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Abstract

This work focuses on the characterization of low-temperature poly-silicon thin
film transistor for sensor application. Due to in the SPICE models of TFT, there is no
photo leakage current model for simulation. Meanwhile, photosensitivity (Rpp)
defined as the ratio of the current under illumination to the current in the dark is not
proper to be used to analyze photo leakage mechanism. Thus, a new parameter,
Unit-Lux-Current (ULC) is firstly used to analyze the effects of illumination on LTPS
TFTs. It reflects the ability of photo leakage current induced per unit-photo flux and
independent of the dark current. The amount of the photo current should be associated
with the carrier generation in the space charge region. Based on the Poole-Frenkel
effect lowering of a Coulombic barrier and phonon-assisted tunneling due to the

electric field applied to a semiconductor, the ULC can be taken into account both the
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leakage current induced in the lateral depletion and in the gate-drain overlap depletion
regions. We further take into account the temperature effect of ULC. The temperature
effect can be identified by activation energy. An equation is provided to properly
describe model for mechanism ULC behavior under various bias and temperature
conditions for further exploration of photo leakage mechanism.

Then we focus on the relation between photosensitivity and additional
non-uniform defects. The energy-band structure of Si material is indirect band-gap.
The excess electron-hole pairs induced by the absorption of light would not be
recombined from band to band directly due to the momentum conservation principle.
Thus silicon is more likely to recombine through localized traps. We investigate the
two main degradation mechanisms for the poly-Si TFTs under DC operation, namely
the hot carrier effect and the self heating effect. Due to such degradation, the
photo-induced leakage current is strongly influenced which is difficultly designed for
sensing circuits. When the LTPS TET devices after hot carrier stress are under optical
illumination, the numerous electron-hole pairs from additionally created shallow tail
states are generated in the lateral depletion region. Then devices after self heating
stress, the high temperature in the poly-Si film can release hydrogen and cause plenty
of dangling bonds as deep states. These deep states near mid level, in the lateral
depletion region, can recombine the electron-hole pairs generated by irradiation. In
this work, we apply both stress conditions deliberately to manipulate the
defect-related photo behaviors and modify ULC equations in TFTs. The empirical
equation of ULC provides a potential modeling for simulation of LTPS TFT circuitry
considering the photo effect after DC stress.

Next, because LTPS TFTs are top gate structure, it is suffer from undesirable
photo leakage current under a high back illumination environment. We can analyze

such photo-induced current like as front light case. However, when the light is emitted
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from back-light, plenty of electron-hole pairs are generated in the bottom of poly-Si
film. Therefore, the residual excess holes are accumulated in the poly-Si film to form
the floating body with a positive channel potential. We also present detail studies on
the factors that affect the photo leakage current like bias condition, temperature, and
defect states of the LTPS TFTs. Meanwhile, we provide new insight which use energy
level of trap defect behaviors connected with photo induced current to further make
sure the existence of tail state after self heating degradation. Furthermore, a more
accurate model after self-heating degradation is proposed.

A three dimensional embedded optical sensor employs low temperature
poly-silicon thin film transistor which used gate metal shielding by itself
characteristics was proposed. The: ‘system 'connect with forward and reverse
measurements can be used to.set up-sensing direction. It provides sensing disparity
characteristics of adopted devices under illumination: It’s expected the integration of
sensing system onto the panel without extra components sensors and extra change in
the fabrication process. Then a'circuit of source follower type based on the LTPS
TFTs which can sense the illumination condition is proposed to be used as an ambient
light sensor. Some kinds of variation effect can be calibrated by statistical and
compensation circuit methods. This approach would provide the possibility for the

light sensor array integrated in the pixels with the same device of LTPS TFTs.
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Chapter 1

Introduction

1.1 General Background

Thin film transistor (TFT) is a metal-oxide-silicon field effect transistor (MOSFET)
fabricated on an insulator substrate which are included glass substrates, flexible
substrates and so on by employing all thin film constituents. Thin film transistors have
been widely used as switching devices in flat panel display, such as active-matrix
liquid crystal display (AMLCD) [1.1-1.4] and active-matrix organic light emitting
diode (AMOLED) display [1.5-1.9].-As-for the active region material, it can be
mainly divided into amorphous silicon (a-Si) and poly-crystalline silicon (poly-Si)
types. The hydrogenated a-Si-(a-Si:H) TFT is.commonly applied in large size active
matrix displays (AMDS) due to its highly mature process, low manufacturing cost and
good device uniformity. However, the low electron field effect mobility of a-Si TFTs
limits the capability of advanced and integrated circuit. On the contrary,
polycrystalline silicon thin-film transistors (poly-Si TFTs) have attracted much
attention because of their widely applications. Compare with a-Si:H TFTs, poly-Si
TFT can provide higher electron mobility and its higher driving current allows smaller
TFT size to be used as the pixel-switching elements, resulting in higher aperture ratio
and lower parasitic gate-line capacitance for improved display performance. It offers a
promising solution to realize the “System on Panel” technology. Nevertheless, using
excimer laser to re-crystalline a-Si active layer, poly-Si TFT can offer very high

current capability. However, the laser re-crystallization process also generates plenty



of the grain boundaries in poly-Si TFT, leading to poor uniformity and very huge
variation due to the narrow laser process windows for producing large grain size
poly-Si TFT. The fluctuation of pulse-to-pulse laser energy and non-uniform laser
beam profile make laser energy density hard to hit the super lateral regime
everywhere. The random grain boundaries and traps exist in the channel region
[1.10-1.12]. This will cause serious non-uniformity of brightness in AMOLED panel.
Since the device-to-device uniformity is hard to control, it is essential to develop
circuits to compensate the variation. The roadmap for the poly-Si TFTs are expected
that as the mobility and the device performance keeps improving, the driver circuits
and some special value-added functions can be formed by the use of poly-Si TFTs
eventually form the system on glass. (SOG) technology. This somehow proved that for
the display electronics the poly-Si. TETs can replace the externally connected bond

ICs and the perspective of the SOG technology is truly applicable.

1.2 Motivation

The poly-Si TFT technology has some distinct advantages but its manufacture is
more complex and high cost. The major advantage of poly-Si TFT is the higher field
effective mobility than that of the amorphous silicon (a-Si) based devices. The high
carrier mobility and the existence of complementary pairs permit the integration of
drive circuits and the smaller area of pixel transistor. The integration of drive circuits
could reduce manufacturing costs, and increase the functionality of large-area
microelectronics [1.13-1.14]. The smaller area of pixel transistor leads to a larger
aperture ratio for a given pixel size, or enables a high resolution display for a given

aperture ratio, resulting in fine image quality for mobile display. Recently, the demand



of high-end mobile electronic products such as cell phone, digital camera, GPS,
mobile TV and so on is continuing to grow, so that the development of mobile
displays with high resolution and high image quality is inevitable. Since most of
people would like to use mobile electronic products outdoors under the sunlight, the
readability in ambient illumination is a critical issue for mobile displays. To meet the
requirement of superior readability under sunlight, the brightness of backlight
becomes higher and higher. However, poly-Si TFTs operated in the high illumination
environment exhibit substantial photo leakage current and degraded sub-threshold
swing (S.S.), leading to the errors of gray level and difficulty in pixel design.

In addition, the application of circuit integration using poly-Si TFT continuously
grow up as device characteristics improve further. Enlarging the grains in poly silicon
layers is an effective approach for improving TFT performance. Several poly-Si
re-crystallization methods based on laterally ‘grown grains have been proposed to
enlarge the grains and control the location of the grain boundaries [1.15-1.16]. In
poly-Si TFT devices, however, the status of defect states at grain boundaries plays a
crucial role for electrical characteristics, as shown in Fig. 1-1 and Fig. 1-2. Meanwhile,
Fig. 1-3 shows the poly-Si density of states distribution. Shallow tail states are
associated with strained bonds and deep states near mid-gap are associated with
broken bonds. The stability of poly-Si TFT is one of the important issues for poly-Si
technology. Recently, the researches about the stabilities of conventional excimer
laser crystallized (ELC) poly-Si TFTs have been reported. The creation of trap states
at poly-Si/gate dielectric interface or the charge trapping in the gate insulator is
responsible for the degradation in electrical characteristics of poly-Si TFTs.

In this thesis, the photosensitive effect of n-type low temperature polycrystalline
silicon thin-film transistors is investigated. A new index Unit-Lux-Current (ULC)

characterizing the slope of the curve is introduced to discuss the photosensitivity. It is
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discovered that the device photosensitivity is dependent on the gate, drain bias and
temperature. Furthermore, we further use a peculiar device to demonstrate that the
photo leakage current occurs in the depletion region at the drain junction. A
qualitative deduction is developed to account for the photo leakage mechanism.
However, the poly-Si TFTs suffer from several degradation mechanisms, such as hot
carrier and self-heating effects. It was discovered that the photo-generated carrier
behaviors under optical illumination are related to defect types created by different
stress conditions. A model considering the relation between photosensitivity and
defect is proposed to explain the anomalous illumination behaviors after device
degradation. The empirical equation of ULC provides a potential modeling for
simulation of LTPS TFT circuitry considering the photo effect. In addition, AMLCD
requires back-light source to. display-input image. Poly-Si TFT operated in back
illumination environment exhibits an undesired high leakage current to affect the
function of pixel switch. The photo/behaviors of poly-Si.under back light illumination
are also studied in detail. Wealso_proposed three dimensional embedded optical
sensors employs low temperature poly-silicon thin film transistor which used gate
metal shielding by itself. This system provides sensing disparity characteristics of
adopted devices under illumination. Meanwhile, we also proposed source follower
type circuits to make ambient light sensors. Both applications are expected that the
integration of sensing system onto the panel without extra novel device process

development.

1.3 Thesis Organization
In this thesis, the photo behaviors of low-temperature polycrystalline silicon thin
film transistors (poly-Si TFT) under front and back light illumination were studied.

Furthermore, the models of electrical characteristics of poly-Si TFT under
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illumination were investigated and established in detail. In addition, the photo leakage
behaviors after DC stress degradation are also examined. Meanwhile, several optical
sensor applications were developed in this work.

