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Abstract

This research covers the less trodden field of mixed chordal ring networks, in the attempt
to discover the existence of efficient algorithms on distance-related problems, including the
minimum distance diagram construction, the diameter computation, and the node-to-node
shortest path routing. The extensively studied double-loop network has proven to hold
efficient algorithms on the above specified distance-related problems. The significance of
this research lies in mixed chordal ring network’s achievement of a better diameter, as well
as the in-vertex-transitive feature of it, which makes its exploration on distance-related
problems a lot more sophisticated.

We first study and investigate the minimum distance diagram problem. We find that the
minimum distance diagram of a mixed chordal ring network-can be obtained by reassembling
the PSEUDOMDD. This observation can be used to study other distance-related problems.
For the diameter computation problem, we proposed an efficient algorithm to compute the
diameter of a given mixed chordal-ring network. For the optimization problem of finding
optimal networks, we improve previous:lower-and upper bounds and successfully obtain a
class of optimal mixed chordal ring networks. For the routing problem, two node-to-node
routing algorithms are presented for flexible applications: the shortest-path-based routing
algorithm and the dynamic routing algorithm. In addition, we also present an optimal fault-
tolerant routing algorithm for mixed chordal ring networks in the presence of up to one node
or link failure. All the routing algorithms presented do not require routing tables and only

very little computational overhead is needed.

Keywords: Mixed chordal ring network; Double-loop network; Algorithm; Diameter;
Optimal routing; Fault-tolerant routing; Minimum distance diagram; Interconnection net-

work; Parallel processing.
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Chapter 1

Introduction

1.1 Interconnection Networks

In recent years, interconnection networks arelapplicable inmany different fields, ranging from
internal buses in very large-scale integration (VLSI) circuits to wide area computer networks.
Among others, these applications“include parallel computing, backplane buses and system
area networks, telephone switches, internal networks forasynchronous transfer mode (ATM)
and Internet Protocol (IP) switches, procegsor/memory interconnects for vector supercom-
puters, interconnection networks for multi-computers and distributed shared-memory multi-
processors, clusters of workstations and personal computers, local area networks, metropoli-
tan area networks, wide area computer networks, and networks for industrial applications
26, 31, 37, 61].

To implement high performance parallel and distributed systems by designing intercon-
nection architectures is a task both significant and challenging. [55, 56]. The choice of
the interconnection network may affect several characteristics of the final system, includ-
ing implementation cost (node complexity, VLSI area, wiring density), performance, ease

of programming, reliability, and scalability. Throughout times, many different interconnec-
1



CHAPTER 1. INTRODUCTION 1.1. INTERCONNECTION NETWORKS

tion networks had been applied in commercially available concurrent systems and numerous
research prototypes [46, 54|; other alternatives are proposed and evaluated in theoretical
studies [56].

Interconnection networks have been traditionally classified according to the operating
mode (synchronous or asynchronous) and network control (centralized, decentralized or dis-
tributed) [31]. According to [31], there are four major classes based primarily on network
topology: shared-medium networks, direct networks (router-based networks), indirect net-
works (switch-based Networks) and hybrid networks. In this research, our target networks,
double-loop networks and mized chordal ring networks, belong to direct networks.

The direct network or point-to-point network is a popular interconnection network archi-
tecture that scales well to a large number of processors [31]. A direct network consists of a
set of nodes, each node being directly connected to a subset of other nodes in the network.
Theses nodes may have different funetional capabilities..One common component of theses
nodes is a router, which handles message communication among nodes. Direct networks have
been a popular interconnection architecture for-constructing large-scale parallel computers.

Almost all direct network topologies studied in-the literature have some degree of sym-
metry. Such a symmetric topology has many-advantages: First, it allows the network to
be constructed from simple building blocks and expanded in a modular fashion. Second,
the regular topology facilitates the use of simple routing algorithms. Third, it is easier to
develop efficient computational algorithms for multiprocessors interconnected by a symmet-
ric network. Finally, it makes the network easier to model and analyze. For example, in a
ring network of N nodes labeled from 0 to N — 1, each processor ¢ is directly connected to
processors (i — 1) mod N and (i + 1) mod N.

Mathematical models for interconnection networks have played important roles in under-
standing, synthesizing, and comparing a multitude of network architectures. The architec-

ture of an interconnection network can be represented by a graph or a digraph, where vertices

2



CHAPTER 1. INTRODUCTION 1.2. EVALUATION CRITERIA FOR NETWORKS

Figure 1.1: Examples of direct network topologies: (a) (Undirected) Ring network (b) Chordal ring network
(¢) Directed chordal ring network.

represent processors/nodes and edges represent links/channels between processors/nodes.

Fig. 1.1 shows some direct network topologies.

1.2 Evaluation Criteria-for. Networks

The topology of a direct network determines many architecture features of the network
and affects several performance metrics. ~Although-the actual performance of a network
depends on many technology and implementations factors, several topological properties and
metrics can be used to evaluate and compare different topologies in a technology-independent

manner. Most of these properties are derived from the graph model of the network topology.

e Symmetry and Regularity
A regular network is defined as a network in which each node connects to the same number
of other nodes. A symmetric network is a network in which the topology looks identical
when viewed from every node or every edge. There are two types of symmetric: Node
symmetric and edge symmetric. In graph-theoretic terms, a graph is node-symmetric
(vertez-transitive) if, for every pair of vertices u and v, there is an automorphism which

maps u to v. The definition of edge-symmetric is identical to the node-symmetric, except
3



CHAPTER 1. INTRODUCTION 1.2. EVALUATION CRITERIA FOR NETWORKS

that the automorphism maps edges among themselves. References to symmetry without

qualification usually imply node-symmetry.

The main advantage of symmetric in a network lies in the ease of routing data in the
network. This allows all nodes to use the same routing algorithm. The task of path-
selection is also often simplified. Many popular direct interconnection networks are regular
and symmetric. Clearly, all networks in Fig. 1.1 are regular. In addition, networks in

Figs. 1.1(a) and 1.1(b) are also symmetric.

e Connectivity
The primary factor relating directly to the robustness of a graph-modeled interconnection
structure is its connectivity or edge connectivity. From the graph theory viewpoint, the
connectivity (resp., edge connectivity) of ansundirected graph is the minimum number of
vertices (resp., edges) whose removal causes the graph'to be disconnected or to contain
only one vertex. A digraph is strongly-connectéd if for ‘each ordered pair u,v of vertices,
there is a path from u to v. In ardirected graph, the connectivity (resp., edge connectivity)
is defined as the minimum number of vertices (resp., edges) whose removal causes the
graph to be non-strongly connectéd.. Eor some symmetric networks, the connectivity is

usually the same as the degree of a node.

e Distance Measures
In a direct network, communication between two nodes that are not directly connected
must take place through other nodes. The network diameter (diameter for short) D,
defined as the longest of the internode distances, is an important figure of merit for
networks. The diameter D indicates the worst-case number of hops in sending a message
from one node to another. If the message delay is proportional to the number of links
traversed, this provides an upper bound on the delay in the absence of any interfering

traffic. The diameter D may also be viewed as a lower bound on the delay between two

4



CHAPTER 1. INTRODUCTION 1.2. EVALUATION CRITERIA FOR NETWORKS

nodes that are located farthest from each other. Although diameter does not completely
characterizes the performance of an interconnection network, it is still useful in comparing

networks with respect to their power to perform certain operations.

Although the diameter is useful in comparing two interconnection networks with identical
node degrees, it may not always be indicative of the actual performance of the networks.
Since two nodes in a network do not always communicate with each other by traversing the
length of the diameter D, it is more important to measure the average distance traveled
by a message in practice. Average internode distance D is defined as the average lengths
of the distance between all N? pairs of nodes. The average distance is representative of

average or expected communication latencies, whereas D represents the worst case.

e Efficient Routing
As interconnection networks differ«in the way they accommodate message traffic, routing
performance is a primary indicator of-the overall benefits: of a particular topology. Effi-
cient message routing can improve the network utilization. Many parameters including
the length of the route, the computational overhead, the memory requirement at each
node and the extra overhead information included.in‘the message, can affect the routing
performance. The first issue in the algorithmic aspect is to design efficient algorithms such
that every message is sent along a shortest path from its source node to its destination
node. Thus one of the most important features to be taken into account in the design of

an interconnection network is the existence of efficient algorithms for routing messages.

When some nodes or links in the network fail, some routes become unavailable. However,
assuming that the network remains connected, communication is still possible by sending
affected message along a sequence of surviving routes. Therefore, the design of algorithms
for sending messages along the shortest route after detecting the faulty element is also an

important issue.
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1.3 Distributed Loop Networks

Loop networks have been widely considered in recent years as good network models for
interconnection or communication networks due to their regularity, simple structure and
symmetry; see Bermond et al. [9] for an exhaustive survey on this topic. The ring network
(i.e., the single-loop network) is one of the most simple and frequently used loop network for
interconnection networks, and has many attractive properties such as simplicity, extendibil-
ity, low degree, and ease of implementation. Although the ring network has many attractive
properties, it has poor reliability (any failure in an interface or communication link destroys
the function of the network) and it has high transmission delay. As a result, a lot of hy-
brid topologies utilizing the ring network as a basis for synthesizing richer interconnection
schemes have been proposed to improve the Treliability and reduce the transmission delay
6, 20, 27, 64].

One example of the commonly: tised -extensions for .the'ring network is the multi-loop
network M L(N; sy, Sa, ..., s), which was first-proposed by Wong and Coppersmith in [64]
for organizing multi-module memory services. The -most widely studied multi-loop network
is perhaps the double-loop network (DLN-for short).~A'DLN DL(N; sy, s3) can be modeled

by using a digraph with N nodes 0,1,..., N —1 and 2N links as follows

i—(i+s)mod N, i=0,1,2,....,N—1,

i—(i+s)mod N, i=0,1,2,....,N—1,

where 0 < 51 # s5 < N. The double-loop network has been used for local area network [47]
as well as the large local area optical network as SONET [7].

Another example of the commonly used extensions for the ring network is the chordal
ring network, which is constructed by adding chords to the ring topology [6, 41]. Arden and
Lee [6] first proposed and studied the chordal ring network. More specifically, an (undirected)

6



CHAPTER 1. INTRODUCTION 1.3. DISTRIBUTED LOOP NETWORKS

chordal ring network C'R(N;w), where N is even and w is odd, can be modeled by using a

graph with N nodes 0,1,..., N — 1 and 3N/2 links:

(i,(i+1) mod N), i=0,1,2,...,N —1,
(7,(i +w) mod N), i=1,3,5,...,N—1.

See Fig. 1.1(b) for an example of C'R(14;5). Since then, more than one hundred papers have
been published on the topic of the chordal ring network and its variants. Especially, the
chordal ring networks of degree 3, 4, and 6 have been widely discussed in the literature [8,
11, 24, 50, 65]. As was pointed out in [20], the chordal ring network is a 3-regular graph
and it offers a happy medium between the (undirected) ring network and the undirected
double-loop network in the amount of hardware. Also, it preserves the Hamiltonian cycle
from the ring network and has a better diameterthan the undirected ring network.

In [41], Hwang and Wright conSidered-the directed version of the chordal ring network
and made a slight generalization en the ring links. " More specifically, a directed chordal ring
network DCR(N;s,w), where N“is even and both's and w are odd, can be modeled by

using a digraph with N nodes 0,1, .3 N= 1 and 3N /2 links:

i—(i+s)mod N, i=0,1,2,...,N —1,
i— (i+w)mod N, i=1,3,5...,N—1.

For an example, Fig. 1.1(c) is DCR(14;1,5).
Recently, Chen et al. [20] introduced the mized chordal ring network (MCRN for short)

as a topology of interconnection networks. An MCRN MCR(N;s,w) can be modeled by
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G are
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Figure 1.2: A DLN and an MCRN.

using a digraph with N nodes 0,1,..., N — 1 and 2N links of the following types

ring-links: i— (i+s)mod N, i=0,1,2,...,N —1,
chordal-links: i — (i< w)ymod Ny 4=0,2,4,..., N — 2
chordal-links: ¢ =(7 +w)ymod N, i=1;3,5,...,N — 1,

where N is even, both s and w are odd. Figss1.2(a) and 1.2(b) illustrate DL(14;1,5) and
MCR(14;1,5), respectively.

1.4 Motivation

Since each node in the DLN or MCRN has two in-links and two out-links, the DLN and
MCRN are very comparable!. Throughout this thesis, N denotes the number of nodes in a
communication network. For a fixed N, let Dp(N) and Dycr(N) denote the optimal (i.e.,

smallest) diameter of all DLNs and all MCRNs with N nodes, respectively. A well-known

"When comparing the mixed chordal ring network with the double-loop network, we assume both net-
works have the same number of nodes.
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lower bound on Dpp(N) is as follows [64]:

Dpr(N) > [V3N ] —2. (1.4.1)

For upper bounds on Dpp(N), Hwang and Xu [42] managed to prove, using a heuristic
method, that

Dpr(N)<V3N +2(3N)V4 45 for N> 6348, (1.4.2)

In [57], Rodeseth further improved the above upper bound to be

Dpr(N)<V3N + (3N)V*+2 for N> 1200. (1.4.3)

For MCRNs, Chen et al. [20] showed the following result:

Theorem 1.4.1. [20] There exists a choice-of s andw-such that the diameter of MCR(N; s, w)
is no larger than V2N + 3. In othér words, Dyer(N) < V2N + 3.

Since V2N + 3 is severed as an upper bound; we have
Duer(N) < V2N |+3. (1.4.4)

Note that there exist some erroneous cases in the proof of Theorem 1.4.1 and thus it is
not known whether or not MCRNs can achieve a better diameter than DLNs. In spite of
the erratum in the proof of Theorem 1.4.1, we confirm that MCRNs can achieve a better

diameter than DLNs by giving an improved upper bound on Dycr(N) in Section 5.2 as

Dycr(N) <2 VN2 ]+ 1. (1.4.5)

From equations (1.4.1), (1.4.4) and (1.4.5), we can conclude definitely that the MCRN can
achieve a better diameter than the DLN.
One of the most important and fundamental optimization problem in designing inter-

connection networks is, for a given number of nodes N, how to find an optimal network with
9
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the smallest diameter and to give the construction of such a network. More precisely, for
double-loop networks, DL(N; s1, s9) is optimal if the diameter of DL(N, s1, s5) is equal to
Dpr(N). This optimization problem for the double-loop network has been widely studied
in the literature [2, 9, 10, 14, 15, 16, 30, 32, 42, 59]. However, to the best of our knowledge,
there is no result about the exact value of Dycr(N) in the literature.

Message routing is a fundamental and important function in interconnection networks.
Efficient message routing not only can reduce the transmission delay but also can improve
the network utilization. A routing algorithm is said to be optimal if every message is
sent along a shortest path from its source node to its destination node. There has been a
numerous amount of work on message routing in DLNs [22, 23, 35, 36, 40, 49]. In particular,
it has been studied with respect to network applications such as message routing [35, 36, 49],
permutation routing [40] and fault-tolerant routing (23, 49].

The minimum distance diagram (MDD_for shert), also called optimal routing region in
[27], is a tool to encode distancesrelated information such as diameter and shortest route
for multi-loop networks. It is well-known that the MDD of a DLN always forms an L-shape
and one can compute the diameter and the average distance of a DLN from the lengths
of segments on the boundary of an L-shape-in-constant time [33]. Cheng and Hwang [21]
proposed an O(log N)-time algorithm to derive the lengths of segments on the boundary of
the L-shape of DL(N; sy, sg). Furthermore, many researchers addressed designing efficient
routing algorithms or fault-tolerant routing by using the L-shapes [22, 23, 36, 49]. For
further results of the DLN; see the excellent survey papers [9, 38, 39].

In contrast to the DLN, there has been little work reported in the literature on distance-
related problems of MCRNs. To the best of our knowledge, neither the diameter-computating
strategy nor the message-routing strategy was found in the literature. A natural question
arises, namely, whether the diameter computation and the message routing in MCRNs can

be done efficiently as in DLNs. Table 1.1 shows a comparison of previous results between

10
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DLNs and MCRNSs.

Table 1.1: Previous results on double-loop networks and mixed chordal ring networks.

DLN MCRN
MDD construction [64] ?
Diameter computation 21, 66] ?
Optimal networks (10, 14, 15, 59 ?
Node-to-node routing 22, 35, 36] ?
Fault-tolerant routing [23, 36, 49] ?

1.5 Summary of the Contribution of This Research

In this section, we present a summary of the specific problems analyzed and the results
derived in this thesis. The contribution of our research will be introduced in Chapters 3-7.

In Chapter 3, we consider the.problem of exploring and constructing the MDD of a
MCRN MCR(N;s,w). Specifically, we introduce the PSEUDOMDD that helps study the
distance-related problems in MCRNs. ¢ By mapping. the nodes of a MCRN to the two-
dimensional integer lattice, one can study the distance properties between the nodes of a
MCRN. Due to the tessellation of the plane formed by PSEUDOMDD, we successfully obtain
the MDD of a given MCRN from the PSEUDOMDD in a simple manner. In the last section
of this chapter, we give an algorithm to construct the MDD of a MCRN. The visualization
tool established in this chapter will be used throughout this thesis.

In Chapter 4, we consider the problem of computing the diameter of an MCRN. Instead
of constructing the MDD of an MCRN first, we present a subroutine that can compute
the maximum of distances of the nodes in the MDD to the node at the origin in constant
time as long as we have the L-shape of the PSEUDOMDD. As an application, we obtain an
algorithm that can compute the diameter of a given MCRN in O(log V) worst-case time in

Section 4.2.
11
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In Chapter 5, we discuss the problem of finding optimal MCRNs. In other words, we
are interested in finding MCRNs which achieve the smallest diameter among all MCRNs
with the same number of nodes. Due to the difficulty of this optimization problem, we
aim at looking for bounds on Dy;cr(N) instead of finding optimal MCRNs directly. In
Section 5.3, we successfully obtains a class of optimal MCRNs which matches the upper and
lower bounds presented in Sections 5.1 and 5.2.

In Chapter 6, we consider the problem of routing in MCRNs. In particular, routing of
node-to-node message with at most one faulty element in MCRNs is considered. We design
and present two optimal node-to-node routing algorithms and an optimal fault-tolerant
routing algorithm for MCRNSs.

The two optimal node-to-node routing algorithms presented are shortest-path-based rout-
ing and dynamic routing. The shortest-path-based routing algorithm computes the routing
parameter that can be used to detérmine a routing path: . This algorithm takes O(log NV)-
time for a source node to compute the routing parameter,~and each node on the routing
path can take constant time to determine thelink (and therefore the node) to send messages
according to the routing parameters On the other-hand, for-the dynamic routing algorithm,
after an O(log IV)-time precalculation to determine-the network parameters (only computed
once and stored them in all nodes), it can route messages using constant time at each node
along the routing path. The routing path is augmented on-the-fly at each routing step.
A shortest-path-based routing algorithm is presented in Section 6.1. A dynamic routing
algorithm is presented in Section 6.2.

In Section 6.3, we present an optimal fault-tolerant routing algorithm for MCRNs. The
algorithm does not require routing tables; it is efficient and it requires very little computa-
tional overhead. After an O(log N)-time precalculation, the algorithm can route messages
to the destination using a constant time at each node along the route. Moreover, the fault-

tolerant algorithm presented is guaranteed to find the optimal route at the presence of up

12
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to one node or link failure.

