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摘  要 

在這篇論文中，我們主要在探討的是進化型演算法的合作學習機制。本論文中所探討的

三種進化型演算法包括：基因演算法、粒子群聚最佳化演算法、以及自適應共變異數矩

陣演化策略。在基因演算法的改良上，我們提出了族群式的共生演化概念，使得基因演

算法可以將解空間分割成數個子空間，且在每個子空間中分別得去探索最佳解。我們也

在合作式的粒子群聚演算法中提出了一個可分割度的偵測方法，以便將不可分割之變數

置入同一族群中演化。至於關於自適應共變異數矩陣演化策略的改良，本論文提出了一

個基於均值移動的平行運算機制，使得我們可以平行地在解空間中提供多個自適應共變

異數矩陣演化策略學習器來探索解空間中的不同區域。論文的內容包括了將進化型演算

法套用在模糊類神經系統上之架構和參數學習、演算法上的改良、平行運算機制以及結

合兩種演算法優點的混合型演算法的研究。 

 

 

 

關鍵字：合作式學習，基因演算法，粒子群聚最佳化演算法，演化策略，自適應共變異

數矩陣。 
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Abstract 

In this dissertation, we mainly focus on researching the cooperative behavior of evolutionary 

algorithms. Algorithms discussed in this dissertation include genetic algorithm (GA), particle 

swarm optimization (PSO) and evolution strategy with covariance matrix adaptation 

(CMA-ES). The modification of genetic algorithm (GA) is done by introducing the 

group-based symbiotic evolution (GSE) technique which enables genetic algorithm (GA) to 

partition the search space into smaller subspaces and explore each smaller subspace by a 

separate agent to alleviate the curse of dimensionality. We also propose a separability 

detection method based on covariance matrix adaption mechanism into the cooperative 

particle swarm optimization (CPSO) to locate non-separable variables into the same swarm. 

As to the research of evolution strategy with covariance matrix adaptation (CMA-ES), we 

introduce the mean shift procedure which allows us to apply multiple CMA-ES instances to 

explore different parts of the search space in parallel. The scope of this dissertation includes 

how to implement evolutionary algorithms on neural-fuzzy systems, the improvement of 

algorithms, parallel computing and the emergence of two algorithms 

 

Keywords: cooperative learning, genetic algorithm, particle swarm optimization, evolution 

strategy, covariance matrix adaptation. 
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CHAPTER 1 

INTRODUCTION 
 

Evolutionary algorithms [1]-[6] are stochastic, population-based optimization learning 

algorithms that can be applied to a wide range of problems. Generally speaking, there is no 

clear rank between different evolutionary algorithms. We can only say that certain algorithm 

is more applicable than others to certain optimization problems. In this dissertation, we apply 

the modified version of genetic algorithm (GA) [7] and particle swarm optimization (PSO) 

[8]-[10] to high-dimensional, reinforcement learning tasks, and apply evolution strategy with 

covariance matrix adaptation (CMA-ES) [11]-[13] to complex, low-dimensional real-valued 

function optimization tasks. 

 

1.1  Motivation 

Evolutionary algorithms are discovered through simulating some social behavior, such as 

the bird flocking, the recombination or the mutation of genes. Normally, evolutionary 

algorithms maintain a population of potential solutions to some optimization problem, 

generating new solutions at each iteration by using a variety of corresponding operators. Their 

learning procedures take place in populations made of individuals with specific behaviors 

similar to certain biological phenomena. Individuals keep exploring the solution space and 

exploiting information between individuals while evolution proceeding. In general, by means 

of exploring and exploiting, evolutionary algorithms are less likely to be trapped at the local 

optimum. 

Evolutionary algorithms are applicable to a wide range of problems, including training 

neural-fuzzy systems (NFS) [14]-[17], reinforcement learning control [18]-[22] and complex, 

multi-funnel [23]-[26] function optimization tasks. However, as with GA, PSO and CMA-ES, 
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nearly every other kind of stochastic optimization algorithms suffer from the “curse of 

dimensionality,” which simply put, implies that their performance deteriorates as the 

dimensionality of the search space increases. One way to overcome this difficulty is to 

partition the search space into lower dimensional subspaces, as long as the optimization 

algorithm can guarantee that it will be able to search every possible region of the search space. 

Van den Bergh and Engelbrecht suggested that the search space should be partitioned by 

splitting the solution vectors into smaller vectors and proposed a cooperative approach to 

particle swarm optimization (CPSO) [27]-[28]. Each of these smaller search spaces is then 

searched by a separate PSO instance; the fitness function is evaluated by combining solutions 

found by each swarm of the PSO instance. In this dissertation, we introduce the cooperative 

learning behavior to GA and proposed the groups-based symbiotic evolution (GSE) [29]. The 

proposed GSE is applied to training a NFS. It is different from traditional symbiotic evolution 

where each population in the GSE is divided to several groups and each group represents a set 

of chromosomes that belongs to one fuzzy rule. The fitness value of each fuzzy rule can be 

evaluated locally. However, separating the search space also arouses two issues.  

The first issue is the possibility that the partitioning could lead to the introduction of 

pseudooptimum, which means that the combination of optima found by each learning instance 

may not be an actual optimum point to the original search space, may not even be a local 

optimum point. In [27], Van den Bergh and Engelbrecht proposed a variation of CPSO called 

the CPSO-HK to alleviate the issue of pseudooptimum. The CPSO is one of the most 

significant improvements to the standard PSO. Algorithm CPSO-HK is a hybrid from the 

standard PSO and the CPSO-SK model. It prevents the solution found so far from becoming a 

pseudooptimum by executing the CPSO-SK algorithm for one iteration, followed by one 

iteration of the PSO algorithm. Computer simulations in [27] have shown that the CPSO-HK 

indeed alleviates the issue of pseudooptimum. However, as with other cooperative learning 

algorithms [30, 31], the performance of the CPSO deteriorates when there exists dependence 
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among parameters. 

The second issue aroused by partitioning the search space is that performances of the 

cooperative learning algorithms deteriorate when correlated variables are placed into separate 

populations. In this dissertation, we call such variables “non-separable.” A function f is said to 

be separable if 

1 1
1 1( , , )

arg min ( , , ) (arg min ( , ), , arg min ( , ))
n n

n nx x x x
f x x f x f x=

"
" " " " ,        (1.1) 

and it is followed by a fact that f can be optimized in a sequence of n independent 1-D 

optimization processes. In this dissertation, we propose a separability detection approach 

based on covariance matrix adaptation to find non-separable variables so that they can 

previously be placed into the same swarm to address the difficulty that the original CPSO 

encounters. This proposed variation on the original CPSO to detect the separability of the 

variables is called the SD-CPSO [106]. The SD-CPSO helps the CPSO self-organize the 

swarms composed of non-separable variables. In order to implement this idea, we have to 

determine the timing of switching between the PSO and the CPSO operation when dealing 

with a task. In this dissertation, we think this can be done by determining the separability 

between variables, and placing non-separable into the same swarm at each generation. If at 

certain moment, all variables are determined as non-separable, then the PSO operation is 

taken; otherwise, the CPSO operation is taken. The separability between variables is found by 

estimating the covariance matrix of the distribution of particles. The mechanism we adopt is 

the covariance matrix adaptation proposed from evolution strategy with covariance matrix 

adaption (CMA-ES) [11]-[13]. Conventionally, there exists a contradiction between the local 

search performance and the global exploration power of a learning algorithm [32]. For 

example, the GA and PSO are noted for their great global exploration power; whereas, due to 

the adaptivity of the local search, the CMA-ES owns an outstanding local search performance. 

In this dissertation, we apply the GA and PSO to high-dimensional, reinforcement learning 
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tasks, and apply the CMA-ES to complex, mid-dimensional real-valued function optimization 

tasks. 

 

1.2 Related Works 

In this dissertation, we basically encode parameters on a NFS into individuals of GA or 

PSO to perform reinforcement learning control, and apply a parallel learning structured 

version of CMA-ES to complex, multi-funnel function optimization. As a result, we will 

discuss these two types of optimization tasks in this section. The discussion of reinforcement 

learning will be shown in section 1.2.1 and the discussion of multi-funnel function 

optimization will be shown in section 1.2.2.  

 

1.2.1 Reinforcement Learning Tasks  

In recent years, the application of NFS in control engineering has become a popular 

research topic [33]-[43]. In general, the way of tuning the parameters on a NFS can be divided 

into two categories: supervised learning [44] and reinforcement learning [18].  

Supervised learning is a machine learning technique for updating its parameters from 

training data. The training data is composed of pairs of inputs, and desired outputs. The object 

of the supervised learning is to predict the output value of the NFS for any valid input data 

after its parameters have been trained by a number of training data. However, for many 

control tasks, training data are usually difficult or too costly, or even not accessible. As a 

result, reinforcement learning is more practicable than supervised learning in many occasions.  

In reinforcement learning, the agent receives from its environment a reinforcement signal 

at each time step. This signal could be either a reward or a punishment. Meanwhile, the agent 

explores actions from the action set, and finds out which action yields the greatest reward. To 

solve reinforcement problem, temporal difference (TD) [19]-[21] is one of the most common 
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method. In TD learning, learners don’t have to wait until the end of a trial; instead, TD 

methods need wait only one time step. This is crucial for applications that have very long 

trials or tasks that are continuous and have no trials at all. Q-learning [22] is a powerful and 

easy-implementing TD-based approach. It is a reinforcement learning technique that works by 

updating a simple action-value iteration function. This function gives the measurement of 

taking a given action in a given state.  

Besides TD methods, many evolutionary algorithms such as PSO, GA, evolutionary 

programming [45], and evolution strategies [46] are popular for solving reinforcement 

learning tasks. These learning procedures are based on populations made of individuals with 

specific behaviors similar to certain biological phenomena. Individuals keep exploring the 

solution space and exploiting information between individuals while evolution proceeding. In 

general, by means of exploring and exploiting, evolutionary algorithms are less likely to be 

trapped at the local optimum. Many researches on using evolutionary algorithm for solving 

reinforcement learning tasks have been proposed recently [47]-[50]. In [49], authors propose a 

swarm intelligence based reinforcement learning (SWIRL) method to train artificial neural 

networks (ANN). Authors apply ant colony optimization to select ANN topology and apply 

the PSO to adjust ANN connection weights. In [50], Lin and Hsu present a reinforcement 

hybrid learning algorithm (R-HELA) combining the compact GA (CGA) [51] and the 

modified variable-length GA (VGA) [52] on recurrent wavelet-based NFS. A counter is used 

to accumulate the time steps until the control task fails and the accumulated values are fed 

into individuals as fitness functions. Lin and Hsu’s model is very effective; however, its 

fitness function only indicates how long can the controller work well instead of measuring 

how soon the system can meet the control goal, which is also very important in reinforcement 

learning. There is also a growing interest in combining the advantages of evolutionary 

algorithms and TD-based reinforcement learning [53]-[54]. In [53], a TD and GA based 

reinforcement learning (TDGAR) is proposed. Authors propose a neural structure composed 
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of two feedforward networks for reinforcement learning, the critic network and the action 

network. The critic network predicts the external signal provides a more informative internal 

signal to the action network. The action network uses GA to determine the output of the 

learning system. The weight update rule for the hidden layer of the critic network is based on 

error backpropagation. In [54], an on-line clustering and Q-value based GA reinforcement 

learning for fuzzy system (CQGAF) is proposed. In one generation CQGAF learning, one 

individual is applied to the environment to estimate the fitness function, Q-value, and 

Q-values of other individuals are updated by eligibility trace. The GA operation is performed 

by the end of each trial and creates a new generation of individuals. In [55], authors proposed 

a recurrent wavelet-based NFS with a reinforcement group cooperation-based symbiotic 

evolution (R-GCSE) algorithm. In [55], a population is divided to several groups. The 

R-GCSE has a good ability of parameter learning by adopting the concept that each group 

formed by a set of chromosomes cooperates with other groups to generate better 

chromosomes.  

Although the aforementioned reinforcement learning methods work well in many 

applications, there is an issue remains to be solved. No fitness function in these methods 

indicates how soon the learning agents can control the system's state into a set of goal states. 

Sure there is no need to define the fitness function that way if there is no guidance provided to 

the controller of how to maintain the system's state in a desired operating range. As a result, in 

this dissertation, we proposed a Q-value based particle swarm optimization (QPSO) [56] 

which adopts the concept of Lyapunov design [57] for constructing safe reinforcement 

learning agents, and a GA based learning method called two-strategy reinforcement 

evolutionary algorithm (TSR-EA) [29] to solve reinforcement learning tasks. In both 

algorithms proposed in this dissertation, we manipulate our fitness function so that it can 

indicate how soon the controller achieves its control goal.  
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1.2.2 Multi-funnel Function Optimization Functions 

Normally, continuous function optimization problems are categorized into convex 

(unimodal) and non-convex (multimodal) functions. In this dissertation, we classified 

optimization problems into single-funnel and multi-funnel problems and we mainly focus on 

the optimization of multi-funnel functions. The difference between single- and multi-funnel 

functions can be illustrated by the following two figures, where Fig. 1.1 shows a visualization 

of a 2-D Rastrigin’s function, from which we can see that in spite of the large amount of local 

minima, there exists a trend to the global minimum. Figure 1.2 shows a visualization of a 2-D 

double Rastrigin’s function, from which we can see that there are two funnel-type global 

trends and a large amount of noisy local minima. 

 
Figure 1.1: Visualization of a single-funnel, 2-D Rastrigin’s function. 

 

 

 
Figure 1.2: Visualization of a multi-funnel-funnel, 2-D double Rastrigin’s function. 
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 A function is said to be single-funnel, even though it is highly multi-modal, if its local 

optima is structured such that there exists a global trend toward the best solution [58]. 

However, there are several real-world applications do not have this simple structure. Many 

optimization problems are characterized by their local optima distributing in separate clusters 

within the search space and there is no underlying convex topology toward their global 

optima. Problems of this type are referred to as multi-funnel functions [23]. Prominent 

examples for such applications include potential energy surfaces of biomolecules [24] and 

protein aggregation and misfolding [25]. It has been suggested that the global topology of a 

problem may have a strong influence on the performance of optimization of multi-funnel 

functions [26]. To this end, we introduce the mean shift procedure [59] into the evolution 

strategy with covariance matrix adaptation (CMA-ES) which allows us to apply multiple 

CMA-ES instances to explore different parts of the search space in parallel.  

