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Optimal Power Allocation

for (N,K)-limited Access Channels

Student : Shih-Wei Wang  Advisors: Dr. Po-Ning Chen

Dr. Chung-Hsuan Wang

Institute of Communication Engineering

National Chiao Tung University

Abstract

In this dissertation, we consider a system that consists of N independent parallel
channels, where the receiver starts to decode the information being transmitted when
it has access to at least K of them. We refer to this system as the (N,K)-limited access
channel. No prior knowledge for the distribution about which transmissions will be
received is assumed. In addition, both the channel inputs and channel disturbances can
be arbitrary, except that the mutual information function for each channel is assumed
strictly concave with respect to the input power. Hence, the channel capacity below
which the code rate is guaranteed to be attainable by a sequence of codes with
vanishing error can be determined by the minimum mutual information among any K
out of N channels. We then investigate the power allocation that maximizes this

minimum mutual information subject to a total power constraint. As a result, the



optimal solution can be determined via a systematic algorithmic procedure by
performing at most K single-power-sum-constrained maximizations. Based on this
result, the close-form formula of the optimal power allocation for an (N,K)-limited
access channel with channel inputs and additive noises respectively scaled from two
independent and identically distributed random vectors of length N is subsequently
established, and is shown to be well interpreted by a two-phase water-filling principle.
Specifically, in the first noise-power re-distribution phase, the least N-K noise powers
(equivalently, second moments) are first poured (as noise water) into a tank consisting
of K interconnected unit-width vessels with solid base heights respectively equal to
the remaining K largest noise powers. Afterwards those W vessels either with noise
water inside or with solid base height equal to the new water surface level are
subdivided into N-K+W vessels of. rectangular shape with the same heights (as the
water surface level) and widths in proportion to their noise powers. In the second
signal-power allocation phase, the heights of vessel bases will be first either lifted or
lowered according to the total signal. power and channel mutual information functions,
followed by the usual signal-power water-filling scheme. The two-phase water-filling
interpretation then hints that the degree of “noisiness” for a general (possibly,
non-additive and non-Gaussian) limited access channel might be identified by

composing the derivative of the mutual information function with its inverse.
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Chapter 1

Introduction

A fundamental issue in multiple access channels is power allocation under a total power con-
straint. In the literature, the best known result in this subject is perhaps the water-filling
power allocation principle obtained bytmaximizing the capacity of parallel additive white
Gaussian noise (AWGN) channels [10]. An-extension to additive color Gaussian noise chan-
nels has later been studied and was found to-also follow.the water-filling principle over the
color spectra of the noises [8].=Recently, by characterizing the relationship between mutual
information and minimum mean square error (MMSE) [11], the optimal power allocation
for parallel AWGN channels with arbitrary.input(possibly finite) has been established, re-
sulting in a new graphical power allocation interpretation called the mercury/water-filling
principle [18]. In light of this new finding, the optimal power allocations respectively for
multi-user downlink orthogonal frequency-division multiplexing (OFDM) channels [19] and
multiple-input-multiple-output (MIMO) channels [23] with arbitrary inputs in the presence
of additive white Gaussian background noises are subsequently obtained and found to follow

variations of mercury/water-filling principle.

Instead of assuming complete knowledge on channel statistics, a channel could have a
number of states with unknown distribution. These channels are classified as compound

channels as they are compounds of channels parameterized by their states [9], [14], [34].



Since the channel state of a compound channel is only known to be an element of some given
set, its capacity below which the code rate is guaranteed to be attainable by a sequence of
codes with vanishing error is then determined by the minimum mutual information among all
stated channels. Different sets of channel states have been considered in the literature, and
their respective optimal power allocations that maximize the minimum mutual information

have been derived.

In [21], the states for an MIMO Gaussian compound channel are controlled by the fad-
ing parameter within an “isotropic” set, and the optimal power allocation that maximizes
the minimum mutual information with respect to Gaussian inputs is shown to be uniform.
In [31] and [33], the channel states for multiple-input-single-output (MISO) and multiple-
input-multiple-output (MIMO) Gaussian compound channels are parameterized again by
the channel fading but are now “ellipsoid” in nature, and the optimal strategy for power
allocation becomes beamforming for Gaussian imputs. In [22], the authors model the chan-
nel state as the phase of the fading parameterin an MIMO Gaussian compound channel,
and obtain that the covariance matrix‘of the Gaussian-input that maximizes the capacity
is diagonal. In [5], the channel capacity of MIMO/Gaussian compound channels with par-
tially known distribution in channel matrix is investigated. In [32], by considering a parallel
Gaussian compound channel where the channel states are determined by the amplitudes of
fading parameters, the power allocation that achieves a capacity lower bound obtained via
Lagrange duality is proposed. When arbitrary inputs rather than Gaussian ones are consid-
ered for these existing results over compound channels, the new finding in [18] may lead to

interesting extensions.

In this dissertation, we consider a compound channel with the channel state being a
binary vector of length N. Although additive Gaussian noises are appropriate models for

general physical channels, and thus are commonly assumed in the power allocation literature



(e.g., [18,19], [21-23,31-33]), experimental measurements in certain environments show that
the ambient noise may be non-Gaussian distributed. These environments include indoor and
urban radio channels [3] [27], underwater communication systems [20], power line channels
[36] and digital subscriber lines [7]. We therefore assume that the channel disturbances
can be arbitrary, not necessarily additive or Gaussian, and hence the results of the above

literatures based on Gaussian compound channels cannot be applicable to our channel.

The channel states that we consider are decided according to whether or not the trans-
mission signals can reach the receiver end. A straightforward scenario for this state model
is a packet switched network, where packets can be lost during transmission [1]. In a highly
mobile system, however, the transmission signals can also be missed by a moving mobile
terminal. In certain situations, the receiver may still be required to recover the transmit-
ted information from its partial receptions [15;24,25|. This raises the question of what the
optimal power allocation principle will-be for a eompound channel with arbitrary input and
partially delivered receptions.” Notably, since the set of channel states we consider is no
longer convex, the traditional techniques.[5,21,22,31-33] used to solve the power allocation
problems based on a convex channel state space in‘compound channels cannot be applied

and an alternative approach should be taken.

Specifically, among N individual transmissions, possibly parallelly or temporally, we as-
sume that the receiver will begin to recover the information being transmitted when it has
access to at least K of them. Since we assume the channel disturbances can be either non-
additive or non-Gaussian, to find the optimal power allocation principle for this compound
channel seems tricky. We then find that if the mutual information satisfies a certain concav-
ity condition (cf. Assumption 1 in Chapter 2), the optimal power allocation can be obtained
algorithmically by solving at most K Lagrange-multiplier maximizations (see Theorem 2).

To demonstrate the value of the proposed algorithm in complexity reduction, comparison



between the proposed algorithm and a representative brute force method is discussed af-
terwards. Then, following the proposed algorithm, we further establish that when channel
disturbances, in addition to independence, are reduced to being additive with distributions
scaled from a common random variable, the optimal power allocation can be directly ob-
tained from a two-phase water-filling process if the arbitrary channel inputs are given by the
respective component variables in an independent and identically distributed (i.i.d.) random
vector, multiplying by the square root of the allocated power. The two-phase water-filling
interpretation then hints that the degree of “noisiness” for a general (possibly, non-additive
and non-Gaussian) limited access compound channel might be identified by composing the

derivative of the mutual information function with its inverse.

The rest of the dissertation is structured as follows. In Chapter 2, we introduce the
channel model of the (N, K)-limited access channel.considered in this paper as well as the
corresponding channel capacity.formula. Chapter 3 presents discussion regarding the prop-
erties of the optimal power allocation and the algorithmthat determines the optimal power
allocation. In Chapter 4, we simplify the channel model-by further assuming that the chan-
nel inputs and additive noises are scaled respectively from two i.i.d. random vectors, which
results in a two-phase water-filling graphical interpretation for optimal power allocation. In
Chapter 5, following the notion of the two-phase water-filling interpretation, the degree of
“noisiness” for a general limited access channel as well as the optimal power allocation in
low- and high- power regimes are addressed. In Chapter 6, we conclude the dissertation and

note some possible extensions.



Chapter 2

System Model for an (N, K)-Limited
Access Channel

As shown in Figure 2.1, we consider a system that consists of /N parallel channels with
unit-power inputs adapted accordingito y/p — [\/Pis /D2 - - -, +/PN]" satisfying le\il p; < P.
In this system, only a certain pertion-ef-channel outputs are guaranteed to be successfully
received at the receiver end. The system however does not a priori know which outputs will
be blocked or nullified, nor dees the system have the knowledge of the statistics of these
blockage. We can realize this assumption by introduacing a set of auxiliary multiplicative
coefficients s1, So, ..., sy to the channel outputs, where the ith channel output is blocked
or nullified when being multiplied by s; = 0, and remains when the multiplicative constant
s; is equal to 1. It is assumed that by monitoring the channel activities, the receiver can
perfectly tell the value of s = [s1, 9, ..., sn|", where superscript “T” is the matrix transpose

! Furthermore, s will remain unchanged within a codeword transmission period

operation.
but may vary for different codeword blocks. The receiver will then decode the information
based on the receptions [so Y], s0Y5,...,s0Y, ] if at least K out of N components of vector

s are equal to one, where Y; £ Y14, You, ..., Yn,|" are the channel outputs at time instance

Tt has been remarked in [14, Thm. 1] that for compound discrete memoryless channels, the capacity
remains unchanged even if the receiver knows nothing about s. Therefore, for the channels considered
in [14, Thm. 1], the result in this paper can also be applied without prior knowledge of s.
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Figure 2.1: System mnodel for an (N, K)-limited access channel.
i, n is the codeword length, and operator “o” denotes the matrix Hadamard product [17].
Conversely, the receiver will give up the decoding if Zi\il s; < K. We thus refer to this

channel model as an (N, K)-limited access channel.

In this setting, we are interested in the optimal power allocation p* = [pi,p5, ..., py]"
such that the minimum input-output mutual information subject to le\il s; > K is maxi-

mized. This quantity is generally regarded as the achievable rate under which the decoding

error can be made arbitrarily small.?

Under the system model, the input-output mutual information can be in principle rep-
resented by
I(V/poX;soY)
20ur focus in this paper is the decoding error given that vazl s; > K, not the decoding error with

respect to a statistically distributed s. Note that since the statistics of s is assumed unknown, the latter
(i.e., the expected probability of decoding error with respect to s) actually cannot be established.




where I(-;-) is the mutual information function and /p = [\/P1,v/DP2s - - -5 \/]E]T Here, we
overload the notation by denoting the channel output vector corresponding to one channel
usage by Y 2 [V1, Y5, ..., Yy]", and likewisely denote the channel input vector for a single
channel usage by X = [X1, Xy, ..., Xy]". The achievable rate that guarantees a vanishing
decoding error subject to Zfil s; > K is therefore optimistically

S {pe&eﬁ:r;j?ﬁ pi<P} {se{o,l}lg?gf.lil si>K } lpoXiso¥) 21)
where R, is the set of nonnegative real numbers. If the parallel channels are independent in

the sense that
N

Pr(Y|y/po X) = [[ Pr(VilypiXi) (2.2)

i=1

then the independence bound for mutual information yields that

N N

I(\/poX;s0 Y& > I(y/pikais Y= > si- I(y/piXi; Vi)

=1 i=1
where the last equality follows from s; being either 1.or 0. We can therefore focus on
the optimal power allocation for independent-input distributions, if the channel transition

probability satisfies (2.2).

We next denote for convenience f;(p) = I(\/pX;;V;) for 1 < i < N, and make the

following assumption on these mutual information functions.

Assumption 1. For 1 < i < N, f;(p) is continuous and strictly increasing for p > 0, and its

first derivative, i.e.,

fitp) & 20

exists and is continuous and strictly decreasing in p > 0, where we define f/(0) £ lim,o f/(p).?

3Since the mutual information function f;(p) is only defined for p > 0, its derivative at the origin cannot be
defined under the usual mathematical principle, i.e., the derivative from the right equal to the derivative from
the left. From the aspect of the optimization problem concerned in this work, we adopt f/(0) £ lim,o f/(p)
as the “derivative” at the origin, specifically when zero power is considered to be allocated to channel i. See,
for example, (4.15).



Generally speaking, the channels considered in Assumption 1 are supposed to have more
available mutual information when more power is allocated, but the rate of increment is
decreasing with respect to the power allotment. There are quite a few practical channels
satisfying this assumption, such as antipodal binary-input AWGN channels with hard de-
cision at receiver side, quaternary-input additive Laplace noise channels (cf. Example 1),
scalar AWGN channels with arbitrary inputs [18], parallel AWGN channels with given in-
dependent inputs [18], and Gaussian fading channels with given inputs [19]. We will adopt

Assumption 1 as a premise throughout the entire paper.

Under this assumption, it is clear that f;(p) is a strictly concave function of p with initial
value f;(0) = I(0;Y;) = 0. Together with the fact that f;(p) > 0 for p € R, we can replace
the two inequality constraints in (2.1) by their equality counterparts as

N

max min s; - fi(pi 2.3

{pE?Rﬁ:zzNzl pigP} {SE{O,I}N: i\f:l sizK} ZZI ( ) ( )
N

= max min Z si - fi(pi) (2.4)

{peny -2l pi=P {00V 5T sk ) i
for a given X that validates Assumption 1.-In the next chapter, we will show that under
Assumption 1, the maximization-minimization problem in (2.4) becomes algorithmically

tractable.



