
國 立 交 通 大 學

電控工程研究所

博士論文

合作式學習為基礎之混合型進化演算法在模糊類神

經系統設計及多漏斗函數最佳化的應用

Cooperative Learning Based Hybrid Evolutionary Algorithms

for Neural Fuzzy System Design and Optimization of

Multi-funnel Functions

研究生：鄭逸章

指導教授：林昇甫 博士

中華民國一○一年六月

合作式學習為基礎之混合型進化演算法在模糊類神

經系統設計及多漏斗函數最佳化的應用

Cooperative Learning Based Hybrid Evolutionary Algorithms

for Neural Fuzzy System Design and Optimization of

Multi-funnel Functions

研 究 生：鄭逸章 Student: Yi-Chang Cheng
指導教授：林昇甫 博士 Advisor: Dr. Sheng-Fuu Lin

國 立 交 通 大 學

電機與控制工程學系

博 士 論 文

A Dissertation

Submitted to Institute of Electrical Control Engineering
National Chiao Tung University

In Partial Fulfillment of the Requirements
For the Degree of

Doctor of Philosophy
in

Electrical and Control Engineering
June 2012

Hsinchu, Taiwan, Republic of China

中華民國一○一年六月

合作式學習為基礎之混合型進化演算法在模糊類神

經系統設計及多漏斗函數最佳化的應用

研究生：鄭逸章 指導教授：林昇甫 博士

國立交通大學 電控工程研究所

摘 要

在這篇論文中，我們主要在探討的是進化型演算法的合作學習機制。本論文中所探討的

三種進化型演算法包括：基因演算法、粒子群聚最佳化演算法、以及自適應共變異數矩

陣演化策略。在基因演算法的改良上，我們提出了族群式的共生演化概念，使得基因演

算法可以將解空間分割成數個子空間，且在每個子空間中分別得去探索最佳解。我們也

在合作式的粒子群聚演算法中提出了一個可分割度的偵測方法，以便將不可分割之變數

置入同一族群中演化。至於關於自適應共變異數矩陣演化策略的改良，本論文提出了一

個基於均值移動的平行運算機制，使得我們可以平行地在解空間中提供多個自適應共變

異數矩陣演化策略學習器來探索解空間中的不同區域。論文的內容包括了將進化型演算

法套用在模糊類神經系統上之架構和參數學習、演算法上的改良、平行運算機制以及結

合兩種演算法優點的混合型演算法的研究。

關鍵字：合作式學習，基因演算法，粒子群聚最佳化演算法，演化策略，自適應共變異

數矩陣。

 i

Cooperative Learning Based Hybrid Evolutionary Algorithms

for Neural Fuzzy System Design and Optimization of

Multi-funnel Functions
Student：Yi-Chang Cheng Advisor：Dr. Sheng-Fuu Lin

Institute of Electrical Control Engineering

National Chiao Tung University

Abstract

In this dissertation, we mainly focus on researching the cooperative behavior of evolutionary

algorithms. Algorithms discussed in this dissertation include genetic algorithm (GA), particle

swarm optimization (PSO) and evolution strategy with covariance matrix adaptation

(CMA-ES). The modification of genetic algorithm (GA) is done by introducing the

group-based symbiotic evolution (GSE) technique which enables genetic algorithm (GA) to

partition the search space into smaller subspaces and explore each smaller subspace by a

separate agent to alleviate the curse of dimensionality. We also propose a separability

detection method based on covariance matrix adaption mechanism into the cooperative

particle swarm optimization (CPSO) to locate non-separable variables into the same swarm.

As to the research of evolution strategy with covariance matrix adaptation (CMA-ES), we

introduce the mean shift procedure which allows us to apply multiple CMA-ES instances to

explore different parts of the search space in parallel. The scope of this dissertation includes

how to implement evolutionary algorithms on neural-fuzzy systems, the improvement of

algorithms, parallel computing and the emergence of two algorithms

Keywords: cooperative learning, genetic algorithm, particle swarm optimization, evolution

strategy, covariance matrix adaptation.

 ii

 iii

誌謝
經過六年的奮戰，博士生涯終告一段落，這六年，需要感謝的人太多，因為攻讀博

士學位又豈是易事，若不是有這麼多貴人相助與支持，怎有辦法成就今日。

家人，往往是最好的避風港，感謝父親鄭文昌先生、母親羅鳳美女士如此無怨無悔

的付出，沒有您們的支持，我無法辦到，身為您們兒子，實在太幸福了；相對於您們的

付出，我並不是個稱職的好兒子，總在實驗室忙到沒日沒夜，為了學業的繁忙而忘了關

心，照顧您們，卻從未聽您們抱怨，甚至在經濟上如此的資助我，謝謝您們，您們是我

永遠的靠山，而將來我也會努力，成為您們的靠山。弟弟鄭彥章先生，感謝你的體諒；

如此漫長的求學，父親母親都靠你們照顧，辛苦了。

指導教授是博士論文產生最重要的ㄧ環，我的指導教授-林昇甫博士，感謝您指導

學生，在您的教導下，學生學習到很多，您在學術研究上的身教、言教，讓學生的博士

生活能無比的充實，也增加了多元的歷練。

博士論文的完善需要口試委員的監督指導，感謝我的口試委員—潘晴財教授、林錫

寬教授、張翔教授以及鍾鴻源教授，感謝您們不辭辛勞不遠千里而來，也感謝您們指導

學生口試，有了您們的指導，學生的博士論文才能更臻完備。

研究室裡互相扶持幫忙的好友太多了，謝謝你們。特別感謝實驗室博士班學長永

吉，同學啟曜及俊偉，有你們的並肩作戰，博士生涯才不致如此漫長。另外也特別感謝

碩士班學弟煒清，你是一個很好的學習夥伴，感謝你的協助，此博士論文才能順利完成，

辛苦了。

在此，僅將此論文獻給我最愛的家人、師長、學長、同學、學弟妹，願與大家分享

這難得的榮耀。

鄭逸章

一○一年 六月 五日

Contents

CHINESE ABSTRACT... I

ABSTRACT .. II

CHINESE ACKNOWLEDGEMENTS .. III

CONTENTS...IV

LIST OF TABLES ...VI

LIST OF FIGURES... VII

CHAPTER 1 INTRODUCTION.. 1

1.1 MOTIVATION .. 1
1.2 RELATED WORKS .. 4

1.2.1 Reinforcement Learning Tasks .. 4
1.2.2 Multi-funnel Function Optimization Functions ... 7

1.3 APPROACH ... 10
1.4 ORGANIZATION OF DISSERTATION.. 11

CHAPTER 2 FOUNDATIONS .. 13

2.1 NEURAL FUZZY SYSTEM .. 13
2.2 GENETIC ALGORITHM ... 16
2.3 PARTICLE SWARM OPTIMIZATION.. 18

2.3.1 Standard Particle Swarm Optimization ... 18
2.3.2 Cooperative Particle Swarm Optimization .. 20

2.4 EVOLUTION STRATEGY WITH COVARIANCE MATRIX ADAPTATION ... 22
2.4.1 Standard CMA-ES.. 22
2.4.2 Kernel Density Estimation ... 24
2.4.3 Mean Shift Procedure .. 26

CHAPTER 3 EVOLUTIONARY ALGORITHMS.. 29

3.1 Q-VALUE BASED PSO ... 29
3.1.1 Learning Q-values of Particles... 30
3.2.2 Q-value based PSO... 31

3.2 TWO-STRATEGY REINFORCEMENT EVOLUTIONARY ALGORITHM.. 33
3.2.1 Two-strategy Reinforcement Signal Design .. 33
3.2.2 Group-based Symbiotic Evolution ... 36

3.3 MEAN SHIFT-BASED EVOLUTION STRATEGY WITH COVARIANCE MATRIX ADAPTATION..................... 37

 iv

 v

3.3.1 Motivation .. 38
3.3.2 Sampling from a Mixture Model ... 41
3.3.3 Mean Shift-based Clustering ... 41
3.3.4 Updating of Mixture Probability Model .. 45

3.4 A SEPARABILITY DETECTION APPROACH TO COOPERATIVE PARTICLE SWARM OPTIMIZER 48

CHAPTER 4 SIMULATIONS ... 51

4.1 REINFORCEMENT LEARNING TASKS ... 51
4.2 REAL-VALUED FUNCTION OPTIMIZATION TASK .. 78

4.2.1 Test Functions Introduction .. 79
4.2.2 Function Optimization Simulation .. 81

CHAPTER 5 CONCLUSION... 89

BIBLIOGRAPHY ... 92

VITA ... 100

PUBLICATION LIST... 101

List of Tables

Table 4.1: The initial parameters of the QPSO for cart-pole balancing system......................54
Table 4.2 : The initial parameters of the TSR-EA for cart-pole balancing system.55
Table 4.3: Summary Statistics of Example 1. ...56
Table 4.4: Summary Statistics of Example 1 under a difficult control goal.61
Table 4.5: The initial parameters of the QPSO for two-pole inverted pendulum system.66
Table 4.6 : The initial parameters of the TSR-EA for two-pole inverted pendulum system...67
Table 4.7: Summary Statistics of Example 2. ...68
Table 4.8: Type and name of test functions. ...79
Table 4.9: Parameters of the simulation..82
Table 4.10: MS-CMA-ES and CMA-ES parameters. ...83
Table 4.11: Average fitness at 20% number of fitness calculations.84
Table 4.12: Average fitness at 50% number of fitness calculations..84
Table 4.13: Average fitness at 100% number of fitness calculations......................................85
Table 4.14: Average fitness value ...86

 vi

List of Figures

Figure 1.1: Visualization of a single-funnel, 2-D Rastrigin’s function.7
Figure 1.2: Visualization of a multi-funnel-funnel, 2-D double Rastrigin’s function.7
Figure 2.1: Structure of TSK-type NFS...15
Figure 2.2: Flowchart of the genetic algorithm. ..16
Figure 2.3: The roulette wheel selection. ..17
Figure 2.4: Crossover operator. ...17
Figure 2.5: Mutation operator..18
Figure 2.6: Diagram of the PSO learning mechanism...19
Figure 2.7: Flowchart of the PSO..21
Figure 2.8: Schematic diagram of the CPSO...21
Figure 3.1: Architecture of QPSO. ..30
Figure 3.2: Coding scheme between a particle and a TSK-type NFS in QPSO......................32
Figure 3.3: Block diagram of QPSO. ..32
Figure 3.4: Structure of a chromosome in the GSE...37
Figure 3.5: Coding structure of a chromosome in the TSR-EA. ...37
Figure 3.6: Computer simulation result of CMA-ES with initial search location at (0, 0).39
Figure 3.7: The block diagram of the MS-CMA-ES. ..40
Figure 3.8: Example of kernel density estimation with variable bandwidth selection............46
Figure 3.9: Case with particles uniformly distributed in the search space to find the global

optimum lies in a bar-shaped local optimal region..48
Figure 3.10: Case with particles gather around the bar-shaped optimal region to find the global

optimum...49
Figure 3.11: Block diagram of SD-CPSO. ..50
Figure 4.1: Single-link inverted pendulum system. ..52
Figure 4.2: 50 control results of the cart-pole balancing system using the TSR-EA in Example 1.

(a) Angle of the pendulum. (b) Angular velocity of the pendulum. (c) Velocity of the cart.
...57

Figure 4.3: 50 control results of the cart-pole balancing system using the TDGAR in Example 1.
(a) Angle of the pendulum. (b) Angular velocity of the pendulum. (c) Velocity of the cart.
...58

Figure 4.4: 50 control results of the cart-pole balancing system using the CQGAF in Example 1.
(a) Angle of the pendulum. (b) Angular velocity of the pendulum. (c) Velocity of the cart.
...59

Figure 4.5: 50 control results of the cart-pole balancing system using the R-GCSE in Example
1. (a) Angle of the pendulum. (b) Angular velocity of the pendulum. (c) Velocity of the

 vii

 viii

cart. ..60
Figure 4.6: 50 first 1000 time steps control results the QPSO of the cart-pole balancing system. .

(a) Angle of the pendulum. (b) Angular velocity of the pendulum. (c) Velocity of the cart.
...62

Figure 4.7: 50 last 1000 time steps control results the QPSO of the cart-pole balancing system. .
(a) Angle of the pendulum. (b) Angular velocity of the pendulum. (c) Velocity of the cart.
...63

Figure 4.8: Double-link inverted pendulum system. ...64
Figure 4.9: 50 first 1000 time steps control results of the double-link inverted pendulum system

using the QPSO. (a) Angle of link 1. (a) Angle of link 2. (c) Angular velocity of link 1. (d)
Angular velocity of link 2..70

Figure 4.10: 50 first 1000 time steps control results of the double-link inverted pendulum
system using the TSR-EA. (a) Angle of link 1. (a) Angle of link 2. (c) Angular velocity of
link 1. (d) Angular velocity of link 2...71

Figure 4.11: 50 first 1000 time steps control results of the double-link inverted pendulum
system using the TDGAR. (a) Angle of link 1. (a) Angle of link 2. (c) Angular velocity of
link 1. (d) Angular velocity of link 2...72

Figure 4.12: 50 first 1000 time steps control results of the double-link inverted pendulum
system using the CQGAF. (a) Angle of link 1. (a) Angle of link 2. (c) Angular velocity of
link 1. (d) Angular velocity of link 2...74

Figure 4.13: 50 first 1000 time steps control results of the double-link inverted pendulum
system using the R-GCSE. (a) Angle of link 1. (a) Angle of link 2. (c) Angular velocity of
link 1. (d) Angular velocity of link 2...75

Figure 4.14: 50 last 1000 time steps control results of the double-link inverted pendulum
system using the QPSO. (a) Angle of link 1. (b) Angular velocity of link 1. (c) Angle of
link 2. (d) Angular velocity of link 2...77

Figure 4.15: 50 last 1000 time steps control results of the double-link inverted pendulum
system using the TSR-EA. (a) Angle of link 1. (b) Angular velocity of link 1. (c) Angle of
link 2. (d) Angular velocity of link 2...78

Figure 4.16: Contour details of double-Rastrigin function. ..80
Figure 4.17: Graph of global search ability test of (a) CMA-ES. (b) MS-CMA-ES.81
Fugure 4.18: Visualization of a 2-D Michalewicz's function. ...88
Figure 4.19: Computer simulation results of applying Michalewicz's function in its (a)

unrotated form, (b) rotated form..88

CHAPTER 1

INTRODUCTION

Evolutionary algorithms [1]-[6] are stochastic, population-based optimization learning

algorithms that can be applied to a wide range of problems. Generally speaking, there is no

clear rank between different evolutionary algorithms. We can only say that certain algorithm

is more applicable than others to certain optimization problems. In this dissertation, we apply

the modified version of genetic algorithm (GA) [7] and particle swarm optimization (PSO)

[8]-[10] to high-dimensional, reinforcement learning tasks, and apply evolution strategy with

covariance matrix adaptation (CMA-ES) [11]-[13] to complex, low-dimensional real-valued

function optimization tasks.

1.1 Motivation

Evolutionary algorithms are discovered through simulating some social behavior, such as

the bird flocking, the recombination or the mutation of genes. Normally, evolutionary

algorithms maintain a population of potential solutions to some optimization problem,

generating new solutions at each iteration by using a variety of corresponding operators. Their

learning procedures take place in populations made of individuals with specific behaviors

similar to certain biological phenomena. Individuals keep exploring the solution space and

exploiting information between individuals while evolution proceeding. In general, by means

of exploring and exploiting, evolutionary algorithms are less likely to be trapped at the local

optimum.

Evolutionary algorithms are applicable to a wide range of problems, including training

neural-fuzzy systems (NFS) [14]-[17], reinforcement learning control [18]-[22] and complex,

multi-funnel [23]-[26] function optimization tasks. However, as with GA, PSO and CMA-ES,

 1

nearly every other kind of stochastic optimization algorithms suffer from the “curse of

dimensionality,” which simply put, implies that their performance deteriorates as the

dimensionality of the search space increases. One way to overcome this difficulty is to

partition the search space into lower dimensional subspaces, as long as the optimization

algorithm can guarantee that it will be able to search every possible region of the search space.

Van den Bergh and Engelbrecht suggested that the search space should be partitioned by

splitting the solution vectors into smaller vectors and proposed a cooperative approach to

particle swarm optimization (CPSO) [27]-[28]. Each of these smaller search spaces is then

searched by a separate PSO instance; the fitness function is evaluated by combining solutions

found by each swarm of the PSO instance. In this dissertation, we introduce the cooperative

learning behavior to GA and proposed the groups-based symbiotic evolution (GSE) [29]. The

proposed GSE is applied to training a NFS. It is different from traditional symbiotic evolution

where each population in the GSE is divided to several groups and each group represents a set

of chromosomes that belongs to one fuzzy rule. The fitness value of each fuzzy rule can be

evaluated locally. However, separating the search space also arouses two issues.

The first issue is the possibility that the partitioning could lead to the introduction of

pseudooptimum, which means that the combination of optima found by each learning instance

may not be an actual optimum point to the original search space, may not even be a local

optimum point. In [27], Van den Bergh and Engelbrecht proposed a variation of CPSO called

the CPSO-HK to alleviate the issue of pseudooptimum. The CPSO is one of the most

significant improvements to the standard PSO. Algorithm CPSO-HK is a hybrid from the

standard PSO and the CPSO-SK model. It prevents the solution found so far from becoming a

pseudooptimum by executing the CPSO-SK algorithm for one iteration, followed by one

iteration of the PSO algorithm. Computer simulations in [27] have shown that the CPSO-HK

indeed alleviates the issue of pseudooptimum. However, as with other cooperative learning

algorithms [30, 31], the performance of the CPSO deteriorates when there exists dependence

 2

among parameters.

The second issue aroused by partitioning the search space is that performances of the

cooperative learning algorithms deteriorate when correlated variables are placed into separate

populations. In this dissertation, we call such variables “non-separable.” A function f is said to

be separable if

1 1
1 1(, ,)

arg min (, ,) (arg min (,), , arg min (,))
n n

n nx x x x
f x x f x f x=

"
" " " " , (1.1)

and it is followed by a fact that f can be optimized in a sequence of n independent 1-D

optimization processes. In this dissertation, we propose a separability detection approach

based on covariance matrix adaptation to find non-separable variables so that they can

previously be placed into the same swarm to address the difficulty that the original CPSO

encounters. This proposed variation on the original CPSO to detect the separability of the

variables is called the SD-CPSO [106]. The SD-CPSO helps the CPSO self-organize the

swarms composed of non-separable variables. In order to implement this idea, we have to

determine the timing of switching between the PSO and the CPSO operation when dealing

with a task. In this dissertation, we think this can be done by determining the separability

between variables, and placing non-separable into the same swarm at each generation. If at

certain moment, all variables are determined as non-separable, then the PSO operation is

taken; otherwise, the CPSO operation is taken. The separability between variables is found by

estimating the covariance matrix of the distribution of particles. The mechanism we adopt is

the covariance matrix adaptation proposed from evolution strategy with covariance matrix

adaption (CMA-ES) [11]-[13]. Conventionally, there exists a contradiction between the local

search performance and the global exploration power of a learning algorithm [32]. For

example, the GA and PSO are noted for their great global exploration power; whereas, due to

the adaptivity of the local search, the CMA-ES owns an outstanding local search performance.