This dissertation is divided into seven chapters. It can be summarized in Fig. 1-4.
The dissertation is organized in to the following chapters: In chapter 1, the general
background and overview of low temperature polycrystalline silicon thin-film
transistors are introduced. In chapter 2, the experimental, such as the fabrication and
the measurement of the devices, is described. In chapter 3, photosensitivity analysis of
low-temperature poly-Si thin film transistor based on Unit-Lux-Current is
investigated. In chapter 4, dependence of photosensitive effect on the defects created
by DC stress for LTPS TFTs is studied. In‘'chapter 5, investigation of backlight
sensing in Poly-Si TFTs is presented. In chapter 6,. characterization of thin film
transistor for optical sensor application is studied. Finally, the summarization of all
experimental results in this dissertation and the suggestions for the future work are

presented in chapter 7.
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Chapter 2

Experimental

2.1 Device Fabrication

The process flow of TFTs is described below. Top gate LTPS TFTs with
width/length dimension of 20pm/5um were fabricated using low temperature process.
Firstly, the buffer oxide and a-Si:H films with thickness of 50 nm were deposited on
glass substrates with PECVD. The samples were then put in the oven for
dehydrogenation. The XeCl excimer laser of wavelength 308 nm and energy density
of 400 mJ/cm” was applied. The laser scanned the'a-Si:H film with the beam width of
4 mm and 98% overlap to reerystallize the a-Si:H film to-poly-Si. After poly-Si active
area definition, 100 nm SiO, was deposited with PECVD as the gate insulator. Next,
the metal gate was formed by sputter and then-defined. For n-type devices, the lightly
doped drain (LDD) and the n" source/drain doping were formed by PH; implantation
with dosage 2 x 107 cm? and 2 x 10" cm? of PH; respectively. The LDD
implantation was self-aligned and the n" regions were defined with a separate mask.
The LDD structure did not use on p-type devices. The p* source/drain doping was
done by B,Hg self-align implantation with a dosage of 2 x 10" cm™ . Then, the
interlayer of SiNx was deposited. Subsequently, the rapid thermal annealing was
conducted to activate the dopants. Meanwhile, the poly-Si film was hydrogenated.
Finally, the contact hole formation and metallization were performed to complete the
fabrication work. The structure cross section view for the n-type poly-Si TFT is given

in Fig. 2-1.
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2.2 Equipment and Experiment Setup

In this section, the equipments to measure the device characteristics, namely the
transfer behavior Ip.V curves and the capacitance curves, are described. In addition,
the apparatus to DC stress the device is also illustrated. The Ip-Vg curves for the
devices are measured by the Agilent 4156A precision semiconductor parameter
analyzer. The C-V curves of the gate-to-source capacitance Cgs and gate-to-drain
capacitance Cgp before and after stress with different frequencies are measured with
the HP 4284A precision LCR meter. Before measuring the capacitance behavior, for
every frequency the measure correction is performed with the open-circuit and
short-circuit mode respectively for the needles before and after probing the electrode
to eliminate the effect of the parasitic components in the surrounding and during
probing. The DC stress is performed by the Agilent4156A precision semiconductor
parameter analyzer, which is'the same one to measure the transfer characteristics.

The light was collimated and focused onto the device with top face white light
illumination. Photo leakage current was induced by a halogen lamp irradiation stream
with several neutral density filters (light intensity ranging from dark to 31320 lux)
through the objective of a microscope, and the light intensity was measured by a
digital luminous flux meter. Fig. 2-2 shows the photo leakage current, the power
variation spectrum of the front light source in the range of 350-750nm.

The light was collimated and focused onto the device with bottom face white light
illumination. However, compare with front light source we use halogen lamp
irradiation, we use white light-emitting-diode (LED) as the back light source in our
experiments. The white light LED backlight spectrum in the range of 350-750nm is

also shown as Fig. 2-3.
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2.3 Extraction Methods of Device Parameters

Three important device parameters are extracted and studied in this work: the
threshold voltage Vry, the sub-threshold swing S.S., and the field effect mobility pgg.
Plenty methods are used to determine Vyy, which may be the most important
parameter in application. In most of the researches on TFT, the constant current
method is adopted. In this work the threshold voltage is determined by this method,
which extract Vg from the gate voltage at the normalized drain current Ip=10 nA for
Vp=0.1V.

Sub-threshold swing S.S. (V/dec), is also a typical parameter to describe the control
ability of gate toward channel. The sub-threshold swing should be ideally independent
of drain voltage and gate voltage. However, in reality, the sub-threshold swing might
increase with drain voltage due to short-channel effects.. It might as well be affected
by the serial resistance and interface traps and therefore become related to the gate
voltage. In this work, it is defined as the minimum amount of gate voltage required to
increase drain current by one order of magnitude.

The field effect mobility, Llrg, is determined from the maximum transconductance
gm at low drain voltage, which in this work 0.1 V is used. The transfer characteristics
of poly-Si TFTs are similar to those of conventional MOSFETs, so the first order the

first order I-V relation in the bulk Si MOSFETs can be applied to the poly-Si TFTs,
. W l,, > .
which can be expressed as |y = 1C_, T[(VG -V Vo _EVD ], where Cox is the

gate oxide capacitance per unit area, W is channel width, L is channel length, V1y is

the threshold voltage. If the drain voltage Vp is much smaller compared with

(V6-Vrn), then the Ip can be approximated as |, = £C,, V%(VG —V;, Vp Therefore,
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the electron field effect mobility can be expressed as u = g,, ,where the

C, WV,

0ox

aI_D WCox:uFE V
D

transconductance is defined as g, =

6VG IVD =const. L
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Chapter 3

Photosensitivity Analysis of Low-Temperature Poly-Si Thin Film

Transistor Based on Unit-Lux-Current

3.1 Introduction

Low temperature polycrystalline silicon (LTPS) thin film transistors (TFTs) have
attracted much attention for Active Matrix Liquid Crystal Display (AMLCD) and
Active Matrix Organic Light Emitting Diode (AMOLED) applications due to the high
mobility and the capability of realizing integrated circuits on glass. It could reduce the
difficulties of the connection of the surrounding circuits-and the cost of the panel [3.1].
The photosensitivity of LTPS TFTs is a significant design consideration for achieving
high image quality display panels since it will affect the-leakage current. Furthermore,
several ambient light sensors using the-off current of LTPS TFTs have been reported
[3.2-3.7]. Thus, the photosensitive behavior of LTPS TFT off current is of great
interest. However, this photo-induced leakage current behavior is not included in the
present SPICE device model. In this work, a new parameter is used to analyze the
effects of illumination on LTPS TFTs. It’s dependence on the gate, drain bias and
temperature. An equation is provided to properly describe ULC under various bias
and temperature conditions for further exploration of photo leakage behaviors. A
qualitative deduction is developed to account for the photo leakage mechanism. In
addition, since LTPS TFTs suffer from huge variation owing to the diverse and
complicated grain distribution in the poly-Si film [3.8], the ULC variation will also be

discussed.
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3.2 Classification and Characterization of Photosensitivity
3.2.1 Sensing Area Consideration

Before the mechanism of photosensitivity is discussed explicitly, it should be first
examined where is the most sensitive to the illumination inside LTPS TFTs. A special
layout of the TFT with U-shaped source and drain electrodes configuration is adopted
in this work, as shown in Fig. 3-1. Twenty-five TFTs are arranged in parallel and
separated into two groups. The upper group consists of twelve TFTs and the lower one
contains thirteen TFTs. The inner electrodes (about distance 33um) of the TFTs in
these two groups are shorted together and so are the outer electrodes (about distance
59um) to form the U-shaped TFT.

An irradiation optical beam with. 25pm light spot radius has been used to directly
shine on the device. By scanning the beam along the channel direction of U-shaped
TFT, the leakage currents of the LTPS TFT are measured in two cases with the inner
or the outer electrodes as drain. As shown in Fig. 3-2,‘anomalous two peaks of the off
current are observed. When the measurement is.performed with outer electrodes as
drain, the distance is larger, about 66um. On the other hand, when the inner electrodes
are used as the drain, the distance is shorter, about 32um. The distance between the
pair peaks is consistent with device’s real junction distance. It reveals the
photo-induced current happens only at the drain side. Therefore, the following

discussion of the photosensitivity mechanism will focus only on the drain region.

3.2.2 Definition of the index for photosensitivity and analysis

The typical Ip-Vg transfer characteristics of the LTPS TFT under illumination from
dark to 31320 lux are shown in Fig. 3-3. It can be seen that the off current increases

with the intensity of the incident light and it has weak gate bias dependence under
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higher ambient light intensity. There are several parameters can be use to describe this
behavior of the photo-induced off current. To discuss photo effect of TFTs, the
previous study [3.9] used an index Ryp defined as the ratio of the current under
illumination (Ito) to the current in the dark (Ip.k). Ryp is suitable to evaluate the
performance of light sensors. However, it may not be proper to be used to analyze
photo leakage mechanism. As shown in Fig. 3-4, because 1o 1s less dependent on the
gate voltage, Ry p is mostly determined by the behavior of Ipuk. It can not reflect
photo behaviors of TFTs. Therefore, for our discussion, it may be necessary to find
another index which can eliminate the influence of Ipa.

Fig. 3-5 shows the relationships between drain current and illumination intensity
for several bias conditions in the off region. It can be seen that all drain currents are
proportional to the amount of radiant illumination. Thus, it can be taken that the total
leakage current under illumination (Ito) 1S composed of two components: One is the
leakage current that is not caused by photo illumination (Ip,x) which is measured
under dark state. And the other part is illumination-induced leakage current (Ijjym)
which means the component induced by illumination. In this paper, we will offset Ipark
and only consider Iy, which is defined to be the difference between Ity and Ipy.
To analyze the photosensitivity of the LTPS TFTs in detail, we further define the slope
of the curve in which the current versus illumination intensity as Unit-Lux-Current
(ULC in abbreviation) to be a new index. The physical meaning of ULC is the photo
leakage current induced “per unit-photo flux” and independent of the dark current.

Therewith, the total off current [y, of LTPS TFT can be expressed as

ITotal = IDark + IIllum = IDark + ULC ' L (3'1)

where L is the illumination intensity in lux.
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3.3 Insight of Photosensitivity
3.3.1 Field Effects on Unit-Lux-Current

Fig. 3-6 shows gate bias dependence of ULC under different drain biases. It is
obvious that ULC is change severely under higher drain voltage. Fig. 3-7 shows drain
bias dependence of ULC under different gate biases. When drain voltage V4 is lower
than 8V, ULC increases linearly with drain bias [3.10], and gate bias effect is
negligible. However, when Vy is large enough, ULC increases with drain bias more
rapidly and gate bias effect becomes significant. As shown by the arrow line in Fig.
3-7, the linear ULC curve at low drain bias can be fit, and this is one of the two
components of the total ULC. This component which increases with drain bias
linearly and independent of gate biasis defined as. ULC,. Then, the second component
which subtracts ULC; from the total ULC curve is called ULC,.

