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Abstract

Speech enhancement techniques, utilizing microphone array, have attracted
attentions of many researchers for:'the last thirty years. In many practical
environments, the desired speech signal is usually contaminated not only by stationary
noise but also multiple nonstationay interferences, such as competing speech signals.
The objective of this dissertation is to design robust adaptive beamfromers to reduce
background noise and compensate channel effects using a uniform linear microphone
array. Two adaptive beamformers, the transfer function ratio (TFR)-based adaptive
beamformer and the robust adaptive beamformer based on the second-order extended
(SOE) H. filter, are proposed in this dissertation.

In the first adaptive beamformer, the TFR 1is obtained using the system
identification method in advance. The proposed TFR-based adaptive beamformer
consists of the TFR beamformer and multi-channel adaptive filter algorithm. The TFR
beamformer is used to block the major component of the multiple interference signals
and the associated information is then used to equalize the channel effect of the
desired speech. The residual noise from the TFR beamformer output is suppressed by

the constrained H., filter due to its robustness to the modeling error. In addition, the

il



virtual sound source concept is proposed to simplify the theoretical treatment for
multiple competing speech signals.

In the second adaptive beamformer, a novel approach to implement the robust
minimum variance distortionless response (MVDR) beamformer is proposed where
the acoustic transfer function is assumed to be delay-only propagation with
uncertainty. The robust MVDR beamformer is to optimize the worst-case performance
for an arbitrary but norm-bounded desired signal steering vector mismatch. For
real-time consideration, the beamformer was formulated into a state-space observer
form and the SOE Kalman filter was derived. However, the SOE Kalman filter
assumes an accurate system dynamic and known statistics of the noise signals. These
assumptions limit the performance under various uncertainties. This dissertation
develops the SOE H., filter for the implementation of the robust MVDR beamformer.
The estimation criterion in the SOE H., filter design is to minimize the worst possible
effects of the disturbance signals-on the signal estimation errors without a priori
knowledge of the disturbance signals statistics. Finally, the results from simulations
and practical experiments are provided as proof of the performance of these proposed

approaches.
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Chapter 1

Introduction

Background noise and reverberation could seriously deteriorate the quality of
speech signals received by sensors. Speech enhancement algorithms have therefore
attracted a great deal of interest in the past three decades. For removing unwanted
interference and noise from the™ desired signal, microphone array processing
techniques are widely used. Speech enhancement algorithms using microphone array
typically incorporate both spatial and spectral information. Hence, they have the
potential to outrun methods using a single microphone where only the spectral
information can be used. Among several existing microphone-array-based
enhancement algorithms, beamformer is one of the most popular methods and was

extensively studied for hands-free speech communication or recognition.

1.1 Overview of Beamformers

In speech communication, if the desired signal and the interfering signals occupy

the same frequency band, it is difficult for temporal or spectral filtering methods to



separate the signal from the interferences. However the desired and the interfering
signals are usually emitted from different spatial locations. This location difference
can be exploited to separate them using a beamformer. A beamformer is an array of
microphones which provide spatial information regarding acoustic dynamics of the
sources. Typically, a beamformer linearly combines the spatially sampled waveform
from each microphone in the same way as the finite impulse response (FIR) filter
combines the temporally sampled data. The diagram of a beamformer with M
microphones is shown in Fig. 1-1.

In the following, the existing beamformers are explained in two categories: fix

beamformers and adaptive beamformers.

Microphone Array

x(n)  x(n) Xy (1)

M
Output = z qum (n)

m=1

Figure 1-1 Diagram of the beamformer

1.1.1 Fix Beamformers

Fix beamformers includes delay-and-sum beamformer (DSB) [1], constant
directivity beamformer (CDB) [2-4] and fixed superdirective beamformers [5-7]. They
utilize fixed coefficients to achieve a desired spatial response. The DSB is the simplest
structure in fixed beamformer and it first compensates for the relative time delay
between distinct microphone signals and then sums the steered signal to form a single

output. Jan and Flanagan [8] explicitly modeled the transfer function from source to



sensors to replace the simple delay assumption. Further, they extended the DSB
concept by introducing the matched filter array beamformer. CDB is designed such
that the spatial response is the same over a wide frequency band while the fixed
superdirective beamformer attempts to suppress noise coming from all directions
without affecting the desired speech signal from a principal direction. Fix
beamformers generally assume the desired sound source, interference signals, and
noises are slowly varying and at known locations. Therefore, these algorithms are
sensitive to steering errors which limit their noises suppression performance and cause
the desired signal distortion or cancellation. Furthermore, these algorithms also have

limited performance under highly reverberation environments.

1.1.2  Adaptive Beamformers

Instead of using fixed coefficients to suppress noises and interference signals, an
adaptive beamformer [9-14] can adaptively forms its directivity beam-pattern to the
desired signal and its null beam-pattern to the undesired signals. In the fixed
beamformers, the null beam-pattern exists when the noise’s direction is known and
remains unchanged. To cope with environmental changes, various adaptive
beamformers were proposed to improve the performance. One of the key issues in
adaptive beamformers is the sensitivity due to the mismatch between the actual
desired signal steering vector and the presumed one [11], [12]. The mismatch can be
induced by signal point errors [13], imperfect array calibration [14], or the channel
effect (e.g., near-far problem [15], environment heterogeneity [16] and source local
scattering [17]). In the presence of these effects, an adaptive beamformer can easily
mix up the desired signal and interference components; that is, it suppress the desired

signal instead of maintaining distortionless response. This phenomenon is commonly



referred to as signal self-nulling [18]. As a result, much effort has been devoted to the
robustness issues [11].

Modifications to adaptive beamformer techniques for robustness were extensively
studied. The linearly constrained minimum variance (LCMV) beamformer was
proposed in [9] to minimize the array output power under a look-direction constraint.
Another popular technique is the generalized sidelobe canceler (GSC) algorithm
which essentially transforms the LCMV constrained minimization problem into an
unconstrained one [10]. In the last decade, several techniques addressing this problem
of the mismatch of the steering vector in the LCMV or GSC structure were developed
[19]-[23]. For example, Hoshuyama et al [20] proposed two robust constraints on
blocking matrix design. Spriet et al [22] proposed a robust adaptive beamformer
called the spatially pre-processed speech distortion weighted multichannel Wiener
filter which takes speech distortion into account in its optimization criterion and
encompasses the standard GSC as-a special case. Further, some ad hoc approaches
were discussed to overcome the arbitrary desired signal mismatches, such as the
diagonal loading of the sample covariance matrix [24], [25] and the eigenspace-based

beamformer [26], [27].

1.1.3 Explicit Transfer Function Modeling for Adaptive beamformers

The other method to mitigate the problem of signal steering vector mismatch for
adaptive beamformer is to abandon the delay-only propagation assumption and
explicitly model the sound signal propagation from the source to the microphones by
an arbitrary transfer function (TF) [28]. Affes and Grenier presented GSC-based
near-field beamformer [29] using matched filters with signal subspace tracking. The

matched filters which can be identified by the proposed signal subspace tracking



algorithm under the assumption of the FIR model and small displacements of the
talker is used to design the fixed beamformer (FB) of the GSC.

Rather than estimating the TF, Gannot et al. [30] proposed the transfer function
ratio (TFR) concept and applied to the GSC algorithm. The TFR can be estimated by
exploiting the nonstationary characteristics of the desired signal. The suboptimal
speech enhancement algorithm that can be implemented by using TFR to design the
FB and blocking matrix (BM) of GSC is proposed. Several adaptive beamformer
algorithms based on the GSC structure using TF ratio information have been proposed
[31]-[33]. Dahl et al. [34] proposed a reference signal based adaptive beamformer
which can suppress the nonstationary and stationary noise as well as recover the
reverberation at the same time. This method uses FIR based normalized
least-mean-square (NLMS) filtering .approach to perform noise suppression and
speech dereverberation by using pre-recorded speech signals and the desired signal
acquired when the environment is quiet. Improvements on the finite number of taps in
the FIR filters and relaxation on the disturbance assumption were studied [35]. Huang
et al. [36], [37] treated a microphone array as a multiple-input multiple-output
(MIMO) system and proposed a two-stage procedure for separation and
dereverberation of speech signals. The interference signals can be removed by using
two microphones with known TFs and the separated reverberant speech can be
dereverberated by using the multiple-input/output inverse theorem. However, the
stationary noise is neglected in this work and the transfer function of each speech
source should be identified in advance during each single-talk interval which also

limits its applications in practice.

1.1.4  Uncertainty of the Steering Vector for Adaptive beamformers



Most of the early methods of making the adaptive beamformers more robust to the
steering vector errors are rather as hoc in that the choice of their parameters or the
structural modifications is not directly related to the uncertainty of the steering vector
[11]. Recently, Vorobyov et al proposed a new approach to robust adaptive
beamforming in the presence of an arbitrary unknown steering vector mismatch [38].
This approach is based on the optimization of worst-case performance. They also
showed that the robust minimum variance distortionless response (MVDR)
beamformer using worst-case performance optimization can be formulated as a
second-order cone program and solved in polynomial time via the interior point
method. In further works, [40]-[44], several extensions of the robust MVDR

beamformer of [38] have been considered.

1.2 Outline of Proposed Beamformers

The objective of this dissertation 1is to provide satisfactory beamfromer
performance and robustness to background noise and channel effects using a uniform
linear microphone array. Two adaptive beamformers, TFR-based adaptive
beamformer and robust adaptive beamformer based on the second-order extended
(SOE) H. filter, which can be categorized into Section 1.1.3 and 1.1.4 are proposed in

this dissertation.

1.2.1  Transfer Function Ratio-Based Adaptive Beamformer

The first beamformer, TFR-based adaptive beamformer, belongs to the category of
Section 1.1.3 since a pre-training procedure is needed to explicitly model the TFR.

The TFR-based adaptive beamformer is designed to extract the desired speech signal



while attenuating multiple competing speeches in a reverberant and noisy
environment. The proposed method uses TFR beamformer and multi-channel adaptive
filter algorithm to perform speech enhancement. The TFR beamformer is utilized to
block the major component of the interference signals and the channel effect of the
desired speech is adjusted by the TFR information. The residual noise signals from
the TFR beamformer output are suppressed by the constrained H. filter. In addition,
the virtual sound source concept is proposed to simplify the treatment for multiple

competing speeches.

1.2.2 Robust Adaptive Beamformer Based on the Second-Order

Extended H. Filter

The second beamformer, robust adaptive beamformer based on the SOE H, filter,
belongs to the category of Section 1.1.4 since the beamformer structure is based on
the robust MVDR beamformer of [38] which assumes that the transfer function is a
delay-only propagation with an uncertainty. This dissertation develops the SOE H.,
filter for the implementation of the robust MVDR beamformer and the SOE H,, filter
is derived by the game theory approach. The estimation criterion in the SOE H,, filter
design is to minimize the worst possible effects of the disturbance signals on the
signal estimation errors without priori knowledge. The proposed beamformer is
compared with the existing robust adaptive beamformer based on the SOE Kalman

filter.

1.3 Contribution of this Dissertation

The contribution of this dissertation is to propose and implement innovative



algorithms for speech enhancement. This dissertation proposes two adaptive

beamformers, TFR-based adaptive beamformer and robust adaptive beamformer

based on the SOE H., filter.

1.

Speech enhancement in a reverberant noisy environment with multiple
competing speech signals is still a difficult problem. The challenge lies in the
coexistence of spatial interference from competing sources and temporal echoes
due to room reverberation in the received signals. In the TFR-based adaptive
beamformer, a novel beamformer structure is proposed and the constrained H.,
filter is applied to overcome the problem above. In addition, the virtual sound
source concept is proposed to simplify the multiple competing speech signals
and explain the component blocked by the TFR beamformer.

Many efforts have been considered to expand the H., filter to different domains
and to improve performance. However, no work has been done on considering
the second-order extended case similar to that of the SOE Kalman filter. In this
dissertation, a SOE H,, filter for a nonlinear discrete time system is derived based
on the game theory approach. A numerical example is given to compare the
proposed SOE H,, filter with the first-order extended H. filter, and the SOE
Kalman filter.

The robust MVDR beamformer of [38] has been implemented by the SOE
Kalman filter [44]. However, the assumptions of the SOE Kalman filter about the
disturbance limit the beamformer performance. The proposed SOE H., filter is
applied to implement the robust MVDR beamformer of [38] for speech

enhancement to improve the issue above.



1.4 Dissertation Organization

The remainder of this dissertation is organized as follows. The TFR-based adaptive
beamformer is introduced in Chapter 2. Chapter 3 presents the robust adaptive
beamformer based on the SOE H, filter. Also, the SOE H, filter solution of a general
nonlinear discrete-time system is provided and the detail derivation is given in the
Appendix I-IV. Chapter 4 shows the experimental results in both simulated room and

real environment. Finally, conclusion and future work are drawn in Chapter 5.



Chapter 2

Transfer Function Ratio-Based Adaptive

Beamformer

2.1 Introduction

Speech enhancement in the presence of multiple competing speech signals under a
reverberant and noisy environment is still a difficult problem. The challenge lies in the
coexistence of spatial competing sources and temporal echoes from room reverberation
[74]. This dissertation considers speech enhancement problem under multiple speech
sources in a reverberant and noisy environment condition and we focus on reconstructing
the desired speech while suppressing competing speech sources and stationary noise. To
deal with this problem, the most commonly used algorithm is the LCMV [9] algorithm
where the adaptive weight is trained to satisfy certain constraints for a set of directions
while minimizing the array response in all other directions. Therefore, the adaptive weight
in LCMV-based structure [9], [34] has two objectives: to minimize the interference signal
and noises, and to equalize the channel effect of the desired speech (e.g. room acoustics).
However, in practical environment, existing adaptive filter algorithms (e.g.

least-mean-square) are unlikely to achieve these two objectives fully at the same time [45].
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Hence, it serves as the motivation for this work to separate these two objectives using
different beamformer weights.

This dissertation proposes a two-stage speech enhancement algorithm using the TFR
beamformer and the multi-channel adaptive filter algorithm. As discussed in Section 1.1.3,
the TFR is originally used to design the FB and BM of GSC [30] and this work uses it to
equalize the channel effect and block the interference signals. In channel equalization part,
the channel effect of the desired speech is adjusted by the TFR information. In noise
suppression part, the TFR beamformer is employed to reduce certain noise level in
advance. In multiple competing speech sources environment, it is cumbersome and
impractical to analyze the TFR of each competing speech source. Hence, the virtual sound
source perspective explained by singular value decomposition (SVD) method is proposed
to simplify the complexity of multiple interference signals environment. The TFR
beamformer can be considered a pre-filter to.remove the major component of the virtual
sound source first and the residual noise from TFR beamformer output can be suppressed
by multi-channel adaptive filter. However, the residual noise signals could be
nonstationary or hard to model ,and common adaptive filter algorithms (e.g. NLMS
algorithm or Kalman filter) may not completely characterize uncertainty under the
complexity of acoustic dynamics [35], [46], [47], Therefore, the assumption of bounded
disturbances could be a better strategy than others such as certain statistical properties.
Hence, this dissertation adopts the H. filter as the multi-channel adaptive filter since it
makes no further assumption regarding the disturbances and can be more robust to the
model uncertainty problems [48].

