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(N,K)有限存取系統之最佳功率配置準則 

 

研究生：王士瑋     指導教授：陳伯寧 博士 

                      王忠炫 博士 

 

國立交通大學電信工程研究所 

 

摘    要 

 

在本篇論文，我們探討一個有限存取的通訊傳輸系統，該系統由 N 個彼此

獨立的平行通道所組成，且接收端在收到至少 K 個通道之完整傳輸訊號後才開

始進行解碼。因為 N 個傳輸訊號中，允許僅有 K 個傳輸訊號到達接收端，此系

統因而被稱為(N,K)有限存取通訊系統。對於(N,K)有限存取通訊系統，我們假定

系統無法提供接收訊號個數之統計特性，因此該系統之最佳傳輸極限為任意 K

個通道所對應之交互資訊量(mutual information)之最小值；而找尋最佳功率配置

使通道容量最大化便成為了一個最小值最大化的問題(max-min problem)。對於任

意通道模型之(N,K)有限存取通訊系統，我們提出了一個系統化的快速搜尋演算

法找尋其最佳功率配置，此演算法僅需解至多 K 個簡化後的最佳化問題，即可

得到最佳功率配置，因此可大幅降低找尋最佳功率配置所需要之複雜度。此外，

當通道模型為相加雜訊時，此演算法之搜尋步驟可進一步簡化成兩階段注水式功

率配置。最後藉由兩階段注水式功率配置之概念，我們進一步探討如何判斷任意

通道之『雜訊程度』(degree of noisiness)，並得到『雜訊程度』之定義應為交互

資訊量之微分再取反函數所形成之複合函數。 
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Abstract 

 

In this dissertation, we consider a system that consists of N independent parallel 

channels, where the receiver starts to decode the information being transmitted when 

it has access to at least K of them. We refer to this system as the (N,K)-limited access 

channel. No prior knowledge for the distribution about which transmissions will be 

received is assumed. In addition, both the channel inputs and channel disturbances can 

be arbitrary, except that the mutual information function for each channel is assumed 

strictly concave with respect to the input power. Hence, the channel capacity below 

which the code rate is guaranteed to be attainable by a sequence of codes with 

vanishing error can be determined by the minimum mutual information among any K 

out of N channels. We then investigate the power allocation that maximizes this 

minimum mutual information subject to a total power constraint. As a result, the 
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optimal solution can be determined via a systematic algorithmic procedure by 

performing at most K single-power-sum-constrained maximizations. Based on this 

result, the close-form formula of the optimal power allocation for an (N,K)-limited 

access channel with channel inputs and additive noises respectively scaled from two 

independent and identically distributed random vectors of length N is subsequently 

established, and is shown to be well interpreted by a two-phase water-filling principle. 

Specifically, in the first noise-power re-distribution phase, the least N-K noise powers 

(equivalently, second moments) are first poured (as noise water) into a tank consisting 

of K interconnected unit-width vessels with solid base heights respectively equal to 

the remaining K largest noise powers. Afterwards those W vessels either with noise 

water inside or with solid base height equal to the new water surface level are 

subdivided into N-K+W vessels of rectangular shape with the same heights (as the 

water surface level) and widths in proportion to their noise powers. In the second 

signal-power allocation phase, the heights of vessel bases will be first either lifted or 

lowered according to the total signal power and channel mutual information functions, 

followed by the usual signal-power water-filling scheme. The two-phase water-filling 

interpretation then hints that the degree of “noisiness” for a general (possibly, 

non-additive and non-Gaussian) limited access channel might be identified by 

composing the derivative of the mutual information function with its inverse.  
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Chapter 1

Introduction

A fundamental issue in multiple access channels is power allocation under a total power con-

straint. In the literature, the best known result in this subject is perhaps the water-filling

power allocation principle obtained by maximizing the capacity of parallel additive white

Gaussian noise (AWGN) channels [10]. An extension to additive color Gaussian noise chan-

nels has later been studied and was found to also follow the water-filling principle over the

color spectra of the noises [8]. Recently, by characterizing the relationship between mutual

information and minimum mean square error (MMSE) [11], the optimal power allocation

for parallel AWGN channels with arbitrary input (possibly finite) has been established, re-

sulting in a new graphical power allocation interpretation called the mercury/water-filling

principle [18]. In light of this new finding, the optimal power allocations respectively for

multi-user downlink orthogonal frequency-division multiplexing (OFDM) channels [19] and

multiple-input-multiple-output (MIMO) channels [23] with arbitrary inputs in the presence

of additive white Gaussian background noises are subsequently obtained and found to follow

variations of mercury/water-filling principle.

Instead of assuming complete knowledge on channel statistics, a channel could have a

number of states with unknown distribution. These channels are classified as compound

channels as they are compounds of channels parameterized by their states [9], [14], [34].
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Since the channel state of a compound channel is only known to be an element of some given

set, its capacity below which the code rate is guaranteed to be attainable by a sequence of

codes with vanishing error is then determined by the minimum mutual information among all

stated channels. Different sets of channel states have been considered in the literature, and

their respective optimal power allocations that maximize the minimum mutual information

have been derived.

In [21], the states for an MIMO Gaussian compound channel are controlled by the fad-

ing parameter within an “isotropic” set, and the optimal power allocation that maximizes

the minimum mutual information with respect to Gaussian inputs is shown to be uniform.

In [31] and [33], the channel states for multiple-input-single-output (MISO) and multiple-

input-multiple-output (MIMO) Gaussian compound channels are parameterized again by

the channel fading but are now “ellipsoid” in nature, and the optimal strategy for power

allocation becomes beamforming for Gaussian inputs. In [22], the authors model the chan-

nel state as the phase of the fading parameter in an MIMO Gaussian compound channel,

and obtain that the covariance matrix of the Gaussian input that maximizes the capacity

is diagonal. In [5], the channel capacity of MIMO Gaussian compound channels with par-

tially known distribution in channel matrix is investigated. In [32], by considering a parallel

Gaussian compound channel where the channel states are determined by the amplitudes of

fading parameters, the power allocation that achieves a capacity lower bound obtained via

Lagrange duality is proposed. When arbitrary inputs rather than Gaussian ones are consid-

ered for these existing results over compound channels, the new finding in [18] may lead to

interesting extensions.

In this dissertation, we consider a compound channel with the channel state being a

binary vector of length N . Although additive Gaussian noises are appropriate models for

general physical channels, and thus are commonly assumed in the power allocation literature
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(e.g., [18,19], [21–23,31–33]), experimental measurements in certain environments show that

the ambient noise may be non-Gaussian distributed. These environments include indoor and

urban radio channels [3] [27], underwater communication systems [20], power line channels

[36] and digital subscriber lines [7]. We therefore assume that the channel disturbances

can be arbitrary, not necessarily additive or Gaussian, and hence the results of the above

literatures based on Gaussian compound channels cannot be applicable to our channel.

The channel states that we consider are decided according to whether or not the trans-

mission signals can reach the receiver end. A straightforward scenario for this state model

is a packet switched network, where packets can be lost during transmission [1]. In a highly

mobile system, however, the transmission signals can also be missed by a moving mobile

terminal. In certain situations, the receiver may still be required to recover the transmit-

ted information from its partial receptions [15, 24, 25]. This raises the question of what the

optimal power allocation principle will be for a compound channel with arbitrary input and

partially delivered receptions. Notably, since the set of channel states we consider is no

longer convex, the traditional techniques [5,21,22,31–33] used to solve the power allocation

problems based on a convex channel state space in compound channels cannot be applied

and an alternative approach should be taken.

Specifically, among N individual transmissions, possibly parallelly or temporally, we as-

sume that the receiver will begin to recover the information being transmitted when it has

access to at least K of them. Since we assume the channel disturbances can be either non-

additive or non-Gaussian, to find the optimal power allocation principle for this compound

channel seems tricky. We then find that if the mutual information satisfies a certain concav-

ity condition (cf. Assumption 1 in Chapter 2), the optimal power allocation can be obtained

algorithmically by solving at most K Lagrange-multiplier maximizations (see Theorem 2).

To demonstrate the value of the proposed algorithm in complexity reduction, comparison
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between the proposed algorithm and a representative brute force method is discussed af-

terwards. Then, following the proposed algorithm, we further establish that when channel

disturbances, in addition to independence, are reduced to being additive with distributions

scaled from a common random variable, the optimal power allocation can be directly ob-

tained from a two-phase water-filling process if the arbitrary channel inputs are given by the

respective component variables in an independent and identically distributed (i.i.d.) random

vector, multiplying by the square root of the allocated power. The two-phase water-filling

interpretation then hints that the degree of “noisiness” for a general (possibly, non-additive

and non-Gaussian) limited access compound channel might be identified by composing the

derivative of the mutual information function with its inverse.

The rest of the dissertation is structured as follows. In Chapter 2, we introduce the

channel model of the (N,K)-limited access channel considered in this paper as well as the

corresponding channel capacity formula. Chapter 3 presents discussion regarding the prop-

erties of the optimal power allocation and the algorithm that determines the optimal power

allocation. In Chapter 4, we simplify the channel model by further assuming that the chan-

nel inputs and additive noises are scaled respectively from two i.i.d. random vectors, which

results in a two-phase water-filling graphical interpretation for optimal power allocation. In

Chapter 5, following the notion of the two-phase water-filling interpretation, the degree of

“noisiness” for a general limited access channel as well as the optimal power allocation in

low- and high- power regimes are addressed. In Chapter 6, we conclude the dissertation and

note some possible extensions.
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Chapter 2

System Model for an (N,K)-Limited

Access Channel

As shown in Figure 2.1, we consider a system that consists of N parallel channels with

unit-power inputs adapted according to
√
p , [

√
p1,

√
p2, . . . ,

√
pN ]

T satisfying
∑N

i=1 pi ≤ P .

In this system, only a certain portion of channel outputs are guaranteed to be successfully

received at the receiver end. The system however does not a priori know which outputs will

be blocked or nullified, nor does the system have the knowledge of the statistics of these

blockage. We can realize this assumption by introducing a set of auxiliary multiplicative

coefficients s1, s2, . . . , sN to the channel outputs, where the ith channel output is blocked

or nullified when being multiplied by si = 0, and remains when the multiplicative constant

si is equal to 1. It is assumed that by monitoring the channel activities, the receiver can

perfectly tell the value of s = [s1, s2, . . . , sN ]
T, where superscript “T” is the matrix transpose

operation.1 Furthermore, s will remain unchanged within a codeword transmission period

but may vary for different codeword blocks. The receiver will then decode the information

based on the receptions [s◦Y1, s◦Y2, . . . , s◦Yn] if at least K out of N components of vector

s are equal to one, where Yi , [Y1,i, Y2,i, . . . , YN,i]
T are the channel outputs at time instance

1It has been remarked in [14, Thm. 1] that for compound discrete memoryless channels, the capacity
remains unchanged even if the receiver knows nothing about s. Therefore, for the channels considered
in [14, Thm. 1], the result in this paper can also be applied without prior knowledge of s.
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Transmitter

Each E[X2
i ] = 1

∑N
i=1 pi ≤ P

{

Each si ∈ {0, 1}
∑N

i=1 si ≥ K

{

N parallel channels

...

Receiver

XN
-⊗ -

6√
pN

Channel N -⊗ - sNYN
6

sN

X2
-⊗ -

6√
p2

Channel 2 -⊗ - s2Y2
6
s2

X1
-⊗ -

6√
p1

Channel 1 -⊗ - s1Y1
6
s1

Figure 2.1: System model for an (N,K)-limited access channel.

i, n is the codeword length, and operator “◦” denotes the matrix Hadamard product [17].

Conversely, the receiver will give up the decoding if
∑N

i=1 si < K. We thus refer to this

channel model as an (N,K)-limited access channel.

In this setting, we are interested in the optimal power allocation p∗ = [p∗1, p
∗
2, . . . , p

∗
N ]

T

such that the minimum input-output mutual information subject to
∑N

i=1 si ≥ K is maxi-

mized. This quantity is generally regarded as the achievable rate under which the decoding

error can be made arbitrarily small.2

Under the system model, the input-output mutual information can be in principle rep-

resented by

I(
√
p ◦X; s ◦ Y )

2Our focus in this paper is the decoding error given that
∑N

i=1 si ≥ K, not the decoding error with
respect to a statistically distributed s. Note that since the statistics of s is assumed unknown, the latter
(i.e., the expected probability of decoding error with respect to s) actually cannot be established.

6



where I(·; ·) is the mutual information function and
√
p , [

√
p1,

√
p2, . . . ,

√
pN ]

T. Here, we

overload the notation by denoting the channel output vector corresponding to one channel

usage by Y , [Y1, Y2, . . . , YN ]
T , and likewisely denote the channel input vector for a single

channel usage by X = [X1, X2, . . . , XN ]
T. The achievable rate that guarantees a vanishing

decoding error subject to
∑N

i=1 si ≥ K is therefore optimistically

max
X

max
{p∈ℜN

+ :
∑N

i=1 pi≤P}
min

{s∈{0,1}N :
∑N

i=1 si≥K}
I(
√
p ◦X; s ◦ Y ) (2.1)

where ℜ+ is the set of nonnegative real numbers. If the parallel channels are independent in

the sense that

Pr(Y |√p ◦X) =

N
∏

i=1

Pr(Yi|
√
piXi) (2.2)

then the independence bound for mutual information yields that

I(
√
p ◦X; s ◦ Y ) ≤

N
∑

i=1

I(
√
piXi; siYi) =

N
∑

i=1

si · I(
√
piXi; Yi)

where the last equality follows from si being either 1 or 0. We can therefore focus on

the optimal power allocation for independent input distributions, if the channel transition

probability satisfies (2.2).

We next denote for convenience fi(p) , I(
√
pXi; Yi) for 1 ≤ i ≤ N , and make the

following assumption on these mutual information functions.

Assumption 1. For 1 ≤ i ≤ N , fi(p) is continuous and strictly increasing for p ≥ 0, and its

first derivative, i.e.,

f ′
i(p) ,

∂fi(p)

∂p

exists and is continuous and strictly decreasing in p ≥ 0, where we define f ′
i(0) , limp↓0 f

′
i(p).

3

3Since the mutual information function fi(p) is only defined for p ≥ 0, its derivative at the origin cannot be
defined under the usual mathematical principle, i.e., the derivative from the right equal to the derivative from
the left. From the aspect of the optimization problem concerned in this work, we adopt f ′

i(0) , limp↓0 f
′
i(p)

as the “derivative” at the origin, specifically when zero power is considered to be allocated to channel i. See,
for example, (4.15).
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Generally speaking, the channels considered in Assumption 1 are supposed to have more

available mutual information when more power is allocated, but the rate of increment is

decreasing with respect to the power allotment. There are quite a few practical channels

satisfying this assumption, such as antipodal binary-input AWGN channels with hard de-

cision at receiver side, quaternary-input additive Laplace noise channels (cf. Example 1),

scalar AWGN channels with arbitrary inputs [18], parallel AWGN channels with given in-

dependent inputs [18], and Gaussian fading channels with given inputs [19]. We will adopt

Assumption 1 as a premise throughout the entire paper.

Under this assumption, it is clear that fi(p) is a strictly concave function of p with initial
value fi(0) = I(0; Yi) = 0. Together with the fact that fi(p) ≥ 0 for p ∈ ℜ+, we can replace
the two inequality constraints in (2.1) by their equality counterparts as

max
{p∈ℜN

+ :
∑N

i=1 pi≤P}
min

{s∈{0,1}N :
∑N

i=1 si≥K}

N
∑

i=1

si · fi(pi) (2.3)

= max
{p∈ℜN

+ :
∑N

i=1 pi=P}
min

{s∈{0,1}N :
∑N

i=1 si=K}

N
∑

i=1

si · fi(pi) (2.4)

for a given X that validates Assumption 1. In the next chapter, we will show that under

Assumption 1, the maximization-minimization problem in (2.4) becomes algorithmically

tractable.

8



Chapter 3

Analysis of the Optimal Power

Allocation

This chapter presents the analysis for the optimization problem in (2.4). For K = 1, (2.4)

can be simplified to

max
{p∈ℜN

+ :
∑N

i=1 pi=P}
min{f1(p1), f2(p2), · · · , fN(pN)}.

