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Abstract: To date, most research results regarding 
the performance of banyan networks assumed a 
uniform traffic model. Sources are assumed to 
generate connection requests independently with 
the same rate and, moreover, connection requests 
are assumed to be independently and equally 
likely destined to each destination. This assump- 
tion, which greatly simplifies analysis, may not be 
true for real-world systems because the traffc 
requirements between different source-destination 
pairs could be quite different in nature. We 
explore in the paper the performance evaluation 
of banyan networks under situations of nonuni- 
form traffic requirements. Two types of nonuni- 
form traffic matrices are considered. The results 
show that the uniform traffic model leads to opti- 
mistic performance measures. Moreover, a higher 
degree of nonuniformity in traffic leads to a more 
serious performance degradation. 

1 Introduction 

Banyan networks have attracted increasing interest 
recently because of their applications in processor- 
memory interconnections for multiprocessor systems and 
in constructing the switching fabric of fast packet- 
switched communication networks. In addition to the 
nice properties such as regularity for VLSI implementa- 
tion and easiness of routing, banyan networks were 
shown to have a far better performance per cost than 
crossbars in large multiprocessing systems [3]. It has 
further been proved [SI that flip network, omega 
network, indirect binary n-cube network, and baseline 
network are all topologically equivalent to regular SW 
banyan network with spread and fan-out of 2. Therefore, 
much recent research work concentrates on discussing 
the performance of regular banyan networks. 

However, almost all of the previous research results 
regarding the performance of banyan networks assumed 
a uniform traffic model. Sources are assumed to indepen- 
dently generate connection requests with the same rate, 
and connection requests are assumed to be independently 
and equi-probably destined to any destination. The 
sources and destinations of a 2" x 2" banyan network can 
be numbered, from top to bottom, by 0 to 2" - 1. Let tij 
represent the probability that a connection request orig- 
inated at source i is destined to destination j. Then the 
corresponding traffic matrix T = [tij] of a 2" x 2" 
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banyan network has all its elements equal (1/2)" under 
the uniform traffic assumption. This assumption, which 
greatly simplifies the analysis, may not be true in certain 
situations because the traffic requirements could be quite 
different for different source-destination pairs. In reality, 
as will be seen later, the uniform traffic assumption leads 
to optimistic performance measures. 

It is the purpose of this paper to study the per- 
formance of banyan networks under nonuniform traffic 
requirements. The system we are interested in is slotted 
along the time axis. The duration of a time slot consists 
of sending connection requests by sources followed by 
memory accesses or transmission of data packets by 
sources whose requests are granted. Two specific types of 
nonuniform traffic matrices which can better model real- 
world systems are considered. As usual, the normalised 
throughput is chosen to be the performance measure of 
banyan networks. The normalised throughput of a 
banyan network is defined as the average number of con- 
nection requests granted per slot for each source. Recur- 
sive formulae will be derived for the probability that a 
specific connection request will be granted. The normal- 
ised throughput of a banyan network is obtained if one 
multiplies this probability by the offered load of each 
source. 

2 Uniform traffic model 

A regular four-stage SW banyan network with spread 
and fan-out of 2 is illustrated in Fig. 1. Notice that, 

stage1 stage2 stage3 stage4 
0000 0000 
000 1 0001 

0010 001 0 
001 1 001 1 

0100 0100 
0101 0101 

01 10 01 10 
0111 0111 v u  w 

1000 1000 
1001 1001 

1010 1010 
101 1 101 1 

1100 1100 
1101 1101 

1110 1110 
1 1 1 1  1 1 1 1  

Fig. 1 Four-stage banyan network 

because of the equivalence relation mentioned before, a 
baseline network is also referred to as a banyan network 
in our study. Each 2 x 2 switching element is called a 
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node. For convenience, let the sources and destinations 
be respectively numbered from 0 to 15 and represented 
by binary sequences of length four. The leftmost bit is 
considered to be the most significant bit (MSB). It is 
interesting to note that the two input links of a node in 
the ith stage are related to different sources that differ 
only in the ith bit (counted from right to left) of their 
representations (or addresses). Consider, for example, the 
upmost node in stage 3. The upper input link is related to 
sources (oooO,OOO1,0010, OOll} and the lower input link 
is related to sources (0100,0101,0110,011 l } .  Such a con- 
nection strategy can be easily extended to a 2" x 2" 
banyan network. The sources and destinations are num- 
bered sequentially and are represented by binary 
sequences of length n with the leftmost bit being the 
MSB. The MSB is also referred to as the nth bit for a 
2" x 2" banyan network. Again, the two input links of a 
node in the ith stage are related to different sources that 
differ only in the ith bit of their representations. In the 
following, we will review the iterative algorithm for per- 
formance analysis of a banyan network under a uniform 
traffic assumption. 

