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An Analytical Drawdown Solution for Constant-flux

Pumping in a Confined Anticline Aquifer

Student : Yen-Ju Chen Adviser : Hund-Der Yeh
Institute of Environmental Engineering

National Chiao Tung University

ABSTRACT

An anticline known as a convex-upward fold in layers of rock commonly forms
during lateral compression, which may be elected as a potential site for underground
waste storage or carbon sequestration. -A constant-flux pumping test, which
maintains a constant pumping rate at the test well, measures and analyzes the
drawdown responses in one or several observation wells to determine the aquifer
parameters. In this study, a mathematical model is developed for describing the
steady-state drawdown distribution in the anticline aquifer during the constant-flux
pumping. In the derivation, the topographical shape of the anticline is mimicked by
three successive blocks. The infinite Fourier transform and finite Fourier cosine
transform are applied to obtain the solution of the model in the transform spaces.

The solution expressed as an integral form is then obtained from the Fourier inversion.



Predicted results from the solution reveal that a thin-limbs or narrow-ridged anticline

would cause a much larger head drop in the ridge zone. For a well of constant

pumping rate, the dimensionless drawdown around the well increases with decreasing

well screen length or/and aquifer anisotropy ratio. In examining the effect of well

location, we find the partially penetrating well located at the top-middle of the ridge

zone produces the largest drawdown. MODFLOW is a computer program that

simulates the groundwater flow based on the block-centered finite difference method.

Through the grid discretization, MODFLOW can imitate the antiform much closer to

reality. The simulation for the flow in an anticline aquifer results in slightly smaller

drawdown values when compared with those predicted by the present solution. The

present solution can also be used to simulate the flow in a slab-shaped aquifer or a

hillslope aquifer. It can be applied to identify the aquifer parameters and to design a

potential site for waste disposal in the future as well.

KEYWORDS: anticline aquifer, pumping test, partially penetrating well, anisotropy,

integral transform



N

Awmy RKFHhERPESRE L Lo Foup Fronflz =
FrAEAFRDWE c FFRTCEDER &0 2 Baid I AE
Voot Apr oz " FRHER Mo B FFIRT IR
PRPAE IR A RE P BT HTI B R VLS FEP IR
T EEIf CHA G Yl E AR R F LT R

B fx 2% o

4P

e

PREHFLIEITAE R BT L AL G g e Fle o B
R EEEL AR - FLITAFapd B3 FFol L~ LF2H

oo ¥ ooh s BB S hkATH s mide s L F S Hp TR s BB
R 3 # ® En

~

i

Ad B Rd o B Z‘%ﬁ‘ IR PR Ly 4 ii;’]t
ABfeBr% o TP E MG AFIE L AN aR 4 .

B {8 H#- gﬁ,@;’gugfk HIRA o P P AN R ARRE pF o 8 e
A A FEae o A N Efle A E LR o ;’@ﬁ“é‘nﬁ?‘%’%ff@i*’ﬁ i

A s R A BCE B R BB e

P R
LA FRB I ARG T

2010 # 8 *



TABLE OF CONTENTS

PR B B s I
ABSTRACT .t E b bt E e e bR R R e R R Rt Rt r e n e r e 1
= OSSOSOV UTPPTPTRRTPPPRPRR v
TABLE OF CONTENTS ...ttt bbbt e bt er et nnesr s \Y%
LIST OF FIGURES ... oot bbb VIl
LIST OF NOTATIONS ...ttt bt se bbbt bbb e e nnean b ane s Xl
CHAPTER 1 INTRODUGCT ION.. fiuui st fimimain suessesnessesssesaeseeiasnsiheessessessessessesssessessessessessessesseessessensenes 1
1.1 BACKGROUND ...cotiiiieieiee it asesse s sassas eibesaianesnsabeseesseessessens ihsasensessessesseessesssanennssnessesneaseeseennenes 1
1.2 LITERATURE REVIEW ....oiuiit it batus et sne it sn et she st nnen et an et 2
LB OBIECTIVE ..ottt bbb bbb et e Rt R R bbb e b bR 5
CHAPTER 2 METHODOLOGY ...ttt sttt sn b sne et 6
2.1 MATHEMATICAL MODELING OF THE FLOW PROBLEM .....ccviiiiiiiiitisieaiieeeiere s 6
2.1.1 Formulation for fIow in ZONE L.........ccooiiiiiiii e 7

2.1.2 Formulation for fIow iN ZONE 2. e 9

2.1.3 Formulation for fIow in ZONE 3.........cooiiiiiii e 10

2.2 ANALYTICAL SOLUTIONS .....cutiutitiiristesteeteaseessesat st she st s esse e an et bbbt s e s b an b e nean e 11
2.2.1 Dimensionless drawdown solutions for zones 2 and 3. 1

\Y



2.2.2 Dimensionless drawdown SOIUtION FOr ZONE L.......cccvvviiiviieiieieeeee e 13

2.3 NUMERICAL EVALUATIONS ...ttt ettt sr ettt ar e 16
2.3.1 Calculation on Egs. (22), (26), (38), @nd (39) .....ccoirririiiireeisieeese e 16

2.3.2 INVerse FOUNIEr TranSTOrM. ... .o 17

2.4 NUMERICAL SIMULATIONS IN MODFLOW .....ociiiiiiiiiiie s 17
CHAPTER 3 RESULTS AND DISCUSSION .....ccoiiiiiiiiiiitsiiseee e 19
UL SPECIAL CASES ...vitiitisieiieettet ettt sr et h et e bbbttt e bbbt b bt b e bt an bt r e 19
3.1.1 Slab-shaped aquifer bounded by parallel constant-head boundaries...........c..cccceeueneene 19

3.1.2 HillSIOPE QQUITEE ... ... cfines b iiimismine b sn s sues s bbb ettt bbbt sr et 21

3.2 BASE CASE OF ANTICLINE AQUIFER ...eeiuveiiiteeisnneissnsenreessisnaiusiitneansesansessnsesssssssnsessssessnsessnsessnsenas 22
3.3 EFFECT OF ANTICLINE AQUIFER GEOMETRY .....eiuvvesusfeiiastinneeasnesseesssesansesssssssnsesssssssnsessnsessnsesas 26
3.4 EFFECT OF WELL PARTIAL PENETRATION ......tttiititiitiatesieesrereesrestesnessesse e ssese e snesse s sseeeenne s 26
3.4.1 Effect of screen length and aquifer aniSOtrOPY ..........cccoeriiiiniineneeee e 26

3.4.2 Effect of PENetration FAtiO ..........ccccouiiiiiiiiii e 28

3.4.3 Effect Of WEl TOCALION. .......ccoiiiiiiiiiic e 29
CHAPTER 4 CONCLUSIONS ...ttt 31
REFERENGCES ...t bkt b bbbt b e b et bbbt b e enn e e nes 34
APPENDIX A DERIVATION OF EQ. (22) ...ooveititiieieiie ettt st sneneenea 38

VI



APPENDIX B MATRIX FORMULATION FOR SOLVING COEFFICIENTS........cccccovviineene.

VITA (5% ) ...

PUBLICATION LIST

Vil



Figure 1.

LIST OF FIGURES

Schematic representation of a groundwater flow problem in an anticline

aquifer with a line sink located along the z axis. The anticline aquifer is

approximately divided into three blocks..................cooiiiii 041

Figure 2. The dimensionless drawdown distributions predicted by the present solution

and the image-well method (Ferris et al., 1962) for pumping at the middle

of a slab-shaped aquifer bounded by two parallel constant-head

DOUNAIIES. ..o e o e e ettt e e e 42

Figure 3. Dimensionless drawdown. contours and flow field for the pumping at a fully

Figure 4.

penetrating well ina hillslope aquifer.  The simulations were carried out to
a step-like aquifer by (a) the present solution, (b) MODFLOW, (c)
MODFLOW with multiple steps to approximate the inclined
DOUNDANY.....e e e e A3
Dimensionless drawdown contours produced by the present solution for the
pumping at a fully penetrating well in an isotropic anticline aquifer. The
cross-sectional view on (a) x,-z, plane for y, =0, (b) y,-z, plane

for x,=0.2,and (c) y,-z, planefor x; =0.8......ccooeiiiiiiiiiinnnn. 44

Figure 5. Dimensionless drawdown contours produced by MODFLOW for the

pumping at a fully penetrating well in an isotropic anticline aquifer. The

Vil



Figure 6.

Figure 7.

Figure 8.

