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Student�Tzu-Kuei Shen     Advisors�Prof. Chin-Teng Lin 

�

Institute of Electrical Control Engineering  

National Chiao Tung University 

ABSTRACT 

In recent years, the urban population and vehicles increase continuingly. 

The problems of city traffic are more and more serious, such as too many 

vehicles cause traffic jams and accidents frequently. These accidents do not only 

make people lost their life and fortune, but also waste lots of medical resources. 

Upper disastrous influences make enormous social costs, besides they also 

debase whole national economic competitiveness. For dealing with these 

problems, Intelligent Transportation System (ITS) becomes an important policy 

in each country. The main objective of ITS is to develop high-end technology on 

the electrical equipment in vehicles and traffic applications. Drivers can reduce 

the probability of traffic accidents and improve self-driving safety via 

controlling high-end assist driving technology and then achieve the goals of 

increasingly efficiency in road freight and energy saving and carbon reduction. 

This dissertation presents a whole integrated multi-sensors telematics safety 

system that can be divided into safety vehicle assistant system and intersection 

video surveillance system two parts. The first part contains obstacle detection 
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system and parking assistant system. The obstacle detection system one is 

transferred image coordinate into world coordinate by fisheye lens inverse 

perspective mapping modal (FLIPM) and follows the property of moving 

obstacle to position candidates’ location. The parking assistant system is based 

on computer vision algorithm via motion vector, and estimates the curve in the 

path of vehicle. The other segment is intelligent intersection surveillance system. 

Our concern is to consider a whole intersection events monitor system. It 

collects the traffic data from local intersection by embedded platform and then 

arranges these data for road side unit (RSU) to communicate with on board unit 

(OBU) in vehicles via DSRC protocol to set up an assistant safety telematics 

system.
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1.  Introduction 

1.1   Background and Motivation 

In recent years, there has been a dramatic proliferation of vehicle and population in the 

world. This city phenomenon has caused many traffic and environmental protection related 

problems, such as collision, traffic jam, traffic offence, exhaust emission and so on. In order to 

solve these problems, many advanced countries have started to develop Intelligent 

Transportation System (ITS). Up to now, ITS can be divided into automotive electronics 

technology and traffic control system two research fields. Driver’s fatigue, drowsiness, 

inattention, and distraction are reported a major causal factor in many traffic accidents. Due to 

the drivers lost their attention, they had markedly reduced the perception, recognition and 

vehicle control abilities. Since, related studies had become a major interest research topic in 

automotive safety engineering. Previously, vehicle detect obstacle via radar sensor, but its 

response speed is not immediately. Collision happening occurs if the warning signal of radar 

sensor is presented with a little delay time. Nowadays, mounting a fisheye lens camera on the 

bumper is a general method to let driver to see reverse direction scene. However, fisheye lens 

scene has a serious distortion formation of image. This effect makes driver to estimate distance 

and control the direction of vehicle difficultly. In the other field, microwave, ground loop and 

radar are now three kinds of popular methods for traffic control applications. All of them do not 

reconstruct traffic events specifically. On the roads, camera and digital video recorder (DVR) 

are used to monitor road condition and catch traffic offense. Management costs too much to 

employ people attending these surveillance systems. Since, a part of researches interesting in 

vision based traffic control and analysis start to aim the objectives of ITS, such as vehicle 

detector, event detector, self-adaptive traffic light control and so on. When we can get so much 

useful traffic related information from these sensors, we may begin integrating all of them to 

assist drivers keep danger away. Therefore, the concept of telematics is to exchanging 

information by any kind of detector sensor on the vehicle and road intersection. It a whole 

system focuses on communicating data, for instance, traffic condition, driver’s spirit state and 

navigation information etc.. Summarily, combing the advantage of vision-based sensor and 

telematics technology can develop a whole safety driver assistant system. 
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1.2   Objective and Methods 

This thesis presents a whole safety driving assistant telematics system including obstacle 

detection with fisheye lens camera on vehicle and road condition surveillance system. We 

develop a vision-based obstacle detection system by utilizing our proposed fisheye lens inverse 

perspective mapping (FLIPM) method. The new mapping equations are derived to transform an 

images captured by a fisheye lens camera into an undistorted remapped ones under practical 

circumstances. In the obstacle detection, we make use of the features of vertical edges on 

objects from remapped images to indicate the relative positions of obstacles. In order to obtain a 

suitable feature, adaptive road recognizing is the first step to extract obvious useless 

compensation points and mitigate interference by shadow and illumination changing. Our 

obstacle detection can export a warning signal on the screen within a limited distance from 

nearby vehicles while the detected obstacles are even with the quasi-vertical edges.  

Road condition surveillance system contains intelligent detector and communication 

module. We improve traditional surveillance system by integrating intelligent detectors and 

developing road side unit (RSU) and on board unit (OBU) to exchange traffic information. We 

set up multiple cameras on the intersection to capture video streams from different directions. 

First, we make use of adaptive Gaussian Mixture Model (GMM) to form basic background. We 

will track foreground objects’ location and predict their future path for estimating collision 

occurrence. According foreground objects’ moving speed and appearance, we classify 

pedestrian and vehicle to record the behavior of this intersection. We also establish a world 

coordinate system to map each camera view field. Upper information will be collected by RSU 

and transfer them to OBU for driver to remind possible danger. Our messages follow 

WAVE/DSRC SAE J2735 protocol and the effective transmission distance is over 100 meters 

long. This intelligent system also contains back-end storage equipment and control human 

interface with DVR and content management system.  

1.3   Organization 

This thesis is organized as follows: Chapter II gives an overview of related work about this 

research realm and discusses the traditional methods. Chapter III introduces our proposed 

system divided into three parts. First, we will show a new design of intelligent surveillance 

system. On the front-end, we present the structure of OBU and show the hardware 

configuration on a sport utility vehicle. On the back-end, RSU collects and process information 
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captured from multiple intelligent sensors. Chapter IV presents technologies used in each 

intelligent sensor. The sensors on vehicle contain FLIPM, obstacle detection with single camera 

and dynamic distance gauge (DDG) three techniques, and on intersection contain collision 

estimation, moving objects classification and coordinate correction. Chapter V shows 

experimental results of the implementation of our proposed algorithm and the successful 

working on actual environment. Finally, we made a conclusion of this study in Chapter VI. 
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2.  Related Work 

Our safety assistant driving system has four related researches. The first is telematics 

fundamental structure including WAVE/DSRC international protocol. Next, we will aim at 

inverse perspective mapping methods and indicate unsuited spot. Besides, correcting distortion 

image captured with fisheye lens is also an interesting study. There are two kinds of methods to 

deal with this problem. Third is the most important subject in safety assistant driving system, 

and we will confer deeply past methods with different sensors. Finally, we restrict the scope of 

tracking algorithm without recognition and classifying method. In this chapter, we will review 

some researches related to these main modules. 

2.1   Telematics 

Telematics includes two important compositions, one is telecommunications and the other 

one is informatics. Since Global Positioning System technology is applied to navigate on 

vehicle driving, the first telematics system would be produced. Nowadays, there are twelve 

kinds of popular contents for telematics applications, including telematics education, vehicle 

tracking, trailer tracking, cold store freight logistics, fleet management, satellite navigation, 

mobile data and mobile television, wireless vehicle safety communications, emergency 

warning system for vehicles, intelligent vehicle technology, car clubs and auto insurance etc. 

[1]. In our telematics system, we follow the international standard protocol called Wireless 

Access in the Vehicular Environment (WAVE)/ Dedicated Short Range Communication 

(DSRC). It follows IEEE 802.11p and IEEE 1609 international communication standard 

protocol, and suitable to exchanging information in short distance for safety assistant driving. 

The communication module is a multi-channels structure, and its licensed band is 5.8 to 

5.9GHz. There are seven channels with 10MHz Bandwidth, and the harmonized 5.9 GHz 

DSRC Band PLAN as shown in Figure 1. 
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Figure 1: Harmonized 5.9 GHz DSRC BAND PLAN  

Source: Industrial Technology Research Institute 

Standard of IEEE 802.11p is based on CALM [2] and ASTM [3] E2213-03. The former is 

an European system to provide a standardized set of air interface protocols and parameters for 

medium and long range, high speed ITS communication using one or more of several media, 

with multipoint and networking protocols within each media, and upper layer protocols to 

enable transfer between media. Its communication modes are on V2I, I2I and V2V. The other 

one follows International standard organization with US playing a major role. E2213-03: 

Standard Specification for Telecommunications and Information Exchange Between Roadside 

and Vehicle Systems - 5 GHz Band Dedicated Short Range Communications (DSRC) Medium 

Access Control (MAC) and Physical Layer (PHY) Specifications. It purposed to provide 

wireless communications over short distances between information sources and transactions 

stations on the roadside and mobile radio units, between mobile units, and between portable 

units and mobile units. DSRC performance envelopes are shown in Figure 2. 
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Figure 2: DSRC Performance envelops  

Source: Industrial Technology Research Institute 

IEEE 1609 (Full use) contains five services including 1609.1, 1609.2, 1609.3, 1609.4 and 

1609.11. 1609.1 is remote management service and 1609.2 is security services for applications 

and management messages. 1609.3 is networking services, and 1609.4 is multi-channel 

operation. Finally, 1609.11 is over-the-air data exchange protocol for ITS.  

DSRC SAE J2735 standard protocol defines Message Sets, Data Frames and basic Data 

elements, and exchange data with ASN.1 (Abstract Syntax Notation one) DER (Distinguish 

Encoding Rules). It is a popular communication method to encode and decode around the world, 

and easy to combine with other WAVE/DSRC equipment. Here we only discuss two kinds of 

related messages protocol to represent SAE J2735. One is Basic Safety Message (BSM), and 

the other one is Emergency vehicle Alert (EVA). DSRC SAE J2735 is based on Wave Short 

Message Protocol (WSMP) that contains many related safety driving message sets. In general, 

the structure of Safety Message Handler (SMH) is shown in Figure 3. The function of SMH is 

to transfer and receive data from upper and down layers. Supporting safety application message 

protocol with decode and encode capability can auto choose suitable coding rules for different 

applications either be receiving or transmitting mode. It also can filter some useless information 

and abandon them to only keep defined kinds of data.  
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Figure 3: The structure of SAE J2735  

Source:  DSRC SAE J2735 Rev 31. 

There is an important issue on correctly processing and maintain all kinds of safety 

information from multiple vehicles. In Figure 4, we show a package processing step, each 

package has a unique identifier to make the differentiation with other sources.  

Figure 4: A package processing step 
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Table 1 shows a list of SAE J2735 defined messages. All messages have their own purpose 

and fitting protocol.  

Table 1: Content sets of SAE J2735  

Contents 

1 MSG_Al_a_Carte (ACM) 

2 MSG_BasicSafetyMessage 

3 MSG_CommonSafetyRequest (CSR) 

4 MSG_EmergencyVehicleAlert (EVA) 

5 MSG_IntersectionCollisionAvoidance (ICA) 

6 MSG_MapData (MAP) 

7 MSG_NEMA_Corrections (NEMA) 

8 MSG_ProbeDataManagement (PDM) 

9 MSG_ProbeVehicleData (PVD) 

10 MSG_RoadSideAlbert (RSA) 

11 MSG_RTCM_Corrections (RTCM) 

12 MSG_SignalPhaseAndTiming Message (SPAT)

13 MSG_SignalRequestMessage (SRM) 

14 MSG_SignalStatusMessage (SSM) 

15 MSG_TravelerInformation Message (TIM) 

16 MSG_BasicSafetymessage_Verbose (BSV) 

 Basic safety driving information contains location, speed, and direction of moving or 

static vehicle. It is composed with two different kinds of elements. One contains upper 

necessary information of vehicle, and the other one depends on user selection. In Table 2, it is 

the VSC-A Basic Safety Message composing structure. 
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Table 2: VSC-A Basic Safety Message 

VSC-A Basic Safety Message 

Part I 

� Message Sequence Number 
� Temporary ID 
� Time 
� Position Latitude, Longitude, Elevation, Accuracy 
� Vehicle Speed, Heading, Steering Wheel Angle 
� Vehicle Accelerations, Yaw Rate 
� Brake Status 
� Vehicle Length, Width 

Part II 

Vehicle Events Object 

Vehicle Path History Object 

Vehicle Path Prediction Object 

Vehicle Relative Positioning RTCM 1002 Data Object 

In the newest version of SAE J2735 Rev. 31, it already defines 16 message protocols, 71 

data structures and 147 basic data units. All of them are applied on V2V and V2R message 

formats in application layer. The objective is to standardize the message format on RSU and 

OBU with different hardware platform. 
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2.2   Inverse Perspective Mapping (IPM) 

In general, the objective of camera calibration is to extract the intrinsic and extrinsic 

information of the camera and the extracted information could be used to reconstruct the 3D 

world coordinate. Nevertheless, the performance of camera calibration would depend on the 

perspective e��ect, lens distortion, and the number of cameras. An alternative method, namely 

inverse perspective mapping (IPM), was proposed to reconstruct the 3D world coordinates by 

using a single camera only. Broggi et al. [4, 5] utilized the IPM method and stereo cameras to 

detect obstacles in front of the vehicle, and implemented the parallel processor for image 

checking and analysis (PAPRICA) system Single Instruction Multiple Data (SIMD) computer 

architecture, to construct their obstacle and lane detection system, called GOLD (Generic 

Obstacle and Lane Detection) [5]. The GOLD implemented in the ARGO (derived from Argo 

and Argus, a research group from Italy) experimental vehicle made automatic driving possible. 

Ji [6] utilized IPM to get the 3D information of the front vehicle, and Cerri and Grisleri [7] 

presented the stabilized sub-pixel precision IPM image and the time correlation to estimate the 

possible driving space on highways. Muad et al. [8] used IPM to implement lane tracking and 

gave discussions of the factors which might have the influences on IPM. Tan et al. [9] 

combined IPM and the optical flow to detect obstacles for the lateral blind spot of the vehicle. 

