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Lit-only sigma-game
from the view of algebra

Student: Hau-wen Huang Advisor: Chih-wen Weng

Department of Applied Mathematics
National Chiao Tung University

Abstract

The lit-only o-game is'a one-player game played on a finite simple graph. It is known
that this game can be view as a.group action. In this thesis we show how this game
is related to Coxeter groups. Moreover we use algebraic techniques to generalize some
known results on the game.
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Chapter 1

Introduction

My object of this thesis is to use algebraic techniques to study a combinatorial game
called the lit-only o-game. The game is.a.one-player game played on a finite graph. Let I’
denote a finite graph. A configuration of the lit-only s-game on I' is an assignment of one
of two states, on or off, to each vertex of I'. Given a configuration, a move of the lit-only
o-game on [" allows the player to choose one on vertex s'of I' and change the states of all
neighbors of s. Given a‘starting configuration, the goal is usually to minimize the number
of on vertices of I' or_to reach an-assigned configuration by a finite sequence of moves. In
the thesis, we are only concerned with the lit-only o-game on a finite simple graph and
always assume that.L'is a finite simple graph.

The game implicitly appeared in the classification of simple Lie algebras over real
number field. See [2, 8] for details. In 2005 International and Third Cross-strait Confer-
ence on Graph Theory and Combinatorics, Gerard J. Chang’s talk “Graph Painting and
Lie Algebra” promoted the birth of this game. Later Yaokun Wu and Xinmao Wang [26]
realized this game is«a variation of o-game and named it-lit-only g-game. They also found
that the game appeared as early as 2001 in the paper [12].

As far as we know, the first result on this topic is frem[2|, which claimed that if I" is
a simply-laced Dynkin diagram then'given any configuration one can reduce the number
of on vertices to at most one. ‘Some results of [§] can be viewed as a description of the
orbits of this game on simply-laced Dynkin diagrams. Gerard J. Chang, on his talk, gave
a conjecture: if I' is a tree with ¢ leaves then for any configuration one can reduce the
number of on vertices to at most [£]. Later Yaokun Wu and Xinmao Wang [26] proved
this conjecture. Also they [26] found that a subgroup of the general linear group over the
two-element field of which the natural action can be viewed as the lit-only o-game. Later
in the paper [29], Yaokun Wu named this group the lit-only group and proved that it is
isomorphic to the symmetric group on n letters when the underlying graph is the line
graph of a tree of order n > 3. In 2007 the author independently found this group, and in
2008 the author named it the flipping group. In this dissertation we will adopt the latter
name. For the study of the difference between the lit-only o-game and o-game, please
refer to [14, 15, 27].

The organization of this dissertation is as follows. In Chapter 2 we show how the
flipping groups are related to the simply-laced Coxeter groups, and from the view of the
flipping groups we give an alternative description of the orbits of the game on simply-
laced Dynkin diagrams. In Chapter 3 we consider the game on an n-vertex graph with an



Introduction

induced path of n — 1 vertices, which generalizes the study of the latter part of Chapter
2. Motivated by the first result [E], Chapter 4 is devoted to finding more trees for which
given any configuration one can reach a configuration with at most one on vertex by a
finite sequence of moves. The topic of Chapter 5 is to study the edge-version of lit-only
o-game on ['. We may view this variation as the lit-only o-game on the line graph L(I")
of I". We find that the structure of the flipping group of L(I'), which only depends on the
order and size of T'.




Chapter 2

Lit-only sigma-game and
simply-laced Coxeter groups

The lit-only o-game is a one-player game played on a finite simple graph. Let I' denote
a finite simple graph. A configuration of the lit-only'g-game on I' is an assignment of one
of two states, on or off, to all vertices of I'. Given a configuration, a move of the lit-only
o-game on [ consisting of choosing one on vertex s of I' and changing the states of all
neighbors of s. Given a starting configuration, the goal is usually to.minimize the number
of on vertices of I' or.to reach an-assigned configuration by a finite sequence of moves. In
this chapter, we show how the lit-only o-game is related to simply=laced Coxeter groups
and study the gameron simply-laced Dynkin diagrams.

2.1 The flipping group of a graph

An ordered pair = (IS, R) is called a finite simple graph whenever S is a finite set
and R is a set of some two-element subsets of S. The elements of S are called vertices of I"
and the elements of R are called edges of I'. For any s,t €S we say s and t are neighbors
whenever {s,t} € R. For convenience we usuallywrite st € R or ts € R for {s,t} € R.
We say that a finite simple graph I = (S, R)is connected whenever for any two distinct
vertices s,t of I' there exists a subset {$0S1, 8152, ..., Sk_15} of R with so = s and s;, = t.

Throughout this dissertation let I' = (S, R) denote a finite simple graph. Moreover we
assume that S is nonempty and that I' is connected. Let Fy denote the two-element field
{0,1}. Let Matg(IFy) denote the set consisting of square matrices over Fy with rows and
columns indexed by S. Let GLg(F2) denote the group consisting of all invertible matrices
in Matg(FFy). The group operation of GLg(FF3) is ordinary matrix multiplication. We use
I to denote the identity in GLg(Fs). Let F5 denote the vector space consisting of column
vectors over FFy indexed by S. For s € S let e, denote the characteristic vector of s in F5;
ie e, = (0,0,...,0,1,0,...,0)" where 1 is in the position corresponding to s. Here a
means the transpose of a.

We interpret each configuration a of the lit-only o-game on I' as the vector

> e (2.1)

s



Lit-only sigma-game and simply-laced Coxeter groups

of F5, where the sum is over all vertices s of I that are assigned the on state by a; if all
vertices of I' are assigned the off state by a, then (El!) is interpreted as zero vector. We
may view a move of the lit-only o-game as choosing any vertex s of I' and changing the
states of all neighbors of s if the state of s is on.

Definition 2.1.1. For s € S define a matrix x5 € Matg(IFy) by

(K )us = 1 ifu=wv,orv=sanduv € R,
U0 else

for all u,v € S.
The following is a reformulating of Definition .

Lemma 2.1.2. For s,v € S we have

e+ > ey if v=s,
K€y =

wER

€y if v 8.

Let a € F5. By Lemma , if the state of sis on then &,a is obtained from a by
changing the states of all meighbors of s; if the state of s is off then xksa = a. Therefore
we may view k, as the move of the-lit-only o-game on I' for which-we choose the vertex
s and change the states of all neighbors of s if the state of s is on.

Lemma 2.1.3. Fors € S we have k2 = I. In particular r, € GlLg(Fsg).

Proof. Use Lemma, . O]

Definition 2.1.4. Let W denote the subgroup.of GLg(Fs) generated by x for all s € S.
We call W the flipping group of T.

As far as we know the flipping group of T was first mentioned in 26, Introduction].

Observe that for any a,b & Fj; b is"obtained from @ by a finite sequence of moves
of the lit-only o-game on I' if and only if b = Ga for some G € W. We now define the
W-orbits of F5, which are exactly the orbits of the lit-only o-game on I'.

Definition 2.1.5. Let a € F5. By the W-orbit of a we mean the set Wa = {Ga | G € W}.
By a W-orbit of F5 we mean a W-orbit of a for some a € F5.

We finish this section with a property about the flipping group W of I'. To see this
we establish a lemma.

Lemma 2.1.6. For s € S define E; € Matg(Fs) by
0 if v # s,
Egse, = Z €y ZfU = S. (22)
uveER
for all v € S. Then the following (i)—(iii) hold.

(i) ks =1+ E; forall s € S.



2.2. A representation of the Coxeter group of type I'

(i) E,E, =0 ifst ¢ R.
(iii) If s;si1 € R fori=1,2,...,k then
Eso Zf Sk = S0,

EskEsk_l o ESO - { EskEso Zf SkLSo € R.

Proof. (i) is immediate from Lemma . Using (@) we find EsEie, = 0 for any
v,s,t € S with st ¢ R. Hence we have (ii). (iii) follows from the same reason as in (ii)
by applying the product of matrices in either side of the equation to e, and obtaining the
desired equality in each case. [

Proposition 2.1.7. For s,t € S we have (ksk;)* = I if st € R and (kski)® = I if st € R.
Proof. By Lemma (1)

kskip = (I + E)(L+ Ey)
I FE, V' Ept B,

In the case s # t and st. ¢ R,

(kske)> =L+ Ext E)(['+ Byt Ey)
=1+ 2F, + 2F;
=5
by Lemma (ii). In the case st € R,

(K/s’%t>2 = ([ 4 ES + Et + ESEt)(I + ES —+ Et =+ EsEt)
=] +3E,43E; + 4E.E.+ E.E,
=1+ FE;,+E + E.E;

and

(’{sﬁt)?) = (’fs’ft)Q("@s/ft)
=+ E;+ E;+FEE)(I+ Es+ Ey + ESEy)
=I1+2F, +4F, + 2E ., F, + 2FE,F,
=1

by Lemma (iii). O

2.2 A representation of the Coxeter group of type I'
A Cozeter group is a group generated by a set T" subject to relations of the form
(st)y™) =1 for all s,t € T,

where m(s,s) =1 and m(s,t) = m(t,s) € {2,3,...,00} for s # ¢ in T. If m(s.t) € {2,3}
for all s # ¢ in T', the Coxeter group is said to be simply-laced. Proposition R.1.7 motivates
us to consider a certain (simply-laced) Coxeter group as follows.

5



Lit-only sigma-game and simply-laced Coxeter groups
Definition 2.2.1. Let W denote the group generated by all elements of S subject to the
following relations
s =1, (st)?=1 ifstg R, (st)’=1 ifste R
for all s,t € S. We call W the (simply-laced) Cozeter group of type I

We now establish a connection between the Coxeter group of type I' and the lit-only
o-game on I'.

Theorem 2.2.2. There exists a unique representation k : W — GLg(F2) such that
k(s) = ks for all s € S. In particular k(W) = W.

Proof. Immediate from Proposition and Definition . O
For the rest of this dissertation let x denote as in Theorem .

For the rest of this chapter we shall give a new description of W-orbits of Fy when T’
is a simply-laced Dynkin diagram, which is different:than the description from [§].

A,(n>1) O—0—0 ¢« s + O—0—=0

Sn—1
S6
EG %—+—I—Q—O
: T
Eg o T

Figure 1.1: simply-laced Dynkin diagrams.

2.3 The center of the flipping group W of type I
Proposition 2.3.1. Let Z(W) denote the center of W. Then Z(W) = {I}.

Proof. Let G denote any element in Z(W) and let u,v denote two distinct elements
in S. We show that the (v,u)-entry G, of G is zero to conclude G = I. Proceed by
contradiction. Suppose G,, = 1. On the one hand k,Ge, # Ge, since Ge, has 1 in the
vth position. On the other hand, x,Ge, = Gk, e, = Ge, since k, e, = e,. Hence we have
a contradiction. [



2.4. Lit-only o-game on the Dynkin diagram of type A,

Corollary 2.3.2. Let Z(W) denote the center of W. Then Z(W) is contained in the
kernel of k.

Proof. Immediate from Proposition . ]

Since the generator s € S have order 2 in W, each w # 1 in W can be written in
the form w = sys9---s, for some s; in S. If r is as small as possible, call it the length
of w. If W has finite order, it is well-known that there exists a unique longest element
in W (for example see 21, p. 115]). We shall denote this by w,. It is well-known that
Z(W)={1,w.} or {1} (for example see [21, p. 132]).

2.4 Lit-only o-game on the Dynkin diagram of type
An

In this section we assume that T is the (simply-laced) Dynkin diagram of type A,
(n > 1). The goal of this section-is to'show Kerr.= Z(1¥) and to determine when « is
irreducible. We also find.a description of the W-orbits of F5. We start with the smallest
case n = 1.

Proposition 2.4.1.0Assume n ="1."Then the following (i)—(iii) hold.
(i) The W-orbits.of B5 are {0},{1}.
(ii) Kerx and Z(W) are equal to {1,w,}.
(iii) The representation k is irreducible.
Proof. In this case W.={1, s, } and W ={T7}. By these (i)—(iii) follow. O

For the rest of this section we_assume n > 2. Let

T=¢g, A0+ b= Ky ks gl (I <i<n) (2.3)
Note that
i=es , + e (2 <i<n),
n+l=e, =1+2+ -+ (2.5)

Let A = A(4,) = {1,2,...,n}. Using (@) we find that A is a basis of F5. We refer
A to the simple basis of F5. For a € F3, let A(a) denote the subset of A consisting of
all the elements appeared in the expression of a as a linear combination of elements in
A. For a € F5 let ||a||s := |A(a)| and we call ||al|s the simple weight of a. For example
A(n+1)=Aand |[[n+1||s = n.

Lemma 2.4.2. For1l <1 <n, msj =1+1, kst + 1 =1 and ks, fixes other vectors in {T,
2, ...,n+ 13\ {i,i+1}.

Proof. Use Lemma , (@), (@) to check. O

For the rest of this section let S, 41 denote the symmetric group on {1,2,...,n+ 1}.
By Lemma we may make the following definition.

7



Lit-only sigma-game and simply-laced Coxeter groups

Definition 2.4.3. Let o : W — S, .1 denote the homomorphism defined by
a(G)j =Gy 1<j<n+1)
for G € W.
Note that a(ks,) is the transposition (7,7 + 1) in S, for each 1 <i < n.

Lemma 2.4.4. « is an isomorphism from W to S, 1.

Proof. « is surjective since the transpositions a(ks,), a(Ks,),. .., a(ks,) generate S,1.
Since AU {n + 1} spans F5, « is injective. The result follows. ]

Proposition 2.4.5. The W-orbits of F5 are

O; = {a €T | |la)lg¢==i or n+ 1 =i} (0 <a< |22,
where |t| is the largest integer less than or equal to t.
Proof. Suppose a € F§.with ||a}fs=-+Observe that from Lemma, M and (@),

a(G)A(a) if n+ ¢ a(G)Ala),
Af(Ga) = { A\ a(G)A(a) ifn +1 € a(G)A(a)

for G € W. The proposition follows from this observation because the subgroup of
a(W) = S, generated by the transpositions a(ks;), a(ks,),.- - a(ks, ,) acts transi-
t?v@ely on the fixed size subsets of A, and k, 7 = 1 + 2 + --- + Wby Lemma and
(R.9). O]

Proposition 2.4.6. The representation r is irreducible if and only if n is even.