It is thus straightforward that the optimal power allocation p∗ satisfies

f1(p
∗
1) = f2(p

∗
2) = · · · = fN (p

∗
N).

For K = N , the maximization-minimization power allocation problem reduces to a problem

that requires only one maximization computation because s1 = s2 = . . . = sN = 1. There-

fore, one can apply the Lagrange multipliers technique and Karuch-Kuhn-Tucker (KKT)

condition to find the optimal power allocation [4]. However, for 1 < K < N , a straight

technique generally does not exist for this maximization-minimization problem. Neverthe-

less, we can find a necessary condition for the optimal power allocation such that the labor

of examining all possible
(

N
K

)

combinations of s satisfying
∑N

i=1 si = K can be reduced as

indicated in the next lemma.

Lemma 1. The optimal power allocation p∗ for an (N,K)-limited access channel, where

9



1 ≤ K ≤ N , satisfies

fa1(p
∗
a1
) ≤ fa2(p

∗
a2
) ≤ · · · ≤ faK (p

∗
aK

) = faK+1
(p∗aK+1

) = · · · = faN (p
∗
aN
)

for some permutation a1, a2, . . . , aN of sequence 1, 2, . . . , N .

Proof. Since the lemma trivially holds when K = N , we assume K < N in the below

proof. For the optimal power allocation p∗, let a1, a2, . . . , aN be a permutation of sequence

1, 2, . . . , N satisfying

fa1(p
∗
a1
) ≤ fa2(p

∗
a2
) ≤ · · · ≤ faK (p

∗
aK

) ≤ faK+1
(p∗aK+1

) ≤ · · · ≤ faN (p
∗
aN
).

We then have

max
{p∈ℜN

+ :
∑N

i=1 pi=P}
min

{s∈{0,1}N :
∑N

i=1 si=K}

N
∑

i=1

si · fi(pi) =
K
∑

i=1

fai(p
∗
ai
). (3.1)

Suppose that there were some j ≥ K such that faj (p
∗
aj
) < faj+1

(p∗aj+1
). Then, we can reduce

p∗aj+1
down to

f (inv)
aj+1

(

faj+1
(p∗aj+1

)− δ
)

where f
(inv)
aj+1 is the inverse function1 of faj+1

, and increase p∗a1 , p
∗
a2 , · · · , p∗aj respectively to

f (inv)
a1

(

fa1(p
∗
a1
) + ∆

)

, f (inv)
a2

(

fa2(p
∗
a2
) + ∆

)

, · · · , f (inv)
aj

(

faj (p
∗
aj
) + ∆

)

with positive δ and ∆ satisfying

j
∑

i=1

f (inv)
ai

(

fai(p
∗
ai
) + ∆

)

+ f (inv)
aj+1

(

faj+1
(p∗aj+1

)− δ
)

=

j+1
∑

i=1

p∗ai

and

0 < ∆+ δ ≤ faj+1
(p∗aj+1

)− faj (p
∗
aj
).

1In this paper, we use f (inv), instead of the usual f−1, to denote the inverse function of f . This is to
hopefully provide a clearer notational indication when the inverse of the first derivative f ′ is additionally
required later, which will be denoted by f ′(inv) in this work.
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Note that the existence, continuity and strict monotonicity of f
(inv)
i for 1 ≤ i ≤ N is

guaranteed by Assumption 1. The new power assignment will clearly improve (3.1) up to

K
∑

i=1

fai(p
∗
ai
) +K∆.

A contradiction to the optimality of p∗ is thus obtained.

An immediate implication of Lemma 1 is that we can distinguish the optimal power

allocation for an (N,K)-limited access channel into K disjoint cases. In other words, the

condition

max
1≤i≤ℓ−1

fai(p
∗
ai
) < faℓ(p

∗
aℓ
) = faℓ+1

(p∗aℓ+1
) = · · · = faN (p

∗
aN
) (3.2)

is valid for exactly one value of ℓ in {1, 2, . . . , K}. As a result, if the index set

A , {aℓ, aℓ+1, · · · , aN}

in which their respective mutual information function values are equal to max1≤i≤N fi(p
∗
i ) is

identified in advance, the maximization-minimization power allocation problem is simplified

to a maximization problem as

max
p∈P(A)

{

∑

i6∈A

fi(pi) + (K + |A| −N) max
1≤j≤N

fj(pj)

}

(3.3)

where

P(A) ,







p ∈ ℜN
+ :

(i)
∑N

i=1 pi = P
(ii) fi(pi) < max1≤j≤N fj(pj) for i 6∈ A

(iii) fi(pi) = max1≤j≤N fj(pj) for i ∈ A







. (3.4)

However, the direct identification of A without knowing p∗ in advance is in general a

challenge. The opposite, i.e., identifying A after determining p∗, is more straightforward.

In order to resolve the optimization problem, we propose in the following sections to first

determine the best power allocation p⋄ corresponding to a conjectured maximal-mutual-

information index set, denoted by B. Then we examine whether this conjecture is the
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optimal one based on conditions we establish later. In case the conjectured B achieves only

a suboptimal power allocation, a new round of maximization computation and follow-up

examination will be launched based on a newly generated B. Since the established conditions

will help identifying one channel that is not in A at each round, the process will stop after

N − |A|+ 1 iterations at which point p∗ is obtained.

3.1 Determination of the best power allocation p⋄ cor-

responding to a given index set B

Based on a given index set B, we transform the maximization-minimization problem into

sup
p∈P(B)

{

∑

i6∈B

fi(pi) + (K + |B| −N) max
1≤j≤N

fj(pj)

}

(3.5)

where P(B) is defined the same as (3.4) except that A is replaced with B. Since the given B

may not be the optimal index set A, the solution p⋄ of the optimization problem defined in

(3.5) could be at the boundary of P(B) in the sense that

fi(p
⋄
i ) = max

1≤j≤N
fj(p

⋄
j) for some i 6∈ B.

For this reason, we use supremum instead of maximum in (3.5).

We next show that the third equality constraint in P(B) can be relaxed by incorpo-

rating the aggregate mutual information function that transforms the N -dimensional power

allocation problem into an equivalent (N − |B|+ 1)-dimensional one.

Definition 1. The aggregate mutual information function FB associated with a sequence of

mutual information functions {fi}i∈B is defined through its inverse function2 as follows:

F
(inv)
B

(y) ,
∑

i∈B

f
(inv)
i (y) for y ≥ 0 (3.6)

2For completeness, we define f
(inv)
i (y) = ∞ for y ≥ ωi , limp→∞ fi(p) and F

(inv)
B

(y) = ∞ if one of

{f (inv)
i (y)}i∈B is equal to ∞. Note that the inverse function value FB(p) of function F

(inv)
B

is always well
defined for every p ∈ ℜ+ because each fi is assumed to be a strictly increasing function, and limp→∞ FB(p) =
mini∈B ωi.
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f1(p)

f2(p)

f3(p)

FB(p)

p1 p2 p3 p1 + p2 + p3

y

Figure 3.1: Graphical illustration of the aggregate mutual information function when fi(p) =
log(1 + p/σ2

i ) and σ2
i = i for i ∈ B = {1, 2, 3}.

provided that all the inverse functions exist (which is guaranteed by Assumption 1).

A graphical illustration of the aggregate mutual information function for B = {1, 2, 3} is

given in Figure 3.1. In this figure, it is clear that

F
(inv)
B

(y) = f
(inv)
1 (y) + f

(inv)
2 (y) + f

(inv)
3 (y) = p1 + p2 + p3.

As a specific example, if fi(p) = log (1 + p/σ2
i ) for some σ2

i > 0 and 1 ≤ i ≤ 3, then

FB(p) = log

(

1 +
p

σ2
1 + σ2

2 + σ2
3

)

.

In terms of the aggregate mutual information function, we can simplify the constraints in

P(B) in the following lemma, for which the proof is deferred to Appendix A.

Lemma 2. Fix an index set B. The vector p⋄ that achieves (3.5) satisfies

p⋄i =

{

q⋄i for i 6∈ B

f
(inv)
i (FB(q

⋄
B
)) for i ∈ B

(3.7)
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where the (N − |B|+ 1)-dimensional vector q⋄ achieves:

sup
q∈Q(B)

{

∑

i6∈B

fi(qi) + (K + |B| −N)FB(qB)

}

(3.8)

where

Q(B) ,

{

q = (list of qi ∀i 6∈ B, qB) ∈ ℜN−|B|+1
+ :

(i)
∑

i6∈B qi + qB = P

(ii) fi(qi) < FB(qB) for i 6∈ B

}

.

In addition, q⋄ ∈ Q(B) if, and only if, p⋄ ∈ P(B).

By reducing the number of constraints down to two in Q(B) in Lemma 2, we can further

proceed to show that the inequality constraint in Q(B) is redundant in case q⋄ ∈ Q(B), as

summarized in Theorem 1, for which the proof can be found in Appendix A.

Theorem 1. Given that q⋄ ∈ Q(B), the maximizer q⋄ for (3.8) is equal to the maximizer q̃

of the problem below:

max
q∈Q̃(B)

{

∑

i6∈B

fi(qi) + (K + |B| −N)FB(qB)

}

(3.9)

where

Q̃(B) ,

{

q ∈ ℜN−|B|+1
+ :

∑

i6∈B

qi + qB = P

}

.

We summarize the notations we have used thus far as follows. The best power allocations

for (3.8) and (3.9) with respect to a given B are denoted by q⋄ = q⋄(B) and q̃ = q̃(B),

respectively. For convenience, we drop the dependence on B in their notational expressions.

These two power allocations may not be equal unless q⋄ ∈ Q(B). Once B is taken to be

the optimal A corresponding to the optimal power allocation p∗ in the sense of (3.2), p∗

can be derived from q̃ (equivalently, q⋄ since B = A implies q⋄ = q̃) through an assignment

similar to (3.7). Such notational convention will be used throughout the paper. Notably,

we will show in the next section that for finding the optimal power allocation p∗, only the

determination of q̃ is required since the considered q⋄ always belongs to Q(B). Hence, as
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the optimal power allocation p∗ is concerned, the computation of a general q⋄ that may lie

outside Q(B) is not necessary.

We conclude this section by pointing out that the maximization computation in (3.9)

is now performed over the usual single power-sum constraint, and hence can be solved by

treating (K + |B| − N)FB(·) as the mutual information function of an auxiliary aggregate

channel. Based on the result in Theorem 1, we are ready to present the algorithmic approach

that helps identifying the optimal maximal-mutual-information index set A and the optimal

power allocation p∗.

3.2 Determination of the Optimal Maximal-Mutual-

Information Index Set A and the Optimal Power

Allocation p∗

For an (N,K)-limited access channel, there are possibly
∑K

ℓ=1

(

N
ℓ−1

)

candidate index sets for

the choices of B in Theorem 1, and it may be time-consuming to perform the optimization

computation for (3.9) for each of them. The next theorem then shows that this time-

consuming maximization labor can be reduced to only N − |A|+ 1.

Theorem 2. The optimal maximal-mutual-information index set A and the optimal power

allocation p∗ can be obtained through the following algorithmic procedure:

Step 1. Initialize M = 1 and B1 = {1, 2, . . . , N}.

Step 2. Obtain the maximizer q̃M for (3.9) by setting B = BM , and calculate

p̃M = [p̃M,1, p̃M,2, . . . , p̃M,N ]
T

corresponding to the obtained q̃M and the given BM through an assignment similar

to (3.7).
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Step 3. Assign BM+1 = BM \ {jM}, where jM is an index in BM that satisfies

f ′
jM

(p̃M,jM ) = min
i∈BM

f ′
i(p̃M,i). (3.10)

(If there are more than one index satisfying (3.10), just pick up any one of them as

jM .)

Step 4. If

(K −M)F ′
BM+1

(

∑

i∈BM+1
p̃M,i

)

≤ f ′
jM

(p̃M,jM ) (3.11)

then set A = BM and p∗ = p̃M and stop the algorithm; otherwise, set M = M + 1

and go to Step 2.

Proof. For better readability, we defer the detail of the proof to Appendix B and sketch only

the key ideas here.

Following Lemma 2 and Theorem 1, we know that once B in (3.9) is taken to be A, p∗

can be derived from q̃ through a similar assignment to (3.7). Hence, to confirm the proposed

algorithm, it suffices to prove that when stop criterion (3.11) is first valid, the corresponding

BM is indeed equal to A. The proof then requires the verification of the below two claims:

(a) If |A| < N , then stop criterion (3.11) is violated and A ⊆ BM+1 for 1 ≤ M ≤ N − |A|.

(b) If stop criterion (3.11) is violated for 1 ≤ M ≤ m, then m ≤ N − |A|.

An immediate consequence of (b) is that if |A| = N , then stop criterion (3.11) must

be valid at M = 1 (because if stop criterion (3.11) is violated at M = 1, we would obtain

|A| ≤ N − 1 from (b), a contradiction to |A| = N). Hence, A = B1 is obtained by the

proposed algorithm. So, the proposed algorithm functions correctly when |A| = N .

When |A| < N , according to (a), we have

A ⊆ BN−|A|+1 (⊆ BN−|A| ⊆ BN−|A|−1 ⊆ . . . ⊆ B2)
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and stop criterion (3.11) is violated for every 1 ≤ M ≤ N−|A|. Together with the statement

of (b), we obtain that stop criterion (3.11) must hold at M = N − |A| + 1; otherwise, a

contradiction as m = N −|A|+1 ≤ N −|A| will be obtained from (b). Finally, we note that

A ⊆ BN−|A|+1 and |A| = |BN−|A|+1| jointly imply A = BN−|A|+1 Thus, the proposed algorithm

also functions correctly when |A| < N . The proof of Theorem 2 is therefore completed.

We would like to point out that the algorithm in Theorem 2 will stop when (and usually

before) M reaches K, because (3.11) trivially holds when M = K. This coincides with the

definition of A in (3.2) that at most K−1 indices are outside A. Our algorithm thus requires

to solve at most K optimization problems in the form of (3.9).

We note that in general, there are
∑K

ℓ=1

(

N
ℓ−1

)

choices of B and only one of them is A,

and a straightforward method is to examine all of them. In comparison with our algorithm,

the computation complexity of such a brute force method will be much higher when N and

K are only moderately large. For example, consider an OFDM system, where there are 64

sub-carriers (N = 64) and at least 30 sub-carriers are required to be accessible (K = 30).

The brute force method requires to examine
∑K

ℓ=1

(

N
ℓ−1

)

≈ 4.9097×1018 maximizations in the

form of (3.9), and yet, our algorithm only needs to consider at most 30(= K) maximizations

of the same form. Hence, the complexity reduction by the proposed algorithm is significant

in this regard.

Theorem 2 indicates that given the first derivative of the marginal mutual information

function fi(p) = I(
√
pXi; Yi) being positive, strictly decreasing and continuous in p for every

1 ≤ i ≤ N (i.e., Assumption 1), we can determine the optimal power allocation p∗ for

a spatially independent (N,K)-limited access channel with input
√
p ◦ X by performing

N − |A|+ 1 maximizations in the sense of (3.9). In the next chapter, we will show that this

maximization labor can be further reduced to one if the considered channels are corrupted

by additive noises of the same family. Moreover, the resultant optimal power allocation can
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be graphically interpreted by a two-phase water-filling scheme.
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Chapter 4

Optimal Power Allocation over

Additive Noise Channels

By additive noises of the same family, we mean that the relationship between channel inputs

and outputs can be characterized by

Yi =
√
piXi + σiZi for 1 ≤ i ≤ N (4.1)

where {Xi}Ni=1 and {Zi}Ni=1 are both i.i.d. complex random variables with unit second mo-

ments, and they are independent from each other. We then restrict our attention only to

the case that Zi is a continuous random variable1 because Assumption 1 may fail when both

Xi and Zi are discrete. Notably, Xi often takes values in a finite alphabet (e.g., {±1})

in practice. Specifically, when the intersection of two sets
{√

pix+ σiz : PZi
(z) > 0

}

and
{√

pix̃+ σiz : PZi
(z) > 0

}

is empty for every x 6= x̃ with PXi
(x) > 0 and PXi

(x̃) > 0, we

have

fi(pi) = I(
√
piXi; Yi) = H(

√
piXi) = H(Xi)

where H(Xi) is the entropy of the channel input Xi [8]. This implies that in a discrete

system, fi(pi) can be equal to its maximum value H(Xi) almost everywhere in pi, in which

case Assumption 1 is unquestionably violated.