Consider an n-stage banyan network. Let T represent 
the traffic matrix, i.e. tij, the (i,j)th element of the matrix 
T, is the proportion of connection requests originated at 
source i that are destined to destination j .  Then it is clear 
that tij = (1/2)", 0 < i, j < 2" - 1 under a uniform traffic 
assumption. Suppose that the connection requests gener- 
ated by sources are independent. As a consequence, the 
two input links of a node in any stage are independent 
since they are related to different sources. Let P k ; l  

denote the probability that each input link of a node in 
the kth stage receives an active request. Then we have [7 ]  

where p o  is the offered load of each source, i.e. p o  is the 
probability that a connection request is generated by a 
source at the beginning of a slot. The normalised 
throughput is then given by p,, . In reality, the normalised 
throughput can also be computed by a different 
approach. Consider a specific connection request gener- 
ated by source 0. Let Rk = pJpk-1 denote the passing 
rate of a connection request arriving at an input link of a 
node in the kth stage. In other words, Rk = 1 - p k -  1 /4  is 
equal to the probability that the specific request is not 
blocked in the kth stage, on condition that it is not being 
blocked in any of the previous stages. The probability 
that a specific request will be granted, denoted by P , ,  is 
therefore given by 

Clearly p P ,  equals the normalised throughput of the 
banyan network, where p = p o  is the offered load of each 
source. Moreover, if P ,  denotes the blocking probability 
of an n-stage banyan network, then P, equals 1 - P , .  In 
the following two Sections, we will derive the recursive 
formulae for P ,  of an n-stage banyan network under two 
types of nonuniform traffic matrices. 

3 

The first type of nonuniform traffic matrix we are inter- 
ested in looks like: 

Nonuniform traffic matrices: type I 

where mi's are non-negative numbers (not all zeros), 
yk) = 2', Sk = Czki mi,  and ~ , , - k ( m )  is a uniform matrix 
of order 2" x 2"-' with row sum equal to m, i.e. all the 
entries of D,-k(m) are equal to m/(2"-'). Traffic matrices 
of this type could occur in quite a few application areas. 
For example, in a telephone network, it is likely that 
some destinations are more popular than the others. 
Similarly, in a computer network, all network nodes may 
have to report their status to some specific nodes which 
monitor the condition and manage the operation of the 
network. The third example is concerned with the multi- 
processor system. Since different memory modules 
contain different variables shared by the processors, they 
are likely to have different rates of accessing requests. All 
the above three systems have the so-called hot-spot 
traffic pattern [12] ,  i.e. one or several destinations receive 
connection requests more frequently than the others. 
Consequently, the traffic matrices of these systems belong 
to the type of nonuniform traffic matrix we will study in 
this Section. The case when k = 1 was studied in previous 
papers (see References 6 and 13). 

The destinations of a banyan network with a traffic 
matrix of type I can be partitioned into 2k groups, each 
group consists of 2"-k destinations. Given the traffic 
matrix T,(k), an induced traffic matrix Tb-,(k - 1 )  is 
defined as 

1 
Tb-l(k - l )  = 7 C D n - k ( m L ( k ) / 2 + 1 )  " '  Dn-k(mL(k) ) l  

s k - l  

where Sk-1 = s k  - Sk-, .  Notice that Tn-,(k - 1). is the 
traffic matrix for connection requests whose destination 
is located in the lower half. Let Ak = Sk-,/sk and Bk = 
1 - A , ,  i.e. A, and Bk are the probabilities that the desti- 
nation of a connection request is located in the upper or 
the lower half, respectively. 

