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    本論文在研究永續美式勒式選擇權在超指數型跳躍擴散模型下的定價問
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出永續美式勒式選擇權的合理價格。此外，我們也證明了自由邊界問題再加上平

滑銜接條件的解之存在性。 
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Abstract 
This study investigates the problem of pricing perpetual American 

strangle option under a hyper-exponential jump-diffusion model. By 
using the free boundary problem approach, we solve the corresponding 
optimal stopping problem and determine the rational price of the 
perpetual American strangle options. In particular, we prove the existence 
of solutions to the free boundary problems with the smooth pasting 
conditions. 
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1 Introduction

An American option is an option allowing the buyer exercises at any time prior to the

maturity. In particular, the American option with the infinite time horizon is called the

perpetual American option. For an American call option with a finite expiration time,

Merton[16] observed that the price of the American option(written on an underlying

stock without dividends) coincides with the price of the corresponding European option.

However, the American put option(even without dividends) presents a difficult problem.

There are no explicit pricing formulas and the optimal exercise boundaries are also not

known. But within the Black-Scholes model, McKean[15] solved the problem of pricing the

perpetual American put option. In addtion, in the Lévy-based models, Boyarchenko and

Levendorskii[6] derived the closed formula for prices of perpetual American put and call

options by the theory of pseudo-differential operators. Using the probabilistic techniques,

Mordecki and Salminen[17] obtained explicit formulas under the assumption of mixed-

exponentially distributed and arbitrary negative jumps for the call options, and negative

mixed-exponentially distributed and arbitrary positive jumps for put options. For related

works, see Asmussen et al.[2] and the references therein.

Mathematically, a rational price of the perpetual American instrument is

V (x) = sup
τ∈T

Ex(e
−rτg(Xτ )) (1)

where r ≥ 0 represents the rate of the discounted factor, g ≥ 0 is the reward function

corresponding to the contract and T is the family of the stopping times. Therefore, to

find the price of the perpetual American instruments is equivalent to solve the optimal

stopping problem: to find the value function V (x) and the optimal stopping time τ ∗, that

is, V (x) = Ex

[
e−rτ

∗
g(Xτ∗)

]
. It is well-known that under some suit conditions, the value

function is a solution to the free boundary(Stephan) problem{
(LX − r)V (x) = 0 in C
V (x) = g(x) on D

(2)

where C = {x ∈ R, V (x) > g(x)} (the continuation region) , D = {x ∈ R, V (x) = g(x)}
(the stopping region) and LX is the infinitesimal operator of X. Also, the stopping time

τD = inf{t ≥ 0|Xt ∈ D} is an optimal stopping time. For more details and related

1



topics about optimal stopping and free boundary problem, we refer to the monograph

of Peskir and Shiryaev[19]. Many authors in the literature suggested that the boundary

of the stopping region D is determined by imposing the smooth pasting fit for the value

function. Therefore, to solve the optimal stopping problem (1), it suffieces to solve the

above free boundary problem with suitable pasting conditions.

Note that the investigations mentioned as above are American call or put types.

The corresponding reward functions are one-sided, that means the support of g is either

{x ∈ R|x ≥ K} or {x ∈ R|x ≤ K} for some K ∈ R. It is proved that the correspond-

ing continuation region is a half line in both cases. For example, see Boyarchenko and

Levendorskii[6], McKean[15] and Mordecki[18]. In this study, we consider the pricing

problem for the perpetual American strangle(straddle) options whose reward function is

a combination of the reward functions of the call and put options. Therefore, the corre-

sponding g is of the two-sided form, that is, the support of g is [l1, l2] for some l1 and l2 ∈ R.

Boyarchenko[4] conjectured that the corresponding value function shall be the solution

the free boundary problem (2) and the continuation region C is a finite interval whose

two boundaries both satisfy the smooth pasting condition. Under the hyper-exponential

jump-diffusion Lévy processes, they derived the solution to the{
(LX − r)V (x) = 0 in (h1, h2)

V (x) = g(x) on (h1, h2)
c

(3)

by the Wiener-Hopf decomposition for fixed h1 and h2. Also, under suitable parameters,

the boundaries h1 and h2, required to satisfy the smooth pasting conditions, are obtained

by the approximation of the Brownian motion. In this investigation, we prove the opti-

mality and the existence problems posed in Boyarchenko[4]. Inspired by Chen et al.[9],

we obtain alternative representation of the solution to Eqs.(3) by the ODE approach.

For details, see Chang et al.[7]. Using the representation, we prove the conjecture in

Boyarchenko[4] and the existence of the solution to Eqs.(3) with embedding the smooth

pasting condition. Moreover, we improve the algorithm in Boyarchenko[4] for computing

the value function and the continuation region.

The rest of the paper is organized as follows. Section 2 describes the hyper-

exponential jump-diffusion Lévy processes that are considered herein. Also, we derive

the solution to Eqs.(3) for fixed (h1, h2) by direct calculation, not the Wiener-Hopf de-
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composition. In fact, the associated integro-differential equation in Eqs.(3) is transformed

into a homogeneous ODE of higher order. Theorem 2.6 shows that this ODE is solved in

closed form and its solution equals the first passage functional

Φ(x) = Ex

[
e−rτIcg(XτIc )

]
(4)

where I = (h1, h2) and τIc = inf{t ≥ 0|Xt ∈ Ic} is the firs exit time from I. In Sec-

tion 3, we provide the verification theorems for the optimal stopping problems (1) with a

general two-sided reward function. In Section 4, we consider the problem of pricing the

perpetual American strangle options when the log-price following the hyper-exponential

jump-diffusion processes. We verify that for the reward function g of the perpetual Amer-

ican strangle options, Φ(x) is the value function when both the boundary points of I

satisfy the smooth pasting conditions. The existence of such interval is proved in Sec-

tion 5. Also, alternative algorithm for solving the value function and the continuation

region is given herein.(For the Wiener-Hopf approach, see Boyarchenko[4].) Section 6

presents some numerical results of the perpetual American strangle options and Section

7 concludes this paper.

2 Preliminaries

Throughout this paper, on a probability space (Ω,F ,P), we assume that X is the hyper-

exponential jump-diffusion Lévy process, that is,

Xt = ct+ σBt +
Nt∑
n=1

Yn (5)

where c ∈ R, σ > 0, B = (Bt, t ≥ 0) is a standard Brownian motion, (Nt; t ≥ 0) is a

Poisson process with rate λ > 0. Also, Y = (Yn, n ≥ 0) is a sequence of independent

random variables with the identical density function

f(x) =
N+∑
j=1

pjη
+
j e
−η+j x1{x>0} +

N−∑
j=1

qj(−η−j )e−η
−
j x1{x<0} (6)

where η−1 < ... < η−N− < 0 < η+1 < ... < η+N+ , pj’s and qj’s are positive with
∑N+

j=1 pj +∑N−
j=1 qj = 1. Assume further that B,Nt and Y are independent. The jump-diffusion
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process starting from x is simply defined as x + Xt for t ≥ 0 and we denote its law by

Px. For convenience, we shall write P in place of P0. Also Ex denotes the expectation

with respect to the probability measure Px. Under these model assumptions, we have

E(ezXt) = etψ(z), z ∈ iR, where ψ is called the characteristic exponent ψ of X and is given

by the formula

ψ(z) =
1

2
σ2z2 + cz + λ

(
N+∑
i=1

piη
+
i

η+i − z
+

N−∑
j=1

qjη
−
j

η−j − z

)
− λ. (7)

Also the infinitesimal generator LX of X has a domain containing C2
0(R) and for h ∈

C2
0(R),

LXh(x) =
1

2
σ2h′′(x) + ch′(x) + λ

∫
h(x+ y)f(y)dy − λh(x). (8)

We define LXh(x) pointwisely by the expression (8) for all functions h on R such that h′,

h′′ and the integral in (8) exist at x.

Consider the continuous reward function g given by the formula

g(x) = g1(x)1{x≤l1} + g2(x)1{x≥l2} (9)

for some −∞ < l1 ≤ l2 <∞. Here g1(x) is a strictly positive C∞-function on (−∞, l1) and

g2(x) is a strictly positive C∞-function on (l2,∞). We assume further that g1 is continuous

at l1 with g1(l1) = 0, g2 is continuous at l2 with g2(l2) = 0 and Ex

[
supt≥0 e

−rtg(Xt)
]
<∞

for all x ∈ R. Finally, we denote τBc = inf{t ≥ 0|Xt /∈ B} as the first exit time form the

Borel set B.

Proposition 2.1. Assume that g1 is bounded on (−∞, l1) and the function
∫∞
0
g2(x +

y)f(y)dy, x ≥ l2, is locally bounded. Consider the interval I = (h1, h2) for some −∞ <

h1 < l1 ≤ l2 < h2 <∞. If Φ̃(x) is a solution of the boundary value problem:{
(LX − r)Φ̃(x) = 0, x ∈ I
Φ̃(x) = g(x), x ∈ Ic (10)

and Φ̃ is in C2(h1, h2) ∩C[h1, h2], then Φ̃(x) = Φ(x) for all x ∈ R where Φ(x) is denoted

by Eq.(4).
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Proof. We follow similar arguments as that in Chen et al.[9]. Fix x ∈ (h1, h2). Pick a

sequence of functions {Φ̃n} in C20(R) such that Φ̃n ≡ Φ̃ on (h1+
1
n
, h2− 1

n
) and Φ̃n → Φ̃ a.s..

Since g1 is bounded, we can choose {Φ̃n} such that {Φ̃n} are uniformly bounded on (−∞, c]

for any c ∈ R, and Φ̃n(y) ≤ 2g2(y) for all n and all y ≥ M . Here M > h2 is a strictly

positive constant(independent of n). Consider any ε > 0 such that x ∈ Iε = (h1+ε, h2−ε).
Let n be large enough such that 1

n
< ε. By Dynkin’s formula, we have

Ex

[
e−r(t∧τIcε )Φ̃n(XτIcε∧t)

]
= Ex

[∫ t∧τIcε

0

e−ru(LX − r)Φ̃n(Xu−)du

]
+ Φ̃(x). (11)

For every u < t ∧ τIcε , we have Xu ∈ Iε and hence Φ̃n(Xu) = Φ̃(Xu). This gives

(LX − r)Φ̃(Xu)− (LX − r)Φ̃n(Xu) =

∫ [
Φ̃(Xu + y)− Φ̃n(Xu + y)

]
f(y)dy (12)

and hence ∣∣∣(LX − r)[Φ̃(Xu)− Φ̃n(Xu)]
∣∣∣

≤ sup
z≤M+|h1|+|h2|

[
|Φ̃(z)|+ |Φ̃n(z)|

]
+ sup

h1≤z≤h2

∫ ∞

M+|h1|
3g2(z + y)f(y)dy

<∞ ( by assumptions ) . (13)

Also, by the dominated convergence theorem and Eq.(12), for all u < t ∧ τ cIε , (LX −
r)Φ̃n(Xu) → (LX − r)Φ̃(Xu) as n → ∞. By Eq.(11) and the dominated convergence

theorem, we have

lim
n→∞

Ex

[∫ t∧τcIε

0

e−ru(LX − r)Φ̃n(Xu)du

]
= Ex

[∫ t∧τcIε

0

e−ru(LX − r)Φ̃(Xu)du

]
.

