest path between the initial point and
the best-matched point. Therefore, it is a discrete function of the location and will be called
weighting function. By examining the search process of a PBME, we can construct its
corresponding WF.

Note that the global uni-modal cost surface assumption is so strong that it is not always true
for most video sequences [32]. Typically it is valid within a small neighborhood of the global
minimal point. Consequently, the WF does not represent the actual number of search points.
Indeed, it represents the lower bound of the number-of search points. But the statistics also show

that the number of actual search points 1s-highly correlated with our defined WF.

3.2.1 Weighting Function of Pattern-based Search Algorithms

By examining the search algorithms in Section 2.2, we can construct their WFs. Fig. 3-2 shows
two examples of the FSS search process. Fig. 3-2(a) is the case of the minimum search point.
There are only two steps. The initial coarse search examines 9 points and the fine ending search
examines 8 points. The initial point happens to be the best-matched point. Fig. 3-2(b) shows a
typical search process. In addition to the 9 initial search points and the 8 ending search points,
FSS checks 3 new points if it moves horizontally or vertically, and it checks 5 new points if it
moves diagonally. In the WF of FSS (3.12), ‘9’ represents the coarse initial search points, and ‘8’
represents the fine ending search points. The parameter Mpss(X,y) is ‘5’ if it moves diagonally and

‘3’ otherwise. And npss(X,y) denotes the number of movements.
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Fig. 3-2 Examples of FSS process.

WFpss(X,¥) =9+ M 5(x, y) X s (x, ) + 8 (3.12)
WFps(x,y) =9+ M s (x, y)Xnps(x, y) + 4 (3.13)
WF s (%, ) =T+ 3X 1 (X, ¥) + K g (X, 9) (3.14)
WEpdX, ¥) =14+ MyppoXtiggpd(x, y) +4 (3.15)

Likewise, by examining the search steps of the other three PBME algorithms, the WFs of DS,
EHS, and ERPS can also be formulated by (3.13), (3.14), and (3.15), respectively. In Eqgs (3.13) to
(3.15), Mps(x,y) is either 5 or 3, Kggs(x;y) is either 3 or 2, Mggps is either 3 or 2, all depending on
the search direction. And the value of nps(x,y). nems(X,y), and ngrps(Xx,y) are decided by the
number of movements.

From (3.12) to (3.15), it is clear that in the minimum case ERPS checks only 5 points, while
FSS checks 17 points, DS checks 13 points and EHS checks 9 points. Thus, ERPS has the
smallest number of search points among the four algorithms for the minimum cases. The
minimum cases refer to the situations that the best-matched motion vector is located at the starting
point.

Fig. 3-3 shows the contour plots of the WFs of FSS, DS, EHS, and ERPS, respectively. The
value on a contour represents the least number of search points for a search algorithm to move

from the origin to a point (location) on the contour. Because EHS moves faster than any other
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algorithms, EHS surpasses the other algorithms at distant locations. Therefore, by looking into the
WF of a search algorithm, we understand why it works better for a particular situation (fast
motion or slow motion). Use ERPS as an example: because WFgrps(x,y) has the smallest values
around the starting point, it has advantages for slow motion situations. On the other extreme,
WFgns(x,y) has the smallest values at distant locations. WF forms the second element of our

complete model.
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Fig. 3-3 Contour plots of the WFs of FSS, DS, EHS, and ERPS, respectively.

Section 3.3 Statistical Model for Pattern-based Block Motion

Estimation

Based on the problem formulation in Section 3.1 and Section 3.2, the total average search points

(ASP) for a sequence can be represented by (3.16). It depends on both search algorithm (SA) and
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the video sequence. It is the sum of the products of the number of search points and the motion
vector probability distributions at all locations within the search area, where SPFs,(x,y) denotes
the number of search points, PDFs4(x,y) denotes the motion vector distribution acquired by a

specific algorithm, and 4 is the search area.

ASP = ZPDFSA(x, )X SPF,,(x,) (3.16)

(x,y)e 4

When we apply a specific algorithm to a specific sequence, we obtain the ASP directly from
the experiments without the need of calculating (3.16), which requires the knowledge of
PDFsy(x,y) and SPFs4(x,y). Our goal is to construct a generic model in which the dependency on
SA and video sequence is separable. In other words, the PDF is sequence dependent but not SA
dependent. And the search point function is SA.dependent but not sequence dependent. That is, we
would like to replace PDFsy(x,y).by PDFrs(x,y), and"SPFEs4(x,y) by WFs4(x,y) in (3.16). Thus,
(3.16) becomes (3.17). Herein, PDFrs(x,y) denotes the PDF of the motion vector acquired by FS,
and WFsy(x,y) denotes the weighting function of a specific algorithm discussed previously. With
(3.17), we can thus predict ASP before actually applying a search algorithm to a video sequence,

as long as we know the motion vector PDF acquired by FS‘and the WF of a specific SA.

ASP= " PDF(x,y)XWFg,(x,y) (3.17)

(x,y)e4

However, (3.17) differs from (3.16) due to a few reasons. First, because the block-matching
cost surface typically is not globally monotonic in the search area, the actual search process from
time to time does not take the shortest path to the location of the best-matched motion vector.
Thus, the average number of actual search points, SPFsy(x,y), is higher than WFgy(x,y), the
shortest-path (minimal) search points. Second, the motion vectors found by a specific algorithm
sometimes differ from the ones found by FS. Consequently, the motion vector PDF of this specific

algorithm, PDFs4(x,y), is not the identical to that of the full search, PDFrs(x,y).
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Fig. 3-4 PDF shift between PDF acquired by FS and that acquired by EHS (CG112).

Fig. 3-4 shows the cross sections of PDFs acquired by FS and those acquired by EHS for the
video sequence, CG112. It is clear that these two PDFs are not identical. PDF shift refers to the
phenomenon that PDFrs(x,y) differs from PDFs,(x,y).-The main causes are: 1) the search pattern
is relatively small, thus the search is trapped by alocal optimal; 2) the early decision mechanism
terminates the search when a near-optimal solution is found; and 3) the starting point of SA
disagrees to that of FS, PMV, in-our formulation.

Fig. 3-5 shows the theoretical WF and the empirical SPF obtained by applying EHS to the
video sequence, FB1024, in the region [-10~+10, -10~+10]. Herein, on the left plot (the
theoretical WF), the value on a contour represents the shortest-path search points for EHS to move
from the origin to a point (location) on the contour and, on the right plot (the empirical SPF), it
represents the average number of actual search points. For the empirical SPF, the contour is not
continuous, because some motion vectors never happen when we apply a SA to a specific
sequence. Thus there indeed exists some differences between the theoretical WF and the empirical
SPF and therefore we called it WF drift. It happens because the search algorithm does not always

follow the shortest path in the search process as discussed earlier.
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Fig. 3-5 The contour plots of the theoretical WF and the empirical SPF by applying EHS to
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Fig. 3-6 PDF differences between PDFpg(X,y) and Sgs(x,y) of CG112.

Moreover, Section 3.1 suggests that the distribution S(x,)) best approximates PDFrs(x,y). We
can thus substitute S(x,y) for PDFrs(x,y) in (3.17) as long as its variances are known. Thus, S(x,y)
becomes Sgs(x,y), the S(x,y) that matches the motion vectors acquired by FS. However, the
substitution of Sgg(x,y) also induces new PDF matching error. Fig. 3-6 shows the PDF differences

between Sgs(x,y) and PDFrs(x,y) of the video sequence, CG112.

ASP=C % "S5 (x, y) X WFy,(x,) +C, (3.18)

x,y€A
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Therefore, Eq.(3.17) needs adjustment to compensate for various shifts, drifts and model
errors. Eq.(3.18) is a modified formula for modeling ASP. Two additional terms, C; and C,, are
included in Eq.(3.18). We propose that ASP is a linear function of the sum of the products of
Srs(x,y) and WFs4(x,y). By tuning the values of C; and C>, we can reduce the WF drift error, the
PDF shift error and the PDF mismatch error. Consequently, with the pre-analysis of WFsy(x,y) for
a specific SA and pre-calculation of Sks(x,y) for a specific sequence, one may use Eq.(3.18) to
estimate the ASP values of another SA when it is applied to this specific sequence.

We need to justify the above model is valid for real data. There are two methods to decide C;
and C>. In the first method, we apply a fixed SA to a set of training sequences to compute C; and
C> by the regression method. Our aim is that the model with trained C; and C; can predict the ASP
of a new sequence accurately. In the second method, we apply a few search algorithms (the
training algorithms) to a specific sequence, and then calculate C; and C, based on the acquired
data. In this case the goal is that the model with trained C; and C; can predict the ASP values of a

new algorithm.
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Fig. 3-7 The actual ASP and the predicted ASP pairs for 4 popular search algorithms (1% method)
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In the first method, C; and C, are acquired from a set of training sequences with one specific
search algorithm. Fig. 3-7 shows the pairs of the actual ASP and predicted ASP of various
sequences for the four popular search algorithms. Each training sequence is represented by a
plus-sign mark, the solid line represents the case that the predicted ASP is exactly the same as the
actual ASP. The X-axis represents the predicted ASP and the Y-axis represents the actual ASP.
Table 3-4 displays the C; and C, values for each search algorithm. The last column is the
correlation coefficient between the actual ASP and the predicted ASP. One may notice that the
correlation coefficients for all algorithms are very close to 1, which means that the predicted ASPs

are nearly the same as the actual ASPs.

Table 3-4 Regression parameters (C; and C,) and the correlation coefficients between the

model-predicted ASP and the real data. (1* method).

FSS 0.42 10.38 0.98
DS 0.46 7.59 0.98
EHS 0.42 5.63 0.99
ERPS 0.44 297 0.98

In the second method, C; and {C; can-be.acquired by applying a set of search algorithms
(training algorithms) to a specific sequence. We then predict the ASP value of a new algorithm by
using the proposed model. Fig. 3-8 shows the actual ASP versus the predicted ASP pairs for 10
sequences. Each training algorithm is represented by a cross-sign mark, the dash line shows the
case that the predicted ASP is exactly the same as the actual ASP, and the X-axis represents the
predicted ASP and the Y-axis represents the actual ASP. Table 3-5 displays the C; and C; values
for the 10 sequences and the correlation coefficients between the predicted ASP and the actual
ASP. The correlation coefficients are very close to 1 for all sequences except for FB1024, which
has a value of 0.73. This may be due to the high motion nature of FB1024. In spite of the small
number of training algorithms, the coherence between the predicted ASP and the actual ASP is

very high for all 10 sequences.
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Table 3-5 Regression parameters (C; and C>) and the correlation coefficients between

model-predicted ASP and the actual data (2“d method).

CT256 1.07 -1.42 1.00
CT40 1.17 -4.70 0.98
HL40 1.19 -4.35 0.99
MD96 1.17 -4.52 0.97
CGl112 1.05 -1.05 1.00
FM512 1.15 -3.60 0.99
FM1024 1.10 -2.36 1.00
FB1024 0.62 1.66 0.73
FG768 1.15 -3.76 0.98
ST1024 1.08 -5.82 0.91

The first method and the second method are designed for different scenarios. The first
method is used to predict the ASPef'a new sequence (for a given specific search algorithm), while
the second method is used to.predict the ASP of a-new search algorithm (for a given specific
sequence). Due to different sizes of training samples and purposes, the accuracy comparison
between these two methods may not be meaningful.

In the following two sections, we will.show.how this model, (3.18), can be used to inspire
the design of a new search algorithm as well as it can be used to predict the search performance of

a new video sequence or a new search algorithm.

Section 3.4 Application I: Pattern-based Search Algorithm

Design

How can we devise a new pattern-based search algorithm with the help of the previous analysis?
We do this in three steps. We first construct a target WF based on the analysis in the past two
sections. Then, we devise a search pattern that hopefully achieves the desired WF. At last, we

evaluate its performance by simulation on real pictures.
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The first step of designing a new search algorithm is to find a WF that has the smallest
possible values at all locations, because, in our proposed model, ASP depends on WF and the
smaller the WF is, the faster the corresponding search algorithm is.

Most effective PBME algorithms typically consist of two stages: 1) coarse regular search
stage and 2) fine ending search stage. The purpose of the regular search stage is to fast locate the
potential optimal motion vectors, and the ending stage is to determine the best-matched point in a
small neighborhood. Each stage may use one or several search patterns. In the regular search stage,
because the shortest path between two points in a plane is the strait line, the fastest search path for
a search algorithm is the strait line from the starting point directly to the best-matched motion
vector. Based on the previous experiments, we suspect that a doable search method moves at most
one unit distance horizontally or vertically per step. As shown in Fig. 3-9(a), the minimal number
of search points for reaching the motion-vector (X,y) 1s ‘abs(x)+abs(y)+1’. In the ending stage, to
decide precisely the location of the best candidate motion vector generally requires to search at
least the neighboring 4 points and the current point (center) itself, as shown in Fig. 3-9(b).
Consequently, the minimal number of search points/ for motion vector (x,y) is ‘Max(3,
4+abs(x)+abs(y))’. Thus, the ideal WF (X,y) 1s expressed as (3.19) and its contour plot is depicted

in Fig. 3-11.

WFps (x,y) = Max(5, 4 + abs(x) + abs(y)) (3.19)

)
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Fig. 3-9 Search patterns for GRPS.
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Fig. 3-10 Examples of GRPS search process.

The second step is to choose proper search patterns that fulfill the desired WF. By
simplifying the genetic search algorithms in [22], [23] and [24] as well as combining the rhombus
search pattern, we propose a genetic rhombus pattern search (GRPS) to match the WF in (3.19).

The algorithm is described below.

1. Initial:
Check the starting point, PMV, and set it as the parent point.

2. Mutation:
Select randomly a next generation point (the mutation point) from the untested
points of a rhombus pattern centered at the parent. That is, check one (black dot,
for example) of the four solid points (black and gray dots) in the coarse search
pattern in Fig. 3-9(a).

3. Competition:
Select the survivor between the parent and its mutation based on their matching
costs.
a. If the mutation is better than the parent, the mutation is the survivor (the next
parent). Go to step 2.
b. If the parent is better than its mutation, the parent is the survivor (the next
parent) and check if there is any remaining untested mutation point in the four
points of a thombus pattern. If there is one, go to step 2; otherwise, (that is, all
points in the ending search pattern, Fig. 3-9(b), are checked,) go to step 4.

4. End:
Set the current survivor as the final motion vector.

Note that, we do not adopt the complete genetic algorithm here. Only the concept of genetic
optimization is used in the proposed algorithm.

Fig. 3-10(a) shows the fastest search case of GRPS, and Fig. 3-10(b) shows a typical search
case of GRPS. From Fig. 3-10, we conclude that the WF of the proposed GRPS (3.19) can be

expressed by (3.20), where Mggps is 1, 2, 3 or 4, depending on whether the mutation is successful
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and the ngrps(x,y) value depends on the number of movements. Comparing Fig. 3-11, WFgrps(X,y)
contour plot, with the previously discussed known algorithms, we can find that GRPS has the
same or smaller number of search points as ERPS near the starting point, and it has a smaller
number of search points than EHS in locations away from the starting point. In other words, it
achieves the smallest number of search points at nearly all locations, compared to the four popular

search algorithms.

GRPSLY)

T

¥ -ais

xaxis

Fig. 3-11 WF of GRPS.

WF s (X, ¥) =1+ M pps X gpg (X,,0) (3.20)

In the last step of designing<a new search algorithm, we evaluate the performances of the
proposed GRPS by conducting experiments on the training sequences. The results are shown in
Table 3-6 (Average number of search points), Table 3-7(Peak signal noise ratio), and Table 3-8
(Performance comparison). It is compared with FS and the four representative search algorithms
described in Section 2.2. In Table 3-8, the computing gain (CG) is defined as the ratio of ASP
minus one, and the quality gain (QG) is defined as the PSNR difference. In summary, the ASP of
GRPS on average is 22% faster than that of ERPS, 56% faster than EHS, 130% faster than DS,
172% faster than FSS, and 145 times faster than FS. On the other hand, the PSNR of GRPS is on
average better than all other search algorithms, except for ERPS. Compared with ERPS, the
quality loss of GRPS is very small, around 0.01dB. Therefore, GRPS outperforms all the other

search algorithms in terms of ASP for all training sequences, and its coding quality is comparable
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with all the other algorithms.

Table 3-6 ASP (Average number of search points).

CT256 5.36 575 959 13.81  17.53  1024.00
CT40 5.98 7.04 1042 1503 1838  1024.00
HL40 6.35 7.33 1034 1538 1872 1024.00
MD9%6 5.98 6.83 1032 1485 1837  1024.00
CG112 6.08 7.63 1031 1509 1825  1024.00
FMS512 7.13 8.65 10.76  16.17  19.03  1024.00
FM1024 6.94 8.32 10.54 1576 18.71  1024.00
FB1024 11.89 1636 1429 2236 2270  1024.00
FG768 6.38 7.57 10.55 1530  18.73  1024.00
ST1024 7.65 9.95 1148 1696 1947  1024.00
Average  6.97 8.54 10.86 1607  18.99  1024.00

Table 3-7 PSNR iPeak Siinal Noise Ratio i

CT256 3949 3950 3948 3951 39.49  39.56
CT40 3221  32.08 3146 3192 31.69  32.04
HL40 3449 3460 3427 3425 34.17  33.55
MD96 40.08  40.09 39.87 39.99 3993  39.80
CG112 29.14  29.16  29.07 29.14 29.13  29.08
FM512 34.05 3410 3394 34.06 34.02 34.06
FM1024 36.52 36.61 3646 36.59 3648  36.56
FB1024 34.87 3488 3486 3493 3494 3528
FG768 26.17  26.19 26.15 26.18 26.16  26.33
ST1024 2939 2931 2947 2944 2935 2948
Average 33.64 33.65 33.50 33.60 33.54  33.57

CT256
CT40
HL40
MD96
CG112
FM512
FM1024

0.07
0.18
0.15
0.14
0.25
0.21
0.20

Table 3-8 Coding Performance Comparison.

-0.01

0.13
-0.11
-0.02
-0.02
-0.05
-0.08

0.79
0.74
0.63
0.73
0.70
0.51
0.52

0.02
0.74
0.22
0.20
0.07
0.12
0.07

1.58
1.51
1.42
1.48
1.48
1.27
1.27

-0.01
0.28
0.24
0.08
0.00

-0.01

-0.06

2.27
2.07
1.95
2.07
2.00
1.67
1.70

0.00
0.51
0.32
0.15
0.01
0.03
0.04

190.04
170.24
160.26
170.24
167.42
142.62
146.55

-0.07
0.16
0.94
0.27
0.06

-0.00

-0.04



FB1024 038 -0.01 020 0.01 0.88 -0.06 0.91 -0.06 85.12 -0.41
FG768 0.19 -0.02 0.65 0.02 140 -0.00 194 0.01 159.50 -0.15
ST1024 0.30  0.07 0.50 -0.08 1.22 -0.06 1.55 0.04 132.86 -0.09
Average 022 -0.01 0.56 0.14 130 0.04 1.72 0.11 145.83 0.07

In principle, a classical pattern search checks all possible candidates in its search pattern.
Comparatively, its corresponding genetic pattern search randomly picks up one candidate in the
search pattern. When the matching error surface is uni-modal and monotonic, half of the points in
the search pattern should have smaller matching discrepancies than that of the center of the search
pattern. Thus, in statistics, a genetic pattern search moves faster than its corresponding classical
pattern searches. Yet, the classical pattern search moves along the steepest descent path, but the
genetic pattern search may take a longer path. In;addition, when the best MV is the starting point,
the minimal numbers of search peints required by both algorithms are the same. In this case, a
genetic pattern search has the same computation performance as its corresponding classical
pattern search. Therefore, as @ whole, GRPS 1is faster than ERPS but its acceleration ratios are
much less than 100%, as shown in Table 3-6.

