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Abstract
In this dissertation, we mainly focus on researching the cooperative behavior of evolutionary
algorithms. Algorithms discussed in this dissertation include genetic algorithm (GA), particle
swarm optimization (PSO) and evolution strategy with covariance matrix adaptation
(CMA-ES). The modification ~of “genetic algorithm ' (GA) is done by introducing the
group-based symbiotic evolution (GSE) technique which enables.genetic algorithm (GA) to
partition the searchispace into.smaller subspaces and explore each smaller subspace by a
separate agent to alleviate the curse of dimensionality. We also propose a separability
detection method based “on covariance matrix adaption mechanism into the cooperative
particle swarm optimization (CPSO) to locate non-separable variables into the same swarm.
As to the research of evolution strategy with covariance matrix adaptation (CMA-ES), we
introduce the mean shift procedure which allows us to apply multiple CMA-ES instances to
explore different parts of the search space in parallel. The scope of this dissertation includes
how to implement evolutionary algorithms on neural-fuzzy systems, the improvement of

algorithms, parallel computing and the emergence of two algorithms

Keywords: cooperative learning, genetic algorithm, particle swarm optimization, evolution

strategy, covariance matrix adaptation.
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CHAPTER 1
INTRODUCTION

Evolutionary algorithms [1]-[6] are stochastic, population-based optimization learning
algorithms that can be applied to a wide range of problems. Generally speaking, there is no
clear rank between different evolutionary algorithms. We can only say that certain algorithm
is more applicable than others to certain optimization problems. In this dissertation, we apply
the modified version of genetic algorithm (GA) [7] and particle swarm optimization (PSO)
[8]-[10] to high-dimensional, reinforcement learning tasks, and apply evolution strategy with
covariance matrix adaptation (CMA-ES) [11]-[13] to complex, low-dimensional real-valued

function optimization‘tasks.

1.1 Motivation

Evolutionary algorithms are discovered through simulating some social behavior, such as
the bird flocking, the recombination or the mutation of genes. Normally, evolutionary
algorithms maintain a population of potential solutions to some optimization problem,
generating new solutions at each iteration by using a variety of corresponding operators. Their
learning procedures take place in populations made of individuals with specific behaviors
similar to certain biological phenomena. Individuals keep exploring the solution space and
exploiting information between individuals while evolution proceeding. In general, by means
of exploring and exploiting, evolutionary algorithms are less likely to be trapped at the local
optimum.

Evolutionary algorithms are applicable to a wide range of problems, including training
neural-fuzzy systems (NFS) [14]-[17], reinforcement learning control [18]-[22] and complex,
multi-funnel [23]-[26] function optimization tasks. However, as with GA, PSO and CMA-ES,

1



nearly every other kind of stochastic optimization algorithms suffer from the “curse of
dimensionality,” which simply put, implies that their performance deteriorates as the
dimensionality of the search space increases. One way to overcome this difficulty is to
partition the search space into lower dimensional subspaces, as long as the optimization
algorithm can guarantee that it will be able to search every possible region of the search space.
Van den Bergh and Engelbrecht suggested that the search space should be partitioned by
splitting the solution vectors into smaller vectors and proposed a cooperative approach to
particle swarm optimization (CPSO) [27]-[28]. Each of these smaller search spaces is then
searched by a separate PSO instance; the fitness function is evaluated by combining solutions
found by each swarm of the PSO instance. In this-dissertation, we introduce the cooperative
learning behavior to GA and proposed the groups-based symbiotic evolution (GSE) [29]. The
proposed GSE is applied to training-a-NFS: It is different from traditional symbiotic evolution
where each population in the GSE is divided to several groups and each group represents a set
of chromosomes that belongs to one fuzzy rule. The fitness value of each fuzzy rule can be
evaluated locally. However, separating the search space also arouses two issues.

The first issue is the possibility that the partitioning could lead to the introduction of
pseudooptimum, which means that the.combination of optima found by each learning instance
may not be an actual optimum point to the original search space, may not even be a local
optimum point. In [27], Van den Bergh and Engelbrecht proposed a variation of CPSO called
the CPSO-Hk to alleviate the issue of pseudooptimum. The CPSO is one of the most
significant improvements to the standard PSO. Algorithm CPSO-Hg is a hybrid from the
standard PSO and the CPSO-SK model. It prevents the solution found so far from becoming a
pseudooptimum by executing the CPSO-Sk algorithm for one iteration, followed by one
iteration of the PSO algorithm. Computer simulations in [27] have shown that the CPSO-Hg
indeed alleviates the issue of pseudooptimum. However, as with other cooperative learning
algorithms [30, 31], the performance of the CPSO deteriorates when there exists dependence
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among parameters.

The second issue aroused by partitioning the search space is that performances of the
cooperative learning algorithms deteriorate when correlated variables are placed into separate
populations. In this dissertation, we call such variables “non-separable.” A function f'is said to

be separable if

arg(min)f(xl,---,xn):(argminf(xl,---),---,argminf(---,xn)), (1.1)

and it is followed by a fact that f can be optimized in a sequence of n independent 1-D
optimization processes. In this dissertation, we propose a separability detection approach
based on covariance matrix adaptation to find non-separable variables so that they can
previously be placed into the same swarm to address the difficulty that the original CPSO
encounters. This proposed variation-on the original CPSO to detect the separability of the
variables is called the SD-CPSO [106]. The SD<CPSO helps the CPSO self-organize the
swarms composed of non-separable variables: In order to implement this idea, we have to
determine the timing-of switching between the PSO and the/ CPSO operation when dealing
with a task. In this dissertation, we think this can be done by determining the separability
between variables, and placing non-separable into.the Same swarm at each generation. If at
certain moment, all variables are determined as non-separable, then the PSO operation is
taken; otherwise, the CPSO operation is taken. The separability between variables is found by
estimating the covariance matrix of the distribution of particles. The mechanism we adopt is
the covariance matrix adaptation proposed from evolution strategy with covariance matrix
adaption (CMA-ES) [11]-[13]. Conventionally, there exists a contradiction between the local
search performance and the global exploration power of a learning algorithm [32]. For
example, the GA and PSO are noted for their great global exploration power; whereas, due to
the adaptivity of the local search, the CMA-ES owns an outstanding local search performance.

In this dissertation, we apply the GA and PSO to high-dimensional, reinforcement learning



tasks, and apply the CMA-ES to complex, mid-dimensional real-valued function optimization

tasks.

1.2 Related Works

In this dissertation, we basically encode parameters on a NFS into individuals of GA or
PSO to perform reinforcement learning control, and apply a parallel learning structured
version of CMA-ES to complex, multi-funnel function optimization. As a result, we will
discuss these two types of optimization tasks in this section. The discussion of reinforcement
learning will be shown in section 1.2.1 and 'the discussion of multi-funnel function

optimization will be shown in section 1.2.2.

1.2.1 Reinforcement Learning Tasks

In recent years; the application of NES in control engineering has become a popular
research topic [33]-[43]. In general, the way of tuning the parameters on a NFS can be divided
into two categories: supervised learning [44] and reinforcement learning [18].

Supervised learning 1s‘a machine learning technique for updating its parameters from
training data. The training data is‘composed of pairs of inputs, and desired outputs. The object
of the supervised learning is to predict the output value of the NFS for any valid input data
after its parameters have been trained by a number of training data. However, for many
control tasks, training data are usually difficult or too costly, or even not accessible. As a
result, reinforcement learning is more practicable than supervised learning in many occasions.

In reinforcement learning, the agent receives from its environment a reinforcement signal
at each time step. This signal could be either a reward or a punishment. Meanwhile, the agent
explores actions from the action set, and finds out which action yields the greatest reward. To

solve reinforcement problem, temporal difference (TD) [19]-[21] is one of the most common



method. In TD learning, learners don’t have to wait until the end of a trial; instead, TD
methods need wait only one time step. This is crucial for applications that have very long
trials or tasks that are continuous and have no trials at all. Q-learning [22] is a powerful and
easy-implementing TD-based approach. It is a reinforcement learning technique that works by
updating a simple action-value iteration function. This function gives the measurement of
taking a given action in a given state.

Besides TD methods, many evolutionary algorithms such as PSO, GA, evolutionary
programming [45], and evolution strategies [46] are popular for solving reinforcement
learning tasks. These learning procedures are based on populations made of individuals with
specific behaviors similar to" certain biological phenomena. Individuals keep exploring the
solution space and exploiting information between individuals while evolution proceeding. In
general, by means of exploring and-exploiting; evolutionary algorithms are less likely to be
trapped at the local optimum. Many researches on using evolutionary algorithm for solving
reinforcement learning tasks have been proposed recently [47]-[50]. In [49], authors propose a
swarm intelligence based reinforcement learning (SWIRL) method to train artificial neural
networks (ANN). Authors apply ant colony optimization to select ANN topology and apply
the PSO to adjust ANN connection weights. In-{50], Lin and Hsu present a reinforcement
hybrid learning algorithm (R-HELA) combining the compact GA (CGA) [51] and the
modified variable-length GA (VGA) [52] on recurrent wavelet-based NFS. A counter is used
to accumulate the time steps until the control task fails and the accumulated values are fed
into individuals as fitness functions. Lin and Hsu’s model is very effective; however, its
fitness function only indicates how long can the controller work well instead of measuring
how soon the system can meet the control goal, which is also very important in reinforcement
learning. There is also a growing interest in combining the advantages of evolutionary
algorithms and TD-based reinforcement learning [53]-[54]. In [53], a TD and GA based
reinforcement learning (TDGAR) is proposed. Authors propose a neural structure composed
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of two feedforward networks for reinforcement learning, the critic network and the action
network. The critic network predicts the external signal provides a more informative internal
signal to the action network. The action network uses GA to determine the output of the
learning system. The weight update rule for the hidden layer of the critic network is based on
error backpropagation. In [54], an on-line clustering and Q-value based GA reinforcement
learning for fuzzy system (CQGAF) is proposed. In one generation CQGAF learning, one
individual is applied to the environment to estimate the fitness function, Q-value, and
Q-values of other individuals are updated by eligibility trace. The GA operation is performed
by the end of each trial and creates a new generation of individuals. In [55], authors proposed
a recurrent wavelet-based NES with a reinforcement group cooperation-based symbiotic
evolution (R-GCSE) algorithm. In [55], a population is divided to several groups. The
R-GCSE has a good-ability of parameter-learning by adopting the concept that each group
formed by a set “of chromosomes cooperates with other groups to generate better
chromosomes.

Although the aforementioned: reinforcement learning’ methods work well in many
applications, there is an issue.remains to be solved. No fitness function in these methods
indicates how soon the learning agents can control the system's state into a set of goal states.
Sure there is no need to define the fitness function that way if there is no guidance provided to
the controller of how to maintain the system's state in a desired operating range. As a result, in
this dissertation, we proposed a Q-value based particle swarm optimization (QPSO) [56]
which adopts the concept of Lyapunov design [57] for constructing safe reinforcement
learning agents, and a GA based learning method called two-strategy reinforcement
evolutionary algorithm (TSR-EA) [29] to solve reinforcement learning tasks. In both
algorithms proposed in this dissertation, we manipulate our fitness function so that it can

indicate how soon the controller achieves its control goal.



1.2.2 Multi-funnel Function Optimization Functions

Normally, continuous function optimization problems are categorized into convex
(unimodal) and non-convex (multimodal) functions. In this dissertation, we classified
optimization problems into single-funnel and multi-funnel problems and we mainly focus on
the optimization of multi-funnel functions. The difference between single- and multi-funnel
functions can be illustrated by the following two figures, where Fig. 1.1 shows a visualization
of a 2-D Rastrigin’s function, from which we can see that in spite of the large amount of local
minima, there exists a trend to the global minimum. Figure 1.2 shows a visualization of a 2-D
double Rastrigin’s function, from which-we can see that there are two funnel-type global

trends and a large amount of noisy local minima.

Figure 1.1: Visualization of a single-funnel, 2-D Rastrigin’s function.

u' 'm'\\t
it ..'m
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s

Figure 1.2: Visualization of a multi-funnel-funnel, 2-D double Rastrigin’s function.
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A function is said to be single-funnel, even though it is highly multi-modal, if its local
optima is structured such that there exists a global trend toward the best solution [58].
However, there are several real-world applications do not have this simple structure. Many
optimization problems are characterized by their local optima distributing in separate clusters
within the search space and there is no underlying convex topology toward their global
optima. Problems of this type are referred to as multi-funnel functions [23]. Prominent
examples for such applications include potential energy surfaces of biomolecules [24] and
protein aggregation and misfolding [25]. It has been suggested that the global topology of a
problem may have a strong influence. on ;the performance of optimization of multi-funnel
functions [26]. To this end, we introduce the mean shift procedure [59] into the evolution
strategy with covariance matrix adaptation (CMA-ES) which allows us to apply multiple
CMA-ES instances to.explore different parts of the search space inparallel.