Furthermore, we plot ULC; in Fig. 3-8. It is apparent that the log [ULC;] increases
with drain bias linearly, indicating that ULC; increases-with drain bias exponentially
when Vjis large enough. The parallel curves of log [ULC;] at different gate biases
indicate that the dependence of gate bias is also exponential. Thus, ULC can be
expressed by a linear combination of these two components as
ULC = ULC, + ULC, (3-2)

ULC, =aVd+p (3-3)

ULC, =y-exp(n,Vd-n,Vg) (3-4)

where «, B, , m and 7, are all fitting parameters. o and S correspond to the linear
drain voltage dependence and the zero drain bias offset of ULC;, respectively. yis the
scaling factor of ULC,, while 7, and 7, are the parameters about the exponential
dependence on drain bias and negative gate bias of ULC,. As shown in Fig.3-9, the
calculated results agree with our experiment data very well. The values of fitting

factors a, B, vy, n1 and 1, are listed in Table. 3-1.
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Moreover, the mechanisms of two ULC components will be further discussed. The
ULC can be taken into account both the leakage current induced in the gate-drain
overlap depletion and in the lateral depletion regions [3.11]. When device is operating
at the low drain voltage, the linear increase with drain bias of ULC, is attributed to
lateral depletion region by the channel-drain junction in reverse bias. In this region,
ULC,; is negligible. When drain voltage is large enough, ULC, increase with drain
exponentially and gate bias effect becomes significant. Several mechanisms of
leakage current were discussed in previous report [3.12-3.15]. It considered that the
reverse lateral depletion at drain region extends and causes gate induced drain leakage
(GIDL) in gate-drain overlap depletion junction. The amount of the photo current
should be associated with the carrier ‘generation .in the space charge region. By the
junction reverse saturation current and GIDL; the drain current owing to the GIDL
effect is also in an exponential telation. This phenomenon is similar to our case of
ULC, component. The voltage difference between..the drain and gate biases
corresponds to the magnitude of electric field across the depletion region. A more
negative gate bias means that the electric field would get stronger, as the same as a
more positive drain bias. It suggests that larger electric field across the drain depletion
region causes larger photo effect. Both drain and gate bias affects the electric field

strength in the depletion region in a slightly different ways.

3.3.2 Temperature Effects on Unit-Lux-Current

We further take into account the temperature effect of ULC. Fig. 3-10 shows the
illumination effect on photo leakage current at different temperatures of 25, 40, and
60°C under a certain bias condition of (V4,V,) = (10V, -5V). The correlation between

Iota1 and illumination intensity is still linear at various temperatures.
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Drain bias dependences of ULC at different temperatures are shown in Fig. 3-11.
ULC in the range of low drain bias is significantly affected by temperature. While in
the higher drain bias range, the temperature effect reduces gradually. From the
discussion above, we have separated the ULC intoULC,; and ULC,. It can be seen that
ULC, is actually the term subject to the temperature effect. On the other hand, as
shown in Fig. 3-12, ULC; is totally temperature independent, which means ULC,; is
the term purely induced by electric field. Therefore, ULC; may be induced by
mechanism like excess carrier diffusion or thermionic emission and thus it has weak
dependence on the electric field, especially gate bias. ULC, may be induced by
mechanism like excess carrier drift or field emission and thus it has strong
dependence on the drain and gate biases.

Since the lateral electric field is relatively small, the photo-induced current is a
thermally generated current.dominantly. The temperature effect on Ip, can identify
constant activation energy [3.16-3.17], which hints us to add the fitting factors « and
pand in eq. (3-3) in the Arrhenius plot. Fig. 3-13 shows the relationship between o

and S and 1/kT. These two factors increase with 1/kT exponentially and can be

expressed by
o =A-exp(-Ea,/KkT) (3-5)
p=B-exp(-Ea, /kT) (3-6)

where Ea,, Eap are the activation energies of « and g, respectively, and A, B are their
corresponding fitting parameters. The fitting values of Eaa, Eag, A and B are listed in
the inset. By the temperature effect discussed above, it is confirmative to separate
ULC into two components. ULC; is thermally activated and might be corresponding
to the thermionic emission or carrier diffusion, while ULC, is independent of

temperature and possible owing to field emission or carrier drift.
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3.3.3 Mechanism of Unit-Lux-Current

Based on the experimental results of bias, temperature, and sensing location, a
more complete mechanism of ULC is proposed to explain photosensitive effect on the
leakage current of LTPS TFT. Fig. 3-14 illustrates the band diagrams under the
condition of V,<0 along the channel direction near the drain region at low and high
drain biases. In the figure, Wy indicates the length of depletion region at the drain
electrode side where electron-hole pairs can be generated under illumination in the
poly-Si film. The generated electrons flow toward the drain electrode and the holes
flow in the opposite direction. Wy consists of two regions. One is the high hole
concentration region in the channel induced by the negative gate bias, the other is in
the LDD region. The channel area is shielded by the gate metal, while the LDD region
can be shined by the illumination. Based on the Poole-Frenkel effect lowering of a
Coulombic barrier and phonon-assisted tunneling due to.the electric field applied to a
semiconductor [3.18], which enhances thermal emission and the trap-to-band field
emission rate, the two components of ULC will be discuss. For the case at low drain
bias with light irradiation, when the gate bias is changed, similarly to the abrupt p'n
junction, the electric field of the other part in LDD region is invariable. Thus, the gate
voltage independence of the ULC, can be explained. As for the V4 effect, the lateral
depletion region increases linearly with drain bias, corresponding to the parameter o
in eq. (3). With extremely low drain bias, there is still a depletion region in LDD, in
accordance with the parameter £in eq. (3). The conduction mechanism of the leakage
current in the low drain field is thermal emission [3.19]. Consequently, the parameters
a and of fof ULC, are temperature dependent.

On the other hand, for the high drain bias with light irradiation, the electric field

across the lateral depletion region is large enough to fully deplete the LDD region.
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Therefore, the increase of drain voltage will increase the electric field within the
limited LDD length pinched by the n” region. In such case, the more negative gate
bias will also result in the larger field with the same depletion width of the LDD
region. The conduction mechanism of the leakage current at the high drain voltage is
field enhanced emission in the space charge region [3.20]. The electric field
dependence of ULC, is reflected by the slightly different values of the fitting

parameters7; and 77, in eq. (4).

3.3.4 Devices variation

The uniformity of LTPS TFT is always an important issue. Different devices even
fabricated by the same process suffer from serious device variation, especially for the
off current. For this consideration, the photo leakage currents would also vary among
devices. Fig. 3-15 shows the photo leakage currents with respect to the illumination
intensity of several devices on<the.same glass. It verifies that there is still serious
device variation in the aspect of photo leakage current. The results further confirm
that the mechanisms of the photosensitivity for the LTPS TFT are closely related to
the different defect distribution or density in the grain boundary, alike the case of the
dark off current. This issue needs to be overcome before LTPS TFTs can be

practically used as the photo sensing device.

3.4 Conclusion

In this chapter, we present detail studies on the factors that affect the photo leakage
current like bias condition, temperature, and defect states of the LTPS TFTs. It is

found that photo leakage current always exhibits good linear dependence on
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illumination intensity. Thus, a new index ULC characterizing the slope of the curve is
introduced to discuss the photosensitivity. Furthermore, the mechanism of the
photosensitivity for the LTPS TFTs is proposed. It relates to the width and electric
field in the lateral depletion region near drain. It is also shown that ULC variation is
also related to defects in the depletion region. The empirical equation of ULC
provides a potential modeling for simulation of LTPS TFT circuitry considering the

photo effect.
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lf:ctt':i Value Unit
a 4.02x10"7 | A/(V - Lux)
B 8.83x107' A/(Lux)
v 1.61x10™"® A/(Lux)
m 0.42 1/V
7 0.14 1/V

Table 3-1 The values of fitting factors under front light illumination.
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Chapter 4

Dependence of Photosensitive Effect on the Defects Created by DC
Stress for LTPS TFTs

4.1 Introduction

Low temperature polycrystalline silicon (LTPS) thin film transistors (TFTs) have
attracted much attention for Active Matrix Liquid Crystal Display (AMLCD) and
Active Matrix Organic Light Emitting Diode (AMOLED) applications due to the high
mobility and the capability of realizing integrated circuits on the same glass [4.1]. For
its application, several ambient light sensors using poly-Si TFTs, which is one of
value-added functions for high-end flat panel display, have been reported [4.2-4.7].
The photosensitivity is a significant design-consideration for achieving high image
quality LCDs. However, it was: reported.that poly-Si TFTs suffer from several
degradation mechanisms, such as hot carrier and self-heating effects [4.8]. Hot carrier
effect, which was found that the degradation is related to the increase of strain bond
tail states in the band gap of the poly-Si film, and damaged region, is near the drain.
Self heating effect is reported interface states near the source region and the deep
states in the poly-Si film near drain can be created [4.9]. It like as the SOI (Silicon on
Insulator) devices, originated from the poor dissipation behavior of the substrate. As
the operation voltage for Vps and Vs are high, the current conducting in the channel
is high and the joule heat, which can be rough calculated as P=Ips*Vps, would
become large and if the heat can’t be dissipated in time it will be accumulated in the

active region, as shown in Fig. 4-1 [4.10]. As for the main application field for poly-Si
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TFTs, the devices are fabricated on glass substrates and the heat transfer coefficients
for the films in the device structure are shown in Fig. 4-2 [4.11]. As can be observed
in the figure, if joule heat is generated in the poly-Si film during operation, the films
surrounding poly-Si film with much smaller heat transfer coefficients than poly-Si
film would in turn hinder the active region from dissipating heat. Due to such
degradation, the photo-induced leakage current is strongly influenced which is
difficultly designed for sensing circuits. In this work, we apply both stress conditions
deliberately to manipulate the defect-related photo behaviors and modify
Unit-Lux-Current (ULC) [4.12] equations in TFTs. Comparatively, this work focused
on how additional non-uniform defects and the photo leakage mechanism influence

both lateral and gate-drain overlap depletion.

In this study, the TFTs are measured under different illumination conditions before
and after bias stress. One of the stress conditions is that the drain voltage is equal to
20V and the gate voltage is 3V, which is corresponding to the hot carrier effect. The
other condition of self heating stress.is set to-be 15V for both the gate to source

voltage Vs and the drain to source voltage V.

