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基於傳遞函數比與非線性 H∞濾波器之

穩健適應性語音純化波束形成器 

研究生：楊佳興        指導教授：胡竹生 教授 

國立交通大學電控工程研究所博士班 

摘要 
    在過去三十年中，利用麥克風陣列純化語音的技巧已受到許多研究者的專

注。在許多現實環境中，目標語音訊號通常受穩態雜訊與多個非穩態雜訊所干

擾。本論文的目標為利用均勻線性麥克風陣列提供一滿意的波束形成器(亦稱空

間濾波器)效能與穩健度對抗背景雜訊與空間響應效應。本論文提出兩種適應性

空間濾波器：以傳遞函數比為基礎之適應性空間濾波器與以二階延伸 H∞濾波器

為基礎之穩健最小變異無失真響應空間濾波器。 

    在第一類適應性空間濾波器中，傳遞函數比為事先利用系統識別方法來模

型。本論文提出的以傳遞函數比為基礎之適應性空間濾波器由傳遞函數比空間濾

波器與多通道適應性濾波器所構成。傳遞函數比空間濾波器用以消除多個非穩態

訊號中的主要部分，而目標語音訊號的通道效應則由傳遞函數比的資訊來同化。

由於 H∞ 濾波器能較穩健於模型誤差，因此從傳遞函數比空間濾波器輸出的剩餘

雜訊訊號則由限制 H∞ 濾波器來消除。此外，本論文提出虛擬聲源的觀念用以簡

化多個非穩態訊號的空間複雜度。 

    在第二類適應性空間濾波器中，傳遞函數假設為一單純延遲模型與一不確定

數的組合。本論文提出一新的方法用來實現穩健最小變異無失真響應空間濾波

器。穩健最小變異無失真響應空間濾波器是設計在最差效能下最佳化的結果，此

濾波器對於目標訊號方向向量誤差提供了絕佳的穩健度。為了方便即時性的實

現，此種空間濾波器曾轉化為狀態空間模型並利用二階延伸 Kalman 濾波器來實

現。然而，二階延伸 Kalman 濾波器假設系統動態為已知並假設雜訊為零平均與

已知變異量。此類假設會影響穩健最小變異無失真響應空間濾波器的效能。本論

文發展與推導二階延伸 H∞ 濾波器並用以實現穩健最小變異無失真響應空間濾

波器。二階延伸 H∞ 濾波器是在最差情況下最小化估測誤差並對雜訊統計特性並

無假設。最後，本論文提供模擬與真實環境實驗結果用以驗證演算法效能。 
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 Robust Adaptive Beamformer for Speech 

Enhancement based on the Transfer Function Ratio 

and Nonlinear H∞ Filter  

Graduate Student: Chia-Hsin Yang     Advisor: Prof. Jwu-Sheng Hu 

Institute of Electrical Control Engineering 
National Chiao-Tung University 

Abstract 
Speech enhancement techniques, utilizing microphone array, have attracted 

attentions of many researchers for the last thirty years. In many practical 

environments, the desired speech signal is usually contaminated not only by stationary 

noise but also multiple nonstationay interferences, such as competing speech signals. 

The objective of this dissertation is to design robust adaptive beamfromers to reduce 

background noise and compensate channel effects using a uniform linear microphone 

array. Two adaptive beamformers, the transfer function ratio (TFR)-based adaptive 

beamformer and the robust adaptive beamformer based on the second-order extended 

(SOE) H∞ filter, are proposed in this dissertation. 

In the first adaptive beamformer, the TFR is obtained using the system 

identification method in advance. The proposed TFR-based adaptive beamformer 

consists of the TFR beamformer and multi-channel adaptive filter algorithm. The TFR 

beamformer is used to block the major component of the multiple interference signals 

and the associated information is then used to equalize the channel effect of the 

desired speech. The residual noise from the TFR beamformer output is suppressed by 

the constrained H∞ filter due to its robustness to the modeling error. In addition, the 
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virtual sound source concept is proposed to simplify the theoretical treatment for 

multiple competing speech signals. 

In the second adaptive beamformer, a novel approach to implement the robust 

minimum variance distortionless response (MVDR) beamformer is proposed where 

the acoustic transfer function is assumed to be delay-only propagation with 

uncertainty. The robust MVDR beamformer is to optimize the worst-case performance 

for an arbitrary but norm-bounded desired signal steering vector mismatch. For 

real-time consideration, the beamformer was formulated into a state-space observer 

form and the SOE Kalman filter was derived. However, the SOE Kalman filter 

assumes an accurate system dynamic and known statistics of the noise signals. These 

assumptions limit the performance under various uncertainties. This dissertation 

develops the SOE H∞ filter for the implementation of the robust MVDR beamformer. 

The estimation criterion in the SOE H∞ filter design is to minimize the worst possible 

effects of the disturbance signals on the signal estimation errors without a priori 

knowledge of the disturbance signals statistics. Finally, the results from simulations 

and practical experiments are provided as proof of the performance of these proposed 

approaches. 
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Chapter 1 

Introduction 

Background noise and reverberation could seriously deteriorate the quality of 

speech signals received by sensors. Speech enhancement algorithms have therefore 

attracted a great deal of interest in the past three decades. For removing unwanted 

interference and noise from the desired signal, microphone array processing 

techniques are widely used. Speech enhancement algorithms using microphone array 

typically incorporate both spatial and spectral information. Hence, they have the 

potential to outrun methods using a single microphone where only the spectral 

information can be used. Among several existing microphone-array-based 

enhancement algorithms, beamformer is one of the most popular methods and was 

extensively studied for hands-free speech communication or recognition. 

1.1 Overview of Beamformers 

In speech communication, if the desired signal and the interfering signals occupy 

the same frequency band, it is difficult for temporal or spectral filtering methods to 
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separate the signal from the interferences. However the desired and the interfering 

signals are usually emitted from different spatial locations. This location difference 

can be exploited to separate them using a beamformer. A beamformer is an array of 

microphones which provide spatial information regarding acoustic dynamics of the 

sources. Typically, a beamformer linearly combines the spatially sampled waveform 

from each microphone in the same way as the finite impulse response (FIR) filter 

combines the temporally sampled data. The diagram of a beamformer with M 

microphones is shown in Fig. 1-1. 

In the following, the existing beamformers are explained in two categories: fix 

beamformers and adaptive beamformers. 

)(1 nx )(2 nx )(nxM

X X X

1q Mq2q

+

∑
=

=
M

m
mm nxqoutput

1
)(

 

Figure 1-1  Diagram of the beamformer 

1.1.1 Fix Beamformers 

Fix beamformers includes delay-and-sum beamformer (DSB) [1], constant 

directivity beamformer (CDB) [2-4] and fixed superdirective beamformers [5-7]. They 

utilize fixed coefficients to achieve a desired spatial response. The DSB is the simplest 

structure in fixed beamformer and it first compensates for the relative time delay 

between distinct microphone signals and then sums the steered signal to form a single 

output. Jan and Flanagan [8] explicitly modeled the transfer function from source to 
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sensors to replace the simple delay assumption. Further, they extended the DSB 

concept by introducing the matched filter array beamformer. CDB is designed such 

that the spatial response is the same over a wide frequency band while the fixed 

superdirective beamformer attempts to suppress noise coming from all directions 

without affecting the desired speech signal from a principal direction. Fix 

beamformers generally assume the desired sound source, interference signals, and 

noises are slowly varying and at known locations. Therefore, these algorithms are 

sensitive to steering errors which limit their noises suppression performance and cause 

the desired signal distortion or cancellation. Furthermore, these algorithms also have 

limited performance under highly reverberation environments. 

1.1.2 Adaptive Beamformers 

Instead of using fixed coefficients to suppress noises and interference signals, an 

adaptive beamformer [9-14] can adaptively forms its directivity beam-pattern to the 

desired signal and its null beam-pattern to the undesired signals. In the fixed 

beamformers, the null beam-pattern exists when the noise’s direction is known and 

remains unchanged. To cope with environmental changes, various adaptive 

beamformers were proposed to improve the performance. One of the key issues in 

adaptive beamformers is the sensitivity due to the mismatch between the actual 

desired signal steering vector and the presumed one [11], [12]. The mismatch can be 

induced by signal point errors [13], imperfect array calibration [14], or the channel 

effect (e.g., near-far problem [15], environment heterogeneity [16] and source local 

scattering [17]). In the presence of these effects, an adaptive beamformer can easily 

mix up the desired signal and interference components; that is, it suppress the desired 

signal instead of maintaining distortionless response. This phenomenon is commonly 
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referred to as signal self-nulling [18]. As a result, much effort has been devoted to the 

robustness issues [11]. 

Modifications to adaptive beamformer techniques for robustness were extensively 

studied. The linearly constrained minimum variance (LCMV) beamformer was 

proposed in [9] to minimize the array output power under a look-direction constraint. 

Another popular technique is the generalized sidelobe canceler (GSC) algorithm 

which essentially transforms the LCMV constrained minimization problem into an 

unconstrained one [10]. In the last decade, several techniques addressing this problem 

of the mismatch of the steering vector in the LCMV or GSC structure were developed 

[19]-[23]. For example, Hoshuyama et al [20] proposed two robust constraints on 

blocking matrix design. Spriet et al [22] proposed a robust adaptive beamformer 

called the spatially pre-processed speech distortion weighted multichannel Wiener 

filter which takes speech distortion into account in its optimization criterion and 

encompasses the standard GSC as a special case. Further, some ad hoc approaches 

were discussed to overcome the arbitrary desired signal mismatches, such as the 

diagonal loading of the sample covariance matrix [24], [25] and the eigenspace-based 

beamformer [26], [27]. 

1.1.3 Explicit Transfer Function Modeling for Adaptive beamformers 

The other method to mitigate the problem of signal steering vector mismatch for 

adaptive beamformer is to abandon the delay-only propagation assumption and 

explicitly model the sound signal propagation from the source to the microphones by 

an arbitrary transfer function (TF) [28]. Affes and Grenier presented GSC-based 

near-field beamformer [29] using matched filters with signal subspace tracking. The 

matched filters which can be identified by the proposed signal subspace tracking 
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algorithm under the assumption of the FIR model and small displacements of the 

talker is used to design the fixed beamformer (FB) of the GSC.  

Rather than estimating the TF, Gannot et al. [30] proposed the transfer function 

ratio (TFR) concept and applied to the GSC algorithm. The TFR can be estimated by 

exploiting the nonstationary characteristics of the desired signal. The suboptimal 

speech enhancement algorithm that can be implemented by using TFR to design the 

FB and blocking matrix (BM) of GSC is proposed. Several adaptive beamformer 

algorithms based on the GSC structure using TF ratio information have been proposed 

[31]-[33]. Dahl et al. [34] proposed a reference signal based adaptive beamformer 

which can suppress the nonstationary and stationary noise as well as recover the 

reverberation at the same time. This method uses FIR based normalized 

least-mean-square (NLMS) filtering approach to perform noise suppression and 

speech dereverberation by using pre-recorded speech signals and the desired signal 

acquired when the environment is quiet. Improvements on the finite number of taps in 

the FIR filters and relaxation on the disturbance assumption were studied [35]. Huang 

et al. [36], [37] treated a microphone array as a multiple-input multiple-output 

(MIMO) system and proposed a two-stage procedure for separation and 

dereverberation of speech signals. The interference signals can be removed by using 

two microphones with known TFs and the separated reverberant speech can be 

dereverberated by using the multiple-input/output inverse theorem. However, the 

stationary noise is neglected in this work and the transfer function of each speech 

source should be identified in advance during each single-talk interval which also 

limits its applications in practice. 

1.1.4 Uncertainty of the Steering Vector for Adaptive beamformers 
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Most of the early methods of making the adaptive beamformers more robust to the 

steering vector errors are rather as hoc in that the choice of their parameters or the 

structural modifications is not directly related to the uncertainty of the steering vector 

[11]. Recently, Vorobyov et al proposed a new approach to robust adaptive 

beamforming in the presence of an arbitrary unknown steering vector mismatch [38]. 

This approach is based on the optimization of worst-case performance. They also 

showed that the robust minimum variance distortionless response (MVDR) 

beamformer using worst-case performance optimization can be formulated as a 

second-order cone program and solved in polynomial time via the interior point 

method. In further works, [40]-[44], several extensions of the robust MVDR 

beamformer of [38] have been considered. 

1.2 Outline of Proposed Beamformers  

The objective of this dissertation is to provide satisfactory beamfromer 

performance and robustness to background noise and channel effects using a uniform 

linear microphone array. Two adaptive beamformers, TFR-based adaptive 

beamformer and robust adaptive beamformer based on the second-order extended 

(SOE) H∞ filter, which can be categorized into Section 1.1.3 and 1.1.4 are proposed in 

this dissertation. 

