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單元形成問題之求解模式與演算法 

學 生：張欽智                            指導教授：鍾淑馨   博士 

吳泰熙   博士 

國 立 交 通 大 學 

工業工程與管理學系 
 

摘要 

單元形成問題是單元製造系統(CMS)設計最重要且最複雜的部分，可分成考量二

元零件－機器關係矩陣的標準單元形成問題及考量多項生產資料之廣義單元形成問題

二大類。雖然在標準單元形成問題部分，已經有很多方法被提出，但在廣義單元形成

問題部分，鮮少有方法同時整合 CMS 設計的三大步驟：單元形成、單元佈置及單元

內機器擺設並考量生產資料，含多途程、需求量、零件加工順序及機器可靠度。 

有鑑於此，本論文首先結合相似係數法及萬用啟發式演算法，包括模擬退火法、

仿水流優化演算法和禁忌搜尋演算法，發展出有效的混合式兩階段方法來有效求解標

準單元形成問題。對於廣義單元形成問題，本文整合了 CMS 設計的三大步驟並考量

生產資料，含多途程、需求量、零件加工順序及機器可靠度，提出一個兩階段的多目

標數學規劃模式。接著，採用以廣義相似係數法及萬用啟發式演算法為基底的混合式

演算法來有效的求解此多目標數學規劃模式。 

不同於其他的方法，本論文所提出的單元形成方法不但整合了 CMS 設計的三大

步驟且單元數可經由決策者輸入或根據最佳目標解自動產生。實驗分析和比較的結果

展現本文所提的兩階段多目標數學規劃模式及三個演算法的有效性，並顯示這些演算

法可以在很短的電腦執行時間內提供一個穩健的製造單元形成規劃。 

 

關鍵字：群組技術，單元製造系統，單元形成問題，單元佈置設計，機器可靠度，模

擬退火法，仿水流優化演算法，禁忌搜尋演算法 
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Models and Solution Methods for Cell Formation Problems 

Student：Chin-Chih Chang                 Advisors：Dr. Shu-Hsing Chung 

Dr. Tai-Hsi Wu 

Department of Industrial Engineering and Management 

National Chiao Tung University 

 

ABSTRACT 

Cell formation problem (CFP) is the first and most difficult aspect of constructing a 
preliminary cellular manufacturing system (CMS). The CFP can be classified into two main 
categories: the standard CFP represented by a binary machine-part incidence matrix and the 
generalized CFP with more factors and system constraints considerations. Although many 
studies have been done on standard CFP, generalized CFP had received less attention. Very 
little has been done to integrate the three basic steps (e.g., cell formation, cell layout, and 
intracellular machine layout) in the design of CMS. 

Based on the above discussion, a two-stage hybrid algorithm merging a similarity 
coefficient method (SCM)-based clustering algorithm and meta-heuristics, including 
simulated annealing (SA), water flow-like algorithm (WFA) and tabu search (TS) is first 
presented to solve standard CFP quickly and effectively. In regard to the generalized CFP, a 
two-stage multi-objective mathematical programming model is first formulated to integrate 
cell formation, cell layout, and intracellular machine layout simultaneously with the 
considerations of alternative process routings, operation sequences, production volume, 
production times, and machine reliability. A two-stage hybrid approach integrating a 
generalized SCM-based clustering algorithm and SA/TS/WFA method is then proposed to 
solve this generalized CFP model quickly and effectively. 

Unlike most existing methods, the proposed approach not only integrates the three 
basic steps in the design of CMS but also automatically calculates and determines the 
number of cells (NC) to achieve the best objective value. Illustrative examples, comparisons, 
and experimental analyses demonstrate the effectiveness of the proposed models and 
solution algorithms. The proposed approaches can be used to solve real-life CFP in factories 
by providing robust manufacturing cell formation in a short execution time.  

 
Keywords: Group technology (GT), Cellular Manufacturing System (CMS), Cell formation 

problem (CFP), Cell Layout Design, Machine Reliability, Simulated Annealing 
(SA), Water Flow-like Algorithm (WFA), Tabu Search (TS) 
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CHAPTER 1  

INTRODUCTION 

1.1 Research Motivations 

In response to various and diversified customer demands, companies must adopt 

innovative manufacturing strategies and technologies to achieve an efficient and flexible 

manufacturing system. Group technology (GT) is one approach that meets the requirements 

of system flexibility and product variation. The cellular manufacturing system (CMS) is one 

of the applications of GT principles in manufacturing. Implementation of CMS resulted in 

significant benefits, such as reduced material handling costs, work-in-progress inventory, 

throughput and set-up times, simplified scheduling, and improved quality (Wemmerlov and 

Hyer, 1987). Hence, it has been widely discussed and applied by researchers and 

practitioners in the last three decades.  

A cell formation problem (CFP) is the crucial element in designing a CMS (McAuley, 

1972). However, the CFP in CMS is one of the NP-hard combinational problems (Kusiak, 

1990). Hence, it is difficult to obtain optimal solutions in an acceptable length of time, 

especially for large-sized problems. Numerous models and solution approaches have been 

developed to address this problem since the 1970s. Different studies have focused on 

different aspects of CFP. Based on production data employed in CF models, the CFP is 

classified into two main categories: standard CFP represented by a binary machine-part 

incidence matrix and generalized CFP with more factors and system constraints 

considerations. Although many effective heuristics or algorithms have been done on 

standard CFP, very little has been devoted to integrate cell formation, cell layout, and 

intracellular machine layout, the three basic steps in the design of CMS, simultaneously 

with considerations of alternative process routings, operation sequences, production volume, 

and machine reliability on generalized CFP; thereby limiting the practical nature of their 
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approaches in a real CMS environment. Moreover, most methods in the literature assume 

that the NC is prescribed beforehand. However, determine the proper NC in the cell 

formation stage is very difficult for the layout designer because he does not have any 

knowledge at the beginning. Hence, it is important and more practical to integrate the 

abovementioned factors simultaneously in the design of CMS. 

Due to their excellent performance in solving combinatorial optimization problems, 

meta-heuristic algorithms, such as simulated annealing (SA), water flow-like algorithm 

(WFA), and tabu search (TS), have been the most successful solution approach to provide 

global or near-global optimal solutions within a reasonable computation time. On the other 

hand, a number of similarity coefficient method (SCM)-based approaches have been 

proposed, and have been shown to produce good machine-part grouping and are more 

flexible in incorporating various production data into the machine-part clustering process. 

Thus, the major research motivations for this thesis may be summarized as follows: 

(1) CMS may provide great benefits. 

(2) CFP is the first and most difficult aspect of constructing a preliminary CMS. 

(3) CFP is one of the NP-hard combinational problems. 

(4) There are few works that integrate cell formation, cell layout, and intracellular machine 

layout simultaneously with considerations of alternative process routings, operation 

sequences, production volume, production times, machine reliability, and different 

cellular layout type. 

(5) It is difficult for a layout designer to determine the optimum cell number beforehand. 

1.2 Research Objectives 

Based on the research motivations, this thesis is dedicated to merging an SCM-based 

clustering algorithm and meta-heuristics to develop quick and effective hybrid algorithms to 

solve standard CFP and generalized CFP. Specific goals are as follows: (1) to merge an 
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SCM-based clustering algorithm and SA/TS/WFA method to present a fast and effective 

two-stage hybrid algorithm to solve standard CFP; (2) to formulate a two-stage 

multi-objective mathematical programming model to integrate cell formation, cell layout, 

and intracellular machine layout simultaneously with considerations of alternative process 

routings, operation sequences, production volume, machine reliability, and different cellular 

layout type; and (3) to integrate a generalized SCM-based clustering algorithm and 

SA/TS/WFA method to develop a fast and effective two-stage hybrid approach to resolve 

the formulated two-stage multi-objective mathematical programming model. 

Unlike most previous studies where the NC to be formed is prescribed beforehand, the 

proposed methods do not demand a priori specification of the NC. Instead, it is 

automatically calculated and determined such that the best objective value may be achieved. 

Illustrative examples will be used to demonstrate the effectiveness of the proposed methods 

for standard CFP and generalized CFP. Hopefully, the proposed methods can be used to 

solve real CFP in factories by providing robust manufacturing cell formation in a short 

execution time. 

1.3 Research Process 

To achieve the abovementioned objectives, the research process (Figure 1.1) 

progresses as follows: 

Step 1: Identifying research problems and objectives  

Issues in CFP are identified through a discussion of research motivations and the 

purposes of this study. 

Step 2: Literature review and discussion 

The literature encompasses group technology and cellular manufacturing, solution 

methods for CFP, performance measures for CFP, and previous work on resolving CFP. 

Step 3: Formulation of mathematical models 
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In this step, a mathematical model in terms of maximization of grouping efficacy is 

formulated to express standard CFP. Then, a two-stage multi-objective mathematical 

programming model for generalized CFP is formulated to integrate cell formation, cell 

layout, and intracellular machine layout simultaneously with considerations of alternative 

process routings, operation sequences, production volume, production times, machine 

reliability, and different cellular layout type. 

Step 4: Development of proposed algorithms 

In order to solve standard and generalized CFP mathematical models quickly and 

effectively, a two-stage hybrid CF algorithm (HCFA) merging an SCM-based clustering 

algorithm and SA/TS/WFA method is proposed to solve the standard CFP model. 

Afterwards, a two-stage hybrid generalized CF algorithm (HGCFA) merging a generalized 

SCM-based clustering algorithm and SA/TS/WFA method is proposed to solve the 

generalized CFP model. 

Step 5: Validation of proposed algorithms 

To demonstrate the power of our proposed algorithms for standard CFP, 35 test 

instances represented by a binary machine-part incidence matrix drawn from the literature 

are used to evaluate the computational characteristics of our proposed algorithms. On the 

other hand, 8 test instances, two drawn from the literature and the others prepared by adding 

self-creating data to test instances, are used to validate the quality of our proposed algorithm 

for generalized CFP. 

Step 6: Summaries and Conclusions  

The results are summarized and the conclusions are drawn in this step. 
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Figure 1.1 The flow chart of research 

1.4 Organization 

The remaining chapters are organized as follows. We present a literature review of CFP 

and the requisite solution techniques, including SA, TS, and WFA in Chapter 2. The 

mathematical models that express standard CFP and generalized CFP are formulated in 

Chapter 3. In Chapter 4, two hybrid meta-heuristic algorithms based on SCM-based 

clustering algorithm and SA/TS/WFA are proposed to solve the complex models. In Chapter 

5, two numerical illustrations are given to demonstrate the effectiveness of the proposed 

methods for standard CFP and generalized CFP. Computational results for standard CFP and 

generalized CFP are shown in Chapter 6. Several strategies proposed in this thesis, together 

with some mechanisms, are further analyzed in Chapter 7. Conclusions of this thesis are 

finally drawn in Chapter 8. 

 
Identification of the problems and objectives of research 

The literature review and discussion 
1. Group technology and Cellular Manufacturing  
2. Solution Methods for CFP 
3. Performance Measures for CFP 
4. Previous Work on Resolving CFP 

Formulation of mathematical models

Development of proposed algorithms

Summaries and conclusions  

Validation of proposed algorithms



 

6 

CHAPTER 2   

LITERATURE REVIEW 

This chapter is divided into fours sections. Section 2.1 introduces and defines GT and 

CM. Cell formation methods are reviewed in Section 2.2, while Section 2.3 describes the 

performance measures for CFP. Section 2.4 provides a review of previous work on 

resolving CFP. 

2.1 Group Technology and Cellular Manufacturing 

GT was originally introduced by Mitrovanov (1966) and was popularized in the west 

by Burbidge (1975). One application of GT is CM, a manufacturing philosophy in which 

similar parts are identified and grouped into part families, while machines are grouped into 

machine cells to take advantage of their similarities in manufacturing and design. 

Implementation of CM results in significant benefits, such as reduced material handling 

costs, work-in-progress inventory, throughput and set-up times, simplified scheduling, and 

improved quality (Wemmerlov and Hyer, 1987). 

Although CM may provide great benefits, the CMS design is complex for real life 

problems. The design of a CMS consists of four stages as described below (Wemmerlov and 

Hyer, 1986). 

1. CF – grouping parts with similar design features or processing requirements into part 

families and associated machines into machine cells. 

2. Group layout – laying out machines within each cell (intra-cell layout) and cells with 

respect to one another (inter-cell layout). 

3. Group scheduling – scheduling parts and part families for production. 

4. Resource allocation – assigning tools, human and material resources. 

Ideally, all of these stages should be addressed simultaneously in order to obtain the 

best results (Alfa et al., 1992). However, due to the complex nature of each stage and the 
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limitations of traditional approaches, this thesis will focus on stages 1 and 2. The solution 

methods for stages 1 and 2 will be discussed in the next section. 

2.2 Solution Methods for CFP 

The process of determining part families and machine groups is referred to as the CFP. 

It is known that the CFP in CMS is one of the NP-hard combinational problems (Ballakur 

and Steudel, 1987). Numerous solution approaches have been developed to address CFP 

since the 1970s, and these can be classified into five categories (Figure 2.1): (1) array-based 

methods, (2) similarity coefficient methods, (3) graph theoretic methods (4) mathematical 

programming methods, and (5) heuristic and meta-heuristic methods. Similarity coefficient 

methods and heuristic and meta-heuristic methods are related to this research and are 

discussed further. 

(1) Array-based methods 

The array-based methods attempt to allocate machines into groups and parts into 

associated families by appropriately rearranging the order of rows and columns to find a 

block diagonal form of the aki = 1 entries in the machine-part incidence matrix. The 

machine-part incidence matrix has 0 and 1 entries (aki). A ‘1’ entry in row k and column i of 

the matrix indicates that part i has an operation on machine k, whereas a ‘0’ entry indicates 

that it does not. Although cluster analysis methodologies are simple to implement, they have 

one main drawback: it usually takes into account only one objective i.e. the minimization of 

intercellular movements where only part operations and the machines involved are 

considered. Other product data (such as operational sequences and processing times) are not 

incorporated into the design process. Thus, solutions obtained may be valid for limited 

situations only. 
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Figure 2.1 Classification of the CF solution method  
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(2) Graph theoretic methods 

In graph partitioning approaches, the process of forming manufacturing cells starts 

with collecting problem data and then converting them into a weighted network diagram. 

Finally, the weighted network diagram is separated into several sub-groups of a machine 

cell. In the network diagram, nodes represent machines and arcs represent their relationships, 

defined as the value of total part flow between machines. In this method, the network 

diagram can clearly depict the flow of the machine, but other product data (such as machine 

capacity, processing times) are not easily incorporated. Therefore, graph partitioning 

approaches do not directly show the characteristics of multi-objective cell design. 

(3) Mathematical programming methods 

Mathematical programming methods can be presented in two parts: objective function 

and constraints. The establishment of objective function usually considers the factors related 

to manufacturing, e.g. minimizing inter-cell movement of parts, minimizing cell load 

unbalances, minimizing number of exceptional, and minimizing total manufacturing cost. 

Constraints express the content of production conditions, such as the limitation on number 

of machines, number of jobs, utilized time of tools, cells of machine allocation, controller’s 

work time, and capability limitation. Mathematical programming methods can be further 

classified into four major groups based on the type of formulation: (1) linear programming 

(LP), (2) linear and quadratic integer programming (LQP), (3) dynamic programming (DP), 

and (4) goal programming (GP). The greatest advantage of this method is that different 

design objectives and constraints can be incorporated into a single formulated model. 

However, NP completeness of the problems makes it computationally intractable, especially 

for large-sized problems. 

2.2.1 Similarity Coefficient Methods 

SCMs are also referred to as cluster analysis-based methods in cell formation literature. 
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SCM are more flexible in incorporating various production data into the machine-part 

clustering process (Seifoddini and Tjahjana, 1999). The solution procedure of SCM usually 

follows a prescribed set of steps (Romesburg, 1984), the main ones being: (1) getting input 

data, (2) calculating the similarity coefficient, and (3) selecting a clustering algorithm to get 

machine cells. These steps are described next. 

(1) Getting input data 

Input data can be obtained from routing cards. These information are usually 

represented in a matrix called the machine-part incidence matrix, which is an m × p matrix 

with 0 or 1 entry, where m is the number of machines and p is the number of parts. Rows 

represent the machines and columns represent the parts. An element aij of the matrix is 1 if 

the jth part visits the ith machine for processing; otherwise, the value is 0. 

 (2) Calculating the similarity coefficient 

The similarity coefficient is defined as a measure of similarity between machines, tools, 

design features, and so forth. Yin and Yasuda (2005) evaluated the performance of 20 

well-known similarity coefficients, and found that the Jaccard similarity coefficient (Jaccard, 

1908) is the most stable similarity coefficient. For this reason, we use the Jaccard similarity 

coefficient and the generalized similarity coefficient (Won and Kim, 1997) to calculate the 

similarity coefficient of standard CFP and generalized CFP, respectively. The generalized 

similarity coefficient is an extension of the Jaccard similarity coefficient (McAuley, 1972) 

and has been proposed for considering alternative process plans.  

The Jaccard similarity coefficient is defined as the ratio of the number of parts visiting 

both machines and the number of parts visiting one of the two machines: 

ij
ij

ij ij ij

a
S

a b c
=

+ +
 (2.1)

where aij represents the number of parts processed by both machines i and j; while bij is 

the number of parts processed by machine i but not by machine j, and cij is the number of 
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parts processed by machine j but not by machine i. 

On the other hand, the generalized similarity coefficient is formulated as: 

ij
ij

i j ij

N
S

N N N
=

+ −
 (2.2)

where   

Sij = similarity coefficient between machines i and j 

1 1 1
, ,

p p p
k k k

i i j j ij ij
k k k

N a N a N a
= = =

= = =∑ ∑ ∑   

p = number of parts 

1   if  some routing of part 
0  otherwise

1   if  some routing of part 
0  otherwise

1   if ,  some routing of part  synchronously
0  otherwise

k
i

k
j

k
ij

 i k

 j k

 i j k

a

a

a

∈⎧
= ⎨
⎩

∈⎧
= ⎨
⎩

∈⎧
= ⎨
⎩

 

(3) Selecting a clustering algorithm to get machine cells 

When the values of the similarity coefficients have been calculated, a clustering 

algorithm can be selected to get machine cells. Conventional clustering algorithms are 

divided into two major classes: hierarchical and non-hierarchical. Hierarchical clustering for 

CF comprises two stages. Initially, some form of similarity or dissimilarity between 

machines or parts is employed in order to create machine cells or part families. Later, 

machines or parts are separated into a few broad cells, each of which is further divided into 

smaller groups and each of these further partitioned and so on until terminal groups that 

cannot be subdivided are generated. Essentially, hierarchical techniques can be classified 

into two: (a) divisive methods where the process starts with all the data (machines or parts) 

in a single group and a series of partitions is created until each machine (part) is in a 

singleton cluster and, (b) agglomerative methods where the process starts with singleton 

clusters and proceeds to merge them into larger partitions until a partition containing the 
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whole set is obtained.  

Non-hierarchical clustering methods are iterative methods that also employ a measure 

of similarity or dissimilarity for grouping parts or machines. They begin with either an 

initial partition of the data set or the choice of a few seed points. In either case, the number 

of clusters has to be decided on beforehand. 

Among the abovementioned approaches, the SCMs are more flexible in incorporating 

various production data into the machine-part clustering process. On the other hand, the 

heuristic and meta-heuristic methods are especially useful in providing near-optimum 

solutions within a reasonable computation time when a CFP cannot be solved using 

traditional methods, and thus constitute the state-of-the-art algorithm for solving CFP. 

2.2.2 Heuristic and meta-heuristic methods 

Heuristic and meta-heuristic methods are random heuristic search algorithms 

applicable to a wide variety of combinatorial optimization problems. They include SA (Su 

and Hsu 1998, Sofianopoulou 1999, Arkat et al. 2007), TS (Sun et al. 1995, Adenso-Diaz et 

al. 2001, Wu et al. 2004, Lei and Wu 2005), genetic algorithms (GA; Lee et al. 1997, 

Onwubolu and Mutingi 2001, Boulif and Atif 2006, Chan et al. 2008), ant colony 

optimization (ACO; Kao and Fu 2006), particle swarm optimization (PSO; Andres and 

Lozano 2006), artificial neural network (ANN; Park and Suresh 2003, Yang and Yang 

2008), and WFA (Yang and Wang 2007). Although heuristic and meta-heuristic methods 

are not guaranteed to provide optimal solutions (they usually give sub-optimal results), they 

are very useful in producing acceptable solutions within a reasonable time. In fact, optimal 

results can only be obtained under very restricted conditions; this makes heuristic and 

meta-heuristic methods more practical in real-life applications. SA, TS, and WFA are 

relevant to this research and are discussed further. 
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2.2.2.1 Simulated Annealing 

SA algorithm was originally proposed by Metropolis et al. (1953) to simulate the 

annealing process. Based on this pioneering work, Kirkpatrick et al. (1983) first introduced 

the general optimization algorithm of SA to solve hard combinatorial optimization problems 

through controlled randomization. Lundy and Mees (1986) proved that the SA algorithm 

converges to the global optimum with a probability close to one under certain assumptions. 

SA poses several advantages over other sophisticated combinatorial optimization 

approaches, e.g. relatively easy and quick implementation, flexibility, and transparency. Due 

to its ease of use and its ability to provide a good solution for real-world problems, SA is 

one of the most powerful and popular heuristics to solve many optimization problems. For 

instance, adequate results have been attained when applying SA on various combinatorial 

problems (Kirkpatrick et al. 1983, Bonomi and Lutton 1984, Aarts and Van Laarhoven 1985, 

Selim and Alsultan 1991, Mckendall et al. 2006, Yu et al. 2010). 

The pseudo-code of the general procedure for implementing the SA algorithm in 

maximization problems is presented in Figure 2.2. The algorithm starts with a high 

temperature. After generating an initial solution (S0), it attempts to move from the current 

solution (S) to one of its neighborhood solutions ( NS ).Changes in objective function values 

(Δ= NS -S) are computed. The new solution is accepted if it results in better objective value 

(i.e. Δ>0). However, if the new solution yields worse value, it can still be accepted 

according to the probability function ep TΔ= , where T is the current temperature. This 

check is performed by first selecting a random number (r) from (0, 1). If the value is less 

than or equal to the probability value (p), the new configuration is accepted; otherwise, it is 

rejected. By accepting worse solutions, SA can avoid being trapped on local optima. SA 

repeats this process L times at each temperature to reach the thermal equilibrium, where L is 

a control parameter usually called the Markov chain length or Epoch length. The parameter 
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T is gradually decreased by a cooling function as SA proceeds until the stopping condition 

is met. 

The general scheme of SA can be stated as follows: 

Step 1. Choose an initial temperature T. 

Step 2. Generate a random candidate S. 

Step 3. If a stopping criterion is satisfied, then stop; otherwise repeat the following steps: 

Step 3.1. If “thermal equilibrium is reached,” then exit this loop. 

Step 3.2. Let NS  be a randomly selected neighbor of S. 

Step 3.3. Generate a uniform random number r from [0, 1]. 

Step 3.4. Compute the changes in the objective function values: ( )NS SΔ = − . 

Step 3.5. If Te rΔ > , then NS S= . 

Step 4. Let T be a new (lower) temperature value, then go to Step 3. 

The annealing schedule mainly consists of (1) the initial temperature, (2) a cooling 

function, (3) the number of iterations to be performed at each temperature, and (4) a 

stopping criterion to terminate the algorithm. Performance analysis of SA had revealed 

several characteristics (Lin et al., 1993): 

(1) There is a tradeoff between the quality of the final solution obtained and the execution 

time required. Furthermore, the execution time is sensitive to the decrement ratio of the 

temperature. 

(2) If the temperature drops too sharply, is the algorithm becomes easily trapped in local 

minima. 

(3) Detecting the equilibrium of the system at each temperature level is not an easy task. 

(4) The total number of iterations of SA is affected by the initial temperature. 

(5) If the numbers of iterations at low temperature regions are not large enough, there are still 

some probability of departing from good solutions. 

Hence, several decisions have to be made in order to implement the conceptual 
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algorithm described above. These include the following: 

(1) Choice of an initial temperature and the corresponding temperature decrement strategy 

 At a high temperature, almost all unimproved trial solutions are accepted. However, 

at a lower temperature, fewer unimproved trial solutions can be accepted. If the cooling 

speed is too fast or the initial temperature (T0) is not high enough, this mechanism will fail 

to escape local minima. T0 should be high enough that in the first iteration of the algorithm, 

the probability of accepting worst solutions is, at least, 80% (Kirkpatrick et al., 1983). The 

most commonly used temperature decrement function is geometric: T =a × T, where a < 1 

and constant. Typically, 0.7 ≤ a ≤ 0.95. 

(2) Choice of a criterion for detecting equilibrium 

For each value of the current temperature T, the inner loop (steps 3.1 to 3.5 in the 

algorithm presented above) should be repeated L times in order for the system to reach 

“thermal equilibrium.” If the search cannot reach the equilibrium state at each temperature, 

obtaining a globally optimum solution becomes difficult. A good criterion for thermal 

equilibrium can save computational effort without losing the ability of escaping from a local 

minimum. 

(3) Choice of an adequate stopping criterion 

The stopping criterion is used to stop the algorithm when there is sufficient evidence 

that the global optimum has been detected or that the “cost” connected with the search for a 

better estimate of the global optimum would be too high. The stop can also occur when 

some kind of “resource” has been exhausted, e.g. computer time, the total number of 

solutions generated, and when the desired energy level is attained (freezing temperature). 

The stopping criterion is always the crucial and most difficult part of the algorithm, and has 

great influence on overall performance. 