Chapter 3

Analysis of the Optimal Power
Allocation

This chapter presents the analysis for the optimization problem in (2.4). For K = 1, (2.4)
can be simplified to
MaR min{ (P )5 fa(pa)ys - - 5 (o)}
{pery: sy pi=P}

It is thus straightforward that.the optimal power allocation p* satisfies

[P =ta(py) = = fn(py)-

For K = N, the maximization-minimization power allocation problem reduces to a problem
that requires only one maximization computation because s; = s, = ... = sy = 1. There-
fore, one can apply the Lagrange multipliers technique and Karuch-Kuhn-Tucker (KKT)
condition to find the optimal power allocation [4]. However, for 1 < K < N, a straight
technique generally does not exist for this maximization-minimization problem. Neverthe-

less, we can find a necessary condition for the optimal power allocation such that the labor

N

K) combinations of s satisfying le\il s; = K can be reduced as

of examining all possible (

indicated in the next lemma.
Lemma 1. The optimal power allocation p* for an (N, K)-limited access channel, where

9



1 < K < N, satisfies

fal(pzl) < fa2(p:2) <--- < de(p:K) - faKH(pZKH) == faN(p:N)

for some permutation aq, as, ..., ay of sequence 1,2,..., N.

Proof. Since the lemma trivially holds when K = N, we assume K < N in the below
proof. For the optimal power allocation p*, let ay,as,...,ay be a permutation of sequence

1,2,..., N satisfying

fal(pzl) < fa2(p:2) <--- < de(p:K) < faK+1(pZK+1) <. < fQN(pZN)’

We then have
N
{pemfglf}ipz P} {s&{o, 1}1£n11: L si=K} ;SZ fip:) Zfaz (Pa,)- (3.1)
Suppose that there were some > K such that f,, (pzj) L farn (pzj+l). Then, we can reduce
Pa s down to

féjlﬁ) (faj+1 (p:;ﬂ—l) A 5)

where fa]l +‘1' is the inverse function" of farandiincrease py , p;,, -, p; respectively to

f(an (fa1 (pa1> 4 A) f(lnv (fag (pa2> + A) cee f'(lnv (fa] (pa ) + A)

with positive d and A satisfying

Jj+1

Z faln" faz pal) —+ A) + fa;ﬂ’) <f(1j+1 (p:j-l»l) B 5) - Zp:i
=1

and

O < A +6 S faj+1(p:<z]'+1) - fd](p:;])

n this paper, we use f(®) instead of the usual f~!, to denote the inverse function of f. This is to
hopefully provide a clearer notational indication when the inverse of the first derivative f’ is additionally
required later, which will be denoted by f’(3*¥) in this work.

10



Note that the existence, continuity and strict monotonicity of fi(inv) for 1 < i < N is

guaranteed by Assumption 1. The new power assignment will clearly improve (3.1) up to
K
i=1

A contradiction to the optimality of p* is thus obtained. O

An immediate implication of Lemma 1 is that we can distinguish the optimal power

allocation for an (N, K)-limited access channel into K disjoint cases. In other words, the

condition
max o (05,) < fa(Pa,) = JaresPa,.y) = -+ = fax (Pay) (3:2)
is valid for exactly one value of ¢ in {1,2,...  K}. As a result, if the index set

Aé {a/g,angl,"' 1aN}

in which their respective mutual information function-values are equal to maxi<;<y f;(p}) is
identified in advance, the maximization-minimization power allocation problem is simplified

to a maximization problem as

pEP(A) 1<j<N

max {Z filpi) + (K +'1A| — N) max fj(pj)} (3.3)
igh

where N
(1) Dimpi=P
P(A) = pE< %f : (Z’L) fz(pz) < Mmaxi<j<nN f](p]) for i ¢ A . (34)
(i12) fi(p:) = maxi<j<n fj(p;) for i € A

However, the direct identification of A without knowing p* in advance is in general a
challenge. The opposite, i.e., identifying A after determining p*, is more straightforward.
In order to resolve the optimization problem, we propose in the following sections to first
determine the best power allocation p® corresponding to a conjectured maximal-mutual-

information index set, denoted by B. Then we examine whether this conjecture is the

11



optimal one based on conditions we establish later. In case the conjectured B achieves only
a suboptimal power allocation, a new round of maximization computation and follow-up
examination will be launched based on a newly generated B. Since the established conditions
will help identifying one channel that is not in A at each round, the process will stop after

N — |A| + 1 iterations at which point p* is obtained.

3.1 Determination of the best power allocation p° cor-
responding to a given index set B

Based on a given index set B, we transform the maximization-minimization problem into

sup {Z fi(pi) + (K + |B| — N) max fj(pj)} (3.5)

peP®) | izp 1<j<N
where P(B) is defined the same as (3.4) except-that A is replaced with B. Since the given B
may not be the optimal index set A thesolution p®of‘the optimization problem defined in

(3.5) could be at the boundary of P(B) in the sense that

fi(p7) Ne f3(p;)=-for some i ¢ B.

For this reason, we use supremum-nstead of maximum in (3.5).

We next show that the third equality constraint in P(B) can be relaxed by incorpo-
rating the aggregate mutual information function that transforms the N-dimensional power
allocation problem into an equivalent (N — |B| 4+ 1)-dimensional one.

Definition 1. The aggregate mutual information function Fp associated with a sequence of

mutual information functions {f;}icp is defined through its inverse function? as follows:

FE™(y) 23 15(y) fory >0 (3.6)

1€

inv) (y) = oo for y > w; £ limy_,o fi(p) and Fléinv)(y) = oo if one of

{ fi(inv) (y)}iem is equal to oco. Note that the inverse function value Fg(p) of function FIéinv) is always well
defined for every p € R because each f; is assumed to be a strictly increasing function, and lim,_,« Fg(p) =
minep w;.

2For completeness, we define fz-(

12



D1 D2 D3 D1+ P2+ P3
Figure 3.1: Graphical illustration of the aggregate mutual information function when f;(p) =

log(1 + p/c?) and 0? =i for i € B = {1,2,3}.

provided that all the inverse funietions-exist (which is guaranteed by Assumption 1).

A graphical illustration of the aggregate mutual information function for B = {1,2,3} is

given in Figure 3.1. In this figure, it,is clear that

F]éinv) (y) _ flinv) (y) { fg(iDV) (y) 1 1 fg(inV) <y> =m —|—p2 —|—p3.

As a specific example, if f;(p) = log (1 + p/c?) for some 0 > 0 and 1 < i < 3, then

Fa(p) = log (1 + L) .

i+ 05+ 03
In terms of the aggregate mutual information function, we can simplify the constraints in

P(B) in the following lemma, for which the proof is deferred to Appendix A.

Lemma 2. Fix an index set B. The vector p® that achieves (3.5) satisfies

R q forv ¢ B
Pi =9 p(anw) o : i (3.7)
79 (Fu(gg))  foric B

2

13



where the (N — |B| 4 1)-dimensional vector ¢° achieves:
sup {Z filg) + (K +|B| - N)FE<qB>} (3.8)
q€Q(B 1ZB

where

o 0 st of o Vi N-Bl+1 . () D@t qe =P }
Q(B) £ {q = (list of ¢; Vi ¢ B, gg) € R © (i) filq) < Fg(qe) fori ¢ B [

In addition, ¢° € Q(B) if, and only if, p* € P(B).

By reducing the number of constraints down to two in Q(B) in Lemma 2, we can further
proceed to show that the inequality constraint in Q(B) is redundant in case q° € Q(B), as

summarized in Theorem 1, for which the proof can be found in Appendix A.

Theorem 1. Given that q° € Q(B), the maximizer q° for (3.8) is equal to the maximizer q
of the problem below:
ma N ila) F (I B =NJFs(gs) (3.9)
q€Q(B 7B

where

Q(]B%) £ {q € %J_\:*'B'H : Zqi +qp = P} i

iZB

We summarize the notations we have used thus far as follows. The best power allocations
for (3.8) and (3.9) with respect to a given B are denoted by ¢° = ¢°(B) and g = g(B),
respectively. For convenience, we drop the dependence on B in their notational expressions.
These two power allocations may not be equal unless g° € Q(B). Once B is taken to be
the optimal A corresponding to the optimal power allocation p* in the sense of (3.2), p*
can be derived from g (equivalently, g° since B = A implies ¢° = q) through an assignment
similar to (3.7). Such notational convention will be used throughout the paper. Notably,
we will show in the next section that for finding the optimal power allocation p*, only the

determination of g is required since the considered g° always belongs to Q(B). Hence, as

14



the optimal power allocation p* is concerned, the computation of a general g° that may lie

outside Q(B) is not necessary.

We conclude this section by pointing out that the maximization computation in (3.9)
is now performed over the usual single power-sum constraint, and hence can be solved by
treating (K + |B| — N)Fg(-) as the mutual information function of an auxiliary aggregate
channel. Based on the result in Theorem 1, we are ready to present the algorithmic approach
that helps identifying the optimal maximal-mutual-information index set A and the optimal

power allocation p*.

3.2 Determination of the Optimal Maximal-Mutual-
Information Index Set A and the Optimal Power
Allocation p*

For an (N, K)-limited access channel-theré are possibly 215(:1 ( g 1) candidate index sets for
the choices of B in Theorem 1; and it may‘be time-consuming to perform the optimization
computation for (3.9) for each of them. The next theorem then shows that this time-

consuming maximization labor canbe reduced-to-only N — |A| + 1.

Theorem 2. The optimal maximal-mutual-information index set A and the optimal power

allocation p* can be obtained through the following algorithmic procedure:
Step 1. Initialize M =1 and By = {1,2,..., N}.
Step 2. Obtain the maximizer q,, for (3.9) by setting B = B, and calculate
Par = [Pasa P2y - - PN

corresponding to the obtained g,, and the given B); through an assignment similar

to (3.7).
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Step 3. Assign Bys1 = By \ {ja}, where jy is an index in B, that satisfies

ng (ﬁM,jM) = Zlél]én fz‘,(ﬁM,z‘)- (310)

M

(If there are more than one index satisfying (3.10), just pick up any one of them as
Jm-)
Step 4. If
(K = M)Fy,,, (Sieny, Bo1i) < Fy (Bas) (3.11)
then set A = By, and p* = p,, and stop the algorithm; otherwise, set M = M + 1

and go to Step 2.

Proof. For better readability, we defer the detail of the proof to Appendix B and sketch only

the key ideas here.

Following Lemma 2 and Theorem-1;we know that-once B in (3.9) is taken to be A, p*
can be derived from g through.a similar assigniment to (3.7). Hence, to confirm the proposed
algorithm, it suffices to prove that whenstop eriterion (3:11) is first valid, the corresponding

By, is indeed equal to A. The proof then requires the verification of the below two claims:

(a) If |A] < N, then stop criterion (3.11) is violated and A C By, for 1 < M < N — |A|.

(b) If stop criterion (3.11) is violated for 1 < M < m, then m < N — |A|.

An immediate consequence of (b) is that if |A| = N, then stop criterion (3.11) must
be valid at M = 1 (because if stop criterion (3.11) is violated at M = 1, we would obtain
|A] < N — 1 from (b), a contradiction to |A| = N). Hence, A = B, is obtained by the

proposed algorithm. So, the proposed algorithm functions correctly when |[A| = N.
When |A| < N, according to (a), we have
ACBn_ja+1 (CSBy_ja) S By_ja-1 € ... CBy)
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and stop criterion (3.11) is violated for every 1 < M < N —|A|. Together with the statement
of (b), we obtain that stop criterion (3.11) must hold at M = N — |A| 4 1; otherwise, a
contradiction as m = N — |A|+1 < N —|A| will be obtained from (b). Finally, we note that
A C By_jaj41 and [A| = [By_|aj41] jointly imply A = By _|a+1 Thus, the proposed algorithm

also functions correctly when |A| < N. The proof of Theorem 2 is therefore completed. [

We would like to point out that the algorithm in Theorem 2 will stop when (and usually
before) M reaches K, because (3.11) trivially holds when M = K. This coincides with the
definition of A in (3.2) that at most K —1 indices are outside A. Our algorithm thus requires
to solve at most K optimization problems in the form of (3.9).

N

e—1) choices of B and only one of them is A,

We note that in general, there are 215(:1 (
and a straightforward method is to examine-all'of them. In comparison with our algorithm,
the computation complexity of such a brute force method will be much higher when N and

K are only moderately large. For_example, consider an-OFDM system, where there are 64

sub-carriers (N = 64) and at'least 30 sub-carriers are réquired to be accessible (K = 30).

N

g_l) =~ 4.9097 x 10'® maximizations in the

The brute force method requiresto.exaniine Zle (
form of (3.9), and yet, our algorithm only-needs t0 consider at most 30(= K) maximizations
of the same form. Hence, the complexity reduction by the proposed algorithm is significant

in this regard.

Theorem 2 indicates that given the first derivative of the marginal mutual information
function f;(p) = I(,/pX;;Y;) being positive, strictly decreasing and continuous in p for every
1 <i < N (ie., Assumption 1), we can determine the optimal power allocation p* for
a spatially independent (NN, K')-limited access channel with input /p o X by performing
N — |A] 4+ 1 maximizations in the sense of (3.9). In the next chapter, we will show that this
maximization labor can be further reduced to one if the considered channels are corrupted

by additive noises of the same family. Moreover, the resultant optimal power allocation can
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be graphically interpreted by a two-phase water-filling scheme.
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Chapter 4

Optimal Power Allocation over
Additive Noise Channels

By additive noises of the same family, we mean that the relationship between channel inputs

and outputs can be characterized by

where {X;}Y | and {Z;}¥, are hoth_ i.i.d_ complex random variables with unit second mo-
ments, and they are independent from"each other. /We then restrict our attention only to
the case that Z; is a continuous randém variable!' because Assumption 1 may fail when both
X, and Z; are discrete. Notably, X; often takes values in a finite alphabet (e.g., {#+1})
in practice. Specifically, when the intersection of two sets {\/Ex +0iz: Py (2) > O} and
{\/Pi@ + 0,2 : Pz,(z) > 0} is empty for every x # & with Py,(z) > 0 and Px,(Z) > 0, we
have
filps) = I(\/piX3;Yi) = H(\/piX;) = H(X;)

where H(X;) is the entropy of the channel input X; [8]. This implies that in a discrete
system, f;(p;) can be equal to its maximum value H(X;) almost everywhere in p;, in which

case Assumption 1 is unquestionably violated.

