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摘摘摘摘        要要要要    

 

現今大多數關於無線感測網路(WSNs)的研究，主要著重在處理單區域網路上，這在

某些特殊的 WSNs 中是不夠有效率的，當在此網路某些區域中，事件發生的非常頻繁，

而其他區域卻不是如此。當感測器的數目是有限的狀況下，將此單區域網路劃分成多重

區域以得到最佳的佈放是必要的，因此多重區域無線感測網路的概念因此形成。根據這

個概念，我們提出了 Maximum Information Rate Deployment(MIRD)這方法於多重區域

無線感測網路中佈放感測器，在這裡網路存活時間是被忽略的。由結果發現，面積和事

件發生率λE是關鍵因素，而λE的效應會隨著面積覆蓋率的增加而漸漸變得無關緊要。

更進一步的，我們提出多重無線感測網路中的 Maximum Information Capacity 

Deployment(MICD)，用機率的概念來處理能量消耗與網路存活時間的問題，並提出一個

快速尋找最佳節點數分割的演算法。由結果分析顯示，面積是最關鍵的影響因素，而 

λE的影響並沒這麼明顯。 
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Abstract

Currently, most works of Wireless Sensor Networks(WSNs) are mainly dealing

with single-area networks that is inefficient for some special WSNs in which event

occurs frequently in some part of the network, and less frequent in others. While

the number of sensors is limited, it is necessary to divide this network into multi-

area for optimum deployment and multi-area WSNs are therefore formed. Based

on this idea, we propose the Maximum Information Rate Deployment(MIRD) to

deploy sensors efficiently in multi-area WSNs in which network lifetime is ignored.

It is found that area and event occurring rate λE are critical factors in MIRD, and

the effect of λE becomes irrelevant when area coverage is large. Furthermore, we

propose the Maximum Information Capacity Deployment(MICD) in multi-area

WSNs to deal with the problem of energy consumption and network lifetime in a

probability sense, and provide a searching algorithm for the optimal deployment.

The result reveals that area is the critical factor in MICD, while the effect of λE

is less significant.
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Chapter 1

Introduction

1.1 History

Applications would shape and form the technology for which they are intended. This is very

true in particular for Wireless Sensor Network. This chapter starts with learning funda-

mentals of WSN. Through a number of application scenarios and the challenges for WSN,

we would have an appreciation for the various applications for which wireless sensor net-

works are intended as well as particular technical solutions that are required. The following

presentation is mainly based on [1], [2], [4], [5].

1.1.1 Fundamentals of WSNs

Wireless Sensor Networks(WSNs) consist of a large number of tiny sensors with low-power

transceiver, that are effective tools for gathering data in a variety of environments. WSNs

are able to interact with the environment based on the collected data. Those sensors inside

a WSN have to collaborate to fulfill their tasks as, usually, a single sensor is incapable

of doing so, and they use wireless communication to enable this collaboration. Numerous

applications have been proposed and discussed including military surveillance, disaster relief

applications(e.g. wildfire detections), structural monitoring, telematics, habitat monitoring,

and so forth. These applications share some basic characteristics. In most of them, there is

a clear difference between the sensors that sense data and the sinks where the data should
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be delivered to. These sinks may be part of the sensor networks, i.e., they can be sensors,

or they are clearly systems “outside” the network - a data processing center.

The types, quantities and locations of devices determine many intrinsic properties of a

WSN, such as coverage, connectivity, energy consumption and lifetime. Coverage is an im-

portant aspect of Quality of Service(QoS) in WSN, that is related to the issue of information

loss. Connectivity is another important aspect in WSN, that determines whether relayed

data can reach sinks successfully or not. Limited energy supply is widely recognized as one

of the most critical design challenges. Once the sensors are deployed in the environment,

it is impossible to recharge the battery, thus we should deal with the energy consumption

problem carefully to prolong the lifetime of WSN.

1.1.2 Challenges for WSNs

Handling a wide range of applications will hardly be possible with any single realization of

a WSN, for different applications have distinct requirements. This section gives us a better

understanding of the required mechanism with respect to the characteristics of a variety of

applications.

Characteristic requirements

The following characteristics are shared among most of the application examples mentioned

above :

• Type of service

The nature of communication network is simple - it moves bits from one place to

another. It’s more than that in a WSN, since moving bits is only a step to an end, but

not the actual purpose. Rather, WSN is expected to provide meaningful information,

or do some actions for the given task, but not only transmit a series of bits. Thus, new

interfaces and new ways of thinking about the service of WSN are required.
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• Quality of Service

Traditional QoS requirements - like bounded delay, minimum bandwidth and high data

rate - are irrelevant to WSN when applications are tolerant to latency. In contrast,

the connectivity may be the main concern, or the power consumption could be critical.

Therefore, various QoS concepts like reliable detection of events, coverage, deployment

and connectivity are important aspects.

• Lifetime

Most of the cases, all the sensors in a WSN rely only on a limited supply of energy(using

batteries). To recharge the batteries or to replace the sensors are not practical. In order

to accomplish the given task, sensors have to operate at least a required period of time.

Thus lifetime is one of the most important issues in WSN design. Another point of

view is that the lifetime of WSN also has direct trade-offs against QoS - investing more

transmitting energy can increase performance but decrease lifetime, like increasing the

sensing range from r to 2r to achieve better coverage, but the energy consumption

increases significantly.

The precise definition of lifetime depends on the applications. The simplest option

is the time until the first sensor fails, or runs out of energy, as the network lifetime.

Other options include a percentage of sensors have failed, or the time until the network

is disconnected in two or more partitions[6]. No matter what the definition of lifetime

is, an energy-efficient operation of the WSN is necessary.

• Scalability

Since a WSN might include a large number of sensors, the architectures, protocols and

algorithms must be scalable to these numbers. Therefore, scalability is important in

WSN design.
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Required mechanisms

To realize above requirements, a variety of new mechanisms for WSN have to be proposed

and studied, so are new architectures and protocols. A particular challenge here is the need

to find mechanisms that are sufficient to the realizations of a given application to support

the specific QoS, lifetime requirements. Some typical mechanisms are :

• Multi-hop wireless communication

Since a WSN might be deployed in a large area, and the sensing range r is relatively

small, it is normally not possible to transmit data from some sensors to the sink

nodes directly. The use of intermediate sensors as relays are necessary to reduce the

required power compared with direct transmission, that is so called the multi-hop

wireless communication.

• Energy-efficient operation

To support long lifetime, the concept of energy-efficient operation is essential. Lots of

works had been done and many approaches had been proposed, such as the sleep-wake

up algorithms, energy-aware routing protocol, dynamic energy and power management,

and so forth.

• Auto-configuration

A WSN might have to configure most of its operational parameters autonomously,

independent of its external configuration. As an example, sensors should be able

to determine their geographical locations by using other sensors of the network -

which is so called “self-location”. Also, the network should be able to tolerate fail-

ing nodes(damaged or run out of energy, for example) or to integrate new sensors(due

to the incremental deployment after some failing sensors.)