The CMA-ES has been proven to be among the most successful optimization algorithms 

for optimization of non-convex functions. During exploring of the search space, the CMA-ES 

generates a population of samples from a multivariate Gaussian distribution. The mean and 

covariance matrix of the sampling distribution are continuously adapted in order to improve 

the search direction and the sampling distribution. Recent improvements include a local 

restart CMA-ES (LR-CMA-ES) [60], which greatly prevents CMA-ES from being trapped 

into local optima, and a CMA-ES with iteratively increasing population size (IPOP-CMA-ES) 

[61], achieving excellent performance on non-convex, high-dimensional optimization 

problems. However, Hansen and Kern [62] have pointed out that on multi-funnel functions, 

where local optima cannot be interpreted as perturbations to an underlying convex (unimodal) 

topology, performance can strongly be limited. This could be due to the fact that CMA-ES 

was originally proposed as a local search strategy, whereas the concept of multi-funnel 

functions is intrinsically based on global information. As a result, some researches [26, 63] 

combine the evolution strategy with global optimization schemes to increase its global 
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exploration power. In [63], a particle swarm guided evolution strategy (PSGES) is proposed. 

Computer simulation results have shown that PSGES improves the original evolution strategy 

but is inferior to LR-CMA-ES and IPOP-CMA-ES. This could be due to a lack of local 

adaptivity mechanism. In [26], authors propose a particle swarm CMA-ES (PS-CMA-ES), 

which combines the local search performance of the CMA-ES with the global exploration 

power of the PSO. Computer simulation results in [26] have shown that no salient 

improvement over LR-CMA-ES and IPOP-CMA-ES on optimization of unimodal, basic 

multimodal functions, but improvement can be seen in optimization of high-dimensional 

multi-funnel functions. However, in spite of the great performance the PS-CMA-ES achieves, 

this methodology tends to be computationally expensive and the criterion of how frequent the 

PSO updates can be performed is not straightforward. In this dissertation, our objective is to 

improve performance on multi-funnel problems on one hand, and on-line determine the 

number of the CMA-ES instances on the other. Instead of directly combing the CMA-ES with 

certain “global” evolutionary algorithm, we introduce a computational module based on mean 

shift procedure into the CMA-ES. Mean shift procedure is a density estimation-based, 

non-parametric mode detection and clustering approach toward feature space analysis [59, 64, 

65]. It determines the number of modes in a unknown probability density function (p.d.f.), 

and the density estimation is completed by kernel density estimator [66].  

First, we apply kernel density estimation to the candidate solutions sampled by the 

CMA-ES. Then, we use the mean shift-based mode detection to determine the number of 

CMA-ES instances for exploring the search space simultaneously. In cases of more than one 

CMA-ES instances are applied, the proposed mean shift based evolution strategy with 

covariance matrix adaption (MS-CMA-ES) samples a population of candidate solutions from 

a mixture model of Gaussian distribution [67]. The covariance matrix of the mixture Gaussian 

sampling distribution is formed by the linear combination of the covariance matrixes of 

separate CMA-ES instances. Enforcing a mixture model provides a communication between 
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different CMA-ES instances such that the CMA-ES instances with better search locations can 

sample more offspring, while the CMA-ES instances trapped in local optima can fade out. 

Another advantage of the proposed MS-CMA-ES is that there is no requirement of the 

criterion for the fusion (or division) of the CMA-ES instances, nor does the predefinition of 

the number of CMA-ES instances as a parameter. The bandwidth of the kernel density 

estimator can also be computed through kernel smoothing [68]. The only extra parameter 

besides the original parameters of the CMA-ES is the learning rate of mixture weightings for 

mixture Gaussian components, which reduces challenges of applying our methodology.  

In this dissertation, we compare the proposed MS-CMA-ES with the standard CMA-ES 

[13], some of its improvements [60, 61], and some hybrid algorithms that combine the 

evolution strategy with the PSO [26, 63]. Computer simulation results will show that the 

MS-CMA-ES has better performance in optimizing multi-funnel functions. 

 

1.3 Approach 

In this dissertation, four major algorithms are proposed. The first two algorithms are 

called Q-value based particle swarm optimization (QPSO) and two-strategy reinforcement 

evolutionary algorithm (TSR-EA) respectively. These two algorithms are both proposed to 

solve reinforcement learning tasks. The advantages of the QPSO can be shown from that it 

provides an alternative for Q-learning to solve reinforcement learning problem in one hand, 

and it extends the applicability of the PSO into reinforcement environment on the other. It 

also provides a reliable initial learning performance due to the Lyapunov design of learning 

agents. But one drawback of the QPSO is that it requires additional priori knowledge. The 

main advantages of the TSR-EA can be summarized as follows: 1) the proposed TSR 

mechanism enables us to evaluate a learning trial for both how long can the controller work 

under operating range instead of measuring how soon the system meet the control goal; 2) the 
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GSE is proposed to evaluate the fuzzy rule locally. However, in the TSR-EA, divide 

parameters corresponding to different fuzzy rule into separate groups is very straightforward. 

However, in the optimization task, if the correlation between parameters is unknown, placing 

uncorrelated parameters into a same group would be a challenge. 

The third algorithm proposed in this dissertation is a separability approach to cooperative 

particle swarm optimization (SD-CPSO), and it is mainly proposed to help placing 

uncorrelated variables into a same swarm. The proposed separability detection approach is 

based on the CMA-ES.  

The fourth algorithm proposed in this dissertation is the mean shift-based evolution 

strategy with covariance matrix adaptation (MS-CMA-ES). The introduced mean shift 

procedure provides functions of mode detection and clustering which allows us to apply 

multiple CMA-ES instances to explore different parts of the search space in parallel. The 

global exploration power of the standard CMA-ES is enhanced by the concept that each 

instance forms a separate CMA-ES agent to explore different parts of the search space. We 

evaluate the performance of the MS-CMA-ES on the optimization of multi-funnel functions 

and the new MS-CMA-ES algorithm shows superior performance on it. 

 

1.4 Organization of Dissertation 

The dissertation is arranged as follows. 

 Chapter 1 introduces the motivation, related work, approach, and organization of the 

dissertation. 

 Chapter 2 provides the fundamental information used in the dissertation. The foundation 

includes neural fuzzy network, genetic algorithm, standard and cooperative PSO, mean shift 

procedure and CMA-ES. 

 In Chapter 3, the proposed QPSO, TSR-EA, SD-CPSO and MS-CMA-ES are described. 
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 In Chapter 4, two types of computer simulations, reinforcement learning control tasks 

and multi-funnel optimization functions, are performed to verify the performance of the 

proposed algorithms. We apply QPSO and TSR-EA to two reinforcement learning control 

tasks, cart-pole balancing system and two-pole inverted pendulum control. The SD-CPSO and 

MS-CMA-ES are applied to real-valued function optimization tasks. 

 In Chapter 5, the conclusions, contribution, and future works of the dissertation are 

discussed. 
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CHAPTER 2 

FOUNDATIONS 

 
The background material and literature review that relates to the major components of 

the research purpose outlined above (neuro-fuzzy controller, genetic algorithm, particle 

swarm optimization, and evolution strategy with covariance matrix adaptation) are introduced 

in this chapter. The concept of neuro-fuzzy controller is discussed in the first section. The 

concept of genetic algorithm (GA) is introduced in Section 2.2. In Section 2.3, the concept of 

particle swarm optimization (PSO) and some of its improvements are discussed. The final 

section focuses on some background knowledge related to the proposed mean shift-based 

evolution strategy with covariance matrix adaptation (MS-CMA-ES), such as kernel density 

estimation, mean shift procedure and standard CMA-ES 

. 

2.1 Neural Fuzzy System 

In general, there are three typical types of neural-fuzzy system (NFS) and they are the 

TSK-type [34], Mamdani-type [16], and singleton-type. According to [69] and [70], the 

authors have shown that the TSK-type NFS can offer better network size and learning 

accuracy than the Mamdani-type and singleton-type NFS. Thus, in this dissertation, only the 

TSK-type NFS is introduced and such NFS is applied to reinforcement learning tasks. 

A TSK-type NFS employs different implication and aggregation methods from a 

standard Mamdani fuzzy model. Instead of using fuzzy sets, the conclusion part of a rule is a 

linear combination of the crisp inputs.  

         IF x1 is A1j (m1j , σ1j )and x2 is A2j(m2j , σ2j )…and xn is Anj (mnj , σnj )    

THEN y’=w0j+w1jx1+…+wnjxn.                              (2.1) 
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The structure of a TSK-type NFS is shown in Fig. 2.1. It is a five-layer network structure. In a 

TSK-type NFS, the firing strength of a fuzzy rule is calculated by performing the following 

“AND” operation on the truth values of each variable to its corresponding fuzzy sets. The 

functions of the nodes in each layer are described as follows: 

Layer 1 (input node): Each node in this layer is called an input linguistic node, which 

corresponding one linguistic variable. These nodes only pass the input signal to the next layer. 

,)1(
ii xu =                                 (2.2) 

where  denotes the ith node’s input in the 1st layer and xi denotes ith input dimension. )1(
iu

Layer 2 (membership function node): each node in this layer acts as a Gaussian 

membership function, and its output value specifies the degree to which the given input value 

belongs to a fuzzy set. Thus, the membership value in layer 2 can be calculated by: 

2(1)
(2)

2exp ,i ij
ij

ij

u m
u

σ

⎛ ⎞⎡ ⎤−⎣ ⎦⎜= −
⎜ ⎟
⎝ ⎠

⎟                         (2.3) 

where and are the outputs of 1st and 2nd layers ; mij and σij are the center and 

the width of the Gaussian membership function of the jth term of the ith input variable xi 

respectively. In this paper, the reason of adopting the Gaussian membership function is that it 

can be a universal approximator of any nonlinear functions on a compact set [69]. 

ixu i =)1( )2(
iju

Layer 3 (rule node): The output in this layer are used to perform precondition matching of 

fuzzy rules. In the TSK-type NFS, the firing strength of a fuzzy rule is calculated by 

performing the following “AND” operation: 

(3) (2)
j ij

i

u = u∏ .                             (2.4) 

Layer 4 (consequent node): each node in this layer calculates the consequent value.  Each 

consequent value (linear combination of the crisp inputs) is weighted by the firing strength of 

the fuzzy rule and it can be written by: 
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iijjjj xwwuu                       (2.5) 

where the summation is the consequent part and  is its corresponding parameters. ijw

Layer 5 (output node): The node in this layer computes output signal. The output node 

integrates with links connected to it and acts as a defuzzifier with: 

(4) (3)
0

1 1 1(5)

(3) (3)

1 1

( )
,

R M n

j j j ij
j j i
R R

j j
j j

u u w w
y u

u u

= = =

= =

+
= = =

∑ ∑ ∑

∑ ∑

ix
              (2.6) 

where u(5) is the output of 5th layer , wij is the weighting value with ith dimension and jth rule 

node, and R is the number of a fuzzy rule.  

 
Figure 2.1: Structure of TSK-type NFS. 
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2.2 Genetic Algorithm 

Genetic algorithms (GAs) are search algorithms inspired by the mechanics of natural 

selection, genetics, and evolution. It is widely accepted that the evolution of living beings is a 

process that operates on chromosome-organic devices for encoding the structure of living 

beings.  

The flowchart of the learning process is shown in Fig. 2.2, where Nc is the size of 

population, G denote Gth generation. The learning process of the GAs involves three major 

steps: reproduction, crossover, and mutation. Reproduction [71]-[73] is a process in which 

individual strings are copied according to their fitness value. This operator is an artificial 

version of neural selection. In GAs, a high fitness value denotes a good fit. In the reproduction 

step, the well-known method is the roulette-wheel selection method [73] (see Fig.2.3). In 

Fig.2.3, the intermediate population is P’, which is generated from identical copies of a 

chromosome sampled by spinning the roulette wheel a sufficient number of times.  

 

 

Figure 2.2: Flowchart of the genetic algorithm. 
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Figure 2.3: The roulette wheel selection. 

 

In crossover step [74]-[78], although reproduction step directs the search toward the best 

existing individuals, it cannot create any new individuals. In nature, an offspring has two 

parents and inherits genes from both. The main operator working on the parents is the 

crossover operator, the operation of which occurred for a selected pair with a crossover rate. 

Figure 2.4 illustrates how the crossover works. Crossover produces two offspring from their 

parents by exchanging chromosomal genes on either side of a crossover point generated 

randomly.  

 
Figure 2.4: Crossover operator. 

 

In mutation step [79]-[85], although the reproduction and crossover would produce many 

new strings, they do not introduce any new information to the population at the site of an 
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individual. Mutation can randomly alter the allele of a gene. The operation is occurred with a 

mutation rate. Figure 2.5 illustrates how the mutation works. When an offspring is mutated, 

one of its genes selected randomly is changed to a new value.  

 
Figure 2.5: Mutation operator. 

 

Since GAs search many points in the space simultaneously, they have less chance to 

reach the local minima than single solution methods. The advantages of GAs are: 1) some 

individuals have a better chance to come close to the global optima solution, and 2) the 

genetic operators allow the GA to search optima solution. According to above reasons, GAs 

are suitable for searching the parameters space of neuro-fuzzy controller. For solving the 

problem that a neuro-fuzzy controller which performs gradient-descent based learning 

algorithms may reach the local minima very fast but never find the global solution, the GAs 

sample the parameters space of neuro-fuzzy controllers and recombine those that perform best 

on the control problem. 

 

2.3 Particle Swarm Optimization 

   In this section, we will introduce the PSO. The standard PSO is introduced in section 2.3.1 

and the CPSO is introduced in section 2.3.2. 

 

2.3.1 Standard Particle Swarm Optimization 

PSO is first introduced by Kennedy and Eberhart in 1995 [8]. It’s one of the most 

powerful methods for solving global optimization problems. The algorithm searches an 
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optimal point in a multi-dimensional space by adjusting the trajectories of its particles. The 

individual particle updates its position and velocity based on its previous best performance 

and previous best performance of other particles which denote y and  respectively. A 

simple demonstration of how PSO learning proceeds can be shown in Fig. 2.7 as follows: 

ŷ

 

Figure 2.6: Diagram of the PSO learning mechanism. 