In Table 3-7, the “sub-optimal” fast searches sometimes outperform the “optimal” FS in their
PSNR qualities. The phenomena are particularly noticeable when the percentages of MV
differential coding bits in the total bits are very high. FS looks for the motion vectors that
minimize prediction errors without bit rate consideration; FS does not look for the motion vectors
that produce the optimal rate-distortion outputs, which includes both distortion and bit rates.
When the prediction error differences between the sub-optimal blocks and best matched blocks
are small and this situation occurs in a large proportion of the coded images, the motion vectors
have a significant influence on the coded picture quality. Although the prediction errors produced
by a fast algorithm may be higher but the bits needed to encode its motion vectors may be fewer.
It is thus possible that the final PSNR is higher for a sub-optimal search algorithm. To achieve the

best overall rate-distortion results, the motion vectors sometimes should be replaced by the
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“sub-optimal” motion vectors, which have larger estimation errors but fewer bits. In one way, we
can do a sophisticated R-D optimization scheme, which is out of our scope in this paper.
Alternatively, we can implicitly take the bitrate into consideration in the search process when we
search the possible candidates according to the MV differential coding bits. Our proposed GRPS

follows this concept.

Section 3.5 Application II: Performance Prediction

Our proposed model can also be used to predict the performance of applying a certain search
method to an image sequence.

First, we demonstrate the prediction of the ASP value for a new test sequence using the
parameters acquired by the first method. With the model parameters obtained from the training
sequences, Fig. 3-12 depicts the predicted performances on the new extra test sequences with FSS,
DS, EHS and ERPS, respectively. Herein, the new extra test sequences and their settings in this
experiment are listed in Table:3-9. In Fig. 3-12, X-axis represents the number of predicted ASP
and the Y-axis represents the number of actual ASP, the training sequences are in plus-sign marks,
the test (outside) sequences are in diamond-shape marks and the solid reference line represents
that the predicted performance is exactly the same as actual performance. It is clear that the

predicted performances are quite accurate.

Table 3-9 The extra test sequences and their coding settings.

SI196 silent 96 10 300
TT512 table tennis 512 30 300
MB1024 mobile calendar 1024 30 300
TM768 tempete 768 30 260
NE40 news 40 7.5 90

Moreover, GRPS can be used to verify the validness of the proposed model for a new search
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algorithm (which is outside the training algorithms). With the modeling parameters obtained from
the training sequences by the first method, the performance of GRPS between the predicted ASP
and actual ASP are compared in Fig. 3-13, wherein the plus-sign marks are the training sequences,
the diamond-shape marks are the test sequences, and the solid line is the reference case when the
predicted ASP matches exactly as actual ASP. In this figure, the X-axis represents the number of
predicted ASP and the Y-axis represents the number of actual ASP. Fig. 3-13 shows that 1) the
proposed model indeed offers a good performance prediction for a new search pattern. One may
observe that the diamond-shape mark (the ASPs of the test sequences) can be accurately predicted
by the proposed model, and 2) GRPS has a high performance for both low motion and relative
high motion sequences as predicted by our proposed model and the experiment results verify this

prediction.
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Fig. 3-12 Relation charts between the predicted ASP and the actual ASP (1* Method).
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Fig. 3-13 Performance prediction for GRPS (for various test sequences, 1* method).

Furthermore, we evaluate the predictive ASP value for the proposed GRPS by using the
second method. The performance of GRPS on a sequence can be predicted by the proposed model
with the modeling parameters estimated based on the four popular search algorithms as the
training data. In Fig. 3-14, the X-axis is the predicted ASPwvalue, and the Y-axis is actual ASP. The
cross-sign marks are the training search-algorithms; they are FSS, DS, EHS, and ERPS. The
diamond-shape marks represent the proposed GRPS; and the dash line indicates that the predicted
performance is exactly the same as the actual performance. One may see that the performance
prediction is generally very accurate for all 10 sequences:

Thus, the performance prediction can be used to select an effective search pattern set in a
practical video coding system with adaptive selection of search pattern sets as suggested by [39]
and [40]. The variances of motion vectors of a video clip can be known by either the predicting
method (from the previous video clip) or the pre-analysis method (a two-pass process). Then, the
PDF of motion vectors for the video clip is constructed. Combining with the WF of different
search pattern sets, we know which search pattern set is more effective for this video clip. The
video clip can be a video sequence, part of a video sequence (some video frames), part of a frame
(a few image blocks), and the predicting method can use information from the spatial or temporal

neighboring video clips.

-36 -



Actual ASP Actual ASP Actual ASP Actual ASP

Actual ASP

ct256

20
15 e
10 7
5 .
0 5 10 15 20
Predicted ASP
20
X
15 e
10 x, 7
5
0 5 10 15 20
Predé%twsp
20
X
15 o
10 7
5 . .
5 10 15 20
Prficigh P
20
~
15 e
10 e
¢
5
0 5 10 15 20
Predk%%ASP
20
X
15 e
10 e
5
0 5 10 15 20
Predicted ASP

Actual ASP

Actual ASP

Actual ASP

Actual ASP

Actual ASP

ct40

20
15 e
10 7
. .
5
0 5 10 15 20
Predicted ASP
20
15 e
10 R
O
5
0 5 10 15 20
ProgpgifsP
20
-
15 e
10 v
O
5 ‘ ‘ ‘
0 5 10 15 20
PredisigafASP
25
20 —
~
-
-
-
15 -
10
0 12 14 16 18 20 2
Predipgg\SP
20
15 e
-
.
10 .
O
5
0 5 10 15 20
Predicted ASP

Fig. 3-14 Performance prediction of GRPS as a new search algorithm (2™ method)

Section 3.6 Chapter Summary

A systematic approach is taken in this chapter for constructing a mathematical model for the

PBME algorithms. With the assistance of goodness-of-fit tests, we propose a statistical PDF for

the motion vectors. It matches well the real motion vector PDF produced by FS when their
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variances are adjusted identical. We then propose a weighting function model that describes the
minimal search points of a search algorithm. The WF of a certain PBME algorithm is estimated by
analyzing the search process of that PBME. The complete PBME model includes these two
elements: the statistical PDF derived from a video sequence and the WF derived from a search
algorithm.

With the proposed model, we can predict the performance of a new pattern search without
actually applying the search algorithm to a video sequence. Thus, it helps us in constructing new
search patterns (algorithms). Two application examples are given. Starting from an ideal WF
target, we proposed the GRPS algorithm, which outperforms all other popular search algorithms.
In addition, because this model can be used to predict the performance of a PBME algorithm, it
can assist in selecting search patterns adaptively as the video sequence changes its characteristics
along the time. Therefore, an adaptive (switchable) pattern search algorithm is made possible with

a small amount of computational overhead.
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Chapter 4 Design of Pattern-based Block Motion
Estimation Algorithms

To relieve the computational burden of BME, a myriad of fast BME algorithms have thus been
proposed. Recent proposals in BME constitute several heuristic components and each has a
number of possible parametric structures and values. The overall system is very complicated and
how to optimally choose these parameters/structures are not yet fully explored. After studying
many algorithms devised in the past, we develop a systematic approach to find the optimal or
nearly optimal solutions to these problems and, at the end, a new BME algorithm including all
techniques is proposed.

According to [8], fast BME algorithms are classified mainly into two categories: 1) reducing
the number of search (checking) points-and 2) lowering the computational complexity in
calculating the block-matching cost for each search point. In this study, we focus on the first
category. The most popular algorithm in the first category is the PBME algorithm, which is
typically a multi-step process:” Often, three sets of tools "are included: 1) search patterns
[26][27][28][29]1[30][31][32][33], 2) starting points [14][15][16][30][31], and 3) early termination
thresholds [9][14][30][31]. Adopting a divide-and-conquer approach in this study, we first
scrutinize the underneath mechanism in each tool by using the analytical model [54] in Chapter 3.
Then, we study and improve the techniques used for each processing step. At the end, we combine
these tools together and form a very effective PBME algorithm.

The rest of this chapter is organized as follows. Section 4.1 reviews our previously proposed
analytical model for PBME algorithms, which consists of 1) a minimal check point profile
associated with a search pattern and 2) a statistical MV probability distribution associated with an
image sequence. In Section 4.2, we propose two sets of the genetic-algorithm-based search

patterns for different types of moving image sequences. Then, we design a pattern switching
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strategy, which dynamically changes search patterns based on the real-time video statistics.
Section 4.3 examines the impact of starting (initial) point set and suggests a starting point set that
produces outstanding search results. Section 4.4 suggests a threshold predictor that can be used in
the early termination algorithm. Combining all these techniques together, Section 4.5 presents a
complete PBME algorithm and its performance. At last, a brief concluding summary is given in

Section 4.6.

Section 4.1 Review of the PBME Model

In Chapter 3 [54], the proposed mathematical model (expressed by (4.1), identical to (3.18)) can
predict the ASP produced by a PBME. This model consists of two components: a statistical
probability distribution function Sgs(x,)) of MVs (approximated by (4.2)), and the minimal
number of search points for a MV Jlocated at (x,y), WFs4(x,y), (called weighting function)
produced by a search algorithm. In (4.1), (x,y) are the relative coordinates of which the origin is
the PMV, defined by (2.2). The parameters (C;, C;) are obtained experimentally by training
methods. Note that C; is always positive because ASP and the sum of products of Srs(x,y) and

WFs4(x,y) are always positively correlated.

ASP=C; X Y 85 (x, )X WFy,(x,y)+ C, (4.1)
x,ye A
1 1 (4.2)
5/3 5/3
+ +
SFS (xa y) = |x| éllx y| é;y

5/3

(x',y"heA |x'|5/3 + é/x y'| + gy
Eq.(4.2) is derived from (3.11) based on the experimental data. In (4.2), (x,y) and (x’,)’) are
relative coordinates with respect to (w.r.t.) PMV, and A4 is the search area. The parameters ({, ()

are obtained by numerical methods such that the variances of Sgs(x,y) match those of the MVs

acquired by performing FS on a specific sequence.
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Fig. 4-1 Contour plots of the WFs of ERPS and PHS.

The weighting function, WFs(x,y), isithe minimal number of search points produced by a
specific PBME algorithm when the argument (x,y) is.the target MV. The weighting function can
be obtained by analyzing the.search procedure: Fig. 4-1 exemplifies WF of ERPS and PHS
(Point-oriented Hexagonal Search [33]).

Note that, the simulation_platform, the test sequences and their settings adopted in this

chapter are the same as described in Section 3.1 and Table 3-1.

Section 4.2 Adaptive Pattern Search Algorithms

4.2.1 Genetic Pattern Searches

A preferred pattern search should have the following desirable properties: 1) it consumes less
computing power, 2) it does not degrade the video quality, and 3) it costs fewer bits in coding the
MV vectors.

In [51] and [54], after analyzing the weighting function of several popular search algorithms

(Fig. 3-3 and Fig. 4-1), we find that ERPS has the smallest ASP values for the MVs near the
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origin (PMV) and PHS has the smallest ASP for the points away from the origin. These
observations are consistent with the well-known facts that PHS moves faster than many other
algorithms and thus it quickly reaches the distant locations, and ERPS examines fewer points
when the target MV is close to the origin. These observations suggest that a good PBME
algorithm should have small weighting function values for all locations in the search area,
particularly for the high probability target MVs.

A search algorithm degrades the video quality when it is trapped into a local optimum point.
To reduce such cases, a search algorithm shall check all the neighboring points of the target when
it decides to terminate the search process. The dilemma is that the increased checking points also
increase computation. To achieve a balance between speed and quality, a PBME algorithm shall
carefully select the number and the locations of check points at the termination step.

A search algorithm should make-good use. of the uneven MV distribution to reduce the
entropy coding bits. For example, if the (best) MVs cluster around a predictable location, it takes
fewer bits in encoding MVs and less computing power in finding MVs. Because the probability
density function of typical MVs peaks at around the PMV, a PBME algorithm with small
weighting function near the starting ‘point (PMV) would consume less computing power and
fewer coding bits on the average. For convenience, therefore, our PBME model is centered at
PMV.

Based on the above design considerations, we adopt the genetic algorithms [23][24] to
modify the traditional PBME algorithms. The simplest genetic algorithm contains only a
mutation-and-competition loop. When a survivor (parent) produces a mutant (a child), the
survivor competes with its own mutant to decide the next survivor (next-stage parent). The
process stops when the survivor beats all its mutants. In contrast, the traditional PBME algorithms
check all points in the search pattern and move the center (origin) to the winner until the central

point beats all the other points in the search pattern. Thus, on the average, the traditional methods
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check more points than the genetic-based methods.

A traditional PBME algorithm typically consists of two search patterns, the large search
pattern and the small search pattern. The large search pattern is used for the coarse (regular)
search and the small search pattern is used for the fine (terminating) search. In converting a
traditional search algorithm into a genetic one, we blend the genetic algorithm into the coarse
search stage. The central point (which is the winner of the previous search step) in the search
pattern is the parent in the genetic search and all the other points are the child candidate set.
Instead of calculating the block matching cost of all child candidates and deciding the best MV,
we randomly select a point (a mutant) from the child candidate set, calculate its block-matching
cost, compare its cost with the parent’s cost (competition), and decide the survivor (next parent).
This process continues until all the points‘in the current child set are examined. If the parent beats
all its children, it is then declared to be the- winner. In addition, a typical terminating search checks
all the points in the small search pattern to avoid trapping into the local minimum. But recent
studies [32][33] suggest that ‘it is often sufficient to check only the candidate points near the
smallest error points in the large pattern: This phenomenon can be explained using the monotonic
error surface assumption below.

Conceptually, the genetic PBME algorithm can reach the optimal point under the assumption
that the matching-error (cost) function is monotonic and uni-modal. That is, the block matching
error surface decreases monotonically as the checking point moves closer to the global minimum.
Therefore, we can reach the global minimum point by moving the search pattern center to the
current minimal point step-by-step. Under the monotonic and uni-modal matching-error surface
assumption, typically, half of the candidate child points (mutants) in a large pattern have higher
matching cost than the current point (parent). Therefore, on the average, the genetic algorithm
saves about 50% computation for moving one step when compared to its non-genetic sibling. As

for the chance of being trapped in the local minimum, a genetic algorithm has roughly a similar
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behavior as its non-genetic sibling. The reason is that both of them end the (coarse) search stage
when the matching error of the center point is smaller than that of any other point in the (large)
search pattern. But they may be trapped into different sub-optimum locations.

Because of the computational advantage of the genetic algorithm, we convert ERPS into
GRPS (genetic-based ERPS) and PHS into GPHS (genetic-based PHS), respectively. The flow
chart of GRPS is shown in Fig. 4-2, and its associated search pattern is shown in Fig. 4-3. In step
2 (S2), it randomly checks one point (black, for example) among all search points in Fig. 4-3(a).

The condition of step 3B (S3B) is whether all the (black) points in Fig. 4-3(b) have been checked.

S1: Intial
Check the starting point and set it as the
parent.

'

S52: Mutation
Randomly select one mutation from the un-
checked pomts in the thombus pattern
centered at the parent.

Y v

S3: Competition
Compare the parent and the mutation to select
one survivor according to a predefined block

»

matching cost criterion.
S3A:
Parent Survive?) > No{ Sct e survving
mutation as the next
parent.

S4: End
Set the current survivor as the best motion vector.

Fig. 4-2 The flowchart of GRPS
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@ ®)
Fig. 4-3 The search patterns for GRPS

The flowchart of GPHS is shown in Fig. 4-4 and its associated search patterns are shown in
Fig. 4-5. Steps 2 and 3 are similar to those of GRPS but with a different large search pattern. In
Step 4 (S4, Refinement), as suggested in [33], we first calculate the cost function, so-called
Normalized Group Distortion (NGD). defined by (4.3), of all the grey points in Fig. 4-5(b). Then,
we select the smallest NGD point from points a to f in Kig. 4-5(c) and the smaller NGD point
from points g and h in Fig. 4<5(d). These two points constitute the small search pattern. Herein,
the NGD of points a to h is calculated, respectively, based on the SADs in the groups A to H as
defined by Fig. 4-5(c) and Fig. 4-5(d). This last step is biased to the horizontal direction because

most pixels in nature image sequences have-a-higher probability in moving horizontally.

& SAD, _ < SAD, (4.3)
NGD =Y —+ - :
T d T -0+ (- )

where (x,y) is the point to be evaluated, (x;, y;) is its i-th neighbor in its group, which can
be one of A to H in Fig. 4-5(c) and Fig. 4-5(d), and N is the total point number in each
group. Then, SAD; denotes the SAD of the neighbor i, and d; denotes the distance
between (x,y) and (x;, /).
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S1: Initial
Check the starting point and set it as the
parent.

S2: Mutation
Select one mutation from the un-
" | checked points in the hexagonal pattern |
centered at the parent.

S3: Competition
Compare the parent and the mutation to
select one survivor according to a
predefined block matching cost
criterion.

S3A:
Set the mutation as the
next parent

Parent Survive?

S4: Refinement

Check the neighboring 2 points in the
square pattern according their
corresponding cost functions.

S5: End
Set the current survivor as the best
motion vector.

Fig. 4-4 The flow chart of GPHS
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Fig. 4-5 The search patterns of GPHS
Fig. 4-6 shows the weighting functions of GRPS and GPHS. Compared with the weighting
functions of the other PBME algorithms in Fig. 4-1, GRPS has the smallest values around the
center but GPHS has the smallest values at far-away locations. As discussed earlier, we predict

that they should outperform their non-genetic siblings.
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Fig. 4-6 Contour plots of the weighting function for GRPS and GPHS.

Table 4-1 shows the performance of FS, DS, ERPS, PHS, GRPS and GPHS when they are
applied to the representative sequences under the settings in Section 3.1 and Table 3-1. Herein,
‘ASP’ denotes the average number of search points per block, and ‘PSNR’ denotes the average
frame PSNR in a coded sequence. On the average, GRPS is faster than ERPS by 23% and GPHS
is faster than PHS by 6%, and.their PNSR values are about the same at the same bit rates. When
they are compared to their non-genetic siblings; their average’PSNR drop is about 0.01dB and
0.06dB, respectively. When compared to the other popular search algorithms, GRPS outperforms
DS by 131% in speed with a 0.04dB PSNR.gain and-it outperforms FS by 146 times in speed with
a 0.07dB PSNR gain. GPHS outperforms DS by 58% in speed with a 0.19dB PSNR loss and beats
FS by 100 times in speed with a 0.16dB PSNR loss. Overall, it shows that we can accelerate the
search process by applying the genetic algorithm to the traditional pattern search and the resulting
PSNR quality loss is negligible.

Moreover, the computational overhead of the genetic based algorithms is very small because
we did not use the entire conventional genetic algorithm. Other than a few additional comparisons
of the matching errors, the only computational overhead is the random selection of a mutant from

the child set and this process can be implemented by a simple pseudo number generator.

