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以計算智慧為基礎之新的避險比例決定方法 

 

 

學生：許育嘉         指導教授：陳安斌 博士 

 

國立交通大學資訊管理研究所博士班 

 

 

摘  要 

 
本研究提出了一個整合計算智慧與統計方法學的最適避險比例決定方

法，用來改善不同避險區間下最小變異避險比例之預測準確度。透過衡量

金融市場現貨及期貨商品報酬時間序列之變異數、共變數、價差及其他們

的一階、二階變量，市場波動的動態行為可以被擷取出來，之後以增長階

層式自我組織圖進行階層式的分群。經過分群，這些位在相同集群裡具有

相似行為的時間序列資料，經過給予不同的權重進行重新取樣後，會被蒐

集起來用來取代原先估算最適避險比例的資料樣本。我們將這個方法運用

在台灣加權股價指數、標準普爾 500 指數、金融時報 100 指數、以及日經

255 指數之避險實證研究上，對於避險區間之長短與避險效果的關係進行研

究。實驗結果顯示，這個方法所估算之避險比例，在中、長期避險區間下

可以顯著地得到優於傳統最小平方法模型及天真避險模型之表現，決定出

各種避險期間下之最適避險比例。 
 

關鍵字: 最適避險比例，財務時間序列，成長階層式自組織映射圖，集群分

析 
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A Novel Approach for Hedge Ratio Decision Based on Computational 
Intelligence 

 
 
Student: Yu-Chia Hsu   Advisors: Dr. An-Pin Chen 
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National Chiao Tung University 
 

ABSTRACT 

In this study, a novel procedure combining computational intelligence and 

statistical methodologies is proposed to improve the accuracy of minimum 

-variance optimal hedge ratio (OHR) estimation over various hedging horizons. 

The time series of financial asset returns are clustered hierarchically using a 

growing hierarchical self-organizing map (GHSOM) based on the dynamic 

behaviors of market fluctuation extracted by measurement of variances, 

covariance, price spread, and their first and second differences. Instead of using 

original observations, observations with similar patterns in the same cluster and 

weighted by a resample process are collected to estimate the OHR. Four stock 

market indexes and related futures contracts, including Taiwan Weighted Index 

(TWI), Standard & Poor's 500 Index (S&P 500), Financial Times Stock 

Exchange 100 Index (FTSE 100), and NIKKEI 255 Index, are adopted in 

empirical experiments to investigate the correlation between hedging horizon 

and performance. Results of the experiments demonstrate that the proposed 

approach can significantly improve OHR decisions for mid-term and long-term 

hedging compared with traditional ordinary least squares and naïve models. 

 

Keywords: optimal hedge ratio; financial time series; GHSOM; cluster analysis. 
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Chapter 1 Introduction 

1.1 Background of the Study 

With the emergence of financial derivatives markets in the past two decades, hedging has 

been of interest to both academicians and practitioners. The goal of hedging is to minimize 

exposure to unwanted risk. This is carried out by establishing the position of a derivative 

instrument to offset exposure to price fluctuations opposite to that of underlying assets, such as 

using futures to hedge a portfolio of risky assets. The primary objective is to estimate the size of 

the short position that must be held in the futures market (i.e., a proportion of the long position 

held in the spot market) with minimal risk and specific risk aversion of the hedged portfolio. 

Aside from hedge ratio, hedge horizon should also be considered simultaneously because 

investors, such as regulators and speculative investors, as well as individuals and institutions 

participating in the stock and futures markets have different hedging horizon and decision 

making over different time scales. Therefore, ignoring the dependence of the optimal hedge 

ratio on hedging horizon could lead to investors making inadequate decisions (Geppert, 1995; 

Lien and Shrestha, 2007), suggesting problems on the optimal hedge ratio (OHR) decision. 

Many methods have been used to decide the OHR. Most studies adopt the mean-variance 

framework, which measures the risk of the hedged portfolio by standard deviation, and which 

assumes that OHR simply minimizes the variance of hedged portfolios. Many applications of 

optimal hedging use the criterion of minimum variance to estimate OHR, such as by regressing 

the spot market return on the futures market return using ordinary least squares (OLS) 

(Ederington, 1979; Hill and Schneeweis, 1982; Sener, 1998). However, OHRs estimated via the 

conventional approach is constant over time. The classical time-invariant OHR appears 

inappropriate with the time-varying nature of many financial markets. Improvements were 



 

2 

made to capture time-varying features, such as by adopting dynamic hedging strategies based 

on the bivariate generalized autoregressive conditional heteroskedasticity (GARCH) 

framework (Kroner and Sultan, 1993; Lien and Luo 1994; Moschini and Myers, 2002; 

Choudhry, 2003; Wang and Low, 2003) or the stochastic volatility (SV) model (Anderson and 

Sorensen 1996; Lien and Wilson 2001). Although these studies are successful in capturing 

time-varying features, many give little attention to OHR decisions over different time scales. 

1.2 Statement of the Problem 

The models presented by the authors have several limitations in estimating the multiscale 

hedge ratio. All these approaches to estimating the abovementioned OHR are based on sample 

variance and covariance estimators of returns without considering the underlying distribution 

of data. The conventional OLS approach ignores the conditional distribution of most financial 

asset returns, which tends to vary over time. To obtain recent information, most research adopt 

a rolling window scheme to estimate the variance and covariance of spot and futures returns. 

However, rolling window estimators use an equally weighted moving average of past squared 

returns and their cross products. Observations have equal weight in the variance-covariance 

matrix estimator of the arbitrarily defined estimation period, but they have zero weight beyond 

the estimation period. GARCH class models are successful in capturing time-varying features 

for estimating conditional variance-covariance matrices, but they place too much weight on 

extreme observations (Nelson and Foster, 1996) when the distribution of data is leptokurtic and 

fat-tailed. 

Furthermore, disregarding the dependence of OHR on the hedging horizon is problematic 

in these conventional approaches for estimation. Only a few studies consider different hedging 

horizons for hedge ratio estimation, including Howard and D’Antonio (1991), Lien and Luo 
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(1993, 1994), Geppert (1995), Lien and Wilson (2001), Chen, Lee, and Shrestha (2004), In and 

Kim (2006), and Lien and Shrestha (2007). However, these models have three problems in 

incorporating the hedging horizon in OHR estimation. First, the long-horizon OHR estimator 

based on a handful independent observations generated from long-horizon return series is 

unreliable (Geppert, 1995). This is because the frequency of data must match the hedging 

horizon (e.g., weekly or monthly data must be used to estimate the hedge ratio where the 

hedging horizon is one week or one month, respectively). Low data frequency would result in a 

substantial reduction in sample size (Lien and Shrestha, 2007). Second, the assumption for the 

error term of the GARCH/SV model would lead to inaccurate results when estimating the 

multiperiod hedge ratio (Lien and Wilson, 2001). Third, the assumption for the underlying 

data-generating process, such as a unit root process, is unsuitable when the assumed condition 

does not hold true, as evidenced in many commodities markets (Chen, Lee and Shrestha, 2004). 

1.3 Purpose of the Study 

The main purpose of this paper is to introduce a novel approach for deciding the OHR of 

different hedging horizons using computational intelligence technique. The new approach uses 

the growing hierarchical self-organizing map (GHSOM) of Rauber et al. (2002) to cluster time 

series data, which could decompose financial data into a hierarchical architecture consisting of 

several familiar clusters. Several applications of cluster analysis to economics and finance time 

series have been documented in recent literature, including identification of mutual funds styles 

by analyzing the time series of past returns (Pattarin et al., 2004), discovery of companies that 

share similar behavior with the Dow Jones industrial average (DJIA) index (Basalto et al., 

2007), prediction of value at risk (Karandikar et al., 2007), prediction of oil futures price (Zhu, 

2008), and determination of optimal tracking portfolio (Focardi and Fabozzi, 2009). 
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In this paper, our work employs a different weight for observations in a rolling window 

OLS estimator of the variance-covariance matrix subsequent to the clustering time series using 

GHSOM. The weights of observations are determined by the measurement of similar patterns, 

which are correlated with the sample size of the cluster they belong to in the hierarchy 

architecture. The observations with different weights in clusters are then used to predict the 

conditional distribution of spot and futures returns for different hedging horizons in the future. 

When the conditional distribution of spot and futures returns is predictable, a more efficient 

estimate of the OHR can be obtained by conditioning on recent information (Harris and Shen, 

2003). 

1.4 Significance of the Study 

The application of GHSOM to clustering time series to improve the conventional OHR 

estimator has at least three salient advantages. First, clustering time series does not suffer from 

the sample reduction problem when matching data frequency to hedging horizon. Second, 

observations within the cluster with similar patterns provide a way for examining the 

dependency of observations, which are generated from long-horizon return series and can 

provide predictable time patterns. The conditional distribution of returns in the next hedging 

horizon is predictable by aggregating these clustered observations, which are inspired by the 

well-established features of many asset returns that their conditional distribution is 

time-varying and tendency display volatility clustering. The final advantage is that the 

proposed computational intelligence (CI) approach is a non-parametric method, which can 

avoid too many inappropriate assumptions and restrictions found in conventional parametric 

models. 

By doing this, OHR estimation for different horizons can be achieved. This proposed 
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approach is also categorized as an analysis tool to investigate the relationship between hedge 

ratio and hedging horizon, which provides valuable information for reference in OHR decision 

making. 

