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Abstract

In the most general sense, a heterogeneous material is one that is composed of
domains of different materials (or phases), such as a composite, or the same
material in different states, such as a polycrystal. In many instances, the mi-
crostructures can be characterized only statistically, and therefore are referred
to as random heterogeneous materials(or random media), the chief of this study.

Consider an elliptic equation : −div(A(ε−1x, ω)∇uε(x, ω)) = f(x) on Q,

uε(x, ω)|∂Ω = 0 on ∂Q;

where A, f, and u are in suitable function spaces , ω ∈ Ω and (Ω,Σ, µ) is a
suitable probability space. In this study we introduce the ergodic dynamical
systems on the probability space to describe the random media; we show the
matrix A(x, ω) above admits homogenization( see Definition.4.2) and the ho-
mogenized matrix is independent of ω ∈ Ω.

We give definitions, examples, and proofs about ergodic dynamical systems
in section two. Section three is about definition of realizations, and the ergodic
theorem. In section four, we recall the definition of homogenization of ellip-
tic equations for individual cases and statistical cases, and use the auxiliary
equations to define the homogenized matrix, and prove the main convergence
theorem through the div-curl lemma. In section five, we define the random
sets of the percolation, consider the existence of the effective conductivity, and
state the theorem of the existence of the effective conductivity of such random
media.
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List of Notations

Notation Definition

(Ω,Σ, µ) a probability space

Tx m-dimensional dynamical system {Tx : Ω → Ω | x ∈ Rm}

⟨f⟩ mean value of a function on Ω

f(Tx(ω)) realizations for a µ-measurable function f

M{f(Tx(ω))} mean value of a realization of a function on Ω

∇u gradient of a function u

divxp divergence of a vector field p

curlxv curl of a vector field v

L2(Ω) (L2(Ω))m

L2
sol(Ω) {f ∈ L2(Ω) : divx(f(Tx(ω))) = 0 in Rm}

L2
pot(Ω) {f ∈ L2(Ω) : curlx(f(Tx(ω))) = 0 in Rm}

V 2
sol(Ω) {f ∈ L2

sol(Ω) : ⟨f⟩ = 0}

V 2
pot(Ω) {f ∈ L2

pot(Ω) : ⟨f⟩ = 0}

H1(Q) the Sobolev space {f ∈ L2(Q) : ∇f ∈ L2(Q) = (L2(Q))m}

H1
0(Q) the closure of the set C∞

0 (Q) inH1(Q)

H−1(Q) the set of all continuous linear functionals on H1
0(Q)

ii



1 Introduction

In the most general sense, a heterogeneous material is one that is composed
of domains of different materials (or phases), such as a composite , or the same
material in different states, such as a polycrystal. When those components are
intimately mixed, the parameters (such as conductivity, elasticity, · · · ) oscillate
very rapidly and the microscopic structure becomes complicated.

In a composite material the heterogeneities are small compared to its global
dimension, so we have two scales characterize the material: the microscopic
one and the macroscopic one. The microscopic one describes the heterogeneity
while the macroscopic one describes the global behaviour of the composite.

The aim of homogenization is finding a systematic approach to find the
macroscopic properties by considering the properties of the microscopic struc-
tures. In mathematical models, microscopically heterogeneous media are usu-
ally described by functions of the form A(ε−1x). We want to get a good approx-
imation of the macroscopic behaviour of a heterogeneous material by letting the
parameters, which describe the fineness of the microscopic structure, tend to
zero in the equations describing phenomena such as heat conduction and elas-
ticity.

For example, a model for the study of the physical behaviour of a heteroge-
neous body with a fine periodic structure, e.g. in electrostatics, or stationary
heat diffusion is given by : −div(A(ε−1x)∇uε(x)) = f(x) on Q,

uε(x)|∂Ω = 0 on ∂Q;

where Q ⊂ Rm is a bounded domain which will be considered as a piece of the
heterogeneous material. The function u(x) can be considered as the electric po-
tential, the magnetic potential, or the temperature, respectively. A(ε−1x) is a
matrix (satisfies the elliptic condition (4.1)) with periodic entries and describes
the physical properties of the different materials constituting the body . f(x)
is the source term.

When the period of the structure is very small, a direct numerical approxi-
mation of the solution may be very heavy or impossible. Then homogenization
provides an alternative way of approximating such solutions by means of a
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function u0(x) which solves the homogenized problem : −div(A0∇u0(x)) = f(x) on Q,

u0(x)|∂Ω = 0 on ∂Q;

where A0 is a constant matrix which just describes as the physical parameter
of a homogeneous medium.

The above is an example of an individual periodic medium . In many other
instances, the microstructures can be characterized only statistically, and there-
fore are referred to as random heterogeneous materials(or random media).