The CMA-ES has been proven to be among the most successful optimization algorithms
for optimization of non-convex functions. During exploring of the search space, the CMA-ES
generates a population of samples from a multivariate Gaussian distribution. The mean and
covariance matrix of the sampling distribution are continuously adapted in order to improve
the search direction and the sampling distribution. Recent improvements include a local
restart CMA-ES (LR-CMA-ES) [60], which greatly prevents CMA-ES from being trapped
into local optima, and a CMA-ES with iteratively increasing population size (IPOP-CMA-ES)
[61], achieving excellent performance on non-convex, high-dimensional optimization
problems. However, Hansen and Kern [62] have pointed out that on multi-funnel functions,
where local optima cannot be interpreted as perturbations to an underlying convex (unimodal)
topology, performance can strongly be limited. This could be due to the fact that CMA-ES
was originally proposed as a local search strategy, whereas the concept of multi-funnel
functions is intrinsically based on global information. As a result, some researches [26, 63]
combine the evolution strategy with global optimization schemes to increase its global
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exploration power. In [63], a particle swarm guided evolution strategy (PSGES) is proposed.
Computer simulation results have shown that PSGES improves the original evolution strategy
but is inferior to LR-CMA-ES and IPOP-CMA-ES. This could be due to a lack of local
adaptivity mechanism. In [26], authors propose a particle swarm CMA-ES (PS-CMA-ES),
which combines the local search performance of the CMA-ES with the global exploration
power of the PSO. Computer simulation results in [26] have shown that no salient
improvement over LR-CMA-ES and IPOP-CMA-ES on optimization of unimodal, basic
multimodal functions, but improvement can be seen in optimization of high-dimensional
multi-funnel functions. However, in spite-of the great performance the PS-CMA-ES achieves,
this methodology tends to be ‘computationally expensiveand the criterion of how frequent the
PSO updates can be performed is not straightforward. In this dissertation, our objective is to
improve performance.on multi-funnel problems on one hand, and on-line determine the
number of the CMA-ES instances on the other. Instead of directly combing the CMA-ES with
certain “global” evolutionary algorithm, weintroduce a computational module based on mean
shift procedure into<the CMA-ES: Mean shift ‘procedure’ is a density estimation-based,
non-parametric mode detection.and clustering approach toward feature space analysis [59, 64,
65]. It determines the number ©0f modes in a unknown probability density function (p.d.f.),
and the density estimation is completed by kernel density estimator [66].

First, we apply kernel density estimation to the candidate solutions sampled by the
CMA-ES. Then, we use the mean shift-based mode detection to determine the number of
CMA-ES instances for exploring the search space simultaneously. In cases of more than one
CMA-ES instances are applied, the proposed mean shift based evolution strategy with
covariance matrix adaption (MS-CMA-ES) samples a population of candidate solutions from
a mixture model of Gaussian distribution [67]. The covariance matrix of the mixture Gaussian
sampling distribution is formed by the linear combination of the covariance matrixes of
separate CMA-ES instances. Enforcing a mixture model provides a communication between
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different CMA-ES instances such that the CMA-ES instances with better search locations can
sample more offspring, while the CMA-ES instances trapped in local optima can fade out.
Another advantage of the proposed MS-CMA-ES is that there is no requirement of the
criterion for the fusion (or division) of the CMA-ES instances, nor does the predefinition of
the number of CMA-ES instances as a parameter. The bandwidth of the kernel density
estimator can also be computed through kernel smoothing [68]. The only extra parameter
besides the original parameters of the CMA-ES is the learning rate of mixture weightings for
mixture Gaussian components, which reduces challenges of applying our methodology.

In this dissertation, we compare the proposed MS-CMA-ES with the standard CMA-ES
[13], some of its improvements [60, 61], and ‘some hybrid algorithms that combine the
evolution strategy with the PSO [26, 63]. Computer simulation results will show that the

MS-CMA-ES has better performance-in optimizing multi-funnel functions.

1.3 Approach

In this dissertation; four major. algorithms are proposed. The first two algorithms are
called Q-value based particle swarm optimization (QPSO) and two-strategy reinforcement
evolutionary algorithm (TSR-EA) respectively. These two algorithms are both proposed to
solve reinforcement learning tasks. The advantages of the QPSO can be shown from that it
provides an alternative for Q-learning to solve reinforcement learning problem in one hand,
and it extends the applicability of the PSO into reinforcement environment on the other. It
also provides a reliable initial learning performance due to the Lyapunov design of learning
agents. But one drawback of the QPSO is that it requires additional priori knowledge. The
main advantages of the TSR-EA can be summarized as follows: 1) the proposed TSR
mechanism enables us to evaluate a learning trial for both how long can the controller work

under operating range instead of measuring how soon the system meet the control goal; 2) the
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GSE is proposed to evaluate the fuzzy rule locally. However, in the TSR-EA, divide
parameters corresponding to different fuzzy rule into separate groups is very straightforward.
However, in the optimization task, if the correlation between parameters is unknown, placing
uncorrelated parameters into a same group would be a challenge.

The third algorithm proposed in this dissertation is a separability approach to cooperative
particle swarm optimization (SD-CPSO), and it is mainly proposed to help placing
uncorrelated variables into a same swarm. The proposed separability detection approach is
based on the CMA-ES.

The fourth algorithm proposed in this dissertation is the mean shift-based evolution
strategy with covariance matrix adaptation (MS-CMA-ES). The introduced mean shift
procedure provides functions of mode detection and clustering which allows us to apply
multiple CMA-ES instances to explore different parts_of the search space in parallel. The
global exploration power of the standard CMA-ES is enhanced by the concept that each
instance forms a separate CMA-ES agent to explore different parts of the search space. We
evaluate the performance of the MS-CMA-ES-on-the optimization of multi-funnel functions

and the new MS-CMA-ES algorithm shows superior performance on it.

1.4 Organization of Dissertation

The dissertation is arranged as follows.

Chapter 1 introduces the motivation, related work, approach, and organization of the
dissertation.

Chapter 2 provides the fundamental information used in the dissertation. The foundation
includes neural fuzzy network, genetic algorithm, standard and cooperative PSO, mean shift
procedure and CMA-ES.

In Chapter 3, the proposed QPSO, TSR-EA, SD-CPSO and MS-CMA-ES are described.
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In Chapter 4, two types of computer simulations, reinforcement learning control tasks
and multi-funnel optimization functions, are performed to verify the performance of the
proposed algorithms. We apply QPSO and TSR-EA to two reinforcement learning control
tasks, cart-pole balancing system and two-pole inverted pendulum control. The SD-CPSO and
MS-CMA-ES are applied to real-valued function optimization tasks.

In Chapter 5, the conclusions, contribution, and future works of the dissertation are

discussed.
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CHAPTER 2
FOUNDATIONS

The background material and literature review that relates to the major components of
the research purpose outlined above (neuro-fuzzy controller, genetic algorithm, particle
swarm optimization, and evolution strategy with covariance matrix adaptation) are introduced
in this chapter. The concept of neuro-fuzzy controller is discussed in the first section. The
concept of genetic algorithm (GA) is introduced.in Section 2.2. In Section 2.3, the concept of
particle swarm optimization (PSO) and some of its improvements are discussed. The final
section focuses on some background knowledge related to the proposed mean shift-based
evolution strategy with covariance-matrix-adaptation (MS-CMA-ES), such as kernel density

estimation, mean shift procedure and standard CMA-ES

2.1 Neural Fuzzy System

In general, there are three typical types of neural-fuzzy system (NFS) and they are the
TSK-type [34], Mamdani-type [16], and singleton-type. According to [69] and [70], the
authors have shown that the TSK-type NFS can offer better network size and learning
accuracy than the Mamdani-type and singleton-type NFS. Thus, in this dissertation, only the
TSK-type NEFS is introduced and such NFS is applied to reinforcement learning tasks.

A TSK-type NFS employs different implication and aggregation methods from a
standard Mamdani fuzzy model. Instead of using fuzzy sets, the conclusion part of a rule is a
linear combination of the crisp inputs.

IF x;is Ajj (myj, o1 )and x5 is Azi(my;, 63 )...and X, is Auj (My;, Cnj)

THEN y’=wgitwpx;+... twyx,. (2.1)
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The structure of a TSK-type NFS is shown in Fig. 2.1. It is a five-layer network structure. In a
TSK-type NFS, the firing strength of a fuzzy rule is calculated by performing the following
“AND” operation on the truth values of each variable to its corresponding fuzzy sets. The
functions of the nodes in each layer are described as follows:

Layer 1 (input node): Each node in this layer is called an input linguistic node, which

corresponding one linguistic variable. These nodes only pass the input signal to the next layer.

u = x,, (2.2)
where u" denotes the ith node’s input in the 1st layer and x; denotes ith input dimension.

Layer 2 (membership function node): each node .in this layer acts as a Gaussian
membership function, and its output value specifies the degree to which the given input value

belongs to a fuzzy set. Thus, the membership value in layer 2 canbe calculated by:

_ s ‘szf]z : (2.3)
Oy

u® =

;i = €Xp

where u" =x, and"u}? are the outputs of Ist-and 2nd layers ; m; and o; are the center and

the width of the Gaussian membership function of thejth term of the ith input variable x;
respectively. In this paper, the reason of adopting the Gaussian membership function is that it
can be a universal approximator of any nonlinear functions on a compact set [69].

Layer 3 (rule node): The output in this layer are used to perform precondition matching of
fuzzy rules. In the TSK-type NFS, the firing strength of a fuzzy rule is calculated by

performing the following “AND” operation:

w? =] Tu” 2.4)

Layer 4 (consequent node): each node in this layer calculates the consequent value. Each
consequent value (linear combination of the crisp inputs) is weighted by the firing strength of

the fuzzy rule and it can be written by:
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u;” =u;(wy,; +Zw<.x.), (2.5)
i=1
where the summation is the consequent part and w;, is its corresponding parameters.

Layer 5 (output node): The node in this layer computes output signal. The output node

integrates with links connected to it and acts as a defuzzifier with:

M n
2 ®
: Z“j (wp, + Z wyX;)
- _ N (2.6)

R
3) 3
Uj Z”f

J=1 Jj=1

M=
&.Q/-\

ORI

y:

(

where 1" is the output of 5th layer , wj; 1s the weighting value with ith dimension and jth rule

node, and R is the number of a fuzzy rule.

Layer 5
(Output nodes)

Layer 4
(Consequent
nodes)

Layer 3
(Rule nodes)

Layer 2
(Membership
function nodes)

Layer 1
(Input nodes)

Figure 2.1: Structure of TSK-type NFS.
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2.2 Genetic Algorithm

Genetic algorithms (GAs) are search algorithms inspired by the mechanics of natural
selection, genetics, and evolution. It is widely accepted that the evolution of living beings is a
process that operates on chromosome-organic devices for encoding the structure of living
beings.

The flowchart of the learning process is shown in Fig. 2.2, where Nc is the size of
population, G denote Gth generation. The learning process of the GAs involves three major
steps: reproduction, crossover, and mutation. Reproduction [71]-[73] is a process in which
individual strings are copied according to their fitness value. This operator is an artificial
version of neural selection. In GAs, a high fitness value denotes a good fit. In the reproduction
step, the well-known ‘method is-the roulette-wheel selection method [73] (see Fig.2.3). In
Fig.2.3, the intermediate population-is P’, which is generated from identical copies of a

chromosome sampled by spinning the roulette wheel a sufficient number of times.

Start

* New population
Rank| Population p Rank | Population p
1 Chromosome | 1 Chromosome |
2 | Chromosome 2 2 | Chromosome 2

—
Reproduction
Chromosome - | Chromosome
N . Na2 .
Nel2 Ne2
, Chromosome , Chromosome
Ne-1 Ne-1 ;
’ Ne-1 - Ne-1
Crossover &
ANe |Chromosome Ne " Mutation ——* Ne | Chromosome Ne

Generation & Generation G 1

Figure 2.2: Flowchart of the genetic algorithm.
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1 C, G

Figure 2.3: The roulette wheel selection.

In crossover step [74]-[78], although reproduction step directs the search toward the best
existing individuals, it cannot create any new individuals. In nature, an offspring has two
parents and inherits:genes from-both. The main operator working on the parents is the
crossover operator, the operation of which occurred for a selected pair with a crossover rate.
Figure 2.4 illustrates how the crossover works. Crossover produces two offspring from their
parents by exchanging chromosomal genes on either side of a crossover point generated

randomly.
Parents

Crossover Points

Figure 2.4: Crossover operator.

In mutation step [79]-[85], although the reproduction and crossover would produce many

new strings, they do not introduce any new information to the population at the site of an
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individual. Mutation can randomly alter the allele of a gene. The operation is occurred with a
mutation rate. Figure 2.5 illustrates how the mutation works. When an offspring is mutated,

one of its genes selected randomly is changed to a new value.

Mutation Points Mutation Points

' v

Figure 2.5: Mutation operator.

Since GAs search many points in the space simultaneously, they have less chance to
reach the local minima than ‘single solution methods. The advantages of GAs are: 1) some
individuals have a better chance to come close to the global optima solution, and 2) the
genetic operators allow the GA to-search optima solution. According to above reasons, GAs
are suitable for searching the parameters space of neuro-fuzzy controller. For solving the
problem that a neuro-fuzzy controller which performs gradient-descent based learning
algorithms may reach the local minima very fast but never find the global solution, the GAs
sample the parameters space of neuro-fuzzy controllers and recombine those that perform best

on the control problem.

2.3 Particle Swarm Optimization

In this section, we will introduce the PSO. The standard PSO is introduced in section 2.3.1

and the CPSO is introduced in section 2.3.2.

2.3.1 Standard Particle Swarm Optimization
PSO is first introduced by Kennedy and Eberhart in 1995 [8]. It’s one of the most

powerful methods for solving global optimization problems. The algorithm searches an
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optimal point in a multi-dimensional space by adjusting the trajectories of its particles. The
individual particle updates its position and velocity based on its previous best performance

and previous best performance of other particles which denote y and p respectively. A

simple demonstration of how PSO learning proceeds can be shown in Fig. 2.7 as follows:

r'y
var,

yilt)

x(r+1)

I
i
I
x(n I x(f)
& : o
Xa(1) !
& i
L
I 3
1
I
Gl(}bal
__________________________ [ EtTI:r_iu_m_____-____________________
® |
|
xa(r) 'l
B J
:
® !
I
: .-\'.\(F)
| 7’ || .

var

Figure 2.6: Diagram.of the PSO learning mechanism.