• Data centric

Traditional communication networks are typically centered around the transmission of

4



data between two devices, each equipped with one network address - the operation of

such network is so called “address-centric”. In a WSN, sensors are usually deployed

redundantly in order to prevent from sensor failures, thus the identity of particular

sensors providing data becomes irrelevant. What important are the data themselves,

but not which sensor has provided those data. Hence, a new concept of “data-centric”

is proposed. The data-centric approach is closely related to queueing concepts known

from data base; it also combines well with collaboration and data-aggregation.

• Exploit trade-offs

One example of trade-offs has been mentioned : higher energy to assure the QoS, or

longer lifetime of the whole network. Another important trade-off is sensor density. De-

pending on applications, deployment and sensor failure at runtime, the sensor density

of the network can vary considerably - the protocols have to handle lots of situations,

thus a trade-off exists.

1.2 Motivation

In the literature, many works on WSN have been developed such as energy-aware routing

protocol, topology control, heterogeneous sensor networks, hierarchical clustering algorithm,

etc. They are developed to solve the problems of some key issues mentioned previously,

for example energy-aware routing protocol reduce the energy consumption to prolong the

network lifetime, many algorithms have been proposed in the topology control issue. An

interesting observation is: all the works are discussed within “single-area network”, which

means they consider only one WSN, and all the parameters in this WSN are identical, and

in general the sensor deployments are uniform distribution. If limited sensors are available,

it would be inefficient to deploy those sensors by considering the whole single area to be

one WSN, since there might be some part of this network that event occurs frequently, and

some other part that event occurs rarely. Therefore it is necessary to divide this single-area

5



network into multi-area, and thus multi-area WSNs formed. To our best knowledge, no work

had been done on multi-area WSNs. As a simple example, there are two regions A1 and A2

to be monitored, each region has its own parameters, and then what would those previously

mentioned topics become if the total number of sensors is limited? And in general, the

deployment of sensors in one-area WSN is assumed to be uniformly distributed to simplify

the discussion. In our work it is the first time to introduce the concept of multi-area WSNs,

what we assume the deployment is not uniform distribution but follows the Poisson Point

Process. In this study, we first consider the relationship between sensor density, coverage,

deployment and information rate. Then further study of the practical concern - energy

consumption and network lifetime - has been developed and a framework of discussion has

been introduced.

1.3 Organization

Five chapters are included in this thesis: Chap 1 is the introduction, which reviews the funda-

mentals of Wireless Sensor Network, and describes the motivation of this work. We introduce

the “Maximum Information Rate Deployment”(MIRD) with detail performance analyses and

related discussions in Chapter 2. The critical concern of network lifetime is included in Chap-

ter 3. Here we develop the “Maximum Information Capacity Deployment”(MICD), along

with the corresponding performance simulations and related discussion. The previous two

chapters both are discussed in 2− area case, we then generalize MIRD into K − area case

in Chap 4. Finally, Chapter 5 is the conclusion of our work.
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Chapter 2

Maximum Information Rate
Deployment

In some applications of WSN, the main concern is whether the events in the network can be

detected successfully. A necessary prerequisite is that possible event locations are covered

by sensors. Once a region is fully covered by some sensors, the information generated in this

region would be obtained. An interesting question arises : Given two regions with different

areas, A1 and A2, and each region has its own information generating rate. For a limited

number of sensors, N , how to deploy sensors in each region that would obtain the maximum

total information rate? Here we will address this problem and the result will lead to the

“Maximum Information Rate Deployment” method. The presentation in Section [2.1] is

mainly based on [1], [4], [5].

2.1 Coverage and Deployment

Many wireless sensor networks are aimed at surveillance of certain geographical regions, for

example, to detect wildfires or rare animals in a habitat. Putting all communication aspects

aside, such an event can only be detected if there are sensors close enough so as to sense the

event. Two important questions arise:

• Given a sensor deployment, i.e., a particular placement of sensors over a certain geo-
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graphical region, which points in this area are covered by sensors? Coverage is thus

an important issue in sensor networks. If any point an event taking place at is not

covered by sensors, the corresponding information is lost.

• Given an area to be monitored and some coverage requirements, what number of

sensors is needed and where should they be placed? This question, labeled as the

deployment problem, can be posed under several interesting constraints, for example,

cost constraints, presence of obstacles, availability of different types of sensors, and so

forth.

2.1.1 Sensing models

A sensor transforms environmental stimuli into electrical signals. The quality of the resulting

signal depends on three factors. The first is the distance between the sensor and the event.

The second is the directionality of the sensor. The last factor is the possibility that the

same sensor can generate different outputs for the same stimulus at different times. In our

work we focus only on the first factor and assume omnidirectional sensing and no random

variations. Here two sensing models are introduced :

• In the Boolean Sensing Model, all sensors have a common sensing range r and initial

energy E. Events within this sensing range are detected reliably, and events outside

this range are not detected at all. Accordingly, the output signal for a sensor at posi-

tion p observing an event at position q can be expressed as:

s(p, q) =





α : ‖p− q‖ ≤ r,

0 : otherwise.
(2.1)

where ‖ · ‖ is the Euclidean distance between p and q and α is a constant sensor value.

8



• In the General Sensing Model, the sensor possesses a certain maximal sensing range r

but within this range the sensor output obeys a power law instead of being uniform :

s(p, q) =





α
‖p− q‖β : r0 ≤ ‖p− q‖ ≤ r,

0 : otherwise.

(2.2)

where r0 is a certain minimum distance to avoid division by zero and β is a positive

real number depending on the sensing model and sensor technology. For example, the

relationship between the source signal power and the sensed signal power for acoustic

signals can be modeled with β = 2.

In our work, Boolean Sensing Model is applied to simplify the discussion without aug-

menting the main concept. It helps to clarify the the main idea of our work.

2.1.2 Coverage measures

The term of “Coverage” has different meaning in the literature. In general, coverage measures

refer to a sensor network deployed to monitor some specified region A. This region is assumed

to be two dimensional. Some of the coverage measures are the following:

1. The area coverage fa specifies the percentage of A being covered. If fa = 1, we say

that full area coverage is achieved, which implies there is no information loss of this

region.

2. The node coverage fn describes the percentage of nodes whose sensing range can be

fully covered by the sensing ranges of other nodes. When the overlapping neighbors are

awake, such a node can be switched into sleep mode without reducing the area coverage.

In our work, the area coverage fa is adopted in considering the general idea of deployment.

9



2.1.3 Random deployment: Poisson Point Process

Some of the coverage measures have been investigated for random deployment in several

references, for example, [4], [5]. The most common assumption for a random deployment is

the Poisson Point Process. For example, N sensors are deployed in the region A by a Poisson

Point Process with average sensor density D > 0, where D = N/A and Ai is a partition

inside A. We therefore conclude that the number of sensors N(Ai) deployed in the interested

region Ai has a Poisson distribution with mean D · Ai, i.e.,

Pr[ N(Ai) = K ] = e(−D·Ai) · (D · Ai)
K

K!
, for K = 0, 1, . . . . (2.3)

In the literature, most existing works in sensor network consider a uniform sensor density

in the whole network. In our work we apply Poisson point process to match the nature

of Wireless Sensor Network, which is “Randomness”. Poisson point process is popular, for

example, for modeling the number of stars in space or the number of bacteria cultivated

on a Petri dish. The striking feature of such a Poisson point process is that it matches the

intuition most people have on “random deployments”. Now we are going to answer questions

regarding certain coverage measures for sensor networks under such a random deployment.

