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線性矩陣不等式的強健適應滑差控制應用

於T-S模糊系統 

 

學生：劉松傑             指導教授：林昇甫 博士 

 

國立交通大學 電控工程研究所 

 

摘要 
物理系統自然形成非線性，因此，所有的控制系統都是具有某些程度的非線

性。過去超過二十年時間，模糊技術已經廣泛地成功被利用在非線性系統模型建

立與控制器設計。近十年來，T-S模糊模型在處理複雜的非線性系統是一個廣為

流傳且使用方便的工具。同樣地，對於非線性系統的模糊迴授控制設計問題已經

廣泛地被研究藉由使用T-S模型，其中用簡單的局部線性模型被組合去描述非線

性系統的全域行為。實際上，不可避免的不確定性也許會以一種非常複雜的方式

進入到一個非線性系統模型。此不確定性也許包含模型誤差、參數變化、外部干

擾和模糊近似誤差。在如此的一個情況下，模糊迴授控制設計方法也許不再運作

良好。 

在本論文中，我們首先提出強健適應滑差控制（包含滑差控制和適應控制）

應用於具有範數界限外部干擾的T-S模糊模式，同時放寬每一個正規的局部系統

模式擁有相同輸入通道的限制假設，這個限制假設是傳統可變結構模糊控制設計

方法所需要的。然後，提出具有非相配參數變動和外部擾動的T-S模糊模式之強

健適應滑差控制。此外，針對具有非相配參數變動和外部擾動的T-S模糊時間延

遲模式，其強健適應滑差控制亦被提出。最後，利用一些例子來驗證本論文所提

出方法的有效性和可行性。 

 

關鍵字：T-S模糊模式，範數界限變動，參數變動，外部擾動，滑差控制，適應

控制。 
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ABSTRACT 
 

Physical systems are inherently nonlinear. Thus, all control systems are nonlinear 
to a certain extent. Over the past two decades, fuzzy techniques have been widely and 
successfully exploited in nonlinear system modeling and control. In last ten years, the 
Takagi-Sugeno (T-S) fuzzy model is a popular and convenient tool for handling 
complex nonlinear systems. Correspondingly, the fuzzy feedback control design 
problem for a nonlinear system has been studied extensively by using the T-S model 
where simple local linear models are combined to describe the global behavior of the 
nonlinear system. In practice, the inevitable uncertainties may enter a nonlinear 
system model in a very complicated way. The uncertainty may include modeling 
errors, parameter variations, external disturbances, and fuzzy approximation errors. In 
such a situation, the fuzzy feedback control design methods may not work well 
anymore. 

In this dissertation, firstly, we propose two kinds of LMI-based robust adaptive 
sliding control, including a robust sliding control method and a robust adaptive 
control method, for uncertain Takagi-Sugeno fuzzy models with norm-bounded 
uncertainties, and meantime relax the restrictive assumption that each nominal local 
system model shares the same input channel, which is required in the traditional 
VSS-based fuzzy control design methods. Then, two kinds of LMI-based robust 
adaptive sliding control are developed for uncertain T-S fuzzy models which include 
mismatched parameter uncertainties and external disturbances. Moreover, two kinds 
of LMI-based robust adaptive sliding control are proposed for the uncertain T-S fuzzy 
time-delay model which includes mismatched parameter uncertainties in the state 
matrix and norm-bounded external disturbances. Finally, some examples are used to 
illustrate the effectiveness and usefulness of the proposed methods in this dissertation. 
 
Keywords: T-S fuzzy models, norm-bounded uncertainties, parameter uncertainties, 
external disturbances, sliding control, adaptive control 
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Chapter 1                          

Introduction 

Up to now, fuzzy systems have been applied with great success to numerous real 

world applications, such as Penicillin-G conversion [1], prediction of river water flow 

[2], and many other examples in ecological systems and biomedical field [1], [3]. In the 

meantime, numerous publications have been reported in providing theoretical support. 

Various methodologies have been proposed for analysis, modeling, design, control and 

monitor of fuzzy systems. Fuzzy ideas are useful for modeling complex nonlinear 

systems in which, due to the complexity or the uncertainty, classical tools are 

unsuccessful. The truth model is too complicated for use in the controller design. Thus, 

we need to develop a simplified model that can be used to design a controller. Such a 

simplified model is labeled by Friedland [4] as the design model. The design model 

should capture the essential features of the process. In practice, the inevitable 

uncertainties may enter a nonlinear system model in a very complicated way. The 

uncertainty may include modeling errors, parameter variations, external disturbances, 

and fuzzy approximation errors. In such a situation, some fuzzy feedback control 

design methods may not work well anymore. To deal with the problem, this dissertation 

provides two kinds of LMI-based robust adaptive sliding control, including a sliding 

control method and an adaptive control method.  

The introduction of this dissertation is introduced in this chapter. The motivation 

of this dissertation is discussed in Section 1.1. In Section 1.2, related works are 

introduced. The approach of this dissertation is described in Section 1.3. In Section 1.4, 

the organization of the dissertation is introduced. 
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1.1  Motivation 

The first step in the controller design procedure is the construction of a “truth 

model” of the dynamics of the process to be controlled. The truth model is a simulation 

model that includes all the relevant characteristics of the process. The truth model is too 

complicated for use in the controller design. Thus, we need to develop a simplified 

model that can be used to design a controller. Such a simplified model is labeled by 

Friedland [4] as the design model. The design model should capture the essential 

features of the process. In many situations, there may be human experts who can 

provide a linguistic description of the process in terms of IF-THEN rules. Combining 

the available mathematical description of the process with its linguistic description 

results in a fuzzy system model. Such an approach to modeling was proposed by Takagi 

and Sugeno [5] and further developed by Sugeno and Kang [6]. This type of model is 

called the Takagi-Sugeno (T-S) or Takagi-Sugeno-Kang (TSK) fuzzy model. 

T-S fuzzy models are popular and well used tools in recent years. A general T-S 

fuzzy model employs an affine fuzzy model with a constant in the consequence [5]. It is 

known that smooth nonlinear dynamic systems can be approximated by affine T-S 

fuzzy models [7,8]. Most recent developments are based on T-S models with linear rule 

consequences (here and after, such models are generally called T-S fuzzy models). The 

main feature of T-S fuzzy models is to represent the nonlinear dynamics by simple 

(usually linear) models according to the so-called fuzzy rules and then to blend all the 

simple models into an overall single model through nonlinear fuzzy membership 

functions. Each simple model is called a local model or a sub-model. The output of the 

overall fuzzy model is calculated as a gradual activation of the local models by using 

proper defuzzification schemes [5], [9,10]. It has been proved that T-S fuzzy models 

can approximate any smooth nonlinear dynamic systems [11,12]. Based on the sector 
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nonlinearity concept [12], the uncertain nonlinear system can be systematically 

constructed by T–S fuzzy models. 

In practice, the inevitable uncertainties may enter a nonlinear system model in a 

very complicated way. The uncertainty may include modeling errors, parameter 

variations, external disturbances, and fuzzy approximation errors. In such a situation, 

some fuzzy feedback control design methods may not work well anymore.  

On the other hand, time-delay is often encountered in various industrial systems, 

such as the turbojet engine, electrical networks, nuclear reactor, rolling mill, and 

chemical process, etc. Recently, the feedback stabilization problem for uncertain 

time-delay systems is also a problem of interest because the existence of a delay is 

frequently a source of poor system performance or instability. However, they are 

sensitive to the uncertainty, which directly affects the control systems. 

1.2  Related Works 

    The history of the so-called parallel distributed compensation (PDC) began with a 

model-based design procedure proposed by [13]. However, the stability of the control 

systems was not addressed in the design procedure. The design procedure was 

improved and the stability of the control systems was analyzed in [14]. The design 

procedure is named “parallel distributed compensation” in [15]. The PDC [14-16] 

offers a procedure to design a fuzzy controller from a given T-S fuzzy model. It should 

be noted that many real systems, for example, mechanical systems and chaotic systems, 

can be and have been represented by T-S fuzzy models.  

    It is well-known that time-delay is a common and complex phenomenon in many 

industrial and engineering systems, such as communication systems, rolling mill 

systems and transportation systems. Since 2000, the T-S fuzzy model has been extended 

to undertake analysis and control problems for nonlinear systems with time-delay. More 
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recently, great progress has been made in the analysis and synthesis of T-S fuzzy 

systems with time-delay, such as stability and stabilization based on the parallel 

distributed compensation (PDC) method [17-19]. 

    On ∞H control, the problem of static output feedback control was developed in 

[20,21]. Robust stability and guaranteed cost control were treated in [22]. Chen and Liu 

[21] proposed a robust ∞H control by using the Lyapunov-Krasovskii function (LKF)   

   ∫ ∫ ∫− − +
++=

t

tt

t

t

TTT dsdsxRsxdssxQsxtPxtxtxV
)(

0
)()()()()()())((

τ τ η
η&&  

and model transformation technique which introduced conservatism.  

1.3  Approach 

Over the past two decades, fuzzy techniques have been widely and successfully 

exploited in nonlinear system modeling and control. The Takagi-Sugeno (T-S) model [5] 

is a popular and convenient tool for handling complex nonlinear systems. 

Correspondingly, the fuzzy feedback control design problem for a nonlinear system has 

been studied extensively by using T-S model where simple local linear models are 

combined to describe the global behavior of the nonlinear system [23-29]. In practice, 

the inevitable uncertainties may enter a nonlinear system model in a very complicated 

way. The uncertainty may include modeling errors, parameter variations, external 

disturbances, and fuzzy approximation errors. In such a situation, the fuzzy feedback 

control design methods of [23-29] may not work well anymore. To deal with the 

problem, some authors [30,31] have exploited the variable structure system (VSS) 

theory which has provided an effective means to design robust controllers for uncertain 

nonlinear systems where the uncertainties are bounded by known scalar valued 

functions.  

In the VSS, the control design of the plant is intentionally changed by using a 
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viable high-speed switching feedback control to obtain a desired system response, from 

which the VSS arises in finite time. The VSS drives the trajectory of the system onto a 

specified and user-design surface, which is called the sliding surface or the switching 

surface, and maintains the trajectory on this sliding surface for all subsequent time. The 

closed-loop response obtained from using a VSS control law comprises two distinct 

modes. The first is the reaching mode, also called nonsliding mode, in which the 

trajectory starting from anywhere on the state space is being driven towards the 

switching surface. The second is the sliding mode in which the trajectory 

asymptotically tends to the origin. The central feature of the VSS is the sliding mode on 

the sliding surface on which the system remains insensitive to internal parameter 

variations and external disturbance. In sliding mode, the order of the system dynamics 

is reduced. This enables simplification and decoupling design procedure [32-35]. 

However, all the VSS-based fuzzy control system design methods are based on the 

assumption that each nominal local system model shares the same input channel. This 

assumption is very restrictive and inadequate to modeling uncertainty/nonlinearity in 

various mechanical systems such as an inverted pendulum on a cart. 

Some authors [36-40] have relaxed the assumption and they have proposed 

adaptive laws to estimate the upper norm bounds. However, the previous VSC-based 

fuzzy control methods have considered the problem of adaptive control design and 

stability analysis for uncertain T-S fuzzy models where the input matrices of the local 

system models satisfy the assumption that each nominal local system shares the same 

input channel. It is practically difficult to satisfy this assumption.  

On the other hand, time-delay is often encountered in various industrial systems, 

such as the turbojet engine, electrical networks, nuclear reactor, rolling mill, and 

chemical process, etc. Recently, the feedback stabilization problem for uncertain 
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time-delay systems is also a problem of interest because the existence of a delay is 

frequently a source of poor system performance or instability [41-43]. However, they 

are sensitive to the uncertainty, which directly affects the control systems. These years, 

other authors [44-46] have exploited the SMC approach theory which has provided an 

effective means to design robust controllers for uncertain fuzzy time-delay systems 

where external disturbances are bounded by known upper norm bounds. 

In this dissertation, we propose two kinds of LMI-based robust adaptive sliding 

control, including a robust sliding control method and a robust adaptive control method, 

for uncertain Takagi-Sugeno fuzzy models with norm-bounded uncertainties, and 

meantime relax the restrictive assumption that each nominal local system model shares 

the same input channel, which is required in the traditional VSS-based fuzzy control 

design methods. Then, two kinds of LMI-based robust adaptive sliding control are 

developed for uncertain T-S fuzzy models which include mismatched parameter 

uncertainties and external disturbances. Moreover, two kinds of LMI-based robust 

adaptive sliding control are proposed for the uncertain T-S fuzzy time-delay model 

which includes mismatched parameter uncertainties in the state matrix and 

norm-bounded external disturbances. Finally, some examples are used to illustrate the 

effectiveness and usefulness of the proposed methods for distinct uncertain T-S fuzzy 

models and to compare with the existing methods in each final subsection. 

1.4  Organization of this Dissertation 

This dissertation comprises five chapters. In Chapter 1, the introduction comprises 

motivation, related works, approach, and organization of this dissertation. In Chapter 2, 

foundations are described by providing concepts of Lyapunov stability and linear 

matrix inequality. In Chapter 3, LMI-based robust sliding control design methods    

are developed for different uncertain Takagi-Sugeno fuzzy models with 



 7

matched/mismatched parameter uncertainties and external disturbances which are 

bounded by known scalar valued functions and meantime we relaxed the restrictive 

assumption that each nominal local system model shares the same input channel, which 

is required in the traditional VSS-based fuzzy control design methods. Besides, a robust 

sliding control design method is also presented for the uncertain T-S time-delay model 

with mismatched parameter uncertainties and external disturbances. Finally, some 

examples are used to illustrate the effectiveness of the proposed methods for distinct 

uncertain T-S fuzzy models and to compare with the existing methods in each final 

subsection. In Chapter 4, LMI-based robust adaptive control design methods are 

proposed for distinct uncertain T-S fuzzy models which include matched/mismatched 

parameter uncertainties and unknown norm-bounded external disturbances. Moreover, a 

robust adaptive control design method is also proposed for the uncertain T-S time-delay 

model with mismatched parameter uncertainties and external disturbances. Finally, 

some examples are used to illustrate the effectiveness of the proposed methods for 

distinct uncertain T-S fuzzy models and to compare with the existing methods in each 

final subsection. In Chapter 5, the contributions are discussed and suggestions for 

future work are proposed. 
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Chapter 2                          

Foundations 

    In this chapter, the basic concepts that relate to the proposed control methods are 

introduced. The Lyapunov stability is discussed in the first section. Section 2.2 

introduces the concept of linear matrix inequality (LMI). 

2.1  Lyapunov Stability 

Consider a general nonlinear system [47] 

                )(xAx =&                                 (2.1) 

where nRx∈ are the state variables and nn RRA →: is a nonlinear function. We assume 

that A is such that system (2.1) has a unique solution )(tx  over ),0[ ∞  for all initial 

conditions )0(x  and that the solution depends continuously on )0(x . A vector 

nRx ∈0 is an equilibrium point of the system (2.1) if 0)( 0 =xA . 

Without loss of generality, we can assume that 00 =x  is an equilibrium point of 

the system (2.1); that is, 0)0( =A . Otherwise, we can perform a simple state 

transformation 0xxz −=  to obtain a new state equation )()(~
0xzAzAz +==&  where 

00 =z  is an equilibrium point, that is, .0)()0(~
0 == xAA Clearly, the solution of the 

differential equation (2.1) shows that if 0)0( =x , then 0)( =tx , for all 0>t . 

However, this solution may or may not be stable. 

Definition 2.1.1: 

Stability: The equilibrium point 00 =x  of the system (2.1) is stable if for all 0>ε , 

there exists a 0)( >εδ  such that εεδ <⇒< )()()0( txx , .0≥∀t  
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In other words, the equilibrium point 00 =x  is stable if arbitrarily small 

perturbations of the initial state 0)0( =x  from the equilibrium point result in 

arbitrarily small perturbation of the corresponding state trajectory )(tx . 

Definition 2.1.2: 

Asymptotic Stability: The equilibrium point 00 =x  of the system (2.1) is 

asymptotically stable if it is stable and there exists some 0>γ  such that if γ<)0(x , 

then 0)( →tx  as .∞→t  

In other words, the equilibrium point 00 =x  is asymptotically stable if there 

exists a neighborhood of 00 =x  such that if the system starts in the neighborhood, 

then its trajectory converges to the equilibrium point 00 =x  as ∞→t . 

The equilibrium point 00 =x  of the system (2.1) is globally asymptotically stable 

if 0>γ  can be arbitrarily large; that is, all trajectories converges to the equilibrium 

point 00 =x . 

Determining stability of a system may not be an easy task if the system is 

nonlinear. One approach often used to determine stability is that of Lyapunov. 

Intuitively, the Lyapunov stability theorem can be explained as follows. Given a system 

with an equilibrium point 00 =x , let us define some suitable “energy” function of the 

system. The function must have the property that is zero at an equilibrium point 00 =x  

and positive elsewhere. Assume further that the dynamic system is such that the energy 

of the system is monotonically decreasing with time and hence eventually reduces to 

zero. Then, the trajectories of the system have no other places to go but the origin. 

Therefore, the system is asymptotically stable. This generalized energy function is 

called a Lyapunov function. If there exists a Lyapunov function, then we can prove the 
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asymptotic stability using the following Lyapunov stability theorem. 

Theorem 2.1.1 

The equilibrium point 00 =x  of the system (2.1) is asymptotically stable if there 

exists a Lyapunov function RRV n →: such that 0)( >xV , 0≠x , 0)( =xV , 

0=x , 0)( <xV& , and 0≠x , 0)( =xV& , 0=x  is true in a neighborhood of 00 =x , 

{ }γ<= xxN :  for some 0>γ . 

Proof: 

We provide the following intuitive proof by contradiction. If the equilibrium point 

00 =x  of the system (2.1) is not asymptotically stable; that is, 0)( →tx  as ∞→t  is 

not true even if γ<)0(x  for some 0>γ , then α−<)(xV& for some 0>α . Since 

∫ ∫ −=−+=+=
t t

txVdxVdxVxVtxV
0 0

))0(())0(()())0(())(( ατατ& . 

For a sufficiently large t , 0))(( <txV . This contradicts the assumption 0))(( ≥txV . 

The key to proving stability of a system using the Lyapunov stability theorem is to 

construct a Lyapunov function. This construction must be done in a case-by-case basis. 

There is no general method for the construction. The following example illustrates the 

application of the Lyapunov stability theorem. 

Example 2.1.1 

Let us consider the following system: 

121 3xxx −=& , 1
3
22 2xxx −−=& . 

To prove it is asymptotically stable, let us consider the following Lyapunov function: 

2
2

2
12)( xxxV += . 

Clearly, 0)( >xV , 0≠x , 0)( =xV , 0=x . 
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On the other hand, 

2211 24)( xxxxxV &&& += )2(2)3(4 1
3
22121 xxxxxx −−+−=  

21
4
2

2
121 42124 xxxxxx −−−= 4

2
2
1 212 xx −−= . 

Therefore, 0)( <xV& , 0≠x , 0)( =xV& , 0=x . 

Finally, we can conclude that the system is asymptotically stable. 

2.2  Linear Matrix Inequality 

A linear matrix inequality (LMI) has the form [48] 

0)(
1

0 >+≡ ∑
=

m

i
ii FxFxF                       (2.2) 

where mRx∈ is the variable and the symmetric matrices nnT
ii RFF ×∈= , ,,...,0 mi =  

are given. The inequality symbol in (2.2) means that )(xF  is positive-definite, i.e., 

0)( >uxFu T  for all nonzero nRu∈ . Thus, the LMI (2.2) is equivalent to a set of n 

polynomial inequalities in x , i.e., the leading principal minors of )(xF  must be 

positive. We will also encounter nonstrict LMIs, which have the form 

0)( ≥xF .                              (2.3) 

The strict LMI (2.2) and the nonstrict LMI (2.3) are closely related. 

The LMI (2.2) is a convex constraint on x , i.e., the set }0)(|{ >xFx is convex. 

Though the LMI (2.2) may seem to have a specialized form, it can represent a wide 

variety of convex constraints on x . In particular, linear inequalities, quadratic 

inequalities, matrix norm inequalities, and constraints that arise in control theory, such 

as Lyapunov and convex quadratic matrix inequalities, can all be cast in the form of an 

LMI. 

Multiple LMIs 0)()1( >xF ,, ⋅⋅⋅ 0)()( >xF p  can be expressed as the single LMI 
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0))(,),(( )()1( >⋅⋅⋅ xFxFdiag p . Therefore we will make no distinction between a set of 

LMIs and single LMI, i.e., “the LMI 0)()1( >xF ,, ⋅⋅⋅ 0)()( >xF p ” will mean “the LMI 

0))(,),(( )()1( >⋅⋅⋅ xFxFdiag p ”. 

When the matrices iF are diagonal, the LMI 0)( >xF  is just a set of linear 

inequalities. Nonlinear (convex) inequalities are converted to LMI form using Schur 

complements. The basic idea is as follows: the LMI 

0
)()(
)()(
>








xRxs
xSxQ

T                          (2.4) 

where TxQxQ )()( = , TxRxR )()( = , and )(xS depend affinely on x , is equivalent to  

0)( >xR , 0)()()()( 1 >− − TxSxRxSxQ .                (2.5) 

In other words, the set of nonlinear inequalities (2.5) can be represented as the LMI 

(2.4). 

As an example, the matrix norm constraint 1)( <xZ , where qpRxZ ×∈)( and 

depends affinely on x , is represented as the LMI 

0
)(

)(
>








IxZ
xZI

T  

Since 1<Z  is equivalent to 0>− TZZI . 

We will often encounter problems in which the variables are matrices, e.g., the 

Lyapunov inequality 

0<+ PAPAT                               (2.6) 

where nnRA ×∈ is given and TPP = is the variable. In this case we will not write out the 

LMI explicitly in the form 0)( >xF , but instead make clear which matrices are the 

variables. The phrase “the LMI 0<+ PAPAT in P ” means that the matrix P is a 

variable. Of course, the Lyapunov inequality (2.6) is readily put in the form (2.2), as 
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follows. Let 1P ,, ⋅⋅⋅ mP be a basis for symmetric nn×  matrices. Then take 00 =F  and 

APPAF ii
T

i −−= . Leaving LMIs in a condensed form such as (2.6), in addition to 

saving notation, may lead to more efficient computation. 

As another related example, consider the quadratic matrix inequality 

01 <+++ − QPBPBRPAPA TT                        (2.7) 

where A , B , TQQ = , 0>= TRR are given matrices of appropriate sizes, 

and TPP = is the variable. Note that this is a quadratic matrix inequality in the 

variable P . It can be expressed as the linear matrix inequality 

0>






 −−−
RPB

PBQPAPA
T

T

. 

This representation also clearly shows that the quadratic matrix inequality (2.7) is 

convex in P , which is not obvious. 

Finally, given an LMI 0)( >xF , the corresponding LMI Problem (LMIP) is to 

find feasx such that 0)( >feasxF  or determine that the LMI is infeasible. Of course, 

this is a convex feasibility problem. We will say “solving the LMI 0)( >xF ” to mean 

solving the corresponding LMIP. 

As an example of an LMIP, consider the “simultaneous Lyapunov stability 

problem”: We are given nn
i RA ×∈ , ,,,1 Li ⋅⋅⋅= and need to find P satisfying the LMI 

0>P ,  0<+ i
T
i PAPA ,  Li ,,1 ⋅⋅⋅=  

or determine that no such P exists. 
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Chapter 3                               

LMI-Based Robust Sliding Control 

    In this chapter, LMI-based robust sliding control methods are developed for 

different uncertain Takagi-Sugeno fuzzy models/time-delay models. The introduction of 

this chapter is introduced in Section 3.1. In Section 3.2, a robust sliding control method 

is proposed for T-S fuzzy systems. Section 3.3 presents two kinds of robust sliding 

control methods for mismatched T-S fuzzy systems. A robust sliding control method is 

presented for mismatched T-S fuzzy time-delay systems in Section 3.4. 

3.1  Introduction 

Over the past two decades, fuzzy techniques have been widely and successfully 

exploited in nonlinear system modeling and control. The Takagi-Sugeno (T-S) model [5] 

is a popular and convenient tool for handling complex nonlinear systems. 

Correspondingly, the fuzzy feedback control design problem for a nonlinear system has 

been studied extensively by using T-S model where simple local linear models are 

combined to describe the global behavior of the nonlinear system [23-29]. In practice, 

the inevitable uncertainties may enter a nonlinear system model in a very complicated 

way. The uncertainty may include modeling errors, parameter variations, external 

disturbances, and fuzzy approximation errors. In such a situation, the fuzzy feedback 

control design methods of [23-29] may not work well anymore. To deal with the 

problem, some authors [30,31] have exploited the variable structure system (VSS) 

theory which has provided an effective means to design robust controllers for uncertain 

nonlinear systems where the uncertainties are bounded by known scalar valued 

functions.  
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In the VSS, the control design of the plant is intentionally changed by using a 

viable high-speed switching feedback control to obtain a desired system response, from 

which the VSS arises in finite time. The VSS drives the trajectory of the system onto a 

specified and user-design surface, which is called the sliding surface or the switching 

surface, and maintains the trajectory on this sliding surface for all subsequent time. The 

closed-loop response obtained from using a VSS control law comprises two distinct 

modes. The first is the reaching mode, also called nonsliding mode, in which the 

trajectory starting from anywhere on the state space is being driven towards the 

switching surface. The second is the sliding mode in which the trajectory 

asymptotically tends to the origin. The central feature of the VSS is the sliding mode on 

the sliding surface on which the system remains insensitive to internal parameter 

variations and external disturbance. In sliding mode, the order of the system dynamics 

is reduced. This enables simplification and decoupling design procedure [32-35]. 