Proof. Let V denote a nontrivial propersubspaceof F5 such that x(WW)V C V. Referring
to Proposition , note that

v=_Jo (2.6)

i€

for some proper subset J C {0,1,..., "]} with J # {0}. Note that the set in the
right-hand side of (R.G) to be closed under addition is when it is the set of even weight
vectors, and this occurs if and only if n is odd. O]

Proposition 2.4.7. The representation k is faithful.

Proof. Immediate from Lemma and the fact that W is isomorphic to S,4; (for
example see [21), p. 41]). O

Proposition 2.4.8. Kerx = Z(W) is the trivial group.

Proof. By Proposition Kerx = {1}. By this and Corollary Kerxk = Z(W). The
result follows. n
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2.5 Lit-only o-game on the Dynkin diagram of type
D,

In this section we assume that I' is the (simply-laced) Dynkin diagram of type D,
(n > 4). We shall do the same things as Section P.4 for this case.

Let
1=e,, i+ 1=kKghks -kl (1<i<n—1), n+l=e,,. (2.7)
Note that
i=es_, + e (2<i<n-—-2),
n—1=e, ,+es ,+es,, (2.9)
N=e, ,+es =t+2+ - +n—1 (2.10)

Set A = A(D,,) = {1,2,.. 41— 1,n+1} to be.the simple basis of F5 (in the case of
type D,). For a € F5 set A(a) and ||a||, as Section @ For'example A(n) = A\ {n + 1}

by (R.10), and [[7]], = 2.
Lemma 2.5.1. The'following (i);~(it) hold.

(i) For1<i<n=1, kgi=14+1,Kei+ 1="1, and

In particular n +1 € A(Gn+1wand G({1,2,...,n}) €{1.2,...,n} for all G € W.

Proof. Use Lemma , (@)—(@) to check. O

For the rest of this section let S, denote the group of permutations on {1,2,...,7}.
By Lemma we may make the following definition.

Definition 2.5.2. Let §: W — 5, denote the homomorphism defined by
BG)J) = G (1<j<n)
for G € W.
Lemma 2.5.3. §: W — S, is an epimorphism.
Proof. 1t follows that the n—1 transpositions 5(ks, ), B(Ksy ), - - -, B(Ks,_, ) generate S,. [
Let O denote a subset of F5. We say that O is closed under W whenever WO C O.

Proposition 2.5.4. Let Z denote the subspace of F5 spanned by the set {1,2,...,n — 1}.
Then Z is closed under W.
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Proof. Note that a € Z if and only if n+1 ¢ A(a) for a € IF*; By Lemma and
(R.10), Z is closed under W. -

Corollary 2.5.5. The representation k is not irreducible.
Proof. Immediate from Proposition O]

For the rest of this section let Z denote as in Proposition . By Proposition ,
Z is a disjoint union of some W-orbits of F5. It follows that F5 \ Z is also a disjoint

union of some W-orbits of 5. To find the W-orbits of 5, we may divide this into the
two cases: (i) the W-orbits of F§ in Z; (ii) the W-orbits of F5 in F5 \ Z.

Proposition 2.5.6. The W-orbits of F5 are
O, ={a€ Z||a||s=1iorn—i} (0<i<|5)),
Qo ={acF5\Z||la|]ls=10orn—1 (mod?2)},
Q.={acF5\Z||lalls=0o0rn /Amod?2)}.

In particular Q, = Q. = F§\ Z when n is odd.

Proof. The proof is similar to the proof of Proposition . The reason that O; is a W-
orbit of F5 follows from two facts: (i) B(Ks.)s B(Fs, ) - -+ B (ks o) generate the subgroup
Sp—1 of S, consisting.of permutations on A\ {n + 1} and S,,_; acts transitively on fixed
size subsets of A\ {m + 1};.(ii)

Hsn_ln—1:/{Snn—1:ﬁ:T—|—2+...+n_1

by Lemma (i), (il) and () The reason that €, and €, are orbits follows from an
additional fact thate||ks,n + 1|s =L+ 2+ tn—2+n+ [z =n — 1. O

From now on we view Z as an additive group. Let Aut(7 ) denote the group consisting
of all automorphisms of Z. We now study the structure of ' W.

Definition 2.5.7. Let v :'W — Aut(Z) denote theshomomorphism defined by
WG)(u) = Gu
foru € Z and G € W.
Lemma 2.5.8. There exists a unique homomorphism 6 : S,y — Aut(Z) such that v = 0of.

Proof. Since [ is surjective, it suffices to show that the kernel of £ is contained in the
kernel of . Suppose G' € Ker 3. Then Gi =i for 1 < i < n. It follows that G fixes each
element of Z. Therefore G € Ker~. The result follows. ]

In view of Lemma m we can define the (external) semidirect product of Z and S,
with respect to 6 (for example see [23, p.155]). We denote this group by Z %y S,. This
group is the set Z x S,, with the group operation defined by

(u,0)(v, k) = (u+0(0)(v), oK),

where u,v € Z and o,k € S,,. Note that n+ 1+ Gn + 1 € Z for any G € W by Lemma
. By the above comment we can define a map as follows.

10



2.6. Lit-only o-game on I' and its induced subgraph

Definition 2.5.9. Let 6 : W — Z Xy S,, denote the map defined by

(G)=(Mn+1+Gn+1,8(G))
for G € W.
Lemma 2.5.10. The map 0 : W — Z x4 S,, is a group monomorphism.
Proof. For G,H € W,
(G (H)=Mn+1+Gn+1,5(G))(n+1+ Hn+ 1,5(H))
=n+1+Gn+14+60(B(GQ))(n+1+Hn+1), B(G)B(H))
=n+1+Gn+1+Gn+1+Hn+1), B(G)5(H))

=(n+1+GHn+1, B(GH))
— §(GH).

This shows that § is a homomorphism. -Let G € Kerd..Since Gn+1=n+1 and G €
Ker 3, G fixes all vectors in A and so' G = [. This:shows that ¢ is injective. The result
follows. u

Note that Z = n + 1+, ifnisodd; and Z = (n + L+ Q) U(n + 1+ Q) if n is even.

Lemma 2.5.11. §(W) = (n + 14-9Q;) Xg S,. Moreover 6(W) = Zxy S,, if n is odd, and
d(W) has index 2 inZ Xg.Sypif 1195 even.

Proof. Note that d(ks, ), (Ksy)s---,0(Ks, ,) generate {0} %, .S,. By this and since Q, is
an orbit containing-m + 1. it follows that (W) = (n + 1 + Q,) XgiS;,. The second part
follows from Proposition 2.5.6. 0

Proposition 2.5.12: The representation k is faithful-when n' is odd; Kerx has order 2
when n is even. Moreover Kerk = Z(W).

Proof. Note that W is isomorphic to_the semidirect product Z x S, of Z and S, (for
example see [21, p.42]). By Lemma m r_is faithful when n is odd, and Kerx has
order 2 when n is even. From Corollary P E Z(W) € Kerk, and from the fact that a
normal subgroup of order 2 is contained in the center we have Kerxk C Z(W). ]

2.6 Lit-only o-game on [' and its induced subgraph

To help us study Kerx in the case Eg, we now discuss some relations between the
lit-only o-game on I' and an induced subgraph of T".

Let J C S. Let W denote the subgroup of W generated by the x, for all s € J. Let
W denote the subgroup of W generated by s € J. It is well known that W) is isomorphic
to the Coxeter group of type I'[J] (For example see [21, Section 5.5]). Therefore we will
use the same symbol W to express these two isomorphic groups. For G € Matg(Fs) let
G[J] denote the submatrix of G with rows and columns indexed by J.

Lemma 2.6.1. Let the notation be as above. Let T'[J] denote the subgraph of T' induced by
J. Let W ;[J] denote the set of those G[J] € GL;(Fy) where G € W ;. Then the following
(i), (ii) hold.

11



Lit-only sigma-game and simply-laced Coxeter groups

(i) W[ J] is the flipping group of T'[J].
(ii) The map v : W ; — W[ J] defined by
»(G) = GJ] for Ge W,
is a surjective homomorphism.

Proof. By Definition , (Ks)uw = 0 for s,u € J and v € S\ J. By this, each matrix

G € W has the form
A0
(5 ¢)

if indices in J are placed in the beginning of rows and columns, where A is a |J| x |J|
matrix, B is an (n — |J]) x |J| matrix, C'is an (n — |J|) x (n — |J|) matrix, and 0 is a
|J| x (n —|J|) zero matrix. Then (i), (ii) follows from the following matrix product rule

in block form:
A0 A0 | | AA 0
B C B.-c ) \ BA+CB CC" )"

By Theorem there ‘exists a unique representation x‘: W, — GL;(F3) such that
K'(s) = ks[J] for all s.€ J.

Lemma 2.6.2. Let the notation-be-as above. Then the following (i),.(ii) hold.
(i) K =1 or | Wy.

]

(ii) Kerr [ W; T Kerr'.

Proof. Since (¢ o k)(s) = ks[J]'= K'(s) for all s € J, it follows that ' =1 ok [ W;. This
shows (i). (ii) immediate from Lemma P2.6. Il(l) and-(1). O

2.7 Lit-only o-game on the Dynkin diagram of type
E,

In this section we assume that I' is the graph in Figure 1.2. We shall give a description
of W-orbits of F5. Restricting to the case n = 6,7, 8, we shall show that Kerx = Z(W).

Sn

Ey(n > 6) o T O + ¢« + O—O0—0
Sn—1 Sn—2 Sn—3 Sn—4 Sn—5 S3 52 S1

Figure 1.2: a finite simple graph F,

Let 1= ey, i+1:msi/{8i_l---ﬁsjf0r 1<i<n—1land n+1=e,, . Note that

i=es + e, (2<i<n-3),
n—2=es ,+es ,+es, (2.11)
n—1=e, ,+es, , +es,

n=e, ,tes,.

12



2.7. Lit-only o-game on the Dynkin diagram of type E,

n+1=1+42+---+m. (2.12)

Set A(a) and ||a]ls = |A(a)| as before for a € F5. For example A(n+1) = A and
[[n + 1||s = n.

Lemma 2.7.1. The following (i), (ii) hold.

(i) Foreach1 <i<n-—1, kg i=1i+1, k,,i+1=1, and

Ks] =] for j€{1,2,....,n+1}\ {i,i+ 1}.

(ii) kg,n+l=n—-24n—-14+n, kgn=n—-24+n—1+n+1,kgn—-1=n—-2+
n+n+1, kgn—2=n—-1+n+n+1and

Kspd =] for1 < j<m—3.

Proof. Use Lemma and () to check. [l

For the rest of this section, let S, denote the group of permutationson A = {1,2,... 71}
and let

T :={s1,82,..,Sn_1}

Recall that W is the subgroup of W generated by {x, | s € I'}. In view of Lemma
we may make a definition.

Definition 2.7.2. Let € : W — S, denote the homomorphism defined by
«(G)() =Gy (1<) <n)

for G € Wr.

Lemma 2.7.3. ¢ : W — S, is an isomorphism.

Proof. Tt follows from that A is a spanning set and that the n — 1 transpositions €(ks, ),
6(/152), e »6(’@8%1) generate S,,. -

Proposition 2.7.4. The W-orbits of F5 are

Oo =A{0},

O,={acFj|a#0,lla|ls=1orn—-2 (mod4)}, (2.13)
Oy={a€F;j|a#0,lla|ls=20rn—3 (mod4)},
Os={ac€F;j|a#0,lla|ls=30orn (mod4)},
Oy={acFj|a#0,la|[=00rn—1 (mod 4)}.

In particular Oy = O3 when n =1 (mod 4), O; = O4 and Oy = O3 when n =2 (mod 4),
Oy = Oy whenn =3 (mod 4), and O; = Oy and O3 = Oy when n =0 (mod 4).

13



Lit-only sigma-game and simply-laced Coxeter groups

Proof. Tt is clear that Oy is a W-orbit of F5. There are four cases to put nonzero vectors
a, b in an orbit. (a) ||alls = ||b||s : this is because ¢(Wr) = S, acts transitively on the
fixed size subsets of A; (b) ||b||s = n+3 —||a||s or n — 1 —||a||s : this is from (a) and the
observation that

n+3—|lal|s if |A(a) N {m,n —1,n—2} =3,
Rs,llalls = ¢ n—1—]|alls if |A(a) N{m,n—1,n -2} =1, (2.14)
w(a) else

by Lemma (ii) and (), (c) |lal|ls = ||b||s.=4 : this is by applying the first case
of () and then applying the second case of ()7 and (d) ||lall< = ||b||s + 4 : this is
by applying the second case of (R.14) and then the first case of (ﬁ) The proposition
follows from the above cases (a)—(d). O

For the rest of this section let O; (0 < i < 4) denote the sets from Proposition .
Proposition 2.7.5. The representation k is irreducible if and only if n is even.
Proof. Immediate from Proposition . 0
Corollary 2.7.6. We have

2771 _(=D)12"s ifn=0 (mod 4),
g1 ifn=1 (mod 4),
01 =) bt @G0 =1 i =2, (1160 4), (2.15)
o2 (=1)"5 2" ifn=3 (mod4).
Proof. By () we have
( > %) ifn=0 (mod4),
k=1,2( mod 4)
1<k<n
> %) ifn=1 (modH4),
S,
01 =4 > () ifn =2 (mod 4),
k=0,1( mod 4)
1<k<n
) ifn=3 (mod 4),
k=1( mod 4)
\ 1<k<n

where (}) is the binomial coefficient. From this we routinely prove () by induction on
n. O]

Let a € F5. Recall that the isotropy group of a in W is {G € W | Ga = a}. By the
elementary knowledge of group theory, the cardinality of the W-orbit of a is equal to the
index of the isotropy group of a in W. For the rest of this section let

J :={s2,83,..., 8.}

Observe that W is a subgroup of the isotropy group of e;, in W and that the W-orbit
of eg, is Oy. Therefore |W ;||O;| divides |[W/|.