1By a continuous random variable, we mean that its support can not be made finite or countable.
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Observe that for continuous additive noises,

I(
√
piXi; Yi) = h(Yi)− h(Yi|

√
piXi)

= h(Yi)− h(
√
piXi + σiZi|

√
piXi)

= h(σiỸi)− h(σiZi) (4.2)

= h(Ỹi)− h(Zi)

= I

(√
pi

σi
Xi; Ỹi

)

where h(·) is the differential entropy function [8], and (4.2) follows from the independence

between Xi and Zi, and Ỹi , (
√
pi/σi)Xi + Zi. This immediately yields

fi(pi) = g

(

pi
σ2
i

)

for every 1 ≤ i ≤ N (4.3)

with

g(ρ) , I(
√
ρXi;

√
ρXi + Zi). (4.4)

Assumption 1 thus reduces to the single condition that function g is continuous and strictly

increasing, and its first derivative exists and is continuous and strictly decreasing.

Based on this system setting, we show in the next theorem that the optimal power

allocation p∗ follows a two-phase water-filling scheme. Specifically, in the first phase (which

we refer to as the noise-power re-distribution phase), the least N −K noise powers among

{σ2
i }Ni=1 will be first poured as noise water into a tank consisting of K interconnected vessels

with solid base heights equal to the remaining K noise powers and with widths of unit length

as shown in Figure 4.1(b). Afterwards those W vessels either with water inside or with solid

base height equal to the water surface level will be subdivided into N − K +W vessels of

rectangular shape with the same heights (as the water surface level) and with widths in

proportion to their noise powers (but the total volume remaining unchanged). As such, a

tank with N vessels of proper heights and widths (corresponding to N channels) is ready for

the second phase as exemplified in Figure 4.1(c). It is worth mentioning that after the first

phase, the optimal maximal-mutual-information index set A has already been identified and
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consists of the channel indices corresponding to the aforementioned W vessels and the least

N −K noise powers (hence, |A| = W +N −K).

In the second phase (which we refer to as the signal-power allocation phase), the heights

of vessel bases will be first either lifted or possibly lowered according to total signal power

P and function g as well as their current heights as shown in Figure 4.1(e). What follows,

as exemplified in Figure 4.1(f), is the usual water-filling power allocation scheme. The pre-

adjustment of base heights before water filling can be viewed as preparation for these vessels

to be “capable” of supporting the water that is going to be poured in with amount P .

As a result, the volume of water ended up in each vessel is exactly the power that should

be allocated. Notably, for the special case that the noises {Zi}Ni=1 are complex Gaussian

distributed, the heights of vessel bases can never be lowered in the pre-adjustment step;

hence, a mercury-filling scheme before water pouring has been proposed to materialize the

lifting of heights of vessel bases [18]. However, since the adjustment of heights of vessel

bases generally can be in both up and down directions, the use of the name mercury/water

filling may induce that the vessel bases should be lifted under general non-Gaussian additive

noises; hence, we simply use the conventional name of water-filling in this work.

Theorem 3. Suppose that the information transmitted over an (N,K)-limited access channel

is corrupted by additive noises of the same family characterized by (4.1), and the mutual

information function g(ρ) defined in (4.4) satisfies Assumption 1. Assume without loss of

generality that

σ2
1 ≥ σ2

2 ≥ · · · ≥ σ2
N .

Then, the optimal maximal-mutual-information index set A is given by

A = {ℓ, ℓ+ 1, · · · , N} (4.5)

where

ℓ , min

{

i ∈ {1, 2, · · · , K}
∣

∣

∣

∣

σ2
i ≤ σ̃2

K for every 1 ≤ i ≤ K

}

(4.6)
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and σ̃2
i , σ2

i +[λ−σ2
i ]

+ for 1 ≤ i ≤ K with λ chosen to satisfy
∑K

i=1 [λ− σ2
i ]

+
=
∑N

i=K+1 σ
2
i ,

and [y]+ , max{0, y}. The optimal power allocation p∗ can therefore be obtained from q∗

through an assignment similar to (3.7), where q∗ is the maximizer for (3.9) with B equal to

the above A. In other words,

p∗i =

{

q∗i for 1 ≤ i < ℓ
σ2
i∑N

j=ℓ σ
2
j

· q∗
A

for ℓ ≤ i ≤ N
(4.7)

with2

q∗i =

{

σ2
i · g ′(inv)

(

ν σ2
i

)

if g′(∞) < νσ2
i < g′(0)

0 if νσ2
i ≥ g′(0)

}

for 1 ≤ i < ℓ (4.8)

and

q∗
A
=

(

N
∑

j=ℓ

σ2
j

)

· g ′(inv)

(

ν

∑N
j=ℓ σ

2
j

K − ℓ+ 1

)

(4.9)

where g ′(inv) is the inverse function of the first derivative g′ of function g, and ν is chosen

such that
ℓ−1
∑

i=1

q∗i + q∗
A
= P. (4.10)

Proof. In terms of (4.3), the determination of jM in (3.10) can be simplified to

jM = arg min
i∈BM

f ′
i(p̃M,i)

= arg min
i∈BM

1

σ2
i

· g′
(

p̃M,i

σ2
i

)

= arg min
i∈BM

1

σ2
i

· g′
(

g(inv)(FBM
(q̃BM

))
)

(4.11)

= argmax
i∈BM

σ2
i (4.12)

where (4.11) follows from

p̃M,i = f
(inv)
i (FBM

(q̃BM
)) = σ2

i · g(inv)(FBM
(q̃BM

)) for i ∈ BM

2For notational convenience, we define g′(∞) , limρ↑∞ g′(ρ) and note that g′(∞) = 0 for most channels
of practical interest such as channels with finite input alphabet. In the specific situation where g′(∞) > 0, we
point out that it is still unnecessary to consider the case of νσ2

i ≤ g′(∞) in (4.8) because the KKT condition
requires 1/σ2

i · g′(q∗i /σ2
i ) ≤ ν; thus by the strict decreasingness of g′, we have that νσ2

i ≥ g′(q∗i /σ
2
i ) ≥

g′(P/σ2
i ) > g′(∞) is always valid for finite total power P .
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and (4.12) holds because g′
(

g(inv)(FBM
(q̃BM

))
)

is finite due to q̃BM
> 0 for 1 ≤ M ≤ N−|A|+1

(cf. (B.4c) and q̃B1 = P ).

Condition (4.12) then gives that for M = 1, 2, 3, . . .,

BM = {M,M + 1, . . . , N}. (4.13)

Using (4.3) again simplifies stop criterion (3.11) to

(K −M)σ2
M ≤

N
∑

i=M+1

σ2
i (4.14)

because

(K −M)

f ′
jM

(p̃M,jM )
=

(K −M)σ2
M

g′ (g(inv)(FBM
(q̃BM

)))

and

1

F ′
BM+1

(

∑

i∈BM+1
p̃M,i

) =
∑

i∈BM+1

1

f ′
i (p̃M,i)

=
∑

i∈BM+1

σ2
i

g′ (g(inv)(FBM
(q̃BM

)))
.

Then by definition of ℓ and the observation that the noise water level λ = σ̃2
K , we have

σ2
k > σ̃2

K =
1

K − ℓ+ 1

N
∑

j=ℓ

σ2
j for 1 ≤ k < ℓ

which implies that in the above range of k,

(K − k)σ2
k ≥ (K − ℓ+ 1)σ2

k +
ℓ−1
∑

j=k+1

σ2
j >

N
∑

j=ℓ

σ2
j +

ℓ−1
∑

j=k+1

σ2
j =

N
∑

j=k+1

σ2
j .

Accordingly, (4.14) (equivalently, (3.11)) is violated for 1 ≤ M < ℓ. In addition, it can be

verified that

σ2
ℓ ≤ σ̃2

K =
1

K − ℓ+ 1

N
∑

j=ℓ

σ2
j =

1

K − ℓ+ 1
σ2
ℓ +

1

K − ℓ+ 1

N
∑

j=ℓ+1

σ2
j

is exactly equivalent to the validity of (4.14) at M = ℓ. Following the algorithm in Theorem

2, we can conclude from (4.13) that A = {ℓ, ℓ+ 1, . . . , N}.
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The optimal power allocation q∗ as well as its transformation to p∗ follows the usual
optimization process for (3.9) by setting B = A. Specifically, we can reduce (3.9) to

max
{q∈ℜℓ

+:
∑ℓ−1

i=1 qi+qA=P}

{

ℓ−1
∑

i=1

fi(qi) + (K − ℓ+ 1)FA(qA)

}

= max
{q∈ℜℓ

+:
∑ℓ−1

i=1 qi+qA=P}

{

ℓ−1
∑

i=1

g

(

qi
σ2
i

)

+ (K − ℓ+ 1)g

(

qA
∑N

i=ℓ σ
2
i

)}

= max
q∈ℜℓ

+

{

ℓ−1
∑

i=1

g

(

qi
σ2
i

)

+ (K − ℓ+ 1)g

(

qA
∑N

i=ℓ σ
2
i

)

− ν

(

ℓ−1
∑

i=1

qi + qA − P

)}

where in the above derivation, we apply FA(p) = g
(

p∑
i∈A

σ2
i

)

, and ν is the Lagrange multi-

plier. Then, the Lagrange multipliers technique and KKT condition give that for 1 ≤ i < ℓ,














1

σ2
i

g′
(

q∗i
σ2
i

)

− ν = 0 if q∗i > 0

1

σ2
i

g′ (0)− ν ≤ 0 if q∗i = 0
(4.15)

and

K − ℓ+ 1
∑N

j=ℓ σ
2
j

g′

(

q∗
A

∑N
j=ℓ σ

2
j

)

− ν = 0 as q∗
A
= q̃BN−|A|+1

> 0 (see (B.4c))

where ν is chosen to satisfy (4.10). The validity of (4.8) and (4.9) are therefore confirmed.
The transformation from q∗ to p∗ can be derived as:

p∗i =

{

q∗i for i 6∈ A

f
(inv)
i (FA(q

∗
A
)) for i ∈ A

=

{

q∗i for i 6∈ A

σ2
i · g(inv)

(

g
(

q∗
A∑

i∈A
σ2
i

))

for i ∈ A

=

{

q∗i for i 6∈ A

σ2
i∑

i∈A
σ2
i

· q∗
A

for i ∈ A.

Several remarks can be made based on Theorem 3.

• First, it can be extended from Theorem 3 that as long as A is pre-determined, the

maximization labor can always be reduced down to one. In the special case that the
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Figure 4.1: The graphical interpretation of the optimal two-phase water-filling power allo-
cation for an (8, 5)-limited access channel with independent additive noises characterized by
(4.1). In this figure, [σ2

1, σ
2
2, · · · , σ2

8] = [8, 7, 4, 3, 3, 2, 2, 1]. Subfigures (a), (b) and (c) cor-
respond to the noise-power re-distribution phase, while subfigures (d), (e) and (f) illustrate
the signal-power allocation phase.

noises are additive and originated from the same family (as considered in this chapter),

we can directly determine A in terms of (4.6).

• Secondly, when ℓ = 1 (equivalently, A = {1, 2, . . . , N}), p∗ can be determined without

any maximization labor since we immediately have q∗
A
= P by (4.10). In such a case,

the optimal power allocation follows the equal signal-to-noise ratio (SNR) principle as

p∗i
σ2
i

=
P

∑N
j=1 σ

2
j

for every 1 ≤ i ≤ N.
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• Finally, the validity of Theorem 3 does not need to be restricted to channels with

additive noises of the same family but can be extended to any (N,K)-limited access

channel with marginal mutual information functions satisfying (4.3) for some function

g that obeys Assumption 1. A straightforward example is the flat fading channels with

known channel states at the receiver end, characterized by

Yi = (βiHi)(
√
piXi) + σiZi for 1 ≤ i ≤ N (4.16)

where {Hi}Ni=1 is i.i.d. with unit second moment, and is independent of the channel in-

put and additive noise. We then obtain fi(pi) = g(β2
i pi/σ

2
i ) with g(ρ) = I(

√
ρXi;

√
ρHiXi+

Zi|Hi). Theorem 3 thus can be used to establish the optimal power allocation by treat-

ing σ2
i /β

2
i as the new noise power level.

An exemplified illustration of the two-phase water-filling scheme is depicted in Figure

4.1. Details are given below.

〈The noise-power re-distribution phase〉

Fig. 4.1(a) Set K vessels with widths of unit length and with base height of the ith vessel

being σ2
i for 1 ≤ i ≤ K. (Note that we assume σ2

1 ≥ σ2
2 ≥ · · · ≥ σ2

N .)

Fig. 4.1(b) Pour in the “noise water” of amount
∑N

j=K+1 σ
2
j and set σ̃2

i as the new water

level of vessel i for 1 ≤ i ≤ K. Let ℓ be the smallest integer among {1, 2, . . . , K}

such that σ2
i ≤ σ̃2

K (cf. (4.6)). Assign A = {ℓ, ℓ+1, . . . , N} and W = K − ℓ+1.

Fig. 4.1(c) Sub-divide the space of the last W vessels (i.e., K−W +1, K−W +2, . . . , K)

into W + (N −K) new vessels of rectangular shape with base height the same

as the water surface level and widths in proportion to σ2
i for ℓ ≤ i ≤ N .

〈The signal-power allocation phase〉
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Fig. 4.1(d) Retain the N vessels from the previous phase.

Fig. 4.1(e) Adjust the base height of the ith vessel to3

Li(ν) ,

{

σ2
i ·G(νσ2

i ) for 1 ≤ i < ℓ

σ̃2
K ·G(νσ̃2

K) for ℓ ≤ i ≤ N
(4.17)

where ν is the parameter chosen in Theorem 3 according to (4.10), and

G(ζ) ,

{

1
ζ
− g ′(inv)(ζ) if g′(∞) < ζ < g′(0)
1

g′(0)
if ζ ≥ g′(0).

Fig. 4.1(f) Pour in the “signal water” of amount P . Then the volume of water in the ith

vessel is the optimal power p∗i to be allocated for channel i.

In the above procedure, the auxiliary function G will be reduced to what has been

defined and identically denoted in [18, eq. (43)] for the mercury adjustment when {Zi}Ni=1

are i.i.d. complex Gaussian with unit variance. It can also be confirmed that for additive

complex Gaussian noises and K = N , the induced mercury adjustment in [18] is exactly

equal to that given by (4.17) by replacing the constant η therein with ν. Furthermore, when

channel inputs {Xi}Ni=1 are also independent and complex Gaussian distributed, the adjusted

base heights in (4.17) are further reduced to the original noise variances, and the standard

water-filling interpretation is resulted. We however found that the adjusted base heights may

not be always greater than or equal to the original heights (as they should be for additive

Gaussian noises). Thus, the intuition suggested by mercury-filling may not be applicable

3Since 1/ν is the water level, (4.7) indicates that the base heights for unit-width vessels with indices
1 ≤ i < ℓ should be given by

Li(ν) =

{

1
ν
− p∗i

(

< 1
ν

)

if p∗i > 0
σ2

i

g′(0)

(

≥ 1
ν

)

if p∗i = 0
=

{

σ2
i

(

1
ν σ2

i

− g ′(inv)
(

ν σ2
i

)

)

if g′(∞) < νσ2
i < g′(0)

σ2
i

1
g′(0) if νσ2

i ≥ g′(0).

A similar derivation can be made for vessels with indices ℓ ≤ i ≤ N . We re-express the adjusted base heights
in terms of an auxiliary function G in order to have a compatible formula to that in [18] when complex
Gaussian additive noises are considered.
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when the heights of vessel bases need to be lowered. We next give examples for both K = N

and K < N to substantiate this finding.