The position x;, and-velocity ¥, of the d-th dimension of i-th particle are updated as
follows:
vi(t+t)=v, () +c -rand -(y, ,(6)—x, () +c, rand, - ()A/d () —x, ,(2)),
x(t+)=x@)+v,(t+1), 2.7)
where y; represents the previous best position yielding the best performance of the i-th particle;
c1 and ¢, denote the acceleration constants describing the weighting of each particle been
pulled toward y and y respectively; rand, and rand, are two random numbers in the range
[0, 1].
Let s denote the swarm size and f{) denote the fitness function evaluating the performance
yielded by a particle. After Eq. (2.7) is executed, the personal best position y of each particle

is updated as follows:
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D)= {xl- (+ 1,3 /(4 D)2 F(r(0). 25
Y+, 3 S+ D) < f((0),

and the global best position is found by:
Y(t+1)=argmin f(y,(1+1)), 1<i<s. (2.9)
Vi

In 2002, Clerc [12] confirms the convergence of PSO by using a constriction factor
which greatly enhances the applicability of PSO. The implementation of the constriction

factor is shown in Eq. (2.10)-(2.12):

Vida (t+1)= XV (£)+c¢, -rand, '(yi,d (t)—x,,(t)) +c, rand, '(;}d(t)_xi,d )1,

(2.10)
x(t+D)=x,)+v,(t+1),
where
femloh (2.11)
ERVAN/E D
and
gp=c +c,, p>4. (2.12)

The flowchart of the PSO is shown in Fig. 2.7.

2.3.2 Cooperative Particle Swarm Optimization

The CPSO [9] is one of the most significant improvements to the original PSO. Van den
Bergh presented a family of CPSOs, including CPSO-S, CPSO-Sk, CPSO-H, CPSO-Hk.
Algorithm CPSO-Hy is the hybrid from PSO and CPSO-Sk and it is proposed to address the
issue of “pseudominima.”

The concept of CPSO-S is that instead of trying to find an optimal #-dimensional vector,
the vector is split into n parts so that each of n swarms optimizes a 1-D vector. The CPSO-Sg
is a family of CPSO-S, where a vector is split into K parts rather than n, where K <n. K also

represents the number of swarms. Each of the K swarms acts as a PSO optimizer. The main
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Set population size s and

Initialize position x, corresponding v and local Best v of cach
particle

v (D)= v, (O + e rand, - (y, (1) - x,, (1)
d=dE al f 1 1 o )
[ +e, crand, (v, (1) = x, (1)),

difference between the PSO and the at the fitness of a single particle of the CPSO
has to be evaluated through global best particles of the other swarms. Let P; denote the j-th
swarm and P; * x; represents the i-th particle in the swarm j. The concept of the CPSO can be

illustrated as follows:

Swarm | P; Swarm j+1 Swarm K
particle 1 Pj-x; | particle 1 particle 1 particle 1
particle 2 Pix> | particle 2 particle 2 particle 2
particle N P;-xy | particle N particle N particle N

Figure 2.8: Schematic diagram of the CPSO.
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The fitness of P; « x; is defined as:
S(Pox)= f(BoYsecs Py, Py, o)) (2.13)
The CPSO applies cooperative behavior to improve the PSO on find the global optimum in
a high-dimensional space. This is achieved by employing multiple swarms to explore the
subspaces of the search space separately to reduce the curse of dimensionality. However, there
is no absolute criterion stating that the CPSO is superior to the PSO since independent
changes made by different swarms on correlated variables will deteriorate its performance. In
addition, in one generation of an n-dim CPSO-S operation, the computational cost is z times

larger than that of a PSO operation.

2.4 Evolution Strategy with Covariance Matrix Adaptation

In this section,. we introduce-some background knowledge related to the proposed
MS-CMA-ES. The standard CMA-ES is introduced in section 2.4.1; kernel density estimation

is introduced in section 2.4.2 and mean shift procedure is introduced in section 2.4.3.

2.4.1 Standard CMA-ES
In the standard CMA-ES, a population of new search points is generated by sampling a
multivariate normal distribution NV with mean m € R” and covariance matrix CeR"™". The

equation of sampling new search points, for each generation number g = 0,1,2,..., reads

X&) @ 4 GONO,C®) fori=1,-, 4, (2.14)

l

where ~ denotes the same distribution on the left and right hand side; ¢ denotes the overall
standard deviation, step-size, at generation g and / is the sample size. The new mean m®™" of
the search distribution is a weighted average of the u selected points from 4 samples

(g+1) [.(g+D) (g+1) .
X5, X e, X
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m'& = Z wxsh (2.15)
with

w=1 w2w, 22w >0, (2.16)

where w; are positive weights, and x'¢™ denotes the i-th rank individual out of A samples.

The index i:A denotes the i-th rank individual and
FxED)< f(E) << f(8E), (2.17)

where f{ ) is the objective function to be minimized. The adaptation of new covariance

matrix C&™Y is formed by a combination of.rank-x and rank-one update [13]

T

C(g+1) — (1 _CCOV)C(g) cov pcgﬂ) (p£g+1)) +eC,, (1 __) Z Wy (g+1) ( gH)) 5 (218)

/ucov — cov i=1
rank-one update

rank-y update

where ucov> 1 1s the:weighting between rank-u update and rank-one update; ccove [0,1] 1s the

learning rate for the covariance matrix update, and
PSS =) o) (2.19)
is a modified formula-used to compute the estimated covariance matrix for the selected

samples. The evolution path’ p'¢™. for rank-one update is described as follows:

(g+1) m(g)

+ m _
P = (=) p® +Je. 2= )y —w (2.20)

where ¢.< 1 denotes the backward time horizon and

Uy = [Zw j (2.21)

denotes the variance effective selection mass. The new step-size 0" is updated according to
(g+1)
Ps
o) = ¢® exp| ~= H I (2.22)
E||N(O D)

with
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m(g+l) m(g)

PN = (1=, )P + e, e g € I 223)

O.(g)

where ¢, is the backward time horizon of evolution path, similar to c.; d, is a damping

(

) js the conjugate evolution path for step-size 6™". The expectation of

o

parameter and p

the Euclidean norm of a N(0, I) reads

n

E[N(,1)| =21 i 1)/r(g) ~~n+0(1/n). (2.24)

2

where I'() denotes the gamma function and O() represents high-order terms.

2.4.2 Kernel Density Estimation

In parametric model estimation analysis, we.need to suppose the distribution of data
points coincides with certain model. Empirical evidence have shown that there tends to exist
large differences between parametric-estimation-based models and real-world physical models.
Based on above defects, Rosenblatt and Parzen proposed a non-parametric way called kernel
density estimator [66] to estimate the unknown p.d.f. of a random variable. The kernel density
estimator does not require prior knowledge of how -data distribute; instead, it analyzes the
characteristic of the distribution of data. Hence, it is highly valuable in both statistical theory
and application.

In the proposed MS-CMA-ES, sampled search points in the search space are considered
as data in the feature space. It is very intuitive since the location of search points tends to be
the phenomenal feature in function optimization problems. The rationale behind density
estimation-based clustering approach is that the feature space can be regarded as the empirical
p.d.f. Due to the fact that search points are sampled from normal distribution with adjusted
mean and adapted covariance matrix, and are further selected according to their fitness, dense
regions in the search space correspond to local maxima of the p.d.f.; in other words, the
modes of the unknown density. Consider »n points x;, i = 1,..., n, in the d-dimensional space

R?, the multivariate kernel density estimator with kernel K(x) and a symmetric positive
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definite matrix bandwidth matrix H, computed in the point x is given by

=2 K (x-3), (2.25)
with
K,(x)= h’lK(%), (2.26)

where Kj(x) is a d-variate kernel function satisfying
j” K, (x)dx=1. (2.27)

Normally speaking, kernel functions are symmetric, unimodal probability density functions.
Uniform, normal and Epanechnikov kernel are the most common seen. It has been proven that,
in certain routine conditions, kernel density estimator approximates the real density functions
gradually with increasing sampling size [86]. Although the choice of different kernel
functions have different effects on-the results, but the effect appears small compared with the
effect caused by the bandwidth, so researches focus more on the selection of bandwidth [87].
Theoretically, the selection of bandwidth is-based on the mean integrated square error (MISE)
between kernel density estimation and the real density function. However, the computation of
MISE is too complicated. In practice, how selection of bandwidth affects the performance is
analyzed by computing an asymptotic:mean integrated error (AMISE) from a large number of
samples. Recently, many literatures use plug-in method and cross-validation method to
determine the optimal bandwidth, so that the selection of bandwidth no longer depends on the
prior guess of true density function [86, 87]. In addition to the aforementioned fixed
bandwidth mechanism, the variable bandwidth mechanism, bandwidth varies with different
sample position, is also widely adopted in practice [88, 89]. Because it is very difficult for the
fixed bandwidth mechanism to properly address multimodal density functions, especially in
cases when density of each peak varies greatly. However, the analysis is relatively more
complicated when compared with fixed bandwidth mechanism. In practice, the utilization of
variable bandwidth mechanism is mostly based on rule of thumb [86]. If the variable
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bandwidth mechanism is adopted, the kernel density estimator Eq. (2.25) becomes

Fa =3 Ky(x-), (2.28)
where
Ka(x)=H["" K(H"2), (2.29)

H is the symmetric, positive definite bandwidth matrix.

2.4.3 Mean Shift Procedure
Mean shift procedure is a very versatile tool for feature space analysis and it is applicable to
many field of tasks [90-92]. In the previous research [65], authors successfully extend this
algorithm to computer vision applications, and have attracted huge attention. Mean shift
procedure is an iterative ‘algorithm based on-kernel density estimation, which continually
updates the mean shift vectors of data points according to-the gradient of kernel function.
Although the mean shift algorithm is very simple in form, but.in practice there is a high
efficiency and stability. The most classic application is the mean shift-based clustering
algorithm. If we can have a good estimation of bandwidth, mean shift-based clustering
algorithm would be a nice alternative.relative to.algorithms that the number of clusters needs
to be pre-set, such as K-means algorithm. In the proposed MS-CMA-ES, search points in the
search space are considered as data in the feature space. It is very intuitive since location of
search points tends to be the phenomenal feature in function optimization problems. Due to
the fact that, in the MS-CMA-ES, sampled search points are further selected according to
their fitness, dense regions in the search space correspond to local maxima of the p.d.f.; in
other words, the modes of the unknown density.

Consider the density estimation kernel Kj(x) introduced earlier this section. If the profile

notation [21] is employed, the kernel K;(x) can also be written as
2
K, (x)=c, k(] (2.30)
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where kj;(x) is a radially symmetric kernel defined as the profile of the Kj(x), and cx. is the

normalization constant which makes Kj(x) integrate to one. If we define

g,(x) =k, (x), 2.31)

the d-variate kernel Gj(x) can also be written as

2
G,(x)=c,.& (", (2.32)
and similarly, ¢, denotes the normalization constant. The density estimation kernel Kj(x) is
also called the shadow kernel of Gj(x) [65]. Consider n points x;, i=l,..., n, in the

d-dimensional space R“, the mean shift vector at x is given by

Zn:xiGh (x=x)
m(x)zizi——x. (2.33)
th(x_xi)

Intrinsically, mean shift procedure -can be viewed. as a mode seeking method [59], which
determines the modes of p.d.f. estimated by kemel K,(x). Denote {y;},-1».... the sequence of
successive search locations of kernel G, from Eq. (2.33) it has the form

zxiGh(yj -Xx,)
i=1

yj+l = '_n
ZGh (y] _xi)
i=1

j=12,-- (2.34)

and y; is the initial search location. The corresponding sequence of density estimates

computed with kernel K}, is given by

(o Df= 1) =12 (235)
In the previous research [59], authors have proven that once search location y; gets sufficiently
close to a mode of estimated density function fAh,K, it converges to it, and the set of all

locations converge to the same mode is defined as the basin of attraction of that mode. The
general steps of applying mean shift procedure is listed as follows:

Step 1: Uniformly generate appropriate number of initial search points.
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Step 2: Sequentially or parallelly run the mean shift procedure until the search points

converge.
Step 3: Each convergence point defines a mode and each initial location converges to that

mode defines the basin of attraction of that mode.
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CHAPTER 3
EVOLUTIONARY ALGORITHMS

In this chapter, the proposed four algorithms are discussed. In section 3.1, a Q-valued
based particle swarm optimization and the concept of using Lyapunov design principles for
constructing safe reinforcement learning agents are introduced. In section 3.2, the proposed
two-strategy reinforcement (TSR) learning mechanism and the group-based symbiotic
evolution (GSE) which enables the learning agent to evaluate the fuzzy rule locally are
introduced. In section 3.3, a_separability detection approach to cooperative particle swarm
optimization (SD-CPSO) for placing correlated variables into the same swarm is discussed. In
section, 3.4, the proposed mean shift based evolutionary strategy with covariance matrix
adaptation (MS-CMA-ES) is introduced. We cannot directly apply mean shift clustering to the
sampled points generated by CMA-ES because the adopted mean shift clustering requires
independent identity distribution of samples to-perform density estimations. Several previous
works such as importance sampling [93,94] and bandwidth. estimation [86,87] are also

discussed in this section.