Proposition 2.7.7. Assume I' is the Dynkin diagram of type Eg. Then Kerx = Z(W).
Moreover k is faithful.

14



2.7. Lit-only o-game on the Dynkin diagram of type E,

Proof. By Corollary we have |O;] = 27. By Lemma (ii) and Proposition
(the case Ds), we know |W ;| = 245!, Since [W]]|O;| divides [W| we have [W| > 273%5.
By this and since |W| = 27345 (for example see [21, p.44]), W is isomorphic to W and so
Kerx is trivial. By this and Corollary @, Z(W) is trivial. O

In order to show Kerx = Z (W) in the cases E; and Eg, we cite [f, Lemma 10.2.11].
Lemma 2.7.8. ([6, Lemma 10.2.11]). Assume that T' is one of simply-laced Dynkin
diagram of type E; or Eg. Then Z(W) = {1, w.}.

Proposition 2.7.9. Assume ' is the Dynkin diagram of type E;. Then Kerx = Z(W).
Moreover Kerk = {1, w,}.

Proof. By Corollary and Lemma , |Ker x| > 2. By this and since |W| = 21°315.7
(for example see [21], p.44]) we have [W| < 293%5.7. By Corollary 2.7.& we have |O;] = 28
and by Proposition E.?.? we have |W ;| = 2735, Since |[W||O;] divides |[W| it follows
that [W| > 293%5- 7. Therefore [W| = 235 7 and this forces |Z(W)| = |[Kerx| =2. [

For the rest of this section we assume that I'is the Dynkin diagram of type FEgs. Let
u, denote the longest element of W/;.

Lemma 2.7.10. r(u,)8 =1+38.

Proof. By Lemma , u, € Z(Wy). Note that TN J = {s5,83,...,57}, and that & |
Wrny is an isomorphism’ of Wpng-onto Wrn; by Lemma @(u) and Proposition m
Also € [ Wy : Wpay = S7 is an-isomorphism , where € is from Definition m and S~
is the group of permutations on {2,3,...,8}. Let

ul = k(e 1((2,8,3,7,4,6,5)))ssk (e ((5,8)(4,7)(3,6)))ss

'Li_l(e_l((l g) (gv 7)(27 6)))38“}_1(6_1((57 g) (Zv 7)))88
k(e 1((3,7)(2,6)))ss:

It is routine to check that the above «! maps to-=1I by the faithful representation defined
in [11, p. 291] to conclude u. = u,. Therefore x(u,) equals

671((278737 77 47675))H386—1((57g>(47 7)(§7 6))H586—1((Z’§)(§7 7)(576))/€58 (2 16)
e (5, 8)(4,7))sge ™ (32, 6))kisg '
Applying () to 8 and using Lemma l‘Z?ﬂ and (lZlQi) for n = 8, the result follows. [

Lemma 2.7.11. The restriction k [ W; of k to J is injective.

Proof. Let k' denote the corresponding representation from W, into GL;(F3). From
Lemma @ ii) and Proposition R.7.7, we see that Kerx [ W, C Kerr' = {1,uo}.
By Lemma R.7.10, u, is not in Kerx | W;. Therefore Kerx [ W} is trivial and the result
follows. [

We now can show Kerx = Z(WW) in the case Es.

Proposition 2.7.12. Assume that I is the Dynkin diagram of type Eg then Kerrx = Z(W).
Moreover Kerk = {1, w,}.

Proof. We have |0y = 23 -3 -5 from Corollary and |[W,| = |W,;| = 219345 .7
from Lemma 2.7.11 Note that [IW| = 2143%527 (for example see [21, p.44]). It follows
that |Kerx| = 2. By Corollary R.3.2 and Lemma E?.S, Kerx and Z(W) are equal to

{1, w.}. n
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2.8 Summary

We now summarize the main results of this chapter.

Theorem 2.8.1. Let I' denote a finite simple graph. Let W denote the Coxeter group of
type I'. Let k : W — GLg(FFy) denote the representation from Theorem |2.2.4. Then the
following (i), (ii) are equivalent.

(i) Kerk = Z(W).
(ii) T is a simply-laced Dynkin diagram.

Proof. (i) = (ii): Recall that Z(W) has finite order, from below Corollary . By
this and since W/Z (W) = W is finite, W has finite order. It is well-known that I' is a
simply-laced Dynkin diagram if and only if the Coxeter group W of type I' is finite, for

example see [21, p. 133]. Therefore (ii) follows.
(ii) = (i): Immediate from Propositions 2.4.]], l2.4.d, b.5.1j, }2.7.7|, b.?.d, b.?.l?‘. O

Remark 2.8.2. Theorem is probably known to'some experts on Lie algebras [3, 4,
5, 22].

simply-laced Dynkin diagrams reducibility of k Kerk
C . {1,w.} ifn=1,
> . = ;
A, (n>1) k is irr. iff n = 1 or n is even { ) else.
. . {1,w.} if n is even,
>
D,, (n >4) K is not irr. { 1 olse.
Eyg K is irr. {1}
E; K is not irr. {1, w.}
Eg K is irr, {1, w.}

Table 1: the reducibility and the kernel of .
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2.8. Summary

r W-orbits of F3
A, (n>1) O;={a€F5 ||lalls=iorn+1—i} (0<i<[2H)).
Oi={acZ||la|ls=iorn—i} (0<i<[5)),
Q={acF5\Z||la]ls=1orn—1 (mod2)}
> (] 2 s )
Dn (n > 4) Qe={acF5\Z||la]ls=0o0rn (mod2)},
Q, =0 =IF§\Z when n is odd.
OO:{O}a
Or={acF5|a#0, ||als=1orn—2 (mod4)},
Oy={acF5|a#0, ||a|ls=2o0orn—3 (mod4)},
Os={acF5|a#0, ||a|ls=3orn (mod4)},
E, (n>6) Oy={acF5|a#0, |la|ls=00orn—1 (mod4)}.

O1 =03 when n =1 (mod 4),
01 = O4 and Oy = O3 when n =2 (mod 4),

[able 2: the W-orbits of 5
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Chapter 3

Lit-only sigma-game on a graph with
a long induced path

For a € F§ let ||a|| denote the number of on vertices of I' that are assigned by a, and
we call ||a|| the weight of a. For a subset O of 5 define ||O]} to be

min ||al|.
€0

Motivated by a goal of lit-only g-game, we consider thefollowing numbers.

Definition 3.0.3. Let k > 1 denote an integer. We say that I is k-[it for lit-only o-game
whenever ||O|| < k for any W-orbit O of 5.

Definition 3.0.4. ([26]) Let x(I") denote the minimum number & such that I' is k-lit for
lit-only o-game. We.eall p(I") the minimum light number for lit-only. o-game on T

There are three known results about p(I'). If I is a simply-laced Dynkin diagram then
w(l') =1 (see [2] or [§}). If I'.is the graph F£,, (n > 6) shown'in Figure 1.2 then one can
use Proposition @ to check p(I') = 1. If [ is a tree with ¢ leaves X. Wang and Y. Wu
[26] prove u(I") < [£/2]. In this chapter.we consider an‘extension of simply-laced Dynkin
diagrams: an n-vertex graph with an induced path of n — 1 vertices. In Chapter 2 we
studied the lit-only o-game on a simply-laced Dynkin diagram with the help of a specific
basis for 5. We extend the idea to this case. We shall find a criterion of p(I") and give a
description of W-orbits of F5 for this case.

For the rest of this chapter we adopt the following assumption.

Assumption 3.0.5. Assume that I' = (S, R) is a simple connected graph whose vertex

set S = {s1,82,...,8,} (n > 2). Suppose the sequence sy, sg,. .., S,—1 forms an induced
path in I'. Let j1,j2,...,7m (m > 1) denote a subsequence of 1,2,...,n — 1 such that
513 84s, - - -+ S, are all neighbors of s,, in I'. See Figure 2.1.
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Lit-only sigma-game on a graph with a long induced path

Spn—1 Sn—2 Sn—3 Sj, 54, 84, S3 S9 S1

Figure 2.1: an n-vertex graph with an induced path of n — 1 vertices.

3.1 The sets II, Il and I[;

In this chapter let

T=e,, i+1&=hRahs kgl (1<i<n—1), nt+l=e,,.

i —

Let

I=41,2, .x.,m},
My={icll|in+1=0},
H1:H\H0.

For convenience let.es, = 0. From (@) and the construction,

=e; tegi l<i<n=Tlore=e; 4}

=€, tes te,, 1<i<n—Tlori=e, ,+es}

(3.1)

Note that 1 < |II|, |TI;| <én — 1 and [ITy| + |II;| = n For convenience let j,,1 = n and

Jma2 = n. Observe that

Iy ={i e |ie (0,51 U(j2 s U U (o Jors] }
Iy ={i€ll]i€ (ji,42) U (s, ja] U U (Joaro1, Jor) }

(3.5)
(3.6)

where k = [%] and (a,b] = {2 | v € Z, a < x < b}. We now establish some lemmas for

later use.

Proposition 3.1.1.
3]
| = ok = Jor-1.
k=1

Proof. Immediate from (@)

For the rest of this chapter let
] = {1,2,...,4} fori=1,2,...,n.
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3.1. The sets I, IIy and I1;

Lemma 3.1.2. Forl1l <i<n-—1 we have

T N
and
eaeeem={ g
Proof. Use (Ell) H
Lemma 3.1.3. Z i = i €s;, -
i€Tly k=1
Proof. Use Lemma and (@) to verify this. O

Lemma 3.1.4. ki =i+ 1, kit L =i and ks, fixes other vectors in 11\ {i,i + 1} for
1< <n—1.

Proof. Immediate from (@) O

For the rest of this.chapter let.S,-denote the symmetric group on Il. From Lemma ,
ks, acts on II as thetransposition (7,7 4+ 1)in S;, for 1 <i < n— L

Corollary 3.1.5. Let U denote the subspace of IF5 spanned by the wvectors in I1. Then U
is closed under Wi

Proof. By Lemma , U is closed underthe action of s, , s,, .. syks, ,. For i € II we
have

7 if 4 € Il
’fsnz: E—FZ; leEHl
Jj€lp
by Lemma . It follows that i lies in U. The result follows. O]

For the rest of this chapter let U denote the subspace of F§ from Corollary .

Proposition 3.1.6. If |II1| is odd then 11 is a basis for U; if |I11] is even then for any
j €I, I\ {j} is a basis for U. Moreover e,, ¢ U if |I1;] is even.

Proof. By Lemma , 1,2,...,n — 1 are linearly independent and hence U has dimen-

sion at least n — 1. Since e, ¢ Span{1,2,...,n — 1}, the proposition follows from the
second case of Lemma B.1.2. L]
For the rest of this chapter let P denote the subset of .S consisting of sq, $o,..., S,_1.

Recall that W p denotes the subgroup of W generated by kg, , ks, .-, Ks,_;-

Corollary 3.1.7. The subgroup Wp of W is isomorphic to the symmetric group S, on
IT.

Proof. Use Lemma , Proposition and the fact Ge,, = e,, for G € Wp. ]
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Lit-only sigma-game on a graph with a long induced path

3.2 The simple basis A of FJ

To better describe the W-orbits of F5 we choose a specific basis of F5. Let

A 11 if |II| is odd,
| Tu{n+1}\ {7} if |II;| is even.

By Proposition , A is a basis of F5. We call A the simple basis of F5. For each u € F3,
u can be uniquely written as a linear combination of elements in A, so let A(u) denote
the subset of A such that

i Y

€A (u)

Let ||u||s :== |A(u)|. We refer to ||u||s as the simple weight of u. Note that for 1 <1i < mn—1,
the vector 1+ 2 4+ - - - 4 7 has simple weight i but has weight
_ el if [[i] N 11| is even,
|“+2+””””—{2 if [T, | is odd

by Lemma .

In the next two sections we shall give a description of W=orbits of F5. For convenience
we adopt the following notation:ForV CF5 and T C {0, 1,...;n} define

Vr=qu eV | ||ulls e T}

For shortness Vi, 1,00t 1= Vity ta,..t,3 Where £y, 10,00 4 € {0,1,...,m}.  Let odd denote the
set of all odd integers among {0,1,...,n}.

3.3 The case |I];| is odd

In this section we assume |IT;| o be odd and the counter part is treated in the next
section. In this case U =TF5 and so A = {1,2,...,n} is@a basis of F§. By Lemma
we have

1+24---+i if |
Cg. — — —a £ .
' i+1+14+24---+7n if |

i M1 is even, :
N < i< n_
AN s odd, (I<i<n-—1)

— —

and
e =14+2+4---+7.

n

Hence we have

|les, s (1<i<n-1)

i if |[¢{] N[ is even,
Sl n—i if |[i] NII;| is odd,

and |les, ||s = n. Therefore there exists a vector with simple weight i and weight 1 if

and only if |[i] N1L;] is even, ¢ = n or |[n —i| N 11| is odd. Let [¢] := {1,2,...,i} for
1=1,2,...,n. Let

K :={ien]||[{jNIL]|is even, i =n or |[n —i] NII| is odd}. (3.7)
By Lemma , |Uil| <2 for 1 <i < n. Note that
|Uil| =1 if and only if i€ K. (3.8)
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3.3. The case |11;| is odd

Lemma 3.3.1. For u € F5 we have

u if |A(u) N1IIL| is even,
KW= u+ > @ else.
EEHO
Moreover
ol = 4 11edls if |A(u) NIL| is even,
T n 2k = [T = [l else,

where k = |II; N A(u)].