1.2.1 Transfer Function Ratio-Based Adaptive Beamformer 

The first beamformer, TFR-based adaptive beamformer, belongs to the category of 

Section 1.1.3 since a pre-training procedure is needed to explicitly model the TFR. 

The TFR-based adaptive beamformer is designed to extract the desired speech signal 
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while attenuating multiple competing speeches in a reverberant and noisy 

environment. The proposed method uses TFR beamformer and multi-channel adaptive 

filter algorithm to perform speech enhancement. The TFR beamformer is utilized to 

block the major component of the interference signals and the channel effect of the 

desired speech is adjusted by the TFR information. The residual noise signals from 

the TFR beamformer output are suppressed by the constrained H∞ filter. In addition, 

the virtual sound source concept is proposed to simplify the treatment for multiple 

competing speeches. 

1.2.2 Robust Adaptive Beamformer Based on the Second-Order 

Extended H∞ Filter 

The second beamformer, robust adaptive beamformer based on the SOE H∞ filter, 

belongs to the category of Section 1.1.4 since the beamformer structure is based on 

the robust MVDR beamformer of [38] which assumes that the transfer function is a 

delay-only propagation with an uncertainty. This dissertation develops the SOE H∞ 

filter for the implementation of the robust MVDR beamformer and the SOE H∞ filter 

is derived by the game theory approach. The estimation criterion in the SOE H∞ filter 

design is to minimize the worst possible effects of the disturbance signals on the 

signal estimation errors without priori knowledge. The proposed beamformer is 

compared with the existing robust adaptive beamformer based on the SOE Kalman 

filter. 

1.3 Contribution of this Dissertation 

The contribution of this dissertation is to propose and implement innovative 
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algorithms for speech enhancement. This dissertation proposes two adaptive 

beamformers, TFR-based adaptive beamformer and robust adaptive beamformer 

based on the SOE H∞ filter. 

1. Speech enhancement in a reverberant noisy environment with multiple 

competing speech signals is still a difficult problem. The challenge lies in the 

coexistence of spatial interference from competing sources and temporal echoes 

due to room reverberation in the received signals. In the TFR-based adaptive 

beamformer, a novel beamformer structure is proposed and the constrained H∞ 

filter is applied to overcome the problem above. In addition, the virtual sound 

source concept is proposed to simplify the multiple competing speech signals 

and explain the component blocked by the TFR beamformer. 

2. Many efforts have been considered to expand the H∞ filter to different domains 

and to improve performance. However, no work has been done on considering 

the second-order extended case similar to that of the SOE Kalman filter. In this 

dissertation, a SOE H∞ filter for a nonlinear discrete time system is derived based 

on the game theory approach. A numerical example is given to compare the 

proposed SOE H∞ filter with the first-order extended H∞ filter, and the SOE 

Kalman filter. 

3. The robust MVDR beamformer of [38] has been implemented by the SOE 

Kalman filter [44]. However, the assumptions of the SOE Kalman filter about the 

disturbance limit the beamformer performance. The proposed SOE H∞ filter is 

applied to implement the robust MVDR beamformer of [38] for speech 

enhancement to improve the issue above. 
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1.4 Dissertation Organization 

The remainder of this dissertation is organized as follows. The TFR-based adaptive 

beamformer is introduced in Chapter 2. Chapter 3 presents the robust adaptive 

beamformer based on the SOE H∞ filter. Also, the SOE H∞ filter solution of a general 

nonlinear discrete-time system is provided and the detail derivation is given in the 

Appendix I-IV. Chapter 4 shows the experimental results in both simulated room and 

real environment. Finally, conclusion and future work are drawn in Chapter 5.
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Chapter 2 

Transfer Function Ratio-Based Adaptive 
Beamformer 

2.1 Introduction 

Speech enhancement in the presence of multiple competing speech signals under a 

reverberant and noisy environment is still a difficult problem. The challenge lies in the 

coexistence of spatial competing sources and temporal echoes from room reverberation 

[74]. This dissertation considers speech enhancement problem under multiple speech 

sources in a reverberant and noisy environment condition and we focus on reconstructing 

the desired speech while suppressing competing speech sources and stationary noise. To 

deal with this problem, the most commonly used algorithm is the LCMV [9] algorithm 

where the adaptive weight is trained to satisfy certain constraints for a set of directions 

while minimizing the array response in all other directions. Therefore, the adaptive weight 

in LCMV-based structure [9], [34] has two objectives: to minimize the interference signal 

and noises, and to equalize the channel effect of the desired speech (e.g. room acoustics). 

However, in practical environment, existing adaptive filter algorithms (e.g. 

least-mean-square) are unlikely to achieve these two objectives fully at the same time [45]. 
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Hence, it serves as the motivation for this work to separate these two objectives using 

different beamformer weights. 

This dissertation proposes a two-stage speech enhancement algorithm using the TFR 

beamformer and the multi-channel adaptive filter algorithm. As discussed in Section 1.1.3, 

the TFR is originally used to design the FB and BM of GSC [30] and this work uses it to 

equalize the channel effect and block the interference signals. In channel equalization part, 

the channel effect of the desired speech is adjusted by the TFR information. In noise 

suppression part, the TFR beamformer is employed to reduce certain noise level in 

advance. In multiple competing speech sources environment, it is cumbersome and 

impractical to analyze the TFR of each competing speech source. Hence, the virtual sound 

source perspective explained by singular value decomposition (SVD) method is proposed 

to simplify the complexity of multiple interference signals environment. The TFR 

beamformer can be considered a pre-filter to remove the major component of the virtual 

sound source first and the residual noise from TFR beamformer output can be suppressed 

by multi-channel adaptive filter. However, the residual noise signals could be 

nonstationary or hard to model ,and common adaptive filter algorithms (e.g. NLMS 

algorithm or Kalman filter) may not completely characterize uncertainty under the 

complexity of acoustic dynamics [35], [46], [47], Therefore, the assumption of bounded 

disturbances could be a better strategy than others such as certain statistical properties. 

Hence, this dissertation adopts the H∞ filter as the multi-channel adaptive filter since it 

makes no further assumption regarding the disturbances and can be more robust to the 

model uncertainty problems [48]. 

The remainder of this chapter is organized as follows. Section 2.2 describes the 

problem formulation and the virtual sound source concept. Section 2.3 introduces the 

proposed system architecture and the performances of each noise cancellation block are 

also analyzed. The method to estimate the TFR information is presented in Section 2.4. 
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Finally, the summary is given in Section 2.5. 

2.2 Problem Formulation 

2.2.1 Problem Description 

Consider P speech sources and M microphones in the reverberant and noisy 

environment (M > P). The received signal of the m-th microphone at discrete-time index t 

can be written as: 

∑
=

+⊗=
P

p
mpmpm tntstatx

1
)()()()(                                        (2-1) 

where each symbol in (2-1) represents: 

⊗          convolution operation; 

)(tamp      the transfer function from the p-th sound source to the m-th microphone;   

)(1 ts       the desired speech signal; 

)(~)(2 tsts P   the nonstationary interfering speech signals (competing speech signals); 

)(tnm        the (directional or omni-directional) stationary noise of the m-th microphone. 

Typically, the transfer function )(tamp  is assumed to be time-invariant over the 

observation period. In this dissertation, the competing speech signals, )(~)(2 tsts P , are 

regarded as interference signals. Applying the short time Fourier transform (STFT) 

operation to (2-1) yields: 

( )∑
=

+=
P

p
mpmpm kNkSAkX

1

,),()(),( ωωωω                               (2-2) 

where k is the frame number and ω is the frequency band. ),( ωkX m , ),( ωkS p  and 
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( )ω,kNm  are the STFT of )(txm , )(ts p  and )(tnm , respectively. )(ωmpA  is the 

time-invariant transfer function from the p-th source to the m-th microphone. The 

objective of this work is to reconstruct the desired speech signal from the received 

contaminated signals, while suppressing the nonstationary interfering speech signals and 

the stationary noise signals in a reverberant environment. 

2.2.2 Virtual Sound Source Perspective 

It is impractical to estimate the transfer function for each interference signal in real 

practice. To simplify the complexity involved in multiple interference signals, a virtual 

sound source perspective is proposed. The idea of virtual sound source comes from that 

the multiple interference signals may be able to be transferred to one virtual sound source. 

When the desired speech signal and the stationary noise are absent, the received 

microphone signal can be expressed as the matrix form: 

),()(),( III ωωω kk SX A=                                             (2-3) 

where 
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Assume the rank of the transfer function matrix )(I ωA  is R and )(I ωA  can be 

decomposed by SVD: 
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)()V)D(U()(A ωωωω Η=I                                            (2-4) 
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)(σ ωr  are the nonzero singular values of )(I ωA  with 0)()()( 21 >≥≥≥ ωσωσωσ RL . 

)(r ωv  and )(ωru  are the input and output singular vectors of )(I ωA  respectively 

which construct the interference subspace. The idea of virtual sound source is 

characterized as follows. From (2-4), equation (2-3) can be rewritten as: 
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Observing (2-5), we can find that the MIMO acoustic system of (2-3) is treated as the 

single-input multiple-output (SIMO) acoustic system. The single input is the virtual sound 

source ),( ωkSV  with the TF ),()( ωω kVV ΔA + . The virtual sound source is formed by 

mapping the interference signals ),(I ωkS  along the most sensitive input direction )(1 ωv   
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Figure 2-1  Illustration of virtual sound source transformation 

which in turn is scaled by the maximum singular value )(σ1 ω . The TF of the virtual 

sound source consists of two parts, time-invariant part )(ωVA  and time-varying part 

),( ωkVΔ . This dissertation considers that )(ωVA  is constructed by the highest gain 

output direction )(1 ωu  and ),( ωkVΔ  is the linear combination of )(~)( R2 ωω uu  with 

time-varying coefficients ),( ωα ki . The transformation from multiple sound sources to 

the virtual sound source is illustrated in Fig. 2-1. 

2.3 System Architecture 

The proposed system architecture of the TFR-based adaptive beamformer is shown in 

Fig. 2-2. The proposed beamformer uses the TFR-based beamformer to block the 

principal part of the virtual sound source and the residual noise signals from the 

TFR-based beamformer outputs are suppressed by the multi-channel adaptive filter.  
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Figure 2-2  The system architecture of the TFR-based adaptive beamformer 

According to Section 2.2.2, equation (2-2) can be written as 
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                  (2-6) 

For the virtual sound source components, we consider ),()( ωω kSA VmV  and 

),(),( ωω kSk VmVΔ  to be the principal part and residual part respectively, since )(ωVA  

is the highest gain output direction of the transfer function matrix )(I ωA  and 

),()( ωω kSA VmV  is constructed by the principal interference subspace. If the number of 

sound sources is two, i.e., P=2, then the residual part is zero. 

2.3.1 Transfer Function Ratio Beamformer 

A TFR beamformer consists of two microphones. In this work, M received microphone 

signals are separated into M-1 microphone pairs for the subsequent signal processing. It is 
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supposed that the TFRs defined in (2-7) have been identified using the method introduced 

in Section 2.4. The TFRs for the desired speech and virtual sound source are defined as 

Mm
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mV

V
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m
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)()(    ,  
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11
1 L===
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ω
ωω                   (2-7) 

First, this dissertation employs the TFR of the virtual sound source to remove the 

principal part of the virtual sound source for each microphone pair: 
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             (2-8) 

Equation (2-8) means that the spatial null is placed toward the direction of the principal 

part of the virtual sound source by using two microphones. If the number of sound 

sources is two ( 0),( =Δ ωkmV ), equation (2-8) means that the spatial null is placed toward 

the single competing speech directly. The output of TFR beamformer ),( ωkBm  consists 

of 3 terms: distorted desired speech signal, stationary noise and residual virtual sound 

source. Since the TFRs, )(1 ωmH  and )(ωmVH , are known and we assume 

))()(( 1 ωω mVm HH −  is non-zero. To mitigate the distortion on the desired speech signal, 

equation (2-8) is multiplied by 1
1 ))()()(( −− ωωω mVmmr HHD : 
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)(ωmrD  is used to adjust the desired speech signal distortion to the same reference and r 

is the reference microphone number selected. 