3.1 Q-value based PSO

Thorough learning algorithm of QPSO is described in this section. The architecture is
shown in Fig. 3.1. The whole learning process can be roughly divided into two parts: the
Q-value and PSO operation part. The learning strategy for Q-values of particles is detailed in
section 3.1.1 while the PSO operation and the flowchart of QPSO are described in section

3.1.2.
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Figure 3.1: Architecture:of QPSO.

3.1.1 Learning Q-values of Particles

In QPSO learning; if there are s particles in the swarm, s trials are taken in one generation.
The agent applies in each trial an action to the environment by selecting a particle based on its
Q-value. Every time aparticle is selected, the Q-value of the selected particle is updated based

on the system’s reward. If the i -th particle is selected, its Q-value ¢; is updated as

qz-(l‘)=ql-(t)+0![—%+7Q*(X(f+1))—q,-(f)], (3.1
for i=1...s, where

O (x(r+1) = yax O(x(t+1), a)
=max O(x(¢ +1), p,) (3.2)
=max g,(r) =g, (1).

That is
(=g, + a[—%+ 74 (6)-4,(0)]

= q,‘(t) +a5z‘(t)9

for i=1,---,s, where J,(¢) isregarded as TD error.

(3.3)

The new Q-values of all particles calculated from Eq. (3.3) are subsequently adopted as the
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fitness values for PSO evolution.

3.2.2 Q-value based PSO
The PSO operation used in QPSO consists of two major steps: swarm initialization and
Q-valued base PSO evolution. Details of these two steps are described step-by step as follows.
Swarm initialization:
The particle swarm is composed of particles encoded by the parameters on a NFS. Each
particle is encoded by the mean, deviation of Gaussian membership functions and the
weightings for output action strength. The number of fuzzy rules determines the length
of each particle. After the number of rules.is set, the initial particles are generated

according to the following equations:

Mean: X, | n] = random{m,; ,m

‘min ?

“‘a"]’ (3.4)
wheren=1, 3, --<, 2NR-1; i=1, 2, ---,.5.

Deviation: X, || =random|o., . .0 pex (3.5)
wheren=2, 4, ---, 2NR. '

Weight: x; [n|=random|w,. , w,.. ],

(3.6)
where n =2NR+1, 2NR+2, ---, D.

p, represents the i-th particle in the swarm; N represents the input dimension; R

represents the number of fuzzy rules; D represents the size of each particle, usually D

equals to (N+1)R in most of cases where the dimension of output variable is 1;
[Myins Mo |5 [Oin> O] @0 [Wi, W, | are the predefined ranges. The above

equations result in the coding scheme between a neural fuzzy system and a particle

shown in Fig. 3.2.
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Figure 3.2: Coding scheme between a particle and a TSK-type NFS in QPSO.

+ Q-value based PSO evolution:
The Q-values derived in Eq. (3.3) are used as the fitness values for PSO evolution. The
Q-value of each particle determines the performance of a particle for controlling the
system. In the proposed QPSO, the Q-value of each particle indicates how soon a particle
can guide the system’s state to-reach the set of goal states. The learning processes proceed
to new generation until a predefined stop criterion is met. The block diagram of whole

learning processin QPSO is shown in Fig. 3.3.
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Figure 3.3: Block diagram of QPSO.
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3.2 Two-strategy Reinforcement Evolutionary Algorithm

The proposed two-strategy reinforcement evolutionary algorithm (TSR-EA) is introduced in
this section. Two major modifications are proposed in this algorithm: a two-strategy
reinforcement signal design and the group-based symbiotic evolution (GSE). Details of these

two operations are described as follows:

3.2.1 Two-strategy Reinforcement Signal Design

The TSR-EA is constructed on a TSK-type NFS model. The NFS model acts as a control
network to determine a proper action according to the current input vector (environment state).
The feedback signal is the reinforcement fitness value that functions as a performance
measurement. The reinforcement learning architecture adopted in the TSR-EA is the time-step
reinforcement architecture [95]-[97]. In this architecture, the only available feedback is a
reinforcement signal that notifies the model only when a failure occurs. This architecture is
straightforward and'easy to implement. However, its fitness function can only indicates how
long can the controller work well instead of measuring how soon the system can enter the
desired state, which is also.very important. Most reinforcement learning algorithms offer no
guarantee on stabilizing a system around a certain operating point, or keeping the state of a
system within a certain range. In this dissertation, the proposed QPSO described in section 3.1
can meet the aforementioned goals by adopting the concept of safe reinforcement learning
agents based on Lyapunov design principles proposed Perkins and Barto [57]. Using the
concept proposed in [57], the QPSO can guide the state of a system to reach and remain in a
desired set of goal states by constraining the action choices of the agents. Actions constrained
by Lyapunov design principles cause the system to descend on an appropriate Lyapunov
function. The feedback reinforcement signal of in the QPSO is the time step that indicates

how soon the system enters the desired set of goal states. The QPSO provides not only
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reliable initial learning performance but also accurate learning result. However, in order to
apply Lyapunov design principles, we have to identify the Lyapunov function of a control
plant in advance, which refers to the requirement of more information about the state of the
control plant. For some real-world applications, some states are difficult or expensive to
obtain. As a result, in the TSR-EA method, we proposed the TSR design so that our method
can enjoy the convenience brought by the standard reinforcement learning architecture on one
hand, and the accurate learning performance on the other. The TSR learning signal design for
determining the fitness value of each learning trial is described as follows.

The proposed two strategies are. judgment and evaluation. The judgment strategy
measures the fitness value of a learning trial that fails to. maintain the system’s state in a
desired operating range, whereas the evaluation strategy measures the fitness value of a
learning trial that works the system-well iin the original successful range, but fails under a
stricter successful range is applied. At first, for each different control task, a corresponding
operating range Original Range is predefined. Then, we shrink the original successful
operating range as the control time step increases, as defined in'Eq: (3.7).

Strict _Range=0OFriginal _Rangex o, where

1, ift < A,
_J(Thres TimeStep+ A—t ) . (3.7)
0= ( Thres _ TimeStep) , if A <t <Thres _TimeStep,

A .
(ﬁhres B TimeStep) , Otherwise,

where A4 is a parameter that simply prevents the modified range from becoming zero. This
equation provides guidance to the controller to meet the control goal sooner. The
Original Range and Strict Range are both considered as stopping criteria. If a learning trial
fails because the system state falls beyond the Original Range, this learning trial is then
considered as failing under a “looser” constraint. Hence, a smaller fitness value is obtained

from this learning trial. On the contrary, if a learning trial fails for the system state deviating
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from the Strict Range, this learning trial is then considered as failing under a “stricter”
constraint, and a relatively larger fitness value is obtained from this learning trial. The
determining fitness values in both strategies are detailed as follows:
*Strategy 1. Judgment strategy:
If the system fails at time step ¢ deviating from the original successful operating range,

then

1 t-1
Thres _TimeStep Thres _TimeStep’

Fitness Value = (3.9)

where Thres TimeStep is a predefined parameter. A learning trial is deemed unsuccessful if
it is unable to meet the control goal before Thres TimeStep.
*Strategy 2. Evaluation strategy

Under the condition that the-controller successfully maintains the system’s state in the
original successful operating range, the fitness value is calculated by the following two cases.
Case 1 represents the system works well under the original successful operating range but
falling beyond the range defined inEq.<(3.7). Case 2 represents the controller successfully
controlling the system.
Case 1. If the system enters the'set of goal states at-time step ¢, but falls beyond the strict

successful range defined in Eq. (3.7) at time step %, then
Fitness Value = 1 t,-t). (3.9)
tl

Case 2. If the system enters the set of goal states at time step #; and stabilizes the system for

Stable TimeSteps, then

Stable TimeSteps
tl

Fitness Value = Stable TimeSteps+(

). (3.10)

The reinforcement fitness value evaluates how soon the plant can meet the desired set of goal
states and how long the controller maintains the plant within it. The advantage of the
proposed TSR-EA method is that it provides a relatively accurate learning performance
compared with standard time-step reinforcement architecture.

35



3.2.2 Group-based Symbiotic Evolution

In this section, the idea of GSE is introduced. Unlike traditional GA that uses each
individual in a population as a full solution to a problem, GSE assumes that each individual in
a population represents only a partial solution to a problem. In a standard evolution algorithm,
a single individual is responsible for the overall performance, with a fitness value assigned to
that individual according to its performance. In the GSE, in order to calculate the fitness of an
individual (a partial solution), we have to combine the current individual with other “global
best” individuals of other groups to form a context vector first. A context vector stands for a
complete solution and can be used to evaluate the fitness value. This idea is adopted from the
CPSO introduced earlier. Let x; denote the j-th chromosome and P; * x; represents the i-th

chromosome in the groupyj. Then the fitness of P; = x; is defined as:

F(Pox,) =FCRays. s P Loy, Pxgiis, Poey). (3.11)
As shown in [96=100], partial solutions can be characterized as specializations. The
specialization property ensures diversity, which prevents a population from converging to
suboptimal solutions: A single partial solution cannot “take over” a population since there
must be other specializations present. Unlike the standard evolutionary approach, which
always causes a given population to converge, hopefully at the global optimum, the
symbiotic evolution finds solutions in different, unconverted populations. With the fitness
assignment performed by GSE, and the local property of a fuzzy rule, GSE and the fuzzy
system design can complement each other.
The structure of the GSE is shown in Fig. 3.4, where Ncs is the number of complete
solutions the GSE will select individuals to form in one generation, R denotes the number

of fuzzy rules in a NFS.
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Figure 3.4: Structure of a chromosome inthe GSE.

The coding structure of a chromosome is'shown in Fig. 3.5, which describes that where m;;
and o;; represent a Gaussian membership function with mean and deviation, respectively, and

wj is the weight of the jth rule node and # denotes the input dimension.

| |
m; | o ‘ ‘ m; | Oy | LA, ‘ o}

] ] nj ‘ w;

)|

Figure 3.5: Coding structure of @ chromosome in the TSR-EA.

3.3 Mean Shift-Based Evolution Strategy with Covariance Matrix

Adaptation

Evolution strategy with covariance matrix adaptation (CMA-ES) is very effective in
optimization of unimodal functions, but inferior to other algorithms that emphasize the global
search ability, such as particle swarm optimization (PSO) or differential evolution (DE), in
optimization of multi-funnel functions. Enhancing the global search ability of CMA-ES has

becoming urgent goals of many scholars within the field. In this dissertation, we propose a

37



mean shift based CMA-ES (MS-CMA-ES). The framework of proposed method is
constructed on CMA-ES. In the traditional CMA-ES, new search points are sampled from
normal distribution; however, in the MS-CMA-ES, new search points are sampled from
mixture normal model. The introduced mean shift procedure is a clustering method, which
allows us to apply multiple CMA-ES instances to explore multiple search directions in
parallel according to the its clustering result. In the MS-CMA-ES, the mean shift procedure is
also used to compute the mean vector of the mixture normal distribution. During the mean
shift procedure, each search point is “shifted” toward their corresponding local optima area of
the p.d.f. until all search points converge.. The converge points represents new mean vectors of
the mixture normal model; in‘other words, the initial sampling locations of the MS-CMA-ES.
In this dissertation, we mainly focus on studying how to apply mean shift based clustering
approach in optimization of complex objective functions, detecting their modes, and try to
preserve the advantage of CMA-ES that converge rapidly in optimization of single-funnel
functions. In the chapter we will detail the architecture of our method and its learning process.
In section 3.3.1, wewill describe our motivation, which is followed by a block diagram

learning process. The detail of each block will be described in section 3.3.2 through 3.3.4.

3.3.1 Motivation

Before introducing the proposed MS-CMA-ES, we observe a drawback that CMA-ES may

encounter as shown in Fig. 3.6:
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(a) (b)

Figure 3.6: Computer simulation result-of CMA-ES with initial search location at (0, 0).

Figure 3.6 is an computer simulation result of an optimization problem with two local optimal
solution. The upper right region is-a-suboptimal region ‘with steeper gradient toward it and the
lower left region is'the global optimal region with a smoother trend. As shown in Fig. 3.6,
white lines represents the locus of average of search points and darker background color
stands for higher fitness value. The initial search location is at(0,0) which is in the middle of
two local optimal solutions. The ideal case is that the locus wanders between two local
optimal regions then converge to the lower left global optimal region as shown in Fig. 3.6(a).
However, we found by simulation that most of times the locus only temporary wanders and
converge to the upper right region as shown in Fig. 3.6(b). The search direction of CMA-ES
cannot continually expand to two optimal regions and determine the real optimal solution
according to their converge points.

In this dissertation we think this drawback is due to the fact that the sampling
distribution is limited to normal distribution. In statistical learning [66], simple normal model
is not enough to deal with complex problems, an advanced alternative is the mixture model.
Mixture normal model can effectively approximate the p.d.f. of multimodal functions, and
reveal their important characteristics: number and location of the modes. In this dissertation,
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we think the aforementioned drawback can be relieved if the distribution of search points are
sampled by a mixture normal model.

Recently there are researches attempt to turn CMA-ES search pattern into multiple
region search style; for example, authors [26] incorporates particle swarm optimization to
enhance the global search ability of CMA-ES. In this dissertation, we adopt the different
concept by altering the sampling model. After sampling the search points, all samples are
clustering by mean shift procedure. A new cluster represents a new CMA-ES instance. By
perspective of mixture model, a new cluster stands for a new component of the mixture.
Observed from the computer simulation- result, the proposed mechanism can alleviate the
deficiency that CMA-ES cannot search multiple directions.in parallel. The block diagram of
the proposed MS-CMA-ES is shown in the following figure and the detail of each block will
be introduced in the subsequent sections.