Although the traffic matrix is nonuniform, we still 
assume that the offered loads of the sources are the same 
and connection requests originated at sources are inde- 
pendent. Let P,(T,(k), p), where T,(k) represents the traffic 
matrix and p is the offered load of each source, denote 
the probability that a specific connection request will be 
granted. We assume, as usual, that each input link is 
selected randomly with equal probability if both input 
links of a node receive active connection requests des- 
tined to the same outgoing link. Notice that k = 0 means 
there is only one group containing all destinations. 
Therefore, P,( T,(O), p) equals P:(n, p), the probability that 
a specific request is granted under the uniform traffic 
model. The boundary condition is defined as P:(O, p)  = 1 .  
A recursive formula for P,(T,(k), p) is stated in the follow- 
ing theorem : 

Theorem I : The probability P,(T,(k), p) that a specific 
request is granted satisfies 

ps(T(k), p) = - pAk/2)Ps(T,-l(k - l ) ,  p1) 

+ Bk(l - pBk/2)Ps(Tb- l(k - l ) ,  p2)  
where p1 = pAk.2 - PA,) and p2  = p&(2 - pB&. 

Proof: Without loss of generality, assume that source 0 
sends a connection request. Then, with probability A , ,  
the destination is located in the upper half. Suppose the 
destination is indeed located in the upper half. Clearly 
the request is granted if it is not blocked in any stage. 
The probability that the specific request is not blocked in 
the first stage is equal to 1 - pAJ2.  Moreover, after the 
first stage, the traffic matrix becomes T , - , ( k  - 1) with 
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offered load p ,  = p4.2 - PA,). Thus the request will be 
granted with probability (1 - pAJ2)Ps(T,- ,(k - l),  p,). 
Similarly, the probability of being granted is equal to 
(1 - pB,/2)Ps(Tk,,(k - l), p z )  if the destination of the 
specific connection request is located in the lower 
half. Hence theorem 1 is proved. 

4 

The second type of nonuniform traffic matrix we will 
analyse looks like 

Nonuniform traffic matrices: type II 

1 1 Qn-, (k-  1) U n - l ( m k + l )  

st [ U n - l ( m k + l )  Qn- l (k-  1) 
T,(k) = - 

where m,'s are non-negative numbers (not all zeros), S, = 
1:2: m i ,  U n - l ( m k + l )  is a 2"-' x 2"-' matrix with all its 
elements equal to mk+,/(2"-') ,  and Q,- , (k  - 1) = 
s k -  , T. - ,(k - 1). The boundary situations are given as: 

and 

1 T,(1) = - 
m ,  + m 2  1;: 

This type of nonuniform traffic matrix could also 
appear in several application areas. For example, in a 
telephone network, different groups of sources and desti- 
nations (each group consists of 2"-,  sources and 
destinations) may come from different geographical areas 
and hence the traffic flow inside a group could very well 
be different from that outside the group. If both traffic 
flows inside and outside a group are uniform and all the 
groups have independent and identical traffic flows, then 
a nonuniform traffic matrix of type I1 with an arbitrary 
m, and mi+ , = 2mi ,  i = 2, . . . , k, can be used to describe 
the traffic pattern. Similarly, in a computer network, a 
group of nodes may have to interchange their status 
more frequently than report to other nodes of different 
groups. A third example is the interconnection of 2" 
homogeneous local networks by a bridge node con- 
structed from a banyan network. If the traffic load is 
uniform, then the traffic matrix of the bridge node is of 
this type with m, = 0 and m i + ,  = 2mi for 2 < i < k. 
Notice that m ,  = 0 means intra-network messages do not 
pass through the bridge node. The case when k = 1 was 
also studied in References [6] and [13]. 

For convenience, the vector 2 = (m,,  m 2 ,  ..., m k + J  
will be called the parameter vector associated with the 
traffic matrix T,(k). The case when k equals n needs 
special care. Given a traffic matrix T,(n), n 2 3, define an 
induced traffic matrix Tk-,(n - 2)  as follows. Let 2 = 
(m, ,  m , ,  . . . , m,,, ,)  and 2' = (mi ,  m; ,  . . . , rnk- , )  denote 
the parameter vectors associated with traffic matrices 
T,(n) and Tn-,(n - 2), respectively. Then the parameters 
of the induced traffic matrix Tk-z(n - 2)  satisfy mi = m ,  
+ m , ,  m : = m i + , ,  i = 2, 3, ..., n - 1. Notice that the 

induced matrix Tb-,(n - 2)  describes the traffic flow in 
the upper half of the 2" x 2" banyan network if the first 
and the last stages are excluded. Again, let Ps(T,(k), p) 
denote the probability that a specific connection request 
will be granted given the traffic matrix T,(k) and the 
offered load of each source p. Then we have 

