
 

    國 立 交 通 大 學 

 

電信工程研究所 

 

博 士 論 文 
 

 

噪訊增強的無線通訊網路盲蔽式錯誤率估

測器之設計與效能分析 
 

Design and analysis of noise-enhanced blind 
error rates estimation in wireless network 

 

 

研 究 生：劉人仰 

 

指導教授：蘇育德 博士 

 

 

中 華 民 國  101  年 7 月 

 



噪訊增強的無線通訊網路盲蔽式錯誤率估測器之

設計與效能分析 

 
Design and analysis of noise-enhanced blind error 

rates estimation in wireless network 
 

研究生：劉人仰       Student: Jen-Yang Liu 

指導教授：蘇育德  博士   Advisor: Dr. Yu T. Su 

 
 

國立交通大學 

電信工程研究所 

博士論文 
 

A Dissertation 
Submitted to Institute of Communication Engineering 

College of Electrical and Computer Engineering 
National Chiao Tung University 

in Partial Fulfillment of the Requirements 
for the Degree of Doctor of Philosophy 

in 
Communication Engineering 

Hsinchu, Taiwan 
 

2012 年 7 月 



i 
 

噪訊增強的無線通訊網路盲蔽式錯誤率估測器之設計與效能分析 

  

研究生：劉人仰                                                            指導教授：蘇育德  博士 

國立交通大學電信工程研究所 

中文摘要 

 

基於多筆資訊做資料偵測或融合的技術已經廣泛被使用在通訊系統上。本論

文考慮一廣義的無線網路框架，在此框架中，我們假設訊號會經過不同的鏈結

(link)到達接收器，而鏈結的種類包含了直接鏈結(從傳送端到接收端)以及兩步

(two‐hop)鏈結(從傳送端經由中繼站到達接收器)。在兩步鏈結中，中繼端會把收

到的訊號作解碼並傳送重新編碼過後的訊號到接收端。在此框架中，資料偵測或

融合的技術通常需要各鏈結的錯誤率資訊。舉例來說，在二元相位調變(binary 

phase‐shift keying)合作式通訊系統中，最佳資料偵測需要知道遠端鏈結(從傳送端

到中繼站的鏈結，縮寫為 SR 鏈結)的錯誤率資訊。同樣地，在資料融合中心(fusion 

center)，基於多感測測量值的最佳資料融合也是需要各遠端鏈結的錯誤率資訊。 

為了在接收端盲蔽式地估測遠端的二進位調變(binary modulation)錯誤率，我

們首先把估測問題轉換成解非線性聯立方程式的問題。每一個方程式皆反映成功

匹配機率(success matching probability)和兩鏈結的錯誤率關係。其中，我們定義

成功匹配機率是給定一傳送訊號下兩鏈結做出相同決策的機率。為了要讓此非線

性聯立方程式有解，其基本的要求是要有足夠的鏈結數目。當鏈結數目不夠時，

我們需要部分的資訊才能求出解，部分的資訊可能包含了從傳送端到接收端的鏈

結(SD 鏈結)錯誤率或是從中繼站到接收端的鏈結(RD 鏈結)錯誤率。而事實上，我

們發現當我們沒有從中繼站到接收端的鏈結錯誤率資訊時，即使有再多的鏈結數

目亦是無法求出合理解來，這是因為從傳送端經中繼站到接收端的錯誤率會是

SR 鏈結和 RD 鏈結錯誤率的對稱函數。 
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為了解決上述的問題以及增加收斂速度，我們提出基於蒙地卡羅

(Monte‐Carlo)的估測器。具體來說，我們在接收端加入噪訊(noise)到接收訊號。

在第一種方式中，我們加入噪訊是為了產生虛擬的 SD 鏈結或是 RD 鏈結，藉由

這樣的方法，我們可以在即使只有一中繼站情況下亦可以得到有解的非線性聯立

方程式問題。此方法我們稱為虛擬鏈結估測器(virtual link aided estimatior)。在第

二種方法中，我們加入噪訊使得收到訊號的機率分佈作改變，藉由機率分佈的改

變可以使得估測器的效能有所改善。 

事實上，第二種方法顯示出隨機震盪（stochastic resonance）的現象，也就

是說注入適當的噪訊可以改善均方根估測誤差（mean squared estimation error），

此外我們發現到存在最佳的注入噪訊量使得估測效能最佳。針對此現象，我們做

了一系列的分析並找出最佳的注入噪訊量為何，並藉由模擬驗證我們分析的正確

性。模擬結果也顯示出訊號偵測器配合提出的盲蔽式估測器會和最佳偵測器有差

不多的錯誤率效能。 

對於非二進位調變通訊網路，成功匹配機率和鏈結符碼錯誤率(symbol error 

rate)的關係不再成立，因此，上述提到的方法不再能夠直接使用於此情況。在參

考文獻[34]中，此問題被轉換成一個非線性最佳化問題，雖然其問題理論上可以

解，但是其複雜度會非常的高如果中繼站數目或是 M‐ary  調變的 M 值不小的時

候。針對此問題，我們基於二位元表示法提出次佳的接收機以及其對應所需的錯

誤率估測器。由於我們可以找到解的數學表示式，其複雜度會遠比上述所提的方

法還要低得多。為了進一步改善偵測器的收斂速度，我們亦提出一噪訊增強的估

測器。模擬的結果顯示我們提出的偵測器伴隨相對應的估測器會和最佳估測器有

相似的效能。在均方估測錯誤(mean square estimation error)效能的評估上，我們亦

可以觀察到隨機震盪的現象 
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Abstract

Data detection or fusion based on multiple received copies containing the same

information arises in many applications. We consider the scenario that each copy is

transmitted from the same source through a different wireless link to the same destina-

tion node (DN). These links include single-hop, direct source-to-destination (SD) links

and two-hop links that require an intermediate decode-and-forward (DF) node to relay

the source signal. Detection or fusion under such a circumstance often need channel side

information (CSI) about the link reliability. For example, maximum likelihood (ML)

detection of binary modulated signals in a DF based cooperative communication net-

work (CCN), information about the bit error rates (ERs) of the hidden source-relay (SR)

links is needed. Similarly, optimal data fusion based on multiple sensor measurements

requires that the ERs of various SR links be available at the fusion center.

To estimate multiple ERs blindly at the DN in a binary modulated network, we

convert the estimation problem into one of solving a system of nonlinear equations.

Each equation arises from the fact that the success matching probability (SMP) that a

bit transmitted over two independent links connecting the same source and destination

results in identical destination decisions is nonlinearly related to the ERs of the two

associated links. However, the number of distinct link pairs must be larger than the
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number of ERs to be estimated so that the system is not an underdetermined one.

Various degrees of channel side information (CSI) about the ERs of the SD and relay-

destination (RD) links is called for to remove the ambiguity arising from the insufficient

number of links in the network and from that due to the symmetric nature of a cascaded

source-relay-destination (SRD) link’s ER as a function of its component SR and RD

links’ ERs.

We propose novel Monte-Carlo-based estimators that overcome all these shortcom-

ings and accelerate the convergence speed. Our proposals involve injecting noise into the

samples received by the DN. The injected noise in the first solution, called the virtual

link aided (VLA) estimator, help creating virtual SD and RD links to release all CSI

requirements, resolve the symmetric ambiguity and provide estimates for ERs of all com-

ponent links. Using multitude of VLs, we can enhance the VLA scheme’s performance

and reduce the number of RNs required. The role the injected noise plays in another

solution, called the importance-sampling-inspired (ISI) estimator, is different: it is used

to modify link output statistics to improve the VLA estimator’s convergence rate.

The latter approach exhibits a stochastic resonance effect, i.e., its mean squared

estimation error (MSEE) performance is enhanced by injecting proper noise, and there

exists an optimal injected noise power level that achieves the maximum improvement.

The stochastic resonance effects are analyzed, and numerical examples are provided to

display our estimators’ MSEE behaviors, as well as to show that the ER performance

of the optimal detector using the proposed estimators is almost as good as that with

perfect ER information.

For nonbinary modulation based networks, a relation between the SMP of a link

pair and the associated symbol error rates does not exist, hence the nonlinear system

based moments approach is not directly applicable. A nonlinear optimization approach

which we call LJW blind estimator [34] had been proposed. Unfortunately it requires

prohibitively high computational complexity unless M (the modulation order) and the
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relay numbers are small. We propose a suboptimal detector based on bit-level represen-

tation and a corresponding blind estimator to estimate the error rate of sensor nodes.

The complexity of our estimator is much lower than that of LJW as we are able to

obtain a closed-form salutation instead of employing an iterative algorithm for solving

a nonlinear optimization. To further improve the convergence rate, we propose a noise-

enhanced estimator. Simulation results show that the proposed suboptimal detector

using the proposed blind estimator render negligible performance loss with respect to

that of the optimal detector. A stochastic resonance phenomenon is observed in the

estimator’s mean square estimation error performance.
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(v)
sd = ŷ
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Chapter 1

Introduction

1.1 Stochastic resonance

In signal processing and communication systems, noise is usually the main factor of

degrading the system performance. Hence, we always remove the noise either by filter

or by some signal processing algorithms. For example, we can improve the quality of

a image if we use some denoising algorithm (such as the median filter [1]). However,

noise can do improve a system performance in some situations [2]-[17] and we call this

phenomenon as stochastic resonance or noise benefit. This phenomenon does not only

appear in signal processing or communication systems. It also occurs in the field of

sensory neurons [8], circuits and measurement [7]. For the detail and other applications,

the reader can refer to [9] and [10].

To realize the stochastic resonance, we consider a very simple example discussed

in [11]. Consider an equal priori binary hypothesis testing problem, where x is drawn

according to the zero mean Gaussian distribution with variance 1 under H0. Under H1,

x obeys the Gaussian distribution with mean 1 and variance 1. It is easy to show that

the optimal decision boundary is x = 0.5. However, we consider the suboptimal decision

boundary: x = 0, as shown in Fig. 1.1. Without changing the detector structure, a

simple way to improve the performance is to add a constant signal -1/2 to the received

signals. This is equivalent to shift the suboptimal decision boundary to the optimal one

and we have the best performance. This procedure can be viewed as a transformation

1



of the received signals. In [11], a transformation g(x) is also proposed to achieve the

performance of the optimal detector, where

g(x) =

{
x for x ≥ 1/2 and x < 0
−x for 0 ≤ x < 1/2

This simple example illustrates two concepts. First, adding a proper noise (it is -1/2 in

this example) can improve the performance of suboptimal detector (stochastic resonance

effect). Second, a (nonlinear) transformation can also benefit and can be thought as a

generalization of stochastic resonance. Hence, it may exist several ways to improve the

performance. In this dissertation, we focus on the first type: adding noise.

Figure 1.1: Example of optimal and suboptimal decision boundary

Several different performance measurement are used to express the stochastic reso-

nance. For example, the performance measurement is error rate in the above example. It

is also possible to use signal-to-noise ratio (SNR) [12]. Other possible performance mea-

surements are Cramér-Rao lower bound (CRLB) [13], mutual information [14], Fisher

information [15] and correlation [16]. In fact, a good measurement in a system may

not be a good one in another system. [17] indicates that it is more useful to measure

variations instead of SNR in biology, for instance. It seems that there is no unified

performance measurement for all systems to investigate the stochastic resonance. Here,

the performance measurement is the mean square estimation error (MSEE), which is
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widely used in estimation problem.

1.2 Motivation and dissertation overview

We consider the basic scenario illustrated in Fig. 1.2 where the destination node (DN)

d receives sequences originated from the same source node (SN) s via multiple (L)

flat-fading links. These links may include a direct single-hop (SH) source-destination

(SD) link and indirect two-hop links, each connecting the SN and DN with the help

of an intermediate relay node (RN), say rk. Such a scenario occurs, for example, in a

cooperative communication network (CCN) in which the SD communication is aided

by single or multiple relays which act as virtual antennas to allow resource sharing

and provide spatial diversity gains [18]. Another popular example is the so-called CEO

(Central Estimating Officer) problem associated with a wireless sensor network where

each sensor sends its measurement to the CEO which often does not have direct access

to the SN [19]. It is the CEO’s responsibility to reliably recover the source information

based on the data it has received from various sensors [20].

1
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Lsr
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sd
h

dr
h

1

dr
L

h

1
sr

L
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sd
d

L
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d
drL

d
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1
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Figure 1.2: A wireless multiple-relay network.

For convenience of subsequent discourse, we define a single-relay CCN as one which

consists of a source, a relay (or sensor) and a destination nodes only. We refer to the
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associated SD, source-relay (SR) and relay-destination (RD) links as component links

and the indirect source-relay-destination (SRD) link as cascaded link. Although many

sensing-relay schemes have been proposed, we only consider the Decode-and-Forward

(DF) scheme [18]-[26] for which a RN (sensor) demodulates/decodes the received signal

from the SN and re-modulates/re-encodes the decoded bit stream before re-transmitting.

Since a sensor or cooperative RN may erroneously detect or sense its received signal,

conventional maximum ratio combing (MRC) or similar fusion rule is no longer optimal

for the DN. In fact, data fusion of various kinds in the presence of imperfect DF relays

[24]-[26] and relay selection in a DF-based CCN [27] all require some forms of channel

state information (CSI). Depending on the modulation used, the required CSI includes

short-term CSI (ST-CSI) like instantaneous link gains and signal-to-noise ratios (SNRs)

and long-term CSI (LT-CSI) such as 2average link gains and error rates (ERs) of the

component links. The former has been intensively studied in terms of channel estimation,

gain control and carrier recovery loops while the LT-CSI receives much less attention.

Pilot-aided ER estimators are obtainable at the cost of increasing the RNs’ computing

load and result in bandwidth and power efficiency reductions. The overhead and delay

become significant if the true ER is small, the packet size is small or if the number of

RNs is large. It is therefore desired that a DN performs all ER estimation tasks blindly.

In addition, pilot-aided ER estimators is not feasible in a sensor network due to the

overhead and the property of source node. In a wireless sensor network, the sensor nodes

usually are battery-limited devices Therefore, one prefers a blind estimator to reduce

the overhead issues. In addition to the overhead issues, the source possibly could not

transmit the pilot signals in a wireless sensor. It occurs in a main application of wireless

sensor network: the environmental monitoring. [28]-[30]. In this case, one wants to

detect some phenomenon, such as fire detection [31]. These two reasons enforce us to

focus on the design of blind estimations.

For multiple-relay networks, the blind ER estimation problem can be transformed
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into one of solving a system of nonlinear equations. Each equation describes a relation

among the ERs of a pair of links and the probability that the same bit transmitted

through these two independent links is decoded with identical decision. Using all avail-

able link pairs and assuming no hidden SR links, Dixit, et al. [32] converted the problem

into a structured eigenvalue task and proposed a modified power method to find the

solution. Delmas and Meurisse [33] suggested an EM-based blind ER estimator that

outperforms Dixit’s estimator by using the method of moments based solution of the

nonlinear system as the initial estimate. These novel approaches, however, suffer from

some drawbacks. First, the nonlinear system is underdetermined unless we have suffi-

cient relays so that the number of distinct link pair combinations is no smaller than the

unknown ERs. Second, even if there are enough RNs, it is not possible to simultaneously

estimate all (SR, SD, and RD links) ERs and LT-CSI is needed to resolve the ambiguity

resulted from the fact that the ER of a cascaded SRD link is a symmetric function of

the corresponding component links’ ERs. Finally, the convergence rate is slow whence

it often takes a long period to obtain a reliable estimate.

It is the purpose of this dissertation to present novel blind ER estimation schemes

that overcome all the above shortcomings. To simply our presentation, we focus mostly

on the CCN scenario with the understanding that the proposed schemes can be readily

applied in other similar scenarios. As a prelude, we briefly review a unified system

model for a multiple-relay wireless network and describe the corresponding maximum

likelihood (ML) detector and ER estimator structures in Chapter 2. We begin our

discussion with the simplest case of a binary phase-shift keying (BPSK) based single-

relay CCN, assuming the required ST- and LT-CSI’s of RD and SD links are all available

to the DN, i.e., the only unknown CSI which needs to be estimated is the average ER

of the SR link. Even for this case, we show that blind ML ER estimation based on

the DN’s matched filter outputs requires high computational complexity and storage

cost. A simple CSI-aided average count based estimator is thus given. We then extend
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the approach to multiple-relay CCNs with less LT-CSI and obtain the basic nonlinear

system (set of equations) for a 3-link (two relays plus a direct SD link) CCN and its

solution. Some properties of the proposed estimator are given in the same section as

well.

The main results are presented in Chapters 3-5. In Chapter 3, we discuss the ER

ambiguity in a cascaded link and propose a novel approach which creates virtual SD/RD

links by either rotating or injecting noise into link output samples to resolve the am-

biguity and estimate all ERs without the help of multiple RNs. We show in the same

chapter that the same concept can be applied to binary frequency-shift keying (BFSK)

and differential phase-shift keying (DPSK) based systems. In Chapter 4, we first ad-

dress the convergence rate issue and suggest a simple scheme to improve the virtual link

aided (VLA) approach, using a multitude of VLs to obtain what we call the enhanced

VLA (EVLA) estimator. We then proceed to propose a more subtle approach which is

conceptually similar to the importance sampling (IS) based simulations and is therefore

referred to as the IS-inspired (ISI) estimator. The ISI estimator also needs to inject

noise into link outputs but the purpose of noise-injecting is not for building VLs but

for modifying the output statistic and producing more importance events. To help the

reader understand the concept of ISI estimator, we briefly introduce the importance

sampling technique. A toy example is provided to express the main concept of designing

the ISI estimator. Important properties of the proposed estimators and the associated

MSEE performance analysis are also given in Chapter 4.

In addition to a CCN with binary modulation, we also consider a wireless sensor

network with high order modulation (QAM) in Chapter 5. In this chapter, we first

review the optimal detector shown in and a blind ER estimation proposed by Liu et al

[34] in 2011. We will show that the proposed ER estimation has high computational

complexity issue and it is almost impossible for a sensor node to implement when 16QAM

or higher order modulation is applied. To solve this issue, we first approximate the
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optimal detector by utilizing the bit level representation. Then, the proposed novel bit-

level detector requires only the knowledge of bit error rate (BER). Hence, the unknown

parameters can be reduced significantly. To improve the rate of convergence or MMSE

performance, we also propose a noise-enhanced blind estimation in Chapter 5.

Simulated performance of the proposed schemes are presented in the last section

of chapter 3-5 and show that the detector using the ERs estimated by our schemes

yield performance almost as good as that with perfectly known ERs. Furthermore, a

hybrid of the EVLA and ISI (or ISI-VLA) methods is capable of offering significant

variance reduction. Both analysis and simulations prove that the ISI estimator exhibits

a stochastic resonance effect, i.e., its MSEE performance is improved by injecting noise

into the received samples and there exits an optimal injected noise power that achieves

the maximum improvement. Finally, concluding remarks and future work are provided

in Chapter 6.
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Chapter 2

Adaptive blind data detection in
cooperative communication network

This chapter begins with descriptions of a generic system model, assumptions and related

parameter definitions. The expressions of the ML data detector and blind ER estimator

are then given. The second and third subsections review some side information aided

blind ER estimators for single- and multiple-relay networks. We will frequently refer to

these materials in subsequent discussions.

