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Abstract

This research covers the less trodden field of mixed chordal ring networks, in the attempt
to discover the existence of efficient algorithms on distance-related problems, including the
minimum distance diagram construction, the diameter computation, and the node-to-node
shortest path routing. The extensively studied double-loop network has proven to hold
efficient algorithms on the above specified distance-related problems. The significance of
this research lies in mixed chordal ring network’s achievement of a better diameter, as well
as the in-vertex-transitive feature of it, which makes its exploration on distance-related
problems a lot more sophisticated.

We first study and investigate the minimum distance diagram problem. We find that the
minimum distance diagram of a mixed chordal ring network can be obtained by reassembling
the pseudoMDD. This observation can be used to study other distance-related problems.
For the diameter computation problem, we proposed an efficient algorithm to compute the
diameter of a given mixed chordal ring network. For the optimization problem of finding
optimal networks, we improve previous lower and upper bounds and successfully obtain a
class of optimal mixed chordal ring networks. For the routing problem, two node-to-node
routing algorithms are presented for flexible applications: the shortest-path-based routing
algorithm and the dynamic routing algorithm. In addition, we also present an optimal fault-
tolerant routing algorithm for mixed chordal ring networks in the presence of up to one node
or link failure. All the routing algorithms presented do not require routing tables and only
very little computational overhead is needed.

Keywords: Mixed chordal ring network; Double-loop network; Algorithm; Diameter;
Optimal routing; Fault-tolerant routing; Minimum distance diagram; Interconnection net-
work; Parallel processing.
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中文摘要

本研究涵蓋混合式弦環網路中較少被討論的部份，並試圖發掘混合式弦環
網路在與距離相關的問題中，是否存在有效率的演算法。這些問題包括最
短距離圖的建造、直徑的計算、以及點與點之間的最優路由連線設計。上
述與距離相關之問題在已被廣泛研究的雙環式網絡中，已經找得到有效率
的演算法。本研究的重要性在於混合式弦環網路的直徑比雙環式網絡來得
小，以及，混合式弦環網路沒有點對稱性質，因此使得上述與距離相關之
問題複雜很多。

我們首先研究混合式弦環網路的最短距離圖建造問題。我們發現混合式弦
環網路的最短距離圖可經由重新組合「虛擬距離圖」得到。這樣的觀察可
以讓我們研究其它與距離相關之問題。針對直徑計算問題，我們提出一個
有效率的演算法可以計算出任一給定的混合式弦環網路的直徑。關於找出
混合式弦網環路中最小直徑的最佳化問題，我們改進了前人針對此問題所
提出的上下限，並且成功地得到一個無限最優混合式弦環網路族。針對網
路路由連線設計問題，我們提出兩個可彈性應用的點對點最優路由連線設
計演算法：基於最短路徑路由演算法及動態路由演算法。此外，我們也提
出了一個最優容錯路由演算法。此演算法在網路壞掉一個點或一個邊時可
以執行正確。上述所有路由演算法都不需要路由表格，並且只需要非常小
的額外計算花費。

關鍵字：混合式弦環網路；雙環式網路；演算法；直徑；最優路由；容錯路由；最短距
離圖；連接網絡；平行處理。
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Chapter 1

Introduction

1.1 Interconnection Networks

In recent years, interconnection networks are applicable in many different fields, ranging from

internal buses in very large-scale integration (VLSI) circuits to wide area computer networks.

Among others, these applications include parallel computing, backplane buses and system

area networks, telephone switches, internal networks for asynchronous transfer mode (ATM)

and Internet Protocol (IP) switches, processor/memory interconnects for vector supercom-

puters, interconnection networks for multi-computers and distributed shared-memory multi-

processors, clusters of workstations and personal computers, local area networks, metropoli-

tan area networks, wide area computer networks, and networks for industrial applications

[26, 31, 37, 61].

To implement high performance parallel and distributed systems by designing intercon-

nection architectures is a task both significant and challenging. [55, 56]. The choice of

the interconnection network may affect several characteristics of the final system, includ-

ing implementation cost (node complexity, VLSI area, wiring density), performance, ease

of programming, reliability, and scalability. Throughout times, many different interconnec-

1



CHAPTER 1. INTRODUCTION 1.1. INTERCONNECTION NETWORKS

tion networks had been applied in commercially available concurrent systems and numerous

research prototypes [46, 54]; other alternatives are proposed and evaluated in theoretical

studies [56].

Interconnection networks have been traditionally classified according to the operating

mode (synchronous or asynchronous) and network control (centralized, decentralized or dis-

tributed) [31]. According to [31], there are four major classes based primarily on network

topology: shared-medium networks, direct networks (router-based networks), indirect net-

works (switch-based Networks) and hybrid networks. In this research, our target networks,

double-loop networks and mixed chordal ring networks, belong to direct networks.

The direct network or point-to-point network is a popular interconnection network archi-

tecture that scales well to a large number of processors [31]. A direct network consists of a

set of nodes, each node being directly connected to a subset of other nodes in the network.

Theses nodes may have different functional capabilities. One common component of theses

nodes is a router, which handles message communication among nodes. Direct networks have

been a popular interconnection architecture for constructing large-scale parallel computers.

Almost all direct network topologies studied in the literature have some degree of sym-

metry. Such a symmetric topology has many advantages: First, it allows the network to

be constructed from simple building blocks and expanded in a modular fashion. Second,

the regular topology facilitates the use of simple routing algorithms. Third, it is easier to

develop efficient computational algorithms for multiprocessors interconnected by a symmet-

ric network. Finally, it makes the network easier to model and analyze. For example, in a

ring network of N nodes labeled from 0 to N − 1, each processor i is directly connected to

processors (i− 1) mod N and (i+ 1) mod N .

Mathematical models for interconnection networks have played important roles in under-

standing, synthesizing, and comparing a multitude of network architectures. The architec-

ture of an interconnection network can be represented by a graph or a digraph, where vertices

2



CHAPTER 1. INTRODUCTION 1.2. EVALUATION CRITERIA FOR NETWORKS
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Figure 1.1: Examples of direct network topologies: (a) (Undirected) Ring network (b) Chordal ring network
(c) Directed chordal ring network.

represent processors/nodes and edges represent links/channels between processors/nodes.

Fig. 1.1 shows some direct network topologies.

1.2 Evaluation Criteria for Networks

The topology of a direct network determines many architecture features of the network

and affects several performance metrics. Although the actual performance of a network

depends on many technology and implementations factors, several topological properties and

metrics can be used to evaluate and compare different topologies in a technology-independent

manner. Most of these properties are derived from the graph model of the network topology.

• Symmetry and Regularity

A regular network is defined as a network in which each node connects to the same number

of other nodes. A symmetric network is a network in which the topology looks identical

when viewed from every node or every edge. There are two types of symmetric: Node

symmetric and edge symmetric. In graph-theoretic terms, a graph is node-symmetric

(vertex-transitive) if, for every pair of vertices u and v, there is an automorphism which

maps u to v. The definition of edge-symmetric is identical to the node-symmetric, except
3



CHAPTER 1. INTRODUCTION 1.2. EVALUATION CRITERIA FOR NETWORKS

that the automorphism maps edges among themselves. References to symmetry without

qualification usually imply node-symmetry.

The main advantage of symmetric in a network lies in the ease of routing data in the

network. This allows all nodes to use the same routing algorithm. The task of path-

selection is also often simplified. Many popular direct interconnection networks are regular

and symmetric. Clearly, all networks in Fig. 1.1 are regular. In addition, networks in

Figs. 1.1(a) and 1.1(b) are also symmetric.

• Connectivity

The primary factor relating directly to the robustness of a graph-modeled interconnection

structure is its connectivity or edge connectivity. From the graph theory viewpoint, the

connectivity (resp., edge connectivity) of an undirected graph is the minimum number of

vertices (resp., edges) whose removal causes the graph to be disconnected or to contain

only one vertex. A digraph is strongly connected if for each ordered pair u, v of vertices,

there is a path from u to v. In a directed graph, the connectivity (resp., edge connectivity)

is defined as the minimum number of vertices (resp., edges) whose removal causes the

graph to be non-strongly connected. For some symmetric networks, the connectivity is

usually the same as the degree of a node.

• Distance Measures

In a direct network, communication between two nodes that are not directly connected

must take place through other nodes. The network diameter (diameter for short) D,

defined as the longest of the internode distances, is an important figure of merit for

networks. The diameter D indicates the worst-case number of hops in sending a message

from one node to another. If the message delay is proportional to the number of links

traversed, this provides an upper bound on the delay in the absence of any interfering

traffic. The diameter D may also be viewed as a lower bound on the delay between two

4
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nodes that are located farthest from each other. Although diameter does not completely

characterizes the performance of an interconnection network, it is still useful in comparing

networks with respect to their power to perform certain operations.

Although the diameter is useful in comparing two interconnection networks with identical

node degrees, it may not always be indicative of the actual performance of the networks.

Since two nodes in a network do not always communicate with each other by traversing the

length of the diameter D, it is more important to measure the average distance traveled

by a message in practice. Average internode distance D is defined as the average lengths

of the distance between all N2 pairs of nodes. The average distance is representative of

average or expected communication latencies, whereas D represents the worst case.

• Efficient Routing

As interconnection networks differ in the way they accommodate message traffic, routing

performance is a primary indicator of the overall benefits of a particular topology. Effi-

cient message routing can improve the network utilization. Many parameters including

the length of the route, the computational overhead, the memory requirement at each

node and the extra overhead information included in the message, can affect the routing

performance. The first issue in the algorithmic aspect is to design efficient algorithms such

that every message is sent along a shortest path from its source node to its destination

node. Thus one of the most important features to be taken into account in the design of

an interconnection network is the existence of efficient algorithms for routing messages.

When some nodes or links in the network fail, some routes become unavailable. However,

assuming that the network remains connected, communication is still possible by sending

affected message along a sequence of surviving routes. Therefore, the design of algorithms

for sending messages along the shortest route after detecting the faulty element is also an

important issue.
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1.3 Distributed Loop Networks

Loop networks have been widely considered in recent years as good network models for

interconnection or communication networks due to their regularity, simple structure and

symmetry; see Bermond et al. [9] for an exhaustive survey on this topic. The ring network

(i.e., the single-loop network) is one of the most simple and frequently used loop network for

interconnection networks, and has many attractive properties such as simplicity, extendibil-

ity, low degree, and ease of implementation. Although the ring network has many attractive

properties, it has poor reliability (any failure in an interface or communication link destroys

the function of the network) and it has high transmission delay. As a result, a lot of hy-

brid topologies utilizing the ring network as a basis for synthesizing richer interconnection

schemes have been proposed to improve the reliability and reduce the transmission delay

[6, 20, 27, 64].

One example of the commonly used extensions for the ring network is the multi-loop

network ML(N ; s1, s2, . . . , s�), which was first proposed by Wong and Coppersmith in [64]

for organizing multi-module memory services. The most widely studied multi-loop network

is perhaps the double-loop network (DLN for short). A DLN DL(N ; s1, s2) can be modeled

by using a digraph with N nodes 0, 1, . . . , N − 1 and 2N links as follows

i→ (i+ s1) mod N, i = 0, 1, 2, . . . , N − 1,

i→ (i+ s2) mod N, i = 0, 1, 2, . . . , N − 1,

where 0 < s1 �= s2 < N . The double-loop network has been used for local area network [47]

as well as the large local area optical network as SONET [7].

Another example of the commonly used extensions for the ring network is the chordal

ring network, which is constructed by adding chords to the ring topology [6, 41]. Arden and

Lee [6] first proposed and studied the chordal ring network. More specifically, an (undirected)

6
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chordal ring network CR(N ;w), where N is even and w is odd, can be modeled by using a

graph with N nodes 0, 1, . . . , N − 1 and 3N/2 links:

(i, (i+ 1) mod N), i = 0, 1, 2, . . . , N − 1,

(i, (i+ w) mod N), i = 1, 3, 5, . . . , N − 1.

See Fig. 1.1(b) for an example of CR(14; 5). Since then, more than one hundred papers have

been published on the topic of the chordal ring network and its variants. Especially, the

chordal ring networks of degree 3, 4, and 6 have been widely discussed in the literature [8,

11, 24, 50, 65]. As was pointed out in [20], the chordal ring network is a 3-regular graph

and it offers a happy medium between the (undirected) ring network and the undirected

double-loop network in the amount of hardware. Also, it preserves the Hamiltonian cycle

from the ring network and has a better diameter than the undirected ring network.

In [41], Hwang and Wright considered the directed version of the chordal ring network

and made a slight generalization on the ring links. More specifically, a directed chordal ring

network DCR(N ; s, w), where N is even and both s and w are odd, can be modeled by

using a digraph with N nodes 0, 1, . . . , N − 1 and 3N/2 links:

i→ (i+ s) mod N, i = 0, 1, 2, . . . , N − 1,

i→ (i+ w) mod N, i = 1, 3, 5, . . . , N − 1.

For an example, Fig. 1.1(c) is DCR(14; 1, 5).

Recently, Chen et al. [20] introduced the mixed chordal ring network (MCRN for short)

as a topology of interconnection networks. An MCRN MCR(N ; s, w) can be modeled by

7
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Figure 1.2: A DLN and an MCRN.

using a digraph with N nodes 0, 1, . . . , N − 1 and 2N links of the following types

ring-links: i→ (i+ s) mod N, i=0, 1, 2, . . . , N − 1,

chordal-links: i→ (i− w) mod N, i=0, 2, 4, . . . , N − 2,

chordal-links: i→ (i+ w) mod N, i=1, 3, 5, . . . , N − 1,

where N is even, both s and w are odd. Figs. 1.2(a) and 1.2(b) illustrate DL(14; 1, 5) and

MCR(14; 1, 5), respectively.

1.4 Motivation

Since each node in the DLN or MCRN has two in-links and two out-links, the DLN and

MCRN are very comparable1. Throughout this thesis, N denotes the number of nodes in a

communication network. For a fixed N , let DDL(N) and DMCR(N) denote the optimal (i.e.,

smallest) diameter of all DLNs and all MCRNs with N nodes, respectively. A well-known

1When comparing the mixed chordal ring network with the double-loop network, we assume both net-
works have the same number of nodes.
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lower bound on DDL(N) is as follows [64]:

DDL(N) ≥ �√3N 	 − 2. (1.4.1)

For upper bounds on DDL(N), Hwang and Xu [42] managed to prove, using a heuristic

method, that

DDL(N)≤√3N + 2(3N)1/4 + 5 for N≥ 6348. (1.4.2)

In [57], Rödeseth further improved the above upper bound to be

DDL(N)≤√3N + (3N)1/4 + 5
2

for N≥ 1200. (1.4.3)

For MCRNs, Chen et al. [20] showed the following result:

Theorem 1.4.1. [20] There exists a choice of s and w such that the diameter of MCR(N ; s, w)

is no larger than
√
2N + 3. In other words, DMCR(N) ≤ √2N + 3.

Since
√
2N + 3 is severed as an upper bound, we have

DMCR(N) ≤ 
√2N �+ 3. (1.4.4)

Note that there exist some erroneous cases in the proof of Theorem 1.4.1 and thus it is

not known whether or not MCRNs can achieve a better diameter than DLNs. In spite of

the erratum in the proof of Theorem 1.4.1, we confirm that MCRNs can achieve a better

diameter than DLNs by giving an improved upper bound on DMCR(N) in Section 5.2 as

DMCR(N) ≤ 2 �√N/2 	+ 1. (1.4.5)

From equations (1.4.1), (1.4.4) and (1.4.5), we can conclude definitely that the MCRN can

achieve a better diameter than the DLN.

One of the most important and fundamental optimization problem in designing inter-

connection networks is, for a given number of nodes N , how to find an optimal network with
9
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the smallest diameter and to give the construction of such a network. More precisely, for

double-loop networks, DL(N ; s1, s2) is optimal if the diameter of DL(N, s1, s2) is equal to

DDL(N). This optimization problem for the double-loop network has been widely studied

in the literature [2, 9, 10, 14, 15, 16, 30, 32, 42, 59]. However, to the best of our knowledge,

there is no result about the exact value of DMCR(N) in the literature.

Message routing is a fundamental and important function in interconnection networks.

Efficient message routing not only can reduce the transmission delay but also can improve

the network utilization. A routing algorithm is said to be optimal if every message is

sent along a shortest path from its source node to its destination node. There has been a

numerous amount of work on message routing in DLNs [22, 23, 35, 36, 40, 49]. In particular,

it has been studied with respect to network applications such as message routing [35, 36, 49],

permutation routing [40] and fault-tolerant routing [23, 49].

The minimum distance diagram (MDD for short), also called optimal routing region in

[27], is a tool to encode distance-related information such as diameter and shortest route

for multi-loop networks. It is well-known that the MDD of a DLN always forms an L-shape

and one can compute the diameter and the average distance of a DLN from the lengths

of segments on the boundary of an L-shape in constant time [33]. Cheng and Hwang [21]

proposed an O(logN)-time algorithm to derive the lengths of segments on the boundary of

the L-shape of DL(N ; s1, s2). Furthermore, many researchers addressed designing efficient

routing algorithms or fault-tolerant routing by using the L-shapes [22, 23, 36, 49]. For

further results of the DLN; see the excellent survey papers [9, 38, 39].

In contrast to the DLN, there has been little work reported in the literature on distance-

related problems of MCRNs. To the best of our knowledge, neither the diameter-computating

strategy nor the message-routing strategy was found in the literature. A natural question

arises, namely, whether the diameter computation and the message routing in MCRNs can

be done efficiently as in DLNs. Table 1.1 shows a comparison of previous results between

10
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DLNs and MCRNs.

Table 1.1: Previous results on double-loop networks and mixed chordal ring networks.

DLN MCRN

MDD construction [64] ?
Diameter computation [21, 66] ?
Optimal networks [10, 14, 15, 59] ?
Node-to-node routing [22, 35, 36] ?
Fault-tolerant routing [23, 36, 49] ?

1.5 Summary of the Contribution of This Research

In this section, we present a summary of the specific problems analyzed and the results

derived in this thesis. The contribution of our research will be introduced in Chapters 3-7.

In Chapter 3, we consider the problem of exploring and constructing the MDD of a

MCRN MCR(N ; s, w). Specifically, we introduce the pseudoMDD that helps study the

distance-related problems in MCRNs. By mapping the nodes of a MCRN to the two-

dimensional integer lattice, one can study the distance properties between the nodes of a

MCRN. Due to the tessellation of the plane formed by pseudoMDD, we successfully obtain

the MDD of a given MCRN from the pseudoMDD in a simple manner. In the last section

of this chapter, we give an algorithm to construct the MDD of a MCRN. The visualization

tool established in this chapter will be used throughout this thesis.

In Chapter 4, we consider the problem of computing the diameter of an MCRN. Instead

of constructing the MDD of an MCRN first, we present a subroutine that can compute

the maximum of distances of the nodes in the MDD to the node at the origin in constant

time as long as we have the L-shape of the pseudoMDD. As an application, we obtain an

algorithm that can compute the diameter of a given MCRN in O(logN) worst-case time in

Section 4.2.
11
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In Chapter 5, we discuss the problem of finding optimal MCRNs. In other words, we

are interested in finding MCRNs which achieve the smallest diameter among all MCRNs

with the same number of nodes. Due to the difficulty of this optimization problem, we

aim at looking for bounds on DMCR(N) instead of finding optimal MCRNs directly. In

Section 5.3, we successfully obtains a class of optimal MCRNs which matches the upper and

lower bounds presented in Sections 5.1 and 5.2.

In Chapter 6, we consider the problem of routing in MCRNs. In particular, routing of

node-to-node message with at most one faulty element in MCRNs is considered. We design

and present two optimal node-to-node routing algorithms and an optimal fault-tolerant

routing algorithm for MCRNs.

The two optimal node-to-node routing algorithms presented are shortest-path-based rout-

ing and dynamic routing. The shortest-path-based routing algorithm computes the routing

parameter that can be used to determine a routing path. This algorithm takes O(logN)-

time for a source node to compute the routing parameter, and each node on the routing

path can take constant time to determine the link (and therefore the node) to send messages

according to the routing parameter. On the other hand, for the dynamic routing algorithm,

after an O(logN)-time precalculation to determine the network parameters (only computed

once and stored them in all nodes), it can route messages using constant time at each node

along the routing path. The routing path is augmented on-the-fly at each routing step.

A shortest-path-based routing algorithm is presented in Section 6.1. A dynamic routing

algorithm is presented in Section 6.2.

In Section 6.3, we present an optimal fault-tolerant routing algorithm for MCRNs. The

algorithm does not require routing tables; it is efficient and it requires very little computa-

tional overhead. After an O(logN)-time precalculation, the algorithm can route messages

to the destination using a constant time at each node along the route. Moreover, the fault-

tolerant algorithm presented is guaranteed to find the optimal route at the presence of up

12
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to one node or link failure.

Here we summarize the contribution of this thesis: it proposes

(a) an algorithm to construct the MDDs of a mixed chordal ring network,

(b) an efficient algorithm to compute the diameter of a mixed chordal ring network,

(c) improved upper and lower bounds on DMCR(N),

(d) two optimal node-to-node routing algorithms for mixed chordal ring networks,

(e) an optimal fault-tolerant routing algorithm for mixed chordal ring networks.
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Chapter 2

Background Material

In this chapter, we present some background material on the double-loop network and the

mixed chordal ring network, as well as some previous results related to both networks. In

addition, some fundamental concepts of graph theory are given first. Our terminologies and

notations of graph theory are standard; see [63] and also [13].