Figure 9.

applied aquifer geometry is the same as that in Figure 4. The
cross-sectional view on (a) x,-z, plane for y, =0, (b) y,-z, plane
for x,=0.2,and (c) y,-z, planefor x; =0.8.....ccccoeiiiiiiiiinininnnn 45
Dimensionless drawdown contours produced by MODFLOW for the
pumping at a fully penetrating well in an isotropic anticline aquifer. The
upper boundary of anticline aquifer is approximated by multiple steps.
The cross-sectional view on (a) x,-z, plane for y, =0, (b) y,-z,
plane for x, =0.2,and (c) y,-z, planefor X, =0.8............ceevvvt. 46
Plots of dimensionless drawdown contours and flow fields for pumping at a

fully penetrating well in an isotropic aquifer of (a) thin limbs and (b) narrow

Dimensionless drawdown' responses versus X, calculated at (y,,zy) =

(0,1) for the base case shown in Figure 4 and the cases investigated in

U 7 e e e e 48

A comparison of largest dimensionless drawdown at (xy, Yy) = (0.001, 0)

for the cases of different screen length and aquifer anisotropy ratios. The

wells are screened from the top-middle of the anticline aquifer. The

geometry of the aquifer is the same as the base case shown in Figure



Figure 10. Plots of dimensionless drawdown contours and flow fields for the pumping
at a partially penetrating well in the aquifers with the anisotropy ratios of (a)
¥, =03 and (b) v, =3. The dimensionless screen length of the
puMPINg Well 1S 0.2, ...onieiiii i e e e D0

Figure 11. Plots of dimensionless drawdown contours for the pumping at partially
penetrating wells in an aquifer with the dimensionless screen lengths of (a)
z,, =08, (b) z, =0.857and (c) z, =0.914. The wells are located at a
dimensionless x, distance of 0.25 from the midline of the anticline
10 [0 =] SO N PP PP 51

Figure 12. Plots of dimensionless drawdown contours and flow fields for the pumping
at a partially penetrating well with the dimensionless screen length of 0.2.
The wells are located at (a) ‘z,, =1.0 and (b) z,, =0.2 on the midline of
the anticline aquifer and (c) z,, =0.8 at a dimensionless x, distance of

0.25 from the midline of the anticline aquifer...............cccii i, 52



B,

Cy Cors Cams Cors G

Im? ~¥2m? ~4m* ~6m?

C3n ! C5k ' C C9m

8m?

DOO’ DOi’ DnO' Dni

EOO’ EOj’ EnO’ Enj

I:00’ I:Oi’ I:kO’ I:ki

Goos Gojs Gior Gy

K, K,k

xr Ny By

LIST OF NOTATIONS

Distance from the origin to the outer boundary of zone i

in x-direction [L]

Function of x, defined by Eq. (23)

Height of zone i [L]

Function of x, defined by Eq. (27)

Functions of x, defined by Eq. (41), (42), (44), (46),

and (47), respectively

Constants defined by Egs. (43), (45), (B22), and (B23),

respectively

Constants defined by Egs. (B2), (B3), (B4), and (B5),

respectively

Constants defined by Egs. (B6), (B7), (B8), and (B9),

respectively

Constants defined by Egs. (B10), (B1l1), (B12), and

(B13), respectively

Constants defined by Egs. (B14), (B15), (B16), and

(B17), respectively

Hydraulic conductivities in the x , y and z

Xl



PP

Uo

Qo

>

A

D1P*' “DIN

)
)

So: S,

directions, respectively [L/T]

Screen length [L]

Undetermined coefficients in Eq. (A2)

\Volumetric pumping rate per unit length of the pumping
well [L%/T]

Dimensionless volumetric pumping rate per unit length
of the pumping well

Dimensionless volumetric pumping rate of the pumping
well

Dimensionless radial distance from the pumping well to
the observation well

Drawdown'in zone i [L]

Dimensionless drawdown in zone i

Dimensionless drawdown for zone i in Fourier domain
Dimensionless drawdown for zones 1P and 1N in Fourier
and Finite Fourier cosine domain, respectively
Storativity of the aquifer

Constants defined by Eqgs. (B18) and (B19)

Dimensionless time defined by Eq. (57)

X1



T
To’Tk

up’ uim’ uin

U
Uc’Uco’Ucm
V07Vn’WO’Wk
w

XO! yO’ZO

XOD ! yOD ! ZOD

XD’ yD’ZD

XDai

z Dbi

Transmissivity of the aquifer [L%/T]

Constants defined by Eqgs. (B20) and (B21)
Dimensionless variables in well functions, defined by
Egs. (54), (55), and (56), respectively

Unit step function

Constants defined by Eq. (32)

Coefficients in Egs. (22), (26), (38), and (39),
respectively

well function

Coordinate of the top point of the pumping well
Dimensionless coordinate of the top point of the pumping
well

Dimensionless coordinate variables

Dimensionless x-direction distance from the origin to
the outer boundary of zone i

Dimensionless height of zone i

Dimensionless screen length of the pumping well
Constant defined by Eq. (24)

Constant defined by Eq. (28)

Xl



Xyxr Xx

o

¢(m, n)

Vm

9(m, k)

S

Anisotropy ratios

Dirac delta function

Fourier transform variable

Constant defined by Eq. (48)

Constant defined by Eq. (40)

Finite Fourier cosine transform variable used with respect
to Eq. (1) and defined by Eq. (31)

Angle between the positive x, -axis and the line
connecting the pumping and observation well

Constant defined by Eq. (49)

Finite Fourier cosine transform variable used with respect
to Eq. (10) and defined by Eq. (25)

Finite Fourier cosine transform variable used with respect

to Eq. (16) and defined by Eq. (29)

XV



CHAPTER 1 INTRODUCTION

1.1 Background

In structural geology, an anticline, as a result of lateral compression in crustal

deformation, is a convex-upward fold in layers of rock. A well-structured anticline

formation may be considered as a potential site for waste disposal or carbon

sequestration.  Ashjari and Raeisi (2006) investigated the groundwater flow in

Zagros anticlines in Iran and indicated that the anticline structure of aquifers and the

geometry of bedrocks primarily dominate the direction of regional groundwater flow.

Moreover, it can be expected that the flow patterns will be changed on the condition

that wastes or water being injected into or pumped from the aquifer. Because of the

movement of groundwater carries the contaminants, explicit information such as

geological structure and hydrogeological data are necessary to judge the applicability

of the potential storage sites or to predict the migration of the contaminant plume in

the site.

The drawdown or head data set obtained from a field aquifer testing, e.g., slug

test or pumping test, is generally analyzed based on a relevant solution to determine

the aquifer parameters. For a constant-flux pumping test, the test well pumps at a

constant flow rate during the test time and the drawdown responses are measured in

one or more observation wells in the vicinity. Commonly, a drawdown solution is



either incorporated with an optimization technique or applied to generate the type

curves for the graphical method to find the best-fit aquifer parameters. An anticline

aquifer has curved surfaces on their top and bottom boundaries; moreover, its profile

may be asymmetric to its ridge. The complexity of the geometric situation of an

anticline makes it challenging to solve the model analytically. In this study, we

devoted to derive the analytical solution for the drawdown distribution in the

approximated anticline aquifer since it can serve as an invaluable tool for gaining

physical insight into the flow behavior affected by geologic and geometric settings.

1.2 Literature Review

The classic Thiem (1906).or. Theis (1935) equation may be the most popular way

used to estimate the drawdown distribution or to determine the aquifer parameters in

an inverse problem for a constant-flux pumping in a confined aquifer. The Thiem

equation (1906) described the spatial drawdown distribution within the radius of

influence under steady-state condition. The Theis solution (1935) delineated the

transient drawdown response in a confined aquifer. However, the assumptions made

for developing these equations on well of full penetration and aquifer of infinitely

lateral extent may not be capable of describing the flow in an anticline aquifer.

Numerous studies have been made to cope with the groundwater flow problem edged



with peculiar boundaries. Among these studies, the integral transform method is

commonly used to obtain the hydraulic head or drawdown solutions for specific

boundary conditions in the mathematical model. For example, Chan et al. (1976)

used the finite Fourier transform to obtain the transient and steady-state drawdown

solutions for pumping in a rectangular aquifer. Chan et al. (1978) and Yeh and

Chang (2006) applied the finite sine transform and Hankel transform to obtain the

transient and steady-state analytical solutions for head distribution in a wedge-shaped

aquifer. On the other hand, some drawdown solutions accounting for various

topography boundaries in flow. systems ;are based on the image-well method. The

method removes aquifer boundaries and place pumping or recharging image wells at

judicious locations. The drawdown in an observation well is calculated by summing

up the drawdown or buildup due to the real well and image wells (Ferris et al. 1962;

Streltsova 1988; Kuo et al. 1994; Chen et al. 2009).