 

The position xi,d and velocity vi,d of the d-th dimension of i-th particle are updated as 

follows:                                                                              

�
, , 1 1 , , 2 2 ,( 1) = ( ) ( ( ) ( )) ( ( ) ( )),
( 1) ( ) ( 1),

i d i d i d i d i dd

i i i

v t v t c rand y t x t c rand y t x t
x t x t v t

+ + ⋅ ⋅ − + ⋅ ⋅ −

+ = + +    (2.7)
 

where yi represents the previous best position yielding the best performance of the i-th particle; 

c1 and c2 denote the acceleration constants describing the weighting of each particle been 

pulled toward y and �y  respectively;  and  are two random numbers in the range 

[0, 1]. 

1rand 2rand

Let s denote the swarm size and f() denote the fitness function evaluating the performance 

yielded by a particle. After Eq. (2.7) is executed, the personal best position y of each particle 

is updated as follows: 
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( 1),  if  ( ( 1)) ( ( )),

( 1)
( 1),  if  ( ( 1)) ( ( )),

i i
i

i i

i

i

x t f x t f y
y t

t
y t f x t f y

+ + ≥⎧
+ = ⎨ + + <⎩ t

                 (2.8) 

and the global best position is found by: 

       .                (2.9)          �( 1) arg min ( ( 1)),     1
i

iy
y t f y t i s+ = + ≤ ≤

In 2002, Clerc [12] confirms the convergence of PSO by using a constriction factor 

which greatly enhances the applicability of PSO. The implementation of the constriction 

factor is shown in Eq. (2.10)-(2.12): 

�
, , 1 1 , , 2 2 ,( 1) = [ ( ) ( ( ) ( )) ( ( ) ( ))],
( 1) ( ) ( 1),

i d i d i d i d i dd

i i i

v t v t c rand y t x t c rand y t x t
x t x t v t

χ+ + ⋅ ⋅ − + ⋅ ⋅ −

+ = + +
  (2.10)  

where  

 
2

2

2 4
χ

φ φ φ
=

− − −
,                         (2.11)          

and                  

1 2 ,  4c cφ φ= + > .                        (2.12) 

The flowchart of the PSO is shown in Fig. 2.7. 

 

2.3.2 Cooperative Particle Swarm Optimization 
The CPSO [9] is one of the most significant improvements to the original PSO. Van den 

Bergh presented a family of CPSOs, including CPSO-S, CPSO-SK, CPSO-H, CPSO-HK. 

Algorithm CPSO-HK is the hybrid from PSO and CPSO-SK and it is proposed to address the 

issue of “pseudominima.”  

The concept of CPSO-S is that instead of trying to find an optimal n-dimensional vector, 

the vector is split into n parts so that each of n swarms optimizes a 1-D vector. The CPSO-SK 

is a family of CPSO-S, where a vector is split into K parts rather than n, where . K also 

represents the number of swarms. Each of the K swarms acts as a PSO optimizer. The main  

K n≤
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Figure 2.7: Flowchart of the PSO. 

 

difference between the PSO and the CPSO is that the fitness of a single particle of the CPSO 

has to be evaluated through global best particles of the other swarms. Let Pj denote the j-th 

swarm and Pj‧xi represents the i-th particle in the swarm j. The concept of the CPSO can be 

illustrated as follows:  

 

Figure 2.8: Schematic diagram of the CPSO. 
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The fitness of Pj‧xi is defined as: 

        � �
1 1( ) ( , , , . , ,j i j j i K

�)f P x f P y P y P x P y−=i i … i … i .              (2.13) 

The CPSO applies cooperative behavior to improve the PSO on find the global optimum in 

a high-dimensional space. This is achieved by employing multiple swarms to explore the 

subspaces of the search space separately to reduce the curse of dimensionality. However, there 

is no absolute criterion stating that the CPSO is superior to the PSO since independent 

changes made by different swarms on correlated variables will deteriorate its performance. In 

addition, in one generation of an n-dim CPSO-S operation, the computational cost is n times 

larger than that of a PSO operation. 

 

2.4 Evolution Strategy with Covariance Matrix Adaptation 

In this section, we introduce some background knowledge related to the proposed 

MS-CMA-ES. The standard CMA-ES is introduced in section 2.4.1, kernel density estimation 

is introduced in section 2.4.2 and mean shift procedure is introduced in section 2.4.3. 

 

2.4.1 Standard CMA-ES 

In the standard CMA-ES, a population of new search points is generated by sampling a 

multivariate normal distribution N with mean  and covariance matrix nm∈\ n n×∈C \ . The 

equation of sampling new search points, for each generation number g = 0,1,2,…, reads 

 ( 1) ( ) ( ) ( )(0, )    for 1, ,g g g g
ix m N iσ λ+ + C∼ "= ,      (2.14) 

where ~ denotes the same distribution on the left and right hand side; σ(g) denotes the overall 

standard deviation, step-size, at generation g and λ is the sample size. The new mean m(g+1) of 

the search distribution is a weighted average of the μ selected points from λ samples 

, ,…, ( 1)
1

gx + ( 1)
2

gx + ( 1)gxλ
+ :  
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 ( 1) ( 1)
:

1

g
i i

i
m w x

μ

λ
g+ +

=

=∑ ,                           (2.15) 

with 

 1 2 1
1

1,    0i
i

w w w w
μ

=

= ≥ ≥ ≥ >∑ " , (2.16) 

where wi are positive weights, and ( 1)
:
g

ix λ
+  denotes the i-th rank individual out of λ samples. 

The index i:λ denotes the i-th rank individual and 

 , (2.17) ( 1) ( 1) ( 1)
1: 2: : ( ) ( ) (g gf x f x f xλ λ

+ +≤ ≤ ≤" )g
λ λ

+

where f(‧) is the objective function to be minimized. The adaptation of new covariance 

matrix C(g+1) is formed by a combination of rank-μ and rank-one update [13] 

 ( ) (( 1) ( ) ( 1) ( 1) ( 1) ( 1)cov
cov cov : :

1cov cov
rank-one update rank-  update

1(1 ) (1 )
T

Tg g g g g
c c i i i

i

cc p p c w y y
μ

λ λ

μ

μ μ
+ + +

=

= − + + − ×∑C C
���	��
 )g+ +

����	���

,   (2.18) 

where μcov ≥ 1 is the weighting between rank-μ update and rank-one update; ccov∈[0,1] is the 
learning rate for the covariance matrix update, and  

 ( 1) ( 1) ( ) ( )
: :( ) /g g g

i iy x mλ λ
gσ+ += −  (2.19) 

is a modified formula used to compute the estimated covariance matrix for the selected 

samples. The evolution path  for rank-one update is described as follows: ( 1)g
cp +

 
( 1) ( )

( 1) ( )
eff ( )(1 ) (2 )

g g
g g

c c c c c g

m mp c p c c μ
σ

+
+ −

= − + − ,               (2.20) 

where cc ≤ 1 denotes the backward time horizon and  

 
1

2
eff

1
i

i

w
μ

μ
−

=

⎛ ⎞
= ⎜
⎝ ⎠
∑ ⎟                                (2.21) 

denotes the variance effective selection mass. The new step-size σ(g+1) is updated according to  

 
( 1)

( 1) ( ) exp 1
(0, )

g
g g

pc
d E N

σσ

σ

σ σ
+

+
⎛ ⎞⎛ ⎞
⎜ ⎜=

⎜⎜ ⎟⎝ ⎠⎝ ⎠I
⎟⎟−
⎟

,                      (2.22) 

with 
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where cσ is the backward time horizon of evolution path, similar to cc; dσ is a damping 

parameter and ( 1)gpσ
+  is the conjugate evolution path for step-size σ(g+1). The expectation of 

the Euclidean norm of a N(0, I) reads 

 1(0, ) 2 ( ) / ( ) (1/ )
2 2

n nE N n O n+
= Γ Γ ≈ +I .              (2.24) 

where Γ() denotes the gamma function and O() represents high-order terms.  

 

2.4.2 Kernel Density Estimation 

In parametric model estimation analysis, we need to suppose the distribution of data 

points coincides with certain model. Empirical evidence have shown that there tends to exist 

large differences between parametric estimation-based models and real-world physical models. 

Based on above defects, Rosenblatt and Parzen proposed a non-parametric way called kernel 

density estimator [66] to estimate the unknown p.d.f. of a random variable. The kernel density 

estimator does not require prior knowledge of how data distribute; instead, it analyzes the 

characteristic of the distribution of data. Hence, it is highly valuable in both statistical theory 

and application. 

In the proposed MS-CMA-ES, sampled search points in the search space are considered 

as data in the feature space. It is very intuitive since the location of search points tends to be 

the phenomenal feature in function optimization problems. The rationale behind density 

estimation-based clustering approach is that the feature space can be regarded as the empirical 

p.d.f. Due to the fact that search points are sampled from normal distribution with adjusted 

mean and adapted covariance matrix, and are further selected according to their fitness, dense 

regions in the search space correspond to local maxima of the p.d.f.; in other words, the 

modes of the unknown density. Consider n points xi, i = 1,…, n, in the d-dimensional space 

, the multivariate kernel density estimator with kernel K(x) and a symmetric positive d\
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definite matrix bandwidth matrix H, computed in the point x is given by 

 
1

1ˆ ( ) ( )
n

h h
i

if x K x
n =

x= −∑ ,     (2.25) 

with 

 1( ) ( )h
xK x h K
h

−= ,         (2.26) 

where Kh(x) is a d-variate kernel function satisfying 

 ( ) 1hK x dx
∞

−∞
=∫ .          (2.27) 

Normally speaking, kernel functions are symmetric, unimodal probability density functions. 

Uniform, normal and Epanechnikov kernel are the most common seen. It has been proven that, 

in certain routine conditions, kernel density estimator approximates the real density functions 

gradually with increasing sampling size [86]. Although the choice of different kernel 

functions have different effects on the results, but the effect appears small compared with the 

effect caused by the bandwidth, so researches focus more on the selection of bandwidth [87]. 

Theoretically, the selection of bandwidth is based on the mean integrated square error (MISE) 

between kernel density estimation and the real density function. However, the computation of 

MISE is too complicated. In practice, how selection of bandwidth affects the performance is 

analyzed by computing an asymptotic mean integrated error (AMISE) from a large number of 

samples. Recently, many literatures use plug-in method and cross-validation method to 

determine the optimal bandwidth, so that the selection of bandwidth no longer depends on the 

prior guess of true density function [86, 87]. In addition to the aforementioned fixed 

bandwidth mechanism, the variable bandwidth mechanism, bandwidth varies with different 

sample position, is also widely adopted in practice [88, 89]. Because it is very difficult for the 

fixed bandwidth mechanism to properly address multimodal density functions, especially in 

cases when density of each peak varies greatly. However, the analysis is relatively more 

complicated when compared with fixed bandwidth mechanism. In practice, the utilization of 

variable bandwidth mechanism is mostly based on rule of thumb [86]. If the variable 
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bandwidth mechanism is adopted, the kernel density estimator Eq. (2.25) becomes 

 
1

1ˆ ( ) ( )
n

i
i

f x K x
n =

= −∑H H x ,     (2.28) 

where 

 1/ 2 1/ 2( ) ( )K x K x− −=H H H ,    (2.29) 

H is the symmetric, positive definite bandwidth matrix. 

 

2.4.3 Mean Shift Procedure 

Mean shift procedure is a very versatile tool for feature space analysis and it is applicable to 

many field of tasks [90-92]. In the previous research [65], authors successfully extend this 

algorithm to computer vision applications, and have attracted huge attention. Mean shift 

procedure is an iterative algorithm based on kernel density estimation, which continually 

updates the mean shift vectors of data points according to the gradient of kernel function. 

Although the mean shift algorithm is very simple in form, but in practice there is a high 

efficiency and stability. The most classic application is the mean shift-based clustering 

algorithm. If we can have a good estimation of bandwidth, mean shift-based clustering 

algorithm would be a nice alternative relative to algorithms that the number of clusters needs 

to be pre-set, such as K-means algorithm. In the proposed MS-CMA-ES, search points in the 

search space are considered as data in the feature space. It is very intuitive since location of 

search points tends to be the phenomenal feature in function optimization problems. Due to 

the fact that, in the MS-CMA-ES, sampled search points are further selected according to 

their fitness, dense regions in the search space correspond to local maxima of the p.d.f.; in 

other words, the modes of the unknown density.  

Consider the density estimation kernel Kh(x) introduced earlier this section. If the profile 

notation [21] is employed, the kernel Kh(x) can also be written as 

 2
,( ) ( )h k d hK x c k x= , (2.30) 
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where kh(x) is a radially symmetric kernel defined as the profile of the Kh(x), and ck,d is the 

normalization constant which makes Kh(x) integrate to one. If we define 

 ( ) ( )h hg x k x′= − ,         (2.31) 

the d-variate kernel Gh(x) can also be written as 

 2
,( ) ( )h g d hG x c g x= ,      (2.32) 

and similarly, cg,d denotes the normalization constant. The density estimation kernel Kh(x) is 

also called the shadow kernel of Gh(x) [65]. Consider n points xi, i=1,…, n, in the 

d-dimensional space , the mean shift vector at x is given by d\

 1

1

( )
( )

( )

n

i h i
i

n

h i
i

x G x x
m x x

G x x

=

=

−
= −

−

∑

∑
.    (2.33) 

Intrinsically, mean shift procedure can be viewed as a mode seeking method [59], which 

determines the modes of p.d.f. estimated by kernel Kh(x). Denote {yj}j=1,2,… the sequence of 

successive search locations of kernel Gh, from Eq. (2.33) it has the form 

 1
1

1

( )
     1, 2,

( )

n

i h j i
i

j n

h j i
i

x G y x
y

G y x

=
+

=

−
=

−

∑

∑
"j =  (2.34) 

and y1 is the initial search location. The corresponding sequence of density estimates 

computed with kernel Kh is given by 

 { },
ˆ ˆ( ) ( )     1, 2,h K h jf j f y j= = " . (2.35) 

In the previous research [59], authors have proven that once search location yj gets sufficiently 

close to a mode of estimated density function ,ĥ Kf , it converges to it, and the set of all 

locations converge to the same mode is defined as the basin of attraction of that mode. The 

general steps of applying mean shift procedure is listed as follows: 

Step 1: Uniformly generate appropriate number of initial search points. 

 27



Step 2: Sequentially or parallelly run the mean shift procedure until the search points 

converge. 