The following is the equation we consider in this study : −div(A(ε−1x, ω)∇uε(x, ω)) = f(x) on Q,

uε(x, ω)|∂Ω = 0 on ∂Q;

which the coefficient matrix and the solution both depend not only on the spa-
cial variant but also on a suitable probability space (Ω,Σ, µ). Then fix an ω ∈ Ω
we have an individual problem.

We study the equation with a dynamical system and prove a result under
the assumptions such as ergodicity of a dynamical system and the ellipticity
of the coefficient matrix. The main result is the convergence of a homogenized
matrix and the matrix is independent of ω ∈ Ω, so we don’t have to do ho-
mogenization on every individual problem. However, we can just prove the
convergence under these limited assumptions and the theorem does not tell us
how to do a numerical analysis on the homogenized matrix.

The following is the stages how we prove the convergence.

In our study we use the ergodic dynamical system to describe the ran-
domness of random media. We will give definitions and examples of ergodic
dynamical systems in section two. We then prove the ergodicity of these exam-
ples as well.
In section three, we give the definition of realizations, and state the ergodic
theorem. In section four, we recall the definition of homogenization of elliptic
equations for individual cases and statistical cases. We study an auxiliary equa-
tion to define the homogenized matrix, and state the main convergence theorem
through the method of compensated compactness. In section five, we use the
random sets to describe the media in percolation, and use the homogenization
theorem to prove the effective conductivity of such random media.
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2 Ergodic dynamical systems

In this section we introduce the m-dimensional dynamical system on a proba-
bility space. And also we define what an ergodic dynamical system is and give
some examples of ergodic dynamical systems with proofs.

2.1 Definitions and notations

Definition 2.1 (m-dimensional Dynamical system). Let (Ω,Σ, µ) be a
probability space. We define an m-dimensional dynamical system as a family
of mappings {Tx : Ω → Ω}x∈Rm such that :

(1) T0 = I, where I is the identity mapping,
Tx+y = Tx ◦ Ty for all x, y ∈ Rm (the group property).
Note that from above we have : T−1

x = T−x .

(2) For all x ∈ Rm, and all µ-measurable set F ⊂ Ω we have:
Tx(F) is µ−measurale, and µ(T−1

x (F)) = µ(F). (measure preserving);

(3) f ◦Tx is measurable on Ω×Rm for any µ-measurable function f on Ω where
Rm is endowed with the Lebesgue measure.

Definition 2.2 (Invariant function). A µ-measurable function f on Ω is said
to be invariant with respect to Tx if

f(Tx(ω)) = f(ω), for all given x ∈ Rm and a.e in Ω.

Definition 2.3 (Ergodic dynamical system). A dynamical system Tx is
said to be ergodic if every invariant function is constant a.e in Ω. We
also say that the measure µ is ergodic with respect to Tx.

Definition 2.4 (Realization). Let f be a µ-measurable function on Ω. For a
fixed ω ∈ Ω, f(Tx(ω)) can be regarded as a function of argument x ∈ Rm, we
call f(Tx(ω)) a realization of f.

2.2 Examples and justifications

Now we give some examples of dynamical systems and prove their ergodicity.

Example 2.1 (Periodic case). Let (Ω,Σ, µ) be a probability space where
Ω = �m = {ω ∈ Rm, 0 ≤ ωj < 1, j = 1, · · · ,m}, Σ is a suitable σ-algebra, and
µ is the probability measure. Then Tx(ω) = ω+ x (mod 1) defines a dynamical
system on Ω.

Proof.
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Step 1. First, we show that Tx is a dynamical system :

(1) T0(ω) = 0 + ω (mod 1) = ω (mod 1) (the identity mapping)

Tx ◦ Ty(ω) = Tx

(
y + ω (mod 1)

)
= x+ y + ω (mod 1)

= Tx+y(ω) (the group property)

(2) Since the Lebesgue measure is translation invariant , then for all
x ∈ Rm and every µ-measurable set F ∈ Ω, we have:

Tx(F) is µ−measurale, and µ(T−1
x (F)) = µ(F)

Step 2. Now, we show that Tx is ergodic :
Let f(ω) be µ−measurable on Ω and invariant :

f(ω) = f(Tx(ω)) = f(x+ ω (mod 1)) for all x ∈ Rm a.e. in Ω.

Fix an ω ∈ Ω, and choose xω ∈ Rm by xω = −ω. Then for this ω, we
have

f(ω) = f(Txω
(ω)) = f(0)

Since ω ∈ Ω is arbitrary, then

f(ω) = f(0) = constant, for all ω ∈ Ω.

Thus, every invariant function is constant, so Tx is ergodic.

Example 2.2 (Quasiperiodic case). Let (Ω,Σ, µ) be a probability space
where Ω = �m = {ω ∈ Rm, 0 ≤ ωj < 1, j = 1, · · · ,m}, Σ is a suitable σ-
algebra, and µ is the probability measure. For x ∈ Rm, set

Tx(ω) = ω + λx (mod 1),

where λ = λij is an m× m invertible matrix.