The noise components of output signal ),( ωkBm  still contain the residual part of the 

virtual sound source and stationary noise (the last two terms of the right side of (2-9)), and 

hence the multi-channel adaptive filter is employed here to minimize the noise in 

),( ωkBm . Let us sum all the output signals ),( ωkBm  with the weighting function 

),( ωkGm : 
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where * represents the complex conjugation. The noise components can be cancelled if  

),(),(),(),( 22 ωωωω kZkGkk −=Η ZG                                      (2-11) 

where H represents conjugation transpose; 
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The solution of ),( ωkG  can be found by using adaptive algorithm suggested in Section 

2.3.2 when ),(1 ωkS  is silent (desired speech inactive periods). Once the weight vector 

),( ωkG  is obtained, the beamformer output can be given as: 
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ωω                                                 (2-12) 

2.3.2 Multi-channel Adaptive Filter 

For the real environment, it is unlikely to remove the noise components of (2-10) 

completely and hence the output signal ),( ωkYr  can be expressed as: 
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where ),( ωken  is the residual noise and it is anticipated that the desired speech signal 

components are dominant compared to the residual noise. Therefore, equation (2-12) can be 

written as: 
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According to (2-11), the error signal at frequency ω and frame k can be defined as: 

),(),(),(),(),( 22 ωωωωωε kkkZkGkZ ZGΗ−−=                                  (2-15) 
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To minimize the error signal ),( ωε kZ , the optimal set of filter coefficients vectors 

),( ωkG  can be found using the formula: 

[ ]),(),(min ωεωε kkE ZZG

∗                                                    (2-16) 

where [ ]⋅E  is the expectation. Observing (2-12), the weight-and-sum output ),( ωkYr  is 

divided by ∑
=

∗
M

m
m kG

2
),( ω  to be the beamformer output ),( ωkYr . Hence, to prevent the 

term ),( ωken  in (2-14) from being amplified by ∑
=

∗
M

m
m kG

2
),( ω  and a constraint is added 

into (2-16) as: 
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where [ ] 1)2(111 ×−Τ ∈= MRLO  and β is a constant larger than zero to ensure the 

value of ∑
=

∗
M

m
m kG

2
),( ω  not to amplify the residual noise ),( ωken  in (2-14). H2-optimal 

estimators (i.e. least-square based), such as the Wiener filter or Kalman filter, which 

minimize the expected estimation error energy and yield maximum-likelihood estimates 

are usually used to solve the optimization problem of (2-17). However, the 

least-square-based filters have some assumption about the disturbances. For example, 

Kalman filter assumes that signal generating processes have known dynamics and that the 

disturbances have known statistical properties. These assumptions may limit the 

beamformer performance. Among the classic adaptive filters, the NLMS algorithm is one 

of the most popular methods and widely used since it can be implemented easily. The 

NLMS algorithm solution of (2-17) is given by: 
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where λ  is the small positive step size; μ  is the penalty parameter and 
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OG ),(),( ωβωε kkN
Η−= . However, the modeling error of ),( ωkG  or the nonstationary 

signals in ),( ωkZ  may influence the performance and convergence rate of the NLMS 

algorithm. Therefore, the H∞ filter is applied here for the optimization problem. Because 

the disturbances in the H∞ estimation can be arbitrary but bounded signals and the H∞ 

filter was shown to be more robust than other least-square-based methods [35], [46]-[49]. 

To apply the H∞ filter, the constrained minimization problem of (2-17) is casted as a 

state-space model: 

State equation: 

),1(),( ωω −= kk GG                                                             (2-19) 

Measurement equation: 
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The measurement equation can be written as: 

),(),(),(),( ωωωω kkkk VGM += ΗZ                                      (2-21) 

where 
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),(1 ωkv  and ),(2 ωkv  are the beamformer residual noise and constraint noise, 

respectively. The H∞ filter makes no assumption about the statistics of the noise ),(1 ωkv  

and ),(2 ωkv  and is interested not necessarily in the estimation of ),( ωkG  but in the 

estimation of some arbitrary linear combination of ),( ωkG , i.e., 

),(),( ωω kk GT C=                                                    (2-23) 

where C  is a user-defined matrix. The estimate of ),( ωkT  is denoted by ),(ˆ ωkT  and 
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the estimate of initial state ),0( ωG  is denoted by ),0(ˆ ωG . The design criterion of the 

H∞ filter is to find ),(ˆ ωkT  that minimizes ),(ˆ),( ωω kk TT −  for any ),(1 ωkv , 

),(2 ωkv  and ),0( ωG . The performance index J can be defined as: 
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where the notation 2

),(
),(

ω
ω

k
k

S
x  is defined as the square of the weighted (by ),( ωkS ) 

L2 norm of ),( ωkx , i.e., ),(),(),(),( 2

),(
ωωωω

ω
kkkk

k
xxx S

S
Η= . The matrices ),0( ωP , 

),( ωkR  and ),( ωkS  are symmetric positive definite matrices chosen by the user based 

on the specific problem. To simplify the analysis and clarify the notation, we assume the 

weighting matrices, ),( ωkR  and ),( ωkS , are the same at each frame and each frequency, 

i.e., they are independent of frame and frequency. Hence, equation (2-24) can be 

reformulated as 

∑

∑
−

=

−

=

−−
+−

−
= 1

0

22

)(0,

1

0

2

11
),(),0(ˆ),0(

),(ˆ),(

N

k

N

k

k

kk
J

RP

S

ωωω

ωω

ω
VGG

TT
                                (2-25) 

The direct minimization of J is not tractable, so instead, a performance bound γ  is 

selected and ),(ˆ ωkT  is computed to satisfy 

γ< sup J                                                            (2-26) 

where sup represents supremum. The formulation of (2-26) shows that the H∞ optimal 

estimators guarantee the smallest estimation error energy over all possible disturbances 

( ),0(ˆ),0( ωω GG −  and ),( ωkV ) of finite energy. They are over-conservative but have a 

better robust behavior to the disturbance variations. The H∞ optimal strategy is to find 
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),(ˆ ωkT  that minimizes the supremum of the cost function J. Hence, the H∞ filter can be 

interpreted as a minmax problem where the estimator strategy ),(ˆ ωkT  plays against the 

exogenous inputs ),( ωkV  and the uncertainty of the initial state ),0( ωG .Therefore, the 

performance criterion is equivalent to 
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Since ),(),(),(),( ωωωω kkkk GMV Η−= Z , ),(),( ωω kk GT C=  and 

),(),( ωω kk GT C= , equation (2-27) can be rewritten as: 
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where  SCCS Η= . 

According to [48], the H∞ solution can be given as: 

[ ] 1111 ),(),(),(),(),(),(),( −−Η−− +−= RZPZRZPSIPK ωωωωωγωω kkkkkkk      (2-29) 

[ ]),(ˆ),(),(),(),(ˆ),1(ˆ ωωωωωω kkkkkk GMGG Η−+=+ ZK                    (2-30) 

[ ] 111 ),(),(),(),(),1( −Η−− +−=+ ωωωγωω kkkkk ZRZPSIPP                   (2-31) 

where I is the identity matrix. The H∞ solution above can also be used to solve the 

unconstrained minimization problem of (2-16) by setting: 

[ ] [ ]  ),(),(  ,  ),(),( 2 ωωωω kkkZk ΗΗ∗ =−= ZM Z                                   (2-32) 

For the proposed multi-channel adaptive filter, ),( ωkM  and ),( ωkΗZ  are set as (2-32) 

at the beginning of the adaptation procedure of ),(ˆ ωkG . If the absolute value of  
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∑
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∗
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m
m kG

2

),( ω  is less than one after k~  times of adaptation, ),( ωkM  and ),( ωkΗZ  will 

be set as (2-22). Theoretically, if ∑
=

∗
M

m
m kG

2

),( ω  is less than one, the value of β  should be 

set as a constant close to zero to prevent the constrained value from being far away from 

the optimal solution. However, there is no such restriction of β  in the proposed 

architecture, since the residual noise ),( ωken  is divided by ∑
=

∗
M

m
m kG

2

),( ω  to be the 

beamformer output. 

2.3.3 The Analysis of TFR Beamformer and Multi-channel Adaptive Filter 

In this section, the performances of the individual noise cancellation block ( ),( ωkBm  

and ),( ωkYr ) are analyzed. To analyze the performances, the image method [50] is used 

here to simulate the room impulse responses. The simulated room size is 4.5 m × 3.3 m × 

4.2 m and the reverberation time is 0.14 second simulated by 532-taps FIR filter. A 

uniform linear microphone array with eight microphones placed at a distance of 0.7 m 

from the wall is used for the simulation. The distance between adjacent microphones is 6 

cm and the sampling rate is 8 kHz. The directional sources are placed in front of the array 

from angle 0° to 180° with a distance of 1.5 m from the midpoint of the array. Four 

different conditions listed in Table 2-1 are considered to demonstrate the performances of 

each noise cancellation block. To compare the performances of the NLMS algorithm and 

Table 2-1  Four experimental conditions 

Condition 
Number 

Desired 
Speech Location

White Noise 
Location

Interference 
Speech Location(s) 

M1 90° 20° 60° 
M2 90° 20° 60° and 120° 
M3 90° 20° 60°, 120° and 150° 
M4 90° 20° 30°, 60°, 120° and 150° 
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the H∞ filter, the multi-channel adaptive filter is implemented by both methods. The STFT 

size is 256 with 80 shift samples and 16 zero padding samples. The parameters of λ , μ , 

β  and γ  are in (2-18), (2-18), (2-20) and (2-26) set to 0.3, 1, 2 and 10. The adaptation 

number k~  is set to 20. In this simulation, the length of the impulse responses (532) is 

longer than 256. Therefore, the modeling error exists in this simulation. Fig. 2-3 shows 

the received signal and the outputs of each noise cancellation block ( ),(2 ωkB  and 

),(1 ωkY ) at four different conditions when the desired speech signal is inactive and Table 

2-2 shows the average root mean square (RMS) power at different stage. The average 

RMS power is defined as: 

∑ ∑
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kLly
LN 1 1

2 )(110log201  avg.RMS                                  (2-33) 

where L denotes the length of the frame; k is the frame number and y is the input signal. 

Observing the TFR beamformer output ( ),(2 ωkB ) in Fig. 2-3, we can find that the TFR 

beamformer can reduce certain interference parts especially when the interference speech 

number (P) is small. However, the residual virtual sound source defined in (2-8) may not 

be relatively small when the number of interference sources becomes large. This is 

because the TFR beamformer only consists of two microphones and it can only place one 

null space toward one direction which limits the performance. As can be seen from Fig. 

2-3, the H∞ filter can reduce more noise signals than the NLMS algorithm. Since the H∞ 

filter minimizes the worst possible effects of the disturbances on the estimation error of 

),( ωkG . Characterizing uncertainty under the complexity of acoustic dynamics is 

difficult, so the best strategy may be just to assume that the disturbance is bounded. In 

addition, the residual virtual sound source may influence the convergence rate of the 

NLMS algorithm since it is nonstationary signal. Therefore, this work adopts the H∞ filter 

as the multi-channel adaptive filter to cancel the residual noise from TFR beamformer  
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                    (i)                          (j) 

 
(k)                          (l)                        

 
(m)                         (n) 

 
                       (o)                         (p) 
 

Figure 2-3  Waveforms of the simulation results 
(a), (e), (i), (m): received Mic#1 signal at four conditions ;  
(b), (f), (j), (n): ),(2 ωkB  at four conditions; 
(c), (g), (k), (o): ),(1 ωkY  using NLMS algorithm at four conditions;  
(d), (h), (l), (p): ),(1 ωkY  using H∞ filter at four conditions; 



 28

(d), (h), (l), (p): ),(1 ωkYss  using H∞ filter at four conditions; 

 
 
 
 
 
 
 
 

outputs. More comparisons between the H∞ filter and least-square-based filters can be 

referred to [35], [46]-[49]. Except the advantage of the H∞ filter, there is also an 

advantage of the proposed beamformer architecture. Unlike the standard weight-and-sum 

beamformer architecture where the beamformer output is obtained by weighting and 

summing signals fromdifferent microphones, the proposed architecture makes the 

weight-and-sum output ),(1 ωkY  divide by ∑
=

∗
M

m
m kG

2

),( ω  to be the beamformer output 

and it is different from the standard weight-and-sum beamformer architecture. Hence, if 

∑
=

∗
M

m
m kG

2

),( ω  is larger than one, the noise components in (2-10) can be attenuated again 

using (2-12).  

To test the performance of the proposed structure, one more simulation is performed. 