Jiang et al. [10] proposed the fast IPM algorithm and used it to detect lanes and obstacles. Nieto 

et al. [11] introduced how to stabilize IPM images by using vanish point estimation. However in 

their approaches based on IPM, the planar objects such as lane markings were eliminated and 

the prominent objects like quasi-triangle pairs were reserved.  

Our algorithm used the IPM’s property; therefore, the polar histograms derived from the 

IPM images could help to obtain the information of images in 1-D distributions. For separating 

from non-planar obstacles, we also constructed a novel method to detect and localize obstacles. 

With the intrinsic and extrinsic parameters from camera calibration, the obstacle detection 

system could establish a transformation table for mapping the coordinates of real-road surfaces 

into the distorted image coordinates. The objective of IPM method was to remove the 

perspective effects caused by cameras, and the higher performance of IPM methods made it 

possible to achieve better image processing results. Since IPM methods have been proven to be 

more efficient and applicable to real traffic conditions, we would focus on developing an 

accurate IPM algorithm for both normal lens and fisheye lens by improving the previous IPM 

methods. Our obstacle detection system aimed at detecting obstacles with either vertical or 

quasi-vertical edges. In fact, the obstacles with the significant height in vertical or 
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quasi-vertical edges could be mapped to the radial lines of the transformed bird-view images. 

As a result, we could deal with the transformed images to extract the profile of edges and obtain 

the polar histogram for post-processing. ��
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2.3   Obstacle Detection 

The performance of those detection methods would obviously depend on the height, width, 

distance, and shape of an obstacle. There have been some other methods proposed for obstacle 

detection. Lai [12] used both of vision and the ultrasonic sensors on the mobile robot to detect 

the wall in the indoor environment. For the pedestrian detection, Curio et al. [13] used the 

contour, local entropy, and binocular vision to detect pedestrians. Bertozzi et al. [14] utilized 

stereo infrared cameras and three steps including warm area detection, edge-based detection, 

and v-disparity computation to detect pedestrians and used the morphological and thermal 

characteristics of heads to validate the presence of pedestrians. Though infrared cameras could 

perform well in either daytime or nighttime, the applications would be still restricted because of 

the higher prices of those cameras. There have existed many kinds of features such as symmetry, 

color, shadow, corner, Vertical/horizontal edges, texture, and vehicle light for vehicle detection 

[15]. Kyo et al. [16] used edges to detect possible vehicles and further validated the vehicles by 

the characteristics of symmetry, shadow, and differences in the gray-level average intensity, 

and Denasi and Quaglia [17] used pattern matching to detect and validate vehicles. These 

methods would usually fail if the obstacles did not match the defined models. For the general 

obstacle detection task, the optical flow-based and stereo-based methods have been most 

popular in recent researches. The optical flow based methods would detect obstacles by 

analyzing the differences between the expected and real velocity fields. Krueger et al. [18] 

combined the optical flow with odometry data to detect obstacles, but the optical flow-based 

methods would have the higher computational complexity and might fail if the relative velocity 

between obstacles and the detector was too small. For the stereo-based methods, Forster and 

Tozzi [19] utilized disparities of obstacles to detect obstacles and used a Kalman filter to track 

obstacles. However, stereo methods are highly dependent on the accuracy of identification of 

correspondences in the two images. In other words, searching the pairs of homogeneous points 

was much tougher for stereo-based methods. In recent years, there were two important subjects, 

including improving the accuracy of compensation estimation and obstacle detection. After an 

IPM image was acquired, a serious problem on resolution between the original and remapped 

images might be caused. Therefore, how to get an appropriate compensation result would be 

difficult, especially in our fish-eye lens approach. In Yang et al. [20], the compensation 

estimation was gained by the recursive method in trials and errors. Firstly, he chose randomly 

two pixels with a predefined distance to compare the optical flow values until gaining twenty 

pairs, and then used the median pair to be the value of compensation estimation. However, the 



13 

IPM remapped images may cause a serious problem for computing the optical flow values in 

case of the worse resolution. Furthermore, even if the recursion method was used to avoid 

choosing non-planar pixels, it was still probably to get similar or non-planar points when the 

values of optical flows were very close. In our approach, we adopted the edge features and 

images with time difference to improve the above problems in both static and dynamic 

environments. For dynamic environments, since the non-planar edge features may change more 

vibrantly than planar edge features, the values of compensation estimation can be easily 

determined by the compensated image with the minimum number of candidate pixels of 

obstacles. To improve stability and robustness of our system, we considered both the time 

interval and the earlier k frames to average and update the latest compensation estimation. For 

obstacle detection, in Ma et al. [21] approach, he adopted the pedestrian features and 

symmetrical property to search the possible positions of obstacles in the region of interest. 

Although the performance of their system was acceptable, the results would be not stable and 

robust with the detection rate in 58% � 92%. That was because the pedestrians’ feet steps might 

be influenced by lane markings, shadows of trees, and any other planar noises. 
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2.4   Object Tracking 

Besides foreground segmentation, objects tracking is another key module of surveillance 

systems. The purpose of tracking module is to track moving objects from one frame to another 

in an image sequences. And, a tracking algorithm needs to match the observed objects to the 

corresponding objects detected previously. Useful mathematical tools for objects tracking 

include the Kalman filter, the condensation algorithm, the dynamic Bayesian network, the 

geodesic method, etc. Hu et al. [22] presented there are four major categories of tracking 

algorithms: region-based tracking algorithms, active-contour-based tracking algorithms, 

feature-based tracking algorithms, and model-based tracking algorithms. Firstly, region-based 

tracking algorithms [23] were dependent on the variation of the image regions corresponding to 

the moving objects. The motion regions were usually detected by subtracting the background 

from the current image. Secondly, active contour-based tracking algorithms represented the 

outline of moving objects as contours. These algorithms had been successfully applied to 

vehicle tracking [24]. Thirdly, feature-based tracking algorithms performed the recognition and 

tracking of objects by extracting elements, clustering them into higher level features, and then 

matching the features between images. The global features used in feature-based algorithms 

include centroids, perimeters, areas, some orders of quadratures, and colors [25], etc. Fourthly, 

model-based tracking algorithms localized and recognized vehicles by matching a projected 

model to the image data. Tan et al. [26] proposed a generalized Hough transformation algorithm 

based on single characteristic line segment matching an estimated vehicle pose.  

Besides, much research presented tracking algorithms with different categories integrated 

together for better tracking performance. McKenna et al. [27] proposed a tracking algorithm at 

three levels of abstraction: regions, people, and groups in indoor and outdoor environments. 

Each region has a bounding box and regions can merge and split. A human is composed of one 

or more regions under the condition of geometric constraints, and a human group consists of 

one or more people grouped together. Cucchiara et al. [28] presented a multilevel tracking 

scheme for monitoring traffic. The low-level consists of image processing while the high-level 

tracking is implemented as knowledge-based forward chaining production system. 

Veeraraghavan et al. [29] used a multilevel tracking approach with Kalman filter for tracking 

vehicles and pedestrians at intersections. The approach combined low-level image-based blob 

tracking with high-level Kalman filtering for position and shape estimation. An intermediate 

occlusion-reasoning module served the purpose of detecting occlusions and filtering relevant 

measurements. Chen et al. [30] proposed a learning-based automatic framework to support the 
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multimedia data indexing and querying of spatio-temporal relationships of vehicle objects. The 

relationships were captured via unsupervised image/video segmentation method and object 

tracking algorithm, and modeled using a multimedia augmented transition network (MATN) 

model and multimedia input strings. Useful information was indexed and stored into a 

multimedia database for further information retrieval and query. Kumar et al. [31] presented a 

tracking algorithm combined Kalman filter-based motion and shape tracking with a pattern 

matching algorithm. Zhou et al. [32] presented an approach that incorporates appearance 

adaptive models in a particle filter to realize robust visual tracking and recognition algorithms. 

Nguyen et al. [33] proposed a method for object tracking in image sequences using template 

matching. To update the template, appearance features are smoothed temporally by robust 

Kalman filters, one to each pixel. 

In regard to the cameras of surveillance systems, there are fixed cameras, active cameras 

and multiple cameras used for capturing the surveillance video. Kang et al. [34] presented an 

approach for continuous tracking of moving objects observed by multiple, heterogeneous 

cameras and the approach processed video streams from stationary and Pan-Tilt-Zoom cameras. 

Besides, much research used fixed cameras for the convenience of system construction and 

combining with the traditional surveillance system. 

In this dissertation, we combined region-based and feature-based tracking methods and 

used plentiful features as effective inputs of tracking analysis. This proposed algorithm can do a 

good job to handle multi-objects with occlusion events or split events.  
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3.  Structure of Safety Assistant Driving 

Telematics System 

In this chapter, we will present our system structure and the details of hardware platform in 

each part. The system structure is composed of two sub-systems: On Board Vision-Based 

Detection System and Intersection Intelligent Surveillance System. In section 3.1, we use a 

diagram of the global system to show two sub-systems and their functions. In section 3.2, we 

present the structure on the vehicle with vision-based sensors and how they work. In section 3.3, 

we present the RSU structure with communication module in intelligent surveillance system 

with embedded platform. 

3.1   System Overview 

Figure 5: Structure of Safety Driving Assistant Telematics System 

In Figure 5, there is an entire structure of our proposed system. The upper part is set on 

the intersection. Digital Video Recorder (DVR) responds to capture video from each camera 

on the different location. Intersection Intelligent Surveillance System analyzes and recognizes 

the content of video stream in four intelligent functions, moving object recognition, moving 

object tracking, collision prediction and coordinates calibration. Content Management System 

(CMS) also connects to DVR to receive video stream from DVR and configure parameters on 

Intelligent Surveillance System. In the end, Road Side Unit (RSU) gathers information 
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together and encodes message, follows SAE J2735 protocol, to broadcast the intersection 

condition.  

The lower part of Figure 5 is established on a vehicle. The on Board Vision-Based 

Detection System contains three intelligent functions, side collision warning (SCW), parking 

assistant system (PAS) and Obstacle Detection. SCW and PAS both are already developed on 

an embedded platform. Each of them captures the composite NTSC/PAL analog video signal 

from cameras, and exports the detection results via serial communication or CAN Bus to On 

Board Unit (OBU). Besides, the embedded platform also exports video stream with detection 

result on the screen to caution drivers. Obstacle Detection is a PC-Based Program, and it 

processes the video from reserve, right and left side of vehicle. Upper three directions’ 

outcomes will be rearranged their priorities with the detection results of intersection condition. 

After all, driver can obtain the entire driving related information and makes a decision when 

an incident is occurring.  

Figure 6: Structure of Telematics service platforms 

Source: Institute for Information Industry  

Figure 6 is the structure of OBU and RSU, they are two important facilities. The 

objective is to design a transmitting protocol for broadcasting local intersection condition to 

drivers. By WAVE/DSRC protocol, we can realize V2R and V2V applications via IEEE 

1609.3 and IEEE 1609.4. Besides, we also follow DSRC SAE J2735 standard to deal with 

related safety information, and package them by ASN.1 encoding rules. 
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Figure 7: Current application on telematics system 

Although ITS is a popular research, high accuracy traffic application detectors are still 

rare. The first useful traffic related information for driver is GPS. Because of the property of 

GPS signal, it is more accurate in country than in city. Besides, there are several kinds of 

useful information on the road that were already defined. In recent years, vision-based traffic 

detectors such as vehicle detector (VD), Image incident detection (IID) and self-adaptive 

traffic sign are developed for ITS applications. In our proposed safety driving assistant 

telematics system, we add vision-based intelligent detectors to provide safety detector results 

from the sensors on vehicle and intersection.  
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3.2   On Board Vision-Based Detection System 

Figure 8: Vehicle Sensors 

From Figure 8, it shows the sensors location and the assistant driving signal flow. There 

are three vision-based detectors, including side collision warning (SCW), parking assistant 

system (PAS), Obstacle detection. SCW and PAS are already integrated on embedded 

platform with CAN Bus protocol, and obstacle detector can work on laptop 10 fps. There is a 

WAVE Box on the vehicle to receive the information of intersection condition. WAVE Box 

communicating with notebook via RS232 protocol. 

3.2.1  Embedded Platform Description 

DSP BF561

ADV 7180
Video 

Deccoder

ADV 
7179
Video 

Encoder

I2C

Parallel Peripheral 
Interface(PPI)

Parallel Peripheral 
Interface(PPI)

Power Regulator Module
(PWM + Linear Power IC)

3.3V For DSP I/O 
1.2V For DSP Core Power1.8V

RS232
(TX,RX,

GND)

UART

GPIO TTL 
Logic IC

SDRAM
�

FLASH
32-Bits Data Bus

Figure 9: Structure of Intelligent Image Processing Embedded Platform 
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Figure 10: Structure of Embedded Platform PCB Design 

In Figure 10, there is an embedded platform for SCW, PAS and intersection vision-based 

instant detector applications. It contains an ADI Blackfin BF561 Duo-Core DSP, Power 

Regulator, Video Decoder, Video Encoder, Memory, and I/O Modules. Detail features of 

Blackfin 561 are shown in Table 3. 

