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從代數觀點研究亮點西格瑪遊戲

研究生: 黃皜文 指導教授: 翁志文

國立交通大學

應用數學系

摘要

亮點西格瑪遊戲是一個在有限簡圖上的單人益智遊戲。已知亮點西格瑪遊戲可視為群
作用。在這篇論文裡，我們展示此遊戲和考斯特群的關係。我們並由代數的技巧推廣一
些此遊戲已知的成果。
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Lit-only sigma-game
from the view of algebra

Student: Hau-wen Huang Advisor: Chih-wen Weng

Department of Applied Mathematics
National Chiao Tung University

Abstract
The lit-only σ-game is a one-player game played on a finite simple graph. It is known
that this game can be view as a group action. In this thesis we show how this game
is related to Coxeter groups. Moreover we use algebraic techniques to generalize some
known results on the game.
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Chapter 1

Introduction

My object of this thesis is to use algebraic techniques to study a combinatorial game
called the lit-only σ-game. The game is a one-player game played on a finite graph. Let Γ
denote a finite graph. A configuration of the lit-only σ-game on Γ is an assignment of one
of two states, on or off, to each vertex of Γ. Given a configuration, a move of the lit-only
σ-game on Γ allows the player to choose one on vertex s of Γ and change the states of all
neighbors of s. Given a starting configuration, the goal is usually to minimize the number
of on vertices of Γ or to reach an assigned configuration by a finite sequence of moves. In
the thesis, we are only concerned with the lit-only σ-game on a finite simple graph and
always assume that Γ is a finite simple graph.

The game implicitly appeared in the classification of simple Lie algebras over real
number field. See [2, 8] for details. In 2005 International and Third Cross-strait Confer-
ence on Graph Theory and Combinatorics, Gerard J. Chang’s talk “Graph Painting and
Lie Algebra” promoted the birth of this game. Later Yaokun Wu and Xinmao Wang [26]
realized this game is a variation of σ-game and named it lit-only σ-game. They also found
that the game appeared as early as 2001 in the paper [12].

As far as we know, the first result on this topic is from [2], which claimed that if Γ is
a simply-laced Dynkin diagram then given any configuration one can reduce the number
of on vertices to at most one. Some results of [8] can be viewed as a description of the
orbits of this game on simply-laced Dynkin diagrams. Gerard J. Chang, on his talk, gave
a conjecture: if Γ is a tree with ℓ leaves then for any configuration one can reduce the
number of on vertices to at most ⌈ ℓ

2
⌉. Later Yaokun Wu and Xinmao Wang [26] proved

this conjecture. Also they [26] found that a subgroup of the general linear group over the
two-element field of which the natural action can be viewed as the lit-only σ-game. Later
in the paper [29], Yaokun Wu named this group the lit-only group and proved that it is
isomorphic to the symmetric group on n letters when the underlying graph is the line
graph of a tree of order n ≥ 3. In 2007 the author independently found this group, and in
2008 the author named it the flipping group. In this dissertation we will adopt the latter
name. For the study of the difference between the lit-only σ-game and σ-game, please
refer to [14, 15, 27].

The organization of this dissertation is as follows. In Chapter 2 we show how the
flipping groups are related to the simply-laced Coxeter groups, and from the view of the
flipping groups we give an alternative description of the orbits of the game on simply-
laced Dynkin diagrams. In Chapter 3 we consider the game on an n-vertex graph with an
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Introduction

induced path of n− 1 vertices, which generalizes the study of the latter part of Chapter
2. Motivated by the first result [2], Chapter 4 is devoted to finding more trees for which
given any configuration one can reach a configuration with at most one on vertex by a
finite sequence of moves. The topic of Chapter 5 is to study the edge-version of lit-only
σ-game on Γ. We may view this variation as the lit-only σ-game on the line graph L(Γ)
of Γ. We find that the structure of the flipping group of L(Γ), which only depends on the
order and size of Γ.

2



Chapter 2

Lit-only sigma-game and
simply-laced Coxeter groups

The lit-only σ-game is a one-player game played on a finite simple graph. Let Γ denote
a finite simple graph. A configuration of the lit-only σ-game on Γ is an assignment of one
of two states, on or off, to all vertices of Γ. Given a configuration, a move of the lit-only
σ-game on Γ consisting of choosing one on vertex s of Γ and changing the states of all
neighbors of s. Given a starting configuration, the goal is usually to minimize the number
of on vertices of Γ or to reach an assigned configuration by a finite sequence of moves. In
this chapter, we show how the lit-only σ-game is related to simply-laced Coxeter groups
and study the game on simply-laced Dynkin diagrams.

2.1 The flipping group of a graph
An ordered pair Γ = (S,R) is called a finite simple graph whenever S is a finite set

and R is a set of some two-element subsets of S. The elements of S are called vertices of Γ
and the elements of R are called edges of Γ. For any s, t ∈ S we say s and t are neighbors
whenever {s, t} ∈ R. For convenience we usually write st ∈ R or ts ∈ R for {s, t} ∈ R.
We say that a finite simple graph Γ = (S,R) is connected whenever for any two distinct
vertices s, t of Γ there exists a subset {s0s1, s1s2, . . . , sk−1sk} of R with s0 = s and sk = t.

Throughout this dissertation let Γ = (S,R) denote a finite simple graph. Moreover we
assume that S is nonempty and that Γ is connected. Let F2 denote the two-element field
{0, 1}. Let MatS(F2) denote the set consisting of square matrices over F2 with rows and
columns indexed by S. Let GLS(F2) denote the group consisting of all invertible matrices
in MatS(F2). The group operation of GLS(F2) is ordinary matrix multiplication. We use
I to denote the identity in GLS(F2). Let FS

2 denote the vector space consisting of column
vectors over F2 indexed by S. For s ∈ S let es denote the characteristic vector of s in FS

2 ;
i.e. es = (0, 0, . . . , 0, 1, 0, . . . , 0)t, where 1 is in the position corresponding to s. Here at
means the transpose of a.

We interpret each configuration a of the lit-only σ-game on Γ as the vector∑
s

es (2.1)

3



Lit-only sigma-game and simply-laced Coxeter groups

of FS
2 , where the sum is over all vertices s of Γ that are assigned the on state by a; if all

vertices of Γ are assigned the off state by a, then (2.1) is interpreted as zero vector. We
may view a move of the lit-only σ-game as choosing any vertex s of Γ and changing the
states of all neighbors of s if the state of s is on.

Definition 2.1.1. For s ∈ S define a matrix κs ∈ MatS(F2) by

(κs)uv =

{
1 if u = v, or v = s and uv ∈ R,
0 else

for all u, v ∈ S.

The following is a reformulating of Definition 2.1.1.

Lemma 2.1.2. For s, v ∈ S we have

κs ev =

{
ev +

∑
uv∈R

eu if v = s,

ev if v ̸= s.

Let a ∈ FS
2 . By Lemma 2.1.2, if the state of s is on then κsa is obtained from a by

changing the states of all neighbors of s; if the state of s is off then κsa = a. Therefore
we may view κs as the move of the lit-only σ-game on Γ for which we choose the vertex
s and change the states of all neighbors of s if the state of s is on.

Lemma 2.1.3. For s ∈ S we have κ2s = I. In particular κs ∈ GLS(F2).

Proof. Use Lemma 2.1.2.

Definition 2.1.4. Let W denote the subgroup of GLS(F2) generated by κs for all s ∈ S.
We call W the flipping group of Γ.

As far as we know the flipping group of Γ was first mentioned in [26, Introduction].
Observe that for any a, b ∈ FS

2 , b is obtained from a by a finite sequence of moves
of the lit-only σ-game on Γ if and only if b = Ga for some G ∈ W. We now define the
W-orbits of FS

2 , which are exactly the orbits of the lit-only σ-game on Γ.

Definition 2.1.5. Let a ∈ FS
2 . By the W-orbit of a we mean the set Wa = {Ga |G ∈ W}.

By a W-orbit of FS
2 we mean a W-orbit of a for some a ∈ FS

2 .

We finish this section with a property about the flipping group W of Γ. To see this
we establish a lemma.

Lemma 2.1.6. For s ∈ S define Es ∈ MatS(F2) by

Es ev =

{
0 if v ̸= s,∑
uv∈R

eu if v = s. (2.2)

for all v ∈ S. Then the following (i)–(iii) hold.

(i) κs = I + Es for all s ∈ S.

4



2.2. A representation of the Coxeter group of type Γ

(ii) EsEt = 0 if st /∈ R.

(iii) If sisi−1 ∈ R for i = 1, 2, . . . , k then

EskEsk−1
· · ·Es0 =

{
Es0 if sk = s0,
EskEs0 if sks0 ∈ R.

Proof. (i) is immediate from Lemma 2.1.2. Using (2.2) we find EsEt ev = 0 for any
v, s, t ∈ S with st ̸∈ R. Hence we have (ii). (iii) follows from the same reason as in (ii)
by applying the product of matrices in either side of the equation to ev and obtaining the
desired equality in each case.

Proposition 2.1.7. For s, t ∈ S we have (κsκt)
2 = I if st ̸∈ R and (κsκt)

3 = I if st ∈ R.

Proof. By Lemma 2.1.6(i)

κsκt = (I + Es)(I + Et)

= I + Es + Et + EsEt.

In the case s ̸= t and st ̸∈ R,

(κsκt)
2 = (I + Es + Et)(I + Es + Et)

= I + 2Es + 2Et

= I

by Lemma 2.1.6(ii). In the case st ∈ R,

(κsκt)
2 = (I + Es + Et + EsEt)(I + Es + Et + EsEt)

= I + 3Es + 3Et + 4EsEt + EtEs

= I + Es + Et + EtEs

and

(κsκt)
3 = (κsκt)

2(κsκt)

= (I + Es + Et + EtEs)(I + Es + Et + EsEt)

= I + 2Es + 4Et + 2EsEt + 2EtEs

= I

by Lemma 2.1.6(iii).

2.2 A representation of the Coxeter group of type Γ

A Coxeter group is a group generated by a set T subject to relations of the form

(st)m(s,t) = 1 for all s, t ∈ T ,

where m(s, s) = 1 and m(s, t) = m(t, s) ∈ {2, 3, . . . ,∞} for s ̸= t in T. If m(s, t) ∈ {2, 3}
for all s ̸= t in T, the Coxeter group is said to be simply-laced. Proposition 2.1.7 motivates
us to consider a certain (simply-laced) Coxeter group as follows.

5



Lit-only sigma-game and simply-laced Coxeter groups

Definition 2.2.1. Let W denote the group generated by all elements of S subject to the
following relations

s2 = 1, (st)2 = 1 if st ̸∈ R, (st)3 = 1 if st ∈ R

for all s, t ∈ S. We call W the (simply-laced) Coxeter group of type Γ.

We now establish a connection between the Coxeter group of type Γ and the lit-only
σ-game on Γ.

Theorem 2.2.2. There exists a unique representation κ : W → GLS(F2) such that
κ(s) = κs for all s ∈ S. In particular κ(W ) = W.

Proof. Immediate from Proposition 2.1.7 and Definition 2.2.1.

For the rest of this dissertation let κ denote as in Theorem 2.2.2.
For the rest of this chapter we shall give a new description of W-orbits of FS

2 when Γ
is a simply-laced Dynkin diagram, which is different than the description from [8].

An(n ≥ 1) c c c q q q c c c
sn sn−1 sn−2 s3 s2 s1

Dn(n ≥ 4) c
c c c q q q c c c
""

bb

sn−1

sn

sn−2 sn−3 s3 s2 s1

E6 c c c c c
c

s5 s4 s3 s2 s1

s6

E7 c c c c c
c

c
s6 s5 s4 s3 s2

s7

s1

E8 c c c c c
c

c c
s7 s6 s5 s4 s3

s8

s2 s1

Figure 1.1: simply-laced Dynkin diagrams.

2.3 The center of the flipping group W of type Γ

Proposition 2.3.1. Let Z(W) denote the center of W. Then Z(W) = {I}.

Proof. Let G denote any element in Z(W) and let u, v denote two distinct elements
in S. We show that the (v, u)-entry Gvu of G is zero to conclude G = I. Proceed by
contradiction. Suppose Gvu = 1. On the one hand κvGeu ̸= Geu since Geu has 1 in the
vth position. On the other hand, κvGeu = Gκv eu = Geu since κv eu = eu. Hence we have
a contradiction.

6



2.4. Lit-only σ-game on the Dynkin diagram of type An

Corollary 2.3.2. Let Z(W ) denote the center of W. Then Z(W ) is contained in the
kernel of κ.

Proof. Immediate from Proposition 2.3.1.

Since the generator s ∈ S have order 2 in W, each w ̸= 1 in W can be written in
the form w = s1s2 · · · sr for some si in S. If r is as small as possible, call it the length
of w. If W has finite order, it is well-known that there exists a unique longest element
in W (for example see [21, p. 115]). We shall denote this by w◦. It is well-known that
Z(W ) = {1, w◦} or {1} (for example see [21, p. 132]).

2.4 Lit-only σ-game on the Dynkin diagram of type
An

In this section we assume that Γ is the (simply-laced) Dynkin diagram of type An

(n ≥ 1). The goal of this section is to show Kerκ = Z(W ) and to determine when κ is
irreducible. We also find a description of the W-orbits of FS

2 . We start with the smallest
case n = 1.

Proposition 2.4.1. Assume n = 1. Then the following (i)–(iii) hold.

(i) The W-orbits of FS
2 are {0}, {1}.

(ii) Kerκ and Z(W ) are equal to {1, w◦}.

(iii) The representation κ is irreducible.

Proof. In this case W = {1, s1} and W = {I}. By these (i)–(iii) follow.

For the rest of this section we assume n ≥ 2. Let

1 = es1 , i+ 1 = κsiκsi−1
· · ·κs11 (1 ≤ i ≤ n). (2.3)

Note that

i = esi−1
+ esi (2 ≤ i ≤ n), (2.4)

n+ 1 = esn = 1 + 2 + · · ·+ n. (2.5)

Let ∆ = ∆(An) := {1, 2, . . . , n}. Using (2.4) we find that ∆ is a basis of FS
2 . We refer

∆ to the simple basis of FS
2 . For a ∈ FS

2 , let ∆(a) denote the subset of ∆ consisting of
all the elements appeared in the expression of a as a linear combination of elements in
∆. For a ∈ FS

2 let ||a||s := |∆(a)| and we call ||a||s the simple weight of a. For example
∆(n+ 1) = ∆ and ||n+ 1||s = n.

Lemma 2.4.2. For 1 ≤ i ≤ n, κsii = i+ 1, κsii+ 1 = i and κsi fixes other vectors in {1,
2, . . . , n+ 1} \ {i, i+ 1}.

Proof. Use Lemma 2.1.2, (2.3), (2.4) to check.

For the rest of this section let Sn+1 denote the symmetric group on {1, 2, . . . , n+ 1}.
By Lemma 2.4.2 we may make the following definition.

7



Lit-only sigma-game and simply-laced Coxeter groups

Definition 2.4.3. Let α : W → Sn+1 denote the homomorphism defined by

α(G)j := Gj (1 ≤ j ≤ n+ 1)

for G ∈ W.

Note that α(κsi) is the transposition (i, i+ 1) in Sn+1 for each 1 ≤ i ≤ n.

Lemma 2.4.4. α is an isomorphism from W to Sn+1.

Proof. α is surjective since the transpositions α(κs1), α(κs2),. . ., α(κsn) generate Sn+1.
Since ∆ ∪ {n+ 1} spans FS

2 , α is injective. The result follows.

Proposition 2.4.5. The W-orbits of FS
2 are

Oi = {a ∈ FS
2 | ||a||s = i or n+ 1− i} (0 ≤ i ≤ ⌊n+1

2
⌋),

where ⌊t⌋ is the largest integer less than or equal to t.

Proof. Suppose a ∈ FS
2 with ||a||s = i. Observe that from Lemma 2.4.4 and (2.5),

∆(Ga) =

{
α(G)∆(a) if n+ 1 ̸∈ α(G)∆(a),
∆ \ α(G)∆(a) if n+ 1 ∈ α(G)∆(a)

for G ∈ W. The proposition follows from this observation because the subgroup of
α(W) = Sn+1 generated by the transpositions α(κs1), α(κs2),. . ., α(κsn−1) acts transi-
tively on the fixed size subsets of ∆, and κsnn = 1 + 2 + · · · + n by Lemma 2.4.2 and
(2.5).

Proposition 2.4.6. The representation κ is irreducible if and only if n is even.

Proof. Let V denote a nontrivial proper subspace of FS
2 such that κ(W )V ⊆ V . Referring

to Proposition 2.4.5, note that
V =

∪
i∈J

Oi (2.6)

for some proper subset J ⊆ {0, 1, . . . , ⌊n+1
2
⌋} with J ̸= {0}. Note that the set in the

right-hand side of (2.6) to be closed under addition is when it is the set of even weight
vectors, and this occurs if and only if n is odd.

