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ABSTRACT 

On an IL-dimensional inner-product space, every operator T that satisfies 0 < T 
Q I is a convex combination of as few as [log, n] + 2 projections, and this number is 

sharp. If 0 < T < I and trace T is a rational number, then T is an average of 
projections. Further results are also obtained for the ca5es when the projections are 
required to have the same rank and/or to he commuting. In each case, the optimal 
mmlher of projections is determined. 

0. INTRODUCTION 

Which linear operator on a complex n-dimensional inner-product space 

can be expressed as a convex combination 

Al Pl + * . . + *,,,P,,, with h,i > 0 and c A,i = 1 
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or an merage ( = arithmetic mean) 

-& + . . . + P,,,) 

of finitely many (orthogonal) projections pi? What is the minimal value of m, 
the number of projections, required in such an expression? These are among 

the questions to be addressed in this paper. Note that, here, projections Pj 

need not be commuting; so the underlying structure theory is inevitably 
complicated, yet highly intriguing. Readers are also referred to [l-3, 6, 71 for 
some related research work with judicious manipulations of noncommuting 
projections. 

Actually, we are concerned with the affine structure of the convex 
compact set 

8 = <:, = {n x n positive semidefinite matrices T satisfying T < I]. 

In view of the well-known fact 

Ext 8 = {n X n projections}, 

we proceed to seek a quantitative description for the statement 

-e = co Ext B 

(Here, Ext stands for the extremal set and co stands for the convex hull.) 
Since B is a subset of {n X n hermitian matrices}-a real linear space of real 
dimension ?--it follows that, from an elementary classical theorem of 
Carathkodory, each operator T E d is a convex combination of n2 + 1 

projections. Nevertheless, a simple diagonalization argument yields a familiar 
fact: each operator T E B is a convex combination of n + 1 commuting 

projections (see Proposition 1.4). To get the ultimate result, we need an 
optimal manipulation of noncommuting projections; it turns out that the 
“most economical” way to form convex combination requires as few as 
[log, n]+ 2 projections (Theorem 2.4). Along these lines, we also get a 
description of the averages of projections (Theorem 3.6). 

Moreover, Ext 8 consists of exactly n + 1 components: 

Extd= ij S&, 
!i = 0 
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where .3fk = {n X rz rank-k projections}. It is not surprising to see that the 

affine structure of 

is much more tractable than that of 4. Indeed, the class of convex combina- 

tions of rank-k projections is exactly the same as the class of averages of 

rank-k projections. The complete description for this class of operators is 

given in Theorem 3.5. 

Notably, d = {positive semidefinite contractions) is isomorphic with B’ = 

{hermitian contractions} under the affine map T w 2T - 1. Thus all results in 

this paper about Ext ~9 = (projections) can be appropriately translated to 

results about Ext d’ = {symmetries}. 

For the sake of completeness, we list some preliminary results in Section 

1. This section also includes simple structure theorems about commuting 

projections. Section 2 is devoted to the investigation of convex combinations 

of noncommuting projections, and Section 3 to averages. 

1. NOTATION AND PRELIMINARIES 

In this paper, we deal with matrices of complex entries. A matrix P is 

called a projection if P is self-adjoint and idempotent (i.e., P = P* = P”). A 

matrix J is called a symmetry if J = J* = J-‘. We write 0 for the zero 

matrix and Z for the identity matrix. We write S < T or 0 < T - S when 

T - S is a positive semidefinite matrix. We write Diag(t,)J’, I for the n X n 

diagonal matrix with diagonal entries (tj)J’=l. Each hermitian matrix T has a 

polar decomposition T = [TlJ = JITI, w h ere (TI is the positive semidefinite 

square root of T” and J = f(T) 1s a symmetry defined by the real-valued 

function f with f(t) = 1 if t > 0 and f(t) = - 1 if t < 0. 

Now. we collect three trivial lemmas. 