The remainder of this chapter is organized as follows. Section 2.2 describes the
problem formulation and the virtual sound source concept. Section 2.3 introduces the
proposed system architecture and the performances of each noise cancellation block are

also analyzed. The method to estimate the TFR information is presented in Section 2.4.
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Finally, the summary is given in Section 2.5.

2.2 Problem Formulation

2.2.1  Problem Description

Consider P speech sources and M microphones in the reverberant and noisy
environment (M > P). The received signal of the m-th microphone at discrete-time index ¢

can be written as:
P

xm(t):Zanzp(t)®sp(t)+nm(t) (2_1)
p=1

where each symbol in (2-1) represents:

® convolution operation;
a,,(t) the transfer function from:the p-th sound source to the m-th microphone;
s, (1) the desired speech signal;

s,(¢t) ~s,(t) the nonstationary interfering speech signals (competing speech signals);
n, (t) the (directional or omni-directional) stationary noise of the m-th microphone.
Typically, the transfer function a, (¢f) is assumed to be time-invariant over the

observation period. In this dissertation, the competing speech signals, s,(¢) ~s,(¢), are

regarded as interference signals. Applying the short time Fourier transform (STFT)

operation to (2-1) yields:

X, (k,0) = i A,,(@)S,(k,0)+ N, (k,») (2-2)

p=l

where k is the frame number and o is the frequency band. X, (k,®), S, (k,®) and

12



Nm(k,a)) are the STFT of x,(t), s,(¢) and n,(¢), respectively. 4, () is the

time-invariant transfer function from the p-th source to the m-th microphone. The
objective of this work is to reconstruct the desired speech signal from the received
contaminated signals, while suppressing the nonstationary interfering speech signals and

the stationary noise signals in a reverberant environment.

2.2.2  Virtual Sound Source Perspective

It is impractical to estimate the transfer function for each interference signal in real
practice. To simplify the complexity involved in multiple interference signals, a virtual
sound source perspective is proposed. The idea of virtual sound source comes from that
the multiple interference signals may be able to be transferred to one virtual sound source.
When the desired speech signal:and the stationary noise are absent, the received

microphone signal can be expressed as the matrix form:

X, (k,0) = A (®)S, (k, ) (2-3)
where
X, (k, w) S, (k,w)
X, (k,0)= X2 (k’ @) e CM , S(k,o)= 5 (k’ ) e P
Xy (k,0) S, (k,w)
AIZ((O) A13(a)) T AIP (a))
A (o) = Azzz(a)) A23:(a)) Azpz(a’) c CMHP-D
Ay (@) Ays(@) - Ayp(0)

Assume the rank of the transfer function matrix A,(w) is R and A (w) can be

decomposed by SVD:
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A, (@) = U(@)D(@)V" (@)

where
U(w) = [ul(a)) u,(w) - uR(a))]echR
V(w) = [vl(a)) v, (w) - v, (a))]e C(P-IxR
ol(a)) 0 0
0 c,(w) - 0 R
D(a)) - : : . . eC
0 0 GR(G))

(2-4)

o,(w) are the nonzero singular values of A, (w) with o,(®)20,(w)>---20,(w)>0.

v.(w) and u (w) are the input and output singular vectors of A,(w) respectively

which construct the interference subspace. The idea of virtual sound source is

characterized as follows. From (2-4), equation/(2-3) can be rewritten as:

X,(k,0) = 3. 0,(@u, (@) ()S (ko)

= (4, (0) + 4, (k,®))S, (k, )

where

S, (k, @) = 5, (@) (0)S, (k, )

4, (@) A, (k, o)
A, (w) = AzV:((f)) =u(w), 4,(k,0)= A,, (k, ) _ ZR:ai(k’ (@)
AMV. N Ay (.k , @) h
a,(k,w) = o (0, (0)S,(k,®)

o, ()" (@)S,(k, )

(2-5)

Observing (2-5), we can find that the MIMO acoustic system of (2-3) is treated as the

single-input multiple-output (SIMO) acoustic system. The single input is the virtual sound

source S, (k,w) with the TF A, (w)+ 4, (k,®). The virtual sound source is formed by

mapping the interference signals §,(k,®) along the most sensitive input direction v,(®)
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Transfer function system

Sound sources

S(ka)) |
S(ka)) |

Transfer function system

] _u(_w)j ] R — __Virtual sound source
NP | | | S, (k)]
Xz({W) (O s (k, @)= o, (@) =¥} (@) S|
XM(.k,a)) : |<T e ! 1 |
| ot (k, () ‘i |_ e _SP(ECU)

Figure 2-1 Illustration of virtual sound source transformation

which in turn is scaled by the maximum singular value o,(®w). The TF of the virtual

sound source consists of two parts, time-invariant part A, (w) and time-varying part
4,(k,w). This dissertation considers that A4,(w) is constructed by the highest gain
output direction u,(®w) and 4, (k,®) is the linear combination of u,(®) ~ u,(®) with

time-varying coefficients ¢, (k,®). The transformation from multiple sound sources to

the virtual sound source is illustrated in Fig. 2-1.

2.3 System Architecture

The proposed system architecture of the TFR-based adaptive beamformer is shown in
Fig. 2-2. The proposed beamformer uses the TFR-based beamformer to block the
principal part of the virtual sound source and the residual noise signals from the

TFR-based beamformer outputs are suppressed by the multi-channel adaptive filter.
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Figure 2-2  The system architecture of the TFR-based adaptive beamformer

i

According to Section 2.2.2, equation (2-2) can be written as

X, (k,o)= ZP:Amp (0)S ,(k,0)+ N, (k;w)

p=l

»

= 4,1 (@)S,(k, @)+ 4,,(0)S, (ko) + N, (k. ») (2-6)
p=2

= A, (@)8,(k,0)+ (4, (@) + A, (k;@))S, (k@) + N, (k. 0)

For the virtual sound source components, we consider A4 ,(®)S,(k,®w) and

A, (k,0)S,(k,») to be the principal part and residual part respectively, since A, (®)
is the highest gain output direction of the transfer function matrix A,(w) and
A,,(®)S, (k,w) is constructed by the principal interference subspace. If the number of

sound sources is two, i.e., P=2, then the residual part is zero.

2.3.1Transfer Function Ratio Beamformer

A TFR beamformer consists of two microphones. In this work, M received microphone

signals are separated into M-1 microphone pairs for the subsequent signal processing. It is
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supposed that the TFRs defined in (2-7) have been identified using the method introduced

in Section 2.4. The TFRs for the desired speech and virtual sound source are defined as

4, (o)
A4, (@) ’

HmV(a))=AW—(w) m=23,M (2-7)

Hml(a)) = A (0)) )

First, this dissertation employs the TFR of the virtual sound source to remove the

principal part of the virtual sound source for each microphone pair:

B, (k) = X, (k,0) - [A—(“’)jX (k, )

4, (@)
- (An(w)— j((‘;’))) Am(w)Jsl (k,@)+ N, (k,w)—%m (k, )
+ (Awk,w) —j—((”w))A (k,w)jSV (k. ) (2-8)

4,y ()

+ (AW (k,0)— 4 (o)

for m=2,3,---,M

A, (k, a))jSV (k, o)

Equation (2-8) means that the spatial null is placed toward the direction of the principal
part of the virtual sound source by using two microphones. If the number of sound

sources is two (A, (k,w) =0), equation (2-8) means that the spatial null is placed toward
the single competing speech directly. The output of TFR beamformer B, (k,®) consists

of 3 terms: distorted desired speech signal, stationary noise and residual virtual sound

source. Since the TFRs, H, (w) and H,6,(w) , are known and we assume

(H,,(w)—H,,(w)) is non-zero. To mitigate the distortion on the desired speech signal,

ml

equation (2-8) is multiplied by D, (w)(H,, (®)-H,, (®))":
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B, (k,®) =B, (k,0)D,, (0)H, (o) H,,(0)"
=4,/ (0)S, (k,»)

+[N1 o) 2O N, w)]DW(wXHmI (@)~ H, (@) (2-9)
AmV(a))
( Ay (@) j -1
oAy o) -2 N o) |8, koD, (@H, (@)~ H,, ()
AmV(a))
where
D (@)= _ g (o) H (@) r=12-M
Aml (a))

D _(w) is used to adjust the desired speech signal distortion to the same reference and r

mr

is the reference microphone number selected.

The noise components of output signal B, (k,w) still contain the residual part of the

virtual sound source and stationary noise (the last two terms of the right side of (2-9)), and

hence the multi-channel adaptive: filter is ‘employed here to minimize the noise in

B, (k,w). Let us sum all the output signals B, (k,®) with the weighting function

G, (ko)

Y. (k,w) = G, (k,0)B, (k, ) +---+ G, (k,)B,, (k, )

=4,(0)S, (k@) G, (k)

m=2

DYAC w){Nl (k.0) —j:V—((“’))N,,, (k, a))JDmr(a))(Hml (@)—H, (@) (2-10)
m=2 w

nV

+3G (k. co)(Ach, o) i‘j ((‘;’))) Ay (k. w)jsy (k@)D (@NH,, ()~ H,, (@)

m=2 Vv

where * represents the complex conjugation. The noise components can be cancelled if

G" (k,w)Z(k,0) = -G, (k,w)Z, (k,») (2-11)

where H represents conjugation transpose;
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G, (k,w)=1
G(k,0)=|G,(k,w) - G, (ko)
Z(k,0)=|Z,(k,0) - Z,,(k,0)]
Ay (@)

my

A,y (k, w)jSV (k, @)D, ()(H,,, (@)~ H,,, ()"

Z,(k,0) = [Nl (k, )~ N, (k, GJ)JDW (@)H,, (@)~ H,, (@)

{Aw(k, )~ jW(”)

mV

The solution of G(k,®) can be found by using adaptive algorithm suggested in Section
2.3.2 when S,(k,w) is silent (desired speech inactive periods). Once the weight vector

G(k,w) is obtained, the beamformer output can be given as:

Y (k,0)=5———— (2-12)

2.3.2Multi-channel Adaptive Filter

For the real environment, it is unlikely to remove the noise components of (2-10)

completely and hence the output signal Y, (k,®) can be expressed as:

T (k) = 4, (@5, (6, )Y. G, (k,0) +e, (k,0) @-13)

m=2
where e, (k,®) is the residual noise and it is anticipated that the desired speech signal

components are dominant compared to the residual noise. Therefore, equation (2-12) can be

written as:

Y. (k) = A4, (0)S, (k) + 2 F 2 (2-14)
> G (k,0)
m=2
According to (2-11), the error signal at frequency ® and frame & can be defined as:
g,(k,®) = =G, (k,w)Z,(k,®) - G" (k, 0)Z (k, ) (2-15)
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To minimize the error signal ¢,(k,®), the optimal set of filter coefficients vectors

G(k,®) can be found using the formula:

rnGmE[gZ (k,w)e, (k,0)) (2-16)

where E [] is the expectation. Observing (2-12), the weight-and-sum output Y, (k,®) is

M
divided by ZG; (k,w) to be the beamformer output Y (k,w). Hence, to prevent the

m=2

M
term e (k,w) in (2-14) from being amplified by ZG; (k,w) and a constraint is added

m=2

into (2-16) as:

min Ele, (k, )&} (k, )]
0 (2-17)
subjectto  B=G" (k,w)0

where 0=[1 1 - 1]' e R" ' and 3 s & constant larger than zero to ensure the

M
value of ZG; (k, ) not to amplify.the residual noise e (k,w) in (2-14). Hr-optimal

m=2

estimators (i.e. least-square based), such as the Wiener filter or Kalman filter, which
minimize the expected estimation error energy and yield maximum-likelihood estimates
are usually used to solve the optimization problem of (2-17). However, the
least-square-based filters have some assumption about the disturbances. For example,
Kalman filter assumes that signal generating processes have known dynamics and that the
disturbances have known statistical properties. These assumptions may limit the
beamformer performance. Among the classic adaptive filters, the NLMS algorithm is one
of the most popular methods and widely used since it can be implemented easily. The

NLMS algorithm solution of (2-17) is given by:

Mg, (k) Z(k,0) + g} (k,0)0)
2" (k, ) Z(k, ) + 0" 0

Gk +1,0) = G(k,w) + (2-18)

where A is the small positive step size; u is the penalty parameter and
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ey (k,w) = B—G" (k,w)0 . However, the modeling error of G(k,®) or the nonstationary

signals in Z(k,®) may influence the performance and convergence rate of the NLMS
algorithm. Therefore, the H. filter is applied here for the optimization problem. Because
the disturbances in the H, estimation can be arbitrary but bounded signals and the H.
filter was shown to be more robust than other least-square-based methods [35], [46]-[49].
To apply the H. filter, the constrained minimization problem of (2-17) is casted as a

state-space model:

State equation:
Gk,0)=Gk-1,w) (2-19)

Measurement equation:

~Zk0)|_[2' k)|, w)+{vl(k,w)} (2-20)
p 0" ’

The measurement equation can be written as:

M (k,0)=Z7" (k,0)G(k,0)+V (k,®) (2-21)
where

— | -Zi (ko) | oy | Z% (k) [k, o) ]
M(k,a))_[ 5 },Z (k,a)){ o } V(k,w)_[vz(k’w)} (2-22)

v,(k,w) and v,(k,w) are the beamformer residual noise and constraint noise,
respectively. The H.,, filter makes no assumption about the statistics of the noise v,(k, )
and v,(k,») and is interested not necessarily in the estimation of G(k,®) but in the

estimation of some arbitrary linear combination of G(k, ), i.e.,

T(k,w) = CG(k,w) (2-23)

where C is a user-defined matrix. The estimate of 7(k,w) is denoted by T (k,w) and
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the estimate of initial state G(0,®) is denoted by é(O, ) . The design criterion of the
H, filter is to find T(k,w) that minimizes T(k,w)-T(k,w) for any v,(k,o),
v,(k,w) and G(0,w) . The performance index J can be defined as:

2

ji‘T(k,a)) - f(k,a))‘

S(k,m)

J (2-24)