Initialization of

parameters
Sampling ’j
|
Mean shift-based Next
clustering generation
¢ A

Construct mixture
normal model

v

Update mixture
normal model

v

Stopping
criterion

v
Output result <+—

Figure 3.7: The block diagram of the MS-CMA-ES.

40



3.3.2 Sampling from a Mixture Model
In the proposed MS-CMA-ES, the sampling of new search points is given by

X N,

mix

(m'®,c® ,C¥ ¥ fori=1,--,1, (3.12)

where Nyix denotes a mixture Gaussian distribution with its p.d.f. py(*) reads

K&

Pu ()= 3 (G (x50 (0, ()] €9 (k). (3.13)
k=1
G(*; 0) denotes a multivariate Gaussian function parameterized by 6; k denotes the index of

component of mixture model; K is the total number of components at generation g; A

denotes the total number of samples A=A* +A{¥ +---+ 2% ; m® is the set of mean of

search points m@={m@(1),...; . mEK®)}; C®is the set of covariance matrix C ®={C
©(1),..., COKEY; o' is the set of search step size 69'={g ©(1)...., d(K®)}; a® is the

mixture weighting a®’={a'¥(1),..;a®(K“)}.

3.3.3 Mean Shift-based Clustering

The total number of componeits-K'“ is variable at-each generation and is determined by
the result of clustering. In this dissertation, we don’t directly apply clustering method to the
sampled points because the adopted mean shift based clustering method requires independent
identity distribution of samples to perform'density estimations. In our method, search points
are sampled from a Gaussian mixture model. Due to the absence of independent identity

distribution of samples, we introduce the importance sampling method [93, 94] to find a more
reliable density estimator. Let us denote fthe unknown p.d.f. of the search space and fﬂ the

kernel density estimation with bandwidth matrix H. The kernel density estimation of f after

introducing importance sampling method is given by

n A
fa=D 0Ky(x-x), fori=1--,4, (3.14)

i=1

which is almost identical with traditional kernel density estimation besides the importance
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weighting o,
o, = lei/pM(xi) , (3.15)
Z Wm /pM (xm)
m=1

where w; is the fitness weighting of x;; pa(*) is the p.d.f. of mixture normal distribution shown
in Eq. (3.1w). The sequence of mean shift-based clustering of each search point after
introducing importance sampling is given by

A B 1 -1
X = [Z o(x,)|H,,| V2 exp(—EDz(xi(”,xm;Hm)jH:nl}

m=l1

x {i a)(xm)|Hm|"/ ’ exp(—%Dz(xf’),xm;Hm)j H'x, } (3.16)
m=1
fori=1,--4A,
where
D% s H ) =(x" —x )"H "(x"~x ), (3.17)

and D is the Mahalanobis distance of x,.(t) to.x,, and H,, is the positive definite bandwidth

matrix for x,. H, istanother important parameter needs to be determined. In general, when
doing kernel density estimation, literatures process adequate, at least 50 to 100, amount of
samples. In such cases, the selection. of bandwidth -matrix can be achieved based on the
analysis of asymptotic mean integrated square error (AMISE) [87]. The proposed
MS-CMA-ES is mainly constructed on traditional CMA-ES that only generates few samples
at each generation; therefore, we cannot cite AMISE based bandwidth selection methods
which have richer research results. In this dissertation, the selection of bandwidth matrix is
according to Theorem 3.1, the analysis of MISE [87], which is more applicant to cases with
small amount of samples.

First, we derive equations of optimal bandwidth matrix for samples within a same
cluster. In the following derivation, we ignore the term index and the superscript of variables

m®(k), 6¥'(k), and C®(k) since we only consider samples within a same cluster at a certain
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generation:

Theorem 3.1 [87] Consider Ky a kernel function parameterized by bandwidth matrix H, and
the true distribution of samples is N(m, X). The optimal MISE bandwidth for density
estimation is given by

H =arg mgnMISE{/}(g;H)}

d 1

d
=arg mén {11'1(471)-2 |H|é +(1+n")(4n) 2 |H +Z|_E (3.18)
4 1
-2(2m) ? |H+22|'2},

where d is the dimension of samples, n is the number of samples, m and X are the mean and
the covariance matrix of the.normal distribution respectively.

In this dissertation, we let X be the covariance matrix adapted by CMA-ES

Y =o0'C: (3.19)
in other words, we assume that the true distribution of samples is similar to the normal
distribution adapted by CMA-ES.! The covariance matrix C stands for a favorable shape of
distributing samples for finding local optimums and we expect it'to be a good approximation
to the true distribution of samples. The global step size @ stands for the bandwidth of kernel
density estimation and it is/ self-adaptive in-CMA-ES algorithm. From experimental
observations, the smaller the bandwidth is, the more number of modes will be estimated and
the larger bandwidths correspond to smoother estimation results.

The dimension of H is d°; in other words, there are d* parameters need to be optimized at
each generation according to Eq. (3.18), which is very computationally expensive. In this
dissertation, we propose a method to prevent the d” optimization task at each generation
according to the following theorem [87]:

Theorem 3.2 [87] Consider Ky a kernel function parameterized by bandwidth matrix H, and
the true distribution of samples is N(m, X). The optimal AMISE bandwidth for density

estimation satisfies
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*

H 5 = hE. (3.20)

Based on theorem 3.2, we limit H to the following equation

H=/hX=ho'C, (3.21)
where /s denotes the global width of the bandwidth matrix. According to the
eigen-decomposition theorem

X =0’C=0’BD’B’, (3.22)
and the following fact

[H|=7!|c"D

H+Z|=(h+1)!|o°D

H+kZ|= (h+1) |o°D

. (3.23)

9 2 9

the search of optimal bandwidth matrix can be simplified to a 1-dim optimization problem

relevant only to n and d
=& N % _X d _d 1
h' =arg 151131 {n1(47r) 2h ? ‘O‘ZDz‘ 24 (L+n )4z 2 (h+1) 2 ‘O‘ZDZ‘ 2
9 4 P
222r) 2 (h+2) ?|o’D’|? } (3.24)
4 4 d+2 4
= argr?iéq{n—lh 24 A+n)h+1) 22 2 (h+2) 2 }

In this dissertation, we use steepest descent method to-compute optimal solutions of Eq. (3.24)
as a database indexed forn=1, 2,..,50and d =1, 2,...,50.

After deriving equations of optimal bandwidth matrix for samples within the same
cluster, the bandwidth matrix for each sample can be assigned according to its cluster index to
complete the mean shift-based clustering method. The proposed kernel density estimation
method density estimation utilizes the variable bandwidth selection, which is necessary
considering that search points are sampled by a mixture model distribution. The following
figure shows an example of applying kernel density estimation with variable bandwidth
mechanism to complete the mean shift-based clustering. Search points shown in Fig. 3.8(a)

are sampled by a 2-component mixture probability distribution. Pink contour represents high
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fitness value while blue contour represents the opposite. Clustering result of search points
shown in Fig. 3.8(b), three clusters are determined and marked by three different colors.
Figure 3.8(b) shows the result of density estimation with samples generated by a 2-component
mixture probability distribution converge to three modes. After mean shift-based clustering,
each cluster forms a separate component of a mixture probability model. The updating of

parameters of the mixture probability model will be introduced at the next section.

3.3.4 Updating of Mixture Probability Model

In this section, we derive parameters.of sampling new search points in the MS-CMA-ES.

As described in section 3.3.1, new search points at generation g+1, {x}g*”}, are sampled by a

mixture normal model. parameterized by m(g), C (g), o and o® After sampling, the
classification of each search points-and the number of clusters K" 1); in other words, the
number of components of mixture probability model are determined by the mean shift based
clustering method. Before deriving equations of updating m® C ©6® and ', we introduce

two operators

. 0, if x; ¢ clusterk,
z2(kyi) = (3.25)

Lyafxpecluster k,

and x; € {1,...,K} represents the cluster index of sample x;. The updating rule of m® of the

k-th cluster reads

A
m D (k)= wz(k, iy, fork=1,---, K. (3.26)

i=1

The updating rule of C of the k-th cluster reads

- A
C (k) = (1-)CO (k) + Y 2k, Dwy e (50 (3.27)

i=1
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(b)

Figure 3.8: Example of kernel density estimation with variable bandwidth selection.

The updating rule of ¢® of the k-th cluster reads

() gy (@) <, ”ngﬂ)(k)”_
(k)= o (k)exp[da [—E”N(O,I)” i (3.30)
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where

P (k) =(A~c,) Py (k)

5 & _m® () (3.31)

+1,CO_(2_CO_)/Jeff Zz(k,i)wi(c(g)(l(‘i)) i O_(g)(Kl) >

A
=1

2(k,i)p,* (x,)

ﬁo'(g)(k): i - , fOI‘kZl,"',K(g“), (332)
ZZ(k,i)
i=1
and
A
z(k,i)a(g)(lq.)
59 (k) = 2L . (3.33)
z(k,1)
=1

1

Compared to the traditional CMA-ES, the updating of m®. € ® and ¢ for the MS-CMA-ES
are performed in each cluster. Equations-areslightly” different besides the two introduced
operator that indicates the cluster index of a search sample. The MS-CMA-ES also introduces

a set mixture weightings a'® as new variables, and its updating rule is given by
a® (k)= (1-c)a'* k) + c,a“"(k), (3.34)
where

A
a' (k) ==Y 2(k,i), for k=1,---, K. (3.35)

i=1

N

a'® (k) represents the objective updating value and ¢, denotes the updating step size. In this
dissertation, we set the objective updating values as the density estimation values of the

modes, which were obtained from the mean shift-based clustering result:
a' (k)= fype (mode(), (3.36)

where £, (mode!®’) denotes the kernel density estimation of the mode of the k-th cluster.

Macroscopically, Eq. (3.34)-(3.36) are performing selection among components. The above

equations perform a series of comparison and elimination in the hierarchical structure formed
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by the mixture model to explore the local search ability at different search locations, which is

also the key to the global optimization.

3.4 A Separability Detection Approach to Cooperative Particle

Swarm Optimizer

In this section we introduce an approach to help the CPSO self-organize the swarms
composed of non-separable variables. Consider a particular optimization task illustrated in Fig.
3.9, from which we can see a 2-dim function with a bar-shaped local optimal region and a
global optimum lies in it. The task is to find its global optimum by particle swarm optimizer.
At first, particles are uniformly distributed in the search space. At this moment, we expect
particles to be divided.into two swarms, performing separate l=dim PSO operation on each
dimension to speed up the process of particles gathering around the optimal region.

If by any chance particles gather around the optimal region as we.expected, as shown in Fig.
3.10. At this point of time, we prefer particles performing 2-dim PSO operation on the whole
search space to reduce the computational cost, which, in this ecase, represents the number of

function evaluations.

Ay
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Figure 3.9: Case with particles uniformly distributed in the search space to find the global optimum lies in a

bar-shaped local optimal region.
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Figure 3.10: Case with particles gather around the bar-shaped optimal region to find the global optimum.

In order to implement the idea illustrated above, we have to determine the timing of
switching between the PSO and the CPSO-operation when dealing with a task. In this paper,
we think this can be done by determining the separability between variables, and placing
non-separable into the same swarm at each generation. If at.certain. moment, all variables are
determined as non-separable, then the PSO operation is taken; otherwise, the CPSO operation
is taken.

The separability between variables.is found.by estimating the covariance matrix of the
distribution of particles. Instead of computing the sample covariance matrix of the distribution
of particles directly, we adopt the CMA mechanism to estimate the covariance matrix of the
distribution of particles. The adaptation of new covariance matrix C®" is formed by a
combination of rank-u and rank-one update. Detailed adaptation equations can be seen from

Eq. (2.14)-(2.24). Consider the estimated covariance matrix has the form shown as follows,

2
G G Gy
. 5 .
: C :
c=| 7 .
P S, (3.37)
“oe 2
cln cZn cn

where n is the number of dimensions, c; represents the weighted covariance between
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variables j and k. The separability between dimensions can be obtained from correlation

coefficient matrix with its element defined as follows:
P = cjk/cjck ) (3.38)

We define a parameter pures to determine whether dimension j and & are separable. If pj <
Pires then we say variable j and k& are separable. Conventionally, if |p[>0.8, it implies that there
exists a very strong linear relationship between these two variables; 0.8>|p|>0.6 implies strong
relationship, and 0.6>|p|>0.4 implies moderate relationship. In this dissertation, we avoid

setting pires less than 0.6. The block diagram of the SD-CPSO can be found in Fig. 3.11.

( Start )

—_—

v

‘ Swarm intialization

| P— -
Compute the Correlation
coefficient matrix
Place correlated variables in
the same swarm

!

CPSO opcration

< Stopcriterion?

F et

‘<

End

Figure 3.11: Block diagram of SD-CPSO.
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CHAPTER 4
SIMULATIONS

To verify the performance of four algorithms proposed in this dissertation, three
optimization tasks and performance contrasts with some other models are presented. The
optimization tasks can be categorized into reinforcement learning control task and
multi-funnel function optimization task. We apply the QPSO and TSR-EA to
high-dimensional, reinforcement learning .control tasks, and apply the MS-CMA-ES and
SD-CPSO to complex, low-dimensional multi-funnel function optimization task. The
optimization tasks used to compare the performance of the proposed four algorithms with
other existing models.are described-as follows.

