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脊突間裝置(Coflex and Coflex-F)在非融合與融合手術的

生物力學分析 

研究生：羅正展                                         指導教授：洪景華 教授 

國立交通大學機械工程學系 

摘    要 

在脊椎病變中，椎間盤初期退化常造成神經壓迫，形成腰椎狹窄症(Stenosis)。為改

善神經壓迫而施予減壓手術，傳統的減壓手術會造成其他後續病發症，因此近年發展屬

於非融合手術(Non-Fusion)的脊突間裝置 Coflex 希望能減少此類問題。椎間盤退化程度

嚴重時會造成椎體不穩定，因此需要使用融合手術(Fusion)，新型的脊突間裝置 Coflex-F

可以改善傳統椎弓螺釘在手術過程的風險。 

本研究利用有限元素軟體建構出五節的腰椎模型。第一階段，將脊突間裝置 Coflex

與Coflex-F分別放置腰椎第三與第四椎節之間，探討在非融合手術時的影響。第二階段，

則將 TLIF 和 ALIF 椎間融合術搭配 Coflex-F 於腰椎第三與第四椎節之間，探討融合手

術的效果。第三階段，則將 TLIF 椎間融合術搭配 Coflex-F 於腰椎第三與第四椎節之間，

探討是否可以使用在微創的融合手術。以上研究的邊界條件則都施加 400N 的跟隨負荷

(Follower load)，並使用混合控制方式(Hybrid test method)針對腰椎生理學動作進行分析

比較。 

第一階段結果發現，Coflex 在手術端可以穩定後彎(角度減少 70%)、側彎(角度減少

8%)與扭轉(角度減少 4.3%)，並且保留了前彎的活動(角度增加 8%)；對於鄰近端，後彎

時有明顯的影響(角度增加 20~24%)。然而 Coflex-F 在手術端可以穩定所有動作，特別

是前彎動作(角度減少 52%)；在鄰近端，前彎(角度增加 17~18%)與後彎(角度增加 20~24%)

有明顯的影響。第二階段結果發現，ALIF 融合術搭配 Coflex-F 的穩定效果較好。第三

階段結果發現，TLIF 融合術搭配 Coflex-F 無法提供較好的穩定效果。 

 

關鍵字：融合、非融合、脊突間裝置、椎間融合術、混合控制、有限元素分析
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Biomechanical Analysis of Interspinous Process Device 

(Coflex and Coflex-F) in Non-Fusion and Fusion Surgery 

Student: Cheng-Chan Lo                    Advisor: Prof. Chinghua Hung 

 

Department of Mechanical Engineering  

National Chiao Tung University 

 

ABSTRACT 

 

In current society, degenerative disc disease is a very common situation. It can cause 

nerve root compression, lumbar spinal stenosis, and lumbar instability. In order to relief 

patients’ symptom, decompression and spinal fusion surgery were common practices by 

surgeons. In recent years, the concept of interspinous process Coflex device of non-fusion 

surgery is emerging to improve the complication of decompression surgery. The Coflex-F 

device is a minimally invasive lumbar fusion device that provides significant segmental 

stability with all the advantages of an interspinous implant. It can alternative to traditions 

pedicle screw fixation as an adjunct to spinal fusion. 

This study was divided into three researches with purposes to investigate the 

biomechanical behavior between the Coflex and Coflex-F devices using finite element model 

of the L1-L5 lumbar spine. The first research was to investigate the biomechanical differences 

between the Coflex and Coflex-F implanted into the L3-L4 segment in non-fusion surgery. 

The second was to investigate the biomechanical characteristics of TLIF and ALIF spinal 

fusion combined with Coflex-F and with pedicle screw fixation implanted into the L3-L4 

segment in fusion surgery. The third was to investigate the biomechanical characteristics of 

TLIF combined with Coflex-F and with unilateral pedicle screw fixation and translaminar 
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facet screw fixation implanted into the L3-L4 segment in minimally invasive lumbar fusion. A 

400 N follower load and a 10 N-m moment were applied to the intact model to mimic 

physiological motions. The other implanted models to be compared with the intact model 

were also subjected to 400 N follower load and moments that produced overall motions equal 

to those of the above intact model (i.e. the hybrid test method). 

The result of the first research showed that, the Coflex implantation can provide stability 

in extension (ROM decreased 70%), lateral bending (ROM decreased 8%), and axial rotation 

(ROM decreased 4.3 %) at the surgical segment, and retain flexible in flexion (ROM 

increased 8%). It had no influence at adjacent segments except during extension (ROM 

increased 20~24%). The Coflex device can restraint extension motion, and provide more 

space for foramen and spinal canal. Therefore, The Coflex device may improve or relieve the 

stenosis. In addition, the Coflex-F implantation can provide stability in all motions, especially 

in flexion (ROM decreased 52%). It had influence at adjacent segments during flexion (ROM 

increased 17~18%) and extension (ROM increased 20~24%). Therefore, the Coflex-F device 

can be used to treat stenosis combined with mild degenerative disc disease. 

The result of the second research showed that, the ALIF combined with Coflex-F can 

provide more stability. The result of the third research showed that, the TLIF combined with 

Coflex-F cannot provide sufficient stability. 

 

 

 

 

 

Keywords: Fusion, Non-Fusion, Interspinous Process Device, Interbody Fusion Surgery, 

Hybrid Test Method, Finite Element Analysis 
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Chapter 1 Introduction 

1.1 Overview 

Degeneration of the intervertebral disc, called degenerative disc disease (DDD) of the 

spine, is a condition that can be painful and can greatly affect the quality of patient's life. 

Spinal diseases from DDD become more and more serious and dangerous for human 

population. Affecting up to 85 % of population at some point in their lifetime, the problem of 

low back pain reached epidemic proportions in the United States [1]. It has become one of the 

leading reasons why patients seek treatment, and it has been estimated to cost the national 

economy over $50 billion per year [2][3]. These diseases cost large medical resources, and 

add huge encumbrances for our society. 

 

1.2 Motivation and objectives 

    Recently, the concept of using non-fusion surgery via dynamic stabilization device to 

treat DDD has become popular. A dynamic stabilization device has been defined as: a flexible 

system that can preserve the spinal movement and improve load transmission of spinal motion 

segments through the non-fusion technique. In other words, such a system would restrict 

motion in the direction or plane that produces pain or painful motion [4]. The concept of 

dynamic stabilization device has changed from traditional stable fusion to mobile non-fusion 

that attempts to lessen the deterioration of the adjacent element. There have been a number of 

dynamic stabilization devices trialed in lumbar spinal disease, many with differing 

biomechanical principles. Some examples include anterior artificial disc, dynamic pedicle 

screw system, and interspinous process device. 

Currently, there exist a number of interspinous process devices that have been tested for 

treating lumbar spinal stenosis from slightly degenerative disc disease with different 

biomechanical designs such as Coflex, Wallis, Diam, and X-Stop. The Coflex (Paradigm 
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Spine, Wurmlingen, Germany) is one of non-fusion spinal implants that was developed to 

restore normal physiological motion and to overcome the disadvantage of decompression 

surgery procedure. The Coflex was originally developed as an interspinous U-shaped device 

and is placed between two adjacent spinous processes. After implantation, the lateral wings 

are crimped toward the spinous processes to improve fixation. The U-shaped structure is 

designed to allow the lumbar spine to have controlled movement in forward and backward 

bending. To improve stability in all motions, a modified version called the Coflex-F has also 

been developed, which adds a rivet to the Coflex.  

The Coflex devices are primarily used for lumbar spinal stenosis (LSS) without 

degenerative spondylolisthesis, angular instability, and retrolisthesis. Only a few reports of in 

vitro flexibility tests of the Coflex device are available in the literature. Among them, results 

regarding the biomechanical effects of the Coflex device at the surgical segment are 

inconsistent [56][57][59], especially the stability in lateral bending and axial rotation. The 

short-term clinical reports indicated that Coflex could provide physiological motion-sparing 

tend to the healthy spinal disc and reduce adjacent segment effect in flexion-extension [5]. 

However, the long-term outcome of these patients and other motion are still not clear. In 

addition, these existing studies are mostly concerning a short-segment analysis focused on the 

surgical segment. The effect of Coflex and Coflex-F device on adjacent segments is still not 

clear. 

In order to understand the results of initial post-surgery and long-term complication of 

segment disease, and effect of implantation on adjacent segments, a number of biomechanical 

researches have intervened in evaluating various spinal implants, whether to use of in vitro 

experimental test or finite element (FE) analysis. However, in Taiwan, human cadaveric 

lumbar spine specimen is difficult to obtain for the experimental study.  

Therefore, the first subject was to investigate the biomechanical behavior between the 

Coflex and Coflex-F devices at surgical and adjacent segments by using FE analyses on a 
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five-segment spinal model. 

In addition, spinal fusion is a commonly performed surgical procedure to treat serious 

degenerative disc disease. In order to provide a stable environment for fusion, the use of 

pedicle screw fixation is usually necessary. Recently, the Coflex-F, which has been claimed to 

provide stabilization of the posterior spine elements similar to pedicle screw fixation, was 

adopted to interbody fusion in minimally invasive surgery.  

Therefore, the second subject was to investigate the biomechanical behavior of the 

Coflex-F device and pedicle screw fixation, in combination with anterior lumbar interbody 

fusion (ALIF) or transforaminal lumbar interbody fusion (TLIF). 