However, all the VSS-based fuzzy control system design methods are based on the 

assumption that each nominal local system model shares the same input channel. This 

assumption is very restrictive and inadequate to modeling uncertainty/nonlinearity in 

various mechanical systems such as an inverted pendulum on a cart. 

On the other hand, time-delay is often encountered in various industrial systems, 

such as the turbojet engine, electrical networks, nuclear reactor, rolling mill, and 

chemical process, etc. Recently, the feedback stabilization problem for uncertain 

time-delay systems is also a problem of interest because the existence of a delay is 

frequently a source of poor system performance or instability [41-43]. However, they 

are sensitive to the uncertainty, which directly affects the control systems. 

In this chapter, we propose robust sliding control design methods for different 

uncertain T-S fuzzy models with matched/mismatched parameter uncertainties and 



 16

external disturbances which are bounded by known scalar valued functions. Each 

nominal local system model of the uncertain system under consideration may not share 

the same input channel. As the local controller, we use a sliding mode controller with a 

nonlinear switching feedback control term. We derive LMI conditions for existence of 

linear sliding surfaces guaranteeing asymptotic stability of the reduced order equivalent 

sliding mode dynamics, and we give an explicit formula of the switching surface 

parameter matrix in terms of the solution of the LMI existence conditions. The 

nonlinear switching feedback control term is also designed to drive the system 

trajectories so that a stable sliding motion is induced in finite time on the switching 

surface and the state converges to zero. Besides, a robust sliding control design method 

is also presented for the uncertain T-S time-delay model with mismatched parameter 

uncertainties and external disturbances. Finally, some examples are used to illustrate the 

effectiveness of the proposed methods for distinct uncertain T-S fuzzy models and to 

compare with the existing methods in each final subsection. 

3.2  Robust Sliding Control for T-S Fuzzy Systems 

    In this section, system formulation for the uncertain T-S fuzzy model is described 

in Section 3.2.1. A robust sliding control method via LMI is proposed in Section 3.2.2. 

Some examples are used to illustrate the effectiveness of the proposed methods and to 

compare with the existing methods in Section 3.2.3. 

3.2.1 System Formulation 

Consider the following uncertain T-S fuzzy model [49]:  

[ ]),()()()()(
1

xthBtuBtxAtx iii

r

i
i ++= ∑

=

θβ&                      (3.1) 

where nRtx ∈)( is the state, mRtu ∈)(  is the control input, ii BA ,  are constant 
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matrices of appropriate dimensions, ),,1(],,,[ 1 sjjs ⋅⋅⋅=⋅⋅⋅= θθθθ are the     

premise variables, s is the number of the premise variables, =)(θβi  

∑ =

r

j ji 1
),(/)( θωθω riR s

i ,,1],1,0[: ⋅⋅⋅=→ω is the membership function of the system 

with respect to plant rule ri, is the number of the IF-THEN rules, iβ  can be regarded 

as the normalized weight of each IF-THEN rule and it satisfies 

that ,0)( ≥θβi ,1)(
1

=∑=
θβr

i i
mRxth ∈),(  stands for the lumped nonlinearities or 

uncertainties. We will assume that the followings are satisfied:  

A1: The mn× matrix B defined by ∑=
=

r

i iB
r

B
1

1  satisfies the rank constraint 

rank mB =)( , i.e., the matrix B  has full column rank m . 

A2: The function ),( xth  is unknown but bounded as 
k

l

k
k xxthxth ∑

=

≤−
0

),(ˆ),( ρ  

where lρρ ,,0 ⋅⋅⋅ are known constants, ),(ˆ xth is an estimate of ),( xth , and l is a 

known positive integer.  

The system (3.1) does not have to satisfy the restrictive assumption that all the input 

matrices of the local system models are in the same range space. It should be noted that 

the assumption A1 implies that mBrank i ≤)( and each nominal local system model 

may not share the same input channel. The assumption A2 with 1=l and 

0),(ˆ =xth has been used in the literature [50]. We can set ),(ˆ xth as the nominal value 

of ).,( xth Using the above assumptions, the uncertain T-S fuzzy model (3.1) can be 

written as follows. 

 )],(][)([)()()(
1

xthuGHFBtxAtx i

r

i
i +++= ∑

=

βθβ&                (3.2) 

where )],(,),([ 1 θβθββ r⋅⋅⋅= and the matrices )(,, βFGH  are defined by 
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[ ] ,)(,),(
2
1

1 rBBBBH −⋅⋅⋅−= [ ] ,,, TIIG ⋅⋅⋅=  

[ ].))(21(,,))(21()( 1 IIdiagF r θβθββ −⋅⋅⋅−=              (3.3) 

It should be noted that the system (3.1) does not have to satisfy 

,21 rBBB =⋅⋅⋅== which is used in almost all published results on VSS design methods 

including the VSS-based fuzzy control design methods of [33,34]. Hence the methods 

[30,31] cannot be applied to the above model (3.1). Since 0)( ≥θβi  and 

∑=
=

r

i 1
,1)(θβ we can see that the following inequality always holds: 

.)()()()( IFFFF TT ≤= ββββ                      (3.4) 

Many examples in the literature and various mechanical systems such as motors and 

robots do not satisfy the restrictive assumptions that each nominal local system model 

shares the same input channel and they fall into the special cases of the above model 

[49]. 

3.2.2 Sliding Control Design via LMI 

The Sliding Mode Control (SMC) design is decoupled into two independent tasks 

of lower dimensions: The first involves the design of −− )1(nm dimensional switching 

surfaces for the sliding mode such that the reduced order sliding mode dynamics 

satisfies the design specifications such as stabilization, tracking, regulation, etc. The 

second is concerned with the selection of a switching feedback control for the reaching 

mode so that it can drive the system’s dynamics into the switching surface [33]. We first 

characterize linear sliding surfaces using LMIs. 

Let us define the linear sliding surface as 0== xSσ where S is a nm× matrix. 

Referring to the previous results [33], [51], we can see that for the system (3.2) it is 

reasonable to find a sliding surface such that  
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P1 [ ]GSHFSB )(β+ is nonsingular for any β satisfying ,,,1,0)( rii ⋅⋅⋅=≥θβ and 

∑=
=

r

i i1
.1)(θβ  

P2 The reduced )( mn − order sliding mode dynamics restricted to the sliding surface 

0=xS is asymptotically stable for all admissible uncertainties. 

It should be noted that P1 is necessary for the existence of the unique equivalent control 

[33] and the assumption A1 is necessary for the nonsingularity of SB. 

Define a transformation matrix and the associated vector v as ,)([ 1−ΛΛΛ= YM T  

TT BYBBY ])( 111 −−− ,],[ TTT SV= Mxvvv TTT == ],[ 21  where mnRv −∈1  ., 2
mRv ∈  By the 

above transformation, we can see that ],[1 BYM Λ=− and .2 σ=v  Then, from system 

(3.2), we can obtain  

















Λ
Λ

=






 ∑
= σ

θβ
σ

1

1

1 )(
v

BSAYSA
BVAYVAv r

i ii

ii
i&

&
)].,([

)(
)(

xthu
GSHFI

GVHF
+








+

+
β

β
    (3.5) 

From the equivalent control method [33], we can see that the equivalent control is  

given by =)(tueq ).,(])()[( 1
1

xthxSAGSHFI i
r

i i −+− −
=∑ βθβ By setting 0== σσ& and 

substituting )(tu with ),(tueq we can obtain that the reduced )( mn − order sliding 

mode dynamics restricted to the switching surface 0== Sxσ is given by  

1
1

1
1 )())(( vYADYv i

T
r

i

T
i ΛΛΛΛ= ∑

=

− βθβ&                  (3.6) 

where .])([)()( 1 SGSHFIGHFID −+−= βββ  

Theorem 3.1  Let us consider the sliding mode dynamics (3.6). If there exist  

matrices ,nnRY ×∈ )( mnnR −×∈Λ satisfying ,,0 IB TT =ΛΛ=Λ  scalars RRcRc ∈∈∈ η,, 21 , 

),(min BBTλκ =  and ∗ represents blocks that are readily inferred by symmetry such 

that the following LMIs holds: 
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i
IHYA

IH
YA

i

T
i

T

∀<
















−Λ
∗−Λ
∗∗Λ∗+Λ

,0
)(

η
η                    (3.7) 

,0
00

0
0

2

1 >
















−YIc
IcI

IY
                           (3.8) 

0
0

0
2

2

1 >














 ∗∗

η
η

ηκ

rrc
rrc                              (3.9) 

then, there exists a linear sliding surface parameter matrix S satisfying P1-P2 and the 

sliding surface 

0)()( 111 === −−− xYBBYBxSx TTσ                        (3.10) 

will guarantee that the sliding mode dynamics (3.6) is asymptotically stable. 

Proof:  By using Schur complement formula [48], we can easily show that in fact the 

following LMIs are incorporated in the LMIs (3.7)-(3.9) 

,,0,0,0 2
21 IHHcc T <>>> ηη ).(2 2

2
2
1

2 ccr +>κη                 (3.11) 

It is clear that if the following inequality (3.12) holds, then GSHFSB )(β+  

GSHFI )(β+= is nonsingular and hence P1 holds 

.)()( ISHFGGSHF TTTT <ββ                            (3.12) 

Using (3.3), (3.4), (3.11) and ,2 rIIGGGT =≤  we can obtain  

.)()( 2
TTTTT SSrSHFGGSHF

η
ββ ≤                       (3.13) 

By using the Schur complement formula, we can see that (3.8) and (3.11) imply 

,0 2
1

1 IcYIc <<< −     IcYIc 1
11

20 <<< −−                       (3.14) 

and this leads to  
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TTTTT SSrSHFGGSHF 2)()(
η

ββ ≤ .)( 2
211

2
21 IcrcBBcrc T

κηη
≤≤ −           (3.15) 

Using the inequality 222 baab +≤ where a  and b are scalars, we can show that (3.15) 

implies 

.)(
2

)()( 2
2

2
12 IccrSHFGGSHF TTTT +≤

κη
ββ             (3.16) 

Finally, by using the above inequalities (3.11) and (3.16), we can obtain  

ISSrSHFGGSHF TTTTT <≤ 2)()(
η

ββ                      (3.17) 

which implies that ])([ GSHFSB β+ is nonsingular, i.e., P1 holds. 

Now, we will show that S of (3.10) guarantees P2. Using the matrix inversion lemma: 

BBAIAIABI 11 )()( −− +−=+  

where A and B are compatible constant matrices such that )( ABI + is nonsingular, we 

can show that the sliding mode dynamics (3.6) is equivalent to  

∑
=

− ΛΛΛΛ=
r

i
i

TT
i vYACYv

1
1

1
1 )())(( βθβ&                     (3.18) 

where 11 ])([)(])([)( −− +=+−= GSHFIGSFGSHFIHIC ββββ  

).(])([)( 1 βββ DSGSHFIGHFI =+−= −  

The sliding mode dynamics (3.18) is asymptotically stable if there exists a positive 

definite matrix )()(
0

mnmnRP −×−∈ such that the time derivative of the Lyapunov function 

101)( vPvtE T
g = satisfies for some positive scalarτ  

 ∑
=

−≤Ζ=
r

i

T
i

T
ig vvvPvtE

1
11101 )()(2)( τβθβ&                 (3.19) 

where ))(])([()( 0
1

000 iii CNDNIBA βββ −−+=Ζ , 

ΛΛΛΛ= − YAYA i
TT

i
1

0 )( , HYB TT ΛΛΛ= −1
0 )( , Λ= YAC ii0 , HD =0 , .)()( GSFN ββ −=  
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It should be noted that the inequalities (3.4), (3.11), (3.17) and rIIGGGT =≤ 2 imply 

,)()()()( 2 IFGGSSFNN TTTT ηββββ ≤= IHHDD TT <= 2
00

2 ηη    (3.20) 

This and (3.19) imply that (3.18) is asymptotically stable if there exists a positive 

definite matrix 0P such that 

  0)(])([ 0
1

00000 <∗+Ν−+ −
ii CDNIBPAP ββ ,  i∀               (3.21) 

where ∗ represents blocks that are readily inferred by symmetry. 

Let iz be yCNDNIz ii 0
1

0 )(])([ ββ −−= where )( mnRy −∈ .  

Then iz can be rewritten as ])[( 00 iii zDyCNz += β . 

This equality and (3.20) imply ][][ 0000
2

ii
T

iii
T
i zDyCzDyCzz ++≤η and this leads to 

yCDNIBPy i
T

0
1

000 )(])([2 ββ Ν− −  

i
T
iii

T
iii

T
i

T zzzDyCzDyCzBPyzBPy 2
00000000 ][][22 −−+++≤= η  

i
T
ii

T
i

T
i

T
i

T zzzDCBPyyCCy Ω−++= −2
000000 ][2 η  where 00

2 DDI Tη−=Ω .      (3.22) 

Since 0>Ω , the following inequality holds for any ),( izy : 

yDCBPDCBPyzzzDCBPy TT
i

T
i

T
i

T
ii

T
i

T ][][][2 0000
1

0000
22

0000 +Ω++Ω≤+ −− ηη  (3.23) 

Using (3.22) and (3.23), we can show that the Lyapunov inequality (3.21) is satisfied if 

the following inequality holds: 

0][][ 0000
1

0000
2

000000 <+Ω++++ − TT
i

T
ii

T
i

T
ii DCBPDCBPCCPAAP η . 

Using the Schur complement formula, we can rewrite the above inequality as  

 0

00

00

0

<
















−
∗−
∗∗∗+

IDC
IPB

PA

i

T
o

T
i

η
η ,  i∀ .                    (3.24) 
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Let the positive definite matrix 0P be ΛΛ= YP T
0 where Y is a solution to LMIs 

(3.7)-(3.9), which implies that the sliding mode dynamics (3.18) is asymptotically 

stable. Hence, the sliding mode dynamics (3.6) is asymptotically stable. 

After the switching surface parameter matrix S is designed so that the reduced 

)( mn − order sliding mode dynamics has a desired response, the next step of the SMC 

design procedure is to design a switching feedback control law for the reaching mode 

such that the reachability condition is met. If the switching feedback control law 

satisfies the reachability condition, it drives the state trajectory to the switching surface 

0== xSσ and maintains it there for all subsequent time. With σ of (3.10), we design 

a sliding fuzzy control law guaranteeing that σ converges to zero. We will use the 

following nonlinear sliding switching feedback control law as the local controller. 

Control rule i: IF 1θ is 1iµ and ... and sθ is isµ , THEN 

σ
σδ

ω
σχ ),(

1
1),(ˆ)( xtxSAxthtu iii −

−−−−=  

where k
l

k
kiii xxSAxt ∑

=

+++=
0

)1(),( ρωωαδ                       (3.25) 

and .0,0,, >>== iiSHrxS χαωσ  It should be noted that (3.17) implies =ω  

SHr .HHSr η≤⋅≤ This and (3.11) guarantee .10 <≤ ω  The final controller 

inferred as the weighted average of the each local controller is given by  

∑
=












−
++−−=

r

i
iiii xtxSAxthtu

1
),(

1
1)(),(ˆ)(

σ
σδ

ω
σχθβ           (3.26) 

and we can establish the following theorem. 

Theorem 3.2  Consider the closed-loop control system of the uncertain system    

(3.2) with control (3.26). Suppose that the LMIs (3.7)-(3.9) has a solution vector 
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),,,( 21 ηccY  and the linear sliding surface is given by (3.10). Then the state converges 

to zero. 

Proof:  Since Theorem 3.1 implies that the linear sliding surface (3.10) guarantees 

P1-P2, we only have to show that σ  converges to zero. Define a Lyapunov function 

as .5.0)( σσ T
g tE = The time derivative of )(tEg is .σσ && T

gE =  From (3.2), (3.10), 

(3.26), ωβ =≤ SHrGSHF )( ,10, <≤ ω  and A2, we obtain 

)()(
1

txSAi

r

i
i

TT θβσσσ ∑
=

=& )],(][)([ xthuGSHFIT +++ βσ  

             ∑
=

+≤
r

i

T
i

T
i utxSA

1
)()( σσθβ .}),()1({ σωω xthu +++  

This implies that 0)()()1(
1 1

2 ≤−−−≤ ∑ ∑
= =

r

i

r

i
iiiigE σαθβσχθβω& which indicates   

that .,2 ∞∞ ∈∩∈ LELLE gg
&  Finally, by using Barbalat’s lemma, we can conclude that 

σ converges to zero. 

Remark 3.1  Theorem 3.1 and 3.2 can be summarized in the form of the following 

LMI-based design algorithm. 

Step 1: Obtain ∑=
=

r

i iB
r

B
1

1 and [ ])(,),(
2
1

1 rBBBBH −⋅⋅⋅−= for given iB . 

Step 2: Check that ),( BAi is stabilization. If not, exit. 

Step 3: Find a solution vector ),,,( 21 ηccY  to LMI (3.7)-(3.9). 

Step 4: Compute the sliding surface parameter matrix S by using the formula of (3.10). 

Step 5: The controller is given by (3.26). 

3.2.3 Numerical Examples 

Example 3.1  Consider the following inverted pendulum on a cart [49] 
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,21 xx =& ,43 xx =& ),])([cos3sin3(1
112 φ

ψ
++−= tduxaxg

l
x&  

)])([42sin5.1(1
14 φ

ψ
++−−= tduaxmagx&                (3.27) 

where 1x is the angle ( rad ) of the pendulum from the vertical, ,12 xx &= 3x is the 

displacement (m) of the cart, ,34 xx &=  ,cos34 1
2 xma−=ψ ,sin 1

2
2 xmlx=φ u is the input, 

and )(td is related to external disturbances which may be caused by the frictional force. 

),/(1 Mma += m is the mass of the pendulum, M is the mass of the cart, l2 is the 

length of the pendulum, 2/8.9 smg = is the gravity constant. We set kgM 9=  

kgm 1, = .1, ml =  We assume that )(td is bounded as xtd 10)( ρρ +≤  where 0ρ and 

1ρ  are known constants. To design the fuzzy controller (3.26), we must have a fuzzy 

model. Here, we approximate the system (3.27) by the following two-rule fuzzy model. 

Plant Rule 1: IF 1x is about 0, THEN 

)],([11 xthuBxAx ++=&  

Plant Rule 2: IF 1x is about ),3/(60 radπ±± o THEN  

)],([22 xthuBxAx ++=&  

where ,
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2 xxtdxth += ,
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)8/(14

1 1

1

π

π

β +−

−−

+
+−

= x

x

e
e .1 12 ββ −=  (3.28) 
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The inverted pendulum on a cart (3.27) can be cast as (3.2) with data (3.28). 

Because 1B is not in the range space of ,2B all existing VSS-based fuzzy control 

system design methods cannot be applied to the above system (3.28). Via LMI 

optimization with (3.28), we can obtain the sliding surface Sx=σ . 

By setting 1,1,2,1,5,sin),(ˆ 1
2
2 ====== kii lrxxxth ραχ , and sec01.0=samplingt , 

we can obtain the following nonlinear controller: 

Control Rule 1: IF 1x is about 0, THEN 

).sgn(
1

15sin)( 111
2
2 σδ

ω
σ

−
−−−−= xSAxxtu  

Control Rule 2: IF 1x is about ),3/(60 radπ±± o THEN 

).sgn(
1

15sin)( 221
2
2 σδ

ω
σ

−
−−−−= xSAxxtu  

The final controller inferred as the weighted average of each local controller is given by 

.)sgn(
1

15)(sin)(
1

1
2
2 ∑

=






−
++−−=

r

i
iii xSAxxtu σδ

ω
σθβ     (3.29) 

To assure the effectiveness of our fuzzy controller, we apply the controller to the 

two-rule fuzzy model (3.28) with nonzero ).(td  We assume that 

).(sgn5.02sin)( 41 xtxtd −= π  Figure 3.1 shows the time histories  of  the  state,  the 

sliding  variable σ , and the input (3.29) when ),9/(20)0(1 radx πo=  =)0(2x  

=)0(3x .0)0(4 =x  Figure 3.2  shows the time histories  of  the   state,   the  

sliding variable σ , and the input (3.29) when ),9/2(40)0(1 radx πo=  =)0(2x  

=)0(3x .0)0(4 =x  Figure 3.3  shows the time histories of the state, the        

sliding variableσ , and  the  input (3.29) when ),3/(60)0(1 radx πo=  =)0(2x  
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=)0(3x .0)0(4 =x  In Figure 3.1, Figure 3.2, and Figure 3.3, it should be noted that 

since it is impossible to switch the input u instantaneously, oscillations always occur in 

the sliding mode of a SMC system. It is observed that in our simulations the proposed 

controller (3.29) stabilizes the following two-rule fuzzy model (3.28). 
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Figure 3.1 Simulation results with ),9/(20)0(1 radx πo= .0)0()0()0( 432 === xxx  
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Figure 3.2 Simulation results with ),9/2(40)0(1 radx πo= .0)0()0()0( 432 === xxx  
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Figure 3.3 Simulation results with ),3/(60)0(1 radx πo= .0)0()0()0( 432 === xxx  

Example 3.2  Consider the following example of a ball and beam system [52], whose 

dynamic equations are described as follows:  

,0sin 2 =−+





 + θθ &&& MrMGrM

R
J b ( ) τθθθ =++++ cos22 MGrrMrJJMr b

&&&&   

(3.30) 

where r  is the ball position, θ  is the beam angle, J  is the moment of inertia of the 

beam, M , bJ , and R  are the mass, the moment of inertia, and the radius of the ball 

respectively, G  is the acceleration of gravity, and τ  is the torque applied to the 

beam. 

Define )//( 2 MRJMB b += and change the coordinates in the input space by using the 

invertible transformation 

uJJMrMGrrMr b )cos2 2 ++++= θθτ &&                (3.31) 
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where u  is the new input, then the ball and beam system can be written in the 

following state-space form: 

,21 xx =& ),sin( 3
2
412 xGxxBx −=& ,43 xx =& )(4 tdux +=&           (3.32) 

where [ ] [ ] .4321
TT rrxxxxx θθ &&== The system parameters used for 

simulation are ,05.0 kgM = ,01.0 mR = ,02.0 2kgmJ = ,102 26kgmJb
−×=  2/81.9 smG =  

and .7143.0=B We assume that )(td is bounded as xtd 10)( ρρ +≤  where 0ρ and 1ρ  

are known constants. Then, we approximate the system by the following two-rule fuzzy 

model: 

Plant rule 1: IF 1x  is greater than 0, THEN 

)],([11 xthuBxAx ++=& . 

Plant rule 2: IF 1x  is smaller than 0, THEN 

)],([22 xthuBxAx ++=& . 

where ,
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,01.0=µ ),(),( tdxth = ,
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1

π

π

β +−

−−

+
+−

= x

x

e
e  .1 12 ββ −=       (3.33) 

By setting 1,1,2,240,2.0 ===== kii kr ραχ , and sec01.0=samplingt , we can 

obtain the following nonlinear controller: 

Control Rule 1: IF 1x is greater than 0, THEN 

).sgn(
1

12.0)( 11 σδ
ω

σ
−

−−−= xSAtu  

Control Rule 2: IF 1x is smaller than 0, THEN 
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).sgn(
1

12.0)( 22 σδ
ω

σ
−

−−−= xSAtu  

The final controller inferred as the weighted average of each local controller is given by 

.)sgn(
1

12.0)()(
1
∑
=







−
++−=

r

i
iii xSAtu σδ

ω
σθβ                (3.34) 

To assure the effectiveness of our fuzzy controller, we apply the controller to the 

two-rule fuzzy model (3.33) with nonzero ).(td We assume that 

).(sgn5.02sin)( 41 xtxtd −= π  Figure 3.4 shows the time histories  of  the     

state, the sliding variable ,σ and the input (3.34) when ,5.0)0(1 =x  

.0)0()0()0( 432 === xxx  Figure 3.5 shows the time histories of the state, the sliding 

variable ,σ and the input (3.34) when ,1)0(1 =x .0)0()0()0( 432 === xxx  In Figure 

3.4 and Figure 3.5, it should be noted that since it is impossible to switch the input u 

instantaneously, oscillations always occur in the sliding mode of a SMC system. From 

Figure 3.4 and Figure 3.5, the proposed controller (3.34) also stabilizes the following 

two-rule fuzzy model (3.33). 
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Figure 3.4 Simulation results with 0)0()0()0(,5.0)0( 4321 ==== xxxx , including amplifying the 

input u scale  
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Figure 3.5 Simulation results with ,0)0()0()0(,1)0( 4321 ==== xxxx  including amplifying the 

input u scale  
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3.3  Robust Sliding Control for Mismatched T-S Fuzzy 

Systems 

    In this section, two kinds of system formulation for mismatched uncertain T-S 

fuzzy models are described in Section 3.3.1 and in Section 3.3.4, respectively. Two 

kinds of robust sliding control methods via LMI are proposed in Section 3.3.2 and in 

Section 3.3.5, respectively. Some examples are used to illustrate the effectiveness of the 

proposed methods and to compare with the existing methods in Section 3.3.3 and 

Section 3.3.6, respectively. 