In this dissertation, we apply the GA and PSO to high-dimensional, reinforcement learning

 3

tasks, and apply the CMA-ES to complex, mid-dimensional real-valued function optimization

tasks.

1.2 Related Works

In this dissertation, we basically encode parameters on a NFS into individuals of GA or

PSO to perform reinforcement learning control, and apply a parallel learning structured

version of CMA-ES to complex, multi-funnel function optimization. As a result, we will

discuss these two types of optimization tasks in this section. The discussion of reinforcement

learning will be shown in section 1.2.1 and the discussion of multi-funnel function

optimization will be shown in section 1.2.2.

1.2.1 Reinforcement Learning Tasks

In recent years, the application of NFS in control engineering has become a popular

research topic [33]-[43]. In general, the way of tuning the parameters on a NFS can be divided

into two categories: supervised learning [44] and reinforcement learning [18].

Supervised learning is a machine learning technique for updating its parameters from

training data. The training data is composed of pairs of inputs, and desired outputs. The object

of the supervised learning is to predict the output value of the NFS for any valid input data

after its parameters have been trained by a number of training data. However, for many

control tasks, training data are usually difficult or too costly, or even not accessible. As a

result, reinforcement learning is more practicable than supervised learning in many occasions.

In reinforcement learning, the agent receives from its environment a reinforcement signal

at each time step. This signal could be either a reward or a punishment. Meanwhile, the agent

explores actions from the action set, and finds out which action yields the greatest reward. To

solve reinforcement problem, temporal difference (TD) [19]-[21] is one of the most common

 4

method. In TD learning, learners don’t have to wait until the end of a trial; instead, TD

methods need wait only one time step. This is crucial for applications that have very long

trials or tasks that are continuous and have no trials at all. Q-learning [22] is a powerful and

easy-implementing TD-based approach. It is a reinforcement learning technique that works by

updating a simple action-value iteration function. This function gives the measurement of

taking a given action in a given state.

Besides TD methods, many evolutionary algorithms such as PSO, GA, evolutionary

programming [45], and evolution strategies [46] are popular for solving reinforcement

learning tasks. These learning procedures are based on populations made of individuals with

specific behaviors similar to certain biological phenomena. Individuals keep exploring the

solution space and exploiting information between individuals while evolution proceeding. In

general, by means of exploring and exploiting, evolutionary algorithms are less likely to be

trapped at the local optimum. Many researches on using evolutionary algorithm for solving

reinforcement learning tasks have been proposed recently [47]-[50]. In [49], authors propose a

swarm intelligence based reinforcement learning (SWIRL) method to train artificial neural

networks (ANN). Authors apply ant colony optimization to select ANN topology and apply

the PSO to adjust ANN connection weights. In [50], Lin and Hsu present a reinforcement

hybrid learning algorithm (R-HELA) combining the compact GA (CGA) [51] and the

modified variable-length GA (VGA) [52] on recurrent wavelet-based NFS. A counter is used

to accumulate the time steps until the control task fails and the accumulated values are fed

into individuals as fitness functions. Lin and Hsu’s model is very effective; however, its

fitness function only indicates how long can the controller work well instead of measuring

how soon the system can meet the control goal, which is also very important in reinforcement

learning. There is also a growing interest in combining the advantages of evolutionary

algorithms and TD-based reinforcement learning [53]-[54]. In [53], a TD and GA based

reinforcement learning (TDGAR) is proposed. Authors propose a neural structure composed

 5

of two feedforward networks for reinforcement learning, the critic network and the action

network. The critic network predicts the external signal provides a more informative internal

signal to the action network. The action network uses GA to determine the output of the

learning system. The weight update rule for the hidden layer of the critic network is based on

error backpropagation. In [54], an on-line clustering and Q-value based GA reinforcement

learning for fuzzy system (CQGAF) is proposed. In one generation CQGAF learning, one

individual is applied to the environment to estimate the fitness function, Q-value, and

Q-values of other individuals are updated by eligibility trace. The GA operation is performed

by the end of each trial and creates a new generation of individuals. In [55], authors proposed

a recurrent wavelet-based NFS with a reinforcement group cooperation-based symbiotic

evolution (R-GCSE) algorithm. In [55], a population is divided to several groups. The

R-GCSE has a good ability of parameter learning by adopting the concept that each group

formed by a set of chromosomes cooperates with other groups to generate better

chromosomes.

Although the aforementioned reinforcement learning methods work well in many

applications, there is an issue remains to be solved. No fitness function in these methods

indicates how soon the learning agents can control the system's state into a set of goal states.

Sure there is no need to define the fitness function that way if there is no guidance provided to

the controller of how to maintain the system's state in a desired operating range. As a result, in

this dissertation, we proposed a Q-value based particle swarm optimization (QPSO) [56]

which adopts the concept of Lyapunov design [57] for constructing safe reinforcement

learning agents, and a GA based learning method called two-strategy reinforcement

evolutionary algorithm (TSR-EA) [29] to solve reinforcement learning tasks. In both

algorithms proposed in this dissertation, we manipulate our fitness function so that it can

indicate how soon the controller achieves its control goal.

 6

1.2.2 Multi-funnel Function Optimization Functions

Normally, continuous function optimization problems are categorized into convex

(unimodal) and non-convex (multimodal) functions. In this dissertation, we classified

optimization problems into single-funnel and multi-funnel problems and we mainly focus on

the optimization of multi-funnel functions. The difference between single- and multi-funnel

functions can be illustrated by the following two figures, where Fig. 1.1 shows a visualization

of a 2-D Rastrigin’s function, from which we can see that in spite of the large amount of local

minima, there exists a trend to the global minimum. Figure 1.2 shows a visualization of a 2-D

double Rastrigin’s function, from which we can see that there are two funnel-type global

trends and a large amount of noisy local minima.

Figure 1.1: Visualization of a single-funnel, 2-D Rastrigin’s function.

Figure 1.2: Visualization of a multi-funnel-funnel, 2-D double Rastrigin’s function.

 7

 A function is said to be single-funnel, even though it is highly multi-modal, if its local

optima is structured such that there exists a global trend toward the best solution [58].

However, there are several real-world applications do not have this simple structure. Many

optimization problems are characterized by their local optima distributing in separate clusters

within the search space and there is no underlying convex topology toward their global

optima. Problems of this type are referred to as multi-funnel functions [23]. Prominent

examples for such applications include potential energy surfaces of biomolecules [24] and

protein aggregation and misfolding [25]. It has been suggested that the global topology of a

problem may have a strong influence on the performance of optimization of multi-funnel

functions [26]. To this end, we introduce the mean shift procedure [59] into the evolution

strategy with covariance matrix adaptation (CMA-ES) which allows us to apply multiple

CMA-ES instances to explore different parts of the search space in parallel.

The CMA-ES has been proven to be among the most successful optimization algorithms

for optimization of non-convex functions. During exploring of the search space, the CMA-ES

generates a population of samples from a multivariate Gaussian distribution. The mean and

covariance matrix of the sampling distribution are continuously adapted in order to improve

the search direction and the sampling distribution. Recent improvements include a local

restart CMA-ES (LR-CMA-ES) [60], which greatly prevents CMA-ES from being trapped

into local optima, and a CMA-ES with iteratively increasing population size (IPOP-CMA-ES)

[61], achieving excellent performance on non-convex, high-dimensional optimization

problems. However, Hansen and Kern [62] have pointed out that on multi-funnel functions,

where local optima cannot be interpreted as perturbations to an underlying convex (unimodal)

topology, performance can strongly be limited. This could be due to the fact that CMA-ES

was originally proposed as a local search strategy, whereas the concept of multi-funnel

functions is intrinsically based on global information. As a result, some researches [26, 63]

combine the evolution strategy with global optimization schemes to increase its global

 8

exploration power. In [63], a particle swarm guided evolution strategy (PSGES) is proposed.

Computer simulation results have shown that PSGES improves the original evolution strategy

but is inferior to LR-CMA-ES and IPOP-CMA-ES. This could be due to a lack of local

adaptivity mechanism. In [26], authors propose a particle swarm CMA-ES (PS-CMA-ES),

which combines the local search performance of the CMA-ES with the global exploration

power of the PSO. Computer simulation results in [26] have shown that no salient

improvement over LR-CMA-ES and IPOP-CMA-ES on optimization of unimodal, basic

multimodal functions, but improvement can be seen in optimization of high-dimensional

multi-funnel functions. However, in spite of the great performance the PS-CMA-ES achieves,

this methodology tends to be computationally expensive and the criterion of how frequent the

PSO updates can be performed is not straightforward. In this dissertation, our objective is to

improve performance on multi-funnel problems on one hand, and on-line determine the

number of the CMA-ES instances on the other. Instead of directly combing the CMA-ES with

certain “global” evolutionary algorithm, we introduce a computational module based on mean

shift procedure into the CMA-ES. Mean shift procedure is a density estimation-based,

non-parametric mode detection and clustering approach toward feature space analysis [59, 64,

65]. It determines the number of modes in a unknown probability density function (p.d.f.),

and the density estimation is completed by kernel density estimator [66].

First, we apply kernel density estimation to the candidate solutions sampled by the

CMA-ES. Then, we use the mean shift-based mode detection to determine the number of

CMA-ES instances for exploring the search space simultaneously. In cases of more than one

CMA-ES instances are applied, the proposed mean shift based evolution strategy with

covariance matrix adaption (MS-CMA-ES) samples a population of candidate solutions from

a mixture model of Gaussian distribution [67]. The covariance matrix of the mixture Gaussian

sampling distribution is formed by the linear combination of the covariance matrixes of

separate CMA-ES instances. Enforcing a mixture model provides a communication between

 9

different CMA-ES instances such that the CMA-ES instances with better search locations can

sample more offspring, while the CMA-ES instances trapped in local optima can fade out.

Another advantage of the proposed MS-CMA-ES is that there is no requirement of the

criterion for the fusion (or division) of the CMA-ES instances, nor does the predefinition of

the number of CMA-ES instances as a parameter. The bandwidth of the kernel density

estimator can also be computed through kernel smoothing [68]. The only extra parameter

besides the original parameters of the CMA-ES is the learning rate of mixture weightings for

mixture Gaussian components, which reduces challenges of applying our methodology.

In this dissertation, we compare the proposed MS-CMA-ES with the standard CMA-ES

[13], some of its improvements [60, 61], and some hybrid algorithms that combine the

evolution strategy with the PSO [26, 63]. Computer simulation results will show that the

MS-CMA-ES has better performance in optimizing multi-funnel functions.

1.3 Approach

In this dissertation, four major algorithms are proposed. The first two algorithms are

called Q-value based particle swarm optimization (QPSO) and two-strategy reinforcement

evolutionary algorithm (TSR-EA) respectively. These two algorithms are both proposed to

solve reinforcement learning tasks. The advantages of the QPSO can be shown from that it

provides an alternative for Q-learning to solve reinforcement learning problem in one hand,

and it extends the applicability of the PSO into reinforcement environment on the other. It

also provides a reliable initial learning performance due to the Lyapunov design of learning

agents. But one drawback of the QPSO is that it requires additional priori knowledge. The

main advantages of the TSR-EA can be summarized as follows: 1) the proposed TSR

mechanism enables us to evaluate a learning trial for both how long can the controller work

under operating range instead of measuring how soon the system meet the control goal; 2) the

 10

GSE is proposed to evaluate the fuzzy rule locally. However, in the TSR-EA, divide

parameters corresponding to different fuzzy rule into separate groups is very straightforward.

However, in the optimization task, if the correlation between parameters is unknown, placing

uncorrelated parameters into a same group would be a challenge.

The third algorithm proposed in this dissertation is a separability approach to cooperative

particle swarm optimization (SD-CPSO), and it is mainly proposed to help placing

uncorrelated variables into a same swarm. The proposed separability detection approach is

based on the CMA-ES.

The fourth algorithm proposed in this dissertation is the mean shift-based evolution

strategy with covariance matrix adaptation (MS-CMA-ES). The introduced mean shift

procedure provides functions of mode detection and clustering which allows us to apply

multiple CMA-ES instances to explore different parts of the search space in parallel. The

global exploration power of the standard CMA-ES is enhanced by the concept that each

instance forms a separate CMA-ES agent to explore different parts of the search space. We

evaluate the performance of the MS-CMA-ES on the optimization of multi-funnel functions

and the new MS-CMA-ES algorithm shows superior performance on it.

1.4 Organization of Dissertation

The dissertation is arranged as follows.

 Chapter 1 introduces the motivation, related work, approach, and organization of the

dissertation.

 Chapter 2 provides the fundamental information used in the dissertation. The foundation

includes neural fuzzy network, genetic algorithm, standard and cooperative PSO, mean shift

procedure and CMA-ES.

 In Chapter 3, the proposed QPSO, TSR-EA, SD-CPSO and MS-CMA-ES are described.

 11

 In Chapter 4, two types of computer simulations, reinforcement learning control tasks

and multi-funnel optimization functions, are performed to verify the performance of the

proposed algorithms. We apply QPSO and TSR-EA to two reinforcement learning control

tasks, cart-pole balancing system and two-pole inverted pendulum control. The SD-CPSO and

MS-CMA-ES are applied to real-valued function optimization tasks.

 In Chapter 5, the conclusions, contribution, and future works of the dissertation are

discussed.

 12

CHAPTER 2

FOUNDATIONS

The background material and literature review that relates to the major components of

the research purpose outlined above (neuro-fuzzy controller, genetic algorithm, particle

swarm optimization, and evolution strategy with covariance matrix adaptation) are introduced

in this chapter. The concept of neuro-fuzzy controller is discussed in the first section. The

concept of genetic algorithm (GA) is introduced in Section 2.2. In Section 2.3, the concept of

particle swarm optimization (PSO) and some of its improvements are discussed. The final

section focuses on some background knowledge related to the proposed mean shift-based

evolution strategy with covariance matrix adaptation (MS-CMA-ES), such as kernel density

estimation, mean shift procedure and standard CMA-ES

.

2.1 Neural Fuzzy System

In general, there are three typical types of neural-fuzzy system (NFS) and they are the

TSK-type [34], Mamdani-type [16], and singleton-type. According to [69] and [70], the

authors have shown that the TSK-type NFS can offer better network size and learning

accuracy than the Mamdani-type and singleton-type NFS. Thus, in this dissertation, only the

TSK-type NFS is introduced and such NFS is applied to reinforcement learning tasks.

A TSK-type NFS employs different implication and aggregation methods from a

standard Mamdani fuzzy model. Instead of using fuzzy sets, the conclusion part of a rule is a

linear combination of the crisp inputs.

 IF x1 is A1j (m1j , σ1j)and x2 is A2j(m2j , σ2j)…and xn is Anj (mnj , σnj)

THEN y’=w0j+w1jx1+…+wnjxn. (2.1)

 13

The structure of a TSK-type NFS is shown in Fig. 2.1. It is a five-layer network structure. In a

TSK-type NFS, the firing strength of a fuzzy rule is calculated by performing the following

“AND” operation on the truth values of each variable to its corresponding fuzzy sets. The

functions of the nodes in each layer are described as follows:

Layer 1 (input node): Each node in this layer is called an input linguistic node, which

corresponding one linguistic variable. These nodes only pass the input signal to the next layer.

,)1(
ii xu = (2.2)

where denotes the ith node’s input in the 1st layer and xi denotes ith input dimension.)1(
iu

Layer 2 (membership function node): each node in this layer acts as a Gaussian

membership function, and its output value specifies the degree to which the given input value

belongs to a fuzzy set. Thus, the membership value in layer 2 can be calculated by:

2(1)
(2)

2exp ,i ij
ij

ij

u m
u

σ

⎛ ⎞⎡ ⎤−⎣ ⎦⎜= −
⎜ ⎟
⎝ ⎠

⎟ (2.3)

where and are the outputs of 1st and 2nd layers ; mij and σij are the center and

the width of the Gaussian membership function of the jth term of the ith input variable xi

respectively. In this paper, the reason of adopting the Gaussian membership function is that it

can be a universal approximator of any nonlinear functions on a compact set [69].

ixu i =)1()2(
iju

Layer 3 (rule node): The output in this layer are used to perform precondition matching of

fuzzy rules. In the TSK-type NFS, the firing strength of a fuzzy rule is calculated by

performing the following “AND” operation:

(3) (2)
j ij

i

u = u∏ . (2.4)

Layer 4 (consequent node): each node in this layer calculates the consequent value. Each

consequent value (linear combination of the crisp inputs) is weighted by the firing strength of

the fuzzy rule and it can be written by:

 14

),(
1

0
)3()4(∑

=

+=
n

i
iijjjj xwwuu (2.5)

where the summation is the consequent part and is its corresponding parameters. ijw

Layer 5 (output node): The node in this layer computes output signal. The output node

integrates with links connected to it and acts as a defuzzifier with:

(4) (3)
0

1 1 1(5)

(3) (3)

1 1

()
,

R M n

j j j ij
j j i
R R

j j
j j

u u w w
y u

u u

= = =

= =

+
= = =

∑ ∑ ∑

∑ ∑

ix
 (2.6)

where u(5) is the output of 5th layer , wij is the weighting value with ith dimension and jth rule

node, and R is the number of a fuzzy rule.

Figure 2.1: Structure of TSK-type NFS.

 15

2.2 Genetic Algorithm

Genetic algorithms (GAs) are search algorithms inspired by the mechanics of natural

selection, genetics, and evolution. It is widely accepted that the evolution of living beings is a

process that operates on chromosome-organic devices for encoding the structure of living

beings.

The flowchart of the learning process is shown in Fig. 2.2, where Nc is the size of

population, G denote Gth generation. The learning process of the GAs involves three major

steps: reproduction, crossover, and mutation. Reproduction [71]-[73] is a process in which

individual strings are copied according to their fitness value. This operator is an artificial

version of neural selection. In GAs, a high fitness value denotes a good fit. In the reproduction

step, the well-known method is the roulette-wheel selection method [73] (see Fig.2.3). In

Fig.2.3, the intermediate population is P’, which is generated from identical copies of a

chromosome sampled by spinning the roulette wheel a sufficient number of times.

Figure 2.2: Flowchart of the genetic algorithm.

 16

Figure 2.3: The roulette wheel selection.

In crossover step [74]-[78], although reproduction step directs the search toward the best

existing individuals, it cannot create any new individuals. In nature, an offspring has two

parents and inherits genes from both. The main operator working on the parents is the

crossover operator, the operation of which occurred for a selected pair with a crossover rate.

Figure 2.4 illustrates how the crossover works. Crossover produces two offspring from their

parents by exchanging chromosomal genes on either side of a crossover point generated

randomly.

Figure 2.4: Crossover operator.

In mutation step [79]-[85], although the reproduction and crossover would produce many

new strings, they do not introduce any new information to the population at the site of an

 17

individual. Mutation can randomly alter the allele of a gene. The operation is occurred with a

mutation rate. Figure 2.5 illustrates how the mutation works. When an offspring is mutated,

one of its genes selected randomly is changed to a new value.

Figure 2.5: Mutation operator.