Proposition 2.4.7. The representation κ is faithful.

Proof. Immediate from Lemma 2.4.4 and the fact that W is isomorphic to Sn+1 (for
example see [21, p. 41]).

Proposition 2.4.8. Kerκ = Z(W ) is the trivial group.

Proof. By Proposition 2.4.7 Kerκ = {1}. By this and Corollary 2.3.2 Kerκ = Z(W ). The
result follows.

8



2.5. Lit-only σ-game on the Dynkin diagram of type Dn

2.5 Lit-only σ-game on the Dynkin diagram of type
Dn

In this section we assume that Γ is the (simply-laced) Dynkin diagram of type Dn

(n ≥ 4). We shall do the same things as Section 2.4 for this case.
Let

1 = es1 , i+ 1 = κsiκsi−1
· · ·κs11 (1 ≤ i ≤ n− 1), n+ 1 = esn . (2.7)

Note that

i = esi−1
+ esi (2 ≤ i ≤ n− 2), (2.8)

n− 1 = esn−2 + esn−1 + esn , (2.9)
n = esn−1 + esn = 1 + 2 + · · ·+ n− 1. (2.10)

Set ∆ = ∆(Dn) := {1, 2, . . . , n− 1, n+ 1} to be the simple basis of FS
2 (in the case of

type Dn). For a ∈ FS
2 set ∆(a) and ||a||s as Section 2.4. For example ∆(n) = ∆ \ {n+ 1}

by (2.10), and ||n||s = n− 1.

Lemma 2.5.1. The following (i), (ii) hold.

(i) For 1 ≤ i ≤ n− 1, κsii = i+ 1, κsii+ 1 = i, and

κsij = j for j ∈ {1, 2, . . . , n+ 1} \ {i, i+ 1}.

(ii) κsnn− 1 = n, κsnn = n− 1, κsnn+ 1 = n− 1 + n+ n+ 1, and

κsnj = j for j ∈ {1, 2, . . . , n− 2}.

In particular n+ 1 ∈ ∆(Gn+ 1) and G({1, 2, . . . , n}) ⊆ {1, 2, . . . , n} for all G ∈ W.

Proof. Use Lemma 2.1.2, (2.7)–(2.9) to check.

For the rest of this section let Sn denote the group of permutations on {1, 2, . . . , n}.
By Lemma 2.5.1 we may make the following definition.

Definition 2.5.2. Let β : W → Sn denote the homomorphism defined by

β(G)(j) = Gj (1 ≤ j ≤ n)

for G ∈ W.

Lemma 2.5.3. β : W → Sn is an epimorphism.

Proof. It follows that the n−1 transpositions β(κs1), β(κs2), . . . , β(κsn−1) generate Sn.

Let O denote a subset of FS
2 . We say that O is closed under W whenever WO ⊆ O.

Proposition 2.5.4. Let Z denote the subspace of FS
2 spanned by the set {1, 2, . . . , n− 1}.

Then Z is closed under W.

9
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Proof. Note that a ∈ Z if and only if n+ 1 ̸∈ ∆(a) for a ∈ FS
2 . By Lemma 2.5.1 and

(2.10), Z is closed under W.

Corollary 2.5.5. The representation κ is not irreducible.

Proof. Immediate from Proposition 2.5.4

For the rest of this section let Z denote as in Proposition 2.5.4. By Proposition 2.5.4,
Z is a disjoint union of some W-orbits of FS

2 . It follows that FS
2 \ Z is also a disjoint

union of some W-orbits of FS
2 . To find the W-orbits of FS

2 , we may divide this into the
two cases: (i) the W-orbits of FS

2 in Z; (ii) the W-orbits of FS
2 in FS

2 \ Z.

Proposition 2.5.6. The W-orbits of FS
2 are

Oi = {a ∈ Z | ||a||s = i or n− i} (0 ≤ i ≤ ⌊n
2
⌋),

Ωo = {a ∈ FS
2 \ Z | ||a||s ≡ 1 or n− 1 (mod 2)},

Ωe = {a ∈ FS
2 \ Z | ||a||s ≡ 0 or n (mod 2)}.

In particular Ωo = Ωe = FS
2 \ Z when n is odd.

Proof. The proof is similar to the proof of Proposition 2.4.5. The reason that Oi is a W-
orbit of FS

2 follows from two facts: (i) β(κs1), β(κs2), . . . , β(κsn−2) generate the subgroup
Sn−1 of Sn consisting of permutations on ∆ \ {n+ 1} and Sn−1 acts transitively on fixed
size subsets of ∆ \ {n+ 1}; (ii)

κsn−1n− 1 = κsnn− 1 = n = 1 + 2 + · · ·+ n− 1

by Lemma 2.5.1(i), (ii) and (2.10). The reason that Ωo and Ωe are orbits follows from an
additional fact that ||κsnn+ 1||s = ||1 + 2 + · · ·+ n− 2 + n+ 1||s = n− 1.

From now on we view Z as an additive group. Let Aut(Z) denote the group consisting
of all automorphisms of Z. We now study the structure of W.

Definition 2.5.7. Let γ : W → Aut(Z) denote the homomorphism defined by

γ(G)(u) = Gu

for u ∈ Z and G ∈ W.

Lemma 2.5.8. There exists a unique homomorphism θ : Sn → Aut(Z) such that γ = θ◦β.

Proof. Since β is surjective, it suffices to show that the kernel of β is contained in the
kernel of γ. Suppose G ∈ Kerβ. Then Gi = i for 1 ≤ i ≤ n. It follows that G fixes each
element of Z. Therefore G ∈ Kerγ. The result follows.

In view of Lemma 2.5.8 we can define the (external) semidirect product of Z and Sn

with respect to θ (for example see [23, p.155]). We denote this group by Z oθ Sn. This
group is the set Z × Sn with the group operation defined by

(u, σ)(v, κ) = (u+ θ(σ)(v), σκ),

where u, v ∈ Z and σ, κ ∈ Sn. Note that n+ 1 +Gn+ 1 ∈ Z for any G ∈ W by Lemma
2.5.1. By the above comment we can define a map as follows.

10



2.6. Lit-only σ-game on Γ and its induced subgraph

Definition 2.5.9. Let δ : W → Z oθ Sn denote the map defined by

δ(G) = (n+ 1 +Gn+ 1, β(G))

for G ∈ W.

Lemma 2.5.10. The map δ : W → Z oθ Sn is a group monomorphism.

Proof. For G,H ∈ W,

δ(G)δ(H) = (n+ 1 +Gn+ 1, β(G))(n+ 1 +Hn+ 1, β(H))

= (n+ 1 +Gn+ 1 + θ(β(G))(n+ 1 +Hn+ 1), β(G)β(H))

= (n+ 1 +Gn+ 1 +G(n+ 1 +Hn+ 1), β(G)β(H))

= (n+ 1 +GHn+ 1, β(GH))

= δ(GH).

This shows that δ is a homomorphism. Let G ∈ Kerδ. Since Gn+ 1 = n+ 1 and G ∈
Kerβ, G fixes all vectors in ∆ and so G = I. This shows that δ is injective. The result
follows.

Note that Z = n+ 1+Ωo if n is odd, and Z = (n+ 1+Ωo)∪ (n+ 1+Ωe) if n is even.

Lemma 2.5.11. δ(W) = (n+ 1+Ωo)oθ Sn. Moreover δ(W) = Z oθ Sn if n is odd, and
δ(W) has index 2 in Z oθ Sn if n is even.

Proof. Note that δ(κs1), δ(κs2), . . . , δ(κsn−1) generate {0} oθ Sn. By this and since Ωo is
an orbit containing n+ 1, it follows that δ(W) = (n+ 1 + Ωo) oθ Sn. The second part
follows from Proposition 2.5.6.

Proposition 2.5.12. The representation κ is faithful when n is odd; Kerκ has order 2
when n is even. Moreover Kerκ = Z(W ).

Proof. Note that W is isomorphic to the semidirect product Z o Sn of Z and Sn (for
example see [21, p.42]). By Lemma 2.5.11, κ is faithful when n is odd, and Kerκ has
order 2 when n is even. From Corollary 2.3.2, Z(W ) ⊆ Kerκ, and from the fact that a
normal subgroup of order 2 is contained in the center, we have Kerκ ⊆ Z(W ).

2.6 Lit-only σ-game on Γ and its induced subgraph
To help us study Kerκ in the case E8, we now discuss some relations between the

lit-only σ-game on Γ and an induced subgraph of Γ.
Let J ⊆ S. Let WJ denote the subgroup of W generated by the κs for all s ∈ J. Let

WJ denote the subgroup of W generated by s ∈ J. It is well known that WJ is isomorphic
to the Coxeter group of type Γ[J ] (For example see [21, Section 5.5]). Therefore we will
use the same symbol WJ to express these two isomorphic groups. For G ∈ MatS(F2) let
G[J ] denote the submatrix of G with rows and columns indexed by J.

Lemma 2.6.1. Let the notation be as above. Let Γ[J ] denote the subgraph of Γ induced by
J. Let WJ [J ] denote the set of those G[J ] ∈ GLJ(F2) where G ∈ WJ . Then the following
(i), (ii) hold.

11
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(i) WJ [J ] is the flipping group of Γ[J ].

(ii) The map ψ : WJ → WJ [J ] defined by

ψ(G) = G[J ] for G ∈ WJ

is a surjective homomorphism.

Proof. By Definition 2.1.1, (κs)uv = 0 for s, u ∈ J and v ∈ S \ J . By this, each matrix
G ∈ WJ has the form

G =

(
A 0
B C

)
if indices in J are placed in the beginning of rows and columns, where A is a |J | × |J |
matrix, B is an (n − |J |) × |J | matrix, C is an (n − |J |) × (n − |J |) matrix, and 0 is a
|J | × (n− |J |) zero matrix. Then (i), (ii) follows from the following matrix product rule
in block form: (

A 0
B C

)(
A′ 0
B′ C ′

)
=

(
AA′ 0

BA′ + CB′ CC ′

)
.

By Theorem 2.2.2 there exists a unique representation κ′ : WJ → GLJ(F2) such that
κ′(s) = κs[J ] for all s ∈ J.

Lemma 2.6.2. Let the notation be as above. Then the following (i), (ii) hold.

(i) κ′ = ψ ◦ κ � WJ .

(ii) Kerκ � WJ ⊆ Kerκ′.

Proof. Since (ψ ◦ κ)(s) = κs[J ] = κ′(s) for all s ∈ J , it follows that κ′ = ψ ◦ κ � WJ . This
shows (i). (ii) immediate from Lemma 2.6.1(i) and (i).

2.7 Lit-only σ-game on the Dynkin diagram of type
En

In this section we assume that Γ is the graph in Figure 1.2. We shall give a description
of W-orbits of FS

2 . Restricting to the case n = 6, 7, 8, we shall show that Kerκ = Z(W ).

En(n ≥ 6) c c c c c
c

q q q c c c
sn−1 sn−2 sn−3 sn−4 sn−5

sn

s3 s2 s1

Figure 1.2: a finite simple graph En

Let 1 = es1 , i+ 1 = κsiκsi−1
· · ·κs11 for 1 ≤ i ≤ n− 1 and n+ 1 = esn . Note that

i = esi + esi−1
(2 ≤ i ≤ n− 3),

n− 2 = esn−3 + esn−2 + esn , (2.11)
n− 1 = esn−2 + esn−1 + esn ,

n = esn−1 + esn .
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2.7. Lit-only σ-game on the Dynkin diagram of type En

Set ∆ = ∆(En) := {1, 2, . . . , n} to be the simple basis of FS
2 in this case. Observe that

n+ 1 = 1 + 2 + · · ·+ n. (2.12)

Set ∆(a) and ||a||s = |∆(a)| as before for a ∈ FS
2 . For example ∆(n+ 1) = ∆ and

||n+ 1||s = n.

Lemma 2.7.1. The following (i), (ii) hold.

(i) For each 1 ≤ i ≤ n− 1, κsii = i+ 1, κsii+ 1 = i, and

κsij = j for j ∈ {1, 2, . . . , n+ 1} \ {i, i+ 1}.

(ii) κsnn+ 1 = n− 2 + n− 1 + n, κsnn = n− 2 + n− 1 + n+ 1, κsnn− 1 = n− 2 +
n+ n+ 1, κsnn− 2 = n− 1 + n+ n+ 1 and

κsnj = j for 1 ≤ j ≤ n− 3.

Proof. Use Lemma 2.1.2 and (2.11) to check.

For the rest of this section, let Sn denote the group of permutations on ∆ = {1, 2, . . . , n}
and let

T := {s1, s2, . . . , sn−1}.

Recall that WT is the subgroup of W generated by {κs | s ∈ T}. In view of Lemma 2.7.1
we may make a definition.

Definition 2.7.2. Let ϵ : WT → Sn denote the homomorphism defined by

ϵ(G)(j) = Gj (1 ≤ j ≤ n)

for G ∈ WT .

Lemma 2.7.3. ϵ : WT → Sn is an isomorphism.

Proof. It follows from that ∆ is a spanning set and that the n− 1 transpositions ϵ(κs1),
ϵ(κs2), . . . , ϵ(κsn−1) generate Sn.

Proposition 2.7.4. The W-orbits of FS
2 are

O0 = {0},
O1 = {a ∈ FS

2 | a ̸= 0, ||a||s ≡ 1 or n− 2 (mod 4)}, (2.13)
O2 = {a ∈ FS

2 | a ̸= 0, ||a||s ≡ 2 or n− 3 (mod 4)},
O3 = {a ∈ FS

2 | a ̸= 0, ||a||s ≡ 3 or n (mod 4)},
O4 = {a ∈ FS

2 | a ̸= 0, ||a||s ≡ 0 or n− 1 (mod 4)}.

In particular O1 = O3 when n ≡ 1 (mod 4), O1 = O4 and O2 = O3 when n ≡ 2 (mod 4),
O2 = O4 when n ≡ 3 (mod 4), and O1 = O2 and O3 = O4 when n ≡ 0 (mod 4).
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Proof. It is clear that O0 is a W-orbit of FS
2 . There are four cases to put nonzero vectors

a, b in an orbit. (a) ||a||s = ||b||s : this is because ϵ(WT ) = Sn acts transitively on the
fixed size subsets of ∆; (b) ||b||s = n+3− ||a||s or n− 1− ||a||s : this is from (a) and the
observation that

κsn||a||s =


n+ 3− ||a||s if |∆(a) ∩ {n, n− 1, n− 2}| = 3,
n− 1− ||a||s if |∆(a) ∩ {n, n− 1, n− 2}| = 1,
w(a) else

(2.14)

by Lemma 2.7.1(ii) and (2.12); (c) ||a||s = ||b||s − 4 : this is by applying the first case
of (2.14) and then applying the second case of (2.14); and (d) ||a||s = ||b||s + 4 : this is
by applying the second case of (2.14) and then the first case of (2.14). The proposition
follows from the above cases (a)–(d).

For the rest of this section let Oi (0 ≤ i ≤ 4) denote the sets from Proposition 2.7.4.

Proposition 2.7.5. The representation κ is irreducible if and only if n is even.

Proof. Immediate from Proposition 2.7.4.

Corollary 2.7.6. We have

|O1| =


2n−1 − (−1)

n
4 2

n−2
2 if n ≡ 0 (mod 4),

2n−1 if n ≡ 1 (mod 4),

2n−1 + (−1)
n−2
4 2

n−2
2 − 1 if n ≡ 2 (mod 4),

2n−2 + (−1)
n−3
4 2

n−3
2 if n ≡ 3 (mod 4).

(2.15)

Proof. By (2.13) we have

|O1| =



∑
k≡1,2( mod 4)

1≤k≤n

(
n
k

)
if n ≡ 0 (mod 4),∑

k≡1( mod 2)
1≤k≤n

(
n
k

)
if n ≡ 1 (mod 4),∑

k≡0,1( mod 4)
1≤k≤n

(
n
k

)
if n ≡ 2 (mod 4),∑

k≡1( mod 4)
1≤k≤n

(
n
k

)
if n ≡ 3 (mod 4),

where
(
n
k

)
is the binomial coefficient. From this we routinely prove (2.15) by induction on

n.

Let a ∈ FS
2 . Recall that the isotropy group of a in W is {G ∈ W | Ga = a}. By the

elementary knowledge of group theory, the cardinality of the W-orbit of a is equal to the
index of the isotropy group of a in W. For the rest of this section let

J := {s2, s3, . . . , sn}.

Observe that WJ is a subgroup of the isotropy group of es1 in W and that the W-orbit
of es1 is O1. Therefore |WJ ||O1| divides |W|.