Table 3: Features of BlackFin 561 DSP
Features Peripherals 
Dual symmetric 600MHz high performance 
Blackfin cores 328K bytes of on-chip 
memory 

Two parallel input/output peripheral 
interface units supporting ITU-656 video 
gluesless interface to analog front end ADCs

Each Blackfin core includes: 
Two 16-bit MACs, two 40-bit ALUs, four 
8-bit video ALUs, 40-bits shiffer 

Two dual channel, full duplex synchronous 
serial ports supporting 
eight stereo I2S channels 

RISC-like register and instruction model for 
ease of programming and compiler-friendly 
support 

Dual 16-channel DMA controllers and one 
internal memory DMA controller 

Advanced debug, trace, and performance 
monitoring 
0.8V-1.2V core VDD
3.3V and 2.5V tolerant I/O 

12 general-purpose 32-bit timer/counters, 
with PWM capability 

256-ball mini-BGA and 297-ball PBGA 
package options 

SPI-compatible port 
UART with support for IrDA® 
Dual watchdog timers 
48 programmable flags 
On-chip phase-locked loop capable of 1� to 
63 � frequency multiplication 

Source:  ADI Blackfin 561 Datasheet  

In this embedded platform, we consider the reference design from ADI BF561 EZ-KIT 

Lite manual. Due to our application, we change decoder chip into ADV 7180 for simple video 



21 

stream decode steps, and redesign the power regulator module for 12V input. DSP controls 

video decoder and encoder by I2C protocol, and gets digital video data via 8 bits parallel 

peripheral Interface. In DSP inside, we can program the DMA register to control the DSP PPI 

catching data by itself automatically without wasting too much computing power on this kind 

of I/O data flow.  

Power regulator module in this design, we choose the 2-channel PWM power regulator 

chip LM2642. At first, when 7V-24V (regular is 12V) is sent in the board, we string a 

schottky rectifiers and radial leaded PTC fuse to protect circuit. Table 4 is the SK34B’s 

electrical characteristics, it limits the basic current forward and flow rate. FRX-090-60 is a 

fuse, its function is to avoid short connect occurrence. Besides protect circuit, we also 

consider the stability. We use DLW5BSN351SQ2 and two inductances to keep input voltage 

before entering LM2642 more smoothly. This embedded system total needs four kinds of 

voltages, including 5V, 3.3V, 1.8V and 1.2V. LM2642 outputs DSP needed two kinds of main 

power 3.3V and 1.2V. 3.3V supports DSP’I/O, RS232, RS485, TTL logic IC and 1.8V 

regulator’s input voltage. 1.2V only supports DSP core power. 5V and 1.8V are both regulated 

by linear power regulator IC LM7805 and RT9166-18PX.   

Table 4: SK34B Electrical Characteristics 
Electrical Characteristics 

Average forward current IF(AV) 3.0A TJ=120�C 

Maximum surge current I FSM 100A 8.3ms half-sine 

Max repetitive reverse current IR 2A F=1KHz 

Max peak forward voltage 

(SK32B-SK34B) 

VFM .50V IF=3A, TJ=25�C 

Max peak reverse current IRM .5mA VRRM, TJ=25�C 

Typical junction capacitance CJ 250pF VR=5.0V, TJ=25�C 

As a result of our applications, end-user needs to see the exporting scream with 

intelligent detection result. For exporting a stable video output, we add a video OP after ADV 

7179. Furthermore, we design a low-pass filter to reduce the noise influence. 
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3.2.2  Sinffer Equipment 

Figure 11 : S100 WAVE Box 

For verifying the contents fits IEEE protocol, we choose Savari’s S100 WAVE Box and 

Sirit’s WSM Sniffer Card. The detail spec is shown in Figure 12. 

Figure 12: S100 detail Spec 
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Figure 13: Sirit Sniffer Card (PCMCIA Interface) 

Table 5: SAE J2735 WSM Message Protocol 
1 1 1 1 1 4 2 Variable 
WSM 
Version 

Security 
Type 

Channel 
Number 

Data 
Rate 

TxPwr_level Provider 
Service 
Identifier

WSM 
Length 

WSM 
DAta 

Figure 14: OBU Service and Navigation Structure 

Figure 14 is the structure of OBU for Service and Navigation. RSU and OBU have a 

communication bridge by DSRC protocol via their WAVE device. For fitting protocol, when it 

transmits message, Safety Message handler will provide up layer related message for 

choosing encoding rule. So message can be distributed different decoder, for example BER, 

DER and XER. For the same reason, when receiving a message either from OBU or RSU in 

communication layer, first step needs to do is to judgment what kind of coding rule, and then 

use the suitable decoder to gain the message. 

As mentioned previously, in our propose system, WAVE device supports DSRC ability 

for each safety applications. The working method is to develop a WSMP-IP converter on the 

WAVE device. When Safety application needs to send the message, it only sends UDP 

package to WSMP-IP converter to repackage into WSM format, and then transmits the 

repackage message via IEEE 1609 protocol stack. The flowchart in navigation application is 
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shown in Figure 15. 

Figure 15: The flowchart of transmitting message 

If OBU works successfully, it will receive traffic condition from many RSU on different 

intersections and detection result of the vehicle sensors. As a result of too much information, 

driver should get a sorted event list and suggestion 
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3.3   Intelligent Surveillance System 

In this section, we propose a surveillance system with intelligent functions on an 

embedded platform. In traditional surveillance system, each Video Stream Input peer needs to 

connect to CMS for updating the current video stream as shown in Figure 16. 

Figure 16: Traditional intelligent surveillance system 

3.3.1 Improved Intelligent Surveillance System 
In traditional structure, it needs a lot of manpower to pay attention on monitor, although 

the false alarm rate is less. Besides, this kind of design lacks adaptability for detectors to 

connect. Since, we propose an entire system with vision-based incident process platform and 

CMS. The vision-based incident process platform contains image incident detector and image 

incident collector. The former analyzes the image and then classifies incidents. It marks a sign 

on the video stream to distinguish the incident types. The image incident collector contains 

two parts. One is image storage server, and the other one is incident information storage 

server. The incident information storage server becomes a communication bridge between 

image storage server and incident detector, and also produces a trigger signal when some 

incident occurs.   

Figure 17: Improved intelligent surveillance system 
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In Figure 17, red region means our proposed intelligent surveillance system. The blue 

region is vision-based incident process platform with incident detector and collector. Hence, 

we design RSU as a vision-based incident detector. After analyzing and classifying incident in 

video stream, it integrates all the information and uploads the results with correct content 

protocol to telematics transmitter via Ethernet. And then the WAVE Box will broadcast 

information in WAVED\DSRC channel to remind drivers to take care intersection condition. 

3.3.2 Vision-based incident detector 
In this section, we will discuss the basic functions on the vision-based incident detector. 

Due to the intersection traffic applications, we developed collision prediction and object 

tracking two algorithms. Since we utilize the fix camera, adaptive GMM background update 

method is suitable to extract foreground objects. Although GMM method needs heavy 

computing power, we modified the update period by the video frame rate per line. It means 

the cycle of update rate is about 16 seconds when the GMM background update method is 

running in single line update mode. Intersection traffic also have a serious problem of such 

kind of background method is the static object. When a vehicle stops before stop line to wait 

the traffic light, traditional GMM method make the wrong background image easily. Hence, 

our adaptive GMM Background algorithm have changeable update rate to adjust the 

parameters. 

On our embedded platform, we capture composite NTSC/PAL video stream signal, and 

then ADV7180 decodes the analog signal to YUV 4:2:2 digital data into DSP Blackfin 561. In 

SDRAM, we allocate four image buffers for different processes. First frame is input frame, 

and it stores the data via DMA. Second frame is overlay frame, it overlays the lines or 

patterns on the image. Third frame is output frame, and it is prepared to export to ADV7179. 

The last frame is preprocessing frame, and it copies the data from input frame for image 

processing.  

For our applications, tracking algorithm is the most important process. We extract the 

foreground and make a connected component image Ic. We accumulates Ic in each iteration to 

make accumulation image Ia. If pixel in Ic is foreground pixel, the value of Ia will add 1 until 

to threshold Tha, otherwise Ia will decrease 1 until 0. Tha is equal to 50 in our applications, 

and the value also can be estimated by the height of camera. The tracking index is connected 

component’s label. From different time images, we first refer the objects’ locations and ranges. 

If the location is close enough and range has overlap, it marks as a candidate object. The 

second step is to refer Ia image, from this image, we have the pixel’s variance in past 50 
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frames. Therefore, we can filter some error foreground pixels and stable the tracking sequence. 

Finally, we package the whole information, and transfer the package via UART to PC client. 

At the same time, we also display the intersection incident and objects’ location and trail on 

the scream.  
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4. Vision-Based Intelligent Technique 

In this chapter we present four vision-based algorithms. In section 4.1 we will present a 

whole FLIPM method. It considers an optical path with mathematical calculating. In section 4.2 

we will promote obstacle detection with single camera. Using the mapping image captured 

from the result of section 4.1, we analyze the characteristic to attend our objective. Finally, in 

section 4.3 we realize a vision-based dynamic distance gauge system for parking assistant 

system.  

4.1   Fisheye lens inverse perspective mapping (FLIPM)  

Figure 18: Fisheye lens inverse perspective mapping structure 

Our overall systematic structure is illustrated in Figure 18. The obstacle detection is 

performed after obtaining the bird-view images of road surfaces captured by the camera 

mounted on the lateral side of the vehicle. The edge profile of road surfaces in bird-view images 

or temporal FLIPM difference image should be acquired, and then the segment searching 

algorithm will use the edge profile to get the feature radial lines which indicate the obstacles. 

After searching the feature elements, the polar histogram which represents the direction and 

size of obstacles will be computed. The histogram post-processing will also be used to filter out 
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some noises and obstacles with shorter height. We still have to identify the detected obstacles 

and extract the relative information of the obstacle after the obstacle tracing process. After all 

the processes, we can obtain the final results in the output videos. 

4.1.1  The Modified Normal Lens IPM Method
To find more practical applications and set up the appropriate mapping equations in our 

system, we modify the previous approaches proposed by Broggi et al. [2] and make the obstacle 

detection system more complete. Let u and v represent the image coordinate system and X,Y,Z 

be the world coordinate system where (X,Y, 0) indicates the road surface. L, D, H are the 

coordinates of the camera in the world coordinate system whileθ  and γ  are the camera’s tilt 

and pan angles, respectively. βα ,  are the horizontal and vertical aperture angles. m and n 

indicate the height and width of an image. O is the optic axis vector, and yx ,ηη  are the vectors 

representing the optic axis vector O projected on the road surface and its perpendicular vector. 
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From Eq. (4.1), the vertical straight line in the image coordinate system can be represented 

by the set of pixels whose v coordinate value is constant. If we assume that
1-n

2v-Kv ααγ +=

is constant, then Eq. (4.1) will be simplified to Eq. (4.2).
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After simple calculations, we can obtain Eq. (4.3) from Eq. (4.2), which is shown in Figure 19. 

                          cot(Kv)*D)-(YL-X =                                (4.3)

The equation Eq. (4.3) means that a vertical straight line in the image which represents the 

vertical edge of obstacles or other planar markings in the world coordinate system will be 

projected into a straight line whose prolongation will pass the vertical projection point of the 

camera on the world surface. 
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Figure 19 : The vertical line projection of Eq. (4.1) 

Similarly, the horizontal straight line in the image coordinate system can be represented by 

the set of pixels whose u coordinate value is a constant. If we assume 
1-m

2u-Ku ββθ +=  is 

constant, then Eq. (4.1) will be also simplified to Eq. (4.4).
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Thus, we can derive Eq. (4.5) from Eq. (4.4), which is shown in Figure 20.  

                           222 KD)-(YL)-(X =+                               (4.5)  

The equation Eq. (4.5) means that a horizontal straight line in the image will be projected 

to an arc on the world surface.  

Figure 20: The projected result of Eq. (4.5) 
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In order to modify the original IPM model, we propose a new pair of transformation 

equations for two expected results. First, a vertical straight line in the image will still be 

projected to a straight line whose prolongation will pass the vertical projection point of the 

camera on the world surface. Second, a horizontal straight line in the image will be projected to 

a straight line instead of an arc on the world surface. The results can be verified by the similar 

triangle theorem. With some prior knowledge such as the assumptions on flat roads, intrinsic 

and extrinsic parameters, we will be able to reconstruct a 2D image without the perspective 

effect. The illustrated figures and expected results are shown in Figure 21 

(a)  

(b)                               (c) 

Figure 21: The figures and expected results 

(a) perspective effect removing (b) a vertical straight line in the image will be projected to a 

straight line whose prolongation will pass the vertical projection point of the camera on the 

world surface (c) a horizontal straight line in the image will be projected to a straight line 

instead of an arc on the world surface. 
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By referring to the notations, the diagrams of relationship between the image coordinate 

system and the world coordinate system are shown in Figure 22. We will derive a new pair of 

transformation equations by simple mathematical computations in triangular functions. From 

Figure 22(a) and (b), we can obtain (6) and (7).  
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(a)                                     (b) 

xη

yη

(c)                                     (d) 

Figure 22: The geometrical relations of the image and world coordinate system for deriving our 

equations. 
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'
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Figure 22(c) describes how the points in the first quadrant of the image coordinate system 

will be projected onto the road surface. If the world coordinate of camera is (0, 0, H), we will 

finally obtain Eq. (4.8) by the geometrical descriptions in Figure 22(c) (d) and the length of 

each segment listed below. 
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Now, we have obtained the forward transformation equations, and the backward 

transformation equations shown in Eq. (4.9) can also be obtained easily by some mathematical 

computations in inverse functions. 
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4.1.2  Fisheye Lens Inverse Perspective Mapping (FLIPM)
Forster et al. [19] proposed a camera spherical projection model to implement the 

endoscope image formation process and utilized the warping transformation equations to 

correct the radial distortion. The warping transformation equation pairs and its inverse pairs are 

shown in Eq. (4.10) and Eq. (4.11). The coordinate (X,Y,Z) is the position of point in the 3D 

world coordinate system, (u1,v1) is the coordinate in the un-distorted image, and (u,v) is the 

coordinate in the distorted one. 
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Where f is the focal length of camera, and R is the radius of the sphere. We modify and redefine 

that model for our applications in this dissertation. We regard the X1-Y1 plane as an undistorted 

image plane and the u-v plane as the distorted one, thus we can derive the modified equations in 

Eq. (4.12) and Eq. (4.13). 
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are the angles between the lines connected the horizontal or vertical direction projection point 

of an image point with the optical center on the optical axis. The equation Eq. (4.14) instead of 

Eq. (4.13) will be used through this dissertation since Eq. (4.13) may produce many 

non-pixel-values of the image. We also can obtain the distorted or un-distorted images no 

matter if the focal length is known or not by tuning the parameter k1. 