Step 3: Each convergence point defines a mode and each initial location converges to that 

mode defines the basin of attraction of that mode. 
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CHAPTER 3 

EVOLUTIONARY ALGORITHMS 
 

In this chapter, the proposed four algorithms are discussed. In section 3.1, a Q-valued 

based particle swarm optimization and the concept of using Lyapunov design principles for 

constructing safe reinforcement learning agents are introduced. In section 3.2, the proposed 

two-strategy reinforcement (TSR) learning mechanism and the group-based symbiotic 

evolution (GSE) which enables the learning agent to evaluate the fuzzy rule locally are 

introduced. In section 3.3, a separability detection approach to cooperative particle swarm 

optimization (SD-CPSO) for placing correlated variables into the same swarm is discussed. In 

section, 3.4, the proposed mean shift based evolutionary strategy with covariance matrix 

adaptation (MS-CMA-ES) is introduced. We cannot directly apply mean shift clustering to the 

sampled points generated by CMA-ES because the adopted mean shift clustering requires 

independent identity distribution of samples to perform density estimations. Several previous 

works such as importance sampling [93,94] and bandwidth estimation [86,87] are also 

discussed in this section.  

 

3.1 Q-value based PSO 

Thorough learning algorithm of QPSO is described in this section. The architecture is 

shown in Fig. 3.1. The whole learning process can be roughly divided into two parts: the 

Q-value and PSO operation part. The learning strategy for Q-values of particles is detailed in 

section 3.1.1 while the PSO operation and the flowchart of QPSO are described in section 

3.1.2. 
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Figure 3.1: Architecture of QPSO. 

 

3.1.1 Learning Q-values of Particles 

In QPSO learning, if there are s particles in the swarm, s trials are taken in one generation. 

The agent applies in each trial an action to the environment by selecting a particle based on its 

Q-value. Every time a particle is selected, the Q-value of the selected particle is updated based 

on the system’s reward. If the -th particle is selected, its Q-value qi is updated as  i

*1( ) ( ) [ ( ( 1)) ( )]i i iq t q t Q x t q t
t

α γ= + − + + − ,              (3.1) 

for i=1…s, where 

*

*
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1...

1...

( ( 1)) max ( ( 1),  ')

                  max ( ( 1),  )

                  max ( ) ( ).

a A x t

ii s

i ii s

Q x t Q x t a

Q x t p

q t q t

∈ +

=

=

+ = +

= +

= =

                  (3.2) 

That is 

*

1( ) ( ) [ ( ) ( )]

       ( ) ( ),          

i i ii

i i

q t q t q t q t
t

q t t

α γ

αδ

= + − + −

= +
                   (3.3) 

for i=1," ,s, where ( )  i tδ is regarded as TD error. 

The new Q-values of all particles calculated from Eq. (3.3) are subsequently adopted as the 
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fitness values for PSO evolution. 

 

3.2.2 Q-value based PSO 

The PSO operation used in QPSO consists of two major steps: swarm initialization and 

Q-valued base PSO evolution. Details of these two steps are described step-by step as follows. 

‧ Swarm initialization:  

The particle swarm is composed of particles encoded by the parameters on a NFS. Each 

particle is encoded by the mean, deviation of Gaussian membership functions and the 

weightings for output action strength. The number of fuzzy rules determines the length 

of each particle. After the number of rules is set, the initial particles are generated 

according to the following equations:  

[ ] [ ]min maxMean: x , ,
where 1,  3, , 2 -1;  1,  2, , .

i n random m m
n NR i

=

= =" " s
               (3.4) 

[ ] [ ]min maxDeviation: x , ,
where 2,  4, , 2 .

i n random
n NR

σ σ=

= "
                 (3.5) 

[ ] [ ]min maxWeight: , ,
where 2 1,  2 2, , .

ix n random w w
n NR NR D

=

= + + "
                   (3.6) 

 ip represents the i-th particle in the swarm; N represents the input dimension; R 

represents the number of fuzzy rules; D represents the size of each particle, usually D 

equals to (N+1)R in most of cases where the dimension of output variable is 1; 

[ ]min max,m m , [ ]min max,σ σ  and [ ]min max,w w  are the predefined ranges. The above 

equations result in the coding scheme between a neural fuzzy system and a particle 

shown in Fig. 3.2. 
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Figure 3.2: Coding scheme between a particle and a TSK-type NFS in QPSO. 

 

‧ Q-value based PSO evolution: 

The Q-values derived in Eq. (3.3) are used as the fitness values for PSO evolution. The 

Q-value of each particle determines the performance of a particle for controlling the 

system. In the proposed QPSO, the Q-value of each particle indicates how soon a particle 

can guide the system’s state to reach the set of goal states. The learning processes proceed 

to new generation until a predefined stop criterion is met. The block diagram of whole 

learning process in QPSO is shown in Fig. 3.3. 

 

 
Figure 3.3: Block diagram of QPSO. 

 32



3.2 Two-strategy Reinforcement Evolutionary Algorithm 

The proposed two-strategy reinforcement evolutionary algorithm (TSR-EA) is introduced in 

this section. Two major modifications are proposed in this algorithm: a two-strategy 

reinforcement signal design and the group-based symbiotic evolution (GSE). Details of these 

two operations are described as follows: 

 

3.2.1 Two-strategy Reinforcement Signal Design 

The TSR-EA is constructed on a TSK-type NFS model. The NFS model acts as a control 

network to determine a proper action according to the current input vector (environment state). 

The feedback signal is the reinforcement fitness value that functions as a performance 

measurement. The reinforcement learning architecture adopted in the TSR-EA is the time-step 

reinforcement architecture [95]-[97]. In this architecture, the only available feedback is a 

reinforcement signal that notifies the model only when a failure occurs. This architecture is 

straightforward and easy to implement. However, its fitness function can only indicates how 

long can the controller work well instead of measuring how soon the system can enter the 

desired state, which is also very important. Most reinforcement learning algorithms offer no 

guarantee on stabilizing a system around a certain operating point, or keeping the state of a 

system within a certain range. In this dissertation, the proposed QPSO described in section 3.1 

can meet the aforementioned goals by adopting the concept of safe reinforcement learning 

agents based on Lyapunov design principles proposed Perkins and Barto [57]. Using the 

concept proposed in [57], the QPSO can guide the state of a system to reach and remain in a 

desired set of goal states by constraining the action choices of the agents. Actions constrained 

by Lyapunov design principles cause the system to descend on an appropriate Lyapunov 

function. The feedback reinforcement signal of in the QPSO is the time step that indicates 

how soon the system enters the desired set of goal states. The QPSO provides not only 

 33



reliable initial learning performance but also accurate learning result. However, in order to 

apply Lyapunov design principles, we have to identify the Lyapunov function of a control 

plant in advance, which refers to the requirement of more information about the state of the 

control plant. For some real-world applications, some states are difficult or expensive to 

obtain. As a result, in the TSR-EA method, we proposed the TSR design so that our method 

can enjoy the convenience brought by the standard reinforcement learning architecture on one 

hand, and the accurate learning performance on the other. The TSR learning signal design for 

determining the fitness value of each learning trial is described as follows. 

The proposed two strategies are judgment and evaluation. The judgment strategy 

measures the fitness value of a learning trial that fails to maintain the system’s state in a 

desired operating range, whereas the evaluation strategy measures the fitness value of a 

learning trial that works the system well in the original successful range, but fails under a 

stricter successful range is applied. At first, for each different control task, a corresponding 

operating range Original_Range is predefined. Then, we shrink the original successful 

operating range as the control time step increases, as defined in Eq. (3.7).  

( )
( )

_ = _ ,  where

1,  if ,
_ ,  if   < _ ,_

,  ,_

Strict Range Original Range

t A
Thres TimeStep A t A t Thres TimeStepThres TimeStep

A otherwiseThres TimeStep

δ

δ

×

⎧
⎪ ≤
⎪⎪ + −= ≤⎨
⎪
⎪
⎪⎩

 (3.7) 

where A is a parameter that simply prevents the modified range from becoming zero. This 

equation provides guidance to the controller to meet the control goal sooner. The 

Original_Range and Strict_Range are both considered as stopping criteria. If a learning trial 

fails because the system state falls beyond the Original_Range, this learning trial is then 

considered as failing under a “looser” constraint. Hence, a smaller fitness value is obtained 

from this learning trial. On the contrary, if a learning trial fails for the system state deviating 
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from the Strict_Range, this learning trial is then considered as failing under a “stricter” 

constraint, and a relatively larger fitness value is obtained from this learning trial. The 

determining fitness values in both strategies are detailed as follows: 

•Strategy 1. Judgment strategy: 

If the system fails at time step t deviating from the original successful operating range, 

then 

1 -1 _
_ _

tFitness Value
Thres TimeStep Thres TimeStep

= ,         (3.8) 

where  is a predefined parameter. A learning trial is deemed unsuccessful if 

it is unable to meet the control goal before Thres_TimeStep. 

_Thres TimeStep

•Strategy 2. Evaluation strategy 

 Under the condition that the controller successfully maintains the system’s state in the 

original successful operating range, the fitness value is calculated by the following two cases. 

Case 1 represents the system works well under the original successful operating range but 

falling beyond the range defined in Eq. (3.7). Case 2 represents the controller successfully 

controlling the system. 

Case 1. If the system enters the set of goal states at time step t1 but falls beyond the strict 

successful range defined in Eq. (3.7) at time step t2, then 

2 1
1

1 _ ( ) .Fitness Value t t
t

= −                        (3.9) 

Case 2. If the system enters the set of goal states at time step t1 and stabilizes the system for 

Stable_TimeSteps, then 

1

__  _ +( Stable TimeStepsFitness Value Stable TimeSteps
t

= ) .     (3.10) 

The reinforcement fitness value evaluates how soon the plant can meet the desired set of goal 

states and how long the controller maintains the plant within it. The advantage of the 

proposed TSR-EA method is that it provides a relatively accurate learning performance 

compared with standard time-step reinforcement architecture. 
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3.2.2 Group-based Symbiotic Evolution 

 In this section, the idea of GSE is introduced. Unlike traditional GA that uses each 

individual in a population as a full solution to a problem, GSE assumes that each individual in 

a population represents only a partial solution to a problem. In a standard evolution algorithm, 

a single individual is responsible for the overall performance, with a fitness value assigned to 

that individual according to its performance. In the GSE, in order to calculate the fitness of an 

individual (a partial solution), we have to combine the current individual with other “global 

best” individuals of other groups to form a context vector first. A context vector stands for a 

complete solution and can be used to evaluate the fitness value. This idea is adopted from the 

CPSO introduced earlier. Let xj denote the j-th chromosome and Pj‧xi represents the i-th 

chromosome in the group j. Then the fitness of Pj‧xi is defined as: 

        � � �
1 1( ) ( , , , . , ,j i j j i K )f P x f P y P y P x P y−=i i … i … i .                 (3.11) 

As shown in [96-100], partial solutions can be characterized as specializations. The 

specialization property ensures diversity, which prevents a population from converging to 

suboptimal solutions. A single partial solution cannot “take over” a population since there 

must be other specializations present. Unlike the standard evolutionary approach, which 

always causes a given population to converge, hopefully at the global optimum, the 

symbiotic evolution finds solutions in different, unconverted populations. With the fitness 

assignment performed by GSE, and the local property of a fuzzy rule, GSE and the fuzzy 

system design can complement each other.  

The structure of the GSE is shown in Fig. 3.4, where Ncs is the number of complete 

solutions the GSE will select individuals to form in one generation, R denotes the number 

of fuzzy rules in a NFS.  
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Figure 3.4: Structure of a chromosome in the GSE. 

 

  The coding structure of a chromosome is shown in Fig. 3.5, which describes that where mij 

and σij represent a Gaussian membership function with mean and deviation, respectively, and 

wj is the weight of the jth rule node and n denotes the input dimension. 

 

 
Figure 3.5: Coding structure of a chromosome in the TSR-EA. 

 

3.3 Mean Shift-Based Evolution Strategy with Covariance Matrix 

Adaptation 

Evolution strategy with covariance matrix adaptation (CMA-ES) is very effective in 

optimization of unimodal functions, but inferior to other algorithms that emphasize the global 

search ability, such as particle swarm optimization (PSO) or differential evolution (DE), in 

optimization of multi-funnel functions. Enhancing the global search ability of CMA-ES has 

becoming urgent goals of many scholars within the field. In this dissertation, we propose a 
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mean shift based CMA-ES (MS-CMA-ES). The framework of proposed method is 

constructed on CMA-ES. In the traditional CMA-ES, new search points are sampled from 

normal distribution; however, in the MS-CMA-ES, new search points are sampled from 

mixture normal model. The introduced mean shift procedure is a clustering method, which 

allows us to apply multiple CMA-ES instances to explore multiple search directions in 

parallel according to the its clustering result. In the MS-CMA-ES, the mean shift procedure is 

also used to compute the mean vector of the mixture normal distribution. During the mean 

shift procedure, each search point is “shifted” toward their corresponding local optima area of 

the p.d.f. until all search points converge. The converge points represents new mean vectors of 

the mixture normal model; in other words, the initial sampling locations of the MS-CMA-ES.  

   In this dissertation, we mainly focus on studying how to apply mean shift based clustering 

approach in optimization of complex objective functions, detecting their modes, and try to 

preserve the advantage of CMA-ES that converge rapidly in optimization of single-funnel 

functions. In the chapter we will detail the architecture of our method and its learning process. 

In section 3.3.1, we will describe our motivation, which is followed by a block diagram 

learning process. The detail of each block will be described in section 3.3.2 through 3.3.4. 

 

3.3.1 Motivation 

Before introducing the proposed MS-CMA-ES, we observe a drawback that CMA-ES may 

encounter as shown in Fig. 3.6: 
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(a)        (b) 

Figure 3.6: Computer simulation result of CMA-ES with initial search location at (0, 0). 

 

Figure 3.6 is an computer simulation result of an optimization problem with two local optimal 

solution. The upper right region is a suboptimal region with steeper gradient toward it and the 

lower left region is the global optimal region with a smoother trend. As shown in Fig. 3.6, 

white lines represents the locus of average of search points and darker background color 

stands for higher fitness value. The initial search location is at (0,0) which is in the middle of 

two local optimal solutions. The ideal case is that the locus wanders between two local 

optimal regions then converge to the lower left global optimal region as shown in Fig. 3.6(a). 

However, we found by simulation that most of times the locus only temporary wanders and 

converge to the upper right region as shown in Fig. 3.6(b). The search direction of CMA-ES 

cannot continually expand to two optimal regions and determine the real optimal solution 

according to their converge points.  

    In this dissertation we think this drawback is due to the fact that the sampling 

distribution is limited to normal distribution. In statistical learning [66], simple normal model 

is not enough to deal with complex problems, an advanced alternative is the mixture model. 

