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Wireless Networks

Student : Po-Hsuan Tseng Advisor : Dr. Kai-Ten Feng

Institute of Communications Engineering
National Chiao Tung University

ABSTRACT

With rising interests in location-based services (LBS) over the past decade, real-time localization
algorithms with enhanced precision become critical for various applications under potentially
challenging circumstances. Based on statistical signal processing theory, this dissertation solves the
location estimation and tracking problems by incorporating the methods suitable for real-time
implementation in different wireless network scenarios: 1) Global positioning system (GPS); 2)
Wireless sensor network (WSN) system; and 3):Cellular-based positioning system. GPS is popular in
commercial system and accurate in unobstructed outdoor environments. In environment where GPS
coverage is either weak or absent, WSN can-operate in a short-range indoor environment with high
accuracy. On the other hand,cellular-based positioning based on the densely deployed base stations
(BSs) in the city can cover the areas with weak GPS signal to maintain the LBS for resource
management purpose. Note that the system level simulation of the fourth generation telecommunication
system, e.g., [IEEE 802.16m WiMAX system is first evaluated to discuss how to enable LBS and the
performance limitation using the cellularSystem as an example.

In order to employ the location estimation and tracking for real-time services, closed-form signal
processing techniques such as two-step least squares estimator and Kalman filter are adopted due to
their lower computation complexities. Through the study of Cramer-Rao lower bound (CRLB), the
limiting factors affecting the estimation accuracy include: 1) Geometric effect, 2) Signal model or
noise variance; and 3) Number of signal sources. This dissertation first characterizes the linearization
effect by the proposed linearized location estimation problem based CRLB (L-CRLB). As further
suggested by the L-CRLB, higher estimation accuracy can be achieved if the mobile station (MS) is
located inside the geometry confined by the BSs compared to the case that the MS is situated outside of
the geometric layout. This result motivates the design of geometry-assisted linearized localization
(GALL) algorithm in order to compensate the linearization lost from the geometric effect.

Hybrid location estimation schemes, which combine both the satellite- and cellular-based signal,
are proposed to deal with the location estimation and tracking problem under various signal models or
noise variances. The proposed fusion-based hybrid (FH) architecture integrates the estimation results
acquired from both the satellite- and cellular-based systems. On the other hand, the unified hybrid (UH)
architecture employs the proposed hybrid signal selection scheme and the hybrid least squares
estimator, which is capable of conducting location estimation within a selected set of signal sources
from the heterogeneous networks. The proposed hybrid location architectures can provide accurate
location estimation by adapting themselves under different environments, e.g., urban or rural area.

The location estimator associated with the Kalman filter, known as the two-stage location tracking
architecture, is exploited in this dissertation to acquire location estimation and tracking for the MS.

ii



However, most of the existing schemes become inapplicable for location tracking due to insufficient
number of signal sources. The proposed predictive location tracking (PLT) scheme utilizes the
predictive information obtained from the Kalman filter to provide additional signal inputs for location
estimator. Furthermore, the geometry-assisted PLT (GPLT) scheme incorporates the geometric dilution
of precision (GDOP) information into algorithm design to achieve persistent accuracy for location
tracking.

The problem of cooperative localization for MSs in the mixed line-of-sight/non-line-of-sight
(LOS/NLOS) environment is investigated based on cooperative sensing. The proposed cooperative
self-navigation (CSN) with joint position and channel tracking takes advantage over the noncooperative
methods with the extra cooperative measurements to overcome the insufficient number of signal
sources problem and over the methods without LOS/NLOS channel tracking to consider the effect of
different signal models or noise variances.

To summarize, the main contribution of this dissertation is to investigate the mobile location
estimation and tracking problem. The methods suitable for real-time implementation is applied and
analyzed based on statistical signal processing theory. In this dissertation, we have improved the
estimation accuracy for real-time methods under three limiting factors as follows: 1) Geometric effect;
2) Signal model or noise variance; and 3) Number of signal sources.
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Chapter 1

Dissertation Overview

1.1 Introduction

Wireless positioning technologies for estimating the position of a mobile station (MS) have
attracted a lot of attention over the past decade.. The quality-of-service of positioning accuracy
has been announced due to the issue.of ‘enhanced 941 subscriber safety service requirements [1] in
telecommunication system. With the assistance of information derived from the positioning system,
the required performance and objectives for the targeted MS can be achieved with augmented
robustness. In particular, there are increasing demands for-commercial applications to adopt the
location information within their system design; such as-the self-navigation systems, the target
tracking, the location-based billing, electronic healthéare, the wireless sensor networks (WSNs)
[2, 3, 4], and the intelligent robotic [5] or transportation control management [6, 7]. With rising
interest in location-based services (LBS) [8], localization algorithms with enhanced precision become

critical for various applications under potentially challenging circumstance.

LBS

Center
BS - S o

Navigation Tracking

Figure 1.1: Schematic diagrams of the self-navigation and target tracking.

Self-navigation and target tracking are the two main applications as shown in Fig. 1.1. For
self-navigation, a mobile unit needs to determine its own position based on its signal receptions

from multiple radio stations of known positions. These radio stations are known as base stations



1.1. Introduction

(BSs). The direction of the distance measurements is downlink and the location estimation can
be performed at the MS. On the other hand, the target tracking or source localization problem
refers to a network desire to monitor the MS’s position. The MS broadcasts the uplink signal to
multiple BSs. A LBS center then estimates the MS’s position from the collection of BSs signal
measurements. In fact, the self-navigation problem is a dual problem to the tracking problem in
the mathematic perspective. In practice, the BS usually has better measurement quality. From a
complexity point of view, uplink measurement results in higher system complexity since negotiation
between the BSs is required. Localization determination time of the uplink scheme is also longer
since the BSs should wait until all the measurements collected through the backbone network from
the neighboring BSs have been communicated. On the other hand, the MS has all the measurements
and does not require extra measurement exchange for downlink approaches. The other issue is that
the power consumption of transmitting signals is regarded to be larger than receiving signals.
Therefore, uplink transmission will consume more power which can be an important issue at the
MS side. The architecture of the downlink (i.e., mobile-based) and the uplink (i.e., mobile-assisted)

in telecommunication system is discussed in Chapter 6.
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Figure 1.2: Geometric diagrams of the TOA, TDOA, and AOA measurement.

In general, the location determination process is composed of two parts as shown in Fig. 1.4:
the distance or angle measurement and location estimation. A number of wireless positioning
methods have been widely studied with various types of signal measurements, including time-of-
arrival (TOA) [9], time difference-of-arrival (TDOA) [10], the received signal strength (RSS) [11]
and the angle-of-arrival (AOA) [12] in Fig. 1.2. The signal models are different according to the
environments, e.g., the satellite systems, the telecommunication systems, and the wireless sensor
networks. With the signal measurements and the known position references, the location estimation
schemes locate the position of an MS based on the measured radio signals from its neighborhood
BSs. In a wireless environment with rich scatters, RSS measurement can be difficult to model and
noisy. Therefore, alternative measurement models are more practical. In the TOA model, each
receive unit only needs to identify a special signal feature such as a known preamble signal and

record its time of arrival. TDOA is a common procedure to efficiently eliminate the clock bias
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between the MS and the BSs by using measurements at two BSs, which is a main option in the
telecommunication system. With the antenna arrays in the modern communication system, the
AOA can also be obtained by measuring the difference in received phase at each element in the
antenna array. Note that the location estimation process is the main focus of the dissertation.
Note that the global positioning system (GPS) is regarded as a mature commercialize system.
Providing that the mobile device carries a GPS receiver, either GPS-based or a hybrid GPS with
other types of measurements (e.g., signals from cellular system covered in Chapter 6) can be
utilized to obtain a location estimate. However, the additional GPS receiver within an MS will
increase the cost of the handset device. Further, the poor indoor coverage of GPS will result in
decreased location estimation accuracy. In environment where GPS coverage is either weak or
absent, wireless navigation and localization for mobile users have various practical applications.
Different distance and angle measurement models are adopted to examine the location estimation

and tracking problem in different wireless network environments.

1.2 Problem Statement

Signal_ Yes' | Bayesian Estimator
Processing ——®= prior Information ~—pe e.g., Location Tracking
Problem Problem (LTP)

No

Non-Bayesian Estimator
e.g., Location Estimation'Problem (LEP)

Figure 1.3: A schematic diagram of problem formulation.

The location estimation problem, which does not have any prior information about the MS’s

location, can be solved by a non-Bayesian class estimator, such as least squares (LS) estimator.

Problem 1.1 (Location Estimation Problem (LEP)). By collecting the measurements r, the goal

of the LEP is to generate a m-dimensional estimate & of the MS’s location. o

Considering that the MS moves dynamically following a state model, the distance measurements
can be collected at every sample step. The historical distance measurements and location estimates
can be regarded as the prior information for the location estimate. The location tracking problem,
which has prior information about the MS’s location, utilizes a Bayesian class estimator such as
Kalman filter.

Problem 1.2 (Location Tracking Problem (LTP)). By collecting the measurements (1) from
time instant 1 to ¢, the goal of the LTP is to generate a m-dimensional estimate " of the MS’s

location at time instant ¢. o

The objectives of the dissertation are to enable signal processing techniques for the location

estimation and tracking problems under different network scenarios.
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Figure 1.4: A schematic diagram of dissertation organization.

Chapter 2 illustrates the measurement models” (i.e., TOA, TDOA and AOA) and the noise
models (i.e., timing, and angle measurement noise models) which are utilized in this disserta-
tion. Meanwhile, the linear least squares (LLS) and the two-step least squares (TSLS) estimators,
which are the baseline non-Bayesian estimation algorithms in the dissertation, are introduced. The
Kalman filter, which is the baseline Bayesian estimation algorithm, is also described in this chapter.
Based on the preliminaries, the remaining chapters is organized as follows. The schematic diagram
of dissertation organization is illustrated in Fig. 1.4.

This dissertation solves the location estimation and tracking problems by incorporating the
methods suitable for real-time implementation from statistical signal processing theory in differ-
ent wireless network scenarios: 1) GPS; 2) WSN; 3) cellular-based positioning system. Note that
different distance and angle signals are measured and modeled in different wireless network environ-
ments. GPS is popular in commercial system and accurate in unobstructed outdoor environment.
In environment where GPS coverage is either weak or absent, WSN can operate in a short-range
indoor environment with high accuracy; cellular-based positioning based on the dense BSs deploy-
ments in the city can cover the corner for the weak GPS signal to maintain the LBS for resource

management purpose. Note that the system level simulation of the fourth generation telecommu-
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nication system (e.g., IEEE 802.16m WiMAX system) is first evaluated to discuss the performance
limitation of positioning techniques using the cellular system as an example. In order to fulfill the
positioning accuracy requirement of E-911 subscriber safety services, mobile telecommunication
systems, e.g., Global System for Mobile Communications (GSM), High-Speed Downlink Packet
Access (HSDPA), or potentially next generation telecommunication systems, adopt LBS as one
of the key functions. Currently, two campaigns by 3rd Generation Partnership Project (3GPP)
and the Institute of Electrical and Electronics Engineers (IEEE) are specifying standard drafts to
meet the requirements of International Mobile Telecommunications (IMT)-Advanced for fourth-
generation (4G) systems. LBS will be covered in both standards for the E-911 requirement and
resource management purposes. It is well accepted that the multiple access technique for 4G net-
works will be orthogonal frequency division multiple access (OFDMA). Chapter 3 aims at both
providing a framework for enabling LBS using next-generation systems and investigating the po-
sitioning accuracy for an OFDMA system. The feature of purely cellular-based positioning in the
next generation system is illustrated, including the procedures for both the downlink (DL) and
uplink (UL) timing measurements. Moreover, case studies of DL and UL system-level simula-
tions for the IEEE 802.16m standard are performed and compared by considering the effects from
multi-path, shadowing, and intercell interference.

It is recognized that the distance measurements [13] associated with the wireless location es-
timation schemes are inherently nonlinear. Linear estimators have been extensively utilized for
wireless location estimation for their simplicity and closed-form property. In order to employ the
location estimation and tracking for real-time service, the closed-form signal processing techniques
such as two-step least squares estimator and-Kalman filter are adopted due to lower computation
complexity. In Chapter 4, the class of linear estimator by introducing an additional variable is dis-
cussed, e.g., the well-adopted LLS estimator. There exists information lost from the linearization
of location estimator to the nonlinear location estimation, which prevents the linear estimator from
approaching the Cramer-Rao lower bound (CRLB). Although linear estimator has been utilized for
a long period, the linearized location estimation problem based CRLB (L-CRLB) is first derived
to provide a portrayal that can fully characterize the behavior for this type of linearized location
estimator. The relationships between the proposed L-CRLB and the conventional CRLB are ob-
tained and theoretically proven. Furthermore, the geometric layout between the MS and the BSs
that can achieve the minimum L-CRLB is also acquired. The geometric analysis will be beneficial
to the deployment of BSs or the signal selection schemes targeting for this class of location estima-
tion. Simulation results utilizing the LLS estimator as one of the implementation of the linearized
location estimators further validate the theoretical proofs and the effectiveness of the L-CRLB.

Through the study of CRLB as shown in Remark 1, the limiting factors affect the estimation
accuracy as: 1) geometric effect; 2) signal model or noise variance; 3) number of signal
sources. As further suggested by the L-CRLB, higher estimation accuracy can be achieved if the
MS is located inside the geometry confined by the BSs compared to the case that the MS is situated
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outside of the geometric layout. This result motivates the proposal of geometry-assisted linearized
localization (GALL) algorithm in Chapter 5 in order to consider the geometric effect associated
with the linearization lost. Based on the initial estimation, the GALL algorithm fictitiously moves
the BSs based on the L-CRLB criteria. Two different implementations, including the GALL with
TSLS estimator (GALL-TSLS) and the GALL with Kalman filter (GALL-KF), are proposed to
consider the situations with and without the adoption of MS’s historical estimation. Simulation
results show that the GALL-KF scheme can compensate the linearization lost and improve the
performance of conventional location estimators.

Location algorithms for the MSs can generally be categorized into network- and satellite-based
systems. Both types of systems have their advantages and limitations under different environments
(i.e., urban or rural area). In Chapter 6, hybrid location estimation schemes, which combine
both the satellite- and the network-based signals, are proposed to provide adaptation to various
measurement models (i.e., TOA, TDOA, and AOA) to consider different signal models or noise
variances for location estimation problem. By exploiting the fusion algorithm, the proposed
fusion-based hybrid (FH) architecture integrates the estimation results that are acquired from both
the satellite- and the network-based systems. Two-different types of signal selection schemes are
adopted within the FH architecture: .1) the fixed set'of signal inputs approach and 2) the selective set
of signal inputs approach. On the other hand, the unified hybrid architecture employs the proposed
hybrid signal-selection scheme and-the hybrid least square estimator, which can conduct location
estimation within a selected set of-signal sources from the-heterogeneous networks. The Kalman
filtering technique is exploited in the proposed algorithmsto both eliminate the measurement noises
and to track the trajectories of the MSs. Numerical results demonstrate that the proposed hybrid
location schemes can provide accurate location estimation by adapting themselves to different
environments.

The location estimators associated with the Kalman filtering techniques, as known as two-stage
location tracking architecture, are exploited to both acquire location estimation and trajectory
tracking for the mobile devices. However, most of the existing schemes become inapplicable for
location tracking due to the deficiency of signal sources. In Chapter 7, two predictive location
tracking algorithms are proposed to alleviate the insufficient number of signal sources. The
Predictive Location Tracking (PLT) scheme utilizes the predictive information obtained from the
Kalman filter in order to provide the additional signal inputs for the location estimator. Fur-
thermore, the Geometry-assisted Predictive Location Tracking (GPLT) scheme incorporates the
Geometric Dilution of Precision (GDOP) as geometric effect information into the algorithm de-
sign. Persistent accuracy for location tracking can be achieved by adopting the proposed GPLT
scheme, especially with inadequate signal sources. Numerical results demonstrate that the GPLT
algorithm can achieve better precision in comparison with other network-based location tracking
schemes.

In Chapter 8, the cooperative measurements are adopted to generate a location estimate along
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with the conventional non-cooperative measurement. We investigate the problem of cooperative
self-navigation (CSN) for multiple mobile sensors in the mixed LOS and NLOS environment based
on measuring TOA from the cooperative sensing. We derive an optimized recursive Bayesian
solution to adopt a multiple model sampling based importance resampling particle filter to develop
CSN that can accommodate non-linear and non-Gaussian position movement under different levels
of channel knowledge. The CSN with joint position and channel tracking exhibits advantage over the
noncooperative methods by utilizing additional cooperative measurements to increase the number
of signal sources. It also shows improvement over the methods without channel tracking to
consider different signal models or noise variances. Simulation results validate the advantage

of cooperative sensing and channel condition tracking in mixed LOS/NLOS environment.



Chapter 2

Preliminaries

2.1 Mathematical Modeling of Signal Sources

In the dissertation, various signal sources are considered in different wireless network scenarios.
In this section, generic models of signal sources-are described with single MS estimation case. The
notations would be slightly different according to different problem in each chapter. Note that the
cooperative localization in Chapter.8 which-considers multiple MSs estimation would have different

notations.

2.1.1 Time of Arrival (TOA) Model

The signal model for the TOA measurements-isutilized for m-dimensional (e.g., m = 2 or 3)
location estimation and tracking problem. The set r{*) contains all the available measured relative
. . . t t t
distance at time instant t, i.e., rt) = [r% ), e ’I“Z-( ), ey ’I“](V)(t)
available BSs at time instant ¢. For notational simplicity, the TOA measurement from the anchor
to the MS is multiplied by the speed of light ¢. Thus, the effective TOA measured relative distance

between the MS and the i-th BS can be represented as

] where N® denotes the number of

r® = ¢ 4 e g for i=1,2,..,N®, (2.1)

The TOA measurement is contaminated with two types of noises: 1) the line-of-sight (LOS) noise
®) ®).

n. - : it

i a random

a zero-mean random variable and 2) the none-line-of-sight (NLOS) noise e
variable with mean larger than zero. In the dissertation, the LOS noise would refer to the case
egt) = 0. On the other hand, the NLOS noise would refer to both the ngt) and ez(t) exist. The
parameter b refers to the clock bias between the MS and the network, where the BS is assumed
to synchronize with each other. In the synchronous network case considered in Chapter 4, 5, 7,
and 8, the clock bias is assumed to be efficiently eliminated by the synchronous method as b = 0.

Note that the time instant ¢ would be removed for the notational simplicity in the case that the
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parameter is irrelevant with the time. For example, the measurement considered in a non-Bayesian
class location estimation is made at only one time instant, e.g., ; = (; + n; + ¢; +b. On the other
hand, the clock bias b between the MS and the network is the same at each time instant unless
the clock adjustment has been made. The noiseless relative distance Ci(t) in (2.1) between the MS’s

true position and the i-th BS can be acquired as
¢ = ||a® — by], for i=1,2,..,N®, (2.2)

where ) represents m-dimensional MS’s true position at time instant ¢ and b; is m-dimensional
coordinate of the i-th BS (e.g., 3-dimensional coordinate of the i-th BS b; = [z, v;, 2z]7). The

notations ||.|| denotes the Euclidean norm of a vector and [.]7 represents the transpose operator.

2.1.2 Time Difference of Arrival (TDOA) Model

Jointly estimating #® and b® can be a challenging problem. In order to efficiently eliminate
the clock bias in (2.1), the TDOA measurement can be obtained by calculating the time difference
between the MS with respect to the i-th and the 7-th BSs as

¢ ¢ t t t t ¢ ¢ ¢
ufy = ri? =i =GN HEADE) + (e — ). (23)
Note that TDOA measurement is-a common procedure to. estimate the position in the cellular

system. The reference BS (i.e., b;.in, (3.6)) is usually chosen as the serving BS (i.e., b;). The

procedure transfers a circular equation of 'TOA measurement into a hyperbolic equation of TDOA
(t) (t)
i J

j-th BSs have independent noises. Though the clock bias is eliminated in the TDOA measurement,

measurement. Note that the two timing measurements (i.e., 7;” and r;’) coming from the i- and

the noise is enhanced by 3 dB.

2.1.3 Angle of Arrival (AOA) Model

The horizontal and the vertical AOA measurements, which are available from the i-th BS with

3-dimensional coordinate b; = [x;, v;, zi]T, can be obtained as

) — 4.
@t _ 1[Y Yi (t)
6;” = tan (733(15) — Cﬂz> +ny, (2.4)
(O
(t) -1 < < ()
o = tan +n.’, 2.5
(bz <\/(x(t) — xi)Q + (y(t) — y2)2> i ( )
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®)

where 6, and qﬁgt) represent the horizontal (azimuth) and the vertical (elevation) angles between
the MS and i-th BS at time instant £. The AOA measurements in the cellular system is usually
measured by the antenna array of the serving BS (i.e., by). Note that 3-dimensional MS’s coordinate

(t) (t)

at time instant ¢ is denoted as ) = [Cﬂ(t) Ly, z(t)] The parameters ng, and n,’ are the combined

noises associated with the angles HZ@ and ¢§t).

2.2 Noise Model

2.2.1 Timing Measurement Noise Model
2.2.1.1 LOS Noise Model

The TOA LOS noises between the i-th BS and the MS (i.e., ngt) in (2.1)) are considered
Gaussian-distributed as ngt)NN(O, 02) with different noise standard deviation o,,. The NLOS noise
®)

[

, 1s assumed to be zero in the case.

2.2.1.2 Timing Measurement Noise Model-in Cellular Network

In the cellular-based network, the fading including multi-path and shadowing fading affect the
timing measurement result. The trayeling distance'in the cellular network would be positive bias,
which refers to the NLOS problem: In fact, the NLOS problem in timing measurement comes from
both power and delay effects. The path gain of the NLLOS signal suffers higher shadowing variance,
higher attenuation (i.e., power decays within the expenent of the distance), and penetration loss
by traveling through walls. The limited received power degrades the performance of the timing
measurement. On the other hand, the delay of NLOS propagation is biased by the multi-path
model. The first arriving path will not necessarily be the strongest signal because of multi-path
unresolvable. An exponential distribution is assumed for the NLOS model in [14], which considers

the power attenuation, shadowing, and the multi-path fading in the model, with the distribution
of p_(v) as

1 %7
=evi ©v>0
V) = (&3 26
Pegw() {0 v <0 (2.6)

where v; = ¢+ 7, = ¢ T(Sw. The parameter 7; is the root mean square delay spread between
the i-th BS to the MS; 7,,, is the median value of 7; according to the environments, whose value
is selected as 0.4 ps and 0.1 ps for the urban and rural environment, respectively. ¢ is the path
loss exponent which is assumed to be 0.5. The shadow fading factor w is a log-normal random
variable with zero mean and standard deviation o, chosen as 4 dB in the simulations. The TOA
LOS noises between the i-th BS and the MS (i.e., nl(-t) in (2.1)) are considered Gaussian-distributed

10



2.3. Linear Least Squares (LLS) Estimator

as ngt)NN(O, o2).

2.2.1.3 Timing Measurement Noise Model in Satellite Network

The probability distribution of the LOS noise P, (7) for the set of satellites is selected as
P, (7) = N(0,07(7)) (2.7)

where the variance is defined as o, (y) = [a + d* - 10%]%. The parameters a = 10 m? and d = 150
m? are determined by user equipment. The SNR value v, which is adopted from [15] as an input to
a variance model for GPS pseudo-range measurement, is an uniform distributed random variable.
Note that the timing measurement of satellite network is usually considered as LOS measurement,

W —o.

which leaves e,

2.2.2 Angle Measurement Noise Model in Cellular Network

The noise models for the AOA measurements (ite., ng and n, in (2.4) and (2.5)) are both
assumed as Gaussian-distributed with N(0, o2) and N(0, 0;), where oy and o4 are chosen as 10°

and 5° respectively for the urban and rural environment.

2.3 Linear Least Squares (LLS) Estimator

The linear least squares (LLS) estimater [16] is-one of the representative methods to transfer
the original nonlinear location estimation problem (LEP) into a linear problem by introducing an
extra variable. In this section, 2-dimensional LLS estimator is illustrated as an example based on
the TOA measurements. The time instant ¢ is removed since the LLS estimator is a non-Bayesian

estimator. By deriving (2.2) with the relationship R = 22+, the following matrix can be acquired

as
M0 =7, (2.8)
where
—2r1 —2y 1 ¥ — Ky
x
—2x -2 1 rZ—k
M, = ? v ) 0=1vy |, Ji = 2 2. (2.9)
o R ; .
—2zny —2yy 1 TN — KN

where xk; = CEZQ + yf Without any prior information on the statistics of the TOA measurements,

the LEP defined in Problem 1.1 can be directly solved by finding the optimum 6 by minimizing

11
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the LS objective function
9L5:argrrbinHM10—J1H2. (2.10)

No assumption about the measurement noise distribution has been made by utilizing LS objective
function. Note that when the measurement noise is Gaussian distributed, (2.10) becomes a ML
estimation.

The LS cost function is a quadratic function in €@ indicating that there is a unique minimum
in (2.10). By considering the weighted LS (WLS) estimator, the estimation error is obtained as
P = Mlé —J1=2Bin; + n% where n; = [ng, ..., n;, ..., ny| represents the measurement noise

vector in (2.1). The weight matrix ¥; can be acquired by neglecting the square term n? as

U, = E[y1y]] = 4B Elnin!| By = 4B;1:By, (2.11)
where By = diag{[r1, ..., ri, ..., rn]} and Is = diag{[o}, ..., o2, ..., o%]}. The LLS position
estimate is simply extracted from the first andisecond entries of 8 (ie., Ors = [Z1s, Grs, Rrs]T)
by adopting the LLS method (i.e., Zr,¢=1%1rs, Urs]")

s =P (Miw My ) T W 1 (2.12)

where P = [100; 010].

2.4 Two-Step Least Squares (TSLS) Estimator

In this section, the 2-dimensional two-step LS (TSLS) estimator [17] is illustrated as an example
based on the TOA measurements. The concept of TSLS method is to acquire an intermediate
location estimate in the first step by assuming that & and R are not correlated. Note that this
first step is exactly the LLS method in Section 2.3 which solves the linearized LEP instead of the
conventional LEP. Without any prior information on the statistics of the TOA measurements, the
LEP can be directly solved by finding the optimum & = [#, §]7 by minimizing the LS objective
function with the constraint R = 2 + 32

v=arg  min IM10 — Ty, (2.13)
R=z?4y?

Based on the result from the LLS estimator &;g, the TSLS method approximates the (2.13)
by forming another linear equation to solve the (2.13) by releasing the assumption that z and
R are uncorrelated by adjusting the intermediate result to obtain an improved location estimate.

Therefore, the correlation relationship can be applied and the elements within the second step of

12



2.5. Kalman Filter

the TSLS estimator formulation, i.e., M[#]?) = Jy, are obtained as

1 00 (rr5)?
My=|101 0|, Jo=| (yrs)? | (2.14)
1 10 Rrs

with [£]®) = [([2]®)?, ([§]®)? ]T. Tt can also be solved by the weighted LS formulation with the

weighting matrix s of the second step as
Wy = 4Bycov(0)By = 4Bo(M, 7 ¥, 7'M, ) ' B, (2.15)

where By = diag{[zLs, yrs, 1/2]}. With the relationship of R = x? + y?, it can be observed that
the variable R is removed from 6 such as to form the reduced dimension vector of [#]?). The MS’s

position estimate by using the TSLS estimator can be obtained by taking element-wise square root
as &7 = ([8]P)"? = [[2]®, [9]*)".

2.5 Kalman Filter

Initial EsAtimation 1)

N P(O)/-\

State Update Measurement Update
(Prediction) (Correction)

~_

S 7V
Measurement Input

Figure 2.1: A schematic diagram of the Kalman filter.

The Kalman filter [18, 19], which is a linear model based on the Markov chain perturbed by
Gaussian noise, is one of the efficient Bayesian class estimator to solve the location tracking problem
(LTP) in Problem 1.2. Fig. 2.1 illustrates the concept of Kalman filter. With the prior information
coming from the state update and the likelihood information coming from the measurement update,
the Kalman filter obtains a posterior estimate in a minimum mean square error estimation sense.

The measurement and state equations for the Kalman filter can be represented as

20 = Ez® 4 m®, (2.16)
0 = FstD 4 p®) (2.17)
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where §® represents the estimated state/output and 2 denotes the measurement input of the
Kalman filter. The states that we are interested in the LTP include the MS’s position, velocity
and acceleration. The matrix E and F refers to the linear relations for the measurement and state
model. The variables m® and p® denote the measurement and the process noises associated with
the covariance matrices R and Q within the Kalman filter formulation.

With the measurement and state equations as in (2.16) and (2.17), the Kalman filter estimates

the state as the prediction phase in Fig. 2.1,

e Predicted (a prior) state estimate: §lt=1) — pglt=1it=1)

e Predicted (a prior) estimate covariance: PU=D = ppt-1i-DET 4 Q)
and the correction phase in Fig. 2.1

e Innovation or measurement residual: Sf(t) = z(® — Eg(t-1)

Innovation (or residual) covariance: s® = gptt-DUET + R®

Optimal Kalman gain: K = P(tlt_l)ET[S(t)]-l

Updated (a posterior) state estimate:—§ = st 1o K® ()

Updated (a posterior) estimate covariance: P10 2 (F— KOE)P I~
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Chapter 3

Cellular-based Positioning for Next
Generation Telecommunication

Systems

- Since various wireless networks are.considered in the dissertation, the chapter serves as an guide-
line on how to enable location estimation and tracking and evaluate the system level simulation
using a 4G network. We discusé the limitations of the positioning in the downlink and uplink

directions.

3.1 Introduction

In order to meet positioning accuracy requirements, existing mobile telecommunication systems,
e.g., Global System for Mobile Communications (GSM), High-Speed Downlink Packet Access (HS-
DPA), adopt LBS as one of the key functions due to public safety considerations. It should be noted
that the positioning accuracy should meet the system requirements that are defined for emergency
911 (E-911) [1], i.e., less than 100 meters of estimation error 67% of the time and less than 300
meters 95% of the time. Currently, two campaigns by 3GPP and IEEE are specifying standard
drafts to meet the requirements of international mobile telecommunications (IMT)-advanced for
fourth-generation (4G) systems. LBS will be covered in both standards in order to meet the E911
requirement and for the resource management purposes. It is well-accepted that the multiple ac-
cess technique for 4G networks will be orthogonal frequency-division multiple access (OFDMA).
This chapter aims at both providing a framework for enabling LBS using next generation systems

and investigating the limiting factors of positioning accuracy for an OFDMA system. Since the

'The chapter is based on [B-1] Po-Hsuan Tseng, and Kai-Ten Feng, “Chapter 31. Cellular-based Positioning
for Next Generation Telecommunication Systems,” accept and to appear as a book chapter of Handbook of Position
Location: Theory, Practice and Advances, Wiley-IEEE Press, ISBN: 978-0-470-94342-7.
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standardization schedule of the IEEE campaign is earlier than 3GPP for a potential IMT-advanced
standard up to now, this chapter is thus based on the IEEE 802.16m [20] standard.

It is also noted that the possibility of using global positioning system (GPS) measurements
is also specified in the IEEE 802.16m standard. Providing that the MS carries a GPS receiver,
either GPS-based or a hybrid GPS and cellular-based estimate [21] can be utilized to obtain a
location estimate. However, the additional GPS receiver within an MS will increase the cost of
the handset device. Further, the poor indoor coverage of GPS will result in decreased location
estimation accuracy. On the other hand, pure cellular-based measurements do not require an
additional receiver for the acquisition of satellite signals and the indoor coverage problem can be
resolved by proper cellular planning. Therefore, in this chapter, we aim at evaluating location
estimation performance based on purely cellular network signals.

In general, the location determination process is composed of two parts: the distance or an-
gle measurement and location estimation. The positioning technique locates the position of a
MS based on the measured radio signals from its nearby base stations (BSs). The distance mea-
surement requires the negotiation between the MS, the serving BSs and the neighboring BSs.
Therefore, the mechanism for distance measurement ds specified in the standard, while the dis-
tance and the location estimation algorithms are open to the manufacturer. There are several
distance-related measurements that can be obtained within the IEEE 802.16m standard, which are
classified as follows: (a) Signal strength measurement: received signal strength indicator (RSSI),
carrier to interference-plus-noise ratio (CINR); (b).Angle measurement: direction-of-arrival (DOA);
and (c¢) Timing measurement: time difference of arrival (TDOA), time of arrival (TOA). Since signal
strength measurements are considered to be-sensitive to the network environment, it is necessary
to obtain channel statistics in advance. Furthermore, angle measurement error when the MS is far
from the BS can result in a large ambiguity region which equates to large MS location error. On
the other hand, the higher bandwidth of the IEEE 802.16m system compared to existing telecom-
munication systems makes timing estimation more reliable. In this chapter, we will focus on the
different options to perform timing measurements in the IEEE 802.16m standard. By adopting the
well-known maximum correlation method for timing estimation and the Taylor series approach for
location estimation [22], the positioning accuracy will be evaluated. The detailed mechanisms for
wireless positioning will be discussed by using the downlink/uplink (DL/UL) timing measurements
defined in the IEEE 802.16m standard.

In the IEEE 802.16m specification, the BSs are defined to be synchronized with GPS, where all
the time frames broadcast by the BSs are considered to be aligned. However, clock synchronization
between the MS and the BSs is difficult to maintain. Thus, TDOA is a common procedure to
efficiently eliminate the clock bias between the MS and the BSs by using measurements at two
BSs. In order to maintain the orthogonality property, both timing and frequency synchronization
are required for the DL and UL in an OFDMA system. The basic LBS support is to utilize the
specified waveform in the IEEE 802.16m standard, such as preamble sequences for the DL and
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ranging codes for the UL, to measure the distance information. In the DL direction, the preamble
sequence is utilized for initial access, channel estimation, and synchronization. By obtaining the
preamble sequences from different BSs, the MS can estimate the time difference by computing the
correlation of preambles from these BSs. On the other hand, the ranging channel is designed for
the BS to measure the assigned code sequence which is transmitted by the MS. The ranging scheme
measures the round-trip delay, when the BS assigns a code sequence to the MS and the MS sends
the sequence back at a rendezvous time. The time of arrival information between the MS and
the BSs can consequently be obtained. Using a TOA information exchange through the backbone
network, the UL TDOAs can be calculated based on the ranging results.

In order to further illustrate the LBS performance of the IEEE 802.16m system, both link
level and system level simulation are performed in this chapter to demonstrate the limiting factors
that affect the performance for DL /UL estimation. The timing estimation is corrupted by several
channel effects such as multipath fading, shadow fading, and inter-cell interference. As for DL LBS,
inter-cell interference can be considered as the main performance-limiting factor. Two different
approaches are utilized to deal with inter-cell .interference for enhanced LBS support, including
signal processing at the physical layer‘and scheduling.algorithms at the medium access control
(MAC) layer. From the physical layer perspective, interference cancellation techniques [23] can be
conducted at the receiver. The strongest preamble from the serving BS will be identified by the
estimation method first and consequently be removed. The second and third preamble signals can
therefore be detected with less interference from the serving BS. The second scheme refers to the
enhanced LBS support [24] [25] in the JEEE 802:16m standard, which allows a specific enhanced
LBS waveform to be transmitted. From. the-MAG-layer perspective, designated BSs are grouped
together as preamble location groups (PLGs) in order to form a DL LBS zone (D-LBS zone). Each
PLG transmits a preamble signal in a different time slot, which reduces the number of concurrent
preamble transmissions to efficiently reduce the inter-cell interference. A cell-grouping example
which adopts the coordination of three BSs to mitigate the inter-cell interference is desrcibed in
this chapter. Clearly, there will be less inter-cell interference as compared to the case where the
BSs are simultaneously broadcasting preamble signals. The limitation of the UL performance is
the hearability problem, i.e., the received signal quality at the neighboring BS is worse. Note that
this is a fundamental conflict between the cellular concept and positioning requirements. In other
words, cellular is based on signals only being heard by a single base station (or perhaps two or more
for diversity) to maximize spatial reuse. Position location, on the other hand, is improved by having
many base stations receive the signal which would result in reduced spatial reuse. The hearability
problem comes from: (a) The maximum transmission power of the MS is less than a half of the
transmission power of the BS; (b) Power control to the serving BS is performed. The comparisons
between the basic, enhanced DL and the basic UL positioning techniques are illustrated in this
chapter with a detailed performance evaluation.

To summarize, the contents that will be covered in this chapter are as follows:
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e The basic features of cellular-based positioning in next generation 4G systems (as exemplified
by the 802.16m standard) will be illustrated.

e The detailed procedures for both UL and DL timing measurements (e.g., TDOA) for posi-

tioning will be described.
e The impact of TDOA on positioning in the DL and UL will be assessed.

e System-level simulations for an IEEE 802.16m compliant system will be performed including

the effects from multipath, shadowing, and inter-cell interference.
e The limiting factors for positioning accuracy will be discussed.

e Two approaches for dealing with inter-cell interferences on the DL transmission (specifically,

signal processing and scheduling methods) will be compared and discussed.

3.2 An Overview of LBS in 4G Telecommunication Systems

The support for LBS in the IEEE 802.16m.standard is classified into two categories: (a) basic
LBS (b) enhanced LBS support. -The basic ‘LlBS support, refers to the scheme that it can be
performed with the predefined sequences such as the preamble sequences or the ranging codes.
The enhanced LBS support such as D-LBS zene includes special location beacons which should
be coordinated by multiple BSs. “In\this section; we focus on the options of applying TDOA
measurements for both basic and enhanced LBS, which are considered suitable for the cellular-

based positioning.

3.2.1 Basic LBS Support: DL Preamble Measurements

The IEEE 802.16m standard adopts an OFDMA based technique, which implies that the MS
and the serving BS should synchronize in both time and frequency domains in order to receive the
data correctly. Therefore, it is necessary to place a preamble sequence in each OFDMA frame.
The preamble sequence has good autocorrelation properties which is helpful for time and frequency
synchronizations. Meanwhile, the system information, including system bandwidth, carrier config-
uration, cell identity (cell ID), and sector ID, is also carried in the preamble sequence. Therefore,
with proper cell planning, the MS can detect the preamble sequence of the serving BS. Note that
preamble sequences can also be utilized for channel estimation.

Figure 3.1 illustrates the frame structure of the IEEE 802.16m standard [20]. It is noted that
the superframe contains four frames and each frame occupies 5 milliseconds. The DL subframes
and UL subframes are further partitioned in each frame. There are three different designs to carry
the information of BSs as follows: (a) Primary advanced preamble (PA-preamble) contains the

information about system bandwidth and carrier configuration; (b) Secondary advanced preamble
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Figure 3.1: Frame structure with the hierarchical preamble design and the location of the D-LBS zone
beacon in the IEEE 802.16m standard [20].

