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ABSTRACT

Physical systems are inherently nonlinear. Thus, all control systems are nonlinear
to a certain extent. Over the pasttwo decades, fuzzy techniques have been widely and
successfully exploited in nonlinear system modeling and control. In last ten years, the
Takagi-Sugeno (T-S) fuzzy model-is a popular and convenient tool for handling
complex nonlinear.systems. Correspondingly, the fuzzy feedback control design
problem for a nonlinear system has been studied extensively by using the T-S model
where simple local linear models are combined to describe the global behavior of the
nonlinear system. In practice, the inevitable uncertainties' may enter a nonlinear
system model in a very complicated way. The.uncertainty may include modeling
errors, parameter variations, external disturbances; and fuzzy approximation errors. In
such a situation, the fuzzy feedback control design methods may not work well
anymore.

In this dissertation, firstly, we propose two kinds of LMI-based robust adaptive
sliding control, including a robust sliding control method and a robust adaptive
control method, for uncertain Takagi-Sugeno fuzzy models with norm-bounded
uncertainties, and meantime relax the restrictive assumption that each nominal local
system model shares the same input channel, which is required in the traditional
VSS-based fuzzy control design methods. Then, two kinds of LMI-based robust
adaptive sliding control are developed for uncertain T-S fuzzy models which include
mismatched parameter uncertainties and external disturbances. Moreover, two kinds
of LMI-based robust adaptive sliding control are proposed for the uncertain T-S fuzzy
time-delay model which includes mismatched parameter uncertainties in the state
matrix and norm-bounded external disturbances. Finally, some examples are used to
illustrate the effectiveness and usefulness of the proposed methods in this dissertation.

Keywords: T-S fuzzy models, norm-bounded uncertainties, parameter uncertainties,
external disturbances, sliding control, adaptive control
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Chapter 1

| ntr oduction

Up to now, fuzzy systems have been applied with great success to numerous real
world applications, such as Penicillin-G conversion [1], prediction of river water flow
[2], and many other examples in ecological systems and biomedical field [1], [3]. In the
meantime, numerous publications have been reported in providing theoretical support.
Various methodologies have been proposed for analysis, modeling, design, control and
monitor of fuzzy systems. Fuzzytideas are useful for modeling complex nonlinear
systems in which, due.to the complexity or the. uncertainty, classical tools are
unsuccessful. The truthmodel is-too-complicated for use in the controller design. Thus,
we need to develop.a simplified-model that can be used to design a controller. Such a
simplified model is'labeled by Friedland {4] as the design model. The design model
should capture the essential’ features” of the process. In practice, the inevitable
uncertainties may enter a nonlinear system model in a very complicated way. The
uncertainty may include modeling. errors, parameter variations, external disturbances,
and fuzzy approximation errors. In such a situation, some fuzzy feedback control
design methods may not work well anymore. To deal with the problem, this dissertation
provides two kinds of LMI-based robust adaptive sliding control, including a sliding
control method and an adaptive control method.

The introduction of this dissertation is introduced in this chapter. The motivation
of this dissertation is discussed in Section 1.1. In Section 1.2, related works are
introduced. The approach of this dissertation is described in Section 1.3. In Section 1.4,

the organization of the dissertation is introduced.



1.1 Motivation

The first step in the controller design procedure is the construction of a “truth
model” of the dynamics of the process to be controlled. The truth model is a simulation
model that includes all the relevant characteristics of the process. The truth model is too
complicated for use in the controller design. Thus, we need to develop a simplified
model that can be used to design a controller. Such a simplified model is labeled by
Friedland [4] as the design model. The design model should capture the essential
features of the process. In many situations, there may be human experts who can
provide a linguistic description of the process in'terms of IF-THEN rules. Combining
the available mathematical description of the process with its linguistic description
results in a fuzzy system model.-Such an approach to modeling was proposed by Takagi
and Sugeno [5] and further developed by Sugeno and Kang [6].- This type of model is
called the Takagi-Sugeno (T-S) or Takagi-Sugeno-Kang (TSK) fuzzy model.

T-S fuzzy models are popular and well used tools in recent years. A general T-S
fuzzy model employsan affine fuzzy model with-a constant in the consequence [5]. It is
known that smooth nonlinear. dynamic systems can be approximated by affine T-S
fuzzy models [7,8]. Most recent developments are based on T-S models with linear rule
consequences (here and after, such models are generally called T-S fuzzy models). The
main feature of T-S fuzzy models is to represent the nonlinear dynamics by simple
(usually linear) models according to the so-called fuzzy rules and then to blend all the
simple models into an overall single model through nonlinear fuzzy membership
functions. Each simple model is called a local model or a sub-model. The output of the
overall fuzzy model is calculated as a gradual activation of the local models by using
proper defuzzification schemes [5], [9,10]. It has been proved that T-S fuzzy models

can approximate any smooth nonlinear dynamic systems [11,12]. Based on the sector



nonlinearity concept [12], the uncertain nonlinear system can be systematically
constructed by T-S fuzzy models.

In practice, the inevitable uncertainties may enter a nonlinear system model in a
very complicated way. The uncertainty may include modeling errors, parameter
variations, external disturbances, and fuzzy approximation errors. In such a situation,
some fuzzy feedback control design methods may not work well anymore.

On the other hand, time-delay is often encountered in various industrial systems,
such as the turbojet engine, electrical networks, nuclear reactor, rolling mill, and
chemical process, etc. Recently, the feedback stabilization problem for uncertain
time-delay systems is also a problem of interest.because the existence of a delay is
frequently a source of poor system performance or instability. However, they are

sensitive to the uncertainty, which directly affects the control systems.

1.2 Reated Works

The history of the so-called parallel distributed compensation (PDC) began with a
model-based design procedure proposed by [13]. However, the stability of the control
systems was not addressed in the design procedure. The design procedure was
improved and the stability of the control systems was analyzed in [14]. The design
procedure is named ‘“parallel distributed compensation” in [15]. The PDC [14-16]
offers a procedure to design a fuzzy controller from a given T-S fuzzy model. It should
be noted that many real systems, for example, mechanical systems and chaotic systems,
can be and have been represented by T-S fuzzy models.

It is well-known that time-delay is a common and complex phenomenon in many
industrial and engineering systems, such as communication systems, rolling mill
systems and transportation systems. Since 2000, the T-S fuzzy model has been extended

to undertake analysis and control problems for nonlinear systems with time-delay. More



recently, great progress has been made in the analysis and synthesis of T-S fuzzy
systems with time-delay, such as stability and stabilization based on the parallel
distributed compensation (PDC) method [17-19].

On H_control, the problem of static output feedback control was developed in
[20,21]. Robust stability and guaranteed cost control were treated in [22]. Chen and Liu

[21] proposed a robust H _ control by using the Lyapunov-Krasovskii function (LKF)

T t T Ot oo .
V(x(t) =X (OPx(t)+ | o X (9QX(s)ds+ | - | ., X (SRX(s)dsdn
and model transformation technique which introduced conservatism.

1.3 Approach

Over the past two decades, fuzzy techniques have been widely and successfully
exploited in nonlinear system modeling and control: The Takagi-Sugeno (T-S) model [5]
is a popular and: convenient tool for handling complex nonlinear systems.
Correspondingly, the fuzzy feedback control design problem for a nonlinear system has
been studied extensively by using T-S model where simple local linear models are
combined to describe the global behavior of the nonlinear system [23-29]. In practice,
the inevitable uncertainties may enter a nonlinear system model in a very complicated
way. The uncertainty may include modeling errors, parameter variations, external
disturbances, and fuzzy approximation errors. In such a situation, the fuzzy feedback
control design methods of [23-29] may not work well anymore. To deal with the
problem, some authors [30,31] have exploited the variable structure system (VSS)
theory which has provided an effective means to design robust controllers for uncertain
nonlinear systems where the uncertainties are bounded by known scalar valued

functions.

In the VSS, the control design of the plant is intentionally changed by using a



viable high-speed switching feedback control to obtain a desired system response, from
which the VSS arises in finite time. The VSS drives the trajectory of the system onto a
specified and user-design surface, which is called the sliding surface or the switching
surface, and maintains the trajectory on this sliding surface for all subsequent time. The
closed-loop response obtained from using a VSS control law comprises two distinct
modes. The first is the reaching mode, also called nonsliding mode, in which the
trajectory starting from anywhere on the state space is being driven towards the
switching surface. The second is the sliding mode in which the trajectory
asymptotically tends to the origin. The central feature of the VSS is the sliding mode on
the sliding surface on which the system remains insensitive to internal parameter
variations and external disturbance. In sliding mode, the order of the system dynamics
is reduced. This enables simplification and decoupling design procedure [32-35].
However, all the VSS-based fuzzy control system design methods are based on the
assumption that each nominal local system model shares the same input channel. This
assumption is very restrictive and inadequate to-modeling uncertainty/nonlinearity in
various mechanical systems such as an inverted pendulum on a cart.

Some authors [36-40] have relaxed the assumption and they have proposed
adaptive laws to estimate the upper norm bounds. However, the previous VSC-based
fuzzy control methods have considered the problem of adaptive control design and
stability analysis for uncertain T-S fuzzy models where the input matrices of the local
system models satisfy the assumption that each nominal local system shares the same
input channel. It is practically difficult to satisfy this assumption.

On the other hand, time-delay is often encountered in various industrial systems,
such as the turbojet engine, electrical networks, nuclear reactor, rolling mill, and

chemical process, etc. Recently, the feedback stabilization problem for uncertain



time-delay systems is also a problem of interest because the existence of a delay is
frequently a source of poor system performance or instability [41-43]. However, they
are sensitive to the uncertainty, which directly affects the control systems. These years,
other authors [44-46] have exploited the SMC approach theory which has provided an
effective means to design robust controllers for uncertain fuzzy time-delay systems
where external disturbances are bounded by known upper norm bounds.

In this dissertation, we propose two kinds of LMI-based robust adaptive sliding
control, including a robust sliding control method and a robust adaptive control method,
for uncertain Takagi-Sugeno fuzzy models. with norm-bounded uncertainties, and
meantime relax the restrictive assumption that each nominal local system model shares
the same input channel, which is required in the traditional VSS-based fuzzy control
design methods. Then, two kinds of LMI-based robust adaptive sliding control are
developed for uncertain T-S fuzzy models which include mismatched parameter
uncertainties and external disturbances. Moreover, two kinds-of LMI-based robust
adaptive sliding control are proposed for the uncertain T-S fuzzy time-delay model
which includes mismatched. parameter uncertainties’ i the state matrix and
norm-bounded external disturbances. Finally, some examples are used to illustrate the
effectiveness and usefulness of the proposed methods for distinct uncertain T-S fuzzy

models and to compare with the existing methods in each final subsection.

1.4 Organization of this Dissertation

This dissertation comprises five chapters. In Chapter 1, the introduction comprises
motivation, related works, approach, and organization of this dissertation. In Chapter 2,
foundations are described by providing concepts of Lyapunov stability and linear
matrix inequality. In Chapter 3, LMI-based robust sliding control design methods

are developed for different wuncertain Takagi-Sugeno fuzzy models with



matched/mismatched parameter uncertainties and external disturbances which are
bounded by known scalar valued functions and meantime we relaxed the restrictive
assumption that each nominal local system model shares the same input channel, which
is required in the traditional VSS-based fuzzy control design methods. Besides, a robust
sliding control design method is also presented for the uncertain T-S time-delay model
with mismatched parameter uncertainties and external disturbances. Finally, some
examples are used to illustrate the effectiveness of the proposed methods for distinct
uncertain T-S fuzzy models and to compare with the existing methods in each final
subsection. In Chapter 4, LMI-based robust_adaptive control design methods are
proposed for distinct uncertain T-S-fuzzy models. which include matched/mismatched
parameter uncertainties and unknown norm-bounded external disturbances. Moreover, a
robust adaptive contrel design method is also proposed.for the uncertain T-S time-delay
model with mismatched parameter uncertainties and external disturbances. Finally,
some examples are-used to illustrate the effectiveness of the proposed methods for
distinct uncertain T-S fuzzy models and to compare -with the existing methods in each
final subsection. In Chapter 5, the contributions are’discussed and suggestions for

future work are proposed.



Chapter 2

Foundations

In this chapter, the basic concepts that relate to the proposed control methods are
introduced. The Lyapunov stability is discussed in the first section. Section 2.2

introduces the concept of linear matrix inequality (LMI).

2.1 Lyapunov Sability

Consider a general nonlinear system [47]

x= A(X) (2.1)
where x € R"are the state variables:and A: R" — R"is a nonlinear function. We assume
that Ais such that system (2.1)-has-a unique solution X(t) over.[0,o) for all initial
conditions X(0) and that the solution depends continuously on X(0). A vector
X, € R"is an equilibrium point of the system (2.1) if A(X,) = 0.

Without loss of generality, we can assume that X, =0 1is an equilibrium point of
the system (2.1); that is, A(0)=0. Otherwise, we can perform a simple state

transformation zZ=X—X, to obtain a new state equation Z= /K( z)= A(z+X,) where

Z, =0 1is an equilibrium point, that is, A(O) = A(X,) =0.Clearly, the solution of the
differential equation (2.1) shows that if Xx(0)=0, then x(t)=0, for all t>0.

However, this solution may or may not be stable.
Definition 2.1.1:

Stability: The equilibrium point X, =0 of the system (2.1) is stable if for all £>0,

there existsa o (&) > 0 such that||x(0)|| <d(e)=> ||X(t)|| <g, Vt=0.



In other words, the equilibrium point X, =0 1is stable if arbitrarily small
perturbations of the initial state X(0)=0 from the equilibrium point result in
arbitrarily small perturbation of the corresponding state trajectory X(t).

Definition 2.1.2:

Asymptotic Stability: The equilibrium point X, =0 of the system (2.1) is
asymptotically stable if it is stable and there exists some y >0 such that if ||X(0)|| <y,
thenX(t) >0 as t— oo,

In other words, the equilibrium point X, =0 is asymptotically stable if there
exists a neighborhood of X; =0 such that if the system starts in the neighborhood,
then its trajectory converges to the equilibrium point X, =0 as. t — .

The equilibrium point X, =0-—of the system (2.1) is globally asymptotically stable
if >0 can be arbitrarily large; that is, all trajectories converges to the equilibrium
point X, =0.

Determining stability of a“system may not be an easy task if the system is
nonlinear. One approach often used..to determine stability is that of Lyapunov.

Intuitively, the Lyapunov stability theorem can be explained as follows. Given a system

with an equilibrium point X, =0, let us define some suitable “energy” function of the
system. The function must have the property that is zero at an equilibrium point X, =0

and positive elsewhere. Assume further that the dynamic system is such that the energy
of the system is monotonically decreasing with time and hence eventually reduces to
zero. Then, the trajectories of the system have no other places to go but the origin.
Therefore, the system is asymptotically stable. This generalized energy function is

called a Lyapunov function. If there exists a Lyapunov function, then we can prove the



asymptotic stability using the following Lyapunov stability theorem.
Theorem 2.1.1

The equilibrium point X, =0 of the system (2.1) is asymptotically stable if there
exists a Lyapunov function V:R"— R such that V(X)>0 , x=0 ,V(X)=0 ,
X:O,V(x)<0, and X=0, V(X):O,X:O is true in a neighborhood of X, =0,
N = {X:||X||< 7/} for some y>0.

Proof:

We provide the following intuitive proof by contradiction. If the equilibrium point

X, =0 of the system (2.1) is not-asymptotically stable; that is, X(t) >0 as t—> o is

not true even if ||X(0)|| <y forsome-y >0, then V(X) < < for some o« >0. Since
V(X() 2VUXO)+ [ VX de =V(x(0)# [ = adz = Vx(0) - at.

For a sufficiently large t, V(X(t)) < 0. This contradicts the assumption V(X(t))>0.

The key to proving stability of a system using the Lyapunow stability theorem is to
construct a Lyapunov function. This construction must.be done in a case-by-case basis.
There is no general method for the construction: The following example illustrates the

application of the Lyapunov stability theorem.
Example2.1.1
Let us consider the following system:
X =X, —3X, X =-X —2X.
To prove it is asymptotically stable, let us consider the following Lyapunov function:
V(X)=2X +X].

Clearly,V(X)>0, x#0, V(X)=0, x=0.

10



On the other hand,
V(X) = 4X % +2X,% = 4% (X, —3X ) + 2%, (=X —2X,)
= 4% X, — 12X’ —2X; —4X X, =—12X —2X;.
Therefore,V(X) <0, x#0,V(X)=0, x=0.

Finally, we can conclude that the system is asymptotically stable.

2.2 Linear Matrix Inequality

A linear matrix inequality (LMI) has the form [48]

FO= Fy > XE 0 2.2)

=]
where X e R"is the variable and the symmetric ‘matrices. F =F' e R™, i=0,..,m,
are given. The inequality symbol-in (2.2) means that F(X) is positive-definite, i.e.,
u'F(x)u >0 forall nonzero ue R". Thus,the LMI (2.2) is equivalent to a set of n
polynomial inequalities in X ; i.e;; the leading principal minors of F(X) must be
positive. We will also encounter nonstrict LMIs, which have the form

F(x)>0. (2.3)

The strict LMI (2.2) and the nonstrict LMI'(2.3) are closely related.

The LMI (2.2) is a convex constraint on X, i.e., the set {X|F(X) > 0}is convex.

Though the LMI (2.2) may seem to have a specialized form, it can represent a wide
variety of convex constraints on X . In particular, linear inequalities, quadratic
inequalities, matrix norm inequalities, and constraints that arise in control theory, such
as Lyapunov and convex quadratic matrix inequalities, can all be cast in the form of an

LMI.

Multiple LMIs F(x)>0 ,---, F®(X) >0 can be expressed as the single LMI

11



diag(F " (x), --, F® (X)) > 0. Therefore we will make no distinction between a set of
LMIs and single LMI, i.e., “the LMIF"(x)>0 ,---, F®(x) > 0” will mean “the LMI

diag(F " (x),--, F®(x)) > 0.

When the matrices F, are diagonal, the LMI F(X)>0 is just a set of linear

inequalities. Nonlinear (convex) inequalities are converted to LMI form using Schur

complements. The basic idea is as follows: the LMI

{Q(X) S(X)} >0 (2.4)

s R(X)
where Q(X)=Q(X)", R(X)=R(X)";and S(x)depend affinely on X, is equivalent to
RX) >0, Q(X)—SX)RX)'S(x)"> 0 (2.5)
In other words, therset of nonlinear inequalities (2.5).can be represented as the LMI
(2.4).
As an example, the matrix norm<constraint ||Z(X)||<1, where Z(x) e R™%and

depends affinely on X, is represented as the LMI

200
Z(x)T

Since |Z[ <1 is equivalentto |1 -ZZ" >0.
We will often encounter problems in which the variables are matrices, e.g., the
Lyapunov inequality
A'P+PA<0 (2.6)
where Ae R™"is given and P = P is the variable. In this case we will not write out the

LMI explicitly in the form F(X) >0, but instead make clear which matrices are the

variables. The phrase “the LMI A'P+PA<0inP” means that the matrix Pis a

variable. Of course, the Lyapunov inequality (2.6) is readily put in the form (2.2), as

12



follows. Let B ,---, P, be a basis for symmetric nxn matrices. Then take F, =0 and

F =—A"P —PA. Leaving LMIs in a condensed form such as (2.6), in addition to

saving notation, may lead to more efficient computation.

As another related example, consider the quadratic matrix inequality
A'"P+PA+PBR'B'P+Q<0 (2.7)
where A, B, Q=Q', R=R'>0 are given matrices of appropriate sizes,
and P=P"is the variable. Note that this is a quadratic matrix inequality in the
variable P . It can be expressed as the linear matrix inequality

- A'R-PA-Q-PBI_

0.
B'P R

This representation /also clearly-shows that the quadratic matrix inequality (2.7) is
convex in P, which is not obvious.

Finally, given.an LMI F(X)> 0, the corresponding' LMI Problem (LMIP) is to
find x"™*such that” F(x"®°) >0 or determine that the LMI s infeasible. Of course,
this is a convex feasibility problem. We will say “solving the LMIF(X) >0 to mean

solving the corresponding LMIP.

As an example of an LMIP, consider the “simultaneous Lyapunov stability

problem”: We are given A € R™", i=1,---,L,and need to find P satisfying the LMI
P>0, A'P+PA <0, i=l--L

or determine that no such P exists.
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Chapter 3

L MI-Based Robust Sliding Control

In this chapter, LMI-based robust sliding control methods are developed for
different uncertain Takagi-Sugeno fuzzy models/time-delay models. The introduction of
this chapter is introduced in Section 3.1. In Section 3.2, a robust sliding control method
is proposed for T-S fuzzy systems. Section 3.3 presents two kinds of robust sliding
control methods for mismatched T-S fuzzy systems. A robust sliding control method is

presented for mismatched T-S fuzzy time-delay systems in Section 3.4.

3.1 Introduction

Over the past two decades, fuzzy techniques have been widely and successfully
exploited in nonlinear system modeling and control. The Takagi-Sugeno (T-S) model [5]
is a popular and" convenient tool for handling complex: nonlinear systems.
Correspondingly, the fuzzy feedback control design problem for a nonlinear system has
been studied extensively by using T-S model where simple local linear models are
combined to describe the global'behavior of the nonlinear system [23-29]. In practice,
the inevitable uncertainties may enter a nonlinear system model in a very complicated
way. The uncertainty may include modeling errors, parameter variations, external
disturbances, and fuzzy approximation errors. In such a situation, the fuzzy feedback
control design methods of [23-29] may not work well anymore. To deal with the
problem, some authors [30,31] have exploited the variable structure system (VSS)
theory which has provided an effective means to design robust controllers for uncertain
nonlinear systems where the uncertainties are bounded by known scalar valued

functions.
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In the VSS, the control design of the plant is intentionally changed by using a
viable high-speed switching feedback control to obtain a desired system response, from
which the VSS arises in finite time. The VSS drives the trajectory of the system onto a
specified and user-design surface, which is called the sliding surface or the switching
surface, and maintains the trajectory on this sliding surface for all subsequent time. The
closed-loop response obtained from using a VSS control law comprises two distinct
modes. The first is the reaching mode, also called nonsliding mode, in which the
trajectory starting from anywhere on the state space is being driven towards the
switching surface. The second is_ the. sliding mode in which the trajectory
asymptotically tends to the origin. The central feature of the VSS is the sliding mode on
the sliding surface on which the system remains insensitive to internal parameter
variations and external disturbance. In sliding'mode, the order of the system dynamics
is reduced. This enables simplification and decoupling design procedure [32-35].
However, all the VSS-based fuzzy control system design methods are based on the
assumption that each nominal local system model shares the same input channel. This
assumption is very restrictiverand inadequate to modeling uncertainty/nonlinearity in

various mechanical systems such as an inverted pendulum on a cart.

On the other hand, time-delay is often encountered in various industrial systems,
such as the turbojet engine, electrical networks, nuclear reactor, rolling mill, and
chemical process, etc. Recently, the feedback stabilization problem for uncertain
time-delay systems is also a problem of interest because the existence of a delay is
frequently a source of poor system performance or instability [41-43]. However, they

are sensitive to the uncertainty, which directly affects the control systems.