Obviously, each of these control parameters is chosen according to the specific 

problem at hand. In addition to the control parameters, two other important issues that need 
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to be defined when adopting this general algorithm to a specific problem are the procedures 

to generate both the initial solution and the neighboring solutions. The details of the 

proposed implementation of the SA to the CFP are presented in Section 4.1.2. 

 

 
SA_Algorithm ( ) 
{ 

Generate an initial solution 0S . 
Let the current solution S  equal to 0S . 
Let the current best solution *S  equal to 0S . 
Let the current temperature T equal to the initial temperature T0. 
WHILE(stop criterion is false)   // outer loop 
{ 
   Let repetition counter n = 1. 
   WHILE(n < Markov chain length L)   // inner loop 

{ 
Generate a random solution NS  in the neighborhood of S . 
Compute =Δ ( ) ( )Nf f SS − . 
IF ( 0>Δ  or (0,1)Te r UΔ > ∈ ) 

Let NS S← . 
IF ( *( ) ( )Nf fS S> ) 

Let * NS S← . 
n= n + 1. 

}      
Reduce the temperature T.  

 } 
} 

   

Figure 2.2 Pseudo-code for general simulated annealing algorithm (Kirkpatrick et al., 1983) 

2.2.2.2 Tabu Search 

TS is a meta-heuristic approach designed to find optimal or near-optimal solutions to 

combinatorial optimization problems. This method has been suggested primarily by Glover 

et al. (1985) and further refined and developed by Glover (1986, 1989, and 1990). The 

pseudo-code for the general procedure for implementing the TS is presented in Figure 2.3.  
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TS_Algorithm ( ) 
{ 

Generate an initial solution 0S . 
Let the current solution S  equal to 0S . 
Let the current best solution *S  equal to 0S . 
WHILE(stop criterion is false) 
{  

Generate a best solution ( )N N T AorS S N N∉ ∈  in the neighborhood of S . 
Update tabu list TN . 
IF ( *( ) ( )Nf fS S< ) 

Let * NS S← . 
Let NS S← .         

 } 
} 

 

Figure 2.3 Pseudo-code for general TS algorithm 

 

The algorithm begins from a randomly selected or a known initial solution ( 0S ). From 

this solution, a set of neighborhood solutions of the current solution (S) is generated using 

the predefined movement strategies. The objective function is evaluated for each 

neighborhood of S and the best neighbor solution ( NS ) replaces the S even though the best 

neighbor solution may be worse than the current one. In this way, the algorithm can escape 

from the local minima (or maxima) of the objective function. However, the algorithm may 

recycle. To avoid this situation, certain attributes of the last replaced solution are stored in a 

list, which is called a tabu list ( TN ). The neighbors of S that satisfy conditions given by the 

tabu list are systematically eliminated unless they meet an aspiration criterion ( AN ), so that 

at each iteration, the algorithm is forced to select a point not recently selected. TS has been 

successfully used to solve many optimization problems in a wide variety of areas, including 

CFP, graph coloring, traveling salesman problem, path assignment, flow shop sequencing, 

job shop sequencing, and dealing with learning in neural networks (Glover and Languna, 

1993). More detailed discussions of the foundations of TS methodology can be found in 

Glover (1989, 1990) and Glover and Laguna (1997). 

In general, the main components of TS are the initial solution, neighborhood and 
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moves, tabu list, aspiration criterion, stopping criterion, intensification, and diversification. 

The details of these are described next. 

(1) Initial solution 

The quality of the initial solution is crucial to the efficiency of TS. It is known that a 

good initial solution will improve the efficiency of TS. Generally, the initial solution is 

produced by some rules or problem-specific heuristics instead of random generation. 

(2) Neighborhood and moves 

The neighborhood of a solution is the set of all formations that can be arrived at by a 

move. Since neighborhood depends on the current solution, new neighborhood is generated 

every time the current solution changes. Generally, neighboring solutions can be generated 

by insertion method, pair-wise interchange, and adjacent interchange method. Different 

methods are employed according to the problem. From all neighboring solutions, the best 

one is chosen to move forward. However, this best solution may sometimes be in the tabu 

list and does not satisfy aspiration criterion. When this happens, the second best solution is 

chosen to move forward if it is not in the tabu list; otherwise, the third best solution is 

considered and so on. 

(3) Tabu list 

In order to prevent scheme cycling and returning to the same solutions, it is necessary 

to introduce a condition that prevents this from happening. This is usually carried out by not 

allowing reversal of moves for a certain number of iterations equal to the tabu length. These 

non-admissible moves within the short interval comprise the class membership of a tabu list. 

The size of the tabu list must be large enough to prevent cycling, but small enough to not 

forbid too many moves. A minimum of 7 and a maximum of 11 has been suggested for tabu 

length (Glover and Laguna, 1993). 

(4) Aspiration criterion 

The tabu restriction may be overridden if the move will result in a solution that is 
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better than the best solution found thus far. Thus, if a tabu move satisfies the associated 

aspiration criterion, it is considered admissible. 

(5) Stopping criterion 

The most accepted stopping criterion relies on the search being terminated if the 

objective function value has not improved within a certain number of iterations that is 

usually specified at the start of the run. Another criterion relies on the search being 

terminated if a maximum number of iterations has been reached to avoid an extremely long 

run. The problem with the latter criterion is that it is difficult to determine the maximum 

number of iterations because the value may either lead to premature termination or 

expensive termination. 

(6) Intensification  

The mechanism for intensification enhances the search to focus on examining elite 

solutions in a neighborhood. It tends to move the search to a neighboring position in the 

search space, and so could be considered a local search. 

(7) Diversification 

The mechanism for diversification allows a large jump to be made in the solution space. 

This ensures that large areas of the space are searched and solutions do not get stuck in local 

minima. This mechanism is also referred to as the restarting procedure. For each 

diversification process, a different initial cell formation is randomly generated. This way, 

the search is able to explore a large solution space, thereby enhancing the possibility of 

finding the optimum solution in a very short time. 

TS has the following characteristics: 

(1) Utilizes a flexible memory structure, which is more efficient than strict memory structure 

(ex: branch-and-bound) or no memory (ex: simulated annealing). 

(2) Allows searching toward worse solutions in order to get rid of local optimum. 

(3) Records explored solutions in tabu list in order to avoid redundant searching time. 
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(4) Updates the tabu list in every step to reduce the probability of redundant searching and to 

improve searching efficiency. 

(5) Uses an aspiration criterion to relax tabu restriction and keep the searching process going. 

(6) Sets upper bounds of iteration numbers passed or time elapsed to terminate the searching 

process. 

2.2.2.3 Water Flow-like Algorithm 

The design of the WFA (Yang and Wang, 2007) was inspired by the natural behavior 

of water flowing from higher to lower levels. On the earth’s surface, a flow will split into 

multiple sub-flows when rugged terrains are traversed. Sub-flows, however, will merge 

when they arrive at the same location. Governed by gravity and driven by fluid momentum, 

flows can run to higher levels or run over bumps to navigate various terrains. Water flow 

will cease and stagnate at the locally or globally lowest depression; when the momentum 

left cannot expel the water out of the depression, it will stagnate at its current location. No 

movement is allowed until other flows merge with it or until the water evaporates into the 

atmosphere. When the evaporated water accumulates to some extent, it will return to the 

ground as several new downpour flows, such that rainfall occurs occasionally. As the 

solution space of a problem can be mapped to the geographical terrain, and the objective 

value is mapped to the altitude, each flow can then be regarded as a solution agent. Water 

moving to a lower position can be considered as a solution searching for the optima. Thus, 

the solution search process has been modeled as water flow. 

Yang and Wang (2007) adopted several natural behaviors of water flow in presenting 

the WFA (Dougherty and Marryott, 1991). Their design ideas are summarized as follows: 

(1) Driven by gravity and governed by the energy conservation law, water will constantly 

flow to lower altitudes. Conversely, the solution search will recursively move from 

inferior to superior solutions. 
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(2) Fluid momentum drives water forward through rough terrains. A flow will split into 

sub-flows when it encounters rugged terrain and when its momentum exceeds a base 

amount for splitting. WFA simulates this behavior as an agent forking operation; that is, 

more than two agents are derived from a single agent. A flow with larger momentum will 

generate more streams of sub-flows than one with less momentum. A flow with limited 

momentum will yield to the landform and maintain a single flow. Therefore, the fluid 

momentum of a flow is recalculated to determine the number of sub-flows that can be 

forked after each move. 

(3) Water flows to lower altitudes and occasionally swells to higher altitudes as long as the 

kinetic energy is larger than the required potential energy. To avoid being trapped within 

a local minimum, WFA allows the water to flow to a worse location to broaden the 

exploration area, provided it has enough kinetic energy. 

(4) A number of flows merge into a single flow when they meet at the same location. WFA 

reduces the number of solution agents when multiple agents result in the same objective 

value to avoid redundant searches. 

(5) Water flows are subject to water evaporation in the atmosphere. The evaporated water 

will return to the ground in the form of rainfall. In WFA, a part of the water flow is 

manually removed to mimic water evaporation. After evaporation, a precipitation 

operation is implemented in WFA to simulate natural rainfall and explore a wider 

solution area.  

The pseudo-code for the general procedure for implementing the WFA is shown in 

Figure 2.4. 
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WFA_Algorithm ( ) 
{ 

Generate an initial solution. 
WHILE(stop criterion is false) 
{ 

  Flow splitting and moving. 
Flow merging. 
Water evaporation. 
IF (rainfall required) 
{ 
   Precipitation. 

Flow Merging. 
} 
IF (new best solution found) 
   Update best solution record. 

 } 
} 

 
 

Figure 2.4 Pseudo-code for WFA algorithm 

 

The WFA algorithm consists of four primary operations: (1) flow splitting and moving, 

(2) flow merging, (3) water evaporation, and (4) precipitation. Before proceeding to the 

descriptions of these four operations, we introduce some notations.  

 

Nmax : Iteration limit 

W0 : Initial mass of original flow 

Wi : Mass of flow i 

V0 : Initial velocity of original flow 

Vi : Velocity of flow i 

Tm : Base momentum 

n  : Upper limit on number of subflows split from a flow 

ni : Number of subflows forked from flow i 

N : Total number of water flows in current iteration 

ikμ  : Velocity of subflow k split from flow i 
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ikδ  : Attitude drop from flow i to subflow k; equivalently, changes in objective value 

from solution i to its neighborhood solution k 

G : Gravitational acceleration 

T : A prescribed number of iteration a flow will be removed by evaporation 

1. Flow splitting and moving operation 

It is assumed that there is only one water flow in the beginning of the WFA, and that its 

location is randomly generated. Driven by fluid momentum and potential energy, the flow 

starts to move to new locations to explore the solution space for new and better solutions. 

Yang and Wang (2007) used constant-step movement to the best neighborhood solution 

when solving the object grouping problem. However, various flow-moving strategies can be 

designed and applied depending on the characteristics of different optimization problems. 

In the WFA, flow splitting results from capable momentum, and a flow with higher 

momentum generates more sub-flows than that with a lower one. The locations of the split 

sub-flows are derived from the neighboring locations of the original flow. When a flow does 

not split, it goes on as a single stream to the best feasible neighboring location. Allowing N 

to be the number of water flows in the current iteration, the number of sub-flows ni forked 

from flow i (i = 1, 2, …, N) is determined by its momentum, WiVi. A flow with zero 

momentum stays in its current location and is considered a stagnant solution. A flow can 

split into sub-flows only when its momentum exceeds a predefined base momentum Tm. The 

number of sub-flows is determined by dividing its momentum by the base momentum Tm. If 

the momentum of a flow is between 0 and Tm, it is treated as a single stream moving to a 

new location without splitting. As WFA proceeds, it is possible that the number of sub-flows 

grows exponentially and exhausts the computational resource. Yang and Wang (2007) 

suggests imposing an upper limit n  on the number of sub-flows forked from a flow at each 

iteration. The number of sub-flows split from a flow can thus be obtained through: 
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When the flow is split into sub-flows, its original mass has to be accordingly 

distributed to sub-flows based on the rule designed. Yang and Wang (2007) distributed mass 

based on the ranks of the sub-flows, as shown in Eq. (2.9). 
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For instance, if Wi =5 and ni =3, then  
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The velocity of each sub-flow is computed from the equation of energy conservation. 

ikμ , the velocity of sub-flow k split from flow i, is: 
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 (2.10)

where g is the gravitational acceleration, and ikδ  is the altitude drop from flow i to its 

sub-flow k; that is, the improvement of objective value moving from current solution i to its 

neighborhood solution k. When 2 2i ikV gδ+ < 0, the momentum delivered to sub-flow k has 

been used up, implying that this sub-flow will stagnate in its current location (e.g. the 

solution is trapped in local optima) without splitting and movement. Such stagnant flow will 

gradually evaporate into the atmosphere, returning to the ground by precipitation later on. 

At the end of the splitting and moving operation, the original flow becomes discarded 

because sub-flows have been generated. Information regarding the current number of 

sub-flows and solutions sets will then be recorded. 

2. Flow-merging operation 

When more than two flows move to the same location, they will merge into one flow 
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with a bigger mass and momentum. Whether a flow shares the same location with others in 

the WFA is thus systematically examined. If a flow does share the same location, the latter 

flow is then merged into the former one. Assuming that flows i and j share the same location, 

then flow j will be deleted and the mass and velocity of flow i will be updated as follows: 

i i jW W W= +  (2.11)

i i j j
i

i j

WV W V
V

W W
+

=
+

 (2.12)

Using the flow-merging operation, the WFA reduces the number of solution agents 

when multiple agents result in the same objective value in order to avoid redundant 

searches. 

3. Water evaporation operation 

It is natural for water to evaporate and return to the ground through precipitation after 

possible movement from its original location. Water evaporation and precipitation coincide 

with the “escaping from local optima” mechanism that many heuristic algorithms nowadays 

use to avoid being trapped and to explore more solution spaces. 

Each flow in the WFA is subject to water evaporation, where part of the water 

evaporates into the atmosphere. It is determined that a flow will be completely removed 

after a prescribed number of iterations t; that is, the masses of all flows are decreased by the 

ratio of 1/t, as shown in Eq. (2.13), every time evaporation occurs. 

11 ,  1, 2,...,i iW W i N
t

⎛ ⎞= − =⎜ ⎟
⎝ ⎠

 (2.13)

4. Precipitation operation 

When water vapor accumulates to a certain volume, it will return to the ground in some 

form such as rain. In the original WFA, two types of precipitation are performed to simulate 

the natural cycle of water: enforced and regular precipitation.   
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Enforced precipitation is applied when all flows are grounded with zero velocities. 

Under this circumstance, all flows are forced to evaporate into the atmosphere and then 

returned to the ground without changing the number of current flows. However, the 

locations of these returned flows are deviated stochastically from the original ones. Mass of 

W0 is proportionally distributed to flows based on their original mass with the same initial 

velocity. Consequently, the mass assigned to flow i, W’
i, can be determined using Eq. (2.14). 
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 (2.14)

Regular precipitation is applied periodically in balance with water evaporation. The 

regular precipitation operation is performed every t (same t value as in evaporation) 

iterations to pour down the evaporated water. Note that the cumulative mass of the 

evaporated water is 0
1

N

k
k

W W
=

−∑ . Thus, instead of using Eq. (2.14), the mass assigned to flow 

i, W’
i, is determined using Eq. (2.15) when applying regular precipitation. The newly poured 

flow joins the current solution set, thus increasing the number of current solutions. In 

addition, both enforced and regular precipitation might generate several new flows in the 

same locations. A flow merging operation will be executed to eliminate possible redundant 

flows.  
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 (2.15)

2.3 Performance Measures for CFP 

There is a need to develop performance measures or criteria in order to compare the 

quality of solutions obtained by different methods on an absolute scale. A limited number of 

performance measures have been proposed. Some commonly known grouping efficiency 

measures for 0-1 machine-part incidence matrix data are illustrated in Table 2.1. Among 
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them, two measures frequently used are the grouping efficiency (Chandrashekharan and 

Rajagopalan, 1987) and the grouping efficacy (Kumar and Chandrasekharan, 1990) because 

of their ease of implementation.  

Although grouping efficiency has been used widely, critics argue that it has weak 

discriminating power (i.e., the ability to distinguish good quality grouping from bad). For 

example, a bad solution with large number of exceptional elements will give a value around 

0.75. To overcome the low discriminating power of grouping efficiency between 

well-structured and ill-structured incidence matrices, Kumar and Chandrasekharan (1990) 

proposed another measure that they called grouping efficacy. Unlike grouping efficiency, 

grouping efficacy is not affected by the size of the matrix. Today, grouping efficacy is one 

of the most widely used measures applied to the CFP when a binary machine-part incidence 

matrix is used. Grouping efficacy can be defined as: 

vee
ee

+
−

=Γ 0 , (2.3)

where e  is the total number of 1s in the matrix; 0e  is the total number of 

exceptional elements; and ve  is the total number of voids. Those 1’s outside the diagonal 

blocks are called ‘‘exceptional elements’’, while those 0’s inside the diagonal blocks are 

called ‘‘voids.” Grouping efficacy ranges from 0 to 1, with 1 being the perfect grouping. 

We chose grouping efficacy as the measure of performance for the standard CFP in this 

thesis for several reasons: 

(1) In the literature, it has been considered the standard measure to report the quality of the 

grouping solutions. 

(2) It has a high capability to differentiate between well-structured and ill-structured matrices 

(e.g. high discriminating power). 

(3) It is considered a better measure than grouping efficiency. 

(4) It is able to incorporate both within-cell machine utilization and inter-cell movement. 
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(5) It generates block diagonal matrices that are attractive in practice. 

(6) It does not require a weighting factor. 

Table 2.1 Commonly known measures for 0-1 machine-part incidence matrix data 

Measure Name Definition Reference    

1 
Grouping 
efficiency(η ) ( )

( )( )
( ) ( )

1

1 1

1 v

v v

q oq ee
o ee e e e
− −

+
+ − + −

 Chandrasekharan and 
Rajagopalan (1986a) 

2 Grouping efficacy (Γ ) 
( )
( )

0

v

e e
e e
−
+

 Kumar and 
Chandrasekharan (1990)

3 Grouping capability 
index (GCI) 

01 e
e

−  Hsu (1990) 

4 Grouping measure( gη ) ( )
1 0

1 v

e e
ee e

−
+

 Miltenburg and Zhang 
(1991) 

5 
Weighted grouping 
efficacy (γ ) 

( )
( ) ( )

0

0 01v

q e e
q e qe e e

−
+ − + −

 Ng (1993) 

6 Grouping index( 3τ ) 

( )( )
( )( )

{
0

0

0

0 0

1
,

1
0,   

,   

v

v

B q q Ae e
B q q Ae e

BeA B Be e

− − − −
+ + − −

≤= − >

 Nair and Narendran 
(1996) 

7 
Alternative routing 
grouping 
efficiency( ARGη ) 

0

0

v

v

e oe e
e oe e

⎛ ⎞⎛ ⎞− −
⎜ ⎟⎜ ⎟+ +⎝ ⎠⎝ ⎠

 Sarker and Li (1998) 

8 
Double weight 
grouping efficacy( Qη ) 

( ) ( )1 1 0

1 1 0

1 1v

v

q q q qe e e e
e e e e

⎛ ⎞⎛ ⎞+ − + −
⎜ ⎟⎜ ⎟+ +⎝ ⎠⎝ ⎠

Sarker (2001) 

e: total number of ones in the machine-part incidence matrix; o: total number of zeros in the machine-part 
incidence matrix; e0: total number of exceptional elements; ev: total number of voids; e1: total number of ones 
within the diagonal blocks; q: weighting factor. 
 

Although grouping efficiency and grouping efficacy have been used widely, they do 

not consider production factors, such as process sequence of operations, production 

volumes processing times of operations, and were designed for 0–1 matrices only. Hence, 

Harhalakis et al. (1990) proposed another measure called the group technology efficiency 

(GTE) that takes into account the sequence of operation, which can be defined as: 

GTE=1 U
I

− , (2.4)

where I is the maximum number of inter-cell travels possible and U is the number of 

inter-cell travels actually required by the system. 
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Seifoddini and Djassimi (1995) developed a new grouping measure called Quality 

Index (QI) that takes into account the sequence of operation, production volume, and 

processing times of operation. This can be defined as: 

Quality Index (QI ) =1 ICW
PW

− , (2.5)

where ICW is the intercellular workload and PW is the total plant’s workload.  

Nair and Narendran (1998) observed that the GTE is inadequate because it is poor in 

pattern recognition. Hence, they proposed another measure called bond efficiency that takes 

into account inter-cell moves within cells and compactness, which can be defined as: 

Bond efficiency(BE) = ( )1q GTE q Compactness× + − × , (2.6)

where ( )0 1q q≤ ≤  is a weighting factor; and Compactness is the ratio of the number 

of operations within it to the maximum number of operations possible in it, and is given by: 

Compactness=
( )

1

1

NC

k
k

NC

k k
k

TOTOP

TOTOP NOP
=

=

∑

+∑
, 

(2.7)

where NC is the maximum number of machine-cells; TOTOPk is the total number of 

operations in the kth cell；and NOPk is the total number of non-operations (voids) in the kth 

cell. 

Although the abovementioned performance measures have taken into account the 

production sequence, production volume, and processing times of operation, many realistic 

factors such as alternative process routings, cellular layout, and machine reliability are still 

not considered simultaneously. If incorporated, these factors can enhance the quality of 

solutions. Hence, a performance measure for cell formation, cell layout, and intracellular 

machine layout with considerations of alternative process routings, operation sequences, 

production volume, machine reliability, and different cellular layout type is developed in 

Section 3.4. 
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2.4 Previous Work on Resolving CFP 

Numerous models and solution approaches have been developed to deal with CFP 

since the 1970s. Some focus on developing effective heuristics or algorithms for solving 

standard CFP in which machine cells and part families are obtained sequentially or 

simultaneously. For instance, McAuley (1972) and Carrie (1973) developed the first 

algorithms using SCM on CFP. King and Nakornchai (1982) developed the earliest 

array-based methods to solve CFP. Cheng et al. (1998) formulated the CFP as a traveling 

salesman problem and solved the model using GA. Gonçalves and Resende (2004) 

presented an evolutionary algorithm (EA) for obtaining machine cells and product families. 

Yang and Yang (2008) proposed a modified ART1 neural learning algorithm for CFP. Unler 

and Gungor (2009) effectively applied the K-harmonic means clustering technique to form 

machine cells and part families simultaneously. Meanwhile, Tariq et al. (2009) combined a 

local search heuristic with GA and developed a hybrid GA for machine-part grouping. 

Mahdavi et al. (2009) designed an efficient algorithm based on GA to solve the CFP. 

On the other hand, some focus on considering more factors and system constraints for 

forming machine cells and part families. For instance, Gupta et al. (1996) presented a 

bi-criteria model simultaneously considering the minimization of the weighted sum of 

inter-cell and intra-cell moves and the minimization of the total cell load variation. Lee et al. 

(1997) developed a GA to deal with the CFP considering production volumes, alternate 

routings, and process sequences. Su and Hsu (1998) introduced a parallel SA to minimize (1) 

the total cost of machine investment, as well as inter-cell and intra-cell transportation cost; 

(2) intra-cell machine loading unbalance; and (3) inter-cell machine loading unbalance. A 

similar study was made by Lei and Wu (2005). They presented a Pareto-optimality-based 

multi-objective TS algorithm for machine-part grouping problems with multiple objectives. 

They were able to minimize total cost, which includes intra- and inter-cell transportation 

cost and machine investment cost, thus minimizing intra-cell loading unbalance and 
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inter-cell loading unbalance. Sofianopoulou (1999) developed an SA to address the CFP 

with alternate routings and process sequences considerations. Akturk and Turkcan (2000) 

proposed a local search algorithm to solve cell formation and intra-cell layout problem 

simultaneously. Bazargan-Lari et al. (2000) presents the application of an integrated 

approach to the three phases of CM design to a white-goods manufacturing company in 

Australia. Chiang and Lee (2004) proposed a GA-based algorithm augmented with the 

optimal partition approach to deal with both cell formation and inter-cell layout 

simultaneously. Hu and Yasuda (2006) presented a GA to minimize the total material 

handling costs for CFP with alternative processing routes. Boulif and Atif (2006) developed 

a new branch and bound enhanced GA to the CFP with considerations of process sequences, 

maximum NC, maximum cell size, and machine cohabitation and non-cohabitation. Chan et 

al. (2006) proposed a two-stage method that solved CFP and cell layout problems 

simultaneously by GA. Wu et al. (2006) developed a hierarchical GA to concurrently solve 

cell formation and inter-cell and intra-cell layouts in CMS design. Based on a new concept 

of similarity coefficients and the use of SA, Arkat et al. (2007) proposed an effective 

methodology to solve the CFP with alternative routings and production volume 

considerations. Wu et al. (2007a, b) developed a hierarchical GA to concurrently integrate 

cell formation and intracellular machine layout decisions in CMS design. Jabal Ameli and 

Arkat (2008) presented a mathematical approach to cell formation with alternative process 

routings and machine reliability consideration. Meanwhile, Jabal Ameli et al. (2008) 

proposed a multi-objective pure integer linear programming approach for the CFP with 

alternative process routings and machine reliability consideration. The model minimizes 

total cost and maximizes system reliability simultaneously. Mahdavi and Mahadevan (2008) 

used sequence data to develop a construction heuristic algorithm to identify intra-cell 

problems. Meanwhile, Chan et al. (2008) proposed a two-phase GA approach to solve the 

CFP and intra-cell and inter-cell layout problems. A similar study was made by Ahi et al. 
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(2009). Applying multiple attribute decision making (MADM) concepts, they proposed a 

novel approach to determine CFP and intra-cell and inter-cell layout problems.  