= . N-1
‘G(O, ®)—-G(0, 0))‘; 0.0) + Z|V(k’ a))ﬁ{’l(k,w)
g k=0

2

where the notation |x(k’a))|s(k )

is defined as the square of the weighted (by S(k,w))

2
S(k,o)

Lynorm of x(k,w), i.e., = x"(k,w)S(k,w)x(k,) . The matrices P(0, ),

x(k, a))|

R(k,w) and S(k,w) are symmetric positive definite matrices chosen by the user based
on the specific problem. To simplify the analysis and clarify the notation, we assume the
weighting matrices, R(k,w) and S(k,), are the same at each frame and each frequency,
i.e., they are independent of frame. and frequency. Hence, equation (2-24) can be
reformulated as

N-1 n 2
Z‘T(k,a))—T(k,a))‘

k=0 §

J = A 5 NI )
‘G(O, ®) - G(0, a))‘rl oy T2 k)
- k=0

(2-25)

The direct minimization of J is not tractable, so instead, a performance bound y is

selected and T (k,w) 1s computed to satisty
supJ <y (2-26)
where sup represents supremum. The formulation of (2-26) shows that the H., optimal

estimators guarantee the smallest estimation error energy over all possible disturbances
(G(0,w)— G(O, w) and V(k,w)) of finite energy. They are over-conservative but have a

better robust behavior to the disturbance variations. The H. optimal strategy is to find
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T(k,) that minimizes the supremum of the cost function J. Hence, the H., filter can be

interpreted as a minmax problem where the estimator strategy T (k,w) plays against the

exogenous inputs V(k,w) and the uncertainty of the initial state G'(0,®).Therefore, the

performance criterion is equivalent to

2

min max J = —7‘G(O,a))—(;’(0, )

T V.G0,0) P (0,0)
T 2 (2-27)
+ 3l -Tof, -y ol )
k=0
Since V(k,w) =M (k,0)-Z" (k,0)G(k,»), T(k,0)=CG(k,») and
T(k,w)=CG(k,w), equation (2-27) can be rewritten as:
. A 2
méln Mr’rcl%ziw)t] = —;/‘G(O, w)—-G(0,) 00
: (2-28)
N ¢ — 2
+ Z[ G(k,) - Gl o) #H{|M k)~ Z" (k. )G k.0 ﬂ
k=0
where S =C"SC.
According to [48], the H, solution can be given as:
K(k,0) = P(k,0)[I - y'SP(k, ) + Z(k,0)R"Z" (k,0)P(k, )| ' Z(k, )R (2-29)
Gk +1,0) = G(k,0) + K (k,0)|M (k,0) - Z" (k. 0)G (ko) | (2-30)
P(k +1,0) = P(k, )|l - y 'SP(k,0) + Z(k,0)R"Z" (k, )| (2-31)

where I is the identity matrix. The H, solution above can also be used to solve the

unconstrained minimization problem of (2-16) by setting:
Mk,0)=|-Z; (ko) , 2" (ko) =[2" (k0) (2:32)

For the proposed multi-channel adaptive filter, M (k,) and Z"(k,w) are set as (2-32)

at the beginning of the adaptation procedure of G(k,w). If the absolute value of
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Table 2-1 Four experimental conditions

Condition Desired White Noise Interference
Number Speech Location Location Speech Location(s)
MIl 90° 20° 60°
M2 90° 20° 60° and 120°
M3 90° 20° 60°, 120° and 150°
M4 90° 20° 30°, 60°, 120° and 150°

M ~ — —
ZG; (k,m) is less than one after k times of adaptation, M (k,w) and Z"(k,w) will

m=2

M
be set as (2-22). Theoretically, if sz (k,w) 1is less than one, the value of £ should be

m=2

set as a constant close to zero to prevent the constrained value from being far away from

the optimal solution. However, there is no such restriction of £ in the proposed

M
architecture, since the residual noise e,(k,®) is divided by ZG;(k, ) to be the

m=2

beamformer output.

2.3.3The Analysis of TFR Beamformer and Multi-channel Adaptive Filter

In this section, the performances of the individual noise cancellation block ( B, (k,®)
and Y (k,w)) are analyzed. To analyze the performances, the image method [50] is used
here to simulate the room impulse responses. The simulated room size is 4.5 m X 3.3 m X
4.2 m and the reverberation time is 0.14 second simulated by 532-taps FIR filter. A
uniform linear microphone array with eight microphones placed at a distance of 0.7 m
from the wall is used for the simulation. The distance between adjacent microphones is 6
cm and the sampling rate is 8 kHz. The directional sources are placed in front of the array
from angle 0" to 180" with a distance of 1.5 m from the midpoint of the array. Four
different conditions listed in Table 2-1 are considered to demonstrate the performances of

each noise cancellation block. To compare the performances of the NLMS algorithm and
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the H,, filter, the multi-channel adaptive filter is implemented by both methods. The STFT
size is 256 with 80 shift samples and 16 zero padding samples. The parameters of A4, u,
f and y are in (2-18), (2-18), (2-20) and (2-26) set to 0.3, 1, 2 and 10. The adaptation
number & is set to 20. In this simulation, the length of the impulse responses (532) is
longer than 256. Therefore, the modeling error exists in this simulation. Fig. 2-3 shows
the received signal and the outputs of each noise cancellation block (B,(k,®w) and
Y, (k,w)) at four different conditions when the desired speech signal is inactive and Table

2-2 shows the average root mean square (RMS) power at different stage. The average

RMS power is defined as:
1 & 1& ,
avg.RMS:szmoglO ZZy (I+kL) (2-33)
k=1 I=1

where L denotes the length of the frame; & is the frame number and y is the input signal.
Observing the TFR beamformer-output (B, (k,®) ) in Fig. 2-3, we can find that the TFR
beamformer can reduce certain interference parts especially when the interference speech
number (P) is small. However, the residual virtual sound source defined in (2-8) may not
be relatively small when the number of interference sources becomes large. This is
because the TFR beamformer only consists of two microphones and it can only place one
null space toward one direction which limits the performance. As can be seen from Fig.
2-3, the H,, filter can reduce more noise signals than the NLMS algorithm. Since the H.
filter minimizes the worst possible effects of the disturbances on the estimation error of
G(k,w). Characterizing uncertainty under the complexity of acoustic dynamics is
difficult, so the best strategy may be just to assume that the disturbance is bounded. In
addition, the residual virtual sound source may influence the convergence rate of the
NLMS algorithm since it is nonstationary signal. Therefore, this work adopts the H., filter

as the multi-channel adaptive filter to cancel the residual noise from TFR beamformer
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Figure 2-3 Waveforms of the simulation results
(a), (e), (i), (m): received Mic#1 signal at four conditions ;
(b), (), §), (n): B,(k,w) at four conditions;
(c), (g), (k), (0): Y,(k,®) using NLMS algorithm at four conditions;
(d), (h), (1), (p): Y, (k,w) using H, filter at four conditions;
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Table 2-2 Average RMS power (dB) for different conditions

Conditi ) ) . )
I\cl)lrllmlblgrn Mic #1 signal ~ B,(k,@) Y (k,0) usingNLMS Y (k,®) using H.

Ml 65.74 50.93 39.76 36.31
M2 73.26 65.31 54.4 50.9
M3 75.27 69.85 61.81 57.07
M4 75.72 70.91 64.55 59.89

outputs. More comparisons between the H., filter and least-square-based filters can be
referred to [35], [46]-[49]. Except the advantage of the H, filter, there is also an
advantage of the proposed beamformer architecture. Unlike the standard weight-and-sum
beamformer architecture where the beamformer output is obtained by weighting and

summing signals fromdifferent microphones, the proposed architecture makes the

M
weight-and-sum output Y, (k,®) divide by ZG;, (k,w) to be the beamformer output

m=2
and it is different from the standard weight-and-sum beamformer architecture. Hence, if

f G’ (k,0)

m=2

using (2-12).

is larger than one, the noise components in (2-10) can be attenuated again

To test the performance of the proposed structure, one more simulation is performed.
Consider the M3 condition and the goal of this simulation is to find the weight é(k, W)

that minimizes ¢, (k,®) during noise-only-periods. Two beamformer structures shown
in Table 2-3 are used for comparison. The first one is the standard weight-and-sum
structure and the second one is the proposed beamformer structure. Fig. 2-4 shows the

simulation results of both beamformers with NLMS algorithm and the H, filter. The

initial condition of é(k, ) for the NLMS algorithm and the H., filter are the same. The

parameters of A, x, B and y are in (2-18), (2-18), (2-20) and (2-26) set to 0.3, 1, 2

and 10. The weighting matrices P(0,w) and S are both identically set to be identity
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Table 2-3 Two beamformer structures for comparison

Beamformer output Minimization criterion
The first S — . .
=T G, (k.0)B, (k) mine, (k)¢ (k.0)
beamformer s ¢
M
if > G, (k,w)>1
m=2
me &, (k,w)e, (k,w)
Th d| & ., — Mo
© SN NG (k,@)B, (kw) | Y. G (k, @) y
beamformer | ;= 2 if ZG; (k,w) <1
m=2
inn &, (k,w)e, (k,w)
subjectto B =G" (k,w)0
vt Condition: M3, avg RMS power=65.448 vt Condition:M3, avg.RMS power=51.5092

Amplitude
Amplitude

DIS 1I 1 I5 2I 2.‘5 é 3.‘5 DI5 1I 1.‘5 2I 2.‘5 é 3.‘5
Sample w10 Sample w10
(a) avg.RMS=65.45 (dB) (b) avg.RMS=61.81 (dB)
w1t Conditiorn: M3, avy RMS power=63 0607 w1t Condition: M3, avy. RMS power=57 0737
! ' ' ' ' ‘ ‘ ‘ ! ' ' ' ' ‘ ‘
2 2
1 E 1 E
5 5
i 4 ] 4
2 2
3 q 3
05 1 15 2 25 3 35 05 1 15 2 25 3 35
Sample w10t Sample w10t
(c) ave.RMS=63.08 (dB) (d) avg. RMS=57.07 (dB)

Figure 2-4 Waveforms. (a): The first beamformer using NLMS; (b): The second beamformer using NLMS;
(c): The first beamformer using H., filter; (d): The second beamformer using H., filter;
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matrices and the weighting matrix R is set to be diag(1,10-9). (diag represents diagonal

matrix) As can be seen, for both filters, the proposed system architecture can reduce more

noise than the standard weight-and-sum architecture.

2.4 Transfer Function Ratio Estimation

In this work, the TFRs, H, ,(w) and H,k, (w), are estimated separately using the

system identification method described in [51]. The TFR of the desired speech H, (@)

is estimated when only S,(k,w) and N, (k,®) are active and the TFR of the virtual

sound source H, ,(w) is estimated when only S,(k,w)~ S,(k,w) and N, (k,®) are

active.

The method to estimate the time-invariant TER of the virtual sound source H, ,(®) is

presented first. When no desired signal is in- present, the received microphone signal

becomes:

X, (k,o) = iAmp(a))Sp(k,a))+Nm (k,w)

= (4, (@) +A,, (k,))S, (k,0)+ N, (k,»)

Let the residual signal R, (k,®) during noise-only periods represent as:

R (k,m) =Xm(k,a))—f;L((wa)))X1 (k,)

=N, (ko) - 2@ (k,w>+[Amy<k,w>—MAw<k,w)jSV (k.0)
VAUL W
=R, (k,0)+ R, (k,m)

m=23,--- M

where
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R, (k,w)=N, (k,w) _IZL((@@))NI (k, )

Ry, (ko) = (Amy(k, )~ A'"V(“’)) Ay (k. w)jsy (k,0)

114

Rearrange (2-35) and we can obtain:

X, (k,o)= iL((a)w))Xl (k,w)+ R (k,w)

=H,, (0)X,(k,®)+R,,(k,®) + R, (k,0)

Applying the cross power spectrum density (PSD) operation to (2-36), we have:

dele (k,w) = H,;l, (0)D

XX

ko) +®,_ (0)+D, (ko)

(2-36)

(2-37)

where @ (k,@) is the cross PSD between x, and x;.Since N, (k,®) is stationary

and S, (k,®) is independent of N, (k,®), hence @, (@) is independent of frame &.

Rewrite the equation above as matrix form:

®mel (1’ a)) ®x1x1 (1’ a)) 1 q)rzmxl (19 a))

D (2,w) o 2o 1 D, (2,0)
ml: — 1 ]. 1 a(a))+ 2/11“1:

q)xmxl (K’ a)) ®x1xl (K9 a)) 1 ®rzmxl (K7 a))

where

0(w) = |:HmV(a)):|

@, (@)

(2-38)

To reduce the computational complexity, the recursive least-square method is applied to

estimate H ), (w):
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Ok +1,0)=0(ko)+ K, (ko)(®, . (ko) F(ko)(kw))

. ) (2-39)
H (k+Lw)=[1 0Jk+1,w)

where

K (ko) = P, (ko)F, (k)"
T 1+ F, (k)P (ko)F. (ko)

P.(Lo) = (F, (1) F,(Lo) "
P (kw)=P (k—1Lw)- K, (k-Lw)F (k-Lo)P (k—Lw) k>2
F.(ho)=[0, (ko) 1]

Note that the TFR of the desired speech H, (@) can be estimated in a similar manner

when only S,(k,w) and N, (k,®) are active.

2.5 Summary

This chapter proposes a two-stage procedure beamformer to perform multiple competing
speeches and stationary noise signals suppression as well as desired speech extraction
based on the TFR information and the H., filter. The virtual sound source concept which
transforms the multiple competing speeches from MIMO to SIMO acoustic system is
presented to simplify the complicated acoustic system. The performances of the individual
noise cancellation block are analyzed and the advantages of the H., filter and the proposed

system architecture are also demonstrated.
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Chapter 3

Robust Adaptive Beamformer Using the
Second-Order Extended H.. Filter

3.1 Introduction

Most of the early methods of robust.adaptive’beamformers are rather ad hoc in that the
choice of parameters or the structural modifications is not directly related to the
uncertainty of the steering vector [11]. Recently, more rigorous approaches were proposed
to cope with unknown mismatches via worst-case optimization [38], [39]. Unlike the
earlier methods, they make explicit use of the uncertainty set of the steering vector. The
work in [38] obtains the beamformer weight by minimizing the output
interference-plus-noise power while maintaining a distortionless response for the
worst-case steering vector mismatch. The robust MVDR problem in [38] was formulated
as a second-order cone program and solved in polynomial time via the interior point
method. A number of extensions of the robust MVDR beamformer of [38] have been
considered [40]-[43]. However, the main shortcoming of these extensions is that they do

not have a computationally efficient online implementation. To overcome this problem,
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El-Keyi et al. [44] developed a new algorithm for the robust MVDR beamformer of [38]
which was based on the constrained SOE Kalman filter that can be implemented online.