3.3.1 System Formulation I 

Consider the following uncertain T-S fuzzy model [49], including parameter 

uncertainties and external disturbances:  

)]),()([)()]()([()(
1

xthtuBtxtAAtx iii

r

i
i ++∆+= ∑

=

θβ&            (3.35) 

where nRtx ∈)( is the state, mRtu ∈)(  is the control input, ii BA ,  are constant 

matrices of appropriate dimensions, )(tAi∆ represents the parameter uncertainties 

in m
i RxthA ∈),(,  denotes external disturbances. ),,1(],,,[ 1 sjjs ⋅⋅⋅=⋅⋅⋅= θθθθ are   

the premise variables, s is the number of the premise variables, 

∑ =
⋅⋅⋅=→=

r

j
s

ijii riR
1

,,1],1,0[:),(/)()( ωθωθωθβ is the membership function of the system 

with respect to plant rule ri, is the number of the IF-THEN rules, iβ  can be regarded 

as the normalized weight of each IF-THEN rule and it satisfies 

that .0)( ≥θβi 1)(
1

=∑ =
θβr

i i . We will assume that the followings are satisfied:  

A1: The mn× matrix B defined by ∑=
=

r

i iB
r

B
1

1 satisfies the rank constraint 
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rank mB =)( , i.e., the matrix B  has full column rank m . 

A2: The function ),( xth  is unknown but bounded as
k

l

k
k xxthxth ∑

=

≤−
0

),(ˆ),( ρ  

where lρρ ,,0 ⋅⋅⋅ are known constants, ),(ˆ xth is an estimate of ),( xth , and l is a 

known positive integer.  

A3: )(tAi∆  is of the form )(tT iiΠ where )(tiΠ  is a known time-varying matrix but 

bounded as .1)( ≤Π ti  

The system (3.35) does not have to satisfy the restrictive assumption that all the input 

matrices of the local system models are in the same range space. It should be noted that 

the assumption A1 implies that mBrank i ≤)( and each nominal local system model 

may not share the same input channel. The assumption A2 with 1=l and 

0),(ˆ =xth has been used in the literature [50]. We can set ),(ˆ xth as the nominal value 

of ).,( xth Using the above assumptions, the uncertain T-S fuzzy model (3.35) can be 

written as follows. 

)],(][)([)())()(()(
1

xthuGHFBtxtTAtx iii

r

i
i +++Π+=∑

=

βθβ&          (3.36) 

where )],(,),([ 1 θβθββ r⋅⋅⋅= and the matrices )(,, βFGH  are defined by 

[ ])(,),(
2
1

1 rBBBBH −⋅⋅⋅−= [ ] ,,, TIIG ⋅⋅⋅=  

[ ].))(21(,,))(21()( 1 IIdiagF r θβθββ −⋅⋅⋅−=                 (3.37) 

It should be noted that the system (3.35) does not have to satisfy 

,21 rBBB =⋅⋅⋅== which is used in almost all published results on VSS design methods 

including the VSS-based fuzzy control design methods of [33,34]. Hence the methods 

[30] and [31] cannot be applied to the above model (3.35). Since 0)( ≥θβi  and 
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∑=
=

r

i 1
,1)(θβ we can see that the following inequality always holds: 

IFFFF TT ≤= )()()()( ββββ                     (3.38) 

Many examples in the literature and various mechanical systems such as motors and 

robots do not satisfy the restrictive assumptions that each nominal local system model 

shares the same input channel and they fall into the special cases of the above model 

[49]. 

3.3.2 LMI-based Sliding Control Design I 

The Sliding Mode Control (SMC) design is decoupled into two independent tasks 

of lower dimensions: The first involves the design of −− )1(nm dimensional switching 

surfaces for the sliding mode such that the reduced order sliding mode dynamics 

satisfies the design specifications such as stabilization, tracking, regulation, etc. The 

second is concerned with the selection of a switching feedback control for the reaching 

mode so that it can drive the system’s dynamics into the switching surface [33]. We first 

characterize linear sliding surfaces using LMIs. 

Let us define the linear sliding surface as 0== Sxσ where S is a nm× matrix. 

Referring to the previous results [33], [51], we can see that for the system (3.36) it is 

reasonable to find a sliding surface such that  

P1 [ ]GSHFSB )(β+ is nonsingular for any β satisfying ,,,1,0)( rii ⋅⋅⋅=≥θβ and 

∑=
=

r

i i1
.1)(θβ  

P2 The reduced )( mn − order sliding mode dynamics restricted to the sliding surface 

0=Sx is asymptotically stable for all admissible uncertainties. 

It should be noted that P1 is necessary for the existence of the unique equivalent control 

[33] and the assumption A1 is necessary for the nonsingularity of .SB  
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Define a transformation matrix and the associated vector v as 1)([ −ΛΛΛ= YM T  

TT BYBBY ])(, 111 −−−  ,],[ TTT SV= Mxvvv TTT == ],[ 21  where ., 21
mmn RvRv ∈∈ − By the 

above transformation, we can see that ],[1 BYM Λ=− and .2 σ=v  Then, from (3.36), 

we can obtain  
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xthu

GSHFI
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


+

+
β

β
                        (3.39) 

From the equivalent control method [33], we can see that the equivalent control      

is given by =)(tueq ).,())((])()[( 1
1

xthxtTASGSHFI iii
r

i i −Π++− −
=∑ βθβ By setting 

0== σσ& and substituting )(tu with ),(tueq we can show that the reduced 

)( mn − order sliding mode dynamics restricted to the switching surface 0== Sxσ is 

given by  

1
1

1
1 ))()(())(( vYtTADYv iii

T
r

i

T
i ΛΠ+ΛΛΛ= ∑

=

− βθβ&                (3.40) 

where .])([)()( 1 SGSHFIGHFID −+−= βββ  

Theorem 3.3  Let us consider the sliding mode dynamics (3.40). If there exist 

matrices ,nnRY ×∈ )( mnnR −×∈Λ satisfying ,,0 IB TT =ΛΛ=Λ  scalars RRcRc ∈∈∈ η,, 21 , 

),(min BBTλκ =  and ∗ represents blocks that are readily inferred by symmetry such 

that the following LMIs holds: 

i
IHYtTA
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iii

T
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T
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η             (3.41) 
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

 ∗∗

η
η

ηκ

rrc
rrc                              (3.43) 

then, there exists a linear sliding surface parameter matrix S satisfying P1-P2 and the 

sliding surface 

0)()( 111 === −−− xYBBYBxSx TTσ                     (3.44) 

will guarantee that the sliding mode dynamics (3.40) is asymptotically stable. 

Proof:  By using Schur complement formula [48], we can easily show that in fact the 

following LMIs are incorporated in the LMIs (3.41)-(3.43) 

,,0,0,0 2
21 IHHcc T <>>> ηη ).(2 2

2
2
1

2 ccr +>κη               (3.45) 

It is clear that if the following inequality (3.46) holds, then 

GSHFIGSHFSB )()( ββ +=+ is nonsingular and hence P1 holds 

.)()( ISHFGGSHF TTTT <ββ                    (3.46) 

Using (3.37), (3.38), (3.45) and ,2 rIIGGGT =≤  we can obtain  

.)()( 2
TTTTT SSrSHFGGSHF

η
ββ ≤                  (3.47) 

By using the Schur complement formula, we can see that (3.42) and (3.45) imply 

,0 2
1

1 IcYIc <<< −     IcYIc 1
11

20 <<< −−                (3.48) 

and this leads to  

TTTTT SSrSHFGGSHF 2)()(
η

ββ ≤ .)( 2
211

2
21 IcrcBBcrc T

κηη
≤≤ −            (3.49) 

Using the inequality 222 baab +≤ where a  and b are scalars, we can show that (3.49) 

implies 
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.)(
2

)()( 2
2

2
12 IccrSHFGGSHF TTTT +≤

κη
ββ          (3.50) 

Finally, by using the above inequalities (3.45) and (3.50), we can obtain  

ISSrSHFGGSHF TTTTT <≤ 2)()(
η

ββ                   (3.51) 

which implies that ])([ GSHFSB β+ is nonsingular, i.e., P1 holds. 

Now, we will show that S of (3.44) guarantees P2. Using the matrix inversion lemma: 

BBAIAIABI 11 )()( −− +−=+  

where A and B are compatible constant matrices such that )( ABI + is nonsingular, 

we can show that the sliding mode dynamics (3.40) is equivalent to  

∑
=

− ΛΠ+ΛΛΛ=
r

i
iii

TT
i vYtTACYv

1
1

1
1 ))()(())(( βθβ&                   (3.52) 

where xYv TT ΛΛΛ= −1
1 )(  and .)(])([)( 1 GSFGSHFIHIC βββ −+−=  

The previous results [53,54] imply that sliding mode dynamics (3.52) is asymptotically 

stable. Hence, the sliding mode dynamics (3.40) is asymptotically stable. 

After the switching surface parameter matrix S is designed so that the reduced 

)( mn − order sliding mode dynamics  has a desired response, the next step of the SMC 

design procedure is to design a switching feedback control law for the the reaching 

mode such that the reachability condition is met. If the switching feedback control law 

satisfies the reachability condition, it drives the state trajectory to the switching surface 

0== Sxσ and maintains it there for all subsequent time. With σ of (3.52), we design 

a sliding fuzzy control law guaranteeing that σ converges to zero. We will use the 

following nonlinear sliding switching feedback control law as the local controller. 

Control rule i: IF 1θ is 1iµ and ... and sθ is isµ , THEN 

σ
σδ

ω
σχ ),(

1
1))((),(ˆ)( xtxtTASxthtu iiiii −

−Π+−−−=  
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where k
l

k
kiiiii xxtTASxt ∑

=

++Π++=
0

)1())((),( ρωωαδ                    (3.53) 

and .0,0,, >>== iiSHrxS χαωσ  It should be noted that (3.51) implies 

=ω .HHSr η≤⋅≤  This and (3.45) guarantee .10 <≤ ω  The final controller 

inferred as the weighted average of the each local controller is given by  
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iiiiii xtxtTASxthtu
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1))(()(),(ˆ)(
σ
σδ

ω
σχθβ     (3.54) 

and we can establish the following theorem. 

Theorem 3.4  Consider the closed-loop control system of the uncertain system (3.36) 

with control (3.54). Suppose that the LMIs (3.41)-(3.43) has a solution vector 

),,,( 21 ηccY  and the linear sliding surface is given by (3.44). Then the state converges 

to zero. 

Proof:  Since Theorem 3.3 implies that the linear sliding surface (3.44) guarantees 

P1-P2, we only have to show that σ converges to zero. Define a Lyapunov function as 

.5.0)( σσ T
g tE = The time derivative of )(tEg is .σσ && T

gE =  From (3.36), (3.44), (3.54), 

ωβ =≤ SHrGSHF )( ,10, <≤ω  and A2, we obtain 

)())(()(
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txtTAS iii

r

i
i

TT Π+= ∑
=

θβσσσ & )],(][)([ xthuGSHFIT +++ βσ  

          ∑
=

+Π+≤
r

i

T
iii

T
i utxtTAS

1
)())(()( σσθβ σωω }),()1({ xthu +++ . 

This implies that 0)()()1(
1 1

2 ≤−−−≤ ∑ ∑
= =

r

i

r

i
iiiigE σαθβσχθβω& which indicates that 

.,2 ∞∞ ∈∩∈ LELLE gg
& Finally, by using Barbalat’s lemma, we can conclude that  

σ converges to zero. 
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Remark 3.2  Theorem 3.3 and 3.4 can be summarized in the form of the following 

LMI-based design algorithm. 

Step 1: Obtain ∑=
=

r

i iB
r

B
1

1 and [ ])(,),(
2
1

1 rBBBBH −⋅⋅⋅−= for given iB . 

Step 2: Check that ),( BAi is stabilization. If not, exit. 

Step 3: Find a solution vector ),,,( 21 ηccY  to LMI (3.41)-(3.43). 

Step 4: Compute the sliding surface parameter matrix S by using the formula of (3.44). 

Step 5: The controller is given by (3.54). 

3.3.3 Numerical Examples I 

Example 3.3  Consider the following two-rule fuzzy model from a VTOL helicopter 

model [55] 

Plant Rule 1: IF 1x is about 0, THEN 

)],([))(( 1111 xthuBxtTAx ++Π+=&  

Plant Rule2: IF 1x is about ,2± THEN 

)],([))(( 2222 xthuBxtTAx ++Π+=&  

where ,

0100
4100.17070.03181.01002.0
0208.40024.00100.10482.0
4555.00188.00271.00366.0
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


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== TT  
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
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−

=B

,

00
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1761.04422.0

2



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



−
−

=B [ ]0sin00)()( 21 ttt =Π=Π , 
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[ ] ,3sin9.03sin9.0)(),( Ttttdxth += ,
1

)1/(11
)1(14

)1(14

1 1

1

+−

−−

+
+−

= x

x

e
eβ .1 12 ββ −=     (3.55) 

It should be noted that 1T and 2T are not matched and thus the previous 

VSS-based fuzzy control design methods cannot be applied to the above system (3.55). 

Via LMI optimization with (3.55), we can obtain the sliding surface .Sx=σ  

By setting [ ] ,3sin9.03sin9.0),(ˆ Tttxth = 1,1,2,1.0,5 ===== kii lr ραχ , and 

sec01.0=samplingt , we can obtain the following nonlinear controller: 

Control Rule 1: IF 1x is about 0, THEN 

[ ] ).sgn(
1

1))((53sin9.03sin9.0)( 1111 σδ
ω

σ
−

−Π+−−−−= xtTAStttu T  

Control Rule 2: IF 1x is about ,2± THEN 

[ ] ).sgn(
1

1))((53sin9.03sin9.0)( 2222 σδ
ω

σ
−

−Π+−−−−= xtTAStttu T  

The final controller inferred as the weighted average of each local controller is given by 

[ ] .)sgn(
1

1))((5)(3sin9.03sin9.0)(
1
∑
=







−
+Π++−−−=

r

i
iiiii

T xtTAStttu σδ
ω

σθβ    

    (3.56) 

To assure the effectiveness of our fuzzy controller, we apply the controller to the 

two-rule fuzzy model (3.55) with nonzero ).(td  We assume that 

[ ] .)(sgn5.02sin)(sgn5.02sin)( 4141
Txtxxtxtd −−=  The time histories of the state, the 

sliding variable ,σ and the input (3.56) are shown in Figure 3.6 when 

,0)0()0()0( 421 === xxx .10)0(3 =x  In Figure 3.6, it should be noted that since it is 

impossible to switch the input u instantaneously, oscillations always occur in the sliding 

mode of a SMC system. From Figure 3.6, the proposed controller is applicable to T-S 

fuzzy systems with mismatched parameter uncertainties in the state matrix and external 

disturbances. The control performances are satisfactory. It should be noted that all 
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existing VSS-based fuzzy control system design methods cannot be applied to the 

two-rule fuzzy model (3.55) because 1B is not in the range space of 2B . 
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Figure 3.6 Simulation results with ,0)0()0()0( 421 === xxx .10)0(3 =x  
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Example 3.4  For the special case of 0)( ≡Π ti , the robust sliding controller design is 

proposed in [54]. Consider the following inverted pendulum on a cart 

,21 xx =&  43 xx =& , ]),)([cos3sin3(1
112 φ

ψ
++−= tduxaxg

l
x&  

]))([42sin5.1(1
14 φ

ψ
++−−= tduaxmagx&                      (3.57) 

where 1x is the angle ( rad ) of the pendulum from the vertical, ,12 xx &= 3x is the 

displacement (m) of the cart, ,34 xx &=  ,cos34 1
2 xma−=ψ ,sin 1

2
2 xmlx=φ u is the input, 

and )(td is related to external disturbances which may be caused by the frictional force. 

),/(1 Mma += m is the mass of the pendulum, M is the mass of the cart, l2 is the 

length of the pendulum, 2/8.9 smg = is the gravity constant. We set kgM 9=  

kgm 1, = .1, ml =  We assume that )(td is bounded as xtd 10)( ρρ +≤  where 0ρ and 

1ρ  are known constants. Here, we approximate the system (23) by the following 

two-rule fuzzy model. 

Plant Rule 1: IF 1x is about 0, THEN 

)],([11 xthuBxAx ++=& . 

Plant Rule2: IF 2x is about ),3/(60 radπ±± o THEN  

)],([22 xthuBxAx ++=& . 
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where ,
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


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=A     

,

1019.0
0
0382.0
0

2


















−

=B ,sin)(),( 1
2
2 xxtdxth += ,

1
)1/(11

)8/(14

)8/(14

1 1

1

π

π

β +−

−−

+
+−

= x

x

e
e .1 12 ββ −=   (3.58) 

Because 1B is not in the range space of ,2B all existing VSS-based fuzzy control 

system design methods cannot be applied to the above system (3.58). Via LMI 

optimization with (3.58), we can obtain the sliding surface Sx=σ . 

By setting 1,1,2,1,5,sin),(ˆ 1
2
2 ====== kii lrxxxth ραχ , and sec01.0=samplingt , we can 

obtain the following nonlinear controller: 

Control Rule 1: IF 1x is about 0, THEN 

).sgn(
1

15sin)( 111
2
2 σδ

ω
σ

−
−−−−= xSAxxtu  

Control Rule 2: IF 1x is about ),3/(60 radπ±± o THEN 

).sgn(
1

15sin)( 221
2
2 σδ

ω
σ

−
−−−−= xSAxxtu  

The final controller inferred as the weighted average of each local controller is given by 

.)sgn(
1

15)(sin)(
1

1
2
2 ∑

=






−
++−−=

r

i
iii xSAxxtu σδ

ω
σθβ       (3.59) 

To assure the effectiveness of our fuzzy controller, we apply the controller to the 

two-rule fuzzy model (3.58) with nonzero ).(td We assume that 

).(sgn5.02sin)( 41 xtxtd −= π  The time histories of the state, the sliding variableσ , and 

the input (3.59) are shown in Figure 3.7. In Figure 3.7, it should be noted that since it is 
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impossible to switch the input u instantaneously, oscillations always occur in the sliding 

mode of a SMC system. From Figure 3.7, the control performances of the proposed 

controller are also satisfactory for the two-rule fuzzy model (3.58). 
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Figure 3.7 Simulation results with .0)0()0()0(),9/2(40)0( 4321 ==== xxxradx πo  

3.3.4 System Formulation II 

Consider the following uncertain T-S fuzzy model [49], including parameter 

uncertainties and external disturbances:  

)]),()([)()]()([()(
1

xthtuBtxtAAtx iii

r

i
i ++∆+= ∑

=

θβ&            (3.60) 

where nRtx ∈)( is the state, mRtu ∈)(  is the control input, ii BA ,  are constant 

matrices of appropriate dimensions, )(tAi∆ represents the parameter uncertainties 

in m
i RxthA ∈),(,  denotes external disturbances. ),,1(],,,[ 1 sjjs ⋅⋅⋅=⋅⋅⋅= θθθθ are    

the premise variables, s is the number of the premise variables, 

∑ =
⋅⋅⋅=→=

r

j
s

ijii riR
1

,,1],1,0[:),(/)()( ωθωθωθβ is the membership function of the 

system with respect to plant rule ri, is the number of the IF-THEN rules, iβ  can be 
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regarded as the normalized weight of each IF-THEN rule and it satisfies 

that .0)( ≥θβi 1)(
1

=∑ =
θβr

i i . We will assume that the followings are satisfied:  

A1: The mn× matrix B defined by ∑=
=

r

i iB
r

B
1

1 satisfies the rank constraint 

rank mB =)( , i.e., the matrix B has full column rank m . 

A2: The function ),( xth  is unknown but bounded as ∑=
≤−

l

k

k
k xxthxth

0
),(ˆ),( ρ  

where lρρ ,,0 ⋅⋅⋅ are known constants, ),(ˆ xth is an estimate of ),( xth , and l is a 

known positive integer.  

A3: )(tAi∆  is of the form )(tT iiΠ where )(tiΠ  is unknown,
iAi tA α≤∆ )( , and 

)(tTTT ii
T

ii Π≥ . 

The system (3.60) does not have to satisfy the restrictive assumption that all the input 

matrices of the local system models are in the same range space. It should be noted that 

the assumption A1 implies that mBrank i ≤)( and each nominal local system model 

may not share the same input channel. The assumption A2 with 1=l and 

0),(ˆ =xth has been used in the literature [50]. We can set ),(ˆ xth as the nominal value 

of ).,( xth Using the above assumptions, the uncertain T-S fuzzy model (3.60) can be 

written as follows. 

)],(][)([)())()(()(
1

xthuGHFBtxtTAtx iii

r

i
i +++Π+= ∑

=

βθβ&          (3.61) 

where )],(,),([ 1 θβθββ r⋅⋅⋅= and the matrices )(,, βFGH  are defined by 

[ ] ,)(,),(
2
1

1 rBBBBH −⋅⋅⋅−= [ ] ,,, TIIG ⋅⋅⋅=  

[ ]IIdiagF r ))(21(,,))(21()( 1 θβθββ −⋅⋅⋅−= .             (3.62) 
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It should be noted that the system (3.61) does not have to satisfy 

,21 rBBB =⋅⋅⋅== which is used in almost all published results on VSS design methods 

including the VSS-based fuzzy control design methods of [33,34]. Hence the methods 

[30,31] cannot be applied to the above model (3.61). Since 0)( ≥θβi  and 

∑=
=

r

i 1
,1)(θβ we can see that the following inequality always holds: 

.)()()()( IFFFF TT ≤= ββββ                     (3.63) 

The following lemma will be used to establish our main results. 

Lemma 3.1  For any vectors a  and b  with appropriate dimensions, the following 

inequalities hold for any :0>W  

.2 1bWbWaaba TTT −+≤  

Proof:  The above inequality is derived from )()( 1 bWaWbWa T −− − bWbWaa TT 1−+=  

.02 ≥− baT  

3.3.5 LMI-based Sliding Control Design II 

The Sliding Mode Control (SMC) design is decoupled into two independent tasks 

of lower dimensions: The first involves the design of −− )1(nm dimensional switching 

surfaces for the sliding mode such that the reduced order sliding mode dynamics 

satisfies the design specifications such as stabilization, tracking, regulation, etc. The 

second is concerned with the selection of a switching feedback control for the reaching 

mode so that it can drive the system’s dynamics into the switching surface [33]. We 

first characterize linear sliding surfaces using LMIs. 

Let us define the linear sliding surface as 0== xSσ where S is a nm× matrix. 

Referring to the previous results [33], [51], we can see that for the system (3.61) it is 

reasonable to find a sliding surface such that  
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P1 [ ]GSHFSB )(β+ is nonsingular for any β satisfying ,,,1,0)( rii ⋅⋅⋅=≥θβ and 

∑ =
=

r

i i1
.1)(θβ  

P2 The reduced )( mn − order sliding mode dynamics restricted to the sliding surface 

0=xS is asymptotically stable for all admissible uncertainties. 

It should be noted that P1 is necessary for the existence of the unique equivalent control 

[33] and the assumption A1 is necessary for the nonsingularity of .SB  

Define a transformation matrix and the associated vector v as 1)([ −ΛΛΛ= YM T  

TT BYBBY ])(, 111 −−− ,],[ TTT SV= Mxvvv TTT == ],[ 21  where ,1
mnRv −∈  .2

mRv ∈  By the 

above transformation, we can see that ],[1 BYM Λ=− and .2 σ=v  Then from system 

(3.61), we can obtain  
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)(
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i iiiiii
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)(

)(
xthu

GSHFI
GVHF
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
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


+

+
β

β
                          (3.64) 

Then from the equivalent control method [33], we can see that the equivalent control is 

given by ).,())((])()[()( 1
1

xthxtTASGSHFItu iii
r

i ieq −Π++−= −
=∑ βθβ By setting 

0== σσ& and substituting )(tu with ),(tueq we can show that the reduced 

)( mn − order sliding mode dynamics restricted to the switching surface 0== xSσ is 

given by  

 1
1

1
1 ))()(())(( vYtTADYv iii

T
r

i

T
i ΛΠ+ΛΛΛ= ∑

=

− βθβ&             (3.65) 

where .])([)()( 1 SGSHFIGHFID −+−= βββ  

Theorem 3.5  Let us consider the sliding mode dynamics (3.65). If there exist 

matrices ,nnRY ×∈ )( mnnR −×∈Λ satisfying ,,0 IB TT =ΛΛ=Λ  scalars ,, 10 RcRc ∈∈   
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,2 Rc ∈ RR ∈∈ ηδ , , ),(min BBTλκ =  
iAi tA α≤∆ )( , and ∗ represents blocks that are 

readily inferred by symmetry such that the following LMIs holds: 

i
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HIH

YYYAHIcYAYA
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i
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A

i

TT
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A

T
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T
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T
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

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


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−Λ

ΛΛΛΛΛ++Λ
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00)1(
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δα
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δη
ηη

ααη

  (3.66) 

                  ,0
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0
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



−YIc
IcI

IY
                            (3.67) 

              .0
0

0
2

2

1 >














 ∗∗

η
η

ηκ

rrc
rrc                              (3.68) 

Suppose that the LMIs (3.66)-(3.68) have a solution vector ),,,,,( 210 ηδcccY , then 

there exists a linear sliding surface parameter matrix S satisfying P1-P2 and the sliding 

surface 

  0)()( 111 === −−− xYBBYBxSx TTσ                       (3.69) 

will guarantee that the sliding mode dynamics (3.65) is asymptotically stable. 