2.1 System model, ML detection and blind ER es-

timator

We follow the conventional assumption of using a two-phase time division duplex co-

operative communication scheme in which the SN in Fig. 1.2 transmits a sequence of

independent and identical distributed (i.i.d.) ±1-valued data {x[n]} and all L RNs lis-

ten, decode and re-encode the received message in the first phase. The synchronous

samples received by the DN and the kth RN in this phase are

ysd[n] = hsd[n]
√
Psx[n] + wsd[n], (2.1.a)

ysrk [n] = hsrk [n]
√

Psx[n] + wsrk [n], (2.1.b)

where Ps is the signal power and the additive noise components, wsd[n], wsrk [n], are

independent zero-mean complex white Gaussian random variables with variances σ2
d and
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σ2
r , respectively. We assume that the complex link gains, hij[n], for the link from node

i to node j, where (i, j) ∈ {(s, rk), (s, d), (rk, d); k = 1, · · · , L}, and the corresponding

noise terms, wij[n], are mutually independent. The RNs send the re-encoded message

to the DN in the second phase. Since RNs may detect erroneously, the re-transmitted

signals are not necessarily equal to x[n]. If we denote by x̂rk [n] the signal sent by the

kth relay and yrkd[n] the corresponding received sample at the DN in this phase, then

yrkd[n] = hrkd[n]
√

Prk x̂rk [n] + wrkd (2.2)

where Prk is the transmitted signal power of the kth RN and wrkd[n] has the same dis-

tribution as wsd[n]. For frequency-flat fast Rayleigh fading links, |hij|2 are independent

exponentially distributed random variables with variance σ2
ij.

Define the memoryless nonlinearity

fT (z; ε) = ln

[
ε+ (1− ε)ez

(1− ε) + εez

]
, 0 < ε < 1/2 (2.3)

and, for k = 1, · · · , L, the weighting functions

q0(y[n]) = ℜ
{
4h∗

sd[n]
√

Psy[n]/σ
2
d

}
, (2.4.a)

qk(y[n]) = ℜ
{
4h∗

rkd
[n]
√

Prky[n]/σ
2
d

}
, (2.4.b)

where ℜ{z} denotes the real part of z. Then the ML detector for BPSK signals is given

by [24]

x̂[n] = sgn

[
q0(ysd[n]) +

L∑
i=1

fT (qk(yrd[n]); esrk)

]
(2.5)

where sgn[z] denotes the sign of the real number z and esrk is the ER of the link between

the source and the kth RN. (2.3) and (2.4.a)-(2.4.b) indicate that besides the instan-

taneous received complex amplitude-to-noise-power ratio,

√
Prk

hrkd[n]

σ2
d

and
√
Pshsd[n]

σ2
d

, the

hidden SR link’s ER, esrk , should also be known by the DN for ML detection. As the

instantaneous complex links gains hrkd[n] and hsd[n] are difficult to estimate in a high

dynamic wireless environment, noncoherent signals are sometimes preferred for they
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require no such estimations. Nevertheless, [25] and [26] show that ML noncoherent de-

tections of BFSK and DPSK signals by a DN still need the LT-CSI such as ERs for both

far-end (SR) and near-end (SD and RD) links or σ2
d.

For notational brevity, we henceforth omit the subscript k associated with the kth

relay, rk, unless there is danger of ambiguity. The DN of a single-relay BPSK-based

CCN has the samples {ysd[n], yrd[n]} of (2.1.a) and (2.2) as the sufficient statistics for

estimating the BERs of its component links. As an i.i.d. source is assumed, we can easily

verify that the probability density function (pdf) of ysd[n] is independent of esr and so

is that of yrd[n]. With N coherently received sample pairs, {(q0(ysd[i]), q1(yrd[i]))}Ni=1

△
=

{(q(i)0 , q
(i)
1 )}, the joint conditional pdf f(ysd, yrd|Icsi) of the matched filter outputs, ysd

and yrd given CSI, {hsd, hrd, σ
2
d, esr}= Icsi, and unit transmit powers, Ps = Pr = 1 is a

mixture density and the ML blind esr estimator is given by (see Appendix A.1)

êsr = arg max
0≤esr<0.5

log f({ysd[i]}Ni=1, {yrd[i]}Ni=1|Icsi)

= arg max
0≤esr<0.5

N∑
i=1

log

[
cosh

(
q
(i)
0 + q

(i)
1

2

)
−2 sinh

(
q
(i)
0

2

)
sinh

(
q
(i)
1

2

)
esr

]
(2.6)

The reliability of the ML estimator depends on the sample size N , the true esr and

two other component links’ statistics which, in turn, determine those of q
(i)
0 and q

(i)
1 .

For practical ERs, we usually need large N for the ML estimator to converge. The

difficulty in implementing this estimator comes at least from three other concerns: (i)

the computing complexity of solving the associated nonconvex optimization problem,

(ii) there exists no recursive formula for updating the objective function whenever a new

received signals pair becomes available, and (iii) the large required storage space. These

implementation considerations convince us to turn to estimators based on the binary

sample sequence {ŷrd[n], ŷsd[n]} produced by

ŷrd[n] = sgn [q1(yrd[n])] , ŷsd[n] = sgn [q0(ysd[n])] , (2.7)

Besides their simplicity, an important advantage of such estimators is that they can be
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easily extended to noncoherent binary modulations while the form of the ML estimator

is highly modulation-dependent.

As a prelude to the study of simultaneous blind estimation of all component links’

ERs, we start with the simpler case of SR link ER estimation, assuming the ST-CSI

needed and the ERs of either all or some of the remaining component links are available.

2.2 Side-Information-Aided Blind Single ER Esti-

mation

Since a cascaded link is composed of two (i.e. SR and RD) binary symmetric links (BSLs)

with ERs, esr and erd, the end-to-end ER esrd is given by esrd = esr(1−erd)+(1−esr)erd =

esr + erd − 2esrerd. A single-relay CCN can thus be regarded as the composition of two

BSLs connecting the source and the destination. We assume stationary component links

with time-invariant ERs and refer to the probability p = Pr (ŷsd = ŷrd) as the success

matching probability (SMP). Using the identity p = esdesrd+(1− esd) (1− esrd) and the

i.i.d. source assumption, we immediately have following identity which relates various

ERs to the SMP between a direct SD link and a cascaded SRD link

esr =
1− esd − erd + 2esderd − p

1− 2esd − 2erd + 4esderd

def
= esr(p) (2.8)

Since the links are assumed to be stationary, W [i]
def
= I (ŷsd[i] = ŷrd[i]), where I(E) = 1

if the statement E is true; otherwise it is zero, is Bernoulli distributed with success

probability p. Furthermore, the SMP can be estimated by

p̂(N) =
N∑
i=1

I (ŷsd[i] = ŷrd[i])

N
, (2.9)

where the superscript (N) indicates thatN sample pairs are used to obtain the estimator.

This average count based estimator is the sample mean of the Bernoulli process {W [i]}

and is an uniform minimum variance unbiased estimator if i.i.d. samples are received

[35].

11



Using the sample mean estimator (A.2) as p̂, the method of moments and (2.8)

suggests the estimator

êsr =
1− esd − erd + 2esderd − p̂

1− 2esd − 2erd + 4esderd
= esr(p̂) (2.10)

if both erd and esd are known. The derivations of (2.8) and (2.10) are given in Appendix

A.2.

As 0 ≤ esr ≤ 0.5, our estimator êsr may have to be modified by the soft-limiter

J (êsr) = min [max(êsr, 0), 0.5] (2.11)

In addition, we can easily derive a recursive relation for p̂(i) to sequentially estimate p

and therefore esr.

The ER estimator (2.10) has many desired properties which we summarize in the

following two lemmas.

Lemma 2.1. The estimator êsr defined by (2.10) is (i) unbiased and attains the Cramer-

Rao lower bound (CRLB), (ii) an uniformly minimum variance unbiased (UMVU) and

ML estimator with variance

Var(êsr) =
p(1− p)

N(1− 2esd − 2erd + 4esderd)2
. (2.12)

where N is sample size.

Proof. See Appendix A.3.

Lemma 2.2. For any ε > 0, we have,

Pr(|êsr − esr| ≥ ε) ≤ 2 exp

[
−min

(
N2ε2C2

1

4p
,
NεC1

2

)]
(2.13)

where C1 = 1− 2esd− 2erd+4esderd, N is sample size, and the soft-limiting effect (2.11)

is neglected.

Proof. See Appendix A.4.
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The properties given in Lemma 2.1 are resulted from the fact that êsr is a linear

function of p̂ and the invariance property of an ML estimator. Lemma 2.2, which is

derived from using Chernoff’s inequality, implies that the estimator êsr converges to esr

in probability.

2.3 Multiple-Relay-Aided Blind Multiple ER Esti-

mation

When there are L RNs, we have
(
L+1
2

)
combinatorial diversities from pairwise hard-

decision matchings. For any (k, l) RN pair, k ̸= l, the random variable,Wkl = I (ŷrkd = ŷrld),

is Bernoulli distributed with success (matching) probability pkl =Pr[ŷrkd = ŷrld] which

satisfies the identity

pkl = QkQl + (1−Qk)(1−Ql) (2.14)

with Qk being the cascaded link ER given by

Qk = esrk + erkd − 2esrkerkd
def
= esrkd (2.15)

The above equations and (2.8) imply that psrk and pkl are related to the parameter sets

{esd, esrk , erkd} and {esrk , erkd, esrl , erld}, respectively. Following the approach used

for the case L = 1, we replace psrk and pkl in (2.8) and (2.14) by the average sample

count (sample mean) estimators

p̂srk =
N∑
j=1

I (ŷsd[j] = ŷrkd[j])

N
, k = 1, · · · , L (2.16.a)

p̂kl =
N∑
i=1

I (ŷrkd[i] = ŷrld[i])

N
, 1 ≤ k < l ≤ L (2.16.b)

to obtain
(
L+1
2

)
equations, all of the form similar to (2.14), involving the unknown ERs,

{Qi} and esd.

When the RNs are dedicated stationary nodes and {erkd} can be reliably estimated,

there are only L+1 unknown parameters, {esd, esrk , k = 1, · · · , L}, which can be solved if
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there are at least L+1 independent equations. Since
(
L+1
2

)
≥ L+1 whenever L ≥ 2, the

unknown link parameters can be estimated as long as more than two RNs are available.

For general multiple ER estimation in an L-relay CCN, L > 2, we can divide the

problem into a sequence of subproblems, each deals with a smallest two-relay problem.

For the detail, please refer to Table 2.1. The three-link (two relays plus a direct SD

link) CCN is referred to as a basic network in which the link ER is governed by a set of

nonlinear equations called a basic (nonlinear) system. 1−Q1 − esd + 2esdQ1

1−Q1 −Q2 + 2Q1Q2

1− esd −Q2 + 2esdQ2

 =

 psr1
p12
psr2

 ≈

 p̂sr1
p̂12
p̂sr2

 (2.17)

where p̂srl , l = 1, 2, and p̂12 are obtained via (2.16.a) and (2.16.b). A similar nonlinear

system arose in [32] where the estimations of the error rates esd and Ql’s were attempted.

Unlike our case, there is no cascaded links and hence no need to estimate the ERs of

the SR and RD links. It can be shown that the solution to the above basic system gives

the basic estimators [36] (The derivation is given in Appendix A.5)

Q̂i =
1

2
− 1

2

√
(2p̂ij − 1)(2p̂ik − 1)

2p̂jk − 1
, i, j, k ∈ {0, 1, 2} (2.18)

where Q̂0 = êsd, p̂01 = p̂sr1 , and p̂02 = p̂sr2 .

The above equation indicate that the presence of multiple RD links enables us to

estimate esd and removes the need for esd side information, i.e., the relay diversity can

be traded for the degree of LT-CSI. To estimate the ERs of the multiple hidden (far-end)

SR links, we invoke the relation (2.15), assuming the ERs of all RD links are known, to

obtain

êsrk =
Q̂k − erkd
1− 2erkd

, k = 1, 2. (2.19)

The flowchart of the proposed estimator is summarized in Table 2.1.

Note that an L-relay CCN induces
(
L+1
2

)
basic systems (diversities) where each relay

is involved in more than one system so that multiple estimates for a given Qi may be
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Table 2.1: A blind ER estimation algorithm for a multiple-relay CCN with knowledge
of erkd.

Input: Received sample y and erkd.
1. Compute the SMP estimates p̂srk , and p̂(2ℓ−1)2ℓ, ℓ = 1, 2, · · · , ⌊L/2⌋

by (2.16.a) and (2.16.b), add p̂1L if L is odd.
2. For k = 2ℓ, ℓ = 1, 2, · · · , compute

(i) (êsd, Q̂k−1, Q̂k) by (2.18) using p̂srk−1
, p̂srk , and p̂(k−1)k

3. Compute the ERs, êsrk by (2.19) using erkd and Q̂k

An improved êsd is obtained by taking average of all the êsd computed in 2.
Output: êsd and êsrk

obtained. Dixit [32] had proposed a complex method to take advantage of this fact and

obtained improved ER estimates. On the other hand, [33] shows that the basic estimators

given by (2.18) asymptotically achieve the accuracy achieved by the ML pilot-aided

estimator based on the two sequences of hard-decision pairs, {ŷsd[i], ŷrld[i]}Ni=1, l = 1, 2,

for finite N , a better estimate is obtained by maximizing the log-likelihood functions,

Γ({ŷsd[i], ŷrld[i]})
def
= log f({ŷsd[i], ŷrld[i]}Ni=1), l = 1, 2, defined as

Γ({ŷsd[i], ŷrld[i]})

=
N∏
i=1

(
e
1−I(ŷsd[i]=x[i])
sd (1− esd)

I(ŷsd[i]=x[i])

2∏
l=1

Q
1−I(ŷrld[i]=x[i])

l (1−Ql)
I(ŷrld[i]=x[i])

)

The derivation of the above function is similar to that given in [33, Section III] with

additional consideration of cascaded link ER Ql. In [33] an EM based approach was

proposed to obtain blind (unknown x[i]) estimates of Qi which outperforms Dixit’s

method. However, our numerical experiments conclude that, for both approaches, the

performance improvement over the basic estimators is rather limited and do not worth

the additional high complexity; see Section VI and Fig. 4.4.

Before presenting our main results in the following sections, we would like to em-

phasize that most estimators to be developed are based on some variation or extension

of the basic system (2.17) and their expressions, e.g., (3.5.a)-(3.6), (3.9.a)-(3.9.d), and

15



(3.11.a)-(3.12.b), are derivable from variations or extensions of the basic estimators,

(2.18) and (2.19).
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Chapter 3

Blind Multiple ERs Estimation
using Virtual Links

We first examine the ER ambiguity issue associated with the estimation of a far-end

component link’s ER and then present a novel solution to resolve this ambiguity. The

extension to other binary modulations–BFSK and DPSK–is discussed at the end of this

chapter.

3.1 ER ambiguity in a cascaded link

As can be seen from (2.17), when there are sufficient relays, the resulting equation set

leads to formulae for the estimates of esd and Qk but not those for esrk and erkd. This

is due to the fact that the ER of an SRD link, as (2.15) has shown, is a symmetric

function of the ERs of the associated component SR and RD links, i.e., there are infinite

many (esrk , erkd) pairs that result in the same Qk. In fact, the legitimate candidates

for the latter two ERs consist of the lower-left part of the hyperbola defined by (2.15),

(1 − 2Qk)/4 = (esrk − 1
2
)(erkd − 1

2
), that lies within the square S def

= {(esrk , erkd)|0 <

esrk < 1
2
, 0 < erkd < 1

2
}. The ambiguity in (2.15) is resolved in the scenario discussed

in the last section by specifying erkd so that êsrk is obtained via (2.19) (see Fig. 3.1).

Geometrically, this is equivalent to finding the intersection of the hyperbola and the line

erkd = e within the square S, where e is the true ER of the RD link.

When the LT-CSI, erkd, is not available, we need to find a curve which represents

17
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Figure 3.1: Ambiguity problem can be solved if the knowledge erd = e is available.

another set of legitimate ER pairs and which has only one intersection point with (2.15)

in S. Since the hyperbola is symmetric with respect to the line erkd = esrk and we

have access to the outputs of the RD and SD links only, finding a curve which has a

unique intersection with (2.15) is possible if an alternate RD link is provided. This can

be seen by noting that a RD link with a different average bit SNR γ yields a different

equivalent cascaded link with ER Q′
k and therefore a curve of the form (1 − 2Q′

k)/4 =

(esrk − 1
2
)(αerkd − 1

2
), where α is such that 0 < αerkd

△
= er′kd <

1
2
.

3.2 Virtual link methods

To have an alternate physical link (PL), one can purposely vary the power of the bit

stream so that the transmitted sequence is equivalent to one formed by multiplexing two

18



data sources with different powers. If the locations of these two parts in the multiplexed

data stream are known, the DN then perform separate comparison and counting based

on (2.16.a) and (2.16.b). Although such a two-level amplitude modulation makes pos-

sible solving the esrk , erkd ambiguity, allocating unequal powers to different parts of the

transmitted data stream is often undesirable. This dilemma can be avoided by creating

a virtual link (VL) without modifying the existing link.

A VL can be created by rotating the received I-Q vector counter-clockwise by an

angle θ between 0o and 90o. This is equivalent to introducing an artificial phase offset to

the received samples which are then used as outputs from another link. Since the noise is

circular symmetric, the rotation results in an equivalent signal power degradation cos2 θ

without altering the noise statistic. Such a virtual SNR loss cannot be accomplished

by simply multiplying the BPSK matched filter output by a positive constant less than

one.

An alternate method is to add an extra zero-mean white Gaussian noise component

to the received in-phase samples. Both schemes give a VL with a smaller γ. The second

scheme–the addition of a perturbation term–incurs no hardware increase but requires

the estimation of noise power σ2
d, which is needed in subsequent ML detection anyway.

As the phase-rotation scheme leads to an SNR degradation of magnitude cos2 θ, the

second scheme has to generate i.i.d. zero-mean Gaussian random samples with variance

σ2
v = σ2

d(1/ cos
2 θ− 1) to achieve the same SNR loss. Although both approaches achieve

the same effect for BPSK signals, the phase-rotating approach cannot produce a VL

for noncoherent systems while the method of inserting extra noise suits both coherent

and noncoherent applications. Hence, except for the coherent system discussed in this

section, we will adopt the noise-injection approach in the following sections.

