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背斜受限含水層中定流量抽水試驗之解析洩降解 

研究生：陳彥如            指導教授：葉弘德 

國立交通大學環境工程研究所 

摘    要 

背斜地層是岩層受力彎曲後，形成向上拱起的褶皺地層。結構完整的背斜地

層，可能作為廢棄物地下貯存或二氧化碳封存的場所。定流量抽水試驗藉由量測

和分析觀測井的洩降反應，推求含水層的水文地質參數。本研究建立一個數學模

式，用以描述定流量抽水試驗到達穩態時，背斜水層內的洩降分佈。在推導過程

中，首先用三塊相連的長方體，近似模擬背斜地層的空間形體，接續採用傅立葉

轉換和有限傅立葉餘弦轉換，推導得到轉換域的解後，進行傅立葉逆轉換以計算

空間洩降的分佈值。使用此解進行模擬的結果，顯示兩翼較薄或是背脊較窄的水

層，在井周圍會產生較大的洩降值。此外，在相同的抽水率條件下，縮減濾管開

口長度和水層的異向性，會增加靠近井緣的無因次洩降。考慮不同設井位置的影

響時，部分貫穿井若位於背斜脊中央上段處，在井周圍會產生較大的洩降。採用

MODFLOW 模擬地下水流時，取用適當的格網可近似模擬背斜形狀。與解析解

結果相比，MODFLOW 模擬結果所產生的洩降值較小。本研究所提出的解析解，

也可應用於模擬平板形水層和斜坡水層的洩降分佈，將來亦可應用來逆推背斜含

水層的水文地質參數值或做為廢棄物地下貯存場址篩選、設計的參考。 

關鍵字：背斜含水層，抽水試驗，部分貫穿井，異向性，積分轉換 
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An Analytical Drawdown Solution for Constant-flux 

Pumping in a Confined Anticline Aquifer 
 

Student：Yen-Ju Chen    Adviser：Hund-Der Yeh 

Institute of Environmental Engineering 

National Chiao Tung University 

 

ABSTRACT 

An anticline known as a convex-upward fold in layers of rock commonly forms 

during lateral compression, which may be elected as a potential site for underground 

waste storage or carbon sequestration.  A constant-flux pumping test, which 

maintains a constant pumping rate at the test well, measures and analyzes the 

drawdown responses in one or several observation wells to determine the aquifer 

parameters.  In this study, a mathematical model is developed for describing the 

steady-state drawdown distribution in the anticline aquifer during the constant-flux 

pumping.  In the derivation, the topographical shape of the anticline is mimicked by 

three successive blocks.  The infinite Fourier transform and finite Fourier cosine 

transform are applied to obtain the solution of the model in the transform spaces.  

The solution expressed as an integral form is then obtained from the Fourier inversion.  



 III

Predicted results from the solution reveal that a thin-limbs or narrow-ridged anticline 

would cause a much larger head drop in the ridge zone.  For a well of constant 

pumping rate, the dimensionless drawdown around the well increases with decreasing 

well screen length or/and aquifer anisotropy ratio.  In examining the effect of well 

location, we find the partially penetrating well located at the top-middle of the ridge 

zone produces the largest drawdown.  MODFLOW is a computer program that 

simulates the groundwater flow based on the block-centered finite difference method.  

Through the grid discretization, MODFLOW can imitate the antiform much closer to 

reality.  The simulation for the flow in an anticline aquifer results in slightly smaller 

drawdown values when compared with those predicted by the present solution.  The 

present solution can also be used to simulate the flow in a slab-shaped aquifer or a 

hillslope aquifer.  It can be applied to identify the aquifer parameters and to design a 

potential site for waste disposal in the future as well.  

 

KEYWORDS: anticline aquifer, pumping test, partially penetrating well, anisotropy, 

integral transform 
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CHAPTER 1 INTRODUCTION 

1.1 Background 

In structural geology, an anticline, as a result of lateral compression in crustal 

deformation, is a convex-upward fold in layers of rock.  A well-structured anticline 

formation may be considered as a potential site for waste disposal or carbon 

sequestration.  Ashjari and Raeisi (2006) investigated the groundwater flow in 

Zagros anticlines in Iran and indicated that the anticline structure of aquifers and the 

geometry of bedrocks primarily dominate the direction of regional groundwater flow.  

Moreover, it can be expected that the flow patterns will be changed on the condition 

that wastes or water being injected into or pumped from the aquifer.  Because of the 

movement of groundwater carries the contaminants, explicit information such as 

geological structure and hydrogeological data are necessary to judge the applicability 

of the potential storage sites or to predict the migration of the contaminant plume in 

the site.   

The drawdown or head data set obtained from a field aquifer testing, e.g., slug 

test or pumping test, is generally analyzed based on a relevant solution to determine 

the aquifer parameters.  For a constant-flux pumping test, the test well pumps at a 

constant flow rate during the test time and the drawdown responses are measured in 

one or more observation wells in the vicinity.  Commonly, a drawdown solution is 
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either incorporated with an optimization technique or applied to generate the type 

curves for the graphical method to find the best-fit aquifer parameters.  An anticline 

aquifer has curved surfaces on their top and bottom boundaries; moreover, its profile 

may be asymmetric to its ridge.  The complexity of the geometric situation of an 

anticline makes it challenging to solve the model analytically.  In this study, we 

devoted to derive the analytical solution for the drawdown distribution in the 

approximated anticline aquifer since it can serve as an invaluable tool for gaining 

physical insight into the flow behavior affected by geologic and geometric settings.   

 

1.2 Literature Review 

The classic Thiem (1906) or Theis (1935) equation may be the most popular way 

used to estimate the drawdown distribution or to determine the aquifer parameters in 

an inverse problem for a constant-flux pumping in a confined aquifer.  The Thiem 

equation (1906) described the spatial drawdown distribution within the radius of 

influence under steady-state condition.  The Theis solution (1935) delineated the 

transient drawdown response in a confined aquifer.  However, the assumptions made 

for developing these equations on well of full penetration and aquifer of infinitely 

lateral extent may not be capable of describing the flow in an anticline aquifer.  