Example 1 (Quaternary-input additive Laplace noise channels). Suppose that the i.i.d. chan-

nel inputs {Xi}Ni=1 in (4.1) admit only four values with

Pr

[

Xi =
1 + ı√

2

]

= Pr

[

Xi =
1− ı√

2

]

= Pr

[

Xi =
−1 + ı√

2

]

= Pr

[

Xi =
−1− ı√

2

]

=
1

4

and the complex zero-mean unit-variance i.i.d. additive noises {Zi}Ni=1 have marginal Laplace

probability density function exp (−2 (|Re(z)| + |Im(z)|)) for complex z, where Re(z) and

Im(z) are the real and imaginary parts of z, respectively. The additive Laplace noise has

been considered in many publications such as [2,13,16,28–30,35], and has been shown to be

an appropriate model for, e.g., polarity detection [13], prediction error of image encoding [35]

and communications at extremely low frequencies [2].

Assume N = K = 4, P = 1.5, and [σ2
1 , σ2

2 , σ2
3 , σ2

4 ] = [1.2, 1.0, 0.4, 0.1]. We can then

derive as similarly to [12] that

g′(ρ) =

√

2

ρ
· exp

(

−
√

2ρ
)

·Gd
(

√

2ρ
)

for ρ > 0

and

g′(0) , lim
ρ↓0

g′(ρ) = 2

where Gd(x) , 2 · arctan(ex) − π/2 is the Gudermannian function [6]. It can then be

confirmed from Figure 4.2 that g′ satisfies Assumption 1.

Since N = K = 4, we get σ̃2
i = σ2

i for 1 ≤ i ≤ 4; hence, ℓ = 4 and A = {4}. We can then
obtain numerically that

Li(ν) =



















1.00955 for i = 1 (< σ̃2
1 = 1.2; i.e., lowered)

0.94231 for i = 2 (< σ̃2
2 = 1.0; i.e., lowered)

0.80963 for i = 3 (> σ̃2
3 = 0.4; i.e., lifted)

0.95399 for i = 4 (> σ̃2
4 = 0.1; i.e., lifted)
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Figure 4.2: Function g′(ρ) for quaternary-input additive Laplace noise channels.

where ν = 0.76695 according to (4.10). Therefore, the base heights of the first two vessels are

actually lowered rather than lifted as indicated above inside the parentheses. The optimal

power allocation is given by

p∗ = [p∗1, p∗2, p∗3, p∗4] = [0.29432, 0.36156, 0.49424, 0.34988].

�

We next illustrate a situation with K < N .

Example 2. Following Example 1 but now using K = 3 and P = 1, we get [σ̃2
1, σ̃2

2, σ̃2
3] =

[1.2, 1.0, 0.5]; hence, ℓ = 3 and A = {3, 4}. We then obtain numerically that

Li(ν) =



















0.964300 for i = 1 (< σ̃2
1 = 1.2; i.e., lowered)

0.896885 for i = 2 (< σ̃2
2 = 1.0; i.e., lowered)

0.758525 for i = 3 (> σ̃2
3 = 0.5; i.e., lifted)

0.758525 for i = 4 (> σ̃2
3 = 0.5; i.e., lifted)

where ν = 0.828795 according to (4.10). Therefore, the base heights of the first two vessels

are again lowered rather than lifted. Note that for vessels with indices in A = {3, 4},
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Water level 1
ν

-
-L1(ν) =

1
ν
− f

′(inv)
1 (ν)

-

L2(ν) =
1
ν
− f

′(inv)
2 (ν) Li(ν) =

1
ν
− 1

3
F

′(inv)
A

(

ν
3

)

�

q∗1

p∗1 = q∗1
q∗2

p∗2 = q∗2

q∗
A

For i ∈ A, p∗i = f
(inv)
i (FA(q

∗
A
))

i.e., fi(p
∗
i ) = FA(q

∗
A
)

A =

{

3, 4, 5
6, 7, 8

}

21

Figure 4.3: The graphical interpretation of the optimal power allocation for a general (8, 5)-
limited access channel. We assume A is known to be {3, 4, 5, 6, 7, 8} in order to facilitate its
comparison (as an extension) with Figure 4.1(f).

their adjusted base heights should be equal and are determined by σ̃2
K . The optimal power

allocation is given by

p∗ = [p∗1, p∗2, p∗3, p∗4] = [0.242270, 0.309685, 0.358436, 0.089609].

�

Although the two-phase water-filling scheme cannot be extended to a general (N,K)-

limited access channel (for which the channels may not be controlled by a common function

g with single parameter σ2), the resultant optimal power allocation p∗ can still be graphically

interpreted similarly to Figure 4.1(f). In particular, we can regard the tank to be structured

by N − |A| + 1 vessels, which have unit width except for the last one that is of width

K −N + |A|, as illustrated in Figure 4.3. The adjusted heights of vessel bases in their most
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general form can be formulated by the following equations: if i 6∈ A, then

Li(ν) ,











1

ν
− f

′(inv)
i (ν) if f ′

i(∞) < ν < f ′
i(0) (4.18a)

1

f ′
i(0)

if ν ≥ f ′
i(0) (4.18b)

else (i.e., i ∈ A)

Li(ν) ,
1

ν
− 1

K −N + |A|F
′(inv)
A

(

ν

K −N + |A|

)

. (4.19)

It can be verified that taking function G into function Li defined in (4.17) should assume

the same form as (4.18a), (4.18b) and (4.19). From the above formula, it is clear that

1/ν can be interpreted as the water level. Equations (4.18a) and (4.19) then reasonably

imply that the optimal power allocation q∗ satisfies q∗i = f
′(inv)
i (ν) for i 6∈ A and q∗

A
=

F
′(inv)
A

(

ν
K−N+|A|

)

. The aggregate power q∗
A
will then be re-distributed to those channels

with indices in A according to equal-mutual-information principle, i.e., fi(p
∗
i ) = FA(q

∗
A
) for

every i ∈ A. This equal-mutual-information principle is exactly the extension of equal-SNR

principle for channels with additive noises of the same family. Moreover, when ν lies in the

range specified in (4.18b) for some i, no power is allocated to the respective channel; hence,

p∗i = q∗i = 0.

We close this chapter by the following observation. It may be worth knowing that for

channels with additive noises of the same family, the optimal power allocation p∗ can actually

be determined directly by regarding the last W vessels as unit-width vessels with base height

respectively equal to σ̃2
i for K−W +1 ≤ i ≤ K (cf. Figure 4.1(b)). This reduces the original

problem to a power allocation problem over a (K,K)-limited access additive noise channel

with effective noise powers {σ̃2
i }Ki=1. The resultant K-dimensional optimal power allocation

r∗ , [r∗1, r
∗
2, . . . , r

∗
K ] is exactly the heights of water levels in each vessel. The desired optimal
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power allocation p∗ can then be given by

p∗i =















r∗i for 1 ≤ i < ℓ

σ2
i

∑N
k=ℓ σ

2
k

(

K
∑

j=ℓ

r∗j

)

for ℓ ≤ i ≤ N.

Although taking this aspect seems to save the effort of sub-dividing the vessels into ones

with unequal widths in Figure 4.1(c), more effort can be saved if the last W vessels are

aggregated as one. In other words, we can simply use a tank containing ℓ vessels, in which

ℓ − 1 of them have unit width and the remaining one has width W . We can then obtain

the ℓ-dimensional optimal power allocation q∗ = [q∗1, q
∗
2, . . . , q

∗
ℓ−1, q

∗
A
] through the water-

filling scheme (cf. Figure 4.1(f)). The equal-SNR power allocation principle is subsequently

applied to re-distribute q∗
A
to p∗ℓ , p

∗
ℓ+1, . . . , p

∗
N in proportion to σ2

ℓ , σ
2
ℓ+1, . . . , σ

2
N , respectively,

as suggested in (4.7). This is actually what Theorem 3 implicitly indicates, which justifies

the introduction of the aggregate mutual information that views the last W + (N − K)

channels as a single auxiliary channel.
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Chapter 5

Implications from the Optimal Power

Allocation

Theorem 2 indicates that the sequence of candidate maximal-mutual-information index sets

B1,B2,B3, . . . can be identified via the determination of j1, j2, j3, . . .. In a sense, this sequence

can be regarded as sorting the channels in their descending degrees of “noisiness,” which can

be supported by the result from Theorem 3, where the sequence of j1, j2, j3, . . . coincides

with σ2
j1 ≥ σ2

j2 ≥ σ2
j3 ≥ · · · .

For a general (N,K)-limited access channel in which the noises are not necessarily ad-

ditive or scaled from the same family, can one identify such sequence through their mutual

information functions? The next theorem may provide a guide along this direction of think-

ing. For simplification, all the proofs in this chapter are placed in Appendix C.

Theorem 4. For a general (N,K)-limited access channel, if

f ′
k1

(

f
(inv)
k1

(y)
)

≤ f ′
k2

(

f
(inv)
k2

(y)
)

≤ · · · ≤ f ′
kN

(

f
(inv)
kN

(y)
)

for all y ≥ 0

then jM = kM for M = 1, 2, 3, . . ..1

1When ωi , limp→∞ fi(p) is finite, the function f ′
k1
(f

(inv)
k1

(y)) is clearly defined for y < ωi. For y ≥ ωi,

we define f
(inv)
i (y) = ∞ as emphasized in Footnote 2. This, together with the fact that ωi < ∞ and

Assumption 1 jointly imply that limp→∞ f ′
i(p) = 0, gives that f ′

i(f
(inv)
i (y)) = 0 for y ≥ ωi.
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Here, regardless of the original goal of the determination of optimal power allocation,

Theorem 4 (as an extension from Theorem 3) proposes a way to compare the degree of

“noisiness” of general channels via their mutual information functions. For the additive

noise channels of the same family, we have

f ′
i

(

f
(inv)
i (y)

)

=
1

σ2
i

g′
(

g (inv)(y)
)

.

Hence, the proposed ordering coincides with the general impression that the larger the σ2
i , the

noisier the ith channel is considered to be. To simplify the notation, we drop the parentheses

between f ′
i and f

(inv)
i in the sequel.

For channels other than the one considered in Chapter 4, there could be no apparent

winner between any two channels in the sense of {f ′
if

(inv)
i }Ni=1. In other words, it could

happen that

f ′
if

(inv)
i (y1) > f ′

jf
(inv)
j (y1) but f ′

if
(inv)
i (y2) < f ′

jf
(inv)
j (y2)

for two distinct y1 and y2 and two distinct i and j. As such, the sequence of j1, j2, j3, . . . will

become a function of the total signal power P . However, if a certain condition is satisfied, the

pre-identification of the degrees of channel noisiness is still possible at two extreme situations:

P → 0 and P → ∞, which we will respectively refer to as the low- and high-power regimes

in later discussion.

Lemma 3.

1. If

lim sup
y↓0

sgn
(

f ′
if

(inv)
i (y)− f ′

jf
(inv)
j (y)

)

≤ 0 for every 1 ≤ i < j ≤ N (5.1)

then ji = i in the low-power regime, where sign function sgn(ρ) is equal to either 1, 0

or −1 depending on whether ρ > 0, ρ = 0 or ρ < 0.
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2. If

lim sup
y↑min{ωi,ωj}

sgn
(

f ′
if

(inv)
i (y)− f ′

jf
(inv)
j (y)

)

≤ 0 for every 1 ≤ i < j ≤ N (5.2)

then ji = i in the high-power regime, provided that limp→∞ f ′
i(p) = 0 for 1 ≤ i ≤ N ,

where ωi , limp→∞ fi(p).

Since the input alphabet is usually finite for channels of practical interest, we have ωi ,

limp→∞ fi(p) ≤ H(Xi) < ∞. This immediately validates the premise, i.e., limp→∞ f ′
i(p) = 0,

for condition (5.2) implying ji = i in the high-power regime. In other words, limp→∞ f ′
i(p) = 0

is true for all finite-input channels. There however exists a certain kind of channels where

ωi = ∞ while limp→∞ f ′
i(p) = 0. An example is the Gaussian-input AWGN channel for which

fi(p) = log (1 + p/σ2
i ). We would like to emphasize that the inference regarding (5.2) still

remains valid for channels with unbounded mutual information as long as limp→∞ f ′
i(p) = 0.

Conditions (5.1) and (5.2) in Lemma 3 involve the examination of the limit supremum

of function differences. The next corollary shows that their validity can be guaranteed by

comparing the limiting behaviors of individual functions.

Corollary 1.

1. The validity of (5.1) for an (i, j) pair is certain if one of the three conditions below is

satisfied:2



















f ′
i(0) < f ′

j(0) (5.3a)

f ′
i(0) = f ′

j(0) and f ′′
i (0) < f ′′

j (0) (5.3b)

(∃ δ > 0) f ′
i(p) ≤ f ′

j(p) for 0 < p < δ. (5.3c)

2. The validity of (5.2) for an (i, j) pair is certain if

ωi = lim
p→∞

fi(p) < ωj = lim
p→∞

fj(p). (5.4)

2The second derivative f ′′
i at the origin is again defined as f ′′

i (0) , limp↓0 f
′′
i (p).
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We are now ready to illustrate an example that validates the sufficient conditions in

Lemma 3 and Corollary 1.

Example 3 (Flat fading channels). Consider the fading channels characterized by (4.16),

where the additive noises {Zi}Ni=1 are i.i.d. zero-mean complex Gaussian, but the channel

inputs {Xi}Ni=1 are no longer identically distributed. With the first three channel inputs being

respectively BPSK, QPSK and 16-QAM and the remaining channel inputs being complex

Gaussian signals, we obtain ji = i for i = 1, 2, . . . in both low- and high-power regimes by

being given

σ2
1

β2
1

=
σ2
2

β2
2

>
σ2
3

β2
3

=
σ2
4

β2
4

>
σ2
5

β2
5

≥ σ2
6

β2
6

. (5.5)

This can be verified as follows.

It has been derived in [19] that

f ′
i(p) = E

[

β2
i

σ2
i

|Hi|2 ·MMSEi

(

p
β2
i

σ2
i

|Hi|2
)]

and

f ′
i(0) = lim

p→0
f ′
i(p) = lim

p→0
E

[

β2
i

σ2
i

|Hi|2 ·MMSEi

(

p
β2
i

σ2
i

|Hi|2
)]

= E

[

β2
i

σ2
i

|Hi|2
]

=
β2
i

σ2
i

where

MMSEi(ρ) = E

[∣

∣

∣

∣

Xi − E
[

Xi

∣

∣

√
ρXi + Zi

]

∣

∣

∣

∣

2]

.

In the low-power regime, the order of those indices, where σ2
i /β

2
i are not equal, is thus

confirmed by (5.3a). From [18], we know

QPSK-MMSE(ρ) = BPSK-MMSE(ρ/2) > BPSK-MMSE(ρ) for ρ > 0.

Then

f ′
1(p)− f ′

2(p) = E

[

β2
1

σ2
1

|H1|2MMSE1

(

p
β2
1

σ2
1

|H1|2
)]

−E

[

β2
2

σ2
2

|H2|2MMSE2

(

p
β2
2

σ2
2

|H2|2
)]

=
β2
1

σ2
1

E

[

|H1|2
(

BPSK-MMSE

(

p
β2
1

σ2
1

|H1|2
)

−QPSK-MMSE

(

p
β2
1

σ2
1

|H1|2
))]

< 0
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for p > 0. Then (5.3c) assures that j1 = 1 and j2 = 2 in the low-power regime, which

somehow suggests that under equal effective noise power, QPSK modulations should be

favored over BPSK modulations when the power budget is extremely tight. Since j3 = 3

and j4 = 4 in the low-power regime can be verified similarly, we omit their proof.

In the high-power regime, we first note that limp→∞ f ′(p) = 0 for 1 ≤ i ≤ 6. We then

confirm ji = i for 1 ≤ i ≤ 3 from

lim
p→∞

fi(p) =

{

2i−1 i = 1, 2, 3

∞ i > 3
(5.6)

according to (5.4). That ji = i for 4 ≤ i ≤ 6 in the high-power regime can be substantiated

by (5.2) and f ′
if

(inv)
i (y) =

β2
i

σ2
i

· g′g(inv)(y), where

g(ρ) = E
[

log
(

1 + ρ|Hi|2
) ]

and g′(ρ) = E

[ |Hi|2
1 + ρ|Hi|2

]

.