Since GAs search many points in the space simultaneously, they have less chance to

reach the local minima than single solution methods. The advantages of GAs are: 1) some

individuals have a better chance to come close to the global optima solution, and 2) the

genetic operators allow the GA to search optima solution. According to above reasons, GAs

are suitable for searching the parameters space of neuro-fuzzy controller. For solving the

problem that a neuro-fuzzy controller which performs gradient-descent based learning

algorithms may reach the local minima very fast but never find the global solution, the GAs

sample the parameters space of neuro-fuzzy controllers and recombine those that perform best

on the control problem.

2.3 Particle Swarm Optimization

 In this section, we will introduce the PSO. The standard PSO is introduced in section 2.3.1

and the CPSO is introduced in section 2.3.2.

2.3.1 Standard Particle Swarm Optimization

PSO is first introduced by Kennedy and Eberhart in 1995 [8]. It’s one of the most

powerful methods for solving global optimization problems. The algorithm searches an

 18

optimal point in a multi-dimensional space by adjusting the trajectories of its particles. The

individual particle updates its position and velocity based on its previous best performance

and previous best performance of other particles which denote y and respectively. A

simple demonstration of how PSO learning proceeds can be shown in Fig. 2.7 as follows:

ŷ

Figure 2.6: Diagram of the PSO learning mechanism.

The position xi,d and velocity vi,d of the d-th dimension of i-th particle are updated as

follows:

�
, , 1 1 , , 2 2 ,(1) = () (() ()) (() ()),
(1) () (1),

i d i d i d i d i dd

i i i

v t v t c rand y t x t c rand y t x t
x t x t v t

+ + ⋅ ⋅ − + ⋅ ⋅ −

+ = + + (2.7)

where yi represents the previous best position yielding the best performance of the i-th particle;

c1 and c2 denote the acceleration constants describing the weighting of each particle been

pulled toward y and �y respectively; and are two random numbers in the range

[0, 1].

1rand 2rand

Let s denote the swarm size and f() denote the fitness function evaluating the performance

yielded by a particle. After Eq. (2.7) is executed, the personal best position y of each particle

is updated as follows:

 19

(1), if ((1)) (()),

(1)
(1), if ((1)) (()),

i i
i

i i

i

i

x t f x t f y
y t

t
y t f x t f y

+ + ≥⎧
+ = ⎨ + + <⎩ t

 (2.8)

and the global best position is found by:

 . (2.9) �(1) arg min ((1)), 1
i

iy
y t f y t i s+ = + ≤ ≤

In 2002, Clerc [12] confirms the convergence of PSO by using a constriction factor

which greatly enhances the applicability of PSO. The implementation of the constriction

factor is shown in Eq. (2.10)-(2.12):

�
, , 1 1 , , 2 2 ,(1) = [() (() ()) (() ())],
(1) () (1),

i d i d i d i d i dd

i i i

v t v t c rand y t x t c rand y t x t
x t x t v t

χ+ + ⋅ ⋅ − + ⋅ ⋅ −

+ = + +
 (2.10)

where

2

2

2 4
χ

φ φ φ
=

− − −
, (2.11)

and

1 2 , 4c cφ φ= + > . (2.12)

The flowchart of the PSO is shown in Fig. 2.7.

2.3.2 Cooperative Particle Swarm Optimization
The CPSO [9] is one of the most significant improvements to the original PSO. Van den

Bergh presented a family of CPSOs, including CPSO-S, CPSO-SK, CPSO-H, CPSO-HK.

Algorithm CPSO-HK is the hybrid from PSO and CPSO-SK and it is proposed to address the

issue of “pseudominima.”

The concept of CPSO-S is that instead of trying to find an optimal n-dimensional vector,

the vector is split into n parts so that each of n swarms optimizes a 1-D vector. The CPSO-SK

is a family of CPSO-S, where a vector is split into K parts rather than n, where . K also

represents the number of swarms. Each of the K swarms acts as a PSO optimizer. The main

K n≤

 20

Figure 2.7: Flowchart of the PSO.

difference between the PSO and the CPSO is that the fitness of a single particle of the CPSO

has to be evaluated through global best particles of the other swarms. Let Pj denote the j-th

swarm and Pj‧xi represents the i-th particle in the swarm j. The concept of the CPSO can be

illustrated as follows:

Figure 2.8: Schematic diagram of the CPSO.

 21

The fitness of Pj‧xi is defined as:

 � �
1 1() (, , , . , ,j i j j i K

�)f P x f P y P y P x P y−=i i … i … i . (2.13)

The CPSO applies cooperative behavior to improve the PSO on find the global optimum in

a high-dimensional space. This is achieved by employing multiple swarms to explore the

subspaces of the search space separately to reduce the curse of dimensionality. However, there

is no absolute criterion stating that the CPSO is superior to the PSO since independent

changes made by different swarms on correlated variables will deteriorate its performance. In

addition, in one generation of an n-dim CPSO-S operation, the computational cost is n times

larger than that of a PSO operation.

2.4 Evolution Strategy with Covariance Matrix Adaptation

In this section, we introduce some background knowledge related to the proposed

MS-CMA-ES. The standard CMA-ES is introduced in section 2.4.1, kernel density estimation

is introduced in section 2.4.2 and mean shift procedure is introduced in section 2.4.3.

2.4.1 Standard CMA-ES

In the standard CMA-ES, a population of new search points is generated by sampling a

multivariate normal distribution N with mean and covariance matrix nm∈\ n n×∈C \ . The

equation of sampling new search points, for each generation number g = 0,1,2,…, reads

 (1) () () ()(0,) for 1, ,g g g g
ix m N iσ λ+ + C∼ "= , (2.14)

where ~ denotes the same distribution on the left and right hand side; σ(g) denotes the overall

standard deviation, step-size, at generation g and λ is the sample size. The new mean m(g+1) of

the search distribution is a weighted average of the μ selected points from λ samples

, ,…, (1)
1

gx + (1)
2

gx + (1)gxλ
+ :

 22

 (1) (1)
:

1

g
i i

i
m w x

μ

λ
g+ +

=

=∑ , (2.15)

with

 1 2 1
1

1, 0i
i

w w w w
μ

=

= ≥ ≥ ≥ >∑ " , (2.16)

where wi are positive weights, and (1)
:
g

ix λ
+ denotes the i-th rank individual out of λ samples.

The index i:λ denotes the i-th rank individual and

 , (2.17) (1) (1) (1)
1: 2: : () () (g gf x f x f xλ λ

+ +≤ ≤ ≤")g
λ λ

+

where f(‧) is the objective function to be minimized. The adaptation of new covariance

matrix C(g+1) is formed by a combination of rank-μ and rank-one update [13]

 () ((1) () (1) (1) (1) (1)cov
cov cov : :

1cov cov
rank-one update rank- update

1(1) (1)
T

Tg g g g g
c c i i i

i

cc p p c w y y
μ

λ λ

μ

μ μ
+ + +

=

= − + + − ×∑C C
���	��
)g+ +

����	���

, (2.18)

where μcov ≥ 1 is the weighting between rank-μ update and rank-one update; ccov∈[0,1] is the
learning rate for the covariance matrix update, and

 (1) (1) () ()
: :() /g g g

i iy x mλ λ
gσ+ += − (2.19)

is a modified formula used to compute the estimated covariance matrix for the selected

samples. The evolution path for rank-one update is described as follows: (1)g
cp +

(1) ()

(1) ()
eff ()(1) (2)

g g
g g

c c c c c g

m mp c p c c μ
σ

+
+ −

= − + − , (2.20)

where cc ≤ 1 denotes the backward time horizon and

1

2
eff

1
i

i

w
μ

μ
−

=

⎛ ⎞
= ⎜
⎝ ⎠
∑ ⎟ (2.21)

denotes the variance effective selection mass. The new step-size σ(g+1) is updated according to

(1)

(1) () exp 1
(0,)

g
g g

pc
d E N

σσ

σ

σ σ
+

+
⎛ ⎞⎛ ⎞
⎜ ⎜=

⎜⎜ ⎟⎝ ⎠⎝ ⎠I
⎟⎟−
⎟

, (2.22)

with

 23

1

2
(1) ()

(1) () ()
eff ()(1) (2)

g g
g g g

g

m mp c p c cσ σ σ σ σ μ
σ

−
+

+ −
= − + − C , (2.23)

where cσ is the backward time horizon of evolution path, similar to cc; dσ is a damping

parameter and (1)gpσ
+ is the conjugate evolution path for step-size σ(g+1). The expectation of

the Euclidean norm of a N(0, I) reads

 1(0,) 2 () / () (1/)
2 2

n nE N n O n+
= Γ Γ ≈ +I . (2.24)

where Γ() denotes the gamma function and O() represents high-order terms.

2.4.2 Kernel Density Estimation

In parametric model estimation analysis, we need to suppose the distribution of data

points coincides with certain model. Empirical evidence have shown that there tends to exist

large differences between parametric estimation-based models and real-world physical models.

Based on above defects, Rosenblatt and Parzen proposed a non-parametric way called kernel

density estimator [66] to estimate the unknown p.d.f. of a random variable. The kernel density

estimator does not require prior knowledge of how data distribute; instead, it analyzes the

characteristic of the distribution of data. Hence, it is highly valuable in both statistical theory

and application.

In the proposed MS-CMA-ES, sampled search points in the search space are considered

as data in the feature space. It is very intuitive since the location of search points tends to be

the phenomenal feature in function optimization problems. The rationale behind density

estimation-based clustering approach is that the feature space can be regarded as the empirical

p.d.f. Due to the fact that search points are sampled from normal distribution with adjusted

mean and adapted covariance matrix, and are further selected according to their fitness, dense

regions in the search space correspond to local maxima of the p.d.f.; in other words, the

modes of the unknown density. Consider n points xi, i = 1,…, n, in the d-dimensional space

, the multivariate kernel density estimator with kernel K(x) and a symmetric positive d\

 24

definite matrix bandwidth matrix H, computed in the point x is given by

1

1ˆ () ()
n

h h
i

if x K x
n =

x= −∑ , (2.25)

with

 1() ()h
xK x h K
h

−= , (2.26)

where Kh(x) is a d-variate kernel function satisfying

 () 1hK x dx
∞

−∞
=∫ . (2.27)

Normally speaking, kernel functions are symmetric, unimodal probability density functions.

Uniform, normal and Epanechnikov kernel are the most common seen. It has been proven that,

in certain routine conditions, kernel density estimator approximates the real density functions

gradually with increasing sampling size [86]. Although the choice of different kernel

functions have different effects on the results, but the effect appears small compared with the

effect caused by the bandwidth, so researches focus more on the selection of bandwidth [87].

Theoretically, the selection of bandwidth is based on the mean integrated square error (MISE)

between kernel density estimation and the real density function. However, the computation of

MISE is too complicated. In practice, how selection of bandwidth affects the performance is

analyzed by computing an asymptotic mean integrated error (AMISE) from a large number of

samples. Recently, many literatures use plug-in method and cross-validation method to

determine the optimal bandwidth, so that the selection of bandwidth no longer depends on the

prior guess of true density function [86, 87]. In addition to the aforementioned fixed

bandwidth mechanism, the variable bandwidth mechanism, bandwidth varies with different

sample position, is also widely adopted in practice [88, 89]. Because it is very difficult for the

fixed bandwidth mechanism to properly address multimodal density functions, especially in

cases when density of each peak varies greatly. However, the analysis is relatively more

complicated when compared with fixed bandwidth mechanism. In practice, the utilization of

variable bandwidth mechanism is mostly based on rule of thumb [86]. If the variable

 25

bandwidth mechanism is adopted, the kernel density estimator Eq. (2.25) becomes

1

1ˆ () ()
n

i
i

f x K x
n =

= −∑H H x , (2.28)

where

 1/ 2 1/ 2() ()K x K x− −=H H H , (2.29)

H is the symmetric, positive definite bandwidth matrix.

2.4.3 Mean Shift Procedure

Mean shift procedure is a very versatile tool for feature space analysis and it is applicable to

many field of tasks [90-92]. In the previous research [65], authors successfully extend this

algorithm to computer vision applications, and have attracted huge attention. Mean shift

procedure is an iterative algorithm based on kernel density estimation, which continually

updates the mean shift vectors of data points according to the gradient of kernel function.

Although the mean shift algorithm is very simple in form, but in practice there is a high

efficiency and stability. The most classic application is the mean shift-based clustering

algorithm. If we can have a good estimation of bandwidth, mean shift-based clustering

algorithm would be a nice alternative relative to algorithms that the number of clusters needs

to be pre-set, such as K-means algorithm. In the proposed MS-CMA-ES, search points in the

search space are considered as data in the feature space. It is very intuitive since location of

search points tends to be the phenomenal feature in function optimization problems. Due to

the fact that, in the MS-CMA-ES, sampled search points are further selected according to

their fitness, dense regions in the search space correspond to local maxima of the p.d.f.; in

other words, the modes of the unknown density.

Consider the density estimation kernel Kh(x) introduced earlier this section. If the profile

notation [21] is employed, the kernel Kh(x) can also be written as

 2
,() ()h k d hK x c k x= , (2.30)

 26

where kh(x) is a radially symmetric kernel defined as the profile of the Kh(x), and ck,d is the

normalization constant which makes Kh(x) integrate to one. If we define

 () ()h hg x k x′= − , (2.31)

the d-variate kernel Gh(x) can also be written as

 2
,() ()h g d hG x c g x= , (2.32)

and similarly, cg,d denotes the normalization constant. The density estimation kernel Kh(x) is

also called the shadow kernel of Gh(x) [65]. Consider n points xi, i=1,…, n, in the

d-dimensional space , the mean shift vector at x is given by d\

 1

1

()
()

()

n

i h i
i

n

h i
i

x G x x
m x x

G x x

=

=

−
= −

−

∑

∑
. (2.33)

Intrinsically, mean shift procedure can be viewed as a mode seeking method [59], which

determines the modes of p.d.f. estimated by kernel Kh(x). Denote {yj}j=1,2,… the sequence of

successive search locations of kernel Gh, from Eq. (2.33) it has the form

 1
1

1

()
 1, 2,

()

n

i h j i
i

j n

h j i
i

x G y x
y

G y x

=
+

=

−
=

−

∑

∑
"j = (2.34)

and y1 is the initial search location. The corresponding sequence of density estimates

computed with kernel Kh is given by

 { },
ˆ ˆ() () 1, 2,h K h jf j f y j= = " . (2.35)

In the previous research [59], authors have proven that once search location yj gets sufficiently

close to a mode of estimated density function ,ĥ Kf , it converges to it, and the set of all

locations converge to the same mode is defined as the basin of attraction of that mode. The

general steps of applying mean shift procedure is listed as follows:

Step 1: Uniformly generate appropriate number of initial search points.

 27

Step 2: Sequentially or parallelly run the mean shift procedure until the search points

converge.

Step 3: Each convergence point defines a mode and each initial location converges to that

mode defines the basin of attraction of that mode.

 28

CHAPTER 3

EVOLUTIONARY ALGORITHMS

In this chapter, the proposed four algorithms are discussed. In section 3.1, a Q-valued

based particle swarm optimization and the concept of using Lyapunov design principles for

constructing safe reinforcement learning agents are introduced. In section 3.2, the proposed

two-strategy reinforcement (TSR) learning mechanism and the group-based symbiotic

evolution (GSE) which enables the learning agent to evaluate the fuzzy rule locally are

introduced. In section 3.3, a separability detection approach to cooperative particle swarm

optimization (SD-CPSO) for placing correlated variables into the same swarm is discussed. In

section, 3.4, the proposed mean shift based evolutionary strategy with covariance matrix

adaptation (MS-CMA-ES) is introduced. We cannot directly apply mean shift clustering to the

sampled points generated by CMA-ES because the adopted mean shift clustering requires

independent identity distribution of samples to perform density estimations. Several previous

works such as importance sampling [93,94] and bandwidth estimation [86,87] are also

discussed in this section.

3.1 Q-value based PSO

Thorough learning algorithm of QPSO is described in this section. The architecture is

shown in Fig. 3.1. The whole learning process can be roughly divided into two parts: the

Q-value and PSO operation part. The learning strategy for Q-values of particles is detailed in

section 3.1.1 while the PSO operation and the flowchart of QPSO are described in section

3.1.2.

 29

Figure 3.1: Architecture of QPSO.

3.1.1 Learning Q-values of Particles

In QPSO learning, if there are s particles in the swarm, s trials are taken in one generation.

The agent applies in each trial an action to the environment by selecting a particle based on its

Q-value. Every time a particle is selected, the Q-value of the selected particle is updated based

on the system’s reward. If the -th particle is selected, its Q-value qi is updated as i

*1() () [((1)) ()]i i iq t q t Q x t q t
t

α γ= + − + + − , (3.1)

for i=1…s, where

*

*

' ((1))

1...

1...

((1)) max ((1), ')

 max ((1),)

 max () ().

a A x t

ii s

i ii s

Q x t Q x t a

Q x t p

q t q t

∈ +

=

=

+ = +

= +

= =

 (3.2)

That is

*

1() () [() ()]

 () (),

i i ii

i i

q t q t q t q t
t

q t t

α γ

αδ

= + − + −

= +
 (3.3)

for i=1," ,s, where () i tδ is regarded as TD error.

The new Q-values of all particles calculated from Eq. (3.3) are subsequently adopted as the

 30

fitness values for PSO evolution.

3.2.2 Q-value based PSO

The PSO operation used in QPSO consists of two major steps: swarm initialization and

Q-valued base PSO evolution. Details of these two steps are described step-by step as follows.

‧ Swarm initialization:

The particle swarm is composed of particles encoded by the parameters on a NFS. Each

particle is encoded by the mean, deviation of Gaussian membership functions and the

weightings for output action strength. The number of fuzzy rules determines the length

of each particle. After the number of rules is set, the initial particles are generated

according to the following equations:

[] []min maxMean: x , ,
where 1, 3, , 2 -1; 1, 2, , .

i n random m m
n NR i

=

= =" " s
 (3.4)

[] []min maxDeviation: x , ,
where 2, 4, , 2 .

i n random
n NR

σ σ=

= "
 (3.5)

[] []min maxWeight: , ,
where 2 1, 2 2, , .

ix n random w w
n NR NR D

=

= + + "
 (3.6)

 ip represents the i-th particle in the swarm; N represents the input dimension; R

represents the number of fuzzy rules; D represents the size of each particle, usually D

equals to (N+1)R in most of cases where the dimension of output variable is 1;

[]min max,m m , []min max,σ σ and []min max,w w are the predefined ranges. The above

equations result in the coding scheme between a neural fuzzy system and a particle

shown in Fig. 3.2.

 31

Figure 3.2: Coding scheme between a particle and a TSK-type NFS in QPSO.

‧ Q-value based PSO evolution:

The Q-values derived in Eq. (3.3) are used as the fitness values for PSO evolution. The

Q-value of each particle determines the performance of a particle for controlling the

system. In the proposed QPSO, the Q-value of each particle indicates how soon a particle

can guide the system’s state to reach the set of goal states. The learning processes proceed

to new generation until a predefined stop criterion is met. The block diagram of whole

learning process in QPSO is shown in Fig. 3.3.

Figure 3.3: Block diagram of QPSO.