2.1 Fundamental Concepts of Graph Theory

A graph G with n vertices and m edges consists of the vertex set V (G) = { v1, v2, . . . , vn }
and edge set E(G) = { e1, e2, . . . , em }, where each edge consists of two (possibly equal)

vertices called, endpoints. An element in V (G) is called a vertex of G. An element in E(G)

is called an edge of G. When vertices u and v are the endpoints of an edge e, they are

adjacent and are neighbors. We write (u, v) when { u, v } ∈ E(G). A loop is an edge whose

endpoints are equal. Multiple edges are edges having the same pair of endpoints. A simple

graph is a graph having no loops or multiple edges.

A directed graph or digraph G consists of a vertex set V (G) and an edge set (or arc set)

E(G), where each edge is an ordered pair of vertices. The first vertex of the ordered pair is

14



CHAPTER 2. BACKGROUND MATERIAL 2.2. THE DOUBLE-LOOP NETWORK

the tail of the edge, and the second is the head ; together, they are the endpoints. We say

that an edge is an edge from its tail to its head. We write u→ v when there is an edge from

u to v. In a digraph, a loop is an edge whose endpoints are equal. Multiple edges are edges

having the same ordered pair of endpoints. A digraph is simple if each ordered pair is the

head and tail of at most one edge. For a vertex v of a digraph G, the outdegree d+(v) the

number of edges with tail v. The indegree d−(v) is the number of edges with head v.

Unless otherwise specified, the following definitions and terms hold for both graphs and

digraphs. A separating set or vertex cut of a graph G is a set S ⊆ V (G) such that G \ S
has more than one component. A graph is k-connected if every separating set has at least

k vertices. A digraph G is strongly connected or strong if there is a path from u to v in G

for every ordered pair u, v ∈ V (G). A digraph G is strongly k-connected if |V (G)| ≥ k + 1

and every separating set of G has at least k vertices.

An isomorphism from a simple graph G to a simple graph H is a bijection f : V (G)→
V (H) such that { u, v } ∈ E(G) if and only if { f(u), f(v) } ∈ E(H). An automorphism

of G is an isomorphism from G into G. A graph G is vertex-transitive if for every pair

u, v ∈ V (G), there is an automorphism that maps u to v.

2.2 The Double-loop Network

A double-loop network (DLN for short) DL(N ; s1, s2) can be modeled by using a digraph

with N nodes 0, 1, . . . , N − 1 and 2N links

i→ (i+ s1) mod N, i = 0, 1, 2, . . . , N − 1,

i→ (i+ s2) mod N, i = 0, 1, 2, . . . , N − 1,

where 0 < s1 �= s2 < N . The integers s1, s2 are called steps or hops or jumps. The

connectivity of the DLN has been determined by Doorn [60] (or see [38]):
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Theorem 2.2.1. [38] DL(N ; s1, s2) is strongly 2-connected if and only if gcd(N, s1, s2) = 1.

It is well-known [34] that DL(N ; s1, s2) is a Cayley digraph of the cyclic group ZN with

the set of generators {s1, s2}. Since Cayley digraphs are vertex-transitive, the distance-

related problems of DLNs can be reduced to the problem of studying paths originated at

a fixed vertex1, usually node 0. A visualization tool that allows studying distance-related

problems of DLNs from a geometric point of view is set up as follows: Consider the two-

dimensional integer lattice Z × Z. Given DL(N ; s1, s2), label each lattice point (x, y) (i.e.,

x and y being integers) of Z×Z by (xs1 + ys2) mod N . Unless otherwise specified, we refer

to a point as a lattice point.

A minimum distance diagram (MDD) of DL(N ; s1, s2) is an array with node 0 at point

(0, 0) and node u at point (x, y) if and only if xs1 + ys2 ≡ u (mod N) and x + y is the

minimum among all (x′, y′) satisfying the congruence. Namely, a shortest path from node

0 to node u is through taking x s1-steps and y s2-steps (in any order). Note that an MDD

includes every node exactly once. Most authors [2, 12, 18, 19, 21, 33, 38] always “break

ties” lexicographically (choose with smaller y) whenever there are two (x, y)’s satisfying

xs1 + ys2 ≡ u (mod N). Without this convention, Sabariego and Santos [58] showed that

every DLN has at most two MDD’s. Throughout this thesis, we follow the convention

used in the literature, i.e., we assume a DLN has only one MDD constructed by using the

convention. Fig. 2.1(a) illustrates the MDD of DL(14; 1, 5).

It is well-known [64] that the MDD of a DLN is of a definite form: an L-shape. The

L-shape is determined by four parameters (�, h, p, n); these four parameters are the lengths

of four of the six segments on the boundary of the L-shape; see Fig. 2.1(a). For example,

the MDD in Fig. 2.1(a) has an L-shape (�, h, p, n) = (5, 3, 1, 1). An L-shape is degenerate if

its shape is a rectangle; for example, the MDD in Fig. 2.1(b) is degenerate.

1Although a network and the graph modeling it are conceptually distinct, we shall use the terms “node”
and “verex” interchangeably when there is no ambiguity.

16



CHAPTER 2. BACKGROUND MATERIAL 2.2. THE DOUBLE-LOOP NETWORK

Figure 2.1: MDDs of DLNs.

Fiol et al. [33] observed that the distribution of all points with the same label repeat

periodically and an MDD always tessellates the plane regardless of whether its L-shape is

degenerate or not. By considering the relative positions of point with the label 0, Fiol et al.

derived the following congruences:

�s1 − ns2 ≡ 0 (mod N)

−ps1 + hs2 ≡ 0 (mod N).
(2.2.1)

Let vectors α = (�,−n) and β = (−p, h). It is known that all the points with the label

0 can be generated by repeatedly adding ±α and ±β to each new point with the label 0.

Moreover, if one location of node u is known, then the positions of all other points with the

label u can be expressed in terms of α and β [27].

Chen and Hwang [17] used the observation (2.2.1) to prove that an L-shape is degenerate

if and only if exactly one of the two congruences: �s1 ≡ 0 mod N and hs2 ≡ 0 mod N is

satisfied. They introduced the Chen-Hwang-Rules [17] to define the lengths of segments on

the boundary of the L-shape when an L-shape is degenerate; see Fig. 2.2. As an example,

the L-shape of DL(10; 2, 7) in Fig. 2.1(b) is (5, 2, 2, 0).

Wong and Coppersmith [64] gave an O(N)-time algorithm to construct an MDD (hence

the L-shape) diagonally starting from point (0, 0). Specifically, consider filling numbers in
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Rule 1. Suppose hs2 �≡ �s1 ≡ 0 (mod N). Let the zero immediately above the L-
shape be at point (i, h). Then p = �− i, n = 0.

Rule 2. Suppose �s1 �≡ hs2 ≡ 0 (mod N). Let the zero immediately to the right of
the L-shape be at point (�, j). Then p = 0, n = h− j.

Rule 3. Suppose �s1 ≡ hs2 ≡ 0 (mod N). If h > �, follow Rule 1; otherwise, follow
Rule 2. Note that for an L-shape (�, h, p, n), we have � > 0, h > 0, p ≥ 0, n ≥
0, p and n not both zero.

Figure 2.2: Chen-Hwang-Rules

l l l

Figure 2.3: The (�, h, p, n) determined by the Chen-Hwang-Rules in [17].

{ (x, y) | x ≥ 0, y ≥ 0, x ∈ Z, y ∈ Z }. Start from the origin (0, 0), then the line (1, 0), (0,

1), and then the line (2, 0), (1, 1), (0, 2), and so on. At each lattice point (x, y) (i.e., x, y

being integers), if the value u, where xs1 + ys2 ≡ u (mod N), has not appeared so far, we

fill u at point (x, y), otherwise we just leave a blank. We stop when all values of u, i.e.

u = 0, 1, . . . , N − 1, have been accounted for.

Cheng and Hwang [21] gavn an O(logN)-time algorithm, we call it Cheng-Hwang-

Algorithm, based on the Euclidean algorithm, to compute the L-shape (�, h, p, n). For the

completeness of this thesis, the Cheng-Hwang-Algorithm is given in Appendix A.

However, when an L-shape is degenerate, the solution of (�, h, p, n) determined by Chen-

Hwang-Rules [17] does not always coincide with the values determined by the Cheng-Hwang-

Algorithm [21]. One such example is that for DL(15; 4, 5), Chen-Hwang-Rules determines

the L-shape (�, h, p, n) = (5, 3, 0, 1), whereas Cheng-Hwang-Algorithm determines the L-
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Figure 2.4: The inconsistency between Chen-Hwang-Rules and Cheng-Hwang-Algorithm.

shape (�, h, p, n) = (5, 7, 5, 4); see Fig. 2.4.

Clearly, the result determined by Chen-Hwang-Rules is more accurate and precise. In ad-

dition, our algorithms (diameter-computing algorithm, routing algorithm) for the distance-

related problems on the MCRNs highly rely on the correct information of the L-shapes.

Thus, to overcome this problem, Lee, Lan and Chen [45] proposed a simple modification to

the Cheng-Hwang-Algorithm as follows: Let (�̂, ĥ, p̂, n̂) denote the solution of Cheng-Hwang-

Algorithm and (�̄, h̄, p̄, n̄), the solution of Chen-Hwang-Rules.

Theorem 2.2.2. [45] Given DL(N ; s1, s2), let d = gcd(N, s1), d
′ = gcd(N, s2). Then

1. If DL(N ; s1, s2) satisfies d
′ > 1 and there exists 1 ≤ j ≤ min{d′ − 1, N

d′ − 1} such that

d′s1 ≡ js2 (mod N) with j < N
2d′ , then �̄ = �̂, h̄ = ĥ− n̂, p̄ = 0, n̄ = j.

2. If DL(N ; s1, s2) satisfies d > 1, d′ > 1 and d′s1 ≡ ds2 ≡ 0 (mod N) and d < d′, then

�̄ = �̂, h̄ = n̄ = ĥ− n̂, p̄ = 0.
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2.3 The Mixed Chordal Ring Network

A mixed chordal ring network (MCRN for short) MCR(N ; s, w) can be modeled by using a

digraph with N nodes 0, 1, . . . , N − 1 and 2N links of the following types

ring-links: i→ (i+ s) mod N, i=0, 1, 2, . . . , N − 1,

chordal-links: i→ (i− w) mod N, i=0, 2, 4, . . . , N − 2,

chordal-links: i→ (i+ w) mod N, i=1, 3, 5, . . . , N − 1,

where N is even, both s and w are odd, and 0 < s �= w < N . It should be noted that the

parameters s and w should satisfy s+w �= N in order to prevent the multiple links between

two nodes of the digraph, which means a waste of the hardware. Chen, Hwang and Liu [20]

proved the following theorem.

Theorem 2.3.1. [20] MCR(N ; s, w) is strongly 2-connected if and only if gcd(N, s, w) = 1.

The proofs of equation (1.4.4) and Theorem 2.3.1 are based on the idea of embedding

a MCRN into a DLN. Specifically, Chen, Hwang and Liu [20] showed that the MCRN

MCR(N ; s, w) can be embedded into the DLN DL(N
2
; s−w

2
, s+w

2
) by combining nodes 2k+1

and 2k+1+w as supernode k∗ for all k = 0, 1, . . . , N/2−1, where s−w
2

=
(
s−w
2

)
mod N

2
, s+w

2
=(

s+w
2

)
mod N

2
. They used this idea to obtain the connectivity and diameter information of

the MCRNs. However, we observe that this embedding sometimes fails. Take MCR(10; 1, 5)

as an example; its corresponding DLN is DL(10
2
; 1−5

2
, 1+5

2
), i.e., DL(5; 3, 3), which is clearly

not a valid DLN, yet MCR(10; 1, 5) is a valid mixed chordal ring network. In general,

MCR(2(2k + 1); 1, 2k+ 1) can not be embedded into a valid DLN. The idea used in [20] to

prove Theorem 2.3.1 is to show that MCR(N ; s, w) is strongly 2-connected if and only if

its corresponding DLN DL(N
2
; s−w

2
, s+w

2
) is strongly 2-connected. We now correct the proof.

First, a lemma is needed.
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Lemma 2.3.2. For MCR(N ; s, w),

1. if w �= N
2
, then DL(N

2
; s−w

2
, s+w

2
) is a double-loop network;

2. if w = N
2
, then DL(N

2
; s−w

2
, s+w

2
) is not a double-loop network and MCR(N ; s, N

2
) is

itself the double-loop network DL(N ; s, N
2
).

Proof. DL(N
2
; s−w

2
, s+w

2
) is not a valid double-loop network whenever s−w

2
≡ 0 (mod N

2
)

or s+w
2
≡ 0 (mod N

2
) or s−w

2
≡ s+w

2
(mod N

2
) or gcd(N

2
, s−w

2
, s+w

2
) �= 1. Since we assume

s �= w and s + w �= N , it is impossible that s−w
2
≡ 0 (mod N

2
) or s+w

2
≡ 0 (mod N

2
). Also,

s−w
2
≡ s+w

2
(mod N

2
) if and only if w = N

2
. In addition, we have assumed gcd(N, s, w) = 1;

therefore gcd(N
2
, s−w

2
, s+w

2
) = 1. Thus we have the first if-statement. When w = N

2
, N

2
≡ −N

2

(mod N) occurs and the chordal-links of MCR(N ; s, w) become:

i→ (i+ N
2
) mod N, i = 0, 1, . . . , N − 1.

Thus MCR(N ; s, N
2
) is itself the double-loop network DL(N ; s, N

2
) with steps s and N/2,

and we have the second if-statement.

Lemma 2.3.2 shows that DL(N
2
; s−w

2
, s+w

2
) is a valid embedding if and only if w �= N

2
. In

[20], the following lemma is proved.

Lemma 2.3.3. ([20]) MCR(N ; s, w) is strongly connected if and only if gcd(N, s, w) = 1.

Now we give a correct proof for Theorem 2.3.1.

Proof of Theorem 2.3.1: Necessity. Since MCR(N ; s, w) is strongly 2-connected, it is

also strongly connected. Thus, this part follows directly from Lemma 2.3.3.

Sufficiency. There are two cases.

Case 1: w �= N
2
. Then by Lemma 2.3.2, DL(N

2
; s−w

2
, s+w

2
) is a double-loop network. Since

w �= N
2
, s−w

2
�= s+w

2
. Since gcd(N, s, w) = 1, gcd(N

2
, s−w

2
, s+w

2
) = 1. Thus by Theorem 2.2.1,
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DL(N
2
; s−w

2
, s+w

2
) is strongly 2-connected. Since the two nodes in each super-node can reach

each other through the chordal-links between them, MCR(N ; s, w) is strongly 2-connected.

Case 2: w = N
2
. By Lemma 2.3.2,MCR(N ; s, w) is itself the double-loop networkDL(N ; s, w).

Thus by Theorem 2.2.1 and by the assumption that gcd(N, s, w) = 1, MCR(N ; s, w) is

strongly 2-connected.

Being vertex-transitive (or vertex symmetric) is a desirable property of an efficient net-

work topology. Intuitively, a vertex-transitive network looks the same from any node. This

property reduces the complexity of distance-related problems. For example, it allows the

use of an identical routing algorithm at every node. However, as was pointed out in [44], an

MCRN may fail to be vertex-transitive. One such example is MCR(12; 3, 5), in which node

0 can reach any node within 4 steps, while it takes 5 steps for node 1 to reach node 8.

Although an MCRN may fail to be vertex-transitive, it does satisfy the even-odd-vertex-

transitive property: for every pair of vertices u, v ∈ {0, 1, . . . , N − 1} with the same parity,

there is an automorphism ϕ that maps u to v. In other words, in an MCRN, all even-

numbered nodes are symmetric and all odd-numbered nodes are symmetric. By using this

property, we may pay our attention to node 0 and node 1 without loss of generality. In

Theorem 2.3.4, we further prove that node 1 can be regarded as an even-numbered node in

another MCRN.

Two MCRNs MCR(N ; s, w) and MCR(N ; s′, w′) are said to be strongly isomorphic if

there is a bijection ϕ from the nodes of MCR(N ; s, w) to the nodes of MCR(N ; s′, w′) such

that ϕ(v + s) = ϕ(v) + s′ for all nodes v and either

{
ϕ(v − w) = ϕ(v)− w′, for even v and even ϕ(v);

ϕ(v + w) = ϕ(v) + w′, for odd v and odd ϕ(v).

or {
ϕ(v − w) = ϕ(v) + w′, for even v and odd ϕ(v);

ϕ(v + w) = ϕ(v)− w′, for odd v and even ϕ(v).
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Theorem 2.3.4. MCR(N ; s, w) and MCR(N ; s,N − w) are strongly isomorphic.

Proof. Let the bijection from the nodes of MCR(N ; s, w) to the nodes of MCR(N ; s,N−w)
be

ϕ(v) = (v + w) mod N. (2.3.1)

It is not difficult to check that ϕ(v+s) = ϕ(v)+s for all nodes v and ϕ(v−w) = ϕ(v)+N−w
for even v and odd ϕ(v); ϕ(v + w) = ϕ(v) − N + w for odd v and even ϕ(v). Therefore

MCR(N ; s, w) and MCR(N ; s,N − w) are strongly isomorphic.

For convenience, the function in (2.3.1) is called the renaming function. From the above

discussion, throughout this thesis, we will assume that MCR(N ; s, w) satisfies the following

conditions:

s �= w, s+ w �= N, w �= N/2, and gcd(N, s, w) = 1. (2.3.2)

The first two assumptions are from the definition of the MCRN in order to prevent mul-

tiple links between two nodes. The reason for the assumption w �= N/2 is that since

MCR(N ; s, N
2
) is DL(N ; s, N

2
) and many previous results of DLNs can apply on it. Besides,

since we only consider connected graph, the last assumption ensure the MCRN being strongly

connected. Furthermore, by the even-odd-vertex-transitive property of MCRNs, without loss

of generality, we may restrict our discussion on node 0 and node 1 (to obtain the diameter

and to obtain a routing path). Moreover, by Theorem 2.3.4, node 1 of MCR(N ; s, w) can

be regarded as the even-numbered node (1 + w) mod N in MCR(N ; s,N − w); the node

(1 + w) mod N can be further regarded as node 0 in MCR(N ; s,N − w).
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Chapter 3

The Minimum Distance Diagrams of

Mixed Chordal Ring Networks

The purpose of this chapter is to explore and to investigate the minimum distance diagrams

of mixed chordal ring networks. Results derived from this chapter have been submitted to

[43]. The definition of the minimum distance diagrams of a mixed chordal ring network is

given in Section 3.3.

3.1 The Two-Dimensional Integer Lattice Environment

One approach to study the distance-related problems of MCRNs is as that of in DLNs: Maps

(or labels) each point of the two-dimensional integer lattice Z
+ × Z

+ to a node of a given

MCRN. However, since an MCRN is only even-odd-vertex-transitive, it is not clear how to

label each point of Z+ × Z
+ for a given MCRN. In other words, how to define the labeling

function from the points of Z+ × Z
+ to the nodes of a given MCRN is our first issue. In

the following, the labeling function we defined is based on the pseudoMDD introduced in

Section 3.1.1.
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Figure 3.1: Embedding a mixed chordal ring network into a double-loop network.

3.1.1 The Embedding Technique and the PseudoMDD

Graph embedding is an important technique as we can take the advantage of all the known re-

sults about the host graph and apply these results on the guest graph. Given anMCR(N ; s, w)

with w �= N/2, we can embed MCR(N ; s, w) into DL
(
N
2
; s−w

2
, s+w

2

)
by combining nodes

2k and 2k − w as supernode k∗ for all k = 0, 1, . . . , N/2 − 1. Note that, unless otherwise

specified, s−w
2

means
(
s−w
2

)
mod N

2
, s+w

2
means

(
s+w
2

)
mod N

2
, nodes of an MCRN are taken

modulo N (thus node u means node u mod N), and nodes of a DLN with N/2 nodes are

taken modulo N/2 (thus node v means node v mod N/2). Figs. 3.1(a) and 3.1(b) illustrate

the embedding of MCR(14; 1, 5) into DL(7; 5, 3) and the bold rounded rectangles indicate

the supernodes (host nodes). Since we can embed an MCRN into a DLN, we can embed an

MCRN into the MDD of the corresponding DLN. Given MCR(N ; s, w), the pseudoMDD

is constructed as follows: (see Figs. 3.1(c) and 3.1(d)):

pseudoMDD: Replace each node u in the MDD of DL
(
N
2
; s−w

2
, s+w

2

)
with two

nodes 2u and 2u − w. If u is at point (x, y), then 2u and 2u − w are at points

(2x, y) and (2x+ 1, y), respectively.

Recall that the MDD of a DLN always forms an L-shape, and this MDD tessellates the

plane. Since a pseudoMDD provides a one-to-one correspondence between the correspond-

ing DLN’s MDD’s and the pseudoMDD’s, it is obvious that a pseudoMDD is also an
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Figure 3.2: The tessellation of the plane formed by the pseudoMDD of MCR(22; 1, 7).

