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Abstract

This study investigates ‘the problem of “pricing. perpetual American
strangle option under a hyper-exponential jump-diffusion model. By
using the free boundary problem approach, we solve the corresponding
optimal stopping  problem—and determine the. rational price of the
perpetual American strangle options. In particular, we prove the existence
of solutions to_the free boundary problems with the smooth pasting
conditions.
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1 Introduction

An American option is an option allowing the buyer exercises at any time prior to the
maturity. In particular, the American option with the infinite time horizon is called the
perpetual American option. For an American call option with a finite expiration time,
Merton[16] observed that the price of the American option(written on an underlying
stock without dividends) coincides with the price of the corresponding European option.
However, the American put option(even without dividends) presents a difficult problem.
There are no explicit pricing formulas and the optimal exercise boundaries are also not
known. But within the Black-Scholes model, McKean[15] solved the problem of pricing the
perpetual American put option. In addtion, in the Lévy-based models, Boyarchenko and
Levendorskii[6] derived the closed formula forprices 6f perpetual American put and call
options by the theory of pseudo-differential operators:Using the probabilistic techniques,
Mordecki and Salminen[17}obtained explicit formulas under the assumption of mixed-
exponentially distributedrand arbitrary negative jumps for the eall options, and negative
mixed-exponentially distributed and arbitrary positive jumps for put options. For related
works, see Asmussen ¢t al.[2] and the references thérein.
Mathematically, a rational price of the perpetual American instrument is

V(z)= " By (e 9(X5)) (1)

where r > 0 represents thé rate of the discounted factor; g > 0 is the reward function
corresponding to the contract and 7 is the family of the stopping times. Therefore, to
find the price of the perpetual American instruments is equivalent to solve the optimal
stopping problem: to find the value function V'(z) and the optimal stopping time 7*, that
is, V(x) = E, [e_”* g(XT*)]. It is well-known that under some suit conditions, the value

function is a solution to the free boundary(Stephan) problem

(2)

{(gx — )V (z) =0 in C
V(z) =g(x) on D

where C = {x € R,V (z) > g(z)} (the continuation region) , D = {x € R,V (z) = g(z)}
(the stopping region) and Ly is the infinitesimal operator of X. Also, the stopping time
mp = inf{t > 0|X; € D} is an optimal stopping time. For more details and related



topics about optimal stopping and free boundary problem, we refer to the monograph
of Peskir and Shiryaev[19]. Many authors in the literature suggested that the boundary
of the stopping region D is determined by imposing the smooth pasting fit for the value
function. Therefore, to solve the optimal stopping problem (1), it suffieces to solve the
above free boundary problem with suitable pasting conditions.

Note that the investigations mentioned as above are American call or put types.
The corresponding reward functions are one-sided, that means the support of ¢ is either
{r € Rlx > K} or {z € Rlz < K} for some K € R. It is proved that the correspond-
ing continuation region is a half line in both cases. For example, see Boyarchenko and
Levendorskii[6], McKean[15] and Mordecki[18]. In this study, we consider the pricing
problem for the perpetual American strangle(straddle) options whose reward function is
a combination of the reward functions of the-ecall and put, options. Therefore, the corre-
sponding g is of the two-sided forni; that is, the support of.gis{ly, l5] for some [; and Iy € R.
Boyarchenko[4] conjectured thatythe-corresponding value function shall be the solution
the free boundary problem (2) and-the continuation region € issa finite interval whose
two boundaries both satisfy the smooth pasting condition. Under the hyper-exponential

jump-diffusion Lévy processes, they derived the solution to the

{(/:X — V(@) =0 in (B, 7o) )

Vi(z) =g(x) on (hy, hy)e

by the Wiener-Hopf decomposition for fixed hy and hy.«Also, under suitable parameters,
the boundaries hy and hy, required tossatisfy-the smooth pasting conditions, are obtained
by the approximation of the Brownian ‘moetion." In this investigation, we prove the opti-
mality and the existence problems posed in Boyarchenko[4]. Inspired by Chen et al.[9],
we obtain alternative representation of the solution to Egs.(3) by the ODE approach.
For details, see Chang et al.[7]. Using the representation, we prove the conjecture in
Boyarchenko[4] and the existence of the solution to Egs.(3) with embedding the smooth
pasting condition. Moreover, we improve the algorithm in Boyarchenko[4] for computing
the value function and the continuation region.

The rest of the paper is organized as follows. Section 2 describes the hyper-
exponential jump-diffusion Lévy processes that are considered herein. Also, we derive

the solution to Egs.(3) for fixed (hq, hy) by direct calculation, not the Wiener-Hopf de-



composition. In fact, the associated integro-differential equation in Egs.(3) is transformed
into a homogeneous ODE of higher order. Theorem 2.6 shows that this ODE is solved in

closed form and its solution equals the first passage functional
O(z) = E, [e7 g(Xr,.)] (4)

where I = (hy, h) and 77c = inf{t > 0|X; € [°} is the firs exit time from /. In Sec-
tion 3, we provide the verification theorems for the optimal stopping problems (1) with a
general two-sided reward function. In Section 4, we consider the problem of pricing the
perpetual American strangle options when the log-price following the hyper-exponential
jump-diffusion processes. We verify that for the reward function g of the perpetual Amer-
ican strangle options, ®(x) is the value function when both the boundary points of [
satisfy the smooth pasting conditions.~The existence of‘such interval is proved in Sec-
tion 5. Also, alternative algorithm for solving the wvalue function and the continuation
region is given herein.(For the Wiener-Hopf approach, see Boyarchenko[4].) Section 6
presents some numericaliresults of-the-perpetual American strangle options and Section

7 concludes this paper:

2 Preliminaries

Throughout this paper, on.a probability space (€, F,P), we assume that X is the hyper-

exponential jump-diffusion Tévy process, that is,

Ny
Xy =ct¥oBi+Y Y, (5)

n=1

where ¢ € R, 0 > 0, B = (B;,t > 0) is a standard Brownian motion, (Nt > 0) is a
Poisson process with rate A > 0. Also, Y = (Y,,,n > 0) is a sequence of independent

random variables with the identical density function
N+ N N-
F@) = pnfe ™ Lasoy + Y qi(—n; )e " “Lipcoy (6)
j=1 j=1

where 7y < ... < ny. <0<y < ..<ny., pi’s and ¢;’s are positive with Ej\:l p; +
Z;V:_l g¢; = 1. Assume further that B, N; and Y are independent. The jump-diffusion



process starting from x is simply defined as = + X; for t > 0 and we denote its law by
P,. For convenience, we shall write P in place of Py. Also E, denotes the expectation
with respect to the probability measure P,. Under these model assumptions, we have
E(e*Xt) = e(2) » € iR, where v is called the characteristic exponent 1) of X and is given

by the formula

P(z) = %0222 +cez+ A (Z
i=1

Also the infinitesimal generator Lx of X has a domain containing CZ(R) and for h €

Ci(R),

pﬂ]z +Z Qﬂij ) Y (7)

'

L&M@:%ﬁﬁhﬂ+m&@+A/h@+wﬂmw—AM@. (8)

We define Lxh(z) pointwisély by the expression (8) for all functions h on R such that 7/,
h" and the integral in (8)iexist at -

Consider the continuous reward function ¢ given hy the formula

9(z) =gu(@) L o<ty #92(@) L1250, (9)

for some —oo < l; < ly < o0. Heré g, (@) 1s'a strictly positive C®function on (—oo, ;) and
go(x) is a strictly positive Cfunction on (ly, 00). 'We assume further that g, is continuous
at Iy with g1(l1) = 0, g, is‘ontinuous at l» with go(l») = 0and E, [sup,»oe"g(X;)] < oo
for all z € R. Finally, we denote 7g-=.inf{t > 0| X3¢ B} as the first exit time form the
Borel set B.

Proposition 2.1. Assume that g, is bounded on (—oo,ly) and the function fooo go(z +
y)f(y)dy,z >y, is locally bounded. Consider the interval I = (hy, hy) for some —oo <
hi <l <ly < hy <o00. If 5(9&) s a solution of the boundary value problem:

{(ﬁx—ra)(l’)zo, rxel (10)

O(z) = g(z), z el

and ® is in C%(hy, hy) N Clhy, hy), then ®(z) = ®(z) for all z € R where ®(z) is denoted
by Eq.(4).



Proof. We follow similar arguments as that in Chen et al.[9]. Fix z € (hy, hg). Pick a
sequence of functions {®,} in C3(R) such that ®, = don (hi+2,hy—1) and ®, — P as..

Since g1 is bounded, we can choose {®,,} such that {®,,} are uniformly bounded on (—oo, d]
for any ¢ € R, and &%(y) < 2go(y) for all n and all y > M. Here M > hy is a strictly
positive constant(independent of n). Consider any € > 0 such that z € I, = (h1+€, ha—e¢).