LEMMA 1.1. Suppose T is a comex combination (respecticely, an acer- 

age) of m projections. Zf 1 is an integer > m (1 is a positizje integer multiple of 

m), then T also admits an expression as a convex combination (an aoerage) of 
1 projections. 

(Note that herein projections need not be distinct.) 

LEMMA 1.2. A square matrix T is an acerage of projections iff T is a 
convex combination of projectionk with rational coefficients. 
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LEMMA 1.3. A square matrix T is a convex combination (respectively, an 

average) of m projections iff I - T is so. 

The structure theory for convex combinations of commuting projections is 
rather simple. The following proposition is probably known to many readers. 

hOPOSITION 1.4. LA T be un 11 X n matrix satisfying 0 < T < I. 

(1) Then T udmits an expression us a convex combination of “n + 1” 
commuting projections. 

(2) Zf n > k ure positive integers and trace T = k, then T admits an 

expression as a convex combination of “n” commuting runk-k projections. 

The “quoted” number of commuting projections in euch expression is sharp in 

the sense thut it is the smullest integer for the statement to be w&d. 

Proof. Write T = C;=,tjE,j, where 12 t1 >, . . . > t,! > 0 and {E.j}y=, 

are mutually orthogonal rankione projections. 
(1): Let Fj = E, + . . . + E,i (j = 1,. ..n); then 

T=(l-t,)O+(t,-tp)F1+ ... +(t,,_,-t,,)F,~_l+t,,F,, 

is a convex combination of n + 1 commuting projections. 
(2): Now we have the extra assumption Cjtj = k. We may assume further 

that t, + t, < 1 (otherwise, consider I - T and n - k instead of T and k). 

Let P = C’!_ _ J_,, k + , Ej and S = T - t, P. Then P is a rank-k projection, and 
rank S < n - 1, trace (l/(1 - t,)S> = k, 0 < l/(1 - t,,)S < 1. By the induction 
hypothesis, which is obviously valid if n = 2, we can write 

1 II ~ 1 

-s= c A,P,, 
1- t,, i=l 

where each Pi, as a nonnegative sum of E,/‘s, is a projection of rank k, and 
Chi = 1, Aj > 0. Hence 

,L - 1 

T = t,,P + c (l- t,,)A,P, 
i=l 

is a convex combination of n commuting projections of rank k, as desired. 
In order to show the sharpness of n + 1 as the optimal number of 

projections in Cl), let {t 1,. . , t,,, 1) c [0, l] be linearly independent over the 
rational field Q (e.g., ti = 2’/(‘+‘) ), and let T be the n X n diagonal matrix 
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Diag(ti)y= 1. Suppose T = xJ!L, A.j Pj, where Aj 3 0, C hj = 1, and the p,‘s are 

commuting projections; we wish to prove that m 2 n + 1. Since E’,T = TP,. for 

all j, it follows that 

pj = Diag( S,,) y=, with Sij E (0,l) 

Thus 

t; = c isi/ij for all i. 

This, together with Chj = 1, is equivalent to 

As the linear span of (t , , . . , t,, l} over Q is of dimension n + 1, the linear 

span of (A,, . . , A,,,) over Q is of dimension at least n + 1. Therefore m > n + 1, 

as desired. 

To show the sharpness of n as the optimal number of rank-k projections 

in (2), we choose {t 1,. . , t,,} c [0, 11 to be a linearly independent set over the 

rational field Q and t, + * . . + t,, = k. [For example, let tj = ka j / 

(a, + . . . + a,,) with clj = 1 -(nr)-‘.I Following the same argument in the 

last paragraph, we can prove that Diag(tj)J’= 1 cannot be written as a convex 

combination of fewer than n commuting projections of rank k. n 

The structure theory for averages of commuting projections is also very 

simple. Part (1) of the following proposition has already appeared in [3, 

Theorem 3]i. 