-47 -



Table 4-1 The performance of FS, DS, ERPS, PHS, GRPS, and GPHS

FS DS ERPS PHS GRPS GPHS
ASP PSNR ASP PSNR ASP PSNR ASP PSNR ASP PSNR ASP PSNR
CT256 1024 3956 13.81 3951 575 3950 952 3944 536 3949 938 3943
CT40 1024  32.04 15.03 3192 7.04 3208 1030 3148 598 3221 9.89 3121
HLA40 1024 3355 1538 3425 734 3457 1010 34.17 635 3449 9.68  34.09
MD96 1024 3980 14.85 3999 6.82 40.10 10.03 3985 598 40.08 9.65 39.80
CGl12 1024  29.08 15.09 29.14 7.64 29.12 1026 29.03 6.08 29.14 9.76  29.00
FM512 1024 34.06 16.17 34.06 8.65 34.10 1057 3392 7.13 34.05 10.00 33.89
FM1024 1024 36.56 1576  36.59 832 36.61 1035 3644 694 3652 9.85 36.46
FB1024 1024 3528 2236 3493 1636 3488 14.18 3487 11.89 3487 12.75 34.73
FG768 1024 2633 1530 26.18 7.57 26.19 1034 26.17 638 26.17 995  26.15
ST1024 1024  29.48 1696 2944 995 2931 1140 2933 7.65 2939 10.56 29.42

Average 1024  33.57 16.07 33.60 854 33.65 10.71 33.47 697 33.64 10.15 33.41

4.2.2 Adaptive Pattern Switching Strategy

Because the contents of video sequences vary drastically, one single pattern search may not
produce the best result in terms of speed and PSNR: Thus, the adaptive pattern-switching search
algorithms were proposed [35][36][37][38][39][40][41][42][43]. These algorithms are empirically
constructed and the switching criterion is often based on block (feature) classification. Few papers
have clear and strong evidence as why certain block features can be used as the switching
criterion. Also, there are few «discussions on how-to optimally choose the pattern search set.
Therefore, we like to explore these issues.based on ourprevious study [52].

We look for an adequate index that can be used to decide the right instant to switch between
two pattern searches. The target is lowering the computational complexity. That is, if search
algorithm 1 (SA1) is in use, would the average search points be fewer than that produced by using
search algorithm 2 (SA2)? Based on our ASP model (Eq.(4.1)), the difference in ASP is expressed
by (4.4).

Disp = Cix 285 (0o )X (WFyy (6,3) = Wh o (x,) (4.4)
x,0€

Note that WFs,; and WFs,, depend on search algorithms only. But because Srg is a function

of the MV variance, D4sp is thus picture-dependent. The parameter C; is fixed for a video

sequence; dividing Dsp by C;, we obtain the switching index (I4sp) defined by (4.5).
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I,5=D,/C, (4.5)

ERPS and PHS are chosen as the basic pattern searches owing to their short range and long
range search performance. Then, the /,sp between ERPS and PHS, drawn against two variables,
MYV variance and MV standard deviation, are shown in Fig. 4-7(a) and Fig. 4-7(c). In Fig. 4-7(a),
the X-axis is the MV variance of the horizontal component and the Y-axis is that of the vertical
component. In Fig. 4-7(c), the axes are the MV standard deviations along the horizontal direction
and the vertical direction, respectively. When I45p > 0, ERPS outperforms PHS in terms of ASP,
and when I45p < 0, PHS is better. Therefore, the switching criterion can be the MV variance value,
at which Isp equals zero. For the case of ERPS and PHS pair, the threshold, 7,5p=0, is
approximately a straight line in the MV variance coordinates. That is, (4.6) is used to decide the
pattern search in use, wherein P, O, and R are determined by the numerical methods. In our

experiments, P=1, 0 =1 and R = 20.

P-VAR, +Q-VAR, =R. (4.6)

When GRPS and GPHS are the two basic pattern searches, their /,sp are shown in Fig. 4-7(b)
and Fig. 4-7(d). But in this case, we find that in the MV standard deviation domain, 1,5p=0 is
better approximated by a straight line. That'is, (4.7) is used to decide the pattern search and U =1,

V=1 and W= 12 in our experiments.

U-STD, +V -STD, =W . (4.7)

Indeed, our analysis in the above agrees with the commonly accepted principle that the small
search patterns are more suitable for the ‘low motion’ sequences or ‘low MV variance’ sequences
and the large search patterns are more suitable for the ‘high motion’ sequences or ‘high MV
variance’ sequences. In other words, the key in determining the relative search cost (namely, ASP)
between two pattern searches is not the magnitudes of MV, but the randomness of MV, which can

be measured by the MV variance or standard deviation.
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(a) ERPS vs PHS (b) GRPS vs GPHS
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Fig. 4-7 The Iosp between ERPS and PHS wur:.t: MV variance or MV standard deviation, and that
between GRPS and'GPHS wur.t. MV variance'or MV standard deviation

An adaptive pattern switching ‘strategy-is-thus developed based on the threshold equation
defined by (4.6) or (4.7). To ease the following discussions, the adaptive algorithm using GRPS
and GPHS is called adaptive genetic pattern search (AGPS). Its flow chart is shown in Fig. 4-8.
A similar algorithm is developed for the ERPS and PHS pair and is called adaptive pattern search
(APS), which has a similar procedure but replaces (4.7) by (4.6) in Step S3 in Fig. 4-8 and, of
course, GRPS and GPHS are replaced by ERPS and PHS, respectively.

In real-time applications, the MV variances or standard deviations of the current frame are
not available before its MVs are calculated. Fortunately, the motion characteristics in an image
sequence typically change gradually [30]; therefore, the MV variances in the neighboring spatial
or temporal areas are generally similar. After testing a few MV variance predictors, we found that

the MV variance of the previous frame is a good prediction to its value in the current frame.
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Fig. 4-8 The flow-chart of AGPS.

Furthermore, using one single pattern-search for the entire frame is a rough strategy. The MV
characteristics may vary in different parts of a frame. Hence, we can switch the pattern search for
each block. Because the MV characteristics in the nearby spatial/temporal area tend to be similar,
after a few try-and-errors, three neighboring blocks in the cutrent and previous frame is used in
calculating the MV variance and standard deviation as shown by (4.8) and (4.9). The locations of

these three blocks are defined by Fig. 4-12.

B (MVL _MVmean)Z + (MVU _MVmean)Z + (MVP _MVmean)Z (48)
3 .

STD™ =~VAR™ . 4.9)

VAR™

A MVE+MVY + MyVT (4.10)
3 9

where MV*, MVY and MV" are the motion vectors of the left and the upper block
neighbors to the current block, and the collocated block in the previous frame,
respectively, as illustrated by Fig. 4-12.

The so-called double level pattern switching strategy for AGPS (abbr. DL AGPS) is thus

proposed and its flow chart is shown in Fig. 4-9. If the previous frame has small MV standard
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deviations, we incline towards using GRPS as the pattern search with the exception that the MV
standard deviations derived from the nearby blocks are very large. On the other hand, if the
previous frame has large MV standard deviations, GPHS is often chosen unless the MV standard
deviations derived from the neighboring blocks are very small. The parameter values of U, V,
Whames Whiocki, and Whjoero are derived from data by using the numerical method. In our
experiments, U= 1, V=1, Wgame = 12, Wpioer1 = 8, and Wiyoer2 = 16. Likewise, the flow chart of
the double level pattern switching strategy for APS (abbr. DL APS) is similar but the MV standard
deviation is replaced by MV variance in choosing the pattern search. Also, (4.6) is in use and P =

19 Q = 19 Rﬁ’ame = 203 Rblockl = 8, and RblockZ =32.

S2:
calculate the standard deviations of MV

#block std x
V¥block std y<
W

Fig. 4-9 Flow chart of the double level adaptive genetic pattern search (DL AGPS).

The computational overhead of the proposed adaptive pattern selection strategy is very small.
At the frame level, the frame MV variance/standard deviation is calculated once per frame. At the
block level, we only use the upper, the left, and the co-located block motion vectors to calculate
the MV variance/standard deviation. In computer simulation, the run time profiling shows that the

overhead of the proposed adaptive strategy consumes only about 2% computation of the entire
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ME module.

Table 4-2 shows the performance of GRPS, GPHS, AGPS and DL AGPS, and Table 4-4
shows the performance of ERPS, PHS, APS and DL APS, when they are tested on the sequences
under the settings given by Table 3-1 (‘normal’ speed). To test the extreme cases, we generate
new test sequences consisting of the odd frames of the sequences in Table 3-1. These new
sequences (denoted as ‘2X’) thus run at twice the speed of their originals. Table 4-3 and Table
4-5 show the performance of various pattern search algorithms tested on the 2X sequences under
the settings given by Table 3-1. In Table 4-2 to Table 4-5, ‘ASP’ is the average number of search
points per block, ‘PSNR’ is the average frame PSNR of a sequence, and ‘RATIO’ is the frequency
(probability) ratio of GRPS or ERPS used.

Table 4-2 (normal sequences).shows that both-AGPS and DL AGPS outperform GPHS by
around 46% in terms of ASP and they have similar PSNR performance as GRPS. Both the single
level pattern switching strategy and the double level pattern switching strategy tend to use GRPS
as the pattern search because most natural image sequences have relative small MV standard
deviation. However, in the extreme cases such as football(FB1024), AGPS outperforms GRPS by
1.3% in ASP (0.01dB PSNR loss) and outperforms GPHS by 8.6% (0.13dB PSNR gain). And the
DL AGPS further outperforms AGPS by 0.9% (0.04dB PSNR loss).

In Table 4-3 (2X sequences), AGPS outperforms GRPS by 1.5% in ASP (0.01dB PSNR loss)
and outperforms GPHS by 33.7% (0.25dB PSNR gain), and DL AGPS further outperforms AGPS
by 0.5% (0.02dB PSNR gain). In general, AGPS has some advantages on fast motion sequences
and DL AGPS adds in a slightly better gain in ASP and PSNR quality.

Without the genetic search feature, Table 4-4 (normal sequences) shows that APS
outperforms ERPS by 3.4% in ASP (0.00dB PSNR gain) and outperforms PHS by 29.6% (0.17dB
PSNR gain). And DL APS further outperforms AGPS by 0.7% (0.01dB PSNR gain). On the 2X

sequences (Table 4-5), APS outperforms ERPS by 8% in ASP (0.01dB PSNR loss) and
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outperforms PHS by 20% (0.19dB PSNR loss), and DL APS further outperforms AGPS by about
0.8% (0.01dB PSNR gain).

Overall, the adaptive pattern switching strategy is effective. It does not hurt the slow motion
sequences but reduce the computation quite significantly on the fast motion sequences. With the
adaptive pattern switching scheme, the proposed algorithm outperforms the ‘single’ pattern search
algorithms. Clearly, the genetic version, AGPS, is much better than the non-genetic version, APS.
Though marginally, the double level strategy further improves in both PSNR quality and speed
especially for sequences with high MV variances.

To examine the correctness of the switching strategy, we show the Iasp (represented by the
diagonal curves) for the ‘normal’ sequences and the ‘2X’ sequences in Fig. 4-10 and Fig. 4-11. In
these figures, a dot denotes an MV.variance or standard deviation (STD) pair of an image frame
and the cross denotes the MV. variance/STD for the entire sequences. The dashed line is the
pattern switching threshold. It-is clear that for most sequences; the MV variance or STD of the
current frame is highly correlated with that of the preceding frames and its value changes slowly
across frames. Overall, ERPS and GRPS are generally adequate for coding these sequences.
However, in the extreme case, such as/football (FB1024) and foreman (FM512/FM1024), PHS

and GPHS stand out.

Table 4-2 Performance of GRPS, GPHS, AGPS, and DL AGPS on the normal speed sequences.

GPHS AGPS DL AGPS
ASP PSNR ASP PSNR RATIO ASP PSNR RATIO

CT256 535 3950 938 3943 535  39.50 100% 536  39.51 100%
CT40 598 3220 989 3121 598 3220 100% 604  32.07 100%
HL40 635 3445 968 3409 635 3445 100% 635  34.45 100%
MD96 598 4006  9.65  39.80 598  40.06 100% 598  40.04 100%
CG112 608 29.11 976  29.00 608 29.11 100% 608  29.11 100%
FMS512 713 3405 1000  33.89 7.3  34.05 100%  7.10  34.04 100%
FM1024 694 3652 985 3646 694 3652 100% 693  36.53 100%
FB1024 11.89 3487 1275 3473 1174  34.86 89% 11.64  34.82 93%
FG768 638 2617 995 2615 638 2617 100% 637  26.17 100%
ST1024 765 2939 1056 2942  7.65  29.39 100%  7.62  29.43 100%
Average 697 3363 10.15 3341 696  33.63 6.95  33.62
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Table 4-3 Performance of GRPS, GPHS, AGPS and DL AGPS on the 2X sequences.

2x forward GRPS GPHS AGPS DL AGPS
Sequence ASP PSNR ASP PSNR ASP PSNR RATIO ASP PSNR RATIO
CT256 5.62 38.65 9.51 38.52 5.62 38.65 100% 5.59 38.79 100%
CT40 6.60 30.28 10.34 29.22 6.60 30.28 100% 6.60 30.27 100%
HL40 6.51 33.31 9.74 32.95 6.51 33.31 100% 6.51 33.31 100%
MD96 6.40 38.66 9.85 38.37 6.40 38.66 100% 6.38 38.67 100%
CGl112 7.36 27.43 10.64 27.24 7.36 27.43 100% 7.34 27.45 100%
FM512 9.07 32.34 11.01 32.19 8.80 32.33 93% 8.73 32.35 93%
FM1024 8.85 35.25 10.79 35.12 8.49 35.22 92% 8.47 35.25 93%
FB1024 15.75 33.22 14.62 33.12  15.13 33.18 84% 14.92 33.23 83%
FG768 7.01 25.51 10.35 25.42 7.01 25.51 100% 7.03 25.51 100%
ST1024 9.28 27.99 11.73 27.87 9.28 27.99 100% 9.27 27.92 100%
Average 8.25 32.27 10.86 32.00 8.12 32.26 8.08 32.28

Table 4-4 Performance of ERPS, PHS, APS and DL APS on the normal sequences.
Sequence ASP PSNR ASP PSNR ASP PSNR RATIO ASP PSNR RATIO
CT256 5.75 39.50 9.52 39.44 5.75 39.50 100% 5.75 39.49 100%
CT40 7.04 32.08 10.30 31.48 7.04 32.08 100% 6.97 32.15 99%
HL40 7.34 34,57 10.10 34.17 7.34 34.57 100% 7.31 34.55 100%
MD96 6.82 40.10 10.03 39.85 6.82 40.10 100% 6.80 40.10 100%
CGl112 7.64 29.12  10.26 29.03 7.64 29.12 100% 7.64 29.13 100%
FM512 8.65 34.10 10.57 33.92 8.47 34.06 92% 8.33 34.10 94%
FM1024 8.32 36.61 10.35 36.44 8.23 36.60 93% 8.07 36.65 95%
FB1024 16.36 34.88 14.18 3487 14.02 34.86 51%  13.88 34.90 60%
FG768 7.57 26.19 10.34 26.17 7.57 26.19 100% 7.57 26.19 99%
ST1024 9.95 29.31 11.40 29.33 9.72 29.33 85% 9.68 29.30 85%
Average 8.54 33.65 10.71 33.47 8.26 33.64 8.20 33.65

Table 4-5 Performance of ERPS, PHS; APS and DI APS on the 2X sequences.

2X forward ERPS PHS APS DL APS
Sequence ASP PSNR ASP PSNR ASP PSNR RATIO ASP PSNR RATIO
CT256 6.35 38.68 9.74 38.51 6.35 38.68 100% 6.35 38.67 99%
CT40 8.15 30.22 10.89 29.54 8.15 30.22 100% 8.13 30.26 98%
HL40 7.57 33.38 10.22 33.02 7.57 33.38 100% 7.58 33.34 100%
MD96 7.56 38.66 10.38 38.44 7.56 38.66 100% 7.49 38.72 99%
CGl112 9.54 27.53 11.48 27.34 9.62 27.50 99% 9.54 27.49 97%
FM512 11.70 32.45 12.02 32.23  10.58 32.41 79%  10.35 3243 82%
FM1024 11.36 35.29 11.75 3521 10.23 35.31 80% 9.94 35.29 82%
FB1024 22.32 33.24 17.15 33.22  17.31 33.24 9% 17.29 33.25 21%
FG768 8.69 25.53 10.83 25.48 8.69 25.53 100% 8.65 25.54 98%
ST1024 12.45 27.93 13.00 27.88 11.81 27.87 66% 11.78 27.88 67%
Average 10.57 32.29 11.75 32.09 9.79 32.28 9.71 32.29
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Fig. 4-10 Pattern switching threshold (dash line), Issp (solid line) and the frame MV
variance/STD of the normal sequences.
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Fig. 4-11 Pattern switching threshold (dash line), [asp (solid line) and the MV variance/STD for
the 2X sequences.

Section 4.3 Starting Point Selection

The impact of starting points or initial points on fast search algorithms have been studied by many
researchers such as [14], [16], [30] and [31]. Typically the starting point is predicted by using a
combination of the MVs of a few neighboring blocks. The most probable MV estimated by this
type of MV predictor is used as the starting point for PBME algorithms. Although many MV

predictors have been proposed, most of them are derived based on heuristic experiments. We like
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to design a criterion that evaluates the effectiveness of MV predictors and propose a systematical
approach that constructs the optimal Starting Point Set (SPS). The DL AGPS and DL APS
discussed in the previous section are the search algorithms used to test our starting point set in this
section.

We assume that the proposed PBME model (first method in Section 3.3 [54]) is valid for
different starting point selection. Then, because the MV field acquired by FS is fixed for a given
video sequence, a different starting point only does a translational shift on the motion vector
distribution. Given two starting points, SP1 and SP2, their difference in ASP (E4sp) can be

represented by (4.11).

E 5 =CX Z((SF57$P1(x’y)_SFsisPZ(x>y))XWES‘A (x,)) (4.11)

x,y€A

Let SP2 be a fixed starting point for. comparison purpose; (4.11) thus becomes (4.12), in which 7

1s a constant.

E,p=CX Z (SFsisPl(x!y)XWFSA(xay))_n (412)

x,yeA

Rearrange (4.12), we obtain Gysp defined by (4.13), which is proportional to the ASP using SP1.
Thus, it is used as the performance assessment criterion for starting point evaluation.
Gusp = (Ep +1)/ C (4.13)
Because WF is fixed for a specific algorithm and only Sks spi(x,y) may vary, G4sp is a function of
MV characteristics. Herein, the MV characteristics are either the MV variances or MV standard
deviations calculated from the MV w.r.t. a specific starting point (SP1). And the MVs are acquired
by using FS on the selected sequence.

