B 5 SRS G S B R
PIE 2 kB A

Design and analysis of noise-enhanced blind
error rates estimation in wireless network



v/ﬁe*\z‘%;ha 5% ﬁ’ﬁé‘ﬂi EL AL =S T;‘] }J/I}\%Fﬁ‘*f = iR %7\

Design and analysis of noise-enhanced blind error

rates estimation in wireless network

e I Student: Jen-Yang Liu
Ry KT B Advisor: Dr. Yu T. Su
R = i ~ §
,::F,

A Dissertation
Submitted to Institute of Communication Engineering
College of Electrical and Computer Engineering
National Chiao Tung University
in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy
In
Communication Engineering
Hsinchu, Taiwan

2012 & 7 *



SR ST SR SRR A SRR B W\ B SR (R 2 R B RE AT

bget - BIALM EEZAY e WL
Bl 172 iR R R (E AR e AT
REBE

BN LA BB MR 2R & B R il CA BT #E FAE EER A4 L - A
XHE ARV AR ERR AR - EIERR T - MBSt & SR A FRY S
(link)EZEREIES » THRASHYRDSE R & 1 B REAS (TR (3 A B R W) LA S 2
(two-hop) A (T {F ik mas Fy Hr 4B TE F RN ES) - TER D las b sh & U
SRR AR A (8 B R AR B B 12 AR AR B © 7EREAEZR > BRHE G
Rl BRI A T S S S A S s e R e BRI AR - AE T AR (binary
phase-shift keying) & {F U A RN 8 T R B0 I 7 S22 K01 A i 88 65 (1 {50 2K
FP LR AT > 4557 R SR SRAE)NVSEERRE A - [FIBEH > fE BRI & F1 0 (fusion
center) » Z&J* 2% FUAIHI S (B RV BB S 2 5 % B In A I $E R &G -

By T AERRNO B iUt A R iy — 217 585 (binary modulation) $57558 14
(P& SR s R i e 4R I I 1 7 A2 AV TR - {7 A2 = B ey
VCEC 4 (success matching probability) fIRd ##H4SHY AR R (5 - Hoft - FRIFTES
PRI UEFCHE AR R AE TE — (B aR SR T R SAS (S LA B SRAAR R - By T Rt IR 4R
MBI TR A AR EORE BA e s B e - EHaE R H A0
BAFIRBEE AT EA RER i B AV E SR T RE B & T I (E R Im E I Uy 4
45(SD SEAE) AR BRI A UE F IR BE4E (RD SEAE)$ERAR - MBE L ]’
{FEE IR E AT LA TE h Ak B R i A A SRR AR A - R P 2o H S B
HINE 2R I S B - iR N R iR IimdE T Bk 2 R Um SR g 2
SR $#&5 M1 RD $EASSERAARATEITH A EL -



Fo 1 s B R DA S U s - SR AR S R4k
(Monte-Carlo)fy i fllzs - HAGAGER » FFIERERIm AR (noise) EIFEUGEHSE -
TESE—RE T BTy T AR R 8 SD $#45EE RD $E4S - FEH
BRI ITEA > TRl LIERNE HA — b gL N IR ] DUS-21A flry 3 R4 M
DR o L7 ATRAP TR Ry e fBe s {023 (virtual link aided estimatior)  f£55
THEJTAT  BAFTII AR S B ERGR AR TR - RS EER Y 2
0] DAEASE IR YR RE B PTG -

FH L BURETERBURTIFEE S (stochastic resonance ) HYERG - Ik
et B A E B AT LLEeE g T3R5I 7 (mean squared estimation error ) »
BEANRATT S5 ER FIFAE B AT ARG E (E 1S BE B © STEIEHR 52 > FeAFIfiL
T —Z BN A A R AR & Ry fn] - S E AR RS M o A Y I e
M o RS R B R HEN SR A S Fo AR ey 5 i\ S N s S R R 2 A 7=
EZN R ESTERR

T E A A S AR . I UEEC R A4S 7 T $5 355 (symbol error
rate) (Y REA AN FERRIL - (R - EAERFIEYD AN RS B R TR I - 122
EIRA341 - LR — (BT R AR M A (LR - PR AR R A b T DA
g (HRHEREGIEE NS MR P EIRE H B0Z M-ary 2R M BRI
5% o $HEFILRRE > TR AR AR NIRRTV DU H S FE R AR Y 88
sRRAEAIES - IR AT A B B on = - HAE R bt Bapieny 5
EBERGS o By TP UM SRR - T MR — 1R ARG SR £
HES - R4S RBTR I MR L A ORI S5 AR B A B B (RS e M s (i R 25
FARTRSRE © FEF9 7T il HI$E 3% (mean square estimation error)AEATEES I > FAFIIR
Al I R Bt RE A B 52



Design and analysis of noise-enhanced blind error
rates estimation in wireless networks

Student : Jen-Yang Liu Advisor : Y. T. Su

Institute of Communications Engineering

National Chiao Tung University

Abstract

Data detection or fusion based on multiple received copies containing the same
information arises in many applications. We consider the scenario that each copy is
transmitted from the same source through-a.different wireless link to the same destina-
tion node (DN). These links include single-hop, direct source-to-destination (SD) links
and two-hop links that require an intermediate decode-and-forward (DF) node to relay
the source signal. Detection or fusion under such a circumstance often need channel side
information (CSI) about the link reliability. For example, maximum likelihood (ML)
detection of binary modulated signals in a DF based cooperative communication net-
work (CCN), information about the bit error rates (ERs) of the hidden source-relay (SR)
links is needed. Similarly, optimal data fusion based on multiple sensor measurements
requires that the ERs of various SR links be available at the fusion center.

To estimate multiple ERs blindly at the DN in a binary modulated network, we
convert the estimation problem into one of solving a system of nonlinear equations.
Each equation arises from the fact that the success matching probability (SMP) that a
bit transmitted over two independent links connecting the same source and destination
results in identical destination decisions is nonlinearly related to the ERs of the two

associated links. However, the number of distinct link pairs must be larger than the
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number of ERs to be estimated so that the system is not an underdetermined one.
Various degrees of channel side information (CSI) about the ERs of the SD and relay-
destination (RD) links is called for to remove the ambiguity arising from the insufficient
number of links in the network and from that due to the symmetric nature of a cascaded
source-relay-destination (SRD) link’s ER as a function of its component SR and RD
links” ERs.

We propose novel Monte-Carlo-based estimators that overcome all these shortcom-
ings and accelerate the convergence speed. Our proposals involve injecting noise into the
samples received by the DN. The injected noise in the first solution, called the virtual
link aided (VLA) estimator, help creating virtual SD and RD links to release all CSI
requirements, resolve the symmetric ambiguity and provide estimates for ERs of all com-
ponent links. Using multitude of VLs, we can enhance the VLA scheme’s performance
and reduce the number of RNs required::The role the injected noise plays in another
solution, called the importance-sampling=inspired (IST) estimator, is different: it is used
to modify link output statistics to improve the VILA estimator’s convergence rate.

The latter approach exhibits a stochastie resonance effect, i.e., its mean squared
estimation error (MSEE) performance is enhanced by injecting proper noise, and there
exists an optimal injected noise power level that achieves the maximum improvement.
The stochastic resonance effects are analyzed, and numerical examples are provided to
display our estimators’” MSEE behaviors, as well as to show that the ER performance
of the optimal detector using the proposed estimators is almost as good as that with
perfect ER information.

For nonbinary modulation based networks, a relation between the SMP of a link
pair and the associated symbol error rates does not exist, hence the nonlinear system
based moments approach is not directly applicable. A nonlinear optimization approach
which we call LJW blind estimator [34] had been proposed. Unfortunately it requires

prohibitively high computational complexity unless M (the modulation order) and the
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relay numbers are small. We propose a suboptimal detector based on bit-level represen-
tation and a corresponding blind estimator to estimate the error rate of sensor nodes.
The complexity of our estimator is much lower than that of LJW as we are able to
obtain a closed-form salutation instead of employing an iterative algorithm for solving
a nonlinear optimization. To further improve the convergence rate, we propose a noise-
enhanced estimator. Simulation results show that the proposed suboptimal detector
using the proposed blind estimator render negligible performance loss with respect to
that of the optimal detector. A stochastic resonance phenomenon is observed in the

estimator’s mean square estimation error performance.
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Chapter 1

Introduction

1.1 Stochastic resonance

In signal processing and communication systems, noise is usually the main factor of
degrading the system performance. Hence, we always remove the noise either by filter
or by some signal processing algorithms. For example, we can improve the quality of
a image if we use some denoising algorithm (such as the median filter [1]). However,
noise can do improve a system performance in some situations [2]-[17] and we call this
phenomenon as stochastic resonance or noise benefit. This phenomenon does not only
appear in signal processing or communication systems. It also occurs in the field of
sensory neurons [8], circuits and measurement [7]. For the detail and other applications,
the reader can refer to [9] and [10].

To realize the stochastic resonance, we consider a very simple example discussed
n [11]. Consider an equal priori binary hypothesis testing problem, where z is drawn
according to the zero mean Gaussian distribution with variance 1 under Hy. Under Hy,
x obeys the Gaussian distribution with mean 1 and variance 1. It is easy to show that
the optimal decision boundary is z = 0.5. However, we consider the suboptimal decision
boundary: x = 0, as shown in Fig. 1.1. Without changing the detector structure, a
simple way to improve the performance is to add a constant signal -1/2 to the received
signals. This is equivalent to shift the suboptimal decision boundary to the optimal one

and we have the best performance. This procedure can be viewed as a transformation



of the received signals. In [11], a transformation g(z) is also proposed to achieve the
performance of the optimal detector, where

x forz>1/2and x <0
g(x) =

—z for 0 <ax<1/2

This simple example illustrates two concepts. First, adding a proper noise (it is -1/2 in
this example) can improve the performance of suboptimal detector (stochastic resonance
effect). Second, a (nonlinear) transformation can also benefit and can be thought as a
generalization of stochastic resonance. Hence, it may exist several ways to improve the

performance. In this dissertation, we focus on the first type: adding noise.

Suboptimal Optimal decision
decision boundary boundary

~ L7

v
>

0 0.5

Figure 1.1: Example of optimal and suboptimal decision boundary

Several different performance measurement are used to express the stochastic reso-
nance. For example, the performance measurement is error rate in the above example. It
is also possible to use signal-to-noise ratio (SNR) [12]. Other possible performance mea-
surements are Cramér-Rao lower bound (CRLB) [13], mutual information [14], Fisher
information [15] and correlation [16]. In fact, a good measurement in a system may
not be a good one in another system. [17] indicates that it is more useful to measure
variations instead of SNR in biology, for instance. It seems that there is no unified
performance measurement for all systems to investigate the stochastic resonance. Here,

the performance measurement is the mean square estimation error (MSEE), which is



widely used in estimation problem.

1.2 Motivation and dissertation overview

We consider the basic scenario illustrated in Fig. 1.2 where the destination node (DN)
d receives sequences originated from the same source node (SN) s via multiple (L)
flat-fading links. These links may include a direct single-hop (SH) source-destination
(SD) link and indirect two-hop links, each connecting the SN and DN with the help
of an intermediate relay node (RN), say r,. Such a scenario occurs, for example, in a
cooperative communication network (CCN) in which the SD communication is aided
by single or multiple relays which act as virtual antennas to allow resource sharing
and provide spatial diversity gains [18]. Another popular example is the so-called CEO
(Central Estimating Officer) problem associated with a wireless sensor network where
each sensor sends its measurement to the- CEQ:which often does not have direct access

to the SN [19]. Tt is the CEO’s respounsibility to reliably recover the source information

based on the data it has received from various sensors [20].

7SN

Figure 1.2: A wireless multiple-relay network.

For convenience of subsequent discourse, we define a single-relay CCN as one which

consists of a source, a relay (or sensor) and a destination nodes only. We refer to the



associated SD, source-relay (SR) and relay-destination (RD) links as component links
and the indirect source-relay-destination (SRD) link as cascaded link. Although many
sensing-relay schemes have been proposed, we only consider the Decode-and-Forward
(DF) scheme [18]-[26] for which a RN (sensor) demodulates/decodes the received signal
from the SN and re-modulates/re-encodes the decoded bit stream before re-transmitting.

Since a sensor or cooperative RN may erroneously detect or sense its received signal,
conventional maximum ratio combing (MRC) or similar fusion rule is no longer optimal
for the DN. In fact, data fusion of various kinds in the presence of imperfect DF' relays
[24]-[26] and relay selection in a DF-based CCN [27] all require some forms of channel
state information (CSI). Depending on the modulation used, the required CSI includes
short-term CSI (ST-CSI) like instantaneous link gains and signal-to-noise ratios (SNRs)
and long-term CSI (LT-CSI) such as 2average link gains and error rates (ERs) of the
component links. The former has been intensively studied in terms of channel estimation,
gain control and carrier recovery loops while the I.T-CSI receives much less attention.

Pilot-aided ER estimators are obtainable at the cost of increasing the RNs’ computing
load and result in bandwidth and power efficiency reductions. The overhead and delay
become significant if the true ER is small, the packet size is small or if the number of
RNs is large. It is therefore desired that a DN performs all ER estimation tasks blindly.

In addition, pilot-aided ER estimators is not feasible in a sensor network due to the
overhead and the property of source node. In a wireless sensor network, the sensor nodes
usually are battery-limited devices Therefore, one prefers a blind estimator to reduce
the overhead issues. In addition to the overhead issues, the source possibly could not
transmit the pilot signals in a wireless sensor. It occurs in a main application of wireless
sensor network: the environmental monitoring. [28]-[30]. In this case, one wants to
detect some phenomenon, such as fire detection [31]. These two reasons enforce us to
focus on the design of blind estimations.

For multiple-relay networks, the blind ER estimation problem can be transformed



into one of solving a system of nonlinear equations. Each equation describes a relation
among the ERs of a pair of links and the probability that the same bit transmitted
through these two independent links is decoded with identical decision. Using all avail-
able link pairs and assuming no hidden SR links, Dixit, et al. [32] converted the problem
into a structured eigenvalue task and proposed a modified power method to find the
solution. Delmas and Meurisse [33] suggested an EM-based blind ER estimator that
outperforms Dixit’s estimator by using the method of moments based solution of the
nonlinear system as the initial estimate. These novel approaches, however, suffer from
some drawbacks. First, the nonlinear system is underdetermined unless we have suffi-
cient relays so that the number of distinct link pair combinations is no smaller than the
unknown ERs. Second, even if there are enough RN, it is not possible to simultaneously
estimate all (SR, SD, and RD links) ERs and LT-CSI is needed to resolve the ambiguity
resulted from the fact that the ER of a.cascaded SRD link is a symmetric function of
the corresponding component links’>ERs. Finally, the convergence rate is slow whence
it often takes a long period to obtain a reliable estimate.

It is the purpose of this dissertation to-present novel blind ER estimation schemes
that overcome all the above shortcomings. To simply our presentation, we focus mostly
on the CCN scenario with the understanding that the proposed schemes can be readily
applied in other similar scenarios. As a prelude, we briefly review a unified system
model for a multiple-relay wireless network and describe the corresponding maximum
likelihood (ML) detector and ER estimator structures in Chapter 2. We begin our
discussion with the simplest case of a binary phase-shift keying (BPSK) based single-
relay CCN, assuming the required ST- and LT-CSI’s of RD and SD links are all available
to the DN, i.e., the only unknown CSI which needs to be estimated is the average ER
of the SR link. Even for this case, we show that blind ML ER estimation based on
the DN’s matched filter outputs requires high computational complexity and storage

cost. A simple CSl-aided average count based estimator is thus given. We then extend



the approach to multiple-relay CCNs with less LT-CSI and obtain the basic nonlinear
system (set of equations) for a 3-link (two relays plus a direct SD link) CCN and its
solution. Some properties of the proposed estimator are given in the same section as
well.

The main results are presented in Chapters 3-5. In Chapter 3, we discuss the ER
ambiguity in a cascaded link and propose a novel approach which creates virtual SD/RD
links by either rotating or injecting noise into link output samples to resolve the am-
biguity and estimate all ERs without the help of multiple RNs. We show in the same
chapter that the same concept can be applied to binary frequency-shift keying (BFSK)
and differential phase-shift keying (DPSK) based systems. In Chapter 4, we first ad-
dress the convergence rate issue and suggest a simple scheme to improve the virtual link
aided (VLA) approach, using a multitude of VLs to obtain what we call the enhanced
VLA (EVLA) estimator. We then proceed to:propose a more subtle approach which is
conceptually similar to the importance sampling (IS) based simulations and is therefore
referred to as the IS-inspired (ISI)-estimator.. The ISI estimator also needs to inject
noise into link outputs but the purpose of neise-injecting is not for building VLs but
for modifying the output statistic and producing more importance events. To help the
reader understand the concept of ISI estimator, we briefly introduce the importance
sampling technique. A toy example is provided to express the main concept of designing
the ISI estimator. Important properties of the proposed estimators and the associated
MSEE performance analysis are also given in Chapter 4.