All types of interbody fusion approaches are recommended for combination with 

traditional bilateral pedicle screw fixation to increase stabilization and fusion rates. In the 

evolving surgical trend of minimally invasive spinal surgery, recent authors have employed 

TLIF and unilateral pedicle screw fixation. Besides, some surgeons purport that the unilateral 

pedicle screw fixation may be as effective as bilateral fixation. However, Goel [107] had 

compared that unilateral and bilateral pedicle screw fixation by in vitro biomechanics, in vivo 

biomechanics, and finite element method. His results showed that unilateral pedicle screw 

fixation was less stability than bilateral fixation. Therefore, supplementing the unilateral 

pedicle screw fixation using a percutaneous facet screw has been suggested as a means of 

stabilizing a TLIF construct employing unilateral pedicle screws. However, the Translaminar 

facet screw fixation requires long passage through the lamina for the crossing screws before 

they can traverse the facet joint, and necessitating a large surgical field. Recently, the 

Coflex-F has been adopted to combine interbody fusion in minimally invasive surgery; 

however, the effectiveness of this procedure is still unclear. 

The third subject was to investigate the biomechanical characteristics of TLIF combined 

with Coflex-F and supplemented with one unilateral pedicle screw fixation and one 

translaminar facet screw fixation implanted into the L3-L4 segment in minimally invasive 
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lumbar fusion. 

 

1.3 Outline 

This dissertation is divided into six chapters:  

(1) Introduction: this chapter introduces the overview, objectives, and outline of this 

dissertation.  

(2) Background: this chapter reviews the spine anatomy and biomechanics, spinal pathology 

and treatments, decompression, fusion surgery and non-fusion surgery.  

(3) Materials and Methods:  

1. The first subject includes FE modeling of the five-segment intact lumbar spine, defect 

lumbar spine, Coflex implantation, Coflex-F implantation, and Pedicle Screw Fixation 

models.  

2. The second subject includes TLIF and ALIF combined with Coflex-F or with pedicle 

screw fixation models. 

3. The third subject includes TLIF combined with Coflex-F or with unilateral pedicle 

screw fixation and translaminar facet screw fixation models. 

(4) Results:  

1. The first subject includes data of intact lumbar spine, defect lumbar spine, both 

implant models under the Coflex or Coflex-F, and pedicle screw fixation. 

2. The second subject includes data of intact lumbar spine, TLIF and ALIF combined 

with Coflex-F model, TLIF and ALIF combined with pedicle screw fixation model. 

3. The third subject includes data of intact lumbar spine, TLIF combined with Coflex-F 

model, TLIF combined with unilateral pedicle screw fixation and translaminar facet 

screw fixation models 

(5) Discussion:  

1. The first subject finds effect of Coflex and Coflex-F.  
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2. The second subject finds effect of TLIF and ALIF combined with Coflex-F.  

3. The third subject finds effect of TLIF combined with Coflex-F. 

4. Model limitations. 

(6) Conclusion and Future Work: several topics can be extended from this research is 

introduced in this chapter. 
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Chapter 2 Background 

The following sections contain a review of the anatomy of the spine, its biomechanics, 

spine pathology and treatments, fusion and non-fusion techniques, clinical outcomes after 

interspinous process device, and the characteristics of in vitro tests versus FE simulations. 

 

2.1. Spine anatomy and biomechanics 

The spine consists of a curved stack of 33 vertebra divided structurally into five regions 

(Figure 2.1). Proceeding from superior to inferior, there are seven cervical vertebrae (C1-C7), 

twelve thoracic vertebrae (T1-T12), five lumbar vertebrae (L1-L5), five fused sacrum 

vertebrae (S1-S5), and four small fused coccygeal vertebrae. The vertebrae from each region 

have similar parts, but the shapes of vertebrae vary considerably from region to region in the 

spine. There may be one extra vertebra or one less, particularly in the lumbar region.  

Because of structural differences and the ribs, varying amounts of movement are 

permitted between adjacent vertebrae in the cervical, thoracic, and lumbar portions of the 

spine. Within these regions, two adjacent vertebrae and the soft tissues between them are 

known as a motion segment. The motion segment is considered to be the functional unit of the 

spine (Figure 2.2). 

Each motion segment contains three joints. The vertebral bodies separated by the 

intervertebral disc form a symphysis type of amphiarthrosis. The right and left facet joints 

between the superior and inferior articular processes are diarthroses of the gliding type that 

are lined with articular cartilage. 
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2.2. Spinal pathology and treatments 

The functions of spine are to provide the longitudinal weight support, limit excessive 

movement, and protect posterior spinal cord. However, the spinal instability may induce due 

to several pathological changes, such as degenerative disc disease, spinal deformity, tumor, 

infection, trauma, congenital anomaly, inflammatory, etc (Figure 2.8). Thus spinal nerve roots 

or spinal cord may be compressed and leading low back pain (Figure 2.9). The first choice of 

treatment for low back pain is conservative therapy, such as physical therapy or medication. 

When conservative treatments fail, spine surgeons may perform either fusion or non-fusion 

surgery, with the arm of reducing pain and decreasing disability [20].  

 

2.2.1. Lumbar spinal stenosis 

The most common cause of lumbar spinal stenosis (LSS) is initial stage of degeneration 

intervertebral disc. LSS defined as narrowing of the spinal canal or intervertebral foramina, is 

a common cause of pain, numbness, and weakness. Early descriptions of neurogenic 

claudication secondary to lumbar stenosis have been attributed to Verbiest [22]. This 

syndrome is displayed by radicular pain, which is exacerbated by standing, walking, and other 

positions that place the lumbar spine in extension. A flexed posture improves or relieves the 

symptoms. In severe cases, sensory loss or motor deficits are evident. Although several 

theories have been postulated to explain the occurrence of these symptoms, the precise 

mechanism remains unclear [23]. It is obvious that the pathological progression begins with 

degeneration of disc, which finally leads to loss of disc height. Resultant instability may 

worsen the spondylosis by inducing facet joint hypertrophy [24]. Furthermore, hypertrophy of 

the ligamentum flavum, particularly during extension, contribute to the reduction in size of 

the thecal sac limiting the space available for the cauda equine [4]. 

LSS can be mono-segmental or multi-segmental (Figure 2.10), and unilateral or bilateral. 

Anatomically, the stenosis can be classified as central, lateral or foraminal [21]. Depending on 
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2.2.2. Conservative therapy 

The conservative treatment of LSS comprises a wide variety of methods, such as 

ergotherapy, physical therapy, behavioral therapy, girdles, acupuncture, manual therapy and 

pharmacological intervention. Few studies have been conducted to demonstrate the 

effectiveness of conservative therapy in treating LSS, although those that reported had success 

rates of up to 70 % [25][34]-[36]. However, none of the available studies provide sufficient 

data to support the effectiveness, or any one of the wide range of conservative treatments [37]. 

In the absence of evidence-based clinical guidelines, multidisciplinary approach should be 

given preference over a significant therapy [38][39].  

 

2.2.3. Decompression surgery 

In patients in whom severe symptoms persist and functional impairment develops, 

surgery is the recommended option. Decompression surgery used in LSS aim to decompress 

the neural elements, without occur instability of the segment. Such decompression surgery 

usually leads to relief of pain in the legs and low back pain [41]. Decompressive surgical 

procedures include laminectomy and hemilaminectomy, hemilaminotomy, fenestration, and 

foraminotomy [40]. The complication rates for decompression surgery range from 14 % to 35 

% or more [42]-[45]. Typical complications of decompression surgery include inadequate 

decompression with significant residual stenosis, instability of segment, renewed nerve 

compression, and reossification. All of these complications result in renewed nerve 

compression [44]-[47].  

Decompression surgery may cause as mentioned above if weight bearing structures are 

compromised. Therefore, instrumented is necessary when preexisting or surgically induced 

instability is present. Pedicle screw instrumentation is a popular method of strong fixation to 

achieve stabilization rate (Figure 2.12). For stabilization of one spinal functional unit, four 

pedicle screws are usually used. 
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claudication are often relieved with the lumbar spine in the flexed position, and worsened in 

extension. Conceptually, a device that induced some flexion of the motion segment would 

increase the caliber of the spinal canal and the intervertebral foramen. Furthermore, if such a 

device merely prevented extension, it could minimize the narrowing of the spinal canal and 

foramen observed with extension. Additionally, and interspinous process device might also 

provide for some degree of distraction which could unload both the facet joints and 

intervertebral discs, potentially reducing back pain. Finally, on a practical note, the ability to 

access the interspinous area with a small incision and minimal paraspinal muscle stripping 

implies that the implantation of such a device could be performed in much less traumatic way 

than current decompression techniques. The interspinous process device can be called the 

non-fusion surgery is to restore normal physiological motions, or to allow restrained motions 

within a certain range, through various mobile non-fusion devices that aim to avoid or 

alleviate adjacent segment disease.  

Four such interspinous process devices have been designed and are currently available: 

the Coflex (Paradigm Spine, Wurmlingen, Germany), the Wallis (Abbott spine, Bordeaux, 

France), the Diam (Medtronic, Tolochenaz, Switzerland), and X-Stop (Medtronic, Tolochenaz, 

Switzerland). As a general note, at the time of this writing, the four devices described here are 

in various stages of clinical development.  