Proof. Tf |A(u) N11;] is even then ufe,, = 0 and ks, u = u by construction. If |A(u) NII|
is odd, then

m
Rg, U = U + E €s;,
k=1

1€lly
by Lemma .13, and"||syul]s =A@ N i+ ([Ho| = |A(w) NITol)=n + 2k — |TT; | — [|us.
The result follows. ]

Lemma 3.3.2. The'W p-orbits of F5 are {0} and U; for 1 < i < n:
Proof. Immediate from Corollary and A= I 0

We now give a deseription of W-orbits of F5 and characterizeru(T") in the case 3 <

Theorem 3.3.3. Assuine that 3 < |II;| < n — 3. Then the/W-orbits of F5 are {0}, Uy,
Uay, Uay, Uy,, where

A ={j €n| | j=tn+|| —i (mod4)}.
Moreover the number of W-orbits of F5 is 3 if n is even and 4 if n is odd.

Proof. Fix an integer 1 < ¢ < n. By Lemma , U; is a W-orbit of F5. Note that
W is the subgroup of GLg(F5) generated by Wp and ks,. By the above comments and
by Lemma @, the union of those Uj ,yor—|m,|—; forms a W-orbit of S, where k runs
through possible odd integers |II; N A(u)| for u € U;. In fact k is any odd number that
satisfies k < |II;] and 0 < i — k < |IIy|; equivalently

max{1,7+ [II;| — n} < k < min{|IL|,i}. (3.9)
Such an odd integer k exists for any 1 <17 < n, and note that
n+2k—|IIj| —i=n+|Il;] —i (mod 4)

since k and |IT;| are odd integers. To see the W-orbits of F5 as stated in the theorem, it
remains to show that U; ;44 is contained in a W-orbit of F§ for 1 <i < n—4. Set k to be

23



Lit-only sigma-game on a graph with a long induced path

the least odd integer greater than or equal to max{1,i + |II;| — n + 2}. For this &, (@)
holds and then U; j, op—m,|—; is contained in a W-orbit of Fg . Here we use the assumption
IIT; | < n—3 to guarantee the existence of such k. Replacing (i, k) by (n+2k—|II;|—1, k+2)
in (@) we have

max{1l,2k —i} < k+ 2 < min{|IL;|,n + 2k — |II;| — ¢}. (3.10)

The above k and the assumption 3 < |II;| guarantee the equation () Since n + 2(k +
2) — |IL| = (n + 2k — |II1]| — i) = i + 4 we have Uiy pnqok—jm,|—i is contained in a W-orbit
of F5. Putting these together, U; ;14 is in a W-orbit of F5. The result follows. O]

Corollary 3.3.4. Assume that 3 < |II;| < n — 3. Then
1 if AN K #0 for all 1,
D) - { FANK #0 )

2 else,
where K is defined as (@)

Proof. Use (@) and Theorem . O

We now consider the cases |II;| = lyn=2;n—1.
Theorem 3.3.5. Assume that [IT;| = 1, n—2 or n — 1."Then the W-orbits of F5 are {0}

and
U’i,n-l-l—i Zf |H1’ — ]-7
Uoda, Us; if || =n =2,
Usizia ifJ | =n =1
for 1 <i<[%] and 1 < j < (n—1)/2. Moreover the number of W=orbits of F5 is
[(n+2)/2] if L] =1,
(n+3)/2 if || =n—2,
(n+ 2)/2 if T =n—1.

Proof. As the proof in Theorem , Ui nt2k —|1r| i35 contained in a'W-orbit of 5, where
k needs to satisfy (@) In the case |II;| =1, k' =1 is the only possible choice and hence
Uini1_i is a W-orbit of F5. Inithe case |II;| = n — 2, we'have k = i — 2 or i if 4 is odd;
k=i—1ifiis even. In the case [Tl =n — 1, we havek =i if i is odd; k =i — 1 if 7 is
even. In each of the remaining/the proof follows similarly. [
Corollary 3.3.6. Assume that |II;] =1, m =2 or n — 1. Then p(I') < 2. Moreover
w(l) =1 if and only if

{i,;n+1—iJnK#0  for1<i<[3] if [TL] = 1,

oddNK #0, UyNK#0  for1<j< |5 if 1| =n—2,

(20 —1,20NK#0  for1<i<[2] if || = n — 1,
where K is defined as (@

Proof. Use (@) and Theorem . O

We end this section with an example.

Example 3.3.7. Let I" be an odd cycle of length n; i.e. n is odd, m = 2, j; = 1 and
j2 =n—1. Then Iy = {1,n} and 11, = {2,3,...,n — 1}. Note that |I[;| = n — 2 is odd,
and K ={1,3,...,n}. By Theorem we have the W-orbits of F5 are

{0}7 UOdd) U07 UQ; U4, ey Un—l‘

By Corollary , () = 2.
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3.4. The case |11;] is even

3.4 The case [[1;] is even

In this section we assume that |IT;| is even. In this case A = [TU{n+ 1} \ {n} is a
basis for F5 and A\ {n + 1} is a basis for U. Recall that

|

T+2+--+7m=0 (3.11)
Let U :=F5 \ U. Note that U, =0, U =n+ 1+ U and U; = {n+ 1}. By Lemma
we have

142+---+i€U if |[i] N 11, is even, .
= _ - = . <1<n-—
Csi {1+2+---+@'+n+1€U if |[7] N 04| is odd, (I<isn—1),

and

esr=nl+1&l.

n

It follows that

i+l if | NIL| is odd, NGV

i if |[7] Ay | is even,
lles;||s = i

and |les, |[s = 1. Therefore there exists a vector.in U with simple weight ¢ and weight 1 if
and only if |[z] N I1;] is even; there exists a vector in U with simple weight i and weight 1

if and only if |[¢ — 1] N 1II;| is odd or ¢ = 1. For the rest of this section let

K = {i e [n—1]||ld nIL]| is even}, (3.12)
L:= {i € [n] | {[i = 1)mIH]iistoddor i = 1}. (3.13)

Note that ||Uj][,]|U;|| <2 and that

Ul =1 if and only-if 1 e K,
I|U;|| =1 if and only if jeL

forl<i<n—-land1<j<n.
Lemma 3.4.1. For u € F5 let k = |[II; N A(u)|. Then the following (i), (ii) hold.

(i) Forue U we have

u if |A(u) N1II| is even,
Ks, W =94 u+ > i else.
EGHO
Moreover
[lulls if |A(u) N1 ds even,
||ks,ulls = ¢ 1+ 2k —|IL]| — ||ulls if |A(uw) N1 is odd and 7 € 114,
l|lulls + |T11]| — 2k else.
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(ii) For u € U we have

u if |A(u) N1IIL| is odd,
KW= u+ > @ else.
EGHO
Moreover
[l if |A(u) N1 is odd,
ks, ulls =& n+2k+2— || — ||ul|s if |A(u) NI is even and 7 € 114,
[lulls + |11 | — 2k else.

Proof. The proof is similar to the proof of Lemma , except that at this time since
the choice of simple basis A is different, the action of ks, on a vector is a little different,
and we need to use () to adjust the simple weight of a vector. [

In view of Corollary we discuss the W-orbits (resp. W p-orbits) of Fj into the
two parts, one in U and the other in U

Lemma 3.4.2. The Wp-orbits of F5 are {0}, Uy, Uprnia i and Us,,; for 1 <i < 5]

Proof. By construction Uy = {és,}-is a W p-orbit of F5. By Corollary and Corol-
lary , U; is contained in a~Wp-orbit of U and U, is in-a: W p-orbit of U for
1 <i<n-—1. By (@), Uin—iis contained in-a W p-orbit of 5 and U,y ;.41 is
in a W p-orbit of Ufor 1 <i < n — 1. Since no other ways to put these sets together the
result follows. [

Theorem 3.4.3. Assume that 4 < |Ii| <n = 3. Then the W-orbits of F5 are {0}, Up,,
UB27 UBg; UB47 U(le UCQ? UCg) UC4a where

Bi={jen=1)|j=id+ || —2n—in—i+||—2 (mod4)},
Ci={jen]|j=isi+|Li|,n+2—in+2—d+|L] (mod4)}.

Moreover the number of W -orbits of F5-is 6_if n-is even and 4 if n is odd.

Proof. We first determine the W-orbits of U. By Lemma , Ui n—i is contained in a
W-orbit of U for 1 < ¢ < n — 1. Suppose n € Ily and the case n € II_is left to the
reader. In this case U, ;qm,|—2x is contained in a W-orbit of U by Lemma (i), where
1 < i+ || —2k < n—1and k runs through possible odd integers |II; N A(u)| for
u € U;. In fact k is any odd number that satisfies &k < [I[;| — 1 and 0 < i — k < |IIy| — 1;

equivalently
max{1,i+ [II;| —n+ 1} < k < min{|I;| —1,}. (3.14)

Such an odd k exists for any 1 <7 < n — 3, and note that
i+ || =2k =i+ |II;| —2 (mod 4).

To determine the W-orbits of U, it remains to show that U, ;4 is contained in a W-orbit
of U for 1 < i < [%]. Suppose 4 < |II;| < 6. Set k& = 1 to conclude that U;; 1o in a
W-orbit of U if |II| = 4; U, ;44 in a W-orbit of U if |II;| = 6. Thus we suppose that
|II;| > 8. Then n > 11 and ng < n — 6. Set k to be the least odd integer greater than
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3.4. The case |11;] is even

or equal to max{1l,i + |II;| — n + 3}. For this &, () holds and then Uj 4y, |—2k is
contained in a W-orbit of U. Here we use the assumption |II;| < n — 3. Replacing (i, k)
by (i + |Ii| — 2k, |I;| — k — 2) in (B.14) we have

max{1,i+2|Iy| — 2k —n+ 1} < || — k — 2 < min{|IL,| — 1,i + 1] — 2k}. (3.15)

The above k, the assumption 4 < |II;| and ¢ < n — 6 guarantee the equation () Since
(i 4 || = 2k) + Iy | = 2(|I1;| = k — 2) = i + 4 we have Ujy41m,|—2r in a W-orbit of U.
Putting these together, U, ;14 is contained in a W-orbit of U. Therefore the W-orbits of
U are UBI, UBQ, [JB37 UB4.

We next determine the W-orbits of U. Since the proof is similar to the above case, we
only give a sketch. By Lemma , U, 12 is contained in a W-orbit of U for 2 < i < n.
We suppose n € II; and leave the case n € Il to the reader. By Lemma (ii) we have
Ui,mgkﬁ,‘nﬂ,i is contained in a W-orbit of U, where k = |A(u) N1I;| is an even number
for some u € U; and 1 < i < n — 4. By the same argument with replacing k by k + 2 we
find Uz‘+4,n+2k+2—|nl\—z‘ is contained in a. W-orbit.of U. Therefore U@',z’+4 is contained in a
W-orbit of U. We have determined the W-orbits of 5. The result follows. ]

Corollary 3.4.4. Assumedthat4 <|II;| < n — 3. Then

() = 1 if B; NdS-# 0 and Gy N L O for all 4,
ME)Z302 else,

where K and L are defined as (|3.13)-and (), respectively.

Proof. Use (), () and Theorem . O

We now consider the cases |II;| =2, n — 2, n — 1.

Theorem 3.4.5. Assume that |Il1] = 2, n=2 or n — 1. Let the sets C1,Cy be as in
Theorem “ Then the W -orbits of Fy<are {0} and

Ui,nfh UCU UC_Q B Zf 'H1| V— 27
Uodd, Usjn=2j2U odd» Ust nra—2t i\l =n—2,
Usj—1,2jn—2jme122i, Ust—1 2t nt2—2t nt3—2t, ifflI| =n—1

for1<i<|[2],1<j<["2] and b<t < [2]. Moreover the number of W-orbits of F3
18

(n+6)/2 if |[Ih|'=2 and n is'even, or |II;| =n — 2,

(n+3)/2 if |IIi| = 2 and n is odd, or |II;| =n — 1.
Proof. The proof is similar to the proof of Theorem that follows from the proof of
Theorem B.3.3. At this time, to determine the W-orbits of U we check what values of
odd k occur in () in each case of |II;| € {2,n —2,n — 1}. To determine the W-orbits
of U, we do similarly as in the second part of the proof of Theorem . O

Corollary 3.4.6. Assume that |II;| = 2, n —2 or n — 1. Then pu(I') < 2. Moreover
w(I')y =1 if and only if

{i,in—i}NnK#0 CiNL#D, ConL#0  forl1<i<|%] if || = 2,
odd N K #0, {2j,n—2}NK#0  for1<j<[%2] if L] =n —2
oddNL£D, {2n+2-2}NLA0  forl<t<|2] T

o o Y <
{{23 1,2j,n—=2jn+1—-2}NK #0 for1< I =n—1,

J 1
{2t —1,2t,n+2-2t,n+3 -2} NL#D  for1<t<[Z]
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where K and L are defined as (|3.19) and (), respectively.
Proof. Use (), () and Theorem . O
We end this section with an example.

Example 3.4.7. Let I' be an even cycle of length n; i.e. n is even, m = 2, j; = 1 and
j2 =n—1. Then Iy = {1,n} and IT; = {2,3.....n — 1}. Note that |I[;| = n — 2 is even
and K = L ={1,3,...,n — 1}. By Theorem B.4.5 we have the W-orbits of F5 are

{0}, Usads Usn—2, Usn—ay - - s Usjn—9, Usdds Uy Usn—ay - s Ustn—ata,
where j = [%52] and t = [2]. By Corollary , w(l) = 2.

3.5 Summary

In this section we list the main results of this chapter. Assume that I' = (S, R) is

a simple connected graph whose vertex set .S = {s1,s2,...,8,} (n > 2). Suppose the
sequence Sy, Sg, . . ., S,—1 forms ansinduced path inI'. Let 41,72, ..., Jm (m > 1) denote a
subsequence of 1,2, ..., n— I'such that s;,,sj,,...,s;, areallmeighbors of s, in I'.

