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Models and Solution Methods for Cell Formation Problems

Student : Chin-Chih Chang Advisors : Dr. Shu-Hsing Chung
Dr. Tai-Hsi Wu
Department of Industrial Engineering and Management

National Chiao Tung University

ABSTRACT

Cell formation problem (CFP) is the first and most difficult aspect of constructing a
preliminary cellular manufacturing system (CMS). The CFP can be classified into two main
categories: the standard CFP represented by a binary machine-part incidence matrix and the
generalized CFP with more factors and system constraints considerations. Although many
studies have been done on standard CFP, generalized CFP had received less attention. Very
little has been done to integrate the.three basic steps (e.g., cell formation, cell layout, and
intracellular machine layout) in theé design-of CMS.

Based on the above discussion,.a two-stage-hybrid algorithm merging a similarity
coefficient method (SCM)-based clustering” algorithm and meta-heuristics, including
simulated annealing (SA), water“flow-like-algorithm: (WFA) and tabu search (TS) is first
presented to solve standard CFP quickly and effectively.In regard to the generalized CFP, a
two-stage multi-objective mathematical programming model is first formulated to integrate
cell formation, cell layout, and intracellular machine layout simultaneously with the
considerations of alternative process routings, operation sequences, production volume,
production times, and machine reliability. A two-stage hybrid approach integrating a
generalized SCM-based clustering algorithm and SA/TS/WFA method is then proposed to
solve this generalized CFP model quickly and effectively.

Unlike most existing methods, the proposed approach not only integrates the three
basic steps in the design of CMS but also automatically calculates and determines the
number of cells (NC) to achieve the best objective value. Illustrative examples, comparisons,
and experimental analyses demonstrate the effectiveness of the proposed models and
solution algorithms. The proposed approaches can be used to solve real-life CFP in factories

by providing robust manufacturing cell formation in a short execution time.
Keywords: Group technology (GT), Cellular Manufacturing System (CMS), Cell formation

problem (CFP), Cell Layout Design, Machine Reliability, Simulated Annealing
(SA), Water Flow-like Algorithm (WFA), Tabu Search (TS)
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CHAPTER 1
INTRODUCTION

1.1 Research Motivations

In response to various and diversified customer demands, companies must adopt
innovative manufacturing strategies and technologies to achieve an efficient and flexible
manufacturing system. Group technology (GT) is one approach that meets the requirements
of system flexibility and product variation. The cellular manufacturing system (CMS) is one
of the applications of GT principles in manufacturing. Implementation of CMS resulted in
significant benefits, such as reduced material handling costs, work-in-progress inventory,
throughput and set-up times, simplified scheduling, and improved quality (Wemmerlov and
Hyer, 1987). Hence, it has been ‘widely discussed and applied by researchers and
practitioners in the last three decades.

A cell formation problem (CFP) is the crucial element in designing a CMS (McAuley,
1972). However, the CFP in CMS+is\on¢ of the NP-hard combinational problems (Kusiak,
1990). Hence, it is difficult to obtain ‘optimal-solutions in an acceptable length of time,
especially for large-sized problems. Numerous models and solution approaches have been
developed to address this problem since the 1970s. Different studies have focused on
different aspects of CFP. Based on production data employed in CF models, the CFP is
classified into two main categories: standard CFP represented by a binary machine-part
incidence matrix and generalized CFP with more factors and system constraints
considerations. Although many effective heuristics or algorithms have been done on
standard CFP, very little has been devoted to integrate cell formation, cell layout, and
intracellular machine layout, the three basic steps in the design of CMS, simultaneously
with considerations of alternative process routings, operation sequences, production volume,

and machine reliability on generalized CFP; thereby limiting the practical nature of their



approaches in a real CMS environment. Moreover, most methods in the literature assume
that the NC is prescribed beforehand. However, determine the proper NC in the cell
formation stage is very difficult for the layout designer because he does not have any
knowledge at the beginning. Hence, it is important and more practical to integrate the
abovementioned factors simultaneously in the design of CMS.

Due to their excellent performance in solving combinatorial optimization problems,
meta-heuristic algorithms, such as simulated annealing (SA), water flow-like algorithm
(WFA), and tabu search (TS), have been the most successful solution approach to provide
global or near-global optimal solutions within a reasonable computation time. On the other
hand, a number of similarity coefficient method (SCM)-based approaches have been
proposed, and have been shown to producegood. machine-part grouping and are more
flexible in incorporating various production data into the machine-part clustering process.

Thus, the major research motivations for this thesis. may be summarized as follows:

(1) CMS may provide great benefits.

(2) CFP is the first and most difficult.aspect of constructing a preliminary CMS.

(3) CFP is one of the NP-hard combinational problems.

(4) There are few works that integrate cell formation, cell layout, and intracellular machine
layout simultaneously with considerations of alternative process routings, operation
sequences, production volume, production times, machine reliability, and different
cellular layout type.

(5) It is difficult for a layout designer to determine the optimum cell number beforehand.

1.2 Research Objectives
Based on the research motivations, this thesis is dedicated to merging an SCM-based
clustering algorithm and meta-heuristics to develop quick and effective hybrid algorithms to

solve standard CFP and generalized CFP. Specific goals are as follows: (1) to merge an



SCM-based clustering algorithm and SA/TS/WFA method to present a fast and effective
two-stage hybrid algorithm to solve standard CFP; (2) to formulate a two-stage
multi-objective mathematical programming model to integrate cell formation, cell layout,
and intracellular machine layout simultaneously with considerations of alternative process
routings, operation sequences, production volume, machine reliability, and different cellular
layout type; and (3) to integrate a generalized SCM-based clustering algorithm and
SA/TS/WFA method to develop a fast and effective two-stage hybrid approach to resolve
the formulated two-stage multi-objective mathematical programming model.

Unlike most previous studies where the NC to be formed is prescribed beforehand, the
proposed methods do not demand a priori specification of the NC. Instead, it is
automatically calculated and determined such that the best objective value may be achieved.
[lustrative examples will be used to.demonstrate the cffectiveness of the proposed methods
for standard CFP and generalized CEP. Hopefully, the proposed methods can be used to
solve real CFP in factories by providing robust manufacturing cell formation in a short

execution time.

1.3 Research Process

To achieve the abovementioned objectives, the research process (Figure 1.1)
progresses as follows:
Step 1: Identifying research problems and objectives

Issues in CFP are identified through a discussion of research motivations and the
purposes of this study.
Step 2: Literature review and discussion

The literature encompasses group technology and cellular manufacturing, solution
methods for CFP, performance measures for CFP, and previous work on resolving CFP.

Step 3: Formulation of mathematical models



In this step, a mathematical model in terms of maximization of grouping efficacy is
formulated to express standard CFP. Then, a two-stage multi-objective mathematical
programming model for generalized CFP is formulated to integrate cell formation, cell
layout, and intracellular machine layout simultaneously with considerations of alternative
process routings, operation sequences, production volume, production times, machine
reliability, and different cellular layout type.

Step 4: Development of proposed algorithms

In order to solve standard and generalized CFP mathematical models quickly and
effectively, a two-stage hybrid CF algorithm (HCFA) merging an SCM-based clustering
algorithm and SA/TS/WFA method is proposed to solve the standard CFP model.
Afterwards, a two-stage hybrid generalized:CF algorithm (HGCFA) merging a generalized
SCM-based clustering algorithm «and SA/TS/WEFA “method is proposed to solve the
generalized CFP model.

Step 5: Validation of proposed algorithms

To demonstrate the power of our proposed algorithms for standard CFP, 35 test
instances represented by a binary machine-part ‘incidence matrix drawn from the literature
are used to evaluate the computational characteristics of our proposed algorithms. On the
other hand, 8 test instances, two drawn from the literature and the others prepared by adding
self-creating data to test instances, are used to validate the quality of our proposed algorithm
for generalized CFP.

Step 6: Summaries and Conclusions

The results are summarized and the conclusions are drawn in this step.
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Figure1.1 The flow chartof research

1.4 Organization

The remaining chapters are organized as follows. We present a literature review of CFP
and the requisite solution techniques, including SA, TS, and WFA in Chapter 2. The
mathematical models that express standard CFP and generalized CFP are formulated in
Chapter 3. In Chapter 4, two hybrid meta-heuristic algorithms based on SCM-based
clustering algorithm and SA/TS/WFA are proposed to solve the complex models. In Chapter
5, two numerical illustrations are given to demonstrate the effectiveness of the proposed
methods for standard CFP and generalized CFP. Computational results for standard CFP and
generalized CFP are shown in Chapter 6. Several strategies proposed in this thesis, together
with some mechanisms, are further analyzed in Chapter 7. Conclusions of this thesis are

finally drawn in Chapter 8.



CHAPTER 2
LITERATURE REVIEW

This chapter is divided into fours sections. Section 2.1 introduces and defines GT and
CM. Cell formation methods are reviewed in Section 2.2, while Section 2.3 describes the
performance measures for CFP. Section 2.4 provides a review of previous work on

resolving CFP.

2.1 Group Technology and Cellular Manufacturing

GT was originally introduced by Mitrovanov (1966) and was popularized in the west
by Burbidge (1975). One application of GT is CM, a manufacturing philosophy in which
similar parts are identified and grouped into part families, while machines are grouped into
machine cells to take advantage' of their similarities. in manufacturing and design.
Implementation of CM results in significant benefits, such as reduced material handling
costs, work-in-progress inventory, throughput-and set-up times, simplified scheduling, and
improved quality (Wemmerlov andHyer,1987).

Although CM may provide great benefits, the CMS design is complex for real life
problems. The design of a CMS consists of four stages as described below (Wemmerlov and
Hyer, 1986).

CF — grouping parts with similar design features or processing requirements into part
families and associated machines into machine cells.
Group layout — laying out machines within each cell (intra-cell layout) and cells with
respect to one another (inter-cell layout).
Group scheduling — scheduling parts and part families for production.
Resource allocation — assigning tools, human and material resources.

Ideally, all of these stages should be addressed simultaneously in order to obtain the

best results (Alfa ef al., 1992). However, due to the complex nature of each stage and the



limitations of traditional approaches, this thesis will focus on stages 1 and 2. The solution

methods for stages 1 and 2 will be discussed in the next section.

2.2 Solution Methods for CFP

The process of determining part families and machine groups is referred to as the CFP.
It is known that the CFP in CMS is one of the NP-hard combinational problems (Ballakur
and Steudel, 1987). Numerous solution approaches have been developed to address CFP
since the 1970s, and these can be classified into five categories (Figure 2.1): (1) array-based
methods, (2) similarity coefficient methods, (3) graph theoretic methods (4) mathematical
programming methods, and (5) heuristic and meta-heuristic methods. Similarity coefficient
methods and heuristic and meta-heuristic methods are related to this research and are
discussed further.

(1) Array-based methods

The array-based methods attempt to allocate machines into groups and parts into
associated families by appropriately rearranging-the-orderof rows and columns to find a
block diagonal form of the ay =1 €ntries in the“machine-part incidence matrix. The
machine-part incidence matrix has 0 and 1 entries (ay). A ‘1’ entry in row k and column i of
the matrix indicates that part i has an operation on machine k, whereas a ‘0’ entry indicates
that it does not. Although cluster analysis methodologies are simple to implement, they have
one main drawback: it usually takes into account only one objective i.e. the minimization of
intercellular movements where only part operations and the machines involved are
considered. Other product data (such as operational sequences and processing times) are not
incorporated into the design process. Thus, solutions obtained may be valid for limited

situations only.
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(2) Graph theoretic methods

In graph partitioning approaches, the process of forming manufacturing cells starts
with collecting problem data and then converting them into a weighted network diagram.
Finally, the weighted network diagram is separated into several sub-groups of a machine
cell. In the network diagram, nodes represent machines and arcs represent their relationships,
defined as the value of total part flow between machines. In this method, the network
diagram can clearly depict the flow of the machine, but other product data (such as machine
capacity, processing times) are not easily incorporated. Therefore, graph partitioning
approaches do not directly show the characteristics of multi-objective cell design.

(3) Mathematical programming methods

Mathematical programming methodscan be:presented in two parts: objective function
and constraints. The establishment of objective function usually considers the factors related
to manufacturing, e.g. minimizing vinter-cell movement of parts, minimizing cell load
unbalances, minimizing number-of exceptional, and minimizing total manufacturing cost.
Constraints express the content of production conditions; such as the limitation on number
of machines, number of jobs, utilized time of tools, cells of machine allocation, controller’s
work time, and capability limitation. Mathematical programming methods can be further
classified into four major groups based on the type of formulation: (1) linear programming
(LP), (2) linear and quadratic integer programming (LQP), (3) dynamic programming (DP),
and (4) goal programming (GP). The greatest advantage of this method is that different
design objectives and constraints can be incorporated into a single formulated model.
However, NP completeness of the problems makes it computationally intractable, especially

for large-sized problems.

2.2.1 Similarity Coefficient Methods

SCMs are also referred to as cluster analysis-based methods in cell formation literature.



SCM are more flexible in incorporating various production data into the machine-part
clustering process (Seifoddini and Tjahjana, 1999). The solution procedure of SCM usually
follows a prescribed set of steps (Romesburg, 1984), the main ones being: (1) getting input
data, (2) calculating the similarity coefficient, and (3) selecting a clustering algorithm to get
machine cells. These steps are described next.
(1) Getting input data

Input data can be obtained from routing cards. These information are usually
represented in a matrix called the machine-part incidence matrix, which is an m x p matrix
with 0 or 1 entry, where m is the number of machines and p is the number of parts. Rows
represent the machines and columns represent the parts. An element a;; of the matrix is 1 if
the jth part visits the ith machine for processing;‘otherwise, the value is 0.
(2) Calculating the similarity coefficient

The similarity coefficient is‘defined as a measure of similarity between machines, tools,
design features, and so forth. Yin and Yasuda (2005) evaluated the performance of 20
well-known similarity coefficients, ‘and-found that the Jaccard similarity coefficient (Jaccard,
1908) is the most stable similarity coefficient. For this reason, we use the Jaccard similarity
coefficient and the generalized similarity coefficient (Won and Kim, 1997) to calculate the
similarity coefficient of standard CFP and generalized CFP, respectively. The generalized
similarity coefficient is an extension of the Jaccard similarity coefficient (McAuley, 1972)
and has been proposed for considering alternative process plans.

The Jaccard similarity coefficient is defined as the ratio of the number of parts visiting

both machines and the number of parts visiting one of the two machines:

a.
§ = @.1)
Y a; +b; +c;

where a;; represents the number of parts processed by both machines i and j; while b;; is
the number of parts processed by machine i but not by machine j, and ¢; is the number of
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parts processed by machine j but not by machine i.

On the other hand, the generalized similarity coefficient is formulated as:

N,

i

S =———

where

S;; = similarity coefficient between machines i and j
&k 2k ok

N,:Za,-, N‘,:Zaj, N,-,:Za,»j
k=1 k=1 k=1

p = number of parts

. |1 if i e some routing of part k
0 otherwise

« |1 if j € some routing of part k
0 otherwise

= {1 if i, j € some routing of part-k synchronously
b=

0 otherwise

(3) Selecting a clustering algorithmto get machine cells

When the values of the similarity coefficients/have been calculated, a clustering
algorithm can be selected to get machine cells: Conventional clustering algorithms are
divided into two major classes: hierarchical and non-hierarchical. Hierarchical clustering for
CF comprises two stages. Initially, some form of similarity or dissimilarity between
machines or parts is employed in order to create machine cells or part families. Later,
machines or parts are separated into a few broad cells, each of which is further divided into
smaller groups and each of these further partitioned and so on until terminal groups that
cannot be subdivided are generated. Essentially, hierarchical techniques can be classified
into two: (a) divisive methods where the process starts with all the data (machines or parts)
in a single group and a series of partitions is created until each machine (part) is in a
singleton cluster and, (b) agglomerative methods where the process starts with singleton
clusters and proceeds to merge them into larger partitions until a partition containing the
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whole set is obtained.

Non-hierarchical clustering methods are iterative methods that also employ a measure
of similarity or dissimilarity for grouping parts or machines. They begin with either an
initial partition of the data set or the choice of a few seed points. In either case, the number
of clusters has to be decided on beforehand.

Among the abovementioned approaches, the SCMs are more flexible in incorporating
various production data into the machine-part clustering process. On the other hand, the
heuristic and meta-heuristic methods are especially useful in providing near-optimum
solutions within a reasonable computation time when a CFP cannot be solved using

traditional methods, and thus constitute the state-of-the-art algorithm for solving CFP.

2.2.2 Heuristic and meta-heuristic methods

Heuristic and meta-heuristic “methods. are random heuristic search algorithms
applicable to a wide variety of combinatorial optimization problems. They include SA (Su
and Hsu 1998, Sofianopoulou 1999, Arkat et a/. 2007), TS (Sun et al. 1995, Adenso-Diaz et
al. 2001, Wu et al. 2004, Lei and Wu:2005), genetic algorithms (GA; Lee et al. 1997,
Onwubolu and Mutingi 2001, Boulif and Atif 2006, Chan et al. 2008), ant colony
optimization (ACO; Kao and Fu 2006), particle swarm optimization (PSO; Andres and
Lozano 2006), artificial neural network (ANN; Park and Suresh 2003, Yang and Yang
2008), and WFA (Yang and Wang 2007). Although heuristic and meta-heuristic methods
are not guaranteed to provide optimal solutions (they usually give sub-optimal results), they
are very useful in producing acceptable solutions within a reasonable time. In fact, optimal
results can only be obtained under very restricted conditions; this makes heuristic and
meta-heuristic methods more practical in real-life applications. SA, TS, and WFA are

relevant to this research and are discussed further.
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2.2.2.1 Simulated Annealing

SA algorithm was originally proposed by Metropolis et al. (1953) to simulate the
annealing process. Based on this pioneering work, Kirkpatrick et al. (1983) first introduced
the general optimization algorithm of SA to solve hard combinatorial optimization problems
through controlled randomization. Lundy and Mees (1986) proved that the SA algorithm
converges to the global optimum with a probability close to one under certain assumptions.
SA poses several advantages over other sophisticated combinatorial optimization
approaches, e.g. relatively easy and quick implementation, flexibility, and transparency. Due
to its ease of use and its ability to provide a good solution for real-world problems, SA is
one of the most powerful and popular heuristics to solve many optimization problems. For
instance, adequate results have been attained when applying SA on various combinatorial
problems (Kirkpatrick et al. 1983,‘Bonomi-and Lutton 1984, Aarts and Van Laarhoven 1985,
Selim and Alsultan 1991, Mckendall ez al. 2006, Yu et al. 2010).

The pseudo-code of the general (procedure-for implementing the SA algorithm in
maximization problems is presented:in, Figure 2.2:The algorithm starts with a high
temperature. After generating an initial solution (S”), it attempts to move from the current
solution (S) to one of its neighborhood solutions ( s").Changes in objective function values
(A=s"-S) are computed. The new solution is accepted if it results in better objective value
(i.e. A>0). However, if the new solution yields worse value, it can still be accepted

", where T is the current temperature. This

according to the probability function p = ¢
check is performed by first selecting a random number (7) from (0, 1). If the value is less
than or equal to the probability value (p), the new configuration is accepted; otherwise, it is
rejected. By accepting worse solutions, SA can avoid being trapped on local optima. SA

repeats this process L times at each temperature to reach the thermal equilibrium, where L is

a control parameter usually called the Markov chain length or Epoch length. The parameter
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T is gradually decreased by a cooling function as SA proceeds until the stopping condition
is met.

The general scheme of SA can be stated as follows:

Step 1. Choose an initial temperature 7.

Step 2. Generate a random candidate S.

Step 3. If a stopping criterion is satisfied, then stop; otherwise repeat the following steps:
Step 3.1.  If “thermal equilibrium is reached,” then exit this loop.
Step 3.2. Let sV be arandomly selected neighbor of S.
Step 3.3. Generate a uniform random number 7 from [0, 1].
Step 3.4. Compute the changes in the objective function values:A=(§"—§ ).
Step3.5. If e >r,then § =5".

Step 4. Let 7'be a new (lower) temperature value; then go to Step 3.

The annealing schedule mainly.consists of (1) the. initial temperature, (2) a cooling
function, (3) the number of iterations, to be performed at each temperature, and (4) a
stopping criterion to terminate thé.algorithm. Performance analysis of SA had revealed
several characteristics (Lin ef al., 1993):

(1) There is a tradeoff between the quality of the final solution obtained and the execution
time required. Furthermore, the execution time is sensitive to the decrement ratio of the
temperature.
(2) If the temperature drops too sharply, is the algorithm becomes easily trapped in local
minima.
(3) Detecting the equilibrium of the system at each temperature level is not an easy task.
(4) The total number of iterations of SA is affected by the initial temperature.
(5) If the numbers of iterations at low temperature regions are not large enough, there are still
some probability of departing from good solutions.

Hence, several decisions have to be made in order to implement the conceptual
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algorithm described above. These include the following:
(1) Choice of an initial temperature and the corresponding temperature decrement strategy
At a high temperature, almost all unimproved trial solutions are accepted. However,
at a lower temperature, fewer unimproved trial solutions can be accepted. If the cooling
speed is too fast or the initial temperature (7)) is not high enough, this mechanism will fail
to escape local minima. 7)) should be high enough that in the first iteration of the algorithm,
the probability of accepting worst solutions is, at least, 80% (Kirkpatrick ef al., 1983). The
most commonly used temperature decrement function is geometric: 7 =a x T, where a< 1
and constant. Typically, 0.7 <a<0.95.
(2) Choice of a criterion for detecting equilibrium
For each value of the current temperature 7 the inner loop (steps 3.1 to 3.5 in the
algorithm presented above) should.be repeated L times-in order for the system to reach
“thermal equilibrium.” If the search cannot reach the equilibrium state at each temperature,
obtaining a globally optimum solution ‘becomes difficult.“A good criterion for thermal
equilibrium can save computational effert without losing'the ability of escaping from a local
minimum.
(3) Choice of an adequate stopping criterion
The stopping criterion is used to stop the algorithm when there is sufficient evidence
that the global optimum has been detected or that the “cost” connected with the search for a
better estimate of the global optimum would be too high. The stop can also occur when
some kind of “resource” has been exhausted, e.g. computer time, the total number of
solutions generated, and when the desired energy level is attained (freezing temperature).
The stopping criterion is always the crucial and most difficult part of the algorithm, and has
great influence on overall performance.
Obviously, each of these control parameters is chosen according to the specific
problem at hand. In addition to the control parameters, two other important issues that need
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to be defined when adopting this general algorithm to a specific problem are the procedures
to generate both the initial solution and the neighboring solutions. The details of the

proposed implementation of the SA to the CFP are presented in Section 4.1.2.