1.5 Theoretical Framework 

Our study focuses on OHR estimation over various hedging horizons to support decision 

making. Conventional approaches on OHR estimation are based on parametric models that may 

encounter many issues and be restricted by many inappropriate assumptions. The proposed CI 

approach is a non-parametric model designed to overcome issues found in conventional 

models without the underlying assumptions. The theoretical framework is shown in Figure 1-1. 

non-parametric models

Hedging horizon

GARCHECM SV OLS Kalman 
filterwavelet

time-
vary

distribu
tion weight

clustering 
time series

within 
cluster 

resampling
rolling 

window

GHSOM

matching 
frequency

the proposed CI approach

issues

solutions

parametric models

Hedge ratio

optimal hedge ratio  decision

 

Figure 1-1. Theoretical framework 
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1.6 Organization of the Dissertation 

This dissertation is presented in five chapters. Chapter 1 includes the background, 

statement of the problem, purpose of the study, significance of the study, and the theoretical 

framework. Chapter 2 presents a review of literature. Chapter 3 introduces the proposed model 

used for this study. Chapter 4 presents the experiments design and results analysis. The 

concluding remarks and recommendations for further work are provided in Chapter 5. 
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Chapter 2 Literature Review 

This chapter presents the rationale for conducting research on OHR decision making for 

different hedging horizons using computational intelligence technique. The following sections 

describe the theoretical background and examination of previous research presenting relevant 

issues on the minimum variance hedge ratio, clustering time series, and GHSOM. 

2.1 Hedging Theorem and Hedge Ratio 

The most widely used hedging strategy is to adopt the minimum-variance hedge ratio 

(Ederington, 1979; Myers and Thompson, 1989), which reduces the variance of portfolio to 

attain minimum risk for the hedger.  

Traditionally, two approaches have been suggested to minimize portfolio risk. The first 

approach, naïve hedge, simply sets the hedge ratio equal to 1 over the whole hedging horizon. 

The correlation between spot and futures prices is assumed to be perfect, but it challenges the 

fact that the spot and futures prices are naturally stochastic and time variant. The second 

approach is the static OLS hedge, which accurately recognizes the correlation between futures 

and spot prices using the OLS coefficient of a regression of spot return on futures return 

(Ederington, 1979; Figlewski, 1984). However, it considers the joint distribution of spot and 

futures return as constant, and hence leads to suboptimal hedging decisions in periods of high 

basis volatility. The naïve and OLS approaches do not require any adjustment in hedge ratio 

once the decision is taken, which fails to consider current available information. 

Recently, numerous works have focused on improving hedging performance using the 

dynamics in the joint distribution of returns and the time-varying nature of OHRs. Optimal 

hedge ratios are estimated using the family of GARCH models proposed by Engle (1982), 

Engle and Kroner (1995), and Bollerslev (1986, 1990). Various GARCH models are studied in 
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literature to investigate hedge ratio and hedging performance, including bivariate GARCH 

model with diagonal vech parameterization for commodity futures contracts (Baillie and Myers, 

1991), bivariate constant-correlation GARCH (CC-GARCH) model for foreign currency 

futures (Kroner and Sultan, 1993) and stock index futures (Park and Switzer, 1995), GARCH 

model with Baba-Engle-Kraft-Kroner (BEKK) parameterization for interest-rate futures 

(Gagnon and Lypny, 1995), augmented GARCH model for the freight futures market 

(Kavussanos and Nomikos, 2000), and orthogonal GARCH and CC-GARCH for the electricity 

futures market (Bystrom, 2003). 

The GARCH family model can capture the dynamic behavior of a time series for OHR 

estimation, but these approaches have three drawbacks. First, GARCH models require the time 

series to be stationary, such that the price series of a financial asset are usually transformed to 

the return series by a differential. However, this eliminates much information and ignores 

co-integrated properties. Second, many research have attempted to improve the GARCH model 

by adding the error term or other variables to the model. These improvements can increase 

accuracy, but the model has become increasingly complicated and its variables are difficult to 

determine. Third, when these models work to deal with different hedging horizons, the original 

time series is required for sampling, which is based on data frequency. However, the 

information and property of the original time series may be eliminated after data sampling. 

More recently, other approaches based on non-parametric models have been proposed to 

avoid undue restrictions. Alizadeh and Nomikos (2004) introduce the Markov regime switching 

(MRS) model to estimate the time-varying minimum-variance hedge ratio for stock index 

futures. Hatemi-Ja and Roca (2006) utilize the Kalman Filter approach for estimating 

time-varying hedge ratio. Gencay et al. (2003), Kim and In (2005), and In and Kim (2005, 2006) 

adopt wavelet analysis to study the relationship between hedge ratio and hedging horizon. 
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Azevedo et al. (2007) propose a particle swarm optimization (PSO) approach to support 

electricity producers for multiperiod optimal contract allocation. Although some of these 

models are more burdensome in computing, the accuracy of results have been improved and 

better hedging performance is obtained. 

2.2 Cluster Analysis for Time Series 

Since the proposal of the famous cluster analysis algorithms, k-means, 50 years ago, the 

cluster analysis has been widely used as a data analyzing tool in various domains. In the past 

two decades, time series clustering has shown effective results in providing useful information 

in various domains. In the financial field, clustering financial time series is a new approach to 

analyze the dynamic behavior of time series, and to forecast any future tendency of the time 

series for purposes of decision making. Many financial problems have been studied based on 

cluster analysis via computational intelligence approach instead of the conventional approach. 

Pattarin et al. (2004) propose a classification algorithm for mutual funds style analysis, which 

combines different statistical techniques and exploits information readily available at low cost. 

In their analysis, time series of past returns is used to retrieve synthetic and informative 

description of contexts characterized by high degrees of complexity, which is useful in 

identifying the styles of mutual funds. Gafnychuk et al. (2004) use the self-organizing methods 

to investigate the time series data of the Dow Jones index. Basalto et al. (2007) use a novel 

clustering procedure, which is applied to the financial time series of the Dow Jones industrial 

average (DJIA) index to find companies that share similar behaviors. The techniques proposed 

could extract relevant information from raw market data and yield meaningful hints as to the 

mutual time evolution of stocks. Karandikar et al. (2007) develop a volatility clustering model 

to forecast value at risk (VaR). The feasibility and benefits of the model are demonstrated in an 
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electricity price return series. Zhu (2008) propose a new model based on cluster analysis for oil 

futures price forecasting. This model is demonstrated using the historical data from NYMEX 

market, and shows that the proposed model can effectively and stably improve the precision of 

oil futures price forecasting. Focardi and Fabozzi (2009) adopt a clustering-based methodology 

to determine optimal tracking portfolio to track indexes. Papanastassiou (2009) discuss 

classification and clustering of financial time series data based on a parametric GARCH (1,1) 

representation to assess their riskiness. 

In spite of the prevalence of numerous clustering algorithms, including their success in a 

number of different application domains, clustering remains difficult. When applying the 

clustering analysis on time series, the method of data processing, feature extraction, similarity 

measurement, and topology of cluster construction should be determined. Features extracted 

from the time series are organized by past research into three groups (i.e., according to data 

used) (Liao, 2005): working directly with the data either in the time or frequency domain; 

working indirectly with features extracted from the raw data; and working indirectly with 

models built from raw data. Defining an appropriate similarity measure and objective function 

is difficult when choosing clustering algorithm. Jain (2010) emphasizes that “there is no best 

clustering algorithm” when comparing the results of different clustering algorithms. 

Furthermore, the clustering method can be classified into two categories depending on whether 

the data objects are grouped into a tree of clusters or not (i.e., hierarchical and non-hierarchical). 

There are generally two types of hierarchical clustering methods: agglomerative and divisive. 

Agglomerative methods start by placing each object in its own cluster and then merging clusters 

into larger and larger clusters, until all objects are in a single cluster or until certain termination 

conditions, such as the desired number of clusters, are satisfied. Divisive methods do the 

opposite. Determining the number of clusters automatically is one of the most difficult 
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problems in data clustering. Most methods for automatically determining the number of 

clusters cast it into the problem of model selection. 

Although clustering remains a difficult problem, in time series, it offers two benefits. 

First, clustering can avoid the improper assumption and restriction of data. Gershenfeld et al. 

(1999) propose a cluster-weighted model for time series analysis, which is a simple special case 

of the general theory of probabilistic networks but one that can handle most of the limitations of 

practical data sets without unduly constraining either data or user. They show that are nonlinear, 

non-stationary, non-Gaussian, and discontinuous signals can be described by expanding the 

probabilistic dependence of the future depending on past relationships of local models. Second, 

data objects with similar dynamic behavior in their evolution over time are pooled and can thus 

help in data modeling. Fruhwirth-Schnatter and Kaufmann (2008) propose to pool multiple 

time series into several groups using finite-mixture models. Within a panel of time series, only 

those that display “similar” dynamic properties are pooled to estimate the parameters of the 

generating process. They estimate the groups of time series simultaneously with group-specific 

model parameters using Bayesian Markov chain Monte Carlo simulation methods. They 

document the efficiency gains in estimation, and forecasting is realized relative to the overall 

pooling of the time series. D’Urso and Maharaj (2009) suggest that time series often display 

dynamic behavior in their evolution over time, which should be taken into account when 

attempting to cluster the time series. They proposed a fuzzy clustering approach based on 

autocorrelation functions to determine and represent the underlying structure in the given time 

series. 

Based on literature, we apply the cluster analysis to find the dynamic behavior of financial 

time series based on computational intelligence approach. The method of data processing, 

feature extraction, and similarity measurement, as well as the topology of clusters constructed, 
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are easy to determine. 