Proposition 2.7.7. Assume Γ is the Dynkin diagram of type E6. Then Kerκ = Z(W ).
Moreover κ is faithful.
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2.7. Lit-only σ-game on the Dynkin diagram of type En

Proof. By Corollary 2.7.6 we have |O1| = 27. By Lemma 2.6.2(ii) and Proposition 2.5.12
(the case D5), we know |WJ | = 245!. Since |WJ ||O1| divides |W| we have |W| ≥ 27345.
By this and since |W | = 27345 (for example see [21, p.44]), W is isomorphic to W and so
Kerκ is trivial. By this and Corollary 2.3.2, Z(W ) is trivial.

In order to show Kerκ = Z(W ) in the cases E7 and E8, we cite [6, Lemma 10.2.11].
Lemma 2.7.8. ([6, Lemma 10.2.11]). Assume that Γ is one of simply-laced Dynkin
diagram of type E7 or E8. Then Z(W ) = {1, w◦}.
Proposition 2.7.9. Assume Γ is the Dynkin diagram of type E7. Then Kerκ = Z(W ).
Moreover Kerκ = {1, w◦}.
Proof. By Corollary 2.3.2 and Lemma 2.7.8, |Kerκ| ≥ 2. By this and since |W | = 210345·7
(for example see [21, p.44]) we have |W| ≤ 29345 ·7. By Corollary 2.7.6 we have |O1| = 28
and by Proposition 2.7.7 we have |WJ | = 27345. Since |WJ ||O1| divides |W| it follows
that |W| ≥ 29345 · 7. Therefore |W| = 29345 · 7 and this forces |Z(W )| = |Kerκ| = 2.

For the rest of this section we assume that Γ is the Dynkin diagram of type E8. Let
u◦ denote the longest element of WJ .

Lemma 2.7.10. κ(u◦)8 = 1 + 8.

Proof. By Lemma 2.7.8, u◦ ∈ Z(WJ). Note that T ∩ J = {s2, s3, . . . , s7}, and that κ �
WT∩J is an isomorphism of WT∩J onto WT∩J by Lemma 2.6.2(ii) and Proposition 2.4.7.
Also ϵ � WT∩J : WT∩J → S7 is an isomorphism , where ϵ is from Definition 2.7.2 and S7

is the group of permutations on {2, 3, . . . , 8}. Let
u′◦ = κ−1(ϵ−1((2, 8, 3, 7, 4, 6, 5)))s8κ

−1(ϵ−1((5, 8)(4, 7)(3, 6)))s8

κ−1(ϵ−1((4, 8)(3, 7)(2, 6)))s8κ
−1(ϵ−1((5, 8)(4, 7)))s8

κ−1(ϵ−1((3, 7)(2, 6)))s8.

It is routine to check that the above u′◦ maps to −I by the faithful representation defined
in [11, p. 291] to conclude u′◦ = u◦. Therefore κ(u◦) equals

ϵ−1((2, 8, 3, 7, 4, 6, 5))κs8ϵ
−1((5, 8)(4, 7)(3, 6))κs8ϵ

−1((4, 8)(3, 7)(2, 6))κs8
ϵ−1((5, 8)(4, 7))κs8ϵ

−1((3, 7)(2, 6))κs8 .
(2.16)

Applying (2.16) to 8 and using Lemma 2.7.1 and (2.12) for n = 8, the result follows.
Lemma 2.7.11. The restriction κ � WJ of κ to J is injective.
Proof. Let κ′ denote the corresponding representation from WJ into GLJ(F2). From
Lemma 2.6.2(ii) and Proposition 2.7.7, we see that Kerκ � WJ ⊆ Kerκ′ = {1, u◦}.
By Lemma 2.7.10, u◦ is not in Kerκ � WJ . Therefore Kerκ � WJ is trivial and the result
follows.

We now can show Kerκ = Z(W ) in the case E8.

Proposition 2.7.12. Assume that Γ is the Dynkin diagram of type E8 then Kerκ = Z(W ).
Moreover Kerκ = {1, w◦}.
Proof. We have |O1| = 23 · 3 · 5 from Corollary 2.7.6 and |WJ | = |WJ | = 210345 · 7
from Lemma 2.7.11. Note that |W | = 21435527 (for example see [21, p.44]). It follows
that |Kerκ| = 2. By Corollary 2.3.2 and Lemma 2.7.8, Kerκ and Z(W ) are equal to
{1, w◦}.
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2.8 Summary
We now summarize the main results of this chapter.

Theorem 2.8.1. Let Γ denote a finite simple graph. Let W denote the Coxeter group of
type Γ. Let κ : W → GLS(F2) denote the representation from Theorem 2.2.2. Then the
following (i), (ii) are equivalent.

(i) Kerκ = Z(W ).

(ii) Γ is a simply-laced Dynkin diagram.

Proof. (i) ⇒ (ii): Recall that Z(W ) has finite order, from below Corollary 2.3.2. By
this and since W/Z(W ) ∼= W is finite, W has finite order. It is well-known that Γ is a
simply-laced Dynkin diagram if and only if the Coxeter group W of type Γ is finite, for
example see [21, p. 133]. Therefore (ii) follows.

(ii) ⇒ (i): Immediate from Propositions 2.4.1, 2.4.8, 2.5.12, 2.7.7, 2.7.9, 2.7.12.

Remark 2.8.2. Theorem 2.8.1 is probably known to some experts on Lie algebras [3, 4,
5, 22].

simply-laced Dynkin diagrams reducibility of κ Kerκ

An (n ≥ 1) κ is irr. iff n = 1 or n is even.
{

{1, w◦} if n = 1,
{1} else.

Dn (n ≥ 4) κ is not irr.
{

{1, w◦} if n is even,
{1} else.

E6 κ is irr. {1}

E7 κ is not irr. {1, w◦}

E8 κ is irr. {1, w◦}

Table 1: the reducibility and the kernel of κ.
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2.8. Summary

Γ W-orbits of FS
2

An (n ≥ 1) Oi = {a ∈ FS
2 | ||a||s = i or n+ 1− i} (0 ≤ i ≤ ⌊n+1

2 ⌋).

Dn (n ≥ 4)

Oi = {a ∈ Z | ||a||s = i or n− i} (0 ≤ i ≤ ⌊n2 ⌋),
Ωo = {a ∈ FS

2 \ Z | ||a||s ≡ 1 or n− 1 (mod 2)},
Ωe = {a ∈ FS

2 \ Z | ||a||s ≡ 0 or n (mod 2)},
Ωo = Ωe = FS

2 \ Z when n is odd.

En (n ≥ 6)

O0 = {0},
O1 = {a ∈ FS

2 | a ̸= 0, ||a||s ≡ 1 or n− 2 (mod 4)},
O2 = {a ∈ FS

2 | a ̸= 0, ||a||s ≡ 2 or n− 3 (mod 4)},
O3 = {a ∈ FS

2 | a ̸= 0, ||a||s ≡ 3 or n (mod 4)},
O4 = {a ∈ FS

2 | a ̸= 0, ||a||s ≡ 0 or n− 1 (mod 4)}.
O1 = O3 when n ≡ 1 (mod 4),
O1 = O4 and O2 = O3 when n ≡ 2 (mod 4),
O2 = O4 when n ≡ 3 (mod 4),
O1 = O2 and O3 = O4 when n ≡ 0 (mod 4).

Table 2: the W-orbits of FS
2 .
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Chapter 3

Lit-only sigma-game on a graph with
a long induced path

For a ∈ FS
2 let ||a|| denote the number of on vertices of Γ that are assigned by a, and

we call ||a|| the weight of a. For a subset O of FS
2 define ||O|| to be

min
a∈O

||a||.

Motivated by a goal of lit-only σ-game, we consider the following numbers.

Definition 3.0.3. Let k ≥ 1 denote an integer. We say that Γ is k-lit for lit-only σ-game
whenever ||O|| ≤ k for any W -orbit O of FS

2 .

Definition 3.0.4. ([26]) Let µ(Γ) denote the minimum number k such that Γ is k-lit for
lit-only σ-game. We call µ(Γ) the minimum light number for lit-only σ-game on Γ.

There are three known results about µ(Γ). If Γ is a simply-laced Dynkin diagram then
µ(Γ) = 1 (see [2] or [8]). If Γ is the graph En (n ≥ 6) shown in Figure 1.2 then one can
use Proposition 2.7.4 to check µ(Γ) = 1. If Γ is a tree with ℓ leaves X. Wang and Y. Wu
[26] prove µ(Γ) ≤ ⌈ℓ/2⌉. In this chapter we consider an extension of simply-laced Dynkin
diagrams: an n-vertex graph with an induced path of n − 1 vertices. In Chapter 2 we
studied the lit-only σ-game on a simply-laced Dynkin diagram with the help of a specific
basis for FS

2 . We extend the idea to this case. We shall find a criterion of µ(Γ) and give a
description of W-orbits of FS

2 for this case.
For the rest of this chapter we adopt the following assumption.

Assumption 3.0.5. Assume that Γ = (S,R) is a simple connected graph whose vertex
set S = {s1, s2, . . . , sn} (n ≥ 2). Suppose the sequence s1, s2, . . . , sn−1 forms an induced
path in Γ. Let j1, j2, . . . , jm (m ≥ 1) denote a subsequence of 1, 2, . . . , n − 1 such that
sj1 , sj2 , . . . , sjm are all neighbors of sn in Γ. See Figure 2.1.
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c

c c c c c c c c c

sn

sn−1 sn−2 sn−3 sjm sj2 sj1 s3 s2 s1

q q q
q q q q q q q q q q q q q q q

Figure 2.1: an n-vertex graph with an induced path of n− 1 vertices.

3.1 The sets Π, Π0 and Π1

In this chapter let

1 = es1 , i+ 1 = κsiκsi−1
· · ·κs11 (1 ≤ i ≤ n− 1), n+ 1 = esn . (3.1)

Let

Π = {1, 2, . . . , n}, (3.2)
Π0 = {i ∈ Π | itn+ 1 = 0}, (3.3)
Π1 = Π \ Π0. (3.4)

For convenience let es0 = 0. From (3.1) and the construction,

Π0 = {i | i = esi−1
+ esi , 1 ≤ i ≤ n− 1 or i = esn−1},

Π1 = {i | i = esi−1
+ esi + esn , 1 ≤ i ≤ n− 1 or i = esn−1 + esn}.

Note that 1 ≤ |Π0|, |Π1| ≤ n − 1 and |Π0| + |Π1| = n. For convenience let jm+1 = n and
jm+2 = n. Observe that

Π0 = {i ∈ Π | i ∈ (0, j1] ∪ (j2, j3] ∪ · · · ∪ (j2k, j2k+1]}, (3.5)
Π1 = {i ∈ Π | i ∈ (j1, j2] ∪ (j3, j4] ∪ · · · ∪ (j2k−1, j2k]}, (3.6)

where k = ⌈m
2
⌉ and (a, b] = {x | x ∈ Z, a < x ≤ b}. We now establish some lemmas for

later use.

Proposition 3.1.1.

|Π1| =
⌈m

2
⌉∑

k=1

j2k − j2k−1.

Proof. Immediate from (3.6).

For the rest of this chapter let

[i] := {1, 2, . . . , i} for i = 1, 2, . . . , n.
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3.1. The sets Π, Π0 and Π1

Lemma 3.1.2. For 1 ≤ i ≤ n− 1 we have

1 + 2 + · · ·+ i =

{
esi + esn if |[i] ∩ Π1| is odd,
esi if |[i] ∩ Π1| is even,

and
1 + 2 + · · ·+ n =

{
esn if |Π1| is odd,
0 if |Π1| is even.

Proof. Use (3.1).

Lemma 3.1.3.
∑
i∈Π0

i =
m∑
k=1

esjk .

Proof. Use Lemma 3.1.2 and (3.5) to verify this.

Lemma 3.1.4. κsii = i+ 1, κsii+ 1 = i and κsi fixes other vectors in Π \ {i, i+ 1} for
1 ≤ i ≤ n− 1.

Proof. Immediate from (3.1).

For the rest of this chapter let Sn denote the symmetric group on Π. From Lemma 3.1.4,
κsi acts on Π as the transposition (i, i+ 1) in Sn for 1 ≤ i ≤ n− 1.

Corollary 3.1.5. Let U denote the subspace of FS
2 spanned by the vectors in Π. Then U

is closed under W.

Proof. By Lemma 3.1.4, U is closed under the action of κs1 , κs2 , . . . , κsn−1 . For i ∈ Π we
have

κsni =


i if i ∈ Π0,

i+
∑
j∈Π0

j if i ∈ Π1

by Lemma 3.1.3. It follows that κsni lies in U. The result follows.

For the rest of this chapter let U denote the subspace of FS
2 from Corollary 3.1.5.

Proposition 3.1.6. If |Π1| is odd then Π is a basis for U ; if |Π1| is even then for any
j ∈ Π, Π \ {j} is a basis for U. Moreover esn ̸∈ U if |Π1| is even.

Proof. By Lemma 3.1.2, 1, 2, . . . , n− 1 are linearly independent and hence U has dimen-
sion at least n − 1. Since esn ̸∈ Span{1, 2, . . . , n− 1}, the proposition follows from the
second case of Lemma 3.1.2.

For the rest of this chapter let P denote the subset of S consisting of s1, s2, . . . , sn−1.
Recall that WP denotes the subgroup of W generated by κs1 , κs2 , . . . , κsn−1 .

Corollary 3.1.7. The subgroup WP of W is isomorphic to the symmetric group Sn on
Π.

Proof. Use Lemma 3.1.4, Proposition 3.1.6 and the fact Gesn = esn for G ∈ WP .
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3.2 The simple basis ∆ of FS2
To better describe the W-orbits of FS

2 we choose a specific basis of FS
2 . Let

∆ :=

{
Π if |Π1| is odd,
Π ∪ {n+ 1} \ {n} if |Π1| is even.

By Proposition 3.1.6, ∆ is a basis of FS
2 . We call ∆ the simple basis of FS

2 . For each u ∈ FS
2 ,

u can be uniquely written as a linear combination of elements in ∆, so let ∆(u) denote
the subset of ∆ such that

u =
∑

i∈∆(u)

i.

Let ||u||s := |∆(u)|. We refer to ||u||s as the simple weight of u. Note that for 1 ≤ i ≤ n−1,
the vector 1 + 2 + · · ·+ i has simple weight i but has weight

||1 + 2 + · · ·+ i|| =
{

1 if |[i] ∩ Π1| is even,
2 if |[i] ∩ Π1| is odd

by Lemma 3.1.2.
In the next two sections we shall give a description of W-orbits of FS

2 . For convenience
we adopt the following notation. For V ⊆ FS

2 and T ⊆ {0, 1, . . . , n} define

VT := {u ∈ V | ||u||s ∈ T}.

For shortness Vt1,t2,...,ti := V{t1,t2,...,ti} where t1, t2, . . . , ti ∈ {0, 1, . . . , n}. Let odd denote the
set of all odd integers among {0, 1, . . . , n}.

3.3 The case |Π1| is odd
In this section we assume |Π1| to be odd and the counter part is treated in the next

section. In this case U = FS
2 and so ∆ = {1, 2, . . . , n} is a basis of FS

2 . By Lemma 3.1.2
we have

esi =

{
1 + 2 + · · ·+ i if |[i] ∩ Π1| is even,
i+ 1 + i+ 2 + · · ·+ n if |[i] ∩ Π1| is odd, (1 ≤ i ≤ n− 1),

and
esn = 1 + 2 + · · ·+ n.

Hence we have

||esi||s =
{
i if |[i] ∩ Π1| is even,
n− i if |[i] ∩ Π1| is odd, (1 ≤ i ≤ n− 1)

and ||esn ||s = n. Therefore there exists a vector with simple weight i and weight 1 if
and only if |[i] ∩ Π1| is even, i = n or |[n− i] ∩ Π1| is odd. Let [i] := {1, 2, . . . , i} for
i = 1, 2, . . . , n. Let

K := {i ∈ [n] | |[i] ∩ Π1| is even, i = n or |[n− i] ∩ Π1| is odd}. (3.7)

By Lemma 3.1.2, ||Ui|| ≤ 2 for 1 ≤ i ≤ n. Note that

||Ui|| = 1 if and only if i ∈ K. (3.8)
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3.3. The case |Π1| is odd

Lemma 3.3.1. For u ∈ FS
2 we have

κsnu =

{
u if |∆(u) ∩ Π1| is even,
u+

∑
i∈Π0

i else.

Moreover

||κsnu||s =
{

||u||s if |∆(u) ∩ Π1| is even,
n+ 2k − |Π1| − ||u||s else,

where k = |Π1 ∩∆(u)|.