Mixture normal model can effectively approximate the p.d.f. of multimodal functions, and 

reveal their important characteristics: number and location of the modes. In this dissertation, 
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we think the aforementioned drawback can be relieved if the distribution of search points are 

sampled by a mixture normal model. 

    Recently there are researches attempt to turn CMA-ES search pattern into multiple 

region search style; for example, authors [26] incorporates particle swarm optimization to 

enhance the global search ability of CMA-ES. In this dissertation, we adopt the different 

concept by altering the sampling model. After sampling the search points, all samples are 

clustering by mean shift procedure. A new cluster represents a new CMA-ES instance. By 

perspective of mixture model, a new cluster stands for a new component of the mixture. 

Observed from the computer simulation result, the proposed mechanism can alleviate the 

deficiency that CMA-ES cannot search multiple directions in parallel. The block diagram of 

the proposed MS-CMA-ES is shown in the following figure and the detail of each block will 

be introduced in the subsequent sections. 

 
 

Figure 3.7: The block diagram of the MS-CMA-ES. 
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3.3.2 Sampling from a Mixture Model 
In the proposed MS-CMA-ES, the sampling of new search points is given by  

 ( 1) ( ) ( ) ( ) ( )
mix ( , , , )    for 1, ,g g g g g

ix N m iσ α+ =C∼ " λ , (3.12) 

where Nmix denotes a mixture Gaussian distribution with its p.d.f. pM(•) reads 
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p x k G x m k kα σ

=
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G(•; θ) denotes a multivariate Gaussian function parameterized by θ; k denotes the index of 

denotes the total number of samples 

. (3.13) 

component of mixture model; K(g) is the total number of components at generation g; λ 

( )
( ) ( ) ( )

1 2 g
g g g

K
λ λ λ λ= + + +" ; m  is the set of mean of 

search points m(g)≡{m(g)(1),…, m(g)(K(g))}; C(g) is the set of covariance matrix C (g)≡{C 

))}; g) is the set o  is the 

m {

 generation and is determined by 

the result of clustering. 

reliable density estimator. Let us denote f the unknown p.d.f. of the search space and 

(g)

(g)(1),…, C (g)(K(g σ( f search step size σ(g)≡{σ (g)(1),…, σ(g)(K(g))}; α (g)

ixture weighting α(g)≡ α(g)(1),…, α(g)(K(g))}. 

 

3.3.3 Mean Shift-based Clustering 

The total number of components K(g) is variable at each

In this dissertation, we don’t directly apply clustering method to the 

sampled points because the adopted mean shift based clustering method requires independent 

identity distribution of samples to perform density estimations. In our method, search points 

are sampled from a Gaussian mixture model. Due to the absence of independent identity 

distribution of samples, we introduce the importance sampling method [93, 94] to find a more 

f̂H  the 

kernel density estimation with bandwidth matrix H. The kernel density estimation of f after 

 ,

introducing importance sampling method is given by 
λ

1

ˆ ( ),    for 1, ,i i
i

f K x x iω λ
=

= − =∑H H "  (3.14) 

which is almost identical with traditional kernel density estimation besides the importance 
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weighting ωi  
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where wi is the fitness weighting of xi; pM(•) is the p.d.f. of mixture normal distribution shown 

in Eq. (3.1w). The sequence of mean shift-based clustering of each search point after 

introducing importance sampling is given by  
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where 

 , (3.17) 2 ( ) ( ) 1 ( )( , ; ) ( ) (t t T t
i m m i m m i mD x x x x x x−= − −H H

and D is the Mahalanobis distance of ( )t
ix  to xm and Hm is the positive definite bandwidth 

matrix for xm. Hm is another important parameter needs to be determined. In general, when 

doing kernel density estimation, literatures process adequate, at least 50 to 100, amount of 

samples. In such cases, the selection of bandwidth matrix can be achieved based on the 

analysis of asymptotic mean integrated square error (AMISE) [87]. The proposed 

MS-CMA-ES is mainly constructed on traditional CMA-ES that only generates few samples 

at each generation; therefore, we cannot cite AMISE based bandwidth selection methods 

which have richer research results. In this dissertation, the selection of bandwidth matrix is 

according to Theorem 3.1, the analysis of MISE [87], which is more applicant to cases with 

small amount of samples.  

First, we derive equations of optimal bandwidth matrix for samples within a  same 

cluster. In the following derivation, we ignore the term index and the superscript of variables 

m(g)(k), σ(g)(k), and C(g)(k) since we only consider samples within a same cluster at a certain 
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generation: 

Theorem 3.1 [87] Consider KH a kernel function parameterized by bandwidth matrix H, and 

the true distribution of samples is N(m, Σ). The optimal MISE bandwidth for density 

estimation is given by  
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 (3.18) 

where d is the dimension of samples, n is the number of samples, m and Σ are the mean and 

the covariance matrix of the normal distribution respectively.  

In this dissertation, we let Σ be the covariance matrix adapted by CMA-ES 

 2σ=Σ C ;                                 (3.19) 

in other words, we assume that the true distribution of samples is similar to the normal 

distribution adapted by CMA-ES. The covariance matrix C stands for a favorable shape of 

distributing samples for finding local optimums and we expect it to be a good approximation 

to the true distribution of samples. The global step size σ stands for the bandwidth of kernel 

density estimation and it is self-adaptive in CMA-ES algorithm. From experimental 

observations, the smaller the bandwidth is, the more number of modes will be estimated and 

the larger bandwidths correspond to smoother estimation results.  

The dimension of H is d2; in other words, there are d2 parameters need to be optimized at 

each generation according to Eq. (3.18), which is very computationally expensive. In this 

dissertation, we propose a method to prevent the d2 optimization task at each generation 

according to the following theorem [87]: 

Theorem 3.2 [87] Consider KH a kernel function parameterized by bandwidth matrix H, and 

the true distribution of samples is N(m, Σ). The optimal AMISE bandwidth for density 

estimation satisfies 
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 .                               (3.20) *
AMISE = hH Σ

Based on theorem 3.2, we limit H to the following equation  

 2h hσ= =H Σ C ,                            (3.21) 

where h denotes the global width of the bandwidth matrix. According to the 

eigen-decomposition theorem 

 ,                        (3.22) 2 2 2 Tσ σ= =Σ C BD B

and the following fact 

 2 2,  ( 1) , , ( 1) ,d dh h k hσ σ= + = + + = +H D H Σ D H Σ D" 2k σ  (3.23) 

the search of optimal bandwidth matrix can be simplified to a 1-dim optimization problem 

relevant only to n and d 
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In this dissertation, we use steepest descent method to compute optimal solutions of Eq. (3.24) 

as a database indexed for n = 1, 2,…, 50 and d = 1, 2,…,50. 

    After deriving equations of optimal bandwidth matrix for samples within the same 

cluster, the bandwidth matrix for each sample can be assigned according to its cluster index to 

complete the mean shift-based clustering method. The proposed kernel density estimation 

method density estimation utilizes the variable bandwidth selection, which is necessary 

considering that search points are sampled by a mixture model distribution. The following 

figure shows an example of applying kernel density estimation with variable bandwidth 

mechanism to complete the mean shift-based clustering. Search points shown in Fig. 3.8(a) 

are sampled by a 2-component mixture probability distribution. Pink contour represents high 
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fitness value while blue contour represents the opposite. Clustering result of search points 

shown in Fig. 3.8(b), three clusters are determined and marked by three different colors. 

Figure 3.8(b) shows the result of density estimation with samples generated by a 2-component 

mixture probability distribution converge to three modes. After mean shift-based clustering, 

each cluster forms a separate component of a mixture probability model. The updating of 

parameters of the mixture probability model will be introduced at the next section. 

 

3.3.4 Updating of Mixture Probability Model 

In this section, we derive parameters of sampling new search points in the MS-CMA-ES. 

As described in section 3.3.1, new search points at generation g+1, { }( 1)g
ix + , are sampled by a 

mixture normal model parameterized by m(g)
, C (g)

, σ(g) and α(g)
. After sampling, the 

classification of each search points and the number of clusters K(g+1); in other words, the 

number of components of mixture probability model are determined by the mean shift based 

clustering method. Before deriving equations of updating m(g)
, C (g)

, σ(g) and α(g), we introduce 

two operators 

 
0,  if cluster ,

( , )
1,  if cluster ,

i

i

x k
z k i

x k
∉⎧

= ⎨ ∈⎩
                       (3.25) 

and κi {1,…,K} represents the cluster index of sample xi. The updating rule of m(g) of the 

k-th cluster reads 

∈

( 1) ( 1) ( 1)

1
( ) ( , ) ,  for 1, , .g g

i i
i

m k w z k i x k K
λ

+ +

=

= =∑ " g+

g+

              (3.26) 

The updating rule of C(g) of the k-th cluster reads  

          (3.27) ( )( 1) ( ) ( 1) ( 1)

1
( ) (1 ) ( ) ( , ) ,

Tg g g
i i i

i
k c k c z k i w y y

λ
+ +

=

= − + ∑C C�
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(a) 

 
(b) 

Figure 3.8: Example of kernel density estimation with variable bandwidth selection. 

 

The updating rule of σ(g) of the k-th cluster reads 

 i
( 1)

( )( 1)
( )

( ) ( ) exp 1 ,
(0, )

g
gg

p kck k
d E N

σσ

σ

σ σ
+

+
⎡ ⎤⎛ ⎞
⎢ ⎥⎜=

⎜
⎟−
⎟⎢ ⎥⎝ ⎠⎣ ⎦I

                (3.30) 
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where 
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and 
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Compared to the traditional CMA-ES, the updating of m(g)
, C (g)

 and σ(g) for the MS-CMA-ES 

are performed in each cluster. Equations are slightly different besides the two introduced 

operator that indicates the cluster index of a search sample. The MS-CMA-ES also introduces 

a set mixture weightings α(g) as new variables, and its updating rule is given by 

  (3.34) ( 1) ( ) ( )ˆ( ) (1 ) ( ) ( ),g gk c k cα αα α+ = − +� g kα

where  

 ( ) ( 1)

1

1( ) ( , ),  for 1, , .g

i
a k z k i k K

λ

λ
+

=

= =∑� " g  (3.35) 

( )ˆ ( )g kα  represents the objective updating value and cα denotes the updating step size. In this 

dissertation, we set the objective updating values as the density estimation values of the 

modes, which were obtained from the mean shift-based clustering result: 

 ( ) ( )
KDEˆ ( ) (mode )g g

kk fα = ,                       (3.36) 

where  denotes the kernel density estimation of the mode of the k-th cluster. 

Macroscopically, Eq. (3.34)-(3.36) are performing selection among components. The above 

equations perform a series of comparison and elimination in the hierarchical structure formed 

( )
KDE (mode )g

kf
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by the mixture model to explore the local search ability at different search locations, which is 

also the key to the global optimization. 

 

3.4 A Separability Detection Approach to Cooperative Particle 

Swarm Optimizer 

In this section we introduce an approach to help the CPSO self-organize the swarms 

composed of non-separable variables. Consider a particular optimization task illustrated in Fig. 

3.9, from which we can see a 2-dim function with a bar-shaped local optimal region and a 

global optimum lies in it. The task is to find its global optimum by particle swarm optimizer. 

At first, particles are uniformly distributed in the search space. At this moment, we expect 

particles to be divided into two swarms, performing separate 1-dim PSO operation on each 

dimension to speed up the process of particles gathering around the optimal region. 

If by any chance particles gather around the optimal region as we expected, as shown in Fig. 

3.10. At this point of time, we prefer particles performing 2-dim PSO operation on the whole 

search space to reduce the computational cost, which, in this case, represents the number of 

function evaluations. 

 
Figure 3.9: Case with particles uniformly distributed in the search space to find the global optimum lies in a 

bar-shaped local optimal region. 
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Figure 3.10: Case with particles gather around the bar-shaped optimal region to find the global optimum. 

 

In order to implement the idea illustrated above, we have to determine the timing of 

switching between the PSO and the CPSO operation when dealing with a task. In this paper, 

we think this can be done by determining the separability between variables, and placing 

non-separable into the same swarm at each generation. If at certain moment, all variables are 

determined as non-separable, then the PSO operation is taken; otherwise, the CPSO operation 

is taken.  

The separability between variables is found by estimating the covariance matrix of the 

distribution of particles. Instead of computing the sample covariance matrix of the distribution 

of particles directly, we adopt the CMA mechanism to estimate the covariance matrix of the 

distribution of particles. The adaptation of new covariance matrix C(g+1) is formed by a 

combination of rank-μ and rank-one update. Detailed adaptation equations can be seen from 

Eq. (2.14)-(2.24). Consider the estimated covariance matrix has the form shown as follows,  

                 

2
1 12 1

2
2

2
1 2

n

n n n

c c c
c

c c c

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

C

"
# "
# # #

"

#
,                     (3.37) 

where n is the number of dimensions, cjk represents the weighted covariance between 
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variables j and k. The separability between dimensions can be obtained from correlation 

coefficient matrix with its element defined as follows: 

                            jk jk jc c ckρ = ,                        (3.38) 

We define a parameter ρthres to determine whether dimension j and k are separable. If ρjk < 

ρthres then we say variable j and k are separable. Conventionally, if |ρ|>0.8, it implies that there 

exists a very strong linear relationship between these two variables; 0.8>|ρ|>0.6 implies strong 

relationship, and 0.6>|ρ|>0.4 implies moderate relationship. In this dissertation, we avoid 

setting ρthres less than 0.6. The block diagram of the SD-CPSO can be found in Fig. 3.11. 

 

 
Figure 3.11: Block diagram of SD-CPSO. 
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CHAPTER 4 

SIMULATIONS 

 
To verify the performance of four algorithms proposed in this dissertation, three 

optimization tasks and performance contrasts with some other models are presented. The 

optimization tasks can be categorized into reinforcement learning control task and 

multi-funnel function optimization task. We apply the QPSO and TSR-EA to 

high-dimensional, reinforcement learning control tasks, and apply the MS-CMA-ES and 

SD-CPSO to complex, low-dimensional multi-funnel function optimization task. The 

optimization tasks used to compare the performance of the proposed four algorithms with 

other existing models are described as follows.  

In Section 4.1, the cart-pole balance control [101] and the control of a double-link 

inverted pendulum system [102] are adopted to evaluate the performance of the proposed 

QPSO and TSR-EA. These problem are often used as examples of inherently unstable and 

dynamic systems to demonstrate both modern and classical control techniques or the 

reinforcement learning schemes.  