1. The Complete Fisheye Lens Inverse Perspective Mapping
A fisheye lens inverse perspective mapping (FLIPM) algorithm consists of two parts, the 

forward and backward mapping algorithm. The objective of the forward mapping algorithm is 

to search the dimensions or ranges of remapped images, which can be illustrated in Figure 23. 

1θ

ββ -
1-m

2u

Figure 23 : The original and adjusted scope 
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The dimensions of scopes are only related to the view-ranges of a camera, that is to say, 

either the use of the normal lens or fisheye lens with fixed tile and pan angle will determine the 

factors of influences. In order to reduce the computational loadings in use of the tangent and 

secant triangular functions, we restrict the scope of a camera by narrowing down its view-range. 

Without loss of generality, we still keep the broadest range of scopes and minimize discarding 

far and fringe information. Furthermore, we narrow down the view-angles by using Snell’s Law 

as shown in Eq. (4.14) where IR simulates the index of refraction and controls the scopes of 

resultant ranges. The range of IR is between 1.3~1.7 for glass-based lens. 
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The angles 21  and θθ  can be substituted into Eq. (4.9) to compute the extreme values 

about the coordinate values of X, Y, and in this way we will obtain the dimension of the 

remapped image. The backward mapping algorithm is different from the forward one because a 

plus of the radial distortion correction step should make it more rational. We firstly consider the 

ideas of the backward mapping algorithm by Figure 24. 

Figure 24: Illustrations for distortion images 

(a) the real scene image, (b) the distorted image, and (c) the desired image 

Since the images captured by the fisheye cameras which can be shown in Figure 24(a) 

have the perspective effects and distortions, we have to remove those undesired effects to 

acquire the available images just like Figure 24(b) in pursuit of Figure 24(c) where the 

perspective effect and distortion have been completely removed. Thus so, we can derive the 

backward mapping algorithm by modifying Eq. (4.9) as Eq. (4.15). We also complete the 

distortion correction process by using Eq. (4.13) and the derived formulas of angles in Eq. 

(4.15). By tuning the parameter of IR and 1k , we will easily obtain the undistorted and 
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perspective effect removed images. 
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4.2   Obstacle Detection with single Camera 

In this section we develop an obstacle detection algorithm by using both spatial and 

temporal information of the FLIPM method. We use a single fisheye camera mounted on the 

lateral side of the vehicle to detect obstacles. The definitions of obstacles in this dissertation are 

the objects with the height shorter than a threshold and with non quasi-vertical edges. The 

straight line in the vertical direction in the images represents the vertical edges of obstacles in 

the world coordinate system, and will be projected to a straight line whose prolongation will 

pass the vertical projection point of the camera on the world surface. To illustrate our systematic 

mechanism more clearly, we will introduce the obstacle detection algorithm in the following 

parts, including some image pre-processing steps, feature selection, histogram analysis, object 

tracking, and information extraction. 

4.2.1   The Pre-Process

Figure 25: The flowchart of image pre-processing 

We have to simplify the image patterns for our following procedures by some image 

preprocessing techniques shown in Figure 25. At first, the remapped image will be smoothed by 

mean filter to reduce the noises resulted from FLIPM transformation. Our developed equations 

in FLIPM have the advantages of IPM in removing the information of height and can help to 

detect the obstacles on the surface of roads. We also propose two different strategies toward 

feature extraction. We use the profile image which will be introduced next to extract the feature 

series when the detected objects and our cameras are relatively motionless, otherwise we 

acquire the features by the obstacle-sensitive temporal FLIPM difference image which will be 

clarified in Section 4.3.

4.2.2  Profile image 
The obvious edges of obstacles will be essential for extracting the profile images. We 

hence enhance the edges by the unsharp mask at this time to make up for over-blurred images, 
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and detect edges by simple Sobel operations. The binary images can be obtained by 

thresholding after edge detecting of the remapped image, and we have to use the morphological 

operations on dilation and erosion to get the useful edges for our processes. As for extraction of 

the feature segments, we remodel the thinning algorithm introduced in [20] in thinning the 

binary edges in order to meet our real-time needs in the applications of ITS. We turn to use the 

center pixel of a mask to extract the exterior profile of a pattern without checking the conditions 

of patterns iteratively. Figure 26 shows the processed results of our profile image searching.            

            
Figure 26: The results in the profile searching process 
(a) the remapped image (b) the profile image. 
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4.2.3  The temporal FLIPM difference image 
The objective of temporal FLIPM difference process is to simulate the stereo vision of 

captured images. The stereo IPM can keep the non-plane objects and remove the plane objects 

such as lane-markings, shadows by comparing the differences between the left and right 

remapped image, which will be illustrated in Figure 27. 

(a)                                 (b)

(c) 
Figure 27: Illustrations for the temporal FLIPM difference image 

(a) the planar object patterns and (b) non-planar object patterns (c) Moving non-planar object 

patterns 

 In Figure 27(a), it presents a result of planar object patterns. The planar pattern in IPM 

image has a shift movement in different time; hence we can easily remove the planar pattern 

via accurate enough shift movement to compensate the different images. Figure 27(b) shows a 

result of a static non-planar object on the IPM image. By the projection effect, the non-planar 

point also can be projected to the ground with the farer distance. Therefore the difference of 

t-T and t frame can extracts the non-planar object. The same result also appears in the moving 

object case such as Figure 27(c).  
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According to the stereo IPM method [21], two cameras should be used to acquire the 

sufficient information of overlapped regions. Since this thesis focuses on using a single camera, 

we take advantage of time difference to simulate the effects of stereo cameras. As Figure 27 

shows, we have to address on two important issues, selections of time interval and the shift 

displacement of the remapped image.  

1. Feature Analysis 
There are many kinds of local features that one can track. Features which are used to estimate 

ground movement based on its motion, that is to find these features from one frame in a 

subsequent frame of the video stream. Obviously, if we pick a point on a large blank wall then it 

won’t be easy to find that same point in the next frame of a video. If all points on the wall are 

identical or even very similar, then we won’t have much luck tracking that point in subsequent 

frames. On the other hand, if we choose a point that is unique then we have a pretty good chance 

of finding that point again. In practice, the point or feature we select should be unique, or nearly 

unique, and should be parameterizable in such a way that it can be compared to other points in 

another image. Therefore, we might be tempted to look for points that have some significant 

change within neighboring local area that is the good features which have a strong derivative in 

spatial domain. Another characteristic of features is about the position of the image. Due to the 

objective of the following procedure is to estimate the ground movement information, features 

lie on the ground region is useful for the following ground movement estimation algorithm. 

According to above analysis, a good feature to track should have two characteristics. First, a 

feature should have strong derivative which could assist us to track them and obtain a precise 

motion. Then, the position of feature should be restricted on the road region (non-obstacle 

region). The features which we will use them to estimate the ground movement information 

should conform the above two characteristic, these features will be suitable for estimating 

ground movement information. 

To consider the first characteristic – strong derivative, a point to which a strong derivative 

is associated may be on an edge of some kind. Then considering this property of edge we 

employ the Sobel operator to find out the edge of image. The points which be extracted by 

edge detection are used to be feature points, which then calculate optical flow for all of these 

feature points. These edge points and its optical flow of image is shown in Figure 28. But a 

problem is arising as depicted in Figure 28(b), it could look like all of the other points along 

the same edge. An ambiguous optical flow will happen when the edge points parallel to the 

direction of motion. It turns out that strong derivative of a single direction which is not 
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enough. However, if strong derivatives are observed in two orthogonal directions then we can 

hope that this point is more likely to be unique. For this reason, many track-able features in 

the image that are corners. Intuitively, corners are the points that contain enough information 

to be picked out from one frame to the next. We examined by the most commonly used 

definition of a corner was provided by Harris[25]. This definition relies on the matrix of the 

second-order derivatives (∂2x, ∂2y, ∂x∂y) of the image intensities. We can think of the 

second-order derivatives of images, taken at all points in the image, as forming new 

second-derivative images or, when combined together, a new Hessian image. This 

terminology comes from the Hessian matrix around a point, which is defined in two 

dimensions by:

2 2

2

2 2

2

I

( )

I
x x y

H p
I I

y x y

⎡ ⎤∂ ∂
⎢ ⎥∂ ∂ ∂
⎢ ⎥=
⎢ ⎥∂ ∂
⎢ ⎥∂ ∂ ∂⎣ ⎦

                  (4.16) 

�

By using Harris corner definition, the result of corner detection and its corresponding 

optical flow is shown in Figure 29. It is obvious to observe that motion of corner is relatively 

accurate than edge point. Although corners have more precise optical flow, another problem is 

arising that is position of corner almost lie on obstacle region such as vehicle component. The 

Figure 29(b) shows the result of corner detection in a common driving condition, we can see 

that the feature points are nearly located on obstacle regions. These feature points are not 

suitable to use to estimate the ground movement. 

  
(a)                                  (b) 

Figure 28: Results of edge detection and its corresponding optical flow
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(a)                                   (b) 

Figure 29: Results of corner detection and its corresponding optical flow

By considering above analysis of features, we proposed a feature point extraction method 

employ road detection procedure to assist in getting ground features. The flowchart of proposed 

feature point extraction is shown in Figure 30. The objective is to distinguish the major road 

region and non-road region, and utilize the result of the road detection, that is to extract the 

boundary of major road and some good features within road region. By integrating road 

detection, the more useful ground features could be extracted and could improve results of 

ground movement effectively. The next chapter will introduce the detail of road detection and 

describe what feature point will be selected.  

Previous
frame Road Detection

Road Boundary 
Extraction

Road Region 
Feature 

Extraction

Feature Point Extraction

Feature 
point info.

Major Road  
Component 
Extraction 

Figure 30: Block diagram of feature point extraction 

4.2.4  Road Detection 
The proposed feature point extraction technique is integrating a road detection procedure 

which is used an on-line color model that we can train an adaptive color model to fit road color. 

The main objective of road detection is to discriminate the road and non-road region roughly, 

because the result is used to support feature extraction not used to extract obstacle regions. 

However, we adopt an on-line learning model that allows continuously update during driving, 

through the training method that can enhance plasticity and ensure the feature is on the road 

region. 
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Due to the color appearance in the driving environment, we have to select the color features 

and using these color features to build a color model of the road. Therefore, we have to choose 

a color space which has uniform, little correlation, concentrated properties in order to increase 

the accuracy of the model. In computer color vision, all visible colors are represented by vectors 

in a three-dimensional color space. Among all the common color spaces, RGB color space is 

the most common color feature selected because it is the initial format of the captured image 

without any distortion. However, the RGB color feature is high correlative, and the similar 

colors spread extensively in the color space. As a result, it is difficult to evaluate the similarity 

of two color from their 1-norm or Euclidean distance in the color space. 

The other standard color space HSV is supposed to be closer to the way of human color 

perception. Both HSV and L*a*b* resist to the interference of illumination variation such as the 

shadow when modeling the road area. However, the performance of HSV model is not as good 

as L*a*b* model because the road color cause the HSV model not uniform that lead to the HSV 

color model not as uniform as the L*a*b* color model. There are many reasons attribute this 

result. Firstly, HSV is very sensitive and unstable when lightness is low. Furthermore, the Hue 

is computed by dividing (Imax - Imin) in which Imax = max(R,G,B), Imin = min(R,G,B), therefore 

when a pixel has a similar value of Red, Green and Blue components, the Hue of the pixel may 

be undetermined. Unfortunately, most of the road surface is in similar gray colors with very 

close R, G, and B values. If using HSV color space to build road color model, the sensitive 

variation and fluctuation of Hue will generate inconsistent road colors and decrease the 

accuracy and effectiveness. L*a*b* color space is based on data-driven human perception 

research that assumes the human visual system owing to its uniform, little correlation, 

concentrate characteristics are ideally developed for processing natural scenes and is popular 

for color-processed rendering. L*a*b* color space also possesses these characteristics to satisfy 

our requirement. It maps similar colors to the reference color with about the same differences 

by Euclidean distances measure and demonstrates more concentrated color distribution than 

others. Then considering the advantaged properties of L*a*b* for general road environment, 

the L*a*b* color space for road detection is adopted. 

The RGB-L*a*b* conversion is described as follow equations: 

1. RGB-XYZ conversion: 

                                                                    

                                                                   

                                                                               (4.17) 

2. Cube-root transformation: 
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By modeling and updating of the L*a*b* color model, the built road color model can be 

used to extract the road region. The L*a*b* model is constituted of K color balls, and each color 

ball mi is formed by a center on ( ,* ,* )
i i im m mL a b  and a fixed radius max 5λ =  as seen in Figure 31. 

In order to train a color model, we set a fixed area of the lower part of the image and assume 

pixels in the area are the road samples. For each of these pixels in the beginning 30 frames are 

used to initialize the color model, and updating the model every ten frames to increase 

processing speed but still maintain high accurate performance.  

Figure 31: A color ball i in the L*a*b* color model whose center is at (Lm, *am, *bm) and with 

radius maxλ

The sampling area is used to be modeled by a group of K weighted color balls. We denote 

the weight and the counter of the mi th color ball at a time instant t by ,im tW and ,im tCounter , and 

the weight of each color ball represents the stability of the color. The color ball which more 
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on-line samples belonged to over time accumulated a bigger weight value shown in Figure 32. 

Adopting the weight module increases robustness of the model.  

Figure 32: Sampling area and color ball with a weight which represents the similarity to current 
road color. 

The weight of each color ball is updated by its counter when the new sample is coming 

which is called one iteration. Therefore the counter would be initialized to zero at the beginning 

of iteration. The counter of each color ball records the number of pixels added from the on-line 

samples in the iteration. The first thing to do is that which color ball is chosen to be added. We 

measure the similarity between new pixel xt and the existing K color balls using a Euclidean 

distance measure Eq. (4.19). The maximum value of K is 50 which represents each on-lined 

model contains 50 color balls at most. 