Table 2.2 shows a summary of previous literature. Though there have been a number of 

studies done on CFP, very little has been devoted to integrating cell formation, cell layout, 

and intracellular machine layout, the three basic steps in CMS design, simultaneously with 

the considerations of some real-life production factors, such as alternative process routings, 

operation sequences, production volume, machine reliability, and cellular layout; thereby 

limiting the practical nature of their approaches in a real CMS environment. Moreover, most 

methods in the literature assume that the NC is prescribed beforehand. However, it is 

difficult to determine the proper NC in the cell formation stage because the layout designer 

does not have any knowledge about it at the beginning. Hence, it is important and more 

practical to integrate the above mentioned factors simultaneously in the design of CMS. 
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Table 2.2 Summary of literature review 

Decisions Production data Number of cells 

Authors 
CF 

Inter 

CL

Intra 

CL
BD OS APR MR PS AD 

Method 

McAuley (1972) 9   9    9  SCM 

Carrie (1973) 9   9    9  SCM 

King and Nakornchai (1982) 9   9    9  Array-based

Gupta el al. (1996) 9 9 9     9  GA 

Lee et al. (1997) 9    9 9  9  GA 

Cheng et al. (1998) 9   9    9  GATSP 

Su and Hsu (1998) 9 9 9  9   9  SA 

Sofianopoulou (1999) 9    9   9  SA 

Bazargan-Lari et al. (2000) 9 9 9  9   9  SA 

Akturk and Turkcan (2000) 9 9 9  9 9  9  LS 

Chiang and Lee (2004) 9  9  9    9 GA 

Gonçalves and Resende (2004) 9   9    9  EA 

Hu and Yasuda (2006) 9    9    9 GA 

Lei and Wu (2005) 9 9 9  9   9  TS 

Boulif and Atif (2006) 9    9   9  GA 

Chan et al. (2006) 9 9   9   9  GA 

Wu et al. (2006) 9 9 9  9   9  GA 

Arkat et al. (2007) 9    9 9  9  SA 

Wu et al. (2007a) 9  9  9   9  GA 

Wu et al. (2007b) 9  9  9   9  GA 

Yang and Yang (2008) 9   9    9  ANN 

Jabal Ameli and Arkat (2008) 9    9 9 9 9  MP 

Jabal Ameli et al. (2008) 9    9 9 9 9  MP 

Chan et al. (2008) 9 9 9  9 9  9  GA 

Mahdavi and Mahadevan (2008) 9  9  9    9 Heuristic

Ahi et al. (2009) 9 9 9  9    9 Novel 

Unler and Gungor (2009) 9   9    9  KHM 

Tariq et al. (2009) 9   9    9  GA 

Mahdavi et al. (2009) 9   9    9  GA 
CF: cell formation; Inter CL: Inter-cell layout; Intra CL: intra-cell layout; BD: binary data; OS: operation 
sequences; APR: alternative process routings; MR: machine reliability; PS: prescribed; AD: auto-determining; 
LS: local search; KHM: K-harmonic means clustering algorithm. 
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CHAPTER 3   

PROBLEM FORMULATION 

As mentioned in previous chapter, two types of CFP are addressed in this thesis. One is 

the standard CFP with a binary machine-part incidence matrix consideration, and the other 

is the generalized CFP with layout design and machine reliability considerations. In this 

chapter, the problem formulation for these types of CFP, including problem descriptions and 

mathematical models, are presented. 

Notations: 

(1) Indices: 

a : Index for operations which belongs to part I along route j (a=1,..., Kij) 

b : Index for position number (or index for sequence of machine) 

i : Index for parts (i=1,..., p) 

j : Index for routings which belongs to part i (j=1,..., Qi) 

k : Index for machines (k=1,..., m) 

l : Index for manufacturing cells (l=1,..., NC) 

(2) Input parameters: 

Ai : Unit cost of intercellular movement for part i 

aki : 1, if part i is processed on machine k; 0, otherwise 

Bk : Breakdown cost for machine k 

,l lD ′  : Distance between cell l and l′  

e  : The total operations in the machine-part incidence matrix 

kkf ′  : Flow coefficient between machines k and k ′   

Kij : Number of operations in routing j of part i 

Lm : Minimum number of machines in each cell 



 

35 

lM  : Set of machines in the lth cell 

MTBFk : Mean time between failures for machine k 

m : Number of machines 

lm  : Number of machines in cell l 

NC : Number of cells 

Ncff : Total number of consecutive forward flows in all the cell 

Ntf : Total number of flows 

p : Number of parts 

Qi : Number of routings for part i 

ri : Best routing selection for part i 

kk iS ′  : Unit flow coefficient for a part i between machines k and k ′ . kk iS ′ =1, if part i

visits machines k and k ′  in immediate succession; otherwise kk iS ′ =0 

( )a
ijT  : Processing time for the a-th operation of part i along route j 

Um : Maximum number of machines in each cell 

( )a
iju  : Index for machines which belongs to the a-th operation of part i along route j 

Vi : Production volume for part i 

(3) Decision variables: 

Γ  : Grouping efficacy 

0e  : The total number of exceptional elements 

ve  : The total number of voids 

Xil : 1, if part i locates in cell l; 0, otherwise 

ijklk lX ′ ′  : 1, if routing j of part i is selected; machine k locates in cell l and machine k ′

locate in cell l′ ; 0, otherwise 

lbkX  : 1, if machine k locates in the b-th position of cell l; 0, otherwise 

Ykl : 1, if machine k locates in cell l; 0, otherwise 
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Zij : 1, if routing j of part i selected; 0, otherwise 

3.1 Problem Description for Standard CFP  

In a standard CFP, production data are given in a binary machine-part incidence 

matrix—a binary matrix used to indicate whether a machine is used to process a part or 

not—of n × m dimension. The n rows represent n machines and the m columns indicate m 

parts. In the n × m matrix, each binary element (aki) denotes a relationship between parts 

and machines where aki=1 if part i should be processed on machine k, and aki=0 otherwise. 

Studies usually attempt a rearrangement of rows and columns to create part families and 

machine cells. After the rearrangement, blocks can be observed along the diagonal of the 

matrix in which inter-cell movement can be minimized (i.e., the number of exceptional 

elements outside the diagonal block are minimized) and within-cell machine utilization 

maximized (i.e., the number of voids inside the diagonal block are minimized). 

Figure 3.1 presents an example of the block diagonalization process of a 5 × 5 matrix. 

The objective is to group parts and machines of the initial matrix (Figure 3.1(a)) together 

into cells based on their similarities in characteristics and operating requirements to 

maximize grouping efficacy. The shading in Figure 3.1(b) indicates that there are two cells 

being formed, two ‘1’, named ‘exceptional elements’, outside the diagonal block. That is, 

P1 and P3 will be processed on more than one machine group. Meanwhile, there is also a 

‘0’, called a ‘void’, inside the diagonal block. A solution without exceptional elements and 

voids is called a ‘perfect solution’; that is, the different cells are completely independent, 

indicating that each part family will be processed only within a single machine group. The 

grouping efficacy for the matrices in Figure 3.1(a) is calculated as follows: 

0 13 2 78.57%
13 1v

e e
e e
− −

Γ = = =
+ +

. 

 

 



 

37 

M\P P1 P2 P3 P4 P5  M\P P2 P3 P5 P1 P4 
M1 0 0 1 1 0  M2 1 1 1 0 0 
M2 0 1 1 0 1 M4 1 1 1 1 0 
M3 1 0 0 1 0

 
M1 0 1 0 0 1 

M4 1 1 1 0 1  M3 0 0 0 1 1 
M5 1 0 0 1 0  M5 0 0 0 1 1 

(a) Initial matrix               (b) Matrix after rearrangement 

Figure 3.1 Rearrangement of rows and columns of matrix to create cells 

3.2 Mathematical Model for Standard CFP 

3.2.1 Assumptions 

The mathematical model for standard CFP in this thesis is formulated on the basis of 

the following assumptions: 

(1) All parts are assigned to part families. 

(2) All machines are assigned to machine cells. 

(3) All machines are non-identical. 

(4) Each part family has at least one part, but does not have total number of parts at most. 

(5) Each machine cell has at least one machine, but does not have total number of machines 

at most. 

(6) The binary machine-part incidence matrix is the main input information. Other 

production information, such as alternative process routings, operation sequences, 

production volume, production times, machine reliability, and different cellular layout 

type are not considered in the standard CFP. 

3.2.2 Mathematical formulation 

By using the above notations and assumptions, the proposed mathematical model 

maximizing grouping efficacy for standard CFP can be formulated as follows: 

0  
v

e eMax
e e
−

Γ =
+

 (3.1)

Subject to: 
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1 1

p m

ik
i k

e a
= =

= ∑∑  (3.2)

( )
1 1 1 1 1 1

p pNC m NC m

il kl il klv ik
l i k l i k

e aX Y X Y
= = = = = =

= × −∑ ∑ ∑ ∑∑∑  (3.3)

0
1 1 1

pNC m

il klik
l i k

ee a X Y
= = =

= −∑∑∑  (3.4)

1
1

NC

il
l

X
=

=∑          i∀  (3.5)

1
1

NC

kl
l

Y
=

=∑          k∀  (3.6)

1

m

kl m
k

Y L
=

≥∑         l∀  (3.7)

{ }0,1 , ,,il kl i k lYX ∈ ∀    (3.8)

In the above model, Eq. (3.1) is the objective function that seeks maximization of 

grouping efficacy. Eqs. (3.2), (3.3), and (3.4) show the calculation of the total operations in 

the machine-part incidence matrix, the total number of voids, and the total number of 

exceptional elements, respectively. Eq. (3.5) provides a restriction that each part will be 

assigned to exactly one cell, while Eq. (3.6) provides a restriction that each machine will be 

assigned to exactly one cell. Eq. (3.7) assigns the lower limit of the cell size and Eq. (3.8) 

indicates that Xil and Ykl are 0–1 binary decision variables. 

Some studies allow the existence of singletons (cells having less than two machines) in 

the solutions and some don’t. In this thesis, we use Eq. (3.7) to integrate both situations. 

When Lm equal to 1, the existence of singletons are allowed, while singletons are not 

allowed, when Lm equal to 2. 

3.3 Problem Description for Generalized CFP 

In the standard CFP, the binary machine-part incidence matrix is the main production 

data. Some real-life production factors, such as alternative process routings, operation 

sequences, production volume, machine reliability, and cellular layout, are not addressed in 

the design of CMS, thereby limiting the practical applied in a real CMS environment. Hence, 
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a generalized CFP that incorporates the abovementioned factors in the design of CMS is 

introduced. These factors are described in detail next. 

(1) Alternative process routings 

A process routing for a given part is the set of machines passed by this specific part. In 

most CF methods, parts are assumed to have a unique part process plan. However, it is well 

known that alternatives may exist in any level of a process plan. In some cases, there may 

be many alternative process plans for making a specific part, especially when the part is 

complex (Qiao et al., 1994). In the case shown in Figure 3.2(a), part #1 has three process 

routings: R1, R2, and R3. When introducing alternative process routings to CFP, the 

grouping of parts can be more effective due to the flexibility of the routes. However, it leads 

to a more complex problem than the standard CFP. Under this circumstance, not only the 

formation of part families and machine cells must be determined but also the selection of 

routings for each part to achieve decision objectives, such as the minimization of 

intercellular movement. For instance, Figure 3.2 (b) provides a feasible solution to the 

sample problem of Figure 3.2 (a) where routing #2 is selected by all parts. 

             
PN P1 P2 P3 P4 P5  PN P1 P3 P2 P4 P5
PV 50 30 20 30 20  PV 50 20 30 30 20
RN R1 R2 R3 R1 R2 R1 R2 R1 R2 R1 R2  RN R2 R2 R2 R2 R2
M1   2  2 2  1 1 1  M2 1 2    
M2  1 1 1   2  M4 2 1    
M3 2   2 1   2 1  M1   2 1 1 
M4 1 2    1 1 2 2  M3   1 2  

   (a) Problem data                               (b) Final solution 

Figure 3.2 Cell formation with alternative process routings  

(2) Cellular layout 

In CMS, different cellular layout type and cellular layout sequence will affect the 

inter-cell move distance (ICMD). They are described as follows. 

(a) Determination of cellular layout type  
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Cellular layout is represented in Figure 3.3, where r is the number of rows, c is the 

number of columns, and (Xr,Yc) is the coordinate of cell cr. The cellular layout type can be 

determined, while the value of r is set by the layout designer. For example, when r=1, the 

cellular layout type is linear single-row layout (Figure 3.4 (a)); and when r=2, the cellular 

layout type is linear double-row layout (Figure 3.4 (b)), where NC is the number of cells. 

1 2 … c
Cell 1 Cell r +1 Cell (c- 1)r+ 1
(1,1) (1,2) (X 1 ,Y c )

Cell 2 Cell r +2 Cell (c -1)r +2
(2,1) (2,2) (X 2 ,Y c )… … … …

Cell r Cell 2r Cell cr
(r ,1) (2,2) (X r ,Y c )

1 …

2 …

r …
 

Figure 3.3 Cellular layout 

 

    

(a)
1 2 … NC

Cell 1 Cell 2 Cell NC
(1,1) (1,2) (X 1 ,Y NC )

1 …
 

(b)
1 2 … c

Cell 1 Cell 3 Cell (2c- 1)
(1,1) (1,2) (X 1 ,Y c )

Cell 2 Cell 4 Cell NC
(2,1) (2,2) (X 2 ,Y c )

1 …

2 …
 

Figure 3.4 Two typical cellular layouts: (a) linear single-row layout (r=1) (b) linear 

double-row layout (r=2) 

 

(b) Inter-cell move distance 

There are two popular methods for measuring ICMD between a pair of cells l and 

l′ (Tam and Li, 1991). They are:  
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Cartesian method: ( ) ( )
1/ 22 2

,l l l l l lD X X Y Y′ ′ ′⎡ ⎤= − + −⎣ ⎦ , (3.9)

Manhattan method: ,l l l l l lD X X Y Y′ ′ ′= − + − , (3.10)

where ( ),l lX Y  and ( ),l lX Y′ ′  are the coordinates of the measuring points of cells l 

and l′ . 

In terms of measuring points, we can use either: (a) the centroid of a cell site or (b) the 

nearest point between adjacent cells. In this thesis, the Cartesian method was chosen and the 

centroid of a cell site will be used for calculating ICMD. Thus, the ICMD between cells 1 

and 2 in Figure 3.4(a) is equal to ( ) ( )
1/ 22 21 1 1 2 1⎡ ⎤= − + −⎣ ⎦ . 

(c) Effects of cellular layout type 

Different cellular layout types will result in different ICMD. Figure 3.5 shows that the 

ICMD between cells 1 and 3 in Figure 3.5(a) will be twice the distance moved between 

cells 1 and 3 in Figure 3.5(b). Hence, the cellular layout type is an important issue in CMS 

design. 

Cell 1 Cell 2 Cell 3 Cell 1 Cell 3

(1,1) (1,2) (1,3) (1,1) (1,2)

Cell 2

(2,1)
 

        (a) linear single-row layout (r=1)       (b) linear double-row layout (r=2) 

Figure 3.5 Two typical cellular layouts (NC=3) 

(d) Effects of cellular layout sequence 

We present an example to illustrate the effects of cellular layout sequence. If the NC is 

equal to three and a linear single-row layout (r=1) is considered as shown in Figure 3.5(a), 

then ICMD between cells 1 and 3 will be twice the distance moved between cells 1 and 2 or 

between cells 2 and 3. When a linear double-row layout (r=2) is considered as shown in 
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Figure 3.5(b), the corresponding ICMD between cells 2 and 3 will be 2  times the 

distance moved between cells 1 and 2 or between cells 1 and 3. Hence, the cellular layout is 

an important issue in CMS design.  

(3) Operation sequence and production volume 

The operation sequence and production volume of each part affects the machine cell 

formation significantly. Therefore, both operation sequence and production volume of each 

part should be incorporated in the analysis of CM systems. For example, a simple CFP 

consists of four machines (M1, M2, M3, M4) and two parts (P1, P2) with part routes (M2, 

M1) for P1 and (M4, M1, M3) for P2. Suppose that the annual demands of P1 and P2 are 40 

units and 60 units, respectively. Two cell formation results are shown in Figure 3.6, where 

the number in each entry indicates the visiting order of part to machine. If we do not 

consider machine sequence in calculating inter-cell movement, the solution in Figure 3.6 (a) 

is better than that in Figure 3.6(b) because there are 60 inter-cell movements in Figure 3.6 (a) 

and 100 inter-cell movements in Figure 3.6 (b). However, if the machine sequence is 

considered, the solution in Figure 3.6(b) is better, because the sum of inter-cell movements 

in Figure 3.6(a) is 120 (60 × 2) compared with 100 (40 + 60) in Figure 3.6(b). If we do not 

consider production volume in calculating inter-cell movement, the solutions of Figure 3.6(a) 

and (b) are the same with 2. However, if the manufacturing volumes are considered, the 

solution in Figure 3.6(b) is better, because the sum of inter-cell movements in Figure 3.6(a) 

is 120 (60 × 2) compared with 100 (40 + 60) in Figure 3.6(b). 

 

 (a) P1 P2  (b) P1 P2
 PV 40 60  PV 40 60
 M1 2 2  M2 1  
 M2 1   M3  3
 M3  3  M1 2 2
 M4  1  M4  1

Figure 3.6 An example for the affect of operation sequence 
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(4) Machine reliability 

A number of previous works assumed that all machines are 100% reliable. However, 

this is not always the case. Machines are key elements in manufacturing systems and 

oftentimes it is not possible to handle their collapse as quickly as production requirements 

dictate. Their collapse can dramatically affect system performance measures and bring 

about detrimental effects on due date performance. Hence, machine reliability should be 

taken into account during the design of CMS to improve the overall performance of the 

system (Jeon et al., 1998).  

A common way of dealing with machine reliability in the design phase of a 

manufacturing system is by the evaluation of the quantities of the mean time between 

failures (MTBF). MTBF can be obtained by taking the reciprocal of λ , where λ  is the 

machine failure rate. As long as the breakdown cost for each machine is known in advance, 

the cost caused by machine unreliability can be acquired after simple calculation. Jabal 

Ameli and Arkat (2008) have presented a mathematical approach to calculate machine 

breakdown cost (MBC) that involves dividing production time by MTBF and then 

multiplying this quantity by the unit MBC (Eq. (3.12)). 

3.4 Mathematical Model for Generalized CFP 

As mentioned in the previous section, it is important and more practical to integrate the 

abovementioned factors simultaneously in the design of CMS. Cell formation, cell layout, 

and intracellular machine layout are three major steps in the design of CMS. Ideally, these 

steps should be addressed simultaneously in order to obtain the best results. However, this is 

not easy to do due to the NP-complete nature of each step and the limitations of traditional 

approaches. Moreover, intracellular machine layout is a detailed layout planning. It usually 

starts after the cell formation and cell layout decisions have been determined. Hence, a 

two-stage multi-objective mathematical programming model is formulated in this section to 
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integrate cell formation, inter-cell layout, and intracellular machine layout problem with 

considerations of alternative process routings, operation sequences, production volume, 

machine reliability, and different cellular layout type. The framework of the proposed 

two-stage model is given in Figure 3.7. The aim of stage I is to solve cell formation and 

inter-cell layout simultaneously and the primary work of stage II is to determine machine 

layout (sequence) in each cell based on the given cell formation determined in stage I. 

 
Figure 3.7 The framework of the proposed two-stage model for generalized CFP 

 

3.4.1 Assumptions 

The mathematical model for generalized CFP in this research is formulated on the 

basis of the following assumptions: 

(1) All parts are assigned to part families. 

(2) All machines are assigned to machine cells. 

(3) All machines are non-identical. 

(4) The type of cellular layout and the distance moves between cells are known a priori. 

(5) Operation requirements, including operation sequence, operation time, and production 

volume, are known. 

(6) Inter-cell part transportation unit cost for each part, breakdown cost, and MTBF for each 

machine are known. 

(7) The limitation of total number of machines in each cell is user-defined. 

(8) The intra-cell move distances for each part are not considered. 

Cell formation 
& cell layout 

Intracellular 
machine layout

Stage I Stage II
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3.4.2 Mathematical formulation 

By using the above notations and assumptions, the proposed two-stage multi-objective 

mathematical programming models are formulated, one for each stage, and are presented 

here.  

3.4.2.1 Stage I: Cell formation and inter-cell layout 

The aim of this stage is to solve cell formation and inter-cell layout simultaneously in 

terms of minimization of total inter-cell move cost (ICMC) and MBC. The multi-objective 

0-1 integer programming model is given below. 

Total ICMC: 
1

( ) ( 1)( ) ( ) ,
1 1 1 1 1

Q Kp iji NC NC

a a
ij ijij l l l l iiu u

i j a l l
ICMC VZ Y Y D A

−

+ ′ ′
′= = = = =

= ∑∑ ∑ ∑∑  (3.11)

Total machine breakdown cost: 
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( )
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1 1 1 ( )

Q K ap iji ij
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a
iji u

ij
i j a u
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V T B
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= ∑∑ ∑  (3.12)

The multi-objective function is as follows: 

Min TC ICMC MBC= +  (3.13)

Subject to: 

1
1
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Z
=

=∑ , i∀  (3.14)
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=
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1
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kl
l

Y
=

=∑   k∀  (3.16)

{ }, 0,1 , , ,kl ij i j k lY Z ∈ ∀   (3.17)

In the above model, Eqs. (3.11) and (3.12) show the calculation of the total inter-cell 

part transportation cost and MBC, respectively. Eq. (3.13) is the objective function that 

seeks the minimization of total cost of inter-cell part transportation cost and machine 
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breakdown. Eq. (3.14) indicates that only one process routing will be assigned to each part, 

while Eq. (3.15) assigns the upper and lower limits of the cell size. Eq. (3.16) provides a 

restriction that each machine will be assigned to exactly one cell and Eq. (3.17) indicates 

that Ykl and Zij are 0–1 binary decision variables. 

Obviously, the objective function is in a non-linear form and thus may require 

extensive computational efforts for current commercial solvers to obtain possibly local 

optimal solutions. A linearization approach (Jabal Ameli et al., 2008) for converting a 

non-linear model into linear form is adopted. The transformation equation is as follows. 

ijklk l ij kl k lX Z Y Y′ ′ ′ ′=  (3.18)

Where: 

1   if routing  of part  is selected, machine  locates in cell  and machine  locate 
    in cell . 
0  otherwise.

ijklk l

j i k l k
lX ′ ′

′⎧⎪ ′= ⎨
⎪⎩

 

Linearization Constraints: 

ijklk l ijX Z′ ′ ≤ , i, j ,k ,k ,l ,l′ ′∀  (3.19)

ijklk l klX Y′ ′ ≤ , i, j ,k ,k ,l ,l′ ′∀  (3.20)

ijklk l k lX Y′ ′ ′ ′≤ , i, j ,k ,k ,l ,l′ ′∀  (3.21)

2ij kl k l ijklk lZ Y Y X′ ′ ′ ′+ + − ≤ , i, j ,k ,k ,l ,l′ ′∀  (3.22)

{ }, , , 0,1 , , , , ,kl k l ij ijklk l i j k k l lY Y Z X′ ′ ′ ′ ′ ′∈ ∀   (3.23)

The first three linearization constraints (Eqs. 3.19–3.21) ensure that if one of the 

primary binary variables has a zero value, then their corresponding new variables will take a 

zero value as well. The last constraint (Eq. 3.22) ensures that if all primary variables take 

unit values, then their corresponding new variables take unit values as well. We rewrite the 

objective function as follows: 
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Subject to: 

Eqs. 3.14 - 3.16 and Eqs. 3.19 - 3.23 

This new form of the objective function is in a linear form. Thus, linear programming 

software, such as Lingo 8.0, can solve this model. 

3.4.2.2 Stage II: Intracellular machine layout 

The parts being transported from one machine to another within a cell are called 

intra-cellular flow. Intra-cellular part flows are usually rushed and short in distances. In 

CMS, these movements are very frequent, and the frequency directly affects the 

intracellular machine layout design. Based on the classification scheme of Aneke and Carrie 

(1986), intracellular flow can be classified into four categories (Figure 3.7): (1) repeat 

operation, R; (2) forward flows, FF; (3) by-pass movement, BP; and (4) reverse flows, RF. 

The ideal material flow in a good layout design should be mostly consecutive forward flows 

(CFF). The CFF usually has the benefits of smaller flow distance, easier control of the 

production process, and easier material handling (Ho et al., 1993).  

 
Figure 3.8 Intracellular part flows 

 

Since the CFF is a good indicator of the goodness of the solution, Mahdavi and 

Mahadevan (2008) developed a flow matrix on the basis of the number of CFF between a 

pair of machines and used it as the basic input to the grouping and layout problem. However, 

M1 M2 M3 M4 
FF FF FF

BP 

RF 

R 
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their method did not consider the effect of manufacturing volumes. As mentioned in Section 

3.3, taking the effect of manufacturing volumes into account is more realistic when 

designing a performance measure for intracellular machine layout. A flow matrix with 

manufacturing volumes consideration is thus proposed here. The flow matrix ( F ) is 

re-defined as follows: 

[ ]
1

     ,  and  
p

i kk ikk
i

F k k k kf SV ′′
=

′ ′= = ∀ ≠∑  (3.25)

Based on the flow matrix, a CFF index (CFFI) for measuring intracellular machine 

layout is proposed in this section. The CFFI is defined as the ratio of total number of CFFs 

in all cells (Ncff) to the total number of flows (Ntf). 