P s ( K ( k ) ,  p) = A k P g ( K ( k ) ,  p) + BkPf(T,(k), p) 
where P,U(K(k), p) and Pi(T,(k), p) are the probabilities 
that a specific request will be granted on condition that 
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its destination is located in the upper or the lower half, 
respectively. Thus all we need to do is to compute 
P,U(T,(k), p) and Pf(T,(k),  p). Let p i @ )  denote the prob- 
ability that an output link of a node in the nth stage of a 
banyan network receives an active request under a 
uniform traffic assumption, given the offered load p. That 
is, let p i @ )  = p~-,@)(l  - p;-,@)/4), where = 
pi- 2@X1 - pi- 2@)/4), 
P:@) = Pt@H1 - Pt(p)/4), and P t @ )  = p. Also, let P%, P )  

. . . , P!@) = P:@x1 - PRA/4), 

have the same meaning as we defined in the last Section. 
The recursive formulae for Py( T,(k), p) and Pi( T,(k), p) 
are stated in the following as two lemmas. 

(iii) boundary situations 

and 

Proof: The expressions for boundary situations can be 
easily verified. Thus we consider only cases (i) and (ii). 
The specific request will be granted if and only if it is not 
blocked in any stage. Since the two input links of a node 
in the kth stage are related to sources which differ only in 
the kth bit of their representations, the probabilities that 
the request is not blocked in the first and the last stage 
are equal to 1 - pA, /2  and 1 - p;f-,@,)/4, respectively. 
Moreover, for the intermediate stages, the traffic matrix 
becomes T,-,(k - 1) or Tn- , (k  - 2) with offered load p ,  
for k < n and k = n, respectively. Thus the formula given 
in the above lemma is indeed equal to the probability 
that the specific request will be granted. This proves 
lemma 1. 

We need to define another quantity before stating the 
second lemma. Suppose the specific connection request is 
originated at a source located in the upper half while its 
destination is located in the lower half. Then the sources 
located in the lower half can only possibly block the spe- 
cific request at the last (i.e. nth) stage. Let 4.- ,(n, k, p) 
denote the probability that the lower input link of a node 
in the last stage receives an active request. Then we have 
a recursive formula for Pi(T,(k), p)  stated in lemma 2. 
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and 

0 2- 

0 1 -  

0 

Proof: Again, the expressions for boundary situations can 
be checked without any difficulty. Consider the other 
case when k 2 2. The probability that the specific request 
is not blocked in the first stage is clearly equal to 
1 - pBJ2. From stage 2 to stage n - 1, the situation 
becomes an (n - 2)-stage banyan network under the 
uniform traffic model with offered load p, .  Hence the 
probability that the specific request will not be blocked in 
any of these stages is P,"(n - 2,p,). Suppose the specific 
request is not blocked in any of the first n - 1 stages. 

Now consider the last stage. Without loss of gener- 
ality, assume the addresses of the source and the destina- 
tion of the specific request are 0 and 2"-', respectively. 
Let us consider the (2"-' + 1)th node in the last stage. 
With the above assumption, the upper input link of this 
node receives the specific request. The probability that 
the lower input link receives an active request from 
sources located in the lower half is denoted by 
q. - '(n, k, p). Suppose the lower input link does receive an 
active request. There are two possible situations, namely 
k < n and k = n. When k < n, according to the traffic 
matrix, the destination of the active request received by 
the lower input link is equally likely to be 2"" or 2"12 + 1 
no matter which source actually generates the request. 
When k = n, the same conclusion can be drawn if the 
address of the source which generates the request is not 
2"-' or 2"-' + 1. Suppose the address of the source is 
either 2"-' or 2"-' + 1. Then, according to the operation 
principle of switching elements, it is equally likely to be 
any one of these two, because the offered loads of sources 
are assumed to be identical. Hence the probability that 
the request is destined to destination 2"-' is equal to 
(1/2)m1/(m1 + m,) + (1/2)m2/(m1 + m,) = 1/2. Therefore, 
combining the above results, we conclude that the desti- 
nation of the active request, if any, received by the lower 
input link of the (2"-' + 1)th node in the last stage is 
equally likely to be 2"-' or 2"-' + 1. Consequently, the 
probability that the specific request is not blocked in the 
last stage is 1 - 4"- l(n, k, p)/4. This proves lemma 2. 