(SA-preamble) contains one of the 768 different cell-IDs for the MS to distinguish the sender; and
(c) The superframe header provides system parameters and the configuration of the BSs. Advanced
preamble (A-preamble) design in the IEEE 802:16m standard is hierarchical, containing one PA-
preamble and three SA-preambles in'each superframe. The design of the A-preamble position allows
the MS to first decode the PA-preamble. (e.g., in frame 1 of superframe 1) and then decode the
SA-preamble three times (e.g., in frames 2 and; 3 of superframe 1 and frame 0 of superframe 2) to
assure correctness before decoding the superframe header (e.g., frame 0 of superframe 2).

In the following, we address how the A-preamble works and why a preamble sequence is im-
portant to an OFDMA system by an initial access example. The MS scans for the A-preamble
to synchronize with the frame time. Once the PA-preamble is decoded, the system bandwidth
and carrier information of the BS are obtained. Matching the SA-preambles further provides the
DL physical layer synchronization with an identified target cell. Afterwards, the MS decodes the
superframe for acquiring the system essential information to complete the MAC layer DL synchro-
nization with the target BS. Furthermore, the MS also needs to synchronize to the UL subframe in
order to provide authentication and to transmit without interfering with the other user. The UL
ranging process will be introduced in the next section.

After synchronization with the target BS, the MS will receive information about the neighboring
BS from the target BS. The SA-preamble and the coordinate of the neighboring BS can be obtained.
For purpose of location estimation, preambles can be utilized for timing measurements. The original
purpose of the A-preamble design was to allow the MS to detect the strongest A-preamble and to

synchronize to a target cell in a short period of time. However, in the two-dimensional (2-D)
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localization problem, at least three BSs are required to be involved for the timing measurement
process. In order to distinguish different A-preambles coming from various cells, SA-preambles
that carry different cell-IDs are utilized for the timing estimation. It is noted that the original
purpose of synchronization to the target cell and the location estimation problem are somewhat
contradictory with each other. The design of the synchronization process only requires one of the
strongest BS to be received; while location estimation needs signals from at least three BSs to be
concurrently received which violate the design principle of the preamble. In the next section, we
will discuss the effect of inter-cell interference to the performance of location estimation by directly

measuring the timing information with several SA-preambles from different cells.
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Figure 3.2: Function blocks of DL preamble transmission and reception for an OFDMA system.

In Figure 3.2, function blocks of the location determination process utilizing a DL preamble mea-
surement are illustrated. It is noted that different positioning techniques adopt different sequences
as the input of the TOA estimation algorithm. In DL basic LBS support, the MS measures the
broadcasted SA-preambles for TOA estimation. The SA-preamble is formed by quadrature phase-
shift keying (QPSK) symbols and grouped into sub-blocks. At the transmitter (i.e., the BS) side,
the SA-preamble is allocated to an orthogonal subcarrier in the frequency domain. Each sub-block
contains three different SA-preamble carrier sets mapping to three sectors consecutively with right
circular shift. For example, in an OFDMA symbol, the number of subcarriers allocated to each sec-
tor is 288 (i.e., three sectors occupy 864 subcarriers) for a 1024 point fast Fourier transform (FFT)
transmission mode in the IEEE 802.16m standard. The time domain signal of the SA-preamble

which is obtained after taking an inverse fast Fourier transform (IFFT) of length Np is denoted as
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sin of the ith BS, i.e.,

Np—1

1
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k=0
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X, re n=0,.,.Np—1 (3.1)
X, i, indicates the kth subcarrier of an OFDMA symbol which is allocated by the SA-preamble of
the ith BS. T, represents the sampling period which is defined according to the bandwidth usage
in the IEEE 802.16m standard. sgt) denotes the transmitted OFDMA signal of the ith BS which
is processed using the IFFT of SA-preamble and the digital to analog conversion at time ¢t. The
Cyclic prefix (CP) is inserted in the front by copying the last N¢o samples of the symbol. The
inter-carrier interference due to the delayed subcarriers can be eliminated efficiently through CP
insertion. Further, the CP requires simple frequency domain processing due to the circular shift
property of FE'T. The length of the CP is described by a defined ratio g, i.e., No = g- Np, and the
ratio differs based on the transmission mode (e.g., g = 1/8) to overcome multipath effects.

Considering channel fading effects, the signal received by the MS can be represented as g as

Nps—1 'L

¢ = 7 ai(@pst ) 1 o (3.2)

i=0 f=1

where Npg is the number of BSs-that transmit their SA-preambles simultaneously. In the LBS
evaluation model in [26], Npg is set-as 19 by considering the-transmitting effect of two-tiers of cells.
L is the total number of the multipath.taps. «;(¢) denotes the channel gain of the ¢th path. 7;(¢)
represents the travel time from the ith'BS: te-the-MS of the fth path which contains the line-of-
sight propagation time and the channel delay caused by the mutlipath fading. v(®) denotes additive
white Gaussian noise (AWGN). By removing the CP, the time domain received signal r,, can thus
be obtained by analog to digital conversion. In (3.2), non-line of sight (NLOS) propagation causes
both power and delay effects. The path gain «;(¢) of the NLOS signal suffers higher shadowing
variance, higher attenuation, and penetration loss by traveling through walls. The delay of 7;(¢)
is biased by the power-delay multipath model. The first arriving path will not necessarily be
the strongest signal because of multipath unresolvable. Moreover, all the BSs broadcast the SA-
preamble simultaneously (i.e., consider the summation in (3.2)), which can cause severe inter-cell
interferences.

It is noted that the time frames broadcast by the BSs are considered to be aligned in the IEEE
802.16m standard. After the MS achieves physical layer synchronization, the SA-preamble of the
serving BS and the SA-preambles of the neighboring BSs can be obtained. Since the serving BS
and the neighboring BSs broadcast their SA-preambles concurrently, the TDOA is estimated from
the difference in the arrival time between the serving BS and the neighboring BSs. To implement

this, the cross-correlation p;, between the received signal and the SA-preamble of the ith BS can
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be calculated as

Ng—1
Pim = Z Sintk n n=0,..,Ng—1 (3.3)
k=0
where the % symbol denotes the conjugate operation. N represents the detection window and the
size of N4 can be determined by the inter-cell distance between the BSs to reduce the detection
complexity. The parameter p;, will be compared to a predefined threshold to avoid false alarm.
The timing estimate #; from the ith BS to the MS can be calculated by

ti =argmaxp;, n=0,..,Ng—1 (3.4)
Based on the system requirement of the IEEE 802.16m standard, the location determination

process should be completed in 1 second. Therefore, the timing estimation #; can be performed

several times and take an average as

Ny =1

=Y 12 (3.5)
=0

where N,, denotes the number of frames for non-coherent combining which increases the accuracy
by averaging the fast fading effect.”The TDOA measurement ¢;o can be obtained by computing the
time difference of arrival between the ith BS and:the serving BS (i.e., the BS with the index 0) as

>

tio = t; “Hgri=dii 2 Ngg — 1 (3.6)

By collecting at least two TDOA measurements, 2-D location estimation can be performed. The
Gauss-Newton method of the nonlinear least squares method is chosen to evaluate the LBS perfor-

marnce.

3.2.1.1 Basic LBS Support with Interference Cancellation

In order to limit the interference from concurrent transmissions, interference cancellation was
proposed in [23] which subtracts the signal coming from the serving BS in order to increase the
accuracy of TDOA estimation. The main idea of the scheme is to utilize the channel information
of the serving BS (i.e., BSp), which can be obtained such that the MS can decode data. Therefore,
the time-domain SA-preamble signal from the serving BS (i.e., s((]t)) can be reconstructed using the

IFFT. By subtracting the SA-preamble of the serving BS assuming perfect channel estimation, the
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received signal can be written as

Nps—1 L
¢ =3 S ai(0) s 400 (3.7)
i=1 /=1

As the example shown in Figure 3.3, the interference from sector 1 of BSy to sector 1 of BS;
and that from sector 2 of BSy to sector 2 of BSy can consequently be mitigated. By employing
interference cancellation, the interference can be effectively limited at the cost of a more complex

receiver design.

3.2.2 Enhanced LBS Support: D-LBS Zones

In the IEEE 802.16m standard, enhanced LBS support is specified for the BS to transmit
a special waveform for the purpose of LBS in order to enhance measurement accuracy. Figure
3.1 illustrates an example of D-LBS zone [24] [25] for enhanced LBS support. One D-LBS zone
contains four superframes. The original superframe contains SA-, PA-, SA- and SA-preambles
for signal synchronization. The D-LBS" beacon-is placed at the beginning of the last frame to
replace the position of the SA-preamble, i.e., the sequence. is SA-, PA-, SA-preambles followed by
the D-LBS beacon. In basic LBS ssupport, each sector. transmits a different SA-preamble, which
is recognized as a cell-ID. A cell-ID contains the index of the sector n (e.g., n = 0, 1 and 2) and
the index of the BS m, e.g., cell-ID = 256"n + m. In enhanced LBS support, the concept of
LBS zone is to partition all cell-IDs into: @ PLGs to efficiently handle inter-cell interference, e.g.,
PLG-# = mod(mod(cell-ID,256),Q), where.mod represents the modulo operation. All the sectors
should transmit the same SA-Preamble sequence in D-LBS zone. Note that there are a total of four
superframes and each can be allocated to three different carrier sets for a D-LBS zone as shown in
Figure 3.1. The D-LBS transmission can be scheduled with a predefined pattern. The partitions
of PLGs are designable to enhance the LBS performance. In order to evaluate the effectiveness of
the LBS zone method, a cell-grouping example that efficiently mitigates the inter-cell interference
for the purpose of LBS is explained as follows. It is noted that 2-D location estimation using range
estimate (i.e., lateration) requires at least three BSs. Therefore, cell grouping by utilizing frequency
reuse within three cells is illustrated in Figure 3.3. Since the minimum number of BSs involved in
a location estimate is 3, there are a total of 3 PLGs in this example. In the symbol of the LBS zone
shown in Figure 3.1, the BSs belonging to PLG-0, PLG-1, and PLG-2 should transmit the signal
accordingly. The MS can measure the corresponding PLGs of neighboring BSs as the indication
from the serving BS.

By mapping this frame structure to the layout in Figure 3.3, the MS of the quadrangular with
the solid-line can measure the preamble and pick the strongest PLG-0 of BSy, PLG-1 of BSy, and
PLG-2 of BSs to perform location estimation. The MS of the quadrangular with the dotted-line can
measure another preamble set and pick the strongest PLG-0 of BSy, PLG-1 of BS; and PLG-2 of BSg
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Figure 3.3: An example of PLGs of.a D-LBS zone-with the deployment of the MS and the BSs for the
LBS performance evaluation.

to perform location estimation. Therefore, PLG assignment can be considered similar to the concept
of frequency reuse. The benefit of the assignment is to schedule all the six concurrent transmissions
in the same frequency band at least two cells away, e.g., PLG-0 of BSy and PLG-0 of BSg. Therefore,
the PLGs help to mitigate the inter-cell interference by scheduling the transmissions in different
time slots. The scheduling which sacrifices the transmission bandwidth (i.e., LBS zone replaces the
original synchronization slot and delays the average synchronization time) can effectively increase
the location estimation accuracy. There are different methods to determine the PLGs and the
transmission pattern. More PLGs can result in less inter-cell interference; however, the LBS will

require more time slots to complete the timing measurement process.

3.2.3 Basic LBS Support: UL Ranging Measurements

The ranging scheme is conducted by the MS sending its assigned ranging codes to the serving
BS in order to measure the UL distance related parameter, e.g., the timing advance value. In order
to illustrate the design concept of the ranging channel, the synchronization process to the UL is

illustrated. Providing that an MS intends to join an IEEE 802.16 network, it conducts ranging with
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the serving BS to obtain the synchronization parameter for UL communication. At first, the MS
should listen to the BS’s broadcast message to capture the ranging opportunity in the advanced
map (A-MAP), which indicates the transmission opportunity in other words the time slots during
which the MS can receive and transmit data. The MS conducts contention-based initial ranging
to obtain related parameters and then the MS is permitted to join the network. After the MS
establishes a link with its serving BS, the MS performs periodic ranging in order to maintain
synchronization while the MS moves or the channel conditions vary.

It is noted that the timing advance value (i.e., tyq, in Figure 3.4) is the round-trip time between
the MS and the serving BS. The timing advance information is utilized to reserve the proper timing
for the UL transmission. By performing the ranging scheme, the serving BS measures the timing
adjustment according to the previously recorded timing advance information to update the distance
between the MS and the serving BS. In order to support for the MS’s mobility, a scanning scheme
is specified for the MS to perform ranging with its neighboring BSs. With the negotiation between
the serving BS and neighboring BSs, the scanning scheme can directly obtain ranging opportunities

without contention.
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Figure 3.4: The timing diagram of the special U-TDOA measurement proposed in the IEEE 802.16m
standard [20].

The frame structure of the ranging channel for non-synchronous MS format 0 is illustrated in
Figure 3.5. It is noted that the MS will not synchronize to both its serving BS and the neighboring
BSs simultaneously. The neighboring BSs provide the dedicated ranging channel opportunity for
non-synchronous MS by assigning the ranging code through the serving BSs. As shown in Figure
3.5, the six symbols duration (i.e., 6T, +67T}) is not entirely occupied by the ranging preamble (RP)
and ranging cyclic prefix (RCP). The remaining time duration is reserved to prevent interference
between the adjacent subframes. The ranging code is generated with Zadoff-Chu sequences and

the length of the RP code is defined as Npp = 139 for format 0. Compared to the DL pream-
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Figure 3.5: Frame structure of ranging channel for non-synchronous MS in the IEEE 802.16m standard
[20].

ble measurement, the UL ranging measurement requires negotiation between the serving and the
neighboring BSs. In order to describe how UL TDOA (U-TDOA) works, the timing diagram and
the measurement procedure are explained as follows. It is noted that the special TDOA method
specified in the IEEE 802.16m standard can be considered as the case that the frequency reuse
factor is equal to one. Therefore, the serying BS and the neighboring BSs can negotiate a ranging
channel in the same OFDMA subframe to process the.TDOA measurement.

Figure 3.4 illustrates the timing:diagram of the special U-TDOA measurement. The serving BS
and the neighboring BSs first negotiate a ranging channel and send ranging information to the MS.
For example, the frame time of the serving BS'and the neighboring BSs are aligned while the frame
time of the MS is added with the propagation delay: compared to that from the serving BS. The
granted slot is the original assigned ranging channel indicated by A-MAP. The UL transmitted burst
indicates the actual time at which the frame is transmitted and the UL received burst indicates
the actual time at which the frame is received.

Due to the delay of the time frame at the MS, the ranging code is sent to the MS at a timing
advance prior to the granted time. The serving BS and the neighboring BS measure the timing
adjustment t_adj, and t_adj, respectively, and the neighboring BS reports t_adj; to the serving
BS. The timing advance value t_adv remains the same since the MS does not make any timing
adjustments while conducting ranging with both the serving and the neighboring BSs. Therefore,
the serving BS calculates the time difference t19 = (t-adj; — t_adj,).

Figure 3.6 illustrates the message exchange sequences for the special U-TDOA measurement.
The serving BS negotiates with neighboring BSs to assign a dedicated ranging opportunity for the
MS. Through the ranging response (RNG-RSP) message, the serving BS will assign a rendezvous
time, a ranging code, and a transmission (Tx) opportunity offset for the MS. When the rendezvous
time has expired, the MS will transmit the allocated ranging code within the regular ranging
region. The involved BSs reserve a granted slot and measure the arrival time by utilizing the
timing estimation method described in the previous section. The neighboring BSs will send the

timing adjustment value to the serving BS. Therefore, the serving BS can calculate the position of
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Figure 3.6: The message exchange sequences of the special U-TDOA measurement method proposed in
the IEEE 802.16m standard [20].

MS to complete the U-TDOA measurement.

As for the timing estimation of the UL-case, the serving BS and the neighboring BSs perform
timing estimation similar to the DL case-in-the previous-section. The difference of the received
signal q(t) by the ith BS can be denoted as

)

~

N ol 39
=1

In the special U-TDOA case, the BSs participating to measure the TDOA will receive the same
signal (i.e., the ranging code) with different channel gains and AWGN noises. However, if the
other BSs that are not involved in the measurement schedule a transmission in the same channel,

interference [ ®)

; will occur to the ith BS. The inter-cell interference from the UL transmission can

be mitigated by adopting power control. However, the number of BSs involved for the LBS will

also be limited since power control decreases the transmission range.

3.3 A Case Study: LBS Performance of the IEEE 802.16m

In the section, the main focus is to evaluate the LBS performance of the IEEE 802.16m stan-
dard. Link level simulations are performed to evaluate the robustness of the preamble and ranging
sequence design against the multipath channel at different signal-to-noise ratio (SNR) values. As
for the system level simulation, the evaluation methodologies of DL and UL LBS performance are
described respectively. In general, DL system level performance is easier to set up and analyze
since concurrent transmission only happens at the BSs. It is noted that different positioning tech-

niques, i.e., the basic and the enhanced LBS support, for the DL LBS will be compared. As for
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Table 3.1: LBS evaluation parameter for the IEEE 802.16m Standard[26]

| Scenario \ Parameters | Baseline |
Cell to Cell Distance 1.5 km
Network topology Hexagonal deployment, 19 cells, 3 sectors
Carrier 2.5 GHz
Operating Bandwidth 10 MHz
Sampling Frequency 11.2 MHz
FFT size (Nr) 1024
Frame Length 5 msec
BS Maximum Transmission Power 46 dBm
MS Maximum Transmission Power 23 dBm
Pass Loss Model Loss(dB)=130.19+37.6logi10 R
Lognormal Shadowing Standard Deviation 8 dB
Small Scale Channel Model ITU-PedB 3 km/hr
Propagation Delay The real propagation delay from MS to BS
BS&MS Antenna Gain 17 dBi & 0 dBi
BS Antenna 3dB Beamwidth 70°
BS Antenna front-to-back ratio 20 dB
Penetration Loss 10 dB
Noise Figure of MS 7 dB
Detection Window Size (Ng) 192
Non-coherent Combing Frames (V) 10

the UL system level simulation, concurrent transmission will depend on the number of MSs in a
cell, the traffic load and the scheduling method. The UL simulation is performed by introducing

an interference over thermal (IoT)tatio to simulate the inter-cell interference at the BS side.

3.3.1 Link Level Simulation: TOA Estimation of the IEEE 802.16m Standard

In a location estimation problem, there are multiple links with different channel conditions
between the MS and the BSs. Before a system level simulation, the purpose of performing a link
level simulation for the timing estimation is to examine the performance of the SA-preamble and
ranging sequence. In general, it takes longer time to conduct a system level simulation. The result
of the link level simulation provides the information about the channel conditions and helps us to
further decide which parameters should be adopted before the system level simulation is conducted.

The evaluation model of LBS [26] is listed in Table 3.1. The 10 MHz bandwidth mode is
utilized for performance evaluation. For 1024-FFT, the number of subcarriers allocated to each
SA-preamble carrier is 288. The non-synchronous ranging channel format 0 is adopted as shown
in Figure 3.5 and the number of subcarriers in each symbol is 139. The channel effect includes
the SNR to simulate different channel gains against AWGN and multipath effects. The multipath
power delay profile adopted in the LBS evaluation methodology [26] is a modified ITU pedestrian
B (eITU PedB) channel [27]. It is noted that there are a total of 24 paths in the eITU PedB model
and the root mean square (RMS) delay spread of eITU PedB is around 640 nanosecond (nsec), i.e.,
192 meters. TOA RMS error is defined as the root mean square error between the estimated TOA
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Figure 3.7: Link level simulation: TOA RMS error (in meter) versus SNR.

t(j) and the true TOA 7, i.e., TOASRMS crron= [Zévzrl |T — t(§)||?/N; 1/2, where N, = 2,000
indicates the number of simulation-rins.“TOA RMS error-versus SNR is utilized to examine the
effectiveness of the ranging sequences in Figure 3.7. TOA RMS error with a preamble sequence
(i.e., DL) is approximately 125 meters and that with ranging sequence (i.e., UL) is approximately
155 meters in the N,, = 1 case. Both DL and Ul schemes can achieve better timing estimation
than the RMS delay of the eITU PedB: multipath~channel profile (i.e., 192 meters) when SNR
is larger than -5 dB. When the SNR is lower, e.g., when the transmission distance is longer or
the shadowing effect is more severe, the timing estimation would be worse. The DL preamble
sequence has more subcarriers (i.e., in frequency domain) as compared to the ranging sequence,
i.e., 288 vs 139. Therefore, TOA estimation performance on the DL is better than that on the UL
under higher SNR conditions. The UL channel utilizes two consecutive symbols in time domain for
timing estimation as shown in Figure 3.5. It is noted that the channel conditions of each trial is
generated independently. However, the channel conditions remain the same for consecutive symbols
on the UL. Therefore, UL transmission takes advantage of longer ranging channel time to estimate
under lower SNR, condition. The performance of non-coherent combing is examined for the case of
N, = 10. It is also noted that estimation error 67% of the time (i.e., the statistical meaning of the
RMS value) should be less than 100 meters. TOA RMS errors using the DL preamble and the UL
ranging sequence are around 50 meters and 85 meters respectively. With practical considerations
for the number of non-coherent combinations, IV,, = 10 is adopted in the system simulation in the

following sections.
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3.3.2 System Level Simulation: DL LBS Performance of IEEE 802.16m Stan-

dard
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Figure 3.8: The SINR distribution of the'deployed MS in Figure 3.3.

In this section, the performance of DL system level simulations are presented. It is noted that
the DL preamble measurement described in section 3.2.1"is one of the most applicable schemes
for basic LBS support in the IEEE 802.16m standard. /The evaluation model of LBS [26] is listed
in Table 3.1. Three-sector antennas with directional gains are applied for each sector. For SA-
preamble transmission, the BSs radiate the maximum allowable power at 46 dBm. Path loss,
penetration loss, shadowing fading, and multipath fading are considered for the channel model.
The simulation is performed after initial synchronization, i.e., a random uniformly distributed +10
sample intervals is assumed for initial synchronization accuracy. After CP removal with simulated
initial synchronization error, the timing estimation of the received signal (3.2) is performed by
finding the maximum correlation within the detection window.

The cell deployment is shown in Figure 3.3 where the cell to cell distance is 1.5 km. Two-
tiers of (i.e., Nps = 19) BSs are simulated for the concurrent transmissions between different
BSs. Moreover, random OFDMA data is appended after the SA-preamble in order to simulate the
data transmission of each BS. In Figure 3.3, it is noted that the MS to be estimated is uniformly
distributed in the quadrangle with the solid-line. The region covered by the quadrangle with the
solid-line is the closest area to the serving BS (i.e., BSy) and the two neighboring BSs (i.e., BS; and
BSs). The positioning accuracy of the MS obtained from this region can be assumed to represent
the performance of the MS at any place near the three closest BSs. The distribution of the signal to
interference plus noise ratio (SINR) of the MS is illustrated in Figure 3.8. The expected strongest
received signals from different BSs for the MS located in the region are sector 0 (S0) of BSy, sector
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Figure 3.9: The TDOA estimation error (in meter) of the deployed MS in Figure 3.3.

1 (S1) of BS; and sector 2 (S2) of BSe. It is noted thatthe SINR of the signal from BS; is larger
than that from BSo because of the‘gain of the sector antenna. More specifically, the gain is larger
at the center of the sector than at-the side of the sector. It-should also be noted that the serving
BS of the quadrangle with the solid-line is BSg, which also serves as the reference of the TDOA
measurement in the simulation.

Figure 3.9 illustrates the TDOA performance between the BS1, BSe and BSy. It is noted that
the performance of the TDOA measurement, will be affected by interference as shown in (3.2).
Therefore, with the same reference BS (i.e., BSp), the TDOA performance (i.e., t19 and top) is
proportional to the received SINR of the neighboring BSs (i.e., BS; and BS3). With the higher
received SINR of the neighboring BS, the TDOA error is more concentrated around the zero point.
In Figure 3.9, the eITU PedB line represents the performance in the presence of both multipath
and AWGN effects, while the AWGN line represents the case where there is no multipath in order
to investigate multipath effect on the estimation. It can be observed that multipath degrades the
TDOA estimation performance.

The location estimation performance of DL preamble measurement method using different num-
bers of non-coherent combinations (V) is depicted in Figure 3.10. The Taylor series approach for
location estimation [22] method is adopted in the simulation. The initial point for the MS in the
Taylor series expansion is set to be the central point of the received BSs. The estimation is calcu-
lated iteratively at most 10 times. The AWGN line here serves as an upper bound for the severe
interference environment. Even though multipath effect is not present in the AWGN cases, the
performance of basic LBS support still cannot reach the required accuracy defined by E-911. The

simulation is also performed with different values of N,. Path loss and shadow fading are con-
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Figure 3.10: Position error of basic LBS support with different number of non-coherent combing.

sidered the same for all the links during multiple transmissions combined during the non-coherent
combining. Therefore, a larger IV,, ¢an mitigate only the multipath effect, but not shadowing effect.
On the other hand, there is no significant improvement for the AWGN channel with the increment
of N,. The proper choice of N,, can help to reduce multipath fading and increase the system per-
formance. However, with increased value of IV, it will take'a longer time to complete the location
determination process. Similar to the‘conclusion of the link level simulations, N, = 10 is chosen to
consider the performance and computation’ tradeoffs.

The original design of the preamble is to assist the MS to quickly identify the cell ID and
achieve synchronization with a single BS, i.e., the serving BS. However, in the location estimation
problem, at least three measurements with sufficient signal quality should be obtained from the
BSs. There is a tradeoff between the preamble detection and timing estimation from the three
BSs. For example, providing that the MS is located nearby its serving BS, a strong preamble
signal coming from the serving BS will cause severe interference to the preamble signals from the
other neighboring BSs which can deteriorate the positioning accuracy of the MS. This is the major
reason why simply using the DL preamble measurements in the basic LBS support will not bring
satisfactory performance for location estimation.

Figure 3.11 shows a comparison of the positioning accuracy for DL preamble measurements with
the layout in Figure 3.3. It is noted that basic LBS support by utilizing the SA-preamble for DL
measurement will not waste additional channel bandwidth. Without adopting advanced positioning
techniques, it is observed that the positioning accuracy cannot reach the system requirements that
are defined in the IEEE 802.16m standard, i.e., less than 100 meters of estimation error 67% of the

time and less than 300 meters 95% of the time. Inter-cell interference is considered the dominant
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Figure 3.11: Performance comparison between the DL basic and enhanced LBS support.

limiting factor compared to the others, e:g., multipath-effect. The BSs that simultaneously broad-
cast their preamble sequence result“in inter-cell interference to limit the performance of basic LBS
support.

As for interference cancellation within the basic. LBS support, channel estimation is assumed
to be perfect in the simulation. In other ‘words, the green curve can serve as an upper bound
for interference cancellation scheme. < In this situation, timing estimation is performed after the
neighboring BSs perfectly cancel the SA-preamble of the serving BS. Without the interference from
the serving BS, the SINR of the preamble signals from the neighboring BSs increases. Interference
cancellation improves the performance of the basic LBS support. Moreover, compared to the
basic LBS support, enhanced LBS support mitigates inter-cell interference by transmitting the
SA-preamble in different time slots. In the simulation, 3 PLGs are applied and the partitions
of the sectors are shown in Figure 3.3. The location determination process of enhanced LBS
support requires three symbols in average to obtain DL measurement. The inter-cell interference
by adopting the grouping of BSs comes from the BSs at a distance equal to twice the distance away.
In Figure 3.11, the red curve shows that the performance of enhanced LBS support can reach the

requirements for E-911 location estimation.

3.3.3 System Level Simulation: UL LBS Performance of IEEE 802.16m stan-
dard.

In this section, UL TDOA simulations are performed with the same setup as the DL case in
Table 3.1. It is noted that the transmission power of the MS (i.e., 23 dBm) is smaller than that
of the BS. Therefore, the received signal quality of the neighboring BS is worse due to the smaller
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Figure 3.12: The SINR distribution at the BS side transmitted by the deployed MS in Figure 3.3.

received signal strength. Meanwhile; the power contrel of the MS is required to avoid causing
interference to the users in the other cells:—In the simulation, the received SNR at the BS is fixed
at 10 dB. It is noted that the MS broadcasts the ranging signal to the serving and neighboring BSs
in special TDOA scheme. Due to_power control, the maximum transmission power from the MS
is set to force the received SNR at the serving BS equal'to 10 dB. Therefore, the quality of the
transmission to the neighboring BSs is limited.

As for inter-cell interference, it is noted that ranging channel assignment requires negotiation
between BSs. However, even if the subcarrier is assigned between the involved BSs, the other BS
which have transmission in the subcarrier would still cause inter-cell interference. In general, the

inter-cell interference can be modeled as IoT,
1
IoT(dB) = 10log N (3.9)

where I represents the interference power and N represents the noise power. With the IoT definition,
the SINR can be calculated from the SNR and IoT as

= 10log é + 101log

INR(dB) = 101 —
SINR(dB) = 10log 1= N I/N +1

(3.10)
In the simulation, the distribution of IoT is Gaussian with mean [0, 3.5, 7] dB and variance 3 dB.
Based on the SNR and IoT setting, the power control is to force the maximum received SINR at
the serving BS to [7, 4.9, 2.2] dB respectively. For example, an IoT of 0 dB refers to the case where

the interference power is the same as the AWGN noise power. Therefore, the SINR value can be

34



3.3. A Case Study: LBS Performance of the IEEE 802.16m

100
90+
gof AWGN =" o o= - =T T 4
g
g /01 ]
1]
k%]
3 6of 1
<
U soff: 1
s -
W 40Hf- J
c
S
5 30rF AWGN, 10T=0dB |
a : elTU PedB, 10T=0dB
201 |- - = = AWGN, [oT=3dB [
At = = =elTU PedB, loT=3dB
OG- AWGN, loT=7dB 1
©+ elTU PedB, 10T=7dB
0 i i ‘ :
0 100 200 300 400 500

Position Error (m)

Figure 3.13: Position error of basic UL LBS support with different IoT.

calculated as SINR = 10 + 101log[1/(1'+1)] = 10 —3=7 dB. o

The transmitted MS is located. uniformly in the quadrangle with the solid-line in Figure 3.3.
The received SINR of the serving BS «(i-e.; BSg) and the two neighboring BSs (i.e., BS; and BSs)
is illustrated in the Figure 3.12. Due to the power limitation of the MS and the power control
scheme, the hearability problem occurs in a.certain region, e.g., when the MS is close to the serving
BS, the ranging signal cannot be detected at the neighboring BSs. It can be observed that nearly
20% of the received SINR values of BS; and;BSs are worse than -20 dB in Figure 3.7. Figure 3.13
illustrates the accuracy of special UL TDOA method. It is noted that larger IoT which is regarded
as larger inter-cell interference to UL transmission causes worse location estimation performance.
However, even the light inter-cell interference (i.e., IoT = 0 dB) in the multipath-free case (i.e., as

the AWGN case) can still suffer from the hearability problem in the UL case.

3.3.4 Comparison of DL and UL LBS

In the section, the pros and cons of DL and UL measurements are assessed. From the perfor-
mance point of view, basic LBS support cannot satisfy the LBS performance requirement since the
95% of the time the error should be less than 300 meters, which it isn’t as shown in Figures 3.11
and 3.13. Tt is noted that 20% of the positions for DL basic LBS support and 15% of the positions
for the UL basic LBS support cannot be estimated with satisfactory performance. Although the
DL signal is transmitted with higher transmission power by the BS, inter-cell interference limits
the possibility of having multiple reliable TOA measurements concurrently. On the other hand,
inter-cell interference 1Y) can be mitigated by the negotiation and scheduling scheme on the UL.

By comparing (3.2) and (3.8), there is less interference for UL TDOA. However, the received signal
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quality is limited due to the smaller transmission power of the MS especially when combined with
power control, which will cause hearability problem to occur in certain regions. In general, basic
UL TDOA is considered to provide better location estimation accuracy than that from basic DL
TDOA. However, the limitation due to inter-cell interference from concurrent transmissions on DL
can be easier to deal with as compared to the hearability problem for the UL. The D-LBS zone
method efficiently eases inter-cell interference and satisfies the performance requirement.

From a complexity point of view, UL measurement results in higher system complexity since
negotiation between the BSs is required. Localization determination time of the UL scheme is
also longer since the BSs should wait until all the measurements collected through the backbone
network from the neighboring BSs have been communicated. On the other hand, the MS has all
the measurements and does not require extra measurement exchange for DL approaches. The other
issue is that the power consumption of transmitting signals is regarded to be larger than receiving
signals. Therefore, UL TDOA will consume more power which can be an important issue at the
MS side. Consequently, from an implementation point of view, DL, TDOA is considered to be more

suitable in practical systems.

3.4 Concluding Remarks

This chapter describes cellular-based location estimationusing timing estimates for next gener-
ation telecommunication networks..Different ranging techniques are introduced and simulated with
the standard location-based service (I.BS)evolution methodology. By studying the performance of
the downlink (DL) preamble measurement, inter-cell interference is found to be the limiting factor.
On the other hand, uplink (UL) ranging measurement suffers hearability problem. Neither DL nor
UL basic LBS support can achieve the performance requirement of emergency 911 (E-911). In DL
measurements, the mobile station (MS) measures the secondary advanced preamble from the BSs
which results in less network information exchange between base stations (BSs) and less power
consumption. The properties provide the feasibility for DL LBS to be implemented in practice.
Furthermore, the performance of the basic LBS support can be enhanced by adopting inter-cell
cancellation methods at the physical layer or interference avoidance at the media access control
(MAC) layer. The former approach utilizes signal processing techniques to cancel the interference
with channel estimation. The performance for location estimation can be enhanced at the cost of
increasing complexity at the receiver. On the other hand, the latter approach groups the preamble
location groups (PLGs) to schedule concurrent transmission of BSs located within two cell-to-cell
distances. The simulation results confirm that enhanced LBS support satisfies the requirement for

E-911 positioning accuracy.
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Chapter 4

Geometric Analysis of Linear Least
Squares Estimator for Wireless

Location Systems

- Linear estimators, including the ‘wellsadopted linear least squares (LLS) estimator, have been
extensively utilized for wireless location estimation for thewr simplicity and closed-form property.
However, the analysis of this class of estimators-has not been addressed in the literatures. In this
chapter, the linearized location estimation problem-based (CRLB (L-CRLB) is derived to provide a

geometric portrayal in order to fully<characterize the behavior of the linearized location estimator.

4.1 Introduction

It is recognized that the equations associated with the TOA estimation schemes are inherently
nonlinear. The uncertainties induced by the measurement noises make it more difficult to acquire
the MS’s estimated position with tolerable precision. There are several representative techniques
which are widely utilized in practical localization systems to deal with the nonlinear location
estimation problem (LEP) (i.e., Problem 1.1), such as the Taylor series expansion (TSE) [22] based
method, the fingerprinting method, and the linear least squares (LLS) [16] method. The TSE
method approximates the localization problem by taking the first two orders of Taylor expansion
on the measurement inputs. Initial MS’s position estimate and the iterative processes are required
to obtain a location estimate from the linearized system based on the TSE scheme. The major
drawback of the TSE method is that it may suffer from the convergence problem due to an incorrect
initial guess of the MS’s position. The pattern-matching localization based on the fingerprinting
approach [28, 29, 30, 31] is another popular method for the LEP, e.g., RADAR in [28]. However, a

large amount of measurements are required to be collected from a database before the estimation.
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On the other hand, the original nonlinear estimation problem can be transformed into a linear
relationship for the computation of MS’s position by introducing an additional variable. This type
of linearized methods deal with the linearized location estimation problem (L-LEP) and will be the
major discussion in the chapter. In general, the LLS is one of the popular techniques to solve the
L-LEP in practical localization systems, e.g., the Cricket system [32], and has been continuously
investigated from research perspectives [33, 34, 17, 35, 21]. Moreover, the closed-form characteristic
of LLS estimator is suitable for real-time implementation due to its computational efficiency.

The location estimator discussed in this chapter belongs to non-Bayesian approach, i.e., without
a priori knowledge of the parameter. The Cramer-Rao lower bound (CRLB) [36, 37| serves as
a benchmark of the non-Bayesian estimator. An estimator that can achieve the CRLB under
regularity conditions is the maximum likelihood (ML) estimator. The CRLB for the conventional
LEP is derived in [37]. Since the wireless location estimation schemes are inherently nonlinear, the
original LEP is often transformed into a L-LEP by introducing an additional variable to transfer
the nonlinear equation into a linear equation for the computation of MS’s position in practice. This
transformation leads to a different parameterization and the analysis of the L-LEP has not been
fully addressed in the previous researchwork.

Based on the concept of the CRLB;-the theoretic lower bound of the L-LEP is derived as
the L-LEP based CRLB (L-CRLB) in_the chapter..The major target of this chapter is to derive
the L-CRLB as a new performance metric for the LLS estimator and also observes the geometric
properties associated with the proposed/L=CRLB. The closed-forms formulation of the Fisher in-
formation matrix (FIM) for the derived ICRLB provides a comparison between the L-LEP and
the conventional LEP. Since it is required for-the-L-I.EP to estimate an additional variable other
than the MS’s position, it can be proved that the value of L-CRLB is greater than or equal to
the conventional CRLB. The geometric layout between the MS and the BSs for the L-CRLB to be
equivalent to the CRLB is also derived.

Note that the LLS method is one of the methods to solve the L-LEP. In the chapter, the
unbiased property of the LLS estimator is proven under the situation that the noiseless distance is
much greater than the combined noise for each measurement. Besides, the LLS method becomes
a ML estimator in a linear problem when the noise is assumed to be Gaussian distributed. It is
validated in the simulations that the L-CRLB can be served as a tight lower bound for the mean
square error of the LLS estimator. Therefore, the L-CRLB can be adopted as the benchmark of LLS
estimator and all the properties of L-CRLB derived in the chapter will be feasible to characterize the
behaviors of LLS estimator. From the geometric point of view, it can be inferred from the proposed
L-CRLB that the LLS estimator will provide better performance if the MS is located inside the
geometry constrained by the BSs; while inferior performance is acquired if the MS is outside of
the geometric layout. This result can also be validates by the observations as was simulated in
[16]. By adopting the proposed L-CRLB under different geometric layouts, the LLS estimator can

be regarded as an efficient estimator while the MS is located within the geometry formed by the
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BSs. This observation will be beneficial for the signal selection schemes of measurement inputs
which should try to avoid positioning the signal sources that makes the MS to locate outside of the
geometric layout.

The remainder of this chapter is organized as follows. Section 4.2 describes the modeling and
geometric properties of both the CRLB and the L-CRLB. The realization of the LLS estimator
for the L-LEP and the situation that the LLS estimator is unbiased are presented in Section 2.3.
Section 4.4 illustrates the performance validation and evaluation for the both the proposed L-CRLB

and the LLS estimator. Section 4.5 draws the conclusion.