Numerous studies have been made to cope with the groundwater flow problem edged 
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with peculiar boundaries.  Among these studies, the integral transform method is 

commonly used to obtain the hydraulic head or drawdown solutions for specific 

boundary conditions in the mathematical model.  For example, Chan et al. (1976) 

used the finite Fourier transform to obtain the transient and steady-state drawdown 

solutions for pumping in a rectangular aquifer.  Chan et al. (1978) and Yeh and 

Chang (2006) applied the finite sine transform and Hankel transform to obtain the 

transient and steady-state analytical solutions for head distribution in a wedge-shaped 

aquifer.  On the other hand, some drawdown solutions accounting for various 

topography boundaries in flow systems are based on the image-well method.  The 

method removes aquifer boundaries and place pumping or recharging image wells at 

judicious locations.  The drawdown in an observation well is calculated by summing 

up the drawdown or buildup due to the real well and image wells (Ferris et al. 1962; 

Streltsova 1988; Kuo et al. 1994; Chen et al. 2009). 

The domain decomposition method can be applied to handle the problem with 

complex geometry or mix-typed boundary.  In this method, the problem domain is 

split into several subdomains.  Thereafter, the solutions for each subdomain are 

derived to satisfy the corresponding boundary conditions as well as the continuities of 

head and flux at the interface between the connected elements.  The concept of 

domain decomposition method was first presented in Kirkham (1957) to calculate the 
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electrostatic potential between two concentric coaxial capped cylinders.  The 

procedure was further extended in Kirkham (1959) to obtain the hydraulic head 

solution for the flow toward a partially penetrating well in a confined aquifer.  Later, 

Javandel and Zaghi (1975) used a similar procedure to obtain the potential distribution 

in a confined aquifer due to the pumping at a well of vertically full penetrating and 

radially finite extension on the bottom of the aquifer.  A similar decomposition 

concept was also deployed by Connell et al. (1998) for solving the problem of 

topographically driven flow in hillslope aquifers by dividing the problem domain into 

several rectangular elements.   

 Recently, some studies using numerical or analytical approaches were presented 

to investigate the head responses in anticline reservoirs due to the well injection or 

pumping.  Al-Mohannadi et al. (2007) used the finite-difference method to simulate 

the transient pressure responses to horizontal wells in anticline reservoirs and curved 

wells in slab reservoirs.  Yeh and Kuo (2010) proposed a steady-state analytical 

solution for a constant-head injection via a fully penetrating well into a heterogeneous, 

anisotropic, and dome-like anticline reservoir.  Yet, it seems to lack the consideration 

of well partial penetration and asymmetric profile of the anticline. 
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1.3 Objective 

The objective of this study is to develop a mathematical model for describing the 

steady-state drawdown distribution to a constant-flux pumping in an anticline aquifer.  

The pumping well is of infinitesimal diameter and can partially or fully penetrate the 

aquifer.  The anticline aquifer is homogeneous, anisotropic and confined by a curved 

layer on the top and a horizontal impermeable layer at the bottom.  Three successive 

blocks of different heights are used to represent the shape of the top curved boundary.  

The solution of the model is then obtained by applying the integral transform 

techniques including Fourier transform (FT) and finite Fourier cosine transform 

(FFCT) within each block and the hydraulic continuity requirements between the 

blocks.  The solution is used to predict the spatial drawdown distribution in a wide 

variety of anticline aquifer system and to investigate the influences of well location, 

screen length, aquifer geometry and anisotropy on the flow system.  Moreover, the 

present solution is applied to simulate the flow in hillslope and slab-shaped aquifers 

by assuming some of the adjacent blocks with the same heights.  In addition to the 

analytical approach, the numerical model, MODFLOW, is used to perform 

simulations and the results are compared with those predicted by the present solution.  

The solution can also be employed to estimate the aquifer parameters in an inverse 

problem if integrated with an optimization algorithm.   
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CHAPTER 2 METHODOLOGY 

2.1 Mathematical modeling of the flow problem  

Figure 1 shows the configuration for a well in an anticline aquifer.  We assume 

that the line sink, i.e., the pumping well of an infinitesimal radius, is extended along 

the z  direction with length l  from the point ),0,0(),,( 0000 zzyx = .  The anticline 

aquifer has a finite width in the x  direction, a finite thickness in the z  direction, 

but infinite extent in both ±  y directions.  In addition, the aquifer is confined, 

homogeneous, and anisotropic with the hydraulic conductivities of xk , yk  and zk  

respectively in the x , y  and z  directions.  To simplify the flow problem, three 

successive blocks with different height and width are used to mimic the topographical 

shape of anticline aquifer as shown in Figure 1.  The height of the middle block is 

determined by the acme of the anticline structure while those of the adjacent blocks 

are designated by the corresponding margins of the limbs.  The adopted widths of 

the blocks should make the approximated aquifer has the same volume as the original 

one as possible.  Furthermore, the anticline aquifer is decomposed into four 

subdomains, i.e., zones 1P, 1N, 2 and 3, according to the shapes of blocks and the well 

location. 

The mathematical model is developed in a dimensionless form to produce the 

simulated results in the most general way.  The height of the middle block, 1b , is 
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chosen as a reference length to nondimensionalize other variables.  The 

dimensionless variables and parameters are defined as follows: 1bxxD = , 

1byyD = , and 1bzzD =  denoting the dimensionless coordinate variables; 

100 bxx D = , 100 byy D = , and 100 bzz D =  representing the top point of the 

pumping well in the dimensionless form; 1bax iDai =  representing the 

dimensionless distance in x -direction of the outer boundary from the origin in zone 

i ; 1bbz iDbi =  defining the dimensionless height of zone i , except that 11 =Dbz  

standing for those in zones 1P and 1N; 1bss iDi =  denoting the dimensionless 

drawdown in zone i , where the notation is  is the drawdown in zone i  (L); 

1blzDl =  representing the dimensionless screen length of the pumping well; 

1bkqq xD =  expressing the dimensionless volumetric pumping rate per unit length of 

the pumping well, where the notation q  is the volumetric pumping rate per unit 

length (L2T-1); xyyx kk=χ  and xzzx kk=χ  representing the anisotropy ratios.  