1By a continuous random variable, we mean that its support can not be made finite or countable.
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Observe that for continuous additive noises,

(VX Yi) = h(Y;) — h(Yi|/piX))

(Vi) = h(yBiX; + 0: i /B Xo)

(0:Y:) — h(0:2,) (4.2)
(

Yi) = h(Z)
VPi 7Y1)

0

h
h
h
I

where h(-) is the differential entropy function [8], and (4.2) follows from the independence
between X; and Z;, and Y; £ (v/pi/0i)Xi + Z;. This immediately yields

filpi) =g (p_;) for every 1 <i < N (4.3)
9;

with
9(p) S ANPXin/pXi + Zs). (4.4)
Assumption 1 thus reduces to the single condition that function ¢ is continuous and strictly

increasing, and its first derivative exists and is continuous and strictly decreasing.

Based on this system setting, we show in the next theorem that the optimal power
allocation p* follows a two-phase water-filling scheme. Specifically, in the first phase (which
we refer to as the noise-power re-distribution phase), the least N — K noise powers among
{o2}N, will be first poured as noise water into a tank consisting of K interconnected vessels
with solid base heights equal to the remaining K noise powers and with widths of unit length
as shown in Figure 4.1(b). Afterwards those W vessels either with water inside or with solid
base height equal to the water surface level will be subdivided into N — K + W vessels of
rectangular shape with the same heights (as the water surface level) and with widths in
proportion to their noise powers (but the total volume remaining unchanged). As such, a
tank with IV vessels of proper heights and widths (corresponding to N channels) is ready for
the second phase as exemplified in Figure 4.1(c). It is worth mentioning that after the first

phase, the optimal maximal-mutual-information index set A has already been identified and
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consists of the channel indices corresponding to the aforementioned W vessels and the least

N — K noise powers (hence, |[A| =W + N — K).

In the second phase (which we refer to as the signal-power allocation phase), the heights
of vessel bases will be first either lifted or possibly lowered according to total signal power
P and function g as well as their current heights as shown in Figure 4.1(e). What follows,
as exemplified in Figure 4.1(f), is the usual water-filling power allocation scheme. The pre-
adjustment of base heights before water filling can be viewed as preparation for these vessels
to be “capable” of supporting the water that is going to be poured in with amount P.
As a result, the volume of water ended up in each vessel is exactly the power that should
be allocated. Notably, for the special case that the noises {Z;}, are complex Gaussian
distributed, the heights of vessel bases can never be lowered in the pre-adjustment step;
hence, a mercury-filling scheme before-water pouring has been proposed to materialize the
lifting of heights of vessel bases [18].—However, since the adjustment of heights of vessel
bases generally can be in both up and down directions, the use of the name mercury/water
filling may induce that the vessel basesshould be lifted under general non-Gaussian additive
noises; hence, we simply use the conventional name of water-filling in this work.

Theorem 3. Suppose that the information transmitted over an (N, K)-limited access channel
is corrupted by additive noises of the same family characterized by (4.1), and the mutual
information function g(p) defined in (4.4) satisfies Assumption 1. Assume without loss of

generality that

Then, the optimal maximal-mutual-information index set A is given by
A={(,l+1,--- N} (4.5)
where

fémin{ie{l,Q,u-,K} o} <63 foreverylgz'g[(} (4.6)
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and 62 £ 0?4+ [\ —0?]* for 1 <7 < K with A chosen to satisfy 3.1, [\ — 02" = Z?;KH o2,
and [y]* £ max{0,y}. The optimal power allocation p* can therefore be obtained from g*
through an assignment similar to (3.7), where q¢* is the maximizer for (3.9) with B equal to

the above A. In other words,

i} q; for 1 <i< /¥ A
P\ re<isN 47
with?
o? - g') (vo?) if g'(c0) < vo? < ¢'(0)
"k — (2 7 (2 < y .
q; { 0 if vo? > ¢/(0) for 1 <i</? (4.8)
and
N N 2
* 2] ., ,/(iov) ijgO'» 4.9
= (D) o (7255 (49)
where ¢’™) is the inverse function of the first derivative ¢’ of function ¢, and v is chosen
such that

/-1
d G +aqi=P (4.10)
=1

Proof. In terms of (4.3), the determination of jy,in (3.10) can be simplified to
Jar = argamifi(Dus)

. 1 / (ﬁM,Z)
=argmin — - g 5

ieB]\l Ji Ji
: 1 inv ~
= arg min — - ¢’ (g™ (Fs,, (Ge,,))) (4.11)
i€B Ui
= arg max o (4.12)
1€B s

where (4.11) follows from

P = [ (Fiy, (Gy,)) = 02 - g9 (Fs,, (ds,,))  for i € By

2For notational convenience, we define g’(c0) £ lim 1o ¢'(p) and note that g/(cc) = 0 for most channels
of practical interest such as channels with finite input alphabet. In the specific situation where ¢’(c0) > 0, we
point out that it is still unnecessary to consider the case of vo? < g’(c0) in (4.8) because the KKT condition
requires 1/0? - ¢'(q /o?) < v; thus by the strict decreasingness of ¢/, we have that vo? > ¢'(qf/0?) >
g'(P/c?) > g'(c0) is always valid for finite total power P.
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and (4.12) holds because ¢’ (¢“*)(F,, (Gs,,))) is finite due to gs,, > 0for 1 < M < N—|A|+1
(cf. (B.4c) and gg, = P).

Condition (4.12) then gives that for M =1,2,3,..,
By ={M,M+1,...,N}. (4.13)

Using (4.3) again simplifies stop criterion (3.11) to

(K — M)oj, < i (4.14)
i=M+
because
(K—-M) (K — M)o3,
FiBargn) 9 (90 (B, (d5,,)))
and

1 o2
Py (S, i) Z ™ pf‘“) Zl9’<9<1“V><FBM<ciBM>>>'

Barat 1€B 1€EBr 4+

Then by definition of ¢ and the observation that.the noise water level \ = 5%, we have

1
2. =2 & 2
0k>UK_K—£+1ZZUj for 1 <k </
J:
which implies that in the above range of k
—1 N -1 N
(K — k) (K—(+D)op+ Y o?>> ai+ Y oi= Y o
j=k+1 j=¢ j=k+1 j=k+1

Accordingly, (4.14) (equivalently, (3.11)) is violated for 1 < M < (. In addition, it can be

verified that

N
1 1 1
~2 _ - 2 _
UK_K—£+1]§U] K — €+1“+K £+1ZU

Jj=t+1

IN

is exactly equivalent to the validity of (4.14) at M = ¢. Following the algorithm in Theorem
2, we can conclude from (4.13) that A = {¢,¢+1,...,N}.
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The optimal power allocation q* as well as its transformation to p* follows the usual
optimization process for (3.9) by setting B = A. Specifically, we can reduce (3.9) to

max {Z fila) K—f‘Fl)FA(QA)}

{q@RZ ZZ 1Qz+qA P}

qi qa
= max g ( ) K 0+ 1)
{qeR{ 2] qitarn=P} {Z Zévz o7

) (o))

where in the above derivation, we apply Fy(p) = ¢ <Z — 02>, and v is the Lagrange multi-
€AY

1=

plier. Then, the Lagrange multipliers technique and KKT condition give that for 1 <i < ¢,

g’(q—;)—I/:O if¢gf >0

g (0).=wn <0 if gy =0

(4.15)

and

K—-/+1 qx ) \\¢

N q < NA 2) —v =0 asqgy=qs, ., >0 (see (B.4c))
2 =¢; 2 =0

where v is chosen to satisfy (4.10). The validity of (4.8) and (4.9) are therefore confirmed.

The transformation from g* to"p* can be derived: as:

. q; forv ¢ A
b= { FE (Fu(qD)) forie A
q; fori ¢ A
o) s en
qf fori ¢ A
B {Zizdf -qy forie A

Several remarks can be made based on Theorem 3.

e First, it can be extended from Theorem 3 that as long as A is pre-determined, the

maximization labor can always be reduced down to one. In the special case that the
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Figure 4.1: The graphical intetpretation of the optimal two-phase water-filling power allo-
cation for an (8, 5)-limited access channel with independent additive noises characterized by
(4.1). In this figure, [0%, 03, -, 03] =8,7,4,3;3,2,2,1]. Subfigures (a), (b) and (c) cor-
respond to the noise-power re-distribution phase, while subfigures (d), (e) and (f) illustrate
the signal-power allocation phase.

noises are additive and originated from the same family (as considered in this chapter),

we can directly determine A in terms of (4.6).

e Secondly, when ¢ =1 (equivalently, A = {1,2,..., N}), p* can be determined without
any maximization labor since we immediately have ¢i = P by (4.10). In such a case,
the optimal power allocation follows the equal signal-to-noise ratio (SNR) principle as

¥ P
i for every 1 <i < N.

2 N 2
i Zj:l g;
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e Finally, the validity of Theorem 3 does not need to be restricted to channels with
additive noises of the same family but can be extended to any (N, K)-limited access
channel with marginal mutual information functions satisfying (4.3) for some function
g that obeys Assumption 1. A straightforward example is the flat fading channels with

known channel states at the receiver end, characterized by

where {H;} | is i.i.d. with unit second moment, and is independent of the channel in-

put and additive noise. We then obtain f;(p;) = g(87p;/0?) with g(p) = I(\/pX;; /pH; X;+

Z;|H;). Theorem 3 thus can be used to establish the optimal power allocation by treat-

ing 0?/(3? as the new noise power level.

An exemplified illustration of the two-phases water-filling scheme is depicted in Figure

4.1. Details are given below.

(The noise-power re-distribution phase)

Fig. 4.1(a) Set K vessels with widths of unit length and with base height of the ith vessel

being o? for 1 <i < K. (Note that we assume 0% > 02 > --- > 0%.)

N
o2

Fig. 4.1(b) Pour in the “noise waler” of amount 3 3;_, ., 05

and set 67 as the new water
level of vessel i for 1 < i < K. Let ¢ be the smallest integer among {1,2,..., K}

such that o? < 5% (cf. (4.6)). Assign A={{,{+1,... . N} and W =K —(+ 1.

Fig. 4.1(c) Sub-divide the space of the last W vessels (i.e., K —W +1, K -W +2,...,K)
into W 4+ (N — K) new vessels of rectangular shape with base height the same

as the water surface level and widths in proportion to O’Z-Q for ¢ < i< N.

(The signal-power allocation phase)
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Fig. 4.1(d) Retain the N vessels from the previous phase.

Fig. 4.1(e) Adjust the base height of the ith vessel to®

(4.17)

L) & o?-Gvo?) for1<i</t
6% - Gwek)  fort <i< N

where v is the parameter chosen in Theorem 3 according to (4.10), and

G(o) & {% —g't™(Q) if g'(00) < (< g'(0)

70 if ¢ > ¢'(0).
Fig. 4.1(f) Pour in the “signal water” of amount P. Then the volume of water in the ith

vessel is the optimal power p; to be allocated for channel i.

In the above procedure, the auxiliary function G will be reduced to what has been
defined and identically denoted in'{18; eq. (43)] for'the mercury adjustment when {Z;}¥,
are i.i.d. complex Gaussian with unit-variance. It can also be confirmed that for additive
complex Gaussian noises and=K = N, the induced mereury adjustment in [18] is exactly
equal to that given by (4.17) by replacing the constant . therein with v. Furthermore, when
channel inputs {X;}¥ | are also indépendent and ecémplex Gaussian distributed, the adjusted
base heights in (4.17) are further reduced to the original noise variances, and the standard
water-filling interpretation is resulted. We however found that the adjusted base heights may
not be always greater than or equal to the original heights (as they should be for additive

Gaussian noises). Thus, the intuition suggested by mercury-filling may not be applicable

3Since 1/v is the water level, (4.7) indicates that the base heights for unit-width vessels with indices
1 <4 < £ should be given by

Ly
L,L(l/) _ Do.iz p'L (
7 (

NN

) ifp; >0 B {Uf (Diz — g/(av) (VO‘%)) if g’(00) < vo? < ¢'(0)
)2
o

) ifpr=0 1 if vo? > ¢'(0).

<
> .
1 g'(0)

A similar derivation can be made for vessels with indices ¢ < i < N. We re-express the adjusted base heights
in terms of an auxiliary function G in order to have a compatible formula to that in [18] when complex
Gaussian additive noises are considered.
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when the heights of vessel bases need to be lowered. We next give examples for both K = N

and K < N to substantiate this finding.

Ezample 1 (Quaternary-input additive Laplace noise channels). Suppose that the i.i.d. chan-

nel inputs {X;}¥, in (4.1) admit only four values with

Pr [Xizl—g] — Pr {Xz: 1;;] — Pr [XZ-: _1/’5”} _Pr {Xz: —1\/;} :i

and the complex zero-mean unit-variance i.i.d. additive noises {Z;}, have marginal Laplace

probability density function exp (—2 (|JRe(z)| + [Im(z)])) for complex z, where Re(z) and
Im(z) are the real and imaginary parts of z, respectively. The additive Laplace noise has
been considered in many publications such as [2,13,16,28-30,35], and has been shown to be
an appropriate model for, e.g., polarity detection [13], prediction error of image encoding [35]

and communications at extremely dow frequencies [2}.

Assume N = K =4, P = 15, and-[a7 05, 03,01/ = [1.2, 1.0, 0.4, 0.1]. We can then

derive as similarly to [12] that

and

"0) £ lim ¢'(p) = 2
g'(0) pl{gg(p)

where Gd(z) £ 2 - arctan(e®) — 7/2 is the Gudermannian function [6]. It can then be

confirmed from Figure 4.2 that ¢’ satisfies Assumption 1.

Since N = K = 4, we get 62 = o2 for 1 <14 < 4; hence, / = 4 and A = {4}. We can then
obtain numerically that

1

1.00955 fori =1
0.94231 fori =2
0.80963 fori =3
0.95399 fori=14

1.2; i.e., lowered)

1

= 1.0; i.e., lowered)
0.4; i.e., lifted)
0.1; i.e., lifted)

Li(v) =

!

l§
BN W NN~

—~ o~ o~

vV V. A A
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Figure 4.2: Function ¢'(p) for quaternary-input additive Laplace noise channels.

where v = 0.76695 according to (4:10). Therefore, the'base heights of the first two vessels are
actually lowered rather than lifted as-indicated above inside the parentheses. The optimal

power allocation is given by

p* = [pl, v, ph il =10.29132,0.36156, 0.49424, 0.34988].