2 2 2
max( , ) ( ) ( ) ( )

i i ii m x m x m xSimilarity x m sqrt L L a a b b λ⎡ ⎤= − + − + − <=
⎣ ⎦

       (4.19) 

If a new pixel xt was covered by any of the color ball in the model, one will be added to the 

counter of best matching color at this iteration as the Eq. (4.20). After entire new sample pixels 

at this iteration undertake the matching procedures mentioned above, the weights of every color 

ball are updated according to their current counter and their weight at last iteration. The 

updating method is as follows: 

ii m i i maxm(x )= arg min(Similarity(x ,m )<= )λ           (4.20) 

, 1 (1 ) /
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i im t w t w m sample
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α α
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∈

, where wα is user-defined learning rate, Nsample is the sampling area 
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Then using the weight to decide which color ball of the model most adapt and resemble 

current road. The color balls are sorted in a decreasing order according to their weights. As a 

result, the most probable road color features are at the top of the list. The first B color balls are 

selected to be enabled as standard color for road detection, and these color balls with a higher 

weight has more importance in detection step. Road detection is achieved via comparison of the 

new pixel xt with the existing B standard color balls selected at the previous instant of time 

shown in Figure 33. If no match is found, the pixel xt is considered as non-road. On the contrary, 

the pixel xt is detected as road. 

Figure 33: Pixel matched with first B weight color balls which are the most represent standard 
color. 

Figure 34 shows some results of on-line L*a*b* road detection, the green areas are 

determined as road else are the non-road regions. However, we will not undertake road 

detection to all of the image because of the following procedure is processed in the world 

coordinate, that is the range of road detection is restricted to the horizon which is caused by the 

geometrical characteristic of IPM, and could be the different position in the image due to 

camera set up environment (camera height, tilt angle and so on).  
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Figure 34: Results of road detection 

The objective of road detection is to distinguish the major road and non-road region, and the 

result will be used to extract feature point. As above mentioned, we consider the two 

characteristics that are strong derivative and ground feature, the road boundary and strong 

gradient points are selected to be feature points.  

Therefore, the first step of feature point extraction is to extract the major road region. When 

result of road detection is obtained, the dilation and erosion procedure is used to merge the 

neighboring region and to reduce the fragmentation then the connected component is executed 

to separate the road regions to several components. After that we will find out the maximum 

component of all components and assumed that to be the major road region. Then the boundary 

of major road region is extracted to be feature points, because the border of road and non-road 

should be the road feature and have strong derivative. Besides, we analyze the gradient 

distribution of major road area, and the more strong gradient points will be extracted to be 

feature points because of their strong derivative and position. Then the feature points are 

collected completely by these road boundary and high gradient features. The Figure 35 is 

shown some results of feature point extraction. By employing road detection to support feature 

point extraction, the more useful ground features can be extracted. 
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Figure 35: Results of feature point extraction. The upper image is result of road detection, and 

lower image is position of feature points.

4.2.5  Ground Movement Estimation 
In this section we will introduce the proposed ground movement estimation procedure. 

Ground movement information is estimated from optical flow in the world coordinate system. 

By analyzing the principal distribution of optical flow can let us get the most representative 

ground movement, which will be used to compensate for the previous frame and difference 

with current frame. In addition, ground movement will be verified via temporal coherence. The 

flowchart of ground movement estimation is illustrated in Figure 36. 
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Figure 36: Flowchart of ground movement estimation
1. Ground Motion Estimation

By feature point extraction procedure as described in upper section, the useful features for 

ground movement estimation are obtained. Then these feature points will be used to estimate 

ground motion. Therefore, when the feature points are acquired the main tasks of ground 

movement estimation procedure are high accuracy optical computation and ground movement 

information estimation. The first step is to calculate the optical flow for all of these feature 

points. The pyramidal Lucas and Kanade algorithm introduced, which copes efficiently with 
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large movements, is used to calculate the optical flow for these feature points in the original 

image. As a result, Figure 37(a) and Figure 38(a) shows the feature points and its corresponding 

optical flow in the original image. Due to the perspective effect, the directions and lengths of 

the optical flows on the road in the original image are not the same when vehicle is moving 

straight shown in Figure 37(a). The case in which the vehicle is turning is shown in Figure 38. 

In this case the complicated optical flow distribution appeared in the original image. However, 

the inconsistent optical flow of road in the original image let us encounter a difficulty to 

estimate the ground movement. Therefore, we will take advantage of the IPM to remove the 

perspective effect. The optical flow information of an original image is mapped into world 

coordinate. The objective of inverse perspective mapping (IPM) is to remove the perspective 

effect by transforming the image coordinate to world coordinate, and scale the world coordinate 

that can obtain a bird’s view image. Therefore, the world coordinate information is same as 

bird’s view image that both of them are perspective removal. In our research, the IPM is used to 

remove the perspective effect and transform the image coordinate information to world 

coordinate and the ground movement procedure is processed in the world coordinate the bird’s 

view image is used to display and examine some results, which we will not process on it.  

 The difference between the optical flow of the original image and that of the bird’s view 

image is shown in Figure 37 and Figure 38. When a vehicle is moving straight, the optical flows 

in the bird’s view image have the same direction and length independent of the locations of the 

optical flows. Similarly when vehicle is turning, the optical flow distribution in the bird’s view 

image draws concentric circle following the movement of the ground but roughly have a similar 

magnitude. 

  
(a)                               (b) 

Figure 37: Difference between optical flow of original image and those of bird’s view image 
when vehicle is moving straight. 

(a) Optical flows of original image,(b) Optical flows of bird’s view image 
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Figure 38: Difference between optical flow of original image and those of bird’s view image 
when vehicle is turning. 

(a) optical flows of original image, (b) optical flows of bird’s view image 

 The kernel concept of ground compensation based detection algorithm is adopting the 

following characteristics. The optical flow distribution of ground region is approximately 

consistent in the bird’s view image. On the contrary, a vertical straight line in the image which 

represented the vertical edge of obstacle in the world coordinate system is projected to a straight 

line whose prolongation will pass the camera vertical projection point on the world surface. 

Therefore, the optical flow distribution of obstacle regions are different drastic to the ground 

region. Then we can estimate the ground movement and used build a compensated image which 

assume the image is all planar object (ground). Therefore, the planar region will be eliminated 

but the obstacle regions will not. Figure 39 shows the difference between optical flow of 

obstacle and those of planar object.  

Figure 39: Differences between optical flows of obstacle and those of planar object. 

 Thanks to the mapping between original image and world coordinate system, ground 

movement information can be estimated based on the optical flow of feature points in the world 

coordinate system. The feature points which we obtained via integrating road detection are with 

a characteristic that most of these features will lie on ground region. Besides, the specific 

optical flow distribution of ground region in the world coordinate system, that is optical flow of 
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them will approximately consistent. Due to the above characteristics, we would like to find out 

the principal distribution of optical flow that can let us get the most representative ground 

motion. We analyzing the principal distribution of optical flow by calculating the histogram of 

optical flow according to its direction and magnitude, and the peak of the histogram is 

considered to be ground motion. As shown in Figure 40, that is the histogram distribution of 

corresponding optical flow. By utilizing the principal motion, that can let us avoid some errors 

such as ambiguous optical flow or the non-peak value of optical flow is possibly causing by 

obstacle feature point. 

  

Figure 40: Histogram distribution of optical flow in world coordinate system

2. Compensated Image Building
The specific optical flow distribution in the world coordinate system shows that the 

movement of ground in the world coordinate system can be described as a translation or 

rotation of a two-dimensional coordinate plane. The ground movement information is estimated 

by using optical flow in world coordinate system, and the optical flow is ground motion which 

is estimated by analyzing the principal distribution of optical flow of feature points, that is 

utilized the procedure as described in last section. Then we can acquire ground motion in the 

world coordinate system which is used to estimate ground movement information. 

 In the world coordinate system converted from consecutive images captured at difference 

location O1 and O2 as depicted in Figure 41, if we represent the world coordinates of a ground 
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feature point P as (x1, y1)T and (x2, y2)T before and after  vehicle movement respectively, the 

optical flow of the feature point P can be written as Eq. (4.21). 

2 1

2 1

x

y

f x x
f y y

⎛ ⎞ ⎛ ⎞ ⎛ ⎞

= −⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠

                   (4.21) 

Figure 41: Two-dimensional coordinate plane

 If we represent the ground movement information between consecutive world coordinate 

system by a two-dimensional coordinate plane as shown in Figure 41, the relationship of 

corresponding points between consecutive world coordinate system can be described with the 

Eq. (4.22), where Θ is the rotation component of vehicle movement, and (Tx, Ty)T are the 

translation components of ground movement. Then ground movement information including 

rotation and translation component. That is we can utilize Eq. (4.22) to find out the 

compensated coordinate of point (x1,y1)T but Θ and (Tx, Ty)T should be calculated in advance. 

By substituting Eq. (4.21) into Eq. (4.22), then the relationship between Θ and (Tx, Ty)T can be 

derived as Eq. (4.23).  
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 Where Θ and (Tx, Ty)T are unknown parameters, (fx,fy)T and (y1,-x1)T can be obtained 

during the process of optical flow calculation. Therefore, when obtaining the ground motion we 

can use these ground point information including world coordinate and magnitude of optical 

flow to calculate the ground movement information, that is unknown parameters Θ and (Tx, 

Ty)T can be acquired. 

 By undertaking above procedure, the ground movement information can be obtained and 

used to interpolate image, then compensated image is generated. Therefore, thanks to the 

mapping between image coordinate and world coordinate, we will compensate previous frame 
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image to a new image by projecting the image coordinates to the ground plane and 

compensating the ground movement on the ground plane then back projecting to the image 

plane again. Figure 42 illustrates the procedure of the compensated image building. For each 

pixel of the previous frame will be transformed to ground plane which is world coordinate by 

IPM forward mapping, then for each world coordinate is compensated to new world coordinate 

by using ground movement information and Eq. (4.22), the coordinates are back transforming 

to image coordinate by IPM backward mapping, a new image is interpolated in the image plane. 

Therefore, the new built image is assuming formed by planar object because of compensated 

using ground movement. Due to these assume the non-planar object (obstacle) can be extracted 

by comparing current image and compensated image. 

Image 
coordinate

World 
coordinate

Compensated 
World 

coordinate

Compensated 
Image 

coordinate

Figure 42: Procedure of the compensated image building

3. Compensation Verification
The ground movement information is used to compensate the image and a new image is 

built. By considering the temporal coherence, that is to consider the condition that the scene 

will not change a lot during the few frames. For these reason, when the ground movement 

information is obtained, the compensated image will be built and used to compare with current 

frame image then we can acquire an obstacle candidate image which indicate the pixel is 

obstacle or not. The detail of how to generate obstacle candidate image will be introduced in 

latter section. That is number of obstacle candidate should be stable because of little varied 

scene during few frames. Therefore, number of obstacle candidate is anomalous relative to the 

neighboring frames would indicate the compensation information is not correct.  



54 

 Observing the recent frames can assist us to verify and ensure the ground movement 

information is correct. Because the correctness of ground movement is greatly determining the 

results of following detection procedure, the verification is essential and worth to undertake. As 

shown in Figure 43, number of obstacle candidate in previous ten frames will be record, and the 

mean of these is calculated. The Eq. (4.24) is used to check correctness of ground movement. If 

the equation is conformed, that is indicating anomalous amount of obstacle candidate and the 

ground movement information in the current frame possibly erroneous. Then the previous 

compensation information will be utilized to compensate. 

Figure 43: Chart of temporal coherence 

Quantitative criterion: 

 _   _ *
                      _ *    
if obs num High Thd mean

Low Thd mean
>
<

 _   _comp info previous comp info⇒ =                (4.24) 

,where High_Thd is user-defined threshold about 1.3, Low_Thd is about 0.8 

By using temporal coherence, the average amount of obstacle candidate in recent frames is 

calculated and could be validate the compensation information.

4.2.6  Obstacle Feature Searching algorithm 
As what we have mentioned previously, we only prefer to search the features extracted 

from the objects with quasi-vertical edges in the remapped image. Based on the observation that 

those qualified features will always pass through the vertical projection point of cameras, we 

propose a feature searching algorithm and use polar histogram to accurately detect obstacles 

even for the noisy images. Our searching algorithm begins with the vertical projection point of 

a camera in the remapped image (denoted as CP). After that, we scan the acquired profile or 

temporal difference image angle by angle from the center to outmost border of a circle in the 

defined radius which can be determined by the information of remapped images. We then use a 

voting method in the mask searching and adjust the searching space flexibly according to the 

intensities and relative distances between vehicles and obstacles. The voting threshold is fixed 
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and can be determined by the half of the total elements in the mask. We can keep the major 

features, for the Gaussian weighting values in each 5x5 mask indicates the important regions in 

this mask. For each angle, a feature segment will be taken only if its corresponding percentage 

is higher than some specific value in order to reduce the errors caused by statistics. The next 

searching point at the same angle must be close enough to the last searched segment so as to 

concentrate on the points close to CP. After the searching process at each angle, the number of 

points at each angle will be used to produce a polar histogram in our system. Some results in the 

feature searching procedure are shown in Figure 44 and Figure 45, and the complete flowchart 

of our feature searching algorithm is shown in Figure 46. As Figure 46 shows, our algorithm 

can deal with two kinds of problems. One is that our systematic design can effectively improve 

the accuracy rate and reduce the possibility of lost pixels by using the features which are 

defined in each angle line by the results of mask searching to indicate the distance between 

objects and the camera. The other is that our proposed method can discriminate the meaningful 

pixels from others by the presented model for checking the length of searched feature segments. 

Therefore, the flaws of the polar histogram can be made up and our obstacle detection will 

make a great progress in performance.