2.3 GHSOM 

Kohonen’s self-organizing feature map (SOM) is an unsupervised two-layer network that 

organizes a topological map. The resulting map shows the natural relationships among patterns 

given in the network. SOM is suitable for clustering analysis and has been applied to time series 

pattern discovery (Fu et al., 2001; Tsao and Chen, 2003) and time series forecasting (Senjyu, 

2000; Simon et al. 2005; Afolabi and Olude, 2007). However, when applying the SOM for 

cluster analysis, the topology of the SOM describing the number of clusters needs to be 

determined in advance. Moreover, the topology of the SOM lacks the ability to represent 

hierarchical relations of the data.  

The hierarchical relations of the data are treated as trends of different time scales in time 

series analysis. These concepts are utilized in decomposition analyses, such as Fourier analysis 

and wavelet analysis. Time series data are decomposed into many components that can easily 

show the detailed properties of long-term, mid-term, and short-term tendencies. 

Proposed by Rauber et al. (2002), GHSOM has a hierarchical architecture of multiple 

layers. Each layer comprises several independent clusters representing the growing SOM. The 

breadth of each SOM and the depth of the hierarchy are adjusted according to the characteristics 

of the input data during the unsupervised training process. Each SOM undergoes training via an 

unsupervised and competitive learning algorithm, as proposed by Kohonen (1989). The 

training steps include competitive and weight adaptation processes. 

In many research, GHSOM has been used to perform clustering, including presentation 

of a content-based and easy-to-use map hierarchy for legal documents in the securities and 

futures markets (Shih et al., 2008), knowledge discovery from multilingual text documents 
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(Yang et al., 2009), and pattern discovery of time series data from robot execution failures and 

gene expression data (Liu et al., 2006). 

In this study, GHSOM is used for the time series analysis to deal with variance and 

covariance data, which have not been studied in detail. Using the GHSOM algorithm, time 

series data with similar patterns are clustered together. If the similarity of data in the same 

cluster is below a certain threshold, data are clustered once again by breadth or depth, thus 

expanding the SOM clusters. The topology of the clusters is automatically determined by the 

data and related with the threshold setting for width and depth expansion. Finally, the 

hierarchical clustering results, which represent the data relationship, are obtained and used to 

modify the mean-variance model for OHR estimation. 

Based on previous literature, as described in previous sections, we consider adopting the 

GHSOM for financial series clustering. The method utilizes an unsupervised hierarchical 

clustering algorithm with easily determined cluster numbers, and is less sensitive in model 

parameter selection. The dynamic behaviors of financial time series are modeled by cluster 

analysis. The model can also forecast data distribution, which can improve the accuracy of 

OHR estimation. 
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Chapter 3 Research Methodology 

3.1 Design of Computational Intelligence-based Model 

The conventional approach to OHR estimation is simply to regress the spot and futures 

series. The basic operating steps are shown in Figure 3-1. The first step is to collect the market 

price of spots and futures as original data. Next, the original price series is sampled so it 

coincides with the hedging horizon and then transformed into a return series by differencing. 

Finally, these data are used to estimate variance and covariance using OLS to obtain the OHR.  

In this study, two modifications of the conventional approach are proposed based on 

computational intelligence, as shown in the top part of Figure 3-1. First, the data sampling 

process in the conventional approach is omitted from the conventional approach because it 

causes reduction of sample size, which decreases the accuracy of OHR estimation. Second, the 

original composition of data for OHR estimation is modified by the selected data with a similar 

pattern, which is performed in two phases. Phase I is clustering time series, and Phase II is 

modifying the probability distribution. The philosophy of the proposed approach is that data 

with similar dynamic behaviors may appear in the future with higher probability than dissimilar 

ones. Therefore, the objective of Phase I is to identify higher probability data, which would 

occur in the next hedging horizon based on the whole data set, and ignore lower probability data. 

In Phase II, the data composed by the higher probability data are expected to be more 

approximate to the normal distribution than the original data, suggesting decreased inaccuracy 

caused by leptokurtic and fat-tailed distributions. Details of the proposed model are described 

in the following sections. 
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Figure 3-1. The computational intelligence approach 

3.1.1 Clustering Time Series 

Phase I of our proposed approach is clustering time series. Cluster analysis is an 

unsupervised learning method that can gather similar data in the same group by feature 

extraction and similarity measurement. Consequently, the features of time series and the 

algorithm for measuring similarity should be determined when applying the proposed approach. 

Many research works indicate that dynamic behaviors exist in financial time series, and these 

dynamic behaviors are helpful for time series forecasting (Fruhwirth-Schnatter and Kaufmann, 

2008; D’Urso and Maharaj, 2009). The dynamic behaviors often refer to the velocity and the 

acceleration of a moving object, which are computed by the first-order and second-order 

differencing of the object position, respectively. In other words, dynamic behaviors can be 

defined as the speed of change and the acceleration of change. OHR estimation is relative to 

bivariate random variable analysis, which considers the joint probability distribution of spot 
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and futures return series, and focuses on variance and covariance analysis. Dynamic 

behaviors—the interest of this study—are the variance of spot and futures return series, as well 

as the speed and acceleration of variance change. Furthermore, the time series of financial asset 

returns often exhibits the volatility clustering property. As noted by Mandelbrot (1963), “large 

changes tend to be followed by large changes, of either sign, and small changes tend to be 

followed by small changes.” Therefore, the variance, speed of variance change, and 

acceleration of variance change are adopted as dynamic behaviors, which represent the features 

of time series and are extracted for clustering. The other features of the time series that are 

helpful for OHR estimation, such as price spread (Lien and Yang, 2006) and covariance of joint 

distribution, are also considered and tested in this study. 

The cluster algorithm chosen in this study is GHSOM, but not k-mean, SOM, and others, 

because of three main reasons. The first relates to the benefits of the hierarchical structure. 

Cluster algorithms can be classified into two categories, non-hierarchical and hierarchical. For 

the non-hierarchical structure, the degree of similarity for each cluster is obtained by measuring 

the distance between cluster centers. When we want to collect a certain number of observations 

(i.e., the most similar), the distance of cluster centers for measuring the similarity is hardly 

determined. However, for the hierarchical structure, the degree of similarity for each cluster can 

be obtained in a more natural manner depending on the layer it belongs to in the hierarchical 

structure. Second, the result of GHSOM is stable regardless of cluster number. Many cluster 

algorithms should determine the number of clusters prior to their application. However, the best 

number of clusters for analysis is unknown, and the clustering results are often unstable with 

the cluster number. GHSOM can grow and expand the hierarchy of a cluster by parameter 

setting, which can determine the number of clusters automatically and is not sensitive to 

clustering results. The last reason is that the similarity measurement function of various cluster 
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algorithms are not sensitive to the clustering results (Jain, 2010). Therefore, GHSOM is 

adopted in this study for clustering time series. 

3.1.2 Modifying the Probability Distribution 

Many properties of financial time series are time variant. We suggest that the probability 

distribution should be time variant, and estimated and updated by the latest time series data. We 

are also interested in the accuracy of forecasting. Observations with similar behavior may occur 

more frequently in the future and should be more emphasized than the dissimilar ones. However, 

when data are grouped by cluster analysis, the original data are divided into several groups, 

with each group only containing partial data. The number of similar data is far less than the 

original data. Reducing sample size causes inaccuracy when OLS for OHR estimation is 

employed (Lien and Shrestha, 2007). To overcome this problem, we propose to adopt with-in 

cluster resampling. With-in cluster resampling has been used for solving sample-reduced 

problems in the biometric field (Hoffman, 2001; Rieger and Weinberg, 2002). The observations 

of the cluster are replicated to expand the sample size. This idea is inspired by the stratified 

resampling scheme and bootstrap resampling method. The architecture of hierarchical cluster is 

very similar to the hierarchical stratified resampling scheme, in which the observations are 

divided into several groups according to their properties. Each group is weighted by the number 

of observation replications. Bootstrap method, which replicates the observation randomly to 

simulate the status in the future based on few observations, has been commonly used in finance 

and economics models. Therefore, in this study, observations in the cluster are randomly 

replicated until the sample size reaches the number size of the population. 
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3.2 Procedure of the Proposed Model 

3.2.1 Data Transformation 

In the process of data transformation, the original time series are transformed from prices 

to returns. These return series are then sequentially segmented into several windows with a 

fixed length in order to perform dynamic hedging strategy and out-of-sample testing. 

The original data for OHR estimation gathered from the financial market are the daily 

closing (or settlement) prices of spot and futures. Generally, these price series are transformed 

into return series in consideration of payoffs in finance. The return series can be obtained by 

differencing the price series. We consider continuously compounded data and magnify the 

scale by multiplying by 100 to avoid a small scale. The return series is expressed as the price 

change:  

100)/ln(, 1 ×=ΔΔ −tttt PPFS                            (3-1) 

where SΔ  and FΔ  are price changes of spot and futures, respectively; P is the price series; 

and t refers to the time at present.  