We next illustrate a situation with K < N.
Ezample 2. Following Example 1 but now using K = 3 and P = 1, we get [6%, 73, 73] =
[1.2, 1.0, 0.5]; hence, £ = 3 and A = {3,4}. We then obtain numerically that

0.964300 fori=1 (< d?=1.2;i.e., lowered)
Li(v) = 0.896885 fori=2 (< &3 = 1.0;i.e., lowered)

0.758525 fori=3 (> a7 =0.5;i.e., lifted)

0.758525 fori=4 (> 535 =0.5;i.e., lifted)

where v = 0.828795 according to (4.10). Therefore, the base heights of the first two vessels

are again lowered rather than lifted. Note that for vessels with indices in A = {3,4},

29



" : Forie A, pf = f-(inv)(FA(qg))

Py =4q i
* * 1.e., fz(p;k) - FA(C]*)
Water level 1 ---, A
I i
Lo

L) =4 = {4 W)=~

-
|
— 1

Figure 4.3: The graphical interpretation of the optimal power allocation for a general (8, 5)-
limited access channel. We assume A is.knowmn to be {3,4, 5,6, 7,8} in order to facilitate its
comparison (as an extension) with Figure 4.1(f).

their adjusted base heights should be equal and are determined by ¢%. The optimal power

allocation is given by
P =[pi, p5, p3, pi) = [0.242270.-0.309685, 0.358436, 0.089609].
OJ

Although the two-phase water-filling scheme cannot be extended to a general (N, K)-
limited access channel (for which the channels may not be controlled by a common function
g with single parameter 02), the resultant optimal power allocation p* can still be graphically
interpreted similarly to Figure 4.1(f). In particular, we can regard the tank to be structured
by N — |A| + 1 vessels, which have unit width except for the last one that is of width

K — N + |A], as illustrated in Figure 4.3. The adjusted heights of vessel bases in their most
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general form can be formulated by the following equations: if ¢ € A, then

= — [ W) i fi(e0) < v < fI(0) (4.18a)
Liv)2 ¢ Yy
70 if v > f1(0) (4.18b)
else (i.e., i € A)
N 1 1 /(inv) v
Li(v) &~ ~ mFA (m) . (4.19)

It can be verified that taking function G into function L; defined in (4.17) should assume
the same form as (4.18a), (4.18b) and (4.19). From the above formula, it is clear that
1/v can be interpreted as the water level. Equations (4.18a) and (4.19) then reasonably

imply that the optimal power allocation q* satisfies ¢ = f-/(inv)(l/) for i ¢ A and g =

F A'(im') <m> The aggregate power-g; will then be re-distributed to those channels
with indices in A according to equal-mutualzinformation principle, i.e., fi(p}) = Fa(q}) for
every i € A. This equal-mutual-information principle. is-exactly the extension of equal-SNR

principle for channels with additive noises of the same family. Moreover, when v lies in the
range specified in (4.18b) for some i, no power is-allocated to the respective channel; hence,
pi =q; =0.

We close this chapter by the following observation. It may be worth knowing that for
channels with additive noises of the same family, the optimal power allocation p* can actually
be determined directly by regarding the last W vessels as unit-width vessels with base height
respectively equal to 67 for K —W +1 <1 < K (cf. Figure 4.1(b)). This reduces the original
problem to a power allocation problem over a (K, K)-limited access additive noise channel
with effective noise powers {G2}X,. The resultant K-dimensional optimal power allocation

*é[

r i, ra, .., 5] is exactly the heights of water levels in each vessel. The desired optimal
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power allocation p* can then be given by

ry for1<i<?
9 K

! —_— x for ¥ < i< N.
N r Ss
> k=t O (Z j)

J=t

Although taking this aspect seems to save the effort of sub-dividing the vessels into ones
with unequal widths in Figure 4.1(c), more effort can be saved if the last W vessels are
aggregated as one. In other words, we can simply use a tank containing ¢ vessels, in which
¢ — 1 of them have unit width and the remaining one has width . We can then obtain
the (-dimensional optimal power allocation ¢* = [¢}.q5,...,q;_1,qs] through the water-
filling scheme (cf. Figure 4.1(f)). The equal-SNR power allocation principle is subsequently
applied to re-distribute ¢} to pj,p}. ..., pl in proportion to 07,07, ,, ..., 0%, respectively,
as suggested in (4.7). This is actually what Theorem 3 implicitly indicates, which justifies
the introduction of the aggregate mutual information that views the last W + (N — K)

channels as a single auxiliary ehannel.
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Chapter 5

Implications from the Optimal Power
Allocation

Theorem 2 indicates that the sequence of candidate maximal-mutual-information index sets
B1, By, Bs, ... can be identified via the determination of ji, j, J3, . . .. In a sense, this sequence
can be regarded as sorting the channels-in their'descending degrees of “noisiness,” which can
be supported by the result from Theorem 3. where the sequence of 71, js, js, ... coincides

: 2 2 2
with o5 > 03, > 05, > -+ .

For a general (IV, K)-limited access channel invhich the noises are not necessarily ad-
ditive or scaled from the same family, ¢an one identify such sequence through their mutual
information functions? The next theorem may provide a guide along this direction of think-

ing. For simplification, all the proofs in this chapter are placed in Appendix C.

Theorem 4. For a general (N, K)-limited access channel, if
1 (57w < S (B8 W) <+ < fiy (F8()) forall y >0

then jy = kyy for M =1,2,3,...1

'When w; = lim,, ,~, fi(p) is finite, the function £ ( fk(lin") (y)) is clearly defined for y < w;. For y > w;,
we define fi(inv) (y) = oo as emphasized in Footnote 2. This, together with the fact that w; < oo and
Assumption 1 jointly imply that lim,_,~ f/(p) = 0, gives that fi’(f,i(inv) (y)) = 0 for y > w;.
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Here, regardless of the original goal of the determination of optimal power allocation,
Theorem 4 (as an extension from Theorem 3) proposes a way to compare the degree of
“noisiness” of general channels via their mutual information functions. For the additive
noise channels of the same family, we have

7 (£ ) = 9 (6°())
Hence, the proposed ordering coincides with the general impression that the larger the o2, the
noisier the ith channel is considered to be. To simplify the notation, we drop the parentheses
between f! and fi(im) in the sequel.

For channels other than the one considered in Chapter 4, there could be no apparent
winner between any two channels in the sense of {f/ fi(inv) N .. In other words, it could

happen that

FLES™ ) > FE S P an) bt S () < £ ()

for two distinct y; and ys and two distinct Z.and j.. As/such, the sequence of ji, jo, j3, ... will
become a function of the total signal power P. However, if a certain condition is satisfied, the
pre-identification of the degrees of channel noisiness is still possible at two extreme situations:
P — 0 and P — oo, which we will respectively refer to as the low- and high-power regimes

in later discussion.

Lemma 3.

lim sup sgn <fi’fi(inv)(y) — f]'-fj(inv)(y)> <0 forevery1<i<j<N (5.1)
y40

then j; =i in the low-power regime, where sign function sgn(p) is equal to either 1, 0

or —1 depending on whether p >0, p =0 or p < 0.
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2. If

limsup sgn <fi’fi(inv)(y) - f]'-fj(inv)(y)> <0 forevery1<i<j<N (5.2)

ytmin{w;,w;}

then j; = ¢ in the high-power regime, provided that lim, , f/(p) =0 for 1 <i < N,

where w; £ lim,_, fi(p).

Since the input alphabet is usually finite for channels of practical interest, we have w; =
lim, o fi(p) < H(X;) < co. This immediately validates the premise, i.e., lim, . f/(p) =0,
for condition (5.2) implying j; = 7 in the high-power regime. In other words, lim, ., f/(p) =0
is true for all finite-input channels. There however exists a certain kind of channels where
w; = oo while lim,, . f/(p) = 0. An example is the Gaussian-input AWGN channel for which
fi(p) = log (1 + p/c?). We would like to emphasize that the inference regarding (5.2) still

remains valid for channels with unbounded mutual information as long as lim,_, f/(p) = 0.

Conditions (5.1) and (5.2) an'Lemma 3 involve the examination of the limit supremum
of function differences. The 1next corollary shows that their validity can be guaranteed by

comparing the limiting behaviors of individual functions.

Corollary 1.

1. The validity of (5.1) for an (7, j) pair is certain if one of the three conditions below is

satisfied:?
fi(0) < £3(0) (5.3a)
fi(0) = £;(0) and £7'(0) < f5(0) (5.3b)
(36> 0) fi(p) < fi(p) for 0 < p < 4. (5.3¢)

2. The validity of (5.2) for an (7, j) pair is certain if

wi = lim fi(p) <w; = lim f;(p). (5.4)

2The second derivative f!’ at the origin is again defined as f//(0) £ limyo £/ (p).
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We are now ready to illustrate an example that validates the sufficient conditions in

Lemma 3 and Corollary 1.

Ezample 3 (Flat fading channels). Consider the fading channels characterized by (4.16),
where the additive noises {Z;}Y, are i.i.d. zero-mean complex Gaussian, but the channel
inputs { X;} | are no longer identically distributed. With the first three channel inputs being
respectively BPSK, QPSK and 16-QAM and the remaining channel inputs being complex
Gaussian signals, we obtain j; = ¢ for ¢ = 1,2, ... in both low- and high-power regimes by

being given
2 2 2 2 2 2
01y 03 03 04 05 06

BTROBR R RTR

This can be verified as follows.

(5.5)

It has been derived in [19] that
2 2
i) <8 e piisni o )
and

2 2 2 :
70 =ty 1) = iy FA A ENRSEN /2 )| 2 | S| - 2

p—0 p—0 o;
2:|

In the low-power regime, the order of those indices, where o2/3? are not equal, is thus

where

MMSE;(p) = E[ X; — E[X;|v/pXi + Zi]

confirmed by (5.3a). From [18], we know
QPSK-MMSE(p) = BPSK-MMSE(p/2) > BPSK-MMSE(p) for p > 0.
Then
! ! o 512 2 ﬁ% 2 522 2 BQQ 2
filp) = fa(p) = E | = HiP'MMSE, ( p—[Hi|" || — E' | = |[Hao|"MMSE; ( p—5|Ho|
o o o o
i 1 2 2

—B%E |H,|? | BPSK-MMSE Eiyrae Ciyrae
=— 1] - p—|Hi]* | — QPSK-MMSE ( p—[H;|
01 01 01
<0
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for p > 0. Then (5.3c) assures that j; = 1 and jo = 2 in the low-power regime, which
somehow suggests that under equal effective noise power, QPSK modulations should be
favored over BPSK modulations when the power budget is extremely tight. Since j3 = 3

and j4; = 4 in the low-power regime can be verified similarly, we omit their proof.

In the high-power regime, we first note that lim, ,., f'(p) = 0 for 1 < i < 6. We then

confirm j; =i for 1 <i < 3 from

nmﬁ@z{TJi:LZ3 (5.6)

p—00 00 >3

according to (5.4). That j; =i for 4 <i < 6 in the high-power regime can be substantiated

by (5.2) and f{f;**(y) = % - ¢'9"™)(y), where
(0) = Bllog (1+ )] and ()= B[]
= 0 ; an = _
glp g p g\p 1+ p|Hi?
O
After determining the sequéence iy, js, J3, - -« the next task for finding the optimal power

allocation is to determine A. Recall that A'is defined as the set of channels that have the
largest mutual information for the optimal power assighment (see (3.2)). For channels cor-
rupted with additive noises of the same family, /A can be directly determined and has nothing
to do with total power P. In more general cases, however, A depends on P. There is even
no guarantee for its convergence in the low- or high-power regimes even if the monotonicity
condition of {f/ fi(inv)}ﬁil in Theorem 4 holds. This is because in terms of given 71, 72, 73, - - -,
only sufficient conditions on the validity and violation of stop criterion (3.11) can be obtained

as summarized in the next lemma.

Lemma 4. For the already pre-determined 7y, j2, 73, ... and an integer M that is under ex-
amination in the algorithm of Theorem 2, we have the following logical statements to help
determining A. Again, in the high-power region, we assume that lim, ., f’'(p) = 0 for

1<i<N.
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between a constant K — M and a sum of function ratios »

I
/ fj(;,m)(y>

I

limsupsgn | K — M — Z T <0
y10 1€BAr+1 fZ/fZ( )(y)
then stop criterion (3.11) holds in the low-power regime.
L ()
liminfsgn | K — M — Z Jn ]ﬁv >0
wlo s 1 el ()

then stop criterion (3.11) fails in the low-power regime.

I

1 ¢ (inv)
limsupsgn | K — M — Z %‘,)(y)
y1Q(Bar) icbu il W)

then stop criterion (3.11) holds in the high-power regime, where

SRR @

I

(inv)
lim infsgn | K= M — Z JMmev ) >0
ytQBs) =/ f f ( )

then stop criterion (3.11) fails in the high-power regime.

(5.9)

(5.10)

Although conditions (5.7) and (5.8) are mutually exclusive, it is still possible that both

is applied to (5.9) and (5.10).

z‘EBMH[ Jm JM

individual functions as shown in Corollary 2.

Corollary 2. Follow Lemma 4.
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are violated. In such a case, limp_,o A(P) may be indeterminate. Likewise, the same remark

The conditions in Lemma 4 involve the examination of the limiting behavior of a difference

W)/ ().