Proof.

Step 1. First, we show that Tx is a dynamical system :
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(1) T0(ω) = ω + λ0 (mod 1) = ω (mod 1) (the identity mapping)

Tx ◦ Ty(ω) = Tx(ω + λy (mod 1))

= Tx

(
ω1 +

∑m
j=1 λ1jyj
...

ωm +
∑m

j=1 λmjyj

 (mod 1)

)

=

(
ω1 +

∑m
j=1 λ1jyj
...

ωm +
∑m

j=1 λmjyj

 (mod 1)

)
+

+


∑m

j=1 λ1jxj
...∑m

j=1 λmjxj

 (mod 1)

=


ω1 +

∑m
j=1 λ1j(x+ y)j

...

ωm +
∑m

j=1 λmj(x+ y)j

 (mod 1)

= Tx+y(ω) (the group property)

(2) Since the Lebesgue measure is translation invariant , then for all x ∈
Rm and every µ-measurable set F ∈ Ω, we have:

Tx(F) is µ−measurale, and µ(Tx(F)) = µ(F)

Step 2. Now, we show that Tx is ergodic :
Suppose that f is a µ − measurable function defined on Ω and is
invariant :

f(ω) = f(Tx(ω)) = f(ω + λx (mod 1)) for all x ∈ Rm a.e. in Ω.

Fix an ω ∈ Ω, and choose xω ∈ Rm by xω = −λ−1ω( λ is invertible).
Then for this ω, we have

f(ω) = f(Txω
(ω)) = f(0)

Since ω ∈ Ω is arbitrary, then

f(ω) = f(0) = constant, for all ω ∈ Ω.

Thus, every invariant function is constant, so Tx is ergodic.
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Example 2.3 ([7]Tile-based random media case). In this case we establish
a dynamical system to describe the so called tile-based random media. Loosely
speaking, these are structures obtained by randomly arranging tiles. A sim-
ple example is a checkerboard structure where the colors of tiles are painted
randomly.

Step 1. The probability space: Let Y be the set of all possible outcomes
for a single tile and consider the probability space (Y,FY , µY ), where FY is
an appropriate σ-algebra and µY is a probability measure. Define the product
space (S,FS, µS) = ΠZm(Y,FY , µY ), where FS is the product σ-algebra and µS

is the product measure. Finally, to account for translations, define the overall
probability space

(Ω,F , µ) = (S,FS, µS)⊗ (Torm,B(Torm), Lm)),

where Torm = [0, 1)m ,B(Torm) is the Borel σ-algebra on Torm and Lm is the
Lebesgue measure.

Step 2 (The dynamical system). An element s ∈ S has the form

s = {yj}j∈Zm, yj ∈ Y,

and an element ω ∈ Ω has the form

ω = (s, τ) s ∈ S, τ ∈ Torm.

First we define the dynamical system {T̂z}z∈Zm on S by

T̂z({yj}j∈Zm) = {yj+z}j∈Zm.

Define the projection operators P1 : Rm → Zm and P2 : Rm → Torm by

P1(x) = [x], x ∈ Rm, P2(x) = x− [x] x ∈ Rm.

Here [x] is the vector whose elements are greatest integers less or equal to
the corresponding elements in x. Note that each x ∈ Rm has the unique
decomposition

x = P1(x) + P2(x).

Next, define the dynamical system {R̂x}x∈Rm on Torm by

R̂x(τ) = P2(x+ τ) = (x+ τ)− [x+ τ ] = x+ τ (mod 1), τ ∈ Torm.

Note here R̂x(τ) is just the same dynamical system as in Example 2.1, and

so R̂x(τ) is ergodic. It can be shown that the dynamical system {T̂z}z∈Zm is
ergodic([6, Ch.9]). Finally, we define the dynamical system {Tx}x∈Rm on Ω by

Tx(ω) = Tx(s, τ) = (T̂P1(x+τ)(s), R̂x(τ)), s ∈ S, τ ∈ Torm.
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Now we prove the following:

Proposition 2.1. {Tx}x∈Rm defined above is ergodic.

Proof. Let f be µ-measurable on Ω which is invariant under T,that is,

f(Tx(ω)) = f(ω), for all x ∈ Rm, a.e. Ω. (2.1)

Recall that ω ∈ Ω has the form ω = (s, τ) and τ ∈ Torm. Now by (2.1) we have

also f(Tz(ω)) = f(ω) for all z ∈ Zm. Then, using R̂z(τ) = τ for all z ∈ Zm,
this gives :

f(s, τ) = f(Tz(s, τ)) = f(T̂z(s), R̂z(τ)) = f(T̂z(s), τ).