 32

3.2 Two-strategy Reinforcement Evolutionary Algorithm

The proposed two-strategy reinforcement evolutionary algorithm (TSR-EA) is introduced in

this section. Two major modifications are proposed in this algorithm: a two-strategy

reinforcement signal design and the group-based symbiotic evolution (GSE). Details of these

two operations are described as follows:

3.2.1 Two-strategy Reinforcement Signal Design

The TSR-EA is constructed on a TSK-type NFS model. The NFS model acts as a control

network to determine a proper action according to the current input vector (environment state).

The feedback signal is the reinforcement fitness value that functions as a performance

measurement. The reinforcement learning architecture adopted in the TSR-EA is the time-step

reinforcement architecture [95]-[97]. In this architecture, the only available feedback is a

reinforcement signal that notifies the model only when a failure occurs. This architecture is

straightforward and easy to implement. However, its fitness function can only indicates how

long can the controller work well instead of measuring how soon the system can enter the

desired state, which is also very important. Most reinforcement learning algorithms offer no

guarantee on stabilizing a system around a certain operating point, or keeping the state of a

system within a certain range. In this dissertation, the proposed QPSO described in section 3.1

can meet the aforementioned goals by adopting the concept of safe reinforcement learning

agents based on Lyapunov design principles proposed Perkins and Barto [57]. Using the

concept proposed in [57], the QPSO can guide the state of a system to reach and remain in a

desired set of goal states by constraining the action choices of the agents. Actions constrained

by Lyapunov design principles cause the system to descend on an appropriate Lyapunov

function. The feedback reinforcement signal of in the QPSO is the time step that indicates

how soon the system enters the desired set of goal states. The QPSO provides not only

 33

reliable initial learning performance but also accurate learning result. However, in order to

apply Lyapunov design principles, we have to identify the Lyapunov function of a control

plant in advance, which refers to the requirement of more information about the state of the

control plant. For some real-world applications, some states are difficult or expensive to

obtain. As a result, in the TSR-EA method, we proposed the TSR design so that our method

can enjoy the convenience brought by the standard reinforcement learning architecture on one

hand, and the accurate learning performance on the other. The TSR learning signal design for

determining the fitness value of each learning trial is described as follows.

The proposed two strategies are judgment and evaluation. The judgment strategy

measures the fitness value of a learning trial that fails to maintain the system’s state in a

desired operating range, whereas the evaluation strategy measures the fitness value of a

learning trial that works the system well in the original successful range, but fails under a

stricter successful range is applied. At first, for each different control task, a corresponding

operating range Original_Range is predefined. Then, we shrink the original successful

operating range as the control time step increases, as defined in Eq. (3.7).

()
()

_ = _ , where

1, if ,
_ , if < _ ,_

, ,_

Strict Range Original Range

t A
Thres TimeStep A t A t Thres TimeStepThres TimeStep

A otherwiseThres TimeStep

δ

δ

×

⎧
⎪ ≤
⎪⎪ + −= ≤⎨
⎪
⎪
⎪⎩

 (3.7)

where A is a parameter that simply prevents the modified range from becoming zero. This

equation provides guidance to the controller to meet the control goal sooner. The

Original_Range and Strict_Range are both considered as stopping criteria. If a learning trial

fails because the system state falls beyond the Original_Range, this learning trial is then

considered as failing under a “looser” constraint. Hence, a smaller fitness value is obtained

from this learning trial. On the contrary, if a learning trial fails for the system state deviating

 34

from the Strict_Range, this learning trial is then considered as failing under a “stricter”

constraint, and a relatively larger fitness value is obtained from this learning trial. The

determining fitness values in both strategies are detailed as follows:

•Strategy 1. Judgment strategy:

If the system fails at time step t deviating from the original successful operating range,

then

1 -1 _
_ _

tFitness Value
Thres TimeStep Thres TimeStep

= , (3.8)

where is a predefined parameter. A learning trial is deemed unsuccessful if

it is unable to meet the control goal before Thres_TimeStep.

_Thres TimeStep

•Strategy 2. Evaluation strategy

 Under the condition that the controller successfully maintains the system’s state in the

original successful operating range, the fitness value is calculated by the following two cases.

Case 1 represents the system works well under the original successful operating range but

falling beyond the range defined in Eq. (3.7). Case 2 represents the controller successfully

controlling the system.

Case 1. If the system enters the set of goal states at time step t1 but falls beyond the strict

successful range defined in Eq. (3.7) at time step t2, then

2 1
1

1 _ () .Fitness Value t t
t

= − (3.9)

Case 2. If the system enters the set of goal states at time step t1 and stabilizes the system for

Stable_TimeSteps, then

1

__ _ +(Stable TimeStepsFitness Value Stable TimeSteps
t

=) . (3.10)

The reinforcement fitness value evaluates how soon the plant can meet the desired set of goal

states and how long the controller maintains the plant within it. The advantage of the

proposed TSR-EA method is that it provides a relatively accurate learning performance

compared with standard time-step reinforcement architecture.

 35

3.2.2 Group-based Symbiotic Evolution

 In this section, the idea of GSE is introduced. Unlike traditional GA that uses each

individual in a population as a full solution to a problem, GSE assumes that each individual in

a population represents only a partial solution to a problem. In a standard evolution algorithm,

a single individual is responsible for the overall performance, with a fitness value assigned to

that individual according to its performance. In the GSE, in order to calculate the fitness of an

individual (a partial solution), we have to combine the current individual with other “global

best” individuals of other groups to form a context vector first. A context vector stands for a

complete solution and can be used to evaluate the fitness value. This idea is adopted from the

CPSO introduced earlier. Let xj denote the j-th chromosome and Pj‧xi represents the i-th

chromosome in the group j. Then the fitness of Pj‧xi is defined as:

 � � �
1 1() (, , , . , ,j i j j i K)f P x f P y P y P x P y−=i i … i … i . (3.11)

As shown in [96-100], partial solutions can be characterized as specializations. The

specialization property ensures diversity, which prevents a population from converging to

suboptimal solutions. A single partial solution cannot “take over” a population since there

must be other specializations present. Unlike the standard evolutionary approach, which

always causes a given population to converge, hopefully at the global optimum, the

symbiotic evolution finds solutions in different, unconverted populations. With the fitness

assignment performed by GSE, and the local property of a fuzzy rule, GSE and the fuzzy

system design can complement each other.

The structure of the GSE is shown in Fig. 3.4, where Ncs is the number of complete

solutions the GSE will select individuals to form in one generation, R denotes the number

of fuzzy rules in a NFS.

 36

Figure 3.4: Structure of a chromosome in the GSE.

 The coding structure of a chromosome is shown in Fig. 3.5, which describes that where mij

and σij represent a Gaussian membership function with mean and deviation, respectively, and

wj is the weight of the jth rule node and n denotes the input dimension.

Figure 3.5: Coding structure of a chromosome in the TSR-EA.

3.3 Mean Shift-Based Evolution Strategy with Covariance Matrix

Adaptation

Evolution strategy with covariance matrix adaptation (CMA-ES) is very effective in

optimization of unimodal functions, but inferior to other algorithms that emphasize the global

search ability, such as particle swarm optimization (PSO) or differential evolution (DE), in

optimization of multi-funnel functions. Enhancing the global search ability of CMA-ES has

becoming urgent goals of many scholars within the field. In this dissertation, we propose a

 37

mean shift based CMA-ES (MS-CMA-ES). The framework of proposed method is

constructed on CMA-ES. In the traditional CMA-ES, new search points are sampled from

normal distribution; however, in the MS-CMA-ES, new search points are sampled from

mixture normal model. The introduced mean shift procedure is a clustering method, which

allows us to apply multiple CMA-ES instances to explore multiple search directions in

parallel according to the its clustering result. In the MS-CMA-ES, the mean shift procedure is

also used to compute the mean vector of the mixture normal distribution. During the mean

shift procedure, each search point is “shifted” toward their corresponding local optima area of

the p.d.f. until all search points converge. The converge points represents new mean vectors of

the mixture normal model; in other words, the initial sampling locations of the MS-CMA-ES.

 In this dissertation, we mainly focus on studying how to apply mean shift based clustering

approach in optimization of complex objective functions, detecting their modes, and try to

preserve the advantage of CMA-ES that converge rapidly in optimization of single-funnel

functions. In the chapter we will detail the architecture of our method and its learning process.

In section 3.3.1, we will describe our motivation, which is followed by a block diagram

learning process. The detail of each block will be described in section 3.3.2 through 3.3.4.

3.3.1 Motivation

Before introducing the proposed MS-CMA-ES, we observe a drawback that CMA-ES may

encounter as shown in Fig. 3.6:

 38

(a) (b)

Figure 3.6: Computer simulation result of CMA-ES with initial search location at (0, 0).

Figure 3.6 is an computer simulation result of an optimization problem with two local optimal

solution. The upper right region is a suboptimal region with steeper gradient toward it and the

lower left region is the global optimal region with a smoother trend. As shown in Fig. 3.6,

white lines represents the locus of average of search points and darker background color

stands for higher fitness value. The initial search location is at (0,0) which is in the middle of

two local optimal solutions. The ideal case is that the locus wanders between two local

optimal regions then converge to the lower left global optimal region as shown in Fig. 3.6(a).

However, we found by simulation that most of times the locus only temporary wanders and

converge to the upper right region as shown in Fig. 3.6(b). The search direction of CMA-ES

cannot continually expand to two optimal regions and determine the real optimal solution

according to their converge points.

 In this dissertation we think this drawback is due to the fact that the sampling

distribution is limited to normal distribution. In statistical learning [66], simple normal model

is not enough to deal with complex problems, an advanced alternative is the mixture model.

Mixture normal model can effectively approximate the p.d.f. of multimodal functions, and

reveal their important characteristics: number and location of the modes. In this dissertation,

 39

we think the aforementioned drawback can be relieved if the distribution of search points are

sampled by a mixture normal model.

 Recently there are researches attempt to turn CMA-ES search pattern into multiple

region search style; for example, authors [26] incorporates particle swarm optimization to

enhance the global search ability of CMA-ES. In this dissertation, we adopt the different

concept by altering the sampling model. After sampling the search points, all samples are

clustering by mean shift procedure. A new cluster represents a new CMA-ES instance. By

perspective of mixture model, a new cluster stands for a new component of the mixture.

Observed from the computer simulation result, the proposed mechanism can alleviate the

deficiency that CMA-ES cannot search multiple directions in parallel. The block diagram of

the proposed MS-CMA-ES is shown in the following figure and the detail of each block will

be introduced in the subsequent sections.

Figure 3.7: The block diagram of the MS-CMA-ES.

 40

3.3.2 Sampling from a Mixture Model
In the proposed MS-CMA-ES, the sampling of new search points is given by

 (1) () () () ()
mix (, , ,) for 1, ,g g g g g

ix N m iσ α+ =C∼ " λ , (3.12)

where Nmix denotes a mixture Gaussian distribution with its p.d.f. pM(•) reads

 ()()
()

2() () () ()

1

() () ; (), () ()
gK

g g g g
M

k
p x k G x m k kα σ

=

= ∑ C k

G(•; θ) denotes a multivariate Gaussian function parameterized by θ; k denotes the index of

denotes the total number of samples

. (3.13)

component of mixture model; K(g) is the total number of components at generation g; λ

()
() () ()

1 2 g
g g g

K
λ λ λ λ= + + +" ; m is the set of mean of

search points m(g)≡{m(g)(1),…, m(g)(K(g))}; C(g) is the set of covariance matrix C (g)≡{C

))}; g) is the set o is the

m {

 generation and is determined by

the result of clustering.

reliable density estimator. Let us denote f the unknown p.d.f. of the search space and

(g)

(g)(1),…, C (g)(K(g σ(f search step size σ(g)≡{σ (g)(1),…, σ(g)(K(g))}; α (g)

ixture weighting α(g)≡ α(g)(1),…, α(g)(K(g))}.

3.3.3 Mean Shift-based Clustering

The total number of components K(g) is variable at each

In this dissertation, we don’t directly apply clustering method to the

sampled points because the adopted mean shift based clustering method requires independent

identity distribution of samples to perform density estimations. In our method, search points

are sampled from a Gaussian mixture model. Due to the absence of independent identity

distribution of samples, we introduce the importance sampling method [93, 94] to find a more

f̂H the

kernel density estimation with bandwidth matrix H. The kernel density estimation of f after

 ,

introducing importance sampling method is given by
λ

1

ˆ (), for 1, ,i i
i

f K x x iω λ
=

= − =∑H H " (3.14)

which is almost identical with traditional kernel density estimation besides the importance

 41

weighting ωi

1

()

()

i M i
i

m M m
m

w p x

w p x
λω

=

=

∑
, (3.15)

where wi is the fitness weighting of xi; pM(•) is the p.d.f. of mixture normal distribution shown

in Eq. (3.1w). The sequence of mean shift-based clustering of each search point after

introducing importance sampling is given by

1
1 2(1) 2 () 1

1

1 2 2 () 1

1

1() exp (, ;)
2

1 () exp (, ;) ,
2

for 1, , ,

t t
i m m i m m m

m

t
m m i m m m m

m

x x D x x

x D x x x

i

λ

λ

ω

ω

λ

−
−+ −

=

− −

=

⎡ ⎤⎛ ⎞= −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
⎡ ⎤⎛× −⎜⎢ ⎥⎝ ⎠⎣ ⎦

=

∑

∑

H H

H H

"

⎞
⎟

H

H

)

 (3.16)

where

 , (3.17) 2 () () 1 ()(, ;) () (t t T t
i m m i m m i mD x x x x x x−= − −H H

and D is the Mahalanobis distance of ()t
ix to xm and Hm is the positive definite bandwidth

matrix for xm. Hm is another important parameter needs to be determined. In general, when

doing kernel density estimation, literatures process adequate, at least 50 to 100, amount of

samples. In such cases, the selection of bandwidth matrix can be achieved based on the

analysis of asymptotic mean integrated square error (AMISE) [87]. The proposed

MS-CMA-ES is mainly constructed on traditional CMA-ES that only generates few samples

at each generation; therefore, we cannot cite AMISE based bandwidth selection methods

which have richer research results. In this dissertation, the selection of bandwidth matrix is

according to Theorem 3.1, the analysis of MISE [87], which is more applicant to cases with

small amount of samples.

First, we derive equations of optimal bandwidth matrix for samples within a same

cluster. In the following derivation, we ignore the term index and the superscript of variables

m(g)(k), σ(g)(k), and C(g)(k) since we only consider samples within a same cluster at a certain

 42

generation:

Theorem 3.1 [87] Consider KH a kernel function parameterized by bandwidth matrix H, and

the true distribution of samples is N(m, Σ). The optimal MISE bandwidth for density

estimation is given by

ˆ*

d d1 1- ---1 -12 22

d 1- -2 2

= arg min MISE{f(g;)}

 = arg min n (4π) +(1+n)(4π) +

 - 2(2π) +2 ,

⎧
⎨
⎩

⎫
⎬
⎭

H

H

Η H

H -
2H Σ

H Σ

 (3.18)

where d is the dimension of samples, n is the number of samples, m and Σ are the mean and

the covariance matrix of the normal distribution respectively.

In this dissertation, we let Σ be the covariance matrix adapted by CMA-ES

 2σ=Σ C ; (3.19)

in other words, we assume that the true distribution of samples is similar to the normal

distribution adapted by CMA-ES. The covariance matrix C stands for a favorable shape of

distributing samples for finding local optimums and we expect it to be a good approximation

to the true distribution of samples. The global step size σ stands for the bandwidth of kernel

density estimation and it is self-adaptive in CMA-ES algorithm. From experimental

observations, the smaller the bandwidth is, the more number of modes will be estimated and

the larger bandwidths correspond to smoother estimation results.

The dimension of H is d2; in other words, there are d2 parameters need to be optimized at

each generation according to Eq. (3.18), which is very computationally expensive. In this

dissertation, we propose a method to prevent the d2 optimization task at each generation

according to the following theorem [87]:

Theorem 3.2 [87] Consider KH a kernel function parameterized by bandwidth matrix H, and

the true distribution of samples is N(m, Σ). The optimal AMISE bandwidth for density

estimation satisfies

 43

 . (3.20) *
AMISE = hH Σ

Based on theorem 3.2, we limit H to the following equation

 2h hσ= =H Σ C , (3.21)

where h denotes the global width of the bandwidth matrix. According to the

eigen-decomposition theorem

 , (3.22) 2 2 2 Tσ σ= =Σ C BD B

and the following fact

 2 2, (1) , , (1) ,d dh h k hσ σ= + = + + = +H D H Σ D H Σ D" 2k σ (3.23)

the search of optimal bandwidth matrix can be simplified to a 1-dim optimization problem

relevant only to n and d

1 1
* 1 2 2 12 2 2 22 2

0

1
2 22 2 2

2
1 12 2 2 2

0

arg min (4) (1)(4) (1)

 2(2) (2)

 arg min (1)(1) 2 (2) .

d d d d

h

d d

d d d d

h

h n h n h

h

n h n h h

π σ π σ

π σ

− − − − 2 2− −− −

>

− − −

+
− − −− −

>

⎧
= + +⎨

⎩
⎫

− + ⎬
⎭

⎧ ⎫
= + + + − +⎨ ⎬

⎩ ⎭

D D

D

+

 (3.24)

In this dissertation, we use steepest descent method to compute optimal solutions of Eq. (3.24)

as a database indexed for n = 1, 2,…, 50 and d = 1, 2,…,50.

 After deriving equations of optimal bandwidth matrix for samples within the same

cluster, the bandwidth matrix for each sample can be assigned according to its cluster index to

complete the mean shift-based clustering method. The proposed kernel density estimation

method density estimation utilizes the variable bandwidth selection, which is necessary

considering that search points are sampled by a mixture model distribution. The following

figure shows an example of applying kernel density estimation with variable bandwidth

mechanism to complete the mean shift-based clustering. Search points shown in Fig. 3.8(a)

are sampled by a 2-component mixture probability distribution. Pink contour represents high

 44

fitness value while blue contour represents the opposite. Clustering result of search points

shown in Fig. 3.8(b), three clusters are determined and marked by three different colors.

Figure 3.8(b) shows the result of density estimation with samples generated by a 2-component

mixture probability distribution converge to three modes. After mean shift-based clustering,

each cluster forms a separate component of a mixture probability model. The updating of

parameters of the mixture probability model will be introduced at the next section.

3.3.4 Updating of Mixture Probability Model

In this section, we derive parameters of sampling new search points in the MS-CMA-ES.

As described in section 3.3.1, new search points at generation g+1, { }(1)g
ix + , are sampled by a

mixture normal model parameterized by m(g)
, C (g)

, σ(g) and α(g)
. After sampling, the

classification of each search points and the number of clusters K(g+1); in other words, the

number of components of mixture probability model are determined by the mean shift based

clustering method. Before deriving equations of updating m(g)
, C (g)

, σ(g) and α(g), we introduce

two operators

0, if cluster ,

(,)
1, if cluster ,

i

i

x k
z k i

x k
∉⎧

= ⎨ ∈⎩
 (3.25)

and κi {1,…,K} represents the cluster index of sample xi. The updating rule of m(g) of the

k-th cluster reads

∈

(1) (1) (1)

1
() (,) , for 1, , .g g

i i
i

m k w z k i x k K
λ

+ +

=

= =∑ " g+

g+

 (3.26)

The updating rule of C(g) of the k-th cluster reads

 (3.27) ()(1) () (1) (1)

1
() (1) () (,) ,

Tg g g
i i i

i
k c k c z k i w y y

λ
+ +

=

= − + ∑C C�

 45

(a)

(b)

Figure 3.8: Example of kernel density estimation with variable bandwidth selection.