The SOE Kalman filter assumes that the dynamics of the signal generating processes
are known, so are the statistical properties of noise signals (i.e., uncorrelated and
zero-mean Gaussian with known covariance) [48]. However, these assumptions limit the
performance since the complex acoustic dynamics is difficult to model and the
uncorrelated zero-mean Gaussian noise assumption is quite stringent considering the
variety of environmental interferences. To relax these assumptions, this paper proposes
the SOE H., filter for the MVDR beamformer of [38] that requires no prior knowledge of
the noise statistics but bounded energy. Several studies on the linear and nonlinear H.,
filter or mixed Kalman/H,, filter have been presented [45]-[49] and [52]-[69]. Despite
these efforts to expand the use of H filter to. different domains for robustness, there is
still no work which considers the second-order extended case similar to that of the SOE
Kalman filter presented to the adaptive beamformer.

In this chapter, the SOE H,, filter under the robust MVDR beamformer setting [38] is
derived based on the game theory approach [69]. In the SOE H., filter, the state estimator
and the disturbance signals (initial condition error, process noise and measurement noise)
have conflicting objectives, i.e., to minimize and maximize the estimation error,
respectively. The estimation criterion in the SOE H., filter design is to minimize the worst
possible effects of the disturbance signals on the signal estimation errors without priori
knowledge. This estimation criterion makes the SOE H,, filter more suitable for speech
enhancement in the cases of unknown noise statistics, steering vector uncertainty and
modeling error of beamformer weight. To derive the SOE H,, filter, the second-order
Taylor series expansion is used to approximate the nonlinear function. However, the
quadratic terms appear in the series expansion are too complex to make the solution

tractable. In this work, they are approximated by the estimation error sample covariance
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matrix which effectively simplifies the problem.

The remainder of this chapter is organized as follows. The speech enhancement
problem and some necessary background on MVDR beamformer and robust MVDR
beamformer of [38] are presented in Section 3.2. In Section 3.3, the SOE Kalman filter for
the implementation of the robust MVDR beamformer of [38] is briefly reviewed and the
proposed robust MVDR beamformer based on the SOE H,, filter is introduced in Section
3.4. Section 3.5 presents the SOE H., filter solution of a general nonlinear discrete-time
system and the detail derivation is given in the Appendix I-IV. Finally, summary is drawn

in Section 3.6.

3.2 Problem Formulation

Consider an acoustic environment the same with Section 2.2.1 and the received signal

of the m-th microphone in frequency domain can be written as:
P
X, (ko)=Y 4, (o)S,(k,®)+ N, (k) (3-1)
p=1
The MVDR beamformer output at frame k and frequency o is given by

Yy (k@) = wih, (@) X (k, ) (3-2)

where X (k,0)=[X,(k,0) - X, (k,w)] and w,, (0)eC"" is the MVDR

beamformer weights. The well-known MVDR beamformer minimizes the output power
of interference-signals-plus-stationary-noise while maintaining a distortionless response

to the desired signal. The frequency domain MVDR problem is given by

minw' ()R _ (@)W, (@) subject to  w'l (w)A(w) =1 (3-3)

MV
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where

R, (o) = E{X(k,0)X" (ko)) (3-4)

R_(w) is the M xM correlation matrix and A(w)e C is the presumed steering

vector. The solution of the MVDR problem is given by [70],

R (w)A(w
W (@) = = DA (3-5)
A" (0)R  (0)A(®)
In practice, the correlation matrix is unavailable and is usually approximated by
. 1 & "
Rm(a)):EZX(k,a))X (k,w) (3-6)

k=1

where K is the frame number available. The sample correlation matrix is used in (3-5) to
replace the true correlation matrix and the resulting solution is commonly referred to as
the sample matrix inversion (SMI) algorithm [70]. If the desired signal is present in the
training procedure, the SMI algorithm degrades dramatically [38].The other disadvantage

of the SMI algorithm is that it does not provide the sufficient robustness against a

mismatch between presumed steering vector A(w) and the actual steering vector

Aw)=[4,(0) - A4, ()] .

In practical environment, there may exist unknown mismatches between A(w) and

A(w) due to the reverberation, microphone mismatch, array configuration mismatch, etc.
The norm of the steering vector distortion can be bounded by some known constant

g > 0. Therefore, the actual steering vector belongs to the set

A@) ={C(0) | C(0) = A(0) + e(o).|e(o)| < £ (3-7)

The robust MVDR beamformer in [38] minimizes the output of the beamformer while
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maintaining a distortion response, not only toward the steering vector A(w) but also

toward all the vectors that belong to A(w). Based on this uncertainty description,

Vorobyov et al. [38] formulated the robust MVDR beamformer problem as,

min wh (0)R_ (0)w,,, (w) subject to ‘WEV (a))C(a))‘ >1 for all C(w)e A(w) (3-8)

The semi-infinite nonconvex constraint in (3-8) was reformulated as a single constraint

that corresponds to the worst-case constraint [38]

rBinwEV(w)ﬁxx(w)wMV(w) subject to C(f;l;lei/{l(w)‘wEV(w)C(w)‘Zl (3-9)

It can be proven that the inequality constraint in (3-9) is equal to the equality constraint

[38]. Therefore, the problem in (3-9) can be rewritten as

minw}, ()R, (@)W, ()
MV B ) (3_ 1 0)
subject to wii, (@) A(w) =1 = &’wh, (@)W, ()

The problem in (3-10) has been solved in [38] using SOC programming. Moreover,
several extensions of the robust MVDR beamformer have been considered. For example,
a Newton-type iterative method was proposed for this problem and its modification [39],
[40]. Re-formulating (3-10) into a state-space observer form facilitates the application
of the SOE Kalman filter [44]. In the following, we briefly review the SOE Kalman filter

solution and present a new approach based on the SOE H., filter.

3.3 Robust MVDR beamformer based on the Second-Order

Extended Klaman Filter

For the convenience of analysis, the mean square error (MSE) between the zero signal

and the beamformer is introduced as,
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E|[0- X" (k. ow,, (ko) |[=wly @R (@, (@) (3-11)

where FE(-) denotes the expectation operation. The constraint in (3-10) can be rewritten

as
g&,(w, (k,w))=1 (3-12)

where

g, (w,, (k,0)) = EZWAIEIV (k, 0)w,,, (k, @) - WAI-/I[V (k, a));l(a))ZH (0w, (k,®)

~ ~ (3-13)
+wy, (k,w)A(w)+ A" (@)W, (k, )
Therefore, the robust MVDR beamformer problem can be formulated as
min EUO—X“(k, oyw,,, (k, a))ﬂ subject to g, (w,, (k,®)) =1 (3-14)

The constraint minimization problem of (3-14) is written in the state space model below

State equation:
W, (k+lLo)=w,, (k,0)+v (ko) (3-15)
Measurement equation:

m _ [XH (k, 0)w,,,, (k, ®)

1 g,(w,, (k,)) } +v (k,0)=gw,, (k,0)+v, (k o) (3-16)

where v (k,w) and v, (k,®) are the process and measurement noise respectively. The

measurement equation is then,
y=8gw,y (k,0))+v, (k,0) (3-17)
where y=[0 1].

To apply the SOE Kalman filter, the noise processes v (k,®) and v, (k,w) are

~

assumed to be white, zero mean, uncorrelated, and have known covariance matrices Q
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and R respectively.

Ely (k, 0" (k,0)|=Q
Ely, (ko) (k,0)|= R (3-18)
Ely, (k, 0" (k,w)]=0

The SOE Kalman filter expands the nonlinear function by using the second-order Taylor

series and finds the optimal estimate w,,, (k,®) to minimize the estimation error defined

below

Elw,, (k,@)—Ww,, (k,@)]=0 (3-19)
To present the SOE Kalman filter solution, we start by evaluating the Jacobian G (k,®)
of g(w,, (k,w)) and Hessian matrices G'" (w) and G')(w) of its components as

G, (k) =1V, g W, (ko)f

~ X (k, w) (3-20)
Lewh, (ko) — (A() A @yw,, (o)) + A" ()

GV @)=V, V! IX"(kw)w,, (ko)f=0 (3-21)

GO(w)=V, V! {g,(w,, (ko)) =e1-A(w)A" (w) (3-22)

ww

where I is the identity matrix. For the state space model (3-15) and (3-16), the SOE

Kalman filter solution is given by [48]
Wy, (k+1,0) =W, (k,0)+ K(k,0)[y - 3, (k)] (3-23)
where the predicted measurement is obtained by

X"k, 0)W,, (k,»)

2, (b (k, ) +0.5- 111G (@)P~ (k, )} (3-24)

j’b;z(kaa)) :|:

and the filter gain and predicted weight error covariance matrix are given by
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K(k.0) =P (k. 0)G" (k,0)(G, (k)P (k,0)G" (k@) + R (3-25)
P (k,w)=P" (k-1,w)+Q (3-26)

P (k.0) = (1-K(k,0)G, (k.0) P (k,0) (3-27)

where IN((k, ) 1s the Kalman gain; lN’_(k, ) 1s the priori error covariance matrix and
P’ (k,w) is the posteriori error covariance matrix. After some algebra operations [48],
the Kalman gain can be rewritten as (3-28) and covariance matrices lN’_(k, ) and

P* (k,w) can be integrated as (3-29)

K(k,0) =P (ko)l+G" (k.o)R'G, (k.0)P (k.0)) G" (k)R (3-28)

P (k+1,0) =P (k,0) I +G" (k, 0)R"'Gy(k, )P (k,»))" +Q (3-29)

3.4 Robust MVDR beamformer based on the Second-Order
Extended H., Filter

In contrast to minimizing the expected value of the estimation error variance like the
SOE Kalman filter, another strategy is to minimize the worst possible effects of the
disturbances on the signal estimation errors. This is essentially to minimize the infinity
norm of the input-output relation. In this case, no assumptions on the noise statistics are
necessary (such as (3-18)) but the boundedness of the noise energy. Considering the state
space model (3-15) and (3-16), and the estimation of some arbitrary linear combination of

w,, (k,0),1e.,

2(k,0)=Cw,,, (k,®) (3-30)
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where C is a user-defined matrix. The estimate of z(k,w) is denoted by z(k,®) and
the estimate of initial state w,,, (0,®) is denoted by w,, (0,®). The design criterion of
the SOE H, filter is to find Z(k,®) that minimizes J for any v (k,®), v, (k,®) and

w,,,(0,®) . The performance index J can be defined as:

N-1
A 2
2k, @) 2k, @),
J — k=0

N-1
A 2 2 2
|wMV (0,0) - Wy (0, a))|1f1 (0,0) + z st (k, a))|Q"(k,a)) + |vm (k, a))|R’1 (k) )
k=0

(3-31)

2
S(k,o)

The notation |x(k, a))| is defined as the square of the weighted (by S(k,®)) L,norm

2
S(k,)

of x(kw) , ie, [|x(ko), =x"(ko)Skw)x(k,w) . The matrices

P(0,w),Q(k,w),R(k,w) and S(k,w) are symmetric positive definite matrices chosen

by the user based on the specific problemi:To simplify the analysis, we assume the

weighting matrices Q(k,w) , R(k,w) and_ S(k,w) are independent of frame and

frequency. Hence, equation (3-31) can be reformulated as

N-1
Y |atk, @) 2k, o)
J — k=0

(3-32)

N-1

W11 (0,0) =1, (0, 0) 5 ) + D st (k. )|, +[v,, (ko) )

k=0

To solve the problem, a performance bound y is selected and z(k,®) is computed to

satisfy
supJ <y (3-33)

where sup represents supremum. The formulation of (3-33) shows that the SOE H.,
optimal estimators guarantee the smallest estimation error energy over all possible
disturbances (w,,, (0,0)—w,,, (0,0),v (k,w)and v, (k,®)) of finite energy. They are
over-conservative but have a better robust behavior to the disturbance variations. The

SOE H,, filter can be interpreted as a minmax problem where the estimator strategy
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Z2(k,m) plays against the exogenous inputs v (k,®), v, (k,®) and the uncertainty of

the initial state w,,, (0,®) , so the performance criterion is equivalent to

2

min - max J=—yw,, (0,0)—W,, 0,0),. 0o

2 v vy (0,0)

Nl (3-34)
+ Z ﬁz(k,a)) ~i(k, @), - 7st (k@) +[v,, (ko). )]

Since v, (k,0)=y-gw,, (k,0)), z(k,0)=Cw,, (k,0) and ZzZ(k,w)=Cw,, (k,0),
equation (3-34) can be rewritten as:

2

min max J= —)/|wMV 0,@)—w,,, (0, a))|P,,(O’w)

Wy Ve, ¥:Wyy (0,0)

2 2 2 (3-35)
3 W (6.0) =y (k) ~ A, (k) 47— g0 k)

where S=C"SC.

Considering a second-order approximation of the nonlinearity in (3-35), the solution of
(3-35) leads to the SOE H,, filter.. The solution of the SOE H, filter for a class of
discrete-time nonlinear systems has been briefly explained in Section 3.5 and is derived in
Appendix I-IV. By substituting the corresponding matrices to (3-61)-(3-65), the solution

of the SOE H., filter for the state space model (3-15) and (3-16) is given as,

W,y (k+Lo)=w,, (ko) + Kk o)y - 3,k o)) (3-36)
K(k, w) = P(k, a))(l - l§1>(k, o) +G" (k, 0)R™'G  (k, w)P(k, a))J G!(k,o)R™ (3-37)
Ve

Pk +1,0) = P(k,0)I - l§1>(k, 0)+G (k,0)R™'G  (k,0)P(k,»))" +Q (3-38)
4

Mk +1,0)= {1 —l§1>(k,a)) +G"(k,0)R'G, (k,a))P(k,a))}l(k,a)) ~GH(k, )R (¥ -3, (k,w))
4
(3-39)

P(k +1,0) = 1P (k, )+ (1-7n)P(k, ) Ak, @) A" (k,0)P" (k, ) (3-40)
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where 0<7<1 and the predicted measurement is obtained by

X"k, o)W, (k,)

ilk0)= 2,00, (k. ) + 0.5 tr{G2 ()P (k, )

ww

(3-41)
|

Comparing with the SOE Kalman filter solution, we can observe the following.

1. The structures of the matrices IN((k, ) and IN’_(k +1, ) ((3-28) and (3-29)) in the

SOE Kalman filter are similar to the structures of K(k,w) and P(k+1,) ((3-37)

and (3-38)) in the SOE H,, filter. If the weighting matrices P(0, ) ,Q and R are
the same with the covariance matrices P(0,w) , Q and R, K(k, ) and

lN”(kJrl, ®) have the same structures with K(k,w) and P(k+1,) respectively

when y — .