 

2.1.1 Formulation for flow in zone 1 

In the construction of the mathematical model, the middle block (shown in 

Figure 1) is regarded as zone 1, which includes zones 1P and 1N.  The steady-state 

groundwater flow to the pumping well in zone 1 is governed by   
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where U  and δ  are the unit step function and Dirac delta function, respectively.  

The sink term in Eq. (1) implies that the flux through the screen is of uniform strength.  

The boundary conditions at infinity from the sink in the y  direction are assumed to 

be  

)2(0),,(1 =∞± DDD zxs

and 

)3(0),,(1 =
∂

∞±∂

D

DDD

y
zxs

 For a confined aquifer, the conditions at the top and bottom impermeable 

boundaries are respectively written as 
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DDD

z
yxs

 and 
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∂
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DDD

z
yxs

The continuities of flux and drawdown at the right-hand edge of zone 1 are 

respectively as 
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)7(0),,,(),,( 21211 DbDDDPDaDDDPDaD zzzyxszyxs <≤=

 Similarly, for the left-hand edge of zone 1, the following conditions should be 

satisfied: 

⎪
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and 

)9(0),,,(),,( 31311 DbDDDNDaDDDNDaD zzzyxszyxs <≤=

 

2.1.2 Formulation for flow in zone 2 

The steady-state groundwater flow equation in zone 2 is expressed as:   

)10(0,,,0 2212
2

2

2
2

2

2
2

2

DbDDDaDPDa
D

D
zx

D

D
yx

D

D zzyxxx
z
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y
s

x
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∂
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+
∂
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+
∂
∂ χχ

The boundary conditions at infinity in the y±  directions require that 

)11(0),,(2 =∞± DDD zxs

and 

)12(0),,(2 =
∂

∞±∂

D

DDD

y
zxs

The no-flow conditions hold at the top and bottom boundaries respectively as  

)13(0),,( 22 =
∂

∂

D

DbDDD

z
zyxs

and 
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)14(0)0,,(2 =
∂

∂

D

DDD

z
yxs

Assume that a constant-head boundary located at the lateral distance of 2Dax  from 

the pumping well; that is,   

)15(0),,( 22 =DDDaD zyxs

Note that Eqs. (6a) and (7), representing the continuity conditions of flux and 

drawdown at the interface between zones 1P and 2, are the left-hand boundary 

conditions of zone 2. 

 

2.1.3 Formulation for flow in zone 3 

The steady-state groundwater flow equation in zone 3 is given by   

)16(0,,,0 3132
3

2

2
3

2

2
3

2

DbDDNDaDDa
D

D
zx

D

D
yx

D

D zzyxxx
z
s

y
s

x
s

≤≤∞≤≤∞−≤≤=
∂
∂

+
∂
∂

+
∂
∂ χχ

The boundary conditions at infinite distance in the ± y  directions require that 

)17(0),,(3 =∞± DDD zxs

and

)18(0
),,(3 =

∂
∞±∂

D

DDD

y
zxs

The top and bottom conditions in zone 3 are respectively given as 

)19(0
),,( 33 =

∂
∂

D

DbDDD

z
zyxs

and 

)20(0
)0,,(3 =

∂
∂

D

DDD

z
yxs
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A constant-head condition is applied at the lateral distance of 3Dax  from the pumping 

well, which is described as   

)21(0),,( 33 =DDDaD zyxs

Furthermore, Eqs. (8a) and (9) state the continuity requirements of flux and 

drawdown at the interface between zones 1N and 3. 

 

2.2 Analytical solutions  

2.2.1 Dimensionless drawdown solutions for zones 2 and 3 

To solve the partial differential equations (1), (10), and (16) with their 

corresponding boundary conditions, the techniques of FT and FFCT are used with 

respect to the variables Dy  and Dz , respectively, to obtain the ordinary differential 

equations (ODEs) in terms of Dx .  Note that formulas of FFCT applied to (1), (10), 

and (16) are different since the independent variable Dz  ranges over different 

intervals in zones 1, 2, and 3, respectively.  We first deal with the flow problem in 

zones 2 and 3 since their governing equations are simple and of the same form.  The 

integral transforms and derivations for the solutions are given in Appendix A.  The 

dimensionless drawdown solution of zone 2 in Fourier domain satisfying the 

conditions (10) to (15) is given as: 

)22()cos()()(),(
1

002 DnDn
n

nDDDD zxAVxAVzxs ω∑
∞

=
+=
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where  

)23(,...3,2,1,0,
)](sinh[

)](sinh[)(
12

2 =
−
−

= n
xx
xxxA

PDaDan

DDan
Dn α

α

with 

)24(,...3,2,1,0,22 =+= nzxnyxn χωχεα

In Eq. (24), ε  is the FT transform variable; nω  is the transform variable used with 

respect to Eq. (10) in the FFCT for the integral interval [ 2,0 Dbz ], which is defined as 

)25(,...3,2,1,0,
2

== n
z
n

Db
n

πω  

Note that the coefficients 0V  and nV  are the constants needed to be determined by 

the remaining boundary conditions (6a) and (7).   

 As for zone 3, the dimensionless drawdown solution of Eq. (16) in Fourier 

domain satisfying conditions (17) to (21) is expressed in the series form as: 

)26()cos()()(),(
1

003 DkDk
k

kDDDD zxBWxBWzxs ζ∑
∞

=
+=

where  

)27(,...3,2,1,0,
)](sinh[

)](sinh[)(
13

3 =
−
−

= k
xx

xxxB
NDaDak

DDak
Dk β

β

with 

)28(,...3,2,1,0,22 =+= kzxkyxk χζχεβ

and kζ  being the transform variable used in the FFCT to Eq. (16) for the integral 

interval [ 3,0 Dbz ], which is defined as 

)29(,...3,2,1,0,
3

== k
z
k

Db
k

πζ
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The coefficients 0W  and kW  in Eq. (26) are the remaining undetermined constants.   