Let n be large enough such that % < €. By Dynkin’s formula, we have
- t/\TIEC - .
E, e—“t”fs)cpn(xwt)} = { / e (Ly — r)@n(Xu_)du] +®(z). (11
0
For every u <t A 77c, we have X,, € I, and hence 5n(Xu) = &)(Xu) This gives

(Lx = 1)®(X,) = (Lx = 1)@, (X / B+ )~ Bu(Xu+9)| f)dy  (12)
and hence

(Lx —7)[RX ) — S (X))l

< sup [|&>(z)| + I&/)n(z)@ <+~ sup /OO 3¢2(> + ) f(y)dy

2<M+|h1|+|ha| h1<z<ha J M+|hy|
< oo (.by assumptions ) . (13)

Also, by the dominatéd convergence theorem and Eqi(12), for all v < t A 77, (Lx —

P, (X,) = (Lx — r)B(Xuhas n< oo, By Bqr(11) and the*dominated convergence

theorem, we have

n—oo

t/\TIC6 4 t/\‘rIC6 .
lim E, {/ e ™(Lx — r)@n(Xu)du] =E, {/ e " Lx —1r)P(Xy)du| .
0 0

Note that |®,(z)| < sup,, sup, « D, (2 +2¢(z) and E, |[sup;~qe "g(X;)| < co. Letting
n 2<M t>0

n — oo for both sides of Eq.(11) together with the dominated convergence theorem gives

E, [e—rw@( erzAt)] —E, [ /0 e e (Lx — r)EIVD(Xu)du] +®(x)=d(z).  (14)

Note that the last equality follows from the assumption that (Lx —r)® = 0 in (hy, ha).
Observe that

E. {sup e_TtEIVD(Xt)] < sup EIs(y) +E, {sup e_Ttg(Xt)] < 00.

120 y<ha t>0



By letting ¢ — oo in both sides of the equality in Eq.(14) and the dominated
convergence theorem, we obtain ®(z) = E, [e‘”fce&)(XTIc )] Note that for any fixed
w € Q, either Xre (W) = X7 e(w) as € = 0 or Xre (w) = X7 c(w) for all sufficiently small

€. Since E)(x) is continuous, by the dominated convergence theorem, we obtain
b(z) = limE, [e*’“m@(xﬁe)} —E, Eii% e*”ze@(xi)] —E, [e—’"fz@(XTIc)]
=E, [e_’"”g(XTIc)}
Therefore, the proof is complete. O]

Remark 2.2. The conclusion of Proposition 2.1 still holds for the general jump-diffusion
processes as well as the functions g1 and go are C™ (not necessary strictly positive) satis-

fying the conditions in Proposition 2. 1. O

Note that ¢ given by Eq.(7) is an analytic function.on'C except at a finite number
of poles. Also, the equation ¢(z) =r=-10 yields N+ N= + 2. distinct real zeros. (If r = 0,
¢c#0or Nt + N~ > Ouis further assumed.) Set N = N+ NTand let 51, 8o, -+, Oyaiz

be the distinct real zeros of the equation ¥ (z) —17=.0.

" = .
Let Po(2) = TGy — =) Tl )¢ Now, Pifz) = Po(2)(U(2) —7) is a
polynomial whose zeros coincideswith these of #(z) = r. Denote'by D the differential

operator such that its characteristic polynomialiis P (2).

Proposition 2.3. Supposed selution d defined on R tosthe boundary value problem (10)
exists. Then, on (hy, hs), O is‘infinitelydifferentiable’and Satisfies the ODE,

D® =0, on (hy, hs). (15)
Hence, on (hy, hs), é(x) = 25:12 C,e’* for some constants C,,.

Proof. This proposition is proved by direct computation. Plugging the density function
f, given by Eq.(6), into Eq.(8), yields the generator £ that acts on P:

~ 2 » Nt 0o
L) = T8'(a) +cP'(2) + A (ijn;e"f ’ / B(y)e " vy
j=1 z
N- ) z ) N
+Z%(—77j)€”jw/ D(y)e ydy) — A®(z).
j=1 —o0

6



From this equation and the fact that ¢ > 0 and (£ — T)EIVD =0, ®is infinitely
differentiable on (hq, hy), as can be established by induction, as in the work of Chen et
al.[9].

Next, ® will be shown to satisfy an ODE. Consider the differentiation rule,

d +o o~ ot
(nj - @> pin; € /x D(y)e ™ Vdy

=iy [— (Wf ¢ / B(y)e ™ vy — 5(%)) el / B(y)e ydy]
= pﬂ?f‘b(a?)?

and similarly, (n; — 4 qj(—nj_)e";x [ D(y)e " Vdy = anj_é(x). Since ® is infinitely
differentiable on (hy, hy) and (£ —1r)® = 0 on (hy, hs),

0= [T - D) Hlon =150 D Feb <yt r)a(0) + (16)
NT . N7 | Nt erl:_ N~ q]'r}j_ _
N () § (=T LS N (P 17

Hence, Eq.(17) transforms the integro-differential equation (£ — r)® = 0 into an ODE:
DO = 0, where Dis a high order differential operator.

To complete the proof, D thust'be shown to coincide with' Ds (See the definition of
D in the paragraph above Proposition 2.3.) Toshow that the characteristic polynomials
of D and D coincide will suffice."Write 75(7:) as the characteristic polynomial of D. Then,
by Eq.(17), P is given by

Nt N- Nt + N-

~ _ 1 p;in; q;n;
P(z) = H(n;“ — ) H(nj — ) 50%2 +er—(A+71)+ A +]_] + Z _j_J )
j=1 j=1 =Tt m s T

= Po(2)(¢(2) = 7).

This equation reveals that the characteristic polynomial P;(z) of D equals that, 73(,2), of
D. The proof is complete. O

Proposition 2.4. Suppose that ® is a solution to the boundary value problem (10) and,
on (hi, hs), ®(z) = Zgjlz CpePn® for some constants C,. Then the constant vector C

satisfies the equation
AC =V, (18)

7



where

1 ehhi . eBNt2hi
B1— 771 3N+2 711
eﬁlhl o 1 oBnyam
B1 —77N_ BNt2—my_
eﬁ1h2 e —+eﬂN+2h2
A= B1— 771 BN 2] (19)
6’81h2 e 1 oBniohe
Br— nN+ ﬂN+2—"lj\_,+
ebihi . eBn2h
ebih2 .. eBN+2h2

and V; is a column vector whose components Vy(n) are given by the formula
Jh gy)em iy, ifl<n<N-
‘/'g(n): & " i _+1SNSN (20)

Proof. Since (£ —r)® =

0= r)®(x)
B ) f(y)dy. (21)
Furthermore,
/‘5(56 +y)f(y)dy : Oz +y) fy)dy
ha ~ : N
= ane"J / j)e e p; € g(y)n e Vdy
o = ha
N+2 B N+2 N+ hy—a .
+ Z C, e Z g —n; / Pl o=n; Ydy + Z C, P ijnj—j— / ePnY o=m; Ydy
te [T g Y - R
= pre K z/ gly)fe vy + ) gze” x/ g(y)(=nj e vdy
=1 ha = o
N+2 .
+ C.,ePn® 9y (1 _ e(ﬂn—nj_)(hl—z))
Z le B — n;
N+2

+ Z C, efnt Z Bpﬂ?g (ewn—n;*)(fzz_x) B 1) (22)



Now, by Eq.(21) and Eq.(22) as well as the fact ¢(8,) —r = 0 for all n, we have

N+t 0o N— hy
— +x _nt Tax — —n.
0=2 me™ / e vy + ) qze" / 9(y)(=n; )™ Vdy
j=1 ha =1 —00
N+-2 — N+2 +
J

N- NTt

iz U n—1. —n;x U L —n T

+ g qje’s E C"B _377-_ Pl 4 E pje " E Cn—ﬁ o elfn=ni e,
j=1 n=1 n J j=1 n=1 n J

Comparing e and e yields Eq.(18). The proof is complete. m
Lemma 2.5. For any hy < hy, the matriz A given by Eq.(19) is invertible.

Proof. assume AC = 0 for some vector C' = [C,Cy, -+ ,Cnyo]?. Consider the function
V(z) = SN2 e for € (hy, hy)gand V(&) =0 otherwise. Since AC' = 0 and V(z)
is a solution to the boundary value problem (10)-with g(xz) = 0. From the uniqueness

of solutions to the boundaryawalte problem (10), Vi) = Y o2 Chefr® = 0 for all z €

n=1
(h1, h2). Now consider the Wronskian

ez BN eBN+21
p1z B BN+2x
W(651m7 - ’65N+255) = det Pre P26
/B{V‘Fleﬁlw B . %i‘%eﬁN_,_gx
Then
i 1
B - Buss
W(ehe, - ety = gup ((ZnN:f n)x) det | . (23)
1\}+1 . ]\'f+1
1 N+2

= exp (007 B)z) Ticicsensali = B) 0.

(The matrix in Eq.(23) is a Vandermonde matrix.) This inequality implies that {e»*|1 <
n < N +2} are linearly independent and so C' = 0, which implies that A is invertible. [

In the following, for a given function g on (hy, he)¢, C(g) = A7'V, is set where
A and V, are defined as in Eq.(19) and Eq.(20), respectively. Also, Y e Z is written
for the usual inner product of the vectors Y and Z in RV*2 and for every real value z,

ef(x) = [eP® ... ePN¥+2%] Our main result is as follows.