We use the superscript (v) to indicate that a parameter is associated with a VL,

i.e., the kth RD link’s synchronous output samples and their rotated (VL) versions are

denoted by yrkd[n], y
(v)
rkd

[n] and the corresponding ERs by erkd and e
(v)
rkd

. Since for a BPSK
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system operating in a flat Rayleigh fading environment, we have [37]

P psk
b (γ) =

1

2

(
1−

√
γ

1 + γ

)
, (3.1)

which is equivalent to

γ =
(1− 2P psk

b )2

1− (1− 2P psk
b )2

. (3.2)

The two ERs are then related by

(1− 2erkd)
2

1− (1− 2erkd)
2

=
1

cos2 θ

(1− 2e
(v)
rkd

)2

1− (1− 2e
(v)
rkd

)2
. (3.3)

Following a procedure similar to that for solving (2.17), we can easily show that the

nonlinear system which consists of (2.15), (3.3) and the new cascaded link’s ER equation

Q
(v)
k = esrk + e

(v)
rkd

− 2esrke
(v)
rkd

(3.4)

has the closed-form solution

esrk =
1−

√
1− 4t

2
, erkd =

Qk − esrk
1− 2esrk

, (3.5.a)

e
(v)
rkd

=
Q

(v)
k − esrk
1− 2esrk

. (3.5.b)

where

t =
(1− 2Q

(v)
k )2Qk(1−Qk)

(1− 2Q
(v)
k )2 − cos2 θ(1− 2Qk)2

− cos2 θ(1− 2Qk)
2Q

(v)
k (1−Q

(v)
k )

(1− 2Q
(v)
k )2 − cos2 θ(1− 2Qk)2

. (3.6)

Based on this solution, we can obtain a complete blind algorithm to estimate the ERs

of all component links by using the estimates for Qk and Q
(v)
k which are computed

via (2.18) using another, say lth (l ̸= k) relay link; ER side information is no longer

needed. In short, to estimate the triplet (esd, esrk , erkd) associated with an SD and an

SRD links without the help of CSI, one needs another independent relay. The auxiliary

relay requirement can be waived if one creates a virtual SD link to obtain additional

combinational diversities. In general, the rotation angle for producing a virtual SD

link can be different from that for a virtual RD link. However, we lose no generality by
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assuming both rotation angles are the same, say θ. Denote by p̂(vs)r, p̂s(vr) and p̂(vs)(vr) the

estimates for the SMPs, Pr(ŷ
(v)
sd = ŷrd), Pr(ŷsd = ŷ

(v)
rd ), and Pr(ŷ

(v)
sd = ŷ

(v)
rd ), respectively,

and by Q = esrd, Q
(v) = es(vr)d, the ERs for the SRD and the SR-plus-virtual relay links.

We obtain four nonlinear relations for a single-relay CCN:

p̂sr = esdQ+ (1− esd)(1−Q) (3.7.a)

p̂(vs)r = e
(v)
sd Q+ (1− e

(v)
sd )(1−Q) (3.7.b)

p̂s(vr) = esdQ
(v) + (1− esd)(1−Q(v)) (3.7.c)

p̂(vs)(vr) = e
(v)
sd Q

(v) + (1− e
(v)
sd )(1−Q(v)) (3.7.d)

With the additional PL-VL relation

(1− 2esd)
2

1− (1− 2esd)2
=

1

cos2 θ

(1− 2e
(v)
sd )

2

1− (1− 2e
(v)
sd )

2
(3.8)

the nonlinear system (3.7.a)–(3.8) yields the closed-form estimators

êsd =
1

2

[
1− p̂sr − Q̂

1− 2Q̂
+

1− p̂s(rv) − Q̂(v)

1− 2Q̂(v)

]
(3.9.a)

Q̂ =
1−

√
1− 4t1
2

, Q̂(v) =
1−

√
1− 4t2
2

(3.9.b)

t1 =
cos2 θ(2p̂sr − 1)2(p̂(vs)r − 1)p̂(vs)r
(2p̂(vs)r − 1)2 − cos2 θ(2p̂sr − 1)2

−
(2p̂(vs)r − 1)2(p̂sr − 1)p̂sr

(2p̂(vs)r − 1)2 − cos2 θ(2p̂sr − 1)2
(3.9.c)

t2 =
cos2 θ(2p̂s(vr) − 1)2(p̂(vs)(vr) − 1)p̂(vs)(vr)
(2p̂(vs)(vr) − 1)2 − cos2 θ(2p̂s(vr) − 1)2

−
(2p̂(vs)(vr) − 1)2(p̂s(vr) − 1)p̂s(vr)

(2p̂(vs)(vr) − 1)2 − cos2 θ(2p̂s(vr) − 1)2
.

(3.9.d)

Estimators, êsr and êrd, can be derived from solving the nonlinear system which includes

(2.15), (3.3) and an equation similar to (3.4). An analytic solution of this nonlinear

system is obtained by substituting (3.9.b) into (3.6) and then (3.5.a). As has been men-

tioned in Section I, we refer to ER estimation algorithms using the approach described

in this section as virtual link aided (VLA) estimators. The corresponding estimation

procedure is included in Table 3.1.

Note that the SMP formulae (2.14) and (3.7.a)-(3.7.d) are not valid for the SMP

between a PL and its virtual version since their outputs are correlated. Actually, this
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Table 3.1: A blind ER estimation algorithm for BPSK modulation.

Input: Received samples, y, noise variance, σ2
d, and scaling factor

values, a
(v)
sd , a

(v)
rd .

1: Create virtual SD and RD links by injecting complex

Gaussian noise samples with scaling factors, a
(v)
sd and a

(v)
rid
.

2: Compute SMPs for all physical, virtual SD-SRD link pairs.

3: Compute Q̂, Q̂(v), and êsd through (3.9.b) and (3.9.a) with

a
(v)
sd = a

(v)
rd = 1

cos2 θ
.

4: Obtain êsr and êrd via (3.5.a)-(3.6).
Output: êsd, êsr and êrd.

SMP is the sum of two conditional SMPs defined by (4.28) and (4.29) which are derived

in Appendix D. Obviously, a system involves these two nonlinear expressions does not

easily render a closed-form solution. On the other hand, a VL can provide a new SMP

relation similar to (2.14) with each different PL or its virtual version and a single-relay

CCN can offer two uncorrelated VLs to render a basic system that consists of three

independent SMP equations, we thus conclude that, by using both virtual RD and SD

links, one can estimate all ERs of a single-relay CCN without side information.

3.3 Blind ER Estimation for BFSK and DPSK Sig-

nals

Although we have limited our discussion to BPSK signals so far, such a restriction does

not lose any generality as far as the VL concept is concerned. The proposed blind

estimation method in the last section can easily be extended to noncoherent binary

modulations because our estimation scheme can be applied for any binary symmetric

channel. Besides using (noncooperative) noncoherent detectors, the DN adds a complex

Gaussian perturbation term to each of the received noncoherent sample to generate the

corresponding VL with the desired equivalent average SNR.

As in the BPSK case, we first perform the noncoherent detection to obtain the hard
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decisions. Since, for the noncoherent case, the definition and estimation of SMPs are

the same as those of the BPSK-based system, we have four nonlinear equations similar

to (3.7.a)–(3.7.d) which relate the SMPs to the corresponding ERs of the connecting

SD and cascaded SRD links. The relation between the ER of a cascaded link and its

two component links remains the same we thus obtain two equations similar to (2.15)

and (3.4). However, as different modulation type is involved, the equation governing the

relation between esd’s for the physical and the virtual links is different from (3.3), so is

that between the two erd’s. The new relation can be expressed in the generic form

Fe(z) = a(v)Fe(z
(v)), (3.10)

where z = esd or erd and, as before, the superscript (v) on the right-hand side denotes

the corresponding set of parameters for the VL. (3.10) is similar to (3.3) but the actual

expression for Fe(z) depends on the modulation used and a(v) is a scaling parameter

related to the variance of the injected noise (normalized with respect to σ2
d).

Solving the nonlinear system consisting of the SMP equations and Fe(esd) = a(v)Fe(e
(v)
sd ),

we obtain

Q̂ =
(1− 2p̂sr)

[
1− p̂(vs)r

]
− a(v)

[
1− 2p̂(vs)r

]
(1− 2p̂sr)

(1− 2p̂sr)− a(v)
[
1− 2p̂(vs)r

] (3.11.a)

Q̂(v) =

[
1− 2p̂s(vr)

] [
1− p̂(vs)(vr)

][
1− 2p̂s(vr)

]
− a(v)

[
1− 2p̂(vs)(vr)

] − a(v)
[
1− 2p̂(vs)(vr)

] [
1− 2p̂s(vr)

][
1− 2p̂s(vr)

]
− a(v)

[
1− 2p̂(vs)(vr)

] (3.11.b)

êsd =
1

2

[
1− p̂sr − Q̂

1− 2Q̂
+

1− p̂s(vr) − Q̂(v)

1− 2Q̂(v)

]
(3.11.c)

Similarly, we have

êsr =
Q̂(v) − 2Q̂Q̂(v) − a(v)Q̂+ 2a(v)Q̂Q̂(v)

1− 2Q̂− a(v) + 2a(v)Q̂(v)
(3.12.a)

êrd =
Q̂− êsr
1− 2êsr

. (3.12.b)

The explicit forms of Fe(z) for different modulations and the corresponding relations

used for computing the ER estimators are listed in Table 3.2. The estimation procedure

is summarized in Table 3.3.
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Table 3.2: The required CSI and the solutions of nonlinear systems under various mod-
ulations.

Fe(x) Q Q(v) esd esr erd

BPSK (1−2x)2

1−(1−2x)2
(3.9.b) (3.9.b) (3.9.a) (3.5.a) (3.5.a)

BFSK 1−2x
x (3.11.a) (3.11.b) (3.11.c) (3.12.a) (3.12.b)

DPSK 1−2x
2x (3.11.a) (3.11.b) (3.11.c) (3.12.a) (3.12.b)

Table 3.3: A blind ER estimation algorithm for BFSK/DPSK modulation.

Input: Received samples, y, noise variance, σ2
d, and scaling factor

values, a
(v)
sd , a

(v)
rd .

1: Create virtual SD and RD links by injecting complex

Gaussian noise samples with scaling factors, a
(v)
sd and a

(v)
rid
.

2: Compute SMPs for all physical, virtual SD-SRD link pairs.

3: Compute Q̂, Q̂(v), and êsd by using (3.11.a)-(3.11.c).
4: Obtain êsr and êrd based on (3.12.a) and (3.12.b).

Output: êsd, êsr and êrd.

3.4 Simulation Results

For convenience of reference we refer to the ML detector using the ER estimators pre-

sented in Section II as the physical-link-only (PLO) detector and that using a VLA

estimator as the VLA detector. The ML detector with perfect CSI is called the ideal

detector. Let dsrk , drkd, dsd be the distances of the kth SR, RD links and the SD link

and θsrk be the angle between the SD and kth RD links; see Fig. 1.2. Without loss of

generality, we use the normalization, dsd = 10 so that

d2srk = d2rkd + d2sd − 2drkddsd cos θsrk = 100 + d2rkd − 20drkd cos θsrk , (3.13)

We assume the path loss model, σ2
ij ∝ d−α

ij with the normalization σ2
sd = 1 and α > 0.

Denote by σ2
ij the variance of the Rayleigh faded link gain and dij the distance between

node i and node j, (i, j) ∈ {(s, rk), (rk, d), k = 1, · · · , L}. All the simulated performance

curves are obtained by sequentially applying the proposed methods, i.e., the estimated

ERs are updated sequentially as each new sample becomes available and the updated
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estimates are then used for detecting each received bit. As in [25], we define the SH

average SNR as the average received SNR for the direct SD link without relaying, γ̄sd.

Simulation for a given γ̄sd terminates whenever the number of error events in the detector

output exceeds 500. We assume that noise powers at DN and RN are the same, σ2
d = σ2

r ,

and use the normalization P = Ps +
∑L

i=1 Pri = 1 such that γ̄sd = 1/σ2
d. To reduce the

complexity of the ML detector, [24] suggested a piecewise linear function to approximate

the nonlinearity (2.3). As it causes negligible performance degradation with respect to

that of the ML detector so long as esrk < 1
2
, we use the same approximation in our

simulation efforts. Fig. 3.2 illustrates the block diagram of the maximum likelihood

(ML) detector, where fT (t) is approximated by a piecewise linear function: fT (t; esrk) ≈

min(max(t,−T ), T ) and T = ln
(

1−esrk
esrk

)
.

q0

q1

qL

dr
1

y

dr
L

y

)(
T
f

)(
T
f

sd
y

Figure 3.2: Block diagram of the maximum likelihood (ML) detector.

The performance of the PLO and VLA detectors for the simplest case, L = 1 with

BPSK modulation, is illustrated in Fig. 3.3. For the PLO detector, only esr is unknown

while the VLA detector assumes ERs of other component links are also unavailable and

uses a rotation angle θ = 45◦, which is equivalent to injecting noise with a
(v)
sd = a

(v)
rd = 2.

The performance of both detectors are found to approach that of the ideal ML detector.
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We also investigate the effect of correlated fading on the performance of the VLA detector

for DPSK signals and the result is shown in the same figure. Modified Jake’s model [38]

with normalized Doppler frequency J = fdTs = 0.001, where fd and Ts being the Doppler

frequency and the sampling period, respectively, is used to generate the component link

gains, {hsd[n]}, {hsr[n]}, and {hrd[n]}, as a function of sampling epochs. For the DPSK

system, we use the noise-injected VLA detector with scaling factors a
(v)
sd = a

(v)
rd = 2; see

(3.10). Obviously, the performance of the VLA detector is almost the same as that of

the ML detector within the range of interest, indicating that the i.i.d. assumption gives

accurate ER estimates for moderately correlated fading environments.

Fig. 3.3 also show the performance for the cases of two and four RNs. In the two-

relay case, we assume that the PLO detector knows erkd perfectly. Again, both PLO

and VLA detectors yield performance almost identical to that of the ML detector. For

the four-relay case, we decompose the problem into four single-relay CCN subproblems,

each involves only one SRD and the SD links. It can be seen that at the low SH-SNR

region (0 ∼ 2 dB), the performance of the VLA detector is slightly worse than that of

the optimal detector. This is due to fact that the sample size used is not large enough

to offer a very reliable BER estimate. Nevertheless its performance is still superior to

that of the MRC detector.

In the communication systems, the transmission are packet-based. To investigate

the effect of finite length packet, we first estimate the ERs given two fixed finite samples

and simulate the bit error rate performance given the estimation results. If the ERs

are small, the ER estimates are quite bad given insufficient samples. Hence, it can be

expected that the performance will be degenerated, especially at high SNR region, as

shown in Fig. 3.4. Moreover, increasing the sample size can also improve the bit error

rate performance due to the better ER estimates.

Finally, we consider the effect of ER estimate error in bit error rate performance.

Fig. 3.6 shows that the distribution of ysd has a peak near 0 while yrd is more smooth.
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Figure 3.3: Bit error rate performance of the ML (solid curves), MRC (◦), PLO (△) and
VLA (∇) detectors. The following system parameter values are used. (i) single-relay
system: Ps = Pr = 0.5P , dsr/dsd = 0.8, θsr = 0◦, and avsd = avrd = 2 (single-relay), (ii)
2-relay system: dr1d = dsr2 = 7/10, θsr1 = θsr2 = 0◦, Ps = 0.5P, Pr1 = Pr2 = 0.25P , and
θ = 45◦, (iii) 4-relay system: dsd = 10, dsr1 = 5, θsr1 = 45◦, dsr2 = 6, θsr2 = 30◦, dsr3 =
4, θsr3 = 60◦, dsr4 = 5, θsr1 = 0◦, Pp = 0.5P, Pri = 0.125P , for i = 1, 2, 3, 4 and θ = 30◦.

If ysr is negative and near 0, then high value of yrd will be underestimated when êsr is

overestimated (see Fig. 3.5). In this case, the probability that ysr+fT (yrd) < 0 increases,

yielding more errors. On the other hand, if ysr is positive and near 0, then high value

of yrd will be overestimated when êsr is underestimated as the case of error-free. Hence,

the error event also occurs more frequently. Nevertheless, if the ER estimate error is

not large, then there is not a great difference between the nonlinear function with ER

estimate and that with true ER, as shown in Fig. 3.5. Consequently, the performance

is not degenerated significantly.
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Figure 3.4: Bit error rate performance of the ML, MRC, PLO, and VLA detectors.
The following system parameter values are used. Single-relay system: Ps = Pr = 0.5P ,
dsr/dsd = 0., θsr = 45◦, and avsd = avrd = 2.
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Figure 3.5: The nonlinear function (2.3) under various ERs. The system parameter
values are Ps = Pr = 0.5P , dsr/dsd = 0., θsr = 45◦ and SNR= 8 dB (esr = 0.0049).
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system. The system parameter values are Ps = Pr = 0.5P , dsr/dsd = 0., θsr = 45◦ and
SNR= 8 dB.
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Chapter 4

Noise-Enhanced ER Estimations

4.1 Convergence consideration and a simple vari-

ance reduction method

It is easy to see that, like the estimator for the SMP p defined in Chapter 2, p̂sr, p̂(vs)r,

p̂s(vr), and p̂(vs)(vr) converge in probability. As the proposed estimators are continuous

functions of these estimates, the continuous mapping theorem [39] implies that the

estimators {êsr, êrd, êsd} converge in probability as well and their variances depend on

those of the SMP estimators. The latter are all derived from the same compare-and-

count process which is similar to that used in simulation-based ER estimations [40]. The

main difference is that, for the latter, the desired detector output is known perfectly and

one has complete information and control of the operating average SNR and the link

output statistic. In contrast, our scheme can only rely on blind counting without a

pilot sequence and the link statistic is either unavailable or only partially known. Both

estimation methods, however, have the same order of convergence rate and require a

large number of samples to obtain a reliable estimate if the true ER is small; see Lemma

2.1 and [40].

A straightforward approach to improve the convergence performance is to use mul-

tiple VLs, i.e., we add nvl − 1 virtual RD and/or SD links with the same noise power.

Each VL renders a set of new estimates and the final estimates are obtained by taking

average of the nvl estimates. This method is called the enhanced-VLA (EVLA) estima-
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tor which yields a reduced variance for a given sample size, or equivalently, achieves the

same variance as that of the original (nvl = 1) estimator with a smaller sample size.

4.2 A brief introduction to importance sampling

To further improve the convergence/variance performance, the above-mentioned anal-

ogy between our method and the simulation-based estimator suggests that we apply a

variance reduction method used in the latter approach called importance sampling (IS).

For self-contained, we briefly introduce the IS technique.

As we known, variance is a key measure to evaluate the efficiency of a estimator. Low

variance implies the low number of samples required for a fixed precision. Hence, several

techniques had been proposed to reduce the variance significantly [41] and importance

sampling is one of them [40], [42].

To understand importance sampling technique, we consider the following problem:

p =

∫
H(x)f(x)dx (4.1)

where H is a system performance function and f is a probability density function. A

concrete example is the estimation of error rate for BPSK modulation in AWGN channel.

In this case, f(x) is the distribution of received signal and H(x) is an indicator function

of an error event. To estimate the value p, we can generate several samples xi according

to the distribution f(x), evaluate the system performance function, and calculate the

average weighted sum:

p̂ =
1

N

N∑
i=1

H(xi) (4.2)

For importance sampling technique, we should choice another probability density

function g(x) such that g(x) ̸= 0 whenever H(x)f(x) ̸= 0. Then, the estimation problem

(4.1) becomes

p =

∫
H(x)

f(x)

g(x)
g(x)dx (4.3)
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and we can estimate p by

p̂ =
1

N

N∑
i=1

H(xi)
f(xi)

g(xi)
(4.4)

which is called the importance sampling estimator. Notice that the samples xi are drawn

from the distribution g(x) instead of f(x) in this case. The probability density function

g(x) is usually called the importance sampling density, proposal density, or instrumental

density [43]. In addition, the ratio of densities,

W (x) =
f(x)

g(x)
(4.5)

is called the likelihood ratio.