Consider the M3 condition and the goal of this simulation is to find the weight ),(ˆ ωkG  

that minimizes ),( ωε kZ  during noise-only-periods. Two beamformer structures shown 

in Table 2-3 are used for comparison. The first one is the standard weight-and-sum 

structure and the second one is the proposed beamformer structure. Fig. 2-4 shows the 

simulation results of both beamformers with NLMS algorithm and the H∞ filter. The 

initial condition of ),(ˆ ωkG  for the NLMS algorithm and the H∞ filter are the same. The 

parameters of λ , μ , β  and γ  are in (2-18), (2-18), (2-20) and (2-26) set to 0.3, 1, 2 

and 10. The weighting matrices ),0( ωP  and S  are both identically set to be identity  

Table 2-2  Average RMS power (dB) for different conditions  

Condition 
Number Mic #1 signal ),(2 ωkB  ),(1 ωkY  using NLMS ),(1 ωkY  using H∞ 

M1 65.74 50.93 39.76 36.31 
M2 73.26 65.31 54.4 50.9 
M3 75.27 69.85 61.81 57.07 
M4 75.72 70.91 64.55 59.89 
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Table 2-3  Two beamformer structures for comparison 

 Beamformer output Minimization criterion 

The first 
beamformer ∑
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         (a) avg.RMS=65.45 (dB)               (b) avg.RMS=61.81 (dB) 

 

(c) avg.RMS=63.08 (dB)               (d) avg.RMS=57.07 (dB) 

Figure 2-4  Waveforms. (a): The first beamformer using NLMS; (b): The second beamformer using NLMS; 
(c): The first beamformer using H∞ filter; (d): The second beamformer using H∞ filter; 
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matrices and the weighting matrix R  is set to be diag(1,10-9). (diag represents diagonal 

matrix) As can be seen, for both filters, the proposed system architecture can reduce more 

noise than the standard weight-and-sum architecture. 

2.4 Transfer Function Ratio Estimation 

In this work, the TFRs, )(1 ωmH  and )(ωmVH , are estimated separately using the 

system identification method described in [51]. The TFR of the desired speech )(1 ωmH  

is estimated when only ),(1 ωkS  and ),( ωkNm  are active and the TFR of the virtual 

sound source )(ωmVH  is estimated when only ),(~),(2 ωω kSkS P  and ),( ωkNm  are 

active. 

The method to estimate the time-invariant TFR of the virtual sound source )(ωmVH  is 

presented first. When no desired signal is in present, the received microphone signal 

becomes: 
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Let the residual signal ),( ωkRm  during noise-only periods represent as: 
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where 
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Rearrange (2-35) and we can obtain: 
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Applying the cross power spectrum density (PSD) operation to (2-36), we have: 

),()(),()(),(
1211111

1 ωωωωω kkHk xrxrxxmVxx mmm
Φ+Φ+Φ=Φ −                      (2-37) 

where ),( ωk
ji xxΦ  is the cross PSD between ix  and jx . Since ),( ωkNm  is stationary 

and ),( ωkSm  is independent of ),( ωkNm , hence )(
11
ωxr m

Φ  is independent of frame k. 

Rewrite the equation above as matrix form: 
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where 
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To reduce the computational complexity, the recursive least-square method is applied to 

estimate )(1 ω−
mVH : 
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Note that the TFR of the desired speech )(1 ωmH  can be estimated in a similar manner 

when only ),(1 ωkS  and ),( ωkNm  are active. 

2.5 Summary 

This chapter proposes a two-stage procedure beamformer to perform multiple competing 

speeches and stationary noise signals suppression as well as desired speech extraction 

based on the TFR information and the H∞ filter. The virtual sound source concept which 

transforms the multiple competing speeches from MIMO to SIMO acoustic system is 

presented to simplify the complicated acoustic system. The performances of the individual 

noise cancellation block are analyzed and the advantages of the H∞ filter and the proposed 

system architecture are also demonstrated. 
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Chapter 3 

Robust Adaptive Beamformer Using the 
Second-Order Extended H∞ Filter 

3.1 Introduction 

Most of the early methods of robust adaptive beamformers are rather ad hoc in that the 

choice of parameters or the structural modifications is not directly related to the 

uncertainty of the steering vector [11]. Recently, more rigorous approaches were proposed 

to cope with unknown mismatches via worst-case optimization [38], [39]. Unlike the 

earlier methods, they make explicit use of the uncertainty set of the steering vector. The 

work in [38] obtains the beamformer weight by minimizing the output 

interference-plus-noise power while maintaining a distortionless response for the 

worst-case steering vector mismatch. The robust MVDR problem in [38] was formulated 

as a second-order cone program and solved in polynomial time via the interior point 

method. A number of extensions of the robust MVDR beamformer of [38] have been 

considered [40]-[43]. However, the main shortcoming of these extensions is that they do 

not have a computationally efficient online implementation. To overcome this problem, 
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El-Keyi et al. [44] developed a new algorithm for the robust MVDR beamformer of [38] 

which was based on the constrained SOE Kalman filter that can be implemented online.  

The SOE Kalman filter assumes that the dynamics of the signal generating processes 

are known, so are the statistical properties of noise signals (i.e., uncorrelated and 

zero-mean Gaussian with known covariance) [48]. However, these assumptions limit the 

performance since the complex acoustic dynamics is difficult to model and the 

uncorrelated zero-mean Gaussian noise assumption is quite stringent considering the 

variety of environmental interferences. To relax these assumptions, this paper proposes 

the SOE H∞ filter for the MVDR beamformer of [38] that requires no prior knowledge of 

the noise statistics but bounded energy. Several studies on the linear and nonlinear H∞ 

filter or mixed Kalman/H∞ filter have been presented [45]-[49] and [52]-[69]. Despite 

these efforts to expand the use of H∞ filter to different domains for robustness, there is 

still no work which considers the second-order extended case similar to that of the SOE 

Kalman filter presented to the adaptive beamformer.  

In this chapter, the SOE H∞ filter under the robust MVDR beamformer setting [38] is 

derived based on the game theory approach [69]. In the SOE H∞ filter, the state estimator 

and the disturbance signals (initial condition error, process noise and measurement noise) 

have conflicting objectives, i.e., to minimize and maximize the estimation error, 

respectively. The estimation criterion in the SOE H∞ filter design is to minimize the worst 

possible effects of the disturbance signals on the signal estimation errors without priori 

knowledge. This estimation criterion makes the SOE H∞ filter more suitable for speech 

enhancement in the cases of unknown noise statistics, steering vector uncertainty and 

modeling error of beamformer weight. To derive the SOE H∞ filter, the second-order 

Taylor series expansion is used to approximate the nonlinear function. However, the 

quadratic terms appear in the series expansion are too complex to make the solution 

tractable. In this work, they are approximated by the estimation error sample covariance 



 35

matrix which effectively simplifies the problem.  

The remainder of this chapter is organized as follows. The speech enhancement 

problem and some necessary background on MVDR beamformer and robust MVDR 

beamformer of [38] are presented in Section 3.2. In Section 3.3, the SOE Kalman filter for 

the implementation of the robust MVDR beamformer of [38] is briefly reviewed and the 

proposed robust MVDR beamformer based on the SOE H∞ filter is introduced in Section 

3.4. Section 3.5 presents the SOE H∞ filter solution of a general nonlinear discrete-time 

system and the detail derivation is given in the Appendix I-IV. Finally, summary is drawn 

in Section 3.6. 

3.2 Problem Formulation 

Consider an acoustic environment the same with Section 2.2.1 and the received signal 

of the m-th microphone in frequency domain can be written as: 

( )∑
=

+=
P

p
mpmpm kNkSAkX

1
,),()(),( ωωωω                                   (3-1) 

The MVDR beamformer output at frame k and frequency ω is given by 

),()(),( ωωω kkY MVMV XwΗ=                                              (3-2) 

where [ ]Τ= ),(),(),( 1 ωωω kXkXk MLX  and 1)( ×∈ M
MV Cωw  is the MVDR 

beamformer weights. The well-known MVDR beamformer minimizes the output power 

of interference-signals-plus-stationary-noise while maintaining a distortionless response 

to the desired signal. The frequency domain MVDR problem is given by 

)()()(min ωωω MVxxMV
MV

ww
w

RΗ     subject to   1)(~)( =Η ωω AwMV                 (3-3) 
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where 

{ }),(),()( ωωω kkExx
Η= XXR                                         (3-4) 

)(ωxxR  is the MM ×  correlation matrix and 1)(~ ×∈ MCωA  is the presumed steering 

vector. The solution of the MVDR problem is given by [70], 

)(~)()(~
)(~)()( 1

1

ωωω
ωωω
AA

Aw
−Η

−

=
xx

xx
MV R

R                                         (3-5) 

In practice, the correlation matrix is unavailable and is usually approximated by 

∑
=

Η=
K

k
xx kk

K 1

),(),(1)(ˆ ωωω XXR                                       (3-6) 

where K is the frame number available. The sample correlation matrix is used in (3-5) to 

replace the true correlation matrix and the resulting solution is commonly referred to as 

the sample matrix inversion (SMI) algorithm [70]. If the desired signal is present in the 

training procedure, the SMI algorithm degrades dramatically [38].The other disadvantage 

of the SMI algorithm is that it does not provide the sufficient robustness against a 

mismatch between presumed steering vector )(~ ωA  and the actual steering vector 

[ ]Τ= )()()( 111 ωωω MAA LA .  

  In practical environment, there may exist unknown mismatches between )(~ ωA  and 

)(ωA  due to the reverberation, microphone mismatch, array configuration mismatch, etc. 

The norm of the steering vector distortion can be bounded by some known constant 

0>ε . Therefore, the actual steering vector belongs to the set 

{ }εωωωωωω ≤+=≡Λ )( ),()(~)( )()( eeAC C                            (3-7) 

The robust MVDR beamformer in [38] minimizes the output of the beamformer while 
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maintaining a distortion response, not only toward the steering vector )(~ ωA  but also 

toward all the vectors that belong to )(ωΛ . Based on this uncertainty description, 

Vorobyov et al. [38] formulated the robust MVDR beamformer problem as, 

)()(ˆ)(min ωωω MVxxMV
MV

ww
w

RΗ  subject to 1)()( ≥Η ωω CwMV  for all )()( ωω Λ∈C (3-8) 

The semi-infinite nonconvex constraint in (3-8) was reformulated as a single constraint 

that corresponds to the worst-case constraint [38] 

)()(ˆ)(min ωωω MVxxMV
MV

ww
w

RΗ   subject to 1)()(min
)()(

≥Η

Λ∈
ωω

ωω
Cw

C MV           (3-9) 

It can be proven that the inequality constraint in (3-9) is equal to the equality constraint 

[38]. Therefore, the problem in (3-9) can be rewritten as 

)()(1)(~)(  subject to

)()(ˆ)(min

22
ωωεωω

ωωω

MVMVMV

MVxxMV
MV

wwAw

ww
w

ΗΗ

Η

=−

R
                          (3-10) 

The problem in (3-10) has been solved in [38] using SOC programming. Moreover, 

several extensions of the robust MVDR beamformer have been considered. For example, 

a Newton-type iterative method was proposed for this problem and its modification [39], 

[40].  Re-formulating (3-10) into a state-space observer form facilitates the application 

of the SOE Kalman filter [44]. In the following, we briefly review the SOE Kalman filter 

solution and present a new approach based on the SOE H∞ filter. 

3.3 Robust MVDR beamformer based on the Second-Order 

Extended Klaman Filter 

For the convenience of analysis, the mean square error (MSE) between the zero signal 

and the beamformer is introduced as, 
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⎡ −                       (3-11) 

where )(⋅E  denotes the expectation operation. The constraint in (3-10) can be rewritten 

as 

1)),((2 =ωkg MVw                                                     (3-12) 

where 
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Therefore, the robust MVDR beamformer problem can be formulated as 

⎥⎦
⎤

⎢⎣
⎡ − Η 2

),(),(0min ωω kkE MV
MV

wX
w

   subject to   1)),((2 =ωkg MVw            (3-14) 

The constraint minimization problem of (3-14) is written in the state space model below 

State equation: 

),(),(),1( ωωω kkk sMVMV vww +=+                                       (3-15) 

Measurement equation: 

2
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               (3-16) 

where ),( ωksv  and ),( ωkmv  are the process and measurement noise respectively. The 

measurement equation is then, 

),()),(( ωω kk mMV vwgy +=                                            (3-17) 

where [ ]Τ= 10y . 