Here we summarize the contribution of this thesis: it proposes

(a) an algorithm to construct the MDDs of a mixed chordal ring network,

(b) an efficient algorithm to compute the diameter of a mixed chordal ring network,
(¢) improved upper and lower bounds on Dycr(N),

(d) two optimal node-to-node routing algorithms for mixed chordal ring networks,

(e) an optimal fault-tolerant routing algorithm for mixed chordal ring networks.

13



Chapter 2

Background Material

In this chapter, we present some background material on the double-loop network and the
mixed chordal ring network, as well as some previous results related to both networks. In
addition, some fundamental concepts of graph theory are'given first. Our terminologies and

notations of graph theory are standard; see-[63] and also [13].

2.1 Fundamental Concepts of Graph Theory

A graph G with n vertices and m edges consists of the vertex set V(G) = { vy, va,...,v, }
and edge set E(G) = { ey, ea,...,6e, }, where each edge consists of two (possibly equal)
vertices called, endpoints. An element in V(G) is called a vertex of G. An element in E(G)
is called an edge of G. When vertices u and v are the endpoints of an edge e, they are
adjacent and are neighbors. We write (u,v) when { u,v } € E(G). A loop is an edge whose
endpoints are equal. Multiple edges are edges having the same pair of endpoints. A simple
graph is a graph having no loops or multiple edges.

A directed graph or digraph G consists of a vertex set V(G) and an edge set (or arc set)

E(G), where each edge is an ordered pair of vertices. The first vertex of the ordered pair is

14
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the tail of the edge, and the second is the head; together, they are the endpoints. We say
that an edge is an edge from its tail to its head. We write u — v when there is an edge from
u to v. In a digraph, a loop is an edge whose endpoints are equal. Multiple edges are edges
having the same ordered pair of endpoints. A digraph is simple if each ordered pair is the
head and tail of at most one edge. For a vertex v of a digraph G, the outdegree d*(v) the
number of edges with tail v. The indegree d~(v) is the number of edges with head wv.

Unless otherwise specified, the following definitions and terms hold for both graphs and
digraphs. A separating set or vertex cut of a graph G is a set S C V(G) such that G\ S
has more than one component. A graph is k-connected if every separating set has at least
k vertices. A digraph G is strongly connected or strong if there is a path from u to v in G
for every ordered pair u,v € V(G). A digraph G is strongly k-connected if |V (G)| > k+1
and every separating set of G' has at least k- vertices:

An isomorphism from a simple graph G to asimple graph H is a bijection f : V(G) —
V(H) such that { u,v} € E(G)xf and ounly if { f(u), f(v)} € E(H). An automorphism
of G is an isomorphism from G 'into G. A-graph G is wvertex-transitive if for every pair

u,v € V(G), there is an automorphism that maps w to v.

2.2 The Double-loop Network

A double-loop network (DLN for short) DL(N; sy, s2) can be modeled by using a digraph
with NV nodes 0,1,..., N — 1 and 2N links

i—(i+s)mod N, i=0,1,2,....,N—1,
i—(i+s)mod N, i=0,1,2,....,N—1,

where 0 < s; # so < N. The integers sy, sy are called steps or hops or jumps. The

connectivity of the DLN has been determined by Doorn [60] (or see [38]):

15
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Theorem 2.2.1. [38] DL(N; s1, s9) is strongly 2-connected if and only if gcd(N, s1, $2) = 1.

It is well-known [34] that DL(N; sq, s2) is a Cayley digraph of the cyclic group Zy with
the set of generators {si,ss}. Since Cayley digraphs are vertex-transitive, the distance-
related problems of DLNs can be reduced to the problem of studying paths originated at
a fixed vertex!, usually node 0. A visualization tool that allows studying distance-related
problems of DLNs from a geometric point of view is set up as follows: Consider the two-
dimensional integer lattice Z x Z. Given DL(N; sy, s2), label each lattice point (z,y) (i.e.,
x and y being integers) of Z x Z by (xs1 + ys2) mod N. Unless otherwise specified, we refer
to a point as a lattice point.

A minimum distance diagram (MDD) of DL(N; s, s9) is an array with node 0 at point
(0,0) and node u at point (z,y) if and only if zs; + ysy = u (mod N) and x + y is the
minimum among all (2’,3') satisfyingsthe congruence,” Namely, a shortest path from node
0 to node w is through taking x sy=steps-and y $»-steps (in-any order). Note that an MDD
includes every node exactly once: Most authors [2; 12, 18,719, 21, 33, 38] always “break
ties” lexicographically (choose with smaller ) whenever there are two (z,y)’s satisfying
xs1 + yse = u (mod N). Without thisiconvention, Sabariego and Santos [58] showed that
every DLN has at most two MDD’s. Throughout this thesis, we follow the convention
used in the literature, i.e., we assume a DLN has only one MDD constructed by using the
convention. Fig. 2.1(a) illustrates the MDD of DL(14;1,5).

It is well-known [64] that the MDD of a DLN is of a definite form: an L-shape. The
L-shape is determined by four parameters (¢, h, p, n); these four parameters are the lengths
of four of the six segments on the boundary of the L-shape; see Fig. 2.1(a). For example,
the MDD in Fig. 2.1(a) has an L-shape (¢, h,p,n) = (5,3,1,1). An L-shape is degenerate if

its shape is a rectangle; for example, the MDD in Fig. 2.1(b) is degenerate.

L Although a network and the graph modeling it are conceptually distinct, we shall use the terms “node”
and “verex” interchangeably when there is no ambiguity.
16
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(_A_\
10 [ 11112 ] 13 } n 0
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/

(a) An MDD of DL(14;1,5). (b) An MDD of DL(10;2,7).

Figure 2.1: MDDs of DLNSs.

Fiol et al. [33] observed that the distribution of all points with the same label repeat
periodically and an MDD always tessellates the plane regardless of whether its L-shape is
degenerate or not. By considering the relative positions of point with the label 0, Fiol et al.

derived the following congruences:

lsP+ nss—= (mod N)

0
(2.2.1)
—ps; +hsy = 0 (mod N).

Let vectors a« = (¢, —n) and B =_(=pyh): It is-known that all the points with the label
0 can be generated by repeatedly adding =a._and.-4/3 to each new point with the label 0.
Moreover, if one location of node u is known, then the positions of all other points with the
label u can be expressed in terms of e and 3 [27].

Chen and Hwang [17] used the observation (2.2.1) to prove that an L-shape is degenerate
if and only if exactly one of the two congruences: ¢s; = 0 mod N and hsy = 0 mod N is
satisfied. They introduced the Chen-Hwang-Rules [17] to define the lengths of segments on
the boundary of the L-shape when an L-shape is degenerate; see Fig. 2.2. As an example,
the L-shape of DL(10;2,7) in Fig. 2.1(b) is (5,2,2,0).

Wong and Coppersmith [64] gave an O(N)-time algorithm to construct an MDD (hence
the L-shape) diagonally starting from point (0,0). Specifically, consider filling numbers in

17
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Rule 1. Suppose hsg # ¢s; = 0 (mod N). Let the zero immediately above the L-
shape be at point (i,h). Then p =/¢ —i, n=0.

Rule 2. Suppose ¢s; # hsy = 0 (mod N). Let the zero immediately to the right of
the L-shape be at point (¢,j). Then p =0, n="h — j.

Rule 3. Suppose ¢s; = hsg = 0 (mod N). If h > ¢, follow Rule 1; otherwise, follow
Rule 2. Note that for an L-shape (¢, h,p,n), we have £ > 0,h > 0,p > 0,n >
0, p and n not both zero.

Figure 2.2: Chen-Hwang-Rules

0 0 0
21141215811 2101413 17110 21013 1 | 4] 7
il 7 (1013 1] 4 15191131216 5|18 |11 |14]2
ol 0| 3]1619]12(0 of 04 ]8]12]1 of 0 3[6[9]12]0
0 1 2 3 4 0 1 2 3 4 0 1 2 3 4
( £7h7p’n) :(533)2’0) (e’h9p9n) :(55350’1) (e’hipin) :(5 93 90’3)
(a) Rule 1 (b) Rule 2 (c) Rule 3

Figure 2.3: The (¢, h, pyn) determined by the Chen-Hwang-Rules in [17].

{(z,y) |z >0,y >0,z € Z,y € Z}. Startfrom the origin (0, 0), then the line (1, 0), (0,
1), and then the line (2, 0), (1, 1),(0,.2);'and so on." At‘each lattice point (x,y) (i.e., =,y
being integers), if the value u, where zsy #ySy=u (mod N), has not appeared so far, we
fill w at point (x,y), otherwise we just leave a blank. We stop when all values of u, i.e.
u=0,1,..., N — 1, have been accounted for.

Cheng and Hwang [21] gavn an O(log N)-time algorithm, we call it Cheng-Hwang-
Algorithm, based on the Euclidean algorithm, to compute the L-shape (¢, h,p,n). For the
completeness of this thesis, the Cheng-Hwang-Algorithm is given in Appendix A.

However, when an L-shape is degenerate, the solution of (¢, h, p,n) determined by Chen-
Hwang-Rules [17] does not always coincide with the values determined by the Cheng-Hwang-
Algorithm [21]. One such example is that for DL(15;4,5), Chen-Hwang-Rules determines

the L-shape (¢,h,p,n) = (5,3,0,1), whereas Cheng-Hwang-Algorithm determines the L-
18
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n=4
0 =1 0 p=5
R ENEARER R EREARER
s s o |26 s |o|3]2]e
0o 4|8 |12]1 048 |12]1
(=5 (=5

Figure 2.4: The inconsistency between Chen-Hwang-Rules and Cheng-Hwang-Algorithm.

shape (¢, h,p,n) = (5,7,5,4); see Fig. 2.4.

Clearly, the result determined by Chen-Hwang-Rules is more accurate and precise. In ad-
dition, our algorithms (diameter-computing-algorithm, routing algorithm) for the distance-
related problems on the MCRNs highly rely on the correct information of the L-shapes.
Thus, to overcome this problem, Lee, Lan and Chen [45] proposed a simple modification to
the Cheng-Hwang-Algorithm as follows: Let (Z, iz, p.n) denote the solution of Cheng-Hwang-

Algorithm and (¢, h, p,n), the solution\of Chen-Hwang-Rales.

Theorem 2.2.2. [45] Given DL(N; sy, s2), let d = ged(N, s1), d' = ged(N, s2). Then

1. If DL(N;; s1, s2) satisfies d > 1 and there exists 1 < j < min{d' — 1,4 — 1} such that

~

d's; = jsy (mod N) with j < 2%, then (=10, h=h-—

p=0, n=7j.

\'3>

2. If DL(N; sy, s2) satisfiesd > 1,d > 1 and d'sy = dsy =0 (mod N) and d < d', then

19
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2.3 The Mixed Chordal Ring Network

A mized chordal ring network (MCRN for short) MCR(N; s, w) can be modeled by using a

digraph with N nodes 0,1,..., N — 1 and 2N links of the following types

ring-links: i— (i+s)mod N, i=0,1,2,...,N —1,
chordal-links: ¢ — (i —w) mod N, i=0,2,4,...,N —2,
chordal-links: ¢ — (i +w) mod N, ¢=1,3,5,...,N — 1,

where N is even, both s and w are odd, and 0 < s # w < N. It should be noted that the
parameters s and w should satisfy s+ w # N in order to prevent the multiple links between
two nodes of the digraph, which means a waste of the hardware. Chen, Hwang and Liu [20]

proved the following theorem.
Theorem 2.3.1. [20] MCR(N; s,av) is strongly 2-connected if and only if gcd(N, s,w) = 1.

The proofs of equation (1.4.4) and Theorem 2.3.1 are based on the idea of embedding
a MCRN into a DLN. Specifically, Chen; Hwang and Liw [20] showed that the MCRN

MCR(N;s,w) can be embedded into the DLN DL(55£3% 1) by combining nodes 2k + 1

and 2k+1+w as supernode k* forall k = 0,1,..., N/2—1, where *5* = (%) mod g, SJFT’“ =

(2w

5 ) mod % They used this idea to obtain the connectivity and diameter information of

the MCRNs. However, we observe that this embedding sometimes fails. Take MCR(10;1,5)
as an example; its corresponding DLN is DL(%; 1;25, 1;—5), i.e., DL(5;3,3), which is clearly
not a valid DLN, yet MCR(10;1,5) is a valid mixed chordal ring network. In general,
MCR(2(2k +1);1,2k + 1) can not be embedded into a valid DLN. The idea used in [20] to

prove Theorem 2.3.1 is to show that MCR(N;s,w) is strongly 2-connected if and only if

its corresponding DLN DL(%; =, S”;w) is strongly 2-connected. We now correct the proof.

First, a lemma is needed.

20
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Lemma 2.3.2. For MCR(N;s,w),

1 ifw # 3 N then DL(% S0 ) s a double-loop network;

2. if w = %, then DL(%; sSw =) s not a double-loop network and MCR(N' s, %) is

itself the double-loop network DL(Nj s, %)

Proof. DL(5;25%,2£%) is not a valid double-loop network whenever 2% = 0 (mod )
or 252 =0 (mod %) or 5% = =% (mod 5) or ged(F, 552, #£%) # 1. Since we assume

s #w and s+ w # N, it is impossible that 2% = 0 (mod &) or 2 =0 (mod ). Also,

s = #£0 (mod &) if and only if w = 5. In addition, we have assumed ged(N, s, w) = 1;

|z

therefore gcd(%, s, =) = 1. Thus we have the first if-statement. When w = g, %

(mod N) occurs and the chordal-links of MCR(N; s, w) become:
— (i + §)med-N, i =0,1, "N — 1.

Thus MCR(Nj; s, %) is itself therdouble-loop network DL(N; s, %) with steps s and N/2,

and we have the second if-statement. O

Lemma 2.3.2 shows that DL(%; 5522

51 T )ds-avalid embedding if and only if w # % In

20], the following lemma is proved.
Lemma 2.3.3. ([20]) MCR(N;s,w) is strongly connected if and only if gcd(N, s, w) = 1.

Now we give a correct proof for Theorem 2.3.1.

Proof of Theorem 2.3.1: Necessity. Since MCR(N;s,w) is strongly 2-connected, it is
also strongly connected. Thus, this part follows directly from Lemma 2.3.3.
Sufficiency. There are two cases.

Case 1: w # 5 ¥ Then by Lemma 2.3.2, DL(% is a double-loop network. Since

w# &, 550 4 = Since ged(N, s, w) =1, %id(% 5%, #5%) = 1. Thus by Theorem 2.2.1,
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DL(%; 252, #1%) is strongly 2-connected. Since the two nodes in each super-node can reach
each other through the chordal-links between them, M CR(N; s, w) is strongly 2-connected.
Case 2: w = . By Lemma 2.3.2, MCR(N; 5, w) is itself the double-loop network DL(N; s, w).
Thus by Theorem 2.2.1 and by the assumption that ged(N,s,w) = 1, MCR(N;s,w) is

strongly 2-connected. O

Being vertex-transitive (or vertex symmetric) is a desirable property of an efficient net-
work topology. Intuitively, a vertex-transitive network looks the same from any node. This
property reduces the complexity of distance-related problems. For example, it allows the
use of an identical routing algorithm at every node. However, as was pointed out in [44], an
MCRN may fail to be vertex-transitive. One such example is MCR(12;3,5), in which node
0 can reach any node within 4 steps, while it takes 5 steps for node 1 to reach node 8.

Although an MCRN may fail to be vertex-transitive,.it does satisfy the even-odd-vertex-
transitive property: for every pair,of vertices u, v. € {0, 157, N — 1} with the same parity,
there is an automorphism ¢ that- maps u to v. ‘In‘other words, in an MCRN, all even-
numbered nodes are symmetric and all odd-numbered nodes are symmetric. By using this
property, we may pay our attention te node 0 and node+l without loss of generality. In
Theorem 2.3.4, we further prove that node 1-can be regarded as an even-numbered node in
another MCRN.

Two MCRNs MCR(N;s,w) and MCR(N;s',w') are said to be strongly isomorphic if
there is a bijection ¢ from the nodes of MCR(N; s, w) to the nodes of MCR(N; ', w') such

that (v +s) = p(v) + ¢’ for all nodes v and either

!/

o(v —w) =p(v) —w', for even v and even ¢(v);
o(v+w)=p)+w, foroddwvand odd p(v).

or

{ o(v —w) =p(v)+w, foreven v and odd p(v);
/

ov+w)=p(v)— for odd v and even ¢(v).
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Theorem 2.3.4. MCR(N;s,w) and MCR(N;s, N —w) are strongly isomorphic.

Proof. Let the bijection from the nodes of MCR(N; s, w) to the nodes of MCR(N; s, N —w)
be
o(v) = (v+w) mod N. (2.3.1)

It is not difficult to check that p(v+s) = ¢(v)+s for all nodes v and p(v—w) = p(v)+N —w
for even v and odd ¢(v); ¢(v +w) = ¢(v) — N + w for odd v and even ¢(v). Therefore
MCR(N;s,w) and MCR(N;s, N —w) are strongly isomorphic. O

For convenience, the function in (2.3.1) is called the renaming function. From the above
discussion, throughout this thesis, we will assume that MCR(N; s, w) satisfies the following
conditions:

s#w, s+w# N, w#£N2 and gcd(N,s,w) = 1. (2.3.2)

The first two assumptions are from the definition of the. MCRN in order to prevent mul-
tiple links between two nodes. .The reason for the assumption w # N/2 is that since
MCR(N; s, %) is DL(N; s, %) and many previous results of DLNs can apply on it. Besides,
since we only consider connected graph; the last assumption ensure the MCRN being strongly
connected. Furthermore, by the even-odd-vertex-transitive property of MCRNs, without loss
of generality, we may restrict our discussion on node 0 and node 1 (to obtain the diameter
and to obtain a routing path). Moreover, by Theorem 2.3.4, node 1 of MCR(N;s,w) can
be regarded as the even-numbered node (1 + w) mod N in MCR(N;s, N — w); the node
(1 4+ w) mod N can be further regarded as node 0 in MCR(N;s, N —w).
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Chapter 3

The Minimum Distance Diagrams of

Mixed Chordal Ring Networks

The purpose of this chapter is to explore and to investigate the minimum distance diagrams
of mixed chordal ring networks. Results-derived from this chapter have been submitted to
[43]. The definition of the minimum distance diagrams of a.mixed chordal ring network is

given in Section 3.3.

3.1 The Two-Dimensional Integer Lattice Environment

One approach to study the distance-related problems of MCRNSs is as that of in DLNs: Maps
(or labels) each point of the two-dimensional integer lattice ZT x ZT to a node of a given
MCRN. However, since an MCRN is only even-odd-vertex-transitive, it is not clear how to
label each point of Z* x Z* for a given MCRN. In other words, how to define the labeling
function from the points of Z™ x Z* to the nodes of a given MCRN is our first issue. In
the following, the labeling function we defined is based on the PSEUDOMDD introduced in

Section 3.1.1.
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Figure 3.1: Embedding a mixed chordal ring network into a double-loop network.