L-shape, but the length of the horizontal segment on the boundary of the pseudoMDD is

twice of that of the corresponding DLN’s MDD. For example in Figs. 3.1(c)(d), the pseu-

doMDD has an L-shape (�, h, p, n) = (4, 4, 2, 1), whereas the corresponding DLN’s MDD

has an L-shape (�, h, p, n) = (2, 4, 1, 1). We have the following fact.

Fact. A pseudoMDD has the following properties.

(i) It contains every node of the MCRN exactly once.

(ii) The shape is always an L-shape with parameters (2�, h, 2p, n) whenever the corre-

sponding DLN’s MDD has an L-shape (�, h, p, n).

(iii) It always tessellates the plane (see Fig. 3.2 for an example).

The name “pseudoMDD” comes from the reason that a pseudoMDD may fail to be a

“minimum” distance diagram. For example, consider Fig. 3.2. Both points (8, 0) and (6, 2)

represent node 20. However, the distance (minimum number of links) from point (0, 0) to

(8, 0) is 8 (the unique shortest path is 0→ 15→ 16→ 9→ 10→ 3→ 4→ 19→ 20) while

the distance from point (0, 0) to (6, 2) is 6 (one of the shortest path is 0 → 1 → 2 → 3 →
4→ 19→ 20), yet point (8, 0) is inside the pseudoMDD. Note that some pseudoMDD’s

are indeed MDD’s. See Section 3.3 for more further discussion.
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3.1.2 The Labeling Function

Recall that a node u at point (x, y) of the MDD of DL
(
N
2
; s−w

2
, s+w

2

)
satisfies

x

(
s− w

2

)
+ y

(
s+ w

2

)
≡ u

(
mod

N

2

)
.

By the construction of the pseudoMDD of MCR(N ; s, w), nodes 2u and 2u − w of

MCR(N ; s, w) are at points (2x, y) and (2x + 1, y), respectively. As a result, the label-

ing function for point z = (x, y) is

l(z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x
2
(s− w) + y(s+ w) (mod N) if x is even;

(
x−1
2

)
(s− w) + y(s+ w)− w (mod N) if x is odd.

(3.1.1)

Or, equivalently

l(z) =
(⌊x

2

⌋
+ y

)
s−

(⌈x
2

⌉
− y

)
w mod N. (3.1.2)

Figure 3.3: The labels for each point in the plane.
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Table 3.1: The nodes that can be reached from node u by using one link.

Node u at point (x, y) node at point

x is even
u+ s (x+ 1, y + 1)
u− w (x+ 1, y)

x is odd
u+ s (x+ 1, y)
u+ w (x− 1, y)

3.1.3 The Interconnection Rules

It should be noticed that the interconnection rules between adjacent points in the two-

dimensional integer lattice are quite different from those of DLNs (recall that in DLNs, each

point can reach either an east or a north point). Roughly speaking, a point (x, y) can reach

either a) east or northeast points or b) east or west points, depending on the parity of x.

Nodes that can be reached from node u at point (x, y) are shown in Fig. 3.4 and Table 3.1.

Note that we will only consider points in Z
+ × Z

+ = { (x, y) ∈ Z× Z | x ≥ 0, y ≥ 0 }.

Figure 3.4: The interconnection rules.

3.1.4 The Distance-related Properties

Some distance-related properties will be investigated in this section. For convenience, some

notations will be introduced first. Define the parity of an integer x to be 0 if (x mod 2)

equals to 0 and 1 if (x mod 2) equals to 1. The parity of an integer x is denoted by parity(x).
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Partition Z
+ × Z

+ into Γ+ and Γ− as follows:

Γ+ def
=

{
(x, y) ∈ Z

+ × Z
+ | x ≥ 2y ≥ 0

}
and Γ− def

=
{
(x, y) ∈ Z

+ × Z
+ | 0 ≤ x < 2y

}
.

Each point z = (x, y) of Z+×Z
+ is associated with a distance (or norm), denoted by Δ(z),

which is the minimum number of links that needs to be traversed from point (0, 0) to (x, y).

The distance for each point can be determined as follows.

Lemma 3.1.1. The distance of point z = (x, y) is

Δ(z) =

⎧⎪⎨
⎪⎩

x if z ∈ Γ+,

2y − parity(x) if z ∈ Γ−.
(3.1.3)

Proof. We prove this lemma by induction on x and y. For the basis step, clearly, Δ((0, 0)) =

0, Δ((x, 0)) = x, Δ((0, y)) = 2y and thus (3.1.3) holds. For the induction step, suppose

(3.1.3) holds for points (x − 1, y), (x − 1, y − 1) and (x, y − 1). Now consider point (x, y),

where x ≥ 1 and y ≥ 1.

Case 1: x is even. Then Δ((x, y)) = min { d1, d2 }, where d1 = Δ((x − 1, y)) + 1 and

d2 = Δ((x, y − 1)) + 2.

Subcase 1.1 : x ≥ 2y. By the induction hypothesis, d2 = x + 2. If x − 1 ≥ 2y, then by

the induction hypothesis, d1 = x; if x − 1 < 2y, then we have x = 2y and hence, by the

induction hypothesis, d1 = x. Therefore Δ((x, y)) = x and (3.1.3) holds.

Subcase 1.2 : x < 2y. By the induction hypothesis, d1 = 2y. If x ≥ 2(y − 1), then

x = 2y − 2. By the induction hypothesis d2 = 2y; if x < 2(y − 1), then by the induction

hypothesis d2 = 2y. Therefore Δ((x, y)) = 2y and (3.1.3) holds.

Case 2 : x is odd. Then Δ((x, y)) = min { d1, d2 }, where d1 = Δ((x − 1, y)) + 1 and

d2 = Δ((x− 1, y − 1)) + 1.
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Subcase 2.1 : x ≥ 2y. If x − 1 ≥ 2y, then by the induction hypothesis, d1 = d2 = x; if

x− 1 < 2y, then we have x = 2y, a contradiction to odd x. Hence Δ((x, y)) = x and (3.1.3)

holds.

Subcase 2.2 : x < 2y. Clearly by the induction hypothesis, d1 = 2y+1. If x−1 ≥ 2(y−1)
then x = 2y − 1 and, by the induction hypothesis, d2 = x = 2y − 1; if x − 1 < 2(y − 1)

then by the induction hypothesis, d2 = 2y − 1. Therefore Δ((x, y)) = 2y − 1 and (3.1.3)

holds.

Note that the distance function for point (x, y) in the two-dimensional integer lattice is

quite different from the standard one (i.e., |x|+ |y|). A tool that can compare the distances

of the two points is given as follows. For point z = (x, y) and vector v = (v1, v2) with v1, v2

being integers, let z + v denote the point (x+ v1, y + v2). Then:

Lemma 3.1.2. Suppose v = (v1, v2) with even v1. Then we have Δ(z) ≤ Δ(z + v) if

(i) z ∈ Γ+ and v1 ≥ 0, v2 ≤ 0 or

(ii) z ∈ Γ− and v1 ≤ 0, v2 ≥ 0 or

(iii) v1 ≥ 0 and v2 ≥ 0.

Proof. Since v1 is even, parity(x) = parity(x+v1). The first two cases (i) and (ii) come from

(3.1.3) undoubtedly. Now consider case (iii). If z and z + v are both in Γ+ ( or Γ−), then

the result is easy to see. Suppose z ∈ Γ+ and z+v ∈ Γ−. Let z′ = (x+v1, y). Since v1 ≥ 0,

clearly z′ ∈ Γ+. By (3.1.3), Δ(z) = x, Δ(z′) = x+ v1 and Δ(z+v) = 2y+2v2−parity(x).

Since z + v ∈ Γ−, we have x + v1 < 2y + 2v2. Therefore Δ(z) ≤ Δ(z′) ≤ Δ(z + v) holds.

The case of z ∈ Γ− and z + v ∈ Γ+ is similar to obtain.

Note that if point z + v is outside Z
+ × Z

+, then we may simply let Δ(z + v) = ∞ to

ensure the correctness of Lemma 3.1.2.

30



CHAPTER 3. THE MINIMUM DISTANCE DIAGRAMS 3.2. FINDING AN OPTIMAL COPY

3.2 Finding an Optimal Copy

Suppose the pseudoMDD of MCR(N ; s, w) has an L-shape (2�, h, 2p, n). The following

two vectors that characterize the shape of the pseudoMDD are crucial in the remaining

discussion and are defined by

α
def
= (2�,−n), β

def
= (−2p, h).

Since a pseudoMDD consists of N points, for each node u ∈ { 0, 1, . . . , N − 1 }, there is

exactly one point of the pseudoMDD with label u and we denote this point by πu. In

Z
+ × Z

+, points having the same label as πu are called copies (or relocations) of πu. The

set of all points with label u is denoted by Πu. Since a pseudoMDD can tessellate the

plane, by considering all points with label 0, we perspicuously have that all the other copies

of π0 can be expressed in terms of α and β. More generally, point π is a copy of point πu

if and only if π = πu + iα+ jβ for some integers i, j; see Fig. 3.5. Given a πu, define Rα
u

and Rβ
u as follows:

Rα
u

def
= { πu + kα | k ∈ Z, k ≥ 0 } and Rβ

u
def
= { πu + kβ | k ∈ Z, k ≥ 0 } .

Example. The pseudoMDD of MCR(22; 1, 7) in Fig. 3.5 has an L-shape (2�, h, 2p, n) =

(12, 2, 2, 1) and its shape is characterized by vectors α = (12,−1) and β = (−2,−2). For

node u = 20, πu is the point (8, 0) and the copies of πu are enclosed by a circle. Rα
u = ∅

(since the points in Rα
u are outside Z

+ × Z
+) and Rβ

u = { (8, 0), (6, 2), (4, 4), (2, 6), (0, 8) }.

The purpose of this section is to look for an optimal copy of πu for each node u ∈
{ 0, 1, . . . , N − 1 } of a given MCRN. We denote the optimal copy of πu by π∗

u. Clearly,

Δ(π∗
u) ≤ Δ(π) for all π ∈ Πu. Although there are infinite number of copies of πu in the

two-dimensional integer lattice, in fact, we only need to consider those copies in Rα
u and Rβ

u
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Figure 3.5: The illustrations of πu, copies of πu, R
α
u and Rβ

u for u = 20.

since a copy π ∈ Πu \
{
Rα

u ∪Rβ
u

}
is either outside Z

+ × Z
+ or, by Lemma 3.1.2(iii), has

a larger distance than that of πu.

Each πu is associated with two points π+
u and π−

u defined as follows: If πu ∈ Γ+, let

π+
u and π−

u denote the point in Rβ
u such that π+

u ∈ Γ+, π−
u ∈ Γ− and π−

u = π+
u + β.

Similarly, If πu ∈ Γ−, let π+
u and π−

u denote the point in Rα
u such that π+

u ∈ Γ+, π−
u ∈ Γ−

and π+
u = π−

u + α; see Fig. 3.6 for illustrations. Take Fig. 3.5 for an example. Suppose

πu = (8, 0) ∈ Γ+, then π+
u and π−

u are the point (6, 2) and (4, 4), respectively; suppose

πu = (0, 1) ∈ Γ−, then π−
u = (0, 1) and π+

u = (12, 0). Note that for πu, its π
+
u or π−

u may

not exist. For example, suppose πu = (1, 0) ∈ Γ+ in Fig. 3.5, then πu + β = (−1, 2) which
is outside Z

+ × Z
+. In this case, we have Δ(πu + β) =∞. The following lemma tells that

for each πu, π
∗
u can be found by only considering π+

u and π−
u .

Lemma 3.2.1. Δ(π∗
u) = min {Δ(π+

u ),Δ(π−
u ) }.

Proof. Suppose πu ∈ Γ+. Since πu−α is outside the first quadrant and by Lemma 3.1.2(i),

Δ(πu) ≤ Δ(πu + α) ≤ Δ(πu + 2α) ≤ · · · , we only need to consider points in Rβ
u . By

Lemma 3.1.2(i), Δ(π+
u ) ≤ Δ(π+

u − β) ≤ Δ(π+
u − 2β) ≤ · · · . By Lemma 3.1.2(ii), Δ(π−

u ) ≤
Δ(π−

u + β) ≤ Δ(π−
u + 2β) ≤ · · · . Hence Δ(π∗

u) = min {Δ(π−
u ),Δ(π−

u ) }. The case of

πu ∈ Γ− is similar to prove.
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Figure 3.6: Two possible ways to find an optimal copy of πu. The left figure is for the πu ∈ Γ+ case; the

right figure is for the πu ∈ Γ− case.

By using the lengths (2�, h, 2p, n) in a pseudoMDD, we partition Γ+ and Γ− as follows

(see Fig. 3.7 for an illustration):

Γ+ =

∞⋃
i=0

Γ+
i and Γ− =

∞⋃
i=0

Γ−
i ,

where

Γ+
0 =

{
(x, y) ∈ Z

+ × Z
+ | 0 ≤ x− 2y < 2h

}
,

Γ−
0 =

{
(x, y) ∈ Z

+ × Z
+ | −2� ≤ x− 2y < 0

}
,

(3.2.1)

and for i ∈ Z, i ≥ 1

Γ+
i =

{
(x, y) ∈ Z

+ × Z
+ | 2h+ (i− 1) · (2h+ 2p) ≤ x− 2y < 2h+ i · (2h+ 2p)

}
,

Γ−
i =

{
(x, y) ∈ Z

+ × Z
+ | −2�− i · (2�+ 2n) ≤ x− 2y < −2�− (i− 1)(2�+ 2n)

}
.

(3.2.2)

According to the relative position of πu in Γ+ or Γ−, we can find π∗
u by using the

following three lemmas (Lemmas 3.2.2, 3.2.3 and 3.2.4). For convenience, the equal sign

followed π∗
u means “can be chosen as”.

Lemma 3.2.2. If πu belongs to Γ+
0 or Γ−

0 , then π∗
u = πu.

Proof. Let πu = (x, y). If πu ∈ Γ+
0 , then πu + β = (x − 2p, y + h) ∈ Γ−. This implies
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Figure 3.7: The partitions of Z+ × Z
+.

π+
u = πu and π−

u = πu + β. By (3.1.3), Δ(π+
u ) = x, Δ(π−

u ) = 2y + 2h − parity(x) and

Δ(π+
u ) ≤ Δ(π−

u ) holds. By Lemma 3.2.1, π∗
u = πu. The case of πu ∈ Γ−

0 is similar and we

omit the proof.

Lemma 3.2.3. If πu belongs to Γ+
i for some positive integer i, then π∗

u = πu + i · β.

Proof. Let πu = (x, y), then πu + (i − 1) · β =
(
x − 2(i − 1)p, y + (i − 1)h

)
, πu + i · β =

(x − 2ip, y + ih) and πu + (i + 1) · β =
(
x − 2(i + 1)p, y + (i + 1)h

)
. It is not difficult to

check that points πu + (i− 1) · β, πu + i · β and πu + (i+ 1) · β are inside Z
+ × Z

+. Since

πu ∈ Γ+
i , we clearly have πu ∈ Γ+.

Now we further partition Γ+
i into two smaller parts (possibly empty):

LΓi
+ =

{
(x, y) ∈ Z

+ × Z
+ | 2h+ (i− 1) · (2h+ 2p) ≤ x− 2y < 2h+ (i− 1) · (2h+ 2p) + 2p

}
,

RΓi
+ =

{
(x, y) ∈ Z

+ × Z
+ | 2h+ (i− 1) · (2h+ 2p) + 2p ≤ x− 2y < 2h+ i · (2h+ 2p).

}

Suppose πu ∈ LΓi
+, then πu+(i−1) ·β ∈ Γ+ and πu+i ·β ∈ Γ−. Hence π+

u = πu+(i−
1)·β and π−

u = πu+i·β. By (3.1.3), Δ(π+
u ) = x−2(i−1)p, Δ(π−

u ) = 2y+2ih−parity(x) and
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Δ(π−
u ) ≤ Δ(π+

u ) holds. By Lemma 3.2.1, π∗
u = πu+ i ·β and Δ(π∗

u) = 2y+2ih−parity(x)

hold.

Now suppose πu ∈ RΓi
+, then πu + i · β ∈ Γ+ and πu + (i + 1) · β ∈ Γ−. Therefore

π+
u = πu + i · β and π−

u = πu + (i + 1) · β. By (3.1.3), Δ(π+
u ) = x − 2ip, Δ(π−

u ) =

2y + 2(i + 1)h − parity(x) and Δ(π+
u ) ≤ Δ(π−

u ) holds. Again, by Lemma 3.2.1, we have

π∗
u = πu + i · β and Δ(π∗

u) = x− 2ip.

By using similar arguments, we can obtain the following lemma and we omit the proof.

Lemma 3.2.4. If πu belongs to Γ−
i for some positive integer i, then π∗

u = πu + i ·α.

By combining Lemmas 3.2.2, 3.2.3 and 3.2.4, we can find an optimal copy of πu as

follows.

Theorem 3.2.5. If πu ∈ Γ+
i (resp., πu ∈ Γ−

i ) for some non-negative integer i, then π∗
u =

πu + i · β (resp., πu + i ·α).

Theorem 3.2.5 states that an optimal copy of πu can be obtained by “moving” πu to

some other copy in Rα
u or Rβ

u . In particular, if πu ∈ Γ+
i (resp., Γ−

i ), then π∗
u can be obtained

by moving πu i steps in Rβ
u (resp., Rα

u ).

Example. Take MCR(22; 1, 7) in Fig. 3.5 for an example. For u = 19, we have πu =

(7, 0) ∈ Γ+
1 . Hence π∗

u = πu + 1 · β = (5, 2) and πu + 1 · β has the minimum distance (note

that Δ(πu + 1 · β) = 5) among all points in Πu. For u = 14, we have πu = (10, 0) ∈ Γ+
2 .

Hence π∗
u = πu + 2 · β = (6, 4) and πu + 2 · β has the minimum distance (note that

Δ(πu + 2 · β) = 8) among all points in Πu.

Theorem 3.2.6. Given the L-shape (2�, h, 2p, n) of the pseudoMDD and an arbitrary

node u of a mixed chordal ring network, the location of an optimal copy π∗
u of πu can be

computed in constant time if πu is known in advance.
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Proof. Suppose πu = (x, y). Our main issue is to determine the part M i which πu belongs

to. After that, we can apply Theorem 3.2.5 to obtain π∗
u in constant time. Clearly, we can

determine whether πu belongs to Γ+ or Γ− by comparing x − 2y with 0. By (3.2.1) and

(3.2.2), if x− 2y − 2h < 0 or x− 2y + 2l >= 0 then we have i = 0. Otherwise, if πu ∈ Γ+,

then i can be determined by

i =

⌊
x− 2y − 2h

2h+ 2p+ 1

⌋
;

if πu ∈ Γ−, then i can be determined by

i =

⌈−x+ 2y − 2l

2l + 2n

⌉
.

Thus, given the L-shape of the pseudoMDD of a MCRN, one can determine the part M i

which πu belongs to in constant time. Obviously, the overall process can be done in constant

time, and therefore we have this result.

3.3 The Minimum Distance Diagrams of the Mixed

Chordal Ring Network

Since MCR(N ; s, w) satisfies the even-odd-vertex-transitive property, there are two mini-

mum distance diagrams associated with an MCRN: MDD0 and MDD1. The formal definition

is given as follows.

Definition. The minimum distance diagram MDDλ, λ ∈ { 0, 1 } of MCR(N ; s, w) is an

array with node λ at point (0, 0) and node u at point z = (x, y) satisfying l(z) ≡ u

(mod N) with x ≥ 0, y ≥ 0 and the minimum Δ(z), where label l(z) is defined in (3.1.1).

By Theorem 2.3.4, the MDD1 ofMCR(N ; s, w) can be constructed by considering MDD0

of MCR(N ; s,N−w). By the renaming function in (2.3.1), in the following, we can focus on
36



CHAPTER 3. THE MINIMUM DISTANCE DIAGRAMS 3.3. THE MDDS OF MCRNS

the problem of converting a pseudoMDD into MDD0. For convenience, denote the given

pseudoMDD by symbol M . Suppose M has an L-shape (2�, h, 2p, n). Let κ and γ be

defined by

κ
def
=

⎧⎪⎨
⎪⎩

⌈
�−h
h+p

⌉
if � ≥ h;⌈

h−�−1
�+n

⌉
if � < h.

γ
def
=

⎧⎪⎨
⎪⎩

(�− h) mod (h+ p) if � ≥ h

(h− �− 1) mod (�+ n) if � < h

The intersections of Γ+
i (or Γ−

i ) and M partition M into κ + 1 parts: Let

M 0 = M ∩ (Γ+
0 ∪ Γ−

0 ),

and for 1 ≤ i ≤ κ,

M i =

⎧⎪⎨
⎪⎩

M ∩ Γ+
i if � ≥ h

M ∩ Γ−
i if � < h

Example. Take the pseudoMDD in Fig. 3.8(b) for an illustration. Clearly M has an

L-shape (12, 2, 2, 1) and M = { (x, y) | 0 ≤ x < 12, 0 ≤ y < 2 and either x < 10 or y < 1 }.
By (3.3) and (3.3), we have κ = 2 and γ = 2. Thus partition M into three parts as follows:

M 0 = {(0, 0), (1, 0), (2, 0), (3, 0), (0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1)}; M 1 = {(4, 0),
(5, 0), (6, 0), (7, 0), (8, 0), (9, 0), (6, 1), (7, 1), (8, 1), (9, 1)}; M 2 = {(10, 0), (11, 0)}.