In this chapter, we propose robust sliding control design methods for different

uncertain T-S fuzzy models with matched/mismatched parameter uncertainties and
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external disturbances which are bounded by known scalar valued functions. Each
nominal local system model of the uncertain system under consideration may not share
the same input channel. As the local controller, we use a sliding mode controller with a
nonlinear switching feedback control term. We derive LMI conditions for existence of
linear sliding surfaces guaranteeing asymptotic stability of the reduced order equivalent
sliding mode dynamics, and we give an explicit formula of the switching surface
parameter matrix in terms of the solution of the LMI existence conditions. The
nonlinear switching feedback control term is also designed to drive the system
trajectories so that a stable sliding motion is induced in finite time on the switching
surface and the state converges to zero. Besides, a.robust sliding control design method
is also presented for the uncertain T-S time-delay model with mismatched parameter
uncertainties and external disturbances. Finally, some examples are used to illustrate the
effectiveness of the proposed methods for distinet uncertain T-S fuzzy models and to

compare with the existing methods in-each final subsection.

3.2 Robust Sliding Control for T-S Fuzzy Systems

In this section, system formulation for-the uncertain T-S fuzzy model is described
in Section 3.2.1. A robust sliding control method via LMI is proposed in Section 3.2.2.
Some examples are used to illustrate the effectiveness of the proposed methods and to

compare with the existing methods in Section 3.2.3.
3.2.1 System Formulation

Consider the following uncertain T-S fuzzy model [49]:
X(t) =Y B(O)[AX()+ Bu(t) + Bh(t, )] 3.1)
i=1

where X(t) e R"is the state, u(t)e R™ is the control input, A ,B, are constant
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matrices of appropriate dimensions, 6 =[6,,--,6,],0; (j=1,--,8) are the
premise variables, S is the number of the premise variables, S (0)=
o, (6*)/2];60](9), o, : R®* - [0,1],i =1,---,r is the membership function of the system

with respect to plant rule i,r is the number of the IF-THEN rules, /S, can be regarded
as the normalized weight of each IF-THEN rule and it satisfies

that 3(6)=0, ZLI L) =1, ht,x)eR" stands for the lumped nonlinearities or

uncertainties. We will assume that the followings are satisfied:

4

Al: The nxm matrix B defined by B=lz.r B. satisfies the rank constraint
r I

rank (B) =m, i.e.,the matrix B has full.column rank m:
) !
A2: The function h(t,x) is unknown but bounded as Hh(t, X).— h(t, X)H < Z pk”)(”k
k=0

where p,, -+, p,are known constants, ﬁ(t,X) is an estimate of h(t,x), and |is a

known positivednteger.
The system (3.1) does not have to satisfy the restrictive assumption that all the input
matrices of the local system models are in the same range space. It should be noted that

the assumption Al implies that rank(B) < mand each nominal local system model
may not share the same input channel. The assumption A2 with | =1 and
ﬁ(t,x) = O has been used in the literature [50]. We can set ﬁ(t, X)as the nominal value
of h(t, X). Using the above assumptions, the uncertain T-S fuzzy model (3.1) can be

written as follows.
X(t) = zr: Bi(0)AX() +[B+ HF (8)G][u+ h(t, x)] (3.2)

where § =[£,(0),: -, B, (6)],and the matrices H,GF(f) are defined by
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H :%[(B— B,),-(B=B.)], G=[l; 1],

F(p)=diag[(1-24,O)1. . (1-2,O)1] (3.3)
It should be noted that the system (3.1) does not have to satisfy
B, = B, =---= B,, which is used in almost all published results on VSS design methods
including the VSS-based fuzzy control design methods of [33,34]. Hence the methods

[30,31] cannot be applied to the above model (3.1). Since A (€)=0 and

ZL] P(0) =1,we can see that the following inequality always holds:

FIBEMB) =F(AE (B)<1. (3.4)
Many examples in the literature and various mechanical systems such as motors and
robots do not satisfy.the restrictive assumptions that each nominal local system model
shares the same input channel and they fall into the special cases of the above model
[49].
3.2.2 Sliding Control Design via LMI

The Sliding Mode Control (SMC) design 1s decoupled into two independent tasks

of lower dimensions: The first involves:the design of mM(n—1)—dimensional switching

surfaces for the sliding mode such that the reduced order sliding mode dynamics
satisfies the design specifications such as stabilization, tracking, regulation, etc. The
second is concerned with the selection of a switching feedback control for the reaching
mode so that it can drive the system’s dynamics into the switching surface [33]. We first
characterize linear sliding surfaces using LMIs.

Let us define the linear sliding surface as o = SX = 0 where Sis a Mxnmatrix.

Referring to the previous results [33], [S1], we can see that for the system (3.2) it is

reasonable to find a sliding surface such that
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P1 [SB+ SHF(ﬂ)G] is nonsingular for any f satisfying £.(6)>0,i=1,--r, and

L AO)=1.
P2 The reduced (n—m)order sliding mode dynamics restricted to the sliding surface

Sx = 0is asymptotically stable for all admissible uncertainties.

It should be noted that P1 is necessary for the existence of the unique equivalent control

[33] and the assumption A1 is necessary for the nonsingularity of SB.

Define a transformation matrix and the associated vector vas M =[A(A'YA)™,
Y'BB'Y'B)'' =[V",S']",v=[v/,vi]' =Mx where v,e R™ v, eR"™. By the
above transformation, we can see that M ' =[YA,B]and V, =o. Then, from system

(3.2), we can obtain

Wl < VAYA VABV o[ VHE(B)G
{d};ﬂ‘(m[so\im SAiBHa}+{I+SHF(,B)G}[U+h(t’X)]' (3:5)

From the equivalent. control method [33], we can see that the equivalent control is
given by Uy(t) = —Zir:lﬁi Q) + SHF(B)G]” SAx=h(t,x). By setting 6 =o =0and
substituting U(t) with U(t), we can obtain that-the reduced (n—m)order sliding

mode dynamics restricted to the switching surface o = SX=01is given by

A

> ALONAYAY ATD(AAYAY, (3.6)

where D(B) =1 — HF (B)G[I + HF (8)G]'S.

Theorem 3.1 Let us consider the sliding mode dynamics (3.6). If there exist
matrices Y € R™", A e R™" ™ satisfying B'A =0,A"A =1, scalars¢, eRcC, eRneR,
K=A1

(B'B), and *represents blocks that are readily inferred by symmetry such

min

that the following LMIs holds:
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AT(AY + A x %

nHTA —1 x |<0, Vi (3.7)
AYA nH -1
Y | 0
I ¢l 0 >0, (3.8)
0 0 cl-Y
2nx  * *
rcc rnp 0|>0 (3.9
rcc 0 rp

then, there exists a linear sliding surface parameter matrix Ssatisfying P1-P2 and the

sliding surface
o(X)=Sx=(B'Y'B)'B'Y 'x=0 (3.10)

will guarantee that the sliding mode dynamics (3.6) is asymptotically stable.

Proof: By using Schur complement formula [48], we can ¢asily show that in fact the

following LMIs aré incorporated in the EMlIs (3.7)-(3.9)

c >0, ¢, >0, 730, wHH" <, 25’k >r(c] +c). (3.11)
It is clear that if the following inequality (3.12) helds, then B+ SHF(S)G

= | + SHF ()G is nonsingular and'hence P1 holds
SHF(A)GG'F' (BH'S < 1. (3.12)
Using (3.3), 3.4), (3.11) and GG’ s||G||2I =rl, we can obtain

SHF(B)GGTFT(AHTS" <3, (3.13)
n

By using the Schur complement formula, we can see that (3.8) and (3.11) imply
0<c'l <Y<gl, 0<c'l <Y '<cl (3.14)

and this leads to
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SHF(B)GG'FT(HHTS < s5" <92 (gTR) " < 9%, (3.15)
n n K7

Using the inequality 2ab < a’+b’*wherea and bare scalars, we can show that (3.15)
implies
SHF(BGG' FT(B)HTST Siﬂz(cf+cf)l. (3.16)
Finally, by using the above inequalities (3.11) and (3.16), we can obtain
SHF(B)GG'FT(B)HTST s#ssT <1 (3.17)

which implies that [SB+ SHF (£)G] is nonsingular, i.e., P1 holds.

Now, we will show that Sof (3.10) guarantees P2. Using the matrix inversion lemma:
(I+AB)'=1-A(l +BA)'B

where Aand B are compatible constant matrices such that (I +AB)is nonsingular, we

can show that the sliding mode dynamics (3.6) is equivalent to
v, = 20 BiO)ATYA) T ATC(B)AYAY, (3.18)
i=l1

where C(f)=1—H[l +F(#)GH] ' F(B)GS=[I + HF(BGS}"
=1 —HF(B)G[l + HF (B)G]'S=D(H).
The sliding mode dynamics (3.18) is asymptotically stable if there exists a positive

definite matrix P, ¢ R™™ ™™ such that the time derivative of the Lyapunov function

E, (D)= v/ P,v, satisfies for some positive scalar
E,()=2) SOV RZ(B)V, < -V, (3.19)
i=1

where Z,(f)= (A, + B[l =N(8)D,]" N(B)C,).

A, = (ATYA)'ATAYA,B, = (A"YA)'ATH ,C, = AYA, D, =H, N(B)=-F(B)GS.
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It should be noted that the inequalities (3.4), (3.11), (3.17) andGG" < ||G||2I =rl imply
N(BNT(B)=F(B)GSS'G'F'(B)<n’l,n’DyD, =n°HTH <1 (3.20)

This and (3.19) imply that (3.18) is asymptotically stable if there exists a positive

definite matrix P, such that
P,A, +P,B,[I —=N(8)D,]'N(B)C,, +*<0, Vi (3.21)

where *represents blocks that are readily inferred by symmetry.
Let zbe z =[1-N(B)D,]"'N(B)C,ywhereye R"™.
Then Z can be rewritten as z = N(8)[C;; Yy +D,z ].
This equality and (3.20) imply 2"z <7°[C,,y+ D,z ]"[C,,y + D,z ]and this leads to
2y"RB,[I = N(B)D,I"'N(A)Cipy
=2y"P,B,z <2y"P,B,z#[C;y+Dyz 1" [C;y+ Dsz |=17"2
=y'CiC,y+2yY'[PB, +CD,1z —# 7z Qz whereQ=1-7°D,D,. (3.22)
Since Q > 0, the following inequality holds for any (Y, Z ) :

2y"[RB, +C\D, 12 £7°2/Qz +7°y'[R,B, + CHDIQ '[RB, + CiD, 'y (3.23)

Using (3.22) and (3.23), we can show that the Lyapunov inequality (3.21) is satisfied if

the following inequality holds:
P,A,+ AP, +C\C,+7°[P,B, +C}D,1Q'[P,B, +C,;D,]" <O0.

Using the Schur complement formula, we can rewrite the above inequality as

AP +x
nB/P, -1 % |<0, Vi. (3.24)
Cio nb, -1
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Let the positive definite matrix P, be P, = ATYA where Y is a solution to LMIs

(3.7)-(3.9), which implies that the sliding mode dynamics (3.18) is asymptotically
stable. Hence, the sliding mode dynamics (3.6) is asymptotically stable.

After the switching surface parameter matrix Sis designed so that the reduced
(n—m)order sliding mode dynamics has a desired response, the next step of the SMC
design procedure is to design a switching feedback control law for the reaching mode
such that the reachability condition is met. If the switching feedback control law
satisfies the reachability condition, it drives the state trajectory to the switching surface

o = SX=0and maintains it there for all subsequent time. With o of (3.10), we design

a sliding fuzzy control law guaranteeing that o converges to zero. We will use the
following nonlinear sliding switching feedback control law as the local controller.

Control rule i:IF 6is g ,and ... and O is u,, THEN

U(t) = —h(t,x)— 76 —SAX— A x)

I
where 6, (t,x) = ; +@SAX|+ 1+ @)Y o [X[" (3.25)
k=0

and o=SXw= ,%:>0. It should be noted that (3.17) implies @ =

\/F”SH || < \/F”S” . ||H || < 77||H || This and (3.11) guarantee 0 < ® <1. The final controller

inferred as the weighted average of the each local controller is given by
u(t) = —h(t, x) - Z,B (e)[g,a+sgx+ 5, (t,%) o ”J (3.26)

and we can establish the following theorem.

Theorem 3.2 Consider the closed-loop control system of the uncertain system

(3.2) with control (3.26). Suppose that the LMIs (3.7)-(3.9) has a solution vector
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(Y,c,,c,,i7) and the linear sliding surface is given by (3.10). Then the state converges
to zero.

Proof: Since Theorem 3.1 implies that the linear sliding surface (3.10) guarantees
P1-P2, we only have to show that o converges to zero. Define a Lyapunov function

as Eg(t)=0.50'TG. The time derivative of Ej(t)is Eg =o'6. From (3.2), (3.10),

(3.26), [|SHF (B)G|<Vr|H| =@ ,0<@ <1, and A2, we obtain

oo = aTi B(6)SAX(t) +o'[I + SHF (B)G][u+ h(t, x)]
< Z B,(0)a" SAX(D)+ & u+{aull+ 1+ w)|ht, x)[}|o]|

This implies that B, < (1= a))zr: B(Oxle] ~ Z B.(0)e;[o| <0 which indicates
i=1 1=l

that E, e, nL,,E; €L, . Finally, by using Barbalat’s lemma, we can conclude that

o converges to zero.
Remark 3.1 Theorem 3.1 and 3.2 can be summarized in the form of the following

LMI-based design algorithm.

Sep 1: Obtain B :%2:1 BandH = %[(B —B,),--,(B-B,)] for givenB, .
Sep 2: Check that (A, B)is stabilization. If not, exit.
Sep 3: Find a solution vector (Y, C,,C,,77) to LMI (3.7)-(3.9).

Sep 4: Compute the sliding surface parameter matrix Sby using the formula of (3.10).

ep 5: The controller is given by (3.26).

3.2.3 Numerical Examples

Example 3.1 cConsider the following inverted pendulum on a cart [49]
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X =X, X =X, X, =$(3gsin X, —3acos x,[u+d(t)+ ¢]),
X, :—i(l.Smag sin2x, —4a[u+d(t)+¢]) (3.27)
7

where X is the angle (rad) of the pendulum from the vertical, X,= X, X;is the
displacement (m) of the cart, X=X, w =4-3macos’ X, ¢ =mIx; sin X, uis the input,
and d(t)is related to external disturbances which may be caused by the frictional force.
a=1/(m+M), mis the mass of the pendulum, M is the mass of the cart, 2l is the
length of the pendulum, g=9.8m/s”is ‘the gravity constant. We set M =9kg
,m=1kg ,| =Im We assume that d(t)is bounded"as |d(t)|<p,+p|¥ where p,and
p, are known constants. To design-the fuzzy controller (3.26),-we must have a fuzzy
model. Here, we approximate the system (3.27) by the following two-rule fuzzy model.

Plant Rule 1: IF = X is about 0, THEN

X= AX+ B, [u+h(t,X)]
Plant Rule 2: IF x;is about., £ 60°(+7/3 rad), THEN

x = A X+ B,[u+ h(t, x)]

0 1 0 0 0 0 1 0 0
79459 0 0 0 ~0.0811 6.1945 0 0 0
where A = , B = , A= ,
0 00 1 0 0 00 1
~0.7946 0 0 0 0.1081 ~0.3097 0 0 0
0
—0.0382 . 1-1/(1+¢e M0 7®
B, - R =d(H)+xCsinx, f=—HUEE ) g 1o (328)
0 I+e ™"
0.1019
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The inverted pendulum on a cart (3.27) can be cast as (3.2) with data (3.28).

Because B, is not in the range space of B,,all existing VSS-based fuzzy control

system design methods cannot be applied to the above system (3.28). Via LMI

optimization with (3.28), we can obtain the sliding surface o = .

By setting ﬁ(t,x):xz2 sinX, 7, =50, =L,r=2,1=1,p, =1, and t =0.01sec,

sampling

we can obtain the following nonlinear controller:

Control Rule 1: IF X is about 0, THEN
) . 1
u(t) = —Xysin X, — S — S.Alx—l—ﬁl sgn(o).
)
Control Rule 2: IF " X, is about+£60°(£7 /3 rad), THEN
- 1
u(t) =—X; sinX, —50 — SA2X—1—52 sgn(o).
-®

The final controller inferred asthe weighted average of each local controller is given by

u(t) = =X sin X, < Z il (0)[50 + A X+ 1;5‘ sgn(a)}. (3.29)
-

i=1
To assure the effectiveness of ourfuzzy controller, we apply the controller to the

two-rule fuzzy model (3.28) with nonzero dt). We assume that
d(t) = x, sin27t —0.5sgn(X,). Figure 3.1 shows the time histories of the state, the
sliding  variable o, and the input (3.29) when X (0)=20"(z/9 rad), x,(0)=
X(0)= X,(0)=0. Figure 3.2 shows the time histories of the  state, the
sliding variable o, and the input (3.29) when X (0)=40"(27z/9 rad), X,(0)=
X(0)= X,(0)=0. Figure 3.3  shows the time histories of the state, the

sliding variable c , and the input (3.29) when X (0)=60(xz/3 rad), X,(0)=
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%,(0)= X,(0)=0. In Figure 3.1, Figure 3.2, and Figure 3.3, it should be noted that

since it is impossible to switch the input u instantaneously, oscillations always occur in
the sliding mode of a SMC system. It is observed that in our simulations the proposed

controller (3.29) stabilizes the following two-rule fuzzy model (3.28).
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Figure 3.3 Simulation results with X, (0) = 60° (z/3.rad), X, (0) = x;(0) = X, (0) = 0.

Example 3.2 Consider the following example of a ball and beam system [52], whose

dynamic equations are-described as follows:

[‘]EM Mj'r'+ MG sin 0 < Mr6> =0, (Mr*% 3% J, )6+ 2Mrr 6 + MGr cos 0 =

(3.30)

where 1 is the ball position, & is the beam angle, J is the moment of inertia of the

beam, M, J, ,and R are the mass, the moment of inertia, and the radius of the ball

respectively, G 1is the acceleration of gravity, and 7 is the torque applied to the

beam.
Define B =M /(J, /R’ + M) and change the coordinates in the input space by using the

invertible transformation

T =2Mrré+MGr cos @ +Mr? +J +J,)u (3.31)
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where U is the new input, then the ball and beam system can be written in the

following state-space form:
X, =X, X, = B(X,X; —=GsinX,), X, = X,, X, =u+d(t) (3.32)

where x=[x X, X x| = [r r o G]T The system parameters used for

simulation are M = 0.05kg, R=0.01m, J =0.02kgnt, J, =2x10°kgm, G=9.81m/s’
and B=10.7143. We assume that d(t)is bounded as |d(t)<p,+p[X where pjand p,

are known constants. Then, we approximate the system by the following two-rule fuzzy
model:

Plant rule 1: IF X, is greater than 0, THEN
X="AX+ B,[u+ h(t,x)] .
Plant rule 2: IF X, is smaller than 0, THEN

X ='A,X+B,fu+ h(t,x)] .

0 1 0 0 0 0 1 0 0 0
0 0 “BG \—2Bu 0 0 0 ~“BG 2Bu 0
where A = Bi=| A= » By =] |,
0 0 0 1 0 0.0 0 1 0
0 0 0 0 1 0.0 0 0 1

1-1/(1+ 79

H= 001, h(t,X) = d(t)’ ﬂl = 1+e—14(x1+7r/8) ° ﬂZ = l_ﬂl' (333)

By setting y, =0.2,a, =240,r =2,k=1,p, =1, and t =0.0lsec, we can

sampling

obtain the following nonlinear controller:

Control Rule 1: IF X; is greater than 0, THEN
1
u(t) =—-0.20 — SA X———9, sgn(o).
l-w
Control Rule 2: IF X, is smaller than 0, THEN
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ut)=-0.20—- SAZX—lL52 sgn(o).
-

The final controller inferred as the weighted average of each local controller is given by

u(t) = —Zr: B (9){0.20 + SAX+ 5 sgn(a)}. (3.34)

l-w
To assure the effectiveness of our fuzzy controller, we apply the controller to the

two-rule  fuzzy model (3.33) with nonzero d(). We assume that
d(t)=xsin27zt—-0.5sgn(x,). Figure 3.4 shows the time histories of the
state, the sliding variable o , .and- the. input (3.34) when X;(0)=0.5,
X, (0) = X,(0) = X,(0) = 0. <Figure 3.5 shows the time histories of the state, the sliding
variable o , and the input (3.34) when X (0) =1, X,(0) = %, (0) = x,(0) =0. In Figure

3.4 and Figure 3.5, it should be noted that since-it is impossible to switch the input u
instantaneously, oscillations always occur in the sliding mode of a SMC system. From
Figure 3.4 and Figure 3.5, the proposed controller (3.34) also stabilizes the following

two-rule fuzzy model (3:33).
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3.3 Robust Sliding Control for Mismatched T-S Fuzzy

Systems

In this section, two kinds of system formulation for mismatched uncertain T-S
fuzzy models are described in Section 3.3.1 and in Section 3.3.4, respectively. Two
kinds of robust sliding control methods via LMI are proposed in Section 3.3.2 and in
Section 3.3.5, respectively. Some examples are used to illustrate the effectiveness of the
proposed methods and to compare with the existing methods in Section 3.3.3 and

Section 3.3.6, respectively.
3.3.1 System Formulation I

Consider the following uncertain T=S. fuzzy model [49], including parameter

uncertainties and external disturbances:
X(t) = Z B (O [A + AA (D] +B; [u(t) + h(t, x)]) (3.35)

where X(t) € R"is the state, U(t)e R™ is the control input, A ,B, are constant
matrices of appropriate -dimensions, AA (t) represents the parameter uncertainties
in A,h(t,x) e R™ denotes external " disturbances. 0:[91,---,6?5],49j(j =1,--,S) are
the premise variables, S is the number of the premise variables,
B(O)=w(6)/ Zj; ®,(0),@,: R° —>[0,1],i =1+, is the membership function of the system
with respect to plant rule i,r is the number of the IF-THEN rules, /S, can be regarded
as the normalized weight of each IF-THEN rule and it satisfies

that 4(6) 20. zir:l B (0) =1. We will assume that the followings are satisfied:

Al: The nxm matrix B defined by lez{r B satisfies the rank constraint
r ==
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rank (B) =m, i.e., the matrix B has full column rankm.
. |
A2: The function h(t,X) is unknown but bounded as Hh(t, X) — h(t, X)H < Zpk ||X||k
k=0

where p,, -, p are known constants, ﬁ(t,x) is an estimate of h(t,x), and |is a
known positive integer.

A3: AA(t) isof the form TII,(t) where II,(t) isa known time-varying matrix but
bounded as ||1'Ii (t)|| <l1.

The system (3.35) does not have to satisfy the restrictive assumption that all the input
matrices of the local system models are in the same range space. It should be noted that

the assumption Al implies that rank(B ) < mand each nominal local system model
may not share the. same input- channel... The assumptionr A2 with | =1 and
ﬁ(t,x) = 0 has been.used in the literature [S0]. We can set ﬁ(t, X)as the nominal value
of h(t, X). Using the above assumptions, the uncertain T-S fuzzy model (3.35) can be

written as follows.
0 = 3 A OA S THLO)M(0) +[B+ HEHET + it ) (3.36)
where B=[/3.(0);-- /3, (0)],and the matrices H,G,F(f) are defined by
H = [(B-B).(B-8)]G=[1:T.