SA Algorithm ()
{
Generate an initial solution §°.
Let the current solution S equal to S°.
Let the current best solution §° equal to §°.
Let the current temperature 7" equal to the initial temperature 7.
WHILEC(stop criterion is false)  // outer loop
{
Let repetition counter n = 1.
WHILE(n < Markov chain length/5): » »// inner loop
{
Generate a random solution—§" |in'the neighborhood of S .
Compute A= f(§Y) - f(S).
IF(A>0 or & >recl(0,1))
Let § <« S".
IF (£(s")> f(s))
Let §"«S".
n=n-+1.
}

Reduce the temperature 7.

Figure 2.2 Pseudo-code for general simulated annealing algorithm (Kirkpatrick et al., 1983)
2.2.2.2 Tabu Search

TS is a meta-heuristic approach designed to find optimal or near-optimal solutions to
combinatorial optimization problems. This method has been suggested primarily by Glover

et al. (1985) and further refined and developed by Glover (1986, 1989, and 1990). The

pseudo-code for the general procedure for implementing the TS is presented in Figure 2.3.
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TS _Algorithm ()
{
Generate an initial solution §°.
Let the current solution S equal to §°.
Let the current best solution §* equal to §°.
WHILEC(stop criterion is false)
{
Generate a best solution §V ( s¥e Nlore N A) in the neighborhood of S'.
Update tabu list N7 .
IF(f(s")<f(5))
Let § «s".
Let S« s".

Figure 2.3 Pseudo-code for general TS algorithm

The algorithm begins from a randomly:selected or a known initial solution (§°). From
this solution, a set of neighborhood. solutions of the current solution (S) is generated using
the predefined movement strategies. The objective . function is evaluated for each
neighborhood of S and the best neighbor solution (S ) replaces the S even though the best
neighbor solution may be worse than the current one. dn'this way, the algorithm can escape
from the local minima (or maxima) of the objective function. However, the algorithm may
recycle. To avoid this situation, certain attributes of the last replaced solution are stored in a
list, which is called a tabu list ( v ). The neighbors of S that satisfy conditions given by the
tabu list are systematically eliminated unless they meet an aspiration criterion ( N*), so that
at each iteration, the algorithm is forced to select a point not recently selected. TS has been
successfully used to solve many optimization problems in a wide variety of areas, including
CFP, graph coloring, traveling salesman problem, path assignment, flow shop sequencing,
job shop sequencing, and dealing with learning in neural networks (Glover and Languna,
1993). More detailed discussions of the foundations of TS methodology can be found in
Glover (1989, 1990) and Glover and Laguna (1997).

In general, the main components of TS are the initial solution, neighborhood and
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moves, tabu list, aspiration criterion, stopping criterion, intensification, and diversification.
The details of these are described next.
(1) Initial solution
The quality of the initial solution is crucial to the efficiency of TS. It is known that a
good initial solution will improve the efficiency of TS. Generally, the initial solution is
produced by some rules or problem-specific heuristics instead of random generation.
(2) Neighborhood and moves
The neighborhood of a solution is the set of all formations that can be arrived at by a
move. Since neighborhood depends on the current solution, new neighborhood is generated
every time the current solution changes. Generally, neighboring solutions can be generated
by insertion method, pair-wise interchange, and ,adjacent interchange method. Different
methods are employed according to the problem. From all neighboring solutions, the best
one is chosen to move forward. However, this best solution’may sometimes be in the tabu
list and does not satisfy aspiration criterion: When this happens, the second best solution is
chosen to move forward if it is not.in the tabu list;-0therwise, the third best solution is
considered and so on.
(3) Tabu list
In order to prevent scheme cycling and returning to the same solutions, it is necessary
to introduce a condition that prevents this from happening. This is usually carried out by not
allowing reversal of moves for a certain number of iterations equal to the tabu length. These
non-admissible moves within the short interval comprise the class membership of a tabu list.
The size of the tabu list must be large enough to prevent cycling, but small enough to not
forbid too many moves. A minimum of 7 and a maximum of 11 has been suggested for tabu
length (Glover and Laguna, 1993).
(4) Aspiration criterion
The tabu restriction may be overridden if the move will result in a solution that is
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better than the best solution found thus far. Thus, if a tabu move satisfies the associated
aspiration criterion, it is considered admissible.
(5) Stopping criterion
The most accepted stopping criterion relies on the search being terminated if the
objective function value has not improved within a certain number of iterations that is
usually specified at the start of the run. Another criterion relies on the search being
terminated if a maximum number of iterations has been reached to avoid an extremely long
run. The problem with the latter criterion is that it is difficult to determine the maximum
number of iterations because the value may either lead to premature termination or
expensive termination.
(6) Intensification
The mechanism for intensification enhances the search to focus on examining elite
solutions in a neighborhood. It tends to move the‘search to a neighboring position in the
search space, and so could be considered alocal search.
(7) Diversification
The mechanism for diversification allows'alarge jump to be made in the solution space.
This ensures that large areas of the space are searched and solutions do not get stuck in local
minima. This mechanism is also referred to as the restarting procedure. For each
diversification process, a different initial cell formation is randomly generated. This way,
the search is able to explore a large solution space, thereby enhancing the possibility of
finding the optimum solution in a very short time.
TS has the following characteristics:
(1) Utilizes a flexible memory structure, which is more efficient than strict memory structure
(ex: branch-and-bound) or no memory (ex: simulated annealing).
(2) Allows searching toward worse solutions in order to get rid of local optimum.
(3) Records explored solutions in tabu list in order to avoid redundant searching time.
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(4) Updates the tabu list in every step to reduce the probability of redundant searching and to
improve searching efficiency.

(5) Uses an aspiration criterion to relax tabu restriction and keep the searching process going.

(6) Sets upper bounds of iteration numbers passed or time elapsed to terminate the searching

process.

2.2.2.3 Water Flow-like Algorithm

The design of the WFA (Yang and Wang, 2007) was inspired by the natural behavior
of water flowing from higher to lower levels. On the earth’s surface, a flow will split into
multiple sub-flows when rugged terrains are traversed. Sub-flows, however, will merge
when they arrive at the same location. Governed by gravity and driven by fluid momentum,
flows can run to higher levels or run over bumps to navigate various terrains. Water flow
will cease and stagnate at the locally or-globally lowest depression; when the momentum
left cannot expel the water out of the depression, it will stagnate at its current location. No
movement is allowed until other flows merge with it or until the water evaporates into the
atmosphere. When the evaporated water-accumulat€s'to some extent, it will return to the
ground as several new downpour flows, such that rainfall occurs occasionally. As the
solution space of a problem can be mapped to the geographical terrain, and the objective
value is mapped to the altitude, each flow can then be regarded as a solution agent. Water
moving to a lower position can be considered as a solution searching for the optima. Thus,
the solution search process has been modeled as water flow.

Yang and Wang (2007) adopted several natural behaviors of water flow in presenting
the WFA (Dougherty and Marryott, 1991). Their design ideas are summarized as follows:

(1) Driven by gravity and governed by the energy conservation law, water will constantly
flow to lower altitudes. Conversely, the solution search will recursively move from

inferior to superior solutions.
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(2) Fluid momentum drives water forward through rough terrains. A flow will split into
sub-flows when it encounters rugged terrain and when its momentum exceeds a base
amount for splitting. WFA simulates this behavior as an agent forking operation; that is,
more than two agents are derived from a single agent. A flow with larger momentum will
generate more streams of sub-flows than one with less momentum. A flow with limited
momentum will yield to the landform and maintain a single flow. Therefore, the fluid
momentum of a flow is recalculated to determine the number of sub-flows that can be
forked after each move.

(3) Water flows to lower altitudes and occasionally swells to higher altitudes as long as the
kinetic energy is larger than the required potential energy. To avoid being trapped within
a local minimum, WFA allows the water to flow to a worse location to broaden the
exploration area, provided it has enough kinetic energy:

(4) A number of flows merge into-a single flow when they meet at the same location. WFA
reduces the number of solution agents when multiple agents result in the same objective
value to avoid redundant searches,

(5) Water flows are subject to water evaporation in the atmosphere. The evaporated water
will return to the ground in the form of rainfall. In WFA, a part of the water flow is
manually removed to mimic water evaporation. After evaporation, a precipitation
operation is implemented in WFA to simulate natural rainfall and explore a wider
solution area.

The pseudo-code for the general procedure for implementing the WFA is shown in

Figure 2.4.
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WFA_Algorithm ()
{
Generate an initial solution.
WHILE(stop criterion is false)
{
Flow splitting and moving.
Flow merging.
Water evaporation.
IF (rainfall required)
{
Precipitation.
Flow Merging.
}
IF (new best solution found)
Update best solution record.

Figure 2:4 Pseudo-code for WEA algorithm

The WFA algorithm consists of four primary operations: (1) flow splitting and moving,
(2) flow merging, (3) water evaporation, and (4) precipitation. Before proceeding to the

descriptions of these four operations, we introduce some notations.

Noax . Iteration limit

Wy : Initial mass of original flow

W; : Mass of flow i

Vo : Initial velocity of original flow

Vi : Velocity of flow i

Ty : Base momentum

n : Upper limit on number of subflows split from a flow
n : Number of subflows forked from flow i

N : Total number of water flows in current iteration

Ly : Velocity of subflow £ split from flow i
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Oy :Attitude drop from flow i to subflow k; equivalently, changes in objective value
from solution i to its neighborhood solution k&
G : Gravitational acceleration

T : A prescribed number of iteration a flow will be removed by evaporation

1. Flow splitting and moving operation

It is assumed that there is only one water flow in the beginning of the WFA, and that its
location is randomly generated. Driven by fluid momentum and potential energy, the flow
starts to move to new locations to explore the solution space for new and better solutions.
Yang and Wang (2007) used constant-step movement to the best neighborhood solution
when solving the object grouping problem. However, various flow-moving strategies can be
designed and applied depending on the characteristics of different optimization problems.

In the WFA, flow splitting results from capable momentum, and a flow with higher
momentum generates more sub-flows than that with a lower one. The locations of the split
sub-flows are derived from the neighboring locations of the original flow. When a flow does
not split, it goes on as a single stream to the best feasible neighboring location. Allowing N
to be the number of water flows in the current iteration, the number of sub-flows #n; forked
from flow i (i = 1, 2, ..., N) is determined by its momentum, W,V;. A flow with zero
momentum stays in its current location and is considered a stagnant solution. A flow can
split into sub-flows only when its momentum exceeds a predefined base momentum 7,,. The
number of sub-flows is determined by dividing its momentum by the base momentum 7,,. If
the momentum of a flow is between 0 and 7, it is treated as a single stream moving to a
new location without splitting. As WFA proceeds, it is possible that the number of sub-flows
grows exponentially and exhausts the computational resource. Yang and Wang (2007)
suggests imposing an upper limit n on the number of sub-flows forked from a flow at each

iteration. The number of sub-flows split from a flow can thus be obtained through:
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. . (WY —
n, = min {max {1, mt(#j}, n} (2.8)

When the flow is split into sub-flows, its original mass has to be accordingly
distributed to sub-flows based on the rule designed. Yang and Wang (2007) distributed mass

based on the ranks of the sub-flows, as shown in Eq. (2.9).

w = R Ny ko (2.9)

ik n;
dr
r=1
For instance, if W; =5 and n; =3, then

w, = 3 5w, = 2 5w, = ! 5
Tol1+243)7 07 1+2+3)77 0" 1+2+3)7

The velocity of each sub-flow is computed from the equation of energy conservation.

M, the velocity of sub-flow & splitfrom flow i is:

NVi42880, i 2+2g5,>0
ﬂik:{ Vl g5tk U(‘ V g5k (210)

0 , otherwise
where g is the gravitational ac¢eleration, and o, _-is the altitude drop from flow i to its
sub-flow £k; that is, the improvement of objective value moving from current solution i to its

neighborhood solution k. When V.’ +2g38, < 0, the momentum delivered to sub-flow k has

been used up, implying that this sub-flow will stagnate in its current location (e.g. the
solution is trapped in local optima) without splitting and movement. Such stagnant flow will
gradually evaporate into the atmosphere, returning to the ground by precipitation later on.
At the end of the splitting and moving operation, the original flow becomes discarded
because sub-flows have been generated. Information regarding the current number of

sub-flows and solutions sets will then be recorded.

2. Flow-merging operation

When more than two flows move to the same location, they will merge into one flow
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with a bigger mass and momentum. Whether a flow shares the same location with others in
the WFA is thus systematically examined. If a flow does share the same location, the latter
flow is then merged into the former one. Assuming that flows i and j share the same location,

then flow j will be deleted and the mass and velocity of flow i will be updated as follows:

W.=W+W, (2.11)
V= WY+ WY, (2.12)

Using the flow-merging operation, the WFA reduces the number of solution agents
when multiple agents result in the same objective value in order to avoid redundant

searches.

3. Water evaporation operation

It is natural for water to evaporate and return to the ground through precipitation after
possible movement from its original location."Water evaporation and precipitation coincide
with the “escaping from local optima® mechanism that many heuristic algorithms nowadays
use to avoid being trapped and to explore mote solution spaces.

Each flow in the WFA is subject to water evaporation, where part of the water
evaporates into the atmosphere. It is determined that a flow will be completely removed
after a prescribed number of iterations ¢; that is, the masses of all flows are decreased by the

ratio of //¢, as shown in Eq. (2.13), every time evaporation occurs.
Wiz(l—%)Wi, i=12,.,N (2.13)
4. Precipitation operation

When water vapor accumulates to a certain volume, it will return to the ground in some
form such as rain. In the original WFA, two types of precipitation are performed to simulate

the natural cycle of water: enforced and regular precipitation.
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Enforced precipitation is applied when all flows are grounded with zero velocities.
Under this circumstance, all flows are forced to evaporate into the atmosphere and then
returned to the ground without changing the number of current flows. However, the
locations of these returned flows are deviated stochastically from the original ones. Mass of
W, is proportionally distributed to flows based on their original mass with the same initial

velocity. Consequently, the mass assigned to flow i, W ;, can be determined using Eq. (2.14).

, W
w.=lm—"—W, (2.14)

LW,

Regular precipitation is applied periodically in balance with water evaporation. The
regular precipitation operation is performed every ¢ (same ¢ value as in evaporation)

iterations to pour down the evaporated water. Note that the cumulative mass of the

evaporated water is W, — iWk . Thus, instead of using Eq. (2.14), the mass assigned to flow
k=1

i, W, is determined using Eq. (2:15) when applying regular precipitation. The newly poured
flow joins the current solution set; thus increasing.the humber of current solutions. In
addition, both enforced and regular precipitation might generate several new flows in the
same locations. A flow merging operation will be executed to eliminate possible redundant

flows.

, w. ( N
VK = WO_ZVVk)
Vlyk k=1 (2.15)

M=

=
Il

1

2.3 Performance Measures for CFP

There is a need to develop performance measures or criteria in order to compare the
quality of solutions obtained by different methods on an absolute scale. A limited number of
performance measures have been proposed. Some commonly known grouping efficiency

measures for 0-1 machine-part incidence matrix data are illustrated in Table 2.1. Among
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them, two measures frequently used are the grouping efficiency (Chandrashekharan and
Rajagopalan, 1987) and the grouping efficacy (Kumar and Chandrasekharan, 1990) because
of their ease of implementation.

Although grouping efficiency has been used widely, critics argue that it has weak
discriminating power (i.e., the ability to distinguish good quality grouping from bad). For
example, a bad solution with large number of exceptional elements will give a value around
0.75. To overcome the low discriminating power of grouping efficiency between
well-structured and ill-structured incidence matrices, Kumar and Chandrasekharan (1990)
proposed another measure that they called grouping efficacy. Unlike grouping efficiency,
grouping efficacy is not affected by the size of the matrix. Today, grouping efficacy is one
of the most widely used measures applied to the:CEP when a binary machine-part incidence

matrix is used. Grouping efficacy can be defined as:

e—e
F=e+e0’ (2.3)

where e is the total number of ls in-the matrix; e, is the total number of
exceptional elements; and e, is thetotal.number of voids. Those 1’s outside the diagonal
blocks are called “exceptional elements’, while those 0’s inside the diagonal blocks are
called ““voids.” Grouping efficacy ranges from 0 to 1, with 1 being the perfect grouping.
We chose grouping efficacy as the measure of performance for the standard CFP in this
thesis for several reasons:
(1) In the literature, it has been considered the standard measure to report the quality of the
grouping solutions.
(2) It has a high capability to differentiate between well-structured and ill-structured matrices
(e.g. high discriminating power).
(3) It is considered a better measure than grouping efficiency.

(4) It is able to incorporate both within-cell machine utilization and inter-cell movement.
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(5) It generates block diagonal matrices that are attractive in practice.
(6) It does not require a weighting factor.

Table 2.1 Commonly known measures for 0-1 machine-part incidence matrix data

Measure Name Definition Reference
! Grouping qer | (1 —q ) (0 - €v) Chandrasekharan and
efficiency(77) (esten) (0—en)+(e—e) Rajagopalan (1986a)
. (e—eo) Kumar and
2 Grouping efficacy (T) (e+e,) Chandrasekharan (1990)
Grouping capability _eo
3 index (GCI) 1 . Hsu (1990)
Grouping measure el e Miltenburg and Zhang
4 uping measure(7,, ) (ore) e (1991)
Weighted grouping (€ eo)
5 Ng (1993
efficacy () (€+ev )+(1 q) g( )
B—qes=(1=4)(es - 4)
P Nair and Narendran
6 Grouping index Btge,+(1-q) (e~ )
ping (73) =} (1996)
eo=— Ba eo> B
Alternative routing
. e — €0 (O ey .
7 grouping ( j (—j Sarker and Li (1998)
efficiency(7 ;. ) €tep)\oter
Double weight gar(1-9)e, ) gert(1-q)eo
8 grouping efﬁcacy( 77Q) L 43 o+ eo Sarker (2001)

e: total number of ones in the machine-part incidence matrix; o: total number of zeros in the machine-part
incidence matrix; e,: total number of exceptional elements; e,: total number of voids; e;: total number of ones
within the diagonal blocks; q: weighting factor.

Although grouping efficiency and grouping efficacy have been used widely, they do
not consider production factors, such as process sequence of operations, production
volumes processing times of operations, and were designed for 0—1 matrices only. Hence,
Harhalakis et al. (1990) proposed another measure called the group technology efficiency

(GTE) that takes into account the sequence of operation, which can be defined as:
GTEZI—Z, (2.4)
1

where 7 is the maximum number of inter-cell travels possible and U is the number of

inter-cell travels actually required by the system.
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Seifoddini and Djassimi (1995) developed a new grouping measure called Quality
Index (QI) that takes into account the sequence of operation, production volume, and

processing times of operation. This can be defined as:

IcCw
uality Index (O ) =1——, (2.5)

Quality Q1) W

where /ICW is the intercellular workload and PW is the total plant’s workload.

Nair and Narendran (1998) observed that the GTE is inadequate because it is poor in

pattern recognition. Hence, they proposed another measure called bond efficiency that takes

into account inter-cell moves within cells and compactness, which can be defined as:
Bond efficiency(BE) =g x GTE +(1-gq)x Compactness , (2.6)
where q(O <g< 1) is a weighting factor; and Compactness is the ratio of the number

of operations within it to the maximum number of operations possible in it, and is given by:

iTOTOPk (2.7)

Compactness=—+;

(ToTop. £NoP.)’

k=1

where NC is the maximum number of machine-eells; TOTOP; is the total number of
operations in the kth cell ; and NOP is the total number of non-operations (voids) in the kth
cell.

Although the abovementioned performance measures have taken into account the
production sequence, production volume, and processing times of operation, many realistic
factors such as alternative process routings, cellular layout, and machine reliability are still
not considered simultaneously. If incorporated, these factors can enhance the quality of
solutions. Hence, a performance measure for cell formation, cell layout, and intracellular
machine layout with considerations of alternative process routings, operation sequences,
production volume, machine reliability, and different cellular layout type is developed in

Section 3.4.
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2.4 Previous Work on Resolving CFP

Numerous models and solution approaches have been developed to deal with CFP
since the 1970s. Some focus on developing effective heuristics or algorithms for solving
standard CFP in which machine cells and part families are obtained sequentially or
simultaneously. For instance, McAuley (1972) and Carrie (1973) developed the first
algorithms using SCM on CFP. King and Nakornchai (1982) developed the earliest
array-based methods to solve CFP. Cheng et al. (1998) formulated the CFP as a traveling
salesman problem and solved the model using GA. Gongalves and Resende (2004)
presented an evolutionary algorithm (EA) for obtaining machine cells and product families.
Yang and Yang (2008) proposed a modified ART1 neural learning algorithm for CFP. Unler
and Gungor (2009) effectively applied the: Kzharmonic means clustering technique to form
machine cells and part families simultaneously.-Meanwhile, Tariq et al. (2009) combined a
local search heuristic with GA “and.developed a-hybrid GA for machine-part grouping.
Mahdavi et al. (2009) designed an efficient-algorithm based on GA to solve the CFP.

On the other hand, some focus_ on.considering mote.factors and system constraints for
forming machine cells and part families. For ‘instance, Gupta et al. (1996) presented a
bi-criteria model simultaneously considering the minimization of the weighted sum of
inter-cell and intra-cell moves and the minimization of the total cell load variation. Lee et al.
(1997) developed a GA to deal with the CFP considering production volumes, alternate
routings, and process sequences. Su and Hsu (1998) introduced a parallel SA to minimize (1)
the total cost of machine investment, as well as inter-cell and intra-cell transportation cost;
(2) intra-cell machine loading unbalance; and (3) inter-cell machine loading unbalance. A
similar study was made by Lei and Wu (2005). They presented a Pareto-optimality-based
multi-objective TS algorithm for machine-part grouping problems with multiple objectives.
They were able to minimize total cost, which includes intra- and inter-cell transportation
cost and machine investment cost, thus minimizing intra-cell loading unbalance and
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inter-cell loading unbalance. Sofianopoulou (1999) developed an SA to address the CFP
with alternate routings and process sequences considerations. Akturk and Turkcan (2000)
proposed a local search algorithm to solve cell formation and intra-cell layout problem
simultaneously. Bazargan-Lari et al. (2000) presents the application of an integrated
approach to the three phases of CM design to a white-goods manufacturing company in
Australia. Chiang and Lee (2004) proposed a GA-based algorithm augmented with the
optimal partition approach to deal with both cell formation and inter-cell layout
simultaneously. Hu and Yasuda (2006) presented a GA to minimize the total material
handling costs for CFP with alternative processing routes. Boulif and Atif (2006) developed
a new branch and bound enhanced GA to the CFP with considerations of process sequences,
maximum NC, maximum cell size, and machine cohabitation and non-cohabitation. Chan et
al. (2006) proposed a two-stagesmethod rthat-solved~CFP and cell layout problems
simultaneously by GA. Wu et al:(2006) developed a hierarchical GA to concurrently solve
cell formation and inter-cell and-intra-cell layouts in. CMS design. Based on a new concept
of similarity coefficients and the “use.of SA, Arkat.ef.al. (2007) proposed an effective
methodology to solve the CFP with™ alternative routings and production volume
considerations. Wu et al. (2007a, b) developed a hierarchical GA to concurrently integrate
cell formation and intracellular machine layout decisions in CMS design. Jabal Ameli and
Arkat (2008) presented a mathematical approach to cell formation with alternative process
routings and machine reliability consideration. Meanwhile, Jabal Ameli et al. (2008)
proposed a multi-objective pure integer linear programming approach for the CFP with
alternative process routings and machine reliability consideration. The model minimizes
total cost and maximizes system reliability simultaneously. Mahdavi and Mahadevan (2008)
used sequence data to develop a construction heuristic algorithm to identify intra-cell
problems. Meanwhile, Chan et al. (2008) proposed a two-phase GA approach to solve the
CFP and intra-cell and inter-cell layout problems. A similar study was made by Ahi ef al.
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(2009). Applying multiple attribute decision making (MADM) concepts, they proposed a
novel approach to determine CFP and intra-cell and inter-cell layout problems.