2.1.4 Coverage of random deployment: Boolean Sensing Model

We first discuss the case of an infinite sensor network in the two-dimensional plane to avoid

any boundary effects. It is straightforward to find the area coverage fa for a Poisson point

process of sensor density D under the Boolean Sensing Model. Let q be a randomly chosen

point in the sensor field. What we are asking for is the probability that there is at least one

sensor at position p with ‖p− q‖ being smaller than the common sensing range r. Consider

the situation that a number of sensors and a selected point q are given. This point is covered

if there is at least one sensor presenting in the circle of radius r around q. This circle Ai has
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area πr2 and the probability to find at least one sensor within it is :

fa = Pr[ N(Ai) ≥ 1 ] = 1− Pr[ N(Ai) = 0 ] = 1− e−D·πr2

. (2.4)

To satisfy a specific area coverage fa, this equation can be solved to determine the required

sensor density D of the Poisson point process, given as:

D(fa) = − ln(1− fa)

πr2
. (2.5)

As a numerical example shown below, let us assume that r = 1 m and the desired coverage

is fa = 0.99. In this case, a sensor density of D ≈ 1.47 sensors per m2 is needed. To achieve

an even better coverage of fa = 0.999, this number grows to D ≈ 2.2(sensors/m2) , which

implies that adding one sensor to the area is more efficient to obtain more information when

area coverage fa is small. We can observe this effect in Fig. 2.1.
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Figure 2.1: Area Coverage fa.
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2.1.5 Information-generating model: Poisson Point Process

Without loss of generality, consider a situation in which event occurs in unit area 1 m2 at

random instants of time with an average rate of λE events per second. For example, an event

could represent the appearance of animal or the breakdown of a component in some bridge

system. Let N(t) be the number of event occurrences within the time interval [0, t], then

N(t) is a nondecreasing, integer-valued, continuous-time random process known as Poisson

Process. We therefore conclude that the number of event occurrences during the time inter-

val [0,t] has a Poisson distribution with mean λE · t, written as:

Pr[ N(t) = K ] = e(−λE ·t) · (λE · t)K

K!
, for K = 0, 1, . . . (2.6)

In our work, we assume that every event requires a constant packet size of l bits to record the

information for each transmission. For example, the average information capacity generated

at random instants of time in an area A with an average rate of λE is λE ·A · l (bits/second).

2.2 Maximum Information Rate Deployment

From the previous discussion, we obtain the area coverage fa of random deployments under

Boolean Sensing Model, and the equation of the information capacity at random instants of

time is obtained as well. Consider the situation that N sensors are deployed in an area A

with sensor density D = N/A, and the average rate of event occurrences per unit area λE

is identical everywhere, we can conclude that at random instant of time ti, the information

rate of this Wireless Sensor Network is :

I(ti) = fa · (λE · A · l) = (1− e−D·πr2

) · (λE · A · l)

= (1− e−
N
A
·πr2

) · (λE · A · l) . (2.7)
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If the region A is densely deployed, which implies fa = 1 and full area coverage is achieved,

then we can obtain the information of this region without any loss. If there are limited

number of sensors, we would lose the information on the percentage of (1− fa) · 100%.

Now if we have a limited number of sensors N at hands, and there are two interested

regions to be monitored which have areas A1 and A2, and average event occurring rates λE1

and λE2, respectively. Thus a deployment problem is formed : what is the optimal number

of sensors placed in each region, if the maximum information rate is desired?

First we assume that there are N1 sensors in the area A1, and N2 = N − N1 sensors in

A2. From (2.7) we obtain :

I(ti) = I1(ti) + I2(ti)

= fa1 · (λE1 · A1 · l) + fa2 · (λE2 · A2 · l)

= (1− e
−N1

A1
·πr2

) · (λE1 · A1 · l) + (1− e
−N2

A2
·πr2

) · (λE2 · A2 · l) . (2.8)

Hence, the deployment problem can be formulated as :





N = N1 + N2 ,

I(N1, N2) = fa1 · (λE1 · A1 · l) + fa2 · (λE2 · A2 · l) .
(2.9)

For convenience we omit ti in (2.8) and use the form of I(N1, N2) here, which strongly reveals

the idea of the total information rate varies with N1 and N2, bearing in mind that the total

information rate is obtained at some instant of time.
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Our objective is to maximize the value of I(N1, N2), expressed as :

I(N1, N2) = fa1 · (λE1 · A1 · l) + fa2 · (λE2 · A2 · l)

= (1− e
−N1

A1
·πr2

) · (λE1 · A1 · l) + (1− e
− (N−N1)

A2
·πr2

) · (λE2 · A2 · l) ,

(2.10)

where N2 = N −N1. Taking differentiation of (2.10), thus :

dI(N1, N2)

dN1

= πr2 · e−
N1·πr2

A1 · λE1 · l − e
−N−N1

A2 · λE2 · l . (2.11)

The maximum value of I(N1, N2) occurs when dI(N1,N2)
dN1

= 0 , hence :

e
−N1·πr2

A1 · λE1 = e
− (N−N1)·πr2

A2 · λE2

=⇒ πr2 ·
(

N1

A1

− N −N1

A2

)
= ln

λE1

λE2

. (2.12)

With some simple manipulations we get :

N1 =
A1

A1 + A2

·N +
A1A2

A1 + A2

· 1

πr2
· ln λE1

λE2

. (2.13)

Since N2 = N −N1, we obtain :

N2 =
A2

A1 + A2

·N +
A1A2

A1 + A2

· 1

πr2
· ln λE2

λE1

. (2.14)

Accordingly, we obtain the exact number of sensors to be deployed in each region for obtain-

ing the maximum information rate at random instant of time, hence the form of N1 and N2

14



is labeled as “Maximum Information Rate Deployment”. This deployment can be applied

to the applications of rescuing the survivals form the wild fires, flooding regions, in cases

where there are many regions to be observed. In these applications we don’t consider the

critical issue of energy constrain which pose significant problem of network lifetime, since we

only consider the importance of information and extend the coverage as large as possible to

obtain the maximum information.

2.3 Analysis of MIRD

In this section we we analyze the performance of our derivations with the parameters listed

below:

E Initial Energy of a sensor 1000 J
l packet size of each event 20 bits
r sensing range & transmitting range 1 m
Ai area of i-th region m2

Ni number of sensors deployed in i-th region
N total number of sensors
λEi event occurring rate of the i-th region 1/m2/sec

Table 2.1: Parameters used in the analyses.

From (2.13) and (2.14) we obtain the optimal value of N1 and N2 to maximize I(N1, N2).