Note that |Φ̃n(x)| ≤ supn supz≤M |Φ̃n(z)|+2g(z) and Ex

[
supt≥0 e

−rtg(Xt)
]
<∞. Letting

n→∞ for both sides of Eq.(11) together with the dominated convergence theorem gives

Ex

[
e−r(t∧τ

c
Iε
)Φ̃(XτcIε∧t)

]
= Ex

[∫ t∧τcIε

0

e−ru(LX − r)Φ̃(Xu)du

]
+ Φ̃(x) = Φ̃(x). (14)

Note that the last equality follows from the assumption that (LX − r)Φ̃ = 0 in (h1, h2).

Observe that

Ex

[
sup
t≥0

e−rtΦ̃(Xt)

]
≤ sup

y≤h2
Φ̃(y) + Ex

[
sup
t≥0

e−rtg(Xt)

]
<∞.
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By letting t → ∞ in both sides of the equality in Eq.(14) and the dominated

convergence theorem, we obtain Φ̃(x) = Ex

[
e−rτ

c
Iε Φ̃(XτcIε

)
]
. Note that for any fixed

ω ∈ Ω, either XτcIε
(ω)→ XτIc(ω) as ε→ 0 or XτcIε

(ω) = XτIc(ω) for all sufficiently small

ε. Since Φ̃(x) is continuous, by the dominated convergence theorem, we obtain

Φ̃(x) = lim
ε→0

Ex

[
e−rτ

c
Iε Φ̃(XτcIε

)
]
= Ex

[
lim
ε→0

e−rτ
c
Iε Φ̃(XτcIε

)
]
= Ex

[
e−rτ

c
I Φ̃(XτcI

)
]

= Ex

[
e−rτIg(XτcI

)
]

Therefore, the proof is complete.

Remark 2.2. The conclusion of Proposition 2.1 still holds for the general jump-diffusion

processes as well as the functions g1 and g2 are C∞(not necessary strictly positive) satis-

fying the conditions in Proposition 2.1. �

Note that ψ given by Eq.(7) is an analytic function on C except at a finite number

of poles. Also, the equation ψ(z)−r = 0 yields N++N−+2 distinct real zeros. (If r = 0,

c 
= 0 or N+ +N− > 0 is further assumed.) Set N = N+ +N− and let β1, β2, · · · , βN+2

be the distinct real zeros of the equation ψ(z)− r = 0.

Let P0(z) =
∏N+

j=1(η
+
j − z)

∏N−
j=1(η

−
j − z). Now, P1(z) = P0(z)(ψ(z) − r) is a

polynomial whose zeros coincide with those of ψ(z) − r. Denote by D the differential

operator such that its characteristic polynomial is P1(z).

Proposition 2.3. Suppose a solution Φ̃ defined on R to the boundary value problem (10)

exists. Then, on (h1, h2), Φ̃ is infinitely differentiable and satisfies the ODE,

DΦ̃ ≡ 0, on (h1, h2). (15)

Hence, on (h1, h2), Φ̃(x) =
∑N+2

n=1 Cne
βnx for some constants Cn.

Proof. This proposition is proved by direct computation. Plugging the density function

f , given by Eq.(6), into Eq.(8), yields the generator L that acts on Φ̃:

LΦ̃(x) = σ2

2
Φ̃′′(x) + cΦ̃′(x) + λ

(
N+∑
j=1

pjη
+
j e

η+j x

∫ ∞

x

Φ̃(y)e−η
+
j ydy

+
N−∑
j=1

qj(−ηj)eη
−
j x

∫ x

−∞
Φ̃(y)e−η

−
j ydy

)
− λΦ̃(x).
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From this equation and the fact that σ > 0 and (L − r)Φ̃ ≡ 0, Φ̃ is infinitely

differentiable on (h1, h2), as can be established by induction, as in the work of Chen et

al.[9].

Next, Φ̃ will be shown to satisfy an ODE. Consider the differentiation rule,(
η+j −

d

dx

)
pjη

+
j e

η+j x

∫ ∞

x

Φ̃(y)e−η
+
j ydy

= pjη
+
j

[
−
(
η+j e

η+j x

∫ ∞

x

Φ̃(y)e−η
+
j ydy − Φ̃(x)

)
+ η+j e

η+j x

∫ ∞

x

Φ̃(y)e−η
+
j ydy

]
= pjη

+
j Φ̃(x),

and similarly,
(
η−j − d

dx

)
qj(−η−j )eη

−
j x
∫∞
x

Φ̃(y)e−η
−
j ydy = qjη

−
j Φ̃(x). Since Φ̃ is infinitely

differentiable on (h1, h2) and (L − r)Φ̃ ≡ 0 on (h1, h2),

0 =
N+∏
i=1

(η+i −D)
N−∏
j=1

(η−j −D)(
1

2
σ2D2 + cD − (λ+ r))Φ̃(x) + (16)

λ
N+∏
i=1

(η+i −D)
N−∏
j=1

(η−j −D)(
N+∑
i=1

piη
+
i

η+i −D
+

N−∑
j=1

qjη
−
j

η−j −D
))Φ̃(x) (17)

Hence, Eq.(17) transforms the integro-differential equation (L − r)Φ̃ ≡ 0 into an ODE:

D̃Φ ≡ 0, where D̃ is a high order differential operator.

To complete the proof, D̃ must be shown to coincide with D. (See the definition of

D in the paragraph above Proposition 2.3.) To show that the characteristic polynomials

of D and D̃ coincide will suffice. Write P̃(z) as the characteristic polynomial of D̃. Then,

by Eq.(17), P̃ is given by

P̃(z) =
N+∏
j=1

(η+j − x)
N−∏
j=1

(η−j − x)

[
1

2
σ2x2 + cx− (λ+ r) + λ(

N+∑
j=1

pjη
+
j

η+j − x
+

N−∑
j=1

qjη
−
j

η−j − x
)

]
= P0(z)(ψ(z)− r).

This equation reveals that the characteristic polynomial P1(z) of D equals that, P̃(z), of
D̃. The proof is complete.

Proposition 2.4. Suppose that Φ̃ is a solution to the boundary value problem (10) and,

on (h1, h2), Φ̃(x) =
∑N+2

n=1 Cne
βnx for some constants Cn. Then the constant vector C

satisfies the equation

AC = Vg (18)
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where

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
β1−η−1

eβ1h1 · · · 1
βN+2−η−1

eβN+2h1

...
. . .

...
1

β1−η−
N−
eβ1h1 · · · 1

βN+2−η−N−
eβN+2h1

1
β1−η+1

eβ1h2 · · · 1
βN+2−η+1

eβN+2h2

...
. . .

...
1

β1−η+
N+

eβ1h2 · · · 1
βN+2−η+N+

eβN+2h2

eβ1h1 · · · eβN+2h1

eβ1h2 · · · eβN+2h2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(19)

and Vg is a column vector whose components Vg(n) are given by the formula

Vg(n) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∫ h1
−∞ g(y)e

−η−n (y−h1)dy, if 1 ≤ n ≤ N−

−
∫∞
h2
g(y)e

−η+
(n−N−)

(y−h2)dy, if N− + 1 ≤ n ≤ N

g(h1), if n = N + 1
g(h2), if n = N + 2

(20)

Proof. Since (L − r)Φ̃ = 0 on (h1, h2), for x ∈ (h1, h2),

0 =
σ2

2
Φ̃′′(x) + cΦ̃′(x) + λ

∫
Φ̃(x+ y)f(y)dy − (λ+ r)Φ̃(x)

=
N+2∑
n=1

Cne
βnx(

σ2

2
β2
n + cβn − (λ+ r)) + λ

∫
Φ̃(x+ y)f(y)dy. (21)

Furthermore,∫
Φ̃(x+ y)f(y)dy =

(∫ h1

−∞
+

∫ ∞

h2

)
g(y)f(y − x)dy +

∫ h2−x

h1−x
Φ̃(x+ y)f(y)dy

=
N−∑
j=1

qje
η−j x
∫ h1

−∞
g(y)(−η−j )e−η

−
j ydy +

N+∑
j=1

pje
η+j x

∫ ∞

h2

g(y)η+j e
−η+j ydy

+
N+2∑
n=1

Cne
βnx

N−∑
j=1

qj(−η−j )
∫ 0

h1−x
eβnye−η

−
j ydy +

N+2∑
n=1

Cne
βnx

N+∑
j=1

pjη
+
j

∫ h2−x

0

eβnye−η
+
j ydy

=
N+∑
j=1

pje
−η+j x

∫ ∞

h2

g(y)η+j e
−η+j ydy +

N−∑
j=1

qje
η−j x
∫ h1

−∞
g(y)(−η−j )e−η

−
j ydy

+
N+2∑
n=1

Cne
βnx

N−∑
j=1

−qjη−j
βn − η−j

(
1− e(βn−η

−
j )(h1−x)

)

+
N+2∑
n=1

Cne
βnx

N+∑
j=1

pjη
+
j

βn − η+j

(
e(βn−η

+
j )(h2−x) − 1

)
(22)

8



Now, by Eq.(21) and Eq.(22) as well as the fact ψ(βn)− r = 0 for all n, we have

0 =
N+∑
j=1

pje
−η+j x

∫ ∞

h2

g(y)η+j e
−η+j ydy +

N−∑
j=1

qje
η−j x
∫ h1

−∞
g(y)(−η−j )e−η

−
j ydy

+
N−∑
j=1

qje
η−j x

N+2∑
n=1

Cn
η−j

βn − η−j
e(βn−η

−
j )h1 +

N+∑
j=1

pje
−ηjx

N+2∑
n=1

Cn
η+j

βn − η+j
e(βn−η

+
j )h2 .

Comparing e−η
+
j x and eη

−
j x yields Eq.(18). The proof is complete.

Lemma 2.5. For any h1 < h2, the matrix A given by Eq.(19) is invertible.

Proof. assume AC = 0 for some vector C = [C1, C2, · · · , CN+2]
T . Consider the function

Ṽ (x) =
∑N+2

n=1 Cne
βnx for x ∈ (h1, h2), and Ṽ (x) = 0 otherwise. Since AC = 0 and Ṽ (x)

is a solution to the boundary value problem (10) with g(x) ≡ 0. From the uniqueness

of solutions to the boundary value problem (10), Ṽ (x) =
∑N+2

n=1 Cne
βnx = 0 for all x ∈

(h1, h2). Now consider the Wronskian

W (eβ1x, · · · , eβN+2x) ≡ det

⎡⎢⎢⎢⎣
eβ1x · · · eβN+2x

β1e
β1x · · · βm+2e

βN+2x

...
. . .

...
βN+1
1 eβ1x · · · βN+1

N+2e
βN+2x

⎤⎥⎥⎥⎦ .
Then

W (eβ1x, · · · , eβN+2x) = exp
(
(
∑N+2

n=1 βn)x
)
det

⎡⎢⎢⎢⎣
1 · · · 1
β1 · · · βN+2
...

. . .
...

βN+1
1 · · · βN+1

N+2

⎤⎥⎥⎥⎦ (23)

= exp
(
(
∑N+2

n=1 βn)x
)∏

1≤i<j≤N+2(βi − βj) 
= 0.

(The matrix in Eq.(23) is a Vandermonde matrix.) This inequality implies that {eβnx|1 ≤
n ≤ N +2} are linearly independent and so C = 0, which implies that A is invertible.