4.2 Electrical Degradation of Poly-Si TFT under DC Stress

4.2.1 Photosensitivity Confirmation

In the previous study, it reveals the photo-induced current happens only at the drain
side. To further confirm photo sensing area is mainly at the drain electrode side and
photo-induced current is not affected mutually by source electrode, conventional
lightly doped drain (LDD) structure and one side LDD structure of TFTs are designed

for examination. Fig. 4-3 (a) and (b) show l4-Vgs characteristics with negative gate
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bias under different illumination conditions for conventional LDD device structure
and only one-side LDD device structure. It can be seen that the off current of these
two types of TFTs are lifted up to the similar levels under different illumination
intensities. It also reveals poly-Si TFTs leakage current occurs at the depletion region
of drain junction and not influenced from source region. Therefore, the following

discussion of the photosensitivity mechanism will focus only on the drain region.

4.2.2 Model Description and Analysis

In this section, we take into account, the photo leakage current induced per
unit-photo flux, Unit-Lux-Current. (ULC in'abbreviation) [4.10] to analyze the
photosensitivity of the LTPS TETs. ULC can be expressed by a linear combination of
two components, both the leakage current induced in the lateral depletion and in the
gate-drain overlap depletion regions [4.13]. When device is operating at the low drain
voltage, ULC is attributed to lateral.depletion region by the channel-drain junction in
reverse bias. When drain voltage is large enough, ULC increase considered that the
reverse lateral depletion at drain region extends as gate-drain overlap depletion
junction. However, the photosensitivity of the LTPS TFTs is influenced from different
both defect states distribution and density in the drain depletion region. Thus, in the
aspect of poly-Si TFTs under electrical stress, additional defects created close drain
depletion region, ULC is drastically varied after hot carrier and self-heating
degradation, consequently.

As shown in Fig. 4-4 (a) (b), the I4-Vy transfer characteristics with 1V drain
voltage before and after hot carrier and self heating stress under different illumination
conditions. In the previous study [4.14], it is revealed that photo-induced current

tendency is changed oppositely by different stress conditions in lateral depletion
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region by the channel-drain junction in reverse bias. It increases in the case of hot
carrier, while it decreases for self heating. Meanwhile, it correlated the
photosensitivity with device parameters such as mobility or threshold voltage, on the
LTPS TFTs. Fig. 4-5 (a) show normalized ULC and mobility at V4=0.6V and 10V in
accordance with stress time for hot carrier stress. The variation trends have been
normalized, and then we can pay attention on the tendencies of these unit parameters.
As figure shown, it reveals most trap states generated by hot carrier stress are
crowded near drain junction side. In contrast, normalized ULC and threshold voltage
at V4=0.6V and 10V in accordance with stress time for self heating stress are
compared in Fig. 4-5 (b). It demonstrates that extra defect states created by self
heating stress are spread in the whole poly-Si thin film through out the channel. From
above mention, non-uniformly. defect distributions after dc stress cause previous ULC
equations not agree with experiment data ‘very well. Therefore, the following
discussion will focus on modifying ULC equations accurately for not only lateral but

also gate-drain overlap depletion.

4.3 Insight of Defect-Related Photosensitivity
4.3.1 Empirical Defect-Related Unit-Lux-Current Model

Several mechanisms of leakage current were discussed in previous report
[4.15-4.18]. For the purpose of effective medium modeling characteristics, we
consider poly-Si to be a material with uniformly distributed trap density. Due to the
photocurrent behaviors of LTPS TFTs concern with different types of additional
non-uniform defects generated from various stress conditions, we suggest an
empirical defect-related Unit-Lux-Current model to describe photosensitivity of the

LTPS TFT after device degradation.
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For analyzing trap-assisted leakage mechanism explicitly, an index Vdx used to
further divide ULC into ULC; and ULC; to individually describe the influence of
lateral field and vertical field effects. At low drain bias, since the lateral electric field
is relatively small, it considered that the photo-induced current is a thermally
generated current dominantly. It hints us to adjust drain-bias dependence of
Unit-Lux-Current model to approximately exponential forms. At higher drain bias, it
considered that the reverse lateral depletion at drain region extends enhance vertical
field effect and causes gate induced drain leakage (GIDL) in gate-drain overlap
depletion junction. The amount of the photo current should be associated with the
carrier generation in the space charge region. By the junction reverse saturation
current and GIDL, the ULC, owing to the GIDL effect is also in an exponential
relation. Base on conductivity limited by grain boundaries of semi-empirical
analytical model. Thus, ULC can be modified by a linear combination of these two

components as

ULC = ULC, + ULC, (4-1)
ULC, = A -{exp[B,(Vd-Vdx)]-1 }+ » (4-2)
ULC, = A, -exp (—77- V) -{ exp [B,(Vd - Vdx)] -1 } (4-3)

where Vg is an indication boundary drain voltage which demarcated the lateral
depletion and gate-drain overlap depletion region. (We can subtract ULC; from the
total ULC curve. The rest part of the total ULC is the second component called ULC,.
The drain bias which makes Unit-Lux-Current from zero to positive point is an
indication boundary.) x is corresponding to photo leakage current induced by per
unit-photo flux at Vg (It is about 6.3V~6.46V before stress). Aj, Az, By, Boand 7 are
all fitting parameters. A; and A; are corresponded to defect-related coefficients of

ULC, and ULGC,; respectively. B; and B, are drain voltage dependence from dc stress
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per unit depletion area. 7 is the scaling factor of ULC, about the exponential

dependence on negative gate bias of ULC,.

4.3.2 Hot Carrier Effects on Unit-Lux-Current

The stress condition is that the drain voltage is equal to 12V and the gate voltage is
3V, which measured at different stress times of 1, 5, 25, 100, 500, 1000 sec to
investigate the hot carrier effect on Unit-Lux-Current. The ULC at V,=-5V with
different stress times is shows in Fig. 4-6. Similarly, for analyzing photosensitivity on
the defects influenced by lateral and vertical field effects, we also divide ULC
measurement data into two components. It can be seen that the ULC increase and
distort slightly at lower drain bias with stress times. However, when device operates at
higher enough drain bias, .the “photo-induced current.is severely decreased. The
calculated and experimental. data of drain bias effect on Unit-Lux-Current with
different hot carrier stress times-are-individually shown in Fig. 4-7 (a) (b). It observed
the calculated results agree with our experiment data very well. Fig. 4-8 (a) (b) shows
the fitting factors A;, A, and B,, B, of modified ULC; and ULC, equations in eq. (4-2)
(4-3) at V,=-5V after hot carrier stress. It is noticed that drain voltage dependence per
unit depletion area, B; and B,, are raised with stress times. The tendency of
defect-related coefficients, A; and A,, of ULC; and ULC,, are reduced with stress
times. It may attribute to the photo re-excited carriers increase and carriers transit

slowly by trap hopping.

4.3.3 Self Heating Effects on Unit-Lux-Current

The stress condition is that the drain voltage is set to be 15V for both Vs and the
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V4, which measured at different stress times of 1, 5, 25, 100, 500, 1000 sec to
investigate the self heating effect on Unit-Lux-Current. The ULC at V,=-5V with
different stress times is shows in Fig. 4-9. By dividing ULC measurement data into
two components, it is obvious that the ULC decrease under lower drain voltage and
almost the same at higher drain bias with various stress time. In view of such
condition, Fig. 4-10 (a) (b) show the calculated and experimental data of drain bias
effect on Unit-Lux-Current with different self heating stress times. Similarly, Fig.
4-11 (a) (b) shows the fitting factors of modified ULC; and ULC,; equations in eq. (3)
(4) at Vg=-5V after self heating stress. It appears that, B; and By, A; and A,, nearly
unchanged with various stress times. Even though hot carrier and self heating stress
affect the device photosensitivity in a slightly different ways, verified ULC equations

are still consisted with properly the illumination behaviors after self heating stress.

4.3.4 Mechanism of Unit-Lux-Current

The According to the experimental results of two stress conditions, a more
complete mechanism of defect-related ULC is proposed to explain photosensitive
effect on the leakage current of LTPS TFT after dc stress.

In previous chapter, for unstressed devices, it consists of LDD region and the high
hole concentration region in the channel induced by the negative gate bias. The
generated electrons move along drain electrode and the holes flow toward channel
direction. For the case of devices at low drain bias with light irradiation, when the
gate bias is changed, channel/LDD junction is similar to the abrupt p'n” junction. As
the lateral depletion region increases with drain bias, the ULC; of conduction
mechanism in the low drain field is thermal emission [4.19]. On the other hand, for

the high drain bias with light irradiation, the gate-drain overlap depletion region
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increases with both drain and gate bias, the ULC, of conduction mechanism at the
high drain voltage is field enhanced emission in the space charge region [4.20].

As can be seen in Fig. 4-12, the band diagrams of devices which are after hot
carrier stress under the condition of V<0 along the channel direction near the drain
region at low and high drain biases, respectively. When the LTPS TFT devices after
hot carrier stress are under optical illumination, the numerous electron-hole pairs from
additionally created shallow tail states are generated in the lateral depletion region.
Therefore, the photo leakage current obviously increases due to the photo-induced
carriers from the extra states created. Fig. 4-13 provides the photo leakage current
spectrum of the light source in the range of 350-750 nm at lower bias after hot carrier
stress. Furthermore, it observed electron-hole pairs created via shallow sub-gap to
improved long wavelength absorption. Nevertheless, in the gate-drain overlap
depletion region, because the channel area is shielded by the gate metal, photo excited
carriers was not induced by irradiation stream. In the meanwhile, excess tail states
close to conduction band and wvalence band .make the hopping of carriers by
trap-assisted and Poole-Frenkel tunneling difficultly [4.21].

Considering that poly-Si TFTs are after self heating degradation, Fig. 4-14 shows
the band diagrams under the condition of V,<0 along the channel direction near the
drain region at high drain biases. Symbols at mid-gap of energy level are additional
non-uniform defects. When devices after self heating stress, the high temperature in
the poly-Si film can release hydrogen and cause plenty of dangling bonds as deep
states. From Shockley-Read Hall theory of recombination, the equations are expressed

as:

_ CnCpNt(np_niz)
~C,(n+n")+C (p+p")

R, =R

n p

R (4-4)

For simplicity, the capture rate coefficients are assumed to be the same for both
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electron and holes i.e. C,=C,=C, the equation can be rewritten as:

CNt(np _niz)

R=
n+ p +2n,Cosh[(E, — E, )/kt]

(4-5)

From equation (4-5), the driving force for the recombination proportion (np-ni®) and
trap level near mid-gap are the most efficient recombination center. These deep states
near mid level, in the lateral depletion region, can recombine the electron-hole pairs
generated by irradiation. Even though the photo-induced carriers might also excite
due to the extra defects, the total current is eventually reduced by much recombination
deep states. Fig. 4-15 provides the photo leakage current spectrum of the light source
in the range of 350-750 nm at lower bias after self heating stress. It’s noticed photo
leakage current decreased certainly: On the other hand, in the gate-drain overlap
depletion region, because hole concentration of channel/LDD junction formed abrupt
p'n” junction are accumulated by gate electrodes. The accumulated holes captured by
extra deep states in gate-drain overlap region allow hole.concentration less slightly. It
makes channel/LDD junction with an abrupt high-low junction (p pn” junction in this
case). Besides, p'p junction form low resistance ohmic contact for majority carriers
(holes). Minority carriers (electrons) therefore considered lower recombination
velocity relatively. This phenomenon cause ULC2 not decrease dramatically after self

heating stress.