Proof:  By using Schur complement formula [48], we can easily show that in fact the 

following LMIs are incorporated in the LMIs (3.66)-(3.68) 

 ,,0,0,0 2
21 IHHcc T <>>> ηη  )(2 2

2
2
1

2 ccr +>κη .              (3.70) 

It is clear that if the following inequality (3.71) holds, then GSHFSB )(β+  

GSHFI )(β+= is nonsingular and hence P1 holds 

                 .)()( ISHFGGSHF TTTT <ββ                      (3.71) 

Using (3.62), (3.63), (3.70) and ,2 rIIGGGT =≤  we can obtain  



 69

.)()( 2
TTTTT SSrSHFGGSHF

η
ββ ≤                    (3.72) 

By using the Schur complement formula, we can see that (3.67) and (3.70) imply 

,0 2
1

1 IcYIc <<< − IcYIc 1
11

20 <<< −−                     (3.73) 

and this leads to    

 TTTTT SSrSHFGGSHF 2)()(
η

ββ ≤ .)( 2
211

2
21 IcrcBBcrc T

κηη
≤≤ −           (3.74) 

Using the inequality 222 baab +≤ where a  and b are scalars, we can show that (3.74) 

implies 

.)(
2

)()( 2
2

2
12 IccrSHFGGSHF TTTT +≤

κη
ββ               (3.75) 

Finally, by using the above inequalities (3.70) and (3.75), we can obtain  

ISSrSHFGGSHF TTTTT <≤ 2)()(
η

ββ                    (3.76) 

which implies that ])([ GSHFSB β+ is nonsingular, i.e., P1 holds. 

Now, we will show that S of (3.69) guarantees P2. Using the matrix inversion lemma: 

BBAIAIABI 11 )()( −− +−=+  

where A and B are compatible constant matrices such that )( ABI + is nonsingular, 

we can show that the sliding mode dynamics (3.65) is equivalent to  

 ∑
=

− ΛΠ+ΛΛΛ=
r

i
iii

TT
i vYtTACYv

1
1

1
1 ))()(())(( βθβ&   (3.77) 

where 11 ])([)(])([)( −− +=+−= GSHFIGSFGSHFIHIC ββββ  

)(])([)( 1 βββ DSGSHFIGHFI =+−= − . 
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The sliding mode dynamics (3.77) is asymptotically stable if there exists a positive 

definite matrix )()(
0

mnmnRP −×−∈ such that the time derivative of the Lyapunov function 

101)( vPvtE T
g = satisfies for some positive scalarτ  

 ∑
=

−≤Ζ=
r

i

T
i

T
ig vvvPvtE

1
11101 )()(2)( τβθβ&                 (3.78) 

where ))(])([()( 0
1

000 iii CNDNIBA βββ −−+=Ζ , ΛΠ+ΛΛΛ= − YtTAYA iii
TT

i ))(()( 1
0

, HYB TT ΛΛΛ= −1
0 )( , ΛΠ+= YtTAC iiii ))((0 , HD =0 , .)()( GSFN ββ −=  

It should be noted that the inequalities (3.63), (3.70), (3.76) and 

rIIGGGT =≤ 2 imply 

 ,)()()()( 2 IFGGSSFNN TTTT ηββββ ≤= .2
00

2 IHHDD TT <=ηη    (3.79) 

This and (3.78) imply that (3.77) is asymptotically stable if there exists a positive 

definite matrix 0P such that 

  0)(])([ 0
1

00000 <∗+−+ −
ii CNDNIBPAP ββ ,  i∀              (3.80) 

where ∗ represents blocks that are readily inferred by symmetry. Let iz be =iz  

yCNDNI i0
1

0 )(])([ ββ −− where )( mnRy −∈ . Then iz can be rewritten as )(βNzi =  

][ 00 ii zDyC + . This equality and (3.79) imply ][][ 0000
2

ii
T

iii
T
i zDyCzDyCzz ++≤η  

and this leads to 

yCNDNIBPy i
T

0
1

000 )(])([2 ββ −−  

i
T
iii

T
iii

T
i

T zzzDyCzDyCzBPyzBPy 2
00000000 ][][22 −−+++≤= η  

i
T
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T
i

T
i

T
i

T zzzDCBPyyCCy Ω−++= −2
000000 ][2 η  where 00

2 DDI Tη−=Ω . (3.81) 

Since 0>Ω , the following inequality holds for any ),( izy : 

yDCBPDCBPyzzzDCBPy TT
i

T
i

T
i

T
ii

T
i

T ][][][2 0000
1

0000
22

0000 +Ω++Ω≤+ −− ηη (3.82) 
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Using (3.81) and (3.82), we can show that the Lyapunov inequality (3.80) is satisfied if 

the following inequality holds: 

0][][ 0000
1

0000
2

000000 <+Ω++++ − TT
i

T
ii

T
i

T
ii DCBPDCBPCCPAAP η . 

Using the Schur complement formula, we can rewrite the above inequality as  
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Let the positive definite matrix 0P be ΛΛ= YP T
0 where Y is a solution to LMIs 

(3.66)-(3.68), then the above matrix inequality (3.83) can be rewritten as  
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where ).()( tTtA iii Π=∆  The matrix inequality (3.84) is satisfied if the following 

inequality holds for any nonzero vectors: [ ]TTTT zzzz 321=   

1311 ))((2))((2 zYtAAzzYtAAz ii
T

ii
TT Λ∆++Λ∆+Λ  

.022 33222312 <−−+Λ+ zzzzHzzzHz TTTTT ηη    (3.85) 

Lemma 3.1 implies that if ,)(
iAi tA α≤∆ the following inequalities hold: 

1
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1
1

0
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11011 )(2 zYzczzczYtAz TTTT
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TT ΛΛ+ΛΛ≤Λ∆Λ −α         (3.86) 

.)(2 1
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1
12

3313 YzYzzzzYtA TTT
i

T Λ+≤Λ∆ −δαδ            (3.87) 

The previous inequalities (3.86) and (3.87) imply that for all admissible 

,)(
iAi tA α≤∆ the inequality condition (3.85) holds if  

1
2

1
12

110112 zYzzzczYAz TTTT
i

TT ΛΛ+ΛΛ+ΛΛ −δα  

   12131
2

1
1

0
2 22 zHzzYAzzYzc TT

i
TTT Λ+Λ+ΛΛ+ − ηα  

 .02 33223323 <−−++ zzzzzzHzz TTTT δη                  (3.88) 

This implies that (3.84) holds if the following LMI (3.89) holds 
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By using Schur complement formula, the above inequality (3.89) can be rewritten as 

the LMI (3.66), which implies that the sliding mode dynamics (3.77) is asymptotically 

stable. Hence, the sliding mode dynamics (3.65) is asymptotically stable. 

After the switching surface parameter matrix S is designed so that the reduced 

)( mn − order sliding mode dynamics has a desired response, the next step of the SMC 

design procedure is to design a switching feedback control law for the reaching mode 

such that the reachability condition is met. If the switching feedback control law 

satisfies the reachability condition, it drives the state trajectory to the switching surface 

0== xSσ and maintain it there for all subsequent time. With σ of (3.69), we design a 

sliding fuzzy control law guaranteeing that σ converges to zero. We will use the 

following nonlinear sliding switching feedback control law as the local controller. 

Control rule i: IF 1θ is 1iµ and ... and sθ is isµ , THEN 

σ
σδ

ω
σχ ),(

1
1)(),(ˆ)( xtxTTASxthtu i

T
iiii −

−+−−−=  

where k
l

k
k

T
iiiii xxTTASxt ∑

=

++++=
0

)1()(),( ρωωαδ               (3.90) 

and .0,0,, >>== iiSHrSx χαωσ It should be noted that (3.76) implies 

SHr=ω .HHSr η≤⋅≤  This and (3.70) guarantee .10 <≤ ω  The final 

controller inferred as the weighted average of the each local controller is given by  
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and we can establish the following theorem. 

Theorem 3.6  Consider the closed-loop control system of the uncertain system (3.61) 

with control (3.91). Suppose that the LMIs (3.66)-(3.68) has a solution vector 

),,,,,( 210 ηδcccY  and the linear sliding surface is given by (3.69). Then the state 

converges to zero. 

Proof:  Since Theorem 3.5 implies that the linear sliding surface (3.69) guarantees 

P1-P2, we only have to show that σ converges to zero. Define a Lyapunov function as 

.5.0)( σσ T
g tE =  The time derivative of )(tEg  is .σσ && T

gE =  From (3.61), (3.69), 

(3.91), ωβ =≤ SHrGSHF )( ,10, <≤ω  and A2, we obtain 

∑ =
Π+=

r

i iiii
TT txtTAS
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−
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From A3 and 0))((2 ≥Π−= − xtTTTxx T
ii

T
ii

T
gε , this implies that ≤gE&  

2

1 1 )( σεθβ g
r

i∑=
− 0)()()1(

1 1

2 ≤−−− ∑ ∑= =

r

i

r

i iiii σαθβσχθβω which indicates that 

,2 ∞∩∈ LLEg  .∞∈LEg
&  Finally, by using Barbalat’s lemma, we can conclude 

thatσ converges to zero. 

Remark 3.3  Theorem 3.5 and 3.6 can be summarized in the form of the following 

LMI-based design algorithm. 

Step 1: Obtain ∑=
=

r

i iB
r

B
1

1 and [ ])(,),(
2
1

1 rBBBBH −⋅⋅⋅−= for given iB . 
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Step 2: Check that ),( BAi is stabilization. If not, exit. 

Step 3: Find a solution vector ),,,,,( 210 ηδcccY  to LMI (3.66)-(3.68). 

Step 4: Compute the sliding surface parameter matrix S by using the formula of (3.69). 

Step 5: The controller is given by (3.91). 

3.3.6 Numerical Examples II 

Example 3.5  To illustrate the performance of the proposed sliding fuzzy control 

design method, consider the following two-rule fuzzy model from a vertical takeoff and 

landing (VTOL) helicopter model [55] 

Plant Rule 1: IF 1x is about 0, THEN 

)],([))(( 1111 xthuBxtTAx ++Π+=&  

Plant Rule2: IF 1x is about ,2± THEN  

)],([))(( 2222 xthuBxtTAx ++Π+=&  
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It should be noted that 1B and 2B are not matched and thus the previous VSS-based 

fuzzy control design methods cannot be applied to the above system (3.92). Via LMI 

optimization with (3.92), we can obtain the sliding surface .Sx=σ  

By setting [ ]Tttxth 3sin9.03sin9.0),(ˆ = and ,1=iχ ,0001.0=iα ,2=r  ,1=l  

,1=kρ and sec01.0=samplingt , we can obtain the following nonlinear controller: 

Control Rule 1: IF 1x is about 0, THEN 

[ ] ).sgn(
1

1)(3sin9.03sin9.0)( 1111 σδ
ω

σ
−

−+−−−−= xTTAStttu TT  

Control Rule 2: IF 1x is about ,2± THEN 

[ ] ).sgn(
1

1)(3sin9.03sin9.0)( 2222 σδ
ω

σ
−

−+−−−−= xTTAStttu TT  

The final controller inferred as the weighted average of each local controller is given by 

[ ] .)sgn(
1

1)()(3sin9.03sin9.0)(
1
∑
=







−
+++−−−=

r

i
i

T
iiii

T xTTAStttu σδ
ω

σθβ  (3.93) 

To assure the effectiveness of our fuzzy controller, we apply the controller to            

the two-rule fuzzy model (3.92) with nonzero ).(td  We assume that )(td  

[ ] .)sgn(5.02sin)sgn(5.02sin 4141
Txtxxtx −−= ππ The time histories of the state, the sliding   

variable ,σ and the input (3.93) are shown in Figure 3.8 when 

,0)0()0()0( 421 === xxx  .10)0(3 =x  In Figure 3.8, it should be noted that since it is 

impossible to switch the input u instantaneously, oscillations always occur in the sliding 

mode of a SMC system. From Figure 3.8, the proposed controller is applicable to T-S 

fuzzy systems with mismatched parameter uncertainties in the state matrix and external 

disturbances. The control performances of the proposed controller are satisfactory for 

the two-rule fuzzy model (3.92). It should be noted that all existing VSS-based fuzzy 
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control system design methods cannot be applied to the two-rule fuzzy model (3.92) 

because 1B is not in the range space of 2B . 
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Figure 3.8 Simulation results with ,0)0()0()0( 421 === xxx .10)0(3 =x  
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Example 3.6  For the special case of 0)( ≡∆ tAi , the robust sliding controller design 

is proposed in [54]. Consider the following inverted pendulum on a cart 

,21 xx =&  43 xx =& , ]),)([cos3sin3(1
112 φ

ψ
++−= tduxaxg

l
x&  

]))([42sin5.1(1
14 φ

ψ
++−−= tduaxmagx&                     (3.94) 

where 1x is the angle ( rad ) of the pendulum from the vertical, ,12 xx &= 3x is the 

displacement (m) of the cart, ,34 xx &=  ,cos34 1
2 xma−=ψ ,sin 1

2
2 xmlx=φ u is the input, 

and )(td is related to external disturbances which may be caused by the frictional force. 

),/(1 Mma += m is the mass of the pendulum, M is the mass of the cart, l2 is the 

length of the pendulum, 2/8.9 smg = is the gravity constant. We set 

kgM 9= kgm 1, = .1, ml = We assume that )(td is bounded as xtd 10)( ρρ +≤  where 

0ρ and 1ρ  are known constants. Here, we approximate the system (3.94) by the 

following two-rule fuzzy model. 

Plant Rule 1: IF 1x is about 0, THEN 

)],([11 xthuBxAx ++=&  

Plant Rule2: IF 1x is about ),3/(60 radπ±± o THEN  

)],([22 xthuBxAx ++=&  
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Because 1B is not in the range space of ,2B all existing VSS-based fuzzy control 

system design methods cannot be applied to the above system (3.95). Via LMI 

optimization with (3.95), we can obtain the sliding surface Sx=σ . 

By setting 1,1,2,1,5,sin),(ˆ 1
2
2 ====== kii lrxxxth ραχ , and sec01.0=samplingt , we 

can obtain the following nonlinear controller: 

Control Rule 1: IF 1x is about 0, THEN 

).sgn(
1

15sin)( 111
2
2 σδ

ω
σ

−
−−−−= xSAxxtu  

Control Rule 2: IF 1x is about ),3/(60 radπ±± o THEN 

).sgn(
1

15sin)( 221
2
2 σδ

ω
σ

−
−−−−= xSAxxtu  

The final controller inferred as the weighted average of each local controller is given by 
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r

i
iii xSAxxtu

1
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2
2 )sgn(

1
15)(sin)( σδ
ω

σθβ .              (3.96) 

To assure the effectiveness of our fuzzy controller, we apply the controller to the 

two-rule fuzzy model (3.95) with nonzero ).(td We assume that 

).sgn(5.02sin)( 41 xtxtd −= π  The time histories of the state, the sliding variableσ , and 

the input (3.96) are shown in Figure 3.9. when ),9/2(60)0(1 radx πo=  

.0)0()0()0( 432 === xxx  In Figure 3.9, it should be noted that since it is impossible to 

switch the input u instantaneously, oscillations always occur in the sliding mode of a 

SMC system. From Figure 3.9, the control performances of the proposed controller are 

also satisfactory for the two-rule fuzzy model (3.95). 
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Figure 3.9 Simulation results with ),3/(60)0(1 radx πo= .0)0()0()0( 432 === xxx  



 85

3.4  Robust Sliding Control for Mismatched T-S Fuzzy 

Time-Delay Systems 

    In this section, system formulation for the uncertain T-S fuzzy time-delay model is 

described in Section 3.4.1. A robust sliding control method via LMI is proposed in 

Section 3.4.2. Some examples are used to illustrate the effectiveness of the proposed 

methods and to compare with the existing methods in Section 3.4.3. 

3.4.1 System Formulation 

The T-S fuzzy model is described by fuzzy IF-THEN rules, which represent local 

linear input-output relations of nonlinear systems. The ith rule of the T-S fuzzy 

time-delay model is of the following form: 

Plant Rule i: IF 1θ is 1iµ and … and sθ is isµ , THEN 

),())(()()( tuBtdtxAtxAtx iii +−+= τ&  ),()( ttx ψ=   ]0,[ τ−∈t  

where )(tψ is the initial condition, nRtx ∈)( is the state, mRtu ∈)(  is the control 

input, nn
i RA ×∈ are the state matrices, nn

i RA ×∈τ are the delayed state matrices, 

mn
i RB ×∈ are the input matrices, ),,1( sjj ⋅⋅⋅=θ are the premise variables, s is the 

number of the premise variables, ),,1;,,1( sjriji ⋅⋅⋅=⋅⋅⋅=µ are the fuzzy sets that are 

characterized by membership function, r is the number of the IF-THEN rules. The 

time-varying delay )(td  is bounded as .)( τ≤td The overall fuzzy model achieved by 

fuzzy synthesizing of each individual plant rule is given by  

)],())(()()[()(
1

tuBtdtxAtxAtx iii

r

i
i +−+=∑

=
τθβ& ),()( ttx ψ=   ]0,[ τ−∈t  

where ],,[ 1 sθθθ ⋅⋅⋅= , ∑ =
⋅⋅⋅=→=

r

j
s

ijii riR
1

,,1],1,0[:),(/)()( ωθωθωθβ  is the membership 

function of the system with respect to plant rule .i  The function )(θβ i can be 
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regarded as the normalized weight of each IF-THEN rule and it satisfies 

that ,0)( ≥θβi 1)(
1

=∑ =
θβr

i i . To take into account parameter uncertainties and external 

disturbances, we consider the following uncertain T-S fuzzy time-delay model: 

))],,,()(()())(()())()[(()(
1

uxxthtuBtxtAAtxtAAtx diidiiii

r

i
i ++∆++∆+= ∑

=
ττθβ&  

),()( ttx ψ=   ]0,[ τ−∈t                          (3.97) 

where )),(()( tdtxtxd −= )(tAi∆ represents the parameter uncertainties 

in ,iA )(tA iτ∆ represents the parameter uncertainties in ,iAτ
m

di Ruxxth ∈),,,( denotes 

external disturbances. We will assume that the following assumptions are satisfied: 

A1: BBBB r ==== :...21 and rank .)( mB =  

A2: The function ),,,( uxxth di is unknown but bounded as ),,,( uxxth di )(tu ii ξφ +≤  

where )(tiξ is a known function and iφ satisfies 1<≤ mi φφ for a known constant mφ .  

A3: The time delay )(td is unknown but bounded as τ≤)(td and 1)( <≤ mdtd& where 

τ and md are known constants. 

A4: )(tAi∆ and )(tA iτ∆  are of the form )(tT iiΠ where )(tiΠ is a known time-varying 

matrix but bounded as .1)( ≤Π ti  

Using the above assumptions, the uncertain T-S fuzzy model (3.97) can be written as 

follows: 

)()],,,()())(()())()[(()(
1

tBuuxxtBhtxtAtxtAtx didiiiiii

r

i
i ++ΠΤ++ΠΤ+=∑

=
τθβ&  

),()( ttx ψ=   ]0,[ τ−∈t                              (3.98) 

A large number of examples in the literature and various mechanical systems, such as 

motors and robots, fall into the special cases of the above model (3.98), as reported in 
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[44], [56-60]. The above model (3.98) also involves the uncertain time-delay system 

models considered in the previous SMC design methods [44], [56-60]. The symbol ∗  

will be used in some matrix expressions to induce a symmetric structure. For given 

symmetric matrices K and L of appropriate dimensions, the following holds: 








 ++
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 ∗∗++

LZ
ZXXK

LZ
XK TT

 

When no confusion arises, the arguments ,,,, θdxxt etc… can be omitted for brevity.  

3.4.2 Sliding Control Design via LMI 

The Sliding Mode Control (SMC) design is decoupled into two independent tasks 

of lower dimensions. The first is concerned with the design of a sliding surface for the 

sliding mode such that the reduced-order sliding mode dynamics satisfies the design 

specifications such as stabilization, tracking, regulation, etc. The second involves 

choosing a switching feedback control for the reaching mode so that it can drive the 

system’s dynamics into the switching surface [33]. We first design a sliding surface that 

guarantees asymptotic stability of the reduced-order sliding mode dynamics using 

LMIs. 

Defining a nonsingular transformation matrix M and the associated vector xMv = such 

that 
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where ., 21
mmn RvRv ∈∈ −  Then we can easily see that ],[1 BYM Λ=− and .2 σ=v  By 

the above transformation we can obtain, we can transform (3.98) into the following 

regular form: 
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where ))(( tdtvvd −= and 
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Thus, from the above regular form, by setting ,0== σσ& we can obtain the following 

sliding mode dynamics : 

ddo AA ααα +=&                             (3.101) 

where )),((, 11 tdtvv d −== αα ,110 AA = and .11τAAd =  

Theorem 3.7  Let us consider the sliding mode dynamics (3.101). If the matrix 

)( mnnR −×∈Λ is any full rank matrix such that ,,0 IB TT =ΛΛ=Λ the 

matrices )()()()( ,, mnmn
i

mnmnnn RXRKRY −×−−×−× ∈∈∈ , and )()( mnmn
i RZ −×−∈ are decision 

variables, and ∗ represents blocks that are readily inferred by symmetry such that the 

following LMI holds: 
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where     ∗++ΛΠΤ+Λ+=Ν iiii
T XYtAK ))((11 , 

T
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T ZXtAY +−ΛΠΤ+Λ=Ν ))((21 τ , T
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,))((41 ΛΠΤ+Λ=Ν YtA iii
Tτ  .))((42 ΛΠΤ+Λ=Ν YtA iii

T
ττ  

Suppose that the LMI (3.102) have a solution ),,,( ii ZXKY  for given ττ ,,,, mii dBAA , 

then there exists a linear sliding surface parameter matrix S and the sliding surface 

0)()( 111 === −−− xYBBYBxSx TTσ                      (3.103) 

will guarantee that the sliding mode dynamics (3.101) is asymptotically stable. 

Proof:  Let us define a Lyapunov-Krasovskii function (LKF) as  

∫ ∫ ∫− − +
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dt
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TTT
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τ η
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where nnT RYP ×∈ΛΛ=0 and nnRF ×∈ are solution matrices for the LMI (3.102). It 

should be noted that a large number of previous methods such as the methods given in 

[42,43], have used similar Lyapunov-Krasovskii functions to obtain less-conservative 

stability conditions by exploiting information on the upper bounds of delay and its time 

derivative. None of the previous SMC design methods [44], [56-60] have used the  

term ∫ ∫− +

0

0 )()(
τ η

ηαα
t

t

T dsdsPs && in stability analysis. The time derivative of the 

Lyapunov-Krasovskii function is given by 
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By using (3.101) and the Newton-Leibniz formula ∫ −
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t

dtd dss ,0)(ααα & we have  
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d

T
dd

T
g AAPAAFdFAAPV αααατααααααα +++−−++= &&  

  ∫∫ −−
−−++−

t

td
TT

d
TTt

t

T dssZXdssPs
ττ
ααααααα ))()((2)()( 0 &&&  

where ∑= ii XX β and .∑= ii ZZ β By using the inequality ,2 1YHyHxxyx TTT −+≤  

where x and y are any vectors with appropriate dimensions and ,0>H we can obtain 
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∫ −
+

t

t

T dssPs
τ

αα )()( 0 &&  which leads to 

][][)1()(2 1
0000 d

TT
d

TT
d

T
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T
dd

T
g ZXPZXFdFAPAPV αααατααααααα +++−−++≤ −&     

).()())((2 000
1

0000 dd
T

ddd
TT

d
TT APAPPAPAPZX ααααταααα +++−++ −  

By applying the Schur complement formula [48] to (3.102), we can obtain  
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(3.104) 

This implies that )( 22
dgV ααµ +−≤& for some .0>µ After all, we can conclude that 

the sliding mode dynamics (3.101) is stable. 

After the switching surface parameter matrix S is designed so that the 

reduced-order sliding mode dynamics has a desired response, the next step of the SMC 

design procedure is to design a switching feedback control law for the reaching mode 

such that the reachability condition is met [33], [57], [61]. If the switching feedback 

control law satisfies the reachability condition, it drives the state trajectory to the 

switching surface 0== xSσ and maintains it there for all subsequent time. We design 

a sliding fuzzy control law guaranteeing that σ converges to zero. We will use the 

following nonlinear sliding switching feedback control law as the local controller: 

Control Rule i: IF 1θ is 1iµ and ... and sθ is isµ , THEN 

σ
σκτ )())(())(()( txtASxtAStu idiiiiii −ΠΤ+−ΠΤ+−=          (3.105) 

where )))(())(()((
1

1)( idiiiiiimi
m

i xtASxtAStt εφξ
φ

κ τ +ΠΤ++ΠΤ++
−

=   (3.106) 
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and .0>iε  The final controller inferred as the weighted average of the each local 

controller is given by  

∑
=











+ΠΤ++ΠΤ+−=

r

i
idiiiiiii txtASxtAStu

1

)())(())(()()(
σ
σκθβ τ    (3.107) 

and we can establish the following theorem. 