In the following, for a given function g on (h1, h2)
c, C(g) = A−1Vg is set where

A and Vg are defined as in Eq.(19) and Eq.(20), respectively. Also, Y • Z is written

for the usual inner product of the vectors Y and Z in R
N+2 and for every real value x,

eβ(x) = [eβ1x, · · · , eβN+2x]. Our main result is as follows.
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Theorem 2.6. Given a constant r ≥ 0 and a nonnegative function g satisfying the

condition in Proposition 2.1 on (h1, h2)
c, the function Φ(x), defined by the formula

Φ̃(x) =

{
C(g) • eβ(x), if x ∈ (h1, h2)
g(x), if x /∈ (h1, h2)

, (24)

solves the boundary value problem (10). Additionally, Φ̃(x) = Ex [e
−rτIcg(XτIc )].

Proof. The first statement follows by direct calculation using Eq.(18). The proof of the

second statement(concerning the uniqueness of solutions of the boundary value problem

(10)) is the same as that of Proposition 4.1 in the work of Chen et al.[9] if R+ is replaced

by (h1, h2)c. This proof is omitted here.

3 Verification Theorems

In this section, we introduce the theorems to verify whether the possible candidate func-

tion is equal to V given in Eq.(1). Due to the form of the reward function g given in

Eq.(9), it conjectures that the possible candidate shall be of the same form as Φ(x) with

some special interval I. To do this, the following verification theorem is required.

Theorem 3.1. Given I = (h1, h2) where −∞ < h1 < l1 ≤ l2 < h2 < ∞. Assume that

the function Φ(x) in Eq.(4) satisfies the following conditions:

(a) Φ(x) is the difference of two convex functions.

(b) Φ(x) is a twice continuously differentiable function except possibly at h1 and h2.

(c) The limits Φ′′(hi±) = limh→hi±Φ
′′(h), i = 1, 2, exist and are finite.

(d) (LX − r)Φ(x) ≤ 0 for all x except finitely many points.

(e) Φ(x) ≥ g(x) for all x ∈ (h1, h2).

Then Φ(x) is the value function for the optimal stopping problem (1) with the reward

function g given in Eq.(9).
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Proof. Let V be the value function for the optimal stopping problem (1). Clearly, we

have Φ(x) ≤ V . It remains to show that V (x) ≤ Φ(x). By the Meyer-Itô formula(see, for

example, Corollary 1 in Protter[20] ChIV. pp.218-pp.219), we have

e−rtΦ(Xt)− Φ(x) = −
∫ t

0

re−rsΦ(Xs)ds+

∫ t

0

e−rsΦ′(Xs−)dXs

+
∑
0<s≤t

e−rs (Φ(Xs)− Φ(Xs−)− Φ′(Xs−)ΔXs) +
1

2

∫ t

0

e−rsΦ′′(Xs−)d[X,X]cs

where Φ′(x) is its left derivative and Φ′′(x) is the second derivative in the generalized

function sense. By similar arguments as that in Mordecki[18] Sec. 3, we have

e−rtΦ(Xt)− Φ(x) =

∫ t

0

e−rs(LX − r)Φ(Xs−)ds+Mt (25)

where {Mt} is a local martingale with M0 = 0. Let Tn ↑ ∞ be a sequence of stopping

times such that for each n, {MTn∧t} is a martingale. Let τ be a stopping time. By the op-

tional stopping theorem, we have Ex[MTn∧t∧τ ] = Ex[M0] = 0. In addition, by (d), we have∫ Tn∧t∧τ
0

e−rs(LX − r)Φ(Xs−)ds ≤ 0. By Eq.(25), we observe Ex[e
−r(Tn∧t∧τ)Φ(XTn∧t∧τ )] ≤

Φ(x). Since g(x) is nonnegative and Ex

[
supt≥0 e

−rtg(Xt)
]
< ∞, by Dominated Conver-

gence Theorem and (e), we have

Ex[e
−rτg(Xτ )] = Ex[ lim

t→∞
lim
n→∞

e−r(τ∧t∧Tn)g(X(τ∧t∧Tn))] = lim
t→∞

lim
n→∞

Ex[e
−r(τ∧t∧Tn)g(X(τ∧t∧Tn))]

≤ lim
t→∞

lim
n→∞

Ex[e
−r(τ∧t∧Tn)Φ(X(τ∧t∧Tn))] ≤ Φ(x).

Because τ is arbitrary, we observe V (x) = supτ Ex[e
−rτg(Xτ )] ≤ Φ(x). The proof is

complete.

To verify condition (e) of Theorem 3.1, we have the following general results for a

class of two-sided reward functions g.

Proposition 3.2. Assume that g1 and g′1 are bounded on (−∞, l1) and the functions∫∞
0
g2(x + y)f(y)dy and

∫∞
0
g′2(x + y)f(y)dy, x ≥ l2, are locally bounded. We assume

further that g1(x)− g′1(x) is positive and increasing on (−∞, l1), g2(x)− g′2(x) is negative
and decreasing on (l2,∞) and Ex[supt≥0 e

−rt|g′(Xt)|] < ∞ for all x. Let I = (h1, h2) for

some −∞ < h1 < l1 ≤ l2 < h2 <∞ and consider a non-negative function Φ̃(x) on R that

is C2 on (h1, h2) and satisfies the following conditions:
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(a) (LX − r)Φ̃(x) = 0, ∀x ∈ (h1, h2),

(b) Φ̃(x) = g(x), ∀x ∈ I.

(c) d
dx

∫
Φ̃(x+ y)f(y)dy =

∫
Φ̃′(x+ y)f(y)dy, ∀x ∈ (h1, h2).

(d) Φ̃ is continuous at h1 and h2 and Φ̃′(hi), i = 1, 2, exist and are continuous there.

Then Φ̃(x) ≥ g(x) for all x ∈ (h1, h2).

Proof. By Proposition 2.1, we have Φ̃ = Φ for all x ∈ R. Note that Φ̃ is C∞ on (h1, h2)

(for a proof, see Chen et al.[9].) and, for x ∈ (h1, h2), we have

0 =
d

dx
(LX − r)Φ̃(x) =

1

2
σ2Φ̃′′′(x) + cΦ̃′′(x)− (λ+ r)Φ̃′(x) + λ

∫
Φ̃′(x+ y)f(y)dy,

which implies that (LX−r)Φ̃′(x) = 0 for x ∈ (h1, h2). By condition (d), Φ̃′ ∈ C[h1, h2] and
hence by the Remark 2.2, Φ̃′(x) = Ex[e

−rτIcg′(XτIc )]. This implies that Φ̃(x) satisfies the

ODE: Φ̃′(x)−Φ̃(x) = F (x), where F (x) = Ex[e
−rτIc (g′(XτIc )−g(XτIc ))]. Note that Φ̃(x) =

Φ(x) ≥ 0 = g(x) for l1 ≤ x ≤ l2. First consider the case that h1 ≤ x ≤ l1. By the ODE

theory and the boundary conditions, we have Φ̃(x) = ex
(∫ x

h1
e−tF (t)dt+ g1(h1)e

−h1
)
. Set

H(x) ≡ e−x(Φ̃(x)− g(x)). Then H(x) =
∫ x
h1
e−tF (t)dt+ g1(h1)e

−h1 − g1(x)e
−x and

H ′(x) = e−xF (x) + g1(x)e
−x − g′1(x)e

−x

= e−x{Ex[e−rτIc (g′(XτIc )− g(XτIc ))] + g1(x)− g′1(x)}

= e−x{Ex[e−rτ
+
Ic (g′2(XτIc )− g2(XτIc )); {τIc = τ+Ic}]

+Ex[e
−rτ−Ic (g′1(XτIc )− g1(XτIc )); {τIc = τ−Ic}] + g1(x)− g′1(x)}

≥ e−xEx[e
−rτ+Ic (g′2(XτIc )− g2(XτIc )); {τIc = τ+Ic}]

+e−x(g1(x)− g′1(x))(1− Ex[e
−rτ−I ; {τIc = τ−Ic}]

where τ+Ic = inf{t ≥ 0|Xt ≥ h2} and τ−Ic = inf{t ≥ 0|Xt ≤ h1}. For the last inequality,

we use the facts that g1(x)− g′1(x) is increasing and hence g1(Xτ−Ic
)− g′1(Xτ−Ic

) ≤ g1(h1)−
g′1(h1) ≤ g1(x) − g′1(x). Since g2(x) − g′2(x) is negative and g1(x) − g′1(x) is positive, we

obtain H ′(x) ≥ 0 which implies that H(x) is increasing . Therefore H(x) ≥ H(h1) = 0

and hence Φ̃ ≥ g(x). By a similar argument, we get Φ̃(x) ≥ g(x) for l2 ≤ x ≤ h2. The

proof is complete.

12



Note that the results mentioned as above do not reply on the property of the hyper-

exponential jump-diffusion Lévy processes and hence, are adapted to the general jump-

diffusion processes together with the general reward functions.

4 Pricing Perpetual American Strangles and Strad-

dles

A strangle is a financial instrument whose reward function is a combination of a put

with the strike price K1 and a call with the strike price K2 written on the same security,

where K1 ≤ K2. In particular, if K1 = K2, the strangle becomes a straddle. In addition,

if the strangle(straddle) can be exercised at any time and has no maturities, then it is

called the perpetual American strangle(straddle). In the remainder, we assume that the

price is drawn by St = exp{Xt} under the chosen risk-neutral measure. Here X is the

hyper-exponential jump-diffusion Lévy process in Eq.(5).

A rational price of the perpetual American strangle is the value function for the

optimal stopping problem (1) with the reward function g given by the formula

g(x) = (K1 − ex)+ + (ex −K2)
+ = g1(x)1{x≤l1} + g2(x)1{x≥l2}. (26)

where l1 = lnK1, l2 = lnK2, g1(x) = K1 − ex and g2(x) = ex −K2.

In the following, we show that the value function of the perpetual American strangle

is Φ(x) for I = (h1, h2) satisfying the smooth pasting condition. To do this, we need some

further properties for the coefficients Cn’s of Φ(x). We consider the following conditions

on the model :

η+j > 1 for j = 1, 2, ..., N+ (27)

and

1

2
σ2 + c− (λ+ r) + λ

(
N+∑
j=1

pjη
+
j

η+j − 1
+

N−∑
j=1

qjη
−
j

η−j − 1

)
< 0 (28)

(Note that Eq.(27) implies that E[eX1 ] < ∞ and Eq.(28) guarantees E[eX1 ] < er( hence

the underlying asset pays dividends continuously). If E[eX1 ] < er and 0 ≤ g(x) ≤ A+Bex

for some constants A and B, then E[supt≥0 e
−rtg(Xt)] < ∞. For details, see Lemma 4.1

of Mordecki and Salminen[17].)
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Lemma 4.1. Under the conditions Eq.(27) and Eq.(28), we have βN−+2 > 1.