Proof. If |∆(u)∩Π1| is even then utesn = 0 and κsnu = u by construction. If |∆(u)∩Π1|
is odd, then

κsnu = u+
m∑
k=1

esjk

= u+
∑
i∈Π0

i

by Lemma 3.1.3, and ||κsnu||s = |∆(u)∩Π1|+(|Π0|− |∆(u)∩Π0|) = n+2k−|Π1|− ||u||s.
The result follows.

Lemma 3.3.2. The WP -orbits of FS
2 are {0} and Ui for 1 ≤ i ≤ n.

Proof. Immediate from Corollary 3.1.7 and ∆ = Π.

We now give a description of W-orbits of FS
2 and characterize µ(Γ) in the case 3 ≤

|Π1| ≤ n− 3.

Theorem 3.3.3. Assume that 3 ≤ |Π1| ≤ n− 3. Then the W-orbits of FS
2 are {0}, UA1 ,

UA2 , UA3 , UA4 , where

Ai := {j ∈ [n] | j ≡ i, n+ |Π1| − i (mod 4)}.

Moreover the number of W-orbits of FS
2 is 3 if n is even and 4 if n is odd.

Proof. Fix an integer 1 ≤ i ≤ n. By Lemma 3.3.2, Ui is a W-orbit of FS
2 . Note that

W is the subgroup of GLS(F2) generated by WP and κsn . By the above comments and
by Lemma 3.3.1, the union of those Ui,n+2k−|Π1|−i forms a W-orbit of FS

2 , where k runs
through possible odd integers |Π1 ∩ ∆(u)| for u ∈ Ui. In fact k is any odd number that
satisfies k ≤ |Π1| and 0 ≤ i− k ≤ |Π0|; equivalently

max{1, i+ |Π1| − n} ≤ k ≤ min{|Π1|, i}. (3.9)

Such an odd integer k exists for any 1 ≤ i ≤ n, and note that

n+ 2k − |Π1| − i ≡ n+ |Π1| − i (mod 4)

since k and |Π1| are odd integers. To see the W-orbits of FS
2 as stated in the theorem, it

remains to show that Ui,i+4 is contained in a W-orbit of FS
2 for 1 ≤ i ≤ n− 4. Set k to be

23



Lit-only sigma-game on a graph with a long induced path

the least odd integer greater than or equal to max{1, i + |Π1| − n + 2}. For this k, (3.9)
holds and then Ui,n+2k−|Π1|−i is contained in a W-orbit of FS

2 . Here we use the assumption
|Π1| ≤ n−3 to guarantee the existence of such k. Replacing (i, k) by (n+2k−|Π1|−i, k+2)
in (3.9) we have

max{1, 2k − i} ≤ k + 2 ≤ min{|Π1|, n+ 2k − |Π1| − i}. (3.10)
The above k and the assumption 3 ≤ |Π1| guarantee the equation (3.10). Since n+2(k+
2)− |Π1| − (n+ 2k − |Π1| − i) = i+ 4 we have Ui+4,n+2k−|Π1|−i is contained in a W-orbit
of FS

2 . Putting these together, Ui,i+4 is in a W-orbit of FS
2 . The result follows.

Corollary 3.3.4. Assume that 3 ≤ |Π1| ≤ n− 3. Then

µ(Γ) =

{
1 if Ai ∩K ̸= ∅ for all i,
2 else,

where K is defined as (3.7).
Proof. Use (3.8) and Theorem 3.3.3.

We now consider the cases |Π1| = 1, n− 2, n− 1.

Theorem 3.3.5. Assume that |Π1| = 1, n− 2 or n− 1. Then the W-orbits of FS
2 are {0}

and 
Ui,n+1−i if |Π1| = 1,
Uodd, U2j if |Π1| = n− 2,
U2i−1,2i if |Π1| = n− 1

for 1 ≤ i ≤ ⌈n
2
⌉ and 1 ≤ j ≤ (n− 1)/2. Moreover the number of W-orbits of FS

2 is
⌈(n+ 2)/2⌉ if |Π1| = 1,
(n+ 3)/2 if |Π1| = n− 2,
(n+ 2)/2 if |Π1| = n− 1.

Proof. As the proof in Theorem 3.3.3, Ui,n+2k−|Π1|−i is contained in a W-orbit of FS
2 , where

k needs to satisfy (3.9). In the case |Π1| = 1, k = 1 is the only possible choice and hence
Ui,n+1−i is a W-orbit of FS

2 . In the case |Π1| = n − 2, we have k = i − 2 or i if i is odd;
k = i− 1 if i is even. In the case |Π1| = n− 1, we have k = i if i is odd; k = i− 1 if i is
even. In each of the remaining the proof follows similarly.
Corollary 3.3.6. Assume that |Π1| = 1, n − 2 or n − 1. Then µ(Γ) ≤ 2. Moreover
µ(Γ) = 1 if and only if

{i, n+ 1− i} ∩K ̸= ∅ for 1 ≤ i ≤ ⌈n
2
⌉ if |Π1| = 1,

odd ∩K ̸= ∅, U2j ∩K ̸= ∅ for 1 ≤ j ≤ ⌊n
2
⌋ if |Π1| = n− 2,

{2i− 1, 2i} ∩K ̸= ∅ for 1 ≤ i ≤ ⌈n
2
⌉ if |Π1| = n− 1,

where K is defined as (3.7).
Proof. Use (3.8) and Theorem 3.3.5.

We end this section with an example.
Example 3.3.7. Let Γ be an odd cycle of length n; i.e. n is odd, m = 2, j1 = 1 and
j2 = n− 1. Then Π0 = {1, n} and Π1 = {2, 3, . . . , n− 1}. Note that |Π1| = n− 2 is odd,
and K = {1, 3, . . . , n}. By Theorem 3.3.5 we have the W-orbits of FS

2 are
{0}, Uodd, U0, U2, U4, . . . , Un−1.

By Corollary 3.3.6, µ(Γ) = 2.
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3.4 The case |Π1| is even
In this section we assume that |Π1| is even. In this case ∆ = Π ∪ {n+ 1} \ {n} is a

basis for FS
2 and ∆ \ {n+ 1} is a basis for U. Recall that

1 + 2 + · · ·+ n = 0 (3.11)

Let U := FS
2 \ U. Note that Un = ∅, U = n+ 1 + U and U1 = {n+ 1}. By Lemma 3.1.2

we have

esi =

{
1 + 2 + · · ·+ i ∈ U if |[i] ∩ Π1| is even,
1 + 2 + · · ·+ i+ n+ 1 ∈ U if |[i] ∩ Π1| is odd, (1 ≤ i ≤ n− 1),

and
esn = n+ 1 ∈ U.

It follows that

||esi||s =
{
i if |[i] ∩ Π1| is even,
i+ 1 if |[i] ∩ Π1| is odd, (1 ≤ i ≤ n− 1),

and ||esn ||s = 1. Therefore there exists a vector in U with simple weight i and weight 1 if
and only if |[i] ∩Π1| is even; there exists a vector in U with simple weight i and weight 1
if and only if |[i− 1] ∩ Π1| is odd or i = 1. For the rest of this section let

K := {i ∈ [n− 1] | |[i] ∩ Π1| is even}, (3.12)
L := {i ∈ [n] | |[i− 1] ∩ Π1| is odd or i = 1}. (3.13)

Note that ||Ui||, ||U j|| ≤ 2 and that

||Ui|| = 1 if and only if i ∈ K,

||U j|| = 1 if and only if j ∈ L

for 1 ≤ i ≤ n− 1 and 1 ≤ j ≤ n.

Lemma 3.4.1. For u ∈ FS
2 let k = |Π1 ∩∆(u)|. Then the following (i), (ii) hold.

(i) For u ∈ U we have

κsnu =

{
u if |∆(u) ∩ Π1| is even,
u+

∑
i∈Π0

i else.

Moreover

||κsnu||s =


||u||s if |∆(u) ∩ Π1| is even,
n+ 2k − |Π1| − ||u||s if |∆(u) ∩ Π1| is odd and n ∈ Π1,
||u||s + |Π1| − 2k else.
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(ii) For u ∈ U we have

κsnu =

{
u if |∆(u) ∩ Π1| is odd,
u+

∑
i∈Π0

i else.

Moreover

||κsnu||s =


||u||s if |∆(u) ∩ Π1| is odd,
n+ 2k + 2− |Π1| − ||u||s if |∆(u) ∩ Π1| is even and n ∈ Π1,
||u||s + |Π1| − 2k else.

Proof. The proof is similar to the proof of Lemma 3.3.1, except that at this time since
the choice of simple basis ∆ is different, the action of κsn on a vector is a little different,
and we need to use (3.11) to adjust the simple weight of a vector.

In view of Corollary 3.1.5 we discuss the W-orbits (resp. WP -orbits) of FS
2 into the

two parts, one in U and the other in U.

Lemma 3.4.2. The WP -orbits of FS
2 are {0}, U1, U i+1,n+1−i and Ui,n−i for 1 ≤ i ≤ ⌊n

2
⌋.

Proof. By construction U1 = {esn} is a WP -orbit of FS
2 . By Corollary 3.1.5 and Corol-

lary 3.1.7, Ui is contained in a WP -orbit of U and U i+1 is in a WP -orbit of U for
1 ≤ i ≤ n − 1. By (3.11), Ui,n−i is contained in a WP -orbit of FS

2 and U i+1,n+1−i is
in a WP -orbit of U for 1 ≤ i ≤ n− 1. Since no other ways to put these sets together the
result follows.

Theorem 3.4.3. Assume that 4 ≤ |Π1| ≤ n− 3. Then the W-orbits of FS
2 are {0}, UB1 ,

UB2 , UB3 , UB4 , UC1 , UC2 , UC3 , UC4 , where

Bi = {j ∈ [n− 1] | j ≡ i, i+ |Π1| − 2, n− i, n− i+ |Π1| − 2 (mod 4)},
Ci = {j ∈ [n] | j ≡ i, i+ |Π1|, n+ 2− i, n+ 2− i+ |Π1| (mod 4)}.

Moreover the number of W-orbits of FS
2 is 6 if n is even and 4 if n is odd.

Proof. We first determine the W-orbits of U. By Lemma 3.4.2, Ui,n−i is contained in a
W-orbit of U for 1 ≤ i ≤ n − 1. Suppose n ∈ Π0 and the case n ∈ Π1 is left to the
reader. In this case Ui,i+|Π1|−2k is contained in a W-orbit of U by Lemma 3.4.1(i), where
1 ≤ i + |Π1| − 2k ≤ n − 1 and k runs through possible odd integers |Π1 ∩ ∆(u)| for
u ∈ Ui. In fact k is any odd number that satisfies k ≤ |Π1| − 1 and 0 ≤ i− k ≤ |Π0| − 1;
equivalently

max{1, i+ |Π1| − n+ 1} ≤ k ≤ min{|Π1| − 1, i}. (3.14)
Such an odd k exists for any 1 ≤ i ≤ n− 3, and note that

i+ |Π1| − 2k ≡ i+ |Π1| − 2 (mod 4).

To determine the W-orbits of U, it remains to show that Ui,i+4 is contained in a W-orbit
of U for 1 ≤ i ≤ ⌊n

2
⌋. Suppose 4 ≤ |Π1| ≤ 6. Set k = 1 to conclude that Ui,i+2 in a

W-orbit of U if |Π1| = 4; Ui,i+4 in a W-orbit of U if |Π1| = 6. Thus we suppose that
|Π1| ≥ 8. Then n ≥ 11 and ⌊n

2
⌋ ≤ n − 6. Set k to be the least odd integer greater than
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or equal to max{1, i + |Π1| − n + 3}. For this k, (3.14) holds and then Ui,i+|Π1|−2k is
contained in a W-orbit of U . Here we use the assumption |Π1| ≤ n− 3. Replacing (i, k)
by (i+ |Π1| − 2k, |Π1| − k − 2) in (3.14) we have

max{1, i+ 2|Π1| − 2k − n+ 1} ≤ |Π1| − k − 2 ≤ min{|Π1| − 1, i+ |Π1| − 2k}. (3.15)
The above k, the assumption 4 ≤ |Π1| and i ≤ n− 6 guarantee the equation (3.15). Since
(i+ |Π1| − 2k) + |Π1| − 2(|Π1| − k − 2) = i+ 4 we have Ui+4,i+|Π1|−2k in a W-orbit of U .
Putting these together, Ui,i+4 is contained in a W-orbit of U. Therefore the W-orbits of
U are UB1 , UB2 , UB3 , UB4 .

We next determine the W-orbits of U. Since the proof is similar to the above case, we
only give a sketch. By Lemma 3.4.2, U i,n+2−i is contained in a W-orbit of U for 2 ≤ i ≤ n.
We suppose n ∈ Π1 and leave the case n ∈ Π0 to the reader. By Lemma 3.4.1(ii) we have
U i,n+2k+2−|Π1|−i is contained in a W-orbit of U , where k = |∆(u)∩Π1| is an even number
for some u ∈ U i and 1 ≤ i ≤ n− 4. By the same argument with replacing k by k + 2 we
find U i+4,n+2k+2−|Π1|−i is contained in a W-orbit of U. Therefore U i,i+4 is contained in a
W-orbit of U. We have determined the W-orbits of FS

2 . The result follows.
Corollary 3.4.4. Assume that 4 ≤ |Π1| ≤ n− 3. Then

µ(Γ) =

{
1 if Bi ∩K ̸= ∅ and Ci ∩ L ̸= ∅ for all i,
2 else,

where K and L are defined as (3.12) and (3.13), respectively.
Proof. Use (3.12), (3.13) and Theorem 3.4.3.

We now consider the cases |Π1| = 2, n− 2, n− 1.

Theorem 3.4.5. Assume that |Π1| = 2, n − 2 or n − 1. Let the sets C1, C2 be as in
Theorem 3.4.3. Then the W-orbits of FS

2 are {0} and
Ui,n−i, UC1 , UC2 if |Π1| = 2,
Uodd, U2j,n−2j, U odd, U2t,n+2−2t if |Π1| = n− 2,
U2j−1,2j,n−2j,n+1−2j, U2t−1,2t,n+2−2t,n+3−2t, if |Π1| = n− 1

for 1 ≤ i ≤ ⌊n
2
⌋, 1 ≤ j ≤ ⌈n−2

4
⌉ and 1 ≤ t ≤ ⌈n

4
⌉. Moreover the number of W-orbits of FS

2

is {
(n+ 6)/2 if |Π1| = 2 and n is even, or |Π1| = n− 2,
(n+ 3)/2 if |Π1| = 2 and n is odd, or |Π1| = n− 1.

Proof. The proof is similar to the proof of Theorem 3.3.5 that follows from the proof of
Theorem 3.3.3. At this time, to determine the W-orbits of U we check what values of
odd k occur in (3.14) in each case of |Π1| ∈ {2, n− 2, n− 1}. To determine the W-orbits
of U, we do similarly as in the second part of the proof of Theorem 3.4.3.
Corollary 3.4.6. Assume that |Π1| = 2, n − 2 or n − 1. Then µ(Γ) ≤ 2. Moreover
µ(Γ) = 1 if and only if
{i, n− i} ∩K ̸= ∅ C1 ∩ L ̸= ∅, C2 ∩ L ̸= ∅ for 1 ≤ i ≤ ⌊n

2
⌋ if |Π1| = 2,{

odd ∩K ̸= ∅, {2j, n− 2j} ∩K ̸= ∅ for 1 ≤ j ≤ ⌈n−2
4
⌉

odd ∩ L ̸= ∅, {2t, n+ 2− 2t} ∩ L ̸= ∅ for 1 ≤ t ≤ ⌈n
4
⌉ if |Π1| = n− 2,

{
{2j − 1, 2j, n− 2j, n+ 1− 2j} ∩K ̸= ∅ for 1 ≤ j ≤ ⌈n−2

4
⌉

{2t− 1, 2t, n+ 2− 2t, n+ 3− 2t} ∩ L ̸= ∅ for 1 ≤ t ≤ ⌈n
4
⌉ if |Π1| = n− 1,
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where K and L are defined as (3.12) and (3.13), respectively.
Proof. Use (3.12), (3.13) and Theorem 3.4.5.

We end this section with an example.
Example 3.4.7. Let Γ be an even cycle of length n; i.e. n is even, m = 2, j1 = 1 and
j2 = n− 1. Then Π0 = {1, n} and Π1 = {2, 3, . . . , n− 1}. Note that |Π1| = n− 2 is even
and K = L = {1, 3, . . . , n− 1}. By Theorem 3.4.5 we have the W-orbits of FS

2 are
{0}, Uodd, U2,n−2, U4,n−4, . . . , U2j,n−2j, U odd, U2,n, U4,n−2, . . . , U2t,n−2t+2,

where j = ⌈n−2
4
⌉ and t = ⌈n

4
⌉. By Corollary 3.4.6, µ(Γ) = 2.