We similarly derive sufficient conditions to (5.7)—(5.10) based on the limiting behavior of



1. (5.7) is valid if

K—M< Z JM (5.11)
1€BN 41 Z
2. (5.8) is valid if
K—M> Z JM (5.12)
1€BA 41 Z
3. (5.9) is valid if
f(an)( )
K—-M< lim inf % (5.13)
1€BAr+1 yTQ(BJM ff ( )
4. (5.10) is valid if
(inv)
K—M> Z limsupM() (5.14)
(inv)
i€BA1 y12(Bar) fzfz (y)
Furthermore, if ji, jo, j3, ... are determined according to the condition in Lemma 3,
i.e., (5.2), then (5.10) can besimplied by
WiinptT pll)lgo ij (p) < Winr i, T plggo fjkl+l(p>‘ (5'15)
FExample 4. Continue from Example/3 where we have determined j; = ¢ for i = 1,2,... for

both low- and high-power regimés. Assume K = 5H.and

220 020 020 020 o2 pn| T [171,0-5705,0.4,0.4].
1 2 3 4 5 66

Then, by f/(0) = ?/c? for 1 <i <6 and (5.11) and (5.12), we establish

A (=1limA(P)) =B; ={3,4,5,6}

P—0

in the low-power regime.

In the high-power regime, (5.15) and (5.6) imply that A C By = {4,5,6}. Examination

of M =4 with B; = {5,6} gives

(1nv)

2/ 2
thsupfj‘lj4 v 264/04:1.6>K—M:5—4:1.

an

2 2
icBy YT(Ba) f f y i€Bs 62 /O-i
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Hence, (5.13) is valid, and so is the stop criterion of the algorithm. As a result, the algorithm
in Theorem 2 will stop at M =4 and A(= limp_, A(P)) = B, = {4,5,6}. O

The two lemmas and two corollaries presented previously give the conditions under which
A can be determined directly in the low- and high-power regimes. We can then compute the
optimal power allocation g* using the Lagrange multipliers technique and KKT condition
in terms of the auxiliary aggregate channel associated with A. After such step, the optimal
power allocation p; for a channel outside A equals the respective component ¢ of g*, but
the power allocation for channels inside A should be obtained by re-distributing the power
qx according to the equal mutual-information principle. Since we are concerned with the
situation when P approaches either 0 or co, the optimal power p* may as well approach the
same limiting value. It is thus more meaningful to consider the ratio between the optimal

power allocations of channel pairsin‘the low- and-high-power regimes.

Lemma 5. After the determination of A; the optimal power allocation ¢; for the 7th channel

outside A asymptotically satisfies

o 0 [+ NOOTEEESE0 1+ 14 - M0

0 otherwise

(5.16)

provided the second derivatives f/(p) and F/(p) exist, f/'(0) £ lim, .o f(p) < oo, and
F/(0) £ lim, o FY(p) < oo. In addition, for two channels with indices 4,7 in A, the re-

distribution of ¢} yields

i P f3(0)
11m Iy
P=0Dp; fi(0)

provided that f/(0) and f;(0) are both finite.

In the high-power regime, since we assume lim,,_,, f;(p) = 0, we have limsup,_,. f{'(p) =

0.2 Discussion regarding the limiting power ratio between channel pair therefore cannot

3This can be seen from 0 > ff f"(p)dp > f'(B) — f'(«) as a consequence of the strict decreasingness of
/26, p. 100] .
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be stated in the same fashion as (5.16). The next observation then indicates that in the
high-power regime, the power ratios between channel pairs are governed by the rate of

convergences of {f/(p)}Y, at p large.

Observation 1.

1. For channels outside A, the following statements hold.

o If F and each f/ outside A vanish at a polynomial speed, i.e.,

lim g (K = N +[A)Fj(q) = ca and  lim g fi(q) = ci for i & 4,

qp—r00

where m;, my, ¢; and ¢, are all positive, or if F} and each f! outside A vanish at

an exponential speed, i.e.,

lim_g}"* log (K ~ NSPAADEL@INEc b lim ¢ log (f/(q:)) = i for i ¢ A,
qi—00

qA—> 00

where m;, my, ¢; and c, are all negative, then-for i, j & A,

! 1/m; . ; 1/m;
P—o0 qj Cj J P—oo qy CA
00 if |m| <|my;] 00 if |m;| < |mal.

o If for 4,5 ¢ A, f/ vanishes exponentially fast while f} and Fj decay to zero at a

polynomial speed, then

lim q—l* = lim q—i =0
P—oo qj P—oo N
2. For channels i, j inside A,
lim pf = £ (QA)) if w; > Q(A) = minges wy
—00

e A )
m —FF—

im — , if w, = w; = Q(A).
Pooo P y10(a) f! fl-(mv) ()
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There are certain channels with polynomially vanishing first derivatives in their mu-
tual information functions. For example, the fading channels characterized in (4.16) sat-
isfy limg, o0 ¢; f/(¢;) = 1 when both channel inputs and additive noises are complex Gaus-
sian. Examples for exponentially vanishing first derivatives in their mutual information
functions are the AWGN channels with a finite channel input alphabet [18], for which
limg, o0 ¢; "log (fl(qi)) = —d?/(40?), where d; is the minimum distance between distinct

channel inputs.

An interesting observation in the high-power regime is that the optimal power allocation
pi for a channel in A may be bounded even if the total power P goes to infinity. An
available example can be constructed by re-assuming K = 1 in Example 3. Then, we have
A= {1,2,-- .6}, QA) = minjeaw; = 1 and limpoopr = £5(QA) = £5V(1) for
1 <4 < 6, in which case limp 4 pi-is a finite positive number for 2 < ¢ < 6. It can
be further verified that taking«K = 2-in the.same example gives A = {2,3,--- 6} in the

high-power regime, which also'results in 0 <limp_,~,p; < oo for 3 <i <6.
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Chapter 6

Concluding Remarks

In this dissertation, we consider the (N, K)-limited access channel and establish an algorith-
mical procedure to find its optimal power allocation. The optimal power allocation obtained
is not restricted to AWGN channels butican be applied to general channels with correspond-
ing mutual information functions satisfying Assumption 1. For additive noises scaled from
the same distribution family, finding the-optimal power allocation is reduced to a simple two-
phase water-filling process. This two-phase water-filling: graphical interpretation can then
be deduced to a general case, where the degrees of /“channel noisiness” are in a sense im-
plied by the composition functions { ff fi(inv) Ni-of the mutual information functions {f;}Y ;.
General behaviors of the optimal power allocation in low- and high-power regimes are also
established. We would like to point out that the results in the work can be directly applied to
a resource allocation problem associated with some “profit” functions {f;}Y, as long as the
problem is mathematically of the same form as (2.3). As such, the optimal resource alloca-
tion can be solved algorithmically, and sometimes directly if certain monotonicity conditions
are satisfied. In addition, {f/ fi(inv) N | now suggests the prioritized sequence of investments,

i.e., the smaller the f/ fl-(inv), the less profitable from the investment p;.

One possible future work is to relax the independence assumption in (2.2) since a certain

degree of dependence among channels may exist in practice. A good start would be to

43



investigate the additive color noise compound channel modeled by

where {Z;}¥ | are dependent random variables. According to our preliminary study, a uni-
versal guideline is obtained for a group of permutation-invariant channels, in which the
system mutual information remains unchanged when simultaneously permuting their power
parameters and multiplicative coefficients (i.e., switching (p;, 07) and (p;, JJQ.), also s; and s,
for channel ¢ and 7), that a channel with less power should have larger SNR. When all N
channels belong to a permutation-invariant group, we also found that the optimal power allo-
cation problem can be transformed to an equivalent problem for K parallel channels without
limited access constraint via a water-filling noise-power-redistribution process, and then the
optimal power allocation is obtained via one-to-oné mapping from the power allocation solu-
tion of the K equivalent channels according to KKT\condition. Further investigation along

this direction might be worthwhile:
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Appendix A

Proofs of Lemma 2 and Theorem 1

We first provide a simple property regarding the aggregate mutual information function.

This property will be used in the proofs of both Theorems 1 and 2.

Property 1. If min;eg p; > 0 and f;(py)i= f;{p;) for every i, j € B, then
1 1
A —irich NE (A.1)
SN
Proof. This is a direct consequence following(3.6) and the relation between the first deriva-

tive f’ of a function f and its iverse @2 as:

af 3l (y)
9y

1
y=f(p) f'(p)
where in the above equation, f can be replaced by either any f; with 1 < ¢ < N or the

aggregate mutual information function Fp. O

Proof of Lemma 2. 1. For any q € Q(B), we can use the assignment in the lemma to

obtain a corresponding p, i.e.,

qi forv ¢ B
Pi = Gav) : (A.2)
£ (Fe(gs)) forie B.

Then, we have

Filpi) = filai) fori ¢ B
S (fi(inv)(FB(qB)» = Fp(qp) forieB
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and f;(p:) = fi(q;) < F(gs) for i ¢ B because ¢; satisfies condition (ii) in Q(B). Thus,

p € P(B) and
Zfz Qz K_'_UB‘ F]B Q]B Zfzpz K+|B|
iZB iZB

Since the above derivation is true for any g € Q(B), we obtain that

sup {Zf (¢:) K+|B|_N)FB(QB)}

qeQ(B) B

peP(B iZB

. Similarly, for any p € P(B), we can assign its corresponding q as

¢ =piforigB and g¢s=> pi

i€

Then, for j € B,

)
= Fp (%M) Fi (gs)

N) max, fi(pi)-

< sup {Zf (i) K+|B|—N)1I§rlggvfj(pj)}~ (A.3)

(A.5)

(A.6)

where (A.5) follows the definition of the aggregate mutual information Fp, and (A.6)

holds because, according to condition (i77) in P(B), f;(p;) = f;(p;) for every i € B. By

applying conditions (i7) and (ii7) in P(B), we obtain for j ¢ B,

Fi(a5) = fi(ps) < max_fi(p:) = max fi(pi) = F(gs)-

1<i<N

Hence, g € Q(B) and

> filpa) + (K + Bl = N) max_f(p;) = > _ filai) + (K + [B| -

B iZB
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Accordingly,

sup {Zﬁpz (K + |B| - )lrgjagﬁfj(pj)}

peP(B

< sup {Z fz Qz K+ |B| )FB(QB)}- (A'7)

qeQ(B) iZB

3. In summary, (A.3) and (A.7) jointly imply that equality holds for both inequalities,

and the relation between maximizers p® and q° should follow (A.2) and (A.4).

0

Proof of Theorem 1. We first obtain from the definition of Fp and Property 1 that for ¢ > 0,

L 1 _ 1 -y 1
B0 py (F™(Pa(0) (BEOEmt(Fa) & f (15 (Faa)))

We can then infer from Assumption Ithat-Fp(q) s a\pesitive, strict decreasing and contin-

uous function for ¢ > 0, and Fg(0) = lim, o £ (p). This implies that

Zf@ Qz K + |B| )FB(QB> (A'S)

i€B

is strictly concave for ¢ € Q(B). By definition of ¢ (cf. Lemma 2),

sup {Zfi(qz-)Jr(KHB\ — N)Fg(gs } > fil@) + (K + [B| — N)Fa(g3).
iZB

q<Q(B) i¢B
Then, the assumption that q¢° € Q(B) and the strict concavity of (A.8) together imply that

q° is the unique global maximizer that maximizes (A.8) over Q(B). Hence, g = ¢°. O
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Appendix B

Proof of Theorem 2

Two properties regarding the optimal maximal-mutual-information index set A and the
optimal power allocation p* must be established before our presenting the proof of Theorem

2.

Property 2. Fix P > 0. The optimal maximal-mutual-information index set A and the

optimal power allocation p* satisfy the following two.properties:

1. For j &€ A,
s (K (A = N)EZO e pi) ifp; >0 (B.1)
PN S (KAAE=N)E (Y e pi) ifp; =0.

2. Forany i,j € {1,2,..., N}, if fi(p;) < f;(p;), then
fi) < £ (). (B.2)

The first property indicates that the first derivative of the mutual information function
attains the maximum value (K 4+ [A| — N)F; (D ;.. p;) whenever its respective allocated
power is positive. It also indicates that ¢j = > ,., p; > 0 for P > 0. The second property
reveals that for the optimal power assignment, a larger mutual information cannot have a
smaller first derivative. These two properties will be the basis of the prove-by-contradiction

technique adopted in the proof of Theorem 2.
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Proof of Property 2. We first observe that min;es p; > 0. This is because if p; = 0 for some
j € A, then (3.2) gives that max,<;<n fi(p;) = f;(p;) = f;(0) = 0. Thus, p; = 0 for every
1<i< N,and P = 2511 pi = 0, which contradicts the assumption that P > 0.
We next note that the Lagrange multipliers technique and KKT condition imply that the
first derivatives of the mutual information functions achieve the maximum for those indices

whose corresponding allocated powers are positive. Then by replacing B by A in (3.9) and

by noting

* . * : *
Gy = EEA i = min p; > 0,
KA

we obtain that for j ¢ A,
= (K +[Al = N)Fi(qz) ifg; >0

s _ o and fdt
p; =q; an f](q]){S(K—I—|A|—N)FA(q;§) iqu:().

This completes the proof of (B.1).

The proof of (B.2) can be done asfollows: Suppose

fi(pe) < f(pp) and . f](p})/= f;(p}).

Then, f;(p;) > 0 and hence p; >0 by Assumption”l.* By the continuity of functions f;,

fi and f}, there exists 0 < Ap < pj such'that

filpi +Ap) < f;(pj —Ap) and  fi(p; + Ap) > fj(p; — Ap).