F(B)=diag[(1-28,0)1,--(1-28,(O)] (3.37)
It should be noted that the system (3.35) does not have to satisfy

B, = B, =--- = B,, which is used in almost all published results on VSS design methods

including the VSS-based fuzzy control design methods of [33,34]. Hence the methods

[30] and [31] cannot be applied to the above model (3.35). Since £(6)=>0 and
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Z::l L(0) =1,we can see that the following inequality always holds:

FIAOFBA=FBF (B =I (3.38)
Many examples in the literature and various mechanical systems such as motors and
robots do not satisfy the restrictive assumptions that each nominal local system model
shares the same input channel and they fall into the special cases of the above model

[49].

3.3.2 LMI-based Sliding Control Design I

The Sliding Mode Control (SMC) design is decoupled into two independent tasks

of lower dimensions: The first.involves the design-of .m(n—1)—dimensional switching

surfaces for the sliding mode-such. that the reduced order sliding mode dynamics
satisfies the design specifications-such as stabilization, tracking, regulation, etc. The
second is concerned.with the selection of a switching feedback control for the reaching
mode so that it can'drive the system’s dynamics into the switching surface [33]. We first
characterize linear sliding surfaces using LMISs.

Let us define the linear sliding surface as o =SX=0where Sis a mxnmatrix.
Referring to the previous results [33], [S1], we can see that for the system (3.36) it is
reasonable to find a sliding surface such that

P1 [SB+SHF(/3)G] is nonsingular for any / satisfying f(6)>0,i=1:--r, and
2B O =1.

P2 The reduced (n—m)order sliding mode dynamics restricted to the sliding surface

X = 0is asymptotically stable for all admissible uncertainties.
It should be noted that P1 is necessary for the existence of the unique equivalent control

[33] and the assumption A1 is necessary for the nonsingularity of SB
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Define a transformation matrix and the associated vector vas M =[A(AYA)™
JYT'BBY BT =[v,S'1,v=[V,vi]' =Mx where v, e R"",v, e R". By the
above transformation, we can see that M~ =[YA,B]and Vv, = . Then, from (3.36),

we can obtain

o

H Y (0){V(A FTIL YA V(A +Tini<t)>8} H
6| &7 S(A+TILAHYA  S(A +TT1, (1)B

J{ VHF (8)G

| + SHE (ﬂ)G} [u+ h(t, x)]. (3.39)

From the equivalent control method [33],we can see that the equivalent control
is given by ueq(t):_zir:lﬂi ([ + SHF(B)G] " S(A +T I1, (1))x - h(t, X). By setting
6=0=0 and substituting ~u(t)-with _u.(t), we can show that the reduced

(n—m) order sliding mode dynamics restricted to the switching surface o = X =0is

given by

v, = 3 BUOYATYA) ATD(B)(A +T,IT; (1) YAV, (3.40)

where D(B) =1 -HF(B)G[l + SHE(B)G].'S:

Theorem 3.3 Let us consider the sliding mode dynamics (3.40). If there exist
matrices Y € R™", A e R™" ™ satisfying B'A=0,A"A =1, scalarsc eRC,eRneR,
k=A_ (B'B), and *represents blocks that are readily inferred by symmetry such

that the following LMIs holds:

AT[( A+ TIL (D))Y +*]A * *
nHTA -1 % |<0, Vi (3.41)
(A +T,II, (1) YA nH -1
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cl 0 >0, (3.42)
0 cl-Y
2nk % *
rcc rp 0 |>0 (3.43)
rcc 0 rpg

then, there exists a linear sliding surface parameter matrix Ssatisfying P1-P2 and the

sliding surface
o(X)=Sx=(B'Y'B)'B'Y 'x=0 (3.44)

will guarantee that the sliding mode dynamics (3.40) is asymptotically stable.

Proof: By using Schur complement formula [48]; we can easily show that in fact the

following LMIs are inecorporated-in-the LMIs (3.41)-(3.43)

¢ >0, ¢>0,.7>0, 7°HH" <I,27° x> r(c] +C)). (3.45)
It is clear that if the following inequality = (3.46) holds, then

B+ HF ()G = | # SHF (S)G is nonsingular.and-hence P1 holds
SHFE(B)GG'F'(BHTS < I (3.46)

Using (3.37), (3.38), (3.45) and GG' s||G||2I =rl, we can obtain
SHF (B)GG FT(B)HTST snr—zssT. (3.47)

By using the Schur complement formula, we can see that (3.42) and (3.45) imply

0<c'l <Y<gl, 0<c'l <Y'<cl (3.48)
and this leads to
SHF (B)GGTFT(HHTST < ss7 < 9% (gTR) < [9% . (3.49)
7 7 K7

Using the inequality 2ab < a’+b’*wherea and b are scalars, we can show that (3.49)

implies
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r
2xn’

SHF (B)GG FT(B)HTS < (e +cH)l. (3.50)

Finally, by using the above inequalities (3.45) and (3.50), we can obtain
SHF(B)GG'FT(BHTS' <L ss" < (3.51)
n

which implies that [SB+ SHF (f#)G]is nonsingular, i.e., P1 holds.

Now, we will show that Sof (3.44) guarantees P2. Using the matrix inversion lemma:
(1+AB)"' =1 -A(l +BA)'B

where Aand Bare compatible constant matrices such that (I + AB)is nonsingular,

we can show that the sliding mode dynamies.(3.40) is equivalent to

U =Y B, OXNYA) ATCIA FTTB)YAY (3.52)

i=1
where v, = (A'YA)™A'xvand C(f8) =1 —H[L+F(B)GSH | "F(B)GS.
The previous results:[53,54] imply that sliding mode dynamics (3:52) is asymptotically
stable. Hence, the sliding mode dynamics (3.40) is asymptotically stable.

After the switching surface parameter matrix Sis<designed so that the reduced
(n—m)order sliding mode dynamics ~has.a.desired response, the next step of the SMC
design procedure is to design a switching feedback control law for the the reaching
mode such that the reachability condition is met. If the switching feedback control law
satisfies the reachability condition, it drives the state trajectory to the switching surface
o = &X =0 and maintains it there for all subsequent time. With o of (3.52), we design
a sliding fuzzy control law guaranteeing that o converges to zero. We will use the
following nonlinear sliding switching feedback control law as the local controller.

Control rule i: IF 6,is g, and ... and 6 is u,, THEN

(D) = (LX)~ 7,0~ S(A + T O~ —— 6,01 %
- o]
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where &, (t,X) = a; + o||S(A +TIT; ()X + (1 + a))ZI: plX* (3.53)

and o= Sx,a):\/F”SH

,a,>0,7,>0. It should be noted that (3.51) implies

=< \/F||S||||H|| < 77||H|| This and (3.45) guarantee 0 < <1. The final controller

inferred as the weighted average of the each local controller is given by
u® =-ht, -y 4 (e{zia +S(A +TIL O+ 5t x)ﬁ} (3.54)
i=l -

and we can establish the following theorem.

Theorem 3.4 Consider the closed-loop control system of the uncertain system (3.36)
with control (3.54). Suppose that the LMIs (3.41)-(3.43) has a solution vector
(Y,c,,c,,n7) and the linear sliding surface is given by (3.44). Then the state converges

to zero.
Proof: Since Theorem 3.3 implies that the linear sliding surface (3.44) guarantees

P1-P2, we only have to show that & converges to zero. Define a Lyapunov function as

E,(D)= 0.50" 0. The time derivative of E,®is Eg =o'6./ From (3.36), (3.44), (3.54),

|SHF(8) G| < Vr| SH| = @ 0 € @<, and-A2, we-obtain

a%:aTiﬂi (O)S(A +TII, ()x(t) +o'[I + SHF (B)G][u+ h(t, X)]
< Zr:ﬂi (0)o"S(A +TIL (t))X(t) +o'u + {o|u]|+ (1 + @)||h(t, x|} |-

This implies that E; <—(1— w)i BO x| - Z B (0)ex||o]| < 0 which indicates that
i=1 i=1

EgeLszw,Eg el,. Finally, by using Barbalat’s lemma, we can conclude that

o converges to zero.
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Remark 3.2 Theorem 3.3 and 3.4 can be summarized in the form of the following
LMI-based design algorithm.

r

Sep 1: Obtain B=lz B andH :%[(B—Bl),~-~,(B—Br)] for given B, .
r

i=1 |
Sep 2: Check that (A, B)is stabilization. If not, exit.

Sep 3: Find a solution vector(Y,C,,C,,77) to LMI (3.41)-(3.43).

Sep 4: Compute the sliding surface parameter matrix Sby using the formula of (3.44).
Sep 5: The controller is given by (3.54).

3.3.3 Numerical Examples I

Example 3.3 Consider the following two-rule fuzzy - model from a VTOL helicopter
model [55]

Plant Rule 1: IF* X is-about 0; THEN
X = (A + T (1)x+ B [u+h(t,x)]
Plant Rule2: IF_X1s about =+ 2, THEN

X=(A, +T,IT,(t))x+ B,[u+Nh(t,%)]

—-0.0366 0.0271/  0.0188 =0.4555 0
0.0482 —-1.0100 0.0024 = —-4.0208 0.1
where A = , h=1h= )
0.1002  0.3181 —0.7070 1.4100 0
0 0 1 0 0
[-0.0366 0.0271 .0.0188 —0.4555 0.4422  0.1761
A = 0.0482 —-1.0100 0.0024 —4.0208 B - 3.5446 —7.5922
| 01002 04181 —0.7070 1.4300 [ ' |-5.5200 4.4900 |

0 0 1 0 0 0

[ 0.4422  0.1761

B, - 3.6446 —7.5922’H1(t):H2(t):[0 0 sint 0]
—~5.5200 4.4900

0 0
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C1-1/(1+ e

h(t,x) = d(t) +[0.9sin3t 0.9sin3t]", p, ST B=1-8. (3.55)
+e !

It should be noted that T, and T, are not matched and thus the previous

VSS-based fuzzy control design methods cannot be applied to the above system (3.55).

Via LMI optimization with (3.55), we can obtain the sliding surface o = &
By setting ﬁ(t, X) = [O.9sin3t O.9sin3t]T, xi =50 =01r=2l=1p, =1, and

t =0.01sec, we can obtain the following nonlinear controller:

sampling

Control Rule 1: IF X, 1s about 0, THEN
u(t)=[-0.9sin3t —0.9sin3t]" =56 —S(A+ TII, (t))x—i&l sgn(o).
Control Rule 2: IF X 1s about+ 2, THEN
u(t)=[-0.9sin3t —0.9sin3t] ~56 ~S(A +T2H2(t))x—$52 sgn(o).
The final controllerinferred as the weighted average of each local controller is given by

u(t) =[-0.9sin3t  <0.9sin3t]" - Z B (9)[50 +S(AHTIL (t))x+1L5i sgn(O')}
i=1 -

(3.56)

To assure the effectiveness of our-fuzzy controller, we apply the controller to the
two-rule  fuzzy model (3.55) with nonzero d(). We assume that
d(t):[x1 sin2t—-0.5sgn(x,) X sin2t—0.55gn(x4)]T. The time histories of the state, the
sliding variable o, and the input (3.56) are shown in Figure 3.6 when
X (0) = X,(0) = X,(0) =0, X,(0)=10. In Figure 3.6, it should be noted that since it is
impossible to switch the input u instantaneously, oscillations always occur in the sliding
mode of a SMC system. From Figure 3.6, the proposed controller is applicable to T-S

fuzzy systems with mismatched parameter uncertainties in the state matrix and external

disturbances. The control performances are satisfactory. It should be noted that all
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existing VSS-based fuzzy control system design methods cannot be applied to the

two-rule fuzzy model (3.55) because B, is not in the range space of B, .
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Figure 3.6 Simulation results with X, (0) = X, (0) = X,(0) =0, X;(0) =10.
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Example 3.4 For the special case of IT;(t) =0, the robust sliding controller design is

proposed in [54]. Consider the following inverted pendulum on a cart

X=X, X=X, X :iﬁgsin X, —3acos X, [u+d(t) + ¢]),

%, = —-(1.5magsin 2x —4a[u-+d(t) + 4]) (3.57)
7%

where X is the angle (rad) of the pendulum from the vertical, X,=X, X;is the
displacement (m) of the cart, X=X, y=4-3macos X, ¢ =mIXsinx, Uis the input,
and d(t)is related to external disturbances which may be caused by the frictional force.
a=1/(m+M), mis the mass of the pendulum, M is the mass of the cart, 2l is the
length of the pendulum, g=9.8m/s’is the gravity. constant. We set M =9kg
,m=1kg ,l =Im We assume that d(f)is boundedas |d(t)|<p,+p x| where p,and

p, are known constants. Here, we approximate the system (23) by the following

two-rule fuzzy model.

Plant Rule 1: IF X is.about 0, THEN
x=AX+ B [u+h(t,x)].

Plant Rule2: IF X,is about £60°(+7z/3 rad), THEN

X=AX+B,[u+h(t,x)].
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0 1 00 0 0 1 0 0
79459 0 0 O —-0.0811 6.1945 0 0 0
where = , B= , = )
0 0 0 1 0 0 0 0 1
-0.7946 0 0 O 0.1081 -0.3097 0 0 O
0
—0.0382 : 1—1/(1+e 7%
BZ = 0 s h(tax)zd(t)+x2251nxl, IBI = 1+e_14(x1+,,/g) 5/82 :1_ﬂ1' (358)
0.1019

Because B, is not in the range space of B,,all existing VSS-based fuzzy control

system design methods cannot be applied to the above system (3.58). Via LMI

optimization with (3.58), we can ‘obtain the sliding surface o = .

By settingﬁ(t,x):xjsinxl,;(i =50, =L r=2jl=1Lp, =1, andt =0.0lsec, we can

sampling
obtain the following nonlinear controller:

Control Rule 1: IF X is-about 0, THEN

u(t) = —x; sin X =50= SAX—%&'I sgn(o).
cw

Control Rule 2: IF  is:about+60°(£z/3 rad), THEN

u(t) = —x; sinx, — 56 — SAZX—%@ sgn(o).
-
The final controller inferred as the weighted average of each local controller is given by

1
l-w

u(t) = —x; sin X, — i B (6’){50 + SAX+ S sgn(a)}. (3.59)

To assure the effectiveness of our fuzzy controller, we apply the controller to the

two-rule  fuzzy model (3.58) with nonzero d(f). We assume that
d(t)=Xx, sin27t—0.5sgn(X,). The time histories of the state, the sliding variable o, and

the input (3.59) are shown in Figure 3.7. In Figure 3.7, it should be noted that since it is
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impossible to switch the input u instantaneously, oscillations always occur in the sliding
mode of a SMC system. From Figure 3.7, the control performances of the proposed

controller are also satisfactory for the two-rule fuzzy model (3.58).
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Figure 3.7 Simulation results with X, (0) = 40°(27/9 rad), X, (0) = X,(0) = X,(0) = 0.

3.3.4 System Formulation II

Consider the following uncertain T-S fuzzy model [49], including parameter

uncertainties and external disturbances:
X(t) = Zr: Bi (O A +AA D]IX) + B;[u(t) + h(t, xX)]) (3.60)

where X(t) e R"is the state, u(t)e R™ is the control input, A,B are constant
matrices of appropriate dimensions, AA (t) represents the parameter uncertainties
in A,h(t,x)e R™ denotes external disturbances. 49:[491,---,495],9j(j:1,---,8) are
the premise variables, S is the number of the premise variables,

ﬂi(ﬁ)za)i(e)/zj;wj (0),, :R* —[0,1],i =1,--,r is the membership function of the

system with respect to plant rule i,r is the number of the IF-THEN rules, £, can be
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regarded as the normalized weight of each IF-THEN rule and it satisfies

that £.(6) > 0. er B (6) =1. We will assume that the followings are satisfied:

Al: The nxm matrix B defined by B=12“_r B satisfies the rank constraint
r=""
rank (B) =m, i.e., the matrix B has full column rank m.
. : ~ k
A2: The function h(t,X) is unknown but bounded as HI‘(’[,X)—I"(t,X)”SZﬂ) ,Q(M

where p,, -+, p, are known constants, ﬁ(t,x) is an estimate ofh(t,x), andlis a

known positive integer.

A3: AA(t) is of the form “T,IL, (t) where IT.(t) is unknown,

AA(t)<a,, and

TT 2T (),
The system (3.60) does not have-to-satisfy the restrictive assumption that all the input
matrices of the local system models are in the same range space. It should be noted that

the assumption Al implies that rank(B) < mand each nominal local system model
may not share the:'same input channel. The assumption A2 with | =1 and
ﬁ(t, X) = 0 has been used in the literature [50]. We-can set ﬁ(t, X)as the nominal value
of h(t,X).Using the above assumptions, the uncertain T-S fuzzy model (3.60) can be

written as follows.
(1) = 3 A(O)A +TIL )0+ B+ HF (A)G][u + h(. ) 3.61)
where S=[/3(0); - /3. ()],and the matrices H,GF(f) are defined by
H=1[(B-8):.(B-8)], G=[1:-IT.

F(p) = diag[(1-28,0)1 .-, (1-25,(O)!]. (3.62)
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It should be noted that the system (3.61) does not have to satisfy
B, = B, =---= B,, which is used in almost all published results on VSS design methods
including the VSS-based fuzzy control design methods of [33,34]. Hence the methods

[30,31] cannot be applied to the above model (3.61). Since S (0)>0 and

ZL] S(0) =1,we can see that the following inequality always holds:

FIBFB) =FBOF (B <I. (3.63)
The following lemma will be used to establish our main results.

Lemma 3.1 For any vectors a and b with appropriate dimensions, the following

inequalities hold for any W >0:
2a’b<a'Wa+b'w'b.
Proof: The above inequality.is-derived from (Wa —b)" W "(Wa — b) =a"Wa+b"W'b

—2a'b>0.

3.3.5 LMI-based Sliding Control Design I1

The Sliding Mode Control (SMC) design 1s ‘decoupled into two independent tasks

of lower dimensions: The first.involves the design of 4m(n—1)—dimensional switching

surfaces for the sliding mode such that the reduced order sliding mode dynamics
satisfies the design specifications such as stabilization, tracking, regulation, etc. The
second is concerned with the selection of a switching feedback control for the reaching
mode so that it can drive the system’s dynamics into the switching surface [33]. We
first characterize linear sliding surfaces using LMIs.

Let us define the linear sliding surface as o = SXx=0where Sis a Mmxnmatrix.

Referring to the previous results [33], [51], we can see that for the system (3.61) it is

reasonable to find a sliding surface such that
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Pl [B+SHF (B)G]is nonsingular for any S satisfying g, (6)>0,i=1,--r, and

2 hO)=1.
P2 The reduced (n—m)order sliding mode dynamics restricted to the sliding surface

Sx = 01is asymptotically stable for all admissible uncertainties.

It should be noted that P1 is necessary for the existence of the unique equivalent control

[33] and the assumption Al is necessary for the nonsingularity of SB.

Define a transformation matrix and the associated vector vas M =[A(A"YA)™
YT'BB'Y'B) ' =[V',S' ", v=[V/,V.]" = Mx where v, e R"™, v, e R". By the
above transformation, we can see that M ' =[YA,B]and v, = . Then from system

(3.61), we can obtain

W] o VEASTILONA V(AT @)8][v
& |22 PO  sAs T, iy S(A #7108 || o

J{ VHF (4)G

A\ - (ﬂ)G} [u+h(t,x)]. (3.64)

Then from the equivalént control method [33], we can see that the equivalent control is
given by U, ==Y B @[ +SHF(BG] 'S(A +TII,()x—h(t,x). By setting
6=0=0 and substituting u(t) with ug(t), we can show that the reduced

(n—m)order sliding mode dynamics restricted to the switching surface o =Sx=0is

given by

%, = A (OXATYA)'ATD(BY(A + T, (O)YAY, (3.65)

where D(8) = | — HF (B)G[I| + SHF (B8)G]'S.
Theorem 3.5 Let us consider the sliding mode dynamics (3.65). If there exist

matrices Y e R™, A e R™™™ satisfying B'A=0,A'A=1, scalars ¢,eRcCeR
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C,eR deRpeR, k=41

min

(B"B), ||AA (t)” <a,, and *represents blocks that are

readily inferred by symmetry such that the following LMIs holds:

A(AY+YA +¢,DA pATH  AYAT  a,ATY  a,ATY |

nHTA -1 nHT 0 0

AYA nH o —1-81 0 0 [<0, Vi (3.66)

a, YA 0 0 —c,l 0

a, YA 0 0 0 ~51
Y | 0
I ¢l 0 [>0, (3.67)
0 0 cl-Y
2nk % *
re, rg 0 |>0. (3.68)
rc, 0 rpg

Suppose that the LMIs (3.66)-(3.68) have a-solution vector (Y,cC,,C,C,,0,77), then

there exists a linear sliding surface parameter matrix Ssatisfying P1-P2 and the sliding

surface
o(X)= SX:(BTY_1 B)_1 B'Y'x=0 (3.69)

will guarantee that the sliding mode-dynamics (3.65) is asymptotically stable.