(a)                               (b) 

(c)                               (d) 
Figure 44: The results in the feature searching procedure by using profile images 

(a) the sharpened remapped image, (b) the profile image, (c) the scanned feature segments, and 
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(d) the scanned feature segments superposed on the sharpened remapped image. 

(a)                               (b) 

(c)                               (d) 

Figure 45: The results of the feature searching procedure using temporal difference FLIPM 

images 

(a) the remapped image, (b) the temporal difference FLIPM image, (c) the scanned feature 

segments, (d) the scanned feature segments superposed on the remapped image. 
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Figure 46: The flowchart of feature searching 
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4.2.7  Histogram Post-processing 
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Figure 47: The block diagram of histogram post-processing 

 Figure 47 shows the processes in the histogram post-processing. The post-processing on 

histograms is necessary since we have to consider some important problems such as how to 

obtain the peak values of the histogram, how to reduce the influences of light, and how to find 

the best way in statistics for our applications. After we obtain the polar histogram of feature 

segments, we still need to find our desired histograms to remove the segments of planar objects 

and noises. Our procedures in histogram post-processing try to reduce the undesired 

information which may be produced in the polar histogram. For instance, the line segments 

belonging to planar objects will still be extracted in the polar histogram step. By observing the 

polar histogram, we can discover that the trapezoid histogram represents the planar objects. We 

can thus remove those clusters of bins in the histogram and we do not process the over-small 

histograms (the columns in the histogram are few) to avoid disturbances. After eliminating 

planar objects and noise, we will search the position of local maximum which represents the 

segment position of non-planar object in the polar histogram. Also, we only pick a peak column 

at an angular interval to prevent from detecting too many obstacles at the same time. Some 

results in the histogram post-processing procedure will be show in Figure 48 and Figure 49. As 

Figure 48 shows, the regions in red circles (Figure 48 (b)) are corresponding to the lane 

markings, as shown in Figure 48 (a). In Figure 48 (b), x-axis and y-axis represent the angles of 

polar histograms and the accumulation on each angle, respectively. 

    
(a)                             (b) 

Figure 48 : Illustrative figures of the trapezoid histogram distributions. 

(a) The figure of lane markings, (b) The trapezoid histograms. 
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(a)                        (b)                      (c) 
Figure 49: The processes of histogram post-processing. x axis means the polar histogram’s 

angle and y axis means the accumulation on each angle.  

(a) The polar histogram of Figure 45. (b) The histogram of (a) after the trapezoid histogram 

elimination, low singleton histogram elimination and the peak searching procedure. (c) Local 

peak histogram. 

4.2.8  Object Tracking and Information Extraction 

    
Figure 50 : The block diagram of object tracking and information extraction 

Our tracking procedure is used to confirm the detected objects. We choose the displacement 

and variation of angles in the extracted feature segment as the judgment conditions in the 

tracking process. If the feature segment has been extracted, we would judge again whether this 

feature segment belongs to the planar object by a pattern matching approach. Our tracking 

process and the pattern for representing the planar object are shown in Figure 50. We can finally 

confirm that the detected feature segment is an obstacle and also obtain the position of feature 

segments or other useful information. 
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1. Obstacle Candidate Image 
Due to the property of compensated image as described in the previous, that is the 

compensated image is interpolated with ground movement information so that the planar object 

such as road will be correspond to the same position with current image and the non-planar 

object will not. Therefore, these characteristic is utilized to detect the obstacle region via image 

difference as depicted in Figure 51 the image difference block. By image compare between

current frame image and compensated image, the planar region will be eliminated and the 

obstacle region will be marked.  

Input
 Image

Compensated
 Image

Difference Obstacle 
Localization

�������	
�	�	���
�

Figure 51: Flowchart of Obstacle Detection 

 Here, it can be determined whether a point is on the ground plane or not by comparing 

the gray values of the corresponding pixels on two image frames Eq. (4.25), where � is the 

threshold for the maximum disparity of gray value of two corresponding points. In this way, 

we can detect obstacles above the ground plane. When image difference is completed, the 

obstacle candidate image is obtained which is used to indicate every pixel is belonging to 

obstacle or not. Figure 52 shows some results of image difference between current image and 

compensated image, the pixels which are marked as blue are determined as obstacle. 

   ,  obstacle
_ ( ) _ ( )

   ,  ground
cur image P comp image P

≥ Δ →⎧

− = ⎨ < Δ →⎩

� � � � � � � � � � � � � (4.25)

,where cur_image is current frame image, and comp_image is compensated image 

�
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Figure 52: Results of image difference between current image and compensated image 

2. Obstacle Localization 
In this section, the objective of the obstacle localization procedure is to locate the position 

of each target objects. The obstacle candidate image is used to extract obstacle region and locate 

the position of obstacle. Figure 53 illustrates the flow of obstacle localization, obstacle 

candidate image is integrating vertically and for each obstacle we will locate the closest 

position to ego-vehicle. Owing to the distance between each obstacle and the ego-vehicle is the 

most important task for driver when backing up. Therefore, in our research the main purpose is 

to look for the closest point to the camera not to bind the entire obstacle region.  

Obstacle 
candidate

Image

Vertical-
orientated
Histogram

Locate 
Horizontal Position

Local Interval 
lowest location 

Extraction

Nearest Position 
Localization

Figure 53: Flowchart of obstacle localization 

 The first step of the obstacle localization is to calculate the vertical-orientated histogram. 

The vertical-orientated histogram of binary detection result(obstacle candidate image) is 

created to ensure horizontal positions of obstacle by extracting the bins which exceeding 

threshold. The idea is based on the fact that obstacle have more vertically oriented edges 

compared with their background. By integrating the detection result vertically, the detection on 

vertically oriented objects is amplified. The vertical-orientated histogram P is created with Eq. 

(4.26). 
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  x xy
y

P I x= ∀∑        (4.26) 

Here, x is the horizontal coordinate of the image and y is the vertical coordinate of the 

image. Since the obstacle candidate image is binarized, the pixel intensity I either has a value 0 

or 1. Figure 54 illustrates the obstacle candidate image and the corresponding 

vertical-orientated histogram. Then by using a threshold to indicate which horizontal position 

have significant accumulation that means obstacle could lie on these x coordinates.   

   

Figure 54: the obstacle candidate image and the corresponding vertical-orientated histogram 

 The detail of creating vertical-oriented histogram is depicted in Figure 55, first the image 

will be divided vertically to several bins, for each bin is to scan from bottom to top and to 

accumulate the number of obstacle candidate. If the interval between two candidates is smaller 

than a threshold, we consider that these still belong to the same object so that accumulate to the 

histogram in these bin; otherwise, clean up the accumulation. Besides, creating the 

vertical-oriented histogram we will save the lowest position of each bin simultaneously. Finally, 

by extracting lowest position of local interval, the nearest position to the ego-vehicle of each 

obstacle region can be obtained and the results can be refined. That is for all of bins of 

histogram which is over the threshold, in every local area that will reserve single position which 

is the lowest coordinate. For every obstacle region, the closest position to our ego-vehicle will 

be located and marked to alert the driver. 

THD THD 
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Figure 55: Procedure of creating vertical-orientated histogram 

3. Obstacle Verification 
To decrease amount of false alarming which would cause by erroneous ground movement, 

the false alarming have occurred commonly on road marking or shadows. Therefore, 

knowledge of road detection is used to verify results of obstacle detection. In other words, for 

all of potential target locations are verified using some prior knowledge about the road 

information. For all of potential target positions, verification is exceeded by checking road ratio 

of fixed bounding box. If road ratio of a bounding box is over than a threshold, that the position 

could be the road region, then we will filter out the result. On the contrary, road ratio of a 

bounding box is smaller than a threshold then the position is not considered to be a ground 

region. Therefore, we consider that the region is part of obstacle and reserve the result. Figure 

56 is illustrated the idea of obstacle verification. By final checking of road ratio, some error 

such as road marking would be removed and the result of obstacle detection is more robust. 



64 

Figure 56: Procedure of obstacle verification 
  _   >  60%    =>       if road ratio filter out the result�

4. Distance Measurement 
For backing up maneuver safety, the position of objects in rear view which are driver 

concerning with during parking period. Among of all obstacle information the distance between 

target and ego-vehicle is most essential. By acquiring the distance, we can realize objects are 

near or far away from our ego-vehicle. Then some backing-up crashes could be avoided. The 

distance which we want to know is the closest position of obstacle to our vehicle because of the 

nearest collision would occur here. Therefore, the distance between the lowest position of each 

obstacle which is located by the obstacle localization procedure and our vehicle will be 

estimated by our procedure.  

Figure 57: Transformation between image coordinate and world coordinate
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As shown in Figure 57, all the obstacle positions can be transformed from the image 

coordinate to world coordinate by IPM calibration procedure. Therefore, the first step of 

distance measurement is to obtain the world coordinate of each target. Then the world 

coordinate will be transformed to real distance by scaling. In order to estimate the scale between 

real length and world coordinate, the horizontal and vertical reference line on the ground should 

be measured as depicted in Figure 58. By calculating the proportion between reference line in 

real scene and in the world coordinate, the scale of horizontal and vertical will be acquired to 

undertake the mapping between world coordinate and real length. The Figure 59 is illustrated 

the block diagram of distance measurement, that transforms the image coordinate of target to 

world coordinate first, then mapping the world coordinate to real distance. The distance how far 

away our vehicle is obtained. 

Figure 58: Scale measure between world coordinate and real length
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Figure 59: Block diagram of distance measurement 
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4.3   Dynamic Distance Gauge (DDG) 

This work proposes a novel, real-time digital parking assist system to dynamically gauge 

the motion direction and distance from image sequences captured by rear view camera of a car 

and produce assist-cues in the monitor. This technique applies image processing methods to 

extract motion vectors from image sequence and use a weight-based motion combination 

formula to evaluate the turning degree of a car. This work introduces a novel application in the 

field of image processing. Most previous parking assist systems require physical information 

from the steering wheel of a car; however, the proposed system requires only camera 

information. Hence, the proposed system can be applied simply to any vehicle with a backward 

camera. It has been implemented and tested on both PC-based and real-time embedded systems. 

4.3.1  System architecture of the DDG 

Figure 60: System architecture of the proposed DDG algorithm 

As shown in the Figure 60, the system architecture of the proposed algorithm consists of 

two processing units: the motion estimation unit and turning degree evaluation. In the motion 

estimation unit, local motion vectors (LMVs) are detected by the block matching method with 

three pre-defined detection areas which are suitable for further evaluation of turning degree. 

Logical filters with a proportional factor are applied to filter out sudden noises caused by 

moving objects and generate filtered motion vectors (FMVs). Following the motion estimation, 

a weight-based combination formula is proposed to combine FMVs to estimate the turning 

degree (TD). Furthermore, some post-processing methods are employed to quantize and 

smooth the evaluated TD for diver assistance systems to plot driver cues in the output images.  

1. Motion Estimation
The motion estimation unit presented in Figure 59 contains motion detectors and logical 

filters for pre-defined detection areas. Three detection areas are selected as shown in the Figure 

61. Area1 is located in the top-center of the image, and it is the primary area for turing 

evaluation. The horizontal motion of area1 defines the direction of turing in the following 

turning degree evaluation. Area2 and area3 are located in the top-left and top-right respectively. 
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Motion vectors evaluated from area2 and area3 are used to calculate the difference of 

side-velocities of a car and evaluate the turning degree. LMVs corresponding to every detection 

areas are obtained by block matching (BM) algorithm. 

(a)                         (b) 

Figure 61: Allocation of motion detection areas.  

(a) The defined location of area1, area2 and area3. (b) An illustration of detection areas in a 

realistic image. 

2. Block Matching (BM) Algorithm 

Figure 62: The scheme of block matching 

Figure 62 shows the scheme of block matching. A matching block is used to find the local 

motion vector in the detection area. The BM algorithm is quite simple that it firstly calculates 

the sum of absolute difference (SAD) between matching blocks of two fames for every possible 

motion vector (mv), and then searches for the motion vector corresponding to the minimum of 

SADs. BM algorithm can be achieved as follows; 

∑
∈
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where I(t-1, X, Y) is the intensity of the pixel (X, Y) at frame t −1 , Ai is the i-th detection area in 

the image. SADi(p, q) is the SAD measure for a shift (p, q) between the pixels in area i at frame 

t −1 and the relative shifting points at frame t. Since ),(min  , qpSADiqp
is the minimum SAD value 
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Matching Block of frame (t)
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in area i, the shift vector lmvi that produces the minimum SAD value for area i represents the 

LMV of the detection area. 

3. Logical Filter with a Proportional factor 
After evaluating LMVs, logical filters with proportional control are proposed to filter out 

sudden noises caused by moving objects and generate filtered motion vectors (FMVs). The 

logical filter is implemented as, 

THtlmvtlmvIf ii <−− )1()( 

)()( tlmvtfmv ii =

else

10    ),1()( <<−⋅= pipi kwheretfmvktfmv                       (4.28) 

In (Eq. 4.28), a proper threshold, denoted as TH, is defined by pre-experiments to present an 

unusual change of LMVs. If the quantity of the difference of lmvi within a sampling time is 

below the given threshold, the filtered motion vector of area i at frame t, say fmvi(t), is set to 

lmvi(t); otherwise, fmvi(t) is set to fmvi(t-1) multiplied by a proportional factor kp.