(1) X-STOP 

The X-STOP consists of a titanium oval spacer with two lateral wings to prevent lateral 

migration (Figure 2.13). It is inserted into the interspinous space without disruption of the 

interspinous ligament. A biomechanical study demonstrated that the force required to insert 

the device in the appropriate position is 4.5 times less than the force required to break off the 

spinous process with the device placed too caudally or cranialy, suggesting that the device 

insertion is relatively safe. The body of biomechanical and clinical literature for the X-STOP 

far exceeds that of the other devices and as such it is described in the most detail here. It has 
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been formally evaluated in patients with computed tomography or MRI confirmed lumbar 

stenosis who complained of leg, buttock, or groin pain relieved by flexion, with or without 

back pain. In one article, it is speculated that the implant may confer some benefit to patients 

with pressure-related discogenic back pain, under the hypothesis that the implant provides 

some distraction and thus decreases pressure within the intervertebral disc. 

(2) Wallis 

The Wallis system consists of an interspinous blocker made from PEEK 

(Polyetheretherketone) with two woven Dacron ligaments which wrap around the caudal and 

cranial spinous processes (Figure 2.14). The interspinous ligament is removed and the Dacron 

ligaments are inserted around the caudal and cranial spinous processes. At the end of the 

procedure, the interspinous ligament is repaired. The designer of this device advocates the 

following indications for its implantation: recurrent disc herniation after primary discectomy, 

primary discectomy for voluminous herniated disc, discectomy for herniation of a transitional 

disc segment, disc degeneration adjacent to a previous fusion, and isolated Modic I lesion 

leading to chronic low back pain. 

(3) DIAM 

The DIAM for intervertebral assisted motion, is an interspinous implant that consists of a 

silicone core surrounded by a polyester outer mesh which is secured to the cephalad and 

caudal spinous processes by two polyester tethers (Figure 2.15). These tethers are inserted 

through the interspinous processes using attached steel needles and then are secured to the 

device by means of two titanium crimps. 

(4) Coflex and Coflex-F 

The Coflex device is made of titanium. It was originally developed as an interspinous 

U-shaped and is placed between two adjacent spinous processes (Figure 2.16) [52][53][54]. 

After implantation, the lateral wings are crimped towards the spinous processes to improve 

fixation. The U-shaped structure is designed to allow the lumbar spine to have controlled 
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Recently, many studies have evaluated the biomechanical behaviors of the Coflex and 

Coflex-F devices. Tsai [57] used cadaveric lumbar L4 and L5 segments with implanted Coflex 

device to examine their biomechanical behavior, and the results showed that the implanted 

Coflex device can provide stability for the lumbar spine in flexion-extension and axial 

rotation, except in lateral bending. Kong [58] reported 1-year follow-up outcomes after 

Coflex device implantation and traditional fusion for degenerative spinal stenosis. The results 

indicated that both the Coflex device and traditional fusion reduced the range of motion 

(ROM) at the surgical segment, but fewer effects were found at the adjacent segments with 

the Coflex device as compared with the increasing ROM with traditional fusion. Kettler [56] 

compared the Coflex and Coflex-F devices using biomechanical experiments and found that 

both implants had strong stability in extension. However, the Coflex implant could not 

compensate the instability in flexion, lateral bending, and axial rotation as well as the 

Coflex-F did. Wilke [59] examined the biomechanical effects of different interspinous process 

devices for flexibility. The Coflex device had the best stabilizing effect in extension but poor 

stability in flexion. In lateral bending and axial rotation, the Coflex device had neither a 

stabilizing nor a destabilizing effect. Inconsistent results regarding the biomechanical effects 

of the Coflex device have been shown in previous studies. In addition, these studies are 

mostly a short-segment analysis focused on the surgical segment. The effect of the Coflex 

device and the Coflex-F device on adjacent segments is still not clear. 

Therefore, the first subject was to investigate the biomechanical differences between the 

Coflex device and the Coflex-F at surgical and adjacent segments by using finite element (FE) 

analyses on a five-segment spinal model. In addition, the study also compared these two 

interspinous process implantations with pedicle screw fixation. 
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biocompatible materials, including stainless steel, titanium alloy, carbon fiber-reinforced 

polymer (CFRP), and polyetheretherketone (PEEK) [73]. Due to the high mechanical strength 

of these materials, a spinal interbody fusion cage can provide better longitudinal support than 

a traditional bone graft, without causing collapse. Second, rough or specific designs can be 

found on the contact surfaces of spinal cages. In order to prevent cage slippage, rough contact 

surfaces, saw teeth, spikes or threads have been designed to increase stability between fusion 

devices and endplates. Third, these implants are usually designed to be hollow, with small 

pore or openings on the wall. These hollow cages can be filled with bone grafts to promote 

bone growth. Furthermore, only small amounts of cancellous bone are required, because there 

is no longer need for the cubic graft to be a spacer. The small pores and openings on the wall 

allow the growth of bone through the cage, resulting in bony fusion. Therefore, spinal fusion 

cages can avoid donor site morbidity and increase fusion rates. 

Currently, many kinds of spinal cage designs are available on the market, which can be 

classified by the various surgical approaches used in their implantation. Large single lumbar 

cage designs are used for the ALIF procedure (Figure 2.19 A). Some paired cage designs are 

used strictly for PLIF procedures (Figure 2.19 B). In addition, some specific shapes of cages 

are designed for minimally invasive surgical techniques such as the TLIF procedure (Figure 

2.19 C). 

All types of interbody fusion approaches are recommended for combination with 

traditional posterior pedicle screw fixation to increase stabilization and fusion rates (Figure 

2.20). A pedicle screw is a device composed of rods and screws contoured to restore lumbar 

lordosis and disc height, and can be used for unilateral or bilateral pedicle screw fixation.  
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Chapter 3 Materials and Methods 

3.1 Coflex and Coflex-F in non-fusion surgery 

The first subject of following sections includes FE modeling and simulation technique of 

this study. Five FE models of the lumbar spine were constructed for this study. The first model 

was the intact lumbar spine. The other four models were the defect lumbar spine, the defect 

lumbar spine combined with Coflex, defect lumbar spine combined with Coflex-F, and defect 

lumbar spine combined with pedicle screw fixation. 

 

3.1.1 FE model of intact lumbar spine (Intact model) 

To create a three-dimensional FE model, computed tomography scan DICOM files of 

the L1 to L5 lumbar spine of a middle-aged male were obtained at 1-mm intervals. The 

commercially available visualization software Amira 3.1.1 (Mercury Computer Systems, Inc., 

Berlin, Germany) was used to describe cross-section contours of each spinal component in 

accordance with gray scale value (Figure 3.1). Then, the three-dimensional surface 

geometries were constructed through sequential processed cross-section contours as shown in 

Figure 3.2 A. Each spinal component was exported as a Drawing eXchange Format (DXF) 

file and converted to the Initial Graphics Exchange Specification (IGES) file as shown in 

Figure 3.2 B. The FE analysis software ANSYS 9.0 (ANSYS Inc., Canonsburg, PA) was used 

to reconstruct the FE model by converting the IGES file to ANSYS Parametric Design 

Language (APDL) code in Figure 3.2 C. The INT model was an osseo-ligamentous lumbar 

spine, which included the vertebrae, intervertebral discs, endplates, posterior bony elements, 

and all seven ligaments (Figure 3.3 A). 

An eight-node solid element (SOLID185) was used for modeling the cortical bone, 

cancellous bone, posterior bony element, cartilage endplate, and annulus ground substance. 

The cortical bone and cancellous bone were assumed to be homogeneous and transversely 
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isotropic [81]. The posterior bony element and cartilage endplate were assumed to be 

homogeneous and isotropic [82]. The intervertebral disc consisted of annulus ground 

substance, nucleus pulposus and collagen fibers embedded in the ground substance. The 

nonlinear annulus ground substance was simulated by using a hyper-elastic Mooney-Rivlin 

formulation [83][84]. The collagen fibers simply connected between nodes on adjacent 

endplates to create an irregular criss-cross configuration. These irregular angles of collagen 

fibers were oriented within the range of the Marchand’s [85] study. In the radial direction, 

twelve double cross-linked fiber layers were defined to decrease elastic strength 

proportionally from the outermost layer to the innermost. Therefore, the collagen fibers in 

different annulus layers were weighted (elastic modulus at the outermost layers 1-3: 1.0, 

layers 4-6: 0.9, layers 7-9: 0.75, and at the innermost layers 10-12: 0.65; cross sectional areas 

at the outermost layers 1-3: 1.0, layers 4-6: 0.78, layers 7-9: 0.62, and at the innermost layers 

10-12: 0.47) based on previous studies [86][87]. The nucleus pulposus was modeled as an 

incompressible fluid with a bulk modulus of 1666.7 MPa by eight-node fluid elements 

(FLUID80) [81]. The 43 % of the cross-sectional area in the disc was defined as the nucleus, 

which was within the range of the study by Panagiotacopulos (30-50 %) [88] Therefore, 

approximately 47 % to 49 % disc volume was assigned to nucleus pulposus. All seven 

ligaments and collagen fibers were simulated by two-node bilinear link elements (LINK10) 

with uniaxial tension resistance only, which were arranged in an anatomically correct 

direction [89]. The cross-sectional area of each ligament was obtained from previous studies 

[82][87][90][91], and material properties of the spine are listed in Table 3.1. The facet joint 

was treated as having sliding contact behavior using three-dimensional eight-node 

surface-to-surface contact elements (CONTA174), which may slide between 

three-dimensional target elements (TARGE170). The coefficient of friction was set at 0.1[92]. 

