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Abstract

This dissertation investigates the dispersive limits of the nonlinear
Klein-Gordon equations. First, we perform the mathematical derivation
of the compressible and incompressible Euler equations from the
modulated nonlinear Klein-Gordon equation. Before the formation of
singularities in the limit system, the nonrelativistic-semiclassical limit is
shown to be the compressible Euler equations. If we further rescale the
time variable, then in the semiclassical limit (the light speed kept fixed),
the incompressible Euler equations are recovered.

We also establish the singular limits including semiclassical,
nonrelativistic and nonrelativistic-semiclassical limits of the Cauchy
problem for the modulated defocusing nonlinear Klein-Gordon equation.
For the semiclassical limit, we show that the limit wave function of the
modulated defocusing cubic nonlinear Klein-Gordon equation solves the
relativistic wave map and the associated phase function satisfies a linear
relativistic wave equation. The nonrelativistic limit of the modulated
defocusing nonlinear Klein-Gordon equation is the defocusing nonlinear
Schrodinger equation. The nonrelativistic-semiclassical limit of the
modulated defocusing cubic nonlinear Klein-Gordon equation is the
classical wave map for the limit wave function and typical linear wave
equation for the associated phase function.



AT WS AR P R gy R A L T AT

B X AGrPR T foEm e B - e RES S RAP S Y R
ERRI e i ! irrb'ﬁr;rﬁ EIPEF i 0 48 LA iR ;fg, 51883 ’ii:@w\ ok W TR R A
&%ﬁbi’ﬂéﬂ—%ﬁﬂtJ“"Pm%i B AARLEY -
B EEFS REN e RS o KEF
AT R Lo R & g o

BRHTFLAF T ?I%’i‘ BRRE S FAfok RN E P icREEw
CREFOFEILL ARz 2T ;éé:z R B RaEaEiR o JEE - B s
ﬁ‘ iy =) ER S8 R J‘Eﬂ*’ ix shock wave e%= % > ?J%EW%FB%E? ZEF LR PR
Eo RN G Y A g RFI R EORAEc 2 2 FEFF ALY iR
Sk o A R o 4 pE TR A - a4 R rﬂmfr o BER Aok 7 AR
L FLengy By BAHE B AR L FLE AT U kA A AL P

LEFl o P R A A Ak kL & R PRy iR TG HiESRAET <
PRI R M RS R s E e f .

o R e X ii\%f#n o L S 4 S a2 T R T R A

e g A 'E"\‘%j gL b o HA AT 2 RE o4 B
X HIPP P A ? '__5_* &4 E "Ffiféél«\??bﬁ."-’tm’ﬁfgé s 81 (i — A=A o

$@~#hifﬁ’:“&@me*ﬁ’éﬂﬁW£mi%1ﬁz%zio

RHCHE " 4FLL A RIPEI LA LR T 2T B FIA o AR
A A REF 24 AFN FEANKE SRR B3 FF L LART  RE R
BRI EA S RANSPER AL F o Ry B - RIRE R RE o
Frovd E i B E g o 4 g;}:@w&&%ﬁi? 4 B oo

S gTEs s A EIRE LSRR £ A g
PR P RO PR

o
-
i -
A
“?*3

B
A 3F

,ﬂ\
=)
(?3
NL

pe

iﬁ:féﬁ 2010\5\15  ** =%



Contents

1 Introduction

2 Hydrodynamical Structure

3 Hydrodynamic Limits

3.1 Compressible Euler Limit:--

3.2 Incompressible Euler Limit

4 Singular Limits

4.1 Semiclassical Limiteccccerercerereecereeceteseiiiirariecennannnes

4.2 Non-relativistic Limit---------
4.3 Nonrelativistic-Semiclassical
4.4 Existence of Weak Solutions

5 Concluding Chapter

Reference

Limiteeceececeoceseocesassacacnanes

10

10

20

28

28

37

41

44

49

50



Dispersive Limits of the Nonlinear
Klein-Gordon Equations

1 Introduction

The relativistic quantum mechanic equation for a free particle can be derived
by writing
E? = 2p? + m?c
where F is energy, p is momentum, m is mass, and c is the speed of light. The
quantum mechanical description of a relativistic free particle results from
applying the corresponding principle, which allows one to replace classical
observable by quantum mechanical operators acting on wave functions [21,
24]. Let h denote the Planck constant, then the Schrédinger correspondence
principle given by
E — iho;, p — —ihV,

will result in the Klein-Gordon equation
—R2O2V = —R*AV + m2ctU

for wave function ¥. The Klein-Gordon equation for the complex scalar field
is the relativistic version of the Schrodinger equation, which is used to de-
scribe spinless particles. It was first considered as a quantum wave equation
by Schrodinger in his search for an equation describing de Broglie waves.
However, this equation was named after the physicists Oskar Klein and Wal-
ter Gordon, who in 1927 proposed that it describes relativistic electrons.
Although it turned out that the Dirac equation describes the spinning elec-
tron, the Klein-Gordon equation correctly describes the spinless pion [21].
The nonlinear Klein-Gordon equation is easily obtained by adding the term
V'(]¥]?)®, where V is the potential energy density of the fields;

o, h? mc?
U— ——AV+ —U+ V'(|[U)¥ =0. 1.1
Since mc?t and ki have the same dimension of action, [mc?*t] = [h] = [action],

and we may consider the modulated wave function [17]

Y(x,t) = U(x,t) exp(imc®t/h) (1.2)
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where the factor exp(imc®t/h) describes the oscillations of the wave function,
then v satisfies the modulated nonlinear Klein-Gordon equation

h? n?

B + 5 A = V(W) = 30 (1.3)

The relations between different terms in (1.3) are best seen when the equation
is written in terms of dimensionless variables, which will be adorned with
carets. The dimensionless independent variables are given by

r = Li, t="Tt,

where L and T denote the reference length and time respectively. We also
define the reference velocity by U = L/T and rescale the potential energy as

V' = mU2V".

Substituting all of these rescaled quantities into the original equation (1.3),
and dropping all carets, yields

0 + %&A@z; —V'([YP ) = %5%2@%. (1.4)

Note that the first important dimensionless parameter v is given by the ratio
of reference velocity and speed of light, v = U/c, and the scaled Planck
constant ¢ = mLUL is the second important dimensionless parameter. The
two dimensionless parameters v and ¢ show the relativistic and quantum
effects respectively.

Over the last twenty years, there has been a vast amount of research
concerning the non-relativistic limit of the Cauchy problem for the nonlinear
Klein-Gordon equation. In particular, in [17] Machihara-Nakanishi-Ozawa
proved that any finite energy solution converges to the corresponding solu-
tion of the nonlinear Schrédinger equation in the energy space, after infinite
oscillations in time are removed. The Strichartz estimate plays the most im-
portant role to obtain the uniform bound in space and time (see also [20, 22]
and references therein). However, to the best of our knowledge, the semi-
classical limit € — 0 is not well studied and is not clear from (1.4). On the
other hand, based on the hydrodynamic structure, the semiclassical limit,
e — 0, of the defocusing nonlinear Schrodinger equation is quite well under-
stood (see [6] for the review). In [8], Jin-Levermore-McLaughlin applied the



inverse scattering to establish the semiclassical limit of the defocusing cubic
nonlinear Schrodinger equation; the complete integrability was exploited to
obtain the global characterization of the weak limits of the entire cubic NLS
hierocracy. Therefore to study the various singular (hydrodynamics) limits
of the nonlinear Klein-Gordon equation (1.1), it is better to start from (1.4)
because of its analogue to the nonlinear Schrodinger equation. The rest of
the thesis is organized as follows:

In chapter 2, we derive the hydrodynamic structure of the modulated non-
linear Klein-Gordon equation and discuss their relation to the compressible
and incompressible Euler equations formally.

In chapter 3, we study the hydrodynamic limits of the Klein-Gordon equa-
tions, the modulated energy method plays an important role in analysis. It is
designed to control the propagation of the charge and current (or momentum)
of the Klein-Gordon equation is constituted by the Schrodinger and relativis-
tic parts, thus, the main idea is to show that the relativistic charge and cur-
rent are small and the main contribution of the nonrelativistic-semiclassical
limit comes from the Schrodinger part. In contrast with the Schrodinger
equation and its variants, we have to introduce one correction term of the
modulated energy which controls the propagation of the relativistic charge
and current. In fact, the relativistic parts vanishes as ¢ tends to zero. Thus
we prove the convergence of the charge and the current defined by the mod-
ulated nonlinear Klein-Gordon equation towards the solution of the ~-law
compressible Euler equations.

Turning to the incompressible limit, we have to rescale the time vari-
able and consider the potential energy designed to represent in the form of
pressure instead of the charge (or density). In this case, we show that the
current converges to the incompressible Euler equations in the semiclassical
limit. Besides the correction term of the modulated energy as discussed in
the compressible Euler limit, we have to introduce one more correction term
which describes the propagation of the density fluctuation in order to obtain
the incompressible limit. This is similar to the zero Mach number limit of
the compressible fluid [2, 16, 18]. The convergent result can be improved for
n = 2 by the standard bootstrap process.

In chapter 4, we study the singular limits of the Klein-Gordon equation
directly. First, We investigate the semiclassical limit of the Cauchy problem
for the modulated defocusing cubic nonlinear Klein-Gordon Eqs. (4.3)—(4.4).
We prove that any finite charge-energy solution converges to the correspond-
ing solution of the relativistic wave map and the scattering sound wave is



shown to satisfy a linear relativistic wave equation (see Theorem 4.2 be-
low). Unlike the Schrédinger equation, the charge is not positive definite for
Klein-Gordon equation and we have to introduce the charge-energy inequal-
ity obtained by combining the conservation laws of charge and energy of the
nonlinear Klein-Gordon equation. Besides the linear momentum W of the
Schrodinger part, we have to introduce one more term Z, defined by (4.18),
of the relativistic part. By rewriting the conservation of charge in terms of
W and Z we can prove the convergence to the relativistic wave map by the
compactness argument. Shatah [25] has proved the existence of global weak
solutions of the wave map. For completeness we also prove the nonrelativistic
limit of relativistic wave map in Theorem 4.7.