4.2 Analysis of CRLB and L-CRLB

4.2.1 Mathematical Modeling of Signal Sources

The signal model for the TOA measurements in a synchronous network is utilized for two-
dimension (2-D) location estimation, which can be referred to Section 2.1.1. The LOS noise model
in Section 2.2.1.1 is discussed in the chapter. Since the non-Bayesian class estimator is discussed,

the time instant t would be removed for the notational simplicity in the Chapter.

Definition 4.1 (BS’s Orientation). Considering the MS'as a vertex in geometry, the orientation
of i-th BS (o) is defined as the angle between the MS to-the i-th BS and the positive x axis.
Without loss of generality, the index i of BSs are sorted such that the i-th BS is located at the

angle 1 <as < ...q;... < ay fori=1t N. o

Based on the definition of «;, the following geometric relationship can also be obtained as

cosay = (x; — x)/¢; and sina; = (y; — v) /G-

4.2.2 Properties of CRLB

The CRLB represents the theoretical lowest error variance of an unknown parameter for any
unbiased estimator. Note that the CRLB in the rest of this chapter refers to the CRLB for the
conventional LEP in Problem 1.1. Therefore, based on the TOA-based LEP as in (2.1) and (2.2),
the variance of the MS’s estimated position & will be greater or equal to the CRLB (€) as

BE{llz— 2} > € = 1511 + [15 ]2, (4.1)

where the CRLB € = [I;!]1; + [I;!]22 inherently represents the theoretical minimum mean square

error (MMSE) of position. It is noted that [I;'];; and [I;']22 correspond to the first and second

diagonal terms of the inverse of 2 x 2 FIM I, which can be obtained as

I,=G I -G, (4.2)
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where
G o¢ “C:“” xl:m ”“Z—ij cosq] ... COSQYy ... COSQN (4.3)
= = — P— — = . . . ) -
ox ylcl vy y'c. vy % sinay ... sino; ... sinay
1

I. = F C

T
9 n f(rlc) - ( Clnf(r\C)> ] (4.4)

The f(r|¢) function in (4.4) denotes the probability density function for = conditioning on ¢, where
¢=1[C -5 Gy -+, Cn). The matrices G and I¢ are introduced as the change of variables since I,

is unobtainable owing to the unknown MS’s true position .

Lemma 4.1. Considering the TOA-based LEP, the noise model for each measurement r; is an
2 asn; ~N(0,02). The
minimum CRLB C,, with respect to the angle a; can be achieved in [37] as

i.9.d. Gaussian distribution with zero mean and a fixed set of variances o

4

em — N 1 9
PIPEE 5
7

(4.5)

if the following two conditions hold:

N 1 _ ~ B
Ei:la?. sin 2a; = 0
1

. 4.6
Zi]ila%%cosQai:O (46)

Proof. Based on (2.1), f(r|¢) can be obtained as

7(r1¢) ocﬂexp[ ol - o). (47)

Therefore, the matrix I¢ can be derived from (4.4) as I = diag{[0,,2,0,,%,...,0,,%,...,0.2]}. The
2 x 2 matrix I, can be obtained from (4.2) and (4.4) as
N N .
Mz)11 [Tz)1o >ic 12 cos” >t é COS ¥; - 81 &5
I, = = N 1 N (4.8)
alor  Ta)oo Yoich oz Cos a - sin o Yoich Sz sin”
In order to obtain the minimum CRLB, (4.1) can further be derived as
1 1 I 1

a1 - [Taloo — a2y — [Tafi1 - Taloo

Noted that the second inequality in (4.9) is valid since the quadratic term [I]3, > 0 for all ;. There-
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4.2. Analysis of CRLB and L-CRLB

fore, one of the necessary conditions to achieve minimum CRLB will be [I,];2 = 32N, J% cos ; -

2q; +sin®a; = 1 for all

sin y; = 0, which validates the first equation of (4.6). Moreover, since cos
«;, the numerator in (4.9) becomes [Iz)11 + [Iz]22 = Zf\il 1/0?2 . Consequently, to acquire the min-
imum value of CRLB corresponds to maximizing the denominator [Ig]i; - [Iz]e2 in (4.9). According

to the inequality of arithmetic and geometric means, the following relationship can be obtained:

—[I Jn + EN: i2 (4.10)

=1 Tr;

l\')IH

Tali1 - [Lgo2 <

where the equality holds if and only if [I;];; = [Iz]22, which corresponds to the second equation in
(4.6). By substituting (4.10) into (4.9), the minimum CRLB can be obtained as C,,, = 4/(3.Y | 02 ).
This completes the proof. ID

Example 4.1 (Network Layout with Minimum CRLB). Following the requirement as in Lemma
4.1 with N = 3 and all the variances are equivalent 072,1, = o2 for i = 1 to 3, the best geometric
layout that can achieve the minimum CRLB G, .= 402/3 is acquired at either the angle sets
{ar, a0, a3} = {7, +120°,v + 240°} erfery, as, ask=Ay,v + 60°,v + 120°} V v = [0°,360°). o

Note that this dissertation is devoted-to discuss these three positioning limiting factors under
various mobile location estimation and tracking environment, which can be observed from the
CRLB and stated in Remark 1.

Remark 1 (Limiting Factors for LEP). Through thestudy of CRLB, the limiting factors affect
the estimation accuracy as: 1) Geometrie effect-between the MS and BSs as matrix G in (4.3);

2) Signal model or noise variance as matrix I in (4.4); 3) Number of signal sources as N
n (4.5).

Fig. 4.1 illustrates a schematic about how to solve the LEP within the statistical signal pro-
cessing theory. The ML estimator for the TOA-based LEP following the signal model in (2.2) can

be obtained as
Ty, = arg mgxpr|w(r|sc). (4.11)

Note that the likelihood function has to be known for the ML estimation. It requires higher
computation complexity. Since the LEP is nonlinear, [38] has shown that the ML can only approach
CRLB under the condition that SNR is sufficiently high. Otherwise, no efficient estimator exists
due to the nonlinearity. In the case that likelihood function is unobtainable, the least squares cost

function is adopted as the objective of the optimization problem.

N
ENLS = argmminZ(ri — ||z — bj||)2. (4.12)
i=1
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4.2. Analysis of CRLB and L-CRLB

Location Estimation Problem (LEP)

No No Least
PDF Known —— Signal Linear ——® Squares (LS)
Estimator

¢ Yes
o Yes  Minimum Variance
CRLB Satisified ——®Unbiased (MVU) Estimator

wo

Evaluate Maximum| Yes
Likelihood —

Estimation

Maximum Likelihood

(ML) Estimator

ML estimator is unbiased and attains the CRLB
as the SNR is sufficiently high [38]

Figure 4.1: A schematic diagram of the LEP.

Note that the least squares objective funetion does-not.make any assumption on the distribution.
The method refers to the nonlinear.least-squares (NLS) in [22]. The initial guess is required and
the calculations are performed iteratively.—Since the ML requires high computation overhead and
the NLS requires iterative calculations, the LEP is often transformed into the L-LEP, which will

be described in the following section.

4.2.3 Properties of Proposed I.-CRLB

Problem 4.1 (Linearized Location Estimation Problem (L-LEP)). In order to estimate the MS’s
position z, the nonlinear terms x2 and y? in (2.2) are replaced by a new parameter R = 2% +y?. The
goal of the L-LEP is to generate an estimate 0= 2L, UL, ]:Z]T based on the collecting measurements

T &

Note that the MS’s estimated position &7 = [, 9z]” of the L-LEP is in general not optimal
compared to the original LEP since an additional nonlinear parameter R is also estimated, which
reduces the estimation precision for &7 under fixed set of measurement inputs. This intuitive
observation explains that the conventional CRLB cannot be achieved by the linearized location
estimator for LEP. In order to appropriately describe the behavior of linearized location estimator,
the L-CRLB is defined based on the relationships in (2.1) and (2.2) as follows.

Definition 4.2 (L-CRLB). The L-CRLB (€y,) is defined for linearized location estimation in terms

of the estimated parameters &;, as

E{||lzr — 2|*} > Cp = [Iy 11 + [Tg']oo, (4.13)
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Linearized Location Estimation Problem (L-LEP)

No
PDF Known -  Signal Linear

¢ Yes ¢ Yes
Minumum

o |-LEP based CRLB| Y6s vatiance | First Two Noise
L-CRLB) Satisified| ™ oments
( ) (MVU) Known
L Estimator ¢
No Yes
- Maximum
Evaluate Maximum| Yes | ciinoog Linear Least
Likelihood _>(ML) Squares (LLS)
Estimation Estimator Estimator
|

(1) Achieves ML when noise'is Gaussian [39]
(2) Unbiased when SNRis sufficient large (Proved in Lemma 4.4)

Figure.4.2: A-schematic diagram of the LEP.

where [151]11 and (I 1]22 respectively denotes the first and second diagonal terms of the inverse of
3 x 3 FIM matrix Ig as

Ip =H I, 0" (4.14)
with
CoSQ| ... COSQY ... COSQN
H-= % = | sinag ... sino; ... sinay |, (4.15)
1 1 1
2C1 T 2Gi T 2N
and I; obtained from (4.4). o

Note that the derivation of the inequality (4.13) is neglected in this chapter, which can be
similarly referred from the derivation of CRLB in [39]. Based on the theory of CRLB, the closed-
forms of FIM in (4.14) can be formulated and the relevant matrix in (4.15) is derived. In other
words, the proposed L-CRLB is utilized to denote the minimum variance for any estimator that
estimates the parameter vector € from the TOA measurements.

Fig. 4.2 illustrates a schematic diagram about how to solve the L-LEP within the statistical
signal processing theory. The L-CRLB serves as a theoretic lower bound in this problem. Since the

estimated parameters and measurement are in linear, the LLS can achieve the CRLB under two
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4.2. Analysis of CRLB and L-CRLB

conditions: 1) Gaussian noise: the LLS achieves ML under Gaussian noise which has been proven in
[39]; 2) Unbiased property: we will proved in Lemma 4.4 when the SNR is sufficient large. Based on
these conditions, we can conclude that the L-LEP can be solved by the LLS estimator efficiently. In
this chapter, we would like to utilize the L-CRLB as an index to observe the lost from the original
LEP to the L-LEP. In the following lemma, the fact that the L-CRLB is greater than or equal to
the CRLB will be proved.

Lemma 4.2. Considering that there exists sufficient measurement inputs for location estimation

with zero mean Gaussian noises, the L-CRLB is greater than or equal to the CRLB, i.e., C;, > C.

Proof. The 3 x 3 matrix Iy can be obtained from (4.4) and (4.14) as

N 1 2 . N 1 ol ) N 1 cosq;
. B > i1 oz 08 i > i1 oz 08 Qi SIQ; > i1 022G
T N 1 o . N 1 .2 N 1 sing
Iy = BT = Y U—%icos o - sin o doiey U—%ism o Yoisy o7 o, , (4.16)
ZN 1 cosa; ZN 1 sing; ZN 1
i=1 9% 2 =102 % i=1 452 2

: T
where the matrices B = [ZN 1 cos agy 2NN Lsmai] and C = [ZN #] Note that the

i=1 2 26 i=1 o2 _20; i=1 402 (2
2 x 2 matrix I, is the same as that.obtained from (4.2). Moreover, the inverse of the covariance

matrix Iy can be represented as

!

A\ Igl,., B
.= [ } 83 : 4.17
0 BT C ( )

/

where the 2 x 2 submatrix [Ig]y., of I,! can be obtained as [Iglyry = (I, — B-C~!. BT)™!
based on the matrix inversion lemma. Considering that there are sufficient measurement inputs
for the linearized location estimation, i.e., N > 3, both the covariance matrices Iy and I, are
non-singular which corresponds to positive definite matrices. Consequently, the submatrix [Ig]ax2

and their corresponding inverse matrices 151, I;! and [Ig]Z—Xl2 are positive definite. Furthermore,

both C and C~! are positive definite since C = [ZN #] > 0. Therefore, it can be shown

=1 407, (7
that [Iglaxe = (I, — B - C~!-BT) < I, since C~! is positive definite and the equality only occurs
with zero matrix B. Given two positive definite matrices [Iglaxo and I, I, > [Iglaxe if and only
if [Tg]yy > I;' > 0. Furthermore, since [Ig];. L, > I, their corresponding traces will follow as
trace([Ig)y.,) > trace(Iz') which consequently results in [Tg];! + [Tolys > [Tu)] + [Talow . This
completes the proof. O

Corollary 4.1. The L-CRLB is equivalent to the CRLB if the following two conditions hold

ZN 1 sinoy __ 0

2

Sl e =0 (4.18)
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4.2. Analysis of CRLB and L-CRLB

Proof. As stated in Lemma 4.2, the necessary and sufficient condition for both L-CRLB and
CRLB to be equivalent is that B is a zero matrix. Therefore, the two matrix elements in B,

ie., 2N cos ;/(02.¢;) and SN | sin ;/(07.¢;), will be equal to zero. O

It can be generalized from Corollary 4.1 that the two error terms &, = Zf\; Lcos o /(02.G)
and g9 = Zf\il sina; /(02 ¢;) will influence the value of L-CRLB, which consequently affect the
precision of linearized location estimators. Under the geometric layout with smaller values of &1
and €9, smaller difference between the CRLB and L-CRLB value can be obtained, which indicates
that the linearization lost by adopting linearized location estimators is smaller. ¢; and €2 can be
mapping to the z- and y-direction vectors from the MS to the BS. The noise variance terms can be
regarded as the weighting of the direction vector. The minimum linearization lost for the linearized
location estimator is achieved when the sum of the weighted direction vector from the MS to the
BS is equal to zero. Besides, consider the case that the MS is situated outside of the polygon
formed by the BSs, all the angles «; will be in the range of [0, 180°] which results in larger value of
the error terms €1 and 5. As a result, the estimation errors acquired from the linearized location
estimator will be comparably large in this type of geometric relationship. The following example

is given to demonstrate the scenario where the L-CRLBis equal to CRLB.

Example 4.2 (Network Layout for-Equivalent T.-CRLB and CRLB). Assuming that the variances
oy, from all the measurement noises are equivalent; the L-CRLB can achieve the CRLB if (a) the
noiseless distances ¢; from the MS™to all:the eorresponding BSs are equal, and (b) the orientation
angles a; from the MS to all the BSs are.uniformly-distributed in [0°, 360°) as a; = 360°-(i—1)/N+7,
Vv =10°360°) and i = 1 to N. o

Proof. By substituting the conditions (; = (2 = ... = (x and 0y, = 0y, = ... = 0y, into (4.18),
the necessary condition for the L-CRLB and the CRLB to be equivalent becomes Zf\il cosay; =0
and ZZ]\L 1 sina; = 0. Based on the assumptions as stated above, an unit vector can be utilized to
represent the distance from the MS to the ith BS as v; = [cos «;, sinq] for ¢ = 1 to N. In order to
satisfy the conditions for both ZZ]\L jcosa; =0 and Zf\; 1 sina; = 0, the summation for projecting
all unit vectors v; for ¢ = 1 to N on the z-axis and y-axis respectively should be equal to zero. In
order to achieve this condition, it can be verified that the angles «; will be uniformly distributed
in [0°,360°) with its value equal to o;; = 360° - (i — 1)/N +~, ¥V v = [0°,360°). This completes the
proof. O

Corollary 4.2. The minimum L-CRLB (Cr,,,) is achieved if the conditions stated in (4.6) and
(4.18) are satisfied.

Proof. 1t has been indicated that the minimum CRLB (C,,) can be obtained if the conditions in
(4.6) hold. Moreover, Corollary 4.1 proves that (4.18) should be satisfied for both L-CRLB and
CRLB to be equivalent. Therefore, the minimum L-CRLB (Cf,,,) can be achieved if (4.6) and
(4.18) are satisfied. 0
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4.2. Analysis of CRLB and L-CRLB

It can be observed from Corollary 4.2 that additional condition (4.18) should be satisfied for
achieving minimum L-CRLB comparing with the minimum CRLB. The major difference is that
the CRLB is affected by the angles a; and signal variances a?i; while the L-CRLB additionally
depends on the distance information ;. Therefore, the performance of the L-LEP is affected by
the additional relative distance information between the MS and BSs. In order to provide intuitive

explanation, the exemplified network layout for achieving minimum L-CRLB is shown as follows.

Example 4.3 (Network Layout with Minimum L-CRLB). Following the requirement as in Lemmas
2

4.1 and 4.2 with N = 3 and all the variances are equivalent, i.e., o7, = o2 for i = 1 to 3, and further
assuming that the noiseless distances (; from the MS to all the three BSs are equivalent, the
minimum L-CRLB can be achieved only at the angle sets {a1, a0, as} = {v,v + 120°,v + 240°}

¥y = [0°,360°).

Proof. Considering N = 3 and o,, = 0y, = 04 = 0, in (4.6), the following relationship is obtained:

sin 2y + sin 29 + sin 2ag = 0
{ ! [ 3 (4.19)

cos 21 - cos2an —+ cos2ag = 0

It can be verified that both conditions'in (4.19) -are only satisfied at either one of the following angle
sets: {1, a9, a3} = {v,7+120°,7+240°} and {ays 08, az} = {v,7+60°,v+120°} Vv = [0°,360°).
The corresponding minimum CRIB can be caleulated from (4.5) as C,, = 402/3.

On the other hand, according to Lemma 4.2, -the conditions (4.6) and (4.18) must be satisfied
in order to achieve minimum L-CRLB. Considering the. N = 3 case with (; = (3 = (3, condition

(4.18) is rewritten as

{ sina 4 sinag +sinag = 0 (4.20)

cosag + cosas +cosaz =0

It can be verified that only the angle sets {a1, o, ag} = {7,y +120°, v+ 240°} V~ = [0°,360°) can
satisfy all the three conditions as defined in (4.19) and (4.20) for achieving the minimum value of
L-CRLB. This completes the proof. O

In other words, when the MS is positioned at the center of a regular polygon formed by the
BSs, the proposed L-CRLB will be equivalent to the CRLB based on the conditions stated in
(4.18). Example 4.3 describes the fact that minimum CRLB can be achieved under two different
set of orientation angles; while the minimum L-CRLB is reached by one of its subset of angles. This
indicates the situation that the L-CRLB provides a more stringent criterion compared to the CRLB
for achieving its minimum value. Even though certain network layouts are suggested to achieve
minimum CRLB, it does not guarantee that the corresponding L-CRLB can reach the same value.

Therefore, the CRLB does not provide sufficient information to be utilized as the criterion for the
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4.2. Analysis of CRLB and L-CRLB

linearized location estimator of the L-LEP; while the L-CRLB can be more feasible to reveal the
geometric properties and requirements.
In order to provide better explanation on the properties of CRLB and L-CRLB, the definitions

of several geometric relationships between the MS and the BSs are described as follows.

Definition 4.3 (BS’s Adjacent Included Angle). Based on the BS’s orientation «;, the adjacent
included angle between two neighboring i-th and (i 4+ 1)-th BSs is defined as 8; = a;41 — o for
i=1to N —1, and By = 360° + a1 — ap. o

Definition 4.4 (BS Polygon). Considering the locations of BSs as the vertices in geometry, the BS
polygon is defined by connecting the adjacent BSs as the edges of the polygon from BS; to BSy. ¢

Definition 4.5 (Inside-Polygon Layout (IPL)). Given the BS’s adjacent included angle set 3 =
{B1, ---,Bi, ..., BN}, an inside-polygon layout (IPL) is defined if the MS is located inside the BS
polygon where 0° < 8; < 180° V ¢ from 1 to N. o

Definition 4.6 (Outside-Polygon Layout (OPL)). Given the BS’s adjacent included angle set
B={%,...,6, ...,0n}, a outside-polygon layout (OPL) is defined if the MS is located outside
the BS polygon where there exists anradjacent included angle 180° < g8; < 360° V ¢ from 1 to N. ¢

Lemma 4.3. Consider two types .of layouts, IPL-and OPL,. between the MS and three BSs under
the requirements with equivalent variances Ufi and noiseless distances (; for i =1 to 3. There can
exist both IPL and OPL that possess the same CRLB-value;while the corresponding L-CRLB value
of the IPL is smaller than that of thes OPRL.

Proof. Given an IPL, the set of BS’s adjacent included angle is defined as 3;, = {f1,02,03 =
360° — 81 — P2} where 0° < f3; < 180° Vi = 1 to 3. The set of BS’s orientation between the MS and
three BSs can be represented as oy, = {ag = 0,0 = B1,a3 = 1+ B2}. Without lose of generality,
o is set with zero degree according to the rotation property as proven in [37] for CRLB. In order to
establish an OPL, the third BS is repositioned to the reflected side with respect to the MS, which
results in its BS’s orientation as ay = {1 = 0,0 = f1, a5 = B1 + P2 — 180°}. By substituting
both IPL and OPL cases with a;, = {0, a2,a3} and auye = {0, as, a3 — 180°} respectively into
(4.1), it can be observed that same value of CRLB is achieved by both OPL and OPL.

Moreover, in order to compare the L-CRLB for the IPL and OPL, i.e., Cr ;, and Cf, oy, the
difference of L-CRLB for both layouts is derived from (4.13) to (4.15) with the substitution of ay,

and oy as

o= eLvin - eLyout - [Ié,in]ﬁl + [IG,in]Q_Ql - [Ie,out]ﬁl - [Ie,out]_Ql

1 { (6] 20[3 — (9

= m —80057005 5 (1 — cos ag)[2 cos aa + 2 cos a3 cos(ag — a3) —4]} ,

(4.21)
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where Dle,m and DI@,ou , denote the determinants of the FIM matrix Iy ;,, and Ig o, for the L-CRLB
of IPL and OPL respectively. Since both Iy ;, and Iy ,,; are positive definite, their corresponding
determinants Dle,m and DIG’W will be positive values. Furthermore, the following conditions hold
since the BS’s orientation set «, corresponds to an IPL: 0° < as < 180°, 0° < a3 — as < 180°,
and 180° < a3 < 360°. Therefore, the following conditions hold for the numerator terms in (4.21):
cos(ag/2) > 0 since 0° < ag/2 < 90°, cos[(2a3 — ag)/2] < 0 since 90° < (2a3 — @) /2 < 270°,
(I1—cosagy) > 0since —1 < cosag < 1, and 2 cos ag+2 cos a3 cos(ay —a3) < 4 since —1 < cosag < 1
and —1 < cosagcos(az — a3) < 1. As a consequence, the difference § = Cp, i, — Cr our < 0 which
corresponds to the result that the L-CRLB of the IPL is smaller than that of the OPL. This
completes the proof. O

A key contribution of this chapter is obtained from Lemma 4.3 that the proposed L-CRLB can
describe the geometric relationship between the MS and its corresponding BSs, i.e., either the IPL
or OPL; while the conventional CRLB criterion observes the same value for both cases. It is found
in Lemma 4.3 that the L-CRLB for MS to locate inside the BS polygon will be smaller than that for
MS situated outside the BS polygon. This result implicitly indicates that the estimation accuracy
from a linearized location estimator will be higher for the IPL compared to the OPL case. The
conjecture to possess higher estimation precision for the IPL compared to that for the OPL will be

validated via simulations in Section 4.4.

4.3 Unbiased Condition of LLS

As observed from the difference between the L-CRLB and the conventional CRLB in Section
4.2, the additional nonlinear parameter R prevents the LLS to approach the CRLB. However, the
LLS method can approach the L-CRLB well under the Gaussian Noise assumption. Note that both
the CRLB and the L-CRLB represent lower bounds for unbiased estimators. Therefore, the target
of this following lemma is to identify the conditions for the unbiased properties to be satisfied
associated with the LLS location estimator based on TOA signals. Note that the formulation of
LLS can be referred to Section 2.3.

Lemma 4.4. The LLS estimator is an unbiased estimator for the location estimation providing that
all the TOA measurements are line-of-sight (LOS) signals and the corresponding noiseless distance

is much greater than the combined noise for each measurement.

Proof. The primary concern of this proof is to acquire the expected value of estimation error

Azrs = [AZrs, Afrs]?, which can be obtained by rewriting (2.12) as

Azpg =P - (MTM)'MTAJ. (4.22)
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It is noted that (4.22) indicates that the estimation error vector AZrg is incurred by the vari-
ation within the vector J. The value of AJ is obtained by considering the variations from the

measurement inputs, i.e., r; = (; +n; in (2.1), with N = 3 case as

2¢ny + (m)? 2Gm
AT = | 2Gna+(n2)* | = | 2¢amg |- (4.23)
2(3n3 + (n3)? 2(¢an3

It is noted that the approximation from the second equality within (4.23) is valid by considering
that the noiseless distance (; is in general much greater than the combined noise effect n; in practice,
ie., ¢; >> n;. Without lose of generality, coordinate transformation can be adopted within (4.22)
such that (z1, y1) = (0, 0). The expected value of estimation error can therefore be acquired by

expanding (4.22) as

ElAiLs] = E [C3n3y2 — Canays — Cini(ys — QZ)]
T2Y3 — IT3Y2
_ Gv2 - Elosf=G6Gus L Elns] — Gi(ys — y2) - Elni] (4.24)
BY3 - L3Y2 ’ '
ElAjrs] = B [C3n3$2 — Cona@y — Qyug(xs — 5'32)}
L2Y3 — T3Y2
_ GwpnBlng] = Gas= Bl — Ci(xs — 22) - B[] (4.25)
L2Y3 == T3Y2

From (4.24) and (4.25), it can be clearly observed that the expected value of estimation error is zero
under the assumption that its associated measurement are considered LOS signals as zero mean

random variables, i.e., E[n;] = 0 Vi. This completes the proof. U

Lemma 4.4 reveals the fact that the LLS estimator can be regarded as an unbiased estimator
under the condition ¢; >> n;. Note that this result consists with the proposition in [38] that the
MLE of the MS position is an unbiased estimate as SNR is sufficiently large. Since the L-CRLB
represents the theoretical lower bound for any unbiased estimator in the L-LEP, it can therefore
be utilized as the lower bound for the LLS estimator. Moreover, the mean square error of LLS
estimator can also be derived from (4.24) and (4.25) under the situation that the measurement
noises are independent with each other, i.e., E[n; - nj] = 0 Vi # j, which is obtained as

_ Gyon, + GByson, + (G ys — y2)?on

E[A#2 4] = o 4.26
[ LS] ($3y2 _ x2y3)2 ( )
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E[A@Q ] _ C%xgo-%u + ng%o%s + CIQ(:U3 - $2)20',211 )
L (z3y2 — w2y3)?

(4.27)

Noted that (4.26) and (4.27) are also derived based on the condition that {; >> n;. Meanwhile, it
is interesting to notice that the variance of LLS estimator calculated from (4.26) and (4.27) will be
numerically identical to the L-CRLB computed via (4.13), which will be validated and shown in
the following section. Therefore, the LLS estimator will approach its defined lower bound L-CRLB
under the situation with smaller measurement noises. Furthermore, the L-CRLB will become the
conventional CRLB under specific geometric layout as described in Corollary 4.1. As a result,
under specific conditions as stated above, the LLS estimator can be claimed as the best estimator

since it can finally reach the theoretical lower bound, i.e., CRLB, for unbiased estimators.

4.4 Performance Evaluation

In order to verify the effectiveness of L-CRLB derived in Subsection 4.2.3, different scenarios
are provided in the section to validate the!éorréctness of the formulation. The model for the
measurement noise of TOA signal n; as in (2.1) is selected as the Gaussian distribution with zero
mean and standard deviation oy, d.e/, 7~ N(0,0% ), (i.€.; LOS noise model in Section 2.2.1.1).
Subsection 4.4.1 presents the contour plots in order to numerically describe the difference between
the CRLB and L-CRLB, which alse validate the correctness of Lemmas 4.1 to 4.2 and Corollaries
4.1 to 4.2. Subsection 4.4.2 simulates the performance of LLS method by comparing the L-CRLB
and LLS estimator in the regular BS polygon layout. Subsection 4.4.3 illustrates the performance
comparison of LLS estimator under both the IPL and OPL cases. Performance comparison under

realistic WSN scenario is described in Subsection 4.4.4.

4.4.1 Numerical Validation of CRLB and L-CRLB with a Regular Triangular
Layout

Example 4.4 (CRLB and L-CRLB contour). In order to observe the difference between the CRLB
and L-CRLB, their corresponding contour plots under the number of BSs NV = 3 are shown in Figs.
4.3(a) and 4.3(b), respectively. Note that the three BSs are located at the vertexes of a regular
triangular which are denoted with red circles in Figs. 4.3(a) and 4.3(b). The positions of BSs
are by = [300,200]7 with a; = 0°, by = [150,286.6]7 with as = 120°, and b3 = [150,113.4]7
with a3 = 240°. Based on the three BS’s positions, each individual contour point represents the
corresponding CRLB or L-CRLB value when the MS is situated at that geographical location. The
standard deviation of measurement noises o, is chosen as 1 m for simplicity. It can be observed
from Fig. 4.3(a) that there are four minimum points for the CRLB value equal to C,, = 1.33
with MS’s positions as x = [200, 200]7, [100,200]7, [260,120]”', and [260, 280]". The conditions for

minimum CRLB can be verified by substituting the corresponding parameters into the condition
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Figure 4.3: (a) CRLB contour under N = 3; (b) L-CRLB contour under N = 3. Red circles denote the
positions of BSs.

(4.6). The minimum CRLB value can also be-validated to satisfy (4.5), which demonstrates the
correctness of Lemma 4.1.

On the other hand, by comparing Figs—4.3(a) and 4.3(b), it is observed that the distribution
of L-CRLB is different from that ¢f CRLB. The only minimum L-CRLB value identical to that of
the CRLB, i.e., Cp ,, = C,,, = 1.33171s located at the center of regular triangle formed by the three
BSs, i.e., & = [200,200]7. Starting at the MS’s-position-with minimum L-CRLB, the L-CRLB
value will increase in all directions. Except-for the minimum L-CRLB at the center of the triangle,
the relationship that € > € can be observed from both Figs. 4.3(a) and 4.3(b). Moreover, the
difference between the L-CRLB and CRLB inside the triangle is smaller than that outside of the
triangle. The reason can be contributed to the estimation of parameter R by adopting the L-
CRLB criterion, which introduces the two terms €; and €5. Owing to the nonlinear behavior of
location estimation, the additional consideration of R within the L-CRLB can better characterize
the performance of linearized location estimator for the L-LEP. The correctness of minimum L-
CRLB value obtained from Fig. 4.3(b) can also be verified by substituting corresponding parameters
into the conditions stated in Lemma 4.2, i.e., the conditions (4.6) and (4.18) can all be satisfied.
By comparing the results from Figs. 4.3(a) and 4.3(b), Corollaries 4.1 to 4.2 and Examples 4.2 to

4.3 can all be validated by substituting the corresponding numerical values. o

4.4.2 Performance Validation of LLS Estimator with a Regular BS Polygon
Layout

In this subsection, the performance of LLS estimator is simulated to further validate the rela-

tionship between the estimator and the lower bound.
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4.4. Performance Evaluation

Table 4.1: Simulation Parameters

Number of BSs | i-th BS’s Coordinate b; in meter

3 BSs 0°: [300,200]" 120°: [150, 286.6]7 240°: [150,113.4]7

4 BSs 0°: [300,200]7 90°: [200, 300]” 180°: [100,200]”
270°: [200,100]7

5 BSs 0°: [300,200]" 72°: [230.9,295.1]7 144°: [119.1,258.8]7
216°: [119.1,141.2]7 288°: [230.9,104.9]7

6 BSs 0°: [300,200]" 60°: [250,286.6]7 120°: [150,286.6]7
180°: [100, 200]" 240°: [150,113.4]7 300°: [250,113.4]7

7 BSs 0°: [300,200]7 51.4°: [262.3,278.2]7  102.8°: [177.7,297.5]7
154.3°: [109.9,243.4]7 205.7°: [109.9,156.6]7  257.1°: [177.7,102.5]7
308.6°: [262.3,121.8]7

8 BSs 0°: [300,200]" 45°: [270.7,270.7)7 90°: 200, 300]"
135°: [129.3,270.7]" 180°: [100, 200]" 225°: [129.3,129.3]7
270°: [200, 100]7 315°: [270.7,129.3]7

Example 4.5 (A Regular BS Polygon Layout at N = 3). Fig. 4.4 illustrates the performance
comparison under different noise standard deviations/in the regular triangular layout, i.e., N = 3.
The coordinates of the 3 BSs are listed in the 3-BS case of Table 4.1, and the MS is located at
the coordinate = = [200,200]7. Maoreover, Fig. ~4.5 shows-the performance comparison between
different numbers BSs of regular BS polygon layout wherc the MS lies at = = [200,200]7 and
the standard deviation of measurement noise<is equal to 10°m. The BS’s coordinates correspond
to different numbers of BSs’ layout” are listed inTable’ 4:1. Regarding the comparison metrics,
instead of showing the variances, the root.mean. square error (RMSE) is obtained in order to
clearly illustrate the difference between different curves, i.e., RMSE = [25\21 |z — :%(Z)HQ/NT] 1/2,
where N, = 10,000 indicates the number of simulation runs. As for the curves within Figs. 4.4 and
4.5, the LLS estimator denotes the RMSE of &7 g acquired from (2.12) by simulating the Gaussian
noises with corresponding noise standard deviations. Since the CRLB and the L-CRLB represent
the variance of an unbiased estimator, both the CRLB and L-CRLB curves are obtained by taking
the square root in order to compared with the RMSE values of LLS estimator. Furthermore, the
curve of LLS standard deviation in Fig. 4.4 is obtained as the square root of LLS variance derived
from (4.26) and (4.27).

It can be observed from Fig. 4.4 that the CRLB, L-CRLB, and LLS standard deviation can
achieve the same values in the regular triangular layout. The reason for the CRLB and L-CRLB to
possess the same value is identical to the conditions as stated in Lemmas 4.1 and 4.2. As described
in Section 2.3, the LLS standard deviation is numerically validated in this figure to be identical
to the square roots of CRLB and L-CRLB under the condition {; >> n;. The performance of
LLS estimator obtained from simulations can also approach both lower bounds, i.e., the CRLB
and L-CRLB, under the cases with smaller measurement noises. This result demonstrates that the

LLS estimator can be considered as an efficient estimator for the LEP and L-LEP under smaller
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Figure 4.4: Performance comparison for location estimation with MS at the center of a regular triangle
formed by 3 BSs as listed in Table 4.1: RMSE vs. standard deviation of measurement noise. The CRLB,
L-CRLB, and LLS standard deviation achieve the same values.

measurement noises. On the other hand; as the noise becomes larger which disobeys the relationship
(; >> ny, it is observed that the RMSE of LLS-estimator will be slightly higher than that obtained
from the L-CRLB. o

Example 4.6 (A Regular BS Polygon Layout at different.number of BSs). Fig. 4.5 validates the
performance of LLS estimator in the regular BS polygon layouts under different numbers of BSs. In
order to observe the difference between the LLS estimator and the L-CRLB, the error confidential
level (9) is defined as the difference between the RMSE of LLS estimator (Rrs) and the square
root of L-CRLB (Rp), i.e., § = |[Rps — Rr|/Rr. In Fig. 4.5, the error confidential levels can be
obtained as § = [0.67,0.53,0.20,0.27,0.41,0.17]% under the number of BSs equal to [3,4,5,6,7,8|.
It is observed that the LLS estimator can closely approach both of the lower bounds CRLB and
L-CRLB under different numbers of available BSs. o

4.4.3 Performance Comparison of LLS Estimation with IPL and OPL

In the subsection, the IPL and OPL which achieve the same CRLB value are adopted to validate

the correctness of Lemma 4.3.

Example 4.7 (IPL and OPL Comparision). The MS is placed at the position = [200,200]7 m,
and the distances from all the BSs to the MS are designed to be equal to 100 m. The angle set for
the IPL is assigned as {0°,70°,240°}, and that for the OPL is {0°,60°,70°}. That is, the three BSs
of IPL is placed at [300,200]7, [234.2,294]", and [150,113.4]”, and that for the OPL is located at
[300,200]7, [250,286.6]7, and [234.2,294]". Tt is noted that the square roots of CRLB for both the
IPL and the OPL are obtained to have the same value as 1.34.
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Figure 4.5: Performance comparison for locationestimation with MS at the center of a regular BS polygon
formed by the BSs as listed in Table 4.1: " RMSE vs.. the number of BSs. The standard deviation of
measurement noise is 10 m. The CRLB.and L-CRLB achieve the same values.
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o4



4.4. Performance Evaluation

X T~ XV x - ©-38Ss
X _ - 7 N TR
280 X/?\/\/ PRI \ék x> ]| B-4BSs
GO LA R x v 5BSs
jf 2N N \ S 8BSs
260Fx F/ 7 Pad s X A \\\ 1 7BSs
- . - “ XA\ X
i />_</; LA x Soox N Y ‘—%— 8BSs
/% » - N
AT “xx ! X RS N ,\'%\\ X MS
/ /- ’ 1 ~ X NN
20 nC gk X ) ST
| %
EZOO(/§ T ><:>< x . X x Xx \\\'*
Ié v\\ B | X /;‘:\
IR 7, 2k
>agof v x T x x  x X -7 ’:/’/'*i
\ s N ! - /
160'>\<'\:%\\' o x x 2" *-x/’i//’
F .' x ‘
140 V>\\ | \\ - el Xl
- .
120 x X SUL U X X// Xx .~ A X
. \QX\ s g
R N
100 : = ‘
100 150 200 250 300
x—axis (m)

Figure 4.7: Layout of the WSN scenario formed by different numbers of BSs. The MS lies in a rectan-
gular room with both z-coordinates and y-coordinates uniformly distributed between [100,300]. The BS’s
coordinates are listed in Table 4.1.

The left subplot of Fig. 4.6 shows the performance of LLS estimator comparing with both
CRLB and L-CRLB under the IPL{while-the right subplot'of Fig. 4.6 corresponds to that for the
OPL. In order to clearly show the-difference between these-curves, different scales are utilized in
both plots. It can be observed that the performance of LLS estimator still matches that of the L-
CRLB under the cases with smaller measurement-noises for'both plots, which again shows that the
L-CRLB can closely characterize the hehayiors of LLS estimator. However, the difference between
the L-CRLB and the CRLB in the OPL is comparably larger than the IPL case, which validates
the correctness of Lemma 4.3. Therefore, it is concluded that the LLS estimator can provide better
performance in the IPL compared to the OPL even though both layouts result in same value of
CRLB. o

4.4.4 Performance Comparison of LLS Estimation in a WSIN Scenario

In order to consider more realistic environments, Fig. 4.7 illustrates the simulation scenarios
of a WSN with the coordinates of both the MSs and BSs under different BS polygon layouts. The
MS’s positions are placed at 100 different locations uniformly distributed in a two-dimensional
rectangular plane with both the z-coordinate and y-coordinate in the region of [100,300] m. The
coordinates of BSs for different deployments of BS polygon are listed in Table 4.1. According to
the random deployment, some of the MSs will be located in the IPL and the others are in the OPL.