The importance sampling estimator is unbiased because

E [p̂] =
1

N

N∑
i=1

∫
x

H(xi)
f(xi)

g(xi)
g(xi)dxi =

1

N

N∑
i=1

∫
x

H(xi)f(xi)dxi =
N

N
p = p

Moreover, the variance of p̂ is

V ar [p̂] =
1

N

N∑
i=1

V ar

[
H(xi)

f(xi)

g(xi)

]
To find the optimal importance sampling density g(x), we can minimize the variance of

p̂, which equivalent to minimize the variance V ar
[
H(xi)

f(xi)
g(xi)

]
. Notice that(∫

|H(x)|f(x)dx
)2

=

(∫
|H(x)|f(x)
[g(x)]1/2

[g(x)]1/2dx

)2

≤
∫

|H(x)|2f(x)2

g(x)
dx

∫
g(x)dx =

∫
|H(x)|2f(x)2

g(x)
dx

Hence, the variance V ar
[
H(xi)

f(xi)
g(xi)

]
is minimized if gopt(xi) ∝ |H(x)|f(x). Since g(x)

is a probability density function, we have

gopt(xi) =
|H(x)|f(x)∫
|H(x)|f(x)dx

(4.6)

Moreover, if H(x) ≥ 0, we have gopt = H(x)f(x)/p and

V ar

[
H(x)

f(x)

gopt(x)

]
= E

[
H2(x)

f(x)2

gopt(x)2

]
− p2 = E

[
p2
]
− p2 = 0 (4.7)
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As can be seen, if we can find the optimal importance sampling density, the variance

becomes zero if H(x) ≥ 0. However, it also implies that we should known the value p,

which is the value we want to estimate and could not be known in advance. In general,

how to select a good importance sampling density depends on the problem we encounter

and a bad choice of importance sampling density may even yield large variance.

To sum up, the basic idea of IS method is to modifies the distribution of received

sample so that it follows a proposal probability distribution that makes the important

(error) event occurs much more often than the original unmodified case does.

In [42], the IS technique is applied to the estimation of error probabilities over non-

linear channel. A variance reduction factor for a given sample size is defined as

γ ≈ MSEEIS

MSEEo

(4.8)

where MSEEo and MSEEIS are the MSEE of the direct Monte-Carlo and importance

sampling estimations, respectively. The smaller the variance reduction factor is, the

better the importance sampling estimation is. Because MSEE is inverse proportional

to the sample size N , the variance reduction factor also indicates the sample size reduc-

tion inversely. For example, if γ = 0.01 and the direct Monte-Carlo estimation needs

106 samples for some MSEE, then the importance sampling estimator only needs 104

samples with the same performace.

Moreover, a importance sampling density g(x) =
√

1−α
(2π)α

[f(x)]1−α is proposed in [42]

and it is shown that the optimal value of α is

αopt =
−3 +

√
9 + 4T 2(1 + T 2)

2T 2
(4.9)

for memoryless Gaussian channel with H(x) = I(x > T ) and T > 0 is an arbitrary

threshold. Similar to the case, we will propose an importance sampling inspired enhanced

estimator with a parameter to change the distribution of the received signals and find

the optimal value of this parameter.
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4.3 An importance sampling inspired noise-enhanced

estimator

The difficulty in applying the IS theory to our scenario, besides the fundamental differ-

ences just mentioned in section 4.1, is due to the fact that the estimators, as was shown

in (3.11.a)–(3.12.b) and other similar equations presented before, are derived from SMPs

and, perhaps, other ERs. The complete control of their statistics through dependent

variables whose probability distributions are unknown is impossible. For instance, in

the case of a BPSK based CCN, an SMP depends on the inner product of the SD and

RD link outputs whose probability distributions depend on, among other parameters,

the true ER of the SR link, which needs to be estimated in the first place. In other

words, the optimal (variance-minimizing) importance distribution is a function of the

parameters whose values we either do not know or want to estimate.

The following observations, however, indicate that a suboptimal importance distri-

bution is obtainable. Firstly, the ultimate parameters of interest are the link ERs not

the pairwise SMPs and the IS theory says that convergence is faster if the ER to be

estimated by simulation is properly increased, which may be realized by simply adjust-

ing the corresponding link output’s variance. Secondly, some ER estimator formulae are

functions of other ERs and SMPs, hence if the estimates of other ERs can be improved

while those for SMPs remain unchanged, e.g., the ER estimator of esr through (2.8), we

can obtain an improved estimator. Finally, it is reasonable to assume that link outputs’

statistics are partially known, e.g., their noise variances. But even if we are able to

partially control the distributions of related parameters, there still exist the problem of

weighting the resulting counts, which is needed in a conventional IS-based procedure

and can only be done if both the original and modified link output distributions are

known.

Our solution which overcomes all these difficulties can be expressed by the following

toy example. Similar to the simulation case, we consider a point-to-point communica-
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tion system with BPSK modulation in Rayleigh fading channel and assume that the

transmission signal is perfectly known at receiver. That is, we encounter a data-aided

error rate estimation problem.

To estimate the error rate, a simple but widely used estimator is compare-and-count

estimator:

ê =

∑N
i=1 I(ŷi = xi)

N
(4.10)

where xi and ŷi are the ith transmitted signal and its decision at receiver. It has been

shown that the normalized MSEE of this estimator is

MSEEo =
1− e

Ne
(4.11)

where e is the system error rate. This formula indicates that it requires more samples

to estimate a smaller error rate. In other words, given a fixed normalized MSEE, the

required number of samples decreases with the increase of error rate. It motives us to

transform the estimation problem of error rate e into another one with larger error rate,

say e(w), which is similar to the concept of IS technique. To increase the system error

rate can be done by injecting some noise into the received signals and the distribution

of received signals changes. Recall that when we use IS technique, we need to calculate

the likelihood ratio:

W (y) =
f(y)

g(y)
(4.12)

In this toy example, f(y) and g(y) are

f(y) =
1√
πN0

exp

(
−(yi − hi

√
Pxi)

N0

)
(4.13)

g(y) =
1√

πawN0

exp

(
−(yi − hi

√
Pxi)

a(w)N0

)
(4.14)

where P is the transmission power and we inject Gaussian noise such that the noise

variance is a(w)N0, a(w) ≥ 1. It is not reasonable to assume that P is also known
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because the error rate can be calculated by the formula (3.1) [37]. In terms of P and

N0, (3.1) can be rewritten as

e =
1

2

(
1−

√
P

P +N0

)
(4.15)

if the variance of channel gain h is 1. Hence, it is difficult to evaluate the likelihood

ratio.

To overcome this difficulty, we observe that we have the error rate formula (3.1) and

inverse formula (3.2). We can first estimate the error rate e(w) and find the equivalent

SNR(w) by (3.2). Since a(w) is known, we can transform SNR(w) to SNR = a(w)SNR(w).

Finally, use the formula (3.1) to obtain the estimate of e. The flowchart and noise-

enhanced ER estimation algorithm is given in Fig. 4.1 and Table 4.1, respectively.

Notice that we can combine the transformations by the following formula (Appendix

B.1):

e =
1

2

(
1−

√
a(w)(1− 2e(w))2

1− (1− 2e((w)))2 + a(w)(1− 2e(w))2

)
(4.16)

ê
( )

ˆ
w

e

ê

Figure 4.1: The flowchart of the proposed noise-enhanced estimation for data-aided
BPSK system in Rayleigh fading channel

According to the toy example, the proposed noise-enhanced estimator for CCN pro-

ceeds as follows. We first add zero-mean complex Gaussian samples with variances,
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Table 4.1: A noise-enhanced ER estimation algorithm for data-aided BPSK system in
Rayleigh fading channel.

Input: Received samples, y, noise variance, σ2
d, and a(w).

1: Add noise-enhanced complex zero-mean Gaussian samples
with variances a(w) − 1 to y.

2: Obtain ê(w) by (4.10).
3: Find out ê by .
7: Obtain êsr and êrd via (3.5.a)-(3.6).
8: elseif modulation type is BFSK or DPSK then

9: Compute Q̂, Q̂(v), and êsd by using (3.11.a)-(3.11.c).
10: Obtain êsr and êrd based on (3.12.a) and (3.12.b).
11: end if
12: end for
13: Convert the estimates of the noise-injected ERs back to

those of the original (uncontaminated) ERs via (4.17) or (4.18).
14 Take averages of all estimates, if available, to obtain the

final estimates êsd and êrd.
15 Compute êsr via (2.10) using the estimates obtained in 14

and p̂ derived from the uncontaminated received samples.
Output: êsd, êsr and êrd.

Nsd, Nrd, to the received SD and RD link output samples ysd and yrd, respectively.

This results in link outputs with larger variances. By solving the nonlinear system

associated with the estimated SMPs of the noise-injected links, we obtain the esti-

mates
{
ẽ
(w)
sd , ẽ

(w)
sr , ẽ

(w)
rd

}
, where the superscript (w) is used to signify the fact that the

estimates are computed by inserting artificial noises. As the noise-injection effectively

reduces the average SNR, the scaling relation (3.10) with a(v) = a(w) = 1 + Nsd/σ
2
d or

1 + Nrd/σ
2
d enables us to weight and convert the estimates,

{
ẽ
(w)
sd , ẽ

(w)
rd

}
, back to the

estimates {ê(w)
sd , ê

(w)
rd } of the true ERs {esd, erd}. For instance, in a noncoherent BFSK

or DPSK based CCN, the relation, 1−2e
e

= a(w) 1−2e(w)

e(w) , for max{e, e(w)} < 1/2, suggests

that DN use the conversion rule

ê(w) = ẽ(w)/(a(w) + 2ẽ(w) − 2a(w)ẽ(w)), (4.17)

where the subscripts, “sd” and “rd” associated with the estimators ẽ(w) and ẽ(w) are

38



omitted to simplify the expression. Similarly, the conversion rule for a BPSK based

network is

ê(w) =
1

2

[
1−

√
a(w) (1− 2ẽ(w))

2

1− (1− 2ẽ(w))
2
+ a(w) (1− 2ẽ(w))

2

]
. (4.18)

The above two conversion rules bypass the need for complete statistics by directly using

the ER conversion based only on, a(w), the ratio between the noise-injected and original

SNRs (instead of individual SNRs). They also imply that ê(w) < ẽ(w), which has been

expected as we have purposely made e(w) larger by injecting noise. If VLs are needed, we

have to inject an additional noise term into the noise-injected PLs to create VLs. Hence,

the scaling factor is a(v), a(w), or a(v)a(w), depending on whether the link is a VL, noise-

injected PL or a noise-injected VL. We call the class of estimators based on the above

concept as the importance sampling inspired VLA (ISI-VLA) estimator. In the following

sections, we show, via both analysis and simulations, that the ISI-VLA estimator does

offer significant performance enhancement. The novel estimation procedure in this and

previous section are summarized in Table. 4.2.

4.4 Properties and performance analysis of the noise-

enhanced estimator

For the above approach, noise-injection is performed to improve the ER estimators not

the SMP p observed at the DN. In fact, it results in a smaller SMP p(w) and if we want

to estimate the original p through p(w), we obtain a worse SMP estimate, i.e.,

Lemma 4.1. Let p and p(w) be the true SMP’s of the original and noise-injected links,

p̂(w) and p̂ be the estimates of p with and without the aid of the noise-injected link.

Then

Var [p̂] ≤ Var
[
p̂(w)

]
. (4.19)

Proof. See Appendix B.2.
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Table 4.2: A unified blind noise-enhanced ER estimation algorithm.

Input: Received samples, y, noise variance, σ2
d, scaling factor

values, a
(v)
sd , a

(v)
rd , a

(w)
sd , a

(w)
rd and the number of VLs, nvl.

1: for i=1 to nvl do
2: Add noise-enhanced complex zero-mean Gaussian samples

with variances a
(w)
sd − 1 and/or a

(w)
rid

− 1 to the received
SD- and RD-link output samples.

3: Create virtual SD and RD links by injecting complex

Gaussian noise samples with scaling factors, a
(v)
sd and a

(v)
rid
.

4: Compute SMPs for all physical, virtual and/or noise-
enhanced SD-SRD link pairs.

5: if modulation type is BPSK then

6: Compute Q̂, Q̂(v), and êsd through (3.9.b) and (3.9.a) with

a
(v)
sd = a

(v)
rd = 1

cos2 θ
.

7: Obtain êsr and êrd via (3.5.a)-(3.6).
8: elseif modulation type is BFSK or DPSK then

9: Compute Q̂, Q̂(v), and êsd by using (3.11.a)-(3.11.c).
10: Obtain êsr and êrd based on (3.12.a) and (3.12.b).
11: end if
12: end for
13: Convert the estimates of the noise-injected ERs back to

those of the original (uncontaminated) ERs via (4.17) or (4.18).
14 Take averages of all estimates, if available, to obtain the

final estimates êsd and êrd.
15 Compute êsr via (2.10) using the estimates obtained in 14

and p̂ derived from the uncontaminated received samples.
Output: êsd, êsr and êrd.

As we can only inject noise into samples received by the DN, ysd and (or) yrd, esr

remains intact and ê
(w)
sr = ẽ

(w)
sr if this estimator is obtained by substituting ê

(w)
rd , ê

(w)
sd

and p̂(w) into (2.8). The above lemma suggests that we should replace p̂(w) by p̂ in the

substitution procedure for estimating esr. As mentioned in the last section, a better

estimate for esr can thus be obtained by using the noise-enhanced estimates, ê
(w)
rd , ê

(w)
sd ,

and the original p̂; see (2.8).

The range of the appropriate values for the scaling factor a(w) is certainly dependent

on the true ERs e and the noise injected ERs e(w). As will be shown in Theorem 4.4 and
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numerically in next section that the MSEE performance is improved by injecting proper

noise power into the received samples and there is an optimal injected noise power that

achieves the maximum MSEE improvement. This phenomena is called the stochastic

resonance effect which has been observed in some nonlinear signal processing systems.

In a BPSK-based single-relay CCN with perfect SD link (esd = 0), when both the av-

erage transmitted relay power Pr and the magnitude of the slow-faded RD link gain |hrd|

are known, we show in Appendix B.3 that the optimal scaling factor is approximately

equal to the RD link output SNR

a
(w)
opt ≈

Pr|hrd|2

σ2
d

. (4.20)

In addition, we also discuss the performance in the data-aided point-to-point BPSK

communication and the results are given in the following Theorem

Theorem 4.2. For a data-aided point-to-point BPSK communication, the optimal scal-

ing factor a(w) is equal to

a
(w)
opt = SNR, (4.21)

The minimum achievable MSEE reduction ratio, γmin, is given by

γmin =
4SNR

(1 + SNR)2
(4.22)

Moreover, noise injection using the optimal scaling factor is beneficial if SNR is larger

than 1 (0 dB).

Proof. See Appendix B.4

For blind estimation in CCN, we need the following lemma to derive a closed-form

expression of the optimal scaling factor for the more practical case addressed in Theorem

4.4.

Lemma 4.3. [Noncoherent modulation] For a network that consists of three independent

(SD or cascaded) flat Rayleigh fading links with ERs ei. If the ISI scheme is applied
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with a common noise-injected ER e
(w)
i = ϵ using the scaling factors a

(w)
i , i = 1, 2, 3, the

variance of the noise enhanced estimator êi using the conversion rule (4.17) is given by

Var [êi] ≈

(
a
(w)
i

)2
(
a
(w)
i + 2ϵ− 2a

(w)
i ϵ
)4 ϵ− 2ϵ2 + 2ϵ3 − ϵ4

(2ϵ− 1)2N
. (4.23)

Proof. See Appendix B.5.

In subsequent discourse, we denote by ŷi, ei, SNRi, the hard-decision output, ER,

average SNR of the ith link (direct or cascaded) and by a
(v)
i and a

(w)
i , the associated

scaling factor used. To characterize the stochastic resonance effect and the noise en-

hanced performance we define the MSEE reduction ratio, γ
def
= MSEEISI/MSEEo, where

MSEEISI and MSEEo are the MSEE’s of the ISI-VLA and VLA estimators with the

same sample size. Using the above lemma we obtain

Theorem 4.4. For a network with three independent flat Rayleigh fading links, the

optimal scaling factor under the common noise-injected ER constraint, e
(w)
i = ϵ, i =

1, 2, 3, is approximately equal to

a
(w)
i,opt ≈ t1SNRi, (4.24)

where t1 = 0.3085 (DPSK) or 0.15428 (BFSK). The minimum achievable MSEE reduc-

tion ratio, γmin, for SNRi ≫ 1 is given by

γmin ≈

{
9.8277

SNR2
i

(1+SNRi)3
, DPSK

19.655
SNR2

i

(2+SNRi)3
, BFSK

(4.25)

Moreover, noise injection using the optimal scaling factor is beneficial if SNRi is larger

than 3.241 (DPSK) or 6.483 (BFSK).

Proof. See Appendix B.6.

Following a procedure similar to that used in proving Lemma 4.3 and Theorem 4.4

and using the relation governing the ER ϵ of a noise-injected BPSK link and the asso-

ciated scaling factor, ϵ = 1
2

(
1−

√
SNRi

a
(w)
i +SNRi

)
, we can prove that
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Theorem 4.5. For a 3-link BPSK based network in a flat Rayleigh fading environment,

the optimal scaling factors that ensure a common noise-injected ER is ai = tiSNRi and

the MSEE reduction ratio γ for link i is

γ|ai=t1SNRi
=

24.68SNR2
i

3 + 10SNRi + 11SNR2
i + 4SNR3

i

, (4.26)

where t1 =
−1+

√
7

3
. Noise injection using the optimal scaling factor is beneficial if SNRi >

1.823.

To evaluate the MSEE performance of VLA and ISI-VLA estimators in a CCN, as

shown in B.5, we need to compute the covariance and matrix C of the pairwise matching

indicators I(ŷk[t] = ŷj[t]) and the associated Jacobian matrix J. The entries of these

two matrices are functions of the (not necessarily pairwise) SMPs whose expressions are

given below1.