The result regarding the probability P,(T,,(k), p) of the 
second type of nonuniform traflic matrix is summarised 
in the following theorem: 

0 9 -  

o a -  
0 7 -  

Theorem 2: The probability P,(T,,(k), p) for the second 
type of nonuniform traffic matrix satisfies 

Ps(T,(k), PI = AA1 - PAJ2)P,U(T,(k)Y P)  

+ Bd1 - PBJ~)P,L(T.W, P)  

where Pf(T,(k), p) and Pt(T,,(k), p) are given in the above 
lemmas. 

The remaining work which is not trivial is to compute 
4"- l(n, k, p)  for k 2 2. A procedure that can be followed 
to accomplish this is given in the Appendix. We now 
proceed to study some examples. 

5 Examples 

In this Section we shall evaluate the performance of 
banyan networks for three nonuniform traffic matrices. A 
traffic matrix of the first type is considered first in 
Example 1. In Examples 2 and 3, both traffic matrices 
considered belong to the second type. 
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an example of the first type of nonuniform traffic matrix. 
According to theorem 1, we have 

PS(T,(2)9 P)  = AA1 - PA,/2)P,(T,- 1(1), P1)  

+ BA1 - PB,/2)Ps(T:,-l(1), P2)  

where A, = (m, + m,)/S, , 
BZ = 1 - A , ,  pl = pA2(2 - P A , ) ,  and p, =pB?(2 
- pB,). The results for Ps(T,(2),p) are shown in Figs. 

2(a)-2(c) for various values of n and p. Notice that 

S2 = m1 + m2 + m3 + m4, 

' O r  

0 6 -  

0 5 -  
a"' m=(OL,O3.0 2,O 1) 

m=  (07,0'15,01,005) 

, , , , , , , , , 

0 1  

'1 2 3 4 5 6 7 8 9 10 
number of stages 

b "gi 
0 8- 

0 6  

0 5- 
0 4 -  

0 3 -  

-.-___ 
-.-_ 

m=(O4,03,02,02) 

m =  (0 7.0 15 .O 1.0 05) 

0 7  O 8l 

" - 1  
--._ 

m =  (0 7.0 i 5  .O 1.0 05) 

m=(O 7,O.i5,0 1,0.05) 

I 

1 2  3 4 5 6 7 8 9 10 
number of stages 

Fig. 2 
a P,(WO, 0.25) 

c P,(T,(2), 1.0) 

P,  JOT Example I 

b PJT,(2),0.5) 
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pPs(T,,(2), p) is equal to the normalised throughput. It can 
be seen from the figures that the uniform traffic model 
leads to an optimistic performance measure and a higher 
degree of nonuniformity leads to a larger drop in the nor- 

Example 2: Let 

~ ( 1 )  = - 1 Un-l(m1) Un-l(m2) 
Un-l(mA Un-l(m1) 

0 4- 

0 3 -  

0 2 -  

0 1 -  

malised throughput. Moreover, the effect of nonuniform 
traffic flow becomes more significant as the number of an Of the second type Of nonuniform 

matrix. According to theorem 2, we have, for n 2 2, 

1 0 -  

0 9 -  

0 8- 

0 7 -  

0 6 -  

a* 0 5 -  

0 4 -  

0 3 -  

0 2 -  

0 1 -  

1 . O r  

m=(O 5.0 3.0 2 )  

m =(O 7,O 2,O 1 )  

0 7  

0 6  

0 9- 

0.51 

0 2 -  

0 1 -  

r 
m =  (0.8.0 2 ) 

I 
m = (0.8.0.2 ) 

01 i j i 4 6 i i 6 ib 
number of stages 

O r  

0 7  

0 6  

0 4  

0 1  

1 2  3 4 5 6 7 8 9 10 
01 

number of stages 

b 

stages increase. Form = (0.4, 0.3, 0.2, 0.1) and n = 10, the 
percentage of degradation is about 5.3%, 5.9%, and 5.3% 
for p = 0.25, 0.5, and 1.0, respectively. Numerical results 
reveal that the effect of a nonuniform traffic flow is the 
most significant for moderate offered loads (p 0.5). The 
percentage of degradation for = (0.7, 0.15, 0.1, 0.05) 
and n = 10 is about 22.0%, 23.1%, and 21.6% for 
p = 0.25,0.5, and 1.0, respectively. 