Define f τ(s) = f(s, τ), this takes the form

f τ(T̂z(s)) = f τ(s) for all z ∈ Zm. (2.2)

We know f τ(s) is measurable on S. Since {T̂z}z∈Zm is ergodic, then (2.2) implies
that f τ is constant a.e. for each τ . Therefore,

f(s, τ) = ϕ(τ) s ∈ S, τ ∈ Torm. (2.3)

Next, using (2.1) again we have

f(Tt(ω)) = f(ω) for all t ∈ Torm. (2.4)

Now, using (2.3) we have

f(Tt(ω)) = f(T̂P1(t+τ)(s), R̂t(τ)) = ϕ(R̂t(τ));

also, f(ω) = f(s, τ) = ϕ(τ). Therefore, we have that

ϕ(R̂t(τ))) = f(Tt(ω)) = f(ω) = f(s, τ) = ϕ(τ) for all t ∈ Torm, a.e. (2.5)

Finally, recalling ergodicity of the dynamical system {R̂t}t∈Torm, we get that
ϕ(τ) ≡ constant a.e. and hence, f ≡ constant a.e.
Thus we have proved that every invariant function f is constant, then {Tx}x∈Rm

is ergodic.

Example 2.4 (Percolations). There is one more example about percolations
on random media, which we will state in section 5 later.

In what follows the dynamical system Tx(ω) is assumed to be ergodic, Ω is
a compact metric space, µ is a Borel measure, and the mapping

Rm × Ω → Ω, where (x, ω) → Tx(ω)

is continuous.
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3 Some facts about ergodicity

In this section, we introduce the mean value of a realization of f ◦ T
and give some ergodicity related theorems.

Definition 3.1 (Mean value of functions on (Ω,Σ, µ) ). Let f ∈ Lα(Ω),
then we define the mean value of f as the following:

⟨f⟩
def
≡

∫
Ω

f(ω)dµ

Definition 3.2 (Mean value of realizations). Let f(x) ∈ L1
loc(Rm). A

number M{f } is called the mean value of f if

lim
ε→0

∫
K

f(ε−1x)dx = |K|M{f}

for any Lebesgue measurable bounded set K ⊂ Rm (here |K| stands for the
Lebesgue measure of K). Under additional assumptions on f(x) the definition
of the mean value can be expressed in terms of weak convergence. For instance,
let the family of functions f(x) be bounded in Lα

loc(Rm) for some α ≥ 1. Since
linear combinations of the characteristic functions of the sets K are dense in
Lα′

loc(Rm), 1
α + 1

α′ = 1, we can replace the definition above by

f(ε−1x) ⇀ M{f} in Lα
loc(Rm).

Theorem 3.1 (The Birkhoff Ergodic Theorem). [1, 1994,p.225]Let f ∈
Lα(Ω), α ≥ 1. Then for almost ω ∈ Ω the realization f(Tx(ω)) possesses a
mean value in the sense

f(Tε−1x(ω)) ⇀ M{f(Tx(ω))} in Lα
loc(Rm).

Moreover, the mean value M{f(Tx(ω))}, considered as a function of ω ∈ Ω, is
invariant, and

⟨f⟩
def
≡

∫
Ω

f(ω)dµ =

∫
Ω

M{f(Tx(ω))}dµ.

In particular, if the system Tx is ergodic, then

M{f(Tx(ω))} = ⟨f⟩ for almost all ω ∈ Ω.

Definition 3.3 (Sobolev spaces). Let Q ⊂ Rm be a bounded domain, then
we define the following:

(1) A vector v(x) = (v1(x), · · · , vm(x)), vi(x) ∈ L1(Q), is said to be the gradi-
ent of a function u(x) ∈ L1(Q), if for all φ(x) ∈ C∞

0 (Q) :∫
Q

u(x)
∂φ(x)

∂xi
dx = −

∫
Q

vi(x)φ(x)dx, i = 1, · · · ,m.

The gradient of u(x) is denoted by ∇u(x).
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(2) Denote by H1(Q) the Sobolev space :

H1(Q) = {f(x) ∈ L2(Q) : ∇f(x) ∈ L2(Q) = (L2(Q))m}.

Equipped with the scalar product

(u, v) =

∫
Q

u(x)v(x)dx+

∫
Q

(
∂u(x)

∂xi

∂v(x)

∂xi

)
dx

H1(Q) becomes a Hilbert space( here the summation over repeated indices
is assumed.) The norm corresponding to the above scalar product is

∥u(x)∥2H1(Q) = ∥u(x)∥20 + ∥u(x)∥21, where

∥u(x)∥20 =
∫
Q

u2(x)dx, and ∥u(x)∥21 =
∫
Q

|∇u(x)|2dx.

(3) H1
0(Q)

def
≡ the closure of the set C∞

0 (Q) inH1(Q).