3.1.1 The Embedding Technique and the PseudoMDD

Graph embedding is an important technique as we can take the advantage of all the known re-

sults about the host graph and apply these results on the guest graph. Given an MCR(N; s, w)

with w # N/2, we can embed MCR(N; s, w)pinto, DL (%, 5, ”Tw) by combining nodes

2k and 2k — w as supernode k* for all’ k"= 0,1,..., N/2— 1. Note that, unless otherwise

sS—w

2

means (S_Qw) mod %, s—;w means (HT“’) mod %, nodes of an MCRN are taken

specified,
modulo N (thus node u means node v mod N); and nodes-of a DLN with N/2 nodes are
taken modulo N/2 (thus node v means nodewmodN/2)/ Figs. 3.1(a) and 3.1(b) illustrate
the embedding of MCR(14;1,5) inte DL(7;5,3) and-the bold rounded rectangles indicate
the supernodes (host nodes). Since we can embed an MCRN into a DLN, we can embed an
MCRN into the MDD of the corresponding DLN. Given MCR(N; s,w), the PSEUDOMDD

is constructed as follows: (see Figs. 3.1(c) and 3.1(d)):

pseudoMDD: Replace each node u in the MDD of DL (%, =, SJFT“’) with two

nodes 2u and 2u — w. If w is at point (z,y), then 2u and 2u — w are at points

(2x,y) and (22 + 1,y), respectively.

Recall that the MDD of a DLN always forms an L-shape, and this MDD tessellates the
plane. Since a PSEUDOMDD provides a one-to-one correspondence between the correspond-

ing DLN’s MDD’s and the PSEUDOMDD'’s, it is obvious that a PSEUDOMDD is also an
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Figure 3.2: The tessellation of the plane formed by the PSEUDOMDD of MCR(22;1,7).

L-shape, but the length of the horizontal segment on the boundary of the PSEUDOMDD is
twice of that of the corresponding DLN’s MDD. For example in Figs. 3.1(c)(d), the PSEU-
DOMDD has an L-shape (¢, h,p,n) = (4,4,2,1), whereas the corresponding DLN’s MDD

has an L-shape (¢, h,p,n) = (2,4,1,1). We have thefollowing fact.

Fact. A PSEUDOMDD has the following properties.
(i) It contains every node of the MCRN exactly once.

(ii) The shape is always an L-shape with parameters (2¢, h,2p,n) whenever the corre-

sponding DLN’s MDD has an L-shape (£;h;p,n).

(iii) It always tessellates the plane (see Fig. 3.2 for an example).

The name “PSEUDOMDD” comes from the reason that a PSEUDOMDD may fail to be a
“minimum” distance diagram. For example, consider Fig. 3.2. Both points (8,0) and (6, 2)
represent node 20. However, the distance (minimum number of links) from point (0,0) to
(8,0) is 8 (the unique shortest path is 0 — 15 — 16 -9 — 10 — 3 — 4 — 19 — 20) while
the distance from point (0,0) to (6,2) is 6 (one of the shortest pathis 0 - 1 — 2 — 3 —
4 — 19 — 20), yet point (8,0) is inside the PSEUDOMDD. Note that some PSEUDOMDD’s

are indeed MDD’s. See Section 3.3 for more further discussion.
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3.1.

INTEGER LATTICE

3.1.2 The Labeling Function

Recall that a node u at point (z,y) of the MDD of DL (%, =, Sgw) satisfies

e((54) + (1) = (woad )

By the construction of the PSEUDOMDD of MCR(N;s,w), nodes 2u and 2u — w of

MCR(N;s,w) are at points (2z,y) and (2x + 1,y), respectively. As a result, the label-

ing function for point z = (z,y) is

(s —w)+y(s+w) (mod N) if x is even;

(%1) (s —w) +y(s+w) myw (mod N) if x is odd.

Or, equivalently

0 1 2 3 4 5

Figure 3.3: The labels for each point in the plane.
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Table 3.1: The nodes that can be reached from node u by using one link.

Node u at point (z,y) node at point
. u+ s (x+1,y+1)
x is even
u—w (x+1,y)
x is odd uts (v +1,y)
u+w (x—1,9)

3.1.3 The Interconnection Rules

It should be noticed that the interconnection rules between adjacent points in the two-
dimensional integer lattice are quite different from those of DLNs (recall that in DLNs, each
point can reach either an east or a north point). Roughly speaking, a point (z,y) can reach
either a) east or northeast points or b) east or west points, depending on the parity of x.
Nodes that can be reached from node u.at point («,4) are shown in Fig. 3.4 and Table 3.1.

Note that we will only consider pointsin Z* X Zt={(zy) € Z X Z |2 >0,y >0 }.

yH uts
y utw —» u = u-w [ o utwsg®= u —»uts
x-1 x x+1 x-1 x x+1
(a) x is even (b) x is odd

Figure 3.4: The interconnection rules.

3.1.4 The Distance-related Properties

Some distance-related properties will be investigated in this section. For convenience, some
notations will be introduced first. Define the parity of an integer x to be 0 if (x mod 2)

equals to 0 and 1 if (x mod 2) equals to 1. The parity of an integer z is denoted by parity(z).
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Partition Z* x ZT into I'" and T'" as follows:
"= {(r,y) €Z" xZ" |2>2y>0} and T™ = { (2,y) € Z" xZT |[0<z <2y }.

Each point z = (z,y) of Z* x Z" is associated with a distance (or norm), denoted by A(z),
which is the minimum number of links that needs to be traversed from point (0, 0) to (x,y).

The distance for each point can be determined as follows.

Lemma 3.1.1. The distance of point z = (x,y) is

x ifz €T,
Az) = (3.1.3)

2y — parity(x) ifze .

Proof. We prove this lemma by induetion on = and y. Forthe basis step, clearly, A((0,0)) =
0, A((z,0)) = =, A((0,y)) = 2y.and thus (3:1.3) holds.| For the induction step, suppose
(3.1.3) holds for points (z — 1,y)y(x — 1,y = 1) and (z,y —1). Now consider point (z,vy),
where x > 1 and y > 1.
Case 1: x is even. Then A((x,y)) = min { dy, do}ywhere d; = A((x — 1,y)) + 1 and
do = A((z,y — 1)) + 2.

Subcase 1.1: x > 2y. By the induction hypothesis, dy = + 2. If x — 1 > 2y, then by
the induction hypothesis, d; = z; if + — 1 < 2y, then we have x = 2y and hence, by the
induction hypothesis, d; = x. Therefore A((x,y)) = x and (3.1.3) holds.

Subcase 1.2: x < 2y. By the induction hypothesis, d; = 2y. If © > 2(y — 1), then
x = 2y — 2. By the induction hypothesis dy = 2y; if x < 2(y — 1), then by the induction
hypothesis dy = 2y. Therefore A((x,y)) = 2y and (3.1.3) holds.

Case 2: x is odd. Then A((z,y)) = min{d,ds }, where d; = A((x — 1,y)) + 1 and
dy=A((x —1,y—1))+ 1.
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Subcase 2.1: x > 2y. If x —1 > 2y, then by the induction hypothesis, d; = dy = x; if
x —1 < 2y, then we have = 2y, a contradiction to odd x. Hence A((z,y)) = z and (3.1.3)
holds.

Subcase 2.2: x < 2y. Clearly by the induction hypothesis, d; = 2y+1. lf z—1 > 2(y—1)
then # = 2y — 1 and, by the induction hypothesis, do = = =2y — 1; if x — 1 < 2(y — 1)
then by the induction hypothesis, do = 2y — 1. Therefore A((x,y)) = 2y — 1 and (3.1.3)

holds. O

Note that the distance function for point (z,y) in the two-dimensional integer lattice is
quite different from the standard one (i.e., |z] + |y|). A tool that can compare the distances
of the two points is given as follows. For point z = (x,y) and vector v = (v, vy) with vy, vy

being integers, let z 4+ v denote the point (x 4 vy, y + v5). Then:

Lemma 3.1.2. Suppose v = (v, vo) with evenvy. Theniwe have A(z) < A(z + v) if
(i) zeT" and vy > 0,v, <0 or,

(ii) z€eT" and vy < 0,9 >0 or

(iii) vy > 0 and vy > 0.

Proof. Since v, is even, parity(z) = parity(x+wv;). The first two cases (i) and (ii) come from
(3.1.3) undoubtedly. Now consider case (iii). If 2 and z + v are both in I'" ( or I'"), then
the result is easy to see. Suppose z € I'" and z+wv € I'". Let 2’ = (z+wvy,y). Since v; > 0,
clearly 2 € T'". By (3.1.3), A(z) = x, A(2') = 2+ v, and A(z +v) = 2y + 2v, — parity(x).
Since z + v € I'", we have = + vy < 2y + 2vy. Therefore A(z) < A(2") < A(z + v) holds.

The case of z € I'” and z + v € I'" is similar to obtain. O

Note that if point z + v is outside Z* x Z*, then we may simply let A(z + v) = oo to

ensure the correctness of Lemma 3.1.2.
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3.2 Finding an Optimal Copy

Suppose the PSEUDOMDD of MCR(N;s,w) has an L-shape (2¢,h,2p,n). The following
two vectors that characterize the shape of the PSEUDOMDD are crucial in the remaining

discussion and are defined by

Since a PSEUDOMDD consists of N points, for each node v € {0,1,..., N — 1}, there is
exactly one point of the PSEUDOMDD with label v and we denote this point by m,. In
Zt x Z7T, points having the same label as 7, are called copies (or relocations) of m,. The
set of all points with label u is denoted by II,. Since a PSEUDOMDD can tessellate the
plane, by considering all points with label0; we perspicuously have that all the other copies
of 7y can be expressed in terms of.a’and-3. More generally, point 7 is a copy of point 7,
if and only if # = 7, + i + j3 for some integers i, j; see Fig. 3.5. Given a m,, define R

and RP as follows:
RC= {7, +ka|keZ k>0 and-RPE {7, +kB|keZ k>0}.

Example. The PSEUDOMDD of MCR(22;1,7) in Fig. 3.5 has an L-shape (2¢, h,2p,n) =
(12,2,2,1) and its shape is characterized by vectors a = (12, —1) and 8 = (-2, —2). For
node u = 20, m, is the point (8,0) and the copies of mr, are enclosed by a circle. RS = ()

(since the points in R are outside Z* x Z*) and R®? = {(8,0), (6,2), (4,4), (2,6), (0,8) }.

The purpose of this section is to look for an optimal copy of =, for each node u €
{0,1,...,N —1} of a given MCRN. We denote the optimal copy of =, by m*. Clearly,
A(m?) < A(w) for all w € II,. Although there are infinite number of copies of 7, in the

two-dimensional integer lattice, in fact, we only need to consider those copies in R® and R
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Figure 3.5: The illustrations of ,, copies of m,, Ry and R’g for u = 20.

since a copy 7 € IT, \ { R} U RP } is either outside Z* x Z* or, by Lemma 3.1.2(iii), has
a larger distance than that of m,.

Each mr, is associated with two points 7wt and 7, defined as follows: If w, € T'F, let
7+ and 7, denote the point in R?such that 7t € F w1, € T and 7w, = « + B.
Similarly, If w,, € T, let .} and s, denote the pointiin \R® such that #} e I'", 7w, € '~
and 7 = 7w, + a; see Fig. 3.6 for illustrations. Take Fig..3.5 for an example. Suppose
w, = (8,0) € T'", then 7} and v, are the point(6,2) and (4,4), respectively; suppose
w, = (0,1) € ", then w;, = (0,1) and\zwr,” = (12,0).Note that for m,, its ;7 or 7, may
not exist. For example, suppose m, = (1,0)'e T'Tlin Fig. 3.5, then m, + B = (—1,2) which
is outside Z* x Z*. In this case, we have A(m, + 3) = oo. The following lemma tells that

. P + _
for each m,, 7} can be found by only considering 7] and 7.

Lemma 3.2.1. A(w}) = min { A(w}), A(w,) }.

u

Proof. Suppose m, € I'". Since 7, — v is outside the first quadrant and by Lemma 3.1.2(i),

A(m,) < Ay, + @) < A(m, 4+ 2a) < ---, we only need to consider points in R?. By
Lemma 3.1.2(i), A(w}) < A(w) — B) < A(w) —28) < ---. By Lemma 3.1.2(ii), A7) <
A, +B8) < A(mw, +28) < ---. Hence A(w}) = min{ A(m, ), A(w,) }. The case of
m, € I'" is similar to prove. O
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Rf‘

Figure 3.6: Two possible ways to find an optimal copy of m,. The left figure is for the m, € I'" case; the
right figure is for the m,, € I'" case.

By using the lengths (24, h, 2p,n) in a PSEUDOMDD), we partition I'" and T~ as follows

(see Fig. 3.7 for an illustration):

I‘+—DI‘;’ and T =[OJI‘;,
i=0 i=0

where

s =
(3.2.1)
and fori € Z,1 > 1
I ={(v,y) €Z* xZ" |2h+ (i —1)- (2h +2p) <a — 2y < 2h+1i- (2h +2p) },
(3.2.2)

Iy ={(z,y) €Z* xZ" | =20 —i-(20+2n) <z —2y < —20— (i —1)(20+2n) }.

According to the relative position of m, in I'" or I'", we can find 7} by using the
following three lemmas (Lemmas 3.2.2, 3.2.3 and 3.2.4). For convenience, the equal sign

followed 7} means “can be chosen as”.

Lemma 3.2.2. If w, belongs to Ty or Ty, then wi = m,.

Proof. Let w, = (z,y). If m, € Tg, then w, + B = (x — 2p,y + h) € I'". This implies
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Figure 3.7: The partitions of ZT x Z™.

wl =m, and w, = w, + (. By (3.1.3), A(w}) = x, A(w,) = 2y + 2h — parity(z) and
A(w!) < A(mr,) holds. By Lemma 3.2.1,@} = @t The case of w, € I'y is similar and we

omit the proof. 0

Lemma 3.2.3. If w, belongs to Fj for some positive integer i, then w* = m, +i- 3.
Proof. Let m, = (z,y), then m, (i — 1) B = (ac =2(i/~d)p,y+ (i — 1)h), T, +i-08=
(x — 2ip,y +ih) and 7, + (i + 1) - B= <x —2(i £ V)psy + (i + 1)h>. It is not difficult to
check that points 7, + (i — 1) -3, w, +i- B3 and 7, + (i + 1) - 3 are inside ZT x ZT. Since
., € T}, we clearly have w, € T'".

Now we further partition I'; into two smaller parts (possibly empty):

WOt = {(zy) €ZT xZT | 2h+(i—1)- (2h+2p) <z —2y <2h+ (i—1)- (2h+2p) +2p },

rRDyT = {(z,y) €Z" xZY |2h+(i—1)- (2h+2p) +2p < x—2y <2h+i-(2h+2p). }

Suppose 7, € It thenw,+(i—1)-8 € Tt and w,+i-B € I'". Hence w} = mw,+(i—

1)-Band 7, = m,+i-B. By (3.1.3), A(w}) = 2—2(i—1)p, A(w,) = 2y+2ih—parity(z) and
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A(mw;) < A(w}!) holds. By Lemma 3.2.1, 7} = 7, +i- 3 and A(w)) = 2y + 2ih — parity(zx)
hold.

Now suppose 7, € grI;*, then w, +i-B3 € I'" and m, + (i + 1) - B € T'". Therefore
nt =mw,+i-Band w, =m, +(i+1) 8. By (3.1.3), A(w}) = « — 2ip, A(m,) =

2y + 2(i + 1)h — parity(x) and A(m}) < A(m, ) holds. Again, by Lemma 3.2.1, we have

ot =m,+1i-0 and A(xw}) =z — 2ip. O
By using similar arguments, we can obtain the following lemma and we omit the proof.
Lemma 3.2.4. If w, belongs to I'; for some positive integer i, then ) = 1, + i - cx.

By combining Lemmas 3.2.2, 3.2.3 and 3.2.4, we can find an optimal copy of m, as

follows.

Theorem 3.2.5. If w, € T} (resps i, € T'7) for some pon-negative integer i, then m' =

w, +1-08 (resp., m, +i- ).

Theorem 3.2.5 states that an“optimal e¢opy of 7, can'be obtained by “moving” 7, to
some other copy in R* or R?. In particulat, if 7, € T') (¥esp., T';), then 7* can be obtained

by moving 7, i steps in R? (resp., R%):

Example. Take MCR(22;1,7) in Fig. 3.5 for an example. For u = 19, we have w, =
(7,0) e I'Y. Hence w* =m, +1-8 = (5,2) and 7, + 1 - 3 has the minimum distance (note
that A(m, + 1-83) = 5) among all points in II,. For u = 14, we have m, = (10,0) € I';.
Hence w} = w, +2-08 = (6,4) and 7, + 2 - B has the minimum distance (note that

u

A(m, +2-3) = 8) among all points in IL,.

Theorem 3.2.6. Given the L-shape (2¢,h,2p,n) of the PSEUDOMDD and an arbitrary
node w of a mized chordal ring network, the location of an optimal copy = of m, can be

computed in constant time if 7w, is known in advance.
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Proof. Suppose 7, = (z,y). Our main issue is to determine the part M, which 7, belongs
to. After that, we can apply Theorem 3.2.5 to obtain 7} in constant time. Clearly, we can
determine whether 7, belongs to I't or I'" by comparing x — 2y with 0. By (3.2.1) and

(3.2.2), if x — 2y — 2h < 0 or & — 2y + 2] >= 0 then we have i = 0. Otherwise, if w, € T'",

, x — 2y —2h
1= |——1;
2h+2p+1]|’

if r, € I'", then ¢ can be determined by

then 7 can be determined by

i —x + 2y — 21
N 2l + 2n ’

Thus, given the L-shape of the PSEUDOMDD of a MCRN, one can determine the part M,
which 7, belongs to in constant time. Qbviously,-the overall process can be done in constant

time, and therefore we have this result. 0

3.3 The Minimum ‘Distance-Diagrams of the Mixed

Chordal Ring Network

Since MCR(N; s, w) satisfies the even-odd-vertex-transitive property, there are two mini-
mum distance diagrams associated with an MCRN: MDDy and MDD;. The formal definition

is given as follows.

Definition. The minimum distance diagram MDDy, A € {0,1} of MCR(N;s,w) is an
array with node A\ at point (0,0) and node u at point z = (x,y) satisfying {(z) = u

(mod N) with x >0,y > 0 and the minimum A(z), where label {(2) is defined in (3.1.1).

By Theorem 2.3.4, the MDD, of MCR(N; s, w) can be constructed by considering MDDy

of MCR(N;s, N—w). By the renaming function in (2.3.1), in the following, we can focus on
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the problem of converting a PSEUDOMDD into MDD,. For convenience, denote the given
PSEUDOMDD by symbol M. Suppose M has an L-shape (2¢,h,2p,n). Let k and ~ be
defined by

h+p

o) [ itezn
o
[h=t=1] i ¢ < b,

l+n

((—h)mod (h+p)  ifl>h

def
’y:
(h—¢—1)mod ({+n) ifl<h

The intersections of T’} (or T';’) and M partition M into s + 1 parts: Let

and for 1 <1 <k,

ML b0
Mi:

MAl;ifl<h

Example. Take the PSEUDOMDD. in Fig. 3.8(b)for an illustration. Clearly M has an
L-shape (12,2,2,1) and M = { (z,y) | 0. <2.:<12,0 <y < 2 and either z < 10 or y < 1 }.
By (3.3) and (3.3), we have x = 2 and v = 2. Thus partition M into three parts as follows:
M, = {(0,0), (1,0), (2,0), (3,0), (0,1), (1,1), (2,1), (3,1), (4, 1), (5,1)}; My = {(4,0),
(5,0), (6,0), (7,0), (8,0), (9,0), (6,1), (7, 1), (8,1), (9, )}; M = {(10,0), (11,0)}.