Theorem 2.6. Given a constant r > 0 and a nonnegative function g satisfying the

condition in Proposition 2.1 on (hy, ho)¢, the function ®(x), defined by the formula

~ C(g)ee’(x), ifx € (hy, hy)
@)= { g(x), if v ¢ (b, ho) (24)

solves the boundary value problem (10). Additionally, ®(x) = E, [ g(X,.)].

Proof. The first statement follows by direct calculation using Eq.(18). The proof of the
second statement(concerning the uniqueness of solutions of the boundary value problem

(10)) is the same as that of Proposition 4.1 in the work of Chen et al.[9] if R, is replaced

by (hi, ha)¢. This proof is omitted here. O

3 Verification Theorems

In this section, we introduce the theorems to verify whether the possible candidate func-
tion is equal to V' givemin/FEq.(1).==Due to theform of the reward function g given in
Eq.(9), it conjectures that/the possible candidate shall be of the same form as ®(x) with

some special interval I. To do this, the following verification theorem is required.

Theorem 3.1. Gien'T = (hy, hy) wheres~o00 < hy < l; < ly < hy < 00. Assume that
the function ®(x) in Eq{4) satisfies the following eonditions:

(a) ®(x) is the differenceof two. conver functions.

(b) ®(x) is a twice continuously differentiable function except possibly at hy and hs.
(¢) The limits ®"(h;£) = limp_,p,+ " (h), i = 1,2, exist and are finite.

(d) (Lx —1r)®(x) <0 for all x except finitely many points.

(e) ®(x) > g(x) for all x € (hy, hs).

Then ®(x) is the value function for the optimal stopping problem (1) with the reward
function g given in Eq.(9).

10



Proof. Let V be the value function for the optimal stopping problem (1). Clearly, we
have ®(x) < V. It remains to show that V(z) < ®(x). By the Meyer-1t6 formula(see, for
example, Corollary 1 in Protter[20] ChIV. pp.218-pp.219), we have

t t
e "P(X,) — B(x) = —/ re " ®(Xy)ds +/ e 0 (X, )dX,
0 0

1 t
+ Z 6—7‘8 (®(XS) — ¢(XS—) _ @l(XS_)AXs) + 5/ e_TS(I),/(XS_)d[X, X]g
0<s<t 0
where ®'(z) is its left derivative and ®”(x) is the second derivative in the generalized

function sense. By similar arguments as that in Mordecki[18] Sec. 3, we have
t
e B(X,) — B(z) = / L — 1)O(X, Vs + M, (25)
0

where {M,} is a local martingale with M, = 0. Let.T; T .00 be a sequence of stopping
times such that for each ng{ My, ,;} is a martingale.Let 7 be astopping time. By the op-
tional stopping theoremgpwe have Ez{Mp a e =IE, [Mp| = 0. In addition, by (d), we have
fOT"M/\T e (Lx — r)B(X,L)ds < 0By Bqu(25)yweobserve E,[e 2T N D (X yinr)] <
®(x). Since g(x) is nonnegative and E, [sup,.ge “g(X;)] < oo, by Dominated Conver-
gence Theorem and (&), we have

E.le7"g(X,;)] = E {lim lim e_r(TAtAT")g(X(TAt,\Tn))] = lim/ lim Ex[e_r(T/\t/\T")g(X(T/\MTn))]

t—=500 M— 00 t+r30 n—>00

< lim lim E,[e "D (X , jiar)] < ().

t—00 n—o0

Because 7 is arbitrary, we observe Vi(a) = sup-E,[le "7 g(X,;)] < ®(z). The proof is
complete. n

To verify condition (e) of Theorem 3.1, we have the following general results for a

class of two-sided reward functions g.

Proposition 3.2. Assume that ¢; and g; are bounded on (—oo,l;) and the functions
I3 g2z +y) f(y)dy and [[° gh(x + y) f(y)dy,x > lo, are locally bounded. We assume
further that g,(x) — ¢} (x) is positive and increasing on (—o0, 1), go(x) — gh(x) is negative
and decreasing on (lz,00) and Ey[sup,sqe™ " |g'(Xy)|] < oo for all x. Let I = (hy, hy) for
some —o0o < hy < Iy <l < hy < 00 and consider a non-negative function 5(1:) on R that

is C? on (hy, hy) and satisfies the following conditions:

11



(a) (Lx —7)®(z) = 0,Vz € (hy, ho),
(b) ®(z) = g(z),Vz € I.
(¢) & [®(z+y)f(y)dy = [ @' (x+y)f(y)dy, Yo € (h, ha).

(d) ® is continuous at hy and hy and 5’(hi),i = 1,2, exist and are continuous there.
Then ®(z) > g(x) for all © € (hy, hy).

Proof. By Proposition 2.1, we have ® = @ for all z € R. Note that ® is C™ on (hy, hs)
(for a proof, see Chen et al.[9].) and, for x € (hy, hy), we have

T —(Lx —7)D(z) =

¢ S0P B (1) + e (A £ ) () + ) / (x4 ) (9)dy.

which implies that (£x —7)®' (@) =0 for z € (hy, hy). By egndition (d), & € Clhy, hs] and
hence by the Remark 2.2, ®(#) = E,[e="T¢g/( X;,0)]. Thisimplies that ®(z) satisfies the
ODE: &' (z)—®(x) = F(#), svhere F{z) = Eyle ™™ (/X)) —g(X,..))]. Note that &(z) =
O(z) > 0 = g(z) for I{"< & <y First consider the'case that hy < x < ;. By the ODE
theory and the boundary ¢onditions, we have ®(z) (fh e "F(t )dt + gl(hl)e_h1> . Set
H(z) = e~(®(x) — g(@)). Then H(z) = [y € "E(t)dt + g1(h1)e " — g1(x)e and

H'(z) = "F(2) ¥ gi(@)e " —gifz)e ™
= e {E;[e 7T U(Xre) — 9(Xn))] + gud) s o (7))}
= e {E e (G T = ]
E, [ (0 (Xrpe) = 1(X0e )i {mre = 772} + 01 (%) — g1()}

e Bale™ e (95(Xrpe) = 02(Xr0))i {710 = 7/}
+e (gu(w) — g1(2)) (1 — Bl s {77 = 77 }]

v

where 7t = inf{t > 0|X; > hy} and 7,. = inf{t > 0|X; < h;}. For the last inequality,
we use the facts that g;(x) — ¢} (x) is increasing and hence gl(X )= (X ) < gi(h) —

g1(h1) < g1(x) — gi(x). Since ga(x) — gh(x) is negative and ¢, (x ) g (x) is positive, we
obtain H'(x) > 0 which implies that H(z) is increasing . Therefore H(z) > H(hy) =0
and hence ® > g(z). By a similar argument, we get ®(z) > g(z) for I, < 2 < hy. The

proof is complete. O
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Note that the results mentioned as above do not reply on the property of the hyper-
exponential jump-diffusion Lévy processes and hence, are adapted to the general jump-

diffusion processes together with the general reward functions.

4 Pricing Perpetual American Strangles and Strad-
dles

A strangle is a financial instrument whose reward function is a combination of a put
with the strike price K; and a call with the strike price Ky written on the same security,
where K7 < Kj. In particular, if K1 = K5, the strangle becomes a straddle. In addition,
if the strangle(straddle) can be exercised at any time and has no maturities, then it is
called the perpetual American strangle(straddle). In/the remainder, we assume that the
price is drawn by S; = exp{X} under the chosen risk-netitral measure. Here X is the
hyper-exponential jump-diffusion Lévy process in Eq.(5).

A rational price ofithe perpetual Anierican strangle is the value function for the

optimal stopping problem (1) . with the reward function g given by'the formula
g(z) = (Kp=e")" + (" = Ko) = gil@)1 (o<iry Hg2(2)1 02101 (26)

where [} = In K, [y = i, g1 () =K —e” and go(z) = e* — Ko

In the following, weshow that the value function of theperpetual American strangle
is ®(z) for I = (hy, ho) satisfying.the smooth pasting condition. To do this, we need some
further properties for the coefficients. Oy's.of ®(a).” We consider the following conditions

on the model :

nf >1forj=1,2,.. N* (27)
and
1 ot gy
ol e—(A+r)+ A Ty =) <0 (28)
2 = = 1

(Note that Eq.(27) implies that E[e*!] < co and Eq.(28) guarantees E[eX'] < e”( hence
the underlying asset pays dividends continuously). If E[eX'] < ¢” and 0 < g(x) < A+ Be”
for some constants A and B, then E[sup,qe ""g(X;)] < co. For details, see Lemma 4.1

of Mordecki and Salminen[17].)
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Lemma 4.1. Under the conditions Eq.(27) and Eq.(28), we have By-o > 1.