The domain decomposition method can be applied to handle the problem with

complex geometry or mix-typed boundary. In this method, the problem domain is

split into several subdomains. Thereafter, the solutions for each subdomain are

derived to satisfy the corresponding boundary conditions as well as the continuities of

head and flux at the interface between the connected elements. The concept of

domain decomposition method was first presented in Kirkham (1957) to calculate the



electrostatic potential between two concentric coaxial capped cylinders. The

procedure was further extended in Kirkham (1959) to obtain the hydraulic head

solution for the flow toward a partially penetrating well in a confined aquifer. Later,

Javandel and Zaghi (1975) used a similar procedure to obtain the potential distribution

in a confined aquifer due to the pumping at a well of vertically full penetrating and

radially finite extension on the bottom of the aquifer. A similar decomposition

concept was also deployed by Connell et al. (1998) for solving the problem of

topographically driven flow in hillslope aquifers by dividing the problem domain into

several rectangular elements.

Recently, some studies ‘using numerical or analytical approaches were presented

to investigate the head responses in anticline reservoirs due to the well injection or

pumping. Al-Mohannadi et al. (2007) used the finite-difference method to simulate

the transient pressure responses to horizontal wells in anticline reservoirs and curved

wells in slab reservoirs. Yeh and Kuo (2010) proposed a steady-state analytical

solution for a constant-head injection via a fully penetrating well into a heterogeneous,

anisotropic, and dome-like anticline reservoir.  Yet, it seems to lack the consideration

of well partial penetration and asymmetric profile of the anticline.



1.3 Objective

The objective of this study is to develop a mathematical model for describing the

steady-state drawdown distribution to a constant-flux pumping in an anticline aquifer.

The pumping well is of infinitesimal diameter and can partially or fully penetrate the

aquifer. The anticline aquifer is homogeneous, anisotropic and confined by a curved

layer on the top and a horizontal impermeable layer at the bottom. Three successive

blocks of different heights are used to represent the shape of the top curved boundary.

The solution of the model is then obtained by applying the integral transform

techniques including Fourier transform (FT) and finite Fourier cosine transform

(FFCT) within each block and the hydraulic continuity requirements between the

blocks. The solution is used. to predict the spatial drawdown distribution in a wide

variety of anticline aquifer system and to investigate the influences of well location,

screen length, aquifer geometry and anisotropy on the flow system. Moreover, the

present solution is applied to simulate the flow in hillslope and slab-shaped aquifers

by assuming some of the adjacent blocks with the same heights. In addition to the

analytical approach, the numerical model, MODFLOW, is used to perform

simulations and the results are compared with those predicted by the present solution.

The solution can also be employed to estimate the aquifer parameters in an inverse

problem if integrated with an optimization algorithm.



CHAPTER 2 METHODOLOGY
2.1 Mathematical modeling of the flow problem
Figure 1 shows the configuration for a well in an anticline aquifer. We assume
that the line sink, i.e., the pumping well of an infinitesimal radius, is extended along
the z direction with length | from the point (x,,Y,,Zz,) =(0,0,z,). The anticline
aquifer has a finite width in the x direction, a finite thickness in the z direction,

but infinite extent in both + y directions. In addition, the aquifer is confined,

homogeneous, and anisotropic with the hydraulic conductivities of k,, k, and k,
respectively in the x, y and. z directions. To simplify the flow problem, three
successive blocks with different height and width are used to mimic the topographical
shape of anticline aquifer as shown in Figure 1. The height of the middle block is
determined by the acme of the anticline structure while those of the adjacent blocks
are designated by the corresponding margins of the limbs. The adopted widths of
the blocks should make the approximated aquifer has the same volume as the original
one as possible.  Furthermore, the anticline aquifer is decomposed into four
subdomains, i.e., zones 1P, 1N, 2 and 3, according to the shapes of blocks and the well
location.

The mathematical model is developed in a dimensionless form to produce the

simulated results in the most general way. The height of the middle block, b, is



chosen as a reference length to nondimensionalize other variables.  The
dimensionless variables and parameters are defined as follows: xy =x/b, ,
Y, =y/b, , and z,=2z/b, denoting the dimensionless coordinate variables;
Xop = X%o/B1 v Yoo = Yo/b,, and z,, =z,/b, representing the top point of the
pumping well in the dimensionless form; x,, =a,/b, representing the
dimensionless distance in x-direction of the outer boundary from the origin in zone
I; zp,; =b;/b, defining the dimensionless height of zone i, except that z,,, =1
standing for those in zones 1P and 1N; s, =s,/b, denoting the dimensionless
drawdown in zone i, where the notation s; is the drawdown in zone i (L);
z,, =1/b, representing the-dimensionless screen length of the pumping well;
ap =0q/k.b, expressing the dimensionless volumetric pumping rate per unit length of
the pumping well, where the notation g is the volumetric pumping rate per unit

length (L?T™); Iy =K, /kX and y, =k,/k, representing the anisotropy ratios.

2.1.1 Formulation for flow in zone 1
In the construction of the mathematical model, the middle block (shown in
Figure 1) is regarded as zone 1, which includes zones 1P and 1N. The steady-state

groundwater flow to the pumping well in zone 1 is governed by



2 2 2
0°Sp, ry 0°Sp, 0°Sp,

aXD2 " ¥p 0zp

Xpan < Xp £ Xpap, —©<Yp <o, 0<z,<1 (1

where U and o are the unit step function and Dirac delta function, respectively.
The sink term in Eq. (1) implies that the flux through the screen is of uniform strength.
The boundary conditions at infinity from the sink in the y direction are assumed to
be

Sp1(Xp, 0, 25) =0 (2)

and

0Sp, (Xp, £0,2)

Yo

0 3
For a confined aquifer, the conditions at the top and bottom impermeable

boundaries are respectively written as

0Sp; (Xp» Ypi 1) -0
0z,

(4)

and

0Sp; (Xp, Y1 0) -0

0z, ®)

The continuities of flux and drawdown at the right-hand edge of zone 1 are

respectively as

aSDZ (XDalP’ yD' ZD)
OXp

, 0<z,<17,, (6a)
081 (Xpasps Yo Zp) _
OXp

0, zp,<7,<1 (6b)

and

> T X 2 :_qD{U[ZD —(Zop = Zp))1-U (25 — 24p) }5(XD —%00) (Yo — Yoo )



SDl(XDalP7 yD’ ZD) = SDZ(XDalP7 yD’ ZD)’ 0 < ZD < ZDbZ (7)

Similarly, for the left-hand edge of zone 1, the following conditions should be

satisfied:

083 (Xpain s Yo Zp)

P , 0<12, <12, (8a)
aSDl(XDalN’ yD’ ZD) — °
OX
P 0, Zp,,<2,<1 (8b)
and
SDl(XDalN ! yD' ZD) = SDS(XDalN ! yD' ZD)' 0 < ZD < ZDb3 (9)

2.1.2 Formulation for flow in zone 2

The steady-state groundwater flow equation.in zone 2 is expressed as:

0% d%s 0%
D22 + X 022 + 022
OXp Np 0z,

=0," Xpap < Xp < Xpgzy =0 <Yy, <00, 0<z,<1z,, (10)

The boundary conditions at infinity in the +y directions require that

Sp, (Xp, £©,2,)=0 (11

and

OSp, (Xp, £, Zp) -0 (12)
Yo

The no-flow conditions hold at the top and bottom boundaries respectively as

aSDZ(XD’ yD’ ZDbZ) =O (13)

0z,

and



0Sp, (X5, Y51 0) ~0
0z,

(14)

Assume that a constant-head boundary located at the lateral distance of xg,, from

the pumping well; that is,

Sp2(Xpazs Yo 2p) =0

(15)

Note that Eqs. (6a) and (7), representing the continuity conditions of flux and

drawdown at the interface between zones 1P and 2, are the left-hand boundary

conditions of zone 2.