These return series are then divided into two parts, in-sample estimating period and 

out-of-sampling testing period. The hedge portfolio in this study is adjusted every hedging 

horizon according to the latest estimated OHR until the out-of-sample testing period is due. A 

rolling window scheme is applied to achieve the dynamic hedging strategy. The rolling 

windows scheme estimates the OHR at time t according to the conditioning on the time t-1 data 

set, which is exhibited in Figure 3-1. Herein, e denotes the in-sample estimating period while 

h is the hedging horizon. The length of the rolling window is e+h. OHR is estimated based on 

the observations in the in-sample estimating period, from t-e to t, then used for hedging from t 

to t+h. Next, the window is rolled one hedging horizon ahead in order to reestimate the OHR 
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based on the observations from t+h-e to t+h. Then, we use the new OHR for the next hedging 

horizon, from t+h to t+2h. OHR is reestimated every h day, and then used to adjust the 

hedging portfolio until the out-of-sample testing period is due. 

 

 

Figure 3-2. The rolling windows scheme 

3.2.2 Feature Extraction for Various Horizons 

In this study, variance, covariance, price spread, and their first and second differencing 

are adopted as the features of time series. These features are calculated using the data in the 

most recent hedging horizons just before the present; it is denoted by h. These features are 

calculated as follows:  

[ ]thtt SSVarSVar ΔΔ=Δ − ,...,)(                       (3-2) 

[ ]thtt FFVarFVar ΔΔ=Δ − ,...,)(                       (3-3) 
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The first and second order difference of these features are shown as 
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where X  represents the functions of Var , Cov , and Sperad . These extracted features 

from a period of data can represent the dynamic behavior of time series in the recent hedging 

horizon. Twelve values are extracted to describe an observation and used as the input 

variables of GHSOM (Table 3-1). 

 

Table 3-1. Features of the observation 

Input Variables Notations 
Variance  

Variance of spot return series )( SVar Δ  

First order differential of )( SVar Δ  )( SrVa Δ′  

Second order differential of )( SVar Δ  )( SrVa Δ′′  

Variance of futures return series )( FVar Δ  

First order differential of )( FVar Δ  )( FrVa Δ′  

Second order differential of )( FVar Δ  )( FrVa Δ′′  
Covariance  

Covariance of spot and futures return series ),( FSCov ΔΔ  

First order differential of ),( FSCov ΔΔ  ),( FSvCo ΔΔ′  

Second order differential of ),( FSCov ΔΔ  ),( FSvCo ΔΔ′′  
Price spread  

Spread of spot and futures price series ),( FSSpread  

First order differential of ),( FSSpread  ),( FSdSprea ′  

Second order differential of ),( FSSpread  ),( FSdSprea ′′  
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3.2.3 Clustering by GHSOM 

Each observation can extract a feature vector from the data from the previous hedging 

horizon. The feature vectors of the observations in the estimation interval include input matrix 

of GHSOM for OHR estimation. The GHSOM algorithm in this study is implemented in 

MATLAB (Chan and Pampalk, 2002). When using the GHSOM, the parameters related to 

network topology, such as breadth (e.g., breadth of map) and depth (e.g., depth of GHSOM), 

need to be determined first. If the similarity of data in the same cluster is below a certain 

threshold, the data will be clustered once again by breadth or depth, hence expanding the SOM 

clusters. To emphasize the hierarchical relationship of the clusters and to avoid data from 

being too concentrated on some clusters, we set the depth parameter as 0.001 and the breadth 

parameter as 0.8. Items that cannot be expanded are restricted when they are less than 100. 

The topology of the clusters is automatically determined by the data and related with the 

threshold setting of width and depth expansion. 

After the GHSOM is initialized, we input the features vector extracted from the historical 

time series to the GHSOM. The feature vectors are then processed by min-max normalization, 

which maps the value of the vector from -1 to 1. Normalization can ensure stable results. The 

approach has been widely used in computational intelligence, such as neural network and 

genetic algorithm. Using competitive learning, the output of a neuron is determined by 

calculating a similarity measure between the weight of the neuron and the external input. 

Furthermore, the topology can grow and form a hierarchical architecture when the neuron 

exceeds the quality measurement request. Finally, the input data can be hierarchically clustered. 

Figure 3-3 shows an example of the hierarchical clusters obtained from the GHSOM. The data 

are grouped into several groups in a hierarchical structure of four layers. The largest rectangle 

is Layer 0, which contains 2X2 SOM clusters in Layer 1. The upper-left cluster in Layer 1 also 
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contains 2X2 SOM clusters, and so on. 

  

Figure 3-3. Result of GHSOM clustering 

3.2.4 Identifying Cluster Structure 

The historical financial time series data were hierarchically clustered by the GHSOM with 

similar patterns. Results show that the hierarchical architecture consists of many clusters 

distributed in different layers. The relations of hierarchical clusters are illustrated in Figure 3-4. 

The sample size of each cluster is different. Clusters in the upper layers of the hierarchical 

architecture contain more samples of observations than those in the lower layers. The 

hierarchical architecture also represents the degree of similarity. Any observation can be 

identified on the cluster based on the layer it belongs to. The host cluster in the lowest layer 

contains the least data but has the highest similarity with the forecasting data. In addition, 

similarity with data is decreased in the upper layer clusters. Figure 3-5 is a real example which 
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exhibits an observation and its similar observations in the clusters. The observation of the date 

21 July, 2000 can find its similar observations in three layers. Each layer has a cluster it 

belonged to. The number of observations is decreased when the depth of layer increase. 

With regard to the latest observation in the estimation interval, similar observations can be 

obtained based on the group it belongs to in each layer. To forecast the fluctuation of the spot 

and futures for the next hedging horizon, we collect the observations which are one hedging 

horizon ahead the similar observations in the same clusters. Figure 3-6 illustrates the 

observations collection for forecasting. These observations are weighted by similarity based on 

the cluster they belong to, and are used to modify the probability distribution for OHR 

estimation. 

 

 

 

Figure 3-4. An example of the hierarchical clustered data 
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Figure 3-5. An observation and its similar observations in the clusters 

 

Previous hedging horizon Next hedging horizon

Observations with similar behavior
in next hedging horizon

features extracting for
similar pattern recognition

Similar observations

Observations collection

 

Figure 3-6. The observations collection for forecasting 

3.2.5 Data Resampling and Weighting 

Regardless of similarity in data, every observation in the estimation interval is given equal 

weight for OHR estimation in the conventional model. In our proposed CI approach, for OHR 
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estimation, the observation is given a different weight according to similarities. Although the 

size of the clusters obtained by GHSOM is different, the more similar data in the lower level 

clusters would be given more weight than the upper level clusters in the resampling process. 

The weights of observation are suggested for data replication. The more similar data will be 

replicated more frequently, thus increasing the occurrence probability in the whole population.  

For each layer in the hierarchical cluster, the data in the same cluster are replicated 

randomly until the sample size coincides with the original sample size of the estimation period. 

The sample size is expanded by multiplying the layer of the hierarchical architecture. For 

example, in the conventional approach, if the size of observations in the estimating period is 

1000, the OHR for the next hedging horizon is estimated based on 1000 observations. In the 

proposed CI approach, if 1000 observations are clustered into three layers by GHSOM, the 

OHR will be estimated based on triple observations, all generated by resampling. The 

expansion of sample size avoids the small sample effect and increases the accuracy of OHR 

estimation. 

After data resampling, we can obtain a collection of observations composed of similar 

data in the cluster and consequent observations in the following hedging horizon with 

different weight. The pseudo code used to form the collection is described in Figure 3-7. The 

collection can include the original observation used for OHR estimation in order to modify 

the probability distribution of the original time series with unequal weight measured by 

similarity. Finally, the OHR can be estimated by the traditional OLS method. Calculating the 

variance and covariance of spot and futures based on the collection of observations is carried 

out. 
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Figure 3-7. The pseudo code of data resampling and weighting 

3.2.6 Estimating OHR with OLS 

The basic concept of hedging involves the elimination of fluctuations in the value of a spot 

position by tracking futures contracts that are opposite to the position held by the spot market. 

For a long position in the spot market, the return of a hedged portfolio is given by  

FrSHP Δ×−Δ=Δ                            (3-8) 

where HPΔ  is the change in the value of the hedge portfolio; SΔ  and FΔ  are the changes 

Function modifying distribution () 

For (each layer in the GHSOM cluster result) 

   Identify the cluster number clclus ,  where the latest observation latestobs belongs to 

   For (each observation iobs  in the cluster clclus , ) 

     Insert the observations hiobs +  into the collection lcol  

   End for 

   Resample the collection lcol  randomly with repetition until the size of lcol  equals the 
estimation interval 

End for 

 

clclus , : the cluster number, where l  is the number of layers, and c  is the number of the 

cluster in layer l  

latestobs : the latest observation in a rolling window 

iobs hiobs + : the observations of a cluster, where i  is the number of observations, and h  
is the hedging horizon 

lcol : the collection of observations for layer l  
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in the spot and futures prices, respectively; and r  is the hedge ratio. Changes in spot and 

futures prices are also considered as returns, which are calculated by Equation (3-1). OHR is 

the value of r  that maximizes the expected utility of the investor; it is defined as the expected 

return and risk of the hedged portfolio. The expected return of futures is 0 when the futures 

price follows a martingale; hence, the futures position will not affect the expected return of the 

portfolio.  

The risk of the hedge portfolio is defined by its variance in the mean-variance framework. 

Therefore, OHR is simply the value of r  that minimizes the variance of Equation (3-8), which 

is given by 

0),(2)(2)(
=ΔΔ−Δ×=

∂
Δ∂ FSCovFVarr
r

HPVar                  (3-9) 

where )( FVar Δ  is the variance of the futures return and ),( FSCov ΔΔ is the covariance between 

the spot return and the futures return. OHR is determined by solving Equation (3-9): 

)(
),(*

FVar
FSCovr

Δ
ΔΔ

=                               (3-10) 

The OHR given by Equation (3-10) can be estimated by regressing the spot return on the 

futures return using OLS, which corresponds to conventional OHR.  