The initial gap between a pair of facet surfaces was kept within 0.5 mm as shown in Figure 

3.3 (b) [81]. The stiffness of the spinal structure changes depending on the contact status, so 
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Table 3.1: Material properties used in the FE model 

Material Element type Young’s 
modulus 
(MPa) 

Poisson’s 
ratio 

Area 
(mm2) 

References 

Vertebral 
Cortical 

 
8node-Solid 185 

 
Ex=11300 
Ey=11300 
Ez=22000 

 
 xy=0.484 
 xz=0.203 
 yz=0.203 

 
- 

 
[81] 

Gx=3800 
Gy=5400 
Gz=5400 

 

Cancellous 8node-Solid 185 Ex=140 
Ey=140 
Ez=200 

 xy=0.45 
 xz=0.315 
 yz=0.315 

- [81] 

Gx=48.3 
Gy=48.3 
Gz=48.3 

 

Posterior bony element 8node-Solid 185 3500 0.25 - [81] 

Disc 
Nucleus pulposus 
Annulus Ground substance 

 
8node-Fluid 80 
8node-Solid 185 

 
1666.7 
C10=0.42 
C01=0.105 

 
- 
-      
 

 
- 
- 

 
[81] 
[83][84] 

Annulus fibers 2node-Link 10    [86][87] 
 
 

 Outmost (1-3 layers)  550 - 0.76 
Second (4-6)  495 - 0.5928 
Third (7-9)  412.5 - 0.4712 
Innermost (10-12)  357.5 - 0.3572 

Cartilaginous endplates 8node-Solid 185 24 0.4 - [81] 
Ligaments* 

ALL 
2node-Link 10  

7.8 
 
- 

 
24      

[82][87][90] 
[91] 

PLL  10 - 14.4     
TL  10 - 3.6      

LF  15 - 40      

ISL  10 - 26       
SSL  8 - 23      
CL  7.5 - 30     

*ALL, anterior longitudinal ligament; PLL, posterior longitudinal ligament; TL, transverse 

ligament; LF, ligamentum flavum; ISL, interspinous ligament; SSL, supraspinous ligament; 

CL, capsular ligament. 
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In order to get reliable data, convergence test were conducted. Three mesh densities 

(coarse model: 4,750 elements / 4,960 nodes; normal model: 27,244 elements / 30,630 nodes; 

finest model: 112,174 elements / 94,162 nodes) were selected to test ROM in the intact model 

(Figure 3.4). The boundary and loading conditions of the test were that the inferior surface of 

L5 vertebra was fixed, and 10 N-m moment and a 150 N preload were applied to the superior 

surface of L1 vertebra.  

Compared with normal model and finest model, the variation of ROM was within 1.03% 

in flexion (less than 0.2o), 4.39% in extension (less than 0.5o), 0.01% in axial rotation (less 

than 0.2o), and 0.001% in lateral bending (less than 0.1o). From the simulation results, the 

normal model only required fewer computational times to complete. However, several contact 

surfaces in facet joint have stress concentration owed to the lower smooth geometry for fewer 

elements and nodes. Therefore, the finest mesh density was selected in this study. 
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3.1.2 FE model of Coflex implanted into the L3-L4 segment (Coflex model) 

This model was a defect model implanted with the Coflex device at the L3-L4 segment. 

The defect model was used to simulate decompression and instability by cutting the 

ligamentum flavum, the facet capsules, and 50 % of the inferior bony facet bilaterally at the 

L3-L4 segment [55][57]. The process is designed to remove a small portion of the bone to 

give the nerve root more space and prevents nerve compression. In addition, the supraspinous 

ligaments and interspinous ligaments had to be resected before insertion. 

The Coflex device is available in five sizes from 8 mm through 16 mm in 2-mm 

increments. The most suitable size of Coflex device was chosen based on the patient’s lumbar 

spine. In this study, a height of 14 mm was the best fit to our FE model. The geometry of the 

Coflex device was re-created by CAD software from the real product and then transferred into 

the ANSYS software to construct the Coflex FE model. To implant the Coflex device (Figure 

3.5 A), part of the L3-L4 interspinous process was removed to provide sufficient space into 

which the Coflex could be placed between the interspinous processes. The surface between 

the spinous processes and the wings of the Coflex was modeled as a surface-to-surface 

contact. The effect of teeth on the wings of the Coflex device was simplified by assigning a 

higher coefficient of friction (0.8) to the wing contact area (Figure 3.5 A, yellow region), and 

the coefficient of friction for the rest of the contact regions was set to 0.1 (Figure 3.5 A, red 

region). The higher coefficient of friction (0.8) was used in the contact interface to prevent 

device slip motion [86]. The material used for the Coflex device was Ti-6Al-4V alloy. The 

Young’s modulus and Poisson’s ratio were respectively assigned to be 113 GPa and 0.3. 

 

3.1.3 FE model of Coflex-F implanted into the L3-L4 segment (Coflex-F model) 

This model was a defect model implanted with the Coflex-F device at the L3-L4 segment. 

The defect model was used to simulate instability by cutting the ligamentum flavum, the facet 

capsules, and 50 % of the inferior bony facet bilaterally at the L3-L4 segment [55][57]. In 
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addition, the supraspinous ligaments and interspinous ligaments had to be resected before 

insertion. 

The Coflex-F differs from the original Coflex implant by adding two rivets joining the 

wings and spinous processes (Fig 3.5 B). The effect of the teeth on the wings of the Coflex-F 

was also simplified by assigning a higher coefficient of friction (0.8) to the wing contact area 

(Fig 3.5 B, yellow region), and the coefficient of friction for the rest of the contact regions 

was set to 0.1 (Figure 3.5 B, red region). The rivets were simplified as cylinders and were 

constrained to both holes on the wings of the Coflex and the spinous processes in all degrees 

of freedom (The degrees of freedom of rivet nodes are interpolated with the corresponding 

degrees of freedom of the nodes on the Coflex and spinous processes during the execution of 

ANSYS program). The material used for the Coflex-F was a Ti-6Al-4V alloy. The Young’s 

modulus and Poisson’s ratio were respectively assigned to be 113 GPa and 0.3. 

 

3.1.4 FE model of bilateral pedicle screw fixation into the L3-L4 segment (Pedicle screw 

fixation Model) 

This model was a defect model implanted with pedicle screw fixation at the L3-L4 

segment. The difference between the pedicle screw fixation model and the above implantation 

models was that the pedicle screw fixation model preserved the supraspinous ligaments and 

interspinous ligaments (Figure 3.5 C). The pedicle screw fixation consisted of two rods 

(diameter, 4.5 mm) and four pedicle screws (diameter, 6 mm). The pedicle screws were 

inserted through the pedicles of the L3 and L4 vertebrae bilaterally. The pedicle screws were 

simplified as cylinders. The screw-bone interfaces were assigned to be fully constrained. The 

material used for the pedicle screws was Ti-6Al-4V. The Young’s modulus and Poisson’s ratio 

were assigned to be 113 GPa and 0.3, respectively. 
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addition, the patient’s main aim following surgery is to go back to normal daily life. Thus, the 

surgically treated spine should be able to go through the same ROM as in a normal person. 

Therefore, they suggested that the spinal construct should be tested under the same ROM and 

the hybrid test method should be more clinically relevant. 

In this study, by applying bending moments from the hybrid test method, a 400 N 

follower load was first applied on the superior surface of the L1 vertebra, and then a moment 

of 30 N-m was applied incrementally by 1 Nm in 30 loading steps. Therefore, the resultant 

total ROMs of the implantation models (L1 to L5) under different moments would match the 

total ROMs of the intact lumbar model which was subjected to 10 N-m loadings according to 

the in vitro study of Yamamoto et al.[105]. The detailed total lumbar ROMs of the intact 

model under the hybrid test method are 16.37° in flexion, 10.75° in extension, 15.27° in right 

lateral bending, and 8.44° in right axial rotation. These ROMs are a baseline with which to 

match the total lumbar motion among the intact and implantation models under the hybrid test 

method (Table 3.2). The resulting deviation of ROMs among the three FE models were 

controlled to within 0.64° in flexion, 0.14° in extension, 0.63° in right lateral bending, and 

0.22° in right axial rotation. 
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Table 3.2 Intervertebral range of motion and applied moment among the intact, defect, and 

implantation models under the hybrid test method. 

Model 
ROM (degree) Total lumbar ROM(degree) 

(L1-L5) 
Moment(Nm)

L1-L2 L2-L3 L3-L4 L4-L5
Flexion       
Intact 3.66 3.78 3.82 5.11 16.37 10 
Defect 3.62 3.75 4.32 5.05 16.74 10 
Coflex 3.49 3.63 4.14 4.84 16.10 10 

Coflex-F 4.33 4.47 1.87 6.01 16.68 12 
Pedicle screw fixation 4.51 4.67 1.23 6.31 16.72 13 

Extension       
Intact 2.70 2.47 2.30 3.27 10.74 10 
Defect 2.37 2.05 3.75 2.61 10.78 8 
Coflex 3.36 3.06 0.68 3.89 10.99 14 

Coflex-F 3.36 3.08 0.54 3.92 10.90 14 
Pedicle screw fixation 3.24 2.93 0.22 4.11 10.50 13 

Lateral bending       
Intact 3.69 3.59 3.67 4.32 15.27 10 
Defect 3.69 3.62 3.69 4.33 15.33 10 
Coflex 3.72 3.65 3.39 4.34 15.10 10 

Coflex-F 3.78 3.70 3.01 4.43 14.92 10 
Pedicle screw fixation 4.41 4.17 1.74 5.23 15.55 13 

Axial rotation       
Intact 1.81 1.90 2.23 2.50 8.44 10 
Defect 1.83 1.92 2.26 2.52 8.53 10 
Coflex 1.80 1.86 2.13 2.53 8.32 10 

Coflex-F 1.80 1.86 2.12 2.53 8.31 10 
Pedicle screw fixation 2.17 2.08 1.33 2.79 8.37 13 
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3.2 Coflex-F in fusion surgery 

The second subject of following sections includes FE modeling and simulation technique 

of this study. The first model of second subject was the intact lumbar spine same first subject 

(3.1.1) model. The other five models were the TLIF or ALIF combined with Coflex-F and 

TLIF or ALIF combined with bilateral pedicle screw fixation. 