The updating rule of σ(g) of the k-th cluster reads

 i
(1)

()(1)
()

() () exp 1 ,
(0,)

g
gg

p kck k
d E N

σσ

σ

σ σ
+

+
⎡ ⎤⎛ ⎞
⎢ ⎥⎜=

⎜
⎟−
⎟⎢ ⎥⎝ ⎠⎣ ⎦I

 (3.30)

 46

where

()

(1) ()

1
(1) ()2()

eff ()
1

() (1) ()

() (2) (,) () ,
()

g g

g g
g i i

i i g
i i

p k c p k

x mc c z k i w

σ σ σ

λ

σ σ
κμ κ

σ κ

+

− +

=

= −

−
+ − ∑ C

�

 (3.31)

()

() (1)1

1

(,) ()
() , for 1, , ,

(,)

g
i

g gi

i

z k i p
p k k K

z k i

λ

σ

σ λ

κ
+=

=

= =
∑

∑
� " (3.32)

and

()

() 1

1

(,) ()
()

(,)

g
i

g i

i

z k i
k

z k i

λ

λ

σ κ
σ =

=

=
∑

∑
� . (3.33)

Compared to the traditional CMA-ES, the updating of m(g)
, C (g)

 and σ(g) for the MS-CMA-ES

are performed in each cluster. Equations are slightly different besides the two introduced

operator that indicates the cluster index of a search sample. The MS-CMA-ES also introduces

a set mixture weightings α(g) as new variables, and its updating rule is given by

 (3.34) (1) () ()ˆ() (1) () (),g gk c k cα αα α+ = − +� g kα

where

 () (1)

1

1() (,), for 1, , .g

i
a k z k i k K

λ

λ
+

=

= =∑� " g (3.35)

()ˆ ()g kα represents the objective updating value and cα denotes the updating step size. In this

dissertation, we set the objective updating values as the density estimation values of the

modes, which were obtained from the mean shift-based clustering result:

 () ()
KDEˆ () (mode)g g

kk fα = , (3.36)

where denotes the kernel density estimation of the mode of the k-th cluster.

Macroscopically, Eq. (3.34)-(3.36) are performing selection among components. The above

equations perform a series of comparison and elimination in the hierarchical structure formed

()
KDE (mode)g

kf

 47

by the mixture model to explore the local search ability at different search locations, which is

also the key to the global optimization.

3.4 A Separability Detection Approach to Cooperative Particle

Swarm Optimizer

In this section we introduce an approach to help the CPSO self-organize the swarms

composed of non-separable variables. Consider a particular optimization task illustrated in Fig.

3.9, from which we can see a 2-dim function with a bar-shaped local optimal region and a

global optimum lies in it. The task is to find its global optimum by particle swarm optimizer.

At first, particles are uniformly distributed in the search space. At this moment, we expect

particles to be divided into two swarms, performing separate 1-dim PSO operation on each

dimension to speed up the process of particles gathering around the optimal region.

If by any chance particles gather around the optimal region as we expected, as shown in Fig.

3.10. At this point of time, we prefer particles performing 2-dim PSO operation on the whole

search space to reduce the computational cost, which, in this case, represents the number of

function evaluations.

Figure 3.9: Case with particles uniformly distributed in the search space to find the global optimum lies in a

bar-shaped local optimal region.

 48

Figure 3.10: Case with particles gather around the bar-shaped optimal region to find the global optimum.

In order to implement the idea illustrated above, we have to determine the timing of

switching between the PSO and the CPSO operation when dealing with a task. In this paper,

we think this can be done by determining the separability between variables, and placing

non-separable into the same swarm at each generation. If at certain moment, all variables are

determined as non-separable, then the PSO operation is taken; otherwise, the CPSO operation

is taken.

The separability between variables is found by estimating the covariance matrix of the

distribution of particles. Instead of computing the sample covariance matrix of the distribution

of particles directly, we adopt the CMA mechanism to estimate the covariance matrix of the

distribution of particles. The adaptation of new covariance matrix C(g+1) is formed by a

combination of rank-μ and rank-one update. Detailed adaptation equations can be seen from

Eq. (2.14)-(2.24). Consider the estimated covariance matrix has the form shown as follows,

2
1 12 1

2
2

2
1 2

n

n n n

c c c
c

c c c

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

C

"
"
#

"

#
, (3.37)

where n is the number of dimensions, cjk represents the weighted covariance between

 49

variables j and k. The separability between dimensions can be obtained from correlation

coefficient matrix with its element defined as follows:

 jk jk jc c ckρ = , (3.38)

We define a parameter ρthres to determine whether dimension j and k are separable. If ρjk <

ρthres then we say variable j and k are separable. Conventionally, if |ρ|>0.8, it implies that there

exists a very strong linear relationship between these two variables; 0.8>|ρ|>0.6 implies strong

relationship, and 0.6>|ρ|>0.4 implies moderate relationship. In this dissertation, we avoid

setting ρthres less than 0.6. The block diagram of the SD-CPSO can be found in Fig. 3.11.

Figure 3.11: Block diagram of SD-CPSO.

 50

CHAPTER 4

SIMULATIONS

To verify the performance of four algorithms proposed in this dissertation, three

optimization tasks and performance contrasts with some other models are presented. The

optimization tasks can be categorized into reinforcement learning control task and

multi-funnel function optimization task. We apply the QPSO and TSR-EA to

high-dimensional, reinforcement learning control tasks, and apply the MS-CMA-ES and

SD-CPSO to complex, low-dimensional multi-funnel function optimization task. The

optimization tasks used to compare the performance of the proposed four algorithms with

other existing models are described as follows.

In Section 4.1, the cart-pole balance control [101] and the control of a double-link

inverted pendulum system [102] are adopted to evaluate the performance of the proposed

QPSO and TSR-EA. These problem are often used as examples of inherently unstable and

dynamic systems to demonstrate both modern and classical control techniques or the

reinforcement learning schemes.

In Section 4.2, we will compare the performance of the MS-CMA-ES and SD-CPSO

with other existing models through real-valued function optimization tasks [103]. In section

4.2.1, we introduce a simple computer simulation that illustrates the improvement of the

MS-CMA-ES over standard CMA-ES on global search ability. In section 4.2.2, the test

environment and the comparison results are presented.

4.1 Reinforcement Learning Tasks

Two computer simulations are discussed in this section. The first simulation is the

cart-pole balance control and the second simulation is the control of a double-link inverted

 51

pendulum system.

Example 1: Control of a cart-pole balancing system

Figure 4.1: Single-link inverted pendulum system.

Figure 4.1 depicts the cart-pole balancing system. The bottom of the pole is hinged to a

cart that travels along a finite-length track to its right or left. Both the cart and pole can move

only on the vertical plane; that is, each has only one degree of freedom. The only control

action is F, which is the amount of force (in Newtons) applied to the cart to move it left or

right. The system fails when the cart runs into the bounds of its track (the distance is 2.4 m

from the center to each bound of the track) or when the pole deviates more than 90 degrees.

Using Lagrange’s method, the model of the cart-pole balancing system can be obtained as

follows:

 x: 2() (cos sin)m M x mL Fθ θ θ θ+ + −�� ��� = , (4.1)

 θ : cos sin 0x L gθ θ θ+ −���� = , (4.2)

where L = 0.5 m, the length of the pole; M = 1.0 kg, the mass of the cart; m = 0.1 kg, the mass

of the pole, and g = 9.8 m/s, the acceleration due to gravity. []min max,m m , []min max,σ σ and

[]min max,w w are set as [0, 2], [0, 2] and [-30, 30], respectively.

By letting (,)Tq x θ= , we can rewrite Eqs. (4.1) and (4.2) into general dynamic forms as

follows:

() () (), D q q C q q q G q τ+ + =�� � � , (4.3)

 52

 () 2

cos
cos

m M mL
D q

mL mL
θ

θ
+⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, (4.4)

() 0 sin
,

0 0
mL

C q q
θ θ⎡ ⎤−

= ⎢ ⎥
⎣ ⎦

�

� , (4.5)

()
0

sin
G q

mgL θ
⎡ ⎤

= ⎢ ⎥−⎣ ⎦
, (4.6)

 []0 TFτ = . (4.7)

The total mechanical energy of the system can be derived from:

 () () (,
2

T)1E q q q D q q P q= +� � � , (4.8)

where energy of the system (()P q denotes the potential cosgL θ in this case) and m

() ()P q
q

∂
∂

cart to

G q = . The purpose of this control task is to determine the sequence of forces applied

alance the pole upright and keep the cart as stationary as possible. Hence, we

define a goal set comprising near-upright and near-stationary states as

to the b

{ }1 (,) : (, ,) 0.001G q q x θ θ= ≤�� � . When the state of the cart-pole balancing system is in G1,

mechanical energy E of the system is mgL, denoting Etop. We

define a Lyapunov function ()

accord Eq. (4.8), the total ing to

()()top, ,
2

L q q E E q q= −� � . The purpose of this c ntrol

problem can be transformed f pright and keeping the cart as

stationary as possible” to “guiding the system’s mechanical energy (),

21 o

rom “balancing the pole u

E q q� to reach Etop

and maintaining it near Etop as long as possible;” that is, achieving 0L . In order to

achieve the aforementioned goal, we have to make sure that the Ly ction of the

system decrease at all time steps. The time derivative of

(,q

apu

) q =�

nov fun

(), L q q� with respect to time is

() ()() (),q qtop, , L q q E E q q E= − −� � � � � 4.9)

and the time derivative of E with respect to time is

, (

 53

() () () ()

() ()() () ()

1, T TE q q q D q q q D= +� �� � �� �
2

1- ,
2

,

T

T T T

T

q q q G q

q C q q q G q q D q q q G q

q

xF

τ

τ

+

= − + + +

=

=

� �

�� � � � � �

�

�

 (4.10)

which shows that the derivative of E is proportional to the product of the speed of the cart and

input force. The time derivative of (), L q q� with respect to time can be obtained from

combing Eq. (4.9) and (4.10), which re

()

ads

(())top ,E q q xF−, L q q E= −� � � � , (4.11)

from which we can see that in order to make sure the Lyapunov function of the system

(), L q q� decrease at all time steps, the direction of the control force has to be coherent with

()() x− � � . Hence, for the QPSO, following [57], a Lyapunov-based

control law for the learning agent based on the Lyapunov analysis can be derived as follows:

top(())F sgn E E x u

the sign of top , E E q q

= − � , (4.12)

where and u is the o

]. Initial parameters of the QPSO a

Table 4.1: The initial parameters of the le balancing system.

() {1 if 0, and -1 otherwise}sgn x x= ≥� utput force of the NFS limited in

[-10,10 nd TSR-EA for controlling cart-pole balancing

system are listed in the following two tables:

QPSO for cart-po

Parameters Value Parameters Value
[minσ , maxσ] [0, 2] c1 2.01
[m , m] min max [0, 2] c1 2.01
[,] minw maxw [-20, 20] s 50

R 4 φ 4.02
α 0.01 χ 0.99
γ 0.9 max_gen 300

 54

Table 4.2 : The initial parameters of the TSR-EA for cart-pole balancing system.

Para ters Value Param ters Value me e
[minσ ,] [0, 2] _Thres T eStep im 1000 maxσ
[minm , m] [0, 2] Cr te ossover Ra 0.5 max

[minw , maxw] [-20, 20] Mutation Rate 0.2
R 5 s 50
A 10 Ncs 250

To verify with the performance of the based reinforcement

learning (TDGAR) [53], the on-line clustering and Q-value based GA reinforcement learning

(CQGAF) [54] an th rec t w d rei ement group

cooperation-based symbiotic evolution (R-GCSE) algorithm [55] are applied to the same

control task. In the TDGAR, there are five hidden nodes and five rules in the critic network

and the action network. The population size is set as 200 and the maximum perturbation is set

as 0.0005. In the CQGAF, after trial-and-error tests, the final average number of rules from 50

runs was 6 by using the on-line clustering algorithm. The population size is set as 50. The

QPSO, the TD and GA

d e urren avelet-base NFS with a nforc

parameters for Q-learning are set as α =0.01 and γ =0.9. In the R-GCSE, the population size

DD

is set as 50 and the mutation rate is set as 0.1.

The control goal defined here is “bringing the plant’s state to G1 within 1,000 time

steps.” The original successful region Original_Range of the variables are and

-2.4m

1212 ≤≤− θ

x≤ ≤

TSR-EA, a

Original_Range

2.4m. The initial state of the plant is set within Original_Range

the control goal is met or a failure occurs. For, the QSPO, TDGAR, C

failure learning trial if the cart or the pendulum deviates beyond the e

 failure learning trial occurs if the cart or the pendulum

or the strict successful region defined in Eq. (3.7).

average. The performances of all these compared methods are shown in Table 4.3, from

. A trail ends when

QGAF and R-GCSE, a

Original_Range. For th

 deviates beyond the

 The constraints of the

es to compute the output force is -10N F≤ ≤ 10N. If each algorithm is executed for 50 tim

 55

which we can see that the QPSO and TSR-EA has superior control rate and requires fewer

CPU-time cost. The reason could be due to the incorporating of the Lyapunov design

principles in the QPSO, and the proposed TSR mechanism provides a more distinguishable

performing index to the individuals that can accelerate their evolution process.

Table 4.3: Summary Statistics of Example 1.

Methods QPSO TSR-EA TDGAR CQGAF R-GCSE

% of learning trials meet

the control goal.
100 96 68 74 88

Average Time to goal. 9.8± 0.7 12.2± 0.3 80.2± 9.1 33.6± 2.7 ±58.9 6.8

The testing results, which lum angular velocity (in

degrees/seconds), and cart velocity (in meters/seconds) of the TSR-EA, TDGAR, CQGAF

and R-GCSE are shown in Fig. 4.2-4.5 as follows. Each line in Fig. 4.2-4.5 represents a single

run

 consist of the pendulum angle, pendu

.

 56

(a)

(b)

(c)

Figure 4.2: 50 control results of the cart-pole balancing system using the TSR-EA in Example 1. (a) Angle of the

pendulum. (b) Angular velocity of the pendulum. (c) Velocity of the cart.

 57

(a)

(b)

(c)

Figure 4.3: 50 control results of the cart-pole balancing system using the TDGAR in Example 1. (a) Angle of the

pendulum. (b) Angular velocity of the pendulum. (c) Velocity of the cart.

 58

(a)

(b)

(c)

Figure 4.4: 50 control results of the cart-pole balancing system using the CQGAF in Example 1. (a) Angle of the

pendulum. (b) Angular velocity of the pendulum. (c) Velocity of the cart.

 59

(a)

(b)

(c)

Figure 4.5: 50 control results of the cart-pole balancing system using the R-GCSE in Example 1. (a) Angle of the

pendulum. (b) Angular velocity of the pendulum. (c) Velocity of the cart.

 60

Furthermore, we complicate our control goal to “bringing the plant’s state to G1 within

5,000 time steps, and maintaining the state within G1 for 100,000 time steps,” and the original

successful region Original_Range of the variables are modified to and

-2.4m

90 90θ− ≤ ≤D D

x≤ ≤ 2.4m. The initial state of the plant is set within Original_Range. A trail ends when

the control goal is met or a failure occurs. For the QSPO, TSR-EA, TDGAR, CQGAF and

R-GCSE, a failure learning trial occurs if the cart or the pendulum deviates beyond the

Original_Range. Each algorithm is still executed for 50 times to compute the average. The

performances of all these compared methods are shown in Table 4.4.

Table 4.4: Summary Statistics of Example 1 under a difficult control goal.

Methods QPSO TSR-EA TDGAR CQGAF R-GCSE

% of first 10% trials

meeting goal.
92 32 56 70 78

% of trials meeting

goal.
98 94 84 90 94

Time to goal, first 10%

trials.
24.2 0.8 ± 44.5± 6.6 200.2± 0 50.6 7.2 ± 78.9± 8.8

Average Time to goal. 21.6 0.3 ± 38.9± 2.5 169.8± 12.9 34.2 6.1 ± 46.1± 4.9

From Table 4.4 we can see that the QPSO has the most successful control rate. The

superiority can be seen especially from the first 10% learning trials where learning agents are

not fully trained yet. The QPSO is able to apply a safe, reliable control result during initial

leanings, which is crucial important in many applications. The testing results of the QPSO are

shown in Fig. 4.6 and Fig. 4.7. Each line in Fig. 4.6 and Fig. 4.7 represents a single run that

starts form a increased range of initial states. Figure 4.6 shows the results the first 1,000 of

100,000 control time steps while Fig. 4.7 shows the last 1,000. From Fig. 4.6 we can see that

with the aid of Lyapunov design, the QPSO is able to control the single-link inverted

pendulum system well under different initial conditions. Trajectories shown in Fig. 4.7 verify

the ability of the QPSO marinating the environment into G1.

 61

(a)

(b)

(c)

Figure 4.6: 50 first 1000 time steps control results the QPSO of the cart-pole balancing system. . (a) Angle of the

pendulum. (b) Angular velocity of the pendulum. (c) Velocity of the cart.

 62

(a)

(b)

(c)

Figure 4.7: 50 last 1000 time steps control results the QPSO of the cart-pole balancing system. . (a) Angle of the

pendulum. (b) Angular velocity of the pendulum. (c) Velocity of the cart.

 63

Example 2: Control of a double-link inverted pendulum system

Figure 4.8: Double-link inverted pendulum system.

Consider the double-link inverted pendulum system: m1 is the mass of link 1, m2 is the

mass of link 2, 1θ is the angle that link 1 makes with the vertical, 2θ is the angle that link 2

makes with link 1, l1 and l2 are the lengths of link 1 and 2, lc1 is the distance of the center of

mass of link 1, lc2 is the distance of the center of mass of link 2, I1 and I2 are the moments of

inertia of link 1 and link 2 about their centroids and 1τ is the only control torque applied to

the joint of link 1. We introduce the following five parameter equations:

2 2
1 1 1 2 1

2
2 2 2 2

3 2 1 1

4 1 1 2 1

5 2 2

1p m lc m l I

p m lc I
p m l lc
p m lc m l
p m lc

⎧ = + +
⎪

= +⎪
⎪ =⎨
⎪ = +⎪
⎪ =⎩

. (4.13)

The model of the system can be obtained by using Lagrange’s method:

() () (), D q q C q q q G q τ+ + =�� � � , (4.14)

where

1 2 1 2[,] [,]T Tq q q θ θ= = , , (4.15) 1[, 0]Tτ τ=

() 1 2 3 2 2 3 2

2 3 2 2

2 cos cos
cos

p p p q p p q
D q

p p q p
+ + +⎡ ⎤

= ⎢ ⎥+⎣ ⎦
, (4.16)

 64

 () 2 2 1
3 2

1

, sin
0

q q q
C q q p q

q
− − −⎡ ⎤

= ⎢ ⎥
⎣ ⎦

� � �

�
�

, (4.17)

 () 4 1 5 1 2

5 1 2

cos cos()
cos()

p q p g q q
G q

p g q q
+ +⎡ ⎤

= ⎢ ⎥+⎣ ⎦
. (4.18)

The potential energy of the double-link inverted pendulum system can be defined as

4 1 5 1() sin sin()P q p g q p g q q2= + + , (4.19)

and the total mechanical energy of the system is given by

() () ()

() 4 1 5 1

1,
2
1 sin sin().
2

T

T

E q q q D q q P q

q D q q p g q p g q q

= +

= + +

� � �

� � 2+
 (4.20)

 The control objective is to stabilize the system around its top position, i.e.