Let

1=ce,, “i41 =k,
Let
I ={1,2,...,n},
Mo ={iell|in+1=0}
I, =AT\ .
For convenience let j,, 11 = n. Recall from Proposition that

1
1L | = Zj% — J2k—1-
k=1

In particular 1 < |II;| <n — 1. Let
A I1 if |IT;] is odd,
| Du{n+1}\ {7} if |I1;] is even.
The set A is a basis for F5, and we call A the simple basis of F5. For u € F5 let ||ull,
denote the simple weight of u; i.e. the number nonzero terms in writing v as a linear
combination of elements in A. Let U denote the subspace spanned by the vectors in
II. For V.C F5 and T C {0,1,...,n}, let Vo := {u € V | ||u||s € T}. For shortness
, +;}- Let odd denote the set of all odd integers among {1,2,...,n}. For
1<i<4let
Ai={j€n|j=i,n+|II;|—i (mod4)},
Bi={jen-1|j=ii+ || —2,n—i,n—i+ |[[}] —2 (mod 4)},
Ci={jen|j=dii+Ii|,n+2—i,n+2—i+|II;| (mod 4)}.
Let W denote the flipping group of I'. The W-orbits of 5 are given in the following
table according to all possible values of the pair (|II;|,n).
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3.6. Remarks

The W-orbits of F5

—orbi S
|I1; | n (might be repeated) The number of W-orbits of F3
3 < || < n =3,
_|1‘11|1’i§ odd even {0}, Ua, 3
3 S ‘Hﬂ S n— 37
I is odd odd {0}, Us, 4
4 S ‘Hﬂ S n— 37 77
III;]| is even even {0}, U, U, 6
4 S ‘Hﬂ S n— 37 7T
III;]| is even odd {0}, U, U, 4
] =1 {0}, U g1z [(n+2)/2]
| =2 even {0}, U=, Uc, Uy (n+6)/2
‘Hl‘ =2 odd {0}7 U?:,’I’L*'L.7UC]_7UCQ (n + 3)/2
’H1| =n-—- 2> _ n + 3
‘Hﬂ is odd odd {0}7 Uodd7 U21
| =n-2, 10}, Uodd, Uzh.n—2n, n+06
. even L.
‘H1’ Is even Uodd7 U2g,n+2—29 2
’Hl‘ =n—- 17 n ‘|‘ 2
|1 | is odd '\'¢ {0}, Uae-1.2t 5
| =n-1, odd {0}, Uah—1,20,n—2h,n+1-2h, n+3
11| is even Usg_12gn+2—2g,n+3-2¢ 2

where 1 < j <4, 1<t S[2l < i < [ 21 <h < [272], 1< g <[]

3.6 Remarks

In this final section we make a comment about the number of flipping groups of those
I' that satisfy Assumption 3.0.5.

Theorem 3.6.1. The flipping group W of I" is unique up to isomorphism among all the
graphs that satisfy Assumption with a given cardinality |I1;| computed from ()

Proof. Let IV = (S5', R') denote another graph satisfying Assumption . Let S" =
{s1,...,8,}. Let kg for all s; € S” denote the corresponding matrices in Definition .
Let W' denote the flipping group of I". Let ¢ (1 < i < n + 1), Il', II}, II} denote

the corresponding vectors and sets in (B.1)-(B.4). Assume |II;| = |II}|. Define a linear
isomorphism ¢ : F5 — F5" such that

o(lp) =115, o(ILy) =11} if |T11| is odd,

o(Ily) =105, o(IL) =11, on+1=(n+1) if |TI;| is even.
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Observe that ¢~ 'Ky ¢ = ks,. By Corollary kg for all s; € S’ generate the symmetric
group on II'. It follows that ¢_1/‘65; ¢ for all s, € S generate the symmetric group on II.
By the above comments ¢~'W’'¢) = W and the result follows. U

Corollary 3.6.2. The number of flipping groups of those I' that satisfy Assumption
is less than or equal to n — 1, up to isomorphism.

Proof. Immediate from Theorem . O
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Chapter 4

One-lit trees for lit-only sigma-game

Motivated by the first result on the lit-only o-game which is mentioned in Chapter 1,
we are specially interested in the 1-lit trees. In.general it is difficult to determine whether
a tree is 1-lit for lit-only o-game: In this chapter we will contribute two new classes of
1-lit trees.

4.1 The degenerate-and nondegenerate graphs
Definition 4.1.1. Define a bilinear-form B : F5 x F5 —IFy by

1 ifst € R,

Bles, ;) := { 0 olse (4.1)

for all s,t € S.

For a, b € F5 we say that a jis orthogonal to b-(with respect to B) whenever B(a,b) = 0.
Let radF5 denote the subspace of IF5 consisting of the vectors a that are orthogonal to
all vectors. This subspace of 5 is called the radical of F3 (relative to B). The form B is
said to be degenerate wheneverxadF; # {0} and nondegénerate otherwise.

We distinguish finite simple graphs into two classes.

Definition 4.1.2. We say that [' is degenerate whenever the form B is degenerate, and
nondegenerate otherwise.

Definition 4.1.3. Let B denote the matrix in Matg(IFy) whose (s,t)-entry is B(es, e;).

Observe that B(a,b) = a'Bb for all a,b € F5 and that B is nondegenerate if and only
if B is nonsingular.

We now mention a graph-theoretical characterization of nondegenerate graphs. By a
matching in I' = (S, R) we mean a subset of R in which no two edges share a vertex. By
a perfect matching in T' = (S, R) we mean a matching in ' that covers S.

Lemma 4.1.4. The following (i), (ii) are equivalent.
(i) T is a nondegenerate graph.

(ii) The number of perfect matchings in T is odd.
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Proof. For a square matrix C' let detC' denote the determinant of C. Note that detB = 1
if and only if B is nondegenerate. Let A denote the adjacency matrix of I' (over the ring
of integers Z). Using the canonical map from Z to F, we obtain detB = detA (mod 2).
By [13, Section 2.1], det A and the number of perfect matchings in I" have the same parity.
By the above comments the result follows. O

4.2 Some combinatorial properties of nondegenerate
trees

In this section we mention some combinatorial properties of nondegenerate trees.
Proposition 4.2.1. The following (i), (ii) are equivalent.
(i) T is a nondegenerate tree.
(ii) I is a tree with a perfect matching.

Proof. Use Lemma and observe that a tree contains at most. one perfect matching.
O

Example 4.2.2. The only nondegenerate tree of order at most 2 is'a path of order 2.
Proof. 1t is routine to verify. O

Proposition 4.2.3. If T' = (S;R) is a nondegenerate tree of order at least 3, then there
exists a vertex of I' "with degree 2.

Proof. Fix a leaf u of '« LLet s denote a vertex of I farthest away from w in I'. Observe s is
a leaf of I'. Let t denote the neighbor of s. We proceed by ‘contradiction to show that ¢ has
degree 2 in I'. Since the order of L iswat least 3 the'degree of t is at least 2. Suppose the
degree of t is greater than 2. By our choice-of s, at least one other neighbor of ¢ is a leaf
besides s. Thus there is no prefect matching in I', a contradiction to Proposition ¢.2.1. [

4.3 The Reeder’s game

In this section we mention another combinatorial game and introduce some related
material. We call this game the Reeder’s game because as far as we know, this game first
appeared in one of Reeder’s papers [24]. We start with the description of the Reeder’s
game.

The Reeder’s game is a one-player game played on a graph. A configuration of the
Reeder’s game on T" is an assignment of one of two states, on or off, to all vertices of I'.
Given a configuration, a move of the Reeder’s game on I' consists of choosing a vertex s
and changing the state of s if the number of on neighbors of s is odd. Given a starting
configuration, the goal is to minimize the number of on vertices of I' by a finite sequence
of moves of the Reeder’s game on I,
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4.3. The Reeder’s game

For the rest of this chapter we interpret each configuration a of the Reeder’s game on
I' as the vector

> e (4.2)

of F5, where the sum is over all vertices s of I' that are assigned the on state by a; if
all vertices of T are assigned the off state by a then (b.6) is interpreted as zero vector.
Observe that for any configuration a € F5 of the Reeder’s game on I', ela = 1 (resp. 0)
means that the vertex s is assigned the on (resp. off) state by a.

Definition 4.3.1. For each s € S define a matrix 7, € Matg(F2) by
Tsa := a + B(a, e;)e; for all a € F5.
Observe that 72 = I and so 7, €.GLg(F,) for/all.s € S.

Lemma 4.3.2. For each s«€ S-we have

Bla,e;) = Z cia for all a & IF5.
steR
Proof. 1t is routine to verify this using (@) O

Fix a vertex s of I'. Observe given any configuration a € [F5 of the Reeder’s game on
I, if the number of on neighbors of s is odd then 7sa is obtained from a by changing the
state of s; if the number of on neighbors of s is even then 7,0 = a. Therefore we may view
Ts as the move of the Reeder’s game on I for which we choose the vertex s and change
the state of s if the number of. on néighbors of s is‘odd.

The following theorem establishes a connection between the Reeder’s game on I' and
the simply-laced Coxeter group W of type I'.

Theorem 4.3.3. ([24, p.41)).* There exists a-unique representation T : W — GLg(F2)
such that 7(s) = 74 for all s € S.

For the rest of this chapter let 7 denote as in Theorem .

We now give a dual relationship between the Reeder’s game and the lit-only o-game.

Proposition 4.3.4. The representations k : W — GLg(Fy) and 7 : W — GLg(Fy) are
dual; i.e. K(w)=71(w™ ) for allw € W.

Proof. Since S is a generating set of W and s™! = sin W for all s € S, it suffices to show
ks = 7l for all s € S. Let u,v € S. Using Lemma we find

Te€y = €y + (Z ele,)es. (4.3)

steR

Using (@), we find (74)., equals 1 if and only if u = v, or u = s and uv € R. Comparing
this with Definition R.1.1, we have 7t = K. The result follows. O
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By Proposition the image of W under 7 is exactly the transpose W' of W.
Observe for any a,b € F5, b is obtained from a by a finite sequence of moves of the
Reeder’s game on I if and only if b = Ga for some G € W'. We now define the W'-orbits
of F5, which are exactly the orbits of the Reeder’s game on T.

Definition 4.3.5. Let a € F5. By the W'-orbit of a we mean the set W'a = {Ga | G €
W'}, By a W'-orbit of F§ we mean a W'-orbit of a for some a € F3.

There is a characterization for a W'-orbit of F5 which contains exactly one vector.
Lemma 4.3.6. Let a € F5. Then {a} is a W'-orbit of F5 if and only if a € radTF5.

Proof. By Definition , a is fixed by 7, for all s € S if and only if B(es,a) = 0 for all
s € S. The latter condition is equivalent to a € radF5. The result follows. ]

4.4 Reeder’s game ona nondegenerate tree

In this section we use [24; Theorem 7.3] torealize the W'-orbits of F5 for the case T’
is a nondegenerate trée;and not-a-path. We begin with a quadratic form on F5.

Definition 4.4.1. Define a quadratic form Q :F5 —F, by

Qeg):=1 for all s €5, (4.4)
Q(a=b) := Q(a) + Q(b) +B(a;b) forall a, b€ F5. (4.5)

We now recall a'combinatorial interpretation for the form @. For each a € F5 define
['[a] to be the subgraph of I" induced by the vertices s of I' that assigned the on states by
a in the Reeder’s game:

Lemma 4.4.2. ([24, Section 1]).. Let.a € F5. Then Q(a) = 1 whenever the number of
vertices in T'la] plus the number of edgesinL|al s odd, and Q(a) = 0 otherwise.

Definition 4.4.3. Let O(F3) denote the group consisting of all 0 € GLg(F2) that satisfy
Q(oa) = Q(a) for all a € F5. This group is called the orthogonal group of F5 (relative to

Q).

Definition 4.4.4. Let Ker @ denote the subspace of radF§ consisting of all a € radF3
that satisfy @)(a) = 0. This is called the kernel of Q. The form @ is said to be regular
whenever Ker@ = {0}.

We now explain the roles of the two forms B and @ in the Reeder’s game on T'.
Proposition 4.4.5. The following (i), (ii) hold.
(i) Q(r(w)a) = Q(a) for allw € W and a € F5.
(ii) B(r(w)a,7(w)b) = B(a,b) for allw € W and a,b € F5.
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Proof. (i) Since S is a generating set of W, it suffices to show Q(7.a) = Q(a) for all s € S
and a € F5. Let s € S and a € F5 be given. Using Definition §.3.1] and (4.5) we find

Q(rsa) = Q(a) + Q(B(a, es)es) + Bla, es)”. (4.6)

By (@) and since Q(0) = 0 we find Q(B(a.e,)es) = Bla,es)* whether B(a,e,) equals 0
or 1. It follows that the right-hand side of (4.6) is equal to Q(a). The result follows.

(ii) In (@) we replace a and b by 7(w)a and T(w)b respectively and simplify the
resulting equation using (i) and (4.5). O

Corollary 4.4.6. 7(W) = W' is a subgroup of O(F3).
Proof. Immediate from Proposition (1) O

Definition 4.4.7. Let Cy := {a € F§ \ radF5 | Q(a) = 0} and let C; := {a € F5 \
radF5 | Qa) = 1}.

We now give sufficient conditions for Cyand-C, to be nonempty.
Lemma 4.4.8. The following (1), (ii) hold.
(i) If T is a nondegemerate graph of order at least 3 then Cy is nonempty.
(ii) If I contains at least one edge then Cy is.nonempty.

Proof. (i) If there exist two vertices s,t of I' with st € R, then we find e, + ¢; € Cy using
(1.4) and (4.5). Now suppose that any two vertices of I' are neighbors. Pick any three
vertices s, t,u of I'. Using (Q), (1.5) we find es + e; + e, € Cy. The result follows.

(i) Let s € S for which there is# € S'such that st € R. By (f.1)); e, € radF5. By this
and (Q), as € Cy. O

We now explain theroles of Cj, C; in the Reeder’s game on T’

Lemma 4.4.9. The sets Gy and Cyware closed under-W'

Proof. Immediate from Lemma and Proposition (1) O

Lemma 4.4.10. ([24, Theorem 7.3]). Assume that I' = (S, R) is a tree and not a path,
and that the quadratic form Q is regular. Then T(W) = O(Fy).