PROPOSI~~ION 1.5. Let n > k > 0 l?e nonnegatice integers, and let T be an 

n X n m&-ix suti$ying 0 < T < 1. Then 

(1) T admits un expression as un uceruge of commuting projections iff ull 
eigenculues of T are rutional numbers in [0, I]; 

(2) T udmits an expression us un uceruge of commuting runk-k projections 
#all eigenculues of T w-e rutionul numbers in [0, 11 uncl trace T = k. 

The minimul number of commuting projections required in (1) (or in (2) i;f 

n > k > 0) cun be url>itrurily large. 
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Proof. The “only if” parts are trivial because commuting projections are 

simultaneously diagonalizable. Conversely, if T = Ct,i Ej with rational tj E 

[0, l] and mutually orthogonal rank-l projections E,i (respectively, with the 

extra condition Ctj = k), then the proof of Proposition 1.4 shows that T is a 

convex combination of commuting projections (of commuting projections of 

rank k) with rational coefficients. By Lemma 1.2, we are done. 

To count the optimal number of commuting projections in the average 

expression, we consider a diagonal n X n matrix T = Diag(ti).y, ,. Suppose 

T =(l/m)~~=,P, is an average of 711 commuting projections. Then we may 

assume that the Pj’s are also diagonal matrices; thus each entry of T is an 

integer multiple of l/m. In particular, if t,, = l/1, then m must be a 

positive integer multiple of 1, which is large when 1 is a large integer. n 

2. CONVEX COMBINATIONS 

In this section, we consider the minimal number of projections in convex 

combinations where noncommuting projections are allowed. We start with 

manipulations on 2 X 2 matrices. 

LEUUA 2.1. Suppose a, 13, and c are real numbers satisfying 1 > a > c 2 

b > 0 and i G= c > 0. Then there exist 2 X 2 matrices P, Q, C such that P and 

Q are projections, 0 < C < 1, rank C < 1, QC = CQ = 0, and 

a 0 

[ 1 0 I? 
= cP + (l- c)(Q + C). 

Proof. We may assume a > b. (Otherwise a = b = c; we can take P = 1, 

Q = C = 0.) We have to consider two possible cases: 

(a) a+b<l.Weset 

= R, + R, 

with 

1 
R,=- 

a(c - b) 

a - 17 a! 

a = {ab(a - cXc - z7)}“2. Since R, and R, are positive semidefinite matri- 

cesofrank <l,andtraceR,=candtraceR,=a+1?-c<l-c,itfollows 
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that R,=cP and R,=(l-c)(Q+C), h w ere P is a projection, Q = 0, and 
c is of rank 1, and 0 < C ,< I, as desired. 

(b) a+b>l. Then a+c>lab+c, and 2 >u+~c&u+!~+c. We 

get 

(1 0 

[ 1 0 b 
=R,+R,+(u+b-1)Z 

with 

1 (l-b)(u+c-1) 
R,=- 

U-b 
[ P (l-u)(P-b-c) ’ 1 

(l-b)(l-b-c) -P 

-P 1 (l-u)(u+c-1) ’ 

/3 = ((l- a)(1 - l?)(u + c - l)(l- 17 - c)}““. Since R, and R, are positive 
semidefinite matrices of rank < 1, and trace R 1 = c, trace R p = 2 - a - b - c, 
it follows that R, = cP, R, = (2- a - b - c>Q, where P and Q are rank-l 
projections. Thus 

R,+R,+(u+b-l)Z=cP+(l-c)Q+(u+b-1)(1-Q) 

=cP+(l-c)Q+(l-c)C 

with 

u+b-1 u+b-1 
c= I_c (r-Q>< l_c IGI, 

as desired. 

For each real number x > 0, [x] denotes its integral part. 

PROPOSITION 2.2. Each n x n matrix T that satisfies 0 < T < 1 udmits un 

expression us u convex combination of [log, nl + 2 projections. 