4.4 Conclusion

In this chapter, we apply hot carrier and self heating stress conditions deliberately
to correlate the photosensitivity with different types of defects on the LTPS TFTs.
This analysis allows us to understand the role of different type of defects result in

anomalous photo current. Furthermore, based on both trap-assisted and Poole-Frenkel
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effect, a modified defect-related Unit-Lux-Current (ULC) model for TFT is proposed
to explain the illumination behaviors corresponding to the defects created both dc
stresses near the drain region. The empirical equation of ULC provides a potential
modeling for simulation of LTPS TFT circuitry considering the photo effect after DC

stress.
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device under self heating stress.
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Figure 4-2 The comparison for the heat transfer coefficients of the films
for the poly-Si TFTs.
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Chapter 5

Investigation of Backlight Sensing in Poly-Si TFTs

5.1 Introduction

Polycrystalline silicon thin film transistors (poly-Si TFTs) have been widely used in
active matrix liquid crystal displays (AMLCDs) and active matrix organic
light-emitting diode display (AMOLED) [5.1-5.4]. The poly-Si TFTs offer great
potential for AMDs technology, due to their superior electrical characteristics over
those of hydrogenated amorphous ‘Si-thin film transistors (a-Si:H TFTs). Recently, the
demand of high-end mobile electronic products such as digital camera, cell phone,
and mobile TV is continuing to grow up, so that the high resolution and high image
quality becomes the critical issues in the development of mobile displays. Therefore,
the brightness of back-light is getting higher.and higher to meet the requirement for
fine image quality and superior readability as people use these mobile electronic
products under sunlight outdoor [5.5-5.6]. Because LTPS TFTs are top gate structures,
it is suffer from undesirable photo leakage current under a high illumination
environments [5.7-5.10]. However, the researches about improving the electrical
characteristics in poly-Si TFTs under illumination are very few and the mechanism of
photo leakage current in poly-Si TFT is still not clarified.

In our previous studies, for front light illumination experiment, we propose both
unstressed devices which can be seen as “effective medium approach” and stressed
devices which have additional non-uniform defects photo-induced leakage models,

comparatively. In this chapter, we also use such methods to analyze photo behaviors
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of LTPS TFTs when back light emitted from bottom direction.

5.2 Experimental Procedures

Nowadays, the light emitting diode (LED) is more and more used as the
backlight source of liquid crystal displays (LCD) to reduce the power and module
thickness. Therefore, we use LED as the back light source in our experiments. Before
going on back light measurement, we would further make sure sphere of action under
back illumination.

The cross section of the TFT device under back light illumination is shown in Fig.
5-1. In spite of passing through the_glass substrate and probably the buffer oxide, the
back light intensity is less decrease, it’s.due to the effect of the glass substrate and the
buffer oxide on transmission.is small. On the other hand,.the back light is absorbed by
the silicon film. According to the reference [5.11], Fig. 5-2 shows the transmission
and absorption rate of light at different wavelengths after passing a silicon film with
thickness of 65nm according to formula T,(x) = L, exp (-kx), where I, and I, (x) are
the input intensity and the intensity at distance x, respectively, k is the absorption
coefficient, and x is the propagating distance. Based on the calculation, we know the
total intensity decreases up to 10% when the light comes to the channel surface of the
TFT. The photo leakage current (I,nowo) 1s measured at different bias conditions to
study its field effect. Table. 5-1 lists the measurement conditions of the gate and drain
bias in detail. Two types of curves are measured, namely, with fixed the drain voltage
(Vp) as the gate voltage (V) sweeping and with fixed Vg and changing Vp. In

addition, the above two cases of measurement is repeated at various temperatures.

5.3 Results and Discussions
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5.3.1 Physical Models

When the light is emitted from back-light, plenty of electron-hole pairs are
generated in the bottom of poly-Si film. Furthermore, the energy-band structure of Si
material is indirect bandgap. The excess electron-hole pairs induced by the absorption
of light would not be recombined from band to band directly due to the momentum
conservation principle. The numerous electron-hole pairs are accumulated in the
bottom of poly-Si layer. It follows that the excess electrons flow to the drain under the
positive drain bias for n-channel devices, generating the photo leakage current.

Fig. 5-3 shows model of the electron-hole pair distribution in the poly-Si of TFTs
[5.10]. It assumed that Q electron-hole pairs are generated when backlight is absorbed
near the glass/poly-Si interface. These electron-hole pairs either recombine at the
glass/poly-Si interface or diffuse to the gate SiOs/poly-Si interface and recombine
there. We also assume the recombination speeds S, at the glass/poly-Si interface and
S, at the poly-Si/gate SiO; interface. We denote the electron-hole pair concentration at
the glass/poly-Si interface as N, and denote that at the gate SiO,/poly-Si interface as
N;. The balance of flow at both interfaces is given by

N, —N N.,—-N

Q=SN,+D—-—= ; D" —==SN

tSi tS' v
It can obtain Ny, and N as
B 1 D

1
s, Q .y S, tg Q
S, S

e

Therefore, total amount of electron-hole pairs accumulated in the channel, Qpair, is

given by
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Qpair = y/SgtSi where y 1s between 1 and 2 depending on the ratios of S;, Sy and D/ts;.
b

Thus, the electron-hole pairs can be generated in not only drain or source junction
region but also the whole channel region, so a front light case should show lower
photocurrent than a back light case, from physics viewpoint.

When device is under back-light illumination, the drain current is dominated the
diffused electron from source in n-type poly-Si TFTs. Therefore, it would be affected
strongly by the barrier height of source. As the gate bias is applied, the barrier height
of source is lower to increase the amount of eléctron is channel diffused from source.
Base on the experimental results, a leakage model of band diagram is proposed. First,
as the excess electron-hole pairs are generated under illumination with positive drain
voltage, the light-induced electrons flow to drain directly, forming the photo leakage
current. Therefore, the residualsexeess holes are-accumulated in the poly-Si film to
form the floating body with a positive channel potential, AV. Hence, the source barrier
is lowered by AV due to the floating positive potential distributed in the channel.
While the applied gate bias is swept from negative to positive directions and smaller
than the threshold voltage, TFT would be operated at sub threshold region. So the
source barrier would be lower again by the positive gate bias, However, the more
lowering source barrier induce that the excess holes accumulated in channel are more
easily diffuse to the source to reduce the positive channel potential. So that the fewer
channel potential leads to a raise of source barrier. It means that the source barrier is
not only controlled by applied gate bias but also affected by the floating body with
positive potential, AV when poly-Si TFTs are under illumination.

The current components of our model are shown schematically in Fig. 5-4. The
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generated electron current Iepnoo flows to drain terminal, the generated hole current
Iiphoto flows to the source terminal, and the parasitic bipolar electron current I flows

to the channel.

5.3.2 Electrical characteristics of Unit-Lux Current

The relationships between leakage current and illumination intensity under
different bias conditions are shown in Fig. 5-5. It is clearly seen that the linearity
retains under different bias conditions. Fig. 5-6 (a) and (b) demonstrate the drain bias
effect and gate bias effect on ULC, respectively. It is noticed that drain bias affects the
photo leakage current severely, but the change of ULC is not obvious with respect to
the gate bias. Furthermore, the back light ULC equations also can be expressed like as
front light ULC equations (3-2) (3-3) (3-4) case, similarly. As shown in Fig. 5-7, the
empirical formula fits the experimental data very well. The values of fitting factors a,
B, v, m1 and n; are listed in Table. 5-2. However, compare with Table 3-1, we can see
a, B, and y is higher than front light case and 7, is relatively much lower than front
light case. The «, £, and y parameters are higher which is due to the electron-hole
pairs can be generated in not only drain or source junction region but also the whole
channel region, so a front light case should show lower photocurrent than a back light
case. Meanwhile, the residual excess holes are accumulated in the poly-Si film to
form the floating body with a positive channel potential, AV. The source barrier is not
only controlled by applied gate bias but also affected by the floating body with
positive potential, AV when poly-Si TFTs are under illumination. It results in the
parameters about the exponential dependence on negative gate bias of ULC, for back
light illumination case is lower than front light illumination case.

Drain bias dependences of ULC at different temperatures are also shown in Fig. 5-8.
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ULC in the range of low drain bias is significantly affected by temperature. Since the
temperature only affects the ULCy, it is consistent with the mechanism of thermionic
emission. Then, we further analyze on the temperature dependence of ULC;. The
temperature effect on Ip,« also can identify constant activation energy like as front
light case. In the previous equations, A, B, Ea,, and Eag are fitting factors, and their

values are listed in Table. 5-3.

5.3.3 Photo Induced Current Analysis of Extra Defect Distribution
under Electrical Stress in LTPS TFTs

In this chapter, to analyze in detail:the photosensitivity of the poly-Si TFTs, we will
offset Ijak (measured under.dark state) from [ (total leakage current under
illumination) and only consider Ljj, which is defined as Lijym=liotai-lgark. F1g.5-9 (a)
and (b) shows lillum which measured at Vy—=-5V, Vds=3V dependence on the
illumination intensity before and after 1000 seconds of hot carrier or self heating
stress with forward and reverse measurements. All lillum are proportional to the
amount of radiant illumination which can be expressed by the slope.

In aspect of forward measurement, as shown in Fig.5-9 (a), we notice the slope is
changed oppositely by different stress conditions. Whether light source is frontlight or
backlight irradiation, it increases in the case of hot carrier and decreases for self
heating. It demonstrates that photosensitivity can be higher if there are more tail states,
while it exhibits a negative dependence on the number of deep states. On the other
hand, for reverse measurement case, as shown in Fig.5-9 (b), the photosensitivity is
almost no difference with hot carrier stress time which reflects that the non-degraded
source region. However, it first noticed that the unanticipated anomalous illumination

behaviors, photo current increased abruptly under backlight irradiation after
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self-heating degradation. However, according to previous study [5.13], it can’t be
explained photo induced currents are raised due to only interface states near the
source region.