Hence,
fi; + Ap) + f;(0; — Ap) > [fi(p})+Ap - f{(p} + Ap)|+[f; () —Ap- fi(p; — Ap)[B.3)

= fi(p}) + fi(0}) + Ap [fi (v} + Ap) — fi (0 — Ap)]
> fi(pi) + f5(p))

where (B.3) follows a relation derived from Assumption 1 that for every 1 < k < N and

0< Ap<np,
fulp+ Ap) = filp) _ 1) < fi(p) —ﬁgp—Ap) < fl(p—Ap).

felp+ Ap) < Ap
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Noting that i must be outside A since f;(p;) < f;(pj), we distinguish between two cases

below: 7 ¢ A and j € A.
First, if j ¢ A, then

D Ju0k) + (K + [A] = N) max_f(p},)

kA
(X ROD RO+ ) + (0 1A= N) mx 107
kgA\{i.j} o
< D Jelpk) + SipE A+ Ap) + S3(05 — Ap) + (K + Al = N) max fu(p},)
kgA\{i.j} o

which contradicts the optimality of p*. If however j € A, then

D Fuph) + (K + [A] = N) max_f(p},)

kA
= 5 At £0 | + (5,0 141N = 1) max £l
kgA\{i} o
< D> Flod) + filo; + APV (Bire) WK + Al = N — 1) max fu(p],)
kgA\{i} -

which again contradicts the optimality of p*s"The proof of (B.2) is therefore completed. [

We are now ready to present.the proof of Theorem. 2.

Proof of Theorem 2. The proof of the theorem is divided into two parts.

In the forward part, we will show by induction that when |A| < N,

A C By (B.4a)
(K o M)FJ]%MH <Zi€BJ\I+1 ﬁMﬂ) > f]/‘M (]aM,jM) (B.4b)
ZiEBJVI+1ﬁM+1=i (: CJBMH) >0 (B.4C)

hold for every 1 < M < N — |A|. Condition (B.4b) then ensures that stop criterion (3.11) is
violated for every 1 < M < m for some m € {N —|A|, N—|A|+1,..., K —1} when |A| < N;
hence the algorithm will not stop before finding A and p*. Notably, the definition of A in
(3.2) guarantees that N — |A| < K — 1; hence the set {N — |A|,N — |A| +1,..., K — 1}
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can never be empty. Also, according to prri1,; = f-(inv)(FBMH(chMH)) from (3.7), (B.4c) is

equivalent to par41,; > 0 for every ¢ € Bys.

After confirmation of the forward part, the converse part will subsequently be proved by
induction, namely, if stop criterion (3.11) is violated for every 1 < M < m, then m < N—|A]|.
An immediate consequence of the converse is that when |A| = N, the stop criterion (3.11)
must hold at M = 1 because the converse can be equivalently stated (by taking m = 1) as

that |A| = N > N — 1 implying the validity of (3.11) at M = 1.

Then the forward and converse parts together conclude that the smallest integer M i,

that validates the stop criterion (3.11) is exactly N — |A| 4 1. The desired result A =B,

min

is therefore confirmed by deriving

B,

min

=N=Mga+1=|A]

and by applying (B.4a) (which has been proved to.be valid for every 1 < M < N — |A| =

Mpin — 1 in the forward part)=to obtain
A C Bag,. ( C B, —C- C BQ)-

Note that stop criterion (3.11) trivially holds when M = K hence, the above statement is

applicable even at the extreme case that [A] = N — K + 1.

A. Forward part: Under |A| < N, (B.4a)—(B.4c) are valid for every 1 < M < N — |A|.

1. Preliminary:

In comparison with the optimal power allocation p*, we define two index sets as

follows:

I[Mé{ZE]B%MﬁM,Z<pj} and DMé{ZEBMﬁMﬂ>p;k}
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From their definitions, I, consists of all indices in By, corresponding to which pys;
needs to be increased to reach p;. In contrast, for i € Dy, we shall decrease pyr; to

achieve p7.

We then claim that for the considered range 1 < M < N — |A|, I, and Dy, cannot
be both empty, given that A C B,,. This is because if both of them were empty, then
Pari = pf for every i € By;. We then notice from (3.7) that function values {f;(par.i)}
are all equal for i € By;. Also, by definition of A from (3.2), the set A should contain
all indices whose respective function values {f;(pf)} are equal. Thus, A C B,, and
P = pi for i € By, immediately imply that A = By,. Accordingly, Iy = Dy = )
can only occur when M = N — |[By| + 1 = N — |A| + 1, which is outside the range

1 <M < N —|A| that we consider here. The claim is thus validated.

. Validity of (B.4a)—(B.4c) when M =.1:

Observe that A is always.a.subset of By= {1,2;~.. N}, so we know from the claim
in 1) Preliminary that I and Dj cannot be both empty. Based on this, we can further

reason from
N N
~ *
E Pl — E pb; = P
i=1 i=1

that I; and D; are both non-empty. Since

fip!) = max f,(p) fori€ A (CB)

1<j<N

and

fi(P1.4) ( = FBl(P)) < max f;(p;) = max f;(p;) forie B, (as Ty #0) (B.5)

JEB1 1<j<N

we can infer from the strict increasingness of functions {f;} that p;; < p} for every

1 € A, which indicates A C I.
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We then claim and will prove by contradiction that j; obtained from
Ji = argmin fi(p1,) (B.6)
1€Bq

does not belong to I}, and therefore is not contained in A. This will immediately yield

AC B, =B\ {i}
Suppose j; € [;. Then the definition of I; implies
Prjy < Dj,- (B.7)

Because SN | p1; = S0, pf = P, (B.7) further implies the existence of another index
k (in B;) such that

Dik > D (B.8)
From (3.7) and (B.6), we respeetively obtain
fj1 (ﬁle) = fk(i)l,k) = F]Bl(P) and f_]/1 (ﬁl,J&) < fé(ﬁl,k)

Then by (B.7), (B.8), the strict increasingness of functions f;, and f;, and the strict

decreasingness of functions f} ~and f;, we have

fin(03) > fiulpy)  and £ (p},) < fi(p})

which contradicts (B.2) in Property 2. Accordingly, j; & L.

Next, we prove that (B.4b) is valid when M = 1. Using the prove-by-contradiction

technique, we suppose

(K = D)Fs, (Xies, Pra) < fj,(Brz)- (B.9)
Since for every 1 <i < N,

pri= f(Fs,(P)) >0 (as P > 0)

7
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and {f;(p1,)} are all equal (to Fg, (P)), we obtain from Property 1 that

7 (z%plz %B;f'p“ Zf/plz > f’

i€Bo\A

Accordingly,

> >

icA pl i F]IIBQ (ZZEBQ P z) i€Bo\A pl z)

K -1 1
> o — — (B.10)
51 (P11) %%fmﬁ

K -1 1
> —~ - Z 7f’(~ 5 (B.11)

jl(plyjl) i€B2\A J1

1

:m[(K—l)—|B2\AH
1

= m (K —1) = (|B2| — |A])] (B.12)
1

where (B.10) follows from (B.9), (B.11).18 based on (B.6), (B.12) is due to A C B,
and (B.13) is true because |Bs | = N-— -~ Then based on A C I; and j; & I, we know
p1i < p; for every i € A aud\p, ;, > pj . Hence, from the strict decreasingness of

functions {f/}, (B.13) implies that

£, (p5,) > (K = N +A]) = (K — N+ [ANFL(D icapi)

1
1
2ien fip})
which contradicts (B.1) in Property 2.

After proving (B.4a) and (B.4b) at M = 1, what remains to be confirmed is the
validity of (B.4c). Using the prove-by-contradiction technique, we first suppose (B.4c)

were not true when M =1, i.e., > . g Pa; = 0. Then, we obtain

252,]1 Zp2z ZP2Z—P>O

1€Bo
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The KKT condition follows that

(K = 1) Fg, (Xicp, P2i) < f1,(D21)-

The strict decreasingness of functions Fy, and f; , together with the straightforward

relations:

Zﬁu > Zﬁzz‘ =0 and pij < paj, = P,

D) 1€Bo

implies
(K = 1)Fg, (Xiep, Pra) < fj, (brj)

which contradicts (B.4b) at M = 1. The proof of the case M = 1 is then completed.

. Validity of (B.4a)—(B.4c) at M = m — 1 implying their validity at M = m for 2 <
m < N — |Al

Based on the premisesthat (B:4a)-is-truesat M = m — 1 (i.e., A C B,,), we know
from the discussion in the Preliminary on page 51 that I,, and D,, cannot be both
empty. So when I, is not empty; we will show AC I, and j,, € I, as similar to the
proof at M = 1, which immediately gives A.ZB,,,1 = B,, \ {jn}. We will then show
by contradiction that I,, = 0 and‘,, % @ can never occur if (B.4a) and (B.4c) are
both true at M = m — 1. The desired result, i.e., A C B,,, implies A C B, for every

2 <m < N —|A|, is therefore verified.
Case 1) I, # 0.
Since

fi(p;) = max fj(pj) fori € A (CB,,)

1<j<N

and

fi(m,i) (= F,,(G8,,)) < max fi(p;) < Jpax fi(p;) forie By, (as I, #0)
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we can infer from the strict increasingness of functions {f;} that p,,; < pf for every

1 € A, which indicates A C I,,.

In order to prove j,, € L., we need to first show the existence of an index k € B,,
such that p,,r > p;. This can be proved by contradiction. Suppose no such index
exists in B, (i.e., I, = B,,). Because Zz‘]\;ﬁm,i = 2511 p; = P, there must exist
an index u outside B,,, satisfying p,,, > pi. Since p; > 0, we know p,,, must be
strictly positive. Then we can derive by the KKT condition (i.e., the first derivatives
of the mutual information functions with positive allocated powers should achieve the

maximum) that

(K =m+1)F, (Yics,, Pmi) = fu(Pm) (B.14)
where equality in (B.14) follows from the validity of (B.4c) at M = m — 1, i.e.,
> icB, Pmi > 0. Since the validity'of (B.4¢) at M = m — 1 is equivalent to p,; > 0
for i € B,,, and function values {fi(pm:)} areall equal also for i € B,,, we have from
Property 1 that

1 1
e 1) 2 o
(&~ + 1) 2= S
1 1 1

T K onrA) (b)) Talima) (B.15)

Based on (B.15), we can further reason from

ﬁm,i < p;k for i € Hm = Bma ﬁm,u > PZ

and the strict decreasingness of functions {f/} that

1 1 1
<K—m+n;:ﬁ@7>ﬂww

€Bm

(B.16)

Using again that p; > p,,; for ¢ € B,, = L,,,, we know that p; > 0 for ¢ € B,,. Property
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(B.1) then leads to

1 1
2 T
K_m—l—liem%mfi(pi)

1 1 1
T K —m+1 Z.GZAJZ-’(p:‘)Jr 2 fi(p7)

1€Bm\A

B 1 1 N Z 1 1
K—m+1\ Fy(> .capi) (K + Al = N) F{ (3 icapi)

i€Bm \A
B 1 1
(K + Al = N) FL(>ca i)
1
<
~ fipr)

where the last inequality cannot be replaced by an equality because p}, may be zero, and
in the above derivation, we have implicitly applied the validity of (B.4a) at M =m —1
to obtain |B,, \ A| = |B,,| —J{A[="N —m+1 = |A|. A contradiction to (B.16) is thus
obtained. Accordingly, I # Bay-and hence confirmation of the existence of k € B,,

such that p,, , > pj, is completed.

We can now proceed o prove that 7,, & L,/ by contradiction. Suppose j,, € L;

hence, P j,, < pj,,. Then following four obsérvations below:

(@) Si Pmjm) = T (D),
(b) f5, (Pm.j) = minies,, fi(Pmi) < fr(Bmr);
(c) the strict increasingness of functions f;,, and f, and

(d) the strict decreasingness of functions f; —and fj,

we have
Jin(05,) > felpr) and  f5 (p},) < fi(pi)
which contradicts (B.2) in Property 2. Accordingly, j,, & L,,. This finishes the proof

of AC B, 11 =B, \ {jn} given L, # 0.
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Case 2) I, = 0 but D,,, # 0.

Our goal is to show that this case can never happen if (B.4a) and (B.4c) are valid
at M =m — 1. Since I, = @ and D, # 0, and S0 | ps = S, pi = P, there exists

an index u outside B,,, satistying p,,, < p;. Thus, the KKT condition implies that

(K —m+ 1)F1é%m (ZiEBm ﬁm,i) > f;(ﬁm,u) (B'17)
where the above inequality follows the premise that (B.4c) is true at M = m — 1.
Since the function values { f;(pm:)} are all equal for ¢ € B,,, we have from (B.17) and
Property 1 that

1 1 1 1 I
_ . (B18
(K —m+1) ;Em flmi)  (K—m+1)F (Y. Pms) = FuGom) P19

Based on (B.18), we can then_reason from
ﬁm,i 2 p: fors Bma ﬁm,u < pz

and also the strict decreasingness of functions { f/ }-that

1 1 1
(K=mt 1) ZZ 10 = 1)

€By

(B.19)

By noticing that p! > p,,, implies p; > 0, we can derive using (B.1) in Property 2
that

1 1
K —m i1 2 700

€Bm

1 1 1
“ K a0 \ & T T 2

EB\A ¢ (Pi

N 1 1 Py 1 1
(K =m+1) \ i ienpi) (K + Al = N) F{ (X ien Pi)

i€Bm \A
B 1 1
(K +|A| = N) Fi(>cnp})
1
— fups)
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where we again implicitly use |B,, \ A| = |B,,| = |[A| = N —m+1— |A| (ie., A CB,,)
in the above derivation. A contradiction to (B.19) is thus obtained. Therefore, I, = ()

and D,,, # () cannot occur if (B.4a) and (B.4c) are valid at M =m — 1.