Proof: By using Schur complement formula [48], we can easily show that in fact the

following LMIs are incorporated in the LMIs (3.66)-(3.68)

¢ >0, ¢,>0, >0, ”HH' <I, 2’k >r(c’ +c}). (3.70)
It is clear that if the following inequality (3.71) holds, then B+ SHF(S)G

=| + SHF ()G is nonsingular and hence P1 holds
SHF(B)GG'F'(BH'S' < 1. (3.71)

Using (3.62), (3.63), (3.70) and GG' £||G||2I =rl, we can obtain
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SHF(B)GGFT(HHTST <L S5 (3.72)
n

By using the Schur complement formula, we can see that (3.67) and (3.70) imply
0<c'l<Y<gl,0<c'l <Y ' <cl (3.73)

and this leads to
SHF(B)GG'FT (B)HTST s#s@ sr;l—?(BTB)l s%l. (3.74)

Using the inequality 2ab < a’+b*wherea and bare scalars, we can show that (3.74)
implies

r

SHF (AGG' F (pHTST < 5
2Kn

(c+c)l. (3.75)

Finally, by using the above inequalities (3.70) and (3.75), we ean obtain
SHF(B)GG'FT(B)H'S' SLZSST < (3.76)
n

which implies that [SB + SHF (#)G]is nonsingular, i.c., P1 holds:

Now, we will show that Sof (3.69) guarantees P2. Using the matrix inversion lemma:
(l+AB)"' =1-A( +BA)"'B

where Aand Bare compatible constant matrices such that (I + AB)is nonsingular,

we can show that the sliding mode dynamics (3.65) is equivalent to

U, = Y A (OXATYA) ATC(BYA +TIT, (D)YAY, (3.77)

where C(f)=1 —HI[l +F(8)GSH]" F(B)GS=[I + HF(B)GS] "

= —HF(B)G[l + HF(BAG]'S=D (p).
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The sliding mode dynamics (3.77) is asymptotically stable if there exists a positive

definite matrix P, € R™™ "™ such that the time derivative of the Lyapunov function

E, (D)= v/ PV, satisfies for some positive scalarz
E,0)=2) BON RZ (BN, <V, (3.78)
i=1

where Z, () = (A, + B,[1 =N(B)D,1'N(AC,,), A, = (ATYA) ' AT (A +TII, (1)) YA
,B, =(ATYA)'ATH ,C,, = (A +T.II,(t))YA,D, = H ,N(B)=-F(B)GS,
It should be noted that the inequalities (3.63), (3.70), (3.76) and
GG™ <|G|’I =rl imply

N(BNT(B)=F(B)GSS'G'F (B)<#’l,n°DjDy=n*H H<I. (3.79)
This and (3.78) imply that (3.77)is asymptotically stable if there exists a positive

definite matrix P, such that

P, A, +R,B,[I =N(ADJ"'N(B)C,,+*<0, Vi (3.80)
where * represents blocks. that are readily “inferred by symmetry. Let z be z =
[1 =N(B8)D,1'N(B)C,,y where:y eR"™ . Then Z can be rewritten as Z = N(f)
[C,Y+D,z]. This equality and (3.79) imply Z z <#»’[C,y+D,z]"[C,,Y+D,Z]
and this leads to
2y"R,B,[I = N(B)D, 1" N(B)C,,y
=2y'P,B,z <2y'P,B,z +[C,y+D,z]'[C,y+D,z]-1n"Z z
=y'CLC,Y+2Y'[P,B, +CD,]z, -1 >2'Qz, where Q=1-7’D,D,.(3.81)
Since Q2 > 0, the following inequality holds for any (Y, z):

2yT[POBO "‘CiToDo]Zi S77_22iTQZi +772yT[POBO +CiToDo]Q_l[PoBo "'CiToDo]T y(3.82)
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Using (3.81) and (3.82), we can show that the Lyapunov inequality (3.80) is satisfied if

the following inequality holds:
PoAs + AuR +CiCi +77°[RB, + CyD, 1Q ™[R, B, + CyD, 1" <0.
Using the Schur complement formula, we can rewrite the above inequality as

NP +e v
mBP, -1 % |<0, Vi. (3.83)
Cio nm, -1

Let the positive definite matrix P, be P, = ATYA where Y is a solution to LMIs

(3.66)-(3.68), then the above matrix inequality (3.83) can be rewritten as

AT[(A +AA (D))YA5]K 7ATH  ATY(A £ AA (1)
nH A | nHT <0, Vi (3.84)
(A + AA®)YA nH —

where AA (t) = TII (t). The matrix inequality (3.84) is satisfied if the following
inequality holds for any nonzero vectors: 2" = [ZlT z, Z3T]
2z AT (A + AA ()YAZ, + 221 (A + AA (1)YAZ,
2V HTNZ ¥ 2y ZiHZ,~ 2,7, — 22, <0.  (3.85)
Lemma 3.1 implies that if ||AA (t)|| < a, , the following inequalities hold:
22T ATAA (1) YA Z, <c,2f ATAZ + a’c)'zf ATY Az (3.86)
21AA(MYAZ <82z, +a’57'Z] ATY Yz, (3.87)
The previous inequalities (3.86) and (3.87) imply that for all admissible
||AA (t)|| < a, , the inequality condition (3.85) holds if
22" ATAYAZ +¢,zl A'Az +a’57' 2l ATY Az
+a’c,'zl A'Y? Az, +22] AYAzZ +2nz) H' Az,
+2nz1Hz, +62] 2, — 2, Z, — 7, Z, < 0. (3.88)

This implies that (3.84) holds if the following LMI (3.89) holds
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a a
AT(AY+YAT+COI+—AY2+7AY2)A nATH  ATYA
CO

nHTA —1 mH'  [<0. (3.89)
AYA H  —(1-0)l

By using Schur complement formula, the above inequality (3.89) can be rewritten as
the LMI (3.66), which implies that the sliding mode dynamics (3.77) is asymptotically
stable. Hence, the sliding mode dynamics (3.65) is asymptotically stable.

After the switching surface parameter matrix Sis designed so that the reduced
(n—m)order sliding mode dynamics has a desired response, the next step of the SMC
design procedure is to design a switching feedback control law for the reaching mode
such that the reachability condition is met. If the switching feedback control law
satisfies the reachability condition; it drives the state trajectory to the switching surface

o = Sx =0 and maintain it there for all subsequent time. With o of (3.69), we design a

sliding fuzzy control law guaranteeing that o converges to zero. We will use the
following nonlinear sliding switching feedback control law as the local controller.

Control rule i: IF @, is. w;,and ... and 6,is g, THEN

u(t) = —h(t,x)— #o - S(A+TT Hx—

|
where &, (t,X) = &, + @|S(A + TT)X|+ 1+ @)Y p " (3.90)
k=0

and o =X o= ,% >0. It should be noted that (3.76) implies

a):\/F”SH || S\/F||q|||H||S77||H|| This and (3.70) guarantee 0<w<1. The final

controller inferred as the weighted average of the each local controller is given by

i=1

u(t) = —h(t, x)— Zﬂ(@)(z,a+S(A+TT )x+ 5(‘[ )” ”J (3.91)
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and we can establish the following theorem.

Theorem 3.6 Consider the closed-loop control system of the uncertain system (3.61)
with control (3.91). Suppose that the LMIs (3.66)-(3.68) has a solution vector
(Y,c,.c,,C,,0,n7) and the linear sliding surface is given by (3.69). Then the state
converges to zero.

Proof: Since Theorem 3.5 implies that the linear sliding surface (3.69) guarantees
P1-P2, we only have to show that o converges to zero. Define a Lyapunov function as

Eg(t)=0.50'T0. The time derivative of E (1) is Eg =o'6. From (3.61), (3.69),

(3.91), ||SHF (8)G|| < Vr[$H] £ @ 0<@<1, and A2, we obtain

o6 =0T Y B(OSA T O)XO+0"[|+SHF (B)G]u+h(t, )]

<> B (Oc"S(A + TILOKL) + o U+ (o + 1+ @At x)]}]o]

<> BOTSTT T OXD=1=0)}, AOxd] -X A ©O)ao]

<=2 AONX O =TI O] - (=) 3 51(0) x|

-2 8.0l

From A3 and g, =} X (TT"-TI (®))x=0 , this implies that E, <
=S B0k fo] ~1-a)Y BOx|o - A (O)afo|<0 which indicates that
E,elL,nL,, E,el,. Finally, by using Barbalat’s lemma, we can conclude
that o converges to zero.
Remark 3.3 Theorem 3.5 and 3.6 can be summarized in the form of the following

LMI-based design algorithm.

Sep 1: Obtain B:%ZLI B and H :%[(B— B,).,--(B—-B,)]| for givenB .
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Sep 2: Check that (A, B)is stabilization. If not, exit.

Sep 3: Find a solution vector (Y, C,,C,,C,,0,77) to LMI (3.66)-(3.68).

Sep 4: Compute the sliding surface parameter matrix Sby using the formula of (3.69).

Jep 5: The controller is given by (3.91).

3.3.6 Numerical Examples II

Example 3.5 To illustrate the performance of the proposed sliding fuzzy control

design method, consider the following two-rule fuzzy model from a vertical takeoff and

landing (VTOL) helicopter model [55]

Plant Rule 1: IF X, is about 0, THEN
X= (A +TII, () X+ B,[u+ h(t;x)]
Plant Rule2: [F X is about + 2, THEN

x=(A, + T,IT, (t))x+B,[u+ h(t,x)]

~0.0366- 0.0271. 0.0188 —0.4555 04422 0.1761
0.0482° ~1.0100  0.0024 —4.0208 3.5446 —7.5922
where A = , B= )
0.1002 <0.3181 “—0.7070 1.4100 —5.5200  4.4900
0 0 1 0 0 0
—0.0366 0.0271  0.0188 " =0.4555 0.4422  0.1761
| 00482 —-1.0100 0.0024 —-4.0208| _ | 3.6446 —7.5922
0.1002  0.4181 —0.7070 1.4300 [ * |-5.5200 4.4900
0 0 1 0 0
0
0 . :
T =T, = o1l IT,(t) =11,(t) = [O sint 0 s1nt],
0
: - 1-1/(1+e ™)
h(t,x) =d(t)+[0.9sin3t 0.9sin3t]", g, = i B = 1- 5. (3.92)

1+e
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It should be noted that B and B,are not matched and thus the previous VSS-based
fuzzy control design methods cannot be applied to the above system (3.92). Via LMI
optimization with (3.92), we can obtain the sliding surface o = SX.

By setting h(t,x) =[0.9sin3t 0.9sin3t] and z =1, & =0.0001,r=2, |=1,

p=Lland t =0.01sec, we can obtain the following nonlinear controller:

sampling

Control Rule 1: IF X, 1s about 0, THEN

u(t) =[-0.9sin3t —0.9sin3t] —o— S(A +T1T1T)x—$5l sgn(o).
Control Rule 2: IF X, is about+ 2, THEN

u(t) =[-0.9sin3t <0.9sin3t]' — o — S(A, +T2T2T)x—$52 sgn(o).

The final controller inferred as the weighted average of each local controller is given by

u(t) = [ 0.9sin3t *=0.9sin3tT -3 4 (6’){0‘+ S(A +TiTiT)x+lL5i sgn(a)} (3.93)
-

i=l
To assure the effectiveness of our fuzzy controller, we apply the controller to

the two-rule fuzzy model (3.92) with nonzero d(t). We assume that d(t)
=[x sin2zt—05sgn(x,) X sin2zt—05sgn(x, )| . The time histories of the state, the sliding
variable o, and the input (3.93) are shown in Figure 3.8 when
X (0) =X,(0) =x%,(0)=0, X,(0)=10. In Figure 3.8, it should be noted that since it is
impossible to switch the input u instantaneously, oscillations always occur in the sliding
mode of a SMC system. From Figure 3.8, the proposed controller is applicable to T-S
fuzzy systems with mismatched parameter uncertainties in the state matrix and external

disturbances. The control performances of the proposed controller are satisfactory for

the two-rule fuzzy model (3.92). It should be noted that all existing VSS-based fuzzy
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control system design methods cannot be applied to the two-rule fuzzy model (3.92)

because B, is not in the range space of B, .
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Figure 3.8 Simulation results with X, (0) = X, (0) = X,(0) = 0, X,(0) =10.
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Example 3.6 For the special case of AA(t) =0, the robust sliding controller design

is proposed in [54]. Consider the following inverted pendulum on a cart

X=X, %=X, X :i@gsin X, —3acos X, [u+d(t) + ¢]),

%, = —-(1.5magsin 2x —4a[u-+d(t) + 4]) (3.94)
7%

where X is the angle (rad) of the pendulum from the vertical, X,=X,, X;is the
displacement (m) of the cart, X=X, y=4-3macos X, #=mIXsinx, Uis the input,
and d(t)is related to external disturbances which may be caused by the frictional force.
a=1/(m+M), mis the mass of the pendulum,-M-s the mass of the cart, 2l is the
length of the pendulum, -g=9.8m/s’ is the gravity constant. We set
M =9kg ,m=1kg ,| =1m We assume that d(t)is bounded as [d(t)<p,+p[X where
p,and p, are known constants. Here, we approximate the system (3.94) by the

following two-rule fuzzy model.

Plant Rule 1: IF x/1s about 0, THEN
X = Ax+Bu+h(t;X)]
Plant Rule2: IF X, is about +£60°(+z/3 rad), THEN

X= AX+B,[u+h(t,X)]

0 1 00 0 0 I 00
79459 0 0 O —0.0811 6.1945 0 0 O
where A = , B = » A= )
0 0 0 1 0 0 0 0 1
-0.7946 0 0 O 0.1081 -03097 0 0 O
0
—0.0382 . 1-1/(1+ 7™
BZ = > h(t,X) = d(t)+ X2251n Xl, ﬂl = ( —14(x,+7/8) )5 162 = l_ﬂl' (395)
0 l+e ™"
0.1019
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Because B, is not in the range space of B,,all existing VSS-based fuzzy control

system design methods cannot be applied to the above system (3.95). Via LMI

optimization with (3.95), we can obtain the sliding surface o = .

By setting N(t, X)=X%sinx, z =50 =Lr=2,l=1,p =1,and tg ., =0.01sec, we

can obtain the following nonlinear controller:

Control Rule 1: IF X is about 0, THEN
u(t) = —x; sinx, — 50 — Sﬁx—%d sgn(o).
-
Control Rule 2: IF X, is about+ 60°(+7 /3 rad), THEN

U(ty=-x;sinX —50 — S%x—%é‘z sgn(o).
~w

The final controller inferred as the weighted average of each local controller is given by

u(t) = —x;sin X, — Zr:ﬂi (0){50‘ +SAX+ %é‘i sgn(a)} ) (3.96)
—w

i=l
To assure the éeffectiveness of our fuzzy controller, we apply the controller to the

two-rule  fuzzy model . (3.95) with nonzero’ @), We assume that
d(t) = x; sin27t —0.5sgn(X,). The time histories of the state, the sliding variable o, and
the input (3.96) are shown in Figure 3.9. when X,(0)=60"(27/9 rad),
X,(0) = %,(0) = X,(0) = 0. In Figure 3.9, it should be noted that since it is impossible to

switch the input u instantaneously, oscillations always occur in the sliding mode of a
SMC system. From Figure 3.9, the control performances of the proposed controller are

also satisfactory for the two-rule fuzzy model (3.95).
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Figure 3.9 Simulation results with X, (0) = 60° (7 /3 rad), X,(0) = X,(0) = X,(0) =0.
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34 Robust Sliding Control for Mismatched T-S Fuzzy

Time-Delay Systems

In this section, system formulation for the uncertain T-S fuzzy time-delay model is
described in Section 3.4.1. A robust sliding control method via LMI is proposed in
Section 3.4.2. Some examples are used to illustrate the effectiveness of the proposed

methods and to compare with the existing methods in Section 3.4.3.
3.4.1 System Formulation

The T-S fuzzy model is described by fuzzy IF-THEN rules, which represent local
linear input-output relations. of nonlinear-systems. The ith rule of the T-S fuzzy
time-delay model is of the following form:

Plant Rule i: IE#, is y;, and-...-and Ogis u,, THEN
X(t) = AX()+ A X(t—d(t)) + Biu(t), x(t)=w(l), te[-7,0]
where (1) is the initial condition, X(t) e R"is the state, u(t) e R™ is the control
input, A, € R™"are the state matrices, A, € R™ are the delayed state matrices,
B € R™™are the input matrices, 0;(¢j-=1y-+S) are the premise variables, Sis the
number of the premise variables, w;; (i=1,--r;]=1,--9)are the fuzzy sets that are

characterized by membership function,r is the number of the IF-THEN rules. The

time-varying delayd(t) is bounded as d(t) <z.The overall fuzzy model achieved by

fuzzy synthesizing of each individual plant rule is given by
X(1) =2 B OIAXD + Ax(t-d(®) + BU®], X(t) =y (1), te[-7,0]
=
where 0 =[6,,--,0,], B(O)=w (‘9)/21; w,(0),0,:R° —>[0]],i=1-r is the membership

function of the system with respect to plant rule i. The function £, (8) can be
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regarded as the normalized weight of each IF-THEN rule and it satisfies

that £(6) >0, Zirzl B, (0)=1. To take into account parameter uncertainties and external

disturbances, we consider the following uncertain T-S fuzzy time-delay model:
(1) =D B (O)(A +AA D)X +(A; +AA, (1)X, (1) + B (u(t) + hy (£, X, X4, u))]
i=1

X(t) =y (1), te[-7,0] (3.97)
where X, (t) =x(t—d(t)), AA(t) represents the parameter uncertainties
in A, AA,(t) represents the parameter uncertainties in A, h(t,XX,;,u) € R" denotes

external disturbances. We willassume that the following assumptions are satisfied:

Al: B =B, =...=B =Band rank(B)=m

A2: The function h(t, X, X,,U) is-unknown but bounded as || R (% Xy u)|| <@ || u|| +&(b)
where & (1) 1s a known function and ¢ satisfies ¢ < ¢, <1for a known constant ¢, .

A3: The time delay d(t)is unknown but bounded as d(t)<zand d(t)<d_<1where
rand d, are known constants.

A4: AA (t)and AA, (t) are<of the form. T Il (t)wherelT, (t)is a known time-varying
matrix but bounded as ||1'Ii (t)|| <.

Using the above assumptions, the uncertain T-S fuzzy model (3.97) can be written as

follows:
X()= 3 B (O)(A + T (O)X(1) + (A, + T ()%, (1) + BA (. X, W] + Bu(t)

X(t)y =y (1), te[-7,0] (3.98)
A large number of examples in the literature and various mechanical systems, such as

motors and robots, fall into the special cases of the above model (3.98), as reported in
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[44], [56-60]. The above model (3.98) also involves the uncertain time-delay system
models considered in the previous SMC design methods [44], [56-60]. The symbol =*
will be used in some matrix expressions to induce a symmetric structure. For given

symmetric matrices K and L of appropriate dimensions, the following holds:

K+X+x #| |[KeX+XT ZT
Z L| Z L

When no confusion arises, the arguments t,X, X,,6, etc... can be omitted for brevity.

3.4.2 Sliding Control Design via LMI

The Sliding Mode Control (SMC) design is decoupled into two independent tasks
of lower dimensions. The firstis concerned with the design of a sliding surface for the
sliding mode such that the reduced-order sliding mode dynamics satisfies the design
specifications such as 'stabilization, tracking, regulation, etc. The second involves
choosing a switching feedback control for the reaching mode so-that it can drive the
system’s dynamics'into the switching surface [33]. We first design a sliding surface that
guarantees asymptotie: stability of the reduced-order sliding. mode dynamics using
LMIs.

Defining a nonsingular transformation matrix M and the associated vector V= M Xsuch

that

Moo AYAMTAT T VI IV Y (3.99)
(B™Y'B)'BY"| |S v, ||

where v, e R™™,v, € R". Then we can easily see that M~ =[YA,B]and v, =0. By

the above transformation we can obtain, we can transform (3.98) into the following

regular form:

A e P 0 72 B
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where v, =v(t—d(t))and

A=Y BPIAT(A +TIL YA, A, = Y APIAT(A +TI1(1)B,

i=1

Ry =Y ABY (A +TILMYA A, =Y ABTY (A +TII,(1)B,

Ay =2 BRIAT (A +TILM)YA A, =3 BRAT (A, + T (1)B,

r r

A =2 BBY (A +TILM)YA, A, = ABY (A +TIL(1)B.

i=1 i=1

Thus, from the above regular form, by setting o =0 = 0;we can obtain the following

sliding mode dynamics::

a=Aa+ A, (3.101)
where a =V,,a, =V,(t-d(t)), A = A,and A, =A,,.
Theorem 3.7 Let us consider the. sliding. mode dynamics (3.101). If the matrix
AeR™™™ is any. full rank matrix such that = B'TA=0,A"A=1, the
matrices Y € R™", K ¢ R"™ M X e R _and -~ Z, € R™™ ™™ are  decision

variables, and *represents blocks that are readily inferred by symmetry such that the

following LMI holds:
Y >0, K=0
N ” % % %
N N * *
. - T <0, Vi (3.102)
X, tZ;, —1tAYA 0
N, N, 0 —7ATYA

where N, =K +AT(A + TII,(t)YA + X, +*,

N21 = ATY(ATi +TiHi(t))TA_ Xi +ZiT7 sz = _(1_ dm)K - Zi - ZiTs
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N, =7A"(A +TI,(t)YA, N, =7A" (A, + T,IT, (1) YA.
Suppose that the LMI (3.102) have a solution (Y,K, X,,Z,) forgiven A,A,,B,d.,7,

then there exists a linear sliding surface parameter matrix Sand the sliding surface
o(X)=Sx=(B'Y'B)'B'Y 'x=0 (3.103)

will guarantee that the sliding mode dynamics (3.101) is asymptotically stable.

Proof: Let us define a Lyapunov-Krasovskii function (LKF) as
T toT ot 1 .
V(1) = a" (O)Pa(t) + j @ (9Fa(s)ds+ j j _d"(9)Ra(s)dsdn
_ —7d t+p

where P, = A'YA € R*"and _F'e R™ are solution matrices for the LMI (3.102). It

should be noted that a large number of previous methods such as the methods given in
[42,43], have used similar Lyapunov-Krasovskii functions to obtain less-conservative
stability conditions:by exploiting information on the upper bounds of delay and its time

derivative. None of the previous SMC design methods [44], [56-60] have used the

term J.O j: a' (s)Pa(s)dsdy in. stability —analysis. The time derivative of the
-7 t+py
Lyapunov-Krasovskii function is.given by

Vg =2a"P(Aa+ Aa,)+a " Fa—-(1-d)a,Fa, + " Pa —J‘:_ a' (s)P,a(s)ds.
By using (3.101) and the Newton-Leibniz formula a—-a, - j :_d a(s)ds=0, we have
V, =2a'B(Aja + Ajag) +a' Fa—(1-d)agFa, + r(Aa + Aay)' B(Aa+ Aay)

[ dT(IRa(9ds+2a" X +a;Z Na—a - | a(s)ds)

where X =) X, andZ = )  $,Z,. By using the inequality 2x"y < x"Hx+y'H'Y,

where X and y are any vectors with appropriate dimensions and H > 0, we can obtain
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Aa" WX +ay ()ZT ]j ;d(s)ds <tla"MXT +a; (O)ZTIP [ Xa(t) + Zay(1)]

+ ; a7 (s)P,ct(s)ds which leads to

Vg <2a" (PRAa+PAay)+a Fa—(1-d )ajFa, +tla X" +a;Z" P [Xa + Zay]
+2(a" X" +a Z N a—ay)+(P,Aja+PAa,) P (PAa+PA,).

By applying the Schur complement formula [48] to (3.102), we can obtain

{N“ . }{xr }R{xr } . {ATY(A +TTI (t))TA}P{ATY(A +TTI (t»TA}T 0

Ny Nz [0z ] T ATYA T A | ATYA, +TILO) A
(3.104)

This implies thatV, < —,u(||05||2 +||05d ||2)f0r some x >0. After all, we can conclude that
the sliding mode dynamics (3.101) 1s stable.

After the switching surface  parameter matrix S is designed so that the
reduced-order sliding mode dynamics has a desired response, the next step of the SMC
design procedure is-to design a switching feedback control law for the reaching mode
such that the reachability condition is met [33], [57], [61]: If the switching feedback
control law satisfies the reachability condition, it drives the state trajectory to the

switching surface o = SX=0and maintains it there for all subsequent time. We design
a sliding fuzzy control law guaranteeing that o converges to zero. We will use the
following nonlinear sliding switching feedback control law as the local controller:

Control Rule 1: IF 6, 1s g,,and ... and 6,is i, THEN
o
u(t) = -S(A + TIL; (1))x - S(A; + TIL (1) Xy — & (UH (3.105)

1
1-4,

m

(&) + [ S(A + TIT )X+ S(A, + TIL )X | +&)  (3.106)

where & (1) =
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and¢, > 0. The final controller inferred as the weighted average of the each local

controller is given by

u(t) = —i B (0)(S(Ai + TIT, (1) X+ S(A, + TIT, ()X, + &, (t)”Z—”] (3.107)

i=1
and we can establish the following theorem.
Theorem 3.8 Consider the closed-loop control system of the uncertain system (3.98)
with control (3.107). Suppose that the LMI (3.102) is feasible and the sliding surface is
given by (3.103). Then, the switching feedback control law (3.107) induces an ideal
sliding motion on the sliding surface. @ =(01in finite time and the state converges to
zero.