2.1.3 Formulation for flow in zone 3

The steady-state groundwater flow equation in zone 3 is given by

0°Sps 0°Sps 0°Sps
2 +7(yx 2 +sz 2 =0’ XDaSSXDSX
OXp Np 0z,

The boundary conditions at infinite distance inthe + y directions require that

paing — X< Yp <o, 0<7, <7,

Sp3(Xp, £, 25) =0

and

0Sps(Xp, T 0, 25)

Yo

0

The top and bottom conditions in zone 3 are respectively given as

0S55(Xps Yo r Zobs) ~0
0z,

and

08p3(Xps Yp: 0) 0
0z,

10

(16)

7

(18)

(19)

(20)



A constant-head condition is applied at the lateral distance of x,,, from the pumping
well, which is described as

Sp3(Xpaz: Yo 2p) =0 (21)
Furthermore, Egs. (8a) and (9) state the continuity requirements of flux and

drawdown at the interface between zones 1N and 3.

2.2 Analytical solutions
2.2.1 Dimensionless drawdown solutions for zones 2 and 3

To solve the partial differential equations. (1), (10), and (16) with their
corresponding boundary conditions, the techniques of FT and FFCT are used with
respect to the variables y, and. z,, respectively, to obtain the ordinary differential
equations (ODEs) in terms of x,. "Note that formulas of FFCT applied to (1), (10),
and (16) are different since the independent variable z, ranges over different
intervals in zones 1, 2, and 3, respectively. We first deal with the flow problem in
zones 2 and 3 since their governing equations are simple and of the same form. The
integral transforms and derivations for the solutions are given in Appendix A. The
dimensionless drawdown solution of zone 2 in Fourier domain satisfying the
conditions (10) to (15) is given as:

502(X0: 2) =VoA (Xo) + TV, A (Xo) c08(@,2,) (22)
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where

Sinh[an(XDaZ — XD)]
Sinh[an (XDaZ — Xpatp )] '

A1(XD) =

n=0,123,. (23)

with

Uy =& A+ O, N=0,12,3... (24)

In Eq. (24), ¢ is the FT transform variable; «, is the transform variable used with

respect to Eq. (10) in the FFCT for the integral interval [0, z,, ], which is defined as

o =" n=0123.. (25)

n
ZDbZ

Note that the coefficients V, and V, are the constants needed to be determined by

the remaining boundary conditions (6a) and (7)

As for zone 3, the dimensionless drawdown solution of Eg. (16) in Fourier

domain satisfying conditions (17) to (21) is expressed in the series form as:

Sp3(Xps Zp) =W, By (Xp) + élwk B, (Xp)cos(¢, Z5) (26)

where

B, (x,) = —MALA (Xows =Xp)l 45953 (27)
Smh[ﬁk(xoas — Xpain )]

with

Be=\e xp+Sixn, k=012.3,. (28)

and ¢, being the transform variable used in the FFCT to Eq. (16) for the integral

interval [0, z,,], which is defined as

£o= K 20,123, (29)

ZDb3

12



The coefficients W, and W, in Eq. (26) are the remaining undetermined constants.

2.2.2 Dimensionless drawdown solution for zone 1
The presence of line sink term in Eqg. (1) makes it complicated to derive the
solution.  First, the FT with respect to y, and FFCT with respect to z, are

applied to Eq. (1) and the result is

2Z
d“sy, B

dx.2 (527(yx + lmzlzx)ém =—0pU, 0(Xp = Xop)s  Xparn < Xp < Xpap (30)
D

where S, is the dimensionless drawdown in Fourier and Finite Fourier cosine

domain; 4, is the transform variable used. in-the FFCT to Eq. (1) for the integral

interval [0, 1], which is defined as

A, =mz, m=0,123,.. (3D
In addition,
U, = Tcos(A2,)dz, (32)

Zop —Zpl

which can be reduced to U, =U =z, when m=0; otherwise,

U,=U_ = Sin(lmzoo) _Si;[im (ZOD ~ Zpi )]

, m=123,.. (33)

To solve Eq. (30) with the term of Dirac delta function, we consider the following sets
of ODEs by dividing zone 1 into zones 1P and 1N as:
dz§D1P

dx. 2 - (52)(yx + ﬂ“mzzzx)éDlP =0, 0<Xp < Xpup (34)
D

and

13



d% -
dX—Dy\l - (52)(yx + ﬂ‘mzzzx)SDlN =0, Xpan <X, <0 (35)
D

The boundary condition at x, =0 due to the continuity must be satisfied, which is
expressed as

So1p (07) = S0y (07) (36)
Integration of (30) with respect to x, along 0~ to 0" yields the second boundary

condition as

550 (07)  dSpuy (07) _
dxp dxp

—0pU. (37)
The dimensionless drawdown solutions for zones 1P and 1N in Fourier domain can be
obtained by taking the inversion of FFCT to the solutions of (34) and (35) with
conditions (36) and (37). Applying Egs. (6) and (8) to the solutions of zones 1P and

1N, respectively, yields

9oYeo

0

Spip (Xps Zp) = [Cio(Xp) + Cpo (Xp)] = Zpp2C30Cg (X5 )Vp + Zp3CspCoo (X5 )W,

BoYen [C, (%) + Cn (Xo)]

m

L3 _i{[w]aocwvo + §1¢(m, n)ancsnvn}cm(xD) cos(4, )

Vm m

2 [Sin(ﬂmzobs)
A

p 15,y + 2 9(m, ) B,Cs W, }cem(xD)

(38)

for describing the dimensionless drawdown in zone 1P and
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qDUCO

0

§DlN (XD’ ZD) =

9Yen 16, (%) +Con (%o)]

m

_J’_
e

m m

+g{ﬁma%m
A

m m

for describing the dimensionless drawdown in zone 1N, where

7m:\/82/{yx+ﬂ’fnlzx' m:O’l’ 2’ 3’

coSh[y, (Xpap + Xparn = Xp)]
Sinh[7m (XDalP — Xpa1n )]

C,. (%)= Cosh[Vm(XDalp — Xpain = Xp)]
3|nh[7m (XDalP — Xpain )

, m=0,123,..

Clm (XD) =

, m=0,123...

C,, =coth[e, (Xpar — Xpaip)], “N=0,1,2,3,...

Con () =~ o =Xe)1, (5 26353
Slnh[7m(XDa1P — Xpain )]

Cyy = COth[ B (Xpas = Xparn ), k=0,1,2,3,...

cosh[y, (Xpate = Xp)]

Cor (Xg) = — , m=0,123,...
oma7P sinh[y,, (Xpa1p — Xparn )]
C, (x )ZCOSh[Vm(XDalp_XDalN +Xp)] m=0123..
mee sinh[y,, (Xpazp — Xparn)] ’ o
sin[(4,, + ®,)Z,] + Zpp2 for 1. = w
200 + @) 2’ o
m,n)= . P
P =1 Sinl(hy + 0,)20] |, S0l 0202 ¢,
Z(Zm +a)n) 2(ﬂ’m _a)n) , " n
and
sin[(4, +¢,)Zpps] N Zpp3 , for A =¢,
smiy=) 2+l 2
SiN[(4,, + <) Zppsl +5|n[(/1m _gk)zobs], for A #¢,
204, + &) 2(An = <)

15

2 |.sin(4,z ®
~—%—%f%%%QM+EﬂMM%QN$QA%)

]&Qﬂ%+§ﬂmLMﬂ£MM}QmUw

[ClO ( XD ) + C70 ( XD )] - ZDb2C30C40 ( XD )VO + ZDb3C50C60 (XD )WO

cos(4,,2p)

(39)

(40)

(41)

(42)

(43)

(44)

(45)

(46)

(47)

(48a)

(48b)

(49a)

(49b)



Substituting Egs. (22) and (38) into Eq. (7), the coefficients V, and Vv, can be
expressed as the functions of V,, V,, W, and W, via the determination of the
coefficients in the Fourier cosine series. Similarly, the coefficients W, and W, are
related to V,, V., W, and W, by the Fourier cosine series of substituting (26) and

(39) into (9). The coefficients V,, V., W, and W, can then be solved in the

matrix form as presented in Appendix B (i.e., Eq. (B1)).