 

2.2.2 Dimensionless drawdown solution for zone 1 

 The presence of line sink term in Eq. (1) makes it complicated to derive the 

solution.  First, the FT with respect to Dy  and FFCT with respect to Dz  are 

applied to Eq. (1) and the result is  

)30(),(ˆ)(
ˆ

1101
22

2
1

2

PDaDNDaDDcDDzxmyx
D

D xxxxxUqs
dx

sd
≤≤−−=+− δχλχε

where 1
ˆ

Ds  is the dimensionless drawdown in Fourier and Finite Fourier cosine 

domain; mλ  is the transform variable used in the FFCT to Eq. (1) for the integral 

interval [ 1,0 ], which is defined as 

)31(,...3,2,1,0, == mmm πλ

In addition, 

)32()cos(
0

0

∫
−

=
D

DlD

z

zz
DDmc dzzU λ

which can be reduced to Dlcc zUU == 0  when 0=m ; otherwise,  

)33(,...3,2,1,)](sin[)sin( 00 =
−−

== mzzzUU
m

DlDmDm
cmc λ

λλ

To solve Eq. (30) with the term of Dirac delta function, we consider the following sets 

of ODEs by dividing zone 1 into zones 1P and 1N as:  

)34(0,0ˆ)(
ˆ

11
22

2
1

2

PDaDPDzxmyx
D

PD xxs
dx

sd
≤<=+− χλχε

and 
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)35(0,0ˆ)(
ˆ

11
22

2
1

2

<≤=+− DNDaNDzxmyx
D

ND xxs
dx

sd χλχε

The boundary condition at 0=Dx  due to the continuity must be satisfied, which is 

expressed as  

)36()0(ˆ)0(ˆ
11

−+ = NDPD ss

Integration of (30) with respect to Dx  along −0  to +0  yields the second boundary 

condition as 

)37()0(ˆ)0(ˆ
11

cD
D

ND

D

PD Uq
dx

sd
dx

sd
−=−

−+

The dimensionless drawdown solutions for zones 1P and 1N in Fourier domain can be 

obtained by taking the inversion of FFCT to the solutions of (34) and (35) with 

conditions (36) and (37).  Applying Eqs. (6) and (8) to the solutions of zones 1P and 

1N, respectively, yields    
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for describing the dimensionless drawdown in zone 1P and 
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for describing the dimensionless drawdown in zone 1N, where  
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 Substituting Eqs. (22) and (38) into Eq. (7), the coefficients 0V  and nV  can be 

expressed as the functions of 0V , nV , 0W  and kW  via the determination of the 

coefficients in the Fourier cosine series.  Similarly, the coefficients 0W  and kW  are 

related to 0V , nV , 0W  and kW  by the Fourier cosine series of substituting (26) and 

(39) into (9).  The coefficients 0V , nV , 0W  and kW  can then be solved in the 

matrix form as presented in Appendix B (i.e., Eq. (B1)).   

 

2.3 Numerical Evaluations 

2.3.1 Calculation on Eqs. (22), (26), (38), and (39) 

In this study, all of the numerical evaluations are made via FORTRAN with 

double precision.  The drawdown solutions given by Eqs. (22), (26), (38), and (39) 

require the evaluation of infinite series with the coefficients 0V , nV , 0W  and kW  

determined by Eq. (B1).  The subroutine DLSLRG of IMSL (2003) is used to solve 

Eq. (B1) by setting i = j = k = n up to 100; accordingly, 202 linear equations should be 

solved simultaneously.  In addition, the Shanks’ transform method (Shanks, 1955) as 

a technique of accelerating the convergence of sequences is applied to compute the 

summation within 100 terms. 
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2.3.2 Inverse Fourier Transform 

The FT of function )( Dyf  with respect to the variable Dy  is defined as 

(Jaffrey and Dai, 2008): 

(50))()( D
yi

D dyeyff D∫
∞

∞−

−= εε

where )(εf  is the transformed function and its inversion is expressed as  

(51))(
2
1)( εε
π

ε defyf Dyi
D ∫

∞

∞−
=

The function )(εf  can refer to the drawdown solutions, Eqs. (22), (26), (38), and 

(39), in the Fourier domain for the flow in the anticline aquifer.  Since the drawdown 

solutions are even functions with respect to the variable ε , Eq. (51) can be reduced 

to 

(52))cos()(1)(
0

εεε
π

dyfyf DD ∫
∞

=

The numerical evaluation of Eq. (52) is achieved by the routine DQDAWF of IMSL 

(2003), which has the ability to cope with integrals of semi-infinite interval and of 

cosine or sine integrands. 

 

2.4 Numerical Simulations in MODFLOW   

MODFLOW (McDonald and Harbaugh, 1988; Harbaugh and McDonald, 1996a, 

1996b) is a computer program, developed based on the block-centered finite 

difference method, that simulates the three-dimensional groundwater flow in a porous 
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medium.  The heads in each cell are calculated by solving the finite-difference flow 

equations for the head at a node and its six adjacent nodes at the end of a time step.  

The equations for the entire grid are expressed in a matrix form and solved 

simultaneously at each time step.  In this study, we use the software Processing 

MODFLOW for Windows (PMWIN) version 5.3 (Chiang and Kinzelbach, 2001), 

which provides a graphical interface and integrated platform for the program, to 

simulate the flow in a groundwater system.  The users can easily prepare the grid 

information and the related input data, e.g., initial condition, boundary conditions, and 

hydrogeological parameters, via PMWIN for the problem.  The grid discretization 

and other setting information corresponding to the simulated cases will be 

demonstrated thereafter.  The preconditioned conjugate-gradient package 2 (PCG2 

package) is chosen to solve the equation system.  The iteration stops when the 

maximum number of iterations are achieved or absolute value of the head change and 

the residual of the matrix at all nodes during an iteration are less than or equal to 