�

After determining the sequence j1, j2, j3, . . ., the next task for finding the optimal power

allocation is to determine A. Recall that A is defined as the set of channels that have the

largest mutual information for the optimal power assignment (see (3.2)). For channels cor-

rupted with additive noises of the same family, A can be directly determined and has nothing

to do with total power P . In more general cases, however, A depends on P . There is even

no guarantee for its convergence in the low- or high-power regimes even if the monotonicity

condition of {f ′
if

(inv)
i }Ni=1 in Theorem 4 holds. This is because in terms of given j1, j2, j3, . . .,

only sufficient conditions on the validity and violation of stop criterion (3.11) can be obtained

as summarized in the next lemma.

Lemma 4. For the already pre-determined j1, j2, j3, . . . and an integer M that is under ex-

amination in the algorithm of Theorem 2, we have the following logical statements to help

determining A. Again, in the high-power region, we assume that limp→∞ f ′(p) = 0 for

1 ≤ i ≤ N .
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1. If

lim sup
y↓0

sgn



K −M −
∑

i∈BM+1

f ′
jM

f
(inv)
jM

(y)

f ′
if

(inv)
i (y)



 ≤ 0 (5.7)

then stop criterion (3.11) holds in the low-power regime.

2. If

lim inf
y↓0

sgn



K −M −
∑

i∈BM+1

f ′
jM

f
(inv)
jM

(y)

f ′
if

(inv)
i (y)



 > 0 (5.8)

then stop criterion (3.11) fails in the low-power regime.

3. If

lim sup
y↑Ω(BM )

sgn



K −M −
∑

i∈BM+1

f ′
jM

f
(inv)
jM

(y)

f ′
if

(inv)
i (y)



 ≤ 0 (5.9)

then stop criterion (3.11) holds in the high-power regime, where

Ω(BM ) , min
i∈BM

ωi = min
i∈BM

lim
p→∞

fi(p)

4. If

lim inf
y↑Ω(BM )

sgn



K −M −
∑

i∈BM+1

f ′
jM

f
(inv)
jM

(y)

f ′
if

(inv)
i (y)



 > 0 (5.10)

then stop criterion (3.11) fails in the high-power regime.

Although conditions (5.7) and (5.8) are mutually exclusive, it is still possible that both

are violated. In such a case, limP→0A(P ) may be indeterminate. Likewise, the same remark

is applied to (5.9) and (5.10).

The conditions in Lemma 4 involve the examination of the limiting behavior of a difference

between a constant K −M and a sum of function ratios
∑

i∈BM+1
[f ′

jM
f

(inv)
jM

(y)/f ′
if

(inv)
i (y)].

We similarly derive sufficient conditions to (5.7)–(5.10) based on the limiting behavior of

individual functions as shown in Corollary 2.

Corollary 2. Follow Lemma 4.
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1. (5.7) is valid if

K −M <
∑

i∈BM+1

f ′
jM

(0)

f ′
i(0)

. (5.11)

2. (5.8) is valid if

K −M >
∑

i∈BM+1

f ′
jM

(0)

f ′
i(0)

. (5.12)

3. (5.9) is valid if

K −M <
∑

i∈BM+1

lim inf
y↑Ω(BM )

f ′
jM

f
(inv)
jM

(y)

f ′
if

(inv)
i (y)

. (5.13)

4. (5.10) is valid if

K −M >
∑

i∈BM+1

lim sup
y↑Ω(BM )

f ′
jM

f
(inv)
jM

(y)

f ′
if

(inv)
i (y)

. (5.14)

Furthermore, if j1, j2, j3, . . . are determined according to the condition in Lemma 3,

i.e., (5.2), then (5.10) can be implied by

ωjM = lim
p→∞

fjM (p) < ωjM+1
= lim

p→∞
fjM+1

(p). (5.15)

Example 4. Continue from Example 3 where we have determined ji = i for i = 1, 2, . . . for

both low- and high-power regimes. Assume K = 5 and

[

σ2
1

β2
1

,
σ2
2

β2
2

,
σ2
3

β2
3

,
σ2
4

β2
4

,
σ2
5

β2
5

,
σ2
6

β2
6

]

= [1, 1, 0.5, 0.5, 0.4, 0.4] .

Then, by f ′
i(0) = β2

i /σ
2
i for 1 ≤ i ≤ 6 and (5.11) and (5.12), we establish

A ( = lim
P→0

A(P ) ) = B3 = {3, 4, 5, 6}

in the low-power regime.

In the high-power regime, (5.15) and (5.6) imply that A ⊆ B4 = {4, 5, 6}. Examination

of M = 4 with B5 = {5, 6} gives

∑

i∈B5

lim sup
y↑Ω(B4)

f ′
j4
f

(inv)
j4

(y)

f ′
if

(inv)
i (y)

=
∑

i∈B5

β2
4/σ

2
4

β2
i /σ

2
i

= 1.6 > K −M = 5− 4 = 1.
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Hence, (5.13) is valid, and so is the stop criterion of the algorithm. As a result, the algorithm

in Theorem 2 will stop at M = 4 and A(= limP→∞A(P )) = B4 = {4, 5, 6}. �

The two lemmas and two corollaries presented previously give the conditions under which

A can be determined directly in the low- and high-power regimes. We can then compute the

optimal power allocation q∗ using the Lagrange multipliers technique and KKT condition

in terms of the auxiliary aggregate channel associated with A. After such step, the optimal

power allocation p∗i for a channel outside A equals the respective component q∗i of q∗, but

the power allocation for channels inside A should be obtained by re-distributing the power

q∗
A
according to the equal mutual-information principle. Since we are concerned with the

situation when P approaches either 0 or ∞, the optimal power p∗ may as well approach the

same limiting value. It is thus more meaningful to consider the ratio between the optimal

power allocations of channel pairs in the low- and high-power regimes.

Lemma 5. After the determination of A, the optimal power allocation q∗i for the ith channel

outside A asymptotically satisfies

lim
P→0

q∗i
q∗
A

=







(K + |A| −N)
F ′′
A
(0)

f ′′
i (0)

if f ′
i(0) = (K + |A| −N)F ′

A
(0)

0 otherwise
(5.16)

provided the second derivatives f ′′
i (p) and F ′′

A
(p) exist, f ′′

i (0) , limp→0 f
′′
i (p) < ∞, and

F ′′
A
(0) , limp→0 F

′′
A
(p) < ∞. In addition, for two channels with indices i, j in A, the re-

distribution of q∗
A
yields

lim
P→0

p∗i
p∗j

=
f ′
j(0)

f ′
i(0)

provided that f ′
i(0) and f ′

j(0) are both finite.

In the high-power regime, since we assume limp→∞ f ′
i(p) = 0, we have lim supp→∞ f ′′

i (p) =

0.3 Discussion regarding the limiting power ratio between channel pair therefore cannot

3This can be seen from 0 ≥
∫ β

α
f ′′(p)dp ≥ f ′(β) − f ′(α) as a consequence of the strict decreasingness of

f ′
i [26, p. 100] .
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be stated in the same fashion as (5.16). The next observation then indicates that in the

high-power regime, the power ratios between channel pairs are governed by the rate of

convergences of {f ′
i(p)}Ni=1 at p large.

Observation 1.

1. For channels outside A, the following statements hold.

• If F ′
A
and each f ′

i outside A vanish at a polynomial speed, i.e.,

lim
qA→∞

qmA

A
(K −N + |A|)F ′

A
(qA) = cA and lim

qi→∞
qmi

i f ′
i(qi) = ci for i 6∈ A,

where mi, mA, ci and cA are all positive, or if F ′
A
and each f ′

i outside A vanish at

an exponential speed, i.e.,

lim
qA→∞

qmA

A
log ((K −N + |A|)F ′

A
(qA)) = cA and lim

qi→∞
qmi

i log (f ′
i(qi)) = ci for i 6∈ A,

where mi, mA, ci and cA are all negative, then for i, j 6∈ A,

lim
P→∞

q∗i
q∗j

=















0 if |mi| > |mj|
(

ci
cj

)1/mi

if |mi| = |mj|
∞ if |mi| < |mj|

and lim
P→∞

q∗i
q∗
A

=















0 if |mi| > |mA|
(

ci
cA

)1/mi

if |mi| = |mA|
∞ if |mi| < |mA|.

• If for i, j 6∈ A, f ′
i vanishes exponentially fast while f ′

j and F ′
A
decay to zero at a

polynomial speed, then

lim
P→∞

q∗i
q∗j

= lim
P→∞

q∗i
q∗
A

= 0.

2. For channels i, j inside A,















lim
P→∞

p∗i = f
(inv)
i (Ω(A)) if ωi > Ω(A) = mink∈A ωk

lim
P→∞

p∗i
p∗j

= lim
y↑Ω(A)

f ′
jf

(inv)
j (y)

f ′
if

(inv)
i (y)

if ωi = ωj = Ω(A).
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There are certain channels with polynomially vanishing first derivatives in their mu-

tual information functions. For example, the fading channels characterized in (4.16) sat-

isfy limqi→∞ qif
′
i(qi) = 1 when both channel inputs and additive noises are complex Gaus-

sian. Examples for exponentially vanishing first derivatives in their mutual information

functions are the AWGN channels with a finite channel input alphabet [18], for which

limqi→∞ q−1
i log (f ′

i(qi)) = −d2i /(4σ
2
i ), where di is the minimum distance between distinct

channel inputs.

An interesting observation in the high-power regime is that the optimal power allocation

p∗i for a channel in A may be bounded even if the total power P goes to infinity. An

available example can be constructed by re-assuming K = 1 in Example 3. Then, we have

A = {1, 2, · · · , 6}, Ω(A) = mini∈A ωi = 1 and limP→∞ p∗i = f
(inv)
i (Ω(A)) = f

(inv)
i (1) for

1 ≤ i ≤ 6, in which case limP→∞ p∗i is a finite positive number for 2 ≤ i ≤ 6. It can

be further verified that taking K = 2 in the same example gives A = {2, 3, · · · , 6} in the

high-power regime, which also results in 0 < limP→∞ p∗i < ∞ for 3 ≤ i ≤ 6.
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Chapter 6

Concluding Remarks

In this dissertation, we consider the (N,K)-limited access channel and establish an algorith-

mical procedure to find its optimal power allocation. The optimal power allocation obtained

is not restricted to AWGN channels but can be applied to general channels with correspond-

ing mutual information functions satisfying Assumption 1. For additive noises scaled from

the same distribution family, finding the optimal power allocation is reduced to a simple two-

phase water-filling process. This two-phase water-filling graphical interpretation can then

be deduced to a general case, where the degrees of “channel noisiness” are in a sense im-

plied by the composition functions {f ′
if

(inv)
i }Ni=1 of the mutual information functions {fi}Ni=1.

General behaviors of the optimal power allocation in low- and high-power regimes are also

established. We would like to point out that the results in the work can be directly applied to

a resource allocation problem associated with some “profit” functions {fi}Ni=1 as long as the

problem is mathematically of the same form as (2.3). As such, the optimal resource alloca-

tion can be solved algorithmically, and sometimes directly if certain monotonicity conditions

are satisfied. In addition, {f ′
if

(inv)
i }Ni=1 now suggests the prioritized sequence of investments,

i.e., the smaller the f ′
if

(inv)
i , the less profitable from the investment pi.

One possible future work is to relax the independence assumption in (2.2) since a certain

degree of dependence among channels may exist in practice. A good start would be to
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investigate the additive color noise compound channel modeled by

Yi =
√
piXi + σiZi for 1 ≤ i ≤ N

where {Zi}Ni=1 are dependent random variables. According to our preliminary study, a uni-

versal guideline is obtained for a group of permutation-invariant channels, in which the

system mutual information remains unchanged when simultaneously permuting their power

parameters and multiplicative coefficients (i.e., switching (pi, σ
2
i ) and (pj, σ

2
j ), also si and sj ,

for channel i and j), that a channel with less power should have larger SNR. When all N

channels belong to a permutation-invariant group, we also found that the optimal power allo-

cation problem can be transformed to an equivalent problem for K parallel channels without

limited access constraint via a water-filling noise-power-redistribution process, and then the

optimal power allocation is obtained via one-to-one mapping from the power allocation solu-

tion of the K equivalent channels according to KKT condition. Further investigation along

this direction might be worthwhile.
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Appendix A

Proofs of Lemma 2 and Theorem 1

We first provide a simple property regarding the aggregate mutual information function.

This property will be used in the proofs of both Theorems 1 and 2.

Property 1. If mini∈B pi > 0 and fi(pi) = fj(pj) for every i, j ∈ B, then

1

F ′
B

(
∑

i∈B pi
) =

∑

i∈B

1

f ′
i(pi)

. (A.1)

Proof. This is a direct consequence following (3.6) and the relation between the first deriva-

tive f ′ of a function f and its inverse f (inv) as:

∂f (inv)(y)

∂y

∣

∣

∣

∣

y=f(p)

=
1

f ′(p)

where in the above equation, f can be replaced by either any fi with 1 ≤ i ≤ N or the

aggregate mutual information function FB.

Proof of Lemma 2. 1. For any q ∈ Q(B), we can use the assignment in the lemma to

obtain a corresponding p, i.e.,

pi =

{

qi for i 6∈ B

f
(inv)
i (FB(qB)) for i ∈ B.

(A.2)

Then, we have

fi(pi) =

{

fi(qi) for i 6∈ B

fi

(

f
(inv)
i (FB(qB))

)

= FB(qB) for i ∈ B
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and fi(pi) = fi(qi) < FB(qB) for i 6∈ B because qi satisfies condition (ii) in Q(B). Thus,

p ∈ P(B) and

∑

i6∈B

fi(qi) + (K + |B| −N)FB(qB) =
∑

i6∈B

fi(pi) + (K + |B| −N) max
1≤j≤N

fj(pj).

Since the above derivation is true for any q ∈ Q(B), we obtain that

sup
q∈Q(B)

{

∑

i6∈B

fi(qi) + (K + |B| −N)FB(qB)

}

≤ sup
p∈P(B)

{

∑

i6∈B

fi(pi) + (K + |B| −N) max
1≤j≤N

fj(pj)

}

. (A.3)

2. Similarly, for any p ∈ P(B), we can assign its corresponding q as

qi = pi for i 6∈ B and qB =
∑

i∈B

pi. (A.4)

Then, for j ∈ B,

fj(pj) = FB

(

F
(inv)
B

(

fj(pj)

))

= FB

(

∑

i∈B

f
(inv)
i

(

fj(pj)

))

(A.5)

= FB

(

∑

i∈B

f
(inv)
i

(

fi(pi)

))

(A.6)

= FB

(

∑

i∈B

pi

)

= FB (qB)

where (A.5) follows the definition of the aggregate mutual information FB, and (A.6)

holds because, according to condition (iii) in P(B), fi(pi) = fj(pj) for every i ∈ B. By

applying conditions (ii) and (iii) in P(B), we obtain for j 6∈ B,

fj(qj) = fj(pj) < max
1≤i≤N

fi(pi) = max
i∈B

fi(pi) = FB(qB).

Hence, q ∈ Q(B) and
∑

i6∈B

fi(pi) + (K + |B| −N) max
1≤j≤N

fj(pj) =
∑

i6∈B

fi(qi) + (K + |B| −N)FB(qB).
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Accordingly,

sup
p∈P(B)

{

∑

i6∈B

fi(pi) + (K + |B| −N) max
1≤j≤N

fj(pj)

}

≤ sup
q∈Q(B)

{

∑

i6∈B

fi(qi) + (K + |B| −N)FB(qB)

}

. (A.7)

3. In summary, (A.3) and (A.7) jointly imply that equality holds for both inequalities,

and the relation between maximizers p⋄ and q⋄ should follow (A.2) and (A.4).

Proof of Theorem 1. We first obtain from the definition of FB and Property 1 that for q > 0,

1

F ′
B
(q)

=
1

F ′
B

(

F
(inv)
B

(FB(q))
) =

1

F ′
B

(

∑

i∈B f
(inv)
i (FB(q))

) =
∑

i∈B

1

f ′
i

(

f
(inv)
i (FB(q))

) .