Lemma 4.6. For a two-link BPSK-based network, the SMP, p12(v1), that direct PLs 1,

2 and a
(v)
1 -scaled VL 1 (denoted by v1) all yield the same hard decision is given by

p12(v1) = e2pem(e1, a
(v)
1 ) + (1− e2)pcm(e1, a

(v)
1 ) (4.27)

where the conditional erroneous matching probability pem(e1, a
(v)
1 )

def
= Pr(ŷ1 = ŷ

(v)
1 =

−s|s) and the conditional correct matching probability, pcm(e1, a
(v)
1 )

def
= Pr(ŷ1 = ŷ

(v)
1 =

s|s), s = ±1 being the normalized transmitted BPSK signal, are

pem(e1, a
(v)
1 ) =

e1
2
+

1

2π

tan−1

 1√
a
(v)
1 − 1

−
tan−1

(
(1−2e

(v)
1 )−1√

a
(v)
1 −1

)
(1− 2e

(v)
1 )−1

 (4.28)

pcm(e1, a
(v)
1 ) =1− e1 − e

(v)
1 + pem(e1, a

(v)
1 ) (4.29)

1Matching probabilities and variance analysis for noise-enhanced estimators are similar. Depending
on where the noise-injected links are located, the resulting expressions are obtained by replacing ei and

(or) e
(v)
i by e

(w)
i and (or) its VL version; the scaling factors are also modified when necessary. This

apply to Lemmas 4.6, 4.8 as well as Theorems 4.7, 4.9.
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If PL 1 is a cascaded link, the SMP becomes

p12(v1) =e2

[
pem(e1, a

(v)
1 )(1− esr) + pcm(e1, a

(v)
1 )esr

]
+ (1− e2)

[
pem(e1, a

(v)
1 )esr + pcm(e1, a

(v)
1 )(1− esr)

]
(4.30)

where esr is ER of the hidden component link of PL 1. The SMP that direct PL 1,

cascaded PL 2, a
(v)
i -scaled VLs 1 and 2 all yield the same hard decision is given by

p12(v1)(v2) = pem(e1, a
(v)
1 )
[
pem(e2, a

(v)
2 )(1− esr) + pcm(e2, a

(v)
2 )esr

]
+ pcm(e1, a

(v)
1 )
[
pem(e2, a

(v)
2 )esr + pcm(e2, a

(v)
2 )(1− esr)

]
(4.31)

Finally, we have the two joint pairwise SMPs

Pr
(
ŷ1 = ŷ2, ŷ

(v)
1 = ŷ

(v)
2

)
= p12(v1)(v2)

+
[
e1 − pem(e1, a

(v)
1 )
]{

(1− esr)
[
e2 − pem(e2, a

(v)
2 )
]
+ esr

[
e
(v)
2 − pem(e2, a

(v)
2 )
]}

+
[
e
(v)
1 − pem(e1, a

(v)
1 )
]{

(1− esr)
[
e
(v)
2 − pem(e2, a

(v)
2 )
]
+ esr

[
e2 − pem(e2, a

(v)
2 )
]}
(4.32)

and

Pr
(
ŷ1 = ŷ

(v)
2 , ŷ

(v)
1 = ŷ2

)
= p12(v1)(v2)

+
[
e1 − pem(e1, a

(v)
1 )
]{

(1− esr)
[
e
(v)
2 − pem(e2, a

(v)
2 )
]
+ esr

[
e2 − pem(e2, a

(v)
2 )
]}

+
[
e
(v)
1 − pem(e1, a

(v)
1 )
]{

(1− esr)
[
e2 − pem(e2, a

(v)
2 )
]
+ esr

[
e
(v)
2 − pem(e2, a

(v)
2 )
]}
(4.33)

Proof. See Appendix B.7.

With the above formulae and the pairwise SMP given by (B.2), we use a procedure

similar to that presented in B.5 to evaluate the covariance matrix of the ER estimators

and obtain
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Theorem 4.7. For a two-link BPSK-based network using a virtual R1D link, the vari-

ances of the VLA estimators, ê1, ê2 are given by

Var[ê1|e1, e2, a(v)1 ] =
b22p12(1− p12)− 2b2b3 + p(v1)2(1− p(v1)2)

(1− 2e2)2(b2 − b1)2N
(4.34)

Var[ê2|e1, e2, a(v)1 ] =
b21p12(1− p12)− 2b1b3 + p(v1)2(1− p(v1)2)

(1− 2e1)2(b2 − b1)2N
(4.35)

where p12, p(v1)2 are the SMPs for the link pairs (1, 2) and (v1, 2), b1 =
a
(v)
1

[a
(v)
1 −(a

(v)
1 −1)(1−2e1)2]3/2

,

b2 =
1

[a
(v)
1 −(a

(v)
1 −1)(1−2e1)2]1/2

, b3 = p12(v1)−p12p2(v1). Moreover, if noise of power (a
(w)
i −1)σ2

d

is injected, then the variance of the noise-enhanced ISI-VLA estimator ê
(w)
i is given by

a
(w)
i[

1 + (a
(w)
i − 1)(1− 2e

(w)
i )2

]3Var [ê(w)
i

∣∣∣e(w)
1 , e

(w)
2 , a

(v)
1

]
(4.36)

If a virtual R2D link is used instead, then (4.34)-(4.36) should be modified by replacing

a
(v)
1 , e1, p(v1)2, and p12(v1) with a

(v)
2 , e2, p1(v2) and p12(v2), respectively.

Note that the notations used in (4.34) and (4.35) imply that the variance of êi is a

function of e1, e2, and a
(v)
1 only. All other parameters, e.g. bi’s, depend on these three

parameters. For the case addressed in Theorem 4.7, the optimal scaling factors can be

obtained by finding the extreme points of (4.36)–a highly nonlinear function of a
(w)
1 , a

(w)
2 .

The performance analysis of an ISI-VLA estimator for the hidden SR link is more

involved. We need the following preliminary result.

Lemma 4.8. For a single-relay CCN with single virtual SD and RD link, the (i, j)th

entry of the covariance matrix C of the indicator vector,
[
I (ŷ1 = ŷ2) I

(
ŷ
(v)
1 = ŷ2

)
I
(
ŷ1 = ŷ

(v)
2

)
I
(
ŷ
(v)
1 = ŷ

(v)
2

)]T
, is given by

Cij =

{
pkl(1− pkl) if k = l, k′ = l′

Pr(ŷk = ŷl, ŷk′ = ŷl′)− pklpk′l′ otherwise
(4.37)

for i, j = 1, · · · , 4, with the mapping i → (k, l) defined by

k =

{
1 if i is odd

(v1) otherwise
, l =

{
2 i ≤ 2

(v2) i ≥ 3
(4.38)
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and a similar mapping from j to (k′, l′). The corresponding inverse Jacobian J−1 is given

by
2e2 − 1 (2e1 − 1)(1− 2e2) (2e1 − 1)(1− 2esr) 0

(2e2 − 1)h′(e1, a
(v)
1 ) (2e

(v)
1 − 1)(1− 2e2) (2e

(v)
1 − 1)(1− 2esr) 0

0 (2e3 − 1)(1− 2e
(v)
2 ) (2e3 − 1)(1− 2esr)h

′(e2, a
(v)
2 ) 2e

(v)
2 − 1

0 (2e
(v)
3 − 1)(1− 2e

(v)
2 ) (2e

(v)
3 − 1)(1− 2esr)h

′(e2, a
(v)
2 ) (2e

(v)
2 − 1)h′(e1, a

(v)
1 )


(4.39)

where h′(x, a) = a(v)

[a(v)+(1−a(v))(1−2x)2]3/2
.

We immediately have

Theorem 4.9. For a single-relay BPSK-based CCN with a a
(v)
sd -scaled virtual SD link

and a a
(v)
rd -scaled virtual RD link, as described by (3.7.a)–(3.8), the variances for the

VLA estimators êsr, êrd and êsd are given by

Var[êsr] =
C̃22

N
, Var[êrd] =

C̃33

N
, (4.40)

Var[êsd] =
C̃11 + C̃14 + C̃41 + C̃44

4N
(4.41)

where C̃ = JCJT , and C̃ij denotes the element in the ith row and jth column of C.

Furthermore, the variance of the ISI-VLA estimators, ê
(w)
sr , ê

(w)
rd , and ê

(w)
sd , are

Var[ê(w)
sr ] =

C̃
(w)
22

N
, (4.42)

Var[ê
(w)
rd ] =

a
(w)
rd[

1 + (a
(w)
rd − 1)(1− 2e

(w)
rd )2

]3 C̃33

N
(4.43)

Var[ê
(w)
sd ] =

a
(w)
sd[

1 + (a
(w)
sd − 1)(1− 2e

(w)
sd )2

]3 C̃(w)
11 + C̃

(w)
14 + C̃

(w)
41 + C̃

(w)
44

4N
(4.44)

where C̃(w) = [C̃
(w)
ij ] = J(w)C(w)

(
J(w)

)T
, and J(w), C(w) are computed after noise-

injection into all but the SR link.

We summarize below a few remarks regarding the above properties, their extensions

and the proposed noise-enhanced estimator in general.
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R1 The noise samples play the dual role of i) generating VLs to eliminate the needs

for CSI and extra RNs and resolve the symmetric ambiguity and ii) altering the

statistical property of the received samples.

R2 As the identity, (2.14), which relates an SMP to the associated ERs, involves two

independent links, the three-link network has the special property of offering
(
3
2

)
=3

link-pairs such that each link participates in two link-pairs. Such an “uniform

participation” is important to guarantee uniform performance, i.e., the MSEE

performance for each link is the same if the true ERs are identical. In general for a

network with four or more links the number of link-pairs is larger than the number

of independent links and the performance of an ER estimator for a particular link

depends on the number of link-pairs it has participated.

R3 Although Theorems 4.4, 4.5 consider a three-link network only, extensions to net-

works with more independent component links are straightforward but closed-form

expressions for the corresponding optimal scaling factor and noise benefit interval

can only be determined numerically. Nevertheless, for the special cases consid-

ered by both theorems, the minimum achievable MSEE reduction ratio tends to

O
(

1
SNRi

)
at high SNRs.

R4 Theorems 4.7, 4.9 give the MSEE expressions for BPSK-based VLA and ISI-VLA

estimators but we are not able to derive closed-form expressions for the nonco-

herent modulation based networks. The optimal injected-noise power levels for

noncoherent networks with correlated links seem to be mathematically intractable.

However, our analysis indicates that a key factor in the MSEE expression is the

square of the first derivative of the conversion function (rule) with respect to the

scaling factor which is of order (a
(w)
i )−2 for small ERs; see, e.g., (4.23). The in-

crease of a
(w)
i reduces this factor’s value but it also impact on other parameters

that might increase the MSEE. For examples, in (4.23) a
(w)
i is fixed by the identical
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e
(w)
i = ϵ constraint and is not a independent parameter while in (4.36) a

(w)
i affects

every parameters on the second rational term. The optimal a
(w)
i strikes a best bal-

ance between these conflicting effects. Numerical experiments reported in the next

section show that, similar to the special cases addressed in Theorems 1, 2, there is

a proper range of injected noise power levels for enhancing the performance with

added noise and an optimal scaling factor (added noise power level) does exist.

R5 Similar to the EVLA scheme, we can add nvl − 1 virtual RD and/or SD links to

obtain the same number of estimates for {êsd} and/or {êrd}, each with the same

reduced variance, and then take average on the resulting nvl estimators. This

sample-mean approach guarantees improved performance but the improvement

ratio is bounded by 1/nvl due to the correlations amongst VLs. The resulting

multiple VLs algorithm is called the enhanced ISI-VLA (EISI-VLA) estimator.

4.5 Numerical Results

To verify our MSEE analysis, we first consider the data-aided point-to-point BPSK

communication in Rayleigh fading channel (toy example case), illustrated in Fig. 4.2.

As can be seen, our analysis is consistent with simulation results and there is indeed

a optimal injected noise power. Based on Theorem 4.2, the optimal value of a(w) is

1000 = 30 (dB), which is the channel quality. In practice, the noise variance should be

estimated with some estimation error. Fortunately, this simulation also indicates that

the performance is not sensitive to the optimal value of a(w). This nonsensitive property

shows the possibility to implement the noise-enhanced estimator in the real world.

Then, we consider a 3-link wireless sensor network in Fig. 4.3 which shows that, for

all three binary modulations considered, the analytic predictions are very close to those

obtained by simulations even when the sample size is small, and both give identical

results if the sample size is large. Similar performance trend for the ISI-VLA scheme

in a BPSK-based single-relay CCN is found in the same figure. The normalized MSEE
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Figure 4.2: Normalized MSEE performance of the noise-enhanced estimator for data-
aided point-to-point BPSK communication in Rayleigh fading channel. The channel
quality is 30 dB (error rate e = 2.5× 10−4). The sample size is 10000.

performance, E[(ê − e)2]/e2, where e is the true ER, of the VLA, VLA-EM, and EISI-

VLA estimation schemes for a BFSK-based single-relay CCN network is shown in Fig.

4.4. The VLA-EM scheme refers to a modified version of the EM based estimator of [33],

which did not consider the hidden SR link. The modifications are needed to apply a VL

for resolving the ambiguity and replace the normalization factor such that the equation

for updating the ER estimate for the cascaded link becomes

Q
(i+1)
k

=
1

N

N∑
i=1


L∏

j=0

(
Q

(i)
j

)I(ŷj=ŷk)
(
1−Q

(i)
j

)1−I(ŷj=ŷk)

L∏
j=0

(
Q

(i)
j

)I(ŷj=ŷk)
(
1−Q

(i)
j

)1−I(ŷj=ŷk)
+

L∏
j=0

(
Q

(i)
j

)1−I(ŷj=ŷk)
(
1−Q

(i)
j

)I(ŷj=ŷk)

L∏
j=0

(
Q

(i)
j

)I(ŷj=ŷk)
(
1−Q

(i)
j

)1−I(ŷj=ŷk)


−1

(4.45)
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where Qi’s are defined in chapter 2 with the superscripts denote the associated iteration

number. The ISI method injects additional noise to estimate the ERs of the resulting

links and then converting them back to êsr and êrd via the analytic formulas given in

Table 3.2. The performance curves clearly demonstrate that the advantage of the VLA-

EM scheme against the VLA estimator is negligible while the EISI-VLA scheme far

outperforms the other two schemes.
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Figure 4.3: Normalized MSEE performance of the ISI-VLA scheme for (a) various binary
modulated 3-link networks (e1 = 0.003, e2 = 0.002, e3 = 0.001; the injected noise power

is such that SH SNR=2 for link 1 and e
(w)
1 = e

(w)
2 = e

(w)
3 ) and (2) BPSK-based single-

relay CCN (esr = 0.02922, erd = 0.001988, esd = 0.04356, a
(v)
sd = a

(v)
rd = 2, a

(w)
sd = 1

and a
(w)
rd = 30). For 3-link networks, only the performance of ê1 is shown. The analytic

predictions (solid curves) for these two scenarios are based on (4.23) and (4.42)–(4.44),
respectively.

Fig. 4.5 plots the MSEE reduction ratio as a function of the scaling factor a
(w)
sd while

the other scaling factor a
(w)
rd is chosen such that e

(w)
rd = e

(w)
sd . These curves reveal that
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Figure 4.4: Normalized MSEE performance of VLA, VLA-EM, and EISI-VLA schemes in
a BFSK-based single-relay CCN with esr = 0.0127, erd = 5.0711×10−5 and esd = 0.0298.
Other parameter values used are: a

(v)
sd = a

(v)
rd = 2, e

(w)
sd = e

(w)
rd = 0.05 and nvl = 30.

the MSEE performance is improved by injecting proper noise power into the received

samples and there is an optimal injected noise power that achieves the maximum MSEE

improvement. This phenomena is called the stochastic resonance effect which has been

observed in some nonlinear systems; see [6] and reference therein. We also notice that the

improvement is more impressive when the true ER becomes smaller, which is consistent

with what the IS theory has predicted. The noise benefit interval (NBI), defined as

the range of the scaling factor values within which the MSEE reduction ratio is less

than 1, is a function of the true esd and erd. As mentioned before, we are not able

to derive closed-form expressions for the optimal scaling factors used in a noncoherent

network. Nevertheless, extensive simulations suggest that it is a good strategy to make

51



e
(w)
sd = e

(w)
rd ≈ 0.05 if both esd and erd are much smaller than 0.05. As was explained

in Chapter 4, because of the availability of improved estimates for esd and erd, the

performance of êsr is also improved although we do not and could not inject noise into

samples received at RNs.
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Figure 4.5: MSEE reduction ratio (γ) performance of the ISI-VLA estimator with BFSK

modulation and a
(v)
sd = a

(v)
rd = 2. Part (a) is obtained by assuming dsr = 5, SH-SNR=25

dB with the path loss exponent = 2 (which leads to esr = 0.0016, erd = 0.0016, esd =
0.0062). Part (b) assumes that dsr = 8, SH-SNR=18 dB with path loss exponent = 4 so
that esr = 0.0127, erd = 5.0711 × 10−5, esd = 0.0298. The MSEE reduction ratio of the
RD link is not shown in part (b) as it is relatively small (∼ O(10−3)).

Although proper noise-injection does improve the convergence rate performance, in

some cases such as those shown in Fig. 4.5, the improvement is not quite as significant

as one wishes. The MSEE reduction ratio can be further improved by the enhanced

ISI-VLA estimator as is shown in Fig. 4.6 where the simulation conditions are identical
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to those assumed in Fig. 4.5(b). As expected, the performance is improved with the

increase of nvl and the improvement is much more impressive when the true ER is small:

the required sample size reduction is more than 10 times for the SD link and is greater

than 8000 times for the RD link when nvl = 30. Another benefit of using multiple VLs

is that the NBI becomes larger as nvl increases.
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Figure 4.6: MSEE reduction ratio behavior of the EISI-VLA estimator for BFSK based
CCN with different nvl. Other system parameter values are the same as those of Fig.
4.5(b).
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Chapter 5

Data fusion and blind multiple error
rate estimation in a non-binary
modulation based wireless sensor
network

For optimal M -hypothesis detection in a parallel system, the performance of the sensor

nodes must be available at the fusion center (FC). Such information can be obtained

by the LJW blind estimator [34] based on a multinomial distribution model with pa-

rameters related to each links’ ERs. To get the estimates, we need to solve a nonlinear

optimization problem. As shown in section 5.2, this algorithm is not feasible for large

M due to the prohibitively high computational complexity. To approximate the optimal

detector, we propose a suboptimal detector based on bit-level representation and a cor-

responding blind estimator to estimate the error rate of sensor nodes in section 5.3. The

complexity of our estimator is much lower than that of LJW as we are able to obtain a

closed-form salutation instead of employing an iterative algorithm for solving a nonlin-

ear optimization. To further improve the convergence rate, we propose a noise-enhanced

estimator in section 5.5. Simulation results show that the proposed suboptimal detector

using the proposed blind estimator render negligible performance loss with respect to

that of the optimal detector. A stochastic resonance phenomenon is observed in the

estimator’s mean square estimation error performance.
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5.1 System model and optimal detector

The parallel sensing system illustrated in Fig. 5.1 consists of one source, L sensors, and

one FC. In a wireless sensor network, source transmits a signal from M candidate signals

{s0, s1, · · · , sM−1} with a prior probability P(Hi) =P(si is transmitted). Each sensor

detects and forwards its decision to the FC which then determines which hypothesis

(Hi) is true based on the signals forwarded by the sensors. In this dissertation, we

assume that either the sensing (source-sensor) channels or the reporting (sensors-FC)

channels is error-free. Such an assumption losses no generality as each combined source-

sensor-FC link can be modeled as an equivalent composite channel [34]. The optimal

fusion rule depends on the parameters of the equivalent channels which can be estimated

by the method described below.

L

Figure 5.1: Parallel distributed detection system

Denote by ŷj ∈ {di, i = 0, · · · ,M − 1} the jth sensor’s hard decision and define the

event probability eikj

eikj = P(ŷj = dk|Hi), j = 1, · · · , L, i, k = 1, · · · ,M, i ̸= k

Assuming P(Hi) = 1/M , i = 0, · · · ,M − 1 and the sensor-FC links are noiseless, we
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have the optimal data fusion rule [34]

ŷ = arg max
i=0,··· ,M−1

L∏
j=1

M∏
k=1

(
eikj
)I(ŷj=dk) (5.1)

where I(ŷj = dk) is the binary valued function indicating if the statement ŷj = dk is

true.

5.2 LJW blind ER estimator

In practice, the error rates eikj are usually unknown at FC and need to be estimated.

Pilot-assisted estimates can be obtained by sensors and forwarded to FC, which, however,

is not feasible for many sources and/or battery-limited sensors.

For convenience of reference, we briefly outline the LJW estimator1 in the followings.