Theorem 3.3.1. Suppose the pseudoMDD of MCR(N ; s, w) has an L-shape (2�, h, 2p, n).

Then MDD0 can be constructed by replacing πu with πu + i · β (resp., πu + i · α) for each

point πu in M i, 0 ≤ i ≤ κ if � ≥ h (resp., � < h).

Proof. If � > h (resp., � < h), then no point of the pseudoMDD is inside Γ−
i (resp., Γ+

i )

for i ≥ 1. If � = h, then all points of the pseudoMDD is inside Γ+
0 ∪ Γ−

0 . This theorem
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Figure 3.8: The partition of the pseudoMDD.

Figure 3.9: The MDD0 and MDD1 of MCR(22; 1, 7).

comes from Theorem 3.2.5 obviously.

Figs. 3.9(a) and 3.9(b) illustrate the MDD0 and MDD1 of MCR(22; 1, 7), respectively.

Note that since a pseudoMDD always tessellates the plane and all points in M i move

i steps in Rα
u or in Rβ

u to find their optimal copy, we conclude that MDD0 and MDD1 of

MCR(N ; s, w) can be obtained by “reassembling” the pseudoMDDs of MCR(N ; s, w) and

MCR(N ; s,N−w), respectively, according to the rules stated in Theorem 3.3.1. Figs 3.8(b)

and 3.9(a) illustrate the reassembling of the pseudoMDD of MCR(22; 1, 7) into MDD0.

As a conclusion, the MDD’s of an MCRN can tessellate the plane; see Fig. 3.10.

Theorem 3.3.2. The MDDλ, λ ∈ { 0, 1 }, of MCR(N ; s, w) can tessellate the plane.

Now we characterize the shape of MDDλ. Assume the given pseudoMDD has an L-

shape (2�, h, 2p, n). According to Theorem 3.3.1, the shape of MDDλ of the MCRN is shown

in Fig. 3.11. The dashed-curves in this figure indicate the remainder part of the MDDλ as it
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Figure 3.10: The tessellation of the plane formed by the MDD0 of MCR(22; 1, 7).

Figure 3.11: The dimension of MDDλ.

depends on the given L-shape. The only situation that the given pseudoMDD is eventually

an MDD is the case of � = h.

3.4 MDD Construction Algorithm for MCRNs

By the discussion in Sections 3.1 to 3.3, we present our algorithm, called MCRN-MDD-

Algorithm, to construct MDD0 and MDD1 of a given MCR(N ; s, w). This algorithm works

as follows. For the construction of MDDλ, λ ∈ { 0, 1 }, the algorithm first computes the L-

shape of pseudoMDD ofMCR(N ; s, w) andMCR(N ; s,N−w). Once we have the L-shape

of the pseudoMDD, the MDDλ can be constructed by sequentially examining (row-by-row

39



CHAPTER 3. THE MINIMUM DISTANCE DIAGRAMS 3.4. MDD CONSTRUCTION ALGORITHM FOR MCRNS

Algorithm 1 MCRN-MDD-Algorithm
Input: N, s, w.
Output: MDD0 and MDD1 of MCR(N ; s, w).
1: for λ← 0 to 1 do
2: if λ = 1 then �Consider MCR(N ; s,N − w)

3: w ← (N − w) mod N
4: end if
5: (2�λ, hλ, 2pλ, nλ)← the L-shape of the pseudoMDD of MCR(N ; s, w)
6: α← (2�λ,−nλ),β ← (−2pλ, hλ)
7: for x← 0 to 2�λ − 1 do �Row-by-row fashion

8: for y ← 0 to hλ − 1 do
9: if x < 2�λ − 2pλ or y < hλ − nλ then � (x, y) is inside pseudoMDD

10: u← (( ⌊
x
2

⌋
+ y

)
s− ( ⌈

x
2

⌉− y
)
w

)
mod N �The labeling function (3.1.2)

11: (x∗, y∗)← an optimal copy of (x, y) �By Theorems 3.2.5 and 3.2.6

12: MDDλ[u]← (x∗, y∗)
13: end if
14: end for
15: end for
16: end for

or column-by-column or diagonal-by-diagonal) each point inside the pseudoMDD. After

that, for each point (x, y) in the pseudoMDD, the algorithm determine the node u such

that (x, y) has label u. Then, by applying Theorems 3.2.5 and 3.2.6, we can obtain the

location of an optimal copy of πu.

Theorem 3.4.1. MCRN-MDD-Algorithm is correct, and it takes Θ(N)-time.

Proof. The correctness comes from the fact that the pseudoMDD contains every node

of a MCRN exactly once and Theorem 3.2.5. Now we analyze the time complexity. It

takes O(logN)-time (by using the Cheng-Hwang-Algorithm [38]) to derive the L-shapes of

pseudoMDD in line 5. By Theorem 3.2.6, line 11 can be done in constant time. Since

lines 7-15 examine every point of the pseudoMDD exactly once, it takes O(2�h− 2pn) =

O(N)-time in lines 7-15. Therefore, the total time needed to construct MDDλ is O(N).

Since it takes Ω(N)-time to construct MDDλ, we can construct MDDλ in time Θ(N).
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Chapter 4

The Diameter

In this section, we consider the problem of determining the diameter of a given MCRN.

This problem can be solved straightforwardly by first constructing MDD0 and MDD1 of

MCR(N ; s, w), and then, finding the point in MDD0 and MDD1 that has the maximum

distance. However, this approach takes Ω(N)-time, which is exponential in the input size

(each of the three integers N, s, w takes at most logN bits). Instead of constructing MDD0

and MDD1 first, we give an efficient algorithm to compute the diameter of an MCRN that

takes O(logN) worst-case time, which is polynomial in the input size. Results derived from

this chapter have been submitted to [43].

4.1 The MAXDIST Subroutine

Let d(N ; s, w) denote the diameter of MCR(N ; s, w). Let dλ, λ ∈ { 0, 1 }, denote the max-

imum distance over all points in MDDλ, i.e., dλ = max { d(λ, u) | u ∈ { 0, 1, . . . , N − 1 } },
where d(u, v) denote the distance between nodes u and v. Clearly

d(N ; s, w) = max { d0, d1 } .
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Suppose for some u, point π∗
u in MDDλ achieves the distance dλ. Then dλ = Δ(π∗

u). Given

the L-shape of a pseudoMDD, the subroutineMAXDIST shown in Algorithm 2 can compute

dλ in constant time.

Theorem 4.1.1. The subroutine MAXDIST is correct and takes constant time to compute

dλ.

Proof. The time complexity is easy to see and we now verify the correctness. Given a

pseudoMDD with L-shape (2�, h, 2p, n), there are three cases: (1) � = h, (2) � > h, and

(3) � < h. We will only show the details of the first two cases; the case of � < h is similar

to the case of � > h and is omitted. Suppose � = h. By Theorem 3.3.1, we know that

this pseudoMDD is an MDD. That is, πu = π∗
u for all nodes u. Clearly, if πu ∈ Γ+,

then Δ(πu) ≤ 2� − 1; if πu ∈ Γ−, then Δ(πu) ≤ 2(h − 1). Choose π = (2� − 1, 0), then

dλ = Δ(π) = 2� − 1 = 2h − 1. Since MAXDIST returns 2h − 1 in line 10, MAXDIST is

correct.

Now consider the case of � > h. By Lemma 3.1.2, we only need to consider the corner

point π∗
u, which is at the uppermost of the rightmost points in MDDλ if π∗

u ∈ Γ+, and

is at the point left to the rightmost of the uppermost points in MDDλ if π∗
u ∈ Γ− (since

the rightmost of the uppermost point in MDDλ has odd x-coordinate, the point left to this

point has a larger distance by (3.1.3)). Let the pseudo corner point πu be the point in the

pseudoMDD such that π∗
u (an optimal copy of πu by Theorem 3.2.5) is a corner point.

Note that since MDDλ is a reassembling of the pseudoMDD, the pseudo corner points

must occur in Mκ−1 or Mκ. For convenience, set m = �− p, q = h− n. According to γ, we

have the following subcases; see Fig. 4.1.

Subcase 1: γ = 0. By (3.3), we have � − h = κ(h + p). The pseudo corner points

are π0 = (2� − 1, q − 1) and π1 = (2m − 2, h − 1). Then π0 ∈ M κ and π1 ∈ M κ. By

Theorem 3.2.5 and by (3.1.3), Δ(π∗
0) = 2(κ+1)h− 1 and Δ(π∗

1) = 2(κ+1)h− 2. Therefore
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Figure 4.1: The five subcases of the case � > h.

dλ = Δ(π∗
0). Since MAXDIST returns 2(κ+ 1)h− 1 in line 10, MAXDIST is correct.

In the following, we will assume γ > 0. By (3.3), we have �− h = (κ− 1)(h+ p) + γ.

Subcase 2: 0 < γ < h − n. The pseudo corner points are π0 = (2� − 1, q − 1) and

π1 = (2� − 2, γ − 1). Then π0 ∈ Mκ and π1 ∈ Mκ−1. By Theorem 3.2.5 and (3.1.3),

Δ(π∗
0) = 2κh + 2γ − 1 and Δ(π∗

1) = 2κh + 2γ − 2. Thus dλ = Δ(π∗
0). Since MAXDIST

returns 2κh+ 2γ − 1 in line 12, MAXDIST is correct.

Subcase 3: h− n ≤ γ ≤ h− n+ p− 2. The pseudo corner points are π0 = (2�− 2, q− 1)

and π1 =
(
2�−2(γ−q)−3, q−1

)
. Then π0 ∈M κ and π1 ∈Mκ−1. By Theorem 3.2.5 and

by (3.1.3), Δ(π∗
0) = 2(κ+1)h− 2n− 3 and Δ(π∗

1) = 2(κ+1)h− 2n− 2. Thus dγ = Δ(π1).

Since MAXDIST returns 2(κ+ 1)h− 2n− 2 in line 14, MAXDIST is correct.

Subcase 4: γ = h−n+p−1 or h−n+p. The pseudo corner points are π0 = (2�−2, q−1),
π1 = (2� − 1, q − 1). Then π0 ∈ Mκ and π1 ∈ Mκ. By Theorem 3.2.5 and by (3.1.3),

Δ(π∗
0) = 2(κ+ 1)h− 2n− 2 and

Δ(π∗
1) =

⎧⎪⎨
⎪⎩

2(κ+ 1)h− 2n− 3 if r = q + p− 1,

2(κ+ 1)h− 2n− 1 if r = q + p.

Thus dλ = Δ(π0) if γ = q + p − 1 and dλ = Δ(π1) if γ = q + p. Since MAXDIST returns

2(κ + 1)h − 2n − 2 in line 14 if γ = q + p − 1 and returns 2(κ + 1)h − 2n − 1 in line 14 if

r = q + p, MAXDIST is correct.
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Subcase 5: h − n + p < γ < h + p. The pseudo corner points are π0 = (2� − 1, q − 1)

and π1 = (2m − 2, γ − p − 1). Then π0 ∈ Mκ and π1 ∈ Mκ. By Theorem 3.2.5 and by

(3.1.3), Δ(π∗
0) = 2κh − 2p + 2γ − 1 and Δ(π∗

1) = 2κh − 2p + 2γ − 2. Thus dλ = Δ(π0).

Since MAXDIST returns 2κh− 2p+ 2γ − 1 in line 16, MAXDIST is correct.

Note that when γ = h−n+ p, the value 2(κ+1)h−2n−1 is equal to 2κh−2p+2γ−1.

Thus we can combine the cases of γ = h−n+ p and h−n+ p < γ < h+ p. From the above

discussions, MAXDIST is correct.

4.2 An Efficient Diameter-computing Algorithm

We present our diameter-computing algorithm, called MCRN-Diameter-Algorithm, in Algo-

rithm 2. We now prove and analyze this algorithm.

Theorem 4.2.1. MCRN-Diameter-Algorithm is correct and takes O(logN)-time.

Proof. The values of d0 and d1 can be obtained by finding the maximum distance over all

points in MDD0 and MDD1, respectively. Thus MDD0 and MDD1 can be obtained from the

pseudoMDD’s of MCR(N ; s, w) and MCR(N ; s,N − w), respectively. Consequently, the

correctness of Algorithm 2 follows from the correctness of subroutine MAXDIST obviously

(see Theorem 4.1.1). We now analyze the time complexity of MCRN-Diameter-Algorithm.

Lines 3-5 take only constant time as the subroutine MAXDIST takes only constant time.

For lines 1-2, the algorithm proposed in [21] can be used to obtain the L-shape of a DLN

and therefore the L-shape of the pseudoMDD. Since the algorithm in [21] takes O(logN)-

time, lines 1-2 takes O(logN)-time. As a consequence, MCRN-Diameter-Algorithm takes

O(logN)-time.
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Algorithm 2 MCRN-Diameter-Algorithm
Input: N, s, w.
Output: The diameter of MCR(N ; s, w).
1: (2�0, h0, 2p0, n0)← the L-shape of the pseudoMDD of MCR(N ; s, w)

2: (2�1, h1, 2p1, n1)← the L-shape of the pseudoMDD of MCR(N ; s,N − w)

3: d0 ← MAXDIST(2�0, h0, 2p0, n0)

4: d1 ← MAXDIST(2�1, h1, 2p1, n1)

5: return max{ d0, d1 }

Subroutine MAXDIST(2�, h, 2p, n)

6: if � ≥ h then

7: κ←
⌈
�−h
h+p

⌉
8: γ ← (�− h) mod (h+ p)
9: if γ = 0 then
10: return 2(κ+ 1)h− 1
11: else if 0 < γ < h− n then

12: return 2κh + 2γ − 1
13: else if h− n ≤ γ < h− n + p then
14: return 2(κ+ 1)h− 2n− 2
15: else
16: return 2κh− 2p+ 2γ − 1
17: end if
18: else � the � < h case

19: κ← ⌈
h−�−1
�+n

⌉
20: γ ← (h− �− 1) mod (�+ n)
21: if γ = 0 then
22: return 2(κ+ 1)�
23: else if 0 < γ < �− p then
24: return 2κ�+ 2γ
25: else if �− p ≤ γ < �− p + n then
26: return 2(κ+ 1)�− 2p− 1
27: else
28: return 2κ�− 2n+ 2γ
29: end if
30: end if
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Example. Take MCR(22; 1, 7) as an example. The L-shapes of the pseudoMDD of

MCR(22; 1, 7) and MCR(22; 1, 22− 7) are (12,2,2,1) and (4,6,2,1), respectively. First con-

sider d0. We have κ = 2, γ = 1 and MAXDIST returns d0 = 8. Now consider d1. We have

κ = 1, γ = 0 and MAXDIST returns d1 = 8. As a conclusion, d(22; 1, 7) = 8.

Example. Take MCR(12; 3, 5) as another example. The L-shapes of the pseudoMDD

of MCR(12; 3, 5) and MCR(12; 3, 12 − 5) are (4,3,0,1) and (6,2,2,0), respectively. First

consider d0. We have κ = 0, γ = 0 and MAXDIST returns d0 = 4. Now consider d1. We

have κ = 1, γ = 1 and MAXDIST returns d1 = 5. Thus, d(12; 3, 5) = 5.

Remark 4.2.2. By the definition of a pseudoMDD, the L-shapes of the pseudoMDD of

MCR(N ; s, w) and MCR(N ; s,N − w) can be obtained by first deriving the L-shapes of

DL
(
N
2
; s−w

2
, s+w

2

)
and DL

(
N
2
; s+w

2
, s−w

2

)
, respectively, and then doubling the lengths of �

and p. Note that if DL(N ; s1, s2) has an L-shape (�, h, p, n), then there exists an MDD of

DL(N ; s2, s1) such that the MDD has an L-shape (h, l, n, p). This is because there is a one-

to-one correspondence between the node at point (x, y) of Z+×Z+ formed by the vertex set of

DL(N ; s1, s2) and the node at point (y, x) of Z+×Z+ formed by the vertex set DL(N ; s2, s1).

Therefore, if (2�0, h0, 2p0, n0) is the L-shape of the pseudoMDD of MCR(N ; s, w), then

(2�1, h1, 2p1, n1) can be set as (2h0, �0, 2n0, p0) in line 2 of MCRN-Diameter-Algorithm.

Remark 4.2.3. The computation of MCRN-Diameter-Algorithm highly relies on the compu-

tation of DLN’s L-shape. To the best of our knowledge, the fastest algorithm that can com-

pute the L-shape of a DLN has the same time complexity as MCRN-Diameter-Algorithm,

which is O(logN)-time. Therefore, any algorithm that can compute the DLN’s L-shape in

o(logN)-time can also improve the time complexity of MCRN-Diameter-Algorithm.

46



CHAPTER 4. THE DIAMETER 4.2. AN EFFICIENT DIAMETER-COMPUTING ALGORITHM

Remark 4.2.4. We test MCRN-Diameter-Algorithm for a considerable range of N ’s (N =

6, 8, . . . , 10004, a total of 5000 N ’s) with all possible parameters s and w. Compared with

the naive diameter-computing algorithm, Bread-First-Search (BFS), all results of MCRN-

Diameter-Algorithm match with the BFS results.
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Chapter 5

Optimal Mixed Chordal Ring

Networks

Results derived from this chapter have been published in [44]. Recall that DMCR(N) denotes

the smallest diameter among all MCRNs with N nodes and d(N ; s, w) denotes the diameter

of MCR(N ; s, w). One of the most important and fundamental optimization problem in de-

signing interconnection networks is, for a given number of nodes N , how to find an optimal

network with the smallest diameter and to give the construction of such a network. Specifi-

cally, given an N , we are interested in finding DMCR(N) and in finding MCR(N ; s, w) with

d(N ; s, w) = DMCR(N). MCR(N ; s, w) is said to be optimal if d(N ; s, w) = DMCR(N).

However, finding optimal MCRNs is a very difficult problem. The difficulty is due to the

fact that the diameter of MCRNs does not increase monotonically with N . For example,

DMCR(16) = 6 > 5 = DMCR(18) and DMCR(44) = 10 > 9 = DMCR(46). Thus, there is no

closed formula for DMCR(N) up to now. Double-loop networks also have the same difficulty;

see [2, 32, 33]. By taking another approach, we aim at looking for bounds on DMCR(N).
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5.1 Lower Bound

Given a MCR(N ; s, w), let nk denote the number of additional nodes that node 0 can reach

in k moves. Clearly, n0 = 0, n1 = 2 and n2 = 3. Chen et al. [20] had proven that

nk ≤ nk−1 + 1 for 2 ≤ k ≤ d(N ; s, w). (5.1.1)

In other words, for k ≥ 2, the number of additional nodes that node 0 can reach at the kth

move increases by at most 1. We now have the following result.

Theorem 5.1.1. DMCR(N) ≥ ⌈√
2N − 3/2

⌉
and this bound is tight.

Proof. By (5.1.1),

N ≤∑d(N ;s,w)
k=0 (k + 1) = (d(N ;s,w)+2)(d(N ;s,w)+1)

2
.

Therefore, (d(N ; s, w))2+3d(N ; s, w)+(2−2N) ≥ 0. Since d(N ; s, w) is positive, d(N ; s, w) ≥
(
√
8N + 1− 3)/2 >

√
2N − 3/2. Since d(N ; s, w) is an integer, d(N ; s, w) ≥ ⌈√

2N − 3/2
⌉
.

This bound is tight since d(8; 1, 3) = 3 ≥ DMCR(8) ≥
⌈√

2 · 8− 3/2
⌉
= 3.

5.2 Upper Bounds

Although Chen et al [20] proposed an upper bound on DMCR(N) (see Theorem 1.4.1), we

find that there exist some erroneous cases in their proof. We first indicate the erroneous

part in their proof as follows. Consider N = 38. To obtain an upper bound of DMCR(38),

Chen et al. [20] will use MCR(38; 7, 5) and embed MCR(38; 7, 5) into DL(19; 1, 6). For

convenience, define N̂ to be a function of N as follows:

N̂ =
⌈√

N
2

⌉
. (5.2.1)
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Figure 5.1: A counterexample to the proof of Theorem 1.4.1.

The L-shape of DL(19; 1, 6) has � = 5 and h = 7 (see Fig. 5.1), which has h > N̂ = 6 and

violates

� ≤ N̂ and h = N̂ (5.2.2)

needed in the proof of DMCR(38) ≤
√
2N + 3. In fact, we can construct infinite many

N ’s that violates (5.2.2); specifically, let N = 2(4t2 + 2t − 1) for some positive integer

t, then the corresponding DLN of MCR(N ; N̂ + 1, N̂ − 1) has an L-shape (�, h, p, n) =

(N̂ − 1, N̂ +1, N̂ − 2, N̂ − 2), which clearly violates (5.2.2); see Theorem 4.5 in [20] for more

details. Instead of correcting Theorem 1.4.1, in the following we give an improved upper

bound on DMCR(N).

The following lemma had been proven in [20] and it follows from the fact that each move

in the MDD of DL(N
2
; s−w

2
, s+w

2
) corresponds to either one or two moves in MCR(N ; s, w)

(depending on which node in the supernode we start from).