Proof. First consider the case that N+ = 0. Then βN−+2 is the unique solution to the

equation φ(x) = 0 in (0,∞). Observe that limx→∞ φ(x) limx→1 φ(x) = −∞. Our result

follows by the intermediate value theorem. Next assume that N+ ≥ 1. Then βN−+2 is the

unique solution to the equation

φ(x) =
N+∏
i=1

(η+i − x)
N−∏
j=1

(η−j − x)

[
1

2
σ2x2 + cx− (λ+ r) + λ(

N+∑
i=1

piη
+
i

η+i − x
+

N−∑
j=1

qjη
−
j

η−j − x
)

]
= 0

in (0, η+1 ). Also we have

φ(1) =
N+∏
i=1

(η+i − 1)
N−∏
j=1

(η−j − 1)

[
1

2
σ2 + c− (λ+ r) + λ(

N+∑
i=1

piη
+
i

η+i − 1
+

N−∑
j=1

qjη
−
j

η−j − 1
)

]
,

and φ(η+1 ) = λp1η
+
1

∏N+

i=2(η
+
i − η+1 )

∏N−
j=1(η

−
j − η+1 ). By Eq.(27) and Eq.(28), we obtain

φ(1)φ(η+1 ) < 0 which implies βN−+2 > 1.

Now we consider the system of equations Eq.(18) together with the smooth pasting

condition. For the case of the perpetual American strangle option, the system of equations

is equal to

N+2∑
n=1

Cn
eβnh2

βn − η+k
=

1

1− η+k
eh2 +

K2

η+k
, k = 1, 2, ..., N+ (29)

N+2∑
n=1

Cn
eβnh1

βn − η−k
= − 1

1− η−k
eh1 − K1

η−k
, k = 1, 2, ..., N− (30)

N+2∑
n=1

Cne
βnh2 = eh2 −K2 (31)

N+2∑
n=1

Cne
βnh1 = K1 − eh1 (32)

N+2∑
n=1

Cnβne
βnh2 = eh2 (33)

N+2∑
n=1

Cnβne
βnh1 = −eh1 . (34)
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Subtract Eq.(31) from Eq.(33) and Eq.(32) from Eq.(34), we have

N+2∑
n=1

Cn(1− βn)e
βnh2 = −K2 (35)

N+2∑
n=1

Cn(1− βn)e
βnh1 = K1 (36)

Using Eq.(36), Eq.(34) and Eq.(30), we have

N+2∑
n=1

Cn
βn(1− βn)

βn − η−k
eβnh1 = 0, (37)

for k = 1, 2, ..., N−. Similarly, by Eq.(35), Eq.(33) and Eq.(29), we have

N+2∑
n=1

Cn
βn(1− βn)

βn − η+k
eβnh2 = 0 (38)

for k = 1, 2, ..., N+. From equations Eq.(35) and Eq.(36), we also have

N+2∑
n=1

Cn(1− βn)(
1

K1

eβnh1 +
1

K2

eβnh2) = 0. (39)

In addition, by Eq.(33) and Eq.(34), we have

N+2∑
n=1

Cnβn(e
(βn−1)h1 + e(βn−1)h2) = 0. (40)

To prove the following main result(Theorem 4.5), we need the following three tech-

nical lemmas.

Lemma 4.2. Assume that {C1, · · · , CN+2, h1, h2} is a solution of the equations Eq.(29)-

Eq.(34). Then Cj 
= 0 except for at most one j.

Proof. Set Δh = h2 − h1 and put Ĉn = eβnh1(1 − βn)βnCn for 1 ≤ n ≤ N + 2. Then,

byEq.(35)-Eq.(38), we have AĈ = K where

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
β1−η−1

· · · 1
βN+2−η−1

...
. . .

...
1

β1−η−
N−

· · · 1
βN+2−η−N−

1
β1

· · · 1
βN+2

1
β1
eβ1Δh · · · 1

βN+2
eβN+2Δh

1
β1−η+1

eβ1Δh · · · 1
βN+2−η+1

eβN+2Δh

...
. . .

...
1

β1−η+
N+

eβ1Δh · · · 1
βN+2−η+N+

eβN+2Δh

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Ĉ =

⎡⎢⎢⎢⎣
Ĉ1

Ĉ2
...

ĈN+2

⎤⎥⎥⎥⎦ and K =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
...
0
K1

−K2

0
...
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Let F1(x) =
∑N+2

i=1
Ĉi

βi−x and F2(x) =
∑N+2

i=1
eβiΔhĈi

βi−x . Clearly, F1(x) = S1(x)∏N+2
i=1 (βi−x)

and

F2(x) =
S2(x)∏N+2

i=1 (βi−x)
, where

S1(x) =
N+2∑
n=1

Ĉn

N+2∏
i=1,i 
=n

(βi − x) and S2(x) =
N+2∑
n=1

eβnΔhĈn

N+2∏
i=1,i 
=n

(βi − x). (41)

Then S1(x) and S2(x) are polynomials with degree at most N+1. Also, by the fact AĈ =

K, we have S1(0) = K1

∏N+2
i=1 βi, S2(0) = −K2

∏N+2
i=1 βi, S1(η

−
k ) = 0 for 1 ≤ k ≤ N− and

S2(η
+
k ) = 0 for 1 ≤ k ≤ N+. By Eq.(41), we have

Ĉn =
S1(βn)∏N+2

i=1,i 
=n(βi − βn)
=

e−βnΔhS2(βn)∏N+2
i=1,i 
=n(βi − βn)

(42)

for 1 ≤ n ≤ N+2. From this, we have S2(βn) = S1(βn) = 0 if and only if S2(βn)−S1(βn) =

0. In addition, we have Ĉn = 0 if and only if S2(βn) − S1(βn) = 0. Also if S1(βk) and

S2(βk) are nonzero for some 1 ≤ k ≤ N + 2, S2(βk)
S1(βk)

= eβkΔh. It remains to show that

|Θ| ≤ 1 where Θ = {βn|S1(βn)−S2(βn) = 0, for 1 ≤ n ≤ N+2} and |Θ| is the cardinality
of Θ. To do this, we need the following facts :

(1) If S2(x) 
= 0 on (η−k , βk+1] for some k, 1 ≤ k ≤ N−, then S2(x) − S1(x) = 0 has a

solution in (η−k , βk+1).

(2) If S2(x) 
= 0 on [βk, η
−
k ) for some k, 1 ≤ k ≤ N−, then S2(x) − S1(x) = 0 has a

solution in (βk, η
−
k ) .

(3) If S1(x) 
= 0 on (η+k , βN−+2+k] for some k, 1 ≤ k ≤ N+, then S2(x)− S1(x) = 0 has

a solution in (η+k , βN−+2+k).

(4) If S1(x) 
= 0 on [βN−+1+k, η
+
k ) for some k, 1 ≤ k ≤ N+, then S2(x)− S1(x) = 0 has

a solution in (βN−+1+k, η
+
k ).

(5) If S2(x) 
= 0 on [βN−+1, 0), then S1(x) has a solution in (βN−+1, 0).

(6) If S1(x) 
= 0 on (0, βN−+2], then S2(x) has a solution in (0, βN−+2).

To prove (1), we assume that S2(x) 
= 0 for all x ∈ (η−k , βk+1]. Let x∗ = sup{x ∈
[η−k , βk+1]|S1(x) = 0}. Note that x∗ exists because S1(η

−
k ) = 0 and x∗ < βk+1. Because
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S2(x)
S1(x)

is continuous on (x∗, βk+1], 0 <
S2(βk+1)

S1(βk+1)
= eβk+1Δh < 1 and limx→x∗+

S2(x)
S1(x)

= ∞, by

the intermediate value theorem, there exists x∗0 ∈ (x∗, βk+1) such that
S2(x∗0)
S1(x∗0)

= 1. This

completes the proof of the fact (1) above. Facts (2)-(4) are verified by similar arguments.

Next , we verify the fact (5) and assume that S2(x) 
= 0 for all x ∈ [βN−+1, 0). Then

sgn(S2(βN−+1)S1(βN−+1)) = sgn

⎛⎝eβN−+1ΔhĈ2
n

N+2∏
i=1,i 
=N−+1

(βi − βN−+1)
2

⎞⎠ > 0,

and sgn(S2(0)S1(0)) = sgn(−K1K2

∏N+2
i=1 β2

i ) < 0, which imply that S1(x) has a solution

in (βN−+1, 0). The proof of the fact (6) is similar.

Let S(x) = S2(x) − S1(x). Then S(x) is a polynomial with degree at most N + 1

and S(βk) = 0 whenever βk ∈ Θ. Let

Π = {[βN−+1, 0)|βN−+1 /∈ Θ} ∪ {(0, βN−+2]|βN−+2 /∈ Θ}

∪{[βk, η−k )|βk /∈ Θ, 1 ≤ k ≤ N−} ∪ {(η−k , βk+1]|βk+1 /∈ Θ, 1 ≤ k ≤ N−}

∪{[βN−+1+k, η
+
k )|βN−+1+k /∈ Θ, 1 ≤ k ≤ N+} ∪ {(η+k , βN−+2+k]|βN−+2+k /∈ Θ, 1 ≤ k ≤ N+}.

Note that Π is a collection of intervals and |Π| ≡ the number of intervals in Π ≥ 2(N +

1)− 2|Θ|. Let Π̃ = {I ∈ Π|S(x) = 0 has no solution in I}. Since |{x|S(x) = 0, x /∈ Θ}| ≤
N + 1− |Θ|, |Π̃| ≥ 2(N + 1)− 2|Θ| − ((N + 1)− |Θ|) = N + 1− |Θ|. For any I ∈ Π̃, by

facts (1)-(4), we obtain

(a) if supx∈I x ≤ βN−+1, then the equation S2(x) = 0 has solutions in I.

(b) if infx∈I x ≥ βN−+2, then the equation S1(x) = 0 has solutions in I.

Also, by fact (5),S1(x)S2(x) = 0 for some x ∈ [βN−+1, 0). Similarly, by fact (6), S1(x)S2(x) =

0 for some x ∈ (0, βN−+2]. From these observation, combining with the fact that for

I1, I2 ∈ Π̃, I1 ∩ I2 = φ or I1 ∩ I2 ⊆ Θc, we have

|{x|S2(x) = 0, x < βN−+2, x /∈ Θ}|+ |{x|S1(x) = 0, x > βN−+1, x /∈ Θ}|

≥ |Π̃| ≥ N + 1− |Θ|. (43)
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Recall that S1(η
−
k ) = 0 for 1 ≤ k ≤ N− and S2(η

+
k ) = 0 for 1 ≤ k ≤ N+. Therefore,

2(N + 1) ≥ |{x|S1(x) = 0}|+ |{x|S2(x) = 0}|

=
∣∣{x|S1(x) = 0, x > β−N−+1, x /∈ Θ}

∣∣+ ∣∣{x|S1(x) = 0, x ≤ β−N−+1, x /∈ Θ}
∣∣

+
∣∣{x|S2(x) = 0, x < β+

N−+2, x /∈ Θ}
∣∣+ ∣∣{x|S2(x) = 0, x ≥ β+

N−+2, x /∈ Θ}
∣∣+ 2|{x|x ∈ Θ}|

≥ N + 1− |Θ|+N− +N+ + 2|Θ| = 2N + 1 + |Θ|. (44)

This implies that |Θ| ≤ 1. The proof is complete.

Lemma 4.3. Assume that {C1, · · · , CN+2, h1, h2} is a solution of the equations Eq.(29)-

Eq.(34). Then Cn ≥ 0 for all n.