We can verify this derivation through Fig.2.2. It clearly depicts the variation of the total

information rate I(N1, N2) as a function of N1 with respect to different λE1 and λE2 when

the areas of A1 and A2 are fixed and identical(A1 = A2 = π(102)). Those arrows indicate the

optimal deployment of N1 and N2 to obtain maximum information rate. We can observe that

the total information rate increases as N1 increases from 0 towards the optimal value, where

the slope of total information rate is positive and sharp initially. The total information rate

would reach the maximum value where the corresponding value of N1 is the best deployment,

which is exactly the value obtained from (2.13).
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Figure 2.2: Variation of maximum information rate with respect to N1 under different λE,
while (A1 = A2 = π(102)) and N = 100.

With the assumption of identical areas (A1 = A2 = π(102)), from Fig.2.2 we clearly

obtain a sense of putting more sensors in the area with larger λE if maximum information

rate is desired. This is consistent with our intuition since more sensors in the area with

larger λE would receive more information. For example, if λE1 = 3 and λE2 = 2, the optimal

value of N1 is 71, that is larger than N2 = 29. Notice that when λE1 = λE2 = 2, we get

N1 = N2 = 50, fa1 = fa2 = 0.3935; when λE1 = 3, λE2 = 2, we get N1 = 71, fa1 = 0.5084

and N2 = 29, fa2 = 0.2517; whenλE1 = 2 and λE2 = 4, we get N1 = 16, fa1 = 0.1479 and

N2 = 84, fa2 = 0.5683.

After examining the variation of I(N1, N2) while λE1 differs with λE2 and A1 A2 are

identical, we then study the variation of I(N1, N2) if A1 and A2 are varying, λE1 and λE2

are identical. Fig.2.3 depicts the variation of I(N1, N2) as a function of N1 with respect to

different area ratios A1/A2 = m. We assume λE1 = λE2 = 2‘ and A2 = π ∗ (102), and vary
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the ratio m to see the variation of I(N1, N2). The result coincides with our intuition that we

should put more sensors in the larger area to obtain more information. From (2.4) we know

A1 and A2 are related to area coverage fa1 and fa2, respectively, through the parameters

D1 and D2. It implies that by putting more sensors in the area, we could obtain more

information while better area coverage fa is achieved.
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Figure 2.3: Variation of maximum total information rate with respect to N1 for different
areas of A1/A2 where λE1 = λE2 = 2, N = 100.

Comparing Fig.2.3 with Fig.2.2, we conclude that variation of λE is more critical than

variation of area, since a slight change in λE would cause a significant change of N1 and

N2. Notice that when A1 = A2 = π(102) and λE1 = λE2 = 2, the optimal deployment is

N1 = N2 = 50, fa1 = fa2 = 0.3935 ; when A1 = 4 · A2 and λE1 = λE2 = 2, we get N1 = 80,

fa1 = 0.1813 and N2 = 20, fa2 = 0.1813; when A1 = 9 · A2 and λE1 = λE2 = 2, we get

N1 = 90, fa1 = 0.0952 and N2 = 10, fa2 = 0.0952, which indicates that if λE1 = λE2, the

optimal deployment is the number of sensors that makes both fa1 and fa2 the same.
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From the results of Fig.2.2 and Fig.2.3, we should have an appreciation of deploying more

sensors in the region which either has a larger λE or a larger area, hence area and λE can be

considered as two critical factors in determining the optimum value of N1 and N2. We keep

some parameters in Fig. 2.3, i.e., A1/A2 = m, m = 1, 4, 9, but change λE1 to be 3 in Fig.

2.4. Since A1 and λ1 are larger than A2 and λ2, respectively, we would put more sensors in

A1. In the case of m = 4 and m = 9, even if we put all the sensors N = 100 in A1, the slope

of total information rate still positive, which means N1 has not reached the optimal value

yet even if N1 = N .
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Figure 2.4: Variation of maximum information rate with respect to N1 and with λE1 = 3,
λE2 = 2, N = 100.

What if we let λE2 = 3 and λE1 = 2 while A1/A2 = 1, 4, 9? We can see the result in

Fig.2.5. When λE2 = 3, λE1 = 2, A2 = π(102) and A1/A2 = 1, the optimal deployment

is N1 = 30, fa1 = 0.2592 and N2 = 70, fa2 = 0.5034; when A1/A2 = 4, the optimal

deployment is N1 = 48, fa1 = 0.1131 and N2 = 52, fa2 = 0.4055; when A1/A2 = 9, the

18



0 10 20 30 40 50 60 70 80 90 100
0.7

0.8

0.9

1

1.1

1.2

1.3

1.4
x 10

4

Number of sensors N
1

T
ot

al
 In

fo
rm

at
io

n 
R

at
e 

 (
bi

ts
/s

ec
)

λ
E1

 = 2, λ
E2

 = 3,  A
2
 = π (102)

 

 

 

 

 

A
1
/A

2
 = 1

A
1
/A

2
 = 4

A
1
/A

2
 = 9

N
1
=30, N

2
=70

N
1
=48, N

2
=52

N
1
=54, N

2
=46

Figure 2.5: Variation of maximum information rate with respect to N1 and with λE2 = 3
and λE1 = 2.

optimal deployment is N1 = 54, fa1 = 0.0582 and N2 = 46, fa2 = 0.3687. We observe that

there is only a slight change of N1 even when A1/A2 changes from 4 t0 9. Although more

sensors should be put in the larger area while λE1 = λE2, here the numbers are less than

those in Fig. 2.3. By observing the variation of fa1 and fa2 in both Fig. 2.3 and Fig. 2.5, we

conclude that the effect of λE is critical when fa is relatively small, and is irrelevant when

fa is relatively large. We can verify this conclusion in later discussion.

Now we examine the optimal value of N1 with respect to the ratio of λE when areas are

identical and fixed. In Fig.2.6 we assume A1 = A2, and vary the ratio of λ1/λ2 = K while N

could be 100, 200, 300 and 400. We see that the optimal value of N1 increases as the ratio

λ1/λ2 = K increases, and eventually N1 = N at some critical value of K. Namely, even if

we put all the N sensors in one area, it doesn’t achieve enough coverage of the area yet to

obtain information. For example, when N = 100, we obtain N1 = 100 at λE1/λE2 = 2.9,
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where the sensor density D = 0.6321 only.

In Fig. 2.6, N acts like a DC component for it shifts the curves upwards or downwards

but does not change the shape, as we can see in the cases of N = 300, when we deploy

N1 = 250 in A1 and the corresponding fa1 is 0.9179; when N = 400, we deploy N1 = 300 in

A1 and the corresponding fa1 is 0.9502, which indicates an enough area coverage is achieved

to obtain most of the information.

To examine the effect of λE in detail, we vary both λE and area to see the variation of

optimal N1. In Fig.2.7 we assume N = 400, A1/A2 = m, m = 1, 4, 9, 16 and λE1/λE2 = K.

We observe that the curve reaches to the limitation of N quickly, thus the effect of λE is

critical when fa is relatively small. Here we obtain the same conclusion again.