To apply the SOE Kalman filter, the noise processes ),( ωksv  and ),( ωkmv  are 

assumed to be white, zero mean, uncorrelated, and have known covariance matrices Q~  
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and R~  respectively. 
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                                               (3-18) 

The SOE Kalman filter expands the nonlinear function by using the second-order Taylor 

series and finds the optimal estimate ),(ˆ ωkMVw  to minimize the estimation error defined 

below 

[ ] 0),(ˆ),( =− ωω kkE MVMV ww                                            (3-19) 

To present the SOE Kalman filter solution, we start by evaluating the Jacobian ),( ωkwG  

of )),(( ωkg MVw  and Hessian matrices )()1( ωwwG  and )()2( ωwwG  of its components as 
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{ } 0),(),()()1( =∇∇= ΗΗ ωωω kk MVwwww MVMV
wXG                               (3-21) 

{ } )(~)(~)),(()( 2
2

)2( ωωεωω ΗΗ −=∇∇= AAw IG kg MVwwww MVMV
                    (3-22) 

where I is the identity matrix. For the state space model (3-15) and (3-16), the SOE 

Kalman filter solution is given by [48] 

[ ]),(ˆ ),(~),(ˆ),1(ˆ ωωωω kkkk kmMVMV yyww −+=+ K                           (3-23) 

where the predicted measurement is obtained by  

{ }⎥⎦
⎤

⎢
⎣

⎡

⋅+
=

−

Η

),(~)(5.0)),(ˆ(
),(ˆ),(

),(ˆ
)2(

2 ωωω
ωω

ω
ktrkg

kk
k

wwMV

MV
km PGw

wX
y                        (3-24) 

and the filter gain and predicted weight error covariance matrix are given by 
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( ) 1~),(),(~),(),(),(~),(~ −Η−Η− += RGPGGPK ωωωωωω kkkkkk www                 (3-25) 

QPP ~),1(~),(~ +−= +− ωω kk                                           (3-26) 

( ) ),(~),(),(~),(~ ωωωω kkkk w
−+ −= PGKIP                                   (3-27) 

where ),(~ ωkK  is the Kalman gain; ),(~ ωk−P  is the priori error covariance matrix and 

),(~ ωk+P  is the posteriori error covariance matrix. After some algebra operations [48], 

the Kalman gain can be rewritten as (3-28) and covariance matrices ),(~ ωk−P  and 

),(~ ωk+P  can be integrated as (3-29) 

( ) 111 ~),(),(~),(~),(),(~),(~ −Η−−−Η− += RGPGRGIPK ωωωωωω kkkkkk www            (3-28) 

QPGRGIPP ~)),(~),(~),()(,(~),1(~ 11 ++=+ −−−Η−− ωωωωω kkkkk ww              (3-29) 

3.4 Robust MVDR beamformer based on the Second-Order 

Extended H∞ Filter 

In contrast to minimizing the expected value of the estimation error variance like the 

SOE Kalman filter, another strategy is to minimize the worst possible effects of the 

disturbances on the signal estimation errors. This is essentially to minimize the infinity 

norm of the input-output relation. In this case, no assumptions on the noise statistics are 

necessary (such as (3-18)) but the boundedness of the noise energy. Considering the state 

space model (3-15) and (3-16), and the estimation of some arbitrary linear combination of 

),( ωkMVw , i.e., 

),(),( ωω kk MVwz C=                                                  (3-30) 
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where C  is a user-defined matrix. The estimate of ),( ωkz  is denoted by ),(ˆ ωkz  and 

the estimate of initial state ),0( ωMVw  is denoted by ),0(ˆ ωMVw . The design criterion of 

the SOE H∞ filter is to find ),(ˆ ωkz  that minimizes J for any ),( ωksv , ),( ωkmv  and 

),0( ωMVw . The performance index J can be defined as: 
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The notation 2
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k
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S
x  is defined as the square of the weighted (by ),( ωkS ) L2 norm 

of ),( ωkx , i.e., ),(),(),(),( 2
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ωωωω

ω
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k
xxx S

S
Η= . The matrices 

),0( ωP , ),( ωkQ , ),( ωkR  and ),( ωkS  are symmetric positive definite matrices chosen 

by the user based on the specific problem. To simplify the analysis, we assume the 

weighting matrices ),( ωkQ , ),( ωkR  and ),( ωkS  are independent of frame and 

frequency. Hence, equation (3-31) can be reformulated as 
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To solve the problem, a performance bound γ  is selected and ),(ˆ ωkz  is computed to 

satisfy 

γ< sup J                                                            (3-33) 

where sup represents supremum. The formulation of (3-33) shows that the SOE H∞ 

optimal estimators guarantee the smallest estimation error energy over all possible 

disturbances ( ),0(ˆ),0( ωω MVMV ww − , ),( ωksv and ),( ωkmv ) of finite energy. They are 

over-conservative but have a better robust behavior to the disturbance variations. The 

SOE H∞ filter can be interpreted as a minmax problem where the estimator strategy 
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),(ˆ ωkz  plays against the exogenous inputs ),( ωksv , ),( ωkmv  and the uncertainty of 

the initial state ),0( ωMVw  , so the performance criterion is equivalent to 
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            (3-34) 

Since )),((),( ωω kk MVm wgyv −= , ),(),( ωω kk MVwz C=   and ),(ˆ),(ˆ ωω kk MVwz C= , 

equation (3-34) can be rewritten as: 
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where  SCCS Η= . 

Considering a second-order approximation of the nonlinearity in (3-35), the solution of 

(3-35) leads to the SOE H∞ filter. The solution of the SOE H∞ filter for a class of 

discrete-time nonlinear systems has been briefly explained in Section 3.5 and is derived in 

Appendix I-IV. By substituting the corresponding matrices to (3-61)-(3-65), the solution 

of the SOE H∞ filter for the state space model (3-15) and (3-16) is given as, 

[ ]),(ˆ ),(),(ˆ),1(ˆ ωωωω kkkk hMVMV y yww −+=+ K                          (3-36) 
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( ) ),(),(),(),(1),(),1( ωωωωηωηω kkkkkk ΗΗ−+=+ PPPP λλ                  (3-40) 
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where 10 ≤<η  and the predicted measurement is obtained by  
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Comparing with the SOE Kalman filter solution, we can observe the following. 

1. The structures of the matrices ),(~ ωkK  and ),1(~ ω+− kP  ((3-28) and (3-29)) in the 

SOE Kalman filter are similar to the structures of ),( ωkK  and ),1( ω+kP  ((3-37) 

and (3-38)) in the SOE H∞ filter. If the weighting matrices ),0(~ ωP ,Q~  and R~  are 

the same with the covariance matrices ),0( ωP , Q  and R , ),(~ ωkK  and 

),1(~ ω+− kP  have the same structures with ),( ωkK  and ),1( ω+kP  respectively 

when ∞→γ .  

2. The second-order terms of Taylor series in the SOE H∞ filter and the SOE Kalman 

filter are both approximated by the state estimation error sample covariance matrix. 

However, unlike the error covariance matrix ),(~ ωk−P  or ),(~ ωk+P  in the SOE 

Kalman filter, the matrix ),( ωkP  in the SOE H∞ filter does not represent the 

estimation error covariance matrix. Therefore, equations (3-39) and (3-40) are 

utilized to approximate the estimation error covariance matrix.  

3.5  The Second-Order Extended H∞ Filter 

This section provides the SOE H∞ filter solution of a general nonlinear discrete-time 

system shown in (3.42).  Although, the state space model (3-15) and (3-16) are not 

exactly the same with (A-1). However, like the SOE Kalman filter solution [48], the SOE 

H∞ filter solution of (3.42) can be easily applied to (3-15) and (3-16). 
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Consider a nonlinear discrete-time system  
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                                             (3-42) 

where )(tax  and )(tay  are the state and measurement vectors with the dimensions of 

sd  and md  respectively; )(taw  and )(tav  are the process and measurement noise. 

)(⋅f  and )(⋅h  are vectors of smooth nonlinear functions that are second-order 

differentiable with respect to )(tax . The second-order Taylor series expansion of 

))(( tf ax  and ))(( th ax  around the nominal point )(ˆ tax  (the estimated state) are 
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where if  and ih  are the ith element of ))(( tf ax  and ))(( th ax . f
iφ  and h

iφ  are the 

1×sd  and 1×md  vectors with all zeros expect for the one in the ith element. The 

quadratic term in (3-43) can be written as 
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where [ ]⋅tr  is the trace operation. Assume that the matrix Τ−− ))(ˆ)()()(ˆ)(( tttt aaaa xxxx  

can be obtained by the expected values of the past data, i.e., it becomes independent of the 

current state )(tax . Denote the matrix as aP , and we assume that the value of this matrix 

can be estimated. Hence, we have 
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Later aP  is approximated by the sample covariance matrix of the estimation error. The 

goal is to estimate a linear combination of )(tax  using the observation, i.e.,  

)()( tt aaa xz C=                                                       (3-46) 

where aC  is a user-defined matrix. The estimate of )(taz  is denoted by )(ˆ taz  and the 

estimate of initial state )0(ax  is denoted by )0(ˆ ax . The design criterion of the SOE H∞ 

filter is to find )(ˆ taz  that minimizes J for any )(taw , )(tav  and )0(ax . The cost 

function can be defined as: 
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The term 2
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S
x  is defined as the square of the weighted (by )(tS ) L2 norm of )(tx , 

i.e., )()()()( 2
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t
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S
Τ= . The matrices )0(aP , )(taQ , )(taR  and )(taS  are symmetric 

positive definite matrices chosen by the user based on the specific problem. For the SOE 
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H∞ filter, a performance bound γ  is selected and )(ˆ taz  is computed to satisfy 

γ<  sup J                                                            (3-48) 

where sup represents supremum. The SOE H∞ filter can be interpreted as a minmax 

problem where the estimator strategy )(ˆ taz  plays against the exogenous inputs )(taw ,  

)(tav  and the initial state )0(ax . The performance criterion is equivalent to 
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Since ))(()()( thtt aaa xyv −= , )()( tt aaa xz C=  and )(ˆ)(ˆ tt aaa xz C= , equation (3-49) can 

be rewritten as: 
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where aaaa tt CSCS )()( Η= . Let’s define ( ) 2
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Because )0(ax , )(taw  and )(tay  influences J independently, the stationary point of J 

with respect to )0(ax , )(taw  and )(tay  can be found sequentially. To solve the 

minmax problem, a stationary point of J with respect to )0(ax  and )(taw  is found first, 

and then a stationary point of J with respect to )(ˆ tax  and )(tay  is found. The steps of 

this derivation can be separated into three steps. First, a stationary point of J with respect 

to )0(ax  and )(taw  is found in Appendix I. Secondly, a stationary point of J with 
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respect to )(ˆ tax  and )(tay  is found in Appendix II based on the results from Appendix 

I. Finally, according to Appendix I and Appendix II, the SOE H∞ filter solution of the 

nonlinear discrete-time system in (3.42) is given in Appendix III. 

3.5.1. The Second-Order Extended H∞ Filter Solution 

Theorem 1:  Consider the minmax problem in (3-50) and use the second-order Taylor 

series described in (3-43)-(3-45) to approximate the nonlinear function in (3-42). The 

stationary point of J with respect to )0(ax  and )(taw  is given by: 

)0()0()0(ˆ)0( λxx aaa P+=                                                   (3-52) 
)1()()( += ttt aa λw Q                                                   (3-53) 

0)( =Nλ                                                            (3-54) 
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where 
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[Proof]: Please see Appendix I. 
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Theorem 2: Given the values of )0(ax  and )(taw  described in Theorem 1, the 

stationary point of J with respect to )(ˆ tax  and )(tay  is given by: 

)()(ˆ tta μ=x                                                       (3-59) 
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[Proof]: Please see Appendix II. 

Theorem 3: According to Theorem 1 and Theorem 2, the SOE H∞ filter solution for the 

state space model (3-42) can be given by 
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scalar to prevent the term )()( tFtF Τ  from being singular and 10 ≤<η . The value of γ  

must satisfy (A-46) to ensure the optimized value of )(ˆ tax  yields a local minimum of J. 

[Proof]: Please see Appendix III. 
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3.6 Summary 

The SOE H∞ filter-based robust MVDR beamformer for the acoustic environment has 

been proposed and the detail derivation of the SOE H∞ filter filter has also been given in 

this chapter. The comparisons between the proposed beamformer and the SOE Klaman 

filter-based robust MVDR beamformer are described. For the derivation of the SOE H∞ 

filter, the second-order Taylor series expansion is used to approximate the nonlinear 

function and the second-order term is approximated by the estimation error sample 

covariance matrix. The SOE H∞ filter provides a rigorous method for dealing with 

systems that have model uncertainty. 
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Chapter 4 

Experimental Results 

This chapter presents the experimental results of the simulated and practical 

environment to access the capability of the proposed TFR-based adaptive beamformer, the 

SOE H∞ filter and the robust MVDR beamformer based on the SOE H∞ filter. The 

experimental results about the TFR-based adaptive beamformer are shown in Section 4.1 

and those about the SOE H∞ filter and the SOE H∞ filter-based robust MVDR beamformer 

are shown in Section 4.2 and Section 4.3, respectively.  

4.1. Experimental Results of the Proposed Transfer Function 

Ratio-based Adaptive Beamformer 

This section provides the experimental results of the proposed TFR-based adaptive 

beamformer. The proposed beamformer was tested both in a real room environment and in 

a car environment. In addition, the proposed beamformer was also tested by an automatic 

speech recognition system (ASR) for the application consideration. 