Second, we employ the same idea to obtain the nonrelativistic limit of the
Cauchy problem for the modulated Klein-Gordon equation for general defo-
cusing nonlinearity V'(|1)”|?) = |¢*|P, p > 0, and the main result is described
in Theorem 4.9 which state that any finite charge-energy solution converges
to the corresponding solution of the defocusing nonlinear Schrédinger equa-
tion in the energy space. For the sharper Strichartz estimate approach and
more complete result the reader is referred to [17]. The main difference is
that we combine the charge and energy conservation laws together to obtain
the charge-energy inequality. Let us remark that in the case of semiclassical
limit, we have L L2 bound for 9;¢)°, but for non-relativistic limit, we only
have L°L2 bound for vd;10”. Thus we need extra argument to obtain the
strong convergence for non-relativistic limit.

Finally, we study the nonrelativistic-semiclassical limit of Cauchy prob-
lem for the modulated defocusing cubic nonlinear Klein-Gordon equation.
We prove that any finite charge-energy solution converges to the correspond-
ing solution of the wave map and the associated phase function is shown to
satisfy a linear wave equation, the main result is stated in Theorem 4.13.
Moreover, we give a detail proof of Theorem 4.8. The strategy of the proof
follows that introduced by Leray in the context of the Navier-Stokes equa-
tions, as well as many other existence proofs for weak solutions of other
equations.

Notation. In this paper, LP(Q2),(p > 1) denotes the classical Lebesgue
space with norm || f||, = ([, |f[Pdz)"/?, the Sobolev space of functions with
all its k-th partial derivatives in L?(2) will be denoted by H¥(Q), and its
dual space is H*(Q). We use (f, g) = [, fgdz to denote the standard inner
product on the Hilbert space L?(2). Without lost of generality the units of
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length maybe chosen so that [,dr = 1. Given any Banach space X with
norm | - ||x and p > 1, the space of measurable functions v = w(t) from
[0, 7] into X such that ||u||x € LP([0,T]) will be denoted LP([0,77];X). And
C([0, T); w-H*(€)) will denote the space of continuous function from [0, 7]
into w-H*(Q2). This means that for every ¢ € H*(Q), the function (¢, u(t))
is in C([0, 7). Finally, we abbreviate “ < C'” to “ <7, where C is a positive
constant depending only on fixed parameter.



2 Hydrodynamic Structure

A fluid mechanical interpretation for the linear Schrodinger equation was put
forth by Madelung in 1927 and applies to nonlinear Schrodinger equations.
Indeed, as shown in [7], the same idea also applied to the modulated nonlinear
Klein-Gordon equation (1.4). We introduce the complex wave function, the
so-called Madelung transformation,

= Aexp(iS/e), (2.1)

in which both A, the amplitude, and S, the action function, are real-valued
function. Plugging (2.1) into modulated nonlinear Klein-Gordon equation
(1.4) and separating the real and imagine parts, we obtain

A

KA+ 5 (AS —v*0}S) + VA VS - 129,405 = 0. (2.2)
2
%]VS\Q — %zﬂ(atS)z + V'(A?) = %D” : (2.3)

where the d’Alerbertian 0, is defined by O, = A — 292, Equation (2.2)
turns out to be the continuity equation for the relativistic quantum fluid
and equation (2.3) is the relativistic quantum Hamilton-Jacobi equation.
Introducing the new functions

p=A= ], (2.4)
e 1
u=VS=SrnWVe -9V, (2.5)
e 1
T=05= 9 |w|2(¢at¢ wat?/)) (2.6)

we can rewrite (2.2)—(2.3) as the dispersive perturbation of the compressible
Euler type equations

O (p(1 —1*1)) + V- (pu) =0, Ou = VT, (2.7)

O (pu(l —1*1)) + V- (pu @ u) + VP(p)

5 o (2.8)
c 4V (9t (pV@t log p> R

= %V- (pV2 logp> —



where P(p) = pV'(p)—V (p) is the pressure and V? denotes the Hessian. Eqgs.
(2.7)—(2.8) is constituted by the Euler, relativistic and quantum parts. If the
“Fuler part” of these equations is to be hyperbolic, then the pressure P(p)
must be a strictly increasing function of p; in that case, P'(p) = pV"(p) > 0.
This means that V' must be a strictly convex function of p and corresponds to
a defocusing nonlinear Klein-Gordon equation. The compatibility condition
Oyu = V1 also implies that

u(x,t) = V(/OtT(a:,f)df + S(x,O)) : (2.9)

Defining the Schrodinger part energy density Es and relativistic part energy
density Fx respectively by
1 g2 |Vp|? g2
B = goluP+ S v = Sivap e vien), o0
2 |9p* 2
8 o 2

1
Ex = v°plr’ + [X% (2.11)

we obtain from (2.7)—(2.8) the conservation of energy

0,(Es + Ex) + V- ((ES + P(p))u) ). %v : {uAp V. @@% . (2.12)

In the formal nonrelativistic limit ¥ — 0, one neglects the O(v?) terms ap-
pearing in (2.7)—(2.8) and the limit densities p, u and P satisfy the quantum
hydrodynamic equations

Op+V - (pu) =0, (2.13)

(pu) + V- (pu® u) + VP(p) = %V : [,OVQ log p} : (2.14)

which are exactly the fluid formulation of the defocusing nonlinear Schrédinger
equation. In this case the relativistic part energy density Ex vanishes and
the limit energy density £ will be given by

1 2 V 2
E= §p|u|2+%| L v (2.15)
and will satisfy
g2 A \Y4
OE+V - ((E + P(p>>u) =V [<pu)7p ~Vv. (pu)7p . (2.16)



Next letting v — 0 and € — 0 simultaneously, both the relativistic and
quantum correction terms in (2.7)—(2.8) vanish and the limit densities p,u
and P will satisfy the compressible Euler equations

Op+ V- (pu) =0, (2.17)
Oi(pu) + V- (pu®@u) + VP(p) =0, (2.18)
and the limit energy density £ will be given by
1
E = Splul* +V(p) (2.19)
and will satisfy
OE+V - ((E + P(p))u> ~0 (2.20)

hence playing the role of a Lax entropy for the Euler system.
In order to investigate the incompressible limit, we introduce the scaling

t = e, KL, a>0.

After dropping the tilde, the modulated nonlinear Klein-Gordon equation
(1.4) becomes

82—}-2&]/2

Z'€1+ozat¢ _ 5

2
G+ A= V(WP =0.  (221)

For this model the corresponding fluid dynamics equations (2.7)—(2.8) turn
out to be

I (p(l —v*e* 7)) + V- (pu) =0, (2.22)
2,,2
1
0, (pU(l — V%) + sTVpV@ log p) + V- (pu@u) + 5 VP(p)
(2.23)
82—2& )
==V (pV?logp),

and the associated energy equation becomes

O(Es+ Ex)+ V- <(E5 + igg)>u) = €2rav- {(pu)% -V (pu)% :

(2.24)



where the Schrodinger part energy density Fg and relativistic part energy
density Ex are given respectively by

62—2& |Vp|2 1

1

Es = —plul? —V 2.25

s 2,0|U| + s 2 (r), (2.25)
200, ,2 2.2 8 2

Be = S+ S0 (2.26)

It follows immediately from the energy equation that

€2ay2 521/2 ) 2 1 52—2& \V4 2 Vv
/ Tl + - 162 t/f’ + 5oluf + — ‘;” + €§§>dmgc (2.27)

for all 0 < ¢t < oo if the initial energy is bounded. Assuming the minimum
of the convex function V(p) occurs at p = 1 then the energy bound (2.27)
implies p — 1 as ¢ — 0. Formally the density p goes to 1, thus we expect
that the equation (2.22) yields the limit: V -« = 0. Writing VP(p) =
V(P(p) — P(1)), we deduce from (2.23) that

du+V-(u®u)+VP =0, (2.28)
where P is the limit of %f(l). In other words, we recover the incompress-
ible Euler equations. The reader is referred to [15] for the detail discussion
of the incompressible Euler equations.



3 Hydrodynamic Limits

We apply the modulated energy method to study the hydrodynamic limits,
i.e., the compressible and incompressible Euler limits of the modulated Klein-
Gordon equations. The modulated energy method was introduced by Brenier
[1] to prove the convergence of the Vlasov-Poisson system to the incompress-
ible Euler equations. It was immediately extended by Masmoudi in [19] to
general initial data allowing the presence of high oscillations in time (see also
9] for the quantum hydrodynamic model of semiconductor). The same idea
is also applied to study various singular limits of other equations, for exam-
ple the Schrodinger-Poisson equation [23], the Gross-Pitaevskii equation [13]
and the coupled nonlinear Schrodinger equation [5, 14].

3.1 Compressible Euler Limit

The result we shall prove rigourously in this section is the convergence to-
wards the compressible Euler equations. In fact, we consider the so called
nonrelativistic-semiclassical limit, i.e. ¥ — 0 and € — 0 simultaneously. In
order to avoid carrying out a double limits, the parameters v and ¢ must
be related. For convenience we set v = " for some £ > 0, 0 < ¢ < 1 and
assume the potential energy V'(|¢5[?) = |[¢°[*~Y. Indeed we consider the
modulated nonlinear Klein-Gordon equation

1 1
igatws _ §€2+2nat2¢s + §€2A1/)€ _ |,¢5|2('y—1),¢5 =0, (31>
supplemented with the initial conditions:

W(% 0) = 1/18(95) ) 3t¢5(l’7 O) = 1#?(3?) ) x € Q. (3'2>

To avoid the complications at the boundary, we concentrate below on the
case where x € ) = T", the n-dimensional torus.