 

3.2.1 FE model of TLIF combined with Coflex-F (Coflex-F + TLIF model)  

The intact model was modified to a TLIF model by implanting an AVS-TL cage (30 mm 

width x 11 mm depth x 21 mm height; Polyetheretherketon (PEEK); Stryker Orthopaedics) 

(Figure 3.9 E) between the L3 and L4 vertebrae. To simulate the standard TLIF procedure, 

unilateral total facetectomy and partial discectomy were performed at the L3-L4 segment. The 

left facet joint, ligamentum flavum, and partial disc were removed, but the posterior elements, 

contralateral facet joint, supraspinous ligaments, and interspinous ligaments were preserved. 

The cage-bone interface was modeled by surface-to-surface contact elements to simulate the 

early postoperative stage after spinal implantation. These contact elements were able to 

transmit compression, but not tension. The coefficient of friction at the cage-bone interface 

was set at 0.8 to mimic the effect that the cage’s small teeth have on contact surfaces. The 

higher coefficient of friction (0.8) was used in the contact interface to prevent device slip 

motion [86]. The Young’s modulus and Poisson’s ratio of AVS-TL cage were assigned to be 

3.5 GPa and 0.3, respectively. 

The TLIF model was again modified to implant the Coflex-F device between the L3 and 

L4 vertebrae to complete the Coflex-F combined with TLIF model, requiring the removal of 

supraspinous ligaments and interspinous ligaments (Figure 3.9 A). The Coflex-F is available 

in five sizes from 8-16 mm in 2 mm increments. In this study, the optimal height for the FE 

model was 14 mm. Part of the L3-L4 interspinous process was removed to provide sufficient 

space for implanting the Coflex-F between the interspinous processes. The surface between 
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the spinous processes and the wings of the Coflex-F was modeled as a surface-to-surface 

contact. The effect of the teeth on the wings of the Coflex-F was simplified by assigning a 

higher coefficient of friction (0.8) to the wing contact area (Figure 3.9 G, yellow region), and 

the coefficient of friction for the rest of the contact regions was set at 0.1 (Figure 3.9 G, red 

region). The rivets were modeled as cylinders (diameter = 2.8 mm) and were constrained to 

both holes on the wings of the Coflex-F and the spinous processes in all degrees of freedom 

(The degrees of freedom of rivet nodes are interpolated with the corresponding degrees of 

freedom of the nodes on the Coflex and spinous processes during the execution of ANSYS 

program). The Coflex-F was constructed using Ti-6Al-4V alloy. The Young’s modulus and 

Poisson’s ratio were assigned to be 113 GPa and 0.3, respectively. 

 

 3.2.2 FE model of ALIF combined with Coflex-F (Coflex-F + ALIF model)  

The intact model was modified to an ALIF model by implanting a SynCage-Open cage 

(Figure 3.9 F) (30 mm width x 24 mm depth x 21 mm height; Titanium alloy; Synthes spine, 

Inc.) between the L3 and L4 vertebrae. To simulate the standard ALIF procedure, the L3-L4 

segment of the intact model underwent partial discectomy and total nuclectomy by the 

anterior approach, which included removal of the anterior longitudinal ligament, anterior 

portions of the annulus, and the entire nucleus pulposus. All the other ligaments were 

preserved. The ALIF cage-bone has the same interface conditions as those of the TLIF 

cage-bone in section 2.2. The SynCage-Open cage was constructed out of Ti-6Al-7Nb alloy. 

The Young’s modulus and Poisson’s ratio were assigned to be 110 GPa and 0.28, respectively. 

In addition, the ALIF model was modified for implanting the Coflex-F between the L3 and L4 

vertebrae to complete the Coflex-F combined with ALIF model. The ALIF model and the 

TLIF model implant the Coflex-F under the same conditions (Figure 3.9 B).  
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3.2.3 FE model of TLIF combined with bilateral pedicle screw fixation (Pedicle screw + 

TLIF model)  

The previous TLIF model was combined with bilateral pedicle screws to form the 

pedicle screw fixation model (Figure 3.9 C). The difference between the pedicle screw 

fixation model and the Coflex-F model is that the pedicle screw fixation model preserves the 

supraspinous ligaments and interspinous ligaments. The pedicle screws were inserted 

bilaterally through the pedicles of the L3 and L4 vertebrae. The pedicle screw fixation in this 

study consisted of two rods (diameter = 4.5 mm) and four pedicle screws (diameter = 6 mm). 

The pedicle screws were modeled as cylinders. The screw-bone interfaces were designed to 

be fully constrained (The degrees of freedom of screw nodes are interpolated with the 

corresponding degrees of freedom of the nodes on the Coflex and spinous processes during 

the execution of ANSYS program). The pedicle screws were made of Ti-6Al-4V alloy. The 

Young’s modulus and Poisson’s ratio were assigned to be 113 GPa and 0.3, respectively. 

 

3.2.4 FE model of ALIF combined with bilateral pedicle screw fixation (Pedicle screw + 

ALIF model)  

The previous ALIF model was combined with bilateral pedicle screws (Figure 3.9 D). 

This model preserved the supraspinous ligaments and interspinous ligaments. Both this model 

and the previous TLIF model (combined with bilateral pedicle screws) used the same 

conditions and materials for pedicle screws. 
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3.2.5 Boundary and loading conditions 

In this second subject, the boundary and loading conditions are all same first subject 

(3.1.5). The 400 N compressive follower load was applied to each motion segment through 

induced contraction in these link elements by decreasing the temperature. The link elements 

were attached near the centers of each vertebral body such that each element spanned the 

mid-plane of the discs. These arrangements directed the construction of a nearly ideal 

follower load, which remains tangent to the spine curve, loading each spinal segment in 

nearly pure compression.  

A 10 Nm moment was applied to the intact model to mimic physiological motion [105]. 

These motions subject the multilevel lumbar spine to a maximal possible load without causing 

spinal injury. The other implanted models under comparison were subjected to specific 

moments that produced overall motions that were equal to those of the intact model, using a 

hybrid test method. The detailed total lumbar ROMs of the intact model under the hybrid test 

method are 16.36° in flexion, 10.31° in extension, 15.25° in lateral bending to both sides, and 

8.43° in axial rotation to both sides. These ROMs are a baseline to match the total lumbar 

motion among the intact and implantation models under the hybrid test method (Table 3.3). 

The resulting deviation of ROMs among the three FE models were controlled to within 0.33° 

in flexion, 0.56° in extension, 0.22° in right lateral bending, 0.24° in left lateral bending, 0.21° 

in right axial rotation, and 0.21° in left axial rotation.  
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Table 3.3 Intervertebral range of motion and applied moment among various surgical models 

under the hybrid test method.  

Model 
ROM (deg) Total lumbar ROM(deg)  

(L1-L5) 
Moment(Nm)

L1-L2 L2-L3 L3-L4 L4-L5
Flexion       
Intact 3.66 3.78 3.82 5.10 16.36 10 

Coflex-F+TLIF 4.37 4.54 0.96 6.38 16.25 12 
Coflex-F+ALIF 4.46 4.60 0.92 6.44 16.42 12 

Pedicle screw + TLIF 4.40 4.59 0.62 6.48 16.09 12 
Pedicle screw + ALIF 4.49 4.66 0.61 6.47 16.23 12 

Extension       
Intact 2.27 2.47 2.30 3.27 10.31 10 

Coflex-F+TLIF 3.26 3.17 0.43 4.01 10.87 11 
Coflex-F+ALIF 3.33 3.01 0.55 3.96 10.85 12 

Pedicle screw + TLIF 3.26 3.16 0.27 4.16 10.85 11 
Pedicle screw + ALIF 3.32 2.98 0.22 4.09 10.61 12 
Right lateral bending       

Intact 3.69 3.59 3.67 4.30 15.25 10 
Coflex-F+TLIF 4.08 3.97 2.40 5.00 15.45 11 
Coflex-F+ALIF 4.46 4.37 1.26 5.15 15.24 12 

Pedicle screw + TLIF 4.47 4.32 1.17 5.50 15.46 12 
Pedicle screw + ALIF 4.48 4.35 0.92 5.54 15.29 12 
Left lateral bending       

Intact 3.69 3.59 3.67 4.30 15.25 10 
Coflex-F+TLIF 4.11 4.03 1.95 5.07 15.16 11 
Coflex-F+ALIF 4.46 4.37 1.26 5.15 15.24 12 

Pedicle screw + TLIF 4.47 4.38 1.04 5.51 15.40 12 
Pedicle screw + ALIF 4.48 4.35 0.92 5.54 15.29 12 
Right axial rotation       

Intact 1.81 1.90 2.23 2.49 8.43 10 
Coflex-F+TLIF 2.00 2.09 1.52 2.80 8.41 11 
Coflex-F+ALIF 2.12 2.19 1.06 2.94 8.31 12 

Pedicle screw + TLIF 2.29 2.22 0.81 2.99 8.31 13 
Pedicle screw + ALIF 2.38 2.31 0.70 3.13 8.52 14 

Left axial rotation       
Intact 1.81 1.90 2.23 2.49 8.43 10 

Coflex-F+TLIF 2.01 2.09 1.44 2.81 8.35 11 
Coflex-F+ALIF 2.12 2.19 1.06 2.94 8.31 12 

Pedicle screw + TLIF 2.29 2.22 0.81 2.99 8.31 13 
Pedicle screw + ALIF 2.38 2.31 0.70 3.13 8.52 14 
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3.3 Coflex-F in minimally invasive fusion surgery 

The third subject of following sections includes FE modeling and simulation 

technique of this study. The first model of third subject was the intact lumbar spine same first 

subject (3.1.1) model. The other three models were the TLIF combined with Coflex-F, with 

unilateral pedicle screw fixation and translaminar facet screw fixation model, and with 

bilateral pedicle screw fixation. 