Proof: Since Theorem 3.7 .implies. that the sliding mode dynamics restricted to

o = X =0is stable, we only haveto show that reachability condition o' < —8”6” is
satisfied for some &> 0. Using SB = | and the assumption A2, we ¢an obtain
o'6 =c" Y B (S(A+TH (D)X+S(A+T T ()X, +h)+oTu

r

< LBl =g ul-colel< -2 ol
After all, we can conclude that o.converges to zero.
Remark 3.4 Theorem 3.7 and 3.8 can be summarized in the form of the following
LMI-based design algorithm.
Sep 1: Check that (A + A,, B)is stabilization. If not, exit.
Sep 2: Find a full-rank matrix A € R™™™ such that B'A =0,A"A =1.
Sep 3: Find a solution vector (Y,¢,,C,,77) to LMI (3.102).

Sep 4: Compute the sliding surface parameter matrix Sby using the formula of (3.103).

Sep 5: The controller is given by (3.107).
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3.4.3 Numerical Examples
Example 3.7 To illustrate the performance of the proposed sliding fuzzy control
design method, consider the following T-S fuzzy time-delay model [62] without

mismatched parameter uncertainties and external disturbances.

X(1) =Z/J’i (OAXD+ A%, (D]+BUb) (3.108)
. 0 06 0.5 0.9 10
where x(t) =[x (t) x,(1)] and A:{O I}AI{O 2},AZ=L 0}

09 0 1 1
A[ZZ 1 16 ,B= 1 ,ﬁlzm’ ﬂzzl_ﬁl'

We assume that d(t)=z=04,4 =0,& =1,4 =0, =0and & =0.5. Figure 3.10
shows the control results for system (3.108) via the proposed controller (3.107) under
the initial condition. ¢(t)=[20]". In Figure 3:10, it should be-noted that since it is

impossible to switch the input u instantaneously, oscillations always occur in the sliding

mode of a SMC system.
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Figure 3.10 Control results for the system (3.108)
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Example 3.8 Consider a well-studied example of a continuous-time truck-trailer with

time-delay proposed in [63]. The time-delay model is given by

() =—ax ()= (1-a)x (t—d)+ "
X (0 =-ar =X () -(1-a) =X -d)+ = [u®) +h®)],

0 0 0

(1) =adl _a) o t-
) =ar—x®+1-a) —xt-d,

0 0

%, (t) = \:—Tsin[xz(t) + a%xl(t) +(1- a)% X, (t —d)} (3.109)

0

where X, (t) is the angle difference between truck and trailer (in radians), X, (t) is the
angle of trailer (in radians), X (t) is the vertical position of rear of trailer (in
meters), U(t) is the steering angle(in radians), T =2.0,1 =2.8 ,L=5.5 v=-1.0
andt, = 0.5. The constant. parameterais the retarded coefficient satisfying a<[0,1].
The limits 1 and 0-ecorrespond to a no-delay term and to a completed-delay term. We

assume that the disturbance input h(t)is unknown but bounded as|h(t)| < 1.By using

the fact thatsin(X) = XitX=0,we can represent the above model as the following

two-rule T-S fuzzy model, including parameter uncertainties and external disturbances:

Plant Rule 1: IF 8(t) is about 0, THEN
X=(A +TII,)x+ (A, + TII, (t)x, + Bu+ Bh,
Plant Rule 2: IF 8(t) is about + 7, THEN

x=(A, +T,IT,(t)x+ (A, + T,IT, ()X, + Bu+ Bh,

where 6(t) = x,(t) + avl x,(t)/2L+ (1 -a)vT x,(t-d)/2L
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a0 —(1—a)ﬂ 00
Lt, Lt,
vT vT
=| a— 0 0, = l-a)— 0 07
A L, A= ( )Lto
2712 22
VT VT a-aY " o o
oLt, t, I 2Lt, .
—aﬂ 0 0 —(l—a)ﬂ 0 0
Lt, Lt,
vT vT
= a— 0, = l_a_ 0 0,
A Lt A, ( )l_tO
2T 2 2712
alOvT 10vVT 0 (l—a)IOVT 0 0
. 2L~z T i L 2Lz i
T
It, 0.1
B=| 0 |« T,=T,=]0.1| II,(t)=TL{t)=[sint 0 0]
0 0.1
1 =1/(1+ e %"
g2t ) s 1B k= SR, (3.110)

1+e

We assume that d(t) =7 =0.1. _Considering LMI optimization with the data
(3.110), a=0,7=0.1 and  d, =0, we can obtain the sliding surface parameter
vector o = SX. Since |hi (t)|£1, we can set. @ =0,5 =1,4,=0 ,6 =02, and

t = (.01sec. We can obtain the following fuzzy controller:

sampling

Control Rule 1: IF 4(t) is about 0, THEN
u(t)=—-S(A, + T,IT, (1)) x—S(A,, + T,IT,(t)) X, —1.2sgn(o).

Control Rule 2: IF 8(t) is about + 7, THEN
u(t) =-S(A, + T,IL, (t))x—-S(A_, + T,IT, (t))X, —1.2sgn(o).

The final controller inferred as the weighted average of each local controller is given by
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u(t) = —22: BIS(A, + TII, (0))x+ S(A,, + TIT, ()X, +1.25gn(o)]. (3.111)

i=1

To demonstrate the controller ability, we apple the above fuzzy controller (3.111)
to the system model (3.110) withh(t) =sintandd(t) =z =0.1. Figure 3.11 shows the
closed-loop system responses of (3.110) and the proposed controller (3.111) with the
initial conditiony (t) =[0.47z,0.877,—4]". Moreover, the closed-loop system responses
of the truth model (3.109) and the proposed controller (3.111) with the initial
conditiony (t) =[0.47,0.87,—4] are also shown in Figure 3.12. In Figure 3.11 and
Figure 3.12, it should be noted that since it is impossible to switch the input u
instantaneously, oscillations always occur in the sliding mode of a SMC system. From
Figure 3.11 and Figure 3.12,-the proposed controller is applicable to T-S fuzzy
time-delay systems.with mismatched parameter uncertainties in-the state matrix and
external disturbances and the nonlinear truth model. The control performances of the

two-rule T-S fuzzy model (3.110) -and the nonlinear truth. model (3.109) are

satisfactory.
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Figure 3.11 Simulation results with the proposed method on the two-rule T-S fuzzy model (3.110).
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Figure 3.12 Simulation results with the proposed method on the nonlinear truth model (3.109).

103



Chapter 4

L MI-Based Robust Adaptive Control

In this chapter, LMI-based robust adaptive control methods are developed for
distinct uncertain Takagi-Sugeno fuzzy models/time-delay models. The introduction of
this chapter is introduced in Section 4.1. In Section 4.2, a robust adaptive control
method is proposed for T-S fuzzy systems. Section 4.3 presents two kinds of robust
adaptive control methods for mismatched T-S fuzzy systems. A robust adaptive control

method is presented for mismatched T-S fuzzy time-delay systems in Section 4.4.

4.1 Introduction

Fuzzy techniques have been-widely and successfully applied to nonlinear system
modeling and control for over two decades: The feedback stabilization problem of a
nonlinear system inthe Takagi-Sugeno (T-S) model [5] has been studied extensively. In
the T-S model, local models are combined-to-describe the global behavior of the
nonlinear system. Some authors.[23-29] have studied to solve the feedback stabilization
problem based on the assumption that the local model can be described by a simple
linear system. In practice, the inevitable uncertainties may enter a nonlinear system
model in a very complicated way. The uncertainty may include modeling errors,
parameter variations, external disturbances, and fuzzy approximation errors. In such a
situation, the fuzzy feedback control design methods of [23-29] may not work well
anymore. To deal with the problem, some authors [30,31] have exploited the variable
structure system (VSS) theory which has proposed an effective method to design robust
controllers for uncertain nonlinear systems where external disturbances are bounded by

known upper norm bounds.

104



Some authors [36-40] have relaxed the assumption and they have proposed
adaptive laws to estimate the upper norm bounds. However, the previous VSC-based
fuzzy control methods have considered the problem of adaptive control design and
stability analysis for uncertain T-S fuzzy models where the input matrices of the local
system models satisfy the assumption that each nominal local system shares the same
input channel. It is practically difficult to satisfy this assumption. Moreover, these years,
other authors [44-46] have exploited the SMC approach theory which has provided an
effective means to design robust controllers for uncertain fuzzy time-delay systems
where external disturbances are bounded by known upper norm bounds.

In this chapter, we propose robust adaptive-control design methods for different
uncertain T-S fuzzy models with matched/mismatched parameter uncertainties and
external disturbances which are bounded by unknown upper norm bounds. As the local
controller, we use ‘an adaptive controller with a nonlinear switching feedback control
term and an adaptation law to specify unknown upper norm bounds. We derive LMI
conditions for existence of linear sliding surfaces guaranteeing asymptotic stability of
the reduced order equivalent sliding mode dynamics, and we give an explicit formula of
the switching surface parameter, matrix in terms of the solution of the LMI existence
conditions. We also design the nonlinear switching feedback control term and an
adaptation law to drive the system trajectories so that a stable sliding motion is induced
in finite time on the switching surface and the state converges to zero. Moreover, a
robust adaptive control design method is also presented for the uncertain T-S time-delay
model with mismatched parameter uncertainties and external disturbances. Finally,
some examples are used to illustrate the effectiveness of the proposed methods for
distinct uncertain T-S fuzzy models and to compare with the existing methods in each

final subsection.
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4.2 Robust Adaptive Control for T-S Fuzzy Systems

In this section, system formulation for the uncertain T-S fuzzy model is described in
Section 4.2.1. A robust adaptive control method via LMI is proposed in Section 4.2.2.
Some examples are used to illustrate the effectiveness of the proposed methods and to

compare with the existing methods in Section 4.2.3.
4.2.1 System Formulation

Consider the following uncertain T-S fuzzy model [49]:
X(t) = 2, BO[AX®) + Bu(t) + Bh(t, )] (4.1)

where X(t) e R"is the state, u(t)eR™ is the control input, A,B are constant

matrices of appropriate _dimensions, @=[6,,-,6.1,0,(j =1,--,5) are the

premise variables, S'is the number of .. the ' premise _ variables, /S (0)=

a)I(H)/Zj;a)j ), o R* > [0,I] ,i=L:r is the membership function of the

system with respect to plant ~tule i,r is the number. of the IF-THEN

rules, [, can be regarded as the normalized weight-of each IF-THEN rule and it

satisfies that (6)=0, Z:zl L. (@)=1, ht,x)eR" represents the lumped nonlinearities or

uncertainties. We will assume that the followings are satisfied:

Al: The nxm matrix B defined by B=1/ rz:zl B satisfies the rank constraint
rank (B) =m, i.e., the matrix B has full column rankm.

A2: The function h(t, X) is unknown but bounded as H h(t, x) — ﬁ(t, X)H < LZO pk” ><||k where

Py P, are unknown constants, ﬁ(t,x) is an estimate of h(t,x), and lis a

known positive integer.

The system (4.1) does not have to satisfy the restrictive assumption that all the input
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matrices of the local system models are in the same range space. It should be noted that
the assumption Al implies that rank(B) < mand each nominal local system model
may not share the same input channel. The assumption A2 with | =1 and
ﬁ(t,x) = 0 has been used in the literature [50]. We can set ﬁ(t, X)as the nominal value
of h(t, X). Using the above assumptions, the uncertain T-S fuzzy model (4.1) can be

written as follows:
X(t)=>"" B(O)AX() +[B+ HF (8)G][u+ h(t, x)] (4.2)

where S =[£,(0), -, B, (6)],and the matrices H,G F(f) are defined by
H =~ [B<B)sB-8)]. 6= i

F () =diag [(1 =25:(0)) Iy (1 =2 ()N ] (4.3)
It should be noted “that the system (4.1) does not have to satisfy
B, = B, =--- = B,, which is used n almost all published results on'VSS design methods
including the VSS-based fuzzy control design methods of [33,34]. Hence the methods

[30,31] cannot be applied. to the above model (4.1). Since A (€)=0 and

zirzl P(60) =1, we can see that the following inequality always holds:

FIBOF(B=FBF (P <I. (4.4)
Many examples in the literature and various mechanical systems such as motors and
robots do not satisfy the restrictive assumptions that each nominal local system model
shares the same input channel and they fall into the special cases of the above model
[49].
4.2.2 Adaptive Control Design via LMI

The Sliding Mode Control (SMC) design is decoupled into two independent tasks

of lower dimensions: The first involves the design of m(n—1)—dimensional switching
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surfaces for the sliding mode such that the reduced order sliding mode dynamics
satisfies the design specifications such as stabilization, tracking, regulation, etc. The
second is concerned with the selection of a switching feedback control for the reaching
mode so that it can drive the system’s dynamics into the switching surface [33]. We first
characterize linear sliding surfaces using LMIs.

Let us define the linear sliding surface as o= Sx=0 where Sis a mxnmatrix.

Referring to the previous results [33], [51], we can see that for the system (4.2) it is
reasonable to find a sliding surface such that

Pl [SB+SHF(B)G|is nonsingular. for- any. A satisfying 8 (6)>0,i=1,--r, and
L AO)=1.

P2 The reduced (n=m)order sliding mode dynamics restricted to the sliding surface

XX = 01is asymptotically stable for all admissible uncertainties.
It should be noted that P1 is necessary for the existence of the unique equivalent control

[33] and the assumption A1 is necessary for the nonsingularity of SB.

Define a transformation matrix and the associated vector vas M =[A(A'YA)™
YTUBBY B =V, S, vl T =MX where v,eR"™ ,v,eR". By
the above transformation, we can see that M~ =[YA,B]and V, =c. Then, from

system (4.2), we can obtain

Vi| o VAYA VAB][v, VHF (3)G
L} => .5 (Q)LMA SAB}[J {I . SHF(ﬁ)G} [u+ht,x)].  (4.5)

From the equivalent control method [33], we can see that the equivalent control is
given by Ug(t)=- Zir:l B(O[l + SHF(B)G] ' SAXx—h(t,x).By setting 6 = =0and
substituting u(t) with U, (t), we can show that the reduced (n—m)order sliding mode

dynamics restricted to the switching surface o = SX=01is given by
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v, = ZLI B(O)ATYA) " ATD(B)AYAY, (4.6)
where D(B) =1 —HF(B)G[l + HF(B)G]''S.
Theorem 4.1 Let us consider the sliding mode dynamics (4.6). If Y eR™
(B"B), A e R™™™is any full rank

,¢, e Rc, e RpeRare decision variables, x =1

matrix satisfying B'A=0,A'A =1, and *represents blocks that are readily inferred
by symmetry such that the following LMIs holds:

AT(AY +5)A  * *

nHTA -1 * |<0, Vi (4.7)
AYA nH -1
Y 1 0
I <l 0 >0, (4.8)
0 0—¢,| Y
2k * *
rcc rp 0 ({>0. (4.9)
rc, 0 rp

Suppose that the LMIs(4.7)-(4.9) have a solution vector (Y,¢;,C,,77), then there exists
a linear sliding surface parameter matrix-Ssatisfying P1-P2 and the sliding surface
o(X)=Sx=(B'Y'B)'B'Y 'x=0 (4.10)

will guarantee that the sliding mode dynamics (4.6) is asymptotically stable.

Proof: By using Schur complement formula [48], we can easily show that in fact the
following LMIs are incorporated in the LMIs (4.7)-(4.9)

¢ >0, ¢,>0, >0, ’HH' <I, 2’k >r(c’ +cC)). (4.11)
It is clear that if the following inequality (4.12) holds, then

B+ HF(B)G =1 + HF(F)G is nonsingular and hence P1 holds

SHF(B)GG'FT(BHTST <. (4.12)
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Using (4.3), (4.4), (4.11) and GG <||G|’I =rI, we can obtain
SHF(A)GG'FT(HH'ST <L s, (4.13)
n

By using the Schur complement formula, we can see that (4.8) and (4.11) imply
0<c'l <Y<gl, 0<c'l <Y '<cl (4.14)
and this leads to

ree, |
—2 .

SHF(B)GGTFT(BHTST < ss7 <192 (BTR) " < (4.15)
7 n K7

Using the inequality 2ab<a’*+b*wherea and bare scalars, we can show that (4.15)
implies

r
K'772

SHF(B)GG FL(BHTS' < : G+l (4.16)

Finally, by using the above inequalities (4.11) and (4.16), we can obtain
SHFE (B)GG'F' (B)H ST SLZSST < (4.17)
n

which implies that [SB+ SHF(/)G]is nonsingular, i.e., P1 holds.

Now, we will show that Sof (4.10) guarantees P2..Using the matrix inversion lemma:
(I+AB)" =I-Al'+BA)'B

where Aand Bare compatible constant matrices such that (I + AB)is nonsingular,

we can show that the sliding mode dynamics (4.6) is equivalent to
vV, = ZLI B(O)ATYA) ATC(B)AYAV (4.18)
Where C(B)=1-H[l +F(B)GH] ' F(B)GS=[I + HF(B)GS]™
=1 —-HF(B)G[I + SHF(B)G] 'S=D(5).
The sliding mode dynamics (4.18) is asymptotically stable if there exists a positive

definite matrix P, € R™™ "™ such that the time derivative of the Lyapunov function
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E, (D= v/ Pv, satisfies for some positive scalar z
E,0)=2>" B OV RZ (B, <-1VV, (4.19)
where Z, () = (A, + B,[1 =N(8)D,1"'N(8)C,,), A, = (ATYA) 'ATAYA
B, =(ATYA)'A"H ,C,, = AYA ,D, =H,N(8)=-F(B)GS
It should be noted that the inequalities (4.4), (4.11), (4.17) andGG" < ||G||2 | =rl imply
N(BNT(B)=F(B)GSS'G'F'(B)<n’l,n°D,D, =n*HTH <. (4.20)

This and (4.19) imply that (4.18) is asymptotically stable if there exists a positive

definite matrix P, such that
P,A, +P,B[l =N(B)D,].'N(B)C,,+ *< 0Vi (4.21)

where *represents blocks that are readily inferred by symmetry.
Let zbe z =[1 =N(B)D,] "' N(B)C,,ywhere y€ R™™ . Then z can be rewritten
as z = N(B)[C,,y+D,z]. This equality and (4.20) imply z'z <#n’[C,y+D,z]"
[C,,Y+ D,z ]and this leads to
2y"RB,[I - N(8)D,] ' N(B)C,y
=2y'PB,z <2y'PB,z +[C,,y+ D, Z]'[C,,y+ D,z]1-7n"Z 2
=y'ClC,,y+2Y'[P,B, +C}D,lz — 17z  Qz,where Q=1-71D,D,. (4.22)
Since Q > 0, the following inequality holds for any (Y, z):

2y'[R,B, +CD,1z <7z Qz +1’y'[P,B, + C;D,1Q'[R,B, +CyD,1"y. (4.23)

Using (4.22) and (4.23), we can show that the Lyapunov inequality (4.21) is satisfied if

the following inequality holds:
PoAy + AGP, +CLCip +17°[P,By + C;D, 1Q ' [P,B, +C,D,]" <0,

Using the Schur complement formula, we can rewrite the above inequality as
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AuoP + * * *
nBIP, -1 % |<0,Vi. (4.24)
Ci nb, -1

Let the positive definite matrix P, be P, = A"YA whereYis a solution to LMIs

(4.7)-(4.9), which implies that the sliding mode dynamics (4.18) is asymptotically
stable. Hence, the sliding mode dynamics (4.6) is asymptotically stable.

After the switching surface parameter matrix Sis designed so that the reduced
(n—m)order sliding mode dynamics has a desired response, the next step of the SMC
design procedure is to design a switching feedback control law for the reaching mode
such that the reachability conditionis met.~If the switching feedback control law
satisfies the reachability condition, it drives the state trajectory to the switching surface
o = SX=0and maintains it there-for all subsequent time. With o of (4.10), we design
an adaptive fuzzy control law guaranteeing that o converges to zero. We will use the
following nonlinear adaptive switching feedback control law as the local controller.

Control rulei: IF 8 is u;,and...and 6.is-u, THEN

u(t) =<h(t;X)=yz.0 — SAX— 5(t x)- 7 o]
where 5,(t,%) = &, + o AN+ 1+ @)Y, X (4.25)
be=slol- I (420

and oc=Xw= X >0,6,>0. It should be noted that (4.17) implies

W= \/F”SH || < \/?"S””H || < 77||H || This and (4.11) guarantee 0<w<1. The final

controller inferred as the weighted average of the each local controller is given by

u(t) = —N(t, x) - Zﬂ(@)(}(,a+80\ X4 5(t x)” ”J (4.27)
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and we can establish the following theorem.

Theorem 4.2 Consider the closed-loop control system of the uncertain system (4.2)
with control (4.27). Suppose that the LMIs (4.7)-(4.9) has a solution vector
(Y,c,,c,,n7) and the linear sliding surface is given by (4.10). Then the state converges

to zero.
Proof: Since Theorem 4.1 implies that the linear sliding surface (4.10) guarantees

P1-P2, we only have to show that o converges to zero. Define a Lyapunov function as
E, ()= 0.50 0 + O.5§ZL:O p. where £=1+w and p, =p . —p. The time
derivative of E,()is E, =& 6 +&Jo|S B . From (4.2), (4.10), (427),
|SHF (8)G| < Vr||SH | =@ 10 < & <1, ‘and A2, we obtain

o6 =0"> . B(O)SAXM)+ o[ +SHF (B)G][u +h(t, x)]

<3 Ao SAXM) + U (@l u] + (1 ¥ w)|het, oo

r r - k

<-(1-0) X, A Anlol =X LB @] £lely ., AlA -
This implies that Eg <—(I'= a))z:zl B0y, ||a||2 - Zirzl B (0)e, ||a|| < O which indicates
that E; eLzﬁLw,Eg el .Finally, by using Barbalat’s lemma, we can conclude that

O converges to zero.

Remark 4.1 Theorem 4.1 and 4.2 can be summarized in the form of the following

LMI-based design algorithm.

Sep 1: Obtain B:%ZLB' and H :%[(B—Bl),--~,(B—Br)] for given B, .

Sep 2: Check that (A, B)is stabilization. If not, exit.

Sep 3: Find a solution vector(Y,C,,C,,77) to LMI (4.7)-(4.9).
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Sep 4: Compute the sliding surface parameter matrix Sby using the formula of (4.10).

Sep 5: The controller is given by (4.27).