IEE PROCEEDINGS, Vol. 137, P t .  E, No .  4, JULY 1990 

Ps(K(1)9 P)  = A 1(1 - PA 1/2)P% - 2, P 1) 

x c1 - P;41-2@2)/41 + BA1 - PBl/2) 

x P%n - 2, p2)C1 - P ~ - ~ ( P ~ ) / ~ I  
where S, = m, + m,, A ,  = ml/S,, B, = m,/S,, p1 = 
pA1(2 ; PA,), and p, = pB1(2 - pB,) .  The results are 
shown in Figs. 3(4--3(c). Again, the effect of a nonuniform 

m=(O 7.0'2.0 1 - -1 ::I , , , , , , , , , 

'1 2 3 4 5 6 7 8 9 10 
number of stages 

0 8  

O 7t 

'1 2 3 4 5 6 7 8 9 10 
number of stages 

Fig. 4 P,  for Example3 
a P,(T,(2), 0.25) 
b P,V,,(2), 0.5) 
c P,(T,(2), 1.0) 
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traffic flow becomes more significant as the number of 
stages increase and the normalised throughput is becom- 
ing smaller as the degree of nonuniformity is getting 
higher. The percentage of degradation is about 3.7%, 
4.1%, and 3.5% (or 8.5%, 9.9%, and 9.0%) for p = 0.25, 
0.5, and 1.0, respectively, when E = (0.75, 0.25) (or (0.8, 
0.2)) and n = 10. Moderate offered loads, again, have the 
most severe degradation. 

Example 3:  Let 

1 Qn-1(1 )  un-l(m,)]  
SZ [ Un-,(mJ Qn-1(1 )  

Tn(2) = - 

a second example of the second type of nonuniform 
traffic matrix. According to theorem 2 again, we have 

PS(T,(2), P )  = A 2 p:(T,(2), P)  + B ,  p,L(T,(2)1 P)  

where S ,  = m1 + m, + m3, A ,  = (m,  + m,)/S, ,  and 
B ,  = m 3 / S 2 .  The values of P,U(T,,(2), p) and P:(T,,(2), p) 
can be computed by lemmas 1 and 2 and the results are 
shown in Figs. 4(a)+c). The same conclusions, as were 
stated in Examples 1 and 2, can be drawn for this 
example. The percentage of degradation is about 9.5%, 
10.8%, and 9.8% (or 21.1%, 24.5%, 24.1%) for p = 0.25, 
0.5, and 1.0, respectively, when E = (0.5, 0.3, 0.2) (or (0.7, 
0.2,O.l)) and n = 10. 

6 Conclusions 

We have, in this paper, explored the performance evalu- 
ation of banyan networks under certain types of nonuni- 
form traffic requirements. The two types of nonuniform 
traffic matrices we studied allow more accurate modelling 
of real-world systems. It is found that, compared to the 
uniform traffic model, the performance of banyan net- 
works degrades under nonuniform traffic requirements. 
Moreover, a higher degree of nonuniformity leads to a 
larger drop in the normalised throughput. This research 
is a starting point for dealing with the performance of 
banyan networks with inhomogeneous traffic flow. Con- 
siderable further research work can be done in this area. 
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8 Appendix 

8.1 Computation of qn- ,  (n, k ,  p) 
Throughout this appendix, the traffic matrix and the 
offered load of each source are assumed to be T,,(k) and p, 
respectively. Without loss of generality, we assume the 
specific request is originated at source 0 and is destined 
to destination 2”-’. Let an- 1, an-, ,  . . . , a,, a, be the rep- 
resentation (address) of sources and destinations. Fig. 5 
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I I I I I 
I I I I I I 
I I I I I 

0 100000 

qn-1 0 
0 rn-3 U 0  
0 0 rn-2 

H i ; ; ;  
Fig. 5 64 x 64 banyan network 

shows the route of the specific request and the routes of 
connection requests originated at sources located in the 
lower half which can possibly block the specific request 
for a 64 x 64 banyan network. For convenience, we call 
those nodes which have inputs that can possibly block 
the specific request the related nodes. In Fig. 5, the dark 
switching elements are examples of related nodes. Fur- 
thermore, let r i ,  i = 0, l, ..., n - 2, denote the probability 
that the upper input link of the upmost related node in 
the ith stage receives an active request, and t i ,  the corres- 
ponding probability for the lower input link. 