Proof. We define S1, S2, Θ, Π̃, Π, and Ĉn’s as in the proof of Lemma 4.2. Since Ĉn =

e−βnh1(1−βn)βnCn and, by Lemma 4.1, we observe Cn ≥ 0 if and only if Ĉn ≤ 0. Besides,

by Proposition Eq.(2.1), we obtain
∑N+2

n=1 Cne
βnx = Ex[e

−rτ(h1,h2)cg(Xτ(h1,h2)c
)] which is

nonnegative for all x ∈ (h1, h2). To prove Cn ≥ 0 for all n, it suffices to show that the

Ĉn’s have the same sign. By Lemma Eq.(4.2), |Θ| = 0 or 1. First, we consider the case that

|Θ| = 1, that is, S1(βk0) = S2(βk0) = 0 for some 1 ≤ k0 ≤ N + 2. Then |Π| ≥ 2N and by

Eq.(43), |{x|S2(x) = 0, x < βN−+2, x 
= βk0}| + |{x|S1(x) = 0, x > βN−+1, x 
= βk0}| ≥ N.

By Eq.(44), we obtain |{x|S2(x) = 0}| + |{x|S1(x) = 0}| = 2N + 2. Hence S1(x) and

S2(x) are polynomials with degree N + 1 and all roots of S1(x) and of S2(x) are simple.

In addition

2(N + 1) ≥ |{x|S1(x) = 0}|+ |{x|S2(x) = 0}|

≥ |{x|S2(x) = 0, x < βN−+2, x 
= βk0}|+ |{x|S1(x) = 0, x > βN−+1, x 
= βk0}|

+|{x|S2(x) = 0, x ≥ βN−+2, x 
= βk0}|+ |{x|S1(x) = 0, x ≤ βN−+1, x 
= βk0}|+ 2

≥ N + |{x|S2(x) = 0, x ≥ βN−+2, x 
= βk0}|+ |{x|S1(x) = 0, x ≤ βN−+1, x 
= βk0}|+ 2

and hence, N ≥ |{x|S2(x) = 0, x ≥ βN−+2, x 
= βk0}| + |{x|S1(x) = 0, x ≤ βN−+1, x 
=
βk0}|. Since S2(η

+
k ) = 0 for 1 ≤ k ≤ N+ and S1(η

−
k ) = 0 for 1 ≤ k ≤ N−, we ob-

tain {x|S1(x) = 0, x ≤ β−N−+1, x 
= βk0} = {η−k |1 ≤ k ≤ N−} and {x|S2(x) = 0, x ≥
βN−+2, x 
= βk0} = {η+k |1 ≤ k ≤ N+}. Now we consider the case that k0 = 1, that is

S1(β1) = S2(β1) = 0. Because η−i is the unique root for S1(x) in [βi, βi+1], 2 ≤ i ≤ N−,

we obtain S1(βi)S1(βi+1) < 0. By similar arguments, we also have S2(βj)S2(βj+1) < 0 for
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N− + 2 ≤ j ≤ N + 1. By Eq.(42), we have Ĉn−1Ĉn = e−βn−1ΔhS2(βn−1)∏N+2
i=1,i �=n−1(βi−βn−1)

e−βnΔhS2(βn)∏N+2
i=1,i �=n(βi−βn)

=

e−(βn−1+βn)ΔhS2(βn−1)S2(βn)(βn−βn−1)−1(βn−1−βn)−1

∏n−2
i=1 (βi−βn−1)(βi−βn)

∏N+2
j=n+1(βj−βn−1)(βj−βn)

= S1(βn−1)S1(βn)(βn−βn−1)−1(βn−1−βn)−1

∏n−2
i=1 (βi−βn−1)(βi−βn)

∏N+2
j=n+1(βj−βn−1)(βj−βn)

.

Therefore, the elements in C− ≡ {Ĉn|2 ≤ n ≤ N− + 1} have the same sign and this

is also true for elements in C+ ≡ {Ĉn|N− + 2 ≤ n ≤ N + 2}. Because AĈ = K, if

the elements in C− are positive and the ones in C+ are negative, then we get the con-

tradiction that K1 =
∑N+2

n=1 Ĉn
1
βn

< 0; if the elements in C− are negative and the ones

in C+ are positive, then we get another contradiction, i.e., −K2 =
∑N+2

n=1 Ĉn
eβnΔh

βn
> 0.

Therefore, Ĉn’s must have the same sign. For the case k0 = N− + 1, the proof is the

same. For the case 1 < k0 < N− + 1, by a similar argument as above, we obtain the

elements in C−1 = {Ĉn|1 ≤ n ≤ k0 − 1}, C−2 = {Ĉn|k0 + 1 ≤ n ≤ N− + 1}, and

C+ = {Ĉn|N− + 2 ≤ n ≤ N + 2} have the same sign, respectively. There are eight situa-

tions for the signs of C−1 , C
−
2 , and C

+ : (1) C−1 < 0, C−2 < 0, and C+ < 0, (2) C−1 > 0,

C−2 > 0, and C+ > 0, (3)C−1 < 0, C−2 < 0, and C+ > 0, (4)C−1 > 0, C−2 > 0, and C+ < 0,

(5) C−1 < 0, C−2 > 0, and C+ > 0, (6) C−1 > 0, C−2 < 0, and C+ < 0, (7) C−1 < 0, C−2 > 0,

and C+ < 0, (8) C−1 > 0, C−2 < 0, and C+ > 0. (We write C±i > (<)0 if all elements

in C±i are greater(smaller) than zero.) We show that cases (3)-(8) are impossible. The

arguments for disproving cases (3) and (4) are the same as for the case k0 = 1. Note

that β1 < η−1 < β2 < η−2 < · · · < βk0 < η−k0 < βk0 < · · · < βN− < η−N− < βN−+1 <

0 < 1 < βN−+2 < η+1 < · · · < βN+1 < η+N+ < βN+2. Because AĈ = K, Comparing with

the (k0 − 1)-th entries in AĈ and K, we obtain
∑N+2

n=1 Ĉn
1

βn−η−k0−1

= 0. Therefore, it is

impossible for cases (5) and (6). Note that the entries of A satisfy the following:

(a) Ai,j < 0 for {(i, j)|1 ≤ j ≤ i ≤ N− + 1} ∪ {(i, j)|N− + 2 ≤ i ≤ N + 2, 1 ≤ j < i}
and Ai,j > 0, otherwise.

(b) If Ai,j and Ai+1,j are negative, then Ai,j < Ai+1,j.

(c) If Ai,j and Ai+1,j are positive, then Ai,j < Ai+1,j.

For the case (7), we get the contradiction K1 = (AN−+1 − Ak0−1)Ĉ < 0 and for the case

(8), we get the contradiction −K2 = (AN−+2 − Ak0−1)Ĉ > 0 where Ai is the ith row of

A. Therefore, we complete the proof for the case that |Θ| = 1 and 1 < k0 ≤ N− + 1. The

proof for the case that |Θ| = 1 and N− + 2 ≤ k0 ≤ N + 2 is similar.
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Consider the case that |Θ| = 0 which implies that Ĉn’s are nonzero. Then we have

|Π| = 2N +2 and by Eq.(43), |{x|S2(x) = 0, x < βN−+2}|+ |{x|S1(x) = 0, x > βN−+1}| ≥
|Π̃| ≥ N+1. Therefore 2(N+1) ≥ |{x|S1(x) = 0}|+ |{x|S2(x) = 0}| ≥ |{x|S2(x) = 0, x <

βN−+2}|+ |{x|S1(x) = 0, x > βN−+1}|+ |{x|S2(x) = 0, x ≥ βN−+2}|+ |{x|S1(x) = 0, x ≤
βN−+1}| + 2|Θ| ≥ N + 1 + |{x|S2(x) = 0, x ≥ βN−+2}| + |{x|S1(x) = 0, x ≤ βN−+1}|,
which implies N + 1 ≥ |{x|S2(x) = 0, x ≥ βN−+2}| + |{x|S1(x) = 0, x ≤ βN−+1}|.
Because |{x|S2(x) = 0, x ≥ βN−+2}| + |{x|S1(x) = 0, x ≤ βN−+1}| ≥ N , we have |{x|x >
βN−+2, S2(x) = 0}| = N+ or |{x|x < βN−+1, S1(x) = 0}| = N−. First, we consider the

case |{x|x > βN−+2, S2(x) = 0}| = N+, or equivalently, {x|x ≥ βN−+2, S2(x) = 0} =

{η+1 · · · η+N+}. If |{x|x < βN−+1, S1(x) = 0}| = N−, then we have {x|x ≤ βN−+1, S1(x) =

0} = {η−1 · · · η−N−} . Similar arguments as for the case |Θ| = 1 imply that the elements in

C− = {Ĉn|1 ≤ n ≤ N− + 1} and in C+ = {Ĉn|N− + 2 ≤ n ≤ N + 2} have the same sign,

respectively, and hence, the sign of Ĉn’s are the same. If |{x|x < βN−+1, S1(x) = 0}| =
N− + 1, then either S1(x) has a root in (−∞, β1) or S1(x) has two roots in (βk0 , βk0+1)

for some 1 ≤ k0 ≤ N−. For the case (−∞, β1), we can get as above that the elements in

C− = {Ĉn|1 ≤ n ≤ N− + 1} and in C+ = {Ĉn|N− + 2 ≤ n ≤ N + 2} have the same sign,

respectively. If S1(x) has two roots in (βk0 , βk0+1) for some 1 ≤ k0 ≤ N−, we also observe

that the elements in C−1 = {Ĉn|1 ≤ n ≤ k0 − 1}, C−2 = {Ĉn|k0 ≤ n ≤ N− + 1}, and
C+ = {Ĉn|N−+2 ≤ n ≤ N +2} have the same sign, respectively. By the same argument

as for the case |Θ| = 1, we know that the coefficients have the same sign. The proof for

the case |{x|x < βN−+1, S1(x) = 0}| = N− is similar and hence, we omit it.

Lemma 4.4. Assume that
∑N+2

n=1 Cnβne
βnx0 = ex0 for some x0 ∈ R. Then there exists ε >

0 such that
∑N+2

n=1 Cnβne
βnx < ex for all x ∈ (x0− ε, x0) . Also we have

∑N+2
n=1 Cnβne

βnx ≥
ex for all x ≥ x0.

Proof. Let F (x) =
∑N+2

n=1 Cnβne
βnx − ex. Then F ′(x) =

∑N+2
n=1 Cnβ

2
ne
βnx − ex. Because

β1 < β2 < · · · < βN−+1 < 0 < 1 < βN−+2 < βN−+3 < · · · < βN+2, and by Lemma 4.2 and

Lemma 4.3,

F ′(x0) =
N+2∑
n=1

Cnβ
2
ne
βnx0 − ex0 >

N+2∑
n=1

Cnβne
βnx0 − ex0 = 0, (45)

which implies that F (x) is strictly increasing in some neighborhood Ux0 of x0 and hence,

we complete the proof of the first part of the lemma. Assume that there exists x′ > x0
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such that F (x′) < 0. Let x̂ = sup{x|x0 ≤ x < x′, F (x) = 0}. Then x̂ < x′, F (x̂) = 0 and

as shown for Eq.(45), we have F ′(x̂) > 0. Therefore, there exists a neighborhood Ux̂ of x̂

such that for all x ∈ Ux̂ with x > x̂, F (x) > F (x̂) = 0. This is a contradiction because

F (x) < 0 for all x ∈ (x̂, x′) and hence, we complete the proof of the lemma.