Let l =
∑L

j=1 ujM
j−1, where uj = k if ŷj = dk, then the probability P(ul) =

P(u1, u2, · · · , uL) = pl can be expressed as

pl =
M−1∑
i=0

P(Hi)
L∏

j=1

P(uj|Hi) =
M−1∑
i=0

P(Hi)
L∏

j=1

e
iuj

j (5.2)

As there are C = ML sensor decision combinations of ul, if we denote the number of

the jth decision combination by xi, then the occurrence numbers of ul, (x1, · · · , xC), are

multinomial distributed with parameters {pl}

P(x1, · · · , xC) =
N

x1! · · ·xC !
px1
1 · · · pxC

C

where N is the number of reported sensing samples. Given the occurrence number, the

LJW blind estimator is

θ̂ = argmax
θ

px1
1 · · · , pxC

C (5.3)

where θ = {eikj }, for j = 1, · · · , L, i, k = 0, · · · ,M − 1.

1Notice that the assumption of the prior probabilities in [34] is different from ours. In [34], the prior
probabilities P(Hi) are unknown and can be estimated by LJW blind ER estimator.
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For an M -hypothesis, L-sensor problem, we have L(M − 1)M unknown parameters

eikj . There are 720 unknown parameters to be estimated for the case M = 16 and L = 3.

An iterative method is often needed to solve the corresponding nonlinear optimization

problem (5.3). Such a large scale optimization requires extremely high computational

complexity and large memory size. Thus the LJW blind estimator is not very practical

unless M and L are very small.

5.3 Optimal/suboptimal fusion rules for nonbinary

signals

For M = 2, the blind estimator proposed in previous chapters provides a low-complexity

suboptimal alternate to (5.3). This estimator is based on the pairwise comparisons of

two independent link outputs which are categorized into matched (same hard decisions)

or unmatched (different hard decisions) outputs. The extension to the nonbinary case

becomes much more complicated as either a matched or unmatched result is caused by

multiple joint events in each selected link pair’s M -ary decisions.

We notice that the LJW blind estimator does not take the sensors’ transmission

method into account and, with all its generality, requires high computational complex-

ity for large M and L. In contrast, we assume that the sensors (or the source) use a

nonbinary modulation scheme and show that the structure of the signal constellation can

be used to simplify a large-scale problem greatly or to decompose a large-scale problem

into several small-scale problems, which reduce the computational complexity signifi-

cantly. We consider two modulation schemes: orthogonal and M -QAM modulations;

blind estimators for networks employing other nonbinary modulations such as M -PAM

and M -PSK can be similarly treated and derived.

Recall that the optimal detector is

ŷ = arg max
i=0,··· ,M−1

L∏
j=1

M∏
k=1

(
eikj
)I(ŷj=dk) (5.4)
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and the number of unknown parameters is L(M − 1)M due to the unequal of eikj in

general. If all of eikj are equal for i ̸= k, the optimal detector can reduce to be

ŷ = arg max
i=0,··· ,M−1

L∏
j=1

(1− ej)
I(ŷj=di)

M∏
k=1,̸=i

(
ej

M − 1

)I(ŷj=dk)

(5.5)

where ej is the symbol error rate of the jth link. To perform the optimal detection, we

only need to estimation L unknown parameters.

For M -QAM modulation scheme, we first express the symbol-level decision for the

jth sensor-FC link ŷj in terms of its bit-level decisions, i.e., ŷj = (ŷ1j , ŷ
2
j , · · · , ŷkj )T ,

where M = 2k and ŷij represents the ith bit for the hard decision ŷj. Converting an

M -ary communication link into k parallel binary symmetric links with with crossover

probabilities ekj , the bit error probability of ŷkj (Fig. 5.2). Then, we have

P(ŷkj |bk = 0)

P(ŷkj |bk = 1)
=

∏L
j=1(e

k
j )

ŷkj (1− ekj )
1−ŷkj∏L

j=1(e
k
j )

1−ŷkj (1− ekj )
ŷkj

=
L∏

j=1

(
1

ekj
− 1

)1−2ŷkj
def
= Λ(ŷkj ) (5.6)

where bk is the k bit of the source output symbol.

e

-e

e

e

Figure 5.2: A binary symmetric channel with parameter e

Since

lnΛ(ŷkj ) =
L∑

j=1

(1− 2ŷkj ) ln

(
1

ekj
− 1

)
(5.7)

the optimal bit-level fusion rule, assuming bk = 0 or 1 with equal probability, is

ŷk =

{
0 if

∑L
j=1

(
1− 2ŷkj

)
ln
(

1
ekj

− 1
)
> 0

1 otherwise
(5.8)
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where only the bit error rate ekj is involved.

A symbol-level fusion decision can be easily obtained once all bit-level decisions

are known. This fusion rule reduces the number of parameters to be estimated from

LM(M − 1) in (5.1) to L log2 M .

The above derivation assumes equivalent binary symmetric links, i.e., bit error rates

for information bit 0 and 1 are identical. Clearly, QPSK modulation satisfies this as-

sumption if the source shows no preference while M -QAM (M > 4) modulation may

not. In the latter case, we need to consider a binary asymmetric channel (Fig. 5.3). The

log likelihood ratio for such a channel with error rates e0 and e1 is given by

ln

(
P(ŷj

k|bk = 0)

P(ŷj
k|bk = 1)

)

= ln

(∏L
j=1(e

k,0
j )ŷ

k
j (1− ek,0j )1−ŷkj∏L

j=1(e
k,1
j )1−ŷkj (1− ek,1j )ŷ

k
j

)

=
L∑

j=1

ŷkj ln

(
ek,0j

1− ek,1j

)
+
(
1− ŷkj

)
ln

(
1− ek,0j

ek,1j

)
(5.9)

where ek,bj denotes the error rate of the kth bit in the binary representation of ŷj given

bit b has been transmitted. The corresponding bit-level fusion rule becomes

ŷk =
L∑

j=1

ŷkj ln

(
ek,0j

1− ek,1j

)
+
(
1− ŷkj

)
ln

(
1− ek,1j

ek,1j

)
0

≷
1
0 (5.10)

For the above asymmetric case, there are 2L log2M parameters, {ek,0j , ek,1j }, to be esti-

mated, which is still much less than the number of unknown parameters in (5.1).

5.4 Blind symbol/bit ERs estimator

At the beginning, we focus on the orthogonal modulation and want to estimate the

symbol ERs. For convenience, we consider a three links wireless sensor networks. Later,

we will show that a wireless sensor network with more links can be decomposed into

several wireless sensor networks involving three links only.
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Figure 5.3: A binary nonsymmetric channel with parameter e0 and e1

To derive a estimator, we first define a SMP as P(ŷj1 = ŷj2) (the probability that

the hard decisions from the ith and jth links are identical). Then, by the law of total

probability, we have

P(ŷj1 = ŷj2) =
M∑
k=1

P(ŷj1 = ŷj2 |Hk)P(Hk)

=
M∑
k=1

1

M
P(ŷj1 = ŷj2 are correct|Hk) +

M∑
k=1

1

M
P(ŷj1 = ŷj2 are incorrect|Hk)

=
M∑
k=1

1

M
(1− ej1)(1− ej2) +

M∑
k=1

ej1ej2
M(M − 1)

=1− ej1 − ej2 +
M

M − 1
ej1ej2 (5.11)

where we use the facts that P(Hk) =
1
M

and P(ŷj1 = ŷj2 are incorrect|Hk) =
ej1ej2
M−1

.

For a three-links wireless sensor network, one has three SMPs, i.e. P(ŷ1 = ŷ2),

P(ŷ2 = ŷ3), and P(ŷ1 = ŷ3). These three SMPs and (5.11) yield the following nonlinear

system  1− e2 − e3 +
M

M−1
e2e3

1− e1 − e3 +
M

M−1
e1e3

1− e1 − e2 +
M

M−1
e1e2

 =

 P(ŷ2 = ŷ3)
P(ŷ1 = ŷ3)
P(ŷ1 = ŷ2)

 △
=

 p1
p2
p3

 (5.12)

and the solutions are

ei =
−bi −

√
b2i − 4aici
2ai

(5.13)
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where, for i, j, k ∈ {1, 2, 3} and i ̸= j ̸= k,

ai = M2pi −M, bi = −2(M − 1)(Mpi − 1),

ci = (M − 1)(pi(M − 1) + (pj + pk − 1)−Mpjpk)

Hence, the procedure of the proposed ER estimator consists of two steps and is similar

to that shown in Chapter 2. In the first step, we estimate {pi}3i=1 by

P̂(ŷj1 = ŷj2) =
N∑
l=1

I (ŷj1 [l] = ŷj2 [l])

N
(5.14)

where ŷj1 [l] (ŷj1 [l]) is the lth hard decision from the j1th (j2th) sensor node. Then, by

the method of moments, we can estimate ERs by solving (5.12) and we have

êi =
−bi −

√
b2i − 4aici
2ai

(5.15)

where, for i, j, k ∈ {1, 2, 3} and i ̸= j ̸= k,

ai = M2p̂i −M, bi = −2(M − 1)(Mp̂i − 1),

ci = (M − 1)(p̂i(M − 1) + (p̂j + p̂k − 1)−Mp̂j p̂k)

For QAM modulation scheme, we need to estimate the bit ERs {ekj}, not symbol ERs.

Hence, we need another step to transform the symbol-level decision into bit-level one,

yielding a three-step estimator. Specifically, we first de-map the symbol hard decision ŷi

into bit decisions ŷki , which is often required in a typical digital link. In the second step,

we estimate the bit-level SMPs P(ŷkj1 = ŷkj2) for j1 ̸= j2. We then have the the following

a basic nonlinear system in a three-link sensor network ((5.12) with M = 2) 1− ek1 − ek2 + 2ek1e
k
2

1− ek2 − ek3 + 2ek2e
k
3

1− ek1 − ek3 + 2ek1e
k
3

 =

 P(ŷk1 = ŷk2)
P(ŷk2 = ŷk3)
P(ŷk1 = ŷk3)

 ≈

 P̂(ŷk1 = ŷk2)

P̂(ŷk2 = ŷk3)

P̂(ŷk1 = ŷk3)

 (5.16)

Using the SMP estimates

P̂(ŷkj1 = ŷkj2) =
N∑
l=1

I
(
ŷkj1 [l] = ŷkj2 [l]

)
N

(5.17)
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we obtain the following ER estimate via the method of moments (which can be obtained

by (5.15) with M = 2)

êkj =
1

2
− 1

2

√√√√(2P̂(ŷkj = ŷkj1)− 1)(2P̂(ŷkj = ŷkj2)− 1)

2P̂(ŷkj1 = ŷkj2)− 1
, j, j1, j2 ∈ {1, 2, 3} (5.18)

For some nonbinary modulations, ekj is independent of k, hence the countings on the

RHS of (5.17) for different k should be averaged to obtain an improved estimator. We

summarize the complete procedure in Table 5.1. For general L > 3, we can decompose

the estimation problem into several estimation subproblems involving only three links.

For instance, if L = 5, we can consider two estimation subproblems. The first subprob-

lem considers the first three links while the other one involves the last three links. In

this case, the ER of the third link is estimated in both subproblems and we can average

these two results to get a new estimate with better performance.

Table 5.1: A blind ER estimation algorithm for high order modulation in sensor network.

Input: Received samples, y
1: Detect the signals ŷi and transform them into bit-level ŷki
2: Compute SMPs for all link pairs by (5.17).
3: Compute êi, i = 1, 2, 3 via (5.18) using the SMPs obtained in 2

Output: ê1, ê2 and ê3.

To evaluate the performance of the blind bit-level ER estimation, we can analyze

the performance on the binary symmetric channel. Although it is not binary symmetric

channel for M -QAM modulation for M > 4, the results under this assumption can an

approximation of the performance on the binary asymmetric channel. To derive the

formula, we use the Delta method and inverse function theorem, as shown in Appendix

B.5 and [33]. Based on the Delta method, the MSEE of the blind bit-level ER estimation

on the binary symmetric channel is

MSEE[êkj ] ≈

[
JCJT

]
j,j

2N
(5.19)
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whereC is the covariance matrix, J is the Jacobian matrix and [X]i,j denotes the element

of the matrix X in the ith row and jth column. Unlike the binary case in Chapter 4,

there is a factor 2 in the denominator. This comes from the factor that there are in-

phase and quadrature-phase in M -QAM modulation. Since BERs of the kth bit in these

two phases are identical, we have two samples to estimation the BER given a received

sample.

Assuming independent links, the covariance matrix of pairwise matching indicator

vector (I(ŷ1 = ŷ2), I(ŷ1 = ŷ3), I(ŷ2 = ŷ3)) can be shown to be ((B.11) or [33])

C =

 p12(1− p12) p123 − p12p13 p123 − p12p23
p123 − p12p13 p13(1− p13) p123 − p13p23
p123 − p12p23 p123 − p13p23 p23(1− p23)

 (5.20)

where

pij =
(
1− eki

) (
1− ekj

)
+ eki e

k
j (5.21)

pijl =
(
1− eki

) (
1− ekj

) (
1− ekl

)
+ eki e

k
j e

k
l (5.22)

where eki can be evaluated based on (5.28) in the next section. We can derive the

Jacobian matrix based on (5.18) by the definition of the Jacobian matrix and expressed

it as a function of eki , i = 1, 2, 3. This procedure is quite complex. Instead, we first derive

the inverse of the Jacobian matrix based on (5.16) and the inverse function theorem.

The associated inverse Jacobian matrix is

J−1 =

 (
2ek2 − 1

) (
2ek1 − 1

)
0(

2ek3 − 1
)

0
(
2ek1 − 1

)
0

(
2ek3 − 1

) (
2ek2 − 1

)
 (5.23)

With (5.20)-(5.23), we can compute the MSEE on the binary symmetric channel and

get the lower bound performance of the blind bit-level ER estimation on the binary

asymmetric channel.

For orthogonal modulation scheme, the derivations of the MSEE formula are similar.
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For covariance matrix, the formulas of pij and pijl are modified as

pij =
(
1− eki

) (
1− ekj

)
+

eki e
k
j

M − 1
(5.24)

pijl =
(
1− eki

) (
1− ekj

) (
1− ekl

)
+

eki e
k
j e

k
l

(M − 1)2
(5.25)

The other difference is the Jacobin matrix formula since the nonlinear systems (5.12)-

(5.22) and (5.16) are not the same. In this case, the inverse Jacobian matrix is

J−1 =


(

M
M−1

e2 − 1
) (

M
M−1

e1 − 1
)

0(
M

M−1
e3 − 1

)
0

(
M

M−1
e1 − 1

)
0

(
M

M−1
e3 − 1

) (
M

M−1
e2 − 1

)
 (5.26)

With (5.20) and (5.24)-(5.26), the MSEE for orthogonal modulation scheme is

MSEE[êkj ] ≈

[
JCJT

]
j,j

N
(5.27)

.

5.5 Noise-enhanced ER estimations

To further enhance the performance of the blind symbol/bit-level ER estimator, we

observe that the performance of the estimator is worse with the increase of the link

quality, as shown in Fig. 5.7. This observation also appears in the case with BPSK

modulation in Chapter 4. In that chapter, we observe that the estimator of the SMPs

is a compare-and-count process (5.17) which is similar to that used in simulation-based

ER estimations and IS techniques can be applied. It motives us to inject the noise into

the received samples to alter their statistics and perform the estimation based on them.

Because the binary symmetric model is similar to the case in Chapter 4 with binary

modulation, MSEE can be reduced possibly by injecting noise. To achieve the better

performance, we propose a noise-enhanced ER estimations similar to the estimation

proposed in 4 with some modifications.

The procedure of the proposed noise-enhanced ER estimations involves four steps for

M -QAM modulation scheme. First, we inject noise into the received signal before we
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perform the demodulation2. Then, demodulate the signals and transform the detected

signals ŷi into bit-level signals. The ER estimator shown in Table 5.1 is performed to

obtain the bit ER estimates ẽi. Finally, transform the estimates ẽi into the true/original

ones êi. So far, we know how to implement the first three steps. The remaining step is

how to transform ẽi into êi.

To find a transformation from ẽi to êi, we need to set up the binary labelling because

the transformation depends on the binary labelling. In this dissertation, we focus on the

Gray mapping labelling [44] and one example (16-QAM with Gray mapping labelling)

is shown in Fig. 5.4.

Figure 5.4: 16-QAM with Gray mapping labelling

Fig. 5.4 shows the error rate of the third bit for information bit 0, e3,0, is different

from that for information bit 1, e3,1 because of the nonlinear decision boundary. Sim-

ulation results (Fig. 5.6), however, show that approximating the binary nonsymmetric

channel with binary symmetric one induces negligible performance loss. Therefore, in

the following discussion, we only consider binary symmetric channel, i.e. ek = ek,0 = ek,1.

Moreover, since M -QAM consists of two independent
√
M -PAM, we only consider the

2In practice, the received signals should be quantized due to the limited reporting channel bandwidth.
In-depth analysis to the effect of the quantization is beyond the scope of this work.
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bits in in-phase components and relabel the index in order from left to right.

In [45], it is shown that the kth bit error probability of M -QAM in Rayleigh fading

channel is expressed as

ek =
1√
M

(1−2−k)
√
M−1∑

i=0

w(i, k,M)

1−

√
3(2i+1)2 log2 Mη

2(M−1)√
3(2i+1)2 log2 Mη

2(M−1)
+ 1

 (5.28)

where η is the energy per bit to noise power spectral density ratio Eb/N0 and

w(i, k,M) =(−1)

⌊
i2k−1
√

M

⌋(
2k−1 −

⌊
i2k−1

√
M

+
1

2

⌋)
Clearly, to find the inverse function is difficult and a numerical method is proposed to

find the energy per bit to noise power spectral density ratio η given the error rate ek.

Notice that several methods can be applied to find the value of η when ek is given,

i.e. Newton method method [46]. Because the problem is a one-dimensional problem,

we use the bisection method [46] due to its low complexity. Hence, the upper and lower

bound of η should be found first to determine the search interval.

If only the first term in (5.28) is considered, an lower bound of ek can be obtained

by neglecting the higher order terms, i.e.

eklow =
2k−1

√
M

1−

√
3 log2 Mη
2(M−1)√

3 log2 Mη
2(M−1)

+ 1

 (5.29)

and its inverse function is

η =

(
1−

√
Meklow
2k−1

)2
2M − 2

3

(
2
√
M

eklow
2k−1 −M

(
eklow
2k−1

)2)
log2 M

Hence, given ek, we can find a lower bound of η:

ηlow =

(
1−

√
Mek

2k−1

)2
2M − 2

3

(
2
√
M ek

2k−1 −M
(

ek

2k−1

)2)
log2 M

(5.30)

However, the upper bound with simple form is not easy to find if it is possible.

Instead of finding a upper bound, we propose a simple bound which is a upper bound
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Figure 5.5: 16QAM error rate in Rayleigh fading with α = 2.
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within the range of interest, i.e.

ekupper(α) = α
2k−1

√
M

1−

√
3 log2 Mη
2(M−1)√

3 log2 Mη
2(M−1)

+ 1

 (5.31)

where α > 1. As can be seen, we introduce a parameter α into (5.29) to get the

upper bound (5.31). The parameter α depends on the range of interest and should be

determined offline. For 16-QAM modulation in Rayleigh fading channel, Fig. 5.5 shows

that α = 2 is a good choice from Eb/N0 = 0 to 40 (dB). In this case, we can find the

upper bound of η given ek

ηupper =

(
1−

√
Mek

α2k−1

)2
2M − 2

3
(
2
√
M ek

α2k−1 −M( ek

α2k−1 )2
)
log2M

(5.32)

With the lower bound (5.29) and upper bound (5.31), the bisection method for finding

η is described in Table 5.2.