Fig. 4-12 shows the MV candidates that are often considered in starting point selection. They
are the MVs of the neighboring spatial/temporal neighboring blocks. And the most commonly
used mathematical function includes median(.) and mean(.). Combining them together,

(4.14)-(4.25) are some representative MV predictors under our investigation.
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MV, MVE MV MVR, (4.14)
My Pt —one of | MV, MV™  MV™ , MV MV™
MVPUL MVPUR MVPDL MVPDR or MVPP

MV 7S = (0,0) = ZMV (4.15)
MV = median(MV'", MV, MV'"*) = PMV (4.16)
MV = mean(MV* MV, MV") (4.17)
MV -1 = median or mean (MVL,MVU,MVUL) (4.18)
MV P2 = median or mean(MV" , MV ,MV") (4.19)
MV "3 = median or mean(MV*, MV . MV" ,MV") (4.20)
MV P2 = MYV MV =MV = AMV (4.21)
MV 72 = median or mean(MV", MV "™ , MV ™", MV’ MV ™) (4.22)

MV My PR Ay PPL gy PPR

Notation: Ax(a,b) means (axAy, bxAy), A is a vector, and (a,b) is a pair of scalar; for
example,
median(MV*",MVY MV )x((2,0)). means (2xmedian(MV",MV" ,MV),0)
MV = median(MV", MV MV )x((1,0), (0,1);(2,0) 0r:(0,2)) (4.24)
abs(median(MV.} ;MV Y MV ), (4.25)

abs(median(MV.|", MV} \MV [*))

427,28 : MV MV MYV MYV MY, (4.23)
MV P2 = median or mean

MY Pred3nse max{ ]x((l,O), (=1,0), (0;1), or (0,-1))

Table 4-6 to Table 4-9 show the Gsp of some of the well-known and best performed MV
predictors ((4.14)-(4.25)) applied to the test sequences-using the weighting functions of ERPS,
PHS, GRPS and GPHS, respectively. We find that MV*"“**! (mean value of MVY, MV*, and MV"),
MV (mean value of MVY, MV*, and two MV") and MV*"***® (mean value of MV"Y, MV*™,
MVE M VPR, My MVPUR, MVPE M VPDR, and M V‘D) have the smallest average G4sp among all
the MV predictors. Together with the well-known PMV (M77“/'®  identical to (2.2)) and ZMV

(MVP? identical to (2.1)), these 5 MV predictors form the candidate set for the starting points.
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MVPUL | MU | MR MVUL | MV | MVUR

My MyPL Mv? MV?TR MVE Myv©

MVPPL | MYPD | MVPPR

Previous Previous Frame Previous Frame Current Frame

Fig. 4-12 Motion vector predictor candidates in the current frame, the previous frame and the
frame before previous frame.

Table 4-6 G ,sp of the MV predictors applied to the test sequences using WFggrps.

\70% CT256 CT40 HL40 MD96 CG112 FM512 [FM1024 FB1024 FG768 ST1024 Average

predl5 622 999 987 1007 878 1459 1375 3221 956 19.84  13.49
pred16 647 1073 1067 1071 855 1147 1020 30.84 10.16 1746  12.73
pred21 631 1052 1051 1047 850  10.66 947 2792 990 1524  11.95
pred23 633 1051 1066 10.60 854  10.77 9.60 29.06 9.89 1540  12.14
pred27 622 998 1020 1043 820 11.08 1002 3080 9.67 1586 1225
pred28 629 1037 1054 1060 838  10.95 984 2856 988 1515  12.06
MIN 622 998 987 10.07 820 10.66 947 2792 956 1515 1195

Table 4-7 G 4sp of theeMV predictors applied. to the test sequences using WEpys.

CT256 CT40 HL40 MD96 CG112 FM512 |[FM1024 FB1024 FG768 ST1024 Average

pred15 949 11.05 11.00 11.08 1055 13.03  12.66 21.59 10.87 1559  12.69
pred16 959 1136 1134 1135 1045 11.67  11.14 2088 11.12 1441 1233
pred21 953 1127 1127 1125 1043 1133 1083 1941 1101 1336  11.97
pred23 954 1127 1133 1131 1044 1138 1089 1998 11.01 1343  12.06
pred27 949 11.05 11.13 1123 1031 1151  11.06 20.87 1091 13.66  12.12
pred28 952 1121 1128 1131 1038 1145 1098 1973 11.00 1332  12.02
MIN 949 1105 11.00 11.08 1031 1133 1083 1941 1087 1332  11.97

Table 4-8 Gsp of the MV predictors applied to the test sequences using WFgrps

CT256 | CT40 HL40 MD96 CG112 FM512 FM1024 FB1024 FG768 ST1024
predl5 530 628 627 632 596 7.0 743 1439 618 927 7.51
pred16 536 648 650 650 590  6.73 636 1387 635 853 7.26
pred21 532 643 645 643 589 6.0 616 12.69 628  7.83 7.00
pred23 532 642 650 647 590  6.53 620 13.15 628 788 7.06

pred27 530 628 636 642 581  6.62 631 1383 621 8.0l 7.11
pred28 531 638 646 647 585 658 626 1293 627 179 7.03
MIN 530 628 627 632 581 650 616 12.69 618  7.79 7.00
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Table 4-9 G sp of the MV predictors applied to the test sequences using WFgpus

\70% CT256 CT40 HL40 MDY96 CG112 FM512 FM1024 FB1024 FG768 ST1024 Average

pred15 916 9.68 9.67 9.69 952 1034 1022 1320 9.62 1120 1023
pred16 920 979 978 978 948  9.89 971 1296 971 1080  10.11
pred21 9.18 976 976 975 948  9.78 9.61 1247  9.67 1045 9.99
pred23 9.18 976 978 977 948  9.79 9.63 1266  9.67 1048  10.02
pred27 916 9.68 971 974 944 984 9.69 1296  9.64 1055  10.04
pred28 9.17 974 976 977 946  9.82 9.66 1258 967 1044  10.01
MIN 9.16 968 967  9.69 944  9.78 9.61 1247  9.62 1044 9.99

We adopt the initial candidate set approach. That is, the proposed BME algorithm examines
all MV candidates in the candidate set and then uses the best candidate as the starting point for the
subsequent search procedure. As shown by (4.26), the total search point number (Nzsp) equals to

the size of starting point set (Nsps) plus the number of average search points (N, ) produced by a

specific search algorithm minus one, where “minus one” represents the initial point count
included in the N .
Nisp = Ngps + N y5p —1 (4.26)
A well-designed starting point set should decrease N .+ more than the increased size of
starting point set (Nsps). We develop a systematic approach to find the optimal SPS. It is an add-on
approach. At the beginning, there is only one’ MV in the SPS. We calculate its Nysp using a certain
search algorithm. After a number of simulations, we retain a few best performers. We then add a
second MV into each of these sets and evaluate their Nzsp again. We continue adding new points
until the Nyspdoes not decrease with additional MV in that set. This procedure is described by the
flow chart in Fig. 4-13. In theory, this procedure does not guarantee that the final best set is
globally optimal because our set is progressively constructed. However, our experiments indicate

that the results are quite good.
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Fig. 4-13 The flow chart of constructing SPS.

We show the performance of DL"APS with various starting point sets here. Due to limited
space, only the better performed ones are-shown: Table 4-10 is the results of DL APS with one
starting point. We find that DILAPS with MV?““!_My”** or PMV are the best. Use each of these
three MVs as the first element in three separated sets, we add a second MV. Their performance is
shown in Table 4-11. The better performer for both speed.and quality is the set of MP7“* plus
PMYV. Based on this selection, we add one more MV into the starting point set and the results are
on Table 4-12. The set of MV*™“** plus PMV and MV?“** is the best. If we add one more MV into
SPS, Nrgp increases. Therefore, our SPS for DL APS is {MV**% PMV, MV*"“***}. The order in
the set is the order in search. We repeat the same SPS identification procedure for DL AGPS and
the best result is PMV plus MV?“** which gives an average ASP of 6.61. The experimental

results used in constructing the set for DL AGPS are shown in Table 4-13 and Table 4-14.

Table 4-10 The performance of DL APS with only one starting point.

Pred21 Pred23 Pred28 YAI\%
ASP PSNR ASP PSNR ASP PSNR ASP PSNR ASP PSNR
CT256 5.75 39.49 5.58 39.57 5.57 39.60 5.50  39.58 5.48 39.55
CT40 6.97 32.15 6.89 32.11 6.71 32.49 6.51 32.70 6.47  32.76
HL40 7.31 34.55 7.27 34.54 7.33 34.48 7.15 34.54 7.10  34.55
MD96 6.80 40.10 6.76 40.12 6.73 40.11 6.79  40.15 7.01 40.07
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CGl112 7.64 29.13 7.59 20.11 7.58 29.10 7.87  29.11 1049  28.99
FM512 8.33 34.10 8.44 34.04 8.49 34.03 9.03 33.97 11.83 33.27
FM1024 8.07 36.65 8.24 36.53 8.28 36.53 8.85 36.49 11.71 36.00
FB1024 13.88 34.90 13.61 34.94 14.06 34.92 16.16  34.71 19.85 34.04
FG768 7.57 26.19 7.60 26.18 7.56 26.17 7.70  26.18 9.68  26.17
ST1024 9.68 29.30 9.57 29.37 9.41 29.44 10.06  29.49 13.81 28.23
Average 8.20 33.65 8.16 33.65 8.17 33.69 8.56  33.69 10.34  33.36
Table 4-11 The performance of DL APS when there are two points in the starting point set.

PMV

Normal

Sequence ASP PSNR ASP PSNR

+Pred21

PM

+Pred23

\% PMV

+Pred28

ASP PSNR ASP

PMV
+ZMV

Pred21
+Pred23

PSNR ASP PSNR

Pred21
+PMV

Pred21
+Pred28

ASP PSNR ASP PSNR ASP PSNR ASP PSNR ASP

Pred21
+ZMV

Pred23
+Pred21

Pred23
+PMV

PSNR

Pred23
+Pred28

Pred23
+ZMV

ASP PSNR ASP PSNR

CT256 552 39.57 5.50 39.55 547 39.56 545 39.57 552 39.61 5.51 39.53 546 39.61 545 39.55 5.53 39.57 549 39.59 545 39.63 545 39.56
CT40 6.53 3245 643 32.69 640 32.69 6.39 32.74 6.58 32.61 6.53 32.50 6.42 32.71 638 32.72 6.57 32.63 6.46 32.68 6.41 3272 636 32.73
HL40 7.00 34.56 6.99 34.51 695 3456 6.98 34.54 7.17 3450 7.00 34.56 6.99 34.58 6.98 34.59 7.16 34.55 698 3452 7.00 34.56 6.98 34.56
MD96 6.56 40.10 6.56 40.09 6.55 40.11 6.62 40.12 6.66 40.11 6.56 40.11 6.59 40.11 6.64 40.13 6.66 40.11 6.52 40.10 6.60 40.10 6.63 40.11
CG112 7.00 29.12 6.96 29.12 6.97 29.13 7.71 29.12 7.37 29.10 7.01 29.12 7.13 29.12 7.75 29.09 7.36 29.11 6.94 29.12 7.13 29.12 7.78 29.06
FM512 7.86 34.10 7.78 34.12 7.92 34.11 848 34.05 833 34.03 7.86 34.08 823 34.06 8.77 3398 829 3404 7.80 34.13 828 34.06 881 33.97
FM1024  7.63 36.60 7.56 36.50 7.71 36.61 824 36.55 8.10 36.54 7.62 36.57 8.02 36.51 8.58 36.50 8.11 36.54 7.57 36.64 8.12 36.56 8.60 36.50
FB1024 12.70 34.98 12.48 35.02 12.94 34.99 14.55 34.91 13.64 34.94 12.70 35.00 13.65 34.91 1541 34.75 13.67 34.96 12.52 35.05 14.03 34.85 15.61 34.71
FG768 7.09 2621 7.05 2621 7.00 26.19 7.34 26.18 7.49 26.17 7.08 26.18 725 26.18 7.60 26.19 7.49 26.18 7.06 26.20 7.24 26.18 7.58 26.18
ST1024  8.83 29.48 8.71 29.46 8.77 29.52 10.06 29.23 9.41 29.36 8.87 2944 9.15 29.43 10.42 29.09 9.41 2933 8.71 2944 9.05 29.43 10.38 29.13
Average 7.67 33.72 7.60 33.73 7.67 33.75 8.18 33.70 8.03 33.70 7.67 33.71 7.89 33.72 8.40 33.66 8.03 33.70 7.61 33.75 7.93 33.72 8.42 33.65

Table 4-12 The performance of DL APS when there are three points in the starting point set,
MVP™%% is the first starting point, and PMV is the second starting point.

Normal Pred23+PMV+Pred21 Pred23+PMV+Pred28 Pred23+PMV+ZMV

Sequence ASP PSNR ASP PSNR ASP PSNR

CT256 5.48 39.61 5.45 39.53 5.44 39.57
CT40 6.44 32.64 6.36 32.69 6.31 32.74
HL40 6.97 34.58 6.91 34.54 6.90 34.53
MD96 6.50 40.17 6.49 40.14 6.53 40.18
CGl112 6.90 29.12 6.79 29.12 7.29 29.11
FM512 7.80 34.10 7.80 34.12 8.13 34.08
FM1024 7.57 36.62 7.59 36.59 7.92 36.59
FB1024 12.79 35.01 12.81 35.02 13.60 34.90
FG768 7.06 26.19 6.93 26.19 7.20 26.19
ST1024 8.73 29.47 8.59 29.55 9.39 29.39
Average 7.62 33.75 7.57 33.75 7.87 33.73

Table 4-13 The performance of DL AGPS with only one starting point.

P

FM512
FM1024
FB1024
FG768
ST1024

ASP

5.36
6.04
6.35
5.98
6.08
7.10
6.93
11.64
6.37
7.62

\%0% Pred21
PSNR ASP PSNR
39.51 5.26 39.55
32.07 5.83 32.47
34.45 6.34 34.42
40.04 5.95 40.04
29.11 6.04 29.10
34.04 7.10 33.97
36.53 6.98 36.49
34.82 11.61 34.83
26.17 6.33 26.16
29.43 7.31 29.43

Pred23 Pred28
ASP PSNR ASP PSNR
5.26 39.56 5.22 39.55
5.78 32.61 5.71 32.67
6.35 34.46 6.25 34.50
5.94 40.07 5.95 40.11
6.11 29.04 6.22 29.09
7.11 33.96 7.42 33.90
6.98 36.45 7.29 36.41
11.95 34.72 13.55 34.53
6.31 26.16 6.27 26.18
7.23 29.47 7.54 29.46
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MV
ASP  PSNR
5.22 39.62
5.70 32.70
6.22 34.52
6.09 40.04
7.77 28.96
9.66 33.20
9.60 35.98
16.50 33.99
7.34 26.16
10.37 28.22



Average 6.95 33.62 6.88 33.64 6.90 33.65 7.14 33.64 8.45 33.34
Table 4-14 The performance of DL AGPS when there are two points in the starting point set.

Pred21 Pred21 Pred21 Pred21 PMV :4\70% PMV PMV Pred23 Pred23 Pred23 Pred23
Normal +Pred23 +PMV +Pred28 +ZMV +Pred21 +Pred23 +Pred28 +ZMV +Pred21 +PMV +Pred28 +ZMV

Sequence ASP PSNR ASP PSNR ASP PSNR ASP PSNR ASP PSNR ASP PSNR ASP PSNR ASP PSNR ASP PSNR ASP PSNR ASP PSNR

CT256 5.24 39.54 526 39.55 522 39.57 521 39.58 5.25 39.52 5.24 39.62 522 39.59 522 39.60 524 39.59 524 39.56 5.21 39.56 5.20 39.55

CT40 576 32.60 5.76 32.52 5.69 32.68 5.68 32.73 578 3240 572 32.67 5.69 32.61 5.67 32.73 5.75 32.62 5.72 32.61 5.68 32.70 5.67 32.72

HL40 6.30 34.53 6.26 34.53 621 3451 6.21 3455 624 3451 6.25 3454 621 3457 6.20 34.55 630 3454 6.24 3453 6.23 3457 6.21 34.55

MD96 595 40.07 5.89 40.07 5.90 40.10 5.95 40.08 591 40.08 591 40.12 589 40.09 594 40.09 592 40.11 5.88 40.14 590 40.10 593 40.09

CG112 598 29.11 5.89 29.13 594 29.12 6.40 29.08 5.89 29.12 5.88 29.12 5.89 29.11 6.41 29.11 599 29.11 587 29.11 597 29.11 6.43 29.08

FMS512 7.05 34.00 6.82 34.10 7.03 34.02 7.52 3391 6.84 34.07 6.78 34.09 6.89 34.08 7.39 34.01 7.03 34.00 6.78 34.09 7.06 33.99 7.52 33.91

FM1024 692 36.49 6.68 36.53 6.89 36.51 7.40 3648 6.65 36.54 6.61 36.57 6.74 36.55 7.21 36.56 691 36.51 6.62 36.57 695 36.54 7.41 3647

FB1024 11.61 34.80 10.66 35.00 11.69 34.86 13.00 34.69 10.61 34.95 10.55 35.02 10.85 35.00 12.23 34.80 11.65 34.86 10.49 35.03 11.93 34.83 13.11 34.69

FG768 6.28 26.18 6.13 26.18 6.16 26.19 6.39 26.18 6.14 26.18 6.14 2620 6.09 26.19 635 26.19 6.28 26.16 6.11 26.18 6.15 26.18 6.38 26.18

ST1024  7.20 29.45 7.19 29.48 7.17 2944 827 29.13 7.15 2949 7.11 29.46 7.19 29.52 8.19 29.20 7.24 2941 7.13 2947 7.16 29.51 825 29.14

Average 6.83 33.68 6.65 33.71 6.79 33.70 7.20 33.64 6.65 33.69 6.62 33.74 6.67 33.73 7.08 33.68 6.83 33.69 6.61 33.73 6.82 33.71 7.21 33.64

Table 4-15 is a comparison of DL -APS and DL AGPS with and without SPS. As discussed
earlier, “DL APS + SPS” uses the 3-point SPS, “DL. AGPS +'SPS” uses the 2-point SPS, and the
other algorithms use only PMV as the sole starting point. We find that DL APS with SPS
outperforms DL APS by 8.3%in ASP (0.09dB PSNR gain). The: DL AGPS with SPS outperforms
DL AGPS by 5.0% in ASP (0.12dB PSNR gain).

In summary, the best SPS we identify for DL-APS is {MV*“* PMV, MV*"“**}  and the best
SPS for DL AGPS, {PMV, MV*****} With SPS, DL APS and DL AGPS can reduce ASP with
slightly increased PSNR. In these two cases, the SPS size of DL AGPS is smaller. Our conjecture
is that a fast-moving pattern search needs only a small SPS because the search algorithm can
cover a large search area quickly without the help of additional starting points. The experiments

also indicate that a 2-point (or 3-point) SPS is generally better than the single-point SPS (PMV).

Table 4-15 The effects of SPS on DL APS and DL AGPS.

Normal DL APS DL APS + SPS DL AGPS DL AGPS + SPS
Sequence ASP PSNR ASP PSNR ASP PSNR ASP PSNR
CT256 5.75 39.49 5.45 39.53 5.36 39.51 5.24 39.62
CT40 6.97 32.15 6.36 32.69 6.04 32.07 5.72 32.67
HL40 7.31 34.55 6.91 34.54 6.35 34.45 6.25 34.54
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MD96 6.8 40.1 6.49 40.14 5.98 40.04 591 40.12

CGl112 7.64 29.13 6.79 29.12 6.08 29.11 5.88 29.12
FMS512 8.33 34.1 7.8 34.12 7.1 34.04 6.78 34.09
FM1024 8.07 36.65 7.59 36.59 6.93 36.53 6.61 36.57
FB1024 13.88 34.9 12.81 35.02 11.64 34.82 10.55 35.02
FG768 7.57 26.19 6.93 26.19 6.37 26.17 6.14 26.2
ST1024 9.68 293 8.59 29.55 7.62 29.43 7.11 29.46
Average 8.2 33.65 7.57 33.75 6.95 33.62 6.62 33.74

Section 4.4 Early Termination Mechanism

The early termination mechanism terminates the search process when the block-matching error
produced by a MV (in the search area) is smaller'than a pre-chosen threshold. And in this case,
this MV is accepted as the best MV. Clearly, there 15 a.trade-off between the MV quality
(matching error) and the computational speed. Thus, the challenge is to find the termination
threshold that maximizes the speed gain and minimizes the quality degradation. In this section, we
set up a systematic method to find the nearly optimal early termination threshold (ETT) [50].