  

3.3.1 FE model of TLIF combined with Coflex-F (Coflex-F model) 

The intact model was modified to TLIF model and implant Coflex-F between L3 and 

L4 (Figure 10 A). The model of third subject was the Coflex-F same second subject (3.2.1) 

model. Both this model and the previous TLIF combined with Coflex-F model used the same 

conditions and materials. 

 

3.3.2 FE model of TLIF combined with unilateral pedicle screw fixation with translaminar 

facet screw fixation (UPSF+TFSF model) 

The previous TLIF model was combined with pedicle screws between L3 and L4. The 

pedicle screw fixation consisted of one rods (diameter = 4.5 mm) and two pedicle screws 

(diameter= 6 mm). The pedicle screws were inserted respectively through the pedicles of L3 

and L4 vertebrae unilaterally. The UPSF model was combined with translaminar facet screw 

fixation (diameter= 4 mm) (Figure 10 B). The unilateral pedicle screw and translaminar facet 

screw were modeled as cylinders and screw-bone interfaces were designed to be fully 

constrained. The material used for the pedicle screws and fact screw were Ti-6Al-4V alloy. 

The Young’s modulus and Poisson’s ratio were assigned to be 113 GPa and 0.3. 
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3.3.3 FE model of TLIF combined with bilateral pedicle screw fixation (BPSF model) 

The intact model was modified to TLIF combined with bilateral pedicle screw fixation 

between L3 and L4 (Figure 10 C). The model of third subject was the TLIF combined with 

bilateral pedicle screw fixation same second subject (3.2.3) model. Both this model and the 

previous TLIF combined with bilateral pedicle screw fixation model used the same conditions 

and materials. 

 

3.3.4 Boundary and loading conditions 

In this third subject, the boundary and loading conditions is all same 3.1.5 and 3.2.5 

sections. A 400 N follower load and a 10 N-m moment were applied to the intact model to 

obtain physiological motions as comparison baseline. The implanted models were subjected 

to 400 N follower load and specific moments in accordance with the hybrid test method. 

These ROMs are a baseline to match the total lumbar motion among the intact and 

implantation models under the hybrid test method (Table 3.4). The resulting deviation of 

ROMs among the three FE models were controlled to within 0.35° in flexion, 0.46° in 

extension, 0.29° in right lateral bending, 0.16° in left lateral bending, 0.11° in right axial 

rotation, and 0.11° in left axial rotation. 
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Table 3.4 Intervertebral range of motion and applied moment among various surgical models 

under the hybrid test method.  

Model 
ROM (deg) Total lumbar ROM(deg)  

(L1-L5) 
Moment(Nm)

L1-L2 L2-L3 L3-L4 L4-L5
Flexion       
Intact 3.66 3.78 3.82 5.10 16.36 10 

Coflex-F 4.37 4.54 0.96 6.38 16.25 12 
UPSF + TFSF 4.38 4.56 0.61 6.43 16.01 12 

BPSF 4.40 4.59 0.62 6.48 16.09 12 
Extension       

Intact 2.27 2.47 2.30 3.27 10.31 10 
Coflex-F 3.26 3.17 0.43 4.01 10.87 11 

UPSF + TFSF 3.26 3.17 0.23 4.17 10.83 11 
BPSF 3.26 3.16 0.27 4.16 10.86 11 

Right lateral bending       
Intact 3.69 3.59 3.67 4.30 15.25 10 

Coflex-F 4.08 3.97 2.40 5.00 15.45 11 
UPSF + TFSF 4.46 4.35 1.23 5.48 15.54 12 

BPSF 4.40 4.32 1.17 5.50 15.40 12 
Left lateral bending       

Intact 3.69 3.59 3.67 4.30 15.25 10 
Coflex-F 4.11 4.03 1.95 5.07 15.16 11 

UPSF + TFSF 4.48 4.36 0.99 5.55 15.40 12 
BPSF 4.47 4.38 1.04 5.51 15.41 12 

Right axial rotation       
Intact 1.81 1.90 2.23 2.49 8.43 10 

Coflex-F 2.00 2.09 1.52 2.80 8.41 11 
UPSF + TFSF 2.28 2.24 0.77 3.01 8.32 13 

BPSF 2.29 2.22 0.81 2.99 8.32 13 
Left axial rotation       

Intact 1.81 1.90 2.23 2.49 8.43 10 
Coflex-F 2.01 2.09 1.44 2.81 8.35 11 

UPSF + TFSF 2.28 2.33 0.77 3.02 8.42 13 
BPSF 2.29 2.22 0.81 2.99 8.32 13 
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Chapter 4 Results 

4.1 Coflex and Coflex-F in non-fusion surgery 

Biomechanical behaviors of the lumbar spine with the Coflex model, the Coflex-F model, 

and the pedicle screw fixation model were compared with those of the intact model. Data 

were normalized with respect to the intact model as percentage values under each loading 

condition. 

 

4.1.1 Range of motion (ROM) 

In extension, the ROM increased 64 % in the defect model at the surgical segment 

(Figure 4.1). After implantation, the ROM effectively decreased 70 % in the Coflex model, 76 

% in the Coflex-F model, and 90 % in the pedicle screw fixation model as compared with the 

intact model. In addition, the ROM increased 24 % in the Coflex and Coflex-F models at the 

adjacent L1-L3 segments and increased 20 % at the adjacent L4-L5 segment. The ROM 

increased 19 % in the pedicle screw fixation model at the adjacent L1-L3 segments and 

increased 25 % at the adjacent L4-L5 segment. 

In flexion, the ROM increased 13 % in the defect model and 8 % in the Coflex model at 

the surgical segment (Figure 4.2). In contrast to the above two models, the ROM decreased 52 

% in the Coflex-F and 68 % in the pedicle screw fixation models at the surgical segment. On 

the other hand, the ROMs of the defect model and the Coflex model were similar to that of the 

intact model at both adjacent L1-L3 (deviation within 4 %) and L4-L5 segments (deviation 

within 4 %). However, the ROM increased 17 % to 18 % in the Coflex-F model and 23 % to 

24 % in the pedicle screw fixation model at both adjacent L1-L3 and L4-L5 segments. 

In lateral bending, the ROM decreased 8 % in the Coflex model, decreased 20 % in the 

Coflex-F model, and decreased 51 % in the pedicle screw fixation model at the surgical 

segment as compared with the intact model (Figure 4.3). The ROMs of the Coflex and 

Coflex-F models were similar to that of the intact model at both adjacent L1-L3 (1 % to 2 %) 
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Coflex model was similar to that of the intact model at both adjacent L1-L3 and L4-L5 

segments (deviation within 4 %). However, the Coflex-F and pedicle screw fixation models 

increased maximal disc annulus stress by 18 % to 22 % at both the adjacent L1-L3 and L4-L5 

segments. 

In lateral bending, the maximal disc annulus stress decreased 18 % in the Coflex model, 

25 % in the Coflex-F model, and 41 % in the pedicle screw fixation model at the surgical 

segment as compared with the intact model (Figure 4.7). The maximal disc annulus stress of 

the Coflex and Coflex-F models decreased 6 % to 8 % at both adjacent L1-L3 and L4-L5 

segments. However, the maximal disc annulus stress of the pedicle screw fixation model 

increased 15 % to 21 % at both adjacent L1-L3 and L4-L5 segments. 

In axial rotation, the maximal disc annulus stress decreased 15 % to 16 % in all 

implanted models at the surgical segment as compared with the intact model (Figure 4.8). The 

maximal disc annulus stress increased 11 % in the Coflex and Coflex-F models, and 7 % in 

the pedicle screw fixation model at the adjacent L1-L2 surgical segment. The maximal disc 

annulus stress of all implanted models increased 15 % at the adjacent L2-L3 segment. The 

maximal disc annulus stress of the Coflex model and Coflex-F model were similar to that of 

the intact model at the adjacent L4-L5 segment (deviation within 2 %). The maximal disc 

annulus stress of the pedicle screw fixation model increased 19 % at the adjacent L4-L5 

segment. 
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4.1.3 Von-Mises stress distribution at disc annulus 

The stress concentration and distribution pattern of the disc annulus at the surgical 

segment (L3-L4) changed obviously in these models. In extension, the stress of the defect 

model was concentrated at the posterior inferior regions of the annulus (Figure 4.9 middle). 