4.2.3 Numerical Examples

Example4.1 consider the following inverted pendulum on a cart [49]

X =X, X =X, X, ziﬁgsin X, —3acos x,[u+d(t)+¢4]),

X, :—L(I.Smag sin2x, —4afu+d(t)+ ¢]) (4.28)
v

where X is the angle (rad ) of the pendulum from .the vertical, X,=X, X;is the
displacement (m) of the.cart, X=X, w =4 +3macos’ X ;@ =mix: sinx, uis the input,
and d(t)is related torexternal disturbances which may be caused by the frictional force.
a=1/(m+M), mis _the mass of the pendulum, M is the mass of the cart, 2l is the
length of the pendulum, g=9.8m/s’is the gravity constant. We set M =9kg
,m=1kg ,| =1m We assume that Cit)is bounded as |d(t) < g, + ¥ where p,and p,

are unknown constants. Here, we approximate the system (4.28) by the following
two-rule fuzzy model.

Plant Rule 1: IF X, is about 0, THEN
X = A X+ B,[u+ h(t, x)]
Plant Rule 2: IF X is about +60°(+7/3 rad), THEN

X = A,x+ B,[u+ h(t, x)]

0 1 00 0 0 1 00
79459 0 0 O —-0.0811 6.1945 0 0 O
where A = , B = , A= ,
0 0 0 1 0 0 0 0 1
-0.7946 0 0 O 0.1081 -03097 0 0 O
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0

—-0.0382 . 1-1/(1+ /™
B, = 0 Nt x) =d(t) + Xzz sin X, f, = ( g 14a+7/8) )’ By =1-p. (4.29)

1+
0.1019

The inverted pendulum on a cart (4.28) can be cast as (4.2) with data (4.29).
Because B, is not in the range space of B,and the previous adaptive fuzzy control

system design methods cannot be applied to the above system (4.29). Via LMI

optimization with (4.29), we can obtain the sliding surface o = .
By setting h(t,x)=x2sinx,, z =5, o =1, r=2, |=1¢=0004,¢ =0001,
and tg.i,, =0.01sec, we can obtain the following nonlinear controller:

Control Rule 1: IF X is'about 0, THEN
u(t) = —x; SinX, — 50— SAX— %51 sgn(o):
-
Control Rule 2: IF X, is about+60"(£7/3 rad), THEN

u(t) = —x; sin X, =50 — SAZX—%@ sgn(a).
~®
The final controller inferred as the weighted average of each local controller is given by

u(t) = —x2sin X, — Z B (9)[50 +SA X+ %Si sgn(a)}. (4.30)
/)]

i=1
To assure the effectiveness of our fuzzy controller, we apply the controller to

the two-rule fuzzy model (4.29) with nonzero d(). We assume that d(t)=

X sin27t —0.5sgn(X,). Figure 4.1 shows the time histories of the state, p,,the
sliding variable o, and the input (4.30) when X, (0)=20"(z/9 rad), x,(0)= x,(0)=
X,(0)=0. Figure 4.2 shows the time histories of the state, p,,the sliding

variable o , and the input (4.30) when X(0)=40"(2z/9 rad), X,(0)= x,(0)=
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X,(0)=0. Figure 4.3 shows the time histories of the state, p,,the sliding
variable o , and the input (4.30) when X (0)=60"(xz/3 rad), X,(0)= X,(0)=

X,(0)=0. In Figure 4.1, Figure 4.2, and Figure 4.3, it should be noted that since it is

impossible to switch the input u instantaneously, oscillations always occur in the sliding
mode of a SMC system. It is observed that in our simulations the proposed controller

(4.30) stabilizes the following two-rule fuzzy model (4.29).
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Example 4.2 Consider the following example of a ball and beam system [52], whose

dynamic equations are described as follows:

(%’+Mjf‘+ MG sin @ — Mr 6% =0, (Mr> +J +J,) 6+ 2Mrr 6 + MGr cos 0 =

4.31)

where r is the ball position, & is the beam angle, J is the moment of inertia of the

beam, M, J,,and R are the mass, the moment of inertia, and the radius of the ball

respectively, G is the acceleration of gravity, and 7 is the torque applied to the

beam.
Define B=M /(J,/R*+M). and change the coordinates in the input space by using

the invertible transformation
7= 2Mrié + MGr cos,@ +Mr > +J3 +J,)u (4.32)

where U is the new input, then the ball and beam system can be written in the

following state-space form:

X, =X, X =B(XX; —GsinX,), X, = X,, X =U+d(t) (4.33)

where X= [X1 X, X X, ]T 2 [r r e Q]T. The system parameters used for
simulation are M = 0.05kg, R=0.01m, J=0.02kgnt, J, =2x10°kgm, G=9.81n/s’
and B =0.7143. We assume that d(t)is bounded as |d(t)<p,+pg[X where p,and p,

are unknown constants. Then, we approximate the system by the following two-rule

fuzzy model:

Plant rule 1: IF X, is greater than 0, THEN
X = AXx+B,[u+h(t,x)].

Plant rule 2: IF X, is smaller than 0, THEN
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X = A x+ B,[u+ h(t,x)].

01 0 0 0 01 0 0 0
0 0 -BG -2Bu 0 0 0 -BG 2Bu 0
where A = ,B=| A= ,By= |,
00 O 1 0 00 O 1 0
00 0 0 1 00 O 0 1
1-1/(1+ g™
=001 =d(v, f=— IS ) pmiep @
By setting y; =0.2,a; =175,r=2,1=1,¢, =0.5, and t,;,, =0.0lsec, we can

obtain the following nonlinear controller:

Control Rule 1: IF X, is greaterthan 0, THEN
1 »
u(t)=-0.20 -SAX——9, sgn(o).
l-w
Control Rule 2:1F ' X is smallerthan 0, THEN

|
u(t)=-0.20 - SA X~ 1—52 sgn(o).
-
The final controller inferred as the weighted average of eachlocal controller is given by

u(t) = —Zr: B, (9)[0.20 + SA X+ %5} sgn(a)}. (4.35)
-

i=1
To assure the effectiveness of our fuzzy controller, we apply the controller

to the two-rule fuzzy  model (4.34) with nonzero d(). We assume that
d(t)= x;sin27t —0.5sgn( X,). Figure 4.4 shows the time histories of  the
state, p,, the sliding variable o , and the input (4.35)
when X, (0) = 0.5, x,(0)= X,(0)=x,(0)=0. Figure 4.5 shows the time histories
of the state, p,, the sliding variable o, and the input (4.35)
when X, (0) =1, X,(0)= %,(0) = X,(0)=0. In Figure 4.4 and Figure 4.5, it should be

noted that since it is impossible to switch the input u instantaneously, oscillations
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always occur in the sliding mode of a SMC system. From Figure 4.4 and Figure 4.5, the

proposed controller (4.35) also stabilizes the following two-rule fuzzy model (4.34).
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4.3 Robust AdaptiveControl for Mismatched T-S Fuzzy

Systems

In this section, two kinds of system formulation for mismatched uncertain T-S fuzzy
models are described in Section 4.3.1 and in Section 4.3.4, respectively. Two kinds of
robust adaptive control methods via LMI are proposed in Section 4.3.2 and in Section
4.3.5, respectively. Some examples are used to illustrate the effectiveness of the
proposed methods and to compare with the existing methods in Section 4.3.3 and

Section 4.3.6, respectively.
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4.3.1 System Formulation I

Consider the following uncertain T-S fuzzy model [49], including parameter

uncertainties and unknown norm-bounded external disturbances:

X(t) =D B(ONA +AADIX() + B [u(t) + h(t, X)) (4.36)
where X(t) e R"is the state, u(t)e R™ is the control input, A,B are constant
matrices of appropriate dimensions, AA (t) represents the parameter uncertainties
in A,h(t,x)eR™ denotes external disturbances. 6=[6,,-,6,]1,0,(j =1,--,9) are the
premise variables, S is the _number rof _the premise variables, f(0)=
. (0)/ Zj;a)j @), :R* =[0,1],i=1,--ris the membership function of the system with

respect to plant rule®iyr is the number of the<[F-THEN rules, f, can be regarded as

the normalized weight of each IF-THEN rule and it satisfies that £(6) >0. Zirzl p(O)=1.

We will assume thatthe followings are satisfied:

ir=1 B, satisfies the rank constraint

Al: The nxm matrix B defined by B=lz
r

rank (B) =m, i.e., the matrix B has full-columntank m.

A2: The function h(t,X) is unknown but bounded as H h(t,X)—ﬁ(t,X)HS |:0 pk”)(”k

K
where p,, -+, p,are unknown constants, ﬁ(t,x) is an estimate ofh(t,x), andlis a
known positive integer.

A3: AA(t) is of the form T,II,(t) where II,(t)is a known time-varying matrix but
bounded as ||Hi(t)||£1.

The system (4.36) does not have to satisfy the restrictive assumption that all the input

matrices of the local system models are in the same range space. It should be noted that
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the assumption Al implies that rank(B) < mand each nominal local system model
may not share the same input channel. The assumption A2 with | =1 and
ﬁ(t,x) = 0 has been used in the literature [50]. We can set ﬁ(t, X) as the nominal value
of h(t, X). Using the above assumptions, the uncertain T-S fuzzy model (4.36) can be

written as follows.
X(t) = zir:lﬂi (O)(A +TIL O))X(1) +[B+ HF(B)G][u+h(t, X)] (4.37)

where S =[f,(0), -, B, (6)],and the matrices H,G F(f) are defined by
1
H=2l(B-B)su(B+B)]s G=[1:1],

F(p)=diag[(1-24,0)1. (1= 24,(@) . (4.38)
It should be noted < that —the system «(4.36) does not have to satisfy
B, = B, =---= B,, which is used in almost all published results on VSS design methods
including the VSS=based fuzzy control design methods of {33,34]. Hence the methods

[30,31] cannot be_applied to the above. model (4.36). Since £ (0)>0 and

Zir:l L(0) =1,we can see that the following inequality always holds:

FIBFBA=RBHF (BY<1. (4.39)
Many examples in the literature and various mechanical systems such as motors and
robots do not satisfy the restrictive assumptions that each nominal local system model
shares the same input channel and they fall into the special cases of the above model
[49].
4.3.2 LMI-based Adaptive Control Design I
The Sliding Mode Control (SMC) design is decoupled into two independent tasks

of lower dimensions: The first involves the design of m(n—1)—dimensional switching

surfaces for the sliding mode such that the reduced order sliding mode dynamics
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satisfies the design specifications such as stabilization, tracking, regulation, etc. The
second is concerned with the selection of a switching feedback control for the reaching
mode so that it can drive the system’s dynamics into the switching surface [33]. We
first characterize linear sliding surfaces using LMIs.

Let us define the linear sliding surface as o =SXx=0where Sis a mxnmatrix.

Referring to the previous results [33], [S1], we can see that for the system (4.37) it is
reasonable to find a sliding surface such that

Pl [SB+SHF(H)G|is nonsingular for any j satisfying g,(6)>0,i=1,--r, and
B0 =1

P2 The reduced (n-—m)jorder sliding mode dynamics restricted to the sliding surface

Sx = 0is asymptotically stable for all admissible uncertainties.

It should be noted that P1 is necessary for the existence of the unique equivalent control

[33] and the assumption Al is necessary for the nonsingularity of SB.

Define a transformation matrix and the associated vector Vas M =[A(A'YA)™
YTBBY BT =V, S v =V ,v]]" = Mxwhere v, e R"™™ v, e R". By the
above transformation, we can see that M~ =[YA,B]and Vv, =c. Then, from system

(4.37), we can obtain

{v}}:iﬂi (9){\/('&1 +TILMO)YA V(A +TiHi(t))B:| {Vl}
6|57 sn st oA S(A +TIL0)B] |0

{ VHF (3)G

| + SHF (ﬂ)G} [u+ h(t, x)]. (4.40)

Then from the equivalent control method [33], we can see that the equivalent control is

given by Uy®=-Y_ A (O +SHF(HGI'S(A +TIL(t)x-h(t,x). By setting
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6=0=0 and substituting u(t) with U, (t), we can show that the reduced

(n—m)order sliding mode dynamics restricted to the switching surface o= X=01is

given by

U, = Y A (OXATYA) AD(BYA +TIL 1)YAV, (441)

i
where D(B) = | — HF (B)G[| + SHF (8)G]'S.

Theorem 4.3 Let us consider the sliding mode dynamics (4.41). If Y eR™,
¢, eRc, eRyeRare decision variables, x =4, (B'B), A€ R™"™is any full rank

matrix satisfying B'A =0,A" A =, and- *represefits blocks that are readily inferred
by symmetry such that the following LMIs holds:

AT[(AT TIT ()Y *] A 3

nH A -1 k< 0, Vi (4.42)
(A + T,II, (1) YA nH -1

Y | 0

I ¢l 0 |>0; (4.43)
0.0 ©cl-Y

277]( * %

rcc rp 0 >0 (4.44)
rcc 0 rpg

Suppose that the LMIs (4.42)-(4.44) have a solution vector (Y,C,C,,77), then there
exists a linear sliding surface parameter matrix Ssatisfying P1-P2 and the sliding
surface

o(X)=Sx=(B'Y'B)'B'Y'x=0 (4.45)
will guarantee that the sliding mode dynamics (4.41) is asymptotically stable.

Proof: By using Schur complement formula [48], we can easily show that in fact the

following LMIs are incorporated in the LMIs (4.42)-(4.44)
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¢ >0, ¢, >0, n>0, ”HH' <I, 2’k >r(cl +C)). (4.46)
It is clear that if the following inequality (4.47) holds, then

B+ HF(B)G =1 + HF(F)G is nonsingular and hence P1 holds
SHF(B)GG'FT(BH'ST < 1. (4.47)

Using (4.38), (4.39), (4.46) and GG’ s||G||2I =rl, we can obtain

SHF (B)GGTFT(S)HTS" < L5, (4.48)

2

By using the Schur complement formula, we can see that (4.43) and (4.46) imply
0<c'l <Y<gl, 0<c'l<Y'«cl (4.49)
and this leads to

SHF(A)GGIET(B)HTST <L ssT <52 gy <[5 | (4.50)
7 n K7

Using the inequality - 2ab < a’ +b* wherea and b are scalars, we can show that (4.50)
implies

r
K7]2

SHF(B)GG E(BHTS' < 5 (C+C)l. (4.51)

Finally, by using the above inequalities (4.46) and (4.51), we can obtain
SHF(B)GG'FT(B)H'S' S%SST < (4.52)
n
which implies that [SB+ SHF (f)G]is nonsingular, i.e., P1 holds.
Now, we will show that Sof (4.45) guarantees P2. Using the matrix inversion lemma:
(I1+AB)"' =1 -A(l +BA)'B

where Aand Bare compatible constant matrices such that (I + AB)is nonsingular,

we can show that the sliding mode dynamics (4.41) is equivalent to
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U, = Y A ON YA ATCB)(A +TIL, YAV, (4.53)

where C(B)=1—-H[l +F(B)GH "' F(B)GS=[l + HF(B)GS]"
=1 —HF (B)G[!| + SHF (8)G]'S=D().
The sliding mode dynamics (4.53) is asymptotically stable if there exists a positive

definite matrix P, € R"™™ "™ such that the time derivative of the Lyapunov function

E, (D)= V! Pv, satisfies for some positive scalar r
E,()=2) B0V RZ (B, <-1V]V, (4.54)
i=1

where Z,(f) = (A, + B[l =N(A)D, ' N(B)C,,) . Ag = (AYA) AT (A + TIL ())YA,
B, = (ATYA)'ATH €,y = (A-+T,I1, (1))YA ,D, = H ;N(B) = -F(B)GS.
It should be ‘notedv that the inequalities (4.39), (4.46), (4.52) and
GG™ <|G|’I = rl imply

N(BNT(B)=F(B)GCSS'G'F' () <n’lon’Dy D, =n*HTH <1.  (4.55)

This and (4.54) imply that (4.53) is asymptotically stable if there exists a positive
definite matrix P, such that

PA, +P,B,[I —=N(B)D,]'N(B)C,, +*<0, Vi (4.56)
where * represents blocks that are readily inferred by symmetry. Let z
be z =[1 -=N(B)D,]'N(B)C,,ywhereye R"™™. Then Zz can be rewritten as z =
N(B)C,y+D,z] .This equality and (4.55) imply z'z <n’[C,y+D,z]
[C.,,Y+ D,z ]and this leads to
2y"R,B,[1 - N(B)D,] "' N(B)C,y

=2y'PB,z <2y'P,B,z +[C,y+D,z1"[C,,y+D,21-77% 2
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=y'C\C,Y+2Y'[P,B, +CD,]z, -1 >2'Qz, where Q=1-7’D,D,. (4.57)
Since Q2 > 0, the following inequality holds for any (Y, z):
2y'[P,B,+CD,]1z <nz'Qz +n°y'[P,B, +C|D,]Q'[P,B, +C[D,]" y(4.58)
Using (4.57) and (4.58), we can show that the Lyapunov inequality (4.56) is satisfied if
the following inequality holds:
P,A, +A,P, +CiC, +7°[P,B, +C}D,1Q'[P,B, +C;D,]" <0.
Using the Schur complement formula, we can rewrite the above inequality as

AP, % %
By P, =l x.0<0,  Vi. (4.59)
Ci b, |

Let the positive definite matrixP, be P, = A"YA where Y'is_a solution to LMIs

(4.42)-(4.44), which implies- that the sliding mode dynamics (4.53) is asymptotically
stable. Hence, the sliding mode dynamics(4.41) is asymptotically stable.

After the switching surface parameter matrix..Sis designed so that the reduced
(n—m)order sliding mode dynamics has a desired response, the next step of the SMC
design procedure is to design a switching feedback control law for the reaching mode
such that the reachability condition is met. If the switching feedback control law
satisfies the reachability condition, it drives the state trajectory to the switching surface
o = SX=0and maintains it there for all subsequent time. With o of (4.45), we design
an adaptive fuzzy control law guaranteeing that o converges to zero. We will use the
following nonlinear adaptive switching feedback control law as the local controller.

Control rulei: IF 6,is u; and ...and O is u,, THEN

U(t) = —hit, )~ 70— SA + T, O)X——— 8 (L%
- |
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where 5,(t,X) = a; + o S(A + T, (t))><||+(1+a))2|k:0 Di ><1|k (4.60)

b =cllel- I @6)

and oc=Xw= x/F”SH ,a,>0,7,>0,6, >0. It should be noted that (4.52)

implies o = \/F”SH || < \/F”S””H || < 77||H || This and (4.46) guarantee 0<w<1. The

final controller inferred as the weighted average of the each local controller is given by
ut) =-ht,x) -3 4 (9)[;m +S(A +TI], (t))x+$aﬁ t, X)ﬁj (4.62)

and we can establish the following theorem:

Theorem 4.4 Consider the closed-loop control system of the uncertain system (4.37)
with control (4.62).Suppose . that. the LMIs (4.42)-(4.44) has a solution vector
(Y,c,,c,,n7) and the linear sliding-surface is given by (4.45). Then the state converges

to zero.
Proof: Since Theorem 4.3 implies that the linear sliding surface (4.45) guarantees

P1-P2, we only have to show that .o converges to zero. Define a Lyapunov function as
E,(t)=0.50"c + 0.5§ZL:0 P where E=1+w@ and p, =p,—p. The time
derivative of Ej(t) is Eg =0 G+ cf”a”ZIk:O ,5k||x||k. From (4.37), (4.45), (4.62),
|SHF(B)G| < Vr|sH| =@ 0<w<1, and A2, we obtain

oc'c=0' ZLI B(OS(A +TIT ()x(t) +o'[l +SHF(B)G][u+h(t,x)]

<20 B0 S(A +TILO)XW) + 0" u+ {ofu]+ (1 + o), 9)]o]

<=3 AOLlf -3 AOalo] - ol , Al
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This implies that E, <-(1-0)Y. A xlo] - B (0)ax|o| <0 which indicates

that E, el,nL,, E el,. Finally, by using Barbalat’s lemma, we can conclude

that o converges to zero.

Remark 4.2 Theorem 4.3 and 4.4 can be summarized in the form of the following

LMI-based design algorithm.

Sep 1: Obtain lez.llB, and H :%[(B—Bl),---,(B—Br)] for given B .
r ==

Sep 2: Check that (A, B)is stabilization. If not, exit.
Sep 3: Find a solution vector(Y,C,C5,77) to LMI(4.42)-(4.44).

Sep 4: Compute the sliding surface parameter matrix Sby using the formula of (4.45).

Jep 5: The controlleris given by-(4.62).

4.3.3 Numerical. Examples [

Example 4.3 To illustrate the performance of the proposed adaptive fuzzy control
design method, consider the following two-rule fuzzy model from a vertical take-off
and landing (VTOL) helicopter model [55]

Plant Rule 1: IF X is about 0, THEN
X=(A +T,II,(t)x+ B,[u+ h(t, x)]
Plant Rule2: IF X,is about +2, THEN

x= (A, +T,IT,(t))x+ B,[u+ h(t, x)]
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-0.0366 0.0271  0.0188 —0.4555 0

0.0482 —1.0100 0.0024 —4.0208 0
where A = s =1, = )
0.1002 03181 —0.7070 1.4100 0.1
0 0 1 0 0
~0.0366 0.0271 0.0188 —0.4555 0.4422  0.1761
A - 0.0482 —1.0100 0.0024 —4.0208 5 3.5446 —7.5922
1 0.1002 04181 —0.7070 14300 [ ' |-=5.5200 4.4900 |
0 0 1 0 0 0

0.4422  0.1761
3.6446 —7.5922

B, = L, () =11,(t)=|0 sint 0 sint|,
? 1 =5.5200 4.4900 (=11, =] J
0 0
. T 1-1/(T+e ")
h(t, x) = d(t) +[0.9sin 3. 0.9sin3t]", B, = T B =1-5. (4.63)
- .

It should be noted ithat' T, and-T,are not matched and thus the previous VSS-based
fuzzy control design methods cannot be applied to the above system (4.63). Via LMI
optimization with (4.63), we can obtain the sliding surface o =Sk

By setting ﬁ(t,x) = [0.9sin 3t O.9sin3t]T and yr =12, =00Lr=21=1, ¢ =1, and

t =0.01sec, we can obtain the following nonlin€ar controller:

sampling

Control Rule 1: IF X, is about 0, THEN

u(t) =[-0.9sin3t —0.9sin3t] —o—S(A +T1Hl(t))x—$$1 sgn(o).
Control Rule 2: IF X is about+ 2, THEN

u(t) =[-0.9sin3t —0.9sin3t] —o—S(A +T2H2(t))x—$$2 sgn(o).

The final controller inferred as the weighted average of each local controller is given by

1
l-w

u(t) =[-0.9sin3t —09sin3t] -> B (9){0 +S(A +TII, () x+ 5 sgn(a)}

(4.64)
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To assure the effectiveness of our fuzzy controller, we apply the controller to

the two-rule fuzzy model (4.63) with nonzero d(t). We assume that d(t)

:[x1 sin2t —0.5sgn(X,) )qsin2t—0.55gn(x4)]T.The time histories of the state, p,, the
sliding variable o, and the input (4.64) are shown in Figure 4.6 when
X (0) =X,(0)=x%,(0)=0, X,(0)=10.