Lemma 5.2.1. [20] Suppose DL(N
2
; s−w

2
, s+w

2
) has an L-shape (�, h, p, n), then d(N ; s, w) ≤

2 ·max{�, h} − 1.
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We now obtain an upper bound on DMCR(N). The main idea used in obtaining the

upper bound is, for each N , to choose s and w suitably so that the corresponding double-

loop network DL(N
2
; s−w

2
, s+w

2
) has an L-shape(�, h, p, n) with � and h being as small as

possible and to apply Lemma 5.2.1.

According to the parity of N̂ , define M as follows:

M =

⎧⎪⎪⎨
⎪⎪⎩

N̂ if N̂ is even,

N̂ + 1 if otherwise.

(5.2.3)

Lemma 5.2.2. Suppose N �= 2(4t2 + 2t− 1) for any positive integer t and let M be defined

as in (5.2.3). Then the L-shape(�, h, p, n) of DL(N
2
; 1,M) satisfies � ≤ M and h ≤M .

Proof. Consider N =
⋃∞

t=0[4t
2 + 1, 4(t + 1)2]. Then N

2
∈ [4t2 + 1, 4(t + 1)2] for some non-

negative integer t. Thus M = 2t + 2. Consider the L-shape(�, h, p, n) of DL(N
2
; 1,M).

Since

M · 1 ≡ 1 ·M (mod N
2
),

cell (M, 0) and cell (0, 1) contain the same node. Since M > 1, cell (M, 0) is outside

the L-shape. Consequently, � ≤ M . Now let N0(t) = [4t2 + 1, 4t2 + 2t − 2], N1(t) =

[4t2+2t−1, 4t2+4t], N2(t) = [4t2+4t+1, 4t2+6t+2], and N3(t) = [4t2+6t+3, 4t2+8t+4].

Note that N0(0), N1(0), and N0(1) are empty. Then N =
⋃∞

t=0(N0(t)∪N1(t)∪N2(t)∪N3(t)).

Suppose N
2
∈ Nk(t), where 0 ≤ k ≤ 3. Define N∗

k (t) to be the maximum integer in Nk(t).

Clearly, N∗
k (t) = 4t2 + 2t − 2 + (2t + 2)k. Suppose N

2
= N∗

k (t) − j for some non-negative

integer j. Then 0 ≤ j ≤ 2t − 3 if k = 0 and 0 ≤ j ≤ 2t + 1 if 1 ≤ k ≤ 3. Again, consider
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the L-shape(�, h, p, n) of DL(N
2
; 1,M). Since

j · 1 = N∗
k (t)− N

2

= (4t2 + 2t− 2 + (2t+ 2)k)− N
2

≡ (2t− 1 + k)(2t+ 2) (mod N
2
)

= (2t− 1 + k)M (mod N
2
),

cell (j, 0) and cell (0, 2t−1+k) contain the same node. Note that j ≤ 2t−1+k except when

k = 1 and j = 2t + 1, that is, except when N
2
= 4t2 + 2t− 1. Hence if N �= 2(4t2 + 2t− 1)

for any positive integer t, then cell (0, 2t − 1 + k) is outside the L-shape. Consequently,

h ≤ 2t− 1 + k ≤ 2t+ 2 = M .

Lemma 5.2.3. Suppose N = 2(4t2+2t−1) for some positive integer t and let M be defined

as in (5.2.3). Then the L-shape(�, h, p, n) of DL(N
2
; 2,M − 1) satisfies � ≤ M − 1 and

h ≤ M − 1.

Proof. Since N = 2(4t2 + 2t− 1) for some positive integer t, we have M = 2t+ 2. Consider

the L-shape(�, h, p, n) of DL(N
2
; 2,M − 1). Since

(2t + 1) · 2 ≡ 2 · (2t+ 1) (mod N
2
),

cell (2t + 1, 0) and cell (0, 2) contain the same node. Since t is a positive integer, we have

2t+ 1 > 2. Thus cell (2t + 1, 0) is outside the L-shape. Consequently, � ≤ 2t+ 1 ≤M − 1.

Similarly, since

(t+ 1) · 2 ≡ (2t+ 1)(2t+ 1) (mod N
2
),

cell (t + 1, 0) and cell (0, 2t + 1) contain the same node. Clearly, 2t + 1 > t + 1 for t > 0;

thus cell (0, 2t+ 1) is outside the L-shape. Thus h ≤ 2t+ 1 ≤M − 1.
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Lemma 5.2.4. Let M be defined as in (5.2.3). Then:

1. If N �= 2(4t2 + 2t− 1) for any positive integer t, then d(N ;M + 1,M − 1) ≤ 2M − 1.

2. If N = 2(4t2+2t− 1) for some positive integer t, then d(N ;M +1,M − 3) ≤ 2M − 3.

Proof. Consider the first statement. It is not difficult to verify that bothM+1 andM−1 are
positive odd integers and gcd(N,M+1,M−1) = 1. Thus MCR(N ;M +1,M − 1) is a valid

mixed chordal ring network. Since we can embed MCR(N ;M+1,M−1) into DL(N
2
; 1,M),

this statement follows directly from Lemmas 5.2.1 and 5.2.2. The second statement can be

proven similarly except that Lemma 5.2.2 is replaced with Lemma 5.2.3.

Theorem 5.2.5. Let N̂ be defined as in (5.2.1).

1. If N̂ is even, then DMCR(N) ≤ 2
⌈√

N/2
⌉− 1.

2. If N̂ is odd and N = 2(4t2 + 2t − 1) for some positive integer t, then DMCR(N) ≤
2
⌈√

N/2
⌉− 1.

3. If N̂ is odd and N �= 2(4t2 + 2t − 1) for any positive integer t, then DMCR(N) ≤
2
⌈√

N/2
⌉
+ 1.

Moreover, these bounds are tight.

Proof. Note that if N = 2(4t2 + 2t − 1) for some positive integer t, then N̂ is odd. Thus

if N̂ is even, then N �= 2(4t2 + 2t − 1) for any positive integer t; consequently, M = N̂ . If

N̂ is odd and N = 2(4t2 + 2t − 1) for some positive integer t, then M = N̂ + 1. If N̂ is

odd and N �= 2(4t2 + 2t − 1) for any positive integer t, then M = N̂ + 1. Statements 1, 2

and 3 in this theorem now follow from Lemma 5.2.4. By the aid of a computer program, we

obtain DMCR(20) = 7, DMCR(38) = 9 and DMCR(48) = 11. Thus the bound in statement

1 is tight since DMCR(20) = 7 and 2
⌈√

20/2
⌉ − 1 = 7. The bound in statement 2 is tight
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24.50% 75.50%

Figure 5.2: The improved ratio of our upper bound as compared to the previous upper bound for N =
6, 8, 10, . . . , 10004 (total 5000 N ’s).

since DMCR(38) = 9 and 2
⌈√

38/2
⌉ − 1 = 9. Similarly, the bound in statement 3 is tight

since DMCR(48) = 11 and 2
⌈√

48/2
⌉
+ 1 = 11.

Remark 5.2.6. The previous upper bound on DMCR(N) is
√
2N + 3 [20]. Since

√
2N + 3

is served as an upper bound, we replace it with
⌊√

2N+3
⌋
. The largest upper bound in

Theorem 5.2.5 is 2
⌈√

N/2
⌉
+1 and it is always no larger than

⌊√
2N+3

⌋
. To see how good our

upper bound 2
⌈√

N/2
⌉
+1 is, we use a computer to obtain results for N = 6, 8, 10, . . . , 10004.

Among these 5000 N ’s, for 3775 (about 75.50%) out of them, our upper bound 2
⌈√

N/2
⌉
+1

improves the previous upper bound
⌊√

2N+3
⌋
; see Fig. 5.2.

5.3 Optimal Mixed Chordal Ring Networks

It should be noticed that the upper bound 2
⌈√

N/2
⌉−1 in Theorem 5.2.5 is no larger

than the upper bound
⌈√

2N
⌉
+ 1 in Theorem 5.2.5 and is very close to the lower bound⌈√

2N − 3/2
⌉
in Theorem 5.1.1. In the following, we show that there exist infinite number

of N ’s such that the upper bound 2
⌈√

N/2
⌉−1 matches the lower bound

⌈√
2N − 3/2

⌉
; in

other words, we determine the exact value of DMCR(N) for these N ’s.
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Theorem 5.3.1. Suppose N = 2(4t2 − t + k) for some positive integers t and k, where

1 ≤ k ≤ t. Then

DMCR(N) = 2
⌈√

N/2
⌉− 1.

Moreover, d(N ;
⌈√

N/2
⌉
+ 1,

⌈√
N/2

⌉− 1) = DMCR(N).

Proof. Suppose N = 2(4t2 − t + k) for some positive integer t and k, where 1 ≤ k ≤ t.

Then 2(4t2 − 4t + 1) < N ≤ 2 · 4t2; therefore, M = N̂ =
⌈√

N/2
⌉
= 2t. By Lemma 5.2.4

and Theorem 5.2.5, DMCR(N) ≤ d(N ;
⌈√

N/2
⌉
+ 1,

⌈√
N/2

⌉− 1) ≤ 2
⌈√

N/2
⌉− 1. Since

2(4t2 − t + 1
4
) < N ≤ 2(4t2 + t + 1

4
), we have DMCR(N) ≥ ⌈√

2N − 3/2
⌉
= 4t − 1 =

2
⌈√

N/2
⌉− 1. We now have this theorem.

The N ’s that satisfy Theorem 5.3.1 are: 8, 30, 32, 68, 70, 72, 122, . . . , and so on. For

N = 6, 8, 10, . . . , 10004 (total 5000 N ’s), about 12.60% out of them satisfy Theorem 5.3.1

and their optimal diameter can be determined by Theorem 5.3.1.
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Chapter 6

Routing

In this chapter, we discuss the routing problem in MCRNs. Particularly, routing of node-to-

node message with at most a single faulty element in MCRNs is considered. Results derived

from Sections 6.1 and 6.2 have been submitted to [43].

A routing algorithm is said to be optimal if every message is sent along a shortest path

from its source node to its destination node. A fault-tolerant routing algorithm is said to be

optimal if every message is sent along a shortest path from its source node to its destination

node after detecting a faulty element. In Sections 6.1 and 6.2, we design and present two

optimal node-to-node shortest path routing algorithms for MCRNs for flexible applications.

In Section 6.3, we present an optimal fault-tolerant routing algorithm for MCRNs.

The two optimal node-to-node routing algorithms presented are shortest-path-based rout-

ing and dynamic routing. The shortest-path-based routing algorithm computes the routing

parameter that can be used to determine a routing path. After an O(logN)-time preprocess-

ing, this algorithm takes O(logN)-time for a source node to compute the routing parameter,

and each node on the routing path takes constant time to determine the link (and therefore

the node) to send messages according to the routing parameter. It was pointed out in [28]

that a shortest-path-based routing algorithm has the advantage that it can often choose from
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Table 6.1: Comparing the SP-based routing algorithm with the dynamic routing algorithm.

SP-Based routing Dynamic routing

Preprocessing O(logN) O(logN)
Computation time for source node O(logN) O(1)
Computation time for other nodes O(1) O(1)
Number of paths can choose as many as in the graph 1

a larger set of candidates for the next node to be visited and can avoid potential routing

problems that arise from congestion or node/link faults.

On the other hand, for the dynamic routing algorithm, after an O(logN)-time precal-

culation to determine the network parameters (only computed once and stored them in all

nodes), it can route messages using constant time at each node (includes the source node)

along the routing path. The routing path is augmented on-the-fly at each routing step. It

was pointed out in [36] that the dynamic routing algorithm can be efficiently implemented

even if the computation ability of nodes is very limited. Table 6.1 illustrates a comparison

between the shortest-path-based (SP-Based) routing algorithm and the dynamic routing

algorithm.

Suppose we are sending a message from source node u to destination node v. The even-

odd-vertex-transitive property of the MCRN indicates that for even u, a path from u to

v in MCR(N ; s, w) can be deduced to a path from 0 to v − u in MCR(N ; s, w). By the

renaming function in (2.3.1), for odd u, nodes u and v of MCR(N ; s, w) are mapped to

nodes u + w and v + w in MCR(N ; s,N − w), respectively. Since u + w is even, a path

from u + w to v + w in MCR(N ; s,N − w) can be deduced to a path from 0 to v − u in

MCR(N ; s,N − w). Let μ = v − u (mod N). As a consequence, a path from u to v in

MCR(N ; s, w) can be deduced to a path from 0 to μ in MCR(N ; s, w) if u is even and a

path from 0 to μ in MCR(N ; s,N − w) if u is odd. In the rest of this chapter, without

loss of generality, we assume that the routing request is from node 0 to node μ ( �= 0) in

MCR(N ; s, w) if the source node is even-numbered, and in MCR(N ; s,N −w) if the source
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node is odd-numbered.

6.1 A Shortest-Path-Based Routing Algorithm

6.1.1 Routing Parameter

A routing path can be viewed as a sequence of links. In the MCRN, there are three types of

links: +s link, +w link and −w link. Clearly, a shortest path cannot have both +w and −w
links and therefore it consists of either a combination of +s and +w links or a combination

of +s and −w links. In addition, two +w links (or −w links) cannot appear consecutively

in a shortest path as the parity of the node-number changes at each routing step (because

s, w are odd integers). Let [ns, nw] denote the routing parameter of a path, where ns and

nw are integers with ns ≥ 0 and the sign of the term nw indicates which w link (+w or −w)
is used in this path. For example, consider routing in MCR(22; 1, 7) in Fig. 3.9. A shortest

path from node 0 to node 18 is 0
+s−→ 1

+s−→ 2
−w−−→ 17

+s−→ 18, which consists of three +s links

and one −w links. Thus the routing parameter of this path is therefore [3,−1].
The routing parameter can be appended to the header of a message. Each node in a

routing step chooses one of its out-links to deliver the messages, according to the routing

parameter, and then updates the routing parameter. The update can be implemented as

follows.

Update( )

1: if +s link is used then

2: ns ← ns − 1

3: else

4: nw ← nw − sign(nw) · 1
5: end if
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The routing is done when the routing parameter becomes [0, 0]. There are several possible

routing algorithms for a given routing parameter. The simplest way are given by greedy

algorithms defined by the following rules:

• ±w link first : Use ±w link whenever it can use ±w link and |nw| ≥ 1.

• ±w link last (+s link first): Use +s link whenever ns > |nw|.

In the rest of this section, we aim at finding the routing parameter of a shortest path

from node 0 to destination node μ.

6.1.2 Computing the Routing Parameter

By using the visualization tool established in Chapter 3, the main steps to obtain the routing

parameter of a path are shown in Fig. 6.1. The detailed version of our shortest-path-based

routing algorithm, called SP-Based-Routing-Algorithm (SPBRA for short), is presented in

Algorithm 3.

Step 1. Find the location of πμ.

Step 2. Apply Theorems 3.2.5 and 3.2.6 to find π∗
μ.

Step 3. Convert the location of π∗
μ into the routing parameter.

Figure 6.1: Steps of finding the routing parameter.

Theorem 6.1.1. SP-Based-Routing-Algorithm is correct and takes O(logN)-time.

Proof. We first prove the correctness. Since the correctness of Step 2 follows from Theo-

rems 3.2.5 and 3.2.6, it is sufficient to prove the correctness of Step 1 and Step 3. Recall the

following notations introduced in Section 3.1: πμ is the unique point in pseudoMDD that

has label μ; π∗
μ is an optimal copy of πμ; two vectors that characterize the L-shape of the

pseudoMDD are α = (2�,−n) and β = (−2p, h).
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Figure 6.2: Finding the location of πμ.

Correctness of Step 1: The SPBRA first uses the Euclidean algorithm to find a solution

(x0, y0) of equation (3.1.1) such that point (x0, y0) has label l((x0, y0)) = μ. This solution

always exists asMCR(N ; s, w) is assumed satisfying gcd(N, s, w) = 1. Note that in equation

(3.1.1), a point (x, y) with label l((x, y)) = μ satisfies parity(x) = parity(l((x, y))). Hence

we only need to choose one of the two equations in (3.1.1) to find a solution according to

the parity of μ. We regard the point (x0, y0) as the starting point. Consider a path from the

starting point to (0, 0) through an integer number of vectors α and β: (x0, y0)+xα+ yβ =

(0, 0), i.e., ⎧⎪⎨
⎪⎩

x0 + 2�x − 2py = 0

y0 − nx + hy = 0
(6.1.1)

The solution x = −(hx0+2py0)
2�h−2pn

, y = −(nx0+2�y0)
2�h−2pn

to (6.1.1) indicates a path (through an integer

number of α,β) from (x0, y0) to (0, 0); see Fig. 6.2(a). Then the four points (we regard

60



CHAPTER 6. ROUTING 6.1. A SHORTEST-PATH-BASED ROUTING ALGORITHM

them as candidate points) (x, y) + aα + bβ, where

(a, b) ∈ { (
x�, 
y�), (
x�, �y	), (�x	, 
y�), (�x	, �y	) } ,

(not necessary distinct) are copies of (x0, y0) that surround (0, 0). Note that both a and b

corresponding to this path can not be integers simultaneously since the destination node μ

is not the same as the source node. Then target point πμ can be determined by checking

which candidate point is inside the pseudoMDD

{
(x, y) ∈ Z

+ × Z
+

∣∣ 0 ≤ x < 2�, 0 ≤ y < h, and either x < 2�− 2p or y < h− n
}
.

However, it could happen that none of the four candidates points is inside the pseu-

doMDD; Fig. 6.2(b) illustrates such a situation. In this case, the target point can be

determined by checking the four new candidate points c′i = ci + α + β for all candidate

point ci. This is because πμ is the unique point that has label μ inside the pseudoMDD

and therefore can reach some ci through an integer number of a vector α and a vector β.

Correctness of Step 3: After the execution of Step 2, we have π∗
μ = (x∗

μ, y
∗
μ). By equation

(3.1.2), a point (x, y) in Z
+ × Z

+ has label

l((x, y)) =
(
y +

⌊x
2

⌋)
s+

(
y −

⌈x
2

⌉)
w mod N.

Thus, the routing parameter can be obtained by

ns = y∗μ +
⌊
x∗
µ

2

⌋
,

nw = y∗μ −
⌈
x∗
µ

2

⌉
.

(6.1.2)

Now we analyze the time complexity. It takes O(logN)-time to derive the L-shapes of

the pseudoMDD’s of MCR(N ; s, w) and MCR(N ; s,N − w) in the preprocessing phase.

Each line of SPBRA takes constant time except line 10. In line 10, a solution can be found
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by using the Euclidean algorithm, which takes at most O(logN)-time. As a result, SPBRA

takes O(logN)-time.
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Algorithm 3 SP-Based-Routing-Algorithm (SPBRA)

input: N, s, w,u: source node, v: destination node.
output: The routing parameter [ns, nw].

begin preprocessing

1: (2�0, h0, 2p0, n0)← the L-shape of the pseudoMDD of MCR(N ; s, w)

2: (2�1, h1, 2p1, n1)← the L-shape of the pseudoMDD of MCR(N ; s,N − w)

end preprocessing

begin SPBRA

3: μ← (v − u) mod N
4: λ← u mod 2 �The parity of the source node.

5: (2�, h, 2p, n)← (2�λ, hλ, 2pλ, nλ)
6: α← (2�,−n),β ← (−2p, h)
7: if λ = 1 then �Consider MCR(N ; s,N − w) if u is odd-numbered.

8: w ← N − w
9: end if

� Step 1.

10: Use the Euclidean algorithm to find a solution (x0, y0) of

μ ≡
{

x
2
(s− w) + y(s+ w) (mod N) if λ = 0(
x−1
2

)
(s− w) + y(s+ w)− w (mod N) if λ = 1

11: x← −(hx0+2py0)
2�h−2pn

, y ← −(nx0+2�y0)
2�h−2pn

12: i← 1
13: for each (a, b) ∈ {(
x�, 
y�), (
x�, �y	), (�x	, 
y�), (�x	, �y	)} do
14: ci ← (x, y) + aα+ bβ
15: c′i ← ci +α+ β
16: i← i+ 1
17: end for
18: πμ ← the point of { ci, c′i | 1 ≤ i ≤ 4 } that is inside the pseudoMDD

� Step 2.

19: π∗
μ ← (x∗

μ, y
∗
μ) (by applying Theorems 3.2.5 and 3.2.6)

� Step 3.

20: return [ns, nw]←
[
y∗μ +

⌊
x∗
µ

2

⌋
, y∗μ −

⌈
x∗
µ

2

⌉]
end of SPBRA
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Figure 6.3: An example of shortest path based routing.

Example. Consider routing in MCR(22; 1, 7); see Fig. 6.3. The preprocessing phase of

SPBRA computes the L-shapes of the pseudoMDD of MCR(22; 1, 7) and MCR(22; 1, 15)

and obtains (12, 2, 2, 1) and (4, 6, 2, 1), respectively. Suppose we are sending a message from

node u = 2 to node v = 12. Then SPBRA derives μ = 10, (2�, h, 2p, n) = (12, 2, 2, 1),

α = (12,−1) and β = (−2, 2). Use the Euclidean algorithm to find a solution, for example

(−10, 3), of
x
2
(1− 7) + y(1 + 7) ≡ 10 (mod N).