In this study, OHR estimation is improved by replacing the original observations in the 

estimation period with the collection of observations, which is composed of similar data in the 

cluster. Their consequent observations in the following hedging horizon have different 

weights. The traditional OLS method for OHR estimation, expressed by Equation (3-10), is 

modified to Equation (3-11), in which S~Δ  and F~Δ  refer to the collection of observations 

derived from spot and futures return series, respectively. 

)~(
)~,~(*

FVar
FSCovr

Δ
ΔΔ

=                               (3-11) 
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3.3 Model Evaluating Criteria 

3.3.1 Hedging Effectiveness 

Hedging performance is typically evaluated by hedging effectiveness (HE). The degree 

of hedging effectiveness is measured by the percentage reduction in the variance of portfolio 

after hedging (Geppert, 1995). The variance of hedge portfolio with estimated OHR can be 

expressed as 

)()( tthedged FrSVarHPVarVar Δ×−Δ=Δ=                    (3-12) 

where r is the OHR. Therefore, HE can be expressed as 

%100)
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HE
unhedged

hedgedhedgedun    (3-13) 

The value of HE can be used to evaluate the model of OHR estimation. A higher HE 

represents better OHR estimation, and vice versa.  

3.3.2 White’s Reality Check 

In comparing the different OHR estimation models and to test the statistical significance 

of variance deduction, we apply White’s Reality Check (White, 2000), which has been used to 

compare hedging models (Lee and Yoder, 2007). The Reality Check consists of a 

non-parametric test that checks if any of the numbers in the concurrent methods yield 

forecasts that are significantly better than a given benchmark method; then, it corrects the data 

snooping bias. Data snooping bias may occur when a given dataset is reused by one or more 

researchers for model selection. The null hypothesis that the performance of the proposed 

hedging model has no predictive superiority over the conventional model is not rejected. The 

hypotheses are as follows: 
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H0: No method is better than the benchmark. 

H1: At least one method is better than the benchmark. 

The detailed process of White’s Reality Check can be found in literature (White, 2000; Lee 

and Yoder, 2007). 
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Chapter 4 Experimental Design and Results Analysis 

4.1 Experimental Design 

The experiments in this study are designed with two objectives: feasibility of the 

proposed CI-based model and hedging performance over various hedging horizons for OHR 

decision making based on different models. Figure 4-1 shows the framework of the 

experiments. 

First, on the left side of the figure, the feasibility of the proposed CI-based model is 

examined using dynamic behaviors extracted as the feature of the time series. The 

feature-extracting process of the proposed model is tested in different settings to achieve the 

best parameters. The feature vectors that represent the dynamic behaviors of time series for 

GHSOM similarity measurement are composed of variance, covariance, price spread, and 

their first and second order differences. We design six combinations of these parameters, 

which are adopted in the experimental models and denoted by CI_1, CI_2, CI_3, CI_4, CI_5, 

and CI_6, respectively, to verify the performance over various hedging horizons. Table 4-1 

presents the parameter settings of these models. 

Second, on the right side of the figure, the optimal hedge ratio is estimated by the 

proposed model concerned with the hedging horizon, and the performances are compared 

with conventional models. The hedging decision is evaluated by hedging effectiveness. For 

each hedging horizon in the testing period, the hedged portfolio is adjusted once according to 

the latest OHR at the beginning of a hedge horizon and lasts until the beginning of the next 

hedging horizon. At the end of the testing period, hedging effectiveness is calculated based on 

the variance of the hedging portfolio in each hedging horizon. Hedge horizons in the 

experiments are set at 1, 7, 14, 21, and 28 days, which cover the intervals from short-term to 
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long-term. To compare hedging performance, the superiority of the proposed model is verified 

using two conventional models, the OLS and naïve models, both of which are widely used in 

OHR research on different hedging horizons (Chen et al. ,2004; In and Kim, 2006). 

Furthermore, to obtain a better understanding of the properties of the proposed model, 

several experiments are designed separately to investigate the influence of the period of data 

for feature extraction and the period of experiment data. The design and result for these 

experiments are presented in Sections 4.6 and 4.7. 

Experiments

Models

GHSOM

Hedging 
horizons

OLS

Naive

1 day

7 days

14 days

Features
selection

Variance

Covariance

Price spread

First‐order 
differencing

Second‐order 
differencing

Hedging 
Effectiveness

Dynamic 
behaviors

21 days

28 days

 

Figure 4-1. Experiment framework 
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Table 4-1. Parameter settings for testing dynamic behavior 

Model Parameter setting   
Variance Covariance Price spread 

CI_1 )( SVar Δ , )( FVar Δ    

CI_2 

)( SVar Δ , )( FVar Δ  
)( SrVa Δ′ , )( FrVa Δ′  
)( SrVa Δ′′ , )( FrVa Δ′′  

  

CI_3 )( SVar Δ , )( FVar Δ  ),( FSCov ΔΔ  ),( FSSpread  

CI_4 

)( SVar Δ , )( FVar Δ  
)( SrVa Δ′ , )( FrVa Δ′  
)( SrVa Δ′′ , )( FrVa Δ′′  

),( FSCov ΔΔ  ),( FSSpread  

CI_5 )( SVar Δ , )( FVar Δ  
),( FSCov ΔΔ  
),( FSvCo ΔΔ′  
),( FSvCo ΔΔ′′

),( FSSpread  
),( FSdSprea ′  
),( FSdSprea ′′  

CI_6 
)( SVar Δ , )( FVar Δ  
)( SrVa Δ′ , )( FrVa Δ′  
)( SrVa Δ′′ , )( FrVa Δ′′  

),( FSCov ΔΔ  
),( FSvCo ΔΔ′  
),( FSvCo ΔΔ′′

),( FSSpread  
),( FSdSprea ′  
),( FSdSprea ′′  

 

4.2 Experiment Data and Basic Statistics 

This study obtained empirical trading data of the daily closing price from various stock 

and futures markets, including Taiwan Weighted Index (TWI), Standard & Poor's 500 Index 

(S&P 500), Financial Times Stock Exchange 100 Index (FTSE 100), NIKKEI 255 Index, and 

their correlative futures contracts. Table 4-2 lists the stock market index and exchange of their 

correlative futures contracts trade. All data were obtained from the Thomson Datastream 

database in the same period from July 21, 1999 to July 18, 2008. The futures prices series was 

gathered from the nearest month contracts and rolled over to the next nearest contracts on the 

maturity day due to the consideration of liquidity and price spread risk. The return series are 

defined as the logarithmic first difference of price series multiplied by 100 using Equation 

(3-1). The numbers of observation for each market are listed in Table 4-2. Among the total 

observations, the first 90% is considered the estimation period, and the remaining 10% is 
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considered the testing period. 

Table 4-3 shows some basic distributional characteristics of the spot and futures return 

series. All eight series show high significant skewness, kurtosis, and Jarque-Bera (JB) 

statistics, implying non-normal distributions with fatter tails. A comparison of the standard 

deviation of return, kurtosis, and JB statistics indicate that the largest and smallest 

discrepancy between the spot and futures data are in TWI and FTSE 100, respectively. In 

other words, the correlation between spot and futures is highest in FTSE 100 and lowest in 

TWI. The large discrepancy between the spot and futures data displays more extreme 

movements than would be predicted by a normal distribution. The F-test for equal variance 

between spot and futures also indicates different characteristics in each market. The result 

shows that the null hypothesis of equal variance is rejected in TWI, but cannot be rejected in 

S&P 500, FTSE 100, and NIKKEI 255 Index. Consequently, the data of the same period 

gathered from different markets may exhibit different behaviors and cause inconsistencies in 

the results.  

 

Table 4-2. Experiment data 

Index (Spot) Exchange (Futures) Observations 

Taiwan Weighted Index (TWI) Taiwan Futures Exchange (TAIFEX) 2217 

Standard & Poor's 500 index (S&P 500) Chicago Mercantile Exchange (CME) 2263 

Financial Times Stock Exchange 100 

Index (FTSE 100) 

London International Financial Futures and Options 

Exchange (LIFFE) 
2215 

NIKKEI 255 Index Osaka Securities Exchange (OSE) 2275 

Note: Data period is from July 21, 1999 to July 18, 2008. 
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Table 4-3. Basic distributional statistics of return series 

 TWI S&P 500 FTSE 100 NIKKEI 255 

 Spot Futures Spot Futures Spot Futures Spot Futures 

Mean -0.0060 -0.0068 -0.0040 -0.0042 -0.0072 -0.0073 -0.0160 -0.0158

Maximum 6.1721 6.7659 5.5744 5.7549 5.9026 5.9506 7.2217 8.0043 

Minimum -9.9360 -11.0795 -6.0045 -6.2709 -5.8853 -6.0625 -7.2340 -7.5986

Std. Dev. 1.5931 1.8262 1.1287 1.1404 1.1657 1.1663 1.4058 1.4346 

Kurtosis 5.2942 5.8891 5.2732 5.4067 5.7929 5.7588 4.6042 4.6496 

Skewness -0.1883 -0.1867 0.0600 0.0274 -0.2096 -0.1658 -0.2075 -0.2122

Jarque-Bera 
(JB) 

499.0886 
*** 

783.5957 
*** 

488.3711 
*** 

546.2142 
*** 

755.7494 
*** 

731.5745 
*** 

253.2913 
*** 

267.633 
*** 

F-test for equal 
variances  
(p value) 

0.0000 *** 0.6247 0.9790 0.3396 

Note: (1) *** represents significance at the 1% level. (2) The skewness of normal distribution is zero. (3) The 

kurtosis of normal distribution is 3. (3) The hypothesis of F-test is that two independent samples, spot and 

futures return, come from normal distributions with the same variance. 