Table 2.2 shows a summary of previous literature. Though there have been a number of
studies done on CFP, very little has been devoted to integrating cell formation, cell layout,
and intracellular machine layout, the three basic steps in CMS design, simultaneously with
the considerations of some real-life production factors, such as alternative process routings,
operation sequences, production volume, machine reliability, and cellular layout; thereby
limiting the practical nature of their approaches in a real CMS environment. Moreover, most
methods in the literature assume that the NC is prescribed beforehand. However, it is
difficult to determine the proper NC in the cell formation stage because the layout designer
does not have any knowledge about it at;the/beginning. Hence, it is important and more

practical to integrate the above mentioned factors simultaneously in the design of CMS.
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Table 2.2 Summary of literature review

Decisions Production data Number of cells
Authors Inter Intra Method
CF BD OS APR MR PS
CL CL
McAuley (1972) v v v SCM
Carrie (1973) v v v SCM
King and Nakornchai (1982) v v v Array-based
Gupta el al. (1996) v v v v GA
Lee et al. (1997) v v v GA
Cheng et al. (1998) v v v GATSP
Su and Hsu (1998) v v v v v SA
Sofianopoulou (1999) v v v SA
Bazargan-Lari ef al. (2000) v v v v v SA
Akturk and Turkcan (2000) v v v v v LS
Chiang and Lee (2004) v v v GA
Gongalves and Resende (2004) v v v EA
Hu and Yasuda (2006) v v GA
Lei and Wu (2005) = 1\ v v TS
Boulif and Atif (2006) v v v GA
Chan et al. (2006) v W v v GA
Wu et al. (2006) v vy 4 v GA
Arkat et al. (2007) v v v SA
Wu et al. (2007a) v v v v GA
Wu et al. (2007b) v v v v GA
Yang and Yang (2008) v v v ANN
Jabal Ameli and Arkat (2008) v v v MP
Jabal Ameli et al. (2008) v v v MP
Chan et al. (2008) v v v v v GA
Mahdavi and Mahadevan (2008) v v v Heuristic
Ahi et al. (2009) v v v v Novel
Unler and Gungor (2009) v v v KHM
Tariq et al. (2009) v v v GA
Mahdavi et al. (2009) v v v GA

CF: cell formation; Inter CL: Inter-cell layout; Intra CL: intra-cell layout; BD: binary data; OS: operation
sequences; APR: alternative process routings; MR: machine reliability; PS: prescribed; AD: auto-determining;
LS: local search; KHM: K-harmonic means clustering algorithm.



CHAPTER 3
PROBLEM FORMULATION

As mentioned in previous chapter, two types of CFP are addressed in this thesis. One is
the standard CFP with a binary machine-part incidence matrix consideration, and the other
is the generalized CFP with layout design and machine reliability considerations. In this
chapter, the problem formulation for these types of CFP, including problem descriptions and

mathematical models, are presented.

Notations:

(1) Indices:

a : Index for operations which belongs to part / along route j (a=1...., Kj))
b : Index for position numbeft (or'index for sequence of machine)

i . Index for parts (i=1,..55.p)
Jj : Index for routings which belongs to part i (j=1,...:0;)

k : Index for machines (k=1,..., m)

/ : Index for manufacturing cells (=1, NC)

(2) Input parameters:

A; : Unit cost of intercellular movement for part i

Ay : 1, if part 7 is processed on machine k; 0, otherwise

By : Breakdown cost for machine &

D : Distance between cell / and /'

e : The total operations in the machine-part incidence matrix
I . Flow coefficient between machines k£ and £’

K; : Number of operations in routing j of part i

Ly, : Minimum number of machines in each cell
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M, . Set of machines in the /th cell

MTBF; : Mean time between failures for machine &k

m : Number of machines

mi : Number of machines in cell /

NC : Number of cells

Ny : Total number of consecutive forward flows in all the cell

Ny : Total number of flows

p : Number of parts

O : Number of routings for part i

7 : Best routing selection for part i

S i . Unit flow coefficient for a partqizbetween machines k£ and k'. S,,=1, if part i

visits machines k and &’ in immediate succession; otherwise S, =0

7@ : Processing time for the a<th operation of part.i along route j

ij

Un : Maximum number of machinés in each-cell

0 : Index for machines which’belongs to the-a~th operation of part i along route j
ij

Vi : Production volume for part i

(3) Decision variables:

r : Grouping efficacy

€ : The total number of exceptional elements

e, : The total number of voids

Xi : 1, if part i locates in cell /; 0, otherwise

Xywr @ 1, if routing j of part i is selected; machine k locates in cell / and machine k'

locate in cell /'; 0, otherwise
X ik : 1, if machine & locates in the b-th position of cell /; 0, otherwise

Yu : 1, if machine £ locates in cell /; 0, otherwise
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Z; : 1, if routing j of part i selected; 0, otherwise

3.1 Problem Description for Standard CFP

In a standard CFP, production data are given in a binary machine-part incidence
matrix—a binary matrix used to indicate whether a machine is used to process a part or
not—of n X m dimension. The n rows represent » machines and the m columns indicate m
parts. In the n X m matrix, each binary element (a;) denotes a relationship between parts
and machines where a;=1 if part i should be processed on machine k, and a;~=0 otherwise.
Studies usually attempt a rearrangement of rows and columns to create part families and
machine cells. After the rearrangement, blocks can be observed along the diagonal of the
matrix in which inter-cell movement can be minimized (i.e., the number of exceptional
elements outside the diagonal block aré minimized) and within-cell machine utilization
maximized (i.e., the number of voids insidethe diagonal block are minimized).

Figure 3.1 presents an example of the block diagonalization process of a 5 x 5 matrix.
The objective is to group parts and machines-of-theinitial'matrix (Figure 3.1(a)) together
into cells based on their similaritiesin characteriStiecs and operating requirements to
maximize grouping efficacy. The shading in Figure 3.1(b) indicates that there are two cells
being formed, two ‘1°, named ‘exceptional elements’, outside the diagonal block. That is,
P1 and P3 will be processed on more than one machine group. Meanwhile, there is also a
‘0’, called a ‘void’, inside the diagonal block. A solution without exceptional elements and
voids is called a ‘perfect solution’; that is, the different cells are completely independent,
indicating that each part family will be processed only within a single machine group. The

grouping efficacy for the matrices in Figure 3.1(a) is calculated as follows:

_e—e¢, 13-2

= = =78.57%.
ete, 13+1
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M\P P1 P2 P3 P4 PS5 M\P P2 P3 P5 P1 P4

M1|O O I 1 O M2|1T 1 1|0 O

M2{0 1 1T O 1 M4|1 1 1]1

M3|1 0 O 1 O Ilt> M1|{O 1 0|0 1

M4|1 1T 1 0 1 M3|0 O Of1 1

M5{1 0 0 1 O M50 0 Of1 1
(a) Initial matrix (b) Matrix after rearrangement

Figure 3.1 Rearrangement of rows and columns of matrix to create cells

3.2 Mathematical Model for Standard CFP

3.2.1 Assumptions

The mathematical model for standard CFP in this thesis is formulated on the basis of
the following assumptions:

(1) All parts are assigned to part families:

(2) All machines are assigned to machine cells.

(3) All machines are non-identical.

(4) Each part family has at least one part, but does not-have total number of parts at most.

(5) Each machine cell has at least one‘machine, but-does not have total number of machines
at most.

(6) The binary machine-part incidence matrix is the main input information. Other
production information, such as alternative process routings, operation sequences,
production volume, production times, machine reliability, and different cellular layout

type are not considered in the standard CFP.
3.2.2 Mathematical formulation
By using the above notations and assumptions, the proposed mathematical model

maximizing grouping efficacy for standard CFP can be formulated as follows:

Max T=5"5% (3.1)
€+€v

Subject to:
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e=33 as (32)

NC [ p m NC p m
e, = = (Z}Xﬂx;Ykz)_“ Z;];aikXiIYkl (33)
NC p m
eoze_]ﬂ;];aikXﬂYkl (3.4)
NC )
X x,=1 Vi (3.5)
>y vk (3.6)
LYu2 L, 7 (3.7)
Xila YHE{O,I} vzvkal (38)

In the above model, Eq. (3.1) is the objective function that seeks maximization of
grouping efficacy. Egs. (3.2), (3.3), and'(3.4) show the.calculation of the total operations in
the machine-part incidence matrix, ‘the-total number of voids, and the total number of
exceptional elements, respectively. Eq. (3.5) provides a restriction that each part will be
assigned to exactly one cell, while-Eq. (3.6) provides a restriction that each machine will be
assigned to exactly one cell. Eq. (3.7) assigns the lewer limit of the cell size and Eq. (3.8)
indicates that Xj; and Y}, are 0—1 binary decision variables.

Some studies allow the existence of singletons (cells having less than two machines) in
the solutions and some don’t. In this thesis, we use Eq. (3.7) to integrate both situations.
When L,, equal to 1, the existence of singletons are allowed, while singletons are not

allowed, when L, equal to 2.

3.3 Problem Description for Generalized CFP

In the standard CFP, the binary machine-part incidence matrix is the main production
data. Some real-life production factors, such as alternative process routings, operation
sequences, production volume, machine reliability, and cellular layout, are not addressed in

the design of CMS, thereby limiting the practical applied in a real CMS environment. Hence,
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a generalized CFP that incorporates the abovementioned factors in the design of CMS is
introduced. These factors are described in detail next.
(1) Alternative process routings

A process routing for a given part is the set of machines passed by this specific part. In
most CF methods, parts are assumed to have a unique part process plan. However, it is well
known that alternatives may exist in any level of a process plan. In some cases, there may
be many alternative process plans for making a specific part, especially when the part is
complex (Qiao et al., 1994). In the case shown in Figure 3.2(a), part #1 has three process
routings: R1, R2, and R3. When introducing alternative process routings to CFP, the
grouping of parts can be more effective due to the flexibility of the routes. However, it leads
to a more complex problem than the standard CFP. Under this circumstance, not only the
formation of part families and machine cells must‘be ‘determined but also the selection of
routings for each part to achieve.decision objectives, such as the minimization of
intercellular movement. For instance, Figure 3.2 (b) provides a feasible solution to the

sample problem of Figure 3.2 (a) where.routing #2 1s selected by all parts.

PN| Pl P2 | p3 | P4 | ps PN|P1 | P3[P2 P4 PS5
PV| 50 30 | 20 | 30 | 20 PV |50 20303020
RN[R1 R2 R3|R1/R2|R1 R2[R1 R2|R1/R2 RN|[R2 R2|R2 R2 R2
M1 2 T2]27 1 1 llt> M2[ 1 | 2
M2 1 1)1 2 M4l 2 1
M3l2 |21 | 121 M1 2 1111
M4 1 2 112 |2 M3 1 2

(a) Problem data (b) Final solution

Figure 3.2 Cell formation with alternative process routings
(2) Cellular layout
In CMS, different cellular layout type and cellular layout sequence will affect the
inter-cell move distance (ICMD). They are described as follows.
(a) Determination of cellular layout type
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Cellular layout is represented in Figure 3.3, where r is the number of rows, c is the
number of columns, and (X,,Y.) is the coordinate of cell cr. The cellular layout type can be
determined, while the value of r is set by the layout designer. For example, when =1, the
cellular layout type is linear single-row layout (Figure 3.4 (a)); and when =2, the cellular

layout type is linear double-row layout (Figure 3.4 (b)), where NC is the number of cells.

1 2 c
ocenr L Cellr+1 | [Cell (e-Dr+1
(i,1) (1,2) Tl wgir)
5 Céll 2 Celf r+2 Cell (c:1)r+2
(2,1) (2,2) Tl wiry)
. Cetlr L. 1. Cett2r ..l Cell cr
(r,1) (2,2) Tl &Yy
Figure 3.3 Cellular layout
(a)
1 ” NC
T N Cell 1 “ vV . Cell 2 4o .. CellNC | ..
(191) (192’) (XlaYNC)
(b)
1 2 c
1 Celll & L. Cell3 1 1. Cell (2¢- 1)
(1;1) (1,2) Tl @ r)
) Cell2 | L. Cell4 | | Cell NC
(291) (292) (XZ aYc)

Figure 3.4 Two typical cellular layouts: (a) linear single-row layout (r=1) (b) linear

double-row layout (=2)

(b) Inter-cell move distance

There are two popular methods for measuring ICMD between a pair of cells / and

["(Tam and Li, 1991). They are:
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1/2

Cartesian method: D, Z[(X/f—Xz)zﬂL(Yz'—Y;) } ) (3.9

Manhattan method: p,, = |X;r - X1| + |Y1' —Y

) (3.10)
where ( X Y,) and ( X Y,) are the coordinates of the measuring points of cells /

and /'.
In terms of measuring points, we can use either: (a) the centroid of a cell site or (b) the
nearest point between adjacent cells. In this thesis, the Cartesian method was chosen and the

centroid of a cell site will be used for calculating ICMD. Thus, the ICMD between cells 1

1/2

and 2 in Figure 3.4(a) is equal tol = (1-1)"+(2-1)’

(c) Effects of cellular layout type
Different cellular layout types will'result-in-different ICMD. Figure 3.5 shows that the
ICMD between cells 1 and 3 in Figure-3:5(a) will be twice the distance moved between

cells 1 and 3 in Figure 3.5(b). Hence, the cellular layout type is an important issue in CMS

design.
Cell 1 Cell 2 Cell 3 Cefll 1 Cell 3
wh] e ] L) | (@2
Cell 2
(231)
(a) linear single-row layout (7=1) (b) linear double-row layout (7=2)

Figure 3.5 Two typical cellular layouts (NC=3)
(d) Effects of cellular layout sequence
We present an example to illustrate the effects of cellular layout sequence. If the NC is
equal to three and a linear single-row layout (7=1) is considered as shown in Figure 3.5(a),
then ICMD between cells 1 and 3 will be twice the distance moved between cells 1 and 2 or

between cells 2 and 3. When a linear double-row layout (7=2) is considered as shown in

41



Figure 3.5(b), the corresponding ICMD between cells 2 and 3 will be V2 times the
distance moved between cells 1 and 2 or between cells 1 and 3. Hence, the cellular layout is
an important issue in CMS design.
(3) Operation sequence and production volume

The operation sequence and production volume of each part affects the machine cell
formation significantly. Therefore, both operation sequence and production volume of each
part should be incorporated in the analysis of CM systems. For example, a simple CFP
consists of four machines (M1, M2, M3, M4) and two parts (P1, P2) with part routes (M2,
M1) for P1 and (M4, M1, M3) for P2. Suppose that the annual demands of P1 and P2 are 40
units and 60 units, respectively. Two cell formation results are shown in Figure 3.6, where
the number in each entry indicates the_visitings order of part to machine. If we do not
consider machine sequence in calculating inter-cellimovement, the solution in Figure 3.6 (a)
is better than that in Figure 3.6(b)"because there are 60 inter-cell movements in Figure 3.6 (a)
and 100 inter-cell movements in Figure 3.6 (b). However, if the machine sequence is
considered, the solution in Figure 3.6(b) is better, because the sum of inter-cell movements
in Figure 3.6(a) is 120 (60 x 2) compared with 100 (40 + 60) in Figure 3.6(b). If we do not
consider production volume in calculating inter-cell movement, the solutions of Figure 3.6(a)
and (b) are the same with 2. However, if the manufacturing volumes are considered, the
solution in Figure 3.6(b) is better, because the sum of inter-cell movements in Figure 3.6(a)

is 120 (60 x 2) compared with 100 (40 + 60) in Figure 3.6(b).

(a) Pl P2 (b) Pl P2
PV 40 60 PV 40 60
Ml 2|2 M2 | 1
M2 | 1 M3 3
M3 3 Ml | 2
M4 1 M4 1

Figure 3.6 An example for the affect of operation sequence
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(4) Machine reliability

A number of previous works assumed that all machines are 100% reliable. However,
this is not always the case. Machines are key elements in manufacturing systems and
oftentimes it is not possible to handle their collapse as quickly as production requirements
dictate. Their collapse can dramatically affect system performance measures and bring
about detrimental effects on due date performance. Hence, machine reliability should be
taken into account during the design of CMS to improve the overall performance of the
system (Jeon et al., 1998).

A common way of dealing with machine reliability in the design phase of a
manufacturing system is by the evaluation of the quantities of the mean time between
failures (MTBF). MTBF can be obtained.by: taking the reciprocal of A, where A is the
machine failure rate. As long as the.breakdown cost for each machine is known in advance,
the cost caused by machine unreliability can be.acquired after simple calculation. Jabal
Ameli and Arkat (2008) have presented a mathematical approach to calculate machine
breakdown cost (MBC) that involves dividing preduction time by MTBF and then

multiplying this quantity by the unit MBC'(Eq.(3:12)).

3.4 Mathematical Model for Generalized CFP

As mentioned in the previous section, it is important and more practical to integrate the
abovementioned factors simultaneously in the design of CMS. Cell formation, cell layout,
and intracellular machine layout are three major steps in the design of CMS. Ideally, these
steps should be addressed simultaneously in order to obtain the best results. However, this is
not easy to do due to the NP-complete nature of each step and the limitations of traditional
approaches. Moreover, intracellular machine layout is a detailed layout planning. It usually
starts after the cell formation and cell layout decisions have been determined. Hence, a

two-stage multi-objective mathematical programming model is formulated in this section to
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integrate cell formation, inter-cell layout, and intracellular machine layout problem with
considerations of alternative process routings, operation sequences, production volume,
machine reliability, and different cellular layout type. The framework of the proposed
two-stage model is given in Figure 3.7. The aim of stage I is to solve cell formation and
inter-cell layout simultaneously and the primary work of stage II is to determine machine

layout (sequence) in each cell based on the given cell formation determined in stage I.

Stage | Stage 11

Cell formation Intracellular

& cell layout machine layout

Figure 3.7 The framework of the proposed two-stage model for generalized CFP

3.4.1 Assumptions

The mathematical model for generalized CEP.-in this“research is formulated on the
basis of the following assumptions:

(1) All parts are assigned to part families.

(2) All machines are assigned to machine cells.

(3) All machines are non-identical.

(4) The type of cellular layout and the distance moves between cells are known a priori.

(5) Operation requirements, including operation sequence, operation time, and production
volume, are known.

(6) Inter-cell part transportation unit cost for each part, breakdown cost, and MTBF for each
machine are known.

(7) The limitation of total number of machines in each cell is user-defined.

(8) The intra-cell move distances for each part are not considered.
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3.4.2 Mathematical formulation

By using the above notations and assumptions, the proposed two-stage multi-objective
mathematical programming models are formulated, one for each stage, and are presented

here.

3.4.2.1 Stage I: Cell formation and inter-cell layout

The aim of this stage is to solve cell formation and inter-cell layout simultaneously in
terms of minimization of total inter-cell move cost (ICMC) and MBC. The multi-objective
0-1 integer programming model is given below.

Total ICMC:

r 2 Kil n¢ nc
]CMC = . Z“Y(u,(-ja))IY(uf-ja”))l'ViDl,l'Ai (311)

L
e e e e R

Total machine breakdown cost;:

» 0 Ki V,‘Tl('ja)B(u(ﬂ))
BC VT Bup 3.12
ZUZIZIZ " MTBF ), o

The multi-objective function is as.follows:

Min TC = ICMC + MBC (3.13)
Subject to:

9 )

-ZIZ"J' =1,Vi (3.14)
J=

LaSEYusSU, VI (3.15)
;]Ykz=1 Vk (3.16)
Ykl:Zije{Oal} Vi:j:kol (317)

In the above model, Egs. (3.11) and (3.12) show the calculation of the total inter-cell
part transportation cost and MBC, respectively. Eq. (3.13) is the objective function that

seeks the minimization of total cost of inter-cell part transportation cost and machine
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breakdown. Eq. (3.14) indicates that only one process routing will be assigned to each part,
while Eq. (3.15) assigns the upper and lower limits of the cell size. Eq. (3.16) provides a
restriction that each machine will be assigned to exactly one cell and Eq. (3.17) indicates
that Y}, and Z;; are 0—1 binary decision variables.

Obviously, the objective function is in a non-linear form and thus may require
extensive computational efforts for current commercial solvers to obtain possibly local
optimal solutions. A linearization approach (Jabal Ameli et al., 2008) for converting a
non-linear model into linear form is adopted. The transformation equation is as follows.

Xiwwr = Z Y Y er (3.18)

Where:

incell /.

1 ifrouting j of part i is selected, machine'k locates in cell / and machine &’ locate
X iikIkT = ‘
0 otherwise.

Linearization Constraints:

Xipwr < Z o Vi J kK LT (3.19)
Xiwwr <Y, Vi, kK LT (3.20)
Xijpwr < Y, Vi, k6L (3.21)
Zi+tYu+r Y= Xpar <2, Vi, j, kKL (3.22)

(3.23)

Yo Yirs Zi X gy €01} Vi, jk k', 11"

The first three linearization constraints (Egs. 3.19-3.21) ensure that if one of the
primary binary variables has a zero value, then their corresponding new variables will take a
zero value as well. The last constraint (Eq. 3.22) ensures that if all primary variables take
unit values, then their corresponding new variables take unit values as well. We rewrite the

objective function as follows:
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i Kl ne e 0; Vngk)B o)
3 Zijf—(’/) (3.24)
j=lk=1 MTBF(u,(-,-k))

Mu

Xiju?f”uﬁ,-“‘)I'ViDl,l'Ai +

i=1 j=1 k=1 1=11/=1

Subject to:
Eqgs. 3.14 - 3.16 and Egs. 3.19 - 3.23
This new form of the objective function is in a linear form. Thus, linear programming

software, such as Lingo 8.0, can solve this model.

3.4.2.2 Stage Il: Intracellular machine layout

The parts being transported from one machine to another within a cell are called
intra-cellular flow. Intra-cellular part flows are usually rushed and short in distances. In
CMS, these movements are very frequent, and the frequency directly affects the
intracellular machine layout design. Based on-the classification scheme of Aneke and Carrie
(1986), intracellular flow can be classified into four categories (Figure 3.7): (1) repeat
operation, R; (2) forward flows, EF; (3) by-pass‘movement, BP; and (4) reverse flows, RF.
The ideal material flow in a goodlayout design should be mostly consecutive forward flows
(CFF). The CFF usually has the benefits.of smaller‘flow distance, easier control of the

production process, and easier material handling (Ho ef al., 1993).