Then SPBRA derives (x, y) = (14
22
,−26

22
). The candidate points ci are (−6,−1), (−8, 1),

(6,−2) and (4, 0); the new candidate points c′i are (4, 0), (2, 2), (16,−1) and (14, 1). The

unique one among { ci, c′i | 1 ≤ i ≤ 4 } that is inside the pseudoMDD is πμ = (4, 0). Since

πμ ∈ Γ+
1 , by Theorems 3.2.5 and 3.2.6, we have π∗

μ = πμ + 1 · β = (2, 2). Finally, SPBRA

returns the routing parameter [ns, nw] = [3, 1]. If the “±w link first” strategy is applied, the

routing path is

2
+s−→ 3

+w−−→ 10
+s−→ 11

+s−→ 12.

On the other hand, if the “±w link last” strategy is applied, the routing path is

2
+s−→ 3

+s−→ 4
+s−→ 5

+w−−→ 12.
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6.2 A Dynamic Routing Algorithm

In this section, we present an optimal dynamic routing algorithm for MCRNs. Specifically,

after an O(logN)-time to compute the network parameters (computed them once and stored

in all nodes), each node can take constant time to determine the link (and hence the node)

along the shortest path.

Suppose we are sending messages from source node u to destination node v. Recall

that a shortest u, v-path in MCR(N ; s, w) can be deduced to a path from node 0 to node

μ = v − u mod N in MCR(N ; s, w) if u is even-numbered, and in MCR(N ; s,N − w)

if u is odd-numbered. Also, recall that π∗
μ is the point with the label μ in the MDD of

MCR(N ; s, w).

6.2.1 Finding a Shortest Route in the Plane

In this section, we construct a shortest path from (0, 0) to π∗
μ in the plane with path length

Δ(π∗
μ). Define

S = { (0, 0), (1, 1), (2, 1), (3, 2), (4, 2), . . . }
=

{
(x, y) ∈ Z

+ × Z
+ | y =

⌈
x
2

⌉
, y ≥ 0

}
.

Namely, the points in the plane that can be reached by (0, 0) by using only +s-links. Now

given π∗
μ = (x∗

μ, y
∗
μ), let A = (Ax, Ay) be the point in S such that

Ax is even, and Ay =

⎧⎪⎨
⎪⎩

y∗μ if π∗
μ ∈ Γ+,⌊

x∗
μ − 0.5

⌋
if π∗

μ ∈ Γ−.
(6.2.1)

Let P be the path from (0, 0) to point π∗
μ constructed as follows. This path consists of
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two subpaths P1 and P2.

P = (0, 0), . . . , (Ax︸ ︷︷ ︸
P1

, Ay), . . . , (x∗
μ, y

∗
μ)︸ ︷︷ ︸

P2

. (6.2.2)

P1 is from point (0, 0) to point A along the points in S:

(0, 0), (1, 1), (2, 1), (3, 2), (4, 2), . . . , (Ax, Ay).

P2 is from point A to point π∗
μ and

• if π∗
μ ∈ Γ+ (for example, the point B in Fig. 6.4), then Ay = y∗μ, P2 keeps going east.

Thus P2 is: (Ax, y
∗
μ), (Ax + 1, y∗μ), (Ax + 2, y∗μ), . . . , (x∗

μ, y
∗
μ).

• if π∗
μ ∈ Γ− and x∗

μ is even (for example, the point C in Fig. 6.4), then Ax = x∗
μ,

P2 repeatedly goes northeast and then west. Thus P2 is (x∗
μ, Ay), (x

∗
μ + 1, Ay + 1),

(x∗
μ, Ay + 1), (x∗

μ + 1, Ay + 2), (x∗
μ, Ay + 2), . . . , (x∗

μ + 1, y∗μ), (x
∗
μ, y

∗
μ);

• if π∗
μ ∈ Γ− and x∗

μ is odd (for example, the point D in Fig. 6.4), then Ax = x∗
μ − 1,

P2 goes northeast first, and then repeatedly goes west and then northeast. Thus P2 is

(x∗
μ − 1, Ay), (x

∗
μ, Ay + 1), (x∗

μ − 1, Ay + 1), (x∗
μ, Ay + 2), (x∗

μ − 1, Ay + 2), (x∗
μ, Ay + 3),

. . . , (x∗
μ − 1, y∗μ − 1), (x∗

μ, y
∗
μ).

Lemma 6.2.1. The path P from (0, 0) to π∗
μ = (x∗

μ, y
∗
μ) is of length Δ(π∗

μ).

Proof. Let |P | denote the length of P and A = (Ax, Ay) denote the point defined in (6.2.1).

Clearly, |P | = |P1| + |P2| and |P1| = Ax. If π∗
μ ∈ Γ+, then we have |P2| = x∗

μ − Ax and

|P | = x∗
μ. By Lemma 3.1.1, we have Δ(π∗

μ) = x∗
μ = |P |.

Now suppose π∗
μ ∈ Γ+. Then |P2| = 2(y∗μ − Ay) if x

∗
μ is even and |P2| = 2(y∗μ − Ay)− 1

if x∗
μ is odd. In addition, Ax = x∗

μ if x∗
μ is even and Ax = x∗

μ − 1 if x∗
μ is odd. In either case,

|P2| = 2(y∗μ − Ay) − parity(x∗
μ) and Ax = x∗

μ − parity(x∗
μ). Since point A is in S, we have
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Figure 6.4: A shortest routing path.

Ay =
⌊
Ax+1

2

⌋
, or equivalently, Ax = 2Ay−parity(Ax). Since Ax is even, parity(Ax) = 0 and

thus |P2| = 2y∗μ − Ax − parity(x∗
μ). By Lemma 3.1.1, we have Δ(π∗

μ) = 2y∗μ − parity(x∗
μ) =

|P |.

The basic idea of designing the dynamic routing algorithm is to choose a link according

to the relative position of π∗
μ such that the link is contained in P . Let B denote the set of

points in the bottommost row of MDD0, i.e.,

B = { π ∈ MDD0 | π = (x, y) with y = 0 } .

For example, consider MCR(22; 1, 7) in Fig. 3.9, B = { (0, 0), (1, 0), (2, 0), (3, 0) }. The

cardinality of B can be determined from Fig. 3.11 as

|B| = 2min { �, h } .

Lemma 6.2.2. Suppose μ �= 0. If π∗
μ ∈ B (resp., π∗

μ �∈ B), then there exists a shortest

path from node 0 to node μ whose first link is through (0, 0) to (1, 0), i.e., “−w link” (resp.,

through (0, 0) to (1, 1), i.e., “+s link”).
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Proof. It should be noted that a shortest path from node 0 to node μ in the MCRN corre-

sponds to a shortest path from point (0, 0) to point π∗
μ in the MDD. Suppose π∗

μ = (x∗
μ, y

∗
μ).

Let P denote the path defined in (6.2.2). If π∗
μ ∈ B, then y∗μ = 0 and P contains the link

from (0, 0) to (1, 0); if π∗
μ �∈ B, then y∗μ > 0 and P contains the link from (0, 0) to (1, 1).

Note that points in P can not have the label μ, except the end point of P , since π∗
μ is unique

point in MDD0 with the label μ and, by Lemma 6.2.1, the length of P is Δ(π∗
μ). Thus we

have the lemma.

6.2.2 A Dynamic Routing Algorithm

Now we are ready to present a dynamic routing algorithm, calledDynamic-Routing-Algorithm

(DRA for short), in Algorithm 4. The main idea of DRA is to determine whether or not π∗
μ

belongs to B, and then applies Lemma 6.2.2.

Theorem 6.2.3. Dynamic-Routing-Algorithm is correct. After an O(logN)-time prepro-

cessing phase, Dynamic-Routing-Algorithm takes only constant time to determine the next

node on the shortest path to which the message should be sent.

Proof. We first prove the correctness. The main issue is to decide whether or not π∗
μ be-

longs to B. One naive way to solve this problem is to examine each point sequentially in

B. However, this method takes O(min { �, h })-time (can be as worse as O(
√
N)). In the

following, we show that deciding whether π∗
μ belongs to B can be done in constant time if

the L-shapes of the pseudoMDD of MCR(N ; s, w) and MCR(N ; s,N − w) are known in

advance.

By the labeling function in (3.1.1), the set of points in B corresponds to the following
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set of nodes:

l(B) =
{
0,−w, s− w, s− 2w, . . . , ( |B|

2
− 1)(s− w), ( |B|

2
− 1)(s− w)− w

}
(6.2.3)

=
{
t(s− w), t(s− w)− w | 0 ≤ t < |B|

2

}
. (6.2.4)

Therefore, π∗
μ ∈ B if and only if there exists an integer t, 0 ≤ t < |B|

2
such that

t(s− w) ≡ μ (mod N), (6.2.5)

or
t(s− w)− w ≡ μ (mod N). (6.2.6)

Note that equations (6.2.5) and (6.2.6) can be transferred into the following general

modular equation:

ax ≡ b (mod N). (6.2.7)

Let g = gcd(a,N). Equation (6.2.7) has a solution if and only if b is divisible by g. If

b is divisible by g, then the solution to (6.2.7) is b mod N
g

(
a
g

)−1
mod N

g
, where

(
a
g

)−1
is the

inverse of a
g
in ZN/g. The subroutine SOLVE(a, b, N, g, inv) is used to find the smallest

positive integer x of the congruence equation (6.2.7). Note that the values g and
(
a
g

)−1

can be obtained by using the Euclidean algorithm and Extended Euclidean algorithm [25],

respectively, and we only need to compute these values once and store them in all nodes.

The subroutine inB determines whether π∗
μ ∈ B by using the subroutine SOLVE to find

a non-negative integer t, 0 ≤ t < |B|
2
, which satisfies equations (6.2.5) and (6.2.6). Thus

subroutine inB can determine whether π∗
μ ∈ B correctly. Finally, if π∗

μ ∈ B, then DRA

will send messages to node (u − w) mod N by using the ”−w”-link, i.e., the link between

(0,0) and (1,0). Otherwise, DRA will send messages to node (u + s) mod N by using the

”+s”-link, i.e., the link between (0,0) and (1,1). By Lemma 6.2.2, DRA is correct.

We now analyze the time complexity. It takes O(logN)-time to derive the L-shapes

of the pseudoMDD of MCR(N ; s, w) and MCR(N ; s,N − w). By using the Euclidean
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Figure 6.5: Routing in MCR(22; 1, 7).

algorithm and Extended Euclidean algorithm [25], lines 3-4 take O(logN)-time. Thus, the

preprocessing phase totally takes O(logN)-time. Once the preprocessing phase is done, each

line of DRA, subroutines SOLVE and inB take only constant time. Consequently, after an

O(logN)-time preprocessing phase, DRA takes only constant time to determine the next

node on the shortest path to which the message should be sent.

Example. Suppose we are sending messages from node 1 to node 11 in MCR(22; 1, 7); see

Fig.6.5. The preprocessing phase of DRA computes the L-shapes of the pseudoMDD of

MCR(22; 1, 7) and MCR(22; 1, 22− 7) and obtains (12, 2, 2, 1) and (4, 6, 2, 1), respectively.

Thus g0 = g1 = 2, inv0 = 7, inv1 = 3. Then DRA derives μ = 10, λ = 1, (2�, h, 2p, n) =

(4, 6, 2, 1), |B| = 4 and w = 15. After that, subroutine inB(22, 1, 15, 10, 4, 2, 3) returns

false. Then DRA returns node 1 + 1 ≡ 2 (mod N). Now the problem becomes sending a

message from node 2 to destination node 11. Then DRA sets μ = 9, λ = 0, (2�, h, 2p, n) =

(12, 2, 2, 1), |B| = 4 and w = 7. Then subroutine inB(22, 1, 7, 9, 4, 2, 7) returns true and

DRA returns node 2 − 7 ≡ 17 (mod 22). Continuing in this way, the routing path from

source node 1 to destination node 11 will be

1
+s−→ 2

−w−−→ 17
+s−→ 18

−w−−→ 11.
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Algorithm 4 Dynamic-Routing-Algorithm (DRA)

input: N, s, w,u: source node, v: destination node.
output: The next node on a shortest u, v-path.

begin preprocessing
1: (2�0, h0, 2p0, n0)← the L-shape of the pseudoMDD of MCR(N ; s, w)
2: (2�1, h1, 2p1, n1)← the L-shape of the pseudoMDD of MCR(N ; s,N − w)
3: g0 ← gcd(s− w,N), g1 ← gcd(s+ w,N)

4: inv0 ←
(

s−w
g0

)−1

in ZN/g0 , inv1 ←
(

s+w
g1

)−1

in ZN/g1

end preprocessing

begin DRA
5: μ← v − u (mod N)
6: λ← u mod 2 �The parity of the source node.

7: (2�, h, 2p, n)← (2�λ, hλ, 2pλ, nλ)
8: |B| ← 2 ·min { �, h }
9: w ← N − w if λ = 1 �Consider MCR(N ; s,N − w) if u is odd-numbered.

10: if μ = 0 then
11: receive the message and stop the algorithm
12: else
13: if inB(N, s, w, μ, |B| , gλ, invλ) = true then
14: return (u− w) mod N �π∗

μ ∈ B

15: else
16: return (u+ s) mod N �π∗

μ �∈ B

17: end if
18: end if
end DRA

Subroutine SOLVE(a, b, N, g, inv)

19: return
(

b mod N
g

)
· inv mod N

g

Subroutine inB(N, s, w, μ, |B| , g, inv)
20: if g � | b then
21: return false
22: else
23: t← SOLVE(s− w, μ,N, g, inv)
24: t′ ← SOLVE(s− w, μ+ w,N, g, inv)

25: if 0 ≤ t < |B|
2

or 0 ≤ t′ < |B|
2

then
26: return true
27: else
28: return false
29: end if
30: end if
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6.3 Fault-tolerant Routing in MCRNs

In this section, we consider the problem of routing messages in MCRNs in the presence of up

to one node or link failure (note that more than one fault can isolate a node). We present

an optimal fault-tolerant routing algorithm for MCRNs. The fault-tolerant algorithm do

not require routing tables and only very little computational overhead is needed. After

an O(logN)-time preprocessing, the algorithm can route messages to the destination node

using a constant time at each node along the route. The fault-tolerant routing algorithm

presented is guaranteed to find an optimal route after a faulty element is detected.

We assume that in each node there is no global information of the network and thus a

faulty element is detected only when a node tries to send messages by using it. Our fault-

tolerant routing algorithm is based on the shortest-path-based routing algorithm (SPBRA)

presented in Sections 6.1. The SPBRA computes the routing parameter, which can be used

to determine a routing path. Once we have this information, a node receiving a message

examines it and if it is not the receiver, then it can decide which link to use to send messages

toward the destination. More specifically, given the routing parameter [ns, nw], each node on

the routing path can decide the link (+s link or ±w link) to send messages by the S-Link-

First-Algorithm or the W-Link-First-Algorithm shown in Algorithms 5 and 6, respectively.

Note that for a routing parameter [ns, nw], ns and nw are integers with ns ≥ 0, and the

sign of nw indicates which w link (+w link or −w link) to use. In S-Link-First-Algorithm,

nodes use +s link as long as the number of remaining +s links is larger than the number

of remaining ±w links. On the other hand, in W-Link-First-Algorithm, nodes use the ±w
link as long as they are applicable. The routing is done when [ns, nw] becomes [0, 0]. Since

we assume each node is only aware of the states of its two immediate links and the nodes

connected to these links, a link is considered faulty if it is actually faulty or connected to a

faulty node.
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Algorithm 5 S-Link-First-Algorithm

input: Routing parameter [ns, nw].
output: The output link e.
1: if [ns, nw] = [0, 0] then
2: receive the message and stop the algorithm
3: else
4: if ns > |nw| then
5: e← +s link
6: if e is not faulty then
7: ns ← ns − 1
8: end if
9: else
10: if nw �= 0 and the current node can use sign(nw) · w link then
11: e← sign(nw) · w link
12: if e is not faulty then
13: nw ← nw − sign(nw) · 1
14: end if
15: end if
16: end if
17: end if

Algorithm 6 W-Link-First-Algorithm

input: Routing parameter [ns, nw].
output: The output link e.

1: if [ns, nw] = [0, 0] then
2: receive the message and stop the algorithm
3: else
4: if nw �= 0 and the current node can use sign(nw) · w link then
5: e← sign(nw) · w link
6: if e is not faulty then
7: nw ← nw − sign(nw) · 1
8: end if
9: else
10: e← +s link
11: if e is not faulty then
12: ns ← ns − 1
13: end if
14: end if
15: end if
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6.3.1 Finding Alternative Paths

Our fault-tolerant routing algorithm will first call the S-Link-First-Algorithm and each node

along the route executes it when forwarding a message. In this section, we consider the

problem of finding an alternative path after a faulty link made by the S-Link-First-Algorithm

is detected. Let the source and destination nodes be u and v, respectively. Recall that a

shortest u, v-path in MCR(N ; s, w) can be deduced to a path from node 0 to node μ =

v − u mod N in MCR(N ; s, w) if u is even and in MCR(N ; s,N − w) if u is odd. Since

node 0 is mapped to (0, 0) in the plane, we may assume routing is from (0, 0) to π∗
μ in the

rest of this section, where π∗
μ is the location of node μ in the MDD0 of MCR(N ; s, w) or

MCR(N ; s,N − w) (depends on the parity of node u). Since point (0, 0) can only reach

either (1, 1) or (1, 0), a faulty link is detected at the (0, 0) to (1, 1) link (resp., (0, 0) to (1, 0)

link) when the node wants to send messages by using the +s link (resp., −w link). For

convenience, denote the (0, 0) to (1, 1) link (resp., (0, 0) to (1, 0) link) by the es link (resp.,

ew link).

When a faulty link is detected, we need to convert the routing parameter to the position

of π∗
μ. This conversion can be done in constant time shown as follows. Note that there is

an one-to-one correspondence between the routing parameters and the points in the plane.

By equation (3.1.2), a point (x, y) in Z
+ × Z

+ has label

l((x, y)) =
(
y +

⌊x
2

⌋)
s+

(
y −

⌈x
2

⌉)
w mod N. (6.3.1)

Thus, a point (x, y) can have the routing parameter

[
y +

⌊x
2

⌋
, y −

⌈x
2

⌉]
, (6.3.2)

and which point (x, y) having the routing parameter [a, b] can be determined by solving the

equation:
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y +
⌊x
2

⌋
= a

y −
⌈x
2

⌉
= b.

(6.3.3)

By (6.3.1), it is clear that all shortest paths from (0, 0) to (x, y) in the plane consist

of +s links and +w links if y >
⌈
x
2

⌉
; only +s links if y =

⌈
x
2

⌉
; and +s links and −w

links if y <
⌈
x
2

⌉
. As a result, the paths from (0, 0) to π∗

μ corresponding to the applying

of the S-Link-First-Algorithm (resp., W-Link-First-Algorithm) are shown in Fig. 6.6 (resp.,

Fig. 6.7).

Figure 6.6: The paths correspond to the applying of the S-Link-First-Algorithm.

Figure 6.7: The paths correspond to the applying of the W-Link-First-Algorithm.

In most cases, a fault can not block all shortest pathes from source node to destination

node. The following lemma provides an alternative shortest path when a faulty link is

detected.
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Lemma 6.3.1. Suppose π∗
μ = (x∗

μ, y
∗
μ) with 1 ≤ y∗μ <

⌈
x∗
µ

2

⌉
. If the es link is faulty, then

there exists a shortest path from (0, 0) to π∗
μ by using the W-Link-First-Algorithm.

Proof. Since y∗μ <
⌈
x∗
µ

2

⌉
, all paths from (0, 0) to π∗

μ consist of only +s links and −w links,

and |nw| =
∣∣∣y∗μ − ⌈

x∗
µ

2

⌉∣∣∣ > 0. Since node at (0, 0) can use the −w link, there exists a shortest

path from (0, 0) to π∗
μ by using the W-Link-First-Algorithm; see Fig. 6.7(c).

Note that in Lemma 6.3.1, we exclude the case of y∗μ = 0. This is because when y∗μ = 0,

the S-Link-First-Algorithm will use the −w link and therefore the esd link will not be

detected as a faulty link. If π∗
μ does not satisfy Lemma 6.3.1, then we try to find a route to

a copy of π∗
μ or make an estimate as to the minimum link increment necessary to route to

avoid the fault. The following lemma provides a detour from (0, 0) to π∗
μ to avoid the fault

by adding two more links.

Lemma 6.3.2. Suppose π∗
μ = (x∗

μ, y
∗
μ) with y∗μ ≥

⌈
x∗
µ

2

⌉
and x∗

μ ≥ 2. If the es link is faulty,

then there exists a path from (0, 0) to π∗
μ with length Δ(π∗

μ)+ 2: (0, 0), (1, 0), (2, 0), followed

by using the S-Link-First-Algorithm. In addition, the two links increment is the minimum

link increase necessary to reach the same destination if π∗
μ has no other copy z such that

Δ(π∗
μ) = Δ(z).