=(0,0,0,0). Hence, another goal set is defined by 1 1 2 2(, , ,)q q q q� �

 { }2 1 1 2 2 1 1 2 2(, , ,) : (, , ,) 0.01G q q q q q q q q= ≤� � � � . (4.20)

When the state of double-link inverted pendulum system is in G2, the total mechanical energy

E of the system is given by

E(0, 0, 0, 0) = Etop = (p4+p5)g. (4.21)

By defining a Lyapunov function () ()(2

top
1, ,
2

L q q E E q q= −�) � . The control objective can be

either considered as guiding the system state into G2 or achieving . The action

selection of the QPSO is to make sure that the Lyapunov function of the system decrease at all

time steps. The time derivative of

(), 0L q q =�

(), L q q� with respect to time is given by

() ()() ()top, , ,L q q E E q q E q q= − −� � � � � , (4.22)

Where the time derivative of E with respect to time is

 65

() () () ()

() ()() () ()

1 1

1,
2

1- ,
2

 ,

T T T

T T

T

E q q q D q q q D q q q G q

q C q q q G q q D q q q G q

q q

τ

τ τ

= + +

= − + + +

= =

� �� � �� � � �

�� � � � � �

� �

T (4.23)

which shows that the derivative of E is proportional to the product of the angular velocity of

the first pole. The time derivative of (), L q q� with respect to time is derived as follows:

() ()()
()()

top

top 1 1

, ,

 , .

TL q q E E q q q

E E q q q

τ

τ

= − −

= − −

� � �

� �

�
 (4.24)

In order to make sure the Lyapunov function of the system (), L q q� decrease at all time

steps, the direction of the control torque is assigned to be coherent with the sign of

. A Lyapunov-based control law for the QPSO can be derived as follows: ()(top 1, E E q q q− � �)

11 top(())sgn E E q zτ = − � , (4.25)

where z is the output of the NFS limited in [-10,10]. Double-link inverted pendulum system

parameters are L1=1m, L2=2m, m1=1kg, m2=2kg, g=9.8m/s. In designing the NFS, the four

controller input are normalized between 0 and 1, the output z is limited between

-10 and 10. Initial parameters of the QPSO and TSR-EA for controlling two-pole inverted

pendulum system are listed in the following two tables:

),,,(xx ��θθ

Table 4.5: The initial parameters of the QPSO for two-pole inverted pendulum system.

Parameters Value Parameters Value
[minσ , maxσ] [0, 2] c1 2.01
[minm , maxm] [0, 2] c1 2.01
[minw , maxw] [-30, 30] s 50

R 5 φ 4.02
α 0.99 0.01 χ
γ 0.9 max_gen 300

 66

Table 4.6 : The initial parameters of the TSR-EA for two-pole inverted pendulum system.

Parameters Value Parameters Value
[minσ , maxσ] [0, 2] _Thres TimeStep 5000
[minm , maxm] 2] Rate [0, Crossover 0.5
[minw , maxw] [-30, 30] Mutation Rate 0.2

R s 7 50
A 10 Ncs 350

In the TDGAR, there are five hidden nodes and five rules in the critic network and the

action network. The pop tion size is set a 00 and the m mum perturbation is set as

0.0005. In the CQGAF, after trial-and-error s, the final a ge numb rules from 50

runs was 8 by using the on-line clustering algorithm. The population size is set as 50. The

param

ula s 3 axi

 test vera er of

eters for Q-learning are set as α =0.01 and γ =0.9. In the R-GCSE, the population size

1 2

successful region. The control goal is defined t

is set as 50 and the mutation rate is set as 0.1.

For the TDGAR, CQGAF and R-GCSE, the original successful region of the variables is

, and . Initial states of the plant are set within the original

o “maintaining the plant’s state within G2 for

100,

means that either pendulum deviates beyond the original successful region.

For the TSR-EA, the original successful region of the variables is , and

e control goal is

defin

the control goal is met or a failure occurs, which means that either pendulum deviates beyond

the either the original successful region or the strict successful region.

For the Q-PSO, the original successful region of the variables is , and

36 36θ− ≤ ≤D D 36 36θ− ≤ ≤D D

000 time steps.” A trail ends when the control goal is met or a failure occurs, which

1

236 36θ− ≤ ≤D D . The strict successful region designed by the TSR is defined in Eq. (3.7).

Initial states of the plant are set within the original successful region. Th

36 36θ− ≤ ≤D D

ed to “maintaining the plant’s state within G2 for 100,000 time steps.” A trail ends when

190 90θ− ≤ ≤D D

 67

290 90θ− ≤ ≤D D . Initial states of the plant are set within the original successful region, which

represents the whole input space. The control goal is defined to “bringing plant’s state to G2

trol rate. The ability of the QPSO to provide reliable control result

Table 4.7: Summary Statistics of Example 2.

withi

when the contr

during initial learning is

n 5,000 time steps and maintaining it within G2 for 100,000 time steps.” A trail ends

ol goal is met or a failure occurs, which means that it exceeds 105,000 time

steps.

Each algorithm is executed for 50 times to compute the average. The performances of all

these compared methods are shown in Table 4.7, from which we can see that the QPSO and

TSR-EA has better con

 still obvious from control result of the first 10% learning trials.

Methods QPSO TSR-EA TDGAR CQGAF R-GCSE

% of first 10% trials meeting goal. 86 14 2 32 56

% of trials meeting goal. 68 82 94 88 46

Time to goal, first 10% trials. 40.8± 1.9 66.3± 2.4 308.2± 0 9 10.6± 7.2 45.9± 19.8

Average Time to goal. 34.6± 2.2 57.7± 6.6 276.8± 31.9 76.2 3.1 131.± 1 7± 16.5

The testing results, which consist of the angle and angular velocity of both pendulums

are shown in Fig. 4.9-4.13 as follows. Each line in Fig. 4.9-4.13 represents the first 1,000

e steps of a single run. control tim

 68

(a)

(b)

(c)

 69

(d)

Figure 4.9: 50 first 1000 time steps control results of the double-link inverted pendulum system using the QPSO. (a)

Angle of link 1. (a) Angle of link 2. (c) Angular velocity of link 1. (d) Angular velocity of link 2.

(a)

(b)

 70

(c)

(d)

Figure 4.10: 50 first 1000 time steps control results of the double-link inverted pendulum system using the

TSR-EA. (a) Angle of link 1. (a) Angle of link 2. (c) Angular velocity of link 1. (d) Angular velocity of link 2.

(a)

 71

(b)

(c)

(d)

Figure 4.11: 50 first 1000 time steps control results of the double-link inverted pendulum system using the

TDGAR. (a) Angle of link 1. (a) Angle of link 2. (c) Angular velocity of link 1. (d) Angular velocity of link 2.

 72

(a)

(b)

(c)

 73

(d)

Figure 4.12: 50 first 1000 time steps control results of the double-link inverted pendulum system using the

CQGAF. (a) Angle of link 1. (a) Angle of link 2. (c) Angular velocity of link 1. (d) Angular velocity of link 2.

(a)

(b)

 74

(c)

(d)

Figure 4.13: 50 first 1000 time steps control results of the double-link inverted pendulum system using the

R-GCSE. (a) Angle of link 1. (a) Angle of link 2. (c) Angular velocity of link 1. (d) Angular velocity of link 2.

From Fig. 4.9-4.13 we can see that the proposed QPSO and TSR-EA have better control

accuracy, which is one the major benefits of applying Lyapunov design principles or the TSR

mechanism. The testing results of the last 1,000 control time steps of the QPSO and TSR-EA

are shown in Fig. 4.14 and Fig. 4.15 as follows. From Fig. 4.14 and Fig. 4.15 we can see that,

with two different kinds of mechanism, the QPSO and TSR-EA are able to attain accurate

control results. Trajectories shown in Fig. 4.14 and Fig. 4.15 verify the ability of the QPSO

and TSR-EA marinating their environment into G2.

 75

(a)

(b)

(c)

 76

(d)

Figure 4.14: 50 last 1000 time steps control results of the double-link inverted pendulum system using the QPSO.

(a) Angle of link 1. (b) Angular velocity of link 1. (c) Angle of link 2. (d) Angular velocity of link 2.

(a)

(b)

 77

(c)

(d)

Figure 4.15: 50 last 1000 time steps control results of the double-link inverted pendulum system using the TSR-EA.

(a) Angle of link 1. (b) Angular velocity of link 1. (c) Angle of link 2. (d) Angular velocity of link 2.

4.2 Real-valued Function Optimization Task

In this section, we will verify the performance of the proposed MS-CMA-ES and the

SD-CPSO through real-valued function optimization task. In section 4.2.1 we introduce a

simple computer simulation that illustrates the improvement of the MS-CMA-ES on global

search ability, and the design of the environment for testing the MS-CMA-ES and other

comparing algorithms. In section 4.2.2 we give computer simulation and comparison results

that will state the improvement of the MS-CMA-ES over standard CMA-ES, SD-CPSO over

standard PSO and CPSO on multi-funnel functions optimization.

 78

4.2.1 Test Functions Introduction

The performance of the proposed MS-CMA-ES and SD-CPSO are verified by

real-parameter minimization tasks, which contains totally nine test functions covering all

types. By there nature they can be divided into two parts: unimodal and multi-modal functions.

The first two functions are unimodal, followed by seven multimodal functions with three of

them have simple global structures (single-funnel functions) and another four have complex

global structures (multi-funnel functions). The types and names of functions are described in

Table 4.8, and a detailed definition of test functions can be seen in [103, 104].

Table 4.8: Type and name of test functions.

Unimodal Functions

f1: Sphere Function

f 2: High Conditioned Ellipsoidal Function

Multimodal Functions

f 3: Rosenbrock Function

f 4: Rastrigin Function

f 5: Griewank Function

Multi-Funnel Functions

f 6: Schwefel Function

f 7: Double-Rastrigin Function

f 8: Weierstrass Function

f 9: Michalewicz Function

First, we propose a simple computer simulation by executing both the MS-CMA-ES and

the CMA-ES on 2-dim Double-Rastrigin function multiple times with there initial search

points even distributed at the search space. We adjusted the selected Double-Rastrigin

function to zero global optimum. Then we calculate on both algorithms the probability for

 79

each initial search location successfully finds the global optimum. The computer simulation

process is shown as follows:

1. Initialize a set of initial search locations X={x1, x2,…, xn}. Define the run times for each

initial point N and the stopping criterion: maximum calculation times and minimum fitness

threshold.

2. Execute the algorithm N times at initial point xi and record the number of times Ns(xi) the

algorithm successfully finds global optimum with initial search location xi:

 () ()s i s iP x N x N= , for i=1, 2,…, n. (4.26)

3. Calculate the average probability of success Es:

1

()
n

s s i
i

E P x
=

=∑ n . (4.27)

The contour details of Double-Rastrigin is shown in Fig. 4.16, from which we can see that

there is a global optimum resting on the lower left corner, a local optimal solution resting on

the upper right corner, and a spread of the noise-type local minima.

Figure 4.16: Contour details of double-Rastrigin function.

In this simulation, the run times for each initial point N is set as 20, and each run ends when

the number of calculation times reaches 400, or when the function value of current search

 80

point declines to 0.01. The computer simulation result is shown in Fig. 4.17 which depicts the

probability of success Ps(xi) of both algorithms. The search range for both algorithms are

defined as [-50,50]2, and the search space is discretized with 4x4 grid size as each initial

search location. The color of each grid from dark to light corresponds to the value of Ps(xi)

from 0 to 1. From Fig. 4.17 we can see that the white region of the MS-CMA-ES is larger

than that of the CMA-ES especially in the mountain ridge part, which reveals the superior

global search ability on the MS-CMA-ES. Improvement can also been seen from the average

probability of success Es of the MS-CMA-ES is 0.64571, which is larger than 0.52055 of the

CMA-ES.

(a) (b)

Figure 4.17: Graph of global search ability test of (a) CMA-ES. (b) MS-CMA-ES.

4.2.2 Function Optimization Simulation

The problem dimension of the simulation is set 50. All functions have been adjusted to

zero optimal solution respectively. The number of maximum fitness calculation times, initial

search range, initial search position and minimum fitness threshold are detailed in Table 4.9.

 81

Table 4.9: Parameters of the simulation.

 Number of

maximum

fitness

calculation

Initial search

range

Initial

position

Minimum

fitness

threshold

f1 10000 x∈[0,100]d x=[50]d 1e-6

f 2 10000 x∈[0,100]d x= [50]d 1e-6

f 3 10000 x∈[0,100]d x= [50]d 1e-2

f 4 3000 x∈ [0, 5]d x= [2.5]d 1e-2

f 5 8000 x∈[0,600]d x= [300]d 1e-2

f 6 4000 x∈[0,3]d x= [1.5]d 1e-2

f 7 2000 x∈ [-20,20]d x= [0]d 1e-2

f 8 4000 x∈[0,0.5]d x= [0.25]d 1e-2

f9 5000 x∈[0,5]d x= [2.5]d 1e-2

One half of the initial search range is defined as the initial standard deviation of CMA-ES and

MS-CMA-ES, and the initial particles of PSO are evenly distributed in the initial search range.

The proposed MS-CMA-ES and SD-CPSO are based on traditional CMA-ES and CPSO

respectively. As a result, the MS-CMA-ES is compared with the standard CMA-ES and two

of its famous improvements, a local restart CMA-ES (LR-CMA-ES) [60] and a CMA-ES with

iteratively increasing population size (IPOP-CMA-ES) [61]. As to the SD-CPSO we compare

it with standard PSO and comparing algorithms of this computer simulation include

traditional CMA-ES and , PSO [8] and CPSO-S [9]. As to the parameter setting of participant

algorithms, the parameter setting that the PSO and CPSO use refers to previous research [105];

The setting of parameters of CMA-ES is designed by [12]; MS-CMA-ES algorithm use the

same parameters as CMA-ES except that the number of sample size is 1.5 times larger to the

CMA-ES, and the parameter cα introduced in the MS-CMA-ES is set to be 0.1. Table 4.10

outlined the computer simulation parameters. The formulas of parameters are listed below.

The computer simulation data is obtained by executing each 50 dimensional test functions

until the stopping criterion is met. The procedure was repeated 50 times to compute the

 82

average fitness value. In the paper, instead of the actual numeric fitness value, the rank of the

minimum average fitness value is defined as the standard of comparison. The reason is that

we want to exclude the impact of the different degree of scale on the raw numeric difference

between each test function. For example, some functions have very large fitness gap between

the best and the second best local minimum, some of them don’t even have local minima.

Therefore, the numeric difference may not be a good performing index for evaluating

algorithms.

Table 4.10: MS-CMA-ES and CMA-ES parameters.

Parameters of Selection operator

CMA-ES

4 3ln nλ = + ⎢ ⎥⎣ ⎦
MS-CMA-ES

1.5(4 3ln)nλ = + ⎢ ⎥⎣ ⎦

'
'

'

1

ln(0.5) ln , for i=1,...
, 2 2

0 , for else i

i
i i

j
j

iww w
w

λ

λ λ

=

⎧
,

⎢ ⎥+ −⎪ ⎢ ⎥= = ⎣ ⎦⎨
⎪⎩∑

Parameters of Covariance adaptation:

ccov=0.7
μcov=10

eff

eff

4 /
4 2 /c

nc
n n

μ
μ

+
=

+ +
,

eff

eff

2
5

c
nσ
μ
μ
+

=
+ +

eff 11 2max 0 , 1
1

d c
nσ σ
μ⎛ ⎞−

= + −⎜ ⎟⎜ ⎟+⎝ ⎠
+

MS-CMA-ES mixed weighting:

cα=0.1

Parameters of PSO:

c1=c2=2.01

s=50

Parameters of SD-CPSO:

ρthres=0.8

 83

The comparison result of the proposed MS-CMA-ES is shown in Table 4.11-4.13. In order

to verify the performance of the MS-CMA-ES, we think it is important to evaluate the

algorithms at early, middle, and the late stage of the test. So in this computer simulation we

take three check points, at 20%, 50%, and 100% of the number of the maximum fitness

calculation for rank comparison. The early, middle and later stage comparison results of the

MS-CMA-ES are shown in Table 4-6 as follows.

Table 4.11: Average fitness at 20% number of fitness calculations.

 CMA-ES MS-CMA-ES LR-CMA-ES IPOP-CMA-ES

f 1 1.380e-021(1)* 1.918e-009(3) 7.665e-017(2) 2.390e-008(4)

f 2 0.004611(2) 1145(4) 1.660e-010(1)* 0.009175(3)

f 3 51.02(1)* 202.8(4) 76.98(2) 99.09(3)

f 4 13.27(1)* 21.64(2) 33.87(4) 25.88(3)

f 5 0.06198(1)* 0.01962(2) 0.3861(3) 0.7785(4)

f 6 171 (2) 516.2 (4) 391.8(3) 139.9(1)*

f 7 13.95(1)* 65.54(3) 65.4(2) 108.5(4)

f 8 0.2643(1)* 0.7184(4) 0.4763(2) 0.5725(3)

f 9 5.75(3) 33.65(4) 1,254e-001(1)* 0.36(2)

Table 4.12: Average fitness at 50% number of fitness calculations.

 CMA-ES MS-CMA-ES LR-CMA-ES IPOP-CMA-ES

f 1 1.512e-058(1)* 1.335e-028(4) 8.877e-049(3) 8.443e-050(2)

f 2 2.716e-040(2) 6.94e-013(3) 1.408e-044 (1)* 1.646e-010(4)

f 3 0.9815(2) 2.643(1)* 21.68(3) 79.85(4)

f 4 9.754(2) 8.649(1)* 11.9(3) 15.09(4)

f 5 0.06198(2) 0.04725(1)* 0.1451(4) 0.06753(3)

f 6 169.9(4) 144.2(2) 87.78(1)* 119.7(3)

f 7 12.57(2) 10.17(1)* 55.82(3) 79.74(4)

f 8 0.1199(1)* 0.134(2) 0.7343(3) 0.7444(4)

f 9 5.75(4) 7.864e-008(1) * 6.408e-003(3) 5.983e-007(2)

 84

Table 4.13: Average fitness at 100% number of fitness calculations.