4.3 Comparisons of Dynamic Behaviors Prediction 

In this study, we apply the features extracted from the time series to represent dynamic 

behavior as the input variable for time series clustering by GHSOM. The variance, covariance, 

price spread, and first and second differences of the observations in previous hedging horizons 

are suggested to capture the dynamic behavior for predicting fluctuations in the next hedging 

horizon. The feasibility of this approach is examined using the six combinations of parameters 

listed in Table 4-1. Model performance is evaluated via hedging effectiveness over various 

hedging horizons in the four stock markets. 

Table 4-4 presents the hedging effectiveness for all models. Results indicate that based on 

the same experiment data, the CI-based model can obtain the best performance compared with 

the traditional OLS and naïve models, except for short-term hedging in FTSE 100 and one 

day hedging in S&P 500. A comparison of the six experiment models in all market data 
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indicates that the best CI-based model is different over different hedging horizons. For seven 

days hedging, the CI_1 model is the best model in all market data. However, for the 1 day and 

28 days hedging, the CI_2 and CI_4 models are the best models in three of four market data, 

respectively.  

The results imply that the ability to capture fluctuation under various timescales is 

different for CI-based models. Short-term dynamic behavior may be captured by variance and 

its first and second differences. Long-term tendency may need more variables for its 

description than short-term tendency by adding covariance and price spread. 
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Table 4-4. Comparisons of dynamic behaviors 

Market/model Hedging effectiveness 
  Hedging horizon (days) 
  1 7 14 21 28 

TWI    

CI 1 93.3309% * 97.1661% ** 99.2656% 99.3811% 99.3131% 

 2 93.3905% ** 97.1534% * 99.2480% 99.3942% 99.3556% * 

 3 93.2715% 96.9289% 99.2751% 99.3947% 99.3160% 

 4 93.0998% 96.8809% 99.2879% * 99.4342% * 99.3802% ** 

 5 93.1081% 97.0102% 99.3111% ** 99.4327% 99.3431% 

 6 93.1798% 96.9169% 99.2047% 99.4666% ** 99.3470% 

OLS  93.3055% 97.0244% 99.1612% 99.3860% 99.3089% 

Naïve  90.6982% 96.0278% 98.5331% 99.0888% 98.8415% 

S&P 500       

CI 1 96.6140% 99.1678% ** 99.3126% 99.6413% 99.6493% 

 2 96.6662% * 99.1206% 99.3777% 99.6010% 99.6513% 

 3 96.6401% 99.1236% 99.3860% ** 99.6888% ** 99.7094% 

 4 96.6447% 99.0880% 99.3856% * 99.6806% * 99.7310% ** 

 5 96.6069% 99.0630% 99.3837% 99.6774% 99.6793% 

 6 96.6221% 99.0656% 99.3667% 99.6661% 99.7263% * 

OLS  96.6510% 99.1287% * 99.3705% 99.5911% 99.6131% 

Naïve  96.7974% ** 99.0029% 99.3045% 99.4826% 99.5752% 

FTSE 100       

CI 1 96.9688% 98.5911% 98.5323% 99.0140% 99.4868% ** 

 2 97.0511% * 98.5522% 98.5596% 99.1438% 99.4483% 

 3 96.9842% 98.5673% 98.5690% 99.1743% 99.4857% * 

 4 96.9828% 98.6141% * 98.5572% 99.2197% * 99.4751% 

 5 96.9945% 98.5904% 98.5883% 99.1774% 99.4475% 

 6 97.0278% 98.5823% 98.6069% 99.2263% ** 99.4764% 

OLS  97.0130% 98.5552% 98.6306% * 99.0979% 99.4767% 

Naïve  97.1492% ** 98.6258% ** 98.8094% ** 99.1005% 99.3223% 

 

 

 



 

37 

NIKKEI 255       

CI 1 96.4072% 99.4409% ** 99.5007% 99.5261% 99.8709% 

 2 96.4909% 99.3939% 99.4533% 99.5560% ** 99.9036% * 

 3 96.5677% ** 99.4311% * 99.5075% * 99.5499% * 99.8948% 

 4 96.5026% 99.4310% 99.4954% 99.5245% 99.9051% ** 

 5 96.5099% 99.4037% 99.5107% ** 99.5274% 99.8899% 

 6 96.4615% 99.3797% 99.4698% 99.5431% 99.8893% 

OLS  96.5501% * 99.4271% 99.5002% 99.5072% 99.9023% 

Naïve  96.2222% 99.3305% 99.4317% 99.4585% 99.8711% 

Note: ** and * represent the best and second best HE among eight models at the same hedging horizon, 

respectively. 

 

4.4 Comparison of Hedging Performance 

For a comparison of hedging performance, we list the best CI-based model from the six 

experiments models, and the two conventional models (naïve and OLS) in Table 4-5. The 

hedging performance of the model is evaluated using hedging effectiveness and statistic 

testing for significance of superiority. The hedging effectiveness of the model is calculated 

using the variance reduction of the hedged portfolio (Table 4-4). Table 4-5 presents the 

variance of unhedged and hedged portfolios employed in White’s reality check to verify the 

significance of superiority. 

The variance of Table 4-5 shows that increasing the hedging horizon will increase the 

variance of unhedged portfolio but will be effectively reduced by the hedging model. The 

percentage of variance reduction, shown as hedging effectiveness in Table 4-4, is higher in a 

long hedging horizon than in a short one.  

A comparison of the model using the variance of hedged portfolio in Table 4-5 shows 

that the CI-based model is superior to the OLS model; for TWI and NIKKEI 255, the 

CI-based model obtains the minimum variance in all hedging horizons. However, the 
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conventional OLS model cannot obtain minimum variance for all markets. Notably, for FTSE 

100 and S&P 500 in short-term hedging, the static naïve model obtains the minimum variance. 

A possible reason for this may be the high correlation of the fluctuations of spot and futures 

for FTSE 100. This can be observed from the closing statistics value of the spot and futures 

market in Table 4-2. 

The value of hedging effectiveness is slightly different in these models. To test the 

significance of these models’ performance improvements, we perform White’s reality check. 

When OLS is treated as the benchmark, the null hypothesis of no improvement of CI-based 

model over benchmark is rejected for 28 days hedging in TWI, 21 and 28 days hedging in 

S&P 500, 21 days hedging in FTSE 100 and NIKKEI 255 at the significance level of 1%. 

Results of the reality check provide evidence that the proposed CI-model can improve the 

OLS model, especially in long-term hedging. 
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Table 4-5. Variance of the portfolio 

Market/models Variance 

 Hedging horizon 

 1 7 14 21 28 

TWI      

Unhedged 2.7527 20.5443 41.8060 35.5709 39.9629 

Naïve 0.2561 0.8161 0.6132 0.1840 0.1698 

OLS 0.1843 0.6113 0.3507 0.1454 0.1546 

CI-based 0.1819 *** 0.5822 *** 0.2880 *** 0.1148 *** 0.1056 *** 

Reality check p value 0.134 0.026 * 0.015 * 0.085 0.000 ** 

S&P 500      

Unhedged 1.6688 7.7995 14.9320 35.5709 39.9629 

Naïve 0.0534 *** 0.0778 0.1039 0.1840 0.1698 

OLS 0.0559 0.0680 0.0940 0.1454 0.1546 

CI-based 0.0556 0.0649 *** 0.0917 *** 0.1107 *** 0.1075 *** 

Reality check p value 0.354 0.072 0.257 0.000 ** 0.000 ** 

FTSE 100      

Unhedged 2.0479 8.3512 23.6463 35.0068 57.8882 

Naïve 0.0584 *** 0.1148 *** 0.2815 *** 0.3149 0.3923 

OLS 0.0612 0.1207 0.3238 0.3158 0.3029 

CI-based 0.0604 0.1157 0.3294 0.2709 *** 0.2971 *** 

Reality check p value 0.039 * 0.022 * 1.000 0.002 ** 0.050 * 

NIKKEI 255      

Unhedged 2.8548 17.2076  46.2477 38.9337 87.7568 

Naïve 0.1078 0.1152  0.2628 0.2108 0.1131 

OLS 0.0985 0.0986  0.2312 0.1919 0.0857 

CI-based 0.0980 *** 0.0962 *** 0.2263 *** 0.1729 *** 0.0833 *** 

Reality check p value 0.318 0.078 0.151 0.004 ** 0.136 

Note: (1) The benchmark model for White’s reality check is the OLS model. (2) * and ** represent significance 

at the 5% and 1% levels, respectively. (3) *** represents the minimum variance among the naïve, OLS, and 

CI-based hedged portfolios. 
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4.5 Comparison of OHR 

Time series clustering and with-in cluster resampling are used to obtain OHR for the 

CI-based model. Table 4-6, which includes OLS and the best CI-based model for comparison, 

presents the average OHR and standard deviation for the underlying models. For all market 

data, the average OHR estimated using CI-based and OLS models is very close though a large 

discrepancy exists in the standard deviation. Maximum standard deviation of the OLS model 

is 0.0069 for the one day hedging for FTSE 100. However, minimum standard deviation of 

the CI-based model is 0.0070 for 28 days hedging for S&P 500. Results suggest that the OHR 

estimated using the CI-based model is more variant than that of the OLS model. 