Proof. First consider the case that N* = 0. Then SBy- is the unique solution to the
equation ¢(z) = 0 in (0,00). Observe that lim, .. ¢(x)lim, ; ¢(z) = —oo. Our result
follows by the intermediate value theorem. Next assume that Nt > 1. Then -5 is the

unique solution to the equation

Nt N- 1 N* P Nogm;
B + - 122 _ il Uy =
¢(x)_i11(ni x)jl_ll(n] x) [20x +cx ()\+r)+/\(; n;r—$+;77;—$)] 0

in (0,7;"). Also we have

NT N~

o) =[] = ][ — 1)

i=1 j=1

1 al pin). — 4

2 ill; 'l

e +c—()\+r)—|—/\(§ +E ),
2 —n —1 jﬂnj_l

and o(nf) = puif TI s =10) T is=if )« By Bai(27) and Eq.(28), we obtain
é(1)é(n) < 0 which implies By +po>-1. O

Now we consider the system of equations Eq«(18) together with the smooth pasting
condition. For the caseof the perpetual Americanstrangle option, the system of equations

is equal to

A
chﬁ A\ 1—n§eh2+ﬁ’ k=120 Nt (29)
n=1 n
N+2 Bnhi 1 K
ch—ﬁe o)y ALESE (30)
— n = Tl 11 .
n=1
N+2
Z Cpefrh = eh2 g, (31)
n=1
N42
Z C,elrm = K — e (32)
n=1
N+2
Z C,Bpe " = e (33)
n=1
N+2
Z CBpe’™ = —eM, (34)
n=1

14



Subtract Eq.(31) from Eq.(33) and Eq.(32) from Eq.(34), we have

N+2

Z C 1 — ,Bnhz = —KQ

N+2

Z Co(1— By)eM = K
Using Eq.(36), Eq.(34) and Eq.(SO), we have

N+2

> o o

—

for k =1,2,..., N~. Similarly, by Eq.(35), Eq.(33) and Eq.(29), we have
N+2
Z . 5n Bl = Bu) pona _
g
for k=1,2,..., NT. From equations Eq.(35) and Eq:(36); we also have
N+2 1
C ]_ _ n ﬁnhl 5nh2 =0.
SIS0 s
In addition, by Eq.(33) and Eq.(34);-we have
N-+2
Z C’nﬂn(e(ﬁn_l)hl 8 e(ﬁn_l)hQ) — 0
n=1

(35)

(36)

(37)

(38)

(39)

(40)

To prove the following main résult(Theorem4:5)5we need the following three tech-

nical lemmas.

Lemma 4.2. Assume that {Cf,»:*
Eq.(34). Then C; # 0 except for‘at most-oneg:

Proof. Set Ah = hy —
byEq.(35)-Eq.(38), we have AC = K where

1
Bi—ny

1
Bi—n_
N
1

Br
1 eﬁlAh
B1AhR
——x€
ﬁl 771

eP1Ah
B1— 77N+

1 _
BNt2—n1

1
5N+21—77N_

5N+2
e;BN+2Ah

5N+2
eBN124Ah
BN+2 LG

1 65N+2Ah

BN+2 77N+

15

and K =

+C N2, hi, ha} is.a'selution of the equations Eq.(29)-

hi and put én = ePhi(1 — 8,)B8,C, for 1 < n < N + 2. Then,



Let Fi(z) = Y07 5% and Fy(z) = YV <2C 0 Clearly, Fi(z) = =x3&— and

i=1 B—= Bi 142 (Bi—=)
Fy(z) = #, where
N+2 N+2 N+2 N+2
Z C, H fi—x) and Sy(x Z A, H (41)
i=1,i#n i=1,i#n

Then S;(z) and Sy(x) are polynomials with degree at most N +1. Also, by the fact AC =
K, we have S1(0) = K, [[-07% 8i, S2(0) = =Ko [[XN42 6, Su(ny) =0 for 1 <k < N~ and

7

So(nf)=0for 1 <k < N*. By Eq.(41), we have

an _ Sl(ﬁn) _ e*ﬁnAhSQ(ﬁn) (42)

[ 08— B2 I (B — Ba)
for 1 <n < N+42. From this, we have.Ss(8,).= S1(8,) =0 if and only if So(8,)—51(5,) =
0. In addition, we have én =0 if'and only if S5(8,) = 91(8,) = 0. Also if S;(5x) and
So(Bk) are nonzero for seme 1 < k. .< N + 2 % = AL Tt remains to show that
|©] < 1 where © = {5,]51(8,) — 95(8,)= 0, for. 1 <n < N+2} and |O] is the cardinality

of ©. To do this, we need the following facts :

(1) If So(x) # 0 onylmy s Brr1] for some ki L k < N—, then Ss(x) — Si(x) = 0 has a

solution in (7, Og+1)-:

(2) If Sy(z) # 0 on [By,qp hfor some k, 1"<k < N-, then Sy(z) — Si(z) = 0 has a

solution in (B, 7y ) -

(3) If Si(x) # 0 on (7, Bn-4o.k] for some K, 1 <lk'< NT, then Sy(x) — Si(z) = 0 has

a solution in (7,7, By-21k)-

(4) If Si(x) # 0 on [By-r144, 7)) for some k, 1 < k < NT, then Sy(x) — Si(z) = 0 has

a solution in (By— 4%, 7 )-
(5) If Sa(z) # 0 on [By-41,0), then Si(x) has a solution in (Sy-1,0).
(6) If Si(z) # 0 on (0, By-.2], then Sy(x) has a solution in (0, By-.2).

To prove (1), we assume that Sy(z) # 0 for all x € (5, ,Bk+1]. Let 2* = sup{zx €
1 Brt1]|S1(x) = 0}. Note that z* exists because Si(n, ) = 0 and z* < fSi41. Because

16



gi—gg is continuous on (z*, Br41], 0 < %:13 = ePnBh < 1 and lim, - gi—gg = o0, by
the intermediate value theorem, there exists = € (2*, Bx41) such that gigé; = 1. This
0

completes the proof of the fact (1) above. Facts (2)-(4) are verified by similar arguments.
Next , we verify the fact (5) and assume that Se(z) # 0 for all € [By-41,0). Then

N+2

sgn(Sa(By-1+1)81 (By—11)) = sgn | Pv—nBrC2 H (B;i = Bn-+1)" | >0,

i=1,i£N—+1

and sgn(95(0)51(0)) = sgn(—K K, []-1? 62) < 0, which imply that S (z) has a solution

i=1
in (By-+1,0). The proof of the fact (6) is similar.

Let S(x) = Sa(x) — Si(x). Then S(z) is a polynomial with degree at most N + 1
and S(f) = 0 whenever 5, € ©. Let

M= {[By-—+1,0)[Bx—11 EOPULO, By —2]|An- 42 O}
U{[Be i, )18 & Oy 1 <k s N=pI{(j; s sl B € Oyl <k < N7}
U{[BN- 10 BN - +1+ £ FOL < T SN} U@, By B+ ¢ ©,1 <k < NP
Note that IT is a collection of intervals and |II| = the number of intervals in IT > 2(N +
1) — 2|0|. Let Il = {I"€ I1|S(x) = 0 has o solution in I}. Since [{Z|S(z) =0,z ¢ O}] <
N +1—16], || > 2(N51) — 2|0~ ((@Nostid)=|O))= N +1/—96)|. For any I € II, by
facts (1)-(4), we obtain

(a) if sup,c;x < fy-41, thénthe equation Sy (). ="0dasg solutions in /.
(b) if inf,e; & > By-2, then the equation 'S () = 0 has solutions in /.

Also, by fact (5),51(x)S2(z) = 0 for some x € [By-.1,0). Similarly, by fact (6), Sy (z)5(z) =
0 for some = € (0,5y-12]. From these observation, combining with the fact that for

LLell,[NI,=¢or [Nl CO°, we have

{z]Sa(x) = 0,2 < By-s2,z ¢ O} + {2[S1(z) = 0,2 > fy-11,7 ¢ O}
> O >N+1-10| (43)
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Recall that S(n,) =0 for 1 <k < N~ and Sy(n)) =0 for 1 <k < N*. Therefore,

2(N +1) = {x]S1(z) = 0} + {x]S:2(x) = 0}

= {#]S1(x) = 0,2 > By_, . v ¢ O} + [{2]Si(z) = 0,2 < By_, .z ¢ O}

+ {#]S2(x) = 0,2 < Bi_ . x ¢ O + [{2]S2(x) = 0,2 > Bf_ 5.2 ¢ O} + 2|{z|z € O}
>N+1—10|+N +N"+2|0]=2N+1+10]. (44)

This implies that |©] < 1. The proof is complete. [

Lemma 4.3. Assume that {Cy,--- ,Cnia,h1, ho} is a solution of the equations Eq.(29)-
Eq.(34). Then C,, >0 for all n.