2. The second-order terms of Taylor series in the SOE H,, filter and the SOE Kalman

filter are both approximated by the state estimation error sample covariance matrix.
However, unlike the error covariance matrix IN”(k, ) or f”(k, ) in the SOE

Kalman filter, the matrix P(k,w) in the SOE H, filter does not represent the
estimation error covariance matrix. Therefore, equations (3-39) and (3-40) are

utilized to approximate the estimation error covariance matrix.

3.5 The Second-Order Extended H,, Filter

This section provides the SOE H,, filter solution of a general nonlinear discrete-time
system shown in (3.42). Although, the state space model (3-15) and (3-16) are not
exactly the same with (A-1). However, like the SOE Kalman filter solution [48], the SOE

H, filter solution of (3.42) can be easily applied to (3-15) and (3-16).
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Consider a nonlinear discrete-time system

X, (D)= f(x, () +w, (1) (3-42)
Yo () =h(x, () +v, (1)

where x_ (f) and y_ () are the state and measurement vectors with the dimensions of

d, and d, respectively; w, (f) and v, (¢f) are the process and measurement noise.
f() and Ah(-) are vectors of smooth nonlinear functions that are second-order

differentiable with respect to x,(¢#). The second-order Taylor series expansion of

f(x,() and h(x, (¢)) around the nominal point X, (¢) (the estimated state) are

F ) = fGEO L (0 -%,0)

ox, (1) £
oL Z¢f<x 05,00~ f) (x, (1)~ (1)
0 (3-43)
hCx, (1) = h(&, (1) + axa’;) = O5E®
oL Z¢”<x O -2, -2 e 0-2,0)
a ()xm

where f, and & are the ith element of f(x,(¢)) and h(x,(t)). ¢/ and ¢ are the

d,x1 and d, x1 vectors with all zeros expect for the one in the ith element. The

quadratic term in (3-43) can be written as

*f, N . ]
(%, (02,00 2], RO RO G 0-200,0-2,0) |
o*h, Lo P ]
(%, %, (t)xm<xa<r)—xa<r»—rr 20, , OO0 %,(1) |

(3-44)
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where tr[-] is the trace operation. Assume that the matrix (x,(¢)—x,(¢))(x,(1)—X,(1))"

can be obtained by the expected values of the past data, i.e., it becomes independent of the

current state X, (¢) . Denote the matrix as P,, and we assume that the value of this matrix

can be estimated. Hence, we have

o’ f . . o f —
i axzf(f; (x, (1) — &, (O)x, ()~ &, ()" |~ r axfé P,
a X, (1) a X, (1)
- S - (3-45)
0%h. o%h _
ol Zh L - 2,0V, 05,00 2] L] B
B0 "Ml

Later P, is approximated by the sample covariance matrix of the estimation error. The

a

goal is to estimate a linear combination of . ,x,(#) using the observation, i.e.,

2,(0)=C,x, (1) (3-46)
where C, is a user-defined matrix. The estimate of z, (#) is denoted by Zz,(¢) and the
estimate of initial state x,(0) is denoted by x,(0). The design criterion of the SOE H.,

filter is to find Z,(¢) that minimizes J for any w, (), v, (¢#) and x,(0). The cost

function can be defined as:

N-1

Yz 0-2,0;
g = (3-47)

N-1
%, =%, + 2w, <O )

1=

2

s is defined as the square of the weighted (by S(¢)) Lnorm of x(¢),

The term |x(7)|

1e.,

x(’)ﬁ(,) =x"(¢)S(¢)x(t) . The matrices P,(0),Q,(r),R, () and S, () are symmetric

positive definite matrices chosen by the user based on the specific problem. For the SOE
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H., filter, a performance bound y is selected and Z, (¢) is computed to satisfy
supJ <y (3-48)

where sup represents supremum. The SOE H, filter can be interpreted as a minmax
problem where the estimator strategy z,(¢) plays against the exogenous inputs w,_(7),

v,(t) and the initial state x,(0). The performance criterion is equivalent to

N-1

. A 2 N 2 2
min  max J ==, 0= &, O, + 2 e O-2,0F A, O, +

£(0) Wy (D, (0).,(0) —

ol
R.'(1)

(3-49)

~

Since v, (¢t)=y,(t)-h(x,(@)), z,(06)=C,x,(¢) and zZ, (t)=C, x,(¢), equation (3-49) can

be rewritten as:

min max J=-y|x,(0 xO
2,0 w,(1).9,().%,(0) Y | ©)=x.( )|P 20)

(3-50)

30— 5,6 5 =il + v, 0-es, 0 )

=0

~

where S (1)=C"S_ (1)C, . Let’s'/ define z//(xa(O))z—;/xa(O)—fca(O)ﬁ,,l(O) and

Ya () = h(x,(t ))|;,([))

2 2
L(t)= I 0

Therefore, J in (3.50) is written as
N-1
w(x,(0)+ D L(t) (3-51)
t=0

Because x,(0), w, () and y, (¢) influences J independently, the stationary point of J
with respect to x,(0), w,(¢) and y,(¢f) can be found sequentially. To solve the
minmax problem, a stationary point of J with respect to x,(0) and w,(¢) is found first,
and then a stationary point of J with respect to x,(z) and y, (z) is found. The steps of

this derivation can be separated into three steps. First, a stationary point of J with respect

to x,(0) and w,(¢) is found in Appendix I. Secondly, a stationary point of J with
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respect to x,(¢) and y, (¢) is found in Appendix II based on the results from Appendix

I. Finally, according to Appendix I and Appendix II, the SOE H, filter solution of the

nonlinear discrete-time system in (3.42) is given in Appendix III.

3.5.1. The Second-Order Extended H. Filter Solution

Theorem 1: Consider the minmax problem in (3-50) and use the second-order Taylor
series described in (3-43)-(3-45) to approximate the nonlinear function in (3-42). The

stationary point of J with respect to x,(0) and w,(¢z) is given by:

x,(0)=x,(0)+P,(0)4(0) (3-52)
w, (1) =Q, (1)A(t+1) (3-53)
AN)=0 (3-54)

M0=P—liowxn+H%ﬂRﬂnHmmaﬁ_xPﬂaMa+D+liammn—@a»
V4 V4

2

+H<mzw{na)hu(m Hmum>x<m——2¢ !a“

i=l 8)63 (t)
(3-55)
ma+n=ﬂﬂmmb—liumﬁruf@m:mvaxdlFWn+Qﬁ) (3-56)
v
14(0) = %,(0) (3-57)

1 2
At +1) = £, () + FO(0) = £, (0) + ;¢ Lﬁ@

P,
X, (1)

+F()P, (l){l - lga (OP,(0)+ H (DR, (N H ()P, (l)}
e

{; SO~ %,0)+H' (t)R'l(t)[ya(t) h(x, (1)) = H(£)(u(1) — x(z))——2¢ {a h(t) PD]
i=1 %,(0)
(3-58)
where Fk:i d Hk:ﬂ .
ox, N ox, N

[Proof]: Please see Appendix I.
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Theorem 2: Given the values of x,(0) and w,(r) described in Theorem 1, the

stationary point of J with respect to x,(¢) and y (¢) 1s given by:

x, ()= u(t) (3-59)

P } (3-60)
X, (1)

o’h,
y.(O)=h(x,(0)+= ;‘é{a 0l

[Proof]: Please see Appendix II.

Theorem 3: According to Theorem 1 and Theorem 2, the SOE H,, filter solution for the

state space model (3-42) can be given by

R,+D) = f(R,(0)+ ZW [a {) (t)}
- w0 (3-61)
o%h.
VK1) 3, (0)— h(Es <r))——2¢ N
=% 220l
K, ()= F(1)P, (t)[l 15 o, )+ HIOR D E WP, (r)} H'(OR (1) (3-62)
V4
P.(1+1)= F(O)P, (t){l 15 e, )+ HTOR (0 H P, (t)} FT()+Q, (1) (3-63)
V4

A+ =(FOF () +el)’ F(t){l 1S o+ HTOR OH@P, (t)}z(t)
y

(3-64)
X d, aZh _
—H'(1)R, (t)[ya (1) —h(x, (t))——z¢ { . (;) P, (t)n}
=l a %, 0
P,(t+1)=7P,(t)+(1-1)P,() AN AT ()P (1) (3-65)
r T of Oh . ..
h = = d =
where S (1)=C,S,(1)C,, F(t) 2. () o and H(¢) 2. (0) » g 1S a positive

scalar to prevent the term F(¢)F"(¢) from being singular and 0<7 <1. The value of y

must satisfy (A-46) to ensure the optimized value of x (z) yields a local minimum of J.

[Proof]: Please see Appendix III.
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3.6 Summary

The SOE H,, filter-based robust MVDR beamformer for the acoustic environment has
been proposed and the detail derivation of the SOE H., filter filter has also been given in
this chapter. The comparisons between the proposed beamformer and the SOE Klaman
filter-based robust MVDR beamformer are described. For the derivation of the SOE H.,
filter, the second-order Taylor series expansion is used to approximate the nonlinear
function and the second-order term is approximated by the estimation error sample
covariance matrix. The SOE H, filter provides a rigorous method for dealing with

systems that have model uncertainty.
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Chapter 4

Experimental Results

This chapter presents the experimental results of the simulated and practical
environment to access the capability-of the proposed TFR-based adaptive beamformer, the
SOE H, filter and the robust MVDR beamformer based on the SOE H,, filter. The
experimental results about the TFR-based adaptive beamformer are shown in Section 4.1
and those about the SOE H., filter and the SOE H., filter-based robust MVDR beamformer

are shown in Section 4.2 and Section 4.3, respectively.

4.1. Experimental Results of the Proposed Transfer Function

Ratio-based Adaptive Beamformer

This section provides the experimental results of the proposed TFR-based adaptive
beamformer. The proposed beamformer was tested both in a real room environment and in
a car environment. In addition, the proposed beamformer was also tested by an automatic
speech recognition system (ASR) for the application consideration.

Three speech enhancement algorithms, DSB [1], reference-signal-based adaptive
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beamformer (RAB) implemented in frequency domain [34] and dual-source
transfer-function generalized sidelobe canceller (DTF-GSC) [32] are adopted to compare
with the proposed algorithm. The performance criterion of the RAB algorithm can be

written as

min[D(k, ) ~G" (k,0)X (k) |[D(k,0) - G" (k.0) X (k. )| (4-1)

where X(k,w) is the vector containing the linear combination of present microphone
received signal and pre-recorded signal Aml(a))g1 (k, ). §l(k, ) 1s the representative

speech signal at the position of the desired speech and 4, (a))§1 (k,0) are the

pre-recorded speech signals which can be recorded when the environment is quiet. D(k, )

is the reference signal set to be All(a))g1 (k,w).and the adaptive weight G(k,®) can be

trained using NLMS algorithm when the desired speech signal is inactive.

The DTF-GSC algorithm is comprised of three building blocks. The first is the FB
designed to block one competing speech while maintaining the desired speech signal. The
second is the BM which can block both the desired speech and one competing speech.
The FB and BM are designed with the TFRs of the desired speech and the competing
speech. Finally, the residual noise from the BM is cancelled by the adaptive filter using
the NLMS algorithm. Notably, in this experiment, the TFRs for the desired speech of the
DTF-GSC algorithm are the same with those of the proposed algorithm.

In the RAB, DTF-GSC and proposed algorithms, we assume a perfect desired speech
detection system exists, allowing the adaptive noise cancellation system to adapt weight
during inactive periods of desired speech. The STFT size is 1024 with 320 shift samples
and 64 zero padding samples. In the RAB and DTF-GSC algorithms, the step size of the

NLMS algorithm is set to be 0.1 and the initial values of the adaptive weight of the RAB,
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DTF-GSC and proposed algorithms are identically set to be 0.1+0.1i. The TFRs for the
DTF-GSC and proposed algorithms are estimated using 20 frames. For the proposed
beamformer, the parameters of », f and y in (2-12), (2-20) and (2-26) are set to be 1,
10 and 2, respectively. The adaptation number k is set to 10. The weighting matrices
P(0,®) and S in (2-29) are identically set to be identity matrices and R in (2-29) is set
to be diag(1,10™).

Four objective performance indices are used to measure the waveform property directly.

The first is segmental signal-to-interference-plus-noise ratio (segSINR) defined as

Lok+L~1
2
1 K1 le,s (t)
segSINR(dB) =10— > log10| 17— (4-2)
e D (x (D-g, - y(0)
=Lk

where L; is the frame length and £ is'the frame number when the desired speech signal is

active. Note that x, (¢) is the desired signal component recorded by the first microphone,

g, is the gain factor and y(7) is the output of the algorithm. The second is the average

SINR (avgSINR) defined as

PREAGEDIEHO)
avgSINR = =" <k (4-3)

DX ()

tel,

where 7, and 7, denote periods in time where only the desired speech is active and
only the interference-plus-noise signals are active respectively. The first quality measure

stresses on the speech distortion more than the second quality measure. The third quality

measure is segmental noise level (segNL)

K

segNL(dB) = %2(10 -log,, (i g - yii+ k[))] (4-4)

k=1
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where y(¢) is the algorithm output when only s,(¢) ~s,(t) and n,(¢) are all active. /

is the length of the frame and & is the frame number. A lower segNL represents a better

ability of noise suppression. The fourth quality measure is log spectral distortion (LSD)

defined as
1 & 1 & )
LSD = EZ \/WZ(ZO log,,|4,, (@)S, (k, @) — 20 - 1og, |Y (k,®)|) (4-5)
k=1 w=1

where Y(k,®) isthe STFT of the algorithm output. LSD means the speech distortion in

frequency domain. Note that a lower LSD level corresponds to a better performance.

4.1.1. Real Room Environment

For the real room environment,-the dimension is 10 m X 6 m X 3.6 m and the
reverberation time at 1000 Hz is 0.52 second. A uniform linear microphone array of eight
un-calibrated microphones separated by 0.05 m was constructed for this experiment. The
amplified microphone signals were sampled at 8 kHz and 16 bits. The microphone array
was placed on a table at a distance of 2 m from the wall and the picture of microphone
array in real room is shown in Fig. 4-1. The arrangement of microphone array and sound
sources is shown in Fig. 4-2. The desired speech signal at 0° consists of sentences from
TCC-300 database [71] spoken by 150 males and 150 females. The interference signals 2,
3 and 4 are speech signals spoken by 3 females and interference signal 1 is the speech
signal spoken by a male. Five conditions denoted from C1 to C5 for the experiments are
listed in Table 4-1.