2.3 Numerical Evaluations
2.3.1 Calculation on EQgs. (22),.(26), (38), and (39)

In this study, all of the numerical evaluations are made via FORTRAN with
double precision. The drawdown solutions given by Egs. (22), (26), (38), and (39)
require the evaluation of infinite series with the coefficients V,, V., W, and W,
determined by Eq. (B1). The subroutine DLSLRG of IMSL (2003) is used to solve
Eq. (B1) by setting i = j = k = n up to 100; accordingly, 202 linear equations should be
solved simultaneously. In addition, the Shanks’ transform method (Shanks, 1955) as
a technique of accelerating the convergence of sequences is applied to compute the

summation within 100 terms.
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2.3.2 Inverse Fourier Transform
The FT of function f(y,) with respect to the variable y, is defined as
(Jaffrey and Dai, 2008):
f(e)= [F(yp)e ™" dy, (50)
where f(g) is the transformed function and its inversion is expressed as
1 T F iey
f(yp)=——[f(e)e""de (51)
272' —o0
The function f(g) can refer to the drawdown solutions, Egs. (22), (26), (38), and
(39), in the Fourier domain for the flow in the anticline aquifer. ~ Since the drawdown
solutions are even functions with respect to the variable &, Eq. (51) can be reduced
to
1 -
F(yo) =— [ T(2)cos(ey, )de (52)
The numerical evaluation of Eq. (52) is achieved by the routine DQDAWF of IMSL
(2003), which has the ability to cope with integrals of semi-infinite interval and of

cosine or sine integrands.

2.4 Numerical Simulations in MODFLOW
MODFLOW (McDonald and Harbaugh, 1988; Harbaugh and McDonald, 1996a,
1996b) is a computer program, developed based on the block-centered finite

difference method, that simulates the three-dimensional groundwater flow in a porous
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medium. The heads in each cell are calculated by solving the finite-difference flow
equations for the head at a node and its six adjacent nodes at the end of a time step.
The equations for the entire grid are expressed in a matrix form and solved
simultaneously at each time step. In this study, we use the software Processing
MODFLOW for Windows (PMWIN) version 5.3 (Chiang and Kinzelbach, 2001),
which provides a graphical interface and integrated platform for the program, to
simulate the flow in a groundwater system. The users can easily prepare the grid
information and the related input data, e.g., initial condition, boundary conditions, and
hydrogeological parameters, via PMWIN for the problem. The grid discretization
and other setting information corresponding to the simulated cases will be
demonstrated thereafter. The preconditioned conjugate-gradient package 2 (PCG2
package) is chosen to solve the equation system. The iteration stops when the
maximum number of iterations are achieved or absolute value of the head change and
the residual of the matrix at all nodes during an iteration are less than or equal to
0.001 m and 0.001 m®/s, respectively. The outer iterations update the coefficient
matrix and the vector, which is associated with head-dependent boundary conditions
at each cell, in the equation system with the newly calculated hydraulic heads. The
inner iterations solve the new set of coefficient matrix and vector. The maximum

numbers of outer and inner iterations are setting as 50 and 30, respectively.
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CHAPTER 3 RESULTS AND DISCUSSION

3.1 Special cases
3.1.1 Slab-shaped aquifer bounded by parallel constant-head boundaries

The present solution can be simplified to describe the pumping in an isotropic
slab-shaped aquifer bounded by two parallel constant-head boundaries along
y-direction if the three blocks are of the same height, i.e., z,,=12,,=25,=1. In
this section, we assume a fully penetrating well pumped at a dimensionless flow rate
of Qp =0,2z, =1 and located at the middle of the slab-shaped aquifer with x,,, =1
and x,,,=-1. Accordingly, no vertical flow appears in the aquifer, i.e., the
dimensionless drawdown solution is not a function of z,. The same problem can
refer to Ferris et al. (1962, Figure 42), who- illustrates.the application of image-well
method for the pumping in an aquifer bounded by two parallel boundaries. The
solution for drawdown at an observation well can be evaluated as the sum of the
drawdowns and buildups due to the pumping well and image wells. If an
observation well is located at the dimensionless distance of r, from the pumping
well, the dimensionless drawdown at the well can be formulated by superposition of
Theis solution (1935) as
507, 10) = S2IW(U,) + (1MW (U, + £ ("W (,)] 53)

where W is the well function; u , u;,, and u, are the dimensionless variables

im?
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respectively defined as

;

u,=—- 54
P4t (54)
12 +4m? —4mr, cosd (55)
" 4t
and
12 +4n*—4nr, cos(z — 6) (56)
; 4t,

in which @ is the angle between the positive xg-axis and the line connecting the

pumping and observation wells; t, is the dimensionless time defined as

ty = (57)
with T and S are the transmissivity and storativity of the aquifer, respectively.
Note that t, should be large enough and the flow system reaches the steady state so
that the dimensionless drawdowns calculated by the image-well method and the
simplified solution can be compared.* “The value of the infinite series in Eq. (53) is
evaluated by the Shanks method (1955) to accelerate the convergence. Figure 2
compares the dimensionless drawdown calculated by the present solution and Eq. (53)
for pumping at the middle of the slab-shaped aquifer bounded by two parallel
constant-head boundaries. The dimensionless drawdown are calculated along the
radial direction when =0, z/4, and /2. The dimensionless drawdown
distributions predicted by the present solution in this special case match very well

with those predicted by Eqg. (53).
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3.1.2 Hillslope aquifer
The simulation for flow in a hillslope confined aquifer due to pumping is carried

out by setting two of the adjacent blocks with the same height. Assume a hillslope

aquifer is mimicked by the step-like aquifer, which has xg,, =0.5, xg,,, =-0.5,
Xpaz =2+ Xpazs =—1, Zpy =2p;=1, and z,, =05 with a fully penetrating well
pumped at a dimensionless pumping rate of Q, =1. Figure 3a shows that at steady
state the contour lines of the dimensionless drawdown and the flow field are
influenced by the inclination in the hillslope aquifer. The vertical flow appears
around the concave corner of the top boundary while the flow seems horizontal
elsewhere.

The simulation results for the hillslope aquifer from MODFLOW are compared
with that evaluated by the present solution.~ The confined aquifer simulated by
MODFLOW is bounded by two parallel constant-head boundaries with the distance of
30 m in width. The aquifer thickness varies from 10 m to 5 m in the hillslope.
Note that the infinite boundaries in the * y-directions are replaced by assigning two
constant-head boundaries located at £40 m from the pumping well. The hydraulic
conductivities are 10* m/s in the x-, y- and z-directions. The pumping rate at the
well is 10 m*/s so that the dimensionless pumping rate will be Q, =1. The length

of time is set to be 9.46728x10" s (1095.75 day) for the steady-state simulation.
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The model domain has been discretized using a uniform cubic grid with a step of 0.5
m. That is, the aquifer is discretized with 21 layers, 61 columns, and 161 rows.
Figures 3b provides simulated results in the dimensionless form using MODFLOW
for the case that the hillslope aquifer is mimicked by the step-like aquifer, as that used
in Figure 3a. The figure indicates slight difference on the drawdown distribution
occurs near the concave corner of the top boundary, taking the dimensionless
drawdown contour of 0.3 for comparison, between the present solution and
MODFLOW. The flow pattern shown in Figure 3c is a more reasonable one among
those in Figure 3 because of the elaborate representation on the slope boundary. The
significant flexure contours between 0.2 and 0.6 reflect the influence of top inclined

boundary on the flow pattern.

3.2 Base case of anticline aquifer

To investigate the influence of aquifer geometry on the flow pattern, we assume
a simple case of a fully penetrating well located at an isotropic anticline aquifer.
Figure 4a depicts the dimensionless drawdown in the X, -z, plane for y,=0 when
the constant-flux pumping at the anticline aquifer with the geometry xg,, =0.5,
Xpan =—05, Xpp =1, Xps=-1, and z,,=2,,=05. The well pumps at a

dimensionless flow rate of Q,= 1. The dimensionless drawdown contours reveal
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that most of water flows horizontally around the well screen and in the limbs;
however, conspicuous vertical flow appears around the concave corner of the top
boundary. Figures 4b and 4c show the drawdown distribution in the y,-z, plane
for x,= 0.2 and 0.8, respectively. The value of y, ranges from 0 to 1 since the
dimensionless drawdown distribution is expected to symmetrical with respect to the
plane y, =0 and little concern may be paid on the drawdown distribution that is far
away from the well. The dimensionless drawdown contours intersect with the top
and bottom impervious boundaries at right angles. The figures indicate that the
antiform of the aquifer indeed-affects the three-dimensional flow pattern; otherwise,
the contours in Figure 4 should be parallel to the z,-axis for the case with a fully
penetrating well. At steady state, water flows to a well in the system comes from
two sources: the constant-head boundaries at* x, =+1 and the remote boundaries in
the y-direction. However, in the upper part of the ridge zone, there are limited
flows from the former source due to the antiform of the aquifer. Therefore, as shown
in Figures 4b and 4c, the dimensionless drawdown increases with z_, ata given X,
and y, to sustain the uniform and constant-flux condition along the whole well
screen. This fact also implies the presence of the vertical upward flow, especially
near y, =0.