In addition to a CCN with binary modulation, we also consider a wireless sensor
network with high order modulation (QAM) in Chapter 5. In this chapter, we first
review the optimal detector shown in and a blind ER estimation proposed by Liu et al
[34] in 2011. We will show that the proposed ER estimation has high computational
complexity issue and it is almost impossible for a sensor node to implement when 16QAM

or higher order modulation is applied. To solve this issue, we first approximate the



optimal detector by utilizing the bit level representation. Then, the proposed novel bit-
level detector requires only the knowledge of bit error rate (BER). Hence, the unknown
parameters can be reduced significantly. To improve the rate of convergence or MMSE
performance, we also propose a noise-enhanced blind estimation in Chapter 5.
Simulated performance of the proposed schemes are presented in the last section
of chapter 3-5 and show that the detector using the ERs estimated by our schemes
yield performance almost as good as that with perfectly known ERs. Furthermore, a
hybrid of the EVLA and ISI (or ISI-VLA) methods is capable of offering significant
variance reduction. Both analysis and simulations prove that the ISI estimator exhibits
a stochastic resonance effect, i.e., its MSEE performance is improved by injecting noise
into the received samples and there exits an optimal injected noise power that achieves
the maximum improvement. Finally, concluding remarks and future work are provided

in Chapter 6.



Chapter 2

Adaptive blind data detection in
cooperative communication network

This chapter begins with descriptions of a generic system model, assumptions and related
parameter definitions. The expressions of the ML data detector and blind ER estimator
are then given. The second and third subsections review some side information aided
blind ER estimators for single- and multiple-relay networks. We will frequently refer to

these materials in subsequent discussions.

2.1 System model, ML detection and blind ER es-
timator

We follow the conventional assumption of using a two-phase time division duplex co-
operative communication scheme in which the SN in Fig. 1.2 transmits a sequence of
independent and identical distributed (i.i.d.) £1-valued data {x[n|} and all L RNs lis-
ten, decode and re-encode the received message in the first phase. The synchronous

samples received by the DN and the kth RN in this phase are

ysaln] = hea[n]/Pex[n] + wealn (2.1.a)
Ysre 1] = her [0/ Pezln] + w1 (2.1.b)

where P is the signal power and the additive noise components, wgq[n], ws,, [n], are

independent zero-mean complex white Gaussian random variables with variances o2 and
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o2, respectively. We assume that the complex link gains, h;;[n], for the link from node
i to node j, where (4,7) € {(s,7%), (s,d), (rg,d);k =1,---, L}, and the corresponding
noise terms, w;;[n], are mutually independent. The RNs send the re-encoded message
to the DN in the second phase. Since RNs may detect erroneously, the re-transmitted
signals are not necessarily equal to x[n|. If we denote by ., [n] the signal sent by the

kth relay and y,,q4[n| the corresponding received sample at the DN in this phase, then

yrkd[ de \/ rkzrk + Wy.d (22)

where P,

Tk

is the transmitted signal power of the kth RN and wy,, 4[n] has the same dis-

tribution as wg[n]. For frequency-flat fast Rayleigh fading links, |h;;|* are independent
exponentially distributed random variables with variance 0%.

Define the memoryless nonlinearity

fr(zie) =In E + (Le)es

— N el 0<e<1/2 2.3
o < <V 23

and, for K =1,---, L, the weighting functions
a(yln]) = R { AR50 Pylnl /o3 } (2.4.2)
ar(yln)) = R {an;, 0]/ Proyln] /3 } (2.4.)

where R{z} denotes the real part of z. Then the ML detector for BPSK signals is given
by [24]

(2.5)

z[n] = sgn [qo ysaln]) + ZfT @ (Yraln]); €sr,)

where sgn|z] denotes the sign of the real number z and e, is the ER of the link between

the source and the kth RN. (2.3) and (2.4.a)-(2.4.b) indicate that besides the instan-

) . . : Prp by aln] VPsh
taneous received complex amplitude-to-noise-power ratio, ¥—-y*==— and Sa—fd[n], the
d d

hidden SR link’s ER, es,,, should also be known by the DN for ML detection. As the
instantaneous complex links gains h,, q4[n] and hgg[n] are difficult to estimate in a high

dynamic wireless environment, noncoherent signals are sometimes preferred for they



require no such estimations. Nevertheless, [25] and [26] show that ML noncoherent de-
tections of BFSK and DPSK signals by a DN still need the LT-CSI such as ERs for both
far-end (SR) and near-end (SD and RD) links or o2.

For notational brevity, we henceforth omit the subscript k associated with the kth
relay, 7, unless there is danger of ambiguity. The DN of a single-relay BPSK-based
CCN has the samples {ysq[n], yra[n]} of (2.1.a) and (2.2) as the sufficient statistics for
estimating the BERs of its component links. As an i.i.d. source is assumed, we can easily
verify that the probability density function (pdf) of ys[n] is independent of e, and so

N &
i=1 =

is that of y.q[n]. With N coherently received sample pairs, {(qo(ysal?]), ¢1(yrali]))}
{(qO ,q1 )} the joint conditional pdf f(ysq, ¥ra|lesi) of the matched filter outputs, ysq
and y,q given CSI, {hsg, hya, 02, €5 }= Tosi, and unit transmit powers, P, = P, = 1 is a

mixture density and the ML blind ey, estimator is given by (see Appendix A.1)

= arg max 10g f({yli Y ralil} Y Tes)

N (i) (%) (i) (i)
_ 00 o W S o W (75
=arg max E log [cosh ( z > 2sinh ( 5 > sinh ( 5 ) eST] (2.6)

The reliability of the ML estimator depends on the sample size N, the true e, and
two other component links’ statistics which, in turn, determine those of q(()i) and q%i)
For practical ERs, we usually need large N for the ML estimator to converge. The
difficulty in implementing this estimator comes at least from three other concerns: (i)
the computing complexity of solving the associated nonconvex optimization problem,
(ii) there exists no recursive formula for updating the objective function whenever a new
received signals pair becomes available, and (iii) the large required storage space. These
implementation considerations convince us to turn to estimators based on the binary

sample sequence {y,.q4[n], ysqa[n]} produced by

Yraln] = sgn [q1(yra[n])],  Ysaln] = sgn go(ysa[n])] , (2.7)
Besides their simplicity, an important advantage of such estimators is that they can be

10



easily extended to noncoherent binary modulations while the form of the ML estimator
is highly modulation-dependent.

As a prelude to the study of simultaneous blind estimation of all component links’
ERs, we start with the simpler case of SR link ER estimation, assuming the ST-CSI

needed and the ERs of either all or some of the remaining component links are available.

2.2 Side-Information-Aided Blind Single ER Esti-
mation

Since a cascaded link is composed of two (i.e. SR and RD) binary symmetric links (BSLs)
with ERs, ey and e,4, the end-to-end ER e, is given by e.q = €5 (1—€,q)+(1—€g.)erg =
esr + €rq — 2€4.€,9. A single-relay CCN can thus be regarded as the composition of two
BSLs connecting the source and the destination. We assume stationary component links
with time-invariant ERs and refer to the'probability p = P, (ysq = ¥ra) as the success
matching probability (SMP). Using the identity p = esq€srq + (1 — €5q) (1 — €4,4) and the
i.i.d. source assumption, we immediately have following identity which relates various

ERs to the SMP between a direct SD link-and a cascaded SRD link

o 1 —esqg—€rg+2€q€rqg —p def
€sr = =

sr 2.8
1-— 263,1 — 26,«(1 + 4€sd€rd € (p) ( )

Since the links are assumed to be stationary, Wi “r (Ysal?] = Yrali]), where I(E) =1
if the statement E is true; otherwise it is zero, is Bernoulli distributed with success
probability p. Furthermore, the SMP can be estimated by

- /y\rd [Z])
N ’

5 — i I (Ysali] (2.9)

where the superscript (V) indicates that N sample pairs are used to obtain the estimator.
This average count based estimator is the sample mean of the Bernoulli process {W[i]}
and is an uniform minimum variance unbiased estimator if i.i.d. samples are received

[35].
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Using the sample mean estimator (A.2) as p, the method of moments and (2.8)

suggests the estimator

. 1 —esq — €ra+ 2€s4€,a — D .
ST = - sr 210
¢ 1 —2e,5 — 2€,q + 4€54€r4 sr(P) ( )

if both e,4 and ey4 are known. The derivations of (2.8) and (2.10) are given in Appendix
A2,

As 0 < e, < 0.5, our estimator €. may have to be modified by the soft-limiter
J (€s,) = min [max(€g,, 0),0.5] (2.11)

In addition, we can easily derive a recursive relation for p¥ to sequentially estimate p
and therefore eg,.
The ER estimator (2.10) has many desired properties which we summarize in the

following two lemmas.

Lemma 2.1. The estimator é,, defined by (2.10)is (i) unbiased and attains the Cramer-
Rao lower bound (CRLB), (ii) an uniformly minimum variance unbiased (UMVU) and

ML estimator with variance

. p(1 —p)
Var(éy,) = . 2.12
ar(e ) N(l — 2€sd — 26rd + 465d67«d)2 ( )

where N is sample size.

Proof. See Appendix A.3. O

Lemma 2.2. For any ¢ > 0, we have,

(2.13)

e N2e2C? NeC
Pr(les, — es| > €) < 2exp [— min < ey e 1)}

4p 7 2
where Cy = 1 —2e4q — 2€,q + 4esqe,q, N is sample size, and the soft-limiting effect (2.11)

is neglected.

Proof. See Appendix A.4. n
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The properties given in Lemma 2.1 are resulted from the fact that ég,. is a linear
function of p and the invariance property of an ML estimator. Lemma 2.2, which is
derived from using Chernoff’s inequality, implies that the estimator €y, converges to e,

in probability.

2.3 Multiple-Relay-Aided Blind Multiple ER Esti-
mation

When there are L RNs, we have (L;rl) combinatorial diversities from pairwise hard-
decision matchings. For any (k,[) RN pair, k # [, the random variable, Wy, = I (Yra = Yr,a),
is Bernoulli distributed with success (matching) probability py =P, [yr.a = Yrq) which

satisfies the identity

= QrQr+ (1 —Qp)(1 — Q) (2.14)

with @ being the cascaded link ER:given by

def
Qk = Esrp, + Crpd = Zesrkerkd = €srpd (215)

The above equations and (2.8) imply that ps,, and py, are related to the parameter sets
{€sds €sr,, €rpa} and {es,, €r.d, €sr, €rd}, respectively. Following the approach used
for the case L = 1, we replace pg,, and py in (2.8) and (2.14) by the average sample

count (sample mean) estimators

N

LGl = Tl
j=1
X I (Gyali) = Grali))

pu=> Al ZIndl) ) <p<i<L (2.16.b)
=1

to obtain (Lgl) equations, all of the form similar to (2.14), involving the unknown ERs,

{Q;} and eyq.
When the RNs are dedicated stationary nodes and {e,, 4} can be reliably estimated,

there are only L+1 unknown parameters, {esq, €5, k = 1,- -+, L}, which can be solved if
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there are at least L+ 1 independent equations. Since (Lgl) > L+1 whenever L > 2, the
unknown link parameters can be estimated as long as more than two RNs are available.

For general multiple ER estimation in an L-relay CCN, L > 2, we can divide the
problem into a sequence of subproblems, each deals with a smallest two-relay problem.
For the detail, please refer to Table 2.1. The three-link (two relays plus a direct SD
link) CCN is referred to as a basic network in which the link ER is governed by a set of

nonlinear equations called a basic (nonlinear) system.

1-— Ql — €gd + 263(1@1 DPsrq ﬁsrl
1-Q1—Q2+2Q1Q2 | = | pi2 | = | D12 (2.17)
11— €sd — QQ + 265dQ2 Psro 1/7\57“2

where Dy, | = 1,2, and Dyy are obtained via (2.16.a) and (2.16.b). A similar nonlinear
system arose in [32] where the estimations of the error rates ey and Q;’s were attempted.
Unlike our case, there is no cascaded links and hence no need to estimate the ERs of
the SR and RD links. It can be shown that the solution to the above basic system gives

the basic estimators [36] (The derivation is given in- Appendix A.5)

A 1 1 @py —1)@pik — 1)
== K ik e{0,1,2 2.18
Qi =3 2\/ %5+ % i,j,k €4 } (2.18)

where @0 = €sds Po1 = Dery> and Po2 = Pary-

The above equation indicate that the presence of multiple RD links enables us to
estimate e,y and removes the need for ey side information, i.e., the relay diversity can
be traded for the degree of LT-CSI. To estimate the ERs of the multiple hidden (far-end)
SR links, we invoke the relation (2.15), assuming the ERs of all RD links are known, to

obtain

~ @k — €rpd
= O f=1,2. 2.19
€ k 1_2€rkd ( )

The flowchart of the proposed estimator is summarized in Table 2.1.
Note that an L-relay CCN induces (L;rl) basic systems (diversities) where each relay

is involved in more than one system so that multiple estimates for a given (); may be
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Table 2.1: A blind ER estimation algorithm for a multiple-relay CCN with knowledge
of e, 4.

Input:  Received sample y and e, 4.
1. Compute the SMP estimates Dy, , and pios—1y2¢,¢ = 1,2,-- -, [ L/2]
by (2.16.a) and (2.16.b), add py, if L is odd.
2. For k =20,/ =1,2,---, compute
(i) (esa; Qk—1,Qx) by (2.18) using psr,_,, Dsry an(}\ﬁ(kq)k
3. Compute the ERs, €, by (2.19) using e, 4 and Qy
An improved €,4 is obtained by taking average of all the €,; computed in 2.
Output: €54 and ey,

obtained. Dixit [32] had proposed a complex method to take advantage of this fact and
obtained improved ER estimates. On the other hand, [33] shows that the basic estimators
given by (2.18) asymptotically achieve the accuracy achieved by the ML pilot-aided
estimator based on the two sequences of hard-decision pairs, {Jsali], Jrali] } ey, I = 1,2,

for finite N, a better estimate is obtained by maximizing the log-likelihood functions,

F({g//\sd[i]7/y\7"zd[i]}) déf 1Og f({/y\sd[iL@\nd[i]}?il)? l= 17 27 defined as

P ({¥sali], Urali]})

2
= H <62;1(§sd[i}—x[i})(1 _ esd)l(ﬂsd[i]:a:[i]) H Qll—l(yrld[Z]zw[%])(l _ QZ)I(@\”deM)>

i=1 =1
The derivation of the above function is similar to that given in [33, Section III} with
additional consideration of cascaded link ER @;. In [33] an EM based approach was
proposed to obtain blind (unknown z[i]) estimates of @); which outperforms Dixit’s
method. However, our numerical experiments conclude that, for both approaches, the
performance improvement over the basic estimators is rather limited and do not worth
the additional high complexity; see Section VI and Fig. 4.4.

Before presenting our main results in the following sections, we would like to em-

phasize that most estimators to be developed are based on some variation or extension

of the basic system (2.17) and their expressions, e.g., (3.5.a)-(3.6), (3.9.a)-(3.9.d), and
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(3.11.a)-(3.12.b), are derivable from variations or extensions of the basic estimators,

(2.18) and (2.19).
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Chapter 3

Blind Multiple ERs Estimation
using Virtual Links

We first examine the ER ambiguity issue associated with the estimation of a far-end
component link’s ER and then present a novel solution to resolve this ambiguity. The
extension to other binary modulations-BFSK and DPSK-is discussed at the end of this

chapter.

3.1 ER ambiguity in a.cascaded link

As can be seen from (2.17), when there are sufficient relays, the resulting equation set
leads to formulae for the estimates of esq and @) but not those for ey, and e, 4. This
is due to the fact that the ER of an SRD link, as (2.15) has shown, is a symmetric
function of the ERs of the associated component SR and RD links, i.e., there are infinite
many (e, ,erq) pairs that result in the same Q. In fact, the legitimate candidates
for the latter two ERs consist of the lower-left part of the hyperbola defined by (2.15),
(1 —2Qk)/4 = (esr, — 3)(erpa — 3), that lies within the square S wf {(€sry,, €ra)|0 <
sy, < %,0 < epd < %} The ambiguity in (2.15) is resolved in the scenario discussed
in the last section by specifying e,,4 so that €y, is obtained via (2.19) (see Fig. 3.1).
Geometrically, this is equivalent to finding the intersection of the hyperbola and the line
er,a = e within the square S, where e is the true ER of the RD link.

When the LT-CSI, e,,4, is not available, we need to find a curve which represents
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> erd

erd =€

Figure 3.1: Ambiguity problem can he solved if the knowledge e,q = e is available.

another set of legitimate ER pairs and which has only one intersection point with (2.15)
in §. Since the hyperbola is symmetric with respect to the line e, 4 = ey, and we
have access to the outputs of the RD and SD links only, finding a curve which has a
unique intersection with (2.15) is possible if an alternate RD link is provided. This can
be seen by noting that a RD link with a different average bit SNR 7 yields a different
equivalent cascaded link with ER @}, and therefore a curve of the form (1 —2Q})/4 =

) A
(€sr, — %)(ozemd — %), where « is such that 0 < aeyq = €4 < %

3.2 Virtual link methods

To have an alternate physical link (PL), one can purposely vary the power of the bit

stream so that the transmitted sequence is equivalent to one formed by multiplexing two
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data sources with different powers. If the locations of these two parts in the multiplexed
data stream are known, the DN then perform separate comparison and counting based
on (2.16.a) and (2.16.b). Although such a two-level amplitude modulation makes pos-
sible solving the e, , €, 4 ambiguity, allocating unequal powers to different parts of the
transmitted data stream is often undesirable. This dilemma can be avoided by creating
a virtual link (VL) without modifying the existing link.