Figures 4-2, 4-3, 4-4, 4-5, and 4-6 present the plot of OHR estimated by the best CI-based 

and OLS models over 1, 7, 14, 21, and 28 days hedging horizons for all market data, 

respectively. In all figures, the OHR estimated using the traditional OLS model approximates a 

straight line, and the values are almost the same during the hedge period. However, the OHR 

estimated using the CI-based model is time-varying, which can reflect the dynamic behavior of 

the financial time series. 
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Table 4-6. Comparison of OHR 

Hedging horizon/   OHR    

Model 
TWI S&P 500 FTSE 100 NIKKEI 255 

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.
1         

OLS 0.8189 0.0012 0.9636 0.0037 0.9819 0.0069 0.9429 0.0015 

CI-based 0.8263 0.0268 0.9649 0.0163 0.9833 0.0145 0.9474 0.0175 

7         

OLS 0.9423 0.0019 0.9746 0.0021 0.9738 0.0040 0.9799 0.0010 

CI-based 0.9288 0.0150 0.9751 0.0088 0.9821 0.0100 0.9826 0.0058 

14         

OLS 0.9570 0.0019 0.9818 0.0024 0.9746 0.0057 0.9737 0.0015 

CI-based 0.9493 0.0134 0.9821 0.0143 0.9851 0.0159 0.9832 0.0078 

21         

OLS 0.9625 0.0021 0.9872 0.0039 0.9647 0.0045 0.9851 0.0019 

CI-based 0.9598 0.0145 0.9847 0.0099 0.9701 0.0149 0.9867 0.0078 

28         

OLS 0.9647 0.0012 0.9960 0.0023 0.9589 0.0045 0.9764 0.0010 

CI-based 0.9624 0.0066 0.9882 0.0070 0.9676 0.0118 0.9858 0.0083 
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(a) TWI 

 
(b) S&P 500 

 
(c) FTSE 100 

 
(d) NIKKEI 255 

 
Figure 4-2. Comparison of OHR in 1 day hedging 



 

43 

 
(a) TWI 

 
(b) S&P 500 

 
(c) FTSE 100 

 
(d) NIKKEI 255 

 
Figure 4-3. Comparison of OHR in 7 days hedging 
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(a) TWI 

 
(b) S&P 500 

 
(c) FTSE 100 

 
(d) NIKKEI 255 

 
Figure 4-4. Comparison of OHR in 14 days hedging 
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(a) TWI 

 
(b) S&P 500 

 
(c) FTSE 100 

 
(d) NIKKEI 255 

 
Figure 4-5. Comparison of OHR in 21 days hedging 



 

46 

 
(a) TWI 

 
(b) S&P 500 

 
(c) FTSE 100 

 
(d) NIKKEI 255 

 
Figure 4-6. Comparison of OHR in 28 days hedging 
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4.6 Influence of the Period of Data for Feature Extraction 

In this study, the proposed CI-based model adopts the period of one hedging horizon to 

extract the feature of the time series. Any feature of observation is represented by calculating 

variance, covariance, price spread, and the first and second order differences in the observations 

in the duration from one previous hedging horizon until present. However, the period length 

may influence the hedging performance of the proposed model. 

Considering different hedging horizons, the proposed CI-based models, CI_1, CI_2, CI_3, 

CI_4, CI_5 and CI_6, are tested using different periods of data for feature extraction. The 

period of data for feature extraction is designed for a multiple of hedge horizons, from one to 

four in this study. The experiment is performed based on TWI data and compared with the 

conventional OLS model. Figures 4-7 to 4-11 show the experiment results in different hedging 

horizons. Figures 4-7 and 4-8 show that for CI_1 and CI_2, increasing the period of feature 

extraction will decrease hedging effectiveness. Figure 4-11, on the other hand, shows that for 

CI_1 and CI_2, increasing the period of feature extraction will increase hedging effectiveness. 

The influence of period of feature extraction is not obvious for other CI-based models, 

reflecting a tendency for inconsistency. The experiment results illustrate that a longer period 

for calculating variance and its first and second order differences is beneficial for hedging 

effectiveness in long-term hedging, but a shorter period is beneficial in short-term hedging. 
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Figure 4-7. Period of data for feature extraction in 1 day hedging 
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Figure 4-8. Period of data for feature extraction in 7 days hedging 
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Figure 4-9. Period of data for feature extraction in 14 days hedging 
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Figure 4-10. Period of data for feature extraction in 21 days hedging 
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Figure 4-11. Period of data for feature extraction in 28 days hedging 

 

4.7 Influence of the Period of Data for Experiment 

The dynamic behavior of a market is generally time-variant, which may influence the 

clustering results of the proposed model in this study. This problem can be classified to the 

robustness of model. In this study, we investigate the robustness of the proposed model using 

different periods of experiment data. The robustness of the six CI-based models are tested and 

compared with the two conventional models, naïve and OLS, over four periods. The different 

periods consist of the most recent 600, 1000, 1500, and all observations. The experiments of 

robustness are performed using five hedging horizons in four markets. A total of 128 

experiments, with the settings composed of eight models, five hedging horizons, and four 

markets, are performed. 

Figures 4-12 to 4-16 show the relationships between hedging effectiveness and period of 

experiment data for 1 day, 7 days, 14 days, 21 days, and 28 days hedging horizons, 
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respectively. In these five figures, the relationship between hedging effectiveness and period 

of experiment data is neither an obviously positive correlation nor a negative one. However, it 

is obvious that the hedging effectiveness of these six CI-based models gets close to that of the 

OLS model, and they have similar change tendencies in different periods of experiment data. 

Table 4-7 summarizes the hedging effectiveness in these experiments and lists the mean and 

standard deviations of the four periods of experiment data. In Table 4-7, the standard 

deviation for most experiments are less than 1%, except for the experiments of 1 day and 7 

days hedging in TWI. Standard deviation also decreases when hedging horizon increases. 

Based on the experiment results, the period of experiment data is not sensitive to model 

performance and the proposed CI-based model is robust. 
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(b) S&P 500 
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(c) FTSE 100 
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(d) NIKKEI 255 

Figure 4-12. Period of data for experiment in 1 day hedging 
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(b) S&P 500 
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(c) FTSE 100 
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(d) NIKKEI 255 

Figure 4-13. Period of data for experiment in 7 days hedging 
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(b) S&P 500 
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(c) FTSE 100 
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(d) NIKKEI 255 

Figure 4-14. Period of data for experiment in 14 days hedging 
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(b) S&P 500 
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(d) NIKKEI 255 

Figure 4-15. Period of data for experiment in 21 days hedging 
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(d) NIKKEI 255 

Figure 4-16. Period of data for experiment in 28 days hedging 
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Table 4-7. Comparison of period of data for experiment 

Hedging horizon 
/ Model 

Hedging effectiveness 

1 day Market        

 TWI  S&P 500  FTSE 100  NIKKEI 255 

 Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

CI_1 92.2117% 1.3529 96.9323% 0.4030 96.9226% 0.3768 96.2278% 0.4786 

CI_2 92.4148% 1.3697 96.9887% 0.4236 96.9373% 0.4230 96.2738% 0.5098 

CI_3 92.1927% 1.4484 96.9743% 0.3998 96.9331% 0.4015 96.2911% 0.5151 

CI_4 92.1968% 1.4665 96.9533% 0.4285 96.9382% 0.3712 96.2974% 0.4974 

CI_5 92.2722% 1.2920 96.9506% 0.4460 96.9736% 0.3315 96.3158% 0.5231 

CI_6 92.2056% 1.3680 97.0034% 0.4673 96.9867% 0.3613 96.2734% 0.5047 

OLS 92.3812% 1.3812 97.0026% 0.4348 96.9238% 0.3876 96.2918% 0.5075 

Naïve 90.5842% 0.9266 97.0555% 0.3800 96.9561% 0.4297 96.0113% 0.5148 

7 days Market        

 TWI  S&P 500  FTSE 100  NIKKEI 255 

 Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

CI_1 96.7073% 1.8231 99.1244% 0.2480 98.9544% 0.3573 99.3760% 0.1226 

CI_2 96.7496% 1.8202 99.1227% 0.3337 98.9366% 0.3699 99.3756% 0.1216 

CI_3 96.4375% 2.0239 99.1229% 0.2520 98.9472% 0.3711 99.3708% 0.1174 

CI_4 96.4383% 2.1028 99.0732% 0.2744 98.9644% 0.3631 99.3531% 0.1424 

CI_5 96.5048% 2.0327 99.1113% 0.2228 98.9056% 0.2836 99.3479% 0.1229 

CI_6 96.4652% 2.0426 99.0505% 0.3229 98.9112% 0.2994 99.3411% 0.0899 

OLS 96.4917% 1.9803 99.1274% 0.2020 98.8923% 0.3014 99.3599% 0.1312 

Naïve 95.5952% 2.6434 99.0494% 0.4479 98.9388% 0.2978 99.3642% 0.0971 

14 days Market        

 TWI  S&P 500  FTSE 100  NIKKEI 255 

 Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

CI_1 98.7365% 0.3965 99.4558% 0.2268 99.0111% 0.4963 99.6759% 0.1856 

CI_2 98.7389% 0.3530 99.4714% 0.3252 98.9922% 0.4595 99.6646% 0.1863 

CI_3 98.7357% 0.4181 99.4833% 0.2140 98.9565% 0.4385 99.6832% 0.1929 

CI_4 98.7439% 0.3760 99.5046% 0.2347 98.9850% 0.4448 99.6697% 0.1931 

CI_5 98.7427% 0.4333 99.4839% 0.2290 98.9556% 0.4409 99.6645% 0.1796 

CI_6 98.7454% 0.3486 99.4751% 0.2295 98.9651% 0.4324 99.6658% 0.1889 

OLS 98.7389% 0.3106 99.4300% 0.2820 98.9691% 0.4284 99.6689% 0.1793 

Naïve 98.3504% 0.1911 99.4534% 0.1890 99.0369% 0.4418 99.6004% 0.1883 
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21 days Market        