(4) H−1(Q)
def
≡ the set of all continuous linear functionals on H1

0(Q).

(5) A sequence of functions fn(x) ∈ H1
0(Q) is said to converge weakly to f(x) ∈

H1
0(Q) if :

lim
n→∞

(fn(x), g(x)) = (f(x), g(x)) for all g(x) ∈ H1
0(Q)

We denote the weak convergence by :

fn(x) ⇀ f(x) in H1
0(Q).

Similarly for a sequence of functions fn(x) ∈ L2(Q), we say that

fn(x) ⇀ f(x) in L2(Q)

if lim
n→∞

∫
Q

fn(x)φ(x)dx =

∫
Q

f(x)φ(x)dx for all φ ∈ L2(Q).

For the *-weak convergence of fn(x) ∈ L1(Q) we define as following :

fn(x)
∗
⇀ f(x) in L1(Q)

if lim
n→∞

∫
Q

fn(x)φ(x)dx =

∫
Q

f(x)φ(x)dx for all φ ∈ C∞
0 (Q).

(6) For any vector field p(x) ∈ L2(Q), the divergence is defined to be an
element of the space H−1(Q) defined by

(divxp(x), φ(x)) = −
∫
Q

p(x) · ∇φ(x)dx, for all φ(x) ∈ H1
0(Q),

where “ · ” denotes the scalar product of two vectors.
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(7) For any vector field v ∈ L2(Q), the relations

(curlxv(x), φ(x))ij = −
∫
Q

(
vi(x)

∂φ(x)

∂xj
− vj(x)

∂φ(x)

∂xi

)
dx,

for all φ(x) ∈ H1
0(Q), where i, j = 1, · · · ,m,

define a skew-symmetric matrix curlxv(x), whose elements belong to the
space H−1(Q).

Definition 3.4 (solenoidal vector field). Let Q ⊂ Rm be a bounded domain.
A vector field f(x) = (f1(x), f2(x), · · · , fm(x)), fi(x) ∈ L2(Q) is said to be
solenoidal if ∫

Rm

fi(x)
∂φ(x)

∂xi
dx = 0, for all φ(x) ∈ C∞

0 (Rm),

i.e, divx(f(x)) = 0 in Rm.

Definition 3.5 (potential vector field). Let Q ⊂ Rm be a bounded domain.
A vector field f(x) = (f1(x), f2(x), · · · , fm(x)), fi(x) ∈ L2(Q) is said to be
vortex-free if∫

Rm

(
fi(x)

∂φ(x)

∂xi
− fj(x)

∂φ(x)

∂xi

)
dx = 0, for all φ(x) ∈ C∞

0 (Rm),

i.e, curlx(f(x)) = 0 in Rm. Moreover, if Q ⊂ Rm is simply connected, then we
also say that f(x) is potential :

f(x) = ∇g(x), where g(x) ∈ H1(Q).

Definition 3.6. A vector field f(ω) = (f1(ω), f2(ω), · · · , fm(ω)), fi(ω) ∈ L2(Ω)
is say to be potential(resp., solenoidal), if almost all its realizations f(Tx(ω))
are potential(resp., solenoidal). Define the following :

L2
sol(Ω) = {f(ω) ∈ L2(Ω) : divx(f(Tx(ω))) = 0 in Rm};

L2
pot(Ω) = {f(ω) ∈ L2(Ω) : curlx(f(Tx(ω))) = 0 in Rm};

V 2
sol(Ω) = {f(ω) ∈ L2

sol(Ω) : ⟨f⟩ = 0};
V 2
pot(Ω) = {f ∈ L2

pot(Ω) : ⟨f⟩ = 0};
L2(Ω) = (L2(Ω))m.

Theorem 3.2 (Weyl’s Decomposition). [1, 1994,p.228]The following orthog-
onal decompositions are valid:

L2(Ω) = V 2
pot(Ω)⊕ V 2

sol(Ω)⊕ Rm = V 2
pot(Ω)⊕L2

sol(Ω) (3.1)
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Lemma 3.1 (Compensated compactness(the Div-Curl Lemma)). [1,
p.138] Let pε(x), p0(x), vε(x), and v0(x) be vector fields in L2(Q) such that

pε(x) ⇀ p0(x),vε(x) ⇀ v0(x) in L2(Q) as ε → 0.

If, in addition, divxp
ε(x) and (curlxv

ε(x))ij are compact sequences in H−1(Q),
then

pε(x) · vε(x)
∗
⇀ p0(x) · v0(x) in L1(Q).

4 Homogenization

Now we recall the setting of the homogenization problem on individual cases
and statistical cases.