 CMA-ES MS-CMA-ES LR-CMA-ES IPOP-CMA-ES

f 1 1.311e-120(1)* 2.632e-062(3) 7.854e-105(2) 8.443e-017(4)

f 2 4.489e-103(1)* 3.478e-046(4) 2.043e-097(2) 1.821e-056(3)

f 3 0.7862 (1)* 0.8434 (2) 18.85 (3) 82.45(4)

f 4 9.751(2) 7.721(1)* 11.86(2) 15.09(2)

f 5 0.06198(2) 0.03893(1)* 0.3769(3) 0.3861(3)

f 6 169.9(4) 69.38(2) 87.78(2)* 66.21(1)*

f 7 12.57(4) 6.652e-003(1)* 8.98(2) 11.76(4)

f 8 0.1188(4) 5e-004(1)* 0.06875 (3) 3.876e-003(2)

f 9 5.75(4) 7.864e-008(1) * 6.326e-003(3) 5.983e-007(2)

The results to be discussed are divided into three parts in accordance with the function types:

1) Unimodal Function:

Under the sphere function f1, CMA-ES has the best performance, owing to its property of

rapid convergence. As to ellipsoid function f 2, at first, LR-CMA-ES is better than the others,

but worse than CMA-ES at the end. The reason the MS-CMA-ES has the worst performance

may be that its clustering mechanism generates too many components on such simple

unimodal functions. But from the optimization result, all three algorithms are capable of

finding optimal solution within short times of fitness calculation.

2) Multimodal Function:

The MS-CMA-ES is better than other algorithms at the later stage under the f 4 and f 5 test

functions except for f3, f4 and f5 have single-funnel and noisy-like local minimums; however, f3

doesn’t have obvious single-funnel structure. From the optimization result we can see that the

MS-CMA-ES is suitable of solving multimodal function optimization tasks.

3) Multi-Funnel Function:

In this dissertation, we focus on the optimization of this type of function. At early test stage,

the other three algorithms outperform the MS-CMA-ES algorithm. The mechanism of the

MS-CMA-ES is designed to generate multiple CMA-ES instances for exploring different

 85

regions of search space simultaneously. As a result, the reason the MS-CMA-ES loses at early

stage may due to the scattering of sampling resources for finding the optimal solution in

parallel. However, at the later stage, especially on the f7 and f 8 functions, the global solution

search capability of the MS-CMA-ES is beyond those of other comparing methods. The

overall convergence rate of the MS-CMA-ES is its most obvious shortcomings due to the

adopted parallel searching mechanism, but it is inevitable cost for improving the global

searching ability on multi-funnel functions.

The comparison result of the proposed SD-CPSO is shown in Table 4.14 as follows.

Table 4.14: Average fitness value

 CPSO-S SD-CPSO PSO

f 1 6.361e-99(1)* 2.634e-062(3) 9.653-76(2)

f 2 4.481e-84(1)* 3.464e-033(3) 2.876e-75(2)

f 3 18.8764 (3) 0.8872 (1)* 1.4356(2)

f 4 11.871(1) * 17.721(2) 26.65(3)

f 5 9.6198(3) 0.6893(1)* 6.3769(2)

f 6 469.9(3) 288.3(2) 87.36(1)*

f 7 12.57(2) 7.659(1)* 95.03(3)

f 8 1.2287(2) 0.6643(1)* 1.254(3)

f 9 5.75(3) 0.897(1) * 4.08(2)

The results to be discussed are divided into three parts in accordance with the function types:

1) Unimodal Function:

Under the sphere function f 1, CPSO-S has the best performance, owing to its property of

rapid convergence. As to ellipsoid function f 2, at first, PSO is better than the other two

algorithms. As shown from the computer simulation result, all three algorithms are capable of

solving unimodal optimization task, and no improvement of performance can be found by

applying our method.

2) Multimodal Function:

The SD-CPSO is better than other algorithms under the f 3 and f 5 test functions except for f 4,

 86

the Rastrigin’s function. We think it might due to the fact that Rastrigin’s function is nearly

the same after rotation, which makes our effort trying to find a special trend to the global

optimum irrelevant. However, the superiority of the proposed SD-CPSO in finding global

optima of multimodal functions can be seen in substance.

3) Multi-Funnel Function:

From Table 4.14 we can see that in coping with multi-funnel function optimization tasks, the

superiority of the proposed SD-CPSO is obvious. In general, the optimization of multi-funnel

function is difficult as we can see especially from the optimization result of the f6 function.

Despite the proposed SD-CPSO has better performance on the optimization tasks of f7 and f8

function, the improvement is not very obvious. However, in the optimization of f9, the

Michalewicz's function, the improvement is remarkable. A visualization of a 2-D

Michalewicz's function is shown in Fig. 4.18. We will illustrate the optimization results of

applying Michalewicz's function in both its unrotated and rotated form in Fig. 4.19. Figure

4.19(a) represents the result of applying unrotated Michalewicz's function. Michalewicz's

function introduces many valleys into the plain, and the function values for points in the space

outside the narrow valleys give very little information about the location of the global

optimum. Thus, the swarms need to follow through these valleys to find minimums. In its

rotated version, these narrow valleys are too correlated to follow through from the perspective

of the CPSO. In Fig. 4.19(b), the SD-CPSO in evidence overcomes the drawback.

 87

Fugure 4.18: Visualization of a 2-D Michalewicz's function.

 (a) (b)

Figure 4.19: Computer simulation results of applying Michalewicz's function in its (a) unrotated form, (b) rotated

form.

 88

CHAPTER 5

CONCLUSION

In this dissertation, four algorithms are proposed, including a Q-valued based particle

swarm optimization (QPSO), a two-strategy reinforcement evolutionary algorithm (TSR-EA),

a mean shift based evolution strategy with covariance matrix adaption (MS-CMA-ES) and a

separability detection approach to cooperative particle swarm optimization (SD-CPSO). In

this dissertation, the performance of the QPSO and TSR-EA are verified through

reinforcement learning control tasks while the performance of the MS-CMA-ES and

SD-CPSO are verified through real-valued function optimization tasks. Advantages and future

works on these algorithms are described as follows.

The proposed QPSO adopts the concept of Lyapunov design for constructing safe

reinforcement learning agents. The advantages of the QPSO can be shown from that it

provides a reliable initial learning performance and accurate control result due to the

Lyapunov design of learning agents. But one drawback of the QPSO is that it requires

additional priori knowledge. In order to apply Lyapunov-based control laws, we have to

identify the Lyapunov function of a plant first; furthermore, conventionally during the

learning phase, we also requires more information about the system’s state, which may be

difficult or too costly to access. The TSR-EA provides an alternative to attain accurate control

result by the TSR mechanism. It requires less prior knowledge about the control plant

compared with the QPSO. By simply shrinking the operating range of a control system as

time step increases, the TSR mechanism can help learners to obtain an accurate control results

on one hand and improves the learning rate on the other. Besides, the usage of the TSR is not

limited by the TSR-EA algorithm. It is simply an design of reinforcement learning signal, so it

is applicable to all time-step fashioned reinforcement learning. Another advantage of the

 89

TSR-EA can be shown from adopting the group-based symbiotic evolution (GSE) to evaluate

the fuzzy rule on a NFS locally.

One advantage of the MS-CMA-ES lies in improving the mutation mechanism of the

traditional CMA-ES. The mutation mechanism of traditional CMA-ES is based on its

self-adaption behavior. Despite good mutation directions can be determined by moderately

self-adapting the tactic parameters of the CMA-ES, the mutation is still limited by normal

distribution sampling. In the MS-CMA-ES, we propose a group mutation mechanism,

adopting the concept that sampling from mixture probability yields larger flexibility. Search

points sampled from mixture probability model on multiple directions can diminish the

restriction of the local search. Another advantage of the MS-CMA-ES can be seen from

adopting the mean shift-based clustering method for applying multiple CMA-ES instances to

search the space in parallel. The parallel search mechanism can enhance the global search

ability of the CMA-ES. Only one extra parameter compared to the original CMA-ES is

required, the learning rate of mixture weightings, which reduces challenges of applying our

methodology. Computer simulation results have shown better performances on optimization

of multi-modal and multi-funnel functions.

The purpose of the SD-CPSO is to solve the issue that CPSO encounters when

independent changes made by different swarms on correlated variables will deteriorate the

performance of the algorithm. In the SD-CPSO, we propose a self-organization approach to

the CPSO. This approach determines the separability between variables by covariance matrix

adaptation, so that non-separable variables can be placed in the same swarm for evolution.

Simulations show reasonable performance.

As to the future work in this dissertation, from the perspective of NFS design, the

proposed QPSO and TSR-EA lack of the mechanism of self-determining the number of fuzzy

rules on a NFS. The number of fuzzy rules in both algorithms have to be assigned by trial and

error tests which would increase the difficulty of applying these two algorithms.

 90

As to the future work of the proposed MS-CMA-ES, its convergence rate seems to be an

issue to be investigated. From Table 4.11-13 we can see that despite the MS-CMA-ES has a

good performance in finding global optimal of multi-funnel functions, it requires more

calculation times to find it. In our opinion, we think there are two possible directions of

enhancing its convergence rate.

The first direction is to alter its mixture weight updating rule. In this dissertation, as

introducing mean shift procedure to the CMA-ES, an additional parameter, mixture weight, is

also introduced. The updating rule of mixture weighting can be shown in Eq. (3.34)-(3.36). In

this dissertation, we haven’t probed into the connection between the convergence rate and the

mixture weighting rule yet.

Another possible direction of enhancing the convergence rate of the MS-CMA-ES is to

modify its bandwidth selection mechanism. In the MS-CMA-ES, the optimal bandwidth is

derived from the AMISE theorem. The derived bandwidth determines both the number of

clusters obtained and the number of samples in clusters. In this dissertation, if we can modify

the fixed bandwidth selection that the MS-CMA-ES adopts into variable bandwidth selection

mechanism, there might be a chance of increasing its convergence rate. The appended

flexibility could arouse the issue of relationships among clusters, from which we could try to

apply further manipulations to the clusters, such as separating or lumping. Moreover, under

the premise of not explosively increase the computational cost, incorporating a iteratively

increasing population size mechanism is also considerable. As to the future work on the

SD-CPSO, the issue of pseudominima caused by the split of swarm still remains to be

investigated.

 91

Bibliography

[1] T. Baeck and H. P. Schwefel, “An overview of evolutionary algorithms for parameter

optimization,” Evolutionary Computation, vol. 1, pp. 1-23, Spr. 1993.
[2] C. M. Fonseca and P. J. Fleming, “An overview of evolutionary algorithms in

multiobjective optimization,” Evolutionary Computation, vol. 3, pp. 1-16, Spr. 1995.
[3] Z. Michalewicz and M. Schoenauer, “Evolutionary algorithms for constrained parameter

optimization problems,” Evolutionary Computation, vol. 4, pp. 1-32, Spr. 1996.
[4] A. E. Eiben, Z. Michalewicz, and M. Schoenauer, “Parameter control in evolutionary

algorithms,” IEEE Transactions on Evolutionary Computation, vol. 3, pp. 124-141, Jul.
1999.

[5] E. Zitzler and L. Thiele, “Multiobjective evolutionary algorithms: A comparative case
study and the Strength Pareto approach,” IEEE Transactions on Evolutionary
Computation, vol. 3, pp. 257-271, Nov. 1999.

[6] E. Zitzler, D. Kalyanmoy, and T. Lothar, “Comparison of multiobjective evolutionary
algorithms: empirical results,” Evolutionary Computation, vol. 8, pp. 173-195, Sum.
2000.

[7] D. E. Goldberg, Genetic Algorithms in Search Optimization and Machine Learning,
Reading, MA: Addison-Wesley, 1989.

[8] J. Kennedy and R. C. Eberhart, “Particle swarm optimization,” in Proceedings of IEEE
International Conference on Neural Networks, vol. 4, pp. 1942-1948, 1995.

[9] J. J. Liang, A. K. Qin, P. N. Suganthan, and S. Baskar, “Comprehensive learning particle
swarm optimizer for global optimization of multimodal functions,” IEEE Transactions
on Evolutionary Computation, vol. 10, no. 3, pp. 281-295, Jun. 2006.

[10] M. Clerc and J. Kennedy, “The particle swarm—explosion, stability, and convergence
in a multidimensional complex space,” IEEE Transactions on Evolutionary
Computation, vol. 6, no. 1, pp. 225-239, 2004.

[11] N. Hansen and A. Ostermeier, “Completely derandomized self-adaptation in evolution
strategies,” Evolutionary Computation, vol. 9, pp. 159-195, Sum. 2001.

[12] N. Hansen, S. D. Muller, and P. Koumoutsakos, “Reducing the time complexity of the
derandomized evolution strategy with covariance matrix adaptation (CMA-ES),”
Evolutionary Computation, vol. 11, pp. 1-18, Spr. 2003.

[13] N. Hansen, “The CMA evolution strategy: A Tutorial,” 2008.
[14] J. J. Buckley and Y. Hayashi, “Neural nets for fuzzy-systems,” Fuzzy Sets And System,

vol. 71, no. 3, pp. 265-276, May 1995.
[15] G. G. Towell and J. W. Shavlik, “Extracting refined rules from knowledge-based

neural networks,” Machine Learning, vol. 13, pp. 71-101, 1993.

 92

[16] C. T. Lin and C. S. G. Lee, Neuro-fuzzy Systems: A Neuro-Fuzzy Synergism to
Intelligent System, NJ:Prentice-Hall, 1996.

[17] C. J. Lin and C. T. Lin, “An ART-based fuzzy adaptive learning control network,”
IEEE Transactions on Fuzzy Systems., vol. 5, no. 4, pp. 477-496, 1997.

[18] R. S. Sutton and A. G. Barto, Reinforcement learning. Cambridge, MA: MIT Press,
1998.

[19] J. N. Tsitsiklis and B. V. Roy, “An analysis of temporal-difference with function
approximation,” IEEE Transactions on Automatic Control, vol. 42, no. 5, pp. 834-836,
Sep. 1983

[20] C. J. Wakins, “Learning from delayed rewards,” Ph.D. dissertation, King’s College,
Cambridge, U.K., 1989.

[21] E. Banard, “Temporal-difference methods and Markov models,” IEEE Transactions on
Systems Man and Cybernetics, vol. 23, no. 2, pp. 357-365, Mar. 1993

[22] C. J. Wakins and P. Dayan, “Technical note: Q-learning,” Machine Learning, vol. 8,
pp. 279–292, 1992.

[23] C. L. Muller and I. F. Sbalzarini, “A tunable real-world multi-funnel benchmark
problem for evolutionary optimization and why parallel island models might remedy
the failure of CMA-ES on it,” in Proceedings of the 1st International Joint Conference
on Computational Intelligence, Funchal, Portgual, pp. 248-253, Oct. 2009 ,

[24] D. J. Wales, “Energy landscapes and properties of biomolecules, ” Physical Biology,
vol. 2, pp. 86-93, Dec 2005.

[25] P. L. Clark, “Protein folding in the cell: reshaping the folding funnel,” Trends in
Biochemical Sciences, vol. 29, pp. 527-534, Oct. 2004.

[26] C. L. Muller, B. Benedikt, and I. V. Sbalzarini, “Particle swarm CMA evolution
strategy for the optimization of multi-funnel landscapes,” in 2009 IEEE Congress on
Evolutionary Computation, New York, vol. 1-5, pp. 2685-2692, 2009.

[27] F. van den Bergh and A. P. Engelbrecht, “A cooperative approach to particle swarm
optimization,” IEEE Transactions on Evolutionary Computation, vol. 8, no. 3, pp.
225-239, Jun. 2004.

[28] C. K. Goh, K.C. Tan, and D.S. Liu, “A competitive and cooperative co-evolutionary
approach to multi-objective particle swarm optimization algorithm design,” European
Journal of Operational Research, vol. 202, pp. 42-54, 2010.

[29] S. F Lin and Y.C. Cheng, “Two-strategy reinforcement evolutionary algorithm using
data-mining based crossover strategy with TSK-type fuzzy controllers,” International
Journal of Innovative Computing, Information and Control, vol. 6, no. 9, pp.
3863-3885, Sep. 2010.

 93

[30] Y. C Hsu, S. F. Lin, and Y. C Cheng, “Multiple groups cooperation based symbiotic
evolution for TSK-type fuzzy contrrollers,” Expert Systems with Applications l, vol.
37, no. 7, pp. 5320-5330, July 2010.

[31] M. A. Potter and K. A. De Jong, “A cooperative coevolutiouary approach to function
optimization,” in Proceedings of Parallel Problem Solving from Nature - Ppsn Iii -
International Conference on Evolutionary Computation, vol. 866, Berlin, Germany,
pp. 249-257, 1994.

[32] C. L. Muller, B. Baumgartner, and I. F. Sbalzarini, “Particle swarm CMA evolution
strategy for the optimization of multi-funnel landscapes,” in 2009 IEEE Congress on
Evolutionary Computation, vol. 1-5, New York, pp. 2685-2692, 2009.

[33] L. X. Wang and J. M. Mendel, “Generating fuzzy rules by learning from examples,”
IEEE Transactions on Systems, Man and Cybernetics, vol. 22, no. 6, pp. 1414-1427,
1992.

[34] T. Takagi and M. Sugeno, “Fuzzy identification of systems and its applications to
modeling and control,” IEEE Transactions on Systems, Man and Cybernetics, vol. 15,
no. 1, pp. 116-132, 1985.

[35] C. F. Juang and C. T. Lin, “An on-line self-constructing neuro-fuzzy inference network
and its applications,” IEEE Transactions on Fuzzy Systems., vol. 6, no.1, pp. 12-31,
1998.

[36] J. S. R. Jang, “ANFIS: Adaptive-network-based fuzzy inference system,” IEEE
Transactions on Systems, Man, and Cybernetics, vol. 23, no. 3, pp. 665-685, 1993.

[37] F. J. Lin, C. H. Lin, and P. H. Shen, “Self-constructing fuzzy neural network speed
controller for permanent-magnet synchronous motor drive,” IEEE Transactions on
Fuzzy Systems, vol. 9, no. 5, pp. 751-759, 2001.

[38] H. Takagi, N. Suzuki, T. Koda, and Y. Kojima, “Neural networks designed on
approximate reasoning architecture and their application,” IEEE Transactions on
Neural Networks, vol. 3, no. 5, pp. 752-759, 1992.

[39] E. Mizutani and J. S. R. Jang, “Coactive neuro-fuzzy modeling,” in Proceedings of
IEEE International Conference Neural Networks, Perth, WA , USA, vol. 2, pp.
760-765, Nov. 1995.

[40] C. J. Lin and C. C. Chin, “Prediction and identification using wavelet-based recurrent
fuzzy neural networks,” IEEE Transactions on Systems, Man and Cybernetics, Part B,
vol. 34, no. 5, pp. 2144-2154, 2004.

[41] K. S. Narendra and K. Parthasarathy, “Identification and control of dynamical systems
using neural networks,” IEEE Transactions on Neural Networks, vol. 1, no. 1, pp. 4-27,
1990.

[42] C. F. Juang and C. T. Lin, “A recurrent self-organizing neuro-fuzzy inference
network,” IEEE Transactions on Neural Networks, vol. 10, no. 4, pp.828-845, 1999.