From Figure 4.6, the proposed controller is applicable to T-S fuzzy systems with
mismatched parameter uncertainties in the state matrix and unknown norm-bounded
external disturbances. The control performances are satisfactory. Besides, in Figure 4.6,
since it is impossible to switch-the input u instantaneously, oscillations on control input
u always occur in the sliding mode of an SMC system. It should be noted that all
existing VSS-based /fuzzy control-system design methods cannot be applied to the

two-rule fuzzy model (4.63) because B, is not in the range space of B, .
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Figure 4.6 Simulation results with X, (0) = X, (0) = X,(0) =0, X,(0) =10.
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Example4.4 For the special case of IT, (t) =0, the robust adaptive controller design

is proposed in [64]. Consider the following inverted pendulum on a cart

X =X, X, :iBgsin X, —3acos X, [u+d(t) +¢]), X, = X,

X, = —l(l.Smag sin2x —4alu+d(t)+¢]) (4.65)
v

where X is the angle (rad) of the pendulum from the vertical, X,=X,, X;is the
displacement (m) of the cart, X=X, y=4-3macos X, ¢ =mIx:sinx, Uis the input,
and d(t)is related to external disturbances which may be caused by the frictional force.
a=1/(m+M), mis the mass of the pendulum,-M-s the mass of the cart, 2l is the
length of the pendulum,’ g=9.8m/S’is the gravity constant. We set M =9kg
,m=1kg | =1m We assume that-d(t)is-bounded as ‘| d(t)| < g, +pX| where p,and

p, are unknown constants. Here, we approximate the system (4.65) by the following

two-rule fuzzy model.

Plant Rule 1: IF X isabout 0, THEN
X = Ax+B[u+h(t, X)]
Plant Rule2: IF X, is about £60°(+z/3 rad), THEN

X = AX+B,[u+h(t,x)]

0 1 0 0 0 0 1 00
79459 0 0 O -0.0811 6.1945 0 0 O
where = , B = , A= ,
0 0 0 1 0 0 0 0 1
-0.7946 0 0 O 0.1081 -0.3097 0 0 O
0
—0.0382 ) 1=1/(] + @ 4x=7/8)
B~ N0 =d®+ K sing, 4 - lie_wx]wg) ) B —1-B. (4:66)
0.1019
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Because B, is not in the range space of B,, all existing VSS-based fuzzy control

system design methods cannot be applied to the above system (4.66). Via LMI

optimization with (4.66), we can obtain the sliding surface o= XX.

By setting ﬁ(t,x):><§sinx1,;(i =50 =Lr=2I1=1g =0.001, and t =0.01sec, we

sampling
can obtain the following nonlinear controller:

Control Rule 1: IF X is about 0, THEN
u(t) =—x; sinx, =50 — SAlx—lLéA1 sgn(o).
-
Control Rule 2: IF X is about+60°(+7/3 rad),THEN
2 . 1 2
u(t)=—-Xx;sinX —50 — SAZX—1—§2 sgn(o).
-
The final controller inferred as the weighted average of each local controller is given by
u®)=-—x sinx, =y B (9){50 + szs,x+1L$i sgn(a)} (4.67)
- ~@

To assure the effectiveness of our fuzzy controller, we apply the controller to the

two-rule  fuzzy medel . (4.66) with nonzero « d(f)» We assume that
d(t) = x, sin27t —0.5sgn(X,).  The time histories —of the state, p,, the sliding
variable o, and the input (4.67) are shown in Figure 4.7 when x,(0) =40°(27/9 rad),
X,(0) = %,(0) = X,(0) = 0. In Figure 4.7, it should be noted that since it is impossible to

switch the input u instantaneously, oscillations always occur in the sliding mode of a
SMC system. From Figure 4.7, the control performances of the proposed controller are

also satisfactory for the two-rule fuzzy model (4.66).
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4.3.4 System Formulation II

Consider the following uncertain T-S fuzzy model [49], including parameter

uncertainties and unknown norm-bounded external disturbances:
X(t) =D B (O A +AA (DOIX(H) + B [u(t) + h(t, x)]) (4.68)
i=l1

where X(t) e R"is the state, u(t)e R™ is the control input, A,B are constant
matrices of appropriate dimensions, AA (t) represents the parameter uncertainties
in A,h(t,X)eR" denotes external disturbances. 6 =[6, 50:1,0,(] =1,.---5) are the
premise variables, S is the ‘number- of the. premise variables, f(60)=
w (0)/ Zj; ®,(0),® : R%=>[01],i =1,--,r is-the.membership function of the system with
respect to plant rulevi,r is the number of the IF-THEN rules, ;. can be regarded as

the  normalized .. weight  of each  IE<-THEN ‘rule ..and it satisfies

that 4(6) 20. Z lr _ Bi(0)=1. We will assume that the followings are satisfied:

Al: The nxm matrix B defined by lez_r ,Bysatisfies  the rank constraint
r ="

rank (B) =m, i.c., the matrix B has full column rankm.
) |
A2: The function h(t,x) is unknown but bounded as H h(t, xX) — h(t, X)H < Z pk”x”k
k=0

where p,, -+, p, are unknown constants, ﬁ(t,x) is an estimate ofh(t,x), andlis a

known positive integer.

A3: AA(t) is of the form TII,(t) where II, (t) is unknown,

[AA (t)] < @, and
TT =TI ().

The system (4.68) does not have to satisfy the restrictive assumption that all the input

matrices of the local system models are in the same range space. It should be noted that
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the assumption Al implies that rank(B) < mand each nominal local system model
may not share the same input channel. The assumption A2 with | =1 and
ﬁ(t,x) = 0 has been used in the literature [50]. We can set ﬁ(t, X)as the nominal value
of h(t, X). Using the above assumptions, the uncertain T-S fuzzy model (4.68) can be

written as follows.
0= 3 A OXA +TILO)X0) 4B+ HF (8)G][u+ h(t. ) (4.69)
where 8=[f,(6); - . (0)],and the matrices H,G,F(f) are defined by
H = (BB BB 6 2. 1T,

F(§) = diag [(1 - 23, () -10= 25, (0)1 } (4.70)
It should be noted that “the  system © (4.68) .does mnot have to satisfy
B, = B, =--- = B,, which is used in almost all published results on VSS design methods
including the VSS-based fuzzy control design methods of [33,34]. Hence the methods

[30,31] cannot be applied to the above model (4.68).. Since £ (0)>0 and

Z::l L(0) =1,we can see that the following inequality always holds:

FIBFB) =FBF (P <I. (4.71)
The following lemma will be used to establish our main results.

Lemma 4.1 For any vectors a and b with appropriate dimensions, the following

inequalities hold for any W >0:
2a’b<a'Wa+b'wW'b.
Proof: The above inequality is derived from (Wa —b)"W ™' (Wa —b) =a'Wa+b'"W™'b
—2a'b>0.
Many examples in the literature and various mechanical systems such as motors and

robots do not satisfy the restrictive assumptions that each nominal local system model
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shares the same input channel and they fall into the special cases of the above model
[49]
4.3.5 LMI-based Adaptive Control Design II

The Sliding Mode Control (SMC) design is decoupled into two independent tasks
of lower dimensions: The first involves the design of m(n—1)—dimensional switching

surfaces for the sliding mode such that the reduced order sliding mode dynamics
satisfies the design specifications such as stabilization, tracking, regulation, etc. The
second is concerned with the selection of a switching feedback control for the reaching
mode so that it can drive the system’s dynamics.into the switching surface [33]. We
first characterize linear sliding surfaces using LMIs.

Let us define the linear sliding surface as o =Sx=0wherte Sis a mxnmatrix.

Referring to the previous results-{33], [S1], we can see that for the system (4.69) it is
reasonable to find a'sliding surface such that

Pl [SB+ SHF (8)G]is nonsingular for any f satisfying f.(8)>0,i =1,---,r, and

B0 =1
P2 The reduced (n-— m)order sliding mode dynamics restricted to the sliding surface

Sx = 0is asymptotically stable for all admissible uncertainties.

It should be noted that P1 is necessary for the existence of the unique equivalent control

[33] and the assumption Al is necessary for the nonsingularity of SB.

Define a transformation matrix and the associated vector vas M =[A(A"YA)™
YTBB'Y BT =[V',S'",v=[V/,v]]" = Mxwhere V,e R"™™ v, e R". By the
above transformation, we can see that M~ =[YA,B]and V, =c. Then, from system

(4.69), we can obtain
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W]_& o VACTILONA V(A +TIL0)8][y
o720 g T ONA SATILO)B Lo

+[ VHR(AG 4.72)

|+ SHF(ﬂ)G}[u + h(t, X)].

Then from the equivalent control method [33], we can see that the equivalent
control is given by ueq(t)z—z:zlﬂi(e)[l +SHF(B)G] ' S(A +TIT, (t))x-h(t, x). By
setting 6 =0 =0and substituting u(t) with Uy (t), we can show that the reduced

(n—m) order sliding mode dynamics restricted to the switching surface o =Sx=0is

given by

U, = 3 B,(@VAYA) 'ATD(B)A + T @)YAY, (4.73)

where D(B) = | — HF (B)G[L+=SHF (8)G]'S.
Theorem 45 Let us consider the sliding mode dynamics (4.73). If Y e R™
,¢, eR¢ eRc,eRSeRneRare decision variables, k=1, (B'B), AeR™™™is

any full rank matrix-satisfying B'A =0,A"A =1, [AA(|I<«, , and *represents
y ymg A P

blocks that are readily inferred by'symmetry such that the following LMIs holds:

AT(AY +YAT +d,DA pATH CATYAT o, ATY o, ATY ]
nH™A —1 nHT 0 0
AYA nH  —(1-0)l 0 0 |<0, Vi  (4.74)
a, YA 0 0 —c,| 0
a, YA 0 0 0 -5l
Y | 0
| ¢l 0 |>0, (4.75)
0 0 cl-Y
2k * *
rc rnp 0 [>0. (4.76)
rcc 0 rpg
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Suppose that the LMIs (4.74)-(4.76) have a solution vector(Y,C,,C,,C,,5,77), then there

exists a linear sliding surface parameter matrix Ssatisfying P1-P2 and the sliding

surface
o(X)=Sx= (BTY‘1 B)‘1 B'Y 'x=0 4.77)

will guarantee that the sliding mode dynamics (4.73) is asymptotically stable.

Proof: By using Schur complement formula [48], we can easily show that in fact the
following LMIs are incorporated in the LMIs (4.74)-(4.76)

¢ >0, ¢, >0, n>0, ”HH' <I, 2’k >r(c] +c]). (4.78)
It is clear that if the = following . inequality (4.79) holds, then

B+ HF ()G = | + HF ()G is nonsingular and hence P1 holds

SHF(BGG F(SH S< 1! (4.79)

Using (4.70), (4.71), (4.78) and GG s||G||2| =rl, we can obtain

[
oy

SHF(B)GG'FT(B)H'S' <SS, (4.80)

By using the Schur complement formula; we can see that (4.75) and (4.78) imply

0<c'l <Y<gl, 0<c'l <Y '<cl (4.81)

and this leads to

SHF(B)GGTFT(HHTST <L ss” <92 (gTR) ' < [9% |, (4.82)
n

n K1
Using the inequality 2ab < a®+b’*wherea and b are scalars, we can show that (4.82)

implies

SHFE(B)GG FT(BHTST <—(c? +c)l. (4.83)
2xn

167



Finally, by using the above inequalities (4.78) and (4.83), we can obtain
SHF(A)GG FT(BHS" < s5" <| (4.84)
n

which implies that [SB+ SHF (f)G]is nonsingular, i.e., P1 holds.

Now, we will show that Sof (4.77) guarantees P2. Using the matrix inversion lemma:
(1+AB)"' =1-A(l +BA)'B

where Aand Bare compatible constant matrices such that (I + AB)is nonsingular,

we can show that the sliding mode dynamics (4.73) is equivalent to

U, = A ON YA SATCUAA B T, (D)YAY, (4.85)

where C(f) =1 —H[l +F(B)GH]'F(BGS=[| +HF(B)GS"
=1 —HE(B)G[l + HF(B)G] 'S=D(f)-and v, =(ATYA)"'ATx
The sliding mode _dynamics (4.85) is asymptotically stable if there exists a positive

definite matrix P, € R""™ "™ such that-the time derivative of the Lyapunov function

E, () =V, R, satisfies for some positive scalarz

E,(0) =23 BV RZ AN <7V, (4.86)

where Z, () = (A, + B,[1 =N(8)D,1'N(BC,,), A, = (ATYA) AT (A +TII, (1)) YA
,B, = (ATYA)'ATH ,C,, = (A +T,IT,(t))YA,D, = H ,N(B)=-F(B)GS.
It should be noted that the inequalities (4.71), (4.78), (4.84) and
GG™ <|G|’1 =rl imply

N(BNT(B)=F(B)GSS'G'F'(B)<n’l,n°DyD, =n"H'H < 1.  (4.87)
This and (4.86) imply that (4.85) is asymptotically stable if there exists a positive

definite matrix P, such that
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P A, +P,B,[I —=N(B)D,]'N(BC,, +*<0, Vi (4.88)
where * represents blocks that are readily inferred by symmetry. Let Zz be
z =[I -N(B)D,]'N(B)C,,y where ye R™™ .Then Zz can be rewritten as
z = N(B)[C,y+D,z] .This equality and (4.87) imply 2z z <7’[C,y+D,z]
[C.,,Y+ D,z ]and this leads to
2y"P,By[1 ~N(8)D, " N(B)C,,y
=2y'PB,z <2y'P,B,z +[C,y+D,z1"[C,,y+D,21-77% 2
=y'C\C,y+2y'[P,B, +C D1z, — 1’z Qz where Q=1-7°D,D,.(4.89)
Since Q2 > 0, the following inequality holds for any (Y, Z):

2y'[P,B, +C,,D,1z.<n°2'Qz+ 1 y' [P;B, +CD,1Q[P,B, + C,,D,1" Y (4.90)
Using (4.89) and (4.90), we can show that the Lyapunov inequality (4.88) is satisfied if
the following inequality holds:

R A, + AP, +CCiy + 7°[RB,& CiD, IO [BB; + C, Dy1%:< 0.
Using the Schur complement formula, we can rewrite the above inequality as

AR, +x
P, -1 *|<0, Vi. (4.91)
Cio m, |

Let the positive definite matrix P, be P, = ATYA where Y is a solution to LMIs

(3.74)-(3.76), then the above matrix inequality (4.91) can be rewrite as

ATI(A +AA (D)) +%]A 7ATH  ATY(A + AA ()T
nHTA y nH T <0, Vi (4.92)
(A + AA (1) YA nH y

where AA (t) =TI, (t). The matrix inequality (4.92) is satisfied if the following

inequality holds for any nonzero vectors: z' = [ZIT z, Z3T]
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27T AT (A +AA (D)YAZ +22] (A + AA (1))YAZ
+2nzyH Az +2n2zHz, -2z, — 7, Z, <0. (4.93)
Lemma 4.1 implies that if ||AA (t)” < a,, the following inequalities hold:
2z ATAA (H)YA Z, <c,zl ATAz, + a’c;'zl ATY? Az, (4.94)
2IAA(MYAZ, <822, +a’57'Z ATY 7Yz, (4.95)
The previous inequalities (4.94) and (4.95) imply that for all admissible
||AA (t)” < a,, the inequality condition (4.93) holds if
22/ A"AYAZ + ¢,z ATAz + a5 ' 2 'Y Az,
+a’c,'zl A'Y? Az, +22] AYAzZ +2nZ] HT Az,
+2n2]Hz, + 82,2, ~2)2, 2z, Z, <0. (4.96)

This implies that (4.92) holds if the following LMI (4.97) holds

a. a
AT(AY + YA ¢ +—AY2+7A‘Y2)A nA"H ATYA
CO

nH'A ~ | nH' [<0. (4.97)
AYA nH =15

By using Schur complement formula, the above inequality (4.97) can be rewritten as
the LMI (4.74), which implies that the sliding mode dynamics. (4.85) is asymptotically
stable. Hence, the sliding mode dynamics (4.73).is'asymptotically stable.

After the switching surface parameter matrix Sis designed so that the reduced
(n—m)order sliding mode dynamics has a desired response, the next step of the SMC
design procedure is to design a switching feedback control law for the the reaching
mode such that the reachability condition is met. If the switching feedback control law
satisfies the reachability condition, it drives the state trajectory to the switching surface
o = SX=0and maintains it there for all subsequent time. With o of (4.77), we design
an adaptive fuzzy control law guaranteeing that o converges to zero. We will use the

following nonlinear adaptive switching feedback control law as the local controller.
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Controlrulei: IF 6,is p;, and...and 6 is u,, THEN

U =-Ft0 - 710~ SA +TT X6 (02
-

o]
where 5,(t,%) = a; + o S(A +TT] )x”+(l+a))z AlX" (4.98)

b =cllel- I (499)

and oc=Xw= ,% >0. It should be noted that (4.84) implies

a):\/F”SH” wzx/F”SH"S\/ﬂH||H||S77||H|| This and (4.78) guarantee 0<w<1.

The final controller inferred as the weighted average of the each local controller is

given by

u(t):—ﬁ(t,x)—zr:,b’i(@)(;(ia+8(Ai T xhem 5(t x)|| ”} (4.100)

and we can establish the following theorem:

Theorem 4.6 Consider the closed-loop control system of the uncertain system (4.69)
with control (4.100). Suppose that the LMIs (4.74)-(4.76) has a solution vector
(Y,c,.c,,c,,0,n) and the linear sliding surface is given by (4.77). Then the state
converges to zero.

Proof: Since Theorem 4.5 implies that the linear sliding surface (4.77) guarantees

P1-P2, we only have to show that o converges to zero. Define a Lyapunov function as

E, ()= 0.50 o + O.5§ZL:O D, where £ =1+ and p, = p.—p,. The time derivative

. | k
of By(1) is E;=o"o+¢|o|d, , AX| -From (4.69), (4.77), (4.100),

<+r |sH|=» 0<w<l and A2, we obtain

o'e=0c"Y, B(OSA +TIL )X +0'[| + SHF(B)G][u+h(t, )]
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<X A(O)0" S(A +TILO)X() +0Tu+ {wfu] + 1+ w)rt. x)l|o]
<37 AO6 STT =TI OWO) -1~y A O of

r - k
-2 Ao - elE, Al

-2

<YL BONTX TTT =TI O] -1 - o)X B Oz

r - k
- XL A @a]o] - el X, Al

From A3 and ¢, =[x X (TT7 -TIL ()x>0 , this implies that E,<

g <
= B@es|o] -1-o3 B@x|of =X B&)ao|<0 which indicates that
E,eL,nL,, Eg el,. Finally, by using Barbalat’s ‘lemma, we can conclude

that o converges to zero.
Remark 4.3 Theorem 4.5 and 4.6 can be summarized in the form of the following

LMI-based design algorithm.

Sep 1: Obtain B:lZr B andH =%[(B—Bl),~-~,(B—Br)] for given B, .
r

i
Sep 2: Check that (A, B)issstabilization. If not,exit.
Sep 3: Find a solution vector (Y, C,,C,,C,,0,77) to LMI (4.74)-(4.76).

Sep 4: Compute the sliding surface parameter matrix Sby using the formula of (4.77).

ep 5: The controller is given by (4.100).

4.3.6 Numerical Examples II

Example 45 To demonstrate the performance of the proposed adaptive control
design method, consider the following two-rule fuzzy model from a vertical take-off
and landing (VTOL) helicopter model [55]

Plant Rule 1: IF X, is about 0, THEN
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X=(A +TII,(t)x+ B,[u+ h(t, X)]

Plant Rule2: IF X;is about *2, THEN

X = (A, +T,IT,(t))x+ B,[u+ h(t, x)]

—0.0366 0.0271 0.0188 —0.4555] 0.4422  0.1761
0.0482 —1.0100 0.0024 —4.0208 3.5446 —7.5922
where A = , B = ,
0.1002 03181 —0.7070 1.4100 ~5.5200  4.4900
0 0 1 0 | 0 0
~0.0366 0.0271 .0.0188 —0.4555 [0.4422  0.1761
_| 00482 -1.0100 00024 -4.0208| | 3.6446 -7.5922
| 0.1002 04181 -0.7070 1.4300 |© 7 |-5.5200 4.4900 [
0 0 1 0 .0 0
0

Ti=T= , T, (ty= 11, (t) =[0—sint 0 sint]

1-1/(1+e ™
1ie‘14<xl“> ),,Bzzl—ﬂl. (4.101)

h(t,x) = d(t) +[0.9sin3t 09sin3t]"; S, =

Note that B and B,are 'not matched and almost existing VSS-based fuzzy control

design methods cannot be applied to the above system (4.101). Via LMI optimization

with (4.101), we can obtain the sliding surface o = X

By setting h(t, x) = [0.9 sin 3t 0.9sin 3t]T and y, =L, =0.0001, r=2,1=1, ¢ =2,

and t =0.01sec, we can obtain the following nonlinear controller:

sampling

Control Rule 1: IF X, 1s about 0, THEN
u(t)=[-0.9sin3t —0.9sin3t] —o—S(A +T1T1T)x—1L$1 sgn(o).
-

Control Rule 2: IF X, is about+2, THEN
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u(t)=[-0.9sin3t —0.9sin3t] —o - S(A +T2T2T)x—1L5A2 sgn(o).
-
The final controller inferred as the weighted average of each local controller is given by

ut)=[-0.9sin3t —0.9sin3t] —Zr:ﬁi(e){msm +TiTiT)x+1L5isgn(a)} (4.102)
—Q@

i=1

To assure the effectiveness of our fuzzy controller, we apply the controller to

the two-rule fuzzy model (4.101) with nonzero d(t). We assume that d(t)

=[025xsir2 7t-0.1sgn(x) 025%si2zt-0.1sgn(x)[.The time histories of the state, A,
the sliding variable o, and the  input (4.102) .are shown in Figure 4.8 when
X (0) = X,(0) = X,(0) = 0, X;(0)=10. In Figure 4.8, it should be noted that since it is
impossible to switch/ithe input v-instantaneously, oscillations always occur in the sliding
mode of a SMC system: From Figure 4.8, the proposed controller is applicable to
uncertain fuzzy systems with mismatched parameter uncertainties in the state matrix
and unknown norm=bounded 'external disturbances. The control performances of the
proposed controller are satisfactory for the two-rule fuzzy model (4.101). Note that
almost existing VSS-based fuzzy control system design methods cannot be applied to

the two-rule fuzzy model (4.101) because "B, is distinct from B, .
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Figure 4.8 Simulation results with X, (0) = X, (0) = X,(0) =0, X,(0) =10.
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Example 4.6 For the special case of AA(t) =0, the robust adaptive controller design

is proposed in [64]. Consider the following inverted pendulum on a cart

X =X, X, :iBg sin X, —3acos X, [u+d(t) + ¢]), X, = X,,

%, = —-(1.5magsin 2x —4a[u+d(t) + 4]) (4.103)
7%

where X is the angle (rad) of the pendulum from the vertical, X,=X,, X;is the
displacement (m) of the cart, X=X, y=4-3macos X, ¢ =mIX:sinx, Uis the input,
and d(t)is related to external disturbances which may be caused by the frictional force.

a=1/(m+M), mis the mass of the pendulum, M is the mass of the cart, 2l is the
length of the pendulum, g=9.8m/S s the gravity constant. We set M =9kg
,m=1kg ,| = Im We assume that d(t)is bounded as [d(t)<p, +p¥ where p,and p,

are unknown constants. To design the fuzzy controller (40), we must have a fuzzy
model. Here, we approximate the system (4.103) by the following two-rule fuzzy

model.