Theorem 3.3.1. Suppose the PSEUDOMDD of MCR(N; s, w) has an L-shape (2¢, h, 2p,n).
Then MDDg can be constructed by replacing ., with 7, +1i -3 (resp., w, + 1 - a) for each

point m, in M;,0 <i <k if £>h (resp., { < h).

Proof. If £ > h (resp., £ < h), then no point of the PSEUDOMDD is inside T'; (resp., I';")

for i > 1. If £ = h, then all points of the PSEUDOMDD is inside 'y UT,. This theorem
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Figure 3.8: The partition of the PSEUDOMDD.
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Figure 3.9: The MDD, and MDDy of MCR(22;1,7).

comes from Theorem 3.2.5 obviously. O

Figs. 3.9(a) and 3.9(b) illustrate the MDDy and MDDjwof MCR(22;1,7), respectively.
Note that since a PSEUDOMDD always tessellates thé plane and all points in M; move
¢ steps in R, or in Rﬁ to find their optimal copy, we conclude that MDDy and MDD of
MCR(N; s, w) can be obtained by “reassembling” the PSEUDOMDDs of MC'R(N; s, w) and
MCR(N; s, N —w), respectively, according to the rules stated in Theorem 3.3.1. Figs 3.8(b)
and 3.9(a) illustrate the reassembling of the PSEUDOMDD of MCR(22;1,7) into MDD

As a conclusion, the MDD’s of an MCRN can tessellate the plane; see Fig. 3.10.
Theorem 3.3.2. The MDDy, A € { 0,1}, of MCR(N;s,w) can tessellate the plane.

Now we characterize the shape of MDD,. Assume the given PSEUDOMDD has an L-
shape (20, h,2p,n). According to Theorem 3.3.1, the shape of MDD, of the MCRN is shown

in Fig. 3.11. The dashed-curves in this figure indicate the remainder part of the MDD, as it
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Figure3.11: The dimension of MDDy.

depends on the given L-shape. The only situation thatthe given PSEUDOMDD is eventually

an MDD is the case of ¢ = h.

3.4 MDD Construction Algorithm for MCRNs

By the discussion in Sections 3.1 to 3.3, we present our algorithm, called MCRN-MDD-
Algorithm, to construct MDDy and MDD, of a given MCR(N; s, w). This algorithm works
as follows. For the construction of MDD, A € { 0,1 }, the algorithm first computes the L-
shape of PSEUDOMDD of MCR(N;s,w) and MCR(N; s, N—w). Once we have the L-shape

of the PSEUDOMDD), the MDD, can be constructed by sequentially examining (row-by-row
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Algorithm 1 MCRN-MDD-Algorithm

Input: N, s, w.

Output: MDDy and MDD, of MCR(N; s, w).
1: for A<~ 0to1do

2: if A\=1then > Consider MCR(N;s, N —w)

3: w 4 (N —w) mod N

4: end if

5: (205, hy, 2px, ny) < the L-shape of the PSEUDOMDD of MCR(N; s, w)

6: o — (QK)\, —n,\),,ﬂ — (—2]?)\, h>\)

7 for z < 0 to 2/, — 1 do > Row-by-row fashion

8: for y < 0to hy, —1do

9: if v <20, —2p, or y < hy —n, then > (z,y) is inside PSEUDOMDD
10: U — (( L%J + y) 5 — ( (%—‘ — y) w) mod N o> The labeling function (3.1.2)
11: (x*,y*) < an optimal copy of (x,y) > By Theorems 3.2.5 and 3.2.6
12: MDD, [u] < (z*, y*)

13: end if

14: end for

15: end for

16: end for

or column-by-column or diagonal-by-diagonal) each point inside the PSEUDOMDD. After
that, for each point (x,y) in the PSEUDOMDD, the algorithm determine the node u such
that (z,y) has label u. Then, by applying Theorems 3.2:5 and 3.2.6, we can obtain the

location of an optimal copy of m,.

Theorem 3.4.1. MCRN-MDD-Algorithm is correct, and it takes (N )-time.

Proof. The correctness comes from the fact that the PSEUDOMDD contains every node
of a MCRN exactly once and Theorem 3.2.5. Now we analyze the time complexity. It
takes O(log N)-time (by using the Cheng-Hwang-Algorithm [38]) to derive the L-shapes of
PSEUDOMDD in line 5. By Theorem 3.2.6, line 11 can be done in constant time. Since
lines 7-15 examine every point of the PSEUDOMDD exactly once, it takes O(2¢h — 2pn) =
O(N)-time in lines 7-15. Therefore, the total time needed to construct MDD, is O(N).

Since it takes 2(N)-time to construct MDD, we can construct MDD, in time O(N). O
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Chapter 4

The Diameter

In this section, we consider the problem of determining the diameter of a given MCRN.
This problem can be solved straightforwardly! by first constructing MDD, and MDD, of
MCR(N;s,w), and then, finding the point in. MDDgand MDD, that has the maximum
distance. However, this approach takes QN )-time, which is exponential in the input size
(each of the three integers NV, s, w takes at most log N bits). Instead of constructing MDDy
and MDD, first, we give an efficient algorithm to compute the diameter of an MCRN that
takes O(log N) worst-case time, which'is polynomialin‘the input size. Results derived from

this chapter have been submitted to [43].

4.1 The MAXDIST Subroutine

Let d(N; s, w) denote the diameter of MCR(N; s, w). Let dy, A € { 0,1}, denote the max-
imum distance over all points in MDD,, i.e., dy = max{d(\u) |ue {0,1,..., N =1} 1},

where d(u,v) denote the distance between nodes u and v. Clearly

d(N;s,w) =max{do,d; }.
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Suppose for some u, point 7} in MDD, achieves the distance dy. Then dy = A(#}). Given
the L-shape of a PSEUDOMDD, the subroutine MAXDIST shown in Algorithm 2 can compute

dy in constant time.

Theorem 4.1.1. The subroutine MAXDIST is correct and takes constant time to compute
dy.

Proof. The time complexity is easy to see and we now verify the correctness. Given a
PSEUDOMDD with L-shape (24, h,2p,n), there are three cases: (1) £ = h, (2) £ > h, and
(3) ¢ < h. We will only show the details of the first two cases; the case of £ < h is similar
to the case of ¢/ > h and is omitted. Suppose ¢ = h. By Theorem 3.3.1, we know that
this PSEUDOMDD is an MDD. That is, w, = =« for all nodes u. Clearly, if w, € T'",
then A(m,) < 2¢—1; if w, € I'", then &(7,) < 2(h — 1). Choose w = (2¢ — 1,0), then
dy = A(m) = 20 — 1 = 2h — 1. Since MAXDIST seturns 2h — 1 in line 10, MAXDIST is
correct.

Now consider the case of ¢ >+h. By Lemma 3.1.2, we only need to consider the corner

*
u?

point 7, which is at the upperniost, of the rightmest points in MDD, if 7% € T'*, and
is at the point left to the rightmost 6f the-uppermost points in MDD, if 7w} € I'" (since
the rightmost of the uppermost point in MDD, has odd z-coordinate, the point left to this
point has a larger distance by (3.1.3)). Let the pseudo corner point m, be the point in the
PSEUDOMDD such that 7} (an optimal copy of 7, by Theorem 3.2.5) is a corner point.
Note that since MDD, is a reassembling of the PSEUDOMDD, the pseudo corner points
must occur in M ,,_, or M ,.. For convenience, set m = ¢ — p,q = h —n. According to v, we
have the following subcases; see Fig. 4.1.

Subcase 1: v = 0. By (3.3), we have { — h = k(h + p). The pseudo corner points
are mg = (20— 1,¢ — 1) and 7y = (2m — 2,h — 1). Then wy € M, and w; € M,. By
Theorem 3.2.5 and by (3.1.3), A(m}) = 2(k+1)h — 1 and A(w]) = 2(k + 1)h — 2. Therefore
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(a) Subcase 1. (b) Subcase 2. (c) Subcase 3. (d) Subcase 4. (e) Subcase 5.

Figure 4.1: The five subcases of the case £ > h.

dy = A(m)). Since MAXDIST returns 2(x + 1)h — 1 in line 10, MAXDIST is correct.
In the following, we will assume v > 0. By (3.3), we have £ — h = (k — 1)(h + p) + 7.

Subcase 2: 0 < v < h —n. The pseudo corner points are my = (2 — 1,q — 1) and
7w = (20 — 2,y —1). Then wy € M, and my € M,_;. By Theorem 3.2.5 and (3.1.3),
A(ml) = 2kh + 2y — 1 and A(w}) = 2kh+ 277+ 2. Thus d), = A(w}). Since MAXDIST
returns 2kh + 2y — 1 in line 12, MAXDIST is correct.

Subcase 3: h—n <y < h—n4p— 2-The pseudo corner points are oy = (2{ —2,q — 1)
and 7t; = <2€—2(’y—q) —-3,q— 1). Then wg € M, and w1 &M ;. By Theorem 3.2.5 and
by (3.1.3), A(wf) = 2(k + 1)h — 2n'=3 and A(7r}) = 2(k 4 1)h — 2n — 2. Thus d, = A(my).
Since MAXDIST returns 2(x + 1)h — 2 —=2.in line 14, MAXDIST is correct.

Subcase 4: v = h—n+p—1or h—n+p. The pseudo corner points are 7wy = (20—2,q—1),
m = (20 —1,q—1). Then wy € M, and w; € M,. By Theorem 3.2.5 and by (3.1.3),
A(md) =2(k + 1)h — 2n — 2 and

2(k+1)h—2n—-3 ifr=q+p—1,

2(k+1)h—2n—1 ifr=q+p.

Thus dy = A(mg) if vy =q¢+p—1 and dy = A(my) if v = g+ p. Since MAXDIST returns
2(k+1)h — 2n — 2 in line 14 if v = ¢+ p — 1 and returns 2(k + 1)h — 2n — 1 in line 14 if

r = q+ p, MAXDIST is correct.
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Subcase 5: h —n +p <y < h+ p. The pseudo corner points are wg = (2( — 1,¢ — 1)
and 7w = (2m — 2,7 —p —1). Then mwy € M, and w; € M. By Theorem 3.2.5 and by
(3.1.3), A(m}) = 26h — 2p+ 2y — 1 and A(7}) = 2kh — 2p + 2y — 2. Thus d) = A(my).
Since MAXDIST returns 2xh — 2p + 2v — 1 in line 16, MAXDIST is correct.

Note that when v = h —n + p, the value 2(k+ 1)h —2n — 1 is equal to 2kh —2p+ 2y — 1.
Thus we can combine the cases of y =h—n+pand h—n+p < v < h+p. From the above
discussions, MAXDIST is correct. 0

4.2 An Efficient Diameter-computing Algorithm

We present our diameter-computing algorithm, called MCRN-Diameter-Algorithm, in Algo-

rithm 2. We now prove and analyze this-algorithm.

Theorem 4.2.1. MCRN-Diameter:Algorithim is correct and takes O(log N)-time.

Proof. The values of dy and d; can be obtained by finding the maximum distance over all
points in MDDy and MDD, respectively. Thus MDDgy.and MDD, can be obtained from the
PSEUDOMDD’s of MCR(N; s,w) and MCR(N;s, N — w), respectively. Consequently, the
correctness of Algorithm 2 follows from the correctness of subroutine MAXDIST obviously
(see Theorem 4.1.1). We now analyze the time complexity of MCRN-Diameter-Algorithm.
Lines 3-5 take only constant time as the subroutine MAXDIST takes only constant time.
For lines 1-2, the algorithm proposed in [21] can be used to obtain the L-shape of a DLN
and therefore the L-shape of the PSEUDOMDD. Since the algorithm in [21] takes O(log N)-
time, lines 1-2 takes O(log N)-time. As a consequence, MCRN-Diameter-Algorithm takes
O(log N)-time. O
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Algorithm 2 MCRN-Diameter-Algorithm
Input: N, s, w.
Output: The diameter of MCR(N; s, w).
1: (24y, ho, 2po, np) < the L-shape of the PSEUDOMDD of MCR(N; s, w)

: (201, hy,2p1,ny) < the L-shape of the PSEUDOMDD of MCR(N;s, N — w)
3: do — MAXDIST(2€0, ho, 2p0, no)
4: dy <= MAXDIST (244, hy,2p1,n1)

[\

5: return max{ do, d; }

Subroutine MAXDIST (24, h,2p, n)
6: if £ > h then

T K < {ﬁ;_’_};)—‘
80 v+ ({—h)mod (h+p)
9: if v =0 then

10: return 2(k + 1)h — 1

11: else if 0 <y < h —n then

12: return 2xh + 2y — 1

13: else if h —n <~y < h — n+ p then
14: return 2(k + 1)h — 20— 2

15: else

16: return 2xh — 2p + 2y <1

17: end if

18: else >the £ < h case

19: K [

20: v 4 (h—{¢—1)mod ({+n)
21: if v =0 then

22: return 2(x + 1)¢

23: else if 0 <y </ —p then

24: return 2x/( + 2

25: elseif / —p <~y <{—p+nthen
26: return 2(k+ 1) —2p — 1

27: else

28: return 2kl — 2n + 2y

29: end if

30: end if
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Example. Take MCR(22;1,7) as an example. The L-shapes of the PSEUDOMDD of
MCR(22;1,7) and MCR(22;1,22 — 7) are (12,2,2,1) and (4,6,2,1), respectively. First con-
sider dy. We have k = 2,y = 1 and MAXDIST returns dy = 8. Now consider d;. We have
k =1,7 =0 and MAXDIST returns d; = 8. As a conclusion, d(22;1,7) = 8.

Example. Take MCR(12;3,5) as another example. The L-shapes of the PSEUDOMDD
of MCR(12;3,5) and MCR(12;3,12 — 5) are (4,3,0,1) and (6,2,2,0), respectively. First
consider dy. We have k = 0,7 = 0 and MAXDIST returns dy = 4. Now consider d;. We
have k = 1,7 = 1 and MAXDIST returns d; = 5. Thus, d(12;3,5) = 5.

Remark 4.2.2. By the definition of a PSEUDOMDD), the L-shapes of the PSEUDOMDD of
MCR(N;s,w) and MCR(N;s, N —w) can be obtained by first deriving the L-shapes of

DL (§;55%,55%) and DL (£; 5%, 5%) respectively; and then doubling the lengths of ¢

and p. Note that if DL(N; sy, so)-has an-L-shape (€, 71, p,n), then there exists an MDD of
DL(N; sq,s1) such that the MDD-has an L-shape (h, [, nyp).~This is because there is a one-
to-one correspondence between thémode at point (7, v) of ZTXZ" formed by the vertex set of
DL(N; sy, $2) and the node at point (4, z)of Z* x Z" formed by the vertex set DL(N;; s, s1).
Therefore, if (2¢y, hg, 2po, no) is the L-shape of the PSEUDOMDD of MCR(N;s,w), then

(201, h1,2p1,n1) can be set as (2hg, £y, 2ng, po) in line 2 of MCRN-Diameter-Algorithm.

Remark 4.2.3. The computation of MCRN-Diameter-Algorithm highly relies on the compu-
tation of DLN’s L-shape. To the best of our knowledge, the fastest algorithm that can com-
pute the L-shape of a DLN has the same time complexity as MCRN-Diameter-Algorithm,
which is O(log N)-time. Therefore, any algorithm that can compute the DLN’s L-shape in

o(log N)-time can also improve the time complexity of MCRN-Diameter-Algorithm.
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Remark 4.2.4. We test MCRN-Diameter-Algorithm for a considerable range of N's (N =
6,8,...,10004, a total of 5000 N’s) with all possible parameters s and w. Compared with
the naive diameter-computing algorithm, Bread-First-Search (BFS), all results of MCRN-

Diameter-Algorithm match with the BFS results.
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Chapter 5

Optimal Mixed Chordal Ring

Networks

Results derived from this chapter haye been published in {44]. Recall that Dycr(N) denotes
the smallest diameter among all MCRNs with N nodes and d(NV; s, w) denotes the diameter
of MCR(N;s,w). One of the most important and fundamental optimization problem in de-
signing interconnection networks is; for a given number of nodes N, how to find an optimal
network with the smallest diameter and to.give the.econstruction of such a network. Specifi-
cally, given an N, we are interested in finding Dy;cr(N) and in finding MCR(N; s, w) with
d(N;s,w) = Dyer(N). MCR(N;s,w) is said to be optimal if d(N;s,w) = Dycr(N).

However, finding optimal MCRNSs is a very difficult problem. The difficulty is due to the
fact that the diameter of MCRNs does not increase monotonically with N. For example,
Dyicr(16) = 6 > 5 = Dyer(18) and Dycr(44) = 10 > 9 = Dyer(46). Thus, there is no
closed formula for Dy;cr(N) up to now. Double-loop networks also have the same difficulty;

see [2, 32, 33]. By taking another approach, we aim at looking for bounds on Dycr(N).
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5.1 Lower Bound

Given a MCR(N; s, w), let nj denote the number of additional nodes that node 0 can reach

in k£ moves. Clearly, ng = 0, ny = 2 and ny = 3. Chen et al. [20] had proven that
ng <ng_1+1 for 2 <k <d(N;s,w). (5.1.1)

In other words, for k£ > 2, the number of additional nodes that node 0 can reach at the kth

move increases by at most 1. We now have the following result.

Theorem 5.1.1. Dycr(N) > [V2N — 3/2] and this bound is tight.

Proof. By (5.1.1),

N < ZZ(:]\(f);s,w) (]{I ) 1) = (d(N;s,w)+2)2(d(N;s,w)+1)'

Therefore, (d(N; s, w))*+3d(N; s, w)~+(2=2N)>0. Since d(N; s, w) is positive, d(N; s, w) >
(VBN +1—3)/2> V2N — 3/2. Since d(N;s,w) s an integer, d(N;s,w) > [V2N —3/2 |.
This bound is tight since d(8;1,3)=3 > Dycr(8)> [V2:8 — 3/2] = 3. O

5.2 Upper Bounds

Although Chen et al [20] proposed an upper bound on Dycr(N) (see Theorem 1.4.1), we
find that there exist some erroneous cases in their proof. We first indicate the erroneous
part in their proof as follows. Consider N = 38. To obtain an upper bound of Dy;cr(38),
Chen et al. [20] will use MCR(38;7,5) and embed MCR(38;7,5) into DL(19;1,6). For

convenience, define N to be a function of N as follows:

N = W@W . (5.2.1)
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Figure 5.1: A counterexample to the proof of Theorem 1.4.1.

The L-shape of DL(19;1,6) has ¢ = 5 and h = 7 (see Fig. 5.1), which has h > N = 6 and

violates

(<N andh =N (5.2.2)

needed in the proof of Dycr(38) < V2N +3. In fact, we can construct infinite many
N’s that violates (5.2.2); specifically, let N = 2(4t? +/2t— 1) for some positive integer
t, then the corresponding DLN of MC’R(N;N LI 1) has an L-shape (¢,h,p,n) =
(]\7 ~1,N+1,N—2,N— 2), which clearly violates (5.2.2); see Theorem 4.5 in [20] for more
details. Instead of correcting Theorem 1.4.1, in the following we give an improved upper
bound on Dycr(N).