Theorem 4.5. Let {C1, ..., CN , h1, h2} be a solution of the equations Eq.(29)-Eq.(34).

Define the function Ṽ (x) by the formula

Ṽ (x) =

{ ∑N+2
n=1 Cne

βnx if x ∈ (h1, h2)
g(x) if x ∈ (h1, h2)

c

where g is the function in Eq.(26). Then Ṽ is the value function of the optimal stopping

problem (1). Also we have Ṽ (x) = Ex[e
−rτ(h1,h2)cg(Xτ(h1,h2)c

)] for all x ∈ R and hence

τ(h1,h2)c is the optimal stopping time for the optimal stopping problem (1).

Proof. Clearly the function Ṽ (x) satisfies conditions (a)-(c) of Theorem 3.1. Direct com-

putation shows that the function Ṽ is a solution of the boundary value problem Eq.(10).

Because Cn’s are nonnegative according to Lemma 4.3, thus, h1 < l1 = lnK1 ≤ lnK2 =

l2 < h2 by Eq.(31) and Eq.(32). Also functions g1 and g2 satisfy the conditions in Propo-

sition 2.1. Therefore we have Ṽ (x) = Ex[e
−rτ(h1,h2)cg(Xτ(h1,h2)c

)] for all x ∈ R. Note that

functions g1 and g2 also satisfy the conditions in Proposition 3.2 and Ṽ satisfies conditions

(c) and (d) of Proposition 3.2. Hence by Proposition 3.2, we obtain
∑N+2

n=1 Cne
βnx ≥ g(x)

for x ∈ (h1, h2). By Theorem 3.1, it remains to show that (LX − r)Ṽ (x) ≤ 0 for

x ∈ [h1, h2]
c. Note that, on x > h2 > lnK2, direct calculation gives

(LX − r)Ṽ (x)

= ex(
1

2
σ2 + c+

N+∑
i=1

λpi
η+i − 1

+
N−∑
j=1

λqj
η−j − 1

)− r(ex −K2)

+λ
N−∑
j=1

qje
η−j x

(
N+2∑
n=1

Cnη
−
j

η−j − βn
e(βn−η

−
j )h2 −

η−j
η−j − 1

e(1−η
−
j )h2 +K2e

−η−j h2

)

= ex(
1

2
σ2 + c+

N+∑
i=1

λpi
η+i − 1

+
N−∑
j=1

λqj
η−j − 1

)− r(ex −K2)

+λ
N−∑
j=1

qje
η−j x

(
N+2∑
n=1

Cnβn
η−j − βn

e(βn−η
−
j )h2 − 1

η−j − 1
e(1−η

−
j )h2

)
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(The last equality holds because of Eq.(31).) Let Ψj(x) =
∑N+2

n=1
Cnβn
η−j −βn

e(βn−η
−
j )x −

1
η−j −1

e(1−η
−
j )x for 1 ≤ j ≤ N− and x ∈ R. First we show that Ψj(h2) ≥ 0. By

Eq.(30) and Eq.(32), we have Ψj(h1) = 2
1−η−j

e(1−η
−
j )h1 > 0. Also, we observe Ψ′j(x) =

−∑N+2
n=1 Cnβne

(βn−η−j )x + e(1−η
−
j )x = −e−η−j x

(∑N+2
n=1 Cnβne

βnx − ex
)
. We need the fact

that
∑N+2

n=1 Cnβne
βnx − ex 
= 0 for all x ∈ (h1, h2). (Indeed, if

∑N+2
n=1 Cnβne

βnh∗ − eh∗ = 0

for some h∗ ∈ (h1, h2), by Lemma 4.4,
∑N+2

n=1 Cnβne
βnx − ex ≥ 0 for all x ∈ [h∗, h2]. Note

that by Eq.(33), we have
∑N+2

n=1 Cnβne
βnh2−eh2 = 0 and by Lemma 4.4, there exists ε > 0

such that
∑N+2

n=1 Cnβne
βnx− ex < 0 for all x ∈ (h2− ε, h2] which is a contradiction.) Com-

bining this fact with the observation that
∑N+2

n=1 Cnβne
βnh1 − eh1 = −2eh1 < 0, we obtain∑N+2

n=1 Cnβne
βnx − ex ≤ 0 for all x ∈ [h1, h2] and hence, Ψ′j(x) ≥ 0 on [h1, h2]. This im-

plies that Ψj(x) is an increasing function and hence Ψj(h2) ≥ Ψj(h1) > 0. Therefore, on

x > h2 > lnK2 , we observe
d
dx
(LX−r)Ṽ (x) = (1

2
σ2+c+

∑N+

i=1
λpi
η+i −1

+
∑N−

j=1
λqj

η−j −1
−r)ex+

λ
∑N−

j=1 qjΨj(h2)η
−
j e

η−j x ≤ 0, which implies that (LX − r)Ṽ (x) is a decreasing function

and its maximum value is (LX − r)Ṽ (h2+). Because Ṽ (x) satisfies the smooth pasting

condition at h2 and (LX − r)Ṽ (h2−) = 0, we obtain that

(LX − r)Ṽ (h2+) = (LX − r)Ṽ (h2+)− (LX − r)Ṽ (h2−) =
1

2
σ2(Ṽ ′′(h2+)− V ′′(h2−))

=
1

2
σ2(eh2 −

N+2∑
n=1

Cnβ
2
ne

βnh2) <
1

2
σ2(eh2 −

N+2∑
n=1

Cnβne
βnh2) = 0

Therefore (LX − r)Ṽ (x) ≤ (LX − r)V (h+2 ) < 0 for all x > h2. By the same procedure, we

verify (LX − r)Ṽ (x) is an increasing function for x ≤ h1 and (LX − r)V (h1−) ≤ 0, which

implies (LX − r)Ṽ (x) ≤ 0 for all x ≤ h1. The proof is complete.

5 Solutions to Equations Eq.(29)-Eq.(34)

In this section we prove the existence of solutions to the system of equations Eq.(29)-

Eq.(34), that is equivalent to the free boundary problem Eq.(10) with smooth pasting

condition. It is worth noting that according to Eq.(36)-Eq.(39), we have ÃDC = K̃ where

D is an (N+2)×(N+2) diagonal matrix with entries dii = βi(1−βi), K̃ = [0, 0, ..., 0, K1]
T
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is an (N + 2)× 1 column vector and

Ã =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

β1−η
−
1

eβ1h1 · · · 1

βN+2−η
−
1

e
βN+2h1

.

.

.
. . .

.

.

.
1

β1−η
−
N−

eβ1h1 · · · 1

βN+2−η
−
N−

e
βN+2h1

1

β1−η
+
1

eβ1h2 · · · 1

βN+2−η
+
1

e
βN+2h2

.

.

.
. . .

.

.

.
1

β1−η
+

N+

eβ1h2 · · · 1

βN+2−η
+

N+

e
βN+2h2

1
β1

( 1
K1

eβ1h1 + 1
K2

eβ1h2 ) · · · 1
βN+2

( 1
K1

e
βN+2h1 + 1

K2
e
βN+2h2 )

1
β1

eβ1h1 · · · 1
βN+2

e
βN+2h1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Then, the coefficient vector C = [C1, ..., CN+2]
T is equal to

C =
K1

detÃ
D−1Y (46)

where Y is the last column of the cofactor matrix of Ã. Thus, if we find out the boundary

of the continuation region (h1, h2), then we can compute the coefficient vector C by

Eq.Eq.(46).(For other approach, see Boyarchenko and Boyarchenko[5].) For finding the

optimal boundaries, h1 and h2, we need the following proposition (Proposition 5.1), which

was obtained earlier by Boyarchenko[4].

Proposition 5.1. Let {C1, ..., CN+2, h1, h2} be a solution of the equations Eq.(29)-Eq.(34).

Then Δh = h2 − h1 is a solution of the equation detB(h) = 0 where for every h ∈ R,

B(h) is a (N + 2)× (N + 2) matrix defined by the formula

B(h) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

β1−η
−
1

· · · 1

βN+2−η
−
1

.

.

.
. .

.
.
.
.

1

β1−η
−
N−

· · · 1

βN+2−η
−
N−

1

β1−η
+
1

eβ1h · · · 1

βN+2−η
+
1

e
βN+2h

.

.

.
. . .

.

.

.
1

β1−η
+

N+

eβ1h · · · 1

βN+2−η
+

N+

e
βN+2h

1
β1

(1 +
K1
K2

eβ1h) · · · 1
βN+2

(1 +
K1
K2

e
βN+2h

)

1
β1−1

(1 + e(β1−1)h) · · · 1
βN+2−1

(1 + e
(βN+2−1)h

)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(47)

Moreover, we have

h1 = log

(
detA1

detA2

)
(48)
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and hence, h2 = h1 +Δh, where

A1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

β1−η
−
1

· · · 1

βN+2−η
−
1

.

.

.
. . .

.

.

.
1

β1−η
−
N−

· · · 1

βN+2−η
−
N−

1

β1−η
+
1

eβ1Δh · · · 1

βN+2−η
+
1

e
βN+2Δh

.

.

.
. . .

.

.

.
1

β1−η
+

N+

eβ1Δh · · · 1

βN+2−η
+

N+

e
βN+2Δh

1
β1

(1 +
K1
K2

eβ1Δh) · · · 1
βN+2

(1 +
K1
K2

e
βN+2Δh

)

1
β1−1

· · · 1
βN+2−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and A2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

β1−η
−
1

· · · 1

βN+2−η
−
1

.

.

.
. . .

.

.

.
1

β1−η
−
N−

· · · 1

βN+2−η
−
N−

1

β1−η
+
1

eβ1Δh · · · 1

βN+2−η
+
1

e
βN+2Δh

.

.

.
. . .

.

.

.
1

β1−η
+

N+

eβ1Δh · · · 1

βN+2−η
+

N+

e
βN+2Δh

1
β1

(1 +
K1
K2

eβ1Δh) · · · 1
βN+2

(1 +
K1
K2

e
βN+2Δh

)

1
β1K1

· · · 1
βN+2K1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Proof. Substitute Eq.(46) into Eq.(40), we have

N+2∑
n=1

K1yn
(1− βn)detA

(e(βn−1)h1 + e(βn−1)h2) = 0 (49)

where yn is the nth entry of the column vector Y . Eq.(49) is equivalent to

det

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

β1−η
−
1

eβ1h1 · · · 1

βN+2−η
−
1

e
βN+2h1

.

.

.
. . .

.

.

.
1

β1−η
−
N−

eβ1h1 · · · 1

βN+2−η
−
N−

e
βN+2h1

1

β1−η
+
1

eβ1h2 · · · 1

βN+2−η
+
1

e
βN+2h2

.

.

.
. . .

.

.

.
1

β1−η
+

N+

eβ1h2 · · · 1

βN+2−η
+

N+

e
βN+2h2

1
β1

( 1
K1

eβ1h1 + 1
K2

eβ1h2 ) · · · 1
βN+2

( 1
K1

e
βN+2h1 + 1

K2
e
βN+2h2 )

1
1−β1

(e(β1−1)h1 + e(β1−1)h2 ) · · · 1
1−βN+2

(e
(βN+2−1)h1 + e

(βN+2−1)h2 )

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 0.