3.5 Summary
In this section we list the main results of this chapter. Assume that Γ = (S,R) is

a simple connected graph whose vertex set S = {s1, s2, . . . , sn} (n ≥ 2). Suppose the
sequence s1, s2, . . . , sn−1 forms an induced path in Γ. Let j1, j2, . . . , jm (m ≥ 1) denote a
subsequence of 1, 2, . . . , n− 1 such that sj1 , sj2 , . . . , sjm are all neighbors of sn in Γ.

Let
1 = es1 , i+ 1 = κsiκsi−1

· · ·κs11 (1 ≤ i ≤ n− 1), n+ 1 = esn .

Let
Π = {1, 2, . . . , n},
Π0 = {i ∈ Π | itn+ 1 = 0},
Π1 = Π \ Π0.

For convenience let jm+1 = n. Recall from Proposition 3.1.1 that

|Π1| =
⌈m

2
⌉∑

k=1

j2k − j2k−1.

In particular 1 ≤ |Π1| ≤ n− 1. Let

∆ :=

{
Π if |Π1| is odd,
Π ∪ {n+ 1} \ {n} if |Π1| is even.

The set ∆ is a basis for FS
2 , and we call ∆ the simple basis of FS

2 . For u ∈ FS
2 let ||u||s

denote the simple weight of u; i.e. the number nonzero terms in writing u as a linear
combination of elements in ∆. Let U denote the subspace spanned by the vectors in
Π. For V ⊆ FS

2 and T ⊆ {0, 1, . . . , n}, let VT := {u ∈ V | ||u||s ∈ T}. For shortness
Vt1,t2,...,ti := V{t1,t2,...,ti}. Let odd denote the set of all odd integers among {1, 2, . . . , n}. For
1 ≤ i ≤ 4 let

Ai = {j ∈ [n] | j ≡ i, n+ |Π1| − i (mod 4)},
Bi = {j ∈ [n− 1] | j ≡ i, i+ |Π1| − 2, n− i, n− i+ |Π1| − 2 (mod 4)},
Ci = {j ∈ [n] | j ≡ i, i+ |Π1|, n+ 2− i, n+ 2− i+ |Π1| (mod 4)}.

Let W denote the flipping group of Γ. The W-orbits of FS
2 are given in the following

table according to all possible values of the pair (|Π1|, n).
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3.6. Remarks

|Π1| n
The W-orbits of FS

2

(might be repeated) The number of W-orbits of FS
2

3 ≤ |Π1| ≤ n− 3,
|Π1| is odd even {0}, UAj

3

3 ≤ |Π1| ≤ n− 3,
|Π1| is odd odd {0}, UAj

4

4 ≤ |Π1| ≤ n− 3,
|Π1| is even even {0}, UBj

, UCj
6

4 ≤ |Π1| ≤ n− 3,
|Π1| is even odd {0}, UBj

, UCj
4

|Π1| = 1 {0}, Ut,n+1−t ⌈(n+ 2)/2⌉

|Π1| = 2 even {0}, Ui,n−i, UC1 , UC2 (n+ 6)/2

|Π1| = 2 odd {0}, Ui,n−i, UC1 , UC2 (n+ 3)/2

|Π1| = n− 2,
|Π1| is odd odd {0}, Uodd, U2i

n+ 3

2

|Π1| = n− 2,
|Π1| is even even {0}, Uodd, U2h,n−2h,

U odd, U2g,n+2−2g

n+ 6

2

|Π1| = n− 1,
|Π1| is odd even {0}, U2t−1,2t

n+ 2

2

|Π1| = n− 1,
|Π1| is even odd {0}, U2h−1,2h,n−2h,,n+1−2h,

U2g−1,2gn+2−2g,n+3−2g

n+ 3

2

where 1 ≤ j ≤ 4, 1 ≤ t ≤ ⌈n
2
⌉, 1 ≤ i ≤ ⌊n

2
⌋, 1 ≤ h ≤ ⌊n−2

4
⌋, 1 ≤ g ≤ ⌈n

4
⌉.

3.6 Remarks
In this final section we make a comment about the number of flipping groups of those

Γ that satisfy Assumption 3.0.5.
Theorem 3.6.1. The flipping group W of Γ is unique up to isomorphism among all the
graphs that satisfy Assumption 3.0.5 with a given cardinality |Π1| computed from (3.1.1).
Proof. Let Γ′ = (S ′, R′) denote another graph satisfying Assumption 3.0.5. Let S ′ =
{s′1, . . . , s′n}. Let κs′i for all s′i ∈ S ′ denote the corresponding matrices in Definition 2.1.1.
Let W′ denote the flipping group of Γ′. Let i′ (1 ≤ i ≤ n + 1), Π′, Π′

0, Π
′
1 denote

the corresponding vectors and sets in (3.1)–(3.4). Assume |Π1| = |Π′
1|. Define a linear

isomorphism ϕ : FS
2 → FS′

2 such that

ϕ(Π0) = Π′
0, ϕ(Π1) = Π′

1 if |Π1| is odd,
ϕ(Π0) = Π′

0, ϕ(Π1) = Π′
1, ϕn+ 1 = (n+ 1)′ if |Π1| is even.
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Observe that ϕ−1κs′nϕ = κsn . By Corollary 3.1.7 κs′i for all s′i ∈ S ′ generate the symmetric
group on Π′. It follows that ϕ−1κs′iϕ for all s′i ∈ S ′ generate the symmetric group on Π.
By the above comments ϕ−1W′ϕ = W and the result follows.

Corollary 3.6.2. The number of flipping groups of those Γ that satisfy Assumption 3.0.5
is less than or equal to n− 1, up to isomorphism.

Proof. Immediate from Theorem 3.6.1.
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Chapter 4

One-lit trees for lit-only sigma-game

Motivated by the first result on the lit-only σ-game which is mentioned in Chapter 1,
we are specially interested in the 1-lit trees. In general it is difficult to determine whether
a tree is 1-lit for lit-only σ-game. In this chapter we will contribute two new classes of
1-lit trees.

4.1 The degenerate and nondegenerate graphs
Definition 4.1.1. Define a bilinear form B : FS

2 × FS
2 → F2 by

B(es, et) :=

{
1 if st ∈ R,
0 else (4.1)

for all s, t ∈ S.

For a, b ∈ FS
2 we say that a is orthogonal to b (with respect to B) whenever B(a, b) = 0.

Let radFS
2 denote the subspace of FS

2 consisting of the vectors a that are orthogonal to
all vectors. This subspace of FS

2 is called the radical of FS
2 (relative to B). The form B is

said to be degenerate whenever radFS
2 ̸= {0} and nondegenerate otherwise.

We distinguish finite simple graphs into two classes.

Definition 4.1.2. We say that Γ is degenerate whenever the form B is degenerate, and
nondegenerate otherwise.

Definition 4.1.3. Let B̂ denote the matrix in MatS(F2) whose (s, t)-entry is B(es, et).

Observe that B(a, b) = atB̂b for all a, b ∈ FS
2 and that B is nondegenerate if and only

if B̂ is nonsingular.
We now mention a graph-theoretical characterization of nondegenerate graphs. By a

matching in Γ = (S,R) we mean a subset of R in which no two edges share a vertex. By
a perfect matching in Γ = (S,R) we mean a matching in Γ that covers S.

Lemma 4.1.4. The following (i), (ii) are equivalent.

(i) Γ is a nondegenerate graph.

(ii) The number of perfect matchings in Γ is odd.
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Proof. For a square matrix C let detC denote the determinant of C. Note that detB̂ = 1
if and only if B is nondegenerate. Let A denote the adjacency matrix of Γ (over the ring
of integers Z). Using the canonical map from Z to F2, we obtain detB̂ = detA (mod 2).
By [13, Section 2.1], detA and the number of perfect matchings in Γ have the same parity.
By the above comments the result follows.

4.2 Some combinatorial properties of nondegenerate
trees

In this section we mention some combinatorial properties of nondegenerate trees.

Proposition 4.2.1. The following (i), (ii) are equivalent.

(i) Γ is a nondegenerate tree.

(ii) Γ is a tree with a perfect matching.

Proof. Use Lemma 4.1.4 and observe that a tree contains at most one perfect matching.

Example 4.2.2. The only nondegenerate tree of order at most 2 is a path of order 2.

Proof. It is routine to verify.

Proposition 4.2.3. If Γ = (S,R) is a nondegenerate tree of order at least 3, then there
exists a vertex of Γ with degree 2.

Proof. Fix a leaf u of Γ. Let s denote a vertex of Γ farthest away from u in Γ. Observe s is
a leaf of Γ. Let t denote the neighbor of s. We proceed by contradiction to show that t has
degree 2 in Γ. Since the order of Γ is at least 3 the degree of t is at least 2. Suppose the
degree of t is greater than 2. By our choice of s, at least one other neighbor of t is a leaf
besides s. Thus there is no prefect matching in Γ, a contradiction to Proposition 4.2.1.

4.3 The Reeder’s game
In this section we mention another combinatorial game and introduce some related

material. We call this game the Reeder’s game because as far as we know, this game first
appeared in one of Reeder’s papers [24]. We start with the description of the Reeder’s
game.

The Reeder’s game is a one-player game played on a graph. A configuration of the
Reeder’s game on Γ is an assignment of one of two states, on or off, to all vertices of Γ.
Given a configuration, a move of the Reeder’s game on Γ consists of choosing a vertex s
and changing the state of s if the number of on neighbors of s is odd. Given a starting
configuration, the goal is to minimize the number of on vertices of Γ by a finite sequence
of moves of the Reeder’s game on Γ.
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4.3. The Reeder’s game

For the rest of this chapter we interpret each configuration a of the Reeder’s game on
Γ as the vector ∑

s

es (4.2)

of FS
2 , where the sum is over all vertices s of Γ that are assigned the on state by a; if

all vertices of Γ are assigned the off state by a then (5.6) is interpreted as zero vector.
Observe that for any configuration a ∈ FS

2 of the Reeder’s game on Γ, etsa = 1 (resp. 0)
means that the vertex s is assigned the on (resp. off) state by a.

Definition 4.3.1. For each s ∈ S define a matrix τs ∈ MatS(F2) by

τsa := a+B(a, es)es for all a ∈ FS
2 .

Observe that τ 2s = I and so τs ∈ GLS(F2) for all s ∈ S.

Lemma 4.3.2. For each s ∈ S we have

B(a, es) =
∑
st∈R

etta for all a ∈ FS
2 .

Proof. It is routine to verify this using (4.1).

Fix a vertex s of Γ. Observe given any configuration a ∈ FS
2 of the Reeder’s game on

Γ, if the number of on neighbors of s is odd then τsa is obtained from a by changing the
state of s; if the number of on neighbors of s is even then τsa = a. Therefore we may view
τs as the move of the Reeder’s game on Γ for which we choose the vertex s and change
the state of s if the number of on neighbors of s is odd.

The following theorem establishes a connection between the Reeder’s game on Γ and
the simply-laced Coxeter group W of type Γ.

Theorem 4.3.3. ([24, p.41]). There exists a unique representation τ : W → GLS(F2)
such that τ(s) = τs for all s ∈ S.

For the rest of this chapter let τ denote as in Theorem 4.3.3.

We now give a dual relationship between the Reeder’s game and the lit-only σ-game.

Proposition 4.3.4. The representations κ : W → GLS(F2) and τ : W → GLS(F2) are
dual; i.e. κ(w) = τ(w−1)t for all w ∈ W.

Proof. Since S is a generating set of W and s−1 = s in W for all s ∈ S, it suffices to show
κs = τ ts for all s ∈ S. Let u, v ∈ S. Using Lemma 4.3.2 we find

τsev = ev + (
∑
st∈R

ettev)es. (4.3)

Using (4.3), we find (τs)uv equals 1 if and only if u = v, or u = s and uv ∈ R. Comparing
this with Definition 2.1.1, we have τ ts = κs. The result follows.

33



One-lit trees for lit-only sigma-game

By Proposition 4.3.4 the image of W under τ is exactly the transpose Wt of W.
Observe for any a, b ∈ FS

2 , b is obtained from a by a finite sequence of moves of the
Reeder’s game on Γ if and only if b = Ga for some G ∈ Wt. We now define the Wt-orbits
of FS

2 , which are exactly the orbits of the Reeder’s game on Γ.

Definition 4.3.5. Let a ∈ FS
2 . By the Wt-orbit of a we mean the set Wta = {Ga | G ∈

Wt}. By a Wt-orbit of FS
2 we mean a Wt-orbit of a for some a ∈ FS

2 .

There is a characterization for a Wt-orbit of FS
2 which contains exactly one vector.

Lemma 4.3.6. Let a ∈ FS
2 . Then {a} is a Wt-orbit of FS

2 if and only if a ∈ radFS
2 .

Proof. By Definition 4.3.1, a is fixed by τs for all s ∈ S if and only if B(es, a) = 0 for all
s ∈ S. The latter condition is equivalent to a ∈ radFS

2 . The result follows.

4.4 Reeder’s game on a nondegenerate tree
In this section we use [24, Theorem 7.3] to realize the Wt-orbits of FS

2 for the case Γ
is a nondegenerate tree and not a path. We begin with a quadratic form on FS

2 .

Definition 4.4.1. Define a quadratic form Q : FS
2 → F2 by

Q(es) := 1 for all s ∈ S, (4.4)
Q(a+ b) := Q(a) +Q(b) +B(a, b) for all a, b ∈ FS

2 . (4.5)

We now recall a combinatorial interpretation for the form Q. For each a ∈ FS
2 define

Γ[a] to be the subgraph of Γ induced by the vertices s of Γ that assigned the on states by
a in the Reeder’s game.

Lemma 4.4.2. ([24, Section 1]). Let a ∈ FS
2 . Then Q(a) = 1 whenever the number of

vertices in Γ[a] plus the number of edges in Γ[a] is odd, and Q(a) = 0 otherwise.

Definition 4.4.3. Let O(F2) denote the group consisting of all σ ∈ GLS(F2) that satisfy
Q(σa) = Q(a) for all a ∈ FS

2 . This group is called the orthogonal group of FS
2 (relative to

Q).

Definition 4.4.4. Let KerQ denote the subspace of radFS
2 consisting of all a ∈ radFS

2

that satisfy Q(a) = 0. This is called the kernel of Q. The form Q is said to be regular
whenever KerQ = {0}.

We now explain the roles of the two forms B and Q in the Reeder’s game on Γ.

Proposition 4.4.5. The following (i), (ii) hold.

(i) Q(τ(w)a) = Q(a) for all w ∈ W and a ∈ FS
2 .

(ii) B(τ(w)a, τ(w)b) = B(a, b) for all w ∈ W and a, b ∈ FS
2 .
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4.4. Reeder’s game on a nondegenerate tree

Proof. (i) Since S is a generating set of W, it suffices to show Q(τsa) = Q(a) for all s ∈ S
and a ∈ FS

2 . Let s ∈ S and a ∈ FS
2 be given. Using Definition 4.3.1 and (4.5) we find

Q(τsa) = Q(a) +Q(B(a, es)es) +B(a, es)
2. (4.6)

By (4.4) and since Q(0) = 0 we find Q(B(a, es)es) = B(a, es)
2 whether B(a, es) equals 0

or 1. It follows that the right-hand side of (4.6) is equal to Q(a). The result follows.
(ii) In (4.5) we replace a and b by τ(w)a and τ(w)b respectively and simplify the

resulting equation using (i) and (4.5).

Corollary 4.4.6. τ(W ) = Wt is a subgroup of O(FS
2 ).

Proof. Immediate from Proposition 4.4.5(i).

Definition 4.4.7. Let C0 := {a ∈ FS
2 \ radFS

2 | Q(a) = 0} and let C1 := {a ∈ FS
2 \

radFS
2 | Q(a) = 1}.

We now give sufficient conditions for C0 and C1 to be nonempty.

Lemma 4.4.8. The following (i), (ii) hold.

(i) If Γ is a nondegenerate graph of order at least 3 then C0 is nonempty.

(ii) If Γ contains at least one edge then C1 is nonempty.

Proof. (i) If there exist two vertices s, t of Γ with st ̸∈ R, then we find es + et ∈ C0 using
(4.4) and (4.5). Now suppose that any two vertices of Γ are neighbors. Pick any three
vertices s, t, u of Γ. Using (4.4), (4.5) we find es + et + eu ∈ C0. The result follows.

(ii) Let s ∈ S for which there is t ∈ S such that st ∈ R. By (4.1), es ̸∈ radFS
2 . By this

and (4.4), αs ∈ C1.

We now explain the roles of C0, C1 in the Reeder’s game on Γ.

Lemma 4.4.9. The sets C0 and C1 are closed under Wt.