R BP
[N }
' FF FF FF
—» Ml > M2 » M3 » M4 ——
A
RF

Figure 3.8 Intracellular part flows

Since the CFF is a good indicator of the goodness of the solution, Mahdavi and
Mahadevan (2008) developed a flow matrix on the basis of the number of CFF between a

pair of machines and used it as the basic input to the grouping and layout problem. However,
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their method did not consider the effect of manufacturing volumes. As mentioned in Section
3.3, taking the effect of manufacturing volumes into account is more realistic when
designing a performance measure for intracellular machine layout. A flow matrix with
manufacturing volumes consideration is thus proposed here. The flow matrix ( F ) is

re-defined as follows:
F=[fu]=3VSu Vki and k=K (3.25)
i=1

Based on the flow matrix, a CFF index (CFFI) for measuring intracellular machine
layout is proposed in this section. The CFFI is defined as the ratio of total number of CFFs

in all cells (N,p) to the total number of flows (V).

N.
CFFI=—ZL (3.26)
Ny
where
NC m;—1 ;
Nyg=2 2 2 2 [ uXmXipaw k#k (3.27)

I=1 b=l keMm,k'eMm,

V4
Ngf = Zl(Ki(’f) _I)Vi (328)

The primary goal of the second stage is to determine the machine layout (sequence) in
each cell in terms of maximizing the CFFI based on the cell formation determined in stage

one. The model is given below.

Max CFFI (3.29)
Subject to:
kgllX,bfl Vi,b (3.30)
g)(,bﬁl VikeM, (3.31)
Xwel{01l} ViLbk (3.32)
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In the above model, Eq. (3.29) is the objective function that seeks the maximization of
CFFI. Egs. (3.30) and (3.31) ensure that each position is assigned to one machine and each
machine is assigned to exactly one position. Eq. (3.32) indicates that X, is a 0—1 binary
decision variable.

Due to the combinatorial nature of the above models, good heuristic approaches should
be more appropriate than the exact method in terms of solution efficiency, especially for
large-sized problems. Thus, in the next chapter, we develop two fast and effective two-stage

approaches to solve these complex problems.
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CHAPTER 4
PROPOSED ALGORITHMS

In the previous chapter, two mathematical models representing standard CFP and
generalized CFP have been formulated. Due to the NP-hard nature of the presented
mathematical formulations, solving these problems through a traditional optimization
technique is difficult and impractical. Furthermore, as mentioned in chapter two,
meta-heuristic algorithms such as SA, TS, and WFA, have been the most successful solution
approaches to provide global or near-global optimal solutions within a reasonable
computation time, and SCM-based methods are more flexible in incorporating various
production data into the machine-part clustering process. Thus, two hybrid meta-heuristic
algorithms based on SCM-based clustering algorithm” and SA/TS/WFA are proposed to
solve the complex problems.

Before proposed algorithms are described; some ‘notations used in this chapter are

introduced first.

a : Cooling rate
counter_iter : Number of iterations
counter stag ~ : Number of times the incumbent solution did not improve
counter_mut : Number of times the mutation strategy has been implemented
C : Optimal number of cells
f(S) : Value of object function in solution S
L : Markov chain length
Noax : Maximum number of iterations
NC : Number of cells
N” : Set of feasible solutions
N€ . Set of solutions without violating cell cardinality constraints
NT : Set of solutions in tabu status
N : Set of solutions satisfying aspiration criterion
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Stag check : Maximum number of solution has not been improved

S° : Initial solution

S : Current solution

sV : Neighborhood solution

S” . Incumbent solution of current cell size
s . Best solution found so far

Ty : Initial temperature

Ty : Final temperature

4.1 Proposed Algorithms for Standard CFP

Most algorithms designed to solve CFP attempt to obtain the machine-part groupings
so that some decision objectives, such as grouping efficiency or grouping efficacy, can be
maximized. However, without prior determination of the NC, the abovementioned
objectives can hardly be achieved. It 15 given beforehand in a few cases, but is left to be
determined as part of the decision in most. Usually,-in the iterative solution process, the
initial NC is set at two and is gradually increased by one¢ unit. These algorithms are then
repeatedly applied until the NC resulting in ‘the best/grouping efficiency/efficacy value
becomes established. Thus, many computational-efforts have to be exerted in order to obtain
the optimal NC. Instead of using a beginning number as the starting point, identifying a
good intermediate point for the NC at the very beginning should save plenty of run time
when designing an algorithm to search for the optimal NC.

We present a test problem from literature (Carrie, 1973) as an example. The
relationship between the NC and the resulting grouping efficacy is shown in Figure 4.1.
Grouping efficacy value increases as the NC increases, and the optimal/near-optimal value
is achieved when cell size is nine. Afterwards, efficacy starts to decrease as the NC
increases. Similar observations can be found in other test problems. Based on this, the NC
can be automatically calculated and determined such that the best grouping efficacy may

result in.
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Figure 4.1 Relationship between grouping efficacy and number of cells

Based on the above discussion, we propose a two-stage hybrid algorithm HCFA to
solve the standard CFP. The framework of.the proposed two-stage HCFA is given in Figure
4.2. In the first stage, the SCM-based clustering algorithm is adapted to derive NC quickly.
NC value is then used as input to the second stage to search for the optimal/near-optimal
solution through the proposed SA/TS/WEA algorithm. Weanticipate that NC obtained in
stage one can serve as a good lower boundary to start'the solution process in stage two.
Hence, a considerable amount of computational efforts can be saved, especially when

large-sized problems are solved. The procedures for both stages are described below.

Stage | of HCFA:

Step 1. Set NC=2, f(8°)=f(S)=0.

Step 2. Apply the SCM-based clustering algorithm to generate an initial solution §°.
Step3. If £(S°) > f(S), then set §*«§°, ¢c"=NC, NC=NC+1, go to Step 2;

otherwise, report incumbent cell configuration found: §*, ¢, and terminate stage

one.

The solution obtained at the end of stage one, including the suggested NC (") and

cell configurations (§), is then used as the input in stage two to search for the
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optimal/near-optimal solution through the proposed SA/TS/WFA procedure.

Stage Il of HCFA:

Step 1.
Step 2.

Step 3.

Step 4.

Step 5.

Read solutions from stage one, including ¢* ands”.
Set NC=C", f(S*)=1(5"), f(S)=0, go to Step 4.
Apply the SCM-based clustering algorithm to generate an initial solution §°.

Apply SA/TS/WFA procedure to improve S° and generate an incumbent

solutionS .
If £(S)> (S, then set §"« ", ¢'=NC, NC = NC+1, go to Step 3;
otherwise, report the current best cell configuration (§™) and NC ("), and

terminate stage two.
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Set NC=2

v

I—» Apply the SCM to generate an initial solution §°
Set NC=NC+1

T

Update incumbent
solution: §* « S°,

IsS" better than
the incumbent

Cc"=NC solution §*?
Report incumbent cell configuration
found: §°, C°
A\ 4
Stage |1 Set NC=C",8"« 5§’
» Apply the SCM to generate an initial solution §°
\ 4
Apply SA/WFA/TS to improve §° and |,
Set NC=NC+1 generate an incumbent solution §° b
A
Update best solution Yes Is 5 better than
found so far: S** <« S* , the best solution
C"=NC found so far §™?

s

Report best cell configuration found: §™, C

Figure 4.2 Two-stage approach: Hybrid Cell Formation Algorithm (HCFA)
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The SCM-based clustering algorithm and SA/TS/WFA are primary algorithms that

consist of HCFA. The details of them are described as follows.
4.1.1 SCM-based clustering algorithm

As mentioned in Section 2.3, SCMs are more flexible in incorporating various
production data into the machine-part clustering process. Hence, this study proposes the use
of an SCM-based clustering algorithm to generate quick initial solutions, which will then be
later improved by SA/TS/WFA method. It is well known that decomposing an originally
difficult problem into several sub-problems usually increases problem-solving efficiency.
Since the CFP considers the grouping of machines and parts, an intuitive solution approach
is to decompose the entire problem into two sub-problems dealing with the assignment of
machines and parts, respectively. In. our-construction of the initial solution, machine
assignment is determined in the first stage, while the assignment of parts is achieved in the
second stage.

Our approach for generating initial solutions consists of three steps: (1) computing
similarity values between machine paits-and.constructing a similarity matrix, (2) using a
clustering rule to process the values in the similarity matrix and forming machine cells, and
(3) assigning parts to machine cells using a parts assignment procedure. Details of them are

described here.
(1) Machines assignment

As mentioned in Section 2.2, the Jaccard similarity coefficient is the most stable
similarity coefficient. Hence, Jaccard’s similarity measure is used to evaluate similarity

between machines as an important index for assigning machines to cells in this sub-problem.

a;

The similarity measure, denoted by Sj;, is defined as Sy=—"7"——
a; + bl.j +¢;

, where a;; represents

the number of parts processed by both machines i and j; b;; is the number of parts processed
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by machine i but not by machine j; and c; is the number of parts processed by machine j but
not by machine i. After calculating the similarity matrix for each pair of machines, we are
able to generate the initial machines assignment by using the following greedy rule: the
higher the similarity measure of a pair of machines, the higher priority they have for
placement in the same cell. This process is repeated until all machines have been assigned
to cells. For the sample machine-part matrix in Figure 4.3(a), the corresponding similarity
matrix for machines is displayed in Figure 4.3(b). Assuming that two cells are to be formed,
the largest coefficient in the matrix of Figure 4.3(b) is 0.67, indicating that machines 2 and 4
must be assigned to the same cell, e.g. cell 1. We proceed to the second largest coefficient in
the matrix, 0.5, appearing in pairs (1, 3) and (1, 5). Since these three machines do not have
any relationship with any machines in cell 115 they, should be assigned together to the next

cell, cell 2. Figure 4.4 shows the machines assignment using the proposed greedy rule.

Pl P2 P3 P4 PS5 Ml* M2 M3 M4 M5

M1 | 1 0 0 1 0 Ml | - 0 050 0 0.50
M2 | O 1 1 0 1 M2 - 0 067 0
M3 | 1 0 0 0.0 M3 - 0 0
M4 | 0 1 1 0 <0 M4 - 0
M5 | 0 0 0 1 0 M5 -

(a) Machine-part matrix (b) Similarity matrix for machines

Figure 4.3 Machine-part matrix and corresponding similarity matrix for machines

PI P2 P3 P4 PS5
M2l 0 1 1 0 1
Clllivial o 1 1 o o
MiT 1T 0 01 o
Celiz2|M3| 1 0 0 0 o0
M5 0 0 0 1 0

Figure 4.4 Assignment of machines
(2) Parts assignment

In this procedure, the parts are assigned to cells so that the number of voids and

exceptional elements—major components comprising the formula of grouping
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efficacy—are explicitly considered. It can be summarized as follows:

Step 1. Read the results of machines assignment.

Step 2. For each part, find the cell to which a part assignment will result in the least sum of
number of exceptional elements and number of voids. If a tie happens, assign the
part to a cell with the least number of voids.

Step 3. Repeat Step 2 until all parts have been assigned to cells.

Results of parts assignment shown in Figure 4.5 demonstrate this procedure. After
calculating the sum of numbers of voids and exceptional elements for each part-cell
combination, parts 2, 3, and 5 are assigned to cell 1, while parts 1 and 4 are assigned to cell
2. The initial solution matrix for this CFP can thus be obtained and the configuration for this

initial solution can be represented by Figure4:5.
P2 P3 P5 Pl P4

M2 1 1 1 .0 0
CellldNul 1 1 0 oo o0
MGWIETZ7 1 1
Cell2]M3| 00 0.1 0
M5 00 0 0 1

Figure4.S\Initial solution matrix obtained
4.1.2 SA/TS/WFA algorithms

When designing a heuristic search algorithm, several important considerations should
be kept in mind. The first is to develop a mechanism for searching the neighborhood
solutions for improvement. Since the neighborhood will be searched next, the choice of
neighborhood function will strongly influence the direction of the search. Another
consideration is the mechanism for allowing escape from local optima and for settling only
in a global optimum. Based on these concepts, three algorithms, namely HSAM, HWFAM,

and HTSM, are developed in this section.
(1) Configuration

An easy way to represent the configuration of a feasible solution to CFP is through a
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string, whose size is equal to the number of machines/parts. The jth bit of the string stores
the identifier of the cell to which the machine/part is assigned. For example, Figure 4.6 is
the configurations for machine cells and part families. In such a configuration, the string (2,
1, 2, 1, 2) in Figure 4.6(a) indicates that machines 2 and 4 are assigned to cell 1, while
machines 1, 3, and 5 are assigned to cell 2; the string (2, 1, 1, 2, 1) in Figure 4.6(b)

represent that machines 2, 3, and 5 are assigned to cell 1, while parts 1 and 4 are assigned to

cell 2.
Machine# 1 2 3 4 5 Part# 1 2 3 4 5
Cell # 2111212 Cell#(2|1]1|2]1
(a) Configuration for machine cells (b) Configuration for part families

Figure 4.6 Configuration ofiafeasible solution to the CFP
(2) Insertion-move operation

In this study, the insertion-move operation is applied as a mechanism for searching the
neighborhood solutions for improvement;-It_moves a machine k from its current cell /
(source cell) to anew cell /" (destination cell). The new move is denoted as (', k). A move
that results in the greatest improvement of the objective function value from the current

solution is selected. That is,
Z(l', k) = Max{obj"" -obj"" ~V1,1'e N",1'#1,Vk e M} 4.1)
where obj(l’k) is the objective function value; N is the set of feasible solutions; and
M is the set for machines.
(3) Mutation strategy

The mutation strategy of GA aims to increase the probability of finding more

“diversified” solutions in order to bring the searching process to a new and unexplored
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solution space, thus ensuring that large areas of the space are searched. In this study, the
mutation strategy mut check is implemented when the number of moves has not been
improved within a certain number of iterations. This performs an exchange of a machine to
any cell other than the current one based on a prescribed probability f. That is, all machines
have the probability of changing cell when machine mutation is applied. For each machine
in the incumbent solution, a random number from (0, 1) is first drawn. If the value is greater
than g, then the machine is exchanged with another randomly determined cell; otherwise, it
stays in the current cell. Through this strategy, the search is able to explore a large solution
space, thereby enhancing the possibility of finding the optimum solution in a very short
time. The procedure of the mutation strategy in the pseudo-code format is shown in Figure

4.7.

Mutation_strategy ( 5)
{ *.
Let the current solution (S) equal to the current best solution (S).
FOR each machine DO
{
Generate a random number r e U(0,1).
IF (r>p)
Exchange machine with any cells other than the current one.
ELSE
Stay machine in the current cell.
}
}

Figure 4.7 Pseudo code of mutation strategy

4.1.2.1 SA-based algorithm (HSAM)

As mentioned in Section 2.6, the main disadvantages of SA are as follows: (1) high
execution time, (2) ease of being trapped to local minima if the cooling speed is too fast or
the initial temperature is not high enough, and (3) difficulty of obtaining a globally optimum
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solution if the search cannot reach the equilibrium state at each temperature. In this study,
two types of mechanisms, the insertion-move and the mutation strategy of GA, are utilized
to construct a hybrid SA method called HSAM to address these issues. Both mechanisms
play different roles in the process of solution improvement. We use insertion-move as a
primary tool for finding better neighborhood solution, while employing mutation strategy to
increase the probability of finding more “diversified” solutions to bring the searching
process to a new and unexplored solution space. The pseudo-code format of the proposed
procedure HSAM is diagrammed in Figure 4.8 and described in detail below.
Algorithm HSAM
Step 1. Read initial solution §°.
Step 2. Initialization: Let counter MC =0,77 =Ty, < S°,5 « S°.
Step 3. If counter MC < L, then repeat Steps 3:1:to 3.5; otherwise, go to Step 4.

Step 3.1. If counter mut 2=mut-check, then-apply.the ' mutation strategy to generate

a new current solution S and let'counter mut= 0.

Step 3.2. Generate a best solution SV (SN eNc) in the neighborhood of S by

performing the insertion-move operation.

Step 3.3. Compute A=f(SN)—f(S). If (A>0) or (¥ >relU(0,1))), then let

S « S§", counter _mut = 0; otherwise, counter mut = counter mut + 1.

Step3.4. If(f(SY)> f(S)), thenlet § « §".

Step 3.5. Let counter MC= counter MC + 1, go to Step 3.

Step4. If T< T, then report the best solutions so far, and stop the algorithm; otherwise, T

=T x «a, counter MC =0, go to Step 3.
Note that the algorithm starts from an initial solution in Step 1, after which all
algorithmic parameters and counters are initialized in Step 2. As long as the value of
counter_mut is smaller than mut check, a new neighborhood solution is generated through
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the insertion-move in Step 3.2; otherwise, mutation strategy is applied to generate a new
solution with higher degree of diversification in Step 3.1. Ifthe newly generated
neighborhood solution is better than the current solution or the probability function (e*" is
great than a random number 7), a replacement is made and the counter mut will be set to 0
in Step 3.3; otherwise, the counter _mut is increased by 1. The incumbent solution will be
updated in Step 3.4 if the newly generated neighborhood solution results in a better
objective function value. Step 3 will be repeated L times at each temperature to reach the

thermal equilibrium. Parameter 7" is gradually decreased by a cooling function and the

solution process repeats until the stopping criteria in Step 4 is met.
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HSAM_Algorithm ()

{

Read initial solution §°.
Let counter MC =0, counter mut=0, T=T,, S< S°, S « S°.
WHILE(T > T,)

{

WHILE(counter MC <L)

{

}

IF(counter mut = mut check)
{
Apply the mutation operator to generate a new current solution S.
Let counter mut = 0.
b
Generate a best solution §" ( sVenN C) in the neighborhood of § by
performing the insertion-move operation.
Compute A= f(SY)—1(S).
IF ((A>0)or (e >relU(0,1)))
Let counter mut. =0, § <.S".
ELSE
Let counter mut = counter _mut+ 1.
IF (£(5")> £(5)
Let S « §"«
Let counter MC= counter MC + 1.

Let T =T xa, counter MC = 0.

Figure 4.8 Pseudo code of proposed HSAM procedure

4.1.2.2 TS-based algorithm (HTSM)

Most tabu-based algorithms adopt short-term memory as the primary design for ease of
implementation. The solution searching process of short-term TS usually gets trapped in
local solutions. Hence, some strategies are developed to guide the search and obtain a
limited level of diversified solutions in order to increase the probability of finding the

optimal/near-optimal solutions. In this section, the mutation strategy is utilized as a
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diversification strategy in the design of our proposed hybrid TS algorithm called HTSM.
(1) Moves

In this study, the insertion-move operation is applied as a mechanism for searching the
neighborhood solutions. The neighborhood solutions (N*) are defined as: NF = NC— N7+ N4,
where N is the set of solutions without violating cell cardinality constraints; N’ is the set of

solutions in tabu status; and N is the set of solutions satisfying the aspiration criterion.
(2) Tabu list

In the process of tabu search, certain moves are characterized as tabu for some
iterations (tabu tenure/tabu list size) to avoid repetition of previously visited solutions. In
this paper, a tabu list TL[m][NC][NC] with ,a three-dimensional array (mxNCxNC) is
used to check if a move from a solution to its.neighborhood is forbidden or allowed (where
m 1is the number of machines and NC is the number of cells). If machine £ moves from its
current cell / to a new cell /’, then moving machine k£ from cell /’to cell / will be forbidden

for a certain number of iterations, which 18 ¢qual to the tabu list size (e.g. TL[kK][I'][/]=tls).
(3) Aspiration criterion

The tabu restriction may be overridden if the move will result in a solution that is
better than the best solution found thus far. This aspiration criterion is applied in the

proposed algorithm.
(4) Stopping criterion

The proposed solution procedure will be terminated if a maximum number of iterations
Nmax have been reached or the solution has not been improved within a certain number of
iterations stag check.

The pseudo-code format of the proposed procedure HTSM is diagrammed in Figure

4.9 and is described in detail below:
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Algorithm HTSM

Step 1.

Step 2.

Step 3.

Step 4.

Step 3.

Step 6.

Step 7.

Step 8.

Step 9.

Read initial solution S°.

Initialization: Let counter iter = 0, counter stag = 0, S« §°, § « S°,
N'=0D.

If counter iter < Nmax and counter stag < stag check, repeat Steps 4 to §;
otherwise, go to Step 9.

If counter mut > mut_check, then apply the mutation strategy to generate a new
current solution S and let counter mut = 0.

Generate a best solution §" (SN eN” ) in the neighborhood of § by performing

the insertion-move operation.

Update tabu list N .
If £(S")> £(S") then§" <= S, -counter stag =0, counter mut = 0; otherwise,

counter_stag = counter Stag + 1, counter mut = counter _mut + 1.
Let S <« SV, counter_iter= counter iter=+-1, go 10 Step 3.

Report the best solutions so far;and stop the“algorithm.

Note that the algorithm starts from an initial solution. All parameters and counters are

initialized in Step 2. As long as the value of counter mut is smaller than mut check, a new

neighborhood solution is generated through the insertion-move in Step 5; otherwise,

mutation strategy is applied to generate a new solution with higher degree of diversification

in Step 4. If the newly generated neighborhood solution results in a better objective function

value, the incumbent solution will be updated, and counter stag and counter mut will be

set to 0 in Step 7; otherwise, counter stag and counter _mut are increased by 1. The solution

process repeats until any of the two stopping criteria in Step 3 is met.
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HTSM_Algorithm ()
{
Read initial solution §°.
Let counter_iter = 0, counter stag=0,S < 8°, § <« S§°, N'=0.
WHILE(counter_iter < Nmax and counter stag < stag check)
{
IF(counter mut = mut check)
{
Apply the mutation strategy to generate a new current solution S.
Let counter mut = 0.
b
Generate a best solution §%V (SN e NF ) in the neighborhood of S by
performing the insertion-move operation.
Update tabu list N7 .
IF(f(sY)</(5))
Let counter stag =0, counter mut=10,§ <« S~ .
ELSE
Let counter stag = counter stag + 1, counter mut = counter_mut + 1.
Let S« SV, countetiter:=—counter. iter +1:
b
b

Figure 4.9 Pseudo cede of proposedHT'SM procedure

4.1.2.3 WFA-based algorithm (HWFAM)

As mentioned in Section 2.7, the main operations of WFA include (1) flow splitting

and moving, (2) flow merging, (3) water evaporation, and (4) precipitation. We made

several changes based on our trials, experiences, and observations.