4. Tuning degree Evaluation
In order to calculate the turning degree (TD) of a car based on filtered motion vectors 

generated from the motion estimation unit, a weight-based combination formula is proposed as 

follows; 

TD = w1�x1 + w2�(y3 - y2) + w3�(x2 +x3)               (4.29) 

where (xi, yi) for i=1, 2, 3 are the filtered motion vectors with respect to area i, and 0 < w1, w2, w3

< 1 are weight factors associated with different kinds of motion features. The turning degree 

(TD) is a combination of various motion features. Motion features in (Eq. 4.29) can be divided 

into three categories: the center-horizontal motion, side-vertical motions and side-horizontal 

motions. The center-horizontal motion, which is presented by the motion parameter x1, 

dominates the turning direction and degree. The difference between side-vertical motions 

characterized by (y3 - y2) and summation of side-horizontal motions characterized by (x2 + x3) 

can also characterize the turning degree. A large quantity of (y3 - y2) or (x2 + x3) refers to a big 

turning. In this work, the weights are experimentally tuned and set to be robust to various 

environments. Moreover, the weights of last two motion features, say w2 and w3, are set smaller 

than w1, because motion vectors detected from area2 and area3 are sometimes influenced by the 

depth of field in side areas. 

Some simple post-processing methods are proposed for DDG system to enhance the 
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robustness of turning degree evaluation and produce a quantitative value for practical usage. 

Post-processing methods applied in DDG are achieved as following procedures; 

QTD(t) = (1-α)�QTD(t-1) �+ α Q(TD(t)) ,  0<α<1         (4.30) 

Q(TD(t)) �= N TD(t)/max|TD(t)|                    (4.31) 

where QTD(t) is the quantized turning degree, N is a numerical number used to scale the 

quantity of turning degree. The value of parameter N is set proportionally to the resolution of 

the output image. The parameter α in (Eq. 4.31) is set closely to 1 to preserve most sensitivity of 

turning degree. 
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5. Experiment Results 

5.1   Obstacle Detection Experiment 
We arranged the information of the working platform and listed in Table 6 shown below. 

To show our experimental results more clearly, we categorized the experiments according to the 

proposed process and approach which have been introduced in the previous sections as follows. 

Table 6: The specifications of our working platform 

CPU Intel Core Duo T2050 1.6GHz 
Memory 1GB DDR2 RAM 
Programming Tool Borland C++ Builder 6.0 
Operation System Microsoft Windows XP 
Video Resolution 640x480 
Camera Frame Rate 30fps 

Table 7: The runtime in each processing step 

Processing Function Runtime / frame (ms) 

FLIPM (with the IPM remapped position table) 2.793 

Input image, transfer gray-level image and setting 

dynamic array memory  

31.98 

Pre-Processing 8.847 

Segment searching and Polar Histogram 6.515 

Histogram and Post-Processing 0.253 

Obstacle tracking and extraction 0.347 

Display 13.725 

Total 64.46 
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Table 8: Comparisons of different obstacle algorithms 

Compared Methods Runtime (ms) 
Sensor 

Type 

Moving 

compensation 

Field of 

View  

Our approach 64.46 ( CPU 1.6GHz) 
Fisheye 

Camera 

YES 125�

M. Bertozzi and A. 

Broggi [2] 
100 (FPGA based) 

Stereo 

Camera 

NO 28�

Wen-Liang Ji [3] 66.7(CPU 3GHz) 
Single 

Camera 

NO 34�

P. Cerri and P. Grisleri 

[4] 
950 (CPU 2.8GHz 

Single 

Camera 

YES Normal 

Lens 

S. Kyo et al. [14] 
65 (multipile 

IMAP-VISION board) 

Single 

Camera 

NO Normal 

Lens 

Changhui Yang et 

al.[17] 
50 (CPU 3.6GHz) 

Single 

Camera 

YES Normal 

Lens 

Guanglin Ma et al [18] 

(pedestrian candidate 

detection module) 

16 (CPU 3.6GHz) 

Single 

Camera 

NO 48.8�

Table 7 showed the runtime in each processing step defined in Figure 18. As Table 7 

demonstrated, our system processed 15 frames per second. We tested the complete system by 

two parts, Input and Display stages. Therefore, the performance of the whole system could be 

improved easily by upgrading the video I/O equipment and optimizing the FLIPM Kernel 

functions in regions of interest. Table 8 exhibited the performance of different obstacle 

algorithms. We gave the compared results in four parts, including the runtime, types of sensors, 

moving compensation, and field of views. Although our approach included image I/O routine 

processes on common development platform, it still had the better performance than the others. 

On the detection module, we adopted the polar histogram to simplify the analytic step. It had 

two benefits where one was to reduce the complexity and accelerate the processing speeds, and 

the other was to improve the detection rate and accuracy of obstacle detection. In Table 8, [2], 

[17] and our approach considered the polar histogram, however, our system had the better 

detection rate than the others and might not be easily influenced by the planar markings, 

shadows, and other noises. 
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5.1.1  Comparisons about the Normal Lens IPM Method 
In section 4, we proposed a modified forward and backward normal lens IPM equation 

pairs. The experimental results of our proposed approach and the most popular one by Broggi’s 

equations were given in Figure 63. From Figure 63, the captured images by the normal lens 

camera were transformed to the bird-view images by using our equations. In Figure 63(b) and 

(c), the perspective effect was eliminated by both of Broggi’s and our equations. Nevertheless, 

the horizontal line in the original image would be transformed to an arc by Broggi’s equations 

as shown in Figure 63(b). With our modified equations, the horizontal straight line in the 

original image could be transformed to a horizontal straight line in the bird-view image as 

shown in Figure 63(c). 

(a)                       (b) 

(c)                       (d) 

(e)                        (f) 

Figure 63: The results of the normal lens IPM equations 

(a) the original captured image (b) the bird-view image using Broggi’s equations (c) the 

bird-view image using our equations 
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5.1.2 The Experimental Configurations 
For the experiments in obstacle detection, we mounted a fisheye lens camera at the center 

between two side doors with the appropriate height as shown in Figure 64. To avoid disorders 

of frames, we would only detect the objects whose heights are more than a threshold and whose 

edges are quasi-vertical. The objects such as sidewalks, small balls and so on were excluded in 

our detection system. The experimental environments would also be constrained to the brighter 

backgrounds and the speed of vehicles should be under a reasonable limit so that the objects 

between frames would not change too drastically. 

Figure 64: The set-up location of camera. 

5.1.3  Results in Various Environments 
As Figure 65 showed, we could accurately detect various kinds of obstacles with 

quasi-vertical edges by using our FLIPM methods and obstacle detection algorithm. 
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(a) Scenery1: bicyclist, street light. 

(b) Scenery 2: railings. 
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(c) Scenery 3: multiple vehicles in the parking area. 

(d) Scenery 4: pedestrians, nearby vehicles 
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(e) Scenery 5: multiple vehicles. 
Figure 65: The results of FLIPM and obstacle detection in different scenes.  

(a) Scenery1: bicyclist, street light. (b) Scenery 2: railings. (c) Scenery 3: multiple vehicles in 

the parking area. (d) Scenery 4: pedestrians, nearby vehicles. (e) Scenery 5: multiple vehicles. 

Our tracking process was carried out by iteratively checking the displacement and angular 

shift in the image, and we also demonstrated the results of the tracking process in successive 

frames as given in Figure 65 and Figure 66. According to the FLIPM method, the 3D world 

coordinate value could be estimated from the remapped image. In other words, when we 

detected the obstacle in the remapped image, we could also estimate the position information. 

We hence set up an obstacle warning system on the lateral and rear of the vehicle to give a 

warning signal when the detected obstacles were over close to our vehicle. We showed the 

results of the obstacle warning system In Figure 67, Figure 68 and Figure 69 where the 

rectangles in the upper images and the lines in the below images indicated “the position of 

obstacles” and “the distance and direction between the vertical projection point of camera and 

the detected obstacles, respectively. 
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#Frame 315 #Frame 318 

# Frame 322 # Frame 326 
Figure 66: Results of obstacle tracking in Scenery 1 

# Frame 172 # Frame 188 

# Frame 204 # Frame 220 
Figure 67: Results of obstacle tracking in Scenery 3 
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Figure 68:  Results of obstacle warning in the lateral direction 

Figure 69:  Results of obstacle warning in the rear direction. 
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Detected Original Image Polar Histogram Local Peak Histogram 

Figure 70: Results of obstacle warning with moving objects.  

Upper two rows are the results with moving humans. Bottom two rows are the results with a 

moving vehicle turning into the corner. 

In Figure 70, there were results of obstacle warning with moving objects. We had two 

simulation situations. One was that a pedestrian was walking form a parking region to another 

side while the demonstrated vehicle was leaving the parking region. The other situation 

contained a corner where a coming vehicle, the static obstacle and clear planar markings existed. 

Here we presented two issues in the moving obstacle detection and compensation estimation 
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with rotation angles. We could get the results from distributions of the right polar histograms, 

localize each non-planar obstacle by dominant peaks, and filter the lane markings by trapezoid 

distributions in the original polar histograms. 

Environme
nt Detected Original Image FLIPM image 

Daytime 
with 
Shadows 

Nighttime 
with 
Shadows 

(C) 
Raining 
Daytime 
on wet 
ground 
with light 
reflection 
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(D) Night 
on wet 
ground 
with light 
reflection 

(E) 
Daytime 
with other 
vehicles 

(F) 
Nighttime 
with other 
vehicles 

Figure 71: The results in different environments with heavy noise.  

(A) In the daytime with many shadow effect. (B) In the nighttime with self shadow projected by 

several different direction road lights. (C) In the raining daytime on wet ground with light 

reflection. (D) In the raining night time on wet ground with strong light reflection. (E) Daytime 

with other vehicles. (F) Nighttime with other vehicles. 

In Figure 71, there existed some simulated environments with heavy noises, such as 

shadows, light reflection, and light refraction from wet roads. In case (A) where there existed 

many shadows of trees on the grounds, we could obtain the remapping image as shown in the 
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right one by the FLIPM transformation. By our approach, the shadows could be filtered out by 

the polar histogram if its accumulations on each angle were small and its shapes were in 

trapezoid. For case (B) where there were two road lights at the front and rear of our vehicle in 

the nighttime, we would find two different shadows on the ground. One was not clearly 

recognized from far light projection and the other was obvious due to near light projection. Our 

proposed method, however, could take advantage of FLIPM effects to remove the shadowing 

effect no matter how serious the illuminating conditions might be. Our compensation 

estimation could shift the new frame to the adaptive position to gain the minimum candidate 

pixels of obstacles. For case (C) and case (D), we demonstrated our results to be reliable and 

satisfactory in the raining conditions in the daytime and nighttime. In the nighttime, noises from 

light reflection were much more serious than those in the daytime, and our approach could 

successfully avoid misrecognizing them as obstacles in the fixed illumination condition. As for 

case (E) and case (F), we showed the experimental results in the common situations which 

simulated the roads in the daytime and nighttime. As a result of advantages of the fisheye 

camera in a wider angle of view, our obstacle detection algorithm could detect the range of the 

field of view up to 125 degrees which was much wider than other algorithms by common lens. 

5.1.4 Accuracy Evaluation of Obstacle Distance 
 For evaluation of distance measurement, we compare length of real line with the length 

which estimated by the proposed procedure to obtain the distance measurement error. By 

testing 590 data such as illustrated in Figure 72 the land marking, the error of distance 

measurement within short and long range respectively is shown in Table 9. Due to the 

geometric characteristic of calibration procedure, the calibration error in the far range will be 

enlarged. Therefore, the average distance measure error of near range is about 0.16m but of far 

range is about 0.68m. The experimental results demonstrate that estimation for distance of 

target position is accurately.  

   
Figure 72: Lane marking for distance measurement 
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Table 9: Experimental result of distance measurement 
Near range (3~5m) Far range (5~8m) 

Average Distance Error (m) 0.16 m 0.68 m 

5.2   Dynamic Distance Gauge (DDG) 

   
(a)                                 (b) 

  
(c)                                 (d) 

   
(e)                                (f) 

Figure 73: Testing results of DDG in various environments. 

(a) Left tuning at an indoor place. (b) Right turning at an outdoor place. (c) Testing at an 

outdoor place with low texture in the background. (d) Testing at night-time. (e) Slightly left 

turning at outdoor place with swinging trees. (f) Stop turning at outdoor place with signal 

disturbance.  

The proposed system in this work has been implemented and tested on both PC-based and 

real-time embedded platforms. Figure 73 demonstrates the testing results of the proposed DDG 

system in various conditions. In Figure 73, the car is turning left at an indoor place, and the 

value of turning degree (TD) is positive. Moreover, motion features in Eq. (4.29) including x1,

(y3 - y2) and (x2 + x3) are all positive. Figure 73 shows a right turning at an outdoor place. In this 
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case, the values of TD and motion features defined in Eq. (4.29) are all negative. Figure 73(c) 

and (d) shows that the proposed system can perform well at low texture condition and night 

time. Figure 73(e) and (d) demonstrates the robustness of the proposed system. The testing 

result in Figure 73(e) shows the DDG system is robust to the disturbance of trees’ swinging; 

because the sudden motions caused by the movement of leaves can be filtered by the logical 

filter. Figure 73(f) shows the testing result with signal disturbance caused by an improper 

hardware connection, and TD is hold at zero when there is no turning. Experimental results in 

this work show that the proposed DDG algorithm can actually evaluate the turning degree of a 

car and robustly perform at various conditions. 
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5.3   Entire System Experiment 

This experiment includes three entries. First stage tests the intelligent function on a RSU. 

RSU captures the video stream from cameras setting on the intersection with difference 

directions. Then, analyzing multi-channel video streaming can estimate the collision rate of 

moving objects. The next entry is WAVE/DSRC package transmission test. Driving two or 

more vehicle with different interval, we test the efficiency and accuracy. The Last test is to 

receive messages on the vehicle, and verify its content and protocol fit in with WSM and SAE 

J2576 telematics protocol. 

5.3.1  Environment description 

Figure 74: Test Street Location 

We put a wave box in the A Car and put another in the B Car. The longest distance 

between these two cars are 100 meters long, and the shortest distance is 20 meters long. 