First, in our hot carrier stress experiment, we stressed our devices at V=3V, and
Va=16V, and measure them at different stress times of 25, 100, 500, 1000 sec. With
fixed the gate voltage as the drain voltage sweeping in the forward measurement, as
shown in Fig. 5-10, we can see that the ULC increases and distorts slightly at lower
drain bias with stress times. Compared to the unstressed device, the ULC, of the
devices operating at higher enough drain bias becomes less obvious and the total ULC
is smaller. On the other hand, for the reverse measurement, we can see that the ULC
before and after stress remain the same, as shown in Fig. 5-11, which confirms the
defects are only created near the drain side. The behaviors of ULC under back light
illumination are similar to front light case.

On the other hand, in our self heating stress experiment, compare with front light
illumination case, it is first notice the unanticipated photo current. Fig.5-12 (a) and (b)
show the I4-Vg transfer characteristicss of TFTs with forward and reverse
measurements in saturation region 5V drain voltage under different back illumination
conditions for self heating stress. The defects information of devices near the drain
and source sides can be revealed with forward and reverse configurations
measurements. It can be seen that the off current of the devices can be altered by both
irradiation and stress. For analyzing ULC behaviors after self heating stress, we
stressed our device at Vg = 15V, and Vg4 = 15V, and measured at different stress times
of 1, 5, 50, 200, 600, and 1000 sec. With fixed gate voltage as the drain voltage
sweeping in the forward measurement, the ULC is shown in Fig. 5-13. Compared to
the unstressed device, we can see that the ULC decreases at higher drain bias with

stress time, while ULC, of the devices does not change significantly. On the other
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hand, for the reverse measurement, as shown in Fig. 5-14, we indeed can see that the
ULC increases with stress time and ULC, changes significantly at high drain bias.

To verify the hypothesis about the damaged regions after self heating degradation
in detail, capacitance-voltage measurements were employed. Fig.5-15 (a) (b) shows
the normalized gate-to-drain capacitance Cgq and gate-to-source capacitance Cgs
curves before and after stress with different frequencies. Compared with the curves
before stress, the stressed Cgs and Cgq curves exhibit two main changes: the positive
shift for the gate voltage near the flat band voltage Vrp and the increase for the gate
voltage just below Vgg. The curves of Cgq after self-heating stress, the stretch and shift
in the positive direction for the gate voltage near flat band voltage can be explained
by the increase of the deep states with higher temperature during stress. Differ from
the curves of Cyq with higher. temperature during stress, C,, is attributed to another
states induced by the higher.local electric field. In addition, the increases of the Cy
and Cgyq curves for the gate voltage smaller than Vg come from the interface states
which are frequency dependence,.since the fixed charges would not respond to
different frequencies. Moreover, the more apparent increase of Cys below Vg than the
one of Cyg. It suggests of a spatial creation of interfacial states according to the
electric field distribution.

Compare with above discussion, the information of photo induced current increase
can be revealed that the degradation from self-heating may not only increase interface
states and trap charges between poly-Si/gate oxide film but also raise the tail states in
the poly-Si film. Owing to vertical electric field dominantly near source region, major
carriers greatly accelerated and impacted Si/SiO; surface, resulting in strain bond tail
states. Such tail states may exist through the channel region, which can't discover with
front light irradiation due to gate metal shielding by itself and can be detect with back

light irradiation.
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The degradation model in TFT structure is proposed as shown in Fig.5-16 to
explain roles of defects in hot carrier and self heating stress. Hot carrier effect, the
photosensitivity is higher under both front and back illumination hints such additional
tail states exist in LDD region near the drain. Self heating effect is found both
gradational tail and interface sates which impact ionization phenomenon cause by
higher electric field along poly-Si channel from source to drain region and the

gradational deep states in the poly-Si film near drain can be created.

5.4 Conclusion

In this work, we present detail studies on the factors that affect the photo leakage
current of the LTPS TFTs under backlight condition.. Meanwhile, we correlate the
photosensitivity with different types of defects by electrical stress on the LTPS TFTs.
Meanwhile, the degradation of poly-S1 TFTs under self-heating stress is examined via
employing both C-V measurements_and new partial irradiated analysis in a mutual
way. The defect information of several analyses is listed in Table. 5-4. I-V analysis
method, it only can reveal overall behaviors of device and what kinds of dominant
defects are. C-V analysis method, it can provide roughly source and drain region
information for individual devices. Photo analysis method, considering the relation
between photosensitivity and additional non-uniform defect is the originality of this
manuscript. Defect center behaviors which influence the photo leakage current are
extremely related to energy level of trap defects. In this work, new partial irradiated
strategy, compare to the previous C-V or I-V analysis methods, the merits of the
proposed optical method in this manuscript are properly know what complex model of
TFTs after self heating, especially, both tail and deep states are found in such stress

degradation. Only this method can make sure the existence of tail state after self
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heating degradation and explain photo induced currents are raised near the source
region. Furthermore, a more comprehensive and accurate model considering the
relation between photosensitivity and additional non-uniform defect is proposed after
device degradation. This understanding of the degradation mechanisms for LTPS
TFTs will be helpful in realizing system and developing photosensors on panel

design.
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Figure 5-1 The cross section of device under back light illumination.

81



100

0

—&— Absorb
—v— Transmission

Wavelength (nm)

—1 r -ttt 1
300 350 400 450 500 550 600 650 700 750 800

N W = (5, O =~
o O o o o O
Transmission (%)

-
o

0

Figure 5-2 The transmission rate and absorption rate of LED light source.
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Gate Drain | Illumination
EXPERIMENT
N Bias Bias Intensity(lux)
-5V
V\;)Gs::zsp 7.5V 0.165\; i N
10V 3090
L 10800
VD step -0.8V~ 5. 3V 19200
VG sweep -10V - 29900
10V

Table 5-1 The drain bias and gate bias effects on photo leakage for LTPS
TFTs.
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Figure 5-3 Distribution of electron-hole pairs in the poly-Si of TFTs.
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Figure 5-6 (a) Drain bias effect on Unit-Lux Current at different gate
biases. (b) Gate bias effect on Unit-Lux Current at different drain biases.
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Figure 5-7 Experiment data (Symbols)-and empirical formula (solid lines).
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Fitting Value Unit
Factors
o 9.19x10™" A/(V - Lux)
B 9.49X10™° A/Lux
v 2.04X107"® A/Lux
M 0.41 1/V
7 0.08 1/V

Table 5-2 The values of fitting factors under back light illumination.
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Figure 5-8 Drain bias dependence-of Unit-Lux Current at different
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90



lf:ctt':i Value Unit
A 1.223x10'¢ | A/(V - Lux)
B 1.086x10™" A/Lux
Ea, 0.007 eV
Eag 0.063 eV

Table 5-3 The values of temperature fitting factors under back light
illumination.
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Figure 5-10 Drain bias dependence of ULC at different hot carrier stress
times measured in the forward mode.
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Figure 5-11 Drain bias dependence of ULC at different hot carrier stress
times measured in the reverse mode.
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Figure 5-12 The lg4-V¢s transfer characteristics of TFTs with (a) forward
and (b) reverse measurements in saturation region 5V drain voltage under

different back illumination conditions for self heating stress.
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Figure 5-13 Drain bias dependence of ULC at different self heating stress
times measured in the forward mode.
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Figure 5-14 Drain bias dependence of ULC at different self heating stress
times measured in the reverse mode.
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Figure 5-15 The normalized (a) gate-to-drain capacitance Cyq and (b)
gate-to-source capacitance Cg curves before and after stress with
different frequencies.
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Figure 5-16 The cross section views of degradation model in TFT
structure under hot carrier and self heating stress conditions.
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Hot carrier effect | Self heating effect
I-V Forward )
) Tail states Deep states
analysis Reverse
C-V Cgs (none) Interface states
analysis Cgd Unknown states | Unknown states
Photo Source (none) Tail states*
analysis Drain Tail states Deep states

Table 5-4 The defect information of several analyses.
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Chapter 6

Characterization of Thin film Transistor for

Optical Sensor Application

6.1 Three-Dimension Poly Silicon Interaction Display

6.1.1 Motivation

The low temperature poly-silicon thin film transistor (LTPS TFT) is taken as a
promising technology for its high mobility and the compatibility of consisting the
peripheral circuits to realize .the ~dream —of “system on glass (SOG). The
photosensitivity is a significant consideration for achieving high image quality LCDs
such as next generation three-dimensional (3D) system [6.1]. Some sensing functions
using TFTs were already also demonstrated: [6.2-6.4]. However, most of the
conventional ambient light sensor systems.were implemented by external discrete
devices such as charge coupled device (CCD) sensor which cause additional cost and
the design complexity. Alternatively, photo transistor based sensors allow the
integration of TFT without extra change in the fabrication process. In proposed
system, the system connect with forward and reverse measurements can be used to set
up sensing direction. Then, the sensing disparity capability of gate metal shielding by
itself photo transistor with embedded optical sensors is adaptive to capture the image

near the panel.

6.1.2 Sensing Disparity Consideration of LTPS TFTs and Experiment
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In this study, photo leakage current was induced by a halogen lamp irradiation
stream with several neutral density filters through the objective of a microscope, and
the light intensity was measured by digital luminous flux meter. The Top gate n-type
poly-Si TFTs with lightly doped drain were used in the experiment. The typical Ip-Vg
transfer characteristics of the LTPS TFT under illumination from dark to 31320 lux
and rotatable probe station experimental setup are shown in Fig. 6-1.

It can be seen that the off current increases with the intensity of the incident light
and it has weak gate bias dependence under higher ambient light intensity. Meanwhile,
we use rotatable probe station to propose gate metal shielding by itself for poly-Si
TFTs with top gate structures formed photosensitivity disparity structure to sense
where the light comes from using forward and reverse measurement, as shown in Fig.
6-2. If light comes from left side, as Fig. 6-2 shown, the incident light partially

eliminated under forward measurement and not covered under reverse

6.1.3 Results and Discussions

Fig. 6-3 (a) and (b) show forward and reverse measured photo currents verses
negative gate bias with several right incident angles under 5100lux and 20500lux
illumination conditions. We will offset Ip,« and only consider Iyy,m Which is defined to
be the difference between I and Ipak. It can be seen that the photo current of these
two measurements are lifted up with incident angles and both are independent to gate
bias. The photo current of device under reverse operated are less than forward
measured. It due to the photo leakage current originating from right light illuminated
and which are partially eliminated by the gate metal under reverse measurement.
These results reveal such system we proposed has possibility to sense working

directionality environment illumination of per pixel.
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In the aspects of analyzing photo sensing sensitivity, an index the defined as the
ratio of forward and reverse photo current o= Ip/Ilx are used to evaluate the
performance of light sensors. Fig. 6-4 show forward and reverse photo currents ratio
verses incident angles under 5100lux and 20600lux illumination conditions. As can be
seen, the tendency of sensitive ratio decreases with raising incident angles. It connects
with forward and reverse measurements in saturation region can be used to guide
left-right different directions of image pixels. Thus, we can choose proper forward
and reverse photo current ratio to confirm oblique position, as Fig. 6-5 shown.
Moreover, we take further steps to find height of object along the direction of the
barrier strip for two view parallax barrier type three dimensional interaction display

[6.5].