Proof. Immediate from Lemma 4.3.6 and Proposition 4.4.5(i).

Lemma 4.4.10. ([24, Theorem 7.3]). Assume that Γ = (S,R) is a tree and not a path,
and that the quadratic form Q is regular. Then τ(W ) = O(F2).

Corollary 4.4.11. Assume that Γ = (S,R) is a nondegenerate tree and not a path. Then
the Wt-orbits of FS

2 are {0}, C0 and C1.

Proof. Since Γ is nondegenerate, radFS
2 = {0} and so KerQ = {0}. Therefore τ(W ) =

O(FS
2 ) by Lemma 4.4.10. By this and applying Witt’s extension theorem (for example,

see [16, Theorem 12.10]), we find that for any α, β ∈ C0 (resp. C1) there exists w ∈ W
such that τ(w)α = β. Since Γ is a nondegenerate tree and not a path, it follows from
Example 4.2.2 that the order of Γ is at least 3. Therefore C0 and C1 are nonempty by
Lemma 4.4.8. Combining the above comments with Lemma 4.4.9, we find the Wt-orbits
of FS

2 are {0}, C0 and C1.
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4.5 Lit-only σ-game on a nondegenerate tree
In this section we show that nondegenerate trees are 1-lit for lit-only σ-game. We

begin with some lemmas.

Lemma 4.5.1. For each s ∈ S we have

B̂ es =
∑
st∈R

et.

Proof. Immediate from Lemma 4.3.2 and Definition 4.1.3.

Lemma 4.5.2. κ(w)B̂ = B̂τ(w) for all w ∈ W.

Proof. Replacing b by τ(w−1)b in Proposition 4.4.5(ii), in terms of matrices we obtain

btB̂τ(w)a = btτ(w−1)tB̂a (4.7)

for all a, b ∈ FS
2 . Therefore B̂τ(w) = τ(w−1)tB̂. By Proposition 4.3.4 the result follows.

Lemma 4.5.3. Assume that Γ is nondegenerate. Let w ∈ W and a, b ∈ FS
2 . Then the

following (i), (ii) are equivalent.

(i) b = τ(w)a.

(ii) B̂b = κ(w)B̂a.

Proof. Using Lemma 4.5.2, (ii) becomes

B̂b = B̂τ(w)a.

Hence (i) implies (ii). Since Γ is nondegenerate B̂ is nonsingular. It follows that (ii)
implies (i).

Corollary 4.5.4. Assume that Γ is a nondegenerate graph. Then the map from the
Wt-orbits of FS

2 to the W-orbits of FS
2 defined by

O 7→ B̂O for any Wt-orbit O of FS
2

is a bijection.

Proof. Use Lemma 4.5.3.

Corollary 4.5.5. Assume that Γ is a nondegenerate tree and not a path. Then the
W-orbits of FS

2 are {0}, B̂C0, B̂C1.

Proof. Immediate from Corollary 4.4.11 and Corollary 4.5.4.

Our last tool for proving the first result is [15, Theorem 6]. Here we offer a short
proof.

Lemma 4.5.6. ([15, Theorem 6]). Assume that Γ is a nondegenerate graph. Let s ∈ S
and let a ∈ FS

2 such that etsa = 0. Then a and a+
∑

st∈R et lie in distinct W-orbits of FS
2 .
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Proof. We proceed by contradiction. Suppose that there exists G ∈ W such that

Ga = a+
∑
st∈R

et. (4.8)

Let w ∈ W such that κ(w) = G. So

κ(w)a = a+
∑
st∈R

et. (4.9)

Since Γ is nondegenerate, B̂ is nonsingular. Hence there exists a unique b ∈ FS
2 such that

B̂b = a. Using this and Lemma 4.5.1 we find

a+
∑
st∈R

et = B̂(b+ es). (4.10)

Substituting a = B̂b and (4.10) into (4.9) and by Lemma 4.5.3 we find

τ(w)b = b+ es. (4.11)

We now consider the Q-value on either side of (4.11). By Proposition 4.4.5(i) we find
Q(τ(w)b) equals Q(b). Since B̂b = a and etsa = 0 It follows that B(es, b) = 0. Using this
and (4.4), (4.5) we find Q(b+ es) equals Q(b) + 1, a contradiction.

It is now a simple matter to prove that nondegenerate trees are 1-lit.

Theorem 4.5.7. Assume that Γ is a nondegenerate tree. Then Γ is 1-lit for lit-only
σ-game.

Proof. Recall that all paths are 1-lit for lit-only σ-game. Thus we suppose that Γ is a
nondegenerate tree and not a path; otherwise there is nothing to prove. By Corollary 4.5.5
there are exactly two nonzero W-orbits of FS

2 ; i.e. B̂C0 and B̂C1. Therefore it suffices
to show that there exist u, v ∈ S such that eu, ev lie in distinct W-orbits of FS

2 . By
Proposition 4.2.3 there exists a vertex s of Γ with degree 2. Let u, v denote the neighbors
of s. Note that etseu = 0 and

eu +
∑
st∈R

et = eu + (eu + ev) = ev.

Thus eu and ev are in distinct W-orbits of FS
2 by applying Lemma 4.5.6 to es and eu. The

result follows.

We end this section with two examples. They give a degenerate tree and a nondegen-
erate graph which are not 1-lit for lit-only σ-game.

Example 4.5.8. The tree Γ = (S,R) shown in Figure 3.2 is degenerate and not 1-lit for
lit-only σ-game.

1 2 3 4 5 6 7

8c
c c c c c c c

Figure 3.2: a degenerate tree is not 1-lit for lit-only σ-game.

37



One-lit trees for lit-only sigma-game

Proof. There is no perfect matching in Γ. By Proposition 4.2.1, Γ is a degenerate tree.
Using Theorem 3.4.3 we find that the W-orbit of e1 + e7 doesn’t contain e1, e2, . . . , e8.
Therefore Γ is not 1-lit for lit-only σ-game.

Example 4.5.9. The graph Γ = (S,R) shown in Figure 3.3 is nondegenerate and not
1-lit for lit-only σ-game.

1 2 3 4c c c c
5 6 7 8
c c c c

Figure 3.3: a nondegenerate graph is not 1-lit for lit-only σ-game.

Proof. {{1, 2}, {3, 4}, {5, 6}, {7, 8}} is the only perfect matching in Γ. By Lemma 4.1.4,
Γ is nondegenerate. We now show Γ is not 1-lit for lit-only σ-game. To do this let
a = e2 + e3 + e6 + e7 and let O denote the W-orbit of a. It suffices to show es ̸∈ O for all
s = 1, 2, . . . , 8. Using Lemma 4.5.1 we find b = e1 + e4 + e5 + e8, b1 = e2 + e4 + e5, b2 = e1
such that B̂ b = a, B̂b1 = e1, B̂b2 = e2. Using (4.4), (4.5) we find b ∈ C0 and b1, b2 ∈ C1.
By Lemma 4.4.9(ii) b1 and b2 are not in the W-orbit of b. By the above comments and
Corollary 4.5.4 we find e1, e2 ̸∈ O. By symmetry we obtain es ̸∈ O for all s = 3, 4, . . . , 8.
The result follows.

4.6 A homomorphism between simply-laced Coxeter
groups

Before launching into the proof of the next result, we need a lemma about a homo-
morphism between simply-laced Coxeter groups.

For the rest of this chapter we adopt the following convention.

Definition 4.6.1. We assume that Γ = (S,R) contains at least one edge. Fix x, y ∈ S
with xy ∈ R. We define Γ′ = (S ′, R′) to be the simple graph obtained from Γ by inserting
a new vertex z on the edge xy of Γ; i.e. z is a new symbol not in S, and the vertex and
edge sets of Γ′ are S ′ = S ∪{z} and R′ = R∪{xz, yz} \ {xy} respectively. Let W ′ denote
the simply-laced Coxeter group of type Γ′; i.e. W ′ is the group generated by all elements
of S ′ subject to the following relations

s2 = 1, (4.12)
(st)2 = 1 if st ̸∈ R′, (4.13)
(st)3 = 1 if st ∈ R′ (4.14)

for all s, t ∈ S ′.

Lemma 4.6.2. For each u ∈ {x, y} there exists a unique homomorphism ρu : W → W ′

such that ρu(u) = zuz and ρu(s) = s for all s ∈ S \ {u}.

Proof. Without loss of generality it suffices to show the uniqueness and existence of ρx.
Since S is a generating set of W, if ρx exists then it is obviously unique. We now show
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the existence of ρx. By Definition 2.2.1 it suffices to check that for all s, t ∈ S \ {x}

s2 = 1, (4.15)
(st)2 = 1 if st ̸∈ R, (4.16)
(st)3 = 1 if st ∈ R, (4.17)

(zxz)2 = 1, (4.18)
(szxz)2 = 1 if sx ̸∈ R, (4.19)
(szxz)3 = 1 if sx ∈ R (4.20)

hold in W ′. It is clear that (4.15)–(4.17) is immediate from (4.12)–(4.14) respectively.
To obtain (4.18), evaluate the left-hand side of (4.18) using (4.12). It remains to verify
(4.19), (4.20). Observe that for s ∈ S \ {x, y}

(sz)2 = 1, (4.21)
(sx)2 = 1 if sx ̸∈ R, (4.22)
(sx)3 = 1 if sx ∈ R, (4.23)

and
(yx)2 = 1, (4.24)
(xz)3 = 1, (4.25)
(yz)3 = 1 (4.26)

hold in W ′ by (4.13) and (4.14). In what follows, the relation (4.12) will henceforth be
used tacitly in order to keep the argument concise. Concerning (4.19), let s ∈ S \ {x}
with sx ̸∈ R be given. It is clear that s ̸= y in S since yx ∈ R. Hence (4.21) and (4.22)
hold. From these we find s commutes with z and x in W ′, respectively. It follows that
the left-hand side of (4.19) equals (zxz)2. Now (4.19) follows from (4.18). To verify (4.20)
we divide the argument into the following two cases. (I) s ∈ S \ {x, y} and sx ∈ R; (II)
s = y in S.

Case I: s ∈ S \ {x, y} and sx ∈ R.
Observe (4.21) and (4.23) can be rewritten as zsz = s and xsxsx = s, respectively. By
the above two relations, we may simplify the left-hand side of (4.20) by replacing zsz with
s twice and then replacing xsxsx with s. This yields

(szxz)3 = (sz)2

in W ′. Now it is immediate from (4.21). This completes the argument for Case I.
Case II: s = y in S.
We shall show (yzxz)3 = 1 in W ′. Observe first that zxz = xzx in W ′ by (4.25). By this
it suffices to show

(yxzx)3 = 1 (4.27)
in W ′. By a similar argument to Case I one can show (4.27). We display the details
as follows. Observe (4.24) and (4.26) can be rewritten as xyx = y and zyzyz = y,
respectively. By the above two relations, we may simplify the left-hand side of (4.27) by
replacing xyx with y twice and then replacing zyzyz with y. This yields (yxzx)3 = (yx)2 in
W ′. Now it is immediate from (4.24). We have shown (4.20) and the proof is complete.

For the rest of this chapter let ρu (u ∈ {x, y}) denote as in Lemma 4.6.2.
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4.7 More one-lit trees for lit-only σ-game
In this section we contribute more 1-lit trees for lit-only σ-game.

Definition 4.7.1. For s ∈ S let e′s denote the characteristic vector of s in FS′
2 . For s ∈ S ′

define a matrix κ′s ∈ MatS(F2) as

(κ′s)uv =

{
1 if u = v, or v = s and uv ∈ R′,
0 else (4.28)

for all u, v ∈ S ′.

Applying Theorem 2.2.2 to Γ′ there exists a unique representation κ′ : W ′ → GLS′(F2)
such that κ′(s) = κ′s for all s ∈ S ′. The image of W ′ under κ′, denoted by W′, is called
the flipping group of Γ′.

Definition 4.7.2. Let α ∈ FS′
2 . By the W′-orbit of α we mean the set W′α = {Gα | G ∈

W′}. By a W′-orbit of FS′
2 we mean a W′-orbit of α for some α ∈ FS′

2 .

Definition 4.7.3. For each u ∈ {x, y} define a matrix δu with rows indexed by S and
column indexed by S ′ such that

(δu)uz = 1, (δu)ss = 1 for all s ∈ S

and other entries are 0.

Lemma 4.7.4. For each u ∈ {x, y} the null space of δu is {0, e′u + e′z}.

Proof. From Definition 4.7.3 we find {0, e′u + e′z} is contained in the null space of δu and
the rank of δu is |S|. By rank-nullity theorem the result follows.

Lemma 4.7.5. For u ∈ {x, y} and s ∈ S we have

δu(
∑
st∈R′

e′t) =


ex + ey +

∑
ut∈R

et if s = u,∑
st∈R

et if s ̸= u.
(4.29)

Proof. Observe that

{t ∈ S ′ | xt ∈ R′} = {t ∈ S | xt ∈ R} ∪ {z} \ {y},
{t ∈ S ′ | yt ∈ R′} = {t ∈ S | yt ∈ R} ∪ {z} \ {x},
{t ∈ S ′ | st ∈ R′} = {t ∈ S | st ∈ R} if s ∈ S \ {x, y}.

(4.30)

To get (4.29), evaluate the left-hand side of (4.29) using Definition 4.7.3 and (4.40).

Lemma 4.7.6. For any u ∈ {x, y} and w ∈ W we have

κ(w) δu = δu κ
′(ρu(w)).

40



4.7. More one-lit trees for lit-only σ-game

Proof. Let u ∈ {x, y} be given. Recall from Lemma 4.6.2 that ρu(u) = zuz and ρu(s) = s
for all s ∈ S \ {u}. By this and since S is a generating set of W, it suffices to show

κuδu = δuκ
′
zκ

′
uκ

′
z, (4.31)

κsδu = δuκ
′
s for all s ∈ S \ {u}. (4.32)

We first verify (4.31). It suffices to show that for all s ∈ S ′

(κuδu)e
′
s = (δuκ

′
zκ

′
uκ

′
z)e

′
s. (4.33)

To do this we divide the argument into the following two cases. (I) s ∈ {u, z}; (II)
s ∈ S ′ \ {u, z}.
Case I: s ∈ {u, z}.
Using (4.28) we find (κ′zκ

′
uκ

′
z)e

′
s equals

e′s + e′x + e′y +
∑
ut∈R′

e′t.

By this and using Definition 4.7.3 and (4.29), we find the right-hand side of (4.33) equals

eu +
∑
ut∈R

et. (4.34)

On the other hand, using Definitions 2.1.1 and 4.7.3 we find the left-hand side of (4.33)
also equals (4.34). Hence (4.33) holds in this case.
Case II: s ∈ S ′ \ {u, z}.
Observe κu es = es, δue

′
s = es, and κ′ue′s = κ′ze

′
s = e′s by Definitions 2.1.1, 4.7.3, and (4.28)

respectively. Using these we find either side of (4.33) equals es, so (4.33) holds in this
case. Thus we have shown (4.31).

Concerning (4.32), let s ∈ S \ {u} be given. It suffices to show that for all t ∈ S ′

(κsδu)e
′
t = (δuκ

′
s)e

′
t. (4.35)

Similar to above we consider the two cases. (III) t ∈ {u, z}; (IV) t ∈ S ′ \ {u, z}.
Case III: t ∈ {u, z}.
Observe κseu = eu, δue

′
t = eu, and κ′se

′
t = e′t by Definitions 2.1.1, 4.7.3, and (4.28)

respectively. Using these we find either side of (4.35) equals eu, so (4.35) holds in this
case.
Case IV: t ∈ S ′ \ {u, z}.
Using (4.28) and (4.29), we find the right-hand side of (4.35) equals

et + e′tt e
′
s

∑
sv∈R

ev. (4.36)

Using Definitions 2.1.1 and 4.7.3, we find the left-hand side of (4.35) equals

et + ettes
∑
sv∈R

ev. (4.37)

Since ettes = e′tt e
′
s and comparing (4.36) with (4.37), we find (4.35) holds in this case.

Thus we have shown (4.32) and the result follows.
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We are now ready to prove our second result.

Theorem 4.7.7. Assume that Γ = (S,R) is a nondegenerate tree and that x, y ∈ S such
that xy ∈ R and ey ̸∈ Wex. Let Γ′ denote the tree obtained from Γ by inserting a new
vertex on the edge xy of Γ. Then Γ′ is 1-lit for lit-only σ-game.