Associated with (3.1) are the local conservation laws corresponding to
charge, momentum(current) and energy conservation. In fact, we have the
hydrodynamic variables: Schrodinger part charge p%, relativistic part charge
P, Schrodinger part momentum (current) J§, relativistic part momentum
(current) J5, and energy e° given as follows:

10



7 —
o5 =W o = 52 (000 — o),
7 -

J5 = (g 5w J5) = 52 (050 — 92007,
(3.3)
1 — —
Jie = Uins Jiens o Tien) = 5772 (07 VI + 0,6V )
1

1 1
e = _€2+2K|8tw8’2 4 _52‘Vw5|2 + _|w6’2’y'
2 2 0%

The local conservation laws of the modulated Klein-Gordon equation (3.1)
are the charge, momentum(current) and energy given below:
(A) Conservation of charge

a (3 (3 ()
a(ﬂs—PK)"‘V'Js:O, (3.4)
(B) Conservation of momentum (current)
0 1 B ONG
5 (5 = Jic) + 3°V 2(VyF @ VI + ViF @ Vo) - V2(jue]?)
(3.5)
1 — A A&t
5222V, (VO + FO°) + TV =0,
4 gl
(C) Conservation of energy
0 1, S
— -V |= €008 0% | = 3.6
o2 =V - |5 (VO + Vo) = 0. (3.6)

They play the crucial role of the hydrodynamic limits. Moreover, we need
assume finite initial energy

1 1 1
[ 3 AR + eV s < C (3.7)

The limit equation is the y-law compressible Euler equations

Op+V-(pu) =0, reTr, te]0,7T],
O(pu) + V- (puu)+VP(p) =0, (3.8)
p(x,0) = po(x), wu(x,0)=ue(z), xeT".

11



where 0 < pg € H*(T"), up € H*(T"), s > 5 + 1, and the equation of states
is given by P(p) = 7771,07.

Motivated by Brenier’s pioneer work [1], our result based on the modu-
lated energy. It is easy to see that when the parameter € is small; the wave
function ¢* and hydrodynamic variables p, u are related according to

e 1

2 [ye|?
The symbol “A ~ B” means that A almost equals B. Moreover, as ¢ tends
to zero, the limiting energy will be %p|u|2 + %/,07. Keeping this term in mind

and comparing with the energy of the modulated nonlinear Klein-Gordon
equation (3.1), we have:

WP =ps~p, (VVYE — V) .

1 1 1 . 1 1 _
SE IV &~ Splul®, S0 ~ 0, S5 et Y5 —n)-
Thus, we have the relation

1, 1
- st__ 2
VP~ Ll

62 g - g — g
~ S (Ve = 22 Plul® + 2y Plul?)

(3.9)
~€_2 €12 _ so—l(1exTole _ heNTahE) . —21,1€12(,,]2
o (V0 — i (VT — V) e
2
= 5!(V — e )t P
Therefore we can define the modulated energy of (3.1) as
2
He(t) = 5 (V — ie™tu)p® | da
’]I‘TL
(3.10)
1
45 [ o+ [ e e
Tn n
where
€ 1 €\ ¥ y—1( ¢
O(ps,p) = ;((ps) —p ) — " (s —p) (3.11)

12



is a convex function, minimum occurs at p5 = p and satisfies ©(p%, p) > 0.
We also assume

2

c €
o) =5 | |

: = IS5 1 K IS5
(V — ie ™ ug)g |2 da + 5 /. R

(3.12)
+/ O(|ve|?, po)dz = O(°), for some >0,

i.e., we consider the well-prepared initial data. We can rewrite the modulated
energy (3.10) in terms of hydrodynamic variables only as

1
He(t) = e“dr — u-Jidr + = 05 ul*dx
S 5 S
-1
+/ (VTP—ﬂfq)p”‘ldx-

Therefore to obtain the hydrodynamic limit, we have to show that the mod-
ulated energy H¢(t) tends to zero as ¢ — 0. Indeed, we have the following
theorem [12].

(3.13)

Theorem 3.1 Lety > 2, s> 5 +1, and ¥° be the solution of the modulated
nonlinear Klein-Gordon equation (3.1)—(3.2) with initial condition (¢§,15) €
H*T(T") @ H*(T") satisfying (3.7). Let (p,u) € C([0,T]; H*(T")) be the
unique local smooth solution of the vy-law compressible Euler equations (3.8).
If we assume the well-prepared initial condition (3.12), and let \ = min{1, , 3},
then there exist T, > 0 such that

HE(t) < O(eY)  uniformly int € [0,T.] .

Moreover, we have

65 = POl = 0 kBl 2 =00 (314
1G5 = pu) (Ol 25 0 =00 RGOy =0, (315)

forte[0,T,) ase | 0.

13



Proof. We have to check the evolution of the modulated energy H¢(t) given by
(3.13). Differentiating the modulate energy H® with respect to time variable
t and using the conservation of energy (3.6), we obtain

d d 1d
—H(t) = —— SJidr + = — < |ul?d
a0 dt Jo 'S $+2dt/w'05|u| ’

(3.16)
d v—1 -1
— —p — P dz .
We discuss the right hand side of (3.16) separately. Integration by part and

using conservation of momentum (3.5), the first term of the right hand side
of (3.16) becomes

d -1
—— [ w-Jidx=— [ Ou-Jidx — / V—(pg)wv - udx
dt Tn Tn n ’y

52

— [ 2V ® VI + VIE®© Vi) : Vu+ VP (VV - u)da
Tn
(3.17)

L 940 d/ 2 d
_ K/_ £ = d 7 A € d
i Tn(8t|z/1 )V - udx = Tnu Jicdx
1
e / O PV - Oudz + | - Jede.
Tn Tn

Next, by conservation of charge (3.4) and integration by part, we have

1d
2dt Jon

£

(6§ — pic)lul’dx
(3.18)
Vul? - Jidx — / pru - Owudz .

n

1
= / psu - Opudz + 3

’]I"n

14



The third term of the right hand side of (3.16) becomes
d -1 -
il ()t
-2 e d -1 e
= / (v—=1)p" (P - Ps)@ﬂdﬁ — E/ T peda (3.19)
n Tn

O’ L5 — Vo't Jida .
’]TTL
From (3.18)—(3.19) we define the correction term of the modulated energy
H* as

G (1) == [ Il + / P e

(3.20)

1

+€ Mﬁ/ A )V-ud:c—l—/nu~J§<da:.

It is designed to control the propagation of the relativistic charge and cur-
rent and will be proved to be small as ¢ — 0. Using crucially the limit
compressible Euler equations (3.8), we have

d

S0+ G(1)

=-7 2(Vf @ Ve + Vipe @ Vo©) : Vu + V¢ |2 - (VV - u)de
Tn

+/ (Jg—pgu)-(u-vu+v/ﬂ—1)dx+%/ J5 - V|u*dz

n

+/ (v =1)p" (s —p)V - (pu) = J5- Vo' da

-1
—/ 7T(;}%)”V ~udr — / u- Quupiedr + [ Op’ ! pieda
mn n Tn

1
g MH/ O )Y - Oudz + [ O Jode.
TTL
(3.21)

15



To deal with the first integral of the right hand side of (3.21), we need the
following equality:

—Re [Vu : (V — is_lu)@/f: ® (V — ie—lu)pr}

n

= Re 3 (0y) (0 — e )0 (@ — iz )i

jl=1

(3.22)

_ _%ww ® Vi + V§F @ Vi) : Vu

v {05 = ) - [l 9] + 35 V1l

where Re (z) denotes the real part of the complex number z. The proof
of equality (3.22) is simple but lengthy calculation. Therefore the detail is
omitted. We deduce from (3.21) and (3.22) that

d € €
E(H (t) + G5(1))

= —¢? /n Re [Vu (V—ieTlu)y @ (V- ie—lu)wa} dx

82

=5 [ VROV e~ [ (= 00 (puds
4 Jon .

—1 1 .
—/ [’YT(pE)”— (v =1Dp? 105]V-uda:—/ u - Oyupidr

1
+ [ 0" pieda + 182“”/ (O ° |V - Qpudz + | Opu - Jiedx .
’]TTL

T Tn

Also using the identity &2
(Y =1)p" 'V - (pu) = 7T_l(vfﬂ) ut(y—=1)p"V -,
we have
—/ (v = 1)p" 'V - (pu)dx = —(’Y_—PYUQ/ PV - udz . (3.24)

16



Employing (3.24), we can rewrite (3.23) as

d

S(H (1) + G5 (1)

= —¢? / Re [Vu (V—ie )yt @ (V- z‘e—lu)zpa} dzx
-0 [ [ =) = 65— )]V s

—— | V[?-(VV -u)dr — / u- Qupiedr + [ O pida
T Tn

+i 2““/ (O WPV - Oudx + | Oy - Jide.

T

(3.25)

One can estimate the first term of the right hand side of (3.25) as follows

|Vu : (V — ie_lu)wE ® (V — isflu)ng‘

< || V| poern) Z |(0; — de ™ uy)y=(0r — ieLug)y?|

je=1
< 1|V oo [(V — e~ u)ge .
Furthermore, for ¢ € [0,T}), by (3.7), (3.4) and (3.6) we have
leVY© |l raeray = [le"" 0% 20y = O(1)

and
9% || Lagrmy = O(1) 2<q< 2y,

Then by Holder inequality we have the following estimates
52/ V|2 - (VV - u)dr

< 5||U||H9(Tn) 3

< elleVer laanllg i@l VY ull o, S

17

(3.26)

(3.27)

(3.28)

(3.29)



and

/Pi%u'atudff < e®l|u - Qpul| poo(rny [Y° (| 2 crmy 1€ 0% | L2 ¢y

(3.30)
S el Quullzeocny S € flullps gy -
Similar to (3.29)—(3.30), we also have
- O’ piedr S €%lpl L_szw) , (3.31)
g2 / (O 2)V - Byude < 7 [ull ooy (3.32)
oy - Jpedx S || ul| s rny - (3.33)
Tn
Combing the above estimates we obtain the inequality
d € € < (>
E(H () + G*(t) < [ Vull g (e H ()
(3.34)
e (el ey + Nl oy + ooty

for t € [0,7}) and § = min{l,x}. Integrating (3.34) with respect to time
variable t yields

t
He(t) < H°(0) + G°(0) — G°(t) + C / HE(1)dr + Coc’t. (3.35)
0
Similar to (3.29)—(3.33) one can show that G*(0) — G*(t) = O(&"); and hence
t
HE(H) < O / HE(7)dr + HE(0) + Che®t + Cac (3.36)
0

Employing the initial condition H¢(0) and the Gronwall inequality we derive
HE(t) < (C4e? + Coe’t 4 C3e™) (1 + Cite™). (3.37)

This shows He(t) < O(e?) for t € [0,T,), where A = min{1, x, 3}.