First, the splitting and moving operation is endowed with the mission of searching for

better neighborhood solutions and ultimately the optimal/near-optimal solution. We hence

applied two mechanisms, the insertion-move and the mutation strategy, to find the best

neighborhood solution of the current solution. The mutation strategy is applied to find a

rough direction for the neighborhood solutions in the first stage promptly; the exact location

for the best neighborhood solution is then obtained through the “insertion-move” strategy in
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the second stage. Figure 4.10 demonstrates the splitting and moving operation for searching
neighborhood solutions. As flow i splits into subflows, the number of subflows n; is
determined by its momentum, e.g. n; equals k. The machine mutation strategy is
implemented to determine the rough directions for & subflows; that is, the locations of X;;,
X2, ..., Xi can be identified. The insertion-move is then performed to find the best
neighborhood solution around X;;; that is, the X*u. This is repeated until the best
neighborhood solution for each of the subflows has been found. For each iteration, these
newly generated subflows may merge with others sharing the same location, proceed in a
single stream, split further into more subflows at later iterations, or stagnate in the current
location until the stopping criteria of the algorithm is met.

Second, the mass of the subflows isdetermined based solely on their ranks (Section
2.7.1) without considering their respective performances in the original WFA. Subflows
with better objective values should possess greater'masses and should persist longer in the
water-flowing process. Based on'this concept, a new formula for assigning mass to each

subflow is designed (Eq. (4.2)).

_| X

=| < W, (42)
2 S(X)

ik

where f(Xj) is the objective value of solution Xj.
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Iteration 1 Iteration 2 Iteration 3 L Iteration N,

Figure 4.10 Proposed flow splitting and moving operation for searching neighborhood
solutions
Third, in addition to the fixed-ratio evaporation presented in the original WFA, another
way of evaporation—velocity-based evaporation—is presented and added to the procedure.
Eq. (2.10) shows that the higher the altitude drop (i.e., the larger improvement in objective
value) of a subflow, the larger the velocity it will be subjected to. We define an evaporation
ratio that is conversely related to improvement in velocity, such that flows with smaller
velocities should evaporate more quickly than those with larger velocities. The formula is

presented below:

W,=(-p )W, *3)
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1, if 14, =0

where p, =4 0, if %21

1

o<t oy
V. V.

i i

Finally, regular precipitation is performed based solely on a fix iteration (¢) to pour
down the evaporated water without considering the mass of the evaporated water flow in the
original WFA. As mentioned in Section 2.7.3, water evaporation and precipitation are used
to avoid being trapped and to explore more solution spaces. Hence, when water vapor
accumulates to a certain volume (i.e., solution is trapped), it should return to the ground
through precipitation (i.e., escaping from local optima). Based on this concept, another
precipitation, the “moist precipitation” is added to the procedure. Moist precipitation is used
when the mass of the evaporated water flow reaches half of its original total mass, ).

The proposed WFA procedure, namely HWEAM, is presented in pseudo-code format
in Figure 4.11 and is described in“detail below:

Algorithm HWFAM

Step 1. Read initial solution.

Step 2. Initial HWFAM parameter settings: Nyax, N, Wo, Vo, Tin.

Step 3. If counter_iter < N, repeat Steps 4 to 16; otherwise, go to Step 17.

Step 4. For each flow, execute Steps 5 to 16.

Step 5. Calculate the number of subflows based on Eq. (2.8).

Step 6. Flow splitting and moving through mutation strategy and insertion-move
operation.

Step 7. Check whether the new best solution is found. If yes, update best solution.

Step 8. Calculate mass and velocity based on Egs. (4.2) and (2.10).

Step 9. Merge flows with the same objective values and update the resulting mass and
velocity based on Egs. (2.11) and (2.12).
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Step 10.

Step 11.

Step 12.

Step 13.

Step 14.

Step 15.

Step 16.

Step 17.

N
Update the total number of water flow: N <— > n. .
i=l1

Perform evaporation operation and update the resulting mass for each water flow
based on Eq. (4.3).

Check whether precipitation condition is met. If yes, perform Steps 13, 14, and 15;
otherwise, go to Step 16.

Perform mutation strategy to the current best solution to generate new solutions
deviated from the current ones.

Distribute mass to flows poured based on Eq. (2.14) or (2.15) depending on the
type of precipitation.

Check whether the new solution has the same objective value. If yes, merge it and
update the resulting mass and.velocity based/on Egs. (2.11) and (2.12), then update
the total number of water.flow N-

Let counter_iter = counter iter + 1, go to Step 3.

Report the best solutions'so far, and stop the-algorithm.

Note that in the mutation strategy, a-threshold-probability value set at 0.8 implies that

each machine has a 20% probability of being assigned to other cells. In the HWFAM

procedure, the mutation strategy is used in Steps 6 and 13 with different threshold

probability values (f): 0.8 in Step 6 and 0.5 in Step 13. The main purpose of Step 6 is to

find some neighborhoods of the current solution, thus the probability of being assigned to

other cells is set at a comparatively low value. On the other hand, the purpose of Step 13 is

to explore solutions of unvisited regions through the precipitation operation; thus, it

becomes necessary to increase the probability of being assigned to other cells to find

solutions more deviated from the current best.
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HWFAM_Algorithm ()
{
Read initial solution.
Initial HWFAM parameter settings.
Let counter_iter = 0, N=1.
WHILE (counter_iter < N,u4y)

{
FOR each flow

{

Calculate the number of subflows based on Eq. (2.8).

Flow splitting and moving through the mutation strategy and insertion-move operation.

IF the new best solution found.

THEN Update best Solution.

Calculate the mass and velocity based on Eqgs. (4.2) and (2.10).

IF flows have the same solutions

THEN run flow merging operation and update /; and V; using equations (2.11) and (2.12).

Update the total number of flow N.

Run water evaporation and update the mass of flow ; by equation (4.3).

IF precipitation condition is met

{
Perform mutation strategy to generate new solutions.
Calculate the masses of the pour-downed flows W’ using equation (2.15) and let V;’= V.
IF flows have the same solutions
THEN run flow merging operation and update J¥; and V; using equations (2.11) and (2.12).
Update the total number of flow V.

H

}

Let counter_iter = counter liter + 1.

Figure 4.11 Pseudo code of proposed HWFAM procedure

4.2 Proposed Algorithms for Generalized CFP
In this section, a fast and effective two-stage HGCFA merging a generalized
SCM-based clustering algorithm and SA/TS/WFA method is proposed to solve generalized

CFP. The framework of the proposed HGCFA is illustrated in Figure 4.12.
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Set NC=[m/U,, ]|

v

—> Apply the Generalized SCM to generate an initial solution §°

Stage |

A 4
Apply SA/WFA/TS to improve §° and
Set NC=NC+1 generate an incumbent solution §”
4
Update best Is §" better than

solutions found so Yes
far: §7 <« §°,
C'=NC

the best solution
found so far §7?

Report best machine cells, part families
and cell layout found: §™, C”

A 4
Generate an initial solution §°

v

Apply SA/WFA/TS to improve $° and
generate a best solution §”

Stage 11

A 4

Report best machine cells, part families, cell layout
and intracellular machine layout found

Figure 4.12 Framework of the proposed hybrid generalized CF algorithm (HGCFA)

The first stage mainly solves the CF and inter-cell layout (Inter CL) problem

simultaneously in terms of minimizing the sum of total inter-cell move cost (ICMC) and
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MBC. In the second stage, the final solution obtained from the first stage is used to
construct an initial solution to be improved by the proposed algorithms to determine
intra-cell layout (intra CL) in terms of maximizing the CFFI.

The detailed procedures of both stages are described below.

Stage | of HGCFA:

Step 1. Set NC=[m/U,,].

Step 2. Apply the generalized SCM-based clustering algorithm, as mentioned in Section
4.4.1, to generate an initial solution §°.

Step 3. LetS™ « s°.

Step 4. Apply SA/TS/WFA procedure, as mentioned in Sections 4.1.2, to improve §° and
generate an incumbent solutions’™.

Step 5. If £(S)< f(S™), then set” §“<§°, ¢ =NC;,.NC = NC+1, go to Step 2;
otherwise, report the best cell formation and inter-cell layout found, and terminate
stage 1.

Note that the algorithm in this stage consists of‘an,initial solution and an improvement
procedure that will be repeatedly applied until a cell formation resulting in the minimum of
the total inter-cell move cost (ICMC) and the machine breakdown cost (MBC) have been
found. In Step 1, the initial number of cells, NC, can be easily approximated by the nearest

integer that is greater thanm/{/,, ; it gradually increases by increments of 1 as long as

solution improvement is observed in Step 5. Every time the number of cells is increased,
another initial solutions and SA/TS/WFA improvement procedure will be begun in Steps 2
and 4, respectively. For a specific cell size, the best routing selection and grouping plan for
parts and machines will be calculated iteratively and obtained in Step 4. Initial solutions of

machine cells, routing selections, and part families are generated in Step 2. If larger cell

sizes are considered, it is possible that better solutions may be obtained. The incumbent
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solution (S”) of the current cell size (NC) is thus compared with the best cell formation
solution (S™*) found thus far in Step 5 to determine whether to increase the cell size by 1 and
restart another SA/TS/WFA procedure to continue the search or to report the best cell
formation solution found and terminate the solution.

Determining the proper number of cells is a difficult decision in the cell formation
stage because the layout designer does not have any knowledge regarding the cell size at the
beginning. Unlike most of the study in the literature where the number of cells to be formed
is prescribed beforehand, the number of cells resulting in the least total cost is automatically
calculated and used in the proposed approach. However, to preserve flexibility, users are
allowed to specify the preferred number of cells when implementing the algorithm. For
users having specific preferences in cell size, the proposed algorithm can save considerable
amount of run time because it willsskip the process of iteratively searching for the cell size
that will result in the best objective function values. The savings in run time become even
more significant as the cell size increases.

Stage Il of HGCFA:

Step 1. Read solutions from stage I, including number of cells, ¢"and cell formation with
inter-cell layout §™.

Step 2. Apply the initial solution construction, as mentioned in Section 4.4.2, to generate
an initial solution §°.

Step 3. Apply SA/TS/WFA procedure, as mentioned in Section 4.1.2, to improve §° and
generate a best layout of machines within each cell ().

Note that the final solutions (C"and §™) obtained from the first stage will be read in
Step 1 and will be used to construct an initial solutions of machines sequence configuration
(8°) in Step 2. In Step 3, the initial solution (S°) will be improved through SA/TS/WFA
procedure, as mentioned in Section 4.1.2, to generate a best solution (S7) in terms of
maximizing the CFFIL.
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4.2.1 Proposed algorithms for stage |

Proposed algorithms for stage one consist of two procedures: the initial solution
construction (i.e., generalized SCM-based clustering algorithm) and the solution
improvement (i.e., SA, TS, and WFA). The SA/TS/WFA procedure is as mentioned in
Section 4.1.2, while the initial solution construction will be described later.

The initial solution is generated through generalized SCM-based clustering algorithm.
It is composed of four parts: (1) determination of layout type, (2) formation of machine cells,
(3) selection of routings for each part, and (4) formation of part families. The details of
these procedures are given below.

(1) Determination of layout type

As mentioned in Section 3.3, two, basic cellular layout types (e.g., max number of row
r equal to 1 or 2) are considered.in this-study. When the layout designer has chosen a
specific cellular layout type, thistypeis assumed and used in‘the subsequent design.

(2) Formation of machine cells

According to Seifoddini and Djassemi (1995), incorporation of production volume into
the similarity measures may increase the probability of components with high production
volumes being processed within a single cell. As a result, there will be fewer intercellular
movements and lower material handling costs. The generalized SCM of Won and Kim
(1997) is modified to incorporate product volume information. Taking into account a
specific machine-part incidence matrix and product volume information, the corresponding

similarity matrix for machines can be obtained using the following formula:

N,

i

Sy= .
"N+ N, N, (44)

where

S = similarity coefficient between machines i and j
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Z k 2 k 2 k
Ni:kZ::lI/k a," Nj:kZ::lI/k Clj, Nij:kZ::lI/k aij
p = number of parts
Vk = production volume of part £

. |1 if i e some routing of part k
0 otherwise

. _J1 1f j € some routing of part k
0 otherwise

= {1 if i, j € the same routing of part £ synchronously
i~

0 otherwise

After calculating the similarity matrix for each pair of machines, the initial machine
assignment is generated using the single linkage clustering (SLC) algorithm. The SLC
algorithm works as follows:

Step 1. Join the two most similar ebjects (twomachines;'a machine and a machine group,
or two machine groups) to form a new machine group.

Step 2. Evaluate the similarity~coefficient -between the new machine group and other

remaining machine/machine groups as follows: s, = Max { Sij} iet jev,wherei

is the machine in the machine group ¢ and j is the machine in the machine group v.
Step 3. Repeat Steps 1 to 2 until a predetermined number of machine groups has been
obtained.
(3) Selection of routings for each part
After the formation of machine cells have been obtained, the routing for each part can
be determined by the procedure detailed below.
Step 1. Read the results of the machine cells formed by the machine-based similarity
matrix.
Step 2. For each part with alternative routings, find the routing that will result in the least

sum of objective value. If a tie occurs, make a random selection.
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Step 3. Repeat Step 2 until the process routing has been determined for each part.
(4) Formation of part families
Part families are formed after the formation of machine cells and determination of the
routing for each part. The procedure is summarized as follows:
Step 1. Read the results of machine assignment and routing selection for each part.
Step 2. For each part, find the cell to which a part assignment will result in the least sum of
exceptional elements and voids. If a tie occurs, assign the part to a cell with the
least number of voids.

Step 3. Repeat Step 2 until all parts have been assigned to cells.
4.2.2 Proposal algorithms for stage 11

This stage consists of two procedures: 1mtial /solution construction and solution
improvement (i.e., SA, TS, and WEA). The SA/TS/WEA procedure is the same as discussed
in Section 4.1.2. Initial solution-construction and ‘some, elements comprising the proposed
algorithms are described below.

(1) Initial solution construction

The initial solution of the sequence of machines in each cell can be generated by the

following procedure:

Step 1. Read the machine cells determined in stage one.

Step 2. Arrange machine cells by cell number in an ascending order.

Step 3. Arrange the sequences of machines in each cell in an ascending order.
(2) Configuration

A three-dimensional array is used to represent the configuration of a feasible solution
of the sequences of machines within each cell. Figure 4.13 shows an example where

machine #3 was assigned to the first sequence of cell #1.

76



Cell # 1 2 3
Sequence # | 1 2 3 1 2 3 1 2 3 4
Machine # | 3 7 8 2 4 6 1 10 9 5

Figure 4.13 Configuration of an initial solution to sequence of machines

(3) Neighborhood solution searching

In this stage, the neighborhood of a given solution is defined as the set of all feasible
solutions reachable by an exchange-move. The exchange-move is an operation that
exchanges any pair of machines within the same cell. If we exchange machine £ with
machine k', then the new move is denoted as (k, k'). The move that results in the most

improvement in CFFI value from the current solution is selected; that is,

Z(k, k"= Max{obj*" -obj"* " \Vk,k' € M_and 1« N" and k # k"} (4.5)

where obj 49 is the objective function value; M is the set for machines; and N is the set of

feasible solutions.
(4) Mutation strategy

When the number of moves has not.been~improved within a certain number of
iterations, the mutation strategy (mut check) is implemented by exchanging any pair of
machines within the same cell based on a prescribed probability . For each machine in the
same cell, a random number from (0, 1) is first drawn. If the value is greater than £, then the
machine sequence is exchanged with another randomly determined machines sequence
within the same cell; otherwise, it remains in the current sequence. The procedure of

machine sequence mutation strategy is presented in pseudo-code format in Figure 4.14.
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Mutation_strategy ( 5 )
{ *.
Let the current solution (S) equal to the best solution (S").
FOR each machine in the same cell DO
{
Generate a random number » e U(0,1).
IF(r>p)
Exchange machine sequence with the other machines.
ELSE
Stay machine in the current sequence.
}
}
Figure 4.14 Pseudo code of mutation strategy
(5) Tabu list

In the TS procedure, a two-dimensional array (mxm) TL[m][m],where m is the
number of machines, is used as.a tabu-list=to check if a move from a solution to its
neighborhood is forbidden or allowed. If a pairof machines k£ and £’ are exchanged, then
the exchanging of machine &' and k will be forbidden for a certain number of iterations,

which is equal to the tabu list size /s (e.g., TLIE k] =tls ).
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CHAPTER 5
NUMERICAL ILLUSTRATIONS

As mentioned in Chapter 4, two hybrid meta-heuristic algorithms integrating
SCM-based clustering algorithm and SA/TS/WFA are proposed to solve standard CFP and
generalized CFP, respectively. To illustrate the effectiveness of our developed algorithms,
two test examples are demonstrated in this chapter. Example #1 includes 10 machines and
10 parts that comprise a simple CFP with a 0-1 machine-part incidence matrix. Example #2
consists of 10 machines and 10 parts that form a generalized CFP. The proposed algorithms
were coded in C++ using Microsoft Visual Studio 6.0 and implemented on an Intel(R)
1.66GHz PC with 1IGB RAM. Computation results for both types of CFP are shown and

discussed separately in this chapter.

5.1 An Illustrative Example for Standard CFP

The 0-1 machine-part incidence matrix for example #1 is given in Figure 5.1. The
minimum number of machines in<each “cell (L,) is limited to 2 (i.e., singletons are not
allowed). The objective function aims to determine ‘machine cells and part families in which
grouping efficacy can be maximized. The implementation of the proposed method for

standard CFP is described as follows:

M\P P1 P2 P3 P4 P5 P6 P7 P8 P9 PI0
M1
M2
M3
M4
M5
M6
M7
M3
M9
M10

e

S O = = O O O O = O
S O = = O O O = O O
S O = = O O O = O O

—_——_— O O O = O O O -
—_ O O O O = O O O =
S O O O = O = O = O
S —_ O O O = O O O =
S O = = O = O = O O

S OO O = O = O = O
S O = = O O O = O

Figure 5.1 0-1 machine-part matrix of example #1
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Stage | of HCFA:
Step 1. Set NC=2, £(S)=1(8)=0.

Step 2. Apply the SCM-based clustering algorithm to generate an initial solution §°.

As mentioned in Section 4.1.1, the SCM-based clustering algorithm consists of three
steps: (1) computation of similarity values between machine pairs and construction of a
similarity matrix, (2) utilization of a clustering rule to process the values in the similarity
matrix and formation of machine cells, and (3) assignment of parts to machine cells using a
parts assignment procedure. They are described as follows:

(1) Calculation of machine similarity matrix

The corresponding similarity matrix for machines can be obtained by using Eq. (2.1)

and is shown in Table 5.1.

Table 5.1 Similarity matrix for machines in example #1

Machine 1 2 3 4 5 6 7 8 9 10

1 -

2 0 -

3 0 0 -

4 0 0.67 0 -

5 075 0 0.14 0 -

6 0 0.67 0 1.00 0 -

7 0 0.14 080 O 0.13 0 -

8 0 0.14 080 O 0.13 0 1.00 -

9 0.67 0 0 0 050 0 0 0 -

10 067 O 0 0 0.50 0 0 0 033 -

(2) Formation of machine cells

The similarity matrix shows that the largest coefficient in the matrix is 1, appearing in
pairs (7, 8) and (4, 6). Since pairs (7, 8) and (4, 6) do not have any relationship, they are
assigned to cell #1 and cell #2, respectively. The second largest coefficient in the matrix (0.8)
appears in pairs (3, 7); because machine 7 has been assigned to cell #1, machine 3 is

assigned to the same cell. Next in line is pair (1, 5); machines 1 and 5 have not been
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assigned to any cell so they should be assigned to cell #3. However, the initial NC is 2, so
that machines 1 and 5 are assigned to cell #2. Using the same logic, we can assign machines
2,9, and 10 to cell #2. Thus, machines 3, 7, and 8 are assigned to cell #1, while machines 1,

2,4,5,6,9, and 10 are assigned to cell #2, as shown in Figure 5.2.

Cell No. I[M\P|P1 P2 :P3:P4 P5 P6:P7 P8:P9:PI10

M3{0,0(0}1 0100 1]1

1 M7i0 0 1 1 0:1:0 0 1 1
M8fO:0:1:1:0:1 0:0:1:1
MLH{O|1lf[OfO|1[O]O|1[Of O
M2f1 o0 1 0 O O I O O O
M4f1 0 O O O O I O O O

2 M50 1 (OO T [O]OfLT |10
M6(1:0 0200 0 1 0:0: 0
M9|10 <10 0 070 0 1,00

M10| 0+ “1==0 0 1. 00 O O O

Figure 5:2 Assignment of machines
(3) Formation of part families
After calculating the sum of woids and exceptional elements for each part-cell
combination (Figure 5.3), it became apparent that parts 3, 4, 6, 9, and 10 should be assigned
to cell #1 and that parts 1, 2, 5, 7, and 8 should be assigned to cell #2 because this
arrangement results in the least sum of voids and exceptional elements. Thus, the initial
machine-part incidence matrix has been generated with a total grouping efficacy (I') of

57.69%, as shown in Figure 5.4.
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Cell No.| M\P [P1:P2:P3:P4:P5:P6:P7:P8:P9: P10
M3 [OfO|O|T|[OfTL|[O|O|T1]|1
1 M7 |0 0 1 1 :0:1-0 0 1 1
M8 |O O 1 1T O 1 0 0 1 1
Ml 0O/1/0f0,1,0,0]1,0, 0
M2 1 0:1:0:0:0 1:0 0 0
M4 1 0:0:0:0:0 1:0:0: 0
2 M5 [OfT|O|O|T1T |0, 01, 10
M6 1 0 0 0 00 1 0 O O
MO [OfT|O]|OfO|JO|O|T|O| O
MIO|J0O 1 0 O 1 0 0 O 0 O
Sum of voids and exceptional elements
Cell#1| 6 =7 2 :0 6 :0 6 6 1 0
Cell#2|1 4 | 3 8 10 4 10 4 4 9|10

Figure 5.3 Assignment of parts

Cell No. (M\P|P3" P4 P6 P9 P10} Pl P2 P5 P7 P8
M3|]0 1 1 1 1 |00 0 O O O

1 M7l 1T |1 |11 1]]040[0]0]O
M8|1 1 1 1:1 06 0 0:0:0
MI]|O "0 0..0~0.10 1 1 0:1
M2[1|O0[0OT70 0 ]1/0]0 1]0
M40 O O O O |1 O O 1 O

2 M510:0 0 1:0 |0 1 1 0:1
M6|0O O O O O |1 O 0 1 O
MO9|O O O O O |0 1 O 0 1
MIOfO|OfO[O| O ]JO|1]|1|]0]|O

Grouping efticacy (I') =57.69%

Figure 5.4 Solution configuration for NC=2
Step 3. Since 0.5769 >0, then set § <« §°, Let ¢'=2, NC=2+1. Repeat Steps 2 and
3 until £(5%) < £(S)-
The relationship between the NC and the resulting grouping efficacy ( £(S°)) is shown
in Figure 4.1. It is observed that f(S§°) increases as NC increases, and the

optimal/near-optimal is achieved when NC=3. After that, efficacy starts to decrease as NC

82



increases. The suggested number of cells (" =3) and the cell configurations (§*) are shown

in Figure 5.6.