In Section 4.2, we will compare the performance of the MS-CMA-ES and SD-CPSO 

with other existing models through real-valued function optimization tasks [103]. In section 

4.2.1, we introduce a simple computer simulation that illustrates the improvement of the 

MS-CMA-ES over standard CMA-ES on global search ability. In section 4.2.2, the test 

environment and the comparison results are presented. 

4.1 Reinforcement Learning Tasks 

Two computer simulations are discussed in this section. The first simulation is the 

cart-pole balance control and the second simulation is the control of a double-link inverted 

 51



pendulum system. 

Example 1: Control of a cart-pole balancing system 

 
Figure 4.1:  Single-link inverted pendulum system. 

Figure 4.1 depicts the cart-pole balancing system. The bottom of the pole is hinged to a 

cart that travels along a finite-length track to its right or left. Both the cart and pole can move 

only on the vertical plane; that is, each has only one degree of freedom. The only control 

action is F, which is the amount of force (in Newtons) applied to the cart to move it left or 

right. The system fails when the cart runs into the bounds of its track (the distance is 2.4 m 

from the center to each bound of the track) or when the pole deviates more than 90 degrees. 

Using Lagrange’s method, the model of the cart-pole balancing system can be obtained as 

follows: 

     x: 2( ) ( cos sin )m M x mL Fθ θ θ θ+ + −�� ��� = ,            (4.1) 

      θ : cos sin 0x L gθ θ θ+ −���� = ,                        (4.2) 

where L = 0.5 m, the length of the pole; M = 1.0 kg, the mass of the cart; m = 0.1 kg, the mass 

of the pole, and g = 9.8 m/s, the acceleration due to gravity. [ ]min max,m m , [ ]min max,σ σ  and 

[ ]min max,w w  are set as [0, 2], [0, 2] and [-30, 30], respectively. 

By letting ( , )Tq x θ= , we can rewrite Eqs. (4.1) and (4.2) into general dynamic forms as 

follows: 

( ) ( ) ( ),  D q q C q q q G q τ+ + =�� � � ,                  (4.3) 
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�

� ,                     (4.5) 

 

 

( )
0

sin
G q

mgL θ
⎡ ⎤

= ⎢ ⎥−⎣ ⎦
,                        (4.6) 

 [ ]0 TFτ = .                            (4.7) 

The total mechanical energy of the system can be derived from: 

                       ( ) ( ) (,  
2

T )1E q q q D q q P q= +� � � ,                  (4.8) 

where  energy of the system (( )P q  denotes the potential cosgL θ  in this case) and m

( ) ( )P q
q

∂
∂

cart to 

G q = . The purpose of this control task is to determine the sequence of forces applied 

alance the pole upright and keep the cart as stationary as possible. Hence, we 

define a goal set comprising near-upright and near-stationary states as 

to the b

{ }1 ( , ) :  ( , , ) 0.001G q q x θ θ= ≤�� � . When the state of the cart-pole balancing system is in G1, 

mechanical energy E of the system is mgL, denoting Etop. We 

define a Lyapunov function ( )

accord  Eq. (4.8), the total ing to

( )( )top,  ,  
2

L q q E E q q= −� � . The purpose of this c ntrol 

problem can be transformed f pright and keeping the cart as 

stationary as possible” to “guiding the system’s mechanical energy ( ),  

21 o

rom “balancing the pole u

E q q�  to reach Etop 

and maintaining it near Etop as long as possible;” that is, achieving 0L . In order to 

achieve the aforementioned goal, we have to make sure that the Ly ction of the 

system decrease at all time steps. The time derivative of 

( ,q

apu

) q =�

nov fun

( ),  L q q�  with respect to time is 

( ) ( )( ) ( ),q qtop,  ,  L q q E E q q E= − −� �  � � � 4.9) 

and the time derivative of E with respect to time is 

,                   (
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   (4.10) 

which shows that the derivative of E is proportional to the product of the speed of the cart and 

input force. The time derivative of ( ),  L q q�  with respect to time can be obtained from 

combing Eq. (4.9) and (4.10), which re

( )

ads 

( ( ))top ,E q q xF−,  L q q E= −� �  � � ,                     (4.11) 

from which we can see that in order to make sure the Lyapunov function of the system 

( ),  L q q�  decrease at all time steps, the direction of the control force has to be coherent with 

( )( ) x− � � . Hence, for the QPSO, following [57], a Lyapunov-based 

control law for the learning agent based on the Lyapunov analysis can be derived as follows: 

top(( ) )F sgn E E x u

the sign of top ,  E E q q

= − � ,                      (4.12) 

where  and u is the o

]. Initial parameters of the QPSO a

 
Table 4.1: The initial parameters of the le balancing system. 

( ) {1 if 0, and -1 otherwise}sgn x x= ≥� utput force of the NFS limited in 

[-10,10 nd TSR-EA for controlling cart-pole balancing 

system are listed in the following two tables: 

QPSO for cart-po

Parameters Value Parameters Value 
[ minσ , maxσ ] [0, 2] c1 2.01 
[ m , m ] min max [0, 2] c1 2.01 
[ , ] minw maxw [-20, 20] s 50 

R 4 φ  4.02 
α 0.01 χ 0.99 
γ 0.9 max_gen 300 

 54



 
Table 4.2 : The initial parameters of the TSR-EA for cart-pole balancing system. 

Para ters Value Param ters Value me e
[ minσ , ] [0, 2] _Thres T eStep  im 1000 maxσ
[ minm , m ] [0, 2] Cr te ossover Ra 0.5 max

[ minw , maxw ] [-20, 20] Mutation Rate 0.2 
R 5 s 50 
A 10 Ncs 250 

 

To verify with the performance of the  based reinforcement 

learning (TDGAR) [53], the on-line clustering and Q-value based GA reinforcement learning 

(CQGAF) [54] an th rec t w d rei ement group 

cooperation-based symbiotic evolution (R-GCSE) algorithm [55] are applied to the same 

control task. In the TDGAR, there are five hidden nodes and five rules in the critic network 

and the action network. The population size is set as 200 and the maximum perturbation is set 

as 0.0005. In the CQGAF, after trial-and-error tests, the final average number of rules from 50 

runs was 6 by using the on-line clustering algorithm. The population size is set as 50. The 

QPSO, the TD and GA

d e urren avelet-base NFS with a nforc

parameters for Q-learning are set as α =0.01 and γ =0.9. In the R-GCSE, the population size 

DD

is set as 50 and the mutation rate is set as 0.1.  

The control goal defined here is “bringing the plant’s state to G1 within 1,000 time 

steps.” The original successful region Original_Range of the variables are and 

-2.4m

1212 ≤≤− θ

x≤ ≤

TSR-EA, a

Original_Range 

2.4m. The initial state of the plant is set within Original_Range

the control goal is met or a failure occurs. For, the QSPO, TDGAR, C  

failure learning trial if the cart or the pendulum deviates beyond the e 

 failure learning trial occurs if the cart or the pendulum  

or the strict successful region defined in Eq. (3.7).

average. The performances of all these compared methods are shown in Table 4.3, from 

. A trail ends when 

QGAF and R-GCSE, a

Original_Range. For th

 deviates beyond the

 The constraints of the 

es to compute the output force is -10N F≤ ≤ 10N. If each algorithm is executed for 50 tim
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which we can see that the QPSO and TSR-EA has superior control rate and requires fewer 

CPU-time cost. The reason could be due to the incorporating of the Lyapunov design 

principles in the QPSO, and the proposed TSR mechanism provides a more distinguishable 

performing index to the individuals that can accelerate their evolution process. 

 

Table 4.3: Summary Statistics of Example 1. 

Methods QPSO TSR-EA TDGAR CQGAF R-GCSE 

% of learning trials meet 

the control goal. 
100 96 68 74 88 

Average Time to goal. 9.8± 0.7 12.2± 0.3 80.2± 9.1 33.6± 2.7 ±58.9 6.8

 

The testing results, which lum angular velocity (in 

degrees/seconds), and cart velocity (in meters/seconds) of the TSR-EA, TDGAR, CQGAF 

and R-GCSE are shown in Fig. 4.2-4.5 as follows. Each line in Fig. 4.2-4.5 represents a single 

run

 

 

 consist of the pendulum angle, pendu

. 
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(a) 

 

(b) 

 

(c) 

Figure 4.2: 50 control results of the cart-pole balancing system using the TSR-EA in Example 1. (a) Angle of the 

pendulum. (b) Angular velocity of the pendulum. (c) Velocity of the cart. 

 57



 

(a) 

 

(b) 

 

(c) 

Figure 4.3: 50 control results of the cart-pole balancing system using the TDGAR in Example 1. (a) Angle of the 

pendulum. (b) Angular velocity of the pendulum. (c) Velocity of the cart. 
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(a) 

 

(b) 

 

(c) 

Figure 4.4: 50 control results of the cart-pole balancing system using the CQGAF in Example 1. (a) Angle of the 

pendulum. (b) Angular velocity of the pendulum. (c) Velocity of the cart. 
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(a) 

 

(b) 

 

(c) 

Figure 4.5: 50 control results of the cart-pole balancing system using the R-GCSE in Example 1. (a) Angle of the 

pendulum. (b) Angular velocity of the pendulum. (c) Velocity of the cart. 
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Furthermore, we complicate our control goal to “bringing the plant’s state to G1 within 

5,000 time steps, and maintaining the state within G1 for 100,000 time steps,” and the original 

successful region Original_Range of the variables are modified to and 

-2.4m

90 90θ− ≤ ≤D D

x≤ ≤ 2.4m. The initial state of the plant is set within Original_Range. A trail ends when 

the control goal is met or a failure occurs. For the QSPO, TSR-EA, TDGAR, CQGAF and 

R-GCSE, a failure learning trial occurs if the cart or the pendulum deviates beyond the 

Original_Range. Each algorithm is still executed for 50 times to compute the average. The 

performances of all these compared methods are shown in Table 4.4. 

Table 4.4: Summary Statistics of Example 1 under a difficult control goal. 

Methods QPSO TSR-EA TDGAR CQGAF R-GCSE 

% of first 10% trials 

meeting goal. 
92 32 56 70 78 

% of trials meeting 

goal. 
98 94 84 90 94 

Time to goal, first 10% 

trials.  
24.2 0.8 ± 44.5± 6.6 200.2± 0 50.6 7.2 ± 78.9± 8.8 

Average Time to goal. 21.6 0.3 ± 38.9± 2.5 169.8± 12.9 34.2 6.1 ± 46.1± 4.9 

 

From Table 4.4 we can see that the QPSO has the most successful control rate. The 

superiority can be seen especially from the first 10% learning trials where learning agents are 

not fully trained yet. The QPSO is able to apply a safe, reliable control result during initial 

leanings, which is crucial important in many applications. The testing results of the QPSO are 

shown in Fig. 4.6 and Fig. 4.7. Each line in Fig. 4.6 and Fig. 4.7 represents a single run that 

starts form a increased range of initial states. Figure 4.6 shows the results the first 1,000 of 

100,000 control time steps while Fig. 4.7 shows the last 1,000. From Fig. 4.6 we can see that 

with the aid of Lyapunov design, the QPSO is able to control the single-link inverted 

pendulum system well under different initial conditions. Trajectories shown in Fig. 4.7 verify 

the ability of the QPSO marinating the environment into G1. 
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(a) 

 

(b) 

 

(c) 

Figure 4.6: 50 first 1000 time steps control results the QPSO of the cart-pole balancing system. . (a) Angle of the 

pendulum. (b) Angular velocity of the pendulum. (c) Velocity of the cart. 
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(a) 

 

(b) 

 

(c) 

Figure 4.7: 50 last 1000 time steps control results the QPSO of the cart-pole balancing system. . (a) Angle of the 

pendulum. (b) Angular velocity of the pendulum. (c) Velocity of the cart. 
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Example 2: Control of a double-link inverted pendulum system 

 
Figure 4.8: Double-link inverted pendulum system. 

 

Consider the double-link inverted pendulum system: m1 is the mass of link 1, m2 is the 

mass of link 2, 1θ  is the angle that link 1 makes with the vertical, 2θ  is the angle that link 2 

makes with link 1, l1 and l2 are the lengths of link 1 and 2, lc1 is the distance of the center of 

mass of link 1, lc2 is the distance of the center of mass of link 2, I1 and I2 are the moments of 

inertia of link 1 and link 2 about their centroids and 1τ  is the only control torque applied to 

the joint of link 1. We introduce the following five parameter equations: 

 

2 2
1 1 1 2 1

2
2 2 2 2

3 2 1 1

4 1 1 2 1

5 2 2

1p m lc m l I

p m lc I
p m l lc
p m lc m l
p m lc

⎧ = + +
⎪

= +⎪
⎪ =⎨
⎪ = +⎪
⎪ =⎩

.                     (4.13) 

The model of the system can be obtained by using Lagrange’s method: 

( ) ( ) ( ),  D q q C q q q G q τ+ + =�� � � ,                  (4.14) 

where 

1 2 1 2[ ,  ] [ ,  ]T Tq q q θ θ= = , ,                    (4.15) 1[ ,  0]Tτ τ=

( ) 1 2 3 2 2 3 2

2 3 2 2

2 cos cos
cos

p p p q p p q
D q

p p q p
+ + +⎡ ⎤

= ⎢ ⎥+⎣ ⎦
,            (4.16)          
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 ( ) 2 2 1
3 2

1

, sin
0

q q q
C q q p q

q
− − −⎡ ⎤

= ⎢ ⎥
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� � �

�
�

,                 (4.17) 

 ( ) 4 1 5 1 2

5 1 2

cos cos( )
cos( )

p q p g q q
G q

p g q q
+ +⎡ ⎤

= ⎢ ⎥+⎣ ⎦
.               (4.18) 

The potential energy of the double-link inverted pendulum system can be defined as 

4 1 5 1( ) sin sin( )P q p g q p g q q2= + + ,                    (4.19) 

and the total mechanical energy of the system is given by 

( ) ( ) ( )

( ) 4 1 5 1

1,  
2
1             sin sin( ).
2

T

T

E q q q D q q P q

q D q q p g q p g q q

= +

= + +

� � �

� � 2+
       (4.20) 

 The control objective is to stabilize the system around its top position, i.e. 