A VL can be created by rotating the received I-QQ vector counter-clockwise by an
angle 6 between 0° and 90°. This is equivalent to introducing an artificial phase offset to
the received samples which are then used as outputs from another link. Since the noise is
circular symmetric, the rotation results in an equivalent signal power degradation cos? 6
without altering the noise statistic. Such a virtual SNR loss cannot be accomplished
by simply multiplying the BPSK matched filter output by a positive constant less than
one.

An alternate method is to add an extrazero-mean white Gaussian noise component
to the received in-phase samples. Both schemes give a VL with a smaller 7. The second
scheme-the addition of a perturbation term-incurs no hardware increase but requires
the estimation of noise power o2, which is needed in subsequent ML detection anyway.
As the phase-rotation scheme leads to an SNR degradation of magnitude cos? @, the
second scheme has to generate i.i.d. zero-mean Gaussian random samples with variance
02 = 02(1/ cos® @ — 1) to achieve the same SNR loss. Although both approaches achieve
the same effect for BPSK signals, the phase-rotating approach cannot produce a VL
for noncoherent systems while the method of inserting extra noise suits both coherent
and noncoherent applications. Hence, except for the coherent system discussed in this
section, we will adopt the noise-injection approach in the following sections.

We use the superscript (v) to indicate that a parameter is associated with a VL,
i.e., the kth RD link’s synchronous output samples and their rotated (VL) versions are

denoted by y,, 4[n], yﬁ:;[”] and the corresponding ERs by e, 4 and eff;)d. Since for a BPSK
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system operating in a flat Rayleigh fading environment, we have [37]
i) = S (1— - (3.1)
b 2 1+75)° '

(1 —2Pp*)?

which is equivalent to

¥y = . 3.2
Tz (1 —2pry2 (3.2)
The two ERs are then related by
L= (1=2ep4)*  cos207 — (1 — 202 '
Tk

Following a procedure similar to that for solving (2.17), we can easily show that the

nonlinear system which consists of (2.15), (3.3) and the new cascaded link’s ER equation

1(:) = egq, + 6521 — 2esme(v) (3.4)

rrd

has the closed-form solution

1 —S/@ =4t Qr — €ar,

Cone = —Hly AT T 5o (3.5.a)
STk
(v)
(v) k" Csry
€, g = ———Hy (3.5.b)
kd 1 —2e4,

where

co (12002 Qu(1-Q) o1 - 20" (1 - Q1) (36)

(1-20W)2 —cos?0(1 —2Q1)? (1 —2Q)2 — cos?6(1 — 2Q)?

Based on this solution, we can obtain a complete blind algorithm to estimate the ERs
of all component links by using the estimates for (), and Q,(f) which are computed
via (2.18) using another, say Ith (I # k) relay link; ER side information is no longer
needed. In short, to estimate the triplet (esq, €sr,,€r.q) associated with an SD and an
SRD links without the help of CSI, one needs another independent relay. The auxiliary
relay requirement can be waived if one creates a virtual SD link to obtain additional
combinational diversities. In general, the rotation angle for producing a virtual SD

link can be different from that for a virtual RD link. However, we lose no generality by
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assuming both rotation angles are the same, say 6. Denote by D(ys)r, Ds(or) and Prus)(or) the
estimates for the SMPs, Pr(@ifl) =Ura), Pr(Jsa = @f?), and Pr(@i? = 377(,2)), respectively,
and by Q = €44, QW) = €s(vr)d; the ERs for the SRD and the SR-plus-virtual relay links.

We obtain four nonlinear relations for a single-relay CCN:

Por = €@+ (1 —es)(1—Q) (3.7.a)
Posgr = €@+ (1-€)1-Q) (3.7.b)
Psory = €sa@Y + (1= es)(1— Q™) (3.7.c)

Busen = QW +(1—el))1 - QW) (3.7.d)

With the additional PL-VL relation

(1-2e)® 1 (1—2eW) (3.5
1—(1—2e5)* cos?601_— (1— 2622))2 :
the nonlinear system (3.7.a)—(3.8) yields the closed-form estimators
~ 1 1_AST_A ]-_Asrv—/\(v)
Csd == b AQ + Pstre) - @ (3.9.a)
21 1-20Q 1 —2QW
~ 1—+/1—4t ~ 1— /1T =4t
0= v2 LQu = Y (3.9.b)
:COS2 9<2ﬁsr - 1)2(ﬁ(vs)r - 1)/\(115)7' o (21/)\(115)7* - 1)2(]/9\57’ - 1)]/9\37’ (3 9 C)
! (Qﬁ(US)T — 1)2 — cos? 0(2]/7\37» - 1>2 (Qﬁ(vs)r — 1)2 — cos? 9(2}397‘ - 1)2 e
:COS2 Q(Zﬁs(vT) — 1)2(}/7\(1;5)(1;7") — 1)ﬁ(vs)(vr) - (Qﬁ(vs)(vr) - 1)2@\3(@?) - 1)]/58(07")
(2P(ws)(wr) — 1)? — c08® 0(2Ps(or) — 1) (2D(ws)(wr) — 1) — cos? 0(2pg(ory — 1)?
(3.9.d)

Estimators, €y, and €,4, can be derived from solving the nonlinear system which includes
(2.15), (3.3) and an equation similar to (3.4). An analytic solution of this nonlinear
system is obtained by substituting (3.9.b) into (3.6) and then (3.5.a). As has been men-
tioned in Section I, we refer to ER estimation algorithms using the approach described
in this section as virtual link aided (VLA) estimators. The corresponding estimation
procedure is included in Table 3.1.

Note that the SMP formulae (2.14) and (3.7.a)-(3.7.d) are not valid for the SMP

between a PL and its virtual version since their outputs are correlated. Actually, this
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Table 3.1: A blind ER estimation algorithm for BPSK modulation.

Input:  Received samples, y, noise variance, o3, and scaling factor

(v) _(v)
values, ay;, a, -

1: Create virtual SD and RD links by injecting complex

Gaussian noise samples with scaling factors, aiz) and ag).

2: Compute SMPs for all physical, virtual SD-SRD link pairs.

3: Compute @, @(”), and €4 through (3.9.b) and (3.9.a) with
S _ 0 _ 1
sd — “'rd T cos?6”
4: Obtain ey, and ¢,4 via (3.5.a)-(3.6).

Output: €y, €5 and €,4.

SMP is the sum of two conditional SMPs defined by (4.28) and (4.29) which are derived
in Appendix D. Obviously, a system involves these two nonlinear expressions does not
easily render a closed-form solution. On the other hand, a VL can provide a new SMP
relation similar to (2.14) with each different PL or its virtual version and a single-relay
CCN can offer two uncorrelated VL$ to render a basic system that consists of three
independent SMP equations, we thus conclude that, by using both virtual RD and SD

links, one can estimate all ERs of a single-relay CCN without side information.

3.3 Blind ER Estimation for BFSK and DPSK Sig-

nals

Although we have limited our discussion to BPSK signals so far, such a restriction does
not lose any generality as far as the VL concept is concerned. The proposed blind
estimation method in the last section can easily be extended to noncoherent binary
modulations because our estimation scheme can be applied for any binary symmetric
channel. Besides using (noncooperative) noncoherent detectors, the DN adds a complex
Gaussian perturbation term to each of the received noncoherent sample to generate the
corresponding VL with the desired equivalent average SNR.

As in the BPSK case, we first perform the noncoherent detection to obtain the hard
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decisions. Since, for the noncoherent case, the definition and estimation of SMPs are
the same as those of the BPSK-based system, we have four nonlinear equations similar
to (3.7.a)—(3.7.d) which relate the SMPs to the corresponding ERs of the connecting
SD and cascaded SRD links. The relation between the ER of a cascaded link and its
two component links remains the same we thus obtain two equations similar to (2.15)
and (3.4). However, as different modulation type is involved, the equation governing the
relation between ey;’s for the physical and the virtual links is different from (3.3), so is

that between the two e,4’s. The new relation can be expressed in the generic form
E.(2) = aWF.(2W), (3.10)

where z = ey or e,4 and, as before, the superscript (v) on the right-hand side denotes
the corresponding set of parameters for the VL. (3.10) is similar to (3.3) but the actual
expression for F,(z) depends on the modulation used and a”) is a scaling parameter
related to the variance of the injected noise (normalized with respect to 032).

)

Solving the nonlinear system consisting of the SMP equations and F,(ezq) = a(”)Fe(es f

we obtain

-~ (1 - 2]/9\57“) []- - ﬁ(vs)r} - a(v) []- - 2ﬁ(’l}8)7‘:| (1 - 2ﬁsr>

Q= — — (3.11.a)
(1 - 2psr) —a® [1 - 2p(’us)r}
o) — [1 = 2Psn] [1 =Pusen]  al [1 = 2pwsn] [1 = 2Psen)] (3.11.h)
[1 = 2Psr)] — a® [1 = 2Pgyen ] [1 = 2Dswn)] — a® [1 = 2Psyn)
~ 1 1_/\37‘_/\ 1_Asvr_/\(v)
S o Ol et U B (3.11.¢)
21 1-20 1 —2QW
Similarly, we have
R 0@ — 200 — o0 + 2 OO
Cy = A — (3.12.a)
1—20 — a® + 24Q®)
~ Q\ - /e\sr
= X Cer 3.12.b
Crd 1— 22, ( )

The explicit forms of F.(z) for different modulations and the corresponding relations
used for computing the ER estimators are listed in Table 3.2. The estimation procedure

is summarized in Table 3.3.
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Table 3.2: The required CSI and the solutions of nonlinear systems under various mod-

ulations.
Fe (l‘) Q Q(U) €sd Esr €rd
BPSK | U722y | (3.90) | (39) | (39.) | (35a) | (35.a)
BFSK =2 (3.11.a) | (3.11.b) | (3.11.c) | (3.12.a) | (3.12.b)
DPSK L (3.11.a) | (3.11.b) | (3.11.c) | (3.12.a) | (3.12.b)

Table 3.3: A blind ER estimation algorithm for BFSK/DPSK modulation.

Input:  Received samples, y, noise variance, o3, and scaling factor
values, agz), affj).
1: Create virtual SD and RD links by injecting complex

Gaussian noise samples with scaling factors, aS:l) and af:l)i.

2: Compute SMPs for all physical, virtual SD-SRD link pairs.
3: Compute Q, Q™. and €, by using (3.11.a)-(3.11.c).
4: Obtain ey, and €,4 based on (3.12.a) and (3.12.b).

Output: €y, €5 and €,4.

3.4 Simulation Results

For convenience of reference we refer to-the ME detector using the ER estimators pre-
sented in Section IT as the physical-link-only (PLO) detector and that using a VLA
estimator as the VLA detector. The ML detector with perfect CSI is called the ideal
detector. Let dgp,,dy.a,dsq be the distances of the kth SR, RD links and the SD link
and 0, be the angle between the SD and kth RD links; see Fig. 1.2. Without loss of

generality, we use the normalization, dsq = 10 so that

A2, =d 4+ 2y — 2d,, adyq cos Oy, = 100 + d2y — 20d,,.q cOS by,

STE T

(3.13)

We assume the path loss model, 07; o< d;;* with the normalization o7, = 1 and a > 0.
Denote by afj the variance of the Rayleigh faded link gain and d;; the distance between
node i and node j, (4,5) € {(s,7%), (1, d), k =1,---, L}. All the simulated performance
curves are obtained by sequentially applying the proposed methods, i.e., the estimated

ERs are updated sequentially as each new sample becomes available and the updated
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estimates are then used for detecting each received bit. As in [25], we define the SH
average SNR as the average received SNR for the direct SD link without relaying, 4.

Simulation for a given 74, terminates whenever the number of error events in the detector

2

output exceeds 500. We assume that noise powers at DN and RN are the same, 03 = o2,

and use the normalization P = P, + ZiLzl P,. = 1 such that 7,4 = 1/0%. To reduce the
complexity of the ML detector, [24] suggested a piecewise linear function to approximate
the nonlinearity (2.3). As it causes negligible performance degradation with respect to
that of the ML detector so long as ey, < %, we use the same approximation in our
simulation efforts. Fig. 3.2 illustrates the block diagram of the maximum likelihood
(ML) detector, where fr(t) is approximated by a piecewise linear function: fr(t; ey, ) ~

min(max(t, —7),T) and T = In (M)

Esry

— " qo(")

A 4

— 1 ai() J20) t

Y,
—Ldy QL(')

A 4

10

Figure 3.2: Block diagram of the maximum likelihood (ML) detector.

The performance of the PLO and VLA detectors for the simplest case, L = 1 with
BPSK modulation, is illustrated in Fig. 3.3. For the PLO detector, only e, is unknown
while the VLA detector assumes ERs of other component links are also unavailable and

v) () _ o

uses a rotation angle § = 45°, which is equivalent to injecting noise with agd =a,;, =

The performance of both detectors are found to approach that of the ideal ML detector.
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We also investigate the effect of correlated fading on the performance of the VLA detector
for DPSK signals and the result is shown in the same figure. Modified Jake’s model [38]
with normalized Doppler frequency J = f;Ts = 0.001, where f; and T being the Doppler
frequency and the sampling period, respectively, is used to generate the component link
gains, {hsq[n]}, {hs[n]}, and {h.q[n]}, as a function of sampling epochs. For the DPSK
system, we use the noise-injected VLA detector with scaling factors agz) = aff:l) = 2; see
(3.10). Obviously, the performance of the VLA detector is almost the same as that of
the ML detector within the range of interest, indicating that the i.i.d. assumption gives
accurate ER estimates for moderately correlated fading environments.

Fig. 3.3 also show the performance for the cases of two and four RNs. In the two-
relay case, we assume that the PLO detector knows e, 4 perfectly. Again, both PLO
and VLA detectors yield performance almost identical to that of the ML detector. For
the four-relay case, we decompose the problem.into four single-relay CCN subproblems,
each involves only one SRD and the SD-links. It can be seen that at the low SH-SNR
region (0 ~ 2 dB), the performance of the VLA detector is slightly worse than that of
the optimal detector. This is due to fact -that-the sample size used is not large enough
to offer a very reliable BER estimate. Nevertheless its performance is still superior to
that of the MRC detector.

In the communication systems, the transmission are packet-based. To investigate
the effect of finite length packet, we first estimate the ERs given two fixed finite samples
and simulate the bit error rate performance given the estimation results. If the ERs
are small, the ER estimates are quite bad given insufficient samples. Hence, it can be
expected that the performance will be degenerated, especially at high SNR region, as
shown in Fig. 3.4. Moreover, increasing the sample size can also improve the bit error
rate performance due to the better ER estimates.

Finally, we consider the effect of ER estimate error in bit error rate performance.

Fig. 3.6 shows that the distribution of ys; has a peak near 0 while y,4 is more smooth.
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Figure 3.3: Bit error rate performance of the ML (solid curves), MRC (o), PLO (A) and
VLA (V) detectors. The following system parameter values are used. (i) single-relay
system: Py = P. = 0.5P, dg,/dsq = 0.8, 05 =10°, and a?;, = a?; = 2 (single-relay), (ii)
2-relay system: d,,q = dg., = 7/10, 0., = 0., = 0°, P, = 0.5P, P,, = P,, = 0.25P, and
0 = 45°, (iii) 4-relay system: dgq = 10,dg,, = 5,05, = 45°,ds, = 6,0, = 30°,dg, =
4,04, = 60°,dg, = 5,05, =0°, P, =05P, FP,, =0.125P, for i = 1,2,3,4 and 6 = 30°.

If y,, is negative and near 0, then high value of 1,4 will be underestimated when e, is
overestimated (see Fig. 3.5). In this case, the probability that ys.+ fr(y.4) < 0 increases,
yielding more errors. On the other hand, if y,, is positive and near 0, then high value
of y,q will be overestimated when €, is underestimated as the case of error-free. Hence,
the error event also occurs more frequently. Nevertheless, if the ER estimate error is
not large, then there is not a great difference between the nonlinear function with ER

estimate and that with true ER, as shown in Fig. 3.5. Consequently, the performance

is not degenerated significantly.
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Figure 3.4: Bit error rate performance of the ML, MRC, PLO, and VLA detectors.
The following system parameter values are used. Single-relay system: P, = P, = 0.5P,
dsy/dsq = 0., 05 = 45°, and a?;, = a?,; = 2.
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Figure 3.5: The nonlinear function (2.3) under various ERs. The system parameter
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Figure 3.6: The probability density functions of ys; and y,4 given x = 1 in single-relay
system. The system parameter values are P; = P, = 0.5P, dy./dsq = 0., 0. = 45° and
SNR= 8 dB.

30



Chapter 4

Noise-Enhanced ER Estimations

4.1 Convergence consideration and a simple vari-
ance reduction method

It is easy to see that, like the estimator for the SMP p defined in Chapter 2, py, D(vs)r,
ﬁs(w), and ﬁ(vs)(m converge in probability. As the proposed estimators are continuous
functions of these estimates, the confinuous mapping theorem [39] implies that the
estimators {€,, €.q4, €sq} converge in probability as-well and their variances depend on
those of the SMP estimators. The latter are all derived from the same compare-and-
count process which is similar to that used in simulation-based ER estimations [40]. The
main difference is that, for the latter, the desired detector output is known perfectly and
one has complete information and control of the operating average SNR and the link
output statistic. In contrast, our scheme can only rely on blind counting without a
pilot sequence and the link statistic is either unavailable or only partially known. Both
estimation methods, however, have the same order of convergence rate and require a
large number of samples to obtain a reliable estimate if the true ER is small; see Lemma
2.1 and [40].