The experimental results are shown in Fig. 4-3 and Mic#1 represents the contaminated
speech recorded by the first microphone. The range of average input SINR is from 0 dB to

-7 dB. As can be seen, the best performance is obtained by the proposed algorithm and the
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Figure 4-1 Microphone array in real room

O*0*0"0=0*0*0"C

_600 ....-:....f.':::: _______________
oo, I'm {Interference 3
Interference 4 4 Im e e

Im .45
Im g
Im Interference 1
3 N300 ——
{Wite noise 0 (nerfeence 2

Figure 4-2 Configuration of microphones, desired speech, white noise and interference

signals

Table 4-1 Five experimental conditions

Condition Desired Stationary Interference
Number Speech Location Noise Location Speech Location(s)
C1 0° -30° none
C2 0° -30° one of (30°, 45°, 60°, -60°)
C3 0° -30° two of (30°, 45°, 60°, -60°)
C4 0° -30° three of (30°, 45°, 60°, -60°)
Cs5 0° -30° 30°, 45°, 60° and -60°
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Figure 4-3 Experimental results in real room environment (a) segSINR results (b)
avgSINR results (c) segNL results (d) LSD results

DSB performs worst. Since the DSB aligns only the direct path signal, it does not take
reflections into account and no nulls are placed directly in interference signal directions.

For the RAB algorithm, the finite impulse response coefficients G(k,®) are trained to
achieve two objectives simultaneously during the desired speech inactive periods: to

suppress the interference and stationary noise signals, and to adjust the distorted desired
speech of each microphone A,,,l(a))§1 (k,w) to the same channel effect 4, 1(a))§1 (k,w).
However, the finite number of taps and NLMS adaptive algorithm are unlikely to achieve

these two objectives fully at the same time especially for complex channel dynamics. (e.g.,
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competing speeches are present). It is unlike the DTF-GSC algorithm or the proposed
algorithm which separates these two objectives. The DTF-GSC algorithm or the proposed
algorithm suppresses competing speech and adjusts desired speech channel effect first
using TFR techniques and then minimizes the residual noise with multi-channel adaptive
filter. This is the reason why the RAB performs better than the DSB but worse than the
DTF-GSC algorithm and the proposed algorithm.

The concept of the noise suppression method of the proposed algorithm is similar to
that of the DTF-GSC algorithm with the desired speech detection system. The major
difference between the algorithms lies in the system structure and adaptive filter algorithm.
In addition, this dissertation proposes the virtual sound source concept to explain the
components been removed from the TFR beamformer. The proposed system architecture
is somewhat like the integration of the FB and BM of the DTF-GSC algorithm and the
architecture of beamformer output is different: from the standard weight-and-sum
architecture. The advantage of the proposed system architecture is explained in Section
2.3.3. Besides, the proposed beamformer employs the H., filter algorithm to be the
adaptive filter, rather than NLMS algorithm. In the DTF-GSC algorithm, if the BM
outputs contain the nonstationary signals or the modeling errors exist in the adaptive filter,
these factors will influence the performance of the NLMS algorithm. However, the H.
filter can be more robust to the nonstationary signals and the modeling errors than the
NLMS algorithm [35]. Therefore, the proposed algorithm has a better ability to suppress
interference signals and stationary noise than the DTF-GSC algorithm.

For subjective evaluations, Fig. 4-4 ~ Fig. 4-8 show the waveforms and spectrograms at
different conditions of the clean speech recorded by the first microphone, the
contaminated speech at the first microphone and the enhanced speech obtained by

different algorithms.
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Figure 4-4 Waveforms and spectrograms at condition C1.
(a) Clean speech at Mic#1 (b) Contaminated speech at Mic#1

(e) Enhanced speech from RAB (f) Enhanced speech from DSB
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Figure 4-5 Waveforms and spectrograms at condition C2.
(a) Clean speech at Mic#1  (b) Contaminated speech at Mic#1
(c) Enhanced speech from the proposed algorithm (d) Enhanced speech from DTF-GSC
(e) Enhanced speech from RAB (f) Enhanced speech from DSB
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Figure 4-6 Waveforms and spectrograms at condition C3.
(a) Clean speech at Mic#1 (b) Contaminated speech at Mic#1

(e) Enhanced speech from RAB (f) Enhanced speech from DSB
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Figure 4-7 Waveforms and spectrograms at condition C4.
(a) Clean speech at Mic#1 (b) Contaminated speech at Mic#1

(e) Enhanced speech from RAB (f) Enhanced speech from DSB

60



w1t Clean speech at micraphone #1

Amplitude

L
ns 1 1.5 2 25 3 35
Tirme (sec)
Clean speech at microphone #1
4000 = T T T T = T
3000 ¢ o ¥ 2
>
En . 5
c & |
S 2000 - = - &
= 3
2 - .
“oqomoF -»—g'_ -
T
1 L e
i} 0.5 1 15 2 35
Time (sec)
(a)
4 10* Condition: G5, Enhanced speech from the proposed algorithm

Amplitude

L

1.5 2 25 3
Tirme (sec)

Condition: C5, Enhanced speech fram the proposed algorithm

05 1

4000

3000

Freguency

=] &)

Amplitude

ra

4000

3000

2000

Frequency

(c) Enhanced speech from the proposed algorithm (d) Enhanced speech from DTF-GSC

Time (sec)

(©)

4g*  Condition: G5, Enhanced speech

from the RAB algorithm

.

1.5 2 25 3
Time (zec)

Condition: C5, Enhanced speech fram the RAB algotithrm

05 1

1000 &

15 2
Time (sec)

(e)

Frequency

Amplitude

W e
o o
o o
8 o

Frequency

Freguency

Amplitude

x10*

Condition: C5, Contaminated speech at microphone #1

25 3

L

1.5 2
Time (sec)

Caondition: C5, Contaminated speech at microphone #1

=1
=]
=

10 Condition: G5, Enhanced speech from the DTFGSC algorithm

Time (sec)

(b)

2

=]

ra

L
1.5 2 25 3
Time (sec)

Condition: C5, Enhanced speech from the DTFGSC algorithm

4000 —

3000

(¥
=]
=
=

1000

Time (sec)

(d)

Condition: C&, Enhanced speech from the DSB algorithm

Amplitude

L
1.5 2 25 B
Tirme (sec)

4000 -
3000}

2000

Condition: C5, Enha

nced speech from the DSB algorithm

Time (sec)

®

Figure 4-8 Waveforms and spectrograms at condition C5.
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4.1.2. Car Environment

The experiment was also performed in a Ford FOCUS car. The picture of microphone
array in car is shown in Fig. 4-9. Fig. 4-10 shows the locations of the four in-car
loudspeakers and the locations of the desired and interference speech signals. The desired
speech is at location L2 and the interference signals are at location L1 and L3. The
distance from the desired speech to the microphone array is about 0.52 m and the desired
speech source is from TCC 300 database. A uniform array of eight microphones with 0.05
m spacing is mounted in front of L2. The sampling rate is 8§ kHz, and the A/D resolution is
16 bits. All windows were closed during the experiment to protect the microphones from
saturation. Four conditions denoted from K1 to K4 listed in Table 4-2 are considered for
the car environment tests. The CD player played a song from a Taiwanese female singer.

The experimental results are shown in Fig. 4-11 and Mic#1 represents the contaminated
speech recorded by the first microphone. As can be seen, the experimental results in car
environment are consistent with those in real room environment. It is notable that the
performance of the DTF-GSC and the proposed algorithm is comparable under the K1
condition. This may be because that the space of the car environment is smaller than that
of the real room environment. It is easier to model the TFR in the car environment than in
the real room environment and there is less desired speech leakage in the car environment.
However, when the competing speech increases, the superiority of the proposed algorithm

over other algorithms is evident.

Table 4-2 Four experimental conditions

Condition Car Engine Desired Interference In-car
Number Speed Speech Location  Speech Location(s) CD Player
K1 80 km/h L2 L1 Off
K2 80 km/h L2 L1and L3 Off
K3 80 km/h L2 L1 On
K4 80 km/h L2 L1and L3 On
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Microphone Array

Figure 4-9 Microphone array in car

-10 Car environment
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4.1.3. Automatic Speech Recognition Test

ASR systems are sensitive to additive noise and speech distortion, especially for the
competing speech. Therefore, this section utilizes the ASR rates to measure the
performance of the proposed algorithm. The ASR system [72] that we use is the hidden
markov model (HMM) based Mandarin speech recognition system. The feature vector is
26-dimensional mel frequency cepstral coefficients (MFCC) and the TCC-300 database is
used for training. The testing database is speaker independent 3332 words spoken by 11
female and 18 male and each word is one Chinese name. The testing environment is the
same with Section 4.1.1. and the testing words are played at the desired speech position in
Fig. 4.2. The time domain speech enhancement output is sent directly to the ASR system
for further processing. The recognition result is considered correct when the output of the
ASR system is completely the same-with the known input. The correct rates, when tested
on the clean 3332 words (s,(¢)), is' 100 %. The recognition results for different conditions
are summarized in Table 4-3 and the correct rate of each condition is obtained by using
500 words chosen randomly from the testing database. In Table 4-3, clean Mic#1 and
Mic#1 represent the clean speech recorded by the first microphone and the contaminated
speech recorded by the first microphone, respectively. As can be seen, the proposed
algorithm has the optimal correction rate and Table 4-3 also indicates that ASR system
can be considered an application of the proposed algorithm. Notably, the improvement
rates of the proposed algorithm are better than other algorithms, especially in C2~C5
conditions and it indicates that the proposed algorithm is more robust to the complicated

acoustic environments than other algorithms.
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Table 4-3 ASR Correction Rates (%)

Algorithms
Input Conditions Clean
SINR Proposed | DTF-GSC | RAB | DSB | Mic#l | (o0
Cl 90.8 80 488 | 41.8 | 5.6 91.2
_ 2 86 74 43 39 | 124 | 86.6
g C3 79.5 55.2 274 | 204 | 4.8 84.4
(dB) C4 71.4 48.2 314 | 236 | 2 87.4
C5 72.4 51.6 37.8 | 368 | 44 84.4

4.2. Simulation Results of the Second-Order Extended H,, Filter

This section provides the simulation:results.of the SOE H, filter. The performance of
the SOE H,, filter is analyzed and a numerical example of a vehicle tracking problem is
given in Section 4.2.1 to compare the SOE H, filter with the SOE Kalman filter and the

extended H,, filter.

4.2.1 Numerical Example for the Second-Order Extended H, Filter

This section compares the performance of the SOE H,, filter proposed in Section 3.5
with those of the SOE Kalman filter [48] and the extended H. filter [52] for a tracking
problem in [48]. Consider the problem of tracking a moving vehicle in two dimensional
space (north and east). The vehicle’s velocity in the north and east directions consists of
independent white noise. Two tracking stations, located at north-east coordinates (]V | ,Fl)
and (]Vz,l_?z), measure the distance to the vehicle. The system model can therefore be

written as
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ne+D] [1 0 T 0n@
et+1)| |0 1 0 T|e()
| Ewle)
A+ [0 0 1 0|n@)
e+ [0 0 0 1|eé@) (4-6)

where n(¢f) and e(z) are the vehicle’s north and east coordinates at time step #; 7 is the

time step of the system, w(¢) = [w1 &) w,(t) w() w, (t)]T is the process noise, and

v(t) = [v1 @ v, (z‘)]T is the measurement noise. The process noise w,(¢)=w,(#)=0,
wy(t) and w,(¢) are normally distributed white noise sequences whose means are 20
and whose variances are 4. The measurement noise is also a normally distributed white
noise sequence with mean=10 and variance=1. Suppose that the time step 7= 0.1s and the
execution time is one minute. The SOE H., filter solution of the nonlinear discrete system
(3.42) is given in Section 3.5 and the SOE Kalman filter solution of the nonlinear discrete

system (3.42) is given as follows

Time update equations:

i /) % f ~. ]
X, ()=f(x;t-1))+— ;(/5 [ (1) ml)Pu (t)} (4-7)
P ()=F(-DP (¢t-D)F"(t-1)+Q, (-1 (4-8)

Measurement update equations:

F(=%(0+K, <t)[ya(z> h(i (z))——2¢ [aa er> (t)n (4-9)
23 EAG)

K, () =B, A ([HOP, O )+ R,0)" (4-10)

P () =[-K0 AP, (1) (4-11)
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Oh

where F(¢) = 2 and H(t) =

a\Mlzz 0

. After some linear algebra operations [48],

the Kalman gain Ka(t) can be rewritten as (4-12) and the estimation error covariance

matrix l~’a‘ (t) and lw’;' (t) can be integrated as (4-13)

K, =P, A" )1+ ' OR; 0HOP, () 7" (OR; (¢) (4-12)

P, (t+1) = FOP, 0L+ A" OR; 0 H©®)P, 1) F 1)+ Q, (1) (4-13)

For the SOE Kalman filter, the process noise covariance matrix (N)a(t) in (4-8) is set to

diag(0,0,4,4), and the measurement noise covariance matrix and ﬁa (t) in (4-10) is

diag(1,l). The tracking stations are located at (Nl,E1 )= (20,0) and (ZV 2,1772): (0,20). The

initial state of the vehicle x(0)=[0 0 350 50]T and is perfectly known. For the

extended and SOE H,, filter, the weighting matrices Q, () and R, (¢) in (3-63) and

(3-62) are selected to be identical to matrices Qa(t) and ﬁa (t) respectively. The

parameters y, & and 7 in (3-48), (3-64) and (3-65) are set to 100, 0.5 and 0.9,

respectively. The matrices C, and S, (¢) in (3-62) are both set to be identity matrices
and the matrices IN’j (0) and P,(0) in (4-8) and (3-62) are both set to be zero.

Fig. 4-12 shows the true states and the estimated states of all filters. Table 4-4
represents the mean of absolute state estimation error. As can be seen, the SOE H,, filter
performs better than all of the other filters. The SOE H., filter performs better than the
extended H, filter since the SOE H, filter has a smaller linearization error than the
extended H., filter. Next, the SOE Kalman filter is compared with the SOE H,, filter. The
SOE Kalman filter assumes that the process noise and the measurement noise are

zero-mean Gaussian noises. However, this assumption is not satisfied with this example
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since the noises in this example are non-zero mean. As seen in the preceding section, the

SOE Kalman filter and the SOE H, filter have similar observer structures and the

difference between them is that the SOE H,, filter has the l§a @®P,(¢#) item in K (?)
v

and P, (¢+1), which is absent in the Ka(t) and IN’G‘ (t+1) matrices of the SOE Kalman

filter. In (3.62) and (3.63), we can find that subtracting lga ()P, (¢) on the right side of
e

K, (#) and P, (t+1) tends to increase K,(#) and P, (z+1). Studies [48] have shown

that the Kalman filter can be made more robust to unmodeled noise and unmodeled

dynamics by artificially increasing the process noise covariance matrix (N)a(t) which
results in a larger Ka(t) and lN’a‘ (t+1). Increasing the process noise covariance matrix

(N)a(t) of the SOE Kalman filter is conceptually the same as increasing K (¢) and
P,(t+1) in the SOE H,, filter. Therefore, in this example, the SOE H., filterer performs
better than the SOE Kalman filter owing to the effect of the element —%ga ®P,(t) in
K, () and P, (t+1).