In Section 4.1, the cart-pole balance control [101] and the control of a double-link
inverted pendulum system [102] ‘are adopted to evaluate the performance of the proposed
QPSO and TSR-EA. These problem are often used as examples of inherently unstable and
dynamic systems to demonstrate both modern and classical control techniques or the
reinforcement learning schemes.

In Section 4.2, we will compare the performance of the MS-CMA-ES and SD-CPSO
with other existing models through real-valued function optimization tasks [103]. In section
4.2.1, we introduce a simple computer simulation that illustrates the improvement of the
MS-CMA-ES over standard CMA-ES on global search ability. In section 4.2.2, the test

environment and the comparison results are presented.

4.1 Reinforcement Learning Tasks

Two computer simulations are discussed in this section. The first simulation is the

cart-pole balance control and the second simulation is the control of a double-link inverted
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pendulum system.

Example 1: Control of a cart-pole balancing system

Figure 4.1: Single-link inverted pendulum system.

Figure 4.1 depicts the cart<pole balancing system. The bottom of the pole is hinged to a
cart that travels along a finite-length track to its right or left. Both the cart and pole can move
only on the vertical plane; that is; each has only one degree of freedom. The only control
action is F, which is the amount of force (in Newtons) applied to the cart to move it left or
right. The system fails when the cart runs mto the bounds of its track (the distance is 2.4 m
from the center to each bound of the track) or when the pole deviates more than 90 degrees.
Using Lagrange’s method, the model of the cart-pole balancing system can be obtained as
follows:

x: (m+M)¥+mL(@cosd—6*sind)=F, 4.1)
0: Xcos@+LO—gsind=0, 4.2)

where L = (.5 m, the length of the pole; M = 1.0 kg, the mass of the cart; m= 0.1 kg, the mass

of the pole, and g = 9.8 m/s, the acceleration due to gravity. [m,.,m . ], [0, 0] and

[Wiins Wae | are set as [0, 2], [0, 2] and [-30, 30], respectively.

By letting ¢ =(x,0)", we can rewrite Egs. (4.1) and (4.2) into general dynamic forms as

follows:

D(q)cj—i—C(q, c})q+G(q):r, (4.3)
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D( )_ m+M  mLcosé 4.4)
U= mLcos6  mr> |’ '
0 -mLOsin®
Cl(q,q)= , 4.5
(¢.4) K 0 } (4.5)
0
G(q)= , 4.6
(q) _—mgLsin@} (46)
r=[F 0]. 4.7)
The total mechanical energy of the system can be derived from:
N :
E(¢,4)=-4"D(q)q+P(q), (4.8)

where P(q) denotes the potential “energy of the system ( mgLcos@ in this case) and

G(q) = % . The purpose of this-control task is to determine the sequence of forces applied

to the cart to balance. the pole upright and keep the cart as stationary as possible. Hence, we

define a goal "'set comprising near-upright and near-stationary states as

G, = {(q,q'): H()'c, 0, 6’)” < 0.001}. When the state of the cart-pole balancing system is in Gj,
according to Eq. (4.8), the total mechanical energy £ of the system is mgL, denoting Ei,,. We
define a Lyapunov function L (g, Q)=%(Emp—E (. q'))z. The purpose of this control
problem can be transformed from ‘“balancing the pole upright and keeping the cart as
stationary as possible” to “guiding the system’s mechanical energy E(q, q') to reach Eiop
and maintaining it near Ei,, as long as possible;” that is, achieving L(q, c}) =0. In order to

achieve the aforementioned goal, we have to make sure that the Lyapunov function of the

system decrease at all time steps. The time derivative of L (q, q') with respect to time is

L(q. §)=~(Ew—E(q. 4))E(g. 4). (4.9)

and the time derivative of E with respect to time is
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which shows that the derivative of E is proportional to the product of the speed of the cart and
input force. The time derivative of L(g, ¢) with respect to time can be obtained from
combing Eq. (4.9) and (4.10), which reads

L(q, ¢)==(Ey=E(d.4))5F , 4.11)
from which we can see that in order to make sure the Lyapunov function of the system

L(q, cj) decrease at all time steps,-the direction of the control force has to be coherent with

the sign of (Etop—E (q, q))x Hence, for the QPSO, following [57], a Lyapunov-based

control law for the learning agent based on the Lyapunov analysis c¢an be derived as follows:
F=sgn((E,, —E)X)u; (4.12)

where sgn(x)={1ifx >0, and <1 otherwise} and.u is the output force of the NFS limited in
[-10,10]. Initial parameters of the QPSO and TSR-EA for controlling cart-pole balancing

system are listed in the following two tables:

Table 4.1: The initial parameters of the QPSO for cart-pole balancing system.

Parameters Value Parameters Value
[0 in 2 O nax | [0, 2] Cy 2.01
[y . [0, 2] Cy 2.01
[ Wanin > Winax ] [-20, 20] s 50
R 4 ¢ 4.02
a 0.01 b4 0.99
y 0.9 max_gen 300
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Table 4.2 : The initial parameters of the TSR-EA for cart-pole balancing system.

Parameters Value Parameters Value

[T min > O inax | [0, 2] Thres TimeStep 1000

[0 s 10 ] [0, 2] Crossover Rate 0.5

[ Winin s Winax J [-20, 20] Mutation Rate 0.2
R 5 S 50
A 10 Nes 250

To verify with the performance of the QPSO, the TD and GA based reinforcement
learning (TDGAR) [53], the on-line clustering and Q-value based GA reinforcement learning
(CQGAF) [54] and the recurrent wavelet-based NFS with a reinforcement group
cooperation-based symbiotic evolution (R-GCSE) algorithm [55] are applied to the same
control task. In the TDGAR, there are five hidden nodes and five rules in the critic network
and the action network. The population size is set as 200 and the maximum perturbation is set
as 0.0005. In the CQGAF, after trial-and-error tests, the final average number of rules from 50
runs was 6 by using.the on-line clustering algorithm. The population size is set as 50. The
parameters for Q-learning are set as @ =0.01 and 7 =0.9. In the R-GCSE, the population size
is set as 50 and the mutation rate is'set as 0.1.

The control goal defined here is “‘bringing the plant’s state to G; within 1,000 time
steps.” The original successful region Original Range of the variables are—12° <8 <12° and
-2.4m< x <2.4m. The initial state of the plant is set within Original Range. A trail ends when
the control goal is met or a failure occurs. For, the QSPO, TDGAR, CQGAF and R-GCSE, a
failure learning trial if the cart or the pendulum deviates beyond the Original Range. For the
TSR-EA, a failure learning trial occurs if the cart or the pendulum deviates beyond the
Original _Range or the strict successful region defined in Eq. (3.7). The constraints of the
output force is -1ON< F <10N. If each algorithm is executed for 50 times to compute the

average. The performances of all these compared methods are shown in Table 4.3, from
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which we can see that the QPSO and TSR-EA has superior control rate and requires fewer

CPU-time cost. The reason could be due to the incorporating of the Lyapunov design

principles in the QPSO, and the proposed TSR mechanism provides a more distinguishable

performing index to the individuals that can accelerate their evolution process.

Table 4.3: Summary Statistics of Example 1.

Methods QPSO | TSR-EA | TDGAR | CQGAF | R-GCSE
% of learning trials meet 100 9% 68 74 38
the control goal.
Average Time to goal. 9.8+0.7 | 122£03 | 802+9.1 | 336%27 | 589+638

The testing results, which consist of the pendulum angle, pendulum angular velocity (in

degrees/seconds), and.cart velocity (in meters/seconds) of the TSR-EA, TDGAR, CQGAF

and R-GCSE are shown in Fig. 4.2-4.5 as follows. Each line in Fig. 4.2-4.5 represents a single

run.
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Figure 4.2: 50 control results of the cart-pole balancing system using the TSR-EA in Example 1. (a) Angle of the
pendulum. (b) Angular velocity of the pendulum. (c) Velocity of the cart.
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Figure 4.3: 50 control results of the cart-pole balancing system using the TDGAR in Example 1. (a) Angle of the
pendulum. (b) Angular velocity of the pendulum. (c) Velocity of the cart.
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Figure 4.4: 50 control results of the cart-pole balancing system using the CQGAF in Example 1. (a) Angle of the
pendulum. (b) Angular velocity of the pendulum. (c) Velocity of the cart.
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Figure 4.5: 50 control results of the cart-pole balancing system using the R-GCSE in Example 1. (a) Angle of the

pendulum. (b) Angular velocity of the pendulum. (c) Velocity of the cart.
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Furthermore, we complicate our control goal to “bringing the plant’s state to G; within
5,000 time steps, and maintaining the state within G, for 100,000 time steps,” and the original
successful region Original Range of the variables are modified to —90° <8 <90 and
-2.4m< x <2.4m. The initial state of the plant is set within Original Range. A trail ends when
the control goal is met or a failure occurs. For the QSPO, TSR-EA, TDGAR, CQGAF and
R-GCSE, a failure learning trial occurs if the cart or the pendulum deviates beyond the
Original_Range. Each algorithm is still executed for 50 times to compute the average. The

performances of all these compared methods are shown in Table 4.4.

Table 4.4: Summary Statistics of Example 1 under a difficult control goal.

Methods QPSO TSR-EA TDGAR CQGAF | R-GCSE
% of first 10% trials 92 32 56 70 78
meeting goal.
% of trials meeting 08 94 84 90 94
goal.
Time to goal, first 10% ] 547 +0.8 | 445+66 200240  [506+72 | 789838
trials.
Average Time to goali™ |15 6 11037 |:38:92:5 169:8+ 12,9 |342+6.1 | 46.1+4.9

From Table 4.4 we can<see that-the QPSO~has the most successful control rate. The
superiority can be seen especially from the first 10% learning trials where learning agents are
not fully trained yet. The QPSO is able to apply a safe, reliable control result during initial
leanings, which is crucial important in many applications. The testing results of the QPSO are
shown in Fig. 4.6 and Fig. 4.7. Each line in Fig. 4.6 and Fig. 4.7 represents a single run that
starts form a increased range of initial states. Figure 4.6 shows the results the first 1,000 of
100,000 control time steps while Fig. 4.7 shows the last 1,000. From Fig. 4.6 we can see that
with the aid of Lyapunov design, the QPSO is able to control the single-link inverted
pendulum system well under different initial conditions. Trajectories shown in Fig. 4.7 verify

the ability of the QPSO marinating the environment into G;.
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Figure 4.6: 50 first 1000 time steps control results the QPSO of the cart-pole balancing system. . (a) Angle of the
pendulum. (b) Angular velocity of the pendulum. (c) Velocity of the cart.
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Figure 4.7: 50 last 1000 time steps control results the QPSO of the cart-pole balancing system. . (a) Angle of the
pendulum. (b) Angular velocity of the pendulum. (¢) Velocity of the cart.
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Example 2: Control of a double-link inverted pendulum system

3
y

8,
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Figure 4.8: Double-link inverted pendulum system.

Consider the double-link inverted pendulum system: m; is the mass of link 1, m, is the
mass of link 2, 4, is the angle that link 1 makes with the vertical, @, is the angle that link 2
makes with link 1, /y;and /, are the-lengths of link 1and 2, /c; is-the distance of the center of
mass of link 1, /c; is the distance of the center of mass of link 2, /1 and /I, are the moments of
inertia of link 1 and link 2 about their centroids and. 7, is the only control torque applied to

the joint of link 1. Weintroduce the following five parameter equations:

D= mllcl2 + mzlf +d,
o m21022 +4,
s = myl le, . (4.13)

P, =myle, +myl,

ps =mylc,
The model of the system can be obtained by using Lagrange’s method:
D(q)§+C(q. 4)4+G(q)=7, (4.14)

where

q=1q,, qZ]T =[4, ez]r, T =[7, O]Ta (4.15)

+p, +2p.cos + p, CcOS
D(Q)Z[p1 P2 ePa R 2R qz}, (4.16)

P, t P;€08q, P,
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. . -4, —49,—4q
C(q,q)=p3smq{ > 20 1} (4.17)

q,

cos q, + psgcos(q, +
G(q):{lh g, + psg cos(q, ‘]z)}. (4.18)
P58 cos(q, +4,)
The potential energy of the double-link inverted pendulum system can be defined as

P(q) = p,gsing, + p;gsin(q, +4q,), (4.19)

and the total mechanical energy of the system is given by

N :

E(q. 4)==4'D(a)q+P(q)

(4.20)

1. . . .
=5qTD(q)q + p,gsing, + psgsin(q, +q,).

The control objective is_to stabilize the system ‘around its top position, i.e.