In Fig.2.8, we assume N = 200 is fixed and let A2/A1 = m and λE1/λE2 = K, which is a

little bit different from the case in Fig. 2.7. Surprisingly we observe that all the curves in-
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Figure 2.7: Variation of optimal N1 with respect to λE1/λE2 = K under A1/A2 = m.

tersect at the same point. In order to generalize the form of intersection point, we formulate

as follows. From (2.13) we obtain:

N1 =
A1

A1 + A2

·N +
1

πr2
· A1A2

A1 + A2

· ln λE1

λE2

,

let λE1

λE2
= K, and N1 = N , thus :

A2

A1 + A2

·N =
1

πr2
· A1A2

A1 + A2

· ln K ,

Hence :

N · πr2

A1

= lnK =⇒ K = e
N·πr2

A1 .
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which is independent of A2/A1 = m. Therefore the intersection point is determined once A1

is determined.
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Chapter 3

Maximum Information Capacity
Deployment

In the previous chapter, we propose the “Maximum Information Rate Deployment”(MIRD)

method for optimal sensor deployment in two areas. This method doesn’t consider the is-

sue of energy constraint, for the objective is to obtain maximum information rate at some

instant of time, thus energy consumption is completely ignored. Without lose of generality,

now consider the situation : given two regions A1 and A2, each region has its own area

and event occurring rate, then how to deploy sensors in each region to obtain the maximum

information capacity within the network lifetime? To deal with this issue, we first introduce

the formulation of energy consumption in each transmission. Next, we formulate the rela-

tionship between energy consumption and network lifetime in a probability sense, thereby

the total generated information capacity during the network lifetime period is determined.

In short, through the combination of network lifetime and the “Maximum Information Ca-

pacity Deployment”(MICD), we can determine the optimal number of sensors to be deployed

in each region.

3.1 Network lifetime and information capacity

The idea behind our analyses of network lifetime is quite simple. We assume every sensor

has the same initial energy E and define one transmission of an event as “one round”. Each
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round would consume the same energy Eevent, then the number of rounds that one sensor

can last is simply determined by Rounds = E/Eevent. The detail analyses starts from this

simple assumption.

In our work, we only discuss communication energy consumption. We do not include

the energy loss of sensing here. The reason is that energy loss of sensing depends heavily

on the specific application. Nevertheless, such energy loss can be easily integrated into the

equations once the sensing energy model of specific application is defined. The first order

model of energy consumption presented in [7] is used here. In this model Eelec = 50nJ/bit is

the energy dissipated to active the transmitter or receiver circuitry and εamp = 10pJ/bit/m2

for the transmit amplifier to deliver each bit. Thus we can get the energy consumption to

transmit a k -bit packet to distance d , denoted as ETx(k, d), and the energy to receive the

same packet, denoted as ERx(k, d), as follows :

ETx(k, d) = Eelec ∗ k + εamp ∗ k ∗ d2 , (3.1)

ERx(k, d) = Eelec ∗ k . (3.2)

We assume the transmission range of each sensor is r , which is the same as the sensing range.

Then, we can simplify 3.1 as :

ETx(k, r) = KTx ∗ k ,

where KTx = Eelec + εamp ∗ r2. Hence, the energy consumption of a sensor on receiving l bits

from the distant d and transmit k bits to the distant r can be computed as follows:
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ETx(k, r) + ERx(l, d) = Eelec ∗ k + εamp ∗ k ∗ r2 + Eelec ∗ l

= KTx ∗ k + Eelec ∗ l . (3.3)

Since we adopt the random deployment of Poisson Point Process under Boolean Sensing

Model, it is reasonable and straightforward to assume all sensors are identical. Specifically,

we further assume only one sink node exists to collect the information and the rest are

all identical sensors with same sensor parameters and functionalities. In a wireless sensor

network, the sensor located far away from the sink node would transmit data to the sink

node by means of multi-hop communication. Therefore, the sensors closer to the sink node

will have to transmit not only their own sensing data, which is defined as the “Originating

traffic”, but also relayed data of the other nodes, being termed as the “Relaying traffic”. As

a result, the initial energy of these sensors will be used up the earliest among all sensors,

since their traffic load is heavier than the other sensors.

Thus, in such a random deployed wireless sensor network, we focus on the region R

having area πr2 around the location of sink node, which is called the “inner circle”. If all

the sensors deployed in the inner circle, called inner sensors, use up their initial energy, there

will be no sensors to relay the information obtained from outer sensors to sink node. The

time period when all the inner sensors use up their energy is therefore defined as the network

lifetime for the wireless sensor network of concern.

Here are some implicit assumptions to simplify the network lifetime analysis. Firstly,

the traffic load from outer sensors to be relayed to sink node is evenly divided by sensors

deployed in the inner circle R, which implies some ideal routing protocol is in place. Secondly,

we assume the packet size of each event l is small enough and sensors can use any level of

power to complete the transmission. Finally, the sensed outer information to be relayed is

proportional to the outer area (Ai − πr2) · fai and is independent of the number of sensors
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deployed in the outer region.

To begin with, we consider the following situation : there are two regions to be monitored,

which have area size A1, A2 and event occurring rate λE1, λE2, respectively. In general, we

assume that there are N1 sensors in A1, N2 sensors in A2 and take s sensors in the inner

circle of A1, w sensors in the inner circle of A2.

Without lose of generality, we discuss the case of A1 first, and then it is easy to obtain

similar result of A2. Since there are s sensors in the inner circle of A1, hence (N1−s) sensors

are in the outer region (A1−π · r2). From previous results, the averaged traffic to be relayed

by s inner sensors to the sink node is expressed as follows :

Ireceive,s|A1 = λE1 · l · (A1 − πr2) · fa1,s ,

where

fa1,s = 1− e(−Douter,s·πr2) ,

and

Douter,s =
N1 − s

A1 − πr2
.

The information to be transmitted by the s inner sensors per unit time can be denoted as :

Itransmit,s|A1 = [πr2 + (A1 − πr2)fa1,s] · λE1 · l . (3.4)

Therefore, the energy consumption of the s inner sensors can be computed as :

Ereceive,s|A1 +Etransmit,s|A1 = λE1 · l ·(A1−πr2) ·fa1,s ·Eelec+[πr2+(A1−πr2)fa1,s] ·λE1 · l ·Ktx ,

(3.5)

Assume that every sensor has identical initial energy E and the energy consumption can
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be evenly divided by s inner sensors, we define a parameter named Rounds(s) which is the

network lifetime time that s sensors can last before their total energy s ·E be used up. Thus

Rounds(s) is written as :

Rounds(s) =
s · E

Ereceive,s + Etransmit,s

=
s · E

λE1 · l · (A1 − πr2) · fa1,s · Eelec + [πr2 + (A1 − πr2)fa1,s] · λE1 · l ·Ktx

.

(3.6)

The network lifetime of N1 is therefore determined by Rounds(s). From (3.4) and (3.6), the

total information capacity that the sink node of A1 can receive from s inner sensors through

the network lifetime is :

Itotal,s|A1 = Rounds(s) · Itransmit,s|A1

=
[πr2 + (A− πr2)fa1,s] · λE1 · l · s · E

λE1 · l · (A− πr2) · fa1,s · Eelec + [πr2 + (A− πr2)fa1,s] · λE1 · l ·Ktx

.