Definition 4.1 (Individual homogenization problem). Let A(x)=aij(x),
aij(x) ∈ L∞(Rm), be a given matrix satisfying the condition of ellipticity :

aij(x)ξiξj ≥ ν1|ξ|2, for all x, ξ ∈ Rm, where ν1 > 0. (4.1)

We say that the matrix A(x) admits homogenization if there exists a
constant elliptic matrix A0 such that for any bounded domain Q ⊂ Rm

and any f ∈ H−1(Q) the solutions uε of the Dirichlet problems

divx(A(ε−1x)∇uε(x)) = f(x), uε(x) ∈ H1
0(Q), (4.2)

possess the following properties of convergence : uε(x) ⇀ u0(x) in H1
0(Q),

A(ε−1x)∇uε(x) ⇀ A0∇u0(x) in L2(Q),

where u0 is the solution of the homogenized Dirichlet problem

divx(A0(x)∇u0(x)) = f(x), u0(x) ∈ H1
0(Q). (4.3)

The above homogenization problem concerns an individual matrix A(x) and
is therefore referred to as the problem of individual homogenization.

The theory of operators with random coefficients deals with a matrix A(ω)
defined on Ω :

Definition 4.2 (Random coefficient homogenization problem). Let
A(ω) = aij(ω), aij(ω) ∈ L∞(Ω) and satisfying the following ellipticity condition

aij(ω)ξiξj ≥ ν1|ξ|2, for all ξ ∈ Rm, where ν1 > 0 (4.4)
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for almost all ω ∈ Ω.
Consider the realizations A(Tx(ω)) and the problem consists in describing

the homogenization for almost all ω ∈ Ω. We say that the matrix A(ω) admits
homogenization if there exists a constant elliptic matrix A0 such that for any
bounded domain Q ⊂ Rm and any f ∈ H−1(Q) the solutions uε(x, ω) of the
Dirichlet problems

divx(A(Tε−1x(ω))∇uε(x, ω)) = f(x), uε(x) ∈ H1
0(Q), (4.5)

possess the following properties of convergence uε(x, ω) ⇀ u0(x) in H1
0(Q),

A(Tε−1x(ω))∇uε(x, ω) ⇀ A0∇u0(x) in L2(Q),

where u0(x) is the solution of the Dirichlet problem

divx(A0∇u0(x)) = f(x), u0(x) ∈ H1
0(Q). (4.6)

4.1 Auxiliary Equations

For each ξ ∈ Rm consider the following problem

⟨φ(ω) · A(ω)(ξ + vξ(ω))⟩ = 0, for all φ ∈ V 2
pot(Ω),vξ(ω) ∈ V 2

pot(Ω). (4.7)

The existence of a solution for this problem follows from the Lax-Milgram
Lemma [1, p.7] and the estimate

⟨vξ(ω) · A(ω)vξ(ω)⟩ ≥ ν1∥vξ(ω)∥2L2(Ω).

Equation (4.7) can be written in the concise form:

vξ(ω) ∈ V 2
pot(Ω), A(ω)(ξ + vξ(ω)) ∈ L2

sol(Ω). (4.8)

Hence, it is easy to see that for a typical realization equation (4.7) is reduced
to an elliptic equation in Rm. Indeed, let ∇uξ(x, ω) = vξ(Tx(ω)) then

divx

(
A(Tx(ω))(ξ +∇uξ(x, ω))

)
= 0. (4.9)

The solution vξ(ω) of problem (4.7) depends linearly on ξ ∈ Rm. There-
fore ⟨A(ω)(ξ + vξ(ω))⟩ is a linear form with respect to ξ. We then define the
homogenized matrix A0 by

A0ξ
def
≡ ⟨A(ω)(ξ + vξ(ω))⟩. (4.10)
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In conjunction with problem (4.7) consider a similar problem for the conju-
gate operator, which can be written in the form

⟨wλ(ω)⟩ = λ, wλ(ω) ∈ L2
pot(Ω), wλ(ω)A(ω) ∈ L2

sol(Ω). (4.11)

Here the dependence of the solution wλ(ω) on λ ∈ Rm is also linear, and
therefore ⟨wλ(ω)A(ω)⟩ = λC0, where C0 is a constant matrix.

Claim 4.1. A0 = C0.

Proof. Indeed, the orthogonality properties

A(ω)(ξ + vξ(ω))⊥(wλ(ω)− λ), wλ(ω)A(ω)⊥vξ(ω)

imply that

λ · A0ξ = ⟨λ · A(ω)(ξ + vξ(ω))⟩
= ⟨wλ · A(ω)(ξ + vξ(ω))⟩
= ⟨wλ · A(ω)(ξ)⟩
= λ · C0ξ

It follows that for a given symmetric matrix A(ω) the homogenized matrix
A0 will also be symmetric.

Claim 4.2. A0 satisfies the condition of ellipticity.