Theoretically, the noise covariance matrices (N)a(t) and ﬁa(t) in the SOE Kalman

filter should be set to be diagonal matrices. However, the weighting matrices

Q,(®),R, () and S, (¢) in the SOE H, filter are symmetric positive definite matrices
which can be designed by the user without requiring them to be diagonal. Different
weighting matrices result in different performance and this example just reveals that the

SOE H, filter can be more robust to the unmodeled noise than the SOE Kalman filter
when the weighting matrices Q_(#) and R_(¢) are identical to the Qa(t) and fla(t)

matrices of the SOE Kalman filter.
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Table 4-4 Mean of absolute state estimation error

n(?) e(t) A7) e(t)

SOE Kalman | 4126.1089 | 4073.1391 | 25430057 | 143.68455

Extended H., | 1896.4524 | 792.98992 | 44.266306 | 122.16865
SOE H.,, 1700.782 | 613.90405 | 37.768583 | 112.13477
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Figure 4-12  Estimation results of state values. (a) n(¢z) (b) e(¢) (¢) n(t) (d) e(r)
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4.3. Experimental Results of the Robust MVDR Beamformer
Based on the Second-Order Extended H,, Filter

This section provides the experimental results of the robust MVDR beamformer based
on the SOE H, filter. The performance of the proposed SOE H, filter-based robust
MVDR beamformer is compared with the SOE Kalman filter-based robust MVDR
beamformer for the speech enhancement problem both in a simulated room and in a real
room. The experimental results in a simulated room and in a real room are provided in

Section 4.3.1 and Section 4.3.2, respectively.

4.3.1. Simulation Results of the Second-Order Extended H, Filter-based

Robust MVDR Beamformer

The purpose of the simulation-is to compare the performance of the SOE H, and
Kalman filters with respect to the room acoustic response and the ability to reject impulse
noise. In this simulation, the image method [50] is adopted to model the room impulse
response and the room impulse response is convolved with source signals to generate
microphone signals. The room size is 4.5mx3.3mx4.2m and a 4-channel linear
microphone array is placed at a distance of 0.7 m from the wall. The arrangement of

microphone array and sound sources is shown in Fig. 4-13. The presumed steering
vector Z(a)) is set to be [1 1 1 1] for each frequency and following the guidelines

of [38], the robustness parameter ¢ =3 in (3-10) is used both in the SOE Kalman
filter-based robust MVDR beamformer and the SOE H,, filter-based robust MVDR
beamformer. The matrices (~) and Q in (3-26) and (3-38) are both selected as zero and

the matrices R and R in (3-25) and (3-37) are both set to be diag(10,0.1). The

parameters ¥ and 7 in (3-33) and (3-40) are chosen 10 and 0.99, respectively. The
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Figure 4-13 Configuration of microphones, desired speech, white noise and interference

signals

matrices 1~’+(0, w) 1n (3-26), P(0,w), S and C in (3-37) are equally set to be identity

matrices. The weight vectors of both filtefs:are trained with the same data when the
desired speech is inactive.

Two reverberation times T, 0.2 second and 0.3 second, are used for this simulation.
The sampling rate is 8 KHz. As a result, the corresponding impulse responses from the
interference position to the first microphone position are shown in Fig. 4-14(a) and Fig.
4-14(d). The STFT size is 256 with 80 shift samples and 16 zero padding samples. As can
be seen, the length of each impulse responses is longer than 256. Therefore, a single STFT
frame is not able to capture the room response. This makes the channel response time-
varying in practice and it can be viewed as model uncertainty. Throughout the simulation,
the desired source is silent. Two scenarios are considered for the interference rejection
ability:

1. The interference signal is speech signal spoken by a male.
2. The interference signal is a transient noise (drum).
Fig. 4-14 shows the simulation results of the scenario 1 for different reverberations. Fig.

4-14(b) and Fig. 4-14(f) represent the received signal of the first microphone. The segNL
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defined in (4-4) is used for performance comparison. Fig. 4-14(c) and Fig. 4-14(g) show
the results for SOE Kalman filter while the cases of SOE H.,, filter are depicted in Fig.
4-14(d) and Fig. 4-14(h). From the segNL, both methods exhibit certain reduction ability
but the SOE H., filter performs slightly better than the SOE Kalman one.

Fig. 4-15 shows the simulation results of the scenario 2 for different reverberations. Fig.
4-15(a) and Fig. 4-15(d) are the received signal of the first microphone when only the
drum and white noise are active. Comparing Fig. 4-15(b) with Fig. 4-15(c) and Fig.
4-15(e) with Fig. 4-15(f), the SOE H,, filter has a faster convergent speed than the SOE
Kalman one. This indicates that SOE H.,, filter is more capable of rejecting transient

interferences.
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Figure 4-15 Simulation results. (a) and (d): Microphone #1 signals when only the drum
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4.3.2. Experimental Results of the Second-Order Extended Hy Filter-based

Robust MVDR Beamformer in a Real Room

In this section, the performance of the proposed SOE H.,, filter-based robust MVDR
beamformer is compared with the SOE Kalman filter-based robust MVDR beamformer
for the speech enhancement problem in a real room. The real room dimension is 10 m X 6
m % 3.6 m and the reverberation time at 1000 Hz is 0.52 second. The microphone array
was placed on a table at a distance of 2 m from the wall. The microphone array
arrangement and all other parameters setting of both filters are the same as Section 4.3.1.
According to the investigation of room acoustics [73], the number of eigen-frequencies

can be obtained by the following equation:

— A4r ,

0 -7 pley (4-14)
3 2

where B represents the geometrical volume, f; denotes the sampling frequency, and c
means the sound velocity (c=346m/s). This equation indicates that the number of poles is
very large when the room volume is high, and that the transient response occurs in almost
any processing duration. In this experimental environment, the number of poles is about
1.398 x 10° when the sampling frequency is 8 kHz and the room volume is 216 m".
Accordingly, the STFT window length (256) in this experiment is shorter than the channel
response duration and is likely to create channel modeling error.

Because the robust MVDR beamformer does not consider the de-reverberation or
channel adjustment effect Three performance indices, avgSINR, segNL and LSD defined
in (4-3), (4-4) and (4-5), are used to measure the waveform property directly.

The experimental results are shown in Fig. 4-16 according to different input average
SINR and Mic#1 represents the contaminated speech recorded by the first microphone. As

can be seen, the proposed SOE H,, filter performs better than the SOE Kalman filter in
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robust MVDR beamformer. It is clear that the model uncertainties (room reverberation
and microphone mismatch) have a greater influence to the SOE Kalman filter. As can be
seen from Fig. 4-16 (a) and Fig. 4-16 (b), the SOE H,, filter has a higher average SINR
and suppresses more interference-plus-noise. Notably, Fig. 4-16 (c) further demonstrates
that the SOE H., filter still has less desired signal distortion while maintaining better
average SINR and segNL. For subjective evaluations, Fig. 4-17 shows the waveforms and
spectrograms of the clean speech recorded by the first microphone, the contaminated
speech at the first microphone and the enhanced speech obtained by the SOE Kalman
filter and the SOE H,, filter. In Fig. 4-17, the average SINR of the contaminated speech is

about 1.32 dB.
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Figure 4-16 Experimental results in real room environment (a) avgSINR results
(b) segNL results (¢) LSD results
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Figure 4-17 Waveforms and spectrograms: (a) the clean speech recorded by the first
microphone; (b) the contaminated speech at the first microphone;
(c) the enhanced speech obtained by the SOE Kalman filter;
(d) the enhanced speech obtained by the SOE H,, filter.

4.4. Summary

This chapter evaluates the proposed TFR-based adaptive beamformer, the SOE H.,
filter, and the SOE H., filter-based robust MVDR beamformer through simulation and real
experimental results. Section 4.1.1 and Section 4.1.2 show that the proposed TFR-based
adaptive beamformer performs better than other famous beamformers both in a real room
environment and in a car environment. Section 4.1.3 utilizes the ASR to demonstrate the

advantages of the proposed TFR-based adaptive beamformer.

77



In Section 4.2.1, a numerical example is given to compare the SOE H,, filter with the
first-order extended H., filter, and the SOE Kalman filter. The simulation results show that
the SOE H., filter has the best performance among others in terms of noise model
uncertainty. Section 4.3.1 simulates the reverberant environment, while performing the
experiments when the interference signal is speech signal or a transient noise, to show that
the proposed SOE H. filter-based robust MVDR beamformer can be robust to the
modeling error of beamformer weight. Section 4.3.2 demonstrates the performance of the
proposed SOE H, filter-based robust MVDR beamformer in a noisy and reverberant
environment and shows its superiority over the robust MVDR beamformer based on the

SOE Kalman filter.
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Chapter 5

Conclusions and Future Researches

5.1. Conclusions

Two adaptive beamformers, namely TFR-based adaptive beamformer and robust
adaptive beamformer based on the SOE H. filter, are proposed in this dissertation.

In the TFR-based adaptive beamformer, a null space is placed toward the direction of
the principal component of the virtual sound using the TFR beamformer and the channel
effect of the desired speech is equalized by the TFR information. The residual
components of the virtual sound source and stationary noise are suppressed by the H.,
filter. The comparison between the H,, filter and the NLMS algorithm and the advantage
of the proposed system architecture are also analyzed. In addition, the virtual sound
source concept which transforms the multiple competing speeches from MIMO to SIMO
acoustic system is presented to simplify the complicated acoustic system. The
performance of the proposed algorithm is compared to that of DSB, RAB and DTF-GSC
algorithms in a real, noisy and reverberant environment and we also show the
improvement on correct rate using Mandarin ASR system.

In the robust adaptive beamformer based on the SOE H,, filter, the SOE H., filter is
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proposed for the implementation of the robust MVDR beamformer of [38] for the acoustic
environment and the detail derivation of the SOE H, filter filter is also given in this
dissertation. For the derivation of the SOE H, filter, the second-order Taylor series
expansion is used to approximate the nonlinear function and the second-order term is
approximated by the estimation error sample covariance matrix. The SOE H,, filter
provides a rigorous method for dealing with systems that have model uncertainty. A
numerical example of a nonlinear discrete-time system is given to proof that the SOE H,,
filter is more robust to the noise model uncertainty than the SOE Kalman filter and the
extended H. filter. In addition, speech enhancement experiments show that the proposed
SOE H. filter-based robust MVDR beamformer outperforms the SOE Kalman

filter-based robust MVDR beamformer.

5.2.Future Researches

The future researches can be summarized as follows.

1. This dissertation assumes that a perfect desired speech detection system exists. The
adaptive beamformer performance is affected by the accuracy of the desired speech
detection system since the presence of the desired speech in training data reduce the
convergence rates of adaptive beamformer algorithms [38]. Therefore, the desired
speech detection system is very important and can be the further research topic.

2. This dissertation assumes that the sound source positions are fixed in the experiment.
However, the sound source may move in many practical environments. Therefore,
developing an adaptive beamformer or a TFR identification method which can cope

with moving sound sources is worth a further study in the further.
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In the TFR-based adaptive beamformer, the experiments are performed using eight
microphones. The sub-array technique may be incorporated to improve the
performance or to decrease the microphone number requirement.

The effectiveness of the SOE H., filter can be sensitive to the weighting functions
(S,,P,(0),Q,,R,and y in (3-61) ~ (3-65)) and the choices of these weighting

functions are left as a subject of future work.
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Appendix |

N-1
The problem in this appendix is to maximize J = l//(xa (O))+ ZL(t) (subject to the

t=0

constraint x, (¢+1)= f(x,(t))+w,(t) ) with respect to x,(0) and w,(¢) . The

Hamiltonian for this problem is defined as:
H(t)=L(6)+ 272" (t +1) - (f (x, () + w, (1)) (A-1)

where 274"(¢+1) is the Lagrange multiplier. According to [48], the necessary conditions

for the maximum value of J with respect to x,(0) and w,(¢) are the following four

equations
2sz(0)+M =0 (A-2)
ox,(0)
2/4"(N)=0 (A-3)
OH®) =0 (A-4)
ow, (1)
() ]

27 (t) = 2. (1) (A-5)

From (A-2)-(A-5), the following results can be derived, respectively.

x,(0) = x,(0) + P, (0)2(0) (A-6)
AN)=0 (A-7)
w, (1) =Q, (A +1) (A-8)

Oh
ox, ()

z(z)z( g jz(r+1>+%§a(r)(xa<r>—fcau)){ JR:(t)(yam—h(xa(r)))

ox, (1)

a

(A-9)

Equation (A-8) an be substituted into the process dynamics equation in (A-1) to obtain
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x, (1 +1) = f(x, () +Q, (DA +1) (A-10)

By substituting (3-43) and (3-45) into (A-9), we have

A1) = F (0 +1)+ 8, (0)x, (1) - %,(1))
V4

(A-11)
d
X, (1)

. Because the matrix P, is the
5,0

+H (t)Rl(t){ya(t) h(x,(0)-H()(x,()-X (t))__z¢ [aﬁ }(zt)

and H(t)= oh

where F(t) = o
'Qu (t) éxa (t)

ox, (1)

expected value of the past data, we neglect the influence of the instantaneous value of

Al
e, (1) ox, (t)

Since x,(0)=x,(0)+P,(0)A(0) from (A-6), we assume

x,(t). Therefore, is approximated by F(¢) and H(?).
x,(t) = () + P, (1)A(1) (A-12)

where u(f) and P,(¢r) are functions'to be determined, with P (0) given, and the initial

condition x(0) = x,(0). Substituting (3-43), (3-45) and (A-12) into (A-10), we have
pE+D+P, @ +DA(+1) = f(x, (1) + F(O)(u(0) + P, ()A(1) - x, (1))

f i
S 2

Further, substituting (A-12) into (A-11), we have

(A-13)

P ] +Q, (DA +1)
x, (1)

) =F (At +1)+ lga (O)u(0) + P, (A1) = %,(0))
/4

o’h,

, E]
x,(0)

+H(OR] (z)[y,, (O~ h(, (0) = HOWO + B, 020~ £,0) -2 Y #rr[ 20

(A-14)

From (A-14), A(¢t) can be solved as
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A1) = {1 LS, 0P, HT ORI (OHOP, (z)] x {FT(z)z(r +1)+ 48, (00 - %, (1))
Ve V4