=(0,0,0,0). Hence, another goal set is defined by 1 1 2 2( , , , )q q q q� �

     { }2 1 1 2 2 1 1 2 2( , , , ) :  ( , , , ) 0.01G q q q q q q q q= ≤� � � � .            (4.20) 

When the state of double-link inverted pendulum system is in G2, the total mechanical energy 

E of the system is given by 

E(0, 0, 0, 0) = Etop = (p4+p5)g.                  (4.21) 

By defining a Lyapunov function ( ) ( )( 2

top
1,  ,
2

L q q E E q q= −� ) � . The control objective can be 

either considered as guiding the system state into G2 or achieving . The action 

selection of the QPSO is to make sure that the Lyapunov function of the system decrease at all 

time steps. The time derivative of 

( ),  0L q q =�

( ),  L q q�  with respect to time is given by 

( ) ( )( ) ( )top,  ,  ,L q q E E q q E q q= − −� � �  � � ,                   (4.22) 

Where the time derivative of E with respect to time is 
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τ τ

= + +

= − + + +

= =
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� �

T       (4.23) 

which shows that the derivative of E is proportional to the product of the angular velocity of 

the first pole. The time derivative of ( ),  L q q�  with respect to time is derived as follows: 

( ) ( )( )
( )( )

top

top 1 1

,  ,  

            ,  .

TL q q E E q q q

E E q q q

τ

τ

= − −

= − −

� � �

� �

�
                    (4.24) 

In order to make sure the Lyapunov function of the system ( ),  L q q�  decrease at all time 

steps, the direction of the control torque is assigned to be coherent with the sign of 

. A Lyapunov-based control law for the QPSO can be derived as follows: ( )( top 1,  E E q q q− � �)

11 top(( ) )sgn E E q zτ = − � ,                    (4.25) 

where z is the output of the NFS limited in [-10,10]. Double-link inverted pendulum system 

parameters are L1=1m, L2=2m, m1=1kg, m2=2kg, g=9.8m/s. In designing the NFS, the four 

controller input  are normalized between 0 and 1, the output z is limited between 

-10 and 10. Initial parameters of the QPSO and TSR-EA for controlling two-pole inverted 

pendulum system are listed in the following two tables: 

),,,( xx ��θθ

 
Table 4.5: The initial parameters of the QPSO for two-pole inverted pendulum system. 

Parameters Value Parameters Value 
[ minσ , maxσ ] [0, 2] c1 2.01 
[  minm , maxm ] [0, 2] c1 2.01 
[  minw , maxw ] [-30, 30] s 50 

R 5 φ  4.02 
α 0.99 0.01 χ 
γ 0.9 max_gen 300 
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Table 4.6 : The initial parameters of the TSR-EA for two-pole inverted pendulum system. 

Parameters Value Parameters Value 
[ minσ , maxσ ] [0, 2] _Thres TimeStep  5000 
[ minm , maxm ] 2]  Rate [0, Crossover 0.5 
[ minw , maxw ] [-30, 30] Mutation Rate 0.2 

R s 7 50 
A 10 Ncs 350 

 

In the TDGAR, there are five hidden nodes and five rules in the critic network and the 

action network. The pop tion size is set a 00 and the m mum perturbation is set as 

0.0005. In the CQGAF, after trial-and-error s, the final a ge numb  rules from 50 

runs was 8 by using the on-line clustering algorithm. The population size is set as 50. The 

param

ula s 3 axi

 test vera er of

eters for Q-learning are set as α =0.01 and γ =0.9. In the R-GCSE, the population size 

1 2

successful region. The control goal is defined t

is set as 50 and the mutation rate is set as 0.1.  

For the TDGAR, CQGAF and R-GCSE, the original successful region of the variables is 

, and . Initial states of the plant are set within the original 

o “maintaining the plant’s state within G2 for 

100,

means that either pendulum deviates beyond the original successful region. 

For the TSR-EA, the original successful region of the variables is , and 

e control goal is 

defin

the control goal is met or a failure occurs, which means that either pendulum deviates beyond 

the either the original successful region or the strict successful region. 

For the Q-PSO, the original successful region of the variables is , and 

36 36θ− ≤ ≤D D 36 36θ− ≤ ≤D D

000 time steps.” A trail ends when the control goal is met or a failure occurs, which 

1

236 36θ− ≤ ≤D D . The strict successful region designed by the TSR is defined in Eq. (3.7). 

Initial states of the plant are set within the original successful region. Th

36 36θ− ≤ ≤D D

ed to “maintaining the plant’s state within G2 for 100,000 time steps.” A trail ends when 

190 90θ− ≤ ≤D D
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290 90θ− ≤ ≤D D . Initial states of the plant are set within the original successful region, which 

represents the whole input space. The control goal is defined to “bringing plant’s state to G2 

trol rate. The ability of the QPSO to provide reliable control result 

Table 4.7: Summary Statistics of Example 2. 

withi

when the contr

during initial learning is

n 5,000 time steps and maintaining it within G2 for 100,000 time steps.” A trail ends 

ol goal is met or a failure occurs, which means that it exceeds 105,000 time 

steps. 

Each algorithm is executed for 50 times to compute the average. The performances of all 

these compared methods are shown in Table 4.7, from which we can see that the QPSO and 

TSR-EA has better con

 still obvious from control result of the first 10% learning trials. 

  

Methods QPSO TSR-EA TDGAR CQGAF R-GCSE 

% of first 10% trials meeting goal. 86 14 2 32 56 

% of trials meeting goal. 68 82 94 88 46 

Time to goal, first 10% trials. 40.8± 1.9 66.3± 2.4 308.2± 0 9 10.6± 7.2 45.9± 19.8

Average Time to goal. 34.6± 2.2 57.7± 6.6 276.8± 31.9 76.2 3.1 131.± 1 7± 16.5

 

The testing results, which consist of the angle and angular velocity of both pendulums 

are shown in Fig. 4.9-4.13 as follows. Each line in Fig. 4.9-4.13 represents the first 1,000 

e steps of a single run. control tim

 68



 
(a) 

 
(b) 

 
(c) 
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(d) 

Figure 4.9: 50 first 1000 time steps control results of the double-link inverted pendulum system using the QPSO. (a) 

Angle of link 1. (a) Angle of link 2. (c) Angular velocity of link 1. (d) Angular velocity of link 2. 

 

 

(a) 

 

(b) 

 70



 

(c) 

 

(d) 

Figure 4.10: 50 first 1000 time steps control results of the double-link inverted pendulum system using the 

TSR-EA. (a) Angle of link 1. (a) Angle of link 2. (c) Angular velocity of link 1. (d) Angular velocity of link 2. 

 

 

(a) 
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(b) 

 

(c) 

 

(d) 

Figure 4.11: 50 first 1000 time steps control results of the double-link inverted pendulum system using the 

TDGAR. (a) Angle of link 1. (a) Angle of link 2. (c) Angular velocity of link 1. (d) Angular velocity of link 2. 

 

 72



 

(a) 

 

(b) 

 

(c) 
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(d) 

Figure 4.12: 50 first 1000 time steps control results of the double-link inverted pendulum system using the 

CQGAF. (a) Angle of link 1. (a) Angle of link 2. (c) Angular velocity of link 1. (d) Angular velocity of link 2. 

 

 

(a) 

 

(b) 
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(c) 

 

(d) 

Figure 4.13: 50 first 1000 time steps control results of the double-link inverted pendulum system using the 

R-GCSE. (a) Angle of link 1. (a) Angle of link 2. (c) Angular velocity of link 1. (d) Angular velocity of link 2. 

 

From Fig. 4.9-4.13 we can see that the proposed QPSO and TSR-EA have better control 

accuracy, which is one the major benefits of applying Lyapunov design principles or the TSR 

mechanism. The testing results of the last 1,000 control time steps of the QPSO and TSR-EA 

are shown in Fig. 4.14 and Fig. 4.15 as follows. From Fig. 4.14 and Fig. 4.15 we can see that, 

with two different kinds of mechanism, the QPSO and TSR-EA are able to attain accurate 

control results. Trajectories shown in Fig. 4.14 and Fig. 4.15 verify the ability of the QPSO 

and TSR-EA marinating their environment into G2. 
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(a) 

 

(b) 

 

(c) 

 76



 

(d) 

Figure 4.14: 50 last 1000 time steps control results of the double-link inverted pendulum system using the QPSO. 

(a) Angle of link 1. (b) Angular velocity of link 1. (c) Angle of link 2. (d) Angular velocity of link 2. 

 

(a) 

 

(b) 
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(c) 

 

(d) 

Figure 4.15: 50 last 1000 time steps control results of the double-link inverted pendulum system using the TSR-EA. 

(a) Angle of link 1. (b) Angular velocity of link 1. (c) Angle of link 2. (d) Angular velocity of link 2. 

 

4.2 Real-valued Function Optimization Task 

In this section, we will verify the performance of the proposed MS-CMA-ES and the 

SD-CPSO through real-valued function optimization task. In section 4.2.1 we introduce a 

simple computer simulation that illustrates the improvement of the MS-CMA-ES on global 

search ability, and the design of the environment for testing the MS-CMA-ES and other 

comparing algorithms. In section 4.2.2 we give computer simulation and comparison results 

that will state the improvement of the MS-CMA-ES over standard CMA-ES, SD-CPSO over 

standard PSO and CPSO on multi-funnel functions optimization. 
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4.2.1 Test Functions Introduction 

The performance of the proposed MS-CMA-ES and SD-CPSO are verified by 

real-parameter minimization tasks, which contains totally nine test functions covering all 

types. By there nature they can be divided into two parts: unimodal and multi-modal functions. 

The first two functions are unimodal, followed by seven multimodal functions with three of 

them have simple global structures (single-funnel functions) and another four have complex 

global structures (multi-funnel functions). The types and names of functions are described in 

Table 4.8, and a detailed definition of test functions can be seen in [103, 104]. 

 

Table 4.8: Type and name of test functions. 

Unimodal Functions 

f1: Sphere Function 

f 2: High Conditioned Ellipsoidal Function 

Multimodal Functions 

f 3: Rosenbrock Function 

f 4: Rastrigin Function 

f 5: Griewank Function 

Multi-Funnel Functions 

f 6: Schwefel Function 

f 7: Double-Rastrigin Function 

f 8: Weierstrass Function 

f 9: Michalewicz Function 

 

First, we propose a simple computer simulation by executing both the MS-CMA-ES and 

the CMA-ES on 2-dim Double-Rastrigin function multiple times with there initial search 

points even distributed at the search space. We adjusted the selected Double-Rastrigin 

function to zero global optimum. Then we calculate on both algorithms the probability for 
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each initial search location successfully finds the global optimum. The computer simulation 

process is shown as follows: 

1. Initialize a set of initial search locations X={x1, x2,…, xn}. Define the run times for each 

initial point N and the stopping criterion: maximum calculation times and minimum fitness 

threshold. 

 

2. Execute the algorithm N times at initial point xi and record the number of times Ns(xi) the 

algorithm successfully finds global optimum with initial search location xi: 

 ( ) ( )s i s iP x N x N= , for i=1, 2,…, n. (4.26) 

3. Calculate the average probability of success Es: 

 
1

( )
n

s s i
i

E P x
=

=∑ n . (4.27) 

The contour details of Double-Rastrigin is shown in Fig. 4.16, from which we can see that 

there is a global optimum resting on the lower left corner, a local optimal solution resting on 

the upper right corner, and a spread of the noise-type local minima. 

 
Figure 4.16: Contour details of double-Rastrigin function. 

 

In this simulation, the run times for each initial point N is set as 20, and each run ends when 

the number of calculation times reaches 400, or when the function value of current search 
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point declines to 0.01. The computer simulation result is shown in Fig. 4.17 which depicts the 

probability of success Ps(xi) of both algorithms. The search range for both algorithms are 

defined as [-50,50]2, and the search space is discretized with 4x4 grid size as each initial 

search location. The color of each grid from dark to light corresponds to the value of Ps(xi) 

from 0 to 1. From Fig. 4.17 we can see that the white region of the MS-CMA-ES is larger 

than that of the CMA-ES especially in the mountain ridge part, which reveals the superior 

global search ability on the MS-CMA-ES. Improvement can also been seen from the average 

probability of success Es of the MS-CMA-ES is 0.64571, which is larger than 0.52055 of the 

CMA-ES.  

 

  
(a)           (b) 

Figure 4.17: Graph of global search ability test of (a) CMA-ES. (b) MS-CMA-ES. 

 

4.2.2 Function Optimization Simulation 

The problem dimension of the simulation is set 50. All functions have been adjusted to 

zero optimal solution respectively. The number of maximum fitness calculation times, initial 

search range, initial search position and minimum fitness threshold are detailed in Table 4.9.  
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Table 4.9: Parameters of the simulation. 

 Number of 

maximum 

fitness 

calculation 

Initial search 

range 

Initial 

position 

Minimum 

fitness 

threshold 

f1 10000 x∈[0,100]d x=[50]d 1e-6 

f 2 10000 x∈[0,100]d x= [50]d 1e-6 

f 3 10000 x∈[0,100]d x= [50]d 1e-2 

f 4 3000 x∈ [0, 5]d x= [2.5]d 1e-2 

f 5 8000 x∈[0,600]d x= [300]d 1e-2 

f 6 4000 x∈[0,3]d x= [1.5]d 1e-2 

f 7 2000 x∈ [-20,20]d x= [0]d 1e-2 

f 8 4000 x∈[0,0.5]d x= [0.25]d 1e-2 

f9  5000 x∈[0,5]d x= [2.5]d 1e-2 

 

One half of the initial search range is defined as the initial standard deviation of CMA-ES and 

MS-CMA-ES, and the initial particles of PSO are evenly distributed in the initial search range. 

The proposed MS-CMA-ES and SD-CPSO are based on traditional CMA-ES and CPSO 

respectively. As a result, the MS-CMA-ES is compared with the standard CMA-ES and two 

of its famous improvements, a local restart CMA-ES (LR-CMA-ES) [60] and a CMA-ES with 

iteratively increasing population size (IPOP-CMA-ES) [61]. As to the SD-CPSO we compare 

it with standard PSO and comparing algorithms of this computer simulation include 

traditional CMA-ES and , PSO [8] and CPSO-S [9]. As to the parameter setting of participant 

algorithms, the parameter setting that the PSO and CPSO use refers to previous research [105]; 

The setting of parameters of CMA-ES is designed by [12]; MS-CMA-ES algorithm use the 

same parameters as CMA-ES except that the number of sample size is 1.5 times larger to the 

CMA-ES, and the parameter cα introduced in the MS-CMA-ES is set to be 0.1. Table 4.10 

outlined the computer simulation parameters. The formulas of parameters are listed below. 