The following lemma had been proven in [20] and it follows from the fact that each move

in the MDD of DL(%; s =) corresponds to either one or two moves in MCR(N; s, w)

(depending on which node in the supernode we start from).

Lemma 5.2.1. [20] Suppose DL(%; s W) has an L-shape (£, h, p,n), then d(N;s,w) <

2-max{/l,h} — 1.
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We now obtain an upper bound on Dycr(/N). The main idea used in obtaining the
upper bound is, for each N, to choose s and w suitably so that the corresponding double-
loop network DL(%; sSw #0) has an L-shape((, h,p,n) with ¢ and h being as small as

possible and to apply Lemma 5.2.1.

According to the parity of N, define M as follows:

N if N is even,
M = (5.2.3)
N + 1 if otherwise.

Lemma 5.2.2. Suppose N # 2(4t*> + 2t — 1) for any positive integer t and let M be defined

as in (5.2.3). Then the L-shape(¢, h,p,n) of DL(%; 1, M) satisfies ¢ < M and h < M.

Proof. Consider N = (J;2[4t? + 1,4(¢ + 1) Theno S € [4t* + 1,4(t + 1)?] for some non-
negative integer t. Thus M = 2t 4 2. Consider the L-shape(?, h,p,n) of DL(%; 1, M).

Since

M1 =1<M {mod 3),

cell (M,0) and cell (0,1) contain the same node: Since M > 1, cell (M,0) is outside
the L-shape. Consequently, ¢ < M. Now let Ny(t) = [4t* + 1,4t* + 2t — 2], Nyi(t) =
(4t 42t — 1,42+ 4], No(t) = [4t* +4t+ 1, 4t*+ 6t +2], and N3(t) = [4¢*+6t+ 3, 46 + 8t +4].
Note that No(0), N1(0), and Ny(1) are empty. Then N = (J;= (No(t) UN; (£) UNo(t) UN5(t)).
Suppose & € Ny (t), where 0 < k < 3. Define N} () to be the maximum integer in Nj(t).
Clearly, Nj(t) = 4t* + 2t — 2 + (2t + 2)k. Suppose & = N;(t) — j for some non-negative

integer j. Then 0 < 7 <2t —-3ifk=0and 0 < j <2t+1if 1 <k < 3. Again, consider
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the L-shape({, h,p,n) of DL(%; 1, M). Since

il = N -5

= (AP +2t—24 (2t +2)k)— %

(2t —1+Fk)(2t+2) (mod %)

= (2t—1+k)M (mod %),

cell (7,0) and cell (0,2t —1+ k) contain the same node. Note that j < 2t —1+k except when
=1 and 57 = 2t + 1, that is, except when % = 4t + 2t — 1. Hence if N # 2(4t* + 2t — 1)
for any positive integer ¢, then cell (0,2t — 1 + k) is outside the L-shape. Consequently,

h<2t—-1+k<2t+2=M. 0

Lemma 5.2.3. Suppose N = 2(4t*> +2t =1) for some-pasitive integer t and let M be defined
as in (5.2.3). Then the L-shape(tyh, pyn)- of ADL(5:52, Mo~ 1) satisfies ¢ < M — 1 and
h<M-—1.

Proof. Since N = 2(4t* + 2t — 1) for some positive integet ¢, we have M = 2t + 2. Consider
the L-shape(¢, h,p,n) of DL(Y;2, M “'1):=Since

214

(2t+1)-2=2-(2t+1) (mod J),

cell (2t + 1,0) and cell (0,2) contain the same node. Since ¢ is a positive integer, we have
2t +1 > 2. Thus cell (2t + 1,0) is outside the L-shape. Consequently, ¢ <2t + 1 < M — 1.
Similarly, since

(t+1)-2=(2t+1)(2t+1) (mod J),

cell (t+ 1,0) and cell (0,2t + 1) contain the same node. Clearly, 2t +1 >t + 1 for t > 0;

thus cell (0,2t + 1) is outside the L-shape. Thus h <2t +1 < M — 1. O
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Lemma 5.2.4. Let M be defined as in (5.2.3). Then:
1. If N # 2(4t* + 2t — 1) for any positive integer t, then d(N; M + 1, M — 1) < 2M — 1.
2. If N = 2(4t* + 2t — 1) for some positive integer t, then d(N; M + 1, M —3) < 2M — 3.

Proof. Consider the first statement. It is not difficult to verify that both M +1 and M —1 are
positive odd integers and ged(N, M+1, M—1) = 1. Thus MCR(N; M + 1, M — 1) is a valid
mixed chordal ring network. Since we can embed MCR(N; M +1, M —1) into DL(%; 1, M),

this statement follows directly from Lemmas 5.2.1 and 5.2.2. The second statement can be

proven similarly except that Lemma 5.2.2 is replaced with Lemma 5.2.3. O

Theorem 5.2.5. Let N be defined as in (5.2.1).
1. ]fN is even, then Dycor(N) < 2[ N/Q-’ —

2. If N is odd and N = 2(4t 5 2t =1} for some positive integer t, then Dycp(N) <
2[y/N/2] — 1.

3. If N is odd and N # 2(4t% 4.2t == 1) for-any-positive integer t, then Dycr(N) <

2[y/N/2 ] + 1.
Moreover, these bounds are tight.

Proof. Note that if N = 2(4¢2 + 2t — 1) for some positive integer ¢, then N is odd. Thus
if N is even, then N # 2(4t? + 2t — 1) for any positive integer ¢; consequently, M = N. If
N is odd and N = 2(4¢% + 2t — 1) for some positive integer ¢, then M = N + 1. If N is
odd and N # 2(4t*> + 2t — 1) for any positive integer ¢, then M = N + 1. Statements 1, 2
and 3 in this theorem now follow from Lemma 5.2.4. By the aid of a computer program, we
obtain Dycr(20) = 7, Dyer(38) = 9 and Dyor(48) = 11. Thus the bound in statement

1 is tight since Dycr(20) = 7 and 2[{/20/2] — 1 = 7. The bound in statement 2 is tight
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M improved

non-improved
(equal)

Figure 5.2: The improved ratio of our upper bound as compared to the previous upper bound for N =
6,8,10,...,10004 (total 5000 N’s).

since Dycr(38) = 9 and 2[4/38/2] —1 = 9. Similarly, the bound in statement 3 is tight
since Dycp(48) = 11 and 2[(/48/2] + 1 = 11. O

Remark 5.2.6. The previous upper bound on Dycr(N) is V2N + 3 [20]. Since v2N + 3
is served as an upper bound, we replace‘it-with L\/W +3J. The largest upper bound in
Theorem 5.2.5 is 2{ N/2 ]—1—1 and it'is always no/larger than L\/W—FSJ . To see how good our
upper bound 2[ N/2 H—l is, we use a.computer to obtain results for N = 6,8, 10, ..., 10004.
Among these 5000 N’s, for 3775 (about 75.50%)0ut of them, our upper bound 2[\/N/2 |+1

improves the previous upper bound [\/ 2N+ 3J; see Fig. 5.2.

5.3 Optimal Mixed Chordal Ring Networks

It should be noticed that the upper bound 2[ N/2 ]—1 in Theorem 5.2.5 is no larger
than the upper bound [\/ﬁ ] + 1 in Theorem 5.2.5 and is very close to the lower bound
(\/W -3/ 2} in Theorem 5.1.1. In the following, we show that there exist infinite number
of N’s such that the upper bound 2{ N/2 W —1 matches the lower bound (\/W — 3/2}; in

other words, we determine the exact value of Dy;cr(N) for these N's.
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Theorem 5.3.1. Suppose N = 2(4t* — t + k) for some positive integers t and k, where
1 <Ek<t. Then

Duyer(N) =2[/N/2 | - 1.
Moreover, d(N; [\/N/2 | +1,[\/N/2 | = 1) = Ducr(N).

Proof. Suppose N = 2(4t? — t + k) for some positive integer ¢ and k, where 1 < k < t.
Then 2(4t> — 4t +1) < N < 2 - 412; therefore, M = N = [\V/N/2 | = 2t. By Lemma 5.2.4
and Theorem 5.2.5, Dycr(N) < d(N; [\/N/2 |+ 1,[\/N/2 ] —1) <2[\/N/2 | — 1. Since
248 —t+ 1) < N < 20482 +t + 1), we have Dycr(N) > [V2N —3/2] = 4t — 1 =
2[y/N/2 | — 1. We now have this theorem. O

The N’s that satisfy Theorem 5.3.1 are: 8, 30, 32, 68, 70, 72, 122, ..., and so on. For
N =6,8,10,...,10004 (total 5000 N’s); about-12.60% out of them satisfy Theorem 5.3.1

and their optimal diameter can be determined by Theorem:5.3.1.
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Chapter 6

Routing

In this chapter, we discuss the routing problem in MCRNs. Particularly, routing of node-to-
node message with at most a single faulty_elemeént in MCRNSs is considered. Results derived
from Sections 6.1 and 6.2 have been submitted. to [43]:

A routing algorithm is said to*he optimal if every message is sent along a shortest path
from its source node to its destination node. A fault-tolerant routing algorithm is said to be
optimal if every message is sent along a shortest path-from its source node to its destination
node after detecting a faulty elements In.Sections 6:17@and 6.2, we design and present two
optimal node-to-node shortest path routing algorithms for MCRNs for flexible applications.
In Section 6.3, we present an optimal fault-tolerant routing algorithm for MCRNs.

The two optimal node-to-node routing algorithms presented are shortest-path-based rout-
ing and dynamic routing. The shortest-path-based routing algorithm computes the routing
parameter that can be used to determine a routing path. After an O(log N)-time preprocess-
ing, this algorithm takes O(log N)-time for a source node to compute the routing parameter,
and each node on the routing path takes constant time to determine the link (and therefore
the node) to send messages according to the routing parameter. It was pointed out in [28]

that a shortest-path-based routing algorithm has the advantage that it can often choose from
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Table 6.1: Comparing the SP-based routing algorithm with the dynamic routing algorithm.

SP-Based routing Dynamic routing
Preprocessing O(log N) O(log N)
Computation time for source node O(log N) O(1)
Computation time for other nodes O(1) O(1)
Number of paths can choose as many as in the graph 1

a larger set of candidates for the next node to be visited and can avoid potential routing
problems that arise from congestion or node/link faults.

On the other hand, for the dynamic routing algorithm, after an O(log IV)-time precal-
culation to determine the network parameters (only computed once and stored them in all
nodes), it can route messages using constant time at each node (includes the source node)
along the routing path. The routing path is augmented on-the-fly at each routing step. It
was pointed out in [36] that the dynamic¢-routing algorithm can be efficiently implemented
even if the computation ability of modes-is-very limited. Table 6.1 illustrates a comparison
between the shortest-path-based(SP-Based) routing algorithm and the dynamic routing
algorithm.

Suppose we are sending a message from source node 4. to destination node v. The even-
odd-vertex-transitive property of the MCRN indicates that for even u, a path from u to
vin MCR(N;s,w) can be deduced to a path from 0 to v — u in MCR(N;s,w). By the
renaming function in (2.3.1), for odd u, nodes v and v of MCR(N;s,w) are mapped to
nodes v + w and v + w in MCR(N;s, N — w), respectively. Since u + w is even, a path
from v+ w to v +w in MCR(N;s, N — w) can be deduced to a path from 0 to v — u in
MCR(N;s,N —w). Let p = v —wu (mod N). As a consequence, a path from u to v in
MCR(N;s,w) can be deduced to a path from 0 to g in MCR(N;s,w) if u is even and a
path from 0 to pu in MCR(N;s, N — w) if u is odd. In the rest of this chapter, without
loss of generality, we assume that the routing request is from node 0 to node p (# 0) in

MCR(N; s, w) if the source node is even-numbered, and in MCR(N; s, N —w) if the source
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node is odd-numbered.

6.1 A Shortest-Path-Based Routing Algorithm

6.1.1 Routing Parameter

A routing path can be viewed as a sequence of links. In the MCRN, there are three types of
links: +s link, +w link and —w link. Clearly, a shortest path cannot have both +w and —w
links and therefore it consists of either a combination of +s and 4w links or a combination
of +s and —w links. In addition, two 4+w links (or —w links) cannot appear consecutively
in a shortest path as the parity of the node-number changes at each routing step (because
s,w are odd integers). Let [ng,n,| denote the-routingparameter of a path, where n, and
n,, are integers with ny > 0 and the.sign-of the term n,, indicates which w link (+w or —w)
is used in this path. For example, ¢onsider routingin MC'R(22;1,7) in Fig. 3.9. A shortest
path from node 0 to node 18 is 0 =1 o 18, which consists of three +s links
and one —w links. Thus the routing parameter of this path is therefore [3, —1].

The routing parameter can be appended to the header of a message. Each node in a
routing step chooses one of its out-links to deliver the messages, according to the routing
parameter, and then updates the routing parameter. The update can be implemented as

follows.

Update( )

1: if +s link is used then

2: Nng <+ ng— 1

3: else

4: Ny — Ny — Sign(ny,) - 1

5. end if
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The routing is done when the routing parameter becomes [0, 0]. There are several possible
routing algorithms for a given routing parameter. The simplest way are given by greedy

algorithms defined by the following rules:
o tw link first: Use tw link whenever it can use £w link and |n,| > 1.
o tw link last (+s link first): Use +s link whenever ng > [n,]|.

In the rest of this section, we aim at finding the routing parameter of a shortest path

from node 0 to destination node pu.

6.1.2 Computing the Routing Parameter

By using the visualization tool established'in-Chapter 3, the main steps to obtain the routing
parameter of a path are shown in Fig./6.1. The detailed version of our shortest-path-based
routing algorithm, called SP-Based-Routing-Algorithm (SPBRA for short), is presented in

Algorithm 3.

Step 1. Find the location of 7.
Step 2. Apply Theorems 3.2.5 and 3:2.:6-to-find 7).

Step 3. Convert the location of 7, into the routing parameter.

Figure 6.1: Steps of finding the routing parameter.

Theorem 6.1.1. SP-Based-Routing-Algorithm is correct and takes O(log N)-time.

Proof. We first prove the correctness. Since the correctness of Step 2 follows from Theo-
rems 3.2.5 and 3.2.6, it is sufficient to prove the correctness of Step 1 and Step 3. Recall the

following notations introduced in Section 3.1: 7, is the unique point in PSEUDOMDD that

*

has label p; 77,

is an optimal copy of m,; two vectors that characterize the L-shape of the

PSEUDOMDD are o = (2¢, —n) and 8 = (—2p, h).
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b *

(

/i

@ Starting point O Candidate points @ Target point - T,

Figure 6.2: Finding thelocation of .

Correctness of Step 1: The SPBRA first uses-the Euclidean algorithm to find a solution
(20, yo) of equation (3.1.1) such that point (#p;vg) has label*l((xo, yo)) = p. This solution
always exists as MCR(N; s, w) is assumed satisfying ged(N,.s, w) = 1. Note that in equation
(3.1.1), a point (x,y) with label I((2y))= u satisfies'parity(z) = parity(l((x,y))). Hence
we only need to choose one of the two equations in (3.1.1) to find a solution according to
the parity of p. We regard the point (¢, yo) as the starting point. Consider a path from the

starting point to (0, 0) through an integer number of vectors e and 3: (z¢, y0) + rax +yB =

(0,0), i.e.,
xo + 20z — 2py = 0 (6.1.1)
Yy — nr + hy = 0

The solution = = _(gj;fjg’jo), Y = _(;2031%0) to (6.1.1) indicates a path (through an integer

number of a, 3) from (xg,yo) to (0,0); see Fig. 6.2(a). Then the four points (we regard
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them as candidate points) (z,y) + aa + b3, where

(a,0) € { (L], ly]), (L), Ty), (T, L)), (T ], Ty 1)

(not necessary distinct) are copies of (xg,yo) that surround (0,0). Note that both a and b
corresponding to this path can not be integers simultaneously since the destination node p
is not the same as the source node. Then target point 7, can be determined by checking

which candidate point is inside the PSEUDOMDD
{(x,y)€Z+XZ+’0§x<2€,0§y<h, andeitherx<2€—2pory<h—n}.

However, it could happen that none of the four candidates points is inside the PSEU-
DOMDD; Fig. 6.2(b) illustrates such a situation. In this case, the target point can be
determined by checking the four new candidate-poiuts ¢, = ¢; + a + 3 for all candidate
point ¢;. This is because m, is thesunique-point that haslabel ;i inside the PSEUDOMDD
and therefore can reach some ¢; through an integer number of a vector a and a vector 3.

Correctness of Step 3: After the execution of Step.2, we have 7}, = (27, y). By equation

(3.1.2), a point (z,y) in ZT x Z* has label

(= (o [2]) 4[5y mot

Thus, the routing parameter can be obtained by

_ *
nw — yu -

Q*J ’ (6.1.2)
3

Now we analyze the time complexity. It takes O(log V)-time to derive the L-shapes of
the PSEUDOMDD’s of MCR(N;s,w) and MCR(N;s, N — w) in the preprocessing phase.

Each line of SPBRA takes constant time except line 10. In line 10, a solution can be found
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by using the Euclidean algorithm, which takes at most O(log N)-time. As a result, SPBRA
takes O(log N)-time. O
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Algorithm 3 SP-Based-Routing-Algorithm (SPBRA)

input: N, s, w,u: source node, v: destination node.
output: The routing parameter [ng, n,|.

begin preprocessing
1: (20y, ho, 2po, no) < the L-shape of the PSEUDOMDD of MCR(N;s,w)
2: (201, hy,2p1,ny) < the L-shape of the PSEUDOMDD of MCR(N;s, N — w)

end preprocessing

begin SPBRA

3: p 4+ (v—u) mod N
4: A+ umod 2 > The parity of the source node.
5: (20, h,2p, n) < (205, hy, 2pa, m)
6: @< (2(,—n), B < (—2p, h)
7. if A =1 then > Consider MCR(N; s, N — w) if u is odd-numbered.
8: w— N —w
9: end if
> Step 1.

10: Use the Euclidean algorithm to finda solution (2¢,¥g). of

_ [ 5(s—w)yty(sFw) " (mod N) ifA=0
"= (21) (s=w)+yls +w)y=w (mod N) ifr=1
11: 1 «— *(élgiojr;ppé/o)y Yy *(;ﬁ:frfpfgo)
12: 1+ 1

13: for each (a,b) € {([z], ly]), (l=], Fyl); GFets9)); (T], [y])} do

14: ¢ < (z,y) +ax + 03

15: c,+—c+a+p
16: 14 1+1
17: end for

18: m,, < the point of { ¢;, ¢} | 1 <1i <4} that is inside the PSEUDOMDD

> Step 2.
19: 7y « (2, y,) (by applying Theorems 3.2.5 and 3.2.6)

> Step 3.
20: return [ng,n,| < [y; + L%“J Y- {%ﬂ”
end of SPBRA
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Figure 6.3: An example of shortest path based routing.

Example. Consider routing in MCR(22;1,7); see Fig. 6.3. The preprocessing phase of
SPBRA computes the L-shapes of the PSEUDOMDD of MCR(22;1,7) and MCR(22;1, 15)
and obtains (12,2,2,1) and (4, 6, 2, 1), respectively. Suppose we are sending a message from
node u = 2 to node v = 12. Then SPBRA-derives = 10, (2(,h,2p,n) = (12,2,2,1),
a = (12,—1) and B = (—2,2). Use the Euclidean algorithii to find a solution, for example
(—10,3), of

21 =7k y(1+7) =10 (mod'N).