0.001 m and 0.001 m3/s, respectively.  The outer iterations update the coefficient 

matrix and the vector, which is associated with head-dependent boundary conditions 

at each cell, in the equation system with the newly calculated hydraulic heads.  The 

inner iterations solve the new set of coefficient matrix and vector.  The maximum 

numbers of outer and inner iterations are setting as 50 and 30, respectively.   
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CHAPTER 3 RESULTS AND DISCUSSION 

3.1 Special cases 

3.1.1 Slab-shaped aquifer bounded by parallel constant-head boundaries 

The present solution can be simplified to describe the pumping in an isotropic 

slab-shaped aquifer bounded by two parallel constant-head boundaries along 

y-direction if the three blocks are of the same height, i.e., 1321 === DbDbDb zzz .  In 

this section, we assume a fully penetrating well pumped at a dimensionless flow rate 

of 1== DlDD zqQ  and located at the middle of the slab-shaped aquifer with 12 =Dax  

and 13 −=Dax .  Accordingly, no vertical flow appears in the aquifer, i.e., the 

dimensionless drawdown solution is not a function of Dz .  The same problem can 

refer to Ferris et al. (1962, Figure 42), who illustrates the application of image-well 

method for the pumping in an aquifer bounded by two parallel boundaries.  The 

solution for drawdown at an observation well can be evaluated as the sum of the 

drawdowns and buildups due to the pumping well and image wells.  If an 

observation well is located at the dimensionless distance of Dr  from the pumping 

well, the dimensionless drawdown at the well can be formulated by superposition of 

Theis solution (1935) as  

)53(])()1()()1()([
4

),(
11

∑∑
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=
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=
−+−+=
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D
DDD uWuWuWQtrs
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where W  is the well function; pu , imu , and inu  are the dimensionless variables 



 20

respectively defined as 

)54(
4

2

D

D
p t
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)55(
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mrmru θ−+
=

and 

)56(
4

)cos(44 22

D

DD
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nrnru θπ −−+
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in which θ  is the angle between the positive Dx -axis and the line connecting the 

pumping and observation wells; Dt  is the dimensionless time defined as  

)57(2
1 Sb
TttD =

with T  and S  are the transmissivity and storativity of the aquifer, respectively.  

Note that Dt  should be large enough and the flow system reaches the steady state so 

that the dimensionless drawdowns calculated by the image-well method and the 

simplified solution can be compared.  The value of the infinite series in Eq. (53) is 

evaluated by the Shanks method (1955) to accelerate the convergence.  Figure 2 

compares the dimensionless drawdown calculated by the present solution and Eq. (53) 

for pumping at the middle of the slab-shaped aquifer bounded by two parallel 

constant-head boundaries.  The dimensionless drawdown are calculated along the 

radial direction when 0=θ , 4/π , and 2/π .  The dimensionless drawdown 

distributions predicted by the present solution in this special case match very well 

with those predicted by Eq. (53).  
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3.1.2 Hillslope aquifer 

The simulation for flow in a hillslope confined aquifer due to pumping is carried 

out by setting two of the adjacent blocks with the same height.  Assume a hillslope 

aquifer is mimicked by the step-like aquifer, which has 5.01 =PDax , 5.01 −=NDax , 

22 =Dax , 13 −=Dax , 131 == DbDb zz , and 5.02 =Dbz  with a fully penetrating well 

pumped at a dimensionless pumping rate of 1=DQ .  Figure 3a shows that at steady 

state the contour lines of the dimensionless drawdown and the flow field are 

influenced by the inclination in the hillslope aquifer.  The vertical flow appears 

around the concave corner of the top boundary while the flow seems horizontal 

elsewhere.  

The simulation results for the hillslope aquifer from MODFLOW are compared 

with that evaluated by the present solution.  The confined aquifer simulated by 

MODFLOW is bounded by two parallel constant-head boundaries with the distance of 

30 m in width.  The aquifer thickness varies from 10 m to 5 m in the hillslope.  

Note that the infinite boundaries in the ± y-directions are replaced by assigning two 

constant-head boundaries located at ±40 m from the pumping well.  The hydraulic 

conductivities are 10-4 m/s in the x-, y- and z-directions.  The pumping rate at the 

well is 10-2 m3/s so that the dimensionless pumping rate will be 1=DQ .  The length 

of time is set to be 7109.46728×  s (1095.75 day) for the steady-state simulation.  
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The model domain has been discretized using a uniform cubic grid with a step of 0.5 

m.  That is, the aquifer is discretized with 21 layers, 61 columns, and 161 rows.  

Figures 3b provides simulated results in the dimensionless form using MODFLOW 

for the case that the hillslope aquifer is mimicked by the step-like aquifer, as that used 

in Figure 3a.  The figure indicates slight difference on the drawdown distribution 

occurs near the concave corner of the top boundary, taking the dimensionless 

drawdown contour of 0.3 for comparison, between the present solution and 

MODFLOW.  The flow pattern shown in Figure 3c is a more reasonable one among 

those in Figure 3 because of the elaborate representation on the slope boundary.  The 

significant flexure contours between 0.2 and 0.6 reflect the influence of top inclined 

boundary on the flow pattern.   

 

3.2 Base case of anticline aquifer 

To investigate the influence of aquifer geometry on the flow pattern, we assume 

a simple case of a fully penetrating well located at an isotropic anticline aquifer.  