Proof. We prove the proposition by induction. When n = 1, [log, n] + 2 
= 2 and the statement is obviously valid. By unitary equivalence, each n X n 
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matrix T satisfying 0 < T 6 I can be written as T = Diag(t,i)Ji’=l with 

1>t,> .a. 2 t,, > 0. Let t be the “median” diagonal entry 

f(n+1)/2 if 11 is odd, 
t= 

t,,,, + t(,,/,)+l if n is even 

Without loss of generality, we may assmne 0 < f < $ (otherwise, consider 

I - T instead of T by Lemma 1.3). By Lemma 2.1, 

t, O 
i 1 0 t,,-.j 

= tcj +(l- t)(Q.j + c,j)> 

where P,, Q,j, C.j are 2 X 2 matrices, P, and vi are projections, rank CYj < 1, 

and 0 < C.j < 1 and Q,C., = CjQj = 0. Since 

[)I /,I f,i 0 

T= @ 

i 1 .j=l O trt-j 

if n is even 

(T has an extra 1 X 1 matrix direct summand with entry t if n is odd), it 

follows that 

Z’=tP+(l-t)(Q+C), 

where P and Q are projections, rank C 6 [n /2], 0 < C f 1, and QC = CQ = 

0. By the induction hypothesis, we can write 

t,, 
c= c A,R.,, 

.j = I 

where m = [log, [ n/2]] + 2 = [log, n] + 1, h,i > 0, C h,i = 1, and R,i are pro- 

jections with Range Rj c Range C. Therefore 

T=tP+(l-t)(Q+C) 

= tP + c (1- t)A)(Q + Iii) 
j=l 

is a convex combination of m + 1 = [log, n] + 2 projections, as desired. W 
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In order to show that the number [log, n] + 2 is sharp in the proposition 

above, we need the following known result (see, e.g., [4, p. 182, Corollary 

4.3.31 for the proof). 

LEMMA 2.3. Let S and T be n x n hermitiun matrices with eigenualues 

s,> . . . > s,, und t, 2 . . . > t,, respectively. If S < T, then sj < tj for all j. 

In the next theorem, we write p(n) for the smallest integer m such that 

eoery n X n matrix T that satisfies 0 ,< T < I admits an expression as a 

convex combination of m projections. 

TIIEOHES~ 2.4. p(n) = [log, n1+2. 

Proof. Proposition 2.2 says p(n) <[log, n]+2. In order to get the 

reverse inequality, we first construct, for each n = 2x (N is a positive 

integer), an n X n matrix T such that 0 < T < 1, but T is not a convex 

combination of fewer than N +2 projections. Specifically, consider the 

2.’ X2” diagonal matrix 

T=Diag(t,t”,t3 ,..., t”“), 

where t is a small positive real number [e.g., 0 < t < (N2”)-I]. Suppose 

T = C.7, ,A, Pj, where m < N + 1, A. 2 0, ZA,i = 1, each Pi is a projection of 
d rank rj, and 0 < r, Q . . . < r,,, < 2’ Thus if t < i, we get 

1, t + t” + . . . + p= traceT = c hjrj 3 c A.ir, = r,; 

this proves that r, = 0 and P, = 0. From 

0+1+2+ ... +2”-’ <2v=rankT=rank ,<O+r,+ 1.. +r,,, 

and m =g N + 1, there exists an integer k > 1 such that rk > Z’-’ + 1 but 

r.i < 2 J - ’ for all j <k. Since C:I:hjPi < T and 

rank 

k-l k-l 
< c rj-< c 2j-‘=2”-“-I, 

j=l j = 2 

it follows that, by Lemma 2.3, the sum of the largest Zk-” - 1 eigenvalues of 
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C:I:AjPj is less than or equal to the sum of those of T; i.e., 

Similarly, from the fact AjPj < T, we get Aj G t’l by Lemma 2.3. Thus 

2’ k-l 111 
2Ab2-l 

I,, 

c tj=traceT= c h,jr.i+ c A,irj< c tj+ C tr,rj; 
j=l .j = 1 j=k j=l .j = k 

and hence 

which leads to t > (N.2”)-‘, a contradiction. Therefore ~(2~) = N + 2. 
For a general’positive integer n > 1, say 2” < n < 2.‘+’ for some N > 1, 

we have 

It is clear from definition that ~(2”) < p(n), and so p(n) = [log, n]+2, as 
desired. n 

A simplified version of the argument above can be used to prove the 
following result about nonnegative real linear combinations of projections. 
We leave the details to the reader. 