A straightforward approach to improve the convergence performance is to use mul-
tiple VLs, i.e., we add n,; — 1 virtual RD and/or SD links with the same noise power.
Each VL renders a set of new estimates and the final estimates are obtained by taking

average of the n,; estimates. This method is called the enhanced-VLA (EVLA) estima-
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tor which yields a reduced variance for a given sample size, or equivalently, achieves the

same variance as that of the original (n,; = 1) estimator with a smaller sample size.

4.2 A brief introduction to importance sampling

To further improve the convergence/variance performance, the above-mentioned anal-
ogy between our method and the simulation-based estimator suggests that we apply a
variance reduction method used in the latter approach called importance sampling (IS).
For self-contained, we briefly introduce the IS technique.

As we known, variance is a key measure to evaluate the efficiency of a estimator. Low
variance implies the low number of samples required for a fixed precision. Hence, several
techniques had been proposed to reduce the variance significantly [41] and importance
sampling is one of them [40], [42].

To understand importance sampling technique, we consider the following problem:

p———/H(:v)f(x)dx (4.1)

where H is a system performance function and f is a probability density function. A
concrete example is the estimation of error rate for BPSK modulation in AWGN channel.
In this case, f(z) is the distribution of received signal and H(x) is an indicator function
of an error event. To estimate the value p, we can generate several samples x; according
to the distribution f(z), evaluate the system performance function, and calculate the

average weighted sum:

P > Hw) 4.2

For importance sampling technique, we should choice another probability density
function g(z) such that g(z) # 0 whenever H(z)f(x) # 0. Then, the estimation problem

(4.1) becomes

X

= xmxx
p—/Hum g(x)d (4.3)

z)
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and we can estimate p by

N
1 f(x:)
= — H(z;)——= 4.4
ey (4.4)
which is called the importance sampling estimator. Notice that the samples z; are drawn
from the distribution g(z) instead of f(x) in this case. The probability density function

g(x) is usually called the importance sampling density, proposal density, or instrumental

density [43]. In addition, the ratio of densities,

W(zx) = J(@) (4.5)

g(z)
is called the likelihood ratio.

The importance sampling estimator is unbiased because

Z/Hx, dx,——Z/HxZ xzdxl—%—

Moreover, the variance of p is

Var [p] Zvar{ ;) U}

g(;)

To find the optimal importance sampling density g(x), we can minimize the variance of

p, which equivalent to minimize the variance Var [H (xl)f Emg] Notice that

(f e dx) ( e ”1/%)2

H@) P [H@E?
p x) /g(:ﬁ)dz = ) d

g(xi)

is a probability density function, we have

Hence, the variance Var [H(a:z)f( i)} is minimized if gop(x;) o< |H(z)|f(z). Since g(x)

|H (ﬂf)\f(x)

gopt(xz) f ’H x .13 (46)
Moreover, if H(xz) > 0, we have g,y = H(z)f(z)/p and
flx) | _ 2( 0 f(z)? 2 21 _ .2 _
Var [H(m)gapt (x)] =E [H ( )gopt (1:)2} pP=E[p’]-p*=0 (4.7)
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As can be seen, if we can find the optimal importance sampling density, the variance
becomes zero if H(x) > 0. However, it also implies that we should known the value p,
which is the value we want to estimate and could not be known in advance. In general,
how to select a good importance sampling density depends on the problem we encounter
and a bad choice of importance sampling density may even yield large variance.

To sum up, the basic idea of IS method is to modifies the distribution of received
sample so that it follows a proposal probability distribution that makes the important
(error) event occurs much more often than the original unmodified case does.

In [42], the IS technique is applied to the estimation of error probabilities over non-

linear channel. A variance reduction factor for a given sample size is defined as

MSFEEs

MSFEE, (48)

’}/Qﬁ

where MSEFE, and MSEE;s are the MSEEof the direct Monte-Carlo and importance
sampling estimations, respectively. =The smaller the variance reduction factor is, the
better the importance sampling estimationis.  Because M SFEFE is inverse proportional
to the sample size N, the variance reduction-factor also indicates the sample size reduc-
tion inversely. For example, if ¥ = 0.01 and the direct Monte-Carlo estimation needs
10% samples for some M SEFE, then the importance sampling estimator only needs 10*
samples with the same performace.

Moreover, a importance sampling density g(x) = \/@ [f(x)]'~ is proposed in [42]

and it is shown that the optimal value of « is

—34+ /9 +4T2(1 +T?)
2772

(4.9)

Qopt =

for memoryless Gaussian channel with H(z) = I(z > T) and T" > 0 is an arbitrary
threshold. Similar to the case, we will propose an importance sampling inspired enhanced
estimator with a parameter to change the distribution of the received signals and find

the optimal value of this parameter.
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4.3 An importance sampling inspired noise-enhanced
estimator

The difficulty in applying the IS theory to our scenario, besides the fundamental differ-
ences just mentioned in section 4.1, is due to the fact that the estimators, as was shown
in (3.11.a)—(3.12.b) and other similar equations presented before, are derived from SMPs
and, perhaps, other ERs. The complete control of their statistics through dependent
variables whose probability distributions are unknown is impossible. For instance, in
the case of a BPSK based CCN, an SMP depends on the inner product of the SD and
RD link outputs whose probability distributions depend on, among other parameters,
the true ER of the SR link, which needs to be estimated in the first place. In other
words, the optimal (variance-minimizing) importance distribution is a function of the
parameters whose values we either do not know or want to estimate.

The following observations, however; indicate that a suboptimal importance distri-
bution is obtainable. Firstly, the ultimate parameters of interest are the link ERs not
the pairwise SMPs and the IS theory says that convergence is faster if the ER to be
estimated by simulation is properly increased, which may be realized by simply adjust-
ing the corresponding link output’s variance. Secondly, some ER estimator formulae are
functions of other ERs and SMPs, hence if the estimates of other ERs can be improved
while those for SMPs remain unchanged, e.g., the ER estimator of ey, through (2.8), we
can obtain an improved estimator. Finally, it is reasonable to assume that link outputs’
statistics are partially known, e.g., their noise variances. But even if we are able to
partially control the distributions of related parameters, there still exist the problem of
weighting the resulting counts, which is needed in a conventional IS-based procedure
and can only be done if both the original and modified link output distributions are
known.

Our solution which overcomes all these difficulties can be expressed by the following

toy example. Similar to the simulation case, we consider a point-to-point communica-
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tion system with BPSK modulation in Rayleigh fading channel and assume that the
transmission signal is perfectly known at receiver. That is, we encounter a data-aided
error rate estimation problem.

To estimate the error rate, a simple but widely used estimator is compare-and-count

estimator:

N ~
E Z’L:l ](\Z; T ) (410)

where z; and ¥; are the ith transmitted signal and its decision at receiver. It has been

shown that the normalized MSEE of this estimator is

1—e
e

MSEE, = (4.11)

where e is the system error rate. This formula indicates that it requires more samples
to estimate a smaller error rate. In other:words, given a fixed normalized MSEE, the
required number of samples decreases with the increase of error rate. It motives us to
transform the estimation problem of error rate e into another one with larger error rate,
say e, which is similar to the concept-of IS-technique. To increase the system error
rate can be done by injecting some noise into the received signals and the distribution
of received signals changes. Recall that when we use IS technique, we need to calculate

the likelihood ratio:

Wiy = LW (4.12)

9(y)

In this toy example, f(y) and g(y) are

(yi — hz\/l_sz)> (4.13)

No
9(y) = S exp (— i hiﬁwi)) (4.14)

vV 7TawN0 a(“’)NO

where P is the transmission power and we inject Gaussian noise such that the noise

variance is a™ Ny, a®) > 1. It is not reasonable to assume that P is also known
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because the error rate can be calculated by the formula (3.1) [37]. In terms of P and

Ny, (3.1) can be rewritten as

1 P
=—11- 4.1
c 2( P—I—No) (4.15)

if the variance of channel gain h is 1. Hence, it is difficult to evaluate the likelihood
ratio.

To overcome this difficulty, we observe that we have the error rate formula (3.1) and
inverse formula (3.2). We can first estimate the error rate e*) and find the equivalent
SNR™ by (3.2). Since a®) is known, we can transform SNR™ to SNR = a*) SN R™),
Finally, use the formula (3.1) to obtain the estimate of e. The flowchart and noise-
enhanced ER estimation algorithm is given in Fig. 4.1 and Table 4.1, respectively.
Notice that we can combine the transformations by the following formula (Appendix

B.1):

_1 al)(1 = 2e(w))2
€=3 (1 - \/1 —{1 +2el(w)))? + a®) (1 — 2€(w))2> (4.16)

Noise injection and
A estimation . oW

J Transformation
e

Figure 4.1: The flowchart of the proposed noise-enhanced estimation for data-aided
BPSK system in Rayleigh fading channel

According to the toy example, the proposed noise-enhanced estimator for CCN pro-

ceeds as follows. We first add zero-mean complex Gaussian samples with variances,
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Table 4.1: A noise-enhanced ER estimation algorithm for data-aided BPSK system in
Rayleigh fading channel.

Input:  Received samples, y, noise variance, o3, and a™),

1: Add noise-enhanced complex zero-mean Gaussian samples
with variances ™) — 1 to y.

2 Obtain &™) by (4.10).

3: Find out € by .

T Obtain e, and €, via (3.5.a)-(3.6).

8: elseif modulation type is BFSK or DPSK then

9: Compute Q, Q™. and €, by using (3.11.a)-(3.11.c).

10: Obtain ey, and €,4 based on (3.12.a) and (3.12.b).

11: end if

12: end for

13: Convert the estimates of the noise-injected ERs back to
those of the original (uncontaminated) ERs via (4.17) or (4.18).

14 Take averages of all estimates, if available, to obtain the
final estimates €54 and €,4.
15 Compute ey, via (2.10) using the estimates obtained in 14

and p derived from the uncontaminated received samples.
Output: €y, €5 and €.q.

Nsq, Npg, to the received SD and RD:link output samples y,q and y,.4, respectively.
This results in link outputs with larger variances. By solving the nonlinear system
associated with the estimated SMPs of the noise-injected links, we obtain the esti-
mates {Eﬁ?,éﬁ?,éﬁg)}, where the superscript (w) is used to signify the fact that the
estimates are computed by inserting artificial noises. As the noise-injection effectively
reduces the average SNR, the scaling relation (3.10) with a®*) = o) =1+ N,/0? or
1 + N,q/c3 enables us to weight and convert the estimates, {5@?,5&2’)}, back to the

estimates {62?,&?} of the true ERs {eg, €,4}. For instance, in a noncoherent BFSK

or DPSK based CCN, the relation, % = a®) 1_2€(w>, for max{e, e} < 1/2, suggests

e(w)

that DN use the conversion rule
20 Z 30 /(g0 4 95(w) _ 9q(ulgtw)y (4.17)
where the subscripts, “sd” and “rd” associated with the estimators é™) and e™) are
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omitted to simplify the expression. Similarly, the conversion rule for a BPSK based

network 1is

1 (w) (1 — 2p(w))?
6<w>:_[1—\/ a) (1= 2e) (4.18)

2 1— (1 —28®)° 4 al® (1 - 28@)* |’
The above two conversion rules bypass the need for complete statistics by directly using
the ER conversion based only on, a®), the ratio between the noise-injected and original
SNRs (instead of individual SNRs). They also imply that &) < &) which has been
expected as we have purposely made e(®) larger by injecting noise. If VLs are needed, we
have to inject an additional noise term into the noise-injected PLs to create VLs. Hence,
the scaling factor is a(?), o), or aa®), depending on whether the link is a VL, noise-
injected PL or a noise-injected VL. We call the class of estimators based on the above
concept as the importance sampling inspired VLA (ISI-VLA) estimator. In the following
sections, we show, via both analysis and:simulations, that the ISI-VLA estimator does
offer significant performance enhancement.- The novel estimation procedure in this and

previous section are summarized in-Table. " 4.2.

4.4 Properties and performance analysis of the noise-
enhanced estimator

For the above approach, noise-injection is performed to improve the ER estimators not
the SMP p observed at the DN. In fact, it results in a smaller SMP p(*) and if we want

to estimate the original p through p(*), we obtain a worse SMP estimate, i.e.,

Lemma 4.1. Let p and p™) be the true SMP’s of the original and noise-injected links,
p™ and p be the estimates of p with and without the aid of the noise-injected link.
Then

Var [p] < Var [p™] . (4.19)

Proof. See Appendix B.2. m
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Table 4.2: A unified blind noise-enhanced ER estimation algorithm.

Input:  Received samples, y, noise variance, o3, scaling factor

values, agz), aff;), Sj), afﬁl’) and the number of VLs, n,,.

1: for =1 to n,; do

Add noise-enhanced complex zero-mean Gaussian samples

with variances a(d) — 1 and/or a( )

SD- and RD-link output samples

— 1 to the received

3: Create virtual SD and RD links by injecting complex
Gaussian noise samples with scaling factors, aifj} and ag{)j.

4: Compute SMPs for all physical, virtual and/or noise-
enhanced SD-SRD link pairs.

D: if modulation type is BPSK then

6: Compute @, Q®, and €, through (3.9.b) and (3.9.a) with

(v) _ (v) 1
Gsg = ard - cos20

7 Obtain e, and €, via (3.5.a)-(3.6).
8: elseif modulation type is BFSK or DPSK then
9: Compute Q, Q™). and €, by using (3.11.a)-(3.11.¢).
10: Obtain ey, and €,4 based on (3.12.a) and (3.12.b).
11: end if
12: end for
13: Convert the estimates of the noise-injected ERs back to
those of the original (uncontaminated) ERs via (4.17) or (4.18).

14 Take averages of all“estimates; if available, to obtain the
final estimates €4 and €4
15 Compute ey, via (2.10) using the estimates obtained in 14

and p derived from the uncontaminated received samples.
Output: €y, €5 and €,.q.

As we can only inject noise into samples received by the DN, ysq and (or) y,q4, es
remains intact and 252 = &) if this estimator is obtained by substituting Aﬁ,d),’fs)
and p™) into (2.8). The above lemma suggests that we should replace p{*) by p in the
substitution procedure for estimating e,.. As mentioned in the last section, a better
estimate for ey can thus be obtained by using the noise-enhanced estimates, éﬁ:%éﬁ?,
and the original p; see (2.8).

The range of the appropriate values for the scaling factor a(*) is certainly dependent

on the true ERs e and the noise injected ERs e(™). As will be shown in Theorem 4.4 and

40



numerically in next section that the MSEE performance is improved by injecting proper
noise power into the received samples and there is an optimal injected noise power that
achieves the maximum MSEE improvement. This phenomena is called the stochastic
resonance effect which has been observed in some nonlinear signal processing systems.
In a BPSK-based single-relay CCN with perfect SD link (es; = 0), when both the av-
erage transmitted relay power P, and the magnitude of the slow-faded RD link gain |h,4|
are known, we show in Appendix B.3 that the optimal scaling factor is approximately

equal to the RD link output SNR

(4.20)

In addition, we also discuss the performance in the data-aided point-to-point BPSK

communication and the results are given in the following Theorem

Theorem 4.2. For a data-aided point-to=pointt BPSK communication, the optimal scal-

ing factor a(® is equal to

al =ISNR, (4.21)

opt

The minimum achievable MSEE reduction ratio, v, is given by

4SNR

Vmin = (1—i—S—NR)2 (4.22)

Moreover, noise injection using the optimal scaling factor is beneficial if SNR is larger

than 1 (0 dB).
Proof. See Appendix B.4 n

For blind estimation in CCN, we need the following lemma to derive a closed-form

expression of the optimal scaling factor for the more practical case addressed in Theorem

4.4

Lemma 4.3. [Noncoherent modulation| For a network that consists of three independent

(SD or cascaded) flat Rayleigh fading links with ERs e;. If the ISI scheme is applied
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with a common noise-injected ER egw) = € using the scaling factors a(w),i =1,2,3, the

7

variance of the noise enhanced estimator €; using the conversion rule (4.17) is given by

<w>)2

R ((li -9 2 2 3 __ A4

Var [)] ~ — +1 - (4.23)
(al(»w) + 2¢ — 2a§w)e> (2e —1)

Proof. See Appendix B.5. m

In subsequent discourse, we denote by 7;, e;, SNR;, the hard-decision output, ER,
average SNR of the ith link (direct or cascaded) and by agv) and agw), the associated
scaling factor used. To characterize the stochastic resonance effect and the noise en-
hanced performance we define the MSEE reduction ratio, ~y = MSEEs;/MSEE, where
MSEE;q; and MSEEq are the MSEE’s of the ISI-VLA and VLA estimators with the

same sample size. Using the above lemma we obtain

Theorem 4.4. For a network with three independent flat Rayleigh fading links, the

optimal scaling factor under the common noise-injected ER constraint, egw) = €1 =
1,2, 3, is approximately equal to
a) ‘At SNR;, (4.24)

where t; = 0.3085 (DPSK) or 0.15428 (BFSK). The minimum achievable MSEE reduc-

tion ratio, Y, for SNR; > 1 is given by

(4.25)

19.655—NB2 _ BFSK

SNR?
. N{ 9.827Trrentys:  DPSK
(2+SNR¢)37

Moreover, noise injection using the optimal scaling factor is beneficial if SNR; is larger
than 3.241 (DPSK) or 6.483 (BFSK).
Proof. See Appendix B.6. m

Following a procedure similar to that used in proving Lemma 4.3 and Theorem 4.4

and using the relation governing the ER ¢ of a noise-injected BPSK link and the asso-

ciated scaling factor, e = % (1 — (Tj&) we can prove that
\ a{")+SNR;
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Theorem 4.5. For a 3-link BPSK based network in a flat Rayleigh fading environment,
the optimal scaling factors that ensure a common noise-injected ER is a; = t;SNR; and

the MSEE reduction ratio ~y for link ¢ is

B 24.68SNR} (4.26)
Ta=tiSNR: = 37 10SNR, + 11SNR? + 4SNR? '
where t; = A%ﬁ Noise injection using the optimal scaling factor is beneficial if SNR; >

1.823.