(4,,49,-9,,9,)=(0,0,0,0). Hence, another goal set is defined by

G, = {(%aq.p%»qz) : ”(%vq.lo%a%)” £ 0-01} . (4.20)

When the state of double-link inverted pendulum system is in G, the total mechanical energy
E of the system is given by

E(0, 0,0, 0) = Egg=(pstps)g. (4.21)

By defining a Lyapunov functionL(q, q') 3 %(Emp -E (q, q'))2 . The control objective can be

either considered as guiding the system state into G, or achievingL(q, c]) =0. The action

selection of the QPSO is to make sure that the Lyapunov function of the system decrease at all

time steps. The time derivative of L(q, q') with respect to time is given by

L(q, §)=—(Em—E (4, 4))E (4, 4), (4.22)

Where the time derivative of £ with respect to time is
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E(¢, 9)=0"D(q)i+5d"D(4)d+d'G ()

=4"(-C(a. 4)4-G(g)+7)+-d"D(a)+q"G(q) (4.23)
=¢'r = 97,
which shows that the derivative of E is proportional to the product of the angular velocity of
the first pole. The time derivative of L (q, Q) with respect to time is derived as follows:

L(q. 4)=~(E—E(q. 4))d'7

424
=—(Etop_E(q7 Q))‘hrl- e

In order to make sure the Lyapunov function of the system L(q, Q) decrease at all time
steps, the direction of the control torque is assigned to be coherent with the sign of
(Etop -FE (q, q'))q'1 . A Lyapunov-based control law for the QPSO can be derived as follows:

7, = sgn((E,, = E)q,)z , (4.25)

where z is the output of the NES limited in [-10,10]. Double-link inverted pendulum system
parameters are L;=1myLy=2m, m=1kg, my=2kg, 2=9.8m/s. In designing the NFS, the four
controller input (0,6, x,x) ~are normalized between 0‘and 1, the output z is limited between
-10 and 10. Initial parameters of the QPSO and TSR-EA for controlling two-pole inverted

pendulum system are listed in the following two tables:

Table 4.5: The initial parameters of the QPSO for two-pole inverted pendulum system.

Parameters Value Parameters Value
[ O min s T | [0, 2] ¢ 2.01
[y . [0, 2] Cy 2.01
[ Wanin > Winax ] [-30, 30] s 50

R 5 ¢ 4.02
o 0.01 b4 0.99
y 0.9 max_gen 300
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Table 4.6 : The initial parameters of the TSR-EA for two-pole inverted pendulum system.

Parameters Value Parameters Value
[ i s O max | [0, 2] Thres TimeStep 5000

[0 s 10 ] [0, 2] Crossover Rate 0.5

[ Winin s Winax J [-30, 30] Mutation Rate 0.2

R 7 s 50

A 10 Nes 350

In the TDGAR, there are five hidden nodes and five rules in the critic network and the
action network. The population size is set as 300 and the maximum perturbation is set as
0.0005. In the CQGAF, after trial-and-error tests, the final average number of rules from 50
runs was 8 by using the on-line clustering algorithm. The population size is set as 50. The

parameters for Q-learning are setas_a =0.01 and »=0.9. In the R-GCSE, the population size
is set as 50 and the mutation rate is set as 0.1.
For the TDGAR, CQGAF and R-GCSE, the original successful region of the variables is

-36" <6, <36°, and: 36" <6, <36 . Initial states of the plant are set within the original

successful region. The control goal is defined to “maintaining the plant’s state within G, for
100,000 time steps.” A trail ends when-the-control goal is met or a failure occurs, which

means that either pendulum deviates beyond the original successful region.

For the TSR-EA, the original successful region of the variables is —36" <6, <36°, and

-36" <60, <36°. The strict successful region designed by the TSR is defined in Eq. (3.7).

Initial states of the plant are set within the original successful region. The control goal is
defined to “maintaining the plant’s state within G, for 100,000 time steps.” A trail ends when
the control goal is met or a failure occurs, which means that either pendulum deviates beyond

the either the original successful region or the strict successful region.

For the Q-PSO, the original successful region of the variables 1s—90" <6 <90°, and
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—90" < ¢, <90°. Initial states of the plant are set within the original successful region, which

represents the whole input space. The control goal is defined to “bringing plant’s state to G

within 5,000 time steps and maintaining it within G, for 100,000 time steps.” A trail ends

when the control goal is met or a failure occurs, which means that it exceeds 105,000 time

steps.

Each algorithm is executed for 50 times to compute the average. The performances of all

these compared methods are shown in Table 4.7, from which we can see that the QPSO and

TSR-EA has better control rate. The ability of the QPSO to provide reliable control result

during initial learning is still obvious from control result of the first 10% learning trials.

Table.4.7: Summary Statistics of Example 2.

Methods QPSO TSR-EA TDGAR CQGAF | R-GCSE
% of first 10% trials meeting goal. 86 14 2 32 56
% of trials meeting goal. 94 88 46 68 82
Time to goal, first 10% thialss | 4o g 110 | 663424 308240 | 90.6+72 | 14594198
Average Time to goal. 346122 | 57766 [2768+31.9 | 7621131 | 131.7£165

The testing results, which consist of the angle and angular velocity of both pendulums

are shown in Fig. 4.9-4.13 as follows. Each line in Fig. 4.9-4.13 represents the first 1,000

control time steps of a single run.
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Figure 4.9: 50 first 1000 time steps control results of the double-link inverted pendulum system using the QPSO. (a)
Angle of link 1. (a) Angle of link 2. (¢) Angular velocity of link 1. (d) Angular velocity of link 2.
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Figure 4.10: 50 first 1000 time steps. control results of the double-link inverted pendulum system using the
TSR-EA. (a) Angle of link 1. (a) Angle of link 2::(¢)-Angular-velocity of link 1. (d) Angular velocity of link 2.
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Figure 4.11: 50 first 1000 time steps control results of the double-link inverted pendulum system using the
TDGAR. (a) Angle of link 1. (a) Angle of link 2. (¢) Angular velocity of link 1. (d) Angular velocity of link 2.

72



20
=
=
= 10
=
=
=
=
— ]
s
=
=
e =10
=
=
=T

N
o

&
o

L L L
500 500 Too
Time Step

L
400

(a)

Angle of the Second pendulum

L L
500 500
Time Step

(b)

200 T T T T T T T T T

150 .
A

100 —fﬂ} .\: l'r'.' ..r'{ x ':I S ™~ f‘g‘ .rl 1‘I 7

Angular Vloctty of {he first pendulum

-150

-200 L L
500 500
Time Step

L L 1 L
100 200 300 400

(c)

73



Angular Veloctty of the Second pendulum

Time Step

(d)
Figure 4.12: 50 first 1000 time steps control results of the double-link inverted pendulum system using the
CQGAF. (a) Angle of link 1. (a) Angle of link 2. (¢) Angular velocity of link 1. (d) Angular velocity of link 2.
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Figure 4.13: 50 first 1000 time steps. control results of the double-link inverted pendulum system using the
R-GCSE. (a) Angle of link 1. (a) Angle of link2::(¢)-Angularvelocity of link 1. (d) Angular velocity of link 2.

From Fig. 4.9-4.13 we can see that the proposed QPSO and TSR-EA have better control
accuracy, which is one the major benefits of applying Lyapunov design principles or the TSR
mechanism. The testing results of the last 1,000 control time steps of the QPSO and TSR-EA
are shown in Fig. 4.14 and Fig. 4.15 as follows. From Fig. 4.14 and Fig. 4.15 we can see that,
with two different kinds of mechanism, the QPSO and TSR-EA are able to attain accurate
control results. Trajectories shown in Fig. 4.14 and Fig. 4.15 verify the ability of the QPSO

and TSR-EA marinating their environment into Gy.
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Figure 4.14: 50 last 1000 time steps control results of the double-link inverted pendulum system using the QPSO.
(a) Angle of link 1. (b) Angular velocity,of'link 1. (¢) Angle of link 2. (d) Angular velocity of link 2.
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Figure 4.15: 50 last 1000 time steps control results of the double-link inverted pendulum system using the TSR-EA.
(a) Angle of link 1. (b) Angular veloeity of link-l:=(c) Angle of link 2. (d) Angular velocity of link 2.

4.2 Real-valued Function Optimization Task

In this section, we will verify the performance of the proposed MS-CMA-ES and the
SD-CPSO through real-valued function optimization task. In section 4.2.1 we introduce a
simple computer simulation that illustrates the improvement of the MS-CMA-ES on global
search ability, and the design of the environment for testing the MS-CMA-ES and other
comparing algorithms. In section 4.2.2 we give computer simulation and comparison results
that will state the improvement of the MS-CMA-ES over standard CMA-ES, SD-CPSO over
standard PSO and CPSO on multi-funnel functions optimization.
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4.2.1 Test Functions Introduction

The performance of the proposed MS-CMA-ES and SD-CPSO are verified by
real-parameter minimization tasks, which contains totally nine test functions covering all
types. By there nature they can be divided into two parts: unimodal and multi-modal functions.
The first two functions are unimodal, followed by seven multimodal functions with three of
them have simple global structures (single-funnel functions) and another four have complex
global structures (multi-funnel functions). The types and names of functions are described in

Table 4.8, and a detailed definition of test functions can be seen in [103, 104].

Table 4.8: Type and name of test functions.

Unimodal Functions

/f1: Sphere Function

f>: High-Conditioned Ellipsoidal Function

Multimodal Functions

f3: Rosenbrock-Function

f4:'Rastrigin Function

f's» Griewank Function

Multi-Funnel Functions

f: Schwefel Function

f7: Double-Rastrigin Function

fs: Weierstrass Function

f9: Michalewicz Function

First, we propose a simple computer simulation by executing both the MS-CMA-ES and
the CMA-ES on 2-dim Double-Rastrigin function multiple times with there initial search
points even distributed at the search space. We adjusted the selected Double-Rastrigin

function to zero global optimum. Then we calculate on both algorithms the probability for
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each initial search location successfully finds the global optimum. The computer simulation
process is shown as follows:

1. Initialize a set of initial search locations X={x|, xs,..., x,}. Define the run times for each
initial point N and the stopping criterion: maximum calculation times and minimum fitness

threshold.

2. Execute the algorithm N times at initial point x; and record the number of times N;(x;) the

algorithm successfully finds global optimum with initial search location x;:
P(x,)=N,(x,)/N, fori=1,2,..., n. (4.26)
3. Calculate the average probability of success E;:
E = iPs(xl) . (4.27)
i=1
The contour details of Double-Rastrigin is shown in Fig. 4.16, from which we can see that

there is a global optimum resting on the lower left corner, a local optimal solution resting on

the upper right corner, and a spread of the noise-type local minima.

-1000
-1500
-2000

-2500

Figure 4.16: Contour details of double-Rastrigin function.

In this simulation, the run times for each initial point N is set as 20, and each run ends when

the number of calculation times reaches 400, or when the function value of current search
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point declines to 0.01. The computer simulation result is shown in Fig. 4.17 which depicts the
probability of success Py(x;) of both algorithms. The search range for both algorithms are
defined as [-50,50]°, and the search space is discretized with 4x4 grid size as each initial
search location. The color of each grid from dark to light corresponds to the value of Py(x;)
from O to 1. From Fig. 4.17 we can see that the white region of the MS-CMA-ES is larger
than that of the CMA-ES especially in the mountain ridge part, which reveals the superior
global search ability on the MS-CMA-ES. Improvement can also been seen from the average
probability of success E; of the MS-CMA-ES is 0.64571, which is larger than 0.52055 of the

CMA-ES.

T MSCMAES

(@) (b)

Figure 4.17: Graph of global search ability test of (a) CMA-ES. (b) MS-CMA-ES.

4.2.2 Function Optimization Simulation
The problem dimension of the simulation is set 50. All functions have been adjusted to
zero optimal solution respectively. The number of maximum fitness calculation times, initial

search range, initial search position and minimum fitness threshold are detailed in Table 4.9.
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Table 4.9: Parameters of the simulation.

Number of Initial search Initial Minimum
maximum range position fitness
fitness threshold

calculation
fi 10000 x€[0,100]" x=[50]" le-6
f 10000 x€[0,100]" x=[50]" le-6
1 10000 x€[0,100]" x=[501" le-2
f4 3000 xe[o, 51" x=[2.5]" le-2
fs 8000 x€[0,600 | x=[300]" le-2
fe 4000 xe[0,3]" x=[1.5)¢ le-2
14 2000 x€[-20,20)¢ x=[0]“ le-2
fs 4000 x€[0,0.51" | x=[0.25)¢ le-2
/o 5000 xe[0,5] x=[2.5)" le-2

One half of the initial,search range is-defined as the initial standard deviation of CMA-ES and
MS-CMA-ES, and the initial particles of PSO are evenly distributed in the initial search range.
The proposed MS-CMA-ES and SD-CPSO are based on traditional CMA-ES and CPSO
respectively. As a result, the MS-CMA-ES is compared with the standard CMA-ES and two
of its famous improvements, a local restart CMA-ES (LR-CMA-ES) [60] and a CMA-ES with
iteratively increasing population size (IPOP-CMA-ES) [61]. As to the SD-CPSO we compare
it with standard PSO and comparing algorithms of this computer simulation include
traditional CMA-ES and , PSO [8] and CPSO-S [9]. As to the parameter setting of participant
algorithms, the parameter setting that the PSO and CPSO use refers to previous research [105];
The setting of parameters of CMA-ES is designed by [12]; MS-CMA-ES algorithm use the
same parameters as CMA-ES except that the number of sample size is 1.5 times larger to the
CMA-ES, and the parameter ¢, introduced in the MS-CMA-ES is set to be 0.1. Table 4.10
outlined the computer simulation parameters. The formulas of parameters are listed below.
The computer simulation data is obtained by executing each 50 dimensional test functions

until the stopping criterion is met. The procedure was repeated 50 times to compute the
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average fitness value. In the paper, instead of the actual numeric fitness value, the rank of the
minimum average fitness value is defined as the standard of comparison. The reason is that
we want to exclude the impact of the different degree of scale on the raw numeric difference
between each test function. For example, some functions have very large fitness gap between
the best and the second best local minimum, some of them don’t even have local minima.
Therefore, the numeric difference may not be a good performing index for evaluating

algorithms.

Table 4.10: MS-CMA-ES and CMA-ES parameters.