 

CFFI= cff

tf

N
N

 (3.26)
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The primary goal of the second stage is to determine the machine layout (sequence) in 

each cell in terms of maximizing the CFFI based on the cell formation determined in stage 

one. The model is given below. 

  CFFIMax  (3.29)

Subject to: 

=1      ,
l

lbk
k M

l bX
∈

∀∑  (3.30)

1
1       ,

lm

lbk l
b

l kX M
=

= ∀ ∈∑  (3.31)

}{0,1     , ,lbk l b kX ∈ ∀  (3.32)
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In the above model, Eq. (3.29) is the objective function that seeks the maximization of 

CFFI. Eqs. (3.30) and (3.31) ensure that each position is assigned to one machine and each 

machine is assigned to exactly one position. Eq. (3.32) indicates that lbkX is a 0–1 binary 

decision variable. 

Due to the combinatorial nature of the above models, good heuristic approaches should 

be more appropriate than the exact method in terms of solution efficiency, especially for 

large-sized problems. Thus, in the next chapter, we develop two fast and effective two-stage 

approaches to solve these complex problems. 



 

50 

CHAPTER 4  

PROPOSED ALGORITHMS 

In the previous chapter, two mathematical models representing standard CFP and 

generalized CFP have been formulated. Due to the NP-hard nature of the presented 

mathematical formulations, solving these problems through a traditional optimization 

technique is difficult and impractical. Furthermore, as mentioned in chapter two, 

meta-heuristic algorithms such as SA, TS, and WFA, have been the most successful solution 

approaches to provide global or near-global optimal solutions within a reasonable 

computation time, and SCM-based methods are more flexible in incorporating various 

production data into the machine-part clustering process. Thus, two hybrid meta-heuristic 

algorithms based on SCM-based clustering algorithm and SA/TS/WFA are proposed to 

solve the complex problems. 

Before proposed algorithms are described, some notations used in this chapter are 

introduced first. 

α : Cooling rate 

counter_iter : Number of iterations 

counter_stag : Number of times the incumbent solution did not improve 

counter_mut : Number of times the mutation strategy has been implemented 

C* : Optimal number of cells 

f(S) : Value of object function in solution S 

L : Markov chain length 

Nmax : Maximum number of iterations 

NC : Number of cells 
FN  : Set of feasible solutions 

CN  : Set of solutions without violating cell cardinality constraints 

TN  : Set of solutions in tabu status 

AN  : Set of solutions satisfying aspiration criterion 
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Stag_check : Maximum number of solution has not been improved 
0S  : Initial solution 

S : Current solution 
NS  : Neighborhood solution 
*S  : Incumbent solution of current cell size 
**S  : Best solution found so far 

T0 : Initial temperature 

Tf : Final temperature 

4.1 Proposed Algorithms for Standard CFP 

Most algorithms designed to solve CFP attempt to obtain the machine-part groupings 

so that some decision objectives, such as grouping efficiency or grouping efficacy, can be 

maximized. However, without prior determination of the NC, the abovementioned 

objectives can hardly be achieved. It is given beforehand in a few cases, but is left to be 

determined as part of the decision in most. Usually, in the iterative solution process, the 

initial NC is set at two and is gradually increased by one unit. These algorithms are then 

repeatedly applied until the NC resulting in the best grouping efficiency/efficacy value 

becomes established. Thus, many computational efforts have to be exerted in order to obtain 

the optimal NC. Instead of using a beginning number as the starting point, identifying a 

good intermediate point for the NC at the very beginning should save plenty of run time 

when designing an algorithm to search for the optimal NC. 

We present a test problem from literature (Carrie, 1973) as an example. The 

relationship between the NC and the resulting grouping efficacy is shown in Figure 4.1. 

Grouping efficacy value increases as the NC increases, and the optimal/near-optimal value 

is achieved when cell size is nine. Afterwards, efficacy starts to decrease as the NC 

increases. Similar observations can be found in other test problems. Based on this, the NC 

can be automatically calculated and determined such that the best grouping efficacy may 

result in.  
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Figure 4.1 Relationship between grouping efficacy and number of cells 

Based on the above discussion, we propose a two-stage hybrid algorithm HCFA to 

solve the standard CFP. The framework of the proposed two-stage HCFA is given in Figure 

4.2. In the first stage, the SCM-based clustering algorithm is adapted to derive NC quickly. 

NC value is then used as input to the second stage to search for the optimal/near-optimal 

solution through the proposed SA/TS/WFA algorithm. We anticipate that NC obtained in 

stage one can serve as a good lower boundary to start the solution process in stage two. 

Hence, a considerable amount of computational efforts can be saved, especially when 

large-sized problems are solved. The procedures for both stages are described below. 

Stage I of HCFA:  

Step 1. Set NC = 2, 0 *) ) 0( (f S f S= = . 

Step 2. Apply the SCM-based clustering algorithm to generate an initial solution 0S . 

Step 3. If 0 *( ) ( )f fS S> , then set * 0S S← , * NCC = , 1NC NC= + , go to Step 2; 

otherwise, report incumbent cell configuration found: *S , *C , and terminate stage 

one. 

The solution obtained at the end of stage one, including the suggested NC ( *C ) and 

cell configurations ( *S ), is then used as the input in stage two to search for the 
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optimal/near-optimal solution through the proposed SA/TS/WFA procedure. 

Stage II of HCFA: 

Step 1. Read solutions from stage one, including *C  and *S .  

Step 2. Set *NC C= , 0 ***) ( ), ) 0( (ff S f SS= = , go to Step 4. 

Step 3. Apply the SCM-based clustering algorithm to generate an initial solution 0S . 

Step 4. Apply SA/TS/WFA procedure to improve 0S  and generate an incumbent 

solution
*S . 

Step 5. If * **( ) ( )f fS S> , then set ** *S S← , * NCC = , NC = NC+1, go to Step 3; 

otherwise, report the current best cell configuration ( **S ) and NC ( *C ), and 

terminate stage two. 
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Figure 4.2 Two-stage approach: Hybrid Cell Formation Algorithm (HCFA) 
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The SCM-based clustering algorithm and SA/TS/WFA are primary algorithms that 

consist of HCFA. The details of them are described as follows. 

4.1.1 SCM-based clustering algorithm 

As mentioned in Section 2.3, SCMs are more flexible in incorporating various 

production data into the machine-part clustering process. Hence, this study proposes the use 

of an SCM-based clustering algorithm to generate quick initial solutions, which will then be 

later improved by SA/TS/WFA method. It is well known that decomposing an originally 

difficult problem into several sub-problems usually increases problem-solving efficiency. 

Since the CFP considers the grouping of machines and parts, an intuitive solution approach 

is to decompose the entire problem into two sub-problems dealing with the assignment of 

machines and parts, respectively. In our construction of the initial solution, machine 

assignment is determined in the first stage, while the assignment of parts is achieved in the 

second stage. 

Our approach for generating initial solutions consists of three steps: (1) computing 

similarity values between machine pairs and constructing a similarity matrix, (2) using a 

clustering rule to process the values in the similarity matrix and forming machine cells, and 

(3) assigning parts to machine cells using a parts assignment procedure. Details of them are 

described here. 

(1) Machines assignment 

As mentioned in Section 2.2, the Jaccard similarity coefficient is the most stable 

similarity coefficient. Hence, Jaccard’s similarity measure is used to evaluate similarity 

between machines as an important index for assigning machines to cells in this sub-problem. 

The similarity measure, denoted by Sij, is defined as ij
ij

ij ij ij

a
S

a b c
=

+ +
, where aij represents 

the number of parts processed by both machines i and j; bij is the number of parts processed 
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by machine i but not by machine j; and cij is the number of parts processed by machine j but 

not by machine i. After calculating the similarity matrix for each pair of machines, we are 

able to generate the initial machines assignment by using the following greedy rule: the 

higher the similarity measure of a pair of machines, the higher priority they have for 

placement in the same cell. This process is repeated until all machines have been assigned 

to cells. For the sample machine-part matrix in Figure 4.3(a), the corresponding similarity 

matrix for machines is displayed in Figure 4.3(b). Assuming that two cells are to be formed, 

the largest coefficient in the matrix of Figure 4.3(b) is 0.67, indicating that machines 2 and 4 

must be assigned to the same cell, e.g. cell 1. We proceed to the second largest coefficient in 

the matrix, 0.5, appearing in pairs (1, 3) and (1, 5). Since these three machines do not have 

any relationship with any machines in cell 1, they should be assigned together to the next 

cell, cell 2. Figure 4.4 shows the machines assignment using the proposed greedy rule. 

   
 P1 P2 P3 P4 P5

M1 1 0 0 1 0 
M2 0 1 1 0 1 
M3 1 0 0 0 0 
M4 0 1 1 0 0 
M5 0 0 0 1 0 
(a) Machine-part matrix 

   
 M1 M2 M3 M4 M5

M1 - 0 0.50 0 0.50
M2  - 0 0.67 0 
M3   - 0 0 
M4    - 0 
M5     - 
(b) Similarity matrix for machines 

Figure 4.3 Machine-part matrix and corresponding similarity matrix for machines 

 
  P1 P2 P3 P4 P5

M2 0 1 1 0 1 Cell 1 M4 0 1 1 0 0 
 M1 1 0 0 1 0 

Cell 2 M3 1 0 0 0 0 
 M5 0 0 0 1 0 

         Figure 4.4 Assignment of machines 

(2) Parts assignment 

In this procedure, the parts are assigned to cells so that the number of voids and 

exceptional elements—major components comprising the formula of grouping 
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efficacy—are explicitly considered. It can be summarized as follows: 

Step 1. Read the results of machines assignment. 

Step 2. For each part, find the cell to which a part assignment will result in the least sum of 

number of exceptional elements and number of voids. If a tie happens, assign the 

part to a cell with the least number of voids. 

Step 3. Repeat Step 2 until all parts have been assigned to cells. 

Results of parts assignment shown in Figure 4.5 demonstrate this procedure. After 

calculating the sum of numbers of voids and exceptional elements for each part-cell 

combination, parts 2, 3, and 5 are assigned to cell 1, while parts 1 and 4 are assigned to cell 

2. The initial solution matrix for this CFP can thus be obtained and the configuration for this 

initial solution can be represented by Figure 4.5. 

  P2 P3 P5 P1 P4
M2 1 1 1 0 0 Cell 1 M4 1 1 0 0 0 

 M1 0 0 0 1 1 
Cell 2 M3 0 0 0 1 0 

 M5 0 0 0 0 1 

       Figure 4.5 Initial solution matrix obtained 

4.1.2 SA/TS/WFA algorithms 

When designing a heuristic search algorithm, several important considerations should 

be kept in mind. The first is to develop a mechanism for searching the neighborhood 

solutions for improvement. Since the neighborhood will be searched next, the choice of 

neighborhood function will strongly influence the direction of the search. Another 

consideration is the mechanism for allowing escape from local optima and for settling only 

in a global optimum. Based on these concepts, three algorithms, namely HSAM, HWFAM, 

and HTSM, are developed in this section.  

(1) Configuration 

An easy way to represent the configuration of a feasible solution to CFP is through a 
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string, whose size is equal to the number of machines/parts. The jth bit of the string stores 

the identifier of the cell to which the machine/part is assigned. For example, Figure 4.6 is 

the configurations for machine cells and part families. In such a configuration, the string (2, 

1, 2, 1, 2) in Figure 4.6(a) indicates that machines 2 and 4 are assigned to cell 1, while 

machines 1, 3, and 5 are assigned to cell 2; the string (2, 1, 1, 2, 1) in Figure 4.6(b) 

represent that machines 2, 3, and 5 are assigned to cell 1, while parts 1 and 4 are assigned to 

cell 2. 

 

    
Machine # 1 2 3 4 5

Cell # 2 1 2 1 2

(a) Configuration for machine cells 

   
Part # 1 2 3 4 5 

Cell # 2 1 1 2 1 

(b) Configuration for part families 

Figure 4.6 Configuration of a feasible solution to the CFP  

(2) Insertion-move operation 

In this study, the insertion-move operation is applied as a mechanism for searching the 

neighborhood solutions for improvement. It moves a machine k from its current cell l 

(source cell) to a new cell l′  (destination cell). The new move is denoted as ( l′ , k). A move 

that results in the greatest improvement of the objective function value from the current 

solution is selected. That is, 

( ', ) ( , )(  ) { - , , ' , ' , }Fl k l kZ l', k Max obj obj l l l l k MN= ∀ ∈ ≠ ∀ ∈  (4.1)

where ( , )l kobj  is the objective function value; NF is the set of feasible solutions; and 

M is the set for machines. 

(3) Mutation strategy 

The mutation strategy of GA aims to increase the probability of finding more 

“diversified” solutions in order to bring the searching process to a new and unexplored 
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solution space, thus ensuring that large areas of the space are searched. In this study, the 

mutation strategy mut_check is implemented when the number of moves has not been 

improved within a certain number of iterations. This performs an exchange of a machine to 

any cell other than the current one based on a prescribed probability β. That is, all machines 

have the probability of changing cell when machine mutation is applied. For each machine 

in the incumbent solution, a random number from (0, 1) is first drawn. If the value is greater 

than β, then the machine is exchanged with another randomly determined cell; otherwise, it 

stays in the current cell. Through this strategy, the search is able to explore a large solution 

space, thereby enhancing the possibility of finding the optimum solution in a very short 

time. The procedure of the mutation strategy in the pseudo-code format is shown in Figure 

4.7. 

 

 
Mutation_strategy ( β ) 
{ 

Let the current solution (S) equal to the current best solution (S*). 
    FOR each machine DO 

{ 
Generate a random number (0,1)r U∈ . 
IF ( r β> ) 

Exchange machine with any cells other than the current one. 
        ELSE 
            Stay machine in the current cell. 

} 
} 
  

Figure 4.7 Pseudo code of mutation strategy 

4.1.2.1 SA-based algorithm (HSAM) 

As mentioned in Section 2.6, the main disadvantages of SA are as follows: (1) high 

execution time, (2) ease of being trapped to local minima if the cooling speed is too fast or 

the initial temperature is not high enough, and (3) difficulty of obtaining a globally optimum 
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solution if the search cannot reach the equilibrium state at each temperature. In this study, 

two types of mechanisms, the insertion-move and the mutation strategy of GA, are utilized 

to construct a hybrid SA method called HSAM to address these issues. Both mechanisms 

play different roles in the process of solution improvement. We use insertion-move as a 

primary tool for finding better neighborhood solution, while employing mutation strategy to 

increase the probability of finding more “diversified” solutions to bring the searching 

process to a new and unexplored solution space. The pseudo-code format of the proposed 

procedure HSAM is diagrammed in Figure 4.8 and described in detail below. 

Algorithm HSAM 

Step 1. Read initial solution 0S .  

Step 2. Initialization: Let counter_MC = 0, 0T T= , 0S S← , * 0S S← . 

Step 3. If counter_MC < L, then repeat Steps 3.1 to 3.5; otherwise, go to Step 4. 

Step 3.1. If counter_mut ≥  mut_check, then apply the mutation strategy to generate 

a new current solution S and let counter_mut = 0. 

Step 3.2. Generate a best solution NS ( )CN NS ∈  in the neighborhood of S  by 

performing the insertion-move operation. 

Step 3.3. Compute ( ) ( )Nf S f SΔ = − . If (( 0Δ > ) or ( (0,1)Te r UΔ > ∈ )), then let 

NS S← , counter_mut = 0; otherwise, counter_mut = counter_mut + 1. 

Step 3.4. If ( *( ) ( )Nf fS S> ), then let * NS S← . 

Step 3.5. Let counter_MC= counter_MC + 1, go to Step 3. 

Step 4. If fT T≤ , then report the best solutions so far, and stop the algorithm; otherwise, T 

=T × α, counter_MC = 0, go to Step 3. 

Note that the algorithm starts from an initial solution in Step 1, after which all 

algorithmic parameters and counters are initialized in Step 2. As long as the value of 

counter_mut is smaller than mut_check, a new neighborhood solution is generated through 
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the insertion-move in Step 3.2; otherwise, mutation strategy is applied to generate a new 

solution with higher degree of diversification in Step 3.1. If the newly generated 

neighborhood solution is better than the current solution or the probability function ( TeΔ  is 

great than a random number r), a replacement is made and the counter_mut will be set to 0 

in Step 3.3; otherwise, the counter_mut is increased by 1. The incumbent solution will be 

updated in Step 3.4 if the newly generated neighborhood solution results in a better 

objective function value. Step 3 will be repeated L times at each temperature to reach the 

thermal equilibrium. Parameter T is gradually decreased by a cooling function and the 

solution process repeats until the stopping criteria in Step 4 is met. 
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HSAM_Algorithm ( ) 
{ 

Read initial solution 0S . 
Let counter_MC = 0, counter_mut = 0, 0T T= , 0S S← , * 0S S← . 
WHILE( fTT > ) 
{ 
   WHILE(counter_MC < L) 

{ 
IF(counter_mut ≥  mut_check) 

    { 
        Apply the mutation operator to generate a new current solution S.  

Let counter_mut = 0. 
    }  

Generate a best solution ( )N N CS S N∈  in the neighborhood of S  by 
performing the insertion-move operation. 
Compute =Δ ( ) ( )Nf f SS − . 
IF (( 0>Δ ) or ( (0,1)Te r UΔ > ∈ )) 

Let counter_mut = 0, NS S← . 
ELSE 

Let counter_mut = counter_mut + 1. 
IF ( *( ) ( )Nf fS S> ) 

Let * NS S← . 
Let counter_MC= counter_MC + 1. 

}      
Let T =T ×α, counter_MC = 0.  

 } 
} 
  

Figure 4.8 Pseudo code of proposed HSAM procedure 

 

4.1.2.2 TS-based algorithm (HTSM) 

Most tabu-based algorithms adopt short-term memory as the primary design for ease of 

implementation. The solution searching process of short-term TS usually gets trapped in 

local solutions. Hence, some strategies are developed to guide the search and obtain a 

limited level of diversified solutions in order to increase the probability of finding the 

optimal/near-optimal solutions. In this section, the mutation strategy is utilized as a 
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diversification strategy in the design of our proposed hybrid TS algorithm called HTSM. 

(1) Moves 

In this study, the insertion-move operation is applied as a mechanism for searching the 

neighborhood solutions. The neighborhood solutions (NF) are defined as: F C T AN N N N= − + , 

where NC is the set of solutions without violating cell cardinality constraints; NT is the set of 

solutions in tabu status; and NA is the set of solutions satisfying the aspiration criterion. 

(2) Tabu list 

In the process of tabu search, certain moves are characterized as tabu for some 

iterations (tabu tenure/tabu list size) to avoid repetition of previously visited solutions. In 

this paper, a tabu list TL[ ][ ][ ]m NC NC  with a three-dimensional array (m×NC×NC) is 

used to check if a move from a solution to its neighborhood is forbidden or allowed (where 

m is the number of machines and NC is the number of cells). If machine k moves from its 

current cell l to a new cell l’, then moving machine k from cell l’ to cell l will be forbidden 

for a certain number of iterations, which is equal to the tabu list size (e.g.TL[ ][ ][ ]k l l tls′ = ). 

(3) Aspiration criterion  

The tabu restriction may be overridden if the move will result in a solution that is 

better than the best solution found thus far. This aspiration criterion is applied in the 

proposed algorithm. 

(4) Stopping criterion  

The proposed solution procedure will be terminated if a maximum number of iterations 

Nmax have been reached or the solution has not been improved within a certain number of 

iterations stag_check.  

The pseudo-code format of the proposed procedure HTSM is diagrammed in Figure 

4.9 and is described in detail below: 
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Algorithm HTSM 

Step 1. Read initial solution 0S . 

Step 2. Initialization: Let counter_iter = 0, counter_stag = 0, 0S S← , * 0S S← , 

TN =∅ . 

Step 3. If counter_iter ≤ Nmax and counter_stag ≤ stag_check, repeat Steps 4 to 8; 

otherwise, go to Step 9. 

Step 4. If counter_mut ≥  mut_check, then apply the mutation strategy to generate a new 

current solution S and let counter_mut = 0.  

Step 5. Generate a best solution NS ( )FN NS ∈  in the neighborhood of S  by performing 

the insertion-move operation. 

Step 6. Update tabu list TN . 

Step 7. If *) ( )( N ff S S>  then * NS S← , counter_stag = 0, counter_mut = 0; otherwise, 

counter_stag = counter_stag + 1, counter_mut = counter_mut + 1. 

Step 8. Let NS S← , counter_iter = counter_iter + 1, go to Step 3. 

Step 9. Report the best solutions so far, and stop the algorithm. 

Note that the algorithm starts from an initial solution. All parameters and counters are 

initialized in Step 2. As long as the value of counter_mut is smaller than mut_check, a new 

neighborhood solution is generated through the insertion-move in Step 5; otherwise, 

mutation strategy is applied to generate a new solution with higher degree of diversification 

in Step 4. If the newly generated neighborhood solution results in a better objective function 

value, the incumbent solution will be updated, and counter_stag and counter_mut will be 

set to 0 in Step 7; otherwise, counter_stag and counter_mut are increased by 1. The solution 

process repeats until any of the two stopping criteria in Step 3 is met. 
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HTSM_Algorithm ( ) 
{ 

Read initial solution 0S . 
Let counter_iter = 0, counter_stag = 0, 0S S← , * 0S S← , TN =∅ . 
WHILE(counter_iter ≤ Nmax and counter_stag ≤ stag_check) 
{ 

  IF(counter_mut ≥  mut_check) 
  { 
      Apply the mutation strategy to generate a new current solution S.  

Let counter_mut = 0. 
  }  

Generate a best solution ( )N N FS S N∈  in the neighborhood of S  by 
performing the insertion-move operation. 

Update tabu list TN . 
IF ( *( ) ( )Nf fS S< ) 

Let counter_stag = 0, counter_mut = 0, * NS S← . 
ELSE 

Let counter_stag = counter_stag + 1, counter_mut = counter_mut + 1. 
Let NS S← , counter_iter = counter_iter + 1.          

 } 
} 

  
Figure 4.9 Pseudo code of proposed HTSM procedure 

4.1.2.3 WFA-based algorithm (HWFAM) 

As mentioned in Section 2.7, the main operations of WFA include (1) flow splitting 

and moving, (2) flow merging, (3) water evaporation, and (4) precipitation. We made 

several changes based on our trials, experiences, and observations.  

First, the splitting and moving operation is endowed with the mission of searching for 

better neighborhood solutions and ultimately the optimal/near-optimal solution. We hence 

applied two mechanisms, the insertion-move and the mutation strategy, to find the best 

neighborhood solution of the current solution. The mutation strategy is applied to find a 

rough direction for the neighborhood solutions in the first stage promptly; the exact location 

for the best neighborhood solution is then obtained through the “insertion-move” strategy in 



 

66 

the second stage. Figure 4.10 demonstrates the splitting and moving operation for searching 

neighborhood solutions. As flow i splits into subflows, the number of subflows ni is 

determined by its momentum, e.g. ni equals k. The machine mutation strategy is 

implemented to determine the rough directions for k subflows; that is, the locations of Xi1, 

Xi2, …, Xik can be identified. The insertion-move is then performed to find the best 

neighborhood solution around Xi1; that is, the X*
i1. This is repeated until the best 

neighborhood solution for each of the subflows has been found. For each iteration, these 

newly generated subflows may merge with others sharing the same location, proceed in a 

single stream, split further into more subflows at later iterations, or stagnate in the current 

location until the stopping criteria of the algorithm is met. 

Second, the mass of the subflows is determined based solely on their ranks (Section 

2.7.1) without considering their respective performances in the original WFA. Subflows 

with better objective values should possess greater masses and should persist longer in the 

water-flowing process. Based on this concept, a new formula for assigning mass to each 

subflow is designed (Eq. (4.2)).   

1
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where f(Xik) is the objective value of solution Xik. 
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Figure 4.10 Proposed flow splitting and moving operation for searching neighborhood 

solutions 

Third, in addition to the fixed-ratio evaporation presented in the original WFA, another 

way of evaporation—velocity-based evaporation—is presented and added to the procedure. 

Eq. (2.10) shows that the higher the altitude drop (i.e., the larger improvement in objective 

value) of a subflow, the larger the velocity it will be subjected to. We define an evaporation 

ratio that is conversely related to improvement in velocity, such that flows with smaller 

velocities should evaporate more quickly than those with larger velocities. The formula is 

presented below: 

(1 )i i iW Wρ= − , (4.3)
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Finally, regular precipitation is performed based solely on a fix iteration (t) to pour 

down the evaporated water without considering the mass of the evaporated water flow in the 

original WFA. As mentioned in Section 2.7.3, water evaporation and precipitation are used 

to avoid being trapped and to explore more solution spaces. Hence, when water vapor 

accumulates to a certain volume (i.e., solution is trapped), it should return to the ground 

through precipitation (i.e., escaping from local optima). Based on this concept, another 

precipitation, the “moist precipitation” is added to the procedure. Moist precipitation is used 

when the mass of the evaporated water flow reaches half of its original total mass, W0. 

The proposed WFA procedure, namely HWFAM, is presented in pseudo-code format 

in Figure 4.11 and is described in detail below. 

Algorithm HWFAM 

Step 1. Read initial solution.  

Step 2. Initial HWFAM parameter settings: Nmax, N, W0, V0, Tm. 

Step 3. If counter_iter ≤ Nmax, repeat Steps 4 to 16; otherwise, go to Step 17. 

Step 4. For each flow, execute Steps 5 to 16. 

Step 5. Calculate the number of subflows based on Eq. (2.8). 

Step 6. Flow splitting and moving through mutation strategy and insertion-move 

operation. 

Step 7. Check whether the new best solution is found. If yes, update best solution.  