Plant Rule 1: IF X is about 0, THEN
X = Ax+B[u+h(t, x)]
Plant Rule2: IF X, is about £60°(+z/3 rad), THEN

X = A X+ B,[u+h(t, x)]
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0 1 0 0 0 0 1 00
79459 0 0 O —-0.0811 6.1945 0 0 O
where A = , = , = )
0 0 0 1 0 0 0 01
-0.79496 0 0 O 0.1081 -0.3097 0 0 O
0
—0.0382 : 1-1/(1+e 7%
BZ = 0 s h(tax)zd(t)+X2281nX15 ﬂl = 1+e_14(x1+,,/g) 5/82 :l_ﬂl' (4104)
0.1019

Via LMI optimization with (4.104), we can obtain the sliding surface o = X. By

setting ﬁ(t,x)=>(§sin>q, r=5a=1L r=2, |=1,¢=0001, and t =0.01sec,

sampling
we can obtain the following nonlinear controller:

Control Rule 1: IF X is about 0, THEN
U(t) = =X;sin X, — 50 = SA X %5’1 sgn(o).
-
Control Rule 2:1F X, is about+60°(£z/3 rad), THEN
2 . 1 &
U(t) = =X; sinX; =56 = SAZX—I—d2 sgn(o).
—@
The final controller inferred as the weighted average of each local controller is given by

u(t)=—x; sinx, —Zr:/i’l («9){50‘—1— SAX+1L5} sgn(o)] (4.105)
i=l -

To assure the effectiveness of our fuzzy controller, we apply the controller to the

two-rule fuzzy model (4.104) with nonzero d(t). We assume that
d(t) =X sin27t—0.5sgn(X,). The time histories of the state, p,, the sliding

variable o , and the input (4.105) are shown in Figure 4.9 when

X (0)=60"(27/9 rad), X,(0) =X,(0) =X,(0)=0. In Figure 4.9, it should be noted that

since it is impossible to switch the input u instantaneously, oscillations always occur in
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the sliding mode of a SMC system. From Figure 4.9, the control performances of the

proposed controller are also satisfactory for the two-rule fuzzy model (4.104).
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Figure 4.9 Simulation results with X, (0) =60"(27/9 rad), X,(0)=X,(0)=X,(0)=0.
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4.4 Robust Adaptive Control for Mismatched T-S Fuzzy

Time-Delay Systems

In this section, system formulation for the uncertain T-S fuzzy time-delay model is
described in Section 4.4.1. A robust adaptive control method via LMI is proposed in
Section 4.4.2. Some examples are used to illustrate the effectiveness of the proposed

methods and to compare with the existing methods in Section 4.4.3.
4.4.1 System Formulation

The T-S fuzzy model is described by fuzzy IF-THEN rules, which represent local
linear input-output relations of nonlinear-systems.  The ith rule of the T-S fuzzy
time-delay model is of the following form:

Plant Rule i: IE@, 18 14, and ..“and €, is 14, THEN
X(t) = Ax(®)+ A x(t—d(t) + Bu(t), x()=w(t), te[-,0]
where (1) is the initial condition, X(t) e R"is the state, u(t) e R™ is the control
input, A € R™ are “the state matrices, A, e R™are the delayed state matrices,
B € R™are the input mafrices, @;(j.=l.-~S)are the premise variables, sis the
number of the premise variables, g, j(i =1,--,r;j=1:--,5) are the fuzzy sets that are

characterized by membership function,r is the number of the IF-THEN rules. The

time-varying delay d(t) is bounded as d(t) <z.The overall fuzzy model achieved by

fuzzy synthesizing of each individual plant rule is given by
X0 =D BOIAXD + AXt-d®) +Bu®], x(t)=w (1), te[-7,0]
=
where 9:[01,---,193],,@(9)=a)|(0)/zj;a)j 0),0 R —>[0,1],i=1:--r is the membership

function of the system with respect to plant rule i. The function £, (6) can be
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regarded as the normalized weight of each IF-THEN rule and it satisfies
that 5 (6) 20, z:zl S, (0) =1. To take into account parameter uncertainties and external

disturbances, we consider the following uncertain T-S fuzzy time-delay model:
(1) =D B(ON(A +AAMDXD) + (A +AA; ()X, (1) + B (u(t) + h(t, X, x,)],
=

X(t) =y (1), te[-7,0] (4.1006)
where X, (t)=x(t—-d(t)), AA(t) represents the parameter uncertainties in A,
AA_; (1) represents the parameter uncertainties in A, h(t,xX,) € R" denotes external

disturbances. We will assume that the following assumptions are satisfied:
Al:B, =B, =...= B, = Bandrank(B) =m

A2:The function h(t;X,X;) —is— unknown ‘but . bounded as ||h(t,x,xd)||

< Z::o pdk“ X”k + ZE:O 5dk||Xd||k where 5, py, and 9,5, 0y, are unknown
constants, and p,gare known positive integers.
A3: The time delay d(t)is unknown but bounded as d(t) < 7and d(t) < d., <1where
rand d, are known constants:
A4: AA (t)and AA, (t) are of the form TII,(t) wherell, (t)is a known time-varying
matrix but bounded as ||IT, (t)[ <1.

Using the above assumptions, the uncertain T-S fuzzy model (4.106) can be written as

follows:
X(t) = Zﬁi (OI(A + TIL ))x() + (A; + TIT; (1) x4 (1) + Bh(t, X, X3 )]+ Bu(t),
X(t) =w (1), te[-7,0] (4.107)

A large number of examples in the literature and various mechanical systems, such as
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motors and robots, fall into the special cases of the above model (4.96), as reported in
[44], [56-60]. The above model (4.107) also involves the uncertain time-delay system
models considered in the previous SMC design methods[44], [56-60]. The symbol =*
will be used in some matrix expressions to induce a symmetric structure. For given

symmetric matrices K and L of appropriate dimensions, the following holds:
K+X+x #| |[KeX+XT ZT
Z L] Z L

When no confusion arises, the arguments t, X, X,,6,etc... can be omitted for brevity.

4.4.2 Adaptive Control Design via LMI

The SMC design is decoupled into two independent tasks of lower dimensions.
The first is concerned:with the design of a sliding surface for the sliding mode such that
the reduced-order sliding mode dynamics satisfies the design specifications such as
stabilization, tracking, regulation, etc. The second involves choosing a switching
feedback control for the reaching mode-so that it can drive the system’s dynamics into
the switching surface [33]. We first design a sliding surface that guarantees asymptotic
stability of the reduced-order sliding mode dynamicsusing LMIs.
Defining a nonsingular transformation matrix M and the associated vector v = MxXsuch

that

M{ <AT_YA>_”AT_HV},V{VIHVX}MX @108
(B'Y'B)'BY"| |S v, | |

where v, e R™™,v, e R™. Then we can easily see that M~ =[YA,B]and Vv, =c. By

the above transformation we can obtain, we can transform (4.107) into the following

regular form:
RS I CS T B
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where v, =Vv(t—d(t))and

A, =Y ARIAT(A+TILONYAL A, =Y P AT(A + T (1)B,

i=1

A=Y ABY(A+TILMOWA, A, =Y BBTY (A +TIT,(1)B,

Km :Zr:ﬂi R 'AT (A, + TII, () YA, Krlz = Zr: BiP AT (A, + T (1) B,

A, =Y BBTY (A, +TILONYA . A, =Y S,BTY (A, + T,IT,(1)B.

Thus, from the above regular form, by setting .6 = o = 0, we can obtain the following

sliding mode dynamics :

a=Aa+ Ay (4.110)
wherea = V,,a, =¥ (t~d(t), A=A, and A =A,,.
Theorem 4.7 Let us consider the sliding'mode dynamics (4.110). If the matrix

AeR™™™ is any  full | rank —matrix-such. that ' BTA=0,A"A=1, the
matrices Y € R™, K e R™™("M "X e R™™™™ and #Z e R™™ ™™ are decision

variables, and *represents blocks that are readily inferred by symmetry such that the

following LMI holds:
Y >0, K>0
N, * * *
N N * *
. - ; <0, Vi (4.111)
X, tZ; —tAYA 0
N, N, 0 —7ATYA
where N, =K+A"(A +TIT,())YA + X, +*,

N21 = ATY(Ari + TiHi(t))TA - Xi + ZiTa sz :_(l_dm)K _Zi _ZiTv

N, = TAT(A +TIT; (1)YA, N, =2A" (A, + TIT; (1) YA.

189



Suppose that the LMI (4.111) have a solution (Y,K, X,,Z;) for givenA,A,,B,d,7,

then, there exists a linear sliding surface parameter matrix Sand the sliding surface
o(X)=Sx=(B'Y'B)'B'Y 'x=0 (4.112)
will guarantee that the sliding mode dynamics (4.110) is asymptotically stable.

Proof: Let us define a Lyapunov-Krasovskii function (LKF) as
T vt ot 7 .
V(t)=a (t)POa(t)+J‘t @ (s)Fa(s)ds+j jt ¢ (s)P,a(s)dsd
_ - +7

where P, = A'YA e R*"and F € R™"are solution matrices for the LMIs (4.111). It

should be noted that a large number of previous methods such as the methods given in
[42,43], have used similar Lyapunov-Krasovskii functions to obtain less-conservative
stability conditions by exploiting-information on the upper bounds of delay and its time

derivative. None of the previous SMC design methods [44], [56-60] have used the term

j° | : ¢"(s)Pc(s)dsdn in stability analysis. The time-derivative of the
-7 t+n
Lyapunov-Krasovskii function is given by

V, =2a' B (Aa + Ajay) 4 a'Fa—(1-d)a Fa,+1d" Pa —'[:_To'cT(s)R)d(s)ds.
By using (4.110) and the Newton-Leibniz formula o -, — I :_d a(S)ds=0, we have
\/g =2a"P(Aa + Aay)+a Fa-(1-d)a]Fa, + 1(Aa + Ajay) P (Aa + Aay)

[! TR+ 2a X +alZ Na—a,~ | a(s)ds)

where X=» g X and Z:Z B Z. By using the inequality 2X'y<x Hx+y'HY,

where X and y are any vectors with appropriate dimensions and H > 0, we can obtain
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Aa"OXT +al ®ZT " a(ds<rla’ OXT +al OZT IR [Xa(t) + Zay ()]
+j:_ a7 (S)P,d(s)ds

which leads to

Vg <2a" (RAa+PAa)+a Fa—-(1-d )ayFa, +rla’ X" +ayZ" P [ Xa + Za,]
+2(a" X" +agZ" a—-ay) +r(RAa+RAe,) B (RAa+RA).

By applying the Schur complement formula [48] to (4.111), we can obtain

{N“ . } {xf} _I[XT {ATY(A +TiHi(t))TA} _1|:ATY(A FTIL)A |

+7 R +7| + P T <0

N, N, z! z! AY (A +TIL (M) A AY(A; +TIL (1) A
(4.113)

This implies thatV, < —,u(”a”2 +||cxd ||2)for some . >0. After all, we can conclude that
the sliding mode dynamies (4.110) is stable.

After the switching surface  parameter matrix S is designed so that the
reduced-order sliding mode dynamics has a desired response, the next step of the SMC
design procedure is to design a switching feedback control law for the reaching mode
such that the reachability condition is met [33]. If the switching feedback control law
satisfies the reachability‘condition, it drives the state trajectory to the switching surface

o = SX=0and maintains it there for all subsequent time. In this section, we design an

adaptive fuzzy control law guaranteeing that o converges to zero. We will use the
following nonlinear sliding switching feedback control law as the local controller:

Control Rule i: IF 6, is p;,and ... and 6,is u;,, THEN

u(t) = —go — S(A + TIT, ()X - S(A, + T, (1), — £ (4.114)

(o3
i
g

“ 8= o] el @119

k A
, Pac = vielo|-[[x

DI

and ¢ >0,¢ >0,v, >0,y >0. The final controller inferred as the weighted average

A pPoA
wherek, = ¢, + Zk=o Pk

X4

of the each local controller is given by
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uct) = —Zr:ﬂi (9)(¢i0'+ S(A +TII, (t))x+ S(A,; + TIL, ()X, + &; ”i-”} (4.116)
i=1 (o2

and we can establish the following theorem.

Theorem 4.8 Consider the closed-loop control system of the uncertain system (4.107)
with control (4.116). Suppose that the LMI (4.111) is feasible and the sliding surface is
given by (4.112). Then, the switching feedback control law (4.116) induces an ideal
sliding motion on the sliding surface o =0in finite time and the state converges to
Zero.

Proof: Since Theorem 4.7 implies that the sliding mode dynamics restricted to

o = Sx=0is stable, we only have to'show thate converges to zero. Define a Lyapunov

function as E,(t) =0.50"c +0:53" Py +0.55 1 54 Where By = Py — Py and
B = B — 5o ThE ™ timederivative of E,s £, =olc 1o 5al¥ +|o]
> 5ylx| - FromSB= 1 , the assumption A2 and (4.116), we can obtain
o' =0" Y TR(S(A+TH, )X+ S(A+TII, ()X, ¥h)+o'u
<=2l Aalo 2 ZiBelel=lo R Auld - 1o I, dull
This implies that E;<->" Bdlo| =D Belo|<0 which indicates that

E, eLszw,Eg el,. Finally, by using Barbalat’s lemma, we can conclude

that o converges to zero.
Remark 4.4 Theorem 4.7 and 4.8 can be summarized in the form of the following
LMI-based design algorithm.

Sep 1: Check that (A + A, B)is stabilization. If not, exit.

Sep 2: Find a full-rank matrix A € R™™ ™ such that B'A =0,ATA=1.
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Sep 3: Find a solution vector(Y,C,,C,,77) to LMI (4.111).

Sep 4: Compute the sliding surface parameter matrix Sby using the formula of (4.112).

ep 5: The controller is given by (4.116).

4.4.3 Numerical Examples
Example 4.7 To illustrate the performance of the proposed adaptive fuzzy control
design method, Consider the following T-S fuzzy time-delay model [62] without

mismatched parameter uncertainties and external disturbances.

X0 = A (OIAXD) + A+ Bl @.117)
0 0.6 0.5 09 1 0
where X(t) = [Xl ® % (t)]T and A = |:0 | } A, :{ 0 W02 :|’ A = L 0}

09 0 1 1
A, = 1 16/l B= | ’ﬂlzl—l—eT'(t)’ By =1= Py

We assume thatd(t)=z=0.4,h =0,¢4 =0.05and & =1.Figure 4.10 shows the control
results for system (4.117) via the proposed controller (4.116) under the initial condition
w(t)=[30]". In Figure 4.10, it should be noted that'since it is impossible to switch the

input u instantaneously, oscillations always occur in the sliding mode of a SMC system.
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Figure 4.10 Control results for the system (4.117).
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Example 4.8 Consider a well-studied example of a continuous-time truck-trailer with

time-delay proposed in [63]. The time-delay model is given by

() =-a " xt)—(1-a) T x t—d)+ T
X ()= & x (O -(1-a) TR 0|)+ItO [u(®) +h(H)],

0 0

1) =atl _a) o t-
XM =ar—x®+1-a) —xt-d,

0 0

X, (t) = \i—Tsin[XZ(t) + a\zl—-[xl(t) +(1- a)% X (t —d)} (4.118)

0

where X, (t) is the angle difference between truck and trailer (in radians), X, (t) is the
angle of trailer (in radians), X (t) is the vertical position of rear of trailer (in
meters), U(t) is the steering angle (in radians), T =2.0,=2.8, L=55v=-1.0
and t,=0.5. The constant — parameter- a is the ‘retarded coefficient
satisfying a €[0,1].-The limits 1 and O correspond to a no-delay term and to a
completed-delay term. We assume that the disturbance input h(t)is unknown but
bounded as|h(t)| <1.By using the fact thatsin(X) = Xif X~ 0,we can represent the

above model as the following two=ruleT-S fuzzy model, including parameter
uncertainties and external disturbances:

Plant Rule 1: IF 8(t) is about 0, THEN
X=(A +TII,)x+ (A, + TII (t)x, + Bu+ Bh,
Plant Rule 2: IF #(t) is about + 7z, THEN

x=(A, +T,IT,(t)x+ (A, + T,IT, (t)) X, + Bu + Bh,

where O(t) = X, (t) + avT x,(t)/2L + (1 - a)vT x,(t —d)/ 2L
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PR LI “a-aT 0 o
Lt, Lt,
vT vT
-l a2l 0 o] =l 1-a)— 0 0],
A=l ag A=| (-
212 272
AL a—a¥ " o o
oLt, t, I 2Lt, ]
—aﬂ 0 0 —(l—a)ﬂ 0 0
Lt, Lt,
VT vT
A o Av=| -ar
212 212
alOvT 10vVT 0 (l—a)IOVT 0 0
L 2L~z T i L 2Lz i
_ﬂ_
It, 0.1
B=| 0 |« T/=T,=]0.1| II,(t)=TL{t)=[sint 0 0]
0 0.1
1 =1/(1+ e %"
B = ¢ 2(6+057) ), B, =1=p; h1=h2=h(t). (4.119)

1+e

We assume that d(t) =7z =0.1. Considering LMI optimization with the data
(4.119),a=0,7=0.1and d_, =0, we can obtain the sliding sutface o = Sx. By setting
¢ =0.05,¢,=0.01,&, =Lv, =0.1, 5. = 0. ,r=1,p=1,q=1, and teming = 0.01sec, we

can obtain the following fuzzy controller:

Control Rule 1: IF 4(t) is about 0, THEN
u(t) =-0.050 — S(A, + T,IT,(t))x—S(A,, + T.IT,(t))X, — &, sgn(o).
Control Rule 2: IF 4(t) is about + 7, THEN
u(t) =-0.050 — S(A, + T,IT, (t))x— S(A_, + T,IT, (t))X, — K, sgn(o).

The final controller inferred as the weighted average of each local controller is given by

u(t) = —i B[-0.050 — S(A, + TITL ()X+ S(A,, + TII, (t)X, + £ sgn(c)].  (4.120)

i=l
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To demonstrate the controller ability, we apple the above fuzzy controller
(4.120) to the system model (4.119) with h(t,X,X,) =X sin27t+ X,4 cos2rt
—0.5sgn(x;)andd(t) =7 =0.1. Figure 4.11 shows the closed-loop system responses
of (4.119) and the proposed controller (4.120) with the initial condition
w(t) =[0.47,0.87,—4]". In Figure 4.11, it should be noted that since it is impossible

to switch the input u instantaneously, oscillations always occur in the sliding mode of a
SMC system. From Figure 4.11, the proposed controller stabilizes uncertain fuzzy
time-delay systems with mismatched parameter uncertainties in the state matrix and
unknown norm-bounded external disturbances. The control performances of the

two-rule T-S fuzzy model (4.119) are satisfactory.
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Figure 4.11 Simulation results with the proposed method on the model (4.119).
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Chapter 5

Conclusion

The objective of this dissertation is to provide a stable and robust means for
uncertain nonlinear systems using T-S fuzzy models/time-delay models by applying
two kinds of LMI-based adaptive sliding control, including sliding control methods
and adaptive control methods. This dissertation proposes a complete approach to
fulfill the objective. This chapter summarizes the contributions of sliding control
methods and adaptive control methods in this dissertation and gives suggestions for

future work.

5.1 Contributions

Based on adaptive sliding control methods and robust stability criteria, the
following objectivesare achieved in this dissertation.
1. LMiI-based robust sliding control:

Firstly, a robust sliding control method is proposed for uncertain T-S fuzzy
models with matched parameter uncertainties and external disturbances. In the
VSS, the control design of the plant is intentionally changed by using a
high-speed switching feedback control to obtain a desired system response, from
which the VSS arises in finite time. The VSS drives the trajectory of the system
onto a specified surface, which is called the sliding surface or the switching
surface, and maintains the trajectory on this sliding surface for all subsequent
time. The closed-loop response obtained from using a VSS control law comprises
two separate modes. The first is the reaching mode in which the trajectory

starting from anywhere on the state space is being driven towards the switching
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surface. The second is the sliding mode in which the trajectory asymptotically
tends to the origin. The central feature of the VSS is the sliding mode on the
sliding surface on which the system remains insensitive to internal parameter
variations and external disturbance. In sliding mode, the order of the system
dynamics is reduced. We have relaxed the restrictive assumption that each
nominal local system model shares the same input channel, which is required in
the traditional VSS-based fuzzy control design methods.

Secondly, two sliding control methods are developed for distinct uncertain
T-S fuzzy models, respectively, under different assumptions. The uncertain fuzzy
systems under consideration have mismatched parameter uncertainties in the
state matrix and external disturbances.

Thirdly, arebust sliding control'method is presented for uncertain T-S fuzzy
time-delay models with mismatched parameter uncertainties and external
disturbances.

Finally, some examples are used to illustrate ‘the effectiveness of the
proposed methods for distinct uncertain T-S fuzzy models and to compare with

the existing methods in each final subsection.

2. LMlI-based robust adaptive control:

Firstly, a robust adaptive control method is proposed for uncertain T-S fuzzy
models with matched parameter uncertainties and external disturbances which
are bounded by unknown upper norm bounds. We have presented an adaptation
law to estimate the upper norm bounds. Moreover, we have relaxed the
restrictive assumption that each nominal local system model shares the same
input channel, which is required in previous VSC-based fuzzy control methods.

Secondly, two adaptive control methods are developed for distinct uncertain
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T-S fuzzy models, respectively, under different assumptions. The uncertain fuzzy
systems under consideration have mismatched parameter uncertainties in the
state matrix and external disturbances which are bounded by unknown upper
norm bounds. We have presented an adaptation law to estimate the upper norm
bounds.

Thirdly, a robust adaptive control method is presented for uncertain T-S
fuzzy time-delay models with mismatched parameter uncertainties and external
disturbances which are bounded by unknown upper norm bounds. We have
proposed an adaptation law to estimate the upper norm bounds.

Finally, some examples are used to-illustrate the effectiveness of the
proposed methods for distinct uncertain T-S fuzzy models and to compare with

the existing methods in each final subsection.

As shown in ‘simulation results, the proposed adaptive sliding control methods
can not only deal with different conditions of uncertain T-S fuzzy models but also
stabilize mismatched uncertain T-S fuzzy time-delay models. Besides, the control

performances of four systems are satisfactory in this dissertation.

5.2 Suggestionsfor Future Work

The objective of this dissertation is to provide a stable and robust means for
uncertain nonlinear systems using T-S fuzzy models/time-delay models by applying
two kinds of adaptive sliding control, including sliding control methods and adaptive
control methods. In the future, we can develop two kinds of adaptive sliding control
for mismatched wuncertain T-S fuzzy delay-time models, assuming

that AA (t) and AA,(t) are of the form TII,(t) where II,(t) is an unknown

time-varying matrix, and each nominal local system model of the uncertain system
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under consideration may not share the same input channel. Moreover, the proposed
approach may be further applied to other control system. Power control systems, robot
control systems, motor control systems, and filter design systems are the suggestions

for future work.
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