The most commonly used block matching error isthe sum of absolute difference (S4D). Due
to the correlation among the spatial/temporal nearby blocks, [14] proposed a general form (4.27)
for ETT. It suggests that the threshold is a function of the SAD and the MV of the neighboring

blocks.

- ([($AD SAD, 0 SAD,) .
= min-< max >“min (2 " max [ ° :
MV, s MV ..MV, (4.27)

where S4D, and MV, respectively, are the SAD and MV of a neighboring block labeled by i,
and T, and T, stand for the lower and the upper bounds of the threshold, respectively. In

practice, most researches use only the SAD predictor. For example, [16] suggests (4.28) and [30]
suggest (4.29).
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T = axmin(SAD,,SAD,,...,.SAD,) + b, (4.28)

where a, b are fixed values.

T =SAD" +§ (4.29)

where SAD? is the SAD of the co-located block in the previous frame (Fig. 4-14) and J is a bias

parameter.

To find the best threshold predictor, we use the correlation coefficient between the SAD
predictor (SAD”™*’) and the best SAD acquired using FS (S4D°, as shown in Fig. 4-14) as the
measure for the effectiveness of this threshold. First, we perform FS on the test sequences in
Table 3-1 to obtain the SAD values of all blocks. For each of the SAD predictors, we calculate its
correlation with the actual SAD (SAD) of the corresponding block. The one with highest
correlation coefficient (closer to 1) 1s the best SAD predictor. By using the regression method, we
find an approximation function (predictor) that best describes the relation between the predicted
SAD and SADC. Also, we setup an upper bound for the threshold estimate to prevent the quality
loss in the high ETT cases. And at last, we fine-tune the predictor coefficients (slope and offset) to
achieve the desired speed and quality trade-off. This fine-tuned function thus serves as the early

termination threshold.

SADPUL | S4DPU | SADPUR SADUL | SADU SADUR

SAD'? SADPL | SAD? | SADPR SADL | SADC

SADPPL | SADFP | SADFPR

Previous Previous Frame Previous Frame Current Frame

Fig. 4-14 The SAD candidates in the current frame, the previous frame and the frame before the
previous frame.

An ETT predictor often consists of two elements: 1) a selected SAD set of nearby blocks,

and 2) a mathematical function operating on the selected SAD set. The most commonly used
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mathematical functions are mean(.), median(.), min(.) and max(.). The most commonly used 14

neighboring SADs are shown in Fig. 4-14. Combining them together, there are 65532 possibilities.

14
(O C"x4=(2"-Cy')x4=65532). Moreover, we can insert different weighting before each

i1
block SAD, which leads to enormous forms of the SAD predictors. In our study, we select some
representative SAD predictors ((4.30)-(4.43)). Table 4-16 shows the correlation coefficient
between a few selected SAD predictors and SAD®. Limited by space, only the better ones are
shown there. Among the 55 SAD predictors under consideration, SAD”*“” (mean SAD of the
upper and left blocks) is the best predictor in 2D cases and SAD”“’ (median SAD of the upper,
left, and two previous blocks) is the best predictor in all cases (2D and 3D cases). Herein, the 2D
cases only use the SADs of the blocksin the same frame, and the 3D cases can also use the SADs

of the blocks in the current frame and the previous frame SADs.

SADY ,SAD",SAD"" ,SADY", (4.30)
SAD?*""'* = one of| SAD" ,SAD"" | SAD"®,SAD*" ,SAD""
SAD""  SAD YR, SAD®PE, SAD*"%  or < SAD""

SAD "> = mean, min,or max(SADY ,S4D.") (4.31)
SAD?“"**" = mean, median, min,or max(SAD", SAD*,SAD"") (4.32)
SAD?"*"*** = mean,median, min,or max(SAD" ,SAD",SAD"") (4.33)
SAD?"***** = mean, median, min,or max(SAD" ,SAD",SAD" ,SAD"") (4.34)
SAD?*** ¥ = mean, median, min, or max(SAD" ,SADY,SAD") (4.35)
SAD?**** = mean or median(SAD" ,SAD" ,SAD" ,SAD") (4.36)
SAD”****" = mean or median(SAD",SAD",SAD",SAD" ,SAD") (4.37)
SADP**** = mean, median, min, or max(SAD" ,SAD"" ,SAD"™ ,SAD"™ ,SAD"™) (4.38)

SADY ,SAD*,SADY ,SAD*, 4.39
SAD %% = mean, median, min, or ma;{ ( )

SAD”,SAD" ,SAD™ ,SAD"™ ,SAD "™
mean (SADY ,SAD* ,SAD" ,SAD"*), (4.40)
mean (SAD " ,SAD "™ ,SAD "™ ,SAD "™ ,SAD ™* )J

median (SAD" ,SAD* ,SAD " ,SAD"*), (4.41)
median (SAD " ,SAD "V ,SAD ™ ,SAD ™ ,SAD ™* )]
min(S4DY,SAD* ,SAD Y ,SAD"*), (4.42)
min(SAD *,SAD Y ,SAD " ,SAD ** ,SAD ** )J

red 46..48 .

SAD P = mean, min, or max[
ed 49..51 .

SAD ?* = mean, min, or max[

ed 52.53
SAD 7 = mean , or max[
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max(SADY ,SAD*,SADY,SADU®), 4.43
S4D pred 54.55 = mean, or mln( X( ) ( )

max(SAD " ,SAD " ,SAD ™ ,SAD ™" ,SAD ™)

Table 4-16 The correlation coefficients between the selected SAD predictors and the actual block

SAD.

SAD CT256 CT40 HL40 MD96 CGI12 FM512 FMI1024 FB1024 FG768 ST1024 Average  All

predl5 0725  0.809 0760  0.711 0767 0748  0.743 0727  0.926  0.844 0.776  0.886
pred16 0698 0754 0698 0715 0675 0658  0.651 0.653  0.887  0.747 0.714  0.831
pred30 0.856  0.908  0.891 0850  0.883  0.835 0825 0765 0958  0.908 0.868  0.932
pred34 0.892 0938 0934  0.890 0918 0850  0.835 0753 0966  0.924 0.890  0.942
pred3s 0.906  0.957  0.961 0914 0938  0.848 0828 0714 0970  0.930 0.897  0.945
pred36 0903 0950  0.951 0905 0931  0.851 0832 0737 0968 0928 0.896  0.945
pred37 0.888 0957 0974 0904 0936 0813 0781  0.635 0960 0914 0.876 0931

To produce a better SAD predictor on SAD®, we have tried the multi-dimensional regression
method. But we find that the linear regression is sufficient to have a pretty accurate approximation.
Consequently, (4.44) is the predictor of choice.

SADLear—predicted = K x SADP* + K, (4.44)

Table 4-17 shows the coefficients of the best 2D/3D predictors for various test sequences.
The ‘Average’ row denotes the average values of all sequences. The ‘All’ row shows the values
calculated using all sequences as data samples. To check the effectiveness of these predictors, we
calculate the mean and the standard deviation (STD) of both the best 2D and 3D SAD prediction
errors. In Fig. 4-15 and Fig. 4-16, cach dot represents the SAD pair (SAD"*, SAD) of a block.
The star mark at the center of a vertical bar-represents the mean of SAD®, and the bar length
represents the standard deviation of prediction errors. It is obvious that the standard deviation
becomes larger as the value of SA4D”™ increases. This implies that for large predicted SAD values,
their prediction accuracy is lower. Hence, to ensure a high MV quality, we propose an upper

bound in (4.45) using the average SAD of all coded block in the same frame.

Ne-1

> 54D,

SAD:}{PPe",bUM"ded — _i=l + K3 , (445)

N, -1
where SAD; is the SAD of the i-th block in the current frame, K; is the allowed maximum early

termination error offset, and N, denotes the current block index in a frame. Finally, the early

termination threshold (ETT) is defined below by (4.46).
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X i .
T = SAl)th = mln(SAl)thmear_predlcted’ SAl)tlépper_bounded) i

(4.46)

The parameter values are empirically decided: K is set to 1, K is set to 384 and K; is set to 512.

Under this setting, we achieve a good balance between speed and quality.

Table 4-17 Regression coefficients for the best 2D and 3D SAD predictors.
Predictor Pred 15 (best 2D) Pred35 (best 3D)
K1 Kz I<1 ‘ KZ ‘

best 2D 3AD predictor

CT256 0.84 77.20 0.98 13.83
CT40 0.92 95.43 1.02 -11.95
HL40 0.88 90.38 1.04 -27.50
MD96 0.80 83.77 0.96 27.77
CGl112 0.86 320.99 0.98 70.65
FM512 0.81 249.69 0.85 192.79
FM1024 0.79 239.74 0.83 200.46
FB1024 0.69 549.12 0.64 660.09
FG768 0.99 216.38 0.97 146.71
ST1024 0.95 165.75 0.93 202.48
Average 0.85 208.85 0.92 147.53
All 0.97 66.65 0.96 76.53
Prediction of SAD (coastguard)
ook A . S — : - :
; ; Data Sample
O L s s Femmes TR SADy ”
: +  Zonal Mean and Std
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% (0] | PP ......... ..... ........... ..........
o : : : : 1 '
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3 | - |
SL appmf s S } { : { ‘|Ji ------ }* ........
b= 1 O 11}} . ....... i
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Fig. 4-15 Best 2D SAD predictor versus SAD®
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Prediction of SAD (coastguard)
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best 30D SAD predictor
Fig. 4-16 Best 3D SAD predictor versus SAD®

The computational overhead. of our proposed early termination mechanism is negligible
when compared to the speed gain. In the memory requirement, it only needs to record the SAD of
roughly a row of blocks in the. 2D case and the SAD of roughly.a frame of blocks in the 3D case.
As for the computing power requirement, it-needs-a few ‘compare’, one ‘shift’, one ‘multiply’,
and one ‘divide’ operations for each block.

Table 4-18 shows the performance of DL AGPS with SPS and several early termination
mechanisms. As suggested by their proponents, parameter a is set to 1.2 and b is set to 128 in
(4.28), and o is set to 50 in (4.29). We find that the DL AGPS with our best 2D ETT
outperforms the plain DL AGPS scheme by 154% in average search points (0.02dB PSNR gain),
and it outperforms (4.28) by 10% (0.01dB PSNR loss) and outperforms (4.29) by 11% (0dB
PSNR gain). And the DL AGPS with our best 3D ETT outperforms the plain DL AGPS scheme by
162% in average search points (0.02dB PSNR gain), and it outperforms (4.28) by 14% (0.01dB
PSNR loss), outperforms (4.29) by 15% (0dB PSNR gain) and finally it further outperforms our

best 2D ETC by 4% (0dB PSNR gain).
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Table 4-18 The performance of DL AGPS with SPS and various early termination mechanisms.

(4.28) (4.29) Best 2D ETT Best 3D ETT

ASP PSNR ASP PSNR ASP PSNR  ASP  PSNR
CT256 524 39.62  1.59 39.59  1.57 39.54  1.38 39.55 1.36 39.63
CT40 572 32,67  2.00 32.85  1.63 3283  1.71 32.89 1.63 32.87
HL40 6.25 3454 214 3505  2.01 3490  1.64 35.05 1.56 35.03
MD96 591 4012 1.89 4024  1.78 4025  1.52 40.23 1.48 40.21
CG112 588  29.12  2.64 29.02 291 29.09  2.43 29.01 2.23 28.99
FMS512 6.78 3409 327 33.98 334 34.00  2.70 33.91 2.54 33.93
FM1024 6.61 3657  3.15 3652  3.34 36.53  2.57 36.48 2.48 36.49
FB1024 10.55 3502 544 3478 5.88 3495  5.06 34.79 5.09 34.85
FG768 6.14 2620  3.08 26.18  2.81 26.18  3.98 26.17 3.84 26.18
ST1024 711 2946  3.40 29.47  3.76 2933 3.15 29.52 2.97 29.40
Average 6.62  33.74 286 33.77  2.90 33.76  2.61 33.76 2.52 33.76

We also test our proposed ETT on outside sequences, which are sequences not in the training
set. These 4 extra sequences and their settings are in Table 4-19. The performance of DL AGPS

with SPS and various early termination mechanisms on these sequences is shown in Table 4-20.

Table 4-19 The extra sequences and their settings.

Abbreviation Bitrate (K bps) Frame rate (fps) Number of frames
st96 silent 96 10 300
tt512 table tennis 512 30 300
mb1024 mobile calendar 1024 30 300
ne40 news 40 7.5 90

In Table 4-20, we find that the DL AGPS with our best 2D ETT outperforms the plain DL
AGPS scheme by 151.1% in average search points (0.03dB PSNR loss) and it outperforms (4.28)
by 11.6% (0.03dB PSNR gain). And it has about the same performance as (4.29) in both speed
and quality. And the DL AGPS with our best 3D ETT outperforms the plain DL AGPS scheme by
166.8% in average search points (0.06dB PSNR loss), and it outperforms (4.28) by 18.5%
(0.00dB PSNR loss), outperforms (4.29) by 6.3% (0.03dB PSNR loss) and outperforms our best
2D ETT by 6.3% (0.03dB PSNR loss). Overall, the results of the outside sequences are consistent

with the training sequences and, therefore, the proposed ETT is rather effective.
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Table 4-20 The performance of DL AGPS with SSP and various early termination mechanisms on
the extra sequences in Table 4-19.

(4.28) (4.29) Best 2D ETT Best 3D ETT

ASP PSNR ASP PSNR ASP PSNR ASP PSNR
st96 5.86 35.25 234 3526 206 3527 200 3528 198 35.28
tt512 6.02 35.15 223 35.02 231 35.08 207 3505 203 35.01
mb1024 532 27.54 293 2752 3.02 2753 287 2752 253 27.51
ne40 5.40 34.49 2.54 3440 1.61 3442 206 3446 193 34.39
Average 5.65 33.11 251 33.05 225 33.07 225 33.08 212 33.05

Section 4.5 A PBME Algorithm with All Features

We have discussed in the previous three sections three techniques that reduce computations of a
PBME algorithm. They are 1) adaptive genetic pattern search, 2) starting point set and 3) early
termination mechanism. We now examine the performance of the PBME scheme with all the best

selected techniques.

Table 4-21 The ASP performance of FS, DS, AIPS-MP,; ARPS-ZMP and our proposed best

algorithm.
Type Sequence ES DS AIPS-MP ARPS-ZMP Ours

CT256 1,024 13.81 1.37 3.58 1.36

CT40 1,024 15.03 1.64 5.59 1.63

HL40 1,024 15:38 1.62 5.14 1.56

MD96 1,024 14.85 1.70 3.62 1438

X CG112 1,024 15.09 2.96 0.88 2.22
FM512 1,024 16.17 3.64 9.59 2.55

FM1024 1,024 15.76 3.55 9.22 2.49

FB1024 1,024 22.36 7.78 18.86 5.06

FG768 1,024 15.30 5.04 7.07 3.84

ST1024 1,024 16.96 4.54 10.63 2.98

CT256 1,024 14.15 1.43 4.36 1.42

CT40 1,024 16.05 1.77 6.71 1.75

HL40 1,024 15.62 1.88 5.53 1.74

MD96 1,024 15.44 2.35 4.82 1.89

X CG112 1,024 17.04 4.45 11.95 2.90
FM512 1,024 18.72 6.07 13.31 3.89

FM1024 1,024 18.26 5.92 12.99 3.83

FB1024 1,024 27.39 10.16 23.35 7.15

FG768 1,024 16.30 6.73 8.57 4.24

ST1024 1,024 19.49 5.73 13.14 4.07

Average 1,024 16.96 4.02 9.40 2.90
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Table 4-22 The PSNR performance of FS, DS, AIPS-MP, ARPS-ZMP and our proposed best

algorithm.
Type Sequence FS DS AIPS-MP ARPS-ZMP Ours

CT256 39.57 39.51 39.62 39.59 39.62

CT40 32.04 31.92 32.90 32.88 32.88

HL40 33.55 34.25 35.07 34.87 35.05

MD96 39.80 40.00 40.15 40.25 40.22

X CGl112 29.08 29.14 28.48 29.15 29.03
FM512 34.06 34.06 33.56 34.00 33.92

FM1024 36.56 36.58 36.31 36.51 36.50

FB1024 35.28 34.93 34.01 34.82 34.82

FG768 26.20 20.18 20.17 26.19 20.18

ST1024 29.48 29.44 29.40 29.18 29.40

CT256 38.95 38.60 38.99 39.01 38.94

CT40 29.81 29.94 31.18 31.16 31.12

HL40 32.33 33.08 33.88 33.68 33.91

MD9%6 38.41 38.60 38.63 38.77 38.73

ox CGl112 27.36 21.51 26.54 27.45 27.28
FM512 32.42 32.38 31.86 32.37 32.23

FM1024 35.28 35.24 35.01 35.20 35.20

FB1024 33.44 33.28 32.83 33.12 33.15

FG768 25.51 25.53 25.50 25.54 25.52

ST1024 28.11 27.96 27.67 27.68 2791

Average 32.86 32.91 32.89 33.07 33.08

Table 4-23 The sizes (number of bytes) of the coded bitstreams by FS, DS, AIPS-MP, ARPS-ZMP
and our proposed best-algorithm.

Type Sequence FS DS AIPS-MP ARPS-ZMP Ours

CT256 1138576 1154328 1148264 1156088 1148108

CT40 207006 206694 206660 206858 206576

HLA40 209118 208978 207572 207758 207434

MD96 369588 369794 370496 369730 370022

X CGl112 433944 433866 433836 433932 434006
FM512 653302 654332 654126 654218 654466

FM1024 1269206 1279634 1280938 1275726 1277238

FB1024 390320 388370 393910 390680 391420

FG768 822462 822476 822514 822436 822436

ST1024 1149726 1164650 1216952 1164104 1174556

CT256 646044 625926 648724 637682 641638

CT40 105318 104618 104460 104714 104304

HLA40 106892 106708 106414 106562 106550

MD96 185516 185396 186060 185458 185552

X CGl112 219324 219258 230076 219274 219240
FM512 328032 327970 327630 327956 328200

FM1024 644290 642322 646118 641534 642620

FB1024 193800 195098 197144 197026 197410

FG768 412942 412944 412902 412930 412976

ST1024 618942 626372 634250 621654 628812

Average 505217 506487 511452 506821 507681
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The performance of FS, DS [27][28], ARPS-ZMP[30], AIPS-MP[31] and the DL AGPS with
SPS and the 3D ETT (our proposed best algorithm with all features) are shown in Table 4-21,
Table 4-22, and Table 4-23. Experimental results show that the proposed best algorithm
outperforms ARPS-ZMP by 224% in average search points, AIPS-MP by 38%, DS by 485%, and
FS by 353 times while the average PSNR quality is slightly better (0.01dB~0.22dB) than all the
other algorithms including FS and the average sizes of the coded bitstreams are very similar
(-0.49%~+0.74%). This may be due to the fact that our scheme often prefers a smaller value MV,
which requires fewer bits in coding. Thus, a few additional bits are available for texture (DCT
coefficients) coding, which results in better overall PSNR.