Example 4.8 (A WSN Scenario). Based on the WSN setup, Fig. 4.8 shows the performance
evaluation of LLS estimator in comparison with both CRLB and L-CRLB under different numbers
of BSs. Noted that each RMSE value of LLS estimator in Fig. 4.8 is obtained by averaging the
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Figure 4.8: Performance comparison for location estimation with uniformly distributed MS and the BS’s
coordinates listed in Table 4.1: RMSE vs. number of BSs. The standard deviation of measurement noise is
10 m. Left plot: the MS is located inside the BS polygon; Right plot: the MS is situated outside of the BS

polygon.

RMSE value from 100 different MS’s positions, where the RMSE of each MS’s position is simulated
with 100 times, i.e., N, = 100. Both -the CRLB and I-CRLB are also obtained by averaging
the corresponding values from 100-different MS’s positions= The simulation scenario is regarded
as a more generic case since the distances from the MS.to BSs will not be the same in every
simulation point. Comparing with the €CRLB, it can be‘observed that the proposed L-CRLB can
better characterize the simulation results for-LLS estimator under both the IPL and OPL cases.
Moreover, the LLS estimator can still provide better performance within the IPL in comparison
with that in the OPL. This conclusion is both validated via theoretical proof in Lemma 4.3 and
simulation results in Fig. 4.8. Furthermore, the LLS performance under the IPL can be compatible
with the LLS performance under the OPL which utilizes one more measurement. For example, the
RMSE of the 4BS's case under the IPL is 10.7 m while the RMSE of the 5BS's case under the OPL
is 10.65 m. The more number of BSs utilized in a location estimate requires more communication
overheads. As a consequence, from the study of geometric effect of LLS estimator, it is suggested
that the OPL should be avoided for increasing the precision of MS’s location estimation. This
conclusion will be valuable for either cellular networks or WSNs while conducting the deployment

of BSs or implementing a BS selection algorithm. o

4.5 Concluding Remarks

This chapter derives the linearized location estimation problem based Cramer-Rao lower bound

(L-CRLB) which provides the analytical form to discuss the geometric effect for the linear least
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square (LLS) estimator. The geometric properties and the relationships between the L-CRLB and
conventional CRLB are obtained with theoretical proofs. It is validated in the simulations that the
L-CRLB can provide the tight lower bound for the LLS estimator, especially under the situations
with smaller measurement noises. Moreover, the proposed L-CRLB can be utilized to describe
the performance difference of an LLS estimator under different geometric layouts. The MS locates
inside a BS-constrained geometry will provide higher estimation accuracy comparing with the case

that the MS is situated outside of the BS-confined geometry layout.
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Chapter 5

Geometry-Assisted Linearized
Localization Algorithms for Wireless
Networks

- The geometric analysis with the proposed-L=CRLB in. Chapter 4 motivates the design of geometry-
assisted linearized localization (GALL ) algorithm in.order to-consider the geometric effect associated
with the linearization lost. Two different implementations, including the GALL with two-step LS
estimator (GALL-TSLS) and the GALL with-Jalman, filter-(GALL-KF), are proposed to consider

the situations with and without the adoption of MS’s historical estimation.

5.1 Introduction

The objective of Chapter 4 is to formulate the theoretic lower bound for the geometric analysis of
the linearized location estimation problem (L-LEP). Since the location estimation problem (LEP)
is inherently nonlinear, the original LEP is often transformed into an L-LEP by introducing an
additional variable to transfer the nonlinear equation into a linear equation for the computation
of mobile station’s (MS’s) position. This transformation leads to a different parameterization and
the analysis of the L-LEP has not been fully addressed in previous research work. Based on the
concept of Cramer-Rao lower bound (CRLB), the theoretic lower bound of the L-LEP is derived
as the L-LEP based CRLB (L-CRLB). The closed-form formulation of the FIM for the derived
L-CRLB provides a comparison between the L-LEP and the conventional LEP.

A key contribution of Chapter 4 is obtained from Lemma 4.3 that the proposed L-CRLB can
describe the geometric relationship between the MS and its corresponding BSs, i.e., either the MS
is located inside or outside the geometry constrained by the BSs; while the conventional CRLB
criterion observes the same value for both cases. It is found in Lemma 4.3 that the L-CRLB for MS
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5.2. Proposed Geometry-Assisted Linearized Localization (GALL) Algorithm

to locate inside the BS polygon will be smaller than that for MS situated outside the BS polygon.
This result implicitly indicates that the estimation accuracy from a linearized location estimator
will be higher for the inside polygon layout (IPL) compared to the outside polygon layout (OPL)
case. Based on this fact, the objective of the chapter is to propose a geometry-assisted linearized
localization (GALL) algorithm algorithm to enhance the estimation accuracy of the linearized
location estimator for the OPL.

In this chapter, the GALL scheme is proposed to enhance the estimation precision by incorpo-
rating the geometric information within the conventional two-step least squares (TSLS) algorithm
[17]. Note that the LLS method is one of the methods to solve the L-LEP; while the TSLS is
an performance enhancing estimator based on the LLS method. Since the linearization lost exists
in the first step of the TSLS estimator, the properties derived for the L-LEP can be utilized to
describe the geometric effect of the TSLS estimator. Based on an initial estimate of the MS’s loca-
tion, the GALL algorithm is proposed to fictitiously rotate (i.e., not to physically relocate) different
BSs locations according to the L-CRLB criterion in order to achieve enhanced MSs location esti-
mate. Reasonable location estimation can be acquired by adopting the GALL algorithm, especially
feasible for the cases with poor geometric circumstances of the L-LEP, e.g., if the MS is located
outside of the geometric layout confined by the BSs.. Two different types of implementations are
proposed for the GALL scheme, including the GALL with TSLS estimator (GALL-TSLS) and the
GALL with Kalman filter (GALL=KF) schemes: The GALE-TSLS can directly provide enhanced
MS’s location estimate compared to the conventional TSLS-method, which will be validated in the
simulation results. The GALL-KF approach further utilizes the Kalman filter to provide smoothing
effect on the initial estimate with a two-stage-location estimation architecture. Simulation results
illustrate that the proposed GALL-KF scheme can achieve higher accuracy for the MS’s estimated
location compared to the other existing methods in both line-of-sight (LOS) and none-line-of-sight
(NLOS) environments.

The remainder of this chapter is organized as follows. The determination of fictitious BS’s
locations based on the proposed GALL algorithm is explained in Section 5.2; while Section 5.3
demonstrates the GALL-TSLS and the GALL-KF schemes as the implementation of the GALL
algorithm. Section 5.4 shows the performance evaluation of the proposed schemes. The conclusions

are drawn in Section 5.5.

5.2 Proposed Geometry-Assisted Linearized Localization (GALL)
Algorithm

The main objective of the proposed GALL scheme is to enhance the LLS-based algorithms by
considering the geometric effect to the location estimation accuracy. The signal model for the TOA

measurements in a synchronous network is utilized for two-dimension (2-D) location estimation,
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which can be referred to Section 2.1.1. The core component of the GALL scheme is to acquire the
positions of the fictitious BSs such as to achieve the minimum L-CRLB value with respect to the
MS’s initial location estimate °. Note that the position of the i-th fictitious BS with respect to
the MS’s initial location estimate can be represented based on the measurement distance r; and the
BS’s orientation «;. Since 7; is available as the measured information, the determination of fictitious
BS’s position corresponds to the adjustment of the BS’s orientation «y;. The position information
of these fictitious BSs will be utilized to replace that of the original BSs in order to achieve better
geometric layout for location estimation, which will be discussed as the implementation of the GALL
scheme in Section 5.3. In this section, the core mechanism of the GALL algorithm to identify which
BSs should be fictitiously rotated will be demonstrated. The sub-schemes of the GALL algorithm
with different numbers of fictitious BSs will be stated, i.e., the GALL with one fictitiously movable
BS scheme (GALL(1BS)) and the GALL with two fictitiously movable BSs scheme (GALL(2BS))
in Subsections 5.2.1 and 5.2.2 respectively. Subsection 5.2.3 describes the combined schemes of the
GALL algorithm by selecting among different numbers of fictitious BSs based on the minimum
L-CRLB requirement.

5.2.1 GALL with One Fictitiously Movable BS (GALL(1BS)) scheme

- BS;(53.53) BSZ (%, ,) A 125053 7 BS(%.3)

X
) b .
A ™
& Qz BS] (xj’yj) 3 2 BS[ (xlyyl)
Fictitiously Fictitiously

Move J Move
a3
True MS’s
position (x, y)

Estimated MS’s
73 position * )

Estimated MS’s
position (X, y)

(a) An example of one fictitiously movable BS centered (b) An example of one fictitiously movable BS centered
at the true MS’s position. at the estimated MS’s position.

Figure 5.1: Schematic diagrams of GALL with one fictitiously movable BS scheme.

The GALL(1BS) scheme is designed to fictitiously relocate the position of one BS according

to the criterion for achieving the optimal geometric layout, i.e., the minimum L-CRLB. Note that
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5.2. Proposed Geometry-Assisted Linearized Localization (GALL) Algorithm

only one BS is allowed to be fictitiously movable and the others remain fixed in this case. The
objective of the GALL(1BS) scheme is to decide which BS should be fictitiously moved in order to
obtain the minimum L-CRLB. The GALL(1BS) problem is defined as

j™ =arg min Cr(al"),

€r(a))<€r J
J=1,...,N

(5.1)

where & represents the orientation of the j"-th fictitiously moveable BS that achieves the minimum
L-CRLB. Providing that all the BSs within GALL(1BS) scheme cannot result in lowered L-CRLB
values compared to the original Cf,, the constraint defined in (5.1) will not be satisfied. In other
words, the original L-CRLB has already been the lowest under the given measurement conditions,
where none of the BSs is required to be fictitiously moved and the initial MS’s location estimate
will become the final estimate. By observing from the problem defined in (5.1), the optimal rotated
angle &' of a single BS should be determined first. The one fictitiously movable BS problem is
defined to obtain the optimal rotated angle of the j-th BS as

aj' = argrélo_i@n Cr(ay), Vag=[0°,360°). (5.2)
Note that the original H matrix in.(4.15) for the computation of C;, cannot be obtained owing to
the required true MS’s position and noiseless relative distances. The estimated matrix H can be

calculated based on the initial estimate £ and-the-measurement distance r as

[ x1—12° x;—3° 330 o N—2°
o - =N .. T
H - y1—9° Yiy? Yi—9y° ynN—9°
o ... - .. = ... T'N
1 1 1 1
o SRR LR R 7
CoS1 ... COSQy ... COSQy ... COSQN
= sind; ... sin&; ... sina; ... sinay |, (5.3)
1 1 1 1
L o e g ... 2 . Ty

where &; in (5.3) represents the i-th BS’s estimated orientation based on the initial estimate &°. The
parameters b}- = (Z;,9;) and &; in (5.3) denote the position and orientation of the j-th fictitiously
moveable BS, respectively. It is noticed that the design of proposed GALL scheme also considers
the effect coming from the approximation of matrix H. As shown in Fig. 5.1(b), the orientation
of the fictitiously moved BS is considered to center at the MS’s estimated position instead of the
true MS’s position as in Fig. 5.1(a). It can be observed that the selection of fictitiously moveable
BS may induce additional error since it is designed based on the imperfect initial estimate even
though it can provide better geometry for location estimation. This demonstrates the situation
that the fictitiously moveable BS may not always result in lowered L-CRLB value than the original

network layout as stated in the constraint of problem (5.1). Note that the initial estimation error
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can be approximated as a Gaussian noise distribution with the standard deviation of the initial
estimation error o, , i.e., N(0,0‘?@) where o0,  depends on the precision of the initial estimate
z°. Providing that the LLS-based estimation is utilized for the initial estimation, the matrix I
for the computation of C;, can be derived based on the precision of MS’s initial estimate o,  as

I = diag{lo; ..., 0.7 ..., (07, +07)7",...,0;7]}. The L-CRLB €1(&;) in (5.2) can thus be

y Yrn
derived as
1. XN sing sin @ N coséy cos &; NN
Cr(d;) = - — )+ — )+ :
(@) Dy i ; 207 -1 2(0F +07)- rj) ( ZZ:; 202 -1 2(0f +07,) rj) ; 4- rf]
(i#7) (i#7)

(5.4)

where Dy denotes for the determinant of FIM matrix Ig. By neglecting the terms in (5.4) that are
not related to the parameter &, the equivalent one fictitiously movable BS problem as presented
in problem (5.2) can be obtained as

m

ajt = argrélai[nfl(dj) (5.5)
J

N ~ N -
o1 sin ¢ Sin (v, 3 cos & COs @ 9
= argmin 5 [(3 ¢ B +
va; Dg [( — 202 41 2(0,?]_ +02) -rj) ( — 202 -1 2(0%. +02)- rj) l

(i75) (i#37)
where f1(&;) can be regarded as the cost function-of the 'considered problem. It can be observed

that the solution of problem (5.5) canhe aecquired if thefollowing conditions on the first and second

derivatives of fi(&;) are satisfied, i.e.,

af1(a;) B

[ adj] ]&Jdm =0, (5.6)
0% fi(a;)

] o7

Due to the complex formulation of (5.5) - (5.7), there does not exist closed form for obtaining the

m
7o

can be utilized to find suitable solution candidates between [0,360°) in (5.6), and these solutions

optimal value of &7". In order to solve the optimum rotated angle &7, root-finding algorithms
will further be examined to satisfy the requirement of (5.7). If there are still multiple candidates
that fits all the requirements, i.e., there are multiple local minimums for problem (5.2), the angle
aj" that possesses with the global minimum L-CRLB value will be chosen from (5.4) among those
solution candidates.

Furthermore, in order to reduce the computation complexity, a cost function g;(&;) is defined
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to simplify the original problem (5.2) without the consideration of Dy in (5.5). An approzimate

one fictitiously movable BS problem can therefore be obtained as

aj' = argming (&) (5.8)
a;
n( i sindi | sind; i cosd | osd;
= argimin .
& va; 202 -1 2(0%}, +02)-1j — 202 - 1; 2(0%}, +02)-rj
(i#7) (i#7)

It is interesting to notice that the cost function gi(&;) can be closely related to the conditions
stated in (4.18) for Corollary 4.1. Providing that the minimum value of g;(&;) approaches zero, the

two conditions in (4.18) can be satisfied by solving problem (5.8). In other words, by fictitiously

m
J
the smallest linearization lost can possibly be achieved where the L-CRLB is equivalent to the

moving the j-th BS via angle &’ with the consideration of o,, for initial estimate, the layout with
CRLB. Therefore, based on the design of fictitious movable BS, the two square terms within g; (&;)
can be treated as the extension of the two error terms £1 and €9 as described after Corollary 4.1
that affect the precision of linearized location-estimators. By considering the first derivative of

g1(@;) equal to zero, the rotated angle @;" for this problem can be derived as

Y cosdy Y| sin &y
& =ta (Y SUe) ). (5.9)

— 2020 — 202 -1
(i#4) (i)

Note that the angle 64?“ does not depend onany information from the j-th BS, i.e., the measurement
of the j-th BS. The angle &J" lies in the domain of arc tangent function between (—90°,90°) which
is half of the domain of [0,360°). Since both angles &"* and & +180° can be the local minimum of
the subproblem (5.8), these two angles will be further substituted into (5.4) to choose the angle with
smaller L-CRLB value. Following the procedures as stated above, all the BSs can be fictitiously

moved and the associated rotated angle " can be obtained. The j™-th BS with the minimum

L-CRLB value will be selected to be the fictitiously moveable BS for the GALL(1BS) scheme in
problem (5.1). For example as shown in Fig. 5.1, only the third BS, i.e., j™ = 3, is fictitiously
adjusted and the other two BSs remain at the same position. The j™-th fictitiously moved BS will

be relocated to the coordinate as

{ i'jm = ij COS(&;”’) . (510)

Yjm = Tjm sin(d}”)

Note that the measurement of the j™-th BS remains the same as rj». The noise variance of this

measurement is recalculated as O'Em + 072’5' Based on the new set of BSs adjusted by the proposed
J

GALL(1BS) scheme, the LLS-based estimation can be adopted to obtain the final estimation of
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MS’s position.

5.2.2 GALL with Two Fictitiously Movable BSs (GALL(2BSs)) Scheme

The GALL(2BSs) scheme is designed to fictitiously relocate the position of two BSs according to
the minimal L-CRLB layout criterion. Under this condition, two BSs are defined to be fictitiously
movable and the others are fixed. The objective of the GALL(2BSs) scheme is to select the specific
two BSs that should be fictitiously moved in order to achieve the layout with the minimum L-CRLB.
The GALL(2BSs) problem is defined as

-m m 3 ~m ~m
J"E™Y =arg min Cr(a™, &
{ ) } @L(dTdel)<eL ( J "k )’
j=1,..N,k=1,...,N,j#k

(5.11)

where &7" and ;" represent the orientation of two fictitiously moveable BSs. The constraint in
(5.11) is to verify if the original L-CRLB has already been the lowest under the given measurement
conditions. Before solving problem (5.11), the optimum rotated angles aj" and & of the two
fictitiously movable BSs should be decided first.. The two fictitiously movable BSs problem is

defined to find the optimum rotated«angles as

{&}",ap'y = arge min  Cr(as, ag), Yoy, &y = [0°,360°). (5.12)
Note that the matrix I in Cp(é;, @x) can be obtained as.I; = diag{[o,?, ..., (afj +o2)7h
(02 +02)7" ..., 0.2}, where the standard deviation @y, of MS’s initial estimate is considered in

both the j-th and k-th fictitiously movable'BSs. Therefore, the L-CRLB can be derived as

N A . .
I 1 sin ¢; sin ¢ sin 9
GL i, O ) = —— J
(@5, ) Dy ( ; 207 -1 2(07 +o7 )1y 2(0F +o7)- rk)
(i74:k)
Y cosa Cos (v Ccos (v al
i J k 2
. 5.13
+( 21 202 -1 +2(a?j+a,?e)-rj +2(0’2k+0'%e)'7"k) +Z.Zl4-ri2] (5.13)

(i,k)

Similar to the GALL(1BS) scheme, the equivalent two fictitiously movable BSs problem for problem

(5.12) can also be acquired as

{aj, ek} = arg  min | fo(a;,an), (5.14)
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where fo(@;,dy) is regarded as the cost function of problem (5.14) as

N - -
o 1 sin &y sin @ sin ay, 9
Fa&j,61) = Dg( ; 2032, o7y 2(0,2,j +02)-rj + 2(03k +02)- rk)
(i#7,k)
N cos & CcoSs (v Ccos &
. . X )
+ ot J + . 5.15
( ZZ; 207?1_ e 2(0%_ + 072,6) T 2(07?]C + J?e) . rk) ( )
(i#5,k)

It can be observed that problem (5.14) can be solved if the following conditions on the first deriva-

tives of fa(aj,ay) are satisfied, i.e.,
Afa(ay,a
=, [M} =, (5.16)
J Oay, j=ay
=ag ap=ay"

and the conditions on the second derivatives of fo(&;, &) are also fulfilled, i.e., a > 0 and ac—b*> >0,

where

s \\=, (5.17)

SO ) _ [0°f2(a, 6n)
Qj=ay 86(]65% qj=ag 626%
ap=ay" ap=aj" ap=aj"

0 [62f2(dj,dk):|

2~
0%a;

Since the closed form solution of 64}" and ;" €an not be obtained in this case, numerical methods
can be utilized to acquire the optimal ‘angles @ and &y’ for achieving minimum L-CRLB for
problem (5.14). To reduce the computation.complexity, a cost function go(&;,dy) is defined to

simplify the original problem (5.12) into an approzimate two fictitiously movable BSs problem

o'y = i A, 5.18
{af,ai’t = arg  min  02(dj, ), (5.18)
where
Y sina sin & sin &
~ o~ i j k 2
g2(aj,ax) = ( : ; + )
! ZZ:; 207 -1 2007 +o07 )1y 2007 +0%) Tk
(i#4:k)
Y cosa Cos (¢ cos (v
, , X )
+ —+ —— + : 5.19
( zzl 202 -1y 2(072,1_ +o2)-rj 200 +o2) -rk) (5.19)
(i#5,k)
The closed form solution of (5.18) for the N = 3 case is illustrated as follows. For ease of

computation, the three BSs’ orientation can be represented by their adjacent included angles as
a = {4 = o —Bl, g, i3 = Qg +Bg} as shown in Fig. 5.1. The GALL(2BSs) scheme fictitiously re-

locates the positions of two BSs among the three which can be denoted as & = {ds —Bl, Qo, Qo —52}.
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Furthermore, according to the rotation property, the orientation of the fictitiously moved BSs can
be transformed as & = {—/;,0°, —f2}. By considering the first derivative equation in (5.16), the

BSs’” adjacent included angles for achieving the minimum CRLB are calculated as

4 .2 4 .2 4 .2 4 .2 4 .2 4 .2
om o —1 0, T10p,T2 — UT2T20T3T3 - Urlrlo-r3r3
B1" = cos 5,2 5 T3 , (5.20)
O’T,l?“l . O'm?“g . O’r37°3

4.2 4 2 4.2 4 2 4.2 4 2
—1 OpyT0p3 T3 — Op 710,73 — O 710,72

4,2 9 2 )
20T1r1 COp,T2 0TS

BT = cos

(5.21)

where the angle B}” for j = 1 and 2 lies in the domain of arc cosine function from [0, 180°] which is
half of the domain [0,360°). Both angles 87" and S} + 180° are considered the local minimums of
subproblem (5.18). Therefore, these angles will be substituted into (5.13) to determine the angle
with smaller L-CRLB value. After the adjacent included angles are calculated, the BSs’ orientation
of the GALL(2BSs) scheme can be acquired as &™ = {&]* = Gg — (7", 2,88 = o + G5}
Accordingly, all the BSs can be fictitiously moved and the associated rotated angle &y and &y will
be obtained. The j™-th and £™-th BSs withythe minimum L-CRLB value are decided to be the
fictitiously moveable BS for the GALL(2BSs) scheme inproblem (5.11). The positions of j”-th and
k™-th BSs can be fictitiously relocated and-computed based on (5.10). Note that the measurement
remains the same while the noise wariance of the measurement is recalculated by considering the
initial estimation error. With the new set of BSs obtained from the GALL(2BSs) scheme, the LLS-
based estimation algorithms can be adopted to obtainthe final MS’s location estimation. Based on
the derivation of proposed GALL(2BSs). scheme, the number of fictitiously movable BSs can also
be increased by extending the GALL scheme with multivariable optimization, i.e., GALL(3BSs),
GALL(4BSs).

5.2.3 GALL Scheme

Based on Subsections 5.2.1 and 5.2.2, it can be observed that the GALL(2BSs) scheme pro-
vides one more degree of freedom compared to the GALL(1BS) scheme, which should increase the
precision of location estimation owing to the enhancement from the geometric effect. However,
the two fictitiously moveable BSs associate with the initial MS’s estimation error may degrade the
performance for location estimation. Therefore, the GALL scheme is designed to select between
the two sub-schemes, i.e., GALL(1BS) and GALL(2BSs), in order to achieve minimum L-CRLB

value among all different cases. The GALL problem can be defined as

am = arg ~mmipm [GL(dTBS)’ GL(dgLBS)], 5.99
X185 ¥2Bs (5.22)

Cr(afps).Cr(ayps)<Cr

where &}z and aizg represent the sets of BS’s orientation with the lowest L-CRLB by adopting
the GALL(1BS) and GALL(2BSs) schemes, respectively. Each of the fictitiously moved BS set
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is selected according to the minimum L-CRLB criteria. Note that if both the GALL(1BS) and
GALL(2BSs) schemes cannot provide a lower L-CRLB scenario compared to the original unmoved
version, the GALL scheme will choose the original BS’s positions for MS’s location estimation

according to the constraint in (5.22).

5.3 Implementations of Geometry-Assisted Linearized Location
(GALL) Algorithm

TOA Signal Input TOA Signal Input
r, a r(f,) a(f)
J] Initial Estimation
. - - (Two-step LS Method)
Initial Estimation
(Two-step LS Method) t<T,| MS’s Initial Location
(N, Estimate

MS’s Initial Location
Estimate x°= x

2 0

~(tlt-1
s( )

GALL Scheme Fictitious oIf-Prediction

BS Set » @] r
Fictitious BS Set Location Estimation
r a (Two-step LS Method)
Y % 20
Location Estimation r

(Two-step LS Method)

Kalman Filter

v v

MS’s Final Estimation x’ MS’s Final Estimation §

(1)

(a) Proposed GALL-TSLS scheme. (b) Proposed GALL-KF scheme.

Figure 5.2: Implementations of proposed GALL algorithm.

As described in previous section, the main objective of the proposed GALL scheme is to acquire
the positions of fictitiously movable BSs in order to provide better geometric layout for MS’s location
estimation. Since the GALL scheme is designed based on the initial estimate of the MS, there can
be different implementations to adopt the GALL scheme for location estimation. Fig. 5.2 illustrates
the schematic diagrams for the implementations of the proposed GALL algorithm. The GALL-
TSLS scheme as shown in Fig. 5.2(a) is proposed to calculate both the initial and final estimates of
the MS’s position based on the TSLS estimator [17]. On the other hand, a two-stage architecture
named GALL-KF scheme as shown in Fig. 5.2(b), i.e., TSLS estimator with Kalman filter, is
proposed to enhance the initial estimate with the historical information from Kalman filter. These

two types of implementations of GALL scheme are explained in the following two subsections.
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5.3.1 GALL with TSLS estimator (GALL-TSLS)

As shown in Fig. 5.2(a), the MS’s initial estimate Z° can be obtained by performing the TSLS
method (i.e., ° = 7). The formulation and concept of the TSLS method can be found in Section
2.4. With the initial estimate, the fictitious BS set can be calculated based on the proposed GALL
scheme targeting on achieving the minimum L-CRLB requirement. The TSLS is performed for
the second time with the adjusted BSs and the received measurements to obtain the MS’s location
estimate for the GALL-TSLS scheme.

5.3.2 GALL with Kalman Filter (GALL-KF)

In order to provide enhanced location estimate, the proposed GALL-KF scheme as shown in Fig.
5.2(b) is suggested to estimate the MS’s position using a two-stage estimator, i.e., a TSLS estimator
with a Kalman filter. The measurements are collected in different time instants to obtain a better
initial estimate, the notation in this section is considered with the time instant ¢ in Section 2.1.1.
The Kalman filter is employed to estimate the MS’s position based on its previously estimated data.
Note that the formulation and concept can bereferred.to Section 2.5. Note that for the two-stage
location estimation, the input of the Kalman filter is obtained from the result of the GALL scheme
as z() = :i:g,f) in Fig. 5.2(b). The estimated output /state 8 is the 2-dimensional MS’s position.
The variables m® and p® denote the measurement and the process noises associated with the
covariance matrices R and Q within the Kalman filtering formulation. Note that the matrix R
can be determined by the FIM of L-CRLB and Q-is set to be an identity matrix. Furthermore,
the matrix E and the state transition‘matrix F in(2:16) and (2.17) respectively can be obtained
as E=F =Iyyo.

As shown in Fig. 5.2(b), the execution process of the proposed GALL-KF scheme consists
of two phases, including the transition period (7)) and the stable period. During the transient
period ¢t < T),, the GALL-KF scheme adopts the TSLS method to provide the initial estimate
of the MS. After the tracking time is longer than 7}, the GALL-KF scheme starts to adopt the
prediction from the output of the Kalman filter, i.e., é(t‘tfl), which serves as the updated initial
MS’s estimate for the GALL scheme. By adopting the Kalman filter, it can be observed that the
GALL-KF scheme only requires to perform a single round of location estimation compared to the
GALL-TSLS scheme after the system is executed in the stable state. The Kalman filter can refine
the MS’s position estimation with the historical measurements based on the initial estimate, which
should provide better estimation accuracy by adopting the GALL-KF scheme compared to the
GALL-TSLS method.
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Figure 5.3: Validation on GALL-TSLS scheme with one fictitiously movable BS problem.

5.4 Performance Evaluation

Simulations are performed to show the effectiveness of the GALL algorithms (i.e., GALL-TSLS
and GALL-KF) under different network topologies and the MS’s positions. The number of BSs
is considered as three in the examples since three-BSs is the minimum sufficient number for the
localization problem. The model for the LOS measurement noise of the TOA signals is considered
as in Section 2.2.1.1 as the Gaussian distribution with zero mean and standard deviation as o,
meters in different cases. In the following examples 5.1 and 5.2, the GALL-TSLS algorithm is
simulated to validate the effectiveness of the fictitiously movable BS schemes on the TSLS based

estimation.

Example 5.1 (Validation on approximate one fictitiously movable BS problem). The purpose of
this example is to compare and validate the difference between the original and approximate one
fictitiously movable BS problems. Consider three sensors whose coordinates are b; = [50 cos 0°,
50sin 0°]7, by = [30 cos az, 30sin as]”, and b3 = [20 cos 140°, 20sin 140°]7 where by is function of
g with its range as indicated in the z-axis of Fig. 5.3. The MS’s true position is assumed to
be placed at the origin, i.e., = [O,O]T. Note that all the layouts formed by the three sensors
with the change of gy are designed to be OPLs for validation purpose. More realistic network
scenarios will be considered in the following examples. The standard deviation of the Gaussian

noises is chosen as ¢, = 1 in this example. The root mean square error (RMSE) is defined as

RMSE = \/Zf\il |z — x||2/M where M denotes the number of trials as 1000. Fig. 5.3(a) shows
the original one fictitiously movable BS problem obtained by exhaustively solving (5.2); while Fig.

5.3(b) illustrates the approximate one fictitiously movable BS problem acquired from (5.8) and
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Figure 5.4: Validation on GALL-TSLS scheme with two fictitiously movable BSs problem.

(5.9), which are respectively denotedyas “GALL(1BS)-TSLS BS; moved” in both plots, for i = 1,
2, and 3. In each of the three cases;i.e., i-= 1,-2-and 3, BS; is fictitiously moved for obtaining the
optimal angle &]" that can achieve the minimum value of L-CRLB. Moreover, the “GALL(1BS)-
TSLS” curves in both plots respectively denote thet GALL(1BS) problem as defined in (5.1) by
selecting among different fictitiously movable angles from the original problem (5.2) in Fig. 5.3(a)
and approximate problem (5.8) in Fig. “5.3(b)...Since’the “GALL(1BS)-TSLS” acquire the positions
of the fictitious BSs such as to achieve the minimum L-CRLB value with respect to the MSs initial
location instead of the MS’s true position, the RMSE performance is not necessarily the lowest
compared to the “GALL(1BS)-TSLS BS; moved” scheme for i = 1, 2, and 3. Note that both
the CRLB and the conventional TSLS scheme are also illustrated in both plots for comparison
purpose. It can be observed that even though the approximate problem will be differ from the
original problem by individually moving one of the three BSs fictitiously, the resulting problem
(5.1), i.e., the GALL(1BS)-TSLS scheme, obtained from (5.8) will be closely match with (5.2) as
shown in both plots. Furthermore, it can be seen that the GALL(1BS)-TSLS scheme can provide

better RMSE performance compared to the conventional TSLS scheme. o

Example 5.2 (Validation on approximate two fictitiously movable BSs problem). This example
is to compare and validate the difference between the original and approximate two fictitiously
movable BSs problems in Fig. 5.4(a) and Fig. 5.4(b), respectively. Same network layout and noise
variance as in example 5.1 are utilized in this example. The curves named “GALL(2BSs)-TSLS BS;
fixed” refer to the problems that the i-th BS is fixed while the other two BSs are movable, i.e., the
angle set {a4", @3'} of the curve “GALL(2BSs)-TSLS BS; fixed” are obtained via (5.12) and (5.18)
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for the original (Fig. 5.4(a)) and approximate (Fig. 5.4(b)) problems respectively. Moreover, the
curve “GALL(2BSs)-TSLS” denotes for the problem in (5.11) to select among different movable
angles from the original problem (5.12) in Fig. 5.4(a) and the approximate problem (5.18) in Fig.
5.4(b). Similar to the previous example, the final GALL(2BSs)-TSLS scheme of both problems are
observed to be consistent with each other from the simulation results. Meanwhile, the effectiveness
of problem (5.22) for the GALL scheme is also validated by selecting among the GALL(1BS)-TSLS
and the GALL(2BSs)-TSLS schemes. By observing both Figs. 5.3 and 5.4, the GALL-TSLS scheme
with the problem (5.22) can achieve the lowest RMSE compared to the other methods. o

It is intuitive that the closed form property of the approximate problem can provide efficiency in
computational complexity compared to the original problem. Therefore, the approximate problem
with the GALL scheme will be adopted in the rest of the examples for performance comparison. In
order to provide better estimation precision for MS’s location estimate, the GALL-KF algorithm
is simulated to compare with the existing TSLS [17], Beck [40], and SDR [41] algorithms, which
are named as TSLS-KF, Beck-KF, and SDR-KF respectively. Note that these three algorithms

are also cascaded with the Kalman filters to perform two-stage estimation in order to provide fair

comparison.
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Figure 5.5: Performance comparison of example 5.3.

Example 5.3 (A special case of GALL-KF scheme). In this example, a special network scenario is
simulated to provide performance comparison for the GALL-KF scheme. Consider an array of three
sensors in the OPL whose coordinates are by = [20 cos 0°, 20sin 0°]7, by = [30 cos 80°, 30sin 80°]7,
and bz = [50cos 140°, 50sin 140°]7; while the MS’s true position is fixed at = [0, 0]7. Fig.

5.5(a) demonstrates the performance comparison of average position error for the simulation time
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instant ¢ = 1000, where each time instant is run with 1000 simulation samples. Note that the
average position error at the time instant ¢ is defined as Zi‘il |3®) — &) || /M. The transient period
T, is chosen as 20 which means that the GALL-KF scheme starts to adopt the prediction from
the Kalman filter at the time instant ¢ = 21. The standard deviation of Gaussian noises o, is
chosen as 2 in Fig. 5.5(a). Since the Kalman filter is effective in smoothing the estimation result,
it can be observed that the average position error is decreased and converges with the increment
of time instant ¢ for all the schemes in Fig. 5.5(a). With the consideration of the L-CRLB in the
algorithm design, the proposed GALL-KF implementation can achieve lowered average position
error compared to the other schemes; while the SDR-KF has the worst performance among all
the algorithms. Since the two-stage architecture does not provide smoothing gain to the SDR-KF
method, the SDR-KF scheme will not be further considered in the rest of the simulation examples.

Fig. 5.5(b) illustrates the performance comparison of RMSE at the simulation time instant
t = 1000 under different standard deviations of the Gaussian noises. It can be observed that
the GALL-KF scheme can provide a significant gain over the other methods under different noise
values. Note that the Beck-KF scheme is obseryed to be sensitive to the noise which results in higher
RMSE compared to the TSLS-KF scheme under larger noise condition. For example, compared to
the TSLS-KF and Beck-KF methods, the-proposed GALL-KF scheme will result in 2.8 meter and

6 meter less of RMSE respectively. under o, = 10-meter as shown in Fig. 5.5. o
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Figure 5.6: Network layout of example 5.4.

Example 5.4 (A general case of GALL-KF scheme under LOS environment). This example il-
lustrates a general scenario of wireless sensor network as shown in Fig. 5.6 for performance
comparison under LOS environment. The BSs’ coordinates are selected as by = [50, —35.36]7,
by = [50, 35.36]7, and b3 = [—50, 35.36]7, and there are 100 MSs randomly deployed in a 100x 100
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Figure 5.7: RMSE performance verus different standard deviations of Gaussian noise with network layout
in Fig. 5.6.

meter square space. Note that the number of MSs located in the OPL is larger than that in the IPL
in this example in order to demonstrate that the  OPL may frequently occur in a sensor network
environment. The performance of-the IPL and the OPL under the LOS condition are separately
examined udner different noise standard deviation in Fig."5.7(a) and (b), respectively. Since the
difference between the L-CRLB and the CRLB"is considered small in the IPL case, similar RMSE
performance is observed among the three compared schemes as illustrated in Fig. 8(a). On the
other hand, with the OPL scenario as shown in Fig. 8(b), the GALL-KF scheme can outperform
the other two methods under different noise environments, e.g., the GALL-KF approach will result
in 2.9 and 3.4 meters less of RMSE compared to the Beck-KF and TSLS-KF schemes respectively
under o, = 20 meter in Fig. 5.7(b), which is considered the major contribution of the proposed
GALL-KF scheme. o

Example 5.5 (A general case of GALL-KF scheme under realistic environment). In this example,
the performance comparison is conducted for the GALL-KF scheme under the realistic environment.
The same network layout setting as example 5.4 is adopted; while the noise setting is different by
considering the NLOS in this example. In order to include the influence from the NLOS noise, the
TOA model in cellular network as in Section 2.2.1.2 is adopted. 7, represents the median value of
7i, which is utilized as the z-axis in Figs. 5.8(a) and 5.8(b).

Fig. 5.8(a) illustrates the performance comparison for the three schemes in the IPL under
NLOS environment. It can be observed that the proposed GALL-KF approach can provide the
smallest RMSE compared to the other two schemes, e.g., the GALL-KF scheme will result in 3.1
and 5.2 meters less of RMSE respectively under 7,,, = 0.2 us compared to the Beck-KF and TSLS-
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Figure 5.8: RMSE performance versus different NLOS median values with network layout in Fig. 5.6.

KF methods. The reason is that the GALL-KF scheme-is designed based on the minimization of
L-CRLB by fictitiously adjusting the locations of BS. "As mentioned in Subsection II.C, the value
of L-CRLB is affected by the distance between the BS and-MS, which will be greatly influenced
by the NLOS noises. Therefore, the effect from the NLOS noises has been implicitly considered in
the design of GALL-KF scheme, which improves: the location estimation performance. Moreover,
Fig. 5.8(b) illustrates the performance eomparison forthe'OPL scenario under NLOS environment.
The proposed GALL-KF scheme can still‘ontperform the other two methods, e.g., around 1.9 and
6 meters less of RMSE in comparison with the Beck-KF and TSLS-KF schemes under 7,,, = 0.2 us
in Fig. 5.7(b). The merits of proposed GALL-KF scheme can therefore be observed. o

5.5 Concluding Remarks

The properties of linearized location estimation algorithms by introducing an additional vari-
able are analyzed from the geometric point of view. By proposing the linearized location estimation
problem based CRLB (L-CRLB), the linearization lost from the linearized location estimation algo-
rithms can be observed. In order to minimize the linearization lost, the geometry-assisted linearized
localization (GALL) algorithm is proposed in the chapter by fictitiously moving the base stations
(BSs) in order to achieve the new geometric layout with minimum L-CRLB value. The GALL with
two-step least squares (GALL-TSLS) implementation can enhance the estimation performance of
the conventional TSLS estimator. By improving the initial estimation with the adoption of histor-
ical information, the GALL with Kalman filter (GALL-KF) scheme further outperforms the other

location estimators with similar two-stage estimation structure.
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Chapter 6

Hybrid Network /Satellite-Based
Location Estimation and Tracking

Systems

- The location algorithms for the mobile=stations in the telecommunication system can generally
be categorized into the network-based and the satellite-based systems. Hybrid location estimation
architectures, which have not been_fully addressed in the.literature, are proposed in this chapter to
combine various satellite-based and the cellular-based-signals for location estimation and tracking,

i.e., TOA, TDOA, and AOA. !