Proof. From (4.8) we have A(ω)(ξ + vξ(ω))⊥vξ(ω), and then

ξ · A0ξ = ⟨ξ · A(ω)(ξ + vξ(ω))⟩
= ⟨(ξ + vξ(ω)) · A(ω)(ξ + vξ(ω))⟩
≥ ν1⟨|ξ + vξ|2⟩
≥ ν1|⟨ξ + vξ⟩|2

= ν1|ξ|2

Claim 4.3. If A(ω) is symmetric, then :

ξ · A0ξ = inf
v(ω)∈V 2

pot(Ω)
⟨(ξ + v(ω)) · A(ω)(ξ + v(ω))⟩. (4.12)

Proof.
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Step 1. For any v(ω) ∈ V 2
pot(Ω), we have:

⟨(ξ + v(ω)) · A(ω)(ξ + v(ω))⟩
= ⟨((ξ + vξ(ω)) + (v(ω)− vξ(ω))) · A(ω)((ξ + vξ(ω)) + (v(ω)− vξ(ω)))⟩
= ⟨(ξ + vξ(ω)) · A(ω)(ξ + vξ(ω))⟩

+ ⟨(v(ω)− vξ(ω)) · A(ω)(v(ω)− vξ(ω))⟩
+ 2⟨(v − vξ(ω)) · A(ω)(ξ + vξ(ω))⟩

≥ ξ · A0ξ

Step 2. Check:⟨(ξ + vξ(ω)) · A(ω)(ξ + vξ(ω))⟩ = ξ · A0ξ.
From (4.8) and (4.10), we have :

⟨(ξ + vξ(ω)) · A(ω)(ξ + vξ(ω))⟩
= ⟨ξ · A(ω)(ξ + vξ(ω))⟩+ ⟨(vξ(ω)) · A(ω)(ξ + vξ(ω))⟩
= ξ · A0ξ

Step 3. Check: ⟨(v(ω)− vξ(ω)) · A(ω)(v(ω)− vξ(ω))⟩ ≥ ν1|(v(ω)− vξ(ω)|2.
Just follow the ellipticity condition of A(ω).

Step 4. Check:⟨(v(ω)− vξ(ω)) · A(ω)(ξ + vξ(ω))⟩ = 0.

(v(ω)− vξ(ω)) ∈ V 2
pot(Ω), and A(ω)(ξ + vξ(ω)) ∈ L2

sol(Ω).

4.2 Convergence

Theorem 4.1. [1, Theorem 7.4,p.230] Let A(ω) be a matrix defined on a prob-
ability space (Ω,Σ, µ), A(ω)=aij(ω), aij(ω) ∈ L∞(Ω); and let A(ω) satisfy the
condition of ellipticity (4.4). Then for almost all ω ∈ Ω the matrix A(Tx(ω))
admits homogenization, and the homogenized matrix A0 is independent of ω.

Proof.

Step 1. The sequence uε(x, ω) of the solutions of the Dirichlet problems (4.5)
is bounded in H1

0(Q): Multiply both sides of (4.5) by φ ∈ C∞
0 (Q) and
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use the integration by parts we have

|
∫
Q

∇φ(x)A(Tε−1(ω))∇uε(x, ω)dx |

=|
∫
Q

f(x)φ(x)dx |

≤
∫
Q

| f(x)φ(x) | dx

≤ ∥f(x)∥L2(Q)∥φ(x)∥L2(Q)

≤ c0∥f(x)∥L2(Q)∥∇φ(x)∥L2(Q) (4.13)

Replace φ(x) with uε(x, ω) ∈ H1
0(Q) in (4.13), we then have :

ν1|∇uε(x, ω)|2

≤|
∫
Q

∇uε(x, ω)A(Tε−1(ω))∇uε(x, ω)dx |

≤ c0∥f(x)∥L2(Q)∥∇uε(x, ω)∥L2(Q), where c0 is a constant. (4.14)

The inequality (4.14) implies that : ∥∇uε(x, ω)∥L2(Q) ≤ c1∥f(x)∥L2(Q)

∥uε(x, ω)∥L2(Q) ≤ c2∥f(x)∥L2(Q)

, where c1 and c2 are constant. Then we have uε(x, ω) is bounded in
L2(Q), thus

uε(x, ω) ⇀ u0(x, ω) in H1
0(Q).

Since

∥A(Tε−1x(ω))∇uε(x, ω)∥L2(Q) ≤ ∥A(ω)∥L∞(Q)∥∇uε(x, ω)∥
≤ c3∥f(x)∥L2(Q)

then the sequence of the flows pε(x, ω) = A(Tε−1x(ω))∇uε(x, ω) is
bounded in L2(Q), we then have :

pε(x, ω) ⇀ p0(x, ω) in L2(Q).