COROLLARY 2.5. Euch n x n positive semidefinite matrix is a linear 
combination of [log, n] + 1 projections with nonnegative real coefficients. For 
each n >, 1, the number [log, n] + 1 is shurp. 

Note that the first half of Corollary 2.5 has been essentially proved by 
Nakamura [6, p. 1351. The difference of the numbers of projections in the 
preceding two theorems reflects the fact that convex combinations require 
one extra constraint on the coefficients: their sums must be one. 
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3. AVERAGES 

This section is devoted to the study of the averages of finitely many 
projections. We need simple manipulations on pairs of projections. 

LEMMA 3.1. Suppose two n x n matrices P and Q are projections of the 
same rank. Then there exists a symmetry J such that Q = JPJ. 

Proof. First assume that P + Q - Z is invertible. Then 

J=IP+Q-ZI(P+Q-Z)-’ 

is a symmetry. Since 

(P+Q-z)Q=P(P+Q-I), (P+Q-Z)P=Q(P+Q-I), 

it follows that (P + Q - Z)’ commutes with Q, and thus ) P + Q - II com- 
mutes with Q. Therefore 

JP=IP+Q-ZJ(P+Q-I)-‘P=(P+Q-Z(Q(P+Q-I)-’ 

=QIP+Q-Zl(P+Q-Z)-‘=QJ, 

and Q = JPJ, as desired. 
In general, P + Q - Z need not be invertible. Let X be the underlying 

Hilbert space, and let 

X”=(P+Q-I&=!?, 

A$ =(x E 2: A =x and Qx = 0}, 

~2=(x~~:Px=OandQx=r}. 

Then 

YE&I - (P+Q-Z)y=O 

e y=Py+Qy with QPy=PQy=O 

= yEA?~+Cv~; 

thus ZO, Xi, and X2 are mutually orthogonal subspaces of Z, and 
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2 = 8,) + 2, + A?... With respect to this orthogonal decomposition of 8, 
we can write 

By the argument before, there exists a symmetry Jo E 2(2$,,) such that 
QO = J”P,J,,. Since P and Q are of the same rank, it follows that dim A?1 = 
dim SY2. Therefore 

lo 

J=o i 

0 0 
0 1 

0 1 0 i 

will satisfy Q = JPJ. 

LEMMA 3.2. Suppose two n x n matrices P and Q are projections of rank 
k. lf a 2 12 > c > d > 0 wre red nurnl~ers satisfying u + d = b + c, then there 
exist rank-k projections R, und R, such that aP + dQ = bR, + CR,. 

Proof. By Lemma 3.1, there exists a symmetry J such that Q = JPJ. 
With respect to the decomposition of 

(here I and - I need not have the same dimension), write 

p=[;* ;]> Q=[_;* -;I, 

Let Rj = Uj*PCl, with 

and 13~ E [O,Zrr) to be determined. Then each Rj is a projection of rank k. 
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The condition UP + dQ = bR, + CR, is equivalent to 

The real number 8, is determined if we can make 

c = Iu - d - lJdRl(, 

which, by direct computation, is the same as 

0, is realizable because the hypotheses a + d = b + c and u > 12 2 c 2 d g= o 

together imply 

0 Q (u - d)‘+ 1J’ - c1 = 2(u - d)lj -4(u - l>)fZ ,< 2(u - d)b. 

Therefore, the required projections R i (j = 1,2) can be constructed. H 

The following corollary is analogous to a result of Kadison and Pcdersen 

[5, Corollary 151 about averages of unitary operators in any C*-algebra. 