Figure 5 illustrates the dimensionless drawdown contours being predicted by
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MODFLOW for the case of identical well and aquifer system as Figure 4. In the

simulation, the anticline aquifer is bounded by two parallel constant-head boundaries

with a distance of 20 m in width. The acme of the anticline structure is 10 m in

height; the limbs intersect with the two parallel constant-head boundaries at 5 m in

height. The settings of the y-direction boundaries, hydraulic conductivities,

pumping rate and time length are the same as those used in the simulation of the

hillslope aquifer. The aquifer is discretized into a mesh with 21 layers, 41 columns

and 161 rows. The drawdown contours in Figure 5a seem similar to those depicted

in Figure 4a except that slight differences can be observed around the concave corner

of the top boundary and the pumping well. In adjacent to the pumping well,

MODFLOW gives smaller "dimensionless drawdown than the present solution.

Figures 5b and 5c show the simulated results based on MODFLOW for the

dimensionless drawdown contours in the y -z, plane for x, = 0.2 and 0.8,

respectively. On the top-left region of both figures, the dimensionless drawdown

values calculated by MODFLOW are small in comparison with those evaluated by the

present solution as illustrated in Figures 4b and 4c.

Figure 6 shows the dimensionless drawdown contours predicted by the

MODFLOW for the flow in the anticline aquifer with the top curved boundary being

mimicked by multiple steps. The settings of the x-direction and y-direction
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boundaries, hydraulic conductivities, pumping rate and time length are the same as

those used in the simulation of Figure 5. The aquifer is discretized into a mesh with

21 layers, 41 columns and 161 rows. Figure 6a shows that the flow to a fully

penetrating well in an anticline aquifer with its top boundary being mimicked by

multiple steps results in the smooth and curved drawdown contours in the profile.

Figures 6b and 6¢ exhibit the dimensionless drawdown contours in the y, -z, plane

for x,= 0.2 and 0.8, respectively. The dimensionless drawdown values plotted in

Figures 6a and 6b are smaller than those in Figures 5a and 5b, respectively. The

oblique contours shown in Figure 6¢ imply that there is much more vertical flow

occurs on this profile; additionally, the predicted drawdown values are significantly

smaller in the bottom region (around 0<z,<0.4) and larger near the top region

(around 0.4 <z, <0.5) when comparing with the contours sketched in Figures 5c for

the region 0<z, <0.5. Moreover, the contours intersected with the top boundaries

at bevel angles, especially in Figure 6c¢, due to the coarse discretization on the model

grid. Comparing the results sketched in Figures 5 and 6 indicate that one may

overestimate the dimensionless drawdown when applying the simple one-step like top

boundary to simulate the anticlinal geometry.
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3.3 Effect of anticline aquifer geometry
Figure 7 examines two other aquifers with different geometries by considering
the aquifer portrayed in Figure 4 as a base case. For an anticline aquifer of thin

limbs, as shown in Figure 7a, the height of the limbs are reduced to half of that in the

base case, i.e., zp,=12,,=0.25. In addition, Figure 7b depicts the case of
narrow-ridged anticline with x,,,, =0.25 and xg,, =-0.25. Similar to the results
of the base case, both figures show that most of water flows horizontally in the zone
around the well and in the limbs. Significant vertical flow appears around the
concave corner of the top boundary in the ridge zone-due to the geometric variation.
The anticline aquifers with thin limbs or narrow ridge both cause a sharp head drop in
the ridge zone in comparison with that of the base case at steady state. Figure 8
compares the dimensionless drawdown distribution along (y,, z;) = (0, 1) for these
two cases with that of the base case. The figure again indicates that the cases of thin
limbs and narrow ridge both have much larger head drop at steady state than that of

the base case.

3.4 Effect of well partial penetration
3.4.1 Effect of screen length and aquifer anisotropy

Figure 9 demonstrates the largest dimensionless drawdown at
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(X5, Yp) =1(0.001,0) along the z-direction for the cases of different dimensionless

screen length of z,, =0.2, 0.4, 0.6, 0.8 and 1.0 and various aquifer anisotropy ratios

of y, =0.3,10,and 3.0. The wells are screened from the top of the aquifer with a

constant dimensionless pumping rate of Q, =1. Among these cases, the largest

dimensionless drawdown appears at the case of the smallest y, and z, (y, =0.3

and z, =0.2) near the top of the aquifer. Moreover, the influence of aquifer

anisotropy on the drawdown increases with the decrease of screen length.

Figures 10a and 10b display the dimensionless drawdown contours for the

anisotropic cases of y, =0.3 and 3, respectively. In Figure 10a, significant

vertical flow can be observed in the ridge and limb zones. The contours for s, =

0.3 to 0.8 are nearly horizontal, which reflect apparent vertical flow cross this region.
Because of k, is larger than k, in‘this case (y, =0.3), most of flow goes through
the horizontal path surrounding the well leading to the larger drawdown in the upper
zone 1 (i.e,, 0.8<z,<1). The resultant hydraulic gradient as well as the boundary
restriction causes an obvious vertical flow below this zone. On the other hand,
Figure 10b represents an uncommon case of k, being larger than k, (x, =3). In
this case, the vertical path for flow into the well is superior to the horizontal one,
which results in the contours around the well look like half ellipses. The flow in the

limbs is mainly horizontal. However, obviously vertical flow can be observed in the
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central zone 1 below the well (z, <0.8 and |x,|<0.2) and around the concave

corner of the top boundary in the anticline.

3.4.2 Effect of penetration ratio

The penetration ratio, i.e., the ratio of well screen length to aquifer thickness, in
the real anticline aquifer and approximated aquifer may be different if the partially
penetrating well is not located at the y, -z, plane that contains the acme of anticline
and used to determine the height of zone 1. Considering the case of an anticline
aquifer whose top boundary consists of isosceles ramps, the simulation of drawdown
distribution is achieved based on the present solution via approximating the aquifer
geometry as the base case. A partially penetrating. well with the dimensionless
screen length of 0.8 is located at a‘dimensionless x, distance of 0.25 from the
midline of the anticline aquifer, where the real dimensionless thickness of aquifer
would be 0.875. Therefore, the penetration ratio is 0.914 for the well in the real
anticline aquifer. Note that the ratio, however, becomes 0.8 in the approximated
aquifer if the dimensionless screen length in the simulation maintains the same as the
real one. To investigate the effect of distorted penetration ratio applied in the
simulation, Figure 11 shows the drawdown distributions for three partially penetrating

wells with z,, being equal to 0.8, 0.857, and 0.914. In the simulation, the cases of
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z,, =0.8 and 0.914 represent the use of real dimensionless screen length and

dimensionless screen length in the approximated aquifer that has the penetration ratio
the same as that in the real aquifer, respectively. Furthermore, the case of
z,, =0.857 represents the average between two aforementioned lengths. In Figure
11, the dimensionless drawdown contours for the flow to the three partially
penetrating wells differ considerably at the top region of ridge zone and around the
top end of the well. However, the use of z, =0.8 would be the better one to

simulate the flow toward the top end of the well.

3.4.3 Effect of well location

Figure 12 illustrates the influence of well location on the flow pattern. The
dimensionless screen length of the partially penetrating well is considered to be
z,, =0.2; additionally, the isotropic anticline aquifer has the same geometry as the
base case. Figures 12a and 12b display the dimensionless drawdown contours at
y, =0 for the pumping at a partially penetrating well located at the top-middle and
bottom-middle of the aquifer, respectively. The flow patterns on the profile are
symmetrical to the midline of the aquifer. Most of water flows horizontally in the
limbs except in the zone near the concave corner of the top boundary. Obviously

upward and downward vertical flows occur in the aquifer as illustrated in Figures 12a
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and 12b, respectively, especially in the zone toward the extremity of the well. The

present solution can simulate the dimensionless drawdown for an arbitrarily located

pumping well in the ridge zone. In the case of Figure 12c, the partially penetrating

well with the dimensionless screen length of 0.2 is located at a dimensionless distance

of 0.25 from the midline of the anticline aquifer. Also note that the geometry of

anticline aquifer in Figure 12c is the same as that in the base case. The figure shows

an asymmetrical flow pattern affected by the well location and aquifer geometry.