Step 8. Calculate mass and velocity based on Eqs. (4.2) and (2.10). 

Step 9. Merge flows with the same objective values and update the resulting mass and 

velocity based on Eqs. (2.11) and (2.12). 
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Step 10. Update the total number of water flow:
1

N

i
i

N n
=

← ∑ . 

Step 11. Perform evaporation operation and update the resulting mass for each water flow 

based on Eq. (4.3). 

Step 12. Check whether precipitation condition is met. If yes, perform Steps 13, 14, and 15; 

otherwise, go to Step 16. 

Step 13. Perform mutation strategy to the current best solution to generate new solutions 

deviated from the current ones. 

Step 14. Distribute mass to flows poured based on Eq. (2.14) or (2.15) depending on the 

type of precipitation. 

Step 15. Check whether the new solution has the same objective value. If yes, merge it and 

update the resulting mass and velocity based on Eqs. (2.11) and (2.12), then update 

the total number of water flow N.  

Step 16. Let counter_iter = counter_iter + 1, go to Step 3. 

Step 17. Report the best solutions so far, and stop the algorithm. 

Note that in the mutation strategy, a threshold probability value set at 0.8 implies that 

each machine has a 20% probability of being assigned to other cells. In the HWFAM 

procedure, the mutation strategy is used in Steps 6 and 13 with different threshold 

probability values (β): 0.8 in Step 6 and 0.5 in Step 13. The main purpose of Step 6 is to 

find some neighborhoods of the current solution, thus the probability of being assigned to 

other cells is set at a comparatively low value. On the other hand, the purpose of Step 13 is 

to explore solutions of unvisited regions through the precipitation operation; thus, it 

becomes necessary to increase the probability of being assigned to other cells to find 

solutions more deviated from the current best.  
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HWFAM_Algorithm ( ) 
{ 

Read initial solution. 
Initial HWFAM parameter settings. 
Let counter_iter = 0, N=1. 
WHILE (counter_iter < Nmax) 

{ 
FOR each flow 
{ 

Calculate the number of subflows based on Eq. (2.8). 
Flow splitting and moving through the mutation strategy and insertion-move operation. 
IF the new best solution found. 
THEN Update best Solution. 
Calculate the mass and velocity based on Eqs. (4.2) and (2.10). 
IF flows have the same solutions 
THEN run flow merging operation and update Wi and Vi using equations (2.11) and (2.12). 
Update the total number of flow N. 
Run water evaporation and update the mass of flow Wi by equation (4.3). 
IF precipitation condition is met  
{ 

Perform mutation strategy to generate new solutions. 
Calculate the masses of the pour-downed flows Wi’ using equation (2.15) and let Vi’= V0. 
IF flows have the same solutions  
THEN run flow merging operation and update Wi and Vi using equations (2.11) and (2.12).
Update the total number of flow N. 

} 
} 
Let counter_iter = counter_iter + 1. 

} 

} 
  

Figure 4.11 Pseudo code of proposed HWFAM procedure 

 

4.2 Proposed Algorithms for Generalized CFP 

In this section, a fast and effective two-stage HGCFA merging a generalized 

SCM-based clustering algorithm and SA/TS/WFA method is proposed to solve generalized 

CFP. The framework of the proposed HGCFA is illustrated in Figure 4.12. 
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 Figure 4.12 Framework of the proposed hybrid generalized CF algorithm (HGCFA) 

 

The first stage mainly solves the CF and inter-cell layout (Inter CL) problem 

simultaneously in terms of minimizing the sum of total inter-cell move cost (ICMC) and 
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MBC. In the second stage, the final solution obtained from the first stage is used to 

construct an initial solution to be improved by the proposed algorithms to determine 

intra-cell layout (intra CL) in terms of maximizing the CFFI. 

The detailed procedures of both stages are described below. 

Stage I of HGCFA:  

Step 1. Set mNC m U= ⎡ ⎤⎢ ⎥ . 

Step 2. Apply the generalized SCM-based clustering algorithm, as mentioned in Section 

4.4.1, to generate an initial solution 0S . 

Step 3. Let ** 0S S← . 

Step 4. Apply SA/TS/WFA procedure, as mentioned in Sections 4.1.2, to improve 0S  and 

generate an incumbent solution *S . 

Step 5. If * **( ) ( )f fS S< , then set ** *S S← , * NCC = , NC = NC+1, go to Step 2; 

otherwise, report the best cell formation and inter-cell layout found, and terminate 

stage I. 

Note that the algorithm in this stage consists of an initial solution and an improvement 

procedure that will be repeatedly applied until a cell formation resulting in the minimum of 

the total inter-cell move cost (ICMC) and the machine breakdown cost (MBC) have been 

found. In Step 1, the initial number of cells, NC, can be easily approximated by the nearest 

integer that is greater than mm U ; it gradually increases by increments of 1 as long as 

solution improvement is observed in Step 5. Every time the number of cells is increased, 

another initial solutions and SA/TS/WFA improvement procedure will be begun in Steps 2 

and 4, respectively. For a specific cell size, the best routing selection and grouping plan for 

parts and machines will be calculated iteratively and obtained in Step 4. Initial solutions of 

machine cells, routing selections, and part families are generated in Step 2. If larger cell 

sizes are considered, it is possible that better solutions may be obtained. The incumbent 
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solution (S*) of the current cell size (NC) is thus compared with the best cell formation 

solution (S**) found thus far in Step 5 to determine whether to increase the cell size by 1 and 

restart another SA/TS/WFA procedure to continue the search or to report the best cell 

formation solution found and terminate the solution. 

Determining the proper number of cells is a difficult decision in the cell formation 

stage because the layout designer does not have any knowledge regarding the cell size at the 

beginning. Unlike most of the study in the literature where the number of cells to be formed 

is prescribed beforehand, the number of cells resulting in the least total cost is automatically 

calculated and used in the proposed approach. However, to preserve flexibility, users are 

allowed to specify the preferred number of cells when implementing the algorithm. For 

users having specific preferences in cell size, the proposed algorithm can save considerable 

amount of run time because it will skip the process of iteratively searching for the cell size 

that will result in the best objective function values. The savings in run time become even 

more significant as the cell size increases. 

Stage II of HGCFA: 

Step 1. Read solutions from stage I, including number of cells, *C and cell formation with 

inter-cell layout **S .  

Step 2. Apply the initial solution construction, as mentioned in Section 4.4.2, to generate 

an initial solution 0S . 

Step 3. Apply SA/TS/WFA procedure, as mentioned in Section 4.1.2, to improve 0S  and 

generate a best layout of machines within each cell (S*). 

Note that the final solutions ( *C and **S ) obtained from the first stage will be read in 

Step 1 and will be used to construct an initial solutions of machines sequence configuration 

( 0S ) in Step 2. In Step 3, the initial solution ( 0S ) will be improved through SA/TS/WFA 

procedure, as mentioned in Section 4.1.2, to generate a best solution (S*) in terms of 

maximizing the CFFI. 
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4.2.1 Proposed algorithms for stage I 

Proposed algorithms for stage one consist of two procedures: the initial solution 

construction (i.e., generalized SCM-based clustering algorithm) and the solution 

improvement (i.e., SA, TS, and WFA). The SA/TS/WFA procedure is as mentioned in 

Section 4.1.2, while the initial solution construction will be described later. 

The initial solution is generated through generalized SCM-based clustering algorithm. 

It is composed of four parts: (1) determination of layout type, (2) formation of machine cells, 

(3) selection of routings for each part, and (4) formation of part families. The details of 

these procedures are given below. 

(1) Determination of layout type  

As mentioned in Section 3.3, two basic cellular layout types (e.g., max number of row 

r equal to 1 or 2) are considered in this study. When the layout designer has chosen a 

specific cellular layout type, this type is assumed and used in the subsequent design. 

(2) Formation of machine cells 

According to Seifoddini and Djassemi (1995), incorporation of production volume into 

the similarity measures may increase the probability of components with high production 

volumes being processed within a single cell. As a result, there will be fewer intercellular 

movements and lower material handling costs. The generalized SCM of Won and Kim 

(1997) is modified to incorporate product volume information. Taking into account a 

specific machine-part incidence matrix and product volume information, the corresponding 

similarity matrix for machines can be obtained using the following formula: 

ij
ij

i j ij

N
S

N N N
=

+ −
, (4.4)

where   

Sij = similarity coefficient between machines i and j 
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After calculating the similarity matrix for each pair of machines, the initial machine 

assignment is generated using the single linkage clustering (SLC) algorithm. The SLC 

algorithm works as follows: 

Step 1. Join the two most similar objects (two machines, a machine and a machine group, 

or two machine groups) to form a new machine group. 

Step 2. Evaluate the similarity coefficient between the new machine group and other 

remaining machine/machine groups as follows: { }Max      tv ij i t j vS S= ∈ ∈ , where i 

is the machine in the machine group t and j is the machine in the machine group v.  

Step 3. Repeat Steps 1 to 2 until a predetermined number of machine groups has been 

obtained. 

(3) Selection of routings for each part  

After the formation of machine cells have been obtained, the routing for each part can 

be determined by the procedure detailed below.   

Step 1. Read the results of the machine cells formed by the machine-based similarity 

matrix. 

Step 2. For each part with alternative routings, find the routing that will result in the least 

sum of objective value. If a tie occurs, make a random selection.  
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Step 3. Repeat Step 2 until the process routing has been determined for each part. 

(4) Formation of part families 

Part families are formed after the formation of machine cells and determination of the 

routing for each part. The procedure is summarized as follows: 

Step 1. Read the results of machine assignment and routing selection for each part. 

Step 2. For each part, find the cell to which a part assignment will result in the least sum of 

exceptional elements and voids. If a tie occurs, assign the part to a cell with the 

least number of voids. 

Step 3. Repeat Step 2 until all parts have been assigned to cells. 

4.2.2 Proposal algorithms for stage II 

This stage consists of two procedures: initial solution construction and solution 

improvement (i.e., SA, TS, and WFA). The SA/TS/WFA procedure is the same as discussed 

in Section 4.1.2. Initial solution construction and some elements comprising the proposed 

algorithms are described below. 

(1) Initial solution construction 

The initial solution of the sequence of machines in each cell can be generated by the 

following procedure: 

Step 1. Read the machine cells determined in stage one. 

Step 2. Arrange machine cells by cell number in an ascending order. 

Step 3. Arrange the sequences of machines in each cell in an ascending order. 

(2) Configuration 

A three-dimensional array is used to represent the configuration of a feasible solution 

of the sequences of machines within each cell. Figure 4.13 shows an example where 

machine #3 was assigned to the first sequence of cell #1. 
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Cell # 1 2 3 
Sequence # 1 2 3 1 2 3 1 2 3 4 
Machine # 3 7 8 2 4 6 1 10 9 5 

Figure 4.13 Configuration of an initial solution to sequence of machines 

 

(3) Neighborhood solution searching 

In this stage, the neighborhood of a given solution is defined as the set of all feasible 

solutions reachable by an exchange-move. The exchange-move is an operation that 

exchanges any pair of machines within the same cell. If we exchange machine k with 

machine k ′ , then the new move is denoted as (k, k ′ ). The move that results in the most 

improvement in CFFI value from the current solution is selected; that is, 

( , ) ( , )(  ) { - , ,     }Fk k k kZ k, k Max obj obj k k M and and k kN′ ′′ ′ ′= ∀ ∈ ∈ ≠  (4.5)

where ( , )k kobj ′ is the objective function value; M is the set for machines; and NF is the set of 

feasible solutions. 

(4) Mutation strategy 

When the number of moves has not been improved within a certain number of 

iterations, the mutation strategy (mut_check) is implemented by exchanging any pair of 

machines within the same cell based on a prescribed probability β. For each machine in the 

same cell, a random number from (0, 1) is first drawn. If the value is greater than β, then the 

machine sequence is exchanged with another randomly determined machines sequence 

within the same cell; otherwise, it remains in the current sequence. The procedure of 

machine sequence mutation strategy is presented in pseudo-code format in Figure 4.14. 
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Mutation_strategy ( β ) 
{ 

Let the current solution (S) equal to the best solution (S*). 
    FOR each machine in the same cell DO 

{ 
Generate a random number (0,1)r U∈ . 
IF ( r β> ) 

Exchange machine sequence with the other machines. 
        ELSE 
            Stay machine in the current sequence. 

} 
} 
  

Figure 4.14 Pseudo code of mutation strategy 

(5) Tabu list 

In the TS procedure, a two-dimensional array (m×m) TL[ ][ ]m m ,where m is the 

number of machines, is used as a tabu list to check if a move from a solution to its 

neighborhood is forbidden or allowed. If a pair of machines k and k ′ are exchanged, then 

the exchanging of machine k ′  and k will be forbidden for a certain number of iterations, 

which is equal to the tabu list size tls (e.g., TL[ ][ ]k k tls′ = ). 
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CHAPTER 5  

 NUMERICAL ILLUSTRATIONS 

As mentioned in Chapter 4, two hybrid meta-heuristic algorithms integrating 

SCM-based clustering algorithm and SA/TS/WFA are proposed to solve standard CFP and 

generalized CFP, respectively. To illustrate the effectiveness of our developed algorithms, 

two test examples are demonstrated in this chapter. Example #1 includes 10 machines and 

10 parts that comprise a simple CFP with a 0-1 machine-part incidence matrix. Example #2 

consists of 10 machines and 10 parts that form a generalized CFP. The proposed algorithms 

were coded in C++ using Microsoft Visual Studio 6.0 and implemented on an Intel(R) 

1.66GHz PC with 1GB RAM. Computation results for both types of CFP are shown and 

discussed separately in this chapter. 

5.1 An Illustrative Example for Standard CFP 

The 0-1 machine-part incidence matrix for example #1 is given in Figure 5.1. The 

minimum number of machines in each cell (Lm) is limited to 2 (i.e., singletons are not 

allowed). The objective function aims to determine machine cells and part families in which 

grouping efficacy can be maximized. The implementation of the proposed method for 

standard CFP is described as follows: 

M\P P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 
M1 0 1 0 0 1 0 0 1 0 0 
M2 1 0 1 0 0 0 1 0 0 0 
M3 0 0 0 1 0 1 0 0 1 1 
M4 1 0 0 0 0 0 1 0 0 0 
M5 0 1 0 0 1 0 0 1 1 0 
M6 1 0 0 0 0 0 1 0 0 0 
M7 0 0 1 1 0 1 0 0 1 1 
M8 0 0 1 1 0 1 0 0 1 1 
M9 0 1 0 0 0 0 0 1 0 0 
M10 0 1 0 0 1 0 0 0 0 0 

Figure 5.1 0-1 machine-part matrix of example #1  
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Stage I of HCFA: 

Step 1. Set NC = 2, 0 *) ) 0( (f S f S= = . 

Step 2. Apply the SCM-based clustering algorithm to generate an initial solution 0S . 

As mentioned in Section 4.1.1, the SCM-based clustering algorithm consists of three 

steps: (1) computation of similarity values between machine pairs and construction of a 

similarity matrix, (2) utilization of a clustering rule to process the values in the similarity 

matrix and formation of machine cells, and (3) assignment of parts to machine cells using a 

parts assignment procedure. They are described as follows: 

(1) Calculation of machine similarity matrix 

The corresponding similarity matrix for machines can be obtained by using Eq. (2.1) 

and is shown in Table 5.1. 

Table 5.1 Similarity matrix for machines in example #1 

Machine 1 2 3 4 5 6 7 8 9 10 
1 -          
2 0 -         
3 0 0 -        
4 0 0.67 0 -       
5 0.75 0 0.14 0 -      
6 0 0.67 0 1.00 0 -     
7 0 0.14 0.80 0 0.13 0 -    
8 0 0.14 0.80 0 0.13 0 1.00 -   
9 0.67 0 0 0 0.50 0 0 0 -  
10 0.67 0 0 0 0.50 0 0 0 0.33 - 

 

(2) Formation of machine cells 

The similarity matrix shows that the largest coefficient in the matrix is 1, appearing in 

pairs (7, 8) and (4, 6). Since pairs (7, 8) and (4, 6) do not have any relationship, they are 

assigned to cell #1 and cell #2, respectively. The second largest coefficient in the matrix (0.8) 

appears in pairs (3, 7); because machine 7 has been assigned to cell #1, machine 3 is 

assigned to the same cell. Next in line is pair (1, 5); machines 1 and 5 have not been 
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assigned to any cell so they should be assigned to cell #3. However, the initial NC is 2, so 

that machines 1 and 5 are assigned to cell #2. Using the same logic, we can assign machines 

2, 9, and 10 to cell #2. Thus, machines 3, 7, and 8 are assigned to cell #1, while machines 1, 

2, 4, 5, 6, 9, and 10 are assigned to cell #2, as shown in Figure 5.2. 

 

Cell No. M\P P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 
  M3 0 0 0 1 0 1 0 0 1 1 
1 M7 0 0 1 1 0 1 0 0 1 1 
  M8 0 0 1 1 0 1 0 0 1 1 
  M1 0 1 0 0 1 0 0 1 0 0 
  M2 1 0 1 0 0 0 1 0 0 0 
  M4 1 0 0 0 0 0 1 0 0 0 
2 M5 0 1 0 0 1 0 0 1 1 0 
  M6 1 0 0 0 0 0 1 0 0 0 
  M9 0 1 0 0 0 0 0 1 0 0 
  M10 0 1 0 0 1 0 0 0 0 0 

Figure 5.2 Assignment of machines 

(3) Formation of part families 

After calculating the sum of voids and exceptional elements for each part-cell 

combination (Figure 5.3), it became apparent that parts 3, 4, 6, 9, and 10 should be assigned 

to cell #1 and that parts 1, 2, 5, 7, and 8 should be assigned to cell #2 because this 

arrangement results in the least sum of voids and exceptional elements. Thus, the initial 

machine-part incidence matrix has been generated with a total grouping efficacy (Γ) of 

57.69%, as shown in Figure 5.4. 
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Cell No. M\P P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 
  M3 0 0 0 1 0 1 0 0 1 1 
1 M7 0 0 1 1 0 1 0 0 1 1 
  M8 0 0 1 1 0 1 0 0 1 1 
  M1 0 1 0 0 1 0 0 1 0 0 
  M2 1 0 1 0 0 0 1 0 0 0 
  M4 1 0 0 0 0 0 1 0 0 0 
2 M5 0 1 0 0 1 0 0 1 1 0 
  M6 1 0 0 0 0 0 1 0 0 0 
  M9 0 1 0 0 0 0 0 1 0 0 
  M10 0 1 0 0 1 0 0 0 0 0 
 Sum of voids and exceptional elements 
 Cell #1 6 7 2 0 6 0 6 6 1 0 
 Cell #2 4 3 8 10 4 10 4 4 9 10 

Figure 5.3 Assignment of parts 

 
Cell No. M\P P3 P4 P6 P9 P10 P1 P2 P5 P7 P8 

  M3 0 1 1 1 1 0 0 0 0 0 
1 M7 1 1 1 1 1 0 0 0 0 0 
  M8 1 1 1 1 1 0 0 0 0 0 
  M1 0 0 0 0 0 0 1 1 0 1 
  M2 1 0 0 0 0 1 0 0 1 0 
  M4 0 0 0 0 0 1 0 0 1 0 
2 M5 0 0 0 1 0 0 1 1 0 1 
  M6 0 0 0 0 0 1 0 0 1 0 
  M9 0 0 0 0 0 0 1 0 0 1 
  M10 0 0 0 0 0 0 1 1 0 0 

Grouping efficacy (Γ) =57.69% 

Figure 5.4 Solution configuration for NC=2 

Step 3. Since 0.5769 0> , then set * 0S S← , Let * 2C = , 2 1NC = + . Repeat Steps 2 and 

3 until 0 *( ) ( )f fS S< .  

The relationship between the NC and the resulting grouping efficacy ( 0( )f S ) is shown 

in Figure 4.1. It is observed that 0( )f S  increases as NC increases, and the 

optimal/near-optimal is achieved when NC=3. After that, efficacy starts to decrease as NC 
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increases. The suggested number of cells ( *C =3) and the cell configurations ( *S ) are shown 

in Figure 5.6. 
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Figure 5.5 Relationship between grouping efficacy and number of cells for example #1  

 
Cell No. M\P P1 P7 P3 P4 P6 P9 P10 P2 P5 P8 

 M2 1 1 1 0 0 0 0 0 0 0 
1 M4 1 1 0 0 0 0 0 0 0 0 
 M6 1 1 0 0 0 0 0 0 0 0 
 M3 0 0 0 1 1 1 1 0 0 0 
2 M7 0 0 1 1 1 1 1 0 0 0 
 M8 0 0 1 1 1 1 1 0 0 0 
 M5 0 0 0 0 0 1 0 1 1 1 
3 M9 0 0 0 0 0 0 0 1 0 1 
 M10 0 0 0 0 0 0 0 1 1 0 
 M1 0 0 0 0 0 0 0 1 1 1 
 Grouping efficacy ( Γ )=85.71% 

Figure 5.6 Solution configuration for NC=3 

Stage II of HCFA: 

Step 1. Read solutions from stage one, including number of cells ( *C ) and cell 

configurations ( *S ). 

Step 2. Let 0 *S S← , *NC C= . 
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Step 3. Apply HSAM algorithm (as mentioned in Section 4.1.2.1) to improve 0S  (Figure 

5.6). Using *C =3, a total grouping efficacy ( Γ ) of 85.71% can be obtained. Note 

that the solution is the same as the initial solution found in stage I. This implies that 

our proposed SCM-based clustering algorithm can produce a good initial solution.  

To evaluate the performance of our proposed HCFA, the mathematical model 

described in Section 3.2.2 is solved using Lingo 8.0 software. The Lingo solver status for 

example #1 is shown in Figure 5.7. It took about 32 seconds to obtain the optimal solution 

(0.857143). In contrast, our proposed HCFA was able to find the optimal solution in 0.14 

seconds, thus illustrating the superiority of HCFA in solution efficiency. We believe this 

superiority will be even more significant as the problem size increases.  

 

 

Figure 5.7 Lingo solver status for example #1 

5.2 An Illustrative Example for Generalized CFP 

Example #2 consists of 10 machines, 10 parts, and 18 process routings. The production 

data (production volumes, alternative process routings, and processing times) are 
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summarized in Table 5.2. In this table, entry (j, k) means the order of machine k in part route 

j, while the number in parentheses refers to production time. For instance, the order of 

machine #1 (M1) in routing #1 (R1) for part #1 (P1) is 1. The production time of machine 

#1 (M1) in routing #1(R1) for part #1 (P1) is 2 minutes. Machine reliability information is 

shown in Table 5.3. For instance, the MTBF for machine #1 is 2241 minutes and breakdown 

cost is 1300. The maximum number of machines in each cell (Um) is limited to 4 and the 

minimum number of machines in each cell (Lm) is 2. Intercellular movement unit cost is 

assumed to be 5. The linear single-row layout is chosen. Implementation of the proposed 

HGCFA for cell formation, cell layout, and intracellular machine layout simultaneously with 

considerations of alternative routing, production volume, and machine reliability is 

described as follows: 

Table 5.2 Initial machine-part matrix of example #2 

PN P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 
PV 150 95 130 80 120 95 135 145 100 150 
RN R1 R2 R1 R2 R1 R1 R2 R1 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2
M1 *1(2)   1(6)    1(2) 1(4)   1(5) 1(3) 1(3)   1(5)  
M2 2(5) 2(2)   1(2)    2(6)  1(6) 2(6)       
M3      1(6) 1(6)  3(3) 1(3)     1(6) 1(4) 2(2) 1(5)
M4 3(6) 1(4)         2(4) 3(4)       
M5   3(5) 4(6)    3(5)     5(2) 3(3) 4(5)    
M6  3(3)         3(4)        
M7   2(4)  3(3)  3(5)   3(6)     3(6)  3(4) 3(5)
M8   1(6)  2(4) 2(3) 2(5)   2(2)   3(4)  2(3) 2(6)  2(6)
M9    3(2)  3(3)       4(5) 2(5)  3(4)   
M10    2(6)    2(2)     2(5)      
PV: Production Volume; PN: Part Number; RN: Routing Number; * Process Sequence (Production Times) 
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Table 5.3 Machine reliability information for example #2 

Machine Breakdown cost MTBF(min)
1 1300 2241 
2 1200 3403 
3 1000 2133 
4 1600 3600 
5 1400 2271 
6 1000 2159 
7 1200 3374 
8 1400 4380 
9 1500 1316 
10 1300 854 

Stage I of HGCFA: 

(1) Determination of the initial number of cells and selection of cell layout 

The initial number of cells is calculated: ⎡ ⎤ 34/10 ==NC . Then, cells are arranged in 

a linear single-row cellular layout, as shown in Figure 5.8. 

 

Cell #1 (1,1) Cell #2 (1,2) Cell #3 (1,3)
 

Figure 5.8 Initial linear single-row layout 

 

(2) Calculation of machine similarity matrix 

The corresponding similarity matrix for machines can be obtained by using Eq. (4.4) 

and is presented in Table 5.4. 