We can then infer from Assumption 1 that F ′
B
(q) is a positive, strict decreasing and contin-

uous function for q > 0, and F ′
B
(0) = limρ↓0 F

′
B
(ρ). This implies that

∑

i∈B

fi(qi) + (K + |B| −N)FB(qB) (A.8)

is strictly concave for q ∈ Q̃(B). By definition of q⋄ (cf. Lemma 2),

sup
q∈Q(B)

{

∑

i6∈B

fi(qi) + (K + |B| −N)FB(qB)

}

=
∑

i6∈B

fi(q
⋄
i ) + (K + |B| −N)FB(q

⋄
B
).

Then, the assumption that q⋄ ∈ Q(B) and the strict concavity of (A.8) together imply that

q⋄ is the unique global maximizer that maximizes (A.8) over Q̃(B). Hence, q̃ = q⋄.
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Appendix B

Proof of Theorem 2

Two properties regarding the optimal maximal-mutual-information index set A and the

optimal power allocation p∗ must be established before our presenting the proof of Theorem

2.

Property 2. Fix P > 0. The optimal maximal-mutual-information index set A and the

optimal power allocation p∗ satisfy the following two properties:

1. For j 6∈ A,

f ′
j(p

∗
j)

{

= (K + |A| −N)F ′
A
(
∑

i∈A p
∗
i ) if p∗j > 0

≤ (K + |A| −N)F ′
A
(
∑

i∈A p
∗
i ) if p∗j = 0.

(B.1)

2. For any i, j ∈ {1, 2, . . . , N}, if fi(p∗i ) < fj(p
∗
j), then

f ′
i(p

∗
i ) ≤ f ′

j(p
∗
j). (B.2)

The first property indicates that the first derivative of the mutual information function

attains the maximum value (K + |A| − N)F ′
A
(
∑

i∈A p
∗
i ) whenever its respective allocated

power is positive. It also indicates that q∗
A
=
∑

i∈A p
∗
i > 0 for P > 0. The second property

reveals that for the optimal power assignment, a larger mutual information cannot have a

smaller first derivative. These two properties will be the basis of the prove-by-contradiction

technique adopted in the proof of Theorem 2.
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Proof of Property 2. We first observe that minj∈A p
∗
j > 0. This is because if p∗j = 0 for some

j ∈ A, then (3.2) gives that max1≤i≤N fi(p
∗
i ) = fj(p

∗
j) = fj(0) = 0. Thus, p∗i = 0 for every

1 ≤ i ≤ N , and P =
∑N

i=1 p
∗
i = 0, which contradicts the assumption that P > 0.

We next note that the Lagrange multipliers technique and KKT condition imply that the

first derivatives of the mutual information functions achieve the maximum for those indices

whose corresponding allocated powers are positive. Then by replacing B by A in (3.9) and

by noting

q∗
A
=
∑

i∈A

p∗i ≥ min
i∈A

p∗i > 0,

we obtain that for j 6∈ A,

p∗j = q∗j and f ′
j(q

∗
j )

{

= (K + |A| −N)F ′
A
(q∗

A
) if q∗j > 0

≤ (K + |A| −N)F ′
A
(q∗

A
) if q∗j = 0.

This completes the proof of (B.1).

The proof of (B.2) can be done as follows. Suppose

fi(p
∗
i ) < fj(p

∗
j) and f ′

i(p
∗
i ) > f ′

j(p
∗
j).

Then, fj(p
∗
j ) > 0 and hence p∗j > 0 by Assumption 1. By the continuity of functions fi, f

′
i ,

fj and f ′
j, there exists 0 < ∆p < p∗j such that

fi(p
∗
i +∆p) < fj(p

∗
j −∆p) and f ′

i(p
∗
i +∆p) > f ′

j(p
∗
j −∆p).

Hence,

fi(p
∗
i +∆p) + fj(p

∗
j −∆p) > [fi(p

∗
i )+∆p · f ′

i(p
∗
i +∆p)]+

[

fj(p
∗
j )−∆p · f ′

j(p
∗
j −∆p)

]

(B.3)

= fi(p
∗
i ) + fj(p

∗
j) + ∆p

[

f ′
i(p

∗
i +∆p)− f ′

j(p
∗
j −∆p)

]

> fi(p
∗
i ) + fj(p

∗
j)

where (B.3) follows a relation derived from Assumption 1 that for every 1 ≤ k ≤ N and

0 < ∆p < p,

f ′
k(p+∆p) <

fk(p+∆p)− fk(p)

∆p
< f ′

k(p) <
fk(p)− fk(p−∆p)

∆p
< f ′

k(p−∆p).
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Noting that i must be outside A since fi(p
∗
i ) < fj(p

∗
j), we distinguish between two cases

below: j 6∈ A and j ∈ A.

First, if j 6∈ A, then
∑

k 6∈A

fk(p
∗
k) + (K + |A| −N) max

1≤m≤N
fm(p

∗
m)

=

(

∑

k 6∈A\{i,j}

fk(p
∗
k) + fi(p

∗
i ) + fj(p

∗
j)

)

+ (K + |A| −N) max
1≤m≤N

fm(p
∗
m)

<
∑

k 6∈A\{i,j}

fk(p
∗
k) + fi(p

∗
i +∆p) + fj(p

∗
j −∆p) + (K + |A| −N) max

1≤m≤N
fm(p

∗
m)

which contradicts the optimality of p∗. If however j ∈ A, then
∑

k 6∈A

fk(p
∗
k) + (K + |A| −N) max

1≤m≤N
fm(p

∗
m)

=





∑

k 6∈A\{i}

fk(p
∗
k) + fi(p

∗
i )



+

(

fj(p
∗
j ) + (K + |A| −N − 1) max

1≤m≤N
fm(p

∗
m)

)

<
∑

k 6∈A\{i}

fk(p
∗
k) + fi(p

∗
i +∆p) + fj(p

∗
j −∆p) + (K + |A| −N − 1) max

1≤m≤N
fm(p

∗
m)

which again contradicts the optimality of p∗. The proof of (B.2) is therefore completed.

We are now ready to present the proof of Theorem 2.

Proof of Theorem 2. The proof of the theorem is divided into two parts.

In the forward part, we will show by induction that when |A| < N ,



















A ⊆ BM+1 (B.4a)

(K −M)F ′
BM+1

(

∑

i∈BM+1
p̃M,i

)

> f ′
jM

(p̃M,jM ) (B.4b)

∑

i∈BM+1
p̃M+1,i

(

= q̃BM+1

)

> 0 (B.4c)

hold for every 1 ≤ M ≤ N − |A|. Condition (B.4b) then ensures that stop criterion (3.11) is

violated for every 1 ≤ M ≤ m for some m ∈ {N−|A|, N−|A|+1, . . . , K−1} when |A| < N ;

hence the algorithm will not stop before finding A and p∗. Notably, the definition of A in

(3.2) guarantees that N − |A| ≤ K − 1; hence the set {N − |A|, N − |A| + 1, . . . , K − 1}
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can never be empty. Also, according to p̃M+1,i = f
(inv)
i (FBM+1

(q̃BM+1
)) from (3.7), (B.4c) is

equivalent to p̃M+1,i > 0 for every i ∈ BM+1.

After confirmation of the forward part, the converse part will subsequently be proved by

induction, namely, if stop criterion (3.11) is violated for every 1 ≤ M ≤ m, thenm ≤ N−|A|.

An immediate consequence of the converse is that when |A| = N , the stop criterion (3.11)

must hold at M = 1 because the converse can be equivalently stated (by taking m = 1) as

that |A| = N > N − 1 implying the validity of (3.11) at M = 1.

Then the forward and converse parts together conclude that the smallest integer Mmin

that validates the stop criterion (3.11) is exactly N − |A|+ 1. The desired result A = BMmin

is therefore confirmed by deriving

|BMmin
| = N −Mmin + 1 = |A|

and by applying (B.4a) (which has been proved to be valid for every 1 ≤ M ≤ N − |A| =

Mmin − 1 in the forward part) to obtain

A ⊆ BMmin

(

⊆ BMmin−1 ⊆ · · · ⊆ B2

)

.

Note that stop criterion (3.11) trivially holds when M = K; hence, the above statement is

applicable even at the extreme case that |A| = N −K + 1.

A. Forward part: Under |A| < N , (B.4a)–(B.4c) are valid for every 1 ≤ M ≤ N − |A|.

1. Preliminary :

In comparison with the optimal power allocation p∗, we define two index sets as

follows:

IM , {i ∈ BM : p̃M,i < p∗i } and DM , {i ∈ BM : p̃M,i > p∗i } .
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From their definitions, IM consists of all indices in BM , corresponding to which p̃M,i

needs to be increased to reach p∗i . In contrast, for i ∈ DM , we shall decrease p̃M,i to

achieve p∗i .

We then claim that for the considered range 1 ≤ M ≤ N − |A|, IM and DM cannot

be both empty, given that A ⊆ BM . This is because if both of them were empty, then

p̃M,i = p∗i for every i ∈ BM . We then notice from (3.7) that function values {fi(p̃M,i)}

are all equal for i ∈ BM . Also, by definition of A from (3.2), the set A should contain

all indices whose respective function values {fi(p∗i )} are equal. Thus, A ⊆ Bm and

p̃M,i = p∗i for i ∈ BM immediately imply that A = BM . Accordingly, IM = DM = ∅

can only occur when M = N − |BM | + 1 = N − |A| + 1, which is outside the range

1 ≤ M ≤ N − |A| that we consider here. The claim is thus validated.

2. Validity of (B.4a)–(B.4c) when M = 1:

Observe that A is always a subset of B1 = {1, 2, . . . , N}, so we know from the claim

in 1) Preliminary that I1 and D1 cannot be both empty. Based on this, we can further

reason from
N
∑

i=1

p̃1,i =
N
∑

i=1

p∗i = P

that I1 and D1 are both non-empty. Since

fi(p
∗
i ) = max

1≤j≤N
fj(p

∗
j) for i ∈ A (⊆ B1)

and

fi(p̃1,i)
(

= FB1(P )
)

< max
j∈B1

fj(p
∗
j ) = max

1≤j≤N
fj(p

∗
j ) for i ∈ B1 (as I1 6= ∅) (B.5)

we can infer from the strict increasingness of functions {fi} that p̃1,i < p∗i for every

i ∈ A, which indicates A ⊆ I1.
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We then claim and will prove by contradiction that j1 obtained from

j1 = argmin
i∈B1

f ′
i(p̃1,i) (B.6)

does not belong to I1, and therefore is not contained in A. This will immediately yield

A ⊆ B2 = B1 \ {j1}.

Suppose j1 ∈ I1. Then the definition of I1 implies

p̃1,j1 < p∗j1. (B.7)

Because
∑N

i=1 p̃1,i =
∑N

i=1 p
∗
i = P , (B.7) further implies the existence of another index

k (in B1) such that

p̃1,k > p∗k. (B.8)

From (3.7) and (B.6), we respectively obtain

fj1(p̃1,j1) = fk(p̃1,k) = FB1(P ) and f ′
j1
(p̃1,j1) ≤ f ′

k(p̃1,k).

Then by (B.7), (B.8), the strict increasingness of functions fj1 and fk, and the strict

decreasingness of functions f ′
j1 and f ′

k, we have

fj1(p
∗
j1
) > fk(p

∗
k) and f ′

j1
(p∗j1) < f ′

k(p
∗
k)

which contradicts (B.2) in Property 2. Accordingly, j1 6∈ I1.

Next, we prove that (B.4b) is valid when M = 1. Using the prove-by-contradiction

technique, we suppose

(K − 1)F ′
B2

(
∑

i∈B2
p̃1,i
)

≤ f ′
j1
(p̃1,j1). (B.9)

Since for every 1 ≤ i ≤ N ,

p̃1,i = f
(inv)
i (FB1(P )) > 0 (as P > 0)
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and {fi(p̃1,i)} are all equal (to FB1(P )), we obtain from Property 1 that

1

F ′
B2

(
∑

i∈B2
p̃1,i
) =

∑

i∈B2

1

f ′
i(p̃1,i)

=
∑

i∈A

1

f ′
i(p̃1,i)

+
∑

i∈B2\A

1

f ′
i(p̃1,i)

.

Accordingly,

∑

i∈A

1

f ′
i(p̃1,i)

=
1

F ′
B2

(
∑

i∈B2
p̃1,i
) −

∑

i∈B2\A

1

f ′
i(p̃1,i)

≥ K − 1

f ′
j1
(p̃1,j1)

−
∑

i∈B2\A

1

f ′
i(p̃1,i)

(B.10)

≥ K − 1

f ′
j1
(p̃1,j1)

−
∑

i∈B2\A

1

f ′
j1
(p̃1,j1)

(B.11)

=
1

f ′
j1
(p̃1,j1)

[(K − 1)− |B2 \ A|]

=
1

f ′
j1
(p̃1,j1)

[(K − 1)− (|B2| − |A|)] (B.12)

=
1

f ′
j1
(p̃1,j1)

(K + |A| −N) (B.13)

where (B.10) follows from (B.9), (B.11) is based on (B.6), (B.12) is due to A ⊆ B2,

and (B.13) is true because |B2| = N − 1. Then based on A ⊆ I1 and j1 6∈ I1, we know

p̃1,i < p∗i for every i ∈ A and p̃1,j1 ≥ p∗j1 . Hence, from the strict decreasingness of

functions {f ′
i}, (B.13) implies that

f ′
j1
(p∗j1) > (K −N + |A|) 1

∑

i∈A
1

f ′
i(p

∗
i )

= (K −N + |A|)F ′
A
(
∑

i∈A p
∗
i )

which contradicts (B.1) in Property 2.

After proving (B.4a) and (B.4b) at M = 1, what remains to be confirmed is the

validity of (B.4c). Using the prove-by-contradiction technique, we first suppose (B.4c)

were not true when M = 1, i.e.,
∑

i∈B2
p̃2,i = 0. Then, we obtain

p̃2,j1 =
N
∑

i=1

p̃2,i −
∑

i∈B2

p̃2,i = P > 0.
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The KKT condition follows that

(K − 1)F ′
B2

(
∑

i∈B2
p̃2,i
)

≤ f ′
j1
(p̃2,j1).

The strict decreasingness of functions F ′
B2

and f ′
j1
, together with the straightforward

relations:
∑

i∈B2

p̃1,i ≥
∑

i∈B2

p̃2,i = 0 and p̃1,j1 ≤ p̃2,j1 = P,

implies

(K − 1)F ′
B2

(
∑

i∈B2
p̃1,i
)

≤ f ′
j1
(p̃1,j1)

which contradicts (B.4b) at M = 1. The proof of the case M = 1 is then completed.

3. Validity of (B.4a)–(B.4c) at M = m − 1 implying their validity at M = m for 2 ≤

m ≤ N − |A|:

Based on the premise that (B.4a) is true at M = m − 1 (i.e., A ⊆ Bm), we know

from the discussion in the Preliminary on page 51 that Im and Dm cannot be both

empty. So when Im is not empty, we will show A ⊆ Im and jm 6∈ Im as similar to the

proof at M = 1, which immediately gives A ⊆ Bm+1 = Bm \ {jm}. We will then show

by contradiction that Im = ∅ and Dm 6= ∅ can never occur if (B.4a) and (B.4c) are

both true at M = m− 1. The desired result, i.e., A ⊆ Bm implies A ⊆ Bm+1 for every

2 ≤ m ≤ N − |A|, is therefore verified.

Case 1) Im 6= ∅.

Since

fi(p
∗
i ) = max

1≤j≤N
fj(p

∗
j ) for i ∈ A (⊆ Bm)

and

fi(p̃m,i)
(

= FBm
(q̃Bm

)
)

< max
j∈Bm

fj(p
∗
j) ≤ max

1≤j≤N
fj(p

∗
j ) for i ∈ Bm (as Im 6= ∅)
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we can infer from the strict increasingness of functions {fi} that p̃m,i < p∗i for every

i ∈ A, which indicates A ⊆ Im.