For our proposed algorithm with all .the best techniques, each component contributes to the
overall computation gain and the PSNR _quality.- In average, the adaptive pattern search
outperforms its constituent pattern searches up to 34% with roughly the same PSNR quality, the
optimal starting point set further provides 5% computation gain with 0.1dB PSNR increment, and
the early termination mechanism offers up to 167% -computation acceleration and roughly the
same PSNR quality. Clearly, the early. termination_mechanism provides the most gain in the
computation complexity, and the optimal starting point set offers the least gain. Yet, in theory, the
video quality may degrade if we further accelerate the computation by the early termination
mechanism. Comparatively, the video quality can be slightly improved by the optimal starting
point set because it may reduce the variances of MV PDF and use less bits to code MV.

We may examine the overhead of the tools in our proposed complete algorithm one by one.
For the genetic pattern search and adaptive pattern switching strategy, the run time profiling
shows that the overhead is about 2% of the total computation time used for motion estimation. For
the starting point calculation, it is fixed for each pattern search algorithm and thus it is negligible.
For the early termination criterion calculation, the parameters in Eq. (4.46) are fixed and Eq. (4.46)

uses simple arithmetic operations performed on a small amount of data. The additional computing
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time is also negligible. Overall, the run time overhead of our proposed PBME algorithm is very
small. Note that, this profiling is conducted on the personal computer with an Intel CPU. It may
not perfectly portray the reality. For an embedded multimedia system, we may use a DSP or an
ASIC for the video encoding and decoding. The extra computation of our proposed algorithm can
be calculated in parallel by some auxiliary hardware.

Note that, the three proposed tools are not necessary coupled together. Any of the three tools
can be adopted and combined by the other BME schemes. Because there are numerous possible

combinations, it is beyond our capability to explore all the possibilities.

4.5.1 The Rate-Distortion Performance

To further understand the rate-distortion performance of our proposed best algorithm, we
further select one slow motion sequence, container,-and one fast motion sequence, foreman, and
code them by FS and our proposed best algorithm at four different bitrates under the settings in
Table 4-24.

Table 4-24 The rate-distortion-test sequences and their settings.

Abbreviation Sequence Bit rate Frame rate Number

(K bps) (fps) of frames
CT256 container 256 7.5 300
CTI128 container 128 7.5 300
CToé4 container 64 7.5 300
CT32 container 32 7.5 300
FM1536 foreman 1536 30 300
FM1024 foreman 1024 30 300
FM512 foreman 512 30 300
FM256 foreman 256 30 300

Fig. 4-17 shows the ASP performance of DS, AIPS-MP, and our proposed best algorithm. We
do not show the ASP of FS here, because they are fixed to 1024. The ASPs of FS are very large
when compared with all other fast algorithms. Our proposed best algorithm noticeably

outperforms all other algorithms. Fig. 4-18 shows the rate-distortion performances of FS, DS,
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AIPS-MP and our proposed best algorithm. For both low and high motion sequences, our
proposed best algorithm shows rather good rate-distortion performance. Quantitatively, we show
the BDPSNR and BDRate [58][59] comparisons between FS, DS, AIPS-MP and our proposed
best algorithm in Table 4-25. Thus, it is quiet clear that our proposed best algorithm provides
substantial gain in computing complexity and keeps comparable rate-distortion performance with

other algorithms including FS.

18
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2, AIPS-MP
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CT256 CT128 CT64 CT32  FMI536  EMI1024  FM512  FM256
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Rate-Distortion Curves
39.00 —— Container by Ours
—=— Foreman by Ours
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Fig. 4-18 The rate-distortion performances of FS, DS, AIPS-MP and our proposed best

algorithm.
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Table 4-25 The BDPSNR and BDRate comparisons between FS, DS, AIPS-MP and our

proposed best algorithm.

Ours to FS Ours to DS Our to AIPS
Sequence BDPSNR(dB) BDRate(%) BDPSNR(dB) BDRate(%) BDPSNR(B)  BDRate(%)
Container 0.40 -6.84 0.55 -11.34 -0.02 0.40
Foreman -0.14 3.60 -0.15 378 0.36 -1.58
Average 0.13 -1.62 0.20 -3.78 0.17 -3.59

Section 4.6 Chapter Summary

In this chapter, three important techniques have been investigated for reducing complexity of
pattern-based block motion estimation (PBME). They are adaptive pattern switch [35][36][37][38]
[39][40][41][42][43], starting point _ selection ~[14][16][30][31] and early termination
[14][30][31][50]. The prior arts in designing these schemes often based on heuristic reasoning
and/or speculation on the collected data.-The contribution of ‘this study is to re-examine these
techniques using a systematic approach. Optimal or nearly optimal solutions are thus proposed.
Based on our previous motion estimation model -and pattern search analysis ([51] and [54]), we
impose the genetic search structure on the conventional ERPS and PHS schemes to reduce
computation. Furthermore, a pattern switching ‘strategy based on the on-line MV statistics is
proposed. A well-chosen starting point set indeed reduces the average number of search points. A
step-by-step procedure is proposed to find the best starting point set. The so-called early
termination can further improve the search speed. We suggest a metric (correlation coefficient) to
identify the best predictor for determining the termination threshold. At last, a PBME algorithm
combining all the above features is examined. Simulations show that the search speed of the
proposed algorithm is much faster than any previous search algorithm and its coding quality is

kept at about the same PSNR level.
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Chapter 5 Refined Model and Its Impact on Video
Coding

In Chapter 3 [54], we propose a model for describing the pattern-based block motion estimation
behavior. Our proposed model uses the notion of weighting function to characterize the efficiency
of a pattern search algorithm. WF is defined as the minimum number of search points that a
specific pattern search algorithm can achieve when the matching error surface is monotonic.
Therefore, its values depend on the search patterns. Given the motion vector probability
distribution of a video sequence, our complete model (expressed in (3.18)) can predict the
performance (number of search points) of a PBME algorithm by using its WF and the motion
vector probability distribution of a particular video sequence.

Yet, because our proposed.genetic-algorithms are stochastic in nature, the afore-mentioned
WF cannot accurately characterize their average performance (number of search points). The
difference is due to the fact that the genetic pattern searches randomly pick up the search direction
but the classical pattern searches move along the steepest descent path on the matching error
surface directly toward the best matching point:-One purpose of this study is to construct a more
accurate model for the genetic pattern searches and thus we can predict more precisely the
performance of a new search algorithm. Accordingly, the refined weighting function (RWF, first
mentioned in Section 1.2) is proposed. Also, inspired by the RWF, we devise a new type of
genetic pattern searches that further reduce the computation.

Besides, we re-examine two critical coding tools in the adaptive pattern search scheme with
the refined model. One is the impact of the component pattern searches of an adaptive pattern
search on the switching threshold and the other one is the impact of the starting points on a search
algorithm’s performance. For comparison purpose, the conventional adaptive pattern search

schemes and the genetic adaptive pattern search schemes are designed and tested. For each type of
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pattern searches (the conventional type and the genetic type), we design a single level adaptive
scheme and a double level adaptive scheme. Thus we totally propose four schemes.

The remaining parts of this chapter are organized as follows. Section 5.1 analyzes and
models the behavior of a genetic pattern search by the RWF, which replaces the original WF.
Based on the analysis, new search algorithms are proposed in Section 5.2. In Section 5.3, we
adopt RWF in our refined model and compare its prediction accuracy with the original model
using WF. Based on the refined model and the selected constituent searches, Section 5.4
re-examines the optimal threshold selection in the pattern switching mechanisms and the
construction of the starting search point set for different search algorithms. Finally, we summarize

this chapter in Section 5.5.

Section 5.1 Analysis'on Genetic Pattern Searches

In this section, we dissect how the RWF characterizes the genetic pattern searches. First, we
examine the assumption on "the matching -error surface required in the building of RWF.
Accordingly, we demonstrate the'construction of RWF by using two genetic pattern searches as

the examples.

Matching Error Surface

To ensure the convergence to the optimal point of a fast BME search algorithm, most
previous researches assume that the matching error (distortion) surface has a bell-like shape. In
history, Jain and Jain [44] first suggested that the matching error surface satisfies the

quadrant-monotonicity condition [45]. Let the origin point O = (0,0) be the global minimum point

(GMP) of a two-dimensional function Fpu(x,y). Function Fgy (x,y) is said quadrant monotonic
(QM) if Fou (4) < Fou (B) for any two points satisfying the following conditions: 1) Points
A=(x4,y4) and B=(x3,yp) are located in the same quadrant within the search range, and 2) |x|< |xg|

and |yal<|ys| , or |xal<|xs| and |ya|< |vs|. This condition requires only the monotonic ordering
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relationship for any two points located inside the same quadrant. It does not specify the
relationship for two points resided on different quadrants. Although a loose condition may cover a
large range of real data, it also excludes powerful fast search techniques that assume a reasonable
distance-dependent ordering relationship for two points near the quadrant boundaries.

The other extreme makes a strong uniform monotonicity (SM) assumption on the error

surface. Examples are the recent studies [46][47] on examining the matching error surface. In [46],
a mathematical model (5.1) of the matching error surface is proposed and verified by data fitting
on the nature image sequences. In their proposed model (5.1), Fsy, () denotes the matching error
of a search point with a distance of “/”” away from GMP, F, (0) is the global minimal matching
error value of GMP, r is the chess board distance of (x,y), and 4 is an image-dependent constant.
Although [46] shows that their statistical data fit this.model well, in practice the error surface of
individual block (not the entire image sequence) is processed by the search algorithm. In this case,
model (5.1) is too strong and the individual block error surface-does not match it well from time

to time.
Fg, () = Fg, (0)+ Fy, (0)x~h -7 where 7 =|x|+]y]. (5.1)

In this study, we assume that the matching error (distortion) surface Fouss(r,y) is a

quadrant monotonic function with smooth quadrant border (QMSB), which is specified by the

following two properties.
Property 1: The error surface Qusa(T.Y) is quadrant-monotonic (QM).
Property 2: Let C' = (2¢,yc) and D = (zp,yp) be any two points inside the search region
and located in different quadrants and (|C' — D| < Rporder > (€.8»> Riorder =3)). If
|C'— O| > |D — O] implies Fouss(C) > Fouss(D) , then this quadrant monotonic
function Fgysp(.) has a smooth quadrant border.
With this QMSB assumption, we can compare two points located at different quadrants if
they are not far away from each other. On the other hand, it is a more general and relaxed model
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than the model (5.1). In (5.1), the matching error surface is strictly symmetric, but QMSB only

assumes smooth borders. Thus, it can cover broader cases.

Construction of the Refined Weighting Function

Because WF does not accurately describe the random nature of genetic pattern searches,
herein we propose a RWF under the QMSB assumption. The RWF, RW F'(z,y), represents the
average number of search points needed to reach the GMP located at (0,0) from the starting point
(x,y). In contrast, the weighting function, W F'(z,y), represents the minimal number of search
steps required to reach GMP from the starting point (x,y).

We use two examples to show how the averaged search point numbers are produced in a
genetic search algorithm. In the following examples, we assume a parent point has N possible
mutations (children) and m out of the N candidates-have smaller matching error than the parent.
Our purpose is to find the mutation with-a matching error smaller than the parent. If we check one
mutation at one step, it takes at'most (N-m+1) steps (search points) to identify a solution. Fig. 5-1
shows all possible search sequences for the case of a parentpoint with 4 possible mutations (A, B,
C, and D) and only one of them, denoted as D, has the smaller matching error (than the parent). In
the first branch, point A is picked up at the first step. Because its matching error is higher than the
parent, we continue to pick up another mutation among B, C, and D. At any step, if D is picked, it
becomes the new parent. Another example is shown in Fig. 5-2, in which two mutations (out of 4
candidates), denoted as C and D, have smaller matching errors. In this case, the new parent is
produced when either C or D is checked. At the end, based on the entire search sequence tree in

each case, the expected number of search points (ESP) needed to move from a parent to a smaller

matching error mutation is £ , as shown by (5.2).

m

N+1
m+1

5.2
, where N >m. (5-2)

Dy) -

v_m m$y o i (N—-m)—(i—
Em—N*‘N;((J"'l)XE( N

Herein we assume that the probability for selecting each mutation is equal. On a QMSB
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matching error surface, the number of the admissible mutations, m, is decided by the relative
location pattern formed by the current parent and the global optimal point. And N is decided by
the search pattern, the parent location and its type (a starting parent or an intermediate parent).
Egs. (5.3) and (5.4) exemplify the calculations of the ESP values for finding an admissible
mutation (it becomes the next parent) for the cases of Fig. 5-1 and Fig. 5-2, respectively. Similarly,

the ESP values of the other m and N values can be calculated. Table 5-1 lists the ESP values, E.,

for N=3,...,6, and m=1,...,N.
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Fig. 5-1 All possible search.sequences for aparent point with N=4 and m=1.

Fig. 5-2 All possible search sequences for a parent point with N=4 and m=2.
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Table 5-1 The ESP.values
m
EN
1 2 3 4 5 6
3+12.00 | 1.33 (1.00
4 12501671 1.25 ]| 1.00
N
5 13.0012.00](1501.20]| 1.00
6 3502331751140 1.17 | 1.00

5.1.1 RWEF of the Genetic Rhombus Pattern Search

(5.3)

(5.4)

As an example, we construct the RWF for GRPS, defined in Subsection 4.2.1 [54]. Assuming the

matching error surface is QMSB, then we are able to get the number of small distortion points (the

value of m in E") in this search pattern. For GRPS, there are two types of starting search point

GRPS
Sl

cases ( and

GRPS
S 2

) and two types of intermediate search point cases (M, ™ and M), as

shown in Fig. 5-3. Herein, points A, B, C and D are the search candidates (mutations) and point
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GMP denotes the best matching point. In Fig. 5-3(a), assuming S’ is the starting point of a
new search, only 1 out of the 4 points belonging to the GRPS pattern centering at S have a

smaller matching error than S

when point GMP has the same horizontal or vertical
coordinate as S . Otherwise, it is the Fig. 5-3(b) case, in which 2 out of the 4 points in the
pattern centering at Si"° have smaller errors. Similarly, for the intermediate steps in Fig. 5-3(c),
only 1 out of the 3 points centering around M has a smaller matching error when point GMP
has the same horizontal or vertical coordinate as M,”*™ . Otherwise, in the case of Fig. 5-3(d), 2
out of the 3 points centering around M**® have smaller errors. Therefore, the average numbers

of search points needed to move from S 5 7 M and MJ™ to a legitimate next

pointare E(=5/2), Ej(=5/3), E}(=4/2)and E, (=4/3), respectively, as listed in Table 5-1.
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@ ‘ i :

(a) (b) (c) (d)

Fig. 5-3 Two cases of starting search points, (a) and (b), and two cases of intermediate search
points, (c) and (d), in the search process of GRPS when the matching error surface is QMSB.

We next consider the averaged search points of multiple moves from the starting point (x,y)
to the best matching point (0,0). This average number of search points is defined to be
RWFrps(x,y). When the starting point is chosen and thus it belongs to one of the quadrants
defined by GMP, the GRPS procedure moves along the search points only located inside that
quadrant, as shown by Fig. 5-3(b) or Fig. 5-3(d). If the starting point is located on a quadrant
boundary, Fig. 5-3(a) and Fig. 5-3(c) show the cases that it moves along that quadrant boundary.

Thus, the RWF grps(x,y) function is quadrant-symmetric. We only need to study one quadrant. Fig.
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5-4 shows the recursive procedure of calculating the RWF of GRPS based on the above analysis.

And Fig. 5-5 shows the contour plot of RWF grps(x,y).

B = Abs(y)
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Data ‘
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Fig. 5-4 The construction of RWF
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\ \\ /’

Fig. 5-5 The RWF of GRPS

Let GMP be (0,0). In Fig. 5-4, RW F(x,y) denotes the final RWF value from the starting

point (x,y) to GMP, and Weight(a,f)) denotes the recursively accumulated ESP from the

intermediate point (a,f) to GMP. Because RW F(x,y) is quadrant-symmetric, we only need to
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consider the non-negative quadrant, thus a=Abs(x) and f=Abs(y). Abs(.) denotes the absolute
value operation. When a=0 and =0, this is the last step and RW F'(z,y) is 5. The other cases
include intermediate points. If a#0 and S0, it is Fig. 5-3(b) and thus, RW F(x,y) is E;+4 plus
the average of Weight(o-1,5) and Weight(o,-1). Otherwise, either a0 or f#0; thus, it is Fig. 5-3(a)
and RWF(z,y) is E;+4 plus either Weight(a-1,B) or Weight(a,p-1).

In calculating the intermediate point ESP, Weight(a,f5), we adopt the recursive approach. If

a=0 and PB=0, this is the final step and Weight(o,p) is 0. If 0#0 and B#0, it is the Fig. 5-3(d) case
3
and Weight(a,p) is £, plus the average of Weight(a-1,5) and Weight(o,-1). Otherwise, either

3
a0 or PB#0; thus, it is Fig. 5-3(c) and Weight(a,f) is E, plus either Weight(a-1,p) or
Weight(a,p-1).

Average Search Points of GRPS on Sequence 2X MD96

w w0 . a)éis 0 2w
Fig. 5-6 The real average search points of GRPS when it is applied on the sequence ‘22X MD96’.
Fig. 5-6 shows the real average search points of GRPS when it is applied to the sequence ‘2X
MD96’. The outer ring of Fig. 5-6 is empty because these points never become the best matching
points. When we compare Fig. 5-6 (the real average search points of GRPS) with Fig. 3-11 (the
WF of GRPS) and Fig. 5-5 (the RWF of GRPS), the inner contour shape in Fig. 5-6 is more

similar to that in Fig. 5-5 than to that in Fig. 3-11. Evidently, RWF is a better representation for

the real average search point than WF.
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5.1.2 RWEF of the Genetic Point-oriented Hexagonal Search

As another example, we construct the RWF for GPHS, defined Subsection 4.2.1 [55]. For the ease

of the derivation of RWF for GPHS, let the matching error surface H,,,(x,y)be a quadrant

monotonic function with smooth border (QMSB), O =(0,0) be the optimum search point, and
P=(x,,y,) and Q=(x,,y,) be any two points in the search range, and [P — Q[ < R,
(Rnpa=3). That is, [P — O[> |Q — O] implies H,,,(P)> Hp,s(0Q) . Then, using a similar

procedure in deriving RWFrps(x,y), we construct RWFgpus(x,y) by computer simulations and
show its contour plot in Fig. 5-7.

We like to add some remarks here on the necessity of the QMSB assumption. In Subsection
5.1.1 [53], the less rigorous QM-assumption is sufficient for the'derivation of RWF for GRPS. Yet,
in the derivation of RWF for GPHS, the more rigorous QMSB assumption is required. It is
because that a large search pattern containg possibly two nearby points in different quadrants. For
different search patterns, we can adjust. Ry,q in the QMSB assumption to match the maximum
distance between any two points in the search pattern. A special case is R,;,;=2; the QMSB
assumption becomes the QM assumption in this case. On the other hand, when R,;,; approaches
infinity, the QMSB assumption becomes the SM assumption. In this study, the more general
QMSB assumption is used to expand our previously proposed model [53] for modeling the

genetic pattern searches.
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Fig. 5-7 The RWF of GPHS.

Section 5.2 Proposed Momentum-directed Genetic Pattern

Searches

We propose two momentum-directed genetic pattern searches (MD-GPS) in this section. They are
the momentum-directed version of GRPS and GPHS, respectively.

Observing the operation of the current GRPS, we find a way to speed it up: the algorithm
should move directly towards the direction of best matching point. Statistically, the successful
direction of the previous search is often the correct search direction at the current point. Our
QMSB error surface model certainly leads to this conclusion too. Therefore, instead of selecting
randomly one mutation from the candidate child set, we select the mutation based on its preceding
successful mutations. That is, it tends to move along the same direction of the prior successful
search. On the other hand, it can change the search directions when the assumption of QMSB
matching error surface is not valid.