Figure 4a depicts the dimensionless drawdown in the Dx - Dz  plane for Dy = 0 when 

the constant-flux pumping at the anticline aquifer with the geometry 5.01 =PDax , 

5.01 −=NDax , 12 =Dax , 13 −=Dax , and 5.032 == DbDb zz .  The well pumps at a 

dimensionless flow rate of DQ = 1.  The dimensionless drawdown contours reveal 
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that most of water flows horizontally around the well screen and in the limbs; 

however, conspicuous vertical flow appears around the concave corner of the top 

boundary.  Figures 4b and 4c show the drawdown distribution in the Dy - Dz  plane 

for Dx = 0.2 and 0.8, respectively.  The value of Dy  ranges from 0 to 1 since the 

dimensionless drawdown distribution is expected to symmetrical with respect to the 

plane Dy = 0 and little concern may be paid on the drawdown distribution that is far 

away from the well.  The dimensionless drawdown contours intersect with the top 

and bottom impervious boundaries at right angles.  The figures indicate that the 

antiform of the aquifer indeed affects the three-dimensional flow pattern; otherwise, 

the contours in Figure 4 should be parallel to the Dz -axis for the case with a fully 

penetrating well.  At steady state, water flows to a well in the system comes from 

two sources: the constant-head boundaries at 1±=Dx  and the remote boundaries in 

the y -direction.  However, in the upper part of the ridge zone, there are limited 

flows from the former source due to the antiform of the aquifer.  Therefore, as shown 

in Figures 4b and 4c, the dimensionless drawdown increases with Dz  at a given Dx  

and Dy  to sustain the uniform and constant-flux condition along the whole well 

screen.  This fact also implies the presence of the vertical upward flow, especially 

near 0=Dy . 

Figure 5 illustrates the dimensionless drawdown contours being predicted by 
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MODFLOW for the case of identical well and aquifer system as Figure 4.  In the 

simulation, the anticline aquifer is bounded by two parallel constant-head boundaries 

with a distance of 20 m in width.  The acme of the anticline structure is 10 m in 

height; the limbs intersect with the two parallel constant-head boundaries at 5 m in 

height.  The settings of the y-direction boundaries, hydraulic conductivities, 

pumping rate and time length are the same as those used in the simulation of the 

hillslope aquifer.  The aquifer is discretized into a mesh with 21 layers, 41 columns 

and 161 rows.  The drawdown contours in Figure 5a seem similar to those depicted 

in Figure 4a except that slight differences can be observed around the concave corner 

of the top boundary and the pumping well.  In adjacent to the pumping well, 

MODFLOW gives smaller dimensionless drawdown than the present solution.  

Figures 5b and 5c show the simulated results based on MODFLOW for the 

dimensionless drawdown contours in the Dy - Dz  plane for Dx = 0.2 and 0.8, 

respectively.  On the top-left region of both figures, the dimensionless drawdown 

values calculated by MODFLOW are small in comparison with those evaluated by the 

present solution as illustrated in Figures 4b and 4c. 

Figure 6 shows the dimensionless drawdown contours predicted by the 

MODFLOW for the flow in the anticline aquifer with the top curved boundary being 

mimicked by multiple steps.  The settings of the x-direction and y-direction 
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boundaries, hydraulic conductivities, pumping rate and time length are the same as 

those used in the simulation of Figure 5.  The aquifer is discretized into a mesh with 

21 layers, 41 columns and 161 rows.  Figure 6a shows that the flow to a fully 

penetrating well in an anticline aquifer with its top boundary being mimicked by 

multiple steps results in the smooth and curved drawdown contours in the profile.  

Figures 6b and 6c exhibit the dimensionless drawdown contours in the Dy - Dz  plane 

for Dx = 0.2 and 0.8, respectively.  The dimensionless drawdown values plotted in 

Figures 6a and 6b are smaller than those in Figures 5a and 5b, respectively.  The 

oblique contours shown in Figure 6c imply that there is much more vertical flow 

occurs on this profile; additionally, the predicted drawdown values are significantly 

smaller in the bottom region (around 4.00 << Dz ) and larger near the top region 

(around 5.04.0 << Dz ) when comparing with the contours sketched in Figures 5c for 

the region 5.00 << Dz .  Moreover, the contours intersected with the top boundaries 

at bevel angles, especially in Figure 6c, due to the coarse discretization on the model 

grid.  Comparing the results sketched in Figures 5 and 6 indicate that one may 

overestimate the dimensionless drawdown when applying the simple one-step like top 

boundary to simulate the anticlinal geometry.  
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3.3 Effect of anticline aquifer geometry 

Figure 7 examines two other aquifers with different geometries by considering 

the aquifer portrayed in Figure 4 as a base case.  For an anticline aquifer of thin 

limbs, as shown in Figure 7a, the height of the limbs are reduced to half of that in the 

base case, i.e., 25.032 == DbDb zz .  In addition, Figure 7b depicts the case of 

narrow-ridged anticline with 25.01 =PDax  and 25.01 −=NDax .  Similar to the results 

of the base case, both figures show that most of water flows horizontally in the zone 

around the well and in the limbs.  Significant vertical flow appears around the 

concave corner of the top boundary in the ridge zone due to the geometric variation.  

The anticline aquifers with thin limbs or narrow ridge both cause a sharp head drop in 

the ridge zone in comparison with that of the base case at steady state.  Figure 8 

compares the dimensionless drawdown distribution along ( DD zy , ) = (0, 1) for these 

two cases with that of the base case.  The figure again indicates that the cases of thin 

limbs and narrow ridge both have much larger head drop at steady state than that of 

the base case. 

 

3.4 Effect of well partial penetration 

3.4.1 Effect of screen length and aquifer anisotropy 

Figure 9 demonstrates the largest dimensionless drawdown at 
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)0,001.0(),( =DD yx  along the z-direction for the cases of different dimensionless 

screen length of =Dlz 0.2, 0.4, 0.6, 0.8 and 1.0 and various aquifer anisotropy ratios 

of =zxχ 0.3, 1.0, and 3.0.  The wells are screened from the top of the aquifer with a 

constant dimensionless pumping rate of 1=DQ .  Among these cases, the largest 

dimensionless drawdown appears at the case of the smallest zxχ  and Dlz  ( =zxχ 0.3 

and =Dlz 0.2) near the top of the aquifer.  Moreover, the influence of aquifer 

anisotropy on the drawdown increases with the decrease of screen length.   

Figures 10a and 10b display the dimensionless drawdown contours for the 

anisotropic cases of 3.0=zxχ  and 3, respectively.  In Figure 10a, significant 

vertical flow can be observed in the ridge and limb zones.  The contours for Ds = 

0.3 to 0.8 are nearly horizontal, which reflect apparent vertical flow cross this region.  