)

+H'" ()R} (t)[ya(t) h(x,(t)) - H(t)(u(t) - X (f))——Z i [aa }(zt)

(A-15)

Substituting (A-15) into (A-13) gives

p+D)+P +DAE+D) = f(x, @)+ F@O)(u@)—x, @) +— Z¢f [a j(;)

d
x, (1)
X {F T(OME+1)+ %E, O(u@) - x, (1)) (A-16)

)

+Q, (A + 1)+ F(1)P, (t){l - lga (OP,(0)+H' (OR, (DH ()P, (t)}
/4

+H' ()R, (t)[ya(t) h(x,(n))— H(@t)(u(t) - % (t))‘—z o [aa ]Zt)

The equation above can be rearranged as

ut+1) = f(x,(0)) - F@)(ut) - x,) - = ZW {66 2{;)

P,
*,(0)

1 = A T -1 _ A _ L _ l & h azhi
8.0~ %, 0)+ HOR, (t)[ya (0= MR, (0) = HOW@O = 5,00 =5 2 rr[ 0

—F()P, (t){l - iga (OP, () +H (OR (OH(1)P, (l)} x
v

s

—P,(t+)+F()P, (t)[I - lga (OP, () + H (DR, (D H(1)P, (t)} F'(n+Q, (t)}(t +1)
/e

(A-17)
Equation (A-17) is satisfied for any A(z+1) if both sides are zero. Setting the left side of

(A-17) to zero gives
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j— » - X l ds / f
M = R O)+ FO@O = £,0)+ 5 341 [a (1)

F]
x, (1)

Y0P, (t){l—li OP, (1) + HT(ORZ (OH ()P, (t)]
V4

E O(u@) - x,0))+H" (DR, (t)[y ()= h(x, (1)) — H@O)(u(1) - X, (1)) ——Z¢ [ P Z) P ]ﬂ
= %,(0)
(A-18)
Setting the right side of (A-17) to zero gives:
P (t+1)=F()P, (t){l —lga (OP,(O)+H (OR, (HH(1)P, (t)} F'(H+Q, (0
y (A-19)

=F()P,(t)F" (t)+Q, (t)
where

-1

P,(1)=P, (t){l - lga (OP, () + H (ORF@OH ()P, (t)] = {Pal ®) —lga (O+H (R (t)H(t)}
v v

(A-20)

From the derivations above, the values of x,(0) and w,(¢) that provide a stationary

point of J can be summarized as follows:

x,(0)=x,(0)+P,(0)4(0) (A-21)
w, () =Q, M)A +1) (A-22)
AN)=0 (A-23)

i) = {I LS, 0P+ HT ORI (0H )P, (r)} . {FT(r)z(r #1428, (0)(t) - %, 1))
V4 Ve

)

(A-24)

i <f)R‘(t)[ya(t> h(%, (1) = HO)(u(t) - % (z))——2¢ [ (j ’Z)
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-1

PAHD=F@m@%—liawxwufameHmmaﬁ1ﬂ@+040 (A-25)
4

#(0)=%,(0) (A-26)

F }
X, (1)

+F()P, (I){I - lga (OP, () + H (OR(DH (1)P, (l)]
e

ut+1) = f(x,)+ F@)(ut)—x,(0) +— ZW [6 J(:)

*h,
{; OluO=2,0)+ HIOR, (t){y ()= h(, ()~ HO(u(0) - & (’))“Z¢ {; ol

N

(A-27)
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Appendix Il

The problem in this appendix is to find a stationary point of J = l// X (O) ZL(t)

(subject to the constraint x, (¢ +1)= f(x,(t))+w,(¢)) with respect to x,(¢) and y, (7).
It can be solved given the fact that x,(0) and w,(¢#) have already been set to their

maximizing values as described in the previous section.

Since x,(¢) = p(t)+P,(t)A(t) and u(0)=x,(0), we have

A =P (O)x,()-u®) , A0)=P,;(0)(x,(0)-%,(0)) (A-28)
Hence,

2O, ,, = 2 ()P, (0)A(0)

= (x,(0) - £,(0))" (' (0)) P, ()P, (0)(x, (0) - & (0)) (A-29)

= (x,(0)-%,(0))"P," (0)(x,(0) - %,(0)) =

P, (0)

Therefore, the cost function J of (3-51) can be written as

N—

J= _7/|/1(0)|P (0) + hxa ) -x, (t)Ea(t) - ]/QWa (t)|(2);‘(t) +

t=0

P O-hx, O, (430

By replacing x,(¢) and w,_(¢#) with the expression in (A-12) and (A-22), we have

J= —7|/1(0)|

P,(0)
N-1

3 @+ 2, 0a0 - £, 0L, -l 0 - b + 200, -7

=0 t=0

B

N-—

—

ﬂz(z + 1)|; m]

=MoL, +Y )+ 020 - 5, s,

=0

~

N-

—y lhl(t + 1)|Q m]

t=0

=7y, ) = h(x, () = H(@®)(u@) + P, () A1) — X 0»——2 bt {aa }(lt)

R;'(1)
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(A-31)
Substituting (A-55) of Appendix IV into (A-31), we obtain

N-1

J=Yy ﬂ HO+P,(OM) =%, (0O, ~7AC+D], , + AT+ )P, + DA+ 1) - AT ()P, (H)A())

2
Fa]
x,(1) R2'(1)

=y ()= 2, 0)'S, () - 2, 0)+ 2(u(t) - %, ())'S, (OP, (D) 4(6) +2" ()P, (1S, (P () A(2)

~

o’h,
o (t)

Y. (0= (&, (0) = HO@( + P, (030 - %, (t))%ﬁ#r{

_ +3A (t+D)(P,(t+1) = Q, (1))t +1)— 12" ()P, () A(t)
-7V TOR ()Y () +2Y (OR (OH ()P, () A1) = 74" ()P, (OH T (NR, () H ()P, (t)l(t)]

(A-32)

Fan (A-33)
X, ()

Now, consider the term A" (z +1)(P,(z +1)— Q(¢))A(t +1) in (A-32). Using (A-19), we

where

Y(&)=|y,()—h(x,) - H@)(u@) - X, 0) = % Z ¢fhf{ aiz}(l;)

have

2T+ D(P,(t+1)—Q, (1)t +1) = ATt + DF (O, (1) F (1) Jat +1) (A-34)

From (A-14), we have

Fl(At+1)= i(t)—%ga ()10 + P (A1)~ %, (1))

T -1 A A & I zh.
~ Y ORC(0) 2,0~ G, (0)~ O + P00 - 2,0) - Y rr[ a‘; ®

P D
= £,(1)
(A-35)
Substituting (A-35) into (A-34), we have:

94



AT +D)(P,(t+1)—Q())At +1)
={f<t)(l—§l’a (1S, () +P,(HH (DR (t)H(t)j—%(u(z)—fca 0)'S, () -Y"(OR! (r)H@)}
<P, (z)x{f(z)(l—ll’a S, (O +P,(H (R (r)H(r)J—i(Mr)—fca O)'S,(-Y" (R (r)H(r)}
e Y
(A-36)

Because {I 1 P, (1)S,(t)+P,()H ()R (H)H (t)} =P, (t)P,'(¢). Equation (A-36) can be
e

written as:

A+ D(P,(t+1)-Q, (1) +1)

= 2" (0P, ()P, ()P, (DA(t) - %(u(t) - %,(0)'S, (P, (A0 - Y (R (O H ()P, (1)A(1)
- % A1 OP, (08, (@)~ %,(1))+ yi ()= %,0)'S, (P, (0)S, () (1) ~ %,(1))

+ % YT(OR, () H 0P, (0)S, ()1t = %:(0))— 2" ()P, ()H (R, ()Y (1)

+ %(u(r) - £,0)'S,(OP,(OH " ORIOY® + ¥ (OR, (VHOP,(OH (R ()Y (1)

(A-37)

Equation (A-37) is a scalar which means that each term in (A-37) is also a scalar.

Therefore, (A-37) can be rewritten as

A+ DR, +1D) = Q, ()it +1) = 2T ()P, ()P, ()P, (A1) - %(y(r) - %,(0)'S, (P, (02(1)
-2V (OR, (O H ()P, (1) (1) + yi (1) = %,0)'S, (P, (1S, (1) (u(t) - ,(1))
+ %(u(r) - %,0)'S,OP,OH OR YO+ Y OR OHOP,(OH (OR ()Y (?)

(A-38)

Next, consider the term 2" ()P, (/)P (1)P, (1)A(r) in (A-38).
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2(OP, (O, (OP, (A1) = 2" ()P, (t){l - %S, (6P, () + H" (R, (VH ()P, (t)}Pa‘ (6P, ()A(1)
= 2" (P, (1)A(1) - %f(t)fz (S, (OP, (A1) + 2" (O, (OH (R, (VH (1P, (1)A(0)
(A-39)
Substituting (A-39) into (A-38) we can obtain:
e+ DP,+1)-Q, ()it +1) = 2" ()P, (1)A(t) - ;AT(t)P (1S, (P, (1)A(1)
+ 21 (OP,(VHT (R, (VH ()P, (£)A(1) - %(y(t) - %,(0)'S, (P, (A1)
=2V (OR, () H(1)P, (1) A1) + 7—12(;1(0 - %,(0)'S, (P, (1S, ()(u(t) - %,(0))
+ %(ﬂ(t) - %,(0)'S,OPOH OR' (OY () + Y (OR, (OH(OP,()H (DR ()Y (1)

(A-40)

Next, go back to the cost function J. Substituting (A-40) into (A-32) gives:

N-1

J = {ﬂ(t) %,(0) (Sa(m;saa)fn(r)ﬁ,,(nj(u(t)—)%a(t))

t=0

+2(u0) - %,(0)'S, (0P, (OH (r)RI(ﬂ[y (1)~ h(x, (6) — H{O)(u(t) - % (r)>—*Z¢ [aa }(Ir)

N

+7[y () —h(x, () — H@)(u(t) - X(t))—*z,(/j Laj(l;) Pan (R;l(f)H(t)lN’a(t)HT(t)R;l(t)—R;l(t))
= a N, (1)

N

Now, take the partial derivative of (A-41) with respect to x,(¢) and y, (¢) and set them

o°h,
ax> (1)

x {ya () = h(x, (1)) = H(1)(u(1) - x,(0)) —%iﬂh [

i=1

(A-41)

to zero.

96



oJ — 1 ~ = A
0" 2[84 (t)+ fsa ()P, (1)S, (r)j(xa (t) - u(t))

2

ox; (t)

+28, (P, (OHH" (R, (I)Lh(x )+ H(O)(u() - x,(0) +— Z(ﬁ {

P ] -, (t)J
x, (1)

—2M"(OR, (OH ()P, (1)S, (1)(X, (1) — pu(t))

P } - Y. (t)]
X, (1)

)

MR (OO, (0HT(OR ()-R (r){hu )+ HO(u(t) - £, 0) + - z¢ L‘fcz’zﬂ
=0
YR HOP, 08, )0 - £, (1))
y, (1)
2R, OHOP, OHTOR, (1)~ R‘l(t){ya(z) &0~ OG0 - 5,0) - 5 gt [6 o
=0
(A-42)
where
M) = PO —hE, )~ HO =5 @) - gl 2] B || (aa3)
RGN ‘ X 25" axf(t)“t) ‘

Equation (A-42) are satisfied for the following values of x, () and y, (¢):

x, (1) = pu(2)

o’h,
Y. ()= h(x,(0)+ ;¢ tr [a 0,

. ] (A-44)
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Appendix Il

Equation (A-44) can be substituted into (A-24), (A-25) and (A-27) to obtain the SOE H,
solution. To ensure that the optimized value of x,(#) gives the local minimum of J, the

second derivative of J with respect to x,(¢) must be positive. Now, consider (A-43).

Using the derivatives property, we obtain

o0*h, =
MO = 2| 7O = HE0) = HOu() - x(r))——;¢ {a <f)meD
(A-45)
__ &) SHED) ChEW) 4 (), OCx0)
ox,()  ax() ax; (1) S A O P

Ignore the term of third-order derivatives, since we use the second-order to approximate
the nonlinear function A(-). Because X, (¢)= u(¢), we have M(¢)=0. Therefore, the
value of 7 must satisfy

0°J
ox; (1)

= 2(5(0 + lg(t)f’(t)g(t)j >0 (A-46)
4

From (A-12) and (A-44), the instantaneous covariance matrix at time index ¢ can be

written as

(x, () = %, (O))x, () = x,(0) =P, (OAD)A ()P (t) (A-47)

Therefore, the matrix P, can be approximated iteratively via the recursion
P, (t+1)=nP, (1) +(1-7)P, (DA ()P, (1) (A-48)

where 0<np<1.

Consequently, according to (A-24), (A-25), (A-27) and (A-44), the SOE H,, solution can
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be summarized as follows:

5 — (% 1 | O -
x,(t+D)=71(x,0)+ 2;% tr! (), . P, (t)]
’ (A-49)
+K ()| y, () —h(x (t))—liﬂ’tr o'h, P, (1)
a a a 2 P i ij(t) o a
K, ({)=F(@)P, (t)[l —lga OP,()+H (OR, (HH ()P, (t)] HY (DR (1) (A-50)
4

P,(t+1)= F()P, @{1 15, 0p, 0+ HTOR] O H )P, (t)}_ F'0)+Q,(1)  (A-51)
4

W+ =(FOF () +el)’ F(t){[l IS oo+ HTOR OH@P, (t)}i(z)
¥

(A-52)
P, (t)n
X, (1)

T -1 ~ & h ’h,
“H'(OR; (r){ya () - h(%, (r»—gz;é,. tr[ Oh

T ox2 ()
P, (t+1) =P, (1) + (1= 7P, (DA(N)A (P (1) (A-53)
where S,(t)=C!S, (1)C,, F(t)= a)if(t) » and H(t)= Gj,h(t) » ; & 1s a positive

scalar to prevent the term F(¢)F ' (¢t) from being singular and 0 <7 <1. The value of ¥

must satisfy (A-46) to ensure the optimized value of x,(¢) yields a local minimum of J.
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Appendix IV

Since A(N) =0, we have
N N-1
2 A OP, (A~ 2 (P, (DA =0
=0 =0
Equation (A-54) can be written as

0=2"(0)P,(0)4(0)+ ZN:iT (OP, ()A() - gf(t)l’a (1)4(@0)

= AT(0)P, (0)A(0) + fﬂ (t+D)P, (t+1)At+1)— NZ_‘:zT ()P, (1)A(t)

=), o, -7 (AT +DP, (¢t + DA +1) = AT (P, (H)A(D))

t
t=0

100

(A-54)

(A-55)