Step 2. Consider the auxiliary problem (4.11) and set

q(x, ω) = wλ(Tx(ω))A(Tx(ω)),

qε(x, ω) = wλ(Tε−1x(ω))A(Tε−1x(ω)),
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we have: curlxwλ(Tε−1x(ω)) = 0, and divxq
ε(x, ω) = 0 in Rm,and the

ergodic theorem yields wλ(Tε−1x(ω)) ⇀ ⟨wλ(ω)⟩ = λ,

qε(x, ω) ⇀ ⟨wλ(ω)A(ω)⟩ = λA0 in L2(Q).

Step 3. Since

pε(x, ω) ·wλ(Tε−1x(ω))

= A(Tε−1x(ω))∇uε(x, ω) ·wλ(Tε−1x(ω))

= wλ(Tε−1x(ω))A(Tε−1x(ω))∇uε(x, ω)

= qε(x, ω) · ∇uε(x, ω)

Now, together with : 

curlxwλ(Tε−1x(ω)) = 0

divxq
ε(x, ω) = 0

curlx∇uε(x, ω) = 0

divxp
ε(x,w) = 0

and the Div-Curl lemma, we have pε(x, ω) ·wλ(Tε−1x(ω))
∗
⇀ p0(x, ω) · λ

qε(x, ω) · ∇uε(x, ω)
∗
⇀ λA0∇u0(x, ω)

, so p0(x, ω)·λ = λ·A0∇u0(x, ω). It follows that p0(x, ω) = A0∇u0(x, ω).
Since divxp

0(x, ω) = f(x), therefore u0(x, ω) is a solution of

divxA0∇u0(x, ω) = f(x).

Since A0 is independent of ω, then we can rewrite the above equation
as :

divxA0∇u0(x) = f(x).

Then the homogenization has been proved.
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4.3 Conclusion

We have proved that for the elliptic equation : aij(ω)ξiξj ≥ ν1|ξ|2, for all ξ ∈ Rm, where ν1 > 0

divx(A(Tε−1x(ω))∇uε(x, ω)) = f(x), uε(x) ∈ H1
0(Q), f ∈ H−1.

the matrix A(ω) admit the homogenization and is independent of ω. Note
here we only prove the case that the dynamical systems is ergodic. If the
dynamical system is not ergodic or the random media can not be described by
the dynamical system, then our study can not apply on the case. So the theorem
that we have proved here is limited, but somehow useful in some particular
cases.

5 Application on percolation

The phenomenon of percolation can be modeled by a random structure of
chess-board type. For example, a structure of this kind is obtained if we split
the plane into squares, painting each square, independently, black or white with
probability p or 1 − p, respectively, where 0 ≤ p ≤ 1. Then the union of all
black squares forms one kind of random sets F( see Definition5.1 below).

Let us assume that the set F be a perfect dielectric(i.e., a material with
zero conductivity) and the set Rm\F be a conductor whose conductivity whose
conductivity tensor is the identity matrix I. Hence we can consider the homog-
enization of percolation in such a random medium.

The above is a specific kind of random set, and in this section, we use the
homogenization theory above to give one version of the theorem of existence of
the effective conductivity for random sets. Again we can show the existence of
the homogenized matrix. However, if we need some more informations of the
homogenized matrix, then we must do the numerical analysis for the matrix to
find the rate of convergence. Now we define the random sets on the random
media:

Definition 5.1 (Random set). Let (Ω,Σ, µ) be a probability space with an
ergodic dynamical system {Tx}x∈Rm. Fix a µ-measurable set F ⊂ Ω. The set
Fω ∈ Rm obtained from F by

Fω
def
≡ {x ∈ Rm, Tx(ω) ∈ F}

is called a random stationary or simply, random, set.

As we can see that the random set Fω obtained from F is dependent not only
on the set F but also some given point ω ∈ Ω. In the following theorem we can
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see that for any random set Fω , the homogenized matrix exists and does not
depend on ω ∈ Ω.

Theorem 5.1. [1, p.300] Let Fω be an arbitrary random stationary set in Rm.
Then there exists a non-negative matrix A0 such that for almost every ω ∈ Ω
and any bounded domain Q ∈ Rm we have

lim
t→∞

1

| Qt |
inf

u∈λ·x+C∞
0 (Qt)

∫
Qt\Fω

|∇u|2dx

= lim
ε→0

1

| Q |
inf

u∈λ·x+C∞
0 (Qt)

∫
Q\Fε

ω

|∇u|2dx

= λ · A0λ (5.1)

where Qt = {tx, x ∈ Q} is the homothetic dilatation with ratio t¿0 of the
domain Q and F ε

ω = {x ∈ Rm, ε−1x ∈ Fω}. The matrix A0, called effective
conductivity, coincides with the formally homogenize matrix:

λ · A0λ = inf
v(ω)∈V 2

pot(Ω)

∫
Ω\F

|λ+ v(ω)|2dµ (5.2)

where V 2
pot(Ω) = {f ∈ L2

pot(Ω) : ⟨f⟩ = 0}.
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