Parameters of Selection operator

CMA-ES MS-CMA-ES
A=4+|3Inn| }“:1'5(4+L31nnj)
" =Lw | ln(g+0.5)—lni , for 1:1,...EJ :
va 0, forelse i

Parameters of Covariance adaptation:

Ceov=0.7
HMeov— 10

.z 4+ pqln
C n+4+2uy/n

= Iucﬁ'+2
n+ g +5

d =1+2max[0 : "c“_l—ljwa
n+l

MS-CMA-ES mixed weighting:

¢,=0.1

Parameters of PSO:
c1=c>=2.01
s=50
Parameters of SD-CPSO:

pthres:()- 8
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The comparison result of the proposed MS-CMA-ES is shown in Table 4.11-4.13. In order
to verify the performance of the MS-CMA-ES, we think it is important to evaluate the
algorithms at early, middle, and the late stage of the test. So in this computer simulation we
take three check points, at 20%, 50%, and 100% of the number of the maximum fitness
calculation for rank comparison. The early, middle and later stage comparison results of the

MS-CMA-ES are shown in Table 4-6 as follows.

Table 4.11: Average fitness at 20% number of fitness calculations.

CMA-ES MS-CMA-ES | LR-CMA-ES | IPOP-CMA-ES
f1] 1.380e-021(1)* | 1.918e-009(3) | 7:665e-017(2) | 2.390e-008(4)
f2 | 0.004611(2) 1145(4) 1.660e-010(1)* | 0.009175(3)
13 51.02(1)* 202.8(4) 76.98(2) 99.09(3)
f4 13.27(1)* 21.64(2) 33.87(4) 25.88(3)
f5 | 0:06198(1)* 0.01962(2) 0.3861(3) 0.7785(4)
fe 171 (2) 516.2 (4) 391.8(3) 139.9(1)*
17 13.95(1)* 65.54(3) 65.4(2) 108.5(4)
fs 0.2643(1)* 0.7184(4) 0.4763(2) 0.5725(3)
fo 5.75(3) 33.65(4) 1,254e-001(1)* 0.36(2)

Table 4.12: Average fitness.at 50% number of fitness calculations.

CMA-ES MS-CMA-ES LR-CMA-ES | IPOP-CMA-ES
f1 | 1.512e-058(1)* | 1.335e-028(4) 8.877e-049(3) | 8.443e-050(2)
fa | 2.716e-040(2) 6.94e-013(3) | 1.408e-044 (1)* | 1.646e-010(4)
13 0.9815(2) 2.643(1)* 21.68(3) 79.85(4)
fa 9.754(2) 8.649(1)* 11.9(3) 15.09(4)
fs 0.06198(2) 0.04725(1)* 0.1451(4) 0.06753(3)
fe 169.9(4) 144.2(2) 87.78(1)* 119.7(3)
17 12.57(2) 10.17(1)* 55.82(3) 79.74(4)
13 0.1199(1)* 0.134(2) 0.7343(3) 0.7444(4)
fo 5.75(4) 7.864¢-008(1) * | 6.408e-003(3) | 5.983e-007(2)
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Table 4.13: Average fitness at 100% number of fitness calculations.

CMA-ES MS-CMA-ES | LR-CMA-ES | IPOP-CMA-ES
f1 | 1.311e-120(1)* | 2.632e-062(3) | 7.854e-105(2) | 8.443e-017(4)
f2 | 4.489e-103(1)* | 3.478e-046(4) | 2.043e-097(2) | 1.821e-056(3)

31 07862 (1)* 0.8434 (2) 18.85 (3) 82.45(4)
fal 97512 7.721(1)* 11.86(2) 15.09(2)
fs | 0.06198(2) 0.03893(1)* 0.3769(3) 0.3861(3)
16 169.9(4) 69.38(2) 87.78(2)* 66.21(1)*
f7 12.57(4) 6.652e-003(1)* 8.98(2) 11.76(4)
fs | 0.1188(4) 5e-004(1)* 0.06875 (3) | 3.876e-003(2)

fo 5.75(4) 7.864e-008(1) * | 6.326e-003(3) | 5.983e-007(2)

The results to be discussed are divided into three partsinaccordance with the function types:
1) Unimodal Function:

Under the sphere function fi, CMA-ES has the best performance, owing to its property of
rapid convergence. As to ellipsoid function £, at first, LR-CMA-ES is better than the others,
but worse than CMA-ES at the end. The reason the MS-CMA-ES has the worst performance
may be that its clustering mechanism generates too many’ components on such simple
unimodal functions. But from. the optimization result,-all three algorithms are capable of
finding optimal solution within short times of fitness calculation.

2) Multimodal Function:

The MS-CMA-ES is better than other algorithms at the later stage under the /4 and 1’5 test
functions except for f3, f4 and f5 have single-funnel and noisy-like local minimums; however, f;
doesn’t have obvious single-funnel structure. From the optimization result we can see that the
MS-CMA-ES is suitable of solving multimodal function optimization tasks.

3) Multi-Funnel Function:

In this dissertation, we focus on the optimization of this type of function. At early test stage,
the other three algorithms outperform the MS-CMA-ES algorithm. The mechanism of the
MS-CMA-ES is designed to generate multiple CMA-ES instances for exploring different
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regions of search space simultaneously. As a result, the reason the MS-CMA-ES loses at early
stage may due to the scattering of sampling resources for finding the optimal solution in
parallel. However, at the later stage, especially on the f7 and f3 functions, the global solution
search capability of the MS-CMA-ES is beyond those of other comparing methods. The
overall convergence rate of the MS-CMA-ES is its most obvious shortcomings due to the
adopted parallel searching mechanism, but it is inevitable cost for improving the global

searching ability on multi-funnel functions.

The comparison result of the proposed SD-CPSO is shown in Table 4.14 as follows.

Table 4.14: Average fitness value
CPSO-S SD-CPSO PSO
f171.6.361e-99(1)* | 2.634e-062(3) | 9.653-76(2)
f2 | 4.481e=84(1)* | 3.464e-033(3) | 2.876e-75(2)

f3|18.87643)  |0.8872 (1)* | 1.4356(2)
fi| 1871 * | 17.721(2) 26165(3)
fs | 9.6198(3) 0.6893(1)* | 63769(2)

7o | 469903) 288.3(2) 87.36(1)*
ol 12.572) 7.659(1)* 95.03(3)
fs 11228702) 0.6643(1)* | 1.254(3)
fo |575(3) 0.897(1) * 4.08(2)

The results to be discussed are divided into three parts in accordance with the function types:
1) Unimodal Function:

Under the sphere function f';, CPSO-S has the best performance, owing to its property of
rapid convergence. As to ellipsoid function f5, at first, PSO is better than the other two
algorithms. As shown from the computer simulation result, all three algorithms are capable of
solving unimodal optimization task, and no improvement of performance can be found by
applying our method.

2) Multimodal Function:

The SD-CPSO is better than other algorithms under the /3 and f’s test functions except for 4,
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the Rastrigin’s function. We think it might due to the fact that Rastrigin’s function is nearly
the same after rotation, which makes our effort trying to find a special trend to the global
optimum irrelevant. However, the superiority of the proposed SD-CPSO in finding global
optima of multimodal functions can be seen in substance.

3) Multi-Funnel Function:

From Table 4.14 we can see that in coping with multi-funnel function optimization tasks, the
superiority of the proposed SD-CPSO is obvious. In general, the optimization of multi-funnel
function is difficult as we can see especially from the optimization result of the fs function.
Despite the proposed SD-CPSO has better performance on the optimization tasks of f7 and fg
function, the improvement. is. not very obvious.-However, in the optimization of fy, the
Michalewicz's function, ~the improvement is temarkable. A visualization of a 2-D
Michalewicz's function is shown-in-Fig. 4.18: We will illustrate the optimization results of
applying Michalewicz's function in both its unrotated and rotated form in Fig. 4.19. Figure
4.19(a) represents the result of applying unrotated Michalewicz's function. Michalewicz's
function introduces many valleys into the plain; and the function values for points in the space
outside the narrow valleys give very little information about the location of the global
optimum. Thus, the swarms need to follow through these valleys to find minimums. In its
rotated version, these narrow valleys are too correlated to follow through from the perspective

of the CPSO. In Fig. 4.19(b), the SD-CPSO in evidence overcomes the drawback.
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Fugure 4.18: Visualization of a 2-D Michalewicz's function.

O CPSO-S

[4-PSO_ _

* SD-CPSO

Function Value

©

Q ©—0-0=0 O

OO OF0-0

. . , .
1500 2000 2500 3000 3500
Times of Fitness Evaluation

1000

()

4000 4500

5000

Function Value

5000

4000 4500

1500 2000 2500 3000 3500
Times of Fitness Evaluation

0 500 1000

(b)

Figure 4.19: Computer simulation results of applying Michalewicz's function in its (a) unrotated form, (b) rotated

form.
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CHAPTER 5
CONCLUSION

In this dissertation, four algorithms are proposed, including a Q-valued based particle
swarm optimization (QPSO), a two-strategy reinforcement evolutionary algorithm (TSR-EA),
a mean shift based evolution strategy with covariance matrix adaption (MS-CMA-ES) and a
separability detection approach to cooperative particle swarm optimization (SD-CPSO). In
this dissertation, the performance of. the. QPSO and TSR-EA are verified through
reinforcement learning control tasks while the. performance of the MS-CMA-ES and
SD-CPSO are verified through real-valued function optimization tasks. Advantages and future
works on these algorithms are described as follows.

The proposed "QPSO adopts the concept of Lyapunov design for constructing safe
reinforcement learning agents. The advantages of the QPSQ can be shown from that it
provides a reliable initial learning performance and accurate:control result due to the
Lyapunov design of learning agents. But one drawback of the QPSO is that it requires
additional priori knowledge. In order to apply Lyapunov-based control laws, we have to
identify the Lyapunov function of a plant first; furthermore, conventionally during the
learning phase, we also requires more information about the system’s state, which may be
difficult or too costly to access. The TSR-EA provides an alternative to attain accurate control
result by the TSR mechanism. It requires less prior knowledge about the control plant
compared with the QPSO. By simply shrinking the operating range of a control system as
time step increases, the TSR mechanism can help learners to obtain an accurate control results
on one hand and improves the learning rate on the other. Besides, the usage of the TSR is not
limited by the TSR-EA algorithm. It is simply an design of reinforcement learning signal, so it
is applicable to all time-step fashioned reinforcement learning. Another advantage of the
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TSR-EA can be shown from adopting the group-based symbiotic evolution (GSE) to evaluate
the fuzzy rule on a NFS locally.

One advantage of the MS-CMA-ES lies in improving the mutation mechanism of the
traditional CMA-ES. The mutation mechanism of traditional CMA-ES is based on its
self-adaption behavior. Despite good mutation directions can be determined by moderately
self-adapting the tactic parameters of the CMA-ES, the mutation is still limited by normal
distribution sampling. In the MS-CMA-ES, we propose a group mutation mechanism,
adopting the concept that sampling from mixture probability yields larger flexibility. Search
points sampled from mixture probability -model on multiple directions can diminish the
restriction of the local search. Another advantage of the. MS-CMA-ES can be seen from
adopting the mean shift-based clustering method for applying multiple CMA-ES instances to
search the space in parallel. The parallel 'search mechanism can-enhance the global search
ability of the CMA-ES. Only one extra parameter compared to the original CMA-ES is
required, the learning rate of mixture weightings, which reduces challenges of applying our
methodology. Computer simulation results have shown better performances on optimization
of multi-modal and multi-funnel functions.

The purpose of the SD-CPSO-is to solve the issue that CPSO encounters when
independent changes made by different swarms on correlated variables will deteriorate the
performance of the algorithm. In the SD-CPSO, we propose a self-organization approach to
the CPSO. This approach determines the separability between variables by covariance matrix
adaptation, so that non-separable variables can be placed in the same swarm for evolution.
Simulations show reasonable performance.

As to the future work in this dissertation, from the perspective of NFS design, the
proposed QPSO and TSR-EA lack of the mechanism of self-determining the number of fuzzy
rules on a NFS. The number of fuzzy rules in both algorithms have to be assigned by trial and
error tests which would increase the difficulty of applying these two algorithms.
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As to the future work of the proposed MS-CMA-ES, its convergence rate seems to be an
issue to be investigated. From Table 4.11-13 we can see that despite the MS-CMA-ES has a
good performance in finding global optimal of multi-funnel functions, it requires more
calculation times to find it. In our opinion, we think there are two possible directions of
enhancing its convergence rate.

The first direction is to alter its mixture weight updating rule. In this dissertation, as
introducing mean shift procedure to the CMA-ES, an additional parameter, mixture weight, is
also introduced. The updating rule of mixture weighting can be shown in Eq. (3.34)-(3.36). In
this dissertation, we haven’t probed into the connection between the convergence rate and the
mixture weighting rule yet.

Another possible direction of enhancing the convergence rate of the MS-CMA-ES is to
modify its bandwidth selection mechanism. In the MS-CMA-ES; the optimal bandwidth is
derived from the AMISE theorem. The derived bandwidth determines both the number of
clusters obtained and the number of samples in clusters. In this dissertation, if we can modify
the fixed bandwidth selection that the MS-CMA-ES adopts into variable bandwidth selection
mechanism, there might be a chance of increasing its convergence rate. The appended
flexibility could arouse the issue of relationships-among clusters, from which we could try to
apply further manipulations to the clusters, such as separating or lumping. Moreover, under
the premise of not explosively increase the computational cost, incorporating a iteratively
increasing population size mechanism is also considerable. As to the future work on the
SD-CPSO, the issue of pseudominima caused by the split of swarm still remains to be

investigated.
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