100
;\? 80 A
g
é 60 & ~
(]
2 40
3
B 20
0
2 3 4
Number of cel(NC')

Figure 5.5 Relationship between grouping efficacy and number of cells for example #1

Cell No. [ M\P | P1' .P7 {P3- P4 P6 P9 P10|P2 P5 P8
M2|1 11020, 0 .0 0,01/0

1 M4|1 10 00+ 0.0 0 0 O
M6|1 1[0 0 0 0% 0 O0:0 0
M3[O 04011 (1|1 [0]0|O

2 M710 O0O]1 1 1 1 1[0 0 O
MO O|1 1T 1 1 1/[0:0:0
M50 0 O O O 1 O {1 1 1

3 MO|O[O|OfO|OfO| O f[T1]|0]]1
MIOfO O O0:0 O O O |1 1 0
MIL|O|O OJO OO Of1 1]|1

Grouping efficacy ( I' )=85.71%

Figure 5.6 Solution configuration for NC=3
Stage Il of HCFA:
Step 1. Read solutions from stage one, including number of cells () and cell
configurations ( S*).

Step2. Let §°« 8", NC=C".
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Step 3. Apply HSAM algorithm (as mentioned in Section 4.1.2.1) to improve §° (Figure
5.6). Using C"=3, a total grouping efficacy ( I" ) of 85.71% can be obtained. Note
that the solution is the same as the initial solution found in stage 1. This implies that
our proposed SCM-based clustering algorithm can produce a good initial solution.

To evaluate the performance of our proposed HCFA, the mathematical model
described in Section 3.2.2 is solved using Lingo 8.0 software. The Lingo solver status for
example #1 is shown in Figure 5.7. It took about 32 seconds to obtain the optimal solution

(0.857143). In contrast, our proposed HCFA was able to find the optimal solution in 0.14

seconds, thus illustrating the superiority of HCFA in solution efficiency. We believe this

superiority will be even more significant as the problem size increases.

LINGO Solver Status [LINGO1] X
Solver Statoz Variahles
i Total: B2
Model Clas: IHNLF
M onlinear: A2
etate: Global Optimum Inte gers: 60
Cibjective: 0.8357143 .
Infeasibility: 0 Tatal: 26
M onlinear: 3
Iterations: 64
Nonzeros
Extended Balver Status Total: 214
Solver Type Global Vpibosar 122
Best Obi: 0.857143 Crenerator Memory Used ()
Obj Bound: 0. 857143 &t
Steps: &4 Elapsed Euntime (hhonm:ss)
hetive: 27 00:00:32
Update Interval: |2

Figure 5.7 Lingo solver status for example #1

5.2 An lllustrative Example for Generalized CFP
Example #2 consists of 10 machines, 10 parts, and 18 process routings. The production

data (production volumes, alternative process routings, and processing times) are
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summarized in Table 5.2. In this table, entry (j, k) means the order of machine £ in part route

J, while the number in parentheses refers to production time. For instance, the order of

machine #1 (M1) in routing #1 (R1) for part #1 (P1) is 1. The production time of machine

#1 (M1) in routing #1(R1) for part #1 (P1) is 2 minutes. Machine reliability information is

shown in Table 5.3. For instance, the MTBF for machine #1 is 2241 minutes and breakdown

cost is 1300. The maximum number of machines in each cell (U,) is limited to 4 and the

minimum number of machines in each cell (L,,) is 2. Intercellular movement unit cost is

assumed to be 5. The linear single-row layout is chosen. Implementation of the proposed

HGCEFA for cell formation, cell layout, and intracellular machine layout simultaneously with

considerations of alternative routing, production volume, and machine reliability is

described as follows:

Table 5.2 Initial machine=partmatrix.of example #2

PN | PI P2 P3| P4 fP5| lP6 P7 P8 P9 P10
PV | 150 95 [130| =80 |120| 95 135 145 100 150
RN | R1 [R2|R1|R2[RI|RI|R2|RT{RI R2[RIIR2[RI |R2[RI[R2|RI|R2
MI [*1(2) 1(6) 12)[1(4) 1(5)|13) 13) 1(5)
M2 |2(5) 2(2) 12) 2(6).~11(6) 2(6)

M3 1(6) 16)] “"133) 1(3) 1(6) 14)[2(2) 1(5)
M4 | 3(6) 1(4) 2(4) 3(4)

MS5 3(5)|4(6) 3(5) 5(2)13(3)[4(5)

M6 3(3) 3(4) |

M7 24) B3| 35 3(6) O Be @36
M8 16)  [2@)[203)205) 2(2) 34 23)26)]  2(6)
M9 32 [33) 45)205 34

M10 2(6) 2(2) 2(5)|

PV: Production Volume; PN: Part Number; RN: Routing Number; * Process Sequence (Production Times)
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Table 5.3 Machine reliability information for example #2

Machine Breakdown cost MTBF(min)

1 1300 2241
2 1200 3403
3 1000 2133
4 1600 3600
5 1400 2271
6 1000 2159
7 1200 3374
8 1400 4380
9 1500 1316
10 1300 854

Stage | of HGCFA:

(1) Determination of the initial number of cells and selection of cell layout

The initial number of cells is calculated:, NC =[10/4 |=3. Then, cells are arranged in

a linear single-row cellular layout, as shown inFigure 5.8.

Cell #1.(1,1)| |Celi#2(1,2)| [Cell #3 (1,3)

Figure 5.8Initial linear single-tow layout

(2) Calculation of machine similarity matrix
The corresponding similarity matrix for machines can be obtained by using Eq. (4.4)
and is presented in Table 5.4.

Table 5.4 Similarity matrix for machines in example #2

Machine 1 2 3 4 5 6 7 8 9 10
1 -

2 0.37 -

3 0.23 0.11 -

4 032 0.56 0.00 -

5 036 0.00 0.13 0.00 -

6 0.00 0.56 0.00 1.00 0.00 -

7 0.11  0.13 065 000 021 0.00 -

8 0.09 0.11 054 0.00 037 000 0.82 -

9 0.22 0.00 027 0.00 038 0.00 0.00 0.37

—_
o

040 0.00 0.00 0.00 0.78 0.00 0.00 0.14 0.44 -
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(3) Assignment of machines to cells

Three cells are to be formed initially. The largest coefficient in the similarity matrix is

1, indicating that machines 4 and 6 must be assigned to cell #1. The second largest

coefficient in the matrix (0.82) appears in pair (7, 8). Since machines 7 and 8 have not been

assigned to any cell, they are assigned to cell #2. Pair (5, 10) is considered next, and since

machines 5 and 10 have not been assigned to any cell, they are assigned to cell #3. The next

choice is pair (3, 7); machine 3 is assigned to cell #2 as well because machine 7 has been

assigned there. Next is pair (2, 4); machine 2 is also assigned to cell #1 because machine 4

has been assigned there. Applying the same logic, we can determine that machine 1 should

be assigned to cell #3, while machine 9 should be assigned to cell #3. Thus, machines 2, 4,

and 6 are assigned to cell #1; machines 3, 7,;and 8 are assigned to cell #2; and machines 1, 5,

9, and 10 are assigned to cell #3, assshown in/Table 4.

Table 5.5 Formation of machine’cells for numerical example #2

Cell pN | PI P2 | P3| P4 |P5|  P6 P7 P8 P9 P10
e PV | 150 95 130 80::4120] 95 135 145 100 | 150
RN |RI|R2|RI R2|RI1|R1 R2|R1|RI1 R2|RI R2|R1 R2|RI|R2|Rl R2
M2 [2(5)2(2) 1) 2(6)  |1(6)2(6)
I M4 |36) 1(9) 2(4)3(4)
M6|  33) 3(4)
M3 16)16)| [3(3)103) 1(6) 1(4)[2(2) 1(5)
2 M7 24 B3| 306) 3(6) 36)  |3(4)3(5)
M8 16)  [24)[2(3)2(5) 2(2) 34) 2326 206
M1 [1(2) 1(6) 12)|1(4) 15)|13)/1(3) 1(5)
3 |™ms5 13(5) 4(6) 3(5) 5(2) 3(3)[4(5)
M9 | 30l bo 45)205) 34
M10 2(6) 2(2) 2(5)
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(4) Selection of routings for each part

Routing 2 is selected by parts 1, 4, 6, 8, 9 and 10; while routing 1 is selected by parts 2,
3, 5 and 7, because these selections will result in the least total ICMC and MBC. Thus,
Table 5.5 is rearranged as Table 5.6.

Table 5.6 Part routing assignment for numerical example #2

PN Pl P2 P3 P4 P5 P6 P7 P8 P9 P10
IC\IZI.I PV 150 95 130 80 120{ 95 135 145 100 150
RN|[RI1 R2|R1 | R2 Rl |RI |[R2|R1|RI1 |[R2|Rl | R2|RI |R2 | Rl | R2 | Rl R2
M2 [2(5) 2(2) 1(2) 2(6) 1(6) 2(6)
1 [M4]3(6)(1(4) 2(4) 3(4)
M6 3(3) 3(4)
M3 1(6) 1(6) 3(3) 13) 1(6) 1(4)|2(2) 1(5)
2 (M7 2(4) 3(3) 3(5) 3(6) 3(6) 3(4) 3(5)
M8 1(6) 2(4)12(3).2(3) 2(2) 3(4) 2(3) 12(6) 2(6)
M1 [1(2) 1(6) 12)[.1(4) 15)[1(3) 1(3) 1(5)
3 [MS5 3(5) 4(6) 3(5) 5(2) 13(3) |4(5)
M9 3(2) 3(3) 4(5) 2(5) 3(4)
MI10 2(6) 20) 2(5) |
Total inter-cell move €ost (ICMC) and the ‘machine breakdown cost (MBC)
ICMC |1500 0 |[475 0 [650[400. 0 | 0 [1425 0 | O 13501450 O |500 500|750 O
MBC [839 581|610 1766|397 | 575 495|874 |'555 397|776 917 |2584 1347|899 835|789 906
TC 23395811085 1766|1047| 975 |495|874|1980|397|776|2267(4034/1347|1399/1335{1539906

(5) Formation of part families

After calculating the sum of voids and exceptional elements for each part-cell
combination (Figure 5.6), we observed that parts 1 and 7 should be assigned to cell #1, parts
2,3,4,6,9 and 10 should be assigned to cell #2, and parts 5 and 8 should be assigned to
cell #3 because this arrangement results in the least sum of voids and exceptional elements.
Thus, the initial machine-part incidence matrix has been generated with total ICMC and

MBC of 8843, as shown in Figure 5.9.
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Figure 5.9 Initial solution of stage I for example #2

(6) Improvement of ICMC through HGCFA algorithm in stage |

The initial solution generated in Figure 5.9 with total ICMC and MBC of 8843 can be
improved through the HGCFA algorithm in stage 1. After 0.64 seconds CPU time, the final
solution with a total ICMC and MBC of 8843 can be obtained. Note that the final solution is
similar to the initial solution. This means that our proposed generalized SCM-based
clustering algorithm can produce a good initial solution. So far, cells have been formed and

cell layout has been determined. Solution regarding the machine layout (sequence) for each

cell is left to be determined in the next step.

&9

PN|Pl P7| P2 P3 P4 P6 P9 PIO[P5S P8
(Iif;l.l PV | 150 135] 95 130 80 . 95 100%150 120 145
RN|R2 RI|[Rl Rl R2 R2 R2 R2|Rl R2
M2 12(2) 1(6) 1(2)
1 [ M4]1(4) 2(4)
M6 [3(3) 3(4)
M3 1(6) | 1(3)| 1(4) [ L(5)
2 | M7 2(4) 3(3) 3(5) 3(6) 3(5)
M8 1(6) 2(4) 2(5) 2(2) 2(6) 2(6)
M1 12) 1(3)
3 | M5 3(5) 35 3(3)
M9 3(4) 2(5)
M10 2(2)
Total inter-cell move cost (ICMC) and the machine breakdown cost
(MBC)=8843
ICMC | O 0O 475 650 0 - 0 500 0 O 0
MBC |581:776 : 6104397 -495.397 . 835 ;906 : 874 : 1347
TC 581 776 1085 1047495 3971335 906 874 1347
Sum of voids-and exceptional elements
Cell #1 0 6 4 6 6 6
Cell #2 6 2 2 0 0 2
Cell #3 7 5 7 77 5 7
Cell #1 (1,1) Cell #2 (1,2) Cell #3 (1,3)
M2, M4, M6 M3, M7, M8 M1, M5, M9, M10




In order to get the optimal solution, a pure integer liner model described in Section
3.4.2.1 is solved using a branch and bound (B&B) algorithm with the Lingo 8.0 software.
The Lingo solver status for example #2 is shown in Figure 5.10. The optimal solution
(8843.22) is obtained in 4 seconds. In contrast, our proposed HGCFA was able to find the
optimal solution in 1 second, thus implying the superiority of HGCFA in solution efficiency.

Similarly, we believe this superiority will be even more significant as problem size

increases.
LINGO Solver Status [LINGO1] X
Solver Statoz WVariahles
i Total: a0a
Model Class: ILFP
Nonlinesr: 1]
stat:  Global Cptimum Integers: 406
Objective: 1] Co ints
Infeasbility: 1] Total: 1467
M onlinear: 1]
Tterations: 32776
Wonzeros
Extended Bolver Status Total: 3894
Solver Type BE-and-E Nonlinear: 0
Best Obj: aa43 22 Crenerator Memooy Tsed )
(Obj Bound: 8843 .22 425
Steps: 148 Elapzed Euntime (hhomm:ss)
Active: a 00:00: 04
Updats Intervel: [7] [ co= ]

Figure 5.10 Lingo solver status for stage I (cell formation and inter-cell layout)
Stage Il of HGCFA:
(1) Generation of initial solution in stage 11
The initial solution of the sequence of machines in each cell can be generated by the
following procedure:
Step 1. Read the machine cells determined in stage one.

Step 2.  Arrange the machine cells by cell number in an ascending order.
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Step 3.  Arrange the sequences of machines in each cell in an ascending order.
Using the above procedure, Figure 5.11, showing the initial machine sequences within

each cell, can be constructed.

Cell # 1 2 3
Sequence# | 1:2 3:4(1 2 3|1:2 3
Machine# |1 5 9 10[3 7 8|2 4 6

Figure 5.11 Initial configuration of machine sequence for example #2
Based on the solution from stage I and the initial configuration of machine sequence,
the corresponding flow matrix for machines can be obtained by using Eq. (3.25). This is

presented in Table 5.7. Using Eq. (3.26), the initial CFFI can be calculated as follows:

crr=er = 270 _ 1 o5,
Ny
Table 5.7 Flow matrix

Machine 1 2 3 4 5 6 7 8 9 10
1 - 0 0 0 0 0 0 0 145 120
2 0 - 0 135 0 - 1500 130 O 0
3 0 0 - 0 0 0 0 425 0 0
4 0 150 O - 0-135 0 0 0 0
5 0 0 0 0 - 0 0 0 0 0
6 0 0 0 0 0 - 0 0 0 0
7 0 0 0 0 95 0 - 0 0 0
8 0 0 0 0 0 0 550 - 100 O
9 0 0 0 0 145 O 0 0 - 0
10 0 0 0 0 120 0 0 0 0 -

(2) Improvement of CFFI through HGCFA algorithm in stage Il
Through the proposed HTSCEF in stage II, the CFFI can be improved to 65.21(%) after
0.19 seconds CPU time. The final corresponding configuration for the cell formation, cell

layout, and intracellular machine layout is displayed in Figure 5.12.
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PN

P1

P7

P2

P3

P4 = P6

P9 Pl10| P5

P8

Cell

No. PV

150

135

95

130

80 : 95

100 | 150 | 120

145

RN

R2

R1

R1

R1

R2 R2

R2 R2 | Rl

R2

1 [ M4

1(4)

2(4)

M2

2(2)

1(6)

M6

303)

34)

1(2)

M3

2 | M8

M7

1(6)
2(4)

24)
303

16)| 1(3)

14) |15

2(5) 2(2)

2(6) 2(6)

3(5) 3(6)

3(5)

MIl

3 | M9

M5

3(5)

MI10

1)

3(4)

305

2(2)

13)
2(5)
3(3)

Total inter-cell move cost (ICMC) and the machine breakdown cost

ICMC

0

(MBC)=8843

0 475 650 0 @ 0

0

MBC

581776 . 610 397495 397 835 906874 1347

TC

581

776

1085

1047

495 397

1335 906 874

1347

Consecutive forward flow index (CFFL) = 65.21(%)

Cell #1 (1,1)

Cell #2 (1,2)

Cell #3 (1,3)

M4, M2, M6

M3, M8, M7

M1, M9, M5, M10

Figure 5.12 Final solution of stage II (cell:iformation, inter-cell layout and intra-cell layout)

To evaluate the performance of our proposed HGCFA, the mathematical model
described in Section 3.4.2.2 is solved using Lingo 8.0 software. The Lingo solver status is
shown in Figure 5.13. The optimal solution (0.6521) is obtained in 1 second. In contrast, our
proposed HGCFA was able to find the optimal solution in 0.2 seconds, thus illustrating the

superiority of HGCFA in solution efficiency. We believe this superiority will be even more

significant as problem size increases.
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LINGO Solver Status [LINGO1] X

Solver Batus Variablez
. Total: 6
Model Class: INLP
Honlinear: 29
atate:  Slobal Optimum Inte zers: 24
Chiective: 0 Co ints
Infeasibility: 1] Total: 23
Monlinear: 1
Tterations: 1
Nonzeros
Extended Solver Statns Total: 101
Solver Twpe Slobal Nonlinear: 23
Best Obj: 0.652083 Crenerator Memoror Tzed (K)
Obj Bound.: 0. 652083 ee
Bl 1 Elapsed FEuntime (hhomom:ss)
Hiiloe: 0 00:00:01

Tpdate Interval: |2

Figure 5.13 Lingo.solver status for stage 1l (intra-cell layout)
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CHAPTER 6
COMPUTATIONAL RESULTS AND COMPARISONS

Two types of CFP are addressed in this thesis. Standard CFP is represented by a binary
machine-part incidence matrix, while the generalized CFP had layout design and machine
reliability considerations. In order to solve these problems quickly and effectively, two
hybrid algorithms merging an SCM-based clustering algorithm and SA/WFA/TS
meta-heuristics are presented in this thesis. The proposed algorithms were coded in C++
using Microsoft Visual Studio 6.0 and implemented on an Intel(R) 1.66 GHz PC with 1 GB
RAM. Since the proposed methods might have stochastic features, five independent runs
were performed for each test. The computation results for both types of CFP are shown and

discussed separately in this chapter.

6.1 Computational Results for Standard CFP

To validate the quality of.the solutions provided by the proposed algorithms for
standard CFP, 35 test instances, each represented by a binary machine-part incidence matrix,
from literature (Table 6.1) are used to ‘evaluate the computational characteristics of our
proposed HCFA. The matrices of the test problems range from 5x7 to 40x100, and consist
of both well-structured and unstructured matrices. The parameters values for HCFA-HSAM,
HCFA-HWFAM, and HCFA-HTSM throughout all runs are described in Table 6.2. Some
studies in the literature allowed the existence of singletons in the solutions, while some did
not. To make comparisons fair and meaningful, the computational results are shown and

discussed separately in two subsections.
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Table 6.1 Test instances from the literature for standard CFP

No. Source Size (mxp)

1 King and Nakornchai (1982) 5x7

2 Waghodekar and Sahu (1984) 5x7

3 Seifoddini (1989) 5%x18
4 Kusiak and Cho (1992) 6x8

5 Kusiak and Chow (1987) 7x11
6 Boctor (1991) 7x11
7 Seifoddini and Wolfe (1986) 8x12
8 Chandrasekharan and Rajagopalan (1986a) 8x20
9 Chandrasekharan and Rajagopalan (1986b) 8x20
10 Mosier and Taube (1985a) 10x10
11 Chan and Milner (1982) 10x15
12 Askin and Subramanian (1987) 1423
13 Stanfel (1985) 14x24
14 McCormick et al.(1972) 14x24
15 Srinivasan-et al.(1990) 16x30
16 King (1980) 16x43
17 Carrie (1973) 18x24
18 Mosier and Taube (1985b) 20x20
19 Kumar et al:(1986) 20%23
20 Carrie (1973) 20%35
21 Boe and Cheng (1991) 20x%35
22 Chandrasekharan‘and Rajagopalan (1989) 24x40
23 Chandrasekharan and Rajagopalan (1989) 24x40
24 Chandrasekharan and Rajagopalan (1989) 24x40
25 Chandrasekharan and Rajagopalan (1989) 24x40
26 Chandrasekharan and Rajagopalan (1989) 24x40
27 Chandrasekharan and Rajagopalan (1989) 24%40
28 McCormick et al. (1972) 27x27
29 Carrie (1973) 28x%46
30 Kumar and Vannelli (1987) 30x41
31 Stanfel (1985) 30%50
32 Stanfel (1985) 30%50
33 King and Nakornchai (1982) 30x90
34 McCormick et al. (1972) 37%53
35 Chandrasekharan and Rajagopalan (1987) 40100
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Table 6.2 Parameters setting for HCFA-HSAM, HCFA-HWFAM, and HCFA-HTSM

Algorithm Parameter settings

HCFA-HSAM Initial temperature (7y): 80
Final temperature (77): 0.002
Cooling rate (a): 0.7
Markov chain length (L): 30
Mutation probability (5): 0.8

HCFA-HWFAM | Iteration limit (V) : 100
Initial mass (W)): 40

Initial velocity (Vp): 15
Base momentum (7,) : 100

Mutation probability (5): 0.8

HCFA-HTSM Maximum number of iterations (N,,u)+ 3000

Maximum fiumber of solution has not been improved (Nsg ): 1000
Tabu list size (. tls ): 7

Mutation probability (5): 0.8

6.1.1 Solutions allowing singletons

The HGA (Tariq et al., 2009) and the GA (Mahdavi et al., 2009) are compared in order
to demonstrate the power of the proposed algorithm given that singletons are allowed (i.e.,
L,=1). The computational results are summarized and compared in Table 6.3. The best
values for grouping efficacy (I') achieved by our proposed HCFA-HSAM, HCFA-HWFAM,
and HCFA-HTSM are the same. In addition, our proposed algorithms are better than or
equal to previously reported results except in problems #18 and #27. To be more specific,
our proposed algorithms were able to improve the best values for grouping efficacy

compared with the HGA method for 23 problems (#1, #5, #6, #7, #10, #12, #13, #14, #15,
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#16, #17, #19, #20, #25, #26, #27, #28, #29, #30, #31, #32, #33, and #34); while for 11
problems, our proposed algorithms obtained grouping efficacy values that are equal to the
best results of the HGA method. Compared with the GA method, our proposed algorithms
improved the best values for grouping efficacy for 5 problems (#16, #18, #20, #25, and #26);
while for 16 problems, our proposed algorithms obtained grouping efficacy values that are
equal to the best results of the GA method. Thus, it can be concluded that our proposed
algorithms perform better than HGA and GA, especially in test problems with larger sizes.
One noteworthy observation is that all the best solutions can be found in less than 63
seconds regardless of the problem size, thus illustrating the superiority of our proposed

algorithms in solution efficiency.