In order to prove jm 6∈ Im, we need to first show the existence of an index k ∈ Bm

such that p̃m,k ≥ p∗k. This can be proved by contradiction. Suppose no such index

exists in Bm (i.e., Im = Bm). Because
∑N

i=1 p̃m,i =
∑N

i=1 p
∗
i = P , there must exist

an index u outside Bm, satisfying p̃m,u > p∗u. Since p∗u ≥ 0, we know p̃m,u must be

strictly positive. Then we can derive by the KKT condition (i.e., the first derivatives

of the mutual information functions with positive allocated powers should achieve the

maximum) that

(K −m+ 1)F ′
Bm

(
∑

i∈Bm
p̃m,i

)

= f ′
u(p̃m,u) (B.14)

where equality in (B.14) follows from the validity of (B.4c) at M = m − 1, i.e.,
∑

i∈Bm
p̃m,i > 0. Since the validity of (B.4c) at M = m − 1 is equivalent to p̃m,i > 0

for i ∈ Bm, and function values {fi(p̃m,i)} are all equal also for i ∈ Bm, we have from
Property 1 that

1

(K −m+ 1)

∑

i∈Bm

1

f ′
i(p̃m,i)

=
1

(K −m+ 1)
· 1

F ′
Bm

(
∑

i∈Bm
p̃m,i

) =
1

f ′
u(p̃m,u)

. (B.15)

Based on (B.15), we can further reason from

p̃m,i < p∗i for i ∈ Im = Bm, p̃m,u > p∗u

and the strict decreasingness of functions {f ′
i} that

1

(K −m+ 1)

∑

i∈Bm

1

f ′
i(p

∗
i )

>
1

f ′
u(p

∗
u)
. (B.16)

Using again that p∗i > p̃m,i for i ∈ Bm = Im, we know that p∗i > 0 for i ∈ Bm. Property
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(B.1) then leads to

1

K −m+ 1

∑

i∈Bm

1

f ′
i(p

∗
i )

=
1

K −m+ 1





∑

i∈A

1

f ′
i(p

∗
i )

+
∑

i∈Bm\A

1

f ′
i(p

∗
i )





=
1

K −m+ 1





1

F ′
A
(
∑

i∈A p
∗
i )

+
∑

i∈Bm\A

1

(K + |A| −N)

1

F ′
A
(
∑

i∈A p
∗
i )





=
1

(K + |A| −N)

1

F ′
A
(
∑

i∈A p
∗
i )

≤ 1

f ′
u(p

∗
u)

where the last inequality cannot be replaced by an equality because p∗u may be zero, and

in the above derivation, we have implicitly applied the validity of (B.4a) at M = m−1

to obtain |Bm \ A| = |Bm| − |A| = N −m+ 1− |A|. A contradiction to (B.16) is thus

obtained. Accordingly, Im 6= Bm, and hence confirmation of the existence of k ∈ Bm

such that p̃m,k ≥ p∗k is completed.

We can now proceed to prove that jm 6∈ Im by contradiction. Suppose jm ∈ Im;

hence, p̃m,jm < p∗jm . Then following four observations below:

(a) fjm(p̃m,jm) = fk(p̃m,k),

(b) f ′
jm(p̃m,jm) = mini∈Bm

f ′
i(p̃m,i) ≤ f ′

k(p̃m,k),

(c) the strict increasingness of functions fjm and fk, and

(d) the strict decreasingness of functions f ′
jm and f ′

k,

we have

fjm(p
∗
jm) > fk(p

∗
k) and f ′

jm(p
∗
jm) < f ′

k(p
∗
k)

which contradicts (B.2) in Property 2. Accordingly, jm 6∈ Im. This finishes the proof

of A ⊆ Bm+1 = Bm \ {jm} given Im 6= ∅.
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Case 2) Im = ∅ but Dm 6= ∅.

Our goal is to show that this case can never happen if (B.4a) and (B.4c) are valid

at M = m− 1. Since Im = ∅ and Dm 6= ∅, and ∑N
i=1 p̃m,i =

∑N
i=1 p

∗
i = P , there exists

an index u outside Bm, satisfying p̃m,u < p∗u. Thus, the KKT condition implies that

(K −m+ 1)F ′
Bm

(
∑

i∈Bm
p̃m,i

)

≥ f ′
u(p̃m,u) (B.17)

where the above inequality follows the premise that (B.4c) is true at M = m − 1.

Since the function values {fi(p̃m,i)} are all equal for i ∈ Bm, we have from (B.17) and

Property 1 that

1

(K −m+ 1)

∑

i∈Bm

1

f ′
i(p̃m,i)

=
1

(K −m+ 1)

1

F ′
Bm

(
∑

i∈Bm
p̃m,i

) ≤ 1

f ′
u(p̃m,u)

. (B.18)

Based on (B.18), we can then reason from

p̃m,i ≥ p∗i for i ∈ Bm, p̃m,u < p∗u

and also the strict decreasingness of functions {f ′
i} that

1

(K −m+ 1)

∑

i∈Bm

1

f ′
i(p

∗
i )

<
1

f ′
u(p

∗
u)
. (B.19)

By noticing that p∗u > p̃m,u implies p∗u > 0, we can derive using (B.1) in Property 2
that

1

(K −m+ 1)

∑

i∈Bm

1

f ′
i(p

∗
i )

=
1

(K −m+ 1)





∑

i∈A

1

f ′
i(p

∗
i )

+
∑

i∈Bm\A

1

f ′
i(p

∗
i )





≥ 1

(K −m+ 1)





1

F ′
A
(
∑

i∈A p
∗
i )

+
∑

i∈Bm\A

1

(K + |A| −N)

1

F ′
A
(
∑

i∈A p
∗
i )





=
1

(K + |A| −N)

1

F ′
A
(
∑

i∈A p
∗
i )

=
1

f ′
u(p

∗
u)
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where we again implicitly use |Bm \A| = |Bm| − |A| = N −m+ 1− |A| (i.e., A ⊆ Bm)

in the above derivation. A contradiction to (B.19) is thus obtained. Therefore, Im = ∅

and Dm 6= ∅ cannot occur if (B.4a) and (B.4c) are valid at M = m− 1.

After the completion of the proof for A ⊆ Bm+1, we next prove that (B.4b) is valid
at M = m. Using the prove-by-contradiction technique, we suppose (B.4b) were not
true at M = m. Then, using the just proved A ⊆ Bm+1, the validity of (B.4c) at
M = m − 1 (i.e., p̃m,i > 0 for i ∈ Bm), and the observation that the function values
{fi(p̃m,i)} are all equal for i ∈ Bm+1, we obtain from Property 1 that

1

F ′
Bm+1

(

∑

i∈Bm+1
p̃m,i

) =
∑

i∈Bm+1

1

f ′
i(p̃m,i)

=
∑

i∈A

1

f ′
i(p̃m,i)

+
∑

i∈Bm+1\A

1

f ′
i(p̃m,i)

.

Accordingly,

∑

i∈A

1

f ′
i(p̃m,i)

=
1

F ′
Bm+1

(

∑

i∈Bm+1
p̃m,i

) −
∑

i∈Bm+1\A

1

f ′
i(p̃m,i)

≥ K −m

f ′
jm
(p̃m,jm)

−
∑

i∈Bm+1\A

1

f ′
i(p̃m,i)

(B.20)

≥ K −m

f ′
jm(p̃m,jm)

−
∑

i∈Bm+1\A

1

f ′
jm(p̃m,jm)

(B.21)

=
1

f ′
jm(p̃m,jm)

[(K −m)− |Bm+1 \ A|]

=
1

f ′
jm
(p̃m,jm)

[(K −m)− (|Bm+1| − |A|)] (B.22)

=
1

f ′
jm(p̃m,jm)

(K + |A| −N) (B.23)

where (B.20) follows from the assumed violation of (B.4b) at M = m, (B.21) is based

on jm = arg mini∈Bm
f ′
i(p̃m,i), (B.22) is due to A ⊆ Bm+1, and (B.23) is true because

|Bm+1| = N − m. Since A ⊆ Im and jm 6∈ Im, we know p̃m,i < p∗i for i ∈ A and

p̃m,jm ≥ p∗jm. Hence, from the strict decreasingness of functions {f ′
i}, (B.23) implies

that

f ′
jm(p

∗
jm) > (K −N + |A|) 1

∑

i∈A
1

f ′
i(p

∗
i )

= (K −N + |A|)F ′
A
(
∑

i∈A p
∗
i ).

A contradiction to (B.1) is thus obtained.
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After proving (B.4a) and (B.4b) at M = m, what remains to confirm is the validity

of (B.4c). We require the next inequality to proceed:

(K −m)F ′
Bm+1

(

∑

i∈Bm+1
p̃m,i

)

> max
j 6∈Bm+1

f ′
j(p̃m,j) (B.24)

which can be proved as follows. Given that (B.4c) is true at M = m − 1 (i.e.,
∑

i∈Bm
p̃m,i > 0), we know from the KKT condition that

(K −m+ 1)F ′
Bm

(
∑

i∈Bm
p̃m,i

)

≥ max
j 6∈Bm

f ′
j(p̃m,j). (B.25)

We can then derive

1

(K −m)F ′
Bm+1

(

∑

i∈Bm+1
p̃m,i

) =
1

(K −m)

∑

i∈Bm+1

1

f ′
i(p̃m,i)

=
1

K −m+ 1





∑

i∈Bm+1

1

f ′
i(p̃m,i)

+
1

K −m

∑

i∈Bm+1

1

f ′
i(p̃m,i)





=
1

K −m+ 1





∑

i∈Bm+1

1

f ′
i(p̃m,i)

+
1

(K −m)

1

F ′
Bm+1

(
∑

i∈Bm+1
p̃m,i)





<
1

K −m+ 1





∑

i∈Bm+1

1

f ′
i(p̃m,i)

+
1

f ′
jm
(p̃m,jm)



 (B.26)

=
1

K −m+ 1

∑

i∈Bm

1

f ′
i(p̃m,i)

=
1

(K −m+ 1)

1

F ′
Bm

(
∑

i∈Bm
p̃m,i)

≤ min
j /∈Bm

{

1

f ′
j(p̃m,j)

}

(B.27)

where (B.26) follows from the validity of (B.4b) atM = m, and (B.27) is a consequence
of (B.25). By applying the validity of (B.4b) at M = m again, we have

(K −m)F ′
Bm+1

(

∑

i∈Bm+1
p̃m,i

)

> max

{

fjm(p̃m,jm),max
j 6∈Bm

f ′
j(p̃m,j)

}

= max
j 6∈Bm+1

f ′
j(p̃m,j).

Inequality (B.24) is thus proved.
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We proceed to prove (B.4c) by contradiction. Suppose (B.4c) were not true at M =

m (i.e.,
∑

i∈Bm+1
p̃m+1,i = 0). Then by the assumed validity of (B.4c) at M = m − 1

(i.e., q̃Bm
=
∑

i∈Bm
p̃m,i > 0), we have

p̃m,i = f
(inv)
i (FBm

(q̃Bm
)) > 0 for i ∈ Bm

and hence
∑

i∈Bm+1

p̃m,i >
∑

i∈Bm+1

p̃m+1,i = 0 (B.28)

because Bm+1 ⊂ Bm. Inequality (B.28) and
∑N

i=1 p̃m,i =
∑N

i=1 p̃m+1,i = P then implies

∑

j /∈Bm+1

p̃m,i <
∑

j /∈Bm+1

p̃m+1,i

which immediately indicates that there exists k /∈ Bm+1 such that

p̃m,k < p̃m+1,k and p̃m+1,k > 0. (B.29)

The KKT condition thus follows that

(K −m)F ′
Bm+1

(

∑

i∈Bm+1
p̃m+1,i

)

≤ f ′
k(p̃m+1,k).

The strict decreasingness of functions F ′
Bm+1

and f ′
k, together with (B.28) and (B.29),

implies

(K −m)F ′
Bm+1

(

∑

i∈Bm+1
p̃m,i

)

< f ′
k(p̃m,k)

which contradicts (B.24). The proof of the forward part is thus completed.

B. Converse part: If the stop criterion (3.11) is violated for every 1 ≤ M ≤ m, where

m ∈ {1, 2, . . . , K − 1}, then |A| ≤ N −m.

We now prove the converse part by induction.
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1. Validity of the converse statement at m = 1:

It suffices to prove that |A| = N cannot be true if (3.11) is violated at M = 1, and

we prove this by contradiction. Suppose |A| = N . Then, p̃1 = p∗ is the optimal power

allocation, and for every 1 ≤ i ≤ N , p̃1,i = f
(inv)
i (FA(P )) > 0 because P > 0.

Observe that the violation of (3.11) at M = 1 tells that

(K − 1)F ′
B2

(
∑

i∈B2
p̃1,i
)

> f ′
j1
(p̃1,j1).

By the continuity and strict decreasingness of functions F ′
B2

and f ′
j1
, there exists 0 <

∆p < p̃1,j1 such that

(K − 1)F ′
B2

(
∑

i∈B2
p̃1,i +∆p

)

> f ′
j1
(p̃1,j1 −∆p).

Hence, using an argument similar to (B.3) yields

(K − 1)FB2

(
∑

i∈B2
p̃1,i +∆p

)

+ fj1(p̃1,j1 −∆p)

> (K − 1)
[

FB2

(
∑

i∈B2
p̃1,i
)

+∆p · F ′
B2

(
∑

i∈B2
p̃1,i +∆p

)]

+
[

fj1(p̃1,j1)−∆p · f ′
j1
(p̃1,j1 −∆p)

]

= (K − 1)FB2

(
∑

i∈B2
p̃1,i
)

+ fj1(p̃1,j1)

+∆p
[

(K − 1)F ′
B2

(
∑

i∈B2
p̃1,i +∆p

)

− f ′
j1
(p̃1,j1 −∆p)

]

> (K − 1)FB2

(
∑

i∈B2
p̃1,i
)

+ fj1(p̃1,j1). (B.30)

Consequently, another power allocation

p̂j ,

{

p̃1,j −∆p if j = j1

f
(inv)
j (FB2

(
∑

i∈B2
p̃1,i +∆p)

)

otherwise

which satisfies the power-sum constraint:

N
∑

j=1

p̂j = p̂j1 +
∑

j∈B2

p̂j

= (p̃1,j1 −∆p) +
∑

j∈B2

f
(inv)
j

(

FB2(
∑

i∈B2
p̃1,i +∆p)

)

= (p̃1,j1 −∆p) + F
(inv)
B2

(

FB2(
∑

i∈B2
p̃1,i +∆p)

)

= (p̃1,j1 −∆p) +
(

∑

j∈B2
p̃1,j +∆p

)

=

N
∑

j=1

p̃1,j = P
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will give that for every j ∈ B2,

fj(p̂j) = FB2

(
∑

i∈B2
p̃1,i +∆p

)

> FB2

(
∑

i∈B2
p̃1,i
)

= FB2

(

∑

i∈B2
f
(inv)
i (FA(P ))

)

= FB2

(

F
(inv)
B2

(FA(P ))
)

= FA(P )

= fj1(p̃1,j1) > fj1(p̂j1) = fj1(p̃1,j1 −∆p).

The above inequality and (B.30) then jointly imply that for some u ∈ B2,

min
{s∈{0,1}N :

∑N
i=1 si=K}

∑N
j=1 sjfj(p̂j) = (K − 1)fu(p̂u) + fj1(p̂j1)

= (K − 1)FB2

(
∑

i∈B2
p̃1,i +∆p

)

+ fj1(p̃1,j1 −∆p)

> (K − 1)FB2

(
∑

i∈B2
p̃1,i
)

+ fj1(p̃1,j1) = K · FA(P )

= min
{s∈{0,1}N :

∑N
i=1 si=K}

∑N
j=1 sjfj(p̃1,j).

This indicates that p̃1 cannot be the optimal power allocation p∗. The desired contra-

diction is thus obtained.

2. Validity of the converse statement at m = k − 1 implying its validity at m = k for

2 ≤ k ≤ K − 1:

We are given that the stop criterion (3.11) is violated for every 1 ≤ M ≤ k−1 and

have already confirmed that |A| ≤ N − k+1. Now, since the stop criterion is violated

again for M = k, we should then prove that |A| 6= N − k + 1, which immediately

implies the desired |A| ≤ N − k. We use the prove-by-contradiction technique.