Because of xk  is larger than zk  in this case ( 3.0=zxχ ), most of flow goes through 

the horizontal path surrounding the well leading to the larger drawdown in the upper 

zone 1 (i.e., 18.0 <≤ Dz ).  The resultant hydraulic gradient as well as the boundary 

restriction causes an obvious vertical flow below this zone.  On the other hand, 

Figure 10b represents an uncommon case of zk  being larger than xk  ( 3=zxχ ).  In 

this case, the vertical path for flow into the well is superior to the horizontal one, 

which results in the contours around the well look like half ellipses.  The flow in the 

limbs is mainly horizontal.  However, obviously vertical flow can be observed in the 
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central zone 1 below the well ( 8.0<Dz  and 2.0<Dx ) and around the concave 

corner of the top boundary in the anticline.   

 

3.4.2 Effect of penetration ratio 

The penetration ratio, i.e., the ratio of well screen length to aquifer thickness, in 

the real anticline aquifer and approximated aquifer may be different if the partially 

penetrating well is not located at the Dy - Dz  plane that contains the acme of anticline 

and used to determine the height of zone 1.  Considering the case of an anticline 

aquifer whose top boundary consists of isosceles ramps, the simulation of drawdown 

distribution is achieved based on the present solution via approximating the aquifer 

geometry as the base case.  A partially penetrating well with the dimensionless 

screen length of 0.8 is located at a dimensionless Dx  distance of 0.25 from the 

midline of the anticline aquifer, where the real dimensionless thickness of aquifer 

would be 0.875.  Therefore, the penetration ratio is 0.914 for the well in the real 

anticline aquifer.  Note that the ratio, however, becomes 0.8 in the approximated 

aquifer if the dimensionless screen length in the simulation maintains the same as the 

real one.  To investigate the effect of distorted penetration ratio applied in the 

simulation, Figure 11 shows the drawdown distributions for three partially penetrating 

wells with Dlz  being equal to 0.8, 0.857, and 0.914.  In the simulation, the cases of 
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8.0=Dlz  and 0.914 represent the use of real dimensionless screen length and 

dimensionless screen length in the approximated aquifer that has the penetration ratio 

the same as that in the real aquifer, respectively.  Furthermore, the case of 

857.0=Dlz  represents the average between two aforementioned lengths.  In Figure 

11, the dimensionless drawdown contours for the flow to the three partially 

penetrating wells differ considerably at the top region of ridge zone and around the 

top end of the well.  However, the use of 8.0=Dlz  would be the better one to 

simulate the flow toward the top end of the well.  

 

3.4.3 Effect of well location 

Figure 12 illustrates the influence of well location on the flow pattern.  The 

dimensionless screen length of the partially penetrating well is considered to be 

=Dlz 0.2; additionally, the isotropic anticline aquifer has the same geometry as the 

base case.  Figures 12a and 12b display the dimensionless drawdown contours at 

0=Dy  for the pumping at a partially penetrating well located at the top-middle and 

bottom-middle of the aquifer, respectively.  The flow patterns on the profile are 

symmetrical to the midline of the aquifer.  Most of water flows horizontally in the 

limbs except in the zone near the concave corner of the top boundary.  Obviously 

upward and downward vertical flows occur in the aquifer as illustrated in Figures 12a 
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and 12b, respectively, especially in the zone toward the extremity of the well.  The 

present solution can simulate the dimensionless drawdown for an arbitrarily located 

pumping well in the ridge zone.  In the case of Figure 12c, the partially penetrating 

well with the dimensionless screen length of 0.2 is located at a dimensionless distance 

of 0.25 from the midline of the anticline aquifer.  Also note that the geometry of 

anticline aquifer in Figure 12c is the same as that in the base case.  The figure shows 

an asymmetrical flow pattern affected by the well location and aquifer geometry.  

Considerable vertical flow appears in the ridge zone and in the right limb where Dx < 

0.35.  In addition, among these three cases, the well located at the top-middle of the 

aquifer, as shown in Figure 12a, has the largest dimensionless drawdown around the 

well.  
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CHAPTER 4 CONCLUSIONS 

A mathematical model has been developed for describing the steady-state flow 

caused by the constant-flux pumping in an anticline aquifer.  The proposed model 

can account for the flow in response to partially or fully penetrating wells which are 

of infinitesimal diameter and with uniform inflow flux along the well screen.  The 

anticline aquifer is homogeneous, anisotropic and confined with a shape being 

mimicked by three consecutive blocks.  The integral transform techniques FT and 

FFCT are applied to derive the steady-state solutions in transform space.  The 

coefficients in the solutions require solving a system of linear equations represented in 

a matrix form.  Finally, the Fourier inversion is applied to obtain the drawdown 

solution in real space. 

The present solution is applicable to simulate the flow in a slab-shaped aquifer or 

a hillslope aquifer by assuming two or three successive blocks are of the same height.  

For a slab-shaped aquifer, the simulated drawdown responses based on the present 

solution are identical to those evaluated by the image-well method when the well is 

fully penetrating and the aquifer is homogeneous, isotropic, confined and bounded by 

two parallel constant-head boundaries.  Both the present solution and the numerical 

model, MODFLOW, are applied to simulate the case of flow in a hillslope aquifer.  

The grid settings allow MODFLOW to simulate the slope boundary in a more realistic 
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manner.  Small differences between these simulated results can be observed around 

the step-like boundary.  In addition, the solution is used to investigate the influence 

of the aquifer geometry and anisotropy as well as the well partial penetration and 

location on the steady-state flow pattern.  The results shown in these cases exhibit 

significant vertical flow around the concave corner of the top boundary for a fully 

penetrating well or a partially penetrating well located at the hump zone of the 

anticline.  The constant-flux pumping in a thin-limbs or narrow-ridged anticline 

would cause a much sharp head drop in the ridge zone.  The influence of aquifer 

anisotropy on the observed drawdown cannot be ignored when the pumping carries 

out in a partially penetrating well, especially for the well of short open screen.  

When the screen length or/and the anisotropy ratio decreases, the dimensionless 

drawdown around the pumping well increases under the same constant pumping rate. 