Table 5.2: The bisection method for finding η = Eb

N0
.

Input: ek, tolerance δ, and α
1: Compute the lower ηlow and upper bound ηupper of η by

(5.29) and (5.31), respectively
2: Set ηt=(ηlow + ηupper)/2 and compute the bit error rate ekt given ηt by (5.28).
3: if ekt > ek

4: ηlow = ηt
5: else
6: ηupper = ηt
7: endif

8: If (ηupper−ηlow)

ηlow
> δ

9: goto 2.
10: endif

11: Compute η = ηupper+ηlow
2

Output: η.

After finding the Eb/N0, we can rescale it and find the estimate êk by (5.28), again.

Hence, the fourth step is complete. The flowchart of the whole estimation process is
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given in Table 5.3. We end up this section by emphasizing the possibility of further

performance improvement using multiple estimates, as stated in remark 5 in Chapter 4.

However, unlike the binary modulation case, multiple estimates for M -QAM can occurs

naturally. For M -QAM, the kth BER of a link in the in-phase part is the same as that of

a link in the quadrature-phase part. Hence, we can improve the performance by average

these two estimates. Moreover, in our estimator, it is implicitly assumed that we consider

the three links with the same bit-level elements for convenience of representation. In

fact, we can estimate ERs by considering the three links with different bit-level elements

to generate multiple estimates. For example, we may consider a basic nonlinear system

involving e11, e
2
2, e

1
3 to obtain the estimates ê11, ê

2
2, ê

1
3.

Table 5.3: A noise-enhanced blind ER estimation algorithm for high order modulation
in sensor network.

Input: Received samples, y, noise variance, σ2
d, δ, α

and scaling factor values, a
(w)
1 , a

(w)
2 and a

(w)
3 .

1: Add noise-enhanced complex zero-mean Gaussian samples

with variances a
(w)
i − 1, i = 1, 2, 3 to the received samples.

2: Detect the signals ŷ
(w)
i and transform them into bit-level.

3: Compute SMPs for all link pairs by (5.17).

4: Compute ê
(w)
i , i = 1, 2, 3 via (5.18) using the SMPs obtained in 3.

5: Find the η
(w)
i through the bisection method in Table 5.2 with ê

(w)
i , i = 1, 2, 3.

6: Compute ηi = a
(w)
i ηwi , i = 1, 2, 3.

7: Compute êi via (5.28), i = 1, 2, 3.
Output: ê1, ê2 and ê3.

Similarly, the noise-enhanced estimation also consists of four steps. First, generate

noise-enhanced receive signals. Then, demodulate the signals. Because we are interested

in the symbol ERs estimation, we do not have to transform the detected signal into bit-

level one. Then, estimate the symbol ERs ẽi. Finally, transform the estimates ẽi into

the true/original ones êi. To find the transformation from ẽi to êi, we need the formula

of symbol ER. In this dissertation, we focus on MFSK (M -ary frequency-shift keying)

69



modulation scheme.

As in the case ofM -QAMmodulation scheme, it is sufficient to find a way of obtaining

SNR given a symbol ER for the ER transformation. In [37], it is shown that the symbol

ER for MFSK modulation scheme is

e =
M−1∑
m=1

(−1)m+1

(
M − 1

m

)
1

1 +m(1 + η)
(5.33)

where η is the average signal-to-noise power ratio (SNR). Notice that (5.33) is a rational

function of η. Hence, we can obtain a polynomial equation of e with one variable η.

Solving the polynomial equation yields the value of η given e. For example, the symbol

ER for 4-FSK modulation scheme is

e =
3∑

m=1

(−1)m+1

(
3− 1

m

)
1

1 +m(1 + η)

⇒6eη3 + (29e− 11)η2 + (46e− 28)η + 24e− 18 = 0

We can solve the polynomial equation either by the bisection method or by Newton

method [46].

5.6 Simulation results

For convenience of reference, we refer to the detector (5.1), (5.8), and (5.10) as the

symbol-level, bit-level, and nonsymmetric bit-level detector, respectively. Moreover,

the bit-level detector with the proposed ER estimator is denoted as ER-based bit-level

detector. The simulated performance curve of ER-based bit-level detector is obtained

by sequentially applying the proposed method. The simulations are terminated when

500 errors occurs.

First, Fig. 5.6 illustrates the performance curves with three links and QPSK modula-

tion. Clearly, the proposed bit-level detector and symbol-level detector have no difference

in BER, showing that the approximation induces negligible performance loss. In addi-

tion, the ER-based bit-level detector has the identical performance as bit-level detector.
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This indicates that the ER-based bit-level detector can be applied in practice with low

computational complexity but high performance.

To investigate the effect of higher order modulation and orthogonal one, we also

consider 16-QAM modulation and 4-FSK in three links sensor network in the same

figure (Fig. 5.6). Although there is a performance gap between the performance curve

of nonsymmetric bit-level and of symbol-level detector for 16-QAM, this gap is smaller

than 0.5 dB and is insignificant. Notice that the bit-level and nonsymmetric bit-level

detector have no observable difference in performance. Hence, we only consider the

bit-level detector with blind ER estimator (ER-based bit-level detector). Importantly,

the proposed ER-based bit-level detector for 16-QAM and ER-based detector for 4-FSK

have insignificant performance loss with low complexity; hence, they can be implemented

in wireless sensor networks.

We consider a 3-link wireless sensor network employing 16-QAM modulation and

4-FSK in Fig. 5.7 and 5.8, respectively. To compare the performance under different

link qualities, we adopt the normalized MSEE as metric. Normalized MSEE is defined

by MSEEk
j/(e

k
j )

2, where j and k denote the jth link and kth bit, respectively. As

can be seen, the higher the link quality (Eb/N0), the worse the performance, which is

the motivation of the proposed noise-enhanced estimator.Although the analytic results

(5.27) is almost identical to the simulation results for 4-FSK, the analytic results (5.19)

for 16-QAM is a lower bound performance because of the model mismatch. Nevertheless,

the gap between the analytic and simulation results is small.

Fig. 5.9 shows the stochastic resonance phenomenon where we consider a 3-link

sensor network with 16-QAM modulation. The MSEE reduction ratio (γ) performance

is defined by MSEEn

MSEEo
, where MSEEn and MSEEo are the mean square estimation error

of noise-enhanced and direct estimator (5.18). As shown in [42], the MSEE reduction

ratio γ provides the insight about the reduction ratio of requried sample size for a given

normalized MSEE. The smaller the γ is, the smaller the required sample size for noise-
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Figure 5.6: Bit (symbol) error rate performance of various detectors with QPSK/16-
QAM (MFSK) modulation and Gray mapping labelling. The qualities of the three

links for QPSK modulation are denoted by
(

Eb

N0
, Eb

N0
+ 1, Eb

N0
+ 2
)

in dB. Similarly,(
Eb

N0
, Eb

N0
+ 2, Eb

N0
+ 4
)

and (SNR,SNR+3,SNR+6) are the link qualities for QAM and

4-FSK, respectively.

enhanced estimator is. We plots the MSEE reduction ratio as a function of the first

bit’s Eb

N0

(w)
, the Eb

N0
after noise injection, at sample size N = 5000 in Fig. 5.9. Noise are

also injected into the other two links such that all links have the same Eb

N0

(w)
. These two

curves reveal that the MSEE performance is improved by injecting proper noise power

into the received samples and there is an optimal injected noise power that achieves the

maximum MSEE improvement. For example, the MSEE reduction of the e13 is about

0.002 when Eb

N0

(w)
= 10 dB. This indicates that the required number of samples for

a given precision can be reduced more than 500 times [40]. We also notice that the

improvement is more impressive when the true ER becomes smaller, which is consistent
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Figure 5.7: Normalized MSEE performance of blind bit-level estimator in a 16-QAM-
based three link wireless sensor network. The qualities of these three links are 10, 15,
and 20 (dB), respectively.

with what the importance sampling theory has predicted. Finally, we can observe that

the noise benefit interval (NBI) is quite wide. For instance, the NBI is from 0 to 20 dB

for e11 if we define the noise benefit interval as the interval that γ < 0.1. This observation

implies that the noise-enhanced estimator is robust to the noise variance estimate error.

Actually, the MSEE reduction ratio behavior depends on the noise injection strat-

egy. To show the possibility of existence of stochastic resonance phenomenon for other

strategy, we consider a strategy keeping the difference of these three links’ qualities.

This strategy is equivalent to add the noise with the same noise intensity to all three

links. The simulation results are shown in Fig. 5.10 for 16-QAM and 5.11 for 4-FSK.

As can be seen, we have the similar conclusions: the existence of stochastic resonance
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Figure 5.8: Normalized MSEE performance of blind symbol ER estimator in a 4-FSK-
based three link wireless sensor network. The qualities of these three links are 15, 20,
and 25 (dB), respectively.

phenomenon and robustness to the estimation error of noise variance.
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Figure 5.10: MSEE reduction ratio behavior of the noise-enhanced estimator in three
links sensor network with 16-QAM modulation and Rayleigh fading channel. The qual-

ities
(

Eb

N0

)
of these three links are 30, 35, and 40 (dB). We inject noise into the first link((

Eb

N0

)
= 30 (dB)

)
such that the quality of the link is Eb

N0

(w)
. We keep the difference of

the quality of these three links. That is, the other two links with noise injection have

the quality Eb

N0

(w)
+ 5 and Eb

N0

(w)
+ 10 (dB).
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Figure 5.11: MSEE reduction ratio behavior of the noise-enhanced estimator in three
links sensor network with 4-FSK modulation and Rayleigh fading channel. The qualities(
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N0

)
of these three links are 30, 35, and 40 (dB). We inject noise into the first link((

Eb

N0

)
= 30 (dB)

)
such that the quality of the link is Eb

N0

(w)
. We keep the difference of

the quality of these three links. That is, the other two links with noise injection have

the quality Eb

N0

(w)
+ 5 and Eb

N0

(w)
+ 10 (dB).
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Chapter 6

Conclusions and future work

Blind ER estimation is needed for data detection or fusion in wireless relay networks

which include sensor networks and cooperative communication networks as subclasses.

Earlier proposals suffer from slow convergence and were unable to estimate the ERs of

hidden SR links. Some ambiguity issues associated with cascaded links and the lack of

enough links remain unsolved before.

In this dissertation, we first propose noise-enhanced blind ER estimators for binary

modulation based wireless relay networks. Noise-enhancement manifests itself in three

aspects. Firstly, noise is added to the received samples to create VLs for removing the

CSI requirement and resolving the ambiguity associated with an underdetermined system

and that due to the symmetric nature of a cascaded link. Secondly, multiple noise-

injected VLs are used to reduce the estimation variance and the number of relays needed

for estimating ERs. Thirdly, inspired by the IS theory used in computer simulation

based ER estimation, noise with proper power is inserted to improve the ER estimator’s

convergence performance. The MSEE performance of some special networks is analyzed

and both analysis and simulations show that the IS inspired estimator exhibits the

so-called stochastic resonance phenomenon which amounts to the effect that injecting

noise with a proper power helps improving an estimator’s performance and there exists

an optimal injected noise power that offers the best MSEE improvement. Simulation

results indicate that the performance of the ML detector using our estimators is very
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close to that of the ideal ML detector which knows SR link’s ER perfectly. Moreover,

the Monte-Carlo based ISI approach is capable of bringing about several orders of MSEE

reduction.

For networks using high order modulation, we find that the optimal symbol-level de-

tector is not feasible because of the prohibitive computing load. However, if orthogonal

signals such as MFSK is used, the optimal symbol-level detector can be greatly simpli-

fied. For general high order modulation based networks, we derive a bit-level detector

which requires much smaller number of ER parameters. We propose ERs estimators

for the latter two cases. These estimators require low complexity while the existing

ERs estimator has to solve a large-scale optimization problem. Simulation results shows

that our symbol/bit-level fusion rule using the proposed ER estimator render small per-

formance loss (less than 0.5 dB). We also propose noise-enhanced blind ER estimators

to improve the MSEE performance for the nonbinary modulation based networks. As

expected, simulation results demonstrate that injecting noise with proper power does

bring about significant performance improvement and an optimal injected noise power

level can be found.

Our work can be extended to deal with applications in distributed source coding

[47]. As the noise-enhanced estimator achieves its best performance only if the optimal

injected power is known, a more efficient way to find this power level for different sce-

narios is needed. In Chapter 5, we have neglected the band-limiting effect and the fusion

center receives complete soft outputs [48]. There are cases when only the quantized mea-

surements are available at either the sensor nodes or the fusion center and it is desired

to have a distributed estimation algorithm [49]. These are some of topics that calls for

further investigations. Finally, we also believe that there are many interesting stochastic

resonance phenomenon in nonlinear communication systems and networks that deserve

much more research efforts to explore their applications.
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Appendix A

A.1 Derivation of (2.6)

Given the complete CSI, {hsd, hrd, σ
2
d, esr} = Icsi and unit transmit powers, Ps = Pr = 1,

the conditional joint pdf of the matched filter outputs, ysd, yrd, can be represented as

f(ysd, yrd|Icsi) = C exp

(
−∥ysd − hsd∥2

σ2
d

)[
(1− esr) exp

(
−∥yrd − hrd∥2

σ2
d

)
+esr exp

(
−∥yrd + hrd∥2

σ2
d

)]
+ C exp

(
−∥ysd + hsd∥2

σ2
d

)
×
[
(1− esr) exp

(
−∥yrd + hrd∥2

σ2
d

)
+ esr exp

(
−∥yrd − hrd∥2

σ2
d

)]
where C is a normalization constant. By removing the terms independent of esr, we

obtain

f(ysd, yrd|Icsi) ∝ exp(q0/2 + q1/2) + esr exp(q0/2) [− exp(q1/2) + exp(−q1/2)]

+ exp(−q0/2− q1/2) + esr exp(−q0/2) [− exp(−q1/2) + exp(q1/2)]

∝ cosh

(
q0 + q1

2

)
− 2esr sinh(q0/2) sinh(q1/2)

where q0
def
= 4Re{y∗sdhsd}/σ2

d and q1
def
= 4Re{y∗rdhrd}/σ2

d. Given N independent sample

pairs,
{(

q
(i)
0 , q

(i)
1

)}N

i=1
, the ML estimator for esr is given by

êsr = arg max
0≤esr<0.5

log f({ysd[i]}Ni=1, {yrd[i]}Ni=1|Icsi)

= arg max
0≤esr<0.5

N∑
i=1

log

[
cosh

(
q
(i)
0 + q

(i)
1

2

)
− 2 sinh

(
q
(i)
0

2

)
sinh

(
q
(i)
1

2

)
esr

]
.
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A.2 Derivations of (2.8) and (2.10)

To show

esr =
1− esd − erd + 2esderd − p

1− 2esd − 2erd + 4esderd

def
= esr(p) (A.1)

one first notices that

p = Pr(ŷsd = ŷrd) = Pr(ŷsd = ŷrd = 1) + Pr(ŷsd = ŷrd = 0)

Let S be the random variable representing the binary source output. The first term on

the right hand side is

Pr(ŷsd = ŷrd = 1) =
1

2
Pr(ŷsd = ŷrd = 1|S = 0) +

1

2
Pr(ŷsd = ŷrd = 1|S = 1)

Given S, ŷsd is independent of ŷrd, hence

Pr(ŷsd = ŷrd = 1|S = 0) = Pr(ŷsd = 1|S = 0)Pr(ŷrd = 1|S = 0)

= esd (esr + erd − 2esrerd)

Similarly,

Pr(ŷsd = ŷrd = 1|S = 1) = (1− esd) (1− esr − erd + 2esrerd)

One then has

Pr(ŷsd = ŷrd = 1) =
1

2
[1− esd + 2esderd − erd − esr(1− 2esd − 2erd + 4esderd)]

It is verifiable that

Pr(ŷsd = ŷrd = 0) = Pr(ŷsd = ŷrd = 1)

and therefore

p = Pr(ŷsd = ŷrd)

= 1− esd + 2esderd − erd − esr(1− 2esd − 2erd + 4esderd)
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and

esr =
1− esd − erd + 2esderd − p

1− 2esd − 2erd + 4esderd

As I(ŷsd[i] = ŷrd[i]) is Bernoulli distributed, the sample mean estimator

p̂(N) =
N∑
i=1

I (ŷsd[i] = ŷrd[i])

N
, (A.2)

is an uniform minimum variance unbiased estimator if i.i.d samples are received [35].

Using the estimator (A.2) as p̂, the method of moments and (A.1) suggests the

estimator

êsr =
1− esd − erd + 2esderd − p̂

1− 2esd − 2erd + 4esderd
= esr(p̂) (A.3)

if both erd and esd are known.

A.3 Proof of Lemma 2.1

The joint probability density function (pdf) of theN i.i.d. random variablesW (1), · · · ,W (N)

are given by

fW(W [1], · · · ,W [N ]; p) =
N∏
i=1

f(W (i); p) = pt(1− p)N−t. (A.4)

where W [i] = I (ŷsd[i] = ŷrd[i]),
∑N

i=1 I(ŷ
(i)
sd = ŷ

(i)
rd ) = t, and the marginal pdf f(W (i); p)

is a Bernoulli distribution with parameter p.

Taking derivative of the function ln fW(W [1], · · · ,W [N ]; p) with respect to p, we

obtain

∂ ln fW(W [1], · · · ,W [N ]; p)

∂p
=

t

p
− N − t

1− p
=

N

p(1− p)

(
t

N
− p

)
. (A.5)

In [50], it was shown that an unbiased estimator p̂(W [1], · · · ,W [N ])
def
= p̂ for p attains

the CRLB for all p if and only if

∂ ln fW(W [1], · · · ,W [N ]; p)

∂p
= C(p)

[
p̂(W (1), · · · ,W (N))− p

]
. (A.6)
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where C(p) is a function of p and is independent of the observations. Comparing the

above two equations, we conclude that C(p) = N
p(1−p)

and the estimator p̂(W [1], · · · ,W [N ])

= t
N
, which is equivalent to (2.9), is efficient. Furthermore, if p̂ is an efficient estimator

for p and h(p) is a linear function of p, then h(p̂) is also an efficient estimator for h(p)

[51]. Since esr is linear function of p, we prove the first part of the Lemma.

To prove the second part, we first notice that p̂ is a zero of (A.5) and thus an ML

estimator. Now if we let h(p) be esr(p) defined by (2.8), which is a one-to-one function

of p, then the invariance property of ML estimators [50] implies that esr(p̂) is also an

ML estimator for esr. As we have shown that êsr is unbiased and achieves the CRLB, it

is an UMVU estimator. The corresponding CRLB is given by [50],

CRLB =

(
∂esr(p)

∂p

)2
C(p)

=
p(1− p)

N(1− 2esd − 2erd + 4esderd)2
. (A.7)

A.4 Proof of Lemma 2.2

Without the soft-limiting effect, which can be ignored for reasonable large sample size,

the convergence speed of the estimator p̂ can be estimated by Chernoff’s inequality [52]

Pr(|p̂− p| ≥ ε1p/N) ≤ 2 exp
(
−min(ε21/4, ε1/2)p

)
where N is the sample size and ε1 is an arbitrary positive number. Using the following

identity

p̂− p

1− 2esd − 2erd + 4esderd
= esr − êsr

and setting C1 = 1− 2esd − 2erd + 4esderd and ε = ε1p
NC1

> 0, we then obtain (2.13).