18



It is easy to check that the modulated energy can be rewritten as

E g2 1
w0 =5 [ VP [

2

1
—(J5 — pu)| dx
\/@( S S )

(3.38)
+% - e 0p° P + /" O(p%, p) dx.
Using (3.38), we have
1 2
/n \/p—%(Jé — psu)| dz — 0, / O(p5, p)dx — 0 (3.39)
as € — 0. Also the elementary computation shows that ([16])
1 v
;\Pi —p|” < O(p5. p) (3.40)

and hence ||pg — p||zvn) — 0 as € — 0. On the other hand, applying the
triangle and Holder inequalities we have

H(Jé—pu)‘

2y
Ly+I(Tn)

<5 = A0l 2 gy + 1005 = Pl 25,

(3.41)

< [IVr§llzzcm)

1
—(J5 — psu
\/@(S S)

L2(T™)

s = ol llel, 2,

which converges to zero as ¢ — 0 by (3.39)—(3.40). Combing (3.27) and
(3.28) we have

lox DN, 2y S e™)|e 0" | o 19F | 2w pny — O (3.42)
and

175 Co )|y S €7l 0% 2oy 1€V || 2 (amy — O (3.43)
as € — 0. This completes the proof of Theorem 3.1. [
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3.2 Incompressible Euler Limit

The second result we want to address in this chapter concerns the conver-
gence towards the incompressible Euler equations. We still consider only the
n-dimensional torus T" as discussed in the previous section. To obtain the
incompressible limit, the time variable need to be rescaled, t — %, > 0
and potential energy is given by V'(|¢°]?) = [¢/°|>0~1) — 1,4 > 2. More pre-
cisely, we will investigate the time-scaled modulated nonlinear Klein-Gordon
equation

€2+2ay2

2

2
ietrogu - by + CAY - (WO =0, (344)

supplemented with initial conditions

Y (x,0) = ¢5(x), 0% (x,0) = Y5 (z), xeT". (3.45)

We will consider the limit as the scaled Planck constant ¢ — 0 and the
parameter v is kept fixed. To prove the incompressible limit of (3.44) we have
to define the hydrodynamic variables; Schrodinger part charge pg, relativistic
part charge p%, Schrodinger part momentum (current) Jg, relativistic part
momentum Jj, and energy e° as follows:

1 s
o= i = griette (va - Fow)

i —a EXT e _ alhe €
I = (S T s J5) = 5170 (W7 VF = 02V07)

(3.46)
v2e? — —
Ia( = (Jle(,la Ia(,Q’ ) IE(,n) = T(atqvbngg + 8t¢5v¢5> )
5_1226 €12 12—205 €12 L €
e —21/€| )°| + e V| +€2a@(ps,1),
where )
O(ps. 1) = ;((P%)"’ 1) = (s —1). (3.47)

The local conservation laws associated with the rescaled modulated nonlinear
Klein-Gordon equation (3.44) are the charge, momentum and energy given
respectively by:

20



(A) Conservation of charge

(3.48)

8 (3 £ £
a(pS—pK) +V-Jg=0,
(B) Conservation of momentum
0 L, @ € e he € €
= (J5 = i) + 727V - [2(VYF © VI + VIF @ ViF) — VE([yP?)

1 — — 1 v—1
+Zu2s2vat (Méﬂbe + z/ﬁ(Mf) + o T > V|| =0,
(C) Conservation of energy
0 € 1 2—2a € e c € _
_8t6 -V [56 (VY 0upe + Vb o) )] =0.

Moreover, we need assume finite initial energy

1 1y 0 1
| 3P+ 52 R + 8 (1ug s < C

The limit equation is the incompressible Euler equations

Ou+ (u-Vju+Vr =0, V-u=0,

u(z,0) = ug(x), V- uy=0.
with initial condition uo € H*(T"), s > 1 + 3.

Similar to the previous section, we define the modulated energy

52—2&

HE(t) = —

2.2
/ (V — ie® uyy Pda + %/ 0% [2da
T Tn

1 £
+x | el s,

which satisfies the well-prepared initial condition

£ 82_2a - _a—1 12 V2€2 €2
H*(0) = > /. [(V — e ug)ag| d93+7 i [v1 | dx

1
+€E @(|?/’(€)|27 1)d$’ = O(gﬁ) )
T7l
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(3.50)

(3.51)

(3.52)

(3.53)
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for some > 0. The modulated energy can be further rewritten in terms of
the hydrodynamic variables as

1
HE(t):/ ede—/ u~J§d:c+§/ o lultda (3.55)

Therefore to obtain the hydrodynamic limit, we have to show that the mod-
ulated energy H¢(t) tends to zero as ¢ — 0. Indeed, we have the following
theorem [12].

Theorem 3.2 Let a > 0, v > 2, s > 5 + 1, and ¢° be the solution
of the time scale modulated nonlinear Klein-Gordon equation (3.44)—(3.45)
with initial condition (V§,v5) € HST(T™) & H*(T") satisfying (3.51). Let
u € C([O, T}, HS(']I‘”)) be the unique local smooth solution of the incompress-
ible Euler equations (3.52). If we assume the well-prepared initial condition
(3.54), and let X = min{f, 0}, where 6 = 2a/~, then there exist T, > 0 such
that,
He(t) <O, telo,T.).

Moreover, we have

65 = DDl =00 a0l 2, =00 (350
105 = 5, 2 0 =00 (D =0, (357

forte[0,T,) ase | 0.

Proof. Differentiating the modulated energy (3.55) with respect to ¢ and
using conservation of energy (3.50), we obtain

d d d 1
—H(t) = —— - Jad — “otlulPde =1 Is. .
pn (t) dt/Tnu Jg :v+dt/Tn2pS|u| x 1+ I (3.58)

By conservation of momentum (3.49), integration by part and using the fact
that wu is divergence free, we obtain

d

L =— 8tu~(J§—J§()dac——/ u - Jydx
Tn dt n

(3.59)

82—204

4

/ 2(Vyf @ Ve + Vi @ Vobf) : Vuda .
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Next employing conservation of charge (3.48) and integration by part, we
have

1
L, = /p%u-@tuda:—l— §V\u|2-J§dx

Tn

(3.60)
+d/15||2d—/58d
o TnQpKu x Pcu- Ogudz .

As before we define the relativistic correction term of the modulation energy

by
1

G (t) = —5/ P |ul?dx +/ u- Jyde, (3.61)

then using crucially the incompressible Euler system (3.52), we have

d

S0+ G-(1)

€2f2a

=-— /2(V¢E®VE+VE®V¢E):VUCZ$

(3.62)
1
§J§ - V]u*dz

+/A@—@@(wv@m+/

—l—/ (J§ — psu) - Vrdz — / P - Owudx + | O - Jydx .
n mn ']Tn

To deal with the first integral of the right hand side of (3.62), we need the
following equality

—Reeg? 2 [Vu : (V — ie""lu)zﬂg ® (V — i&‘“*lu)ws]

n

= —Re 82720{ Z (ﬁguj) |:(8j — Z'€a71Uj)1/}€ (04 — Z'é‘a_liw)ws}

Jh=1

(3.63)
= —%eQ‘MWzﬁ ® V£ 4+ Vi @ Vi©) : Vu

+{(J§ —p5u) - [(u-V)u] + %Jg : V|u|2} :

23



Similar to the (3.22) as discussed in previous section, this equality follows by
direct computation. Combing (3.62) and (3.63), we have the equality

% CRORRE0)

= —g¥ 2 / Re [w: (V—ie* )y @ (V- iga_lu)@/)a] dr  (3.64)

+/ (J§ — psu) - Vrdz — / pru - Ouudr + | O - Jidx.

TTL

Now we will estimate the second, third and fourth integral of right side of
(3.64) separately. By (3.51) and (3.50), we have for t € [0, T%)

Hc‘:l_avw‘SHLQ(Tn) = ”EathHL2(Tn) = O(l) . (365)
Moreover, from the inequality
1 £ £
;|pS - 1‘7 < @(p5'7 1)7

we have ,
165 — Ulzoeny = O(e™) . (3.66)
5), (3.66) and Holder inequality, we arrive at the inequality

Hence by (3.6
/ ps(u- V) dm—/ (ps — 1)(u-V7)+u-Vrde

(3.67)
:/ (ps — D(u-Vr)dz < e || - V7r|| a’
To go further, we need the relation
/ Jg - Vrdr = / T (ps — 1) — mOpda
(3.68)
d
= w(ps — 1) — pemdx — O (ps — 1) — piOpmde .
The last integral of (3.68) can be estimated by Holder inequality
/ or|(ps —1) — pi|dz Se B2 Haﬂr”Lﬁ(ﬁrn) + |0y Loo(nmy,  (3.69)
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and the estimates of the third and fourth integrals of the right hand side of
(3.64) are given respectively by

/ P - Owudr S e®||u - Opul| poo(my (3.70)

and

8tu : Jf{dl’ 5 €a||atu||L00(Tn) . (371)
Tn

To obtain the incompressible limit we have to introduce one more correction
term of the modulated energy defined by

Wi = [ [ - (& — D]nda. (3.72)

The correction term W¢(t) can be served as the acoustic part (density fluctua-
tion) of the modulated energy H¢(t). It is designed to control the propagation
of the acoustic wave. Hence for t € [0,T,) we have

d

(0 + 670 + WE®) S I Vull oy H ()

+55<Hu L R 1 S e (3.73)