Three speech enhancement algorithms, DSB [1], reference-signal-based adaptive 



 51

beamformer (RAB) implemented in frequency domain [34] and dual-source 

transfer-function generalized sidelobe canceller (DTF-GSC) [32] are adopted to compare 

with the proposed algorithm. The performance criterion of the RAB algorithm can be 

written as 

[ ][ ]∗ΗΗ −− ),(ˆ),(),( ),(ˆ),(),(min ωωωωωω kkkDkkkD
G

XGXG                   (4-1) 

where ),(ˆ ωkX  is the vector containing the linear combination of present microphone 

received signal and pre-recorded signal ),(~)( 11 ωω kSAm . ),(~
1 ωkS  is the representative 

speech signal at the position of the desired speech and ),(~)( 11 ωω kSAm  are the 

pre-recorded speech signals which can be recorded when the environment is quiet. ),( ωkD  

is the reference signal set to be ),(~)( 111 ωω kSA  and the adaptive weight ),( ωkG  can be 

trained using NLMS algorithm when the desired speech signal is inactive. 

  The DTF-GSC algorithm is comprised of three building blocks. The first is the FB 

designed to block one competing speech while maintaining the desired speech signal. The 

second is the BM which can block both the desired speech and one competing speech. 

The FB and BM are designed with the TFRs of the desired speech and the competing 

speech. Finally, the residual noise from the BM is cancelled by the adaptive filter using 

the NLMS algorithm. Notably, in this experiment, the TFRs for the desired speech of the 

DTF-GSC algorithm are the same with those of the proposed algorithm. 

In the RAB, DTF-GSC and proposed algorithms, we assume a perfect desired speech 

detection system exists, allowing the adaptive noise cancellation system to adapt weight 

during inactive periods of desired speech. The STFT size is 1024 with 320 shift samples 

and 64 zero padding samples. In the RAB and DTF-GSC algorithms, the step size of the 

NLMS algorithm is set to be 0.1 and the initial values of the adaptive weight of the RAB, 
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DTF-GSC and proposed algorithms are identically set to be 0.1+0.1i. The TFRs for the 

DTF-GSC and proposed algorithms are estimated using 20 frames. For the proposed 

beamformer, the parameters of r, β  and γ  in (2-12), (2-20) and (2-26) are set to be 1, 

10 and 2, respectively. The adaptation number k~  is set to 10. The weighting matrices 

),0( ωP  and S  in (2-29) are identically set to be identity matrices and R  in (2-29) is set 

to be diag(1,10-9).  

Four objective performance indices are used to measure the waveform property directly. 

The first is segmental signal-to-interference-plus-noise ratio (segSINR) defined as 
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where Ls is the frame length and k is the frame number when the desired speech signal is 

active. Note that )(,1 tx s  is the desired signal component recorded by the first microphone, 

yg  is the gain factor and )(ty  is the output of the algorithm. The second is the average 

SINR (avgSINR) defined as 
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where sT  and nT  denote periods in time where only the desired speech is active and 

only the interference-plus-noise signals are active respectively. The first quality measure 

stresses on the speech distortion more than the second quality measure. The third quality 

measure is segmental noise level (segNL) 

∑ ∑
= =

⎟
⎠

⎞
⎜
⎝

⎛
+⋅⋅=

K

k

I

i
y kIiyg

K 1 1

22
10 ))((log101)dB(segNL                             (4-4)  



 53

where )(ty  is the algorithm output when only )(~)(2 tsts P  and )(tnm  are all active. I 

is the length of the frame and k is the frame number. A lower segNL represents a better 

ability of noise suppression. The fourth quality measure is log spectral distortion (LSD) 

defined as 
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1011110 ),(log20),()(log2011LSD

ω

ωωω                (4-5) 

where ),( ωkY  is the STFT of the algorithm output. LSD means the speech distortion in 

frequency domain. Note that a lower LSD level corresponds to a better performance. 

4.1.1. Real Room Environment 

For the real room environment, the dimension is 10 m × 6 m × 3.6 m and the 

reverberation time at 1000 Hz is 0.52 second. A uniform linear microphone array of eight 

un-calibrated microphones separated by 0.05 m was constructed for this experiment. The 

amplified microphone signals were sampled at 8 kHz and 16 bits. The microphone array 

was placed on a table at a distance of 2 m from the wall and the picture of microphone 

array in real room is shown in Fig. 4-1. The arrangement of microphone array and sound 

sources is shown in Fig. 4-2. The desired speech signal at 0° consists of sentences from 

TCC-300 database [71] spoken by 150 males and 150 females. The interference signals 2, 

3 and 4 are speech signals spoken by 3 females and interference signal 1 is the speech 

signal spoken by a male. Five conditions denoted from C1 to C5 for the experiments are 

listed in Table 4-1. 

The experimental results are shown in Fig. 4-3 and Mic#1 represents the contaminated 

speech recorded by the first microphone. The range of average input SINR is from 0 dB to 

-7 dB. As can be seen, the best performance is obtained by the proposed algorithm and the  
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Figure 4-1  Microphone array in real room 

 
Figure 4-2  Configuration of microphones, desired speech, white noise and interference 

signals 

 

Table 4-1  Five experimental conditions 

Condition 
Number 

Desired 
Speech Location

Stationary 
Noise Location

Interference 
Speech Location(s) 

C1 0° -30° none 
C2 0° -30° one of (30°, 45°, 60°, -60°) 
C3 0° -30° two of (30°, 45°, 60°, -60°) 
C4 0° -30° three of (30°, 45°, 60°, -60°) 
C5 0° -30° 30°, 45°, 60° and -60° 
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Figure 4-3  Experimental results in real room environment (a) segSINR results (b) 
avgSINR results (c) segNL results (d) LSD results 

 

DSB performs worst. Since the DSB aligns only the direct path signal, it does not take 

reflections into account and no nulls are placed directly in interference signal directions.  

For the RAB algorithm, the finite impulse response coefficients ),( ωkG  are trained to 

achieve two objectives simultaneously during the desired speech inactive periods: to 

suppress the interference and stationary noise signals, and to adjust the distorted desired 

speech of each microphone ),(~)( 11 ωω kSAm  to the same channel effect ),(~)( 111 ωω kSA . 

However, the finite number of taps and NLMS adaptive algorithm are unlikely to achieve 

these two objectives fully at the same time especially for complex channel dynamics. (e.g., 



 56

competing speeches are present). It is unlike the DTF-GSC algorithm or the proposed 

algorithm which separates these two objectives. The DTF-GSC algorithm or the proposed 

algorithm suppresses competing speech and adjusts desired speech channel effect first 

using TFR techniques and then minimizes the residual noise with multi-channel adaptive 

filter. This is the reason why the RAB performs better than the DSB but worse than the 

DTF-GSC algorithm and the proposed algorithm. 

The concept of the noise suppression method of the proposed algorithm is similar to 

that of the DTF-GSC algorithm with the desired speech detection system. The major 

difference between the algorithms lies in the system structure and adaptive filter algorithm. 

In addition, this dissertation proposes the virtual sound source concept to explain the 

components been removed from the TFR beamformer. The proposed system architecture 

is somewhat like the integration of the FB and BM of the DTF-GSC algorithm and the 

architecture of beamformer output is different from the standard weight-and-sum 

architecture. The advantage of the proposed system architecture is explained in Section 

2.3.3. Besides, the proposed beamformer employs the H∞ filter algorithm to be the 

adaptive filter, rather than NLMS algorithm. In the DTF-GSC algorithm, if the BM 

outputs contain the nonstationary signals or the modeling errors exist in the adaptive filter, 

these factors will influence the performance of the NLMS algorithm. However, the H∞ 

filter can be more robust to the nonstationary signals and the modeling errors than the 

NLMS algorithm [35]. Therefore, the proposed algorithm has a better ability to suppress 

interference signals and stationary noise than the DTF-GSC algorithm. 

For subjective evaluations, Fig. 4-4 ~ Fig. 4-8 show the waveforms and spectrograms at 

different conditions of the clean speech recorded by the first microphone, the 

contaminated speech at the first microphone and the enhanced speech obtained by 

different algorithms. 
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                 (a)                                 (b) 

 

                 (c)                                 (d) 

 
                 (e)                                 (f) 
 

Figure 4-4  Waveforms and spectrograms at condition C1.  
(a) Clean speech at Mic#1 (b) Contaminated speech at Mic#1  

(c) Enhanced speech from the proposed algorithm (d) Enhanced speech from DTF-GSC  
(e) Enhanced speech from RAB (f) Enhanced speech from DSB 
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(a)                                 (b) 

 
(c)                                 (d) 

 
(e)                                 (f) 

 
Figure 4-5  Waveforms and spectrograms at condition C2.  

(a) Clean speech at Mic#1   (b) Contaminated speech at Mic#1  
(c) Enhanced speech from the proposed algorithm (d) Enhanced speech from DTF-GSC  

(e) Enhanced speech from RAB (f) Enhanced speech from DSB 
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(a)                                 (b) 

 
(c)                                 (d) 

 
(e)                                 (f) 

 
Figure 4-6  Waveforms and spectrograms at condition C3.  

(a) Clean speech at Mic#1 (b) Contaminated speech at Mic#1  
(c) Enhanced speech from the proposed algorithm (d) Enhanced speech from DTF-GSC  

(e) Enhanced speech from RAB (f) Enhanced speech from DSB 
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(a)                                 (b) 

 
(c)                                 (d) 

 
(e)                                 (f) 

 
Figure 4-7  Waveforms and spectrograms at condition C4.  

(a) Clean speech at Mic#1 (b) Contaminated speech at Mic#1  
(c) Enhanced speech from the proposed algorithm (d) Enhanced speech from DTF-GSC 

(e) Enhanced speech from RAB (f) Enhanced speech from DSB 
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(a)                                 (b) 

 
(c)                                 (d) 

 
(e)                                 (f) 

 
Figure 4-8  Waveforms and spectrograms at condition C5. 

(a) Clean speech at Mic#1 (b) Contaminated speech at Mic#1  
(c) Enhanced speech from the proposed algorithm (d) Enhanced speech from DTF-GSC  

(e) Enhanced speech from RAB (f) Enhanced speech from DSB 
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4.1.2. Car Environment 

The experiment was also performed in a Ford FOCUS car. The picture of microphone 

array in car is shown in Fig. 4-9. Fig. 4-10 shows the locations of the four in-car 

loudspeakers and the locations of the desired and interference speech signals. The desired 

speech is at location L2 and the interference signals are at location L1 and L3. The 

distance from the desired speech to the microphone array is about 0.52 m and the desired 

speech source is from TCC 300 database. A uniform array of eight microphones with 0.05 

m spacing is mounted in front of L2. The sampling rate is 8 kHz, and the A/D resolution is 

16 bits. All windows were closed during the experiment to protect the microphones from 

saturation. Four conditions denoted from K1 to K4 listed in Table 4-2 are considered for 

the car environment tests. The CD player played a song from a Taiwanese female singer. 

The experimental results are shown in Fig. 4-11 and Mic#1 represents the contaminated 

speech recorded by the first microphone. As can be seen, the experimental results in car 

environment are consistent with those in real room environment. It is notable that the 

performance of the DTF-GSC and the proposed algorithm is comparable under the K1 

condition. This may be because that the space of the car environment is smaller than that 

of the real room environment. It is easier to model the TFR in the car environment than in 

the real room environment and there is less desired speech leakage in the car environment. 

However, when the competing speech increases, the superiority of the proposed algorithm 

over other algorithms is evident. 

 

 

 

 

 

Table 4-2  Four experimental conditions 

Condition 
Number 

Car Engine 
Speed 

Desired
Speech Location

Interference 
Speech Location(s) 

In-car
CD Player

K1 80 km/h L2 L1 Off 
K2 80 km/h L2 L1 and L3 Off 
K3 80 km/h L2 L1 On 
K4 80 km/h L2 L1 and L3 On 
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Figure 4-9  Microphone array in car 
 
                                             Figure 4-10  Car environment  
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Figure 4-11  Experimental results in car environment (a) segSINR results (b) avgSINR 
results (c) segNL results (d) LSD results 
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4.1.3. Automatic Speech Recognition Test 

ASR systems are sensitive to additive noise and speech distortion, especially for the 

competing speech. Therefore, this section utilizes the ASR rates to measure the 

performance of the proposed algorithm. The ASR system [72] that we use is the hidden 

markov model (HMM) based Mandarin speech recognition system. The feature vector is 

26-dimensional mel frequency cepstral coefficients (MFCC) and the TCC-300 database is 

used for training. The testing database is speaker independent 3332 words spoken by 11 

female and 18 male and each word is one Chinese name. The testing environment is the 

same with Section 4.1.1. and the testing words are played at the desired speech position in 

Fig. 4.2. The time domain speech enhancement output is sent directly to the ASR system 

for further processing. The recognition result is considered correct when the output of the 

ASR system is completely the same with the known input. The correct rates, when tested 

on the clean 3332 words ( )(1 ts ), is 100 %. The recognition results for different conditions 

are summarized in Table 4-3 and the correct rate of each condition is obtained by using 

500 words chosen randomly from the testing database. In Table 4-3, clean Mic#1 and 

Mic#1 represent the clean speech recorded by the first microphone and the contaminated 

speech recorded by the first microphone, respectively. As can be seen, the proposed 

algorithm has the optimal correction rate and Table 4-3 also indicates that ASR system 

can be considered an application of the proposed algorithm. Notably, the improvement 

rates of the proposed algorithm are better than other algorithms, especially in C2~C5 

conditions and it indicates that the proposed algorithm is more robust to the complicated 

acoustic environments than other algorithms. 
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4.2. Simulation Results of the Second-Order Extended H∞ Filter  

This section provides the simulation results of the SOE H∞ filter. The performance of 

the SOE H∞ filter is analyzed and a numerical example of a vehicle tracking problem is 

given in Section 4.2.1 to compare the SOE H∞ filter with the SOE Kalman filter and the 

extended H∞ filter.  