A.5 Derivation of (2.18)

Notice that a basic nonlinear system (2.17) can be represented as 1−Q1 −Q0 + 2Q0Q1

1−Q1 −Q2 + 2Q1Q2

1−Q0 −Q2 + 2Q0Q2

 =

 p01
p12
p02

 (A.8)
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where Q̂0 = êsd, p01 = psr1 , and p02 = psr2 .

Representing Q1 and Q2 in terms of Q0 through the first and third equations in (A.8)

yields

Q1 = (1−Q0 − p01)/(1− 2Q0)

Q2 = (1−Q0 − p02)/(1− 2Q0)

Substituting these two equation into the second equation in (A.8), we have

1− 1−Q0 − p01
1− 2Q0

− 1−Q0 − p02
1− 2Q0

+ 2
1−Q0 − p01
1− 2Q0

1−Q0 − p02
1− 2Q0

= p12

⇒(1− p12)(1− 2Q0)
2 − (2− 2Q0 − p01 − p02)(1− 2Q0) + 2(1−Q0 − p01)(1−Q0 − p02) = 0

⇒(1/2− b/2)(2a)2 + (−2a− c/2− d/2)2a+ 2(−a− c/2)(−a− d/2) = 0

⇒− 2ba2 + (−c− d+ c+ d)a+ cd/2 = 0

⇒a = ±
√

cd

4b

where a = (Q0 − 1/2), b = 2p12 − 1, c = 2p01 − 1, and d = 2p02 − 1. Because Q0 < 1/2,

we have

Q0 =
1

2
− 1

2

√
cd

b
=

1

2
− 1

2

√
(2p01 − 1)(2p02 − 1)

2p12 − 1

The symmetric nature of (A.8) gives

Qi =
1

2
− 1

2

√
(2pij − 1)(2pik − 1)

2pjk − 1

where i, j, k ∈ {0, 1, 2}.
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Appendix B

B.1 Derivation of (4.16)

To derive (4.16), notice that we have (3.1)

e =
1

2

(
1−

√
γ

γ + 1

)
and inverse formula (3.2)

γ(w) =
(2e(w) − 1)2

1− (2e((w))− 1)2

Substitute (3.2) into (3.1) and γ = a(w)γ(w), we have

e =
1

2

(
1−

√
γ

γ + 1

)

=
1

2

1−

√
a(w)γ(w)

a(w)γ(w) + 1


=

1

2

(
1−

√
a(w)(1− 2e(w))2

1− (1− 2e((w)))2 + a(w)(1− 2e(w))2

)
which is (4.16).

B.2 Proof of Lemma 4.1

Let p̃(w) be the average count based estimate of p(w)–the SMP of the noise-injected SD

and RD link outputs–then we have, from (2.8), the conversion rule

p̂(w) = Do +
1− 2esd − 2erd + 4esderd

1− 2e
(w)
sd − 2e

(w)
rd + 4e

(w)
sd e

(w)
rd

p̃(w) (B.1)
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where

Do =
(1− esd − erd + 2esderd)(1− 2e

(w)
sd − 2e

(w)
rd + 4e

(w)
sd e

(w)
rd )

1− 2e
(w)
sd − 2e

(w)
rd + 4e

(w)
sd e

(w)
rd

−(1− 2esd − 2erd + 4esderd)(1− e
(w)
sd − e

(w)
rd + 2e

(w)
sd e

(w)
rd )

1− 2e
(w)
sd − 2e

(w)
rd + 4e

(w)
sd e

(w)
rd

(B.2)

As p̂(w) is a linear function of p̃(w), the ML estimate of p(w), it is an ML estimator of
p. Furthermore, p̃(w) is a sample mean estimator; its variance is equal to var

[
p̃(w)

]
=

p(w)(1−p(w))
N

. Similarly, the variances of p̂(w) and p̂ are respectively given by

Var
[
p̂(w)

]
=
p(w)(1− p(w))

N

(
1− 2esd − 2erd + 4esderd

1− 2e
(w)
sd − 2e

(w)
rd + 4e

(w)
sd e

(w)
rd

)2

Var [p̂] =
p(1− p)

N

Invoking the inequalities, 0 ≤ p < p(w) ≤ 0.5 or 1 ≥ p > p(w) ≥ 0.5, esd ≤ e
(w)
sd and

erd ≤ e
(w)
rd , we have p(1− p) ≤ p(w)(1− p(w)) and

(
1−2esd−2erd+4esderd

1−2e
(w)
sd −2e

(w)
rd +4e

(w)
sd e

(w)
rd

)2

≥ 1. Hence

Var [p̂] =
p(1− p)

N

≤

(
1− 2esd − 2erd + 4esderd

1− 2e
(w)
sd − 2e

(w)
rd + 4e

(w)
sd e

(w)
rd

)2
p(w)(1− p(w)

N

=Var
[
p̂(w)

]
In other words, as far as estimating p is concerned, the noise-injection method does not

help.

B.3 Proof of (4.20)

Following [53], we have the approximation for MSEE reduction ratio

γ ≈
∫∞
0

f(yrd)dyrd∫∞
0

W (yrd)f(yrd)dyrd
,W (yrd)

△
=

f(yrd)

f∗(yrd)
(B.3)

where f ∗(yrd) and f(yrd) are Gaussian pdf’s with the same mean
√

Pr|hrd|2 but distinct

variances a
(w)
rd σ2

d, σ
2
d, respectively.
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After some calculations, we have

∫ ∞

0

W (yrd)f(yrd)dyrd =
a
(w)
rd√

2a
(w)
rd − 1

Q

√(2a
(w)
rd − 1)Pr|hrd|2

aσ2
d

 (B.4)

Since Q(y) ≈ exp(−y2/2)

y
√
2π

, for large y, we obtain

γ ≈ 2a
(w)
rd − 1(√
a
(w)
rd

)3 exp

[
−(1− a

(w)
rd )Pr|hrd|2

2a
(w)
rd σ2

d

]
(B.5)

The approximation, 2a
(w)
rd − 1 ≈ 2a

(w)
rd , yields

γ ≈ 2√
a
(w)
rd

exp

[
−(1− a

(w)
rd )Pr|hrd|2

2a
(w)
rd σ2

d

]
(B.6)

which is maximized when a
(w)
rd = Pr|hrd|2/σ2

d.

B.4 Proof of Theorem 4.2

The basic idea behind the derivation is the following theorem, called the Delta method.

Theorem B.1. (The Delta method) Suppose that Yn = (Yn1, · · · , Ynk) is a sequence of

random vector such that

√
N(Yn − E[Yn]) ∼ N(0,C)

Let gi : Rk → R and let

J =


∂g1
∂y1

· · · ∂g1
∂yk

...
...

∂gk
∂y1

· · · ∂gk
∂yk


If J is not zero at E[Yn], then

√
N(g(Yn)− g(E[Yn])) ∼ N(0,JCJT )
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Based on this theorem, we need to evaluate the variance of ê(w) and then the deriva-

tive of the transform (4.16). It can be shown that the variance of ê(w) is

V ar[ê(w)] =
e(w)(1− e(w))

N

By (3.1), we have

V ar[ê(w)] =

(
1−

√
γ

γ+a(w)

)(
1 +

√
γ

γ+a(w)

)
4N

=
a(w)

4N(γ + a(w))

where γ = SNR. Moreover, the derivative of the transform (4.16) is

a(w)

[1 + (a(w) − 1)(1− 2e(w))2]3
=

a(w)[
1 + (a(w) − 1) γ

γ+a(w)

]3
Hence, the variance (MSEE) of ê is

a(w)[
1 + (a(w) − 1) γ

γ+a(w)

]3 a(w)

4N(γ + a(w))
=

(γ + a(w))2

4Na(w)(1 + γ)3
(B.7)

Hence, the reduction factor is

γ =
(γ + a(w))2

a(w)(1 + γ)2
(B.8)

To find the minimum value of γ, we solve the equation ∂γ
∂a(w) = 0 and we have

a(w) = γ (B.9)

and

γmin =
4γ

(1 + γ)2
(B.10)

Solving the equation γmin = 1 for SNR gives one repeated root 1. Since a(w) > 1, SNR

must be greater than 1 in order to get benefit.
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B.5 Proof of Lemma 4.3

The analysis presented here follows that of [33] with three major distinctions: (i) we

do not use the small ER assumption e
(w)
i ≪ 1, (ii) we have the equal ER constraint,

and (iii) we need to consider the ER conversion (4.17).To evaluate the performance, the

covariance matrix C and Jacobian matrix J must be calculated based on this theorem.

The formulas of C and J are derived in the remaining of this section.

Assuming independent links, we can show that the covariance matrix of pairwise

matching indicators I(ŷk[t] = ŷj[t]) for the noise injected network is

C =

 p12(1− p12) p123 − p12p13 p123 − p12p23
p123 − p12p13 p13(1− p13) p123 − p13p23
p123 − p12p23 p123 − p13p23 p23(1− p23)

 (B.11)

where

pkl =
(
1− e

(w)
k

)(
1− e

(w)
l

)
+ e

(w)
k e

(w)
l

pklm =
(
1− e

(w)
k

)(
1− e

(w)
l

) (
1− e(w)

m

)
+ e

(w)
k e

(w)
l e(w)

m

The three-link network induces the nonlinear system (2.17) whose solution is given by

(2.18). It is easier to compute the associated inverse Jacobian matrix for such a nonlinear

mapping.

J−1 =


(
2e

(w)
2 − 1

) (
2e

(w)
1 − 1

)
0(

2e
(w)
3 − 1

)
0

(
2e

(w)
1 − 1

)
0

(
2e

(w)
3 − 1

) (
2e

(w)
2 − 1

)


Using the constraint e
(w)
1 = e

(w)
2 = e

(w)
3 = ϵ, we obtain the Jacobian and covariance

matrices as

J =
1

2(2ϵ− 1)

 −1 −1 1
−1 1 −1
1 −1 −1

 , C =

 z1 z2 z2
z2 z1 z2
z2 z2 z1


where z1 = 2ϵ− 6ϵ2 + 8ϵ3 − 4ϵ4 and z2 = ϵ− 5ϵ2 + 8ϵ3 − 4ϵ4.
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The covariance matrix for the estimation error is thus given by

JCJT =
1

4(2ϵ− 1)2

 3z1 − 2z2 2z2 − z1 2z2 − z1
2z2 − z1 3z1 − 2z2 2z2 − z1
2z2 − z1 2z2 − z1 3z1 − 2z2


The variance of the estimator ϵ̂ can be approximated by

Var [ϵ̂] ≈ 3z1 − 2z2
4(2ϵ− 1)2N

=
4ϵ− 8ϵ2 + 8ϵ3 − 4ϵ4

4(2ϵ− 1)2N
(B.12)

and the variance of êi can be approximated by ([54] pp. 242)

Var [êi] ≈
(
dgi (ϵ)

dϵ

)2

Var [ϵ̂] =

(
a
(w)
i

)2
(
a
(w)
i + 2ϵ− 2a

(w)
i ϵ
)4 ϵ− 2ϵ2 + 2ϵ3 − ϵ4

(2ϵ− 1)2N
(B.13)

where gi(x) = x/
(
a
(w)
i + 2x− 2a

(w)
i x

)
is the noncoherent conversion rule.

B.6 Proof of Theorem 4.4

Taking into account the constant noise-injected link ER constraint, we express the av-

erage bit error rates for BFSK and DPSK as

P bfsk
b = a

(w)
i

(
2a

(w)
i + SNRi

)−1

= ϵ (B.14)

P dpsk
b = a

(w)
i

[
2
(
a
(w)
i + SNRi

)]−1

= ϵ (B.15)

Using (B.15) and omitting the superscript (w) for simplicity, we obtain

ai + 2ϵ− 2aiϵ =
ai (SNRi + 1)

ai + SNRi

, (B.16)

which, along with Lemma 4.3, gives

V ar(êi) ≈
a2i (ai + SNRi)

4

(aiSNRi + ai)4

[
3a4i + 12a3iSNRi + 16a2iSNR

2
i + 8aiSNR

3
i

16(ai + SNRi)4N

(ai + SNRi)
2

SNR2
i

]
The MSEE reduction ratio γ is thus given by

γ =
1

a2i

[
3a6i + 18a5iSNRi + 43a4iSNR

2
i + 52a3iSNR

3
i + 32a2iSNR

4
i + 8aiSNR

5
i

(1 + SNRi)2(3 + 12SNRi + 16SNR2
i + 8SNR3

i )

]
(B.17)
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Using the change of variable qi = ai/SNRi, we find that the condition ∂γ
∂ai

= 0 is

equivalent to

6q5i + 27q4i + 43q3i + 26q2i − 4 = 0 (B.18)

Since the only positive rational root is qi ≈ 0.30855316 ≡ t1, (B.15) suggests that we

inject noise such that

ϵ =
t1SNRi

2(t1 + 1)SNRi

= 0.1179 (B.19)

Furthermore, the minimum achievable MMSE reduction ratio is given by

γmin = γ|ai=t1SNRi

=
78.622SNR4

8SNR5
i + 32SNR4

i + 52SNR3
i + 43SNR2

i + 18SNRi + 3

≈9.8277
SNR2

i

(1 + SNRi)3

Solving the equation γ|ai=t1SNRi
= 1 for SNRi gives one positive repeated root 3.24092.

Since ai > 1, SNRi must be greater than 1/t1 = 3.24093 in order that noise-injection to

become beneficial.

Employing a similar approach for a BFSK based network, we conclude that

γmin = γ|ai=t′1SNRi

=
19.655SNR4

i

SNR5
i + 8SNR4

i + 26SNR3
i + 43SNR2

i + 36SNRi + 12

≈19.655
SNR2

i

(2 + SNRi)3
(B.20)

where t′1 = 0.15427658, and noise-injection is beneficial only if SNRi ≥ 6.4828.

B.7 Proof of Lemma 4.6

We begin with the simpler case where the network only consists of PLs 1,2 and VL 1

whose outputs are y1, y2 and y
(v)
1 . The probability that two PLs and the VL all give
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identical decision can be decomposed as

Pr
(
ŷ2 = ŷ1 = ŷ

(v)
1

)
=
1

2

[
Pr
(
ŷ2 = ŷ1 = ŷ

(v)
1 |x = 1

)
+ Pr

(
ŷ2 = ŷ1 = ŷ

(v)
1 |x = −1

)]
def
= p12(v1) (B.21)

The binary symmetric nature of both PLs gives

Pr
(
ŷ2 = ŷ1 = ŷ

(v)
1 |x = −1

)
= Pr

(
ŷ2 = ŷ1 = ŷ

(v)
1 |x = 1

)
=Pr (ŷ2 = 1|x = 1)Pr

(
ŷ1 = ŷ

(v)
1 = 1|x = 1

)
+Pr (ŷ2 = −1|x = 1)Pr

(
ŷ1 = ŷ

(v)
1 = −1|x = 1

)
=(1− e2)pcm + e2pem (B.22)

Based on the normalized model for link 1, y1 = hx + w, where x ∈ {±1}, h is Raleigh

distributed, and w is a zero mean Gaussian random variable with variance var(w) =

N0/2 = 1/2SNR1, we obtain

pem

=Pr
(
ŷ1 = ŷ

(v)
1 = −1|x = 1

)
= Pr

(
ŷ1 = ŷ

(v)
1 = 1|x = −1

)
=

∫
h

Pr (−h+ w > 0,−h+ w + wv > 0|x = −1, h) f(h)dh

=

∫
h

Pr

(
n > h

√
2

N0

,m > h

√
2

a
(v)
1 N0

∣∣∣∣∣ x = −1, h

)
f(h)dh (B.23)

where m = (w + wv)/

√
(a

(v)
1 N0)/2, n = w/

√
N0/2, wv is a zero mean real Gaussian

random variable with variance (a
(v)
1 − 1)N0/2, and E[nm] = 1/

√
a
(v)
1 .

The first integrand of (B.23) can be expressed as a standard bivariate Gaussian
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distribution function Q(x, y; ρ) which, in turn, yields the Craig form as [37, (4.17)]

Pr

[
n > h

√
2

N0

,m > h

√
2

a
(v)
1 N0

∣∣∣∣∣ x = −1, h

]

=Q

(
h

√
2

N0

, h

√
2

a
(v)
1 N0

; ρ

)

=
1

2π

∫ tan−1

( √
a
(v)
1 −1

1−ρ

√
a
(v)
1

)

0

exp

(
− 2h2

2N0 sin
2 Φ

)
dΦ

+
1

2π

∫ tan−1

(
1√

a
(v)
1 −1

)

0

exp

(
− 2ρ2h2

2N0 sin
2 Φ

)
dΦ (B.24)

where ρ = 1√
a
(v)
1

is the correlation coefficient.

Using the method described in [37, ch.5] and the identity [37, (5.A.11)]∫ (
1 +

c

sin2Φ

)−1

dΦ = Φ−
√

c

c+ 1
tan−1

[
tanΦ√

c
c+1

]

we obtain∫
h

Q

(
h

√
2

N0

, h

√
2

a
(v)
1 N0

, ρ

)
f(h)dh

=
1

2π

∫ π/2

0

(
1 +

1

N0 sin
2Φ

)−1

dΦ +
1

2π

∫ tan−1

(
ρ√

1−ρ2

)
0

(
1 +

ρ2

N0 sin
2 Φ

)−1

dΦ

=
1

4

(
1−

√
SNR1

1 + SNR1

)
+

1

2π

[
tan−1

(
ρ√

1− ρ2

)

−

√
ρ2SNR1

1 + ρ2SNR1

tan−1

(
ρ
√
1 + ρ2SNR1√

(1− ρ2)ρ2SNR1

)]

=
e1
2
+

1

2π

tan−1

 1√
a
(v)
1 − 1

− (1− 2e
(v)
1 ) tan−1


(
1− 2e

(v)
1

)−1

√
(a

(v)
1 − 1)




def
= pem(e1, a

(v)
1 ) (B.25)

Invoking the relation [37, (6.42)]

Q(−x,−y; ρ) = 1−Q(x)−Q(y) +Q(x, y; ρ) x, y ≥ 0
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and (B.25), we express the conditional correct (pairwise) SMP as

Pr
(
ŷ1 = ŷ

(v)
1 = 1|x = 1

)
= Pr

(
ŷ1 = ŷ

(v)
1 = −1|x = −1

)
=

∫
h

Pr (w > −h,m > −h|x = −1, h) f(h)dh

=1− e1 − e
(v)
1 + pem(e1, a

(v)
1 )

def
= pcm(e1, a

(v)
1 ) (B.26)

Summarizing (B.21)—(B.26), we then obtain

p12(v1) = e2pem(e1, a
(v)
1 ) + (1− e2)pcm(e1, a

(v)
1 ) (B.27)

which is (4.27) in the main text. The other probabilities, (4.30)-(4.33), can be similarly

derived with the aid of the following two identities [37, (6.42)]:

Q(x, y, ρ) = Q(x)−Q(x,−y,−ρ), x ≥ 0, y < 0 (B.28)

Q(x, y, ρ) = Q(y)−Q(−x, y,−ρ), x < 0, y ≥ 0 (B.29)
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