Multiply e−βih1 to the i-th column for each i and then −eh1 to the last row, we observe

that Δh = h2 − h1 is a solution of the equation detB(h) = 0. Substitute Eq.(46) into

Eq.(34), we have K1

det(A)
[β1e

β1h1 , ..., βne
βnh1 ]D−1Y = −eh1 . Note that

[β1e
β1h1 , ..., βne

βnh1 ]D−1Y = [β1e
β1h1 , ..., βne

βnh1 ]

⎡⎣ 1
β1(1−β1)

0 0 · · · 0

0 1
β2(1−β2)

0 · · · 0

.

.

.

.

.

.
. .
. · · · 0

0 0 0 · · · 1
βN+2(1−βN+2)

⎤⎦Y

= det

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

β1−η
−
1

eβ1h1 · · · 1

βN+2−η
−
1

e
βN+2h1

.

.

.
. . .

.

.

.
1

β1−η
−
N−

eβ1h1 · · · 1

βN+2−η
−
N−

e
βN+2h1

1

β1−η
+
1

eβ1h2 · · · 1

βN+2−η
+
1

e
βN+2h2

.

.

.
. . .

.

.

.
1

β1−η
+

N+

eβ1h2 · · · 1

βN+2−η
+

N+

e
βN+2h2

1
β1

( 1
K1

eβ1h1 + 1
K2

eβ1h2 ) · · · 1
βN+2

( 1
K1

e
βN+2h1 + 1

K2
e
βN+2h2 )

eβ1h1
1−β1

· · · e
βN+2h1

1−βN+2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Therefore

−eh1 = K1

det(A)
[β1e

β1h1 , ..., βne
βnh1 ]D−1Y

= det

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

β1−η
−
1

eβ1h1 · · · 1

βN+2−η
−
1

e
βN+2h1

.

.

.
. . .

.

.

.
1

β1−η
−
N−

eβ1h1 · · · 1

βN+2−η
−
N−

e
βN+2h1

1

β1−η
+
1

eβ1h2 · · · 1

βN+2−η
+
1

e
βN+2h2

.

.

.
. . .

.

.

.
1

β1−η
+

N+

eβ1h2 · · · 1

βN+2−η
+

N+

e
βN+2h2

eβ1h1+
K1
K2

eβ1h2

β1
· · ·

e
βN+2h1+

K1
K2

e
βN+2h2

βN+2

eβ1h1
1−β1

· · · e
βN+2h1

1−βN+2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
det

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

β1−η
−
1

eβ1h1 · · · 1

βN+2−η
−
1

e
βN+2h1

.

.

.
. . .

.

.

.
1

β1−η
−
N−

eβ1h1 · · · 1

βN+2−η
−
N−

e
βN+2h1

1

β1−η
+
1

eβ1h2 · · · 1

βN+2−η
+
1

e
βN+2h2

.

.

.
. . .

.

.

.
1

β1−η
+

N+

eβ1h2 · · · 1

βN+2−η
+

N+

e
βN+2h2

1
K1

eβ1h1+ 1
K2

eβ1h2

β1
· · ·

1
K1

e
βN+2h1+ 1

K2
e
βN+2h2

βN+2
1
β1

eβ1h1 · · · 1
βN+2

e
βN+2h1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−1

= det

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

β1−η
−
1

· · · 1

βN+2−η
−
1

.

.

.
. . .

.

.

.
1

β1−η
−
N−

· · · 1

βN+2−η
−
N−

1

β1−η
+
1

eβ1Δh · · · 1

βN+2−η
+
1

e
βN+2Δh

.

.

.
. . .

.

.

.
1

β1−η
+

N+

eβ1Δh · · · 1

βN+2−η
+

N+

e
βN+2Δh

1
β1

(1 +
K1
K2

eβ1Δh) · · · 1
βN+2

(1 +
K1
K2

e
βN+2Δh

)

1
1−β1

· · · 1
1−βN+2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
det

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

β1−η
−
1

· · · 1

βN+2−η
−
1

.

.

.
. . .

.

.

.
1

β1−η
−
N−

· · · 1

βN+2−η
−
N−

1

β1−η
+
1

eβ1Δh · · · 1

βN+2−η
+
1

e
βN+2Δh

.

.

.
. . .

.

.

.
1

β1−η
+

N+

eβ1Δh · · · 1

βN+2−η
+

N+

e
βN+2Δh

1
β1

(1 +
K1
K2

eβ1Δh) · · · 1
βN+2

(1 +
K1
K2

e
βN+2Δh

)

1
β1K1

· · · 1
βN+2K1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−1

= −detA1/detA2

which verifies Eq.(48).

Proposition 5.2. Given any h ∈ R, define the matrix B(h) as in Eq.(47). There exists

a positive solution Δh to the equation detB(h) = 0.

Proof. Note that detB(h) = 0 if and only if detB̂(h) = 0 where

B̂(h) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
β1−1(1 + e(β1−1)h) · · · 1

βN+2−1(1 + e(βN+2−1)h)
1

β1−η−1
· · · 1

βN+2−η−1
...

. . .
...

1
β1−η−

N−
· · · 1

βN+2−η−N−
1
β1
(1 + K1

K2
eβ1h) · · · 1

βN+2
(1 + K1

K2
eβN+2h)

1
β1−η+1

eβ1h · · · 1
βN+2−η+1

eβN+2h

...
. . .

...
1

β1−η+
N+

eβ1h · · · 1
βN+2−η+N+

eβN+2h

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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As h = 0, detB̂(0) = 2(1 + K1

K2
)detZ(N+2) where

Z(N+2) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
β1−1 · · · 1

βN+2−1
1

β1−η−1
· · · 1

βN+2−η−1
...

. . .
...

1
β1−η−

N−
· · · 1

βN+2−η−N−
1
β1

· · · 1
βN+2

1
β1−η+1

· · · 1
βN+2−η+1

...
. . .

...
1

β1−η+
N+

· · · 1
βN+2−η+N+

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

We show that detZ(N+2) > 0. For simplicity, we set α1 = 1, αn+1 = η−n for 1 ≤ n ≤ N−,

αN−+2 = 0, and αN−+2+m = η+m for 1 ≤ m ≤ N+. Then the entry z
(N+2)
i,j of Z(N+2) is

equal to 1
βj−αi

. Note that for 2 ≤ i ≤ N + 2, z
(N+2)
i,j > 0 if i ≤ j and z

(N+2)
i,j < 0 if i > j.

For 2 ≤ k ≤ N + 1, let Z(k) be the k × k matrix with entries z
(k)
i,j = z

(N+2)
N+2−k+i,N+2−k+j =

1
βN+2−k+j−αN+2−k+i

for 1 ≤ i, j ≤ k. First we show that detZ(k) > 0 for 2 ≤ k ≤ N +1. For

k = 2, we have

detZ(2) = det

[
1

βN+1−αN+1

1
βN+2−αN+1

1
βN+1−αN+2

1
βN+2−αN+2

]
=

1

(βN+1 − αN+1)(βN+2 − αN+2)
− 1

(βN+2 − αN+1)(βN+1 − αN+2)

=
1

(βN+1 − η+N+−1)(βN+2 − η+N+)
− 1

(βN+2 − η+N+−1)(βN+1 − η+N+)
> 0

Before proceeding, we need the fact that detZ(k) 
= 0 for 3 ≤ k ≤ N + 2. Indeed, assume

that Z(k)L = 0 for some column vector L = (l1, · · · , lk)′. Let

Fk(x) =
k∑
j=1

lj
βN+2−k+j − x

=
Gk(x)∏k

n=1(βN+2−k+n − x)
, (50)

where Gk(x) =
∑k

j=1 lj
∏k

n=1,n 
=j(βN+2−k+n−x) is a polynomial with deg(Gk(x)) ≤ k− 1.

Since Gk(αN+2−k+i) =
∏k

n=1(βN+2−k+n − αN+2−k+i)Fk(αN+2−k+i) = 0 for 1 ≤ i ≤ k,
Gk(x) has at least k distinct roots which implies Gk(x) = 0. This implies lj = 0 for
1 ≤ j ≤ k from Eq.(50) and hence Z(k)L = 0 has no nontrivial solutions, or equiv-
alently, detZ(k) 
= 0. Suppose that detZ(k) > 0 for some 2 ≤ k ≤ N . Consider the

system of equations Z(k+1)L̃(k+1) = e
(k+1)
1 where L̃(k+1) and e

(k+1)
1 ≡ [1, 0, · · · , 0]′ are

(k+1)×1 column vectors. Let F̃k+1(x) =
∑k+1

j=1

l̃
(k+1)
j

βN+2−(k+1)+j−x = G̃k+1(x)∏k+1
n=1(βN+2−k−1+n−x)

. Then
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G̃k+1(x) =
∑k+1

j=1 l̃
(k+1)
j

∏k+1
n=1,n 
=j(βN+2−(k+1)+n−x) is a polynomial with deg(G̃k+1(x)) ≤ k

and G̃k+1(αN+2−(k+1)+i) =
∏k

n=1(βN+2−(k+1)+n−αN+2−(k+1)+i)F̃k+1(αN+2−(k+1)+i) = 0 for

2 ≤ i ≤ k+1. Therefore, we have {x|G̃k+1(x) = 0} = {αN+2−(k+1)+i|2 ≤ i ≤ k+1} which
implies G̃k+1(βN+2−(k+1)+i)G̃k+1(βN+2−(k+1)+i+1) < 0 for 1 ≤ i ≤ k − 1. Since

l̃j l̃j+1 =
G̃k+1(βN+2−(k+1)+j)G̃k+1(βN+2−(k+1)+j+1)∏k+1

n=1,n 
=j(βN+2−(k+1)+n − βN+2−(k+1)+j)
∏k+1
n=1,i 
=j+1(βN+2−(k+1)+n − βN+2−(k+1)+j+1)

=
G̃k+1(βN+2−(k+1)+j)G̃k+1(βN+2−(k+1)+j+1)∏k+1

n=1,n 
=j,j+1(βN+2−(k+1)+n − βj)2(βN+2−(k+1)+j − βN+2−k+j+1)(βN+2−(k+1)+j+1 − βN+2−(k+1)+j)

> 0

for 1 ≤ j ≤ k, l̃j’s have the same sign. In addition, because the entries of the first row in

Z(k+1) are positive and F̃k+1(αN+2−(k+1)+1) = 1, we obtain l̃j > 0 for all 1 ≤ j ≤ k + 1.

On the other hand, by Cramer’s rule, we know that l̃1 =
detZ(k)

detZ(k+1) . Therefore, detZ
(k+1) >

0. Since detZ(2) > 0, by induction, this implies detZ(n) > 0 for 1 ≤ n ≤ N + 1.
Consider the system of equations Z(N+2)L̃ = e1 where L̃ and e1 = [1, 0, 0, ..., 0]′ are

(N + 2) × 1 column vectors. Let F̃N+2(x) =
∑N+2

j=1
l̃j

βj−x = G̃N+2(x)∏N+2
n=1 (βn−x)

. Then G̃N+2(x) =∑N+2
j=1 l̃j

∏N+2
n=1,n 
=j(βn − x) is a polynomial with deg(G̃N+2) ≤ N + 1. By the equation

Z(N+2)L̃ = e1, we have G̃N+2(αn) = 0 for 2 ≤ n ≤ N +2. By similar arguments as above,

we know that the entries of L̃ have the same sign. By Lemma 4.1, FN+2(x) is well-defined

on [0, 1] and in addition, FN+2(x) ∈ C([0, 1]) ∩ C1(0, 1). Besides, Z(N+2)L̃ = e1 implies

F̃N+2(1) = 1 and F̃N+2(0) = 0. Therefore, by the mean value theorem, there exists

x0 ∈ (0, 1) such that 1 = F̃ (1)− F̃ (0) = F̃ ′(x0)(1−0) =
∑N+2

i=1
l̃i

(βi−x0)2 which implies that

the entries of L̃ are positive. On the other hand, by Cramer’s rule, we have l̃1 =
detZ(N+1)

detZ(N+2) .