Considerable vertical flow appears in the ridge zone and in the right limb where x, <

0.35. In addition, among these three cases, the well located at the top-middle of the

aquifer, as shown in Figure 12a, has the largest dimensionless drawdown around the

well.
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CHAPTER 4 CONCLUSIONS

A mathematical model has been developed for describing the steady-state flow

caused by the constant-flux pumping in an anticline aquifer. The proposed model

can account for the flow in response to partially or fully penetrating wells which are

of infinitesimal diameter and with uniform inflow flux along the well screen. The

anticline aquifer is homogeneous, anisotropic and confined with a shape being

mimicked by three consecutive blocks. The integral transform techniques FT and

FFCT are applied to derive the steady-state solutions in transform space. The

coefficients in the solutions require solving a system of linear equations represented in

a matrix form. Finally, the Fourier inversion is applied to obtain the drawdown

solution in real space.

The present solution is applicable to simulate the flow in a slab-shaped aquifer or

a hillslope aquifer by assuming two or three successive blocks are of the same height.

For a slab-shaped aquifer, the simulated drawdown responses based on the present

solution are identical to those evaluated by the image-well method when the well is

fully penetrating and the aquifer is homogeneous, isotropic, confined and bounded by

two parallel constant-head boundaries. Both the present solution and the numerical

model, MODFLOW, are applied to simulate the case of flow in a hillslope aquifer.

The grid settings allow MODFLOW to simulate the slope boundary in a more realistic
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manner. Small differences between these simulated results can be observed around

the step-like boundary. In addition, the solution is used to investigate the influence

of the aquifer geometry and anisotropy as well as the well partial penetration and

location on the steady-state flow pattern. The results shown in these cases exhibit

significant vertical flow around the concave corner of the top boundary for a fully

penetrating well or a partially penetrating well located at the hump zone of the

anticline. The constant-flux pumping in a thin-limbs or narrow-ridged anticline

would cause a much sharp head drop in the ridge zone. The influence of aquifer

anisotropy on the observed drawdown cannot be ignored when the pumping carries

out in a partially penetrating well, especially for the well of short open screen.

When the screen length or/and. the anisotropy ratio. decreases, the dimensionless

drawdown around the pumping well increases under the same constant pumping rate.

In addition, we suggest using the real dimensionless screen length in the simulation

even if the penetration ratio may be changed in the simplified anticline aquifer.

Finally, the present solution can simulate the flow field for an arbitrarily located

pumping well. Naturally the flow field will change with the location of the pumping

well. The well located at the top-middle of the aquifer would produce larger

drawdown around the well because of the boundary restriction on the anticline shape.

The model MODFLOW, which can provide a better approximation on the curved
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boundary, is employed to simulate the flow field of the anticline aquifer. The

simulated results are compared with those of the present solution for the flow toward

a fully penetrating well in an anticline aquifer. The present solution gives slightly

higher dimensionless drawdown than the MODFLOW while the simulation is

achieved by approximating the top boundary of aquifer with multiple steps. The

drawdown solution derived in this study can be further applied to identify the aquifer

parameters if integrated with an optimization algorithm and to do preliminary

assessment for a potential waste disposal site.
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APPENDIX A DERIVATION OF EQ. (22)
This appendix demonstrates the procedure for obtaining Eq. (22). Taking FT
and FFCT to Eq. (10) with boundary conditions (11) to (14) results in
d’s,

D2 2 2 s _
—dX > (e Xy T @, X2)502 =0, Xpap < Xp < Xpgp (A1)
D

with ¢ and @, represent the transform variables in relation to y, and z,,
respectively. The solution for the ODE is

So2n(%o) = Pexp(at, X ) + P, €xp(-a, ;) (A2)
where «, is defined by Eq. (24); P, and P, are the coefficients needed to be
determined by conditions (6a),.(7), and (15). If one takes the inversion of FFCT to

Eq. (A2), the solution in Fourier domain is

1

Sp2(Xps Zp) = [P, exp(a, Xp) + Poy €Xp(=a5 Xp )]

Db2
2 IR, exp(a, Xo ) + Py EXD(- @, %o )]C0S(,20) (A3)

n=:

+

ZDI:)2

Eq. (A3) represents the drawdown solution for zone 2 in the Fourier domain. Eq.
(22) is expressed by new coefficients in the Fourier series, which are obtained by
inserting Egs. (7) and (15) into (A3) and applying the inversion formula of the FFCT.

Similar procedure can be taken for deriving Eq. (26), i.e., the drawdown solution for

zone 3 in the Fourier domain. Note that £, defined in Eq. (26) is chosen as the

transform variable when applying FFCT over the interval [0, z,,,,].
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APPENDIX B MATRIX FORMULATION FOR SOLVING COEFFICIENTS

The coefficients Vv,, V., W, and W, in Egs. (22), (26), (38), and (39)

construct a system of i+ j+2 linear equations, which can be expressed in matrix

form as

_1 + DOO DOl DOZ ce DOi EOO EOl E02
DlO 1+ Dll D12 Dli ElO Ell ElZ
D20 DZl 1+ D22 e D2i E20 E21 E22
DnO Dnl Dn2 1+ Dni EnO Enl En2
I:00 FOl FOZ ce I:Oi 1 + G00 GOl GOZ
FlO Fll FlZ e I:1i GlO 1 + Gll GlZ
FZO FZl F22 e l:2i GZO GZl l + GZZ

L FkO I:kl Fk2 I:ki Gk0 le sz

with the elements

1 = 28iN*(A,Z5s,)
Doy = ZDbZaOCSO{_CBO + Yy —— 2 C }

2 2 8m
Yo m=1 7m/1m ZDbZ

2 2¢(m,i)sin(4,Zpp, ) ~

Dy =a,C; = Cqn
’ ’ m=1 ymﬂ“szbZ °
= 4¢(m,n)sin(4,z
DnO — aocgo z ¢( ) ( Db2)C8m
m=1 J/mﬂ’szbZ
D, =a,Cy Ozol 4¢(m’n)¢(m’l)csm
m=1 VmZob2
1 © 28in(A_ 7., )sin(4_z
Eoo =_ZDb3ﬂOC50{_C9O+ ) ( . DZZ) ( = DbS)Cgm}
7o m=1 YA Zon2Zoba
© 23(m, j)sin(A4, .z
on :_ﬂjC5j 3 ( J) ( m DbZ)Cgm
m=1 J/mﬂ’mZDbZ
= 4g(m,n)sin(A,Zp,3)
Eno = _ﬂocso 2 ¢ = C9m
m=1 7m/,LmZDb2
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z 4p(m,n)J(m, j) ~

E. =-YAC.. C

Y jzj:lﬂ] *Ins VmZob2 o
1 © 2SIN(4,Zp,)SIN(A,,2

Foo :ZDbzolocso{_Cgo+ ) U DZZ) U Dbg)Cgm}
7o m=1 Ym’m Zob2Zpbs

= 2¢(M,1)sin(A,Zpps)

Fi =aCy X “9m
’ : m=1 ymﬂ“szbS ’
= 49(m,k)sin(4,z,,)
Feo =aCqy X = Con
m=1 ymﬂ’mZDbS
Fo =a.Cy i 43(m,k)¢(m,l)cgm
m=1 ymZDbS

1 = 28iN*(A,Zpps)
Goo = _ZDbSﬂOCSO {_Cso + X —DZSCsm}

2
70 m=1 7m/1m ZDb3

= 28(m, J)sin(A,Zpps) ~

Gy, =—B,Cs, C
0j ﬂj Ssz::]_ }/mﬂ’mZDb?: o
Gyo = —foCay 3, 20MKIINCnZes)
m=1 }/m/lmZDbC’»
= 49(m,k)9(m, j
Gy ==p,Cs; 2 oA J)Cgm
m=1 Y mZpb3
S, :—qDUCO Cio(Xparp) + i 290V en Sm(ﬂmZDbZ)Clm(XDalP)
Yo m=1 7mﬂ”mZDb2
= 495U, 4(m,n
S, =2 9% H )Clm(XDalP)
m=l VmZpn2
T = 90V Cro(Xpan ) + i 28 en Sln(/ﬂthDbe’)Clm(XDalN)
Yo m=1 ymﬂ“szbS
and
» 4q.U, 9(m,k
Tk = 9o ( )Clm(XDalN)
m=1 VmZobs
where

C8m = COth[Vm(XDalp — Xpain ), m=0,123,..

and

Con =CsCh[yy, (Xparp = Xpary)l, M=0,1,2,3,...
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Figure 1. Schematic representation of a groundwater flow problem in an anticline

aquifer with a line sink located along the z axis. The anticline aquifer is

approximately divided into three blocks.
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Figure 2. The dimensionless drawdown distributions predicted by the present solution

and the image-well method (Ferris et al., 1962) for. pumping at the middle of a

slab-shaped aquifer bounded by two parallel constant-head boundaries.
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Figure 3. Dimensionless drawdown contours and flow field for the pumping at a fully

penetrating well in a hillslope aquifer. The simulations were carried out to a

step-like aquifer by (a) the present solution, (b) MODFLOW, (c) MODFLOW with

multiple steps to approximate the inclined boundary.
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Figure 4. Dimensionless drawdown contours produced by the present solution for the

pumping at a fully penetrating well in an isotropic anticline aquifer.