The flow chart of the proposed algorithm, namely, momentum-directed GRPS (MD-GRPS),
is described by Fig. 5-9. Its RWF contour plot is in Fig. 5-8. In Fig. 5-10, C is the current parent,

P is obtained using the last successful mutation direction, and PP is obtained using the
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second-to-the-last successful mutation direction differing from P. Arrows show the search order. It
indicates shows the search order (priority) of candidate mutations in MD-GRPS, which is 1) the
mutation with the same direction as the last successful mutation (P), 2) the mutation with the same
direction as the second-to-the-last successful mutation (PP), 3) the mutation with the opposite
direction to the second-to-the-last successful mutation, and 4) the mutation with the opposite
direction to the last successful mutation. In Fig. 5-10, P cannot be in the opposite direction of PP.
If they are in the opposite direction, the search process returns to its previous parent. Also, the
fourth (also the least) priority point is never searched, because the opposite direction to the last
successful mutation is the previous parent point that has been checked in the early search step.
Likewise, by adopting the momentum-directed search order in the genetic pattern search, we
convert GPHS to a momentum-directed one. Fig. 5-11 shows its RWF contour plot. The flow
chart of the proposed algorithm, namely, the momentum-directed GPHS (MD-GPHS), is
described by Fig. 5-12. And the search order (priority) of candidate mutations in MD-GPHS is
shown in Fig. 5-13. In Fig. 5-13, C is the current parent, P is obtained using the last successful
mutation direction, and PP is obtained using the second-to-the-last successful mutation direction
but is different from P. Arrows show the search order. Fig. 5-13 shows two possible cases, which
are decided by the relative direction of the last successful mutation direction (P) and the
second-to-the-last successful mutation direction (PP). Similar to the discussions in MD-GRPS, we
do not consider the case that P and PP are in the opposite direction. And the search order is
determined by the following principles. The first priority candidate is the mutation with the same
direction to the last successful mutation (P), the second is the one with the same direction to the
second-to-the-last successful mutation (PP) but it must differ from P, and the last candidate is the
one with the opposite direction to the last successful mutation. As for the search order of the
remaining three candidates, it is determined by their distance to the last successful mutation, P

(the smaller one is checked first). When they are identical, the order is decided by their distance to
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the second-to-the-last successful mutation, PP. Similar to the discussion in MD-GRPS, the sixth
(also the least) priority point is never searched, because the opposite direction to the last

successful mutation is the previous parent point that has been checked.
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Fig. 5-8 The RWF of MD-GRPS
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Fig. 5-10 The search priority of all candidate mutations in MD-GRPS.
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Fig. 5-11 The RWF of MD-GPHS
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Fig. 5-13 The search priority of all candidate mutations in MD-GPHS.
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Average Search Points of MD-GRPS on Sequence 2X MD96
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Fig. 5-14 The real average search points of MD-GRPS when it is applied on the sequence ‘2X
MD96’.

Fig. 5-14 shows the real average search points of MD-GRPS when it is applied to the
sequence ‘2X MD96’. The outer ring of Fig. 5-14 is empty because these points never become the
best matching points. When we compare Fig. 5-14 with Fig. 5-8, we can find that the shapes of

their inner contours are similar. Thus,,RWF characterizes well the real average search points of

MD-GRPS.

5.2.1 Performance of Momentum-Directed Genetic Pattern

Searches

To test the proposed algorithm, ten sequences (denoted as ‘1X’) with different MV variances are
tested under the parameter settings given in Table 3-1. Moreover, to test the extreme cases, we
generate ten new test sequences by skipping the even frames of these sequences, and these new
sequences are denoted as ‘2X’. They are roughly the two times fast forward playback of the
originals. These 20 test sequences are coded by an MPEG-4 SP@L3 encoder. The other
simulation settings are the same as described in Section 3.1.

In selecting the simulation platform, our focus is whether it provides a fair and direct
comparison among different ME algorithms. The H.264 scheme is a newer and very sophisticated
platform. It contains many tools that affect the choice of motion vectors, such as multiple (block)

mode decision and rate distortion optimization. For example, at different bit rates, the same mode
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decision tool can select different motion vectors. Thus, the PSNR impact due to the use of
different ME algorithms may become hidden or be blurred. Thus, we adopt a simpler MPEG-4
platform on which the impact of different motion estimation algorithms can be observed more
clearly.

The average number of search points (ASP) and the peak signal to noise ratio (PSNR) for

various sequences and search algorithms are listed in Table 5-2 and Table 5-3, respectively. The
predicted MV (PMYV, defined by (2.2)) is used as the search starting point in all cases. FS denotes
the full search, ERPS is proposed by [30] but we replace the MV predictors in [30] by the PMV,
and PHS is proposed by [33].

The pair-wise performance comparisons in ASP and PSNR between MD-GRPS and some
selected popular algorithms are given in Fig. 5-15-and Fig. 5-16. The pair-wise performance
comparisons in ASP and PSNR between-MD-GPHS and some selected popular algorithms are
given in Fig. 5-17 and Fig. 5-18. In Fig. 5-15 and Fig. 5-17, the computing gain (CQG) is defined
as the ASP ratio between the original and the'chosen algorithm minus one. In Fig. 5-16 and Fig.
5-18, the quality gain (QG) is the PSNR difference. The CG of MD-GRPS and MD-GPHS
substantially outperforms the other popular algorithms, while their average QG is near 0.

MD-GRPS can be up to 18% faster than GRPS for very fast sequences (2X FB1024), and
their PSNR values are about the same. On the average, comparing their ASP values, MD-GRPS is
7% faster than GRPS, 35% faster than ERPS, 1.39 times faster than DS, 1.76 times faster than
FSS and 143 times faster than FS. And the PSNR of MD-GRPS is about the same as that of all the
other search algorithms (+0.06dB ~ -0.06dB).

Similarly, MD-GPHS can be up to 13% faster than GPHS for very fast sequences (2X
FB1024) and its PSNR quality is roughly at the same level. On the average, MD-GPHS is 5%
faster than GPHS, 12% faster than PHS, 69% faster than DS, 96% faster than FSS, and 101 times

faster than FS. And the PSNR of MD-GPHS is about the same as those of GPHS and the
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non-genetic version (PHS) (+0.02dB ~ -0.05dB). When being compared to the conventional
pattern search algorithms, all these three algorithms (MD-GPHS, GPHS, and PHS) have slightly
PSNR drop (-0.12dB ~ -0.17dB).

Generally MD-GRPS is significantly better in speed than MD-GPHS for most test sequences.
However, MD-GPHS outperforms MD-GRPS by 3% for very fast sequences (2X FB1024). As
expected in comparing Fig. 5-8 with Fig. 5-11, RWFyp_gpus has smaller values than RWFyp_gres
near the outer border of the search area. In short, one algorithm beats the other in certain scenarios
but none is the best for all cases. Thus, a good adaptive pattern scheme that dynamically selects
the most appropriate pattern search algorithms further reduces the computational complexity.

The computation overheads of MD-GRPS and MD-GPHS are negligible. For all possible
pairs of the last and the second-to-the-last successful mutation directions, we generate the
corresponding search priority tables in advance. In execution of a momentum-directed algorithm,
we record the last and the second-to-the-last successful mutation directions, use this direction pair
to choose the search priority ‘table and decide the search priority accordingly. A few memory
access and comparisons can do all the works.

Note that, in Table 5-2, the PSNR of both*1X*and “2X’ HL40 acquired by FS are lower than
those acquired by other algorithms. Because HL40 has slight noise textures, the motion vector
field produced by FS is much noiser (with larger magnitude) than those produced by the other
algorithms. This phenomenon influences the matching error little but the size of motion vectors a
lot, therefore, has a more significant influence on the coded picture quality, particularly for low

bitrate sequences.

Table 5-2 ASP (Average Number of Search Points).
Type Sequence MD-GRPS GRPS ERPS MD-GPHS GPHS PHS DS FSS FS
1X CT256 5.28 5.36 5.75 9.19 937 9.52 13.81 17.53 1024
CT40 5.85 5.98 7.04 9.51 9.88 10.31 15.03 18.38 1024
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HLA40 6.23  6.35 7.33 9.60 9.68 10.10 1538 18.72 1024

MD96 594 598 6.83 9.58 9.65 10.02 14.85 18.37 1024
CGl112 5.75  6.08 7.63 929 9.76 1025 15.09 18.25 1024
FM512 6.80  7.13 8.65 9.80 10.00 10.57 16.17 19.03 1024
FM1024 6.64 694 8.32 9.67 9.85 1035 1576 18.71 1024
FB1024 10.35 11.89 16.36 11.36 12.75 14.18 2236 22.70 1024
FG768 6.06  6.38 7.57 9.72 995 1034 1530 18.73 1024
ST1024 724 7.65 9.95 990 10.56 11.40 1696 19.47 1024
CT256 543  5.62 6.35 926 951 974 1415 17.72 1024
CT40 6.40  6.60 8.15 9.82 1034 10.89 16.05 19.11 1024
HL40 6.37  6.51 7.57 9.66 974 1022 15.62 1888 1024
MD96 6.29  6.40 7.56 9.77 9.85 10.38 1544 18.76 1024
X CGl12 6.73  7.36 9.54 9.74 10.64 11.48 17.04 19.57 1024
FMS512 825 9.07 11.70 1052 11.01 12.02 18.72 20.67 1024
FM1024 798 885 11.36 1035 1079 11.75 18.26 20.28 1024
FB1024 13.27 1575 2232 12.94 14.62 17.15 2739 2622 1024
FG768 6.55 7.01 8.69 9.88 10.35 10.83 16.30 19.29 1024
ST1024 861 928 12.45 10.72  11.73 13.00 1949 21.26 1024
Average 7.10  7.61 9.56 10.01 10.50 11.23 16.96 19.581024.00

Table 5-3 PSNR (Peak Signal to Noise Ratio).

Sequence MD-GRPS GRPS ERPS MD-GPHS GPHS PHS

CT256 39.48 3949 39.50 3947 3943 39.44 39.51 39.49 39.56
CT40 31.99 3221 32.08 3128 3124 3147 3192 31.69 32.04
HLA40 3441 3449 34.60 34.15 34.14 3422 3425 34.17 33.55
MD96 40.05 40.08 40.09 39.78 39.79 39.85 39.99 3993 39.80
CGl112 29.13  29.14 29.16 29.06 29.03 29.06 29.14 29.13 29.08
X FM512 34.04 34.05 34.10 33.86 33.89 33.92 34.06 34.02 34.06
FM1024 36.55 36.52 36.61 3649 36.46 3644 36.59 3648 36.56
FB1024 3492 3487 34.88 3485 3473 3487 3493 3494 3528
FG768 26.18 26.17 26.19 26.14 26.15 26.17 26.18 26.16 26.20
ST1024 29.16 29.39 2931 2931 2942 2933 2944 2935 2948
2X CT256 38.63 38.65 38.68 38.52 3852 3851 38.60 38.72 38.95
CT40 30.15 30.28 30.22 2930 29.22 2954 2994 29.73 29.81
HL40 33.25 3331 33.38 3291 3295 33.02 33.07 3293 3233
MD96 38.66 38.66 38.66 38.39 3837 38.44 38.60 38.57 3841
CGl112 2743 2743 27.53 2733 2723 2734 27.50 2745 27.37
FM512 3236 3234 3245 32.16 32.19 3223 3238 3235 3242
FM1024 35.23 3525 35.29 35.14 35.12 3521 3524 35.17 3528
FB1024 33.26 3322 3324 33.21 33.12 33.22 3328 33.30 33.44
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FG768 25.52 2551 25.53 2546 2542 2548 2553 2549 2551
ST1024 27.86 2799 2793 27.87 27.87 27.88 2797 2793 28.10

Average 3291 3295 3297 3273 3271 3278 3291 32.85 32.86

Fig. 5-15 Performance comparisons in ASP between MD-GRPS and some popular algorithms.
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Fig. 5-16 Performance comparisons in PSNR between MD-GRPS and some popular algorithms.
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Fig. 5-18 Performance comparisons in PSNR between MD-GPHS and some popular algorithms.
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Section 5.3 Refined Analytic Model for PBME and Its

Accuracy

In Chapter 3 [54], we propose a mathematical model (expressed by (3.18)) that can predict the
average number of search points (ASP) produced by a PBME. In Chapter 4 [55], we demonstrate
the construction of a new PBME by using this model. With RWF, the original model is enhanced.

The refined analytical model is introduced in this section.

Refined Analytical Model

The refined weighting function [53], RW Fsa(z,y), is defined to be the average number of
search points produced by a search algorithm when the best matching point is located at (x,y). We
are able to calculate the RWF «associated with-a search algorithm when the matching error
(distortion) surface is unimodal and -monotonic. -For the deterministic search algorithms
(conventional PBME), their WF and RWF are the same. For the probabilistic search algorithms
(for example, genetic algorithms), the WEF expression is not an accurate representation. In
comparison, RWF better portrays the behavior of a search algorithm.

Fig. 5-20 shows the RWF contour plots of 4 popular pattern search algorithms, FSS [26], DS
[27][28], PHS [33] and ERPS. The ERPS algorithm adopted here is the adaptive rood pattern
search in [31] but with a single starting point - PMV. The value marked on a contour represents
the average search points required for a search algorithm to move from the origin to a point
(location) on the contour.

Because WF does not well convey the randomness nature of the genetic pattern searches, the
RWEF replaces WF in (3.18). Thus, (3.18) becomes (5.5). We use (5.5) as the refined model to
characterize the behavior of a pattern search algorithm.

ASP=C, X DS (x,y)X RWFy, (x, )+ C, (5.5)

x,y€A

-96-



Training Methods

Similar to the training methods of the original model [54] using WF, there are two methods
to decide the C; and C; in the refined model using RWF. In the first method, we apply a fixed SA
to a set of training sequences to compute C; and C; by the regression method. Our objective is
that the refined model with trained C; and C, can predict the ASP of a new sequence accurately. In
the second method, we apply a few search algorithms (the training algorithms) to a specific
sequence, and then calculate C; and C, based on the acquired data. In this case, the goal is that the
refined model with trained C; and C, can predict the ASP values produced by a new search

algorithm on the same sequence.

Prediction Accuracy

When we use the second method to predict the ASP of new (genetic) search algorithms, Fig.
5-19 show the comparison between the actual ASP and the predicted ASP for the 1X (left part)
and 2X sequences (right part). The blue dash straight line is obtained by applying the regression
method to the purple cross data points that are generated by FSS, DS, ERPS and PHS. Therefore,
it shows the perfect prediction case (actual ASPs equal predicted ASP). The red open diamond is
the prediction data point of GRPS using WF and the green solid diamond uses RWF. The red open
square is the prediction data point of GPHS using WF and the green solid square uses RWF. It is
quite obvious that the green solid symbols (the refined model with RWF) are closer to the blue
dash line (perfect prediction) than the red open symbols (the original model with WF) in most
cases. Quantitatively, Table 5-4 shows the average absolute difference between the actual ASP
and predicted ASP when either WF or RWF is in use. Herein, the parameters C; and C, in the
predictive ASP model are trained by using FSS, DS, ERPS and PHS. When we replace WF by
RWEF, the average prediction error for GRPS is reduced from 2.76 to 0.74, and that for GPHS is

reduced from 2.8 to 1.5. Clearly, the refined model with RWF is more accurate.
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On the other hand, when we use the first method to predict the ASP of a new sequence, the
prediction differences owing to the adaptation of WF and RWF in the model are about the same. It
is because the inaccuracy of WF is compensated by adjusting parameters C; and C; in its overall

prediction model.

Table 5-4 The average absolute difference between predicted ASP and actual ASP for all 1X and
2X sequences.
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Fig. 5-19 The relationships between the actual ASP and the predicted ASP for the 1X and 2X

sequences.
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Section 5.4 Refined Model and Coding Tool Design

Typically there are three major coding tools in an adaptive pattern search algorithm — the
constituent pattern searches, the pattern switching strategy, and the starting point set.

In constructing the adaptive pattern searches, we first select the constituent pattern searches.
An effective pattern search should have a small RWF at all locations in a search window.
However, it is difficult to devise such a pattern search; therefore, two complementary pattern
searches, one is good at small motion vectors and the other is good at large motion vector, are
selected as the pattern search set in an adaptive pattern switching scheme.

From the RWF profiles given in Fig. 5-20, we conclude that 1) DS outperforms FSS for all
possible MVs, 2) ERPS uses the least-number of search points when the motion vectors are
located near the PMV, and 3) PHS uses the least number of search points for the motion vectors
located far from PMV. Therefore, two conventional pattern searches, ERPS and PHS, are selected
as the traditional pattern search set.

Fig. 5-21 shows the RWF of the genetic pattern -searches; GRPS (the genetic-based ERPS)
and GPHS (the genetic-based PHS). When comparing Fig. 5-20 to Fig. 5-21, we choose GRPS
and GPHS as the genetic pattern search set, because the RWF of GRPS has the smallest values for
small motion vectors and that of GPHS has the smallest values for large motion vectors. The

details of GRPS and GPHS are described in Subsection 4.2.1 [54][55].
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5.4.1 Pattern Switching Strategy

The second component in an adaptive pattern search scheme is the pattern switching strategy.
Similar to Subsection 4.2.2, we design one single level and one double level pattern switching
strategies for each of the two selected pattern search sets. Totally four schemes are proposed.
Each pattern search set comprises two pattern searches. One set is the traditional pattern searches
{ERPS, PHS}, and the other set is the genetic pattern searches {GRPS, GPHS}. In Subsection

4.2.2, the original model with WF is used. In this subsection, we use the refined model with RWF
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Fig. 5-21 Contour plots of the RWF for GRPS and GPHS.
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to decide a proper switching threshold and the pattern switching strategy for each pattern search
set is described by a flowchart.

The key element in the pattern switching scheme is an adequate threshold. It is used to
decide which pattern search is to be used. The target is to lower the computational complexity.
That is, when search algorithm 1 (SA1) is in use, its average search points should be fewer than
that produced by using search algorithm 2 (SA2). According to our refined average search point
equation (eq. (5.5)), their difference in ASP is in (5.6).

A =C % ;ASFS (X, V)X (RWFy,, (x,y)— RWFy,,(x,)) - (5.6)

Note that both RWFs,; and RWFs,4, depend on search algorithms only. Because Sgs is a
function of the MV variance and A 4¢p isthus picture-dependent, the parameter C; is fixed for a

video sequence. Dividing A 45p by C;, we obtain the refined switching index (J4sp) in (5.7).

Jup =05/ C, (5.7)
Given a set of search patterns (SA1 and SA2), their Jysp for a video sequence can be
calculated. When Jsp > 0, SA2 should be.used; otherwise, SA1 should be selected. In principle,
by using plural thresholds in a cascaded architecture, we may choose the best-performed pattern
searches and expand the number of component pattern searches from two to many. Yet, it is
impractical to identify a large set of pattern searches of which each pattern individually produces
the least search points for a portion of image sequence. Therefore, only the 2-pattern search

schemes are designed in the following examples.
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Fig. 5-22 The J,sp between ERPS and PHS w.r.t. MV variance (a) and that between GRPS and
GPHS w.r.t. MV variance (b).