4.2.1 Numerical Example for the Second-Order Extended H∞ Filter 

This section compares the performance of the SOE H∞ filter proposed in Section 3.5 

with those of the SOE Kalman filter [48] and the extended H∞ filter [52] for a tracking 

problem in [48]. Consider the problem of tracking a moving vehicle in two dimensional 

space (north and east). The vehicle’s velocity in the north and east directions consists of 

independent white noise. Two tracking stations, located at north-east coordinates ( )11, EN  

and ( )22 , EN , measure the distance to the vehicle. The system model can therefore be 

written as 

Table 4-3  ASR Correction Rates (%) 

Input 
SINR Conditions 

Algorithms 
Proposed DTF-GSC RAB DSB Mic#1 Clean 

Mic#1

-7 ~ 0 
(dB) 

C1 90.8 80 48.8 41.8 5.6 91.2
C2 86 74 43 39 12.4 86.6
C3 79.5 55.2 27.4 20.4 4.8 84.4
C4 71.4 48.2 31.4 23.6 2 87.4
C5 72.4 51.6 37.8 36.8 4.4 84.4
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where )(tn  and )(te  are the vehicle’s north and east coordinates at time step t; T is the 

time step of the system, [ ]Τ= )()()()()( 4321 twtwtwtwtw  is the process noise, and 

[ ]Τ= )()()( 21 tvtvtv  is the measurement noise. The process noise 0)()( 21 == twtw , 

)(3 tw  and )(4 tw  are normally distributed white noise sequences whose means are 20 

and whose variances are 4. The measurement noise is also a normally distributed white 

noise sequence with mean=10 and variance=1. Suppose that the time step T = 0.1s and the 

execution time is one minute. The SOE H∞ filter solution of the nonlinear discrete system 

(3.42) is given in Section 3.5 and the SOE Kalman filter solution of the nonlinear discrete 

system (3.42) is given as follows 

Time update equations: 
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)1(~)1(~)1(~)1(~)(~ −+−−−= Τ+− ttFttFt aaa QPP                                 (4-8) 

Measurement update equations: 
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( ) 1
)(~)(~)(~)(~~)(~)(~ −Τ−Τ− += ttHttHHtt aakaa RPPK                               (4-10) 

( ) )(~)(~)(~)(~ ttHtt aa
−+ −= PKIP                                             (4-11) 
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where 
)(ˆ)(

)(~

ta tx
ftF

+∂
∂

=
ax

and 
)(ˆ)(

)(~

ta t
htH

−∂
∂

=
ax

x
. After some linear algebra operations [48], 

the Kalman gain )(~ taK  can be rewritten as (4-12) and the estimation error covariance 

matrix )(~ ta
−P  and )(~ ta

+P  can be integrated as (4-13) 

( ) )(~)(~)(~)(~)(~)(~)(~)(~)(~ 111 ttHttHttHtHtt aaaaa
−Τ−−−ΤΤ− += RPRIPK                  (4-12) 

( ) )(~)(~)(~)(~)(~)(~)(~)(~)1(~ 11 ttFttHttHttFt aaaaa QPRIPP ++=+ Τ−−−Τ−−                (4-13) 

For the SOE Kalman filter, the process noise covariance matrix )(~ taQ  in (4-8) is set to 

diag(0,0,4,4), and the measurement noise covariance matrix and )(~ taR  in (4-10) is 

diag(1,l). The tracking stations are located at ( ) ( )0,20, 11 =EN  and ( ) ( )20,0, 22 =EN . The 

initial state of the vehicle [ ]Τ= 505000)0(x  and is perfectly known. For the 

extended and SOE H∞ filter, the weighting matrices )(taQ  and )(taR  in (3-63) and 

(3-62) are selected to be identical to matrices )(~ taQ  and )(~ taR  respectively. The 

parameters γ , ε  and η  in (3-48), (3-64) and (3-65) are set to 100, 0.5 and 0.9, 

respectively. The matrices aC  and )(taS  in (3-62) are both set to be identity matrices 

and the matrices )0(~ +
aP  and )0(aP  in (4-8) and (3-62) are both set to be zero. 

Fig. 4-12 shows the true states and the estimated states of all filters. Table 4-4 

represents the mean of absolute state estimation error. As can be seen, the SOE H∞ filter 

performs better than all of the other filters. The SOE H∞ filter performs better than the 

extended H∞ filter since the SOE H∞ filter has a smaller linearization error than the 

extended H∞ filter. Next, the SOE Kalman filter is compared with the SOE H∞ filter. The 

SOE Kalman filter assumes that the process noise and the measurement noise are 

zero-mean Gaussian noises. However, this assumption is not satisfied with this example 
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since the noises in this example are non-zero mean. As seen in the preceding section, the 

SOE Kalman filter and the SOE H∞ filter have similar observer structures and the 

difference between them is that the SOE H∞ filter has the )()(1 tt aa PS
γ

 item in )(taK  

and )1( +taP , which is absent in the )(~ taK  and )1(~ +− taP  matrices of the SOE Kalman 

filter. In (3.62) and (3.63), we can find that subtracting )()(1 tt aa PS
γ

 on the right side of 

)(taK  and )1( +taP  tends to increase )(taK  and )1( +taP . Studies [48] have shown 

that the Kalman filter can be made more robust to unmodeled noise and unmodeled 

dynamics by artificially increasing the process noise covariance matrix )(~ taQ  which 

results in a larger )(~ taK  and )1(~ +− taP . Increasing the process noise covariance matrix 

)(~ taQ  of the SOE Kalman filter is conceptually the same as increasing )(taK  and 

)1( +taP  in the SOE H∞ filter. Therefore, in this example, the SOE H∞ filterer performs 

better than the SOE Kalman filter owing to the effect of the element )()(1 tt aa PS
γ

−  in 

)(taK  and )1( +taP . 

Theoretically, the noise covariance matrices )(~ taQ  and )(~ taR  in the SOE Kalman 

filter should be set to be diagonal matrices. However, the weighting matrices 

)(taQ , )(taR  and )(taS  in the SOE H∞ filter are symmetric positive definite matrices 

which can be designed by the user without requiring them to be diagonal. Different 

weighting matrices result in different performance and this example just reveals that the 

SOE H∞ filter can be more robust to the unmodeled noise than the SOE Kalman filter 

when the weighting matrices )(taQ  and )(taR  are identical to the )(~ taQ  and )(~ taR  

matrices of the SOE Kalman filter. 
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Figure 4-12  Estimation results of state values. (a) )(tn  (b) )(te  (c) )(tn&  (d) )(te&  

 

 

Table 4-4  Mean of absolute state estimation error 

 )(tn  )(te  )(tn&  )(te&  

SOE Kalman 4126.1089 4073.1391 254.30057 143.68455 
Extended H∞ 1896.4524 792.98992 44.266306 122.16865 

SOE H∞ 1700.782 613.90405 37.768583 112.13477 
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4.3. Experimental Results of the Robust MVDR Beamformer 

Based on the Second-Order Extended H∞ Filter 

This section provides the experimental results of the robust MVDR beamformer based 

on the SOE H∞ filter. The performance of the proposed SOE H∞ filter-based robust 

MVDR beamformer is compared with the SOE Kalman filter-based robust MVDR 

beamformer for the speech enhancement problem both in a simulated room and in a real 

room. The experimental results in a simulated room and in a real room are provided in 

Section 4.3.1 and Section 4.3.2, respectively. 

4.3.1. Simulation Results of the Second-Order Extended H∞ Filter-based           

Robust MVDR Beamformer 

The purpose of the simulation is to compare the performance of the SOE H∞ and 

Kalman filters with respect to the room acoustic response and the ability to reject impulse 

noise. In this simulation, the image method [50] is adopted to model the room impulse 

response and the room impulse response is convolved with source signals to generate 

microphone signals.  The room size is 4.5m×3.3m×4.2m and a 4-channel linear 

microphone array is placed at a distance of 0.7 m from the wall. The arrangement of 

microphone array and sound sources is shown in Fig. 4-13.  The presumed steering 

vector )(~ ωA  is set to be [ ]1111  for each frequency and following the guidelines 

of [38], the robustness parameter 3=ε  in (3-10) is used both in the SOE Kalman 

filter-based robust MVDR beamformer and the SOE H∞ filter-based robust MVDR 

beamformer. The matrices Q~  and Q  in (3-26) and (3-38) are both selected as zero and 

the matrices R~  and R  in (3-25) and (3-37) are both set to be diag(10,0.1). The 

parameters γ  and η  in (3-33) and (3-40) are chosen 10 and 0.99, respectively. The 
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Figure 4-13  Configuration of microphones, desired speech, white noise and interference 
signals 

 

matrices ),0(~ ω+P  in (3-26), ),0( ωP , S  and C  in (3-37) are equally set to be identity 

matrices. The weight vectors of both filters are trained with the same data when the 

desired speech is inactive. 

Two reverberation times T60, 0.2 second and 0.3 second, are used for this simulation. 

The sampling rate is 8 KHz. As a result, the corresponding impulse responses from the 

interference position to the first microphone position are shown in Fig. 4-14(a) and Fig. 

4-14(d). The STFT size is 256 with 80 shift samples and 16 zero padding samples. As can 

be seen, the length of each impulse responses is longer than 256. Therefore, a single STFT 

frame is not able to capture the room response. This makes the channel response time- 

varying in practice and it can be viewed as model uncertainty. Throughout the simulation, 

the desired source is silent. Two scenarios are considered for the interference rejection 

ability: 

1. The interference signal is speech signal spoken by a male. 

2. The interference signal is a transient noise (drum). 

Fig. 4-14 shows the simulation results of the scenario 1 for different reverberations. Fig. 

4-14(b) and Fig. 4-14(f) represent the received signal of the first microphone. The segNL 
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defined in (4-4) is used for performance comparison. Fig. 4-14(c) and Fig. 4-14(g) show 

the results for SOE Kalman filter while the cases of SOE H∞ filter are depicted in Fig. 

4-14(d) and Fig. 4-14(h). From the segNL, both methods exhibit certain reduction ability 

but the SOE H∞ filter performs slightly better than the SOE Kalman one.  

Fig. 4-15 shows the simulation results of the scenario 2 for different reverberations. Fig. 

4-15(a) and Fig. 4-15(d) are the received signal of the first microphone when only the 

drum and white noise are active. Comparing Fig. 4-15(b) with Fig. 4-15(c) and Fig. 

4-15(e) with Fig. 4-15(f), the SOE H∞ filter has a faster convergent speed than the SOE 

Kalman one. This indicates that SOE H∞ filter is more capable of rejecting transient 

interferences. 
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                    (d)                              (h) 
Figure 4-14  Simulation results. (a) and (e): Impulse responses, (b) and (f): Microphone #1 
signals when only the interfering speech and white noise are active, (c) and (g): Enhanced 

signals of the SOE Kalman filter, (d) and (h): Enhanced signals of the SOE H∞ filter 
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Figure 4-15  Simulation results. (a) and (d): Microphone #1 signals when only the drum 
and white noise are active, (b) and (e): Enhanced signals of the SOE Kalman filter, (c) and 

(f): Enhanced signals of the SOE H∞ filter 
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4.3.2. Experimental Results of the Second-Order Extended H∞ Filter-based 

Robust MVDR Beamformer in a Real Room 

In this section, the performance of the proposed SOE H∞ filter-based robust MVDR 

beamformer is compared with the SOE Kalman filter-based robust MVDR beamformer 

for the speech enhancement problem in a real room. The real room dimension is 10 m × 6 

m × 3.6 m and the reverberation time at 1000 Hz is 0.52 second. The microphone array 

was placed on a table at a distance of 2 m from the wall. The microphone array 

arrangement and all other parameters setting of both filters are the same as Section 4.3.1. 