Corollary 4.4.11. Assume that I' = (S, R) is a nondegenerate tree and not a path. Then
the W'-orbits of F5 are {0}, Co and C;.

Proof. Since T is nondegenerate, radF5 = {0} and so Ker@ = {0}. Therefore 7(W) =
O(F3) by Lemma By this and applying Witt’s extension theorem (for example,
see [16, Theorem 12.10]), we find that for any «, 8 € Cy (resp. Cp) there exists w € W
such that 7(w)a = . Since I' is a nondegenerate tree and not a path, it follows from
Exampl that the order of I' is at least 3. Therefore Cy and C; are nonempty by
Lemma §.4.8. Combining the above comments with Lemma {.4.9, we find the W'-orbits
of F5 are {0}, Co and C;. O
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4.5 Lit-only o-game on a nondegenerate tree

In this section we show that nondegenerate trees are 1-lit for lit-only o-game. We
begin with some lemmas.

Lemma 4.5.1. For each s € S we have

Beo=Y e

steR
Proof. Immediate from Lemma and Definition . [

Lemma 4.5.2. /{(w)ﬁ = ET(w) for allw e W.
Proof. Replacing b by 7(w™1)b in Proposition (ii), in terms of matrices we obtain

b Br(w)d=b"7(w 1) Ba (4.7)
for all a, b € FS. Therefore Br(w) =7(w ') B. By Proposition the result follows. [

Lemma 4.5.3. Assume that T is nondegenerate. Let. w € W<and a,b € F5. Then the
following (i), (ii) are equivalent.

(i) b=7(w)a.
(ii) Bb = x(w)Bi.
Proof. Using Lemma , (ii) becomes

Hence (i) implies (ii). Since I''is' nondegenerate B is nonsingular. It follows that (ii)
implies (i). O

Corollary 4.5.4. Assume that T s .a nondegenerate graph. Then the map from the
W'-orbits of F5 to the W-orbits of F5 defined by

O — BO for any W'-orbit O of F5
is a bijection.

Proof. Use Lemma . ]

Corollary 4.5.5. Assume that I' is a nondegenerate tree and not a path. Then the
W-orbits of F5 are {0}, BCy, BC;.

Proof. Immediate from Corollary and Corollary . O

Our last tool for proving the first result is [15, Theorem 6]. Here we offer a short
proof.

Lemma 4.5.6. ([15, Theorem 6]). Assume that I' is a nondegenerate graph. Let s € S
and let a € F§ such that ela = 0. Then a and a+ Y, p ¢ lie in distinct W-orbits of F5.
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Proof. We proceed by contradiction. Suppose that there exists G € W such that

Ga:a+26t. (4.8)
Let w € W such that x(w) = G. So

r(w)a = a+ Z e;. (4.9)

Since I' is nondegenerate, B is nonsingular. Hence there exists a unique b € F5 such that
Bb = a. Using this and Lemma we find

a—i—Zet:E(b—i—es). (4.10)
steR
Substituting a = Bb and () into (@) and by Lemma we find
T(w)b = b+ e;. (4.11)

We now consider the @=value on either side of () By Proposition (1) we find
Q(7(w)d) equals Q(b). Since Bb="a and eta = 0 It follows that B(e,,b) = 0. Using this
and (4.4), (@) we find @ (b + es)-equals Q(b) + 1, a contradiction. O

It is now a simple matter to prove that nondegencrate trees are 1-lit.

Theorem 4.5.7. "Assume that T' is a nondegenerate tree. 'Then T'is 1-lit for lit-only
o-game.

Proof. Recall that all paths are 1-lit for lit-only o=game: Thus we suppose that I' is a
nondegenerate tree and not a path; otherwise there-is nothing to prove. By Corollary
there are exactly two nonzero W-orbits of Iﬁ'g i 1.e. BCy and BC;. Therefore it suffices
to show that there exist'u,v € S such that e,,e, lie.in distinct W-orbits of F5. By
Proposition there existsa vertex s of I' with degree 2. Let u, v denote the neighbors
of s. Note that ele, = 0 and

eu+Zet:eu—l—(eu+ev):eU.

steER

Thus e, and e, are in distinct W-orbits of F5 by applying Lemma to es; and e,. The
result follows. O]

We end this section with two examples. They give a degenerate tree and a nondegen-
erate graph which are not 1-lit for lit-only o-game.

Example 4.5.8. The tree I' = (S, R) shown in Figure 3.2 is degenerate and not 1-lit for
lit-only o-game.

o O
1 2 3 4 5 6 7

Figure 3.2: a degenerate tree is not 1-lit for lit-only o-game.
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Proof. There is no perfect matching in I'. By Proposition , [' is a degenerate tree.
Using Theorem ﬂ we find that the W-orbit of e; + e; doesn’t contain ey, e, ..., es.
Therefore I' is not 1-lit for lit-only o-game. [

Example 4.5.9. The graph I' = (S, R) shown in Figure 3.3 is nondegenerate and not
1-lit for lit-only o-game.

o 0
5 6 7 8

Figure 3.3: a nondegenerate graph is not 1-lit for lit-only o-game.

Proof. {{1,2},{3,4},{5,6},{7,8}} is the only perfect matching in I'. By Lemma ,
I' is nondegenerate. We now show I' is not 1-lit for lit-only o-game. To do this let
a = ey + e3 + eg + e7 and let O _denote the W-orbit of a. It suffices to show e, & O for all
s=1,2,...,8 Using Lemma }}:5.1f we find b = e; 4+ estes+es, by =ea+es+es, by =€
such that Bb = a, Bb; = ey, Bby = e5. Using (Q), (@) we find b € Cy and by, by € C;.
By Lemma (ii) b, and by are not in the W-orbit of b. By the above comments and
Corollary M we find ey, es ¢ O. By symmetry we obtain e, € O for all s = 3,4,...,8.
The result follows. O

4.6 A homomorphism between simply-laced Coxeter
groups

Before launching-into the proof of the next result, we need a lemma about a homo-
morphism between simply-laced Coxeter groups.

For the rest of this chapter we adopt the following convention.

Definition 4.6.1. We assume that.l' = (S, R) contains at least one edge. Fix z,y € S
with zy € R. We define I'" = (S, R') to be the simple graph obtained from I' by inserting
a new vertex z on the edge xy of I';i.e. z is a new symbol not in S, and the vertex and
edge sets of [V are 8" = SU{z} and R = RU{xzz,yz} \ {zy} respectively. Let W' denote
the simply-laced Coxeter group of type I'; i.e. W’ is the group generated by all elements
of S’ subject to the following relations

s* =1, (4.12)
(st)? =1 if st ¢ R, (4.13)
(st)® =1 if st € R/ (4.14)

for all s,t € 5.

Lemma 4.6.2. For each u € {z,y} there exists a unique homomorphism p, : W — W'
such that p,(u) = zuz and p,(s) = s for all s € S\ {u}.

Proof. Without loss of generality it suffices to show the uniqueness and existence of p,.
Since S is a generating set of W, if p, exists then it is obviously unique. We now show
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the existence of p,. By Definition it suffices to check that for all s,t € S\ {z}

s? =1, (4.15)

(st)* =1 if st Z R, (4.16)
(st)® =1 if st € R, (4.17)
(z22)* =1, (4.18)
(sza2)? =1 if sx ¢ R, (4.19)
(szwz)® =1 if sx e R (4.20)

hold in W’ 1t is clear that ()f() is immediate from (4.19)—(4.14) respectively.
To obtain (4.18), evaluate the left-hand side of (4.18) using (4.12). It remains to verify
(1.19), (1.20). Observe that for s € S'\ {z, y}

(s2)? =1, (4.21)
(s)* =1 if sz € R, (4.22)
(s2)* =1 if sk € R, (4.23)
and
(yz)* = (4.24)
(z2)® =1, (4.25)
(y2)® =4 (4.26)

hold in W’ by ([£.13) and (14). In what follows, the relation (wm henceforth be
(

used tacitly in order to keep the argument concise. Concerning ) let se S

with sz € R be given. It is clear that s # ¥ in S since yr € R. Hence (4.21)) and (Y 2)
hold. From these we find s commutes with z and x in W/, respectively It follows that
the left-hand side of (@) equals (z72)2. Now (4.19) follows from ( . To verify ( E)
we divide the argunment into the following two casés. (I) s € S\ {=; y} and sz € R; (II)
s=yin S.

Case I: s € S\ {z,y} and sz € R.
Observe (@) and (4.23) can be rewritten as zsz= sand wsxsxr = s, respectively. By
the above two relations, we may simplify the left=hand side of (4.20) by replacing zsz with
s twice and then replacing xsxsx with s. This yields

(szwz)® = (52)*
in W’. Now it is immediate from () This completes the argument for Case I.
Case II: s =y in S.

We shall show (yzxz)® =1 in W’. Observe first that zzz = zzz in W’ by () By this
it suffices to show

(yrzz)® =1 (4.27)

in W’. By a similar argument to Case I one can show () We display the details
as follows. Observe (K.24) and () can be rewritten as xyr = y and zyzyz = v,
respectively. By the above two relations, we may simplify the left-hand side of (E) by
replacing xyz with y twice and then replacing zyzyz with y. This yields (yzzz)® = (yz)? in
W'. Now it is immediate from (@) We have shown ({£.20) and the proof is complete. [

For the rest of this chapter let p, (u € {z,y}) denote as in Lemma .
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4.7 More one-lit trees for lit-only o-game

In this section we contribute more 1-lit trees for lit-only o-game.

Definition 4.7.1. For s € S let €/ denote the characteristic vector of s in Fy". For s € S’
define a matrix x, € Matg(IFy) as

(4.28)

() _{1 if u=wv,orv=sand uv e R,

0 else
for all u,v € S'.

Applying Theorem M to I'" there exists a unique representation ' : W’ — GLg/ (IF3)
such that /(s) = k!, for all s € S’. The image of W’ under «’, denoted by W', is called
the flipping group of I".

Definition 4.7.2. Let a € F5 . By the W’-orbit-of o we mean the set Wa = {Ga | G €
W'Y, By a W'-orbit of F5 we mean a W'-orbit of o for some .« € F5'.

Definition 4.7.3. For each ure{z,y} define a matrix ¢, with rows indexed by S and
column indexed by S”such that

(0u)uz = 1, (0u)ss = 1 for all s € S
and other entries are 0.
Lemma 4.7.4. For-each u € {x,y} the null space of 0, is {0, e, +e€.}.

Proof. From Definition we find {0, €/, + €.} is'contained in the null space of ,, and
the rank of 4, is |\S|. By rank-nullity theorem the result follows. N

Lemma 4.7.5. For u € {z,y} and s € S-we-have

exte+ Y e if s =u,
A uteER
0, ) €)= S e ifs 4. (4.29)
steR! steR

Proof. Observe that

{teS" |zteR}={teS|ate R}U{z}\{y}
{teS"|yte R}y={teS|yte R}U{z}\ {z}, (4.30)
{te S |ste R} ={teS|steR} if s e S\ {z,y}.

To get (), evaluate the left-hand side of () using Definition |473| and (l44d) O

Lemma 4.7.6. For any u € {z,y} and w € W we have
K(w) 0y = 0y K (pu(w)).
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Proof. Let u € {z,y} be given. Recall from Lemma that p,(u) = zuz and p,(s) = s
for all s € S\ {u}. By this and since S is a generating set of W, it suffices to show
KOy = OyKL KoK, (4.31)
K0y = Oy, for all s € S\ {u}. (4.32)
We first verify () It suffices to show that for all s € S’
(Kuly)es = (dukLrKL kL)l (4.33)
To do this we divide the argument into the following two cases. (I) s € {u,z}; (II)
se S\ A{u, z}.
Case I: s € {u, z}.
Using () we find (kK. K.)e., equals
e, 4 e i e 1 Z e;.
ute R’
By this and using Definition and (), we find the right-hand side of (1.33) equals
eu + Z es. (4.34)

uteER,

On the other_hand, using Definitions and we find the left-hand side of ()
also equals (4.34)). Hence (4.33) holds in this case:

Case II: s € "\ {uyz}.
Observe Ky es = €5, 0,€5 = e, and ke, = kel = e/ by Definitions E.l. l, Iﬁ_‘_%?j, and (@)
respectively. Using these we find either-side of (@) equals eg, 's0 (1.33) holds in this
case. Thus we have shown ({.31)).

Concerning (4.32),let s € S\ {u} be given. It suffices to show that for all ¢t € S’

(KsOu)e; = (0uK)e). (4.35)

Similar to above we consider the two cases.«(IIT) ¢ e{u, z}; (IV) t € S"\ {u, z}.
Case III: t € {u, z}.

Observe kge, = ey, 0y, = e,, and ke, = e; by Definitions , , and (4.28)
respectively. Using these we find either side of (4.35) equals e,, so (4.35) holds in this
case.

Case IV: t € S"\ {u.z}.
Using (M) and (4.29), we find the right-hand side of () equals

er + efel, Z €y (4.36)
sveER
Using Definitions blﬂ and |4.7.§i we find the left-hand side of () equals
es + eleg Z €y (4.37)
SVER
Since ele; = ejle’, and_comparing (4.36) with ()7 we find () holds in this case.
Thus we have shown (4.32) and the result follows. O
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We are now ready to prove our second result.

Theorem 4.7.7. Assume that I' = (S, R) is a nondegenerate tree and that x,y € S such
that xy € R and e, ¢ We,. Let I denote the tree obtained from I' by inserting a new
vertex on the edge xy of I'. Then 1" is 1-lit for lit-only o-game.