Proof. Since y∗μ ≥
⌈
x∗
µ

2

⌉
, Δ(π∗

μ) = 2y∗μ − parity(x∗
μ). Let (2, 0) be the new origin and thus

π∗
μ corresponds to point z = (x∗

μ − 2, y∗μ) in the new coordinate system. It is clear that

routing from (2, 0) to π∗
μ in the original coordinate system is equivalent to route from (0, 0)

to z in the new coordinate system; see Fig. 6.8. Since z ∈ Γ−, Δ(z) = 2y∗μ − parity(x∗
μ) in

the new coordinate system. Thus, a detour from (0, 0) to π∗
μ can be constructed by P1∪P2,

where subpath P1 is (0, 0), (1, 0), (2, 0) and subpath P2 is from (2, 0) to π∗
μ by shifting the

coordinates of nodes of a shortest path (constructed by using the S-Link-First-Algorithm)

from (0, 0) to z in the new coordinate system. Clearly, |P1|+ |P2| = Δ(π∗
μ)+2 and this path

clearly contains no es link. Moreover, since point (1, 0) can only reach either (0, 0) or (2, 0)
76



CHAPTER 6. ROUTING 6.3. FAULT-TOLERANT ROUTING IN MCRNS

Figure 6.8: A detour: adding two more links to avoid a fault.

and the es link is faulty, point (1, 0) can get to π∗
μ only by reaching point (2, 0). Thus, the

two links increment is the minimum link increase necessary to reach the same destination

point if π∗
μ has no other copy z such that Δ(π∗

μ) = Δ(z).

In the following, we aim at finding a route to a copy of π∗
μ. Suppose z is a copy of π∗

μ.

Define the cost function z → Z
+ as follows.

• If the es link is faulty, then

cost(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Δ(z) if y <
⌈
x
2

⌉
,

Δ(z) + 2 if �− p �= 1, y ≥ ⌈
x
2

⌉
and

either x∗
μ ≥ 2 and x ≥ 2

or x∗
μ < 2 and

⌊
x
2

⌋ ≥ 2,

∞ if otherwise.

(6.3.4)

• If the ew link is faulty, then

cost(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Δ(z) if either y ≥ ⌈
x
2

⌉
,

or h−n �= 1, 2 ≤ y <
⌈
x
2

⌉
and x �= 2,

Δ(z) + 2 if h− n �= 1, 2 ≤ y <
⌈
x
2

⌉
and x = 2,

∞ if otherwise.

(6.3.5)
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Lemma 6.3.3. Suppose z ( �= π∗
μ) is a copy of π∗

μ. If the es link is faulty and cost(z) �=∞,

then there exists a path from (0, 0) to z with length cost(z). Moreover, if z has the smallest

cost among all copies of π∗
μ, then the path from (0, 0) to z contains no es link.

Proof. If y <
⌈
x
2

⌉
, then by Lemma 6.3.1, there exists a path from (0, 0) to z with length

Δ(z) = cost(z): (0, 0), (1, 0), (2, 0), followed by using the S-Link-First-Algorithm. In the

following, we assume y ≥ ⌈
x
2

⌉
. In this case, all shortest paths from (0, 0) to z must pass

through the es link and therefore it has to make a detour to route. Note that for every

point z, the point z + α + β, where α + β = (2� − 2p, h − n), is always in Z
+ × Z

+. If

�− p = 1, then every copy of π∗
μ will be blocked by the faulty link. Thus, suppose �− p �= 1

and x∗
μ ≥ 2. If x < 2, then the path from (0, 0) to z is clearly blocked by the es link. If

x ≥ 2, then by Lemma 6.3.2, a path from (0, 0) to z can be found by adding two more

links: (0, 0), (1, 0), (2, 0), followed by using the S-Link-First-Algorithm; the path length is

Δ(z) + 2 = cost(z).

Now we suppose x∗
μ < 2. According to the parity of x, we construct a path from (0, 0) to

z as follows. If x is even, then the path is (0, 0), (1, 0), (2, 0), followed by using the S-Link-

First-Algorithm to point (x−1, y), then to point (x, y); see Fig. 6.9(a). If x is odd, then the

path is (0, 0), (1, 0), (2, 0), followed by using the S-Link-First-Algorithm to point (x−2, y−1),
then (x− 1, y − 1), (x, y); see Fig. 6.9(b). Clearly, the path length is Δ(z) + 2 = cost(z).

Suppose z has the smallest cost among all copies of π∗
μ and the path from (0, 0) to z

contains es link. Let the copy of (0, 0) in this path be (x′, y′) with x′ > 0, y′ > 0. Then the

point (x−x′, y− y′) is also a copy of π∗
μ, yet has a smaller cost than z, a contradiction.

Lemma 6.3.4. Suppose z ( �= π∗
μ) is a copy of π∗

μ. If the ew link is faulty and cost(z) �=∞,

then there exists a path from (0, 0) to z with length cost(z). Moreover, if z has the smallest

cost among all copies of π∗
μ, then the path from (0, 0) to z contains no es link.
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Figure 6.9: The illustrations of the cases to the proof in Lemma 6.3.3.

Proof. If y ≥ ⌈
x
2

⌉
, then clearly there exists a path from (0, 0) to z by using the S-Link-First-

Algorithm. In the following, we assume y <
⌈
x
2

⌉
. Note that for every point z, the point

z+α+β, where α+β = (2�−2p, h−n), is always in Z
+×Z+. If h−n = 1, then every copy

of π∗
μ will be blocked by the faulty link. In addition, if y < 2, then any path from (0, 0) to z

will be blocked by the faulty link. Thus, suppose h− n �= 1 and 2 ≤ y <
⌈
x
2

⌉
. If x �= 2 and

x is even, then a path from (0, 0) to z can be constructed as (0, 0), (1, 1), (2, 1), followed by

using the W-Link-First-Algorithm to point (x− 2, y − 1), then to point (x− 1, y), (x, y); if

x �= 2 and x is is odd, then a path from (0, 0) to z can be constructed as (0, 0), (1, 1), (2, 1),

followed by using the W-Link-First-Algorithm to point (x − 1, y − 1), then to (x, y); see

Fig. 6.10(a) for an illustration. Clearly, these paths are of length Δ(z) = cost(z). If x = 2,

then a path from (0, 0) to z can be constructed as (0, 0), (1, 1), (2, 1), followed by using the

W-Link-First-Algorithm to point (x, y − 1), then to point (x + 1, y), (x, y). Clearly, this

path is of length Δ(z) = cost(z); see Fig. 6.10(b).

Suppose z has the smallest cost among all copies of π∗
μ and the path from (0, 0) to z

contains es link. Let the copy of (0, 0) in this path be (x′, y′) with x′ > 0, y′ > 0. Then the

point (x−x′, y− y′) is also a copy of π∗
μ, yet has a smaller cost than z, a contradiction.
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Figure 6.10: The illustrations of the cases to the proof in Lemma 6.3.4.

6.3.2 Finding the Lowest Cost Point

Our aim in this section is to find the lowest cost copy of π∗
μ (other than π∗

μ). For convenience,

some notations will be introduced first. Given a point z and a vector v, define Lv(z) =

{ z + tv | t ∈ Z }. Namely, points in Lv(z) are reachable by z through an integer number

of v. The set of the two points in Lv(z) that are around the x− 2y = 0 line is denoted by

Pv(z), i.e.,

Pv(z) =
{
z1, z2 ∈ Lv(z) | z1 ∈ Γ−, z2 ∈ Γ+ and z1 = z2 + v

}
.

Note that the cardinality of Pv(z) may be less than 2 as we only consider points in Z
+×Z

+.

Lemma 6.3.5. Suppose vector v = (v1, v2) with even v1 and v1 ·v2 ≤ 0. Then the two points

in Pv(z) have the smallest distance (to (0, 0)) among all points in Lv(z).

Proof. Without loss of generality, assume v1 ≥ 0, v2 < 0. Let z1, z2 be two points in Pv(z)

such that z1 ∈ Γ−, z2 ∈ Γ+ and z1 = z2 + v. If v1 > 0, then by Lemma 3.1.2, Δ(v1) <

Δ(v1 − v) < Δ(v1 − 2v) < · · · and Δ(v2) < Δ(v2 + v) < Δ(v2 + 2v) < · · · hold. If v1 = 0,

then Δ(v1) < Δ(v1 − v) < Δ(v1 − 2v) < · · · and Δ(v2) = Δ(v2 + v) = Δ(v2 + 2v) = · · · .
Thus we have this lemma.
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Suppose the pseudoMDD has an L-shape (2�, h, 2p, n). Two vectors characterizing the

L-shape of the pseudoMDD are α = (2�,−n) and β = (−2p, h). Recall that copies of π∗
μ

can be reach from π∗
μ through an integer number of α and β. Consider the parallelogram

formed by π∗
μ and α and β; see Fig. 6.11. The four lines Lα(π

∗
μ), Lβ(π

∗
μ), Lα(π

∗
μ+α+β),

Lβ(π
∗
μ + α + β) consist of copies of π∗

μ that are as close as to (0, 0). Thus the lowest cost

copy of π∗
μ may appear in one of these lines. By Lemma 6.3.5, we only need to consider

Pα(π
∗
μ) ∪ Pβ(π

∗
μ) ∪ Pα(π

∗
μ + α + β) ∪ Pβ(π

∗
μ + α + β) \ {

π∗
μ

}
. In other words, we need

to examine at most eight points to determine the lowest cost copy of π∗
μ. In fact, most of

them are the same point or are not inside Z
+×Z

+. Note that given z and v, finding Pv(z)

can be done in constant time shown as follows. Let t be an integer such that z + tv ∈ Γ−

and z + (t+ 1)v ∈ Γ+. Then Pv(z) = { z + tv, z + (t+ 1)v }.

Figure 6.11: Find the lowest cost point.

For convenience, set Pα(π
∗
μ) ∪ Pβ(π

∗
μ) ∪ Pα(π

∗
μ + α + β) ∪ Pβ(π

∗
μ + α + β) \ {

π∗
μ

}
=

PARA(π∗
μ). It should be noticed that the set PARA(π∗

μ) cannot be empty. This is because

point π∗
μ + α + β = (x∗

μ + 2� − 2p, y∗μ + h − n) is inside Z
+ × Z

+ and is always contained

in Pα(π
∗
μ + α + β) ∪ Pβ(π

∗
μ +α + β). However, in some cases, the lowest cost copy of π∗

μ

may not exist in PARA(π∗
μ). In this case, we must have all points (except π∗

μ +α + β) of

PARA(π∗
μ) to be outside Z+×Z+ and either (i) the ew link is faulty and h−p = 1 or (ii) the
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es is faulty and �− p = 1. In other words, π∗
μ +α+ β is still be blocked by the faulty link.

For example, in Fig. 6.12, suppose μ = 32 and the ew link is faulty. We have π∗
μ = (2, 0)

and thus PARA(π∗
μ)=

{
π∗

μ +α+ β
}
= { (6, 1) }. Clearly (6, 1) is still be blocked by the

faulty link. This problem can be solved by the following result proposed by Liu [49]. We

modify their results to fit our notations.

Figure 6.12: Optimal fault-tolerant in MCR(34; 1, 3). Two vectors that characterizing the pseudoMDD
are α = (14,−5),β = (−10, 6).

Lemma 6.3.6. [49] Suppose π∗
μ = (x∗

μ, y
∗
μ) with y∗μ = 0. If the ew link is faulty, PARA(π∗

μ) ={
π∗

μ +α+ β
}

and h − n = 1, then z = (r, h + k − 1) is the lowest copy of π∗
μ, where

k =
⌈
2�−x∗

µ

2�−2p

⌉
and r = (x∗

μ + k(2�− 2p)) mod 2�. Moreover, the path from (0, 0) to z by using

the S-Link-First-Algorithm contains no faulty link.

Proof. Since h − n = 1, every copy of π∗
μ in Γ+ will be blocked by the faulty link. In this

situation, the lowest cost copy of π∗
μ must appear in Γ−. In [49], Liu et al. find that point

z = (r, h + k − 1) is the closest copy of π∗
μ (in �1-norm). It is not difficult to check that

Lα+β(z) consisting of copies of π∗
μ is the closest line (to (0, 0)) in Γ−, and thus z is the lowest
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copy of π∗
μ in Γ−. Moreover, the path from (0, 0) to z by using the S-Link-First-Algorithm

contains no ew link; if not, then we can easily find another copy of π∗
μ with smaller cost than

z, a contradiction.

Lemma 6.3.7. [49] Suppose π∗
μ = (x∗

μ, y
∗
μ) with x∗

μ < 2. If the es link is faulty, PARA(π∗
μ) ={

π∗
μ +α+ β

}
and �− p = 1, then z = (r, 2�+ k − 1) is the lowest cost copy of π∗

μ, where

k =
⌈
h−y∗µ
h−n

⌉
and t = (y∗μ+ k(h−n)) mod h. Moreover, the path from (0, 0) to z by using the

S-Link-First-Algorithm contains no faulty link.

Proof. Since the proof is similar to that of Lemma 6.3.6, we omit it.

Now we are ready to present the fault-tolerant routing algorithm for MCRNs, call FTRA,

in Algorithm 7. Since the correctness of FTRA follows from Lemmas 6.3.1, 6.3.2, 6.3.3, 6.3.4,

6.3.6 and 6.3.7 directly, we omit it.

Theorem 6.3.8. FTRA is an optimal fault-tolerant routing algorithm for MCRNs. After

an O(logN)-time preprocessing, FTRA takes constant time to execute at each node along

the route.

Example. Suppose we are sending a message from node 0 to node 8 in MCR(22; 1, 7);

see Fig. 6.13(a). The preprocessing phase of FTRA computes the L-shapes of the pseu-

doMDD of MCR(22; 1, 7) and MCR(22; 1, 15) and obtains (12, 2, 2, 1) and (4, 6, 2, 1), re-

spectively, and derives the routing parameter as [1, 1]. Suppose the es link is detected as

a faulty link at node 0. Then FTRA converts the routing parameter to π∗
μ = (0, 1). After

that, it computes PARA(π∗
μ) = { (6, 6), (8, 4), (10, 2), (12, 0) } and obtains cost((6, 6)) =

14, cost((8, 4)) = 10, cost((10, 2)) = 10, cost((12, 0)) = 12. Since point (10, 2) has the

smallest cost, FTRA construct a route from (0, 0) to (10, 2) as follows: (0, 0) → (1, 0) →
(2, 0), followed by using S-Link-First-Algorithm. In other words, the whole path will be

(0, 0), (1, 0), (2, 0), (3, 1), (4, 1), (5, 2), (6, 2), (7, 2), (8, 2), (9, 2), (10, 2).
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Figure 6.13: Optimal fault-tolerant in MCR(22; 1, 7).

Example. Suppose we are sending a message from node 0 to node 8 in MCR(22; 1, 7); see

Fig. 6.13(b). The preprocessing phase of FTRA derives the routing parameter as [1,−2].
Suppose the ew link is detected as a faulty link at node 0. Then FTRA converts the routing

parameter to π∗
μ = (3, 0). After that, it computes PARA(π∗

μ) = { (1, 2), (9, 5), (11, 3), (13, 1) }
and obtains cost((1, 2)) = 3, cost((9, 5)) = 9, cost((11, 3)) = 11, cost((13, 1)) = ∞. Since

point (1, 2) has the smallest cost, FTRA construct a route from (0, 0) to (1, 2) by using

S-Link-First-Algorithm as follows: (0, 0), (1, 1), (0, 1), (1, 2).
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Algorithm 7 Fault-Tolerant-Routing-Algorithm (FTRA)

input: N, s, w, u: source, v: destination.
output: The output link e.

begin preprocessing
1: (2�0, h0, 2p0, n0)← the L-shape of the pseudoMDD of MCR(N ; s, w)
2: (2�1, h1, 2p1, n1)← the L-shape of the pseudoMDD of MCR(N ; s,N − w)
3: if u is odd-numbered then �Consider MCR(N ; s,N − w)

4: w ← N − w mod N
5: end if
6: μ← v − u mod N
7: [ns, nw]← the routing parameter of node μ in the MDD0 of MCR(N ; s, w)
end preprocessing

begin FTRA
8: Call the S-Link-First-Algorithm
9: if e is faulty then
10: if u is odd-numbered then �Consider MCR(N ; s,N − w)

11: w ← N − w mod N
12: nw ← −nw

13: end if
14: μ← v − u (mod N)
15: π∗

μ = (x∗
μ, y

∗
μ)← the point having the routing parameter [ns, nw]

16: if 1 ≤ y∗μ <
⌈
x∗
µ

2

⌉
then

17: route to π∗
μ by using the W-Link-First-Algorithm

18: else
19: λ← u mod 2
20: α← (2�λ,−nλ),β ← (−2pλ, hλ)

21: let z be a point in PARA(π∗
μ) with the smallest cost, where the cost of a

point is defined in (6.3.4), (6.3.5)

22: if e = es, y
∗
μ ≥

⌈
x∗
µ

2

⌉
, x∗

μ ≥ 2 and Δ(π∗
μ) + 2 ≤ Δ(z) then

23: route to π∗
μ by Lemma 6.3.2

24: end if
25: if e = ew, PARA(π∗

μ) =
{
π∗

μ +α+ β
}
and h− n = 1 then

26: route to (r, h + k − 1), defined in Lemma 6.3.6
27: break
28: end if
29: if e = es, PARA(π∗

μ) =
{
π∗

μ +α+ β
}
and �− p = 1 then

30: route to (r, 2�+ k − 1), defined in Lemma 6.3.7
31: break
32: end if
33: route to z by using the route illustrated in Lemmas 6.3.3 and 6.3.4
34: end if
35: else
36: u← u+ e mod N
37: send messages to the node by using e
38: end if
end FTRA
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Chapter 7

Experimental Results

7.1 Experimental Results

Although Theorem 5.3.1 provides a class of optimal MCRNs, to find optimal MCRNs is

extremely difficult to solve analytically for all values of N . In addition, to find MCRNs that

minimize the average distance for all values of N is another difficult problem, where the

average distance of MCR(N ; s, w) is defined by

d(N, s, w) =
1

N2

∑
u,v∈V (G)

d(u, v),

and the optimal average distance D(N) is the smallest average distance among all MCRNs

with N nodes.

Both of the above two discrete problems turn out to be difficult due to the following

reason: neither the diameter nor the average distance between vertices will always increase

with N . The discrete nature of the problem may prevent the statement of the optimal results

in closed form. For example, DMCR(16) = 6 > 5 = DMCR(18) and DMCR(16) = 3.0625 >

3.0555 = DMCR(18); see Table B.1 for more other examples.
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Figure 7.1: An exhaustive computer search shows that 98.88% of optimal MCRNs MCR(N ; s, w) can be
obtained by setting s = 1 when N ≤ 5000.

Nevertheless, we obtain optimal MCRNs by an exhaustive computer search forN ≤ 5000.

Among them we find that 98.88% of optimal MCRNs can be obtained by setting s = 1 (see

Fig. 7.1). Namely, among all pairs (s, w) that minimize the diameter for a given value of N ,

there is one pair (1, w) except for some exceptional values of N . In other words, there is no

additional advantage in letting s be different from 1.

By the experiment result, the first N such that the optimal MCRN cannot be achieved

by setting s = 1 is 30. Let D1
MCR(N) denote the smallest diameter of MCRN with N nodes

and s = 1. When N = 30, the optimal MCRN is achieved by setting s = 3, w = 5 (see

Theorem 5.3.1) and gives

d(30; 3, 5) = DMCR(30) = 7,

while the best solution with s = 1 gives

D1
MCR(30) = 9 (with w = 5).

The first N that is not satisfying Theorem 5.3.1 and the optimal MCRN cannot be

achieved by setting s = 1 is 1320. When N = 1320, the optimal MCRN is achieved by

setting s = 3, w = 95 and gives

d(1320; 3, 95) = DMCR(1320) = 51,

while the best solution with s = 1 gives
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D1
MCR(1320) = 53 (with w = 135).

The optimal MCRNs that are not achieved by setting s = 1 when N ≤ 5000 are shown

in Table 7.1. Moreover, for all values of N ≤ 5000 there are optimal MCRNs that minimize

both the diameter and the average distance between nodes simultaneously; see Table B.1

for N ≤ 256. Note that there are DLNs that minimize either the diameter or the average

distance between nodes, but not both simultaneously; see Table B.1 for examples.

Table 7.1: The optimal MCRNs that are not achieved by setting s = 1 when N ≤ 5000.