To evaluate the MSEE performance of VLA and ISI-VLA estimators in a CCN, as
shown in B.5, we need to compute the covariance and matrix C of the pairwise matching
indicators I(yx[t] = y;[t]) and the associated Jacobian matrix J. The entries of these
two matrices are functions of the (not necessarily pairwise) SMPs whose expressions are

given below!.

Lemma 4.6. For a two-link BPSK-based network, the SMP, pia(,1), that direct PLs 1,

2 and agv)—scaled VL 1 (denoted bywl) all yield the same hard decision is given by

P12(v1) = 62pem(61a agv)) + (1 - eQ)pcm(€1> agv)) (427)

where the conditional erroneous matching probability pem(el,agv)) et Pr(y; = ﬁ”) =
—s|s) and the conditional correct matching probability, pcm(el,agv)) el Pr(y; = g’flv) =

sls), s = £1 being the normalized transmitted BPSK signal, are

(v)y—1
tanfl (17261 )
1 ( \/agv)—l

wy,_¢& 1 1
Pem(€1,a’) =— + tan — ~ (4.28)
2 27 agv) 1 (1— 265 ))—1
Pem (€1, aﬁ“)) =1—¢ — eﬁ“) + pem (€1, aﬁ”)) (4.29)

IMatching probabilities and variance analysis for noise-enhanced estimators are similar. Depending
on where the noise-injected links are located, the resulting expressions are obtained by replacing e; and
(or) egv) by ez(-w) and (or) its VL version; the scaling factors are also modified when necessary. This
apply to Lemmas 4.6, 4.8 as well as Theorems 4.7, 4.9.
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If PL 1 is a cascaded link, the SMP becomes

P12(v1) =€2 [pem(ela agv))(l - esr) + pcm(ela agv))esr]

+ (1= e2) [pem(er, af)ew + pom(er,af”)(1 = o) (4.30)

where e, is ER of the hidden component link of PL 1. The SMP that direct PL 1,

cascaded PL 2, az(-v)—scaled VLs 1 and 2 all yield the same hard decision is given by

P12(v1)(v2) = pem<€17 CL]@) [pem(627 agv)>(1 - esr) + pcm(€27 agv))esr}

+ pcm(eh agv)) [ em(627 agv))esr + pcm<€27 ag}))(l - esr>i| (431)

Finally, we have the two joint pairwise SMPs

Pr ( = U, z’f v) = ﬂ( )) = P12(v1)(v2)
(1- _ (®) (v _ Q)
€1 — pem €1, (11 657") €2 pem(€27 CL2 ) + Esr 62 pem(€27 CL2 )

+|
[e 7 = pem(ex, ag ))} {(1 — €ar) [egv) = Pemi €3, aév))} + €qr [62 — Pem/(€2, aé”))] }
(4.32)

1=Y2 5 W :ﬂ) = P12(v1)(v2)
+ |:€1 - pem<617 ag’”)>:| {(1 - esr) [egv) - pem((ig, agj))} + éqr |:e2 — pem(€2, ag”)):| }
+|

4~ puter. )] {(1 = ) [e2 = ponten )] + e [ — p(en,a)]}

Proof. See Appendix B.7. O]

With the above formulae and the pairwise SMP given by (B.2), we use a procedure
similar to that presented in B.5 to evaluate the covariance matrix of the ER estimators

and obtain
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Theorem 4.7. For a two-link BPSK-based network using a virtual Ry D link, the vari-

ances of the VLA estimators, €1, e; are given by

(»U)] _ b3p12(1 — p12) — 2b2b3 + P1)2(1 — P1)2)

- 4.34

arfer|er, ez, ay (1 —2e3)2(by — b1)?N .
~ . b2 1 — — 2b1bs + pry L = pe

Var[ésler, e2,al”)] = tP12(L = P12) — 26105 + pun2(l — Pene) (4.35)

(]_ — 261)2(b2 — b1)2N

o

03" (03" 1) (1=2e1)23/2

where pi2, pw1)2 are the SMPs for the link pairs (1,2) and (v1,2), by =

_ _ : : (w)
by = [a§”>—(ag“)—f)a—zel)?]l/?’ bs = P12(v1) —DP12P2(w1)- Moreover, if noise of power (a, —1)o?
is injected, then the variance of the noise-enhanced ISI-VLA estimator /ef-w) is given by
a;” ) | ) (w) )
‘ 5 Var [ei ey yey  ,ay ] (4.36)

1+ (@l - 1)(1 - 264“’))2]

7

If a virtual Ry D link is used instead, then (4.34)-(4.36) should be modified by replacing

aﬁ”), €1, P(v1)2; and P12(v1) with ag})u €2, P1(v2) and P12(v2), respectively.

Note that the notations used in:(4.34) and (4.35) imply that the variance of ¢; is a

)

function of ey, e, and a(lv only. All other parameters, e.g. b;’s, depend on these three

parameters. For the case addressed in Theorem 4.7, the optimal scaling factors can be
obtained by finding the extreme points of (4.36)—a highly nonlinear function of a{"’, a$".
The performance analysis of an ISI-VLA estimator for the hidden SR link is more

involved. We need the following preliminary result.

Lemma 4.8. For a single-relay CCN with single virtual SD and RD link, the (i, j)th

entry of the covariance matrix C of the indicator vector, |[I(y; =1a) I (ﬂg”) = ﬂg)

T
I (@1 = ﬁ;)) I @411;) = ?f;’)ﬂ , is given by

Pre(1 — prr) ifk=10 K=
C; = DU I i 4.37
’ { Pr(yk =Y, Y = yz') — PrIPk otherwise ( )

fori,j =1,---,4, with the mapping i — (k,[) defined by

1 ifiis odd 2 <2
b= { (vl) otherwise ’ = { > (4.38)
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and a similar mapping from j to (k¥’,1’). The corresponding inverse Jacobian J~! is given

by
2e9 — 1 (2e7 — 1)(1 — 2e3) (2e7 — 1)(1 — 2eg4,) 0
(262 — W (er,al”)  (2e{”) = 1)(1 = 2e,) (2e8 — 1)(1 = 2e4,) 0
0 (2e3 — 1)(1 = 2e8")  (2e5 — 1)(1 — 264, )1 (e2,a") 2e{" — 1
0 (265 = 1)(1 —2e8) (26 = 1)(1 = 264, )1/ (e2,a”) (28 — D)W (eq,a(?)

(4.39)

o
[a®) 4+ (1—a())(1-22)2]3/2"

where h'(z,a) =
We immediately have

Theorem 4.9. For a single-relay BPSK-based CCN with a agl)—scaled virtual SD link
and a a%)—scaled virtual RD link, as described by (3.7.a)—(3.8), the variances for the

VLA estimators €,,, €,q and €,4 are given by

_,_C . C
Varle,,] = %, Varle,q] = %, (4.40)
Varleu] RN G4 + Cu (4.41)

AN

where C = JCJ T and 617 denotes the element in the ith row and jth column of C.

Furthermore, the variance of the ISI-VLA estimators, eo, 2, and &%, are

&)
Var[e(?] = ==, (4.42)
(w) &
Var[e™)] = %rd 53 (4.43)
r (w) w)y2]® N
L+ (af) = (1 - 26y
(w) C( C(w) é(w) é(w)
Var[e®)] = Ced o o o (4.44)

14+ @) 1 -2y N

where C®) = [éfjw)] = JwCw) (J(“’))T, and J®), C®) are computed after noise-

injection into all but the SR link.

We summarize below a few remarks regarding the above properties, their extensions

and the proposed noise-enhanced estimator in general.
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R1

R2

R3

R4

The noise samples play the dual role of i) generating VLs to eliminate the needs
for CSI and extra RNs and resolve the symmetric ambiguity and ii) altering the

statistical property of the received samples.

As the identity, (2.14), which relates an SMP to the associated ERs; involves two
independent links, the three-link network has the special property of offering (g) =3
link-pairs such that each link participates in two link-pairs. Such an “uniform
participation” is important to guarantee uniform performance, i.e., the MSEE
performance for each link is the same if the true ERs are identical. In general for a
network with four or more links the number of link-pairs is larger than the number
of independent links and the performance of an ER estimator for a particular link

depends on the number of link-pairs it has participated.

Although Theorems 4.4, 4.5 consider, a three-link network only, extensions to net-
works with more independent component links are straightforward but closed-form
expressions for the corresponding optimal scaling factor and noise benefit interval
can only be determined numerically. Nevertheless, for the special cases consid-

ered by both theorems, the minimum achievable MSEE reduction ratio tends to

O <ﬁ> at high SNRs.

Theorems 4.7, 4.9 give the MSEE expressions for BPSK-based VLA and ISI-VLA
estimators but we are not able to derive closed-form expressions for the nonco-
herent modulation based networks. The optimal injected-noise power levels for
noncoherent networks with correlated links seem to be mathematically intractable.
However, our analysis indicates that a key factor in the MSEE expression is the
square of the first derivative of the conversion function (rule) with respect to the
scaling factor which is of order (a§“’>)—2 for small ERs; see, e.g., (4.23). The in-
crease of aﬁ“’) reduces this factor’s value but it also impact on other parameters

that might increase the MSEE. For examples, in (4.23) agw) is fixed by the identical
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egw) = € constraint and is not a independent parameter while in (4.36) al(-w) affects

every parameters on the second rational term. The optimal agw) strikes a best bal-
ance between these conflicting effects. Numerical experiments reported in the next
section show that, similar to the special cases addressed in Theorems 1, 2, there is
a proper range of injected noise power levels for enhancing the performance with

added noise and an optimal scaling factor (added noise power level) does exist.

R5 Similar to the EVLA scheme, we can add n,; — 1 virtual RD and/or SD links to
obtain the same number of estimates for {€;4} and/or {€,4}, each with the same
reduced variance, and then take average on the resulting n,; estimators. This
sample-mean approach guarantees improved performance but the improvement

ratio is bounded by 1/n,; due to the correlations amongst VLs. The resulting

multiple VLs algorithm is called the enhanced ISI-VLA (EISI-VLA) estimator.

4.5 Numerical Results

To verify our MSEE analysis, we first ‘consider the data-aided point-to-point BPSK
communication in Rayleigh fading channel (toy example case), illustrated in Fig. 4.2.
As can be seen, our analysis is consistent with simulation results and there is indeed
a optimal injected noise power. Based on Theorem 4.2, the optimal value of a(®) is
1000 = 30 (dB), which is the channel quality. In practice, the noise variance should be
estimated with some estimation error. Fortunately, this simulation also indicates that
the performance is not sensitive to the optimal value of a(*). This nonsensitive property
shows the possibility to implement the noise-enhanced estimator in the real world.
Then, we consider a 3-link wireless sensor network in Fig. 4.3 which shows that, for
all three binary modulations considered, the analytic predictions are very close to those
obtained by simulations even when the sample size is small, and both give identical
results if the sample size is large. Similar performance trend for the ISI-VLA scheme

in a BPSK-based single-relay CCN is found in the same figure. The normalized MSEE
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Figure 4.2: Normalized MSEE performance of the noise-enhanced estimator for data-
aided point-to-point BPSK communication in_Rayleigh fading channel. The channel
quality is 30 dB (error rate e = 2.5 x 107%):7The sample size is 10000.

performance, E[(€ — e)?]/e?, where e is the true ER, of the VLA, VLA-EM, and EISI-
VLA estimation schemes for a BFSK-based single-relay CCN network is shown in Fig.
4.4. The VLA-EM scheme refers to a modified version of the EM based estimator of [33],
which did not consider the hidden SR link. The modifications are needed to apply a VL
for resolving the ambiguity and replace the normalization factor such that the equation

for updating the ER estimate for the cascaded link becomes
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where ();’s are defined in chapter 2 with the superscripts denote the associated iteration
number. The ISI method injects additional noise to estimate the ERs of the resulting
links and then converting them back to e, and e,4 via the analytic formulas given in
Table 3.2. The performance curves clearly demonstrate that the advantage of the VLA-
EM scheme against the VLA estimator is negligible while the EISI-VLA scheme far

outperforms the other two schemes.

10 4
\
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Figure 4.3: Normalized MSEE performance of the ISI-VLA scheme for (a) various binary
modulated 3-link networks (e; = 0.003, e3 = 0.002, e3 = 0.001; the injected noise power
is such that SH SNR=2 for link 1 and e{*) = e{*) = ¢{) ) and (2) BPSK-based single-
relay CCN (5 = 0.02922, €,4 = 0.001988, e,q = 0.04356, a'?) = o) = 2, o/ =1
and affi) = 30). For 3-link networks, only the performance of €; is shown. The analytic
predictions (solid curves) for these two scenarios are based on (4.23) and (4.42)—(4.44),
respectively.

Fig. 4.5 plots the MSEE reduction ratio as a function of the scaling factor agf:) while

the other scaling factor a%) is chosen such that efjj) = eg). These curves reveal that
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Figure 4.4: Normalized MSEE performance of VLA;"VLA-EM, and EISI-VLA schemes in

a BFSK-based single-relay CCN with ey, = 0.0127, ¢, = 5.0711 x 1075 and e,4 = 0.0298.

Other parameter values used are: aiz) = CL?(«Z) w0, eSj) = eff;) = 0.05 and n,; = 30.

the MSEE performance is improved by injecting proper noise power into the received
samples and there is an optimal injected noise power that achieves the maximum MSEE
improvement. This phenomena is called the stochastic resonance effect which has been
observed in some nonlinear systems; see [6] and reference therein. We also notice that the
improvement is more impressive when the true ER becomes smaller, which is consistent
with what the IS theory has predicted. The noise benefit interval (NBI), defined as
the range of the scaling factor values within which the MSEE reduction ratio is less
than 1, is a function of the true e,y and e,q. As mentioned before, we are not able
to derive closed-form expressions for the optimal scaling factors used in a noncoherent

network. Nevertheless, extensive simulations suggest that it is a good strategy to make
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GS;) = effs) ~ 0.05 if both e, and e,4 are much smaller than 0.05. As was explained

in Chapter 4, because of the availability of improved estimates for e,y and e,q, the
performance of €, is also improved although we do not and could not inject noise into

samples received at RNs.
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Figure 4.5: MSEE reduction ratio () performance of the ISI-VLA estimator with BFSK
modulation and agz) = af,z,) = 2. Part (a) is obtained by assuming ds, = 5, SH-SNR=25
dB with the path loss exponent = 2 (which leads to ez = 0.0016,e,4 = 0.0016, e5q =
0.0062). Part (b) assumes that ds. = 8, SH-SNR=18 dB with path loss exponent = 4 so
that es, = 0.0127, e,q = 5.0711 x 107°, e5¢ = 0.0298. The MSEE reduction ratio of the
RD link is not shown in part (b) as it is relatively small (~ O(107?)).