Proof. Use the notation as in Sections 3.6 and 3.7. If ' is a path then I is also a path
and we have mentioned all paths are 1-lit for lit-only o-game. Thus we suppose I is a
nondegenerate tree and not a path; otherwise there is nothing to prove. Let O denote
any nonzero W’-orbit of F5'. To see that I" is 1-lit for lit-only o-game, it suffices to show
that there exists s € S” such that ¢, € O. We first claim_that §,(O) # {0}. We show
this by contradiction. Suppose d,(0O) = {0}. By Lemma {.7.4 and since 0 ¢ O, we find
e, + e, € O and hence (e}, +¢,) = ¢, + ¢, € O. It follows that

dz(ey, +€.) = ¢y +ex € 0,(0),

a contradiction to d,(0) = {0}. We have shown 0,0 % {0}+ Thus there exists o € O such
that 6, # 0. Recall from Corollary #.5.5 that there are exactly two nonzero W-orbits
of F5. By this and since e, and e, are in-distinct W<orbits of F5, there exists s € {z,y}
such that 6,(a) and egarein thesame W-orbit of F5; i.c. there exists w € W such that

R(w)Ig0 = €. (4.38)

By Lemma E.?.G: we find the left-hand side of (4.38) equals d,'(p,.(w))a. By this and
using Definition 473 and Lemma §.7.4, we find

/ / . N
e/, ore., if s =a,
cORERETIE 1t if's'=y

y z T &y :

K)o £ { (4.30)

If s = x, then it follows from () that €/, or €/, lies in O, and we are done. If s = y, then
e, or ¢ lies in O by () and since (e}, + e, + €,) ='eZ: The proof is complete. O

We end this section with an example of a tree obtained from a nondegenerate tree by
inserting a new vertex on some edge which is not 1-lit for lit-only o-game.

Example 4.7.8. Assume that I' = (S, R) is the tree shown in Figure 3.4. Then the
following (i)—(iii) hold.

(i) T' is a nondegenerate tree.
(ii) e3 and eg are in the same W-orbit of F3.

(iii) The tree IV shown in Figure 4 is not 1-lit for lit-only o-game.

6 6

r T N 7
O O O O
1 2 3 4 5 1 2 3 4 5

Figure 3.4: T is a nondegenerate tree and I" is not 1-lit for lit-only o-game.
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4.8. Combinatorial statements of Theorems |457} and |477}

Proof. (i) The set {{1,2},{3,6},{4,5}} is a perfect matching in I". By Proposition ,
I' is a nondegenerate tree. R

(ii) Using Lemma we find by = eg and by = e; + e3 + e5 such that Bb; = e3 and
Bby = eg. Using (@), () we find by, by € C;. By Corollary , e3 and eg are in the
W-orbit BCy_of F5, as desired.

(iii) By [9, Proposition 3.2], the W'-orbit of €| + el doesn’t contain e},€), ..., eh.
Therefore I is not 1-lit for lit-only o-game. O

4.8 Combinatorial statements of Theorems 4.5.7 and
A.7.7

In order to easily execute Theorems l457| and |4.7.7|, the goal of this section is to state
the combinatorial versions of those results.

By Proposition we restate Theorem as follows.

Theorem 4.8.1. Assume that I'is a tree with a perfect. matching. Then I' is 1-lit.

Assume that T' = (S, R) is a-tree-with a perfect matching P. By an alternating path
in T' (with respect to'P), we mean-a pathrin which the edges belong alternatively to P
and not to P.

Definition 4.8.2./"Assume I' = (S, R) is a tree with a perfect matching P. For each s € S
define A, to be the set consisting of all £ €4S\ {s} such that the path between s and ¢
is an alternating path which starts from and ends on edges in P. For each s € S we say
that A, has even parity whenever the cardinality of A, is even and odd parity otherwise.

Lemma 4.8.3. Assume I' = (S, R) is a tree with a_perfect matching P. Let As (s € S)
be as in Definition . Let s € S. Then ey, € BCy whenever As has even parity, and
es € BCy whenever Ay has odd parity

Proof. For each s € S let

b, = Zet.

teAs

Since no edges between any two vertices in Ay and using (@), (@) we find by € Cy (resp.
C,) if A has even (resp. odd) parity. Let s € S be given. Let t € S for which st € P.
Observe that A equals the disjoint union of {¢t} and these sets A, for all u € S\ {s} with
ut € R. By this and by induction on the cardinality of As, it easily follows that Bb, = e,
for all s € S. The result follows. ]

By Corollary and Lemma , we restate Theorem as follows.

Theorem 4.8.4. Assume that I' = (S, R) is a tree with a perfect matching. Let x,y € S
such that xy € R. Let T denote the tree obtained from I' by inserting a new vertexr on
the edge xy of I'. Assume that A,, A,, defined as Definition , have distinct parities.
Then 1" is 1-lit.

We now illustrate Theorems and with two examples.

43



One-lit trees for lit-only sigma-game

Example 4.8.5. Assume that I' = (S, R) is the tree shown in Figure 5.

Figure 5: a tree of order 12.

Since I' contains the perfect matching {{1, 2}, {3,4},{5,6},{7,8},{9,10},{11,12}} and
by Theorem @, I' is 1-lit. We next show that any tree obtained from I' by inserting a
new vertex on an edge of I' is 1-lit. To see this, it suffices to show the four trees shown in
Figure 6 are 1-lit.

-+ B, -

Figure 6: four 1-lit trees of order 13.

Let D = {{1,2},{3,4},{5,6}, {4,7}}. Observe that

A} =42/4,6,8,10,12}, A, = {1}, « A3 =4{4,8,12},

Ag={1,3), As = {6}, As—=11,5), Ar— {8k (4.40)

Pick any xy € D. By () and by Theorem the tree obtained from I' by inserting
a new vertex on theedge xy of I'is 1-lite- Therefore the four trees in Figure 6 are 1-lit. [J

Example 4.8.6. The aim of this example is to show that the trees shown in class IV of
Figure 1 are 1-lit by using Theorem {.8.1 and Theorem ‘. Let £ > 3 be an integer.
Suppose that I' = (5, R) isthe tree of order 2k shown.in Figure 7. Let P denote the path
in I between the two vertices 2 and. 2k. Tt-suffices to show that I' and the tree obtained
from I' by inserting a new vertex on some edge of P are 1-lit.
|
O QO e o o O—O
4 3 2 5 6 2%—1 2k

Figure 7: a 1-lit tree of order 2k.

Since I' contains the perfect matching {{1,2},{3,4},...,{2k — 1,2k}} and by Theo-
rem 4.8.i I" is 1-lit. It is routine to check that A; = {1} and Ag = {1,5}. Therefore there
exists x € {2,6} such that A; and A, have distinct parities. By Theorem 4.8.% the tree

obtained from I' by inserting a new vertex on the edge {5,z} of P is 1-lit. The result
follows. O
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Chapter 5

The edge-version of lit-only
sigma-game

In this chapter we consider.the edge-version of lit-only o-game, which is called e-lit-
only o-game. We now describe this game on I' = (S;R). A configuration is an assignment
of one of two states, on ot off, to all edges of I'. Given a eonfiguration, a move allows the
player to choose one on edge € of I" and change the states of all'adjacent edges €' of ¢; i.e.
len€’'| = 1. Let L(I") denote the line graph of I'. We may view this variation as the lit-only
o-game on L(I'). We denote the-flipping group.of L(I') by Wy, and call this the edge-
flipping group of I'sLet Z denote theadditive group of integers. Let:n and m denote the
numbers of verticesrand edges of I' respectively. Assume n > 3. Thegoal of this chapter
is to show that Wigis isomorphic to a semidirect product of (Z/2Z)* and the symmetric
group S, of degree'm, where k = (n — 1)(m =n + 1) if n is odd; k=(n — 2)(m —n+ 1)
if n is even.

5.1 The edge spaceand the bond space

In this chapter let |S| = n and |R| = m. In this'section we mention some properties
about the edge space and the bond space of I' that we will need. The reader may refer to
[24, p.23—p.28] for details.

Let R denote the power set of R. For any F, F' € R define FF+ F' :={e € R | € €
FUF' e ¢ FNF'}; ie. the symmetric difference of F' and F’. Define 1- F' := F and
0- F := (), the empty set. The set R forms a vector space over 5 and this is called the
edge space of I'. Note that the zero element of R is ) and —F = F for F' € R. Observe
{{€} | € € R} is a basis of R. Therefore the dimension dim R of R is m.

For a subset U of S let R(U) denote the subset of R consisting of all edges of I" that
have exactly one element in U. In graph theory R(U) is often called an edge cut of " if U
is a nonempty and proper subset of S. Notice that R(¢) = R({z,y}) for e = {z,y} € R.
For convenience R(s) := R({s}) for s € S.

Proposition 5.1.1. The following (i), (ii) hold.

(i) Fach e = {z,y} € R lies in exactly two edge cuts R(x) and R(y) among R(s) for
all s € S.
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(ii) For U C S we have R(U) = ., R(s).

Proof. (i) is immediate from the definition of R(s) for s € S. (ii) is immediate from (i)
and the definition of R(U). O

For the rest of this chapter let B denote the subspace of R spanned by R(s) for all
s € S. This is called the bond space of I'.

Proposition 5.1.2. The following (i)—(iv) hold.
() B={R(U) | UC S}
(ii) The dimension dim B of B is n — 1.

(iii) For eacht € S, R(t) = > ey B(S).
(iv) For eacht € S the set {R(s) | s € S\{t}}. is a basis of B.
Proof. (i) follows immediately ‘from  Propesition (ii). Similar to the edge space of

I', the power set S of S forms a vector space over Fg. Clearly the dimension of S is n.
Observe that the map from the vertex space S onto.the bond space B of I', defined by

U R(U) for U € S,

is a linear transformation with kernel {0, S}. Tt follows that dim B.= n — 1. This proves
(ii). Let u € S. Sinee-R(S) = () we have R(t) = R(t)+R(S). By this and Proposition ,
(iii) follows. (iv) issimmediate from (ii), (iii): O

For the rest of this chapter let T denote a minimal subset of R such that (S,7T) is
connected. We call I"a spanning tree of I'. Note that |L}.= n — 1.

Proposition 5.1.3. The subset {F-€ R | F C R\T} of R isa setof coset representatives
of B in R.

Proof. There are 2™~ "1 coséts of Buin R because-of ditn B.=n — 1 and dim R = m. It
is clear that |[{F | F C R\ T} = 2m 7l Forany two distinct F, I/ C R\ T the graph
(S, R— (F — F")) is still connected sinee T' € R —(F — F’), which implies that F' — F" is
not an edge cut of I'. By Proposition M(l), F — F" ¢ B. Therefore {F' | F C R\ T} is
a set of coset representatives of B in R. O

5.2 The edge-flipping group of I

In this section we define the edge-flipping group of T'.

We interpret each configuration G of the e-lit-only o-game on I' as the vector
{€e € R | € is assigned the on state by G}

of R. For each ¢ € R define a linear transformation p. : R — R by

G G + R(e) if e € G,
< G else
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for G € R. Observe that R(e) consists of all edges that are adjacent to e. Therefore we
may view p. as the move for which we select the edge € of I' and change the states of all
adjacent edges of € if the state of € is on.

Let GL(R) denote the general linear group of R. Using (15:11) we find p? = 1 and so
pe € GL(R). Here 1 denotes the identity in GL(R).

Definition 5.2.1. Let W denote the subgroup of GL(R) generated by p, for all € € R.
We call Wg, the edge-flipping group of T

Definition 5.2.2. Let F' € R. By the Wg-orbit of F we mean the set WrF = {gF | g €
Wr}. By a Wg-orbit of R we mean a W g-orbit of F' for some F € R.

Let F' denote a subset of R. We say that F is closed under W whenever WgF C F.
Proposition 5.2.3. (29, Section 5]). Each coset of B in R is closed under W g.

Proof. Fix any € € R and G € R. Itsuffices to show that p.G — G € B. By (15:11), p.G—G
is equal to either () or R(e). Since 0y R(e)-€B-the result follows. O

5.3 The structure of Wy in the case I' is a tree

When I' is a tree with n >-3,~Yaokun Wu showed that Wpg is isomorphic to the
symmetric group of degree n. Here we provide another proof.

Lemma 5.3.1. We have

n ifn >3,

o)) sesif=4 5

Proof. Suppose n ='1. Let S = {s}. Then R(s)=. Thus |{R(s)}| = 1. Suppose n = 2.
Let S = {s,t}. Then R(s) = {s,t} and R(t) = {s,t}. Thus {R(s), R(t)}| = 1. Now
suppose n > 3. Pick twe distinet vertices s,t € S. Sinee R({s,t}) is nonempty and by
Proposition(ii), R(s) 4+ R(t).# 0. Therefore R(s) # R(t). The result follows. O

For the rest of this chapter we assume n > 3 until further notice. In view of
Lemma the symmetric group on {R(s) | s € S} has degree n. We denote the group
by Sy. Let € = {z,y} € R. By Proposition 5Jﬁ|(1) and (15:11) the transformation p,. fixes
the R(s) for all s € S\ {x,y}. Using Proposition (ii) we find that p.R(z) = R(y)

and p.R(y) = R(z). By the above comments we have a group homomorphism as follows.

Definition 5.3.2. Let o : W — S, denote the group homomorphism defined by
a(g)(R(s)) = gR(s) for s € S and g € Wp.

Observe that for each € = {z,y} € R, a(p.) is the transposition (R(x), R(y)), which
switches R(x) and R(y).

Let F' C R. For the rest of this chapter let W g denote the subgroup of Wy generated
by the p. for all € € F.