Theorem 3.8  Consider the closed-loop control system of the uncertain system (3.98) 

with control (3.107). Suppose that the LMI (3.102) is feasible and the sliding surface is 

given by (3.103). Then, the switching feedback control law (3.107) induces an ideal 

sliding motion on the sliding surface 0=σ in finite time and the state converges to 

zero.  

Proof:  Since Theorem 3.7 implies that the sliding mode dynamics restricted to 

0== Sxσ is stable, we only have to show that reachability condition σεσσ −<&T is 

satisfied for some .0>ε Using ISB = and the assumption A2, we can obtain 

uhxtASxtAS T
idii

r

i iiiii
TT σβσσσ τ ++ΠΤ++ΠΤ+= ∑ =

)))(())(((
1

&  

          .)(
1 1∑ ∑= =

−≤−−≤
r

i

r

i iiiii u σεσςφκβ  

After all, we can conclude thatσ converges to zero. 

Remark 3.4  Theorem 3.7 and 3.8 can be summarized in the form of the following 

LMI-based design algorithm. 

Step 1: Check that ),( BAA ii τ+ is stabilization. If not, exit. 

Step 2: Find a full-rank matrix )( mnnR −×∈Λ such that .,0 IB TT =ΛΛ=Λ  

Step 3: Find a solution vector ),,,( 21 ηccY  to LMI (3.102). 

Step 4: Compute the sliding surface parameter matrix S by using the formula of (3.103). 

Step 5: The controller is given by (3.107). 
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3.4.3 Numerical Examples 

Example 3.7  To illustrate the performance of the proposed sliding fuzzy control 

design method, consider the following T-S fuzzy time-delay model [62] without 

mismatched parameter uncertainties and external disturbances. 

)()]()()[()(
2

1

tButxAtxAtx dii
i

i ++=∑
=

τθβ&                        (3.108) 

where [ ]Ttxtxtx )()()( 21= and 
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
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

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
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1
1

B , ,
1

1
)(21 1 txe−+

=β .1 12 ββ −=                                           

We assume that 0,0,1,0,4.0)( ====== imii htd φξφτ and .5.0=iε Figure 3.10 

shows the control results for system (3.108) via the proposed controller (3.107) under 

the initial condition Tt ]02[)( =ϕ . In Figure 3.10, it should be noted that since it is 

impossible to switch the input u instantaneously, oscillations always occur in the sliding 

mode of a SMC system. 
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Figure 3.10 Control results for the system (3.108) 
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Example 3.8  Consider a well-studied example of a continuous-time truck-trailer with 

time-delay proposed in [63]. The time-delay model is given by 

)]()([)()1()()(
0

1
0

1
0

1 thtu
lt
vTdtx

Lt
vTatx

Lt
vTatx ++−−−−=& , 

)()1()()( 1
0

1
0

2 dtx
Lt
vTatx

Lt
vTatx −−+=& , 





 −−++= )(

2
)1()(

2
)(sin)( 112

0
3 dtx

L
vTatx

L
vTatx

t
vTtx&            (3.109) 

where )(1 tx  is the angle difference between truck and trailer (in radians), )(2 tx  is the 

angle of trailer (in radians), )(3 tx is the vertical position of rear of trailer (in 

meters), )(tu is the steering angle (in radians), 8.2,0.2 == lT  ,5.5, =L  0.1−=v  

and .5.00 =t The constant parameter a is the retarded coefficient satisfying ].1,0[∈a  

The limits 1 and 0 correspond to a no-delay term and to a completed-delay term. We 

assume that the disturbance input )(th is unknown but bounded as .1)( ≤th By using 

the fact that xx ≈)sin( if ,0≈x we can represent the above model as the following 

two-rule T-S fuzzy model, including parameter uncertainties and external disturbances:  

Plant Rule 1: IF )(tθ is about 0, THEN 

1111111 ))(())(( BhBuxtAxtAx d ++ΠΤ++ΠΤ+= τ&  

Plant Rule 2: IF )(tθ is about ,π± THEN 

2222222 ))(())(( BhBuxtAxtAx d ++ΠΤ++ΠΤ+= τ&  

where LdtxvTaLtxavTtxt 2/)()1(2/)()()( 112 −−++=θ  
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We assume that .1.0)( == τtd  Considering LMI optimization with the data 

(3.110), 1.0,0 == τa and ,0=md we can obtain the sliding surface parameter 

vector .xS=σ Since ,1)( ≤thi we can set 0,1,0 === mii φξφ 2.0, =iε , and 

.sec01.0=samplingt We can obtain the following fuzzy controller: 

Control Rule 1: IF )(tθ is about 0, THEN 

).sgn(2.1))(())(()( 111111 στ −ΠΤ+−ΠΤ+−= dxtASxtAStu  

Control Rule 2: IF )(tθ is about ,π± THEN 

).sgn(2.1))(())(()( 222222 στ −ΠΤ+−ΠΤ+−= dxtASxtAStu  

The final controller inferred as the weighted average of each local controller is given by 
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.)]sgn(2.1))(())(([)(
2

1
σβ τ +ΠΤ++ΠΤ+−= ∑

=
diiiiii

i
i xtASxtAStu      (3.111) 

To demonstrate the controller ability, we apple the above fuzzy controller (3.111) 

to the system model (3.110) with tth sin)( = and .1.0)( == τtd  Figure 3.11 shows the 

closed-loop system responses of (3.110) and the proposed controller (3.111) with the 

initial condition .]4,8.0,4.0[)( Tt −= ππψ  Moreover, the closed-loop system responses 

of the truth model (3.109) and the proposed controller (3.111) with the initial 

condition Tt ]4,8.0,4.0[)( −= ππψ are also shown in Figure 3.12. In Figure 3.11 and 

Figure 3.12, it should be noted that since it is impossible to switch the input u 

instantaneously, oscillations always occur in the sliding mode of a SMC system. From 

Figure 3.11 and Figure 3.12, the proposed controller is applicable to T-S fuzzy 

time-delay systems with mismatched parameter uncertainties in the state matrix and 

external disturbances and the nonlinear truth model. The control performances of the 

two-rule T-S fuzzy model (3.110) and the nonlinear truth model (3.109) are 

satisfactory.  
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Figure 3.11 Simulation results with the proposed method on the two-rule T-S fuzzy model (3.110). 
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Figure 3.12 Simulation results with the proposed method on the nonlinear truth model (3.109). 
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Chapter 4                             

LMI-Based Robust Adaptive Control 

In this chapter, LMI-based robust adaptive control methods are developed for 

distinct uncertain Takagi-Sugeno fuzzy models/time-delay models. The introduction of 

this chapter is introduced in Section 4.1. In Section 4.2, a robust adaptive control 

method is proposed for T-S fuzzy systems. Section 4.3 presents two kinds of robust 

adaptive control methods for mismatched T-S fuzzy systems. A robust adaptive control 

method is presented for mismatched T-S fuzzy time-delay systems in Section 4.4. 

4.1  Introduction 

Fuzzy techniques have been widely and successfully applied to nonlinear system 

modeling and control for over two decades. The feedback stabilization problem of a 

nonlinear system in the Takagi-Sugeno (T-S) model [5] has been studied extensively. In 

the T-S model, local models are combined to describe the global behavior of the 

nonlinear system. Some authors [23-29] have studied to solve the feedback stabilization 

problem based on the assumption that the local model can be described by a simple 

linear system. In practice, the inevitable uncertainties may enter a nonlinear system 

model in a very complicated way. The uncertainty may include modeling errors, 

parameter variations, external disturbances, and fuzzy approximation errors. In such a 

situation, the fuzzy feedback control design methods of [23-29] may not work well 

anymore. To deal with the problem, some authors [30,31] have exploited the variable 

structure system (VSS) theory which has proposed an effective method to design robust 

controllers for uncertain nonlinear systems where external disturbances are bounded by 

known upper norm bounds. 
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Some authors [36-40] have relaxed the assumption and they have proposed 

adaptive laws to estimate the upper norm bounds. However, the previous VSC-based 

fuzzy control methods have considered the problem of adaptive control design and 

stability analysis for uncertain T-S fuzzy models where the input matrices of the local 

system models satisfy the assumption that each nominal local system shares the same 

input channel. It is practically difficult to satisfy this assumption. Moreover, these years, 

other authors [44-46] have exploited the SMC approach theory which has provided an 

effective means to design robust controllers for uncertain fuzzy time-delay systems 

where external disturbances are bounded by known upper norm bounds. 

In this chapter, we propose robust adaptive control design methods for different 

uncertain T-S fuzzy models with matched/mismatched parameter uncertainties and 

external disturbances which are bounded by unknown upper norm bounds. As the local 

controller, we use an adaptive controller with a nonlinear switching feedback control 

term and an adaptation law to specify unknown upper norm bounds. We derive LMI 

conditions for existence of linear sliding surfaces guaranteeing asymptotic stability of 

the reduced order equivalent sliding mode dynamics, and we give an explicit formula of 

the switching surface parameter matrix in terms of the solution of the LMI existence 

conditions. We also design the nonlinear switching feedback control term and an 

adaptation law to drive the system trajectories so that a stable sliding motion is induced 

in finite time on the switching surface and the state converges to zero. Moreover, a 

robust adaptive control design method is also presented for the uncertain T-S time-delay 

model with mismatched parameter uncertainties and external disturbances. Finally, 

some examples are used to illustrate the effectiveness of the proposed methods for 

distinct uncertain T-S fuzzy models and to compare with the existing methods in each 

final subsection. 
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4.2  Robust Adaptive Control for T-S Fuzzy Systems 

In this section, system formulation for the uncertain T-S fuzzy model is described in 

Section 4.2.1. A robust adaptive control method via LMI is proposed in Section 4.2.2. 

Some examples are used to illustrate the effectiveness of the proposed methods and to 

compare with the existing methods in Section 4.2.3. 

4.2.1 System Formulation 

Consider the following uncertain T-S fuzzy model [49]:  

[ ]∑ =
++=

r

i iiii xthBtuBtxAtx
1

),()()()()( θβ&                  (4.1) 

where nRtx ∈)( is the state, mRtu ∈)(  is the control input, ii BA ,  are constant 

matrices of appropriate dimensions, ),,1(],,,[ 1 sjjs ⋅⋅⋅=⋅⋅⋅= θθθθ are the      

premise variables, s is the number of  the  premise  variables, =)(θβi  

∑ =

r

j ji 1
),(/)( θωθω →s

i R:ω ]1,0[  ri ,,1, ⋅⋅⋅=  is  the  membership  function  of  the 

system with  respect  to  plant  rule  ri,  is  the number  of  the   IF-THEN 

rules, iβ  can be regarded as the normalized weight of each IF-THEN rule and it 

satisfies that ,0)( ≥θβi ,1)(
1

=∑ =
θβr

i i
mRxth ∈),(  represents the lumped nonlinearities or 

uncertainties. We will assume that the followings are satisfied:  

A1: The mn× matrix B defined by ∑ =
=

r

i iBrB
1

/1 satisfies the rank constraint 

rank mB =)( , i.e., the matrix B  has full column rank m . 

A2: The function ),( xth is unknown but bounded as ),(ˆ),( xthxth − ∑ =
≤

l

k

k
k x

0
ρ where 

lρρ ,,0 ⋅⋅⋅ are unknown constants, ),(ˆ xth is an estimate of ),( xth , and l is a 

known positive integer.  

The system (4.1) does not have to satisfy the restrictive assumption that all the input 
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matrices of the local system models are in the same range space. It should be noted that 

the assumption A1 implies that mBrank i ≤)( and each nominal local system model 

may not share the same input channel. The assumption A2 with 1=l and 

0),(ˆ =xth has been used in the literature [50]. We can set ),(ˆ xth as the nominal value 

of ).,( xth Using the above assumptions, the uncertain T-S fuzzy model (4.1) can be 

written as follows: 

∑ =
+++=

r

i ii xthuGHFBtxAtx
1

)],(][)([)()()( βθβ&             (4.2) 

where )],(,),([ 1 θβθββ r⋅⋅⋅= and the matrices )(,, βFGH  are defined by 

[ ])(,),(
2
1

1 rBBBBH −⋅⋅⋅−= , [ ]TIIG ,, ⋅⋅⋅= , 

[ ].))(21(,,))(21()( 1 IIdiagF r θβθββ −⋅⋅⋅−=                 (4.3) 

It should be noted that the system (4.1) does not have to satisfy 

,21 rBBB =⋅⋅⋅== which is used in almost all published results on VSS design methods  

including the VSS-based fuzzy control design methods of [33,34]. Hence the methods 

[30,31] cannot be applied to the above model (4.1). Since 0)( ≥θβi  and 

∑=
=

r

i 1
,1)(θβ we can see that the following inequality always holds: 

.)()()()( IFFFF TT ≤= ββββ                     (4.4) 

Many examples in the literature and various mechanical systems such as motors and 

robots do not satisfy the restrictive assumptions that each nominal local system model 

shares the same input channel and they fall into the special cases of the above model 

[49]. 

4.2.2 Adaptive Control Design via LMI 

The Sliding Mode Control (SMC) design is decoupled into two independent tasks 

of lower dimensions: The first involves the design of −− )1(nm dimensional switching 
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surfaces for the sliding mode such that the reduced order sliding mode dynamics 

satisfies the design specifications such as stabilization, tracking, regulation, etc. The 

second is concerned with the selection of a switching feedback control for the reaching 

mode so that it can drive the system’s dynamics into the switching surface [33]. We first 

characterize linear sliding surfaces using LMIs. 

Let us define the linear sliding surface as =σ 0=xS  where S is a nm× matrix. 

Referring to the previous results [33], [51], we can see that for the system (4.2) it is 

reasonable to find a sliding surface such that  

P1 [ ]GSHFSB )(β+ is nonsingular for any β satisfying ,,,1,0)( rii ⋅⋅⋅=≥θβ  and 

∑=
=

r

i i1
.1)(θβ  

P2 The reduced )( mn − order sliding mode dynamics restricted to the sliding surface 

0=Sx is asymptotically stable for all admissible uncertainties. 

It should be noted that P1 is necessary for the existence of the unique equivalent control 

[33] and the assumption A1 is necessary for the nonsingularity of SB. 

Define a transformation matrix and the associated vector v as 1)([ −ΛΛΛ= YM T  

TT BYBBY ])(, 111 −−− ,],[ TTT SV= xMvvv TTT == ],[ 21  where mnRv −∈1  ., 2
mRv ∈  By 

the above transformation, we can see that ],[1 BYM Λ=− and .2 σ=v  Then, from 

system (4.2), we can obtain  
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From the equivalent control method [33], we can see that the equivalent control is  

given by =)(tueq ).,(])()[( 1
1

xthxSAGSHFI i
r

i i −+− −
=∑ βθβ By setting 0== σσ& and 

substituting )(tu with ),(tueq we can show that the reduced )( mn − order sliding mode 

dynamics restricted to the switching surface 0== Sxσ is given by  
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∑ =
− ΛΛΛΛ=

r

i i
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i vYADYv
1 1

1
1 )())(( βθβ&                    (4.6) 

where .])([)()( 1SGSHFIGHFID −+−= βββ  

Theorem 4.1  Let us consider the sliding mode dynamics (4.6). If nnRY ×∈  

RRcRc ∈∈∈ η,,, 21 are decision variables, ),(min BBTλκ = )( mnnR −×∈Λ is any full rank 

matrix satisfying ,,0 IB TT =ΛΛ=Λ  and ∗ represents blocks that are readily inferred 

by symmetry such that the following LMIs holds: 
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Suppose that the LMIs (4.7)-(4.9) have a solution vector ),,,( 21 ηccY , then there exists 

a linear sliding surface parameter matrix S satisfying P1-P2 and the sliding surface  

0)()( 111 === −−− xYBBYBxSx TTσ                        (4.10) 

will guarantee that the sliding mode dynamics (4.6) is asymptotically stable. 

Proof:  By using Schur complement formula [48], we can easily show that in fact the 

following LMIs are incorporated in the LMIs (4.7)-(4.9) 

,,0,0,0 2
21 IHHcc T <>>> ηη  ).(2 2

2
2
1

2 ccr +>κη                (4.11) 

It is clear that if the following inequality (4.12) holds, then 

GSHFIGSHFSB )()( ββ +=+ is nonsingular and hence P1 holds 

.)()( ISHFGGSHF TTTT <ββ                             (4.12) 
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Using (4.3), (4.4), (4.11) and ,2 rIIGGGT =≤  we can obtain  

.)()( 2
TTTTT SSrSHFGGSHF

η
ββ ≤                        (4.13) 

By using the Schur complement formula, we can see that (4.8) and (4.11) imply 

,0 2
1

1 IcYIc <<< −     IcYIc 1
11

20 <<< −−                    (4.14) 

and this leads to   

TTTTT SSrSHFGGSHF 2)()(
η

ββ ≤ .)( 2
211

2
21 IcrcBBcrc T

κηη
≤≤ −          (4.15) 

Using the inequality 222 baab +≤ where a  and b are scalars, we can show that (4.15) 

implies 

.)(
2

)()( 2
2

2
12 IccrSHFGGSHF TTTT +≤

κη
ββ                 (4.16) 

Finally, by using the above inequalities (4.11) and (4.16), we can obtain  

ISSrSHFGGSHF TTTTT <≤ 2)()(
η

ββ                   (4.17) 

which implies that ])([ GSHFSB β+ is nonsingular, i.e., P1 holds. 

Now, we will show that S of (4.10) guarantees P2. Using the matrix inversion lemma: 

BBAIAIABI 11 )()( −− +−=+  

where A and B are compatible constant matrices such that )( ABI + is nonsingular, 

we can show that the sliding mode dynamics (4.6) is equivalent to  

∑ =
− ΛΛΛΛ=

r

i i
TT

i vYACYv
1

1
1 )())(( βθβ&                 (4.18) 

Where 11 ])([)(])([)( −− +=+−= GSHFIGSFGSHFIHIC ββββ  

)(])([)( 1 βββ DSGSHFIGHFI =+−= − . 

The sliding mode dynamics (4.18) is asymptotically stable if there exists a positive 

definite matrix )()(
0

mnmnRP −×−∈ such that the time derivative of the Lyapunov function 
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101)( vPvtE T
g = satisfies for some positive scalarτ  

∑ =
−≤Ζ=

r

i
T

i
T

ig vvvPvtE
1 11101 )()(2)( τβθβ&                (4.19) 

where ))(])([()( 0
1

000 iii CNDNIBA βββ −−+=Ζ , ΛΛΛΛ= − YAYA i
TT

i
1

0 )( , 

HYB TT ΛΛΛ= −1
0 )( , Λ= YAC ii 0 , HD =0 , .)()( GSFN ββ −=  

It should be noted that the inequalities (4.4), (4.11), (4.17) and rIIGGGT =≤ 2 imply 

,)()()()( 2 IFGGSSFNN TTTT ηββββ ≤= IHHDD TT <= 2
00

2 ηη .    (4.20) 

This and (4.19) imply that (4.18) is asymptotically stable if there exists a positive 

definite matrix 0P such that 

 0)(])([ 0
1

00000 <∗+−+ −
ii CNDNIBPAP ββ i∀                (4.21) 

where ∗ represents blocks that are readily inferred by symmetry. 

Let iz be yCNDNIz ii 0
1

0 )(])([ ββ −−= where )( mnRy −∈ . Then iz can be rewritten 

as ])[( 00 iii zDyCNz += β . This equality and (4.20) imply T
iii

T
i zDyCzz ][ 00

2 +≤η  

][ 00 ii zDyC + and this leads to 

yCNDNIBPy i
T

0
1

000 )(])([2 ββ −−  

i
T
iii

T
iii

T
i

T zzzDyCzDyCzBPyzBPy 2
00000000 ][][22 −−+++≤= η  

i
T
ii

T
i

T
i

T
i

T zzzDCBPyyCCy Ω−++= −2
000000 ][2 η where .00

2 DDI Tη−=Ω     (4.22) 

Since 0>Ω , the following inequality holds for any ),( izy : 

i
T
i

T zDCBPy ][2 0000 + .][][ 0000
1

0000
22 yDCBPDCBPyzz TT

i
T
i

T
i

T
i +Ω++Ω≤ −− ηη  (4.23) 

Using (4.22) and (4.23), we can show that the Lyapunov inequality (4.21) is satisfied if 

the following inequality holds: 

.0][][ 0000
1

0000
2

000000 <+Ω++++ − TT
i

T
ii

T
i

T
ii DCBPDCBPCCPAAP η  

Using the Schur complement formula, we can rewrite the above inequality as  
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00

00

0

<
















−
∗−
∗∗∗+

IDC
IPB

PA

i

T
o

T
i

η
η , i∀ .                    (4.24) 

Let the positive definite matrix 0P  be ΛΛ= YP T
0  whereY is a solution to LMIs 

(4.7)-(4.9), which implies that the sliding mode dynamics (4.18) is asymptotically 

stable. Hence, the sliding mode dynamics (4.6) is asymptotically stable. 

After the switching surface parameter matrix S is designed so that the reduced 

)( mn − order sliding mode dynamics has a desired response, the next step of the SMC 

design procedure is to design a switching feedback control law for the reaching mode 

such that the reachability condition is met. If the switching feedback control law 

satisfies the reachability condition, it drives the state trajectory to the switching surface 

0== xSσ and maintains it there for all subsequent time. With σ of (4.10), we design 

an adaptive fuzzy control law guaranteeing that σ converges to zero. We will use the 

following nonlinear adaptive switching feedback control law as the local controller. 

Control rule i: IF 1θ is 1iµ and ... and sθ is isµ , THEN 

σ
σδ

ω
σχ ),(ˆ

1
1),(ˆ)( xtxSAxthtu iii −

−−−−=  

where       ∑ =
+++=

l

k

k
kiii xxSAxt

0
)1(),(ˆ ρωωαδ                 (4.25) 

k
kk x⋅= σερ&̂                              (4.26) 

and .0,0,0,, >>>== kiiSHrSx εχαωσ  It should be noted that (4.17) implies 

.HHSrSHr ηω ≤⋅≤=  This and (4.11) guarantee .10 <≤ ω  The final 

controller inferred as the weighted average of the each local controller is given by  

∑
=












−
++−−=

r

i
iiii xtxSAxthtu

1
),(ˆ

1
1)(),(ˆ)(

σ
σδ

ω
σχθβ         (4.27) 
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and we can establish the following theorem. 

Theorem 4.2  Consider the closed-loop control system of the uncertain system (4.2) 

with control (4.27). Suppose that the LMIs (4.7)-(4.9) has a solution vector 

),,,( 21 ηccY  and the linear sliding surface is given by (4.10). Then the state converges 

to zero. 

Proof:  Since Theorem 4.1 implies that the linear sliding surface (4.10) guarantees 

P1-P2, we only have to show that σ converges to zero. Define a Lyapunov function as 

∑ =
+=

l

k k
T

g tE
0

2~5.05.0)( ρξσσ  where ωξ +=1  and .ˆ~
kkk ρρρ −=  The time 

derivative of )(tEg is .~
0

kl

k k
T

g xE ∑ =
+= ρσξσσ &&  From (4.2), (4.10), (4.27), 

≤GSHF )(β ω=SHr ,10, <≤ ω  and A2, we obtain 

)],(][)([)()(
1

xthuGSHFItxSA Tr

i ii
TT +++= ∑ =

βσθβσσσ &  

σωωσσθβ }),()1({)()(
1

xthuutxSA Tr

i i
T

i ++++≤ ∑ =
 

.~)()()1(
1 01

2 ∑ ∑∑ = ==
−−−−≤

r

i

kl

k kii
r

i ii xρσξσαθβσχθβω  

This implies that 0)()()1(
1 1

2 ≤−−−≤ ∑ ∑= =

r

i

r

i iiiigE σαθβσχθβω& which indicates 

that .,2 ∞∞ ∈∩∈ LELLE gg
& Finally, by using Barbalat’s lemma, we can conclude that 

σ converges to zero. 

Remark 4.1  Theorem 4.1 and 4.2 can be summarized in the form of the following 

LMI-based design algorithm. 

Step 1: Obtain ∑=
=

r

i iB
r

B
1

1 and [ ])(,),(
2
1

1 rBBBBH −⋅⋅⋅−= for given iB . 

Step 2: Check that ),( BAi is stabilization. If not, exit. 

Step 3: Find a solution vector ),,,( 21 ηccY  to LMI (4.7)-(4.9). 
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Step 4: Compute the sliding surface parameter matrix S by using the formula of (4.10). 

Step 5: The controller is given by (4.27). 