The computer simulation data is obtained by executing each 50 dimensional test functions 

until the stopping criterion is met. The procedure was repeated 50 times to compute the 
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average fitness value. In the paper, instead of the actual numeric fitness value, the rank of the 

minimum average fitness value is defined as the standard of comparison. The reason is that 

we want to exclude the impact of the different degree of scale on the raw numeric difference 

between each test function. For example, some functions have very large fitness gap between 

the best and the second best local minimum, some of them don’t even have local minima. 

Therefore, the numeric difference may not be a good performing index for evaluating 

algorithms. 

 
Table 4.10: MS-CMA-ES and CMA-ES parameters. 

Parameters of Selection operator 

CMA-ES 

4 3ln nλ = + ⎢ ⎥⎣ ⎦  
MS-CMA-ES 

1.5(4 3ln )nλ = + ⎢ ⎥⎣ ⎦  

'
'

'

1
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Parameters of Covariance adaptation: 

ccov=0.7 
μcov=10 
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eff 11 2max 0 ,  1
1

d c
nσ σ
μ⎛ ⎞−

= + −⎜ ⎟⎜ ⎟+⎝ ⎠
+  

MS-CMA-ES mixed weighting: 

cα=0.1 

Parameters of PSO: 

c1=c2=2.01 

s=50 

Parameters of SD-CPSO: 

ρthres=0.8 
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The comparison result of the proposed MS-CMA-ES is shown in Table 4.11-4.13. In order 

to verify the performance of the MS-CMA-ES, we think it is important to evaluate the 

algorithms at early, middle, and the late stage of the test. So in this computer simulation we 

take three check points, at 20%, 50%, and 100% of the number of the maximum fitness 

calculation for rank comparison. The early, middle and later stage comparison results of the 

MS-CMA-ES are shown in Table 4-6 as follows. 

 

Table 4.11: Average fitness at 20% number of fitness calculations. 

 CMA-ES MS-CMA-ES LR-CMA-ES IPOP-CMA-ES 

f 1 1.380e-021(1)* 1.918e-009(3) 7.665e-017(2) 2.390e-008(4) 

f 2 0.004611(2) 1145(4) 1.660e-010(1)* 0.009175(3) 

f 3 51.02(1)* 202.8(4) 76.98(2) 99.09(3) 

f 4 13.27(1)* 21.64(2) 33.87(4) 25.88(3) 

f 5 0.06198(1)* 0.01962(2) 0.3861(3) 0.7785(4) 

f 6 171 (2) 516.2 (4) 391.8(3) 139.9(1)* 

f 7 13.95(1)* 65.54(3) 65.4(2) 108.5(4) 

f 8 0.2643(1)* 0.7184(4) 0.4763(2) 0.5725(3) 

f 9 5.75(3) 33.65(4) 1,254e-001(1)* 0.36(2) 
 
 
 

Table 4.12: Average fitness at 50% number of fitness calculations. 

 CMA-ES MS-CMA-ES LR-CMA-ES IPOP-CMA-ES 

f 1 1.512e-058(1)* 1.335e-028(4) 8.877e-049(3) 8.443e-050(2) 

f 2 2.716e-040(2) 6.94e-013(3) 1.408e-044 (1)* 1.646e-010(4) 

f 3 0.9815(2) 2.643(1)* 21.68(3) 79.85(4) 

f 4 9.754(2) 8.649(1)* 11.9(3) 15.09(4) 

f 5 0.06198(2) 0.04725(1)* 0.1451(4) 0.06753(3) 

f 6 169.9(4) 144.2(2) 87.78(1)* 119.7(3) 

f 7 12.57(2) 10.17(1)* 55.82(3) 79.74(4) 

f 8 0.1199(1)* 0.134(2) 0.7343(3) 0.7444(4) 

f 9 5.75(4) 7.864e-008(1) * 6.408e-003(3) 5.983e-007(2) 
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Table 4.13: Average fitness at 100% number of fitness calculations. 

 CMA-ES MS-CMA-ES LR-CMA-ES IPOP-CMA-ES 

f 1 1.311e-120(1)* 2.632e-062(3) 7.854e-105(2) 8.443e-017(4) 

f 2 4.489e-103(1)* 3.478e-046(4) 2.043e-097(2) 1.821e-056(3) 

f 3 0.7862 (1)* 0.8434 (2) 18.85 (3) 82.45(4) 

f 4 9.751(2) 7.721(1)* 11.86(2) 15.09(2) 

f 5 0.06198(2) 0.03893(1)* 0.3769(3) 0.3861(3) 

f 6 169.9(4) 69.38(2) 87.78(2)* 66.21(1)* 

f 7 12.57(4) 6.652e-003(1)* 8.98(2) 11.76(4) 

f 8 0.1188(4) 5e-004(1)* 0.06875 (3) 3.876e-003(2) 

f 9 5.75(4) 7.864e-008(1) * 6.326e-003(3) 5.983e-007(2) 

 

The results to be discussed are divided into three parts in accordance with the function types: 

1) Unimodal Function: 

Under the sphere function f1, CMA-ES has the best performance, owing to its property of 

rapid convergence. As to ellipsoid function f 2, at first, LR-CMA-ES is better than the others, 

but worse than CMA-ES at the end. The reason the MS-CMA-ES has the worst performance 

may be that its clustering mechanism generates too many components on such simple 

unimodal functions. But from the optimization result, all three algorithms are capable of 

finding optimal solution within short times of fitness calculation. 

2) Multimodal Function: 

The MS-CMA-ES is better than other algorithms at the later stage under the f 4 and f 5 test 

functions except for f3, f4 and f5 have single-funnel and noisy-like local minimums; however, f3 

doesn’t have obvious single-funnel structure. From the optimization result we can see that the 

MS-CMA-ES is suitable of solving multimodal function optimization tasks. 

3) Multi-Funnel Function: 

In this dissertation, we focus on the optimization of this type of function. At early test stage, 

the other three algorithms outperform the MS-CMA-ES algorithm. The mechanism of the 

MS-CMA-ES is designed to generate multiple CMA-ES instances for exploring different 
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regions of search space simultaneously. As a result, the reason the MS-CMA-ES loses at early 

stage may due to the scattering of sampling resources for finding the optimal solution in 

parallel. However, at the later stage, especially on the f7 and f 8 functions, the global solution 

search capability of the MS-CMA-ES is beyond those of other comparing methods. The 

overall convergence rate of the MS-CMA-ES is its most obvious shortcomings due to the 

adopted parallel searching mechanism, but it is inevitable cost for improving the global 

searching ability on multi-funnel functions. 

The comparison result of the proposed SD-CPSO is shown in Table 4.14 as follows. 
 

Table 4.14: Average fitness value  

 CPSO-S SD-CPSO PSO 

f 1 6.361e-99(1)* 2.634e-062(3) 9.653-76(2) 

f 2 4.481e-84(1)* 3.464e-033(3) 2.876e-75(2) 

f 3 18.8764 (3) 0.8872 (1)* 1.4356(2) 

f 4 11.871(1) * 17.721(2) 26.65(3) 

f 5 9.6198(3) 0.6893(1)* 6.3769(2) 

f 6 469.9(3) 288.3(2) 87.36(1)* 

f 7 12.57(2) 7.659(1)* 95.03(3) 

f 8 1.2287(2) 0.6643(1)* 1.254(3) 

f 9 5.75(3) 0.897(1) * 4.08(2) 

 

The results to be discussed are divided into three parts in accordance with the function types: 

1) Unimodal Function: 

Under the sphere function f 1, CPSO-S has the best performance, owing to its property of 

rapid convergence. As to ellipsoid function f 2, at first, PSO is better than the other two 

algorithms. As shown from the computer simulation result, all three algorithms are capable of 

solving unimodal optimization task, and no improvement of performance can be found by 

applying our method. 

2) Multimodal Function: 

The SD-CPSO is better than other algorithms under the f 3 and f 5 test functions except for f 4, 
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the Rastrigin’s function. We think it might due to the fact that Rastrigin’s function is nearly 

the same after rotation, which makes our effort trying to find a special trend to the global 

optimum irrelevant. However, the superiority of the proposed SD-CPSO in finding global 

optima of multimodal functions can be seen in substance. 

3) Multi-Funnel Function: 

From Table 4.14 we can see that in coping with multi-funnel function optimization tasks, the 

superiority of the proposed SD-CPSO is obvious. In general, the optimization of multi-funnel 

function is difficult as we can see especially from the optimization result of the f6 function. 

Despite the proposed SD-CPSO has better performance on the optimization tasks of f7 and f8 

function, the improvement is not very obvious. However, in the optimization of f9, the 

Michalewicz's function, the improvement is remarkable. A visualization of a 2-D 

Michalewicz's function is shown in Fig. 4.18. We will illustrate the optimization results of 

applying Michalewicz's function in both its unrotated and rotated form in Fig. 4.19. Figure 

4.19(a) represents the result of applying unrotated Michalewicz's function. Michalewicz's 

function introduces many valleys into the plain, and the function values for points in the space 

outside the narrow valleys give very little information about the location of the global 

optimum. Thus, the swarms need to follow through these valleys to find minimums. In its 

rotated version, these narrow valleys are too correlated to follow through from the perspective 

of the CPSO. In Fig. 4.19(b), the SD-CPSO in evidence overcomes the drawback. 
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Fugure 4.18: Visualization of a 2-D Michalewicz's function. 

 

 
                    (a)                                           (b) 

Figure 4.19: Computer simulation results of applying Michalewicz's function in its (a) unrotated form, (b) rotated 

form. 
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CHAPTER 5 

CONCLUSION 

 
In this dissertation, four algorithms are proposed, including a Q-valued based particle 

swarm optimization (QPSO), a two-strategy reinforcement evolutionary algorithm (TSR-EA), 

a mean shift based evolution strategy with covariance matrix adaption (MS-CMA-ES) and a 

separability detection approach to cooperative particle swarm optimization (SD-CPSO). In 

this dissertation, the performance of the QPSO and TSR-EA are verified through 

reinforcement learning control tasks while the performance of the MS-CMA-ES and 

SD-CPSO are verified through real-valued function optimization tasks. Advantages and future 

works on these algorithms are described as follows. 

The proposed QPSO adopts the concept of Lyapunov design for constructing safe 

reinforcement learning agents. The advantages of the QPSO can be shown from that it 

provides a reliable initial learning performance and accurate control result due to the 

Lyapunov design of learning agents. But one drawback of the QPSO is that it requires 

additional priori knowledge. In order to apply Lyapunov-based control laws, we have to 

identify the Lyapunov function of a plant first; furthermore, conventionally during the 

learning phase, we also requires more information about the system’s state, which may be 

difficult or too costly to access. The TSR-EA provides an alternative to attain accurate control 

result by the TSR mechanism. It requires less prior knowledge about the control plant 

compared with the QPSO. By simply shrinking the operating range of a control system as 

time step increases, the TSR mechanism can help learners to obtain an accurate control results 

on one hand and improves the learning rate on the other. Besides, the usage of the TSR is not 

limited by the TSR-EA algorithm. It is simply an design of reinforcement learning signal, so it 

is applicable to all time-step fashioned reinforcement learning. Another advantage of the 
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TSR-EA can be shown from adopting the group-based symbiotic evolution (GSE) to evaluate 

the fuzzy rule on a NFS locally.  

One advantage of the MS-CMA-ES lies in improving the mutation mechanism of the 

traditional CMA-ES. The mutation mechanism of traditional CMA-ES is based on its 

self-adaption behavior. Despite good mutation directions can be determined by moderately 

self-adapting the tactic parameters of the CMA-ES, the mutation is still limited by normal 

distribution sampling. In the MS-CMA-ES, we propose a group mutation mechanism, 

adopting the concept that sampling from mixture probability yields larger flexibility. Search 

points sampled from mixture probability model on multiple directions can diminish the 

restriction of the local search. Another advantage of the MS-CMA-ES can be seen from 

adopting the mean shift-based clustering method for applying multiple CMA-ES instances to 

search the space in parallel. The parallel search mechanism can enhance the global search 

ability of the CMA-ES. Only one extra parameter compared to the original CMA-ES is 

required, the learning rate of mixture weightings, which reduces challenges of applying our 

methodology. Computer simulation results have shown better performances on optimization 

of multi-modal and multi-funnel functions.  

The purpose of the SD-CPSO is to solve the issue that CPSO encounters when 

independent changes made by different swarms on correlated variables will deteriorate the 

performance of the algorithm. In the SD-CPSO, we propose a self-organization approach to 

the CPSO. This approach determines the separability between variables by covariance matrix 

adaptation, so that non-separable variables can be placed in the same swarm for evolution. 

Simulations show reasonable performance.  

As to the future work in this dissertation, from the perspective of NFS design, the 

proposed QPSO and TSR-EA lack of the mechanism of self-determining the number of fuzzy 

rules on a NFS. The number of fuzzy rules in both algorithms have to be assigned by trial and 

error tests which would increase the difficulty of applying these two algorithms.  
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As to the future work of the proposed MS-CMA-ES, its convergence rate seems to be an 

issue to be investigated. From Table 4.11-13 we can see that despite the MS-CMA-ES has a 

good performance in finding global optimal of multi-funnel functions, it requires more 

calculation times to find it. In our opinion, we think there are two possible directions of 

enhancing its convergence rate.  

The first direction is to alter its mixture weight updating rule. In this dissertation, as 

introducing mean shift procedure to the CMA-ES, an additional parameter, mixture weight, is 

also introduced. The updating rule of mixture weighting can be shown in Eq. (3.34)-(3.36). In 

this dissertation, we haven’t probed into the connection between the convergence rate and the 

mixture weighting rule yet.  

Another possible direction of enhancing the convergence rate of the MS-CMA-ES is to 

modify its bandwidth selection mechanism. In the MS-CMA-ES, the optimal bandwidth is 

derived from the AMISE theorem. The derived bandwidth determines both the number of 

clusters obtained and the number of samples in clusters. In this dissertation, if we can modify 

the fixed bandwidth selection that the MS-CMA-ES adopts into variable bandwidth selection 

mechanism, there might be a chance of increasing its convergence rate. The appended 

flexibility could arouse the issue of relationships among clusters, from which we could try to 

apply further manipulations to the clusters, such as separating or lumping. Moreover, under 

the premise of not explosively increase the computational cost, incorporating a iteratively 

increasing population size mechanism is also considerable. As to the future work on the 

SD-CPSO, the issue of pseudominima caused by the split of swarm still remains to be 

investigated. 
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