Table 5.4 Similarity matrix for machines in example #2 

Machine 1 2 3 4 5 6 7 8 9 10 
1 -          
2 0.37 -         
3 0.23 0.11  -        
4 0.32 0.56  0.00 -       
5 0.36 0.00  0.13 0.00 -      
6 0.00 0.56  0.00 1.00 0.00 -     
7 0.11 0.13  0.65 0.00 0.21 0.00 -    
8 0.09 0.11  0.54 0.00 0.37 0.00 0.82 -   
9 0.22 0.00  0.27 0.00 0.38 0.00 0.00 0.37  -  
10 0.40 0.00  0.00 0.00 0.78 0.00 0.00 0.14  0.44 - 
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(3) Assignment of machines to cells 

Three cells are to be formed initially. The largest coefficient in the similarity matrix is 

1, indicating that machines 4 and 6 must be assigned to cell #1. The second largest 

coefficient in the matrix (0.82) appears in pair (7, 8). Since machines 7 and 8 have not been 

assigned to any cell, they are assigned to cell #2. Pair (5, 10) is considered next, and since 

machines 5 and 10 have not been assigned to any cell, they are assigned to cell #3. The next 

choice is pair (3, 7); machine 3 is assigned to cell #2 as well because machine 7 has been 

assigned there. Next is pair (2, 4); machine 2 is also assigned to cell #1 because machine 4 

has been assigned there. Applying the same logic, we can determine that machine 1 should 

be assigned to cell #3, while machine 9 should be assigned to cell #3. Thus, machines 2, 4, 

and 6 are assigned to cell #1; machines 3, 7, and 8 are assigned to cell #2; and machines 1, 5, 

9, and 10 are assigned to cell #3, as shown in Table 4. 

 

Table 5.5 Formation of machine cells for numerical example #2 

PN P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 

PV 150 95 130 80 120 95 135 145 100 150 

Cell 
No. 

RN R1 R2 R1 R2 R1 R1 R2 R1 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2
 M2 2(5) 2(2)   1(2) 2(6) 1(6) 2(6)    

1 M4 3(6) 1(4)    2(4) 3(4)    

 M6  3(3)    3(4)    

 M3      1(6) 1(6) 3(3) 1(3)  1(6) 1(4) 2(2) 1(5)
2 M7   2(4)  3(3) 3(5) 3(6)  3(6)  3(4) 3(5)
 M8   1(6)  2(4) 2(3) 2(5) 2(2) 3(4)  2(3) 2(6) 2(6)
 M1 1(2)   1(6)  1(2) 1(4) 1(5) 1(3) 1(3)   1(5)
3 M5   3(5) 4(6)  3(5) 5(2) 3(3) 4(5)  

 M9    3(2)  3(3) 4(5) 2(5)  3(4)
 M10    2(6)  2(2) 2(5)    
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(4) Selection of routings for each part 

Routing 2 is selected by parts 1, 4, 6, 8, 9 and 10; while routing 1 is selected by parts 2, 

3, 5 and 7, because these selections will result in the least total ICMC and MBC. Thus, 

Table 5.5 is rearranged as Table 5.6. 

Table 5.6 Part routing assignment for numerical example #2 

PN P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 

PV 150 95 130 80 120 95 135 145 100 150 
Cell 
No. 

RN R1 R2 R1 R2 R1 R1 R2 R1 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2

 M2 2(5) 2(2)   1(2)    2(6)  1(6) 2(6)       
1 M4 3(6) 1(4)         2(4) 3(4)       
 M6  3(3)         3(4)        

 M3      1(6) 1(6)  3(3) 1(3)     1(6) 1(4) 2(2) 1(5)
2 M7   2(4)  3(3)  3(5)   3(6)     3(6)  3(4) 3(5)
 M8   1(6)  2(4) 2(3) 2(5)   2(2)   3(4)  2(3) 2(6)  2(6)

 M1 1(2)   1(6)    1(2) 1(4)   1(5) 1(3) 1(3)   1(5)  
3 M5   3(5) 4(6)    3(5)     5(2) 3(3) 4(5)    
 M9    3(2)  3(3)       4(5) 2(5)  3(4)   
 M10    2(6)    2(2)     2(5)      

Total inter-cell move cost (ICMC) and the machine breakdown cost (MBC) 

ICMC 1500 0 475 0 650 400 0 0 1425 0 0 1350 1450 0 500 500 750 0

MBC 839 581 610 1766 397 575 495 874 555 397 776 917 2584 1347 899 835 789 906

TC 2339 581 1085 1766 1047 975 495 874 1980 397 776 2267 4034 1347 1399 1335 1539 906

 

(5) Formation of part families 

After calculating the sum of voids and exceptional elements for each part-cell 

combination (Figure 5.6), we observed that parts 1 and 7 should be assigned to cell #1, parts 

2, 3, 4, 6, 9 and 10 should be assigned to cell #2, and parts 5 and 8 should be assigned to 

cell #3 because this arrangement results in the least sum of voids and exceptional elements. 

Thus, the initial machine-part incidence matrix has been generated with total ICMC and 

MBC of 8843, as shown in Figure 5.9. 
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PN P1 P7 P2 P3 P4 P6 P9 P10 P5 P8 
PV 150 135 95 130 80 95 100 150 120 145 

Cell 
No. 

RN R2 R1 R1 R1 R2 R2 R2 R2 R1 R2 
 M2 2(2) 1(6)  1(2)         
1 M4 1(4) 2(4)           
 M6 3(3) 3(4)           
 M3      1(6) 1(3) 1(4) 1(5)     
2 M7    2(4) 3(3) 3(5) 3(6)  3(5)     
 M8    1(6) 2(4) 2(5) 2(2) 2(6) 2(6)     
 M1          1(2) 1(3) 
3 M5    3(5)      3(5) 3(3) 
 M9        3(4)    2(5) 
 M10          2(2)   

Total inter-cell move cost (ICMC) and the machine breakdown cost 
(MBC)=8843 

ICMC 0 0 475 650 0 0 500 0 0 0 
MBC 581 776 610 397 495 397 835 906 874 1347 

TC 581 776 1085 1047 495 397 1335 906 874 1347 
Sum of voids and exceptional elements 

Cell #1 0 0 6 4 6 6 6 6 6 6 
Cell #2 6 6 2 2 0 0 2 0 6 6 
Cell #3 7 7 5 7 7 7 5 7 1 1 

Cell #1 (1,1)
M2, M4, M6

Cell #3 (1,3)
M1, M5, M9, M10

Cell #2 (1,2)
M3, M7, M8

 
Figure 5.9 Initial solution of stage I for example #2 

 

(6) Improvement of ICMC through HGCFA algorithm in stage I 

The initial solution generated in Figure 5.9 with total ICMC and MBC of 8843 can be 

improved through the HGCFA algorithm in stage I. After 0.64 seconds CPU time, the final 

solution with a total ICMC and MBC of 8843 can be obtained. Note that the final solution is 

similar to the initial solution. This means that our proposed generalized SCM-based 

clustering algorithm can produce a good initial solution. So far, cells have been formed and 

cell layout has been determined. Solution regarding the machine layout (sequence) for each 

cell is left to be determined in the next step. 
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In order to get the optimal solution, a pure integer liner model described in Section 

3.4.2.1 is solved using a branch and bound (B&B) algorithm with the Lingo 8.0 software. 

The Lingo solver status for example #2 is shown in Figure 5.10. The optimal solution 

(8843.22) is obtained in 4 seconds. In contrast, our proposed HGCFA was able to find the 

optimal solution in 1 second, thus implying the superiority of HGCFA in solution efficiency. 

Similarly, we believe this superiority will be even more significant as problem size 

increases. 

 

Figure 5.10 Lingo solver status for stage I (cell formation and inter-cell layout) 

Stage II of HGCFA: 

(1) Generation of initial solution in stage II 

The initial solution of the sequence of machines in each cell can be generated by the 

following procedure: 

Step 1. Read the machine cells determined in stage one. 

Step 2. Arrange the machine cells by cell number in an ascending order. 
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Step 3. Arrange the sequences of machines in each cell in an ascending order. 

Using the above procedure, Figure 5.11, showing the initial machine sequences within 

each cell, can be constructed.  

 

Cell # 1 2 3 
Sequence # 1 2 3 4 1 2 3 1 2 3 
Machine # 1 5 9 10 3 7 8 2 4 6 

Figure 5.11 Initial configuration of machine sequence for example #2 

Based on the solution from stage I and the initial configuration of machine sequence, 

the corresponding flow matrix for machines can be obtained by using Eq. (3.25). This is 

presented in Table 5.7. Using Eq. (3.26), the initial CFFI can be calculated as follows: 

270CFFI= 11.25%
2400

cff

tf

N
N

= = .  

Table 5.7 Flow matrix 

Machine 1 2 3 4 5 6 7 8 9 10 
1 - 0 0 0 0 0 0 0 145 120 
2 0 - 0 135 0 150 0 130 0 0 
3 0 0 - 0 0 0 0 425 0 0 
4 0 150 0 - 0 135 0 0 0 0 
5 0 0 0 0 - 0 0 0 0 0 
6 0 0 0 0 0 - 0 0 0 0 
7 0 0 0 0 95 0 - 0 0 0 
8 0 0 0 0 0 0 550 - 100 0 
9 0 0 0 0 145 0 0 0 - 0 
10 0 0 0 0 120 0 0 0 0 - 

 

(2) Improvement of CFFI through HGCFA algorithm in stage II 

Through the proposed HTSCF in stage II, the CFFI can be improved to 65.21(%) after 

0.19 seconds CPU time. The final corresponding configuration for the cell formation, cell 

layout, and intracellular machine layout is displayed in Figure 5.12. 
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PN P1 P7 P2 P3 P4 P6 P9 P10 P5 P8 
PV 150 135 95 130 80 95 100 150 120 145 

Cell 
No. 

RN R2 R1 R1 R1 R2 R2 R2 R2 R1 R2 
1 M4 1(4) 2(4)            
  M2 2(2) 1(6)  1(2)          
  M6 3(3) 3(4)            
  M3      1(6) 1(3) 1(4) 1(5)     
2 M8    1(6) 2(4) 2(5) 2(2) 2(6) 2(6)     
 M7    2(4) 3(3) 3(5) 3(6)  3(5)     
  M1           1(2) 1(3) 
3 M9        3(4)     2(5) 
 M5    3(5)       3(5) 3(3) 
  M10           2(2)   

Total inter-cell move cost (ICMC) and the machine breakdown cost 
(MBC)=8843 

ICMC 0 0 475 650 0 0 500 0 0 0 
MBC 581 776 610 397 495 397 835 906 874 1347 

TC 581 776 1085 1047 495 397 1335 906 874 1347 
Consecutive forward flow index (CFFI) = 65.21(%) 

Cell #1 (1,1)
M4, M2, M6

Cell #3 (1,3)
M1, M9, M5, M10

Cell #2 (1,2)
M3, M8, M7

 
Figure 5.12 Final solution of stage II (cell formation, inter-cell layout and intra-cell layout) 

 

To evaluate the performance of our proposed HGCFA, the mathematical model 

described in Section 3.4.2.2 is solved using Lingo 8.0 software. The Lingo solver status is 

shown in Figure 5.13. The optimal solution (0.6521) is obtained in 1 second. In contrast, our 

proposed HGCFA was able to find the optimal solution in 0.2 seconds, thus illustrating the 

superiority of HGCFA in solution efficiency. We believe this superiority will be even more 

significant as problem size increases. 
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Figure 5.13 Lingo solver status for stage II (intra-cell layout) 
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CHAPTER 6   

 COMPUTATIONAL RESULTS AND COMPARISONS  

Two types of CFP are addressed in this thesis. Standard CFP is represented by a binary 

machine-part incidence matrix, while the generalized CFP had layout design and machine 

reliability considerations. In order to solve these problems quickly and effectively, two 

hybrid algorithms merging an SCM-based clustering algorithm and SA/WFA/TS 

meta-heuristics are presented in this thesis. The proposed algorithms were coded in C++ 

using Microsoft Visual Studio 6.0 and implemented on an Intel(R) 1.66 GHz PC with 1 GB 

RAM. Since the proposed methods might have stochastic features, five independent runs 

were performed for each test. The computation results for both types of CFP are shown and 

discussed separately in this chapter. 

6.1 Computational Results for Standard CFP 

To validate the quality of the solutions provided by the proposed algorithms for 

standard CFP, 35 test instances, each represented by a binary machine-part incidence matrix, 

from literature (Table 6.1) are used to evaluate the computational characteristics of our 

proposed HCFA. The matrices of the test problems range from 5×7 to 40×100, and consist 

of both well-structured and unstructured matrices. The parameters values for HCFA-HSAM, 

HCFA-HWFAM, and HCFA-HTSM throughout all runs are described in Table 6.2. Some 

studies in the literature allowed the existence of singletons in the solutions, while some did 

not. To make comparisons fair and meaningful, the computational results are shown and 

discussed separately in two subsections.  
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Table 6.1 Test instances from the literature for standard CFP 

No. Source Size (m×p) 
1 King and Nakornchai (1982) 5×7 
2 Waghodekar and Sahu (1984) 5×7 
3 Seifoddini (1989) 5×18 
4 Kusiak and Cho (1992) 6×8 
5 Kusiak and Chow (1987) 7×11 
6 Boctor (1991) 7×11 
7 Seifoddini and Wolfe (1986) 8×12 
8 Chandrasekharan and Rajagopalan (1986a) 8×20 
9 Chandrasekharan and Rajagopalan (1986b) 8×20 
10 Mosier and Taube (1985a) 10×10 
11 Chan and Milner (1982) 10×15 
12 Askin and Subramanian (1987) 14×23 
13 Stanfel (1985) 14×24 
14 McCormick et al.(1972) 14×24 
15 Srinivasan et al.(1990) 16×30 
16 King (1980) 16×43 
17 Carrie (1973) 18×24 
18 Mosier and Taube (1985b) 20×20 
19 Kumar et al. (1986) 20×23 
20 Carrie (1973) 20×35 
21 Boe and Cheng (1991) 20×35 
22 Chandrasekharan and Rajagopalan (1989) 24×40 
23 Chandrasekharan and Rajagopalan (1989) 24×40 
24 Chandrasekharan and Rajagopalan (1989) 24×40 
25 Chandrasekharan and Rajagopalan (1989) 24×40 
26 Chandrasekharan and Rajagopalan (1989) 24×40 
27 Chandrasekharan and Rajagopalan (1989) 24×40 
28 McCormick et al. (1972) 27×27 
29 Carrie (1973) 28×46 
30 Kumar and Vannelli (1987) 30×41 
31 Stanfel (1985) 30×50 
32 Stanfel (1985) 30×50 
33 King and Nakornchai (1982) 30×90 
34 McCormick et al. (1972) 37×53 
35 Chandrasekharan and Rajagopalan (1987) 40×100 
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Table 6.2 Parameters setting for HCFA-HSAM, HCFA-HWFAM, and HCFA-HTSM 

Algorithm Parameter settings 

HCFA-HSAM Initial temperature (T0): 80 

Final temperature (Tf): 0.002 

Cooling rate (α): 0.7 

Markov chain length (L): 30 

Mutation probability (β): 0.8 

HCFA-HWFAM Iteration limit (Nmax) : 100 

Initial mass (W0 ): 40 

Initial velocity (V0 ): 15 

Base momentum (Tm) : 100 

Mutation probability (β): 0.8 

HCFA-HTSM Maximum number of iterations (Nmax) : 3000 

Maximum number of solution has not been improved (Nstag ): 1000 

Tabu list size ( tls ): 7 

Mutation probability (β): 0.8 

 

6.1.1 Solutions allowing singletons  

The HGA (Tariq et al., 2009) and the GA (Mahdavi et al., 2009) are compared in order 

to demonstrate the power of the proposed algorithm given that singletons are allowed (i.e., 

Lm=1). The computational results are summarized and compared in Table 6.3. The best 

values for grouping efficacy (Γ) achieved by our proposed HCFA-HSAM, HCFA-HWFAM, 

and HCFA-HTSM are the same. In addition, our proposed algorithms are better than or 

equal to previously reported results except in problems #18 and #27. To be more specific, 

our proposed algorithms were able to improve the best values for grouping efficacy 

compared with the HGA method for 23 problems (#1, #5, #6, #7, #10, #12, #13, #14, #15, 
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#16, #17, #19, #20, #25, #26, #27, #28, #29, #30, #31, #32, #33, and #34); while for 11 

problems, our proposed algorithms obtained grouping efficacy values that are equal to the 

best results of the HGA method. Compared with the GA method, our proposed algorithms 

improved the best values for grouping efficacy for 5 problems (#16, #18, #20, #25, and #26); 

while for 16 problems, our proposed algorithms obtained grouping efficacy values that are 

equal to the best results of the GA method. Thus, it can be concluded that our proposed 

algorithms perform better than HGA and GA, especially in test problems with larger sizes. 

One noteworthy observation is that all the best solutions can be found in less than 63 

seconds regardless of the problem size, thus illustrating the superiority of our proposed 

algorithms in solution efficiency.  

6.1.2 Solutions not allowing singletons  

In order to demonstrate the power of the proposed algorithms when singletons are not 

allowed (i.e., Lm=2), comparisons against the KHMCF (Unler and Gungor, 2009) were 

performed. The computational results are summarized and compared in Table 6.4. The best 

values for grouping efficacy achieved by our proposed HCFA-HSAM, HCFA-HWFAM, 

and HCFA-HTSM methods are similar and our proposed algorithms yielded values better 

than or equal to those previously reported except in problem #32. To be more specific, 

HCFA improved the best grouping efficacy values of the KHMCF method for 9 problems 

(#12, #14, #16, #17, #18, #20, #26, #31, and #34); while for 10 problems, our proposed 

algorithms obtained grouping efficacy values that are equal to the best results of the 

KHMCF method. However, it should be noted that our proposed algorithms can achieve the 

best solutions in less than 56 seconds regardless of the problem size, thereby illustrating the 

superiority of our proposed algorithms in solution efficiency. 
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Table 6.3 The computational results in the case where singletons are allowed (Lm=1) 

Test instances HGA GA a  HCFA-HSAM b HCFA-HWFAM b HCFA-HTSM b 

No. Source Size   
(m×p) Γ(%) NC Γ(%) CPU 

time(s)  NC Γ(%) CPU 
time(s) NC Γ(%) CPU 

time(s) NC Γ(%) CPU 
time(s) 

1 King and Nakornchai (1982) 5×7 73.68 - - -  3 75.00+ 0.17 3 75.00+ 0.02 3 75.00+ 0.14  
2 Waghodekar and Sahu (1984) 5×7 69.57 2 69.57 0.01   2 69.57 0.13 2 69.57 0.01 2 69.57  0.12  
3 Seifoddini (1989) 5×18 79.59 2 79.59 0.02   2 79.59 0.19 2 79.59 0.03 2 79.59  0.16  
4 Kusiak and Cho (1992) 6×8 76.92 2 76.92 0.01   2 76.92 0.15 2 76.92 0.02 2 76.92  0.13  
5 Kusiak and Chow (1987) 7×11 58.62 5 60.87 0.02   5 60.87 0.28 5 60.87 0.03 5 60.87  0.22  
6 Boctor (1991) 7×11 70.37 4 70.83 0.03   4 70.83 0.24 4 70.83 0.03 4 70.83  0.20  
7 Seifoddini and Wolfe (1986) 8×12 68.30 - - -  4 69.44+ 0.29 4 69.44+ 0.03 4 69.44+ 0.22  
8 Chandrasekharan and Rajagopalan (1986a) 8×20 85.25 3 85.25 0.03   3 85.25 0.29 3 85.25 0.07 3 85.25  0.22  
9 Chandrasekharan and Rjagopalan (1986b) 8×20 58.72 2 58.72 0.03   2 58.72 0.28 2 58.72 0.03 2 58.72  0.21  

10 Mosier and Taube (1985a) 10×10 70.59 5 75.00 0.03   5 75.00 0.42 5 75.00 0.09 5 75.00  0.32  
11 Chan and Milner (1982) 10×15 92.00 3 92.00 0.03   3 92.00 0.29 3 92.00 0.09 3 92.00  0.22  
12 Askin and Subramanian (1987) 14×23 70.83 - - -  7 73.13+ 1.03 7 73.13+ 0.38 7 73.13+ 0.79  
13 Stanfel (1985) 14×24 70.51 7 71.83 0.57   7 71.83 1.12 7 71.83 0.40 7 71.83  0.79  
14 McCormick et al.(1972) 14×24 51.96 - - -  8 53.26+ 2.13 8 53.26+ 1.65 8 53.26+ 1.78  
15 Srinivasan et al.(1990) 16×30 67.83 - - -  6 68.99+ 1.72 6 68.99+ 1.24 6 68.99+ 1.24  
16 King (1980) 16×43 54.86 7 56.13 1.53   8 56.85+ 2.74 8 56.85+ 1.30 8 56.85+ 2.26  
17 Carrie (1973) 18×24 54.95 - - -  9 57.73+ 2.25 9 57.73+ 2.24 9 57.73+ 2.00  
18 Mosier and Taube (1985b) 20×20 43.45 5 42.94 0.62   5 43.36- 1.83 5 43.36- 1.73 5 43.36-  1.68  
19 Kumar et al. (1986) 20×23 49.65 - - -  7 50.81+ 1.27 7 50.81+ 0.97 7 50.81+ 1.12  
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20 Carrie (1973) 20×35 76.14 5 77.91 1.25   5 78.40+ 1.58 5 78.40+ 0.99 5 78.40+ 1.12  
21 Boe and Cheng (1991) 20×35 58.38 - - -  5 58.38 1.14 5 58.38 1.11 5 58.38  1.19  
22 Chandrasekharan and ajagopalan (1989) 24×40 100.00 7 100.00 1.60   7 100.00 1.73 7 100.00 0.73 7 100.00 1.26  
23 Chandrasekharan and Rajagopalan (1989) 24×40 85.11 7 85.11 1.92   7 85.11 1.74 7 85.11 2.14 7 85.11  1.29  
24 Chandrasekharan and Rajagopalan (1989) 24×40 73.51 7 73.51 1.48   7 73.51 1.76 7 73.51 1.56 7 73.51  1.28  
25 Chandrasekharan and Rajagopalan (1989) 24×40 52.50 10 52.87 3.26   11 53.29+ 6.23 11 53.29+ 7.05 11 53.29+ 5.63  
26 Chandrasekharan and ajagopalan (1989) 24×40 46.84 12 48.85 6.24   12 48.95+ 6.30 12 48.95+ 6.15 12 48.95+ 7.48  
27 Chandrasekharan and Rajagopalan (1989) 24×40 44.85 12 47.26 11.23   12 46.26- 5.76 12 46.26- 5.98 12 46.26-  6.54  
28 McCormick et al. (1972) 27×27 54.31 - - -  5 54.82+ 2.57 5 54.82+ 6.21 5 54.82+ 2.29  
29 Carrie (1973) 28×46 46.43 - - -  11 47.23+ 6.57 11 47.23+ 24.57 11 47.23+ 9.76  
30 Kumar and Vannelli (1987) 30×41 60.74 - - -  14 62.86+ 7.88 14 62.86+ 13.91 14 62.86+ 9.15  
31 Stanfel (1985) 30×50 59.66 13 60.12 19.30   13 60.12 9.11 13 60.12 12.78 13 60.12  7.84  
32 Stanfel (1985) 30×50 50.51 14 50.83 22.21   14 50.83 11.68 14 50.83 18.21 14 50.83  13.37  
33 King and Nakornchai (1982) 30×90 44.67 - - -  16 47.85+ 22.81 16 47.85+ 63.89 16 47.85+ 32.82  
34 McCormick et al. (1972) 37×53 59.60 - - -  3 60.50+ 2.20 3 60.50+ 22.97 3 60.50+ 2.33  
35 Chandrasekharan and Rajagopalan (1987) 40×100 84.03 10 84.03 99.63   10 84.03 8.34 10 84.03 17.43 10 84.03  5.67  

a Run on a Pentium IV, 2.1 GHz PC. 
b Run on a Pentium IV, 1.6 GHz PC. 
+: Solutions obtained by the proposed approach are superior to best solutions found in the literature. 
- : Solutions obtained by the proposed approach are inferior to best solutions found in the literature.
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Table 6.4 The computational results in the case where singletons are not allowed (Lm=2) 

Test instances KHMCF a HCFA-HSAM b HCFA-HWFAM b HCFA-HTSM b 

No. Source Size  
(m×p) NC Γ(%) CPU 

time(s) NC Γ(%) CPU 
time(s) NC Γ(%) CPU 

time(s) NC Γ(%) CPU 
time(s) 

1 King and Nakornchai (1982) 5×7 2 73.68 0.37 2 73.68 0.10 2 73.68 0.01 2 73.68 0.08  
2 Waghodekar and Sahu (1984) 5×7 2 62.50 0.34 2 62.50 0.09 2 62.50 0.00 2 62.50 0.08  
3 Seifoddini (1989) 5×18 2 79.59 0.96 2 79.59 0.11 2 79.59 0.00 2 79.59 0.09  
4 Kusiak and Cho (1992) 6×8 2 76.92 0.78 2 76.92 0.13 2 76.92 0.02 2 76.92 0.10  
5 Kusiak and Chow (1987) 7×11 3 53.13 0.37 3 53.13 0.13 3 53.13 0.00 3 53.13 0.10  
6 Boctor (1991) 7×11 3 70.37 0.37 3 70.37 0.10 3 70.37 0.00 3 70.37 0.09  
7 Seifoddini and Wolfe (1986) 8×12 - - - 3 68.29 0.16 3 68.29 0.02 3 68.29 0.11  
8 Chandrasekharan and Rajagopalan (1986a) 8×20 - - - 3 85.25 0.21 3 85.25 0.03 3 85.25 0.13  
9 Chandrasekharan and Rjagopalan (1986b) 8×20 - - - 2 58.72 0.26 2 58.72 0.03 2 58.72 0.20  