Proof. We define Sy, Ss, O, ﬁ, I1, and @n’s as in the proof of Lemma 4.2. Since én =
e (1 - B,)B,C, and, by Lemima.1ywe observe- €y, >0 if and only if én < 0. Besides,

by Proposition Eq.(2.1), we obtain 25:12 CePnt = Epfe a2 g(Xr, )]

which is
nonnegative for all x € (hy, ko). Toprove C;, > 0 for all n, it suffices to show that the
C.,’s have the same sigii "By Lemma-Eq: (4.2, |©].= 0 or I First, We consider the case that
|©] =1, that is, S1(Bigk= S2(Bk,) = 0 for some I' <&y < N + 2. Then |II|] > 2N and by
Eq.(43), {#]S2(2) = U@ < Bn—12, T 7 Brghl Td{@lS1 () =0, 2 >ebn—11, @ # Bio | 2 N.
By Eq.(44), we obtain [{w|Ss(z)i= 0} +{=|Si(z) = 0}| = 2N+ 2. Hence S;(z) and
Sy(x) are polynomials with degree N+ 1 and all roots of Sy(z) and of Sy(x) are simple.
In addition

2(N +1) = {z[51(x) = 03 HaelSa(z2) =0}
> Wal9(z) = 0,2 < By-so, @ 7 By + [{2[51(2) = 0,2 > By, 0 # Bro }|
+{z]S2(2) = 0,2 = P2, 7# B} + H{2lS1(2) = 0,2 < By—p1, 2 7 Bro | + 2
> N+ [{z]S(z) = 0,2 > By-12,2 # Bro | + {z]S1(2) = 0,2 < By 1.2 # B H +2
and hence, N > [{z|Sy(x) = 0,2 > By-12,@ # B} + [{z|S1(x) = 0,2 < By-41,0 #
Bro}]- Since Sa(nf) = 0 for 1 < k < Nt and Si(n;) = 0for 1 < k < N—, we ob-
tain {z|S1(z) = 0,z < By-11® F# Brot = {me |1 <k < N~} and {z]|S3(z) = 0,2 >
Brn-42,% # Brot = {ni|1l < k < Nt} Now we consider the case that ko = 1, that is
S1(p1) = S2(B1) = 0. Because n; is the unique root for Si(z) in [5;, fix1], 2 < i < N—,
we obtain S1(5;)S1(fi4+1) < 0. By similar arguments, we also have Sy(3;)52(8;41) < 0 for
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_ . o ~ e—ﬁn71Ah52(gnil) e~ PndhG,(B,)
N~-+2<j < N+1. By Eq.(42), we have C,,_1C,, = T e ) T b)) —

ei<ﬂ"71+5n)AhSQ(ﬁnfl)S2 (Bn)(ﬂn_ﬁnfl)_l(anl_ﬂn)_l — S1 (anl)sl (Bﬂ)(ﬁn_ﬁnfl)_l (anl_ﬁn)_l
P2 (Bi=Bn—1)(Bi—Bn) T2y 1 (Bj—Bn—1) (B —Bn) P (Bi—Bn1) (Bi—Bn) Ty 1 (Bi—Bn—1)(B;—Bn)

Therefore, the elements in €~ = {C,h|2 < n < N~ + 1} have the same sign and this
is also true for elements in CF = {C,|[N~ +2 < n < N +2}. Because AC = K, if

the elements in C~ are positive and the ones in C" are negative, then we get the con-
tradiction that K; = 25;2 énﬁin < 0; if the elements in €'~ are negative and the ones
in C'" are positive, then we get another contradiction, i.e., —Ky = Zgjlz C'\neﬁg% > 0.
Therefore, C),’s must have the same sign. For the case kg = N~ + 1, the proof is the
same. For the case 1 < kg < N~ + 1, by a similar argument as above, we obtain the
elements in ¢ = {Cu|l < n < ky—1}, Cy = {Culko+1 < n < N~ + 1}, and
C+ ={C,|N~ +2 < n < N +2} have the sanie Sign,respectively. There are eight situa-
tions for the signs of C7, Co4and €+ (1) C] <0, 0y <0, and C* < 0, (2) C7 > 0,
Cy >0,and C* >0, (3)Gy €0, C; < Ogand.C* >0, (4)C; > 0,Cy; >0, and C* <0,
(5) C7 <0,C5 >0,and €7 > 0,(6)-C] >.0,C5 <0,and CF <0, (7) C] <0,C5 >0,
and C* <0, (8) Cf >0,C; <0;and CF >.0. (WeSirite OFF > (<)0 if all elements
in C* are greater(smallen) than zero.) We show that cases (3)-(8) are impossible. The
arguments for disproving cases (3) and (4) aré the same as for the case kg = 1. Note
that B1 < np < B2 <y < < By < oo < Lio <0 S By < 1y- < Byv-—11 <
0<1<fBn-42 <ny < o0& Batr <tye < Biiz. Because AC"= K, Comparing with
the (kg — 1)-th entries in“AChand K, we obtain S TR = 0. Therefore, it is

d —
ﬁn_nko—l

impossible for cases (5) and (6). Notéthat the entricsof A satisfy the following:

(a) Ay <Ofor {(i, /)1 <j<i < N +1TU{(J)IN"+2<i < N+2,1<j<i}

and A; ; > 0, otherwise.
(b) If A, ; and A; 1, are negative, then A;; < A; 41 ;.
(c) If A;; and A;1;; are positive, then A, ; < A;4q ;.

For the case (7), we get the contradiction K; = (Ay—41 — Ay,—1)C < 0 and for the case
(8), we get the contradiction —Ky = (Ay-12 — Ap,_1)C > 0 where 4; is the ith row of
A. Therefore, we complete the proof for the case that [©| =1 and 1 < kg < N~ 4+ 1. The
proof for the case that |©| =1 and N~ 4+ 2 < kg < N + 2 is similar.
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Consider the case that |©] = 0 which implies that C,’s are nonzero. Then we have
III| = 2N +2 and by Eq.(43), |[{z|S2(x) =0,z < By-42} + {z|S1(x) = 0,2 > By-41}] >
ITI| > N+ 1. Therefore 2(N +1) > [{z|S)(z) = 0} + [{z]%(z) = 0}| > [{]%(z) = 0,z <
By-12} + {z]Si(z) = 0,2 > By—ja b + {z[S2(z) = 0,2 = By} + {z|S1(2) = 0,2 <
Bn-s1} +2[0] 2 N + 1+ [{z]%(z) = 0,2 > By-i2}| + {2[5i(z) = 0,2 < By-44}],
which implies N + 1 > |{2lSy(z) = 0.2 > fy-4a}| + {2lSi(2) = 0.2 < By}l
Because |{z|S2(x) = 0,2 > By-12} + {z]|Si1(z) = 0,2 < Bn-11} > N, we have [{z|z >
Bn-12,5(x) =0} = Nt or [{z|z < By-41,51(z) = 0}] = N~. First, we consider the
case |[{z|r > By-12,5(x) = 0} = N7, or equivalently, {z|x > By-.2,52(z) = 0} =
{nf - nh. ) I {z|z < By-41, Si(z) = 0} = N—, then we have {z]|z < SBy-11,S1(z) =
0} ={ny ---ny-} . Similar arguments as forthe,case |©| = 1 imply that the elements in
C~ ={C,|1 <n < N-+1} and o GF={CHN-"+2 £ n < N + 2} have the same sign,
respectively, and hence, theisignof C,,’s are the same. "I {{#lz < By-11, Si(z) = 0} =
N~ + 1, then either S) (&) has arroot-in-(—o0, f1) or S;(x)has'two roots in (Bky, Sry+1)
for some 1 < kg < N~ gFor the case-(=o00, 1), we can geb as above that the elements in
C~ = {6n|1 <n<N_+1}and in OF = {6n|N_ F 2< <N + 2} have the same sign,
respectively. If S (z) has two roots in (B, , Bk, 1) for some 1< ky < N~ we also observe
that the elements in @ = {C,|1 € /< &ko— 1}, G5 = {Colkg"< n < N~ + 1}, and
ct = {6n|N ~ 42 < n <N+ 2} haveithe same sign, respectivelys By the same argument
as for the case |©] = 1, we'kunow that the coefficients have theisame sign. The proof for

the case [{z|r < By-41,S1(z) =0 h= N~ is similar_and-hence, we omit it. O

Lemma 4.4. Assume that ijjf C., BT =€™ for some xo € R. Then there exists € >
0 such that Zivjf Cpfneln® < e for all x € (xg—¢€,x0) . Also we have Zgjf C., Bpelr® >

e for all x > x.

Proof. Let F(z) = SN2 0B — e, Then F'(x) = SN2, 32" — ¢, Because

n=1 n=1

Pr<fBy<- -+ <PBn-41<0<1<fBn-40<Pn-13<--+<Pni2, and by Lemma 4.2 and

Lemma 4.3,
N+2 N+2
F'(z0) = Z CpB2efrmo — em0 > Z Cfpen™ — e™ = (), (45)
n=1 n=1

which implies that F(z) is strictly increasing in some neighborhood U,, of xy and hence,

we complete the proof of the first part of the lemma. Assume that there exists z/ > x
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such that F(z') < 0. Let T = sup{z|zg <z < ', F(z) = 0}. Then T < 2/, F(Z) = 0 and
as shown for Eq.(45), we have F'(Z) > 0. Therefore, there exists a neighborhood Uz of @
such that for all x € Uz with x >z, F(x) > F(Z) = 0. This is a contradiction because

F(z) <0 for all z € (Z,2') and hence, we complete the proof of the lemma. O

Theorem 4.5. Let {Cy,...,Cn, hy,he} be a solution of the equations Eq.(29)-FEq.(34).
Define the function ‘7(30) by the formula

Sy SR Che if w € (hn, ho)
Viw) = { g(z) if x € (hy, hy)°

where g is the function in Eq.(26). Then V is the value function of the optimal stopping

problem (1). Also we have V(z) = Egfem Wb g(X

T(hyhz)C)] for all x € R and hence

T(hy ho)e 45 the optimal stoppingdime for-the-optimal stopping problem (1).