6.1.2 Solutions not allowing singletons

In order to demonstrate the power of the.proposed algorithms when singletons are not
allowed (i.e., L,=2), comparisons against the KHMCF (Unler and Gungor, 2009) were
performed. The computational results are summarized and compared in Table 6.4. The best
values for grouping efficacy achieved by.our proposed HCFA-HSAM, HCFA-HWFAM,
and HCFA-HTSM methods are similar and our proposed algorithms yielded values better
than or equal to those previously reported except in problem #32. To be more specific,
HCFA improved the best grouping efficacy values of the KHMCF method for 9 problems
(#12, #14, #16, #17, #18, #20, #26, #31, and #34); while for 10 problems, our proposed
algorithms obtained grouping efficacy values that are equal to the best results of the
KHMCF method. However, it should be noted that our proposed algorithms can achieve the
best solutions in less than 56 seconds regardless of the problem size, thereby illustrating the

superiority of our proposed algorithms in solution efficiency.
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Table 6.3 The computational results in the case where singletons are allowed (L,=1)

Test instances HGA GA*® HCFA-HSAM " HCFA-HWFAM ° HCFA-HTSM "
No. Source (rs;llfg) I(%) NC T(%) ﬁfnzlé) NC T(%) tiiilé) NC T(%) ﬁfnzlé) NC T(%) ﬁfnf;l(js)
1 King and Nakornchai (1982) 5x7  73.68 - - - 3 75.00° 0.17 3 75.000 0.02 3 75000 0.14
2 Waghodekar and Sahu (1984) 57 6957 2 69.57 0.0l 26957 013 2 6957 0.01 2 69.57  0.12
3 Seifoddini (1989) 5x18 7959  24979.59°0002 2 7959 019 2 7959 0.03 2 7959 0.16
4 Kusiak and Cho (1992) 6x8 7692 « 27 7692 0.0l 27692 015 2 7692 002 2 7692 0.13
5 Kusiak and Chow (1987) 7x11  58.62% 7 56087 0025 60.87 028 5 60.87 0.03 5 60.87 0.22
6 Boctor (1991) 7x11 7037 .4 7083 003 -4 7083 024 4 7083 003 4 7083 020
7 Seifoddini and Wolfe (1986) 8x12 6830 - p - 4 69.44° 029 4 6944 003 4 6944 022
8  Chandrasekharan and Rajagopalan (1986a)  8x20 85.25 3 8525 0.03 3 8525 0.29 3 8525 0.07 3 8525 022
9 Chandrasekharan and Rjagopalan (1986b) 8x20 58.72 2 5872 0.03 2 5872 0.28 2 5872 0.03 2 5872 0.21
10 Mosier and Taube (1985a) 10x10  70.59 “/:5+._75.00 003 5 7500 042 5 7500 009 5 7500 0.32
11 Chan and Milner (1982) 10x15  92.00 3779200 7 '0.03 39200 029 3 9200 009 3 9200 022
12 Askin and Subramanian (1987) 14x23 7083 - - - 7 73.13° 1.03 7 73.13° 038 7 73.13° 0.79
13 Stanfel (1985) 14x24 7051 7 7183 057 7 7183 112 7 7183 040 7 7183 0.79
14 McCormick et al.(1972) 14x24 5196 - - - 8 5326° 2.13 8 53.26° 1.65 8 5326 1.78
15 Srinivasan et al.(1990) 16x30  67.83 - - - 6 6899° 1.72 6 6899 124 6 6899 124
16 King (1980) 16x43 5486 7 56.13 1.53 8 56.85° 274 8 56.85" 1.30 8 56.85" 226
17 Carrie (1973) 18x24 5495 - - - 9 5773 225 9 57.73° 224 9 57.73"  2.00
18 Mosier and Taube (1985b) 20x20 4345 5 4294 062 5 4336 1.83 5 43360 1.73 5 43367 1.68
19 Kumar et al. (1986) 20x23  49.65 - - - 7 50817 127 7 5081" 097 7 50817 1.12
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20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

Carrie (1973)

Boe and Cheng (1991)
Chandrasekharan and ajagopalan (1989)
Chandrasekharan and Rajagopalan (1989)
Chandrasekharan and Rajagopalan (1989)
Chandrasekharan and Rajagopalan (1989)
Chandrasekharan and ajagopalan (1989)
Chandrasekharan and Rajagopalan (1989)
McCormick et al. (1972)

Carrie (1973)

Kumar and Vannelli (1987)
Stanfel (1985)

Stanfel (1985)

King and Nakornchai (1982)
McCormick et al. (1972)
Chandrasekharan and Rajagopalan (1987)

20%35
20%35
24%40
24%40
24x40
24x40
24%40
24x40
27x27
28%46
30x41
30x50
30x50
30%90
37x53

40%100

76.14
58.38
100.00
85.11
73.51
52.50
46.84
44.85
54.31
46.43
60.74
59.66
50.51
44.67
59.60
84.03

10

77.91

100.00

85.11
73.51
52.87
48.85
47.26

60.12
50.83

84.03

1.25

1.60
1.92
1.48
3.26
6.24
11.23

19.30
2221

99.63

~N 0 D D

—
—

12

11
14
13
14
16

10

78.40"
58.38
100.00
85.11
73.51
53.29"
48.95"
46.26°
54.82"
47.23"
62.86"
60.12
50.83
47.85"
60.50"
84.03

1.58
1.14
1.73
1.74
1.76
6.23
6.30
5.76
2.57
6.57
7.88
9.11
11.68
22.81
2.20
8.34

N 9 0 D

[um—
[um—

12

11
14
13
14
16

10

78.40"
58.38
100.00
85.11
73.51
53.29"
48.95"
46.26
54.82"
47.23"
62.86"
60.12
50.83
47.85"
60.50"
84.03

0.99
1.11
0.73
2.14
1.56
7.05
6.15
5.98
6.21
24.57
13.91
12.78
18.21
63.89
22.97
17.43

~N 9 9 D D

—_—
—_—

12

11
14
13
14
16

10

78.40"
58.38
100.00
85.11
73.51
53.29"
48.95"
46.26
54.82"
47.23"
62.86"
60.12
50.83
47.85"
60.50"
84.03

1.12
1.19
1.26
1.29
1.28
5.63
7.48
6.54
2.29
9.76
9.15
7.84
13.37
32.82
2.33
5.67

#Run on a Pentium IV, 2.1 GHz PC.
®Run on a Pentium IV, 1.6 GHz PC.
"2 Solutions obtained by the proposed approach are superior to best solutions found in the literature.
“: Solutions obtained by the proposed approach are inferior to best solutions found in the literature.
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Table 6.4 The computational results in the case where singletons are not allowed (L,,=2)

Test instances KHMCF * HCFA-HSAM ° HCFA-HWFAM ° HCFA-HTSM °
No. Source (Zlf;) NC T(%) tircnz[é) NC  T(%) ﬁfnpe[é) NC (%) ﬁfnpe[é) NC T() ¢ [(JS)
1 King and Nakornchai (1982) 5x7 2 73.68 037 2 73.68 0.10 2 73.68 001 2 73.68 0.08
2 Waghodekar and Sahu (1984) 5%7 2 6250 0.34 2 6250 0.09 2 6250  0.00 2 6250 0.08
3 Seifoddini (1989) 5%18 27959  0.96 27959  0.11 27959  0.00 27959  0.09
4 Kusiak and Cho (1992) 6x8 2 7692 0.78 2 7692 0.13 27692  0.02 27692 0.10
5 Kusiak and Chow (1987) 7x11 3 53u3 037 3 5313 0.3 3 5313 0.00 3 5313 0.10
6 Boctor (1991) 7x11 3.7037 037 30.70.37 0.10 3 7037  0.00 3 7037 0.09
7 Seifoddini and Wolfe (1986) 8x12 4 ¢ ! 316829 0.16 3 6829  0.02 36829 0.11
8  Chandrasekharan and Rajagopalan (1986a)  8%20 - - - 378525 021 3 85.25 0.03 3 8525 0.13
9 Chandrasekharan and Rjagopalan (1986b)  8x20 - - - 2¥ 15872  0.26 2 58.72 0.03 2 5872 0.20
10 Mosier and Taube (1985a) 10x10 3, 70.591:36 3 /17059 0.20 37059  0.02 37059  0.18
11 Chan and Milner (1982) 10x15 - - - 3479200 0.26 39200 0.06 39200 022
12 Askin and Subramanian (1987) 14x23 5 6575076 5 69.86° 0.46 5 69.86" 0.07 5 69.86° 0.33
13 Stanfel (1985) 14x24 5 6933 0.82 5 6933 045 5 6933 007 5 6933 036
14 McCormick et al.(1972) 14x24 6 5048 237 6 51.96° 1.20 6 51.96° 0.60 6 51.96° 1.01
15 Srinivasan et al.(1990) 16x30 4 67.83 0.67 4 6783 1.04 4 6783 068 4 6783 0.62
16 King (1980) 16x43 5 5480 1.52 6 5590° 1.33 6 5590° 0.34 6 5590" 1.13
17 Carrie (1973) 18x24 6 52.83 1.63 6 5446° 1.02 6 5446°  0.65 6 54.46° 0.89
18 Mosier and Taube (1985b) 20x20 5 4029 2.15 5 42967 1.52 5 4296 147 5 4296 1.33
19 Kumar et al. (1986) 20%23 - - - 6 49.61 0.73 6 49.61  0.39 6 49.61 0.68
20 Carrie (1973) 20x35 4 7622 059 5 76.54" 1.3 5 76547 121 5 76.54" 1.17
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21 Boe and Cheng (1991)

22 Chandrasekharan and ajagopalan (1989)
23 Chandrasekharan and Rajagopalan (1989)
24 Chandrasekharan and Rajagopalan (1989)
25  Chandrasekharan and Rajagopalan (1989)
26 Chandrasekharan and ajagopalan (1989)
27  Chandrasekharan and Rajagopalan (1989)

28 McCormick et al. (1972)
29 Carrie (1973)

30 Kumar and Vannelli (1987)
31 Stanfel (1985)

32 Stanfel (1985)

33 King and Nakornchai (1982)
34 McCormick et al. (1972)

35  Chandrasekharan and Rajagopalan (1987) 40x100

20%35
24x40
24%40
24%40
24%40
24x40
24%40
27x27
28%46
30x41
30x50
30%50
30%90
37x53

124,.59.43
12 © 58.86

2 5642

4:12
4.17

0.73

58.15
100.00
85.11
73.51
51.97
47.37"
44.87
54.27
46.06
59.52
60.00"
50.51°
46.15
59.85"
84.03

1.07
1.44
1.45
1.44
3.64
291
2.35
1.93
5.03
3.66
5.66
5.77
11.35
2.83
7.31

11

10

58.15
100.00
85.11
73.51
51.97
47.37"
44.87
54.27
46.06
59.52
60.00"
50.51°
46.15
59.85"
84.03

0.63
0.19
0.53
0.75
2.25
1.38
2.00
3.53
12.80
2.84
4.53
6.37
25.19
55.74
7.85

12
11
12

10

58.15
100.00
85.11
73.51
51.97
47.37"
44.87
54.27
46.06
59.52
60.00"
50.51°
46.15
59.85"
84.03

0.84
1.06
1.20
1.10
3.36
3.40
3.13
1.50
6.90
3.99
6.91
6.69
13.14
3.19
5.19

#Run on a Pentium IV, 3.2 GHz PC.
®Run on a Pentium IV, 1.6 GHz PC.

101



6.2 Computational Results for Generalized CFP

To validate the quality of the solutions provided by the proposed algorithms for
generalized CFP, we prepared suitable test instances. Since only a limited amount of research
on CFP has dealt with machine breakdown or reliability issues, suitable test problems are very
rare in the literature. Eight test instances, as shown in Table 6.5, are solved in this thesis.
Among them, two (#1 and #5) were drawn from the literature (Jabal Ameli and Arkat, 2008
and Jabal Ameli et al., 2008). The remaining six problems were prepared by adding
self-creating data, such as MBC, MTBF, and production time (PT), to test situations selected
from the literature that have machine-part incidence matrix and process routing data ready.
Detailed data of each new test problem are presented in Appendix A. These data include
production data of each part and machine reliability information.

Table 6.5 describes the basic problem data and ‘how MBC, MTBF, PT data were

created:
1. MBC is set to be any number between 1000-and-1.700;

2. MTBF is set to be any number between 800 and 5000;

3. PT is set to be any number between 2 and 6.

Table 6.5 Test instances for generalized CFP

No. Original source Size (m*xpxr) Lnm U, Randomly generated data

1 Jabal Ameli et al. (2008) 9x8x20 2 6 -

2 Kim et al.(2004) 10x10x25 2 5 MBC, MTBF

3 Sofianopoulou (1999) 12x20%x26 2 5 MBC, MTBF, PT

4 Sofianopoulou (1999) 14x20x45 2 5 MBC, MTBF, PT

5 Jabal Ameli and Arkat (2008) 17x30x63 2 5 -

6 Sofianopoulou (1999) 18x30%x59 2 7 MBC, MTBF, PT

7 Lee et al. (1997) 30x40x89 2 7 MBC, MTBF, PT

8 Hu and Yasuda (2006) 30x70x149 2 8 MBC, MTBF, PT

MBC: Machine Breakdown Cost (1000~1700) (rand() %8+10)*100);
MTBF: Mean Time Between Failure (800~5000) (rand() %4201+800);
PT: Production Times (2~6) (rand() %5+2).
The parameter values for HGCFA-HSAM, HGCFA-HWFAM, and HGCFA-HTSM
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throughout all test instances are described in Table 6.6.

Table 6.6 Parameters setting for HGCFA-HSAM, HGCFA-HWFAM, and HGCFA-HTSM

Algorithm Parameter settings

HGCFA-HSAM Initial temperature (7y): 80
Final temperature (77): 0.0002
Cooling rate (a): 0.7

Markov chain length (L): 100
Mutation probability (f5): 0.7

HGCFA-HWFAM | Iteration limit (V) : 100
Initial mass (W)): 40
Initial velocity (Vy): 15
Base momentum (7,,,): 100

Mutation probability(5): 0.8

HGCFA-HTSM Maximum-number of iterations (N, )+ 3000

Maximum fiumber of solution-has not been improved (Nyiag ): 1000
Tabu list size ( #lsv): 7

Mutation probability (#): 0.8

Table 6.7 shows the comparison of the computation results for different cellular layout
types. The best values obtained for each test problem between the two cellular layout types
are indicated by bold characters. As expected, cellular layout type does have meaningful
effects on TC and CFFI. Out of the 8 test problems, both cellular layout types yielded the
same results in 4 test problems (#1, #2, #5, and #7), while linear double-row layout
produced better results than linear single-row layout in the remaining 4 problems (#3, #4, #6,
and #8). Furthermore, we observed the explicit preference for linear double-row layout over
linear single-row layout based on their run times. Thus, it can be concluded that linear

double-row layout (7=2) performs better than linear single-row layout (7=1).
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Table 6.8 shows comparisons of our proposed algorithms with the branch and bound
(B&B) algorithm using the Lingo 8.0 software in stage I given that linear double-row layout
(r=2) is considered. Results show that B&B is able to achieve global optimum in 4 out of 8
test instances (i.e., test instances #1 to #4) in less than 120839 seconds (34 hours). As for
other test instances, Lingo was not able to find the optimal solution in a reasonable time due
to their gigantic problem sizes. In contrast, our proposed algorithms were able to find the
optimal solution for test instances #1 to #4 within 4 seconds. For the other test instances,
our proposed algorithms found the best solution in 33 seconds. These findings illustrate the
superiority of our proposed algorithms in solution efficiency.

Table 6.9 shows the comparisons of our proposed algorithms with the B&B algorithm
in stage II using Lingo 8.0 software given /that. the linear double-row layout (=2) is
considered. Results show that Lingo was ablete-achicve global optimum in 7 out of 8 test
instances in less than 3 seconds: As-for test instance #8,"B&B was not able to find the
optimal solution after 152017 seconds (42 hours) of running-with an objective value (CFFI)
of 17.80% due to the large problem size. In contrast, ourproposed HGCFA-HSAM yielded
a final CFFI value of 19.27% after less than" 0.7 seconds. These findings indicate the

superiority of our proposed algorithms in solution efficiency.
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Table 6.7 Comparisons of computation results for different cellular layout type

Test instances

Linear single-row layout (=1)

Linear double-row layout (=2)

Stage I Stage I Stage I Stage 11
CpPU CpPU CpPU CpPU
No. Source Size(mxpxr) Ln Un NC TC time ((:(1;)1:)1 time NC TC time ((:OF/OF)I time
(s) (s) (s) (s)

1 Jabal Ameli et al. (2008) 9x8x20 2 6 2 5696 0.50 58.06 0.14 2 5696 0.29  58.06 0.11
2 This study 10x10x%25 2 5 2 1919 . 0.70  70.18 0.16 2 1919  0.39  70.18 0.12
3 This study 12x20%26 2 5 3 407 1.22 24,62 0.20 3 401 0.66 2462 0.14
4 This study 14x20x45 2 5 3 357 1.38  30.77 0.25 3 348 0.73 3231 0.16
5 Jabal Ameli and Arkat (2008) 17%x30%63 2 wif 4 50164 232 79.65 0.29 4 50164 122 79.65 0.18
6 This study 18%30%59 2 7 3 486 191 2442 043 3 478 1.01 2442 0.26
7 This study 30x40x89 2 ‘oAl 5. -.41228 343 7241 0098 5 41228 177 7241 0.55
8 This study 30x70x149 2 8 4 2426  8.81 18.54 1.21 4 2196 447  19.27 0.64
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Table 6.8 The computational results for our proposed algorithms (stage 1) in the case where linear double-row layout (=2) is considered

Test instances HGCFA-HSAM HGCFA-HWFAM HGCFA-HTSM Lingo (B&B)
CPU CPU CPU CPU
No. Source Size(mxpxr) Ly U, NC TC time NC TC time NC TC time NC TC time
) _ () () )
1 Jabal Ameli et al. (2008) 9x8x20 2 6 2 5696 029 2 5696 064 2 5696 044 2 5696 3
2 This study 10x10x25 2 5 2 1919° 039 2 1919° 0.81 2 19197 048 2 1919° 10
3 This study 12x20%x26 2 5 3 401770066, 3 4017 223 3 401" 1.10 3 401" 113
4 This study 14x20x45 2 5 3%.348° 0.73 3 348 3.16 3 348" 132 3 348" 120839
5 Jabal Ameli and Arkat (2008) 17x30x63 2 5 4 50164 122 4. 50164 446 4 50164 2.10 - - -
6 This study 18x30x59 2 7 = 3. 478 © 1.0l 3 478 468 3 478 172 - - -
7 This study 30x40x89 2 7 =5 41228 “177 05 “41228 832 5 41228 327 - - -
8 This study 30x70%x149 2 8 w4 2196° 447 A4~ 2196 3237 4 2196 1042 - - -
*: Global optimum
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Table 6.9 The computational results for our proposed algorithms (stage II) in the case where linear double-row layout (7=2) is considered

Test instances HGCFA-HSAM  HGCFA-HWFAM HGCFA-HTSM  Lingo (B&B)
No. Source Size(mxpxr) Ly Upy CEFI .CPU CFFI .CPU CEFI EII;[; CEFI E;[ej
(%)  time (s) (%)  time(s) (%) (s) (%) (s)
1 Jabal Ameli et al. (2008) 9%x8%20 2 6 58.06°  0.11 58.06  0.09 58.06 0.11 58.06 3
2 This study 10x10x25 2 5 70.18°  0.12 70.18°  0.11  70.18 0.14  70.18" 1
3 This study 12x20x26 2 5 24.62°  0.14 24.62°  0.10 24.62° 017 2462 4
4 This study 14x20x45 25 3231, 0.16 32317 013 32310 019 32310 4
5 Jabal Ameli and Arkat (2008) 17x30x63 2 .45 79.65 ~120.18 79.65° 0.69  79.65 022 79.65 1
6 This study 18x30x59 2.4 7 2442°  0.26 24.42° 020 2442° 031 24427 95
7 This study 30x40x89 200 7 72410 0.55 72417 235 72417 069 72410 23
8 This study 30x70x149 2| 8 1927  (0.64 1927 103 1927 074 17.80 152017
*: Global optimum
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CHAPTER 7
FURTHER ANALYSES

In this section, the effects of several strategies and mechanisms adopted in proposed
HSAM, HTSM and HWFAM are further analyzed statistically using the statistical software,
STATISTICA, to examine their corresponding effects on overall solution efficiency and

efficacy.

7.1 Effects of prior estimation of number of cells

As mentioned in section 4.1, a two-stage HCFA was proposed to solve the standard
CFP. In the first stage, an initial number of cells was generated quickly, and this is then used
as input to the second stage to search for the optimal/near-optimal solution. Hopefully,
employing this procedure can not.only significantly reduce the time to reach satisfactory
solutions, but also make the proposed algorithm: more efficient in solving large-scale
problems. To further understand the effects of prior estimation of the number of cells
(PENC), two options (with and without PENC) were performed in our proposed algorithms
(HTSM, HSAM, and HWFAM) to solve‘the 35" problems shown in Table 6.1. Table 7.1
summarizes the ANOVA (analysis of variance) for algorithm, PENC, and interactions
between algorithm and PENC. The small p-value (p = 0.00364 < 0.05) suggests that factor
PENC is significant at 5% significance level. Furthermore, Figure 7.1 reveals that the option
with PENC obviously takes substantially less CPU time to achieve a target value than the
option without PENC. Therefore, the effects of employing PENC in our proposed

algorithms have been positively confirmed.
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Table 7.1 ANOVA for the effects of algorithm and PENC

Source of variation SS DF MS F P
Algorithm 137.77548 2 68.88774 121012 0.30029
PENC 492.57665 1 492.57665 8.65289 0.00364"
Algorithm *PENC 4.37942 2 2.18971  0.03847  0.96227
Error 11612.95094 204  56.92623

*: significance

Mean CPU
w o N

N W A

with without
PENC

Figure 7.1 Mean CPU comparisons of with and without PENC

The CPU time saving ratio of HTSM, "HSAM, and HWFAM with PENC can be

calculated via Eq. 7.1. Results are diagrammed in Figure 7.2.

wpe _ mripe
SR.. :uxloo, (7.1)

Y wpe
ij

where

SR; = CPU time saving ratio of i" algorithm in j numerical example (0 < SR; <

100),
77 = Average CPU time of i" algorithm in ;" numerical example without prior
estimation of cell size,

e _ . JZh . . J=th . . .
Ty = Average CPU time of 7" algorithm in j° numerical example with prior
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estimation of cell size.