(3.7)

Similarly, we define the network lifetime of A2 to be Rounds(w), expressed as :
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Rounds(w) =
w · E

Ereceive,w + Etransmit,w

=
w · E

λE2 · l · (A2 − πr2) · fa2,w · Eelec + [πr2 + (A2 − πr2)fa2,w] · λE2 · l ·Ktx

,

(3.8)

and the total information capacity that the sink node of A2 can receive from w inner sensors

through the network lifetime is :

Itotal,w|A2 = Rounds(w) · Itransmit,w|A2

=
[πr2 + (A2 − πr2)fa2,w] · λE2 · l · (w · E)

λE2 · l · (A2 − πr2) · fa2,w · Eelec + [πr2 + (A2 − πr2)fa2,w] · λE2 · l ·Ktx

.

(3.9)

Since we observe two regions to obtain desired information, we consider A1 and A2 as two

sub-networks of the whole network. Thus it is straightforward to define the network lifetime

of the whole network as :

Rounds = min{Rounds(s), Rounds(w)} , (3.10)

which means the shorter one of Rounds(s) and Rounds(w) would dominate the network

lifetime. When either of these two sub-networks run out of its energy in the inner circle, it

stops gathering data from the environment. Since information is the main concern of the
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discussion, it doesn’t matter whether another sub-network is working or not, hence (3.10) is

a reasonable definition of network lifetime of the whole network.

From the above discussion, the total information capacity of the whole network can be

formulated as follows:

Itotal|(s,w) = Itotal,s|A1 + Itotal,w|A2

= Rounds · Itransmit,s|A1 + Rounds · Itransmit,w|A2 , (3.11)

where the Rounds is given as (3.10).

Thus, we obtain the total information capacity when there are s sensors in the inner

circle of A1 and w sensors in the inner circle of A2. Recall that we assume all the sensors

are deployed in the area by the Poisson Point Process, we can compute the probability of s

sensors deployed in the inner circle of A1, and the probability of w sensors deployed in the

inner circle of A2, and through the concept of probability we can obtain the average total

information capacity.

From Sec.2.1.3, we can compute the probability of s sensors in the inner circle of A1 when

there are N1 sensors deployed in the area A1, given as :

P (N(A) = s|N1) = e(−D1·A) · (D1 · A)s

s!
, (3.12)

where A = πr2 and D1 = N1/A1. Next, the probability of w sensors located in the inner

circle of A2 is:

P (N(A) = w|N2) = e(−D2·A) · (D2 · A)w

w!
, (3.13)

where again A = πr2 while D2 = N2/A2.
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As (3.12) and (3.13) are independent, the probability of obtaining Itotal(s,w) in (3.11) can be

expressed as :

P (Itotal|(s,w)) = P (N(A) = s|N1) · P (N(A) = w|N2) . (3.14)

We observe that s and w are variables which can vary from 0 to N1 and from 0 to N2 respec-

tively, thus if N1 and N2 are specified, the expected total information capacity is formulated

as:

E[Itotal] = E[Itotal|(s,w)]

=
∑
s,w

Itotal|(s,w) · P (Itotal|(s,w))

=

N1∑
s=0

N2∑
w=0

P (N(A) = s|N1) · P (N(A) = w|N2) · Itotal|(s,w) . (3.15)

Consequently, we can apply (3.15) to estimate the total information capacity for a particular

(N1, N2) and then look for the optimum deployment where E[Itotal] is maximum.
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3.2 Simulation Results
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Figure 3.1: The effect of varying area ratio upon maximum information capacity where
N = 1000.

Now we have the analytical form of E[Itotal], by MATLAB simulations we can observe

the properties of E[Itotal]. First we assume N = 1000, let λE1 = λE2 = 2 and A2 = π(52), A1

could be π(52), π(7.52) and π(102), the resulting variation of E[Itotal] is shown in Fig. 3.1.

In order to demonstrate more clearly, in Fig. 3.2 shown next page, we let A1 be π(12.52),

π(152) and π(202) and again show the variation of E[Itotal]. From the figures we can tell that

the effect of area size is evident and significant. Since the network lifetime is determined by

the number of sensors deployed in the inner circle, and the deployment follows the Poisson

Point Process, we should put more sensors into the larger area to increase the probability of

sensors be deployed in the inner circle. In this case, the number of sensors deployed in the

inner circle can increase, so are the network lifetime and the information capacity. When we

increase the number of senors in A1, which is N1, the number of sensors N2 is decreased, i.e.
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we increase the network lifetime of A1 but decrease the network lifetime of A2. The total

information capacity would reach an maximum value for some optimal values of N1 and N2,

as we can see in the figures. There is an interesting observation that the effect of varying area

ratio would saturate eventually, as depicted in Fig. 3.2. The reason is simple, we can’t put

too few sensors in A2, that would cause the network lifetime of A2 be too short. Since very

few sensors would be deployed in the inner circle of A2, the lifetime of the whole network

will be short as well. Thus there exists a threshold of saturation. When optimal deployment

of N1 reaches this threshold, it would remain the same but the total information capacity

decreases. For example, for the case A1 = π(152) and A1 = π(202) in Fig. 3.2, the optimal

N1 for both cases are the same, but the total informal capacity decreases as A1 increases.
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Figure 3.2: The effect of varying area ratio upon maximum information capacity where
N = 1000.

After examining the effect of area upon total information capacity, now we fix the area

A1, A2 and vary λE to see the effect of λE upon total information capacity, the result is shown
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Figure 3.3: The effect of varying λE upon maximum information capacity.

in Fig. 3.3. We can tell the difference between varying area ratio and varying λE ratio. The

variation of total information capacity is irrelevant to the variation of λE ratio, which is due

to the assumption that the traffic load is evenly divided by those sensors deployed in the

inner circle. The total energy of those inner sensors implicitly imply the total information

capacity that the sink node can receive during the network lifetime. When λE is larger, the

energy consumption is larger, which leads to a shorter network lifetime, and vice versa. In

either case the total information capacity is the same, although the optimal values of N1

and N2 varied with different λE ratio. Hence the conclusion here is that the maximum total

information capacity is irrelevant to variation of λE ratio, only the area ratio would affect

the total information capacity.
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3.3 Searching Algorithm for Optimal Deployment

Here we introduce an algorithm to search for the optimal value of N1, and then N2 is therefore

determined by N2 = N −N1. The detailed MATLAB algorithm is listed in Appendix A. We

start from the concept of expected value, and by Dichotomy we can converge our searching

to the optimal value.

From the definition of network lifetime of (3.10), we have an idea of that the optimal value

of N1 occurs when Rounds(s) = Rounds(w), that is because if either one of them is bigger,

assume Rounds(s) is bigger than Rounds(w), it implies that we should take some sensors

from A1 and deploy them into A2 to prolong the lifetime Rounds(w) in the probability sense.