4.2.3 Numerical Examples 

Example 4.1  Consider the following inverted pendulum on a cart [49] 

,21 xx =& ,43 xx =& ),])([cos3sin3(1
112 φ

ψ
++−= tduxaxg

l
x&  

)])([42sin5.1(1
14 φ

ψ
++−−= tduaxmagx&                (4.28) 

where 1x is the angle ( rad ) of the pendulum from the vertical, ,12 xx &= 3x is the 

displacement (m) of the cart, ,34 xx &=  ,cos34 1
2 xma−=ψ ,sin 1

2
2 xmlx=φ u is the input, 

and )(td is related to external disturbances which may be caused by the frictional force. 

),/(1 Mma += m is the mass of the pendulum, M is the mass of the cart, l2 is the 

length of the pendulum, 2/8.9 smg = is the gravity constant. We set kgM 9=  

kgm 1, = .1, ml = We assume that )(td is bounded as xtd 10)( ρρ +≤  where 0ρ and 1ρ  

are unknown constants. Here, we approximate the system (4.28) by the following 

two-rule fuzzy model. 

Plant Rule 1: IF 1x is about 0, THEN 

)],([11 xthuBxAx ++=&  

Plant Rule 2: IF 1x is about ),3/(60 radπ±± o THEN  

)],([22 xthuBxAx ++=&  

where ,
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,
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0

2
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













−

=B ,sin)(),( 1
2
2 xxtdxth += ,

1
)1/(11

)8/(14

)8/(14

1 1

1

π

π

β +−

−−

+
+−

= x

x

e
e .1 12 ββ −=  (4.29) 

The inverted pendulum on a cart (4.28) can be cast as (4.2) with data (4.29). 

Because 1B is not in the range space of 2B and the previous adaptive fuzzy control 

system design methods cannot be applied to the above system (4.29). Via LMI 

optimization with (4.29), we can obtain the sliding surface Sx=σ . 

By setting ,sin),(ˆ 1
2
2 xxxth =  ,5=iχ  ,1=iα  ,2=r  ,1=l 004.01 =ε , 001.02 =ε , 

and sec01.0=samplingt , we can obtain the following nonlinear controller: 

Control Rule 1: IF 1x is about 0, THEN 

).sgn(ˆ
1

15sin)( 111
2
2 σδ

ω
σ

−
−−−−= xSAxxtu  

Control Rule 2: IF 1x is about ),3/(60 radπ±± o THEN 

).sgn(ˆ
1

15sin)( 221
2
2 σδ

ω
σ

−
−−−−= xSAxxtu  

The final controller inferred as the weighted average of each local controller is given by 

.)sgn(ˆ
1

15)(sin)(
1

1
2
2 ∑

=






−
++−−=

r

i
iii xSAxxtu σδ

ω
σθβ           (4.30) 

To assure the effectiveness of our fuzzy controller, we apply  the  controller  to  

the  two-rule  fuzzy  model (4.29) with nonzero ).(td  We assume that =)(td   

tx π2sin1 ).(sgn5.0 4x−  Figure 4.1 shows the time histories of the state, ,ˆ kρ the  

sliding variableσ , and the input (4.30) when ),9/(20)0(1 radx πo=  =)0(2x  =)0(3x  

.0)0(4 =x  Figure 4.2  shows the time histories  of  the   state, ,ˆ kρ the  sliding 

variable σ , and the input (4.30) when ),9/2(40)0(1 radx πo=  =)0(2x =)0(3x  
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.0)0(4 =x  Figure 4.3  shows  the  time  histories  of the state, ,ˆ kρ the sliding 

variable σ , and the input (4.30) when ),3/(60)0(1 radx πo= =)0(2x =)0(3x  

.0)0(4 =x  In Figure 4.1, Figure 4.2, and Figure 4.3, it should be noted that since it is 

impossible to switch the input u instantaneously, oscillations always occur in the sliding 

mode of a SMC system. It is observed that in our simulations the proposed controller 

(4.30) stabilizes the following two-rule fuzzy model (4.29). 
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Figure 4.1 Simulation results with ),9/(20)0(1 radx πo= .0)0()0()0( 432 === xxx  
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Figure 4.2 Simulation results with ),9/2(40)0(1 radx πo= .0)0()0()0( 432 === xxx  
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Figure 4.3 Simulation results with ),3/(60)0(1 radx πo= .0)0()0()0( 432 === xxx  
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Example 4.2  Consider the following example of a ball and beam system [52], whose 

dynamic equations are described as follows:  

,0sin 2 =−+





 + θθ &&& MrMGrM

R
J b ( ) τθθθ =++++ cos22 MGrrMrJJMr b

&&&&   

(4.31) 

where r  is the ball position, θ  is the beam angle, J  is the moment of inertia of the 

beam, M , bJ , and R  are the mass, the moment of inertia, and the radius of the ball 

respectively, G  is the acceleration of gravity, and τ  is the torque applied to the 

beam. 

Define  )//( 2 MRJMB b +=  and change the coordinates in the input space by using 

the invertible transformation 

uJJMrMGrrMr b )cos2 2 ++++= θθτ &&                (4.32) 

where u  is the new input, then the ball and beam system can be written in the 

following state-space form: 

,21 xx =& ),sin( 3
2
412 xGxxBx −=& ,43 xx =& )(4 tdux +=&           (4.33) 

where [ ] [ ] .4321
TT rrxxxxx θθ &&== The system parameters used for 

simulation are ,05.0 kgM = ,01.0 mR = ,02.0 2kgmJ = ,102 26kgmJb
−×=  2/81.9 smG =  

and .7143.0=B We assume that )(td is bounded as xtd 10)( ρρ +≤  where 0ρ and 1ρ  

are unknown constants. Then, we approximate the system by the following two-rule 

fuzzy model: 

Plant rule 1: IF 1x  is greater than 0, THEN 

)],([11 xthuBxAx ++=& . 

Plant rule 2: IF 1x  is smaller than 0, THEN 
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)],([22 xthuBxAx ++=& . 

where ,
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= x

x

e
e  .1 12 ββ −=       (4.34) 

By setting 5.0,1,2,175,2.0 ===== kii lr εαχ , and sec01.0=samplingt , we can 

obtain the following nonlinear controller: 

Control Rule 1: IF 1x is greater than 0, THEN 

).sgn(ˆ
1

12.0)( 11 σδ
ω

σ
−

−−−= xSAtu  

Control Rule 2: IF 1x is smaller than 0, THEN  

).sgn(ˆ
1

12.0)( 22 σδ
ω

σ
−

−−−= xSAtu  

The final controller inferred as the weighted average of each local controller is given by 

.)sgn(ˆ
1

12.0)()(
1
∑
=







−
++−=

r

i
iii xSAtu σδ

ω
σθβ                (4.35) 

To assure the  effectiveness of our fuzzy controller, we  apply  the  controller  

to  the  two-rule   fuzzy   model  (4.34) with nonzero ).(td  We assume that 

=)( td tx π2sin1 ).(sgn5.0 4x−  Figure 4.4 shows the time histories   of   the   

state, ,ˆ kρ  the  sliding   variable  σ , and  the input (4.35) 

when ,5.0)0(1 =x =)0(2x  .0)0()0( 43 == xx  Figure 4.5 shows the time histories   

of   the   state, ,ˆ kρ the  sliding   variable  σ , and the input (4.35) 

when ,1)0(1 =x  =)0(2x .0)0()0( 43 == xx  In Figure 4.4 and Figure 4.5, it should be 

noted that since it is impossible to switch the input u instantaneously, oscillations 
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always occur in the sliding mode of a SMC system. From Figure 4.4 and Figure 4.5, the 

proposed controller (4.35) also stabilizes the following two-rule fuzzy model (4.34). 
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Figure 4.4 Simulation results with ,0)0()0()0(,5.0)0( 4321 ==== xxxx  including amplifying the 

input u scale  
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Figure 4.5 Simulation results with 0)0()0()0(,1)0( 4321 ==== xxxx , including amplifying the 

input u scale  

 

4.3  Robust Adaptive Control for Mismatched T-S Fuzzy 

Systems 

In this section, two kinds of system formulation for mismatched uncertain T-S fuzzy 

models are described in Section 4.3.1 and in Section 4.3.4, respectively. Two kinds of 

robust adaptive control methods via LMI are proposed in Section 4.3.2 and in Section 

4.3.5, respectively. Some examples are used to illustrate the effectiveness of the 

proposed methods and to compare with the existing methods in Section 4.3.3 and 

Section 4.3.6, respectively. 
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4.3.1 System Formulation I 

Consider the following uncertain T-S fuzzy model [49], including parameter 

uncertainties and unknown norm-bounded external disturbances:  

 ∑ =
++∆+=

r

i iiii xthtuBtxtAAtx
1

)]),()([)()]()([()( θβ&                (4.36) 

where nRtx ∈)( is the state, mRtu ∈)(  is the control input, ii BA ,  are constant 

matrices of appropriate dimensions, )(tAi∆ represents the parameter uncertainties 

in m
i RxthA ∈),(,  denotes external disturbances. ),,1(],,,[ 1 sjjs ⋅⋅⋅=⋅⋅⋅= θθθθ are the 

premise variables, s is the number of the premise variables, =)(θβ i  

∑ =
⋅⋅⋅=→

r

j
s

iji riR
1

,,1],1,0[:),(/)( ωθωθω is the membership function of the system with 

respect to plant rule ri, is the number of the IF-THEN rules, iβ  can be regarded as 

the normalized weight of each IF-THEN rule and it satisfies that .0)( ≥θβi 1)(
1

=∑ =
θβr

i i . 

We will assume that the followings are satisfied:  

A1: The mn× matrix B defined by ∑=
=

r

i iB
r

B
1

1 satisfies the rank constraint 

rank mB =)( , i.e., the matrix B has full column rank m . 

A2: The function ),( xth  is unknown but bounded as ∑ =
≤−

l

k

k
k xxthxth

0
),(ˆ),( ρ  

where lρρ ,,0 ⋅⋅⋅ are unknown constants, ),(ˆ xth is an estimate of ),( xth , and l is a 

known positive integer.  

A3: )(tAi∆  is of the form )(tT iiΠ where )(tiΠ is a known time-varying matrix but 

bounded as .1)( ≤Π ti  

The system (4.36) does not have to satisfy the restrictive assumption that all the input 

matrices of the local system models are in the same range space. It should be noted that 
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the assumption A1 implies that mBrank i ≤)( and each nominal local system model 

may not share the same input channel. The assumption A2 with 1=l and 

0),(ˆ =xth has been used in the literature [50]. We can set ),(ˆ xth as the nominal value 

of ).,( xth Using the above assumptions, the uncertain T-S fuzzy model (4.36) can be 

written as follows. 

 ∑=
+++Π+=

r

i iiii xthuGHFBtxtTAtx
1

)],(][)([)())()(()( βθβ&        (4.37) 

where )],(,),([ 1 θβθββ r⋅⋅⋅= and the matrices )(,, βFGH  are defined by 

[ ] ,)(,),(
2
1

1 rBBBBH −⋅⋅⋅−= [ ] ,,, TIIG ⋅⋅⋅=  

[ ]IIdiagF r ))(21(,,))(21()( 1 θβθββ −⋅⋅⋅−= .              (4.38) 

It should be noted that the system (4.36) does not have to satisfy 

,21 rBBB =⋅⋅⋅== which is used in almost all published results on VSS design methods 

including the VSS-based fuzzy control design methods of [33,34]. Hence the methods 

[30,31] cannot be applied to the above model (4.36). Since 0)( ≥θβi  and 

∑=
=

r

i 1
,1)(θβ we can see that the following inequality always holds: 

 .)()()()( IFFFF TT ≤= ββββ                      (4.39) 

Many examples in the literature and various mechanical systems such as motors and 

robots do not satisfy the restrictive assumptions that each nominal local system model 

shares the same input channel and they fall into the special cases of the above model 

[49]. 

4.3.2 LMI-based Adaptive Control Design I 

The Sliding Mode Control (SMC) design is decoupled into two independent tasks 

of lower dimensions: The first involves the design of −− )1(nm dimensional switching 

surfaces for the sliding mode such that the reduced order sliding mode dynamics 
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satisfies the design specifications such as stabilization, tracking, regulation, etc. The 

second is concerned with the selection of a switching feedback control for the reaching 

mode so that it can drive the system’s dynamics into the switching surface [33]. We 

first characterize linear sliding surfaces using LMIs. 

Let us define the linear sliding surface as 0== xSσ where S is a nm× matrix. 

Referring to the previous results [33], [51], we can see that for the system (4.37) it is 

reasonable to find a sliding surface such that  

P1 [ ]GSHFSB )(β+ is nonsingular for any β satisfying ,,,1,0)( rii ⋅⋅⋅=≥θβ and 

∑ =
=

r

i i1
.1)(θβ  

P2 The reduced )( mn − order sliding mode dynamics restricted to the sliding surface 

0=xS is asymptotically stable for all admissible uncertainties. 

It should be noted that P1 is necessary for the existence of the unique equivalent control 

[33] and the assumption A1 is necessary for the nonsingularity of .SB  

Define a transformation matrix and the associated vector v as 1)([ −ΛΛΛ= YM T  

TT BYBBY ])(, 111 −−− ,],[ TTT SV= Mxvvv TTT == ],[ 21 where mnRv −∈1  ., 2
mRv ∈  By the 

above transformation, we can see that ],[1 BYM Λ=− and .2 σ=v  Then, from system 

(4.37), we can obtain  
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β
                       (4.40) 

Then from the equivalent control method [33], we can see that the equivalent control is 

given by ).,())((])()[()( 1
1

xthxtTASGSHFItu iii
r

i ieq −Π++−= −
=∑ βθβ By setting 
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0== σσ& and substituting )(tu with ),(tueq we can show that the reduced 

)( mn − order sliding mode dynamics restricted to the switching surface 0== Sxσ is 

given by  

 1
1

1
1 ))()(())(( vYtTADYv iii

T
r

i

T
i ΛΠ+ΛΛΛ= ∑

=

− βθβ&               (4.41) 

where .])([)()( 1 SGSHFIGHFID −+−= βββ  

Theorem 4.3  Let us consider the sliding mode dynamics (4.41). If ,nnRY ×∈  

RRcRc ∈∈∈ η,, 21 are decision variables, ),(min BBTλκ = )( mnnR −×∈Λ is any full rank 

matrix satisfying ,,0 IB TT =ΛΛ=Λ  and ∗ represents blocks that are readily inferred 

by symmetry such that the following LMIs holds: 

 i
IHYtTA

IH
YtTA

iii

T
iii

T

∀<
















−ΛΠ+
∗−Λ
∗∗Λ∗+Π+Λ

,0
))((

]))([(

η
η            (4.42) 
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
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IY
                            (4.43)

 .0
0

0
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2

1 >














 ∗∗

η
η

ηκ

rrc
rrc                               (4.44) 

Suppose that the LMIs (4.42)-(4.44) have a solution vector ),,,( 21 ηccY , then there 

exists a linear sliding surface parameter matrix S satisfying P1-P2 and the sliding 

surface 

 0)()( 111 === −−− xYBBYBxSx TTσ                     (4.45) 

will guarantee that the sliding mode dynamics (4.41) is asymptotically stable. 

Proof: By using Schur complement formula [48], we can easily show that in fact the 

following LMIs are incorporated in the LMIs (4.42)-(4.44) 
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 ,,0,0,0 2
21 IHHcc T <>>> ηη  )(2 2

2
2
1

2 ccr +>κη .             (4.46) 

It is clear that if the following inequality (4.47) holds, then 

GSHFIGSHFSB )()( ββ +=+ is nonsingular and hence P1 holds 

 .)()( ISHFGGSHF TTTT <ββ                         (4.47) 

Using (4.38), (4.39), (4.46) and ,2 rIIGGGT =≤  we can obtain  

 .)()( 2
TTTTT SSrSHFGGSHF

η
ββ ≤                        (4.48) 

By using the Schur complement formula, we can see that (4.43) and (4.46) imply 

 ,0 2
1

1 IcYIc <<< −     IcYIc 1
11

20 <<< −−                   (4.49) 

and this leads to  

 TTTTT SSrSHFGGSHF 2)()(
η

ββ ≤ .)( 2
211

2
21 IcrcBBcrc T

κηη
≤≤ −          (4.50) 

Using the inequality 222 baab +≤ where a  and b are scalars, we can show that (4.50) 

implies 

 .)(
2

)()( 2
2

2
12 IccrSHFGGSHF TTTT +≤

κη
ββ                    (4.51) 

Finally, by using the above inequalities (4.46) and (4.51), we can obtain  

 ISSrSHFGGSHF TTTTT <≤ 2)()(
η

ββ                      (4.52) 

which implies that ])([ GSHFSB β+ is nonsingular, i.e., P1 holds. 

Now, we will show that S of (4.45) guarantees P2. Using the matrix inversion lemma: 

BBAIAIABI 11 )()( −− +−=+  

where A and B are compatible constant matrices such that )( ABI + is nonsingular, 

we can show that the sliding mode dynamics (4.41) is equivalent to  
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 ∑
=

− ΛΠ+ΛΛΛ=
r

i
iii

TT
i vYtTACYv

1
1

1
1 ))()(())(( βθβ&                 (4.53) 

where 11 ])([)(])([)( −− +=+−= GSHFIGSFGSHFIHIC ββββ  

).(])([)( 1 βββ DSGSHFIGHFI =+−= −  

The sliding mode dynamics (4.53) is asymptotically stable if there exists a positive 

definite matrix )()(
0

mnmnRP −×−∈ such that the time derivative of the Lyapunov function 

101)( vPvtE T
g = satisfies for some positive scalarτ  

 ∑
=

−≤Ζ=
r

i

T
i

T
ig vvvPvtE

1
11101 )()(2)( τβθβ&                 (4.54) 

where ))(])([()( 0
1

000 iii CNDNIBA βββ −−+=Ζ , ΛΠ+ΛΛΛ= − YtTAYA iii
TT

i ))(()( 1
0 , 

HYB TT ΛΛΛ= −1
0 )( , ΛΠ+= YtTAC iiii ))((0 , HD =0 , .)()( GSFN ββ −=  

It should be noted that the inequalities (4.39), (4.46), (4.52) and 

rIIGGGT =≤ 2 imply 

 ,)()()()( 2 IFGGSSFNN TTTT ηββββ ≤= .2
00

2 IHHDD TT <=ηη    (4.55) 

This and (4.54) imply that (4.53) is asymptotically stable if there exists a positive 

definite matrix 0P such that 

  0)(])([ 0
1

00000 <∗+−+ −
ii CNDNIBPAP ββ ,  i∀                  (4.56) 

where ∗ represents blocks that are readily inferred by symmetry. Let iz            

be yCNDNIz ii 0
1

0 )(])([ ββ −−= where )( mnRy −∈ . Then iz can be rewritten as =iz  

])[( 00 ii zDyCN +β .This equality and (4.55) imply T
iii

T
i zDyCzz ][ 00

2 +≤η  

][ 00 ii zDyC + and this leads to 

yCNDNIBPy i
T

0
1

000 )(])([2 ββ −−  

i
T
iii

T
iii

T
i

T zzzDyCzDyCzBPyzBPy 2
00000000 ][][22 −−+++≤= η  
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i
T
ii

T
i

T
i

T
i

T zzzDCBPyyCCy Ω−++= −2
000000 ][2 η  where 00

2 DDI Tη−=Ω . (4.57) 

Since 0>Ω , the following inequality holds for any ),( izy : 

yDCBPDCBPyzzzDCBPy TT
i

T
i

T
i

T
ii

T
i

T ][][][2 0000
1

0000
22

0000 +Ω++Ω≤+ −− ηη (4.58) 

Using (4.57) and (4.58), we can show that the Lyapunov inequality (4.56) is satisfied if 

the following inequality holds: 

0][][ 0000
1

0000
2

000000 <+Ω++++ − TT
i

T
ii

T
i

T
ii DCBPDCBPCCPAAP η . 

Using the Schur complement formula, we can rewrite the above inequality as  

 0

00

00

0

<
















−
∗−
∗∗∗+

IDC
IPB

PA

i

T
o

T
i

η
η ,  i∀ .                      (4.59) 

Let the positive definite matrix 0P be ΛΛ= YP T
0 where Y is a solution to LMIs 

(4.42)-(4.44), which implies that the sliding mode dynamics (4.53) is asymptotically 

stable. Hence, the sliding mode dynamics (4.41) is asymptotically stable. 

After the switching surface parameter matrix S is designed so that the reduced 

)( mn − order sliding mode dynamics has a desired response, the next step of the SMC 

design procedure is to design a switching feedback control law for the reaching mode 

such that the reachability condition is met. If the switching feedback control law 

satisfies the reachability condition, it drives the state trajectory to the switching surface 

0== xSσ and maintains it there for all subsequent time. With σ of (4.45), we design 

an adaptive fuzzy control law guaranteeing that σ converges to zero. We will use the 

following nonlinear adaptive switching feedback control law as the local controller. 

Control rule i: IF 1θ is 1iµ and ... and sθ is isµ , THEN 

σ
σδ

ω
σχ ),(ˆ

1
1))((),(ˆ)( xtxtTASxthtu iiiii −

−Π+−−−=  
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where       ∑ =
++Π++=

l

k

k
kiiiii xxtTASxt

0
ˆ)1())((),(ˆ ρωωαδ           (4.60) 

k
kk x⋅= σερ&̂                                     (4.61) 

and .0,0,0,, >>>== kiiSHrSx εχαωσ It should be noted that (4.52) 

implies .HHSrSHr ηω ≤⋅≤=  This and (4.46) guarantee .10 <≤ ω  The 

final controller inferred as the weighted average of the each local controller is given by  

∑= 










−
+Π++−−=

r

i iiiiii xtxtTASxthtu
1

),(ˆ
1

1))(()(),(ˆ)(
σ
σδ

ω
σχθβ      (4.62) 

and we can establish the following theorem. 

Theorem 4.4  Consider the closed-loop control system of the uncertain system (4.37) 

with control (4.62).Suppose that the LMIs (4.42)-(4.44) has a solution vector 

),,,( 21 ηccY  and the linear sliding surface is given by (4.45). Then the state converges 

to zero. 

Proof:  Since Theorem 4.3 implies that the linear sliding surface (4.45) guarantees 

P1-P2, we only have to show that σ converges to zero. Define a Lyapunov function as 

∑ =
+=

l

k k
T

g tE
0

2~5.05.0)( ρξσσ where ωξ += 1 and .ˆ~
kkk ρρρ −= The time      

derivative of )(tEg  is .~
0

kl

k k
T

g xE ∑ =
+= ρσξσσ && From (4.37), (4.45), (4.62), 

ωβ =≤ SHrGSHF )( ,10, <≤ω  and A2, we obtain 

∑ =
Π+=

r

i iiii
TT txtTAS

1
)())(()(θβσσσ &  )],(][)([ xthuGSHFIT +++ βσ  

∑ =
Π+≤

r

i iii
T

i txtTAS
1

)())(()( σθβ σωωσ }),()1({ xthuuT ++++  

∑∑ ==
−−−≤

r

i ii
r

i ii 11

2 )()()1( σαθβσχθβω .~
0

kl

k k x∑ =
− ρσξ  
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This implies that 0)()()1(
1 1

2 ≤−−−≤ ∑ ∑= =

r

i

r

i iiiigE σαθβσχθβω&  which indicates 

that ,2 ∞∩∈ LLEg  .∞∈LEg
&  Finally, by using Barbalat’s lemma, we can conclude 

thatσ converges to zero. 

Remark 4.2 Theorem 4.3 and 4.4 can be summarized in the form of the following 

LMI-based design algorithm. 

Step 1: Obtain ∑=
=

r

i iB
r

B
1

1 and [ ])(,),(
2
1

1 rBBBBH −⋅⋅⋅−= for given iB . 

Step 2: Check that ),( BAi is stabilization. If not, exit. 

Step 3: Find a solution vector ),,,( 21 ηccY  to LMI (4.42)-(4.44). 

Step 4: Compute the sliding surface parameter matrix S by using the formula of (4.45). 

Step 5: The controller is given by (4.62). 