+{Ju - Opu| oo (Tmy + HatUHLW(T”))

where § = 2a/~. Integrating this inequality yields
He(t) < H°(0) + G*(0) + W*(0) — G°(t) — W*=(t)

t (3.74)
+C, / He(7)dr + Cye’t .
0

One can show that G=(0) + W¢(0) — G¢(t) — W=(t) = O(&%), and hence
t
HE() < € / HE(7)dr + HE(0) + o't + Cye®. (3.75)
0
Applying the Gronwall inequality and the decay rate of H¢(0) we derive the
inequality

Hg(t) S (C4Eﬂ + Cg€5t + 0355)(1 + C’lteclt) . (376)
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Thus He(t) < O(e?) for t € [0,T,), where A = min{(3,d}.
It is easy to rewrite the modulated energy (3.53) as
1 2

52720(
HE(t) = / i + [ s =] s
n 5
(3.77)
vie? ‘|2 1 .
o [ o+ oz [ e s,
then from (3.77) we have
2
—(J§ — psu)| dr — 0 (3.78)
Ps
as € — 0. We deduce from (3.78) and Holder inequality that
Jo — pLu) . (Jg — pSu 3.79
||( S S L2W(T” \/@ S S ) L2 ( )

which converges to zero as ¢ — 0. Finally, combing (3.65) and (3.66), we
have

1p% (-, )||L? - S %Ml |2 om 9% | L2+ (amy — O (3.80)

and
||J16(<, t)”Ll(’H‘n) 5 €a||€8t¢€||L2(Tn) ||€1_avw€||L2(’]I‘n) — 0 (381)
as € — 0. This completes the proof of Theorem 3.2. [

When o > 1 — 2, we deduce from (3.77) that

2 1 Vo5 |2
P% dx:—/ ——= | dx —0
/n s 2 Jrn 1N/ Pg
IV(ps = DIl 2,

LY+I(Tn)

as ¢ — 0, and

N (3.82)

|7

NI EI D) L27(Tn)

by Holder inequality. Thus, pg — 1 strongly in Wl’ﬁ(T"). Furthermore,

by Sobolev inequality we can show that pg — 1 strongly in Ln(v?ﬁ(ﬂ‘”)
for n > 2. In particular n = 2, iterating the estimate (3.82) by the so called
“bootstrap process’, we have pg — 1 in LP(T?) for any 1 < p < oo, and hence
we have the following improvement of Theorem 3.2.
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Theorem 3.3 Assume the same hypothesis of Theorem 3.2. Let o > 1 — %
and n = 2 then there exists T, > 0 such that for any n > 0,

15 = p5w) (- Dll2ny = 0, [Tk D)l — 0, (3.84)

fort € [0,T,) as e — 0, where u is the unique local smooth solution of the
incompressible Euler equations (3.52).

=0, Pk Dllz-nerz) — 0, (3.83)
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4 Singular Limits

In this chapter we discuss the singular limit of the modulated nonlinear Klein-
Gordon equation and the detail of the proof is referred to [11]. The main
idea is based on the conservation laws of charge and energy;

; . B .
5 W + 5er* (o - wtzm} +V- Beww - ww] =0, (4D)

% [(1/2|8tw|2 + ]Vzﬂﬁ) + %V} -V [(vwaﬂp + vwaﬂp)} =0. (4.2)
Examining the charge equation (4.1) we see that although [¢|?, Schrodinger
part, is positive-definite but Klein-Gordon part %51/2(@8@ — ¥0,)) is not.
Here we face one of the major difficulties with the Klein-Gordon equation.
However, the energy density is positive-definite and can be employed to ob-
tain the estimate of the Schrédinger part charge. Thus we introduce the
charge-energy inequality to establish the singular limits. This is consistent
with Einstein’s relativity of mass-energy equivalent.

4.1 Semiclassical Limit

The specific problem we will consider in this section is the semiclassical limit
of the modulated nonlinear Klein-Gordon equation (1.4) with potential func-
tion given by V'(|¢¢]?) = |[¢°|*> — 1. For convenience let us call it the mod-
ulated defocusing cubic nonlinear Klein-Gordon equation. After dividing by
g, we relabel it as

[P -1

1
00" — SV R + %Al/ﬁ _ ( -

)w ~0. (4.3)
The initial conditions are supplemented by

ws('ru 0) = wg(iﬁ) ) atws<x7 0) = wi(x) ) z€Q. (4'4>

The superscript € in the wave function ¢ indicates the e-dependence and v
is assumed to be a fixed number in this section. To avoid the complications
at the boundary, we concentrate below on the case where x € 2 = T", the
n-dimensional torus. Notice that the 4th term % of (4.3) can be served
as the density fluctuation of the sound wave which is similar to the acoustic
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wave as discussed in the low Mach number limit of the compressible fluid
2, 10, 16, 18]. For this model (4.3)-(4.4) we have the following existence
result.

Theorem 4.1 Let v, T > 0 and 0 < ¢ < 1. Given initial data (V§,¢5) €
HY(T™) @ L*(T™) and WS‘TA € L*(T"), there exists a function ¢° such that

¢ e L>([0,T); H(T™)) nC ([0, T]; L*(T™)) , (4.5)
O € L=([0,T); L*(T™)) nC ([0, T]; H(T™)), (4.6)
WY e (o, me ey, @)

and satisfies the weak formulation of (4.3) given by

0= iU 1) = 07, 0), ) — 5202 (B (1) — B (- 1), )

- [ (wwtn i [F((MED)uromphar, -

for every [t1,t5] C [0,T] and for all p € C°(T™). Moreover, for allt € [0,T],
it satisfies the charge-energy inequality

1/ —1\?
[ + 21007 + [V + 5 (%) de < 20, + (1 n 25%2)02 ,
(4.9)

Tn

where )
) [
Cr= | |05 + Sev?(uidh — Biug)de,
’]I‘TL

1/ w5 — 1)’
co= [ i+ v+ (M=) e,

are the initial charge and energy respectively.

(4.10)

The charge is constituted by the Schrédinger part (positive definite) and
the Klein-Gordon part (not positive definite). However, it can be bounded by
the energy. We denote by “N” the intersection of topological spaces equipped
with the relative topology induced by the inclusion maps. Since we are
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concerned with the semiclassical limit in this chapter, so the proof of this
theorem, Theorem 4.8 and Theorem 4.12 of the following two sections will
be given in section 4.4.

Now, we state the main theorem of this section.

Theorem 4.2 Let (v§,¢5) € HY(T")& L*(T"), |¢5| =1 a.e. and (Y5, ¢5) —
(v, 0) in HY(T™)® L*(T"), || = 1 a.e., and let ¢° be the corresponding weak
solution of the modulated defocusing cubic nonlinear Klein-Gordon equation
(4.3)—(4.4). Then the weak limit v, satisfying || = 1 a.e., solves the rela-
tivistic wave map

(L4 2)32 — A = |V — L+ 020l [l =1 a.e.

Y(x,0) = (), Op(x,0) =0, zeT", o] =1 a.e. .

Moreover, let 1) = €% then the phase function 0 satisfies the relativistic wave
equation

(1+2v2)020 = Ab, 0(x,0) = arg vy, 0:0(x,0)=0.

Proof. First we deduce from the charge-energy inequality (4.9) that

{¢°}. is bounded in L>([0,T]; H'(T")), (4.11)
{00}, is bounded in L>([0,T]; L*(T")), (4.12)
{WT_l} is bounded in  L*([0,T]; L*(T™)) , (4.13)

then the classical compactness argument shows that there exists a subse-
quence still denoted by {¢°}. and a function 1 satisfying

v e L>([0,T); HY(T™)), oy € L>([0,T); L*(T™))
such that

¢ — ¢ weakly xin L*®([0,T]; H'(T")), (4.14)

O — Opp weakly xin  L([0,T]; L*(T™)) . (4.15)
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Next, from (4.13), we have
[4°|* — 1 a.e. and strongly in L2(T"). (4.16)

Note that (4.13) only shows that { i | } is a weakly relative compact set in
LOO([O TY; LQ(T”)) Thus to overcome the difficulty caused by nonlinearity,
i.e., the 4th term on the right hand side of (4.8), we have to prove ° — 9
strongly in C([0, T]; L*(T™)).

Lemma 4.3 For all 0 < e < 1, the sequence {1°}. is a relatively compact
set in C([O,T];L2(']I‘")) endowed with its strong topology, i.e., there exists
¢ € C([0,T]; L*(T™)) such that

v — Y strongly in C([0,T]; L*(T™)) . (4.17)

Proof. In this case the compactness requires more than just boundness here
because of the strong topology over the time variable t. We appeal to the
Arzela-Ascoli theorem which asserts that {1°}. is a relatively compact set in
C([0,T]; L*(T™)) if and only if
(1) {°(t)}. is a relatively compact set in L*(T") for all ¢ > 0;
(2) {°}. is equicontinuous in C([0,T]; L*(T™)).
From (4.9) or (4.11) we know that {1(¢)}. is a bounded set in H*(T") and
hence is a relatively compact set in L?(T") by Rellich lemma which states
that H'(T") — L*(T") is a compact imbedding.

In order to establish condition (2), we apply the fundamental theorem of
calculus and the uniform bound of {0;1°}. to obtain

[ (t2) — V(1) L2 (rmy < [tz — G| 00" (8) ||l L2(rny S [t2 — 1]

for some s € (t1,t3). This completes the proof of Lemma 4.3. n

The quantity w is bounded in L*([0,T7]; L*(T™)), and hence it
converges weakly * to some function w € L°°([O T); L*(T™)). To find the
explicit form of w, we define two functions W (1) and Z(¢°) respectively by

W) = £ (090 - V), 2(0) = LA (0w o) . (418)

We rewrite the conservation of charge (4.1) as

3

% [W_—l n Z(q/ﬁ)] +div W(y) =0, (4.19)
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then integrating (4.19) with respect to ¢ and using the initial condition |§|? =

1, we have

We(l“ﬂf)‘? -1 A
9

(W) + Z(*(x,0)) — /0 div W (¢®)dr . (4.20)

|92 (z,t)[P—1

€

treat the compactness of {Z(¢°)}. and {W (¢°)}. separately. First we have
the following lemma.