Proof. Use the notation as in Sections 3.6 and 3.7. If Γ is a path then Γ′ is also a path
and we have mentioned all paths are 1-lit for lit-only σ-game. Thus we suppose Γ is a
nondegenerate tree and not a path; otherwise there is nothing to prove. Let O denote
any nonzero W′-orbit of FS′

2 . To see that Γ′ is 1-lit for lit-only σ-game, it suffices to show
that there exists s ∈ S ′ such that e′s ∈ O. We first claim that δx(O) ̸= {0}. We show
this by contradiction. Suppose δx(O) = {0}. By Lemma 4.7.4 and since 0 ̸∈ O, we find
e′x + e′z ∈ O and hence κ′z(e′x + e′z) = e′y + e′z ∈ O. It follows that

δx(e
′
y + e′z) = ey + ex ∈ δx(O),

a contradiction to δx(O) = {0}. We have shown δxO ̸= {0}. Thus there exists α ∈ O such
that δxα ̸= 0. Recall from Corollary 4.5.5 that there are exactly two nonzero W-orbits
of FS

2 . By this and since ex and ey are in distinct W-orbits of FS
2 , there exists s ∈ {x, y}

such that δx(α) and es are in the same W-orbit of FS
2 ; i.e. there exists w ∈ W such that

κ(w)δxα = es. (4.38)

By Lemma 4.7.6 we find the left-hand side of (4.38) equals δxκ′(ρx(w))α. By this and
using Definition 4.7.3 and Lemma 4.7.4, we find

κ′(ρx(w))α =

{
e′x or e′z if s = x,
e′y or e′x + e′y + e′z if s = y.

(4.39)

If s = x, then it follows from (4.39) that e′x or e′z lies in O, and we are done. If s = y, then
e′y or e′z lies in O by (4.39) and since κ′z(e′x + e′y + e′z) = e′z. The proof is complete.

We end this section with an example of a tree obtained from a nondegenerate tree by
inserting a new vertex on some edge which is not 1-lit for lit-only σ-game.

Example 4.7.8. Assume that Γ = (S,R) is the tree shown in Figure 3.4. Then the
following (i)–(iii) hold.

(i) Γ is a nondegenerate tree.

(ii) e3 and e6 are in the same W-orbit of FS
2 .

(iii) The tree Γ′ shown in Figure 4 is not 1-lit for lit-only σ-game.

Γ

1 2 3 4 5
c c c c c

c6
Γ′

1 2 3 4 5
c c c c ccc67

Figure 3.4: Γ is a nondegenerate tree and Γ′ is not 1-lit for lit-only σ-game.

42
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Proof. (i) The set {{1, 2}, {3, 6}, {4, 5}} is a perfect matching in Γ. By Proposition 4.2.1,
Γ is a nondegenerate tree.

(ii) Using Lemma 4.5.1 we find b1 = e6 and b2 = e1 + e3 + e5 such that B̂ b1 = e3 and
B̂ b2 = e6. Using (4.4), (4.5) we find b1, b2 ∈ C1. By Corollary 4.5.5, e3 and e6 are in the
W-orbit B̂C1 of FS

2 , as desired.
(iii) By [9, Proposition 3.2], the W′-orbit of e′1 + e′5 doesn’t contain e′1, e

′
2, . . . , e

′
7.

Therefore Γ′ is not 1-lit for lit-only σ-game.

4.8 Combinatorial statements of Theorems 4.5.7 and
4.7.7

In order to easily execute Theorems 4.5.7 and 4.7.7, the goal of this section is to state
the combinatorial versions of those results.

By Proposition 4.2.1 we restate Theorem 4.5.7 as follows.

Theorem 4.8.1. Assume that Γ is a tree with a perfect matching. Then Γ is 1-lit.

Assume that Γ = (S,R) is a tree with a perfect matching P . By an alternating path
in Γ (with respect to P), we mean a path in which the edges belong alternatively to P
and not to P .

Definition 4.8.2. Assume Γ = (S,R) is a tree with a perfect matching P . For each s ∈ S
define As to be the set consisting of all t ∈ S \ {s} such that the path between s and t
is an alternating path which starts from and ends on edges in P . For each s ∈ S we say
that As has even parity whenever the cardinality of As is even and odd parity otherwise.

Lemma 4.8.3. Assume Γ = (S,R) is a tree with a perfect matching P . Let As (s ∈ S)

be as in Definition 4.8.2. Let s ∈ S. Then es ∈ B̂C0 whenever As has even parity, and
es ∈ B̂C1 whenever As has odd parity

Proof. For each s ∈ S let
bs =

∑
t∈As

et.

Since no edges between any two vertices in As and using (4.4), (4.5) we find bs ∈ C0 (resp.
C1) if As has even (resp. odd) parity. Let s ∈ S be given. Let t ∈ S for which st ∈ P .
Observe that As equals the disjoint union of {t} and these sets Au for all u ∈ S \{s} with
ut ∈ R. By this and by induction on the cardinality of As, it easily follows that B̂bs = es
for all s ∈ S. The result follows.

By Corollary 4.5.5 and Lemma 4.8.3, we restate Theorem 4.7.7 as follows.

Theorem 4.8.4. Assume that Γ = (S,R) is a tree with a perfect matching. Let x, y ∈ S
such that xy ∈ R. Let Γ′ denote the tree obtained from Γ by inserting a new vertex on
the edge xy of Γ. Assume that Ax, Ay, defined as Definition 4.8.2, have distinct parities.
Then Γ′ is 1-lit.

We now illustrate Theorems 4.8.1 and 4.8.4 with two examples.
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Example 4.8.5. Assume that Γ = (S,R) is the tree shown in Figure 5.

cc
cc12
3

4

c c c c c56 9 10

c c7 11c c8 12

@@��
�� @@

Figure 5: a tree of order 12.

Since Γ contains the perfect matching {{1, 2}, {3, 4}, {5, 6}, {7, 8}, {9, 10}, {11, 12}} and
by Theorem 4.8.1, Γ is 1-lit. We next show that any tree obtained from Γ by inserting a
new vertex on an edge of Γ is 1-lit. To see this, it suffices to show the four trees shown in
Figure 6 are 1-lit.bbbbb

b b b b b
b b b b b

bbbbb
b b b b b
b b b b b

bbbb
b b b b b b

b b b b b
bbbb

b b b b b
b b b b b b

Figure 6: four 1-lit trees of order 13.

Let D = {{1, 2}, {3, 4}, {5, 6}, {4, 7}}. Observe that

A1 = {2, 4, 6, 8, 10, 12}, A2 = {1}, A3 = {4, 8, 12},
A4 = {1, 3}, A5 = {6}, A6 = {1, 5}, A7 = {8}.

(4.40)

Pick any xy ∈ D. By (4.40) and by Theorem 4.8.4 the tree obtained from Γ by inserting
a new vertex on the edge xy of Γ is 1-lit. Therefore the four trees in Figure 6 are 1-lit. �

Example 4.8.6. The aim of this example is to show that the trees shown in class IV of
Figure 1 are 1-lit by using Theorem 4.8.1 and Theorem 4.8.4. Let k ≥ 3 be an integer.
Suppose that Γ = (S,R) is the tree of order 2k shown in Figure 7. Let P denote the path
in Γ between the two vertices 2 and 2k. It suffices to show that Γ and the tree obtained
from Γ by inserting a new vertex on some edge of P are 1-lit.

c c c c c
4 3 2 5 6

q q q
c1 c c

2k − 1 2k

Figure 7: a 1-lit tree of order 2k.

Since Γ contains the perfect matching {{1, 2}, {3, 4}, . . . , {2k − 1, 2k}} and by Theo-
rem 4.8.1 Γ is 1-lit. It is routine to check that A2 = {1} and A6 = {1, 5}. Therefore there
exists x ∈ {2, 6} such that A5 and Ax have distinct parities. By Theorem 4.8.4 the tree
obtained from Γ by inserting a new vertex on the edge {5, x} of P is 1-lit. The result
follows. �

44



Chapter 5

The edge-version of lit-only
sigma-game

In this chapter we consider the edge-version of lit-only σ-game, which is called e-lit-
only σ-game. We now describe this game on Γ = (S,R). A configuration is an assignment
of one of two states, on or off, to all edges of Γ. Given a configuration, a move allows the
player to choose one on edge ϵ of Γ and change the states of all adjacent edges ϵ′ of ϵ; i.e.
|ϵ∩ϵ′| = 1. Let L(Γ) denote the line graph of Γ. We may view this variation as the lit-only
σ-game on L(Γ). We denote the flipping group of L(Γ) by WR, and call this the edge-
flipping group of Γ. Let Z denote the additive group of integers. Let n and m denote the
numbers of vertices and edges of Γ respectively. Assume n ≥ 3. The goal of this chapter
is to show that WR is isomorphic to a semidirect product of (Z/2Z)k and the symmetric
group Sn of degree n, where k = (n− 1)(m− n+ 1) if n is odd; k = (n− 2)(m− n+ 1)
if n is even.

5.1 The edge space and the bond space
In this chapter let |S| = n and |R| = m. In this section we mention some properties

about the edge space and the bond space of Γ that we will need. The reader may refer to
[24, p.23–p.28] for details.

Let R denote the power set of R. For any F, F ′ ∈ R define F + F ′ := {ϵ ∈ R | ϵ ∈
F ∪ F ′, ϵ /∈ F ∩ F ′}; i.e. the symmetric difference of F and F ′. Define 1 · F := F and
0 · F := ∅, the empty set. The set R forms a vector space over F2 and this is called the
edge space of Γ. Note that the zero element of R is ∅ and −F = F for F ∈ R. Observe
{{ϵ} | ϵ ∈ R} is a basis of R. Therefore the dimension dim R of R is m.

For a subset U of S let R(U) denote the subset of R consisting of all edges of Γ that
have exactly one element in U. In graph theory R(U) is often called an edge cut of Γ if U
is a nonempty and proper subset of S. Notice that R(ϵ) = R({x, y}) for ϵ = {x, y} ∈ R.
For convenience R(s) := R({s}) for s ∈ S.

Proposition 5.1.1. The following (i), (ii) hold.

(i) Each ϵ = {x, y} ∈ R lies in exactly two edge cuts R(x) and R(y) among R(s) for
all s ∈ S.

45



The edge-version of lit-only sigma-game

(ii) For U ⊆ S we have R(U) =
∑

s∈U R(s).

Proof. (i) is immediate from the definition of R(s) for s ∈ S. (ii) is immediate from (i)
and the definition of R(U).

For the rest of this chapter let B denote the subspace of R spanned by R(s) for all
s ∈ S. This is called the bond space of Γ.

Proposition 5.1.2. The following (i)–(iv) hold.

(i) B = {R(U) | U ⊆ S}.

(ii) The dimension dim B of B is n− 1.

(iii) For each t ∈ S, R(t) =
∑

s∈S\{t}R(s).

(iv) For each t ∈ S the set {R(s) | s ∈ S \ {t}} is a basis of B.

Proof. (i) follows immediately from Proposition 5.1.1(ii). Similar to the edge space of
Γ, the power set S of S forms a vector space over F2. Clearly the dimension of S is n.
Observe that the map from the vertex space S onto the bond space B of Γ, defined by

U 7→ R(U) for U ∈ S,

is a linear transformation with kernel {∅, S}. It follows that dim B = n− 1. This proves
(ii). Let u ∈ S. Since R(S) = ∅ we have R(t) = R(t)+R(S). By this and Proposition 5.1.1,
(iii) follows. (iv) is immediate from (ii), (iii).

For the rest of this chapter let T denote a minimal subset of R such that (S, T ) is
connected. We call T a spanning tree of Γ. Note that |T | = n− 1.

Proposition 5.1.3. The subset {F ∈ R | F ⊆ R\T} of R is a set of coset representatives
of B in R.

Proof. There are 2m−n+1 cosets of B in R because of dim B = n− 1 and dim R = m. It
is clear that |{F | F ⊆ R \ T}| = 2m−n+1. For any two distinct F, F ′ ⊆ R \ T the graph
(S,R− (F − F ′)) is still connected since T ⊆ R− (F − F ′), which implies that F − F ′ is
not an edge cut of Γ. By Proposition 5.1.2(i), F − F ′ ̸∈ B. Therefore {F | F ⊆ R \ T} is
a set of coset representatives of B in R.

5.2 The edge-flipping group of Γ

In this section we define the edge-flipping group of Γ.
We interpret each configuration G of the e-lit-only σ-game on Γ as the vector

{ϵ ∈ R | ϵ is assigned the on state by G}

of R. For each ϵ ∈ R define a linear transformation ρϵ : R → R by

ρϵG =

{
G+R(ϵ) if ϵ ∈ G,
G else (5.1)
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for G ∈ R. Observe that R(ϵ) consists of all edges that are adjacent to ϵ. Therefore we
may view ρϵ as the move for which we select the edge ϵ of Γ and change the states of all
adjacent edges of ϵ if the state of ϵ is on.

Let GL(R) denote the general linear group of R. Using (5.1) we find ρ2
ϵ = 1 and so

ρϵ ∈ GL(R). Here 1 denotes the identity in GL(R).

Definition 5.2.1. Let WR denote the subgroup of GL(R) generated by ρϵ for all ϵ ∈ R.
We call WR the edge-flipping group of Γ.

Definition 5.2.2. Let F ∈ R. By the WR-orbit of F we mean the set WRF = {gF | g ∈
WR}. By a WR-orbit of R we mean a WR-orbit of F for some F ∈ R.

Let F denote a subset of R. We say that F is closed under WR whenever WRF ⊆ F.

Proposition 5.2.3. ([29, Section 5]). Each coset of B in R is closed under WR.

Proof. Fix any ϵ ∈ R and G ∈ R. It suffices to show that ρϵG−G ∈ B. By (5.1), ρϵG−G
is equal to either ∅ or R(ϵ). Since ∅, R(ϵ) ∈ B the result follows.

5.3 The structure of WR in the case Γ is a tree
When Γ is a tree with n ≥ 3, Yaokun Wu showed that WR is isomorphic to the

symmetric group of degree n. Here we provide another proof.

Lemma 5.3.1. We have

|{R(s) | s ∈ S}| =
{
n if n ≥ 3,
1 else.

Proof. Suppose n = 1. Let S = {s}. Then R(s) = ∅. Thus |{R(s)}| = 1. Suppose n = 2.
Let S = {s, t}. Then R(s) = {s, t} and R(t) = {s, t}. Thus |{R(s), R(t)}| = 1. Now
suppose n ≥ 3. Pick two distinct vertices s, t ∈ S. Since R({s, t}) is nonempty and by
Proposition 5.1.1(ii), R(s) +R(t) ̸= ∅. Therefore R(s) ̸= R(t). The result follows.

For the rest of this chapter we assume n ≥ 3 until further notice. In view of
Lemma 5.3.1 the symmetric group on {R(s) | s ∈ S} has degree n. We denote the group
by Sn. Let ϵ = {x, y} ∈ R. By Proposition 5.1.1(i) and (5.1) the transformation ρϵ fixes
the R(s) for all s ∈ S \ {x, y}. Using Proposition 5.1.1(ii) we find that ρϵR(x) = R(y)
and ρϵR(y) = R(x). By the above comments we have a group homomorphism as follows.

Definition 5.3.2. Let α : WR → Sn denote the group homomorphism defined by

α(g)(R(s)) = gR(s) for s ∈ S and g ∈ WR.

Observe that for each ϵ = {x, y} ∈ R, α(ρϵ) is the transposition (R(x), R(y)), which
switches R(x) and R(y).

Let F ⊆ R. For the rest of this chapter let WR,F denote the subgroup of WR generated
by the ρϵ for all ϵ ∈ F.

Lemma 5.3.3. The image of WR,T under α is Sn. Moreover if Γ is a tree with n ≥ 3,
then α is an isomorphism from WR to Sn.
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Proof. Let A denote the set of the transpositions {(R(x), R(y)) for all {x, y} ∈ T. Let
s, t denote any two distinct vertices of Γ. There exists a subset {{s0, s1}, {s1, s2}, . . . ,
{sk−1, sk}} of T with s0 = s and sk = t. Observe that

(R(s), R(t)) =(R(sk−1), R(sk)) · · · (R(s2), R(s3))(R(s1), R(s2))(R(s0), R(s1))
(R(s1), R(s2))(R(s2), R(s3)) · · · (R(sk−1), R(sk)).

Thus A generates all transpositions in Sn, so A generates Sn. Therefore α(WR,T ) = Sn.
Now suppose Γ is a tree. In this case R = B by Proposition 5.1.2(ii) and comparing the
both dimensions. Let g ∈ Kerα. Then gR(s) = R(s) for all s ∈ S. Since the R(s) for all
s ∈ S span B it follows that g = 1, the identity map in GL(R), This shows Kerα = {1}.
Therefore α is an isomorphism.

Corollary 5.3.4. ([29, Theorem 8]). Assume that Γ is a tree with n ≥ 3. Then WR is
isomorphic to Sn.

Proof. Immediate from Lemma 5.3.3.