Therefore, detZ(N+2) > 0. Consider the determinant

detW = det

[
W (1) ON−+1,N++1

ON++1,N−+1 W (2)

]
= detW (1)detW (2)

where Om,n is the m× n zero matrix,

W (1) =

⎡⎢⎢⎣
1

β1−1
· · · 1

β
N−+1

−1

1

β1−η
−
1

· · · 1

β
N−+1

−η
−
1

.

.

.
. . .

.

.

.
1

β1−η
−
N−

· · · 1

β
N−+1

−η
−
N−

⎤⎥⎥⎦ and W (2) =

⎡⎢⎢⎣
1

β
N−+2

· · · 1
βN+2

1

β
N−+2

−η
+
1

· · · 1

βN+2−η
+
1

.

.

.
. . .

.

.

.
1

β
N−+2

−η
+

N+

· · · 1

βN+2−η
+

N+

⎤⎥⎥⎦ .
We show that detW < 0. By similar arguments for the proof of the invertibility of Z(k), we
observe that W (1) and W (2) are invertible. Consider the system of equations W (1)L̂ = e1
where L̂ and e1 = [1, 0, 0, ..., 0]′ are (N−+1)× 1 column vectors. By the same arguments
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for detZ(N+1), we observe that the entries of L̂ have the same sign and detW̃ (1) > 0 where

W̃ (1) =

⎡⎢⎢⎣
1

β2−η−1
· · · 1

βN−+1−η
−
1

...
. . .

...
1

β2−η−
N−

· · · 1
βN−+1−η

−
N−

⎤⎥⎥⎦ .
Because w

(1)
1,j < 0 for all 1 ≤ j ≤ N−+1 and

∑N−+1
j=1

l̂j
βj−1 = 1, the entries of L̂ are negative.

On the other hand, by Cramer’s rule, we have l̂1 =
detW̃ (1)

detW (1) and hence, detW (1) < 0. By a

similar argument, we obtain detW (2) > 0 and hence detW < 0. Since

lim
h→∞

detB̂(h)

e
∑N+2

i=N−+2
βih

= lim
h→∞

det

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1+e(β1−1)h

β1−1
· · · 1+e

(β
N−+1

−1)h

β
N−+1

−1
e
−β

N−+2
h
+e−h

β
N−+2

−1
· · · e

−βN+2h
+e−h

βN+2−1

1

β1−η
−
1

· · · 1

β
N−+1

−η
−
1

e
−β

N−+2
h

β
N−+2

−η
−
1

· · · e
−βN+2h

βN+2−η
−
1

.

.

.
. . .

.

.

.

.

.

.
. . .

.

.

.

1

β1−η
−
N−

· · · 1

β
N−+1

−η
−
N−

e
−β

N−+2
h

β
N−+2

−η
−
N−

· · · e
−βN+2h

βN+2−η
−
N−

1+
K1
K2

eβ1h

β1
· · ·

1+
K1
K2

e
β
N−+1

h

β
N−+1

e
−β

N−+2
h
+

K1
K2

β
N−+2

· · ·
e
−βN+2h

+
K1
K2

βN+2

eβ1h

β1−η
+
1

· · · e
β
N−+1

h

β
N−+1

−η
+
1

1

β
N−+2

−η
+
1

· · · 1

βN+2−η
+
1

.

.

.
. . .

.
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⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=
K1

K2

detW < 0,

detB̂(h) < 0 as h large enough. (The last equality is due to the basis{
[

1

β1 − 1
, · · · , 1

βN−+1 − 1
], [

1

β1 − η−1
, · · · , 1

βN−+1 − η−1
], · · · , [ 1

β1 − η−N−
, · · · , 1

βN−+1 − η−N−
]

}
.)

In addition, we have detB̂(0) = 2(1 + K1

K2
)detZ(N+2) > 0. By the intermediate value

theorem, this implies that detB̂(h) = 0 has a positive solution Δh.

Theorem 5.3. Let Δh be a positive solution of the equation detB(h) = 0 and define h1

by Eq.(48). Set h2 = h1+Δh and compute {C1, · · · , CN+2} by the formula Eq.(46). Then

{C1, · · · , CN+2, h1, h2} is a solution of the equations Eq.(29)-Eq.(34).
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Proof. The system of equations Eq.(29)-Eq.(34) is equivalent to ÃDC = K̃ together with

the smooth pasting conditions Eq.(33) and Eq.(34). From the proof of Proposition 5.1,

we know that {C1, · · · , CN+2, h1, h2} satisfies ÃDC = K̃ and Eq.(34). It remains to check

that Eq.(33) is satisfied. By Eq.(46), the left hand side of Eq.(33) is

N+2∑
n=1

K1yn

det(Ã)(1− βn)
eβnh2

= det
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Since Δh satisfies detB(h) = 0, we have

−detA1 = −det
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Therefore, the left hand side of Eq.(33) is equal to detA−12 detA1e

Δh = eh1+Δh = eh2 . The

proof is complete.

6 Numerical Results

In this section, we solve the system of equations Eq.(29)-Eq.(34) numerically. To do

this, we first find the length of the continuation region, Δh, by solving the equation

detB(h) = 0 where B(h) is the square matrix in Eq.(47). Second, we compute h1 by

Eq.(48) and set h2 = h1 + Δh. Finally, we obtain the coefficient vector C according to

Eq.(46) and evaluate the value function V (x) by the formula V (x) =
∑N+2

n=1 Cne
βnx for

x ∈ (h1, h2).

Example 1: Consider the case thatN+ = N− = 1. In addition, as in Boyarchenko[4],

we take c = −0.105, σ = 0.25, r = 0.06, η+ = 1
0.4

, η− = − 1
0.7

, λ = 3
5
, p = q = 0.5

and the strike prices K1 = 50 and K2 = 100. Then the value function is given by

V (x) =
∑4

n=1Cne
βnx in (h∗1, h

∗
2) where

(h∗1, h
∗
2) = (2.1992, 6.1953)

{β1, β2, β3, β4} = {−3.4812,−0.2322, 1.1995, 6.953}

{C1, C2, C3, C4} = {2519.533, 61.2124, 0.2183, 1.4624× 10−18}.
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Payoff Function of Call Option
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Value Function For Diffuse Case
Value Function For Jump Diffuse Case with N+=N−=1

Figure 1: The solid line is the value function V (x) for the jump-diffusion model with
N+ = N− = 1 and the dash line is the one for the diffusion model, that is, N+ = N− = 0.
The optimal boundaries are marked by circles for jump-diffusion model, and by triangles
for diffusion model.

Besides, if we take N+ = N− = 0 which is the diffusion case, then we observe

V (x) =
∑2

n=1Cne
βnx in (h∗1, h

∗
2) where

(h∗1, h
∗
2) = (3.4151, 4.859)

{β1, β2} = {−1.5607, 4.9207}

{C1, C2} = {4037.8534, 1.1088× 10−9}.

It is interesting to note that in the jump-diffusion model, the optimal interval (h∗1, h
∗
2) is

much wider than that for the diffusion case. This indeed makes sense because there are

more opportunities to earn large gains by the jump occurring and hence it can be expected

that the investors will not exercise the options in the jump-diffusion environment earlier

than in the diffusion one. Figure 3 shows the graph of the determinant of B(h) as a

function of h. It shows that the zero of the determinant (this is Δh) is unique. Besides,

the graph descends sharply near the zero of the determinant. This implies that we can

get the numerical result for Δh fast and correctly.

Example 2: Consider the jump-diffusion model with N− = N+ = 2 and let c =

−0.105, σ = 0.25, r = 0.06, η+1 = 1
0.5

, η+2 = 1
0.25

, η−1 = − 1
2.4

,η−2 = −7.5, λ = 3
5
,

p1 = p2 = q1 = q2 = 0.25 and the strike prices K1 = 50 and K2 = 100. In this model,
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Figure 2: The figure is the graph of the determinant B(h) for finding the length Δh of
the optimal interval. It shows that there is only one zero for the determinant.

the expected value E[eX1 ] is the same as the one with N− = N+ = 1 in Example 1. The

value function is V (x) =
∑6

n=1Cne
βnx in (h∗1, h

∗
2) where

(h∗1, h
∗
2) = (2.1153, 6.3801)

{β1, β2, β3, β4, β5, β6} = {−7.997,−1.9409,−0.1155, 1.1642, 3.2421, 7.0931}

{C1, C2, C3, C4, C5, C6} = {735200.1029, 240.6048, 44.1297, 0.2679, 8.8413× 10−9,

2.4671× 10−19}.

As noted before, models in Example 1 and Example 2 have the same expected value

E[eX1 ]. However the optimal interval in Example 2 (N− = N+ = 2) is wider than that

for the case N− = N+ = 1.

7 Conclusion

In this study, we consider the problem of pricing the perpetual American strangle op-

tion under the hyper-exponential jump-diffusion Lévy process, which was mentioned in

Boyarchenko[4]. Owing to the analytical tractability of the mixture-exponential density

function, we derive alternative representation of the two-sided first passage functional by
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Figure 3: The solid line is the value function V (x) for the jump-diffusion model with
N+ = N− = 2 and the dash line is the one for the model with N+ = N− = 1. The
optimal boundaries for the case N+ = N− = 2 are marked by circles and by triangles for
the case N− = N+ = 1.
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Figure 4: The figure is the graph of the determinant for finding the length of the optimal
interval for the case N− = N+ = 2. The figure has similar properties as for the case
N− = N+ = 1. In particular, there is only one zero for the determinant.

33



transforming the integro-differential equation in Eq.(3) to higher ODE. Therefore, we ob-

tain that the two-sided first passage functional is a linear combination of the exponential

functions. (Using the Winer-Hopf decomposition, Boyarchenko[4] observed the same re-

sult.) By Theorem 2.6 and the verification theorems in Section 3, we prove the conjecture

in Boyarchenko[4]: the value function of the perpetual American strangle options is a

two-sided first passage functional and the continuation region is a finite interval satisfying

the smooth pasting condition. Also, we show that the existence of the solution to the free

boundary problem with embedding the smooth pasting condition.(This is another open

problem posed in Boyarchenko[4].) For calculating the value function and the boundaries

of the continuation region, we improve the algorithm in Boyarchenko[4] such that the

computing rate is from O(N2) reduced to O(N) where N is the number of the mixtures

in the density function. It is worth noting that the verification theorem can be applied

to not only the perpetual American strangle options but also other perpetual American

exotic options. These are the further researches.
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der exponential phase-type Lévy models. Stochastic Processes and their Applications.

109, 79-111(2004).

[3] Biffis, E. and Kyprianou, A. E.: A note on scale functions and the time value of ruin
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