However, after implantation, the stress concentration of the disc annulus at the posterior disc 

diminished obviously. Furthermore, in flexion, the stress concentrated at the anterior of the 

annulus regions, close to the superior and inferior sides of the endplate, in both defect and 

Coflex models as compared with the intact model (Figure 4.10 middle). The Coflex-F and 

pedicle screw fixation models have the most even disc annulus stress distribution in flexion, 

even when compared with the intact model. In lateral bending and in axial rotation, the stress 

was concentrated at the right part of the annulus regions, close to the superior and inferior 

sides of the endplate in the defect model as compared with the intact model (Figures 4.11 

middle, 4.12 middle). After implantation, the stress concentration of the disc annulus at the 

posterior disc also diminished. 

The stress distribution pattern of the disc annulus at adjacent segment (L2-L3, L4-L5) 

was affected in these models. In extension, stress of disc annulus decrease in defect model; 

stress increase in implantation model, compared with the intact model (Figure 4.9 top and 

bottom). In flexion, stress distribution of disc annulus in both defect and Coflex models was 

close to the intact model (Figure 4.10 top and bottom). However, after implantation, stress 

concentrated at the anterior of the annulus regions, close to the superior and inferior sides of 

the endplate, in both Coflex-F and pedicle screw fixation models as compared with the intact 

model. In lateral bending and in axial rotation, stress distribution of disc annulus in both 

defect, Coflex, Coflex-F models was close to the intact model (Figures 4.11 top and bottom, 

4.12 top and bottom). After pedicle screw fixation, the stress was concentrated at the right part 

of the annulus regions. 
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The pedicle screw fixation procedure frequently associated with postoperative long-term 

complication of adjacent segment disease, resulting in the cause of another surgery for 

extended pedicle screw fixation at the adjacent segments. The higher incidence of adjacent 

segment disease was reported when patient was treated with rigid instrumentation. 

According to the above ROM and von-Mises stress distribution of disc results, the 

Coflex device can provide stability in extension, lateral bending, and axial rotation at the 

surgical segment and retain flexible in flexion. The Coflex device restraint extension motion, 

and provide more space of foramen and spinal canal. Besides, it had no influence than pedicle 

screw fixation at adjacent segments except during extension. Therefore, the use of Coflex 

device may decrease rate of adjacent segment disease. As a result, it may replace pedicle 

screw fixation to improve stenosis in surgical and complication in adjacent segments.
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Chapter 5 Discussion 

5.1 Coflex and Coflex-F in non-fusion surgery 

The subject study found that (1) the Coflex device can provide stability of the surgical 

segment in most motions, except in flexion; (2) the rivets of the Coflex-F link bone and 

implant and can provide stability in all motions, especially in flexion; (3) in flexion, the disc 

stress distribution of the surgical segment is improved by the use of rivets; (4) in flexion, the 

Coflex-F influenced the adjacent segments; and (5) in extension, all implants influenced the 

adjacent segments. 

In the subject study, the Coflex device in the defect model was found to provide stability 

in most motions, except in flexion. The instability of the Coflex device in flexion causes stress 

concentration at the anterior regions of the disc annulus (close to the superior and inferior 

sides of the endplate). Wilke et al. [59] suggested that the key for the Coflex device to provide 

stability in flexion is based on whether the teeth on the wings of the Coflex can provide 

sufficient anchorage to the spinous process. Two factors can improve this stabilization effect. 

First, the surgeon must tighten the teeth on the wings against both edges of the spinous 

processes. Second, the bone density of the spinous processes should be strong enough to 

provide sufficient anchorage. However, both conditions are not always guaranteed. 

For numerical analysis, the coefficient of friction in the interface between the implant 

and spinous processes was difficult to obtain. It is hypothesized that the teeth on the wings of 

the Coflex device will prevent implant slip motion in the spinous processes, and therefore a 

higher coefficient of friction (0.8) was used in the contact interface. In addition, this study 

also tested different coefficients of friction (0.4, 0.8, 1.2, and 1.6) to seek its influence on the 

effect of teeth on the wings of the Coflex device. The results show that the influence of the 

coefficient of friction is negligible. 

The Coflex device was implanted between the interspinous processes located at the 
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posterior structure of the spine to resist instability in extension. By comparison with Tsai’s 

results in cadaveric experiments [57], our data show discrepancies in lateral bending and axial 

rotation. It is inferred that these were caused by individual differences among cadaveric 

specimens and differing experimental conditions. In the subject study, a partial L3-L4 

interspinous process was removed to provide sufficient space for the implant, and the spinous 

process interface was modeled as a perfect contact and was able to transmit both tensile and 

compression forces. This assumption is different from the results of cadaveric experiments. 

Kettler et al. [55] reported implantation of the Coflex-F can provide stability for all 

motions in lumbar spine stability. In the subject study, we also showed that the rivet 

connecting the metal wings and bony spinous process provides more security than the 

conventional Coflex device. Therefore, the rivet can improve the load transmission on the 

posterior spinal structure to decrease the stress concentration on the disc annulus at the 

surgical segment in all motions. 

There are limited reports about implanting the Coflex device in the long lumbar segment 

model. The potential side effects in the adjacent segments need to be addressed. In 1-year 

outcome evaluation, Kong et al. [58] reported that the Coflex device reduced the ROM at the 

surgical segment but did not affect the ROM at the adjacent segments. The subject study, 

using a long lumbar spine segment model of an implanted Coflex device, showed that the 

ROMs are increased at both adjacent segments in extension but are unchanged in other 

motions. Therefore, the Coflex device increased annulus stress at both adjacent segments in 

extension. However, the Coflex-F constrained the surgical segment in all motions and it 

increased ROM at adjacent segments, especially in flexion. Therefore, the Coflex-F increased 

annulus stress at both adjacent segments in flexion and extension. The Coflex-F and pedicle 

screw fixation have the same effect on the adjacent segments in both flexion and extension. In 

addition, the remote adjacent L1-L2 segment and adjacent L2-L3 segment demonstrate the 

same effect in all forms of implantations. 
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5.2 Coflex-F in fusion surgery 

The subject study found that (1) The Coflex-F device combined with ALIF can provide 

stability similar to a pedicle screw fixation in combination with TLIF or ALIF. (2) larger 

stress at the cage-bone interface for the Coflex-F combined with TLIF, thus causing the 

exclusion of the pedicle screw fixation.  

The present study used an FE lumbar model of the L1-L5 segments to compare the 

effects of the Coflex-F device and traditional bilateral pedicle screw fixation at the surgical 

segment after TLIF and ALIF implantation. According to the ROM results, the Coflex-F 

device combined with the TLIF model had lower stability than all the other models, especially 

in both directions of lateral bending and axial rotation. On the other hand, the pedicle screw 

fixation combined with the ALIF showed the highest stability among all model. 

The primary factor in the Coflex-F results is the fixed position of its implantation. The 

motion segment, composed of two adjacent vertebrae and the associated soft tissues, is the 

functional unit of the spine. Each motion segment has three joints. It has a triangular stack of 

articulations, with symphysis joints between vertebral bodies on the anterior side and two 

sliding facet joints on the posterior side. The Coflex-F has rivets joining its wings to the 

spinous processes. The rivets can attach the implant more rigidly to the posterior spinous 

processes. However, the vertebral bodies of anterior side sustain the majority of the weight. 

Therefore, the rivets cannot provide sufficient stiffness in the motion segment for two 

adjacent vertebrae because the locations of attachment are within the posterior element, which 

is not as strong as vertebral bodies. However, pedicle screw fixation can fix vertebral bodies, 

and therefore provide sufficient stiffness in the motion segment for two adjacent vertebrae.  

The geometry of the Coflex-F devise supports a different function—its U-shaped 

structure retains the same design and flexibility of the Coflex, thus making it more flexible 

and deformable than pedicle screw fixation. Figure 4.22 shows the von-Mises stress of the 
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Coflex-F and the pedicle screw for various loading cases. In all of these cases, the Coflex-F 

has higher stress than the pedicle screw when combined with TLIF or ALIF. Figure 4.23 

showed the von-Mises stress of the Coflex-F and the pedicle screw for various loading cases. 

The Coflex-F has higher von-Mises stress than the pedicle screw. Therefore, the fixed position 

and geometry of implantation have a great influence on stress distribution for Coflex-F 

ALIF and TLIF are two common surgeries for achieving interbody arthrodesis. In the 

present study, a posterior instrumentation in combination with ALIF can provide higher 

stability than a posterior instrumentation in combination with TLIF. The ALIF procedure with 

anterior surgical approach allows expansion of disc space; it can use a larger cage to increase 

the contact area of cage-bone interface. The larger contact area distributes the load over the 

cage-bone interface area of the vertebra bone. Consequently, an ALIF cage does not create 

stress concentration on the cage-bone interface at the surgical segment. On the other hand, the 

TLIF procedure prohibited the use of a large cage, because a cage pathway would create 

limitations for the surgery. The TLIF procedure can only utilize cages with long and thin 

contact area on the cage-bone interface. Therefore, the TLIF cage surfers from stress 

concentration on the cage-bone interface at the surgical segment. 