10 Mosier and Taube (1985a) 10×10 3 70.59 1.36 3 70.59 0.20 3 70.59 0.02 3 70.59 0.18  
11 Chan and Milner (1982) 10×15 - - - 3 92.00 0.26 3 92.00 0.06 3 92.00 0.22  
12 Askin and Subramanian (1987) 14×23 5 65.75 0.76 5 69.86+ 0.46 5 69.86+ 0.07 5 69.86+ 0.33  
13 Stanfel (1985) 14×24 5 69.33 0.82 5 69.33 0.45 5 69.33 0.07 5 69.33 0.36  
14 McCormick et al.(1972) 14×24 6 50.48 2.37 6 51.96+ 1.20 6 51.96+ 0.60 6 51.96+ 1.01  
15 Srinivasan et al.(1990) 16×30 4 67.83 0.67 4 67.83 1.04 4 67.83 0.68 4 67.83 0.62  
16 King (1980) 16×43 5 54.80 1.52 6 55.90+ 1.33 6 55.90+ 0.34 6 55.90+ 1.13  
17 Carrie (1973) 18×24 6 52.83 1.63 6 54.46+ 1.02 6 54.46+ 0.65 6 54.46+ 0.89  
18 Mosier and Taube (1985b) 20×20 5 40.29 2.15 5 42.96+ 1.52 5 42.96+ 1.47 5 42.96+ 1.33  
19 Kumar et al. (1986) 20×23 - - - 6 49.61 0.73 6 49.61 0.39 6 49.61 0.68  
20 Carrie (1973) 20×35 4 76.22 0.59 5 76.54+ 1.53 5 76.54+ 1.21 5 76.54+ 1.17  
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21 Boe and Cheng (1991) 20×35 - - - 5 58.15 1.07 5 58.15 0.63 5 58.15 0.84  
22 Chandrasekharan and ajagopalan (1989) 24×40 7 100.00 2.88 7 100.00 1.44 7 100.00 0.19 7 100.00 1.06  
23 Chandrasekharan and Rajagopalan (1989) 24×40 - - - 7 85.11 1.45 7 85.11 0.53 7 85.11 1.20  
24 Chandrasekharan and Rajagopalan (1989) 24×40 - - - 7 73.51 1.44 7 73.51 0.75 7 73.51 1.10  
25 Chandrasekharan and Rajagopalan (1989) 24×40 - - - 10 51.97 3.64 10 51.97 2.25 10 51.97 3.36  
26 Chandrasekharan and ajagopalan (1989) 24×40 9 47.17 2.26 10 47.37+ 2.91 10 47.37+ 1.38 10 47.37+ 3.40  
27 Chandrasekharan and Rajagopalan (1989) 24×40 - - - 10 44.87 2.35 10 44.87 2.00 10 44.87 3.13  
28 McCormick et al. (1972) 27×27 - - - 4 54.27 1.93 4 54.27 3.53 4 54.27 1.50  
29 Carrie (1973) 28×46 - - - 9 46.06 5.03 9 46.06 12.80 9 46.06 6.90  
30 Kumar and Vannelli (1987) 30×41 - - - 10 59.52 3.66 10 59.52 2.84 10 59.52 3.99  
31 Stanfel (1985) 30×50 12 59.43 4.12 12 60.00+ 5.66 12 60.00+ 4.53 12 60.00+ 6.91  
32 Stanfel (1985) 30×50 12 58.86 4.17 11 50.51- 5.77 11 50.51- 6.37 11 50.51- 6.69  
33 King and Nakornchai (1982) 30×90 - - - 12 46.15 11.35 11 46.15 25.19 12 46.15 13.14  
34 McCormick et al. (1972) 37×53 2 56.42 0.73 3 59.85+ 2.83 3 59.85+ 55.74 3 59.85+ 3.19  
35 Chandrasekharan and Rajagopalan (1987) 40×100 - - - 10 84.03 7.31 10 84.03 7.85 10 84.03 5.19  

a Run on a Pentium IV, 3.2 GHz PC. 
b Run on a Pentium IV, 1.6 GHz PC. 
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6.2 Computational Results for Generalized CFP 

To validate the quality of the solutions provided by the proposed algorithms for 

generalized CFP, we prepared suitable test instances. Since only a limited amount of research 

on CFP has dealt with machine breakdown or reliability issues, suitable test problems are very 

rare in the literature. Eight test instances, as shown in Table 6.5, are solved in this thesis. 

Among them, two (#1 and #5) were drawn from the literature (Jabal Ameli and Arkat, 2008 

and Jabal Ameli et al., 2008). The remaining six problems were prepared by adding 

self-creating data, such as MBC, MTBF, and production time (PT), to test situations selected 

from the literature that have machine-part incidence matrix and process routing data ready. 

Detailed data of each new test problem are presented in Appendix A. These data include 

production data of each part and machine reliability information. 

Table 6.5 describes the basic problem data and how MBC, MTBF, PT data were 

created:  

1. MBC is set to be any number between 1000 and 1700;  

2. MTBF is set to be any number between 800 and 5000; 

3. PT is set to be any number between 2 and 6. 
 

Table 6.5 Test instances for generalized CFP 

No. Original source Size (m×p×r) Lm Um Randomly generated data 
1 Jabal Ameli et al. (2008) 9×8×20 2 6 - 
2 Kim et al.(2004) 10×10×25 2 5 MBC, MTBF 
3 Sofianopoulou (1999) 12×20×26 2 5 MBC, MTBF, PT 
4 Sofianopoulou (1999) 14×20×45 2 5 MBC, MTBF, PT 
5 Jabal Ameli and Arkat (2008) 17×30×63 2 5 - 
6 Sofianopoulou (1999) 18×30×59 2 7 MBC, MTBF, PT 
7 Lee et al. (1997) 30×40×89 2 7 MBC, MTBF, PT 
8 Hu and Yasuda (2006) 30×70×149 2 8 MBC, MTBF, PT 

MBC: Machine Breakdown Cost (1000~1700) (rand() %8+10)*100);  
MTBF: Mean Time Between Failure (800~5000) (rand() %4201+800);  
PT: Production Times (2~6) (rand() %5+2). 
 

The parameter values for HGCFA-HSAM, HGCFA-HWFAM, and HGCFA-HTSM 
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throughout all test instances are described in Table 6.6. 

Table 6.6 Parameters setting for HGCFA-HSAM, HGCFA-HWFAM, and HGCFA-HTSM 

Algorithm Parameter settings 

HGCFA-HSAM Initial temperature (T0): 80 

Final temperature (Tf): 0.0002 

Cooling rate (α): 0.7 

Markov chain length (L): 100 

Mutation probability (β): 0.7 

HGCFA-HWFAM Iteration limit (Nmax) : 100 

Initial mass (W0 ): 40 

Initial velocity (V0 ): 15 

Base momentum (Tm) : 100 

Mutation probability (β): 0.8 

HGCFA-HTSM Maximum number of iterations (Nmax) : 3000 

Maximum number of solution has not been improved (Nstag ): 1000 

Tabu list size ( tls ): 7 

Mutation probability (β): 0.8 

 

Table 6.7 shows the comparison of the computation results for different cellular layout 

types. The best values obtained for each test problem between the two cellular layout types 

are indicated by bold characters. As expected, cellular layout type does have meaningful 

effects on TC and CFFI. Out of the 8 test problems, both cellular layout types yielded the 

same results in 4 test problems (#1, #2, #5, and #7), while linear double-row layout 

produced better results than linear single-row layout in the remaining 4 problems (#3, #4, #6, 

and #8). Furthermore, we observed the explicit preference for linear double-row layout over 

linear single-row layout based on their run times. Thus, it can be concluded that linear 

double-row layout (r=2) performs better than linear single-row layout (r=1). 
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Table 6.8 shows comparisons of our proposed algorithms with the branch and bound 

(B&B) algorithm using the Lingo 8.0 software in stage I given that linear double-row layout 

(r=2) is considered. Results show that B&B is able to achieve global optimum in 4 out of 8 

test instances (i.e., test instances #1 to #4) in less than 120839 seconds (34 hours). As for 

other test instances, Lingo was not able to find the optimal solution in a reasonable time due 

to their gigantic problem sizes. In contrast, our proposed algorithms were able to find the 

optimal solution for test instances #1 to #4 within 4 seconds. For the other test instances, 

our proposed algorithms found the best solution in 33 seconds. These findings illustrate the 

superiority of our proposed algorithms in solution efficiency. 

Table 6.9 shows the comparisons of our proposed algorithms with the B&B algorithm 

in stage II using Lingo 8.0 software given that the linear double-row layout (r=2) is 

considered. Results show that Lingo was able to achieve global optimum in 7 out of 8 test 

instances in less than 3 seconds. As for test instance #8, B&B was not able to find the 

optimal solution after 152017 seconds (42 hours) of running with an objective value (CFFI) 

of 17.80% due to the large problem size. In contrast, our proposed HGCFA-HSAM yielded 

a final CFFI value of 19.27% after less than 0.7 seconds. These findings indicate the 

superiority of our proposed algorithms in solution efficiency. 
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Table 6.7 Comparisons of computation results for different cellular layout type 

Linear single-row layout (r=1) Linear double-row layout (r=2) 
Test instances 

Stage I Stage II Stage I Stage II 

No. Source Size(m×p×r) Lm Um NC TC 
CPU 
time 
(s) 

CFFI 
(%) 

CPU 
time 
(s) 

NC TC 
CPU 
time 
(s) 

CFFI 
(%) 

CPU 
time 
(s) 

1 Jabal Ameli et al. (2008) 9×8×20 2 6 2 5696 0.50 58.06 0.14 2 5696 0.29 58.06  0.11  
2 This study 10×10×25 2 5 2 1919 0.70 70.18 0.16 2 1919 0.39 70.18  0.12  
3 This study 12×20×26 2 5 3 407 1.22 24.62 0.20 3 401 0.66 24.62  0.14  
4 This study 14×20×45 2 5 3 357 1.38 30.77 0.25 3 348 0.73 32.31  0.16  
5 Jabal Ameli and Arkat (2008) 17×30×63 2 5 4 50164 2.32 79.65 0.29 4 50164 1.22 79.65  0.18  
6 This study 18×30×59 2 7 3 486 1.91 24.42 0.43 3 478 1.01 24.42  0.26  
7 This study 30×40×89 2 7 5 41228 3.43 72.41 0.98 5 41228 1.77 72.41  0.55  
8 This study 30×70×149 2 8 4 2426 8.81 18.54 1.21 4 2196 4.47 19.27  0.64  
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Table 6.8 The computational results for our proposed algorithms (stage I) in the case where linear double-row layout (r=2) is considered 

Test instances HGCFA-HSAM  HGCFA-HWFAM HGCFA-HTSM Lingo (B&B) 

No. Source Size(m×p×r) Lm Um NC TC 
CPU 
time 
(s) 

 NC TC 
CPU 
time 
(s) 

NC TC 
CPU 
time 
(s) 

NC TC 
CPU  
time   
(s) 

1 Jabal Ameli et al. (2008) 9×8×20 2 6 2 5696* 0.29  2 5696* 0.64 2 5696* 0.44 2 5696* 3  
2 This study 10×10×25 2 5 2 1919* 0.39  2 1919* 0.81 2 1919* 0.48 2 1919* 10  
3 This study 12×20×26 2 5 3 401* 0.66  3 401* 2.23 3 401* 1.10 3 401* 113  
4 This study 14×20×45 2 5 3 348* 0.73  3 348* 3.16 3 348* 1.32 3 348* 120839  
5 Jabal Ameli and Arkat (2008) 17×30×63 2 5 4 50164 1.22  4 50164 4.46 4 50164 2.10 - - - 
6 This study 18×30×59 2 7 3 478 1.01  3 478 4.68 3 478 1.72 - - - 
7 This study 30×40×89 2 7 5 41228 1.77  5 41228 8.32 5 41228 3.27 - - - 
8 This study 30×70×149 2 8 4 2196 4.47  4 2196 32.37 4 2196 10.42 - - -  

*: Global optimum 
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Table 6.9 The computational results for our proposed algorithms (stage II) in the case where linear double-row layout (r=2) is considered 

Test instances HGCFA-HSAM HGCFA-HWFAM HGCFA-HTSM Lingo (B&B) 

No. Source Size(m×p×r) Lm Um CFFI  
(%) 

CPU 
time (s)

CFFI  
(%) 

CPU 
time (s)

CFFI 
(%) 

CPU  
time  
(s) 

CFFI 
(%) 

CPU 
time  
(s) 

1 Jabal Ameli et al. (2008) 9×8×20 2 6 58.06* 0.11 58.06* 0.09 58.06* 0.11 58.06* 3  
2 This study 10×10×25 2 5 70.18* 0.12 70.18* 0.11 70.18* 0.14 70.18* 1  
3 This study 12×20×26 2 5 24.62* 0.14 24.62* 0.10 24.62* 0.17 24.62* 4  
4 This study 14×20×45 2 5 32.31* 0.16 32.31* 0.13 32.31* 0.19 32.31* 4  
5 Jabal Ameli and Arkat (2008) 17×30×63 2 5 79.65* 0.18 79.65* 0.69 79.65* 0.22 79.65* 1  
6 This study 18×30×59 2 7 24.42* 0.26 24.42* 0.20 24.42* 0.31 24.42* 95  
7 This study 30×40×89 2 7 72.41* 0.55 72.41* 2.35 72.41* 0.69 72.41* 23  
8 This study 30×70×149 2 8 19.27 0.64 19.27 1.03 19.27 0.74 17.80 152017 

*: Global optimum 
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CHAPTER 7  

FURTHER ANALYSES 

In this section, the effects of several strategies and mechanisms adopted in proposed 

HSAM, HTSM and HWFAM are further analyzed statistically using the statistical software, 

STATISTICA, to examine their corresponding effects on overall solution efficiency and 

efficacy. 

7.1 Effects of prior estimation of number of cells 

As mentioned in section 4.1, a two-stage HCFA was proposed to solve the standard 

CFP. In the first stage, an initial number of cells was generated quickly, and this is then used 

as input to the second stage to search for the optimal/near-optimal solution. Hopefully, 

employing this procedure can not only significantly reduce the time to reach satisfactory 

solutions, but also make the proposed algorithm more efficient in solving large-scale 

problems. To further understand the effects of prior estimation of the number of cells 

(PENC), two options (with and without PENC) were performed in our proposed algorithms 

(HTSM, HSAM, and HWFAM) to solve the 35 problems shown in Table 6.1. Table 7.1 

summarizes the ANOVA (analysis of variance) for algorithm, PENC, and interactions 

between algorithm and PENC. The small p-value (p = 0.00364 < 0.05) suggests that factor 

PENC is significant at 5% significance level. Furthermore, Figure 7.1 reveals that the option 

with PENC obviously takes substantially less CPU time to achieve a target value than the 

option without PENC. Therefore, the effects of employing PENC in our proposed 

algorithms have been positively confirmed. 

 

 

 

 



 

109 

Table 7.1 ANOVA for the effects of algorithm and PENC 

Source of variation SS DF MS F P 
Algorithm 137.77548 2 68.88774 1.21012 0.30029 
PENC 492.57665 1 492.57665 8.65289 0.00364*

Algorithm *PENC 4.37942 2 2.18971 0.03847 0.96227 
Error 11612.95094 204 56.92623   
*: significance 
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Figure 7.1 Mean CPU comparisons of with and without PENC 

 

The CPU time saving ratio of HTSM, HSAM, and HWFAM with PENC can be 

calculated via Eq. 7.1. Results are diagrammed in Figure 7.2. 

100
wpe pe
ij ij

ij wpe
ij

SR T T
T
−

= × , (7.1)

where  

ijSR  = CPU time saving ratio of ith algorithm in jth numerical example (0 ≤ ijSR  ≤ 

100), 

wpe
ijT  = Average CPU time of ith algorithm in jth numerical example without prior 

estimation of cell size, 

pe
ijT  = Average CPU time of ith algorithm in jth numerical example with prior 
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estimation of cell size. 

On average, the CPU time saving ratios of HTSM, HSAM, and HWFAM are 35%, 

35%, and 38%, respectively. Additionally, the savings in run time are even more significant 

as the cell size increases. The effects of employing PENC in our proposed HSAM, HTSM 

and HWFAM have been successfully justified again through these findings. .  
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Figure 7.2 The CPU time saving ratios of HTSM, HSAM, and HWFAM  

7.2 Effects of mutation strategy in HTSM and HSAM 

The mutation strategy has been employed to increase the probability of finding more 

diversified solutions to bring the searching process to a new and unexplored solution space. 

In order to further elaborate the effectiveness of the mutation operator for HTSM and 

HSAM, a paired T-test of 95% statistical analysis of mean difference equal to zero was also 

carried out. The details are given in Tables 7.2 and 7.3. The small p-value (p<0.05) suggests 

that the data is inconsistent with null hypothesis 0:0 =μH d ; that is, the two scenarios do not 

perform equally. Specifically, the HTSM and HSAM approaches with mutation operator 

performed better than the approaches without mutation operator in terms of finding 

grouping efficacy for all 35 problems from the literature. 

 



 

111 

Table 7.2 Paired T-test for the effects of mutation operator for HTSM 

Scenario Mean Std.Dv. N df T P 
Without mutation operator 63.90 14.89     

With mutation operator 64.25 14.62 35 34 -3.68 0.0008* 
*: significance 

 

Table 7.3 Paired T-test for the effects of mutation operator for HSAM 

Scenario Mean Std.Dv. N df T P 
Without mutation operator 63.79 14.93     

With mutation operator 64.31 14.55 35 34 -3.86 0.0005* 
*: significance  

7.3 Effects of evaporation, precipitation, and insertion-move in WFA 

The water evaporation and precipitation operations are synonymous with the “escaping 

from local optima” mechanism that many heuristic algorithms nowadays possess to avoid 

being trapped and to explore more solution spaces. Additionally, the insertion-move 

included assures that high-quality neighborhood solutions can be found at each iteration of 

the algorithm. These three factors and their effects on solution qualities are thus examined 

in an experiment. The evaporation factor has three settings: no evaporation, fixed-ratio 

evaporation, and velocity-based evaporation. The precipitation factor has three settings: no 

precipitation, regular precipitation, and evaporation-based precipitation. Finally, the 

insertion-move factor has two options: with or without insertion-move. Legitimate 

combinations of the three factors comprise 10 testing scenarios as listed in Table 7.4. In 

each scenario, 35 test instances of Table 6.1 are computed. The average grouping efficacy of 

the 35 instances was recorded and ANOVA was also been carried out, and the results are 

shown in Table 7.5. The small p-value suggests that at 0.05 level of significance, 

insertion-move beats the other two factors and becomes the most significant and dominant 

factor in terms of solution quality.  

The 10 scenarios were separated into two groups. Scenarios adopting the 

insertion-move (scenarios #1, #3, #5, #7, and #9) result in better objective values and 

obviously surpass the other group (scenarios #2, #4, #6, #8, and #10), which does not 



 

112 

include the insertion-move in the algorithm. Insertion-move beats the other two factors and 

becomes the most significant and dominant factor in terms of solution quality. This implies 

that the water evaporation and precipitation operations may not be as significant as thought 

in the solution process of CFP, though considerable efforts have been spent in designing the 

contents of both operations. The importance of a good neighborhood-searching method, 

such as the insertion-move we proposed, can never be overemphasized. This conclusion is 

applicable to any meta-heuristic algorithms. Although the water evaporation and 

precipitation operations may not be critical in solving the CFP in this thesis, we still believe 

that the water-flow-like logic, with proper design and collaboration in its internal operations, 

can be applied to solve other combinatorial optimization problems. 

Table 7.4 Experimental testing scenarios 

Scenario # Evaporation 
setting 

Precipitation 
setting 

Insertion-move 
Option 

Mean grouping 
efficacy (%) 

1 velocity based  Evaporation-based With 64.2832  
2 velocity based Evaporation-based Without 59.1495  
3 velocity based regular (t = 20) With 64.2816  
4 velocity based regular (t = 20) Without 59.3005  
5 fixed ratio (0.05) Evaporation-based With 64.2954  
6 fixed ratio (0.05) Evaporation-based Without 59.3558  
7 fixed ratio (0.05) regular (t = 20) With 64.2625  
8 fixed ratio (0.05) regular (t = 20) Without 59.2771  
9 no evaporation no precipitation With 64.2664  
10 no evaporation no precipitation Without 59.4040  

 

Table 7.5 ANOVA for the effects of evaporation, precipitation, and insertion-move 

Source of variation SS DF MS F p 
evaporation 3 2 1 0.005  0.995 
precipitation 4 2 2 0.006  0.994 
Insertion 6408 1 6408 20.768  0.000*
evaporation*precipitation 11 4 3 0.009  1.000 
evaporation*insertion 2 2 1 0.003  0.997 
precipitation*insertion 6 2 3 0.010  0.990 
evaporation*precipitation*insertion 9 4 2 0.008  1.000 
Error 188841 612 309   
*: significance 
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7.4 Effects of tabu list size 

In order to elaborate the effects of tabu list size (TLS), six levels of TLS (0, 7, 12, 17, 

22, and 27) were set and ANOVA was carried out. The details are shown in Table 7.6. The 

high p-value (p = 1) suggests that at the 0.05 level of significance, we can not reject the null 

hypothesis that TLS does not have a significant effect on grouping efficacy. From Figure 7.3, 

it can be observed that the six levels of TLS do not have significant differences in terms of 

mean grouping efficacy. Since TLS-7 works better than others, we used it as the suggested 

TLS setting in this thesis. 

Table 7.6 ANOVA for the effects of tabu list size 

Source of variation SS DF MS F p 
TLS 0.006 5 0.001 5.944E-06 1 
Error 43264.064 204 212.079   
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Figure 7.3 Mean grouping efficacy for six levels of TLS 
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CHAPTER 8   

CONCLUSIONS 

CFP is the first and most difficult aspect of constructing a preliminary CMS. 

Considering the issues of production volume, production sequence, alternative process 

routings, machine reliability, cell layout, and the sequence of machines within cells in the 

design of CMS make the CFP complex but more realistic. However, very few researchers 

have addressed these issues simultaneously in the design of CMS. In this thesis, two types 

of CFP are addressed: the standard CFP with a binary machine-part incidence matrix 

consideration, and the generalized CFP with more factors and system constraints. A 

mathematical model in terms of maximization of grouping efficacy has been formulated to 

express the standard CFP in scenarios where singletons are allowed or not. Due to the 

complexity of this model, a two-stage HCFA merging an SCM-based clustering algorithm 

and SA/WFA/TS method has been proposed to solve this model quickly and effectively. In 

the generalized CFP, a two-stage multi-objective mathematical programming model has 

been formulated to integrate cell formation, cell layout, and intracellular machine layout 

simultaneously with the considerations of alternative process routings, operation sequences, 

production volume, production times, machine reliability, and different cellular layout type. 

As problems in the two stages are NP-hard, a two-stage HGCFA merging a generalized 

SCM-based clustering algorithm and SA/WFA/TS method has been proposed to solve this 

model quickly and effectively. Unlike most existing methods, the proposed approach does 

not demand a priori specification of the number of cells. It is automatically calculated and 

determined, such that the best objective value may be achieved. Illustrative examples, 

comparisons, and experimental analyses have demonstrated the effectiveness of the 

proposed models and solution algorithms.  

The main contributions of this thesis may be highlighted as follows: (1) we have 



 

115 

formulated a mathematical programming model to express the standard CFP in cases where 

singleton/no singleton is allowed; (2) a two-stage HCFA merging an SCM-based clustering 

algorithm and SA/WFA/TS method has been proposed to solve the standard CFP quickly 

and effectively; (3) we have formulated a two-stage multi-objective mathematical 

programming model to integrate cell formation, cell layout, and intracellular machine layout 

simultaneously with the considerations of alternative process routings, operation sequences, 

production volume, production times, machine reliability, and different cellular layout type; 

(4) we have presented a new performance measure, the CFFI, to evaluate the goodness of 

intracellular machine layout; (5) a two-stage hybrid generalized CF algorithm (HGCFA) 

merging a generalized SCM-based clustering algorithm and SA/WFA/TS method has been 

proposed to determine cell formation, cell layout, and intracellular machine layout in the 

cellular manufacturing system; and (6) in addition to the commonly used linear single-row 

layout, effects of adopting the linear double-row layout have been investigated in this study. 

Several opportunities exist for further research. They are summarized as follows: 

1. Extension of the proposed generalized cell formation model 

Several other factors may be added into the current proposed generalized cell 

formation model or even treat them as decision objectives. These factors include the cell 

load variation, machine utilization, machine duplication and the group scheduling. 

2. Application of WFA to other combinatorial optimization problems 

The WFA is a novel heuristic approach that deserves more attention. It may also be 

interesting to adopt the WFA logic to solve many other combinatorial optimization 

problems. 