The

cross-sectional view on (a) X, -z, plane for y, =0, (b) y, -z, plane for

X, =0.2,and (c) y,-z, planefor x,=0.8.
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Figure 5. Dimensionless drawdown contours produced by MODFLOW for the
pumping at a fully penetrating well in an isotropic anticline aquifer. The applied
aquifer geometry is the same as that in Figure 4. The cross-sectional view on (a)
Xp-Z, plane for y, =0, (b) y,-z, plane for x,=0.2, and (c) y,-z, plane

for x,=0.8.
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Figure 6. Dimensionless drawdown contours produced by MODFLOW for the
pumping at a fully penetrating well in an isotropic anticline aquifer. The upper
boundary of anticline aquifer is approximated by multiple steps. The cross-sectional
view on (a) X,-z, plane for y, =0, (b) y,-z, plane for x, =0.2, and (c)

Yp-Zp planefor x,=0.8.
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fully penetrating well in an isotropic aquifer of (a) thin limbs and (b) narrow ridge.
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Figure 10. Plots of dimensionless drawdown contours and flow fields for the pumping
at a partially penetrating well in the aquifers with the anisotropy ratios of (a)

¥~ =03 and (b) y,, =3. The dimensionless screen length of the pumping well is

0.2.

50



0.9+
0.8+
0.71 1
0.6+ \

<p 0.5

0.4+
0.81
0.21
0.1

Fe——""

1.25 -1 -0.75 05

Figure 11. Plots of dimensionless drawdown contours for the pumping at partially

penetrating wells in an aquifer with the dimensionless screen lengths of (a) z,, =0.8,
(b) z, =0.857and (c) z, =0.914. The wells are located at a dimensionless X,

distance of 0.25 from the midline of the anticline aquifer.
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Figure 12. Plots of dimensionless drawdown contours and flow fields for the pumping
at a partially penetrating well with the dimensionless screen length of 0.2. The wells
are located at (a) z,, =1.0 and (b) z,, =0.2 on the midline of the anticline aquifer

and (c) z,, =0.8 at a dimensionless x, distance of 0.25 from the midline of the

anticline aquifer.

52



B
e

(=
b
=
=3
T
LY

Ry
*
=H
3

il
-

VITA (ie% )
M 3 4 (Yen-Ju Chen)
AE70#F 10" 5p
88.09-92.06 H1 > #x L5~ ERB{FHF
92.09-94.06 L > B i < BRBEIEFT TN
94.09-99.08 W= % il ~ ki 1 A2 Y 7 LT
03-5712121 # 55526
0915-219990
408 s 7 B s A HHE P K368 57 1

yenju.ev92g@nctu.edu.tw

53



PUBLICATION LIST

BT~

1. Yeh, H. D, S. Y. Yang, and Y. J. Chen, 2007. Discussion of “Approximate
Discharge for Constant Head Test with Recharging Boundary” by Philippe Renard,
Ground Water, 45(6), 659, doi: 10.1111/j.1745-6584.2007.00386. (SCI)

2. Yeh, H. D. and Y. J. Chen. (2007). Determination of skin and aquifer parameters
for a slug test with wellbore-skin effect, Journal of Hydrology, 342, 283-294.
(SCI)

3. Chen, Y. J,, H. D. Yeh, and S. Y. Yang, 2007. A new semi-analytical solution for
slug test in a confined aquifer under the effects of well partial penetration, Journal
of Hydroscience and Hydraulic Engineering, JSCE, 25(2), 59-74.

4. Yeh, H. D., Y. J. Chen, and S. Y. Yang, 2008. Semi-analytical solution for a slug
test in partially penetrating wells including the effect of finite-thickness skin,
Hydrological Processes, 22, 3741-3748. (SCI)

5. Chen, Y. J.,, and H. D. Yeh, 2009. Parameter estimation/sensitivity analysis for an
aquifer test with skin effect, Ground Water, 47(2), 287-299. (SCI)

6. Chen, Y. J.,, H. D. Yeh, and S. Y. Yang, 2009. Analytical solutions for
constant-flux and constant-head tests at a finite-diameter well in a wedge-shaped
aquifer, Journal of Hydraulic Engineering 'ASCE, 135(4), 333-337, doi:
10.1061/_ASCE_0733-9429. (SCI)

7. Yeh, H. D., and C. H. Chang, Y. J. Chen, 2009. Aquifer parameter estimation for
a constant-flux test performed in a radial two-zone aquifer, Journal of Irrigation
and Drainage Engineering ASCE, 135(5), 693-703, doi:
10.1061/(ASCE)IR.1943-4774.0000064. (SCI)

8. Yeh, H. D., and Y. J. Chen, 2009. Comment on ‘‘Utilization of Weibull
techniques for short-term data analysis in environmental engineering,”” by Isaiah
A. Oke, 2008, 25(7), 1099-1106. Environmental Engineering Science, 26(8),
1365-1367. doi:10.1089/ees.2008.0374. (SCI)

SRR

1L BRI~ HFE~EFR 9B ET ! » Mo kBEHREX L R Efeins R 52
BET L afeis o $ e BRI PG MRl A HH %

% B (T )F164-F169 T -

2. MBI~ EFL P HF 9B & 107 > k@& K 2L T TR
Tl L2 ERRFIRAEE Y R F RS 1F 0 B
TR B 243TF 0 v B kR 1507-1514 T -

3 MpBAe~ E5 4L - 95 & 7 7 » Hokidska F R L RZ KA Sl d ¥4

Eokfl1iesmsd g o Wz ? 4+ 85945 0% (2P )EL26-EI3L T -

54



4. MBhe s EF4L P HFE 95 & 10 2 o F 2 T n B Rk AT
Ferfgdrfz o4 CT ERRFIRFAHE  PREEIREREE ) 23T 0 B
“HEFOLT > Bk 280-290 7 oo

5. Mpio~ EFWM ~HHFE 952 117 » ¥ g ¥ [Ten Rep sk ated 7 kA
fE47 % 0 2006 2 3L T oRF g 0 P WARBRRIERFE > oF %
v & B 507 F 0w~ B kERk S0i20060060.pdf o (A v pE)

6. Chen, Y.J., H.D. Yeh, and S.Y. Yang, 2007. New solutions for constant-flux and
constant-head tests in a wedge-shaped aquifer. Asia Oceania Geosciences Society
(AOGS) 4th Annual Meeting, Bangkok, Thailand, HS05-A0002.

7. BB 4e~ E 40097 £ 10 7 > ToRFFRESBRBIR TR 2 F Sl R
EAEGP RS L SRR IR E Y AR LIRS
AT o meEREODE o wmy Bk 265-274 F -

8. Chen, Y.J. and H.D. Yeh, 2009. Composite analysis of test-well and
observation-well data during constant-head test. 7th Symposium on Groundwater,
Hydrology, Quality, and Management, World Environmental and Water
Resources Congress 2009, Kansas City, Missouri, 2014-2021.

9. WA S ~ B 4~ E 544 - Dong-Sheng Jeng » 98 & 9 * » 41 % jF % gLipl £ -k
RIS AR RS RS L A ET IR Akl
PR E P EAFLRH T 0 R B 869-973 | oo

10 B deo~ £ 46 ~FREE 098 & 12 % > AR AZ REEFILILEN 28
oo F - B TORFREKTREFE L E o S e B
A-1-A-7T F -

1L ESL P 400 98 & 12 7 6 K3 s B Fo 7 48 > 4 3% 23R 2 &
B AHPRAIT 0 B BB TORFRE KT REMGE 0 S E s S
# oo %< B L-1-L-6 F -

120 3 4o~ 5748 0 98 & 12 7 > M3 b B P B B2 kLT 2T AR 2
EL 4B AP FRRRGEEELFIVETRAEE R § A HE
WERFPTFHAFEF 2 Py PER  FLEEE3F -

il

N
N
-

55