On average, the CPU time saving ratios of HTSM, HSAM, and HWFAM are 35%,
35%, and 38%, respectively. Additionally, the savings in run time are even more significant
as the cell size increases. The effects of employing PENC in our proposed HSAM, HTSM

and HWFAM have been successfully justified again through these findings. .

— e HTSM
100 .- —psam .
90 —1---A--- HWFAM R, A
80 A ‘ »
s '

70 A :
] .". ::
BN arAl
/ n ) N
20 ¥ \.\ 7 V :
101 '/x -A- \ '.. A I
0 St A1

1234567 891011121314151617181920212223242526272829303132333435

30

CPU time saving ratio (%)

test instance number

Figure 7.2 The CPU time saving ratios:of HTSM; HSAM, and HWFAM

7.2 Effects of mutation strategy in HTSM and HSAM

The mutation strategy has been employed to increase the probability of finding more
diversified solutions to bring the searching process to a new and unexplored solution space.
In order to further elaborate the effectiveness of the mutation operator for HTSM and
HSAM, a paired T-test of 95% statistical analysis of mean difference equal to zero was also
carried out. The details are given in Tables 7.2 and 7.3. The small p-value (p<0.05) suggests
that the data is inconsistent with null hypothesis /7 (:z, = 0 ; that is, the two scenarios do not
perform equally. Specifically, the HTSM and HSAM approaches with mutation operator
performed better than the approaches without mutation operator in terms of finding

grouping efficacy for all 35 problems from the literature.
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Table 7.2 Paired T-test for the effects of mutation operator for HTSM

Scenario Mean Std.Dv. N df T P

Without mutation operator 63.90  14.89
With mutation operator 64.25 14.62 35 34 -3.68 0.0008"

*: significance

Table 7.3 Paired T-test for the effects of mutation operator for HSAM

Scenario Mean Std.Dv. N df T P

Without mutation operator 63.79  14.93
With mutation operator  64.31  14.55 35 34 -3.86 0.0005

*: significance

7.3 Effects of evaporation, precipitation, and insertion-move in WFA

The water evaporation and precipitation operations are synonymous with the “escaping
from local optima” mechanism that many heuristic algorithms nowadays possess to avoid
being trapped and to explore more solution’ spaces. Additionally, the insertion-move
included assures that high-quality neighborhood selutions'can be found at each iteration of
the algorithm. These three factors and-their effects’on selution qualities are thus examined
in an experiment. The evaporation factor has three settings: no evaporation, fixed-ratio
evaporation, and velocity-based evaporation. The precipitation factor has three settings: no
precipitation, regular precipitation, and “evaporation-based precipitation. Finally, the
insertion-move factor has two options: with or without insertion-move. Legitimate
combinations of the three factors comprise 10 testing scenarios as listed in Table 7.4. In
each scenario, 35 test instances of Table 6.1 are computed. The average grouping efficacy of
the 35 instances was recorded and ANOVA was also been carried out, and the results are
shown in Table 7.5. The small p-value suggests that at 0.05 level of significance,
insertion-move beats the other two factors and becomes the most significant and dominant
factor in terms of solution quality.

The 10 scenarios were separated into two groups. Scenarios adopting the
insertion-move (scenarios #1, #3, #5, #7, and #9) result in better objective values and
obviously surpass the other group (scenarios #2, #4, #6, #8, and #10), which does not
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include the insertion-move in the algorithm. Insertion-move beats the other two factors and

becomes the most significant and dominant factor in terms of solution quality. This implies

that the water evaporation and precipitation operations may not be as significant as thought

in the solution process of CFP, though considerable efforts have been spent in designing the

contents of both operations. The importance of a good neighborhood-searching method,

such as the insertion-move we proposed, can never be overemphasized. This conclusion is

applicable to any meta-heuristic algorithms. Although the water evaporation and

precipitation operations may not be critical in solving the CFP in this thesis, we still believe

that the water-flow-like logic, with proper design and collaboration in its internal operations,

can be applied to solve other combinatorial optimization problems.

Table 7.4 Experimental testing scenarios

Scenario # Evapo'ration Precipi.tation Insertiop-move Mean grouping
setting setting Option efficacy (%)
1 velocity based Evaporation-based With 64.2832
2 velocity based Evaporation-based Without 59.1495
3 velocity based regular (t = 20) With 64.2816
4 velocity based regular (t = 20) Without 59.3005
5 fixed ratio (0.05) Evaporation-based With 64.2954
6 fixed ratio (0.05) Evaporation-based Without 59.3558
7 fixed ratio (0.05) regular (t = 20) With 64.2625
8 fixed ratio (0.05) regular (t = 20) Without 59.2771
9 no evaporation no precipitation With 64.2664
10 no evaporation no precipitation Without 59.4040

Table 7.5 ANOVA for the effects of evaporation, precipitation, and insertion-move

Source of variation SS DF MS F p
evaporation 3 2 1 0.005 0.995
precipitation 4 2 2 0.006 0.994
Insertion 6408 1 6408 20.768  0.000*
evaporation*precipitation 11 4 3 0.009 1.000
evaporation*insertion 2 2 1 0.003 0.997
precipitation*insertion 6 2 3 0.010 0.990
evaporation*precipitation*insertion 9 4 2 0.008 1.000
Error 188841 612 309

*: significance
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7.4 Effects of tabu list size

In order to elaborate the effects of tabu list size (TLS), six levels of TLS (0, 7, 12, 17,
22, and 27) were set and ANOVA was carried out. The details are shown in Table 7.6. The
high p-value (p = 1) suggests that at the 0.05 level of significance, we can not reject the null
hypothesis that TLS does not have a significant effect on grouping efficacy. From Figure 7.3,
it can be observed that the six levels of TLS do not have significant differences in terms of
mean grouping efficacy. Since TLS-7 works better than others, we used it as the suggested
TLS setting in this thesis.

Table 7.6 ANOVA for the effects of tabu list size

Source of variation SS DF MS F P
TLS 0.006 5 0.001 5.944E-06 1
Error 43264.064 204 212.079
64.310

64.3045 64.3040

64.305

64.3005
64.300
64.2943
64.295 64.2918 e
64.290
64.285
64.280

TLS-0 TLS-7 TLS-12 TLS-17 TLS-22 TLS-27
Tabu list size

Mean grouping efficacy (%)

Figure 7.3 Mean grouping efficacy for six levels of TLS
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CHAPTER 8
CONCLUSIONS

CFP is the first and most difficult aspect of constructing a preliminary CMS.
Considering the issues of production volume, production sequence, alternative process
routings, machine reliability, cell layout, and the sequence of machines within cells in the
design of CMS make the CFP complex but more realistic. However, very few researchers
have addressed these issues simultaneously in the design of CMS. In this thesis, two types
of CFP are addressed: the standard CFP with a binary machine-part incidence matrix
consideration, and the generalized CFP with more factors and system constraints. A
mathematical model in terms of maximization of grouping efficacy has been formulated to
express the standard CFP in scenarios where singletons are allowed or not. Due to the
complexity of this model, a two-stage HCFA merging.an SCM-based clustering algorithm
and SA/WFA/TS method has been proposed to solve this medel quickly and effectively. In
the generalized CFP, a two-stagesmulti-objective mathematical programming model has
been formulated to integrate cell formation, cell-layout, and intracellular machine layout
simultaneously with the considerations of alternative process routings, operation sequences,
production volume, production times, machine reliability, and different cellular layout type.
As problems in the two stages are NP-hard, a two-stage HGCFA merging a generalized
SCM-based clustering algorithm and SA/WFA/TS method has been proposed to solve this
model quickly and effectively. Unlike most existing methods, the proposed approach does
not demand a priori specification of the number of cells. It is automatically calculated and
determined, such that the best objective value may be achieved. Illustrative examples,
comparisons, and experimental analyses have demonstrated the effectiveness of the
proposed models and solution algorithms.

The main contributions of this thesis may be highlighted as follows: (1) we have
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formulated a mathematical programming model to express the standard CFP in cases where
singleton/no singleton is allowed; (2) a two-stage HCFA merging an SCM-based clustering
algorithm and SA/WFA/TS method has been proposed to solve the standard CFP quickly
and effectively; (3) we have formulated a two-stage multi-objective mathematical
programming model to integrate cell formation, cell layout, and intracellular machine layout
simultaneously with the considerations of alternative process routings, operation sequences,
production volume, production times, machine reliability, and different cellular layout type;
(4) we have presented a new performance measure, the CFFI, to evaluate the goodness of
intracellular machine layout; (5) a two-stage hybrid generalized CF algorithm (HGCFA)
merging a generalized SCM-based clustering algorithm and SA/WFA/TS method has been
proposed to determine cell formation, cell dayout, and intracellular machine layout in the
cellular manufacturing system; and«(6) in additionto the.commonly used linear single-row
layout, effects of adopting the linear double-row layout havebeen investigated in this study.
Several opportunities exist for further research. They are summarized as follows:
1. Extension of the proposed generalized.cell formation.model
Several other factors may be added”into the current proposed generalized cell
formation model or even treat them as decision objectives. These factors include the cell
load variation, machine utilization, machine duplication and the group scheduling.
2. Application of WFA to other combinatorial optimization problems
The WFA is a novel heuristic approach that deserves more attention. It may also be
interesting to adopt the WFA logic to solve many other combinatorial optimization
problems.
3. Integration of cell formation, cell layout, and intracellular machine layout by one single
approach/stage
In the generalized CFP, a two-stage approach has been proposed to solve the cell
formation, cell layout, and intracellular machine layout. The aim of stage I is to solve cell
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formation and inter-cell layout simultaneously and the primary work of stage II is to
determine machine layout (sequence) in each cell based on the given cell formation
determined in stage 1. Study could be carried out to see whether cell formation, cell layout,

and intracellular machine layout can be solved by one single approach/stage.
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APPENDIX A

Table A.1 Machine reliability information for test instance 2

Machine Breakdown Cost MTBF (min)

1 1000 1019
2 1700 1699
3 1300 3821
4 1700 1543
5 1600 1961
6 1500 3535
7 1100 4121
8 1500 3327
9 1500 3612
10 1100 889

Table A.2 Machine reliability information for test instance 3

Machine  Bteakdown Cost MTBF (min)

1 1500 4935
2 1500 1080
3 1400 3155
4 1200 3171
5 1600 1227
6 1100 1638
7 1000 3095
8 1100 2201
9 1400 2297
10 1300 1719
11 1600 1119
12 1600 2416
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Table A.3 Machine reliability information for test instance 4

Machine = Breakdown Cost MTBF (min)

1 1000 1463
2 1400 3578
3 1700 1331
4 1700 4885
5 1300 3097
6 1500 1211
7 1700 4503
8 1200 1581
9 1500 3204
10 1300 2381
11 1400 3858
12 1200 2185
13 1500 3513
14 1700 3649

Table A.4 Machine reliability information for test instance 6

Machine™ ' Breakdown Cost MTBF (min)

1 1400 3714
2 1600 2510
3 1400 1771
4 1400 3555
5 1400 3169
6 1200 3937
7 1700 1759
8 1000 2239
9 1400 2087
10 1700 1984
11 1100 4175
12 1700 2105
13 1600 1531
14 1700 4111
15 1500 899
16 1700 2206
17 1400 1771
18 1700 1759
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Table A.5 Machine reliability information for test instance 7

Machine Breakdown Cost MTBF (min)

1 1000 2463
2 1200 1493
3 1500 4030
4 1500 1313
5 1600 1941
6 1700 1351
7 1200 1168
8 1500 2668
9 1500 2874
10 1200 2504
11 1200 1668
12 1500 3758
13 1100 4303
14 1600 2477
15 1200 916
16 1600 4380
17 1300 3465
18 1700 362
19 1700 3452
20 1200 356
21 1000 4776
22 1000 1127
23 1600 3128
24 1300 4805
25 1000 3913
26 1600 2659
27 1200 4730
28 1200 2571
29 1000 4140
30 1200 3201
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Table A.6 Machine reliability information for test instance 8

Machine  Breakdown Cost MTBF (min)

1 1200 2887
2 1600 3476
3 1700 4977
4 1700 1136
5 1500 3809
6 1500 3245
7 1400 1976
8 1500 2552
9 1600 1832
10 1700 3682
11 1100 1740
12 1200 4241
13 1600 1446
14 1000 1020
15 1200 3027
16 1300 3284
17 1500 4316
18 1000 1161
19 1200 4012
20 1300 2195
21 1600 1968
22 1300 3403
23 1500 2056
24 1700 1838
25 1100 1137
26 1100 1715
27 1400 2616
28 1200 3491
29 1000 1118
30 1600 1019
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Table A.7 Production data of test instance 3

PN PV RN PS PT (min)
1 1 1 65312811 423344
2 1 1011657 62643
2 69295 65455
3 1 1 10241511 436552
4 1 411036 43234
5 1 1 1226 335
2 937 225
6 1 1 8526 2664
7 1 1 128 45
8 1 1 924 565
9 1 1 2731112 65635
10 1 1 17429 63622
11 1 1 12321185 343566
12 1 1 111058 5463
2 10937 3433
13 1 107115 2622
14 1 1 34107 2435
2 79135 2326
15 1 1 524 553
16 1 671132 23323
17 1 1 23116 4465
2 58910 6443
3 8437 6332
18 1 1 485 444
19 1 1 3210912 64563
20 1 1 672 442

PN: Part Number; PV: Production Volume; RN: Routing Number; PS: Production

Sequence; PT: Production Times
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Table A.8 Production data of test instance 4

PN PV RN PS PT (min) PN PV RN PS PT (min)
I 1 1 65312811 653654 11 1 1 12321185 543255
2 614312811 636233 2 123131185 644232
2 1 1 1011657 44554 3 123211814 663445
2 10116147 46465 4 1231311814 536662

3 1 1 10241511 336245 12 1 1 111058 5526
2 101341511 335244 2 1110148 5262

3 102411411 536526 13 1 1 107115 5355

4 1013411411 564226 2 10711 14 2524

4 1 1 411036 25223 14 1 1 34107 6643
5 1 1 1226 422 15 1 1 524 433
2 12136 542 2 5134 636

6 1 1 8526 4626 3 1424 525
2 85136 5236 4 14134 343

3 81426 3536 16 1 1 671132 45444

4 814136 4436 2 6711313 64254

7 1 1 128 26 17 1 23116 2565
g8 1 1 924 652 2 133116 6245
2 9134 656 18 1 485 342

9 1 1 2731112 64226 2 4814 432
2 13731112 33336 19 1 3210912 34354

10 1 1 17429 54655 2 31310912 52553
2 174139 34624 20 1 672 523

2 6713 535
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Table A.9 Production data of test instance 6

PN PV RN PS PT (min) PN PV RN PS PT (min)
11 1 39215 6565 15 1 1 131115 266
2 179215 6565 16 1 1 1069 16 5435
3 1412154 4365 2 81154 6352
4 514612 6444 17 1 1 9121410 2355
2 1 1 21579 4365 18 1 1 1589102 25645
2 215189 4365 19 1 1 16124 10 2543
301 1 29713 3542 20 1 1 4116 236
2 291813 3542 21 1 1 43156 3253
3 10439 5654 2 417156 3253
4 104179 5654 22 1 1 106412 5564
4 1 1 1362147 65452 23 1 1 12103142 36445
2 13621418 65452 2 121017142 36445
5 1 1 111458 2664 24 1 1 857 356
6 1 1 7101412 6626 2 8518 356
2 18101412 6626 25 1.1 1215132 3433
3 11069 YA 63 Il BE@. N\ 7612 244
7 1 1 41251611 ~65226 2 18612 244
8 1 1 1012114 6 855 P07, | 4212 334
2 2785 ¥~ NI/ 164102 5542
3 21885 32350 29::1 /A4 7113 446
4 11139 623.6 2 18113 446
5 111179 6236 3 71117 446
9 1 1 1181312 26245 4 18 11 17 446
10 1 1 7131046 42353 5 754 324
2 18131046 42353 6 18 5 4 324
11 1 1 151146 4423 30 1 1 21411 542
2 5681 5226
2 1 1 874 524
2 8184 524
3 41315 234
13 1 1 1593 353
2 15917 353
4 1 1 1016 12 662
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Table A.10 Production data of test instance 7

PN PV RN PS PT PN PV RN PS PT(min)
1 155 1 8915161920 623563 21 75 1 1221613 2453
2 830282 3333 2 12224 623
2 160 1 1222430 2325 3 61418 554
2 10121317 2462 22 100 1 12212224 42364
3 135 1 7121613 2425 2 8915242 22254
2 1213 17 355 3 95112 2334
3 9131730 5262 23 140 1 89242 6352
4 150 1 611147 54635 2 12224 426
2 122224 6423 3 1222420 5246
3 6112830 6462 4 73085 3436
5 210 1 345231 24635 24 62 1 111418 665
2 6115 452 25 8 1 7262830 6444
3 72630 554 2 73025 6535
6 230 1 26 28 30 352 26 185 1 8301217 4623
2 12 14 20 22 6443 2 14181518 3563
7 8 1 345232729 345234 3 12156 12 4434
8 90 1 73082 3443 4 1012 17 333
2 72630 422 27..55 1 614181213 34323
3 9265112 44246 2 6111418 3666
9 95 1 810 26 28 130 1 22224 563
2 6726 624 2 2224522 3545
3 1274 265 oy A 1 122224 4452
10 8 1 1213 17 453 30 135. 1 26854 4326
2 131917 542 31 65. 1 12589 4636
3 8912 453 2 131563 2554
11 55 1 181922 254 3 10121317 4462
2 91516 525 32 90 1 342327 4563
3 1213175 5424 2 324236 3446
12 120 1 1213 17 554 33 100 1 26 28 30 654
2 8129307 46224 2 58921 3442
13 142 1 89161920 24245 34 90 1 12131752 54545
14 140 1 1118 26 2 345232527 655243
2 7121613 5453 35 120 1 9151920 5253
15 100 1 22224 622 36 130 1 34252729 62224
2 92652 3444 2 6112830 2562
3 72830 522 3 812930 2542
16 65 1 1129 522 37 145 1 131917 365
2 915161920 33634 2 345232529364624
17 8 1 131917 265 3 10141113 5332
2 10141113 5365 38 250 1 72630 233
3 122224 5643 2 10111013 5352
18 125 1 8915161920 525654 39 60 1 61596 3264
2 8915242 65335 2 61118 555
19 102 1 12224 543 40 90 1 72628 556
20 105 1 101317 353
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Table A.11 Production data of test instance 8

PN PV RN PS PT PN PV RN PS PT(min)
I 1 1 3921525 25244 181 1 157102910212 3656635
2 17923015 62346 191 1 1612841030 562652
3 141228118 44633 201 1 410182027 62454
4 142161227 32232 211 1 4315216291 5465632
2 1 1 21519792224 6526365 2 417151862128 6265525
2 21523129328 3532363 221 1 106427121725 2642336
31 1 292271319 544335 231 1 121031814224 4265253
2 2918132625 543543 2 1210171422125 6326532
3 102043920 346553 241 1 85713182428 6562353
4 1043015928 524434 2 85182226191 5445246
4 1 1 136222147261 44632262 251 1 12172321822201928 363243343
2 13622114182419 44545453 26 1 1 76173012222925 34322455
5 1 1 11143571327 2635465 2 5891215231722 24466445
6 1 7101412 2535 271 1 4152312222619 18 45665635
2 18101412 6366 2801 1 1641721101282220 464342524
3 11069 4334 291 1 727113141828 6653225
7 1 1 41251611192227 24622535 2 181126321927 3644564
8§ 1 1 1012114 6235 3711 2224 17 23 30 3226422
2 2785 2233 4 _18113017232527 6455345
3 21885 5526 57 75164292220 2524465
4 11139 5244 6 181054232224 6432525
5 111179 6624 30 1710 21411242226192027285255426542
9 1 1 1181312221928 42223535311 1 65312811 564444
101 1 713104623 556523 2:. 614312811 356354
2 1813104630 443636 321 1 1041657142022 34532642
111 1 151146 5425 2101161472622 28 32244236
2 5681 4562 3371 "1 102415112130 36254534
121 1 874 532 2 1013415111828 64452424
2 8184 346 3 1024114113022 23623335
3 41315 422 4 101341426271922 62353335
131 1 1593 622 341 1 58912151723412916 64526332366
2 15917 363 351 1 1222962225 466246
141 1 201822242619 426663 2 12136302426 563334
151 1 131115182028 252346 36 1 1 8526232220 2464536
161 1 244132916130 3343544 2 85136301622 2466444
2 58917231215 5226434 3 81426302728 2355623
171 1 91721112228192065445642 4 814221362429 5324464
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Table A.11 Continued

PN PV RN PS PT PN PV RN PS PT(min)
371 1 128182027 43224 551 1 1223062018 435223
3801 1 9241218222816 62355626 2 12201362224 335344
2 91413421221927 66445523 561 1 8525261813 6453236
391 1 273111217192030 426532244 2 85136162920 2346453
2 137311122322241 646434324 3 81426242128 2364233
401 1 174291323 6635562 4 814301362921 3663426
2 1741392328 6466634 571 1 122191022271928 23635226
411 1 12311851815262 364235542 58 1 9141013233025 43552265
2 12313118526281 666225443 2 91343026241923 53264642
3 1232111914192227 226455335 591 1 27311122330 5465535
4 1231311814222117 632532326 2 137311122218 4546364
421 1 11101558262818 62626563 601 1 174291830 3635254
2 1110148211523 1 22643265 2 1741392228 3335434
431 1 1071120530 353635 61 1 1 12321185282221 522233626
2 10711151427 223625 2 123131185232619 665235536
441 1 31411107131629 54255443 3 123220814232719 222224326
451 1 51724211824 4522624 4 1231311814233027333425433
2 51343020251 5665425 62 1.1 111022582024 4243236
3 1421319212630 3246462 2. 1110143081528 6245643
4 1413184222520 6364324 63 1. 1107115211730 3355543
461 1 671131622330 55365362 2010711142226 19 6542366
2 6711313302328 24356252 641 1 1410728221926 25245656
471 1 2311625 554456 65.1 1//5121410182530 3624655
2 13311186 43346 2/%513426241722 3463425
48 1 1 48135 3666 3.7 142430222524 4255623
2 481425 4364 4 1413424302226 4345546
491 1 322810912 525632 66 1 1 6711322018 2353435
2 3131025912 456653 2 67113133027 3652365
501 1 614721230 344544 67 1 1 23113062521 2544643
2 627713251 453344 2 133116222917 3466233
511 1 6531281118 6336362 681 1 413817529 555436
2 61431281125 3365655 2 4819142230 444452
521 1 101165728 243664 691 1 32109121 624532
2 1011626147 522523 2 3201310912 565456
531 1 1022741511 6445364 701 1 61772 4354
2 10134151119 6425223 2 630713 2245
3 10241141127 6646232
4 101341141122 6232666
541 1 1424131629302415105565532233
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