4.3.3 Numerical Examples I 

Example 4.3  To illustrate the performance of the proposed adaptive fuzzy control 

design method, consider the following two-rule fuzzy model from a vertical take-off 

and landing (VTOL) helicopter model [55] 

Plant Rule 1: IF 1x is about 0, THEN 

)],([))(( 1111 xthuBxtTAx ++Π+=&  

Plant Rule2: IF 1x is about ,2± THEN  

)],([))(( 2222 xthuBxtTAx ++Π+=&  



 150

where ,
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)1/(11
)1(14
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1 1

1
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+
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= x

x

e
eβ .1 12 ββ −=      (4.63) 

It should be noted that 1T and 2T are not matched and thus the previous VSS-based 

fuzzy control design methods cannot be applied to the above system (4.63). Via LMI 

optimization with (4.63), we can obtain the sliding surface .Sx=σ  

By setting [ ]Tttxth 3sin9.03sin9.0),(ˆ = and ,1,2,01.0,1 ==== lrii αχ 1=kε , and 

sec01.0=samplingt , we can obtain the following nonlinear controller: 

Control Rule 1: IF 1x is about 0, THEN 

[ ] ).sgn(ˆ
1

1))((3sin9.03sin9.0)( 1111 σδ
ω

σ
−

−Π+−−−−= xtTAStttu T  

Control Rule 2: IF 1x is about ,2± THEN 

[ ] ).sgn(ˆ
1

1))((3sin9.03sin9.0)( 2222 σδ
ω

σ
−

−Π+−−−−= xtTAStttu T  

The final controller inferred as the weighted average of each local controller is given by 

[ ] .)sgn(ˆ
1

1))(()(3sin9.03sin9.0)(
1∑ = 





−
+Π++−−−=

r

i iiiii
T xtTAStttu σδ

ω
σθβ  

(4.64) 
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To assure the effectiveness of our fuzzy controller, we apply  the  controller  to  

the  two-rule  fuzzy  model  (4.63)  with nonzero ).(td We assume that )(td  

[ ] .)sgn(5.02sin)sgn(5.02sin 4141
Txtxxtx −−= The time histories of the state, ,ˆ kρ  the  

sliding variable ,σ and the input (4.64) are shown in Figure 4.6 when 

,0)0()0()0( 421 === xxx  .10)0(3 =x  

From Figure 4.6, the proposed controller is applicable to T-S fuzzy systems with 

mismatched parameter uncertainties in the state matrix and unknown norm-bounded 

external disturbances. The control performances are satisfactory. Besides, in Figure 4.6, 

since it is impossible to switch the input u instantaneously, oscillations on control input 

u  always occur in the sliding mode of an SMC system. It should be noted that all 

existing VSS-based fuzzy control system design methods cannot be applied to the 

two-rule fuzzy model (4.63) because 1B is not in the range space of 2B . 
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Figure 4.6 Simulation results with ,0)0()0()0( 421 === xxx .10)0(3 =x  
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Example 4.4  For the special case of 0)( ≡Π ti , the robust adaptive controller design 

is proposed in [64]. Consider the following inverted pendulum on a cart 

,21 xx =& ]),)([cos3sin3(1
112 φ

ψ
++−= tduxaxg

l
x& 43 xx =&  

]))([42sin5.1(1
14 φ

ψ
++−−= tduaxmagx&                (4.65) 

where 1x is the angle ( rad ) of the pendulum from the vertical, ,12 xx &= 3x is the 

displacement (m) of the cart, ,34 xx &=  ,cos34 1
2 xma−=ψ ,sin 1

2
2 xmlx=φ u is the input, 

and )(td is related to external disturbances which may be caused by the frictional force. 

),/(1 Mma += m is the mass of the pendulum, M is the mass of the cart, l2 is the 

length of the pendulum, 2/8.9 smg = is the gravity constant. We set kgM 9=  

kgm 1, = .1, ml = We assume that )(td is bounded as xtd 10)( ρρ +≤  where 0ρ and 

1ρ  are unknown constants. Here, we approximate the system (4.65) by the following 

two-rule fuzzy model. 

Plant Rule 1: IF 1x is about 0, THEN  

)],([11 xthuBxAx ++=&  

Plant Rule2: IF 2x is about ),3/(60 radπ±± o THEN  

)],([22 xthuBxAx ++=&  
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= x

x

e
e .1 12 ββ −=   (4.66) 
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Because 1B is not in the range space of 2B , all existing VSS-based fuzzy control 

system design methods cannot be applied to the above system (4.66). Via LMI  

optimization  with  (4.66),  we  can  obtain  the   sliding surface Sx=σ .  

By setting 001.0,1,2,1,5,sin),(ˆ 1
2
2 ====== kii lrxxxth εαχ , and sec01.0=samplingt , we 

can obtain the following nonlinear controller: 

Control Rule 1: IF 1x is about 0, THEN  

).sgn(ˆ
1

15sin)( 111
2
2 σδ

ω
σ

−
−−−−= xSAxxtu  

Control Rule 2: IF 1x is about ),3/(60 radπ±± o THEN 

).sgn(ˆ
1

15sin)( 221
2
2 σδ

ω
σ

−
−−−−= xSAxxtu  

The final controller inferred as the weighted average of each local controller is given by 

 .)sgn(ˆ
1

15)(sin)(
11

2
2 ∑= 





−
++−−=

r

i iii xSAxxtu σδ
ω

σθβ  (4.67) 

To assure the effectiveness of our fuzzy controller, we apply the controller to the 

two-rule fuzzy model (4.66) with nonzero ).(td  We assume that 

).(sgn5.02sin)( 41 xtxtd −= π  The time histories  of  the   state, ,ˆ kρ   the  sliding 

variableσ , and the input (4.67) are shown in Figure 4.7 when ),9/2(40)0(1 radx πo=  

.0)0()0()0( 432 === xxx  In Figure 4.7, it should be noted that since it is impossible to 

switch the input u instantaneously, oscillations always occur in the sliding mode of a 

SMC system. From Figure 4.7, the control performances of the proposed controller are 

also satisfactory for the two-rule fuzzy model (4.66). 
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Figure 4.7 Simulation results with .0)0()0()0(),9/2(40)0( 4321 ==== xxxradx πo  
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4.3.4 System Formulation II 

Consider the following uncertain T-S fuzzy model [49], including parameter 

uncertainties and unknown norm-bounded external disturbances:  

 )]),()([)()]()([()(
1

xthtuBtxtAAtx iii

r

i
i ++∆+= ∑

=

θβ&              (4.68) 

where nRtx ∈)( is the state, mRtu ∈)(  is the control input, ii BA ,  are constant 

matrices of appropriate dimensions, )(tAi∆ represents the parameter uncertainties 

in m
i RxthA ∈),(,  denotes external disturbances. ),.1(],,,[ 1 sjjs ⋅⋅⋅=⋅⋅⋅= θθθθ are the 

premise variables, s is the number of the premise variables, =)(θβ i  

∑ =
⋅⋅⋅=→

r

j
s

iji riR
1

,,1],1,0[:),(/)( ωθωθω is the membership function of the system with 

respect to plant rule ri, is the number of the IF-THEN rules, iβ  can be regarded as 

the normalized weight of each IF-THEN rule and it satisfies 

that .0)( ≥θβi 1)(
1

=∑ =
θβr

i i . We will assume that the followings are satisfied:  

A1: The mn× matrix B defined by ∑=
=

r

i iB
r

B
1

1 satisfies the rank constraint 

rank mB =)( , i.e., the matrix B has full column rank m . 

A2: The function ),( xth  is unknown but bounded as ∑
=

≤−
l

k

k
k xxthxth

0
),(ˆ),( ρ  

where lρρ ,,0 ⋅⋅⋅ are unknown constants, ),(ˆ xth is an estimate of ),( xth , and l is a 

known positive integer.  

A3: )(tAi∆  is of the form )(tT iiΠ where )(tiΠ  is unknown, 
iAi tA α≤∆ )( and 

)(tTTT ii
T

ii Π≥ . 

The system (4.68) does not have to satisfy the restrictive assumption that all the input 

matrices of the local system models are in the same range space. It should be noted that 
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the assumption A1 implies that mBrank i ≤)( and each nominal local system model 

may not share the same input channel. The assumption A2 with 1=l and 

0),(ˆ =xth has been used in the literature [50]. We can set ),(ˆ xth as the nominal value 

of ).,( xth Using the above assumptions, the uncertain T-S fuzzy model (4.68) can be 

written as follows. 

)],(][)([)())()(()(
1

xthuGHFBtxtTAtx iii

r

i
i +++Π+= ∑

=

βθβ&         (4.69) 

where )],(,),([ 1 θβθββ r⋅⋅⋅= and the matrices )(,, βFGH  are defined by 

[ ] ,)(,),(
2
1

1 rBBBBH −⋅⋅⋅−= [ ] ,,, TIIG ⋅⋅⋅=  

[ ].))(21(,,))(21()( 1 IIdiagF r θβθββ −⋅⋅⋅−=                  (4.70) 

It should be noted that the system (4.68) does not have to satisfy 

,21 rBBB =⋅⋅⋅== which is used in almost all published results on VSS design methods 

including the VSS-based fuzzy control design methods of [33,34]. Hence the methods 

[30,31] cannot be applied to the above model (4.68). Since 0)( ≥θβi  and 

∑=
=

r

i 1
,1)(θβ we can see that the following inequality always holds: 

 .)()()()( IFFFF TT ≤= ββββ                       (4.71) 

The following lemma will be used to establish our main results. 

Lemma 4.1  For any vectors a  and b  with appropriate dimensions, the following 

inequalities hold for any :0>W  

.2 1bWbWaaba TTT −+≤  

Proof:  The above inequality is derived from )()( 1 bWaWbWa T −− − bWbWaa TT 1−+=  

.02 ≥− baT  

Many examples in the literature and various mechanical systems such as motors and 

robots do not satisfy the restrictive assumptions that each nominal local system model 
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shares the same input channel and they fall into the special cases of the above model 

[49] 

4.3.5 LMI-based Adaptive Control Design II 

The Sliding Mode Control (SMC) design is decoupled into two independent tasks 

of lower dimensions: The first involves the design of −− )1(nm dimensional switching 

surfaces for the sliding mode such that the reduced order sliding mode dynamics 

satisfies the design specifications such as stabilization, tracking, regulation, etc. The 

second is concerned with the selection of a switching feedback control for the reaching 

mode so that it can drive the system’s dynamics into the switching surface [33]. We 

first characterize linear sliding surfaces using LMIs. 

Let us define the linear sliding surface as 0== xSσ where S is a nm× matrix. 

Referring to the previous results [33], [51], we can see that for the system (4.69) it is 

reasonable to find a sliding surface such that  

P1 [ ]GSHFSB )(β+ is nonsingular for any β satisfying ,,,1,0)( rii ⋅⋅⋅=≥θβ  and 

∑ =
=

r

i i1
.1)(θβ  

P2 The reduced )( mn − order sliding mode dynamics restricted to the sliding surface 

0=xS is asymptotically stable for all admissible uncertainties. 

It should be noted that P1 is necessary for the existence of the unique equivalent control 

[33] and the assumption A1 is necessary for the nonsingularity of .SB  

Define a transformation matrix and the associated vector v as 1)([ −ΛΛΛ= YM T  

TT BYBBY ])(, 111 −−− ,],[ TTT SV= Mxvvv TTT == ],[ 21 where mnRv −∈1  ., 2
mRv ∈  By the 

above transformation, we can see that ],[1 BYM Λ=− and .2 σ=v  Then, from system 

(4.69), we can obtain  
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Then from the equivalent control method [33], we can see that the equivalent    

control is given by ).,())((])()[()( 1
1

xthxtTASGSHFItu iii
r

i ieq −Π++−= −
=∑ βθβ  By 

setting 0== σσ& and substituting )(tu with ),(tueq we can show that the reduced 

)( mn − order sliding mode dynamics restricted to the switching surface 0== xSσ is 

given by  

 1
1

1
1 ))()(())(( vYtTADYv iii

T
r

i

T
i ΛΠ+ΛΛΛ= ∑

=

− βθβ&              (4.73) 

where .])([)()( 1 SGSHFIGHFID −+−= βββ  

Theorem 4.5  Let us consider the sliding mode dynamics (4.73). If nnRY ×∈  

RRRcRcRc ∈∈∈∈∈ ηδ ,,,,, 210 are decision variables, ),(min BBTλκ =  )( mnnR −×∈Λ is 

any full rank matrix satisfying ,,0 IB TT =ΛΛ=Λ  
iAi tA α≤∆ )( , and ∗ represents 

blocks that are readily inferred by symmetry such that the following LMIs holds: 

i

IY
IcY

IHYA
HIH

YYYAHIdYAYA

i

i

ii

A

A

i

TT

T
A

T
A

T
i

TT
o

T
ii

T

∀<























−Λ
−Λ

−−Λ
−Λ

ΛΛΛΛΛ++Λ

,0

000
000
00)1(
00

)(

0

δα
α

δη
ηη

ααη

    (4.74) 
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Suppose that the LMIs (4.74)-(4.76) have a solution vector ),,,,,( 210 ηδcccY , then there 

exists a linear sliding surface parameter matrix S satisfying P1-P2 and the sliding 

surface 

 0)()( 111 === −−− xYBBYBxSx TTσ                    (4.77) 

will guarantee that the sliding mode dynamics (4.73) is asymptotically stable. 

Proof:  By using Schur complement formula [48], we can easily show that in fact the 

following LMIs are incorporated in the LMIs (4.74)-(4.76) 

 ,,0,0,0 2
21 IHHcc T <>>> ηη  )(2 2

2
2
1

2 ccr +>κη .             (4.78) 

It is clear that if the following inequality (4.79) holds, then 

GSHFIGSHFSB )()( ββ +=+ is nonsingular and hence P1 holds 

 .)()( ISHFGGSHF TTT <ββ                      (4.79) 

Using (4.70), (4.71), (4.78) and ,2 rIIGGGT =≤  we can obtain  

 .)()( 2
TTTTT SSrSHFGGSHF

η
ββ ≤                   (4.80) 

By using the Schur complement formula, we can see that (4.75) and (4.78) imply 

 ,0 2
1

1 IcYIc <<< −     IcYIc 1
11

20 <<< −−               (4.81) 

and this leads to  

 TTTTT SSrSHFGGSHF 2)()(
η

ββ ≤ .)( 2
211

2
21 IcrcBBcrc T

κηη
≤≤ −        (4.82) 

Using the inequality 222 baab +≤ where a  and b are scalars, we can show that (4.82) 

implies 

 .)(
2

)()( 2
2

2
12 IccrSHFGGSHF TTTT +≤

κη
ββ                   (4.83) 
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Finally, by using the above inequalities (4.78) and (4.83), we can obtain  

 ISSrSHFGGSHF TTTTT <≤ 2)()(
η

ββ                        (4.84) 

which implies that ])([ GSHFSB β+ is nonsingular, i.e., P1 holds. 

Now, we will show that S of (4.77) guarantees P2. Using the matrix inversion lemma: 

BBAIAIABI 11 )()( −− +−=+  

where A and B are compatible constant matrices such that )( ABI + is nonsingular, 

we can show that the sliding mode dynamics (4.73) is equivalent to  

 ∑
=

− ΛΠ+ΛΛΛ=
r

i
iii

TT
i vYtTACYv

1
1

1
1 ))()(())(( βθβ&                (4.85) 

where 11 ])([)(])([)( −− +=+−= GSHFIGSFGSHFIHIC ββββ  

    )(])([)( 1 βββ DSGSHFIGHFI =+−= −  and .)( 1
1 xYv TT ΛΛΛ= −  

The sliding mode dynamics (4.85) is asymptotically stable if there exists a positive 

definite matrix )()(
0

mnmnRP −×−∈ such that the time derivative of the Lyapunov function 

101)( vPvtE T
g = satisfies for some positive scalarτ  

 ∑
=

−≤Ζ=
r

i

T
i

T
ig vvvPvtE

1
11101 )()(2)( τβθβ&                (4.86) 

where ))(])([()( 0
1

000 iii CNDNIBA βββ −−+=Ζ , ΛΠ+ΛΛΛ= − YtTAYA iii
TT

i ))(()( 1
0

, HYB TT ΛΛΛ= −1
0 )( , ΛΠ+= YtTAC iiii ))((0 , HD =0 , .)()( GSFN ββ −=  

It should be noted that the inequalities (4.71), (4.78), (4.84) and 

rIIGGGT =≤ 2 imply 

 ,)()()()( 2 IFGGSSFNN TTTT ηββββ ≤= .2
00

2 IHHDD TT <=ηη    (4.87) 

This and (4.86) imply that (4.85) is asymptotically stable if there exists a positive 

definite matrix 0P such that 
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  0)(])([ 0
1
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ii CNDNIBPAP ββ ,  i∀                  (4.88) 

where ∗ represents blocks that are readily inferred by symmetry. Let iz be 

yCNDNIz ii 0
1

0 )(])([ ββ −−= where )( mnRy −∈ .Then iz can be rewritten as 

=iz ])[( 00 ii zDyCN +β .This equality and (4.87) imply T
iii

T
i zDyCzz ][ 00

2 +≤η  

][ 00 ii zDyC + and this leads to 

yCNDNIBPy i
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T
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T
i
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000000 ][2 η  where 00

2 DDI Tη−=Ω . (4.89) 

Since 0>Ω , the following inequality holds for any ),( izy : 

yDCBPDCBPyzzzDCBPy TT
i

T
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T
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T
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T
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T ][][][2 0000
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22

0000 +Ω++Ω≤+ −− ηη (4.90) 

Using (4.89) and (4.90), we can show that the Lyapunov inequality (4.88) is satisfied if 

the following inequality holds: 

0][][ 0000
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000000 <+Ω++++ − TT
i

T
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T
i

T
ii DCBPDCBPCCPAAP η . 

Using the Schur complement formula, we can rewrite the above inequality as  
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Let the positive definite matrix 0P be ΛΛ= YP T
0 where Y is a solution to LMIs 

(3.74)-(3.76), then the above matrix inequality (4.91) can be rewrite as  

i
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η
ηη

η
   (4.92) 

where ).()( tTtA iii Π=∆  The matrix inequality (4.92) is satisfied if the following 

inequality holds for any nonzero vectors: [ ]TTTT zzzz 321=   
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1311 ))((2))((2 zYtAAzzYtAAz ii
T

ii
TT Λ∆++Λ∆+Λ  

.022 33222312 <−−+Λ+ zzzzHzzzHz TTTTT ηη     (4.93) 

Lemma 4.1 implies that if ,)(
iAi tA α≤∆ the following inequalities hold: 
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1
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T Λ+≤Λ∆ −δαδ            (4.95) 

The previous inequalities (4.94) and (4.95) imply that for all admissible 

,)(
iAi tA α≤∆ the inequality condition (4.93) holds if  
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This implies that (4.92) holds if the following LMI (4.97) holds 

0
)1(

)( 2
2

2

0

2

0

<























−−Λ
−Λ

ΛΛΛ++++Λ

IHYA
HIH

YAHYY
c

IcYAYA

i

TT

T
i

TTAAT
ii

T ii

δη
ηη

η
δ
αα

.      (4.97) 

By using Schur complement formula, the above inequality (4.97) can be rewritten as 

the LMI (4.74), which implies that the sliding mode dynamics (4.85) is asymptotically 

stable. Hence, the sliding mode dynamics (4.73) is asymptotically stable. 

After the switching surface parameter matrix S is designed so that the reduced 

)( mn − order sliding mode dynamics has a desired response, the next step of the SMC 

design procedure is to design a switching feedback control law for the the reaching 

mode such that the reachability condition is met. If the switching feedback control law 

satisfies the reachability condition, it drives the state trajectory to the switching surface 

0== xSσ and maintains it there for all subsequent time. With σ of (4.77), we design 

an adaptive fuzzy control law guaranteeing that σ converges to zero. We will use the 

following nonlinear adaptive switching feedback control law as the local controller. 
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Control rule i: IF 1θ is 1iµ and ... and sθ is isµ , THEN 

σ
σδ

ω
σχ ),(ˆ

1
1)(),(ˆ)( xtxTTASxthtu i

T
iiii −

−+−−−=  

where     k
l

k
k

T
iiiii xxTTASxt ∑

=

++++=
0

ˆ)1()(),(ˆ ρωωαδ               (4.98) 

   k
kk x⋅= σερ&̂                                       (4.99) 

and .0,0,, >>== iiSHrSx χαωσ It should be noted that (4.84) implies 

SHr=ω .HHSrSHr ηω ≤⋅≤=  This and (4.78) guarantee .10 <≤ ω  

The final controller inferred as the weighted average of the each local controller is 

given by  
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and we can establish the following theorem. 

Theorem 4.6  Consider the closed-loop control system of the uncertain system (4.69) 

with control (4.100). Suppose that the LMIs (4.74)-(4.76) has a solution vector 

),,,,,( 210 ηδcccY  and the linear sliding surface is given by (4.77). Then the state 

converges to zero. 

Proof:  Since Theorem 4.5 implies that the linear sliding surface (4.77) guarantees 

P1-P2, we only have to show that σ converges to zero. Define a Lyapunov function as 

∑ =
+=

l

k k
T

g tE
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2~5.05.0)( ρξσσ where ωξ += 1 and .ˆ~
kkk ρρρ −= The time derivative 

of )(tEg  is .~
0
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T
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+= ρσξσσ && From (4.69), (4.77), (4.100), GSHF )(β  

ω=≤ SHr  ,10, <≤ω  and A2, we obtain 
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From A3 and 0))((2 ≥Π−= − xtTTTxx T
ii

T
ii

T
gε , this implies that ≤gE&  
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51 1 )( σεθβ i

r

i∑ =
− 0)()()1(

1 1

2 ≤−−− ∑ ∑= =

r

i

r

i iiii σαθβσχθβω  which indicates that 

,2 ∞∩∈ LLEg  .∞∈LEg
&  Finally, by using Barbalat’s lemma, we can conclude 

thatσ converges to zero. 

Remark 4.3  Theorem 4.5 and 4.6 can be summarized in the form of the following 

LMI-based design algorithm. 

Step 1: Obtain ∑=
=

r

i iB
r

B
1

1 and [ ])(,),(
2
1

1 rBBBBH −⋅⋅⋅−= for given iB . 

Step 2: Check that ),( BAi is stabilization. If not, exit. 

Step 3: Find a solution vector ),,,,,( 210 ηδcccY  to LMI (4.74)-(4.76). 

Step 4: Compute the sliding surface parameter matrix S by using the formula of (4.77). 

Step 5: The controller is given by (4.100). 

4.3.6 Numerical Examples II 

Example 4.5  To demonstrate the performance of the proposed adaptive control 

design method, consider the following two-rule fuzzy model from a vertical take-off 

and landing (VTOL) helicopter model [55] 

Plant Rule 1: IF 1x is about 0, THEN 
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)],([))(( 1111 xthuBxtTAx ++Π+=&  

Plant Rule2: IF 1x is about ,2± THEN  

)],([))(( 2222 xthuBxtTAx ++Π+=&  
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e
eβ .1 12 ββ −=    (4.101) 

Note that 1B and 2B are not matched and almost existing VSS-based fuzzy control 

design methods cannot be applied to the above system (4.101). Via LMI optimization 

with (4.101), we can obtain the sliding surface .Sx=σ  

By setting [ ]Tttxth 3sin9.03sin9.0),(ˆ = and ,0001.0,1 == ii αχ ,2=r ,1=l  2=kε , 

and sec01.0=samplingt , we can obtain the following nonlinear controller: 

Control Rule 1: IF 1x is about 0, THEN 

[ ]Ttttu 3sin9.03sin9.0)( −−= ).sgn(ˆ
1

1)( 1111 σδ
ω

σ
−

−+−− xTTAS T  

Control Rule 2: IF 1x is about ,2± THEN 
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[ ]Ttttu 3sin9.03sin9.0)( −−= ).sgn(ˆ
1

1)( 2222 σδ
ω

σ
−

−+−− xTTAS T  

The final controller inferred as the weighted average of each local controller is given by 

[ ]Ttttu 3sin9.03sin9.0)( −−= .)sgn(ˆ
1

1)()(
1
∑
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





−
+++−

r

i
i

T
iiii xTTAS σδ

ω
σθβ  (4.102) 

To assure the effectiveness of our fuzzy controller, we apply  the  controller  to  

the  two-rule  fuzzy  model  (4.101)  with nonzero ).(td We assume that )(td  

[ ] .)(sgn1.02sin25.0)(sgn1.02sin25.0 4141
Txtxxtx −−= ππ The time histories of the state, ,ˆ kρ  

the  sliding variable ,σ and the input (4.102) are shown in Figure 4.8 when 

,0)0()0()0( 421 === xxx .10)0(3 =x  In Figure 4.8, it should be noted that since it is 

impossible to switch the input u instantaneously, oscillations always occur in the sliding 

mode of a SMC system. From Figure 4.8, the proposed controller is applicable to 

uncertain fuzzy systems with mismatched parameter uncertainties in the state matrix 

and unknown norm-bounded external disturbances. The control performances of the 

proposed controller are satisfactory for the two-rule fuzzy model (4.101). Note that 

almost existing VSS-based fuzzy control system design methods cannot be applied to 

the two-rule fuzzy model (4.101) because 1B  is distinct from 2B . 



 175



 176



 177



 178



 179

 

Figure 4.8 Simulation results with ,0)0()0()0( 421 === xxx .10)0(3 =x  
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Example 4.6  For the special case of 0)( ≡∆ tAi , the robust adaptive controller design 

is proposed in [64]. Consider the following inverted pendulum on a cart 

,21 xx =& ]),)([cos3sin3(1
112 φ

ψ
++−= tduxaxg

l
x& ,43 xx =&  

]))([42sin5.1(1
14 φ

ψ
++−−= tduaxmagx&                (4.103) 

where 1x is the angle ( rad ) of the pendulum from the vertical, ,12 xx &= 3x is the 

displacement (m) of the cart, ,34 xx &=  ,cos34 1
2 xma−=ψ ,sin 1

2
2 xmlx=φ u is the input, 

and )(td is related to external disturbances which may be caused by the frictional force. 

),/(1 Mma += m is the mass of the pendulum, M is the mass of the cart, l2 is the 

length of the pendulum, 2/8.9 smg = is the gravity constant. We set kgM 9=  

kgm 1, = .1, ml = We assume that )(td is bounded as xtd 10)( ρρ +≤  where 0ρ and 1ρ  

are unknown constants. To design the fuzzy controller (40), we must have a fuzzy 

model. Here, we approximate the system (4.103) by the following two-rule fuzzy 

model. 