Note that when the parameters of our model, such as ({;, {;) in Sgs(x,y), are calculated based
on the data of a picture (frame), J4sp 1s a function of the MV variance measured for one frame.
The J4sp between ERPS and PHS, drawn against MV.variance is shown in Fig. 5-22(a). In Fig.
5-22 (a), the X-axis is the MV wariance of the horizontal component and the Y-axis is that of the
vertical component. When J,sp > 0, ERPS outperforms PHS in terms of ASP, and when Jsp < 0,
PHS is better. Therefore, the switching eriterion can be the MV variance values, at which Jysp
equals zero. For the case of ERPS and PHS pair, the threshold, J,5,=0, is approximately a straight

line below in the MV variance coordinates.

P-VAR, +Q-VAR, =R. (5.8)
Thus, this dash straight line in Fig. 5-22 (a) acts as the pattern switching threshold. That is,
Eq.(5.8) is used to decide the pattern search in use, wherein P, O, and R are determined by the
numerical methods. In our experiments, P=1, 0 =1 and R = 20.
When GRPS and GPHS are the two component pattern searches, their Jysp is shown in Fig.
5-22 (b). Similarly, J4sp=0 can be approximated by a straight line in the MV variance coordinates.
This dash straight line in Fig. 5-22 (b) serves as the pattern switching threshold. That is, Eq. (5.8)

is again used to decide the pattern search and P=1, 0= 1 and R =48 . Thus, similar to Subsection
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4.2.2, single level pattern-switching strategy and double level pattern-switching strategy are

developed.

Single Level Strategies

An adaptive pattern switching strategy is thus developed based on the threshold equation
defined by (5.8). To ease the following discussions, the adaptive algorithm using ERPS and PHS
is called adaptive pattern search (APS). Its flow chart is shown in Fig. 5-23. A similar algorithm
is developed for the GRPS and GPHS pair and is called adaptive genetic pattern search (AGPS),
which has a similar procedure but uses different parameters in Step S3 in Fig. 5-23 and, of course,

ERPS and PHS are replaced by GRPS and GPHS, respectively.

S2: calculate the variances of MV

Fig. 5-23 The flow chart of APS.

Moreover, when comparing Fig. 5-22 (a) to Fig. 5-22 (b), we find that the optimal threshold
for APS is smaller than that for AGPS. It means the search capability difference between the
constituent pattern searches in APS locates in the relative low motion part but that in AGPS
locates in the relative high motion part. This is consistent with the characteristics of the

constituent pattern searches.
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Double Level Strategies

Because the MV characteristics vary at different parts of a frame, using one single search
pattern for the entire frame is a rough strategy. To refine this strategy, we also switch the search
pattern for each image block inside a frame. Because the MV characteristics in the nearby
spatial/temporal areas tend to be similar, three neighboring blocks in the current and previous
frame are used in calculating the MV variance as defined by (4.8).

The so-called double level pattern switching strategy for APS (abbr. DL APS) constitutes the
frame-level switching, which is similar to the single-level strategy, and the block-level switching,
described by the last paragraph. Its flow chart is shown by Fig. 5-24. If the previous frame has
small MV variances, we incline towards-using ERPS as the search pattern with the exception that
the MV variances derived from.the nearby blocks are very large. On the other hand, if the
previous frame has large MV ‘variances, PHS is often chosen unless the MV variances derived
from the neighboring blocks are very small. The parameter values of P, O, Rpume, Rpiocks, and
Rpiock2 are derived from data by using the numerical method. In our experiments, P =1, Q = 1,
Rprame = 20, Rpiocks = 3, and Ryjocr2 =37

Likewise, the flow chart of the double level pattern switching strategy for AGPS (abbr. DL
AGPS) is similar but the corresponding parameters in S3, S4, and S5 are P=1, O = 1, Rpame = 48,

Rpiocki= 6, and Rpjocr2 = 90. Also, ERPS and PHS are replaced by GRPS and GPHS, respectively.
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Fig. 5-24 Flow chart of the double level adaptive pattern search (DL APS).

5.4.2 Starting Point Selection

The third component in an adaptive pattern search scheme is the starting point or initial point in a
search. Often, the starting point is predicted by using a ‘combination of the MVs of a few
neighboring blocks. The most probable MV._predictor is used as the starting point for PBME
algorithms. We like to design a criterion that evaluates the effectiveness of MV predictors and
propose a systematic approach that constructs the optimal Starting Point Set (SPS). The DL AGPS
and DL APS discussed in the previous section are the search algorithms used to test our SPS in
this section.

We assume that the refined PBME model is valid for different starting points. Then, because
the MV field acquired by FS is fixed for a given video sequence, a different starting point only
does a translational shift on the motion vector distribution. Given two starting points, SP1 and

SP2, their difference in ASP can be represented by (5.9).

Ep =C X Z((SFsism(x’ ) - SFSiSPZ (x, Y))X RWF,(x,y)) (59)

x,y€A
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Let SP2 be a fixed starting point for comparison purpose; (5.9) thus becomes (5.10), in which 7

1S a constant.

€450 =C X Z(SFS;S'PI(xﬂy)XRWFSA(x’y))_’? (5.10)

x,y€A

H o = (€40 +m)/C, = Z(SFS75P1(xay)XRWFSA(xay)) (511)

x,yeA

Rearrange (5.10), we obtain Hasp defined by (5.11), which is a function of ASP using SP1.
Thus, it is used as the performance assessment criterion for starting point evaluation. Because
RWFsy(x,y) is fixed for a specific algorithm and only Sps spi(z,y) may vary, Hasp is a
function of MV characteristics. Herein, the MV characteristics are the MV variances calculated
from the MV w.r.t. a specific starting point (SP1). And the MVs are acquired by using FS on the
selected sequences.

Similar to Section 4.3, we consider-the MV candidates in Fig. 4-12 in the starting point
selection and investigate the representative MV predictors in Eq.(4.14)-(4.25). We find the MV
predictors with the smallest average Hyspand form-the candidate set. We choose one or several
starting points from the candidate set to form the starting point set (SPS) by using the progressive
SPS construction in Fig. 4-13. Accordingly, we can get the constructed SPS. Like Section 4.3, we

obtain similar SPS for our proposed search schemes.

5.4.3 Coding Performance

Test Image Sequences and Platform

Table 5-5 The test sequences and their parameters.

Bit rate Frame rate Number
Abbreviation Sequence PSNR
(K bps) (fps) of frames
CR2048 crew 2048 60 600 35
CR1024 crew 1024 60 600 32
SC3072 soccer 3072 60 600 35
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IC1536 ice 1536 60 480 38

MB768 mobile 768 30 300 25
FM512 foreman 512 30 300 34
FM1024 foreman 1024 30 300 36
FB1024 football 1024 30 90 35
FG768 flower garden 768 30 250 26
ST1024 Steven 1024 30 300 29

Table 5-5 lists the test image sequences (denoted as the ‘1X’ sequences), their target coding
bit rates (which are chosen to produce acceptable image quality), peak signal noise ratio (PSNR),
and the other parameters. To test the extreme cases, we enlarge the extent of motion by generating
some new sequences consisting of the odd frames of the ‘1X’ sequences (denoted as the ‘2X’
sequences) and one quarter frames of the original (denoted as the ‘4X’ sequences). All the
sequences are in the CIF (352X288)xesolution. The video coding platform in our experiments is
an MPEG-4 (SP@L3) encoder. Only ithe-first frame is coded as I frame, and all the remaining
frames are coded as P frames. The motion vector search range is 16, the initial quantization step
size is set to 15, and the block size is 16x16. The quantization step is adjusted to achieve the

desired bit rate. The frame skip and the block skip (macroblock not coded) modes are not in use.

Performance of Pattern Switching Strategy

Fig. 5-25 and Fig. 5-26 show the performances of ERPS, PHS, APS and DL APS, and Fig.
5-27 and Fig. 5-28 show the performances of GRPS, GPHS, AGPS and DL AGPS, when they are
tested on the ‘1X’, ‘2X’ and ‘4X’ sequences under the settings given in Table 5-5. In these figures,
‘ASP’ is the average number of search points per block, and ‘PSNR’ is the average frame PSNR
of a sequence.

Regarding the ASP performances of the conventional pattern searches in Fig. 5-25, PHS
outperforms ERPS in 1 out of ten 1X sequences, 3 out of ten 2X sequences and 7 out of ten 4X

sequences. And the computational complexity of our proposed APS and DL APS are usually
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below the lower one of ERPS and PHS. In most cases, DL APS has the lowest computation
complexity, and APS takes the second place. On average, APS outperforms EPRS by 4.1%, 8.9%
and 15.6% for the 1X, 2X and 4X sequences, and outperforms PHS by 20.2%, 11.7% and 4.7%.
And DL APS outperforms ERPS by 4.3%, 9.3% and 16.2%, and outperforms PHS by 20.5%,
12.1% and 5.2%. In terms of PSNR in Fig. 5-26, the performances of both APS and DL APS are
very close to those of FS in all our test sequences. Specifically, their PSNR performances usually
are between those of the constituent pattern searches.

Regarding the ASP performances of the genetic pattern searches in Fig. 5-27, GPHS never
outperforms GRPS in 1X sequences. Yet, GPHS outperforms GRPS in 1 out of ten 2X sequences
and 2 out of ten 4X sequences. And the computational complexity of our proposed AGPS and DL
AGPS are usually below the lower. one of GRPS and GPHS. In most cases, DL AGPS has the
lowest computation complexity, ‘and ~AGPS takes the second place. On average, AGPS
outperforms GPRS by 0.6%, 2.5% and 4.5% for the 1X, 2X and 4X sequences, and outperforms
GPHS by 38.0%, 26.1% and 14.5%. And DL-AGPS outperforms GRPS by 0.9%, 2.5% and 4.9%,
and outperforms GPHS by 38.3%,.26:1% and 14.9%. In terms of PSNR in Fig. 5-28, the
performances of AGPS and DL AGPS are very near to those of FS in all our test sequences.
Likewise, their PSNR performances usually are between those of the constituent pattern searches.

Clearly, the adaptive pattern switching strategy is robust. It does not hurt the low motion
variance sequences but effectively reduces the computational complexity on the high motion
variance sequences. The proposed algorithms outperform their constituent pattern search
algorithms in ASP, and their PSNR qualities typically are in-between those of their constituent
algorithms.

When we compare the conventional adaptive schemes with the genetic adaptive schemes, the
genetic versions are better than their corresponding non-genetic versions in computational

complexity. For example, GRPS is better than ERPS, and GPHS is better than PHS. GRPS is an
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efficient search algorithm for almost all image sequences. Therefore, the advantage offered by the
adaptive switching mechanism is relatively small for the genetic searches. In contrast, the
adaptive pattern switching mechanism helps the conventional searches more. Though marginally,
the double level strategy further improves in both PSNR and speed.

Note that the sequences with high but regular motions, like ‘flower garden’ (FG768), are
considered as moderate motion sequences because we use a very good MV predictor. In our
pattern switching schemes, the MV difference to its predictor decides which pattern search to be
used. We do not compare our pattern switching algorithms, DL APS or DL AGPS, with the other
pattern switching algorithms because our selected constituent pattern searches differ from those
used by the other existing pattern switching algorithms. Moreover, the performances of our

constituent pattern searches already exceed those of many known pattern switching algorithms.
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(c) ASP on 4X sequences
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Fig. 5-25 The ASP values of applying ERPS, PHS, APS and DL APS on the 1X, 2X and 4X
sequences.
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Fig. 5-26 The PSNR values of applying FS, ERPS, PHS, APS and DL APS on the 1X, 2X and 4X
sequences.
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Fig. 5-27 The ASP values of applying GRPS, HFﬁS, AGPS and DL AGPS on the 1X, 2X and 4X

sequences.
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(b) PSNR on 2X sequences
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Fig. 5-28 The PSNR values of applying FS,. GRPS; GPHS, AGPS and DL AGPS on the 1X, 2X
and 4X sequences.

Discussions

To examine the correctness of the switching strategy, Fig. 5-29 shows the frequency (in
percentage) that PHS is chosen-when the adaptive pattern schemes, APS and DL APS, are applied
to the 1X, 2X and 4X sequences. Fig. 5-30 shows the percentage that GPHS is chosen when the
adaptive genetic pattern schemes, AGPS and DL AGPS, are applied to those sequences. In Fig.
5-29, the percentages of using PHS on the 4X sequences are higher than those on the 2X
sequences, and in turn, the percentages on the 2X sequences are higher than those on the 1X
sequences in both APS and DL APS. This is consistent with our earlier projection that the
adaptive algorithms show advantages on fast moving sequences. Similar conclusion applies to the
use of GPHS in both AGPS and DL AGPS.

Fig. 5-31 and Fig. 5-32 display the pattern switching thresholds (represented by the dash
straight line) and the refined switching index J,sp. In these figures, a yellow dot denotes the Jsp
of an image frame (equivalently, an MV variance pair) and a cross denotes the J,sp of an entire

sequence. In Fig. 5-31, the dots in the higher-right part of J45,=0 are increasing as the sequences
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are getting faster. Similar situation happens in Fig. 5-32. In Fig. 5-31, the MV variance pairs are
evenly distributed on the two sides of the pattern switching threshold between ERPS and PHS. In
contrast, in Fig. 5-32, most MV variance pairs are in the lower-left side of the pattern switching
threshold designed for GRPS and GPHS. Consequently, the percentages of using PHS in Fig.

5-29 are higher than that of using GPHS in Fig. 5-30.
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Fig. 5-29 The frequency (in percentage) that PHS is chosen when the adaptive pattern schemes,

APS and DL APS, are applied'to the 1X, 2X and 4X sequences.
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Fig. 5-30 The frequency (in percentage) that GPHS is chosen when the adaptive genetic pattern

schemes, AGPS and DL AGPS, are applied to the 1X, 2X and 4X sequences.
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the 1X, 2X and 4X sequences when the constituent searches are ERPS and PHS.
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Fig. 5-32 Pattern switching threshold (dash line), J4sp (solid line) and the frame MV variance of
the 1X, 2X and 4X sequences when the constituent searches.are GRPS and GPHS.

For our selected image “sequences, the adaptive switching methods offer reasonable
computation reduction and ensure robust performance in the occasional high motion cases. It
provides nearly the best ASP with negligible PSNR degradation: Overall, our design methodology
produces a stable and efficient fast MV search scheme-that can be used for all types of motion
sequences. Indeed, based on the refined ASP. prediction model, we can systematically choose the
nearly optimal decision threshold. In practical implementation, the non-linear ideal threshold

function is approximated by a liner equation.

Section 5.5 Chapter Summary

This study tries to improve the modeling accuracy of the pattern-based motion vector search
algorithms. Specifically, we propose the refined weighting function, which is defined as the
average number of search points needed to find the best matched point. Based on the QMSB
matching error surface assumption, we can analytically calculate the RWF for the search
algorithms of our interests. RWF is a better replacement for our previously proposed weighting

function. When it is used to predict the ASP performance of a new search algorithm, it reduces the
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average prediction errors significantly.

In the model improving process, we also find clues to further speed up the previously
proposed genetic pattern search algorithms. The basic idea is that the search direction used in the
previous search steps hints us in finding the next matching point. By properly prioritizing the
candidate search order, we lower the average computations. Two momentum-directed genetic
pattern search algorithms are thus devised. Simulation results show that the modified algorithms
offer 5% to 7% average computation reduction when compared with their corresponding genetic
pattern searches.

In addition, this study provides a methodology to design a robust and high performance
adaptive pattern search algorithms. Our refined analytical model for pattern-based block motion
estimations (PBME) serves as the foundation of the entire.design process. The refined model can
accurately predict the average number of search points (ASP) of a single pattern search. By using
the refined model, we re-examine the critical coding tools in the adaptive pattern searches, the
decision threshold and the starting point set.

Our proposed design methodology leads to a systematic procedure in choosing the
appropriate threshold for selecting the pattern search. Based on the characteristics of the
constituent searches, the motion vector variance is chosen as the decision metric. And the
threshold function is well approximated by a linear equation to reduce computation. Accordingly,
the frame-level switching strategy and the block-level switching strategy are constructed. With
different constituent pattern searches, two examples of adaptive pattern search design are
presented. One uses the conventional pattern searches and the other uses genetic pattern searches.
A most distinct advantage of the adaptive schemes is their robust performance (in both

computation and quality) on both slow and fast motion sequences.
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Chapter 6 Conclusions

A systematic approach is taken in this dissertation to construct a mathematical model for the
pattern based block motion estimation (PBME) algorithms. The complete PBME model includes
two elements: the statistical probability distribution function (PDF) of motion vectors derived
from a video sequence and the weighting function (WF) derived from a search algorithm. With the
proposed model, we can predict the performance of a new search pattern without actually
applying the search algorithm to a video sequence. Thus, it helps us in constructing new patterns
searches. Two application examples are given. One is the design of a genetic pattern search, and
the other is the performance prediction of a PBME algorithm.

Based on the analytical model, three important techniques have been investigated for
reducing complexity of PBME. They are adaptive pattern switch, starting point selection and early
termination. The contribution-of this study is to examine these techniques using a systematic
approach. Optimal or nearly optimal solutions are thus identified. A PBME algorithm combining
all the above features is constructed and the simulations show that the search speed of the
proposed algorithm is much faster than many previous search algorithms and its coding quality is
kept at about the same PSNR level.

We further improve the modeling accuracy of the pattern-based motion vector search
algorithms. Specifically, we propose the refined weighting function (RWF) on the quadrant
monotonic function with smooth quadrant border (OMSB) matching error surface assumption.
RWEF is a better replacement for WF. When it is used to predict the ASP performance of a new
search algorithm, it reduces the average prediction errors significantly. In the model improving
process, we also find clues to further speed up the previously proposed genetic pattern search
algorithms. Two momentum-directed genetic pattern search algorithms are thus devised. We also

use our refined analytical model for PBME as the foundation of the PBME design process. In
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re-examining the major coding tools in the adaptive pattern search algorithm, we suggest a better
threshold for selecting the pattern search.

In summary, we build an analytical model for PBME and demonstrate how we use the model
to develop new pattern searches for video coding applications. In addition, we further refine the

model and apply it for developing better search schemes.

Section 6.1 Future Works

This study may be further extended in two directions as described in this section. One is regarding

the theoretical robustness of our proposed model and the other, new video coding applications.

Theory

In developing the analytical.model, the motion vectors are obtained by applying the full
search (FS) to video sequences of CIF size (352X288) in integer pixel precision and the block size
in the block matching process.is fixed to 16X16. Yet, in current standardization process of next
generation video coding standard (high efficiency video coding, HEVC), video sequences may
alter from Sub-QCIF (128X96) to-16HD (7680X4320) in size [48], the block size may vary from
2X2 to 64X64 [49] and the pixel precision may range from 1/4 pixel to 1 pixel. With the
variations in these three factors, the accuracy of proposed analytical model may need adjustment.
We should examine the influences of image size and block size. If a mismatch occurs, additional
parameters may be introduced into this model. Providing that additional parameters are introduced
to the model, we may develop new fast algorithms for mode selection and sub-pixel motion

estimation.

Application
The computation time of PBME varies drastically due to the nature of PBME. This high

variation is not welcomed by the practical system, whose computing power (due to its hardware or

software platform) is usually limited and fixed. The frame-to-frame and block-to-block
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computation variation may cause various synchronization problems or, otherwise, may waste
computation power. Thus, the computation-aware motion estimation is desirable. How can we
achieve the best coded image quality under the given or restricted computation resources? Can our
proposed analytical model help in designing the computation aware motion estimation schemes?

These issues are worth exploration.
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