After the completion of the proof for A C B,,., we next prove that (B.4b) is valid
at M = m. Using the prove-by-contradiction technique, we suppose (B.4b) were not
true at M = m. Then, using the just proved A C B,,;, the validity of (B.4c) at
M =m —1 (ie., pm; > 0 for i € B,,), and the observation that the function values
{fi(Pm.i)} are all equal for i € B,, 1, we obtain from Property 1 that

1
Z T Z T+ Z
F]}/Bm_H (ZzeBerl pmz) i€B,, f pml f pml ic f pm z)
Accordingly,
1
27 >
icA f pmz F/m+1 (ZzeBerl Drm z) zeBm+1\A f pm z)
K—m
> (B.20)
J{m(pM;]m) ZE]BZ+1\A f pm Z)
K—m
= > _ (B.21)
! /
gm(pm,ym) icB. +1\Af (pmjm)
1
= +——— (K —m)— B, A
]lm(pm,Jm) [( ) | +1\ ”
1
D () — ([Bys| — A])] (B.22)
jm(pm]m)
1
= — (K +[A[=N) (B.23)
]/'m(pm,jm)

where (B.20) follows from the assumed violation of (B.4b) at M = m, (B.21) is based
on jn,, = arg minep,, f/(Pm.), (B.22) is due to A C B,,,1, and (B.23) is true because
IB+1| = N —m. Since A C I, and j,,, & L, we know p,,; < p; for i € A and
Pmjm = P,- Hence, from the strict decreasingness of functions {f/}, (B.23) implies
that

f5,,(©5,.) > (K = N +]A]) = (K = N+ [ADFL (X ienri):

2ich D)
A contradiction to (B.1) is thus obtained.
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After proving (B.4a) and (B.4b) at M = m, what remains to confirm is the validity

of (B.4c). We require the next inequality to proceed:

(K = m) B,y (i i) > max () (B.24)

JE€Bm41

which can be proved as follows. Given that (B.4c) is true at M = m — 1 (i.e.,

> icw, Pmyi > 0), we know from the KKT condition that

(K—m+1)Fg (Zie]Bm ﬁm,i) > %I%X f]’.(ﬁmJ), (B.25)
We can then derive
1 ¥
(K m)Fﬂg m+1 <Zie]Bm+1 ﬁm,z‘) (K m i€Bm, f (pmz)
= o1 | e ) f .
(€81 m.i) icB,, i)
T (L \ !
K—-—m+1 \ZeB ) f’ pm'L K m) Fﬂgg +1(Z’iEBm+1 ﬁm,z)
1 1
Z > (B.26)
K=m+l TEB -1 f p"” me(pme)
DT
K m+1i€]Bm fz(pmz)
1 1
(K m+ 1) Flém(ZzelB Pm, z)
1
< min{ ——— B.27
j@m{f;(pm,j)} ( )

where (B.26) follows from the validity of (B.4b) at M = m, and (B.27) is a consequence
of (B.25). By applying the validity of (B.4b) at M = m again, we have

(K =10y (S, ) > w0 { 5 (B 1 )}
1/~
= max [(DPm.i).

Inequality (B.24) is thus proved.
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We proceed to prove (B.4c) by contradiction. Suppose (B.4c) were not true at M =
m (i.e, 3 g, ., Pmt1s = 0). Then by the assumed validity of (B.4c) at M = m —1

(i-e., @B, = > icp, Pm,i > 0), we have
Bmi = 1™ (s, (ds,,)) >0 fori € B,

and hence

Z Pm,i > Z Pmt1,i =0 (B.28)

1€Bm+1 1€Bm+1

because B,,,1 C B,,. Inequality (B.28) and Zz‘]\;ﬁm,i = Z,ﬁilﬁm+1’z‘ = P then implies

Z Pm,i < Z Pm+1,i

]‘@Bm+l jéBerl

which immediately indicates thatthere exists k ¢ B,,.1 such that

ﬁm,k < ﬁm—l—l,k and ﬁm-{-l,k > 0. (B29)

The KKT condition thus-follows that

(K —m)Fy, " <Zz‘eBm+1 ﬁm+1,z‘> < fr(Pmtik)-

The strict decreasingness of functions Fj}  and f, together with (B.28) and (B.29),

m-+41
implies

(K - m)FIém-kl <Zi€]Bm+1 ﬁmﬂ) < fé(ﬁﬂ%k)

which contradicts (B.24). The proof of the forward part is thus completed.

B. Converse part: If the stop criterion (3.11) is violated for every 1 < M < m, where

m e {1,2,..., K — 1}, then |A| < N —m.

We now prove the converse part by induction.
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1. Validity of the converse statement at m = 1:

It suffices to prove that |A| = N cannot be true if (3.11) is violated at M = 1, and
we prove this by contradiction. Suppose |A| = N. Then, p; = p* is the optimal power

allocation, and for every 1 <7 < N, p;; = f(inv)(FA(P)) > () because P > 0.

7

Observe that the violation of (3.11) at M =1 tells that

(K o 1)FIF§32 (ZiE]Bz 25171') > fJ/1 (ﬁlvjl)'

By the continuity and strict decreasingness of functions Fy, and f} , there exists 0 <

Ap < P15, such that

(K — 1)F1}/32 (Zz’eBQ P+ Ap) > fjl'l (ﬁl,ﬁ — Ap).
Hence, using an argument similar to:(B.3) yields
(K - 1)FB2 (Zielﬁ%g ]31,71 + Ap) + fjl (ﬁlyjl - Ap)
> (K — 1)4F, (Z@'eﬂ%g Pr) TADFE, (Xicp, Pri + Ap) ]
+ [fjl (ﬁl,jl) - Ap : f]ll (ﬁl,h — Ap)]
- (K - 1)FB2 (ZieIﬂ%g ﬁl,i) + fjl (2517]'1)
+Ap [(K = 1) By (Dica; Py +Ap) — f1,(rj, — Ap)]
> (K - 1)F]BQ (ZieBg ﬁl,i) + fjl (ﬁlajl)' (BBO)

Consequently, another power allocation

ﬁ‘é 151,j—AP if j =7
’ fj(mv)(F]B2 (D ics, Pri + Ap))  otherwise
which satisfies the power-sum constraint:

N
Zﬁj =pj + Zﬁj
j=1

JjEB2

= (prgr — Ap) + D [ (Fay (X em,bri + Ap))
JEB2

= (Prj, — Ap) + Fzg(ginv) (Fey(Xyem,P1i + Ap))

N
= (P = 89) + (e + Bp) = Dy = P
j=1

62



will give that for every 5 € B,

fi(pj) = Fs, (Zz’eBQ Pii + Ap)

= Fp, (ZieBin(inV)(FA(P))>

= fjl (ﬁlajl) > fjl(ﬁjl) - fjl(ﬁlajl - Ap)

The above inequality and (B.30) then jointly imply that for some u € By,
min Sy sifi(05) = (K = 1) fu(Pu) + i, (B5,)

{s€{0,1}V: 3N 5;=K}
= (K = 1)F, (X ;cs, Pri + Ap) + f5, (P1j, — Ap)
> (K — 1)F]B2 (ZiE]Bg ﬁl,i) + fj1 (ﬁle) =K- FA(P)

mi ZN -
{s€{0,1}N: N | s;i=K} j=1 jf](pL])

This indicates that p; cannotbe the-optimal power allocation p*. The desired contra-

diction is thus obtained.

. Validity of the converse=statement at-m = k — 1 implying its validity at m = k for

2<k<K-1:

We are given that the stop eriterion (3:11)is violated for every 1 < M < k—1 and
have already confirmed that |A] < N —k + 1. Now, since the stop criterion is violated
again for M = k, we should then prove that |A| # N — k + 1, which immediately

implies the desired |A| < N — k. We use the prove-by-contradiction technique.

Suppose |A| = N — k + 1. Then, p, = p* is the optimal power allocation, since we

have already proven in the forward part that A C By_|s+1 = Bj, which together with
Al = N —k+ 1= |By]
results in A = By. By definition of A in (3.2), we get
grégf{fi(m,i)} < fi(pr,) for j € By, = A. (B.31)
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Inequality (B.31) then implies that f;, (pxj.) > 0; hence, Py j, > 0. Observe that the

violation of (3.11) at M = k tells that

(K = K)Fh, ., (Licpy, i) > Jh ()

By the continuity and strict decreasingness of functions F]ékH and f} , there exists

0 < Ap < pyj, such that

(K = 00F,., (Sicn,., i+ Ap) > f1, (e, — Op).

Hence, through the same procedure as (B.30), we obtain

(K - k)FBkJA (Zie]}%kﬂ ﬁk,i + Ap) + fjk (ﬁk,jk - Ap)

> (K g k)FBk+1 <Zz‘eBk+1 ﬁk,z) + fjk (ﬁk,jk)' (B'32)

Consequently, another power allocation

D if j & By,
b =  Bing,— AP if j = Jr
f_](an) (FBIC+1 (ZiE]Bk+1 ﬁk,i F Ap)) if j € Bk-f—l

which satisfies the power-sum ¢onstriant:

N N
S = Brit B —Ap)+ | D PritAp| =) pr=P
j=1 J=1

J&Bk JEBK 11

will give that for every j € By 1,

fj (ﬁj> = F]Bk+1 <Zi€]Bk+1 ﬁk,i + Ap)
> FBk+1 (Z’iEBk+1 ﬁkﬂ) = fjk (ﬁk,jk) > max {fjk (ﬁjk)’ E{é%i{ fi (ﬁk,z)} (B'33)

where the last strict inequality in (B.33) follows the strict increasingness of function
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fj. and (B.31). The above inequality and (B.32) then jointly imply

. N R
min S st )
{36{0,1}1\7: 7];\;1 Si:K} Z.]—l Jf.] (p_])

= (K - k>FBk+1 (Zz’eBkH ﬁk,z) + fjk (ﬁk,jk) + Z fl(ﬁk,z)

1ZBy
= (K - k>FBk+1 (Zz’eBkH Pk + Ap) + fjk (ﬁk,jk - Ap) + Z fZ(ﬁk,z)
> (K - k>FBk+1 (Zz’eBkH ﬁk,z) + fjk (ﬁk,jk) + Z fl(ﬁk,z)
- min S 503 (Brg)-

{sE{O,l}N:Z?LI s;i=K}
This indicates that p, cannot be the optimal power allocation p*. The desired contra-

diction is thus obtained.
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Appendix C

Proofs of the Theorem, Lemmas and
Corollaries in Chapter 5

C.1 Proof of Theorem 4

By noting py,; = f-(inv)(FBM(cj]BM)) for i_€ By and'letting y = F,,(ds,,), (3.10) can be

2

equivalently written as
! (inv) 7 o / (inv)
Fine L LY FF;TES (y)

Thus the condition in Theorem implies that jyr=/4yr for M =1,2,3,....

C.2 Proof of Lemma 3

1. (5.1) implies the existence of § > 0 such that

FRE @) < B () <o < S () for 0 <y < 6. (C.1)

Thus following similar proof of Theorem 4, we have j; = ¢« when the total power P is

less than min;<;<y fi(inv) (0).

2. We first show that the allocated power ¢g,, will go to infinity as P — oo.
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Recall that the KKT condition gives

~ =V lf(j]]_:g >0
K — N + |By|) Fp M C.2
( Bur) BM@W{SV o (©2)
andforig{IB%M,
. =v ifguy; >0
anrs , .3
fl<qM,>{§V o (©3)

where the Lagrange multiplier v is chosen such that Zi%BM gmi + Gs,, = P. This
then implies that gg,, will go to infinity as P — oo, because if there exists a sequence
Py, Py, P3, ..., such that limy_, P, = oo and
sup B ( = sup dBM(Pk)) <00

then we can use } ;. qm; + gz, = P to obtain that

lim I | =01 i (B =

i 2 i G g ) ==
which then implies the~existence of sequence) my;mo, ms,... ¢ By (where my =
my,(Pg)) such that gasm, >0 o equivalently f; . (Gum,) = v for all sufficiently large
k and Gurm, — 00 as k — o0 Since limgses f/(Grrm,) = 0 for every i ¢ By, we
have limy_,oc v = 0; hence, limy_,oo (K" = N + [By|) Fg,, (G,,) = 0 by (C.2), which is a
contradiction to supys ¢s,, < 00. As a consequence, ¢g,, diverges to infinity for every

sequence P, Py, Ps, ..., and therefore, limp_, g¢g,, exists and is equal to oo.

Next, we observe that (5.2) implies

W1SWQ<"'<CUN (04)

because if w; > w; for some 1 < ¢ < j < N, then

limsup sgn (f{fi(inv) (y) — f]{fj(inv)(y)> =1

yTmin{w;,w;}

67



which is a contradiction to (5.2). Then (5.2) and (C.4) togetherly imply that for

1 <4 < N, there exists 9; > 0 such that for w; — ¢; <y < w;,
fszl.(in") (y) < fz‘,+ufz'(+iZV)(y) for every 1 <u < N — . (C.5)

In addition, by noting py,; = fi(inv)(FBM(chM)) for i € By, and letting y = Fg,, (gs,, )

(3.10) can be equivalently written as

Fo ™) = min AL 0) (C.6)

Consider M = 1. Since limp_, gg, = 00, we obtain from lim, ,, Fp,,(¢) = min;ep,, w;
that Fp, (Gs, ) will lie in [w; —d1, w1 ] as P sufficiently large. Condition (C.5) (with setting
i = 1) and (C.6) then jointly imply j; = 1 as P sufficiently large. We can repeat the
procedure by further enlarging P.(whenever necessary) to make Fg,(dg,) € [wa— 02, ws),
and obtain j, = 2 in the high-power regime.. ‘A similar argument can be applied to

obtain jy = M for M =34, . ..

C.3 Proof of Corollary 1

1. That (5.3c) implies (5.1) is obvious. 'From (5.3a), we can infer by the continuity of
f; that there exists v > 0 such that f{(0) < fi(y). So for 0 <y < f;(7), we have

0< fj(inv) (y) < by f;(0) = 0 and the strictly increasingness of f;. Hence,

FLES™ ) < £10) < 1) < FLE ()

where the first and last strict inequalities follow the strict decreasingness of f/ and f},
respectively. Confirmation of (5.3a) implying (5.1) is then completed. It remains to
verify that (5.3b) implies (5.1). By definition, f/(0) < f;'(0) implies the existence of
d > 0 such that f'(p) < f](p) for 0 < p < 6, which together with f;(0) = f;(0) implies

fi(p) < fj(p) for 0 < p < 4. Thus (5.3b) implies (5.3c), which in turns implies (5.1).
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2. Since w; < wj, we have

lim f/£%(y) =0 and  Jim fi£7 () = 177 (@) > 0

Y—rwi

Thus, (5.2) is valid.