6.2 Sensing Circuits of Source Follower Type using LTPS TFTs
6.2.1 Motivation

Generally, the ambient light sensing function has been implemented using an
additional chip or several components in the display module for mobile applications
[6.6]. However, there are problems associated with the increase in the volume of the
display module and difficulties in the manufacturing of the display module that allows
light to be guided to the chip. On the other hand, if an ambient light sensing circuit is
integrated to the panel even the pixel using LTPS TFTs, this can both decrease the
display module volume and lower the manufacturing cost. Because the ambient light
sensing device is fabricated using thin-film technology and crystallization process, the
detection area, the LDD, is very thin. Moreover, the photo current of LTPS TFTs is
lower than that of the photodiode used in complementary metal oxide semiconductor

(CMOS) image sensor (CIS). It is very difficult to design a readout circuit that
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performs very sensitively to readout such small photo leakage current. Therefore, we
proposed a light sensing circuit that can convert photo leakage current to analog
voltage signal and buffer the converted voltage signal to analog-to-digital converter
(ADC). Measurements using the proposed light sensing circuit are performed to verify

the performance of the proposed circuit.

6.2.2 Source Follower and Operation Principle

The schematic diagram of the proposed ambient light sensor and its timing diagram,
as shown in Fig. 6-6, is proposed for the examine discharge process for the
illumination effect. It consists of.a TFT (T)), a-source follower (T,) and a capacitor
(Cs). The T; TFT operates .as current source in the sensor, so the output current
strongly depends on the electrical characteristics of the T;. The operating principles
can be described as two periods shown in the timing diagram. In a charge period (1),
when gate signals become high, T; TFT-is-tutned on. Thereby, a voltage difference
(Vg-Va) 1s stored in capacitor Cs. The photo-leakage current, which is determined by
the intensity of the ambient light, is converted into voltage difference through
discharging process. The voltage difference can be expressed as Vgue-Viaa. In a
discharge period (2), the gate voltage of TFT T; is applied so that T, is operating in

the subthreshold region while sensing operation.

6.2.3 Simulation Method and Results

In the RPI models of TFT, there is no photo leakage current model for SPICE

simulation [6.7], so we can’t simulate the photo leakage current under different
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illumination directly. We have to modify the simulation method according to
illuminated characteristics of device. We take subthreshold region for example. Fig.
6-7 shows the illumination dependence of Ip-Vp characteristics curve; the drain
current increased while the illumination intensity enhanced. We selected the
approximately linear region of the Ip-Vp curve to fit the formula, which can be
expressed asl, =1,(L)+V,/R,(L), where Io (L) and 1/Ro (L) are intercept and slope,
which are illumination dependence. Therefore, we use the different current sources
and resistances parallel to represent the different photo leakage currents of TFT. Table
6-1 shows the values of Iy (L) and Ro (L) at Vg=0.5V (subthreshold region) with the
illumination intensity variation. When the illumination intensity is changed, the value

of Ip (L) and Ry are changed with it.

Fig. 6-8 shows the SPICE simulation results of TFT (W/L=20um/5um), we added a
current source Iy (L) and a resistance Ry parallel to simulate the photo leakage current
as shown in its inset. In this'figure, we can see the results already can represent the
photo leakage current. Consequently,.we have-figured out a method to modify the
simulation model. Fig. 6-9(a) and 6-9(b) show the modified 2T1C light-sensing
circuit model for simulation and its time diagram. We can simulate the situations of
TFT under illumination and in the dark by this model. The simulation results are
shown in the Fig. 6-10. We can see in this figure, as expected, the output voltage (Vout)
is discharged by the photo leakage current of T,. The larger the illumination intensity,

the faster the discharge rate are. Its response time is around several mini seconds.

6.2.4 Results and Discussion

In Fig. 6-11 shows LTPS TFTs transfer characteristics in the dark as well as
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irradiated at six different levels of illumination from the front side at Vps=10V. For
the three main TFT operating regimes namely, on, subthreshold, and off regime, the
current level and photosensitivity are discussed. To analyze in detail the
photosensitivity, we define the ratio of the TFT drain current under illumination
(Ip_illum) to that in the dark (Ip_dark) as Rup = Ip jium / Ip dark. We chose Vgs=3V,
0.5V, -2V to bias device in the on, subthreshold, and off regime, respectively. We can
observe a significant difference of the photosensitivity between these regimes as
shown in Fig. 6-11 and current levels are shown in its inset. In subthreshold region
and off region, we can see the photosensitivity is significantly higher than that in the
on-state, which is almost independent of illumination intensity. Although the current
level of on-state is 5 to 6 orders larger than the others, TFT has poorer Ry p in the
on-state than those in the subthreshold and off-state. In the aspects of photosensitivity,
on regime is not suitable for the light sensing application, but it is suitable for being

the readout part.

Because the proposed sensor must-operate with the display panel, we have to read
out the output signals during the operation frequency of the display panel, 60 Hz
(16.7ms). The operation frequencies of subthreshold and OFF region that we chose
are 100 Hz and 10 Hz, respectively. The output voltage of the proposed circuit is
measured by oscilloscope during discharge period under halogen lamp illuminative
variations from 0 to 31320lux, and its waveforms are shown in Fig. 6-12(a) and
6-12(b). The discharging rate of V,,which is due to photo leakage can be expressed
as dV/dt. Consequently, the slopes (dV/dt) of the waveforms can reflect the
subthreshold or OFF current under illumination and in the dark by the equation as
follow Ilicakage=(dVou/dt) * Cs (6-1), so that the illumination intensity can be sensed.

However, in the discharge period, the photo leakage current drained away through the
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T1. At the same time, the VA drops to “Vi, 1o~ With time. Hence, we have to verify

the accuracy of the function of the circuit. The full well capacity or saturation charge

Qsaris given by Q. =C-V=1-t (6-2)

We selected the approximately linear region of the Ip-Vp curve to fit the formula,
which can be expressed as 1, =1,(L)+ A (L)-V,  (6-3)

an ordinary differential equation of V4 can be expressed as

WL+ AL V0 =C- T (64

After solving the equation, we can get V (1) =« - AO(L).t _ L) 6-5
4 q g A1) =a-exp( Cs ) A(L) (6-5)

Expanding equation (6-5) by Taylor series

Vty=a 0+ 20 LAG N 5 L)y i6.6)
Cs 2 G Ay(L)

because of our design, (L) S2 and, =V, (0)+ 1, (L)
Cs A(L)

where Vi (0) is the initial-voltage “Via nign” during discharge period. Therefore,

equation (6-6) can be simplified as ‘v, )=V, (0) Hl(éﬁ 4 A(():( L) V0t (6-7)

S S

Equation (6-7) shows that the dV/dt only depends on illumination intensity.

6.2.5 Devices Variation and Calibration

However, the device variation is always an important issue of LTPS TFTs. It is
clear that for any circuit to be manufacturable, device-to-device uniformity must be
controlled. Qualitatively, the uniformity of LTPS TFTs is expected to be worse than
that of MOS transistors made in single-crystal materials. This is because the TFTs are
composed of grains, whose number, shape, and quality could vary from device to
device. Even the devices fabricated under the identical process, LTPS TFTs still have
different electrical characteristics due to the influence from different numbers of the
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inter-grain and intra-grain defects [6.8-6.9]. Two of the differences are significant to
the sensing circuit. One is threshold voltage (Vy,) variation which is dominant in the
subthreshold region and the other one is initial off current variation. Therefore, the
poly-Si TFTs are found to suffer from serious photosensitive device variation
behavior which results from the diverse and complicated grain distribution in the

poly-Si film.

6.2.5.1. Off Current Variation

The measured output voltages in off region of fifteen proposed light-sensing
circuits on the same glass with respect to. the illumination intensity and an average
line of these results are shown in Fig. 6-13. We can 'see the results are non-uniform.
With the illumination intensity increase, the error becomes larger and larger. The
deviation resulting from initial off current variation will cause a significant error of

output voltage of our light sensing circuit.

6.2.5.2. Threshold Voltage Shift

In order to evaluate the influence from Vy, shift on the sensing results, we simulated
the Vy, shift by changing Vg low level. Fig. 14 (a) and (b) show the influence of Vy,
shift both on subthreshold region and off region. We can see in these figures, only a
little Vg, shift would cause a significant deviation of output voltage in the
subthreshold region, as expected. The measurement error is not controllable. On the
other hand, it is obvious that the impact of the Vy, differences in the off region is
slighter than that in the subthreshold region. For this reason, only the deviation of Vi,

difference of subthreshold region is considered. We propose a Vy, shift compensation
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circuit to calibrate the deviation of our sensor. We instead change V, to simulate that

if the Vy, shifts. Thus we can evaluate the variation under Vy, shift.

6.2.5.3. Off Current Variation Calibration Method

We try to use the statistical method to reduce the effect of off current variation.
Based on the average line, the error of illumination intensity is about 4700Ix and the

signal to noise ratio is about 7. Where the signal to noise ratio is defined as following:
S/N=maximum illumination intensity/error  (6-8)

We divided the fifteen samples into several groups, two samples, three samples,
and five samples as the average units. Fig. 6-15 shows five samples as an average unit.
We can clearly see that thewdeviation is greatly reduced after calibration using
statistical method. The error of the illumination intensity is reduced to 3200lux,
2400lux, and 1200lux; and the S/N ratio is-increased to 10, 13, and 26, respectively.
Therefore, we can increase the resolution of the sensor. We also believe that if we use
more samples average for a unit, the resolution of our sensor can be even more

improved.

6.2.5.4. Threshold Voltage Shift Compensation Circuit

In a LTPS TFT circuit, Vy, non-uniformity is always a serious issue [6.10]. In
addition to the initial Vy, difference, the degradation of the driving TFTs by the lapse
of operation time will cause Vy, shift. Therefore, it is important to compensate the Vy,
shift variation [6.11-6.12]. Fig. 6-16 (a) shows the schematic of our proposed 4T2C
light-sensing circuit with compensation part and (b) its time diagram. The driving

sequence consists of initialization period, compensation period, and sensing period
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including charge and discharge.