3. Integration of cell formation, cell layout, and intracellular machine layout by one single 

approach/stage 

In the generalized CFP, a two-stage approach has been proposed to solve the cell 

formation, cell layout, and intracellular machine layout. The aim of stage I is to solve cell 
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formation and inter-cell layout simultaneously and the primary work of stage II is to 

determine machine layout (sequence) in each cell based on the given cell formation 

determined in stage I. Study could be carried out to see whether cell formation, cell layout, 

and intracellular machine layout can be solved by one single approach/stage. 
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APPENDIX A 

Table A.1 Machine reliability information for test instance 2 

Machine Breakdown Cost MTBF (min) 
1 1000 1019 
2 1700 1699 
3 1300 3821 
4 1700 1543 
5 1600 1961 
6 1500 3535 
7 1100 4121 
8 1500 3327 
9 1500 3612 

10 1100 889 

  

Table A.2 Machine reliability information for test instance 3 

Machine Breakdown Cost MTBF (min) 
1 1500 4935 
2 1500 1080 
3 1400 3155 
4 1200 3171 
5 1600 1227 
6 1100 1638 
7 1000 3095 
8 1100 2201 
9 1400 2297 

10 1300 1719 
11 1600 1119 
12 1600 2416 
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Table A.3 Machine reliability information for test instance 4 

Machine Breakdown Cost MTBF (min) 
1 1000 1463 
2 1400 3578 
3 1700 1331 
4 1700 4885 
5 1300 3097 
6 1500 1211 
7 1700 4503 
8 1200 1581 
9 1500 3204 

10 1300 2381 
11 1400 3858 
12 1200 2185 
13 1500 3513 
14 1700 3649 

  

Table A.4 Machine reliability information for test instance 6 

Machine Breakdown Cost MTBF (min) 
1 1400 3714 
2 1600 2510 
3 1400 1771 
4 1400 3555 
5 1400 3169 
6 1200 3937 
7 1700 1759 
8 1000 2239 
9 1400 2087 

10 1700 1984 
11 1100 4175 
12 1700 2105 
13 1600 1531 
14 1700 4111 
15 1500 899 
16 1700 2206 
17 1400 1771 
18 1700 1759 
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Table A.5 Machine reliability information for test instance 7 

Machine Breakdown Cost MTBF (min) 
1 1000 2463 
2 1200 1493 
3 1500 4030 
4 1500 1313 
5 1600 1941 
6 1700 1351 
7 1200 1168 
8 1500 2668 
9 1500 2874 

10 1200 2504 
11 1200 1668 
12 1500 3758 
13 1100 4303 
14 1600 2477 
15 1200 916 
16 1600 4380 
17 1300 3465 
18 1700 862 
19 1700 3452 
20 1200 856 
21 1000 4776 
22 1000 1127 
23 1600 3128 
24 1300 4805 
25 1000 3913 
26 1600 2659 
27 1200 4730 
28 1200 2571 
29 1000 4140 
30 1200 3201 
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Table A.6 Machine reliability information for test instance 8 

Machine Breakdown Cost MTBF (min) 
1 1200 2887 
2 1600 3476 
3 1700 4977 
4 1700 1136 
5 1500 3809 
6 1500 3245 
7 1400 1976 
8 1500 2552 
9 1600 1832 

10 1700 3682 
11 1100 1740 
12 1200 4241 
13 1600 1446 
14 1000 1020 
15 1200 3027 
16 1300 3284 
17 1500 4316 
18 1000 1161 
19 1200 4012 
20 1300 2195 
21 1600 1968 
22 1300 3403 
23 1500 2056 
24 1700 1838 
25 1100 1137 
26 1100 1715 
27 1400 2616 
28 1200 3491 
29 1000 1118 
30 1600 1019 
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Table A.7 Production data of test instance 3 

PN PV RN PS PT (min) 
1 1 1 6 5 3 12 8 11  4 2 3 3 4 4  
2  1 10 11 6 5 7  6 2 6 4 3  
  2 6 9 2 9 5  6 5 4 5 5  

3 1 1 10 2 4 1 5 11  4 3 6 5 5 2  
4 1 1 4 1 10 3 6  4 3 2 3 4  
5 1 1 12 2 6  3 3 5  
  2 9 3 7  2 2 5  

6 1 1 8 5 2 6  2 6 6 4  
7 1 1 12 8  4 5  
8 1 1 9 2 4  5 6 5  
9 1 1 2 7 3 11 12  6 5 6 3 5  

10 1 1 1 7 4 2 9  6 3 6 2 2  
11 1 1 12 3 2 11 8 5  3 4 3 5 6 6  
12 1 1 11 10 5 8  5 4 6 3  
  2 10 9 3 7  3 4 3 3  

13 1 1 10 7 11 5  2 6 2 2  
14 1 1 3 4 10 7  2 4 3 5  
  2 7 9 1 5  2 3 2 6  

15 1 1 5 2 4  5 5 3  
16 1 1 6 7 11 3 2  2 3 3 2 3  
17 1 1 2 3 11 6  4 4 6 5  
  2 5 8 9 10  6 4 4 3  
  3 8 4 3 7  6 3 3 2  

18 1 1 4 8 5  4 4 4  
19 1 1 3 2 10 9 12  6 4 5 6 3  
20 1 1 6 7 2  4 4 2  

PN: Part Number; PV: Production Volume; RN: Routing Number; PS: Production 

Sequence; PT: Production Times 

 



 

122 

Table A.8 Production data of test instance 4 

PN PV RN PS PT (min) PN PV RN PS PT (min) 
1 1 1 6 5 3 12 8 11  6 5 3 6 5 4 11 1 1 12 3 2 11 8 5  5 4 3 2 5 5 
  2 6 14 3 12 8 11  6 3 6 2 3 3   2 12 3 13 11 8 5  6 4 4 2 3 2 
2 1 1 10 11 6 5 7  4 4 5 5 4   3 12 3 2 11 8 14  6 6 3 4 4 5 
  2 10 11 6 14 7  4 6 4 6 5   4 12 3 13 11 8 14  5 3 6 6 6 2 
3 1 1 10 2 4 1 5 11  3 3 6 2 4 5 12 1 1 11 10 5 8  5 5 2 6  
  2 10 13 4 1 5 11  3 3 5 2 4 4   2 11 10 14 8  5 2 6 2  
  3 10 2 4 1 14 11  5 3 6 5 2 6 13 1 1 10 7 11 5  5 3 5 5  
  4 10 13 4 1 14 11  5 6 4 2 2 6   2 10 7 11 14  2 5 2 4  
4 1 1 4 1 10 3 6  2 5 2 2 3 14 1 1 3 4 10 7  6 6 4 3  
5 1 1 12 2 6  4 2 2  15 1 1 5 2 4  4 3 3  
  2 12 13 6  5 4 2    2 5 13 4  6 3 6  
6 1 1 8 5 2 6  4 6 2 6    3 14 2 4  5 2 5  
  2 8 5 13 6  5 2 3 6    4 14 13 4  3 4 3  
  3 8 14 2 6  3 5 3 6  16 1 1 6 7 11 3 2  4 5 4 4 4 
  4 8 14 13 6  4 4 3 6    2 6 7 11 3 13  6 4 2 5 4 
7 1 1 12 8  2 6  17  1 2 3 11 6  2 5 6 5  
8 1 1 9 2 4  6 5 2    2 13 3 11 6  6 2 4 5  
  2 9 13 4  6 5 6  18  1 4 8 5  3 4 2  
9 1 1 2 7 3 11 12  6 4 2 2 6   2 4 8 14  4 3 2  
  2 13 7 3 11 12  3 3 3 3 6 19  1 3 2 10 9 12  3 4 3 5 4 

10 1 1 1 7 4 2 9  5 4 6 5 5   2 3 13 10 9 12  5 2 5 5 3 
  2 1 7 4 13 9  3 4 6 2 4 20  1 6 7 2  5 2 3  
       2 6 7 13  5 3 5  
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Table A.9 Production data of test instance 6 

PN PV RN PS PT (min) PN PV RN PS PT (min)
1 1 1 3 9 2 15  6 5 6 5 15 1 1 13 11 15  2 6 6  
  2 17 9 2 15  6 5 6 5 16 1 1 10 6 9 16  5 4 3 5 
  3 14 12 15 4  4 3 6 5   2 8 11 5 4  6 3 5 2 
  4 5 14 6 12  6 4 4 4 17 1 1 9 12 14 10  2 3 5 5 
2 1 1 2 15 7 9  4 3 6 5 18 1 1 15 8 9 10 2  2 5 6 4 5 
  2 2 15 18 9  4 3 6 5 19 1 1 16 12 4 10  2 5 4 3 
3 1 1 2 9 7 13  3 5 4 2 20 1 1 4 11 6  2 3 6  
  2 2 9 18 13  3 5 4 2 21 1 1 4 3 15 6  3 2 5 3 
  3 10 4 3 9  5 6 5 4   2 4 17 15 6  3 2 5 3 
  4 10 4 17 9  5 6 5 4 22 1 1 10 6 4 12  5 5 6 4 
4 1 1 13 6 2 14 7  6 5 4 5 2 23 1 1 12 10 3 14 2  3 6 4 4 5 
  2 13 6 2 14 18  6 5 4 5 2   2 12 10 17 14 2  3 6 4 4 5 
5 1 1 11 14 5 8  2 6 6 4 24 1 1 8 5 7  3 5 6  
6 1 1 7 10 14 12  6 6 2 6   2 8 5 18  3 5 6  
  2 18 10 14 12  6 6 2 6 25 1 1 12 15 13 2  3 4 3 3 
  3 1 10 6 9  2 3 5 3 26 1 1 7 6 12  2 4 4  
7 1 1 4 12 5 16 11  6 5 2 2 6   2 18 6 12  2 4 4  
8 1 1 10 12 11 4  6 6 5 5 27 1 1 4 2 12  3 3 4  
  2 2 7 8 5  3 2 3 5 28 1 1 16 4 10 2  5 5 4 2 
  3 2 18 8 5  3 2 3 5 29 1 1 7 11 3  4 4 6  
  4 1 11 3 9  6 2 3 6   2 18 11 3  4 4 6  
  5 1 11 17 9  6 2 3 6   3 7 11 17  4 4 6  
9 1 1 11 8 13 1 2  2 6 2 4 5   4 18 11 17  4 4 6  
10 1 1 7 13 10 4 6  4 2 3 5 3   5 7 5 4  3 2 4  
  2 18 13 10 4 6  4 2 3 5 3   6 18 5 4  3 2 4  

11 1 1 15 1 14 6  4 4 2 3 30 1 1 2 14 11  5 4 2  
  2 5 6 8 1  5 2 2 6      

12 1 1 8 7 4  5 2 4       
  2 8 18 4  5 2 4       
  3 4 13 15  2 3 4       

13 1 1 15 9 3  3 5 3       
  2 15 9 17  3 5 3       

14 1 1 10 16 12  6 6 2         
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Table A.10 Production data of test instance 7 

PN PV RN PS PT  PN PV RN PS PT(min)
1 155 1 8 9 15 16 19 20 6 2 3 5 6 3 21 75 1 1 22 16 13  2 4 5 3 
  2 8 30 28 2  3 3 3 3     2 1 22 24  6 2 3 
2 160 1 1 22 24 30  2 3 2 5     3 6 14 18  5 5 4 
  2 10 12 13 17  2 4 6 2   22 100 1 1 2 21 22 24  4 2 3 6 4 
3 135 1 7 12 16 13  2 4 2 5     2 8 9 15 24 2  2 2 2 5 4 
  2 12 13 17  3 5 5     3 9 5 11 2  2 3 3 4 
  3 9 13 17 30  5 2 6 2   23 140 1 8 9 24 2  6 3 5 2 
4 150 1 6 11 1 4 7  5 4 6 3 5    2 1 22 24  4 2 6 
  2 1 2 22 24  6 4 2 3     3 1 22 24 20  5 2 4 6 
  3 6 11 28 30  6 4 6 2     4 7 30 8 5  3 4 3 6 
5 210 1 3 4 5 23 1  2 4 6 3 5  24 62 1 11 14 18  6 6 5 
  2 6 11 5  4 5 2   25 85 1 7 26 28 30  6 4 4 4 
  3 7 26 30  5 5 4     2 7 30 2 5  6 5 3 5 
6 230 1 26 28 30  3 5 2   26 185 1 8 30 12 17  4 6 2 3 
  2 12 14 20 22  6 4 4 3     2 14 18 15 18  3 5 6 3 
7 85 1 3 4 5 23 27 29  3 4 5 2 3 4    3 12 15 6 12  4 4 3 4 
8 90 1 7 30 8 2  3 4 4 3     4 10 12 17  3 3 3 
  2 7 26 30  4 2 2   27 55 1 6 14 18 12 13  3 4 3 2 3 
  3 9 26 5 11 2  4 4 2 4 6    2 6 11 14 18  3 6 6 6 
9 95 1 8 10  2 6   28 130 1 2 22 24  5 6 3 
  2 6 7 26  6 2 4     2 22 24 5 22  3 5 4 5 
  3 1 27 4  2 6 5   29 125 1 1 2 22 24  4 4 5 2 

10 86 1 12 13 17  4 5 3   30 135 1 26 8 5 4  4 3 2 6 
  2 13 19 17  5 4 2   31 65 1 12 5 8 9  4 6 3 6 
  3 8 9 12  4 5 3     2 13 15 6 3  2 5 5 4 

11 55 1 18 19 22  2 5 4     3 10 12 13 17  4 4 6 2 
  2 9 15 16  5 2 5   32 90 1 3 4 23 27  4 5 6 3 
  3 12 13 17 5  5 4 2 4     2 3 24 23 6  3 4 4 6 

12 120 1 12 13 17  5 5 4   33 100 1 26 28 30  6 5 4 
  2 8 12 9 30 7  4 6 2 2 4    2 5 8 9 21  3 4 4 2 

13 142 1 8 9 16 19 20  2 4 2 4 5  34 90 1 12 13 17 5 2  5 4 5 4 5 
14 140 1 11 18  2 6     2 3 4 5 23 25 27 6 5 5 2 4 3 
  2 7 12 16 13  5 4 5 3   35 120 1 9 15 19 20  5 2 5 3 

15 100 1 2 22 24  6 2 2   36 130 1 3 4 25 27 29  6 2 2 2 4 
  2 9 26 5 2  3 4 4 4     2 6 11 28 30  2 5 6 2 
  3 7 28 30  5 2 2     3 8 12 9 30  2 5 4 2 

16 65 1 11 2 9  5 2 2   37 145 1 13 19 17  3 6 5 
  2 9 15 16 19 20  3 3 6 3 4    2 3 4 5 23 25 29 3 6 4 6 2 4 

17 85 1 13 19 17  2 6 5     3 10 14 11 13  5 3 3 2 
  2 10 14 11 13  5 3 6 5   38 250 1 7 26 30  2 3 3 
  3 1 2 22 24  5 6 4 3     2 10 11 10 13  5 3 5 2 

18 125 1 8 9 15 16 19 20 5 2 5 6 5 4  39 60 1 6 15 9 6  3 2 6 4 
  2 8 9 15 24 2  6 5 3 3 5    2 6 11 18  5 5 5 

19 102 1 1 22 24  5 4 3   40 90 1 7 26 28  5 5 6 
20 105 1 10 13 17  3 5 3          
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Table A.11 Production data of test instance 8 

PN PV RN PS PT PN PV RN PS PT(min)
1 1 1 3 9 2 15 25 2 5 2 4 4 18 1 1 15 7 10 29 10 2 12 3 6 5 6 6 3 5 
  2 17 9 2 30 15  6 2 3 4 6 19 1 1 16 12 8 4 10 30 5 6 2 6 5 2 
  3 14 12 28 11 8  4 4 6 3 3 20 1 1 4 10 18 20 27 6 2 4 5 4 
  4 14 21 6 12 27  3 2 2 3 2 21 1 1 4 3 15 21 6 29 1 5 4 6 5 6 3 2 
2 1 1 2 15 19 7 9 22 24  6 5 2 6 3 6 5 2 4 17 15 18 6 21 28 6 2 6 5 5 2 5 
  2 2 15 23 12 9 3 28  3 5 3 2 3 6 3 22 1 1 10 6 4 27 12 17 25 2 6 4 2 3 3 6 
3 1 1 2 9 22 7 13 19  5 4 4 3 3 5 23 1 1 12 10 3 18 14 2 24 4 2 6 5 2 5 3 
  2 2 9 18 13 26 25  5 4 3 5 4 3 2 12 10 17 14 2 21 25  6 3 2 6 5 3 2 
  3 10 20 4 3 9 20  3 4 6 5 5 3 24 1 1 8 5 7 13 18 24 28 6 5 6 2 3 5 3 
  4 10 4 30 15 9 28  5 2 4 4 3 4 2 8 5 18 22 26 19 1 5 4 4 5 2 4 6 
4 1 1 13 6 22 2 14 7 26 1  4 4 6 3 2 2 6 2 25 1 1 12 17 23 2 18 22 20 19 28  3 6 3 2 4 3 3 4 3 
  2 13 6 2 21 14 18 24 19  4 4 5 4 5 4 5 3 26 1 1 7 6 17 30 12 22 29 25  3 4 3 2 2 4 5 5 
5 1 1 11 14 3 5 7 13 27  2 6 3 5 4 6 5 2 5 8 9 12 15 23 17 22  2 4 4 6 6 4 4 5 
6  1 7 10 14 12 2 5 3 5 27 1 1 4 15 23 12 22 26 19 18  4 5 6 6 5 6 3 5 
  2 18 10 14 12  6 3 6 6 28 1 1 16 4 17 21 10 1 28 22 20  4 6 4 3 4 2 5 2 4 
  3 1 10 6 9  4 3 3 4 29 1 1 7 27 11 3 14 18 28 6 6 5 3 2 2 5 
7 1 1 4 12 5 16 11 19 22 27  2 4 6 2 2 5 3 5 2 18 11 26 3 21 9 27 3 6 4 4 5 6 4 
8 1 1 10 12 11 4 6 2 3 5 3 7 11 22 24 17 23 30  3 2 2 6 4 2 2 
  2 2 7 8 5  2 2 3 3 4 18 11 30 17 23 25 27  6 4 5 5 3 4 5 
  3 2 18 8 5  5 5 2 6 5 7 5 16 4 29 22 20 2 5 2 4 4 6 5 
  4 1 11 3 9  5 2 4 4 6 18 10 5 4 23 22 24 6 4 3 2 5 2 5 
  5 1 11 17 9  6 6 2 4 30 1 1 2 14 11 24 22 26 19 20 27 28 5 2 5 5 4 2 6 5 4 2 
9 1 1 11 8 13 1 2 22 19 28  4 2 2 2 3 5 3 5 31 1 1 6 5 3 12 8 11 5 6 4 4 4 4 
10 1 1 7 13 10 4 6 23  5 5 6 5 2 3 2 6 14 3 12 8 11 3 5 6 3 5 4 
  2 18 13 10 4 6 30  4 4 3 6 3 6 32 1 1 10 11 6 5 7 14 20 22  3 4 5 3 2 6 4 2 
11 1 1 15 1 14 6  5 4 2 5 2 10 11 6 14 7 26 22 28  3 2 2 4 4 2 3 6 
  2 5 6 8 1  4 5 6 2 33 1 1 10 2 4 1 5 11 21 30  3 6 2 5 4 5 3 4 
12 1 1 8 7 4  5 3 2 2 10 13 4 1 5 11 18 28  6 4 4 5 2 4 2 4 
  2 8 18 4  3 4 6 3 10 2 4 1 14 11 30 22  2 3 6 2 3 3 3 5 
  3 4 13 15  4 2 2 4 10 13 4 14 26 27 19 22  6 2 3 5 3 3 3 5 
13 1 1 15 9 3  6 2 2 34 1 1 5 8 9 12 15 17 23 4 1 29 16  6 4 5 2 6 3 3 2 3 6 6 
  2 15 9 17  3 6 3 35 1 1 12 2 29 6 22 25 4 6 6 2 4 6 
14 1 1 20 18 22 24 26 19  4 2 6 6 6 3 2 12 13 6 30 24 26 5 6 3 3 3 4 
15 1 1 13 11 15 18 20 28  2 5 2 3 4 6 36 1 1 8 5 2 6 23 22 20 2 4 6 4 5 3 6 
16 1 1 24 4 13 29 16 1 30  3 3 4 3 5 4 4 2 8 5 13 6 30 16 22 2 4 6 6 4 4 4 
  2 5 8 9 17 23 12 15  5 2 2 6 4 3 4 3 8 14 2 6 30 27 28 2 3 5 5 6 2 3 
17 1 1 9 17 21 11 22 28 19 20 6 5 4 4 5 6 4 2 4 8 14 22 13 6 24 29 5 3 2 4 4 6 4 
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Table A.11 Continued 

PN PV RN PS PT PN PV RN PS PT(min)
37 1 1 12 8 18 20 27  4 3 2 2 4 55 1 1 12 2 30 6 20 18  4 3 5 2 2 3 
38 1 1 9 2 4 12 18 22 28 16  6 2 3 5 5 6 2 6 2 12 20 13 6 22 24  3 3 5 3 4 4 
  2 9 14 13 4 21 22 19 27  6 6 4 4 5 5 2 3 56 1 1 8 5 25 2 6 18 13  6 4 5 3 2 3 6 
39 1 1 2 7 3 11 12 17 19 20 30  4 2 6 5 3 2 2 4 4 2 8 5 13 6 16 29 20  2 3 4 6 4 5 3 
  2 13 7 3 11 12 23 22 24 1  6 4 6 4 3 4 3 2 4 3 8 14 2 6 24 21 28  2 3 6 4 2 3 3 
40 1 1 1 7 4 2 9 13 23  6 6 3 5 5 6 2 4 8 14 30 13 6 29 21  3 6 6 3 4 2 6 
  2 1 7 4 13 9 23 28  6 4 6 6 6 3 4 57 1 1 12 21 9 10 22 27 19 28  2 3 6 3 5 2 2 6 
41 1 1 12 3 11 8 5 18 15 26 2  3 6 4 2 3 5 5 4 2 58 1 9 1 4 10 13 23 30 25  4 3 5 5 2 2 6 5 
  2 12 3 13 11 8 5 26 28 1  6 6 6 2 2 5 4 4 3 2 9 13 4 30 26 24 19 23  5 3 2 6 4 6 4 2 
  3 12 3 2 11 19 14 19 22 27  2 2 6 4 5 5 3 3 5 59 1 1 2 7 3 11 12 23 30  5 4 6 5 5 3 5 
  4 12 3 13 11 8 14 22 21 17  6 3 2 5 3 2 3 2 6 2 13 7 3 11 12 22 18  4 5 4 6 3 6 4 
42 1 1 11 10 15 5 8 26 28 18  6 2 6 2 6 5 6 3 60 1 1 1 7 4 2 9 18 30  3 6 3 5 2 5 4 
  2 11 10 14 8 21 15 23 1  2 2 6 4 3 2 6 5 2 1 7 4 13 9 22 28  3 3 3 5 4 3 4 
43 1 1 10 7 11 20 5 30  3 5 3 6 3 5 61 1 1 12 3 2 11 8 5 28 22 21  5 2 2 2 3 3 6 2 6 
  2 10 7 11 15 14 27  2 2 3 6 2 5 2 12 3 13 11 8 5 23 26 19  6 6 5 2 3 5 5 3 6 
44 1 1 3 14 11 10 7 13 16 29  5 4 2 5 5 4 4 3 3 12 3 2 20 8 14 23 27 19  2 2 2 2 2 4 3 2 6 
45 1 1 5 17 2 4 21 18 24  4 5 2 2 6 2 4 4 12 3 13 11 8 14 23 30 27 3 3 3 4 2 5 4 3 3 
  2 5 13 4 30 20 25 1  5 6 6 5 4 2 5 62 1 1 11 10 22 5 8 20 24  4 2 4 3 2 3 6 
  3 14 2 13 19 21 26 30  3 2 4 6 4 6 2 2 11 10 14 30 8 15 28  6 2 4 5 6 4 3 
  4 14 13 18 4 22 25 20  6 3 6 4 3 2 4 63 1 1 10 7 11 5 21 17 30  3 3 5 5 5 4 3 
46 1 1 6 7 11 3 16 2 23 30  5 5 3 6 5 3 6 2 2 10 7 11 14 22 26 19  6 5 4 2 3 6 6 
  2 6 7 11 3 13 30 23 28  2 4 3 5 6 2 5 2 64 1 1 1 4 10 7 28 22 19 26  2 5 2 4 5 6 5 6 
47 1 1 2 3 11 6 25 5 5 4 4 6 65 1 1 5 12 14 10 18 25 30  3 6 2 4 6 5 5 
  2 13 3 11 18 6  4 3 3 4 6 2 5 13 4 26 24 17 22  3 4 6 3 4 2 5 
48 1 1 4 8 13 5  3 6 6 6 3 14 2 4 30 22 25 24  4 2 5 5 6 2 3 
  2 4 8 14 25 4 3 6 4 4 14 13 4 24 30 22 26  4 3 4 5 5 4 6 
49 1 1 3 2 28 10 9 12  5 2 5 6 3 2 66 1 1 6 7 11 3 2 20 18  2 3 5 3 4 3 5 
  2 3 13 10 25 9 12  4 5 6 6 5 3 2 6 7 11 3 13 30 27  3 6 5 2 3 6 5 
50 1 1 6 14 7 21 2 30  3 4 4 5 4 4 67 1 1 2 3 11 30 6 25 21  2 5 4 4 6 4 3 
  2 6 27 7 13 25 1  4 5 3 3 4 4 2 13 3 11 6 22 29 17  3 4 6 6 2 3 3 
51 1 1 6 5 3 12 8 11 18  6 3 3 6 3 6 2 68 1 1 4 13 8 17 5 29  5 5 5 4 3 6 
  2 6 14 3 12 8 11 25  3 3 6 5 6 5 5 2 4 8 19 14 22 30  4 4 4 4 5 2 
52 1 1 10 11 6 5 7 28  2 4 3 6 6 4 69 1 1 3 2 10 9 12 1  6 2 4 5 3 2 
  2 10 11 6 26 14 7  5 2 2 5 2 3 2 3 20 13 10 9 12  5 6 5 4 5 6 
53 1 1 10 2 27 4 1 5 11  6 4 4 5 3 6 4 70 1 1 6 17 7 2 4 3 5 4 
  2 10 13 4 1 5 11 19  6 4 2 5 2 2 3 2 6 30 7 13 2 2 4 5 
  3 10 2 4 1 14 11 27  6 6 4 6 2 3 2  
  4 10 13 4 1 14 11 22  6 2 3 2 6 6 6  
54 1 1 1 4 24 13 16 29 30 24 15 10 5 5 6 5 5 3 2 2 3 3  
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