Although proper noise-injection does improve the convergence rate performance, in
some cases such as those shown in Fig. 4.5, the improvement is not quite as significant
as one wishes. The MSEE reduction ratio can be further improved by the enhanced

ISI-VLA estimator as is shown in Fig. 4.6 where the simulation conditions are identical
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to those assumed in Fig. 4.5(b). As expected, the performance is improved with the
increase of n,; and the improvement is much more impressive when the true ER is small:
the required sample size reduction is more than 10 times for the SD link and is greater
than 8000 times for the RD link when n,; = 30. Another benefit of using multiple VLs

is that the NBI becomes larger as n,; increases.

s

SR-link SD-link
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Figure 4.6: MSEE reduction ratio behavior of the EISI-VLA estimator for BFSK based
CCN with different n,;. Other system parameter values are the same as those of Fig.
4.5(b).
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Chapter 5

Data fusion and blind multiple error
rate estimation in a non-binary
modulation based wireless sensor
network

For optimal M-hypothesis detection in a parallel system, the performance of the sensor
nodes must be available at the fusion eenter (FC). Such information can be obtained
by the LJW blind estimator [34] based on a multinomial distribution model with pa-
rameters related to each links” ERs. To.get the‘estimates, we need to solve a nonlinear
optimization problem. As shown in section 5.2, this algorithm is not feasible for large
M due to the prohibitively high computational complexity. To approximate the optimal
detector, we propose a suboptimal detector based on bit-level representation and a cor-
responding blind estimator to estimate the error rate of sensor nodes in section 5.3. The
complexity of our estimator is much lower than that of LJW as we are able to obtain a
closed-form salutation instead of employing an iterative algorithm for solving a nonlin-
ear optimization. To further improve the convergence rate, we propose a noise-enhanced
estimator in section 5.5. Simulation results show that the proposed suboptimal detector
using the proposed blind estimator render negligible performance loss with respect to
that of the optimal detector. A stochastic resonance phenomenon is observed in the

estimator’s mean square estimation error performance.
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5.1 System model and optimal detector

The parallel sensing system illustrated in Fig. 5.1 consists of one source, L sensors, and
one FC. In a wireless sensor network, source transmits a signal from M candidate signals
{s0, 81, ,Sm—1} with a prior probability P(H;) =P(s; is transmitted). Each sensor
detects and forwards its decision to the FC which then determines which hypothesis
(H;) is true based on the signals forwarded by the sensors. In this dissertation, we
assume that either the sensing (source-sensor) channels or the reporting (sensors-FC)
channels is error-free. Such an assumption losses no generality as each combined source-
sensor-FC link can be modeled as an equivalent composite channel [34]. The optimal
fusion rule depends on the parameters of the equivalent channels which can be estimated

by the method described below.

Figure 5.1: Parallel distributed detection system

Denote by y; € {d;,i =0,--- , M — 1} the jth sensor’s hard decision and define the

event probability e’
e’ik P(@\j:dk‘Hi)ajzl,""L’ Z-,kzl,“',M”é#k

j =

Assuming P(H;) = 1/M, i = 0,--- ;M — 1 and the sensor-FC links are noiseless, we
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have the optimal data fusion rule [34]

g/j:arg Jnax H =) (5.1)
j=1k=1

where [(y; = di) is the binary valued function indicating if the statement y; = dj is

true.

5.2 LJW blind ER estimator

In practice, the error rates eé-k are usually unknown at FC and need to be estimated.
Pilot-assisted estimates can be obtained by sensors and forwarded to FC, which, however,
is not feasible for many sources and/or battery-limited sensors.

For convenience of reference, we briefly outline the LJW estimator! in the followings.

Let | = Z] LM where u; = k if y; = d, then the probability P(w;) =

P(uy,ug, -+ ,ur) = p; can be expressed as
M-1 L M1 L
p=> P(H) [ Ruli) = > PHE) [ (5.2)
i=0 j=1 i=0 j=1

As there are C' = M" sensor decision combinations of w;, if we denote the number of
the jth decision combination by x;, then the occurrence numbers of u;, (z1,--- ,z¢), are

multinomial distributed with parameters {p;}

N

le SR ! :—pml...pxc
(21,0 we) = ST P e pe

where N is the number of reported sensing samples. Given the occurrence number, the

LJW blind estimator is
0 = arg maxpy' -, P’ (5.3)

where § = {e/*}, for j=1,--- L, i,k=0,--- , M —1.

!Notice that the assumption of the prior probabilities in [34] is different from ours. In [34], the prior
probabilities P(H;) are unknown and can be estimated by LIW blind ER estimator.
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For an M-hypothesis, L-sensor problem, we have L(M — 1)M unknown parameters
eék. There are 720 unknown parameters to be estimated for the case M = 16 and L = 3.
An iterative method is often needed to solve the corresponding nonlinear optimization
problem (5.3). Such a large scale optimization requires extremely high computational
complexity and large memory size. Thus the LJW blind estimator is not very practical

unless M and L are very small.

5.3 Optimal/suboptimal fusion rules for nonbinary
signals

For M = 2, the blind estimator proposed in previous chapters provides a low-complexity
suboptimal alternate to (5.3). This estimator is based on the pairwise comparisons of
two independent link outputs which are categorized into matched (same hard decisions)
or unmatched (different hard decisions)outputs. The extension to the nonbinary case
becomes much more complicated as-either a-matched or unmatched result is caused by
multiple joint events in each selected link pair’s M-ary decisions.

We notice that the LJW blind estimator does not take the sensors’ transmission
method into account and, with all its generality, requires high computational complex-
ity for large M and L. In contrast, we assume that the sensors (or the source) use a
nonbinary modulation scheme and show that the structure of the signal constellation can
be used to simplify a large-scale problem greatly or to decompose a large-scale problem
into several small-scale problems, which reduce the computational complexity signifi-
cantly. We consider two modulation schemes: orthogonal and M-QAM modulations;
blind estimators for networks employing other nonbinary modulations such as M-PAM
and M-PSK can be similarly treated and derived.

Recall that the optimal detector is

~_ ik 1 (U5=d)
y=arg max | () (5.4)

L M
J:

1 k=1
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and the number of unknown parameters is L(M — 1)M due to the unequal of eék in

general. If all of eék are equal for ¢ # k, the optimal detector can reduce to be

15 =d) M . I(gj=dy)
(1—e)™= T (Mf_l) (5.5)

j=1 k=1,#i

::]h

U =ar max
Yy g i o

where e; is the symbol error rate of the jth link. To perform the optimal detection, we
only need to estimation L unknown parameters.

For M-QAM modulation scheme, we first express the symbol-level decision for the
jth sensor-FC link 7; in terms of its bit-level decisions, ie., §; = (4],97, - ,45)",
where M = 2% and Q; represents the ¢th bit for the hard decision y;. Converting an
M-ary communication link into k parallel binary symmetric links with with crossover
probabilities e;?, the bit error probability of @f (Fig. 5.2). Then, we have

R h _g¥ 1-2g7
P@lbe =0) _ TLL(e))™ (1 —ef)' ™ (-1 " AGYH  (5.6)
P@be =1 TIy(eh) ¥ (1 — gt J

J

where by, is the k bit of the source output:symbol.

l-e

l-e
Figure 5.2: A binary symmetric channel with parameter e

Since

L
1
In A(g" — — — .
n Z (1 2yj )In (ek 1> (5.7)
7j=1 J
the optimal bit-level fusion rule, assuming b, = 0 or 1 with equal probability, is
if S (1271 (i—1>
/y\k:{ g-) 1 Zg:l( y]) I e? >O (58)

otherwise
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where only the bit error rate ef is involved.

A symbol-level fusion decision can be easily obtained once all bit-level decisions
are known. This fusion rule reduces the number of parameters to be estimated from
LM(M —1)in (5.1) to Llog, M.

The above derivation assumes equivalent binary symmetric links, i.e., bit error rates
for information bit 0 and 1 are identical. Clearly, QPSK modulation satisfies this as-
sumption if the source shows no preference while M-QAM (M > 4) modulation may
not. In the latter case, we need to consider a binary asymmetric channel (Fig. 5.3). The

log likelihood ratio for such a channel with error rates e’ and e! is given by
b, =0
N P(5;"|bx = 0)
\bk =1)
H y;“(]_ k 0 1— y
=In T = —
I1;- 1(6 ) 7(1—6 ki

L e 1— Mo
=> 7 (1 _JeM) +(1—7) In <—k,1ﬂ ) (5.9)

€j

where e ® denotes the error rate of the kth bit if the binary representation of y; given

bit b has been transmitted. The corresponding bit-level fusion rule becomes

L o0 1=\ o
~k
Z]m(l_e >+(1—yj)1n< s )%o (5.10)

Jj=1

For the above asymmetric case, there are 2L log, M parameters, {ek 0 } to be esti-

’ J

mated, which is still much less than the number of unknown parameters in (5.1).

5.4 Blind symbol/bit ERs estimator

At the beginning, we focus on the orthogonal modulation and want to estimate the
symbol ERs. For convenience, we consider a three links wireless sensor networks. Later,
we will show that a wireless sensor network with more links can be decomposed into

several wireless sensor networks involving three links only.
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l-e

1 1 1

l-e
Figure 5.3: A binary nonsymmetric channel with parameter ¢ and e*

To derive a estimator, we first define a SMP as P(y;, = ¥y;,) (the probability that
the hard decisions from the ith and jth links are identical). Then, by the law of total

probability, we have

M
Py, = 1) ZP Yin = Yj | Hi)P(Hi)
k=1

1
M

M

PO .~ - .
P(yj, = yj, are corréct|Hy) + E MP(yj1 =7y, are incorrect|Hy)
k=1

M=

k=1

[
NE
<[~

% €, €,

E : J1-J2
(1 - e]l 632 + M

k=1

£
Il

1

M
=l —ej —ep+ meheh (5'11)
where we use the facts that P(Hy) = - and P(y;, = ¥, are incorrect|H;) = S22

For a three-links wireless sensor network, one has three SMPs, i.e. P(y1 = 1),

P(y> = y3), and P(y; = ¥3). These three SMPs and (5.11) yield the following nonlinear

system
M ~ ~
L —ey—e3+ gr76263 Py, = 73) AP
l—er—es+ giqeres | = | Pi=103) | = | p2 (5.12)
l1—e —ey+ %6162 P(y1 = 1) b3

and the solutions are

—bz — 1/ bZQ — 40,2‘01‘ (5 13)

2611'

€; =
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where, for 7,5,k € {1,2,3} and i # j # k,
¢; = (M —=1)(pi(M — 1) + (pj + px — 1) — Mpjp)

Hence, the procedure of the proposed ER estimator consists of two steps and is similar

to that shown in Chapter 2. In the first step, we estimate {p;}3_, by

Lyl = 3, 1) (5.14)

Py, =y3,) = Z

=1

N
where y;,[l] (¥, [l]) is the [th hard decision from the jith (joth) sensor node. Then, by

the method of moments, we can estimate ERs by solving (5.12) and we have

—b; — /07 — dac;
e (i (5.15)

€; =
2@7;

where, for i, j, k € {1,2,3} and i # j # k,

a; = M*p; — M, br==2(M =1)(Mp; — 1),

¢i = (M = 1) (pi( M.~ Ay 4+(p; 4 Dx — 1) — Mp;pr)

For QAM modulation scheme, we need to estimate the bit ERs {e;? }, not symbol ERs.
Hence, we need another step to transform the symbol-level decision into bit-level one,
yielding a three-step estimator. Specifically, we first de-map the symbol hard decision ¥;
into bit decisions ¥, which is often required in a typical digital link. In the second step,
we estimate the bit-level SMPs P(yF = @7 for ji # jo. We then have the the following

a basic nonlinear system in a three-link sensor network ((5.12) with M = 2)

L — e} —ef + 2efel P( =15) P =75)
L—ef —eh+2ebef | = | Pl =105) | ~ | P75 =35 (5.16)
1 — el — ek 4 2ekek P(yF =4%) P(gF = 7%)
Using the SMP estimates
N .
5 I (g5l = 5,100)
P, =) =) — " (5.17)



we obtain the following ER estimate via the method of moments (which can be obtained

by (5.15) with M = 2)

1| @P@ =55) - 1)QPE; =75) — 1)
2 2P(g//\;€1 = g//\fz) -1

/6\5 9 jajlan € {1a273} (518)

DO | —

k
J

For some nonbinary modulations, e is independent of k, hence the countings on the
RHS of (5.17) for different k& should be averaged to obtain an improved estimator. We
summarize the complete procedure in Table 5.1. For general L > 3, we can decompose
the estimation problem into several estimation subproblems involving only three links.
For instance, if L = 5, we can consider two estimation subproblems. The first subprob-
lem considers the first three links while the other one involves the last three links. In

this case, the ER of the third link is estimated in both subproblems and we can average

these two results to get a new estimate with better performance.

Table 5.1: A blind ER estimation algorithm for high order modulation in sensor network.

Input:  Received samples, ¥

1: Detect the signals g and transform them into bit-level 7

2: Compute SMPs for all link pairs by (5.17).

3: Compute ¢;, 1 = 1,2, 3 via (5.18) using the SMPs obtained in 2
Output: €1, €3 and e3.

To evaluate the performance of the blind bit-level ER estimation, we can analyze
the performance on the binary symmetric channel. Although it is not binary symmetric
channel for M-QAM modulation for M > 4, the results under this assumption can an
approximation of the performance on the binary asymmetric channel. To derive the
formula, we use the Delta method and inverse function theorem, as shown in Appendix
B.5 and [33]. Based on the Delta method, the MSEE of the blind bit-level ER estimation
on the binary symmetric channel is

IcIT)

MSEE[e"] ~ N 2.7 (5.19)

J
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where C is the covariance matrix, J is the Jacobian matrix and [X]; ; denotes the element
of the matrix X in the ith row and jth column. Unlike the binary case in Chapter 4,
there is a factor 2 in the denominator. This comes from the factor that there are in-
phase and quadrature-phase in M-QAM modulation. Since BERs of the kth bit in these
two phases are identical, we have two samples to estimation the BER given a received
sample.

Assuming independent links, the covariance matrix of pairwise matching indicator

vector (I(g1 = 92), I(91 = U3), (92 = y3)) can be shown to be ((B.11) or [33])

P12(1 - P12) D123 — P12P13  P123 — P12P23
C=| pizs —pizpis p1s(1 —p13)  Di2s — P13p2s (5.20)
D123 — D12P23 D123 — PisDas Pas(l — pa3)

where
pij = (1—¢€f) (Lel) + elel (5.21)
pij = (1 —ef) (T=€) (1 =ef) + efeler (5.22)
where e¥ can be evaluated based on. (5.28) in the next section. We can derive the

Jacobian matrix based on (5.18) by the definition of the Jacobian matrix and expressed
it as a function of e¥, i = 1,2, 3. This procedure is quite complex. Instead, we first derive
the inverse of the Jacobian matrix based on (5.16) and the inverse function theorem.

The associated inverse Jacobian matrix is
(2¢5 —1) (2¢f —1) 0
J7h=| (2¢5-1) 0 (2¢F — 1) (5.23)
0 (2¢5 —1) (2¢5—1)
With (5.20)-(5.23), we can compute the MSEE on the binary symmetric channel and
get the lower bound performance of the blind bit-level ER estimation on the binary

asymmetric channel.

For orthogonal modulation scheme, the derivations of the MSEE formula are similar.
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For covariance matrix, the formulas of p;; and p;;; are modified as

ekek
k k k ereser
piﬂ:(l_ez‘)(1_ej>(1_el)+m (5.25)

The other difference is the Jacobin matrix formula since the nonlinear systems (5.12)-

(5.22) and (5.16) are not the same. In this case, the inverse Jacobian matrix is

(ae2=1) (sHa-1) 0
I = (e —1) 0 (e — 1) (5.26)
0 (e —1) (se2 = 1)

With (5.20) and (5.24)-(5.26), the MSEE for orthogonal modulation scheme is

3caT]

MSEE[e"] ~ ¥

J

(5.27)

5.5 Noise-enhanced ER estimations

To further enhance the performance of the blind symbol/bit-level ER estimator, we
observe that the performance of the estimator is worse with the increase of the link
quality, as shown in Fig. 5.7. This observation also appears in the case with BPSK
modulation in Chapter 4. In that chapter, we observe that the estimator of the SMPs
is a compare-and-count process (5.17) which is similar to that used in simulation-based
ER estimations and IS techniques can be applied. It motives us to inject the noise into
the received samples to alter their statistics and perform the estimation based on them.
Because the binary symmetric model is similar to the case in Chapter 4 with binary
modulation, MSEE can be reduced possibly by injecting noise. To achieve the better
performance, we propose a noise-enhanced ER estimations similar to the estimation
proposed in 4 with some modifications.

The procedure of the proposed noise-enhanced ER estimations involves four steps for

M-QAM modulation scheme. First, we inject noise into the received signal before we
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perform the demodulation?. Then, demodulate the signals and transform the detected
signals y; into bit-level signals. The ER estimator shown in Table 5.1 is performed to
obtain the bit ER estimates €;. Finally, transform the estimates €; into the true/original
ones ¢;. So far, we know how to implement the first three steps. The remaining step is
how to transform ¢; into ¢;.

To find a transformation from €; to €;, we need to set up the binary labelling because
the transformation depends on the binary labelling. In this dissertation, we focus on the
Gray mapping labelling [44] and one example (16-QAM with Gray mapping labelling)

is shown in Fig. 5.4.

1011 1001 0001 0011

1010 1000 0000 0010

v

L L o o
1110 1100 0100 0110

L L L [
1111 1101 0101 0111

Figure 5.4: 16-QAM with Gray mapping labelling

Fig. 5.4 shows the error rate of the third bit for information bit 0, e*°, is different
from that for information bit 1, e*! because of the nonlinear decision boundary. Sim-
ulation results (Fig. 5.6), however, show that approximating the binary nonsymmetric
channel with binary symmetric one induces negligible performance loss. Therefore, in

k

the following discussion, we only consider binary symmetric channel, i.e. e¥ = 0 = eh1,

Moreover, since M-QAM consists of two independent v/ M-PAM, we only consider the

2In practice, the received signals should be quantized due to the limited reporting channel bandwidth.
In-depth analysis to the effect of the quantization is beyond the scope of this work.
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bits in in-phase components and relabel the index in order from left to right.
In [45], it is shown that the kth bit error probability of M-QAM in Rayleigh fading

channel is expressed as

1 (1-2"%)vM-1 3(2i+2)210g)2 Mn

k . 2(M—1

. kM) | 1-— 2

e _M Z U)(Z, ’ ) 320+ 1)2 log, My, . (5 8)
=0 T oai-n T

where 7 is the energy per bit to noise power spectral density ratio E,/Ny and

w(i, k, M) :(_1)[%ng <2k1 a V\Q/g " %J)

Clearly, to find the inverse function is difficult and a numerical method is proposed to

find the energy per bit to noise power spectral density ratio n given the error rate €.

ks given,

Notice that several methods can be applied to find the value of n when e
i.e. Newton method method [46]. Because the problem is a one-dimensional problem,
we use the bisection method [46] due to'its Tow eomplexity. Hence, the upper and lower
bound of 7 should be found first to-determine the search interval.