From the idea described above, we first examine the initial deployment, which is the

expected value of sensors to be deployed in the inner circle of each area. For example, in A1,

the expected number of sensors to be deployed in the inner circle can be expressed as :

E[s] =
X

A1

· πr2 . (3.16)

Next, the expected number of sensors to be deployed in the inner circle of A2 is :

E[w] =
(N −X)

A2

· πr2 . (3.17)

The initial deployment can be determined from (3.16) and (3.17), i.e., E[s] = E[w],given as

:

X =
A1

A1 + A2

·N . (3.18)

After obtaining X we can compute E[Itotal] for the cases of X−1, X and X +1, respectively.
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This is because, from the observations of the simulation results of MICD, the maximum

value of N1 occurs at the point that the slope changes from positive to negative. Since it

is not possible to determine the derivative of E[Itotal] and X is a discrete value, hence we

compute E[Itotal] for the cases of X − 1, X and X + 1 for obtaining the slope.

Here we use the simplest method of Dichotomy to approach the optimal value from the

initial deployment X, i.e., if E[Itotal] of X + 1 is greater than E[Itotal] of X, and E[Itotal] of

X is greater than E[Itotal] of X − 1, the slope of E[Itotal] at X is positive, which implies we

should put more sensors to obtain a larger E[Itotal]. Thus, the optimal value certainly exists

in the interval [X, N ]. We set an variable named offset to be (N −X)/2, and by examining

the slope at Y = X + (N − X)/2, we can determine whether the optimal value lies in the

interval [X, Y ] or [Y,N ]. Namely, if the slope at Y is positive, then the optimal value exists

in the interval [Y, N ]; if it is negative, the optimal value appears in the interval [X, Y ].

Assuming that the optimal value exists in the interval [X,Y ], then we set the value of

offset to be :

offset =
Y −X

2
. (3.19)

Repeat the same process and then we can narrow the searching interval, eventually the

optimal value is obtained. The detail algorithm is shown in Appendix A. By using this

algorithm, we can examine the effects of varying ratio of area or λE. The results are shown

below.

Fig. 3.4 depicts the optimal value of N1 with respect to the ratio of A1/A2 = K while

λE1 and λE2 are identical and fixed, and N = 1000. It is seen that, when K is small, we

should put plenty of sensors to the larger area even if there is only a slight change of area

ratio, which implies that in the Maximum Information Capacity Deployment, area is the

critical concern. Moreover, the optimal value of N1 saturates when A1/A2 is large.
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Figure 3.4: Optimal N1 of MICD under varying area ratio.

Fig. 3.5 depicts the optimal value of N1 with respect to the ratio of λE1/λE2 = m while

A1 = A2, and N = 1000. We can tell that the optimal value of N1 is less sensitive to the

variation of λE ratio on comparing Fig. 3.4 and Fig. 3.5. The curve of Fig. 3.4 increases

sharply and reach the saturation state relatively quickly, while the curve of Fig. 3.5 increases

slowly and smoothly, and doesn’t reach saturation even when λE1/λE2 = m is very large.

The effect could be seen more clearly in Fig. 3.6.
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Chapter 4

Generalized Maximum Information
Rate Deployment

4.1 Generalized form of MIRD

We can generalize the deployment problem of Chapter 2 to K regions, and each region has

its own area Ak and average event occurring rate λEk, respectively. The deployment problem

can be formulated as :





N =
K∑

i=1

Ni ,

I(N1, . . . , Nk) =
K∑

i=1

fai · (λEi · Ai · l) ,

(4.1)

where





fai = 1− e−Diπr2
,

Di = Ni

Ai
i = 1, . . . , k .

(4.2)

The general form of the number of sensors Ni of the ith region Ai for the K-area case can

be computed as :
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I(N1, . . . , NK) =
K∑

i=1

fai · (λEi · Ai · l) =
K∑

i=1

(1− e
−Ni

Ai
πr2

) · (λEi · Ai · l) .

Let Xi = AiλEil and Ri = πr2

Ai
, then

I(N1, . . . , NK) =
K∑

i=1

Xi · (1− e−NiRi) ,

By applying the method of Lagrange Multiplier to this optimization problem, we formulate

the objective function as :

g(N1, . . . , NK) = I(N1, . . . , NK) + λ(N −N1 −N2 − . . .−NK) , (4.3)

where λ is an unknown scaler to be determined. The maximum value of I(N1, . . . , NK)

occurs when
∂g
∂Nj

= 0, j = 1, . . . , K, written as :

∂g
∂Nj

= XjRje
−NjRj − λ = 0

=⇒ λ = XjRje
−NjRj , j = 1, . . . , K . (4.4)

Thus

Nj =
1

Rj

[ ln(XjRj)− ln λ ] . (4.5)

Since

N1 + . . . + NK = N ,
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hence

∑k
j=1

1

Rj

[ ln(XjRj)− ln λ ] = N

=⇒ ln λ =
S2 −N

S1

, (4.6)

where S1 and S2 are two constants, calculated as :

S1 =
k∑

j=1

1

Rj

=
1

πr2

k∑
j=1

Aj ,

S2 =
k∑

j=1

ln(RjXj)

Rj

=
1

πr2

k∑
j=1

Aj ln(πr2λEjl) .

From (4.5) and (4.6), we get

Nj =
1

Rj

[
ln(XjRj)− S2

S1

+
N

S1

]

=
Aj

πr2
ln(πr2λEjl)− Aj

πr2
·

k∑
i=1

Ai ln(πr2λEjl)

k∑
i=1

Ai

+
Ai

k∑
i=1

Ai

·N . (4.7)

Let αj = πr2λEjl, then (4.7) can be simplified as

Nj =
Aj

k∑
j=1

Aj

N +
Aj

πr2





ln αj −

k∑
j=1

Aj ln αj

k∑
j=1

Aj





, (4.8)
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Here we show a 3-dimensional plot as shown in Fig. 4.1 to demonstrate that the total

information rate indeed reaches maximum value at the exact values of sensors estimated

from (4.8).
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Figure 4.1: 3-areas case of MIRD, where N = 21, λE1 = λE2 = λE3 = 2, A1 = A2 = A3 =
π(52).

4.2 Analyses of 3-area case of MIRD

Here we show some conceptual analyses of 3-area case of MIRD. First we consider the third

area having fixed parameters, thus there are four modes of the this area : (1). A3 is large

and λE3 is small; (2). A3 is small and λE3 is large; (3). Both A3 and λE3 are large; (4). Both

A3 and λE4 are small. Under these four modes of the third area, first we fix the value of λE1

and λE2 to be 2, and vary the ratio of A2/A1 = K, A1 = π(52) to see the effect of area upon

optimal deployment of N1, N2 and N3, when N = 600. The results are shown in the next

few pages.

First we compare Fig. 4.2a with Fig. 4.2b, the difference is A3 = π(102) in Fig. 4.2a

being larger than A3 = π(2.52) in Fig. 4.2b. We observe that the variation of N3 in Fig. 4.2a
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is larger than that in Fig. 4.2b, we should put more sensors to N3 when A3 is large in order

to increase the area coverage fa3 and obtain more information. Since λE1 = λE2 = λE3 = 2,

N2 would be larger than N3 when A2 is larger than A3.
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Figure 4.2: Optimal deployment of N1, N2 and N3 with respect to variation of area ratio :
A2/A1 = K while there are four modes of the third area.