During each test, we average the success rate by transmitting 10 packages. All test structure is 

present in Figure 74. 
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Figure 75 Experiment structure for testing transmission rate 

Table 10: Parameters of Testing 
SAVARI S200 

Tx Power (dbm) 10 
Channel 178 
MAX RF Distance (m)  250 
Input parameter 
# of UDP Packets 600 
Packet Size (bytes) 512 
CBR (HZ) 10 

5.3.2 Protocol Test Results 

Figure 76: WSM Captured Message 

As shown in Figure 76, the red block is the WSM message received by Sniffer Card in 
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Channel 178.  

Figure 77: WSM header 

The red block in Figure 77 is WSM header. It conforms the protocol with WSM 
Version : 0�Security Type�0�Channel Number : 178�Data Rate�0��

TxPwr_Level�10�Provider Service Identifier�210�WSM Length��

512�WSM Data�cc cc … 

Table 11: Static test (600 packages per test) 
Distan
ce 

No1. No2. No3. No4. No5. No6. No7. No8. No9. No10 Avg 

20 m 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

40 m 100% 99.33
% 

100% 100% 100% 100% 100% 100% 100% 100% 99.93
% 

60 m 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

80 m 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

100 m 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

Table 12: Active test (600 packages per test, 30 Km/hr) 
Distan
ce 

No1. No2. No3. No4. No5. No6. No7. No8. No9. No10 Avg 

10m~ 
100m 

98.5% 
(591) 

96.3%
(578) 

96.5%
(579) 

95.1%
(571) 

99.1%
(595) 

97.3%
(584) 

96.3%
(578)

95.8%
(575) 

97.1%
(583) 

98.8%
(593) 

97.08
% 
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From Table 11and Table 12, the active test is more meaningful. Car A and Car B moves in 30 

Km/hr speed and the average success rate is around 97%. 

5.3.3 Intersection Test Results 

Figure 78 : The locations of camera on setting intersection 

From Figure 78, we set four cameras forward different directions, and the height of 
camera’s location is 8.5 meters long. 

  
Figure 79: The location of fix camera on intersection 
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According the principle of government, view distance can be divided into stop view 

distance, contingency view distance and overtake view distance. 

1. Stop view distance means when driver sees an obstacle on the road, and then starts to 

brake until vehicle stop distance. 

2. Contingency view distance means when driver finds an unexpected road condition, 

and then still can change lane, speed and direction. 

3. Overtake view distance means when driver overtakes front car on the reverse lane, 

and then accomplish the active before vehicle coming. 

Table 13: The minimum distance of stop view and overtake view 
Speed (Km/ Hr) Stop view distance (meters) Overtake view distance (meters) 

minimum Suggest value minimum Suggest value 

60 70 85 290 410 

50 55 65 240 340 

40 40 45 200 280 

30 30 30 160 220 

25 25 25 140 195 

We set the speed of test vehicle with receiving wave box at 40 Km/hr, and distance of 

view is over 50 meters long. Setting a RSU on the road side, and the minimum distance 

between RSU and Camera is 85 meters long. First using 3G Ethernet calibrates machine clock. 

Second, we simulate pedestrian crossing intersection and collision events, and then measure 

the whole transmission time.  

Figure 80: Simulating a pedestrian crossing intersection 
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Table 14 : Table of reaction time via OBU 
Test No. Reaction Time (Sec) 

1 0.359 

2 0.468 

3 0.500 

4 0.531 

5 0.515 

6 0.515 

7 0.672 

8 0.391 

9 0.907 

10  0.188 
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5.4 Discussions 
Although the performance of our obstacle detection system based on FLIPM method was 

quite satisfactory, there have existed some disturbance factors as shown below. In Figure 81(a), 

the street light in the remapped image were too unapparent to be detected because its texture 

was similar to that of the grassland behind it. In addition, the completeness of obstacle shape in 

the profile or temporal FLIPM difference image would be critical for the following obstacle 

detection process. Figure 81(b) showed the broken shape of obstacles in the temporal FLIPM 

difference image, which could lead to the erroneous detected results. 

(a) 

(b) 
Figure 81: Examples of erroneous detected results in our system 
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6.  Conclusions 

In this dissertation, we propose a complete and novel structure for the safety assistant 

telematics system containing safety vehicle assistant system and intersection surveillance 

system. In intersection surveillance system, we accomplish an image processing embedded 

platform, DSRC transferring and receiving functions, and an advanced surveillance system. 

The embedded platform captures the composite NTSC/PAL video stream, and processes 

intelligent functions via DSP dual core, and finally export the composite video stream with 

intelligent incident detection results. The DSRC protocol contents are verified by the sniffer 

card manufacture from active duty products. The advanced intelligent surveillance system 

contains incident detector and collector. Detector is a front-end equipment with our 

vision-based intelligent algorithm, therefore the adjustment of the detector can provide more 

related information to pedestrians and drivers to take attention intersection traffic. In the 

vehicle assistant system, the brand-new structure includes three major parts, FLIPM algorithm, 

obstacle detection and dynamic distance gauge. With our modified normal lens IPM equations, 

the vertical/horizontal straight lines in the original image will be projected to a straight line 

whose prolongation will pass the vertical/horizontal projection point of camera in the remapped 

image. The resultant phenomenon has two advantages in removing planar objects and detecting 

obstacles. One is to give more information in predicting the compensation quantification 

between difference frames, which helps us to remove the planar objects such like shadow, water, 

lane line and so on. The other one is to reinforce the feature points of obstacles, which 

efficiently reduces the computational loading in searching obstacles. Besides, we consider the 

fisheye lens distortion effect and provide a high efficient and all-direction feature searching 

method on polar histogram for both of the static and dynamic environments. We use the polar 

histogram to find the position and length of feature segments by referring to the edge and 

temporal difference images. We also present the histogram post-processing to exclude the 

planar lane markings and noises. In dynamic distance gauge system, we develop a 

vision-based curve estimation method with any vehicle machine information. We do not only 

accomplish the algorithm, but also develop is on the embedded platform. Finally, all the 

experimental results of our proposed system show the satisfactory performance and provide the 

accurate detection rate. Our experiment is also verified by the national supervision company. 

In the future, our advanced intelligent surveillance system can apply in ITS applications, such 
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as vehicle detection, incident detection, traffic light management, e-police, presence rate 

estimation and so on. Beside, obstacle detection system can be integrated into the driving 

assistance and safety system, including vehicle collision-free development, warning system, 

and lane departure warning system. Furthermore, we will work on different shapes of obstacles 

for those without quasi-vertical edges and speed up our detection system for more real-time 

applications. We will also keep develop more efficiency safety assistant researches by 

following the DSRC newest information. 



94 

Bibliography 
[1] http://en.wikipedia.org/wiki/Telematics

[2] http://www.calm.hu

[3] http://www.astm.org

[4] M. Bertozzi, A. Broggi, and A. Fascioli, “Stereo inverse perspective mapping: theory and 

applications,” Image and Vision Computing, vol. 16, no. 8, pp. 585–590, 1998. 

[5] M. Bertozzi and A. Broggi, “GOLD: a parallel real-time stereo vision system for generic 

obstacle and lane detection,” IEEE Transactions on Image Processing, vol. 7, no. 1, pp. 

62–81, 1998. 

[6] W.-L. Ji, “A CCD-based intelligent driver assistance system-based on lane and vehicle 

tracking”, Ph.D. thesis, National Cheng Kung University, Tainan, Taiwan, 2005. 

[7] P. Cerri and P. Grisleri, “Free space detection on highways using time correlation between 

stabilized sub-pixel precision IPM images,” in Proceedings of the IEEE International 

Conference on Robotics and Automation (ICRA ’05), pp. 2223–2228, Barcelona ,Spain, 

April 2005.

[8] A. M. Muad et al., “Implementation of inverse perspective mapping algorithm for the 

development of an automatic lane tracking system,” in Proceedings of the IEEE Region 10 

Conference on Analog and Digital Techniques in Electrical Engineering (TENCON ’04), 

vol. 1, pp. 207–210, Chiang Mai, Thailand, November 2004. 

[9] S. Tan et al., “Inverse perspective mapping and optic flow: a calibration method and a 

quantitative analysis,” Image and Vision Computing, vol. 24, no. 2, pp. 153–165, 2006. 

[10] G. Y. Jiang et al., “Lane and obstacle detection based on fast inverse perspective mapping 

algorithm,” in Proceedings of the IEEE International Conference on Systems, Man and 

Cybernetics, pp. 2969–2974, Nashville, Tenn, USA, October 2000. 

[11] M. Nieto et al., “Stabilization of inverse perspective mapping images based on robust 

vanishing point estimation,” in Proceedings of the IEEE Intelligent Vehicles Symposium, 

pp. 315–320, Istanbul, Turkey, June 2007. 

[12] J.-H. Lai, Development of an exploration system for a vision guided mobile robot in an 

unknown indoor environment, M.S. thesis, St. John’s University, 2006. 

[13] C. Curio, J. Edelbrunner, T. Kalinke, C. Tzomakas, andW. Von Seelen, “Walking 

pedestrian recognition,” IEEE Transactions on Intelligent Transportation Systems, vol. 1, 

no. 3, pp. 155–162, 2000. 



95 

[14] M. Bertozzi et al., “Stereo Vision-based approaches for Pedestrian Detection,” in 

Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern 

Recognition (CVPR ’05), vol. 2005, p. 16, San Diego, Calif, USA, 2005.

[15] Z. Sun, G. Bebis, and R. Miller, “On-road vehicle detection using optical sensors: a 

review,” in Proceedings of the 7th International IEEE Conference on Intelligent 

Transportation Systems (ITSC ’04), pp. 585–590, October 2004.

[16] S. Kyo et al., “Robust vehicle detecting and tracking system for wet weather conditions 

using the IMAP-VISION image processing board,” in Proceedings of the IEEE/IEEJ/JSAI 

International Conference on Intelligent Transportation Systems, pp. 423–428, Tokyo, 

Japan, October 1999. 

[17] S. Denasi and G. Quaglia, “Obstacle detection using a deformable model of vehicles,” in 

Proceedings of the IEEE Intelligent Vehicles Symposium (IV ’01), pp. 145–150, Tokyo, 

Japan, 2001. 

[18] W. Krueger, W. Enkelmann, and S. Roessle, “Real-time estimation and tracking of optical 

flow vectors for obstacle detection,” in Proceedings of the Intelligent Vehicles 

Symposium, pp. 304–309, Detroit, Mich, USA, September 1995. 

[19] C. H. Q. Forster and C. Tozzi, “Towards 3D reconstruction of endoscope images using 

shape fromshading,” in Proceedings of the 13th Brazilian Symposium on Computer 

Graphics and Image Processing, pp. 90–96, 2000.

[20] C. Yang, H. Hongo, and S. Tanimoto, “A new approach for in-vehicle camera obstacle 

detection by ground movement compensation,” in Processing of the 11th IEEE 

Conference on Intelligent Transportation Systems (ITSC ’08), pp. 151–156, Beijing, 

China, October 2008.

[21] G. Ma et al., “Pedestrian detection using a single-monochrome camera,” IET Intelligent 

Transport Systems, vol. 3, no. 1, pp. 42–56, 2009.

[22] W. Hu et al., “A survey on visual surveillance of object motion and behaviors,” IEEE 

Transactions on Systems, Man, and Cybernetics—Part C: Applications and Reviews, vol. 

34, no. 3, pp. 334 – 352, Aug. 2004.

[23] S. Gupte et al., “Detection and classification of vehicles,” IEEE Transactions on 

Intelligent Transportation Systems, vol. 3, no. 1, pp. 37–47, Mar. 2002.

[24] D. Koller et al., “Towards robust automatic traffic scene analysis in real-time,” in Proc. of 

the 12th IAPR International Conference on Pattern Recognition, vol. 1, 1994, pp. 126 – 

131.

[25] A. Chachich et al., “Traffic sensor using a color vision method,” in Proc. of SPIE: 



96 

Transportation Sensors and Controls: Collision Avoidance, Traffic Management, and ITS, 

vol. 2902, pp. 156–165, 1996.

[26] T. N. Tan, G. D. Sullivan, and K. D. Baker, “Model-based localization and recognition of 

road vehicles,” International Journal of Computer Vision, vol. 27, no. 1, pp. 5–25, 1998.

[27] S. McKenna et al., “Tracking groups of people,” Computer Vision and Image 

Understanding, vol. 80, no. 1, pp. 42–56, 2000.

[28] R. Cucchiara, P. Mello, and M. Piccaidi, “Image analysis and rule-based reasoning for a 

traffic monitoring system,” IEEE Transactions on Intelligent Transportation Systems, vol. 

1, no. 2, pp. 119–130, June 2000. 

[29] H. Veeraraghavan, O. Masoud, and N. P. Papanikolopoulos, “Computer vision algorithms 

for intersection monitoring,” IEEE Transactions on Intelligent Transportation Systems, 

vol. 4, no. 2, pp. 78 - 89, June 2003. 

[30] S. C. Chen et al., “Learning-based spatio-temporal vehicle tracking and indexing for 

transportation multimedia database systems,” IEEE Transactions on Intelligent 

Transportation Systems, vol. 4, no. 3, pp. 154 – 167, Sep. 2003.  

[31] P. Kumar et al., “Co-operative multi-target tracking and classification,” in Proc. of 

European Conference on Computer Vision, May 2004, pp. 376–389.  

[32] S. K. Zhou, R. Chellappa, and B. Moghaddam, “Visual tracking and recognition using 

appearance-adaptive models in particle filters,” IEEE Transactions on Image Processing, 

vol. 13, no. 11, pp. 1491 – 1506, Nov. 2004. 

[33] H. T. Nguyen and A. W. M. Smeulders, “Fast occluded object tracking by a robust 

appearance filter,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 

26, no. 8, pp. 1099 – 1104, Aug. 2004. 

[34] J. Kang, I. Cohen, and G. Medioni, “Continuous tracking within and across camera 

streams,” in Proc. of the 2003 IEEE Computer Society Conference on Computer Vision 

and Pattern Recognition, vol. 1, June 2003, pp. I-267 - I-272. 