According to the investigation of room acoustics [73], the number of eigen-frequencies 

can be obtained by the following equation: 

3)
2

(
3

4
c

fBQ sπ
=                                                       (4-14) 

where B represents the geometrical volume, fs denotes the sampling frequency, and c 

means the sound velocity (c≒346m/s). This equation indicates that the number of poles is 

very large when the room volume is high, and that the transient response occurs in almost 

any processing duration. In this experimental environment, the number of poles is about 

1.398 × 106 when the sampling frequency is 8 kHz and the room volume is 216 m3. 

Accordingly, the STFT window length (256) in this experiment is shorter than the channel 

response duration and is likely to create channel modeling error. 

Because the robust MVDR beamformer does not consider the de-reverberation or 

channel adjustment effect Three performance indices, avgSINR, segNL and LSD defined 

in (4-3), (4-4) and (4-5), are used to measure the waveform property directly.  

The experimental results are shown in Fig. 4-16 according to different input average 

SINR and Mic#1 represents the contaminated speech recorded by the first microphone. As 

can be seen, the proposed SOE H∞ filter performs better than the SOE Kalman filter in 
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robust MVDR beamformer. It is clear that the model uncertainties (room reverberation 

and microphone mismatch) have a greater influence to the SOE Kalman filter. As can be 

seen from Fig. 4-16 (a) and Fig. 4-16 (b), the SOE H∞ filter has a higher average SINR 

and suppresses more interference-plus-noise. Notably, Fig. 4-16 (c) further demonstrates 

that the SOE H∞ filter still has less desired signal distortion while maintaining better 

average SINR and segNL. For subjective evaluations, Fig. 4-17 shows the waveforms and 

spectrograms of the clean speech recorded by the first microphone, the contaminated 

speech at the first microphone and the enhanced speech obtained by the SOE Kalman 

filter and the SOE H∞ filter. In Fig. 4-17, the average SINR of the contaminated speech is 

about 1.32 dB. 
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Figure 4-16  Experimental results in real room environment (a) avgSINR results  
(b) segNL results (c) LSD results 
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Figure 4-17  Waveforms and spectrograms: (a) the clean speech recorded by the first 
microphone; (b) the contaminated speech at the first microphone;  

(c) the enhanced speech obtained by the SOE Kalman filter;  
(d) the enhanced speech obtained by the SOE H∞ filter. 

 

4.4. Summary 

This chapter evaluates the proposed TFR-based adaptive beamformer, the SOE H∞ 

filter, and the SOE H∞ filter-based robust MVDR beamformer through simulation and real 

experimental results. Section 4.1.1 and Section 4.1.2 show that the proposed TFR-based 

adaptive beamformer performs better than other famous beamformers both in a real room 

environment and in a car environment. Section 4.1.3 utilizes the ASR to demonstrate the 

advantages of the proposed TFR-based adaptive beamformer. 
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In Section 4.2.1, a numerical example is given to compare the SOE H∞ filter with the 

first-order extended H∞ filter, and the SOE Kalman filter. The simulation results show that 

the SOE H∞ filter has the best performance among others in terms of noise model 

uncertainty. Section 4.3.1 simulates the reverberant environment, while performing the 

experiments when the interference signal is speech signal or a transient noise, to show that 

the proposed SOE H∞ filter-based robust MVDR beamformer can be robust to the 

modeling error of beamformer weight. Section 4.3.2 demonstrates the performance of the 

proposed SOE H∞ filter-based robust MVDR beamformer in a noisy and reverberant 

environment and shows its superiority over the robust MVDR beamformer based on the 

SOE Kalman filter. 
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Chapter 5 

Conclusions and Future Researches 

5.1.  Conclusions 

Two adaptive beamformers, namely TFR-based adaptive beamformer and robust 

adaptive beamformer based on the SOE H∞ filter, are proposed in this dissertation. 

In the TFR-based adaptive beamformer, a null space is placed toward the direction of 

the principal component of the virtual sound using the TFR beamformer and the channel 

effect of the desired speech is equalized by the TFR information. The residual 

components of the virtual sound source and stationary noise are suppressed by the H∞ 

filter. The comparison between the H∞ filter and the NLMS algorithm and the advantage 

of the proposed system architecture are also analyzed. In addition, the virtual sound 

source concept which transforms the multiple competing speeches from MIMO to SIMO 

acoustic system is presented to simplify the complicated acoustic system. The 

performance of the proposed algorithm is compared to that of DSB, RAB and DTF-GSC 

algorithms in a real, noisy and reverberant environment and we also show the 

improvement on correct rate using Mandarin ASR system. 

In the robust adaptive beamformer based on the SOE H∞ filter, the SOE H∞ filter is 
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proposed for the implementation of the robust MVDR beamformer of [38] for the acoustic 

environment and the detail derivation of the SOE H∞ filter filter is also given in this 

dissertation. For the derivation of the SOE H∞ filter, the second-order Taylor series 

expansion is used to approximate the nonlinear function and the second-order term is 

approximated by the estimation error sample covariance matrix. The SOE H∞ filter 

provides a rigorous method for dealing with systems that have model uncertainty. A 

numerical example of a nonlinear discrete-time system is given to proof that the SOE H∞ 

filter is more robust to the noise model uncertainty than the SOE Kalman filter and the 

extended H∞ filter. In addition, speech enhancement experiments show that the proposed 

SOE H∞ filter-based robust MVDR beamformer outperforms the SOE Kalman 

filter-based robust MVDR beamformer. 

5.2. Future Researches 

The future researches can be summarized as follows. 

1. This dissertation assumes that a perfect desired speech detection system exists. The 

adaptive beamformer performance is affected by the accuracy of the desired speech 

detection system since the presence of the desired speech in training data reduce the 

convergence rates of adaptive beamformer algorithms [38]. Therefore, the desired 

speech detection system is very important and can be the further research topic. 

2. This dissertation assumes that the sound source positions are fixed in the experiment. 

However, the sound source may move in many practical environments. Therefore, 

developing an adaptive beamformer or a TFR identification method which can cope 

with moving sound sources is worth a further study in the further. 
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3. In the TFR-based adaptive beamformer, the experiments are performed using eight 

microphones. The sub-array technique may be incorporated to improve the 

performance or to decrease the microphone number requirement. 

4. The effectiveness of the SOE H∞ filter can be sensitive to the weighting functions 

( aS , )0(aP , aQ , aR and γ  in (3-61) ~ (3-65)) and the choices of these weighting 

functions are left as a subject of future work. 
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Appendix I 

The problem in this appendix is to maximize ( ) )()0(
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From (A-2)-(A-5), the following results can be derived, respectively. 

)0()0()0(ˆ)0( λxx aaa P+=                                            (A-6) 

0)( =Nλ                                                         (A-7) 

)1()()( += ttt aa λw Q                                                (A-8) 

( ) ( )))(()()(
)(

)(ˆ)()(1)1(
)(

)( 1 thtt
t

htttt
t

ft aaa
a

aaa
a

xy
x

xxλ
x

λ −⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+−++⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

= −

ΤΤ

RS
γ

  

                                                                (A-9) 

Equation (A-8) an be substituted into the process dynamics equation in (A-1) to obtain 
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By substituting (3-43) and (3-45) into (A-9), we have 
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where )(tμ  and )(taP  are functions to be determined, with )0(aP  given, and the initial 

condition )0(ˆ)0( ax=μ . Substituting (3-43), (3-45) and (A-12) into (A-10), we have 
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Further, substituting (A-12) into (A-11), we have 
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From (A-14), )(tλ  can be solved as 
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Substituting (A-15) into (A-13) gives 
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The equation above can be rearranged as 
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Equation (A-17) is satisfied for any )1( +tλ  if both sides are zero. Setting the left side of 

(A-17) to zero gives 
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Setting the right side of (A-17) to zero gives: 
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From the derivations above, the values of )0(ax  and )(taw  that provide a stationary 

point of J can be summarized as follows:  

)0()0()0(ˆ)0( λxx aaa P+=                                           (A-21) 
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Appendix II 

The problem in this appendix is to find a stationary point of ( ) )()0(
1

0

tLψJ
N

t
a ∑

−

=

+= x  

(subject to the constraint )())((1)( ttft aaa wxx +=+ ) with respect to )(ˆ tax  and )(tay . 

It can be solved given the fact that )0(ax  and )(taw  have already been set to their 

maximizing values as described in the previous section. 

Since )()()()( tttt aa λx P+= μ  and )0(ˆ)0( ax=μ , we have 
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Hence, 
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Therefore, the cost function J of (3-51) can be written as 
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By replacing )(tax  and )(taw  with the expression in (A-12) and (A-22), we have 
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                             (A-31) 

Substituting (A-55) of Appendix IV into (A-31), we obtain 
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Now, consider the term ( ) )1()()1()1( +−++Τ tttt a λλ QP  in (A-32). Using (A-19), we 

have 
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Substituting (A-35) into (A-34), we have: 
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Because )(~)()()()()()()(1 11 tttHttHttt aaaaaa
−−Τ =⎥

⎦

⎤
⎢
⎣

⎡
+− PPRPSPI

γ
. Equation (A-36) can be 

written as: 

( )

( )

( ) ( ) ( )

( )

( ) )()()()(~)()()()()()()(~)()(ˆ)(1

)()()()()()(ˆ)()()(~)()()(1

)(ˆ)()()(~)()(ˆ)(1)(ˆ)()()()(1

)()()()()()()()()(ˆ)(1)()()(~)()(

)1()()1()1(

111

11

2

11

tYttHttHttYtYttHtttt

tYttHtttttttHttY

tttttttttttt

tttHttYtttttttttt

tttt

aaaaaaa

aaaaaa

aaaaaaaa

aaaaaaaa

aa

−Τ−Τ−ΤΤ

−ΤΤ−Τ

ΤΤ

−ΤΤ−Τ

Τ

+−+

−−+

−−+−−

−−−=

+−++

RPRRPS

RPSPR

SPSSP

PRPSPPP

QP

x

λx

xxxλ

λλxλλ

λλ

μ
γ

μ
γ

μμ
γ

μ
γ

μ
γ

           

(A-37) 

Equation (A-37) is a scalar which means that each term in (A-37) is also a scalar. 

Therefore, (A-37) can be rewritten as 
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Next, consider the term )()()(~)()( 1 ttttt aaa λλ PPP −Τ  in (A-38). 



 96

)()()()()()()()()()()()(1)()()(

)()()()()()()()()(1)()()()()(~)()(

1

111

tttHttHtttttttttt

tttttHttHttttttttt

aaaaaaa

aaaaaaaaaa

λλλλλλ

λλλλ

PRPPSPP

PPPRPSIPPPP

−ΤΤΤΤ

−−ΤΤ−Τ

+−=

⎥
⎦

⎤
⎢
⎣

⎡
+−=

γ

γ

                     (A-39) 

Substituting (A-39) into (A-38) we can obtain: 
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(A-40) 

Next, go back to the cost function J. Substituting (A-40) into (A-32) gives: 
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Now, take the partial derivative of (A-41) with respect to )(ˆ tax  and )(tay  and set them 

to zero. 
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Equation (A-42) are satisfied for the following values of )(ˆ tax  and )(tay : 
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Appendix III 

Equation (A-44) can be substituted into (A-24), (A-25) and (A-27) to obtain the SOE H∞ 

solution. To ensure that the optimized value of )(ˆ tax  gives the local minimum of J, the 

second derivative of J with respect to )(ˆ tax  must be positive. Now, consider (A-43). 

Using the derivatives property, we obtain 
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   (A-45) 

Ignore the term of third-order derivatives, since we use the second-order to approximate 

the nonlinear function )(⋅h . Because )()(ˆ tta μ=x , we have 0)( =tM . Therefore, the 

value of γ  must satisfy 
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                                    (A-46) 

From (A-12) and (A-44), the instantaneous covariance matrix at time index t can be 

written as 

( )( ) )()()()()(ˆ)()(ˆ)( tttttttt aaaaaa
ΤΤΤ =−− PP λλxxxx                          (A-47) 

Therefore, the matrix aP  can be approximated iteratively via the recursion 

( ) )()()()(1)()1( tttttt aaaa
ΤΤ−+=+ PPPP λληη                               (A-48) 

where 10 ≤<η . 

Consequently, according to (A-24), (A-25), (A-27) and (A-44), the SOE H∞ solution can 
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be summarized as follows: 
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( ) )()()()(1)()1( tttttt aaaa
ΤΤ−+=+ PPPP λληη                              (A-53) 

where aaaa tt CSCS )()( Τ= , 
)(ˆ)(
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a
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ftF
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= and 
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= ; ε  is a positive 

scalar to prevent the term )()( tFtF Τ  from being singular and 10 ≤<η . The value of γ  

must satisfy (A-46) to ensure the optimized value of )(ˆ tax  yields a local minimum of J. 
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Appendix IV 

Since 0)( =Nλ , we have 
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Equation (A-54) can be written as 
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