Lemma 5.3.3. The image of Wrr under o is S,,. Moreover if I' is a tree with n > 3,
then « is an isomorphism from Wpg to S,,.
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Proof. Let A denote the set of the transpositions {(R(z), R(y)) for all {z,y} € T. Let
s,t denote any two distinct vertices of I'. There exists a subset {{so,s1},{s1,s2},-.-,
{sk_1,sk}} of T with sy = s and s, = t. Observe that

(R(s), R(t)) =(R(sk-1), R(sk)) - - (R(s2), R(s3))(R(s1), R(s2))(R(s0), L(s1))
(R(s1), R(s2))(R(s2), R(s3)) - - - (R(sk-1), R(s))-

Thus A generates all transpositions in S, so A generates S,,. Therefore a(Wgrr) = S,,.
Now suppose I" is a tree. In this case R = B by Proposition (ii) and comparing the
both dimensions. Let g € Kera. Then gR(s) = R(s) for all s € S. Since the R(s) for all
s € S span B it follows that g = 1, the identity map in GL(R), This shows Kera = {1}.
Therefore « is an isomorphism. [

Corollary 5.3.4. ([29, Theorem 8]). Assume that I is a tree with n > 3. Then Wg is
isomorphic to S,.

Proof. Immediate from Lemma . [

Example 5.3.5. Assume that T" = (S, R) is the star graph of n > 3 vertices. By
Corollary the edge-flipping group Wx of 1'is isomorphic to S, .

5.4 The Wpg-orbits-of R

In this section we give a description of W g-orbits of R. To do this we fix a vertex t

of I and let
Ai={R(s)|s e S\{t}}

in this section. By Proposition (iv), Avisrarbasis of B. We call A the simple basis of
B. For each G € B let-A(G) denote the subset of ‘A such that the sum of its elements
equals G. Define the simple weight ||G||s of G to be the cardinality of A(G). For example
A(R(t)) = {R(s) | s € S\ {t}pand so ||R(t)||, =n — 1.

Lemma 5.4.1. The W p-orbits of B are
Qi :={GeB|[|G|ls=1or |Gl =n—i} 0<i<[=).
Proof. By Proposition (ii) and Proposition (i), B consists of R(U) = > ., R(s)
E 3.3

for all U C S. Recall from Lemma p.3.3 that «(Wgr) = S, the symmetric group on
{R(s) | s € S}. Therefore the W p-orbits of B are 2, = {G € B | G = R(U), |U| =i}
for 0 < ¢ < n. Since R(U) = R(S\U) for U C S it follows that Q) = 2/ _, and so both
are equal to €2;. The result follows. O

For the rest of this chapter let €; (0 <4 < [25}]) denote the sets from Lemma .
Corollary 5.4.2. ([29, Theorem 10]). The W g-orbits of B are €; for 0 <i < [251].

Proof. By Lemma , a(Wpg) = S,,. Therefore the W g-orbits of B are as same as the
W r-orbits of B. The result follows from Lemma . O]

=

ecall that {F' | FF C R\ T} is a set of coset representatives of B in R, from Proposi-
tion p.1.3.
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Lemma 5.4.3. Let F' denote a nonempty subset of R\ T. For any € € F the W g e -
orbits of F'+ B are

F+B,and F+ B, if n is even, (5-2)

{F+B if n s odd,
where B, := {G € B | ||G||s is even} and B, := {G € B | ||G||s is odd}.

Proof. Since FNT = () we have po F' = F for any € € T. Therefore Wi F = F. By this
and Lemma the Wg p-orbits of F' 4 B are

F+ 9 (0 << [22)). (5.3)

It remains to consider how p. acts on F'+ B. To do this, pick any 7 among 0,1,...,n—1
and pick any G € B with ||G||s = i. Note that p.(F + G) = F + R(e) + p.G and that
R(€) + p.G € B. We now discuss ||R(€) + peG||s: Ifu & € then

2 if [A(G) A A(R(e))| = 0,
172(€) + peGlla= { i ) if1 IAG)AAR(e))| = 1, (5.4)
If u € € then
LOE N S e S D

Combining (5.3)(5:4) we find

NN fori =0, 1 (5.6)

J=i,n—1t mod 2

are the Wp 1y¢y-orbits of £74B."If n is odd then (@) equals F'+ B for each i = 0, 1; if n
is even (@) equals F'+ B, (resp. F+ B,)fori= 0 (resp. ¢ = 1). The result follows. [

For the rest of this chapter let B, and B, denote as in Lemma .

Corollary 5.4.4. ([29, Theorem 12]). Let F' denote a nonempty subset of R\ T. Then
the W g-orbits of F'+ B are as ()

Proof. The group W g rur is generated by W g 14y for all € € F. By this and Lemma
the W ryp-orbits of F'+B are as described in (@) Pick any € € R—(TUF). Observe that
p(F+B) = F+B, and that if n is even then p (F+B.) = F+B, and p.(F+B,) = F+B,.
The result follows. O

Corollary 5.4.5. ([29, Theorem 10, Theorem 12]). The W g-orbits of R are g, ...,

the F+ B forall F € R\ B if n is odd,
the F + B, forall F € R\ B, if n is even.
Proof. Immediate from Corollary and Corollary . O]
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5.5 The minimum light number for e-lit-only o-game
on I’

Similar to lit-only o-game we consider the numbers defined below.

Definition 5.5.1. For a subset O of R define |O| to be the number

min |G].
GeO

Definition 5.5.2. Let £ > 1 denote an integer. We say that I' is k-lit for e-lit-only
o-game whenever |O| < k for any W g-orbit O of R.

Definition 5.5.3. Let p(I") denote the minimum number k such that I' is k-lit for
e-lit-only o-game. We call p.(I") the minimum light number for e-lit-only o-game on T

Observe that p.(I') equals max |O|; where the maximum is over all W g-orbits O of
R. By Corollary we have

pe(T) :max{|Qol,\Ql|,...,|Q[anl1|} if I is a tree. (5.7)
By Corollary we have
max{[Qol, [ |, oy [, max | F + B} if n is odd,
pe(l) = P Fer (5.8)
maxq (Yol |821], - -+ n—17|,Max [F + D, 1T 11s even.
‘ U0l [, [Qpasy [, max | F 4 B[} if i
2 €

There are some_results about . (T"): Here we provide short proofs.
Definition 5.5.4. For each 0 < i <.n define b;(T") to be the number
min [R(U)],

where the minimum is over all subsets U of S with |U| ="%. This number is called the ith
edge-isoperimetric number of L.

Definition 5.5.5. Define b(I") to be the number max{by(I'), b1 (I"),. .., b,(I")}. This num-
ber is called the edge-isoperimetric number of I'.

Definition 5.5.6. Let O denote a subset of R. Define o(O) to be the number

max |F' + O].
FeR

This number is called the covering radius of O in R.
Definition 5.5.7. Let A denote the subspace of R spanned by R(e) for all € € R.

Lemma 5.5.8. The number b(T") equals max{|Ql, |1], ..., ‘Q(anlw |}.

Proof. For 0 < i < [2534], b;(T') = b,4(T) and both are equals to [€%;|. The result
follows. 0

Theorem 5.5.9. (29, Corollary 15]). Assume that I is a tree. Then p.(I") = b(T").
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Proof. Immediate from (@) and Lemma . O
Theorem 5.5.10. ([29, Theorem 16)). u.(I') = max{b(I'), o(A)}.

Proof. Observe that the R(U) for all U C S with even sizes span A. Therefore A = B if
n is odd, and A = B, if n is even. By the above comment, o(.A) equals

max |F + B| if n is odd,
Fer o (5.9)
max |F + B,| if n is even.
FeR
Now the result follows from (@), (@), Lemma p.5.8. O

5.6 The structure of Wp

In this section we investigate the structure of Wg. For i =1,2,....m —n+ 1 Let B;
denote a copy of the bond space B-of T. Let B ™. denote the (external) direct sum of
B, By, ..., Brnit,

m—n+1

@ B;.
i=1

We view B! agian additive group. Let Aut(B™-""!) denote the'automorphism group
of Bm—ntt,

Definition 5.6.1. Let 8 : Wx — Aut(B™ 1) denote the group homomorphism defined
by
BE)G)E"T = (8G)ia™

for g € Wg and (G;)™, " e B+,
By Lemma the group homemorphism « : Wg =S, is surjective. We now show

that there exists a unique group homoemorphism 6 : S, ~— Aut(B™"™!) such that the
following diagram commutes.

Wg(X) a S,

Aut(Bm—nt)

Lemma 5.6.2. There exists a unique group homomorphism 6 : S, — Aut (B™ ") such
that 5 = 0 o a. Moreover 6 is determined by the following relation

0(a)(R(s:)i" ™ = (o(R(s:)))i "™ (5.10)
for all s1,89,...,8m—nsi1 €S and o € S,,.
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Proof. Since « is surjective, if 6 exists then 6 is unique. To show the existence of 6, it
suffices to show the kernel Ker« of « is contained in the kernel Ker 5 of 5. Let g € Kera.
Then gR(s) = R(s) for all s € S. By this and since {R(s) | s € S} spans B, we have
gG = G for all G € B. Therefore g € Ker 5. We now show (@) Pick any o € .5,,. Since
« is surjective there exists h € Wg such that a(h) = 0. Using 5 = 6 o «, we write (@)
as

Bh)(R(v:)Z" ™ = (a(h)(R(v:)))i"" (5.11)
Using Definition we obtain the right-hand side of () equals
(hR(v1),hR(vs), ..., hR(Vm—nt1)). (5.12)

Using Definition , we obtain the left-hand side of () also equals @ . This
shows () Since {R(s) | s € S} spans, B; 0(a) is uniquely determined by (5.10).
this and since o is an arbitrary element of .S, € is uniquely determined by ( .

In view of Lemma M we can define the (external)semidirect product of B™ "+ and
S,, with respect to . We denote this by B=="tl x4 S, This group is the set B! x S,
with the group operation defined by

P

(G ) (H) P 0e) = (G " +0(0, ) (H)2 " 0109)

=1 =1
for all (G;)7," ™, (H)2 " e Bm "+ and 0,505 € S,,.

Recall that T denotes a spanning tree of R. Note that [R\T| = m — n + 1. Let
€1,€9, ..., Em_ny1 denote the all elementsin R\ 7. By Corollary, {e:} + Wgr{e;} is
contained in B for 7 = 1,2...,m —n + 1. By the above comment we can define a map
from Wg to B™ "1 xp S, as follows.

Definition 5.6.3. Let vt Wg = B! x4 S, denotethe map defined by
1(g) = (({e =+ gleaNia™ al@) for g € Whg.
Lemma 5.6.4. 7 is a group monomorphism from W g into B™ " x4 S,,.

Proof. For g.h € Wg,

{a} +e{e})i" ™ a(@)(({e) + hia})g", a(h)
{e} +ef{ab)i" ™ +
)i +

((

(( (a(g)({ei} +h{e )" a(g)a(h)
(({ei} +gleh)i™

((

((

v(g)v(h)

0(a(
i1 A(g)({e} + hie})ii ", a(gh))
{a} +e{e})"™ + (g{a} + gh{e})2" ", a(gh))
{e:} + gh{e: )", a(gh))
7(gh).

This shows that ~ is a group homomorphism. Since each g € Ker~ fixes the spanning set
{{er}, {e2}, s {emni1}} U{R(s) | s € S} of the edge space R of ', g is the identity
map on R. Hence Ker+y is trivial. [
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By Lemma , Wp, is isomorphic to the image of Wg under ~. Fortunately the
structure of v(Wg) is knowable. In Lemma we define B, = {G € B | ||G]] is even}.
Note that dim B, = n — 2. Let B~ "*! denote the subgroup

m—n+1
D 5.
i=1
of the additive group B™ "1 where B.; (1 <i < m —n+1) is the subspace of B; as B..
Theorem 5.6.5. The edge-flipping group W g of I' is isomorphic to
Bt sy, S, if m is odd,
Bt sy S, if n is even,
provided n > 3.
Proof. 1t suffices to show that for any a-€'S,,, there exists'g € Wg such that
1(g) =(0)i=",9), (5.13)
and that for each 1 <4 <'m — n+1-and for each

Ge B; if n is odd,
B, ; it n is even

there exists h € Wpx such that
y(h) = (000050, G500 0ya(h)), (5.14)

where G is in the ith coordinate: By Lemma 5.3.3 there exists g € Wpr such that
5.4.3

a(g) = 0. Such g satisfies () By Lemma there‘exists h € Wg pug,y such that
h{e;} = {e;} + G. Such h satisfies (@) The result-follows. O

Let Z is the additive group of integers. Since dim B =n — 1 and dim B, = n — 2 the
additive groups B and B, are isomorphic to (Z/2Z)""! and (Z/27Z)" 2.

Example 5.6.6. Assume that I' is a cycle of n > 3 vertices. Then the edge-flipping group
W of I is isomorphic to

(Z)27)" ' % S, if n is odd,
(Z)2Z)"2 % S, if n is even

by Theorem .

We now show that there is a unique edge-flipping group of all finite simple connected
graphs I' = (S, R) with fixed |S| and fixed |R|, up to isomorphism.

Theorem 5.6.7. Let I' = (S,R) and I = (S, R') denote two finite simple connected
graphs with |S| = |S’| and |R| = |R'| > 1. Then the edge-flipping group of I' and the
edge-flipping group of I'' are isomorphic.
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Proof. Let Wgi and Wg denote the edge-flipping groups of I' and I”, respectively. If
|R| =1 and |R’| = 1, then I" and I" are isomorphic and so Wx and W g are isomorphic.
Now suppose |R| = |R'| > 2. Without loss of generality we assume that S’ = S. Define
R'(v), B, B., S!, and ¢ correspondingly. In view of Theorem p.6.5 it suffices to show that
B x4 S, and B! xg S, are isomorphic to B xg S and B w0 S
respectively. Fix t € S. Let u : B — B’ denote the invertible linear transformation defined
by

w(R(s)) = R'(s) for s € S\ {t}.
There exists a unique isomorphism g, : S,, — S!, such that
ps(0)(R'(s)) = p(o(R(s))) for all o € S, and s € S.
By the above two comments we can define a map ¢ : B" "1 x4 S, — B™ " x4 S’ by
(G ) = (G " s (0))

for all (G;);"tt € Bm"Yand¢ €°S,. Observe.that ¢ is bijective and that ¢ sends
B+ %5 S, to B g 8% One readily verifies that ¢ is an isomorphism. The result

follows. L
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