N DMCR(N) s w D1
MCR(N) s′ w′

30 7 (by Theorem 5.3.1) 3 5 9 1 5

70 11 (by Theorem 5.3.1) 5 7 13 1 9

126 15 (by Theorem 5.3.1) 7 9 17 1 11

198 19 (by Theorem 5.3.1) 9 11 21 1 17

286 23 (by Theorem 5.3.1) 11 13 25 1 21

390 27 (by Theorem 5.3.1) 13 15 29 1 19

510 31 (by Theorem 5.3.1) 15 17 33 1 29

646 35 (by Theorem 5.3.1) 17 19 37 1 33

798 39 (by Theorem 5.3.1) 19 21 41 1 29

966 43 (by Theorem 5.3.1) 21 23 45 1 41

1150 47 (by Theorem 5.3.1) 23 25 49 1 39

1320 51 50 3 95 53 135

1350 51 (by Theorem 5.3.1) 25 27 53 1 49

1566 55 (by Theorem 5.3.1) 27 29 57 1 53

1798 59 (by Theorem 5.3.1) 29 31 61 1 57

2046 63 (by Theorem 5.3.1) 31 33 65 1 61

2250 67 66 3 65 69 57

2280 67 67 3 625 69 309

2310 67 (by Theorem 5.3.1) 33 35 69 1 57

2590 71 (by Theorem 5.3.1) 35 37 73 1 69

2886 75 (by Theorem 5.3.1) 37 39 77 1 73

3198 79 (by Theorem 5.3.1) 39 41 81 1 77

3526 83 (by Theorem 5.3.1) 41 43 85 1 81

3870 87 (by Theorem 5.3.1) 43 45 89 1 71

4230 91 (by Theorem 5.3.1) 45 47 93 1 89

4606 95 (by Theorem 5.3.1) 47 49 97 1 83

4914 99 98 3 581 101 87

4998 99 (by Theorem 5.3.1) 49 51 101 1 97
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7.2 Performance Evaluation

In this section, we compare the MCRNs with DLNs in terms of performance parameters

including the network diameter and the average distance. For the network diameter part,

although the MCRN can achieve a better diameter than the DLN (see equations (1.4.1),

(1.4.4) and (1.4.5)), however, the exact values of the diameter of the optimal MCRNs and

the optimal DLNs are not known so far for every N . Thus, it is interesting to compare the

minimum diameter as well as the minimum average distance between MCRNs and DLNs

with the same number of nodes. Fig. 7.2 shows a comparison of the minimum diameter

between MCRNs and DLNs. It is clear to see that the minimum diameter of the MCRN

is always smaller than that of the DLN, and the gap between these two values increases

markedly when number of nodes increases. This tells that the MCRN performs a better

performance than the DLN in worst case of the transmission delay.
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Figure 7.2: Comparing the minimum diameter between MCRNs and DLNs.
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Figure 7.3: Comparing the minimum average distance between MCRNs and DLNs.

For the average distance part, Fig. 7.3 shows a comparison of the minimum average

distance between MCRNs and DLNs. In this case, the minimum average distance of the

MCRN is also smaller than that of the DLN, but the gap between these two values increases

in a slow fashion when number of nodes increases. We can conclude that the MCRN performs

a slightly better performance than the DLN in average case of the transmission delay.
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Chapter 8

Conclusions

In this chapter, we present a summary of this thesis, and we discuss some directions for

further research.

8.1 Summary of This Research

The double-loop network has been extensively studied in many aspects such as the minimum

distance diagram, the diameter and the routing. Efficient algorithms exist for distance-

related problems of the double-loop network. However, compared with the double-loop net-

work, neither diameter-computing algorithms nor routing algorithms for the mixed chordal

ring network have been addressed in the literature. In this thesis, our research goal is to

improve the knowledge of the mixed chordal ring networks and is focused on solving the

distance-related problems of the mixed chordal ring network: The minimum distance dia-

gram problem, the diameter problem and the shortest path routing problem.

We first study and investigate the minimum distance diagram of the mixed chordal ring

network. Specifically, we find that the minimum distance diagram of a mixed chordal ring

network can be obtained easily by reassembling the pseudoMDD in a particular way. The
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tool we developed can be used to study other distance-related problems.

For the diameter-related problem, we proposed an efficient algorithm to compute the

diameter of a given mixed chordal ring network. For the optimization problem of finding

the optimal mixed chordal ring network, we improve previous bounds on this problem and

successfully obtain a class of optimal mixed chordal ring networks. By using the presented

diameter-computing algorithm, an exhaustive computer search suggests that most of the

optimal mixed chordal ring networks can be achieved by setting the ring-parameter to be 1.

For the routing problem, two node-to-node routing algorithms are presented for flexible

applications: shortest-path-based routing algorithm and dynamic routing algorithm. Both

routing algorithms do not use routing tables and always use a shortest path to route. The

shortest-path-based routing algorithm takes O(logN)-time for the source node and takes

constant time for the other nodes in the routing path. In the dynamic routing algorithm,

after an O(logN)-time to determine the network parameters, each node (including the source

node) takes constant time to determine the next node on the routing path to which the

message should be sent.

In addition, we also present an optimal fault-tolerant routing algorithm for MCRNs

in the presence of up to one node or link failure. The fault-tolerant algorithm presented

do not require routing tables and requires very little computational overhead. After an

O(logN)-time preprocessing, the algorithm can route messages to the destination node

using a constant time at each node along the route. The fault-tolerant routing algorithm

presented is guaranteed to find an optimal route after a faulty element is detected.

We believe that these results will benefit further researches on mixed chordal ring net-

works. In the following, a comparison between the double-loop network with the mixed

chordal ring network is shown in Table 8.1. In the next section, we discuss some directions

for further research on MCRNs.

92



CHAPTER 8. CONCLUSIONS 8.1. SUMMARY OF THIS RESEARCH

T
a
b
le

8
.1
:
C
o
m
p
a
ri
n
g
th
e
d
o
u
b
le
-l
o
o
p
n
et
w
o
rk

w
it
h
th
e
m
ix
ed

ch
o
rd
a
l
ri
n
g
n
et
w
o
rk
.

d
ou

b
le
-l
o
op

n
et
w
or
k

m
ix
ed

ch
or
d
al

ri
n
g
n
et
w
or
k

re
st
ri
ct
io
n
on

or
d
er

a
p
os
it
iv
e
in
te
ge
r

an
ev
en

p
os
it
iv
e
in
te
ge
r

d
eg
re
e

in
-d
eg
re
e:

2,
ou

t-
d
eg
re
e:

2
in
-d
eg
re
e:

2,
ou

t-
d
eg
re
e:

2

co
n
n
ec
ti
v
it
y

st
ro
n
gl
y
2-
co
n
n
ec
te
d

[6
0
]

st
ro
n
gl
y
2-
co
n
n
ec
te
d
(t
h
is
th
es
is
)

op
ti
m
al

d
ia
m
et
er

(l
ow

er
b
ou

n
d
)

D
D
L
(N

)
≥
�√

3N
	−

2
[6
4
]

D
M

C
R
(N

)
≥
�√

2N
−

3/
2	

(t
h
is

th
es
is
)

op
ti
m
al

d
ia
m
et
er

(u
p
p
er

b
ou

n
d
)

D
D
L
(N

)≤
√ 3

N
+
(3
N
)1

/
4
+

5 2
fo
r
N
≥

12
00

[5
7
]

D
M

C
R
(N

)
≤

2
�√ N

/2
	+

1
(t
h
is

th
es
is
)

op
ti
m
al

n
et
w
or
k
s

m
an

y
cl
as
se
s
[1
0
,
14

,
15
,
16

,
32

,
59

]
a
cl
as
s
(t
h
is
th
es
is
)

co
m
p
u
ti
n
g
d
ia
m
et
er

O
(l
og

N
)-
ti
m
e

[2
1
]

O
(l
og

N
)-
ti
m
e

(t
h
is

th
es
is
)

op
ti
m
al

ro
u
ti
n
g

O
(l
og

N
)-
ti
m
e

[2
,
36

]
O
(l
og

N
)-
ti
m
e

(t
h
is

th
es
is
)

op
ti
m
al

fa
u
lt
-t
ol
er
an

t
ro
u
ti
n
g

O
(l
og

N
)-
ti
m
e
[2
3
,
49

]
O
(l
og

N
)-
ti
m
e

(t
h
is

th
es
is
)

93



CHAPTER 8. CONCLUSIONS 8.2. DIRECTIONS FOR FUTURE RESEARCH

8.2 Directions for Future Research

One of the most important and fundamental optimization problems in designing intercon-

nection networks is, for a given number of nodes N , how to find an optimal network with

the smallest diameter and to give the construction of such a network. For the double-loop

network, determining the exact value of DDL(N) is a hard problem and even determining

DDL(N) = mins2{dDL(N ; 1, s2)}, where dDL(N ; 1, s2) is the diameter of DL(N ; 1, s2), is a

hard problem, too; see [9] for more detail. By (1.4.1), (1.4.2) and (1.4.3), the gap between

the upper and the lower bounds on DDL(N) increases by a factor of (3N)1/4 and it seems

that there is no closed form for DDL(N). However, for the mixed chordal ring network, we

have successfully narrowed the gap between the upper and the lower bounds on DMCR(N)

as 2
⌈√

N/2
⌉
+1 and

⌈√
2N − 3/2

⌉
. It has a great probability to determine DMCR(N) and

therefore solve this optimization problem in the near future.

Another research perspective may take into the weighted version of the mixed chordal

ring network for consideration. Related research results on the weighted double-loop network

can be found in the literature. For example, the diameter computation in [21]; bounds on the

minmum diameter and average distance in [57]; optimal fault-tolerant routing in [49]. Thus

it is interesting to know whether the proposed results on mixed chordal ring networks in this

thesis, including the minimum distance diagram construction, the diameter computation,

and the node-to-node routing, can be easily translated into the weighted version.

From the graph theoretical viewpoint, we are also interested in the isomorphism prob-

lem. A large number of papers are devoted to the isomorphism problem for circulant graphs

[1, 5, 29, 51, 52]. In addition, Barrière gave a polynomial-time algorithm to decide isomor-

phism between two chordal rings. The necessary and sufficient condition for two double-

loop networks to be strongly isomorphic is characterized in [41]. Moreover, Hwang and

Wright [41] studied the reliability of some double-loop networks by considering the non-
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strongly isomorphic networks. Thus, given two mixed chordal ring networks with the same

number of nodes, it is interesting to check whether or not these two networks are strongly

isomorphic. For example, when N = 20, the nonstrongly isomorphic mixed chordal ring

networks are MCR(20; 1, 3), MCR(20; 1, 5), MCR(20; 1, 7), MCR(20; 1, 9), MCR(20; 5, 1).

Theorem 2.3.4 provides a sufficient condition for two mixed chordal ring networks to be

strongly isomorphic. However, this result does not cover all networks with the same number

of nodes. Thus, determining the necessary and sufficient condition for two mixed chordal

ring network to be strongly connected is another challenging direction for further research.

Moreover, if the necessary and sufficient condition is not easy to obtain, then we search for

an efficient algorithm to determine the isomorphism between mixed chordal ring networks.

Other research direction may take into the collective communication for consideration.

The most important among these are one-to-all broadcasting (a source node sending a

message to every other node), all-to-all broadcasting, all-to-all personalized exchange (every

node sending a unique message to each of the other nodes), and a number of permutation

routing patterns whereby each of the N nodes sends a message to a distinct node (so that

N messages initially at their respective source nodes are permuted, each ending up at its

destination node). Obradovic et. al. [53] studied the one-to-all broadcasting problem on

the undirected double-loop networks UDL(N ;±a,±b) and gave the construction of optimal

broadcast trees for i-port undirected double-loop networks. Hwang [40] showed that double-

loop networks have parallel processing capability by giving the first permutation routing

algorithm, and the number of routing steps required is equal to the diameter of the network,

which is the best bound one can get. In our opinion, analyzing the collective communication

problem on mixed chordal ring networks seems to be an interesting and challenging direction

for further research.
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Appendix A

Cheng-Hwang-Algorithm

Input: N, s1, s2.

Output: The L-shape (�, h, p, n) of DL(N ; s1, s2).

Step 1. Let d = gcd(N, s1), d′ = gcd(N, s2), N ′ = N/d, s′1 = s1/d, and s′2 = s2 (mod N ′).

Let t−1 = N ′. Let t0 be the integer with

s′1t0 + s′2 ≡ 0 (mod N ′), 0 ≤ t0 < N ′.

Define qi, ti, recursively (by the Euclidean algorithm) as follows:

t−1 = q1t0 + t1, 0 ≤ t1 < t0

t0 = q2t1 + t2, 0 ≤ t2 < t1

t1 = q3t2 + t3, 0 ≤ t3 < t2

· · ·
tk−2 = qktk−1 + tk, 0 ≤ tk < tk−1

tk−1 = qk+1tk, 0 = tk+1 < tk.
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Step 2. Define integers Ui by U−1 = 0, U0 = 1, and

Ui+1 = qi+1Ui + Ui−1, i = 0, 1, · · · , k.

By induction,

tiUi+1 + ti+1Ui = N ′, i = 0, 1, · · · , k.

Regard t−1/U−1 = ∞ > x for real number x. Since {ti}k+1
i=−1 and {Ui}k+1

i=−1 are

strictly decreasing and increasing, respectively, we have

0 =
tk+1

Uk+1
<

tk
Uk

< · · · < t0
U0

<
t−1

U−1
=∞.

Step 3. Let u be the largest odd integer such that d < tu/Uu. Define

v =

⌈
tu − dUu

tu+1 + dUu+1

⌉
− 1.

return

� = tu − vtu+1,

h = d(Uu + (v + 1)Uu+1),

p = tu − (v + 1)tu+1,

n = d(Uu + vUu+1).

end Cheng-Hwang-Algorithm
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Appendix B

Optimal Mixed Chordal Ring

Networks and Double-Loop Networks

Table B.1: Optimal MCRNs and DLNs for N = 6, 8, . . . , 256.

N DMCR(N) DMCR(N) s w DDL(N) DDL(N) a b

6 3 1.5 1 3 3 1.5 1 2

8 3 1.75 1 3 3 1.75 1 3

10 4 2.1 1 3 4 2.1 1 3

12 5 2.416666667 1 3 5 2.5 1 3

14 5 2.714285714 1 3 5 2.642857143 1 4

16 6 3.0625 1 3 5 2.875 1 7

18 5 3.055555556 1 5 6 3.166666667 1 4

20 7 3.45 1 5 7 3.5 1 4

22 7 3.545454545 1 5 7 3.590909091 1 5

24 7 3.75 1 5 7 3.75 1 10

26 7 3.961538462 1 7 7 3.961538462 1 8

28 7 4.107142857 1 5 8 4.214285714 1 5

30 7 4.233333333 3 5 8 4.3 1 9

32 7 4.375 1 7 9 4.5625 1 6

34 8 4.558823529 1 13 9 4.676470588 1 10

36 9 4.75 1 15 9 4.833333333 1 11

38 9 4.921052632 1 7 9 5.026315789 1 9
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N DMCR(N) DMCR(N) s w DDL(N) DDL(N) a b

40 9 5.075 1 7 9 5.1 1 12

42 9 5.238095238 1 9 10 5.357142857 1 10

44 10 5.431818182 1 13 10 5.409090909 1 13

46 9 5.47826087 1 7 11 5.630434783 1 18

48 11 5.729166667 1 21 11 5.75 1 11

50 9 5.7 1 9 11 5.9 1 15

52 11 5.980769231 1 7 11 5.961538462 1 12

54 11 6 1 15 11 6.166666667 1 16

56 11 6.196428571 1 21 11 6.214285714 1 13

58 11 6.275862069 1 9 12 6.431034483 1 11

60 11 6.4 1 9 12 6.5 1 14

62 11 6.532258065 1 11 13 6.693548387 1 14

64 11 6.640625 1 19 13 6.8125 1 12

66 11 6.742424242 1 25 13 6.863636364 1 15

68 11 6.838235294 1 9 13 7.029411765 1 13

70 11 6.928571429 5 7 13 7.071428571 1 16

72 11 7.027777778 1 11 13 7.277777778 1 20

14 7.25 1 22

74 12 7.148648649 1 31 13 7.310810811 1 14

76 13 7.276315789 1 21 14 7.552631579 1 21

78 13 7.397435897 1 17 14 7.576923077 1 18

80 13 7.5125 1 35 14 7.625 1 15

82 13 7.62195122 1 11 15 7.792682927 1 23

84 13 7.726190476 1 11 15 7.928571429 1 16

86 13 7.837209302 1 13 15 7.965116279 1 16

88 14 7.965909091 1 19 15 8.113636364 1 14

90 13 8.022222222 1 33 15 8.166666667 1 17

92 15 8.184782609 1 21 15 8.369565217 1 21

16 8.326086957 1 17

94 13 8.191489362 1 11 15 8.393617021 1 15

96 15 8.385416667 1 21 15 8.4375 1 18

98 13 8.357142857 1 13 16 8.642857143 1 27

100 15 8.57 1 45 16 8.7 1 16

102 15 8.568627451 1 39 16 8.735294118 1 19

104 15 8.740384615 1 11 17 8.884615385 1 29

106 15 8.773584906 1 19 17 9.009433962 1 20
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N DMCR(N) DMCR(N) s w DDL(N) DDL(N) a b

108 15 8.898148148 1 45 17 9.055555556 1 17

110 15 8.963636364 1 13 17 9.227272727 1 24

112 15 9.053571429 1 13 17 9.25 1 21

114 15 9.149122807 1 15 17 9.289473684 1 18

116 15 9.232758621 1 25 17 9.465517241 1 16

18 9.431034483 1 45

118 15 9.313559322 1 27 17 9.516949153 1 22

120 15 9.391666667 1 33 17 9.55 1 19

122 15 9.467213115 1 51 19 9.795081967 1 19

124 15 9.540322581 1 13 18 9.790322581 1 17

126 15 9.611111111 7 9 18 9.833333333 1 20

128 15 9.6875 1 15 19 9.96875 1 20

130 16 9.776923077 1 57 19 10.11538462 1 18

132 17 9.871212121 1 39 19 10.13636364 1 18

134 17 9.962686567 1 29 19 10.17164179 1 21

136 17 10.05147059 1 31 19 10.32352941 1 32

138 17 10.13768116 1 21 19 10.36956522 1 19

140 17 10.22142857 1 63 19 10.4 1 22

142 17 10.3028169 1 15 20 10.52816901 1 31

144 17 10.38194444 1 15 19 10.61111111 1 56

146 17 10.46575342 1 17 19 10.65068493 1 20

148 18 10.56081081 1 41 20 10.85135135 1 18

150 17 10.61333333 1 55 20 10.9 1 63

152 19 10.73026316 1 27 20 10.92105263 1 24

154 17 10.75324675 1 47 20 10.95454545 1 21

156 19 10.89102564 1 29 21 11.07692308 1 34

158 17 10.88607595 1 15 21 11.20886076 1 19

160 19 11.04375 1 43 21 11.25 1 22

162 17 11.01851852 1 17 21 11.27777778 1 22

164 19 11.18902439 1 25 21 11.57317073 1 44

22 11.51219512 1 26

166 19 11.18072289 1 49 21 11.46385542 1 20

168 19 11.32738095 1 77 21 11.5 1 23

170 19 11.34117647 1 65 21 11.67647059 1 66

22 11.61764706 1 23

172 19 11.45930233 1 15 21 11.72093023 1 27
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N DMCR(N) DMCR(N) s w DDL(N) DDL(N) a b

174 19 11.49425287 1 23 21 11.74137931 1 21

176 19 11.58522727 1 77 21 11.77272727 1 24

178 19 11.64044944 1 17 22 11.98314607 1 28

23 11.97191011 1 24

180 19 11.71111111 1 17 22 12 1 39

182 19 11.78571429 1 19 22 12.03846154 1 22

184 19 11.85326087 1 51 22 12.06521739 1 25

186 19 11.91935484 1 33 23 12.17741935 1 82

188 19 11.98404255 1 35 23 12.43617021 1 36

24 12.37234043 1 41

190 19 12.04736842 1 41 23 12.34210526 1 26

192 19 12.109375 1 69 23 12.375 1 23

194 19 12.17010309 1 85 23 12.53092784 1 21

196 19 12.22959184 1 17 23 12.57142857 1 35

198 19 12.28787879 9 11 23 12.59090909 1 27

200 19 12.35 1 19 23 12.62 1 24

202 20 12.42079208 1 91 23 12.80693069 1 36

24 12.72772277 1 60

204 21 12.49509804 1 75 23 12.82352941 1 22

206 21 12.56796117 1 47 23 12.8592233 1 28

208 21 12.63942308 1 37 23 12.88461538 1 25

210 21 12.70952381 1 39 24 13.07142857 1 40

212 21 12.77830189 1 57 25 13.09433962 1 38

214 21 12.84579439 1 25 24 13.13551402 1 23

216 21 12.91203704 1 99 24 13.16666667 1 26

218 21 12.97706422 1 19 25 13.2706422 1 26

220 21 13.04090909 1 19 25 13.40909091 1 30

222 21 13.10810811 1 21 25 13.44594595 1 24

224 22 13.18303571 1 51 25 13.46428571 1 24

226 21 13.2300885 1 69 25 13.49115044 1 27

228 23 13.32017544 1 87 25 13.65789474 1 31

230 21 13.34782609 1 95 25 13.67391304 1 41

232 23 13.45258621 1 35 25 13.70689655 1 25

234 21 13.46153846 1 69 25 13.73076923 1 28

236 23 13.58050847 1 37 25 13.89830508 1 23
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26 13.83050847 1 66

238 21 13.57142857 1 19 26 14.14705882 1 36

27 14.00420168 1 38

240 23 13.70416667 1 93 25 13.95833333 1 71

242 21 13.68181818 1 21 25 13.98760331 1 26

244 23 13.82377049 1 57 26 14.20491803 1 33

27 14.1557377 1 29

246 23 13.81300813 1 75 26 14.20731707 1 24

27 14.18292683 1 44

248 23 13.93951613 1 29 26 14.24193548 1 92

250 23 13.944 1 105 26 14.26 1 30

252 23 14.0515873 1 117 26 14.28571429 1 27

254 23 14.07086614 1 75 27 14.38188976 1 71

256 23 14.16015625 1 19 27 14.53125 1 25
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