C.4 Proof of Lemma 4

We first observe that (3.11) can be re-written as

_ (inv)
fJ/'M (P jar) J]\I 2em ;M ij ()
(K - M) , Z f/ pM ) = Z f/f (inv)( )
FB]V[+1 (ZZEB]VI+1 pM Z) 1€BAr 11 ' 1€BAr 41 i3 Yy

where y = Fg,, (Gs,,) = fi(Dm;) for i € By, and (B.4c) guarantees ) ;cp  Pu; > 0 and
hence Fj

Barsa <ZZ€BMH Dy ) < 0. Based-on this ebservation and noting

0 when P -0
Q(By) asge,, = oo-when P — oo

F]BM (qBM) — {

this lemma becomes straightforward:

C.5 Proof of Corollary 2

1. Re-write (5.11) as

(K = M)Fg,, ,(0) < f3,,(0). (C.7)

Then, a similar proof for (5.3a) can be used to prove (5.11) implying (5.7). Note
the validity of (5.11) implicitly indicates the finiteness of min,eg,,,, f;(0) because

min;eg,, ., fi(0) = oo would fail (5.11); so Iy

Bt

(0) < 0.

2. That (5.12) is a sufficient condition for (5.8) can be proved in the same way as item 1)

by reversing the order of inequality (C.7); hence, we omit it.
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3. Since (5.13) implies

f(lnv ( ) f(lnv ( )
limsup { K — M — Z % = (K — M) — liminf —]M va
y=Bar) 1€Bar41 flfl ( ) yHQ(BM)zeJBMH ff (y)

(inv)
<(K—-M) - Z lim inf %‘,()
iE]B]\4+1 yg)Q(BJM f f (y)

<0

we have

; fjinV) (y)

limsup sgn | K — M — Y i =-—1
y—Q(B) Zegﬂ FLES ()
which validates (5.9).
4. Again, since (5.14) implies
f(lnv( ) f(lnv)( )
liminf | K — M — Z s jmv) = (K — M) — limsup %
y=2(Bar) i€Bar41 32 (v) y=UBM) jeByy ff (y)

(inv)
>(K=M)— Z lim sup Mi’(y)
1€B M 41 y—Q(Bar) f-f ( )

>0
we have
(inv)
liminf sgn | K =M = Z ]Mf(Jl]ZV ) =1
y—QBas) icBarsa ff ( )
which validates (5.10).
Finally, if 71, 72,73, ... are determined according to condition (5.2) in Lemma 3,
then
{ wij <wj, Kwjg <--- (C.8a)
Q(BM) = Win (C8b)

where (C.8a) has been proved in (C.4), and (C.8b) is a consequence of (C.8a). Based

on these results, we can derive from (5.15) that for i € Bysyq,

/ (inV)( )
hmsup Jm im

S 270 ), C.9
) [0 (y) 9
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(inv)
M

because wj,, < wj,,, implies f; f"""(y) approaching zero and f; fi(inv)(y) being

bounded away from zero as y approaching Q(B);) = w,,,. The proof is thus com-

pleted.

C.6 Proof of Lemma 5

Recall that the KKT condition gives

=v ifqg >0

) (C.10)
<v ifqg =0

(K =N+ |A)Fy(qi) =v and fori¢ A, f{(fﬁ){
where we have used the fact that ¢y = ¢z, >0 (see (B.4c)), and the Lagrange multiplier
v is chosen such that Zigé A, G + gy = P. We then distinguish among the below three cases:

Case 1: f/(0) > (K — N + |A|)EN(0)-for'some_ i ¢ A. In this case, there exists v > 0
such that

fi(q) > (K =N FJANEL0)  for every 0 < g < .

2

Hence, when 0 < P < v, we have
v > fi(q7) = fi(P) > (B =N LIAPFL0) > (K — N+ |A) F(qs)

where the last strict inequality follows the strict decreasingness of Fj. This contradicts

(C.10); hence, Case 1 cannot happen.
Case 2: f1(0) < (K + |A] = N)F((0) for some i ¢ A.

In this case, there exists v > 0 such that

f1(0) < (K 4+ |[A] — N)F(q) forevery 0 < g < .

7

Hence, when 0 < P < v, we have

filg?) < fi(0) < (K + |A] = N)Fi(P) < (K + |A] = N)F(q3) = v
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which implies ¢/ =0 for any 0 < P < 7.
Case 3: f1(0) = (K + |A] = N)F}(0) for some i € A.

In this case, ¢ > 0 for P > 0 fixed, because if ¢/ = 0, we obtain

v 2 fi(q;) = fi(0) = (K + |A] = N)F(0) > Fy ()

which then contradicts (C.10). Based on ¢ > 0 and ¢§ > 0 for P > 0, we derive from (C.10)
that

* ((inv)
lim q—i = lim ) Ji @)
P=0qy  viF0) FUY(v/ (K — N+ JA)))
1
T g Gav) Ly
— Lm f1 : v)
v f1(0 -
10 (K—N-+|A)-F{ F, ™ (v/ (K~ N+|4]))
1
_ JH0)
- 1
(K = NA+{ADF{(0)
F//(o)
= (K~ N+ |A)=a C.11
(5~ X 4 A (1)
The proof for (5.16) is completed.
We now turn to the power allocations for channels ;7 in A. By
filp?) = 1505)="Filan) (=v) (C.12)
we derive
* (1nv) (1nv) /
1/f1(0

PL0 p* y—>0 f(lnv)(y) y—)O 1/f/ (inv) (y> - 1/fj/(0) .

C.7 Proof of Observation 1

The result for 1) is a direct consequence of the given rates of convergence, and the result for

2) follows similarly to (C.13). Hence, we omit them.

72



Bibliography

1]

[7]

A. Albanese, J. Blomer, J. Edmonds, M. Luby, and M. Sudan, “Priority encoded trans-
mission,” IEEE Trans. Inf. Theory, vol. 42, no. 6, pp. 1737-1744, Nov. 1996.

S. L. Bernstein, M. L. Burrows, J. E. Evans, A. S. Griffiths, D. A. Mcneill, C. W. Niessen,
[. Richer, D. P. White, and D. K. Willim, “Long-range communications at extremely
low frequencies,” in Proc. IEEFE; v0l.-62, n0s 3, pp. 292-312, Mar. 1974.

K. L. Blackard, T. S. Rappaport,—and C. W. Bostian, “Measurements and models of
radio frequency impulsive noise for indoor wireless communications,” IEEE J. Sel. Areas

Commun., vol. 11, no. 7, pp. 9911001, Sept..1993.

S. Boyd and L. Vandenberghe, Conuvex..Optimization. Cambridge, U.K.: Cambridge
Univ. Press, 2004.

C. D. Charalambous, S. Z. Denic, and C. Constantinou, “Capacity of the class of MIMO
channels with Incomplete CDI-Properties of mutual Information for a class of channels,”

IEEFE Trans. Inf. Theory, vol. 55, no. 8, pp. 3725-3734, Aug. 2009.

G. R. Clements and L. T. Winson, Manual of Mathematics and Mechanics. Maryland:
Wildside Press, 2008.

J. W. Cook, “Wide-band impulsive noise survey of the access network,” BT Technical

Journal, vol. 11, no. 3, pp. 155-162, Jul. 1993.

73



8]

[13]

[14]

[15]

T. M. Cover and J. A. Thomas, Elements of Information Theory. New York: Wiley,
1991.

I. Csiszar and J. Korner, Information Theory: Coding Theorems for Discrete Memoryless

Systems. New York: Academic, 1981.

R. G. Gallager, Information Theory and Reliable Communication. New York: Wiley,
1968.

D. Guo, S. Shamai, and S. Verdd, “Mutual information and minimum mean-square
error in Gaussian channels,” IEEE Trans. Inf. Theory, vol. 51, no. 4, pp. 1261-1283,
Apr. 2005.

——, “Additive non-Gaussian noise channels: Mutual information and conditional mean
estimation,” in Proc. 2005 IEEE Int. Symp.~information Theory, Adelaide, Australia,

Sept. 2005, pp. 719-723.

M. Kanefsky and J. B. Thomas, “On polarity “detection schemes with non-Gaussian

inputs,” Journal of the Framkiin. Institute; vol. 280, no. 2, pp. 120-138, Aug. 1965.

A. Lapidoth and P. Narayan, “Reliable’communication under channel uncertainty,”

IEEFE Trans. Inf. Theory, vol. 44, no. 6, pp. 2148-2177, Oct. 1998.

[-C. Lee, C.-S. Chang, and C.-M. Lien, “On the throughput of multicasting with incre-
mental forward error correction,” IEEFE Trans. Inf. Theory, vol. 51, no. 3, pp. 900-918,
Mar. 2005.

T.-H. Li and K.-S. Song, “Estimation of the parameters of sinusoidal signals in non-

Gaussian noise,” IEEE Trans. Signal Process., vol. 57, no. 1, pp.62-72, Jan. 2009.

R. G. Lorenz and S. P. Boyd, “Robust minimum variance beamforming,” [IEEFE

Trans. Signal Process., vol. 53, no. 5, pp. 1684-1696, May 2005.

74



[18]

[21]

[22]

23]

[25]

[26]

A. Lozano, A. M. Tulino and S. Verdu, “Optimum power allocation for parallel Gaussian
channels with arbitrary input distributions,” IEEE Trans. Inf. Theory, vol. 52, no. 7,
pp. 3033-3051, Jul. 2006.

——, “Optimum power allocation for multiuser OFDM with arbitrary signal constella-

tions,” IFEFE Trans. Commun., vol. 56, no. 5, pp. 828-837, May 2008.

D. Middleton, “Channel modeling and threshold signal processing in underwater acous-
tics: An analytical overview,” IEEE J. Ocean. Eng., vol. OE-12, no. 1, pp. 4-28, Jan.
1987.

D. P. Palomar, J. M. Cioffi, and M. A. Lagunas, “Uniform power allocation in MIMO
channels: A game-theoretic approach,” IEEE Trans. Inf. Theory, vol. 49, no. 7,
pp. 1707-1727, Jul. 2003.

M. Payaro, A. Wiesel, J. ¥uan, and M. A. Lagunas, “On the capacity of linear vector
Gaussian channels with magnitude knowledge and phase uncertainty,” in 31st Int. Conf.

on Acoustics, Speech, andSignal Processing,-Toulouse, France, May 2006, pp. IV-1V.

F. Pérez-Cruz, M. R. D. Rodrigues; and"S. Verdi, “MIMO Gaussian channels with
arbitrary Inputs: Optimal precoding and power allocation,” IEEE Trans. Inf. Theory,
vol. 56, no. 3, pp. 1070-1084, Mar. 2010.

S. S. Pradhan, R. Puri, and K. Ramchandran, “n-channel symmetric multiple
descriptions—Part I: (n, k) source-channel erasure codes,” IEEE Trans. Inf. Theory,

vol. 50, no. 1, pp. 47-61, Jan. 2004.

——, “n-channel symmetric multiple descriptions—Part II: An achievable rate-

distortion region,” IEEFE Trans. Inf. Theory, vol. 51, no. 4, pp. 1377-1392, Apr. 2005.

H. L. Royden, Real Analysis, 3rd ed., New York: Prentice-Hall, 1988.

1)



[27]

[29]

[30]

[31]

32]

33]

[34]

[35]

M. G. Sanchez, A. V. Alejos, and I. Cuinas, “Urban wide-band measurement of the
UMTS electromagnetic environment,” [EEE Trans. Veh. Technol., vol. 53, no. 4,

pp. 1014-1022, Jul. 2004.

G. Shevlyakov and K. Kiseon, “Robust minimax detection of a weak signal in noise
with a bounded variance and density value at the center of symmetry,” IEEE Trans.

Inf. Theory, vol. 52, no. 3, pp. 1206-1211, Mar. 2006.

M. W. Thompson and H.-S. Chang, “Coherent detection in Laplace noise,” IEEE Trans.

Aerosp. FElectron. Syst., vol. 30, no. 2, pp. 452-461, Apr. 1994.

M. W. Thompson, D. R. Halverson, and G. L. Wise, “Robust detection in nom-
inally Laplace noise,” IEEE Trans. Commun. vol. 42, no. 2/3/4, pp. 1651-1660,
Feb./Mar./Apr. 1994.

A. Wiesel, Y. C. Eldar, and S. Shamai, “Beamforming maximizes the compound capac-
ity in MISO channels,” indnt. ITG Workshop on-Smart Antennas WSA 2005, Duisburg,

Germany, Apr. 2005.

——, “Robust power allocation® forr maximizing the compound capacity,” in Proc.

NEWCOM-ACoRN Joint Workshop Vienna, Austria, Sept. 2006.

——, “Optimization of the MIMO compound capacity,” IEEE Trans. on Wireless Com-
mun., vol. 6, no. 3, pp. 1094-1101, Mar. 2007.

J. Wolfowitz, Coding Theorems of Information Theory, 3rd ed. Berlin, Germany:

Springer-Verlag, 1978.

J. Woods and S. O’Neil, “Subband coding of images,” IEEE Trans. Acoust., Speech,
Signal Process., vol. 34, no. 5, pp. 12781288, Oct. 1986.

76



[36] M. Zimmermann and K. Dostert, “Analysis and modeling of impulsive noise in broad-
band powerline communications,” IEEE Trans. Electromagn. Compat., vol. 44, no. 1,

pp. 249-258, Feb. 2002.

v

\ Teo6




About the Author

Shih-Wei Wang was born in Pingtung, R.O.C., in 1981. He received the B.S. and M.S. degrees
in electrical engineering from the National Central University, Chungli, Taiwan, in 2003 and
2005, respectively. He is currently working toward the Ph.D. degree in the Department of
Electrical Engineering, National Chiao Tung University, Hsinchu, Taiwan. He held a visiting
position with Queen’s University, Kingston, Canada, in 2010. His research interests lie in

information theory and convex optimization.

78



	1. 封面 - 士瑋
	2. 書名頁 - 士瑋
	3. 中文摘要 - 士瑋 - 陳老師修改後
	4. 英文摘要 - 士瑋
	main-SH01-Library