Thus to obtain the compactness of the sequence { } , we have to

Lemma 4.4 Assume the hypothesis of Theorem 4.1, then

O — POy (4.21)
/ t div (Y°V#)dr — / div (¢Vy)dr (4.22)
0 0
in D'((0,T) x T").
Proof. We observe that ¢ € C([0,T]; L*(T")) implies ¢° € L*([0,T] x
T") and 9° € L>°([0,T]; L*(T™)) implies 8,1p° € L*([0,T] x T"). Also ¢*

converges strongly to v in L*([0,T] x T™) and 9;¢° converges weakly to 91
in L?([0,T] x T™). Thus for all ¢ € C§°(T") we have

lim / ) U (2, )00 (2, ) () dadt = / ’ U(x, )0 (x, t)p(x)ddt .
t1 T~ t T

e—0
1

Similarly Vv € LOO([O, T}, L2(T”)) implies V¢ € L?([0,T] x T") and V¢*
converges weakly to Vi in L%([0,T] x T"), then integration by part then by
Fubini theorem and Lebesgue dominated convergence theorem we conclude
that

) / /. / div [0°(2, )V, 7) = (e, 7) V(. 7) | drp() ot
- /: /0 | / ) [we(rc, 7) = ¥z, T)] Ve (x,7) - V(o) dedrdt

n /: /O t / [V ) = 1) 0o, 7) - Fepladadrdt — 0
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as € — 0. This completes the proof of Lemma 4.4. [

It follows from Lemma 4.4 that Z(¢°) — Z(¢), Z(¢*(z,0)) — 0 and

/t div W(¢®)dr — /t div W(y)dr
0 0
in D'((0,7) x T™), thus

e, —1
£

—Z () —/0 div W (y)dr (4.23)

in D'((0,7) x T™), and the limit function w is given explicitly by
t
w=—-Z()— / div W (¢)dr .
0

Passage to the limit (¢ — 0). The uniform boundness of the sequences {1},
in L>°([0,T); H'(T")) and {9,¢}. in L>=([0,7T]; L*(T™)) imply

%5y2<8t¢6(.,t2),g0> — 0, %81/2<at¢5(',t1),g0> -0, (4.24)
%/jz <WJE(-; 7), V¢>d7 — 0 (4.25)

as ¢ — 0. The strong convergence of ¢ in C([0,T]; L*(T")) implies

(6 b)) = (Vt)o) s (¥t ) = (V(ti)p). (4.26)

The convergence of the nonlinear term follows by combing (4.17) and (4.23)
together, so that for all ¢ > 0

(W—_l) - [ZW) + /Ot div W(w)df}@b (4.27)

€

in D'((0,7) x T™) and hence

[ et ar
- /: <(Z(w) + /Ot div W(w)dq-)qp(.77)7¢> ir.
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Putting all the above convergent results into the weak formulation (4.8), the
limit wave function v satisfies

0 + [Z(w) + / div W(WTM 0 (4.29)

0

in the sense of distribution. Note [9]? = 1, we have ;) + 1d;p = 0 and
YV + Vi) = 0, hence

5 (F0w —vo7) =Tow= oy, 4 (9ve - uvE) =9ve.

Differentiating (4.29) with respect to ¢, we have

&w+[ﬁa@ww»—mv@Vwﬂw—%%@¢=o, (4.30)

or
O + {uQ @afw - atwata) — @Aw + V- v@)} Y4 [0pPh = 0. (4.31)
Therefore 1) satisfies the relativistic wave map equation

(L0 = Av =[PP = L+ AR |0, oi=1 ne. (@432
supplemented with the initial conditions
W(x,0) = o(x), o(x,0) =0, x e T, [to] =1 ae. (4.33)
Using the fact |¢)| = 1 and writing 1 = €% shows
(1+v2020 =A0,  0(x,0) =argthy,  00(z,0)=0, (4.34)

i.e., 0 is a distribution solution of the linear relativistic wave equation. n

For completeness we also discuss the non-relativistic limit of the relativis-
tic wave map equation (4.32)—(4.33). To indicate the v-dependence of the
wave function, we replace ¢ by ¢ and rewrite (4.32)—(4.33) as

(L+v9)0¢" — Ad” = |[V¢"|* — (1 +17)[0:0"|*| 6", (4.35)
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¢"(x,0) = ¢g(x), O0”(x,0) =0, rxe T, (4.36)
|¢”| = |#g| = 1 almost everywhere. Let Re ¢ and Zm ¢ denote the real and
imaginary parts of ¢, ¢ = Re ¢” + iZm ¢*, and u¢ = (Re ¢”,Zm ¢”)" then
(4.35)—(4.36) can be rewritten as

(1+v2)02u” — Au” = ||[Vu’]? — (1 + ) |0’ * | u”, (4.37)
u’(x,0) = ug(x), o’ (z,0) =0, xe T, (4.38)
where uf(z) = (Redy,Im@y)t and |u”| = |uf| = 1 almost everywhere.

When v = 0 the necessary and sufficient condition for the existence of weak
solutions to (4.37)—(4.38) were proved by Shatah [25] (see also [26]). His
result is easily extended to general v by replacing the Riemann metric n =
diag(1, —1,—1,...,—1) by 5, = diag(1 + v?,—1,—1,...,—1) and 9% = n*%9;
by 0% = NP 9.

Lemma 4.5 (Shatah [25]) If |u”| = 1 almost everywhere and satisfies Vu’ €
L>=([0,T); L*(T™)), dwu” € L= ([0,T]; L*(T")), then u” is a weak solution of

(4.37)—(4.38) if and only if 0,(0%u” A u”) = 0, where N\ denotes the wedge
product.

By lemma 4.5, we have the existence of weak solutions of the wave map
equation.

Theorem 4.6 (Shatah [25]) Given initial data uf € H'(T") and |uf| = 1,
there exists a function u”, |u”’| =1 a.e., such that

Vu’ € L*([0,T); L*(T™)), Ow” € L™([0,T]; L*(T")) (4.39)

and satisfies the wave map equation
(1+ 120" — Au” = {|Vu”|2 —(1+ 1/2)|0tu”|2] u” (4.40)
inD'((0,T) x T™). Moreover, for allt € [0,T), it satisfies the energy relation

/(1+V2)|(9tu”\2+|Vu”|2dx§ V2 (4.41)
n Tn
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As before we assume ¢f — ¢ strongly in H'(T") and |¢y| = 1 a.e.,
equivalently if ug = (Re ¢, Im ¢o)t, |uo| = 1 a.e., then uf — uy in H'(T™).
We deduce from the energy relation (4.41) and |u”| = 1 a.e. that

{u”}, is bounded in L*([0,T]; H'(T™)), (4.42)
{0u"}, is bounded in L>([0,T]; L*(T")). (4.43)

By classical compactness argument and diagonalization process there exists
a subsequence still denoted by {u"}, satisfying u € L**([0,7]; H'(T")) and
dyu € L>*([0,T]; L*(T™)) such that

w — wu weakly xin L>([0,T]; H'(T")), (4.44)
o’ — Qu weakly x in  L>([0,T]; L*(T")). (4.45)
The same argument as Lemma 4.3, we deduce from (4.42)—(4.43) that
uw — wu strongly in C([0,T]; L*(T")). (4.46)
Combing (4.46) and |u”| = 1 a.e., we have |u| = 1 a.e.. Moreover, using
(4.44)—(4.46), we have
Oot’ NV — OquAu  inD'((0,T) x T"). (4.47)

Note u” satisfies 9,(0*u” A u”) = 0 in the sense of distribution;

(1+ V2)<(9tu” A u”(ta,-) — O’ Nu(ty,-), 80>

+ Zil /tltz <8Z»u” AU (-, 1), 8ig0>d7' =0

for every [t1,ts] C [0,T] and for all ¢ € C§°(T"). Letting v — 0 in (4.48)
and using (4.47), we have shown that u satisfies 0,(0%u A u) = 0 in the sense
of distribution, and by Lemma 4.5 it solves the wave map equation

Ofu—Au= ([Vul’ = |0’ )u  in D'((0,T) x T"). (4.49)

(4.48)

Denote u = (o, §)" and ¢ = o + i3, then we have V¢ — V¢ weakly * in
L= ([0, T]; L*( ']T") , ¢ — ¢ strongly in L*([0,T]; L*(T")) and 9,¢" — O,
weakly * in L*>° ([0, T}, LQ(T”)). Moreover, ¢ satisfies the wave map equation

0ip— Ap = (Vo> = |0p")d,  (t.x) €[0,T] x T", (4.50)
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o(x,0) = ¢o(x), Orp(x,0) =0, xe T, (4.51)
in the sense of distribution and |¢| = |¢g| = 1 almost everywhere.
Theorem 4.7 Let ¢4, ¢ € H(T™), |4 = |do| = 1 a.e. and ¢ — ¢o in
HY(T™). Let ¢* be the corresponding weak solution of the relativistic wave

map (4.35)—(4.36). Then the weak limit ¢ of {¢"}, satisfies |p| =1 a.e. and
solves the wave map (4.50)—(4.51).

4.2 Nonrelativistic Limit

This section is devoted to the non-relativistic limit of the modulated non-
linear Klein-Gordon equation with potential function given by V'(|¢"]?) =

[P, p >0,

; v 1 2.292 v 82 v v v

€0’ — SEV oY + EA@ZJ — [|Py” = 0. (4.52)
As usual, we supplement the system (4.52) with initial conditions

1/11'(377 0) = 7vb(l)/(x) ) 3t¢”(5’3> O) = %'/(x) ) zeT". (45?))

Here the Planck constant € is a fixed positive number and the superscript v in
the wave function ¢ indicates the v-dependence. Similar to the semiclassical
limit discussed in the previous section we only discuss the periodic domain
T™ and state the existence theorem of (4.52)—(4.53) first, leaving the proof
in the appendix.