Suppose |A| = N − k + 1. Then, p̃k = p∗ is the optimal power allocation, since we

have already proven in the forward part that A ⊆ BN−|A|+1 = Bk, which together with

|A| = N − k + 1 = |Bk|

results in A = Bk. By definition of A in (3.2), we get

max
i/∈Bk

{fi(p̃k,i)} < fj(p̃k,j) for j ∈ Bk = A. (B.31)
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Inequality (B.31) then implies that fjk(p̃k,jk) > 0; hence, p̃k,jk > 0. Observe that the

violation of (3.11) at M = k tells that

(K − k)F ′
Bk+1

(

∑

i∈Bk+1
p̃k,i

)

> f ′
jk
(p̃k,jk).

By the continuity and strict decreasingness of functions F ′
Bk+1

and f ′
jk
, there exists

0 < ∆p < p̃k,jk such that

(K − k)F ′
Bk+1

(

∑

i∈Bk+1
p̃k,i +∆p

)

> f ′
jk
(p̃k,jk −∆p).

Hence, through the same procedure as (B.30), we obtain

(K − k)FBk+1

(

∑

i∈Bk+1
p̃k,i +∆p

)

+ fjk(p̃k,jk −∆p)

> (K − k)FBk+1

(

∑

i∈Bk+1
p̃k,i

)

+ fjk(p̃k,jk). (B.32)

Consequently, another power allocation

p̂j ,











p̃k,j if j 6∈ Bk

p̃k,j −∆p if j = jk

f
(inv)
j (FBk+1

(
∑

i∈Bk+1
p̃k,i +∆p)) if j ∈ Bk+1

which satisfies the power-sum constriant:

N
∑

j=1

p̂j =
∑

j 6∈Bk

p̃k,j + (p̃k,jk −∆p) +





∑

j∈Bk+1

p̃k,j +∆p



 =
N
∑

j=1

p̃k,j = P

will give that for every j ∈ Bk+1,

fj(p̂j) = FBk+1

(

∑

i∈Bk+1
p̃k,i +∆p

)

> FBk+1

(

∑

i∈Bk+1
p̃k,i

)

= fjk(p̃k,jk) > max

{

fjk(p̂jk),max
i6∈Bk

fi(p̃k,i)

}

(B.33)

where the last strict inequality in (B.33) follows the strict increasingness of function
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fjk and (B.31). The above inequality and (B.32) then jointly imply

min
{s∈{0,1}N :

∑N
i=1 si=K}

∑N
j=1 sjfj(p̂j)

= (K − k)FBk+1

(

∑

i∈Bk+1
p̂k,i

)

+ fjk(p̂k,jk) +
∑

i6∈Bk

fi(p̂k,i)

= (K − k)FBk+1

(

∑

i∈Bk+1
p̃k,i +∆p

)

+ fjk(p̃k,jk −∆p) +
∑

i6∈Bk

fi(p̃k,i)

> (K − k)FBk+1

(

∑

i∈Bk+1
p̃k,i

)

+ fjk(p̃k,jk) +
∑

i6∈Bk

fi(p̃k,i)

= min
{s∈{0,1}N :

∑N
i=1 si=K}

∑N
j=1 sjfj(p̃k,j).

This indicates that p̃k cannot be the optimal power allocation p∗. The desired contra-

diction is thus obtained.
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Appendix C

Proofs of the Theorem, Lemmas and

Corollaries in Chapter 5

C.1 Proof of Theorem 4

By noting p̃M,i = f
(inv)
i (FBM

(q̃BM
)) for i ∈ BM and letting y = FBM

(q̃BM
), (3.10) can be

equivalently written as

f ′
jM

f
(inv)
jM

(y) = min
i∈BM

f ′
if

(inv)
i (y)

Thus the condition in Theorem 4 implies that jM = kM for M = 1, 2, 3, . . ..

C.2 Proof of Lemma 3

1. (5.1) implies the existence of δ > 0 such that

f ′
1f

(inv)
1 (y) ≤ f ′

2f
(inv)
2 (y) ≤ · · · ≤ f ′

Nf
(inv)
N (y) for 0 < y < δ. (C.1)

Thus following similar proof of Theorem 4, we have ji = i when the total power P is

less than min1≤i≤N f
(inv)
i (δ).

2. We first show that the allocated power q̃BM
will go to infinity as P → ∞.
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Recall that the KKT condition gives

(K −N + |BM |)F ′
BM

(q̃BM
)

{

= ν if q̃BM
> 0

≤ ν if q̃BM
= 0

(C.2)

and for i 6∈ BM ,

f ′
i(q̃M,i)

{

= ν if q̃M,i > 0

≤ ν if q̃M,i = 0
(C.3)

where the Lagrange multiplier ν is chosen such that
∑

i/∈BM
q̃M,i + q̃BM

= P . This

then implies that q̃BM
will go to infinity as P → ∞, because if there exists a sequence

P1, P2, P3, . . . , such that limk→ Pk = ∞ and

sup
k≥1

q̃BM

(

= sup
k≥1

q̃BM
(Pk)

)

< ∞

then we can use
∑

i/∈BM
q̃M,i + q̃BM

= P to obtain that

lim
k→∞

∑

i/∈BM

q̃M,i

(

= lim
k→∞

∑

i/∈BM

q̃M,i(Pk)

)

= ∞

which then implies the existence of sequence m1, m2, m3, . . . /∈ BM (where mk =

mk(Pk)) such that q̃M,mk
> 0 or equivalently f ′

mk
(q̃M,mk

) = ν for all sufficiently large

k and q̃M,mk
→ ∞ as k → ∞. Since limk→∞ f ′

i(q̃M,mk
) = 0 for every i /∈ BM , we

have limk→∞ ν = 0; hence, limk→∞(K −N + |BM |)F ′
BM

(q̃BM
) = 0 by (C.2), which is a

contradiction to supk≥1 q̃BM
< ∞. As a consequence, q̃BM

diverges to infinity for every

sequence P1, P2, P3, . . ., and therefore, limP→∞ q̃BM
exists and is equal to ∞.

Next, we observe that (5.2) implies

ω1 ≤ ω2 ≤ · · · ≤ ωN (C.4)

because if ωi > ωj for some 1 ≤ i < j ≤ N , then

lim sup
y↑min{ωi,ωj}

sgn
(

f ′
if

(inv)
i (y)− f ′

jf
(inv)
j (y)

)

= 1
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which is a contradiction to (5.2). Then (5.2) and (C.4) togetherly imply that for

1 ≤ i < N , there exists δi > 0 such that for ωi − δi ≤ y ≤ ωi,

f ′
if

(inv)
i (y) ≤ f ′

i+uf
(inv)
i+u (y) for every 1 ≤ u ≤ N − i. (C.5)

In addition, by noting p̃M,i = f
(inv)
i (FBM

(q̃BM
)) for i ∈ BM and letting y = FBM

(q̃BM
),

(3.10) can be equivalently written as

f ′
jM

f
(inv)
jM

(y) = min
i∈BM

f ′
if

(inv)
i (y). (C.6)

Consider M = 1. Since limP→∞ q̃B1 = ∞, we obtain from limq→∞ FBM
(q) = mini∈BM

ωi

that FB1(q̃B1) will lie in [ω1−δ1, ω1] as P sufficiently large. Condition (C.5) (with setting

i = 1) and (C.6) then jointly imply j1 = 1 as P sufficiently large. We can repeat the

procedure by further enlarging P (whenever necessary) to make FB2(q̃B2) ∈ [ω2−δ2, ω2],

and obtain j2 = 2 in the high-power regime. A similar argument can be applied to

obtain jM = M for M = 3, 4, . . ..

C.3 Proof of Corollary 1

1. That (5.3c) implies (5.1) is obvious. From (5.3a), we can infer by the continuity of

f ′
j that there exists γ > 0 such that f ′

i(0) < f ′
j(γ). So for 0 < y < fj(γ), we have

0 < f
(inv)
j (y) < γ by fj(0) = 0 and the strictly increasingness of fj . Hence,

f ′
if

(inv)
i (y) < f ′

i(0) < f ′
j(γ) < f ′

jf
(inv)
j (y)

where the first and last strict inequalities follow the strict decreasingness of f ′
i and f ′

j ,

respectively. Confirmation of (5.3a) implying (5.1) is then completed. It remains to

verify that (5.3b) implies (5.1). By definition, f ′′
i (0) < f ′′

j (0) implies the existence of

δ > 0 such that f ′′
i (p) < f ′′

j (p) for 0 < p < δ, which together with f ′
i(0) = f ′

j(0) implies

f ′
i(p) < f ′

j(p) for 0 < p < δ. Thus (5.3b) implies (5.3c), which in turns implies (5.1).
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2. Since ωi < ωj , we have

lim
y→ωi

f ′
if

(inv)
i (y) = 0 and lim

y→ωi

f ′
jf

(inv)
j (y) = f ′

jf
(inv)
j (ωi) > 0.

Thus, (5.2) is valid.

C.4 Proof of Lemma 4

We first observe that (3.11) can be re-written as

(K −M) ≤ f ′
jM

(p̃M,jM )

F ′
BM+1

(

∑

i∈BM+1
p̃M,i

) =
∑

i∈BM+1

f ′
jM

(p̃M,jM )

f ′
i (p̃M,i)

=
∑

i∈BM+1

f ′
jM

f
(inv)
jM

(y)

f ′
if

(inv)
i (y)

where y = FBM
(q̃BM

) = fi(p̃M,i) for i ∈ BM , and (B.4c) guarantees
∑

i∈BM+1
p̃M,i > 0 and

hence F ′
BM+1

(

∑

i∈BM+1
p̃M,i

)

< ∞. Based on this observation and noting

FBM
(q̃BM

) →
{

0 when P → 0

Ω(BM ) as q̃BM
→ ∞ when P → ∞

this lemma becomes straightforward.

C.5 Proof of Corollary 2

1. Re-write (5.11) as

(K −M)F ′
BM+1

(0) < f ′
jM

(0). (C.7)

Then, a similar proof for (5.3a) can be used to prove (5.11) implying (5.7). Note

the validity of (5.11) implicitly indicates the finiteness of mini∈BM+1
f ′
i(0) because

mini∈BM+1
f ′
i(0) = ∞ would fail (5.11); so F ′

BM+1
(0) < ∞.

2. That (5.12) is a sufficient condition for (5.8) can be proved in the same way as item 1)

by reversing the order of inequality (C.7); hence, we omit it.
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3. Since (5.13) implies

lim sup
y→Ω(BM )



K −M −
∑

i∈BM+1

f ′
jM

f
(inv)
jM

(y)

f ′
if

(inv)
i (y)



 = (K −M)− lim inf
y→Ω(BM )

∑

i∈BM+1

f ′
jM

f
(inv)
jM

(y)

f ′
if

(inv)
i (y)

≤ (K −M)−
∑

i∈BM+1

lim inf
y→Ω(BM )

f ′
jM

f
(inv)
jM

(y)

f ′
if

(inv)
i (y)

< 0

we have

lim sup
y→Ω(BM )

sgn



K −M −
∑

i∈BM+1

f ′
jM

f
(inv)
jM

(y)

f ′
if

(inv)
i (y)



 = −1

which validates (5.9).

4. Again, since (5.14) implies

lim inf
y→Ω(BM )



K −M −
∑

i∈BM+1

f ′
jM

f
(inv)
jM

(y)

f ′
if

(inv)
i (y)



 = (K −M)− lim sup
y→Ω(BM )

∑

i∈BM+1

f ′
jM

f
(inv)
jM

(y)

f ′
if

(inv)
i (y)

≥ (K −M)−
∑

i∈BM+1

lim sup
y→Ω(BM )

f ′
jM

f
(inv)
jM

(y)

f ′
if

(inv)
i (y)

> 0

we have

lim inf
y→Ω(BM )

sgn



K −M −
∑

i∈BM+1

f ′
jM

f
(inv)
jM

(y)

f ′
if

(inv)
i (y)



 = 1

which validates (5.10).

Finally, if j1, j2, j3, . . . are determined according to condition (5.2) in Lemma 3,

then
{

ωj1 ≤ ωj2 ≤ ωj3 ≤ · · · (C.8a)

Ω(BM ) = ωjM (C.8b)

where (C.8a) has been proved in (C.4), and (C.8b) is a consequence of (C.8a). Based

on these results, we can derive from (5.15) that for i ∈ BM+1,

lim sup
y→Ω(BM )

f ′
jM

f
(inv)
jM

(y)

f ′
if

(inv)
i (y)

= 0, (C.9)
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because ωjM < ωjM+1
implies f ′

jM
f

(inv)
jM

(y) approaching zero and f ′
if

(inv)
i (y) being

bounded away from zero as y approaching Ω(BM ) = ωjM . The proof is thus com-

pleted.

C.6 Proof of Lemma 5

Recall that the KKT condition gives

(K −N + |A|)F ′
A
(q∗

A
) = ν and for i 6∈ A, f ′

i(q
∗
i )

{

= ν if q∗i > 0

≤ ν if q∗i = 0
(C.10)

where we have used the fact that q∗
A
= q∗

BN−|A|+1
> 0 (see (B.4c)), and the Lagrange multiplier

ν is chosen such that
∑

i/∈A q
∗
i + q∗

A
= P . We then distinguish among the below three cases:

Case 1: f ′
i(0) > (K − N + |A|)F ′

A
(0) for some i /∈ A. In this case, there exists γ > 0

such that

f ′
i(q) > (K −N + |A|)F ′

A
(0) for every 0 < q < γ.

Hence, when 0 < P < γ, we have

ν ≥ f ′
i(q

∗
i ) ≥ f ′

i(P ) > (K −N + |A|)F ′
A
(0) > (K −N + |A|)F ′

A
(q∗

A
)

where the last strict inequality follows the strict decreasingness of F ′
A
. This contradicts

(C.10); hence, Case 1 cannot happen.

Case 2: f ′
i(0) < (K + |A| −N)F ′

A
(0) for some i /∈ A.

In this case, there exists γ > 0 such that

f ′
i(0) < (K + |A| −N)F ′

A
(q) for every 0 < q < γ.

Hence, when 0 < P < γ, we have

f ′
i(q

∗
i ) ≤ f ′

i(0) < (K + |A| −N)F ′
A
(P ) ≤ (K + |A| −N)F ′

A
(q∗

A
) = ν

71



which implies q∗i = 0 for any 0 < P < γ.

Case 3: f ′
i(0) = (K + |A| −N)F ′

A
(0) for some i ∈ A.

In this case, q∗i > 0 for P > 0 fixed, because if q∗i = 0, we obtain

ν ≥ f ′
i(q

∗
i ) = f ′

i(0) = (K + |A| −N)F ′
A
(0) > F ′

A
(q∗

A
)

which then contradicts (C.10). Based on q∗i > 0 and q∗
A
> 0 for P > 0, we derive from (C.10)

that

lim
P→0

q∗i
q∗
A

= lim
ν↑f ′

i(0)

f
′ (inv)
i (ν)

F
′ (inv)
A

(ν/(K −N + |A|))

= lim
ν↑f ′

i(0)

1

f ′′
i f

′ (inv)
i (ν)

1

(K−N+|A|)·F ′′
A
F

′ (inv)
A

(ν/(K−N+|A|))

=

1
f ′′
i
(0)

1
(K−N+|A|)F ′′

A
(0)

= (K −N + |A|)F
′′
A
(0)

f ′′
i (0)

. (C.11)

The proof for (5.16) is completed.

We now turn to the power allocations for channels i, j in A. By

fi(p
∗
i ) = fj(p

∗
j ) = FA(q

∗
A
) (= y) (C.12)

we derive

lim
P→0

p∗i
p∗j

= lim
y→0

f
(inv)
i (y)

f
(inv)
j (y)

= lim
y→0

1/f ′
if

(inv)
i (y)

1/f ′
jf

(inv)
j (y)

=
1/f ′

i(0)

1/f ′
j(0)

. (C.13)

C.7 Proof of Observation 1

The result for 1) is a direct consequence of the given rates of convergence, and the result for

2) follows similarly to (C.13). Hence, we omit them.
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