Then SPBRA derives (x,y) = (%, —%). The candidate points ¢; are (—6,—1), (—8,1),
(6,—2) and (4,0); the new candidate points ¢ are (4,0), (2,2), (16,—1) and (14,1). The
unique one among { ¢;,¢; | 1 <14 <4} that is inside the PSEUDOMDD is 7, = (4,0). Since
m, € I'f, by Theorems 3.2.5 and 3.2.6, we have w, =7, +1-08=(2,2). Finally, SPBRA
returns the routing parameter [ng, n,] = [3, 1]. If the “dw link first” strategy is applied, the
routing path is

2 5% 3 10 25 11 5% 9.

On the other hand, if the “4+w link last” strategy is applied, the routing path is

9 F5% 3 5 4 5 10 19
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6.2 A Dynamic Routing Algorithm

In this section, we present an optimal dynamic routing algorithm for MCRNs. Specifically,
after an O(log N)-time to compute the network parameters (computed them once and stored
in all nodes), each node can take constant time to determine the link (and hence the node)
along the shortest path.

Suppose we are sending messages from source node u to destination node v. Recall
that a shortest u,v-path in MCR(N;s,w) can be deduced to a path from node 0 to node
i =v—umodN in MCR(N;s,w) if u is even-numbered, and in MCR(N;s, N — w)
if v is odd-numbered. Also, recall that 7 is the point with the label x in the MDD of

MCR(N; s,w).

6.2.1 Finding a Shortest*Routein.the Plane

In this section, we construct a shortest path from (0,0) to 7, in the plane with path length
A(my). Define
S = {(0,0)(1),(2,1),(3,2)(4,2),...}
= {(z,y) e Z" XL y=[%],y>0}.
Namely, the points in the plane that can be reached by (0,0) by using only +s-links. Now
given 7 = (7, ), let A= (A, A,) be the point in S such that

v if 7% € T'7,

A, is even, and A, = (6.2.1)

[xz — O.5J if 71”; eI

Let P be the path from (0,0) to point w}, constructed as follows. This path consists of
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two subpaths P, and Ps.

P=(0,0), ... (A, A, ... (25,9]). (6.2.2)

P is from point (0,0) to point A along the points in S:

(0,0), (1,1), (2,1), (3,2), (4,2), ..., (As, A,).

Py is from point A to point =}, and

o if m), € I'" (for example, the point B in Fig. 6.4), then A, = Yy, I keeps going east.

Thus P, is: (Ax,y;), (Ax"'lay;): (Ax+2:y;>7 KR ('I'Zvy:;)

o if m, € I'" and zj, is even (for example, the,point C in Fig. 6.4), then A, = T,

P; repeatedly goes northeast sand thengwest.« Thus«FP; is (xZ,Ay), (:1:: +1,A,+1),

(@), Ay + 1), (z), + 1, Ay + 25z, Ay +2) 0 _a(@) +1, 7)), (27, 9,);

o if w}, € I'" and zj, is odd (for examplé,the point D in Fig. 6.4), then A, = xy, — 1,
P, goes northeast first, and then repeatedly goes west and then northeast. Thus P, is
(x5, =1, Ay), (7, Ay + 1), (z, — LAy Ay +2), (2], — 1, A, +2), (), A, +3),

ce (.I'Z - 1ayz - 1)7 (x;kuy:;)

Lemma 6.2.1. The path P from (0,0) to m, = (x},y;) is of length A(7}).

Proof. Let |P| denote the length of P and A = (A,, A,) denote the point defined in (6.2.1).
Clearly, |P| = |P| + |Py| and |P| = A,. If @} € T, then we have |P| = 27, — A, and
|P| = x;. By Lemma 3.1.1, we have A(m) = x, = [P|.

Now suppose 7% € I'". Then |P,| = 2(y, — A,) if 27, is even and [Py = 2(y} — 4,) — 1
if 7, is odd. In addition, A, = zj, if 27, is even and A, = xj, — 1 if z, is odd. In either case,

|Ps| = 2(y;, — Ay) — parity(z},) and A, = xZGG— parity(x}). Since point A is in .S, we have
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Figure 6.4: A shortest routing path.

A, = LAIQHJ, or equivalently, A, = 24, — parity(A,). Since A, is even, parity(A,) = 0 and
thus |P| = 2y, — A, — parity(z}). By Lemma 3.1.1, we have A(7}) = 2y* — parity(z},) =
|P|. O

The basic idea of designing the'dynamic routing algorithm is to choose a link according

to the relative position of 7y, such that the linkis contained.in P. Let B denote the set of

points in the bottommost row of MDD i€,
B ={mec MDDy |m=1(zy) withy=0}.

For example, consider MCR(22;1,7) in Fig. 3.9, B = {(0,0),(1,0),(2,0),(3,0) }. The

cardinality of B can be determined from Fig. 3.11 as
|B| =2min{ ¢,h }.

Lemma 6.2.2. Suppose pp # 0. If w, € B (resp., 7}, & B), then there exists a shortest
path from node 0 to node p whose first link is through (0,0) to (1,0), i.e., “—w link” (resp.,
through (0,0) to (1,1), i.e., “+s link”).
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Proof. 1t should be noted that a shortest path from node 0 to node p in the MCRN corre-
sponds to a shortest path from point (0, 0) to point 7, in the MDD. Suppose 7}, = (x/*u y;)
Let P denote the path defined in (6.2.2). If w3 € B, then y = 0 and P contains the link
from (0,0) to (1,0); if 7%, ¢ B, then y’ > 0 and P contains the link from (0,0) to (1,1).
Note that points in P can not have the label 1, except the end point of P, since 7}, is unique
point in MDDy with the label ;i and, by Lemma 6.2.1, the length of P is A(#y). Thus we

have the lemma. O

6.2.2 A Dynamic Routing Algorithm

Now we are ready to present a dynamic routing algorithm, called Dynamic-Routing-Algorithm
(DRA for short), in Algorithm 4. The mainidea-of DRA is to determine whether or not 7y,

belongs to B, and then applies Lemima 6.2.2.

Theorem 6.2.3. Dynamic-Routing- Algorithm 45 correct. ' After an O(log N)-time prepro-
cessing phase, Dynamic-Routing-Algorithm takes-only: constant time to determine the next

node on the shortest path to which the message should be sent.

Proof. We first prove the correctness. The main issue is to decide whether or not =, be-
longs to B. One naive way to solve this problem is to examine each point sequentially in
B. However, this method takes O(min { ¢, })-time (can be as worse as O(v/N)). In the
following, we show that deciding whether 7, belongs to B can be done in constant time if
the L-shapes of the PSEUDOMDD of MCR(N;s,w) and MCR(N;s, N —w) are known in
advance.

By the labeling function in (3.1.1), the set of points in B corresponds to the following
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set of nodes:
I(B) = {O,—w,s—w,s—Qw,...,(@—1)(s—w),(@—1)(s—w)—w} (6.2.3)

= {ts—w), ts—w)—wlo<t< B (6.2.4)

Therefore, 7, € B if and only if there exists an integer ¢, 0 < ¢ < % such that

t(s —w)=p (mod N), (6.2.5)

or
t(s—w)—w=p (modN). (6.2.6)
Note that equations (6.2.5) and (6.2.6) can be transferred into the following general

modular equation:

ar = b, . (med N). (6.2.7)

Let ¢ = ged(a, N). Equation (6.2.7) has-a-solution. if*and only if b is divisible by ¢. If

b is divisible by g, then the solution.to (6:2:7) is W(i) ' mod %, where (g)_l is the
inverse of % in Zysg. The subroutine SOLVE(a, b, N, g, inw) is used to find the smallest
positive integer x of the congruence equation (6:2:7). Note that the values ¢g and (%)_1
can be obtained by using the Euclidean algorithnand Extended Euclidean algorithm [25],
respectively, and we only need to compute these values once and store them in all nodes.

The subroutine inB determines whether #7, € B by using the subroutine SOLVE to find

1B|

a non-negative integer ¢, 0 < t < 5

, which satisfies equations (6.2.5) and (6.2.6). Thus
subroutine inB can determine whether 7j, € B correctly. Finally, if 7w} € B, then DRA
will send messages to node (v — w) mod N by using the ”—w”-link, i.e., the link between
(0,0) and (1,0). Otherwise, DRA will send messages to node (u + s) mod N by using the
7+s”-link, i.e., the link between (0,0) and (1,1). By Lemma 6.2.2, DRA is correct.

We now analyze the time complexity. It takes O(log N)-time to derive the L-shapes

of the PSEUDOMDD of MCR(N;s,w) and MCR(N;s, N —w). By using the Euclidean
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(a) l\/lDD0 of MCR(22;1,7). (b) l\/[DD0 of MCR(22;1,15).

Figure 6.5: Routing in MCR(22;1,7).

algorithm and Extended Euclidean algorithm [25], lines 3-4 take O(log N)-time. Thus, the
preprocessing phase totally takes O(log V)-time. Once the preprocessing phase is done, each
line of DRA, subroutines SOLVE and inB take only constant time. Consequently, after an
O(log N)-time preprocessing phase, DRA takes only constant time to determine the next

node on the shortest path to which the message should be sent. U

Example. Suppose we are sending messages from node 1 tonode 11 in MCR(22;1,7); see
Fig.6.5. The preprocessing phaserof DRA computes the L-shapes of the PSEUDOMDD of
MCR(22;1,7) and MCR(22;1,22=7) and obtains (12,2:2; 1) and (4, 6,2, 1), respectively.
Thus go = g1 = 2, invg = 7,inv; = 3. Then DRA derives p = 10, A\ = 1,(2¢,h,2p,n) =
(4,6,2,1),|B| = 4 and w = 15. After that, subroutine inB(22,1,15,10,4,2,3) returns
false. Then DRA returns node 1+ 1 = 2 (mod N). Now the problem becomes sending a
message from node 2 to destination node 11. Then DRA sets = 9,A =0, (2, h,2p,n) =
(12,2,2,1),|B| = 4 and w = 7. Then subroutine inB(22,1,7,9,4,2,7) returns true and
DRA returns node 2 — 7 = 17 (mod 22). Continuing in this way, the routing path from

source node 1 to destination node 11 will be

S —w

1259 2% 17 5% 18 =% 11,
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Algorithm 4 Dynamic-Routing-Algorithm (DRA)
input: N, s, w,u: source node, v: destination node.
output: The next node on a shortest u, v-path.

begin preprocessing

1: (24y, ho, 2po, np) < the L-shape of the PSEUDOMDD of MCR(N; s, w)

2: (201, hy,2p1,ny) < the L-shape of the PSEUDOMDD of MCR(N;s, N — w)
3: go + ged(s — w,lN),gl — ged(s +w, N)

-1
. S—w : ; stw :
4: Mgy ( W > N Zinjg,, tnvy 4 < " ) in Znyg,

end preprocessing

begin DRA
5 p<4—v—u (mod N)
6: A < u mod 2 > The parity of the source node.
7 (26, h, 2p, n) <— (2€A7 h)\, 2p)\, TL)\)
8: |B| <« 2-min{/l,h}
9w+ N—-—wif A=1 > Consider MCR(N; s, N —w) if u is odd-numbered.
10: if p =0 then
11: receive the message and stop the algorithm
12: else
13: if inB(N, s,w, p, | B, gy, inuy) = true then
14: return (u — w) mod N. >wy e B
15: else
16: return (u + s) mod N. > &8
17: end if
18: end if
end DRA

Subroutine SOLVE(a, b, N, g, inv)

19: return (W)

~inv mod X
g
Subroutine inB(N, s, w, i, |B|, g, inv)
20: if g /b then
21: return false
22: else
23: t < SOLVE(s — w, u, N, g,inv)
24: t' < SOLVE(s — w, u + w, N, g, inv)

25:  if0<t<Zloro<t <2l then
26: return true

27: else

28: return false

20: end if

30: end if -
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6.3 Fault-tolerant Routing in MCRNs

In this section, we consider the problem of routing messages in MCRNs in the presence of up
to one node or link failure (note that more than one fault can isolate a node). We present
an optimal fault-tolerant routing algorithm for MCRNs. The fault-tolerant algorithm do
not require routing tables and only very little computational overhead is needed. After
an O(log N)-time preprocessing, the algorithm can route messages to the destination node
using a constant time at each node along the route. The fault-tolerant routing algorithm
presented is guaranteed to find an optimal route after a faulty element is detected.

We assume that in each node there is no global information of the network and thus a
faulty element is detected only when a node tries to send messages by using it. Our fault-
tolerant routing algorithm is based on the shortést-path-based routing algorithm (SPBRA)
presented in Sections 6.1. The SPBRA computes the routing parameter, which can be used
to determine a routing path. Onee we have this information, a node receiving a message
examines it and if it is not the receiver, then it can decide which link to use to send messages
toward the destination. More specifically, given the routing parameter [ng, n,,], each node on
the routing path can decide the link (4sdink or +w-link) to send messages by the S-Link-
First-Algorithm or the W-Link-First-Algorithm shown in Algorithms 5 and 6, respectively.
Note that for a routing parameter [ng, n,|, ns and n, are integers with ny, > 0, and the
sign of n,, indicates which w link (+w link or —w link) to use. In S-Link-First-Algorithm,
nodes use +s link as long as the number of remaining +s links is larger than the number
of remaining +w links. On the other hand, in W-Link-First-Algorithm, nodes use the +w
link as long as they are applicable. The routing is done when [ng, n,| becomes [0, 0]. Since
we assume each node is only aware of the states of its two immediate links and the nodes
connected to these links, a link is considered faulty if it is actually faulty or connected to a

faulty node.
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Algorithm 5 S-Link-First- Algorithm
input: Routing parameter [ng, n,].
output: The output link e.

1: if [ng,ny,) = [0, 0] then

2: receive the message and stop the algorithm
3: else

4: if ngy > |n,| then

5: e < +s link

6: if e is not faulty then

7: ng < ng, —1

8: end if

9: else

10: if n,, # 0 and the current node can use sign(n,,) - w link then
11: e < sign(n,) - w link

12: if e is not faulty then

13: Moy <— My — SigN(ny,) - 1

14: end if

15: end if

16: end if

17: end if

Algorithm 6 W-Link-First-Algorithm
input: Routing parameter [ng, my].
output: The output link e.

1: if [ng, n,| = [0,0] then

2: receive the message and stop _the algorithm
3: else

4: if n,, # 0 and the current node can use sign(n,,) - w link then
5: e < sign(n,) - w link

6: if e is not faulty then

7 Ny $— Ny — sign(ny,) - 1

8: end if

9: else

10: e < +s link

11: if e is not faulty then

12: ng+—ng, — 1

13: end if

14: end if

15: end if
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6.3.1 Finding Alternative Paths

Our fault-tolerant routing algorithm will first call the S-Link-First-Algorithm and each node
along the route executes it when forwarding a message. In this section, we consider the
problem of finding an alternative path after a faulty link made by the S-Link-First-Algorithm
is detected. Let the source and destination nodes be u and v, respectively. Recall that a
shortest w,v-path in MCR(N;s,w) can be deduced to a path from node 0 to node p =
v—umod N in MCR(N;s,w) if u is even and in MCR(N;s, N —w) if u is odd. Since
node 0 is mapped to (0,0) in the plane, we may assume routing is from (0,0) to 7}, in the
rest of this section, where 7}, is the location of node y in the MDDg of MCR(N;s,w) or
MCR(N;s, N —w) (depends on the parity of node u). Since point (0,0) can only reach
either (1,1) or (1,0), a faulty link is detected at the (0, 0) to (1,1) link (resp., (0,0) to (1,0)
link) when the node wants to send anessages by using'the +s link (resp., —w link). For
convenience, denote the (0,0) to (1;1) link-(resp., (0,0) to {1, 0) link) by the ey link (resp.,
ey link).

When a faulty link is detected; we need to convert-the rouiting parameter to the position
of w7, This conversion can be donedn constant time-shown as follows. Note that there is
an one-to-one correspondence between the routing parameters and the points in the plane.

By equation (3.1.2), a point (z,y) in Z* x Z™ has label
((z,y)) = <y + EJ) s+ <y - %D w mod N. (6.3.1)

Thus, a point (z,y) can have the routing parameter

s 2]~ 2] 622

and which point (z,y) having the routing parameter [a, b] can be determined by solving the

equation:
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y+§J - (6.3.3)
=[5 =

By (6.3.1), it is clear that all shortest paths from (0,0) to (z,y) in the plane consist

of +s links and 4w links if y > %L only +s links if y = (ﬂ, and +s links and —w

T

links if y < {ﬂ As a result, the paths from (0,0) to 7, corresponding to the applying
of the S-Link-First-Algorithm (resp., W-Link-First-Algorithm) are shown in Fig. 6.6 (resp.,
Fig. 6.7).

‘ A : source point ‘

?Z: Q : destination point X
D <] SJEW Fﬁﬂ
oz/; — 2 o—»o/ ° —»o/

.es / o—»oéo -0

.—P./ .—P./ oo
‘P/ - 7*/ - #/ -
) okl o2l

Figure 6.6: The paths correspond to the applying of the S-Link-First-Algorithm.

‘ ‘ A b soua: i ‘
O+=e O bmuciep2ie pa : i
o/z:’o e yt(ﬂ }t(?—‘
OZO—W (J o—»o/o 04'0/
. " e o
.—V./ .—V./ .4’./‘ .—P./

2> [5] -5l - @[]

Figure 6.7: The paths correspond to the applying of the W-Link-First-Algorithm.

In most cases, a fault can not block all shortest pathes from source node to destination

node. The following lemma provides an alternative shortest path when a faulty link is

detected.
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Lemma 6.3.1. Suppose m;, = (z},,y;) with 1 < y; < [%“-‘ If the ey link is faulty, then

there exists a shortest path from (0,0) to ), by using the W-Link-First-Algorithm.

Proof. Since y; < [%ﬂ, all paths from (0,0) to 7}, consist of only +s links and —w links,

and |n,| =

Y, — {%ﬂ ) > 0. Since node at (0,0) can use the —w link, there exists a shortest

path from (0,0) to 7}, by using the W-Link-First-Algorithm; see Fig. 6.7(c). O

Note that in Lemma 6.3.1, we exclude the case of y; = 0. This is because when y;, = 0,
the S-Link-First-Algorithm will use the —w link and therefore the e,d link will not be
detected as a faulty link. If 7}, does not satisfy Lemma 6.3.1, then we try to find a route to
a copy of 7}, or make an estimate as to the minimum link increment necessary to route to
avoid the fault. The following lemma provides a detour from (0,0) to 7}, to avoid the fault

by adding two more links.