 94

[43] P. A. Mastorocostas and J. B. Theocharis, “A recurrent fuzzy-neural model for
dynamic system identification,” IEEE Transactions on Systems, Man and Cybernetics,
Part B, vol. 32, no. 2, pp. 176-190, 2002.

[44] R. Caruana and A. Niculescu-Mizil, “An empirical comparison of supervised learning
algorithms,” in Proceedings of International Conference of Machine Learning, pp.
161-168 , 2006.

[45] L. J. Fogel, “Evolutionary programming in perspective: The top-down view,” in
Computational Intelligence: Imitating Life, J. M. Zurada, R. J. Marks II, and C.
Goldberg, Eds. Piscataway, NJ: IEEE Press, 1994.

[46] I. Rechenberg, “Evolution strategy,” in Computational Intelligence: Imitating Life, J.
M. Zurada, R. J. Marks II, and C. Goldberg, Eds. Piscataway, NJ: IEEE Press, 1994.

[47] M. Conforth and Y. Meng, “Reinforcement learning for neural networks using swarm
Intelligence,” IEEE Swarm Intelligence Symposium, pp. 7, 2008

[48] M. C. Choy, D. Srinivasan, and R. L. Cheu, “Cooperative, hybrid agent architecture
for real-time traffic signal control,” IEEE Transactions on Systems, Man and
Cybernetics, Part A, vol. 33, no. 5, pp. 597-607, 2003.

[49] C. J. Lin, Y. M. Lin, and C.Y. Lee, “Nonlinear system control using a recurrent neural
fuzzy network based on reinforcement particle swarm optimization,” in Proceedings
of 2010 3rd International Symposium on Computational Intelligence and Design
(ISCID 2010), vol. 2, pp. 196-200, 2010

[50] C. J. Lin and Y. C. Hsu, “Reinforcement hybrid evolutionary learning for recurrent
wavelet-based neuro-fuzzy systems,” IEEE Transactions on Fuzzy Systems, vol. 15, no.
4, 2007, pp. 729-745.

[51] G. R. Harik, F. G. Lobo, and D. E. Goldberg, “The compact genetic algorithm,”
IEEE Transactions on Evolutionary Computation, vol. 3, pp. 287–297, Nov. 1999.

[52] S. Bandyopadhyay, C. A. Murthy and S. K. Pal, “VGA-classifier: design and
applications,” IEEE Transactions on Systems, Man and Cybernetics, Part B, vol. 30,
no. 6, pp. 890–895, 2000.

[53] C. T. Lin and C. P. Jou, “GA-based fuzzy reinforcement learning for control of a
magnetic bearing system,” IEEE Transactions on System, Man and Cybernetics, Part
B, vol. 30, no. 2, pp. 276-289, 2000.

[54] C. F. Juang, “Combination of online clustering and Q-value based GA for
reinforcement fuzzy system design,” IEEE Transactions on Fuzzy Systems, vol. 13, no.
3, pp. 289–302, 2005.

[55] Y. C. Hsu and S. F. Lin, “Reinforcement group cooperation based symbiotic evolution
for recurrent wavelet-based neuro-fuzzy systems,” Neurocomputing, vol. 72, no. 10-12,
pp. 2418-2432, 2009.

[56] Y. C. Cheng, S. F. Lin, and C.Y. Hsu, “Q-Value based particle swarm optimization
for reinforcement neuro-fuzzy system design,” International Journal on Computer

 95

Science and Engineering, Vol. 3, No. 10, pp.3477-3489, 2011.
[57] T. J. Perkins and A. G. Barto, “Lyapunov design for safe reinforcement learning.”

Journal of Machine Learning Research, vol. 3, pp. 803-832, 2003.
[58] M. Lunacek, D. Whitely, and A. Sutton, “The impact of global structure on search,” in

Proceedings of Parallel Problem Solving from Nature - Ppsn X, G. Rudolph, et al.,
Eds., ed Berlin: Springer-Verlag Berlin, vol. 5199, pp. 498-507, 2008.

[59] D. Comaniciu and P. Meer, “Mean shift: A robust approach toward feature space
analysis,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24,
pp. 603-619, May 2002.

[60] A. Auger and N. Hanson, “Performance evaluation of an advanced local search
evolutionary algorithm,” in Proceedings of 2005 IEEE Congress on Evolutionary
Computation, New York, vol. 1-3, pp. 1777-1784, 2005.

[61] A. Auger and N. Hansen, “A restart CMA evolution strategy with increasing
population size,” in Proceedings of IEEE Congress on Evolutionary Computation, vol.
1-3, pp. 1769-1776, 2005.

[62] N. Hansen and S. Kern, “Evaluating the CMA evolution strategy on multimodal test
functions,” in Parallel Problem Solving from Nature - Ppsn Viii. vol. 3242, X. Yao, et
al., Eds., ed, pp. 282-291, 2004.

[63] C. T. Hsieh, Particle Swarm Guided Evolution Strategy. New York: Assoc Computing
Machinery, 2007.

[64] K. Fukunaga and L. D. Hostetler, “The estimation of the gradient of a density function,
with applications in pattern recognition,” IEEE Transactions on Information Theory,
vol. IT-21, pp. 32-4040, Jan. 1975.

[65] Y. Z. Cheng, “Mean shift, mode seeking, and clustering,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 17, pp. 790-799, Aug. 1995.

[66] R. O. Duda and P. E. Hart, Pattern Classification and Scene Analysis: Wiley, 1973.
[67] M. A. T. Figueiredo and A. K. Jain, “Unsupervised learning of finite mixture models,”

IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24, pp. 381-396,
Mar. 2002

[68] M. P. Wand and M. C. Jones, “Comparison of smoothing parameterizations in
bivariate kernel density-estimation,” Journal of the American Statistical Association,
vol. 88, pp. 520-528, Jun. 1993.

[69] C. F. Juang and C. T. Lin, “An on-line self-constructing neural fuzzy inference
network and its applications,” IEEE Transactions on Fuzzy Systems, vol. 6, no. 1, pp.
12-31, 1998.

[70] M. Sugeno and K. Tanaka, “Successive identification of a fuzzy model and its
applications to prediction of a complex system,” Fuzzy Sets Systems, vol. 42, no. 3, pp.
315–334, 1991.

[71] N. Chaiyaratana and A. M. S. Zalzala, “Recent developments in evolutionary and

 96

genetic algorithms: theory and applications,” in Proceedings of IEEE International
Conference Genetic Algorithms in Engineering Systems: Innovations and Applications,
Glasgow, United Kingdom, pp. 270-277, Sep. 1997.

[72] D. Wicker, M. M. Rizki, and L. A. Tamburino, “The multi-tiered tournament selection
for evolutionary neural network synthesis,” in Proceedings of IEEE International
Symposium on Combinations of Evolutionary Computation and Neural Networks, San
Antonio, USA, pp. 207-215, May 2000.

[73] Y. P. Zou, Z. K. Mi, and M. H. Xu, “Dynamic load balancing based on roulette wheel
selection,” in Proceedings of IEEE International Conference on Communications,
Circuits and Systems, Guilin, China, vol. 3, pp.1732-1734, June 2006.

[74] P. M. Godley, D. E. Cairns, J. Cowie, and J. McCall, “Fitness directed intervention
crossover approaches applied to bio-scheduling problems,” in Proceedings of IEEE
International Symposium on Computational Intelligence in Bioinformatics and
Computational Biology, Sun Valley, USA, pp. 120-127, Sept. 2008.

[75] S. Su and D. H. Zhan, “New genetic algorithm for the fixed charge transportation
problem,” in Proceedings of IEEE International World Congress on Intelligent
Control and Automation, Dalian, China, vol. 2, pp. 7039-7043, Jun. 2002.

[76] W. Y. Wang, T. T. Lee, C. C. Hsu, and Y. H. Li, “GA-based learning of BMF
fuzzy-neural network,” in Proceedings of IEEE International Conference on Fuzzy
Systems, Honolulu, USA, pp. 1234-1239, May 2002.

[77] G. Lin and X. Yao, “Analyzing crossover operators by search step size,” in Proceedings
of IEEE International Conference on Evolutionary Computation, Indianapolis, USA,
pp. 107-110, Apr. 1997.

[78] C. P. Chen, S. P. Koh, I. B. Aris, F. Y. C. Albert, and S. K. Tiong, “Path optimization
using genetic algorithm in laser scanning system,” in Proceedings of IEEE
International Symposium on Information Technology, Kuala Lumpur, Malaysia, vol. 3,
pp. 1-5, Aug. 2008.

[79] C. J. Hsu, C. Y. Huang, and T. Y. Chen, “A modified genetic algorithm for parameter
estimation of software reliability growth models,” in Proceedings of IEEE
International Symposium on Software Reliability Engineering, Seattle, WA, USA, pp.
281-282, Nov. 2008.

[80] P. Luo, J. F. Teng, J. H. Guo and Q. Li, “An improved genetic algorithm and its
performance analysis,” in Proceedings of IEEE International Conference on Info-tech
and Info-net, Beijing, China, vol. 4, pp. 329-333, Oct. 2001.

[81] G. W. Greenwood, “Adapting mutations in genetic algorithms using gene flow
principles,” in Proceedings of IEEE Congress on Evolutionary Computation, Canberra,
Australia vol. 2, pp.1392-1397, Dec. 2003.

[82] H. J. Lee, Y. S. Ma, and Y. R. Kwon, “Empirical evaluation of orthogonality of class
mutation operators,” in Proceedings of IEEE International Conference on Software

 97

http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=7112
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4063797
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4063797

Engineering, Busan, Korea, pp. 512-518, Nov. 2004
[83] N. S. Chaudhari, A. Purohit, and A. Tiwari, “A multiclass classifier using genetic

programming,” in Proceedings of IEEE International Conference on Control,
Automation, Robotics and Vision, Hanoi, Vietnam, pp. 1884-1887, Dec. 2008.

[84] N. Gomez Bias, L. F. Mingo, and J. Castellanos, “Networks of evolutionary processors
with a self-organizing learning,” in Proceedings of IEEE International Conference on
Computer Systems and Applications, Doha, Qatar, pp. 917-918, Mar. 2008.

[85] S. Abedi and R. Tafazolli, “Genetically modified multiuser detection for code division
multiple access systems,” IEEE Journal on Selected Areas, pp. 1884-1887, 2008.

[86] M. P. Wand, and M. C. Jones, Kernel Smoothing. Chapman & Hall, London, 1995.
[87] M. C. Jones, J. S. Marron, and S. J. Sheather, “ A brief survey of bandwidth selection

for density estimation,” Journal of the American Statistical Association vol. 91,
no.433, pp. 401-407, 1996.

[88] S. R. Stephan, “Multivariate locally adaptive density estimation,” Computational
Statistics & Data Analysis, vol. 39, no. 2, pp. 165-186, 2002

[89] S. R. Stephan and D. W. Scott, “On locally adaptive density estimation.” Journal of
the American Statistical Association, vol. 91, no. 436, pp. 1525-1534,1996..

[90] D. Comaniciu, V. Ramesh, and P. Meer, “Real-time tracking of non-rigid objects using
mean shift,” in Proceedings of IEEE Conference on Computer Vision and Pattern
Recognition II, 142-149, 2000.

[91] A. Mayer and H. Greenspan, “An adaptive mean-shift framework for MRI brain
segmentation,” IEEE Transactions on Medical Imaging, vol. 28, no. 8, pp. 1238-1250,
2009.

[92] J. Hwang, D. Lee, K. Huh, H, Na, and H. Kang, “Development of a path planning
system using mean shift algorithm for driver assistance,” International Journal of
Automotive Technology, vol. 12, no. 1, pp. 119-124, 2011.

[93] S. T. Tokdar and R. E. Kass, “Importance sampling: a review,” Wiley Interdisciplinary
Reviews: Computational Statistics, vol. 2, no. 1, pp. 54-60, 2010.

[94] D. J. C. MacKay, Information Theory, Inference, and Learning Algorithms. Cambridge
University Press, New York, 2003.

[95] C. J. Lin, “A GA-based neural network with supervised and reinforcement learning,”
Journal of the Chinese Institute of Electrical Engineering, vol. 9, no. 1, pp. 11-25,
2002.

[96] C. F. Juang, J. Y. Lin, and C. T. Lin, “Genetic reinforcement learning through
symbiotic evolution for fuzzy controller design,” IEEE Transactions on Systems, Man
and Cybernetics, Part B, vol. 30, no. 2, pp. 290-302, 2000.

[97] C. J. Lin and Y. J. Xu, “Efficient reinforcement learning through dynamical symbiotic
evolution for TSK-type fuzzy controller design,” International Journal of General
Systems, vol. 34, no.5, pp. 559-578, 2005.

 98

[98] D. Y. Wang, H. C. Chuang, Y. J. Xu, and C. J. Lin, “A novel evolution learning for
recurrent wavelet-based neuro-fuzzy networks,” in Proceedings of IEEE International
Conference on Fuzzy Systems, Reno, NV, USA, pp. 1092-1097, May 2005.

[99] D. E. Moriarty, “Symbiotic evolution of neural networks in sequential decision tasks,”
Ph. D. dissertation, Dep. of Computer Sciences, Univ. Texas at Austin, USA,
Technical Report UT-AI97-257, 1997.

[100] D. E. Moriarty and R. Miikkulainen, “Efficient reinforcement learning through
symbiotic evolution,” Machine Learning, vol. 22, pp. 11-32, 1996.

[101] K. Furuta and M. Iwase, “Swing-up time analysis of pendulum,” Bulletin of the Polish
Academy of Sciences - Technical Sciences, vol. 52, no. 3, pp. 153-163, 2004.

[102] C. Popescu, “Nonlinear control of underactuated horizontal double pendulum,” M.S.
thesis, University of Florida Atlantic, Boca Raton, Florida, U.S., 2002.

[103] N. Hansen, A. Auger, S. Finck, and R. Ros, “Real-parameter block-box optimization
benchmarking 2010: experimental setup,” INRIA Research Report RR-72152010,
2010.

[104] P. N. Suganthan, N. Hansen, J. J. Liang, K. Deb, Y. P. Chen, A. Auger, and S. Tiwari,
“Problem definitions and evaluation criteria for the CEC 2005 special session on
real-parameter optimization,” Nanyang Technological University, Singapore and
KanGAL Report Number 2005005, 2005

[105] J. Kennedy, “The particle swarm: social adaptation of knowledge,” in Proceedings of
IEEE International Conference on Evolutionary Computation, 303-308, 1997.

[106] S. F. Lin, Y. C. Cheng, Jyun-Wei Chang, and P. C. Hung, “Separability detection
cooperative particle swarm optimizer based on covariance matrix adaptation,”
International Journal of Advanced Computer Science and Applications, vol. 3, no. 4,
pp. 18-24, 2012.

 99

Vita

Yi-Chang Cheng has received his B.S. degree in department of engineering science

from National Cheng Kung University, Taiwan, in 2005. He proposed his Ph. D. oral exam at

institute of electrical control engineering from the National Chiao Tung University, Taiwan,

R.O.C. in May, 2012. His research interests lie in the areas of neural networks, neural fuzzy

systems, evolutionary algorithms and pattern recognition.

 100

Publication List
Accepted Journal Papers:

1. Sheng-Fuu Lin and Yi-Chang Cheng, “Two-Strategy Reinforcement Evolutionary
Algorithm using Data-mining based Crossover Strategy with TSK-type Fuzzy
Controllers,” International Journal of Innovative Computing, Information and Control,
vol. 6, no. 9, pp. 3863-3885, 2010. (SCI/EI)

2. Yung-Chi Hsu, Sheng-Fuu Lin, and Yi-Chang Cheng, “Multiple Groups Cooperation

based Symbiotic Evolution for TSK-type Fuzzy Controllers,” Expert Systems with
Applications, vol. 37, no. 7, pp. 5320-5330, 2010. (SCI/EI)

 3. Yi-Chang Cheng, Sheng-Fuu Lin, and Chi-Yao Hsu, “Q-Value Based Particle Swarm

Optimization for Reinforcement Neuro-Fuzzy System Design,” International Journal
on Computer Science and Engineering, vol. 3, no. 10, pp. 3477-3489, 2011.

4. Chi-Yao Hsu, Yi-Chang Cheng, and Sheng-Fuu Lin, “Efficient and Accurate Image

Alignment using TSK-type Neuro-Fuzzy Network with Data-Mining based
Evolutionary Learning Algorithm,” EURASIP Journal on Advances in Signal
Processing, vol. 2011, no. 96, pp.1-22. (SCI/EI)

5. Chi-Yao Hsu, Yi-Chang Cheng, and Sheng-Fuu Lin, “Precise Image Alignment using

Cooperative Neural-Fuzzy Networks with Association Rule Mining based
Evolutionary Learning Algorithm,” Optical Engineering, vol. 51, no. 2, pp.
027006:1-15, 2012. (SCI/EI)

6. Sheng-Fuu Lin, Yi-Chang Cheng, Jyun-Wei Chang, and Pei-Chia Hung, “Separability

Detection Cooperative Particle Swarm Optimizer based on Covariance Matrix
Adaptation,” International Journal of Advanced Computer Science and Applications,
vol. 3, no. 4, pp. 18-24, 2012.

Submitted Journal Papers:

1. Sheng-Fuu Lin, Yi-Chang Cheng, Chi-Yao Hsu, and Jyun-Wei Chang, “Two-Strategy
Reinforcement Hybrid Evolutionary Learning for Recurrent Wavelet-Based
Neuro-Fuzzy Systems,” revised in International Journal of Adaptive Control and
Signal Processing. (SCI/EI), (3rd Revised on 2012/3/20)

2. Yi-Chang Cheng, Sheng-Fuu Lin, Wei-Ching Lin, and Jyun-Wei Chang, “Mean

 101

 102

Shift-Based Evolution Strategy with Covariance Matrix Adaptation for the
Optimization of Multi-Funnel Landscapes,” Journal of Optimization Theory and
Applications. (SCI/EI)

Conference Papers:

1. Sheng-Fuu Lin, Yi-Chang Cheng, Jyun-Wei Chang, and Yung-Chi Hsu, “Reinforcement
Learning for Data Mining Based Evolution Algorithm for TSK-type Neural Fuzzy
Systems Design,” in International Conference on Information Systems Analysis and
Synthesis, Orlando, Florida, USA, Jul. 10-13, 2009.

2. Sheng-Fuu Lin, Jyun-Wei Chang, Yi-Chang Cheng, and Yun-Chi Hsu, “A Novel

Self-Constructing Evolution Algorithm for TSK-type Fuzzy Model Design,” in
Proceedings of IEEE World Congress on Computational Intelligence, Barcelona,
Spain, Jul. 18-23, 2010.

3. Yi-Chang Cheng, Wei-Ching Lin, and Sheng-Fuu Lin, “A Self-Organization Approach

to Cooperative Particle Swarm Optimization,” in Proceedings of the 18th National
Conference on Fuzzy Theory and Its Applications, Hualien, Taiwan, Dec. 3-4, 2010.

4. Yi-Chang Cheng, Wei-Ching Lin, and Sheng-Fuu Lin, “A Separability Detection

Approach to Cooperative Particle Swarm Optimization,” in The 7th International
Conference on Natural Computation, Shanghai, China, Jul. 26-28, 2011.