If only the first term in (5.28) is considered; an lower bound of e* can be obtained

by neglecting the higher order terms, i.e.

1 3logy Mn
i 2 2(M—1)
201 T 1

and its inverse function is

2
( , \/Mefow> oM — 2
n=|1-
2k71 e e 2
3 (2\/M22% — M (5 ) ) log, M

k

Hence, given e”, we can find a lower bound of n:

vV MeF 2M — 2
Now = (1 - ¢ (530)

2
2k71 > 2
3 (2\/M2,5k1 = M (o) ) log, M

However, the upper bound with simple form is not easy to find if it is possible.

Instead of finding a upper bound, we propose a simple bound which is a upper bound
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Figure 5.5: 16QAM error rate in Rayleigh fading with a = 2.
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within the range of interest, i.e.

2k—1 31(0]%42 M)n

k 2(M—1

6upper(a) = 1-— W (531)
A=

where v > 1. As can be seen, we introduce a parameter « into (5.29) to get the
upper bound (5.31). The parameter o depends on the range of interest and should be
determined offline. For 16-QAM modulation in Rayleigh fading channel, Fig. 5.5 shows
that a = 2 is a good choice from Ej,/Ny = 0 to 40 (dB). In this case, we can find the

upper bound of 7 given e*

2
VMek oM — 2
Nupper = | 1 — Q2k—1 k k
3 (2\/M# - M(#V) log, M

With the lower bound (5.29) and upper bound (5.31), the bisection method for finding

(5.32)

7 is described in Table 5.2.

Table 5.2: The bisection method for finding n = f[—g

Input:  €”, tolerance ¢, and «
: Compute the lower 7,0, and upper bound 7., of 1 by
(5.29) and (5.31), respectively
Set 17:=(Niow + Nupper)/2 and compute the bit error rate eF given n; by (5.28).
if ef > e*
Niow = Tt
else

Nupper = Tt
endif

If (Mupper =1Mow) >4
Now

goto 2.

10: endif

11: Compute n =
Output: .

Nupper +Mlow
2

After finding the Ej,/Ny, we can rescale it and find the estimate €* by (5.28), again.

Hence, the fourth step is complete. The flowchart of the whole estimation process is
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given in Table 5.3. We end up this section by emphasizing the possibility of further
performance improvement using multiple estimates, as stated in remark 5 in Chapter 4.
However, unlike the binary modulation case, multiple estimates for M-(QAM can occurs
naturally. For M-QAM, the kth BER of a link in the in-phase part is the same as that of
a link in the quadrature-phase part. Hence, we can improve the performance by average
these two estimates. Moreover, in our estimator, it is implicitly assumed that we consider
the three links with the same bit-level elements for convenience of representation. In
fact, we can estimate ERs by considering the three links with different bit-level elements
to generate multiple estimates. For example, we may consider a basic nonlinear system
involving ef, €3, el to obtain the estimates €}, €3, 5.

Table 5.3: A noise-enhanced blind ER estimation algorithm for high order modulation
in sensor network.

Input:  Received samples, y, noise variance; o2, §, o
and scaling factor values; a{"?, a%“ and a{".

1: Add noise-enhanced complex zero-mean:- Gaussian samples
(w)

with variances a; ' — 1, ¢ =1, 2, 3 tothe received samples.

Detect the signals @(w) and transform them into bit-level.

Compute SMPs for all link pairs by (5.17).
Compute éf-w), i=1,2,3 via (5.18) using the SMPs obtained in 3.
Find the n(w) through the bisection method in Table 5.2 with éf.w), 1=1,2,3.

7

Compute n; = agw)n;", 1=1,2,3.

7 Compute €; via (5.28), i =1,2,3.
Output: €y, é; and e3.

Similarly, the noise-enhanced estimation also consists of four steps. First, generate
noise-enhanced receive signals. Then, demodulate the signals. Because we are interested
in the symbol ERs estimation, we do not have to transform the detected signal into bit-
level one. Then, estimate the symbol ERs ¢;. Finally, transform the estimates ¢; into
the true/original ones e;. To find the transformation from e€; to €;, we need the formula

of symbol ER. In this dissertation, we focus on MFSK (M-ary frequency-shift keying)
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modulation scheme.
Asin the case of M-QAM modulation scheme, it is sufficient to find a way of obtaining
SNR given a symbol ER for the ER transformation. In [37], it is shown that the symbol

ER for MFSK modulation scheme is

M—-1

m+1 M—1 1
e=Y (-1) < . )m (5.33)

m=1
where 7 is the average signal-to-noise power ratio (SNR). Notice that (5.33) is a rational
function of n. Hence, we can obtain a polynomial equation of e with one variable 7.
Solving the polynomial equation yields the value of n given e. For example, the symbol

ER for 4-FSK modulation scheme is

= Yy =

We can solve the polynomial equation either by the bisection method or by Newton

method [46].

5.6 Simulation results

For convenience of reference, we refer to the detector (5.1), (5.8), and (5.10) as the
symbol-level, bit-level, and nonsymmetric bit-level detector, respectively. Moreover,
the bit-level detector with the proposed ER estimator is denoted as ER-based bit-level
detector. The simulated performance curve of ER-based bit-level detector is obtained
by sequentially applying the proposed method. The simulations are terminated when
500 errors occurs.

First, Fig. 5.6 illustrates the performance curves with three links and QPSK modula-
tion. Clearly, the proposed bit-level detector and symbol-level detector have no difference
in BER, showing that the approximation induces negligible performance loss. In addi-

tion, the ER-based bit-level detector has the identical performance as bit-level detector.
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This indicates that the ER-based bit-level detector can be applied in practice with low
computational complexity but high performance.

To investigate the effect of higher order modulation and orthogonal one, we also
consider 16-QAM modulation and 4-FSK in three links sensor network in the same
figure (Fig. 5.6). Although there is a performance gap between the performance curve
of nonsymmetric bit-level and of symbol-level detector for 16-QAM, this gap is smaller
than 0.5 dB and is insignificant. Notice that the bit-level and nonsymmetric bit-level
detector have no observable difference in performance. Hence, we only consider the
bit-level detector with blind ER estimator (ER-based bit-level detector). Importantly,
the proposed ER-based bit-level detector for 16-QAM and ER-based detector for 4-FSK
have insignificant performance loss with low complexity; hence, they can be implemented
in wireless sensor networks.

We consider a 3-link wireless sensor metwork employing 16-QAM modulation and
4-FSK in Fig. 5.7 and 5.8, respectively. To compare the performance under different
link qualities, we adopt the normalized. MSEE as metric. Normalized MSEE is defined
by MSEE?/ (e;?)?, where j and k denote-thejth link and kth bit, respectively. As
can be seen, the higher the link quality (E,/Np), the worse the performance, which is
the motivation of the proposed noise-enhanced estimator.Although the analytic results
(5.27) is almost identical to the simulation results for 4-FSK, the analytic results (5.19)
for 16-QAM is a lower bound performance because of the model mismatch. Nevertheless,
the gap between the analytic and simulation results is small.

Fig. 5.9 shows the stochastic resonance phenomenon where we consider a 3-link

sensor network with 16-QAM modulation. The MSEE reduction ratio () performance

is defined by %g’g?, where MSEFE, and MSFEE, are the mean square estimation error
of noise-enhanced and direct estimator (5.18). As shown in [42], the MSEE reduction
ratio v provides the insight about the reduction ratio of requried sample size for a given

normalized MSEE. The smaller the v is, the smaller the required sample size for noise-
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Figure 5.6: Bit (symbol) error rate performance of various detectors with QPSK/16-
QAM (MFSK) modulation and Gray mapping labelling. The qualities of the three

links for QPSK modulation are denoted by (%,%+ 1,]];3,—3 —|—2) in dB. Similarly,

(%, Eyyg B +4) and (SNR,SNR+3,SNR-+6) are the link qualities for QAM and
0 0 0
4-FSK, respectively.

enhanced estimator is. We plots the MSEE reduction ratio as a function of the first

(w

bit’s ﬁ—z ), the % after noise injection, at sample size N = 5000 in Fig. 5.9. Noise are

also injected into the other two links such that all links have the same %(w). These two
curves reveal that the MSEE performance is improved by injecting proper noise power
into the received samples and there is an optimal injected noise power that achieves the
maximum MSEE improvement. For example, the MSEE reduction of the e} is about

0.002 when ﬁ—g(“’)

= 10 dB. This indicates that the required number of samples for
a given precision can be reduced more than 500 times [40]. We also notice that the

improvement is more impressive when the true ER becomes smaller, which is consistent
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Figure 5.7: Normalized MSEE performance of blind bit-level estimator in a 16-QAM-
based three link wireless sensor network. The qualities of these three links are 10, 15,
and 20 (dB), respectively.
with what the importance sampling theory has predicted. Finally, we can observe that
the noise benefit interval (NBI) is quite wide. For instance, the NBI is from 0 to 20 dB
for e if we define the noise benefit interval as the interval that v < 0.1. This observation
implies that the noise-enhanced estimator is robust to the noise variance estimate error.
Actually, the MSEE reduction ratio behavior depends on the noise injection strat-
egy. To show the possibility of existence of stochastic resonance phenomenon for other
strategy, we consider a strategy keeping the difference of these three links’ qualities.
This strategy is equivalent to add the noise with the same noise intensity to all three
links. The simulation results are shown in Fig. 5.10 for 16-QAM and 5.11 for 4-FSK.

As can be seen, we have the similar conclusions: the existence of stochastic resonance
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Figure 5.8: Normalized MSEE performance of blind symbol ER estimator in a 4-FSK-
based three link wireless sensor network. The qualities of these three links are 15, 20,
and 25 (dB), respectively.

phenomenon and robustness to the estimation error of noise variance.
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Figure 5.9: MSEE reduction ratio behavior of the noise-enhanced estimator in three links
sensor network with 16-QAM modulation and Rayleigh fading channel. The qualities

(%) of these three links are 30, 35, and 40 (dB). Noise are injected into the three links

such that all links have the same ﬁ—g(w).
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Figure 5.10: MSEE reduction ratio behavior of the noise-enhanced estimator in three
links sensor network with 16-QAM modulation and Rayleigh fading channel. The qual-

ities (ﬁ—’;) of these three links are 30, 35, and 40 (dB). We inject noise into the first link

((%) =30 (dB)> such that the quality of the link is %(w). We keep the difference of
0 0
the quality of these three links. That is, the other two links with noise injection have

the quality 22 4 5 and £ 4 10 (dB)
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links sensor network with 4-FSK modulation and Rayleigh fading channel. The qualities

(%) of these three links are 30, 35, and 40 (dB). We inject noise into the first link
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Chapter 6

Conclusions and future work

Blind ER estimation is needed for data detection or fusion in wireless relay networks
which include sensor networks and cooperative communication networks as subclasses.
Earlier proposals suffer from slow convergence and were unable to estimate the ERs of
hidden SR links. Some ambiguity issues associated with cascaded links and the lack of
enough links remain unsolved before.

In this dissertation, we first propose noise-enhanced blind ER estimators for binary
modulation based wireless relay networks. Noise-enhancement manifests itself in three
aspects. Firstly, noise is added to the received samples to create VLs for removing the
CSI requirement and resolving the ambiguity associated with an underdetermined system
and that due to the symmetric nature of a cascaded link. Secondly, multiple noise-
injected VLs are used to reduce the estimation variance and the number of relays needed
for estimating ERs. Thirdly, inspired by the IS theory used in computer simulation
based ER estimation, noise with proper power is inserted to improve the ER estimator’s
convergence performance. The MSEE performance of some special networks is analyzed
and both analysis and simulations show that the IS inspired estimator exhibits the
so-called stochastic resonance phenomenon which amounts to the effect that injecting
noise with a proper power helps improving an estimator’s performance and there exists
an optimal injected noise power that offers the best MSEE improvement. Simulation

results indicate that the performance of the ML detector using our estimators is very
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close to that of the ideal ML detector which knows SR link’s ER perfectly. Moreover,
the Monte-Carlo based ISI approach is capable of bringing about several orders of MSEE
reduction.

For networks using high order modulation, we find that the optimal symbol-level de-
tector is not feasible because of the prohibitive computing load. However, if orthogonal
signals such as MFSK is used, the optimal symbol-level detector can be greatly simpli-
fied. For general high order modulation based networks, we derive a bit-level detector
which requires much smaller number of ER parameters. We propose ERs estimators
for the latter two cases. These estimators require low complexity while the existing
ERs estimator has to solve a large-scale optimization problem. Simulation results shows
that our symbol/bit-level fusion rule using the proposed ER estimator render small per-
formance loss (less than 0.5 dB). We also propose noise-enhanced blind ER estimators
to improve the MSEE performance for the noenbinary modulation based networks. As
expected, simulation results demonstrate that injecting noise with proper power does
bring about significant performance improvement and an optimal injected noise power
level can be found.

Our work can be extended to deal with applications in distributed source coding
[47]. As the noise-enhanced estimator achieves its best performance only if the optimal
injected power is known, a more efficient way to find this power level for different sce-
narios is needed. In Chapter 5, we have neglected the band-limiting effect and the fusion
center receives complete soft outputs [48]. There are cases when only the quantized mea-
surements are available at either the sensor nodes or the fusion center and it is desired
to have a distributed estimation algorithm [49]. These are some of topics that calls for
further investigations. Finally, we also believe that there are many interesting stochastic
resonance phenomenon in nonlinear communication systems and networks that deserve

much more research efforts to explore their applications.
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Appendix A

A.1 Derivation of (2.6)

Given the complete CSI, {hyg, hrq, 03, €5} = I.s; and unit transmit powers, P, = P, = 1,
the conditional joint pdf of the matched filter outputs, ysq4, ¥4, can be represented as

sd — hs 2 rd — hr 2
f(ysda yrd|lcsi) = Cexp (—M) |:(1 — esr) exp (_M)

2
d 04

rd + Dall? sd -+ Bsal|?
+€sr exp (—M)} + Oexp (_w>
04 o
hoall? i — Doall?
[0 e e (GHEAIY o (M= el
04 o5

where C' is a normalization constant.” By-removing the terms independent of e,,., we
obtain
fWsa, Yrallesi) o< exp(qo/2 + q1/2) + esr exp(qo/2) [~ exp(q1/2) + exp(—q1/2)]

+exp(—qo/2 — q1/2) + esr exp(—qo/2) [~ exp(—q1/2) + exp(q1/2)]

o< cosh (qo ;— Ch) — 2eg, sinh(qo/2) sinh(q,/2)

where gy < 4Ref{y* hsa} /o2 and ¢ wf 4Re{y!;ha}/o3. Given N independent sample

NN
pairs, {(q((f), qi”)} , the ML estimator for e, is given by
=1

1=

~

_ N NN '
by = arg Srgggof)logf({ysd[l}}i:p{yrd[@]}izlllcsz)

N @ () (i) 0
M8 ez leog [COSh ( 5 ) 2sinh ( 5 ) sinh ( 5 ) esr] :
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A.2 Derivations of (2.8) and (2.10)

To show

1 —esq— €ra+ 2€54€r0 — D def

sr T sr Al
‘ 1- 2esd - 2erd + 4€sd€rd ‘ (p) ( )

one first notices that
b = Pr(@\sd = @\rd) = Pr(@\sd = :Z/\rd - 1) + Pr(@\sd = Z/J\rd = O)

Let S be the random variable representing the binary source output. The first term on

the right hand side is

. R 1 R R 1 R -
Pr(Ysa =Yra=1) = §P1“(?/sd = Yra = 1| =0) + §P1“(Z/sd =Yra= 19 =1)

Given S, .4 is independent of 7,4, hence

Pr(Ysa = Yra = 1|S = 0) = Pr(gea=1|5 = 0)Pr(y,q = 1|S = 0)
=  €gd (esr + €rqg — 2€srerd)
Similarly,
Pr(/y\sd = /y\rd = 1‘8 = 1) = (1 - esd) (1 — €gp — Epg + 2687‘67“d)
One then has
~ ~ 1
Pr(ysd =Yrd = ]-) = 5 []- — €sq + 2esderd — €pd — esr(l - 263d - 267"d + 4€Sd€Td)]

It is verifiable that
Pr(@\sd = @\Td - 0) - Pr(:/y\sd - :/y\rd - ]-)
and therefore

b = Pr(@\sd :@\rd)

= 1- €sd T 2€sderd — €pd — esr(l - 2€sd - 26rd + 4esderd)
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and

e — 1— €sd — €rd + 2€sd€rd - P
o 1 —2e.q — 2€,q + 4egqe
sd rd sdCrd

As I(Ysali] = Yrali]) is Bernoulli distributed, the sample mean estimator

) — i I @sd[@']; @d[i])’ (A2)

(2

is an uniform minimum variance unbiased estimator if i.i.d samples are received [35].
Using the estimator (A.2) as p, the method of moments and (A.1) suggests the
estimator

1— €sd — €rd T 2esderd - 1/7\
1— 265d — 267«d + 4€sderd

- esr(ﬁ) (AB)

-~
e87” -

if both e,4 and e,y are known.