6.1 Introduction

The quality-of-service of the positioning accuracy has been announced after the issue of the
emergency 911 (E911) subscriber safety service [42], which makes the location based service be-
come a necessary functionality in the telecommunication systems. Location-based service would
be covered in telecommunication standards in order to meet the E911 requirement and for the
resource management purposes such as location-based handover [43]. A variety of wireless location
techniques have been studied and investigated [44, 45]. These schemes can be classified into (7)
the network-based and (ii) the satellite-based location estimation algorithms. The representative
systems for the network-based location techniques include the cellular-based networks, which adopt
the time difference-of-arrival (TDOA) and the angle-of-arrival (AOA) information for location es-
timation. The well-adapted technology for the satellite-based location estimation method is to

utilize the global positioning systems (GPSs), which measures the time-of-arrival (TOA) of the

'The chapter is based on [J-2] Po-Hsuan Tseng and Kai-Ten Feng, “Hybrid Network/Satellite-Based Location
Estimation and Tracking Systems for Wireless Network,” IEEE Trans. on Vehicular Technology, Vol.58, Issue 9, pp.
5174 - 5189, Nov. 2009.
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6.1. Introduction

signals coming from different satellites. It has been studied in several researches [46, 34] that the
performance of the location estimation techniques listed above varies under different environments.
Due to shortage of signal sources (e.g., at rural area) or severe none-line-of-sight (NLOS) situation
(e.g., at urban area), the network-based (i.e., TDOA, AOA) methods result in degraded perfor-
mance for the location determination of the MS [47, 48]. On the other hand, the major problem for
the satellite-based method [49] is that the performance is considerably degraded while the satellite
signals are severely blocked (e.g., at urban or indoor area).

In order to achieve better accuracy for location estimation, a hybrid approach should be con-
sidered to satisfy the requirements under different environments. However, most of the existing
research work does not explicitly design location estimation algorithms that are targeted for het-
erogeneous circumstances. The assisted GPS (A-GPS) system is considered a well-known technique
that fuses the network-based signals in order to enhance the startup performance of a GPS-based
positioning system. With the availability of different types of signal sources, the accuracy for lo-
cation estimation can be improved. The practical system that provides the implementation of the
A-GPS system is contributed to the GpsOne. [50] chipset solution. Nevertheless, only high-level
description is available that explains how the GpsOne system conducts hybrid location estimation.
There is lack of detail information regarding the hybrid architecture and performance evaluation
for location estimation under different environments.

The main objective of this chapter is to propese hybrid-architectures and algorithms for loca-
tion estimation under heterogeneous networks. Two different types of hybrid location estimation
and tracking systems are proposed in-this chapter. The first scheme, called the fusion-based hybrid
(FH) architecture, determines the MS’sdgcation-by-Combining the separate outcomes from both the
network-based and the satellite-based techniques (e.g., by integrating the location information ob-
tained from the cellular network and the GPS receiver). Within each of the two separate channels,
the two-step least squares (TSLS) method [17] is utilized to estimate the MS’s position based on
the measurement inputs. The Bayesian inference model [51, 52] is adopted as the fusion mechanism
to acquire the final position estimate from both the satellite system and the cellular networks. On
the other hand, the unified hybrid (UH) architecture is proposed as the second scheme. The hybrid
signal selection (HSS) scheme is proposed to restrict the number of heterogeneous incoming sources
based on their signal qualities. Moreover, the hybrid least squares (HLS) estimator is employed to
provide location estimation of the MS from the selected signal inputs (i.e., the combination of the
TOA, the TDOA, and the AOA measurements). The source deficiency problem, which may occur
either within the cell-based or the satellite-based system, can effectively be mitigated by adopt-
ing the proposed UH architecture. Furthermore, the Kalman filtering technique [18] is exploited
within the two proposed hybrid architectures, which is capable of providing noise smoothing and
location tracking while the MS is dynamically moving within the network. The performance of
the proposed hybrid location estimation and tracking schemes are evaluated via simulations under

different environments.
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6.2. System Architecture and Modeling

From implementation perspective, both hybrid architectures can be employed depending on
the flexibility of hardware unit within an MS. Two types of signal selection schemes are employed
in these hybrid architectures, including the fixed-set of signal inputs (FSI) and the selective-set
of signal inputs (SSI) methods. The FSI algorithm can be utilized by a standardized hardware
platform, which consists of the GPS receiver and the radio baseband. It is noted that two fixed-set
of signal inputs are acquired from each of the two channels within the hardware platform. This
type of architecture is beneficial for its standardized cost and implementation. On the other hand,
the SSI scheme can be employed in an MS via software implementation or flexible hardware design.
The scheme can provide both flexible system upgrade and effective location estimation of the MS
under different circumstances. It is noted that both signal selection schemes can be implemented
with the FH architecture; while the UH architecture adopts the SSI approach.

The remainder of the chapter is organized as follows. Section 6.2 presents the system architec-
tures and the modeling of the signal sources for the the proposed schemes. The signal selection
algorithms adopted within the proposed schemes are explained in Section 6.3. Section 6.4 describes
the proposed HLS estimator associated with the conventional TSLS method. Section 6.5 illustrates
the performance evaluation and the implementation ‘assessment of the proposed hybrid schemes.

Section 6.6 draws the conclusions.

6.2 System Architecture and Modeling
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Figure 6.1: Schematic diagram of hybrid mobile location estimation.

6.2.1 System Architecture

Fig. 6.1 shows the schematic diagram of the system architecture for the hybrid location estimation.

The hybrid system combines the signals coming from both the satellites and the cellular networks.
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6.2. System Architecture and Modeling

In order to obtain the TOA measurements from the satellites, it is assumed that the MS should be
equipped with a GPS receiver (for the FH scheme) or merely a GPS front-end (for the UH scheme).
On the other hand, the network-based system adopts the following features from the 3GPP [53] and
the WiMax standards [54]: (i) Each Base Station (BS) has a downlink (forward-link) pilot channel
that continuously broadcast its pilot signal in order to provide timing and phase information for
all the MS in this cellular network. (i7) Each BS has a dedicated uplink (reverse-link) pilot channel
from the MS to provide initial acquisition, time tracking, and power control measurements. (ii7)
Each BS is equipped with antenna arrays for adaptive beam steering in order to facilitate the
AOA measurements. As shown in Fig. 6.1, the TDOA measurements are conducted at the MS
by obtaining the signals via the downlink pilot channels from the BSs. The AOA signals are
transmitted from the MS to the BSs using the uplink pilot channel. The AOA measurements are
performed at the BS using its antenna arrays for 3-D adaptive beam steering. In order to avoid
signal degradation due to the near-far effect, it is assumed that only the home BS provides the
capability of the AOA measurements.

As stated in the 3GPP standard, the location determination of the MS can either be MS-Based
or MS-Assisted. The choice between these two types of system depends on the requirement of the
communication bandwidth and the computation power of the MS. The FH and the UH schemes as
proposed in this chapter can be applied to-either the MS-Assisted or the MS-Based system. The
following two subsections describethe proposed system architectures based on these two types of

system:

6.2.1.1 Mobile-Assisted System
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Figure 6.2: Mobile-assisted system using the FH architecture (left diagram) and the UH architecture (right
diagram).
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6.2. System Architecture and Modeling

This type of architecture is suitable for the MS with insufficient computation capability. The

left schematic diagram of Fig. 6.2 illustrates the FH scheme that implements on the MS-Assisted

positioning system. The following steps describe the procedures of the FH scheme for the MS-

Assisted system:

(#)

The GPS-equipped MS receives signals from the satellites and conducts TOA pseudo-range
measurement (rl@). The GPS receiver either selects five TOA measurements via the satellite-
based signal selection with fixed-set of signal inputs (SSS-FSI) scheme or a flexible number of
measurements via the satellite-based signal selection with selective-set of signal inputs (SSS-
SSI) scheme. The MS’s three-dimensional position (i.e., mg) =] g), yg), zg)]T) can therefore
be estimated using the TSLS method. On the other hand, the TDOA signals are measured
at the MS by obtaining signals from its home BS and the neighboring BSs via the downlink

pilot channel.

These two sets of information, the location estimation (m(Gt)) and the TDOA measurements

®)

(u;, j), are transmitted back to the home, BS, via the uplink pilot channel.

The AOA measurement (9?), gt)) is conducted at the home BS by receiving the signals from
the MS via the uplink channel.

The location server at the home BS performs either'the.cell-based signal selection for fixed-set
of signal inputs (CSS-FSI) or the cell-based signal selection for selective-set of signal inputs
(CSS-SSI) scheme from the network-based signal sources, and the TSLS method is utilized

to estimate the three-dimensional position (a:(ct)) of the MS.

The BS location server performs Kalman filtering technique to smooth out the measurement
noises and to track the position data both from the TOA and the TDOA/AOA channels (i.e.,

aig) and m(ct)) The formulation of Kalman filter can be referred to Section 2.5. Note that the

position (1), velocity (#®), and acceleration (a*)) tracking are considered in the Kalman
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6.2. System Architecture and Modeling

filter formulation. The matrix E and the state

100000
E = [010000
(001000
(1 0 0 At 0
010 0 At
001 0 0
000 1 0
F = [000 0 1
000 0 0
000 0 0
000 0 0
000 0 0

transition matrix F can be obtained as
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where At denotes the sample time interval:“For the FH architecture (as in the left diagrams

of Figs. 6.2 and 6.3), the output of the Kalman filter corresponds to either 5.
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or
TSLS estimator at the time instant ¢. Based

on both the prediction and updating processes within the Kalman filtering formulation, the

trajectory of MS can be predicted and traced in reasonable estimation accuracy. Note that

the Kalman tracking will conductdinear.prediction (with constant acceleration) for obtaining

the MS’s position while the number of signal inputs becomes insufficient in each of the two

channels.

(vi)

Data Fusion is performed to merge disparate types of information in order to enhance the

position accuracy. The Bayesian inference model [51, 52] is adopted to incorporate both
the means (@g) and @g)) of the filtered estimations (ﬁ:(Gt) and 5:(5)) from the TOA and the

TDOA/AOA measurements based on their signal variations as
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6.2. System Architecture and Modeling

represent the corresponding standard deviations of :i(ct) and :ig), respectively. The fused

position estimate (:igf)) of the MS can therefore be obtained.

The right schematic diagram of Fig. 6.2 shows the proposed UH scheme that is adopted on
the MS-Assisted system. Comparing with the FH scheme, one of the major differences in the
UH architecture is that the TOA measurements (obtained via the the GPS front-end within the
MS) is transmitted to the BS instead of the estimated MS’s position (a:gi)) After acquiring the
three different types of signal inputs (i.e., the TOA, the TDOA, and the AOA measurements),
the location server at the home BS will start to perform signal selection via the proposed hybrid
signal selection with selective-set of signal inputs (HSS-SSI) scheme. The selection scheme will
guarantee the availability of sufficient signal inputs for the HLS estimator and also eliminate severely
interfered signals. The HLS estimator will therefore be conducted to combine the various types
of measurement inputs for the estimation of the MS’s three-dimensional position (:1:(1?) For the
UH architecture (as in the right diagrams of Figs. 6.2 and 6.3), the output of the Kalman filter
corresponds to é(f? = [[ﬁs(f?]T (I?]T [&?]T]T

acquired from the proposed HLS estimator.. The matrix E and the state transition matrix F can

be obtained as (6.1a) and (6.1b)).

, [v . while the measurement input z® = m(l? can be

)

6.2.1.2 Mobile-Based System
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Figure 6.3: Mobile-based system using the FH architecture (left diagram) and the UH architecture (right
diagram).

This type of architecture is suitable for the MS that possesses adequate computation capability.
The left schematic diagram of Fig. 6.3 shows the proposed FH scheme for the MS-Based positioning
system. Comparing with the left diagram of Fig. 6.2, the AOA measurement (HY), gbgt)) is obtained
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6.3. Signal Selection Schemes for Proposed Hybrid Architectures

from the home BS and is transmitted to the MS via the downlink pilot channel. All the remaining
functionalities (i.e., signal selection, location estimation, Kalman filtering, and data fusion) are
performed at the MS in order to obtain the final location estimate (ﬁ:gct)) On the other hand, the
proposed UH scheme for the MS-Based positioning system is illustrated in the right diagram of
Fig. 6.3. Similarly, the only function conducted by the BS server is to measure the AOA signal
(HY), gt)), and is consequently transmitted back to the MS via the downlink pilot channel. All the
other tasks that are accomplished by the MS can be referred to the UH method for the MS-Assisted
system (as in the right diagram of Fig. 6.2), excepting that those are performed within the MS in

this case.

6.2.2 Problem Description

Consider a network of transmitting satellites and cellular BSs. Our goal is to estimate the
unknown positions of an MS at time instant ¢ which are denoted by a set of 3-dimensional vectors
x(®) = [x(t), y(t), z(t)]T. In other words, based on the known positions of the transmitting satellites
and BSs, the mobile units wish to estimate!their positions at different time instants. When the
(-th satellite broadcasts its signal, the MS receives an effective TOA measurement Tét). Note that
the clock bias b caused by the clock offset-between the MS: and the satellite should be estimated.
Meanwhile, the cellular BS also broadcasts its signal.~The effective TDOA signal ug]) can be
measured from the i-th and j-th ‘BSs by eliminated the clock offset. Meanwhile, the horizontal
and vertical AOA (i.e., HY) and gbgt)) signals can be measured by the home BSs. By collecting the
TOA, TDOA and AOA measurements from the satellite and cellular BS, the goal is for the MS to

generate an estimate #*) = (20, 4O 2T of its position.

6.2.3 Mathematical Modeling of Signal Sources

The 3-D coordinates of the MS are exploited in the proposed hybrid location estimation schemes.
The mathematical models for the TOA, the TDOA, and the AOA measurements can be referred
to Section 2.1.1, 2.1.2, and 2.1.3, respectively.

6.3 Signal Selection Schemes for Proposed Hybrid Architectures

Conventional studies [36] indicate that all of the signal inputs should be utilized for loca-
tion estimation such as to achieve better performance under the situation that the measurements
are Line-Of-Sight (LOS) signals. Specifically, the Cramér-Rao Lower Bound (i.e., the error lower
bound) under LOS environment is monotonically decreasing as the number of the BS is augmented.
However, in realistic environments, it is expected to encounter situations with different error distri-
butions [55, 38, 56], e.g., with environment containing both the NLOS and the LOS measurements.
In other words, providing that the NLOS measurement exists, the strategy of adopting all of the
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signal measurements will not be considered an optimal method. As a result, it is required to exploit
signal selection scheme among the various signal sources.

The signal selection schemes are considered as the post-processing after the front-end hardware
transceiver has pre-filtered the input signals, e.g., by eliminating the interferences from the fading
effects. Different types of signal selection algorithms have been proposed. It has been studied
[57, 58] to be an NP-hard problem for obtaining the optimal set of signal sources (out of exhaustive
search on the sample space) in order to achieve the minimum estimation error for the MS’s position.
Therefore, approximate solutions for achieving the optimal set of signal sources are proposed in
the next subsections. The selection strategy for both FSI and SSI scheme are proposed based on
different criterion under the satellite-based (Subsection 6.3.1) and the cell-based (Subsection 6.3.2)
networks respectively. In Subsection 6.3.3, the SSI scheme is exploited to sort out the available
sources based on their signal qualities under the heterogeneous environments. It is noticed that
whether to choose a fixed-set or a selective-set of signal inputs depends on the tradeoffs between the
hardware cost and the implementation flexibility. Without severe degradation on the estimation
accuracy, the proposed FSI scheme can be implemented in a standardized hardware platform for
the purpose of reducing the hardware.cost-and inereasing the computation speed. On the other
hand, by considering the software implementation, the proposed SSI scheme can achieve better

estimation accuracy without being ¢onstrained by a fixed number of signal sources.

6.3.1 Satellite-based Signal Selection (SSS) Scheme

The SSS-FST and the SSS-SST schemes within the EH architecture (as shown in the left diagrams
of Figs. 6.2 and 6.3) are presented in this subsection.  The procedure of the SSS approach is to first
utilize the Receiver Autonomous Integrity Monitoring (RAIM) [59] technique for the elimination
of possible faulty satellites. The remaining satellites will further be distinguished with either good
or bad signal quality according to both their elevation angles and SNR values. Moreover, in the
SSS-FSI scheme, the total number of signals is further constrained to be a fixed number for ease of
implementation. In general, four measurement inputs will be sufficient for the estimation of four
state variables. However, due to the nonlinear behavior (i.e., terms with square root) associated
with the equations, additional TOA measurement will be required for the closed-form location
estimator [60, 61], e.g., TSLS estimator. For achieving higher estimation accuracy, there are also
literatures [49] seeking for solutions with more available signal sources. Therefore, the minimum
number of the satellites required for the SSS-FSI scheme is chosen as five.

Several factors [60] can degrade the satellite signals and consequently affect the accuracy for
MS’s location estimation algorithm, e.g. the number of visible satellites and the satellite geometry.
In order to effectively consider these inferior effects to the accuracy for location estimation, three
parameters are considered in the proposed SSS scheme, including the elevation angle of satellite,
the SNR value [62], and the Geometric Dilution of Position (GDOP) metric. In general, severe
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multi-path effect will be incurred with comparably smaller satellite elevation angle; while the SNR
value can be utilized as an index to remove weak signal sources. Meanwhile, it is noted that
GDOP [63] is a well-adopted metric for justifying the accuracy of location estimation based on the
geometric layouts between the MS and its associated satellites. Furthermore, the RAIM technique
is also adopted to examine the integrity of GPS psuedo-range measurements. Within the scheme
of RAIM Fault Detection and Exclusion (RAIM-FDE) [64], the GPS receiver can both detect and

isolate the erroneous channels from those that can be utilized for location estimation.

Algorithm 6.1 SSS-FSI Scheme
Ensure: S;.
: for S§; € S; do
Sy < RAIM-FDE(S;) % Isolate the possible fault satellites with RAIM-FDE scheme
if S;.6\" > ¢y, and ;7" > ~y, then
Sy = {Sg, Si };

Sb < { Sb, Sz };
end if
: end for

1
2
3
4
5: else
6
7
8
9: Sy Optimum5(S,) % Optimize baged 6n the GDOP wietric and result in N(S,) =5

The proposed SSS-FSI scheme'is first illustrated in Algorithm 6.1; while the difference between
the SSS-SSI and SSS-FSI schemes will be described-afterwards. In Algorithm 6.1, the entire set
of available satellites is defined as S =.{S,,S;} =487|Vi,1 < i < n}, where S; and S; are
represented as the sets of satellites with good and bad signal qualities. S; € S; is the satellite set
that is selected by the SSS-FSI scheme. It is also noted N(®) denotes the number of elements within
the ® set. Initially, the proposed scheme utilizes the RAIM-FDE scheme to detect and isolate the
satellites S; that are detected to cause the fault. It is noted that the RAIM-FDE technique will only
eliminate those satellites that fail to pass the detection. The proposed SSS-FSI scheme continues
to construct the remaining S, set by verifying if the elevation angle (QSZ(t)) and the SNR value (%-(t))
of the satellite .S; are larger than their pre-specified thresholds, ¢;, and . Furthermore, the
minimal required number of satellites for the proposed SSS-FSI scheme can be acquired with the
exploitation of the Optimumb scheme as in Algorithm 6.1. Basically, this technique is adopted
from [65] in order to obtain the optimal set of satellites Sy (which is chosen as five) based on the
minimal GDOP criterion. However, the computation of minimum GDOP value involves a series
of matrix operations, which is considered inapplicable for implementation. In order to compute
the GDOP value in the real-time manner, matrix inversion lemma is utilized to approximate the
complex matrix calculation into a recursive computation with single order operations, i.e., to reduce
the computation cost from O(n?) to O(n). Moreover, by adopting the revolving door method, the

previous calculation can further be reused instead of conducting entire matrix calculation. With
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the recursive computation, this scheme is also feasible to be employed under the situations that
visible satellites are changing from time to time.

On the other hand, compared to the SSS-FSI approach, the proposed SSS-SSI scheme removes
the constraint that total the number of satellites in the selected set S; should be five. In other words,
Optimumb function as implemented in Line 7 of Algorithm 6.1 is removed which consequently
results in Sy = S,. Furthermore, it is noted that the SSS-FSI and SSS-SSI schemes become the
same algorithm providing that the N(S,) is smaller or equal to the number of five. In Section 6.5,
the performance comparisons between these two signal selection schemes will further be evaluated

from both the computation cost and estimation accuracy.

6.3.2 Cell-based Signal Selection (CSS) Scheme

Algorithm 6.2 CSS-FSI Scheme

Ensure: B;.

1: By < SortMin ( By, B;.6% ); % Sort By based,on B;.62 with monotonic increasing order
2: [:ﬁg)](o) < TwoStepLS ( {Bi, ...4 B} ); % Anylocation estimator could be utilized for initial

estimation
. Bi. A « ResidualTest ( By, [ﬁ:g)](o) =
: for B; € B; do
if B; A" < )\, then
B, « { By, B; }; % EOS condition;
SortMin( By, B; A )i % Sort B; based on/Byp. A with monotonic increasing order
else
B, < { By, B; }; % NLOS condition
10: SortMin( B, B, \® ); % Sort B,, based on B,,.A*) with monotonic increasing order
11: end if
12: end for
13: if N(Bl) > 4 then
14: B, « { Bl71, ey Bl,4 };
15: else
16 je {(4-N(B) )
17: B, « { By, Bn,lv ey Bn,j };
18: end if

L ® TR w

This subsection describes the CSS-FSI and CSS-SSI scheme within the FH architecture (as
®)

shown in the left diagrams of Figs. 6.2 and 6.3). As indicated in (3.6), the range measurement u;

is contaminated with the measurement errors (nl(-t) and ng-t)) and the NLOS errors (ez(t) and eg»t)).
The NLOS error, which represents the additional propagation time (i.e., with positive value), has
been observed as a dominate issue for the time-based location estimation [55, 38, 66, 67, 56, 68] and
is hard to be removed from the front end signal processing. It has been investigated that the NLOS

error can be exceeded to 589 meters within the IS-95 Code Division Multiple Access (CDMA)

85



6.3. Signal Selection Schemes for Proposed Hybrid Architectures

networks [67]. The large bias in the range measurement will severely decrease the accuracy of
the network-based location estimation algorithms. Consequently, the proposed CSS scheme will
primarily focus on selecting the measurement inputs that are less corrupted by the NLOS errors.

The concept of the CSS-FSI approach will first be explained in Algorithm 6.2; while the differ-
ence between the CSS-SSI and CSS-FSI schemes will be described afterwards. In Algorithm 6.2,
the set of available BSs is defined as B; = {B;,B,} = {B;|Vi, 1 < i < m}, where B; and B,
are represented as the sets of BSs that belong to the LOS and the NLOS measurements. B, € By
is denoted as the BS set that is selected by the proposed CSS-FSI scheme. Initially, the set of
available BSs B; is sorted with monotonic increasing order based on the signal variance from its
corresponding BS. Based on the selected four BSs (i.e., By to By) with comparably smaller signal
variances, an initial MS’s estimated position [ﬁ:g)](o) can be acquired by adopting a conventional
location estimation method, e.g., the TSLS method [69] in our case. It is noted that four measure-
ment inputs, which result in three TDOA signals (as in (3.6)), will compose the minimal required
number of BSs for the estimation of the MS’s 3-D position.

In order to identify the NLOS errors from the TDOA range measurements, a residual-test
modified from [55] is exploited after the initial location estimation. It is noted that the main
concept of the residual test is to distinguish,potential NLOS measurement based on the existence
of LOS signal sources for location estimation. The outcome of the residual-test )\Et) for the BS B;
can be represented as

u?

_ @) 14.@)1(0)
O _ i (O 0150100 50N 40 oy LY (u;; — d; j([25]7))
A Fu;; —di i ([25]7)]€; 0, € 0) £ + 5 erf NS , (6.3)

where di? ([ﬁ:g)] () denotes the difference between the distances (i.e., dl(-t) ([ﬁ:g)](o)) and dg-t) ([z g)] ©)))

from the initial estimated position [ﬁ:g)](o) to the positions of B; and B;. The main concept of

the residual-test in (6.3) is to determine the residual Agt) based on the observation from the differ-

. . . . . t) .
ence between the measured and the reference distances. Since the noiseless relative distance CZ-( j) is

®) (14 ®

considered unattainable, d; (2 ]©) is utilized to approximately represent the reference relative

distance. Since the error function lies between [-1,1], the outcome of the residual-test )\Et) will be

(1)

within the range of [0,1]. Providing that the measurement wu, ; contains the NLOS error, the mea-

surement distance uz(tj) should be larger than the reference distance di,j([:%g)](o)). It is noted that
even with the possibility to encounter a poor initial estimate [.’izg)](o), ugt])
dgf]) ([:%g)](o)) since dz(fj) ([ig)](o)) should alv(va;mys fall within area that is confined by its corresponding
t
7

between 0.5 and 1. On the other hand, the )\Z(t) value will resides between 0 and 0.5 under the situ-
®)

1

will still be larger than

BSs. Consequently, the residual value A\:” will be resulted in a larger value, i.e., in general lies

ations with LOS environments. The A\;’ value for each B; will be compared with a pre-determined

threshold Ay,, which is assigned around 0.5, in order to identify the existence of the NLOS error
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from the LOS measurement inputs. After acquiring both the B; and B,, sets, the CSS-FSI scheme
will obtain the set with the minimal required number of BSs (i.e., B;) that is associated with
comparably smaller NLOS errors. It is noted that the residual test can become ineffective under
the condition that all the signals in the B; set are with NLOS errors. In such case, the NLOS
BSs within B,, set will be selected for location estimation as illustrated in Algorithm 6.2. In the
performance evaluation section (i.e., Section 6.5), both the identification rate for NLOS signals and
the estimation accuracy that incorporates the potential failure of residual test are considered in the
simulations.

Similarly, compared to the CSS-FSI approach, the proposed CSS-SSI scheme removes the con-
straint of fixed number of measurement inputs. All the LOS signal inputs will be utilized in the
(CSS-SSI scheme for location estimation of the MS. Performance comparison between these two

selection schemes will be addressed in Section 6.5.

6.3.3 Hybrid Signal Selection for Selective-set of Signal Inputs (HSS-SSI) Scheme

Algorithm 6.3 HSS-SSI Scheme

Ensure: H;.

1. if N(B;) + N(Sy) > 6 then

2: H, + { Sg, Bl };

3: else if N(B;)+ N(S,) + N(Sp) > 6 then
4: H, «+ { Sg, B, S, };
5
6
7

. else
. HS <_ { ng Bl7 Sb7 Bn }7
. end if

As shown in the right diagrams of Figs. 6.2 and 6.3, the HSS scheme for the UH is presented
in this subsection. Unlike the previous two selection schemes for the FSI case with fixed number
of signal inputs (i.e., N(Ss) = 5, N(Bs) = 4), the number of selected signal sources (i.e., N(Hjy))
are flexibly within the HSS-SSI scheme, i.e., 6 < N(H;) < N(S;) + N(B;). It is noted that the
smallest number for the scheme (i.e., N(H) = 6) is considered as the minimal number of input
requirement by using the HLS estimator, which will be addressed in the Subsection 6.4.2. The
objective of the proposed HSS-SSI scheme is primarily based on choosing the sources with better
signal qualities. As illustrated in Algorithm 6.3, the selection strategy is based on prioritizing the
following three categories: (i) the Satellites with good signal quality (Sy) and the BSs with LOS
measurement (B;); (ii) the Satellite with bad signal quality (Sp); and (iiz) the BSs with NLOS
measurement (B,,). Categories (4i) and (zii) will not be chosen as long as there is sufficient number
of signal inputs available in (). Moreover, the number of signal inputs obtained from the HSS-SSI

scheme will not be confined as that in the FSI scheme.
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6.4. Hybrid Least Squares (HLS) Location Estimation Algorithm

6.4 Hybrid Least Squares (HLS) Location Estimation Algorithm

In this section, the HLS location estimation scheme is proposed for the UH system; while the

TSLS method that extended from the conventional algorithm will be utilized in the FH system.

6.4.1 Two-Step LS (TSLS) Location Algorithm

The TSLS estimator was adopted to solve the location estimation problem from the TOA [34],
the TDOA [17], and the TDOA/AOA measurements [69]. Note that the formulation of the TSLS
method can be referred to Section 2.4. In addition to estimating the two-dimensional position of the
MS as in the previous research, the TSLS method is applied in the proposed FH system to calculate
the 3-D location of the MS. Specifically, the clock bias is also included within the FH system. The
following two subsections describe the 3-D TOA location estimation for the satellite-based system,
and the 3-D TDOA/AOA location estimation algorithm for the cellular network.

6.4.1.1 3-D TOA Location Estimation

In order to estimate the MS’s 3-D.position (i.e., 2@y ® z(t)) at time instant ¢ and the clock
bias (i.e., b) within the TSLS formulation-from the TOA measurements, it is assumed that signals
coming from at least five satellites are‘available. The 3-D-TOA measurements as described in (2.1)

can be rewritten as in matrix format as Mle(t) = J, as

(t)?
—21‘1 —2y1 —22’1 27“1 1 ™ — K1
R e % _
M, — 2 Y2 22 2T R, ra k2 : (6.4)
— — — ®)?
2rx N 2yn 2z 2ry 1 N — KN

with 80 = [z® 4@ 2O p OIT Tt is noted that SO = ()2 + (y(t))2 + (2(¢))2 — b? and
Ky = x% —i—y% + zl?. The concept of the TSLS method is to acquire an intermediate location estimate
in the first step by assuming that {x(t), y®, 20 b} and B are not correlated. The second step
of the method releases this assumption by adjusting the intermediate result to obtain an improved
() ) () (t)]T‘

location estimate, x,’ = [:UG s Yas Za

6.4.1.2 3-D TDOA/AOA Location Estimation

To solve for the TSLS problem for the cellular-based system, the home BS should provide both
the TOA and AOA measurements, while three additional TOA measurements are assumed to be
obtainable from other BSs. The 3-D TDOA and AOA measurements as in (3.6) and (2.4) - (2.5)
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can also be rewritten in the form of M; o) =3 1 as

B (t) T - (t q

S S Y21 (ug )1)2 — K2 + K1
R TR s} ()2 — s +
M= -2 | J= , (6.5)
IN —&1 YN — Y1 <N — 21 ug\t,)(t)’l ' (ug\,)l)f — KN t K1 )
—sin th) cos th) 0 0 221 sin 9§ ) le( (;OS 9& :
¢
i 0 0 cos ¢\ —cos gl sinp{") | i —2z1c08 ¢ i

with %) = [:c(t), y®, 20, T‘Y)]T. In both matrices, the AOA components are computed based on
the geometric approximation as described in [69]. The TSLS method can therefore be applied to
obtain the location estimates from the TDOA/AOA measurements to obtain an improved location

estimate, a:(ct) = [x(ct‘)7 y(c'f)7 Zg)]T.

6.4.2 HLS Location Estimation Algorithm

In the UH system, the MS is capable:of utilizing different types of signal sources for acquiring
the location information. The HLS Jdocation estimator. is-proposed in this subsection in order to
facilitate the MS’s location estimation with heterogeneous signal inputs. It is especially noticed
that the combination of the TOA and the TDOA/AOA channels within the TSLS formulation
is nontrivial. Within the formulation of.the conventional TTSLS location algorithm, the variables
introduced in the TOA-based scheme inelude {z(); y® 2O b 5B} (in Subsection 6.4.1.1); while
that for the TDOA /AOA-based approach-comprise f£® y® | 21 rgt)} (in Subsection 6.4.1.2). In
order to eliminate the nonlinear terms in both schemes, the intermediate variables 3 and ’I“gt) are
utilized along with the desired estimated parameters {x(t), y®, 21 b}. Consequently, the total
number of required measurement inputs for the proposed HLS estimator will become six, i.e., for
the estimation of the variables {x(t), y(t), 20 p, g0, rgt)}. Due to the resulting two intermediate
variables, an additional step will be required within the HLS location estimator.

Within the TOA-based TSLS formation, the circular equation ’I“ét) = gé” + b for the TOA

()

measurement r, is represented as

(r? =0 = (") = (e = 29 + (e =y + (20 = 2P, (6.6)
which can further be expanded as

(rét))Q =B — 2z, 2® — 2y, .y — 24, 2 4 27“ét) b+ Ky, (6.7)

with B = ()2 4+ (y®)2 4+ (20)2 — % and Ky = 22 + y? + 22. The first step of the TSLS scheme
is to solve the weighted LS problem via the linear equation with variables {x(t), y(t), 20 p, ﬁ(t)}.
On the other hand, the TDOA/AOA-based TSLS problem considers the hyperbolic equation for

89



6.4. Hybrid Least Squares (HLS) Location Estimation Algorithm

the TDOA measurement (ug?) considering from the i-th BS with respect to the home BS as

)

(Uz(‘?)Q = 2“5? ‘Tgt) =21 2® = 251y = 225 20 4 (5 — k1), (6.8)

)

where the four variables {m(t), y®, 20, rgt)} are considered to be solved within the TSLS formu-
lation. It is noted that the variables ’I“gt) and S® are functions of the z(!), y® and z® variables.
By combining (6.7) and (6.8), the elements within the matrix formulation (i.e., Ml[mg)](l) =Ji)

for the first step of the proposed HLS estimator can be obtained as

2wz -m)  —2gz-w) 2= —z) 0o 0 —2uyy ]
—2(x3 — 1) —2(y3 — 1) —2(z3 — 21) 0 0 _2u:(>,t,)1
My e —2(nBy) —21)  —20un@) —y1) 2N —21) 0 0 ~2uig,) 1
M; = MZXOGA = —sinegt) cos th) 0 0 0 0 , (6.9)
Mgésj)xc)\ 0 0 cos (bgt) 0 0  —cos d)&” sin d)&”
—2% —2i, 25 27 0
L T2EN(sy) —29N (8 S2EN(s,) 27’55159) 1 0 ]
[ (u5g)? —R3+ 1 |
(a2 4w + ki
B t
Irpon (USV)(BI),l)Q —KN@B,) T K1
Jo=| 3% = | —a1sin6" +y1cosl? |, (6.10)
Jgésj)ﬂ 21 COS ¢§t)
(H7)? = fa
(1) N
L (TN(sg))2 — KN(Sy)
. t t
1 with [mg](l) = [[z®]D, [y®]O | [2O1O) pD) [BO]Q) [rD)D]T 45
t — _ _
210 = mTw M) T MT e, (6.11)

Since the error of the first step estimation is obtained as i1 = Ml[wg)](l) —Ji =2cBin; + ch%,

the weighting matrix ¥; can be acquired by neglecting the square term ¢?n? as

¥, = E19]] = 4¢?B; Elnin?] B, = 4¢?B,Q, By, (6.12)

'For notation convenience, the variables with a tilde are denoted for the satellite-based variables, e.g., #1; while
variables without the tilde (e.g., r1) are utilized as network-based variables.
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where

T 2 . 2 2 2 2 ... 2
Q= dlag{ Org10 1Oyt Oror Oryr I 1IN (sg) } :

The weighted LS formulation can therefore be performed to acquire the approximate values of the
variables within [:1:([?](1). By assigning ¢ = 1 in (6.7), it can be obtained that rgt) = ((z®)? +
()2 + (20)2 — 22120 — 291y® — 2212 4 k1)V/2. In order to provide hybrid location estimation
for both the TOA and the TDOA/AOA measurements, the relationship between (6.7) and (6.8)
should be established (i.e., between 5 and r%t)). With coordinate transformation, it is feasible
to assume that the home BS is located at the origin, i.e., [x1, y1, z1]7 = [0,0,0]”. The variable
(7‘9)2 becomes (7‘9)2 = ()2 + (y®)2 4 (:®)? within (6.8), which can consequently result in
the relationship of () = (rgt))z — b% from (6.7). Therefore, the relationship could be applied and
the elements within the 2-nd step of the HLS estimator formulation (i.e., My [:13%)](2) = Jy) can be

obtained as

= o Of O

M, ; Jo = , (6.13)

o= O 0 © O
—~
N
=
—
—_
~—
[\o}

o O O o o =
o O O O~ O
S O O Moo

with [20] = [ (2O]@)2, ([FO@)2, ([Z0]@)2, (6®)2, ([rI]@)2]7, which can also be solved by
the weighted LS formulation with the weighting matrix W¥s of the 2-nd step as

‘I’Q = 4B2COV([:I:§?](1))B2 = 4B2(M1T\I’1_1M1)_1B2, (614)

where By = diag{[z®]®, [y [z0]0 3D 1/2. P)D}. With the relationship of S =
(t)](

(7‘9)2 — b2, it can be observed that the variable 3 is removed from [z}

reduced dimension vector of [:1:(1?](2). Furthermore, the 3-rd step of the HLS estimator is again to

incorporate the relationship with ([V{t)](?))2 = ([z®])5)2 + (y®]3)2 4 ([2]3)? into the matrix

1) such as to formed the
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formulation (i.e., Mg[w%)](?’) =J3) as

10 0 0] [ ([2]@)2 ]
0100 ([y]2)?
Ms=1{00 1 0], Jg=/| (0@)2 |, (6.15)
0001 ([p®1](2))2
(111 0] [ (Ir"1@)? |

with [mg)](‘?) = [([z®]14)2, ([y®])BN2, ([z®]3))2, (6(3))2]T. The associated weighting matrix s of
the 3-rd step becomes

Uy = B3C0V([:I}<t)](13))B3 = Bg(MngI’QilMg)ilBg, (616)

where Bg is an identical matrix, which indicates that the 3-rd step of the HLS estimator is exploited
(t)

as the tuning process based on the 2-nd step’s covariance matrix cov([z;/]®). The final estimated
MS’s position by using the proposed HLS estimator can be obtained as a:g) =T- ([w(lz)](:"))l/ 2 where

T = diag(1,1,1,0). The effectivenessof the HLS estimator will be evaluated in the simulations.

6.5 Performance Evaluation

The performance of the proposed hybrid architectures-is evaluated via simulations and is de-
scribed the following subsections. The noise models of TOA from the satellites, TDOA, and AOA
from the cellular networks can be referred to Sections 2.2.1.3, 2.2.1.2, and 2.2.2, respectively. Sub-
section 6.5.1 addresses the assessments on the proposed schemes according to time complexity.
Subsection 6.5.2 describes the validation of the hybrid architectures and the associated HLS es-
timator under the circumstance with pure measurement noises. Subsection 6.5.3 illustrates the
performance evaluation of the proposed schemes under the NLOS environments. Two cases are
considered: (i) the different circumstances with fixed-set of available signal inputs, and (ii) the

realistic environments with either a stationary MS or a moving MS.