Then we compare Fig. 4.2a with Fig. 4.2d, the difference is that λE3 = 10 in Fig. 4.2d,

which is larger than λE3 = 2 in Fig. 4.2a, while A3 = π(102). We can see that even A2

grows to very large, we still put large number of sensors to N3, which is caused by the large

area of A3 with large λE3, as it’s more efficient to put more sensors in A3 to obtain more

information.

Now we compare Fig. 4.2c with Fig. 4.2b, with A3 = π(2.52) and λE3 = 10 in Fig.

4.2c and λE3 = 2 in Fig. 4.2b. Here the curve of N3 is similar to each other, which due to

A3 = π(2.52) is small, we need only few sensors in A3 to achieve enough area coverage fa3.

For example, when N3 = 50 and A3 = π(2.52), fa3 = 0.9997, when N3 = 25, fa3 = 0.9817.
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Figure 4.2: Optimal deployment of N1, N2 and N3 with respect to A2/A1 = K while there
are four modes of the third area.
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In the end we depict the variation of maximum information rate with respect to A2/A1 =

K under four modes of the third area in Fig. 4.2e. We can see that the highest curve is the

mode of both λE3 and A3 are large, and the lowest curve is the mode of both λE3 and A3

are small, which is reasonable result based on our previous discussion.

After complete the discussion about the effect of area, now we fix the areas of A1 and

A2 to be π(52), and vary λE2/λE1 = m to see the effect of λE upon optimal deployment

and maximum total information rate, while there are again four modes of the third area.

Firstly we compare Fig. 4.3a with Fig. 4.3b, we observe that the curves of N1, N2 and

N3 are flat and there is little difference whether λE3 is large or small when determining

the optimal deployment. This is due to the area coverage fa is enough, for example, when

N3 = 400 and A3 = π(102), fa3 = 0.9817; when N1 = 100 and A1 = π(52), fa1 = 0.9817;

while λE2/λE1 = m is growing, we should take some senors from N3, N1 to N2.
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Figure 4.3: Optimal deployment of N1, N2 and N3 with respect to variation of λE2/λE1 = m
while there are four modes of the third area.
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Comparing Fig. 4.3b with Fig. 4.3c, we observe that N3 in Fig. 4.3b is around 4 times

than that in Fig. 4.3c. It’s reasonable that we should put more sensors in the larger area.

Notice that when A3 = π(102) and N3 = 400, then fa3 = 0.9834; when A3 = π(2.52) and

N3 = 80, then fa3 = 0.9999. Now comparing Fig. 4.3c with Fig. 4.3d, the difference

is λE3 = 10 in Fig. 4.3c and λE3 = 2 in Fig. 4.3d. It seen that the curves of optimal

deployment are very similar, which implies that the effect of λE becomes irrelevant to optimal

deployment when area coverage is large enough. Notice that when A3 = π(2.52) and N3 = 80,

fa3 = 0.9999; when A2 = π(52) and N2 = 220, fa2 = 0.9998, then we can get a better

understanding of this conclusion.

We demonstrate the curves of maximum total information rate under corresponding

optimal deployment in Fig. 4.3e. We find that the curves are straight lines, which differ

from the case previously discussed, that is due to the area coverage fa is an exponential form

with respect to the information rate, while that of λE is a linear form.

From the discussions of varying area and varying λE in 3-area case of MIRD, we can

conclude that area is a critical concern to the optimal multi-area WSN deployment, which

implies that when the total number of sensors N are not enough for every region to achieve

sufficient coverage, the non-linear effect of exponential form is critical. From Fig. 4.2a and

Fig. 4.2d, Fig. 4.3c and Fig. 4.3d, we conclude that the effect of λE is critical when fa

is small, and becomes irrelevant when fa is sufficient large, which is the same conclusion

obtained in the analyses of 2-area MIRD.

There are too many scenarios that can be discussed, for example we can vary N to see

what is the resulting effect. This is somehow too complicated to be investigated, thus here

we only discuss some simple scenarios, but the basic principle still holds.
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Figure 4.3: Optimal deployment of N1, N2 and N3 with respect to variation of λE2/λE1 = m
while there are four modes of the third area.
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Figure 4.3: Optimal deployment of N1, N2 and N3 with respect to λE2/λE1 = m while there
are four modes of the third area. 48



Chapter 5

Conclusion

In this work we introduce the Maximum Information Rate Deployment(MIRD) and the

Maximum Information Capacity Deployment(MICD) for multi-area WSNs. We assume the

sensors are randomly deployed by the 2-dimensional Poisson Point Process, and the occur-

rence of event follows the Poisson Process. In the MIRD, we don’t consider the issue of

energy consumption and network lifetime, but focus on how to deploy the sensors in mul-

tiple areas to obtain the maximum information rate. Through detailed analyses of 2-area

MIRD, we should put more sensors into the larger area in order to achieve better coverage

fa, and should put more sensors in the area with larger λE. Still we conclude that the effect

of λE is a critical issue of MIRD when area coverage fa is not enough.

Later we discuss the energy consumption and define the network lifetime of multi-area

WSNs, and obtain the deployment when maximum information capacity is desired. Through

detailed simulation results, we conclude that area is the most critical issue of MICD, since

the network lifetime is determined by those sensors around the sink node and more sensors

would increase the probability of sensors to be deployed around the sink node.

Finally in the analyses of 3-area case of MIRD, we apply Lagrange Multiplier to obtain

the optimal sensor deployment. It becomes more complicated when determining the optimal

deployment if there are more areas, however the conclusions obtained from 2-area MIRD

still holds.
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Appendix A

Searching Algorithm for Optimal
Deployment of MICD

We express the searching algorithm as the follows :

//Initial deployment

get expected number of sensors N_1 : X/{A1}=(N-X)/A2;

N1 = X;

//determine initial offset

offset = \frac{(N-N1)}{2};

while{}

x = E[I_{total}(N_1-1)];

y = E[I_{total}(N_1)];

z = E[I_{total}(N_1+1)];

// slope at N1 is positive

if y<z && y>x

N_1 = N_1 + offset;

offset = offset/2;
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if offset < 1

offset = 1

end

// slope at N1 is negative

elseif y>z && y<x

N_1 = N_1 - offset;

offset = offset/2;

if offset < 1

offset = 1

end

// This is the case we are looking for,

// slope change from positive to negative and optimal value appears

elseif y>z && y>x

N1

break;

end

end
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Appendix B

Problem Explanation

When applying Differentiation to obtain N1, N2 in 2-area WSNs, there exists an implicit

problem, the number of sensors N1, N2 should be natural numbers, in Differentiation, N1,

N2 are treated as real numbers, for example the results might be N1 = 46.7 and N2 = 53.3,

when N = 100. Obviously there are two choices for us, one is setting N1 = 46 by floor

function, then N2 = N − N1 = 100 − 46 = 54, the other one is setting N1 = 47 by ceiling

function, then N2 = 53. Thus we can conclude that the error of applying Differentiation

won’t exceed one sensor, and it’s a tolerable. Here in our work we use the floor function

for the convenience. Then same conclusion can be applied to Lagrange Multiplier, since

Lagrange Multiplier uses partial differentiation.
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