In the initialization period, when Vi,, Vs, and @, signals become “low” and V,, @,
signals become ‘“high”, and thus T, and SW; turn on, and T, and SW, turn off.
Because the C,; is short when SW; turn on and the voltages of V,and Vgof Cgare
equal, we can initialize the charges which stored in these two capacitors to be zero.

In the compensation period, when ®; and V, signals become “low” and Vg signal
becomes ‘“high”, and thus SW; turns off. Based on the principle of charge
conservation, Vgis equal to “Vy jon”, Vais equal to “Vs high”, and T turns off. At the
same time, @, signal becomes “high” and SW, turns on. The voltage of Vg will
charge to “Va high”” and then T1 turns on again. At this time, V, is discharged through
T1 to “Vin 1ow” and Vg follows it_till the voltages of Vo and Vg are equal to the
threshold voltage of T;. Therefore, T; turns off and the Vy, is stored in the Cy, where

Vaand Vg can be expressed as
VA = VB = Vth _Vg _low (6-9)

In the first half of sensing period (charge), when @, and Vg signals become “low”
and Vg signal becomes “high”, the voltage of Vg will become “Vy high+Vin-Vg 1ow” and
T, turns on again. Vj, signal becomes “Vin_nigh” at the same time. Because we want to
operate the sensor in the approximately linear region as mentioned in previous section,
we set the voltage of “Vin high” to be small than 8V. Then the V4, which is held by Cs,
is charged to “Vin high”.

Finally, in the second half of sensing period (discharge), we want to operate the
sensor in the subthreshold region, so the signal of V, becomes “Vg s’ .
Simultaneously, the signal of Vj,becomes “Vin jon”. Therefore, the Vo which is held
by Csis discharged by the photo leakage current of T;.

The proposed threshold voltage shift compensation circuit can overcome the
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variation due to Vy, shift. Fig. 6-17 (a) and (b) show the fifty times of Monte Carlo
simulation results of the proposed light-sensing circuit before and after compensation

when Vy, shift is £0.5V. We can clearly see the variation is greatly reduced.

6.2.6 Digitization

In order to restrain the interference of noise and avoid the error due to Vy, shift of
source follower, a high accuracy ADC has been proposed. The digitization circuit is
shown in Fig. 6-18 (a), which consists of two comparators, a “AND” logic gate and a
counter. Two reference voltages Vier 1 and Vr » are used to compare with V., we can
adjust the range of Vout with different signals “Vier ” and “Vier 2”. If Vou >Vier 1
>Vier 2 OF Vier 1 >Vier 2 >Vou, the output of logic gate C.is always “0”, as shown in Fig.
6-18 (b). Only when Vi 1 >Vou> Vet 2, the output of logic gate C will be the clock
numbers of CLK. Therefore, we can disctiminate the slopes of V. between different
illumination intensities by counting-the clock numbers. Moreover, in order to improve

the resolution of the ADC, we can increase the speed of the CLK.

6.3 Light sensor for detecting uniformity of backlight intensity

For back light illumination application, low power consumption is very important.
Portable consumer electronic products, such as mobile phone, PDA, always move
toward a tendency of constantly reducing their power consumption because users
expect that they can operate for a long time. For LCD-based products, most power
consumption is attributed to backlight, accordingly, backlight power saving is
considered one of the most effective ways to reduce LCD energy dissipation. In recent

years, LED backlighting was sought to replace the fluorescent backlighting because
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the TFT-LCDs with LED backlighting have advantages of greater efficiency, long
lifetime and environmental compatibility. Since the LED backlight modules could be
non-uniform in panel or degrade after a long time operation. These situations all have
the same phenomenon that is the changing of backlight intensity. In this work, we also
can use our back light research to propose the backlight sensor for the accurate
backlight intensity. We can use the backlight sensors to detect the light intensity, and

determine the intensity whether or not to achieve the value that it should be.

6.4 Conclusion

We proposed system connect with: forward and reverse measurements can be used
to set up sensing direction .in ‘active-matrix displays. Due to sensing disparity
capability of gate metal shiclding by itself, it ‘has potential used to photo transistors
with embedded optical sensors to capture three dimensional images near the panel.
This system is without extra novel device process-development and it is expected that
the integration in the pixels with the same device of sensing system onto the panel.
Meanwhile, a newly developed light sensing circuit using the identical LTPS TFTs
fabrication processes has been proposed. It can perform sensing operation and
trustworthy readout operation through amplifying small photo leakage current to
analog voltage. Due to the poor uniformity of LTPS TFTs as experimental results
shown, we also proposed calibration methods to reduce the illumination intensity
error from 4700lux to 1200lux and compensate the Vy, shift variation. On the other
hand, we study on the feasibility of LTPS TFTs for light sensing application. The off
region would be more appropriate for the purpose that is to accurately quantify the
light intensity. Both front light researches would provide the possibility for the light

sensor array integrated in the pixels with the same device of LTPS TFTs.
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Brightness

lo (L)

R():l/AO (L)

Dark

2.40E-12

1.81E+11

203 lux

9.34E-12

1.58E+11

837 lux

1.80E-11

1.18E+11

3632 lux

3.82E-11

7.06E+10

9113 lux

6.99E-11

4.71E+10

17199 lux

9.80E-11

3.47E+10

31320 lux

Table 6-1 Io(L) and Ry=1/4A¢(L) at Vgs=0.5V with the illumination

intensity variation.
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Figure 6-8 SPICE simulation results of TFT (W/L=20um/5um).
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Figure 6-10 Simulation results under illumination and in the dark.

123



:l'l'l'l'l'|—l—l-l'l'l'l'l'l'|—l—l-l'l'l'l'l'l'| 6')(15_5! LRALL | ™57 --ul'|—l—l-l'l'l'l-'
- | ' ' By 10" off region <
s A £ DA 4x10°  ~ -

3 3x10° <
[ | ax10° E i

A A A A 1x10° g

= 3 =
100 I {ix10° O K
: r %&ﬁ -;1)(1'2'-1D = :
| :;c;ﬁf*ﬂ:ﬁ {5 '
- r i1X1D-12 -
b :1)(10-13 -

;IDO 10I00 10600 100000

lllumination Intensity (lux)

1 0 | —=—(VG,VD) = (-2V, 0.6V)
f =0 (VG,VD) = (-2V, TV)

[ —e—(VG,VD) = (0.5V, 0.6V)

[ === (VG,VD) = (0.5V, 7V)

L = (\VG,VD) = (3V, 0.8V)

| == (VG,VD) = (3V, 7V)

RLID

eshold region

on region

1 10 100 1000 10000
[llumination Intensity(lux)

Figure 6-11 The comparison of the current ratio of under illumination and
in the dark Ryp among on, subthreshold, and off region and that of
current level (inset).

124



| Measure Condition @ VG=0.5V

" e D ark
e 8337 lUX
| e 3632 lUX
i 9113 lux
— 17199 lux
4.0 F—— 31320 Iux
0.0 0.1 0.2 0.3 0.4 0.5
Time (ms)

(@)

- Measure Condition @ VG=-2V 1
Dark 9113 lux s

Output Voltage (V)
.
1N

| e 837 JUX s 17199 lux d
| e 3632 lux 31320 lux -

Output Voltage (V)
W 5 N H 18] 19} N
o © B ® N O O

-5 -4 -3 -2 -1 0
Time (ms)

(b)

Figure 6-12 Measured waveforms of output voltages of proposed 2T1C
light-sensing circuit illuminative variations from dark to 31320 lux on (a)
subthreshold region and (b) off region.
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Figure 6-17 Fifty times of Monte Carlo simulation results of the proposed
2T1C light-sensing circuit when Vy, shift is +0.5V (a) before
compensation (b) after compensation.
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Chapter 7

Conclusions and Suggestions for Future Work

In previous chapters, the characterizations of low-temperature poly-silicon thin film
transistor for optical sensor application are studied. In chapter 3, a new photo
behavior parameter Unit-Lux-Current, which is the ability of photo leakage current
induced per unit-photo flux, is used to analyze the effects of illumination on LTPS
TFTs. An equation is provided to properly describe ULC under various bias and
temperature conditions for further exploration of photo leakage mechanism. In
addition, since LTPS TFTs suffer from huge variation owing to the diverse and
complicated grain distribution in the-poly-Si film, the ULC variation will also be
discussed. A possible future-work which may try to insert such photo equations in
SPICE models for design.

In chapter 4, the probable degradation.cases-for the device under DC operation are
considered. We apply both stress conditions which are hot carrier and self heating
stress deliberately to manipulate the defect-related photo behaviors and modify ULC
equations in LTPS TFTs. Comparatively, this work focused on how additional
non-uniform defects and the photo leakage mechanism influence both lateral and
gate-drain overlap depletion. For the viewpoint of future application, the empirical
adjusted equation of ULC also meanwhile provides a potential modeling for
simulation of LTPS TFT circuitry.

In chapter 5, in our previous studies, under back light illumination, we propose both
unstressed devices which can be seen as effective medium approach and stressed

devices which have additional non-uniform defects photo-induced leakage model,

133



comparatively. The different characteristics of front light and back light ULC are also
in comparison. Meanwhile, we provide new insight which use energy level of trap
defect behaviors connected with photo induced current to further make sure the
existence of tail state after self heating degradation. Furthermore, a more accurate
model after self-heating degradation is proposed. Due to LTPS TFTs are top gate
structures, for future sensor design consideration, such photo leakage current which
suffer from back light illumination are must be amend.

In chapter 6, we study on sensor application of the low-temperature poly-silicon
thin film transistor. For front light illumination application, first, a three dimensional
embedded optical sensor employs low temperature poly-silicon thin film transistor
which used gate metal shielding by-itself characteristics was proposed. The system
connect with forward and reverse measurements . can be used to set up sensing
direction. It provides sensing ‘disparity characteristics. of adopted devices under
illumination. It’s expected the integration of sensing system onto the panel without
extra components sensors and extra.change in the fabrication process. Then a circuit
of source follower type based on the LTPS TFTs which can sense the illumination
condition is proposed to be used as an ambient light sensor. Some kinds of variation
effect can be calibrated by statistical and compensation circuit methods. For back
light illumination application, we can use the backlight sensors to detect the
uniformity of light intensity. All research would provide the possibility for the light

sensor array integrated in the pixels with the same device of LTPS TFTs.
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