6.5.1 Assessments on Proposed Architectures and Schemes

In order to illustrate the feasibility of proposed architectures, the assessments for corresponding
approaches are discussed in this subsection in view of time complexity. It is noted that both FH and
UH architectures can be implemented as either the Mobile-Assisted or the Mobile-Based system.
In the Mobile-Based system, except for the AOA information needs to be delivered from the BS
to the MS, all the required information for location estimation and tracking are calculated and
processed within the MS. On the other hand, considerable message transmissions between the MS

and BS should be conducted by adopting the Mobile-Assisted system such as to provide the BS for
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Table 6.1: Number of required computations of the FH architecture

Value p | Value ¢ | Computation costs
Satellite-based 1-st step 5 5 1400
Satellite-based 2-nd step 5 4 1214
Cell-based 1-st step 4 4 720
Cell-based 2-nd step 4 3 603
Total 3937

obtaining the MS’s position. Therefore, providing that the MS is possessed with sufficient processing
capability, the Mobile-Based system is considered a favorable architecture for location estimation
of the MS. However, due to the huge processing load within the MS by adopting the Mobile-Based
system, efficient power management should be considered to reduce power consumption within the
MS.

Moreover, the assessment between the FH and UH architectures is discussed. Basically, two
pairs of location estimators and Kalman filters are adopted for the FH scheme; while an integrated
technique is exploited in the UH architecture. In ordertodillustrate the comparison between the FH
and UH structures, an example is given under the situation-with N(S,) = 5 and N(B;) = 4, which
corresponds to N(H,) = 9. First of all; the time complexity of TSLS method and proposed HLS
scheme can be obtained by considering both matrix multiplication and matrix inversion within
the LS estimator. It is noted that the multiplication /between an ¢ x j matrix and an j X k
matrix runs in O(7 - j - k); while the eomputation cost’of matrix inversion for an 7 X 7 matrix can
be approximated as O(i®) [70]. Providing that the number of measurement inputs is p and the
number of variables to be solved is ¢, the computation cost for each LS iteration step becomes
O(6p3) + O(¢*) + O(3p%q) + O(pg?) + O(pq) by evaluating the complexity on (6.11) and (6.12).
Therefore, the total number of computations for the FH and UH architectures can be obtained
as listed in Tables 6.1 and 6.2, respectively. On the other hand, providing that the number of
measurement inputs is v and the number of state vector is w, the computation cost for the Kalman
filter can be acquired as O(u?) + O(w?) + O(2u?w) + O(2uw?) for each iteration [19]. Considering
the case that u = 3 and w = 9, the computation costs for the FH and UH can be obtained as 2808
and 1404 respectively since two separate Kalman filters are required for the FH scheme. Therefore,
the total computation costs from both the Location estimator and the Kalman filter for the FH and
UH architectures become 6745 and 11185, respectively. With smaller size of measurement input by
adopting separate estimation paths, the FH architecture will possess less amount of computation
load comparing with the UH structure.

Furthermore, the complexity of both fixed-set and selective-set of signal selection methods is
compared within the FH architecture. An example is considered with the GPS-SSI and GPS-FSI
schemes under the situation while N(S,) = 7. Compared with the GPS-SSI scheme, the GPS-
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Table 6.2: Number of required computations of the UH architecture

Value p | Value ¢ | Computation costs
HLS 1-st step 9 6 6426
HLS 2-nd step 6 5 2141
HLS 3-rd step 5 4 1214
Total 9781

(=370,-17830 | -
,13472)
20000 * :
(2601,2631 |

10000 P (©))
&),
5000 * "
(-4791,12744
o

-5000

MS (200,400,-50) m

Sat PRN24

Sat PRN26

Sat PRN27

Sat PRN9

Sat PRN10

Cell BS1 (0,0,0) m

Cell BS2 (0,2000,60) m

Cell BS3 (1732,1000,-50) m
Cell BS4 (-1732,1000,-120) m
Earth

*
(~15831,14405 e
5000 ,10255) LT

%0

Z Axis (km)

X X X X

0 -0.5 B
-5000 0 x 10
-10000 0.5
- 1
15000 Y Axis (km)
X Axis (km)

Figure 6.4: Simulation parameters for Subsections 6.5.2,.6.5.3.1; and 6.5.3.2: graphical representation for
the coordinates of satellites marked in textbox:(km), cell BSs'(m), and MS (m).

FSI method additionally performs the Optimum5 algorithm in order to restrict the number of
)

measurement input to 5. It is required for the optimum5 function to search Cév o) times for signal
selection, i.e., C57 = 21 times of computation. On the other hand, considering the computation cost
for implementing the TSLS method, the GPS-FSI scheme will conserve 3128 — 1400 = 1728 times
of calculation comparing with the GPS-SSI approach. As a result, the FSI scheme can conserve
the computation cost by reducing the number of measurement inputs; while the SSI approach
will in general provide better estimation performance with its additional usage of signal sources.
Performance comparisons between these proposed architectures and approaches will be conducted

and validated in the following subsections.

6.5.2 Validation of Proposed Algorithms with Pure Measurement Noises

Example 6.1 (Validation on Proposed HLS estimator with Pure Measurement Noises). The HLS
estimator as proposed in the Subsection 6.4.2 is validated under the environment with pure mea-
surement noises, i.e., only ng) (for & = ¢, i, and j), nét), and n((;) are considered. Fig. 6.4 shows

the simulation parameters for performance validation. Fig. 6.5 illustrates the comparison of the
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Figure 6.5: Performance comparison between each step of the HLS estimator under pure measurement
noises: RMSE of position (upper plot) and RMSE of clock bias (lower plot) vs. standard deviation of
measurement noises (0, 0y, and oy, ).

RMSE for the MS’s estimated position (upper. plot) and.the clock bias (lower plot) between the
three steps of the HLS estimator under different- standard: deviations of the measurement noises
Ones Ong, and oy, It is noted that.the Root Mean Square Error (RMSE) is computed as: RMSE

1/2
= [Zf\; |2® — &8 (3)||2/N,| ", where N,=10,000 indicates the number of simulation runs. It

is noted that a(*) represents the trué position of MS: while 2" (7) denotes for the MS’s estimated
position in the upper plot of Fig. 6.5. On-the other hand, 2® indicates the clock bias (chosen
as 50,000 m in this case) and &t (7) corresponds to the estimated clock bias in the lower plot of
Fig. 6.5. It can be observed that the RMSEs of MS’s estimated position are significantly decreased
from step 2 to 3; while that of the clock bias are considerably reduced from step 1 to 2. The
reason can be attributed to the implicit different weights that are imposed by the distinctive steps
within the proposed HLS estimator. The mechanism within the second step of the HLS estimator
removes the clock bias b by adopting the relationship between the intermediate variables ) and
rgt), ie., W) = (7‘9)2 — b2, On the other hand, the association between rgt) and the MS’s position
is constructed within the third step of the HLS scheme, i.e., (rgt))Q = (x®)2 + (y®)2 + (20)2,
Consequently, the results obtained from Fig. 6.5 validates the effectiveness of the proposed HLS

estimator for location estimation of the MS. o

Example 6.2 (Validation on Proposed FH and UH Architectures with Pure Measurement Noises).
Fig. 6.6 shows the performance comparison between the proposed FH (ﬁ:gct)) and UH (:i:g)) schemes,
associated with the Cell-FH () and the GPS-FH (&) methods. It is noted that the Cell-FH
and the GPS-FH schemes are denoted as the separate channels within the FH architecture without

the implementation of the data fusion. For example, the Cell-FH scheme includes the building
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Figure 6.6: Performance comparison between the location estimation schemes under pure measurement
noises: RMSE of position vs standard deviation of measurement noises (0y,, op,, and oy,,).

Table 6.3: NLOS BS identification rate for, FH scheme under urban environment.

Number of BS

Number of NLOS“, Number of NLOS BS N(By) [N(Sy)]

BSs: N(B,) Correctly Detected 4[5] 5[5 615
1BS 1BS 0778 0.852 0.898

2BSs 2BSs 0443 0.678 0.839

1BS 0.084 0.054 0.003

3BSs 3BSs 0.459  0.645

2BSs 0.115 0.051

1BS 0.016  0.137

blocks of the CSS, the TSLS method, and the Kalman Filter as shown in the left diagram of Fig.
6.2. Both schemes are utilized in this and the remaining subsections to illustrate the performance
for location estimation while only a single type of channel (either the cellular or the satellite-based
network) is exploited. It is also noted that both FSI and SSI schemes are considered the same
since minimum number of required signal inputs is adopted in this case. Moreover, online adaption
for the data fusion mechanism as in (6.3) is performed in the simulations. The signal means and
variances, i.e., (@g), o¢) and (@g), o), are obtained based on the acquisition of the previous ten
estimated data points of ig) and ig), respectively. It can be observed that the proposed UH and
the FH architectures outperform the other two schemes under various noise environments. The
effectiveness of the data fusion within the FH scheme is validated. With the incorporation of the
HLS estimator, the UH scheme can provide better performance comparing with the FH method,

especially with larger standard deviation of the measurement noises. o
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Table 6.4: NLOS BS identification rate for UH scheme under urban environment.

Number of BS

Number of NLOS  Number of NLOS BS N(By) [N(Sy)]

BSs: N(B,) Correctly Detected 41[5] 5[5 615
1BS 1BS 0.862 0.907 0.945

2BSs 2BSs 0.732  0.800 0.890

1BS 0.246  0.050 0.006

3BSs 3BSs 0.634 0.728

2BSs 0.321  0.050

1BS 0.034 0.049

6.5.3 Simulation Results Under NLOS environments
6.5.3.1 Identification of BSs with NLOS Errors

Example 6.3 (Identification of BSs with NLOS Errors). As explained in Subsection 6.3.2, a
residual-test is performed for the identification of the BSs with NLOS errors. Tables 6.3 and 6.4
show the identification rates (i.e., the rates to correctly detect the BS(s) with NLOS error) for both
the FH and the UH schemes under urban'environment. The test threshold Ay = 0.9 is chosen
to achieve low false alarm rate asso¢iated with 10,000 trials of the residual-test. For instance,
the identification rate for correctly ‘obtain-2 NLOS BSs under the situation of 2 NLOS BSs (with
N(B¢)[N(S¢)] = 5[5]) is 0.678 for the FH scheme and 0.800 for the UH method. It can be observed
from Tables 6.3 and 6.4 that the UH scheme can provide higher identification rate comparing with
that from the FH method. The reason can' be attributed to the better initial location estimate of
the MS ([ig)](o)) acquired from the UH structure. o

6.5.3.2 Environments with Fixed-Set of Available Signal Inputs

Example 6.4 (Environments with Fixed-Set of Available Signal Inputs). In this scenario, fixed-set
of available signal inputs are considered, i.e., five satellites (N (S;) = 5) and four BSs (N(B;) = 4)
are accessible. The signal inputs that are adopted within the FH scheme is considered fixed;
while the signal selection scheme within the UH scheme (i.e., the HSS-SSI in Algorithm 3) chooses
signals with better quality, which may result in smaller number of signal sources (i.e., in the case
that N(Sy) < 5 or N(B;) < 4). The simulation parameters are shown in Fig. 6.4. Fig. 6.7
illustrates the performance comparison between the four schemes under the urban (left plot) and
the rural (right plot) environments. It is noted that the position error (Ax) are computed as: Az
= [Zf\i Lle® — &9 ()| /N, where N, = 1,000 indicates the number of simulation runs. Different
signal qualities of the satellites and the NLOS errors in the cellular signals are considered as shown
in the captions of Fig. 6.7. In both environments, it can be observed that the proposed UH
scheme can provide better performance comparing with the other three methods under different
percentages of position errors. It is expected to observe that the Cell-FH scheme is shown to have

worse performance comparing with the GPS-FH method under the urban environment and the
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rural area as in Fig. 6.7. Fig. 6.8 showsthe performance comparison of these four schemes within
the two environments under 67% of position error. It is-expected to find that smaller position

errors are obtained by using the proposed UH scheme. o

6.5.3.3 Realistic Environments with a Stationary MS

Example 6.5 (Realistic Environments with-a.Statienary MS). This scenario demonstrates how the
proposed algorithms work in the realistic situations while a MS is stationary at a specific location
(i.e., in the urban area) for a certain time interval. Fig. 6.9 shows the total available satellites
(N(S¢)) and BSs (N(B;)) that are considered every hour between 11:00 to 18:00 on 2007/9/30 at
(N24.47, £120.59,91m) in Hsinchu, Taiwan. The coordinates of satellites are collected from the
Satscape software [71], which calculates satellite positions using NORAD SGP4 orbital models.
The sets of satellites with good signal quality and the BSs with LOS measurements (i.e., [N(S,),
N(By)]) are denoted on the plot. It is noted that incorrect identification for both types of signal
sources are also considered in the simulations.

By adopting the scenario as in Fig. 6.9, the performance comparison between the four different
schemes can be obtained as shown in Fig. 6.10 (under 67% of position error). In general, the
proposed UH algorithm outperforms the other four schemes in most cases. At the time instant of
14:00, the large estimation error (i.e., 125 m as in Fig. 6.10) acquired from the Cell-FH-FSI scheme
can be attributed to the weak NLOS identification as shown in Fig. 6.9, where N(B;) = 4 and
N(B;) = 1. The fusion algorithm within the FH-SSI scheme can overcome excessive NLOS errors,
which results in better location estimation comparing with the other methods. At time 15:00 where
[N(S:), N(B;)] = [3, 3], all the four schemes (i.e., the GPS-FH-FSI, the Cell-FH-FSI, the FH-FSI,
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Figure 6.10: Performance comparison under 67% of position error at different time instants: At 13:00,
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and the FH-SSI methods) fail to pérform-location estimation for the MS due to the deficiency of
signal sources. However, the UH scheme still can effectively provide consistent location estimation
with the position error equal to 108 m as shown in Fig. 6:10.-At the time instant of 16:00 where the
number of available satellite is zero, . both the FH and the UH schemes are transformed into the Cell-
FH-FSI method, which utilizes the TSLS method for location estimation. It can be observed that
same estimation error (i.e., around 130 m) is-obtamed as shown in Fig. 6.10. On the other hand,
the GPS-FH-FSI scheme apparently will not be able to conducted location estimation for the MS.
At the time instant of 17:00 where the number of available satellite is four, the GPS-FH-FSI scheme
will not be able to provide location estimation neither. The FH-FSI schemes is transformed into the
Cell-FH-FSI method, while the FH-SSI still adopts signal sources from both sides to achieve lower
estimation error equal to 111 m. At time 18:00 with [N (S,), N(B;)] = [8, 2], the FH algorithm will
perform the same as the GPS-FH-FSI method due to the insufficient signals within the cell-based
network. However, the UH algorithm can still provide feasible location estimation (around 15 m

less in position error) comparing with the FH-FSI scheme even with insufficient signal inputs. ¢

6.5.3.4 Realistic Environments with a Moving MS

Example 6.6 (Realistic Environments with a Moving MS). In this scenario, the proposed schemes
are compared under the environment with a moving MS, where the urban area with 50% of NLOS
BSs condition is considered. It is noted that the trajectories of satellites adopted from Satscape
software [71] are approximated with NORAD SGP4 model. The trajectories start from 13:30 on

2007/9/30 for the duration of 100 sec. The simulation parameters and scenarios are shown in
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Fig. 6.11 for the starting coordinates and the trajectories of moving satellites during this period.
Moreover, the trajectory of MS is‘also illustrated in Fig.~6.14(a). The total available satellites
(N(S¢)) and BSs (N(By)) are illustrated in Fig. 6:12 with the sets of [N(S,), N(B;)] indicated on
the plot.

Fig. 6.13 shows the position errors between-the four schemes under the topology as in Fig.
6.12 (with time duration of 100 sec).”It ean be observed that the proposed UH algorithm is able
to provide better performance for location estimation and tracking comparing with the other four
methods. It is noticed that the Kalman filter within all the four algorithms become effective for
MS’s location tracking in this case. In region I, excessive position errors are observed in all five
schemes due to the transient state of their Kalman filters. However, the error convergent rates
are tolerable due to the sufficient signal sources that are available for location estimation. On the
other hand, signal deficiency happens within the cellular channel in the region IV, VI, and VII.
The GPS-FH-FSI, the FH-FSI, the FH-SSI, and the UH algorithms can still conduct persistent
location estimation using the sources from the satellite signals. The Cell-FH-FSI method can only
perform linear prediction within its Kalman filtering technique, which results in comparably worse
performance for location tracking.

Figs. 6.14(a) to 6.14(c) show the trajectory tracking for the MS’s position, velocity, and acceler-
ation between the two selective-set of signal selection schemes, i.e., the FH-SSI and UH approaches.
The MS is considered to be tracked in a two-dimensional z-y plane setting. It can be shown that
the UH scheme outperforms the FH-SSI method for location tracking of the MS. The performance
problem within the FH-SSI scheme primarily comes from the variations on the number of available

signal inputs; while the UH algorithm can provide satisfactory performance for location estimation
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by adjusting itself under a diverse range of available signal sources. o

6.6 Concluding Remarks

In this chapter, two different hybrid architectures for location estimation and tracking of mobile
stations are proposed. By combining the satellite and the network-based systems, the proposed
Fusion-based Hybrid architecture with Fixed-set of Signal Inputs (FH-FSI) can provide adequate
precision for location estimation within existing infrastructure. Moreover, the Fusion-based Hybrid
architecture with Selective-set of Signal Inputs (FH-SSI) further improves the estimation accuracy,
especially under Non-Line-of-Sight environments. On the other hand, the Unified Hybrid (UH)
architecture can achieve higher reliability for location estimation and tracking with its flexible
architecture in most of the cases, even with deficient signal sources from the heterogeneous networks.
It is shown in the simulation results that the proposed hybrid schemes can provide consistent

location estimation accuracy under different environments.
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Chapter 7

Location Tracking Algorithms for
Environments with Insufficient Signal

Sources

- The location estimators associated with-ther Kalman filtering techniques, a.k.a. two-stage location
tracking architecture, are exploited.to_both acquire location-estimation and trajectory tracking for
the mobile devices. However, most of the existing schemes become inapplicable for location tracking
due to the deficiency of signal sources. (Two-predictive location tracking algorithms are proposed
to alleviate this problem, by utilizing the predictive information obtained from the Kalman filter in

order to provide the additional geometric constraints for the location estimator. '

7.1 Introduction

In addition to the estimation of a MS’s position, trajectory tracking of a moving MS has been
studied [72, 73, 74, 75, 76, 77, 18, 21]. The Extended Kalman Filter (EKF) scheme [72, 73, 74]
is considered the well-adopted method for location tracking. The EKF algorithm estimates the
MS’s position, speed, and acceleration via the linearization of measurement inputs. The technique
by combining the Kalman filter with the Weighted Least Square (WLS) method is exploited in
[75]. The Kalman Tracking (KT) scheme [76, 77| distinguishes the linear part from the originally
nonlinear equations for location estimation. The linear aspect is exploited within the Kalman
filtering formulation; while the nonlinear term is served as an external measurement input to the
Kalman filter. The technique utilized in [18] adopted the Kalman filters for both pre-processing
and post-processing in order to both mitigate the Non-Line-of-Sight (NLOS) noises and track the

!This chapter is mainly based on [J-3] Po-Hsuan Tseng, Kai-Ten Feng, Yu-Chiun Lin, and Chao-Lin Chen ,
“Wireless Location Tracking Algorithms for Environments with Insufficient Signal Sources,” in IEEE Trans. on
Mobile Computing, vol.8, issue 12, pp. 1676 - 1689, Dec. 2009.
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MS’s trajectory. The Cascade Location Tracking (CLT) scheme as proposed in [21] utilizes the two-
step least squares (TSLS) method for initial location estimation of the MS. The Kalman filtering
technique is employed to smooth out and to trace the position of the MS based on its previously
estimated data.

The Geometric Dilution of Precision (GDOP) [63, 36] and the Cramér-Rao Lower Bound
(CRLB) [38] are the well-adopted metrics for justifying the accuracy of location estimation based
on the geometric layouts between the MS and its associated BSs. It has been indicated in [78§]
that the environments with ill-conditioned layouts will result in relatively larger GDOP and CRLB
values. In general, the ill-conditioned situations can be classified into two categories: (i) insufficient
number of available neighborhood BSs around the MS; and (ii) the occurrence of collinearity or
coplanarity between the BSs and the MS. It is noticed that the problem caused by case (ii) can
be resolved with well-planned locations of the BSs. Nevertheless, the scenarios with insufficient
signal sources (i.e., case (7)) can happen in real circumstances, e.g., under rural environments or
city valley with blocking buildings. It will be beneficial to provide consistent accuracy for location
tracking under various environments. Howeyer, the wireless location tracking problem with defi-
cient signal sources has not been extensively addressed.in previous studies. In the cellular-based
networks, three BSs are required in.order-to.-provide three-signal sources for the TOA-based loca-
tion estimation. The scheme as proposed-in-[79] considers the location tracking problem under the
circumstances with short periods of signal deficiency, i.e.; oceasionally with only two signal sources
available. The linear predictive information obtained from the Kalman filter is injected into its
original LS scheme while one of the'BSs is'not observable. However, this algorithm is regarded as
a preliminary design for signal deficient‘scenarios;-which does not consider the cases while only one
BS is available for location estimation. Insufficient accuracy for location estimation and tracking

of the MS is therefore perceived.

Definition 7.1 (Insufficient Signal Sources). When the available number of measurements from
the neighborhood BSs is less than three, the case is defined as insufficient signal source for 2-D the

location estimation problem.

In this chapter, a Predictive Location Tracking (PLT) algorithm is proposed to improve the
problem with insufficient measurement inputs, i.e., with only two BSs or a single BS available
to be exploited. The predictive information obtained from the Kalman filter is adopted as the
virtual signal sources, which are incorporated into the TSLS method for location estimation and
tracking. Moreover, a Geometry-assisted Predictive Location Tracking (GPLT) scheme is proposed
by adopting the GDOP concept into its formulation in order to further enhance the performance of
the original PLT algorithm. The position of the virtual signal source is relocated for the purpose
of achieving the minimum GDOP value with respect to the MS’s position. Consistent precision
for location tracking of a MS is observed by exploiting the GPLT algorithm. Comparing with

the existing techniques, the simulation results show that the proposed GPLT scheme can acquire

106



7.2. Preliminaries

higher accuracy for location estimation and tracking even under the situations with inadequate
signal sources.

The remainder of this chapter is organized as follows. Section 7.2 briefly describes the modeling
of the signal sources, the TSLS estimator, and the GDOP metric. The concepts and motivations
of the proposed PLT and GPLT schemes are explained in Section 7.3. Section 7.4 presents the
PLT algorithm with two different scenarios; while the formulation of the GPLT scheme is exploited
in Section 7.5. Section 7.6 illustrates the performance evaluation of the proposed PLT and the
GPLT schemes in comparison with the existing location tracking techniques. Section 7.7 draws the

conclusions.

7.2 Preliminaries

7.2.1 Problem Description

Consider a synchronous network of N® transmitting BSs fixed at the known positions at time
instant ¢. Our goal is to estimate the unknown positions of an MS at time instant ¢t which are
denoted by a set of 2-dimensional vectors =¥ = [0 g@]7. In other words, based on the known
positions of the transmitting BSs,+the mobile-units wish to estimate their positions at different
time instants. There are typically movement of MS between.the sampling time instant ¢t and ¢ + 1.
When the i-th BS bz(t) = [:cl(-t), ygt)]T broadeasts its signal at time instant ¢, the MS receives a TOA

(t)

measurement 7, ’. Note that the number of available BSs V () varies at different time instant, which
results in a variable receivable BS set @and.receivable méasurement set. By collecting measurements
from time instant 1 to t from the BSs to the MS(i.c., r) = [rgu), e rg\lﬂg]), the goal is for
the MS to generate an estimate ) of its position under different number of measurements, even

under the insufficient signal sources cases.

7.2.2 Mathematical Modeling of Signal Sources

In order to facilitate the design of the proposed PLT and the GPLT algorithms, the signal model
for the 2-dimensional TOA measurements is utilized. The detail of TOA model can be referred to
Section 2.1.1.

7.2.3 Geometric Dilution of Precision (GDOP)

The GDOP [63] associated with the position error is utilized as an index for observing the
location precision of the MS under different geometric location within the networks, e.g., the cellular
or the satellite networks. In general, a larger GDOP value corresponds to a comparably worse
geometric layout (established by the MS and its associated BSs), which consequently results in

augmented errors for location estimation. Considering the MS’s location under the two-dimensional
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coordinate, the GDOP value (G) obtained at the position z® can be represented as

1
T —1713
G = {trace [(H  H,n) '] }?, (7.1)
where
2t g (") y®—y{ 7]
Cft) C{t)
HO_® Oy
H, = ® @ (7.2)
J;(t)_xN(t) y(t)_yN(t)
(t) (t)
L CN(t) CN(t)

It is noted that the elements within the matrix H_u) can be acquired from (2.2). It has been shown
in [63] that the minimum GDOP value frequently occurs around the center of the network layout,
e.g., the minimum GDOP inside a K-side (K > 3) regular polygon is shown to take place at the
center of the layout and the value is«obtained as G = \/LE Moreover, the GDOP value and the

CRLB value are demonstrated to be identical given a Gaussian-distributed noise model [36].

7.3 Architecture Overview of Proposed PLT and GPLT Algo-

rithms

The objective of the proposed PLT and the'GPLT algorithms is to utilize the predictive in-
formation acquired from the Kalman filter to serve as the assisted measurement inputs while the
environments are deficient with signal sources. Fig. 7.1 illustrates the system architectures of the
KT [76], the CLT [21] and the proposed PLT/GPLT schemes. The TOA signals (r® as in (2.1))
associated with the corresponding location set of the BSs (Pg)s) are obtained as the signal inputs
to each of the system, which result in the estimated state vector of the MS, i.e., 8 = [[#"]T,
)T, (@77 where &) = [2®), 5T represents the MS’s estimated position, #® = [ﬁg(f), @ét)]T
is the estimated velocity, and al*) = [&;(L«t), d@(f)]T denotes the estimated acceleration.

Since the equations (i.e., (2.1) and (2.2)) associated with the network-based location estimation
are intrinsically nonlinear, different mechanisms are considered within the existing algorithms for
location tracking. The KT scheme [76] (as shown in Fig. 7.1.(a)) explores the linear aspect
of location estimation within the Kalman filtering formulation; while the nonlinear term (i.e.,
R® = (2®)2 4 (§51)?) is treated as an additional measurement input to the Kalman filter. It
is stated within the KT scheme that the value of the nonlinear term can be obtained from an
external location estimator, e.g., via the TSLS method. Consequently, the estimation accuracy

of the KT algorithm greatly depends on the precision of the additional location estimator. On
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Figure 7.1: The architecture diagrams of (a)-the Kalman Tracking (KT) scheme; (b) the Cascade Location
Tracking (CLT) scheme; and (c) the proposed-Predictive Location Tracking (PLT) and Geometry-assisted
Predictive Location Tracking (GPLT) schemes

the other hand, the CLT scheme [21]\(as illustrated:in Fig: 7.1.(b)) adopts the TSLS method to
acquire the preliminary location estimate.of the MS..The Kalman Filter is utilized to smooth out
the estimation error by tracing the estimated state vector 3® of the MS.

The architecture of the proposed PLT and GPLT schemes is illustrated in Fig. 7.1.(c). It is
noticed that the GPLT algorithm involves additional transformation via the GDOP calculation
comparing with the PLT scheme. It can be seen that the PLT/GPLT algorithms will be the same
as the CLT scheme while N > 3, i.e., the number of available BSs is greater than or equal to
three. However, the effectiveness of the PLT/GPLT schemes is revealed as 1 < N ) < 3, ie., with
deficient measurement inputs. The predictive state information obtained from the Kalman filter is
utilized for acquiring the assisted information, which will be fed back into the location estimator.
The extended sets for the locations of the BSs (i.e., Pg)se = {Pg)s, Pg)sv}) and the measured
(t)

relative distances (i.e., ro’ = [, n(f)]) will be utilized as the inputs to the location estimator.

()

The sets of the virtual BS’s locations Pg)sv and the virtual measurements 'r‘vt are defined as follows.

Definition 7.2 (Virtual Base Stations). Within the PLT/GPLT formulation, the virtual Base
Stations are considered as the designed locations for assisting the location tracking of the MS

)

under the environments with deficient signal sources. The set of virtual BSs Pg g, 1s defined under
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two different numbers of N as

P(t) B { {bq()tl)} for N®) =

_ 7.3
B (0 B for NO =1 7:3)

Definition 7.3 (Virtual Measurements). Within the PLT/GPLT formulation, the virtual measure-
ments are utilized to provide assisted measurement inputs while the signal sources are insufficient.

Associating with the designed set of virtual BSs Pg)sv, the corresponding set of virtual measure-

(t)

ments r,’ is defined as

@ _ iy for N®) =2 (7.4)
v {7"1()?, 7"1(,?} for NO =1 ° '

It is noticed that the major tasks of both the PLT and GPLT schemes are to design and to
) (t)

acquire the values of Pg g, and ) for the two cases (ie., N® =1 and 2) with inadequate signal
sources. In both the KT and the CLT schemes, the estimated state vector 3" can only be updated
by the internal prediction mechanism of.the Kalman filter while there are insufficient numbers of
BSs (i.e., N® < 3 as shown in Figh 7.1.(a).and 7.1.(b) with the dashed lines). The location
estimator (i.e., the TSLS method) is consequently disabled‘owing to the inadequate number of the
signal sources. The tracking capabilities of both schemes significantly depend on the correctness of
the Kalman filter’s prediction mechanism. Therefore, the performance for location tracking can be
severely degraded due to the changing behavior of the MS,i.e., with the variations from the MS’s
acceleration.

On the other hand, the proposed PLT/GPIT algorithms can still provide satisfactory tracking
performance with deficient measurement inputs, i.e., with N = 1 and 2. Under these circum-

)

stances, the location estimator is still effective with the additional virtual BSs Pg g, and the virtual
measurements n(f), which are imposed from the predictive output of the Kalman filter (as shown
in Fig. 7.1.(c)). It is also noted that the PLT/GPLT schemes will perform the same as the CLT
method under the case with no signal input, i.e., under N = 0. Furthermore, the GPLT algo-
rithm enhances the precision and the robustness of the location estimation from the PLT scheme

by considering the GDOP effect, i.e., the geographic relationship between the locations of the BSs

and the MS. By adopting the GPLT scheme, the locations of the virtual BSs PS_%U - obtained
from the PLT method are adjusted into Pg)sv - in order to make the predicted MS possess with

a minimal GDOP value. Consequently, smaller estimation errors can be acquired by exploiting the

GPLT algorithm comparing with the PLT scheme. The virtual BS’s location set Pg)sv . and the
(t) ’

virtual measurements rvt prp by exploiting the PLT formulation is presented in the next section;
while the adjusted location set of the virtual BSs PS_%U I adopting from the GPLT algorithm
will be derived in Section 7.5.
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Figure 7.2: The schematic diagram of the two-BSs case for the proposed PLT and GPLT schemes

7.4 Formulation of PLT Algorithm

The proposed PLT scheme will be explained in this section. The formulation of Kalman filter

can be referred to Section 2.5. Note that: the position (ﬁs(t)), velocity ('i)(t)), and acceleration (&(t))

tracking are considered in the Kalman filter formulation. The estimated output/state corresponds

to 8 = 20T, [4®)T, [a®)T)T. The measuremeént vector z(!) = [@g), gj&f)]T represents the

measurement input which is obtained from the ‘'output of the TSLS estimator at the time instant ¢

(as in Fig. 7.1.(c)). Therefore, the matrix E and the state transition matrix F can be obtained as

1000 00
E = :
(010000
1 0 At 0 3A£
01 0 At 0
po_ |00 1 0 A
00 0 1 0
00 0 0
(00 0 0 0

where At denotes the sample time interval.
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7.4. Formulation of PLT Algorithm

7.4.1 Two-BSs Case

As shown in Fig. 7.2, it is assumed that only two BSs (i.e., BS; and BSs) associated with two

TOA measurements are available at the time instant ¢ in consideration. The main target is to

(t)

introduce an additional virtual BS along with its virtual measurement (i.e., Pgq PLT = {bv1 prTY

and 7“1()7)]3 T = {rvl’ prrt) by acquiring the predictive output information from the Kalman filter.
Knowing that there are predicting and correcting phases within the Kalman filtering formulation,

the predictive state can therefore be utilized to compute the supplementary virtual measurement

®)

Ty, PLT 38
t t)t—1 t—1[t—1
TQ(JI),PLT = ||z (=) g (=l )H
_ HEF s(t—1jt—1) (t 1)t— UH? (7.7)
where &~ denotes the predicted MS’s position at time instant ¢; while 2111 §g the corrected

(i.e., estimated) MS’s position obtained at the (¢t —1)-th time instant. It is noticed that both values
are available at the (¢ — 1)-th time instant) Thé wirtual measurement rz(fl)’ prr is defined as the
distance between the previous location estimate (& (=1t 1)) as the position of the virtual BS (i.e.,
BS,,: bz(}?PLT 2 gl=tt= 1)) and the predicted-MS’s position (ﬁ:(”t_l)) as the possible position of
the MS (as shown in Fig. 7.2). It is'also noted that‘the corrccted state vector 11 g available
at the current time instant ¢. However, due to'the insufficient measurement input, the state vector
3" is unobtainable at the ¢-th time instant while adopting the conventional TSLS estimator. By
exploiting rit) prr (in (7.7)) as the additional signal input the measurement vector z® can be
acquired after the three measurement inputs re > {r r2t , f}t P ;rt and the locations of the
BSs P(BS,e = {b1 , bg), b(t PLT} have been imposed into the TSLS estimator. As z® has been
obtained, the corrected state vector 3 can be updated with the implementation of the correcting

phase of the Kalman filter at the time instant ¢ as

00 — 3= L p,  ETEPUCDET 4RI (2) - EsUY), (7.8)
where
pili-1) — ppt-it-DpT 4 Q, (7.9)
and
pU-l-1) — (1 pU-U-2ET (EP-1-DET 4 R)IE]. P12, (7.10)

It is noted that Ptt=1) and P(tfl‘tfl)represent the predicted and the corrected estimation covari-

ance within the Kalman filter. I in (7.10) is denoted as an identity matrix. As can been observed
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Figure 7.3: The schematic diagram of the single-BS case for the proposed PLT and GPLT schemes

from Fig. 7.2, the virtual measurement rq(}? pr associating with the other two existing measure-

ments rgt) and rét) provide a confined.region for the estimation of the MS’s location at the time

instant ¢, i.e., FAUDN

7.4.2 Single-BS Case

In this case, only one BS (i.e., BS;) with one TOA measurement input is available at the

time instant ¢ (as shown in Fig. 7.3). Two additional virtual BSs and measurements are required

for the computation of the TSLS estimator, i.e., PS_%U pLT = {bq()tl) PLT bf}l;) prry and rf)t)IDLT =

{rf)? PLT> 7“1()? prrt- Similar to the previous case, the first virtual measurement 7“1()? pr7 18 acquired
as in (7.7) by considering &1~ as the position of the first virtual BS (i.e., bz()?PLT = g1t
with the predicted MS’s position (i.e., i(t‘t_l)) as the possible position of the MS. On the other

hand, the second virtual BS’s position is assumed to locate at the predicted MS’s position (i.e.,
pt)

v2,
7“1()? prr is defined as the average prediction error obtained from the Kalman filtering formulation

PLT = :i:(”t*l)) as illustrated in Fig. 7.3. The corresponding second virtual measurement

by accumulating the previous time steps as

t—1
1 iy iy
t ~ ~ 1
Tz(jz),PLT T io1 E :Hw(m) — g D). (7.11)
i=1
It is noted that 7“1()2;) ppr is obtained as the mean prediction error until the (t —1)-th time instant. In

the case while the Kalman filter is capable of providing sufficient accuracy in its prediction phase,
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the virtual measurement r(t) _pr7 May approach zero value. Associating with the single measurement

r% ) from BSy, the two additional virtual measurements r(t) =11y and 7“1(}? PLT

prr (centered at i
(centered at &~V result in a constrained region (as in Fig. 7.3) for location estimation of the
MS under the environments with insufficient signal sources.

It is also noticed that the variations of the measurement inputs are the required information
for adopting the TSLS estimator. It utilizes the signal variation as an indicator to consider the
weighting factor for a specific signal source, i.e., smaller weighting coeflicient should be assigned
to a measurement input if it encompasses comparably larger signal variations. The weighted least
square algorithm can therefore be performed within the TSLS estimator according to the designated
weighting values associated with the signal sources. Similar concept can be exploited to assign the
weighting coefficients for the virtual measurements. The virtual measurements can be represented

as

=D+, for i =1, 2, (7.12)

(t)

where ng) is denoted as the deterministic noiseless virtual measurement; while n,, represents the

virtual noise (i.e., the component with randommness) associated with the virtual measurement r(t).

(t)

The following Lemma illustrates that the resulted virtual noises n,; are considered zero-mean

random variables.

Lemma 7.1. Based on the definition, of the wvirtual measurements rq()i)PLT as in (7.7) and (7.11),

the corresponding virtual noises become zero-mean random variables.
Proof. The first virtual measurement 7“1()? prr 8 proposed in (7.7) is considered first. Based on

(7.12), the virtual noise nq()tl) prr associated with 7“1(}? prr can be written as

t t t
nvl),PLT = 1(11),PLT Cvi,PLT (7.13)
H:B(tlt 1) :i?(t_llt_l)H - Hw(t) - :iz(t_llt_l)H.