In addition, we suggest using the real dimensionless screen length in the simulation 

even if the penetration ratio may be changed in the simplified anticline aquifer.  

Finally, the present solution can simulate the flow field for an arbitrarily located 

pumping well.  Naturally the flow field will change with the location of the pumping 

well.  The well located at the top-middle of the aquifer would produce larger 

drawdown around the well because of the boundary restriction on the anticline shape.  

The model MODFLOW, which can provide a better approximation on the curved 
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boundary, is employed to simulate the flow field of the anticline aquifer.  The 

simulated results are compared with those of the present solution for the flow toward 

a fully penetrating well in an anticline aquifer.  The present solution gives slightly 

higher dimensionless drawdown than the MODFLOW while the simulation is 

achieved by approximating the top boundary of aquifer with multiple steps.  The 

drawdown solution derived in this study can be further applied to identify the aquifer 

parameters if integrated with an optimization algorithm and to do preliminary 

assessment for a potential waste disposal site.  
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APPENDIX A DERIVATION OF EQ. (22) 

This appendix demonstrates the procedure for obtaining Eq. (22).  Taking FT 

and FFCT to Eq. (10) with boundary conditions (11) to (14) results in  

)1(,0ˆ)(
ˆ

212
22

2
2

2

Α≤≤=+− DaDPDaDzxnyx
D

D xxxs
dx

sd χωχε

with ε  and nω  represent the transform variables in relation to Dy  and Dz , 

respectively.  The solution for the ODE is  
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where nα  is defined by Eq. (24); 1P  and 2P  are the coefficients needed to be 

determined by conditions (6a), (7), and (15).  If one takes the inversion of FFCT to 

Eq. (A2), the solution in Fourier domain is 
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Eq. (A3) represents the drawdown solution for zone 2 in the Fourier domain.  Eq. 

(22) is expressed by new coefficients in the Fourier series, which are obtained by 

inserting Eqs. (7) and (15) into (A3) and applying the inversion formula of the FFCT.  

Similar procedure can be taken for deriving Eq. (26), i.e., the drawdown solution for 

zone 3 in the Fourier domain.  Note that kζ  defined in Eq. (26) is chosen as the 

transform variable when applying FFCT over the interval [ 3,0 Dbz ]. 
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APPENDIX B MATRIX FORMULATION FOR SOLVING COEFFICIENTS 

The coefficients 0V , nV , 0W  and kW  in Eqs. (22), (26), (38), and (39) 

construct a system of 2++ ji  linear equations, which can be expressed in matrix 

form as  
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Figure 1. Schematic representation of a groundwater flow problem in an anticline 

aquifer with a line sink located along the z axis.  The anticline aquifer is 

approximately divided into three blocks. 
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Figure 2. The dimensionless drawdown distributions predicted by the present solution 

and the image-well method (Ferris et al., 1962) for pumping at the middle of a 

slab-shaped aquifer bounded by two parallel constant-head boundaries. 
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Figure 3. Dimensionless drawdown contours and flow field for the pumping at a fully 

penetrating well in a hillslope aquifer.  The simulations were carried out to a 

step-like aquifer by (a) the present solution, (b) MODFLOW, (c) MODFLOW with 

multiple steps to approximate the inclined boundary. 
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Figure 4. Dimensionless drawdown contours produced by the present solution for the 

pumping at a fully penetrating well in an isotropic anticline aquifer.  The 

cross-sectional view on (a) Dx - Dz  plane for 0=Dy , (b) Dy - Dz  plane for 

2.0=Dx , and (c) Dy - Dz  plane for 8.0=Dx . 
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Figure 5. Dimensionless drawdown contours produced by MODFLOW for the 

pumping at a fully penetrating well in an isotropic anticline aquifer.  The applied 

aquifer geometry is the same as that in Figure 4.  The cross-sectional view on (a) 

Dx - Dz  plane for 0=Dy , (b) Dy - Dz  plane for 2.0=Dx , and (c) Dy - Dz  plane 

for 8.0=Dx . 
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Figure 6. Dimensionless drawdown contours produced by MODFLOW for the 

pumping at a fully penetrating well in an isotropic anticline aquifer.  The upper 

boundary of anticline aquifer is approximated by multiple steps.  The cross-sectional 

view on (a) Dx - Dz  plane for 0=Dy , (b) Dy - Dz  plane for 2.0=Dx , and (c) 

Dy - Dz  plane for 8.0=Dx . 
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Figure 7. Plots of dimensionless drawdown contours and flow fields for pumping at a 

fully penetrating well in an isotropic aquifer of (a) thin limbs and (b) narrow ridge.  
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Figure 8. Dimensionless drawdown responses versus Dx  calculated at ( DD zy , ) = 

( 1,0 ) for the base case shown in Figure 4 and the cases investigated in Figure 7.  
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Figure 9. A comparison of largest dimensionless drawdown at )0,001.0(),( =DD yx  

for the cases of different screen length and aquifer anisotropy ratios.  The wells are 

screened from the top-middle of the anticline aquifer.  The geometry of the aquifer is 

the same as the base case shown in Figure 4. 
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Figure 10. Plots of dimensionless drawdown contours and flow fields for the pumping 

at a partially penetrating well in the aquifers with the anisotropy ratios of (a) 

3.0=zxχ  and (b) 3=zxχ .  The dimensionless screen length of the pumping well is 

0.2.  
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Figure 11. Plots of dimensionless drawdown contours for the pumping at partially 

penetrating wells in an aquifer with the dimensionless screen lengths of (a) 8.0=Dlz , 

(b) 857.0=Dlz and (c) 914.0=Dlz .  The wells are located at a dimensionless Dx  

distance of 0.25 from the midline of the anticline aquifer. 
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Figure 12. Plots of dimensionless drawdown contours and flow fields for the pumping 

at a partially penetrating well with the dimensionless screen length of 0.2.  The wells 

are located at (a) 0.10 =Dz  and (b) 2.00 =Dz  on the midline of the anticline aquifer 

and (c) 8.00 =Dz  at a dimensionless Dx  distance of 0.25 from the midline of the 

anticline aquifer. 
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