In extension, the stress concentration of all the models diminished between the 

cage-bone interfaces. In flexion, the stress concentration of all the models increased at the 

anterior side of the cage-bone interface. A posterior instrumentation combined with ALIF has 

higher stress concentration than a posterior instrumentation combined with TLIF. This is 

primarily due to flexion or extension motion. The posterior instrumentation and interbody 

cage share the same extension motion. Posterior instrumentation sustains most of the load 

transferred in extension, therefore reducing the stress concentration of all the models. In 

contrast, the anterior interbody cage sustains most of the load transferred in flexion, therefore 

resulting in the stress concentration in the ALIF model at the cage-bone interface, especially 

with Coflex-F implantation. The Coflex-F sustains larger moment than pedicle screw fixation 
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because the fixed position of the Coflex-F in the posterior interspinous processes causes a 

longer moment arm.  

PEEK material has recently gained popularity for use in implants because of its 

mechanical properties. One of the PEEK material’s biggest advantages is its modulus of 

elasticity (E = 3.5 GPa) which is closer to cortical bone (E = 12 GPa) and cancellous bone (E 

=0.14 GPa) compared to that of titanium (E = 113 GPa). Vadapallis [106] performed a finite 

element investigation to study the effect of different spacer material property. The results from 

that study indicate that PEEK spacers provide initial stability similar to titanium spacers, and 

therefore might minimize the chances of subsidence. The present study uses two cage 

materials: titanium for the ALIF cage and PEEK for the TLIF cage for stability. This study’s 

results are identical to Vadapallis's results, i.e. both cage materials provide similar stability 

when combined with pedicle screw fixation. However, the materials of these two cages do not 

provide similar stability when combined with the Coflex-F, the titanium cage (ALIF) provide 

higher stability then PEEK cage (TLIF). 

 

5.3 Coflex-F in minimally invasive fusion surgery 

The subject study found that (1) the TLIF combine with Coflex-F cannot provide 

sufficient stability of the surgical segment in lateral bending and axial rotation; (2) the TLIF 

combined with unilateral pedicle screw fixation and translaminar facet screw fixation can 

provide sufficient stability of the surgical segment all motion as TLIF combined with bilateral 

pedicle screw fixation. 

Several lumbar interbody fusion methods have been used for degenerative disc diseases 

and instabilities via various approaches, such as ALIF, PLIF, and TLIF. The TLIF was 

involves removal of one facet joint and a lateral approach to the disc space, thus reducing the 

potential for nerve injury. The TLIF surgical construct requires less bone and soft tissue 

dissection, respects neural elements, laminar bone, facet and pars interarticularis on the 
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contralateral side for additional posterolateral fusion, and avoids the morbidity of ALIF and 

PLIF approaches.  

Another minimally invasive fusion device, an interspinous process device Coflex-F 

may be used instead. This device requires only a minimal incision and disruption of the 

interspinous ligaments to insert one part of the device with a post which goes through the 

interspinous space. 

Results showed that TLIF combined with Coflex-F provide lower stability than TLIF 

combined with unilateral pedicle screw and translaminar facet screw fixation. The primary 

factor is fixed position of Coflex-F implantation and Coflex-F structure as described 

previously 5.2 sections. Therefore, the TLIF combine with Coflex-F cannot provide sufficient 

stability of the surgical segment in lateral bending and axial rotation. 

In this subject study, ROM results showed the fixation following TLIF of unilateral 

pedicle screws with a supplemental translaminar facet screw fixation showed no difference in 

stiffness to that of the standard bilateral pedicle screw fixation. The advantages of surgical 

procedure for unilateral pedicle screw and supplemental translaminar facet screw fixation 

were significantly reduced iatrogenic trauma and reduced surgical risks than bilateral pedicle 

screws fixation.  

 

5.4 limitations 

Several limitations in these studies are related to the simplified and idealized material 

properties during simulation, such as the linearized behavior of the spinal ligaments and pure 

elastic intact discs without degeneration [93][94]. A degenerative disc is common in many 

patients before surgery. The various grades of degeneration in the disc, such as delamination, 

dehydration or reduced disc height, do not allow for exact replication of the unique material 

properties of a degenerated disc. Therefore, normal material properties were used in this 

simulation.  



85 
 

In a real spine, the size of vertebrae and the orientation of the facet joint are different 

depending on each segment. The influence of geometry was not considered here, which might 

affect the absolute values of the vertebral stresses and facet joint loads.  

The degree of gripping force applied between the wings of the Coflex-F device and the 

spinous process is determined by the clamping force that is applied by the surgeon, which is 

difficult to measure, and there have been different results presented in previous studies 

[55][57][59]. In addition, determination of gripping force must also consider bone strength 

and geometry of the spinous process. In this study, the degree of the gripping force was 

simplified and only considered the friction conditions between the teeth on the wings of the 

Coflex-F device and the spinous process. The coefficient of friction used here was based on 

the results of a previous study into friction parameters between the cage and the bone [93]. In 

addition, our simplified simulation of gripping force ignored the pre-force between the teeth 

of the wings and the spinous processes, as well as the inward and outward deformation of 

both side flanks of the Coflex-F device. Also, the constrained behavior used in the bone-screw 

interface, the thread of the pedicle screw, and the bone ingrowth into the cage were simplified.  

Pretension should occur after inserting the device, which might distract the remaining 

annulus, reducing the ROM and facet loading at the implant level. This mechanism was not 

modeled here. 

The loading conditions in the present FE simulations were similar to those of the 

traditional in vitro tests. Thus, muscle contraction and pelvic movement were not included in 

the present study. Furthermore, FE models should be interpreted only as a trend because of the 

variability among different human tissues.   
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Chapter 6 Conclusion and Future Work 

6.1 Conclusion 

In the non-fusion surgery, the Coflex implantation can provide stability in extension 

(ROM decreased 70%), lateral bending (ROM decreased 8%), and axial rotation (ROM 

decreased 4.3 %) at the surgical segment, and retain flexible in flexion (ROM increased 8%). 

It had no influence at adjacent segments except during extension (ROM increased 20~24%). 

Because Coflex device restraints extension motion, there can provide more space of foramen 

and spinal canal. Therefore, The Coflex device may improve or relieves the stenosis. 

The rivets of the Coflex-F link bone and implant and can provide stability in all motions, 

especially in flexion (ROM decreased 52%). Also, the Coflex-F can reconstruct the posterior 

spinal structure for load sharing to reduce disc annulus stress at the surgical segment. 

Therefore, the Coflex-F device may be used to treat stenosis combined with mild degenerative 

disc disease. 

In the fusion surgery, the Coflex-F device combined with ALIF can provide stability 

similar to a pedicle screw fixation in combination with TLIF or ALIF. The Coflex-F device 

combined with ALIF is preferable for providing more stability in spine fusions.  

In the minimally invasive fusion surgery, the TLIF combine with Coflex-F cannot 

provide sufficient stability of the surgical segment in lateral bending and axial rotation. In 

however, The TLIF combined with unilateral pedicle screw fixation and translaminar facet 

screw fixation can provide sufficient stability as TLIF combined with bilateral pedicle screw 

fixation. 

 

6.2 Future work 

There are several topics can be extended for the non-fusion surgery combined with 

Coflex device.  

The above studies are focused in single segment disease only. However, the disc 
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degeneration disease occurs sometime in the multi-segment or adjacent segment after fusion 

surgery. Adjacent segment degeneration is the tendency for clinical symptomatic changes to 

occur following fusion surgery. It is widely believed that spinal fusion significantly alters the 

biomechanical environment of the adjacent spinal motion segments leading to an acceleration 

of the normal degenerative process. Little et al. [108] reported the effect of anterior interbody 

fixation on facet capsule strains. Seven cadaveric lumbar spine specimens were evaluated 

during physiological motion in the intact state and following anterior interbody fusion. The 

reduction of motion induced by interbody fusion resulted in increased facet joint capsule 

strain at the adjacent segments. Weinhoffer et al. [109] investigated the intradiscal pressure 

changes occurring following instrumented lumbar fusion in a biomechanical study. Pressure 

transducers measured intradiscal pressures at L3-L4 and L4-L5 in intact specimens and 

following L5-S1 fusion. Pressure measurements were significantly increased following fusion. 

Additionally, as the number of fusion segments was increased, there was a corresponding 

increase in intradiscal pressure ate the adjacent segment. 

Therefore, for non-fusion surgery, one of the proposed study is going to compare the 

biomechanical characteristic of two-segment Coflex or Coflex-F implant and a hybrid implant 

(one-segment Coflex or Coflex-F and one-segment pedicle screw fixation) in the further. 

There are also topics can be extended for the fusion surgery combined with Coflex-F 

device. Our existing studies used specific cage (semilunar cage) for minimally invasive 

transforaminal lumbar interbody fusion. Currently, many kinds of cage designs are available 

on the market, which can be classified by the various geometry, size and material. Cho et al. 

[110] compare three TLIF implant designs (Stryker AVS PL, AVS TL and the Medtronic 

Capstone) with different lengths and shapes (flat or biconvex, straight or banana shape) in 

terms of biomechanical stability on human cadaveric models. The results showed that the 

geometry of cages, including shape (banana or straight), length, surface profile (biconvex or 

flat), did not affect construct stability when the cages were used in conjunction with pedicle 
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screw fixation. 

However, the relationship between the geometry of cage, the positions of cage insertion 

and the use of Coflex-F device are unknown. Therefore, the study concerning the fusion 

surgery combined with Coflex-F device can be focused on different kind cage together with 

different insert positions for TLIF in the further.  
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