Plant Rule 1: IF 1x is about 0, THEN  

)],([11 xthuBxAx ++=&  

Plant Rule2: IF 2x is about ),3/(60 radπ±± o THEN 

)],([22 xthuBxAx ++=&  
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where ,
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Via LMI optimization with (4.104), we can obtain the sliding surface Sx=σ . By 

setting ,sin),(ˆ 1
2
2 xxxth =  ,1,5 == ii αχ  ,2=r  ,1=l 001.0=kε , and sec01.0=samplingt , 

we can obtain the following nonlinear controller: 

Control Rule 1: IF 1x is about 0, THEN  

).sgn(ˆ
1

15sin)( 111
2
2 σδ

ω
σ

−
−−−−= xSAxxtu  

Control Rule 2: IF 1x is about ),3/(60 radπ±± o THEN  

).sgn(ˆ
1

15sin)( 221
2
2 σδ

ω
σ

−
−−−−= xSAxxtu  

The final controller inferred as the weighted average of each local controller is given by 

∑
=
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
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++−−=

r

i
iii xSAxxtu

1
1

2
2 )sgn(ˆ

1
15)(sin)( σδ
ω

σθβ .            (4.105) 

To assure the effectiveness of our fuzzy controller, we apply the controller to the 

two-rule fuzzy model (4.104) with nonzero ).(td  We assume that 

).(sgn5.02sin)( 41 xtxtd −= π  The time histories  of  the   state, ,ˆ kρ   the  sliding 

variable σ , and the input (4.105) are shown in Figure 4.9 when 

),9/2(60)0(1 radx πo= )0()0( 32 xx = )0(4x= .0=  In Figure 4.9, it should be noted that 

since it is impossible to switch the input u instantaneously, oscillations always occur in 
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the sliding mode of a SMC system. From Figure 4.9, the control performances of the 

proposed controller are also satisfactory for the two-rule fuzzy model (4.104). 
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Figure 4.9 Simulation results with ),9/2(60)0(1 radx πo=  .0)0()0()0( 432 === xxx  
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4.4  Robust Adaptive Control for Mismatched T-S Fuzzy 

Time-Delay Systems 

In this section, system formulation for the uncertain T-S fuzzy time-delay model is 

described in Section 4.4.1. A robust adaptive control method via LMI is proposed in 

Section 4.4.2. Some examples are used to illustrate the effectiveness of the proposed 

methods and to compare with the existing methods in Section 4.4.3. 

4.4.1 System Formulation 

The T-S fuzzy model is described by fuzzy IF-THEN rules, which represent local 

linear input-output relations of nonlinear systems. The ith rule of the T-S fuzzy 

time-delay model is of the following form: 

Plant Rule i: IF 1θ is 1iµ and … and sθ is isµ , THEN 

),())(()()( tuBtdtxAtxAtx iii +−+= τ&  ),()( ttx ψ=  ]0,[ τ−∈t  

where )(tψ is the initial condition, nRtx ∈)( is the state, mRtu ∈)(  is the control 

input, nn
i RA ×∈ are the state matrices, nn

i RA ×∈τ are the delayed state matrices, 

mn
i RB ×∈ are the input matrices, ),,1( sjj ⋅⋅⋅=θ are the premise variables, s is the 

number of the premise variables, ),,1;,,1( sjriji ⋅⋅⋅=⋅⋅⋅=µ are the fuzzy sets that are 

characterized by membership function, r is the number of the IF-THEN rules. The 

time-varying delay )(td  is bounded as .)( τ≤td The overall fuzzy model achieved by 

fuzzy synthesizing of each individual plant rule is given by  

)],())(()()[()(
1

tuBtdtxAtxAtx iii

r

i
i +−+=∑

=
τθβ&  ),()( ttx ψ=  ]0,[ τ−∈t  

where ],,[ 1 sθθθ ⋅⋅⋅= , ∑ =
⋅⋅⋅=→=

r

j
s

ijii riR
1

,,1],1,0[:),(/)()( ωθωθωθβ  is the membership 

function of the system with respect to plant rule .i  The function )(θβ i can be 
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regarded as the normalized weight of each IF-THEN rule and it satisfies 

that ,0)( ≥θβi 1)(
1

=∑ =
θβr

i i . To take into account parameter uncertainties and external 

disturbances, we consider the following uncertain T-S fuzzy time-delay model: 

))],,,()(()())(()())()[(()(
1

didiiii

r

i
i xxthtuBtxtAAtxtAAtx ++∆++∆+= ∑

=
ττθβ&  

),()( ttx ψ= ]0,[ τ−∈t                           (4.106) 

where )),(()( tdtxtxd −= )(tAi∆ represents the parameter uncertainties in ,iA  

)(tA iτ∆ represents the parameter uncertainties in ,iAτ
m

d Rxxth ∈),,( denotes external 

disturbances. We will assume that the following assumptions are satisfied: 

A1: BBBB r ==== :...21 and rank .)( mB =  

A2:The function ),,( dxxth is unknown but bounded as ),,( dxxth  

∑∑ ==
+≤

q

k

k
ddk

kp

k dk xx
00
δρ where dpd ρρ ,,0 ⋅⋅⋅ and dqd δδ ,,0 ⋅⋅⋅ are unknown 

constants, and qp, are known positive integers.  

A3: The time delay )(td is unknown but bounded as τ≤)(td and 1)( <≤ mdtd& where 

 τ and md are known constants. 

A4: )(tAi∆ and )(tA iτ∆  are of the form )(tT iiΠ where )(tiΠ is a known time-varying 

matrix but bounded as .1)( ≤Π ti  

Using the above assumptions, the uncertain T-S fuzzy model (4.106) can be written as 

follows: 

),()],,()())(()())()[(()(
1

tBuxxtBhtxtAtxtAtx ddiiiiii

r

i
i ++ΠΤ++ΠΤ+= ∑

=
τθβ&  

),()( ttx ψ= ]0,[ τ−∈t                            (4.107) 

A large number of examples in the literature and various mechanical systems, such as 
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motors and robots, fall into the special cases of the above model (4.96), as reported in 

[44], [56-60]. The above model (4.107) also involves the uncertain time-delay system 

models considered in the previous SMC design methods[44], [56-60]. The symbol ∗  

will be used in some matrix expressions to induce a symmetric structure. For given 

symmetric matrices K and L of appropriate dimensions, the following holds: 








 ++
=







 ∗∗++

LZ
ZXXK

LZ
XK TT

 

When no confusion arises, the arguments ,,,, θdxxt etc… can be omitted for brevity. 

4.4.2 Adaptive Control Design via LMI 

The SMC design is decoupled into two independent tasks of lower dimensions. 

The first is concerned with the design of a sliding surface for the sliding mode such that 

the reduced-order sliding mode dynamics satisfies the design specifications such as 

stabilization, tracking, regulation, etc. The second involves choosing a switching 

feedback control for the reaching mode so that it can drive the system’s dynamics into 

the switching surface [33]. We first design a sliding surface that guarantees asymptotic 

stability of the reduced-order sliding mode dynamics using LMIs. 

Defining a nonsingular transformation matrix M and the associated vector Mxv = such 

that 

,
)(
)(

111

1









=




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

 ΛΛΛ
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v
v

v =
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
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
=








=

2

1              (4.108) 

where ., 21
mmn RvRv ∈∈ −  Then we can easily see that ],[1 BYM Λ=− and .2 σ=v  By 

the above transformation we can obtain, we can transform (4.107) into the following 

regular form: 









+








+




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


+








= ∑

i
iid hu

I
v

AA
AA

v
AA
AA

v β
ττ

ττ 0

2221

1211

2221

1211&              (4.109) 
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where ))(( tdtvvd −= and 

∑
=

− ΛΠΤ+Λ=
r

i
iii

T
i YtAPA

1

1
011 ))((β , ∑
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− ΠΤ+Λ=
r

i
iii

T
i BtAPA

1

1
012 ))((β , 
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r

i
iii

T
i YtAYBA
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1
21 ))((β , ∑
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T
i BtAYBA
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1
22 ))((β , 
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r
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T
i BtAPA

1

1
012 ))(( ττ β , 
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− ΛΠΤ+=
r

i
iii

T
i YtAYBA

1

1
21 ))(( ττ β , ∑

=

− ΠΤ+=
r

i
iii

T
i BtAYBA

1

1
22 ))(( ττ β . 

Thus, from the above regular form, by setting ,0== σσ& we can obtain the following 

sliding mode dynamics : 

ddo AA ααα +=&                             (4.110) 

where )),((, 11 tdtvv d −== αα ,110 AA = and .11τAAd =  

Theorem 4.7  Let us consider the sliding mode dynamics (4.110). If the matrix 

)( mnnR −×∈Λ is any full rank matrix such that ,,0 IB TT =ΛΛ=Λ the 

matrices )()()()( ,, mnmn
i

mnmnnn RXRKRY −×−−×−× ∈∈∈ and )()( mnmn
i RZ −×−∈ are decision 

variables, and ∗ represents blocks that are readily inferred by symmetry such that the 

following LMI holds: 

,0>Y             0≥K  

i

Y
YZX

T

T
ii

∀<



















ΛΛ−ΝΝ
ΛΛ−

∗∗ΝΝ
∗∗∗Ν

,0

0
0

4241

2221

11

τ
τττ

        (4.111) 

where         ,))((11 ∗++ΛΠΤ+Λ+=Ν iiii
T XYtAK  

,))((21
T
ii

T
iii

T ZXtAY +−ΛΠΤ+Λ=Ν τ ,)1(22
T
iim ZZKd −−−−=Ν  

,))((41 ΛΠΤ+Λ=Ν YtA iii
Tτ .))((42 ΛΠΤ+Λ=Ν YtA iii

T
ττ  
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Suppose that the LMI (4.111) have a solution ),,,( ii ZXKY  for given ττ ,,,, mii dBAA , 

then, there exists a linear sliding surface parameter matrix S and the sliding surface 

0)()( 111 === −−− xYBBYBxSx TTσ                      (4.112) 

will guarantee that the sliding mode dynamics (4.110) is asymptotically stable. 

Proof:  Let us define a Lyapunov-Krasovskii function (LKF) as  

∫ ∫ ∫− − +
++=

t

dt

t

t

TTT dsdsPsdssFstPttV
0

00 )()()()()()()(
τ η

ηαααααα &&  

where nnT RYP ×∈ΛΛ=0 and nnRF ×∈ are solution matrices for the LMIs (4.111). It 

should be noted that a large number of previous methods such as the methods given in 

[42,43], have used similar Lyapunov-Krasovskii functions to obtain less-conservative 

stability conditions by exploiting information on the upper bounds of delay and its time 

derivative. None of the previous SMC design methods [44], [56-60] have used the term 

∫ ∫− +

0

0 )()(
τ η

ηαα
t

t

T dsdsPs && in stability analysis. The time derivative of the 

Lyapunov-Krasovskii function is given by 

∫ −
−+−−++=

t

t

TT
d

T
d

T
dd

T
g dssPsPFdFAAPV

τ
αααατααααααα .)()()1()(2 0000 &&&&&&  

By using (4.110) and the Newton-Leibniz formula ∫ −
=−−

t

dtd dss ,0)(ααα & we have  

)()()1()(2 00000 dd
T

ddd
T
d

T
dd

T
g AAPAAFdFAAPV αααατααααααα +++−−++= &&  

  ∫∫ −−
−−++−

t

td
TT

d
TTt

t

T dssZXdssPs
ττ
ααααααα ))()((2)()( 0 &&&  

where ∑= ii XX β and .∑= ii ZZ β By using the inequality ,2 1YHyHxxyx TTT −+≤  

where x and y are any vectors with appropriate dimensions and ,0>H we can obtain 
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)]()([])()([)(])()([2 1
0 tZtXPZtXtdssZtXt d

t

t
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d

TTTT
d

TT αααατααα
τ

++≤+ ∫ −

−&

∫ −
+

t

t

T dssPs
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αα )()( 0 &&  

which leads to 

][][)1()(2 1
0000 d

TT
d

TT
d

T
dm

T
dd

T
g ZXPZXFdFAPAPV αααατααααααα +++−−++≤ −&

    ).()())((2 000
1

0000 dd
T

ddd
TT

d
TT APAPPAPAPZX ααααταααα +++−++ −  

By applying the Schur complement formula [48] to (4.111), we can obtain  
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(4.113) 

This implies that )( 22
dgV ααµ +−≤& for some .0>µ After all, we can conclude that 

the sliding mode dynamics (4.110) is stable. 

After the switching surface parameter matrix S is designed so that the 

reduced-order sliding mode dynamics has a desired response, the next step of the SMC 

design procedure is to design a switching feedback control law for the reaching mode 

such that the reachability condition is met [33]. If the switching feedback control law 

satisfies the reachability condition, it drives the state trajectory to the switching surface 

0== xSσ and maintains it there for all subsequent time. In this section, we design an 

adaptive fuzzy control law guaranteeing that σ converges to zero. We will use the 

following nonlinear sliding switching feedback control law as the local controller: 

Control Rule i: IF 1θ is 1iµ and ... and sθ is isµ , THEN 

σ
σκσφ τ idiiiiiii xtASxtAStu ˆ))(())(()( −ΠΤ+−ΠΤ+−−=         (4.114) 

where ,ˆˆˆ
00 ∑∑ ==

++=
q

k

k
ddk

p

k

k
dkii xx δρεκ k

kdk x⋅= σνρ&̂ , k
dkdk x⋅= σχδ&̂ (4.115) 

and .0,0,0,0 >>>> kkii χνεφ  The final controller inferred as the weighted average 

of the each local controller is given by  
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∑
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i
idiiiiiiii xtASxtAStu
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ˆ))(())(()()(
σ
σκσφθβ τ    (4.116) 

and we can establish the following theorem. 

Theorem 4.8  Consider the closed-loop control system of the uncertain system (4.107) 

with control (4.116). Suppose that the LMI (4.111) is feasible and the sliding surface is 

given by (4.112). Then, the switching feedback control law (4.116) induces an ideal 

sliding motion on the sliding surface o=σ in finite time and the state converges to 

zero.  

Proof:  Since Theorem 4.7 implies that the sliding mode dynamics restricted to 

0== xSσ is stable, we only have to show thatσ converges to zero. Define a Lyapunov 

function as ∑ ∑= =
++=

p

k

q

k dkdk
T

g tE
0 0

22 ~5.0~5.05.0)( δρσσ where dkdkdk ρρρ −= ˆ~ and 

.ˆ~
dkdkdk δδδ −= The time derivative of )(tEg is σσ && T

gE = σρσ ++ ∑ =

kp

k dk x
0

~  
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kq

k ddk x∑ =
δ From ISB = , the assumption A2 and (4.116), we can obtain 

uhxtASxtAS T
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i iiiii
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001 1
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r

i

r

i iiii xx ∑∑∑ ∑ === =
−−−−≤ δσρσσεβσφβ  

This implies that 0
1 1

2 ≤−−≤ ∑ ∑= =

r

i

r

i iiiigE σεβσφβ& which indicates that 

.,2 ∞∞ ∈∩∈ LELLE gg
& Finally, by using Barbalat’s lemma, we can conclude 

thatσ converges to zero. 

Remark 4.4  Theorem 4.7 and 4.8 can be summarized in the form of the following 

LMI-based design algorithm. 

Step 1: Check that ),( BAA ii τ+ is stabilization. If not, exit. 

Step 2: Find a full-rank matrix )( mnnR −×∈Λ such that .,0 IB TT =ΛΛ=Λ  
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Step 3: Find a solution vector ),,,( 21 ηccY  to LMI (4.111). 

Step 4: Compute the sliding surface parameter matrix S by using the formula of (4.112). 

Step 5: The controller is given by (4.116). 

4.4.3 Numerical Examples 

Example 4.7  To illustrate the performance of the proposed adaptive fuzzy control 

design method, Consider the following T-S fuzzy time-delay model [62] without 

mismatched parameter uncertainties and external disturbances. 

)()]()()[()(
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tButxAtxAtx dii
i
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τθβ&                        (4.117) 
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)(21 1 txe−+
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We assume that 05.0,0,4.0)( ==== iihtd φτ and .1=iε Figure 4.10 shows the control 

results for system (4.117) via the proposed controller (4.116) under the initial condition 

Tt ]03[)( =ψ . In Figure 4.10, it should be noted that since it is impossible to switch the 

input u instantaneously, oscillations always occur in the sliding mode of a SMC system. 
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Figure 4.10 Control results for the system (4.117). 
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Example 4.8 Consider a well-studied example of a continuous-time truck-trailer with 

time-delay proposed in [63]. The time-delay model is given by 

)]()([)()1()()(
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0

1
0

1 thtu
lt
vTdtx

Lt
vTatx

Lt
vTatx ++−−−−=& , 
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)(sin)( 112

0
3 dtx

L
vTatx

L
vTatx

t
vTtx&            (4.118) 

where )(1 tx  is the angle difference between truck and trailer (in radians), )(2 tx  is the 

angle of trailer (in radians), )(3 tx is the vertical position of rear of trailer (in 

meters), )(tu is the steering angle (in radians), ,8.2,0.2 == lT  0.1,5.5 −== vL  

and .5.00 =t  The constant parameter a is the retarded coefficient 

satisfying ].1,0[∈a The limits 1 and 0 correspond to a no-delay term and to a 

completed-delay term. We assume that the disturbance input )(th is unknown but 

bounded as .1)( ≤th By using the fact that xx ≈)sin( if ,0≈x we can represent the 

above model as the following two-rule T-S fuzzy model, including parameter 

uncertainties and external disturbances:  

Plant Rule 1: IF )(tθ is about 0, THEN 

1111111 ))(())(( BhBuxtAxtAx d ++ΠΤ++ΠΤ+= τ&  

Plant Rule 2: IF )(tθ is about ,π± THEN 

2222222 ))(())(( BhBuxtAxtAx d ++ΠΤ++ΠΤ+= τ&  

where LdtxvTaLtxavTtxt 2/)()1(2/)()()( 112 −−++=θ  



 197

,

0
2

00

00

00

22
0

0

1
























−

=

t
vT

Lt
Tva

Lt
vTa

Lt
vTa

A   ,

00
2

)1(

00)1(

00)1(

0

22
0

0

1

























−

−

−−

=

Lt
Tva

Lt
vTa

Lt
vTa

Aτ  

,

010
2

10

00

00

22
0

0

2





















 −

=

ππ
vT

L
Tva

Lt
vTa

Lt
vTa

A   ,

00
2

10)1(

00)1(

00)1(

22
0

0

2























−

−

−−

=

π

τ

L
Tva

Lt
vTa

Lt
vTa

A  

,
0
0

0





















=
lt
vT

B   ,
1.0
1.0
1.0

21
















=Τ=Τ   [ ],00sin)()( 21 ttt =Π=Π  

,
1

)1/(11
)5.0(2

)5.0(2

1 πθ

πθ

β +−

−−

+
+−

=
e

e ,1 12 ββ −=      ).(21 thhh ==         (4.119) 

We assume that .1.0)( == τtd  Considering LMI optimization with the data 

(4.119), 1.0,0 == τa and ,0=md we can obtain the sliding surface .xS=σ  By setting 

1,1,1.0,1.0,1,01.0,05.0 21 ======= prkki χνεεφ , 1=q , and sec01.0=samplingt , we 

can obtain the following fuzzy controller: 

Control Rule 1: IF )(tθ is about 0, THEN 

).sgn(ˆ))(())((05.0)( 1111111 σκσ τ −ΠΤ+−ΠΤ+−−= dxtASxtAStu  

Control Rule 2: IF )(tθ is about ,π± THEN 

).sgn(ˆ))(())((05.0)( 2222222 σκσ τ −ΠΤ+−ΠΤ+−−= dxtASxtAStu  

The final controller inferred as the weighted average of each local controller is given by 

.)]sgn(ˆ))(())((05.0[)(
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1

σκσβ τ idiiiiii
i

i xtASxtAStu +ΠΤ++ΠΤ+−−−= ∑
=

  (4.120) 
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To demonstrate the controller ability, we apple the above fuzzy controller   

(4.120) to the system model (4.119) with txtxxxth dd ππ 2cos2sin),,( 21 +=  

)(sgn5.0 3x− and .1.0)( == τtd  Figure 4.11 shows the closed-loop system responses 

of (4.119) and the proposed controller (4.120) with the initial condition 

.]4,8.0,4.0[)( Tt −= ππψ  In Figure 4.11, it should be noted that since it is impossible 

to switch the input u instantaneously, oscillations always occur in the sliding mode of a 

SMC system. From Figure 4.11, the proposed controller stabilizes uncertain fuzzy 

time-delay systems with mismatched parameter uncertainties in the state matrix and 

unknown norm-bounded external disturbances. The control performances of the 

two-rule T-S fuzzy model (4.119) are satisfactory. 
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Figure 4.11 Simulation results with the proposed method on the model (4.119). 
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Chapter 5                            

Conclusion 

The objective of this dissertation is to provide a stable and robust means for 

uncertain nonlinear systems using T-S fuzzy models/time-delay models by applying 

two kinds of LMI-based adaptive sliding control, including sliding control methods 

and adaptive control methods. This dissertation proposes a complete approach to 

fulfill the objective. This chapter summarizes the contributions of sliding control 

methods and adaptive control methods in this dissertation and gives suggestions for 

future work.  

5.1  Contributions 

Based on adaptive sliding control methods and robust stability criteria, the 

following objectives are achieved in this dissertation.  

1.  LMI-based robust sliding control: 

    Firstly, a robust sliding control method is proposed for uncertain T-S fuzzy 

models with matched parameter uncertainties and external disturbances. In the 

VSS, the control design of the plant is intentionally changed by using a 

high-speed switching feedback control to obtain a desired system response, from 

which the VSS arises in finite time. The VSS drives the trajectory of the system 

onto a specified surface, which is called the sliding surface or the switching 

surface, and maintains the trajectory on this sliding surface for all subsequent 

time. The closed-loop response obtained from using a VSS control law comprises 

two separate modes. The first is the reaching mode in which the trajectory 

starting from anywhere on the state space is being driven towards the switching 
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surface. The second is the sliding mode in which the trajectory asymptotically 

tends to the origin. The central feature of the VSS is the sliding mode on the 

sliding surface on which the system remains insensitive to internal parameter 

variations and external disturbance. In sliding mode, the order of the system 

dynamics is reduced. We have relaxed the restrictive assumption that each 

nominal local system model shares the same input channel, which is required in 

the traditional VSS-based fuzzy control design methods.  

    Secondly, two sliding control methods are developed for distinct uncertain 

T-S fuzzy models, respectively, under different assumptions. The uncertain fuzzy 

systems under consideration have mismatched parameter uncertainties in the 

state matrix and external disturbances.  

    Thirdly, a robust sliding control method is presented for uncertain T-S fuzzy 

time-delay models with mismatched parameter uncertainties and external 

disturbances. 

    Finally, some examples are used to illustrate the effectiveness of the 

proposed methods for distinct uncertain T-S fuzzy models and to compare with 

the existing methods in each final subsection. 

2.  LMI-based robust adaptive control: 

    Firstly, a robust adaptive control method is proposed for uncertain T-S fuzzy 

models with matched parameter uncertainties and external disturbances which 

are bounded by unknown upper norm bounds. We have presented an adaptation 

law to estimate the upper norm bounds. Moreover, we have relaxed the 

restrictive assumption that each nominal local system model shares the same 

input channel, which is required in previous VSC-based fuzzy control methods. 

    Secondly, two adaptive control methods are developed for distinct uncertain 
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T-S fuzzy models, respectively, under different assumptions. The uncertain fuzzy 

systems under consideration have mismatched parameter uncertainties in the 

state matrix and external disturbances which are bounded by unknown upper 

norm bounds. We have presented an adaptation law to estimate the upper norm 

bounds. 

Thirdly, a robust adaptive control method is presented for uncertain T-S 

fuzzy time-delay models with mismatched parameter uncertainties and external 

disturbances which are bounded by unknown upper norm bounds. We have 

proposed an adaptation law to estimate the upper norm bounds. 

Finally, some examples are used to illustrate the effectiveness of the 

proposed methods for distinct uncertain T-S fuzzy models and to compare with 

the existing methods in each final subsection. 

As shown in simulation results, the proposed adaptive sliding control methods 

can not only deal with different conditions of uncertain T-S fuzzy models but also 

stabilize mismatched uncertain T-S fuzzy time-delay models. Besides, the control 

performances of four systems are satisfactory in this dissertation. 

5.2  Suggestions for Future Work 

The objective of this dissertation is to provide a stable and robust means for 

uncertain nonlinear systems using T-S fuzzy models/time-delay models by applying 

two kinds of adaptive sliding control, including sliding control methods and adaptive 

control methods. In the future, we can develop two kinds of adaptive sliding control 

for mismatched uncertain T-S fuzzy delay-time models, assuming 

that )(tAi∆ and )(tA iτ∆  are of the form )(tT iiΠ where )(tiΠ is an unknown 

time-varying matrix, and each nominal local system model of the uncertain system 
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under consideration may not share the same input channel. Moreover, the proposed 

approach may be further applied to other control system. Power control systems, robot 

control systems, motor control systems, and filter design systems are the suggestions 

for future work. 
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