It is noted that that both the variables & =1 and &=~ are acquired from the Kalman filtering
formulation. The primary target of the Kalman filter is to achieve zero mean estimation errors,
ie, Elz® — W) = Blz® — zt#=D] = 0. It can consequently be obtained that E[z®)] =
E[z] = E[2%*V] as the estimation errors are converged. Considering that the variables &),

2t , and =1 possess the same probability distribution, the expected value of the first virtual

noise can therefore be rewritten as E[n 1(}1) prr) = Ell|2 =1 _ g@=1=D11 — E[||a® — gD =

”E[:i: t\t—l)] _ E[ﬁ:(t—ﬂt—l ]H _ HE[:B ] [ (t—1]t—1) ]H _ ”E[m(t)] _ E[:ﬁ(tfl\tfl)]” . HE[:B(t)] _

E[Z_1;—1)]ll = 0. The result shows that the first virtual measurement Tz()?PLT is possessed with

®)

the virtual noise n with zero mean value.
v,PLT

®)

- . . . . . (t) .
Similarly, the virtual noise n,, p;r associated with the second virtual measurement r,’ p;, (in
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(7.11)) can be expressed as

t
n1()2),PLT = 1(;2,PLT CU2,PLT (7.14)

- Z 8619 — 5D | — |2 - -

Based on the same estimation objective by adopting the Kalman filter, the expected value of
the virtual noise n(t)PLT is obtained as E[nf}iPLT] =L Zf;% E[|aW) — g0 — Blljlz® —
=D = = SRR — EttY))| — ||Elz®] — B[ Y]|| = 0. The result indicates
that the virtual noise nS;) pr associated with the second virtual measurement is acquired as a zero

mean random variable. This completes the proof. ]

It is noticed that the zero-mean characteristics of the virtual noises (as was proved in Lemma 7.1)
will be utilized as a property for Lemma 7.2 in the next section. Based on (7.7), the signal variation
of 7“1()?7 ppp is considered as the variance of the predicted distance |11 — &1 between the
previous (f — 1) time instants. Associated wwith/the result obtained from Lemma 7.1, the virtual
noise nq(fl) is regarded as zero mean withi variance 0'2(t) =Var(r z()tl) prp) = Var(||& =D g t=1i=1)

Ul
Similarly, since the signal variation of the-second virtual measurement 7“1(}? prr is obtained as the

variance of the averaged predictionerrers (as in (7.11)), the associated virtual noise n,, , can also

(t) )

be considered as zero mean with wariance 0'2(t) = Var(rv pLT) Consequently, the variances of

the virtual noises (i.e., o2 o) and o (t)) will be exploited as the weighting coefficients within the
v2
formulation of the TSLS estlmator

7.5 Formulation of GPLT Algorithm

As was explained in Subsection 7.2.3, the geometric relationship between the MS and its asso-
ciated BSs (i.e., indicated by the corresponding GDOP value) will affect the precision for location
estimation and tracking. The concept of the proposed GPLT scheme is to adjust the positions of
the virtual BSs such that the predicted MS will consequently be possessed with a smaller GDOP
value based on the newly formed geometric layout. The modified positions of the virtual BSs
will therefore be adopted associated with the existing BSs for location estimation. Similarly, the

two-BSs and the single-BS cases are considered for the GPLT algorithm as follows.

7.5.1 Two-BSs Case

In this case, the primary target for the GPLT scheme is to design the location of the virtual

BS, ie., BSy,: bg) aprr- As shown in Fig. 7.2, two parameters (i.e., the distance rl()?’GPLT and

1,
(tt=1)

the angle 9( )) with respect to the predicted MS’s position & are introduced to represent the
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7.5. Formulation of GPLT Algorithm

designed virtual BS’s position bz(}tl) aprr- Lhe selection of these two parameters within the GPLT

algorithm is explained in the following subsections.

7.5.1.1 Computation of Angle

The main objective of the GPLT scheme is to acquire the angle 91()? of b(t)

Gaprr such that
the predicted MS (&**~V) will possess a minimal GDOP value within its network topology for
location estimation. As illustrated in Fig. 7.2, the following equality can be obtained based on the
geometric relationship

. (tt— t t t .

gl bg;l),GPLT = (_Tz(Jl),GPLT - CO8 ‘91(;?7 7"( ) aprr "SI ‘91(;?)- (7.15)
It is noticed that the angle 0 is rotated from the positive z-axis based on the predicted MS
(2. As mentioned above, the position of the virtual BS (bg?,GPLT) is designed such that
the predicted MS (& mt*l)) will be located at a minimal GDOP position based on the extended
geometric set P( {b1 , ;t), bf}tl cpLr - By incorporating (7.15) into (7.1) and (7.2), the GDOP
value (i.e., G- 1)) computed at the predicted MS'S position &1 = (=1 g=1Y) can be

obtained. The associated matrix Hgjs~n-becomes

(te—1)_(®) (=) (D)
Ut 2)*331 gt 2)—211 7(tlt— 1)_$§t) g(t\t—l)_ygt)
Cdy V.. rit ri)
& i ] —y Cele—
H, -1 = RO ? NO) é S 2) ) gt 2)—31(” . (7.16)
'f‘
atlt—1) _ w()GPL OIS 1)_y()GPLT L) ® ()
M) D — cos Oy, —sin 6y
| Tv1,GPLT Tyl ,GPLT |

(®)

It is noted that the noiseless relative distances Ci(t) in (7.1) are approximately replaced by r,
in (7.16) since Ci(t) are considered unattainable. It can be observed from (7.16) that the matrix
H :-1) associated with the resulting G :-1) value are regarded as functions of the angle 91()?, ie.,

H_ -1 (91(,?) and G e-1) (91(,1)) Based on the objective of the GPLT scheme, the angle 91(,1) which

results in the minimal GDOP value can therefore be acquired as

v

0%) = arg min Gi(t\t—l)(ez(;?)- (7.17)
voL,)

1
It is intuitive to observed that (7.17) can be achieved if the following conditions on the first and

second derivatives of G ti—1) (91(,?) are satisfied:

9G - o) ()
2 (tlt (1)( 1 )] -0 (7.18)
00y, 6l =4
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02G ey (05))
(o))

>0 (7.19)
(B _g(t)
v v

By substituting (7.16) and (7.1) into (7.18), the angle éf,? can be computed as

A 14+v1+12
() = tan™! <%> , (7.20)

where I' is derived as

2(rg”)? @) — 2t U Y —yi) 4 ()2 @Y — 2 U Y — )]
(r?)2@ 0 — 212 = (2 Gre-n) — 91702+ ()2 (g — 287)2 = ()2 (01D — )2

It is noted that the selection for either the positive or the negative value of éf,tl) is determined by

(7.19). At each time instant ¢, the relative angle 91(,? between &~ and bz(;tl),GPLT can therefore

=

(7.21)

be obtained such that 2*~1 is located at the position with a minimal GDOP value based on its

current network layout.

Moreover, it is important to observe from (7.20) ‘and\(7.21) that the angle éq(fl) is independent to

the virtual measurement 7“1()? aprr-Jn other-wotds, cousidering the two-BS case with one adjustable

virtual BS, the distance 7“1()? aprr.can arbitrarily' be chosen along the direction with angle évtl)

(HE=1) 59 still attained. However, this result does not

() . .
o1 .GPLT and the estimation errors. In

and consequently the minimal GDOP for &
guarantee the independency between the wirtual distance.r

the next subsection, the distance effectto;the-location estimation errors will further be evaluated.

7.5.1.2 Selection of Distance

In this subsection, the virtual measurement ri?G prr Will be determined, which can be utilized
for acquiring the position of the virtual BS bf)?’G prp- 1t is observed in (7.16) that the GDOP value
at the predicted MS’s position is primarily dominated by the relative angle (i.e., 91(,?) between the
MS and the BSs; while the distance information (i.e., rq()?G prr) is considered uninfluential to the
GDOP value. This uncorrelated relationship between the GDOP value and the relative distance
has also been observed as in [63]. The following Lemma shows that the selection of the virtual

distance ’I“z()t) aprr becomes insignificant for the WLS-based location estimation.
1

Lemma 7.2. A time-based location estimation problem is considered for the MS using the Weighted
Least Square (WLS) algorithm. Assuming that a measurement input obtained from a specific BS
is associated with zero mean random noises, the expected value of the location estimation error is
independent to the distance between the specific BS and the MS.

Proof. Considering three TOA measurements are available for estimating the MS’s position (as
described in (2.1) with N® = 3), it is assumed that the third TOA measurement ri(,,t) is only
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contaminated by random noises with zero mean value, ie., £ [nét)] =0 and eét) = 0in (2.1). The

target of this proof is to illustrate that the expected value of the estimation error resulting from the
WLS method is independent to the magnitude of the measurement input rz(,,) Note that the detail
formulation of the WLS can be referred to Section 2.3. The primary concern of this proof is to
acquire the expected value of the estimation error Az®) = [Auﬁ(t), Agj(t)]T, which can be obtained

as
Azt = oy e vy g e A (7.22)

Note that (7.22) indicates that the estimation error vector A#Y is incurred by the variation within
the vector J®). The value of AJ® is obtained by considering the variations from the measurement

inputs as in (2.1))

2¢® (D 1 e 4 (n® 4 D)2 2¢® (n® 1 )
AT =1 267 (ng e+ ng) + ) | = | 267 (g £ | (7.23)
®) O L (ity2
<3 n3 ( "] ) C3

(t)

where e;” equals to zero as mentioned at-the beginning of this proof. It is noted that the approxi-
mation from the second equality within(7:23) is valid by-considering that the noiseless distance Ci(t)
is in general larger than the combined noise effect (nl(-t) + el(-t)). For simplicity and without lose of
generality, coordinate transformation can be adopted within (7.22) such that [:Uit), yit)] = [0,0]T.
The expected value of the estimation error (i.e., Aat) £ IAE® | Ag®]T) can therefore be acquired

by expanding (7.22) as (7.24) and (7.25)

paat) = p| ol a6 v ii);}c“’(@f”@) 2w — ’]
L T3 Yy Lo y
_ 4000 + 08 — ) + () + e “’] (724
_ x(wyg) NONQ
pagt) — g |9 +eDE =)+ Go ) + el - ¢n )]
() () (t) ()
_ [0 + )@ o) + <<t< s el “’] (7.25)
_ v — )

It is noted that the second equalities for both (7.24) and (7.25) are attained based on the assumption
that Ens ;] = 0. From (7.24) and (7.25), it can clearly be observed that the expected value of the
estimation error (i.e., E[AZ)] = [E[A:E(t)], E[Aﬂ(t)]]T) is independent to the measured distance

t . . . . 1) . .
ri(,,) under the assumption that its associated measurement noise ng) is considered a zero mean
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random variable, i.e., E[rét)] E] (t)] + Eln ¢ )] E] (t)] This completes the proof. O

This lemma states that the expected value of the location estimation error is independent to
the distance between a specific BS to the MS if the noises associated with the measurement inputs
are statistically distributed with a zero mean value. In generic time-based location estimation, the
phenomenon stated in Lemma 7.2 does not usually exist since most of the measurement inputs are
contaminated with NLOS noises, i.e., ez(t) in (2.1) is randomly distributed with positive mean value.
The NLOS error is augmented as the distance between the specific BS and the MS is increased,
which causes the corresponding measurement input to become unreliable comparing with the other
signal sources. This result is consistent with the intuition that BSs with closer distances to the MS
are always selected for location estimation. In the proposed GPLT scheme, however, the virtual
measurement ’I“Q()?7G pr is considered as a designed distance which is infected by its corresponding
virtual noise nS?GPLT with zero mean value (as can be obtained from Lemma 7.1). Based on
Lemma 7.2, the selection of the distance ri?GPLT becomes uninfluential to the estimation error
while exploiting the WLS algorithm for location estimation. This result is similar to the derived
GDOP value that is unrelated to the distance-information between the BSs and the MS (as can be
observed from (7.16)). In the simulation sectiony the uncorrelated relationship between Tz()?,GP LT
and the estimation error will further be-validated by exploiting the TSLS estimator, which is
considered one of the the WLS-based algorithms for location estimation. It will be demonstrated
via the simulation results that the influence from the length of the virtual measurement to the
estimation error is considered insignificant.

The procedures of the proposed GPILI-scheme under the two-BSs case is explained as follows.
The target is to obtain the position of the MS at the time instant t (i.e., :%(t‘t)) based on the
available information, including the measurement and location information acquired from both
BS; and BSs along with the predicted position of the MS (i.e., ﬁs(tlt_l)). Two steps are involved
within the proposed GPLT scheme: (i) the determination of the virtual BS’s position and the
virtual measurement; and (i7) the estimation and tracking of the MS’s position. As shown in
Fig. 7.2, the orientation of the virtual BS (éq(j?) relative to the predicted MS’s position att=1)
is determined based on the criterion of minimizing the GDOP value on &**~Y (as obtained from
(7.17) and (7.20)). As was indicated by Lemma 7.2, the selection of the virtual distance 7“1()?’(; PIT

(#t=1) is considered insignificant to the estimation

with respect to the predicted MS’s position &
errors. Therefore, the distance is selected the same value as was designed in the PLT algorithm,
ie., rl()?’GPLT = rffl),PLT as in (7.7). The location of the virtual BS (bf))GPLT) and the length of the
virtual measurement (7"1(}? aprLr) can consequently be acquired. It is also noticed that the design
of the virtual noise can therefore be selected the same as that in the PLT scheme, i.e., zero mean
random distributed with variance UZL“ = Var(rq()?PLT) = Var(||a®=D — g=1=D)),

After acquiring the information of the virtual BS as the additional 81gnal source the extended

sets of the BSs and the measurement inputs can be established as P {b ), bv1 aPLT}

119



7.5. Formulation of GPLT Algorithm

and i) = {TY), rét), rq()?,GP prt- As illustrated in Fig. 7.1.(c), the extended set of signal sources

) can therefore

are utilized as the inputs to the TSLS estimator. The estimated MS’s position !
be obtained by adopting the correcting phase of the Kalman filter, which completes the location

estimation and tracking processes at the ¢-th time instant.

7.5.2 Single-BS Case
(t)

As illustrated in Fig. 7.3, only one BS (bgt)) associated with the measurement input r;

is available at the considered ¢-th time instant. Additional two virtual BSs associated with
(t)

their virtual measurements are required as the inputs for the TSLS estimator, i.e., Pgg oprr =

t t t t t o
{bq(;l),GPLT’ bQ(JQ),GPLT} and rz(),)GPLT = {Tq(;l),GPLT’ Tl()g),GPLT}' By adopting similar concept as stated

in Section 7.5.1, the following equations can be obtained based on the geometric relationships from
Fig. 7.3,

g1 bS?,GPLT = (_Tz(fl),GPLT - COs ‘91()?7 _ri()tl),GPLT - sin 91()?)7 (7.26)
) — bz(;tz),GPLT = (_TS;),GPLT & 0’1()?’ _Ti()tz),GPLT - sin 91()?)- (7.27)

Based on (7.26) and (7.27), it can«be observed that the design concept of the GPLT scheme for

the single-BS case is to obtain the feasible locations for-both bg? aprr and bg? aprr by rotating

(tt=1) " For fair comparison, the two virtual measurements are

around the predicted MS’s location &
designed to be the same as that utilized in the PLT scheme;qi.e., rq()t’)GPLT = {Tz()tl),PLT’ Tz()tz)7PLT} as in
(7.7) and (7.11). The two rotating angles 9@? and 91(,? that are designed to be hinged at the predicted

H=1) will be sequentially ‘determined as follows. First of all, as shown in Fig. 7.3,

MS’s location &'
the position of the second virtual BS (bf;tg),GP or) is designed at a location with distance TQ()Z)’GP T
relative to the predicted MS’s position 21D Tt is noted that the position of the first virtual BS
that is designed from the PLT scheme (i.e., bg?, pPLT = i(tﬂ't*l)) is assigned as the preliminary
position for the first virtual BS, i.e., bg? GPLT = bg? prr- Based on the information acquired from
BSl(bgt)) and bg?’ pprr associated with the predicted MS’s position :i(tlt_l), the rotating angle 631%)
for the second virtual BS can be acquired as in (7.20). After the angle 91(,? has been obtained,
the position of the second virtual BS (bz(};),GPLT) becomes available as in (7.27). Same procedure
based on (7.20) can be adopted to obtained the rotating angle évtl) of the first virtual BS, where
the available information includes bgt) and bz()tg),G’PLT associated with the predicted MS’s position
FAULEN Consequently, the positions for both of the virtual measurements bz()tl) aprr and bg}? GPLT
can be determined.

Based on intuitive observation and the computation of GDOP value from (7.1), a comparable
larger GDOP occurs if the geometric layout formed by the three BSs is approximately collinear,
i.e., less than 5° in one of the triangular angle. This situation in general happens by adopting the

PLT scheme under the single-BS case, especially under the situation while the MS is moving along
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the same direction for a certain time interval. As shown in Fig. 7.3, the designed positions of the
virtual BSs, i.e., bf)tl)’ prp and bf)?’ prs are observed to be collinear with the measurement input
BSl(bgt)). The benefits for exploiting the GPLT scheme can be revealed in consideration of the
collinearity problem. With the computation of the angle éf,? from the GPLT scheme, the collinear
situation between BS; and BS,, can be avoided; while the rotated angle év? alleviates potential
small angle between BS; and BS,,. By considering the geometric layout within the design of the
GPLT scheme, the situations with worse GDOP value can be improved. The precision for location

estimation and tracking of the MS can consequently be enhanced.

7.6 Performance Evaluation

Simulations are performed to show the effectiveness of the proposed PLT and GPLT schemes
under different numbers of BSs, including the scenarios with deficient signal sources. The noise
models and the simulation parameters are illustrated in Subsection 7.6.1. Subsection 7.6.2 validates
the GPLT scheme according to the variations from the relative angle and the distance between the
MS and the designed virtual BS. The ‘performance comparison between the proposed PLT and
GPLT algorithms with the other existing-location tracking schemes, i.e., the KT and the CLT

techniques, are conducted in Subsection 7.6.3.

7.6.1 Noise Models and Simulation Parameters

In order to include the influence from.the NLOS noise; the TOA model in cellular network as in
Section 2.2.1.2 is adopted. The model for the measurement noise of the TOA signals is selected as
the Gaussian distribution with zero mean and 10 meters of standard deviation, i.e., ngt) ~ N(0,100).
The median value of the root mean square delay spread 7, is chosen as 0.1 us in this subsection
primarily fulfill the environment while the MS is located within the rural area. It is noticed that
the reason for selecting the rural area as the simulation scenario is due to its higher probability to
suffer from deficiency of signal sources. Moreover, the sampling time At is chosen as 1 sec in the

simulations.

7.6.2 Validation of GPLT Scheme

In this subsection, the proposed GPLT scheme is validated with the angle and distance effects.
Since the static MS case is considered in the subsection, the time instant ¢ is removed for the
notational simplicity.

7.6.2.1 Validation with Angle Effect

As mentioned in Subsection 7.5.1.1, the primary objective of the proposed GPLT algorithm is
to adjust the position of the virtual BS such that the predicted MS can be situated at a location
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with minimal GDOP value. The design concept implicitly indicates that the estimation error can
be reduced if the MS is possessed with a smaller GDOP value formed by its geometric layout. In
the following example, the relationship between the estimation errors and the GDOP values will

be verified via simulations.

Example 7.1 (Validation with Angle Effect). As shown in Fig. 7.4, the two-BS case is considered
associated with the locations of the BSs are BS; = [505, 2957]7 and BSy = [1520, 1234]7 in meters.
The MS’s true position is located at & = [1020,2100]” m. The position of the virtual BS is assumed
at @, (0) = [1020 + 1500 cos §, 2100 + 1500sin 0]7 m with § = [0°,359°). It can be seen that the
potential positions of the virtual BS are considered to be located at a distance 1500 meters away
from the MS’s true position along with different relative angles 6.

Fig. 7.5 illustrates the comparison between the average position error (upper plot), the root
mean square error (RMSE, lower plot), and the GDOP value versus the relative angle (6) between
the true MS and the virtual BS. It is noted that the average position error (Az) and the RMSE are
computed as: Az = [Zf\; |z — :i:(z)H] /N and RMSE = [ZZ]\LI |z — 5:(2)\\2/]\/} i where N = 50
indicates the number of simulation runs.«It is-also-noticed that the GDOP value (G;) is evaluated
at the MS’s true position; while the estimated MS’s position Z(7) is obtained by the TSLS estimator
employing the various positions of the virtual BS;i.e.; @, (€) for 6 = [0°,359°). It can be observed
from both plots in Fig. 7.5 that the average position error and the RMSE follow the similar trend
as the computed GDOP value. Both the minimal average-estimation error (associated with the
RMSE) and the minimal GDOP value oceur at the locations of =, (30.5°)= [2312, 2861]7 m and
1, (210.5%)= [—-272.4, 1338]7 m. It is noted that thé angle #; for the minimal GDOP value can
also be directly computed and verified from (7.20). "Moreover, the maximal GDOP values and the
maximal estimation errors (including both the average estimation error and the RMSE) happen
around the locations of x,,(120.5°)= [258.7, 3392]7 m and =,,(300.5%)= [1781,807.6]" m. The
results can further be validated by observing the geometric layout as in Fig. 7.4. The minimal
GDOP values of the true MS occur as the three BSs form a equilateral triangle; while the maximal
GDOP values happen as the three BSs are situated along a straight line. The above observations
validate the effectiveness of the proposed GPLT scheme by obtaining a position of the virtual BS
with a smaller GDOP value, which consequently reduces the corresponding estimation error. On
the other hand, the estimation errors can be severely augmented if the MS happens to be located
at a position with the maximum GDOP value by adopting other schemes. It can therefore be
concluded that the results obtained from the simulations comply with the design objectives of the
GPLT algorithm. o

7.6.2.2 Validation with Distance Effect

In this subsection, the results obtained from Lemma 7.2 will be validated via simulations. It is

stated in Lemma 7.2 that the expected value of the estimation error is independent to the distance
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6
Distance from MS to Virtual BS (m)

Figure 7.6: Upper plot: the average position errors vs the relative distance between the MS and the virtual
BS (4, ); Lower plot: the RMSE vs the relative distance between the MS and the virtual BS (r,,) (with
On,, = 10, 20, 30, 40)

between the MS and a specific BS (which is associated with the measurement input contaminating
zero mean random noises) by adopting the-WLS location estimation algorithm. In order to validate
Lemma 7.2 by the simulation datas the estimation errors induced by adopting the TSLS estimator

will be obtained for the evaluation.of the distance effect.

Example 7.2 (Validation with Distance Effect). Figs/ (7.6 illustrates the average position error
(upper plot) and the RMSE (lower plot) acquired from the TSLS method under different relative
distances between the MS and the virtual BS (i.e., 7). It is noted that the distance r,, is
simulated from 1 to 10° m along the angle # = 60° as shown in Fig. 7.4. The four simulated
results are conducted under different signal standard deviations (i.e., on,, = 10,20, 30, 40) in order
to exam the potential effect from the signal variances. As can be expected, the estimation errors
are observed to be independent to the relative distance between the MS and the virtual BS, which
are similar to the results as concluded from Lemma 7.2. Moreover, it is also reasonable to perceive
that the increases on the signal standard deviation o, will induce proportional augmentation
on the RMSE (in the lower plot of Fig. 7.6); while the average position error is considered not
related to the changes due to the signal variations (in the upper plot of Fig. 7.6). From the above
observations via the simulation data, the uncorrelated relationship between the distance r,, and the
estimation error is found to be consistent with the results as acquired from Lemma 7.2. However,
a feasible value of r,, should be selected in the simulations in order not to exceed the limitation of
computation, e.g., matrix inversion can result in singular value as an extremely large value of r,,
is exploited. For fair comparison purpose, the distance r,, for the GPLT scheme is chosen to be

the same as that in the PLT scheme in the following subsection. o
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Figure 7.7: Total number of available BSs (N(®) vs. simulation time (sec); Black textbox: available BSs
(Pg g) during each time interval

TABLE 1
Performance Comparisen between the-Location Tracking Algorithms
(Average Position Error«(m))
| | 10% [ 20% | 30% | 40% [ —50% [ " 60% |- 70% [ 80% | 90% | 100% ]
EKF | 33.83 | 37.65 | 42.60 | 417.117 | 968.97 | 1430.33| 2029.04 | 2698.13 | 3161.70 | 3344.07
KT | 37.33 | 46.86 | 50.70 | 67.85 | 110.01" |« 139.53 | .246.45 | 474.13 | 926.54 | 2026.95
CLT | 19.34 | 26.05 | 27.21 46.53 72.86 198.88 327.65 671.46 | 1184.14 | 1949.06
PLT | 19.34 | 26.05 | 27.21 48:58 | 63.07 70.90 86.13 117.44 | 188.14 | 268.89
GPLT | 19.34 | 26.05 | 27.21 48.58 |\ 64.12 7751 99.50 113.70 143.69 196.51

7.6.3 Simulation Results

The performance comparisons between the EKF scheme, KT scheme, the CLT scheme, and the

proposed PLT and GPLT algorithms are conducted under the rural environment.

Example 7.3 (A Trajectory Moving Case with Insufficient Signal Sources). Fig. 7.7 illustrates
the scenario with various numbers of BSs (i.e., the N®) values) that are available at different time
intervals, where szq denotes the set of available BSs (as indicated in Fig. 7.8(a)) that are visible
during each time interval. It can be seen that the number of BSs becomes insufficient (i.e., N < 3)
from the time interval of t = 78 to 129 sec. The total simulation interval is set as 150 seconds.
Figs. 7.8(a) to 7.8(c) illustrate the performance comparisons of the trajectory, the velocity,
and the acceleration tracking using the four algorithms. The estimated values obtained from
these schemes are illustrated via the dashed lines; while the true values are denoted by the solid
lines. The locations of the BSs are represented by the red empty circles as in Fig. 7.8(a). The
acceleration is designed to vary at time ¢t = 40, 55, 100, and 120 sec from a® = [a;(ct), a?(f)]T =

[0.5, 0]7,[-1, 1.5)7,[0, 0]T,[0.5, 0], to [1, —2]T m/sec? (as shown in Fig. 7.8(c)). It is noted
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Figure 7.8: Performance comparison of MS tracking. (Dashed lines: estimated value; Solid lines: true
value; Red empty circles in Fig. 7.8(a): the position of the BSs).
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that the number of BSs becomes insufficient during the second acceleration change (i.e., at t = 78
sec). Table I illustrates the performance comparison between the five location tracking algorithms
under different percentages of average position errors, i.e., by sorting the estimation errors during
the entire simulation interval. It can be observed that both the proposed GPLT and the PLT
schemes provide better performance comparing with the other existing algorithms owing to their
consideration of insufficient signal sources, e.g., the GPLT algorithm outperform the CLT scheme
with around 560 m of estimation error under 80% of average position error. It is also noticed
that the EKF scheme possesses the worst performance comparing with the other algorithms under
different percentages of estimation errors. Therefore, only the KT, the CLT, the PLT, and the
GPLT schemes are further compared for performance evaluation.

By observing the starting time interval between ¢ = 0 and 77 sec (where the number of BSs
is sufficient), the four algorithms provide similar performance on location tracking as shown in
the z-y plots in Fig. 7.8(a). As illustrated in Figs. 7.8(b) and 7.8(c), it can be seen that the
KT scheme can provide better performance on the velocity and acceleration tracking during the
transient phase (i.e from ¢ = 0 to 10 sec) comparing with the other schemes. The reason can be
attributed to the inherent architecture.difference as-shown in Fig. 7.1. The KT scheme is designed
to be a unified scheme which compromises-between the estimated state variables, i(t), 'i)(t), and al®).
On the other hand, the CLT algorithm associated with the PLT/GPLT schemes are designed to be
a cascaded structure, where the measurement input of the Kalman filter is the resulting estimated
MS’s position from the TSLS method. The estimated position of the MS dominates the update
of the state variables; while both the welocity and the acceleration are considered less essential
comparing with the update of the position alt). Consequently, comparable better velocity and
acceleration updates are observed by adopting the KT scheme during the transient response as in
Figs. 7.8(b) and 7.8(c). However, the KT scheme results in the worst performance among the four
schemes after the transient phase (as shown in Figs. 7.8(b) and 7.8(c)). Owing to the utilization
of an external location estimator within the KT scheme, the estimation errors are increasingly
accumulated caused by the potential inaccuracy of the estimator.

During the time interval between t = 78 and 129 sec with inadequate signal sources, it can
be observed that only the proposed GPLT scheme can achieve satisfactory performance in the
trajectory, the velocity, and the acceleration tracking. The estimated trajectories obtained from
both the KT and the CLT schemes diverge from the true trajectories due to the inadequate number
of measurement inputs. It is noticed that the inaccuracy within the PLT scheme is primarily
resulted from the implicitly worse geometric layout at certain time instants, which will further be
explained by the GDOP plot as in Fig. 7.10.

Moreover, Fig. 7.9 illustrate the average position error (upper plot) and the RMSE (lower plot)
(i.e., characterizing the signal variances) for location estimation and tracking of the MS. The four
location tracking schemes are compared based on the same simulation scenario as shown in Fig.
7.7. It can be observed from both plots that the proposed GPLT and PLT algorithms outperform
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Figure 7.9: Upper plot: the average position error vs. the simulation time (sec); Lower plot: the RMSE
vs. the simulation time (sec)

the conventional KT and CLT schemes. The main-differences between these algorithms occur while
the signal sources become insufficient within the time ‘interval between ¢ = 78 and 129 sec. The
proposed GPLT and PLT schemes-can still provide consistent location estimation and tracking;
while the other two algorithms result in significantly augmented estimation errors. The major
reason is attributed to the assisted information that is fed back into the location estimator while
the signal sources are deficient. Furthermore, the GPLT algorithm outperforms the PLT scheme
primarily due to its exploitation of the GDOP criterion.

The comparison of the average GDOP values (associated with their confident intervals) between
the PLT and the GPLT schemes is illustrated in Fig. 7.10. It is noted that the averaged GDOP
values are computed based on 25 simulation runs. The average GDOP values are compared only
during the time interval with deficient signal sources, i.e., while the virtual BSs and the virtual
measurements are exploited in both schemes. It can be observed that the GDOP values obtained
from the GPLT algorithm are consistent during the simulation period with reasonable variations.
On the other hand, the GDOP values acquired from the PLT scheme result in larger variations,
especially during the time interval of ¢ = 96 to 119 sec. The results are consistent with those
estimation errors as acquired from Fig. 7.9 that worse GDOP value will result in incorrect location
estimation of the MS. During the time interval of ¢ = 78 to 95 sec, the GDOP values obtained
from both schemes are considered similar, which represent that comparable geometric topology are
formed by their individual virtual BSs. The geometric effect will not be an influential factor to
the estimation error for the MS. On the other hand, during the time interval of ¢ = 110 to 119,
sudden deviates in the GDOP values are observed by using the PLT scheme. The larger average
position error and the RMSE within the PLT algorithm (as seen from Fig. 7.9 at around ¢t =

120 sec) can therefore be attributed to the corresponding increased GDOP values and variations.
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Figure 7.10: Comparison of the average GDOP values (associated with their confident intervals) between
the PLT and the GPLT schemes during the time interval with deficient signal sources

Nevertheless, with the adoption of the minimal-GDOP criterion, the proposed GPLT scheme can
still maintain consistent GDOP values” under different. numbers of available signal inputs. The

resulting estimation error and RMSE can-consequently be controlled within a reliable interval. o

Example 7.4 (PLT and GPLT under NLOS “environment). In order to evaluate the effect of the
NLOS errors to the estimation performance; the average position error and the RMSE as depicted in
Fig. 7.11 are utilized to compare the three sechemes-under different NLOS errors, where the median
value of the NLOS noises 7,,, = 0.1, 0.3, and 0.4 corresponds to the rural, suburban, and urban
environments. It is noted that both the estimation error and the RMSE are obtained as the average
values acquired from the trajectory as designed in Fig. 7.8(a). Moreover, the performance obtained
from the KT scheme is not illustrated in Fig. 7.11 due to its drastically degraded performance as
the NLOS noises 7, is increased. Owing to the consideration of the geometric layout, it can be
observed from Fig. 7.11 that the proposed GPLT scheme possesses better performance comparing
with the other two algorithms under different NLOS errors. Furthermore, the performance obtained
from the PLT scheme is severely degraded with the increase of the NLOS errors. As a result, the
effectiveness of the GPLT algorithm is perceived, especially under insufficient signal sources (i.e.,
N® =1 and 2). o

7.7 Concluding Remarks

In this chapter, the Predictive Location Tracking (PLT) and the Geometry-assisted Predictive
Location Tracking (GPLT) schemes are proposed. The predictive information obtained from the

Kalman filtering formulation is exploited as the additional measurement inputs for the location
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Figure 7.11: Left Plot: the Average Position Error vs the Median value of NLOS noise (7,,); Right Plot:
the RMSE vs the Median value of NLOS noise (7,,,)

estimator. With the feedback information, sufficient signal sources become available for location
estimation and tracking of a mobile device.” Moreover; the GPLT algorithm adjusts the locations
of its virtual Base Stations based on‘the GDOP criterion. It is shown in the simulation results that
the proposed GPLT algorithm canprovide consistent accuraey for location estimation and tracking

even under the environments with-insufficient signal sources.
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Chapter 8

Cooperative Self-Navigation in a
Mixed LOS and NLOS Environment

- The problem of cooperative self-navigation for mobile sensors in the mized LOS/NLOS environ-
ment is first investigated in this chapter based on-measuring time-of-arrival from the cooperative
sensing. The proposed cooperative self-navigation (CSN) with joint position and channel tracking
takes advantage over the noncooperative methods with the extra cooperative measurements and over

the methods without channel tracking.

8.1 Introduction

For self-navigation, a mobile unit needs to determine its own coordinate position based on its
reception of signals from multiple radio stations of known positions. These radio stations are known
as anchors. In fact, the self-navigation problem is equivalent to the source localization problem
whose goal is to estimate source location based on signals received by multiple sensors [80]. A
number of wireless positioning methods have been widely studied with various signal measurements.
Representative signal models for wireless positioning includes distance measurements [13], time-
of-arrival (TOA) [9], time difference-of-arrival (TDOA) [10], angle-of-arrival (AOA) [12], and the
received signal strength (RSS) [11]. Because AOA and RSS measurements can be highly inaccurate
under complex indoor environment in practice, we focus on TOA measurement for self-navigation
in this work. For mobile self-navigation, the mobile sensor (MS) unit moves dynamically. The
TOA measurement is made sequentially and the mobile state is estimated or updated to facilitate
location estimate for next instant.

We note that the measurement error (noise) model of the TOA depends on whether the path
between a radio anchor and the mobile receiver is a direct line-of-sight (LOS) path or non-line-
of-sight (NLOS) path. NLOS refers to a transmission path obstructed by structures which cause

substantial bias to the signal travel time/distance. Traditional schemes locate the position of a
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mobile sensor based on its received radio signals from the anchors only. Instead, we study the
problem of cooperative navigation, in which multiple sensors can exchange their received signals
or their estimated positions in order to jointly improve the accuracy of their individual positions.
Despite the lack of accurate position information at all the sensors, cooperative navigation and
positioning have been shown to improve the estimation results from the perspective of Fisher

information matrix or Cramer-Rao bound [81].
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Figure 8.1: Transmission and measurement procedure of (a) cooperative self-navigation (CSN) (b) coop-
erative tracking.

Fig. 8.1 further illustrates the concept of cooperative self-navigation (CSN). Each MS listens to
the signal broadcast by the anchors and estimates its position from the downlink TOA measurement.
Each MS should exchange some belief information with others for CSN. In particular, each MS can
re-estimate its own position after receiving signals from the anchors and beliefs from other MSs.
Cooperative self-navigation keeps the transmission overhead low by only sending the belief of its
position. In fact, a known work on cooperative localization using sum-product algorithm is the
so-called SPAWN of [82] which adopted non-parametric belief propagation [83] for information
exchange among mobile sensors of unknown positions. The authors of [82] demonstrated superior
performance of SPAWN with a recursive Bayesian estimation over both the non-cooperative scheme
and the cooperative least-squares scheme. However, the assumption that either the channels are
known to be LOS or NLOS limits the practical applicability of SPAWN. Specifically, in a dynamic
system, channels would switch between LOS or NLOS over time because of MS movement and
other moving objects. Hence, we do not know a priori whether a given channel is LOS or NLOS
at a particular time.

To model the channel evolution in time and space, a Markov model has been proposed in [84].

Several papers deal this problem by introducing an interacting multiple model (IMM) [85, 86, 87].
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The IMM method estimates all possible modes in parallel and mixes the estimation result according
to mode probability. The authors of [85, 86] utilized the IMM method on the signal models,
where each distance measurement consists two modes including LOS and NLOS. One IMM and
two Kalman filters are utilized to smooth each TOA [85] measurement, thereby leading to better
position estimate. The authors of [86] further proposed an extended Kalman filter based IMM to
smooth the RSS that combines with the TOA via data fusion. Instead of applying an IMM on each
measurement, the authors of [87] used one IMM on the position estimate. Assuming that there are
total N anchors, there are 2V modes which capture all the combinations of LOS/NLOS conditions,
e.g., N = 3 with 8 modes containing {LOS, LOS, LOS},{LOS, LOS, NLOS},...,{NLOS, NLOS,
NLOS}. The position is estimated according to LOS/NLOS combinations in different modes. The
integration of position estimates for different modes enhances the performance at the expense of
computational complexity. On the other hand, the authors of [88, 89] considered a joint channel
condition and position tracking problem based on the hidden Markov model. The grid based [88]
and particle filter [89] are employed for the problem. The authors of [90] considered a Rao-Blackwell
particle filter method by estimating the channel condition with particle filter and then applying
extended Kalman filter for the position estimation. ‘As is clear from the literature survey, there
are a number of researches on the location-estimation in mixed LOS/NLOS environment. Still, no
study based on cooperative sensing has been investigated.

In the chapter, we investigate how cooperative measurement sensing can improve self-navigation
in a mixed LOS/NLOS channel condition: The major 'contribution of the chapter is the
derivation of an optimized recursive.Bayesian solution for CSN, which has not been done before.
Since the channel condition is non-deterministic-and-is obviously non-Gaussian, we adopt the use of
multiple model SIR particle filter [91] to approximate the associated non-linear and non-Gaussian
recursive Bayesian problem and to develop a CSN method. The chapter consists of five sections.
In Section 8.2, we describe our problem formulation by presenting our measurement model and
a model of channel state transition in self-navigation. In Section 8.3, we propose a joint channel
condition and position estimation for the CSN. Section 8.4 presents numerical simulation results

that are followed by the conclusion in Section 8.5.

8.2 Problem Formulation

Unlike the single MS estimation problems in Chapter 4 to 7, the cooperative localization considering
multiple MSs are presented in this chapter. Therefore, different notations are adopted in this

chapter.
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8.2. Problem Formulation

8.2.1 Problem Description

Consider a synchronous network of N transmitting anchors fixed at the known positions. Their
positions are denoted by a set of m-dimensional vectors a = [a; a3 ... ay]|T, respectively. Although

m = 2 and m = 3 are both possible, without loss of generality, we consider m = 2 in this chapter.

Our goal is to estimate the unknown positions of M mobile sensors at time instant ¢ which are

() () (t)]

denoted by a set of m-dimensional vectors x() = [x] th o Xy T In other words, based on

the known positions of the transmitting anchors, the mobile units wish to estimate their positions
at different time instants. There are typically movement of sensors between the sampling time

instants ¢ and ¢ + 1.

®)
27.]
while, the MS cooperates with each other by transmitting its belief position to others. Hence, the

When the i-th anchor broadcasts its signal, the j-th sensor receives a measurement y, ;. Mean-

j-th sensor also receives cooperative measurement zét]) from the ¢-th MS to the j-th MS. We assume

that the two types of signals are orthogonally multiplexed possibly in frequency or in code such

that of yz(tj) and zétj). do not interfere with each other’s reception by the j-th sensor.

By collecting measurements from time index 4,to ¢ from the sources to the j-th MS (i.e.,

y§1:t) = [ygljit) y](\}:;)]T) and the cooperative measurements from the other mobiles to the j-th MS

ie., 210 = z(ft)» ALY oy LR , the goal is for the j-th MS to generate an estimate
J 1, j—17 “j+1,1 M,j

xg-t) of its position and channel condition jointly for the self-navigation.