Theorem 4.8 Letp,e,T > 0 andv < 1. Given initial data (1§, %) in H'N
LPY2(T™) @ L3(T™), there exists a function 1 such that

¢’ e L*([0,T); H'(T™) N C([0,T]; L*(T")) , (4.54)
o’ € L=([0,T); L*(T™) n C ([0, T); H(T")) , (4.55)
W e L([0,T]; L*(T)) | (4.56)

and satisfies the weak formulation of (4.52) given by

0= —%€2v2<0t¢”('7 ta) — O (-, th), 80> + i€<¢”('>t2) —"( t), %0>

_5_; / ’ (V9 7), Vo )dr - / ) (W10 (1), 0 )

1 t1

(4.57)
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for every [t1,t2] C [0,T] and for all p € C3°(T"). Moreover, ¥ satisfies the
charge-enerqgy inequality

v|2 1 2.2 1/2 2 |¢V|p+2
ke +oew |0y |“+ |V¢ |+ +——dz < 26’1+(1+21/ )CQ, (4.58)
’]I‘n

where Cy and Cy are the initial charge and energy given respectively by

[ 105 + G (01T — T
(4.59)

1 124 82 1% 1 12
Cy = /n 552’/2|@/’1 |2 + 5|V¢0|2 + m|¢o|p+2d$-

Now, we state the main theorem of this section.

Theorem 4.9 Let (g, vY) € H' N LPT2(T™) & L2(T™), (v4,¢Y) — (i, 0)
in H' N LPT2(T™) & L*(T"), and " be the corresponding weak solution of the
modulated defocusing nonlinear Klein-Gordon equation (4.52)—(4.53). Then
the weak limit ¢ of {1V}, solves the defocusing nonlinear Schrédinger equa-
tion

2
i + %Aw Py =0,  (x,8) €T x (0,T),

W(x,0) = o(x), xeTr.
Proof. We deduce from the charge-energy inequality (4.58) that

{¢*}, isbounded in  L>*([0,T]; H'(T")), (4.60)
{vow”}, isbounded in  L*([0,T]; L*(T")), (4.61)
{¢*}, isbounded in  L>([0,T]; LP**(T")). (4.62)

In the case of semiclassical limit, we have L° L2 bound for 9,1, but for non-
relativistic limit, we only have L{°L2 bound for vd;”, so we need further
argument to show ¢ — ¢ in C([0, T]; L*(T")).

Lemma 4.10 For all v < 1, the sequence {1"}, is a relatively compact set
in C([0,T]; w-H'(T")), thus there ezists 1 € C ([0, T];w-H*(T")) such that

V=1 in C([O,T];w-Hl(T")) as v — 0.

Furthermore, {¢"}, is a relatively compact set in C ([0, T]; L*(T™)) endowed
with its strong topology and

W= in C([0,T]; L*(T")) as v — 0.
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Proof. As discussed in the previous section, we appeal to the Arzela-Ascoli
theorem which states that the sequence {1"}, is a relatively compact set in
C([0,T;w-H'(T™)) if and only if

(1) {4 ()} is a relatively compact set in w-H'(T") for all ¢ > 0;

(2) {4} is equicontinuous in C'([0, T]; w-H'(T™)), i.e., for every ¢ € H~'(T")
the sequence {(¢”, )}, is equicontinuous in the space C([0,T]).

Since {1 (t)}, is uniformly bounded in H'(T"), thus {¢"(t)}, is a rel-
atively compact set in w-H'(T") for every ¢ > 0. In order to establish
condition (2), let A C C>°(T™) be an enumerable set which is dense in H !,
then for any p € A, we have

i€<¢”('at2) - ¢”('7t1)ap> = %€2V2<at¢y('7t2) - 3t¢”('at1)»/)>

5 [ (T en Tt [ (e o)

1 t1

hence

(WY (-, ta) = 07 (-, t1), )] S vlpllzeeny + b2 — 1] ([l pll mreeny + [l Loerny) -

Thus for any € > 0, we can choose § = € such that if |t; — ;| < § and v <,
then

[(W¥ (- t2) =¥ (), p)| Se.

Moreover, by density argument we can prove

|<?/)V('7t2) - W/(',tl),@” 5 €, (463)

for all ¢ € H7*(T"). Thus {¢}, is equicontinuous in C([0,T]; w-H*(T™))
for ¢ larger. The second statement follows immediately by Rellich lemma
which states that H*(T") — L*(T") compactly, i.e., w-H'(T") — L*(T")
continuously. This completes the proof of Lemma 4.10. [

In order to overcome the difficulty caused by nonlinearity, we need the
following lemma.

Lemma 4.11 Assume the hypothesis of Theorem 4.8. Let Y" be a sequence
of weak solution to (4.52)~(4.53) then there exists ¢ € L*([0,T]; LP*(T™))
such that

W = in L([0,T]; LPTH(T™)).
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Proof. The proof is divided into two cases. First, for 0 < p < 1, since
L*(T™) C LPT(T") for bounded measure |T"| < oo, the strong convergence in
L>([0,T]; L*(T™)) also implies the strong convergence in L* ([0, T'; LP™(T™)).
Second, p > 1, the strong convergence in L“([O,T];LQ(T”)) and the
weakly * convergence in L>([0,T]; LP*?(T")) combined with interpolation
argument yields the result. Indeed, ¥ — 1) weakly * in L> ([0, T; Lp“(']l'")),
the sequence {¢” —1}, is a norm bounded set in L*> ([O, Ty, Lp+2(’]I‘")), there
exists a constant K > 0 such that
lim sup [|[ = [} o ppippraeny = K < oo (4.64)

Next, let n > 0 be arbitrary, and choose § < /K, the Young inequality gives
[ =[P = [ — PR PP <G =P Cly” =l (4.65)

Integrating this inequality over T", we have

10% = Gl b ey < SN0 = Ol oy + CllYY = GllTaeay . (4.66)

Thus
hrcILSogp “wu | 1;;1( [0,7);LP+1(T™)) <Kj<n. (4'67>
Because n > 0 is arbitrary, we have ¢¥¥ — 9 in LO"([O, Ty, LPH(T”)). n

Passage to limit (v — 0). The uniform boundness of the sequence {vd;1"},
in L>°([0, T]; L*(T")) yields

S (04 (1) — B (1), ) — 0. (4.65)

The weak * converge of ¢/ in L>([0,T]; H'(T")) and the strong convergence
in C([0, T]; L*(T™)) imply

/f <w”(~,r),w>d7 H/t

1 1

to

<Vz/1(-,7'),Vg0>dT, (4.69)

(8 (st =07 ) 0) = (B, ) = V(st)e) . (4T0)
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For the nonlinear term, we rewrite it as

/:2 /n [!wV!pwv(x, 7') - |w’pw(1‘, 7')] (p(x)dgde
— [2 / ) [wx, T) — w(x,f)] " [P (z, 7)o () dudr (4.71)

+/tt2 /n [|¢”|p($,7') — |¢|p($77)}¢(1‘,7)9@($)dxd7‘ =T+ 1

for all ¢ € C§°(T™). We will estimate the integrals I and II separately. First,
by Holder inequality, we have

< [9" = @l toperm ol e @ 19 o oy pgerny = 05 (472)

thus I tends to 0 as ¢ — oo by Lemma 4.11. The estimate of II requires
p+2

higher integrability. Since |[¢”|P — [¢|P weakly in L » ([0, 7] xT") for T' < oo

and 1 is bounded in L([0,7] x T"), 1 < g < p + 2, hence we can choose

qg= 1%2 such that

I = /: / [T — [l )| rpe)dedr — 0. (4.73)

Combing the above convergent results into the weak formulation (4.57), as
¢ — 00, we deduce that 1) is a distribution solution of the defocusing nonlin-
ear Schrodinger equation;

i) + %Aqﬁ — Y|Py =0, (x,t) € T" x (0,7, (4.74)
¥(z,0) = Po(x), zeT". (4.75)

4.3 Nonrelativistic-Semiclassical Limit

In this section we will consider the nonrelativistic-semiclassical limit of the
modulated nonlinear Klein-Gordon equation with potential function given
by V'(|¢|?) = |1|> — 1. In order to avoid carrying out a double limits the
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parameters ¢ and € must be related. For simplicity, we take ¢ = ¢, v = &
for some o > 0, 0 < ¢ < 1 and rewrite the modulated defocusing cubic
nonlinear Klein-Gordon equation as

e|2 _ 1
07" — 1+2aa2¢8 S AV - (—W ‘5 )t =0, (4.76)
supplemented with 1n1t1al condltlons
(2, 0) =d5(x), O (x,0) =i(z), xeT". (4.77)

Here the superscript € in the wave function ¢ indicates the e-dependence.
As discussed in section 4.1 and 4.2, we only discuss the periodic domain T™
and state the following existence theorem.

Theorem 4.12 Given (¢5,95) € H(T") & L*(T") and “5L=L ¢ 12(Tm),
there exists a function ¢ such that

W e L2([0,T]; H(T")) N C([0, T]; L*(T")), (4.78)
dyp® € L>([0,T]; L*(T")) N C([0, T]; H~H(T™)), (4.79)
ng— e L>([0,T]; L*(T™)), (4.80)

and satisfies the weak formulation of (4.76) given by
1 e €
0 = =320 (1) — QW) o) + iU (1) = U5 1), )

- glﬁ<v¢%,fvayh—il <<Wﬂ2—1>¢% )w>dﬂ

1 1 (4.81)
for every [t1,t3] C [0,T] and for all ¢ € C(T™). Moreover, it satisfies the
charge-enerqgy inequality

€|2
‘¢s|2+52a|aws|2+’vws|2 (W)| ) d$§201+<1+2€2+2a)02

(4.82)
where Cy and Cy denote the initial charge and energy given respectively by
Cr= | gl + "2 (595 — ivh)de,

Tn
(4.83)

2
0= [ it + o+ (1) e
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The main theorem of this section as follows:

Theorem 4.13 Let (¢5,¢5) € H'(T") & L*(T"), [¢§] = 1, and (5, %5) —
(v0,0) in HY(T™)® L*(T™), |1bo| = 1, and let 1° be the corresponding weak so-
lution of the modulated cubic nonlinear Klein-Gordon equation (4.76)—(4.77).
Then the weak limit v satisfies || =1 a.e. and solves the wave map

G — A = (VU = [0w)e,  [¥]=1 ae.
U(x,0) = o(x), O(z,0) =0, xeT".