Since the destination address of the specific request is 
assumed to be 2”-’, according to the traffic matrix, the 
sources located in the lower half can be partitioned into k 
groups. Group 0 consists of sources whose address 
satisfies U , -  = 1 and an- , = . . - = an-& = 0; and group 
i, 1 < i < k - 1, consists of sources whose address 
satisfies = 1, a,,-, = ... = = 0, and 
an-&+i-l = 1. Notice that group 0 has 2”-’ members and 
group i, 1 < i < k - 1, has 2n-k+i-1 members. Depend- 
ing on the relative values of n and k, to evaluate the value 
of 4.- ,(n, k, p), we need to consider three possible cases 
separately. 

CaseI:  n 2 2 k  

Step I :  (Stage 1 to Stage n - k) 
Letx ,=p  
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Step 2: (Stage n - k + 1 to Stage n - 2) 
Doj  = 0, k - 3 

I n - k + l + j  = (1/2)rn-k+j + (1/2)tn-k+j 

- (1/4)rn - k + j tn - k  + j 

t n - k +  1 + j = pf- Z k + Z j +  Z b k -  j- 1) 

Proof: Remember that the two input links of a node in 
the ith stage are related to sources which differ only in 
the ith bit, i.e. bit ai-l, of their representations. Thus the 
two input links of a node in the first n - k stages are 
related to sources belonging to the same group. More- 
over, according to the traffic matrix, any active request 
arriving at stage i, i > k + 1, is intended to be routed to 
the upper or the lower outgoing link with equal probabil- 
ity. Hence it can be seen that rn-k = pf-z,(x,.) and 
tn-t+j = p,”-z,+z,Cy,-j) for j = 0, 1, ..., k - 3, since the 
upper input link of a node in stage n - k receives 
requests originated at sources belonging to group 0 and 
the lower input link of a node in stage n - k + j receives 
requests originated at sources belonging to group j + 1. 
Besides, the value of 4.- l(n, k, p) can be obtained after 
Steps 2 and 3 because, as mentioned above, any active 
request arriving at stage i, i > k + 1, is intended to be 
routed to the upper or the lower outgoing link with equal 
probability and n - k + 1 2 k + 1 for n > 2k. This 
proves the case when n 2 2k. 

Case 2: n < 2k, n even 

Step 3: (Stage k + 1 to Stage n - 2) 
Do j = 0, n - k - 3 

I k  + 1 + j = (1/2)rk + j + (l/2)tk + j - (1/4)rk + j t k  + j 

t, + 1 + j = P& + z j +  2 - n b n  - k  - j- 1) 

Step 4: (Stage n - 1) 

qn-l(nr k , ~ )  = ( l P b n - 2  + (1P)tn-Z - (1/4)rn-ztn-z 
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Notice that in practice Step 2 and Step 3 can be merged 
into one step since the expressions for these two steps are 
exactly the same. However, they are separately con- 
sidered because the proofs for them are different. Besides, 
if k > n - 1, then Steps 3 and 4 are omitted and 
4.- An, k, p) = rn- 1. 

Proof: It can be seen that a connection request originated 
at sources belonging to group i, i 2 1, which can possibly 
block the specific request will enter, from the lower input 
link, into the upmost related node in stage n - k + i. 
Suppose the lower input link of the upmost related node 
in stage n - k + i does receive an active request. Clearly 
the probability that the request is intended to be routed 
to the upper outgoing link is equal to Azk-n- i ,  BzkPn-i, 
or 1/2. For convenience, let p(i) denote this probability. 
Then we have the following result. 

Claim 1 : The probability p(i) is given by 

di)={1/2 i f i > k - n / 2 + 1  
Azkr-n-i if i < k - 42,  

The above claim can be proved as follows. According to 
the traffic matrix, Ai) = 1/2 iff (if and only if) the active 
request has passed at least k - i + 1 stages. Therefore, 
p( i )  = 1/2 iff n - k + i > k - i + 1, or equivalently, iff 
i > k - n/2 + 1/2. Similarly, one can show that p(i) = 
A2k-n-i  iff i < k - n/2 + 1/2 and p(i) = B2k-n-i  iff 
i = k - n/2 + 1/2. Hence the above claim is true since n 
is even. 