8.2.2 Measurement Model

As explained earlier, we focus on the TOA measurement model. For notational simplicity, the TOA
measurement from the anchor to the MS is multiplied by the speed of light c¢. Thus, the effective

TOA measurement is
t t 1), (t . )
= Jla; — x| +ol(s), i=1,2,. N, =1,2,.., M, (8.1)

where || - || denotes the Euclidean distance and vgt} is the measurement noise at time ¢. Similarly,

the TOA measurement between mobile stations are

t t t t) (¢ , , . .
zi(,} = HXZ(-) —x§)\|—|—w§,}(l§7;), i=1,2,..,j—-1,74+1,..,M,j=12,.,M, (8.2)
where wl(t]) represents the additive measurement error/noise.

The difference between LOS and NLOS models lies in the noise distributions. In the chapter,
both LOS and NLOS situations are considered. Thus, the noise distribution of each link can be
either LOS or NLOS distribution. The channel condition is hidden in the measurement. Though
we are primarily interested in estimating the position of the MS, the estimation of the channel

condition is necessary to identify different noise distributions.
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We therefore denote the channel state between the i-th anchor and the j-th MS as sgt]) €
{0,1} and denote the cooperative channel condition from the ¢-th MS to the j-th MS is as lg €
{0,1}. LOS corresponds to state 0 whereas NLOS is denoted by state 1. For the convenience,
we denote all the noncooperative channel states to the j-th MS as a N-dimensional vector s; =

[51,j --- Sn,;]- We also denote all the cooperative channel states to the j-th MS as a vector of

lj = [le "'lj—l,j lj—l—l,j ZMJ]

8.2.3 State Transition Model

For a self-navigation problem, both the position and the channel condition of the MS change from
time to time in a period from time index 1 to T". In order to model the correlation of the position
and the channel condition between different time instant, a hidden Markov process of order one is
adopted as the state model. The position of the j-th MS is considered as a Markov process from
time index ¢ — 1 to t,

(t) _ (1)

XV =x
XJ

. 4Ty v, (8.3)

where v{" denotes the m x 1 vector-of the j-th MS velocity at time t. T, represents the sampling

J
interval. We assume v§t) as a continuous random distribution. Meanwhile, the channel condition
is modeled as a Markov chain with the LOS and the NLOS states. The transition probability is

modeled as

Do a=0 b=
- z l1—po a=1 b=0
Pl =a 15V =) =P =a| sV =) = . 8.4
(Z,] ‘ 2,9 ) (17] ’ 2y ) 1_p1 a=0 b:l ( )
D1 a=1 b=1

8.3 Proposed Cooperative Self-Navigation (CSN) Method

The proposed CSN method is first presented in the optimal recursive Bayesian estimation repre-
sentation in subsection 8.3.1. The subsection 8.3.2 describes how the particle filter approximates
the probability density function of the Bayesian estimation in practice and how the MS collects the

measurement with the proposed CSN method.
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8.3. Proposed Cooperative Self-Navigation (CSN) Method

8.3.1 Optimal Recursive Bayesian Estimation

In this recursive Bayesian estimation problem, the important process is to calculate the joint

position and channel condition posteriori distribution,

1 1 1:t—1 1:t—1
PO 000 511 ) = Loty |00 Pl 010 |,
likelihood p;&)r

(8.5)

where the denominator acts like a normalizing constant as

(= P(yf 7 D y]1 H),Zf:H))

_ZZ/PYJ at ;t)’ ;t)’lgt)) (x gt)’s§t)’l§t) |y§1:t71),z§1:t71)) dx§t). (8.6)
&0 11

The prediction information in (8.5) can be derived as

®) @& 1) @t=1) o (1t-1)
P(X] 7 ] 71] ‘ ] 7 ] )

— Z P(S]t) ’Sgt_l)) Z P(l‘gt) ’ lgt—l))/P(th) |X§t—1))P(X§t—1)7S§t—1)7l§t—1) ’y§1:t_1)7Z§1:t_1)) dx§t—1)

S(_t—l) 1(_15—1)
J J
t t—1 t—1 12—-1 1:t—1 t) t 1 t—1 1:t—1 1:t—1

=3 P s ps Y |y A S TP 1Y) Pl |y D ()

S(_t—l) l(_t 1)

J L _

noncooperative channel condition prediction cooperative channelvcondition prediction
t t—1 t—1 1:t—1 1:t—1 t—1
/P(xg.) ] xg. ))P(X§» ) | y§ ),Zg- )) dx§ ) (8.7)

position prediction P(x(t)| (16— 1) (lt 1))

In the chapter, the position and channel condition are assumed to be independent, and the pre-
diction can be performed separately. (8.7) can be calculated through the known initial condition
and the known state model in (8.3) and (8.4). Note that all links including the noncooperative mea-

(t) (t)

surements y -~ and the cooperative measurements z;" are considered independent. The likelihood

n (8.5) can be written as

P(y§~t)a ()| gt), Et),lf)) H (yl(ctj j ’Sk] HP ! ’Z(])) (8.8)
k

/

noncooperatwe likelihood cooperatwe likelihood
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From (8.5)-(8.8), the posterior function in (8.5) can be rewritten as

s
) .] 71.]

position prediction P(xgt)\yg.l:t 1), 51 = 1))

(8.9)

B refers to the terms related to the noncooperative likelihood and channel condition prediction,
while C refers to the terms related to the cooperative likelihood and channel condition prediction.
For the noncooperative term, the TOA measurement is affected by the MS position and the channel

condition.

B=T] 3 Pl 1< s0 P | sy ) P(sis |y 20, (8.10)
k (t—1)

Sk
For the cooperative term, the TOA measurement is affected by the source position, the MS position,

and the channel condition, i.e.,

c=1> I / P x, 10 Y P ) axd PN ) Pl Y [y a0 D) (s)

i (t=1)
i i

The extra integration in (8.11) is required for the cooperative measurement which also increases
the computational complexity. Note that for the noncooperative term in (8.10), we already know
the source position. However, for the cooperative term in (8.11), we can only calculate P(th))

through the belief of the i-th MS based on the measurement from time 1 to t — 1 as
t t (t) | S(Lit=1) (L1
P(x) ~ b(x{") = P(x" [y 7Y 2, (8.12)

Therefore, the coordinates of the anchors and each mobile’s belief record are available for all
mobile stations to jointly estimate their positions. Note that the belief transmission is chosen as
the prediction information before the measurement update at time ¢t. With the measured TOA
and belief information from cooperating mobiles, each MS can estimate its own position according
to the recorded channel condition. The MS can update the belief to its posterior information as
b(xgt)) ( ] y(lt , 2(1 t)) with (8.5)—(8.11). Following the belief propagation concept in [83],
the MS refines its estimate and broadcasts its own belief information iteratively to further enhance
the joint location accuracy.

The second consideration is how the recorded channel condition affects the estimate. We take
the channel condition of the cooperative link for example. In order to demonstrate the effectiveness
of joint position and channel condition estimation, the channel condition can be classified as the

following cases:
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(A1)

(A3)

Joint Position and Channel Condition Tracking: The self-navigation unit keeps recording
the channel condition of each links P(lgtjfl) | zg»t*l)). Therefore, by adopting the state model
in (8.4) to calculate P(lgt]) | lgtjfl)), the posterior distribution in (8.5) can be calculated.

No Knowledge of Channel Condition: In this case, the original CSN method does not take the
channel condition into account. In other words, there is no information about P(ll(t]) | lgj_l))

and P(l(t_l) ] zgt_l)). The likelihood function becomes

1,7
P | x =3P XD i pal)). (8.13)
1@
2%

Therefore, we can only assume that the LOS or the NLOS happens with the same probability
ruYy=1
( %,] ) 2°

Perfect Knowledge of Channel Condition: In this situation, the channel condition is known at
every time instant, i.e., P(ll(f])) is a dirac delta function in (8.13). Note that the knowledge of
channel condition can be obtained, through-the LOS /NLOS classification. In order to achieve
accurate classification, there is an extrasoverhead needed for LOS/NLOS detection. This

situation can serve as an upper bound for the proposed method.

8.3.2 Particle Filter Representation

8.3.2.1 Fundamental Concepts-of Particle Filter

t=0 [Initial Particles

Importance <—
Sampling = State Update
|

measurements

Weight
Computation

\
Resampling

T Measurement Update

> Out.put .
Estimation

Figure 8.2: A flow chart about the sampling importance resampling (SIR) particle filter.

The concept of the particle filter is to use a set of particles {[X§t)]q, [sg»t)]q, [l§t)]q}évqu associated
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with its weighting [w](t)]q to denote a random measure of the posterior distribution
Nq
1: 1:
PO s 0 [y, a) o 3Tl - 0 — ) - (s 7)) - 6057 — 1P],). - (8.14)
q=1

(t)]

Here N, denotes for the number of particles, [Xj

dimensional MS position x§t) at time ¢, and [s§t)

link condition sgt) received by the j-th MS. Furthermore, [lgt)]q represents the g-th particle of the

(*)
J
associated to the g-th particle.

q represents the g-th particle of the j-th m-

|4 represents the g-th particle of the noncooperative

cooperative link condition 1" received by the j-th MS, and [w§t)]q denotes the importance weights

The multiple model sampling importance resampling (SIR) particle filter [91, 92] is one of the
represented method and is adopted in our method as shown in Fig. 8.2. Note that the Bayesian
recursive estimation can be classified as the state update and the measurement update. In the
state update stage, the importance density of SIR filter is chosen to be the transition prior to draw
samples (i.e., particles). Note that there are two likelihood functions, one for LOS channel and one
for NLOS channel condition, respectively.”By substituting the position samples into the likelihood
function according to channel condition samples, the weights of the corresponding particles can be
obtained. The associated weights are regarded as the approximations to the posterior probabilities
of the particles such that Zévqu [wj(-t)]q = 1. Therefore, forimportance sampling, the minimum mean

square error estimation (e.g., position) can be obtained from a weighted average as

N‘I
) @) (Lt)y _ (8) 4 At (1:1) (OO (t) (®)
E[X]‘ | Y; 2% ] = /P(Xj l Y5 iy ) "X, dxj = Z[wj Jg- [Xj Jg- (8.15)
q=1
In order to overcome the degeneracy problem, which denotes particles with negligible weights after
iterations, the resampling of the particles is necessary. The idea of the resampling algorithm is to
remove the particles with small weights and increase the particles with large weights by making
several copies to fill the place of the deleted particles. Therefore, the weights would be adjusted to

1/Ny, which means there is no need to record the weights for every time instant.

8.3.2.2 Particle Filter for CSN

Fig. 8.3 and Algorithm 8.1 illustrate how to update the particles and the associated weights recur-
sively with the proposed CSN method for the j-th MS. We assume prior knowledge (or estimate)

on the starting position and channel condition P(xgp)), P(SS»O)), and P(lgo)) and draw particles
{[Xg»o)]q, [sg»o)]q, [l§0)]q évqu accordingly. At every sample time ¢, the SIR particle filter draws the im-

portant density using the transition prior, i.e., [xgt)]q ~ P(xgt) | [X§t—1)]q)’ [sgt)]q ~ P(sgt) | [s§t71)]q),

and [lgt)]q ~ P(l§t> | [lgtil)]q) Vq. The noncooperative source broadcasts its coordinates. At the
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Importance Broadcast
d=1..N Sampling I Self-Beliefs
Noncooperatlve measurements
e -« )'a
Cooperatlve measurements
¥y 2, Vi
Weight
Broadcast Computation
Self-Beliefs
r@—— Other’s Belief
Weight !
Computation Resampling
Output
Estimation Yes
Estimation

T Tteration

Figure 8.3: A flow chart.about-the particle filter for CSN.

same time, the cooperative nodes transmit their position belief with the particle representation
{[th)]éo)} , in parallel. Both the noncooperative.and cooperative channel condition are only
recorded by local MS. After the MS.receives the noncooperative measurements, the anchors’ coor-
dinates, the cooperative measurements; and the particles from the cooperative nodes, we can then

calculate the weights as

(@], = Py 20 | <)o, 50, 1)) = [T P | P, [5710) HP | %10, 15,),
k

(8.16)

where the weights should be normalized by [w](.t)]q = [ ] / E 2w (t)] . Therefore, the minimum

mean square error estimate can be generated with

Xg” Seifw’]g - 1%}l

~(t N t t

s(]))—round( Mo iy 59, (8.17)
1 = round(se [, - 1],)

Note that the entries of vectors é() and l()

are either 0 or 1. Hence, we include rounding
to the nearest 0 or 1 to serve as an estimation output after the summarization of the weighting
associated to the particles. The channel condition particles are maintained as the probability that

the corresponding link was in LOS or NLOS. The systematic resampling algorithm [93] is performed
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to adjust the particles into an equal weight set.

Since there is uncertainty about the coordinates of the mobiles, the iterative calculation between
the cooperative mobiles is adopted. We let cooperative MS to transmit its belief Ny times between
the time t to t + 1. [X§t)]éd) denotes the g-th particles of the j-th MS position calculated at the
d-th iteration which happens between the time ¢ to t+ 1. For notation convenience, [.]((Jd) represents
the ¢-th particle of the unknown variable at the d-th iteration. In each iteration, the MS first
broadcasts its own belief. After receiving the others’ beliefs, the whole measurement process is
performed to update its belief. Before the noncooperative source broadcasts the signal at next time
(t)](d)

t+1, the cooperative MS can exchange their updated belief, recalculate the [w i la and resampling

iteratively to refine the estimation.

Algorithm 8.1 Proposed CSN Method for j-th MS

1: initial state [x§0)]q, [sg.o)]q, [1§0)]q Vq
2: fort=1toT do

3: for ¢ =1to N, do
4: importance sampling: [th)]((lo) ~ P(xg-t) | [xgt_l)]q), [sg-t)]go) P(sg-t) ] [sg-t_l)]q),
0 —1
L ~ P I lg)

5: end for
6: broadcast self-belief {[X§t)]go) }fIV:ql % Quantization in Section 8.4.3
7 receive noncooperative measurement yg-t) and associated coordinates a;

receive cooperative measurement zg-t) and associated beliefs {[xl(.t)]go)}évqu (i=1,..,5,7+

1,..N)
8: weights computation according to (8:16)

: < 1100) 1a®10) {10 :
9: calculate [&;7]%), [8;7]) [1;7]%) according to (8.17)
. 1 1 1) N, 0 0 0 0
10: update self-belief {[xg.t)]g ),[sg-t)]g ),[lg-t)]g )}q:ql = resample({[xg-t)]g ),[sg.t)]g ),[lg»t)]g ),[wj(-t)]g )}
11: for d =1 to N; do
12: broadcast self-belief {[x§t)]éd)}é\7:ql % Quantization in Section 8.4.3
13: receive beliefs from other MSs {[xgt)]éd)}évqu (t=1,..,4,7+1,..N)
14: weights computation according to (8.16)
15: calculate [i§t)](d), [§§t)](d), [i;t)](d) according to (8.17)
16: update self-belief {[x§t)]gd+1), [s§t)]éd+1), [l§t)]éd+1)}év:q1 = resample({[xgt)]gd), [s§t)]gd),
d d){ N
17 w167 Y g20)

17: end for . .
18: update estimation at time ¢: 5{? = [)2§t)](Nd), égﬁ [éy)](Nd), lg) = [l; )](Nd) in (8.17)
19: for ¢ =1to N, do
20: update particles: [th)]q = [xg-t)]gNdH), [s§t)]q = [sgt)]gNdH), [lg.t)]q = [lgt)]gNdH)
21: end for
22: end for
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8.4. Simulations and Results

8.4 Simulations and Results

In this section, we provide several examples to illustrate the performance and effectiveness of the
proposed cooperative navigation strategies. We name the proposed cooperative navigation method
as CSN. We will test the three different strategies (A1), (A2), and (A3) described in Section 8.3.1
to deal with channel conditions. In addition, as a comparison, we also test the JMS-PF given
by [89] as the noncooperative self-navigation method in conjunction with joint channel condition
estimation.

We set IV, = 500 particles and iteration number Ny = 0. Recall that zero iteration number
represents only prediction information exchanged between the MSs, where the noncooperative and
cooperative measurements update once per sampling interval. We will further examine the iterative
refinement effect in Example 8.4. We consider a random initialization in our simulation examples.
We partition the area of consider into grids of 5m x5m. At the start ¢ = 0, we assume to know which
grid the MSs are but not their exact positions. Thus, we draw initial position particles uniformly
within the grid. We assume to know channel conditions within a 90% confidence interval, i.e.,
P(sgo)) = P(lgo)) = 0.9, where we draw particlessuniformly with 90% of channel condition particles
in the true channel state. We will.further examine the.imperfect knowledge of initial position
and channel condition in Examples 8:5 and 8.6. 'We model MS movement as random walks in the
simulations. We also assume to know the speed of the MS movement based on a pedometer but

not its direction. This leads to the-state equation in.(8.3)

T

th) = X§~t71) o vj(t) . { cos 9]@ sin 9§t) , (8.18)

(*)
J
distribution vj(»t) ~ N(0,1) over interval 0 < vj(»t) < 0o. With the moving direction unknown, it is

where the sampling interval is chosen as Ty = 1 second. The velocity v;” is a truncated Gaussian

assumed to be uniformly distributed with 9]@ ~ U[0,27). Therefore, the particles of MS position
(t—=1) (t)

are uniformly generated on the circle centered at X; with the known radius of v;

We adopt the measurement model of [82], where the mean and variance of the Gaussian dis-

tribution are parameterized in the form of ad? + Bd + § based on the true distance d. The noise

distribution P(yz(?\sit])) depends on the distance d = ||a; — Xg»t) | as in

2 ) _
PO = N(—0.003d? + 1.0075d — 0.0298, 0.0007) sig=0 (8.19)
b N(0.0099d? + 0.8263d + 0.6908,0.0001d*> — 0.0015d + 0.0056) s(t]) =1

Note that P(zz(z)ﬂgj)) also possesses the same distribution as P(yz(? |5§2) though it depends on the
®

We use the outage probability of the MS position error [82] as the performance measure. In

true distance between x;” and xg.t), ie, d= ngt) - xg.t)H.

other words, we calculate the average probability that the MS position error exceeds a threshold
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Cth-

P M
Piy(em) =S ST 1% &) > e) /(M - P), (8.20)

i=1 j=1

where I(.) denotes the indicator function. Note that the outage probability averages over M mobiles
in P trials. At the same time, we also adopt the root mean square error (RMSE) to assess the

performance of proposed strategies as

1/2

P M
RMSE® = NS W P12/ - py| (8.21)
i=1 j=1

Each simulation example lasts T' = 20 seconds.

8.4.1 Fixed Number of Non-cooperative Measurements

In this subsection, we place three anchors as-the fixed non-cooperative nodes in a two-dimensional
network topology at a; = [5 50], ag =[50 50], and-ag = {50 5]. Four mobiles are located at x; = [20
25], xa = [25 20], x3 = [25 30], andx4 = [30-25]. 'The number of simulation trials is P = 1000. The
non-cooperative channel condition follows a Markev chain according to (8.4) with py = p;1 = 0.9.
On the other hand, the cooperative channel condition is modeled as LOS throughout the simulation
period. Recall that the LOS/NLOS setting in the simulation is to examine how LOS cooperative

measurements can provide assistance in the.cooperative localization problem.

10° y T T T
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—%— JMS-PF (A2) X V!

— — — JMS-PF (A3) S SN
—6— CSN 1MS (A1) TS
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— — —CSN 1MS (A3) - cs Ss
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Figure 8.4: Performance of the location estimation in terms of outage probability for Example 8.1.

143



8.4. Simulations and Results

I (A1) Joint position and channel tracking
45+ "1 (A2) No knowledge of channel tracking
— 1 (A3) Perfect knowledge of channel tracking

35F
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[ w N w w

I
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H ﬁ

JMS-PF CSN 1MS CSN 2MSs CSN 3MSs

Figure 8.5: Performance of the location estimation in terms of RMSE for Example 8.1 with strategies (A1),
(A2), and (A3).

Example 8.1 (1 noncooperative measurement). In this example, each MS only receives one non-
cooperative measurement from the anchorwhich is insufficient measurement in traditional localiza-
tion problem. The numbers of coopéerative measurements for the MSs are selected as one, two, and
three in the simulations, respectively,-and are labeled as. 1MS, 2MSs, and 3MSs. At ¢ = 20, Figs.
8.4 and 8.5, respectively, illustrate.the outage probability' and the RMSE of the JMS-PF, CSN with
1MS, CSN with 2MSs, and CSN with 3MSs based on three different strategies (A1), (A2), and (A3).
Note that the outage probability increases with time.owing to the random walk by the MS and
the transition of channel conditions between LOS-and NLOS. We observe that since strategy A2
has no knowledge on the channel state, it results in the worst performance given the same number
of cooperative measurements. The reason is that, without the knowledge of channel state, we can
only assume that LOS or NLOS occurs with 1/2 probability. Therefore, method A2 can provide as
an upper bound of the outage probability for the proposed joint position and channel estimation
scheme A1l. On the other hand, strategy A3 is based on known channel, thereby providing a lower
bound for the performance of Al. Our proposed joint position and channel estimation scheme A1l
is a compromise between accurate position estimate and channel state estimate.

The simulation results illustrate little difference among the three strategies of the JMS-PF
scheme. The reason is that a single non-cooperative measurement is sufficient for estimating mobile
positions even with the available channel state information. On the other hand, joint CSN schemes
can provide additional channel information which effectively reduce the RMSE of the MS. For
example, as shown in Fig. 8.5, strategy Al of the proposed CSN 3MS scheme can reduce the
RMSE by about 0.9m versus that of strategy A2. Furthermore, there is a crossover between the
JMS-PF and the CSN 1MS schemes as observed from Fig. 8.4, which indicates that the CSN 1MS

scheme leads to higher outage probability under larger MS’s position error. The reason is that
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Table 8.1: The error percentage of channel tracking with strategy (Al) in Examples 8.1 and 8.2

| | JMS-PF | CSN 1 MS | CSN 2MSs | CSN 3MSs |

Example 8.1 | 22.94% 1.23% 0.57% 0.41%
Example 8.2 1.51% 0.66% 0.53% -

the belief exchange among mobiles on estimated position can become inefficient in cases when the
estimates are poor. With the increasing number of cooperative measurements, the diversity of
measurement inputs can lower the effect of effect of poor MS location estimation. As illustrated
in Fig. 8.4, compared to other schemes, CSN 3MS achieves better outage performance especially
under larger MS’s position error. Similar results can be observed from the RMSE performance of
Fig. 8.5. The proposed CSN 3MS scheme in Al can provide around 2.9m lower RMSE compared
to JMS-PF.

On the other hand, the tracking performance of channel state should also be observed. For fair
comparison between JMS-PF and CSN, we only consider the tracking performance of channel state
for the noncooperative measurements,i.e:; between the anchor and MS. The error percentage of

channel tracking (P.) is defined as the error between the actual channel state and its estimate:

where ||.|[1 denotes the ¢; norm. Note that.the number of anchors in this example is N = 1 and
the total number of MSs is M = 4. As shown in Table 8.1, increasing the number of cooperative
measurements can reduce the error of channel tracking, which validates the effectiveness of joint

estimation for position and channel condition.

Example 8.2 (2 noncooperative measurements). In this case, each MS receives measurement from
two anchors. The number of cooperative mobile signals is 1 and 2, respectively, denoted as 1MS and
2 MS in Figs. 8.6 and 8.7. Under known channel condition, the performance difference between the
noncooperative and cooperative cases is insignificant in this example compared to that in Example
8.1. This is because the extra noncooperative measurement in this example can provide additional
information for estimating mobile locations. As shown in Fig. 8.7, similar RMSE performance is
obtained for strategy A3 in all three schemes while significant performance difference is acquired
in the schemes with strategy Al. The proposed CSN scheme can still provider better performance
compared to the JMS-PF method, e.g., the CSN 2MSs case will provide around 0.3m less in RMSE
in comparison with the JMS-PF scheme as in Fig. 8.7. Moreover, Table 8.1 shows better channel
tracking by CSN over that of JMS-PF.
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Figure 8.6: Performance of the location estimation in terms of outage Probability for Example 8.2

8.4.2 A Sensor Network Scenario

Example 8.3. In this example, a sensor network topology is confined in a 100m x 100m space
as shown in Fig. 8.8. There are 13-fixed-anchors randomly distributed with known position and
50 dynamically moving mobiles during the simulation period. The transmission ranges for all the
anchors and mobiles are limited to 20m. For this topology, distributions of the average available
numbers of noncooperative and cooperative measurements'for the 50 mobiles are shown, respec-
tively, in top and bottom plots of Figs 8.9. Note that.-both the noncooperative and the cooperative
measurements can be LOS or NLOS according to the Markov model. All other conditions remain
the same as in previous examples.

As shown in Figs. 8.10 and 8.11, the proposed CSN can achieve lower outage probability
and smaller RMSE in comparison with JMS-PF. For example, compared to JMS-PF, the CSN-A1
reduces outage probability by 0.27 for ey, = 3m in Fig. 8.10 and lowers the RMSE by 2.3m in
Fig. 8.11. From Fig. 8.10, we can conclude that the CSN results in substantial improvement
over the noncooperative scheme in sensor networks. As indicated in Example 8.1, the cooperative
scheme provides improvement over the insufficient measurement case. Even with the possibility of
NLOS cooperative measurements in this example, CSN can still provide effective channel tracking,

resulting in better location estimation performance.

Example 8.4. In this example, we study the number of iterations of belief propagation within each
sampling interval. The test scenario in Example 8.3 is reconsidered. Recall that MSs only exchange
their predictive beliefs when Ny = 0. If Ny =1 or Nz > 1, the MSs exchange the posterior beliefs
to further refine the belief. In Table 8.2, the improvement achieved by going from the zero to one
iterative refinement is obvious. However, even larger iteration number does not appear to further

improve the performance over N; = 1, which demonstrates that one or two iterations would be
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Figure 8.7: Performance of the location estimation in terms of RMSE for Example 8.2 with strategies (A1),
(A2), and (A3).

Table 8.2: Iterative Belief Propagation Impact in Example 8.3

| CSN(A1): Number of Iterations | Ny =0.[ Na=1].Na =2 [ Ny =3 || JMS-PF(Al) |
| RMSE (m) | 1039 [ 0974 | 0.985 [ 0.971 | 3.31 |

sufficient.

Example 8.5. We test the effect of initial-position-in this example. The test scenario in Example
8.3 is reconsidered, except for changes of initial position. In Table 8.3, we assign the initial particles
as the true MS’s position in the ideal case, e.g., [X§0)]q = 5(x§0)) Vg. We draw initial particles
uniformly with a larger grid in a 10m x 10m layout partition. As expected, the RMSE error

increases for the noncooperative and cooperative case as the initial estimation error increases.

Example 8.6. In this example, we test the impact of initial channel condition. The test scenario
in Example 8.3 is re-tested, except for the change of initial channel condition. In Table 8.4, we
assign the initial particles as the true MS’s position in the perfect case, e.g., [SE»O)](] = 6(s§-0)) vq.
The RMSE error increases for the noncooperative and cooperative case as the channel condition

error increases.

Table 8.3: Initial Position Impact in Example 8.3

| Knowledge of MS’s Initial Position | Perfect | 5m x 5m Region in Ex 8.3 | 10m x 10m Region |

CSN(A1): RMSE®? (m) 0.83 1.039 1.70
JMS-PF(A1): RMSE®? (m) 3.14 3.31 3.84
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Figure 8.8: Network topology of Example 8.3: red squares represent the positions of the anchor; green
circles represent the positions of the MS.

Table 8.4: Initial Channel Condition Impact in Example 8.3

Knowledge of MS’s Initial Position | Perfect | P(ss-o)) = P(lgo)) =0.9in Ex 8.3 | P(sgo)) = P(lgo)) =0.5 |
CSN(AL): RMSE (m) 0.89 1.039 1.22
JMS-PF(A1): RMSE (m) 323 331 3.42

8.4.3 Signaling of Cooperative Navigation

Recall that cooperative navigation requires additional information exchange among mobiles by
letting mobiles broadcast their beliefs. Unlike the case involving only anchored nodes, MS moves
and should broadcast its belief to other mobiles in each time instant. This signaling requires
communication overhead. To lower the required bandwidth for belief broadcasting, we assume
in this section that the mobile beliefs are quantized into finite bits before broadcasting. This is
incorporated into Algorithm 8.1.

To demonstrate the effect of such quantization on mobile navigation, the test scenario in Exam-

ple 8.3 is reconsidered using quantized beliefs. Note that there is no belief propagation and hence

Table 8.5: Communication Overhead for Quantized Belief Sharing and Estimation Accuracy in Example

8.3
| CSN(A1): Number of Quantized Bits |Q=4]Q=5]Q=6]Q=7]Q=8] CSN(A1l) [ IMS-PF(Al) |
RMSE (m) 5.116 3.832 2.209 1.403 1.047 1.039 3.31
Quantization Error Standard Deviation (m) | 1.804 | 0.902 | 0.451 | 0.226 | 0.113 0 0
Communication Overhead (kbps) 4 5 6 7 8 00 0
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Figure 8.9: The distributions for the average available numbers of noncooperative and cooperative mea-
surements for the 50 MSs in Example 8.3.

no quantization error for the noncooperative. JMS<PFE scheme. On the other hand, the full CSN
algorithm broadcasts the full belief message without. quantization, hence using infinite bandwidth.
Quantizing the position particles results in-the-quantization error which degrades the performance
of the proposed CSN scheme. But quantization of beliefs will be better than no belief exchange
at all. Thus, the RMSE results of OSN and JMS schenies with strategy (Al) in Example 8.3 are
provided in Table 8.5 as benchmarks for, the quantized CSN performance.

In Example 8.3, the z- and y- coordinates lie in.{0;100]. We adopt the measure of “relative
resolution” for a fixed-size layout to investigate the tradeoff between bandwidth requirement and
estimation accuracy. Therefore, the quantized unit (0) for the number of quantized bits (Q) is
chosen according to the size of grid partition as § = 100/2%, e.g., the quantization unit is 6 = 0.39
for Q = 8. The quantization is performed by rounding, which causes the quantization error to be
uniformly distributed. Thus, the quantization error has standard deviation of \/m = 0.1128
for @ = 8. The communication overhead (7},) is calculated according to the number of position
particles and their quantized bits transmitted per second as T, = Ny, -m - Q - (Ng + 1), e.g.,
the communication overhead for a 2-dimensional position vector with 500 particles for Q = 8 is
T, = 500 -2-8-2 = 16(kbps). As shown in Table 8.5, cooperative estimation is better than
the noncooperative (JMS) scheme when more than 5 quantization bits are assigned. In fact, the
performance of CSN with strategy (Al) given () = 8 quantization bits can achieve the nearly
identical performance to the non-quantization result. According to [94], IEEE 802.15.4 can be
supported data rate up to 250(kbps). If @ = 8, a small communication overhead of 16(kbps) is
feasible even for low rate sensor networks. This example reaffirms the practicality of the proposed

cooperative navigation under limited sensor node bandwidth.
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8.5 Concluding Remarks

In this work, we investigate the problem of CSN in a mixed LOS/NLOS environment. We develop a
method for CSN for a team of mobile units. We propose to apply multiple model SIR particle filter
for joint estimation of mobile position and their channel conditions. We show the importance of
channel condition tracking in a mixed LOS/NLOS environment for cooperative self-navigation. Our
results demonstrate the significant performance advantage of CSN over noncooperative methods,
especially in environment where LOS cooperative measurement can complement NLOS noncooper-
ative measurements. Without a complex LOS/NLOS identification algorithm, our proposed scheme
can provide feasible location estimation performance for mobile sensors in a highly dynamic sensor

network scenario.
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Chapter 9

Conclusions

The dissertation first illustrates an example on how to enable location based service (LBS) in the
wireless network. We have studies the LBS of the fourth generation cellular network candidate,
e.g., IEEE 802.16m system,

e Chapter 3 describes cellular-based location estimation using timing estimates for next genera-
tion telecommunication networks. Different ranging techniques are introduced and simulated
with the standard LBS evolution methodology. By studying the performance of the downlink
(DL) preamble measurementy-inter-cell interference is found to be the limiting factor. On the
other hand, uplink (UL) ranging measurement suffers hearability problem. Neither DL nor
UL basic LBS support can achieve the performancge requirement of emergency 911 (E-911).
In DL measurements, the mobile station (MS)-measures the secondary advanced preamble
from the BSs which results in less network information exchange between base stations (BSs)
and less power consumption. The properties provide the feasibility for DL LBS to be imple-
mented in practice. Furthermore, the performance of the basic LBS support can be enhanced
by adopting inter-cell cancellation methods at the physical layer or interference avoidance
at the media access control (MAC) layer. The former approach utilizes signal processing
techniques to cancel the interference with channel estimation. The performance for location
estimation can be enhanced at the cost of increasing complexity at the receiver. On the other
hand, the latter approach groups the preamble location groups (PLGs) to schedule concurrent
transmission of BSs located within two cell-to-cell distances. The simulation results confirm

that enhanced LBS support satisfies the requirement for E-911 positioning accuracy.

The dissertation second studies the behavior and fundamental limits of location estimation

problem.

e Chapter 4 derives the linearized location estimation problem based Cramer-Rao lower bound
(L-CRLB) which provides the analytical form to discuss the geometric effect for the linear

least square (LLS) estimator. The geometric properties and the relationships between the
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L-CRLB and conventional CRLB are obtained with theoretical proofs. It is validated in
the simulations that the L-CRLB can provide the tight lower bound for the LLS estimator,
especially under the situations with smaller measurement noises. Moreover, the proposed
L-CRLB can be utilized to describe the performance difference of an LLS estimator under
different geometric layouts. The MS locates inside a BS-constrained geometry will provide
higher estimation accuracy comparing with the case that the MS is situated outside of the

BS-confined geometry layout.

Through the study of CRLB as shown in Remark 1, the limiting factors affect the estimation
accuracy as: 1) geometric effect; 2) signal model or noise variance; 3) number of signal sources. The
remaining dissertation has investigated and solved the limiting factors by utilizing the real-time

statistical signal processing techniques.

e In Chapter 5, the geometry-assisted linearized localization (GALL) algorithm is proposed by
fictitiously moving the base stations (BSs) in order to achieve the new geometric layout with
minimum L-CRLB value in order te minimize the linearization lost. The GALL with two-
step least squares (GALL-TSLS) implementation ¢an enhance the estimation performance of
the conventional TSLS estimator. By improving, the-initial estimation with the adoption of
historical information, the GALIwith Kalman filter (GALL-KF) scheme further outperforms

the other location estimators with similar two-stage estimation structure.

e In Chapter 6, two different hybrid architectures forlocation estimation and tracking of mo-
bile stations are proposed. By combining-the satellite and the network-based systems, the
proposed Fusion-based Hybrid architecture with Fixed-set of Signal Inputs (FH-FSI) can
provide adequate precision for location estimation within existing infrastructure. Moreover,
the Fusion-based Hybrid architecture with Selective-set of Signal Inputs (FH-SSI) further
improves the estimation accuracy, especially under Non-Line-of-Sight environments. On the
other hand, the Unified Hybrid (UH) architecture can achieve higher reliability for location
estimation and tracking with its flexible architecture in most of the cases, even with deficient
signal sources from the heterogeneous networks. It is shown in the simulation results that the
proposed hybrid schemes can provide consistent location estimation accuracy under different

environments.

e In Chapter 7, the Predictive Location Tracking (PLT) and the Geometric-assisted Predictive
Location Tracking (GPLT) schemes are proposed. The predictive information obtained from
the Kalman filtering formulation is exploited as the additional measurement inputs for the
location estimator. With the feedback information, sufficient signal sources become available
for location estimation and tracking of a mobile device. Moreover, the GPLT algorithm

adjusts the locations of its virtual Base Stations based on the GDOP criterion. It is shown in
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the simulation results that the proposed GPLT algorithm can provide consistent accuracy for

location estimation and tracking even under the environments with insufficient signal sources.

e In Chapter 8, the problem of cooperative self-navigation in a mixed LOS/NLOS environ-
ment is investigated. We develop a method for cooperative self-navigation for a team of
mobile units. We propose to apply particle filter for joint estimation of mobile position
and their channel conditions. We show the importance of channel condition tracking in a
mixed LOS/NLOS environment for cooperative self-navigation. Our results demonstrate the
significant performance advantage of cooperative self-navigation over noncooperative meth-
ods, especially in environment where LOS cooperative measurement can complement NLOS
noncooperative measurements. Without a complex LOS/NLOS identification algorithm, our
proposed scheme can provide feasible location estimation performance for mobile sensors in

a highly dynamic sensor network scenario.

9.1 Future Works

In this dissertation, we develop several-mobile location estimation and tracking methods under
various wireless networks. It is a challenging task to'make the estimation accuracy approach to
the performance limits. Given the measurements from the known position BSs in the location
estimation problem, the performance is bounded by CRLB. There are two different directions to
further improve the performance. Mobile/location tracking enhances the performance by consid-
ering the time diversity and the movement-model of the MS. Cooperative localization enhances
the performance by considering the spatial diversity and the distributed. Therefore, cooperative
location tracking or cooperative self-navigation (CSN) which combines the time and space diversity
is regarded as a more accurate scheme compared to traditional location estimation scheme. There

are still rich research topics in this field. For example,

e What is the tradeoff between the computational complexity and performance tradeoff for the

CSN methods, i.e., reducing the computation complexity for the CSN methods?

e We consider a synchronous network for the CSN. What will happen if the CSN is employed

in the asynchronous network?

e CSN requires extra communication overhead between MSs. Besides wireless sensor network,
is the concept of cooperative localization acceptable by any other commercial standardized

networks?

Besides mobile location estimation and tracking algorithms, one other important issue is to
determine how many distance-related signals MSs should collect. This would refer to resource

allocation problem for the mobile location estimation and tracking. For example, in a dedicated
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location estimation system, such as globe positioning system (GPS) or wireless sensor network

(WSN) deployed for the location estimation purpose,

e How many noncooperative or cooperative measurements are required to achieve the tradeoff

between the signaling overhead and performance?

e In the geometric point of view, where should we place the anchors and which MSs should we

cooperate to?

The resource allocation problem becomes more complicated in a general network system, which
has been illustrated in Chapter 3. We know that at least three measurements orthogonally mul-
tiplexed possibly in frequency or in code should be collected in the location estimation problem.
However, the purpose of the general network system is to increase the system throughput, i.e.,
utilizing as much bandwidth as possible. Although the frequency reuse concept can be utilized
to avoid bandwidth waste in different region, the location estimation in a general network system
occupies system resource which can be regarded as a system overhead. This arises an interesting

resource allocation problem, e.g.,

e Given the position accuracy constraint, how many noncooperative or cooperative measure-

ments are required to minimize the usage of resource?
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