Proof. Clearly the functiohyV(#) satisfiesiconditions (a)-(¢) of Theorem 3.1. Direct com-
putation shows that thesfunction V-isa solution.of the boundarywalue problem Eq.(10).
Because C),’s are nonnegative according to Lemma 4.3, thus, h; <uly = In K| <In Ky =
ly < hy by Eq.(31) and Eq.(32). Also functions g, and gs satisfy the conditions in Propo-
sition 2.1. Therefore We have V() /= E e mnmcg( X, )] for‘all z € R. Note that
functions g; and g alsosatisfy the conditions.in Proposition 3.2 and V' satisfies conditions
(c) and (d) of Proposition'3.2, Hence by Proposition 3.2, we abtain >-7"2 €, ef* > g(x)

for € (hy,hy). By Theerem3.1, it remains to shew that (Lx — r)V(z) < 0 for
x € [hy, hol¢. Note that, on x > hy >IN Kepdireet caléulation gives

(Lx —r)V(z)
N+ N-
T 1 2 )\pl )\q] T
— 6(50 +C+Z77-+—1+ZTF—1)_T(6 — Ks)
=1 ' =11
N~ N+2 C — —
A ae (Z B8 NS Cerp L B Gy L Kze_njm)
j=1 =1l P ny —1
N+ N-
T 1 2 )\pl )\q] T
= 6(50 +C+Z77-+—1+Zﬁ)_r(e — K>)
=1 =11
N- N+2
- Chn —n7)h 1 1—n7)h
_i_Aquenj x (Z _—e(ﬁn 1 Yha _—6( 1 Yha
j=1 ns i~ Bn n —1
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(The last equality holds because of Eq.(31).) Let V;(z) = ZnNLQ %6('8"’”;)9” —

)T for 1 < j < N~ and x € R. First we show that ¥;(hy) > 0. By

un 71
Eq.(30) and Eq.(32), we have U;(hy) = #6(1777;)}11 > 0. Also, we observe W'(r) =
— S O B ) g T =y <Zg+12 CyBpeln® — ez) We need the fact

that ZN“ nﬂneﬁnf"’ —e* £ 0 for all z € (hy, hy). (Indeed, if 372 C,,B,efn* — e =0
for some h* € (hy, hy), by Lemma 4.4, >3 2, 8,efr* — e* > 0 for all & € [hx, hy]. Note
that by Eq.(33), we have .2 C,, 8,2 — "2 = 0 and by Lemma 4.4, there exists € > 0
such that SN2 0, B,e% —e* < 0 for all © € (hy — €, hy] which is a contradiction.) Com-
bining this fact with the observation that 22[;2 C,Bnelnt — e = —2¢eM < (), we obtain
SV LBt — et < 0 for all € [hy, hy] and hence, W%(x) > 0 on [hy, hy]. This im-
plies that W;(z) is an increasing function and hence W,(hy) > W,;(hy) > 0. Therefore, on
x> hy > In K, , we observe 4£(Lx ~AWV(z) = (30 C+D 2 +1 ipll —1—25\; % —r)e” +
>‘ij1 ;0 (he)n; € <40y which implies thiatn(Ly — WA@Y is a decreasing function
and its maximum valuetis (Lx —7)V(hy+): Because Vi(x) satisfies the smooth pasting
condition at hy and (L — 1)V (hs=)= 0. We obtainthat

(Lx — 1)V (hat) Sl — 1)V (hark) LW (ho— ) = %&(fﬂ/(hﬁ) V()
1 N+2 N+2
=50 Zc Baeh) < a chﬁ gy £
Therefore (Lx — 1)V (z) < (Lx =V (hi) < 0 for all a#>Tg. By the same procedure, we
verify (Lx —r)V (z) is an increasing finction fora@€ hy and (Lx — )V (hy—) < 0, which
implies (Lx — r)V(z) <0 for all < hy. The proof is complete. O

5 Solutions to Equations Eq.(29)-Eq.(34)

In this section we prove the existence of solutions to the system of equations Eq.(29)-
Eq.(34), that is equivalent to the free boundary problem Eq.(10) with smooth pasting
condition. It is worth noting that according to Eq.(36)-Eq.(39), we have ADC = K where
D is an (N+2) x (N+2) diagonal matrix with entries di; = 8i(1—3;), K = [0,0, ...,0, K;]7
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is an (IV +2) x 1 column vector and

B 1 hPrhy 1 ePNr2h1 7
B1—mny BN42—M
1 Bih 1 PN42M
Br—my BN+2—1
~ 1 Brha 1 +eﬂN+2h2
A = B1-n7 BN42-m
1 eB1h2 1 . AN42h2
B1—nT, BN42-m
1.1 8 lIz\]+ 1 _B1h 1 1 +B Nh+ 1 B ho
1 (1 Bih1 4 1 Biho 1 AN42h1 4 1 BN42
Bl(Kle +Kze ) BN+2(K1e +K2e )
1 B1h 1 BNy2h
L B1 BN+2 .

Then, the coefficient vector C' = [CY, ..., Oy 2]T is equal to

- B pay (46)

Eq.Eq.(46).(For other app
optimal boundaries, h‘and > fe i roposition 5.1), which

was obtained earlier b

Proposition 5.1. Let {4, ... 0, By ' quations Eq.(29)-Eq.(34).
Then Ah = hy — hy is'a ' f the equation de where for every h € R,
B(h) is a (N +2) x (

1 eB1h 1 eﬁ]N_'.zh
B(h) — B1—ny BN42-1] (47)
1 +‘ eBih e %53N+2h
BI_WNI_(’_ . 3N+z—nNI4{_ . .
1 1 1
AR LA s e i S A

1_1(1+e(ﬂ1—1)h) (BN42-Dhy

1
B1 BN+2_1(1+6

Moreover, we have

det A
hy = log < o A;) (48)
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and hence, hy = hy + Ah,

1
B1—my

1
B11—n1\},3_Ah
1 A
E1—ni"

[ TIN
B1—nT ©
N+

1 Eis Ah
ﬂ(1+ ?éeﬁl )

B1—1

where

1
BN42—11

i
BN42—1
%eﬁy\HaAh

BN42—m]

1 BN428R
ﬂN+27"N+
1 K1 BN Ah
1+ =L +2
ﬂN+2( + Ry € )

AN42-1

and Ay =

1
B1—my

1
ﬁ1—71N_
1 B1AR
B1—mnq

1 B1AR
€
ﬁ1*nj\',+

1 Ky B1AR

Br(L+ I\ize )

Proof. Substitute Eq.(46) into Eq.(40), we have

det

Ky

Eq.(34), we have

[Bre®h L B IDTYY = (B L BLePhi

Ty [Bre

1 Bk

1
B1(1-81)

B1EK1

(ePn=Dh 4 o(Ba=Dh2) —

0 0
B2(1—-B2)

1 PNy2h1 I

B1—mny

1 Bk
Br=mny
10 Biho

/31*711"

= det

#Blhz
B1—nl ¢
11 /3}11\’_'— 1 _B1h
11 Brh1 4 _1  Brh2
B \K1© +KZe )
eB1ha

L 1-51

5N+2—W1_

1
BN42=",
1
BN4+2—nq

1

1
BN+2

(Rye
AN+

1-BN42 B

24

PNy2h1

1 BN42h2

ﬁNJrz*TIN_‘_

BN+2h1 L 1 _BNy2h2
+ %5 )

eBN42h2

2h1

1
BNy2—n

1
BN42—n
%eﬂ%+2Ah

BN42—n]

1 BN424h
5N+2*77N+
1 K1 BN Ah
1+ L +2
v TRy e )

BN+2K1

(49)

0

1
BN4+2(1—BN+2)




_pht —

= det

which verifies Eq.(48)

Therefore

I P L
dt( )[ﬁl h

- 1 Bk
B1—ny

%eﬁlhl
/31—71N_
eB1h2

B1—mnq

1 Biho
B1—n7 ¢
N
eB1hi +T;eﬁ1h2
B1
eB1h1
L 1-51
1
B1—ny

i

B1—77N_

1 B1AR
B1—mnq

det

1 B1AhR
B1—

1
N
%(+?IB

ﬂl

—d€t_A1 /dCtAQ

. BueP MDY

1 AN42m
BN42-m

1 ANn42m
BN42=1

1 AN42h2
BN42—mq

1 AN42h2
BN+2*77N+
65N+2h1+%eBN+2h2

BN+2
P N2h1

1-BN42
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B 1 il 1 PAN42h
B1—my BN+2-11
1 Bl 1 ANi2hm
Bi—m BN+42— WN,
1 Brh2 1 PNy2h2
B1—mn BNiy2—1
det 1 + 1
1 eBih2 1 AN42h2
_ T _ T
B1 M+ BN+2 o+
1 h 1 h 1 BN42h1 1 BNy2h2
L e Bihyyg eB1h2 By © +2 +T23 +2
B1 N+42
1 oB1hy _ 1 AN42h
L BN+2
1 1 .
BNt2—n1
I T
BN42=1
1 AR 1 eﬂzl\{]+2Ah
BNy2—mq
1 - eﬁ‘[\/'_*_zAh
BN+2— nN; P o
1 1 N+2
5N+2( + & )
5N+2K1 i

1 _|_ e(Bnt2— 1)h)

ﬁN+2 1 (

5N+2 -y

1
BNt2—1y_
1 K h
Bvis (1 + K; eBn+2 )

BNi2h
—e
BN4+2— 77?'