By a similar argument, one can show that if the upper 
input link of the upmost related node in stage i, 1 < i < 
42,  receives an active request, then the probability that 
the request is intended to be routed to the upper out- 
going link is equal to & i + l .  Hence Step 1 correctly 
computes rn/z if the following claim is true. 

Claim 2: For i ,= 0, 1, . . . , n/2 - 1, we have ri = ti = xi. 

The above claim is obviously true for i = 0, 1, . .., 
n - k - 1 since both input links of the upmost related 
node in stages 1 to n - k receive requests originated at 
sources belonging to the same group, namely group 0. 
Claim 2 is also true for i = n - k, n - k + 1, .. ., n/2 - 1. 
Consider the upmost related node in stage n - k + i, 
i = 1, 2, ..., k - 4 2 .  The upper input link receives 
requests originated at sources belonging to group 0, 
group 1, . . ., or group i - 1 and the lower input link 
receives requests originated at sources belonging to 
group i. Moreover, for an active request received by 
either input link of the upmost related node in stage 
n - k + i, it should be routed to the upper outgoing link 
in any previous stage (except stage 1). Therefore, by claim 
1, we know that ri = ti = xi for i = n - k, n - k + 1, . . ., 
n/2 - 1. 

Let us consider stages n/2 + 1 to k. With claim 1, it is 
not hard to see that ti = p!i-,(yn-i) for i 2 4 2 .  Hence 
Step 2 correctly computes the values of i k  and t, if one 
can show that 

r n / Z  + 1 + j = (1/2)rn/z + j + (1/2)tn/z + j - (1/4)r,,/z + j t n / z  + j 

This can be proved stage by stage. Consider, for example, 
the upmost related node in stage n/2 + 1. Suppose the 
upper input link does receive an active request. The prob- 
abilities that this request is intended to be routed to the 
upper or the lower outgoing link are Ak-n12-1  and 
B, -n/Z - 1, respectively, if the request is originated at 
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sources belonging to group 0, group 1, ..., or group 
k - n/2 - 1. Conversely, the corresponding probabilities 
are equal to Bk-n,2-1 and Ak-n/2-1,  respectively, if the 
request is originated at sources belonging to group 
k - 4 2 .  However, according to the operation principle of 
switching elements, the probability that the request is 
originated at group k - n/2 is equal to 1/2 since the 
offered loads of sources are assumed to be identical. 
Hence the probability that the request is intended to be 
routed to the upper outgoing link of stage n/2 + 1 is 
equal to (1/2)Ak-n/2-1 + (1/2)&-n,2-1 = 1/2. The same 
argument can be applied to stages n/2 + 2, n/2 + 3, . . . , 
and k. Therefore, the value of rk can be obtained after 
Step 2. 

Finally, any active request arriving at either input link 
of the upmost related node in stages k + 1 to n - 2 will 
be equally likely routed to the upper or the lower out- 
going link since it has already passed at least k stages. 
Hence after Steps 3 and 4, we can obtain the value of 
qn- l(n, k, p). This proves the procedure for Case 2. 

Case 3: n < 2k, n odd, n = 21 + 1 
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Step 3: (Stage k + 1 to Stage n - 2) 
D o j  = 0, n - k - 3 

rk+ 1 + j  = (1/2)rk  + j  + (1/2)tk + j  - (1/4)rk  + j  t k  + j  

l k  + 1 + j  = d k  + 2 j -  n + 101. - k - j -  1) 

Step 4:  (Stage n - 1 )  

q n  - 1(n, k,  P)  = (1/2)rn - 2 + (1/2)tn - 2 - (1/4)rn - 2 t n  - 2 

The proof for this case is similar to that for the second 
case and hence is omitted. One point worth mentioning is 
that stage 1 + 1 behaves differently from other stages in 
Step 2. The active request, if any, arriving at the upper 
input link of the upmost related node in stage 1 + 1 is 
intended to be routed to the upper or the lower outgoing 
link with probability Ak-1 and Bk-l, respectively. 
However, the corresponding probabilities for the request 
arriving at the lower input link are Bk-, and Ak-l, 
respectively. 
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