Example 5.3.5. Assume that Γ = (S,R) is the star graph of n ≥ 3 vertices. By
Corollary 5.3.4 the edge-flipping group WR of Γ is isomorphic to Sn.

5.4 The WR-orbits of R
In this section we give a description of WR-orbits of R. To do this we fix a vertex t

of Γ and let
∆ := {R(s) | s ∈ S \ {t}}

in this section. By Proposition 5.1.2(iv), ∆ is a basis of B. We call ∆ the simple basis of
B. For each G ∈ B let ∆(G) denote the subset of ∆ such that the sum of its elements
equals G. Define the simple weight ||G||s of G to be the cardinality of ∆(G). For example
∆(R(t)) = {R(s) | s ∈ S \ {t}} and so ||R(t)||s = n− 1.

Lemma 5.4.1. The WR,T -orbits of B are

Ωi := {G ∈ B | ||G||s = i or ||G||s = n− i} (0 ≤ i ≤ ⌈n−1
2
⌉).

Proof. By Proposition 5.1.1(ii) and Proposition 5.1.2(i), B consists of R(U) =
∑

s∈U R(s)
for all U ⊆ S. Recall from Lemma 5.3.3 that α(WR,T ) = Sn, the symmetric group on
{R(s) | s ∈ S}. Therefore the WR,T -orbits of B are Ω′

i = {G ∈ B | G = R(U), |U | = i}
for 0 ≤ i ≤ n. Since R(U) = R(S \ U) for U ⊆ S it follows that Ω′

i = Ω′
n−i and so both

are equal to Ωi. The result follows.

For the rest of this chapter let Ωi (0 ≤ i ≤ ⌈n−1
2
⌉) denote the sets from Lemma 5.4.1.

Corollary 5.4.2. ([29, Theorem 10]). The WR-orbits of B are Ωi for 0 ≤ i ≤ ⌈n−1
2
⌉.

Proof. By Lemma 5.3.3, α(WR) = Sn. Therefore the WR-orbits of B are as same as the
WR,T -orbits of B. The result follows from Lemma 5.4.1.

Recall that {F | F ⊆ R \ T} is a set of coset representatives of B in R, from Proposi-
tion 5.1.3.
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Lemma 5.4.3. Let F denote a nonempty subset of R \ T. For any ϵ ∈ F the WR,T∪{ϵ}-
orbits of F + B are {

F + B if n is odd,
F + Be and F + Bo if n is even, (5.2)

where Be := {G ∈ B | ||G||s is even} and Bo := {G ∈ B | ||G||s is odd}.

Proof. Since F ∩ T = ∅ we have ρϵ′F = F for any ϵ′ ∈ T. Therefore WR,TF = F. By this
and Lemma 5.4.1 the WR,T -orbits of F + B are

F + Ωi (0 ≤ i ≤ ⌈n−1
2
⌉). (5.3)

It remains to consider how ρϵ acts on F +B. To do this, pick any i among 0, 1, . . . , n− 1
and pick any G ∈ B with ||G||s = i. Note that ρϵ(F + G) = F + R(ϵ) + ρϵG and that
R(ϵ) + ρϵG ∈ B. We now discuss ||R(ϵ) + ρϵG||s. If u /∈ ϵ then

||R(ϵ) + ρϵG||s =


i+ 2 if |∆(G) ∩∆(R(ϵ))| = 0,
i if |∆(G) ∩∆(R(ϵ))| = 1,
i− 2 else.

(5.4)

If u ∈ ϵ then

||R(ϵ) + ρϵG||s =
{
i if |∆(G) ∩∆(R(ϵ))| = i− 1,
n− i− 2 else. (5.5)

Combining (5.3)–(5.5) we find∪
j≡i,n−i mod 2

F + Ωj for i = 0, 1 (5.6)

are the WR,T∪{ϵ}-orbits of F +B. If n is odd then (5.6) equals F +B for each i = 0, 1; if n
is even (5.6) equals F + Be (resp. F + Bo) for i = 0 (resp. i = 1). The result follows.

For the rest of this chapter let Be and Bo denote as in Lemma 5.4.3.

Corollary 5.4.4. ([29, Theorem 12]). Let F denote a nonempty subset of R \ T. Then
the WR-orbits of F + B are as (5.2).

Proof. The group WR,T∪F is generated by WR,T∪{ϵ} for all ϵ ∈ F. By this and Lemma 5.4.3
the WR,T∪F -orbits of F+B are as described in (5.2). Pick any ϵ ∈ R−(T∪F ).Observe that
ρϵ(F+B) = F+B, and that if n is even then ρϵ(F+Be) = F+Be and ρϵ(F+Bo) = F+Bo.
The result follows.

Corollary 5.4.5. ([29, Theorem 10, Theorem 12]). The WR-orbits of R are Ω0,Ω1, . . . ,
Ω⌈n−1

2
⌉ and {

the F + B for all F ∈ R \ B if n is odd,
the F + Be for all F ∈ R \ Be if n is even.

Proof. Immediate from Corollary 5.4.2 and Corollary 5.4.4.
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The edge-version of lit-only sigma-game

5.5 The minimum light number for e-lit-only σ-game
on Γ

Similar to lit-only σ-game we consider the numbers defined below.

Definition 5.5.1. For a subset O of R define |O| to be the number

min
G∈O

|G|.

Definition 5.5.2. Let k ≥ 1 denote an integer. We say that Γ is k-lit for e-lit-only
σ-game whenever |O| ≤ k for any WR-orbit O of R.

Definition 5.5.3. Let µe(Γ) denote the minimum number k such that Γ is k-lit for
e-lit-only σ-game. We call µe(Γ) the minimum light number for e-lit-only σ-game on Γ.

Observe that µe(Γ) equals max |O|, where the maximum is over all WR-orbits O of
R. By Corollary 5.4.2 we have

µe(Γ) = max{|Ω0|, |Ω1|, . . . , |Ω⌈n−1
2

⌉|} if Γ is a tree. (5.7)

By Corollary 5.4.5 we have

µe(Γ) =

{ max{|Ω0|, |Ω1|, . . . , |Ω⌈n−1
2

⌉|,max
F∈R

|F + B|} if n is odd,
max{|Ω0|, |Ω1|, . . . , |Ω⌈n−1

2
⌉|,max

F∈R
|F + Be|} if n is even. (5.8)

There are some results about µe(Γ). Here we provide short proofs.

Definition 5.5.4. For each 0 ≤ i ≤ n define bi(Γ) to be the number

min |R(U)|,

where the minimum is over all subsets U of S with |U | = i. This number is called the ith
edge-isoperimetric number of Γ.

Definition 5.5.5. Define b(Γ) to be the number max{b0(Γ), b1(Γ), . . . , bn(Γ)}. This num-
ber is called the edge-isoperimetric number of Γ.

Definition 5.5.6. Let O denote a subset of R. Define ϱ(O) to be the number

max
F∈R

|F +O|.

This number is called the covering radius of O in R.

Definition 5.5.7. Let A denote the subspace of R spanned by R(ϵ) for all ϵ ∈ R.

Lemma 5.5.8. The number b(Γ) equals max{|Ω0|, |Ω1|, . . . , |Ω⌈n−1
2

⌉|}.

Proof. For 0 ≤ i ≤ ⌈n−1
2
⌉, bi(Γ) = bn−i(Γ) and both are equals to |Ωi|. The result

follows.

Theorem 5.5.9. ([29, Corollary 15]). Assume that Γ is a tree. Then µe(Γ) = b(Γ).
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Proof. Immediate from (5.7) and Lemma 5.5.8.

Theorem 5.5.10. ([29, Theorem 16]). µe(Γ) = max{b(Γ), ϱ(A)}.

Proof. Observe that the R(U) for all U ⊆ S with even sizes span A. Therefore A = B if
n is odd, and A = Be if n is even. By the above comment, ϱ(A) equals{ max

F∈R
|F + B| if n is odd,

max
F∈R

|F + Be| if n is even. (5.9)

Now the result follows from (5.8), (5.9), Lemma 5.5.8.

5.6 The structure of WR

In this section we investigate the structure of WR. For i = 1, 2, . . . ,m− n+ 1 Let Bi

denote a copy of the bond space B of Γ. Let Bm−n+1 denote the (external) direct sum of
B1,B2, . . . ,Bm−n+1,

m−n+1⊕
i=1

Bi.

We view Bm−n+1 as an additive group. Let Aut(Bm−n+1) denote the automorphism group
of Bm−n+1.

Definition 5.6.1. Let β : WR → Aut(Bm−n+1) denote the group homomorphism defined
by

β(g)(Gi)
m−n+1
i=1 = (gGi)

m−n+1
i=1

for g ∈ WR and (Gi)
m−n+1
i=1 ∈ Bm−n+1.

By Lemma 5.3.3 the group homomorphism α : WR → Sn is surjective. We now show
that there exists a unique group homomorphism θ : Sn → Aut(Bm−n+1) such that the
following diagram commutes.

-

Q
Q
Q

Q
Q
Q
Q

QQs
?

WE(X) Sn

Aut(Bm−n+1)

α

θ
β

Lemma 5.6.2. There exists a unique group homomorphism θ : Sn → Aut (Bm−n+1) such
that β = θ ◦ α. Moreover θ is determined by the following relation

θ(σ)(R(si))
m−n+1
i=1 = (σ(R(si)))

m−n+1
i=1 (5.10)

for all s1, s2, . . . , sm−n+1 ∈ S and σ ∈ Sn.
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Proof. Since α is surjective, if θ exists then θ is unique. To show the existence of θ, it
suffices to show the kernel Kerα of α is contained in the kernel Kerβ of β. Let g ∈ Kerα.
Then gR(s) = R(s) for all s ∈ S. By this and since {R(s) | s ∈ S} spans B, we have
gG = G for all G ∈ B. Therefore g ∈ Kerβ. We now show (5.10). Pick any σ ∈ Sn. Since
α is surjective there exists h ∈ WR such that α(h) = σ. Using β = θ ◦ α, we write (5.10)
as

β(h)(R(vi))m−n+1
i=1 = (α(h)(R(vi)))m−n+1

i=1 (5.11)

Using Definition 5.3.2 we obtain the right-hand side of (5.11) equals

(hR(v1),hR(v2), . . . ,hR(vm−n+1)). (5.12)

Using Definition 5.6.1, we obtain the left-hand side of (5.11) also equals (5.12). This
shows (5.10). Since {R(s) | s ∈ S} spans B, θ(σ) is uniquely determined by (5.10). By
this and since σ is an arbitrary element of Sn, θ is uniquely determined by (5.10).

In view of Lemma 5.6.2 we can define the (external) semidirect product of Bm−n+1 and
Sn with respect to θ. We denote this by Bm−n+1oθ Sn. This group is the set Bm−n+1×Sn

with the group operation defined by

((Gi)
m−n+1
i=1 , σ1) ((Hi)

m−n+1
i=1 , σ2) = ((Gi)

m−n+1
i=1 + θ(σ1)(Hi)

m−n+1
i=1 , σ1σ2)

for all (Gi)
m−n+1
i=1 , (Hi)

m−n+1
i=1 ∈ Bm−n+1 and σ1, σ2 ∈ Sn.

Recall that T denotes a spanning tree of R. Note that |R \ T | = m − n + 1. Let
ϵ1, ϵ2, . . . , ϵm−n+1 denote the all elements in R \ T. By Corollary 5.4.4, {ϵi} + WR{ϵi} is
contained in B for i = 1, 2 . . . ,m − n + 1. By the above comment we can define a map
from WR to Bm−n+1 oθ Sn as follows.

Definition 5.6.3. Let γ : WR → Bm−n+1 oθ Sn denote the map defined by

γ(g) = (({ϵi}+ g{ϵi})m−n+1
i=1 , α(g)) for g ∈ WR.

Lemma 5.6.4. γ is a group monomorphism from WR into Bm−n+1 oθ Sn.

Proof. For g,h ∈ WR,

γ(g)γ(h) = (({ϵi}+ g{ϵi})m−n+1
i=1 , α(g))(({ϵi}+ h{ϵi})m−n+1

i=1 , α(h))
= (({ϵi}+ g{ϵi})m−n+1

i=1 + θ(α(g))({ϵi}+ h{ϵi})m−n+1
i=1 , α(g)α(h))

= (({ϵi}+ g{ϵi})m−n+1
i=1 + β(g)({ϵi}+ h{ϵi})m−n+1

i=1 , α(gh))
= (({ϵi}+ g{ϵi})m−n+1

i=1 + (g{ϵi}+ gh{ϵi})m−n+1
i=1 , α(gh))

= (({ϵi}+ gh{ϵi})m−n+1
i=1 , α(gh))

= γ(gh).

This shows that γ is a group homomorphism. Since each g ∈ Kerγ fixes the spanning set
{{ϵ1}, {ϵ2}, . . . , {ϵm−n+1}} ∪ {R(s) | s ∈ S} of the edge space R of Γ, g is the identity
map on R. Hence Kerγ is trivial.
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5.6. The structure of WR

By Lemma 5.6.4, WR is isomorphic to the image of WR under γ. Fortunately the
structure of γ(WR) is knowable. In Lemma 5.4.3 we define Be = {G ∈ B | ||G||s is even}.
Note that dim Be = n− 2. Let Bm−n+1

e denote the subgroup

m−n+1⊕
i=1

Be,i

of the additive group Bm−n+1, where Be,i (1 ≤ i ≤ m− n+1) is the subspace of Bi as Be.

Theorem 5.6.5. The edge-flipping group WR of Γ is isomorphic to{
Bm−n+1 oθ Sn if n is odd,
Bm−n+1
e oθ Sn if n is even,

provided n ≥ 3.

Proof. It suffices to show that for any σ ∈ Sn, there exists g ∈ WR such that

γ(g) = ((∅)m−n+1
i=1 , σ), (5.13)

and that for each 1 ≤ i ≤ m− n+ 1 and for each

G ∈
{
Bi if n is odd,
Be,i if n is even

there exists h ∈ WR such that

γ(h) = (∅, . . . , ∅, G, ∅, . . . , ∅, α(h)), (5.14)

where G is in the ith coordinate. By Lemma 5.3.3 there exists g ∈ WR,T such that
α(g) = σ. Such g satisfies (5.13). By Lemma 5.4.3 there exists h ∈ WR,T∪{ϵi} such that
h{ϵi} = {ϵi}+G. Such h satisfies (5.14). The result follows.

Let Z is the additive group of integers. Since dim B = n− 1 and dim Be = n− 2 the
additive groups B and Be are isomorphic to (Z/2Z)n−1 and (Z/2Z)n−2.

Example 5.6.6. Assume that Γ is a cycle of n ≥ 3 vertices. Then the edge-flipping group
WR of Γ is isomorphic to{

(Z/2Z)n−1 o Sn if n is odd,
(Z/2Z)n−2 o Sn if n is even

by Theorem 5.6.5.

We now show that there is a unique edge-flipping group of all finite simple connected
graphs Γ = (S,R) with fixed |S| and fixed |R|, up to isomorphism.

Theorem 5.6.7. Let Γ = (S,R) and Γ′ = (S ′, R′) denote two finite simple connected
graphs with |S| = |S ′| and |R| = |R′| ≥ 1. Then the edge-flipping group of Γ and the
edge-flipping group of Γ′ are isomorphic.
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Proof. Let WR and WR′ denote the edge-flipping groups of Γ and Γ′, respectively. If
|R| = 1 and |R′| = 1, then Γ and Γ′ are isomorphic and so WR and WR′ are isomorphic.
Now suppose |R| = |R′| ≥ 2. Without loss of generality we assume that S ′ = S. Define
R′(v), B′, B′

e, S
′
n, and θ′ correspondingly. In view of Theorem 5.6.5 it suffices to show that

Bm−n+1 oθ Sn and Bm−n+1
e oθ Sn are isomorphic to B′m−n+1 oθ′ S

′
n and B′m−n+1

e oθ′ S
′
n

respectively. Fix t ∈ S. Let µ : B → B′ denote the invertible linear transformation defined
by

µ(R(s)) = R′(s) for s ∈ S \ {t}.

There exists a unique isomorphism µ∗ : Sn → S ′
n such that

µ∗(σ)(R
′(s)) = µ(σ(R(s))) for all σ ∈ Sn and s ∈ S.

By the above two comments we can define a map ϕ : Bm−n+1 oθ Sn → B′m−n+1 oθ′ S
′
n by

ϕ((Gi)
m−n+1
i=1 , σ) = ((µ(Gi))

m−n+1
i=1 , µ∗(σ))

for all (Gi)
m−n+1
i=1 ∈ Bm−n+1 and σ ∈ Sn. Observe that ϕ is bijective and that ϕ sends

Bm−n+1
e oθ Sn to B′m−n+1

e oθ′ S
′
n. One readily verifies that ϕ is an isomorphism. The result

follows.
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