A.3 Proof of Lemma: 2.1

The joint probability density function (pdf) of the V' i.i.d. random variables W ... TW®)

are given by

fw (WL, ,WINEp) = [[ W@ p) = p'(1 = ). (A4)

i=1
where Wi] = I (uali] = Grali]), S, 1(3Y) = 7)) = t, and the marginal pdf f(W®);p)
is a Bernoulli distribution with parameter p.

Taking derivative of the function In fyw(W/[1],--- ,W[N];p) with respect to p, we

obtain

dp p 1—p p(l—p)

Oln fw(W],--- ,W[Nl;p) ¢t N-—t N t

N :
In [50], it was shown that an unbiased estimator p(W[1],--- , W[N]) 2 p for p attains
the CRLB for all p if and only if

ol fw(WI1],--- ,W[N];p)
dp

= O(p) [ﬁ(W(l)’ T 7W(N)) - p] : <A6>



where C(p) is a function of p and is independent of the observations. Comparing the

above two equations, we conclude that C'(p) = ﬁ and the estimator p(W|[1],--- ,W[N])
= %, which is equivalent to (2.9), is efficient. Furthermore, if p is an efficient estimator

for p and h(p) is a linear function of p, then h(p) is also an efficient estimator for h(p)
[51]. Since ey, is linear function of p, we prove the first part of the Lemma.

To prove the second part, we first notice that p is a zero of (A.5) and thus an ML
estimator. Now if we let h(p) be ey (p) defined by (2.8), which is a one-to-one function
of p, then the invariance property of ML estimators [50] implies that eg,.(p) is also an
ML estimator for e,,.. As we have shown that €, is unbiased and achieves the CRLB, it
is an UMVU estimator. The corresponding CRLB is given by [50],
aemp))?

CRLB = < = )
C(p) N(1 = 2e5q — 2€7q + 4€54€74)?

A.4 Proof of Lemma 2.2

Without the soft-limiting effect, which can‘be ignored for reasonable large sample size,

the convergence speed of the estimator p-can be estimated by Chernoff’s inequality [52]
Pr(|p—pl = e1p/N) < 2exp (—min(e7/4,61/2)p)

where N is the sample size and €; is an arbitrary positive number. Using the following

identity

P—p

€sr — /e\sr
1— 2€sd — 2€rd + 4€sderd

and setting C; = 1 — 2e,q — 2€,q + 4e4q9€,q and € = ]316131 > 0, we then obtain (2.13).

A.5 Derivation of (2.18)

Notice that a basic nonlinear system (2.17) can be represented as

1 —Q1— Qo+ 2Q0Q Pot
1—Q1—Q2+201Q2 | = | p12 (A.8)
1 —Qo— Q2+ 20Q0Q Do2
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where QO = /e\sd; Po1 = Psrys and Po2 = Psry-
Representing )1 and @5 in terms of ()y through the first and third equations in (A.8)

yields

Q1= (1 —Qo—po1)/(1—2Qy)
Q2 = (1 — Qo —P02)/(1 - 2@0)

Substituting these two equation into the second equation in (A.8), we have

_1—Q0—p01_1—Q0—p02+21—Q0—p011—Q0—p02:
1—2Q, 1—2Q, 1-2Q, 1-2Q, ™

:>(1 - p12)(1 - 2@0)2 - (2 —2Q0 — po1 — poz)(l - 2@0) + 2(1 — Qo — p01)(1 — Qo — poz) =0

=(1/2 - b/2)(2a)* + (=2a — ¢/2 — d/2)2a + 2(—a — ¢/2)(—a — d/2) = 0

= —2ba* + (—c—d+c+d)a+cd/2=0

cd
Y
“ I

where a = (Qo — 1/2), b = 2p12 — 1, ¢ = 2pg; — 1, and d = 2pgy — 1. Because @y < 1/2,

:___/ 22701—1 21?02—1)
2p12 — 1

The symmetric nature of (A.8) gives

1 1\/(22%3' _ 1)(2pik - 1)

@i=35-3 2 — 1

we have

where 4, 5, k € {0,1,2}.
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Appendix B

B.1 Derivation of (4.16)

To derive (4.16), notice that we have (3.1)

and inverse formula (3.2)

—(w) _ {2e();. 1)2
T A= ey 1)2

Substitute (3.2) into (3.1) and 7 = @7}, ‘we have

1 v
e=—(1—4/——

2 7¥+1
a(w)ﬁ(w)

1
S I e
2 a)my®) 41

1 . a®@) (1 — 2ew))2
T2 VT (1 2e((w)))? + a®)(1 — 2e®))2

which is (4.16).

B.2 Proof of Lemma 4.1

Let ) be the average count based estimate of p(*)—the SMP of the noise-injected SD

and RD link outputs—then we have, from (2.8), the conversion rule

1 —2e,q — 2€,q + 4€s4€.q
~(w)
(w) (w) w)_(w?
1- 2esd - Qer‘d + 4€sd erd

(B.1)
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where

(1 = €sq — €rg + 2€5qrq) (1 — 2¢) — 26!) 4 46 )y
1— 2™ — 260 4 gl

(1 —2e5q — 2€,q + 4esderd)(1 — el — e(d) + 2™y
. 1 =2y = 260y +degyery)

D, =

(B.2)

As p™) is a linear function of p*), the ML estimate of p(*), it is an ML estimator of
p. Furthermore, p(*) is a sample mean estimator; its variance is equal to var [p “’)} =

’M. Similarly, the variances of p(*) and p are respectively given by

2
WHFWq:wal—ﬁm) 1 — 2esq — 2¢ra + desdera
N 1— 26" —2e™) 1 g ()

_p(1—p)
Var [p] ==

Invoking the inequalities, 0 < p < p(w) <05o0rl>p> p(“’) > 0.5, egq < egj) and
2

1-2¢0%) —2e(%) 14e(%) (W)

erd < 6%)), we have p(1 — p) < p™)(1 — p™) and < 1=9¢eq—26rg+ieegery ) > 1. Hence

p(1 —p)
Var[p] = 2230
ar [p] I
2
1 — 2e4q —2€rd + 4€s4€rd p™ (1 —p)

< w W) 4 ) )

1—2€§d)—2()+46 Crd
=Var [ﬁ(w)}

In other words, as far as estimating p is concerned, the noise-injection method does not

help.

B.3 Proof of (4.20)

Following [53], we have the approximation for MSEE reduction ratio

f[) yrd dyrd é f(yrd)
fo W (Yra) f (Yra)dYra I*(yra)

where f*(y.q) and f(y.q) are Gaussian pdf’s with the same mean /P, |h.4|? but distinct

) W(yrd)

v~ (B.3)

(w) 2 2

variances a,, 03, 05, respectively.

86



After some calculations, we have

oo (w) (w) _ 2
/(; W(yrd>f<yrd)dyrd :ar—dQ \/<2ard 1)Pr‘hrd| ) (B4)

2
24\ — 1 49d

Since Q(y) ~ %\/2/2)’ for large y, we obtain

(w) (w) 2
2a,, —1 1 —a,; )P |hea
v —TL——exp [—( d(w)) 2| | ] (B.5)
( a(“')> 20,90
rd
The approximation, Qaff;’) - 1= 2@&3), yields
2 1= a“)Y Py hygl?
R exp [—< aTd(w)) 2| d ] (B.6)
a%’) 2a,, 05

which is maximized when a'%) = P,|h,q|?/02.

B.4 Proof of Theorem 4.2

The basic idea behind the derivation is the fellowing theorem, called the Delta method.

Theorem B.1. (The Delta method) Suppose that Y,, = (Y1, -+, Yax) is a sequence of

random vector such that

Let ¢; : R¥ — R and let

991 991
Oy Oy
J= : :
99k ... Ogk
oy1 Oy,

If J is not zero at E[Y,], then

VN(g(Y,) = g(E[Y,])) ~ N(0,JCIT)
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Based on this theorem, we need to evaluate the variance of €®) and then the deriva-

tive of the transform (4.16). It can be shown that the variance of &) is

o) (1 — ()

Var[e™] = ~

By (3.1), we have

AN (7 + a®)
where 7 = SNR. Moreover, the derivative of the transform (4.16) is

a(®) o)

[1+ (a® —1)(1 —2e®))2]3 [

3
1+ (a(w) — 1)%]

Hence, the variance (MSEE) of € is

at ' - _ (G +a™)y (B.7)
_ 3 7 w)y) w ~)3 ’
1+ (aw — 1)@&@] ANG+ o) ANa)(1+7)
Hence, the reduction factor is
(7 +a™)?
==l — 7 B.8
7T W1 7) (B8)
To find the minimum value of v, we solve the equation % = (0 and we have
a™ =7 (B.9)
and
=
il (B.10)

e = [
Solving the equation 7,,;, = 1 for SNR gives one repeated root 1. Since a(w) > 1, SNR

must be greater than 1 in order to get benefit.
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B.5 Proof of Lemma 4.3

The analysis presented here follows that of [33] with three major distinctions: (i) we

(w)

do not use the small ER assumption e; ° < 1, (ii) we have the equal ER constraint,
and (iii) we need to consider the ER conversion (4.17).To evaluate the performance, the
covariance matrix C and Jacobian matrix J must be calculated based on this theorem.
The formulas of C and J are derived in the remaining of this section.

Assuming independent links, we can show that the covariance matrix of pairwise

matching indicators I(gy[t] = y;[t]) for the noise injected network is

P12(1 - P12) P123 — P12P13  P123 — P12P23
C=| pizs —piepis p1s(1 —p13)  Dizs — P13p2s (B.11)
P123 — P12P23  Pi123 — P13P23 p23(1 - p23)

where

PR = <1 — e,(gw)) (1 > el(w)> + e,(;”)el(w)

pum = (1= ) {T=2JATT ) + el el

The three-link network induces the nonlinear-system (2.17) whose solution is given by

(2.18). It is easier to compute the associated inverse Jacobian matrix for such a nonlinear

mapping.
2¢(") 1 (26§“’) - 1) 0
I = (2 -1 0 2¢") — 1
0 (26&10) - 1) 2e§’”) —1
Using the constraint el = el = e{® = ¢, we obtain the Jacobian and covariance
matrices as
1 -1 -1 1 21 Z9 Zo
J=—— —1 1 -1 s C = Z9 21 R9
2(26_1) 1 -1 -1 Z9 29 21

where 2; = 2¢ — 662 4 8¢ — 4¢* and 2y = € — 5e2 + 8¢> — 4¢t.
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The covariance matrix for the estimation error is thus given by

1 321 — 222 22’2 — 21 222 — 21
JCJT = m 222 — 21 32’1 - 222 222 — 21
€ 222 — 21 222 — 21 321 - 222

The variance of the estimator € can be approximated by

321 — 2z de —8e® + 8¢ — 4!

= = B.12
Varld ~ 1o —1pen 4(2¢ — 1)2N (B-12)
and the variance of €; can be approximated by ([54] pp. 242)
2
dg; (€)\” <a§w)> €—2e? + 23 — ¢
Var [e;] ~ ( Zl > Var [€] = (B.13)
€

4 —_1)2
<a§w) + 2¢ — 2a§w)e> (2¢ —1)2N

where g;(x) = x/ (al(-w) + 22 — Qal(-w)x> is the noncoherent conversion rule.

B.6 Proof of Theorem 4.4

Taking into account the constant noise-injected link ER constraint, we express the av-

erage bit error rates for BFSK and DPSK as

1
Pk — () <2a§“’) + SNRi) = (B.14)
1

pivsk — () [2 (aﬁ“’) n SNR1»>] i (B.15)

Using (B.15) and omitting the superscript (w) for simplicity, we obtain

i 2_2z: 5
Gi+ 2e i€ CL2+SNRZ

(B.16)

which, along with Lemma 4.3, gives

Var(@) ~ aZ(a; + SNR;)* [3a} 4+ 12a?SNR; + 16a2SNR? + 84;SNR? (a; + SNRi)Q]

(a;SNR; + a;)4 16(a; + SNR;)4N SNR?

The MSEE reduction ratio 7 is thus given by

1 [3af + 18aSNR; + 43aSNR; + 52a3SNR} + 32a?SNR; + 8a;SNR} } (B.17)
VT (1+ SNR;)2(3 + 12SNR; + 16SNR? + 8SNR?) '
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Using the change of variable ¢; = a;/SNR;, we find that the condition g—} =0is

equivalent to
6¢; + 27q; + 43q} +26¢7 —4 =0 (B.18)

Since the only positive rational root is ¢; ~ 0.30855316 = t;, (B.15) suggests that we

inject noise such that

#,SNR,
=——— =0.1179 B.19
“~ 2(t; + 1)SNR, (B-19)

Furthermore, the minimum achievable MMSE reduction ratio is given by

Ymin = 7 | a;=t1SNR;

B 78.622SNR*
 8SNR? + 32SNR? + 52SNR? 4 43SNR? + 18SNR; + 3
SNR?
~9.8277 ——
(1 + SNR;)3

Solving the equation fy[ai:tlSNRi = 1 for SNR; gives one positive repeated root 3.24092.
Since a; > 1, SNR; must be greater than'1/¢; = 3.24093 in order that noise-injection to
become beneficial.

Employing a similar approach for a BFSK based network, we conclude that

Tmin = Vla;=t,SNR,

B 19.655SNR;

~ SNR? + 8SNR{ + 26SNR? + 43SNR? + 36SNR; + 12
SNR?

(2 4+ SNR,)?

~19.655 (B.20)

where t} = 0.15427658, and noise-injection is beneficial only if SNR; > 6.4828.

B.7 Proof of Lemma 4.6

We begin with the simpler case where the network only consists of PLs 1,2 and VL 1

whose outputs are yq, y» and yi”). The probability that two PLs and the VL all give
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identical decision can be decomposed as

= P12(v1) (B.21)

The binary symmetric nature of both PLs gives

Pr(f =5 =0l = 1) =Pr (B =5 =3l = 1)
:Pu@:ux:nm(@zﬁwzung
+Pr (= 1o = 1) Pr (G = 51" = ~1je = 1)

:(1 - 62)pcm + €2Pem (B22)

Based on the normalized model for link 1, y; = hz + w, where z € {£1}, h is Raleigh

distributed, and w is a zero mean Gaussian.random variable with variance var(w)

No/2 = 1/2SNR;, we obtain
Pem

=Pr (ﬂl = Qg”) =—ljz = 1) = Pr (@1 = @41@) =1z = —1)

/Pr Ch4ws 0,—h+w+w, > 0z = —1, h) f(h)dh

Pr<n>h

where m = (w + w,)/ (agv)No)/2 n = w/y/No/2, w, is a zero mean real Gaussian

random variable with variance (a; () _ 1)Ny/2, and E[nm] =1/

—.m>h

)N

) F(h)dh (B.23)

The first integrand of (B.23) can be expressed as a standard bivariate Gaussian
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distribution function Q(z,y; p) which, in turn, yields the Craig form as [37, (4.17)]

P h,/— N
r[n> N,m>h a§”

2
:Q (h _7h 710
No g

where p = is the correlation coefficient.

1
)

Using the method described in [37, ch.5] and the identity [37, (5.A.11)]

1
/(1+%) 4o =& — - a1 | TRL
sin® ® c+1 ;cl
we obtain
/Q( ‘/No ,/ ,,0>

1 tan™ ( ) p2
=— 14+ ———— dd + 1
2m Jo ( + Ny sin® (I>> o ( * Ny sin? @
—1 1— 1/—SNR1 + — L tan~
_4 1 -+ SNR1 2w
B p?SNR,4 S 1+ pQSNRl
1+ p?SNR; \/(1 — p?)p?SNR;

O N
1 1 " (1 — 261 >
:% + o tan ™t | — | - (1— 265 ))tarf1 _—
' a)” ~1 Vi@ =)
def
_pem(elaag ))

Invoking the relation [37, (6.42)]

Q(—z,—y;p) =1-Q(z) — Qy) + Qz,y;0) 2,y >0
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and (B.25), we express the conditional correct (pairwise) SMP as

Pr (@\1 - g%v) - ].|$ - 1) = Pl" <’?/\1 = ’?JY)) = —1|1’ — _]_>
:/Pr (w> —h,m > —hlx = —1,h) f(h)dh

h

v v de v
=1 - €1 — 65 ) +pem(€1aag )) :f pcm(ehag )) (B26)

Summarizing (B.21)—(B.26), we then obtain

Pi2(v1) = 62pem(ela agv)) + (1 - 62)pcm(€17 agv)) (B27)

which is (4.27) in the main text. The other probabilities, (4.30)-(4.33), can be similarly

derived with the aid of the following two identities [37, (6.42)]:

Q(r,y,p) = Qx) — Q(z,~y,—p), >0,y <0 (B.28)

Q(xvy’p> - Q(y) K Q("-T,y, _p)u r < 07y >0 (B29>
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