Lemma 6.3.2. Suppose 7}, = (v} 04;) withyyy > (%-‘ and xy, > 2. If the ey link is faulty,

then there exists a path from (0, 0)stoawy with length A(w;) +2: (0,0),(1,0),(2,0), followed
by using the S-Link-First-Algorithm. In addition, the two links increment is the minimum

link increase necessary to reach the samesdestination if @) has no other copy z such that

Proof. Since y; > [%ﬂ, A(my) = 2yy — parity(xy). Let (2,0) be the new origin and thus
7, corresponds to point z = (xz — 2,y2) in the new coordinate system. It is clear that
routing from (2,0) to ), in the original coordinate system is equivalent to route from (0,0)
to z in the new coordinate system; see Fig. 6.8. Since z € I'", A(z) = 2y — parity(z},) in
the new coordinate system. Thus, a detour from (0, 0) to ), can be constructed by Py U P,
where subpath Py is (0,0), (1,0), (2,0) and subpath P is from (2,0) to 7}, by shifting the
coordinates of nodes of a shortest path (constructed by using the S-Link-First-Algorithm)
from (0, 0) to 2z in the new coordinate system. Clearly, |P|+ [P = A(7}) +2 and this path

clearly contains no e, link. Moreover, since point (1,0) can only reach either (0,0) or (2,0)
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Figure 6.8: A detour: adding two more links to avoid a fault.

and the e, link is faulty, point (1,0) can get to 7, only by reaching point (2,0). Thus, the

two links increment is the minimum link increase necessary to reach the same destination

point if 77, has no other copy 2 such that A=) = A(z). O

In the following, we aim at finding a retite to a eopy of 7},. Suppose z is a copy of 7).

Define the cost function z — Z* as follows:

o [f the e, link is faulty, then

cost(z)

A(z) ify < [£],
A(z) +2 fl=p#£1y=[%] and

= either :L‘Z >2and x > 2 (6.3.4)

or zj, < 2 and HJ > 2,

00 if otherwise.

e [f the e, link is faulty, then

cost(z) =

A(z) if either y > [£],

orh—n#1,2§y<(%Wandx7&2, (6.3.5)
%

Alz)+2 ifh—-n#1,2<y<[%] and z =2,

00 if otherwise.
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Lemma 6.3.3. Suppose z (# 7)) is a copy of m},. If the e, link is faulty and cost(z) # oo,
then there exists a path from (0,0) to z with length cost(z). Moreover, if z has the smallest

cost among all copies of 7y, then the path from (0,0) to z contains no eg link.

Proof. It y < { L then by Lemma 6.3.1, there exists a path from (0,0) to z with length

2
A(z) = cost(z): (0,0),(1,0),(2,0), followed by using the S-Link-First-Algorithm. In the
following, we assume y > (%W In this case, all shortest paths from (0,0) to z must pass
through the e, link and therefore it has to make a detour to route. Note that for every
point z, the point z + a + 3, where a + 3 = (2 — 2p, h — n), is always in ZT x Z*. If
¢ —p =1, then every copy of @}, will be blocked by the faulty link. Thus, suppose { —p # 1
and z3, > 2. If x < 2, then the path from (0,0) to 2z is clearly blocked by the e, link. If
x > 2, then by Lemma 6.3.2, a path from (0,0) to z can be found by adding two more
links: (0,0),(1,0),(2,0), followed by wsing the S-Link-First-Algorithm; the path length is
A(z) 4+ 2 = cost(z).

Now we suppose z;, < 2. According to the parity of , we construct a path from (0,0) to
z as follows. If z is even, then the pathtis<(0,0),(1,0), (2,0), followed by using the S-Link-
First-Algorithm to point (x —1,y), then to point (x,y);see Fig. 6.9(a). If x is odd, then the
path is (0,0), (1,0), (2, 0), followed by using the S-Link-First-Algorithm to point (z—2,y—1),
then (x — 1,y — 1), (z,y); see Fig. 6.9(b). Clearly, the path length is A(z) + 2 = cost(z).

Suppose z has the smallest cost among all copies of 7}, and the path from (0,0) to =z

contains ey link. Let the copy of (0,0) in this path be (2/,3’) with 2/ > 0,4’ > 0. Then the

point (z — ',y —y') is also a copy of 7}, yet has a smaller cost than z, a contradiction. [

Lemma 6.3.4. Suppose z (# ),) is a copy of ). If the e, link is faulty and cost(z) # oo,
then there exists a path from (0,0) to z with length cost(z). Moreover, if z has the smallest

cost among all copies of 7y, then the path from (0,0) to z contains no eg link.
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Figure 6.9: The illustrations of the cases to the proof in Lemma 6.3.3.

Proof. Ity > [%W , then clearly there exists a path from (0, 0) to z by using the S-Link-First-

Algorithm. In the following, we assume y < (%w Note that for every point z, the point
z+a+ 3, where a+ 3 = (20—2p, h—n), is always in ZT x Z*. If h—n = 1, then every copy
of o7, will be blocked by the faulty link. In-addition;-if < 2, then any path from (0,0) to z
will be blocked by the faulty link. ~Thus, suppose . h —n # l.and 2 <y < (%W If x # 2 and
x is even, then a path from (0,0)*t0 z can be constructed as*(0,0), (1,1), (2, 1), followed by
using the W-Link-First-Algorithnito point(z'— 2,y — 1), /then to point (x — 1,y), (z,y); if
xr # 2 and x is is odd, then a path from.(0,0) to z can.be eonstructed as (0,0), (1,1), (2, 1),
followed by using the W-Link-First-Algorithm to point (z — 1,y — 1), then to (z,y); see
Fig. 6.10(a) for an illustration. Clearly, these paths are of length A(z) = cost(z). If z = 2,
then a path from (0,0) to z can be constructed as (0,0), (1,1),(2, 1), followed by using the
W-Link-First-Algorithm to point (z,y — 1), then to point (z + 1,y), (z,y). Clearly, this
path is of length A(z) = cost(z); see Fig. 6.10(b).

Suppose z has the smallest cost among all copies of ), and the path from (0,0) to z

contains ey link. Let the copy of (0,0) in this path be (2/,%’) with 2/ > 0,4’ > 0. Then the

*

.» yet has a smaller cost than z, a contradiction. [

point (x — ',y — 1) is also a copy of 7
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Figure 6.10: The illustrations of the cases to the proof in Lemma 6.3.4.

6.3.2 Finding the Lowest Cost Point

Our aim in this section is to find the lowest cost copy of 7}, (other than 77). For convenience,
some notations will be introduced first. Given. a point z and a vector v, define L,(z) =
{z+tv|teZ}. Namely, points in Ly, (z) are reachable by z through an integer number
of v. The set of the two points in"L,(z) that are-around the x — 2y = 0 line is denoted by

Py(z), i.e.,
P,(z) = { 21,29 € Ly(2) )21 €T, 2o eLfand 2, = z2+v}.
Note that the cardinality of P,(z) may be less than 2 as we only consider points in Z* x Z*.

Lemma 6.3.5. Suppose vector v = (v, vy) with even vy and vy -vy < 0. Then the two points

in Py(z) have the smallest distance (to (0,0)) among all points in L,(z).

Proof. Without loss of generality, assume v; > 0,v9 < 0. Let 21, 2z be two points in P,(2)
such that 2, € I, 29 € T'" and 2, = 25 +v. If v; > 0, then by Lemma 3.1.2, A(v;) <
A(v; —v) < A(v; —2v) < -+ and A(ve) < A(vg +v) < A(vg + 2v) < - -+ hold. If v; =0,
then A(vy) < A(v; —v) < A(vy —2v) < -+ and A(vg) = A(vy +v) = A(vg +2v) = - -.
Thus we have this lemma. O
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Suppose the PSEUDOMDD has an L-shape (2, h, 2p, n). Two vectors characterizing the
L-shape of the PSEUDOMDD are o = (2, —n) and B = (—2p, h). Recall that copies of 7,
can be reach from 7}, through an integer number of o and 3. Consider the parallelogram
formed by 7}, and a and B; see Fig. 6.11. The four lines Lo (7)), La(}), La(7), ++B),
Lg(m}, + ac + 3) consist of copies of 7}, that are as close as to (0,0). Thus the lowest cost
copy of 7}, may appear in one of these lines. By Lemma 6.3.5, we only need to consider
Po (%) U Pa(77) U Pa(rh, + o+ B) U Pa(m, + a+ B8) \ { 7}, }. In other words, we need
to examine at most eight points to determine the lowest cost copy of 7}, In fact, most of
them are the same point or are not inside Z* x Z*. Note that given z and v, finding P,(2)
can be done in constant time shown as follows. Let ¢ be an integer such that z +tv € I'”

and z + (t+ 1)v € I'". Then Py(2) ={z +tv,z+ (t+ 1)v }.

sk .
L *) .

Figure 6.11: Find the lowest cost point.

For convenience, set Po () U Pa(,) U Po(m) + oo+ B) U Pg(n, + a+ B) \ { 7}, } =
PARA(m},). Tt should be noticed that the set PARA(7r}) cannot be empty. This is because
point 7, + a + B = (z}, + 20 — 2p,y; + h —n) is inside Z* x Z* and is always contained
in Pa(ﬂ'z +a+pB)U PB(T&'Z + a + B). However, in some cases, the lowest cost copy of ™,
may not exist in PARA(7,). In this case, we must have all points (except 7}, + a + 3) of

PARA(7},) to be outside Z* x Z* and either (i) the e, link is faulty and h—p = 1 or (ii) the
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es is faulty and £ —p = 1. In other words, 7}, + a + (3 is still be blocked by the faulty link.
For example, in Fig. 6.12, suppose ;1 = 32 and the e, link is faulty. We have 7}, = (2,0)
and thus PARA(m)={ m" + a+ 8} = {(6,1) }. Clearly (6,1) is still be blocked by the
faulty link. This problem can be solved by the following result proposed by Liu [49]. We

modify their results to fit our notations.
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Figure 6.12: Optimal fault-tolerant in M CR(34;1,3). Two vectors that characterizing the PSEUDOMDD
are o = (14, -5), 8 = (—10,6).

Lemma 6.3.6. [49] Suppose ;, = (z7,y;,) withy;, = 0. If the e,, link is faulty, PARA(m},) =

{71'2—1—054—6} and h —n =1, then z = (r,h + k — 1) is the lowest copy of m},, where

k= Bﬁ:gﬂ and r = (z}, + k(20 — 2p)) mod 2(. Moreover, the path from (0,0) to z by using

the S-Link-First-Algorithm contains no faulty link.

Proof. Since h —n =1, every copy of =, in I'" will be blocked by the faulty link. In this
situation, the lowest cost copy of 7}, must appear in I'". In [49], Liu et al. find that point
z = (r,h +k — 1) is the closest copy of 7}, (in ¢;-norm). It is not difficult to check that

Leayp(2) consisting of copies of 7%, is the closest line (to (0,0)) in I'", and thus z is the lowest
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copy of 7% in I'". Moreover, the path from (0,0) to z by using the S-Link-First-Algorithm
contains no e,, link; if not, then we can easily find another copy of 7}, with smaller cost than

z, a contradiction. O

Lemma 6.3.7. [49] Suppose 7}, = (7, y;) with x;, < 2. If the e link is faulty, PARA(w},) =

{ T, +a+ B } and . —p =1, then z = (r,20 + k — 1) is the lowest cost copy of ©*, where

J72

k= ﬁ;y;”_‘ and t = (y;, +k(h—n)) mod h. Moreover, the path from (0,0) to z by using the

S-Link-First-Algorithm contains no faulty link.

Proof. Since the proof is similar to that of Lemma 6.3.6, we omit it. 0

Now we are ready to present the fault-tolerant routing algorithm for MCRNs, call FTRA,
in Algorithm 7. Since the correctness of FTRA follows from Lemmas 6.3.1, 6.3.2, 6.3.3, 6.3.4,

6.3.6 and 6.3.7 directly, we omit it.

Theorem 6.3.8. FTRA is an optimal fault-tolerant routing algorithm for MCRNs. After
an O(log N)-time preprocessing, F'TRA takes constant time to execute at each node along

the route.

Example. Suppose we are sending a miessage from node 0 to node 8 in MCR(22;1,7);
see Fig. 6.13(a). The preprocessing phase of FTRA computes the L-shapes of the PSEU-
DOMDD of MCR(22;1,7) and MCR(22;1,15) and obtains (12,2,2,1) and (4,6,2,1), re-
spectively, and derives the routing parameter as [1,1]. Suppose the e4 link is detected as
a faulty link at node 0. Then FTRA converts the routing parameter to 7, = (0,1). After
that, it computes PARA(7?,) = { (6,6),(8,4),(10,2),(12,0) } and obtains cost((6,6)) =
14, cost((8,4)) = 10,cost((10,2)) = 10,cost((12,0)) = 12. Since point (10,2) has the
smallest cost, FTRA construct a route from (0,0) to (10,2) as follows: (0,0) — (1,0) —
(2,0), followed by using S-Link-First-Algorithm. In other words, the whole path will be

(0,0),(1,0),(2,0),(3,1),(4,1), (5,2), (6,2),(7,2), (8,2), (9,2), (10, 2).
83



CHAPTER 6. ROUTING 6.3. FAULT-TOLERANT ROUTING IN MCRNS

x-2y=0
'4
6 4Fa1-9-;:2-6;;1'§1;14%&7-—a».L:f_ L g Jante s Ios boi b o Ltsbisebs o Jrrob 3 doa
K ; R el S ™ - Eaad i
s __1_8Fa11—>1z/ci5 ffscizlwociiij»léﬁ) 633 |4 rﬁ19»2or§i§'—;l TS L2 2l 7 18
g = A y . e — p——
¢ | 1043 - 419203 TG Begtr 1. e 2 w21 7 182l [ {102 5 1m 621 - 0215 -16+2 9 J=10
. 9 R Ry A .

P <~ | A T 0 A 49--- 7 i N
3 2 F_:k177‘>1 Fjll* ’12/Fi 5 7:‘6 210 Fjl‘Sf*l FiQ —=10==3 >4 ==>19 2 F;13* »174/53'7-‘ -~ Sva-i. 1.2

7 bt e - o8
2 | 167k o Jr10eb 3 I teio oagei s el 7 31_5»2 ARPERTARTY RPN R RY

z . x Gl L i P Rt
3 kg . R EF . |

N PGS PRRTARTE NP4 AEAN A PR P | RPARNATE &2 SR s SVAIEN O
AP0 il . LEL EYPR _ LA bk Pd .

> N RN ==
Y PLISTRRTARE SR AR e A £ SVARTE ey (IR pA RPN ANTE SR ANIN O
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1-6- 17 18 19 20 21 22
(a)

O | AT 03 R, T [P 8 1 2 AT RIS 120y S 76 FR1 R 0 A5 16,9 [F10e3 -

S| IS 2 s -6 1:Lb'rﬂ;ié'—;1é ) FTCION EIR YA ST SYAITN ! T 2ERIT 18
VAP T = A e s
¢ [T A9 03 RIS T e 8 1 2l TS L 12e s 6 21 0 3151000
-------- ») . .
.~ A T Y =

I SYEREESIE SPESE IV CIE S SEE r MO 4 9 20 3 1o 7 I8 1

\ 7  r X | A~y M T e .
s, 75 . .- LR T
2 'I’GZ: 105323 G210 Pa0e 1314 7 87 1 =2l TSP 120 5 61 - 035 160
- ‘4 il O L — o
1] 851 1z 1718211 f-10<2 5 > 6« 1—»0'%§r5>*16=: "0 el 02 3 A O R0 3 AT 8
» A LA A 7. . . N A -
Py~ S . . R T
o | 94515 -#@ 'lO.F.?_fi_jf_é_l_F__ﬂl‘)**ZOFﬁB**1437 P81 P17 1811 1T 5 621 U

Figure 6.13: Optimal fault-tolerant in MCR(22;1,7).

Example. Suppose we are sending a message from node 0 to node 8 in MCR(22;1,7); see
Fig. 6.13(b). The preprocessing phase of FTRA derives the routing parameter as [1, —2].
Suppose the e, link is detected as a faulty link at node 0. Then FTRA converts the routing
parameter to 7y, = (3,0). After that, it computes PARA(w}) = { (1,2),(9,5), (11,3),(13,1) }
and obtains cost((1,2)) = 3, cost((9,5)) = 9,cost((11,3)) = 11, cost((13,1)) = oco. Since
point (1,2) has the smallest cost, FTRA construct a route from (0,0) to (1,2) by using
S-Link-First-Algorithm as follows: (0,0), (1,1), (0,1), (1,2).
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Algorithm 7 Fault- Tolerant- Routing-Algorithm (FTRA)

input: N, s, w, u: source, v: destination.
output: The output link e.

begin preprocessing

. (20y, ho, 2pg, o) < the L-shape of the PSEUDOMDD of MCR(N; s, w)
: (201, hy,2p1,ny) < the L-shape of the PSEUDOMDD of MCR(N;s, N — w)
if u is odd-numbered then > Consider MCR(N;s, N — w)

w <+ N —w modN

end if
: 4 v—u mod N
. [ns, ny) < the routing parameter of node p in the MDDy of MCR(N; s, w)

end preprocessing

begin FTRA
8: Call the S-Link-First-Algorithm
9: if e is faulty then

10: if v is odd-numbered then > Consider MCR(N;s, N — w)

11: w4+ N —w mod N

12: Ny < Ny

13: end if

14: 4 v—u (mod N)

15: 7, = (¥, y;) < the point having-the routing parameter [n, n,|

16: it 1<y < {%“W then

17: route to 7y, by using the W-Link-First-Algorithm

18: else

19: A < umod 2

20: o — (QK)\, —n,\),,ﬁ' — (—2p>\, h)\)

21: let z be a point in PARA(7},) with the smallest cost, where the cost of a
point is defined in (6.3.4), (6.3.5)

22: if e=e, y; > {%‘_‘, z% > 2 and A(m}) +2 < A(z) then

23: route to 7r;, by Lemma 6.3.2

24: end if

25: if e = e,, PARA(7,) = { @ +a+ B} and h —n = 1 then

26: route to (r,h + k — 1), defined in Lemma 6.3.6

27: break

28: end if

29: if e = e, PARA(w,) = { 7}, + a+ B } and { — p =1 then

30: route to (r,2¢ + k — 1), defined in Lemma 6.3.7

31: break

32: end if

33: route to z by using the route illustrated in Lemmas 6.3.3 and 6.3.4

34: end if 85

35: else

36: u<4—u-+e mod N

37 send messages to the node by using e

38: end if

end FTRA




Chapter 7

Experimental Results

7.1 Experimental Results

Although Theorem 5.3.1 provides ‘a class-of optimal MCRNs, to find optimal MCRNs is
extremely difficult to solve analytically for all values of N. In-addition, to find MCRNs that

minimize the average distance for all values-of N is another difficult problem, where the

average distance of MCR(N; s, w) is defined by

- 1
d(N,s,w):m Z d(u,v),
u,veV(G)

and the optimal average distance D(N) is the smallest average distance among all MCRNs
with N nodes.

Both of the above two discrete problems turn out to be difficult due to the following
reason: neither the diameter nor the average distance between vertices will always increase
with N. The discrete nature of the problem may prevent the statement of the optimal results
in closed form. For example, Dycr(16) = 6 > 5 = Dycr(18) and Dyer(16) = 3.0625 >

3.0555 = Dyor(18); see Table B.1 for more other examples.
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Figure 7.1: An exhaustive computer search shows that 98.88% of optimal MCRNs MCR(N;s,w) can be
obtained by setting s = 1 when N < 5000.

Nevertheless, we obtain optimal MCRNs by an exhaustive computer search for N < 5000.
Among them we find that 98.88% of optimal MCRNs can be obtained by setting s = 1 (see
Fig. 7.1). Namely, among all pairs (s, w) that minimize the diameter for a given value of N,
there is one pair (1, w) except for some exceptional values of N. In other words, there is no
additional advantage in letting s be different from 1.