CoKoLLAK~- 3.3. lf un n x 11 matrix T is u convex combination of m 
runk-k projections, then T also admits an expression us an ur;eruge of m 
runk-k projections. 

Proof. Let T = C,y= ,AjPi, where the Z’,‘s are projections of rank k, 

l>h,& ... > h,,1 > 0, and CA,j = 1. Then A, > l/m > A ,,,, and by Lemma 

3.2, we can replace P, and P,,, by two other projections of rank k, and 

replace the pair of coefficients (A,,A,,,) by (l/m,A, + A,,, -l/m). Continu- 

ing this process in finitely many steps, we can change all coefficients to l/m. 

n 

&KOLLARY 3.4. If an n x n mutrix T is un uceruge of m runk-k projec- 
tions and I is an integer larger than m, then T also admits un expression as un 
uueruge of 1 runk-k projections. 

Proof. If T = (l/rn)Cy= ,pi is the average of m projections of equal 

rank, then, obviously, T = ~~,,AjPj [A, = . . . = A,,,_, = l/m, A,,, = . . . = 
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A, = l/m(Z - m + 11, P,,, = . . . = P,] is a convex combination of 1 projec- 

tions of equal rank. An application of Corollary 3.3 proves the assertion. n 

TIIHIHEM 3.5. Let n > k > 0 be integers, ad let T be an n x n matrix. 

The following are eyuioalent : 

(1) T admits an expression as an aoerage of rank-k projections. 

(2) T admits an expression as a conGer combination of rank-k projections. 

(3) O<T<Iand traceT=k. 

In this case, the number of rank-k projections required in the expressions can 

be as few as 

1 if k=Oorn, 

k+l if n/2<k<rl, 

n-k+1 if O<k<n/2, 

and the number is sharp for each &en pair (n, k). 

Proof. (l)-(2)*(3) ‘. h . is 0 wous, and (2) =b (1) follows from Corollary 

3.3. It remains to prove (3) =j (2) and the assertion on the number of 

projections, by induction. 

Obviously, the statement is valid for n = 1, or k = 0, or n = k. Now let T 

he an n X n matrix such that 0 f T < I and trace T = k. Write T = Cl=, t, Ej, 

where l>t,a -1. > t,, > 0, Ct.i = k, and the Ej’s are mutually orthogonal 

rank-l projections. 

We first consider the special case n = 2k > 0. We may assume that 

t, + t,, < 1 (otherwise, consider I- T instead of T). Since 

1 1 
t,+tk+,>-(t,+ ... +tx)+-(tk+,+ ... +t,,)=1, 

k k 

we have t,, < I- t, < tk+,. Applying Lemma 3.2, we obtain 

t~+,Ex+l+t,lE,,=(I-t,)R,+(t,+tk+l+tn-I)Rz, 

where R, and R, are rank-l projections with Range Rj c Range E,, , + 
Range E,,. Let P = E, + . . * + E, + R, and 

S=T-t,E,-(1-t,)P 

k 11 - 1 

= c (t,+t,i-l)Ej+ c tjE.i+(t,+tk+,+t,,-l)R, 
,i = 2 j=k+2 
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Then P is a rank-k projection, and 

By the induction hypothesis, we can write (l/t,)S = X~=,AjQj, where 

hj > 0, CA, = 1, and the Qj’s are rank-(k - 1) projections with Range Q,i 2 

Range S. Therefore 

T=t,E,+(l-t,)f’+t, c hjQj=(l-t,)P+ c t,Aj(El+Q.i) 
.j = 1 j=l 

is a convex combination of k + I projections of rank k. 
To complete the induction, we turn to the case n > 2k > 0. We have 

k(tk+t,,)<tl+ ... +t,+ 1.. +t,=k; i.e., t, + t,, < 1. 