Moreover, let 1) = e then the phase function 0 satisfies the wave equation
020 = A, 0(x,0) = arg 1o, 0,0(x,0) =0.

Proof. Tt follows immediately from the charge-energy inequality (4.82) that

{v°}. is bounded in  L*([0,T]; H'(T")), (4.84)
{e*0,°}.  is bounded in  L*([0,T7]; L*(T™)), (4.85)
{WT_l} is bounded in  L*([0,T7; L*(T")) . (4.86)

We deduce from (4.86) that
[9°]* — 1 a.e. and strongly in L?(T")
as € tends to 0. As discussed above (4.86) only shows that the quantity

{%}6 is a weakly relative compact set in L>([0,T]; L*(T™)), then (up

to a subsequence) the sequence {w}5 converges weakly * to some func-
tion w in LOO([O, T} LQ(']I‘”)). In order to find w explicitly, we rewrite the
conservation of charge as

Tt o 2w+ 2oy - [avwwnar,  as

€ 0

where Z(¢°) and W (¢)°) are defined similarly to (4.18). We deduce from
(4.84) and (4.85) that Z(1)°) — 01in D’'((0,7") x T™), and the same discussion
as Lemma 4.4, we can prove

/t div W (¢®)dr — /t div W(y)dr
0 0
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in D'((0,T) x T™), hence

el12 __ 1 t
% oo /0 div W (0)dr (4.88)
in D'((0,7) x T™). Therefore
el2 _ 1 t
% oo /O div W (1)dr (4.89)

weakly * in L>°([0, T]; L*(T™), and thus

(WT_l)w — /O v W)dr i D((0,T) xT7).  (4.90)

By combing the above convergent results, one can pass to the limit in each
term of (4.81) and conclude that the limit ¢ satisfies || = 1 a.e. and

t
100 + </ div W(z/))dT)@b =0 (4.91)
0

in D'((0,7) x T™). Similar discussion as the case of semiclassical limit using

|| = |[1o] = 1 a.e., we can prove that ¢ satisfies the wave map equation
K — Ay = (VO = [0)?)e,  [l=1 ae (4.92)
T/J(ZL', 0) = 1/)0(1‘) ) 8t77Z)(I, O) = 07 reT". (493)

Using the fact |¢)| = |1)g| = 1 again and writing ¢ = €% shows

020 = A0, 0(x,0) = arg vy, 0:0(x,0)=0. (4.94)
"

4.4 Existence of Weak Solutions

The goal of this section is a short and direct proof of Theorem 4.8. (The
proof of Theorem 4.1 or Theorem 4.1 proceeds along the same lines with
modification.) We employ the Fourier-Galerkin method to construct a se-
quence of approximation solutions, and use the compactness argument to
prove the existence of weak solutions, this technique was applied to complex
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Ginzburg-Landau equation by Doering-Gibbon-Levermore in [4]. The light
speed ¢ and the Planck constant ¢ are assumed to be fixed numbers (or both
equal 1 after proper rescaling) and the proof is decomposed into four steps.

Step 1. Construction of approzimation solutions 1° by Fourier-Galerkin
method. Let Ps denote the L? orthogonal projection onto the span of all
Fourier modes of wave vector £ with |¢| < 1/6. Define ¢)§ = Pstbo, 10 = Psiy
and let 1% = ¢°(t) be the unique solution of the ODE

1 2
—5E VPR + ied + %Aw — By(jJPyt) = 0, (4.95)
with initial conditions

Ws(l‘a O) - ¢8($) ) aﬂ/)é(xﬂ 0) - 1/)33(@ ) zeT". (496>

The regularized initial data are chosen such that (¢9,¢9) — (o,1) in
H' N LPT2(T™) @ L*(T") as ¢ tends to zero. These solutions will satisfy
the regularized version of the weak formulation

0 = 220 t) = 0P t) ) + (4 1) — ).

- S [ ey = [ (vt o)in

1 t1

for every [t1,ts] C [0,00) and for all ¢ € C§°(T"). Furthermore the approx-
imate solution 1% = Pyt will converge to 1 in C* as § tends to zero and
satisfies the conservation laws of charge and energy given respectively by

[° 1 + %wQ (Watw‘s - wééﬁ) dr = C? (4.97)
Tn

1 g2 1
/ ) 552y2|at¢5|2 + 5|w5|2 + m|¢5|p+2dx =3, (4.98)

Here C9 and CJ denote the initial charge and initial energy respectively. By
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Young’s inequality and uniform boundness of the charge and energy we derive

W Pde < 21 / 00 |0 |da + C?
TTL

'JI‘n
1
< 5 100 + 200,00 |Pde + C°
’H‘n

1
< 3 100 2da 4+ 12CS 4+ CF
'H‘n

ie.,

1002 dx < 2C9 4 20%CY . (4.99)
Tn

Adding (4.98) and (4.99) together, we have shown that the approximate
solution 1/ satisfies the charge-energy inequality
82 |,l/}5‘p+2
% [2+26202| 0 |2 — [ Vo 24+ e < 20;5+(1+2y2)(1§. (4.100)
Step 2. Show that {¢°} is a relatively compact set in C([0,T]; L*(T™)) N
L>([0,T7]; LPYH(T™)) and {0p°} is relatively compact in C([0,T]; H=*(T™)).
We deduce from the charge-energy bound (4.100) that

{4°}s is bounded in  L>([0,T]; H'(T")), (4.101)
{0°}s  is bounded in  L**([0,T]; L*(T™)), (4.102)
{¢°}s is bounded in  L*([0,T]; LP**(T™)) . (4.103)

It follows from (4.101)—(4.103) and the classical compactness argument that
there exists a subsequence of {1°}s which we still denote by {¢°}s and ¢ €
L>=([0,T); HY(T™)), 8p € L= ([0, T]; L*(T™)) such that

¥ — ¢ weakly xin  L>([0,T]; H'(T™)), (4.104)
o’ — Oy weakly xin  L=([0,T]; L*(T™)) , (4.105)
¥ — 4 weakly xin  L([0,T7; LFT*(T™)) . (4.106)
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The same technique as discussed in Lemma 4.3 and Lemma 4.11, we can
apply the Arzela-Ascoli theorem and interpolation theorem to conclude

¥ = in C([0,T); L*(T™) N L>([0, T]; LPHH(T™)).

The convergence of 9% — ;1) in C ([O,T ];w—L2(T”)) also follows by the
Arzela-Ascoli theorem. First, it is obvious that {9;4°(¢)}s is a relatively
compact set in w-L*(T") for all + > 0 by energy bound. To show {91’}
is equicontinuous in C([0,T]; w-L*(T")), let A C C§°(T™) be an enumerable
set which is dense in L?(T"), then for any p € A, we have

%82y2<8t¢6(',t2) - 8t¢5(-,t1),p> = i€ /;2 <8t¢5(‘77),p>d7

S [0 en i [ (o

1 t1

so we derive the estimate

(00 (-1 t2) = 8 (-, 10), )| S [tz — tal (1ol comy + [l pll oo om)).
The rest follows by density argument and this proves the equicontinuity of
{04°} in C([0, T}; w-L*(T™)), so xp® — dpp in C ([0, T); w-L*(T™)). Indeed,
we have the strong convergence 9,10 — 9y in C ([O, T);H _I(T”)) by Rellich
lemma; L? — H~!is a compact imbedding.

Step 3. Passage to the limit (5 — 0). The weak * convergence of ¢° in
L>([0,T]; H'(T™)), the strong convergence of ¢° in C([0,T]; L*(T")) and
the strong convergence of 9,1° in C ([0, T);H _I(T”)) give the following con-
vergent results;

/tQ <v¢5(-, 7), w>dT . /ttQ <w(-, 7), ch>dr, (4.107)

t1

(7 12) =¥ (s t), ) = (Wl 1) =¥ 1), ) (4.108)
(0 (12) = 07 ( 1), ) = (Ol ta) = Bl ) ). (4:109)

Moreover, the same argument as the non-relativistic limit shows [1°[P1)? —
|1|P1) in the sense of distribution, i.e.,

[ (wrven.har— |

1 1

to

<\w|pw<.,r>,go>d7. (4.110)
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Therefore 1) satisfies the weak formulation of (4.52).

Step 4. Proof of the charge-energy inequality. The strong convergence of v
in C([0,T]; L*(T™)) implies

W Pde — | |yda. (4.111)
Tn T

Next, the weak convergence of ¢° in L> ([0, T']; H*(T™))NL> ([0, T]; LP*2(T™)),
together with the fact that the norm of the weak limit of a sequence is a lower
bound for the limit inferior of the norms, yields

|V 2 dx < 1iminf/ |V 2dx (4.112)
Tn 0—0 Tn

[[PT2de < liminf | |[¢°P 2da . (4.113)
Tn 0—0 Tn

Similarly the weak convergence of 9;° in L>([0, T]; L*(T")) implies
|02 de < liminf [ |04°|2dx . (4.114)
Tn 60—0 Tn

By combining (4.100) and the above inequalities, we obtain the charge-energy
inequality

|¢|p+2

2
|1/1|2+ e u2|at¢|2+%\vw\2 S dr <20+ (1+2y2)02, (4.115)

where the two constants

7 -
|¢0|2 + §€V2(1/)1¢0 — ripy)dx
Tn
(4.116)
1
_ 22 2 4 S 2, L pt2
Co= [ 3+ SVl + ol s,

represent the initial charge and energy respectively. This completes the proof
of Theorem 4.8. m
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5 Concluding Chapter

We conclude this chapter by mentioning some possible future works.

e [t is interesting to consider the Klein-Gordon equations with electro mag-
netic fields.

e To consider the Klein-Gordon equations with non-well prepared initial
condition is an challenge problem.

e It is possible to apply modulated energy method to other equations.
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