% eBNt2h
BNt2—Ty 4

O

Eq.(47). There ezists




As h =0, detB(0) = 2(1 + %)detZ(N”) where

B _1 DY 1 7]
B1—1 BNi2—1
1 . e 1
Br=my BN+2—11
1 .1
N+2) _ | Bi=ny_ BN+2=1
ZN = | T 1 Y
B1 BN+2
Br—ni Bnt2—ni
1 .1
L 51—77;\F,+ BN+2_7IX,+ i

We show that detZ"N*+2) > (. For simplicity, we set oy = 1, oy = 15 for 1 <n < N7,

an-42 = 0, and ay-49.m = 1, for & € 'm! < N's Then the entry zi(’?rw) of ZIN+2) g

equal to ﬁia,. Note that for 20< <N+ 2, ZZ(IJYH) >04df 7 < 7 and ZZ(J]\-[+2) <0ifz>j.
j ’ ’

For 2 <k < N+ 1, let Z® bethe k x k.matrix with entriés zfl;) = z](V]\er;i)k+i7N+2_k+j =

L for 1 <3< k. First we show that det 7", =0 for 2 < k < N+ 1. For

BN 42— ktj—ON42—kti
k = 2, we have

1 1
detz(Q) = det ,8N+1IQN+1 ﬂN+2;OCN+1

BNy1—QNt2  Bygo—ani2

1 1
T By — IN(Brne =) | Ovad sen B — anys)
1 1

= — 0
(B = M= C)0Bae — 1) (Bya =9eny J(Bn 1 — +) g

Before proceeding, we need the fact that detZ%* =0 for 3 < k < N + 2. Indeed, assume
that ZW L = 0 for some column vector L = (I1,--- ,I;.)". Let

k

Fi(r) = - = : (50)
; On+a-krs =T Loy (Bnt-kin — )

where Gy (x) = Z?Zl 3 Hﬁzl’n# (BN+2—k+n — x) is a polynomial with deg(Gy(x)) < k—1.

Since Gp(anio—k+i) = Hi:1(5N+2—k+n — antopti) Fr(onyokri) = 0 for 1 < ¢ <k,

Gi(z) has at least k distinct roots which implies Gy(z) = 0. This implies [; = 0 for

1 < j < k from Eq.(50) and hence Z(¥)I, = 0 has no nontrivial solutions, or equiv-
alently, detZ® £ 0. Suppose that detZ® > 0 for some 2 < k < N. Consider the

system of equations Z*DLE+D — BT whare L0+ and ™) = [1,0,---,0]" are

~ Tkt 1) ~
— VR b — Gri1(2)
(k-+1) x 1 column vectors. Let Fyiq(z) =357 CrePRETr i 2 v — Then
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ékﬂ(l‘) = Zf:ll 75»’““) Hflin;,éj (BN+2-(k+1)+n — ) is a polynomial with d€g<ék+1(ﬂf)) <k

and ék+l(aN+2 (k+1)+i) = HZ 1(5N+2 (k+1)4+n — aN+2—(k+1)+i)ﬁk+l(aN+27(k+1)+i) =0 for
2 < i < k+ 1. Therefore, we have {z|Gri1(z) = 0} = {anso- (k+1)44]2 <7 < k+1} which

1mphes Gk—i—l(ﬁN-{-Q (k+1) —H)Gk—H (BN—}—Q k+1)+1+1) <0forl < 1 < k — 1. Since

Grt (BNro— (k1)) Gt (By s (br1)+i41)

Zﬁ;‘rl = T4k k
Hniﬁ,n#(ﬁmz_(mm — BNt2—(kt1)+5) Hng,iﬁﬂ(ﬁ]\uz—(kﬂ)m — BN42—(kt1)4j+1)

ék+1(/BN+2 k+1)+j)ék+1(ﬁ1v+2 (k+1)+j+1)

k1
[Tt i (BNa2—(or)+n — Bi)2(BNsa— (ks 1)+ — BN+2—kti+1) (BN 42— (bt 1)1 — BN+2— (bt 1)45)
>0

for 1 <j <k, Z;-’s have the same sign. In addition, because the entries of the first row in
ZF+1) are positive and Fk+1(aN+2_(k+1)+1) =1, weobtain [; > 0 forall 1 <j <k + 1.

On the other hand, by Cramer’s rule,;we know that 71 = dedg—m. Therefore, detZ*+D >

0. Since detZ® > 0, by inductio, this fimplies detZ") > 0 for 1 < n < N + 1.
Consider the system of equations” ZWVt2 L = ¢, where L and e, = [1,0,0,...,0]" are
(N +2) x 1 column vectorsy Lt En.o(z) = Zj\gz ﬂjlix = Hﬁf;?(””)m. Then Gyo(z) =

ZN+21 HnNﬂzn#( —7) i5 a polynomial with“deg(Gate) < NV + 1. By the equation
ZW+2 [ = ey, we have 5N+2(an) =0 for2 < n < N+ 2. By similar arguments as above,
we know that the entrié8§ of L have the same sigii! By Lemma 4.1, F° Nio(7) is well-defined
on [0,1] and in addition, Fy,o(z) € C([0,2]) A CL(0,1). BesidesgpZ V2L = ¢, implies
F Ni2(1) = 1 and F Ni2(0) = 0, Therefore, by the mean value~ theorem, there exists
2o € (0,1) such that 1 = (1) — F(0) £ F @) (T=0) =S M2 2 which implies that

=1 [(Bi=w0)?
the entries of L are positive. \On ‘theother hand, by Cramer’s‘rule, we have ll = %

Therefore, detZ(N+2) > 0. @onsider the determinant

w@® On-11.8+
detW = det YR T = detwWdetv®
On+11,N-+1 14
where O,,,, is the m X n zero matrix,

1 . 1 1 L. _1

ﬂ11*1 ﬂNflJrlfl BNIJF,‘, 5N1+2

= = T T

1) B1—m, Bn—t417M (2) BN— 4271 BN42—1]

W = ‘ , and W =

1 O S S S SR
Fr=my BN= 1Ty Bn— 2t BN42mh

We show that detWW < 0. By similar arguments for the proof of the invertibility of Z/(\k), we
observe that W) and W® are invertible. Consider the system of equations WL = ¢
where L and e! = [1,0,0, ...,0] are (N~ + 1) x 1 column vectors. By the same arguments
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for det Z(N+1) | we observe that the entries of L have the same sign and detW® > 0 where

1 R S
52_771_ /81\]74,1_771_
W = : :
1 A SR
/82_77;,7 ﬁN—+1_77;,7

Because w'") < 0foralll < j < N-+1and ZN - sz_

1 = 1, the entries of L are negative.

On the other hand, by Cramer’s rule we have l1 fﬁ%ﬁi and hence, detW®) < 0. By a

similar argument, we obtain detWW? > 0 and hence detW < 0. Since

[ 14e(Bi—Dh 1+€(BN—+1 cfﬂN—+2h+ﬁ—h e AN42h  —h
Bi—1 e e BNiz—1
L 1 O at Pl P2 1)
B1—ny Bn— 1711 BN—12~1 BN+2-11
. ; By B vioh
1 1 e +2 N+2
lim d@tB(h) lim def B1— an T +é n;,,h Bg 12 :N, Bgurz M-
N+2 - eB1h N1 PN 42" K N42h Ky
hes ZZ -‘11-\[_+2 B’Lh’ s oa 1+ 1+ e +K2 +K
e = /31 ﬁN +1] EN_JrQ BN+2
ePih P 1 1
Br—nj AN By o—n7 ANt2—n]
eP1h eBN7+1h 1 1
+ + T
I BN=— 41 T+ BN— o Tt BN4+2=n 4
- 1 h 4
BT e 0 0
1 1 0 o
B1—my Bn— 41— M
1 1 u .
: g K
Br—m_ _ Bn—1—" 1
= det 2 % Ky K = —detW <0,
A1 IR K> By K3 N2 Ky
0 0 — T ¥ L &5
AN—42™M BN+2 =]
0 0 1 L
¥ =
L PN— 27N+ Pngz Ty

—1)h

detB (h) < 0 as h large enough. (The last equality is due to the basis

{[;7...7 1 ]’[ 1 — 1 _]’...7[ 1_ R 1

Br—1 Bn-41— 17 Br—m Bn-+1— T Br— Ny- BN-41 = Ny-

]®

In addition, we have detB(0) = 2(1 + L)detZN > 0. By the intermediate value
theorem, this implies that detB (h) = 0 has a positive solution Ah. O