By the experiment result, the first N such thatthe'optimal MCRN cannot be achieved
by setting s = 1 is 30. Let D}, (V) denote the smallest diameter of MCRN with N nodes
and s = 1. When N = 30, the optimal MCRN is achieved: by setting s = 3,w = 5 (see
Theorem 5.3.1) and gives

d(30;3;5)= Drcr(30)=T,
while the best solution with s =1 gives

Diyor(30) =9  (with w = 5).

The first N that is not satisfying Theorem 5.3.1 and the optimal MCRN cannot be
achieved by setting s = 1 is 1320. When N = 1320, the optimal MCRN is achieved by

setting s = 3, w = 95 and gives
d(1320;3,95) = Dycor(1320) = 51,

while the best solution with s =1 gives
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Diysor(1320) = 53 (with w = 135).

The optimal MCRNs that are not achieved by setting s = 1 when N < 5000 are shown
in Table 7.1. Moreover, for all values of N < 5000 there are optimal MCRNs that minimize
both the diameter and the average distance between nodes simultaneously; see Table B.1
for N < 256. Note that there are DLNs that minimize either the diameter or the average

distance between nodes, but not both simultaneously; see Table B.1 for examples.

Table 7.1: The optimal MCRNs that are not achieved by setting s = 1 when N < 5000.

N Dycr(N) s w DY cpr(N) 8 w’
30 7 (by Theorem 5.3.1) 3 5 9 1 5
70 11 (by Theorem 5.3.1) 5 7 13 1 9
126 15 (by Theorem 5.3.1) 7 9 17 1 11
198 19 (by Theorem 5.3.1) 9 11 21 1 17
286 23 (by Theorem 5.3.1) 11 13 25 1 21
390 27 (by Theorem 5.3.1) 13 15 29 1 19
510 31 (by Theorem 5.3.1) 15 17 33 1 29
646 35 (by Theorem 5.3.1) 17 19 37 1 33
798 39 (by Theorem 5.3.1) 19 21 41 1 29
966 43  (by Theorem 5.3.1) 21 23 45 1 41
1150 47 (by Theorem 5.3.1) 23 25 49 1 39
1320 51 50 3 95 53 135
1350 51 (by Theorem 5.3.1) 25 27 53 1 49
1566 55 (by Theorem 5.3.1) 27 29 57 1 53
1798 59 (by Theorem 5.3.1) 29 31 61 1 57
2046 63 (by Theorem 5.3.1) 31 33 65 1 61
2250 67 66 3 65 69 57
2280 67 67 3 625 69 309
2310 67 (by Theorem 5.3.1) 33 35 69 1 57
2590 71 (by Theorem 5.3.1) 35 37 73 1 69
2886 75  (by Theorem 5.3.1) 37 39 e 1 73
3198 79 (by Theorem 5.3.1) 39 41 81 1 e
3526 83 (by Theorem 5.3.1) 41 43 85 1 81
3870 87 (by Theorem 5.3.1) 43 45 89 1 71
4230 91 (by Theorem 5.3.1) 45 47 93 1 89
4606 95 (by Theorem 5.3.1) 47 49 97 1 83
4914 99 98 3 581 101 87
4998 99 (by Theorem 5.3.1) 49 51 101 1 97
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7.2 Performance Evaluation

In this section, we compare the MCRNs with DLNs in terms of performance parameters
including the network diameter and the average distance. For the network diameter part,
although the MCRN can achieve a better diameter than the DLN (see equations (1.4.1),
(1.4.4) and (1.4.5)), however, the exact values of the diameter of the optimal MCRNs and
the optimal DLNs are not known so far for every N. Thus, it is interesting to compare the
minimum diameter as well as the minimum average distance between MCRNs and DLNs
with the same number of nodes. Fig. 7.2 shows a comparison of the minimum diameter
between MCRNs and DLNs. It is clear to see that the minimum diameter of the MCRN
is always smaller than that of the DLN, and the gap between these two values increases
markedly when number of nodes increases. t This tells that the MCRN performs a better

performance than the DLN in worst, case of the transmission delay.
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Figure 7.2: Comparing the minimum diameter between MCRNs and DLNs.
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Figure 7.3: Comparing the minimum average distance between MCRNs and DLNs.

For the average distance party Fig. 7.3 shows a comparison of the minimum average
distance between MCRNs and DLNs. In this case, the minimum average distance of the
MCRN is also smaller than that of the, DLN| but the gap/between these two values increases
in a slow fashion when number of nodesinecreases.~We c¢an conclude that the MCRN performs

a slightly better performance than the DLN in average case of the transmission delay.
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Chapter 8

Conclusions

In this chapter, we present a summary of this thesis, and we discuss some directions for

further research.

8.1 Summary of ThistResearch

The double-loop network has been extensively studied in many aspects such as the minimum
distance diagram, the diameter and the routing—Efficient algorithms exist for distance-
related problems of the double-loop network. However, compared with the double-loop net-
work, neither diameter-computing algorithms nor routing algorithms for the mixed chordal
ring network have been addressed in the literature. In this thesis, our research goal is to
improve the knowledge of the mixed chordal ring networks and is focused on solving the
distance-related problems of the mixed chordal ring network: The minimum distance dia-
gram problem, the diameter problem and the shortest path routing problem.

We first study and investigate the minimum distance diagram of the mixed chordal ring
network. Specifically, we find that the minimum distance diagram of a mixed chordal ring

network can be obtained easily by reassembling the PSEUDOMDD in a particular way. The
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tool we developed can be used to study other distance-related problems.

For the diameter-related problem, we proposed an efficient algorithm to compute the
diameter of a given mixed chordal ring network. For the optimization problem of finding
the optimal mixed chordal ring network, we improve previous bounds on this problem and
successfully obtain a class of optimal mixed chordal ring networks. By using the presented
diameter-computing algorithm, an exhaustive computer search suggests that most of the
optimal mixed chordal ring networks can be achieved by setting the ring-parameter to be 1.

For the routing problem, two node-to-node routing algorithms are presented for flexible
applications: shortest-path-based routing algorithm and dynamic routing algorithm. Both
routing algorithms do not use routing tables and always use a shortest path to route. The
shortest-path-based routing algorithm takes O(log N)-time for the source node and takes
constant time for the other nodes in the routing path. In the dynamic routing algorithm,
after an O(log NV)-time to determine the network parameters, each node (including the source
node) takes constant time to determine the next mode on-the routing path to which the
message should be sent.

In addition, we also present am optimal fault-tolerant-routing algorithm for MCRNs
in the presence of up to one node or link failure:~The fault-tolerant algorithm presented
do not require routing tables and requires very little computational overhead. After an
O(log N)-time preprocessing, the algorithm can route messages to the destination node
using a constant time at each node along the route. The fault-tolerant routing algorithm
presented is guaranteed to find an optimal route after a faulty element is detected.

We believe that these results will benefit further researches on mixed chordal ring net-
works. In the following, a comparison between the double-loop network with the mixed

chordal ring network is shown in Table 8.1. In the next section, we discuss some directions

for further research on MCRNs.
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8.2 Directions for Future Research

One of the most important and fundamental optimization problems in designing intercon-
nection networks is, for a given number of nodes N, how to find an optimal network with
the smallest diameter and to give the construction of such a network. For the double-loop
network, determining the exact value of Dpr(N) is a hard problem and even determining
Dpr(N) = min,,{dpr(N;1,s5)}, where dpr(N;1,s5) is the diameter of DL(N;1,s,), is a
hard problem, too; see [9] for more detail. By (1.4.1), (1.4.2) and (1.4.3), the gap between

/4 and it seems

the upper and the lower bounds on Dpp(N) increases by a factor of (3N)
that there is no closed form for Dpy(N). However, for the mixed chordal ring network, we
have successfully narrowed the gap between the upper and the lower bounds on Dy;cr(NV)
as 2 [\/N/2 | +1 and [V2N —3/2]. It has a giéat probability to determine Dycr(N) and
therefore solve this optimization problem in the near futtze.

Another research perspective may take-into the weighted version of the mixed chordal
ring network for consideration. Related research results on the weighted double-loop network
can be found in the literature. For example; the diameter computation in [21]; bounds on the
minmum diameter and average distanee-in.[57]; optimial fault-tolerant routing in [49]. Thus
it is interesting to know whether the proposed results on mixed chordal ring networks in this
thesis, including the minimum distance diagram construction, the diameter computation,
and the node-to-node routing, can be easily translated into the weighted version.

From the graph theoretical viewpoint, we are also interested in the isomorphism prob-
lem. A large number of papers are devoted to the isomorphism problem for circulant graphs
[1, 5,29, 51, 52]. In addition, Barriére gave a polynomial-time algorithm to decide isomor-
phism between two chordal rings. The necessary and sufficient condition for two double-

loop networks to be strongly isomorphic is characterized in [41]. Moreover, Hwang and

Wright [41] studied the reliability of some double-loop networks by considering the non-
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strongly isomorphic networks. Thus, given two mixed chordal ring networks with the same
number of nodes, it is interesting to check whether or not these two networks are strongly
isomorphic. For example, when N = 20, the nonstrongly isomorphic mixed chordal ring
networks are MCR(20;1,3), MCR(20;1,5), MCR(20;1,7), MCR(20;1,9), MCR(20;5,1).
Theorem 2.3.4 provides a sufficient condition for two mixed chordal ring networks to be
strongly isomorphic. However, this result does not cover all networks with the same number
of nodes. Thus, determining the necessary and sufficient condition for two mixed chordal
ring network to be strongly connected is another challenging direction for further research.
Moreover, if the necessary and sufficient condition is not easy to obtain, then we search for
an efficient algorithm to determine the isomorphism between mixed chordal ring networks.

Other research direction may take into the collective communication for consideration.
The most important among these are one-to-all ‘broadcasting (a source node sending a
message to every other node), all-to-all'broadeasting, all-to-all personalized exchange (every
node sending a unique message to-each of the other nodes);and a number of permutation
routing patterns whereby each of the N nodes sends a message to a distinct node (so that
N messages initially at their respective .source-nodes are permuted, each ending up at its
destination node). Obradovic et. al. {53} studied-the one-to-all broadcasting problem on
the undirected double-loop networks UDL(N; +a, +b) and gave the construction of optimal
broadcast trees for i-port undirected double-loop networks. Hwang [40] showed that double-
loop networks have parallel processing capability by giving the first permutation routing
algorithm, and the number of routing steps required is equal to the diameter of the network,
which is the best bound one can get. In our opinion, analyzing the collective communication
problem on mixed chordal ring networks seems to be an interesting and challenging direction

for further research.
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Appendix A

Cheng-Hwang-Algorithm

Input: N, sq, so.
Output: The L-shape (¢, h,p,n) of DL(N;si,s3).

Step 1. Let d = ged(N, s1), d = gcd(N, so), N1=4N/d; .= s1/d, and s, = so (mod N').

Let t_1 = N'. Let ty be the integer with
sitotsy =00 (mod-N'), 0< ¢y < N

Define g;, t;, recursively (by the Euclidean algorithm) as follows:

o1 = qito + 11, 0<t; <ty
Lo = @ot1 + o, 0<t <t
5] = q3la + 13, 0<t3 <ty

lh2 = Qlp—1 +tp, 01, <tp_1

k-1 = Qrsrt, 0="trp1 <ty
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Step 2. Define integers U; by U_; =0, Uy = 1, and
U'i+]_ = qi+1UZ' + U’i*]_a 7 = O’ 1’ e ’k'

By induction,

tiUi-‘,—l +t’i+1Ui = ]\[’7 7 = 071,... ’k'

Regard t_,/U_; = oo > x for real number x. Since {t;}**' and {U;}f*! are

7

strictly decreasing and increasing, respectively, we have

t t t t_

0= =
Uk+1 Uk UO U—l

= OQ.

Step 3. Let u be the largest odd integer. siich that @< t,/U,. Define

Ly —dU,
V= | .
tur1 + dUy 1y
return
N\ tu — /Utu+1,
h =0 d(Up+ (v 1)Uysq),
p = tu - (U + 1>tu+17
n = d(U, +vUyuq).

end Cheng-Hwang-Algorithm
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Appendix B

Optimal Mixed Chordal Ring

Networks and Double-Loop Networks

Table B.1: Optimal' MCRNs and DLNs for. N = 6,8, ..., 256.

N Dycr(N)  Ducr(N) w Dpr(N)  Dpr(N) b
6 3 1.5 3 3 1.5 2
8 3 1.75 3 3 1.75 3
10 4 2.1 3 4 2.1 3
12 5 2.416666667 3 5 2.5 3
14 5 2.714285714 3 5 2.642857143 4
16 6 3.0625 3 5 2.875 7
18 5 3.055555556 5 6 3.166666667 4
20 7 3.45 5 7 3.5 4
22 7 3.545454545 5 7 3.590909091 5
24 7 3.75 5 7 3.75 10
26 7 3.961538462 7 7 3.961538462 8
28 7 4.107142857 5 8 4.214285714 5
30 7 4.233333333 5 8 4.3 9
32 7 4.375 7 9 4.5625 6
34 8 4.558823529 13 9 4.676470588 10
36 9 4.75 15 9 4.833333333 11
38 9 4.921052632 7 9 5.026315789 9
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N Dyer(N)  Ducr(N) w Dpr(N)  Dpr(N) b
40 9 5.075 7 9 5.1 12
42 9 5.238095238 9 10 5.357142857 10
44 10 5.431818182 13 10 5.409090909 13
46 9 5.47826087 7 11 5.630434783 18
48 11 5.729166667 21 11 5.75 11
50 9 5.7 9 11 5.9 15
52 11 5.980769231 7 11 5.961538462 12
54 11 6 15 11 6.166666667 16
56 11 6.196428571 21 11 6.214285714 13
58 11 6.275862069 9 12 6.431034483 11
60 11 6.4 9 12 6.5 14
62 11 6.532258065 11 13 6.693548387 14
64 11 6.640625 19 13 6.8125 12
66 11 6.742424242 25 13 6.863636364 15
68 11 6.838235294 9 13 7.029411765 13
70 11 6.928571429 7 13 7.071428571 16
72 11 7.027777TT78 11 13 T.27TTTTTTT8 20
14 7.25 22
74 12 7.148648649 31 13 7.310810811 14
76 13 7.276315789 21 14 7.552631579 21
78 13 7.397435897 17 14 7.576923077 18
80 13 7.5125 35 14 7.625 15
82 13 7.62195122 11 15 7.792682927 23
84 13 7.726190476 11 15 7.928571429 16
86 13 7.837209302 13 15 7.965116279 16
88 14 7.965909091 19 15 8.113636364 14
90 13 8.022222222 33 15 8.166666667 17
92 15 8.184782609 21 15 8.369565217 21
16 8.326086957 17
94 13 8.191489362 11 15 8.393617021 15
96 15 8.385416667 21 15 8.4375 18
98 13 8.357142857 13 16 8.642857143 27
100 15 8.57 45 16 8.7 16
102 15 8.568627451 39 16 8.735294118 19
104 15 8.740384615 11 17 8.884615385 29
106 15 8.773584906 19 17 9.009433962 20
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N Dyer(N)  Ducr(N) w Dpr(N)  Dpr(N) b
108 15 8.898148148 45 17 9.055555556 17
110 15 8.963636364 13 17 9.227272727 24
112 15 9.053571429 13 17 9.25 21
114 15 9.149122807 15 17 9.289473684 18
116 15 9.232758621 25 17 9.465517241 16
18 9.431034483 45
118 15 9.313559322 27 17 9.516949153 22
120 15 9.391666667 33 17 9.55 19
122 15 9.467213115 51 19 9.795081967 19
124 15 9.540322581 13 18 9.790322581 17
126 15 9.611111111 9 18 9.833333333 20
128 15 9.6875 15 19 9.96875 20
130 16 9.776923077 57 19 10.11538462 18
132 17 9.871212121 39 19 10.13636364 18
134 17 9.962686567 29 19 10.17164179 21
136 17 10.05147059 31 19 10.32352941 32
138 17 10.13768116 21 19 10.36956522 19
140 17 10.22142857 63 19 10.4 22
142 17 10.3028169 15 20 10.52816901 31
144 17 10.38194444 15 19 10.61111111 56
146 17 10.46575342 17 19 10.65068493 20
148 18 10.56081081 41 20 10.85135135 18
150 17 10.61333333 55 20 10.9 63
152 19 10.73026316 27 20 10.92105263 24
154 17 10.75324675 47 20 10.95454545 21
156 19 10.89102564 29 21 11.07692308 34
158 17 10.88607595 15 21 11.20886076 19
160 19 11.04375 43 21 11.25 22
162 17 11.01851852 17 21 11.27777778 22
164 19 11.18902439 25 21 11.57317073 44
22 11.51219512 26
166 19 11.18072289 49 21 11.46385542 20
168 19 11.32738095 7 21 11.5 23
170 19 11.34117647 65 21 11.67647059 66
22 11.61764706 23
172 19 11.45930233 15 21 11.72093023 27
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N Dyer(N)  Ducr(N) w Dpr(N)  Dpr(N) b
174 19 11.49425287 23 21 11.74137931 21
176 19 11.58522727 7 21 11.77272727 24
178 19 11.64044944 17 22 11.98314607 28
23 11.97191011 24
180 19 1171111111 17 22 12 39
182 19 11.78571429 19 22 12.03846154 22
184 19 11.85326087 51 22 12.06521739 25
186 19 11.91935484 33 23 12.17741935 82
188 19 11.98404255 35 23 12.43617021 36
24 12.37234043 41
190 19 12.04736842 41 23 12.34210526 26
192 19 12.109375 69 23 12.375 23
194 19 12.17010309 85 23 12.53092784 21
196 19 12.22959184 17 23 12.57142857 35
198 19 12.28787879 11 23 12.59090909 27
200 19 12.35 19 23 12.62 24
202 20 12.42079208 91 23 12.80693069 36
24 12.72772277 60
204 21 12.49509804 75 23 12.82352941 22
206 21 12.56796117 47 23 12.8592233 28
208 21 12.63942308 37 23 12.88461538 25
210 21 12.70952381 39 24 13.07142857 40
212 21 12.77830189 57 25 13.09433962 38
214 21 12.84579439 25 24 13.13551402 23
216 21 12.91203704 99 24 13.16666667 26
218 21 12.97706422 19 25 13.2706422 26
220 21 13.04090909 19 25 13.40909091 30
222 21 13.10810811 21 25 13.44594595 24
224 22 13.18303571 51 25 13.46428571 24
226 21 13.2300885 69 25 13.49115044 27
228 23 13.32017544 87 25 13.65789474 31
230 21 13.34782609 95 25 13.67391304 41
232 23 13.45258621 35 25 13.70689655 25
234 21 13.46153846 69 25 13.73076923 28
236 23 13.58050847 37 25 13.89830508 23
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N Dyer(N)  Ducr(N) w Dpr(N)  Dpr(N) b
26 13.83050847 66
238 21 13.57142857 19 26 14.14705882 36
27 14.00420168 38
240 23 13.70416667 93 25 13.95833333 71
242 21 13.68181818 21 25 13.98760331 26
244 23 13.82377049 57 26 14.20491803 33
27 14.1557377 29
246 23 13.81300813 75 26 14.20731707 24
27 14.18292683 44
248 23 13.93951613 29 26 14.24193548 92
250 23 13.944 105 26 14.26 30
252 23 14.0515873 117 26 14.28571429 27
254 23 14.07086614 75 27 14.38188976 71
256 23 14.16015625 19 27 14.53125 25
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