 TWI  S&P 500  FTSE 100  NIKKEI 255 

 Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

CI_1 99.3358% 0.4658 99.5302% 0.2834 99.3779% 0.4439 99.6829% 0.2209 

CI_2 99.3372% 0.4615 99.5034% 0.3679 99.4264% 0.4122 99.6846% 0.2142 

CI_3 99.2791% 0.5583 99.4779% 0.3958 99.4290% 0.4044 99.7030% 0.1802 

CI_4 99.3078% 0.5553 99.5093% 0.3535 99.4417% 0.3878 99.6900% 0.2022 

CI_5 99.2817% 0.5497 99.4686% 0.4249 99.4394% 0.3648 99.6970% 0.1933 

CI_6 99.3548% 0.5247 99.4775% 0.4061 99.4538% 0.3964 99.6951% 0.2146 

OLS 99.3238% 0.4541 99.2173% 0.8086 99.3451% 0.4382 99.6419% 0.2517 

Naïve 98.4771% 1.0831 99.6859% 0.2232 99.4630% 0.4196 99.7275% 0.1862 

28 days Market        

 TWI  S&P 500  FTSE 100  NIKKEI 255 

 Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

CI_1 99.2280% 0.4503 99.7272% 0.1871 99.4817% 0.6783 99.9301% 0.0430 

CI_2 99.2258% 0.4833 99.6604% 0.2005 99.4651% 0.6198 99.9329% 0.0296 

CI_3 99.1847% 0.5388 99.6953% 0.1827 99.4760% 0.6213 99.9387% 0.0398 

CI_4 99.1613% 0.4496 99.6990% 0.1505 99.4579% 0.6449 99.9379% 0.0334 

CI_5 99.1885% 0.4577 99.6817% 0.1626 99.4280% 0.6766 99.9272% 0.0300 

CI_6 99.2907% 0.5135 99.6739% 0.1821 99.4609% 0.6310 99.9273% 0.0286 

OLS 99.3386% 0.3793 99.6997% 0.1812 99.3655% 0.8257 99.8999% 0.0465 

Naïve 98.8472% 0.8987 99.6743% 0.1353 99.3010% 0.8634 99.8964% 0.0751 
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Chapter 5 Discussion and Conclusions 

5.1 Discussion 

The goal of this study is to investigate hedge ratio and hedging horizon using a novel CI 

approach and to compare the results obtained with the conventional OLS model. Many factors 

may influence the performance of the proposed CI-based model. These factors are widely 

discussed in other computational intelligence techniques, such as neural network and genetic 

algorithm, but are not extensively studied in this research. Moreover, empirical data also 

influence the performance of the proposed model, leading to the problem of model selection 

and robustness. Remarks on the proposed model and results presented in previous chapters are 

to be set forth and discussed. 

First, the parameter setting in the proposed CI approach may influence the results slightly. 

In GARCH family models, the auto-correlation and partial correlation functions can be used 

to determine the lag of data for model construction. The fitting of model can be evaluated 

using the Akaike Information Criterion and Bayesian Information Criterion. In the proposed 

model, hedging horizon is adopted as the lag of data in the CI-based model. The feature of 

dynamic behavior is extracted using whole observations in the previous hedging horizon. 

Moreover, the hierarchical topology of the cluster may be affected by the settings for breadth 

and depth parameters in GHSOM. In this study, these parameter settings are determined by 

taking a systematic trial-and-error approach, which is commonly used in neural network and 

genetic algorithms. 

Second, the lengths of data are important factors, including the length of estimation 

period, the length of testing period, and the period of empirical data. These factors will 

influence the stability of the results. The length of estimation period, which represents the size 
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of observations and the length of rolling window, is different from previous research on 

conventional OLS and GARCH family models. Some studies adopt 900 of 1000 observations 

to estimate OHR (e.g., Yang and Lai, 2009) while other studies adopt 1500 observations (e.g., 

Lien et al., 2002; Li, 2010). In this study, we initially adopt about 2000 observations to 

estimate the OHR, and then about 200 observations to test its performance. In the following 

estimations, 600, 1000, and 1500 observations are used to test the robustness of the model. 

Although the experiment results imply that the length of data does not obviously influence 

model performance, the examinations in this study do not provide statistical verification and 

thus require further study. 

Finally, the results of model comparisons may differ in different markets. Some studies 

indicate GARCH family models to be superior to the OLS model in a specific market (e.g., 

Myers, 2000). However, other studies indicate opposing opinions, stating that the OLS hedge 

ratio performs better than other popular multivariate GARCH models (e.g., Lien et al., 2002; 

Moon et al., 2009). The naïve hedge ratio of 1 is suggested as the optimal hedge ratio when 

the hedging horizon is long (Chen et al., 2004). The superiority of the hedging model can be 

evaluated using White’s reality check. However, this evaluation is not significant for model 

comparisons in one day hedging (Bystrom, 2003; Lee and Yoder, 2007). This phenomenon 

may be due to the dissimilar behavior of markets: the behavior of an emerging market differs 

from a mature market. For example, hedging effectiveness can be enhanced by a certain 

model in emerging markets such as the Hungarian BSI market, but not for developed markets 

such as the US S&P 500 market (Li, 2010). A similar result can be observed in this study, that 

is, the hedging effectiveness in TWI is different from that of UK FTSE 100. However, the 

proposed CI-based model is capable of discovering similar behavior in the same market and 

can adapt to the characteristics of a particular market. Therefore, the long-term tendency of 
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markets can be captured easily and the statistical significance when compared with OLS 

model in this study can be obtained. 

5.2 Conclusions 

In this study, we propose a novel computational intelligence approach to estimate the 

time-varying minimum variance hedge ratio. This investigation is one of the first studies on 

the computational intelligence techniques of cluster analysis to dynamic hedge ratio on stock 

index futures. Clustering time series are employed to recognize the observations with similar 

time series patterns. Observations with a high possibility of occurrence in the future are 

selected when hedging. These observations are used to modify the distribution probability of 

time series data using a resampling process with different weights given based on cluster 

result. This novel CI approach can overcome sample reduction problems and avoid undue 

assumptions in typical models. 

The empirical findings in this study are consistent with the following notations. First, 

hedging horizon will increase hedging effectiveness. When hedge horizon is increased, 

hedging effectiveness is also increased. Second, the proposed CI-based model can improve the 

typical OLS model, especially in long-term hedging. Third, the present findings lend support 

to the superiority of the CI-based model in enhancing hedging effectiveness for emerging 

markets, but not for developed markets such as the US S&P 500 and UK FTSE 100 markets. 

Finally, the OHR estimated using the CI-based model is more volatile than the OHR estimated 

using the OLS model, which implies that the CI-based model can rapidly reflect the 

time-variant property of financial time series and provide accurate estimation for dynamic 

hedging decision. 

This study evidences that the proposed model is superior to the conventional OLS model 
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in hedging effectiveness, but the usability of this computational approach is worse than 

conventional OLS model. Many factors, such as the breadth and depth parameters of GHSOM, 

the period of data for feature extraction, which may influence the performance of the 

proposed model, should to be determined appropriately in practical use. Further, most 

non-parametric models based on computational intelligence are challenged that the 

experiment results of non-parametric model are more unstable than parametric model when 

repeating the experiments. 

Although this research still have some restriction of model parameters selection, this 

novel approach based on computational intelligence can improve the performance of 

traditional approach without too many inappropriate assumptions and restrictions. 

Consequently, the proposed model can also be considered as a powerful tool to investigate 

any financial market, in which the probability distribution of data is unrestricted and not 

necessary to fit any type of probability distribution. 

5.3 Recommendations for Future Works 

This study proposed a novel approach for clustering the time series data and using the 

similarity-clustered data for OHR estimation. The empirical results showed results with 

different hedge intervals of the proposed models, and compared these with the hedge intervals 

of traditional models. The findings, although significant, have some limitations and are 

expected to be investigated further. The recommendations for future works are summarized as 

follows. 

1. This research simply adopts a default value to set the GHSOM parameter. Thus, the 

sensitivity of parameters setting of GHSOM should be investigated further to provide a 

definite guide in determining optimal parameter settings. 
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2. The robustness of the proposed model is expected to be verified using different periods 

of data from various markets. 

3. This research only conducts model and OHR estimations on stock index futures. 

However, the model has the potential to be applied to other futures market, such as 

foreign exchange futures or commodity futures. 

4. The proposed CI-based model is expected to be used as a tool for investigating the 

relevant issue of volatility in financial engineering, such as volatility forecasting, 

modifying beta coefficient in capital asset pricing model (CAPM), and estimating value 

of risk (VaR). 
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