Let P = Cf,:Ej + E, and S = T - t,,P. Then P is a rank-k projection and 

09 &SGI, trace(&S)=/c, rank(&S)Gn--1. 
71 

By the induction hypothesis, we can write 

&S = nEk~j~j 
n j=l 

as a convex combination of n - k rank-k projections. Therefore, 

7, - k 
T = t,,P + c (l- tn)AjQj 

j=l 

is a convex combination of n - k + 1 rank-k projections. The case n < 2k < 
2n may be proved by considering I - T and Lemma 1.3. This completes the 

induction. 
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To see that the number of rank-k projections required in convex combi- 
nations is sharp for the case n > 2k > 0, we let T = Diag(tj)yXl with 

1 if j<k, 

l/(n--kfl) if j>k. 

Then 0 < T < Z and trace T = k. Suppose T = C:,l= ,hj P,, where Ch,j = 1, 
A,> .*. > A,,, > 0, and the Pj’s are rank-k projections. Then T > A, P, > 

(l/m)P,; thus, by Lemma 2.3, the k th largest eigenvalue of T is not less 
than that of (l/m)P,; i.e., l/(n - k + 1) > l/m, so m > n - k + 1, as de- 
sired. For the case 2k > n, the assertion follows by symmetry. n 

Finally, we consider averages of projections where the projections need 
not be of same rank. (Cf. Fillmore’s result about sums of projections 
[2, Theorem I].) 

THEOREM 3.6. Let T be an n x n matrix. Then T is an uverage of 

projections $f 0 < T < Z and trace T is rational. The nzinimul number of 

projections required in the aoerage expression can be arbitrarily large for 

each fixed n. 

Proof. The “only if’ part is obvious. Conversely, suppose 0 < T < I and 
trace T is rational. Write T = C;= Itj Ej, where the E,j’s are mutually orthogo- 
nal rank-l projections with 1 > t, >, . . . > t,, > 0 and C;=,t.j = p/y (p and q 
are positive integers). Write 

yt, = k,j + s.j with k,jEZ and s,~E[O,~). 

Then y>k,>kk,> ... >k,,>Oand 

n> 2 si=qctj- zkj=p-xk,=k, say. 
j=1 

By Theorem 3.5, we can write the operator X7=, sj Ej as an average of rank-k 
projections (l/m)C:‘f,,Qj. Let 5 = E, + *. * + Ej (j = l,.. .,n). If 1 > t,, 
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then q > k, and 

T = $ $ (kj + sj)Ej 
J 1 

=;{(q-lk,)O+(k,-k,)F,+ ... +(k,-, - k,)F,,-, +k,F,) 

+i,<,iQi 

I- 

is a convex combination of projections with rational coefficients. If 
. . . = t, > t,, 1, then q > k,, ,, s, = . . . = sI = 0, and Qi I F,, thus 

r=Fl+$ ,=$+ltk.j+sj)Ej 

.I 

=$(('I-l-k,~~)~+(k~+~-k~+,)FI+, 

+ ... +(k_, - k,)F,_, + k,,F,} 

1=t,= 

is a convex combination of projections with rational coefficients. By Lemma 

1.2, we conclude that T is an average of projections. 

To count the optimal number of projections in the average expressions, 

we consider any n X n matrix T satisfying 0 Q T < I and trace T = p/9, 

where p and 9 are positive integers with no common factor. Suppose 

T = (l/m>1 y= 1 Pj is an average of m projections; then p/q = 

(l/?dC~~ 1 rank Pj, so m must be a positive integer multiple of 9. Since we 

can choose T so that 9 is large, it follows that the number of projections in 

the average expression can be arbitrarily large. n 

Note added in proof. The equivalence of (2) and (3) of Theorem 3.5 has 

appeared in [P. A. Fillmore and J. P. Williams, Some convexity theorems for 

matrices, Glasgow Math. J. 12:110-116 (1971j.l 
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