Theorem 5.3. Let Ah be a positive solution of the equation detB(h) = 0 and define hy
by Eq.(48). Set hy = hy+ Ah and compute {C4, -+ ,Cny2} by the formula Eq.(46). Then
{C1,-++ ,Cnyia,h1, ha} is a solution of the equations Eq.(29)-Eq.(34).
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Proof. The system of equations Eq.(29)-Eq.(34) is equivalent to ADC = K together with

the smooth pasting conditions Eq.(33) and Eq.(34). From the proof of Proposition 5.1,
we know that {C1, -+, Cnya, h1, ho} satisfies ADC = K and Eq.(34). It remains to check

that Eq.(33) is satisfied. By Eq.(46), the left hand side of Eq.(33) is

Klyn ﬂnhQ
2 a0 =)
- eB1h1
B1—my
eP1hy
Br—ng
eB1ha
_nt
= det Fr=ni
eP1h2
131—;:’_'_
(eﬁlh1+Kiéeﬁlh2)
B1
ePiha
L 1-571
- 1
B1—mq
1
611*77;]_
—aF €
= det frmmi
1
B1—n;+
At Ly
JB1AR
| 1-81
Bi—m
1 B1AR
-1 _
= detA; “det Pimm
1 BiAR
El—n;Jre
oB1AR
| 1-51

SNy2h
BN+2—17

SNy2h1

BNy2—n
eﬁN+2’%

/3N+2—ni"

S

BN+2

det

PN42Bh
BN+2-71 4
L+ gL At

BN 2AR
1-BN+2

29

eB1ha
B1—mnq

eP1hi

Bl—WN_
eB1ha
Br—ny

SN42h1
BN42-m11
SNy2h1
BNy2—n
65N+2’{\;
Bny2—ni
SNy2h2
B _ T
N+2 7t
h h
(KileBNH 1+%265N+2 2)
BN+2
SNy2h1
BN 42
1 q -1
BN42—m1
1
BN42—1,_
%eﬂyw-zAh
T
BN+2-
1 eﬂ[\]_*_zAh
BN+2-1 Gt
1 1 BN4248R
BN+2 a+ Kz )
BN42K1 _




Since Ah satisfies det B(h) = 0, we have

— N . _
B1—my BN42-n1
i 1
Br—m BN42—n
N
1 B1AR 1 EBIXUJA’L
_detAl = —det B1—ny BN2—nq
1 Ak 1 _BNiadh
B1— BN42—1]
1t N+2771 G4
ﬁ(l-‘—%cﬁlﬂh) ﬂN1+2(1+ %65N+2A}L)
1 1
L p1-1 BN42-1 |
1 1 . r 1 1
B1—mny BN42—11 B1—my BNy2—1
1 1 1 1
B1—m_ BN42—1 _ B1—m BN42—n
N
1 B1AR 1 < eﬁ%uﬂh 1 B1Ah 1 eBszw.zAh
— d@t B1—n{ BN+42—n1 — e_Ahdet B1—n{ BN42—1]
1 eB1AR 1 BN428R %ethh 1 AN428h
ﬁ1*77$+ ﬁN+24Tl;+ /31—77;+ [3N+2—T/;+
1 Ky B1AR 1 K] BNy2AhR 1 EASINCIPAV) 1 Ky BN42AR
B1 a+ Ky ¢ ) BN+2 <1+(Il§2e )Ah) ﬁ1(1+ Ky © ) ;3N+2(1+ K%e N )
1 (B1—1)Ah 1 N+2—1 1 B1AR L. 1 N+2
B1—1°€¢ BNi2-1° _ B1—1°¢ BNt2-1°¢

Therefore, the left hand,side’of Bq.(33) is equal to det As 'detA et = e+Ah = ¢h2 The

proof is complete. O

6 Numerical Results

In this section, we solve the systemcof equations.Eq.(29)-Eq.(34) numerically. To do
this, we first find the length of the continuation region, Ah; by solving the equation
detB(h) = 0 where B(h) is the.square matrix in Eq/(47). Second, we compute h; by
Eq.(48) and set hy = hy + Ah. Finally; we.obtaint the coefficient vector C according to
Eq.(46) and evaluate the value function V(x) by the formula V(z) = SN2 Cefre for

x e (hl, hg)
Example 1: Consider the case that Nt = N~ = 1. In addition, as in Boyarchenko[4],
we take ¢ = —0.105, 0 = 0.25, r = 0.06, n* = 5, 1" = -5, A =2, p=¢q =05

and the strike prices K; = 50 and Ky, =
Vi(z) = Eizl CpeP® in (hi, hi) where

100. Then the value function is given by

(hi hy) =
{51,52753754} =
{C1, 0y, 03,04 =

(2.1992, 6.1953)
{-3.4812, -0.2322,1.1995, 6.953}
{2519.533,61.2124,0.2183,1.4624 x 10~ '8},
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T T
——— Payoff Function of Call Option

Payoff Function of Put Option

= = = Value Function For Diffuse Case

—— Value Function For Jump Diffuse Case with N+=N-=1

Figure 1: The solid line is the value funetion V. (z) for the jump-diffusion model with
Nt = N~ =1 and the dash line is the'éne for the diffusion model, that is, N* = N~ = 0.
The optimal boundaries are matrked by circles for jump-diffusion model, and by triangles
for diffusion model.

Besides, if we take Nt = N=—-= (0 which is_the diffusion case, then we observe

V(z) =32, Cpef imn(h;, h) where

(hi, h3) = (34151, 4.859)
{81352}, = € 1.5607,4.9207}
{Gy, G}, = {4037.8534,1.1088 x'10-%}.

It is interesting to note that in the jump-diffusion.model, the optimal interval (h7, h}) is
much wider than that for the diffusion case.” This indeed makes sense because there are
more opportunities to earn large gains by the jump occurring and hence it can be expected
that the investors will not exercise the options in the jump-diffusion environment earlier
than in the diffusion one. Figure 3 shows the graph of the determinant of B(h) as a
function of h. It shows that the zero of the determinant (this is Ah) is unique. Besides,
the graph descends sharply near the zero of the determinant. This implies that we can
get the numerical result for Ah fast and correctly.

Example 2: Consider the jump-diffusion model with N~ = N* = 2 and let ¢ =
—0.105, 0 = 0.25, r = 0.06, n{ = 5=, 75 = 555, h = —33.72 = —15, A =2
p1=p2 = ¢ = qo = 0.25 and the strike prices K; = 50 and Ky = 100. In this model,
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X 10" Determinant of B(h)
T T

0 05 1 15 2 25 3 3.5 4 4.5

Figure 2: The figure is the graph of the determinant. B(h) for finding the length Ah of
the optimal interval. It shews that-there is only one zero for the determinant.

the expected value E[eX1]/is.the same as-the one with N- = N"=1 in Example 1. The
value function is V(z)= Y0 _, Cpe®® in (h%,45) where
(h, h3) = (2.1153;6.3801)
{B1, B2, B3, Bu, Bsy Po o= {7997, —1.9409,—=0.1155, 141642, 3.2421, 7.0931}
{C1,Cy,C3,Cy, Cs,Ce} = 24735200.1029, 240.6048, 44,1297, 0.2679, 8.8413 x 1077,
2 4671, X 1019
As noted before, models in Example 1 and Example 2 have the same expected value

E[eX1]. However the optimal interval in Example 2 (N~ = NT = 2) is wider than that
for the case N~ = N* = 1.

7 Conclusion

In this study, we consider the problem of pricing the perpetual American strangle op-
tion under the hyper-exponential jump-diffusion Lévy process, which was mentioned in
Boyarchenko[4]. Owing to the analytical tractability of the mixture-exponential density

function, we derive alternative representation of the two-sided first passage functional by
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—— Payoff Function of Call Option
—— Payoff Function of Put Option

= = = Value Function For Jump Diffuse Case With N+=N-=1
—— Value Function For Jump Diffuse Case with N+=N-=2

the case N~ = NT =

-5

Figure 4: The figure is the graph of the determinant for finding the length of the optimal
interval for the case N~ = N* = 2. The figure has similar properties as for the case
N~ = Nt = 1. In particular, there is only one zero for the determinant.
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transforming the integro-differential equation in Eq.(3) to higher ODE. Therefore, we ob-
tain that the two-sided first passage functional is a linear combination of the exponential
functions. (Using the Winer-Hopf decomposition, Boyarchenko[4] observed the same re-
sult.) By Theorem 2.6 and the verification theorems in Section 3, we prove the conjecture
in Boyarchenko[4]: the value function of the perpetual American strangle options is a
two-sided first passage functional and the continuation region is a finite interval satisfying
the smooth pasting condition. Also, we show that the existence of the solution to the free
boundary problem with embedding the smooth pasting condition.(This is another open
problem posed in Boyarchenko[4].) For calculating the value function and the boundaries
of the continuation region, we improve the algorithm in Boyarchenko[4] such that the
computing rate is from O(N?) reduced togO(N) where N is the number of the mixtures
in the density function. It is worth noting-that. the verification theorem can be applied
to not only the perpetual American strangle options. but also other perpetual American

exotic options. These aré the further researches.
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